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Mainz, 2017



Dekan:

1. Gutachter:
2. Gutachter:

Tag der mündlichen Prüfung:
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1. Introduction

Molecular dynamics (MD) simulations of soft matter have become one of the most versatile and
powerful tools in chemistry and molecular biology. They serve as a computational microscope
and it is possible to capture key biochemical processes such as protein folding, drug binding
and membrane transport. [1] Due to MD simulations the early view of proteins as relatively
rigid structures was replaced by a dynamic model in which the internal motions and resulting
conformational changes play an essential role in their function. [2]
MD methods were conceived within the theoretical physics community during the 1950s. In
1957 the earliest MD simulation was performed by Wainwright using the so called hard-sphere
model. [3] These simulation techniques were refined to mimic real atomic interactions [4]. By
then important breakthroughs in structural biology have provided many atomic-resolution models
of molecules essential to life such as proteins and nucleic acids. The first MD simulation of
a system of biological interest was performed by McCammon [5] in 1977 and concerned the
bovine pancreatic trypsin inhibitor. It was performed in vacuum with a crude molecular dynamic
potential and lasted only for 9.2 ps but let to the realization that biological molecules are indeed
dynamic systems. [1, 5]
Fast forward to now, improvements in achievable simulation speed and underlying physical mod-
els have enabled atomic-level simulations on timescales as long as milliseconds. [1] Even though
speed and accuracy have improved significantly, the basic form of simulation has endured. Typ-
ically the underlying models for MD simulations consist of spherical atoms connected by springs
which represent bonds. Forces experienced in the model are described using simple mathemati-
cal functions. With such simple models, MD simulations numerically solve Netwon’s equation of
motion and therefore structural fluctuations can be observed with respect to time. [6] MD simula-
tions allow therefore to investigate structural changes like in protein folding which is essential for
the understanding of the function of many processes in the body. Often, these structural changes
occur on much slower time scales than those accessible with conventional simulation techniques.
Force probe MD (FPMD) simulations provide powerful means to overcome this limitation and
to get insight into the atomistic mechanisms. [7] By applying an external force molecules unfold
much faster and the computational cost is therefore greatly reduced.
Besides folding processes also biomembranes are intensively investigated using MD techniques. [8]
In order to observe physiological relevant processes, the time and length scales accessible by
an atomistic approach are not suitable. Approaches such as coarse-grained (CG) models and
particle-field (PF) models allow to access such time scales. [9, 10]
This thesis is structured as follows: In chapter 2 the theoretical background used in this work is
covered. There, the focus is on different approaches of MD simulations techniques. Furthermore,
this chapter gives a short introduction on stochastic models used to rationalize the results of
FPMD simulations.
Chapter 3 covers the work on reversibly unbinding model systems calix[4]arene-catenanes. Here,
the goal is to study the dependence of FPMD simulations on the pulling parameters for three
different variations of this model system. Chapter 4 comprises the studies done on phospholipid
bilayers. The focus in this chapter is on the correct representation of the phase behavior over a
range of temperatures using CG and PF approaches. In order to achieve this, new refined models
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1. Introduction

of phospholipids and cholesterol are introduced and discussed.
In chapter 5 a summary of the entire work is given. Furthermore an outlook an potential im-
provements and future investigation of the systems studied in this work is presented.
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2. Theory

2.1. Molecular dynamics simulations

Molecular dynamics (MD) is a simulation method to study the dynamical evolution of a system
consisting of atoms and molecules. To describe such an evolution correctly, the time-dependent
Schrödinger equation has to be solved. This is a rather complicated task and can be simplified
using the Born-Oppenheimer (BO) approximation. [11] With this approximation the motion of
the atomic nuclei and the electrons can be separated. Instead of solving the time-dependent
Schrödinger equation for the nuclei one usually neglects quantum effects and solves the classical
equations of motion. The forces among the nuclei are deduced from the Born-Oppenheimer
potential for each configuration of the nuclei via a solution of the electronic Schrödinger equation
and the resulting method is called ab initio MD (AIMD). [12] Due to the computational cost of
AIMD, it is only possible to simulate smaller systems (≈ 500 atoms) for short periods of time
(≈ 50 ns). [13]
Another approach is taken in classical MD simulations where the BO potential is approximated
by an empirical force field. MD simulations numerically solve the classical equations of motion
which are given for a simple system of particles by

mir̈i = Fi(ri) with Fi(ri) = − ∂

∂ri
U({r}). (2.1)

with the BO potential U({r}). r = r1, r2, . . . rN describes the complete set of 3N nuclear coordi-
nates. [14, 15]
The potential energy of the BO potential is given as a set of functions and parameters. The
different types of potential functions are discussed in section 2.1.1. Potential functions and their
parameters form a so-called force field.
It is obvious that every MD program requires a good algorithm to integrate classical equations
of motion. This is the center part of every MD simulation. One of the most common algorithms,
the leap frog integrator, is described in section 2.1.2.
To set up a MD simulation, a box with a certain volume V is chosen and the particles are placed
inside the box. The number of particles is limited by computational cost. This gives rise to several
problems because the aim of MD simulations is to provide information about the properties of a
macroscopic system. The simulated systems are too small and far away from the thermodynamic
limit. For such small systems, boundary conditions do not have a negligible effect because for N
particles in a system, roughly N 2/3 are at the surface. Even for a system consisting of N = 106

particles this would mean that 1 % are at the surface. One way to treat the problem is to use
periodic boundary conditions (PBC) (cf. App. A.1).
To carry out a simulation at experimental conditions, e.g. at constant temperature and pressure,
methods to control these parameters have to be included in a simulation. These methods are
discussed in section 2.1.3.

3



2. Theory

2.1.1. Force fields

The various interactions in a system consisting of particles or molecules are described by potential
functions. A set of potential functions and their parameters form a force field. There are various
force fields which use different potential functions and parameters. Here, the potential functions
used in the OPLS-AA (Optimized Potentials for Liquid Simulations All-Atom) force field are
presented. All-atom (AA) means, that every atom is represented in this force field. A force field
in which groups of atoms are reduced to point masses is discussed in section 2.1.4. In general,
the potential functions are split into two parts: bonded and non-bonded interactions

U = Ubonded + Unon-bonded. (2.2)

Bonded interactions

The bonded interactions are given by three different dominant contributions to the bonding
potentials

Ubonded = Ubond(kAB, rAB) + Uangle(kBCD, θBCD) + Udihedral(kABCD, ωABCD) (2.3)

with the bond stretching potential Ubond, the bond angle potential Uangle and the dihedral angle
potential Udihedral. An illustration of these potentials and their parameters, the interatomic
distance rAB, bond angle θBCD and torsion angle ωABCD are given in Figure 2.1.

B

C

A

D

✓BCD
!ABCD

rAB

B

C

A

D
Udihedral Uangle

Ubond
✓ABC

Figure 2.1.: Illustration of the definition of the different bonded potentials; interatomic distance
rAB, bond angle θBCD and torsion angle ωABCD .

Bond stretching potential The bond stretching potential Ubond between the atoms A and B
should have an analytic form and must be continuously differentiable. A popular form for such
a potential is a harmonic approximation

Ubond =
1

2

∑

bonds

kAB(rAB − req)2 (2.4)

with the force constant kAB and the equilibrium distance req. For most MD simulations eq. (2.4)
is a good approximation and kAB is derived from either quantumchemical calculations or from
experiment.
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2.1. Molecular dynamics simulations

Bond angle potential In MD simulations the potential for the angular deformations is typically
described by

Uangle =
1

2

∑

angles

kABC(θABC − θeq)2 (2.5)

where θABC is the valence angle between the bonds AB and BC (see Figure 2.1) and kABC is the
force constant for the angular deformation.

Dihedral angle potential The dihedral angle potential is chosen as a periodic function and
depends on the dihedral angle ωABCD

Udihedral =
1

2

∑

dihedrals

∑

m

kω,mABCD(1 + cos(mωABCD − γm)). (2.6)

kω,mABCD is the force constant, γm and m are parameters of the periodic function and describe the
phase shift as well as the number of minima in the potential.

Non-bonded interactions

The non-bonded interactions are split into the van der Waals (vdW) interactions UvdW and the
Coulomb interactions VCoulomb:

Unon−bonded = UvdW + UCoulomb. (2.7)

van der Waals interactions Van der Waals interactions are short-range interactions and are
usually described by the Lennard-Jones potential. The Lennard-Jones potential for two atoms A
and B is given by

ULJ(rAB) = 4ε

[(
σ

rAB

)12

−
(

σ

rAB

)6
]
. (2.8)

ε is the depth of the of the potential and σ denotes the characteristic radius. The Lennard-
Jones potential consists of an repulsive r12-term and an attractive r6-term representing vdW
interactions. An illustration of the Lennard-Jones potential, its attractive and repulsive terms
and the parameters are shown in Figure 2.2.

Coulomb interactions Coulomb interactions are long-range electrostatic interactions between
two atoms A and B. Assigning a charge to each atom, the Coulomb potential is given by

UCoulomb(rAB) =
qAqB

4πε0rAB
(2.9)

with the charges qA and qB and the vacuum permittivity ε0.
Due to the long-range nature (UCoulomb ∝ r−1), the forces among all particles have to be computed
which is very demanding. The long-range contributions are therefore calculated separately from
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00U
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Figure 2.2.: Illustration of the Lennard-Jones potential VLJ(rAB). The minimum is at rm = 6
√

2σ.

the short-range interactions. This can be done by Ewald summation (O(N 3/2)) [16], fast multipole
methods (O(N)) [17] and particle-mesh based methods (O(N logN)) such as particle-mesh Ewald
(PME). [18]
PME was used for all the classical MD simulations performed in this work. It is a method to
reduce computational cost when calculating the Coulomb contribution to the potential energy.
The basic idea is outlined next and a schematic illustration is shown in Figure 2.3.
The horizontal line in Figure 2.3 (a) represents a one dimensional unit cell and the straight lines
represent the point charges A, B and C. The aim is to calculate the interaction of point charge
A with all other point charges (here: B and C).

A B C

A B C

A B C

1
2

(b)

(c)

= +

3)2)1)

⇢P ⇢P + ⇢S

�⇢S

=A B C

1
2(a)

(d)

+

-

Figure 2.3.: Illustration of the PME method. The point charges are represented by straight lines,
the screening charges by blue curves and the compensating screening charges by red
curves. The horizontal line represents the length of the unit cell.

To improve the situation gaussian distribution of charges of opposite sign than the point charges
are added to all point charges except A, thereby acting as screening charges. Because there is
no overlap between point charge A and screening charge C, C is completely screened from A
and interaction 2 does therefore no longer contribute. Interaction 1 still contributes as B is not
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2.1. Molecular dynamics simulations

completely screened from A. This is illustrated by the overlap of the screening charge curve with
the straight line for point charge A.
In order to compensate for the error that was introduced through the use of the screening charges,
compensating screening charges of opposite sign than the ones marked in blue are added, cf. (c).
The contribution of these compensating charges can easily be calculated by a fast converging
Fourier series at low computational cost. This contribution is the same for all interactions and
has therefore only to be calculated once.
Finally, the contribution of the compensating screening charge at A must be removed by adding
a screening charge of opposite sign at A as shown in (d). The procedure outlined here is very
efficient and greatly reduces computational cost (O(N logN)).

2.1.2. Integration of the equations of motion

After deriving the forces from listed potentials, the next step is to solve the equations of motion
with a fast and efficient algorithm in order to get the positions ri and the velocities vi as a
function of time. Within MD programs, these equations are solved numerically using a time step
∆t. In this work the leap frog algorithm was used and is described in the following.
The leap frog integrator evaluates the velocities, vi = dri(t)

dt , at half time steps and uses the
velocities to calculate the new positions. The velocities can be written as

vi(t−∆t/2) =
ri(t)− ri(t−∆t)

∆t

vi(t+ ∆t/2) =
ri(t+ ∆t)− ri(t)

∆t

(2.10)

and an expression for the new positions based on the old positions and velocities can be obtained
via

ri(t−∆t) = r(t)−∆tvi(t−∆t/2)

ri(t+ ∆t) = r(t) + ∆tvi(t+ ∆t/2).
(2.11)

The leapfrog integrator uses a truncated Taylor expansion up to second order of the particle
coordinates ri(t±∆t):

ri(t+ ∆t) = ri(t) + ṙi(t)∆t+
1

2
r̈i(t)∆t

2

ri(t−∆t) = ri(t)− ṙi(t)∆t+
1

2
r̈i(t)∆t

2
(2.12)

Summing these equations

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) + r̈i(t)∆t
2 (2.13)

and subsitution with eqs. (2.11) yields

vi(t+ ∆t/2) = vi(t−∆t/2) + r̈i(t)∆t. (2.14)

By inserting Newton’s second law Fi(t) = mir̈i(t), the expression for the update of the velocities
is obtained:

vi(t+ ∆t/2) = vi(t−∆t/2) +
Fi(t)

mi
∆t. (2.15)

Within a simulation, the positions r(t+ ∆t) (2.11) and the the velocities v(t+ ∆t/2) (2.15) are
calculated at interleaved time points. An illustration of the algorithm is shown in Figure 2.4. [14]
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t t+ 1

2
∆tt−

1

2
∆t t+ 3

2
∆tt+∆t t+ 2∆t t+ 5

2
∆t

r(t) r(t+∆t) r(t+ 2∆t)v(t− 1

2
∆t) v(t+ 1

2
∆t) v(t+ 3

2
∆t) v(t+ 5

2
∆t)

Figure 2.4.: Illustration of the leapfrog integrator.

