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Abstract

This PhD thesis is devoted to the low-energy structure of the nucleon (proton and neutron)
as seen through electromagnetic probes, e.g., electron and Compton scattering. The research
presented here is based primarily on dispersion theory and chiral effective-field theory. The
main motivation is the recent proton radius puzzle, which is the discrepancy between the classic
proton charge radius determinations (based on electron-proton scattering and normal hydrogen
spectroscopy) and the highly precise extraction based on first muonic-hydrogen experiments
by the CREMA Collaboration. The precision of muonic-hydrogen experiments is presently
limited by the knowledge of proton structure effects beyond the charge radius. A major part of
this thesis is devoted to calculating these effects using everything we know about the nucleon
electromagnetic structure from both theory and experiment.

The thesis consists of eight chapters. The first and last are, respectively, the introduction and
conclusion. The remainder of this thesis can roughly be divided into the following three topics:
finite-size effects in hydrogen-like atoms, real and virtual Compton scattering, and two-photon-
exchange effects.

The first of these topics is of direct relevance to the proton charge radius extraction from
hydrogen and muonic hydrogen. We derive the finite-size effects using a dispersive representation
of the proton electromagnetic form factors. As result, we reveal some limitations in the usual
accounting of finite-size effects in terms of the expansion in charge and magnetization radii. We
can easily construct a model of nucleon form factors which exploits these limitations such as to
resolve the proton radius puzzle.

The second topic — Compton scattering — is important for understanding the two-photon-
exchange effects. We review the concept of dispersion relations and Compton scattering sum
rules, which are based on the general principles of unitarity, causality and analyticity. A new
set of sum rules for the elastic-channel contribution to the quasi-static polarizabilities is derived
and verified within quantum electrodynamics. We also perform the next-to-next-to-leading
order calculation of Compton scattering using the SU(2) baryon chiral perturbation theory with
∆(1232)-isobar degrees of freedom.

In the last topic, we use the doubly-virtual Compton scattering off the nucleus to evaluate
the two-photon-exchange effects in lepton-nucleus bound states. We focus on the leading and
subleading, i.e., order (Zα)5 and (Zα)6, polarizability contributions to the spectra of muonic hy-
drogen, deuterium and helium. We present the next-to-leading order baryon chiral perturbation
theory prediction for the proton-polarizability effect in the Lamb shift and hyperfine splitting of
muonic hydrogen and a first model-independent prediction of the neutron-polarizability effect in
light muonic atoms. Motivated by the large-Nc limit of quantum chromodynamics, we consider
the effect of the ∆(1232)-excitation in the hyperfine splitting of muonic hydrogen. We study the
neutral-pion exchange and an equivalent to the Coulomb-distortion contribution, both belong-
ing to the class of off-forward two-photon-exchange effects. To allow for a detailed comparison
with empirical information, we expand the contribution of non-Born two-photon exchange to
the hyperfine splitting in terms of individual spin polarizabilities. We conclude by evaluating
the impact of our model-independent predictions of polarizability effects on the extractions of
proton charge and Zemach radii from muonic-hydrogen spectroscopy.





Zusammenfassung

Die vorliegende Doktorarbeit beschäftigt sich mit der Niederenergiestruktur von Nukleonen (Protonen
und Neutronen), wie sie durch elektromagnetische Sonden, beispielsweise Elektronen- und Comptonstreu-
ung, beobachtet wird. Die hier präsentierte Forschung beruht hauptsächlich auf Dispersionstheorie und
chiraler effektiver Feldtheorie. Als Hauptmotivation dient das aktuelle Protonenradiusproblem, d.h. die
Diskrepanz zwischen den klassischen Ergebnissen (der Elektron-Proton-Streuung oder der Spektroskopie
von normalem Wasserstoff) für den Protonenradius und der hochpräzisen Bestimmung durch die Ex-
perimente der CREMA Kollaboration an myonischem Wasserstoff. Die Genauigkeit der Experimente
mit myonischem Wasserstoff ist derzeit durch das Wissen über Effekte der Protonenstruktur beschränkt,
welche über den Ladungsradius hinausgehen. Ein großer Teil dieser Arbeit widmet sich der Berechnung
ebendieser Effekte, wobei auf alles zurückgegriffen wird, was über die elektromagnetische Struktur der
Nukleonen aus Theorie und Experiment bekannt ist.

Die Arbeit besteht aus acht Kapiteln. Im ersten und letzten Kapitel findet sich eine Einführung bzw.
Zusammenfassung. Der restliche Teil der Arbeit kann in die folgenden drei Themenbereiche unterteilt wer-
den: Effekte der endlichen Kernausdehnung in wasserstoffähnlichen Atomen, reelle und virtuelle Comp-
tonstreuung, und Zwei-Photonen-Austausch-Effekte.

Ersterer Themenbereich ist von direkter Relevanz für die Bestimmung des Ladungsradius des Protons
anhand von Wasserstoff und myonischem Wasserstoff. Wir leiten die Effekte der endlichen Kernaus-
dehnung mithilfe einer dispersiven Darstellung der elektromagnetischen Formfaktoren des Protons her.
Im Ergebnis offenbart sich eine Limitierung in der üblichen Beschreibung der Effekte der endlichen Ker-
nausdehnung in Form von Ladungs- und Magnetisierungsradien. Ein Modell für die Formfaktoren des
Nukleons, welches diese Beschränkungen ausnutzt um das Protonenradiusproblem zu lösen, lässt sich
leicht konstruieren.

Das zweite Thema — die Comptonstreuung — ist wichtig für das Verständnis der Zwei-Photonen-
Austausch-Effekte. Wir wiederholen das Konzept der Dispersionsrelationen und die Summenregeln für
Comptonstreuung, welche aus den grundlegenden Prinzipien der Unitarität, Kausalität und Analytizität
hergeleitet werden. Ein neuer Satz von Summenregeln für den Beitrag des elastischen Kanals zu den quasi-
elastischen Polarisierbarkeiten wird hergeleitet und innerhalb der Quantenelektrodynamik überprüft. Wir
betrachten Beiträge zur Comptonstreuung bis einschließlich der übernächstführenden Ordnung in der
SU(2) baryonischen chiralen Störungstheorie mit dem ∆(1232)-Isobar als zusätzlichem Freiheitsgrad.

Im letzten Themengebiet verwenden wir die doppelt virtuelle Comptonstreuung an Kernen um die

Zwei-Photonen-Austausch-Effekte in gebundenen Zuständen aus einem Lepton und einem Nukleus zu

berechnen. Wir konzentrieren uns auf die führenden und nächstführenden Polarisierbarkeitsbeiträge der

Ordnungen (Zα)5 und (Zα)6 zu den Spektren des myonischen Wasserstoffs, Deuteriums und Heliums.

Wir präsentieren die Vorhersage der chiralen Störungstheorie in übernächster Ordnung für den Effekt der

Polarisierbarkeit des Protons auf die Lamb-Verschiebung und die Hyperfeinstruktur-Aufspaltung in my-

onischem Wasserstoff, sowie eine erste modellunabhängige Vorhersage für den Effekt der Polarisierbarkeit

des Neutrons in leichten myonischen Atomen. Inspiriert durch den Nc-Limes der Quantenchromodynamik

betrachten wir den Effekt der ∆(1232)-Resonanz auf die Hyperfeinstruktur in myonischem Wasserstoff.

Wir studieren den Austausch des neutralen Pions und ein Äquivalent zur Coulomb Deformation, welche

beide zur Klasse der Zwei-Photonen-Austausch-Prozesse abseits der Vorwärtsrichtung gehören. Wir en-

twickeln den Beitrag der Nicht-Born-Diagramme des Zwei-Photonen-Austausch zur Hyperfeinstruktur in

Spinpolarisierbarkeiten, um einen detaillierten Vergleich mit empirischen Informationen zu ermöglichen.

Zum Abschluss berechnen wir den Einfluss unserer modellunabhängigen Vorhersagen für die Polarisier-

barkeitsbeiträge auf die Bestimmung des Ladungs- und des Zemachradius des Protons anhand der Spek-

troskopie von myonischem Wasserstoff.
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CHAPTER I

INTRODUCTION AND MOTIVATION

Everyone knows it’s simple things that matter. One may even say that some of them — viz.
elementary particles — make up the matter. It is interesting to realize that 98 % of the nucleon
mass (and hence, of the visible matter around us) comes from the strong interaction and not
from the mass of its constituents (quarks), or equivalently, from the Higgs mechanism of mass
generation. Therefore, the origin of the nucleon mass and, more generally, of low-energy nucleon
structure is an important physics problem, which thus far has not been solved exactly based on
the fundamental theory of the strong interaction — quantum chromodynamics (QCD).

This thesis, roughly speaking, is an attempt to comprehend the nucleon structure effects
in hydrogen-like atoms, of which muonic hydrogen (µH) is a beautiful example. The main
motivation for this is the so-called proton charge radius puzzle. Before describing the puzzle
and how the presented work contributes to it (Section I.3), we will give a brief introduction
into the nucleon structure (Section I.1) and how it can be studied using atomic spectroscopy
(Section I.2).

1. Nucleon Structure

A traditional probe of nuclear and nucleon structure is the electron scattering, shown schemat-
ically in Figure I.1. Pioneered by Robert Hofstadter in the 1950’s [1–3], this method won him
the 1961 Nobel Prize in Physics (“for his consequent discoveries concerning the structure of nu-
cleons”). With electron scattering one is able to see objects whose spatial extent is comparable
to the reduced de Broglie wavelength, λ̄ = ~/p, of the incident electron. Increasing the electron
beam energy thus allows to look deeper and deeper into the matter. An electron beam with
momentum of 100 MeV/c probes the matter at the extent of about 2 fm. This is the typical
momentum at which one begins to resolve the individual nucleons in a nucleus.

To resolve the constituents of the nucleons — quarks and gluons — one needs a beam of
at least several GeV/c. The Mainz Microtron (MAMI) and the CEBAF at Jefferson Lab are
prominent examples of present-day facilities operating electron beams suited for studies of the
nucleon structure. In this thesis, we will often deal with results obtained in these labs.

Of course, the first indications that the nucleon is not elementary but has a substructure came
before the electron scattering experiments. In 1933, Otto Stern discovered an anomalously large
magnetic moment of the proton [4, 5], winning the Nobel Prize of 1943. The proton magnetic

1
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e-, e+

Ɣ*

e-, e+

N X
Figure I.1.: Electron scattering.

dipole moment is about 2.79 e/2M rather than simply e/2M as predicted by the Dirac theory
of a spin-1/2 particle, where e is the charge and M is the mass of the particle. The electron
fit very well in the Dirac theory prediction, the proton did not. Today we know that the large
anomalous magnetic moment of the proton, κ ≈ 1.79, is qualitatively explained as the sum of
magnetic moments of the constituent quarks in the naive quark model.

A more obvious observation of nucleon structure came in the early 1950’s. Fermi and collab-
orators discovered the first nucleon excitation — the ∆(1232)-resonance — using pion beams
[6]. Shortly after came the era of electron scattering. The very first experiments of Hofstadter
showed that the nucleon has a finite size, and hence, provided a direct proof of its compositeness.

The nature of the nucleon constituents was fully disclosed in the deep inelastic scattering
(DIS) experiments. The first of their kind were performed at SLAC [7, 8]. Later, experiments
at higher energies were built at CERN, Fermilab (FNAL) and HERA (DESY). The electron
scattering maps out the nucleon structure functions as functions of the photon virtuality Q2

and the photon energy ν. More often than not, the variable ν is traded for the dimensionless
Bjorken variable, x = Q2/2Mν, which in the naive parton picture is the momentum fraction
carried by a parton [9, 10], cf. Section IV.1.3. The weak dependence of the nucleon structure
function f2(x,Q2) on Q2 for fixed x indicates the scattering off point-like constituents. The
experimental verification of the Callan-Gross relation [11], 2xf1(x) = f2(x), showed that the
constituents are spin-1/2 particles. Since protons and neutrons have spin-1/2, one understood
that the nucleons are formed by three valence quarks. The observed charge range of nucleon
resonances (∆++,∆+,∆0,∆−) implied that quarks have fractional charges (±e/3 or ±2e/3).
Besides the valence quarks, DIS uncovered the sea quarks which, however, carry only a small
momentum fraction. Altogether, the quarks carry only about a half of the nucleon momentum.
The missing momentum was shown to be carried by the gluons [12], which are the gauge bosons
of QCD. More about the history of scattering experiments can be found in Ref. [13], whereas
we now turn to the present situation.

The main purpose of observing the elastic electron scattering is to measure the e.m. nucleon
form factors (FFs), which can vaguely be interpreted as the Fourier transforms of the nucleon
charge and magnetisation distributions in the Breit frame. The most precise data set for the
electric and magnetic Sachs FFs [14], GE(Q2) and GM (Q2), was obtained in an outstanding
measurement at the MAMI facility [15] in 2010. Figure I.1 depicts an electron scattering process
in the leading one-photon approximation, where obviously the target is probed by the exchanged
virtual photon. The Rosenbluth formula [16], cf. Eq. (II.16), allows to extract the Sachs FFs at
fixed values of Q2 by measuring the cross section for different scattering angles and accordingly
different incident beam energies. One of the first nucleon FF measurements based on the (one-

2



1. Nucleon Structure

q’q’

Figure I.2.: Compton scattering.

photon exchange) Rosenbluth separation was performed at Stanford [17]. Later, the polarization-
transfer technique was proposed [18–22] and experimentally realized at CEBAF [23–26].

In the polarization-transfer experiment, the longitudinally polarized electrons are scattering
off an unpolarized target and polarize it in the process. One then measures the ratio of trans-
verse and longitudinal polarizations of, e.g., the recoil protons in the elastic electron-proton (ep)
scattering, which is directly proportional to the ratio of GE(Q2)/GM (Q2). However, as it turns
out, there is a discrepancy between the Q2 behavior of the FF ratios extracted from unpolar-
ized Rosenbluth and polarization-transfer experiments. The ratio from polarization transfer is
decreasing linearly with Q2, whereas the Rosenbluth ratio is roughly constant. The general
belief is that the discrepancy can be explained by two-photon-exchange (TPE) effects, which
are not considered in the classic Rosenbluth separation.1 In recent years, several collaborations
measured the ratio of positron-nucleon to electron-nucleon cross sections, R2γ , as an indicator
for TPE or multi-photon-exchange processes. Experiments at CLAS (JLab) [30, 31] and the
VEPP-3 storage ring (Novosibirsk) [32] find evidence for a significant TPE contribution, ex-
plaining the discrepancy up to 2 − 3 GeV2/c2. Similarly, the OLYMPUS (DESY) experiment
[33] suggests that TPE is causing most of the discrepancy at low Q2. However, the experimental
R2γ is generally smaller than expected from theoretical calculations of hard TPE effects, thus,
more measurements are needed at large Q2.

We will see that the TPE is not only highly relevant for the e.m. FF measurements. It also
plays an important role in the physics of atomic bound states. The dominant uncertainty in
the theoretical description of the µH spectrum, in both the Lamb shift (LS) and the hyperfine
splitting (HFS), is given by elastic and inelastic TPE corrections, which we aim to improve upon
in Chapters VI and VII. The long-range force between electrically neutral atoms and molecules,
referred to as dispersion force2 [35, 36], is induced by TPE. It outweighs the one-photon-exchange
(OPE) interaction, which cancels almost completely among the positive and negative sub-charges
of the systems.

The electron-nucleon (eN) scattering is deeply connected to the process of Compton scattering
(CS) off the nucleon, cf. Section III.1. CS is an elastic scattering of a photon by a target, see
Fig. I.2. Various facilities have experimental programs dedicated to real and virtual CS: the
Lebedev Institute (Moscow) [37], MUSL (Illinois) [38], SAL [39], LEGS (BNL) [40], MIT-Bates
[41], MAX-Lab (Lund) [42], MAMI [43–48] and JLab [49]. Besides the previously described FF
measurements, which also carry information on the magnetic and electric radii as explained in
Section II.1.2, CS gives access to the nucleon polarizabilities, which describe the nucleon response
to e.m. fields, cf. Section III.1.1. The static scalar and spin polarizabilities are extracted from

1For reviews on the subject we refer to Hyde-Wright and de Jager [27] (e.m. nucleon FFs), Carlson and Vander-
haeghen [28] (TPE physics in hadronic processes), and Arrington et al. [29] (TPE in ep scattering).

2See Ref. [34] for a review on dispersion forces arising from two-photon, two-neutrino, and two-meson exchanges
between charged and neutral systems.
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Figure I.3.: Longitudinal-transverse polarizability, δLT , for the proton (left panel) and neutron (right
panel), respectively. We show the baryon chiral perturbation theory predictions of Lensky et al. [59, 65]
and Bernard et al. [64], and a result from MAID [66].

real Compton scattering (RCS). Virtual Compton scattering (VCS) and forward doubly-virtual
Compton scattering (VVCS) are described by different sets of generalized polarizabilities (GPs).3

In this thesis, we will study RCS in Chapter III and VVCS in Chapter IV.

Chiral perturbation theory (ChPT) is a low-energy effective field theory of QCD, based on
hadronic fields instead of quark and gluon fields [54–56]. As there are no free low-energy con-
stants, the contribution to the nucleon polarizabilities at leading order (LO) in the pion mo-
mentum, O(p3), comes out as a pure prediction of ChPT; and ChPT has proven to be quite
successful in reproducing the nucleon polarizabilities at low Q [57–60].4 However, there is a prob-
lem with the longitudinal-transverse polarizabilities — the δLT puzzle. There are two different
power-counting schemes, the δ- [62] and the ε-expansion [63], commonly used upon inclusion of
∆(1232) degrees of freedom (DOFs) into the ChPT framework, see Section IV.2. The ε-counting

gives a prediction for the longitudinal-transverse polarizability of the proton [64], δ
(p)
LT , which is

in significant contradiction to the empirical information collected in the MAID isobar model, see
Fig. I.3. In Chapter IV, we will calculate the nucleon polarizabilities at next-to-leading order
(NLO) in baryon chiral perturbation theory (BChPT) and try to clear up the δLT puzzle.

2. Atomic Spectroscopy

Hydrogen spectroscopy has an eventful history and played a crucial role in the development of
quantum physics. The experimental gain in the resolution of the hydrogen spectrum triggered
further progress in the theoretical understanding and allowed for the establishment of quantum
electrodynamics (QED). The non-relativistic Schrödinger equation allows for a description of
transitions between energy levels in the hydrogen atom with different principal quantum num-
bers, e.g., the Balmer series. However, only the relativistic Dirac theory can describe the fine
structure (FS), which is partially generated by the spin-orbit coupling. Explaining the HFS,
on the other hand, requires the spin-spin coupling. The LS is induced mainly by QED loop
corrections. A description of the (muonic) hydrogen spectrum and a more complete review of
the interplay between theory and experiment in the history of hydrogen spectroscopy, including
references, can be found in Section II.1.

Exotic atoms are unique laboratories to study nuclear properties, perform stringent QED tests

3For reviews on polarizabilities see, e.g., Guichon and Vanderhaeghen [50] (VCS and generalized polarizabilities),
Phillips [51] (neutron polarizabilities), Holstein and Scherer [52] (pion, kaon, nucleon polarizabilities) and
Hagelstein et al. [53] (nucleon polarizabilities).

4See Ref. [61] for a review of recent developments in ChPT.
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Table I.1.: Exotic atoms and their experimental realizations.

simple atom “light compound” “heavy compound” (first) exp. formation/observation

muonic atoms µ− H, D, 3He+, 4He+ CREMA collaboration [67, 68]

muonium e− and µ+ Hughes et al. [69] (1960)

true muonium/
µ− and µ+ theoretically possible to generate

muononium at modern e+e− colliders [70]

positronium e− and e+ Deutsch [71] (1951)

protonium/

p̄ and p

Daresbury-Mainz-TRIUMF

anti-protonic collaboration [72] (1978),

hydrogen ATHENA collaboration [73] (2006)

anti-hydrogen e+ p̄ PS210 Coll. (LEAR) [74] (1995)

pionium e− and π+ Mundinger et al. [75] (1989)

true pionium π− and π+ Flik et al. [76] (1986)

pionic hydrogen π− H Bailey et al. [77] (1970)

Davies et al. [78] (1979) and

kaonic hydrogen K− H Bird et al. [79] (1983),

KEK proton synchrotron [80] (1997)

[81, 82] or determine fundamental constants. The history of (simple) exotic bound states, such
as muonic or pionic atoms (or ions), dates back to the first half of the last century. The first
experimentally observed exotic atom in a long list of exotic atoms, see Table I.1, was positronium
in 1951 [71]. The first mention of a bound positron-electron system already dates back to 1934
[83], and the name “positronium” was mentioned in writing for the first time in 1945 [84].

In muonic atoms or ions, one or more valence electrons are kicked out and replaced by one
muon [67, 68, 85, 86]. The CREMA collaboration, for example, uses the πE5 beam-line of the
proton accelerator at PSI to generate low-energy muons which are stopped in low-density gases
to form µH, µD, µ3He+ and µ4He+. As the muon is about 200 times heavier than the electron,
its Bohr orbits are about 200 times closer to the nucleus. Therefore, the hydrogen-like muonic
atoms are used for having a closer look at the nucleus. The proton charge radius extraction
from the µH LS demonstrates this point by an order of magnitude improvement in precision,
see Section I.3.

QED tests with ordinary atoms are hindered by the nuclear structure effects. Purely leptonic
atoms, on the other hand, are build from point-like components, are not subject to strong
interactions and, hence, have no such limitation. Positronium and muonium are the perfect tools
to verify the theory of bound-state QED [82, 87] and probe New Physics beyond the Standard
Model [88]. The fine-structure constant α can, f.i., be extracted from the positronium decay
rate. The upcoming re-measurement of the ground-state HFS in muonium by the MuSEUM
collaboration (J-PARC) [89] will improve the determinations of the muon anomaly (g− 2)µ and
its mass.5 Formation of true muonium or tauonium at e+e− colliders would provide the heaviest
and most compact pure QED systems [70].

In hadronic atoms — pionic or kaonic atoms — the nucleus binds a pion [91, 92] or kaon
[93], respectively. Hadronic atoms are used for precision studies of the pion-nucleon and kaon-

5See Ref. [90] for a review on muonium spectroscopy.
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nucleon interactions, viz. scattering lengths, see Ref. [94] for a review. Another example of
exotic atoms are anti-protonic atoms [95], such as protonium [72, 73] and anti-hydrogen [74], see
Ref. [96] for a review. The ongoing upgrade of experimental facilities at CERN will allow for
a first determination of the anti-proton charge radius from the LS in anti-hydrogen [97]. The
1S−2S transition in anti-hydrogen has been recently measured for the first time by the ALPHA
collaboration and was found to be in agreement with ordinary hydrogen [98].

3. The Charge Radius Puzzle

The present 5.6 standard deviations (5.6σ) discrepancy between the proton root-mean-square
(rms) charge radius found by electron probes [99], viz. ep scattering and H spectroscopy, and
the µH experiment [100] has attracted a lot of attention in the physics community [53, 101–103]
and outside [104]. The results of experiments with electrons are collected in the CODATA ’14
review [99, Table XXIX and Eq. (74)]:

REp(H) = 0.8764(89) fm, (I.1a)

REp(ep) = 0.879(11) fm, (I.1b)

where a recommended charge radius is given:

REp(CODATA ’14) = 0.8751(61) fm. (I.1c)

As one can see from Fig. I.4, the proton radius recommended by the CODATA task group has
not changed much since the 2002 adjustment [99, 105–107].6 In 2010, the proton radius was
extracted from the µH spectrum for the first time by the CREMA collaboration [67].7 In the
first run, the 2P3/2(f = 2) − 2S1/2(f = 1) transition from the 2S-triplet state was measured,
see Fig. II.3, and had to be supplemented by theory input for the 2S HFS8 to extract the
proton radius. In 2013, the transition from the 2S-singlet state, 2P3/2(f = 1) − 2S1/2(f = 0),
was measured in addition [100]. The two transition frequencies allowed for an independent
measurement of the classic LS and the 2S HFS, which subsequently led to the extraction of the
proton rms charge radius and the Zemach radius [100, 110]:

REp(µH) = 0.84087(39) fm, (I.2a)

RZp(µH) = 1.082(37) fm. (I.2b)

While the Zemach radius agrees with the value calculated from different analytic FF parametriza-
tions [111–114], RZp = 1.049÷ 1.091 fm [115], the charge radius is significantly smaller than the
CODATA value. The latter discrepancy is referred to as the proton charge radius puzzle.

Figure I.4 shows a collection of proton charge radius determinations in chronological order.
The green and gray bands highlight the latest result from µH [100] and the CODATA ’14
recommendation [99]. Historically, the proton radius puzzle seems to be a reoccurring event.
Pachucki [145] already referred to the 4.8σ discrepancy between the Stanford [REp = 0.805(11)
fm] [117] and Mainz radii [REp = 0.862(12) fm] [122] as the “proton radius puzzle”. However, the

6During the last analyses it was mainly the error estimate of the CODATA recommended charge radius that
varied. Therefore, based on the previous CODATA ’10 proton radius [107], the comparison with the µH LS
measurement [100] temporarily resulted in a 7.2σ discrepancy.

7The first result being: REp(µH) = 0.84184(66) fm [67].
8EHFS(2S) = 22.8148(78) meV [108] (with RZ = 1.022 fm [109]) was used as theory input for the 2S HFS.
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Figure I.4.: Collection of various proton charge radius determinations. A) electron-proton scattering
experiments in red: Lehmann ’62 [116], Hand ’63 [117], Frerejacque ’66 [118], Akimov ’72 [119], Borkowski
’74 [120], Murphy ’74 [121], Simon ’80 [122], McCord ’91 [123], Eschrich ’01 [124], Bernauer ’10 [125], Zhan
’11 [126] (recoil polarimetry); B) re-analyses of electron-proton scattering data in dark red: Wong ’94
[127], Rosenfelder ’00 [128] (Coulomb corrections), Sick ’03 [129], Blunden ’05 [130] (two-photon-exchange
corrections), Borisyuk ’10 [131], Hill ’10 [132] (z expansion), Sick ’12 [133], Griffioen ’15 [134], Lee ’15 [135],
Horbatsch ’16 [136] (fit with chiral perturbation theory input for higher moments); C) electron-proton
scattering fits within a dispersive framework in blue: Mergell ’96 [137], Belushkin ’07 [138], Adamuscin ’12
[139], Lorenz ’14 [140]; D) hydrogen and deuterium spectroscopy in orange: Bourzeix ’96 [141], Schwob
’99 [142], Melnikov ’00 [143], Arnoult ’10 [144]; E) muonic-hydrogen spectroscopy in green: Pohl ’10 [67],
Antognini ’13 [100]; F) CODATA recommended charge radii in black: ’02 [105], ’06 [106], ’10 [107], ’14
[99]. The green line is the prediction from the latest muonic-hydrogen Lamb shift measurement [100] and
the gray line is the CODATA ’14 recommended charge radius [99].
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O
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Figure I.5.: Collection of various deuteron charge radius determinations. A) electron-deuteron scattering
[161]; B) deuterium spectroscopy [162]; C) CODATA ’14 [99]; D) muonic-deuterium Lamb shift [68]; E)
muonic hydrogen + isotope shift [100].

present situation is more severe. Before the µH result became available, the later ep experiments
(red) and re-analyses (dark red) using standard FF fits all pointed towards a bigger proton radius
in accordance with the electronic-hydrogen spectroscopy results (orange), cf. Fig. I.4. Not much
attention was payed to the dispersive fits [137–140] (blue) indicating a smaller proton radius,
see Ref. [146] for a recent update. After the publication of the first proton radius prediction
from µH, the theory of hydrogen spectra again turned into an active field of studies and the ep
scattering data fits were intensely debated [147, 148].

Meanwhile, publications proposing exotic explanations of the puzzle have been piling up [149–
160]. Of course, a simultaneous solution of the proton radius puzzle and the muon anomalous
magnetic moment, (g− 2)µ, discrepancy would be most desirable. However, most of the beyond
Standard Model scenarios, including extra dimensions, lepton flavor non-universality, new (dark)
forces and new particles, are highly limited by other experiments.

With the recently published deuteron charge radius extraction from the µD LS [68, 163], the
proton radius puzzle in fact turned into a Z = 1 (hydrogen isotope) charge radius puzzle [164],
see Fig. I.5:

REd(µD) = 2.12562(78) fm [68], (I.3a)

REd(CODATA ’14) = 2.1413(25) fm [99]. (I.3b)

The discrepancy between the µD result and the CODATA recommended deuteron rms charge
radius amounts to 6.3σ. Ref. [162] deduced a deuteron charge radius based on D spectroscopy
alone:

REd(D spectroscopy) = 2.1415(45) fm [162], (I.3c)

which is in agreement with the CODATA averages [99, 107] but 3.5σ discrepant with µD [68].
This disagreement is then uncorrelated with the proton charge radius.

Further LS measurements have been performed in muonic-helium ions, µ3He+ and µ4He+

[165], and the results of their analyses are soon to be published [164, 166]. All spectroscopy
experiments in muonic atoms have one thing in common, they rely on precise theory input to
extract nuclear charge or Zemach radii. Comprehensive theory reviews have been put together
for µH [110], µD [163] and µ4He+ [166].9 Comparing the measured HFS or LS transition to the

9A summary of the µ3He+ theory is in preparation [164].
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theoretical expectation of the atomic spectrum as a function of nuclear radii, allows to extract
these same, see Eqs. (II.12) and (VI.41) for the theoretical descriptions of the 2S HFS in µH
and the LSs in µH, µD and µ4He+.

Assuming the electron-probe experiments are correct, and so is the measured µH LS, we can
translate the discrepancy between the theoretical expectation of the classical LS in µH [110],
based on the CODATA recommended charge radius [99], and the µH experiment [100] into a
missing piece in the µH-theory budget of about 310µeV. Doing the same for the case of µD, the
discrepancy translates into a missing piece in the theory budget of 409 meV.

It was suspected that proton structure at order (Zα)5, i.e., forward TPE, could produce such
an effect [167, 168]. These TPE corrections split into an elastic and a polarizability part, cf.
Section V.1. Today, the dispersive calculations of the forward TPE corrections to the LS [169–
176], backed up by the BChPT prediction of Ref. [177], give an order of magnitude smaller result.
Nevertheless, the limiting factor in the accuracy of the theoretical description of the spectra of
hydrogen-like muonic atoms remains to be set by TPE effects [110, 163, 166]. A major task of
this thesis is to improve the predictions of the forward TPE polarizability corrections to LS and
HFS in µH and calculate the subleading off-forward TPE polarizability effects in light muonic
atoms (Chapters VI and VII). Furthermore, we will put the de Rújula [167] scenario for solving
the proton radius puzzle on a rigorous basis in Section II.3.

The advent of the proton radius puzzle has also triggered many new experimental programs.
Equation (I.1) shows that the H spectroscopy data play a dominant role in the CODATA adjust-
ment. While the CODATA average is, due to the reduced (statistical) error, in 5.6σ discrepancy
to the µH result, half of the H spectroscopy measurements agree with the muonic result at the
level of 1σ. Besides the three LS measurements in H [178–180], one is often using a combination
of two H transitions to extract the proton radius and the Rydberg constant R∞ simultaneously,
cf. Eq. (II.14). The first choice is the 1S − 2S transition [181], which is known most precisely,
and the second input could be for instance the 2S − 4P transition. Looking at the individual
measurements, cf. Figure 2 of Ref. [101], only the 2S− 8D5/2 transition [182] disagrees with the
muonic proton radius by 3σ. Furthermore, it is striking that the biggest discrepancies occur in
comparing to measurements from the LPTF and LKB Paris groups (2S−12D [142] and 2S−8D
[182] transitions). Therefore, on second glance, the discrepancy between H and µH spectroscopy
results is less pronounced, and an overlooked systematic effect in the Paris experiments could
relativize the discrepancy. Only more data will be able to clarify the situation and a first promis-
ing result for the 2S−4P transition was communicated by the MPQ (Garching) [164]. Also, the
n = 2 LS in H will be re-measured [183, 184]. Rydberg states in one-electron ions come with the
promising potential for a determination of the Rydberg constant which is independent of the
proton radius [185–187]. Experimental efforts using neon ions in a penning trap are underway
at NIST [188, 189].10 In addition, theory advances [191, 192] have made molecular hydrogen
(H2) an interesting candidate for QED and proton-size tests [193].

The hydrogen-deuterium isotope shift of the 1S−2S transition [197] determines the (squared)
deuteron-proton charge radius difference [198]:

R2
Ed −R2

Ep = 3.82007(65) fm2. (I.4)

The proton and deuteron charge radii extracted from the isotope shift and the LSs in µD and
µH, respectively, support the observation of smaller radii:

REp(µD + iso.) = 0.8356(20) fm [68], (I.5a)

10See Ref. [190] for a review on geonium theory, that is the theory of single ions or electrons in a penning trap.
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Figure I.6.: Determinations of the proton’s electric and magnetic radii. The bands correspond to the
CODATA ’14 recommendation [99] (orange) and the muonic-hydrogen Lamb shift result [100] (green).
The error ellipses show the analyses of electron-proton scattering data by Lorenz et al. [140] (blue), Sick
[133] (purple) and Bernauer et al. [194] (red). The red lines display the Bernauer fit with two-photon-
exchange corrections: [195] (solid), [29, 196] (dashed).

REd(µH + iso.) = 2.12771(22) fm [100]. (I.5b)

The concept of isotope shifts will be also used to re-extract the 6He and 8He charge radii
[199, 200] once the α-particle radius is extracted from the µ4He LS. And the µ3He+ and µ4He+

charge radii will be used to disentangle the 4σ discrepancy between 3He and 4He isotopic shift
measurements [201, 202].

The Bernauer MAMI measurement [15] extended the world data set of ep scattering sub-
stantially. Presently, the lower bound in the Q2 range is situated at Q2 = 0.004 GeV2/c2.
Nevertheless, it could be that the range and accuracy of the present ep scattering data is simply
insufficient to make a quantitative statement on the proton charge radius. For example, two
recent re-analyses [203, 204] concluded that ep scattering is consistent with both H and µH
spectroscopy, i.e., with radii in the range of 0.84 to 0.89 fm. The predictions obtained from
ep scattering highly depend on the fitting model, inclusion or neglect of high-Q2 data, etc. An
obvious quality criterion should be that the employed FF parametrization displays a physical
behavior. In this respect, the dispersive framework is advantageous, as it incorporates the an-
alyticity and unitarity constraints on the proton structure [137, 138, 140]. To mention other
ideas, it was suggested that a FF basis with analytic Fourier transform is desirable, since the
charge distribution of the proton, %Ep(r), could be studied at the same time [133, 205–207]. A
new fitting ansatz with higher moments fixed to the values predicted by ChPT [136] achieved
a proton radius right between the µH and CODATA values, cf. Fig. I.4. Recalling that in the
analysis of ep scattering the e.m. FFs, GEp and GMp, are extracted simultaneously, we plot RMp

vs. REp in Fig. I.6, illustrating that there are also discrepancies in the determination of RMp.
For the future, new data closing the gap at low Q2 are anticipated, which will make the

extrapolation of the FFs to Q2 = 0, cf. Eq. (II.9), easier. The initial state radiation experiment at
MAMI [208, 209] plans to reach down to Q2 ∼ 10−4 GeV2/c2 and determine the FFs with a sub-
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percent accuracy. The pRad (JLab) experiment [210] is likewise planing to measure the FFs at
Q2 ∼ 2×10−4 GeV2/c2 with a sub-percent accuracy. Their magnetic-spectrometer-free setup will
allow them to reach extremely low scattering angles and improve the systematical uncertainties.
The MUSE muon-proton (µp) scattering experiment [211] wants to directly compare ep and µp
cross sections measured under the same systematic conditions and search for a possible violation
of lepton flavor universality. In addition, TREK (J-PARC) will search for violation of lepton
universality in stopped kaon decays [212].

Several groups are now planning to seize the idea [213, 214] of measuring the ground-state
HFS in µH: the CREMA [215], FAMU [216–218] and J-PARC / Riken-RAL collaborations [219]
(see Ref. [215] for a comparison of experimental methods). The corresponding 1S transition is
much narrower than the so far observed 2S to 2P transitions, therefore providing the basis to
improve on the precision of the Zemach radius. In addition, the CREMA collaboration wants to
measure the ground-state HFS in µ3He+. We hope that our results for the TPE polarizability
contribution to the HFS in µH, see Chapter VII, will be useful in this respect.

In the future, lattice QCD (LQCD) predictions should be able to shed light upon the proton
radius puzzle [220]. Several LQCD collaborations are studying the e.m. nucleon FFs: ETMC
[221, 222], LHPC [223], PACS [224], PNDME [225], Mainz [226] and others [227–229]. At
present, the extraction of the proton radius from LQCD involves a fit of the lattice data points,
analogous to the fitting of ep scattering data. However, there are proposals to directly access the
slope of the FF at zero momentum transfer. Such an approach has already been implemented to
predict the Dirac radius [230]. In addition, most LQCD collaborations only calculate isovector
combinations of the FFs, e.g., 1

2 (GEp − GEn), in order to avoid disconnected diagrams. The
accurately known neutron charge radius is then used as input to extract the proton charge
radius.

For more information on the proton charge radius puzzle and its present status, we refer to
the following reviews: Pohl et al. [101], Carlson [102] and Hagelstein et al. [53]. For a complete
coverage of the µH LS and HFS theory, we refer the interested reader to Antognini et al. [100],
Karshenboim et al. [103], as well as Jentschura [231, 232]. The LS in light muonic atoms is
reviewed in Ref. [233] and Refs. [234, 235].

4. Thesis Outline

Throughout the thesis, we will introduce the theoretical foundations of CS and hydrogen-like
atoms, illustrating the complex interplay between CS and hydrogen theory. Nucleon properties
— polarizabilities and FFs — as entering into the CS process and the TPE effects in atomic
bound states are of special interest. The extraordinarily beneficial concept of dispersion relations
(DRs) and CS sum rules is recapitulated and widely applied. Furthermore, the level-scheme of
atomic spectra is surveyed and the finite-size effects (FSE), including the prominent charge
radius term and subleading TPE corrections, are introduced.11

In Chapter II, we review the theory of hydrogen-like atoms in historical order (Section II.1.1),
specify the finite-size and polarizability effects in atomic bound states (Section II.1.2), and
describe quantitative differences between the spectra of electronic and muonic hydrogen (Sec-
tion II.1.3). The Breit potential is derived from the OPE diagram with FF dependent e.m.
coupling to the nucleus (Section II.2). The contributions of finite-size and electronic vacuum
polarization (eVP) corrections to the µH energy levels are calculated in the framework of pertur-
bation theory and compared against the literature. From the Breit Hamiltonian we also deduce

11A comprehensive review, which covers most (but not all) of the presented aspects, can be found in Ref. [53].
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finite-size recoil effects at order (Zα)5, which are usually embedded in the nuclear-pole part of
the TPE corrections and not written in terms of the first moments of the charge distributions.
Our dispersive ansatz then allows us to present an alternative formulation of the FSEs (Sec-
tion II.3), omitting the usual expansion in moments of charge and magnetization distributions
[236]. Working with the exact (un-expanded) formulas, we present a model of the electric Sachs
FF which is able to resolve the proton radius puzzle [237] (Section II.4).

Chapter III is devoted to RCS and model-independent sum rules for the extraction of po-
larizabilities from photoabsorption cross sections; with the basic concepts of CS, DRs and sum
rules recapitulated (Section III.1). We give the physical interpretation of polarizabilities (Sec-
tion III.1.1) and report on the present status of nucleon polarizabilities (Section III.2). The
Compton contribution to photoabsorption and the associated contributions to the lowest-order
scalar and spin polarizabilities are calculated at one-loop level in QED and a necessary modifi-
cation of the sum rules is presented [238, 239] (Section III.3).

The transition to forward VVCS is made in Chapter IV. We start with a rather detailed sum-
mary of the relevant theory (Section IV.1), as it will be of interest also in the subsequent Chapter.
The extension of the ChPT framework to the region with ∆(1232) DOFs is motivated (Sec-
tion IV.2), focusing on the two common counting schemes, the δ- and ε-expansions, which give
contradictory results for the longitudinal-transverse polarizability of the proton. We then calcu-
late the tree-level ∆-exchange contribution to the process of CS off the nucleon (Section IV.3)
and the (Nγ∗ → π∆) photoabsorption cross sections for pion-delta production (Section IV.4).
The results are used to update the predictions for the moments of the nucleon structure functions
presented in Ref. [59] by including the gC coupling in the Nγ∗ → ∆ vertex (Section IV.3.3).
Furthermore, the contribution of diagrams with photons coupling to the ∆-isobar is studied as
the possible origin of the δLT puzzle (Section IV.4).

Chapter V provides the theoretical basics of forward and off-forward TPE in hydrogen-like
atoms. In Section V.1, we give an extensive derivation of the forward TPE effects in atomic
bound states and clarify the definition of the polarizability contribution. In addition, we compare
the nucleon-pole contributions of LS and HFS to the results from OPE (Section V.2), and present
an expansion of the TPE polarizability contribution in terms of polarizabilities (Section V.3).
In Section V.4, we discuss the off-forward TPE in hydrogen-like bound states.

We then calculate polarizability contributions to the spectra of µH and other hydrogen-like
muonic atoms. Hereby, Chapter VI is dedicated to the LS and Chapter VII focuses on the HFS.
Both Chapters proceed analogously. We start with the NLO BChPT prediction for the order-α5

proton-polarizability contribution, which is generated by πN -loop and ∆-exchange diagrams.
Our results are compared to heavy baryon chiral perturbation theory (HBChPT) and data-
based dispersive approaches. Furthermore, we consider different contributions to the spectra of
light muonic atoms appearing at order (Zα)6. For the LS, we derive the nuclear-polarizability
effect at order (Zα)6 lnZα (Section VI.2). It is equivalent to the Coulomb-distortion long range
polarization potential and shown to contribute non-negligibly to µD, µ3H, µ3He+ and µ4He+.
For the HFS, the effect of neutral-pion exchange is calculated [53, 240] (Section VII.4). As a
highlight, we present the first theory prediction for the neutron-polarizability contribution to the
HFS of light muonic atoms (Section VII.3) and an expansion of the spin-dependent non-Born
TPE in terms of polarizabilities (Section VII.2). In a final step, we evaluate the rms charge radii
of proton and deuteron (Section VI.3) and the proton Zemach radius (Section VII.5) based on
the polarizability contributions found in here.

We conclude with a summary of conclusions and an outlook (Chapter VIII).
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A. Notations and Conventions

A. Notations and Conventions

Unless specified, all calculations are presented in natural units, ~ = c = 1, and we use the
following notations for the well-established parameters, along with their PDG values [241, 242]:

α the fine-structure constant, α = e2/4π = 1/137.035 999 139(31).

~c conversion constant, ~c = 197.326 9788(12) MeV fm.

m lepton mass, {me,mµ} = {0.510 998 9461(31), 105.658 3745(24)}MeV.

mπ pion mass, {mπ0 ,mπ±} = {134.9766(6), 139.570 18(35)}MeV.

M nucleon mass, {Mp,Mn} = {938.272 0813(58), 939.565 4133(58)}MeV.

κ nucleon anomalous magnetic moment, {κp, κn} ' {1.7929, −1.9130}.
We introduce the Minkowski metric:

g =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , (I.6)

to define the four-vector scalar product:

a · b = gρσ a
ρbσ = aσb

σ = a0b0 − a · b, (I.7)

and utilize the Einstein summation convention to sum over repeated indices. The Levi-Civita
symbol is chosen as: ε0123 = +1 = −ε0123. Furthermore, we define:

• Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (I.8a)

σiσj = δij 1 + i

3∑
k=1

εijkσk, (I.8b)

{σi, σj} = σiσj + σjσi = 2δijσ0; (I.8c)

• Dirac matrices and algebra

γ0 =

(
1 0

0 −1

)
, γk =

(
0 σk

−σk 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
, (I.9a)

{
γµ, γ5

}
= 0, (I.9b)

{γµ, γν} = γµγν + γνγµ = 2gµν , (I.9c)

γµν =
1

2
[γµ, γν ] =

1

2
(γµγν − γνγµ) = γµγν − gµν = − i

2
εµναβγαγβγ

5, (I.9d)

γµνα =
1

2
(γµγνγα − γαγνγµ) = −iεµναβγβγ5, (I.9e)

γµναβ =
1

2

[
γµνα, γβ

]
= iεµναβγ5. (I.9f)
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CHAPTER II

FINITE-SIZE EFFECTS BY DISPERSIVE TECHNIQUE

In the present Chapter, we derive the known expressions for the nuclear-size effects in hydrogen-
like atoms by means of a dispersive technique (Section II.2). The semi-relativistic Breit potential
formalism presented below is advantageous because it needs only little modification to calculate
QED and electroweak corrections to the Coulomb potential (Appendix II.D). We will point out
a limitation of the usual accounting of FSEs in terms of the expansion in moments of charge
and magnetization distributions [53, 236] (Section II.3), and present a toy-model which is able
to resolve the proton charge radius puzzle [237] (Section II.4). Furthermore, we report finite-size
recoil effects at order (Zα)5, which need to be compared to the nuclear-pole part of the TPE
corrections, see Section V.2.

1. Proton Structure in Hydrogen-Like Atoms

We shall begin with elaborating on the spectra of hydrogen-like atoms. The synergy between
theoretical and experimental efforts, mentioned in Section I.2, which lead to milestone achieve-
ments in the history of physics — such as the establishment of quantum mechanics and quantum
electrodynamics —, shall be reviewed in more details. For simplicity, we will mainly talk about
hydrogen. However, the formalism can readily be extended to hydrogen-like atoms with an
arbitrary value of the nuclear charge Z. Effects of proton structure on the hydrogen spectrum,
classified into finite-size and polarizability effects, will be our main focus. Some attention will
be paid to the differences between H and µH.

1.1. Hydrogen Spectrum

1In 1911, Ernest Rutherford performed his famous experiment of scattering α-particles off a thin
gold foil [246]. The “planetary” Rutherford model then pictured atoms as a sort of solar system,
with a massive positively charged nucleus playing the role of the sun, and the light negatively
charged electrons playing the role of the planets. In 1917, Rutherford used α-particles to induce
the nuclear fusion reaction: α2+ + 14

7 N→ p+ 17
8 O+. The observation of the hydrogen nucleus in

the final state supported Prout’s hypothesis [247] that heavy atoms are just clusters of hydrogen

1In preparation of this Section, the following textbooks were used: Refs. [243–245].
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EnjF

non-rel. energy levels 

l=0 (S) l=1 (P)

relativistic kin. energy

Darwin Term  
(l=0 only)

spin-orbit coupling  
(rel. Dirac theory)

Lamb shift  
(2P1/2 - 2S1/2)

n=2

j=1/2 

j=3/2 

f=1
f=0 f=1

f=0

j=1/2 
spin-spin coupling

f=2
f=1

spin-spin coupling

Structure Theory Quantum 
numbers

gross structure Schrödinger eq. n

fine structure
Dirac eq.  

(rel. kin. energy, Darwin 
term, spin-orbit coupling)

n, j

hyperfine 
splitting spin-spin coupling f

Lamb shift QED loop corrections l

Figure II.1.: Energy levels in hydrogen-like atoms (not drawn to scale). The schema ignores finite-size
effects, P -level mixing, etc.

atoms (as suggested by their masses, being multiples of the atomic weight of hydrogen). In
honour of Prout’s prediction, Rutherford named the hydrogen nucleus as “proton”.

In 1932, Sir James Chadwick [248, 249] confirmed the existence of a neutron by similarly
scattering α-particles off a beryllium target (Nobel Prize 1935). The discovery of the electron
dates back to early cathode ray experiments of, e.g., Sir J. J. Thomson [250].

In 1913, Niels Bohr postulated his quantum model, which won him the Nobel Prize of 1922
[251, 252]. In the Bohr model, the electrons are only allowed to be on certain circular orbits with
discrete values of angular momentum: l = n~, with l = r×p. On these orbits, in contradiction to
classical mechanics, the electrons would move without radiating. Hence, their energy is constant,
and given by the Bohr formula:

En = − Zα

2an2
, (II.1)

where n is the principal quantum number describing the particular orbit, a = 1/(Zαmr) is the
Bohr radius and mr = mM/(m+M) is the reduced mass of the electron-nucleus system with m
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1. Proton Structure in Hydrogen-Like Atoms

the electron mass and M the nucleus mass. The energy levels described by Eq. (II.1) agree with
the prediction from quantum mechanics (QM) of non-relativistic electrons without spin. They
are referred to as the gross structure of the atomic spectra.

The 1/n2 dependence in Eq. (II.1) is motivated by the Rydberg formula [243],

1

λ
= Z2R∞

mr

m

(
1

n2
− 1

n′ 2

)
, (II.2)

which was invented in 1888 to describe the (n = 2) Balmer [253] series of spectral lines in the H
emission spectrum.2 Note that the Rydberg constant, R∞, makes the (infinitely heavy) static
nucleus assumption. In Eqs. (II.1) and (II.2), we replaced the electron mass by the reduced
mass of the electron-nucleus bound state, in order to account for the movement of nucleus and
electron around their center of mass.

A modification of the Bohr model was proposed by Arnold Sommerfeld [259] in 1916. In
the Sommerfeld model, the electrons are moving on elliptical orbits (now restricted by a space
quantization law that imposes three quantum numbers), obeying the equations of motion of
special relativity. This model allowed to generate the FS splittings and explain the splitting of
spectral lines in static magnetic and electric fields, i.e., the normal Zeeman- and Stark-effects.

Werner Heisenberg won the Nobel Prize in Physics in 1932 for the “creation of quantum
mechanics” [260]. This marked the beginning of a new era. Heisenberg’s uncertainty principle
says that observables of non-commuting operators can not be simultaneously measured with
arbitrary precision, e.g., the more precisely the position of a particle is determined, the less
precisely its momentum can be known. Instead, particles are now described by wavefunctions,
which are complex-valued probability amplitudes describing, f.i., the probability of a particle to
be at a given point in space.

Erwin Schrödinger and Paul Dirac were awarded the Nobel Prize in Physics in 1933 for their
development of QM. The non-relativistic, time-independent Schrödinger equation [261],

Ĥ Ψ = EΨ, (II.3)

with the quantum Hamiltonian

Ĥ =
p̂2

2m
+ V, (II.4)

is a differential eigenvalue equation describing the eigenstates Ψ and energy eigenvalues E of
a particle which moves in a potential V . Here, m is the mass of the particle and p̂ = −i∇
is the momentum operator. The Schrödinger energy eigenvalues for the Coulomb potential,
V (r) = −Zα/r, match Eq. (II.1).3

The relativistic Dirac equation,

[α p̂+ β m+ V (r)]ψ = E ψ, (II.5a)

with

α =

(
0 σ

σ 0

)
, β =

(
1 0

0 −1

)
, (II.5b)

2The Rydberg formula also describes other spectral lines such as the later observed Lyman [254, 255], Paschen
[256], Brackett [257] and Pfund series [258].

3The Schrödinger and Dirac wave functions of the Coulomb problem are listed in the Appendices II.B.1 and
II.B.3.
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II. Finite-Size Effects by Dispersive Technique

the Pauli matrices σ and the Dirac spinors ψ, describes spin-1/2 particles [262]. Applying the
Dirac equation to the Coulomb potential, one obtains the following energy eigenvalues:

Enj = m+mr


1 +

(
Zα

n− (j + 1/2) +
√

(j + 1/2)2 − (Zα)2

)2
−1/2

− 1

 , (II.6a)

≈ m+ En

{
1 +

En
2mr

[
3− 4n

j + 1/2

]}
+O(Zα)6, (II.6b)

which depend on the principal quantum number n and the electron total angular momentum
quantum number j. In the last step, we expanded in the parameter Zα, which is small for
light nuclei. The expansion illustrates that the Dirac equation produces the rest energy, the
energy levels from the non-relativistic limit, cf. En in Eq. (II.1), and higher-order relativistic
corrections. The additional dependence of the energy levels on j generates the FS on top of
the gross structure, cf. Fig. II.1. The FS is induced by the spin-orbit coupling (cf. Eq. (II.31c),
j = l+ s), i.e., by the interaction of the electron magnetic dipole moment (or the electron spin4

s) and the magnetic dipole moment associated with the electron’s orbital angular momentum
(l, electron orbital angular momentum quantum number l). A first observation of FS splittings
was reported by Houston [264] in a re-measurement of the Balmer series in H.

Figure II.1 shows a further splitting of the S1/2, P1/2 and P3/2 lines — the so-called HFS. The
leading HFS of S-levels is given by the Fermi energy:

EF(nS) =
8Zα

3a3

1 + κ

mM

1

n3
. (II.7)

Here and hereafter, M is the mass of the nucleus, m is the mass of the lepton and κ is the
anomalous magnetic moment of the nucleus. Explaining the HFS requires the spin-spin coupling
(cf. Eq. (II.77a), f = j + S), that is the interaction between the nuclear magnetic dipole
moment (or nuclear spin S) and the magnetic field generated by the electron (electron total
angular momentum j). The dependence of the HFS on the atom’s total angular momentum (f ,
atom’s total angular momentum quantum number f) becomes obvious from the static potential
in Eq. (II.31f). The nS HFS is then the splitting between levels with quantum numbers n, l = 0
and f = 0 or f = 1, respectively.

The 1S HFS of H is widely known as the 21-cm line observed in radio astronomy [265, 266].
Since the transition probability of the 1S HFS is extremely small, it turned out to be a great
tool to study the spiral structure of the Milky Way. One can gain information on the density,
velocity and temperature distributions of H atoms in the universe by detecting lines with different
redshifts and Doppler shifts.

Both the non-relativistic Schrödinger energies, Eq. (II.1), and the relativistic Dirac energies,
Eq. (II.6a), of the Coulomb problem are degenerate for levels with equal n and j, hence, display
no classic (2P1/2 − 2S1/2) LS. To explain the LS observed in 1947 by Lamb and Retherford
[267], cf. Fig. II.1, one needs QED.5 The first LS calculation was performed by Bethe [268] using
non-relativistic QED. The necessary QED corrections involve vertex and selfenergy corrections
for the electron and nucleus, respectively. In contrast to H, the µH LS is dominated by eVP. cf.

4Experimental evidence for the electron spin was given by the Stern-Gerlach experiment [263], the observation
of the FS and the so-called anomalous Zeeman effect.

5In 1965, Sin-Itiro Tomonaga, Julian Schwinger and Richard P. Feynman were jointly awarded the Nobel Prize in
Physics “for their fundamental work in QED, with deep-ploughing consequences for the physics of elementary
particles”.
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1. Proton Structure in Hydrogen-Like Atoms

Section II.1.3. In the follow-up Sections, we enlist all effects relevant to the spectra of hydrogen.
In particular, we confront the theories of H and µH.

1.2. Finite-Size Effects: Charge Radius and Beyond

The nuclear structure is long known to affect the atomic spectra of (normal) electronic and,
more significantly, muonic atoms. Naturally, the nuclear structure effects are divided into two
categories:

(i) finite-size effects (FSEs), i.e., the effects due to the elastic FFs, GE and GM ;

(ii) polarizability effects, which is everything else.

In the present Chapter, we derive the OPE Breit potential. From this potential we can only ob-
tain FSEs. An extensive derivation of the structure effects through TPE, clarifying the definition
of the polarizability contribution, is delegated to Chapter V.

The FSEs are predominantly given by an upwards shift of the n-th S-level. To order (Zα)5,
the classic LS and the S-level HFSs are found as (omitting recoil) [233]:

ELS ≡ E(2P1/2)− E(2S1/2) = − Zα

12a3

[
R2
E − 1/2aR3

F

]
+O(Zα)6, (II.8a)

EHFS(nS) ≡ E(nSf=1
1/2 )− E(nSf=0

1/2 ) = EF(nS) [1− 2/aRZ] +O(Zα)6, (II.8b)

where the radii are defined as follows:

• Charge radius (rms):

RE =
√
〈r2〉E , (II.9a)

〈r2〉E ≡
ˆ

dr r2%E(r) = −6
d

dQ2
GE(Q2)

∣∣∣
Q2=0

; (II.9b)

• Friar radius (or, the 3rd Zemach moment of the charge distribution) [269, 270]:

RF = 3

√
〈r3〉E(2), (II.10a)

〈r3〉E(2) ≡
ˆ

dr r3 %E(2)(r), with %E(2)(r) =

ˆ
dr′ %E(|r′ − r|) %E(r′), (II.10b)

≡ 48

π

ˆ ∞
0

dQ

Q4

[
G2
E(Q2)− 1 + 1

3R
2
E Q

2
]
; (II.10c)

• Zemach radius [269]:6

RZ ≡
ˆ

dr r %Z(r) %Z(r) =

ˆ
dr′ %E(|r′ − r|) %M (r′), (II.11a)

≡ − 4

π

ˆ ∞
0

dQ

Q2

[
GE(Q2)GM (Q2)

1 + κ
− 1

]
. (II.11b)

6Note that Faustov et al. [109] use a definition of the Zemach radius which depends on the reduced mass of
the hydrogen bound state. Therefore, they obtain different Zemach radii for electronic (RZp = 1.025 fm) and
muonic hydrogen (RZp = 1.022 fm).
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II. Finite-Size Effects by Dispersive Technique

The formulas presented above represent the usual accounting of FSEs as an expansion in mo-
ments of charge and magnetization distributions. We will present the un-expanded formalism
in Section II.3 and point out the limitations of the expansion in Section II.4.

Presently, the determination of the proton charge radius from the µH LS relies on input for
the Friar radius obtained from elastic FFs measured in ep scattering. Karshenboim [271, 272]
points out that this poses a consistency problem, as the Friar radius is in turn related to the
charge radius, cf. Eq. (II.10), while the present results from µH spectroscopy and ep scattering
give contradictory proton charge radii, see also Ref. [53, Section 6.2.2].
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Figure II.2.: Theoretical budget of the Lamb shift in muonic hydrogen [110]. The two-photon exchange
is displayed in blue; we give estimates for the elastic and polarizability contributions (unfilled bars), as
well as for the total two-photon-exchange contribution (solid bar). The discrepancy between theory and
experiment adds up to 0.31 meV. The theoretical uncertainty is estimated as 0.0025 meV, cf. Eq. (II.12a).

1.3. Electronic vs. Muonic Hydrogen

We now cosider the spectra of muonic and electronic atoms, with a particular focus on hydrogen.
Muonic atoms are especially suited to study the nuclear size, because its 207 times heavier mass
makes the muon orbit closer to the nucleus than an electron. Hence, the Bohr radius of µH
is 186 times smaller than the Bohr radius of ordinary H. Equation (II.8) shows that the effect
from the charge radius term is proportional to the reduced mass (roughly the lepton mass) of
the lepton-nucleus bound state and the charge of the nucleus. Therefore, the FSEs in muonic
hydrogen are bigger than in electronic hydrogen, and the FSEs in, f.i., helium are bigger than
in hydrogen. In general, the NLO FSEs are suppressed by the inverse Bohr radius, i.e., not only
by the fine-structure constant α. Therefore, they can be omitted in the H theory and become
appreciable in µH only.
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2. Breit Potential with Finite Nuclear Size

The theoretical description of the classic LS and 2S HFS in µH [110] adds-up to (in meV):

EµH th.
LS = 206.0336(15)− 5.2275(10) (REp/fm)2 + ETPE

LS , with ETPE
LS = 0.0332(20), (II.12a)

EµH th.
HFS (2S) = 22.9763(15)− 0.1621(10) (RZp/fm) + Epol.

HFS , with Epol.
HFS = 0.0080(26), (II.12b)

where ETPE
LS contains the Friar radius, recoil FSEs, and the proton-polarizability effects; Epol.

HFS(2S)
is the proton-polarizability effect only. From the H bound-state tabulation of Ref. [184], we de-

duced the following theoretical 2P f=1
1/2 − 2Sf=0

1/2 LS (in units of µeV):

EH th.
LS ≈ −3.7624− 0.0008 (REp/fm)2, (II.13)

with the Rydberg constant, R∞ = 3 289 841 960 355(19) kHz, taken from the CODATA ’14 ad-
justment [99]. This formula should be only considered as an approximation, as we neglected
terms with logarithmic dependence on the charge radius by substituting the CODATA recom-
mendation for REp, Eq. (I.1c).

Figure II.2 illustrates the size of different contributions to the theory prediction of the µH LS.
The dominating contribution comes from eVP. Already the second largest term is given by the
proton size. Furthermore, there are corrections due to muonic self-energy (µSE) and muonic
vacuum polarization (µVP) which are absent in H. For the H atom, the QED corrections of the
e.m. electron vertex generate the main part of the LS. The TPE effects can be split into an elastic
finite-size part and a polarizability part. These are nuclear structure effects at order (Zα)5 and
as such they are seizable in µH but can be neglected in H. On the other hand, they impose the
largest uncertainty on the µH theory, cf. Chapters VI and VII. The relative strength of all these
contributions alters the µH spectrum considerably in comparison to the H spectrum.7

The n = 2 energy levels of µH and H are shown in Figures II.3 and II.4. The configuration
of the energy levels in µH differs due to the strong eVP shift of the 2S level, cf. Eq. (II.150).
Also, the proton-size has a large effect on the 2S level. In general, the splittings between energy
levels in µH are much wider. The LS transition frequencies in µH are 4 orders of magnitude
bigger than in H. Therefore, H studies require precision spectroscopy experiments, whereas the
difficulties of the µH experiment lie in other aspects, e.g., the lifetime of the µH.

In H spectroscopy, there are“small splitting measurements”between levels with equal principal
quantum numbers, e.g., the LS measurements, and “big splitting measurements” between levels
with different principal quantum numbers, e.g., the 1S − 2S transition. The S-levels can be
roughly described as [101]:

E(nS) ' −R∞
n2

+
L1S

n3
, (II.14)

where L1S is the LS of the 1S ground state which contains the proton charge radius effect. For
the small splitting measurements, the Rydberg constant is known precisely enough from other
sources to extract the charge radius. However, for the big splitting measurements it is necessary
to have two H transitions and extract R∞ and REp simultaneously. Therefore, extractions of
the Rydberg constant and the proton radius from H are correlated and an independent measure
of the Rydberg constant would be very much appreciated [185–189].