2.1.3. Statistical ensemble

It is straight forward to perform a MD simulation in the microcanonical ensemble. Here, the
volume V and the number of particles N is kept constant and the energy E is conserved. Because
of these constant parameters, the microcanonical ensemble is also-called the NVE ensemble. The
NVE ensemble is easy to implement but not the most reasonable choice because the energy is
not observable in experiments. Hence, methods to control the pressure P and temperature T
are needed in order to realize the canonical (NVT) ensemble and the isobaric-isothermal (NPT)
ensemble. A short outline of these ensembles and how the temperature T and the pressure P
can be controlled is given in the following.

Canonical ensemble (NVT)

In the canonical ensemble, the volume and the temperature have to be constant. The temperature
is related to the kinetic energy Ukin via

3N∑

i=1

miv
2
i

2
=
kBT

2
f (2.16)

where N is the number of particles, f denotes the number of the degrees of freedom and kBT
is the thermal energy (kB = 1.38064852 · 10−23 m2 kg s−2 K−1). The temperature can be altered
by scaling the velocities. This can be achieved by multiplying the velocities with a scaling factor

λ. According to eq. (2.16), the temperature T at time t is given by T (t) =
∑N

i
miv

2
i

fkB
and the

change in temperature ∆T can be calculated by

∆T =
3N∑

i

miλ
2v2

i

fkB
−

3N∑

i

miv
2
i

fkB
= (λ2 − 1)T (t). (2.17)

By simply multiplying the velocities at each time step with λ =
√
T0/T (t), where T0 is the

desired temperature, the temperature is kept constant. This simple velocity scaling approach
gives rise to one problem: it does not allow for fluctuations in temperature which are present in
the canonical ensemble.
The Berendsen thermostat uses a more flexible approach. The system is coupled to an external
heat bath with a fixed temperature T0. Here, the rate of change in temperature is proportional
to the difference in temperature

dT (t)

dt
=
T0 − T (t)

τT
(2.18)

8



2.1. Molecular dynamics simulations

where τT is a coupling parameter. This parameter describes the strength of the coupling. The
change in temperature between two successive time steps ∆t is

∆T =
∆t

τT
(T0 − T (t)). (2.19)

The velocities are then scaled by

λT =

√
1 +

∆t

τT

(
T0

T (t−∆t)
− 1

)
. (2.20)

The coupling parameter τT is an empirical parameter. For the limit τT → ∞ the Berendsen
thermostat is inactive and the simulation is sampling a microcanonical ensemble. When the
parameter τT is chosen too small, the fluctuations in temperature are unrealistically small. For
τT = ∆t, λT is equal to the scaling factor used in velocity scaling. [19]

Isobaric-isothermal ensemble (NPT)

The isobaric-isothermal ensemble is of great interest because most experiments are carried out at
a constant pressure and a constant temperature. To keep the pressure constant, the box size and
the coordinates of the particles are scaled at every time step ∆t which can be done by various
different barostats. The pressure is given by

P =
2

3V
(Ukin − Ξ) (2.21)

with the box volume V and the inner virial scalar

Ξ = −1

2

∑

i<j

rijFij with rij = ri − rj (2.22)

where Fij is the force on particle i due to particle j. The pressure in a simulation can be corrected
by a change of Ξ.
Similar to the approach in the Berendsen thermostat, in the Berendsen barostat the rate of change
in pressure is proportional to the difference in pressure

(
dP

dt

)

bath

=
P0 − P
τP

(2.23)

where P0 is the reference pressure and τP is a coupling parameter. The change in the coordinates
and the volume of the box is given by

dr

dt
= λP r (2.24)

and

dV

dt
= 3λPV (2.25)

where λP is the scaling parameter. A change in pressure is related to the isothermal compress-
ibility κ via

dP

dt
= − 1

κV

dV

dt
. (2.26)

With eqs. (2.25) and (2.23) this results in

λP =
κ(P0 − P )

3τP
. (2.27)

The latter equation assumes that the system is isotropic and placed in a cubic box. [19]
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2. Theory

2.1.4. Coarse grained molecular dynamics simulations

In contrast to all-atom (AA) molecular dynamics simulations in a coarse grained (CG) model
one averages over some features of the system in a prescribed manner. The resulting reduction of
the number of degrees of freedom leads to a smoother energy landscape, i.e., the potential energy
as a function of all coordinates, which is faster to equilibrate. With this approach it is possible
to study larger systems at longer time scales at lower computational cost. On the other hand,
however, these approximations lead to a decreased accuracy of the simulations. [20]
The CG approach is widely used in MD simulations. In classical MD, CG usually refers to
a simplified molecular system which is obtained by reducing groups of atoms to point masses,
so-called “beads”. This transformation from a fine to a coarse grained model is referred to as
mapping. Another possibility to save computational cost is a field approach for the intermolecular
interactions. Here, a molecule is not directly interacting with its surrounding particles but
through a field which is represented by a CG density. [21]
An important aspect of the CG procedure is parametrization. Even though CG MD models are
less accurate than its atomistic counterparts, the correct physical behavior should approximately
be preserved. Two basic strategies are used to do this: the bottom-up and the top-down method.
In the bottom-up method, simulations, models or experiments on a more detailed scale are used
to parametrize a model at a more coarse grained scale. Alternatively, one can also use properties
measured in bulk in order to parametrize simulations on a much smaller scale. This is done in
top-down modeling approaches. [9, 20]

Martini force field

The Martini force field is a CG model developed for biomolecular simulations. [9] The beads
used are constructed from the functional groups of the underlying AA system. It has been used
successfully in simulations of important biochemical processes such as lipid self-assembly [22],
peptide membrane binding [23] and protein-protein recognition. [24]
An illustration for the mapping procedure can be found in Figure 2.5 (a) and (b). The potential
functions used for the bonded and non-bonded interactions are the same as already discussed in
section 2.1.1. [9]

(c)

N
P
GG

C

(a) (b) (d)

P
G G

N

C

C

C

C

C

C

C

carbon
nitrogen
phosphor
oxygen
hydrogen

Figure 2.5.: Illustration of the mapping procedure for dipalmitoylphosphatidylcholine (DPPC).
(a) All atom model of DPPC, (b) mapping of DPPC into the Martini force field, (c)
simplified CG model of DPPC with an overlaying lattice and (d) CG density field
for the SCF MD simulations. [9, 25]
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2.1. Molecular dynamics simulations

Self consistent field MD

In self consistent field (SCF) MD, the evaluation of the non-bonded force between atoms/beads
of different molecules is replaced by the evaluation of the external force which depends on the
local particle density at position rI . The overall particle density at point rI is given by

ρ(rI) = ρA(rI) + ρB(rI) + ρC(rI) + · · · (2.28)

where the ρX(rI) are the partial particle densities of the different beads/atom types X = A,B,C, · · · .
This density ρ(rI) can then further be simplified by mapping it to a coarse grained density ρCG(rĨ)
where rĨ represent points on a grid.
The mapping procedure for a single molecule consisting of beads for the CG particle density is
shown in Figure 2.5. A lattice is chosen and a fraction of the particle density is assigned to
each lattice point (Figure 2.5 (c) and (d).) The closer a bead is to a lattice point, the larger the
fraction of the particle density of this bead at that point. In this way, one can also map systems
consisting of several molecules. An illustration of the resulting CG density is shown in Figure
2.6.

FGC̃
G

�C

Figure 2.6.: Illustration of a lipid in a coarse grained density field. The highlighted red particle
G at position rG is interacting with the extrapolated coarse grained density of the
sourrounding grid points ρ̃X̃ at position rG. The forces for these interaction are given
by FGX̃(rG) and are indicated by the arrows.

The force acting on the bead G of a molecule is then given by the sum of the contributing CG
forces

FG(rG) =
∑

X̃

FCX̃. (2.29)
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2. Theory

The contribution FGC̃ which is highlighted in Figure 2.6 is given by

FGC̃(rG) = −kBT
(
χGC̃

∂ρ̃C̃(rG)

∂rG

)
− ∂UC̃(rG)

∂rG
(2.30)

where the first term describes the “soft” long-range interactions and second term the “hard”
short-range interactions. ρ̃C̃(rG) is the extrapolated density of point C̃ at position rG. The term
for the long-range interactions has its origin in the theory of polymer-solvent interactions. [26]
The mean field parameter χYX can be calculated following the Flory-Huggins approach with the
result [27]

χXY =
zCN

kBT

[−2εXY + εXX + εYY

2

]
(2.31)

where εXY is the Lennard-Jones ε parameter for the corresponding particle-particle interactions
and zCN the coordination number, which for a simple cubic three-dimensional lattice is given as
zCN = 6. In this work, these parameters were systematically optimized to reproduce the desired
properties.
The short-range interactions can be calculated in two different ways. One method is using the
compressibility κ to describe the short-range interactions between particle and field. The short-
range term is then given by

∂UC̃(rG)

∂rG
=

1

κ

(
∂ρ̃C̃(rG)

∂rG

)
(2.32)

where the compressibility is to be chosen sufficiently small (κ ≈ 0.1 Pa−1). In this way, the
intermolecular interaction is replaced completely by an evaluation of the forces between the
particle and the field. This approach is therefore called particle-field (PF) method.
Another way to calculate the short-range interactions is to introduce particle-particle interactions.
Here, a Lennard-Jones potential is used up to a certain cut-off rcut

∂UC̃(rG)

∂rG
=
∂U rcutLJ,GC(rG)

∂rG
. (2.33)

For rcut generally a value near the minimum rm = 6
√

2σ is chosen (see also Figure 2.2). Thus, the
soft long-range interactions are treated by the field but the short-range interactions are described
by particle-particle interaction. Therefore this approach is called particle-particle particle-field
(PPPF) approach. [21,25]

2.1.5. Potential of mean force

The energy landscape of a stable system has one global minimum but can have a very complex
structure with multiple local minima separated by barriers of various heights. A reduced de-
scription of the energy landscape is given by the potential of mean force (PMF). It describes
the potential along a specific coordinate. Because PMFs are often used to describe reactions or
transitions between different potential wells, the relevant coordinate is called reaction coordinate.
PMFs are also often used to describe the energy landscape of folding pathways in proteins and
other biomolecules. [28, 29] The advantage of an PMF is that it is easier to interpret than a
multidimensional potential energy surface. It is defined by

UPMF(q) = −kBT ln

[
c

∫
dr exp(−βU(r)δ(q(r)− q)

]
(2.34)
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2.1. Molecular dynamics simulations

where q(r) is the reaction coordinate and a function of r but q is the value of the reaction
coordinate. c is a constant which derives from integrating the momenta. An illustration of a
PMF with two wells is given in Figure 2.7. This could be the PMF of a chemical reaction with
A being the reactant and B being the product. Another example could be the closed/folded (C)
and the open/unfolded state (O) of a complex molecule.

A

BU
P
M

F
(⇠

)

reaction coordinate ⇠(r)

U
P
M

F
(q

)

reaction coordinate q(r)

closed

open
O

C

Figure 2.7.: Potential of mean force (PMF) along the reaction coordinate q(r).

One way of computing the PMF is the method of thermodynamic integration. [30] Values for
the derivatives of the PMF at given configurations can be obtained by performing constraint
equilibrium simulations. The constraint force Fc(q

′) is defined as the force required to keep the
system at a given value of q′. By performing a sufficient number of such simulations along the
desired reaction coordinate, the PMF can be obtained from numerical integration by

UPMF(q) = −
∫ q

0

[〈
Fc(q

′)
〉

+
2kBT

q′

]
dq′ (2.35)

with 〈Fc(q′)〉 the average of the constraint force. The second term in eq. (2.35), 2kBT
q′ , is correcting

the entropic contribution to 〈Fc(q′)〉. In this work, the PMF for a molecule in a FPMD simulation
was obtained using this method. [30,31]

2.1.6. Modeling of stochastic processes

Stochastic processes can be viewed as the time-evolution of certain random variables and play an
important role in physics and chemistry. In this work, the dynamics of a model systems moving
in a double well potential will be modeled as a stochastic process. In particular, it is assumed
that the reaction coordinate, i.e., the extension of the molecule considered, is a random variable
evolving under the influence of the deterministic forces excerted by the potential and an external
force and additionally by a stochastic force representing the coupling to the external degrees of
freedom that serve as a heat bath.