2. Breit Potential with Finite Nuclear Size

Effective Hamiltonians are the standard tools in state-of-the-art calculations of atomic spectra.
A semi-relativistic expansion of the one-photon interaction in two-particle bound-states was

7See Ref. [103] for a more detailed description of important differences between H and µH.
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HFS:  
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2P1/2 1/4 HFS

-3/4 HFS

f=0

f=1

2P3/2
3/8 HFS 

and 
-5/8 HFS

HFS: 
 3.392588 meVf=1

f=2

2P1/2 - 2S1/2  

Lamb shift: 
202.3706(23) meV

2P3/2 - 2P1/2  
Fine Structure: 
8.352082 meV

P-Level Mixing:  
δ=0.14456 meV  

νs = 54 611.16(1.04) GHz
νt = 49 881.35 (64) GHz

νs

νt

Finite-Size

Figure II.3.: Spectrum of muonic hydrogen. The 2P fine structure, the P3/2 hyperfine splitting and the
P -level mixing are taken from the theory summary of Ref. [110]. The two transition frequencies, νt and
νs, are experimental results from Refs. [67, 100]. The 2S hyperfine splitting and the classic 2P1/2− 2S1/2

Lamb shift are reconstructed from the measurements and the theoretical shifts [67, 100, 110].

first considered by Breit [273, 274, 275]. Breit Hamiltonians are for instance used to describe
muonic atoms [276–279], mesonic atoms [280], and neutron structure effects in the deuteron and
one-neutron halo nuclei [281].

In the present Section, we will briefly sketch the derivation of a semi-relativistic OPE Breit
potential describing hydrogen-like atoms, i.e., bound states of a nucleus and a single lepton.
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Figure II.4.: Spectrum of electronic hydrogen. The energy levels are extracted from Ref. [184].
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II. Finite-Size Effects by Dispersive Technique

The Breit potential will account for the finite nuclear size by incorporating the nuclear FFs. It
will then be treated in the non-relativistic Schrödinger theory as perturbation to the Coulomb
potential of a point-like charged nucleus. In comparison to Ref. [282], which also studies the
Breit potential for the hydrogen atom with proton FFs, our dispersive ansatz is more general,
as it is not limited by a particular model of the FFs. Therefore, it can also be applied for QED
and electroweak corrections to the Coulomb potential.

2.1. Nuclear Form Factors

q

p p’

Figure II.5.: Electromagnetic vertex.

The nuclear size is embedded in the FFs of the nucleus.
The e.m. interaction vertex of a spin-1/2 particle, drawn
in Fig. II.5, is related to the elastic FFs as follows [283–
285]:

Γµ = Ze

[
γµF1(Q2) +

1

2Mc
γµνqνF2(Q2)

]
, (II.15)

where Ze and M are the particle’s charge and mass,
respectively. Since the derivation involves a semi-
relativistic expansion, we will keep c for now. The photon momentum is defined as q = p − p′,
i.e., as outgoing, cf. Fig. II.5; Q2 = −q2 > 0 is the space-like momentum transfer. F1(Q2) and
F2(Q2) are the Dirac and Pauli FFs [2, 286, 287], normalized to the unit charge [F1(0) = 1]
and the anomalous magnetic moment [F2(0) = κ]. As suggested by Yennie, Sachs and others
[14, 288, 289], it is often convenient to use the so-called Sachs electric and magnetic FFs instead:8

GE(Q2) = F1(Q2)− τF2(Q2), (II.18a)

GM (Q2) = F1(Q2) + F2(Q2), (II.18b)

with the dimensionless momentum transfer τ = Q2/4(Mc)2.9 They have an intuitive physical
interpretation as the Fourier transforms of the charge and magnetization distributions, %E(r)

8The e.m. Sachs FFs are determined by means of electron scattering and, f.i., extracted from the measured cross
sections via Rosenbluth separation. The Rosenbluth formula [16] reads:(

dσ

dΩ

)
=

(
dσ

dΩ

)
Mott

[
G2
E(Q2) + τ G2

M (Q2)

1 + τ
+ 2τ G2

M (Q2) tan2 θ

2

]
, (II.16a)

=

(
dσ

dΩ

)
Mott

εG2
E(Q2) + τ G2

M (Q2)

ε(1 + τ)
, (II.16b)

with the scattering angle θ, the photon polarization ε = [1+2(1+τ) tan2 θ/2]−1 (0 ≤ ε ≤ 1) and τ = Q2/4(Mc)2.
The larger the photon momentum is, the smaller is its reduced wavelength and, hence, its resolution power.
For higher momentum transfers, the cross section reduces because the electron or photon can no longer see
the total charge of the target but only a fraction of it. This is described by the FFs which multiply the Mott
cross section. The Mott cross section is a modification of the Rutherford cross section in consideration of the
electron spin: (

dσ

dΩ

)
Mott

=
4(Zα)2E′ 2

Q4

E′

E

[
1− β2 sin2 θ

2

]
, (II.17)

where E (E′) is the initial (final) electron energy, β = v/c is the usual velocity ratio and the factor E′/E
accounts for the target recoil. The notation of the Rosenbluth formula in terms of e.m. Sachs FFs is especially
useful because there is no interference term between GE and GM .

9See Ref. [117] for a systematic comparison of Sachs FFs versus Dirac and Pauli FFs.
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2. Breit Potential with Finite Nuclear Size

and %M (r), in the Breit frame [14, 289]:10

GE(Q2) =
4π

Q

ˆ ∞
0

dr r sin(Qr) %E(r), (II.19a)

GM (Q2)

1 + κ
=

4π

Q

ˆ ∞
0

dr r sin(Qr) %M (r). (II.19b)

Hence, their slopes at the real photon point carry information on the charge and magnetic
radii, cf. Eq. (II.9). Here, the densities are assumed to be spherically symmetric and, thus, are
Lorentz invariant. The more extended the spatial distribution is, the stronger the FF falls off
with increasing momentum transfer. In other words, the steeper the electric FF is, the bigger
the proton radius. A dipole FF corresponds to an exponential distribution in coordinate space.
For recent reviews on nucleon e.m. FFs, see Refs. [27, 290].

2.2. One-Photon Exchange

k

Figure II.6.: One-photon-exchange diagram with nu-
clear form factors, giving rise to finite-size effects.
The horizontal lines correspond to the lepton and
the nucleus (bold).

Figure II.6 represents the OPE between a lep-
ton and a nucleus (bold line). The four-
momenta of photon, lepton and nucleus are
denoted by q, k and p, respectively. The out-
going particles will be indicated with primed
variables (k′ and p′). The photon momentum
is defined as q = p− p′ = k′ − k. Since it also
contains the Coulomb interaction, the OPE is
the leading contribution to the description of
a hydrogen-like bound state. The associated
potential is proportional to the OPE scatter-
ing amplitude. An energy prefactor stems
from the non-relativistic reduction to the Breit
equation. For a spin-1/2 nucleus, like the pro-
ton, we have:

VOPE =
(
2Ek 2Ek′ 2Ep 2Ep′

)−1/2
ū(k′)[−eγµ]u(k) ∆µν(q) N(p′)Γ ν(q)N(p), (II.20)

with the photon propagator ∆µν(q) and the e.m. vertex Γ ν(q), Eq. (II.15), which depends on the
Dirac and Pauli FFs. Replacing F1 → 1 and F2 → 0 gives the structureless limit of a point-like,
charged nucleus, viz. the Coulomb potential. The lepton and nucleus spinors, u and N , we chose
to be normalized according to:

ū(k)u(k) = 2mc2, N(p)N(p) = 2Mc2. (II.21)

The Dirac and Pauli FFs are assumed to fulfil the once-subtracted DRs [291]:11(
F1(Q2)

F2(Q2)

)
=

(
1

κ

)
− Q2

π

ˆ ∞
t0

dt

t(t+Q2)

(
ImF1(t)

ImF2(t)

)
, (II.22)

10Note that for all nuclei and also the proton, the magnetic moment is defined as µ = Z(κ+2S) in units of nuclear
magneton µN = e/2Mp, with S being the spin of the nucleus. The g-factor is defined as κ = (g/Z − 2)S.
However, for the neutron it is µ = κ.

11The subtraction is made for several reasons. Firstly, it allows us to separate the Coulomb interaction. Secondly,
we want to assure that the DRs are convergent. For our final result we want to substitute the Sachs FFs. Ref.
[117] compares DRs for Dirac, Pauli and Sachs FFs. They find that GE needs one more subtraction than F2.
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II. Finite-Size Effects by Dispersive Technique

with t0 ≥ 0 being the lowest particle-production threshold. ImF1 and ImF2 are the FF discon-
tinuities across the branch cuts in the time-like region. The subtracted DRs are derived from
the unsubtracted ones,(

F1(Q2)

F2(Q2)

)
=

1

π

ˆ ∞
t0

dt

t+Q2

(
ImF1(t)

ImF2(t)

)
, (II.23)

by removing the FF values at the real photon point, i.e., F1(0) = 1 and F2(0) = κ. Our ansatz to
use the DRs is very much analogous to Schwinger’s method of calculating the Uehling potential
[292] of the vacuum polarization (VP) effect [293].

The photon propagator is defined as:

∆µν = Pµν/Q2, (II.24a)

with

Pµν(q, t) = gµν −
1

t+ q2
(qµqν − χµqν − χνqµ) . (II.24b)

Note that the above propagator is not only depending on the photon four-momentum but also
on the photon mass t. The mass dependence will enter in conjunction with the dispersion
integral, whereas the subtraction term goes with a massless propagator. Contracting the photon
propagator (II.24) with the e.m. vertex (II.15), and plugging in the DRs of the FFs (II.22), we
obtain:

∆µνΓ ν = Ze

{
1

Q2
Pµν(q, 0)

[
γν +

κ

2Mc
γναqα

]
(II.25)

− 1

π

ˆ ∞
t0

dt

t(t+Q2)
Pµν(q, t)

[
γν ImF1(t) +

1

2Mc
γναqα ImF2(t)

]}
.

In the following, it will be beneficial to choose the Coulomb gauge: χ = (0, q). In this gauge,
the tensor Pµν reduces to:

P00(q, t) =
t+Q2

t+ q2

t=0
=

Q2

q2
, (II.26a)

P0i(q, t) = Pi0(q, t) = 0, (II.26b)

Pij(q, t) = −δij +
qi qj
t+ q2

t=0
= −δij +

qi qj
q2

. (II.26c)

The temporal and spatial components of Eq. (II.25) then read:

∆00Γ 0 = Ze

{
1

q2

[
γ0 − κ

2Mc
γ0γ · q

]
(II.27a)

− 1

π

ˆ ∞
t0

dt

t(t+ q2)

[
γ0 ImF1(t)− 1

2Mc
γ0γ · q ImF2(t)

]}
,

∆ijΓ
j = Ze

{
1

Q2

([
γi −

qi γ · q
q2

]
+

κ

2Mc

[
q0γiγ0 + γijq

j − q0qiγ · q γ0

q2

])
(II.27b)

− 1

π

ˆ ∞
t0

dt

t(t+Q2)

([
γi −

qi γ · q
t+ q2

]
ImF1(t)

+
1

2Mc

[
q0γiγ

0 + γijq
j − q0qiγ · q γ0

t+ q2

]
ImF2(t)

)}
,
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2. Breit Potential with Finite Nuclear Size

with the photon energy q0 = ω/c.12

The next step is the essential one in the Breit potential derivation: we perform the semi-
relativistic expansion. In doing the expansion of Eq. (II.20), we shall neglect the dependence
of the denominator on the photon energy, i.e., neglect retardation effects. Our choice for the
photon gauge already achieved that the temporal component, Eq. (II.27a), has no poles in ω.
Expanding for infinitely c, we will derive a potential that is valid up to and including O(1/c2).
In this way, we will be free of retardation, which start at O(1/c3) only. The semi-relativistic
expansion of the Dirac spinors is presented in Appendix V.B. It yields the lepton and nuclear
spin vectors, s and S, in the Breit potential. From Eq. (II.18) it follows that:

ImGE(t) = ImF1(t) + t/4(Mc)2 ImF2(t), (II.29a)

ImGM (t) = ImF1(t) + ImF2(t). (II.29b)

Inverting these equations and expanding for large c, one obtains:

ImF1(t) =
1

1− t/(2Mc)2

[
ImGE(t)− t/(2Mc)2 ImGM (t)

]
, (II.30a)

' ImGE(t) + t/(2Mc)2
[

ImGE(t)− ImGM (t)
]
, (II.30b)

ImF2(t) =
1

1− t/(2Mc)2

[
ImGM (t)− ImGE(t)

]
, (II.30c)

' [1 + t/(2Mc)2]
[

ImGM (t)− ImGE(t)
]
. (II.30d)

After the expansion, we can return to our usual convention: c = 1.
In a next step, we will Fourier transform the momentum-space potential to obtain the coordinate-

space potential. We can then identify, f.i., the angular momentum operator, which is defined as:
l = r× p̂. Further details of the Breit potential derivation are moved to Appendix II.A. At this
point, we just give our final result for the coordinate-space Breit potential with nuclear FFs.

Coordinate-space Breit Potential with Nuclear Form Factors

VOPE(r, p̂, t) = [VC + ∆Vrel.C + ∆VY + ∆V1 + ∆V2 + ∆V3 + ∆V4 + ∆V5] (r, p̂, t), (II.31a)

with

VC(r) = −Zα
r
, (II.31b)

∆Vrel.C(r) =
Zα

2m2
r

[
π δ(r) +

l · s
r3

]
, (II.31c)

∆VY(r, t) =
Zα

πr

ˆ ∞
t0

dt

t
ImGE(t) e−r

√
t, (II.31d)

∆V1(r, p̂) = −Zα
{
π δ(r)

mM
+

1

2mM

(
2 p̂2

r
+

2

r2

∂

∂r
− l(l + 1)

r3

)
+

1

2M2

l · s
r3

}
, (II.31e)

12Here we made use of the following relations:

γ0αqα = −γ0γ · q, (II.28a)

γiαqα = γi/q − qi = γiγ0q0 + γijqj , (II.28b)

γiαqiqα = −γ · q γ0q0. (II.28c)
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II. Finite-Size Effects by Dispersive Technique

∆V2(r) = Zα

{
l · S
r3

[(
1

mM
+

1

2M2

)
+

(
1

mM
+

1

M2

)
κ

]
(II.31f)

+
1 + κ

mM

[
2

3
s · S 4π δ(r)− 1

r3

(
s · S − 3(s · r)(S · r)

r2

)]}
,

∆V3(r, p̂, t) =
Zα

π

ˆ ∞
t0

dt

t
ImGE(t)

{
−1

8

(
1

m2
+

1

M2

)
4π δ(r ) +

1

8m2
r

t e−r
√
t

r
(II.31g)

+
1

2mM
e−r
√
t

[
(2 + r

√
t)
p̂2

r
+

2 + 2r
√
t+ r2t

r2

∂

∂r
− t3/2

4

]

−e
−r
√
t

r3

(
1 + r

√
t
)[ l(l + 1)

2mM
+

(
1

2m2
+

1

mM

)
l · s

]}
,

∆V4(r, t) =
Zα

2πM2

ˆ ∞
t0

dt

t
ImGE(t)

e−r
√
t

r3
(1 + r

√
t) l · S, (II.31h)

∆V5(r, t) =
Zα

π

ˆ ∞
t0

dt

t
ImGM (t)

{
−
(

1

mM
+

1

M2

)
(1 + r

√
t)
e−r
√
t

r3
l · S (II.31i)

+
1

mM

[
3e−r

√
t

r3

{
1 + r

√
t+ r2t

3
s · S −

(
1 + r

√
t+

r2t

3

)
(s · r)(S · r)

r2

}
−2

3
s · S 4π δ(r)

]}
,

The result agrees with Ref. [294, §83. Breit’s equation, Eq. (83.15)] in the structureless limit,
i.e., for F1 = 1 and F2 = 0, or GE = 1 and GM = 1.

As explained in Appendix II.A, angular averaging with spherical harmonics, cf. Eq. (II.78),
will allow us to rewrite terms of the type (s · r)(S · r). Furthermore, we can express products
of spin and/or angular momentum operators, e.g., the spin-orbit and the spin-spin coupling, in
terms of quantum numbers, see Eqs. (II.75), (II.77) and (II.79). In the absence of external fields,
the previously introduced l, j and f quantum numbers, cf. Section II.1.1, as well as the electron
and nuclear spin quantum numbers s and i are suited ‘good’ quantum numbers to describe a
given atomic state. In Eqs. (II.82) and (II.83), we then give particular potentials for S- and
P -states, i.e., for l = 0 and l = 1, respectively.

The Breit potential derived in here describes the static contributions and nuclear-size effects
to FS, HFS and LS, see Appendix II.C. We can split it into the unperturbed Coulomb potential
and a semi-relativistic perturbation. To calculate the FSEs, we can proceed in two different
ways. We either work in time-independent Schrödinger perturbation theory (PT), or we use
the relativistic Dirac wave functions as basis for the PT framework. Our choice is to use the
non-relativistic Schrödinger wave functions. Nevertheless, we want to briefly compare the two
approaches and motivate our decision. In Appendix II.B, we give the Schrödinger and Dirac
wave functions for the Coulomb problem and review the formalism of first- and second-order
(Schrödinger) PT for the discrete and continuous spectra.

First, let us give a proper formulation of the bound-state problem we are dealing with. The
Coulomb force is the dominant interaction between a lepton and a nucleus in a hydrogen-like
atom. In the center-of-mass (CM) frame, the Schrödinger Hamiltonian of the two-body problem
reads:

Ĥ =
p̂2

2m
+
p̂2

2M
+ V. (II.32)
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2. Breit Potential with Finite Nuclear Size

Since the mass of the nucleus is finite, both lepton and nucleus are moving inside the atom.
Therefore, it is customary to simplify the two-body problem of Newtonian mechanics into a
one-body problem by replacing [295]:

m→ mr ≡
mM

m+M
and M →M ≡ m+M, (II.33)

everywhere but in the (gravitational) rest energy. We then have:

Ĥ =
p̂2

2mr
+ V. (II.34)

It is not enough to modify the potential with a semi-relativistic perturbation. As the Schrödinger
equation is not valid for relativistic particles, the kinetic energy term of the Schrödinger Hamilto-
nian, cf. Eq. (II.32), has to be expanded relativistically too. Expanding the relativistic equation
for the kinetic energy of a particle to lowest order in 1/c, we find:

T = c

√
p̂2 + (mc)2 −mc2 =

p̂2

2m
− p̂4

8m3c2
+O(1/c4). (II.35)

Hence, we need to include the following relativistic corrections to the kinetic energy operator
[296]:

∆Vrel.Ekin
(p̂) = − p̂4

8m3
rc

2
, (II.36a)

∆Vred.Mass(p̂) =
3p̂4

8m2Mc2
+

3p̂4

8M2mc2
, (II.36b)

which we wrote in an expedient way.
For the presented OPE potential, the Schrödinger Hamiltonian in second non-relativistic ap-

proximation is then given by (again using c = 1):

Ĥ =
p̂2

2mr
− p̂4

8m3
r

+
3p̂4

8m2Mc2
+

3p̂4

8M2mc2
+ VC + Vδ︸ ︷︷ ︸

VOPE

, (II.37a)

=
p̂2

2mr
+ VC︸ ︷︷ ︸

Ĥ0

+− p̂4

8m3
r

+
3p̂4

8m2Mc2
+

3p̂4

8M2mc2
+ Vδ︸ ︷︷ ︸

Ĥδ

. (II.37b)

The perturbative Hamiltonian, Ĥδ, for the Coulomb problem at hand consists of Eq. (II.36)
and the relativistic correction to the Coulomb potential given in Eq. (II.31c). The relativistic
Coulomb potential splits into the spin-orbit coupling and the so-called Darwin term. The spin-
orbit coupling only affects levels with l > 0, cf. Eq. (II.75). The Darwin term, on the other
hand, is a δ(r) potential and as such is only relevant for the S-states, see Fig. II.1. Treating this
combined semi-relativistic perturbation in first-order Schrödinger PT with the Coulomb wave
functions, we reproduce the Coulomb energy levels predicted by the Dirac equation, Eq. (II.6b),
up to order (Zα)6. The fascinating interplay of spin-orbit coupling, Darwin term and relativistic
kinetic energy operator achieves the FS splitting and the non-trivial degeneracy of levels with
equal n and j quantum numbers.

In the following, we will briefly address the Dirac PT and motivate that especially for heavier
atoms it makes sense to work with Dirac wave functions [235]. Even though some works also use
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II. Finite-Size Effects by Dispersive Technique

relativistic Dirac wave functions to calculate corrections to the hydrogen spectrum [297–299],
for our aim — the re-derivation of the FSEs by a dispersive technique — we feel safe to use the
simpler non-relativistic Schrödinger wave functions.

In contrast to the Schrödinger equation, the Dirac theory describes relativistic particles.
Therefore, the relativistic corrections to the kinetic energy operator and the unperturbed poten-
tial, i.e., Eqs. (II.36) and (II.31c) in case of the Coulomb problem, do not need to be included
in the perturbative potential. At first order in relativistic PT, the correction to the energy
eigenvalue of the radial Dirac wave functions, fnl(r) and gnl(r), is given by (for a spherically
symmetric perturbation):13

∆Enl =

ˆ
dr r2

[
|g(r)|2 + |f(r)|2

]
nl
Vδ(r). (II.38)

Accordingly, we would use Vδ(r) = [VOPE − VC − Vrel.C] (r) and the Coulomb wave functions,
see Appendix II.B.3, to calculate the effect of the OPE Breit potential presented in here. The
absolute square of radial Dirac wave functions, as it appears in the first-order PT energy shift
of Eq. (II.38), can be expressed as a sum of the squared radial Schrödinger wave function and a
correction: [

|g(r)|2 + |f(r)|2
]
nl

= R2
nl(r) + r2

nl(r), (II.39)

where for n = 2 we find the following corrections for S- and P -levels, respectively:

r2
20(r) = −e−r/a (Zα)2

64a3

{
8
(r
a
− 2
)2 [

γE + ln
r

a

]
+
(r
a

)3
− 24

(r
a

)2
+ 70

r

a
− 54

}
+O(Zα)4,

r2
21(r) = e−r/a

(Zα)2

576a3

{
−24

(r
a

)2 [
γE + ln

r

a

]
− 3

(r
a

)3
+ 56

(r
a

)2
+ 18

r

a
+ 54

}
+O(Zα)4.

Here, we kept r/a fixed, while expanding in Zα. Since the above corrections are suppressed with
respect to the radial Schrödinger wave functions by additional powers of Zα, we conclude that
they can be ignored for light hydrogen-like atoms. For our purpose, it is therefore sufficient to
use the non-relativistic wave functions and time-independent Schrödinger PT. On the contrary,
for heavier atoms, i.e., large values of Z, the relativistic Dirac wave functions become relevant.

In Appendix II.C, we derive finite-size and recoil effects from the potentials in Eqs. (II.82)
and (II.83), and present a detailed comparison to the literature. The results are arranged into
2P FS, 2P1/2 − 2S1/2 LS, 2S and 2P HFSs, and P -level mixing. We reproduce the well-known
Fermi energy, charge radius, Friar radius and Zemach radius terms in the LS and the 2S HFS.
All static contributions are obtained as reviewed in Ref. [233]. Our result for the 2P FS, the
2P HFS and the P -level mixing agree with Refs. [276, 302]. In addition, we find finite-size
recoil effects at order (Zα)5. These terms are usually not derived from the Breit potential and,
hence, cannot be found in this form in the literature. However, they should be included in the
nuclear-pole part of the TPE corrections. Therefore, we will perform a matching of the effects
from one- and two-photon exchange in Section V.2.

The dispersive approach to the OPE Breit potential with finite nuclear size, where we use
once-subtracted DRs to express the nuclear FFs through their discontinuities, allows for an easy
transition to the Breit potential of OPE with one-loop leptonic VP. In Appendix V.D, we outline
the necessary modification of the Breit potential and calculate the one-loop eVP contributions
to the µH spectrum. The results are summarized in Table II.7 and match the literature.

13For an alternative formulation of a relativistic PT see Refs. [300, 301].
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3. Exact Finite-Size Effects

or: Breakdown of the Lamb Shift Expansion in Moments of Charge Distribution

In the previous Section, we derived the nuclear FSEs and presented them, as usual, in terms of
moments of charge, magnetization and convoluted distributions, cf. Eq. (II.8) and Section II.C.
In this Section, we will present an alternative formulation which is exact in the sense that it
refrains from expanding in the moments. Limitations of the finite-size corrections to the LS in
terms of charge radii will become apparent. The main ingredient is the Yukawa-type electric FF
correction to the Coulomb potential given by the coordinate-space potential in Eq. (II.31d) or
the momentum-space potential in Eq. (II.66d). Particular scenarios for the breakdown will be
presented in the subsequent Section.

Q2 = �4m2
⇡

Figure II.7.: Correction to the electromagnetic vertex. The cut indicates that the intermediate pion-pion
pair can go on-shell if Q2 = −4m2

π.

Let us start with the classic LS as it is deduced from the coordinate-space potential of
Eq. (II.31d) with the non-relativistic Schrödinger wave functions. To first order in PT, the
energy shift can be written as an integral over the imaginary part of the electric Sachs FF:

E
〈eFF〉(1)
LS = −(Zα)4m3

r

2π

ˆ ∞
t0

dt
ImGE(t)

(
√
t+ Zαmr)4

. (II.41)

The imaginary part corresponds to the FF discontinuity across the branch cut in the time-like
region, which starts from the lowest particle-production threshold t0. Figure II.7 shows the
lightest hadronic contribution to the nucleon FF. The produced pion-pion intermediate state
is on-shell for photon virtualities of Q2 = −4m2

π. This charged-pion production threshold
represents a serious restriction for fitting ep scattering data beyond Q2 ≈ −0.078 GeV2.

For small inverse Bohr radii, a−1 = Zαmr, we expand Eq. (II.41) in the moments of the
charge distribution, using the following (Lorentz-invariant) definition:

〈rN 〉E =
(N + 1)!

π

ˆ ∞
t0

dt
ImGE(t)

tN/2+1
, (II.42)

and arrive at:

E
〈eFF〉(1)
LS = −(Zα)4m3

r

12

∞∑
k=0

(−Zαmr)
k

k!
〈rk+2〉E , (II.43a)

≈ −(Zα)4m3
r

12

[
〈r2〉E − Zαmr〈r3〉E

]
. (II.43b)
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Figure II.8.: Integrand of the first-order perturbation theory contribution to the Lamb shift [cf.
Eqs. (II.49a) and (II.49c)] in electronic hydrogen (blue dash-dotted line) and muonic hydrogen (red
solid line) for the dipole form factor, GEp = (1 + Q2/0.71 GeV2)−2. The dotted vertical lines indicate
the inverse Bohr radii of the two hydrogens, while the dashed line indicates the onset of data from
electron-proton scattering.

From the denominator of Eq. (II.41) one can see that the convergence radius of the power-series
expansion in moments is limited by t0, i.e., the proximity of the nearest particle-production
threshold. Since QED corrections to the e.m. interaction vertex are already separated from the
nuclear FFs, we expect t0 to be a hadronic scale, of which the pion mass is the lowest, see
Fig. II.7. If this is true, the series should converge quickly for hydrogen, and in fact, for most of
the hydrogen-like systems. In Appendix II.E, we check that for all popular FF parametrizations
the expansion in moments is appropriate. In Section II.4, however, we will present a FF model
which breaks down the expansion in moments of charge distribution and at the same time
resolves the proton charge radius puzzle.

One of the first proposals for an explanation of the proton radius puzzle was suggested by
de Rújula [167], who used the expanded formulas, see Eq. (II.8a). As explained earlier, the
subleading FSEs of order (Zα)5 come with an additional factor of the lepton-nucleus reduced
mass and thus become relevant in muonic atoms only. Therefore, a large Friar radius, Eq. (II.10),
would change the µH LS and leave the H LS almost unaffected.14 In order to generate such
radius, de Rújula constructed an electric charge distribution from an interpolation between the
charge densities of a single-pole and a dipole. The resulting charge distribution has an extended
tail and, indeed, the corresponding Friar radius is large. Nevertheless, his model cannot explain
the proton radius puzzle. First of all, it was shown to be incompatible with the empirical electric
Sachs FF extracted from ep scattering [303, 304]. Furthermore, we verified that the µH LS in
de Rújula’s model is not described correctly by the standard formulas, Eqs. (II.8a) and (II.43b),
and that the infinite series of moments in Eq. (II.43a) does not provide any significant reduction
of the proton radius discrepancy in this model.

14At this point, one has to remember that in the analysis of the µH experiment the Friar radius is substituted
from ep scattering, as discussed in the last paragraph of Section II.1.2.
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3. Exact Finite-Size Effects

For convenience, Eq. (II.41) can be rewritten and expressed through the electric Sachs FF or
the spherically-symmetric charge distribution. The alternative formulas read:15

E
〈eFF〉(1)
LS =

ˆ ∞
0

dQwE(Q)GE(Q2), (II.49a)

= −(Zα)4m3
r

π

3

ˆ ∞
0

dr r4e−r/a%E(r), (II.49b)

with

wE(Q) = −(Zα)5m4
r

4

π

Q2[(Zαmr)
2 −Q2]

[(Zαmr)2 +Q2]4
, (II.49c)

or the Laplace transform of the FF discontinuity:

%E(r) =
1

(2π)2 r

ˆ ∞
t0

dt ImGE(t) e−r
√
t. (II.49d)

The expression in terms of the charge density, Eq. (II.49b), is the simplest and has the most
intuitive interpretation: the first-order LS is given by the mean-square radius cut off at the Bohr
radius by the Coulomb wave function. Indeed, it is simply the LO charge radius term 〈r2〉E , cf.
Eq. (II.8a), replaced by 〈r2e−r/a〉E . Equation (II.49a) is slightly misleading, despite the (Zα)5

prefactor the FSE is of order (Zα)4. This is because the weighting function wE(Q), Eq. (II.49c),
cannot be expanded in α, as the successive integral would be infrared divergent.

The expression in terms of the FF, Eq. (II.49a), can also be derived from the momentum-space
potential in Eq. (II.66d). The weighting function then arises as a convolution of the hydrogen
momentum-space wave functions, cf. Eq. (V.89). Such approach is followed for the derivation of
the Wichmann-Kroll contribution in Refs. [306, 307].

In Fig. II.8, we are plotting the integrand of the first-order perturbation theory contribution to
the LS, given by Eqs. (II.49a) and (II.49c). The two curves correspond to H and µH, respectively.

15Starting from
1

π

ˆ ∞
t0

dtW (t) ImGE(t) =

ˆ ∞
0

dQwE(Q)GE(Q2), (II.44)

we plug in the DR for the electric Sachs FF,

GE(Q2) =
1

π

ˆ ∞
t0

dt
ImGE(t)

t+Q2
, (II.45)

and realize that W (t) is the Stieltjes integral transform of wE(Q), i.e.:

W (t) =

ˆ ∞
0

dQ
wE(Q)

t+Q2
. (II.46)

We recast Eq. (II.41) in terms of GE(Q2) by computing the inverse Stieltjes transform [305] of

W (t) = − (Zα)4m3
r

2(
√
t+ αmr)4

, (II.47)

which is given by:

wE(Q) =
Q

iπ
lim
ε→0

{
W (−Q2 − iε)−W (−Q2 + iε)

}
, (II.48a)

= −4(Zα)5m4
r

π

Q2[(Zαmr)
2 −Q2]

[(Zαmr)2 +Q2]4
. (II.48b)
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Figure II.9.: Integrand of the first-order perturbation theory contribution to the 2S hyperfine splitting,
cf. Eq. (II.51b), in electronic hydrogen (blue dash-dotted line) and muonic hydrogen (red solid line) for
the dipole form factor, GMp = (1 + κ)(1 + Q2/0.71 GeV2)−2. The dotted vertical lines indicate scales
related to the inverse Bohr radii of the two hydrogens [1/a and 1/(

√
2a)], while the vertical dashed line

indicates the onset of data from electron-proton scattering.

They are plotted assuming a dipole FF for the proton. For both hydrogens one observes regions
of large cancelation around their inverse Bohr radius scale. Taking GE to be constant, the
cancelation would be exact and the LS would vanish. This is easiest seen from the momentum-
space potential, Eq. (II.66d), which is proportional to the once-subtracted dispersion integral, cf.
Eq. (II.22). The cancelation regions are well separated and also well below the onset of existing
ep scattering data, Q2 > 0.004 GeV2. Any relatively small variation in the FF at these low-Q
scales may lead to significant effects in the LS. To define a proper charge radius, which could
be determined from both the atomic and scattering experiments, it is therefore mandatory to
decompose the FFs into “smooth” and “non-smooth” parts. The contribution of the former can
then be expanded in moments, while the latter must be treated exactly. In the follow-up Section,
we will demonstrate how to use this fact and find a non-smooth FF modification that solves the
proton charge radius puzzle by breaking the expansion of the FSEs.

Analogous to the LS case, we establish formulas for the exact FSEs in the HFS. We start
from the part of the Breit potential, Eq. (II.82h), which depends on the nuclear spin and the
magnetic Sachs FF. Treating this potential to first-order in PT, we obtain the 1S HFS:

E
〈mFF〉(1)
HFS (1S) = −EF(1S)

π

ˆ ∞
t0

dt

[
1

t
− 1

[2Zαmr +
√
t]2

]
ImGM (t)

1 + κ
, (II.50a)

= −EF(1S)

{
1− a3

2π

ˆ ∞
0

dQQ2w1S(Q)
GM (Q2)

1 + κ

}
, (II.50b)

= −EF(1S)

{
1− πa3

ˆ ∞
0

dr r2
[
R10(r)

]2
%M (r)

}
, (II.50c)

and the 2S HFS:

E
〈mFF〉(1)
HFS (2S) = −EF(2S)

π

ˆ ∞
t0

dt

[
1

t
− 2t+ (Zαmr)

2

2[
√
t+ Zαmr]4

]
ImGM (t)

1 + κ
, (II.51a)

34



4. A Form Factor Model Resolving the Proton Radius Puzzle

= −EF(2S) +

ˆ ∞
0

dQwM (Q)
GM (Q2)

1 + κ
, (II.51b)

= −EF(2S)

{
1− 8πa3

ˆ ∞
0

dr r2
[
R20(r)

]2
%M (r)

}
, (II.51c)

with the convoluted momentum-space wave function w1S(Q) given in Eq. (V.89a), the weighting
function

wM (Q) =
4EF

πa

Q2
[
(Zαmr)

2 −Q2
] [

(Zαmr)
2 − 2Q2

]
[(Zαmr)2 +Q2]4

, (II.52)

the radial Coulomb wave functions as defined in Section II.B, and the magnetization distribution

%M (r) =
1

(2π)2 r

ˆ ∞
t0

dt
ImGM (t)

1 + κ
e−r
√
t. (II.53)

The integrand of Eq. (II.51b) is plotted in Fig. II.9 with a dipole FF. Again, for small values
of Q one finds regions of enhancement, and again, they are below the onset of ep scattering
data and separated for the two hydrogen. Therefore, it is necessary to evaluate the effect of
soft non-smooth FF contributions to the HFS with the exact formalism presented above. Other
exact formulas for the FSEs on the 1S1/2, 2S1/2, 2P1/2 and 2P3/2 levels can be deduced from
Appendix II.D.

4. A Form Factor Model Resolving the Proton Radius Puzzle

In the previous Section, we uncovered a possible limitation in the usual accounting of FSEs
and introduced the exact (un-expanded) formulas for the LS and the HFS at first-order in PT.
Here, we will modify customary parametrizations of the electric Sachs FF by adding tiny, non-
smooth contributions in the region between 1 and 50 MeV. These modifications require the
exact formalism, Eqs. (II.49a) and (II.49c), and are chosen in a way that the proton charge
radius discrepancy vanishes. Our improved toy model, based on the fit of ep scattering data by
Arrington and Sick [111], was published in Ref. [237]. In addition, we will present a modification
of the dipole FF which is likewise breaking its convergence, see Appendix II.F.

We assume the electric FF to separate into a smooth (GE) and a non-smooth part (G̃E), such
that:

GE(Q2) = GE(Q2) + G̃E(Q2). (II.54)

We take a well-known FF parametrization [111] for the smooth part,

GE(Q2) =
1

1 + 3.478Q2

1− 0.140Q2

1− 1.311Q2

1+
1.128Q2

1−0.233Q2

, (II.55)

and describe the non-smooth part of the FF as:

G̃E(Q2) =
AQ2

0Q
2
[
Q2 + ε2

][
Q2

0 +Q2
]4 , (II.56)

where A, ε and Q0 are real parameters. First and foremost, the fluctuation does not affect the
charge: G̃E(0) = 0. Furthermore, the functional form in Eq. (II.56) has all poles at negative Q2

(time-like region) and, hence, complies with the analyticity constraint on the FF.16

16This requirement can be easily seen from the DRs for the e.m. FFs, cf. Eqs. (II.45) and (II.23).
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Figure II.10.: Modification of the Arrington and Sick form factor: The solid black curve shows the
empirical form factor, GE(Q2) − 1, from Ref. [111]. The dotted blue curve is the modified form factor,
GE(Q2)− 1, discussed in the text [237].

As one can see from Fig. II.8, if there is a small missing effect in the FF responsible for the
puzzle, it must be localised near one of the two inverse Bohr radii, where its impact is maximized.
Since the results from ep scattering and H spectroscopy are in rather good agreement, it is most
promising to search for the missing effect on the µH side. We fix the position of the FF fluctuation
at Q0 = 1.6 MeV, where the weighting function wE(Q), Eq. (II.49c), is especially sensible for
µH, cf. Figs. II.8 and II.12

We then fix the other parameters, A and ε, such that Eq. (II.49a), evaluated with the modified
FF of Eq. (II.54), reproduces the empirical values for the hydrogen LSs:

E
eFF (exp.)
LS (eH) = −0.620(11) neV, (II.57a)

E
eFF(exp.)
LS (µH) = −3650(2)µeV. (II.57b)

Note that these are not the LSs observed in experiment but only the finite-size contributions
given in Eq. (II.8a), where for the radii we used:

REp(eH) = 0.8758(77) fm [107], (II.58a)

REp(µH) = 0.84087(39) fm [100, 110], (II.58b)

and

〈r3〉Ep(2) = 2.78(14) fm3 [234]. (II.59)

Our parameter choice, A = 1.2× 10−4 MeV2 and ε = 0.143 MeV, for which the modified FF
complies with the H and the µH LSs, is depicted in Fig. II.11. Figure II.12 shows the position
of the fluctuation G̃E(Q2) right on top of the first extremum of the µH weighting function.
Obviously, the constructed fluctuation of the FF lies almost exclusively in the region below the
ep data (Q < 63 MeV), thus, is not affecting the quality of their fit.

To quantify the solution of the proton radius puzzle offered by our toy model further, we
calculate the second and third moments of the modified FF, their “would be” effect on the LS
and the un-expanded LS. The second and third moments of the FF fluctuation presented in
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Figure II.11.: Modification of the Arrington and Sick form factor: Parameters of G̃E for which the
electronic-hydrogen (blue dot-dashed) and muonic-hydrogen (red solid) Lamb shifts of Eq. (II.57) are
reproduced. For fixed Q0 = 1.6 MeV, we find A = 1.2× 10−4 MeV2 and ε = 0.143 MeV as indicated by
the dashed lines.

Eq. (II.56) are given by:17

〈̃r2〉E ≡ −6
d

dQ2
G̃E(Q2)

∣∣∣
Q2=0

= −6Aε2

Q6
0

, (II.63a)

〈̃r3〉E ≡ 48

π

ˆ ∞
0

dQ

Q4

{
G̃E(Q2) + 1

6 〈̃r2〉EQ2
}
,

= 15A(Q2
0 − 7ε2)/2Q7

0. (II.63b)

The results are then summarized in Table II.1. One can read off that the expansion in moments
breaks down for the modified FF contribution to µH, as it was anticipated. Due to the FF
modification, the charge radius is slightly shrunken and the third moment increased.

17In general, the N -th moment of the charge (magnetization) distribution, %E (%M ), is defined as:

〈rN 〉 ≡ 4π

ˆ ∞
0

dr rN+2%(r) =
Γ(N + 2)

π

ˆ ∞
t0

dt
ImG(t)

tN/2+1
, (II.60)

where in the last step we made use of the DR for the electric (magnetic) Sachs FF [53], GE (GM/1+κ), and
Eqs. (II.49d) and (II.53), respectively. The density distributions are chosen to be normalized as 〈r0〉 = 1. The
even moments can be written as derivatives of the FFs:

〈r2N 〉 = (−1)N
(2N + 1)!

N !
G(N)(0), (II.61)

whereas the odd moments have an integral representation:

〈r2N−1〉 = (−1)N (2N)!
2

π

ˆ ∞
0

dQ

Q2N

[
G(Q2)−

N−1∑
k=0

Q2k

k!
G(k)(0)

]
,

= (−1)N (2N)!
2

π

ˆ ∞
0

dQ

Q2N

[
G(Q2)−

N−1∑
k=0

(−Q2)k

(2k + 1)!
〈r2k〉

]
. (II.62)

The latter expressions, we derived by means of the inverse Stieltjes integral transform [305]. Similar expressions
hold for the Zemach moments of the convoluted charge and magnetization distributions.
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Figure II.12.: Modification of the Arrington and Sick form factor: The correction, G̃E(Q2), for Q0 = 1.6
MeV, A = 1.2 × 10−4 MeV2 and ε = 0.143 MeV (solid green), and the weighting function, wE(Q), for
electronic hydrogen (blue dotted) and muonic hydrogen (red dashed) as functions of Q. The dot-dashed
line indicates the onset of electron-proton scattering data.

Let us now study the physical plausibility of the suggested FF modification. The absolute
correction to the FF is extremely tiny:∣∣G̃E/GE∣∣ < 3× 10−6. (II.64)

However, since the FF at low Q is approximately 1, it was suggested by Arrington [308] and
Antognini and Kottmann [309] that a comparison of our correction to the deviation of the
original FF from 1 would be more meaningful. Indeed, the FF modification presented in here
compares good to a point-like proton:∣∣G̃E/ (GE − 1)

∣∣ < 0.57 . (II.65)

In addition, we have GE(Q2) ≤ 1 for all Q, as called for in Ref. [308]. This is shown in Fig. II.10,
where the FF and the toy model FF are compared.

Of course, we do not insist that the presented toy models, see also Appendix II.F, have
anything to do with reality. We merely want to demonstrate how a tiny non-smooth contribution
to the proton electric Sachs FF, localised at low Q, may shrink the convergence radius of the
FF and invalidate the expansion of the LS in moments of charge distribution. The variety of
scenarios presented in here and in Refs. [238, 239], either based on the FF parametrization of
Arrington and Sick [111] or the dipole FF, should emphasize how easy it is to find a fluctuation
suited to resolve the proton radius puzzle. New physics and the inclusion of new light particles
might be able to provide a physical justification for such a non-smooth contribution to the FF.
Until then, we can only warn against a too optimistic view of uncertainties in the charge radius
extractions. Similar non-smooth corrections might also affect the magnetic FF and the e.m.
lepton vertex. Likewise, the expansion of the HFS in moments should be viewed with caution.

In the next Section, we will summarize our results obtained from the Breit potential with
nuclear FFs. A short outlook will be given and possible candidates for non-smooth contributions
to the FFs are nominated.
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Table II.1.: Lamb shift and moments corresponding to the modified Arrington and Sick form factor, with
Q0 = 1.6 MeV, A = 1.2× 10−4 MeV2 and ε = 0.143 MeV.

Eq. GE G̃E GE

〈r2〉E [fm2] (II.9) (0.9014)2 −(0.1849)2 (0.8823)2

〈r3〉E [fm3] (II.63) (1.052)3 (8.539)3 (8.544)3

Lamb-shift, exact (II.49a)

E
eFF(1)
LS (H)[neV] −0.6569 0.0370 −0.6200

E
eFF(1)
LS (µH)[µeV] −4202 552 −3650

Lamb-shift, expanded (II.43b)

E
eFF(1)
LS (H)[neV] −0.6569 0.0371 −0.6198

E
eFF(1)
LS (µH)[µeV] −4202 11542 7340

5. Summary and Conclusion

In the present Chapter, we derived the Breit potential from OPE with nuclear FF dependent
e.m. vertex. The coordinate-space potential is given in Eq. (II.31) and the momentum-space
potential is given in Eq. (II.66). Due to our dispersive ansatz, only little modifications of the
Breit potential are needed to calculate QED or electroweak corrections instead of finite-size
corrections. We replaced the FF discontinuities by the imaginary part of one-loop eVP and
presented a re-evaluation of the Uehling potential and further eVP corrections (Appendix II.D).
In Appendix II.C, we calculated finite-size and recoil corrections to the spectrum of Coulomb
energies. For the first time, we wrote down finite-size recoil effects at order (Zα)5, which are
proportional to the first moments of the charge and convoluted charge distributions. Such effects
are preferably covered by the nuclear-pole part of the TPE, as we will explain in Section V.2.

The usual accounting of FSEs involves an expansion in moments of charge and magnetization
distributions, cf. Eq. (II.8). Meaning, the FSEs are expressed in terms of the charge radius, the
Friar radius, the Zemach radius, etc. In Section II.3, we presented the alternative (un-expanded)
formulas for the first-order PT contributions of the nuclear finite size to the LS, Eqs. (II.41) and
(II.49), and the HFS, Eqs. (II.50) and (II.51). Furthermore, we have shown a limitation of the
usual accounting of FSEs and illustrated it with the help of two toy models in Section II.4.

To conclude, the standard expansion of the hydrogenic LS in the moments of charge distribu-
tion is only valid provided the convergence radius of the Taylor expansion of GE(Q2) is much
larger than the inverse Bohr radius of the given hydrogen-like system. A very small fluctuation
in the FF around the inverse Bohr radius scale may invalidate the expansion. In order to define

Figure II.13.: Proton vertex with axion exchange.
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II. Finite-Size Effects by Dispersive Technique

a proper hadronic charge radius, one has to decompose the FF into “smooth” and “non-smooth”
parts, where the non-smooth parts must be treated exactly.

So far, we only developed toy models with non-smooth contribution to the FF but did not
provide a physical explanation for them. However, there are several conceivable origins. The
required combination of mass and coupling constant basically rules out the option of an axion
exchange at the proton vertex, see Fig. II.13. However, a weak contribution to the lepton
vertex, similar to a muon decay, is not yet excluded, see Fig. II.14. Searches for a physical
implementation remain an essential task for the future.

p

μ- "μ

"e
e-

W -

Figure II.14.: Muon vertex with weak decay.

A. Details of the Breit Potential Derivation

Here, we will give more details on how the derivation of the Breit potential, Eq. (II.20), proceeds
after the semi-relativistic expansion, cf. Section II.2. We continue starting from the following
momentum-space Breit potential.

Momentum-space Breit Potential with Nuclear Form Factors

VOPE(q,p, t) = [VC + ∆Vrel.C + ∆VY + ∆V1 + ∆V2 + ∆V3 + ∆V4 + ∆V5] (q,p, t), (II.66a)

with

VC(q) = −4πZα

q2
, (II.66b)

∆Vrel.C(q,p) = 4πZα

{
1

8m2
r

− 1

2m2
r

is · q × p
q2

}
, (II.66c)

∆VY(q, t) = 4Zα

ˆ ∞
t0

dt

t(t+ q2)
ImGE(t), (II.66d)

∆V1(q,p) = 4πZα

{
1

2M2

is · q × p
q2

− 1

4Mm
− 1

mM

[
p2

q2
−
(
q · p
q2

)2
]}

, (II.66e)

∆V2(q,p) = 4πZα

{
1 + κ

mM

[
s · S − (s · q)(S · q)

q2

]
(II.66f)

− iS · q × p
q2

[(
1

mM
+

1

2M2

)
+ κ

(
1

mM
+

1

M2

)]}
,
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A. Details of the Breit Potential Derivation

∆V3(q,p, t) = 4Zα

ˆ ∞
t0

dt

t(t+ q2)
ImGE(t)

{
1

4mM

[
(2p+ q)2 − (2q · p+ q2)2

t+ q2

]
(II.66g)

+is · q × p
(

1

2m2
+

1

mM

)
− q

2

8

(
1

m2
+

1

M2

)}
,

∆V4(q,p, t) = −2Zα

M2

ˆ ∞
t0

dt

t(t+ q2)
ImGE(t) iS · q × p, (II.66h)

∆V5(q,p, t) = 4Zα

ˆ ∞
t0

dt

t(t+ q2)
ImGM (t)

{
iS · q × p

(
1

mM
+

1

M2

)
(II.66i)

− q2

mM

[
s · S − (s · q)(S · q)

q2

]}
.

Here, we made use of the Lagrange identity,

(a× b) · (c× d) = (a · c)(b · d)− (b · c)(a · d), (II.67)

to separate the spin-spin coupling s ·S.18 Our result agrees with Ref. [294, §83. Breit’s equation,
Eq. (83.9)] in the structureless limit, i.e., F1 = 1, F2 = 0. For an easier handle of the individual
terms, we split the Breit potential into several sub-potentials. They, respectively, do or do not
depend on the nuclear spin and the electric or magnetic FF discontinuities. Equation (II.66b)
gives the well-known Coulomb potential. All other potentials will be treated as perturbation
to the Coulomb potential, hence, they are denoted as ∆V . Furthermore, we identified the
relativistic corrections to the Coulomb potential, cf. Eq. (II.66c), and a Yukawa-type correction,
cf. Eq. (II.66d).

We then perform a Fourier transformation to obtain the coordinate-space Breit potential from
the momentum-space Breit potential:

V (p, q, t)
F .T.−−−→ V (p̂, r, t) : V (p̂, r, t) =

1

(2π)3

ˆ
dq eiq·r V (p, q, t). (II.69)

Because of the massive Coulomb gauge, the potential has an additional dependence on t. A list
of useful Fourier transformations is provided with Table II.2, cf. Refs. [310, p. 180] and [294,
p. 339-340] for the case of t = 0. For the coordinate-space potential it is crucial to realize the
singularities at the origin, i.e., the δ(r) terms.

The momentum operator, p̂ = −i∇r, has to be written to the right of all other factors, since
it is an operator acting on the wave function only. We use the following replacement:

r(r · p̂) · p̂
r2

ψnlm(r) =

[
p̂2 +

2

r2
ir · p̂− l(l + 1)

r2

]
ψnlm(r), (II.70)

18In particular, we used:

(s× q) · (S × q) = (s · S) q2 − (s · q)(S · q). (II.68)
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II. Finite-Size Effects by Dispersive Technique

Table II.2.: List of useful Fourier transformations: 4πf(q, t)
F.T.−−−→ F (r, t).

f(q, t) F (r, t) f(q) F (r)

1 4π δ(r)

1
t+q2

e−r
√
t

r
1
q2

1
r

q
t+q2

i(1+r
√
t)e−r

√
tr

r3
q
q2

ir
r3

1
(t+q2)2 − e−r

√
t

2
√
t

q
(t+q2)2

ie−r
√
tr

2r
q

(q2)2
ir
2r

(q·a)(q·b)
(t+q2)2

e−r
√
t

2r

[
(a · b)− (1 + r

√
t)r·(r·a)b

r2

]
(q·a)(q·b)

(q2)2
1
2r

[
(a · b)− r·(r·a)b

r2

]
(q·a)(q·b)
t+q2

e−r
√
t

r3

[
(1 + r

√
t)(a · b)− 3(1 + r

√
t+ r2t

3 )r·(r·a)b
r2

]
(q·a)(q·b)

q2

1
r3

[
(a · b)− 3r·(r·a)b

r2

]
+ 4π

3 (a · b) δ(r) + 4π
3 (a · b) δ(r)

which follows from the radial Schrödinger equation,19[
− ∂2

∂r2
− 2

r

∂

∂r
+
l(l + 1)

r2
− 2mr

(α
r

+ En

)]
Rnl(r) = 0. (II.74)

We now recall the spin and angular momentum operators. The nuclear and lepton spin operators
are denoted by s and S, respectively; the corresponding quantum numbers will be s for the lepton
and i for the nucleus. The lepton orbital angular momentum is defined as l = r× p̂. The lepton
total angular momentum is j = l + s, and in turn, the atom’s total angular momentum is
f = j + S. Substituting the operators with their eigenvalues,

s2 → s(s+ 1)
s=1/2

= 3
4 , S2 → i(i+ 1)

i=1/2
= 3

4 , l2 → l(l + 1),

(l+ s)2 → j(j + 1), (j + S)2 → f(f + 1),

we find:

l · s = 1
2

[
(l+ s)2 − l2 − s2

]
, (II.75)

→ 1
2

[
j(j + 1)− l(l + 1)− 3

4

]
,

→


0 for l = 0, j = 1/2,

−1 for l = 1, j = 1/2,

1/2 for l = 1, j = 3/2.

19In spherical coordinates, one defines the Nabla operator as:

∇ = êr
∂

∂r
+
êθ
r

∂

∂θ
+

êφ
r sin θ

∂

∂φ
, (II.71)

and the Laplace operator as:

∆f =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ
. (II.72)

It is worth to note that:
∆ 1/r = −4π δ(r). (II.73)
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We next use the replacements [310, Eq. (22.8)]:

s→ j
(s · j)
j2

and l→ j
(l · j)
j2

, (II.76)

where the bar denotes eigenvalues. These relations are applicable if one calculates the expec-
tation values between states with equal quantum numbers s, l and j. In this way, we find:

s · S → S · j (s · j)
j2

, (II.77a)

→ [f(f + 1)− i(i+ 1)− j(j + 1)] [j(j + 1) + s(s+ 1)− l(l + 1)]

4j(j + 1)
,

→


1
2

[
f(f + 1)− i(i+ 1)− 3

4

] i=1/2
= 1

2

[
f(f + 1)− 3

2

]
for l = 0, j = 1/2,

−1
6

[
f(f + 1)− i(i+ 1)− 3

4

] i=1/2
= −1

6

[
f(f + 1)− 3

2

]
for l = 1, j = 1/2,

1
6

[
f(f + 1)− i(i+ 1)− 15

4

] i=1/2
= 1

6

[
f(f + 1)− 9

2

]
for l = 1, j = 3/2,

l · S → S · j (l · j)
j2

, (II.77b)

→ [f(f + 1)− i(i+ 1)− j(j + 1)] [j(j + 1) + l(l + 1)− s(s+ 1)]

4j(j + 1)
,

→


0 for l = 0, j = 1/2,

2
3

[
f(f + 1)− i(i+ 1)− 3

4

] i=1/2
= 2

3

[
f(f + 1)− 3

2

]
for l = 1, j = 1/2,

1
3

[
f(f + 1)− i(i+ 1)− 15

4

] i=1/2
= 1

3

[
f(f + 1)− 9

2

]
for l = 1, j = 3/2.

In addition, we make use of the formulas [310, Eq. (A.32)]:

r2δij − 3xixj → − r2

4l(l + 1)− 3
[2l(l + 1)δij − 3{li, lj}] , (II.78a)

=

{
−r2 {li, lj} for l = 0,

− r2

5 [4δij − 3{li, lj}] for l = 1,

and [302]:

r2δij − xixj →
r2

4l(l + 1)− 3
[2 {l(l + 1)− 1} δij + {li, lj}] , (II.78b)

=

{
r2

3 [2δij − {li, lj}] for l = 0,
r2

5 [2δij + {li, lj}] for l = 1,

which follow from angular averaging with the spherical harmonics, Eq. (II.87), representing the
angular part of the Coulomb wave functions. We obtain:

43



II. Finite-Size Effects by Dispersive Technique

Table II.3.: P -level mixing matrix elements: 〈2Pj
∣∣∣Ô∣∣∣ 2Pj′〉.

Ô j = 1/2, j′ = 1/2 j = 1/2, j′ = 3/2 j = 3/2, j′ = 1/2 j = 3/2, j′ = 3/2

l · s −1 0 0 1
2

l · S 1
3 −

√
2

3 −
√

2
3 − 5

6

S · s − 1
12

√
2

3

√
2

3 − 5
12

(l · s) (l · S) − 1
3

√
2

3 − 1
3
√

2
− 5

12

(l · S) (l · s) − 1
3 − 1

3
√

2

√
2

3 − 5
12

s · S − 3(s · r)(S · r)

r2
(II.79a)

→


0 for l = 0, j = 1/2,

−2
3

[
f(f + 1)− i(i+ 1)− 3

4

] i=1/2
= −2

3

[
f(f + 1)− 3

2

]
for l = 1, j = 1/2,

1
15

[
f(f + 1)− i(i+ 1)− 15

4

] i=1/2
= 1

15

[
f(f + 1)− 9

2

]
for l = 1, j = 3/2,

s · S − (s · r)(S · r)

r2
(II.79b)

→


1
3

[
f(f + 1)− i(i+ 1)− 3

4

] i=1/2
= 1

3

[
f(f + 1)− 3

2

]
for l = 0, j = 1/2,

1
5

[
f(f + 1)− i(i+ 1)− 3

4

] i=1/2
= −1

3

[
f(f + 1)− 3

2

]
for l = 1, j = 1/2,

2
15

[
f(f + 1)− i(i+ 1)− 15

4

] i=1/2
= 2

15

[
f(f + 1)− 9

2

]
for l = 1, j = 3/2.

To calculate the P -level mixing, see Appendix II.C.2, one needs to evaluate matrix elements
of products of spin and angular momentum operators between states with different lepton total
angular momenta, j = 1/2 and j = 3/2. Utilizing the common Clebsch-Gordan coefficients, we
expand the P -states in a product basis:

|(ls)jS; fMf 〉 =
∑

ml,ms,Mj ,mS

C l s j
mlmsMj

C j S f
Mj mSMf

|l,ml〉 |s,ms〉 |S,mS〉. (II.80)

Furthermore, we use the following general relations for angular momentum operators:

J+|J,mJ〉 =
√

(J +mJ + 1)(J −mJ)|J,mJ + 1〉, (II.81a)

J−|J,mJ〉 =
√

(J −mJ + 1)(J +mJ)|J,mJ − 1〉. (II.81b)

where

J+ = Jx + iJy, (II.81c)

J− = Jx − iJy. (II.81d)

The relevant matrix elements are then listed in Table II.3.

A general expression for the final coordinate-space Breit potential is presented with Eq. (II.31).
Here, we will given the S- and P -wave potentials (s = 1/2 and i = 1/2).
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A. Details of the Breit Potential Derivation

S- and P -Waves Coordinate-space Breit Potential with Nuclear Form Factors

• S-wave potential (l = 0)

∆Vrel.C.(r) =
Zα

2m2
r

πδ(r), (II.82a)

∆VY(r, t) =
Zα

πr

ˆ ∞
t0

dt

t
ImGE(t) e−r

√
t, (II.82b)

∆V1(r, p̂) = − Zα

mM

{
π δ(r) +

p̂2

r
+

1

r2

∂

∂r

}
(∗)
=

Zα

mM

{
π δ(r)− p̂

2

r

}
, (II.82c)

∆V2(r) =
Zα

3

1 + κ

mM

[
f(f + 1)− 3

2

]
4π δ(r), (II.82d)

∆V3(r, p̂, t) =
Zα

π

ˆ ∞
t0

dt

t
ImGE(t)

{
−1

8

(
1

m2
+

1

M2

)
4π δ(r ) +

t

8m2
r

e−r
√
t

r
(II.82e)

+
e−r
√
t

2mM

[
(2 + r

√
t)
p̂2

r
+

2 + 2r
√
t+ r2t

r2

∂

∂r
− t3/2

4

]}
,

(∗)
=

Zα

π

ˆ ∞
t0

dt

t
ImGE(t)

{
−1

8

(
1

m2
r

+
2

mM

)
4π δ(r ) +

1

8m2
r

t e−r
√
t

r
(II.82f)

+
e−r
√
t

2mM

[
(2 + r

√
t)
p̂2

r
+
t3/2

4

]}
,

∆V4(r) = 0, (II.82g)

∆V5(r, t) =
Zα

3πmM

ˆ ∞
t0

dt

t
ImGM (t)

[
f(f + 1)− 3

2

]{
te−r

√
t

r
− 4πδ(r)

}
, (II.82h)

• P -wave potential (l = 1) for states with equal j (upper case j = 1/2, lower case j = 3/2)

∆Vrel.C.(r)=
Zα

4m2
r

1

r3

[
j(j + 1)− 11

4

]
, (II.83a)

∆VY(r, t) =
Zα

πr

ˆ ∞
t0

dt

t
ImGE(t) e−r

√
t, (II.83b)

∆V1(r, p̂) = Zα

[
1

r3

{
1

mM
− 1

4M2

[
j(j + 1)− 11

4

]}
− 1

mM

(
p̂2

r
+

1

r2

∂

∂r

)]
, (II.83c)

(∗)
= Zα

[
1

r3

{
1

mM
− 1

4M2

[
j(j + 1)− 11

4

]}
− 1

mM

p̂2

r

]
, (II.83d)

∆V2(r) = Zα

{
1

r3

[(
1

mM
+

1

2M2

)
+

(
1

mM
+

1

M2

)
κ

]
l · S (II.83e)

+
1 + κ

5mM

1

r3

[
4 s · S − 3 {l · s, l · S}

]}
,

= Zα

{
1

r3

[(
1

mM
+

1

2M2

)
+

(
1

mM
+

1

M2

)
κ

]
×

2
3

[
f(f + 1)− 3

2

]
1
3

[
f(f + 1)− 9

2

] (II.83f)

+
1 + κ

mM

1

r3
×

2
3

[
f(f + 1)− 3

2

]
1
15

[
9
2 − f(f + 1)

]} ,
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∆V3(r, p̂, t)=
Zα

π

ˆ ∞
t0

dt

t
ImGE(t)

[
1

8m2
r

t e−r
√
t

r
(II.83g)

+
1

2mM
e−r
√
t

{
(2 + r

√
t)
p̂2

r
+

2 + 2r
√
t+ r2t

r2

∂

∂r
− t3/2

4

}
− e−r

√
t

r3

(
1 + r

√
t
){ 1

mM
+

1

2

(
1

2m2
+

1

mM

)[
j(j + 1)− 11

4

]}]
,

(∗)
=

Zα

π

ˆ ∞
t0

dt

t
ImGE(t)

[
1

8m2
r

t e−r
√
t

r
+
e−r
√
t

2mM

{
(2 + r

√
t)
p̂2

r
+
t3/2

4

}
(II.83h)

− e−r
√
t

r3

(
1 + r

√
t
){ 1

mM
+

1

2

(
1

2m2
+

1

mM

)[
j(j + 1)− 11

4

]}]
,

∆V4(r, t) =
Zα

2πM2

ˆ ∞
t0

dt

t
ImGE(t)

e−r
√
t

r3
(1 + r

√
t)×

2
3

[
f(f + 1)− 3

2

]
1
3

[
f(f + 1)− 9

2

] , (II.83i)

∆V5(r, t) =
Zα

π

ˆ ∞
t0

dt

t
ImGM (t)

e−r
√
t

r3

{
−
(

1

mM
+

1

M2

)
(1 + r

√
t) l · S (II.83j)

− 1

5mM

(
(1 + r

√
t)
[
4 s · S − 3 {l · s, l · S}

]
− r2t

[
2 s · S + {l · s, l · S}

])}
,

=
Zα

π

ˆ ∞
t0

dt

t
ImGM (t)

e−r
√
t

r3

{
−
(

1

mM
+

1

M2

)
(1 + r

√
t) ×

2
3

[
f(f + 1)− 3

2

]
1
3

[
f(f + 1)− 9

2

]
+

1

mM

(
(1 + r

√
t)×

2
3

[
3
2 − f(f + 1)

]
1
15

[
f(f + 1)− 9

2

] + r2t×
1
3

[
3
2 − f(f + 1)

]
2
15

[
f(f + 1)− 9

2

])} . (II.83k)

The asterix refers to symmetrized potentials which can only be applied to first order in PT.20

B. Coulomb Wave Functions and Perturbation Theory

In the present Appendix, we state the non-relativistic Schrödinger and the relativistic Dirac wave
functions of the Coulomb potential, VC = −Zα/r, and introduce the framework of Schrödinger
PT.21

B.1. Non-Relativistic Schrödinger Wave Functions

The Schrödinger equation for the spherically symmetric Coulomb problem can be solved by
separation of variables. Accordingly, the non-relativistic Schrödinger Coulomb wave functions
are written as a product of radial wave functions and spherical harmonics:

Ψnlm(r) = Rnl(r)Ylm(θ, φ), (II.85)

20The symmetrized potentials are derived by partial integration:

ˆ ∞
0

dr f(r)
1

2

[
Rn′l

∂

∂r
Rnl +Rnl

∂

∂r
Rn′l

]
= −1

2
f(r)Rn′lRnl

∣∣∣
r=0
− 1

2

ˆ ∞
0

dr f ′(r)Rn′lRnl. (II.84)

21Note that we introduced the reduced mass of the lepton-nucleus system in order to correct for the nuclear motion
or, in other words, the finite mass of the nucleus, as explained below Eq. (II.32). Also, our definitions of the
spherical harmonics, Legendre polynomials and Laguerre polynomials comply with Wolfram Mathematica.
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where n, l, m are the principal, orbital angular momentum and magnetic quantum numbers,
respectively. The wave functions are all normalized to unity:

ˆ ∞
0

dr r2R2
nl(r) = 1,

ˆ 2π

0
dφ

ˆ π

0
dθ sin θ Y 2

lm = 1,

ˆ
drΨ2

nlm = 1. (II.86)

The spherical harmonics are defined as:

Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Plm(cos θ) eimφ, (II.87)

where Plm(x) are the associated Legendre polynomials given by the Rodrigues formula:22

Plm(x) =
(−1)m

2l l!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l. (II.89)

For m = 0, the spherical harmonics of S- and P -waves read:

Y00(θ, φ) =

√
1

4π
, (II.90a)

Y10(θ, φ) =

√
3

4π
cos θ. (II.90b)

A three-dimensional polar plot with radius |Ylm(θ, φ)|2 displays a spherical surface for l = 0,
a dump-bell shaped surface for l = 1 and m = 0, and a donut shaped surface for l = 1 and
m = ±1.

For the radial part, we distinguish wave functions for the discrete and continuous spectra.

Discrete Wave Functions

The discrete radial Coulomb wave functions can be given in a general form:

Rnl(r) =
2

n2a3/2

[
2r

na

]l
e
−r/na 1

(2l + 1)!

√
(n+ l)!

(n− l − 1)!
1F1 (−n+ l + 1, 2l + 2, 2r/na) , (II.91a)

=
2

n2a3/2

[
2r

na

]l
e
−r/na

√
(n− l − 1)!

(n+ l)!
L2l+1
n−l−1 (2r/na) , (II.91b)

in terms of the associated Laguerre polynomials Lkj (x) or the confluent hypergeometric functions
of the first kind (1F1, Kummer’s function of the first kind), which are related by:

Lkj (x) =
(k + j)!

k! j!
1F1 (−j, k + 1, x) . (II.92)

The associated Laguerre polynomials are orthogonal functions fulfilling a second-order differen-
tial equation of the type:

x
d2Lkj (x)

dx2
+ (k + 1− x)

dLkj (x)

dx
+ j Lkj (x) = 0, (II.93)

22The Legendre polynomials are orthogonal functions which fulfil the second-order differential equation:

(1− x2)
d2Plm(x)

dx2
− 2x

dPlm(x)

dx
+

[
l(l + 1)− m2

1− x2

]
Plm(x) = 0. (II.88)
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and their Rodrigues formula reads:

Lkj (x) =
exx−k

j!

dj

dxj
(e−xxk+j). (II.94)

The confluent hypergeometric function of the first kind can be written as:23

1F1(a, b, x) =
Γ(b)

Γ(b− a)Γ(a)

ˆ 1

0
dt ext ta−1(1− t)b−a−1. (II.96)

Again, the lowest S- and P -level wave functions are of special interest:

R10(r) =
2

a3/2
e−r/a, (II.97a)

R20(r) =
1√

2 a3/2

(
1− r

2a

)
e−r/2a, (II.97b)

R21(r) =
1

2
√

6 a3/2

r

a
e−r/2a. (II.97c)

Continuous Wave Functions

To transit to the continuous spectrum, we replace the factor of 1/n3/2 contained in each wave
function, cf. Eq. (II.91), by:

1

n3/2
→
√

2πk

1− exp(−2π
k )
, (II.98)

and otherwise substitute n→ 1/ik. The continuous radial wave function of a lepton with energy:

Ek =
Zαk2

2a
, (II.99)

moving in the Coulomb field of a nucleus with charge Ze is then given by:

Rkl(r) =
1

a3/2

[
2kr

a

]l
e
−ikr/a 1

(2l + 1)!

√
4πk

sinh π
k

e
π/2k

[
l∏

s=1

√
s2 +

1

k2

]
(II.100)

1F1

(
i/k + l + 1, 2l + 2, 2ikr/a

)
.

The wave functions are normalized in the k-scale:24

ˆ ∞
0

dr r2Rkl(r)

ˆ k+∆k

k−∆k
dk′Rk′l(r) = 1, (II.101)

The pertinent wave functions are:

Rk0(r) =
1

a3/2

√
4πk

sinh(π/k)
eπ/2k e−

ikr/a
1F1(i/k + 1, 2, 2ikr/a), (II.102a)

Rk1(r) =
1

3a3/2

√
4πk

sinh(π/k)
eπ/2k r e−

ikr/a
√

1 + k2
1F1(i/k + 2, 4, 2ikr/a). (II.102b)

23Ref. [310, Eqs. (3.5) and (3.16)] uses a different definition for the associated Laguerre polynomials, they therefore
have:

Rnl(r) = − 2

n2a3/2

[
2r

na

]l
e
−r/na

√
(n− l − 1)!

[(n+ l)!]3
L2l+1
n+l (2r/na) . (II.95)

24See Ref. [310, Sect. 4] for other choices of normalization conditions.
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Table II.4.: Matrix elements of auxiliary potentials with discrete non-relativistic Schrödinger wave func-
tions.

V 〈1S|V |1S〉 〈2S|V |2S〉 〈2P |V |2P 〉

1/r 1
a

1
4a

1
4a

e−r
√
t/r 4

a(2+a
√
t)

2
1+2a2t

4a(1+a
√
t)

4
1

4a(1+a
√
t)

4

4πδ(r) 4
a3

1
2a3 0

exp[−r
√
t] 8

(2+a
√
t)

3
1−a
√
t+a2t

(1+a
√
t)

5
1

(1+a
√
t)

5

1/r3 — — 1
24a3

(1 + r
√
t) e−r

√
t/r3 — — 1+3a

√
t

24a3(1+a
√
t)

3

p̂2/r 3
a3

7
16a3

5
48a3

(2 + r
√
t) e−r

√
t p̂2/r

8(6+8a
√
t+3a2t)

a3(2+a
√
t)

3
7+33a

√
t+60a2t+52a3t3/2+24a4t2

8a3(1+a
√
t)

5
5+19a

√
t+20a2t

24a3(1+a
√
t)

5

p̂4 5
a4

13
16a4

7
48a4

B.2. Schrödinger Perturbation Theory

The concept of perturbation theory (PT) is very useful and widely applied to provide estimates
for complex physical problems which cannot be calculated exactly or whose solution is too
time-consuming. QED corrections to, f.i., the anomalous magnetic moment of the electron or
muon can be arranged in a perturbative expansion in the fine-structure constant α ≈ 1/137. In
ChPT, all Feynman diagrams contributing to a particular process can be classified into leading
and subleading orders with the aid of power-counting, cf. Section IV.2.1. In other words, the
fundamental idea of PT is to work out a perturbative series in a small parameter and quantify
the absolute importance of certain contributions in the full result.

In the following, we will briefly review the Schrödinger PT and work out approximate solu-
tions for complex quantum mechanical systems based on known solutions for simpler eigenvalue
problems. As shown in Eq. (II.37b), we expect the Schrödinger Hamiltonian to split into an un-
perturbed Hamiltonian, Ĥ0, and a weak perturbation, Ĥδ. Here, the unperturbed Hamiltonian
corresponds to the Coulomb problem, which is solved by the wave functions in Eq. (II.91) and
the energies in Eq. (II.1).

To first order in time-independent PT, the energy shift of the nl-level due to a perturbation
of the Coulomb potential is given by:

∆E
〈δ〉(1)
nl ≡ 〈nlm|Vδ |nlm〉 =

ˆ ∞
0

drΨ∗nlm(r) Ĥδ Ψnlm(r). (II.103)

For a spherically symmetric correction Vδ(r), this simplifies to:

∆E
〈δ〉(1)
nl =

1

2π2

ˆ ∞
0

dQQ2wnl(Q)Vδ(Q) =

ˆ ∞
0

dr r2R2
nl(r)Vδ(r), (II.104)

where the momentum-space expression contains the convolution of the momentum-space wave
functions:

wnl(Q) =

ˆ
dpϕ∗nlm(p+Q)ϕnlm(p). (II.105)
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Table II.5.: (Symmetric) mixed matrix elements of auxiliary potentials for the discrete spectrum:
〈nlm|V |n′lm〉 with n > n′.

V n′l 〈nlm|V |n′lm〉 ≡ 〈n′lm|V |nlm〉

e−r
√
t/r

1S 4
a

√
n

n2(1+a
√
t)

2−1
exp

[
−2n arctanh 1

n(1+a
√
t)

]
2S − 4

√
2n
a

4−n2(3+4a2t)[
n2(1+2a

√
t)

2−4
]2 exp

[
−2n arctanh 2

n(1+2a
√
t)

]
2P 16

√
2√

3 a

√
n3(n2−1)[

n2(1+2a
√
t)

2−4
]2 exp

[
−2n arctanh 2

n(1+2a
√
t)

]
1S 4√

n3 a34πδ (r)
2S

√
2√

n3 a3

e−r
√
t

1S 8
√
n5t a[

n2(1+a
√
t)

2−1
]2 exp

[
−2n arctanh 1

n(1+a
√
t)

]
2S − 32

√
2n5t a[4−n2(5−4a

√
t+4a2t)][

n2(1+2a
√
t)

2−4
]3 exp

[
−2n arctanh 2

n(1+2a
√
t)

]
2P 256

√
2 a√

3

√
t n7(n2−1)[

n2(1+2a
√
t)

2−4
]3 exp

[
−2n arctanh 2

n(1+2a
√
t)

]
1/r3 2P 1

4
√

6n(n2−1) a3

{
1 + 3 exp

[
−2n arctanh 2

n

]}
1+r
√
t

r3 e−r
√
t 2P 1

4
√

6n(n2−1) a3

{
1− 12−n2(3−12a

√
t−4a2t)[

n2(1+2a
√
t)

2−4
] exp

[
−2n arctanh 2

n(1+2a
√
t)

]}
1S 8√

n3 a4

{
1− 2n2

n2−1 exp
[
−2n arctanh 1

n

]}
2S 2

√
2√

n3 a4

{
1− 8n2(n2−2)

[n2−4]2
exp

[
−2n arctanh 2

n

]}
p̂4

2P
√

2√
3n(n2−1) a4

{
1 + 16+32n2−21n4

[n2−4]2
exp

[
−2n arctanh 2

n

]}

The explicit forms of the coordinate-space Schrödinger wave functions are given in Appendix II.B.1
and the convoluted momentum-space wave functions are given in Eq. (V.89). Relevant matrix
elements are listed in Table II.4.

At second-order in time-independent PT, the energy shift follows as the sum of perturbations
of the discrete and continuous spectra:

∆E
〈δ〉(2)
nl =

∑
n′ 6=n

∣∣∣〈nlm| Ĥδ |n′lm
〉∣∣∣2

E
(0)
n − E(0)

n′

+
1

2π

ˆ ∞
0

dk

∣∣∣〈nl ∣∣∣Ĥδ

∣∣∣ kl〉∣∣∣2
En − Ek

. (II.106)

Some relevant matrix elements are listed in Tables II.5 and II.6, where in the latter we give the
limit of large k.25

25For the evaluation of matrix elements we rely on the detailed mathematical Appendices of Ref. [311, Appendices
§d-§f]. Among other things, we use [311, Eqs. (f.9)-(f.10)]:

ˆ ∞
0

dr rγ−1 e−λr 1F1(α, γ, kr) 1F1(α′, γ, k′r) (II.107)

= Γ(γ)λα+α′−γ (λ− k)−α(λ− k′)−α
′

2F1

(
α, α′, γ,

kk′

(λ− k)(λ− k′)

)
,
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Table II.6.: (Symmetric) mixed matrix elements of auxiliary operators for the continuous spectrum:

ck〈klm|V |nlm〉 with ck =
√

1−exp[−2π/k]
2πk .

V nl ck〈klm|V |nlm〉 ≡ ck〈nlm|V |klm〉

e−r
√
t/r

1S 4
a

1

k2+(1+a
√
t)

2 exp
[
− 2
k arctan k

1+a
√
t

]
2S 4

√
2

a

3+4(a2t+k2)[
4k2+(1+2a

√
t)

2
]2 exp

[
− 2
k arctan 2k

1+2a
√
t

]
2P − 16

√
2√

3 a

√
1+k2[

4k2+(1+2a
√
t)

2
]2 exp

[
− 2
k arctan 2k

1+2a
√
t

]
1S 4

a3
4πδ (r)

2S
√

2
a3

e−r
√
t

1S 8a
√
t[

k2+(1+a
√
t)

2
]2 exp

[
− 2
k arctan k

1+a
√
t

]
2S

32
√

2t a[5−4(a
√
t−a2t−k2)][

4k2+(1+2a
√
t)

2
]3 exp

[
− 2
k arctan 2k

1+2a
√
t

]
2P − 256

√
2 a√

3

√
t(1+k2)[

4k2+(1+2a
√
t)

2
]3 exp

[
− 2
k arctan 2k

1+2a
√
t

]
1/r3 2P − 1

4
√

6(1+k2) a3

{
1 + 3 exp

[
− 2
k arctan 2k

]}
(
1 + r

√
t
)
e−r
√
t/r3 2P − 1

4
√

6(1+k2) a3

{
1 +

[
3− 8(3a

√
t+2a2t)

4k2+(1+2a
√
t)

2

]
exp

[
− 2
k arctan 2k

1+2a
√
t

]}
1S 8

a4

{
1− 2

1+k2 exp
[
− 2
k arctan k

]}
2S 2

√
2

a4

{
1− 8(1+2k2)

[1+4k2]2
exp

[
− 2
k arctan 2k

]}
p̂4

2P −
√

2√
3(1+k2) a4

{
1 +

[
1− 22+40k2

[1+4k2]2

]
exp

[
− 2
k arctan 2k

]}

B.3. Relativistic Dirac Wave Functions

The Dirac wave functions for a spherically symmetric potential can be written as bispinors,

ψjlm =

(
ϕjlm

χjlm

)
, (II.109)

where the small and large components are given by:

ϕjlm = i g(r) Ωjl′m(r̂), (II.110a)

χjlm = −f(r) Ωjl′m(r̂), (II.110b)

with l′ = 2j − l. The radial functions are normalized to unity,ˆ
dr r2

[
|g(r)|2 + |f(r)|2

]
= 1, (II.111)

and [311, Eqs. (f.1)-(f.2)]:ˆ ∞
0

dr rνe−λr 1F1(α, γ, kr) = Γ(ν + 1)λ−ν−1
2F1(α, ν + 1, γ, k/λ), (II.108)

for Re ν > −1 and Reλ > |Re k| (or Reλ > 0, if α is a negative integer).
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and for the Coulomb potential read as follows [312]:

g(r) = −
√

Γ(2γ + nr + 1)

Γ(2γ + 1)
√
nr!

√
1 + E

mr

4N(N − χ)

(
2

Na

)3/2

e−
r/Na

(
2r

Na

)γ−1

(II.112a)

{nr 1F1 [−nr + 1, 2γ + 1, 2r/Na]− (N − χ) 1F1 [−nr, 2γ + 1, 2r/Na]} ,

f(r) = −
√

Γ(2γ + nr + 1)

Γ(2γ + 1)
√
nr!

√
1− E

mr

4N(N − χ)

(
2

Na

)3/2

e−
r/Na

(
2r

Na

)γ−1

(II.112b)

{nr 1F1 [−nr + 1, 2γ + 1, 2r/Na] + (N − χ) 1F1 [−nr, 2γ + 1, 2r/Na]} .

The spinor spherical harmonics are defined as:

[ΩjlM (r̂)]µ = CJ Ml (M−µ) 1/2µ Yl (M−µ)(r̂), (II.113)

with µ = ±1/2 and the Clebsch-Gordan coefficients C ······ as defined in Ref. [312]. Furthermore,
we introduced the new quantum number χ:

χ = ∓(j + 1/2) =

{
−(l + 1) j = l + 1/2

l j = l − 1/2
, (II.114a)

the kinetic energy, cf. Eq. (II.6a),

E =
mr√

1 + (Zα)2/(γ + nr)2
(II.114b)

and,

nr = n− |χ|, (II.114c)

γ =
√
χ2 − Z2α2, (II.114d)

N =
√
n2 − 2nr(|χ| − γ). (II.114e)

C. Finite-Size and Recoil Effects

In the following, we discuss the finite-size and recoil effects as deduced from the nuclear FF
dependent Breit potential presented in Eq. (II.31). We start by decoding the characteristic
structures of the hydrogen spectrum displayed in Figures II.1, II.3 and II.4, and postpone quan-
titative expressions for the 2P FS, the P -level mixing, the 2P1/2 − 2S1/2 LS and the HFS to
Appendices II.C.1-II.C.4.

Neglecting the Q2 dependence of the nuclear FFs, i.e., replacing F1 → 1 and F2 → κ, or
equivalently, GE → 1 and GM → 1 + κ in Eq. (II.31), we obtain the static limit of the Breit
potential. In this limit, the non-vanishing potentials are ∆Vrel.C., ∆Vrel.Ekin

, ∆V1 and ∆V2.26

The remaining potentials, ∆VY , ∆V3, ∆V4 and ∆V5, describe the proton structure corrections.
We will first go through the static corrections and subsequently discuss the FSEs.

The unperturbed Coulomb potential, Eq. (II.31b), generates the well-known gross structure
as given in Eq. (II.1), cf. also the second term in Eq. (II.6b). Together with the relativistic

26In the structureless limit, we in addition have κ→ 0, and hence, a change in ∆V2.

52



C. Finite-Size and Recoil Effects

corrections to the Coulomb Schrödinger equation, i.e., the sum of the potentials in Eqs. (II.31c)
and (II.36a), the Coulomb Dirac energy is reproduced up to order (Zα)6:

〈2lj |∆Vrel.C. + ∆Vrel.Ekin
| 2lj〉 =

Zα

128a3

1

m2
r

[
3− 8

j + 1/2

]
, (II.115)

cf. third term in Eq. (II.6b). Obviously, Eq. (II.115) introduces a FS splitting of, f.i., the 2P
levels, while the 2P1/2 and 2S1/2 levels of the classic LS are degenerate.

Treating Eqs. (II.82d) and (II.83e) at first-order in PT, we reproduce the LO HFSs. For
S-levels that is the well-known Fermi energy, cf. Eq. (II.7). The HFSs of 2P1/2 and 2P3/2 levels,
cf. Eqs. (II.140b) and (II.140d), are obtained as in Ref. [276, Eqs. (86) and (87)]. Furthermore,
we checked that Eq. (II.83e) agrees with Ref. [302, Eq. (24)].

The total static contribution to the 2P FS is generated by the relativistic corrections to the
Coulomb potential and the potential ∆V1. Neglecting the lepton anomalous magnetic moment,
our result, Eq. (II.123), agrees with Ref. [276, Eq.(80)] and Ref. [302, Eq. (3)] up to order (Zα)6.

The total static contribution to the classic LS is generated by the kinetic energy operators of
∆Vred.Mass and the potential ∆V1. The LS effect is of nuclear recoil type, cf. Eq. (II.128), and
was predicted long time ago by Ref. [296], see also Ref. [276, Eq. (47)].

In conclusion, we reproduce all the static contributions to the hydrogen spectrum as reviewed
in Ref. [233, Eq. (3.4)] and the leading contributions to the HFS. We now turn our attention
to the FSEs. The Yukawa-type electric Sachs FF perturbation, Eq. (II.31d), and the magnetic
Sachs FF perturbation, Eq. (II.31i), were discussed in details in Section II.3, where we pointed
out a limitation in the usual accounting of FSEs in terms of electric and magnetic radii. Nev-
ertheless, below we will apply the standard procedure of expanding in moments of charge and
magnetization distributions, as we want to compare to the literature. The results are derived
in first-order perturbation theory (1PT) and second-order perturbation theory (2PT) of the
continuous spectrum. The exact results are expanded in the small parameter Zα and the elec-
tromagnetic radii are identified as in Eq. (II.42). For brevity, we will truncate the presented
expressions at order (Zα)5. In doing so, the higher order terms from P -waves can be neglected.

Combining Eqs. (II.130) and (II.130), we reproduce the well-known NLO FSEs in the LS,
Eq. (II.8a), given by the rms charge radius and the Friar radius. Combining Eqs. (II.141),
(II.142) and (II.143), we reproduce the well-known Zemach radius contribution to the HFS, cf.
Eqs. (II.8b) and (V.32). In addition, we find recoil FSEs of order (Zα)5, see Eqs. (II.137) and
(II.138). In Section V.2, we will try to match the latter to the nucleon-pole contribution of TPE.

Next, we study the P -level mixing indicated in Fig. II.3 and described by the parameter δ.
We proceed analogously to Ref. [276] and keep the notations used therein. We form a matrix
for an effective Hamiltonian in the basis of the states 21P1/2, 23P1/2, 23P3/2, 25P3/2:

H =


−3

4β1

1
4β1 β2

β2 −5
8β3 + γ

3
8β3 + γ

 . (II.116)

Here, β1 and β3 are the static 2P HFSs in Eqs. (II.140c) and (II.140e). The non-vanishing mixed
matrix elements of 23P1/2- and 23P3/2-states, originating from the static ∆V2 potential and the
∆V5 potential with eVP, cf. Eqs. (II.124) and (II.152e) (last row in Table II.7), add up to:

β2 = −0.797 meV. (II.117)
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The dominant static and eVP contributions to the 2P FS, cf. Eqs. (II.123), (II.151c) and
(II.151d), amount to:

γ = 8.332 meV. (II.118)

To obtain the eigenvalues in the chosen basis, we are left to diagonalise the matrix H.27 In
accordance with Ref. [276, Eq. (93)] and Ref. [302], we find a shift of 23P levels with28

δ = 0.14530 meV. (II.120)

The inclusion of the eVP correction presented in (II.152e), changes δ at the level of 10−4 meV.

C.1. 2P Fine Structure

The static contributions to the 2P FS are:

• ∆Vrel.C. (1PT):

〈2P1/2 |∆Vrel.C.| 2P1/2〉 = − Zα

48a3

1

m2
r

, (II.121a)

〈2P3/2 |∆Vrel.C.| 2P3/2〉 =
Zα

96a3

1

m2
r

; (II.121b)

• ∆V1 (1PT):

〈2P1/2 |∆V1| 2P1/2〉 = − Zα

16a3

[
1

mM
− 1

3

1

M2

]
, (II.122a)

〈2P3/2 |∆V1| 2P3/2〉 = − Zα

16a3

[
1

mM
+

1

6

1

M2

]
. (II.122b)

Summing up, the static 2P FS evaluates to:

〈2P3/2 |∆Vrel.C. + ∆V1| 2P3/2〉 − 〈2P1/2 |∆Vrel.C. + ∆V1| 2P1/2〉

=
Zα

32a3

[
1

m2
r

− 1

M2

]
= 8.329 meV. (II.123)

The nuclear finite-size contribution to the 2P FS from ∆V3 starts at order (Zα)6 only and can
be neglected.

C.2. P -Level Mixing

The mixed matrix element from the static potential reads:

• ∆V2 (1PT):

〈23P1/2 |∆V2| 23P3/2〉 = −
√

2Zα

144 a3

[
1 + κ

mM
+

1 + 2κ

M2

]
= −0.796 meV ≡ β2. (II.124)

The nuclear finite-size contributions to the P -level mixing from ∆V4 and ∆V5 start at order
(Zα)6 only and can be neglected.

27A matrix of the form:

M =

[
b1 m

m b2

]
, (II.119)

has the eigenvalues 1/2
[
b1 + b2 ±

√
(b2 − b1)2 + 4m2

]
.

28Note that, in contrast to Refs. [276, 302], we neglected the anomalous magnetic moment of the muon.
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C. Finite-Size and Recoil Effects

C.3. Lamb Shift

The static contributions to the 2P1/2 − 2S1/2 LS are:

• ∆Vrel.C. + ∆Vrel.Ekin
(1PT):

〈2S1/2 |∆Vrel.C. + ∆Vrel.Ekin
| 2S1/2〉 =

Zα

a3

1

m2
r

[
1

16
− 13

128

]
= − 5Zα

128a3

1

m2
r

, (II.125a)

〈2P1/2 |∆Vrel.C. + ∆Vrel.Ekin
| 2P1/2〉 = −Zα

a3

1

m2
r

[
1

48
+

7

384

]
= − 5Zα

128a3

1

m2
r

; (II.125b)

• ∆Vred.Mass (1PT):

〈2P1/2 |∆Vred.Mass| 2P1/2〉 − 〈2S1/2 |∆Vred.Mass| 2S1/2〉 = −Zα
4a3

1

mM
; (II.126)

• ∆V1 (1PT):

〈2P1/2 |∆V1| 2P1/2〉 − 〈2S1/2 |∆V1| 2S1/2〉 =
Zα

4a3

[
1

mM
+

1

12M2

]
. (II.127)

Summing up, the static 2P1/2 − 2S1/2 LS evaluates to:

〈2P1/2 |∆Vred.Mass + ∆V1| 2P1/2〉 − 〈2S1/2 |Vred.Mass + ∆V1| 2S1/2〉 =
Zα

48a3

1

M2
. (II.128)

The finite-size contributions to the 2P1/2 − 2S1/2 LS are:29

• ∆VY (1PT):

〈2S1/2 |∆VY | 2S1/2〉 =
Zα

a3

[〈r2〉E
12

− 〈r
3〉E

12a

]
+O(Zα)6; (II.130)

• ∆VY (interference at 2PT):

E
〈∆VY 〉〈∆VY 〉(2)
2S1/2

=
Zα

12a4

[
〈r3〉E −

1

2
〈r3〉E(2)

]
+O(Zα)6; (II.131)

• ∆V3 (1PT):

〈2S1/2 |∆V3| 2S1/2〉 =
Zα

a4

[
3

8mM
− 1

8m2
r

]
〈r〉E +O(Zα)6; (II.132)

• ∆VY and ∆Vrel.C (interference at 2PT):

E
〈∆VY 〉〈∆Vrel.C〉(2)
2S1/2

= −Zα
8a4

1

m2
r

〈r〉E +O(Zα)6; (II.133)

29We make use of the following relations:

〈r〉E −
1

2
〈r〉E(2) =

1

π2

ˆ ∞
t0

dt

t

ˆ ∞
t0

dt′

t′
ImGE(t) ImGE(t′)√

t+
√
t′

, (II.129a)

〈r3〉E −
1

2
〈r3〉E(2) = − 12

π2

ˆ ∞
t0

dt

t3/2

ˆ ∞
t0

dt′

t′3/2
ImGE(t) ImGE(t′)√

t+
√
t′

. (II.129b)
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II. Finite-Size Effects by Dispersive Technique

• ∆VY and ∆Vrel.Ekin
(interference at 2PT):

E
〈∆VY 〉〈∆Vrel.Ekin

〉(2)

2S1/2
=
Zα

4a4

1

m2
r

〈r〉E +O(Zα)6; (II.134)

• ∆VY and ∆Vred.Mass (interference at 2PT):

E
〈∆VY 〉〈∆Vred.Mass〉(2)
2S1/2

= −3Zα

4a4

1

mM
〈r〉E +O(Zα)6; (II.135)

• ∆VY and ∆V1 (interference at 2PT):

E
〈∆VY 〉〈∆V1〉(2)
2S1/2

=
Zα

4a4

1

mM
〈r〉E +O(Zα)6; (II.136)

• ∆VY and ∆V3 (interference at 2PT):

E
〈∆VY 〉〈∆V3〉(2)
2S1/2

=
Zα

8a4

[
〈r〉E −

1

2
〈r〉E(2)

] [
2

m2
r

− 5

mM

]
+O(Zα)6. (II.137)

Equations (II.130) and (II.131) add up to the well-known non-recoil FSEs, cf. Eq. (II.8a). Sum-
ming up Eqs. (II.132)-(II.136), we obtain a recoil contribution proportional to the first moment
of the charge distribution:

E
〈∆V3〉(1)+〈∆VY 〉〈∆Vrel.C+∆Vrel.Ekin

+∆Vred.Mass+∆V1〉(2)

2S1/2
= −Zα

8a4

1

mM
〈r〉E +O(Zα)6. (II.138)

Furthermore, Eq. (II.137) gives finite-size recoil effects proportional to the characteristic differ-
ence of first moments of charge and convoluted charge distributions:

〈r〉E −
1

2
〈r〉E(2) =

2

π

ˆ ∞
0

dQ

Q2

[
GE(Q2)− 1

]2
. (II.139)

C.4. Hyperfine Splitting

The static contributions to the HFSs are:

• ∆V2 (1PT):

〈nS1/2 |∆V2|nS1/2〉(f=1)−(f=0) =
4Zα

3a3

1 + κ

mM

1

n3

[
1

2
+

3

2

]
≡ EF(nS), (II.140a)

〈2P1/2 |∆V2| 2P1/2〉(f=1)−(f=0) =
Zα

18a3

[
1

2
+

3

2

]{
1 + κ

mM
+

1 + 2κ

4M2

}
, (II.140b)

= 7.953 meV ≡ β1, (II.140c)

〈2P3/2 |∆V2| 2P3/2〉(f=2)−(f=1) =
Zα

18a3

[
3

2
+

5

2

]{
1

5

(1 + κ)

mM
+

1 + 2κ

8M2

}
, (II.140d)

= 3.392 meV ≡ β3; (II.140e)

The finite-size contributions to the 2S HFS are:
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• ∆V5 (1PT):

〈2S1/2 |∆V5| 2S1/2〉(f=1)−(f=0) ≈
8EF(2S)

a

1

π

ˆ ∞
0

dk

k2

[
GM (−k2)

1 + κ
− 1

]
, (II.141a)

= −2EF(2S)
〈r〉M
a

+O(Zα)6; (II.141b)

• ∆VY and ∆V2 (interference at 2PT):

E
〈∆VY 〉〈∆V2〉(2)
HFS (2S) ≈ 8EF(2S)

a

1

π

ˆ ∞
0

dk

k2

[
GE(−k2)− 1

]
, (II.142a)

= −2EF(2S)
〈r〉E
a

+O(Zα)6; (II.142b)

• ∆VY and ∆V5 (interference at 2PT):

E
〈∆VY 〉〈∆V5〉(2)
HFS (2S) ≈ 8EF(2S)

a

1

π

ˆ ∞
0

dk

k2

[
GE(−k2)− 1

] [GM (−k2)

1 + κ
− 1

]
, (II.143a)

= −2EF(2S)
[RZ − 〈r〉E − 〈r〉M ]

a
+O(Zα)6. (II.143b)

Summing up, the finite-size contribution to the 2S HFS evaluates to:

E
〈∆V5〉+〈∆VY 〉〈∆V2+∆V5〉
HFS (2S) = −2EF(2S)

RZ

a
+O(Zα)6. (II.144)

The nuclear finite-size contributions to the P -level HFSs from ∆V4 and ∆V5 start at order (Zα)6

only and can be neglected.

D. Vacuum Polarization Contributions

In the following, we will motivate how one derives the Breit potential for OPE with VP, cf.
Fig. II.15. Electromagnetic gauge invariance constrains the VP tensor to the well-known form:

Πµν(q) = (gµνq2 − qµqν) Π(q2), (II.145)

where the scalar VP function satisfies a once-subtracted DR:

Π(Q2) = −Q
2

π

ˆ ∞
t0

dt

t

Im Π(t)

t+Q2
, (II.146)

with q2 = −Q2 and t0 = 4m2 being the (lowest) pair-production threshold for the particles in
the VP loop.

As shown in Fig. II.15, the µH bound state receives contributions from eVP and µVP. We
will limit ourselves to the eVP, as it dominates the µH LS, cf. Section II.1.3. The calculation of
the µVP effects proceeds analogously. The hadronic VP contribution to the µH LS is discussed
in the literature, see Refs. [313, 314].

Modifying the photon propagator, given in Eqs. (II.24) and (II.26), with a VP insertion, we
obtain:

∆µν → ∆µα(q) Παβ(q) ∆βν(q) = ∆µν
Π(q2)

q2
. (II.147)
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II. Finite-Size Effects by Dispersive Technique

Figure II.15.: One-loop vacuum-polarization correction.

Since the nuclear FFs satisfy a once-subtracted DR similar to Eq. (II.146), we can deduce the VP
Breit potential from the nuclear FF dependent Breit potentials in Eq. (II.31d) and Eqs. (II.31g)-
(II.31i), cf. Section II.2.2, by replacing:

GE(Q2)→ Π(Q2), GM (Q2)→ (1 + κ) Π(Q2). (II.148)

At one-loop level in spinor QED, we can then rely on the well-known expression for leptonic VP:

Im Π(1)(4m2t) = −α
3

(
1 +

1

2t

)√
1− 1

t
. (II.149)

In what follows, we give exact expressions for the contributions of eVP to the 1S, 2S and 2P
levels in hydrogen-like atoms. In Table II.7, we quantify the effects in µH and compare to the
literature values. All results are obtained in first-order PT. The lowest-order eVP correction is
given by the Uehling potential [292]:

E
eVP〈∆VY 〉
1S1/2

=
4Zα

a

1

π

ˆ ∞
1

dt

t

1[
2 +
√
t/λ
]2 Im Π(4m2

et), (II.150a)

E
eVP〈∆VY 〉
2S1/2

=
Zα

4a

1

π

ˆ ∞
1

dt

t

1 + 2 t/λ2[
1 +
√
t/λ
]4 Im Π(4m2

et), (II.150b)

E
eVP〈∆VY 〉
2P =

Zα

4a

1

π

ˆ ∞
1

dt

t

1[
1 +
√
t/λ
]4 Im Π(4m2

et), (II.150c)

where we introduced λ = 1/2ame. As one can see from Table II.7 and Fig. II.2, Eq. (II.150b)
represents the dominant contribution to the LS in µH and is responsible for the rearrangement of
2P1/2- and 2S1/2-levels as compared to the H spectrum, see Figures II.3 and II.4. An additional
but weaker eVP contribution to the LS and the 2P FS is described by:

E
eVP〈∆V3〉
1S1/2

=
2Zα

a3

1

π

ˆ ∞
1

dt

t

{
4 + 3

√
t/λ

mM
− 1 +

√
t/λ

m2
r

}
Im Π(4m2

et)[
2 +
√
t/λ
]2 , (II.151a)

E
eVP〈∆V3〉
2S1/2

=
Zα

16a3

1

π

ˆ ∞
1

dt

t

{
1

mM

(
5 + 18

√
t/λ+ 22 t/λ2 + 12 t3/2/λ3

)
− 1

2m2
r

(
2 + 8

√
t/λ+ 11 t/λ2 + 8 t3/2/λ3

)} Im Π(4m2
et)[

1 +
√
t/λ
]4 , (II.151b)
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E
eVP〈∆V3〉
2P1/2

=
Zα

96a3

1

π

ˆ ∞
1

dt

t

{
3 t/λ2

m2
r

+
2

m2

(
1 + 4

√
t/λ+ 3 t/λ2

)
+

2

mM

(
5 + 14

√
t/λ+ 6 t/λ2

)} Im Π(4m2
et)[

1 +
√
t/λ
]4 , (II.151c)

E
eVP〈∆V3〉
2P3/2

=
Zα

96a3

1

π

ˆ ∞
1

dt

t

{
3 t/λ2

m2
r

− 1

m2

(
1 + 4

√
t/λ+ 3 t/λ2

)
+

1

mM

(
4 + 4

√
t/λ− 6 t/λ2

)} Im Π(4m2
et)[

1 +
√
t/λ
]4 . (II.151d)

The modification of the magnetic Sachs FF potential, ∆V5, will give relevant contributions to
the HFSs:

E
eVP〈∆V5〉
HFS (1S) = −4EF(1S)

1

π

ˆ ∞
1

dt

t

1 +
√
t/λ[

2 +
√
t/λ
]2 Im Π(4m2

et), (II.152a)

E
eVP〈∆V5〉
HFS (2S) = −EF(2S)

2π

ˆ ∞
1

dt

t

2 + 8
√
t/λ+ 11 t/λ2 + 8 t3/2/λ3[

1 +
√
t/λ
]4 Im Π(4m2

et), (II.152b)

E
eVP〈∆V5〉
HFS (2P1/2) = − Zα

18a3

1 + κ

π

ˆ ∞
1

dt

t

{
1

mM

(
2 + 8

√
t/λ+ 9 t/λ2

)
+

1

M2

(
1 + 4

√
t/λ+ 3 t/λ2

)} Im Π(4m2
et)[

1 +
√
t/λ
]4 , (II.152c)

E
eVP〈∆V5〉
HFS (2P3/2) = − Zα

90a3

1 + κ

π

ˆ ∞
1

dt

t

{
4

mM

(
1 + 4

√
t/λ
)

+
5

M2

(
1 + 4

√
t/λ+ 3 t/λ2

)} Im Π(4m2
et)[

1 +
√
t/λ
]4 , (II.152d)

〈23P1/2

∣∣∆V eVP
5

∣∣ 23P3/2〉 =
Zα

72
√

2a3

1 + κ

π

ˆ ∞
1

dt

t

{
1

mM

(
7 + 28

√
t/λ+ 51 t/λ2

)
+

2

M2

(
1 + 4

√
t/λ+ 3 t/λ2

)} Im Π(4m2
et)[

1 +
√
t/λ
]4 . (II.152e)

In the last line, we also give the effect on the P -level mixing. The effect from the eVP analogue
of ∆V4 on the 2P HFS can be neglected, as it is strongly suppressed by the nuclear mass:

E
eVP〈∆V4〉
2P =

Zα

a3

1

36M2

1

π

ˆ ∞
1

dt

t

1 + 3
√
t/λ[

1 +
√
t/λ
]3 Im Π(4m2

et), (II.153)

and the associated P -level mixing would be further suppressed by an additional factor of
−(2
√

2)−1. However, it is worth noting that it produces the same HFS for 2P1/2 and 2P3/2.

Table II.7 gives an overview of the above eVP effects evaluated for µH. For the Uehling
potential, we explicitly checked that the difference of Eqs. (II.150c) and (II.150b) matches the
formula presented in Ref. [276, Eq. (16)]. Also, we agree with the Breit potential of Ref. [278].
The comparison of our numerical results for the FS and HFS with Refs. [276, 302], see Table
II.7, is not exact because we omit the anomalous magnetic moment of the muon. To summarize,
the dispersive approach to the OPE Breit potential with VP insertion reproduces all the known
one-loop leptonic VP contributions to the spectra of hydrogen-like atoms.
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II. Finite-Size Effects by Dispersive Technique

Table II.7.: Numerical results for the electronic vacuum polarization contributions to the spectrum of
muonic hydrogen.

our result
eVP contribution Eqs.

[meV]
literature value [meV]

205.0074 [169, Table I]
E

eVP〈∆VY 〉
LS

(II.150b), (II.150c) 205.0074
and [276, Eq. (16)]

E
eVP〈∆V3〉
LS (II.151b), (II.151c) −0.0277 −0.0277 [278, δE(1) from Table I]

E
eVP〈∆V3〉
FS (II.151c), (II.151d) 0.0030 0.005 [276, Eq. (82)]

E
eVP〈∆V5〉
HFS (2S1/2) (II.152b) 0.0482 0.0481 [108, Eq. (18)]

E
eVP〈∆V5〉
HFS (2P1/2) (II.152c) 0.0039 0.0038 [302, Eq. (34)]

E
eVP〈∆V5〉
HFS (2P3/2) (II.152d) 0.0005 0.0005 [302, Eq. (35)]

〈23P1/2

∣∣∆V eVP
5

∣∣ 23P3/2〉 (II.152e) −0.0006

E. Analysing Common Nucleon Form Factor Parametrizations

We apply six different parametrizations for the electric and magnetic Sachs FFs of the proton
to calculate various e.m. radii and contributions to the µH spectrum.30 The electric FFs of the
proton are shown in Fig. II.16, together a parametrization from a simultaneous fit of all e.m.
nucleon FFs [316], cf. E7, and a Padé approximation in Q [317], cf. E8, and compared to the
simple dipole FF:

F0(Q2) =

(
Λ2

Λ2 +Q2

)2

, (II.154)

with Λ = 0.71GeV. There are two chain-fraction fits and four Padé approximations with the

dimensionless momentum transfer τ = Q2

4M2 :

1. Chain-fraction fit by Arrington and Sick [111]:

E1(Q2) =
1

1 + 3.44Q2

1− 0.178Q2

1− 1.212Q2

1+
1.176Q2

1−0.284Q2

,

M1(Q2)/µ =
1

1 + 3.173Q2

1− 0.314Q2

1− 1.165Q2

1+
5.619Q2

1−1.087Q2

;

2. Chain-fraction fit by Arrington and Sick [111] with TPE corrections [196]:

E2(Q2) =
1

1 + 3.478Q2

1− 0.140Q2

1− 1.311Q2

1+
1.128Q2

1−0.233Q2

,

30Similarly, Refs. [299, 315] compare exponential, uniform, Yukawa-, Fermi- and Gaussian-type charge distribu-
tions and evaluate, f.i., the Zemach radius and the expanded FSEs.
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M2(Q2)/µ =
1

1 + 3.224Q2

1− 0.313Q2

1− 0.868Q2

1+
4.278Q2

1−1.102Q2

;

3. Padé approximation in Q2 by Kelly [113]:

E3(Q2) =
1− 0.24 τ

1 + 10.98 τ + 12.82 τ2 + 21.97 τ3
,

M3(Q2)/µ =
1 + 0.12 τ

1 + 10.97 τ + 18.86 τ2 + 6.55 τ3
;

4. Padé approximation in Q2 by Arrington et al. [112]:

E4(Q2) =
1 + 3.439 τ − 1.602 τ2 + 0.068 τ3

1 + 15.055 τ + 48.061 τ2 + 99.304 τ3 + 0.012 τ4 + 8.650 τ5
, (II.155a)

M4(Q2)/µ =
1− 1.465 τ + 1.260 τ2 + 0.262 τ3

1 + 9.627 τ + 11.179 τ4 + 13.245 τ5
; (II.155b)

5. Padé approximation in Q2 by Alberico et al. [318]:

E5(Q2) =
1− 0.19 τ

1 + 11.12 τ + 15.16 τ2 + 21.25 τ3
,

M5(Q2)/µ =
1 + 1.09 τ

1 + 12.31 τ + 25.57 τ2 + 30.61 τ3
;

6. Padé approximation in Q2 by Venkat et al. [319]:

E6(Q2) =
1 + 2.909 66 τ − 1.115 422 29 τ2 + 3.866 171× 10−2 τ3

1 + 14.518 7212 τ + 40.883 33 τ2 + 99.999 998 τ3 + 4.579× 10−5 τ4 + 10.358 0447 τ5
,

M6(Q2)/µ =
1− 1.435 73 τ + 1.190 520 66 τ2 + 0.254 558 41 τ3

1 + 9.707 036 81 τ + 3.7357× 10−4 τ2 + 6× 10−8 τ3 + 9.952 7277 τ4 + 12.797 7739 τ5
;

7. Padé approximation in Q2 by Bradford et al. [316]:
The e.m. nucleon FFs are parametrized as:

G(Q2) =

∑
k=0 akτ

k

1 +
∑

k=0 bkτ
k
, (II.156)

with the fit parameters given in Table II.8.

Table II.8.: Fit parameters of Ref. [316] corresponding to the functional form given in Eq. (II.156).

Sachs FFs a0 a1 a2 b1 b2 b3 b4

GEp 1 −0.0578± 0.166 11.1± 0.217 13.6± 1.39 33.0± 8.95

GMp/µp 1 0.150± 0.0312 11.1± 0.103 19.6± 0.281 7.54± 0.967

GEn 0 1.25± 0.368 1.30± 1.99 −9.86± 6.46 305± 28.6 −758± 77.5 802± 156

GMn/µn 1 1.81± 0.402 14.1± 0.597 20.7± 2.55 68.7± 14.1
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Table II.9.: Difference between various proton form factor parametrizations.

Eq. FDipole E1,M1 E2,M2 E3,M3 E4,M4 E5,M5 E6,M6

RE [fm] (II.9) 0.8112 0.8965 0.9014 0.8628 0.8779 0.8662 0.8776

3
√
〈r3
E〉 [fm] (II.63) 0.917 1.045 1.053 0.994 1.019 0.996 1.020

RF [fm] (II.10) 1.265 1.425 1.434 1.362 1.391 1.365 1.392

RZ [fm] (II.11) 1.025 1.091 1.097 1.069 1.081 1.078 1.081

∆E
eFF(1)
LS exp. [µeV] (II.43b) −3406 −4156 −4202 −3851 3986 −3882 −3984

∆E
eFF(1)
LS exact [µeV] (II.49a) −3406 −4156 −4202 −3851 3986 −3882 −3984

∆EZ
HFS [µeV] (V.32) −164.12 −174.81 −175.77 −171.20 173.08 −172.72 −173.14

∆E recoil
HFS [µeV] (V.33) 19.13 19.04 18.98 19.05 19.03 19.00 19.01
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Figure II.16.: Various fits of the electric Sachs form factor in comparison to the dipole form factor.

F. Toy Model Based on the Dipole Form Factor

Analogously to Section II.4, we now want to derive another toy model starting from the simple
dipole FF:

GE(Q2) =

(
Λ2

Q2 + Λ2

)2

, with Λ2 = 0.71 GeV2. (II.157)

Even though, the dipole FF can only describe the ep scattering data very roughly, it has two
features interesting to us. While most modern FF fits display unphysical poles, the dipole FF
has second-order poles at Q = ±iΛ, i.e., poles on the imaginary axis of the Q plane, as expected
from analyticity constraints. Furthermore, the dipole FF gives a small proton charge radius:
REp = 0.8112 fm. Therefore, in this case, we are required to construct a fluctuation that
enhances the radius.

The non-smooth part of the FF is now inspired by the weighting function,

G̃E(Q2) =
AQ2

[
Q2

0 −Q2
][

Q2
0 +Q2

]4 , (II.158)

and has fourth-order poles at Q = ±iQ0. Again, the charge remains unchanged as G̃E(0) = 0.
This correction to the FF is described by two free parameters for its strength, A, and location,
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Figure II.17.: Modification of the dipole form factor: Parameters of G̃E for which the electronic-hydrogen
(blue dot-dashed) and muonic-hydrogen (red solid) Lamb shifts of Eq. (II.57) are reproduced. We chose
A = −0.146 MeV4 and Q0 = 8.237 MeV, as indicated by the dashed lines.

Table II.10.: Lamb shift and moments corresponding to the modified dipole form factor, with A = −0.146
MeV4 and Q0 = 8.237 MeV.

Eq. GE G̃E GE

〈r2〉E [fm2] (II.9) (0.8112)2 (0.3305)2 (0.8760)2

〈r3〉E [fm3] (II.63) (0.917)3 (2.969)3 (2.998)3

Lamb-shift, exact (II.49a)

E
eFF(1)
LS (eH)[neV] −0.532 −0.088 −0.620

E
eFF(1)
LS (µH)[µeV] −3406 −243 −3650

Lamb-shift, expanded (II.43b)

E
eFF(1)
LS (eH)[neV] −0.532 −0.088 −0.620

E
eFF(1)
LS (µH)[µeV] −3406 −90 −3496

Q0. A stable solution is found for the parameter pair: A = −0.146 MeV4 and Q0 = 8.237 MeV,
cf. Fig. II.17. The contribution of such a correction to the second and third moments is given
by:

〈̃r2〉E ≡ −6
d

dQ2
G̃E(Q2)

∣∣∣
Q2=0

= −6A

Q6
0

, (II.159a)

〈̃r3〉E ≡ 48

π

ˆ ∞
0

dQ

Q4

{
G̃E(Q2) + 1

6 〈̃r2〉EQ2
}
,

= −60A

Q7
0

. (II.159b)

Table II.10 summarizes the numerical values of these moments as well as the expanded and
un-expanded LSs, respectively. Again, the LS expansion in moments is broken for the case of
µH. Since the dipole FF itself gives a smaller charge radius than either values in Eq. (II.58) and
the associated LSs are larger than the experimental values quoted in Eq. (II.57), the correction
has to decrease the integrand of Eq. (II.49) and strengthen the negative slope of the FF at
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II. Finite-Size Effects by Dispersive Technique

Q = 0. Figure II.18 shows that our fitted correction exactly meets these requirements. Figure
II.19 compares the dipole FF and the modified dipole FF. Again, the fluctuation is very tiny:∣∣G̃E/GE∣∣ < 2.5× 10−6, (II.160)

also in comparison to the FF deviation from 1:∣∣G̃E/ (GE − 1)
∣∣ < 0.17. (II.161)

107 G
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Figure II.18.: Modification of the dipole form factor: The correction, G̃E(Q2), with A = −0.146 MeV4

and Q0 = 8.237 MeV (solid green), and the weighting function, wE(Q), for electronic hydrogen (blue
dotted) and muonic hydrogen (red dashed) as functions of Q. The dot-dashed line indicates the onset of
electron-proton scattering data.
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Figure II.19.: Modification of the dipole form factor: The solid black curve shows the dipole form factor,
GE(Q2)− 1. The dotted blue curve shows the modified dipole form factor, GE(Q2)− 1, discussed in the
text.
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CHAPTER III

COMPTON SCATTERING AND POLARIZABILITIES

In this Chapter, we classify the CS processes (Section III.1) and give a general introduction
into the concepts of polarizabilities (Section III.1.1) and model-independent sum rules (Sec-
tion III.1.2). After that, we will focus on the RCS while delegating the case of VVCS to
Chapter IV. The status of our knowledge of the lowest-order nucleon polarizabilities is reviewed
in Section III.2. In Section III.3, we will study the Compton contribution to photoabsorption
and the associated CS sum rules in scalar and spinor one-loop QED. A modification of the sum
rules which deals with the infrared divergences has been published in Refs. [238, 239].

1. Basic Principles

Figure I.2 shows a CS process — an absorption and subsequent emission of a photon by a target.
The particles in the initial and final states are the same, and their initial (final) momenta
are denoted by q(q′) for the photon and p(p′) for the target. The photons can be real, i.e.,
q2 = 0 = q′ 2, or virtual. In VCS, the initial photon is virtual and the final photon is real,
γ∗ p→ γ p. In VVCS, both photons are virtual.

Im ∝
2

Figure III.1.: Illustration of the optical theorem, relating the imaginary part of the forward Compton
scattering amplitude to the total photoabsorption cross section.

Of special interest is the forward limit, where p = p′ and q = q′. Accordingly, the Mandelstam
invariant t = (q−q′)2 = (p−p′)2 vanishes. In this case, unitarity leads to the optical theorem (see
Ref. [320] for a review of the optical theorem and its modern application in scattering theory).
It expresses the imaginary part of the forward CS amplitude through the total photoabsorption
cross section, as is graphically depicted in Fig. III.1: on the left-hand side (lhs) we have the CS
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III. Compton Scattering and Polarizabilities

N

γ∗

N

(a)

γ∗

N

X

(b)

Figure III.2.: (a)“Elastic”and (b)“inelastic”photoabsorption cross sections. (a) is related to the“nucleon-
pole” part of the Compton scattering amplitude, whereas (b) is related to the “non-pole” part.

amplitude and on the right-hand side (rhs) we have the squared photoabsorption cross section.
The exact formula representation depends on the choice of a photon flux factor, see Ref. [321],
and is postponed to Eqs. (III.10) and (IV.12).

Photoabsorption of a (virtual) photon (on, e.g., a nucleon: γ∗N → X) can be divided into
two categories: elastic and inelastic. Elastic is the process which leaves the target intact. The
elastic photoabsorption on the nucleon is shown in Fig. III.2 (a).1 In the case of inelastic
photoabsorption, cf. Fig. III.2 (b), other particles appear. For photoabsorption on the nucleon
these can be pions, nucleon excitations such as the ∆(1232), etc. One the CS side, the elastic
corresponds with the (nucleon-)pole and inelastic with the non-pole contributions. Examples of
those are illustrated by, respectively, Figures III.3 and IV.4.

1.1. Polarizabilities

Polarizabilities depend on the inner structure of the particle. A classic example are the scalar
dipole polarizabilities. Imagine a composite particle immersed in an homogenous electric E
or magnetic H field: its charged constituents will be displaced, forming electric and magnetic
dipoles proportional to the strength of the field:

dind. = 4π αE1E, (III.1a)

µind. = 4π βM1H. (III.1b)

The proportionality coefficients are the so-called electric and magnetic dipole polarizabilities
αE1 and βM1. They reflect the mobility of the constituents.

However, not all polarizabilities can be interpreted as easily as the dipole polarizabilities, and
therefore, a rigorous definition for the term “polarizability” is needed. Generally speaking, the
polarizabilities of, f.i., the proton provide information on the masses, charges and interactions of
the proton’s constituents. They are probed in CS because photonic probes from, e.g., ep scatter-
ing are stronger than any static e.m. field available in a laboratory. It is therefore advantageous

1For real photons, the elastic photoabsorption cross section is given by: γN → γN .

Figure III.3.: Tree-level Compton scattering.
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1. Basic Principles

to find a definition of polarizabilities in the language of CS. As explained in Section III.1, the
CS amplitude separates into elastic “pole” and inelastic “non-pole” contributions. Equivalently,
it separates into the contribution of (tree-level) Born diagrams, see Fig. III.3, and non-Born
diagrams. Writing down a schematic equation, we have (for CS off the nucleon):

nucleon-pole + inelastic = Born + non-Born , (III.2)

where it is important to understand that the nucleon-pole part and the Born part are not
necessarily the same, cf. Eq. (V.17). We then define a polarizability as anything that stems from
the non-Born part of the CS process. On the other hand, the Born diagrams describe the charge
and anomalous magnetic dipole moment of the nucleon, as well as its Dirac and Pauli radii.

The electric and magnetic fields are embedded in the e.m. field strength tensor, Fµν = ∂µAν−
∂νAµ, as Ei = F0i and Hi = 1

2 εijkFjk. The energy response of a composite system to an external
e.m. field can be described by an effective Hamiltonian [322, 323]:

H(2)
eff = −4π

[
1
2 αE1E

2 + 1
2 βM1H

2
]
, (III.3a)

H(3)
eff = −4π

[
1
2 γE1E1 σ · (E × Ė) + 1

2 γM1M1 σ · (H × Ḣ) (III.3b)

−γM1E2EijσiHj + γE1M2HijσiEj ] ,

H(4)
eff = −4π

[
1
2 αE1ν Ė

2
+ 1

2 βM1ν Ḣ
2

+ 1
12 αE2E

2
ij + 1

12 βM2H
2
ij

]
, (III.3c)

with the Pauli matrices σ representing the spin of the composite particle. Here, the superscript

denotes the number of spacetime derivatives of the photon field, see Ref. [321] for H(5)
eff . The

higher-order scalar polarizabilities, i.e., the quadrupole polarizabilities αE2 and βM2, and the
leading dispersive contributions to the dipole polarizabilities denoted as αE1ν and βM1ν , will
not be of further interest in this Chapter. We will meet them briefly in Chapter IV. For now,
we will focus on the lowest-order dipole and spin polarizabilities.

The spin polarizabilities [324], entering in H(3)
eff , describe the coupling of the particles spin to

the e.m. moments induced by an external field. Their label (γXl Y l′) indicates the multipolarity of
the initial (Xl) and final (Y l′) photon, respectively. Therefore, γE1E1 and γM1M1 describe dipole
excitations, whereas γE1M2 and γM1E2 describe photon scattering off the target with a change of
the photons angular momentum by one unit. The prominent forward spin polarizability (FSP)
is defined as a linear combination of the lowest spin polarizabilities:

γ0 = −(γE1,E1 + γM1,M1 + γE1,M2 + γM1,E2). (III.4)

The nucleon polarizabilities are measured in units of fmn+1, where n is the order at which they
appear in the effective Hamiltonian. Nuclei are usually easier to polarize, therefore having much
bigger polarizabilities than nucleons.2 A feature that will be of importance in Section VI.2. Be-
low, we will explain how to extract the most prominent polarizabilities from either the low-energy
expansion (LEX) of the RCS amplitudes or the RCS sum rules. The generalized polarizabilities
of VVCS will be discussed in Section IV.1.3.

1.2. Sum Rules and other Model-Independent Relations

For a spin-1/2 target, the CS helicity amplitude can be written as:

Tλ′γλ′NλγλN = Nλ′N
(p′) ε∗λ′γ (q′) · T (q′, q, P ) · ελγ (q)NλN (p) , (III.5)

2For a recent reviews on CS off protons and light nuclei, see Ref. [325].
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III. Compton Scattering and Polarizabilities

with the Dirac spinors N , the photon polarization vectors ε and the Compton tensor Tµν . The
helicities of the incoming (outgoing) photon and nucleon are denoted by λγ(λ′γ) and λN (λ′N ),
respectively. P = 1

2 (p + p′) is the sum of incoming and outgoing nucleon four-momenta, and
the spinors are normalized according to:

Nλ′N
(p)NλN (p) = 2Mδλ′NλN . (III.6)

In the forward limit, the RCS tensor is given by two independent scalar amplitudes:

Tµν(p, q) = − [gµνf(ν) + γµνg(ν)] . (III.7)

Here, f is a spin-independent and g is a spin-dependent amplitude. They are functions of the
photon lab-frame energy ν. Due to causality and analyticity, they fulfil the following DRs:3

Re f(ν) = − α

M
+

2ν2

π

 ∞
0

dν ′

ν ′
Im f(ν ′)

ν ′ 2 − ν2
, (III.8a)

Re g(ν) =
2ν

π

 ∞
0

dν ′
Im g(ν ′)

ν ′ 2 − ν2
. (III.8b)

Obviously, the DR for the spin-independent amplitude is once subtracted, where the subtraction
equals the so-called Thomson term:

f(0) = − α

M
. (III.9)

Here and in the rest of this Chapter, we for simplicity choose the charge of the target as e, i.e.,
Z = 1.

The optical theorem states the following relations between the imaginary parts of the scalar
amplitudes and the photoabsorption cross sections:

Im f(ν) =
ν

8π

[
σ1/2(ν) + σ3/2(ν)

]
≡ ν

4π
σT (ν), (III.10a)

Im g(ν) =
ν

8π

[
σ1/2(ν)− σ3/2(ν)

]
≡ ν

4π
σTT (ν), (III.10b)

where the subscript on the cross sections denotes the total helicity of the γN state. Plugging
Eq. (III.10) into the rhs of Eq. (III.8), we arrive at:

Re f(ν) = − α

M
+

ν2

2π2

 ∞
0

dν ′
σT (ν ′)

ν ′ 2 − ν2
, (III.11a)

Re g(ν) =
ν

2π2

 ∞
0

dν ′
ν ′σTT (ν ′)

ν ′ 2 − ν2
. (III.11b)

Now, the rhs is expressed through the unpolarized and the helicity-difference photoabsorption
cross section, which can be measured in experiment.

Another important piece in the sum rule derivation is the LEX of the scalar amplitudes [322]:

f(ν) = − α

M
+ [αE1 + βM1] ν2 + [αEν + βMν + 1/12 (αE2 + βM2)] ν4 +O(ν6), (III.12a)

g(ν) = − ακ
2

2M2
ν + γ0 ν

3 + γ̄0 ν
5 +O(ν7), (III.12b)

3For the derivation of a DR, see Ref. [53, Appendix B].
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where γ̄0 is a higher-order FSP. The O(ν0) term in Eq. (III.12a) — the Thomson term —
represents the low-energy theorem (LET) of RCS [326–328]. Replacing the lhs of Eq. (III.11)
by Eq. (III.12), one can read off a CS sum rule for each order in the photon energy.

At lowest order in the spin-dependent case, the famous Gerasimov-Drell-Hearn (GDH) sum
rule occurs [329, 330]:

IGDH ≡ −
ˆ ∞
ν0

dν
σTT (ν)

ν
=
π2α

M2
κ2. (III.13)

It dates back to 1966 and was experimentally verified for the nucleons by the GDH collaboration
of MAMI and ELSA [331]. At the next two orders, one finds the FSP sum rules [321]:

γ0 =
1

2π2

ˆ ∞
ν0

dν
σTT (ν)

ν3
, (III.14a)

γ̄0 =
1

2π2

ˆ ∞
ν0

dν
σTT (ν)

ν5
. (III.14b)

From the spin-independent amplitude, one derives the Baldin sum rule [332]:

αE1 + βM1 =
1

2π2

ˆ ∞
ν0

dν
σT (ν)

ν2
, (III.15)

and a fourth-order sum rule:

αEν + βMν + 1/12 (αE2 + βM2) =
1

2π2

ˆ ∞
ν0

dν
σT (ν)

ν4
. (III.16)

2. Present Status of Nucleon Polarizabilities

In the present Section, we want to review the state-of-the-art knowledge on the nucleon polar-
izabilities. We will mainly focus on the lowest-order polarizabilities, αE1, βM1 and γ0, of the
proton and neutron, respectively.