Modeling of rupture events

In Figure 2.8 (a) a double well potential with the wells C and O is shown. The minimum of well
C is located at qC and the one of O at qO. These minima correspond to stable configurations.
Such a potential could for example be the PMF of a rupture event, C being the closed, more
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2. Theory
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Figure 2.8.: a) Double well potential U(q) with the wells C and O. The minimum of well C is
located at qC and the one of well O at qO. C is the more stable state and O another
possible, but less stable state. The transition state is marked by T and at position
qT. The arrow shows escape from well C with its rate kC

rupt. b) This graph shows
the influence of an external force F on the potential and the height of the barrier
∆UC(F ) = ∆UC−FqTC, F1 < F2. The external potential tilts the energy landscape.

stable state and O the open state. The transition state T is at the maximum of the potential at
position qT.
A simple model of a rupture event is the escape from a free energy well. In Figure 2.8 (a) this
is shown for for the escape from well C with rate kC

rupt for the transition C → T. For such a
simple model, the rate can be calculated with the Arrhenius equation which also expresses the
relationship between rate and energy

kC
rupt = kC,0

rupt exp(−β∆UC) (2.36)

where ∆UC = U(qT)−U(qC) is the activation energy or height of the barrier. kC,0
rupt is a prefactor

and β−1 = kBT where kB is the Boltzmann constant. The rate is therefore dominated by the
height of the barrier ∆UC. For a simple system as shown here, the rates are not time-dependent
and the temporal evolution of the system can be described by the rate equation

ṗC
rupt(t) = kC

ruptp
C
rupt(t) with ṗC

rupt(t) =
∂pC

rupt(t)

∂t
(2.37)

where pC
rupt(t) is the population in state C as function of time. To calculate the population

pC
rupt(t), the latter equation is integrated yielding

pC
rupt(t) = exp

(
−kC

ruptt
)
. (2.38)

Another interesting quantity is the waiting time distribution ΦC
rupt(t) which is also-called prob-

ability density function. ΦC
rupt(t) is calculated by ΦC

rupt(t) = − d
dtp

C
rupt(t) and is therefore given

by

ΦC
rupt(t) = kC

ruptp
C
rupt(t) (2.39)

The mean of the waiting time 〈τC
rupt〉 is given by the first moment of the waiting time distribution

〈τC
rupt〉 =

∫ ∞

0
dtΦC

rupt(t) t = (kC
rupt)

−1 (2.40)

and is therefore the inverse of the rate kC
rupt.
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2.1. Molecular dynamics simulations

Influence of an external force

In this section, the impact of an external potential on the energy landscape will be discussed.
The simple model of the escape from a free energy well is taken as a starting point. The influence
of a very simple external potential Uext(q, F ) = −Fq can be described by

U(q, F ) = U(q, 0) + Uext(q, F ) = U(q, 0)− Fq (2.41)

which is also illustrated in Figure 2.8 (b). The protocol used for applying a time-independent force
to a system is called constant force protocol. The external potential tilts the energy landscape
and lowers the barrier ∆UC. A closer look at the position qC, qT and qO shows that these positions
in general are shifting under the influence of an external force. The impact of this simple external
potential will be discussed with help of the Bell model. [32] In this model, the positions of qC

and qT are independent of the external force. With this assumption, the height of the barrier
∆UC(F ) under the influence of an external force is given by ∆UC(F ) = ∆UC − FqTC where
qXY = qX − qY. With (2.36), the force-dependent transition rate can be expressed as

kC
rupt(F ) = kC,0

rupt exp(−β(∆UC − FqTC)) (2.42)

where kC,0
rupt is the transition rate in absence of an external force. The barrier vanishes at the

critical force Fcrit, given by Fcrit = ∆UC
qTC

. For forces F > Fcrit, the barrier is no longer present in
the system and the transition proceeds as a down hill process. In such a case, the transition is
strictly dominated by diffusion.
Besides using a constant force, it is also possible to use a time-dependent force F (t). This is done
in the force ramp protocol. Here, the focus is on a time dependent increase in the force which
has its origin in a harmonic potential. In this case the force F (t) is given by

F (q, t) = −K(q − V t) (2.43)

where K is the force constant of the underlying harmonic potential and V is the velocity. It
simulates an experiment where a pulling device with force constant K is attached to a molecule
and then moved with velocity V . The time-dependent external potential is then Uext(q, t) =
1
2K(q−V t)2 and the change in barrier height is given by ∆Uext(qTC , t) = −KV qTCt+ 1

2K(q2
T−q2

C).
For small values of K, the second term 1

2K(q2
T − q2

C) can be neglected. This approximation is
called the soft spring approximation. Here, the barrier height is only dependent on the distance
to the barrier qTC = qT−qC and the loading rate µ = KV . The transition rate kC

rupt is a function
of time and is given by

kC
rupt(t) = kC,0

rupt exp(−β(∆UC − µqTCt)). (2.44)

In force ramp experiments, the force f = µt at which the rupture event takes place is much more
interesting than the time. The rupture force distribution is then given as

ΦC
rupt(f) =

kC
rupt(f)

µ
exp

(
1

βµqTC

[
kC,0

rupt − kC
rupt(f)

])
. (2.45)

The maximum of the rupture force distribution as a function of loading rate µ can be calculated
by

fmax(µ) =
1

βqTC
ln

(
βµqTC

kC,0
rupt

)
. (2.46)
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2. Theory

This so-called force spectrum is proportional to the logarithm of the loading rate. Comparisons
of experimental results and results from simulations show that eq. (2.46) is no longer valid for
larger loading rates. An illustration of this behavior can be found in Figure 2.9. Because of
computational limitations it is not possible to simulate at the same time scales as in experiments.
In fact, the velocities in simulations are up to six orders of magnitude larger than those typically
used in the experiments.

f
m
a
x
(µ
)

lnµ

experiment
diffusive regime
simulation

Figure 2.9.: Illustration of a force spectrum fmax versus lnµ. For the thermally acivated regime
at smaller loading rates (red line), fmax(µ) < fcrit, the behavior is according to Bell’s
model. For larger loading rates (blue line), fmax � fcrit, the slope of the curve is
much larger and Bell’s model not longer valid. The diffusive regime, fmax ≥ fcrit, is
marked in black.

The different behavior of fmax for small and large loading rates can be explained by the following:
For small loading rates, the energy landscape is tilted but the barrier is still present at the rupture
event. In this way the transition is thermally activated like it is assumed in eq. (2.44). This regime
is also-called thermally activated regime and is marked in Figure 2.9 by a red line (fmax < fcrit).
For the other regime, marked blue in the illustration, the undisturbed potential is overwhelmed
by the external potential and the barrier vanishes before the rupture event could take place. This
means, that fmax � fcrit. This regime is called drift regime. [33] In this work, the crossover from
the activated to the drift regime is thoroughly investigated for a model system. This crossover
regime, fmax ≥ fcrit, is also-called the diffusive regime and marked by the black line.

Mean first passage times The discussed Bell model for the calculation of the rupture rate kC
rupt

is a purely phenomenological model. With the simple Bell model it is easy to calculate transition
rates analytically but for more complicated energy landscapes, other more complex methods are
used. In this work, rates were calculated as mean first passage times (MFPT). [34]
The escape from a potential well can also be described by using the Fokker-Planck equation
(Smoluchowski equation). [34] The Fokker-Planck equation describes the time evolution of the
probability density function of the position q of a particle under the influence of drag forces and
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2.1. Molecular dynamics simulations

random forces, as in Brownian motion. It is given by

ṗ(q, t) = D

[
∂

∂q
e−βU(q,t) ∂

∂q
eβU(q,t)

]
p(q, t) (2.47)

where D = γT , γ is the damping constant and U(q, t) is a potential of any shape. From the
Fokker-Plank equation, one can derive expressions for the transition rates from C to T as mean
first passage times [34]:

τC
rupt(t) =

1

D

∫ qT(t)

qC(t)
dq eβU(q,t)

∫ q

−∞
dq′ e−βU(q′,t). (2.48)

and the rupture rate is then given by kC
rupt(t) = (τC

rupt(t))
−1. Note, that the position of qC(t) and

qT(t) are also time-dependent unlike in the Bell model. The waiting times as given in eq. (2.48)
can only be calculated as long as qC and qT are clearly defined. For a force-dependent potential
U(q, t) as shown in Figure 2.8 (b), the barrier vanishes at the critical force fcrit and the equation
for τC

rupt(t) can not longer be solved. Likewise to the here shown mean first passage time τC
rupt,

any transition from any starting position qX(t) to any end position qY(t) can be calculated, e.g.
the passage time τO

rupt for the transition C → O.
As an example for U(q, t) one can choose for instance a harmonic cusp surface [35] U(q) =

∆UC

(
q
qTC

)2
for q < qTC and −∞ for q ≥ qTC. For a sufficiently high barrier ∆UC � β−1 one

can use the Kramers theory [34] which is a simplified version of eq. (2.48). The rates under the
presence of a force F are then calculated by [36]

kC
rupt(F ) = kC,0

rupt

(
1− F

Fcrit

)
e
β∆UC

(
1−

(
1− F

Fcrit

)2
)

with Fcrit =
∆UC

qTC
. (2.49)

The obtained result is very similar to the result obtained for the phenomenological Bell model
(cf. eq. (2.42)).
In order to extract parameters like the bare rate kC,0

rupt, barrier height ∆UC and effective distance
from the barrier qTC, eq. (2.49) is fitted to rates obtained from experiments or simulations. Such
a fit is only meaningful for experiments/simulations in the regime for activated dynamics and
forces smaller than the critical force Fcrit. To inspect rupture events in the drift regime, other
methods have to be used, e.g. stochastic simulations like kinetic Monte Carlo.

Kinetic Monte Carlo Stochastic simulations like kinetic Monte Carlo (KMC) [37] are powerful
methods to investigate rupture events. Unlike in the models discussed above, KMC is not only
limited to the activated regime but also simulations within the drift regime are possible. In this
work, the Gillespie algorithm [38, 39] is used for solving the Master equation with Monte Carlo
methods.
Here, a finite-difference version of the Fokker-Planck equation (2.47) in its Master equation form
is solved. For this the continuous coordinate q is divided in a grid of points {qi} with spacing
∆q = qi+1 − qi (see Figure 2.10) resulting in

∂p(qi, t)

∂t
∆q = p(qi−1, t)ki,i−1(t) + p(qi+1, t)ki,i+1(t)− p(qi, t) [ki,i−1(t) + ki,i+1(t)] (2.50)

and the transition rates are given by [40]

ki,i±1(t) =
D

(∆q)2
exp

(
−1

2
β∆U±(q, t)

)
with

{
∆U+(t) = U(qi+1, t)− U(qi, t)

∆U−(t) = U(qi, t)− U(qi−1, t)
(2.51)
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Figure 2.10.: Scheme for KMC using the ’next reaction method’ of the Gillespie algorithm. The
continious coordinate q is diveded in a grid of points {qi} with spacing ∆q. For the
initial condition t0 the system is in the minima of well C. Random waiting times τ±
are calculated and then the system is propagated into the direction with the smaller
waiting time.

Next, the waiting time for each step has to be determined. This is done by using the ’next reaction
method’ of the Gillespie algorithm. Here, waiting times τ are drawn from the corresponding
probability density function and then the system is propagated into the direction with the shorter
waiting time. To determine the waiting time τ the cumulative waiting time distribution is used

C(t) =

∫ t

t0

Φ(t′)dt′ = p(t0)− p(t) = 1− exp

(
−
∫ t

t0

k(t′) dt′
)

(2.52)

which is the probability that at least one transition takes place in the interval [t0, t]. Eq. (2.52)

is obtained using Φ̇(t) = −ṗ(t), p(t0) = 1 and p(t) = exp
(
−
∫ t
t0
k(t′) dt′

)
. The inversion of this

function gives the time t = C−1(p) after which the transition has occurred with probability p.
The waiting time between two subsequent transition is then given by

τ = t− t0 = C−1(p)− t0. (2.53)

For the probability p a random number ξ in the interval [0, 1] is chosen. With ξ and ξ′ = 1 − ξ
having the same distribution over the same interval as ξ, eq. (2.52) can be rewritten to

ξ′ = exp

(
−
∫ t

t0

k(t′) dt′
)
. (2.54)

The latter equation can be easily solved for a time-independent rate k. The waiting time τ = t−t0
is then given by

τ = − ln ξ

k
. (2.55)

For a time dependent rate as given in eq. (2.51) the waiting times are calculated by

τ±(qi, t0) =
1

±bqµ
ln

(
1− ±bqµ

k0
±(qi)e±bqt0µ

ln ξ±

)
with bq =

β∆q

2
. (2.56)

The rate k0
±(qi) is the time-independent but q-dependent rate. Two random numbers, ξ+ and

ξ−, are generated and the shorter waiting time is used to propagate the system (see Figure 2.10).
In this way, a stochastic trajectory is created which is not limited to the activated regime.
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3. Pulling parameter dependence in reversible
force probe molecular dynamics simulations

Self-organization is a key feature of biological systems and has given rise to the formation of
complex systems like cells and even whole organisms. Even three-dimensional structures of
biomolecules on their own, such as the fold of proteins and the RNA structure, are impressive
examples. Undeniably, these biomolecules with their specific structure and their conformational
changes are essential to life. Understanding these self-organization processes in detail requires
a detailed knowledge on how the involved interaction such as hydrogen bonds, forces between
charges, van der Waals interaction, and so forth, lead to such defined structures. [41]
For a long time, binding and folding energies could only be measured by calorimetry experiments.
From such experiments one can only obtain ensemble-averaged information and not information
concerning details of the energy landscape that determine the three-dimensional structure. In
the 1980s, scanning probe techniques were developed and it was now possible to measure forces
which stabilize biomolecular structures directly on a single molecule. [41] These techniques were
initially developed to image surfaces with atomic resolution. The development of the scanning
tunneling microscope (STM) by Gerd Binnig and Heinrich Rohrer in 1982 let to the invention
of the atomic force microscope (AFM) by Calvin Quate in 1986. [42] With this new technique it
was now possible to measure forces as small as 10−18 N and investigate surfaces of insulators on
an atomic scale.
In 1994 Ernst Ludwig Florin, Vincent Moy and Hermann Gaub measured the binding forces
of single molecules for the first time. [43] As model system they choose biotin and streptavidin
because the structures of these molecules are known to atomic detail. A sketch of the setup of
the experiment can be found in Figure 3.1.