Figures III.4, III.5 and III.6 summarize the situation for the electric and magnetic dipole
polarizabilities. Figure III.7 shows predictions for the FSP. On the theory side, we list predictions
from BChPT, HBChPT and LQCD. Furthermore, there are a number of experimental results.
If no other empirical information is available, we compare to the predictions of the MAID isobar
model. Last but not least, we present evaluations of the CS sum rules introduced above.

The latest (2016) PDG average yields the following values for the dipole polarizabilities of the
proton [242]:

α
(p)
E1 = [11.2± 0.4]× 10−4 fm3, (III.17a)

β
(p)
M1 = [2.5± 0.4]× 10−4 fm3, (III.17b)

and the neutron:

α
(n)
E1 = [11.8± 1.1]× 10−4 fm3, (III.17c)

β
(n)
M1 = [3.7± 1.2]× 10−4 fm3. (III.17d)

The error on the neutron polarizabilities is larger, due to the lack of a “free” neutron target. In
a recent re-analysis of photoabsorption data and CS sum rules, we found [238, 239]:
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Figure III.4.: Left panel: sum of the electric and magnetic dipole polarizabilities of the proton. Right
panel: the magnetic dipole polarizability of the proton. The orange band is a weighted average over

Baldin sum rule evaluations [44, 238, 333, 334]. The dispersion relation prediction for β
(p)
M1 can be found

in the review of Schumacher [335]. The heavy baryon chiral perturbation theory fit is from Ref. [336] and
the baryon chiral perturbation theory fit is from Ref. [337]. “Lensky-Pascalutsa ’15” refers to Ref. [59],
whereas “Lensky et al. ’15” refers to Ref. [60].
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Figure III.5.: Left panel: sum of the electric and magnetic dipole polarizabilities of the neutron. Right
panel: the magnetic dipole polarizability of the neutron. The orange band is a weighted average over

Baldin sum rule evaluations [334, 338, 339]. The experimental results for β
(n)
M1 are from Refs. [340, 341]

and [335]. The lattice prediction is from Ref. [342]. The heavy baryon chiral perturbation theory fit is
from Ref. [325]. “Lensky-Pascalutsa ’15” refers to Ref. [59], whereas “Lensky et al. ’15” refers to Ref. [60].

[αE1 + βM1](p) = [14.0± 0.2]× 10−4 fm3, (III.18a)

γ
(p)
0 = − [92.9± 10.5]× 10−6 fm4, (III.18b)

[αEν + βMν + 1/12 (αE2 + βM2)](p) = [6.04± 0.03]× 10−4 fm5, (III.18c)

γ̄
(p)
0 = [48.8± 8.2]× 10−6 fm6. (III.18d)

In general, the situation of the polarizabilities presented in the summary figures looks quite
promising. In the future, LQCD will increase its predictive significance. The tension in the value
of the proton’s magnetic dipole polarizability might be reduced by new measurement techniques,
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Figure III.6.: Plot of αE1 versus βM1 for the proton (left panel) and neutron (right panel), respectively.
The references agree mostly with Figures III.4 and III.5. The baryon chiral perturbation theory result
is from Ref. [60]. The light green bands show experimental constraints on the difference of dipole po-
larizabilities, cf. Refs. [340, 341, 343]. In addition, we show other experimental results for the proton
polarizabilities from Refs. [38, 44, 344].

which are independent of the Baldin sum rule. Also, a new result has been obtained from the Σ3

beam asymmetry [347]. For the FSP, the results from McGovern et al. [336] and Bernard et al.
[64] attract attention with their huge error bars. However, the agreement between (δ-counting)
NLO BChPT [59, 65] and the empirical results is quite satisfactory. In contrast, the situation
for the longitudinal-transverse polarizability, δLT , is much more ambiguous, as we will discuss
in Chapter IV, where we meet the δLT puzzle, see also Fig. I.3. More details on CS theory and
the present status of nucleon polarizabilities can be found in Ref. [53].

3. Compton Contribution to Photoabsorption

In the following Section, we calculate the Compton contribution to photoabsorption and the
associated contributions to the Baldin sum rule, Eq. (III.15), and the FSP sum rules, Eq. (III.14),
at one-loop level in spinor QED. We will regularize the occurring divergences by presenting an
appropriate reformulation of the CS sum rules.4

First, we want to clarify our terminology. As outlined, we want to study the Compton contribu-
tion to photoabsorption off a spin-1/2 particle, f.i., a nucleon. Hereby, we mean the contribution
of the “elastic” photoabsorption cross sections with γN → γN . At first glance, this definition
of “elastic” does not agree with the one presented in Section III.1 and Fig. III.2. Nevertheless,
they are consistent. Previously, we considered the case of virtual photons. In that case, we
have γ∗N → N as the simplest cross section channel. For real photons, however, this process is
forbidden by the kinematics and the elastic channel only allows for pairs of photons and target
particles. In general, the elastic photoabsorption cross section includes diagrams of the type
γ∗N → N and γN → γN .

4This work was published in Refs. [238, 239]. Ref. [239] covers both the spin-independent and the spin-dependent
case in spinor QED. In Ref. [238], we consider the spin-independent case in scalar QED.
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Figure III.7.: Forward spin polarizability, γ0, of the proton (top panel) and neutron (bottom panel),
respectively. Shown are the experimental value from the GDH collaboration [345], the sum rule results of
Refs. [238, 346], the prediction from the MAID isobar model [66], the heavy baryon chiral perturbation
theory fit of Refs. [336], and the baryon chiral perturbation theory predictions of Lensky et al. [59, 65]
and Bernard et al. [64].

On the rhs of the sum rules, the photoabsorption cross sections enter. The unpolarized and the
helicity-difference cross section can be deduced from the helicity amplitudes. These amplitudes
were introduced in Eq. (III.5), and in general, there are six independent ones for the CS process.
At O(α2), the cross sections are given by the Born diagrams shown in Fig. III.3. The tree-level
helicity amplitudes can be found in Refs. [348, 349]. The cross sections read [350]:

σ
(2)
T (y) =

2πα2

M2

{
1 + y

y3

[
2y(1 + y)

1 + 2y
− ln(1 + 2y)

]
+

1

2y
ln(1 + 2y)− 1 + 3y

(1 + 2y)2

}
, (III.19a)

σ
(2)
TT (y) =

πα2

M2y

{[
1 +

1

y

]
ln(1 + 2y)− 2

[
1 +

y2

(1 + 2y)2

]}
, (III.19b)

with y = ν/M . In the low-energy limit, the helicity-difference cross section is vanishing, whereas
the total unpolarized cross section reproduces the Thomson cross section:

σ
(2)
T (0) = 8πα2/3M2, (III.20)

a result that is unaltered by loop corrections.

On the lhs of the sum rules, the forward CS amplitudes enter. The one-loop diagrams con-
tributing to the CS at O(α2) in spinor QED are shown in Fig. III.8. In the forward limit,
we have q = q′. Therefore, only the helicity amplitudes without spin-flip are non-vanishing:
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3. Compton Contribution to Photoabsorption

Figure III.8.: One-loop diagrams contributing to the forward Compton scattering. Diagrams obtained
from these by crossing of the photon lines are included too.

T+1 +1/2 +1 +1/2 and T−1 +1/2−1 +1/2. They can be used to reconstruct the spin-dependent and
spin-independent scalar amplitudes of forward CS:

f =
1

4M

[
T+1 +1/2 +1 +1/2 + T−1 +1/2−1 +1/2

]
, (III.21a)

g =
1

4M

[
T+1 +1/2 +1 +1/2 − T−1 +1/2−1 +1/2

]
. (III.21b)

For the tree-level amplitudes, cf. Fig. III.3, the spinor QED calculation yields:

f (1)(ν) = −α/M and g(1)(ν) = 0, (III.22)

where the superscript indicates the order of α. At the next order, cf. Fig. III.8, we obtain:

f (2)(y) =
α2

4πM

{
24y2

(
1− 3y2

)
+ π2

(
4y4 + 8y3 − 9y2 − 2y + 2

)
6y2 (1− 4y2)

− 4y2
(
4y2 − 3

)
(4y2 − 1)2 ln 2y

−y
2 − 2y − 2

y2
[ln 2y ln(1 + 2y) + Li2 (−2y)] +

y2 + 2y − 2

y2
Li2 (1− 2y)

}
+
iMy

4π
σ

(2)
T (y), (III.23a)

g(2)(y) =
α2

4πM

{
12y2 + π2

(
4y3 − 4y2 − y + 1

)
6y (4y2 − 1)

− 16y3

(4y2 − 1)2 ln 2y

−y + 1

y
[ln 2y ln(1 + 2y) + Li2 (−2y)]− y − 1

y
Li2 (1− 2y)

}
+
iMy

4π
σ

(2)
TT (y). (III.23b)

This result was deduced from the one-loop helicity amplitudes of Refs. [348, 349].
The optical theorem implies that:

Im f (2)(ν) = ν σ
(2)
T (ν)/4π and Im g(2)(ν) = ν∆σ

(2)
TT (ν)/4π. (III.24)

This can be easily verified by comparing Eqs. (III.19) and (III.23). Also, we have checked that
the one-loop amplitudes indeed satisfy the DRs:

f (2)(ν) =
2ν2

π

ˆ ∞
0

dν ′
Im f (2)(ν ′)

ν ′ (ν ′ 2 − ν2 − i0+)
, (III.25a)
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g(2)(ν) =
2ν

π

ˆ ∞
0

dν ′
Im g(2)(ν ′)

ν ′ 2 − ν2 − i0+
. (III.25b)

Remember that the DR for the spin-independent amplitude, Eq. (III.11a), needs one subtraction.
This subtraction is usually taken at ν = 0 and corresponds to the Thomson term, cf. Eqs. (III.9)
and (III.22). Therefore, the subtraction in Eq. (III.25a) corresponds to f (2)(0) = 0.

So far, we have verified the optical theorem and the DRs for the scalar amplitudes at O(α2)
in spinor QED. We are now left with the LEX. Expanding the real part of Eqs. (III.25) and
(III.23) for small photon energies, we find:

α2

πM

(
11 + 48 ln 2ν

M

18M2
ν2 +

7(257 + 1140 ln 2ν
M )

450M4
ν4 +

68(107 + 672 ln 2ν
M )

441M6
ν6 + . . .

)
=

1

2π2

∞∑
n=1

ν2n

ˆ ∞
0

dν ′
σ

(2)
T (ν ′)

ν ′ 2n
, (III.26a)

α2

πM

(
37 + 60 ln 2ν

M

18M3
ν3 +

64(29 + 105 ln 2ν
M )

225M5
ν5 +

18(89 + 504 ln 2ν
M )

49M7
ν7 + . . .

)
= − 1

2π2

∞∑
n=1

ν2n−1

ˆ ∞
0

dν ′
σ

(2)
TT (ν ′)

ν ′ 2n−1
. (III.26b)

We can now see that on both sides the coefficients diverge in the infrared. However, there is
an apparent mismatch: they are logarithmically divergent on the lhs and power-divergent on
the rhs. The reason for the appearance of divergences is that the cross section of real-photon
absorption has no threshold in the elastic channel, thus, starts from ν = 0. To match the sides
of Eq. (III.26) exactly at each order of ν, we subtract all the power divergences on the rhs and
regularize the dispersion integral with an infrared cutoff equal to ν:

α2

πM

(
11 + 48 ln 2ν

M

18M2
ν2 +

7(257 + 1140 ln 2ν
M )

450M4
ν4 + . . .

)

=
1

2π2

∞∑
n=1

ν2n

ˆ ∞
ν

dν ′
σ

(2)
T (ν ′)−

2(n−1)∑
k=0

1
k!

dkσ
(2)
T (ν)

dνk

∣∣∣
ν=0

ν ′ k

ν ′ 2n
, (III.27a)

α2

πM

(
37 + 60 ln 2ν

M

18M3
ν3 +

64(29 + 105 ln 2ν
M )

225M5
ν5 + . . .

)

= − 1

2π2

∞∑
n=2

ν2n−1

ˆ ∞
ν

dν ′
σ

(2)
TT (ν ′)−

2n−3∑
k=0

1
k!

dkσ
(2)
TT (ν)

dνk

∣∣∣
ν=0

ν ′ k

ν ′ 2n−1
. (III.27b)

The O(ν) term was omitted in Eq. (III.27b) , since the GDH sum rule only differs from zero
starting from O(α3). As desired, both sides are now identical at each order of ν. This is
nontrivial, at least for the analytic terms; the logs are fairly easily obtained from the non-
regularized rhs of the low-energy expanded DR, cf. Ref. [350].

Applying these modifications to all orders in α, we find that the proper LEX of the “elastic”
part of the amplitudes reads as:

fel(ν) = − α

M
+

1

2π2

∞∑
n=1

ν2n

ˆ ∞
ν

dν ′
σT (ν ′)− σ̄[n]

T (ν ′)

ν ′ 2n
, (III.28a)
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gel(ν) = − 1

2π2

∞∑
n=1

ν2n−1

ˆ ∞
ν

dν ′
σTT (ν ′)− σ[n]

TT (ν ′)

ν ′ 2n−1
, (III.28b)

where the bar denotes the infrared subtractions:

σ̄
[n]
T (ν ′) ≡

2(n−1)∑
k=0

1

k!

dkσT (ν)

dνk

∣∣∣
ν=0

ν ′ k, (III.29a)

σ
[n]
TT (ν ′) ≡


0 n = 1,
2n−3∑
k=0

1
k!

dkσTT (ν)
dνk

∣∣∣
ν=0

ν ′ k n > 1.
(III.29b)

In this way, we define sum rules for the Compton contribution to the “quasi-static” polarizabili-
ties:

(αE1 + βM1)el =
1

2π2

ˆ ∞
ν

dν ′
σT (ν ′)− σT (0)

ν ′ 2
, (III.30a)

(γ0)el =
1

2π2

ˆ ∞
ν

dν ′
σTT (ν ′)− σ′TT (0) ν ′

ν ′ 3
, (III.30b)

(γ̄0)el =
1

2π2

ˆ ∞
ν

dν ′
σTT (ν ′)− σ′TT (0) ν ′ − σ′′TT (0) ν′ 2/2− σ′′′TT (0) ν′ 3/6

ν ′ 5
. (III.30c)

Plugging in the tree-level cross sections from Eq. (III.19), we obtain:

(αE1 + βM1)el =
α2

18πM3

(
11 + 48 ln

2ν

M

)
, (III.31a)

(γ0)el = − α2

18πM4

(
37 + 60 ln

2ν

M

)
, (III.31b)

(γ̄0)el = − 64α2

225πM6

(
29 + 105 ln

2ν

M

)
, (III.31c)

what obviously matches the corresponding terms in the LEX of the one-loop amplitudes. Thereby,
we proved that the newly presented sum rules, Eq. (III.30), for the Compton contribution are
working correctly in the case of one-loop spinor QED. Similarly, we verified them in scalar QED
[238].

4. Summary and Conclusion

In the present Chapter, we introduced the nucleon polarizabilities as observed in CS and pre-
sented a derivation of the well-known RCS sum rules. The unique feature of CS sum rules is
that they relate the CS amplitudes and polarizabilities to weighted integrals of the photoabsorp-
tion cross sections with respect to the photon energy. Their model independence gives them a
high predictive power in accessing the nucleon polarizabilities. They allow to obtain empirical
results based on measured cross sections. Furthermore, they connect tree-level cross sections to
one-loop diagrams, thus, are providing a computational simplification.

In Section III.3, we studied the Compton contribution to photoabsorption and the associated
CS sum rules [238, 239] as an academic exercise. For the elastic channel, the LEX of the ampli-
tudes and the dispersion integrals yield logarithmic and power divergences. A proper definition
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for the divergent pieces was achieved by introducing an infrared cutoff on the dispersion inte-
gral and by making infrared subtractions on the photoabsorption cross sections, cf. Eq. (III.28).
Sum rules for the Compton contribution to the quasi-static polarizabilities, cf. Eq. (III.30), were
presented and verified at one-loop level in scalar and spinor QED.
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CHAPTER IV

FORWARD DOUBLY-VIRTUAL COMPTON SCATTERING

In the previous Chapter we introduced the CS process and polarizabilities and focused on the
RCS and static polarizabilities. In this Chapter we consider the case of forward VVCS, which
is relevant the subsequent calculations of the TPE effects in hydrogen-like atoms.

The theory of forward VVCS is summarized in Section IV.1. The LEX of the Compton
amplitudes and the sum rules for GPs will be of particular interest (Section IV.1.3). We will
then introduce the framework of ChPT as the low-energy effective field theory of our choice
(Section IV.2). In view of the δLT puzzle, we will put special attention on the inclusion of the
spin-3/2 ∆(1232)-isobar and the two prominent power-counting schemes: the δ- and ε-expansion.
In the following, we will calculate the tree-level ∆-exchange contribution to VVCS (Section IV.3)
and the (Nγ∗ → π∆) photoabsorption cross sections for pion-delta production (Section IV.4) in
BChPT with δ-expansion. We will determine the contribution of the ∆-resonance to the nucleon
polarizabilities and review the status of the δLT puzzle.

1. Generalities

1.1. Lorentz Structure

Figure IV.1 shows the process of CS in forward kinematics, i.e., with equal initial and final
photon (target) momenta. In the lab frame,

p = (M,0), q = (ν, q), (IV.1)

forward CS depends on two variables: the photon lab-frame energy ν and the photon virtuality
Q2 = −q2 > 0.

The forward VVCS amplitude allows for the tensor decomposition into four independent scalar
amplitudes:

Tµν(q, p) =

(
−gµν +

qµqν

q2

)
T1(ν,Q2) +

1

M2

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)
T2(ν,Q2)

− 1

M
γµναqα S1(ν,Q2)− 1

M2

(
γµνq2 + qµγναqα − qνγµαqα

)
S2(ν,Q2). (IV.2)

This form explicitly obeys the e.m. current conservation: qµT
µν = 0 = qνT

µν .
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IV. Forward Doubly-Virtual Compton Scattering

Figure IV.1.: Compton scattering in forward kinematics.

The amplitudes T1 and T2 are spin-independent, whereas the amplitudes S1 and S2 are spin-
dependent. Recall that the forward RCS, obtained from VVCS in the limit Q2 → 0, is described
by two scalar amplitudes, see Eq. III.7. The relation of the RCS and VVCS amplitudes at
Q2 = 0 is as follows:

f(ν) =
1

4π
T1(ν, 0), g(ν) =

ν

4πM
S1(ν, 0). (IV.3)

Omitting terms which vanish upon contraction with the photon polarization vectors, i.e. the
ones containing qµ or qν , the symmetric and antisymmetric parts of the second-rank Compton
tensor,

Tµν(q, p) =
[
TµνS + TµνA

]
(q, p), (IV.4)

read:

TµνS (q, p) = −gµν T1(ν,Q2) +
pµpν

M2
T2(ν,Q2), (IV.5a)

TµνA (q, p) = − 1

M
γµναqα S1(ν,Q2) +

Q2

M2
γµνS2(ν,Q2). (IV.5b)

As we will see in Chapter V, the symmetric, nucleon-spin independent part of the Compton
amplitude contributes to the LS, and the antisymmetric, nucleon-spin dependent part of the
amplitude contributes to the HFS.

Explicit expressions for the leading tree-level VVCS amplitudes, cf. Fig. III.3, and the corre-
sponding contributions to the structure functions are presented in Chapter V, where we connect
the forward TPE effect in hydrogen-like atoms to the forward VVCS. The elastic nucleon-pole
part is discussed in Section V.1.3.1 and the Born part is given Section V.1.4. In the following,
we will introduce the GPs probed with virtual photons.

1.2. Low-Energy Expansion

The LEX of the relativistic amplitudes goes as, up to O(ν4, ν2Q2, Q4) [321, 351, 352]:

1

4π

[
T1 − T pole

1

]
(ν,Q2) = − Z

2α

M
+

[
Zα

3M
〈r2〉1 + βM1

]
Q2 (IV.6a)

+
[
αE1(Q2) + βM1(Q2)

]
ν2 + . . . ,

1

4π

[
T2 − T pole

2

]
(ν,Q2) = (αE1 + βM1)Q2 + . . . . (IV.6b)

1

4π

[
S1 − Spole

1

]
(ν,Q2) =

Z2ακ2

2M

[
−1 +

1

3
Q2〈r2〉2

]
+Mγ0(Q2) ν2 (IV.6c)

+ M Q2
{
γE1M2 − 3Mα

[
P ′(M1,M1)1(0) + P ′(L1,L1)1(0)

]}
+ . . . ,
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=
8πα

M
I1(Q2) (IV.6d)

+

{
8πα

M

1

Q2

[
IA(Q2)− I1(Q2)

]
+ 4πMδLT (Q2)

}
ν2 + · · · ,

ν

4π

[
S2 − Spole

2

]
(ν, 0) = −M2ν2

[
γ0 + γE1E1 (IV.6e)

− 3Mα
{
P ′(M1,M1)1(0)− P ′(L1,L1)1(0)

}]
(Q2) + . . . .

In Chapter V, we want to apply the VVCS formalism to the TPE corrections in atomic bound
states. Therefore, we already here introduced the nuclear charge Z. Besides polarizabilities, the
anomalous magnetic moment of the nucleus, the Thomson term, the Dirac mean-squared radius,
〈r2〉1 = −6 d/dQ2 F1(Q2)|Q2=0, and the Pauli mean-squared radius, 〈r2〉2 = −6 d/dQ2 F2(Q2)|Q2=0,
enter the non-pole parts as part of VVCS LET, cf. Refs. [326–328].

The sum of dipole polarizabilities in Eq. (IV.6a) is Q2 dependent, while the sum of dipole
polarizabilities in Eq. (IV.6b) is not. The latter are the static polarizabilities introduced pre-
viously, cf. Sections III.1.1 and III.1.2. The former are the so-called GPs of VVCS, which are
valid for finite momentum transfer. These GPs are all the polarizabilities entering the pure ν-
expansion of the amplitudes. Furthermore, we find the momentum derivatives of the generalized
VCS polarizabilities, which will not be of interest to our studies.1 I1 and IA are the generalized
GDH integrals and will be defined in Eqs. (IV.18) and (IV.19a).

The relativistic amplitudes are related to a set of non-relativistic scalar amplitudes in the
following way:

fT (ν,Q2) = T1(ν,Q2), (IV.8a)

fL(ν,Q2) = −T1(ν,Q2) +
ν2 +Q2

Q2
T2(ν,Q2), (IV.8b)

gTT (ν,Q2) =
ν

M

[
S1(ν,Q2)− Q2

Mν
S2(ν,Q2)

]
, (IV.8c)

gLT (ν,Q2) =
Q

M

[
S1(ν,Q2) +

ν

M
S2(ν,Q2)

]
. (IV.8d)

The CS amplitude can be written in terms of these amplitudes as:

ε∗ · T (ν,Q2) · ε = fL(ν,Q2) + (ε ∗ · ε ) fT (ν,Q2) (IV.9)

+iσ · (ε ∗ × ε ) gTT (ν,Q2)− iσ · [(ε ∗ − ε )× q] gLT (ν,Q2).

with the photon polarization vectors ε and the Pauli matrices σ. The LEX of the non-relativistic
amplitudes is given by:

f̄T (ν,Q2) = 4π
{
Q2βM1 +

[
αE1(Q2) + βM1(Q2)

]
ν2 + · · ·

}
, (IV.10a)

f̄L(ν,Q2) = 4π
{
αE1 + αL(Q2) ν2

}
Q2 + · · · , (IV.10b)

1For CS off the nucleon, the momentum derivatives of the VCS GPs are given by:

P ′ (M1,M1)1(0)± P ′ (L1,L1)1(0) ≡ d

dq2

[
P (M1,M1)1(q2)± P (L1,L1)1(q2)

]
q2=0

, (IV.7)

with q2 being the absolute value of the initial photon’s CM three-momentum. The superscript indicates the
multipolarities, L1(M1) denoting electric (magnetic) dipole transitions of the initial and final photons, and
“1” implying that these transitions involve a spin-flip of the nucleon, cf. Refs. [50, 353].
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IV. Forward Doubly-Virtual Compton Scattering

ḡTT (ν,Q2) = 4π γ0(Q2) ν3 + · · · , (IV.10c)

ḡLT (ν,Q2) = 4π δLT (Q2) ν2Q+ · · · , (IV.10d)

where the bar denotes the non-Born part. As one can see, the non-relativistic amplitudes are
very convenient for reading off the polarizabilities.

1.3. Dispersion Relations, Unitarity and Sum Rules

All invariant CS amplitudes fulfil DRs:2

T1(ν,Q2) =
2

π

ˆ ∞
νel

dν ′
ν ′ ImT1(ν ′, Q2)

ν ′ 2 − ν2 − i0+

=
8πZ2α

M

ˆ 1

0

dx

x

f1(x,Q2)

1− x2(ν/νel)2 − i0+
, (IV.11a)

T2(ν,Q2) =
2

π

ˆ ∞
νel

dν ′
ν ′ ImT2(ν ′, Q2)

ν ′ 2 − ν2 − i0+

=
16πZ2αM

Q2

ˆ 1

0
dx

f2(x,Q2)

1− x2(ν/νel)2 − i0+
, (IV.11b)

S1(ν,Q2) =
2

π

ˆ ∞
νel

dν ′
ν ′ ImS1(ν ′, Q2)

ν ′ 2 − ν2 − i0+

=
16πZ2αM

Q2

ˆ 1

0
dx

g1(x,Q2)

1− x2(ν/νel)2 − i0+
, (IV.11c)

νS2(ν,Q2) =
2

π

ˆ ∞
νel

dν ′
ν ′ 2 ImS2(ν ′, Q2)

ν ′ 2 − ν2 − i0+

=
16πZ2αM2

Q2

ˆ 1

0
dx

g2(x,Q2)

1− x2(ν/νel)2 − i0+
, (IV.11d)

where in the last step we plugged in the optical theorem:

ImT1(ν,Q2) =
4π2Z2α

M
f1(x,Q2) =

√
ν2 +Q2 σT (ν,Q2), (IV.12a)

ImT2(ν,Q2) =
4π2Z2α

ν
f2(x,Q2) =

Q2√
ν2 +Q2

[σT + σL] (ν,Q2), (IV.12b)

ImS1(ν,Q2) =
4π2Z2α

ν
g1(x,Q2) =

Mν√
ν2 +Q2

[
Q

ν
σLT + σTT

]
(ν,Q2), (IV.12c)

ImS2(ν,Q2) =
4π2Z2αM

ν2
g2(x,Q2) =

M2√
ν2 +Q2

[
ν

Q
σLT − σTT

]
(ν,Q2), (IV.12d)

which in the physical region (x ∈ [0, 1], with x = νel/ν being the Bjorken variable and νel =
Q2/2M) relates the absorptive parts of the forward VVCS amplitudes to the nucleon structure
functions f1, f2, g1 and g2 (functions of x and Q2) or the photoabsorption cross sections σT , σL,
σTT and σLT (functions of ν and Q2). The optical theorem for RCS was given in Eq. (III.10) with
a photon flux factor that corresponds to K(ν) = ν [321]. In the case of virtual CS, we modify the

2Since the Born part of S2, Eq. (V.16d), has a pole for the subsequent limits of Q2 → 0 and ν → 0, it is advisable
to use a DR for νS2 instead.
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photon flux factor and use Gilman’s definition K(ν,Q2) =
√
ν2 +Q2 [354].3 The cross section

σLT describes a simultaneous helicity change of the photon (from longitudinal to transverse) and
the nucleon (spin-flip) such that the total helicity is conserved. The other cross sections are the
usual combinations of helicity cross sections: σT = 1/2 (σ1/2 + σ3/2) and σTT = 1/2 (σ1/2 − σ3/2)
for transversely polarized photons, and σL = 1/2 (σ1/2 + σ−1/2) for longitudinal photons, where
the subscript on the rhs denotes the total helicity of the γ∗N state. Note that σL and σLT are
vanishing in the real photon limit.

Just as in Eq. (III.11a), the high-energy asymptotic of the spin-independent structure func-
tion f1(x,Q2) prevent the convergence of an unsubtracted DR. Therefore, T1 requires a once-
subtracted DR:

T1(ν,Q2) = T1(0, Q2) +
2ν2

π

ˆ ∞
νel

dν ′
ImT1(ν ′, Q2)

ν ′(ν ′ 2 − ν2 − i0+)
(IV.13a)

= T1(0, Q2) +
32πZ2αMν2

Q4

ˆ 1

0
dx

xf1(x,Q2)

1− x2(ν/νel)2 − i0+
, (IV.13b)

where we need to make a subtraction at all values of Q2, see discussion of the T1(0, Q2) subtrac-
tion function in Ref. [53, Section 5.5.1]. Similar expressions hold for the non-relativistic set of
amplitudes.

Restricting the integration in Eq. (IV.11) to x ∈ [0, x0], with x0 being the inelastic threshold,
we isolate the inelastic scattering region. Replacing the lhs of the inelastic dispersion integrals
with the LEX of the VVCS amplitudes with the nucleon-pole part subtracted, cf. Eq. (IV.6),
one can derive a number of VVCS sum rules.

• generalized Baldin sum rule [321]:

αE1(Q2) + βM1(Q2) =
8Z2αM

Q4

ˆ x0

0
dxx f1(x,Q2), (IV.14a)

=
1

2π2

ˆ ∞
ν0

dν

ν3

√
ν2 +Q2 σT (ν,Q2); (IV.14b)

• generalized FSP sum rule [321]:

γ0(Q2) =
16Z2αM2

Q6

ˆ x0

0
dxx2

[
g1 − (2Mx/Q)2 g2

]
(x,Q2), (IV.15a)

=
1

2π2

ˆ ∞
ν0

dν

ν4

√
ν2 +Q2 σTT (ν,Q2); (IV.15b)

• longitudinal polarizability [59]:

αL(Q2) =
4Z2αM

Q6

ˆ x0

0
dx
[{

1 + (2Mx/Q)2
}
f2 − 2xf1

]
(x,Q2), (IV.16a)

=
1

2π2

ˆ ∞
ν0

dν

Q2ν3

√
ν2 +Q2 σL(ν,Q2); (IV.16b)

• longitudinal-transverse polarizability [321]:

δLT (Q2) =
16Z2αM2

Q6

ˆ x0

0
dxx2

[
g1 + g2

]
(x,Q2), (IV.17a)

3Note that this choice is different to the one in Ref. [53].
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=
1

2π2

ˆ ∞
ν0

dν

Qν3

√
ν2 +Q2 σLT (ν,Q2); (IV.17b)

• generalized GDH integral (zeroth moment of g1):

I1(Q2) =
2Z2M2

Q2

ˆ x0

0
dx g1(x,Q2); (IV.18)

• generalized GDH integral:

IA(Q2) =
2Z2M2

Q2

ˆ x0

0
dx
[
g1 −

(
2Mx

Q

)2

g2

]
(x,Q2), (IV.19a)

=
M2

4π2α

ˆ ∞
ν0

dν

ν2

√
ν2 +Q2 σTT (ν,Q2); (IV.19b)

• Burkhardt-Cottingham (BC) sum rule [355]:

0 =

ˆ 1

0
dx g2(x,Q2), (IV.20a)

I2(Q2) =
2Z2M2

Q2

ˆ x0

0
dx g2(x,Q2) =

Z2

4
F2(Q2)GM (Q2); (IV.20b)

• second moment of the higher twist part of g2:

d2(Q2) = Z2

ˆ x0

0
dxx2

[
g2(x,Q2) + gWW

2 (x,Q2)
]
, (IV.21a)

= Z2

ˆ x0

0
dxx2

[
3g2(x,Q2) + 2g1(x,Q2)

]
; (IV.21b)

The GPs of VVCS can then be extracted from either the LEX of the CS amplitudes or the
CS sum rules listed above. Note that the generalized GDH integrals I1 and IA are no pure
polarizabilities, as will be explained in Section V.1.4.

The VVCS GP d2 is defined as the second moment of the higher twist part of the structure
function g2. The twist-2 part of g2 can be expressed through g1 by the Wandzura-Wilczek
relation [356]:

gWW
2 (x,Q2) = −g1(x,Q2) +

ˆ 1

x

dx′

x′
g1(x′, Q2). (IV.22)

This polarizability goes as Q6 for low Q and can be related to the longitudinal transverse
polarizability and the generalized GDH integrals:

d̄2(Q2) =
Q4

8M4

{
M2Q2

α
δLT (Q2) +

[
I1(Q2)− IA(Q2)

]}
. (IV.23)

It is an interesting quantity in connection to the concept of color polarizability [357].
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2. Chiral Perturbation Theory Calculation

ChPT is an effective field theory of QCD at energies well below 1 GeV. The seminal ChPT
papers of Weinberg [54], Gasser and Leutwyler [55, 56] deal with pions as the Goldstone bosons
of spontaneous chiral symmetry breaking in QCD. The key observation is that the coupling
of Goldstone bosons is proportional to their momentum, hence, at low momenta the coupling
is weak and a perturbative expansion is possible. The breakdown scale is set by the scale
of spontaneous chiral symmetry breaking ΛχSB ∼ 4fπ ≈ 1 GeV, where fπ is the pion decay
constant. In reality ChPT breaks down somewhat earlier, as seen, e.g., in ππ scattering where
the σ(600)- and ρ(775)- meson excitations set the limiting scale of a perturbative expansion
[358, 359]. Nonetheless, ChPT has proven to be very useful in studying the low-energy strong
interaction. The literature on the subject is immense and we have to quickly narrow down the
discussion to the case at hand, i.e., the nucleon CS.

For our calculation of the nucleon VVCS, we will be using the SU(2) BChPT, which is the
manifestly Lorentz-invariant variant of ChPT in the single-baryon sector (see, e.g., Ref. [360, Sec.
4]). Let us note right away that, at least in some cases, the predictions of BChPT and HBChPT
differ substantially. This is, for instance, the case for the longitudinal-transverse polarizability
of the proton and the proton-polarizability contribution to the LS, see Sections IV.4, VI.1.3 and
VII.1.4.

The ∆(1232) is the lowest nucleon resonance with the excitation energy ∆ = M∆−MN ≈ 294
MeV, which is not much higher than the pion mass. Therefore, it is customary to include the
delta as an explicit DOF in the chiral effective Lagrangian. Thus, the relevant fields are: the
pion scalar iso-vector πa(x), the nucleon spinor iso-doublet N (x), the ∆(1232) vector-spinor iso-
quartet ∆µ(x), and the photon vector field Aµ(x). The terms of the chiral effective Lagrangian
relevant for us are the following.

L = L(1)
N + L(1)

∆ + L(1)
π∆N + L(2)

π + L(2) nm
γN∆ + L(1) nm

γ∆∆ , (IV.24)

where the superscript denotes the order of the Lagrangian reflected by the number of comprised
small quantities (pion mass, momentum and factors of e). They read [361]:

L(1)
N = N

(
/D −MN

)
N − gA

2fπ
N τa

(
/D
ab
πb
)
γ5N , (IV.25a)

L(1)
∆ = ∆µ

(
iγµνλDλ −M∆γ

µν
)

∆ν +
HA

2fπM∆
εµναλ ∆µT

a (Dα∆ν)Dab
λ π

b, (IV.25b)

L(1)
π∆N =

ihA
2fπM∆

N T aγµνλ (Dµ∆ν)
(
Dab
λ π

b
)

+ h.c, (IV.25c)

L(2)
π =

1

2

(
Dab
µ π

b
)(
Dµ
acπ

c
)
− 1

2
m2
ππaπ

a, (IV.25d)

where the covariant derivatives,4

Dab
µ π

b = δab∂µπ
b + ieQabπ Aµπ

b, (IV.26a)

DµN = ∂µN + ieQNAµN +
i

4f2
π

εabcτaπb(∂µπ
c), (IV.26b)

Dµ∆ν = ∂µ∆ν + ieQ∆Aµ∆ν +
i

2f2
π

εabc Taπb(∂µπ
c), (IV.26c)

4Note that DµN is of O(p0), while
(
/D −MN

)
N is of O(p), cf. Ref. [362, Eq. (5.23)].
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Table IV.1.: The parameters used in the chiral perturbation theory calculations.

ChPT parameter value source

mπ 139.57 MeV

fπ 92.21 MeV pion decay π+ → µ+νµ [242]

MN 938.27 MeV

gA 1.27 neutron decay n→ p e− ν̄e [242]

M∆ 1232 MeV

P33 partial wave in πN scattering
hA 2.85

∆(1232) decay width [360, 365, 366]

gM 2.97

gE −1.0

gC −2.6

pion electroproduction e−N → e−Nπ [363]

are used and one defines the particle charges through:

Qabπ = −iεab3, (IV.27a)

QN = 1
2 (1 + τ3), (IV.27b)

Q∆ = 1
2 (1 + 3T3). (IV.27c)

The isospin 1/2 to 3/2 and the isospin 3/2 to 3/2 transition matrices can be found in Ref. [361,
Appendix A] and Ref. [363]. They commute with the Dirac matrices. The Lagrangian for the
γ∗N → ∆ transition will be of special interest in Section IV.3, it can be found in Ref. [364]:5

L(2) nm
γN∆ =

3e

2MN (MN +M∆)

[
N̄T3

{
igM (∂µ∆ν)F̃µν − gEγ5(∂µ∆ν)Fµν (IV.28)

+i
gC

M∆
γ5γ

α(∂α∆ν − ∂ν∆α)∂µF
µν
}

+
{
gE(∂µ∆̄ν)γ5F

µν

−igM (∂µ∆̄ν)F̃µν + i
gC

M∆
(∂α∆̄ν − ∂ν∆̄α)γαγ5∂µF

µν
}
T †3N

]
.

Furthermore, we partially include the non-minimal coupling of the photon to the ∆(1232) reso-
nance [361]:

L(1) nm
γ∆∆ =

e

M∆
∆µ

(
iκ1F

µν − κ2γ5F̃
µν
)

∆ν , (IV.29)

with κ1 = 1 = κ2 as in N = 2 supergravity. From the above Lagrangians we derive the Feynman
rules listed in Appendix IV.A.

In ChPT, the coupling strengths of the different interactions are embedded in the so-called
low-energy constants (LECs). These coupling constants can be fitted to various experiments.
Table IV.1 lists the LECs appearing in the ChPT Lagrangian at the presented order. The pion
and neutron decay constant, fπ and gA, are determined from the respective decays. gA is also
known as the axial coupling of the nucleon. In the limit of a large number of colors (Nc), it
is related to hA = 3/

√
2 gA and HA = 9/5 gA. Because the ∆(1232)-resonance is dominating

the P33-state in the partial wave analysis of πN scattering, one can deduce the ∆(1232) decay

5Note that here we corrected a typo appearing in Refs. [360, 363, 364].
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width (Γ∆ = 0.115 GeV) and in turn extract the coupling constant hA from πN scattering.
The magnetic, electric and Coulomb couplings of the γ∗N∆ interaction are extracted from pion
electroproduction.6 Since all LECs are known from other processes, the description of forward
VVCS at O(p7/2) in ChPT comes out as a prediction.

Table IV.2.: Power-counting for the diagrams contributing to doubly-virtual Compton scattering.

δ-expansion ε-expansion
contribution Figure

p ∼ mπ p ∼ ∆ p ∼ mπ p ∼ ∆

Born III.3 p p p

∆-exchange IV.4 p7/2 p p3

πN -loops IV.2 p3 p3 p3

IV.3
π∆-loops

IV.12 (first row)
p7/2 p3 p3

π∆-loops IV.12 (second row) p4 p3 p3

π∆-loops IV.12 (third row) p9/2 p3 p3

2.1. Power-Counting Schemes: δ- and ε-Expansion

ChPT is a perturbative description for QCD at low energies, which is based on a small parameter,
e.g., p/ΛχSB. The power-counting assigns an order to every Feynman diagram and thereby
defines which Feynman diagrams need to be included at a given order in the perturbative chiral
expansion of a given process. There are two prominent power-counting schemes for ChPT with
∆ DOFs: the δ- and the ε-expansion. Ref. [360] provides an extensive review on the e.m.
excitation of the ∆(1232)-resonance with special focus on the proper formulation of ChPT with
inclusion of spin-3/2 fields and the chiral expansion in the resonance region. In what follows, we
will first describe the δ-expansion applied by us. Afterwards, we will highlight the differences to
the ε-expansion.

In ChPT with pion and nucleon fields, the order, O(pn), of a Feynman diagram with L loops,
Nπ (NN ) pion (nucleon) propagators, and Vk vertices from k-th order Lagrangians is given by
[56]:

n = 4L− 2Nπ −NN +
∑
k

k Vk. (IV.30)

The vertices given in Appendix IV.A follow from the first- and second-order Lagrangians as:

• k = 1: ΓπNN , Γµ
γNN , Γα

N∆π, Γαµ
Nγπ∆, Γαβ

π∆∆, Γαβµ
γ∆∆;

• k = 2: Γµ
γππ, Γµν

γγππ, Γαµ
γN∆.

In ChPT with additional ∆-fields, another scale appears. Accordingly, there are two different
small parameters: ε = mπ/ΛχSB and δ = ∆/ΛχSB, with ∆ = M∆ −MN . Despite that, for the
power-counting it is easier to expand in one rather than two small parameters. Therefore, the
δ- and ε-expansion power-countings relate the two parameters:

• δ-expansion [62]: ε ∼ δ2;

• ε-expansion [63]: ε ∼ δ.
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IV. Forward Doubly-Virtual Compton Scattering

Figure IV.2.: πN -loop contribution to Compton scattering amplitudes at O(p3) in the low-energy domain
of the δ-expansion. Pion and nucleon propagators are denoted by dashed and solid lines, respectively.
Diagrams obtained from these by crossing and time-reversal are included too. Figure taken from Ref. [59].

Figure IV.3.: π∆-loop amplitudes at O(p7/2) in the low-energy domain of the δ-expansion. Delta prop-
agators are denoted by double lines. Diagrams obtained from these by crossing and time-reversal are
included too. Figure taken from Ref. [59].

The δ-expansion furthermore distinguishes one-delta-reducible (1∆R) propagators and one-
delta-irreducible (1∆I) propagators to incorporate a higher weighting for 1∆R graphs in the
resonance region. The δ-expansion then defines [62]:

nδ =

{
n− 1/2N∆ p ∼ mπ,

n− 3N1∆R −N1∆I p ∼ ∆,
(IV.31a)

with

N∆ = N1∆R +N1∆I, (IV.31b)

and N1∆R (N1∆I) being the number of 1∆R (1∆I) propagators, and assigns a size O(pnδ) to
each graph in the chiral expansion.

Obviously, the ∆(1232) is supposed to play a dominant role in the resonance region, while it is
suppressed at low energies. Nevertheless, the ε-expansion treats nucleon- and delta-propagators
everywhere in the same way. Therefore, the ε-expansion overestimates the contribution of the
∆(1232) at low energies and underestimates its contribution in the resonance region.

In the ε-expansion, all diagrams shown in Figures IV.4, IV.3, IV.12 and IV.2 are of O(p3). In
the low-energy region, the δ-expansion assigns the O(p3) to the πN -loop diagrams in Fig. IV.2

6Fits of only gM and gE , neglecting gC , can be found in Refs. [62, 367].
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and the O(p7/2) to the tree-level ∆-exchange and the π∆-loop diagrams in Figures IV.4 and
IV.3. In Table IV.2, we list all the diagrams considered in this thesis and give their respective
orders in the δ-expansion for both the low-energy and the resonance region. We will come back
to the differences between the two power-counting schemes in Section IV.4, where we study the
π∆-loop graphs in view of the δLT puzzle, but first we discuss the ∆-exchange in CS off the
nucleon.

3. Compton Scattering off the Nucleon with ∆-Exchange

The ∆(1232)-resonance is an almost perfect elastic πN -resonance, i.e., in 99.4 % of the cases it
decays into πN [242]. On the contrary, the chances that the ∆(1232) decays into γN are only
0.55− 0.65 % [242]. Nonetheless, the tree-level diagrams with ∆-exchange are of importance to
the CS off the nucleon due to their 1∆R propagator.

Figure IV.4.: ∆-exchange contribution to Compton scattering. These graphs are of O(p7/2) in the low-
energy domain of the δ-expansion.

3.1. Compton Amplitudes and Structure Functions

The ∆-exchange diagrams, shown in Fig. IV.4, contribute to the CS process at LO in the
resonance region and at NNLO in the low-energy region. They give identical contributions to
the CS off the proton and the neutron. We calculate them in ChPT (or more precisely BChPT)
based on the Lagrangian in Eq. (IV.28). The delta propagator and the ΓγN∆ vertex are given in
Appendix IV.A. The imaginary part of the tree-level diagrams is easily calculated, as it stems
from the propagator of the s-channel diagram only. We rewrite the scalar part of the propagator
as:

lim
λ→0+

1

s−M2
∆ + iλ

= lim
λ→0+

1

2M

1

ν − ν∆ + iλ
, (IV.32a)

= lim
λ→0+

1

2M

ν − ν∆ − iλ
(ν − ν∆)2 + λ2

, (IV.32b)

=
1

2M

1

ν − ν∆
− iπ

2M
δ(ν − ν∆), (IV.32c)

where in the last step we identified the nascent δ-function:

nλ(x) =
λ

π

1

x2 + λ2
, with δ(x) = lim

λ→0+
nλ(x). (IV.33)

The threshold for delta production is at lab-frame photon energies of

ν∆ =
M2

∆ −M2 +Q2

2M
, (IV.34)

where we denote the nucleon and delta masses by M and M∆, respectively.
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We decompose our results for the CS amplitudes in the following way:

T1(ν,Q2) = T1(0, Q2) + T∆−pole
1 (ν,Q2) + T̃1(ν,Q2) +

i 4π2α

M
f1(ν,Q2), (IV.35a)

T2(ν,Q2) = T∆−pole
2 (ν,Q2) + T̃2(ν,Q2) +

i 4π2α

ν
f2(ν,Q2), (IV.35b)

S1(ν,Q2) = S∆−pole
1 (ν,Q2) + S̃1(ν,Q2) +

i 4π2α

ν
g1(ν,Q2), (IV.35c)

S2(ν,Q2) = S∆−pole
2 (ν,Q2) + S̃2(ν,Q2) +

i 4π2αM

ν2
g2(ν,Q2). (IV.35d)

The real parts of the amplitudes are given in Appendix IV.C.1. Terms which are proportional
to:

1

[s−M∆][u−M∆]
=

1

4M2

1

ν2
∆ − ν2

, (IV.36)

are denoted by T∆−pole
i and S∆−pole

i , see Eq. (IV.95). In addition, we find the T̃i and S̃i terms
which are free of poles in ν, see Eq. (IV.96). They emerge as:

νn+2

[s−M∆][u−M∆]
=

1

4M2

(
ν2

∆ν
n

ν2
∆ − ν2

− νn
)
, (IV.37)

where in the second term the ∆-pole canceled out.

The imaginary parts of the amplitudes are related to structure functions through the optical
theorem, cf. Eq. (IV.12). As we are studying CS off the nucleon, we have Z = 1. The contribution
to the nucleon structure functions from delta production then reads:

f1(ν,Q2) =
1

2M2
+

[
g2
M |q|2(ν +M+) +

g2
E (ν −∆)

(
Mν −Q2

)2
M2

+
g2

CQ
4s(ν −∆)

M2M2
∆

(IV.38a)

− gMgE |q|2
(
Mν −Q2

)
M

+
gMgC |q|2Q2

M

+
2gEgCQ

2
(
Mν −Q2

)
(−M∆(M + ν) + s)

M2M∆

]
δ(ν − ν∆) ,

f2(ν,Q2) =
νQ2

2MM2
+

[
g2
M (ν +M+) + g2

E(ν −∆)− g2
CQ

2(∆− ν)

M2
∆

(IV.38b)

−gMgE
(
Mν −Q2

)
M

+
gMgCQ

2

M

]
δ(ν − ν∆) ,

g1(ν,Q2) = − ν

4M2
+

[
g2
Mν(ν +M+) +

g2
E

(
νM −Q2

) (
M(ν −∆)−Q2

)
M2

(IV.38c)

− g2
CQ

4(M∆M − s)
M2M2

∆

− gMgE
(
M∆Q

2 + 4ν
(
Mν −Q2

))
M

− gMgCQ
2
(
−4νM∆ +Mν −Q2

)
MM∆

+
gEgCQ

2
(
νM2 +∆

(
Q2 − s

))
M2M∆

]
δ(ν − ν∆) ,
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g2(ν,Q2) =
ν2

4M2
+

[
g2
M (ν +M+) +

g2
E ∆

(
νM −Q2

)
M2

+
g2

CQ
2(νM∆M −∆s)
M2M2

∆

(IV.38d)

− gMgE
(
−νM∆ + 4

(
Mν −Q2

))
M

− gEgC

(
M |q|2 (M − 2M∆) + νM+Q

2 −Q4 +Q2s+∆νs
)

M2M∆

+
gMgC

(
4M∆Q

2 + ν
(
Mν −Q2

))
MM∆

]
δ(ν − ν∆) .

Alternatively, we can convert to the Bjorken variable and replace the δ-function in the following
way:

δ(ν − ν∆) =
Q2

2Mν2
∆

δ(x− Q2/2Mν∆) . (IV.39)

For brevity, we introduced the following shorthands:

∆ = M∆ −M, (IV.40a)

M+ = M∆ +M, (IV.40b)

|q| =
√
ν2 +Q2, (IV.40c)

Q± =
√

(M∆ ±M)2 +Q2, (IV.40d)

ω± = (M2
∆ −M2 ±Q2)/2M∆. (IV.40e)

The ∆-production threshold in the lab frame is related to the ∆-production threshold in the
CM frame (or delta rest-frame) as: ν∆ = (M∆/M)ω+. In Appendix IV.C.2, we derive the
∆-production helicity cross sections and confirm our results for the nucleon structure functions.

We verified that exploiting the DRs in Eqs. (IV.11b)-(IV.11d) and the once-subtracted DR
for the amplitude T1, cf. Eq. (IV.13b), the structure functions (IV.38) reproduce the ∆-pole
part (IV.95) of the VVCS amplitudes. It is important to emphasize that the nucleon structure
functions in Eq. (IV.38) can not reproduce the non-pole contributions to the VVCS amplitudes,
cf. Eq. (IV.96) [368]. To describe the non-pole contributions in a dispersive framework, we define
the following structure functions:

f̃1(x,Q2) =
Mx

8πα
T̃1(Q2) δ(x), (IV.41a)

f̃2(x,Q2) =
Mx

8πα
T̃2(Q2) δ(x), (IV.41b)

g̃1(x,Q2) =
Q2

16παM
S̃1(Q2) δ(x), (IV.41c)

which reproduce Eqs. (IV.96a)-(IV.96c) as plugged into the DRs, cf. Eqs. (IV.11b), (IV.11c) and
(IV.13b), respectively.

In Eq. (IV.11d) we wrote a DR for νS2 rather than S2. This will be convenient later, because
the Born contribution to the CS off the nucleon has a pole in the S2 amplitude, Eq. (V.16d), for
the subsequent limits of Q2 → 0 and ν → 0. It is important to understand that the non-pole
contribution of νS2 can not be deduced from Eq. (IV.96d). We instead derive the following
expression:
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ν̃S2(ν,Q2) =
2πα

MM2
+

[
g2
EM∆∆ω− +

g2
M MQ2

+

2
+
g2

CQ
2(Q2 −∆2)

2M∆
(IV.42)

+gEgM M∆(M∆ω+ − 4Mω−)− gEgC∆(2Q2 +Mω+)

+gMgCQ
2(4M − ω+)

]
+
S̃2(ν,Q2)

ν

[
M2

∆ ω
2
+

M2
+ ν2

]
,

which has not only terms proportional to ν2 but also has terms constant in ν. The ν-independent
part of Eq. (IV.42) can be described by:

g̃2,a(x,Q
2) =

Q2

16παM2

[
ν̃S2

∣∣∣
ν→0

]
δ(x), (IV.43)

as plugged into Eq. (IV.11d). The part of Eq. (IV.42) proportional to ν2 can be described based
on:

g̃2,b(x,Q
2) =

Q6

64παM4

1

x2

[
S̃2(Q2)

ν

]
δ(x), (IV.44)

and the dispersion integral on the rhs of:

ν̃S2(ν,Q2)− ν̃S2(0, Q2) =
64παM4ν2

Q6

ˆ x0

0
dx

x2 g̃2,b(x,Q
2)

1− x2(ν/νel)2
. (IV.45)

3.2. Jones-Scadron Form Factors and the Large-Nc Limit

In Section IV.3.1, we calculated the ∆-exchange contribution to forward VVCS within the frame-
work of BChPT. We now want to make a connection to the pion electroproduction7 experiments,
γ∗N → πN , at the resonance position, s = M2

∆, see Fig. IV.5. The γ∗N ↔ ∆ transition, de-
picted by the blob in Fig. IV.5, corresponds to a e.m. decay of the lowest nucleon resonance,
∆(1232) with spin and parity 3/2+, into the nucleon ground state, N with spin and parity 1/2+.
The selection rules for this transition require, firstly, a conservation of parity, and secondly,
compliance with the triangle inequality:

|Ji − Jf | ≤ ` ≤ Ji + Jf , (IV.46)

imposed on the orbital momentum ` of the photon relative to the target nucleon. Since the
E-even and M -odd transitions are parity conserving:

∆P = (−1)` E` transition, (IV.47a)

∆P = (−1)`+1 M` transition, (IV.47b)

the e.m. ∆(1232) decay can be described by magnetic dipole (M1), electric quadrupole (E2)
and Coulomb quadrupole (C2) transitions, where the Coulomb transition is a electric transition
with longitudinal photons. Naturally, one expects higher multipolarities to be suppressed. A
rule of thumb also says that the probabilities of M` and E(`+ 1) transitions are roughly equal.
However, as we will see later, the nucleon-to-delta transition is dominantly of magnetic dipole
type.

7In the OPE approximation, pion electroproduction is equivalent to pion photoproduction with virtual photons.
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e+ , e-

N (1/2+)

Ɣ* (1-)

Δ (3/2+)

Figure IV.5.: Pion electroproduction with intermediate ∆-exchange.

Let us now switch to the notation of pion production. The final state has a pion with spin and
parity 0−. It can be described by an orbital angular momentum l of the pion relative to the
recoiling nucleon. Including the intrinsic parity of the pion, the parity of the final πN -state

is given by (−1)l+1. The pion electroproduction can then be expanded in the M
(3/2)
1+ , E

(3/2)
1+

and S
(3/2)
1+ multipoles, cf. Ref. [369, Section 2.3 and Table 3]. Here, the superscript denotes the

isospin. The subscript denotes the l = 1 partial wave and the “+” indicates that spin and orbital
angular momentum of the nucleon are parallel.

The magnetic (gM ), electric (gE) and Coulomb (gC) couplings are per definition related to
the magnetic (G∗M ), electric (G∗E) and Coulomb (G∗C) nucleon-to-delta transition FFs of Jones
and Scadron [370]:

gM = G∗M (Q2)−G∗E(Q2), (IV.48a)

gE = − Q2
+

ω2
− +Q2

[
ω−
M∆

G∗E(Q2) +
Q2

2M2
∆

G∗C(Q2)

]
, (IV.48b)

gC =
Q2

+

ω2
− +Q2

[
G∗E(Q2)− ω−

2M∆
G∗C(Q2)

]
. (IV.48c)

Another systematic approach to approximate the strong interaction is the 1/Nc expansion [371,
372]. This perturbative expansion of QCD has the advantage that it is based on a parameter
which is small at all energy scales. On the contrary, ChPT is restricted to low energies. As a
direct consequence of QCD, the baryons are static in the large-Nc limit,

M = O(Nc) and M∆ = O(Nc), (IV.49)

and the baryon sector has an exact contracted SU(2Nf ) spin-flavor symmetry, with Nf being
the number of light quark flavors.8 In the following, we will present an alternative approach to
the ∆-exchange, where we relate our prediction to empirical observables by means of large-Nc

relations.

8As pointed out in Ref. [373], the excitation energy of the delta is vanishing in the large-Nc limit:

∆ = O(N−1
c ), (IV.50)

hence, the 1/Nc expansion triggers an unphysical region where ∆� mπ. Therefore, the chiral limit (mπ → 0)
and the large-Nc limit do not commute and one expects the former to dominate.
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Figure IV.6.: G∗M (Q2) as a function of Q2, normalized to the dipole form factor GD(Q2) (multiplied by
a factor 3). Equation (IV.53) (normalized to G∗M (0) = 3) is evaluated for the dipole form factor (dotted
curve) and the form factor parametrizations of Bradford et al. [316] (solid curve). The dashed curve
shows Eq. (IV.58a) with the form factor parametrizations of Ref. [316]. The data are from JLab: CLAS
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The nucleon-to-delta transition FFs can be connected to the e.m. nucleon properties via large-Nc

relations:9

G∗M (0) =
κV√

2
[379], (IV.51a)

G∗E(0) =
M2 −M2

∆

12
√

2

(
M

M∆

)3/2

〈r2〉En [380], (IV.51b)

G∗C(0) =
4M2

∆

M2
∆ −M2

G∗E(0) [381], (IV.51c)

where we introduced the isovector anomalous magnetic moment of the nucleon: κV = κp−κn '
3.7 [242]. An extension of these relations to finite momentum transfer is modeled in Ref. [381]:

G∗M (Q2) =
1√
2

[
F2p(Q

2)− F2n(Q2)
]
, (IV.52a)

G∗E(Q2) =

(
M

M∆

)3/2 ∆M+

2
√

2Q2
GEn(Q2), (IV.52b)

G∗C(Q2) =
4M2

∆

∆M+
G∗E(Q2), (IV.52c)

where F2p and F2n are the Pauli FFs of the proton and neutron, respectively, and GEn is the
electric Sachs FF of the neutron. We furthermore use the fact that F2p(Q

2) = −F2n(Q2) in the
large-Nc limit10 and modify the relation in Eq. (IV.52a):

G∗M (Q2) =
√

2C∗MF2p(Q
2), (IV.53)

9Note that Eq. (IV.51b) follows from a relation between the N → ∆ quadrupole moment and the neutron charge
radius: Qp→∆+ = 〈r

2〉En/
√

2.
10Ref. [382] performs a simultaneous expansion in 1/Nc and ms, the mass of the strange quark, and finds:

3µn + 2µp = 0.
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with C∗M = 3.02√
2κp

, to reproduce the empirical value of G∗M (0) ' 3.02 [383].

Starting from the ChPT structure functions, cf. Eq. (IV.38):

FChPT(ν,Q2) = cMM g2
M + cEE g

2
E + cCC g

2
C + cME gMgE + cMC gMgC + cEC gEgC, (IV.54)

with F being either f1, f2, g1 or g2, and c’s functions of ν and Q2, we set up a model for the
nucleon structure functions based on the Jones-Scadron transition FFs:

FJS(ν,Q2) = G∗2M
{
CMM + CMEREM + CMCRSM + CEER

2
EM (IV.55)

+CECREMRSM + CCCR
2
SM

}
.

Here, the Q2 dependence is in the magnetic Jones-Scadron FF and the multipole ratios REM =
E2/M1 and RSM = C2/M1 measured in pion electroproduction. The C’s are functions of ν and
Q2, they are related to the coefficients in Eq. (IV.54) through Eq. (IV.48) in the following way:

CMM = cMM, (IV.56a)

CME = 2

[
cMM +

2M∆

Q2
−

(ω− cME −M∆cMC)

]
, (IV.56b)

CMC =
8M2

∆

Q+Q3
−

[
Q2cME +M∆ω− cMC

]
, (IV.56c)

CEE = cMM +
4M∆

Q2
−

[
ω− cME −M∆cMC (IV.56d)

+
4M∆

Q2
−

(
ω2
−cEE −M∆ω− cEC +M2

∆cCC

) ]
,

CEC =
8M2

∆

Q+Q3
−

{
Q2cME +M∆ω− cMC (IV.56e)

+
4M∆

Q2
−

[
2Q2ω− cEE +M∆(ω2

− −Q2)cEC − 2M2
∆ω− cCC

]}
,

CCC =
64M4

∆

Q2
+Q

6
−

[
Q4cEE +M∆ω−

(
Q2cEC +M∆ω− cCC

)]
. (IV.56f)

The multipole ratios are naturally small and go as O(1/N2
c ) [384]. They can be written in

terms of the Jones-Scadron FFs as [381]:

REM(Q2) = −G
∗
E(Q2)

G∗M (Q2)
, (IV.57a)

RSM(Q2) = −Q+Q−
4M2

∆

G∗C(Q2)

G∗M (Q2)
. (IV.57b)

For Q2 = 0, these large-NC expressions coincide: REM = RSM. In Fig. IV.7, we show the
multipole ratios, cf. Eq. (IV.57), as described by the large-Nc relations in Eqs. (IV.52b), (IV.52c)
and (IV.53), and compare to experimental data. For the e.m. FFs we make the same choice as
Ref. [381] and apply the parametrizations of Bradford et al. [316], cf. Eq. (II.156) and Table
II.8. We present two curves for different values of C∗M . The dashed curve is chosen to reproduce
the empirical value of G∗M (0) and the solid curve corresponds to Ref. [381, Fig. 1]. Both curves
describe REM equally good. For RSM we observe a slight deviation of the dashed curve as
compared to the data. However, since the nucleon-to-delta transition is anyway dominated by the
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Figure IV.7.: Multipole ratios of the nucleon-to-delta transition: REM (upper panel) and RSM (middle
panel), cf. Eq. (IV.57). The data are taken from Refs. [374, 385–397]. The gray band corresponds to
the experimental value for the REM multipole ratio at the real-photon point: REM(0) = −2.5 ± 0.5%
[398]. The curves are based on Eqs. (IV.52b), (IV.52c) and (IV.53) with C∗M = 1 (solid) and C∗M = 3.02√

2κp

(dashed). The neutron electric Sachs FF GEn (lower panel) is taken from Ref. [316].

magnetic dipole, cf. Fig. IV.8, we tend to neglect the RSM multipole ratio and replace REM(Q2)
by its static value REM(0), cf. discussion below Eq. (IV.70) and Section VII.1.3. Therefore, the
description of RSM is still acceptable.