A B C

surface

chemical linker

biotin
AFM	tip

streptavidin

D

Figure 3.1.: Sketch of the streptavidin-biotin experiment. [43] A: Setup of the experiment. B:
Lowering of the AFM tip, a streptavidin-biotin complex is built. C: Retracting the
AFM tip. D: Rupture event.

Single biotin molecules were coupled covalently to a AFM tip via a chemical linker. A surface was
prepared in a similar way and functionalized with streptavidin molecules (A). By slowly lowering
the tip of the AFM a few streptavidin-biotin complexes are built (B). The tip was then slowly
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

retracted (C) and the rupture force measured (D). This procedure was repeated several hundred
times and resulted in a distribution of rupture forces. The binding force of the streptavidin-biotin
pair was determined to be 160 pN per binding pair. This experiment showed furthermore that
it is possible to measure the binding force of a single ligand-receptor complex. Despite this big
improvement in experimental technique, little is known about the binding and unbinding pathway
of this complex. In order to reveal this pathway, extended MD simulations were performed and
suggested a detailed multiple-pathway mechanism involving several unbinding steps. [44] Like
in the experiment, the complex was stretched and the force measured. Such force probe MD
(FPMD) simulations are therefore more than just an addition to experiments that probe the
force: they continue where experimental techniques fail. The combination of both techniques,
FPMD simulation and force spectroscopy, offers therefore a unique way to study fundamental
theories of statistical mechanics.
So far, an irreversible process has been discussed but especially reversible processes are important
features of biomolecules. Processes like protein transcription and enzyme catalysis would not be
possible without reversibly folding RNA and proteins. In 2001 reversible unfolding of single
molecules by mechanical force was observed for the first time in an experiment. [45] There,
the unfolding and refolding of single RNA molecules were investigated. Such experiments are
ideal to study the physics of nanoscopic systems but one problem still persists: the investigated
energy landscape is not tunable. In order to understand the physics of reversible bond breakage
a more sophisticated system is needed. The requirements for such a system are the following:
Firstly, the binding partners should have well-defined non-covalent bonds, e.g., hydrogen bonds.
Secondly, the reversibility and therefore the energy landscape should be tunable. Due to the vast
improvements in synthetic chemistry, this second requirement can be realized by connecting the
binding partners via entangled loops of variable length. [46, 47] Such mechanically interlocked
structures, so-called catenanes, are considered to be one of the greatest triumphs of synthetic
supramolecular chemistry. [47]
An innovative study of such a sophisticated model was published in 2009 by Janke et. al. [46] The
studied system is a mechanically interlocked calix[4]arene dimer. It consists of two nanocapsules
which can build a closed state by building 16 hydrogen bonds. The mechanically interlocked
structure tunes the energy landscape of the dimer, thus permitting the reversible rupture and
rejoin of the nanocapsules. The study comprises of three different parts: firstly, an experimental
part. Here, the dimer is stretched using an atomic force microscope. The general procedure is
similar to the one shown in Figure 3.1. Secondly, FPMD simulations were performed. Besides
reproducing similar rupture forces, also a possible rupture and rejoin pathway is proposed. This
again is a great example how simulations complete the understanding of such small systems.
Thirdly, stochastic models help to understand the experiment and the FPMD simulations further.
It was shown that the system offers the oppertunity to study the energy landscape of a single
reaction as a function of molecular design and external force. The studied calix[4]arene is therefore
the ideal testbed for modern theories of nonequilibrium statistical mechanics. [46]
Due to its ideal properties, calix[4]arene-catenane systems have been further studied via FPMD
simulations. Besides a study focusing on more technical simulation details like the influence of
different force fields in ref. [48], also a detailed investigation of the reversible hydrogen bond
network dynamics is presented in ref. [49]. In this chapter, a detailed investigation of such a
calix[4]arene-catenane which extends on these studies is presented. The system is introduced in
section 3.1 and the setup of the performed FPMD simulations is discussed in section 3.2. The
overall work is focusing on the dependence of FPMD simulation on the variation of the pulling
parameters K, the pulling velocity, and V , the force constant.
Section 3.3 comprises a detailed study of a well-studied calix[4]arene dimer. The structural and
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mechanical properties are presented before discussing more complex studies. A new way to under-
stand the behavior of measured forces is presented in section 3.3.2. It extends on Bell’s model [32]
and characteristic forces can be calculated. In section 3.3.3, the influence of the hydrogen bond
network is investigated and a working definition for a transition state is introduced. Furthermore,
the kinetic of the studied system is analyzed. Kinetic rates are calculated in section 3.3.4 and
expanded with studies of stochastic model in section 3.3.5. There, the crossover from activated
to diffusive dynamics is investigated.
Section 3.4 presents structural and mechanical details of different calix[4]arenes as a function of
molecular design. The degree of reversibility is investigated and definitions of a closed, interme-
diate and an open state are given.

3.1. Calix[4]arene-catenane: Discussion of the system

In this work, the well-studied Calix[4]arene-catenane [46, 48, 49] is investigated by force probe
molecular dynamics (FPMD) simulations. The typical protocol used for these simulations consists
of a linear force ramp, where a part of the molecular construct is pulled away from the remainder
with a constant velocity and the force is measured. Calix[4]arene-catenane represent mechanically
interlocked structures consisting of two calix[4]arene molecules and will from here on be referred
to as the ’calixarene’. The catenane structure is realized by four aliphatic loops of tuneable
length, l. Three different variants of this calixarene with different loop lengths l are investigated;
corresponding to their loop length, these are termed T14 (l = 14 CH2 units), T17 (l = 17 CH2

units) and T20 (l = 20 CH2 units). The chemical structure, a stick model (T14) and a cartoon
of the calixarene are shown in Figure 3.2.

Mechanical properties: Force-extension curves (T14)

Relax-mode

For large extension linear
decrease in force
I harmonic behavior

At a transition event the force
changes rapidly

Hysteresis between pull-mode
and relax-mode
I non equilibrium behavior

T14

l = 17, T17

l = 14, T14

l = 20, T20

T14

(c)(b)(a)

q

Figure 3.2.: (a) Chemical structure of the Calix[4]arene. The varying loops with different lengths
l are indicated in the structure by curves. (b) Stick model of T14. (c) Cartoon of
the calixarene. For simplicity, only two of the mechanically interlocked loop pairs
are shown. The two calix[4]arene are represented as ’cups’.

Due to the tuneable loop length, it is possible to gain full control over the energy landscape. The
calixarene can be stretched along an axis q (see Figure 3.2 (c)). Depending on the distortion
along q, the calixarene and all of its variants is stabilized by a hydrogen bond network. There
are two different types of hydrogen bonds possible and these are shown in Figure 3.3. For small
values of q, the calixarene is stabilized by hydrogen bonds between the urea groups. These bonds
of which a maximum number of 16 can be formed will be termed UU bonds. For larger values
of q, the system is stabilized by hydrogen bonds between the urea and the ether groups, the
UE-bonds. A maximum of 8 of these can be formed.
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

UU-bonds UE-bonds

Figure 3.3.: Different possible sets of hydrogen bonds within the Calix[4]arene-catenane. Left:
hydrogen bonds between different urea groups, UU-bonds. Right: hydrogen bonds
between urea and ether groups, UE-bonds.

With the help of the distance q and the type of hydrogen bonds, one can define different states
(closed “C”, intermediate “I”, and open “O”) for the different variants of the calixarene. These
are shown in Figure 3.4. The calixarene T14 with the shorter loops can build two different states:
a closed state C at around q = 1.5 nm, which is stabilized by UU-bonds, and an open state O at
around 2.0 nm. State O is stabilized by UE-bonds. Calixarenes T17 and T20 are less restricted
due to the increased loop lengths. The state at around 2.0 nm is an intermediate state, stabilized
by UE-bonds, and the open state is located around q ≈ 2.3 nm and is not stabilized by any
hydrogen bonds.

1.5 nm

T14

UE-bondsUU-bonds no H-bonds

closed C

closed C intermediate I

open O

open O

T17 (T20)

2.0 nm 2.3 nm
q

Figure 3.4.: Different possible states for the calixarene.
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3.2. Setup of FPMD simulations

3.2. Setup of FPMD simulations

All of the FPMD simulations were performed using the GROMACS 4.0.7 program package [50]
employing the OPLS-AA force field [51,52]. Further computational details can be found in App.
A.2. All simulations were performed using mesitylene as solvent, cf. [46]. The number of atoms,
molecules and the initial box sizes are collected in Table 3.1.

Table 3.1.: Initial box sizes, number of atoms and molecules for the conducted FPMD simulations
of T14, T17 and T20. The total number of atoms is calculated by the product of
number of molecules and the number of atoms.

T14 T17 T20

mol atoms total mol atoms total mol atoms total

Mesitylene 435 21 9135 542 21 11382 859 21 18039
Calixarene 1 600 600 1 672 672 1 744 744

System 436 9735 543 12054 860 18783

initial box size: (5.4× 4.4× 4.4) nm3 (6.0× 4.6× 4.6) nm3 (7.2× 5.3× 5.3) nm3

The production runs were prepared as follows: First, an energy minimization for all used
molecules was performed followed by a solvation procedure. On the solvated system, an en-
ergy minimization was performed again. The minimized solvated system was then equilibrated
at 300 K for about 500 ps using a velocity rescaling thermostat with a time constant of 0.1 ps. [53]
The system was then coupled to a barostat (Parrinello-Rahman barostat [54] with time constant
2 ps and compressibility of 8.26·10−5 bar−1). All simulation were performed in the NPT-ensemble
at a pressure of 1 bar.
In Figure 3.5, a stick model of a calixarene and a sketch of the pulling device are shown. For the
FPMD simulations the center of mass of the four methoxy-carbon atoms at the narrow rim of
one calixarene was fixed (reference group) and a time-dependent harmonic pulling potential was
applied to the center of mass of the methoxy-carbon atoms of the other calixarene (pulled group).
The distance between the pulled and the reference group is denoted the end-to-end distance, q,
and is a function of the simulation time t, q(t). The t-dependent external harmonic potential is
given by

Upull(t) =
K

2
(q0(t)− V t)2 (3.1)

where q0(t) = q(t)− q(0) is the displacement of the pulled group from its original position, V is
the pulling velocity and K is the force constant. By moving in the direction of the black arrow
in Figure 3.5, the end-to-end distance is increased and the pulled and the reference groups are
pulled apart. This mode of pulling will therefore be denoted the pull mode. The displacement
of the origin of the harmonic pulling potential is denoted as the extension, x = V t, and is thus
only dependent on the pulling speed V . The force acting on the pulled group is given by

F (t) = K(V t− q0(t)). (3.2)

By inverting the velocity V , the end-to-end distance is decreased. In Figure 3.5, this is shown
by the red arrow pointing in the opposite direction with respect to the arrow for the pull-mode.
This mode is denoted the relax mode.
The parameters K and V are pulling parameters and their product is the so-called loading rate,
µ = KV . In this work, the influence of the pulling parameters are investigated. For this purpose,
different combinations of K and V are tested.
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pull relax
x = V t

q

q(t = 0) + x

Figure 3.5.: Simple stickmodel of a calixarene and schematic representation of the force probe
simulation. The center of mass of each of the four methoxy carbons (black dots)
refers to the pulled and the reference group. The distance between these groups is
the end-to-end distance q and is a function of time t. Within the FPMD simulation,
an external potential is attached to the molecule. This potential acts on the pulled
group, while the reference is at a fixed position.

3.3. Calixarene T14

In this section, the results for the calixarene T14 system are discussed. In order to investigate the
dependence of characteristic forces on the pulling parameters, several combinations of different
values of K and V for loading rates µ ranging from 0.08505−83.05 N/s were tested. These different
combinations are collected in Table 3.2. For each combination of K and V , 100 simulation for the
pull mode and 100 simulations for the relax mode were performed. The parameters are shown in
Table 3.2.

µ = 83.05 N/s µ = 8.305 N/s µ = 0.8305 N/s µ = 0.08305 N/s

K[N/m] V [m/s] K[N/m] V [m/s] K[N/m] V [m/s] K[N/m] V [m/s]

0.2048 400
0.4153 200 0.4153 20 0.4153 2 0.4153 0.2
0.8305 100 0.8305 10 0.8305 1 0.8305 0.1
1.661 50 1.661 5 1.661 0.5 1.661 0.05
3.322 25 3.322 2.5 3.322 0.25
6.644 12.5 6.644 1.25
13.288 6.25
26.576 3.125

Table 3.2.: Combinations of K and V used in the simulations. For each set, 100 simulations (pull
and relax) were performed.
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3.3. Calixarene T14

3.3.1. Discussion of a single FPMD simulation

Now the results of a single FPMD simulations, pull and relax mode, of a calixarene T14 are
discussed. For this simulation, the parameters K = 0.8305 N/m and V = 1 m/s ( µ = KV =
0.8305 N/s) were used. For simulations with different parameters, qualitatively comparable results
are found.
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Figure 3.6.: Pull mode: All properties are plotted as a function of the extension x = V t. The
pulling parameters are K = 0.8305 N/m and V = 1 m/s, resulting in a loading rate of
µ = 0.8305 N/s. Upper panel: sample RE curve (black) and FE curve (grey). Lower
panel: Number of hydrogen bonds #HB (#UU and #UE) for the same simulation.
The grey dotted line marks the rupture event at x ≈ 2.74 nm.

In Figure 3.6, representative results for a simulation of the pull mode are shown. All results are
plotted as functions of the extension x. In the upper panel, the end-to-end distance as a function
of the extension is shown in black and the measured force, the so-called force extension (FE)
curve, is plotted in grey. The end-to-end distance curve as a function of the extension will from
here on be denoted RE (distance extension) curve. In the lower panel, the number of hydrogen
bonds (#HB) are plotted. Here, the number of UU bonds (#UU) are plotted in blue and the
number of UE bonds (#UE) in green. To determine if a HB exists, a purely geometrical criterion
is used:

rHB ≤ 0.35 nm and αHB ≤ 30 ◦
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

where the distance between donor D and acceptor A is given by rHB and the angle H-D-A is
given by αHB (see also Figure 3.7).

rHB

↵HB

H

D A

Figure 3.7.: Illustration of the distance rHB and the angle αHB which are used as a criterion
for a HB. The criterion used is a purely geometrical criterion: rHB ≤ 0.35 nm and
αHB ≤ 30 ◦.

The simulation is characterized by a rupture event at xrupt ≈ 2.74 nm which marks the transition
from the closed state C (x < xrupt) to the open state O ( x > xrupt). For x < xrupt, the force is
increasing in a linear fashion and the calixarene is stretched starting from q = 1.41 nm. At the

rupture event, the force decreases from FC
rupt ≈ 2000 pN to FO

rupt ≈ 1600 pN. These forces, F
C/O
rupt

will be denoted as the rupture forces from now on. FC
rupt is the higher value and marks the force

before the rupture event takes place and the system transitions into the open state O at force
FO

rupt. This drop in force is connected to the opening of UU bonds. Around xrupt, the number
of UU bonds decreases from around #UU ≈ 8 to #UU ≈ 0 and there is a steep increase in the
end-to-end distance from qC

rupt ≈ 1.5 to qC
rupt ≈ 2.2, which is directly connected to the decrease

in the number of UU bonds. Shortly before xrupt, UE bonds are built and the number of these
reaches a maximum of 8 shortly after the rupture event (lower panel in Figure 3.6).
As mentioned already, the system is in the closed state C for x < xrupt in which mainly UU bonds
exist. Given that the system shows harmonic behavior because of the linear increase in force, a
force F = Kmolq0 is acting on the calixarene, where Kmol is the molecular force constant. Using
eq. (3.2), F = K(V t− q0) = K(x− q0), and equating the forces, one gets

q0 =
K

K +Kmol
x. (3.3)

From the latter equation, F = Kmolq0 can be rewritten to

F = Keffx with Keff =
KKmol

K +Kmol
. (3.4)

After the rupture event, the calixarene is no longer stabilized by UU bonds but rather by UE
bonds. A maximum number of 8 UE bonds are built shortly after the transition and the number
of these decays with increasing extension. For x > xrupt, the force and the end-to-end distance
are increasing again in a linear fashion.
After reaching a force of F = 2500 pN, a distance of q = 2.25 nm and an extension of xend =
3.9 nm, the simulation was stopped and the pulling direction was inverted. The end-to-end
distance q, the measured force F and the number of hydrogen bonds are shown in Figure 3.8
as functions of the extension. Note that the extension for the relax mode is calculated by
x = xend − V t. The graph has therefore to be read from right to left.
The relax mode is characterized by a rejoin event at xrejoin ≈ 0.7 nm. For x > xrejoin, the
calixarene is in the open state and for x < xrejoin in the closed state. Starting from an extension
of 3.9 nm, the number of UE-bonds is increasing with decreasing extension until reaching a
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3.3. Calixarene T14

maximum number at around x = 1.5 nm. The number of UE-bonds is then slowly decreasing and
at x = 0.4 nm no more UE bonds exist. The end-to-end distance q and the force F are decreasing
in a linear fashion with decreasing extension. The rejoin event is marked by a sudden increase
in force from FO

rejoin ≈ 250 pN to FC
rejoin ≈ 500 pN and the distance drops from qO

rejoin ≈ 1.9 nm to

qC
rejoin ≈ 1.5 nm. These forces will be denoted as the rejoin forces, F

C/O
rejoin, and the corresponding

distances as q
C/O
rejoin. The jump in force and in end-to-end distance is linked to the abruptly

increasing number of UU bonds and the transition to the closed state. After the rupture event,
the force and the end-to-end distance are decreasing again. The force reaches 0 pN and one has
a distance of 1.41 nm at the end of the simulation.
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Figure 3.8.: Relax mode: All properties are plotted as a function of the extension x = xend − V t
and has therefore to be read form right to left. The parameters are the same as in
Figure 3.6. Upper panel: sample RE curve (red) and FE curve (light red). Lower
panel: Number of hydrogen bonds #HB (#UU and #UE). The grey dotted line
marks the transition event at x = 0.7 nm.

In order to better compare the pull and relax modes, the force and the end-to-end distance are
plotted again in Figure 3.9. Outside of the interval 0.7 < x < 2.74 nm, the curves for F and q are
almost identical. Here, the curves for the relax mode follow the same path as the curves for the
pull mode. Because the two transition events occur at different values of x, the system shows a
hysteresis and therefore typical non-equilibrium behavior.
Repeating the same simulation with the identical pulling parameters K and V would lead to
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

different results since the velocity of all the particles are randomly generated at the beginning
of each simulation. The obtained rupture and rejoin events differ for each simulation and are
therefore stochastic processes.
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Figure 3.9.: Comparison of the measured force F (upper panel) and end-to-end distance q (lower
panel) plotted as functions of the extension. The grey dotted lines mark the transition
events: the rupture event at x = 2.4 nm and the rejoin event at x = 0.7 nm.

3.3.2. Analysis of the FE curves

Due to the fact that the rupture and the rejoin events are stochastic processes, the usual analysis
of a large number of FE curves conducted with identical external parameters K and V consists

in the determination of the rupture and the rejoin force distribution p(F
C/O
rupt/rejoin). In Figure

3.10, histograms are shown for both, the pull mode (black and grey) and the relax mode (red
and light-red). The distributions of the maximum force, FC, and the minimal force, FO, are
individually determined as indicated in the figure. The mean values 〈F 〉 are calculated as the
first moment

〈F 〉 =

∫ +∞

−∞
p(F )F dF. (3.5)

For a loading rate of µ = 0.8305 N/s, this analysis was repeated for each set of parameters K
and V . Based on these results, the characteristic forces are plotted against K in Figure 3.11 (a).
Here, the dotted lines are obtained by linear regression and are guides to the eye. From this plot,
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3.3. Calixarene T14

it is clear that the maximum of the rupture forces (black squares, FC
rupt) and the minimum of the

rejoin forces (red squares, FO
rejoin) show almost no K-dependence and therefore also no velocity

dependence. This is different from the behavior of the minimum rupture force (grey triangles,
FO

rupt) and the maximum rejoin forces (light-red triangles, FC
rejoin).
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Figure 3.10.: Force distribution p(F ) obtained from analysis of 100 FE curves for µ = 0.8305 N/s

and V = 1 m/s.

In addition to the mean rupture forces 〈F 〉, the corresponding forces from the time of rupture,
frupt/rejoin = KV trupt/rejoin, were determined. The average values 〈f〉 were obtained from the
distributions p(f) and are plotted in Figure 3.11 (b) as a function of K. All determined values
of 〈f〉 are increasing linearly with the force constant K. The difference 〈∆f〉 =

∣∣〈fO〉 − 〈fC〉
∣∣ is

increasing with K. Pull and relax mode thus show similar behavior, but the relax mode is shifted
to smaller forces f .

0

500

1000

1500

2000

〈F
〉/

p
N

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

K / N/m

FC
rupt

FO
rupt

FC
rejoin

FO
rejoin

(a) Averages of the characteristic forces 〈F 〉.
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Figure 3.11.: Averages of the characteristic forces (rupture and rejoin forces) 〈F 〉 and 〈f〉 for
µ = 0.8305 N/s as a funtion of K. The dotted lines were obtained by linear regression.

The results of this analysis for all tested loading rates are collected in Figure 3.12. The general
trends for 〈FC/O〉 and 〈fC/O〉 are the same as for the already discussed loading rate µ = 0.8305 N/s.
The values of 〈FC

rupt〉 decrease with decreasing loading rate and the values for 〈FO
rejoin〉 are increas-

ing with decreasing loading rates. This means, that the height of the hysteresis loop becomes
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smaller for smaller loading rates.
For the forces 〈f〉, there is a shift to smaller values with decreasing loading rate. Also the

difference between 〈fC/O
rupt 〉 and 〈fC/O

rejoin〉 becomes smaller and therefore the length of the hysteresis
loop decreases with smaller loading rates. These observations are in accord with the diminishing
non-equilibrium character of the FE curves with decreasing loading rate.
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Figure 3.12.: 〈F 〉 (upper panel) and 〈f〉 (lower panel) as a function of K for all of the performed
simulations.

Besides determining the characteristic values 〈FC/O
rupt/rejoin〉 and 〈fC/O

rupt/rejoin〉, also the slopes of the

FE curves were investigated. In eq. (3.4), the slope of the FE is given by Keff and the molecular
force constant Kmol is given by

Kmol =
KKeff

K −Keff
. (3.6)

The FE curves for every simulation were analyzed individually. The effective force constants

for the closed and open state K
C/O
eff were obtained individually for every single curve via linear

regression. The averaged values of K
C/O
mol are plotted in Figure 3.13.
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Figure 3.13.: K
C/O
mol -values as a function of K.

One can see that the values of KC
mol are higher than the values of KO

mol. The average values
〈KX

mol〉 over all monitored K-values and V -values are

〈KC
mol〉 = 13.11 N/m and 〈KO

mol〉 = 10.18 N/m. (3.7)

30



3.3. Calixarene T14

The closed state is therefore somewhat stiffer and more stable than the open state. This presum-
ably is due to the fact that the closed state is stabilized by a maximum of 16 UU bonds and the
open state by a maximum of 8 UE bonds.
Next, the connection between the characteristic F -values and f -values is investigated. According
to eq. (3.2), the rupture force Frupt is connected to frupt via

Frupt = frupt −Kq(trupt) (3.8)

where trupt is the rupture time. For a simple model of a double-well potential with bare minima
located at q0,C for the closed state a barrier at q0,T and an open state at q0,O with q0,X = qX−q(0),
it is possible to compute the position of the reaction coordinate q0(f) in a harmonic approximation
[55,56]. This way one obtains the following expression for a FE curve:

F (f) = ξC(f −Kq0,C)Θ(frupt − f) + ξO(f −Kq0,O)Θ(f − frupt) (3.9)

where

ξX = (1 +K/KX
mol)

−1 ; X = C, O (3.10)

with the molecular stiffness KX
mol and the step function

Θ(x) =

{
1 for x ≥ 1

0 for x < 1
. (3.11)

With eq. (3.9) one can also relate the force measured to the rupture/rejoin time via FC
rupt =

F (fC
rupt) etc., i.e.:

FC
rupt = ξC(fC

rupt −Kq0,C) ; FO
rupt = ξO(fO

rupt −Kq0,O)

FC
rejoin = ξC(fC

rejoin −Kq0,C) ; FO
rejoin = ξO(fO

rejoin −Kq0,O)
(3.12)

This kind of analysis was performed for loading rates ranging from µ = 0.08305 N/s to µ = 83.05 N/s

and the results for µ = 0.8305 N/s are shown in Figure 3.14. The full symbols refer to the
determined characteristic values and the open symbols refer to the ones calculated using eq.

(3.12). For K
C/O
mol the values from eq. (3.7) were used, while for q0,C/O the following values were

used

q0,C = 0 nm and q0,O = 0.63 nm.

The value for q0,O was calculated from the interception point F (0) = −ξOKq0,O. For the under-
lying harmonic potential of the closed state is was assumed, that it has its origin at q0,C = 0 nm.
As may be seen from Figure 3.14, the calculated values (open symbols) agree well with the values
determined from the distribution. This is also true for the other loading rates. Therefore, the
Gaussian approximation for the FE-curves used here gives reasonable overall agreement with the
F -values determined directly.

The approximately linear behavior of the rupture force f
C/O
rupt and f

C/O
rejoin can also be understood

considering the above mentioned harmonic approximation. By neglecting any fluctuations, the
rupture event takes place when the force-dependent position of the closed state qC(f) reaches the
position of the transition state, qT(f) [35]. The force-dependent positions are given by

qC(f) = qC +
f

K +KC
mol

, qO(f) = qO +
f −KqOC

K +KO
mol

, qT(f) = qT +
f +KqTC

KT
mol −K

(3.13)

with qXY = qX−qY. The rupture forces can then be determined from qC(fC
rupt) = qT(fT

rupt) which

yields f ≈ (KC
mol + K)qTC assuming a sharp barrier (KT

mol � K). A least square fit to all the
data yields values for qTC in the range of 0.2 nm.

31



3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

0

500

1000

1500

2000

〈F
〉/

p
N

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

K / N/m

FC
rupt

FO
rupt

FC
rejoin

FO
rejoin

Figure 3.14.: Average of the characteristic forces (rupture and rejoin forces) as a function of K
for a loading rate of µ = 0.8305 N/s. Full symbols are determined from distributions
and open symbols are obtained using eq. (3.12).