Along the same line, see Section VII.1.3, it will later be useful to establish:

G∗M (Q2) =

√
2M+

Q+

F2p(Q
2)√

1− 6REM(0)
, (IV.58a)

G∗E(Q2) =

(
M

M∆

)3/2 ∆M2
+

2
√

2Q2Q+

GEn(Q2)√
1− 6REM(0)

, (IV.58b)

G∗C(Q2) =
4M2

∆

M2
∆ −M2

G∗E(Q2), (IV.58c)
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without changing the multipole ratios.11 In Fig. IV.6, we show the magnetic Jones-Scadron FF.
We refrain from showing the experimental error bars, as they are very small for most of the
References. We compare Eq. (IV.53) for the dipole FF and the FF fit from Ref. [316]. Both
FFs give a good description of the spread of data. Furthermore, we utilize the set of nucleon
FFs presented in Ref. [316] to plot Eq. (IV.58a). The resulting curve has an offset towards lower
values of G∗M over the whole Q2 range. This is due to the fact that we no longer fix the static
value to the experimental G∗M (0) ' 3.02 [383]. A motivation for Eq. (IV.58a) shall be postponed
to Sections IV.3.3 and VII.1.3.

3.3. Contribution of the ∆-Exchange to Nucleon Polarizabilities

We will now evaluate the contribution of the ∆-exchange to the GPs introduced in Section IV.1.3.
We first present predictions derived in the pure ChPT framework. We then give expressions for
the generalized GDH integrals in terms of the magnetic Jones-Scadron FF and the multipole
ratios of pion electroproduction, as derived from the large-Nc relations presented in the above
Section IV.3.2. In Fig. IV.11, we show the pure BChPT prediction for the nucleon GPs of VVCS
along with the data driven description of the ∆-exchange contribution to GPs through nucleon
FFs.

Let us start by presenting our BChPT results for the Q2 dependence of the nucleon polariz-
abilities up to O(Q2), see Eqs. (IV.60)-(IV.69). Following Ref. [363], we introduce a dipole on
the magnetic coupling to take into account the vector-meson diagram shown in Ref. [363, Fig.
2(d)]:

gM →
gM

(1 +Q2/Λ2)2
, (IV.59)

Inclusion of this FF is important to reproduce pion electroproduction data, where the usual
choice would be Λ =

√
0.71 GeV2. In Appendix IV.C.3, we will compare to results with a

general momentum-cutoff in the ΓγN∆ vertex function.

Electric and Magnetic Dipole Polarizabilities

αE1 (Q2 = 0) = − e2g2
E

2πM3
+

, (IV.60a)

βM1 (Q2 = 0) =
e2g2

M

2π∆M2
+

, (IV.60b)

d
[
αE1(Q2) + βM1(Q2)

]
dQ2

∣∣∣∣∣
Q2=0
Λ→∞

= − e2

πM2
+

(
g2
M

∆2

[
1

M+
− 1

2∆

]
(IV.60c)

+
gMgE
M

[
1

4∆2
− 1

∆M+
+

1

4M2
+

]
− g2

E

4MM+

[
1

∆
− 5

M+

]
− gMgC

2∆MM+
+

gEgC
MM2

+

)
.

11Strictly speaking, the multipole ratios depend on our choice of CM∗, cf. Eq. (IV.53). For C∗M = 3.02√
2κp

we have

REM(0) = RSM(0) = −0.0176, while C∗M = 1 gives REM(0) = RSM(0) = −0.0209.
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With running gM coupling:

d
[
αE1(Q2) + βM1(Q2)

]
dQ2

∣∣∣∣∣
Q2=0

=
d
(
αE1(Q2) + βM1(Q2)

)
dQ2

∣∣∣∣∣
Q2=0
Λ→∞

− 2e2

π∆M2
+

g2
M

Λ2
. (IV.61)

Longitudinal Polarizability

αL (Q2 = 0) =
e2M2

∆

πM3
+

(
g2
E

∆MM2
+

− g2
C

2M4
∆

+
gEgC

MM2
∆M+

)
, (IV.62a)

dαL(Q2)

dQ2

∣∣∣∣∣
Q2=0
Λ→∞

=
e2M3

∆

π∆M4
+

(
2g2
E

∆2M2
+

[
2

M∆
− 1
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Forward Spin Polarizability

γ0(Q2 = 0) = − e2

4πM2
+

(
g2
M
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g2
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− 4gMgE
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With running gM coupling:
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dQ2

∣∣∣∣∣
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. (IV.64)

Longitudinal-Transverse Polarizability

δLT (Q2 = 0) =
e2M∆

4πM3
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)
, (IV.65a)

d δLT (Q2)

dQ2

∣∣∣∣∣
Q2=0
Λ→∞

=
e2M∆∆

4πMM2
+

(
g2
E

∆2M2
+

[
1

∆
− 4

M+

]
− g2

C

∆M2
∆M

2
+

(IV.65b)

+
gMgE
∆2M+

[
1

∆2
− 3

∆M+
+

1

M2
+

]
+
gMgC
∆M2

∆

[
1

2∆2
− 2

∆M+
+

1

2M2
+

]
− gEgC

2M2
∆M

2
+

[
7

∆
+

1

M+

])
.

96



3. Compton Scattering off the Nucleon with ∆-Exchange

With running gM coupling:

d δLT (Q2)

dQ2
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Q2=0
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Q2=0
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gMgE
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. (IV.66)

Generalized GDH Integral IA(Q2)

IA(Q2 = 0) = 0, (IV.67a)
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. (IV.67b)

Zeroth Moment of g1

I1(Q2 = 0) = 0, (IV.68a)
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Second Moment of the Higher Twist Part of g2
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[
3

M
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]
− 3gEgC
M2

∆M+

)
.

Table IV.3.: ∆-exchange contribution to the nucleon polarizabilities from real Compton scattering.

empirical values
polarizability ∆-exchange contr.

proton neutron
dimension

αE1 + βM1 7.040 14.0(2) [238] 14.40(66) [334] 10−4 fm3

αL 0.002 2.32 [66] 3.32 [66] 10−4 fm5

γ0 −2.844 −0.929(105) [239] −0.005 [66] 10−4 fm4

δLT −0.160 1.34 [66] 2.03 [66] 10−4 fm4

In Table IV.3, we summarize our BChPT predictions for the static nucleon polarizabilities, i.e.,
the polarizabilities at the real photon point, obtained with a dipole FF on the gM coupling (black
curves in Fig. IV.11). We compare our result for the ∆-exchange contribution to empirical values
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IV. Forward Doubly-Virtual Compton Scattering

Figure IV.8.: ∆-pole contribution to the zeroth moments of the spin-dependent structure functions.

for the absolute polarizabilities known from RCS. One observes that the ∆-exchange contribu-
tion is especially important for the sum of dipole polarizabilities and the FSP. The generalized
GDH integrals are not included in the Table, because their values in the real photon limit are
proportional to the anomalous magnetic moments of the nucleon, cf. Eq. III.13. Nevertheless,

the ∆-exchange is important for the characteristics of the Q2 behavior of the GDH integrals I
(p)
A ,

I
(n)
A and I

(n)
1 , as one can see from Fig. IV.11 and Ref. [59, Figs. 5 and 6] (as well as Ref. [65]).

Following the procedure outlined in Section IV.3.2, cf. Eqs. (IV.54)-(IV.56), the polarizabilities
given in Eqs. (IV.60)-(IV.69) can be easily expressed in terms of Jones-Scadron FFs. The
results are indicated in Fig. IV.11 by the red long dash-dotted curves. Here, we also give
expressions for the ∆-pole contributions to the generalized GDH integrals and the BC sum rule.
Fig. IV.8 shows the ∆-pole contributions to the zeroth moments of the spin-dependent structure
functions. The plot visualizes the impact strength of the various combinations of Jones-Scadron
FFs or multipole ratios, respectively. Clearly, the magnetic dipole contribution is dominating.
The interference of the electric and the magnetic Jones-Scadron FFs gives the second larges
contribution, while all other contributions are basically negligible. The spin-dependent structure
functions, Eqs. (IV.38c) and (IV.38d), at the ∆-resonance position can be approximated by:

g1(x∆, Q
2) ≈ − Q2Q2

+

16M2M2
+

G∗2M (Q2) [1− 6REM(0)] ≈ −g2(x∆, Q
2), (IV.70)

where we neglected RSM and R2
EM and approximated REM(Q2) ≈ REM(0), as motivated in

Fig. IV.8. Analytic expressions for the ∆-pole contributions to the generalized GDH integrals
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Figure IV.9.: Different contributions to the Burkhardt-Cottingham sum rule:
´ 1

0
dx g2(x,Q2). For the

elastic form factors, we use the parametrizations of Ref. [316]. The ∆-pole contribution is plotted based
on Eqs. (IV.70), (IV.58) and the same form factors.

and the zeroth moment of the g2 structure function are given below:

I∆−pole
1 (Q2) = −G

∗2
M (Q2)Q2

+

8M2
+

{
1− 6REM(Q2)− 3R2

EM(Q2) (IV.71a)

− 4MQ2

Q+Q−ω+
RSM(Q2)

[
1 + 3REM(Q2)

] }
,

I∆−pole
A (Q2) = −G

∗2
M (Q2)Q2

−Q
4
+

32M2
∆ω

2
+M

2
+

{
1− 6REM(Q2)− 3R2

EM(Q2)
}
, (IV.71b)

I∆−pole
2 (Q2) =

G∗2M (Q2)Q2
+

8M2
+

{
1− 6REM(Q2)− 3R2

EM(Q2) (IV.71c)

+
4M2

∆ω+

MQ+Q−
RSM(Q2)

[
1 + 3REM(Q2)

] }
,

where the corresponding static values (Q2 = 0) are:

I∆−pole
1 (0) = I∆−pole

A (0) = −G
∗2
M (0)

8

{
1− 6REM(0)− 3R2

EM(0)
}
, (IV.72a)

I∆−pole
2 (0) =

G∗2M (0)

8

{
1− 6REM(0)− 3R2

EM(0) +
2M∆

M
RSM(0) [1 + 3REM(0)]

}
. (IV.72b)

Here, it is worth to point out that the ∆-pole and the non-pole contributions cancel exactly in the
static values of all the integrals, i.e., in Eqs. (IV.67a), (IV.68a), and furthermore: I2(Q2 = 0) = 0.

The vanishing contribution of the ∆-exchange to I2 is expected, as it is a pure polarizability
contribution, see Section V.1.6.3 for a proof. The same requirement is fulfilled by the po-
larizability contributions coming from the πN - and π∆-loop diagrams, cf. Figures IV.3 and
IV.2. In Fig. IV.9, we show that the ∆-pole and the elastic FF contributions to the I2 inte-
gral, Eq. (IV.20a), cancel partially. Here, the solid red line corresponds to the contribution of
the approximate g2 structure function, cf. Eq. (IV.70), and the light red line corresponds to
Eq. (IV.71c). In both cases, we are using the large-Nc relations from Eq. (IV.58).

Figure IV.10 shows the generalized GDH integral, I1(Q2), and the Pauli FF, −1/4F 2
2 (Q2).

At the real photon point, the generalized GDH integral passes into the GDH integral, I1(Q2 =
0) = −κ2/4, in line with the squared Pauli FF. As the nucleon-to-delta transition is dominantly

99



IV. Forward Doubly-Virtual Compton Scattering

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-0.8

-0.6

-0.4

-0.2

0.0

Q2 [GeV2]

I 1
(Q

2
)

MAID

F2: Bradford '06

π-cloud + Δ-pole + πΔ-loops

π-cloud + Δ-pole

Δ-pole

κ: CODATA '14

CLAS: Prok '09

Figure IV.10.: Comparison of I1(Q2) and −1/4F 2
2 (Q2) as functions of Q2. The black short dashed line is

the MAID prediction for I1 [66]. The blue dots are deduced from CLAS data [399] and the purple dot at
the real-photon point complies with −κ2/4 [107]. The gray dotted line is the Pauli FF parametrization
of Ref. [316]. The orange long dashed line is the ∆-pole contribution to I1 as given in Eq. (IV.71a); the
green solid line is the sum of π-cloud and ∆-pole contributions [59]; the red dash-dotted line in addition
includes the π∆-loop contribution [59].

of magnetic dipole type, cf. Fig. IV.8, and the magnetic Jones-Scadron FF can be expressed
through the Pauli FF by large-Nc relations, cf. Eq. (IV.53), it is not far to seek that the ∆-
pole contribution to I1 and the Pauli FF will look alike. Using Eqs. (IV.58) and (IV.70), we

construct a perfect agreement: I∆−pole
1 (Q2) = −1/4F 2

2 (Q2), where we are neglecting RSM, etc.

In Fig. IV.10, this is illustrated with the orange long dashed line, indicating I∆−pole
1 (Q2), and the

gray dotted line, indicating −1/4F 2
2 (Q2). The light orange line shows the full ∆-pole contribution

as given in Eq. (IV.71a), i.e., fully including the electric and Coulomb transitions. In each case,
we plotted I1 with the Jones-Scadron FFs of Eq. (IV.58). Again, it becomes obvious that the

magnetic Jones-Scadron FF makes up the major part of I∆−pole
1 . The relevance of the ∆-pole

contribution will be explained in Section V.1.3.
In Fig. IV.11, we compare our results for the nucleon GPs, which we derived from either

ChPT or large-Nc relations. The large-Nc relations are useful as they express the Jones-Scadron
FFs, describing the e.m. nucleon-to-delta transition, through nucleon FFs, which are measured
extensively. In Section IV.3.2, we presented two sets of large-Nc relations. In the following, we
applied Eqs. (IV.52b), (IV.52c) and (IV.53) with C∗M = 3.02√

2κp
to derive the complete ∆-exchange

contribution to the nucleon polarizabilities (red long dash-dotted curves in Fig. IV.11). On the
other hand, we used Eq. (IV.58) to derive the contribution to the polarizabilities which originates
from the ∆-pole part12 (orange short dash-dotted curves in Fig. IV.11), e.g., from Eqs. (IV.38)
or (IV.95). In both cases, we substituted the FF parametrizations of Ref. [316].

Focusing for now on the full BChPT result (black curve) and the large-Nc description of the
∆-exchange (red curve), we find a very similar description of the sum of dipole polarizabilities
and the FSP. Also for the generalized GDH integrals, one observes a similar evolution in both ap-
proaches. The only difference is in a stronger curvature of the BChPT result with increasing Q2.
For the longitudinal and the longitudinal-transverse polarizabilities, one observes an upwards
shift of the large-Nc curves. This follows from the fact that the ChPT coupling constants,

12For I1 we do not plot the ∆-pole part. Instead, we refer to Figures IV.8 and IV.10
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Figure IV.11.: The sum of electric and magnetic dipole polarizabilities [αE1 + βM1] (Q2), the forward spin
polarizability γ0(Q2), the longitudinal-transverse polarizability δLT (Q2), the longitudinal polarizability
αL(Q2) and the generalized integrals I1(Q2), IA(Q2) and d2(Q2) as functions of Q2. The legend is given
in the upper right corner, further information is given in the text.
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IV. Forward Doubly-Virtual Compton Scattering

Figure IV.12.: π∆-loop amplitudes with photon coupling minimally to the delta at O(p7/2) (first row),
O(p4) (second row) and O(p9/2) (third row) in the low-energy domain of the δ-expansion. Diagrams
obtained from these by crossing and time-reversal are included too.

Figure IV.13.: One-delta-irreducible πN - and π∆-loop amplitudes at O(p9/2) (first row) and O(p5) (sec-
ond row) in the low-energy domain of the δ-expansion. Diagrams obtained from these by crossing and
time-reversal are of the same orders.

given in Table IV.1, and the so to say large-Nc couplings do not agree at the real photon
point. Evaluating Eq. (IV.48), one finds: gM (Q2 = 0) ≈ 2.97, gE(Q2 = 0) ≈ −0.78 and
gC(Q2 = 0) = 0. The limit of the running magnetic coupling was fixed in accordance with
experiment by our choice of C∗M . The electric couplings resemble on another. Nevertheless, one
can observe a slight offset in the FSP. The biggest deviation is in the Coulomb couplings. As
only the static values of αL and δLT depend on gC , this is where the biggest differences are seen.

Ref. [59] studied moments of nucleon structure function at NLO in BChPT. For this part of the
thesis, our motivation was to extend the former calculation by including the Coulomb coupling.
Strictly speaking, the Lagrangian with gE and gC couplings, cf. Eq. (IV.28), is attributed to
order k = 3 and not k = 2 [360]. This is due to the fact that the contained γ5 matrix mixes small
and large components of the Dirac spinors, cf. Ref. [400, Eq. (3.33)]. Therefore, the ∆-exchange
diagram belongs to several orders in the chiral expansion. It has a dominant contribution
proportional to g2

M , interference terms proportional to gMgE or gMgC , and terms originating
purely from k = 3 Lagrangian, e.g., proportional to g2

E , gEgC or g2
C . In the δ-expansion, these

terms are of O(p7/2), O(p9/2) and O(p11/2), respectively. Likewise, they are of O(p), O(p2) and
O(p3) in the first resonance region. In Fig. IV.11, we compare the previous results including
the magnetic and electric couplings (green dotted curve) [59] and our improved result including
the Coulomb coupling (black solid curve). Despite its higher order in the power counting, the
contribution of the Coulomb coupling gives significant effects, especially for αL and δLT .
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4. Compton Scattering off the Nucleon with π∆-Loops

The remaining curves show different regularizations for the higher Q2 behavior. For one thing,
we introduce a vector-meson type of dependence on gE and gC analogue to Eq. (IV.59) (blue
short dashed curve) [363]. For another thing, in addition to the dipole FFs on the coupling
constants, we introduce an overall prefactor which cuts off higher momenta, cf. Eq. (IV.104)
(purple short dashed curve) [360].

4. Compton Scattering off the Nucleon with π∆-Loops

Within the δ-counting, the diagrams shown in Fig. IV.3 enter the chiral expansion of the VVCS
amplitude at NNLO; they are of O(p7/2). The diagrams in the first row of Fig. IV.12 contribute
to the VVCS amplitude at the same order.13 The remaining diagrams, shown in the second and
third row of Fig. IV.12, are of higher order. They contribute at O(p4) and O(p9/2), respectively.
However, they are required from e.m. gauge invariance and for the renormalization program.
Lensky et al. [59] bypassed the calculation of the latter diagrams, cf. Fig. IV.12 second and
third row, by includes only the subset of pion-delta loops which would give a non-vanishing
contribution to the case of a neutral delta, i.e., the diagrams shown in Fig. IV.3.14 They
followed a procedure outlined previously for the case of RCS [58, Section 3] to make this subclass
of diagrams gauge invariant and effectively include the lower-order contributions of the one-loop
graphs with minimal coupling of photons to the delta. In this way, they achieved a BChPT
prediction for the amplitude of CS off the nucleon at NNLO and the nucleon polarizabilities at
NLO in the low-energy domain of the δ-expansion.

The ε-expansion, however, counts all diagrams in Figures IV.3 and IV.12 as O(p3), cf. Table
IV.2. Working in the ε-expansion, Bernard et al. [64] obtain a larger value for the longitudinal-
transverse polarizability of the proton (and neutron), cf. Fig. I.3, which is in significant con-
tradiction to the empirical information and the result from Ref. [59]. The claim is that the
difference is due to the diagram with two photons coupling minimally to the delta inside the
chiral loop, see third row of Fig. IV.12. To solve the δLT puzzle, it will be enlightening to repeat
the calculation of Ref. [64] and consider the diagrams shown in Figures IV.3 and IV.12 entirely,
i.e., not only the lower-order contributions. Such project has been initiated by V. Lensky et al.
[65] and results are underway. As part of this thesis, the π∆-production cross sections were cal-
culated, which serve as a cross check for the π∆-loop amplitudes [65]. In Section IV.4.1, we will
outline the calculation of the cross sections and present our results graphically. In Section IV.4,
we will provide some newly developed insights into the δLT puzzle.

The last thing we want to point out is that, while the diagrams in Figures III.3, IV.2, IV.3,
IV.4 and IV.12 give the complete O(p3) VVCS amplitude in the ε-expansion, they do not give
a full amplitude in the δ-expansion. In the low-energy domain of the δ-expansion, this set of
diagrams is incomplete and lacks the diagrams shown in the first row of Fig. IV.13 to give the
VVCS amplitude at O(p9/2). Also, in the first resonance region the diagrams will not be able to
fully describe the CS amplitude at O(p3), because the O(p2) diagrams shown in Fig. IV.13 are
missing. On the other hand, all diagrams in Fig. IV.13 are of higher order in the ε-expansion,
in particular, they are of O(p4). Therefore, extending the calculation of Ref. [59] as described

13The dashed circles on the vertices of the far left diagram in the first row should indicate that either both
vertices have the photon minimally coupling to the delta, or, one photon is coupling to the pion and the other
is coupling to the delta. The diagram with both photons coupling to the pion is already shown in Fig. IV.3.
Similarly, the dashed circle on the vertex of the far left diagram in the second row indicates that the photon
can couple to the pion or the delta. This is for instance allowed in the γ n→ ∆±π∓ channels.

14The structures shown in the first row of Fig. IV.12 can be found also in Fig. IV.3.
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above gives us no more explanatory power in the δ-expansion power-counting. It will only help
to understand the origin of the δLT puzzle.

4.1. π∆-Production Cross Sections

(A) (B) (C) (D)

Figure IV.14.: π∆-production photoabsorption cross sections.

In the following, we study the cross section of γ∗N → π∆. In general, the cross section for
two-body scattering, i.e., 1 + 2→ 3 + · · ·+ n, is defined as:

dσ = (2π)4δ(4) (pf − pi) |Mfi|2
1

4I

∏
a

d3p′a
(2π)32E′a

, (IV.73)

where the subscript i (f) stands for initial (final) particles, I2 = (p1 · p2)2 − m2
1m

2
2, and the

integration is over the final phase space. For the two-to-two scattering at hand, we can write

dσ =
1

32π

|q||p′|
M2 (ν2 +Q2)

|Mfi|2 dcos θ, (IV.74)

where θ is the scattering angle and I2 = M2(ν2 + Q2). Here, we eliminated four integrations
by help of the energy and momentum conservation delta functions, and evaluated the azimuthal
integration with a factor of 2π.

For the calculation, we chose the CM kinematics:

p = (E, 0, 0,−|q|) , (IV.75a)

q = (ω, 0, 0, |q|) , (IV.75b)

p∆ =
(
E∆, |p′| sin θ, 0, |p′| cos θ

)
, (IV.75c)

pπ =
(
Eπ,−|p′| sin θ, 0,−|p′| cos θ

)
. (IV.75d)

All particles need to be on the mass shell and the photon virtuality is given by q2 = −Q2. Later,
we can transit to the lab-frame variables with a set of replacement rules:

E =
s+Q2 −Mν√

s
, (IV.76a)

ω =
Mν −Q2

√
s

, (IV.76b)

E∆ =
s+M2

∆ −m2
π

2
√
s

, (IV.76c)

Eπ =
s+m2

π −M2
∆

2
√
s

, (IV.76d)

|q| =

√
Q2 +

(Q2 −Mν)2

s
, (IV.76e)
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|p′| =

√(
s+m2

π −M2
∆

)2
4s

−m2
π , (IV.76f)

where s = M2 + 2Mν −Q2 is the usual Mandelstam variable.
For VVCS, the photon can be either transverse or longitudinal polarized. The polarization

vectors for a space-like photon read [53]:

ε+ = −1/
√

2 (0, 1, i, 0) , (IV.77a)

ε− = 1/
√

2 (0, 1,−i, 0) , (IV.77b)

ε0 = 1/Q (|q|, 0, 0, ω) , (IV.77c)

where the subscript indicates the helicity of the photon. For the nucleon momentum given in
Eq. (IV.75a), the spin-1/2 Dirac spinors NσN follow from Eq. (IV.90) as:

N1/2(p) =
√
E +M

(
1, 0,− |q|

E +M
, 0

)
, (IV.78a)

N−1/2(p) =
√
E +M

(
0, 1, 0,

|q|
E +M

)
, (IV.78b)

where the subscript again indicates the helicity. The Rarita-Schwinger vector-spinors describing
the spin-3/2 delta are introduced in Appendix IV.B.15 Here, the nucleon spinors are normalized
according to Eq. (III.6) and the delta vector-spinors are normalized as:

Uµ(p∆, λ
′
∆)Uµ(p∆, λ∆) = −2M∆ δλ′∆λ∆

. (IV.79)

The photon polarization vectors obey the transversality condition:

q · ελγ (q) = 0, (IV.80)

and the orthogonality condition:

ε∗λ′γ (q) · ελγ (q) = (−1)λγ δλ′γ λγ . (IV.81)

The diagrams contributing to the π∆-production process are shown in Fig. IV.14. They can
be calculated with the Feynman rules collected in Appendix IV.A. Since Eq. (IV.74) requires
the squared matrix element, the spin-energy projection operator in Eq. (IV.94) is useful. It
combines the Rarita-Schwinger vector spinors in the right way and performs the necessary sum
over all possible helicities in the final state.

For the cross sections, we distinguish 5 individual channels:

1. channel: γp→ ∆++π−,

2. channel: γp→ ∆+π0,

3. channel: γp→ ∆0π+,

4. channel: γn→ ∆+π−,

5. channel: γn→ ∆−π+.

15Note that we are using different normalizations in Appendix IV.B.
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Furthermore, we have three different combinations of helicity cross sections for each channel:
σT , σTT and σL, as explained in Section IV.1.3. In addition, the possibility of a spin flip of the
nucleon gives rise to the longitudinal transverse cross section σLT . In that case, we in the initial
state have a longitudinal photon with helicity λγ = 0 (ε0) and a nucleon with helicity λN = ∓1/2
(N∓1/2). In the final state, this changes into a transverse photon with helicity λ′γ = ±1 (ε±) and
a nucleon with inverted helicity λ′N = ±1/2 (N±1/2). The VVCS amplitude is then given by:

T (ν,Q2) =
√

2 gLT (ν,Q2), (IV.82)

as one can read of from Eq. IV.9. Therefore, in order to derive the longitudinal transverse cross
section, we need to divide the squared matrix element by

√
2.

Our results for the cross sections are shown in Figures IV.17-IV.24, see Appendix IV.D. We
show σT , σTT , σL and σLT as functions of the lab-frame photon energy ν for different values of the
photon virtuality Q2. For each helicity cross section, we show a grid plot of the different channels
and the combined result for the proton and neutron, respectively. In Fig. IV.17, we include data
bins from RCS [401]. Especially for the neutral-delta channel, our BChPT prediction gives cross
sections which are much higher than the data points.

To check our results, we used the cross sections (σT , σTT and σLT ) to obtain the higher-order
polarizabilities, e.g., γ0, and compared to the polarizabilities extracted from the real part of
the π∆-loop amplitudes [59] shown in Figures IV.3 and IV.12. As part of this thesis, we also
calculated the imaginary part of some of the O(p7/2) π∆-loop spin-independent amplitudes and
verified the optical theorem for σT and σL. For the SE diagram (far left diagram in the second
row of Fig. IV.3), we in addition compared to Ref. [366] and checked the optical theorem for all
cross sections.

In Figures IV.25 and IV.26, we compare σT , σTT , σL and σLT from different orders in the chiral
expansion for the proton and neutron, respectively. On one hand, we show the π∆-production
cross sections which generate the π∆-loop diagrams contributing to the CS at O(p7/2) in the
low-energy domain of the δ-expansion (black solid curves). In that case, the matrix element
for the cross sections only contains the diagrams (A)-(C) in Fig. IV.14. On another hand, we
show the cross sections related to the CS amplitude at O(p9/2) in the δ-expansion and O(p3)
in the ε-expansion (blue dashed curves). Here we include all diagrams in Fig. IV.14 into the
cross section calculation. Finally, we illustrate the influence of the CS diagram with two photons
minimally coupling to the delta inside the pion loop by showing the cross section associated to
the CS amplitude at O(p4) (red dotted curves). It thus excludes the contribution of the diagram
(D) squared.

For σT and σTT we observe that the O(p4) and O(p9/2) curves are very close, hence the
O(p9/2) contribution is very small. For σL and σLT , however, we observe significant effects of
both O(p4) and O(p9/2) contributions. At O(p9/2), the absolute value of the cross sections is
considerably reduced, if not almost vanishing. We may conclude that the contribution of the
CS diagram with three delta propagators (i.e., two photons coupling to the delta) is larger if
longitudinal photons are involved.

Unfortunately, we have not yet been able to evaluate these π∆-effects on the controversial δLT
polarizability, because of the ultraviolet divergence. For example, the value at Q2 = 0, given as

δLT (0) = lim
Q→0

1

2π2

ˆ ∞
0

dν

ν2Q
σLT (ν,Q2), (IV.83)

will diverge upon substituting the π∆-production cross section we obtained, because of its bad
(unphysical) high-energy behaviour. In ChPT this problem is taken care of by renormalization,
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(A) (B) (C)

Figure IV.15.: πN -production photoabsorption cross sections.

whereas here we can use subtractions of the dispersion integrals. The correspondence of the
renormalization of the loop calculation and of the dispersive calculation is an open issue for this
particular case. We hope to sort out this issue in the near future.

5. Comparison of ChPT and Empirical Nucleon Structure Functions

In order to visualize our BChPT prediction for the nucleon structure functions and compare to
empirical information, we need to replace the δ-functions contained in the ∆-production cross
sections, cf. Eqs. (IV.39) and (IV.38), by nascent δ-functions. We will use a Lorentz function,
Eq. (IV.33), which is similar to the Breit-Wigner resonance parametrization [241, Eq. (46.55)].
The Lorentz function is normalized to ensure:

´∞
−∞ dxnλ(x) = 1. Starting from Eq. (IV.38), we

first replace:

δ(x− Q2/2Mν∆) =
[2Mν∆]2

Q2
δ
(
s−M2

∆

)
. (IV.84)

Afterwards, we substitute the δ-function as:

δ
(
s−M2

∆

)
→ 1

π

M∆Γ∆(
s−M2

∆

)2
+ (M∆Γ∆)2

(IV.85)

To describe the ∆(1232)-resonance, we then use the pole position M∆ = 1.210 GeV and the
width Γ∆ = 0.1 MeV [241].

We limit the comparison to the spin-dependent proton structure function g1(x,Q2). The plots
of ChPT and empirical nucleon structure functions are moved to Appendix IV.E. Our BChPT
prediction consists of the ∆-production cross sections presented in Section IV.3.1 and above
and the πN -production cross sections [59]. For the ∆-production cross sections, we use the
ChPT couplings in Table IV.1 and a dipole on the magnetic coupling, cf. Eq. (IV.59), to include
the effect of vector-meson diagrams. The πN -production cross sections, see Fig. IV.15, were
calculated in Ref. [59] and reproduced in the course of this thesis.

If available, we show low-Q2 data from different experiments [402, 403]. Furthermore, we
compare to two different parametrizations of the spin-dependent structure functions of the
proton. We show the JLab parametrization provided to us by K. Griffioen [399, 404] and a
parametrization provided to us by S. Simula [405, 406]. While the Simula parametrization
is lacking some recent data for the low-Q2 region, the JLab parametrization includes data as
low as Q2 = 0.0452 GeV2. Nevertheless, the Simula parametrization proves to be very use-
ful for our purposes, as its composition of background and resonance contributions is easy to
access. This allows us to plot different ingredients to the structure function parametrization
separately, e.g., the contribution of the ∆(1232)-resonance, the combined resonant contribution
of ∆(1232), P11(1440), D13(1520), S11(1535), S∗11(1650), D15 +F15(1680), D33(1700), F35(1905)
and F37(1950), and the “background” contribution.
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Remember that, by the standard DRs, the imaginary part of the ∆-exchange CS amplitude
is only related to the ∆-pole part of the ∆-exchange. For the non-pole part we deduced the
structure functions in Eqs. (IV.41), (IV.43) and (IV.44). Since we are plotting the ∆-production
contribution to the structure functions as given in Eq. (IV.38), we observe an unphysical behav-
ior at low x. This behavior would be canceled by the δ(x) structure functions in Eqs. (IV.41),
(IV.43) and (IV.44). It is another manifestation of the cancelations between ∆-pole and non-pole
contributions, which were also observed for the I1 and I2 integrals in Section IV.3.3. Unfortu-
nately, we can not plot the missing part of the structure functions as the parameters of the
Lorentz function are unknown. We therefore put a gray shade over the low-x region in all plots
and draw the readers attention to the ∆-resonance region.

6. Summary and Conclusion

In the present Chapter, we have considered the forward VVCS off the nucleon and the Q2

dependence of the nucleon polarizabilities, a.k.a. symmetric GPs. Our main aim was to calculate
and study the VVCS amplitudes and GPs in the framework of ChPT.

We have discussed the different power-counting schemes for ChPT with explicit ∆(1232)
DOFs (see Section IV.2.1) and made a comprehensive analysis of the ∆-exchange contribution.
More specifically, we have extended the calculation of Ref. [59] by including the Coulomb (gC)
coupling. We have verified the optical theorem with the imaginary part of the ∆-exchange
amplitudes, cf. Eq. (IV.38), and the ∆-production cross sections, cf. Appendix IV.C.2. The
∆-exchange amplitudes split into a ∆-pole part and a non-pole part; the resulting amplitudes
are given in Appendix IV.C.1. The ∆-pole part is obtained from the ∆-production cross sections
with the help of DRs. For the non-pole part, we write down the structure functions which do
not peak at the pole position, i.e., are not proportional to δ(x− Q2/2Mν∆), but behave as δ(x),
see Eqs. (IV.41), (IV.43) and (IV.44). The GPs of VVCS with ∆-exchange are listed in Eqs.
(IV.60)-(IV.69) and Appendix IV.C.3, where we compare different regularizations of their high-
Q2 behavior. In Fig. IV.11, we have plotted the resulting symmetric GPs and studied the effect
of the gC coupling. The strongest effect is observed in αL and δLT , where even the value at the
real photon point is affected.

In addition to the ∆-production cross sections, we reproduced the πN -production cross sec-
tions from Ref. [59] and derived the π∆-production cross sections. We have shown that the
polarizability and Born contributions to the BC sum rule are vanishing independently, see Sec-
tion V.1.6.3. For the ∆-exchange, the πN -loop and the π∆-loop CS amplitudes we confirmed
that the polarizability contributions to the BC sum rule are equal to zero.

The calculated π∆-production cross sections are shown in Appendix IV.D. They have been
helpful to verify the π∆-loop CS amplitudes calculated by Lensky et al. [59] at O(p9/2) in the
δ-expansion. However, we have gone further and included the diagrams with photons coupling
minimally to the delta. Hence, we also consider the diagram with both photons coupling to
delta inside the pion loop, which is thought to be responsible for the δLT puzzle.

The δLT puzzle refers to the significant discrepancy between the BChPT calculations of
Bernard et al. [64] and Lensky et al. [59]. Our present calculation seems to have all the necessary
ingredients to sort this puzzle out. However, thus far we have not obtained the contribution
of the controversial diagram to δLT due to the ultraviolet divergence of the relevant dispersion
integral.

In Section IV.5 and Appendix IV.E, we compared our BChPT prediction for the nucleon
structure functions to empirical information. We have shown that the ∆-resonance peak in the
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structure functions is underestimated by BChPT. In the future, we plan to improve the high-
energy asymptotics of the cross sections by some kind of ultraviolet completion, which will, in
particular, allow us to obtain the result for δLT .

Besides our ChPT results, we presented the ∆-exchange contribution to the nucleon polariz-
abilities in terms of Jones-Scadron FFs, see Section IV.3.2. We reviewed how the Jones-Scadron
FFs are related to the e.m. nucleon FFs by large-Nc relations. We contrasted the ∆-exchange
effect with the ∆-pole effect. In Eq. (IV.58), we have set up the basics for a model which we
want to implement in Chapter VII to calculate the polarizability contribution to the HFS in µH.
The characteristic feature of the model is that we have: I∆−pole

1 (Q2) = 1
4F

2
2 (Q2), see Fig. IV.10.

In Appendix IV.A, we derive Feynman rules from the ChPT Lagrangian given in Section IV.2.
In Section IV.B, we found a general expression for the Rarita-Schwinger vector-spinors of spin-
3/2 particles.

The VVCS amplitudes presented in this Chapter will be used in the remaining part of this
thesis to calculate the TPE effects in µH.

A. Feynman Rules

A.1. Vertices

The Feynman rules for the vertices are derived from the Lagrangians in Section IV.2.

• e.m. vertex for the pion: γ∗ π → π

k k’

Γµ
γππ(k, k′) = −eπ(k + k′)µ

• e.m. seagull vertex for the pion: γ∗ π → γ∗ π

Γµν
γγππ = 2e2gµν

• e.m. vertex for the nucleon: γ∗N → N

Γµ
γNN = −eNγµ
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• e.m. vertex for the delta: γ∗∆→ ∆

Γαβµ
γ∆∆(q) = −e∆γ

αβµ +
e∆

M∆

[
κ1

(
qαgβµ − qβgαµ

)
−κ2γ

αβµρqρ

]

• pion-nucleon vertex: N → N π

k

ΓπNN (k) = − igA
2fπ

/k γ5


1 p→ p π0,√

2 p→ nπ+, n→ p π−,

−1 n→ nπ0;

• pion-delta vertex: ∆→ ∆π

k

Γαβ
π∆∆(p′, k) =

HA

2fπM∆
εαβρσkρ p

′
σ



1 ∆++ → ∆++π0,√
2/3 ∆++ → ∆+π+,√
2/3 ∆+ → ∆++π−,

1/3 ∆+ → ∆+π0,

2
√

2/3 ∆+ → ∆0π+,

2
√

2/3 ∆0 → ∆+π−,

−1/3 ∆0 → ∆0π0,√
2/3 ∆0 → ∆−π+,√
2/3 ∆− → ∆0π−,

−1 ∆− → ∆−π0;

• pionic nucleon-to-delta transition vertex: N → ∆π

k

Γα
N∆π(p′, k) =

ihA
2fπM∆

γρσαkρp
′
σ



−1 p↔ ∆++ π−,√
2/3 p↔ ∆+ π0,

1/
√

3 p↔ ∆0 π+,

−1/
√

3 n↔ ∆+ π−,√
2/3 n↔ ∆0 π0,

1 n↔ ∆− π+;
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• nucleon-to-delta transition vertex: γ∗N → ∆

Γαµ
∆→γN (p′, q) = −

√
3

2

e

M (M +M∆)

{
gMγ

αµκλp′κqλ

+ gE(p′ · q gαµ − qαp′µ)− gC

M∆

(
q2gαµ/p

′

−q2p′µγα + p′ · q qµγα − qαqµ/p′
)}
γ5,

Γαµ
γN→∆(p′, q) =

√
3

2

e

M (M +M∆)

{
gMγ

αµκλp′κqλ

+ gE(p′ · q gαµ − qαp′µ) +
gC

M∆

(
q2gαµ/p

′

−q2p′µγα + p′ · q qµγα − qαqµ/p′
)}
γ5;

• 4-point vertex with photon coupling minimally to the pion: γ∗N → ∆π

k

Γαµ
Nγπ∆(p′) =

ihAe

2fπM∆
γραµp′ρ×

×
{

1 γ p↔ ∆++ π−, γ n↔ ∆− π+,

1/
√

3 γ p↔ ∆0 π+, γ n↔ ∆+ π−;

• 4-point vertex with photon coupling minimally to the delta: γ∗N → ∆π

k

Γαµ
Nγ∆π(k) =

ihAe∆

2fπM∆
γραµkρ


1 γ p↔ ∆++ π−,

−
√

2/3 γ p↔ ∆+ π0,

1/
√

3 γ n↔ ∆+ π−,

−1 γ n↔ ∆− π+.

A.2. Propagators

• pion propagator:

k

Sπ(k) =
1

k2 −M2
π + i0+
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• nucleon propagator:

p

SN (p) =
/p+MN

p2 −M2
N + i0+

• delta propagator [62]:

p’ Sαβ∆ (p′) =
/p′ +M∆

p′ 2 −M2
∆ + i0+

[
−gαβ +

1

3
γαγβ

+
1

3M∆

(
γαp′β − γβp′α

)
+

2

3M2
∆

p′αp′β
]
.

B. Rarita-Schwinger Vector-Spinors

The ∆(1232)-resonance is a spin-3/2 particle. It can be described by a vector-spinor Uµ(p, λ),
which satisfies the Rarita-Schwinger equation [407]:

(γαpα −M∆)Uµ(p, λ) = 0. (IV.86)

Here, p is the four momentum of the delta and λ is its helicity. In addition, Uµ(p, λ) has to fulfil
the following set of supplementary conditions:

γµUµ(p, λ) = 0, pµUµ(p, λ) = 0. (IV.87)

The proper Rarita-Schwinger vector-spinors can be constructed as [408]:

Uµ(p, λ) =
∑
αβ

C
1 1/2 3/2
αβ λ εµ(p, α)u(p, β), (IV.88)

where εµ is a polarization vector, u is a Dirac spinor and the coefficient is a conventional Clebsch-
Gordan coefficient. The summation runs over α and β, the helicities of the polarization vector
and the Dirac spinor, respectively.

In the following, we construct Rarita-Schwinger vector-spinors for different kinematics. In this
Section, we chose the spin-3/2 spinors to be normalized according to Uµ(p∆)Uµ(p∆) = −1.16

Accordingly, the Dirac spinors need to be normalized as ū(p∆)u(p∆) = 1. The Dirac spinors are
defined by:

u(p, β) = A

(
ϕ0

σ·p
E+Mϕ0

)
, with A =

√
E +M

2M
, (IV.89)

where ϕ0 = (1, 0) stands for the spin projection β = +1/2 along the z-axis and ϕ0 = (0, 1) for
the spin projection β = −1/2. They take the general form:

u(p) =

√
E +M

M

(
χ1√

2
,
χ2√

2
,
χ2 p1 − iχ2 p2 + χ1 p3√

2 (E +M)
,
χ1 p1 + iχ1 p2 − χ2 p3√

2 (E +M)

)
, (IV.90)

16In other words, we for simplicity remove a factor of
√

2M∆ in each vector-spinor as compared to the rest of this
thesis.
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whereby p = (E, p1, p2, p3) and p2 = M2. For the transverse spin-1 polarization vectors we use
Eqs. (IV.77a) and (IV.77b).

B.1. Rest Frame

U(p, λ = 3/2) =
{(

0, 0, 0, 0
)
,
(
− 1/
√

2, 0, 0, 0
)
,
(
− i/
√

2, 0, 0, 0
)
,
(

0, 0, 0, 0
)}
, (IV.91a)

U(p, λ = 1/2) =
{(

0, 0, 0, 0
)
,
(

0,−1/
√

6, 0, 0
)
,
(

0,−i/
√

6, 0, 0
)
,
(√

2/3, 0, 0, 0
)}
, (IV.91b)

U(p, λ = −1/2) =
{(

0, 0, 0, 0
)
,
(

1/
√

6, 0, 0, 0
)
,
(
− i/
√

6, 0, 0, 0
)
,
(

0,
√

2/3, 0, 0
)}
, (IV.91c)

U(p, λ = −3/2) =
{(

0, 0, 0, 0
)
,
(

0, 1/
√

2, 0, 0
)
,
(

0,−i/
√

2, 0, 0
)
,
(

0, 0, 0, 0
)}
, (IV.91d)

with p = (M∆, 0, 0, 0) and ε0 = (0, 0, 0, 1).

B.2. Momentum Along z-Direction

U(p, λ = 3/2) =
{(

0, 0, 0, 0
)
,
(
− 1

2

√
E∆ +M∆

M∆
, 0,− |p|

2M∆

√
M∆

E∆ +M∆
, 0
)
, (IV.92a)(

− i

2

√
E∆ +M∆

M∆
, 0,− i|p|

2M∆

√
M∆

E∆ +M∆
, 0
)
,
(

0, 0, 0, 0
)}
,

U(p, λ = 1/2) =
{( |p|√

3M∆

√
E∆ +M∆

M∆
, 0,

|p|2√
3M2

∆

√
M∆

E∆ +M∆
, 0
)
, (IV.92b)

(
0,− 1

2
√

3

√
E∆ +M∆

M∆
, 0,

|p|
2
√

3M∆

√
M∆

E∆ +M∆

)
,

(
0,− i

2
√

3

√
E∆ +M∆

M∆
, 0,

i|p|
2
√

3M∆

√
M∆

E∆ +M∆

)
,

( E∆√
3M∆

√
E∆ +M∆

M∆
, 0,

E∆|p|√
3M2

∆

√
M∆

E∆ +M∆
, 0
)}
,

U(p, λ = −1/2) =
{(

0,
|p|√
3M∆

√
E∆ +M∆

M∆
, 0,− |p|2√

3M2
∆

√
M∆

E∆ +M∆

)
, (IV.92c)

,
( 1

2
√

3

√
E∆ +M∆

M∆
, 0,

|p|
2
√

3M∆

√
M∆

E∆ +M∆
, 0
)
,

(
− i

2
√

3

√
E∆ +M∆

M∆
, 0,− i|p|

2
√

3M∆

√
M∆

E∆ +M∆
, 0
)
,

(
0,

E∆√
3M∆

√
E∆ +M∆

M∆
, 0,− E∆|p|√

3M2
∆

√
M∆

E∆ +M∆

)}
,

U(p, λ = −3/2) =
{(

0, 0, 0, 0
)
,
(

0,
1

2

√
E∆ +M∆

M∆
, 0,− |p|

2M∆

√
M∆

E∆ +M∆

)
, (IV.92d)(

0,− i
2

√
E∆ +M∆

M∆
, 0,

i|p|
2M∆

√
M∆

E∆ +M∆

)
,
(

0, 0, 0, 0
)}
,

with p = (E∆, 0, 0, |p|) and ε0 = 1
M∆

(|p|, 0, 0, E∆)

B.3. Arbitrary Momentum

U(p, λ = 3/2) =
{(
−
|p| sinϕ

2M∆

√
E∆ +M∆

M∆
, 0,−

|p|2 sin 2ϕ

4M2
∆

√
M∆

E∆ +M∆
,−
|p|2 sin2 ϕ

2M2
∆

√
M∆

E∆ +M∆

)
, (IV.93a)

(
−

1

2M∆

(
E∆ sin2 ϕ+M∆ cos2 ϕ

)√E∆ +M∆

M∆
, 0,
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−
|p| cosϕ

2M2
∆

(
E∆ sin2 ϕ+M∆ cos2 ϕ

)√ M∆

E∆ +M∆
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,

with p = (E∆, |p| sinϕ, 0, |p| cosϕ).
From Eq. (IV.93) we derive the spin-energy projection operator:

Σµν(p) =
∑
λ

Uµ(p, λ)U
ν
(p, λ), (IV.94a)

=
M∆ + /p

2M∆

{
−gµν +

1

3
γµγν +

2

3M2
∆

pµpν +
pνγµ − pµγν

3M∆

}
, (IV.94b)

which is relevant for the calculation of the π∆-production cross sections in Section IV.4.1.

C. Compton Scattering off the Nucleon with ∆-Exchange

C.1. Compton Scattering Amplitudes

In Section IV.3.1, we discussed the process of CS off the Nucleon with ∆-exchange. The corre-
sponding nucleon structure functions were given in Eq. (IV.38). Here, we present our results for
the real part of the tree-level CS amplitudes, cf. Fig. IV.4, were we use the shorthands defined
in Eq. (IV.40). In Eq. (IV.35), we distinguished the ∆-pole and the non-pole terms, and also
the T1 subtraction function. The respective terms are provided below.

Omitting the prefactor
[
(s−M2

∆)(u−M2
∆)
]−1

, the ∆-pole contributions read:
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4
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4 (IV.95a)
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2
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]
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(IV.95b)
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2
]
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)
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}
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)
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]
.

The non-pole contributions are given by:
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+

[
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]
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and the T1 subtraction function is:

T1(0, Q2) =
4παQ4

M∆M+ω+

[
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E∆
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(
M2 −Q2

)
M2M2

∆M+
+
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+
gMgC

MM+
+

2gEgC

(
M∆+Q2

)
M2M∆M+

]
.

C.2. ∆-Production Cross Section from Helicity Amplitudes

Figure IV.16.: ∆-production mechanism.

The general formula for a scattering cross section is given in Eq. (IV.73). For the ∆-production
process, γ∗N → ∆, this becomes:

dσ =
π

4M2
∆

√
ν2 +Q2

|Mfi|2 δ (M∆ − (Ep + ω)) δ (p∆ − (p+ q)) dp∆, (IV.98)
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where I = |q| (Ep + ω) = M∆

√
ν2 +Q2 and the matrix element corresponds to the diagram in

Fig. IV.16. It is convenient to work in the rest frame of the ∆:

p = (Ep, 0, 0,−|q|) , q = (ω, 0, 0, |q|) , p′ = (M∆, 0, 0, 0) . (IV.99)

Employing the on-shell conditions on the nucleon and delta four-momenta, as well as the energy
and momentum conservation stored in the δ-functions, we obtain:

Ep =
M2

∆ +M2 +Q2

2M∆
, (IV.100)

ω = M∆ −
M2

∆ +M2 +Q2

2M∆
, (IV.101)

|q| =

√
Q2 +

(
M∆ −

M2
∆ +M2 +Q2

2M∆

)2

. (IV.102)

The Rarita-Schwinger vector-spinors for the rest kinematics are derived in Eq. (IV.91), where
we need to multiply by a factor of

√
2M∆ to achieve the normalization in Eq. (IV.79). The

photon polarization vectors and the nucleon spinors are the same as in Eqs. (IV.77)-(IV.78).
We then derive the following helicity amplitudes Tλ′∆λγλN :

T3/2 1 −1/2 = −e
√

3 [G∗M +G∗E ]Q−Q
2
+

2
√

2M(M +M∆)
, (IV.103a)

T1/2 1 1/2 =
e [3G∗E −G∗M ]Q−Q

2
+

2
√

2M(M +M∆)
, (IV.103b)

T1/2 0 −1/2 =
eG∗C QQ+|q|
M(M +M∆)

, (IV.103c)

T−1/2 0 1/2 = − eG
∗
C QQ+|q|

M(M +M∆)
. (IV.103d)

The results are conform with Ref. [360, Section 2.1.1.]. Evaluating Eq. (IV.98) with the helicity
amplitudes from Eqs. (IV.103a) and (IV.103b), we obtain the cross sections for total helicities
of 3/2 and 1/2, respectively. Eqs. (IV.103c) and (IV.103d) contain longitudinal photons, they
produce cross sections with total helicities −1/2 and 1/2. σT , σTT and σL follow as described
in Section IV.1.3. For σLT we produce the spin-flip of the nucleon by combining Eqs. (IV.103b)
and (IV.103d).

The above derivation of the ∆-production cross sections is useful to have as a cross-check for
the structure functions in Eq. (IV.38), which were calculated from the ∆-exchange contribution
to the CS off the nucleon. Indeed, the ∆-production cross sections presented in here with the
photon flux factor

√
ν2 +Q2M∆/M agree with our previous results.

C.3. Q2 Dependence of Nucleon Polarizabilities

We replace the prefactor [360]:

e

M (M +M∆)
→ e (M +M∆)

M [(M +M∆)2 +Q2]
, (IV.104)

to introduce a cutoff on higher momentum transfers. The values of the GPs at the real photon
point are not affected by this regularisation, cf. Section IV.3.3. For the slopes of the GPs we
notwithstanding obtain Eqs. (IV.105)-(IV.108).
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• sum of electric and magnetic dipole polarizabilities:
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D. Plots of π∆-Production Cross Sections

Hereby we present the results of our tree-level calculation of the π∆-production cross sections.
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Figure IV.17.: Total cross section for pion-delta electroproduction on the proton. The blue, red, orange
and green curves correspond to Q2 = 0, 0.1, 0.2, 0.3 GeV2. Data points are from Ref. [401, Table 17-18].
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Figure IV.18.: Polarized cross section σTT for pion-delta electroproduction on the proton. Legend for the
curves is the same as in Fig. IV.17.
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Figure IV.19.: Longitudinal unpolarized cross section σL for pion-delta electroproduction on the proton.
The red, orange and green curves correspond to Q2 = 0.1, 0.2, 0.3 GeV2, respectively.
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Figure IV.20.: Longitudinal-transverse polarized cross section σLT for pion-delta electroproduction on
the proton. Legend for the curves is the same as in Fig. IV.19.
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Figure IV.21.: Unpolarized total cross section σT for pion-delta electroproduction on the neutron. Legend
for the curves is the same as in Fig. IV.17.
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Figure IV.22.: Polarized cross section σTT for pion-delta electroproduction on the neutron. Legend for
the curves is the same as in Fig. IV.17.
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Figure IV.23.: Longitudinal unpolarized cross section σL for pion-delta electroproduction on the neutron.
Legend for the curves is the same as in Fig. IV.19.
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Figure IV.24.: Longitudinal-transverse polarized cross section σLT for pion-delta electroproduction on
the neutron. Legend for the curves is the same as in Fig. IV.19.
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Figure IV.25.: π∆-electroproduction cross sections for the proton. The cross sections are related to the CS
amplitudes of O(p7/2) (black solid curves), O(p4) (red dotted curves) and O(p9/2) (blue dashed curves)
in the low-energy domain of the δ-expansion. For σT and σTT we used Q2 = 0 and for σL and σLT we
used Q2 = 0.01 GeV2.
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Figure IV.26.: π∆-electroproduction cross sections for the neutron. Legend for the curves is the same as
in Fig. IV.25.
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IV. Forward Doubly-Virtual Compton Scattering

E. Plots of Nucleon Structure Functions

Here we confront our BChPT calculation of the proton spin structure function g1(x,Q2) with
experimental data and the most commonly used empirical parametrizations.
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Figure IV.27.: Spin structure function g1 of the proton at Q2 = 0.0205 GeV2
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Figure IV.28.: Spin structure function g1 of the proton at Q2 = 0.0592 GeV2
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Figure IV.29.: Spin structure function g1 of the proton at Q2 = 0.101 GeV2
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Figure IV.30.: Spin structure function g1 of the proton at Q2 = 0.171 GeV2
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Figure IV.31.: Spin structure function g1 of the proton at Q2 = 0.244 GeV2
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Figure IV.32.: Spin structure function g1 of the proton at Q2 = 0.292 GeV2
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CHAPTER V

TWO-PHOTON EXCHANGE IN HYDROGEN-LIKE ATOMS

The rest of the thesis (Chapters V-VII) is devoted to the TPE corrections, with particular focus
on the proton-polarizability effects in µH. Numerical results for the polarizability contributions
to the LS and HFS will be given in Chapters VI and VII, respectively.

In this Chapter we present an extensive derivation of the structure effects through the forward
TPE (Section V.1). We will show how the TPE effects can be subdivided into either “elastic”
and “inelastic” (Section V.1.3), or, “Born” and “polarizability” contributions (Section V.1.4).
Final expressions for the LS and HFS are given in Sections V.1.5 and V.1.6, respectively. In
Section V.2, we partially match the effects from one- and two-photon exchange, e.g.: the gross
structure, the Fermi energy, the charge radius, Friar radius and Zemach radius terms. In Sec-
tion V.3, we expand the TPE formulas for small values of Bjorken x and express the TPE
polarizability contribution to the HFS in terms of polarizabilities. We will return to this formal-
ism in Section VII.2 and apply it to interpret our results for the HFS.

The forward TPE effects are of order (Zα)5. In Section V.4, we turn our attention to the
off-forward TPE effects. The off-forward TPE is suppressed by an addition factor of Zα. Nev-
ertheless, certain enhancement mechanism leave the possibility for a significant off-forward TPE
effect in atomic bound states. In particular, we will study the neutral-pion exchange [53, 240]
(Section VII.4). Also, we consider the nuclear-polarizability corrections to the LS at order
(Zα)6 lnZα (Section VI.2). In Appendix VI.E, we calculate the Born and elastic off-forward
VVCS amplitudes.

Figure V.1.: Two-photon-exchange diagram in general kinematics: the horizontal lines correspond to the
lepton and the nucleus (bold), where the “blob” can be understood as doubly-virtual Compton scattering.
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V. Two-Photon Exchange in Hydrogen-Like Atoms

1. Structure Effects Through Forward Two-Photon Exchange

The leading effect of the proton structure on hydrogen is the finite-size (charge-radius) effect
arizing at order (Zα)4. The subleading effects [(Zα)5, etc.] are best described by considering the
TPE, shown in Fig. V.1. Obviously, the main uknown ingredient therein is the VVCS process,
obtained from TPE by removing the lepton line. In Chapter IV, we formulated the VVCS
process in terms of CS amplitudes and structure functions, and presented a BChPT prediction
for VVCS off the nucleon at O(p7/2) in the low-energy domain of the δ-expansion [59, 65]. In
the following, we will incorporate that calculation into the TPE correction to the spectra of
hydrogen-like atoms.

1.1. Two-Photon Exchange in Terms of Compton Amplitudes

Figure V.1 shows the TPE diagram in general kinematics. To compute the TPE effect to order
(Zα)5 it sufficient to consider the forward kinematics, where q′ = q (and hence, p′ = p, l′ = l,
t = 0), see Fig. V.2. In this case the TPE correction is expressed in terms of the forward VVCS
amplitudes. The TPE-induced shift of the nS-level is then given by [172]:

∆ETPE(nS) = 8παmφ2
n

1

i

ˆ ∞
−∞

dν

2π

ˆ
dq

(2π)3

(
Q2 − 2ν2

)
T1(ν,Q2)− (Q2 + ν2)T2(ν,Q2)

Q4(Q4 − 4m2ν2)
, (V.1)

where φ2
n = 1/(πn3a3) is the wavefunction at the origin, and ν = q0, Q2 = q2 − q2

0. The TPE
correction to the nS HFS is given by [409]:

ETPE
HFS (nS)

EF(nS)
=

4m

Z(1 + κ)

1

i

ˆ ∞
−∞

dν

2π

ˆ
dq

(2π)3

1

Q4 − 4m2ν2
× (V.2)

×
{(

2Q2 − ν2
)

Q2
S1(ν,Q2) +

3ν

M
S2(ν,Q2)

}
,

where EF is the Fermi energy, Eq. (II.7), and κ is the anomalous magnetic moment of the
nucleus. Again, m refers to the lepton mass (me or mµ, respectively, for H and µH), M is the
mass of the nucleus, mr is the reduced mass and a = (Zαmr)

−1 is the Bohr radius of the lepton-
nucleus system. Clearly, the underlying coordinate-space potentials are proportional to δ(r).
From Eqs. (V.1) and (V.2) one can see that the LS is “softer”, i.e., has a weaker dependence on
the region of high photon virtualities, and the HFS is “harder”.

For further evaluation, it is convenient to perform a Wick rotation, so as to change the
integration over q0 to the imaginary axis, i.e., q0 → iQ0. This is straighforward at zero energy
(p · l = mM), whereas at finite energy one needs to take care of the poles moving across
the imaginary q0-axis, cf. Ref. [410]. After the Wick rotation, the integration four-momentum is
Euclidean and we can evaluate it in hyperspherical coordinates, see Appendix V.A. The discussed
coordinate transformations are performed in the following for the LS:

∆ETPE(nS) =
α

2π2m
φ2
n

ˆ ∞
0

dQ

Q

ˆ π

0
dχ sin2χ × (V.3)

×
(
1 + 2 cos2χ

)
T1(iQ cosχ,Q2)− sin2χT2(iQ cosχ,Q2)

τl + cos2χ
,

and the HFS:
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ETPE
HFS (nS)

EF(nS)
=

1

4π3Z(1 + κ)m

ˆ ∞
0

dQQ

ˆ π

0
dχ sin2χ × (V.4)

×

{
(2 + cos2χ)S1(iQ cosχ,Q2) + 3iQ cosχ

M S2(iQ cosχ,Q2)
}

τl + cos2χ
,

where τl = Q2/4m2.

1.2. Master Formulae in Terms of Proton Structure Functions

The integral over ν = iQ cosχ can be done after substituting the DRs for the VVCS amplitudes,
see Eq. (IV.11). Introducing the “lepton velocity” vl =

√
1 + 1/τl, we obtain the following

expressions for the S-level shift:

∆ETPE(nS) =
16(Zα)2m

M
φ2
n

ˆ ∞
0

dQ

Q3

ˆ 1

0
dx

1

vl +
√

1 + x2τ−1

{
f1(x,Q2)

x
− f2(x,Q2)

2τ

+
1

(1 + vl)(1 +
√

1 + x2τ−1)

[
2f1(x,Q2)

x
+
f2(x,Q2)

2τ

]}
, (V.5)

and the HFS:

ETPE
HFS (nS)

EF(nS)
=

16ZαmM

π(1 + κ)

ˆ ∞
0

dQ

Q3

ˆ 1

0
dx

1

vl +
√

1 + x2τ−1

{
3 g2(x,Q2)

+

[
1 +

1

2(vl + 1)(1 +
√

1 + x2τ−1)

]
2 g1(x,Q2)

}
, (V.6)

with τ = Q2/4M2. These are the master formulae containing all the structure effects to order
(Zα)5. As we will show in Section V.2, they also contain the charge radius term and the
Fermi energy. Note that here we substituted the unsubtracted DR for T1, Eq. (IV.11a); only
in the following we will perform the required subtraction, cf. Eq. (IV.13). Also, we substituted
the unsubtracted DR for νS2, Eq. (IV.11d), and hence, the contribution of the BC sum rule,
Eq. (IV.20a), is still included.

In the subsequent Sections, we will split into the elastic and inelastic contributions (Sec-
tion V.1.3), construct the polarizability contribution (Section V.1.4), separate T1(0, Q2) and
eliminate the contribution proportional to the BC sum rule.

1.3. Separating Nucleon-Pole and Inelastic Contributions

The TPE can be divided into an “elastic” and an “inelastic” part. Here, we are mainly interested
in the “inelastic” contribution, which is formed by excited intermediate states, e.g., by the
∆(1232)-resonance excitation.

1.3.1. Nucleon-Pole Contribution

The nucleon-pole contribution shown in Fig. V.2 (a) can be expressed through the elastic struc-
ture functions shown in Fig. III.2 (a). The structure functions can be written in terms of the
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V. Two-Photon Exchange in Hydrogen-Like Atoms

(a) (b)

Figure V.2.: Two-photon-exchange diagrams in forward kinematics: the horizontal lines correspond to the
lepton and the nucleus (bold). (a) Elastic contribution to the two-photon-exchange diagram. (b) Inelastic
contribution to the two-photon-exchange diagram, where the “blob” represents all possible excitations.
The crossed diagrams are not drawn.

elastic FFs as:

f el
1 (x,Q2) =

1

2
G2
M (Q2) δ(1− x), (V.7a)

f el
2 (x,Q2) =

1

1 + τ

[
G2
E(Q2) + τG2

M (Q2)
]
δ(1− x), (V.7b)

gel
1 (x,Q2) =

1

2
F1(Q2)GM (Q2) δ(1− x), (V.7c)

gel
2 (x,Q2) = −τ

2
F2(Q2)GM (Q2) δ(1− x), (V.7d)

where the elastic Dirac and Pauli FFs are related to the e.m. Sachs FFs in the following way:

F1(Q2) =
1

1 + τ

[
GE(Q2) + τGM (Q2)

]
, (V.8a)

F2(Q2) =
1

1 + τ

[
GM (Q2)−GE(Q2)

]
, (V.8b)

see also Eq. (II.18). Substituting the elastic structure functions into the above expressions for
the S-level shift and the HFS, the nucleon-pole contribution is found as:

∆Epole(nS) =
8(Zα)2m

M
φ2
n

ˆ ∞
0

dQ

Q3

{[
τ +

3 + 2τ

(1 + vl)(1 + v)

]
G2
M (Q2)

−1

τ

[
1− 1

(1 + vl)(1 + v)

]
G2
E(Q2)

}
1

(1 + τ)(vl + v)
, (V.9a)

Epole
HFS(nS)

EF(nS)
=

16ZαmM

π(1 + κ)

ˆ ∞
0

dQ

Q3

GM (Q2)

vl + v

{[
1 +

1

2(1 + vl)(1 + v)

]
F1(Q2)

−3τ

2
F2(Q2)

}
, (V.9b)

where v =
√

1 + τ−1. Equivalently, one can plug the nucleon-pole part of the VVCS amplitudes
[321],

T pole
1 (ν,Q2) =

4πZ2α

M

ν2
elG

2
M (Q2)

ν2
el − ν2 − i0+

, (V.10a)
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T pole
2 (ν,Q2) =

8πZ2ανel

ν2
el − ν2 − i0+

G2
E(Q2) + τG2

M (Q2)

1 + τ
, (V.10b)

Spole
1 (ν,Q2) =

4πZ2ανel

ν2
el − ν2 − i0+

F1(Q2)GM (Q2), (V.10c)

[νS2]pole (ν,Q2) = − 2πZ2αν2
el

ν2
el − ν2 − i0+

F2(Q2)GM (Q2), (V.10d)

into Eqs. (V.3) and (V.4).

1.3.2. Inelastic Contribution

We refer to the remaining TPE effect, shown in Fig. V.2 (b), as the inelastic contribution. The
diagram in Fig. V.2 (b) has no nucleon-pole but excited intermediate states. Therefore, it can be
described by the inelastic structure functions shown in Fig. III.2 (b). They start from the lowest
particle-production threshold, ν0 = Q2/2Mx0, which is effectively set by the pion production:

νπ = mπ + (m2
π +Q2)/(2M). (V.11)

The inelastic contribution to the S-level shift reads as:

∆Einel.(nS) =
2αm

π
φ2
n

ˆ ∞
0

dQ

Q3

vl + 2

(1 + vl)2

[
T1(0, Q2)− 4πZ2α

M
G2
M (Q2)

]
(V.12)

−32(Zα)2Mmφ2
n

ˆ ∞
0

dQ

Q5

ˆ x0

0
dx

1

(1 + vl)(1 +
√

1 + x2τ−1)
×

×
{

2x

(1 + vl)(1 +
√

1 + x2τ−1)

[
2 +

3 + vl
√

1 + x2τ−1

vl +
√

1 + x2τ−1

]
f1(x,Q2)

+

[
1 +

vl
√

1 + x2τ−1

vl +
√

1 + x2τ−1

]
f2(x,Q2)

}
,

where we performed the necessary subtraction on T1. The applied once-subtracted DR for the
non-nucleon-pole part of T1,

T non−pole
1 (ν,Q2) = T1(0, Q2)− 4πZ2α

M
G2
M (Q2) (V.13)

+
32πZ2αMν2

Q4

ˆ 1

0
dx

xf1(x,Q2)

1− x2(ν/νel)2 − i0+
,

follows from Eqs. (IV.13b) and (V.10a). The inelastic contribution to the HFS simply reads as:

Einel.
HFS(nS)

EF(nS)
=

16ZαmM

π(1 + κ)

ˆ ∞
0

dQ

Q3

ˆ x0

0
dx

1

vl +
√

1 + x2τ−1

{
3g2(x,Q2) (V.14)

+

[
1 +

1

2(vl + 1)(1 +
√

1 + x2τ−1)

]
2g1(x,Q2)

}
.

1.3.3. Ambiguity of the Nucleon-Pole Contribution

Note that in the above subsections, the elastic contribution to the HFS is defined through the
nucleon-pole parts of S1 and νS2, respectively. Considering the nucleon-pole parts of S1 and S2,
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the decomposition into elastic and inelastic shifts slightly:

Epole
HFS(nS)

EF(nS)
→ Epole

HFS(nS)

EF(nS)
+

6Zαm

π(1 + κ)M

ˆ ∞
0

dQ

Q

F2(Q2)GM (Q2)

vl + 1
, (V.15a)

Einel.
HFS(nS)

EF(nS)
→ Einel.

HFS(nS)

EF(nS)
− 6Zαm

π(1 + κ)M

ˆ ∞
0

dQ

Q

F2(Q2)GM (Q2)

vl + 1
. (V.15b)

1.4. Rearrangement into Born and Polarizability Contributions

In practice, we are interested in the polarizability part of the TPE effect, given by the non-
Born part of the VVCS amplitude, and the remaining TPE Born diagrams, cf. Fig. V.2 (a). In
Section III.1.1, we gave a definition of the term“polarizability”. We need to recall that the elastic
nucleon-pole part and the Born part of CS are not necessarily the same, cf. Eq. (III.2). Since the
nucleon-pole and Born parts of the Compton amplitudes are not equivalent, slight modifications
are needed to rearrange the previously derived “elastic” and “inelastic” contributions into the
“Born” and “polarizability” contributions of forward TPE.

In order to get a numerical estimate for the TPE effects in the hydrogen spectrum, the
final expressions can be evaluate based on empirical information, i.e., parametrizations of the
elastic FFs and structure functions, or theoretical predictions for the dominant contributions
to the VVCS structure functions, e.g., tree-level CS, pion-nucleon loops, ∆-exchange, et cetera.
However, the BC sum rule, Eq. (IV.20a), is in general not evaluating to zero for separate diagrams
or kinematic regions. Besides, the parametrized structure functions might not fulfil the BC sum
rule satisfactorily. Therefore, it is convenient to remove terms proportional to the BC sum rule
from both the Born and polarizability contributions. As we will see below, this is achieved in
an intriguing way.

The Born part of the VVCS amplitudes, given by the tree-level diagrams shown in Fig. III.3,
is well known [321]:1

TBorn
1 (ν,Q2) =

4πZ2α

M

[
Q4G2

M (Q2)

Q4 − 4M2ν2
− F 2

1 (Q2)

]
, (V.16a)

TBorn
2 (ν,Q2) =

16πZ2αMQ2

Q4 − 4M2ν2

[
F 2

1 (Q2) +
Q2

4M2
F 2

2 (Q2)

]
, (V.16b)

SBorn
1 (ν,Q2) =

2πZ2α

M

[
4M2Q2GM (Q2)F1(Q2)

Q4 − 4M2ν2
− F 2

2 (Q2)

]
, (V.16c)

SBorn
2 (ν,Q2) = − 8πZ2αM2ν

Q4 − 4M2ν2
GM (Q2)F2(Q2). (V.16d)

Note that we defined a DR for νS2 rather than S2, Eq. (IV.11d), because S2 has a pole in the
subsequent limits of Q2 → 0 and ν → 0. The Born part of νS2 follows from Eq. (V.16d) in
a straight forward way. A comparison with Eq. (V.10) shows that the nucleon-pole and Born
parts of the VVCS amplitudes are related in the following way:

T pole
1 (ν,Q2) = TBorn

1 (ν,Q2) +
4πZ2α

M
F 2

1 (Q2), (V.17a)

T pole
2 (ν,Q2) = TBorn

2 (ν,Q2), (V.17b)

1In Appendix V.E, we give analogue formulas for off-forward VVCS.
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Spole
1 (ν,Q2) = SBorn

1 (ν,Q2) +
2πZ2α

M
F 2

2 (Q2), (V.17c)

[νS2]pole (ν,Q2) = νSBorn
2 (ν,Q2)− 2πZ2αF2(Q2)GM (Q2). (V.17d)

From these expressions one can deduce the difference between the inelastic and polarizability
parts of the amplitudes, exploiting

T pole + T inel. = TBorn + T , (V.18)

where T denotes the non-Born part. To derive the TPE polarizability effect, it is then useful to
write down once-subtracted DRs for the non-Born part of the VVCS amplitudes:

T 1(ν,Q2) = T1(0, Q2) +
4πZ2α

M

{[
F 2

1 (Q2)−G2
M (Q2)

]
+

8M2ν2

Q4

ˆ x0

0
dx

xf1(x,Q2)

1− x2(ν/νel)2 − i0+

}
, (V.19a)

S1(ν,Q2) =
2πZ2α

M

{[
F 2

2 (Q2) + 4I1(Q2)/Z2
]

+
32M4ν2

Q6

ˆ x0

0
dx

x2g1(x,Q2)

1− x2(ν/νel)2 − i0+

}
, (V.19b)

νS2(ν,Q2) = 2πZ2α

{
− F2(Q2)GM (Q2) + 4I2(Q2)/Z2

+
32M4ν2

Q6

ˆ x0

0
dx

x2g2(x,Q2)

1− x2(ν/νel)2 − i0+

}
,

=
64πZ2αM4ν2

Q6

ˆ x0

0
dx

x2g2(x,Q2)

1− x2(ν/νel)2 − i0+
, (V.19c)

where we identified the generalized GDH integrals defined in Eqs. (IV.18) and (IV.20b). Note
that I1, IA and I2 are no pure polarizabilities, as will be explained in Section V.3 and Eq. (V.50).

In Eq. (V.19a), we introduced the conversion term of Eq. (V.17a), 4πZ2αF 2
1 (Q2)/M , and

at the same time removed the nucleon-pole part from the subtraction function, T pole
1 (0, Q2) =

4πZ2αG2
M (Q2)/M , cf. Eq. (V.10a). This is equivalent to removing the Born part from the

subtraction function, TBorn
1 (0, Q2), cf. Eq. (V.16a). Equation (V.19c) benefits from a cancela-

tion between the conversion term of Eq. (V.17d), −2πZ2αF 2
2 (Q2)G2

M (Q2), and the sum rule
subtraction, ∝

´ x0

0 dx g2(x,Q2). This becomes obvious by writing out the elastic part of the BC
sum rule, cf. Eq. (IV.20b). In the same way, one finds:

[νS2]Born (ν,Q2) =
64πZ2αM4ν2

Q6

ˆ 1

x0

dx
x2g2(x,Q2)

1− x2(ν/νel)2 − i0+
. (V.20)

Accordingly, terms proportional to the BC sum rule are removed in what follows and do not
affect the TPE effect in the HFS.
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1.5. Two-Photon Exchange in the Lamb Shift

1.5.1. Born Contribution

The Born contribution to the LS is given by:

∆EBorn(nS) =
8(Zα)2m

M
φ2
n

ˆ ∞
0

dQ

Q3

(
− vl + 2

(1 + vl)2
F 2

1 (Q2) +
1

(1 + τ)(vl + v)
× (V.21)

×
{[

τ +
3 + 2τ

(1 + vl)(1 + v)

]
G2
M (Q2)− 1

τ

[
1− 1

(1 + vl)(1 + v)

]
G2
E(Q2)

})
.

Nevertheless, it is common to subtract the order-(Zα)4 effect of the charge radius, cf. Eq. (II.8a),
and the contribution of a static, structureless nucleus [172]:

∆EBorn(nS) = 8(Zα)2φ2
n

ˆ ∞
0

dQ

Q2

[
4mrG

′
E(0) +

m

M

1

Q

(
− vl + 2

(1 + vl)2

(
F 2

1 (Q2)− 1
)

+
1

(1 + τ)(vl + v)

{[
τ +

3 + 2τ

(1 + vl)(1 + v)

] (
G2
M (Q2)− 1

)
−1

τ

[
1− 1

(1 + vl)(1 + v)

] (
G2
E(Q2)− 1

)})]
, (V.22)

with G′E = dGE(Q2)/dQ2 and G′E(0) = −R2
E/6, cf. Eq. (V.42). In Section V.2, we will discuss

how one identifies the order-(Zα)4 effects, which at first glance are of order (Zα)5.
Furthermore, we can isolate the Friar radius contribution:

∆EFriar(nS) = −16(Zα)2mr φ
2
n

ˆ ∞
0

dQ

Q4

[
G2
E(Q2)− 1 + 1

3R
2
E Q

2
]

= − Zα

3a4n3
R3

F. (V.23)

Obviously, if the Friar radius is substituted from ep scattering, its dependence on the charge
radius generates a consistency problem [271, 272, 411]. The remaining Born contribution is then
of recoil type:

∆Erecoil(nS) = −8(Zα)2φ2
n

m

M

ˆ ∞
0

dQ

Q3

[
vl + 2

(1 + vl)2

(
F 2

1 (Q2)− 1
)

(V.24)

− 1

(1 + τ)(vl + v)

[
τ +

3 + 2τ

(1 + vl)(1 + v)

] (
G2
M (Q2)− 1

)
+

{
1

τ(1 + τ)(vl + v)

[
1− 1

(1 + vl)(1 + v)

]
− 2M2

Q(M +m)

}(
G2
E(Q2)− 1

) ]
.

Ref. [411] in addition distinguishes two classes of elastic proton structure effects: finite-size recoil
effects and effects generated by the anomalous magnetic moment of the proton. This separation
is useful because the effect of the anomalous magnetic moment, entering through the magnetic
Sachs FF, can be calculated with higher accuracy than the FSEs.

1.5.2. Polarizability Contribution

The polarizability contribution to the LS is given by:

∆Epol.(nS) =
2αm

π
φ2
n

ˆ ∞
0

dQ

Q3

vl + 2

(1 + vl)2

{
T1(0, Q2) +

4πZ2α

M

[
F 2

1 (Q2)−G2
M (Q2)

]}
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−32(Zα)2Mmφ2
n

ˆ ∞
0

dQ

Q5

ˆ x0

0
dx

1

(1 + vl)(1 +
√

1 + x2τ−1)
×

×
{[

1 +
vl
√

1 + x2τ−1

vl +
√

1 + x2τ−1

]
f2(x,Q2)

+
2x

(1 + vl)(1 +
√

1 + x2τ−1)

[
2 +

3 + vl
√

1 + x2τ−1

vl +
√

1 + x2τ−1

]
f1(x,Q2)

}
. (V.25)

This we can split into the contribution of the polarizability part of the subtraction function of
the T1 DR:

∆Esubtr.(nS) = 8αmφ2
n

ˆ ∞
0

dQ

Q3

vl + 2

(1 + vl)2

{
T1(0, Q2)

4π
+
Z2α

M

[
F 2

1 (Q2)−G2
M (Q2)

]}
, (V.26)

and a contribution of inelastic structure functions:

∆Einel.(nS) = −32(Zα)2Mmφ2
n

ˆ ∞
0

dQ

Q5

ˆ x0

0
dx

1

(1 + vl)(1 +
√

1 + x2τ−1)
× (V.27)

×
{[

1 +
vl
√

1 + x2τ−1

vl +
√

1 + x2τ−1

]
f2(x,Q2)

+
2x

(1 + vl)(1 +
√

1 + x2τ−1)

[
2 +

3 + vl
√

1 + x2τ−1

vl +
√

1 + x2τ−1

]
f1(x,Q2)

}
.

1.5.3. T 1 Subtraction Function

The subtraction function of the T1 DR, cf. T1(0, Q2) in Eqs. (IV.13) and (V.19a), is not exactly
known. Strictly speaking, the Born part of the subtraction can be deduced from Eq. (V.16a),
while the polarizability part, cf. Eq. (V.26), is the unknown. It has to be either modelled or
calculated in a theoretical framework such as ChPT. It was suggested that one could make up
a model where the effect is large enough to resolve the proton radius puzzle [168], but none
of the realistic calculations have corroborated this claim. In particular, the ChPT calculations
demonstrate a very moderate size for these effects, cf. [177]. As we shall see below, all of the
dispersive models find the polarizability part of the subtraction to give a contribution of the
order of few µeV, well below 300 µeV needed to resolve the puzzle.

In the limit of small momentum transfers, T 1(0, Q2) is given by:

lim
Q2→0

T 1(0, Q2)

Q2
= 4π βM1. (V.28)

Since the calculation of the LS comprises an integral over Q2, the subtraction is required as a full
function of Q2. For the Q2 dependence of the magnetic polarizability, Pachucki [169] proposed
a dipole parametrization:

βM1(Q2) = βM1
Λ8

(Λ2 +Q2)4
, (V.29)

with Λ2 = 0.71 GeV2. This assumption is also adopted in following-up papers [170, 174] by
other authors.

Working in HBChPT, Ref. [174] obtains a model-independent result for T 1(0, Q2), valid up to
and including O(Q4). Their low-Q prediction is matched to a 1/Q2 behavior at large momentum
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transfers, which is again establish by a dipole ansatz. Carlson and Vanderhaeghen [172] estimate
the higher-Q behavior by calculating pion-loop contributions with scalar two-pion coupling to
the nucleus, as the dominating low-mass intermediate states. The logarithmic asymptotics found
thereby differ from the previously shown dipole forms [169, 170, 174]. Nevertheless, the dominant
1/Q2 behavior can be given a reason from arguments based on quark counting rules [174] or the
operator product expansion [173]. Another empirical estimate can be found in Ref. [412].

As outlined above, a critical point for the prediction of TPE effects in the LS is the T1

subtraction function, and especially its polarizability part, which is closely connected to the
magnetic dipole polarizability. Therefore, it is crucial to separate the VVCS and TPE amplitudes
into Born and non-Born pieces, as favoured by Ref. [174]. In contrast, the separation into elastic
and inelastic pieces [172] was shown to be not unique [413], and, as pointed out by Ref. [174],
inconsistent with the standard definition of the magnetic dipole polarizability through the non-
Born CS amplitude, cf. Eq. (V.28).

1.6. Two-Photon Exchange in the Hyperfine Splitting

The LO HFS of the n-th S-level is given by the Fermi energy, Eq. (II.7). The subleading
contributions to the HFS can be divided into QED, electroweak and structure corrections:

EHFS(nS) = [1 + ∆QED + ∆weak + ∆structure]EF(nS). (V.30)

We are interested in the proton-structure correction, which in turn splits into three terms:
Zemach radius, recoil, and polarizability contributions:

∆structure = ∆Z + ∆recoil + ∆pol. . (V.31)

Let us now specify the decomposition of the structure-dependent correction into the three terms
of Eq. (V.31). An examination of different decompositions of the TPE effect can be found in
Ref. [409]. The formalism presented by us is consistent with the choice of Carlson et al. [409].

1.6.1. Born Contribution

As stated earlier, the master formulae in Section V.1.2 contain all the structure effects to order
(Zα)5, i.e., also the Fermi energy, which has to be subtracted in the following. The TPE Born
contribution to the HFS splits into the Zemach radius contribution [269]:

∆Z =
8Zαmr

π

ˆ ∞
0

dQ

Q2

[
GE(Q2)GM (Q2)

1 + κ
− 1

]
≡ −2ZαmrRZ, (V.32)

and a recoil-type of correction:

∆recoil =
Zα

π(1 + κ)

ˆ ∞
0

dQ

Q

{
8mM

vl + v

GM (Q2)

Q2

(
2F1(Q2) +

F1(Q2) + 3F2(Q2)

(vl + 1)(v + 1)

)
−8mrGM (Q2)GE(Q2)

Q
− m

M

5 + 4vl
(1 + vl)2

F 2
2 (Q2)

}
. (V.33)

In contrast to the Zemach radius term, the recoil corrections are not zero in the static limit of
the elastic FFs.
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1.6.2. Polarizability Contribution

In the polarizability contribution, we separate contributions due to the spin-dependent structure
functions g1 and g2:

∆pol. =
Zαm

2π(1 + κ)M
[δ1 + δ2] = ∆1 + ∆2, (V.34a)

with:

δ1 = 2

ˆ ∞
0

dQ

Q

(
5 + 4vl

(vl + 1)2

[
4I1(Q2)/Z2 + F 2

2 (Q2)
]

+
8M2

Q2

ˆ x0

0
dx g1(x,Q2) (V.34b){

4

vl +
√

1 + x2τ−1

[
1 +

1

2(vl + 1)(1 +
√

1 + x2τ−1)

]
− 5 + 4vl

(vl + 1)2

})
,
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Q
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2 (Q2)
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− 32M4

Q4

ˆ x0

0
dxx2g1(x,Q2) (V.34c){

1
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√

1 + x2τ−1)(1 +
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1 + x2τ−1)(1 + vl)
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1

1 +
√

1 + x2τ−1
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1

vl + 1
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δ2 = 96M2

ˆ ∞
0

dQ

Q3

ˆ x0

0
dx g2(x,Q2)

{
1

vl +
√

1 + x2τ−1
− 1

vl + 1

}
. (V.34d)

Expanding δ2, Eq. (V.34d), in x confirms that the BC sum rule is absent. Equation (V.34b)
is based on the master formula, cf. Eq. (V.6), whereas Eq. (V.34c) is derived using a once-
subtracted DR for S1, cf. Eq. (V.19b). The advantage of Eq. (V.34c) lies in the complete sepa-
ration of the zeroth moment, I1(Q2), from higher moments of the structure function g1(x,Q2).

1.6.3. The Burkhardt-Cottingham Sum Rule

As described above, the contribution of the BC sum rule to the HFS is removed because it is
known to equal zero. This is especially important for the dispersive TPE evaluations, since the
parametrizations of the spin-dependent g2 structure function do not have this feature build-in.
As we will prove below, the Born and polarizability parts of the BC sum rule are supposed to
vanish separately. This is even confirmed to be true for individual sets of non-Born diagrams,
e.g., by our BChPT calculations of πN -loop [59] and ∆-exchange diagrams.

The BC sum rule [355] is derived from the unsubtracted DR for the amplitude νS2, Eq. (IV.11d),
by taking the limit of ν → 0. It tells us that the integral over x ∈ [0, 1] of the spin-dependent
structure function g2(x,Q2) is equal to zero, see Eq. (IV.20a). Plugging in the elastic part
of the structure function, Eq. (V.7d), the inelastic part of the BC integral, I2(Q2), equals
Z2/4F2(Q2)GM (Q2), see Eq. (IV.20b). It is non-trivial that the Born and polarizability contri-
butions to the BC sum rule vanish independently, as we would like to prove in the following.

Let us write the BC sum rule as:2

lim
ν→0

νS2(ν,Q2)

8πα
=

2Z2M2

Q2

ˆ 1

0
dx g2(x,Q2) = 0. (V.36)

We can now split the νS2 amplitude as shown in Eq. (III.2). Splitting into elastic and inelastic
parts gives the well-known Eq. (IV.20b). Let us instead consider the Born part of the νS2

2The generalized GDH integral I1 can be expressed in a similar way:

I1(Q2) = lim
ν→0

MS1(ν,Q2)

8πα
. (V.35)
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amplitude. It is related to the elastic part through Eq. (V.17d). With Eqs. (V.10d) and (V.17d),
we find:

lim
ν→0

νSBorn
2

8πα
= lim

ν→0

{
[νS2]pole

8πα
+
Z2

4
F2(Q2)GM (Q2)

}
, (V.37a)

= lim
ν→0

{
−Z

2

4
F2(Q2)GM (Q2) +

Z2

4
F2(Q2)GM (Q2)

}
= 0. (V.37b)

In other words, the Born contribution to the BC sum rule is vanishing. Writing down the full
BC sum rule:

lim
ν→0

νS2 = lim
ν→0

{
νSBorn

2 + νS2

}
= 0, (V.38)

the non-Born or polarizability contribution obviously also has to vanish:

lim
ν→0

νS2 = 0. (V.39)

2. Matching One- and Two-Photon Exchange

One ought to be careful in matching the elastic TPE contribution, cf. Eq. (V.9), to the standard
FSEs, see Chapter II and Eq. (II.8). In the heavy-nucleus limit, we obtain:

∆Epole(nS) ≈ −16(Zα)2mr φ
2
n

ˆ ∞
0

dQ

Q4
G2
E(Q2), (V.40a)

Epole
HFS(nS) ≈ 64(Zα)2mr

3mM
φ2
n

ˆ ∞
0

dQ

Q2
GM (Q2)GE(Q2). (V.40b)

The correct matching is achieved by regularizing the infrared divergences with the convoluted
momentum-space wave functions, see Eq. (V.89). This procedure should not change the ultra-
violet part of the Q-integration. The asymptotic behavior of the convoluted momentum-space
wave functions is described by:

wnS(Q)
Q→∞

=
16π

aQ4
φ2
n. (V.41)

Hence, we need to replace φ2
n → awnS(Q)Q4/16π in Eq. (V.40).

For the LS, we first take out the Friar radius, Eq. (II.10), and perform the regularization only
afterwards:

∆Epole(nS) ≈ −16(Zα)2mr φ
2
n

{ˆ ∞
0

dQ

Q4

[
1− 1

3R
2
E Q

2
]

(V.42a)

+

ˆ ∞
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E(Q2)− 1 + 1
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2
E Q

2
]

︸ ︷︷ ︸
= π

48
R3

F

}
,

= −Zα
π

ˆ ∞
0

dQwnS(Q)
[
1− 1

3R
2
E Q

2
]
− Zα

3a4n3
R3

F, (V.42b)

= − Zα

2an2
+

2Zα

3(an)3
R2
E −

Zα

3a4n3
R3

F. (V.42c)

In the last step, we used:

2π

(an)3
=

ˆ ∞
0

dQQ2wnS(Q), (V.43a)
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π

2an2
=

ˆ ∞
0

dQwnS(Q), (V.43b)

where Eq. (V.43a) follows from Eq. (II.104) with Vδ(Q) = 1, thus, it is equivalent to the nor-
malization of the coordinate-space wave functions. In a fascinating manner, the TPE correctly
reproduces the gross structure, Eq. (II.1), as well as the charge and Friar radius contributions
to the LS, Eq. (II.8a):

∆Epole(2S) = −Zα
8a

+
Zα

12a3
R2
E −

Zα

24a4
R3

F. (V.44)

To avoid double counting, we have removed the order-(Zα)4 FSE and the contribution of a
static, structureless nucleus from the LS formula in Eq. (V.22). In the heavy-nucleus limit, this
corresponds to the first line in Eq. (V.42a).

For the HFS, we take out the Zemach radius, Eq. (II.11), and identify the Fermi energy,
Eq. (II.7):

Epole
HFS(nS) ≈ 64(Zα)2mr

3mM
φ2
n

ˆ ∞
0

dQ

Q2
GM (Q2)GE(Q2), (V.45a)
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, (V.45b)

= EF(nS)

[
1

2π2

ˆ ∞
0

dQQ2 wnS(Q)

φ2
n

− 2

a
RZ

]
, (V.45c)

= EF(nS) [1− 2/aRZ] . (V.45d)

This yields the correct Fermi energy and Zemach radius contributions, see Eq. (II.8b). Again,
we subtract the order-(Zα)4 term from the TPE in Eq. (V.32) to avoid double counting.

The recoil and polarizability corrections are infrared-safe and require no regularization. Un-
fortunately, it is not possible to match the recoil FSEs from one- and two-photon exchange. In
practice, one uses the results from forward TPE discussed in this Chapter. This has several rea-
sons. Most importantly, the Breit potential in Chapter II is based on an e.m. interaction vertex
for on-shell nucleons and nuclei, Eq. (II.15). This is not sufficient, as the intermediate state in
Fig. V.2 (a) can be off-shell [115, 411]. The dispersive approach to the TPE, see Section V.1.2,
bypasses this issue. It uses DRs to express the VVCS amplitudes in terms of structure functions
or cross sections, cf. Eq. (IV.11). Per definition, the cross sections have real particles in the final
state. Also, the TPE formalism, in contrast to the Breit potential, does not neglect retardation.

3. Forward Two-Photon Exchange in Terms of Polarizabilities

In this Section, we will present the TPE polarizability effects in Eqs. (V.25) and (V.34) as an
expansion in moments of structure functions. The expansion of the auxiliary functions for small
x goes as:

1

1 +
√

1 + x2τ−1
=

1

2

[
1− x2

4τ
+

x4

8τ2

]
+O(x6), (V.46a)

1

vl +
√

1 + x2τ−1
=

1

1 + vl

[
1− 1

2(1 + vl)

x2

τ
+

(vl + 3)

8(1 + vl)2

x4

τ2

]
+O(x6). (V.46b)
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Expanding the HFS formula (V.6) up to and including O(x4), we obtain a reasonable description
of the main characteristics of the weighting function:

EHFS(nS)

EF(nS)
=

8ZαmM

π(1 + κ)

ˆ ∞
0

dQ

Q3

1

(vl + 1)
× (V.47)

×
ˆ 1

0
dx

{
3

[
2− 1

(vl + 1)

x2

τ
+

3 + vl

4(1 + vl)2

x4

τ2

]
g2(x,Q2)

+
1

(vl + 1)

[
5 + 4vl −

11 + 9vl
4(vl + 1)

x2

τ
+

17 + 20vl + 5v2
l

8(vl + 1)2

x4

τ2

]
g1(x,Q2)

}
,

where one can read of the still present contribution of the BC sum rule, cf. Eq. (IV.20a). Limiting
ourselves to the third moments of the structure functions, we for the LS have:

∆Epol.(nS) =
2αm

π
φ2
n

ˆ ∞
0

dQ

Q3

vl + 2

(1 + vl)2

{
T1(0, Q2) +

4πZ2α

M

[
F 2

1 (Q2)−G2
M (Q2)

]}
−16(Zα)2Mmφ2

n

ˆ ∞
0

dQ

Q5

1

(vl + 1)2
×

×
ˆ x0

0
dx

{[
3vl + 5

vl + 1
x−

(
vl + 2

vl + 1

)2 x3

τ

]
f1(x,Q2)

+

[
1 + 2vl −

3vl + 1

4(vl + 1)

x2

τ

]
f2(x,Q2)

}
. (V.48)

For the HFS, we have:

Epol.
HFS(nS)

EF(nS)
=

Zαm

π(1 + κ)M

ˆ ∞
0

dQ

Q

1

(vl + 1)2

{
(5 + 4vl)F

2
2 (Q2) (V.49a)

+
1

Z2(vl + 1)

[
(1 + 3vl) IA(Q2) + (19 + 33vl + 16v2

l ) I1(Q2)

−M
2Q2

2α
(11 + 9vl) δLT (Q2)

]}
,

=
αm

πZ(1 + κ)M

ˆ ∞
0

dQ

Q

1

(1 + vl)2

{
(5 + 4vl)

[
Z2F 2

2 (Q2) + 4I1(Q2)
]

(V.49b)

−6M2Q2

α
δLT (Q2) +

1 + 3vl
1 + vl

(
M2Q2

2α
γ0(Q2)

+
32Z2M6

Q6

ˆ x0

0
dxx4 g2(x,Q2)

)}
,

where we identified the generalized spin polarizabilities defined in Eqs. (IV.15) and (IV.17)-
(IV.19). In Eqs. (V.49a) and (V.49b), we use either the FSP γ0, or the generalized GDH integral
IA. Here, we only expand until O(x3). Therefore, we need to subtract the fourth moment of g2

contained in γ0, cf. Eq. (V.49b).
Strictly speaking, I1 and IA are no pure polarizabilities, but also contain the elastic Pauli FF:

Inon−pol.
1 (Q2) = Inon−pol.

A (Q2) = −Z
2

4
F 2

2 (Q2). (V.50)
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This feature follows from the difference between inelastic and polarizability contributions. With
Eq. (V.50) in mind, it becomes obvious that the total expressions, Eqs. (V.48) and (V.49), are
pure polarizability contributions.

Let us now take a closer look at Eq. (V.50) and derive it properly. The generalized GDH
integrals are related in the following way:

IA(Q2) = I1(Q2)− 8Z2M4

Q4

ˆ x0

0
dxx2g2(x,Q2). (V.51)

Plugging the elastic g2 structure function, Eq. (V.7d), into the S2 DR:

S2(ν,Q2) =
64πZ2αM4ν

Q6

ˆ 1

0
dx

x2g2(x,Q2)

1− x2(ν/νel)2 − i0+
, (V.52)

and comparing with the Born part of S2, Eq. (V.16d), we verify that Spole
2 (ν,Q2) = SBorn

2 (ν,Q2).
Accordingly, we have Sinel.

2 (ν,Q2) = S2(ν,Q2), viz. the inelastic moments of g2 are pure polar-
izabilities. In the limit of ν → 0, the S2 DR reduces to:

S2(ν,Q2)

ν

∣∣∣∣
ν→0

=
64πZ2αM4

Q6

ˆ 1

0
dxx2g2(x,Q2). (V.53)

The inelastic part of this integral is proportional to the difference between the generalized GDH
integrals I1 and IA given in Eq. (V.51):

IA(Q2) = I1(Q2)− Q2

8πα

S2(ν,Q2)

ν

∣∣∣∣
ν→0

. (V.54)

Thus, the non-polarizability parts of I1 and IA are equivalent.
Splitting the S1 DR, Eq. (IV.11c), at the inelastic threshold, identifying I1, Eq. (IV.18), and

plugging in the elastic g1 structure function, Eq. (V.7c), we have:

S1(0, Q2) =
8πα

M

[
I1(Q2) +

Z2M2

Q2
F1(Q2)GM (Q2)

]
. (V.55)

We know that the S1 amplitude can be decomposed into a Born and a non-Born part. The Born
contribution to S1(0, Q2) can be read off from Eq. (V.16c) as:

SBorn
1 (0, Q2) =

2πZ2α

M

[
GM (Q2)F1(Q2)

τ
− F 2

2 (Q2)

]
. (V.56)

We are then left with non-Born part, which is a polarizability and will be denote by S1(0, Q2).
Replacing S1(0, Q2) = SBorn

1 (0, Q2) + S1(0, Q2) in Eq. (V.55), we find:

I1(Q2) =
M

8πα
S1(0, Q2)− Z2

4
F 2

2 (Q2), (V.57)

thus confirming Eq. (V.50).
In a last step, we distinguish contributions to Eq. (V.49), which originate from the spin-

dependent structure functions g1:

∆1 =
Zαm

π(1 + κ)M

ˆ ∞
0

dQ

Q

1

(vl + 1)2

[
(5 + 4vl)F

2
2 (Q2) +

1

(vl + 1)
× (V.58a)
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×
{

(31 + 45vl + 16v2
l ) I1(Q2)− (11 + 9vl)

[
M2Q2

2α
δLT (Q2) + IA(Q2)

]}]
,

=
Zαm

π(1 + κ)M

ˆ ∞
0

dQ

Q

1

(vl + 1)2

{
(5 + 4vl)

[
F 2

2 (Q2) + 4I1(Q2)
]

(V.58b)

−11 + 9vl
(vl + 1)

[
M2Q2

2α
γ0(Q2) +

32M6

Q6

ˆ x0

0
dxx4 g2(x,Q2)

]}
,

and g2:

∆2 = − 12Zαm

π(1 + κ)M

ˆ ∞
0

dQ

Q

1

(vl + 1)2

[
I1(Q2)− IA(Q2)

]
, (V.59a)

= − 12Zαm

π(1 + κ)M

ˆ ∞
0

dQ

Q

1

(vl + 1)2

{
M2Q2

2α

[
δLT (Q2)− γ0(Q2)

]
(V.59b)

−32M6

Q6

ˆ x0

0
dxx4 g2(x,Q2)

}
,

respectively. Again, we give two alternative sets of equations depending on our choice of po-
larizabilities. In Section VII.2, we will return to the polarizability expansion of the HFS TPE
effect and apply it to interpret our results.

4. Off-forward Two-Photon Exchange in Hydrogen-Like Bound
States

In the following, we turn to the more general case of off-forward TPE. The off-forward TPE in
the lepton-nucleus bound state is shown in Fig. V.1. The incoming (outgoing) nucleus and lepton
four-momenta are denoted by p (p′) and l (l′), respectively. The Feynman diagram evidently
comprises off-forward VVCS off a nucleus, where the four-momentum of the absorbed (emitted)
photon is labeled with q (q′).

With respect to the forward TPE diagram, the off-forward diagram is suppressed by an ad-
ditional factor of Zα. Nevertheless, off-forward TPE processes might be not negligible, since
the two-photon cut in the t-channel can generate a logarithmic enhancement of the off-forward
TPE effect. Hence, our main focus will be on calculating the (Zα)6 lnZα nuclear-polarizability
effect. We study the contribution of the lowest-order nuclear polarizabilities to off-forward
VVCS and TPE, where the main interest is in the nuclear dipole polarizabilities. We derive
the corresponding perturbative potential with a dispersive approach, which can be treated in
PT. Further discussions of the (numerical) effects in LS and HFS are postponed to Section VI.2
and Appendix VII.A. In Section VII.4, we evaluate a similar off-forward TPE process, viz. the
neutral-pion exchange with two-photon coupling between lepton and pion.

The TPE matrix element satisfies a once-subtracted DR:

M(p2
t ) = M(0) +

p2
t

π

ˆ ∞
0

dt

t

ImM(t)

t− p2
t − i0+

, (V.60)

where the t-channel momentum transfer is: pt = q′−q = p−p′ = l′− l. Let us have a look at the
different terms appearing in Eq. (V.60). The subtraction term, M(0), corresponds to the forward
TPE (q = q′), which was discussed in Sections V.1 and V.3. It produces a δ(r)-potential, as we
will see in the following. We, on the other hand, are interested in the off-forward TPE, given by
the remaining integral over t.
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4. Off-forward Two-Photon Exchange in Hydrogen-Like Bound States

The coordinate-space potential is the Fourier transform of the momentum-space potential. As-
suming vanishing retardation, the momentum-space potential associated to the TPE is equal to
V (|pt|) = M(p2

t = −|pt|2). From Eq. (V.60), we derive the once-subtracted coordinate-space
TPE potential:

V (r) = M(0) δ(r)− 1

π

ˆ ∞
0

dt ImM(t)

[
δ(r)

t
− e−r

√
t

4πr

]
. (V.61)

Besides the δ(r)-potential, a Yukawa-like potential ∝ e−r
√
t/r emerges.

The above potential will be treated in first-order of Schrödinger PT. The relevant theory is
summarized in Appendix II.B. There we list, f.i., the non-relativistic Coulomb wave functions,
Eq. (II.91), and give a formula for the energy correction induced by a spherically symmetric
coordinate-space potential, Eq. (II.104). The information on the lepton-nucleus system of inter-
est is contained in the Bohr radius and the reduced mass mr = Mm/(M + m). For M � m,
the reduced mass is approximately equal to the lepton mass: mr ≈ m.

Again, we are only interested in the off-forward process, represented by the integral term in
Eq. (V.61). The δ(r)-potential leads to an upward shift of the S-levels, cf. Table II.4:

〈nl|δ(r)|nl〉 =
δl0

π(an)3
, (V.62)

with l the orbital angular momentum. The Yukawa-type potential contributes to all orbitals,
i.a., S- and P -waves:

〈nl|e−
√
tr/r|nl〉 (V.63)

=
41+l tn−1−l ( 2

an +
√
t
)−2n

(an)3+2l n

Γ[1 + l + n]

Γ[n− l] 2F1 (1 + l − n, 1 + l − n, 2 + 2l, 4/(an)2t) ,

l=0
=

4 tn−1
(

2
an +

√
t
)−2n

(an)3 2F1 (1− n, 1− n, 2, 4/(an)2t) .

From the denominator one can see that the energy correction is proportional to a−2l, cf. also
Eq. (II.91). Accordingly, the effect is dominant in S-states and suppressed by, e.g., α2 in P -
states.

Now, we need to derive the off-forward TPE matrix element. We start with the non-Born
VVCS amplitude. For the unpolarized part, we use a parametrization of the nuclear Lagrangian
in terms of polarizabilities [414]:

LNNγγ = πβM1N̄NF
2 − 2π(αE1 + βM1)

M2
(∂αN̄)(∂βN)FαµF βνgµν , (V.64)

with the e.m. field-strength tensor Fµν , the e.m. dipole polarizabilities αE1 and βM1, the Dirac
spinor of the nucleus N , and the mass of the nucleus M . The nuclear side of the TPE then
reads:

Tµν

4π
= −αE1 + βM1

2M2

{
1
2

[
p2
t + q · q′

]
qµq′ ν +

[
2(P · q)2 − 1

2 (q · pt)(q′ · pt)
]
gµν

−2P · q
[
qµP ν + Pµq′ ν

]
+ 1

2

[
q · q′ q′µqν − q2 q′µq′ ν − q′2 qµqν

]
+2 q · q′PµP ν

}
+ βM1

{
q · q′ gµν − qµq′ ν

}
, (V.65)
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with P = 1
2 (p+p′) and P ·pt = 0. We can check that this tensor structure is even under photon

crossing and gauge invariant.
The contribution of the lowest-order spin polarizabilities, γE1E1, γM1M1, γM1E2 and γE1M2, to
the polarized VVCS is given by [415]:

Tµν

4π
=

1

M2

[
1
2 γ0 q · P

{[
γαβµP ν + γαβνPµ

]
qαq
′
β − q · P γαµν [q + q′]α

}
(V.66)

+ γM1E2

{
γαβσqαq

′
βPσ

[
qµP ν + q′νPµ

]
+ q · q′

[
γαβµP νPβqα − γαβνPµPβq′α

]
− q · P

[
q · q′ γµνσPσ + gµνγαβσqαq

′
βPσ

]}
+ γE1M2

{
q · q′

[
γαβνPµqαPβ − γαβµP νq′αPβ

]
+ q · P

[
γαβµq′νq′αPβ − γαβνqµqαPβ

]}
+ γM1M1 q · P

{
γαβµq′νqαPβ − γαβνqµq′αPβ − q · q′ γµνσPσ + gµνγαβσqαq

′
βPσ

}]
,

with the FSP γ0 defined in Eq. (III.4) and the nuclear spinors omitted. This tensor is likewise
even under photon crossing and gauge invariant. Due to its nuclear-spin dependence, Eq. (V.66)
contributes to the HFS. As we found no (Zα)6 lnZα contribution to the HFS, we move any
further discussion of it to Appendix VII.A and focus for now on the nuclear-spin-independent
VVCS amplitude.

In the next step, we need to close the TPE box diagram,

M =

ˆ
d4q

i(2π)4

gµα
q′2

Lαβ
gβν
q2

Tµν , (V.67)

by including the photon interaction with the lepton:

Lαβ = 4πα ū(l′)

[
γα

/l − /q +m

(l − q)2 −m2
γβ

]
u(l), (V.68)

where m is the mass of the lepton and u is the lepton Dirac spinor. Note that for the lepton
tensor, Lαβ, it is enough to considered the u-channel VVCS process. Taking the full CS off the
lepton, meaning the sum of s- and u-channels, would lead to exact double counting in the TPE
matrix element.3

Just as in the previous derivation of the OPE Breit potential, cf. Eq. (II.20), we will make
a semi-relativistic expansion of the TPE amplitude. All relevant replacements are listed in
Appendix V.B. For the spin-independent case, the expansion is rather trivial. The appearing
energy-dependent prefactor is absorbed into the Dirac spinors, cf. Eq. (V.84b). Since the unpo-
larized amplitude, Eq. (V.65), is independent of the nuclear spin, i.e., not containing any Dirac
matrices, we can write: N (p′)TµνN (p) = TµνN (p′)N (p) ≈ Tµν , where in the last step we took
the leading term in the semi-relativistic expansion of N (p′)N (p) ≈ 1 +O(c−2), see Eq. (V.86a).
In this way, the nuclear tensors in Eqs. (V.65) and (V.67) are taken between the spinors, just
like the lepton tensor in Eq. (V.68).

We are interested in the contribution of order (Zα)6 lnZα, hence, everything that cancels a
photon propagator can be removed from the integrand of Eq. (V.67). Therefore, we replace,
e.g., q · q′ → −p2

t/2 and (q · pt)(q′ · pt)→ −p4
t/4.

3The full s- and u-channel result can be deduced from Appendix V.E by setting the FFs to their structureless
values: F1 = 1 and F2 = 0.
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The integration over the loop momenta is performed by means of the Feynman-parameter
method. Shifting the integration momentum as q → q+ yl− (x− y)pt, and subsequently scaling
y → xy, the denominator is replaced by:

1

q2(q + pt)2[(l − q)2 −m2]
= 2

ˆ 1

0
dxx

ˆ 1

0
dy

1[
q2 −M2(x, y)

]3 , (V.69)

with M2 = x
[
xy2m2 − (1− x)(1− y)p2

t

]
− i0+.

The kinematics of the present bound-state problem, cf. Fig. V.1, match those of elastic scat-
tering. In the CM frame, the four-momenta of the incoming and outgoing particles read:

p = {Ep/c,p}, l = {El/c,−p}, (V.70a)

p′ = {Ep/c,p′}, l′ = {El/c,−p′}, (V.70b)

with |p|2 = |p′|2 and Ep/c =
√

(Mc)2 + |p|2 ≈ Mc, etc. All particles are considered to be on-
shell, hence, the energies of the lepton and the nucleus are conserved, respectively. Accordingly,
there is no retardation in the CM frame: p0

t = 0.
Likewise to the nuclear spinors, we expand the lepton spinors semi-relativistically: ū(l′)u(l) ≈

1+O(c−2) and ū(l′) γ0 u(l) ≈ 1+O(c−2), see Appendix V.B. Independent of the frame, we have:

ū(l′) [pt · γ · l] u(l) = p2
t /2. (V.71)

Furthermore, we evaluate the following structures in the CM frame:

p · l ≈Mmc2 +O(c0), (V.72a)

ū(l′) [pt · γ · p] u(l) ≈ 0 +O(c0). (V.72b)

The calculation simplifies slightly because the leading term in Eq. (V.72b) is canceling.
Introducing the Feynman integrals:

Jn(M2) =

ˆ
ddq

i(2π)d
1

[q2 −M2]n
, (V.73a)

=
(−1)n

(4π)2

Γ(n− 2)

Γ(n)

1

M2(n−2)
, (V.73b)

Jµ1...µs
n (M2) =

ˆ
ddq

i(2π)d
qµ1 · · · qµs

[q2 −M2]n
, (V.73c)

(with M2 6= 0, n > 2 and d = 4), as well as,

Jµ1µ2
n (M2) =

1

2(n− 1)
Jn−1(M2) gµ1µ2 , (V.73d)

and particularly,

J2(M2) = − 1

(4π)2

[
Lε + lnM2

]
, (V.73e)

J3(M2) = − 1

2(4π)2

1

M2
, (V.73f)

with Lε being a real constant from dimensional regularization, we integrate over the loop mo-
mentum. To leading order in the semi-relativistic expansion, the matrix element of the diagram
in Fig. V.1 can be expressed as:
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M(p2
t ) = 8π2αm

ˆ 1

0
dxx

ˆ 1

0
dy
{

(αE1 + βM1)×
(
J3(M2)

[
p2
t

(
2− 3xy + (xy)2

)
(V.74)

+ 4m2(xy)2(1− 2xy)
]

+ J2(M2) [1− 6xy]
)

+ (αE1 − βM1)×
(
J3(M2)

[
4m2(xy)2 + p2

t

(
2 + xy − (xy)2

)]
+ J2(M2)

)}
.

In this result, we neglected recoil effects because of their additional suppression by 1/M or 1/M2.
Thanks to the DR in Eq. (V.60), it will be sufficient to calculate the imaginary part of

M. The integrations over the Feynman parameters x and y, cf. Eq. (V.74), are performed in
Appendix V.C, see Eq. (V.87). Our final result is:

ImM(t) =
παm

6(1− τ)7/2

{
[αE1 + βM1] τ

√
1− τ (10− τ + 6τ2) (V.75a)

−3
√
τ
[
(4− 7τ + 10τ2 − 2τ3)αE1 + τ(5− 2τ + 2τ2)βM1

]
arccos

√
τ
}
,

≈ παm
[
−παE1

√
τ + τ/3 (11αE1 + 5βM1)

]
+O(τ3/2), (V.75b)

with τ = t/4m2. In the last row, we expanded for small τ . To the given order, our result agrees
with Refs. [416] and [417, Eq. (24)].

In Eq. (V.61) and below, we discussed the perturbative TPE potential in coordinate space. For
the numerical evaluation, it will be more convenient to work with the alternative momentum-
space approach. In first-order PT, the energy correction to the 2P1/2 − 2S1/2 LS due to a
momentum-space potential is given by, cf. Eq. (II.104):

ELS =
1

2π2

ˆ ∞
0

d|pt| |pt|2w2P−2S(|pt|)V (|pt|), (V.76)

where w2P−2S is the convolution of momentum-space Coulomb wave functions, cf. Eq. (II.105):

w2P-2S(|pt|) =
2 (a|pt|)2

[
1− (a|pt|)2

]
[1 + (a|pt|)2]4

, (V.77)

and the retardation-free off-forward TPE potential reads as: V (|pt|) = M(−|pt|2). Plugging the
off-forward TPE amplitude, meaning the dispersive integral in Eq. (V.60), into Eq. (V.76), we
arrive at:

ELS =
1

8π2a

ˆ ∞
0

dt

[
1

a2t
− a2t[

1 + a
√
t
]4
]

ImM(t). (V.78)

In Appendix V.D, we list corresponding formulas for the lowest S-levels and the 2P -level. For the
leading off-forward TPE contribution, one can equivalently evaluate Eq. (V.78) or Eq. (V.90b),
see Eq. (V.63) and discussion below. In Appendix V.C, cf. Eq. (V.88), we give all necessary
integrals to evaluate Eq. (V.78).

In Eqs. (V.78) and (V.75), we derived the nuclear-polarizability effect on the LS from off-
forward TPE. Our numerical results are presented in Section VI.2 for different light muonic
atoms.

5. Summary and Conclusion

In this Chapter, we discussed the theory of TPE effects in hydrogen-like atoms. The well-known
forward TPE formalism was presented in Section V.1, where we clarified the terminology and
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defined the polarizability effect. In Section V.2, we matched the non-recoil effects from the
nucleon-pole contributions of one- and two-photon exchange.

In Section V.3, we derived an expression for the TPE polarizability contribution to the HFS
in terms of spin polarizabilities. We will apply this formalism in Section VII.2 to interpret our
results for the HFS.

In Section V.4, we derived the nuclear dipole polarizability contribution to the LS through
off-forward TPE. In Chapters VI and VII, we will numerically evaluate forward and off-forward
TPE polarizability effects on the LS and HFS, respectively.

A. Hyperspherical Coordinates and Wick Rotation

In general, n-dimensional hyperspherical coordinates are defined as:

x1 = r cosφ1,

x2 = r sinφ1 cosφ2,

x3 = r sinφ1 sinφ2 cosφ3,

...

xn−1 = r sinφ1 · · · sinφn−2 cosφn−1,

xn = r sinφ1 · · · sinφn−2 sinφn−1.

(V.79)

The volume in n-dimensions can be calculated through:

Vn =

ˆ 2π

φn−1=0

ˆ π

φn−2=0
· · ·

ˆ π

φ1=0

ˆ ∞
r=0

dnV, (V.80)

with the volume element

dnV =

∣∣∣∣det
∂(xi)

∂(r, φj)

∣∣∣∣ dr dφ1 dφ2 · · · dφn−1,

= rn−1 sinn−2 φ1 sinn−3 φ2 · · · sinφn−2 dr dφ1 dφ2 · · · dφn−1. (V.81)

To interpret, f.i., Eqs. (V.1) and (V.2), it is convenient to Wick-rotate (q0 → iQ0), and switch
to Euclidean hyperspherical coordinates. In doing so, q = (ν, q) becomes:

ν = iQ cosχ, q = (Q sinχ sin θ cosϕ,Q sinχ sin θ sinϕ,Q sinχ cos θ), (V.82)

and the integration, d4q = dν dq, changes into:4

d4q = Q3 sin2 χ sin θ dQdχdθ dϕ, (V.83)

with φ ∈ (0, 2π) and χ, θ ∈ (0, π).

B. Semi-Relativistic Expansion of Dirac Spinors

In the present Section, we perform the semi-relativistic expansion of different Dirac spinor struc-
tures. Such expansion is needed in Sections II.2, V.4 and VII.4.

4
´

d4q =
´∞

0
dν

´
dq
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Nλ(p) be the Dirac spinor of a spin-1/2 particle with arbitrary momentum p = (Ep/c,p), mass
M and polarization λ (spin projections along the z-axis). We then define [294]:

N λ(p) = (2Ep)
−1/2Nλ(p), (V.84a)

=
√

Ep+Mc2

2Ep

(
1

cσ·p
Ep+Mc2

)
⊗ χλ, (V.84b)

'
(

1− p2

8M2c2

σ·p
2Mc

)
⊗ χλ, (V.84c)

where in the last step we expanded semi-relativistically, recalling that Ep/c =
√
M2c2 + p2.

Note that the energy prefactor, (2Ep)
−1/2, stems from the semi-relativistic expansion of the

propagators. Furthermore, we have the Pauli matrices, σ = {σ1, σ2, σ3}, and the Pauli spinors:

χ1/2 =

(
1

0

)
, χ−1/2 =

(
0

1

)
. (V.85)

We now give expressions for the Dirac spinor structures appearing in our calculations:

N (p′) N (p) ' 1− P 2

2M2c2
+
iS · q × P

2M2c2
+O(1/c4), (V.86a)

N (p′) γ5 N (p) ' S · q
Mc

+O(1/c3), (V.86b)

N (p′)γ0N (p) ' 1− pt
2

8M2c2
− iS · q × P

2M2c2
+O(1/c4), (V.86c)

N (p′) γi N (p) ' 1

Mc

[
P i − i (S × q)

i
]

+O(1/c3), (V.86d)

N (p′)γ0γiN (p) ' 1

2Mc

[
pit − 4i (S × P )

i
]

+O(1/c3), (V.86e)

N (p′)γiγjN (p) ' −δij − 2iεijkSk +
1

8M2c2

{
4
[
P 2 − iS · q × P

]
δij + 2

[
P ipjt − P jpit

]
(V.86f)

+4i

[
(P + 1

2 q)j
[
S × (P − 1

2 q)
]i − (P + 1

2 q)i
[
S × (P − 1

2 q)
]j ]

+4i εijk(P + 1
2 q)k S · (P − 1

2 q) + i
[
4P 2 + q2

]
εijkSk

}
+O(1/c4),

N (p′)γiγjγ0N (p) ' −δij − 2i εijkSk +
1

8M2c2

{[
q2 + 4iS · q × P

]
δij − 2

[
P ipjt − P jpit

]
(V.86g)

−4i

[
(P + 1

2 q)j
[
S × (P − 1

2 q)
]i − (P + 1

2 q)i
[
S × (P − 1

2 q)
]j ]

−4i εijk(P + 1
2 q)k S · (P − 1

2 q) + i
[
4P 2 + q2

]
εijkSk

}
+O(1/c4),

N (p′)γiγjγkN (p) ' 1

Mc

[
− δijP k + δkiP j − δjkP i − 2i εijkS · P + iδij(S × q)k (V.86h)

−i δki(S × q)j + i δjk(S × q)i
]

+O(1/c3),

with q = p − p′, P = 1
2 (p + p′) and the nuclear spin S = σ/2. Analogously, one derives

expressions for the lepton spinor, distinguishing only s = σ/2 and q = l′ − l, where l (l′) is
the incoming (outgoing) lepton momentum. The presented expressions are independent of the
reference frame.
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C. Auxiliary Integrals

C. Auxiliary Integrals

Here, we provide a list of auxiliary integrals occurring in our calculation.

• Feynman-parameter integrals as appearing in Eq. (V.74):

I1(τ) = Im

ˆ 1

0

dy

ˆ 1

0

dx
x

M2
=

π

m2

arccos
√
τ

2
√
τ(1− τ)

, (V.87a)

I2(τ) = Im

ˆ 1

0

dy

ˆ 1

0

dx
x2y

M2
=

π

m2

1

2(1− τ)

[
1−
√
τ arccos

√
τ√

1− τ

]
, (V.87b)

I3(τ) = Im

ˆ 1

0

dy

ˆ 1

0

dx
x3y2

M2
=

π

m2

1

4(1− τ)2

[
−3τ +

(1 + 2τ)
√
τ arccos

√
τ√

1− τ

]
, (V.87c)

I4(τ) = Im

ˆ 1

0

dy

ˆ 1

0

dx
x4y3

M2
(V.87d)

=
π

m2

τ

12(1− τ)3

[
(4 + 11τ)− (9 + 6τ)

√
τ arccos

√
τ√

1− τ

]
,

I5(τ) = Im

ˆ 1

0

dy

ˆ 1

0

dxx lnM2 =
πτ

2(1− τ)

[
1− arccos

√
τ√

τ(1− τ)

]
, (V.87e)

I6(τ) = Im

ˆ 1

0

dy y

ˆ 1

0

dxx2 lnM2 = − πτ

2(1− τ)2

[
τ + 2

3
−
√
τ arccos

√
τ√

1− τ

]
, (V.87f)

with M2 = x
[
xy2m2 − (1− x)(1− y)p2

t

]
− i0+ and τ = p2

t/4m2.

• ∆EnS [ImM(t)], cf. Eqs. (V.90a)-(V.90d), evaluated with Eq. (V.87) for τ = t/4m2:

∆EnS [tI1] ≈ − 1

8π2m

(Zαmr)
4

n3
ln
Zαmr

2nm
+O(α6, α7), (V.88a)

∆EnS [I3] ≈ − 1

64π2m3

(Zαmr)
4

n3
ln
Zαmr

2nm
+O(α6, α7), (V.88b)

∆EnS [I5] ≈ 1

64π2m

(Zαmr)
4

n3
ln
Zαmr

2nm
+O(α6, α7), (V.88c)

∆EnS [tI2] ≈ 0 +O(α6, α7), ∆EnS [I4] ≈ 0 +O(α6, α7), ∆EnS [I6] ≈ 0 +O(α6, α7).