3.3.3. Analysis of the hydrogen bond network

As already shown in Figure 3.4, the states C and O are stabilized by different types of hydrogen
bonds. In order to define the states more clearly, the dependencies of the average number of
hydrogen bonds, 〈#HB〉, and the average end-to-end distance, 〈q〉, on the extension are used to
compute 〈#HB〉 as a function of 〈q〉. The results are shown in Figure 3.15 in the pull mode for
K = 0.8305 N/m and different values of the velocity V . The behavior for other values of the force
constant K is almost identical, which indicates that there is no observable K-dependence for
〈#HB〉(〈q〉) (cf. Figure B.9). In addition, the results for the relax mode simulations are almost
identical apart from somewhat larger values for the maximum number of UE-bonds (cf. Figure
B.10).
Figure 3.15 clearly shows that the average number of UU-bonds, 〈#UU〉, is independent of the
loading rate, whereas the maximum value of 〈#UE〉 decreases with increasing loading rate (cf.
Figure 3.16). The UE-bonds start to build at a distance of 〈q〉 ≈ 1.6 nm. In [48], this region
was already shown to be the region right before the transition C → O. The average number of
UU-bonds, 〈#UU〉, decreases from almost the maximum possible value of 16 to roughly 8 at
〈q〉 ≈ 1.6 nm. At 〈#UU〉 = 8, almost exactly the inflection point of the 〈#UU〉 versus 〈q〉 is
reached.
With these observations one can define the characteristic positions in the force-dependent free-
energy landscape of the calixarene system. For the closed state, the value of q with 8 UU-bonds
is chosen as the minimum and the value of q with the maximum number of UE-bonds as the
corresponding minimum of the open state for each simulation. The mean positions of the relevant
minima of the C-state and the O-state were determined by the following definitions:

qC = 〈q〉(〈#UU〉 = 8)

qO = 〈q〉(〈#UE〉 = max)
(3.14)

Fluctuations are given by the variances of these quantities obtained from the individual simula-
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Figure 3.15.: Averaged number of hydrogen bonds, 〈#HB〉, as a function of the mean end-to-
end distance 〈q〉 for different loading rates ranging from 0.8305 N/s to 83.05 N/s.
UU-bonds are depicted in blue and UE-bonds in green. The averaged number of
hydrogen bonds 〈#HB〉 for the positions qT and qO are shown in Figure 3.16.

tions. These are straightforward, natural definitions of the open and closed state. The position
of the transitions state, qT, is more difficult to define. Because the closed state C is stabilized by
UU-bonds and in the open state only UE-bonds exists, a working definition that qT is located at
that value of the end-to-end distance at which the number of UU-bonds and UE-bonds coincide,

qT = 〈q〉(〈#UU〉 = 〈#UE〉), (3.15)

is a reasonable choice. In Figure 3.16, the averaged number of H-bonds 〈#HB〉 is shown at qT and
qO (cf. Figure 3.15). With an increasing loading rate, 〈#UE〉 at qO and 〈#HB〉 at qT decrease.
This trend is purely influenced by the shape of the 〈#UE〉 (〈q〉) curve, which depends on the
loading rate µ and is K-independent.
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Figure 3.16.: 〈#HB〉 at qO and qC as a function of the loading rate for K = 0.8305 N/m. The
corresponding averaged curves 〈#HB〉 (〈q〉) are shown in Figure 3.15.
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

Using the definitions given in eqs. (3.14,3.15), the results in Figure 3.17 are obtained. Here, the
collected values for qX (X = C,T,O) are shown. With the obtained values one can determine the
distances from the transition state, qTC and qOT. From Figure 3.17, it is clear that these values
do not vary strongly and the mean values are given by 〈qTC〉 ≈ 0.13 nm and 〈qOT〉 ≈ 0.41 nm for
the pull mode and 〈qTC〉 ≈ 0.15 nm and 〈qOT〉 ≈ 0.38 nm for the relax mode.
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Figure 3.17.: Values qX as determined from eqs. (3.14, 3.15) as a function of the loading rate for
K = 0.8305 N/s. The error bars are given by the variances. Upper panel: pull mode;
lower panel: relax mode.

Using these values, the fragility defined in [57] will be analyzed. Here, the fragility-index is
defined as

γ(F ) =
qTC(F )− qOT(F )

qTC(F ) + qOT(F )
. (3.16)

The location of the barrier along the reaction coordinate is related to the fragility-index of the
molecule, which determines to what degree the transition from C to O is sensitive to the force.
Here, γ < 0 corresponds to a brittle structure at the calculated force and the position of the
barrier is near the C state. This means that the molecule is not easy to deform under the
influence of force. For γ > 0, the structure is flexible. The barrier is located near the open state
and the molecule is easily deformed under the influence of force.
In order to calculate the fragility-index, the loading rate-dependent values qX(µ) displayed in
Figure 3.17 were converted into force-dependent ones, qX(F ). This was done via the mean-
force values, see Figure 3.11. The results are shown in Figure 3.18. The values obtained for
the fragility-index at a given loading rate, but different combinations of K and V , are almost
identical to the ones shown.
The calculated fragility averages around 〈γ〉 ≈ −0.5. This values implies, that the molecule is not
easy to deform under the influence of force. This was also observed in the conducted simulations.
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Figure 3.18.: Fragility-index γ as defined in eq. (3.16) as a function of the force.

The here studied calixarene therefore behaves drastically different from the RNA studied in [57],
where a strong force dependence of the fragility was found. Of course, it is not possible to rule
out a transition to more fragile structure (γ ≤ 1) in the small force regime. To obtain such data,
simulations at smaller loading rates have to be performed. For these the computational cost is
very high due to the longer simulation time needed.
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

3.3.4. Kinetic rates

The kinetic rates for the rupture event kC
rupt, transition C → T, and the kinetic rates for the

rejoin event kO
rejoin, transition O → T, can be calculated from the distributions of the rupture

forces (see Figure 3.10). The model-independent procedure of [58] was used for this. The rates
are calculated by the straightforward-to-implement word equation

kX(F ) =
loading rate µ

trajectories in state X at F
× counts in bin F

bin width
. (3.17)

As discussed in section 3.3.2, the rupture forces FC
rupt and the rejoin forces FO

rejoin are almost
independent of the stiffness K and therefore these distributions are used to determine the kinetic
rates. The results are shown in Figure 3.19.
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Figure 3.19.: Rates kC
rupt as a function of the rupture forces FC

rupt and rates kO
rejoin as a function

of FO
rejoin. Different loading rates are indicated by different colors and different K

as different symbol types (cf. left panel).

The simulations allow to extract kC
rupt and kO

rejoin values ranging over almost five orders of magni-
tude. It is evident that the rates are practically independent of K in the range of K considered.
By varying K for a given loading rate it is possible to cover a larger range of forces. Consequently
a larger range of rates can be calculated. A variation of the K allows to broaden the dynamical
range that can be monitored.
To study the K-dependence of the kinetic rates further, the values for kC

rupt(f
C
rupt) were calculated.

The results for two values of K are presented in Figure 3.20 (full symbols). Here, a strong
dependence on the stiffness K contrary to the kC

rupt(F
C
rupt) can be observed. This K-dependence

can be completely traced back to the already discussed K-dependence of the force in section

3.3.2. With eq. (3.12), one can calculate F
C/O
rupt/rejoin from f

C/O
rupt/rejoin and can therefore switch

between kC(FC
rupt) and kC(fC

rupt) or kO(FO
rejoin) and kO(fO

rejoin). The calculated kC
rupt(f

C
rupt) from

kC
rupt(F

C
rupt) are shown as open symbols in Figure 3.20. The found values for the evaluated and

calculated rates, closed and open symbols, agree very well. There is no extra dependence on the
force constant K except the one scaling the forces. This agrees with the observations made in
earlier studies. [55, 56,59]
The force-dependent kinetic rates can be fitted to one of various expressions of kC

rupt(F ). [35,36,

59, 60] From these model it is possible to extract parameters like the bare rate kC,0
rupt, the bare
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barrier ∆UC and the effective distance from the barrier qTC. In order to gain these information
the model of an quadratic-cusp shaped energy described in [36] is used. The rate kC

rupt is given
by eq. (2.49) and can be recast in the form

ln kC
rupt(F ) = A(F ) + β∆UC

(
1−

(
1− F

Fcrit

))
with A(F ) = ln

(
kC,0

rupt

(
1− F

Fcrit

))
(3.18)

Using the latter equation to fit the data shown in Figure 3.19 (a), the values in Table 3.3 are
obtained. Here the F -dependence of A(F ) was neglected.

Table 3.3.: Data obtained by fitting different ranges of FC
rupt of the data shown in Figure 3.19 (a)

with eq. (3.18). The distance from the barrier is calculated by qTC = 2∆UC
Fcrit

.

FC
rupt / pN A ∆UC /pN nm Fcrit / pN qTC / nm

≤ 2000 -44.45 9.74 2439.38 0.0080
≤ 2200 -42.97 9.45 2495.68 0.0076
≤ 2500 -35.15 7.94 2890.51 0.0055
≤ 2800 -34.30 7.76 2939.56 0.0053

Here several ranges of FC
rupt are fitted to check if the obtained values for the critical force are

dependent on the fitting range. One finds a strong dependency: the larger the maximum fitted
value FC

rupt the larger the critical force Fcrit. As already mentioned in section 2.1.6, these fits are

only meaningful in the regime of activated dynamics and for forces FC
rupt < Fcrit. For simulations

performed in the activated regime, the obtained critical force Fcrit should be independent of the
fitting range. This result is therefore an indication that the simulations are performed in the
diffusive or drift regime (cf. Figure 2.9). Nonetheless it is possible to gain information about
the molecular energy landscape without using any of these fits and can further validate that the
simulations are performed in the regime of diffusive or drift dynamincs.
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

Assuming that the molecular energy landscape is described by a harmonic potential with a cusp
barrier located at qT, the critical force can be estimated by Fcrit ≈ KmolqTC. Using the results
from section 3.3.2, KC

mol ≈ 10 N/m and qTC ≈ 0.2 nm, one finds Fcrit ≈ 2000 pN.
Another value for qTC can be determined from the potential of mean force observed in [48]
(cf. Figure 3.21). Assuming that the shoulder turns into a barrier in the double well region
of the combined potential, one gets with qTC ≈ 0.4 nm a larger value for the critical force of
Fcrit ≈ 5000 pN.
With these values, the critical force Fcrit ranges from 2000 pN to 5000 pN and one can take this
as an indication for a crossover from activated to diffusive dynamics within in the range of forces
monitored by the performed simulations.
Beside a critical force Fcrit also a critical loading rate µcrit exists which can be defined by [61]

µcrit = Fcrit
D

q2
TC

(3.19)

where D is the diffusion coefficient which is typically around D ≈ 108 nm2/s [62]. With the above
given approximate critical forces Fcrit one obtains a critical loading µcrit rate which ranges from
0.1 N/s to 10 N/s. The loading rate µ of the performed simulations are ranging from 0.08305 N/s to
83.05 N/s. This is an further indication for a crossover from activated to diffusive dynamics.
Another, different, approach that defines the effective distance from the barrier as the force-
derivative of the barrier ∆UC(F ) appears to be less model dependent and only assumes activated
dynamics. [57] In this approach, the rate is given by

kC
rupt(F ) = kC,0

rupte
−β∆UC(F ) (3.20)

and the distance from the effective barrier is given by qTC = −d∆UC(F )
dF . The data for kC

rupt

and kO
rejoin (Figure 3.19) were smoothed and a numerical derivative of (T ln(kX)), X = C, O,

was performed. The resulting effective barriers qTC(F ) and qOT(F ), were fitted using a linear
approximation as in eq. (3.13). This yields qTC ≈ 0.1 nm and qOT ≈ 0.05 nm. Particularly the
value of qOT appears unphysically small.
From these results one can conjecture that the simulations are most probably in the dynamical
regime of a crossover from activated dynamics to diffusive dynamics. This is well expected for
the rather large pulling velocities employed by FPMD simulations and it is well known that this
crossover takes place for fast pulling. [56, 62] Therefore analyzing the kinetic rates apparently is
not giving meaningful results for qTC and qOT and are not in agreement with the results obtained
from the potential of mean force in [48].

3.3.5. Stochastic models

In order to investigate the crossover from activated to diffusive dynamics in detail, it is helpful to
consider the kinetics in a model energy landscape. In this section, the reversible bond breaking
observed for the calixarene T14 is considered to be a process of diffusive barrier crossing in a
model potential. The results are compared with the results obtained from FPMD simulations.
The used potential was obtained by fitting the potential of mean force (PMF), UPMF(q), from [48]
to a fourth degree polynomial

U0(q) = aq4 + bq3 + cq2 + dq + e. (3.21)

The result of the fit is shown in Figure 3.21 (a) and the parameters are given in App. B.3. An
external force is applied through the external potential Uext(q, f) = 1

2K(q− q0
C)2− f(q− q0

C) and
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3.3. Calixarene T14

the total potential is given by

U(q, f) = U0(q) + Uext(q, f) (3.22)

where q0
C = qC(0). The influence of the force f = µt on the potential U(q, f) for a force constant

of K = 0.8305 N/m is shown in Figure 3.21 (b). The external potential tilts the energy landscape
and causes the force-dependent extrema, qC(f), qT(f) and qO(f) (cf. eq. (B.1)) to appear.
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Figure 3.21.: (a) PMF UPMF(q) and fitted function U0(q). (b) Influence of an external force
(K = 0.8305 N/m) on U(q, f).