D. First-order Perturbation Theory in Momentum Space

• Convolution of momentum-space Coulomb wave functions:

w1S(pt|) =
16

[4 + (a|pt|)2]
2 , (V.89a)

w2S(|pt|) =

[
1− 2 (a|pt|)2

] [
1− (a|pt|)2

]
[1 + (a|pt|)2]

4 , (V.89b)

w3S(|pt|) =
16
[
4− 3(a|pt|)2

] [
4− 27(a|pt|)2

] [
16− 216(a|pt|)2 + 243(a|pt|)4

]
[4 + 9(a|pt|)2]

6 , (V.89c)

w4S(|pt|) =

[
1− 4(a|pt|)2

] [(
4(a|pt|)2 − 1

)2 − 16(a|pt|)2
]

[1 + 4a(a|pt|)2]
8 × (V.89d)

×
[
1− 48(a|pt|)2 + 288(a|pt|)4 − 256(a|pt|)6

]
,

w2P (|pt|) =
1− (a|pt|)2

[1 + (a|pt|)2]
4 . (V.89e)
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• Energy shifts in first-order PT:

∆E1S =
1

π2a

ˆ ∞
0

dt

[
1[

2 + a
√
t
]2 − 1

a2t

]
ImM(t), (V.90a)

∆E2S =
1

8π2a

ˆ ∞
0

dt

[
1 + 2a2t

2
[
1 + a

√
t
]4 − 1

a2t

]
ImM(t), (V.90b)

∆E3S =
1

9π2a

ˆ ∞
0

dt

[
16 + 27a2t

[
8 + 9a2t

][
2 + 3a

√
t
]6 − 1

3a2t

]
ImM(t), (V.90c)

∆E4S =
1

64π2a

ˆ ∞
0

dt

[
1 + 16a2t

[
3 + 2a2t

(
9 + 8a2t

)][
1 + 2a

√
t
]8 − 1

a2t

]
ImM(t), (V.90d)

∆E2P =
1

16π2a

ˆ ∞
0

dt
1[

1 + a
√
t
]4 ImM(t). (V.90e)

E. Born and Elastic Parts of Off-Forward Doubly-Virtual Compton
Scattering

The off-forward VVCS can be decomposed into a set of 9 tensors:

ū ′(ε′ · T · ε)u = e2ÂT (s, t) ū ′Ôµνu E ′µEν , (V.91a)

with

Â(s, t) =
{
A1, · · · , A9

}
(s, t), (V.91b)

Ôµν =
{
− gµν , qµq′ ν , −γµν , gµν(q′ · γ · q), qµq′αγαν − γαµqαq′ν , (V.91c)

qµqαγ
αν − γαµq′αq′ν , qµq′ ν(q′ · γ · q), −iγ5ε

µναβq′αqβ,

qµqαγ
αν + γαµq′αq

′ν},
Eµ = εµ −

P · ε
P · q qµ, E

′
µ = ε′µ −

P · ε′
P · q q

′
µ, Pµ = 1

2 (p+ p′)µ, P · q = P · q′ = Mξ. (V.91d)

The Born contribution to off-forward VVCS with FF dependent e.m. interaction,

Γµ = eγµF1(Q2)− e

2M
γµνqνF2(Q2), (V.92)

reads:5

ABorn
1 =

4F1(q2)F1(q′ 2) (q · P )2 + (q · q′)2
[
F1(q2)F2(q′ 2) + F2(q2)F1(q′ 2) + F2(q2)F2(q′ 2)

]
M [s−M2] [u−M2]

, (V.93a)

ABorn
2 =

F2(q2)F2(q′ 2) (q · P )2 +M2 (q · q′)
[
F1(q2)F2(q′ 2) + F2(q2)F1(q′ 2) + F2(q2)F2(q′ 2)

]
M3 [s−M2] [u−M2]

, (V.93b)

5We used:

ū(p′) [γµναaµbνcα]u(p) =
1

M
ū(p′) [P · a b · γ · c− P · b a · γ · c+ P · c a · γ · b]u(p)

+
1

2M
ū(p′)

[
γµναβaµbνcα(q′ − q)β

]
u(p).
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ABorn
3 =

−4M2 (q · P ) (q · q′)GM (q2)GM (q′ 2) + F2(q2)F2(q′ 2) (q · P )
[
4(q · P )2 − (q · q′)2

]
2M3 [s−M2] [u−M2]

(V.93c)

= −2 (q · P )ABorn
8 ,

ABorn
4 = −ABorn

5 =
2 (q · P )GM (q2)GM (q′ 2)

M [s−M2] [u−M2]
, (V.93d)

ABorn
6 =

(q · P )
[
2F1(q2)F1(q′ 2) + F2(q2)F1(q′ 2) + F1(q2)F2(q′ 2)

]
M [s−M2] [u−M2]

, (V.93e)

ABorn
7 = − (q · P )F2(q2)F2(q′ 2)

2M3 [s−M2] [u−M2]
, (V.93f)

ABorn
9 =

(q · P )
[
F2(q2)F1(q′ 2)− F1(q2)F2(q′ 2)

]
M [s−M2] [u−M2]

, (V.93g)

where P = 1/2 (p+ p′), which satisfies q′ · P = q · P (since q − q′ = p′ − p and p2 = p′ 2 = M2).
In deriving this, we used:

1

s−M2
=

q · q′ − 2q · P
[s−M2][u−M2]

, (V.94a)

1

u−M2
=

q · q′ + 2q · P
[s−M2][u−M2]

, (V.94b)

or equivalently:

4 q · P =
[
s−M2

]
−
[
u−M2

]
, (V.95a)

2 q · q′ =
[
s−M2

]
+
[
u−M2

]
. (V.95b)

In the real limit, one amplitude vanishes: A9 = 0. Therefore, the RCS can be described by only
8 independent amplitudes [53]:

Â(s, t) =
{
A1, · · · , A8

}
(s, t), (V.96a)

Ôµν =
{
− gµν , qµq′ ν , −γµν , gµν(q′ · γ · q), qµq′αγαν − γαµqαq′ν ,
qµqαγ

αν − γαµq′αq′ν , qµq′ ν(q′ · γ · q), −iγ5ε
µναβq′αqβ

}
. (V.96b)

The Born part is equivalent to the elastic nucleon-pole part up to non-pole pieces, cf. Eq. (V.17).
In the forward limit, we have the simplification that q · P → Mν and q · q′ → −Q2. Hence, in
the following, we identify poles in q · P . Introducing:

ξ =
s− u
4M

=
q · P
M

, (V.97)

we can see that:
4(q · P )2 ≡ 4M2ξ2 = (q · q′)2 −

[
s−M2

] [
u−M2

]
. (V.98)

We then rewrite the Born part of off-forward VVCS and separate nucleon-pole and non-pole
pieces:

ABorn
1 = −F1(q2)F1(q′ 2)

M
+

(q · q′)2GM (q2)GM (q′ 2)

M [s−M2] [u−M2]
, (V.99a)

ABorn
2 = −F2(q2)F2(q′ 2)

4M3
(V.99b)

+
(q · q′)

[
F1(q2)F2(q′ 2) + F2(q2)F1(q′ 2) + F2(q2)F2(q′ 2)

(
1 + (q·q′)

4M2

)]
M [s−M2] [u−M2]

,
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ABorn
3 = − (q · P )F2(q2)F2(q′ 2)

2M3
− 2 (q · P ) (q · q′)GM (q2)GM (q′ 2)

M [s−M2] [u−M2]
, (V.99c)

ABorn
4 = −ABorn

5 =
GM (q2)GM (q′ 2)

2M

{
1

u−M2
− 1

s−M2

}
, (V.99d)

ABorn
6 =

[
2F1(q2)F1(q′ 2) + F2(q2)F1(q′ 2) + F1(q2)F2(q′ 2)

]
4M

{
1

u−M2
− 1

s−M2

}
, (V.99e)

ABorn
7 =

F2(q2)F2(q′ 2)

8M3

{
1

s−M2
− 1

u−M2

}
, (V.99f)

ABorn
8 =

F2(q2)F2(q′ 2)

4M3
+

(q · q′)GM (q2)GM (q′ 2)

M [s−M2] [u−M2]
, (V.99g)

ABorn
9 =

[
F1(q2)F2(q′ 2)− F2(q2)F1(q′ 2)

]
4M

{
1

s−M2
− 1

u−M2

}
. (V.99h)

Obviously, the amplitudes ABorn
1 ,ABorn

2 ,ABorn
3 and ABorn

8 contain non-pole pieces:

Anon-pole
1 = −F1(q2)F1(q′ 2)

M
, (V.100a)

Anon-pole
2 = −F2(q2)F2(q′ 2)

4M3
, (V.100b)

Anon-pole
3 = −F2(q2)F2(q′ 2) q · P

2M3
, (V.100c)

Anon-pole
8 =

F2(q2)F2(q′ 2)

4M3
, (V.100d)

which need to be subtracted to calculate the elastic contribution to off-forward VVCS. Using
Ref. [53, Appendix A]:

T1 = e2A1, (V.101a)

T2 =
e2Q2

ν2

(
A1 +Q2A2

)
, (V.101b)

S1 =
e2M

ν

[
A3 +Q2

(
A5 +A6

)]
, (V.101c)

S2 = e2M2
(
A5 +A6

)
, (V.101d)

we reproduce the well-known VVCS amplitudes in the forward limit, see Eq. (V.16).
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CHAPTER VI

LAMB SHIFT IN CHIRAL PERTURBATION THEORY

In the previous Chapter, we gave an introduction into the theory of TPE effects. In the next
two Chapters (VI and VII), we calculate nucleon- and nuclear-polarizability contributions to the
LS and HFS of light muonic atoms in the framework of BChPT.

In the present Chapter, we deal with the LS. In particular, we give a prediction for the order-
α5 proton-polarizability contribution to the µH LS at NLO in BChPT. As input, we use the
VVCS amplitudes and photoabsorption cross sections from Chapter IV. We compare our results
to HBChPT (Section VI.1.3) and dispersive calculations (Section VI.1.4).

In Section VI.2, we evaluate the order-(Zα)6 effect of the nuclear e.m. dipole polarizabilities
from off-forward TPE, cf. Section V.4, on the LSs in µH, µD, µ3H, µ3He+ and µ4He+. In
Section VI.2.1, we demonstrate that the off-forward TPE represents a viable alternative approach
to the Coulomb-distortion long-range polarization potential known from the literature.

In Section VI.3, we update the theoretical descriptions of the LSs in µH, µD and µ4He+ based
on the results of this Chapter, and re-extract the proton and deuteron charge radii.

1. Proton-Polarizability Contribution at Order α5

In what follows, the NLO BChPT prediction for the order-α5 proton-polarizability effect in the
LS of µH is presented. In general, ChPT predictions of the TPE polarizability effects provide a
genuine alternative to the more common dispersive evaluations based on empirical information,
see Section VI.1.4. One advantage of the ChPT approach is that calculating the non-Born
diagrams gives direct access to the polarizability contribution. The dispersive calculations, on
the other hand, are naturally working with the separation into contributions from elastic FFs and
inelastic structure functions and require a subsequent rearrangement into Born and polarizability
contributions, cf. Section V.1.4

As explained in Section V.1.5.3, the polarizability contribution to the LS can not be extracted
solely from experimental data. In the dispersive calculations, the contribution of the subtraction
function, T 1(0, Q2), has to be modeled. In the ChPT framework, however, no modeling is
needed. Since all LECs appearing in the O(p7/2) calculation of the VVCS amplitudes are known
from other processes, the NLO nucleon polarizabilities come out as a pure prediction of ChPT.
Consequently, ChPT contains definite predictions for the proton structure effects from TPE.

The energy shift of the n-th S-level due to forward TPE, Eq. (V.1), is dominated by low Q.
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Figure VI.1.: Comparison of predictions for the polarizability contribution to the 2S-level shift in muonic
hydrogen, see also Tables VI.3 and VI.4.

Assuming the photon energy ν is small compared to all other scales, one finds [177]:

∆E pol.(nS) =
α

π
φ2
n

ˆ ∞
0

dQ

Q2
w(τl)

[
T 1(0, Q2)− T 2(0, Q2)

]
, (VI.1)

with the weighting function w(τl) =
√

1 + τl −
√
τl. Substituting the LEXs,

lim
ν,Q2→0

T 1(ν,Q2)

4π
=

[
αE1(Q2) + βM1(Q2)

]
ν2 + βM1Q

2 +O(ν4, ν2Q2, Q4), (VI.2a)

lim
ν,Q2→0

T 2(ν,Q2)

4π
= (αE1 + βM1)Q2 +O(ν4, ν2Q2, Q4), (VI.2b)

one observes that the dependence on the magnetic polarizability βM1 is removed. From this
it follows that the polarizability part of the TPE effect in the LS is dominated by the electric
dipole polarizability αE1, while the contribution of the magnetic dipole polarizability βM1 is
suppressed.

Another implication that the electric dipole polarizability dominates was found in Ref. [418],
where the nuclear structure corrections in µD are calculated. Surprisingly, the total deuteron
structure correction is approximately given by electric dipole polarizability contributions at
various orders, while other corrections, e.g., from higher multipole polarizabilities, the magnetic
dipole polarizability or relativistic nature, cancel each other out.

As the contribution of the magnetic dipole polarizability to the TPE is suppressed, likewise
should be the dominant magnetic-dipole part of the e.m. nucleon-to-delta transition. There-
fore, Alarcón et al. [177] calculate the order-α5 polarizability contribution at LO in BChPT and
neglect the NLO ∆(1232)-excitation. This should be a good approximation for the total polariz-
ability effect. Nevertheless, the separation into Esubtr.

LS and Einel.
LS , Eqs. (V.26) and (V.27), suffers

because the effect of the delta does not cancel out in the independent terms. In the following,
we will include the ∆(1232)-exchange to make the prediction of the subtraction function more
reliable and confirm its expected insignificance in the total polarizability contribution.
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Fig. 1 The two-photon
exchange diagrams of elastic
lepton–nucleon scattering
calculated in this work in the
zero-energy (threshold)
kinematics. Diagrams obtained
from these by crossing and
time-reversal symmetry are
included but not drawn

(b) (c)(a)

(d) (e) (f)

(g) (h) (j)

of two scalar amplitudes:

T µν(P, q) = −gµν T1(ν
2, Q2) + Pµ Pν

M2
p

T2(ν
2, Q2), (5)

with P the proton 4-momentum, ν = P ·q/Mp, Q2 = −q2,
P2 = M2

p. Note that the scalar amplitudes T1,2 are even
functions of both the photon energy ν and the virtuality Q.
Terms proportional to qµ or qν are omitted because they
vanish upon contraction with the lepton tensor.

Going back to the energy shift one obtains [12]:

"EnS = αem φ2
n

4π3mℓ

1
i

∫
d3q

∞∫

0

dν

× (Q2 − 2ν2) T1(ν
2, Q2) − (Q2 + ν2) T2(ν

2, Q2)

Q4[(Q4/4m2
ℓ) − ν2] . (6)

In this work we calculate the functions T1 and T2 by
extending the BχPT calculation of real Compton scatter-
ing [26] to the case of virtual photons. We then split the
amplitudes into the Born (B) and non-Born (NB) pieces:

Ti = T (B)
i + T (NB)

i . (7)

The Born part is defined in terms of the elastic nucleon form
factors as in, e.g. [13,27]:

T (B)
1 = 4παem

Mp

[
Q4(FD(Q2)+FP (Q2))2

Q4−4M2
pν

2 −F2
D(Q2)

]

, (8a)

T (B)
2 = 16παem Mp Q2

Q4 − 4M2
pν

2

[

F2
D(Q2)+ Q2

4M2
p

F2
P (Q2)

]

. (8b)

In our calculation the Born part was separated by subtract-
ing the on-shell γ N N pion loop vertex in the one-particle-
reducible VVCS graphs; see diagrams (b) and (c) in Fig. 1.

Focusing on the O(p3) corrections (i.e., the VVCS amplitude
corresponding to the graphs in Fig. 1) we have explicitly ver-
ified that the resulting NB amplitudes satisfy the dispersive
sum rules [28]:

T (NB)
1 (ν2, Q2)

= T (NB)
1 (0, Q2) + 2ν2

π

∞∫

ν0

dν′ σT (ν′, Q2)

ν′2 − ν2 , (9a)

T (NB)
2 (ν2, Q2)

= 2
π

∞∫

ν0

dν′ ν′ 2 Q2

ν′2 + Q2

σT (ν′, Q2) + σL(ν′, Q2)

ν′2 − ν2 , (9b)

with ν0 = mπ + (m2
π + Q2)/(2Mp) the pion-production

threshold, mπ the pion mass, and σT (L) the tree-level cross
section of pion production off the proton induced by trans-
verse (longitudinal) virtual photons, cf. Appendix B. We
hence establish that one is to calculate the ‘elastic’ con-
tribution from the Born part of the VVCS amplitudes and
the ‘polarizability’ contribution from the non-Born part,
in accordance with the procedure advocated by Birse and
McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (6) we
obtain the following value for the polarizability correction:

"E (pol)
2S = −8.16 µeV. (10)

This is quite different from the corresponding HBχPT result
for this effect obtained by Nevado and Pineda [11]:

"E (pol)
2S (LO-HBχPT) = −18.45 µeV. (11)

We postpone a detailed discussion of this difference till
Sect. 4.

123

Figure VI.2.: The two-photon-exchange diagrams with chiral loops. Figure taken from Ref. [177].

Anticipating the result of this Section, the NLO BChPT prediction of the order-α5 proton-
polarizability contribution to the LS in µH evaluates to:

Epol.
LS (µH) = 4.9 +2.0

−1.3 µeV, (VI.3)

where the contribution of the subtraction function equals:

Esubtr.
LS (µH) = −5.8± 2.3µeV, (VI.4a)

Einel.
LS (µH) = 10.7 +2.3

−2.1 µeV. (VI.4b)

The latter compares best to the result of Ref. [172]. In general, the BChPT prediction compares
in a satisfactory manner with the dispersive calculations, see Fig. VI.1.

Based on the elastic FF parametrization of Bradford et al. [316], the Born contribution of
TPE amounts to:

EBorn
LS (µH) = 22.9± 1.7µeV, (VI.5)

where we estimated the error by taking the spread of different FF fits [112, 113]. Our final result
for the forward TPE effect then reads:

ETPE
LS (µH) = 27.8 +2.6

−2.1 µeV. (VI.6)

In the following, we present the individual contributions from chiral loops and the ∆-exchange.
Afterwards, we will compare to HBChPT and dispersive calculations. Tables VI.3 and VI.4
summarize relevant calculations of the TPE corrections to the µH LS performed by various
authors.

1.1. Chiral Loops

In the δ-expansion of ChPT, the LO polarizability contribution is given by the TPE diagrams
with chiral loops, shown in Fig. VI.2. They were calculated in Ref. [177] with the results given in
Table VI.3. Note that the VVCS structures in Figures IV.2 and VI.2 differ due to a redefinition
of the nucleon field,1 which is described in Ref. [58, Section 3.1].

Alarcón et al. [177] established the LEX in Eq. (VI.1) as a very good approximation for the
TPE polarizability effect in the LS. The high-energy contribution to their result was found

1N → ξN with ξ = exp (igAπ
aτaγ5/2fπ)
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VI. Lamb Shift in Chiral Perturbation Theory

Table VI.1.: ∆-exchange contribution to the 2S-level shift in muonic hydrogen. All values in µeV.

Eq. Input ∆E2S(T1) ∆E2S(T2) ∆E2S

(V.3) T1(0, Q2) (IV.97) 7.58 / 7.58

(V.25) fi (IV.38) −2.22 −6.01 −8.23

(V.3) T∆−pole
i (IV.95) −2.22 −6.01 −8.23

(V.3) T̃i (IV.96) 0.40 1.19 1.59

(V.3) Ti (IV.35) 5.76 −4.82 0.95

to be small enough to not contradict the use of ChPT as a low-energy effective field theory.
Nevertheless, we improve the cut-off behavior on higher momentum transfers by including the
pion FF [419]:

Fπ(Q2) =

(
1 +

Q2

Λ2
π

)−1

, (VI.7)

with Λ2
π = 0.462 ± 0.024 GeV2. It enters twice in each CS diagram, cf. Fig. IV.2, and by this

reduces the contribution to the Q-integral in Eq. (VI.1) from Q > mρ ≈ 775 MeV to ∼ 1 %.
Plugging the non-Born CS amplitudes into Eq. (VI.1), we obtain the following polarizability

effect on the LS in µH:

E
〈πN〉 pol.
LS (µH) = 5.86 +1.76

−0.88 µeV. (VI.8)

It is then easy to isolate the contribution of the T 1(0, Q2) subtraction function to Eq. (VI.1):

E
〈πN〉 subtr.
LS (µH) = 1.81 +0.54

−0.27 µeV, (VI.9a)

E
〈πN〉 inel.
LS (µH) = 4.05 +1.21

−0.61 µeV. (VI.9b)

As explained in Ref. [177], the value of the polarizability contribution is expected to increase
when going to the next order (i.e., including pion-delta loops). Therefore, we assigned an
uncertainty of 30 % (' ∆/M) towards the magnitude increase and 15 % (' mπ/M) towards the
magnitude decrease.

1.2. ∆-Exchange

Figure VI.3.: Two-photon-exchange diagram with intermediate ∆(1232)-excitation.

At NLO in the ChPT power-counting, we need to consider the ∆(1232)-exchange shown in
Fig. VI.3. The tree-level VVCS amplitudes with intermediate ∆-excitation and the ∆-production
cross sections are given in Section IV.3. We calculated them in BChPT and afterwards related
the ChPT couplings to the Jones-Scadron FFs, cf. Section IV.3.2. The Jones-Scadron FFs, in
turn, were replaced by the finite-momentum extension of their large-Nc limit, cf. Eqs. (IV.52b),
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1. Proton-Polarizability Contribution at Order α5

Table VI.2.: Contribution of different multipole ratios to the 2S-level shift in muonic hydrogen. All values
in µeV.

∆E2S(T1) ∆E2S(T2) ∆E2S

T1(0, Q2) f1 f2

G∗2M 7.960 −1.929 −5.117 0.915

G∗2MREM −0.221 0.041 0.154 −0.027

G∗2MRSM −0.146 0.043 0.080 −0.023

G∗2MR
2
EM −0.029 0.007 0.047 0.026

G∗2MREMRSM 0.022 0.011 −0.002 0.031

G∗2MR
2
SM −0.004 0.010 0.021 0.027

total 7.581 −1.817 −4.816 0.948

(IV.52c) and (IV.53) with C∗M = 3.02√
2κp

. In this way, the ∆-exchange process could be described

through nucleon FFs, which are known from experiments. We chose to mainly work with the
elastic FF parametrization of Bradford et al. [316]. For another thing, we use the dipole FF to
study the sensitivity of our results on the FF parametrization.

The total contribution of the ∆(1232)-exchange to the 2P1/2 − 2S1/2 LS in µH amounts to:

E
〈∆〉 pol.
LS (µH) = −0.95± 0.95µeV. (VI.10)

Our results are summarized in Table VI.1, where we distinguish contributions from the sub-
traction function T1(0, Q2), the ∆-pole amplitudes T∆−pole

i and the non-pole amplitudes T̃i, cf.
decomposition in Eq. (IV.35). The size of the individual contributions is comparable to the
leading chiral loop effect, Eq. (VI.8). Combining the individual contributions, the ∆-pole parts
of the VVCS amplitudes largely cancel the subtraction function and the non-pole parts. Due to
the large cancelations, we prefer to assign a conservative error of 100 %.

Surprisingly, the ∆-exchange contribution to the subtraction function,

E
〈∆〉 subtr.
LS (µH) = −7.58± 2.27µeV, (VI.11a)

E
〈∆〉 inel.
LS (µH) = 6.63± 1.99µeV, (VI.11b)

is much larger than the LO contribution from the pion-nucleon loops. Therefore, it has a substan-
tial effect on our BChPT prediction for the subtraction term, which is collected in Eq. (VI.4a).
Note that for the ∆-exchange contribution in Eq. (VI.11) we assigned a 30 % error due to higher
orders in the chiral expansion.

We verified that the contribution from large momentum transfers (Q > mρ) is less than 1 %.
Also, it was confirmed that the dependence on the applied nucleon FF parametrization is small.
Using a dipole FF for GEp and GMp, as well as the Galster parametrization for GEn [420]:2

GEn(Q2) = − τµn
1 + η τ

GD(Q2), (VI.12a)

2These are no parametrizations fitted to experimental data, thus, they only give a rough description of the
basic Q2 dependence of the nucleon FFs. There advantage, however, is that they display a physical pole
structure: The dipole FF has second-order poles at Q = ±iΛ and the Galster parametrization has simple poles
at Q = ± 2iM√

η
.
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VI. Lamb Shift in Chiral Perturbation Theory

GD(Q2) = (1 +
Q2

Λ2
)−2, (VI.12b)

with η = 5.6 and Λ2 = 0.71 GeV2, changes Eq. (VI.10) by only ∼ 6 %.
In Table VI.2, we break down the ∆-exchange effect on the µH LS into the contributions

of different multipole ratios. The numerically small influence of the ∆-resonance on the LS,
Eq. (VI.10), was expected because the nucleon-to-delta transition is dominantly of magnetic
dipole type, while the magnetic dipole polarizability is suppressed in the LS, as can be seen from
the LEX of the VVCS amplitudes [177], cf. Eqs. (VI.1) and (VI.2).

1.3. Comparison with Heavy Baryon Chiral Perturbation Theory

There are several theory based determinations of the polarizability contribution [173, 421],
mainly performed within the chiral framework [171, 177, 422], see Table VI.3 for a summary.
Assuming ChPT is working, it should be best applicable to atomic system, where the energies
are very small. In ChPT, the NLO polarizability contribution can be obtained as a model-
independent prediction. Equivalently, the VVCS process at O(p7/2) in the low-energy domain
of the δ-expansion can be described without fitting of LECs to CS or elastic lepton-proton
scattering experiments.

Nevado and Pineda [171] calculate the spin-independent structure functions in HBChPT at
the leading one-loop level. The study is restricted to light quarks (u,d) and the delta is neglected.
The S-level shifts amount to:

∆Epol.
nS (H) = −87.0488

n3
Hz, (VI.13a)

∆Epol.
nS (µH) = −0.147614

n3
meV. (VI.13b)

In the case of H, this agrees well with the logarithmic approximation in Ref. [423]. Peset and
Pineda [176] improve the calculation of Ref. [171] by including the ∆(1232)-resonance. They
obtain (in units of µeV):

∆Epol.
2S (µH) = −18.51 (πN-loops) + 1.58 (∆-exch.)− 9.25 (π∆-loops) = −26.2± 10.0µeV.

Exploiting these results leads to a proton charge radius of REp = 0.8412(15) fm [422].
The LO BChPT calculation performed by Alarcón et al. [177], cf. Fig. VI.2, predicts the

polarizability effect on the 2S-level in µH with:

∆Epol.
2S (µH) = −8.2 +1.2

−2.5 µeV. (VI.14)

The quoted error limits are unsymmetrical because the NLO is expected to increase the magni-
tude, as is the case with αE1 [424]. Indeed, our calculation confirmed that the ∆-exchange leads
to a slight increase of the polarizability contribution to the LS. Obviously, the BChPT result is
in disagreement with the HBChPT predictions. However, expanding the non-Born amplitudes
in µ = mπ/M , while keeping the ratio of light scales τπ = Q2/4m2

π fixed, i.e., performing the
heavy-baryon expansion, Ref. [177] recovers the amplitudes given in References [171] and [174].
They find the following simple formula for the polarizability contribution to the 2S-level shift
from LO HBChPT [177]:

∆Epol.
2S =

α5m3
r g

2
A

4(4πfπ)2

m

mπ

(
1− 10G+ 6 ln 2

)
' −16.1 µeV, (VI.15)
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Table VI.3.: Summary of available chiral perturbation theory calculations for the two-photon-exchange
corrections to the 2S-level shift in muonic hydrogen. Energy shifts are given in µeV.

Nevado & Pineda Alarcón et al. Alarcón et al. Peset & Pineda this work

HBChPT [171] BChPT [177] HBChPT [177] HBChPT [422]a BChPT

∆Esubtr.
2S −3.0 1.3 5.8(2.3)

∆Einel.
2S −5.2 −19.1 −10.7(+2.1

−2.3)

∆Epol.
2S −18.5(9.3)b −8.2(+1.2

−2.5) −17.85 −26.2(10.0) −4.9(+1.3
−2.0)

∆EBorn
2S −10.1(5.1)c −8.3(4.3) −22.9(1.7)

∆E2S −28.6 −34.4(12.5) −27.8(+2.1
−2.6)

aprediction at LO and NLO (including pions and deltas)
berror given in Ref. [422]
cvalue from Ref. [423] as given in Ref. [422]

where G ' 0.9160 is the Catalan constant. In this way, the LO HBChPT results from References
[177] and [171] are in good agreement, cf. Table VI.3.3

As already observed for the dipole polarizabilities themselves, the BChPT and HBChPT
results for the polarizability contribution differ substantially at “predictive” orders. The LO
predictions of βM1 even differ in the overall sign [424]. For various reasons, the result from
BChPT seem to be more reliable. The HBChPT result for the polarizability contribution to the
µH LS obtains substantial contributions (at least 25%) from beyond the scale (Q > mρ ≈ 775
MeV) at which this effective theory is safely applicable. In contrast, for the BChPT result one
only finds a contribution of less than 15%, what is not exceeding the expected uncertainty of
such calculation. Another general advantage of BChPT versus HBChPT is that in the former
analyticity is obeyed exactly, while in the latter it is obeyed only approximately.

1.4. Comparison with Dispersive Calculations

An early study of the effect of the electric polarizability on the S-level shifts in electronic and
muonic atoms can be found in Ref. [435], where the approximation of unretarded-dipole (long-
wavelength) photons is used. In Ref. [436, 437], the effect of both the electric and magnetic
polarizability on the 1S ground state in H is calculated, considering the mean excitation en-
ergy of the proton. The work of Rosenfelder [438] builds upon the formalism introduced by
Bernabeu and Ericson [435]. It aims at improving the previous results by accounting for re-
tardation and estimating further contributions, e.g., through virtual transverse excitations, in
the non-relativistic harmonic oscillator quark model. The reliability of the different approaches
is not undisputed. For one thing, if the average excitation energy of the proton is too large
(∼ 410 MeV [438] compared to ∼ 300 MeV [437]), the unretarded-dipole photons are a doubtful
approximation. Also, as pointed out in Ref. [439], the polarization shifts can not be correctly
expressed through total photoabsorption cross section by means of an unsubtracted DR, as it is

3Note that the difference is only due to the use of a LEX, see Eq. (VI.1), in Ref. [177].
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VI. Lamb Shift in Chiral Perturbation Theory

Table VI.4.: Summary of available dispersive calculations for the two-photon-exchange corrections to the
2S-level shift in muonic hydrogen. Energy shifts are given in µeV, βM1 is given as ×10−4 fm3.

Pachucki Martynenko Carlson & Birse & Gorchtein

[169] [170] Vanderhaeghen [172] McGovern [174] et al. [175]a

βM1 1.56(57) [425] 1.9(5) [426] 3.4(1.2) [427, 428] 3.1(5) [325]

∆Esubtr.
2S 1.9 2.3 5.3(1.9) 4.2(1.0) −2.3(4.6)

∆Einel.
2S −13.9 [429, 430] −16.1 −12.7(5) [431, 432] −12.7(5)b −13.0(6) [431–433]

∆Epol.
2S −12(2) −13.8(2.9) −7.4(2.0) −8.5(1.1) −15.3(4.6)

∆EBorn
2S −23.2(1.0)


−27.8 [113]

−29.5(1.3) [112]

−30.8 [125, 434]

−24.7(1.6)c −24.5(1.2)

[122] [112, 113, 125]

∆E2S −35.2(2.2) −36.9(2.4) −33(2) −39.8(4.8)

aAdjusted values; the original values of Ref. [175], ∆Esubtr.
2S = 3.3 and ∆E

(el)
2S = −30.1, are based on a different

decomposition into elastic and polarizability contributions.
bValue taken from Ref. [172].
cResult taken from Ref. [172] (FF [112]) with reinstated “non-pole” Born piece.

done in Refs. [435, 438]. Nevertheless, the first prediction of the nS-level shift in µH [438]:

∆Epol.
nS (µH) = −0.136± 0.030

n3
meV

n=2
= −0.017± 0.004 meV, (VI.16)

is of similar magnitude as later dispersive and HBChPT predictions.

At the current level of precision, the LO BChPT prediction of the polarizability contribution
to the µH LS [177] and our NLO update, Eq. (VI.3), are in good agreement with calculations
based on dispersive sum rules but purely model independent, see Fig. VI.1. In Table VI.4, we
list dispersive calculations and partially requoted the empirical information which entered as
input. In the following, we will give further details on Refs. [169, 170, 172, 174, 175] and briefly
summarize the advancement in dispersive calculations.

One of the first modern dispersive calculations of the TPE effects can be found in Ref. [169],
see also Refs. [276, 277]. The latest dispersive approach can be found in Ref. [175]. The
main achievement of the latter paper is to relate the T1(0, Q2) subtraction function to the Q2

dependence of the fixed J = 0 Regge pole [440] through a finite-energy sum rule [175, Eq. (29)].
The evaluation relies on an empirical dataset comparable to the one used in Ref. [172].

The work of Martynenko [170] is based on the unitary isobar model and evolution equations
for parton distribution functions. The total polarizability contribution to the energy shifts of 1S
and 2S energy-levels in H and µH is calculated. In the resonance region, the five dominant low-
lying resonances, viz. P33(1232), S11(1535), D13(1520), P11(1440) and F15(1680), and the Nπ,
Nη and Nππ final-states are taken into account, as well as the contribution from K mesons. The
contribution of the non-resonance region is calculated from experimental data on the structure
functions for deep-inelastic lepton-nucleon scattering and parton distributions.
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1. Proton-Polarizability Contribution at Order α5

Birse and McGovern [174] calculate the subtraction function at NLO in HBChPT. They
include the leading contribution of the nucleon-to-delta transition FFs, while other effects of the
delta are absorbed into the LECs. Strictly speaking, this “physical cutoff” dependent result lies
outside the ChPT framework. Therefore, we list it in Table VI.4 and not in Table VI.3. Their
“elastic”and“inelastic”contributions are adopted from Ref. [172] with the necessary adjustments
to achieve the proper separation into Born and non-Born terms.

With time, the recommended value for the magnetic dipole polarizability of the proton in-
creased, see the first row of Table VI.4. The PDG value for instance changed from βM1 =
2.1(9)×10−4 fm3 [441, PDG ’98] to βM1 = 2.5(4)×10−4 fm3 [242, PDG ’16]. Likewise, the value
of ∆E subtr.

2S increased in recent calculations, cf. Refs. [172, 174], by a factor of two compared to
earlier calculations, cf. Refs. [169, 170]. This follows from the LEX of T1, Eq. (V.28), and the
customary models for the subtraction function.

Besides the dispersive and ChPT based approaches, there are other theoretical studies. They
usually differ significantly from what we discussed thus far, nevertheless, we want to mention
them here for completeness. For one thing, there is an analysis of the proton structure corrections
in the framework of non-relativistic QED effective field theory [173]. This work requires matching
to low-energy observables, such as βM1 [442]. For another thing, Ref. [421] ultilizes a bound-state
field theory approach. Here, the binding field of the proton is generated by a one-parameter
static-well model (simplified MIT bag model). Despite the exceptional method, the result is in
good agreement with other predictions and the radius of the well, R = 1.2 fm, would correspond
to REp = 0.87 fm and RZp = 1.3 fm.

1.5. Experimental Two-Photon-Exchange Effect in Muonic Hydrogen

In Ref. [68], an experimental prediction for the TPE effect in the µD LS is given:

ETPE
LS (µD) = 1.7638(68) meV. (VI.17)

This value is based on the deuterium charge radius, Eq. (I.5b), extracted from the µH result for
the proton charge radius, Eq. (I.2a), and the hydrogen-deuterium isotope shift of the 1S − 2S
transition, cf. Eq. (I.4). In the same way, one can determine the experimental value of the TPE
effect in µH. The theory prediction for the µH LS is (in units of meV) [110]:

E th.
LS (µH) = 206.0336(15)− 5.2275(10) (REp/fm)2 + ETPE

LS . (VI.18)

The proton radius, as obtained from the µD LS and the isotopic deuteron-proton charge radius
difference is given in Eq. (I.5a). Comparing the theoretical expectation with the experimental
value of the µH LS [100]:

E exp.
LS (µH) = 202.3706(23) meV, (VI.19)

and substituting the charge radius from Eq. (I.5a), we can solve for the experimental TPE effect:

ETPE
LS (µH) = −0.0130(177) meV. (VI.20)

The error bar of this value covers zero. For comparison, our theoretical prediction, Eq. (VI.6),
and the one included in the summary paper [110], ETPE

LS (µH) = 0.0332(20) meV, are both giving
a positive value for the TPE contribution to the µH LS.
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2. Nuclear-Polarizability Contribution at Order (Zα)6 lnZα

In the following Section, we study the nuclear-polarizability contribution to the LS of light
muonic atoms from off-forward TPE. The basic theory was derived in Section V.4. In com-
parison to the forward limit, the off-forward TPE is suppressed by an additional factor of Zα.
Nevertheless, it is interesting in view of the t-channel cut, leading to an enhancement of order
(Zα)6 lnZα. Here, the LS is calculated explicitly for µH, µ2H, µ3H, µ3He+ and µ4He+. In
Appendix VII.A, we briefly outline our calculation for the HFS and explain why no logarithmic
enhancement is found.

The influence of the nuclear polarizabilities on the spectrum of hydrogen-like atoms has been
investigated for many years. Several early works focused on the leading logarithmic contribution
to the LS, which is of order (Zα)5 ln Ē

m , with Ē being the mean excitation energy and m the
lepton mass (cf. Ref. [436] for hydrogen and Refs. [443–445] for deuterium). Also, Ref. [270]
found numerically important terms at order (Zα)6 lnZα. Refs. [446–448] recently calculated
the (Zα)6 ln(Zα)2 Coulomb-distortion correction to the LS. Here and in Section V.4, we will
present an alternative approach to compute the Coulomb distortion.

At the intended order, (Zα)6 lnZα, the effect of the nuclear scalar polarizabilities from off-
forward TPE on the LS amounts to:

E
〈(Zα)6 lnZα〉
LS =

4(Zαmr)
4ααE1

n3
ln
Zαmr

2nm
, (VI.21)

with a factor of Z2α embedded in the electric dipole polarizability αE1. The part of the potential
in Eq. (V.75a), relevant to Eq. (VI.21), is found as the leading term in small p2

t . Therefore, the
(Zα)6 lnZα effect stems from the O(

√
τ) piece:

ImM(p2
t ) ≈ −

2παm

(1− τ)7/2

√
τ arccos

√
τ αE1 +O(τ). (VI.22)

It is worth pointing out that the magnetic dipole polarizability canceled from the result. Like-
wise, the electric polarizability dominates the forward TPE, as it is expected from studying the
LEX of the relevant VVCS amplitudes [177], see Section VI.1.

Based on the PDG ’16 [242] recommended value for the proton electric dipole polarizability,
Eq. (III.17a), we arrive at the off-forward TPE polarizability contribution to the LS in µH:

E
〈(Zα)6 lnZα〉
LS (µH) = −0.79± 0.03µeV, (VI.23)

where the stated error is propagated from Eq. (III.17a). For comparison, the leading polarizabil-

ity contribution to the µH LS from forward TPE was found to be: E
〈α5〉
LS (µH) = 4.9 +2.0

−1.3 µeV. It
is therefore fair to say that the numerical result presented in here is larger than expected. Fur-
thermore, its size is comparable to the effects from light-by-light scattering (Wichmann-Kroll,
virtual Delbrück), which all amount to about ≈ 1 meV [110].

Besides µH, we want to study the effect in µ2H, µ3H, µ3He+ and µ4He+.4 Since we are
studying the spin-independent LS, the formalism is the same for all nuclei. The nuclear masses
are [99]:

M(2H+) = 1.875 612 928(12) GeV, (VI.24a)

4In the present Section, we switch notations and denote muonic deuterium as µ2H and the deuteron as 2H+. In
the rest of the thesis, we use µD and d.
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2. Nuclear-Polarizability Contribution at Order (Zα)6 lnZα

M(3H+) = 2.808 921 112(17) GeV, (VI.24b)

M(3He2+) = 2.808 391 586(17) GeV, (VI.24c)

M(4He2+) = 3.727 379 378(23) GeV. (VI.24d)

The mass of the triton is bigger than the one of its mirror nuclei, the helion. This shows that
the triton, EB(3H+) = 8.481798(2) MeV [449], is stronger bound than the helion, EB(3He2+) =
7.718043(2) MeV [449]. Due to the heavier mass of the (A = 2, 3, 4) nuclei, the approximation
mr ≈ m is even better than for the proton.

Unfortunately, there is a spread in the predictions of the nuclear electric dipole polarizabili-
ties:5

αE1(2H+) =

{
0.6314(19) fm3 [451],

0.70(5) fm3 [452]
(VI.25a)

αE1(3H+) =

{
0.23 fm3 [453, 454],

0.139(2) fm3 [450],
(VI.25b)

αE1(3He2+) =

{
0.250(40) fm3 [455],

0.149(5) fm3 [450],
(VI.25c)

αE1(4He2+) = 0.0683(8)(14) fm3 [450]. (VI.25d)

We decide to use the theoretical predictions of Refs. [450, 451] for all nuclei studied herein. How-
ever, one should not forget that there are experimental extractions of the deuteron and helium-3
polarizabilities from elastic scattering of the nuclei from 208Pb [455], which are incompatible
with the value from Refs. [450, 451].

Our results are summarized in Table VI.5. Based on the smaller polarizability values, we
arrive at:

E
〈(Zα)6 lnZα〉
LS (µ2H) = −0.541± 0.002 meV, (VI.26a)

E
〈(Zα)6 lnZα〉
LS (µ3H) = −0.128± 0.002 meV, (VI.26b)

E
〈(Zα)6 lnZα〉
LS (µ3He+) = −1.950± 0.065 meV, (VI.26c)

E
〈(Zα)6 lnZα〉
LS (µ4He+) = −0.925± 0.022 meV, (VI.26d)

where the errors are propagated from the nuclear polarizabilities. The (Zα)6 lnZα polarizabil-
ity effect in the light muonic atoms is considerably bigger than the one in µH. This has several
reasons. First of all, nuclei are easier to polarize, as one can read off from the electric polariz-
abilities in Table VI.5. Secondly, the nuclear charge of helium is Z = 2, which enters Eq. (VI.21)
to the fourth power (neglecting the Z2 factor embedded in the nuclear polarizability). For a last
thing, the reduced mass of the lepton-nucleus system is increasing with the mass of the nucleus,
and approaching the lepton mass. This effect mainly influences the m4

r prefactor in Eq. (VI.21),
but also enters the logarithmic term. To summarize, the (Zα)6 lnZα polarizability effect in
light muonic atoms, i.e., deuterium, tritium and helium, is about three orders of magnitude
bigger than the corresponding effect in the lightest hydrogen isotope. Especially for µ2H, one
finds a large nuclear-polarizability effect. This is a result of the deuterons weak binding and the
concomitant large size [456].

5See Ref. [450, Table I] for an overview on electric dipole polarizabilities of hydrogen and helium isotopes.
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VI. Lamb Shift in Chiral Perturbation Theory

In addition to the (Zα)6 lnZα polarizability effect in Eqs. (VI.21) and (VI.26), we also give
numerical results for the non-recoil effect of the dipole polarizabilities in off-forward TPE with
non-vanishing photon cuts, cf. Eqs. (V.75a) and (V.78). This is not the full order-(Zα)6 effect
of the dipole polarizabilities, since we are neglecting the higher-Q2 contributions by keeping
only terms proportional to 1/Q4 and omitting recoil terms which are suppressed by 1/M . Nev-
ertheless, it should be a good approximation for the subleading polarizability effects. For the
LSs in muonic-hydrogen and muonic-helium isotopes, we find the electric dipole polarizability
contribution as:

E
〈(Zα)6, αE1〉
LS (µH) = −0.138± 0.005µeV, (VI.27a)

E
〈(Zα)6, αE1〉
LS (µ2H) = −0.403± 0.001 meV, (VI.27b)

E
〈(Zα)6, αE1〉
LS (µ3H) = −0.095± 0.001 meV, (VI.27c)

E
〈(Zα)6, αE1〉
LS (µ3He+) = −1.403± 0.047 meV, (VI.27d)

E
〈(Zα)6, αE1〉
LS (µ4He+) = −0.665± 0.016 meV, (VI.27e)

where the included contribution of P -levels is less than one percent of the dominant S-level
shifts.

The effect of the magnetic polarizability is expected to be small. As for the electric polar-
izabilities in Eq. (VI.25), there is a spread in the predictions for the nuclear magnetic dipole
polarizabilities:

βM1(2H+) =


0.0777(3) fm3 [443],

0.067 fm3 [457],

0.072(5) fm3 [458],

4.4
(

+1.6
−1.5

)
(0.2)× 10−4 fm3 [459],

(VI.28a)

βM1(3H+) = 2.6(1.7)(0.1)× 10−4 fm3, [459], (VI.28b)

βM1(3He2+) =

{
5.7(0.5)× 10−3 fm3 [460],

5.4
(

+2.2
−2.1

)
(0.2)× 10−4 fm3 [459],

(VI.28c)

βM1(4He2+) = 3.4
(

+2.0
−1.9

)
(0.2)× 10−4 fm3 [459]. (VI.28d)

The values from Ref. [459] are lattice predictions at a pion mass of mπ ∼ 806 MeV.6 LQCD
predicts the magnetic dipole polarizabilities of the light nuclei to be of the same magnitude as
the nucleon polarizabilities. Effective field theory predictions [457], however, find bigger values
for the nuclear polarizabilities. For our calculation, we chose the magnetic dipole polarizabilities
used by Carlson et al. [458, 460] and the lattice predictions for βM1(3H+) and βM1(4He2+) [459].
For the proton, we are using the PDG average [242], see Eq. (III.17a). As expected, including the
magnetic dipole polarizability only leads to minimal changes in our predictions from Eq. (VI.27):

E
〈(Zα)6, αE1, βM1〉
LS (µH) = −0.128± 0.005µeV, (VI.29a)

E
〈(Zα)6, αE1, βM1〉
LS (µ2H) = −0.398± 0.001 meV, (VI.29b)

6In the values from Ref. [459], the first uncertainty combines the statistical and systematic errors, and the second
uncertainty estimates the effects of discretization and finite volume effects.
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E
〈(Zα)6, αE1, βM1〉
LS (µ3H) = −0.095± 0.001 meV, (VI.29c)

E
〈(Zα)6, αE1, βM1〉
LS (µ3He+) = −1.395± 0.047 meV, (VI.29d)

E
〈(Zα)6, αE1, βM1〉
LS (µ4He+) = −0.665± 0.016 meV. (VI.29e)

For the light nuclei, the contribution of the magnetic polarizability to Eq. (VI.29) is less than
1.5 %. The biggest effect (7.5 %) is observed in µH, as one could expect from the ratio of dipole
polarizabilities, αE1/βM1, which is biggest for the proton.

2.1. Comparison to Long-Range Polarization Potentials

In order to avoid possible double counting, we need to identify effects in the theory of hydrogen-
like atoms which already include part of the off-forward TPE polarizability contribution pre-
sented above.

Using only the leading terms of ImM(t), Eq. (V.75b), and the unsubtracted equivalent of
Eq. (V.61),

V (r) =
1

4π2r

ˆ ∞
0

dt ImM(t) e−r
√
t, (VI.30)

we deduce the following coordinate-space potential:7

Vl.r.(r) = −ααE1

2r4

[
1− 11

2πmr

]
+

5αβM1

4πmr5
. (VI.32)

The first term of the potential is the well-known effective long-range polarization potential [461].
It is an attractive potential which falls off rapidly outside the nucleus and, hence, primarily
overlaps with S-waves. Since the perturbation of S-levels due to a potential of type V (r) ∝ r−4

is divergent [310],

r−4 = 〈nl|r−4|nl〉 =
(Zαmr)

4
[
3n2 − l(l + 1)

]
2n5(l + 3/2)(l + 1)(l + 1/2)l(l − 1/2)

, (VI.33)

its evaluation for l = 0 requires a cut-off [462]. Our treatment of the nuclear potential, however,
requires no such cutoff.

In the short-range limit, the nuclear potential from Eqs. (VI.30) and (V.75a) becomes:

Vs.r. =
αm

2πr3
{−2αE1 + (αE1 − βM1)[γE + lnmr]} , (VI.34)

where γE is the Euler-Mascheroni constant. In Figures VI.4 and VI.5, we show our nuclear
potential, Vexact, as derived from Eq. (V.75a) (black solid line), the short-range potential from
Eq. (VI.34) (blue dotted line), the long-range potential from Eq. (VI.32) (red short dashed and
orange long dashed lines) and the Coulomb potential (green dash-dotted lines) for µD. The short-
and long-range limits give a good approximation of the potential in the respective regions.

In Ref. [462], the nuclear polarization potential is studied and the Coulomb-distortion effects
are estimated in the unretarded dipole approximation, which is supposed to set an upper limit

7In momentum-space, this corresponds to:

M(p2
t ) = V (|pt|) =

π2ααE1

2
|pt|+ . . . . (VI.31)
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Figure VI.4.: Nuclear potential in the long-range limit normalized to the muonic deuterium ground-state
energy.
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Figure VI.5.: Nuclear potential in the short-range limit normalized to the muonic deuterium ground-state
energy.

on the effects. The dominant nuclear polarization stems from virtual dipole excitations, and is
given by the electric dipole polarizability:

αE1 =
2Z2α

3

ˆ
Eth

dE

E

∣∣〈φ0|d|E〉
∣∣2, (VI.35)

where E is the nuclear excitation energy, d is the nuclear dipole operator, |φ0〉 is the ground
state and |E〉 is an excited state of the nucleus with energy E. Equivalently, the electric dipole
polarizability can be expressed through a sum rule:

αE1 =
1

2π2

ˆ
dν

σud
γ (ν)

ν2
, (VI.36)

where σud
γ (ν) is the cross section for photoabsorption of unretarded-dipole (long-wavelength)

photons by the nucleus [463]. The mean excitation energy, E, is defined by a similar logarithmic
sum rule [462]:

αE1 lnE =
2Z2α

3

ˆ
Eth

dE

E

∣∣〈φ0|d|E〉
∣∣2 lnE. (VI.37)
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2. Nuclear-Polarizability Contribution at Order (Zα)6 lnZα

In general, the nuclear excitation energy is much larger than a typical atomic excitation energy.8

Using the notation from Ref. [418], the LO and NLO Coulomb-distortion effects on the 2P1/2 −
2S1/2 LS read:

δC1 =
(Zα)6m4

r

6

ˆ
Eth

dE

E

∣∣〈φ0D|d|E〉
∣∣2 [1

6
+ ln

2mr(Zα)2

E

]
, (VI.38a)

=
α(Zαmr)

4

4
αE1

[
1

6
+ ln

2mr(Zα)2

E

]
, (VI.38b)

δC2 = −(Zα)7m
9/2
r

6
√

2

[
19

8
+
π2

3

]ˆ
Eth

dE

E3/2

∣∣〈φ0|d|E〉
∣∣2. (VI.38c)

Obviously, the Coulomb-distortion is a subleading polarizability effect, starting at order (Zα)6,
and proportional to the nuclear electric dipole polarizability. As one can see from the squared
matrix elements, the Coulomb-distortion is arising at second order in PT. It is thus equivalent
to our TPE effect in first-order PT. The logarithmic enhancement is similar to our expression
in Eq. (VI.21).

Our calculation of the off-forward TPE relies on an expansion in energies. We assume that
the energies in the atomic bound state are small compared to the binding energy of the nucleus.
As one can see from Table VI.5, the nuclear binding energies are typically of the order of MeV.
The atomic binding energies are roughly proportional to ∼ Zαmr. For electronic atoms, this is
a keV scale. For the light muonic atoms, i.e., hydrogen and helium isotopes, it should be ∼ 1
MeV, and hence, supporting our assumption that the atomic energies are small compared to the
nuclear binding energies. Provided the LEX of the CS process is a good approximation, and
we can write the off-forward VVCS amplitude as a Born part plus the contribution of dipole
polarizabilities, the results presented here and in Section V.4 can be considered as an alternative
to the order-(Zα)6 Coulomb-distortion effect. As compared to Eq. (VI.38b), our numerical
results also take the the magnetic dipole polarizability into account, cf. Eq. (VI.29).

In the literature, the leading (Zα)6 ln(Zα) Coulomb-distortion correction, δ
(0)
C , to the 2P1/2−

2S1/2 LS is estimated as (for different nuclear potentials):9

δ
(0)
C (µ2H) =


−0.262 meV [AV18] [464],

−0.262 meV [N3LO-EM] [464],

−(0.262, 0.264) meV [N3LO-EGM] [464],

(VI.39a)

δ
(0)
C (µ3H) =

{
−0.0718(1) meV [AV18/UIX] [448],

−0.0732(0) meV [χEFT] [448],
(VI.39b)

δ
(0)
C (µ3He+) =

{
−1.000(01) meV [AV18/UIX] [448],

−1.020(3) meV [χEFT] [448],
(VI.39c)

δ
(0)
C (µ4He+) =

{
−0.512 meV [AV18/UIX] [447],

−0.546 meV [χEFT] [447],
(VI.39d)

while their full prediction of the nuclear-polarizability contribution, δA
pol, to the LS is [465]:

δA
pol(µ

2H) = 1.245(19) meV, (VI.40a)

8Refs. [456, 463] calculate the scalar, vector and tensor polarizabilities of the deuteron, as well as its mean
excitation energy, based on different nucleon-nucleon potential models.

9Eq. (VI.39d) also includes subleading Coulomb-distortion effects.
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δA
pol(µ

3H) = 0.473(17) meV, (VI.40b)

δA
pol(µ

3He+) = 4.17(17) meV, (VI.40c)

δA
pol(µ

4He+) = 2.36(14) meV. (VI.40d)

The (Zα)6 lnZα polarizability contributions to the LSs in muonic deuterium, tritium, helium-3
and helium-4 from off-forward TPE, see Table VI.5, are a factor of 1.2 ÷ 1.5 bigger than the
presently accounted for Coulomb-distortion effects, cf. Eq. (VI.39). The differences are at the
level of accuracy of the present LS theories, cf. Eq. (VI.41). We therefore conclude that the
off-forward TPE is not negligible and it is worth to take it into account upon evaluating the
muonic-atom experiments. In the next Section, we will extract nuclear charge radii from the
muonic spectroscopy measurements. Our extraction will be based on an updated theoretical
description of the LSs, including the off-forward TPE polarizability effects from Eq. (VI.29) and
the forward TPE polarizability effect in Eq. (VI.3).

3. Extraction of the Nuclear Charge Radii from Spectroscopy

The theoretical predictions for the 2P1/2 − 2S1/2 splittings in µH, µD and µ4He+ have been
compiled in Refs. [110, 163, 166] (in units of meV):

Eth.
LS (µH) = 206.0668(25)− 5.2275(10) (REp/fm)2, (VI.41a)

Eth.
LS (µD) = 230.486(20)− 6.1103(3) (REd/fm)2, (VI.41b)

Eth.
LS (µ4He+) = 1678.544(205)− 106.358(7) (REα/fm)2, (VI.41c)

where REp, REd and REα are the proton, deuteron and α-particle charge radii, respectively.
Equation (VI.41a) includes the order-α5 proton-polarizability effect, but no Coulomb-distortion
effects. Equation (VI.41b), cf. Ref. [163, Table 3], presently accounts for a Coulomb-distortion

effect of δ
(0)
C (µD) = −0.2625(15) meV, what also includes the next order, i.e., order (Zα)7,

Coulomb-distortion effect of δC2(µD) = −0.006 meV [418, 446]. Eq. (VI.41c) uses the Coulomb
distortion from Ref. [447], cf. Ref. [166, Table IV] and Eq. (VI.39d). We assume the average

values δ
(0)
C (µ4He+) = −0.529 meV and δC2(µ4He+) = −0.0065 meV.

The theory budget of the µH LS, we improve by including the off-forward TPE polarizability
contribution from Eq. (VI.29a). Furthermore, we substitute the included forward TPE polar-

izability effect, Epol
LS = 0.0085(11) meV [172], with our prediction, cf. Eq. (VI.3). The updated

version of Eq. (VI.41a) then reads (in meV):

Eth.
LS (µH) = 206.0631

(
+30
−26

)
− 5.2275(10) (REp/fm)2. (VI.42)

Together with the experimental value of the µH LS [100], Eq. (VI.19), we extract the proton
rms charge radius as:

REp = 0.84045(44) fm. (VI.43)

The value quoted in Eq. (I.2a) [100] is within our error. The discrepancy to the CODATA
recommended proton charge radius, Eq. (I.1c), increases from 5.6 to 5.7σ.

Let us now turn to µD. Substituting the Coulomb-distortion with our estimate for the off-
forward TPE polarizability effect, Eq. (VI.29b), the theory budget of the µD LS becomes (in
meV):

Eth.
LS (µD) = 230.344(20)− 6.1103(3) (REd/fm)2. (VI.44)
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Comparing the theory prediction with the measured LS in µD [68] (in meV):

Eexp.
LS (µD) = 202.8785(31)stat(14)syst meV, (VI.45)

we deduce the deuteron charge radius as:

REd = 2.12013(78) fm. (VI.46)

In the case of µD, the radius puzzle between µD and D spectroscopy, Eqs. (I.3a) and (I.3c), gets
slightly worse. Thus, using our input, the discrepancy amounts to 4.7σ.

Analogously to the case of µD, we re-evaluate the µ4He+-theory budget with the contribution
given in Eq. (VI.29e). We arrive at (in meV):

Eth.
LS (µ4He+) = 1678.402(206)− 106.358(7) (REα/fm)2. (VI.47)

A determination of the α-particle charge radius will be possible once the LS is experimentally
measured.

4. Summary and Conclusion

In this Chapter, we have studied the influence of forward and off-forward TPE on the classic
LS in hydrogen-like atoms. We have presented the BChPT prediction for the order-α5 proton-
polarizability contribution to the µH LS, Eq. (VI.3), and compared it to the results of HBChPT
and dispersive calculations. We have extended the LO BChPT calculation of Ref. [177] to the
next order in the δ-expansion. At this order, we considered chiral loops [177] and the ∆(1232)-
exchange, see Figures VI.2 and VI.3. The Q2 behavior of the pion-nucleon loops was improved
by including the pion FF. The Q2 behavior of the ∆-exchange contribution is regularized with
the help of Jones-Scadron FFs and their relations to the nucleon elastic FFs in the large-Nc

limit. As one can see from Fig. VI.1, our BChPT calculation is in good agreement with the
dispersive calculations which are currently used as input for the µH-theory budget.

In Section VI.2, we presented the off-forward TPE polarizability effect as a natural extension
of the forward TPE effects. The relevant theory was established in Section V.4. It is basically an
alternative assessment of the Coulomb-distortion effects. We focused on the polarizability con-
tribution to the LS in hydrogen-like atoms at order (Zα)6 lnZα. This logarithmic contribution
is generated by the t-channel cut enhancement in Fig. V.1. The contribution of the magnetic
dipole polarizability is observed to vanish, whereas the electric dipole polarizability induces a
downwards shift of the n-th S-level, see Eq. (VI.21) and Table VI.5. Since the nuclear TPE
is at present the limiting factor in the charge radius extractions from experiments with light
muonic atoms, we approximated the order-(Zα)6 polarizability contributions to the LSs in µH,
µD, µ3H, µ3He+ and µ4He+, see Eq. (VI.29). Despite the Zα suppression compared to the LO
polarizability contribution, the off-forward TPE polarizability effect of the nuclear e.m. dipole
polarizabilities to the spectra of light muonic atoms is found to be comparable in size to the lead-
ing nuclear-polarizability effect. Since the proton polarizability is much smaller than a typical
nuclear polarizability, the (Zα)6 lnZα effect in µH is too. Choosing the CM frame, we were by
default free of retardation effects. Our only assumptions in the course of the order (Zα)6 lnZα
calculation were the semi-relativistic expansion and the omission of recoil effects. Furthermore,
in the order-(Zα)6 calculation, we only kept terms proportional to 1/Q4, i.e., soft photons. In
the future, it would be interesting to repeat the off-forward TPE calculation without neglecting
contributions from higher Q2.
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In Section VI.3, we applied the energy shifts calculated in Sections VI.1 and VI.2 to the nuclear
charge radius extractions from muonic spectroscopy experiments. We updated the theory predic-
tions for the LSs in µH, µD and µ4He+, cf. Eqs. (VI.42), (VI.44) and (VI.47), and re-evaluated
the proton and deuteron rms charge radii, cf. Eqs. (VI.43) and (VI.46). While the proton charge
radius remains basically unchanged, the deuteron shrinks further.
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CHAPTER VII

HYPERFINE SPLITTING IN CHIRAL PERTURBATION THEORY

We now turn to the TPE effects in the HFSs of hydrogen-like muonic atoms. As in the previous
Chapter, we start with the NLO BChPT prediction for the proton-polarizability contribution at
order α5 (Section VII.1). For one thing, our prediction is based on BChPT and a finite momen-
tum transfer extension of the large-Nc relations for Jones-Scadron FFs (Section VII.1.2). For
another thing, we present a model which uses the ∆-pole contribution and an elastic FF piece
instead of the ∆-exchange contribution (Section VII.1.3). We briefly compare our findings to in-
dications from HBChPT (Section VII.1.4). Also, we compare to dispersive calculations based on
empirical input (Section VII.1.5). Here, the focus is set on the low-Q region (Section VII.1.5.1).

We intensify the analyses of our results in Section VII.2. Based on the polarizability expansion
derived in Section V.3, we compare the contribution of individual polarizabilities to the HFS as
implied by: 1) the Simula parametrization of spin-dependent structure functions [405, 406], 2)
the MAID model [66], and 3) our predictions.

For the first time, we present a model-independent calculation of the neutron-polarizability
contributions to the HFSs of light muonic atoms, e.g., µD and µ3He+ (Section VII.3). The size
of the neutron-polarizability effect is then compared to the proton-polarizability effect.

We are also interested in contributions to the HFS from off-forward TPE. In Section VII.4, we
derive the neutral-pion exchange and evaluate its contribution to the hydrogen HFSs [53, 240].
In Appendix VII.A, we explain why there is no nuclear-polarizability contribution at order
(Zα)6 lnZα.

We will conclude the Chapter by extracting a new value of the proton Zemach radius based
on our predictions for the polarizability effects in the 2S HFS of µH (Section VII.5).

1. Proton-Polarizability Contribution at Order α5

In what follows, the NLO BChPT prediction for the order-α5 proton-polarizability contribution
to the HFS in µH is presented [53, 240]. This Section is very much analogue to Section VI.1,
where we presented results for the forward TPE effects on the µH LS. The results for the proton-
polarizability contribution to the 2S HFS are summarized in Table VII.1. The combined effect
of chiral loops and ∆(1232)-exchange on the HFS of the n-th S-level in µH amounts to:

Epol.
HFS(nS, µH) = −11.1 +12.7

−9.4

µeV

n3
(VII.1a)
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VII. Hyperfine Splitting in Chiral Perturbation Theory

Table VII.1.: Summary of our numerical results for the order-α5 proton-polarizability contribution to the
2S hyperfine splitting in muonic hydrogen from forward two-photon exchange.

forward TPE ∆1[ppm] ∆2[ppm] EHFS(2S, µH) [µeV]

Chiral loops (Fig. VI.2) −18 8 −0.23 +1.08
−0.23

∆-exchange (Fig. VI.3) 55 −106 −1.15± 1.15

combined result 37 −97 −1.39 +1.58
−1.17

For the relevant 1S and 2S HFSs, that is:

Epol.
HFS(1S, µH) = [6.71− 17.79] µeV = −11.1 +12.7

−9.4 µeV, (VII.1b)

Epol.
HFS(2S, µH) = [0.84− 2.22] µeV = −1.4 +1.6

−1.2 µeV. (VII.1c)

The elastic TPE corrections, Eqs. (V.32) and (V.33), are calculated as described in Ref. [115]
and include the two-loop recoil correction from Refs. [467] and the radiative corrections given in
Refs. [467, 468]:

∆Z(µH) = −7628± 149 ppm, (VII.2a)

∆recoil(µH) = 929± 10 ppm. (VII.2b)

As for the large-Nc description of the Jones-Scadron FFs, we used the elastic FF parametrization
of Bradford et al. [316]. In this way, we hope to minimize our error due to insufficient cance-
lation between the elastic and polarizability effects. The error was estimated by comparing to
the selection of FF parametrizations applied in Ref. [115]. Together with the Zemach radius
contribution and the recoil effects, Eq. (VII.2), the total TPE effect amounts to:

ETPE
HFS (1S, µH) = −1.233 +0.030

−0.029 meV, (VII.3a)

ETPE
HFS (2S, µH) = −0.1541 +0.004

−0.004 meV. (VII.3b)

This compares to the Fermi energy:

EF(1S, µH) = 182.4468 meV, (VII.4a)

EF(2S, µH) = 22.8058 meV. (VII.4b)

1.1. Chiral Loops

The contribution of the leading chiral loops can be calculated from Eq. (V.34) with the πN -
production cross sections [59] or from Eq. (V.4) with the πN -loop spin-dependent VVCS ampli-
tudes. As it turns out, the result is compatible with zero:

E
〈πN〉pol.
HFS (1S, µH) = [−3.36 + 1.51] µeV = −1.84 +8.65

−1.84 µeV, (VII.5a)

E
〈πN〉 pol.
HFS (2S, µH) = [−0.42 + 0.19] µeV = −0.23 +1.08

−0.23 µeV. (VII.5b)

Here, the first number gives the contribution of the S1 VVCS amplitude and the second num-
ber gives the contribution of the S2 VVCS amplitude, see first row of Table VII.1. Since the
contribution is numerically small and, hence, indicating a cancellation of LO contributions, we
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Figure VII.1.: Proton-polarizability effect in the 2S hyperfine splitting: Cutoff-dependence of the πN -loop
contribution. Our result, Eq. (VII.5b), is indicated by the gray error band.

assign an error of 100 %. In addition, we increase the upper error to incorporate the change
upon including the pion FF, cf. Eq. (VI.7).

Figure VII.1 shows the dependence of Eq. (VII.5b) on the upper limit of the Q integration in
Eq. (V.34). In contrast to the LS, the HFS result is strongly cut-off dependent unless the pion
FF is included. With pion FF, the contribution from beyond the scale of ChPT applicablity
(Q > mρ ≈ 775 MeV) is small (∼ 7 %).