The extrema qX(f) for force constant K = 0.8305 N/m are shown in Figure 3.22 (a). The activated
regime for a transition from state C to state O only ranges from f rejoin

crit = 1098 pN to f rupt
crit =

1501 pN. Here, the three states C, T and O exist and barrier crossing is possible. The lower
bound defines the critical force f rejoin

crit in the relax mode and the upper bound defines the critical
force f rupt

crit in the pull mode.
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

Stochastic trajectories q(f) using KMC as described in section 2.1.6 were generated. From these
trajectories the measured force can be calculated by F (f) = 1

2K(f/K− (q(f)− q(0))2. A typical
FE curve for a KMC simulation performed with a loading rate of µ = 0.8305 N/s and force
constant of K = 0.8305 N/m is shown in Figure 3.22 (b). Other used parameters are the step-size
∆q = 1.0 · 10−3 nm and a diffusion coefficient of D = 1.0 · 108 nm2/s. This curve shows the same
trends in the pull and the relax mode as a FE curve obtained from a FPMD simulation (cf. Figure

3.6 and 3.8). Note, that f
C/O
rupt ≤ f rupt

crit and f
C/O
rejoin ≥ f rejoin

crit . This means that the simulation is
performed in the diffusive regime.
Analogously to analysis performed for the FPMD simulations in section 3.3.2, the mean char-

acteristic forces 〈fC/O
rupt/rejoin〉 are determined for sets of different K and V at different loading

rates. For each set of parameters 1000 simulations were performed. The tested loading rates are
µ = 0.8305 N/s and µ = 0.008305 N/s. The loading rate is therefore an order of magnitude smaller
than the lowest loading rate performed with FPMD simulations (cf. Table 3.2). The obtained

mean values of f
C/O
rupt/rejoin as a function of K are shown in Figure 3.23.
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Figure 3.23.: Mean values of the characteristic forces f
C/O
rupt/rejoin as a function of K for the two

tested loading rates µ = 0.83505 N/s and µ = 0.0083505 N/s.

The trends of the mean characteristic forces are the same as for the FPMD simulations but
are shifted to smaller f -values (cf. Figure 3.12). The critical forces f

rupt/rejoin
crit for the pull

and the relax mode are shown as lines. For the faster loading rate µ = 0.8305 N/s, the found
values for the rupture forces are 〈fC

rupt〉 ≈ f rupt
crit and 〈fO

rupt〉 > f rupt
crit for all shown K-values.

For the rejoin event the same observations can be made, respectively. Here, the mean rejoin
forces 〈fO

rejoin〉 ≈ f rejoin
crit for all shown K-values. This behavior is indicating that the rupture and

the rejoin event are taking place in the regime of diffusive dynamics for all shown K-values as

defined in [33]: 〈fC/O
rupt/rejoin〉 ≈ f

rupt/rejoin
crit . The mean characteristic forces 〈fC/O

rupt/rejoin〉 for the

slower loading rate µ = 0.008305 N/s, cf. Figure 3.23 (b), are all well in the regime of activated

dynamics [33]: 〈fC/O
rejoin〉 > f rejoin

crit and 〈fC/O
rupt 〉 < f rupt

crit .
Next, the obtained distributions p(f) are investigated and compared to their counterparts ob-

tained by FPMD simulations. The rupture force distribution for the characteristic forces f
C/O
rupt

is shown in Figure 3.24 for µ = 0.008305 N/s and K = 0.8305 N/s. The form the distributions is
the same as observed for the FPMD simulations (cf. Figure 3.10).

In addition to the distributions of f
C/O
rupt obtained from the KMC simulations, the distribution

can be calculated using the two state model discussed in section 2.1.6. The transition rates are
calculated as inverse MFPTs (eq. (2.48)) using the model potential U(q, f). The results for the
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3.3. Calixarene T14

calculated p(f) is shown as dotted lines in Figure 3.24 and these agree with the distributions
obtained by the KMC simulations. This agreement is expected because the simulations are
performed within the activated regime (see Figure 3.22 (a)). In this regime the used integration
limits for calculating the MFPT are well defined.
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Figure 3.24.: Force distributions p(f) of the charaterisitc forces f
C/O
rupt in the pull mode. Used

parameters: K = 0.8305 N/m, µ = 0.008305 N/s, diffusion coefficient D = 1.0 ·
108 nm2/s, step size ∆q = 1.0 · 10−3 nm.

For the faster loading rate µ = 0.8305 N/s, the rupture force distributions p(f) show the same
form as the for the slower loading rate and therefore have the same characteristics as the ones
obtained by FPMD simulations. This is also in agreement with the observations made in [61]:
whether a simulation is performed in the activated, diffusive or drift regime, the characteristics
of the rupture force distributions do not change.
Unlike in the simulations at the slower loading rate, the force distributions cannot be calculated
using mean first passage times. This is due to the fact, that qC(f) and qT(f) disappear for forces
f > fcrit. In Figure 3.25 the obtained values for p(f) are shown by dotted lines.

0.0

0.005

0.01

0.015

0.02

0.025

p
(f
)

1200 1300 1400 1500 1600 1700 1800

f = µt / pN

1200 1300 1400 1500 1600 1700 1800

µ = 0.8305N/s
K = 0.8305N/m

pCrupt(f) KMC

pCrupt(f) MFPT

〈fCrupt〉 = 1492 pN

(a) Force distribution p(f) for the characteristic
forces fC

rupt.

0.0

0.002

0.004

0.006

0.008

0.01

0.012

p
(f
)

1200 1300 1400 1500 1600 1700 1800

f = µt / pN

1200 1300 1400 1500 1600 1700 1800

µ = 0.8305N/s
K = 0.8305N/m

pOrupt(f) KMC

pOrupt(f) MFPT

〈fOrupt〉 = 1591 pN

(b) Force distribution p(f) for the characteristic
forces fO

rupt.

Figure 3.25.: Comparision of the results obtained from the KMC simulations (1000 runs) and
the MFPT calculations for the loading rate µ = 0.8305 N/s. Used parameters: K =
0.8305 N/m, diffusion coefficient D = 1.0 · 108 nm2/s, step size ∆q = 1.0 · 10−3 nm.

The KMC simulations and the results obtained via MFPT deliver comparable results to the
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

FPMD simulations. With these methods it is possible to monitor the mean rupture forces over
several orders of magnitude of loading rates for a well defined energy landscape U(q, f). The cal-
culated force spectrum is shown in Figure 3.26. Here the values at lower loading rates for forces

〈fC/O
rupt/rejoin〉 < f rupt

crit were obtained via MFPT (open symbols). Rupture forces 〈fC/O
rupt/rejoin〉 ≥

f rupt
crit were calculated using KMC simulations. Within the diffusive regime it is possible to

calculate 〈fO
rupt〉 (black squares), for forces � f rupt

crit (drift regime) one can calculate only the

〈fO
rupt〉-values (grey triangles).
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Figure 3.26.: Mean values of the characteristic forces f
C/O
rupt as a function of the loading rate µ

(force spectrum). The open symbols are obtained via MFPT calculations and the
full symbols are obtained via KMC simulations. K = 0.8305 N/m.

In this section it was shown with the help of a well-defined energy landscape based on the PMF
of the calixarene T14, that it is not possible to differentiate the regime a simulation has been
performed in based on the distribution of the forces p(F ) and p(f). Therefore, it is not possible
to gain further information concerning the dynamic regime just from the force distributions as
they are obtained in FPMD simulations.

3.3.6. Conclusion

Here, the dependence of FPMD simulations on the pulling parameters were studied for the
reversibly unbinding model system calixarene T14. The pulling velocity V and the force constant
K were varied for loading rates µ = KV ranging from 0.08305 N/s to 83.05 N/s.

In section 3.3.2 the dependence of the characteristic forces, F
C/O
rupt/rejoin, on the pulling parameters

were investigated. It was shown that the rupture FC
rupt and the rejoin force FO

rupt depend only

very weakly on variations of K for given loading rate whereas the forces FO
rupt and FC

rejoin are
strongly dependent on K in a linear fashion. This behavior can be easily understood in terms
of a simple harmonic model for the molecular energy landscape. Such an harmonic model can
easily reproduce the found results of the here performed FPMD simulations.
One of the main structural characteristic of the investigated model system is the hydrogen bond
network which is analyzed in section 3.3.3. The open and closed state are stabilized by two
different networks of hydrogen bonds. These networks and their dependence on the pulling
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3.3. Calixarene T14

parameters were investigated at different loading rates. For this kind of analysis, the average
number of hydrogen bonds 〈#HB〉 were plotted as a function of the average end-to-end distance
〈q〉. Here, one could see that the 〈#HB〉-values show only a minimal dependence of the force
constant K for a given loading rate µ. For the range of investigated loading rates one can see
no dependence of the average number of UU-bonds 〈#UU〉 whereas the average number of UE-
bonds 〈#UE〉 does change. Interestingly, the results do not depend on the used mode, pull or
relax. Furthermore, values for the distances to the barrier, qTC and qOT, were obtained. Here,
the barrier is located nearer to the closed state for the range of the here investigated forces and
the system shows therefore a rather brittle structure.
In section 3.3.4 the kinetic rates for the transition from the closed to the open state were ex-
tracted from the distributions of rupture forces. For the obtained rates one can find a clear
cut deviation from the simple exp(βqTCF )-like behavior predicted by the phenomenological Bell
model. Furthermore, neither a fit of the rates to existing expressions derived from the mean
first passage times for model energy landscapes nor a model-free determination of the distance
to the barrier gives reliable results for the involved quantities qTC and qOT. This might be a
hint towards a failure of the underlying assumption of thermally activated transitions which was
further investigated in section 3.3.5 via stochastic models. Here, the crossover from activated
to diffusive dynamics were studied considering the kinetics in a model energy landscape. The
reversible bond breaking observed in the FPMD simulations are considered to be a process of
diffusive barrier crossing in a model potential. As a potential a polynomial fit of the potential of
mean force was used and an external force is applied through an external potential. Stochastic
trajectories using KMC simulations were generated and the transition rates were calculated as
inverse MFPTs. Here, one could observe that it is not possible to differentiate the regime a
simulation has been performed in based on the distribution of the forces p(F ) and p(f).
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

3.4. Calixarene T17 and T20

In this section, the results of the FPMD simulations of the calixarenes T17 and T20 are discussed.
They differ from the previously investigated calixarene T14 in section 3.3 by a longer loop-length
of 17 CH2 units (T17) or 20 CH2 units (T20).
Due to the longer loop-length, three different states exist: a closed state C, an intermediate state
I and an open state O (see Figure Figure 3.4). The setup for the simulations is described in
section 3.2 and parameters such as the initial box size, number of atoms and molecules for the
conducted FPMD simulations are shown in Table 3.1. Like in the previous section, the pulling
parameters, pulling velocity V and stiffness K, were varied and the different parameters sets are
shown in Table 3.4.

µ = 8.305 N/s µ = 0.8305 N/s µ = 0.08305 N/s

K[N/m] V [m/s] K[N/m] V [m/s] K[N/m] V [m/s]

0.8305 10 0.8305 1 0.8305 0.1
1.661 5 1.661 0.5
3.322 2.5 3.322 0.25

Table 3.4.: Combinations ofK and V used in the simulations. For the loading rate µ = 0.08305 N/s

only simulations for the calixarene T17 were performed.

3.4.1. Disussion of a single FPMD simulation: T17 and T20

Here, the results of a single FPMD simulation for the calixarene T17 and T20 are discussed.
Representative results for the end-to-end distance q, measured force F and the number of hydro-
gen bonds #HB are shown in Figure 3.27 and are directly compared with the curves presented
in Figure 3.6 for the calixarene T14.
As already shown in Figure 3.4, the calixarenes T17 and T20 are able to form an intermediate state
which is stabilized by UE-bonds. In the RE curves for both system one can identify a shoulder
when going from the closed state to the open state. This little extra step marks the transition
into state I and is at the same extension as the maximum number of UE-bonds (#UEmax). For
the here shown RE curves it can be found at qI

rupt ≈ 2.2 nm for the calixarene T17 and T20.

These qI
rupt-values are therefore almost at the same position as the qO

rupt-value of the calixarene
T14. This is not surprising because the open state O for the calixarene T14 is only stabilized by
UE-bonds and in section 3.3.3 it was shown that qO = 〈q〉(〈#UE〉 = max) is equal to qO

rupt for

T14. The same observation can be made for the relax mode: the qO
rejoin-values for the calixarene

T14 are equal to the qI
rejoin-values.

Next, a look at the qO
rupt-values is taken. This value is increasing with an increment of 0.2 nm

with each additional set of 3CH2-units: starting at 2.2 nm for T14, 2.4 nm for T17 to 2.6 nm for
T20. For the calixarenes T17 and T20, the structure is no longer stabilized by UE-bonds at qO

rupt

which is due to the longer loop-length. In the next section, the FE curves and the characteristic
forces will be discussed in depth.
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Figure 3.27.: Pull mode: All properties are plotted as a function of the extension x = V t. The
pulling parameters are K = 0.8305 N/m and V = 1 m/s, resulting in a loading rate of
µ = 0.8305 N/s. Upper panel: sample RE curve (black) and FE curve (grey). The
vertical dashed grey line marks the intermediate state I and coincides with #UEmax.
Lower panel: number of hydrogen bonds #HB.