1.2. ∆-Exchange

While the contribution of the magnetic dipole polarizability to the LS is expected to be small,
and likewise is the contribution of the ∆(1232)-exchange, this is not the case for the HFS. To
the contrary, we find an effect of:

E
〈∆-exch.〉pol.
HFS (1S, µH) = [10.07− 19.30] µeV = −9.23± 9.23µeV, (VII.6a)

E
〈∆-exch.〉pol.
HFS (2S, µH) = [1.26− 2.41] µeV = −1.15± 1.15µeV, (VII.6b)

which is certainly relevant in comparison to the leading chiral loops, cf. Eq. (VII.5).

Here, we used the large-Nc relations given in Eqs. (IV.52b), (IV.52c) and (IV.53) with C∗M =
3.02√
2κp

and the nucleon FF parametrization of Bradford et al. [316]. Individual contributions, e.g.,

the ∆-pole and non-pole parts, are given in Table VII.2, where we cross-checked the numerical
evaluation by calculating the TPE through either the nucleon structure functions or the CS
amplitudes. The non-pole contribution to ∆2 is negligible because Eq. (IV.43) gives a purely
BC-like contribution and only Eq. (IV.44) remains.

Again, we verified that the contribution from Q < mρ is small (5 %) and that the result is not
sensitive to the choice of a nucleon FF parametrization. In fact, using the dipole and Galster
FFs leads to a less than 1 % change.

1.3. ∆-Pole Model

In the following Section, we introduce a model for the order-α5 polarizability effect to the HFS.
The formalism for the polarizability contribution to the HFS from forward TPE is given with
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VII. Hyperfine Splitting in Chiral Perturbation Theory

Table VII.2.: ∆-exchange contribution to the 2S hyperfine splitting in muonic hydrogen. All values in
µeV.

Eq. Input EHFS(∆1) EHFS(∆2) EHFS(2S, µH)

(V.6) gi (IV.38) −38.27 50.32 12.05

(V.47) BC sum rule only, g2 (IV.38d) / 52.75 52.75

(V.34) gi (IV.38) −38.27 −2.43 −40.69

(V.4) S∆−pole
i (IV.95) −38.27 −2.43 −40.69

(V.6) g̃i (IV.41) (IV.43) (IV.44) 39.53 −52.73 −13.21

(V.47) BC sum rule only, g̃2 (IV.43) / −52.75 −52.75

(V.34) g̃i (IV.41) (IV.43) (IV.44) 39.53 0.02 39.54

(V.4) S̃i (IV.96) 39.53 0.02 39.54

(V.4) Si (IV.35) 1.26 −2.41 −1.15

Table VII.3.: ∆-exchange contribution of different multipole ratios to the 2S hyperfine splitting in muonic
hydrogen, cf. Eq. (V.34). All values in µeV.

multipoles EHFS(∆1) EHFS(∆2) EHFS(2S, µH)

G∗2M 1.85 −2.28 −0.43

G∗2MREM −0.12 −0.21 −0.32

G∗2MRSM −0.36 0.09 −0.28

G∗2MR
2
EM −0.02 −0.01 −0.03

G∗2MREMRSM −0.07 −0.02 −0.09

G∗2MR
2
SM −0.03 0.02 −0.01

total 1.26 −2.41 −1.15

Eq. (V.34). In Eq. (V.34c), the subtraction function of the S1 DR, cf. Eq. (V.19b), is isolated.
This subtraction function is proportional to:

S1(0, Q2) ∝
[
F 2

2 (Q2) + 4I1(Q2)/Z2
]
, (VII.7)

what vanishes in the real photon limit. Recalling Eq. (V.50), we can understand that the non-
polarizability part of the generalized I1 integral is canceled by the Pauli FF squared. This
cancelation is crucial for the dispersive calculations of TPE effects, which are based on empirical
structure functions and FFs. The ChPT approach, however, can work around it. Our BChPT
prediction for the polarizability effect, comprising the TPE with chiral loops (Section VII.1.1)
and ∆-exchange (Section VII.1.2), only uses non-Born diagrams as input, and hence, is by
definition of pure polarizability type. Therefore, Eq. (VII.1) ignores the Pauli FF in Eq. (V.34).

As explained in Sections IV.3.2 and IV.3.3, the nucleon-to-delta transition is predominantly
a magnetic-dipole transition, thus, can be in good approximation described by the magnetic
Jones-Scadron FF. This attribute is reflected in Fig. IV.8 and Tables VI.2 and VII.3. According
to Eq. (IV.53), the magnetic Jones-Scadron FF is related to the nucleon Pauli FF by a large-
Nc relation. These observations and the fact that Eq. (VII.7) is vanishing for Q2 = 0 make
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1. Proton-Polarizability Contribution at Order α5

us believe that the S1 subtraction function should be comparable to zero over the whole Q2

range. In Section VII.1.5.1, we study S1(0, Q2) based on empirical parametrizations for the
nucleon structure functions and based on our BChPT structure functions. Confirming our
presumption, the BChPT calculation yields a numerically small negative contribution from the
S1 subtraction function to the HFS, cf. Eq. (VII.16). In the following, we present a model which
fixes S1(0, Q2) = 0. It will provide an upper bound on the polarizability contribution to the
HFS.

At the ∆-resonance position, the spin-dependent structure functions, Eqs. (IV.38c)-(IV.38d),
roughly equal Eq. (IV.70), where we neglected RSM and R2

EM, and otherwise used the static
value REM(0). Together with the modified large-Nc relation in Eq. (IV.58a), we achieve a perfect
cancelation of the S1 subtraction function, see Fig. IV.10, and the polarizability contribution to
the HFS reads:

E
〈∆-pole.〉 pol.
HFS (nS)

EF(nS)
= − Zαm

π(1 + κ)M

ˆ ∞
0

dQQ

[
ν∆(1 + vl)

(
1 +

√
1 +Q2ν−2

∆

)]−2

× (VII.8)

×

1 +
2vl

√
1 +Q2ν−2

∆

vl +
√

1 +Q2ν−2
∆

F 2
2 (Q2).

This formula is derived from Eq. (V.34) with the elastic Pauli FF of the proton and the ∆-pole
contribution to the spin-dependent proton structure functions, Eq. (IV.70). Numerically, this
amounts to:

E
〈∆-pole.〉pol.
HFS (1S, µH) = [8.42− 11.93]µeV = −3.51 +3.51

−5.72 µeV, (VII.9a)

E
〈∆-pole.〉pol.
HFS (2S, µH) = [1.05− 1.49]µeV = −0.44 +0.44

−0.71 µeV, (VII.9b)

where the first number gives the contribution of the g1 structure function and the second number
gives the contribution of the g2 structure function. The errors are chosen asymmetric and cover
the ∆-exchange contribution, Eq. (VII.6). Clearly, this is only a model. Nevertheless, these
numbers can serve as a lower bound on the absolute magnitude of the effect, cf. Fig. IV.6. Note
that the region of Q > mρ contributes with about 3 % to the result given in Eq. (VII.9).

In Eq. (V.34), the contribution of the zeroth moment of g2 is subtracted. Therefore, it is
not crucial that our model satisfies the BC sum rule exactly. Nevertheless, we would like to
point out that the ∆-pole is indeed able to cancel part of the elastic FF contribution to the BC
integral, as shown in Fig. IV.9.

1.4. Comparison with Heavy Baryon Chiral Perturbation Theory

So far, there are only two quantitative predictions for TPE effects in the µH HFS derived
within a model-independent framework, such as ChPT. One was presented in this thesis and
Refs. [53, 240], the other is from Pineda et al. [470, 471]. In Ref. [470], the contribution of the
(leading chiral) logarithms, O(m3α5/M2×[lnmq, ln ∆, lnm]), is calculated in HBChPT matched
to potential NRQED. The almost analytical result given in there motivate the relative order of
the Zemach and polarizability corrections. The non-Born contributions from pion-nucleon and
pion-delta loops cancel each other in the large-Nc limit, while the ∆-exchange cancels part of
the Zemach contribution [470, 472]. An updated prediction for the complete TPE effect on the
µH spectrum has recently been presented with Ref. [471]:

ETPE
HFS (1S, µH) = −1.161± 0.020 meV, (VII.10a)
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Figure VII.2.: Comparison of predictions for the order-α5 proton-polarizability contribution to the 2S
hyperfine splitting in muonic hydrogen. The dispersive calculations are from Refs. [108, 109, 115, 409, 469].

ETPE
HFS (2S, µH) = −0.1451± 0.025 meV. (VII.10b)

For the HFS, the BChPT and HBChPT predictions are closer than for the LS.

1.5. Comparison with Dispersive Calculations

To judge the quality of our BChPT prediction, we compare with evaluations based on experi-
mental data. Dispersive calculations usually rely on empirical information for the spin structure
functions, the elastic FFs and the proton polarizabilities. Some authors also work with the
unitary isobar model and evolution equations for parton distribution functions [170, 469].

Early works mainly studied the proton structure corrections to the HFS in H [473–476], for
more recent works on the H HFS see Refs. [170, 477–481]. In Table VII.6, we summarize the
available dispersive calculations [108, 109, 115, 409, 469] for the TPE corrections to the HFS in
µH. ∆Z, ∆recoil and ∆pol. are given in Eqs. (V.30) and (V.31).

In Fig. VII.2, our final number for the µH HFS of the 2S-level, Eq. (VII.1c), as obtained at
NLO in BChPT, is compared with the dispersive results from Table VII.6. As is apparent, the
dispersive approach and the BChPT prediction disagree by about 3.6σ. There are a number of
possible origins for the observed discrepancy between the different results for the polarizability
effect. As for the prediction presented in here, we think it is fair to say that: assuming ChPT
is working, it should be best applicable to atomic systems, where the energies are very small.
Unfortunately, empirical information on the spin structure functions is limited (especially for
g2). New data from JLab should soon improve the situation in the important low-Q region.

In the following Sections VII.1.5.1 and VII.2, we will make more detailed comparisons based
on our own dispersive analyses. For one thing, we use the sum rule evaluations of MAID [66]
in combination with the FF parametrization of Bradford et al. [316]. For another thing, we use
the parametrization of the proton structure functions g1(x,Q2) and g2(x,Q2) by Simula et al.
[405]1 and the elastic FFs of Kelly [113], this choice agrees with Ref. [479]. We do not intend
to derive a full dispersive analyses with error estimates, for this we trust, e.g., Ref. [115]. We
merely try to get a handle on the low-Q region, in particular the S1(0, Q2) subtraction function,
and the contribution of individual spin polarizabilities to the HFS. The Simula parametrization
was chosen because of its intuitive separation into resonance and background descriptions. Its
drawback is that the latest low-Q data are not included in the fit. Among other things, the

1We apply the parametrization for x ∈ {0, x0}, however, it is suggested that the parametrization should be only
trusted for x & 0.02.
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1. Proton-Polarizability Contribution at Order α5

Table VII.4.: Summary of available dispersive calculations for the two-photon-exchange corrections to the
2S hyperfine splitting in muonic hydrogen.

Reference FF RZ ∆Z ∆recoil ∆pol. ∆1 ∆2 ∆FSE EHFS(2S)

[fm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [meV]

Carlson
et al.
[115, 409]a

AMT [112] 1.080 −7703 931 351(114) 370(112) −19(19) −6421(140) 22.8123

AS [111] 1.091 −7782 931 353 −6498 22.8105

Kelly [113] 1.069 −7622 931 353 −6338 22.8141

MAMI
[125, 304,
434]

1.045 22.8187

combinedb 22.8146(49)

Faustov
et al. [469]c

470(104) 518 −48

Martynenko
et al. [109]d

Dipole 1.022 −7180 460(80) 514 −58 22.8138(78)e

Experiment
[100]

1.082(37) 22.8089(51)

aQED, higher-order and other small corrections included in EHFS(2S, µH) are taken from Ref. [108]. The Zemach
term includes radiative corrections: ∆Z = −2αmrRZ(1 + δrad

Z ) with δrad
Z given in Refs. [467, 468]. Empirical

information on structure functions and form factors are taken from Refs. [404, 405, 431, 482–484].
bslightly moved average of the selected form factors
cThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC,

DESY and CERN [402, 485–489].
dThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC,

DESY and CERN [402, 485–491].
eAdjusted value; as suggested in Ref. [409], the original value, 22.8148(78) meV, is corrected by adding −1µeV

because the conventions of “elastic” and “inelastic” contributions applied in Ref. [108] are inconsistent.

MAID model provides useful output for generalized nucleon polarizabilities below Q2 < 5 GeV2.
More details of our dispersive analyses can be found in Appendix VII.B. For now we quote the
resulting 2S HFS in µH with:

Eemp. pol.
HFS (2S, µH) = [6.18− 1.67] µeV = 4.51µeV based on Simula gi [405], (VII.11a)

Eemp. pol.
HFS (2S, µH) = [4.66− 2.31] µeV = 2.35µeV based on MAID [66], (VII.11b)

where the first number corresponds to the g1 contribution and the second number corresponds
to the g2 contribution.

1.5.1. Importance of the low-Q Region

In Table VII.6, we give a detailed comparison of our BChPT prediction to the dispersive cal-
culation of Ref. [115, Table IV]. The values quoted from Ref. [115] have statistical, systematic
and modeling errors in parentheses. Values without any error specification were added by us
based on the results given in Ref. [115] and the FF parametrization in Eq. (II.155) [112]. For
our BChPT results, we do not assign errors to the individual Q2-regions. Obviously, ChPT
is supposed to work at low energies only. In Fig. VII.1, one can for instance see that the S1
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amplitude of the πN -loop CS diagram is strongly sensitive to a cutoff at intermediate and high
Q if no pion FF is included.

From Table VII.6, it becomes obvious that BChPT and the dispersive calculation give a
different weight to the ∆1 and ∆2 contributions. In BChPT, the value of ∆1 is about ten times
smaller than in the dispersive calculation. Vice versa, ∆2 is about five times larger than in the
dispersive calculation. The latter is especially interesting since the available data set for g2 is
very small. The former is interesting because the dispersive approach shows a critical cancelation
between the F2 term and the g1 part. Such cancelation was partially discussed in Section VII.1.3
in view of the S1 subtraction function and we will come back to it in Section VII.2. On the
contrary, the ChPT approach can calculate the pure (non-Born) polarizability contribution to
the TPE, in which no elastic FF appears.

There are no CS or ep data at the real photon point. Accordingly, both FF and structure
function parametrizations require an interpolation to Q2 = 0. In the very low-Q region, the
dispersive calculations therefore substitute empirical polarizabilities [115]. For Q ∈ {0, Qmin},
we expand the polarizabilities in Eqs. (V.58) and (V.59) in Q/M � 1:

∆lowQ
1 ≈ Zαm

π(1 + κ)M

ˆ Qmin

0
dQQ

1

(vl + 1)2

{
2(5 + 4vl)

[
κF ′2(0) + 2I ′1(0)

]
(VII.12a)

−11 + 9vl
1 + vl

M2

2α
γ0(0)

}
,

∆lowQ
2 ≈ 6ZmM

π(1 + κ)

ˆ Qmin

0
dQQ

1

(vl + 1)2

[
γ0(0)− δLT (0)

]
. (VII.12b)

In this way, we keep vl and the formulas are applicable for H and µH. In the same way, we can
calculate the low-Q effect of individual polarizabilities.

The derivatives of the generalized GDH integrals are related in the following way:

I ′A(0) = I ′1(0) +
M2

2α

[
γ0(0)− δLT (0)

]
. (VII.13)

For the proton, we use I ′1(0) = [7.6± 2.5] GeV−2 [399], γ0(0) = [−0.93± 0.06]× 10−4 fm4 [238]
and δLT (0) = [1.34± 0.02] × 10−4 fm4 [66] to obtain I ′A(0) = [−1.42± 2.5] GeV−2. Similar to
Ref. [115], the upper limit is set to Qmin = 0.0452 GeV2, in the full knowledge that the Simula
parametrization does not include the latest data at these low-Q values. We then have:

∆lowQ
1 (µH) =

{
35.77± 31.48 ppm FF [316],

38.07± 31.48 ppm FF [113],
(VII.14a)

∆lowQ
2 (µH) = −27.98± 0.78 ppm, (VII.14b)

where the errors are propagated from the empirical polarizabilities. Note that the low-Q contri-
bution to ∆2 given here is about five times larger than the value given by Ref. [115], see Table
VII.6, what brings it closer to our BChPT prediction.

In Section V.3, we presented a polarizability expansion up to and including second moments
of the structure functions. In Table VII.7, we show the contribution of higher moments to the
HFS, i.e., effectively we expanded in x/τ . This is a good approximation, as is confirmed by the
MAID model, the Simula parametrization and the ∆-exchange.
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2. Hyperfine Splitting in Terms of Polarizabilities

Based on the polarizability expansion derived in Section V.3, we compare the contribution of
individual polarizabilities to the HFS as implied by: 1) the Simula parametrization of spin-
dependent structure functions [405, 406], 2) the MAID model [66], and 3) our BChPT cal-
culation. The results can be gathered from Table VII.8. In the first part, the polarizability
decomposition is performed according to Eqs. (V.58a) and (V.59a). In the second part, we use
Eqs. (V.58b) and (V.59b). Note that the region of Q ∈ {0,

√
0.0452 GeV} was partially supple-

mented with empirical polarizabilities, see discussion in Section VII.1.5.1. This is the case for
the second moments of the predictions based on MAID or the Simula parametrization, i.e., not
for the individual contributions from background and resonances, and not for higher moments.
Furthermore, we modified the MAID prediction for the I1(Q2) contribution by the procedure
outlined in Appendix VII.B to achieve agreement with the experimental value at the real photon
point, see Fig. IV.10.

From Eq. (V.58b), one can isolate the contribution of the S1(0, Q2) subtraction term:

E
〈S1(0,Q2)〉
HFS (nS)

EF(nS)
=

Zαm

π(1 + κ)M

ˆ ∞
0

dQ

Q

5 + 4vl
(vl + 1)2

[
4I1(Q2) + F 2

2 (Q2)
]
. (VII.15)

It is given by the F2 and I1 entries in the second part of Table VII.8. Combining them, we have:

E
〈S1(0,Q2)〉
HFS (2S, µH) =


−0.49µeV BChPT,

3.35µeV MAID and FF [316],

5.33µeV Simula param. & FF [113],

(VII.16)

where the MAID model forces an ultraviolet cutoff at 5 GeV2 on the Q-integration. From
Eq. (VII.16) and Table VII.8 one can see that most of the discrepancy between the dispersive
calculations and our BChPT prediction stems from the S1(0, Q2) subtraction function, while
the contributions of IA, δLT , γ0 and the fourth moment of g2 agree very well. We therefore
suspect that the dispersive calculations suffer from an inaccurate cancelation between I1(Q2)
and F 2

2 (Q2).

3. Neutron-Polarizability Effect in Light Muonic Atoms

So far, we studied the order-α5 proton-polarizability effect, which is the main uncertainty in the
theoretical description of the µH HFS. Similarly, we can calculate a neutron-polarizability effect,
which is relevant for light muonic atoms. At sufficiently large energies, cf. the binding energies
in Table VI.5, a nucleus can break up into its constituents, i.e., Z protons and N neutrons.
Accordingly, the polarizability effect in light muonic atoms comprises nuclear-polarizability, cf.
Section VI.2, and nucleon-polarizability contributions. The intrinsic nucleon-polarizability con-
tribution is given by the sum of polarizability contributions from each of the individual nucleons.
Such effects have been calculated for the LSs in µD and µ3He+ based on electron scattering data
[458, 460]. Thus far, there has been no theoretical prediction for the neutron-polarizability effect.
Theoretical studies of the LSs in µD, µ3H and µ3He+ assume that the neutron-polarizability con-
tribution can be approximated with the proton-polarizability contribution to µH [448, 464]. In
the following, we will provide a first model-independent prediction for the neutron-polarizability
effect, as it enters the HFSs of light muonic atoms.
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Figure VII.3.: Muon-neutron interaction in the 2S hyperfine splittings of muonic atoms: Cutoff-
dependence of the πN -loop contribution to the 2S hyperfine splitting in muonic hydrogen. Our result,
Eq. (VII.18b), is indicated by the gray error band.

The intrinsic nucleon-polarizability contribution to the spectrum of a muonic atom with mass
number A, also referred to as hadronic-polarizability contribution, is given by:

EN-pol.(µA) = [Zmr(µA)]3
{
ZEp-pol.(µH)

mr(µH)3
+
NEn-pol.(µn)

mr(µn)3

}
, (VII.17)

where µn refers to the muon-neutron interaction within the atom and the factors of m3
r orig-

inate from the wave functions. In the following, we calculate the NLO BChPT prediction for
the hadronic-polarizability contributions to the HFSs in muonic-hydrogen and muonic-helium
isotopes. The NLO BChPT prediction for the order-α5 proton-polarizability contribution to the
HFS in µH, denoted here as Ep-pol.(µH), was presented in Section VII.1. We are now left to
study the muon-neutron interaction from forward TPE, i.e., En-pol.(µn).

The ∆(1232)-exchange mechanism is equivalent for proton and neutron, respectively, whereas
the chiral loops need to be evaluated independently for the case of CS off the neutron [59].
Analogously to Section VII.1.1, we obtain:

E
〈πN〉
HFS (1S, µn) = [−22.87 + 0.86]µeV = −22.01 +22.01

−94.38 µeV, (VII.18a)

E
〈πN〉
HFS (2S, µn) = [−2.86 + 0.11]µeV = −2.75 +2.75

−11.80 µeV, (VII.18b)

where notations and errors are the same as in Eq. (VII.5). The cut-off behavior is shown in
Fig. VII.3. Due to the inclusion of the pion FF, the contribution from beyond the ChPT scale is
reasonably small (∼ 13 %). Assuming identical ∆-production cross sections for photoabsorption
off the proton and neutron, we rescale the proton-polarizability contribution in Eq. (VII.6) by
[mr(µn)/mr(µH)]3 [Mn/Mp]

2 and obtain the neutron-polarizability contribution as:

E
〈∆-exch.〉
HFS (1S, µn) = [10.09− 19.33]µeV = −9.25± 9.25µeV, (VII.19a)

E
〈∆-exch.〉
HFS (2S, µn) = [1.26− 2.42]µeV = −1.16± 1.16µeV. (VII.19b)

Note that the correction factor stems from the coordinate-space wave function and the Si DRs.
In total, the neutron-polarizability contribution amounts to:

En-pol.
HFS (1S, µn) = [−12.78− 18.47]µeV = −31.25 +23.87

−94.83 µeV, (VII.20a)
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En-pol.
HFS (2S, µn) = [−1.60− 2.31]µeV = −3.91 +2.98

−11.86 µeV. (VII.20b)

This is almost a factor of 3 larger than the proton-polarizability contribution given in Eq. (VII.1).
We then find the first model-independent prediction for the hadronic-polarizability contributions
to the nS HFSs in muonic-hydrogen and muonic-helium isotopes:

EN-pol.
HFS (nS, µD) = −49 +32

−111

µeV

n3
, (VII.21a)

EN-pol.
HFS (nS, µ3H) = −91 +61

−234

µeV

n3
, (VII.21b)

EN-pol.
HFS (nS, µ3He+) = −526 +343

−953

µeV

n3
, (VII.21c)

EN-pol.
HFS (nS, µ4He+) = −857 +547

−1930

µeV

n3
. (VII.21d)

4. Neutral-Pion-Exchange Contribution to the Hyperfine Splitting

l

N

π 0

(a) (b)

Figure VII.4.: Neutral-pion exchange in atomic bound states.

The neutral-pion exchange between a lepton (`) and a nucleon (N) is shown in Fig. VII.4. In
Feynman diagram (a) the pion couples directly to the lepton, while in diagram (b) it couples
through two photons.

We calculate the pion-exchange diagrams in the framework of ChPT. The pion coupling to
the nucleon is described by the Lagrangian in Eq. (IV.25a). The coupling of the pion to the
lepton is of pseudo-vector type, it can be described by the Lagrangian:

Lπ`` = −α
2gπ``
2m

¯̀γµγ5` ∂µπ
0, (VII.22)

where ` is the lepton field and m is the mass of the lepton. Other relevant Feynman rules are
given in Appendix IV.A.

Figure VII.5.: Leading contributions to the π`` interaction.
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Let us first focus on diagram (a) and later generalize to include diagram (b). In Chapter II,
we derived the Breit potential from OPE. In the same fashion, we can get the pion-exchange
potential. In momentum-space, we find:

Vπ0(q) =
(
2Ek 2Ek′ 2Ep 2Ep′

)−1/2 [
ū(k′) Γπ``(q)u(k)

] 1

q2 −m2
π

[
N(p′) ΓπNN (q)N(p)

]
,

=
α2gπ`` gA

4mfπ

[
ū(k′) /qγ5 u(k)

] 1

q2 −m2
π

[
N (p′) /qγ5 N (p)

]
, (VII.23a)

= −α
2Mgπ`` gA

fπ

[
ū(k′) γ5 u(k)

] 1

q2 −m2
π

[
N (p′) γ5 N (p)

]
, (VII.23b)

= −α
2gπ`` gA
mfπ

(S · q)(s · q)

q2 +m2
π

. (VII.23c)

In the first step, we moved the energy prefactor into the Dirac spinors, as suggested in Ap-
pendix V.B. In the second step, we used the Dirac equation. In the last step, we performed a
semi-relativistic expansion of the Dirac spinors, substituted Eq. (V.86b) and neglected retarda-
tion. The kinematics were chosen as in Appendix V.B, with q being the pion four-momentum.

The coordinate-space potential is obtained by a Fourier transformation, which we can look up
in Table II.2. For the S-waves, we obtain:

V
(l=0)
π0 (r) = −α

2gπ`` gA
12πmfπ

(
4πδ(r)− m2

π

r
e−mπr

)
s · S. (VII.24)

As one can read off, the potential has an effect on the HFS.
Let us now investigate the coupling of the pion to the lepton further. The leading contributions

to the π`` interaction are shown in Fig. VII.5. With the help of the Dirac equation, we can
reduce the pseudo-vector interaction in Eq. (VII.22) to a pseudo-scalar interaction:

Γπ``(q, p) = iF (q2, p2, p′2)γ5, (VII.25)

where q is the pion momentum, p (p′) is the incoming (outgoing) lepton momentum and
F (0,m2,m2) = α2gπ``. We want to extract the coupling strength from the experimentally
measured decay of π0 into an electron-positron pair, see Fig. VII.6. The decay width is related
to the π`` vertex in the following way [492]:

Γ(π0 → e+e−) =
mπ

8π

√
1− 4m2

e

m2
π

∣∣F (m2
π,m

2
e,m

2
e)
∣∣2. (VII.26)

e+

e-

! 0

Figure VII.6.: Neutral-pion decay into an electron-positron pair.
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Calculating the diagram in Fig. VII.6 in dimensional regularization, one obtains [493, 494]:

F (q2) ≡ F (q2,m2,m2) = F (0) +
q2

π

ˆ ∞
0

ds
ImF (s)

(s− q2)s
, (VII.27a)

ImF (s) = −α
2m

2πfπ

arccosh(
√
s/2m)√

1− 4m2/s
, (VII.27b)

F (0) =
α2m

2π2fπ

[
A(Λ) + 3 ln

m

Λ

]
, (VII.27c)

where Λ is the renormalization scale, and A is a universal pion-lepton LEC, related to the
physical constant in an obvious way:

gπ`` =
m

2π2fπ
A(m). (VII.28)

The lifetime of the neutral pion is [242]:

τ = [8.52± 0.18]× 10−17 s, (VII.29)

what corresponds to a decay width of:

Γtot = [7.73± 0.16] eV. (VII.30)

The dominant decay channel is π0 → γγ. In the literature, the fraction of decays into electron-
position pairs is quoted with [242]:

Γ(π0 → e+e−)

Γtot
= [6.46± 0.33]× 10−8, (VII.31)

accordingly, the decay width of the leptonic channel amounts to:

Γ(π0 → e+e−) = [4.99± 0.28]× 10−7 eV. (VII.32)

For the pion-lepton LEC, we then find:2

A(me) = −22.7(6), (VII.33a)

A(mµ) = A(me) + 3 ln
mµ

me
= −6.7(6), (VII.33b)

and for the coupling constants:

gπee = −0.00637(17), (VII.34a)

gπµµ =
mµ

me
gπee +

3mµ

2π2fπ
ln
mµ

me
= −0.39(3). (VII.34b)

Note that the coupling to the muon is stronger, due to its heavier mass.
We will now extend Eq. (VII.23) by including diagram (b) of Fig. VII.4, i.e., the part described

by the dispersive integral in Eq. (VII.27a). The momentum-space potential reads:

Vπ0(q) = − gA
mfπ

s · q S · q
{

α2gπ``
q2 +m2

π

− 1

π

ˆ ∞
0

ds

s

ImF (s)

s−m2
π

(
s

q2 + s
− m2

π

q2 +m2
π

)}
, (VII.35)

2In Refs. [53, 240], we used an older value: A(me) = −20(1).
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where we neglected retardation effects by setting q0 = 0. After a Fourier transformation, we
find the coordinate-space potential for S-waves:

V
(l=0)
π0 (r) = s · S

{α2gπ`` gA
12πmfπ

m2
π

r
e−mπr (VII.36)

+
gA

12π2mfπ

ˆ ∞
0

ds

s

ImF (s)

s−m2
π

1

r

[
m4
πe
−mπr − s2e−

√
sr
]}

.

In a last step, we calculate the effect on the nS HFS from first-order PT. For amπ � 1, the
S-wave matrix element of the Yukawa potential expands as:〈

nS
∣∣e−mπr/r∣∣nS〉 =

4πφ2
n(0)

m2
π

[
1− 4

amπ
+O (1/[namπ ]2)

]
, (VII.37)

with φ2
n(0) = 1/(πa3n3) the wave function squared at the origin. In addition, we distinguishing

the cases a
√
s� 1 and s� m2

π, to derive an approximate formula for the HFS effect:

E
〈π0〉
HFS(nS) = −EF(nS)

gAMmr

2π(1 + κ)fπmπ

[
α2gπ`` +

α2m

2π2fπ
I
(mπ

2m

)]
, (VII.38)

where we introduce the following integral:

I(γ) ≡ 2

ˆ ∞
0

dξ

1 + (ξ/γ)

arccos ξ√
1− ξ2

, (VII.39)

and factored out the LO HFS, cf. Eq. (II.7). As one can see, the neutral-pion-exchange effect is
of order α2(Zα)4, with (Zα)4 embedded in the Fermi energy.

In the case of H, we have γ � 1 and

I(γ) =
7π2

12
+ ln2(2γ)− π

γ
+O(1/γ2), (VII.40)

For the more general situation, γ = sin θ ≥ 0, we obtain:

I(sin θ) = tan θ [Cl2(2θ)− π ln tan(θ/2)] , (VII.41)

where the Clausen integral is

Cl2(θ) = −
ˆ θ

0
dt ln

(
2 sin 1

2 t
)

=
i

2

[
Li2
(
e−iθ

)
− Li2

(
eiθ
)]
, (VII.42)

and Li2(x) is the dilogarithm. Numerical values for the electron and muon, respectively, are

I(mπ/2me) ' 36.8316, I(mπ/2mµ) ' 3.4634. (VII.43)

In Table VII.5, we present numerical results for the 1S and 2S HFSs in H and µH, respectively.
In both cases, there are a large cancellations between the two terms in Eq. (VII.38), or equiv-
alently, between the two diagrams in Fig. VII.4. The F (0) part gives a positive contribution,
while the q2-dependent part gives a negative contribution. For the 2S HFS in µH, the individual
terms in Eq. (VII.38) and the final HFS evaluate to:3

E
〈π0〉
HFS(2S, µH) = [0.245− 0.126]µeV = 0.119(19)µeV, (VII.44)

3Note that our numerical result changed due to the updated value for the pion-lepton LEC in Eq. (VII.33).
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Table VII.5.: Numerical results for the neutral-pion-exchange contributions to the hyperfine splittings of
electronic and muonic hydrogen.

E
〈π0〉
HFS(nS) 1S HFS 2S HFS

H −3.431(148) feV −0.429(18) feV

µH 0.951(151)µeV 0.119(19)µeV

where the error stems from Eq. (VII.34). What is interesting is the fact that the total effect
in µH is positive, i.e., dominated by the direct coupling of the pion to the lepton in Fig. VII.4
(a), and negative in H, i.e., dominated by the two-photon coupling in Fig. VII.4 (b). A similar
calculation is presented in Ref. [495], the result is of the same order as Eq. (VII.44). Another
estimate can be found in Ref. [496]. The impact of the off-forward neutral-pion-exchange contri-
bution, Eq. (VII.44), and our updated value for the TPE polarizability contribution to the HFS,
Eq. (VII.1), on the extraction of the Zemach radius has already been shown in Section V.5.

5. Extraction of the Zemach Radius from Spectroscopy

As described in Section VII.1.5, our NLO BChPT prediction of the order-α5 polarizability
contribution to the µH HFS does not agree with the dispersive calculations. Since the latter are
used to extract the proton Zemach radius from µH spectroscopy [110], it would be interesting
to give an updated proton Zemach radius based on the model-independent predictions for the
proton structure effects presented in here.

Our prediction for the proton-polarizability contribution to the HFS from forward TPE is
given in Eq. (VII.1). Combining it with the off-forward neutral-pion exchange, Eq. (VII.44), we
arrive at the following BChPT prediction for the polarizability effect in the 2S HFS of µH:

Epol.
HFS(2S, µH) = −1.3 (+1.6

−1.2)µeV. (VII.45)

This has to be compared to the literature value:

Epol.
HFS(2S, µH) = 8.01(2.6)µeV [109, 409], (VII.46)

which is included in the theory budget of the 2S HFS in µH [110], cf. Eq. (II.12b). Modifying
Eq. (II.12b), i.e., substituting our result for the polarizability effect, Eq. (VII.45), the new theory
prediction reads (in units of meV):

Eth.
HFS(2S, µH) = 22.9750 (+22

−19)− 0.1621(10) (RZp/fm). (VII.47)

Combining the theory prediction, Eq. (VII.47), with the hyperfine transition measured by the
CREMA collaboration [100]:

E exp.
HFS(2S, µH) = 22.8089(51) meV, (VII.48)

the Zemach radius reduces to:
RZp = 1.025(35) fm. (VII.49)

This result has to be compared to the proton Zemach radius obtained previously from the 2S
HFS in µH [100], as well as to the values extracted from the ground-state HFS in H [497] and
ep scattering [498]:

RZp(µH) = 1.082(37) fm, (VII.50a)
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RZp(H) = 1.045(16) fm, (VII.50b)

RZp(ep) = 1.086(12) fm. (VII.50c)

In the future, a measurement of the ground-state HFS in µH, supplemented with a precise theory
prediction, might reduce the error on the Zemach radius substantially.

6. Summary and Conclusion

In this Chapter, we have studied the proton-polarizability contributions to the HFS of µH. The
calculations are done in BChPT and within a ∆(1232)-excitation model inspired by the large-
Nc limit of QCD. In the latter, the effect of the ∆-resonance excitation is calculated using an
extension of the large-Nc relations for the magnetic (G∗M ), electric (G∗E) and Coulomb (G∗C) FFs
of the nucleon-to-delta transition [381]. In this way, the Q2 behavior of the nucleon-to-delta
transition is related to empirical information on the elastic nucleon FFs. In Eq. (VII.8), an
approximate formula for the effect of the delta on the HFS was given, to which we refer to as
the ∆-pole model. Its main feature is that the S1(0, Q2) subtraction function was constructed
to be vanishing for all Q2.

Our main result is the NLO BChPT prediction for the order-α5 proton-polarizability contri-
bution to the µH HFS, see Eq. (VII.1). This model-independent prediction turned out to be
significantly smaller than the results of dispersive calculations. In Section VII.1.5.1, we tried to
narrow-down the origin of the discrepancy and studied different Q2 regions, as well as the con-
tribution of the S1(0, Q2) subtraction function. In Section VII.2, we isolated the contributions
of various spin polarizabilities to the HFS effect.

Similar to the proton-polarizability contribution, we presented a first NLO BChPT prediction
for the order-α5 neutron-polarizability contribution (Section VII.3), see Eq. (VII.20). The main
difference between the proton and neutron case is due to the πN -loop diagrams, leading to
a value of the neutron-polarizability contribution which is larger in magnitude than expected
from the proton analogue. This first model-independent prediction of the neutron-polarizability
contribution is relevant for the HFSs in light muonic atoms, and in particular for the planned
measurement of the ground-state HFS in µ3He+.

In Section VII.4, we have calculated the neutral-pion exchange in lepton-nucleus bound states.
The π`` interaction vertex can be expanded into a direct pseudo-scalar pion-lepton coupling and
a coupling through two photons, see Fig. VII.5. The pion-lepton LEC was extracted from the
experimental decay width of π0 → e+e−. The contribution of the pion-pole diagrams to the
HFS was then given in Eq. (VII.38), where the first term corresponds to Fig. VII.4 (a) and the
dispersive integral corresponds to Fig. VII.4 (b). Numerical results for the 1S and 2S HFSs in
H and µH are summarized in Table VII.5. The final values are the result of strong cancelations
between the two Feynman diagrams in Fig. VII.4. Due to the heavier muon mass, we observed
different signs for the total effects in H and µH, cf. Table VII.5. In Appendix VII.A, we will
explain why there is no (Zα)6 lnZα effect in the HFS generated by off-forward TPE and the
lowest-order spin polarizabilities.

In Section VII.5, we have used our results for the proton-polarizability contributions to extract
the Zemach radius of the proton from the 2S HFS in µH. In near future these results will become
relevant for the forthcoming measurement of the ground-state HFS in µH.
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A. Nuclear Polarizability Contribution at Order (Zα)6 lnZα

In the present Section, we discuss the polarizability contribution to the HFS from off-forward
TPE. Since no (Zα)6 lnZα effect is found, we will sketch the calculation only briefly and instead
focus on the explanation why there is no logarithmic enhancement.

The master formulae for the structure effects through forward TPE are integrals over the
photon 4-momentum (ν = q0, Q2 = q2 − q2

0). For the n-th S-level shift and the nS HFS,
respectively, they are given in Chapter V, see Eqs. (V.1) and (V.2). A comparison of Eqs. (V.1)
and (V.2) shows that the t-channel cut, 1/Q4, is present in the former but absent in the later.
Therefore, the HFS has no TPE contribution at order (Zα)5 lnZα. Similarly, one finds that
there is no (Zα)6 lnZα contribution from off-forward TPE to the HFS.

The (Zα)6 lnZα polarizability contribution to the LS was discussed in Section VI.2. In an
analogous manner, we calculate the polarizability contribution to the HFS from off-forward
TPE. The tensor describing VVCS off a spin-1/2 nucleus, Eq. (V.66), has to be contracted with
the Lepton tensor, Eq. (V.68). Again, terms proportional to q2 or q′ 2 are neglected, since they
do not contribute to the t-channel cut enhancement. Also, the Feynman parameter trick, cf.
Eq. (V.69), stays the same.

The major complication is that we are now dealing with the spin dependence of both, the
leptonic and the nuclear part. In general, we encounter the following set of gamma matrices
between the spinors:

N (p′) {1, γα, γαγβ, γαγβγσ, /l , γα/l , γαγβ/l}N (p),

u(l′) {1, γα, γαγβ, γαγβγσ, /p, γα/p, γαγβ/l} u(l).

As before, it is suitable to perform the calculation in the CM frame, cf. Eq. (V.70). We
perform a semi-relativistic expansion of the TPE matrix element, which is especially useful in
order to simplify the appearing spinor structures and identify operators in the potential that
act on the wave functions. In Appendix V.B, we list all appearing spinor structures and their
semi-relativistic expansions.

The spin operators of lepton and nucleus, s = 1/2σ and S = 1/2σ, entering through the
respective spinors, combine in different ways. Our main interest will be in the spin-spin interac-
tion, s · S, which affects both S- and P -states, cf. Eq. (II.77a). The s · S operator is generated
in the following Dirac spinor products:

• N (p′) γαγβγσ N (p) u(l′) γαγβγσ u(l),

• N (p′) γαγβ/l N (p) u(l′) γαγβ/p u(l),

• N (p′) γαγβ/l N (p) u(l′) γαγβ u(l),

• N (p′) γαγβ N (p) u(l′) γαγβ/p u(l),

• N (p′) γαγβ N (p) u(l′) γαγβ u(l).

The CM frame allows us to rewrite, e.g.:

N (p′) γαγβ/l N (p) = −M N (p′) γαγβ N (p) +
√
sN (p′) γαγβγ0 N (p), (VII.51)

with the invariant mass s = (p+ l)2.
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The leading term in the semi-relativistic expansion of the spin-dependent TPE is included in
(omitting everything but s · S):

M(p2
t ) ∼ 32π2αp2

t

ˆ 1

0
dxx

ˆ 1

0
dy s · S

{
J2(M2) [2 γE1M2 − 3 γM1E2 − γM1M1] (VII.52)

−4 J3(M2)m2(xy)2 [γM1E2 + γM1M1]
}
.

For the imaginary part, the integrals over the Feynman parameters can be solved by substituting
Eqs. (V.87c) and (V.87e). We recall that, following the discussion above Eq. (VI.22), generating
an enhancement of (Zα)6 lnZα in the energy-level shift requires ImM(p2

t ) to be of order O(
√
τ).

Since this is not the case, Eq. (VII.52) is merely contributing to order (Zα)6.
What about the effect of other operators generated in the spin-dependent TPE, f.i., the spin-

orbit interactions, s · pt × p or S · pt × p, and the squared momentum operator? All other
operators comprise two momenta, (either) the momentum operator p and (or) the momentum-
transfer operator pt. Hence, the multiplying prefactor in ImM(p2

t ) has to be of order O(1/
√
τ)

for a logarithmic enhancement. Let us illustrate this with the example of the momentum operator
squared, p2, which in coordinate space translates into the Laplace operator. The p2 operator
has to modify the convolution integral of the momentum-space wave functions:

w
(p2)
nlm (|pt|) =

ˆ
dpϕ∗nlm(p+ pt)p

2ϕnlm(p). (VII.53)

Plugging in the momentum space Coulomb wave function of the 2S-level,

ϕ200 =
32 a3/2

[
4(a|p|)2 − 1

]
√
π [1 + 4(a|p|)2]3

, (VII.54)

we obtain:

w
(p2)
200 (|pt|) =

1 + 3(a|pt|)2 + 4(a|pt|)6

4a2 [1 + (a|pt|)2]4
. (VII.55)

Adopting this convoluted momentum-space wave function in first-order PT, cf. Eq. (V.76),
we can check that V (|pt|) has to be of order O(1/|pt|), and in turn, ImM(p2

t ) has to be of
O(1/

√
τ), for the t-channel cut enhancement to show up. The bottom line is, neither forward

nor off-forward TPE display a lnZα enhancement in the HFS.

B. Dispersive Calculation of the Polarizability Contribution

In this Section, we give more details on our dispersive calculation of the proton-polarizability
contribution to the µH HFS. In Section VII.1.5.1, we described how one replaces the interpolated
low-Q region below Qmin with empirical polarizabilities.

Another crucial point is the cancelation between I1(0) and F 2
2 (0) in the S1(0, Q2) subtraction

function as entering through Eq. (VII.15). Generally speaking, we need to match the values of the
proton anomalous magnetic moment κ used in the FF and structure function parametrizations.
The parametrization of Simula et al. [405] was imposed to reproduce the GDH sum rule I1(0) =
−κ2/4 with κ ≈ 1.7905, which is in good agreement with the presently recommended value
κ ≈ 1.7929 [107]. The MAID model on the other hand deviates substantially with κ ≈ 1.6124.
Figure IV.10 shows that the MAID model of I1(Q2) gives a good description of the CLAS data
[399], while it fails to reproduce the experimental value at Q2 = 0. Splitting the Q-integration

190



B. Dispersive Calculation of the Polarizability Contribution

in Eq. (VII.15) at λ allows for the appropriate correction at the real photon point, while keeping
the good description of data at higher Q-values. Expanding Eq. (VII.15) around Q = 0 while
keeping W (Q) fixed, we find:

ˆ ∞
Qmin

dQ
[
4I1(Q2) + F 2

2 (Q2)
]
W (Q)

= 4

ˆ λ

Qmin

dQ

[
I1(Q2)− I1(0)− κ2

4
+

1

4
F 2

2 (Q2)

]
W (Q) +

ˆ ∞
λ

dQ
[
4I1(Q2) + F 2

2 (Q2)
]
W (Q)︸ ︷︷ ︸

δ1(λ)

= 4

ˆ λ

Qmin

dQ

[
I1(Q2)− I1(0)− κ2

4
+

1

4
F 2

2 (Q2)

]
W (Q) +

ˆ ∞
λ

dQ
[
4I1(Q2) + F 2

2 (Q2)
]
W (Q)︸ ︷︷ ︸

δ1(λ)

≈ 4

ˆ λ

Qmin

dQQ2W (Q)︸ ︷︷ ︸
a(λ)

[
I ′1(0) +

κ

2
F ′2(0)

]
+ δ1(λ)

= a(λ)
[
I ′1(0) +

κ

2
F ′2(0)

]
+ δ1(λ), with W (Q) =

Zαm

π(1 + κ)M

1

Q

5 + 4vl
(1 + vl)2

, (VII.56)

where the derivatives are taken with respect to Q2. A suited estimate for the subtraction term
is then found by minimising the result of Eq. (VII.56) with respect to λ.

Analogously, we correct the relevant part of Eq. (V.49a), where it should be I1(0) = IA(0) =
−κ2/4:

ˆ ∞
Qmin

dQW (Q)

[
F 2

2 (Q2) +
1

(vl + 1)(5 + 4vl)

{
(1 + 3vl) IA(Q2) + (19 + 33vl + 16v2

l ) I1(Q2)
}]

=

ˆ λ

Qmin

dQW (Q)

[
F 2

2 (Q2) +
1

(vl + 1)(5 + 4vl)

{
(1 + 3vl)

[
IA(Q2)− IA(0)− κ2

4

]
+(19 + 33vl + 16v2

l )

[
I1(Q2)− I1(0)− κ2

4

]}]
+

ˆ ∞
λ

dQW (Q)

[
F 2

2 (Q2) +
1

(vl + 1)(5 + 4vl)

{
(1 + 3vl) IA(Q2) + (19 + 33vl + 16v2

l ) I1(Q2)
}]

︸ ︷︷ ︸
δ2(λ)

≈ a(λ)
[
I ′1(0) +

κ

2
F ′2(0)

]
+ δ2(λ). (VII.57)

To correct the MAID prediction in Table VII.8, we applied Eq. (VII.56) (lower half of the
Table) and Eq. (VII.57) (upper half of the Table). The results from Eqs. (VII.56) and (VII.57)
are comparable and both affect the I1 term in ∆1. For our prediction based on the Simula
parametrization of spin structure functions [405], the correction turned out to be very small,
hence, we neglect it.

Final results of our dispersive calculation are given in Eq. (VII.11). Partial results appear in
Sections VII.1.5.1 and VII.2, and Tables VII.7 and VII.8 therein.
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Table VII.6.: Contribution of different Q2 regions to the hyperfine splitting in muonic hydrogen.

Our values [ppm]
Term Q2 [GeV2] From Values of Carlson et al. [ppm]

πN -loops ∆-exch. Total

∆1 [0, 0.0452] F2 770.39

[0, 0.0452] g1 −730.12

[0, 0.0452] F2 and g1 40.27(7.96)(31.37)() −7.54 14.13 6.59

[0.0452, 20] F2 317.03()(9.83)()

[0.0452, 20] g1 8.43(8.43)(74.92)(29.97)

[0.0452, 20] F2 and g1 325.46 −10.87 41.08 30.20

[20,∞] F2 0()(0)()

[20,∞] g1 5.15()()(0.47)

[20,∞] F2 and g1 5.15 0.00 0.00 0.00

Total ∆1 370.88(11.71)(107.71)(30.91) −18.41 55.20 36.79

∆2 [0, 0.0452] g2 −5.62()()(5.62) 3.24 −23.51 −20.27

[0.0452, 20] g2 −13.58()()(13.58) 5.06 −82.28 −77.22

[20,∞] g2 0()()(0) 0.00 0.00 0.00

Total ∆2 −19.20()()(19.20) 8.30 −105.79 −97.48

∆pol 351.68(11.71)(107.71)(36.06) −10.11 −50.58 −60.69

Table VII.7.: Contribution of higher moments to the 2S hyperfine splitting in muonic hydrogen. All
values in µeV.

Input up to x2 g1,2 x4 g1,2 x6 g1,2 x8 g1,2 x10 g1,2

g1,2 Simula et al. [405] 6.70 −0.63 0.46 −0.43 0.46

and FF [113] κ ≈ 1.7905 −2.14
4.56

0.80
0.17

−0.57
−0.12

0.53
0.11

−0.58
−0.12

44.52 0.65 −0.57 0.70 −1.04
Background and FF

1.33
45.85

−0.63
0.02

0.56
−0.02

−0.68
0.02

1.02
−0.02

−40.04 −1.28 1.03 −1.13 1.50
Resonances

−3.18
−43.22

1.43
0.15

−1.13
−0.10

1.21
0.09

−1.60
−0.10

−34.46 −1.31 1.05 −1.14 1.52
∆(1232)

−3.43
−37.89

1.50
0.19

−1.17
−0.12

1.25
0.11

−1.64
−0.12

1.19 −0.45 0.04 0.31 −0.82
BChPT

−2.83
−1.64

0.87
0.42

−0.38
−0.34

0.10
0.40

0.22
−0.61

−0.82 0.72 −0.69 0.87 −1.31
π-cloud

0.35
−0.47

−0.31
0.42

0.32
−0.36

−0.43
0.44

0.67
−0.65

2.01 −1.17 0.73 −0.56 0.49
∆-exchange

−3.17
−1.17

1.17
0.00

−0.70
0.03

0.52
−0.03

−0.45
0.04
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CHAPTER VIII

SUMMARY, CONCLUSION AND OUTLOOK

Protons and neutrons (collectively, nucleons) comprise the atomic nuclei and thus are present
in all the visible matter around us. They are some of the most fundamental building blocks of
matter as we know it. Yet, they are no elementary particles — they consist of quarks and gluons.
The exact composition of the nucleon structure should be calculable from quantum chromody-
namics (QCD), which is the renormalizable quantum field theory describing the fundamental
interaction among quarks and gluons. Unfortunately, such ab initio calculations of nucleon
structure have proven to be extremely difficult due to non-perturbative QCD phenomena such
as color confinement, mass-gap generation, spontaneous chiral-symmetry breaking.

Nonetheless, a lot of progress has been made in calculating the low-energy effects of the
nucleon structure using lattice QCD on one hand and effective field theories on the other. In
this thesis, we have resorted to the frameworks of chiral perturbation theory (ChPT), which is
a low-energy effective field theory of QCD, and of dispersion theory which is based on general
principles of unitarity, causality and low-energy theorems. These theoretical tools have allowed
us to systematically assess the nucleon polarizabilities and their effect on atomic spectroscopy.

Our calculations are timely and relevant in the context of the proton radius puzzle. The
proton charge radius, REp, has been receiving a lot of attention after its first-time extraction
from µH spectroscopy in 2010 [67]. The measurements of the 2P − 2S transitions in µH and µD
by the CREMA collaboration at PSI yielded astonishing results, which prompted a significant
reduction of the proton and deuteron charge radii [67, 68, 100]. The other ways to extract the
charge radii — the electron scattering and the spectroscopy of electronic atoms — had mainly
been consistent with each other. At present, the Z = 1 (hydrogen isotope) charge radius puzzle
deals with the 5.6σ and 3.5σ discrepancies between experiments with either electrons or muons
probing the proton respectively deuteron. New experiments with muonic atoms are underway
and require precise theory input for their performance and interpretation. For example, the next
series of CREMA experiments will be devoted to the ground-state hyperfine splittings in µH and
µ3He+, where a reliable theoretical evaluation of the hyperfine splittings is simply indispensable
for narrowing down the search for these transitions.

Shortly after the puzzle appeared, it was suggested that an underestimation of the proton
structure effects beyond the charge radius (e.g., Friar radius and polarizability effects) could
be responsible for the discrepancy. This possibility has essentially been ruled out by dispersive
[172, 174, 175] and ChPT calculations [177]. Nevertheless, the proton-polarizability contribution
remains to be the major theoretical uncertainty in the description of µH. More generally, the
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theory of light muonic atoms, e.g., muonic-hydrogen and muonic-helium isotopes, is limited by
our knowledge on nuclear (and nucleon) structure effects. This thesis is to a large extent devoted
to model-independent and systematic calculations of these effects. Our results are of interest for
the analyses of Lamb shift and hyperfine splitting measurements in muonic atoms, e.g., for the
proposed ground-state hyperfine splitting measurements in µH [215–219].

To briefly summarize what we have done in this thesis, let us recall that in Chapter II we
derived the one-photon-exchange Breit potential for a lepton-nucleus bound state with nuclear
form factors. We employed a dispersive approach and showed that all the finite-size and one-loop
vacuum polarization effects are reproduced correctly. In Chapter III, we reported on the status
of the static nucleon polarizabilities measured in real Compton scattering and formulated sum
rules for the Compton contribution to photoabsorption. In Chapter IV, we dealt with forward
doubly-virtual Compton scattering. In particular, we calculated the tree-level contribution of the
lowest nucleon-resonance — ∆(1232) — and studied the π∆-production cross sections in view
of the discrepancy between baryon and heavy baryon predictions for the longitudinal-transverse
polarizability of the proton, i.e., the δLT puzzle. In Chapter V, the basic theory of forward and
off-forward two-photon exchange in hydrogen-like atoms was discussed. In Chapters VI and VII,
polarizability contributions to the Lamb shifts and hyperfine splittings in µH and other light
muonic atoms have been derived from baryon ChPT. More detailed summaries can be found at
the end of each Chapter.

We now turn to stating our main conclusions as well as an outlook for near-future studies.

� Finite-Size Effects in Hydrogen-Like Atoms (Chapter II)

X Deriving the one-photon-exchange Breit potential within a dispersive framework is
advantageous because the dispersive ansatz can be equally applied to nuclear finite-
size, electroweak and QED corrections (e.g., one-loop vacuum polarization). In
Eqs. (II.31) and (II.66), we give the nuclear form factor dependent coordinate-space
and momentum-space potentials, describing the finite-size effects.

X Our formalism provides exact formulas for the finite-size effects, which do not rely
on any expansion in moments of charge and magnetization distributions, see for in-
stance Eqs. (II.41) and (II.49) for the Lamb shift, and Eqs. (II.50) and (II.51) for the
hyperfine splitting.

X With the help of a toy model, we illustrated that “soft” contributions to the electric
Sachs form factor can break down the usual accounting of finite-size effects in the
Lamb shift [236, 237]. It is then not enough to express the Lamb shift in terms of
charge radii. Instead, the exact treatment provided by our formalism is required,
leaving room for a possible explanation of the proton radius puzzle.

• In the future, one has to find physical justifications for the presented toy models. A
strong candidate is the weak correction to the lepton vertex shown in Fig. II.14. It
has to be studied whether this “soft” contribution to the lepton form factor is able to
resolve the proton radius puzzle.

� Static Nucleon Polarizabilities (Chapter III)

X The Compton contribution to photoabsorption generates divergent pieces in the
Compton scattering sum rules. We have shown that an infrared cutoff on the ν-
integration and infrared subtractions on the photoabsorption cross sections can re-
move the divergent pieces from the dispersion relations of the Compton scattering
amplitudes, see Eq. (III.28). A proper definition of the sum rules for the Compton
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contribution to the quasi-static polarizabilities was derived with Eq. (III.30), and
verified within quantum electrodynamics [238, 239].

� Generalized Nucleon Polarizabilities (Chapter IV)

X In ChPT, the contribution of tree-level ∆(1232)-exchange to the process of forward
doubly-virtual Compton scattering is described by three coupling constants, viz. the
magnetic, electric and Coulomb couplings: gM , gE and gC . The effect of the magnetic
coupling on the Compton scattering is of order p7/2 in the low-energy domain of the
δ-expansion in ChPT, while terms including the electric or Coulomb couplings are
attributed to higher orders. We have shown that inclusion of the Coulomb coupling,
despite its higher order in the power-counting, produces an appreciable effect in all
of the generalized polarizabilities. The Coulomb coupling also influences the static
limit of the longitudinal and longitudinal-transverse polarizabilities, αL and δLT .

X In view of the δLT polarizability puzzle arising within ChPT, the π∆-production
photoabsorption cross sections were calculated.

X We have shown that the Born and polarizability contributions to the Burkhardt-
Cottingham sum rule vanish independently. This is for instance the case for the sum
rule contributions from ∆-exchange, pion-nucleon loops and pion-delta loops, which
all evaluate to zero.

• Since the π∆-production cross sections display a bad high-energy behavior, they can-
not be used to reconstruct the π∆-loop Compton scattering amplitudes with unsub-
tracted dispersion relations. Therefore, at present, the π∆-production cross sections
have no predictive power for the lower-order polarizabilities. In a future project, we
plan to improve the high-energy asymptotics of the cross sections by some kind of
ultraviolet completion, which will allow us to obtain a result for δLT . It would also
be desirable to achieve a better compliance of the baryon ChPT prediction of the
nucleon structure functions with experimental data at the ∆-resonance peak.

� Polarizability Effects in the Lamb Shift (Chapters V and VI)

X The next-to-leading order baryon ChPT prediction for the order-α5 proton-polarizability
contribution to the Lamb shift in µH, including diagrams with pion-nucleon loops and
∆(1232)-exchange, yields:

Epol.
LS (µH) = 4.9 +2.0

−1.3 µeV. (VI.3)

This model-independent theory prediction is found to be in good agreement with the
dispersive results, which are based on empirical information on proton form factors
and structure functions.

X At next-to-leading order in baryon ChPT, the contribution of the subtraction function
to the µH Lamb shift amounts to:

Esubtr.
LS (µH) = −5.8± 2.3µeV. (VI.4a)

This result shows that the tree-level ∆-exchange gives a significant contribution to
T 1(0, Q2).

X Deducing the order-(Zα)6 polarizability effects to the Lamb shift from off-forward
two-photon exchange provides an alternative if not favourable approach to the Coulomb-
distortion effects and the classical long-range polarization potentials. In accordance
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with the literature, the nuclear-polarizability contribution from off-forward two-photon
exchange is found to be non-negligible in the case of light muonic atoms,

E
〈(Zα)6, αE1, βM1〉
LS (µD) = −0.398± 0.001 meV, (VI.29b)

E
〈(Zα)6, αE1, βM1〉
LS (µ3He+) = −1.395± 0.047 meV, (VI.29d)

E
〈(Zα)6, αE1, βM1〉
LS (µ4He+) = −0.665± 0.016 meV. (VI.29e)

This can be mainly ascribed to the logarithmic enhancement generated by the t-
channel cut, giving a (Zα)6 lnZα contribution proportional to the nuclear electric
dipole polarizability, see Eq. (VI.21).

• For an improved precision, the calculation of the off-forward polarizability effects
could be repeated, taking into account the full Q2 behavior, i.e., not focusing on the
t-channel cuts.

X Utilizing our results for the various polarizability contributions, we re-extracted the
proton and deuteron charge radii from the Lamb shifts in µH and µD:

REd = 2.12013(78) fm, (VI.46)

REp = 0.84045(44) fm. (VI.43)

� Polarizability Effects in the Hyperfine Splitting (Chapters V and VII)

X The next-to-leading order baryon ChPT prediction for the order-α5 proton-polarizability
effect in the hyperfine splitting of µH,

Epol.
HFS(nS, µH) = −11.1 +12.7

−9.4

µeV

n3
, (VII.1a)

is considerably smaller than the results from the dispersive calculations which are
presently used to extract the proton Zemach radius from µH spectroscopy. If com-
pared to the dispersive result of Ref. [115], the discrepancy amounts to 3.6σ. The
discrepancy can be pinned down to the region of small Q2, where one observes se-
vere cancelations between the proton structure function g1(x,Q2) and the Pauli form
factor F2p(Q

2) of the proton, which both enter S1(0, Q2).

• In the future, further investigations are needed to better understand the discrepancy
between the chiral prediction and the dispersive ansatz. At present, we suppose the
empirical information in the low-Q region, used as input for the dispersive approach,
are not sufficient. Especially the cancelations within S1(0, Q2) might be hard to
resolve based on the available empirical data. Therefore, new data from the ongoing
“spin physics program” at the Jefferson Laboratory, which is mapping out the spin
structure functions of the nucleon [499–501], might lay the groundwork for a re-
evaluation of the two-photon-exchange effects based on an improved empirical data
set.

X The ∆-pole model is described by the approximate formula in Eq. (VII.9). Effectively,
it provides a lower bound on the absolute effect of the ∆(1232)-resonance excitation
in the hyperfine splitting of µH.

X We have derived an expansion of the non-Born two-photon-exchange effect in hyper-
fine splitting in terms of the spin polarizabilities.
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X A first prediction of the order-α5 neutron-polarizability contribution to the hyper-
fine splitting of muonic atoms in the framework of baryon ChPT, shows that the
neutron-polarizability effect is more sensitive to the high-Q2 region than the proton-
polarizability effect and suggests that it might be bigger. Together with the order-
α5 proton-polarizability contribution, we obtain the following hadronic-polarizability
contribution to the hyperfine splitting in µD and µ3He:

EN-pol.
HFS (nS, µD) = −49 +32

−111

µeV

n3
, (VII.21a)

EN-pol.
HFS (nS, µ3He+) = −526 +343

−953

µeV

n3
, (VII.21c)

X The neutral-pion exchange contributes to the hyperfine splitting at order α6 [53, 240].
As a result of cancelations between the diagrams with direct lepton-pion coupling and
pion coupling to the lepton through two photons, its quantitative effect is small,

E
〈π0〉
HFS(2S, µH) = 0.119(19)µeV, (VII.44)

and differs in sign for H and µH, respectively, see Table VII.5.

X Employing the proton-polarizability effects calculated in this work, the proton Zemach
radius was extracted from the measurement of the 2S hyperfine splitting in µH with
a shrunken value:

RZp = 1.025(35) fm. (VII.49)

We believe that many of these results will be useful for the upcoming search of the very narrow
ground-state hyperfine transitions in µH and µ3He+. Once these transitions are found we will
have an unprecedentedly precise measurement of the low-energy nucleon structure. It will be an
exciting time for the excited nucleon!
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