3.4.2. Analysis of the FE curves

In this section, the characteristic forces F
C/I/O,T17/T20
rupt/rejoin for the calixarenes T17 and T20 are dis-

cussed and compared with the characteristic forces obtained for the calixarene T14, F
C/O,T14
rupt/rejoin

(cf. Figure 3.12). The analysis of the forces F
C/O,T17/T20
rupt/rejoin were performed as described in section

3.3.2 and for the F
I,T17/T20
rupt/rejoin-values the F -values at #UEmax were taken. The obtained charac-

teristic forces for all performed simulations are plotted against K in Figure 3.28 and the results
are illustrated via schematic drawings of FE-curves in Figure 3.29.
The pull mode is analyzed first and the following observations are made: For the maximum values
for all three calixarenes one finds

FC,T14
rupt ≈ FC,T17/T20

rupt .

This is due to the fact that all three systems are stabilized by the same hydrogen bond network.
Up to the rupture force FC

rupt the calixarene systems are stabilized mainly by UU-bonds (see
Figure 3.29, blue region). After this first rupture event which marks the transition C,T14 →
O,T14 and C,T17/T20→ I,T17/T20, all three calixarenes are stabilized by UE-bonds (see Figure

3.29, green region). The number of UE-bond reaches a maximum at FO,T14
rupt and F

I,T17/T20
rupt and

one finds

FO,T14
rupt ≈ F I,T17/T20

rupt .

For the calixarene T14 the measured force F is increasing in a linear fashion and the system is
stabilized by UE-bonds. The calixarenes with a longer loop length show a different behavior: Due

45



3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

to the longer loop length the calixarenes can be further pulled apart and the the force F
O,T17/T20
rupt

marks transition into the open state O,T17/T20. The open state for these T17 and T20 system
is only stabilized by the loops (see Figure 3.29, grey region) and one finds

FO,T17
rupt > FO,T20

rupt .

These forces are therefore only influenced by the loop-length. One can conclude, that all charac-
teristic forces for these calixarene systems are approximately the same as long as the hydrogen
bond network is involved.
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for the calixarene T14.

Next, the characteristic forces of the different calixarene systems obtained in the relax mode
are compared. Here, one can observe the same behavior as in the pull mode: the values of the
characteristic forces are comparable as long as the hydrogen bond network is present:

FC,T14
rejoin ≈ F

C,T17/T20
rejoin and FO,T14

rejoin ≈ F
I,T17/T20
rejoin .

These observations are also illustrated in Figure 3.29 in the lower panel (B). For the forces
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F
O,T17/T20
rejoin one finds

FO,T17
rejoin > FO,T20

rejoin

which is due to the longer loop-length of the calixarene T20.
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Figure 3.29.: Schematic drawing of the FE-curves for the calixarene T14 (left panel) and the
calixarenes T17/T20 (right panel). The FE-curves and the characteristic forces in
the pull mode are compared in the upper panel (A) and in the relax mode in the
lower panel (B).

3.4.3. Influence of the pull distance on the degree of reversibility

Another important aspect of the relax simulation is the degree of reversibility which is given by

reversibility(µ) =
simulations reaching closed state C

performed simulations
× 100%. (3.23)

The obtained values are shown in Table 3.5. The calixarene T14 is at these loading rates
(0.08305 N/s to 8.305 N/s) completely reversible. For all tested systems, the degree of reversibility
is independent of the chosen pulling parameters K and V and only dependent on the loading
rate µ. For every loading rate the reversibility is uniquely determined by the loop-length and is
decreasing with increasing loop-length. This means that the degree of reversibility is tunable by
the chosen loop-length.

Table 3.5.: Degree of reversibility for the relax simulations of the calixarenes T17 and T20.

µ T17 T20

0.08305 100% —
0.8305 ∼ 80% ∼ 70%
8.305 ∼ 30% ∼ 20%
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3. Pulling parameter dependence in reversible force probe molecular dynamics simulations

The degree of reversibility will now be further investigated for the calixarene T20 at a loading
rate of µ = 8.305 N/s, K = 0.8305 N/m and V = 10 m/s. The system is pulled apart up to a specific
extension which corresponds to an average end-to-end distance 〈q〉. The pulling direction is the
inverted and the system is relaxed. The percentage of simulations reaching the intermediate state
I and the closed state C are calculated and shown in Figure 3.30.
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Figure 3.30.: Reversibility as a function of the average end-to-end distance 〈q〉 for calixarene T20.
Used pulling parameters µ = 8.305 N/s, K = 0.8305 N/m and V = 10 m/s.

For the chosen 〈q〉-values, the T17 system is no longer stabilized by any hydrogen bonds (cf.
Figure 3.31). The reversibility for both states is clearly dependent on the chosen distance 〈q〉
and decreasing with increasing starting values 〈q〉.
For 〈q〉 = 2.6 nm the degree of reversibility into the closed state C,T20 is ∼ 40% and therefore
the same as for the calixarene T17 (see Table 3.5). Here the same 〈q〉-value as a starting point

for both simulations has been used which leads to the conclusion that for 〈q〉 < q
O,T17/T20
rupt the

loop-length is not of importance for the reversibility.

3.4.4. Analysis of the hydrogen bond network

The importance of the hydrogen bond network has already been mentioned numerous times and is
therefore characterized next. The obtained results for the calixarenes T17 and T20 are compared
with the results of the calixarene T14 described in section 3.3.3. The calixarenes T17 and T20
are interpreted as three state model (closed, intermediate and open) due to their longer loop
length. In order to define the states more clearly, the hydrogen bond network is analyzed using
the same approach as in section 3.3.3.
In Figure 3.31 the average number of hydrogen bonds 〈#HB〉 is shown as a function of the average
end-to-end distance 〈q〉 for different loading rates. Like for the calixarene T14, the UU-bonds,
〈#UU〉, are insensitive to a change in loading rate but the UE-bonds, 〈#UE〉 show a rather
strong dependence on the loading rate in the here shown range. The UE-bonds increase with
decreasing loading rate. For a constant loading rate 〈#UE〉(〈q〉) is K-independent. The T20
system shows the same behavior.
Next, the results for the different calixarenes systems for one loading rate (µ = 0.8305 N/s) are
compared and shown in Figure 3.32. The 〈#UU〉-curves are identical whereas the form of the
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Figure 3.31.: Calixarene T17: Average number of hydrogen bonds 〈#HB〉 as a function of the
mean end-to-end distance 〈q〉 for different loading rates ranging from 0.08305 N/s to
8.305 N/s.

〈#UE〉-curves does differ: with an increasing loop length, the maximum does shift to smaller 〈q〉-
values. A simple explanation for this behavior could be that for the T14 calixarenes the shorter
loops are stabilizing the UE-bonds additionaly because the system is restricted in its movement.
The other calixarenes T17 and T20 can therefore move more freely. Furthermore the systems
could be additionally destabilized due to steric effects. The longer loops need more space and
and are therefore more likely to interfere with each other.
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Figure 3.32.: Comparison of the average number of hydrogen bonds 〈#HB〉 as a function of the
mean end-to-end distance 〈q〉 for the different calixarenes systems.

Using the definitions

qC = 〈q〉(〈#UU〉 = 8) qT = 〈q〉(〈#UU〉 = 〈#UE〉) qI = 〈q〉(〈#UE〉 = max)) (3.24)
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the results in Figure 3.33 are obtained. The different 〈qX〉-values are shown as a function of the
loading rate for a force constant of K = 0.8305 N/m. The dashed grey lines are the average values
obtained for the calixarene T14 by eqs. (3.14, 3.15).
The 〈qC〉-values are in agreement for all three calixarenes which is due to the identical behavior
of the 〈#UU〉(〈q〉)-function. For the position of the transition state 〈qT〉 (transition C → I) one
finds similar values. As discussed for the calixarene T14 this value depends on the shapes of the
UE-curve which is as shown in Figure 3.32 for the three investigated calixarene systems.

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

hq
i/

n
m

5 10�1
2 5 1 2 5 10

µ / N/s

T17

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

hq
i/

n
m

5 10�1
2 5 1 2 5 10

µ / N/s

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

hq
i/

n
m

5 1 2 5 10 2

µ / N/s

T20

qI

qT

qC

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

hq
i/

n
m

5 1 2 5 10 2

µ / N/s

hqC,T14i

hqT,T14i

hqO,T14i

hqO,T14i

hqT,T14i
hqC,T14i
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(right). Upper panel: Pull mode. Lower panel: Relax mode. The dashed lines are
the average values obtained for the calixarene T14 (cf. section 3.3.3) by eqs. (3.14,
3.15).

Next the obtained values 〈qI〉 are investigated. Note that the definition of the open state O,T14
corresponds to the definition of the intermediate state I,T17/T20. These values are as already
discussed shifted to smaller values of 〈q〉 due to steric effects. The 〈qI〉-values are insensitive to
a variation of µ in the range of the tested parameters. Even though the 〈qI〉-values do differ, the
corresponding 〈F I

rupt〉-values are almost identical (see section 3.4.2).
Lastly, a definition for the open state is discussed. A definition based on the hydrogen bond
network is not sensible because the open state for the T17 and T20 systems is not stabilized by
hydrogen bonds (see Figure 3.31) but by the loops. A reasonable choice for the open state would

therefore be the end-to-end distance q
O,T17/T20
rupt as defined in section 3.4.1. Using this approach

gives the values 〈qO,T17
rupt 〉 ≈ 2.38 nm and 〈qO,T20

rupt 〉 ≈ 2.57 nm. These values are also in agreement
with the observations made in section 3.4.1.
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3.4.5. Conclusion

In this section the dependence of FPMD simulations on the pulling parameters were studied for
the reversibly unbinding systems calixarenes T17 and T20 and the results are compared with the
results for the calixarene T14 (cf. section 3.3). The here investigated systems differ by a longer
loop-length with 17 CH2 units (T17) or 20 CH2 (T20) units and can therefore be pulled apart
further than the calixarene T14 with just 14 CH2 units.

In section 3.4.2 the characteristic forces F
C/I/O,T17/T20
rupt/rejoin are investigated. Here, one can find that

the characteristic rupture forces F
C/I,T17/T20
rupt are almost identical to the values F

C/O,T14
rupt when

comparing the same set of pulling parameters K and V . The same behavior can also be found

for characteristic rejoin forces F
C/I,T17/T20
rejoin . The characteristic forces show therefore the same

behavior as long as the hydrogen bond network is involved. The influence of the loop-length is
negligible.
Another interesting aspect is the degree of reversibility which is discussed in section 3.4.3. The
reversibility is defined as the percentage of simulations which find the closed state C. One can
find a clear dependence on the loop length: the longer the loop the further the calixarene can
be pulled apart and the less likely it is that the closed state C is reached. Furthermore it was
observed that the degree of reversibility is only dependent on the loading rate µ but not on the
chosen pulling parameters K and V .
Lastly the hydrogen bond network was investigated. Like for the calixarene T14 the average
number of hydrogen bonds 〈#HB〉 was analyzed as a function of the average end-to-end distance
〈q〉. Here, one could see that only the behavior of the 〈#UE〉(〈q〉)-curve is dependent on the
loop-length. With increasing loop-length the position of 〈#UEmax〉 is shifting towards smaller
〈q〉-values. From this one can conclude that a longer loop is destabilizing the intermediate state
I due to steric effects.
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4. Molecular dynamics simulations of
phospholipid bilayers

Biomembranes are important soft condensed matter structures which surround cells and their
inner organelles. These approximately three nanometer thick hydrophobic films typically delimit
the environment that serves as the margin between life and death for individual cells. [63, 64]
They maintain relevant concentration gradients and act as selective filter for ions and molecules.
Beside this passive role they also have an active role as a host of a number of metabolic and
biosynthetic activities. [64]
The view on the structure of biomembranes has evolved over the years. The first model dates
back to 1925. Gorter and Grendel [65] showed with first experiments that biological membranes
are thin biomolecular structures made of a double layer of lipids. In 1935 this model was refined
by Danielli and Davson [66]. Their improved model took the presence of proteins in membranes
into account. The model on which the modern view of biological membranes is based is the
“fluid mosaic” model of Singer and Nicholson [67]. It was developed in 1972 and describes the
biomembranes as a fluid bilayer which is composed of many types of lipids. In the bilayer, there
are proteins embedded or attached and molecules are free to move on the bilayer plane. Because of
the great variety of lipids and protein molecules the bilayer surface looks like a mosaic, hence the
name. The main components of a cell membrane are phospholipids, cholesterol and glycolipids.
The most abundant phospholipids are phosphatidylcholines. A schematic drawing illustrating
the complexity of a biomembrane is shown in Figure 4.1. [64]
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Fig. 1. A schematic drawing illustrating the complexity of a biological membrane.
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Fig. 2. Schematic drawing of a typical phospholipid (left), and the chemical structure of a specific phospholipid molecule, dimyristoylphosphatidyl-
choline (DMPC) (right). ‘Gly’ denotes the glycerol group.

(and membrane shape and shape transformation), and membrane biological functioning [6,8]—which is the ultimate
goal of biomembrane science.

Because of the complexity of biomembrane structures, it is often necessary to investigate simplified systems: recon-
stituted lipid bilayers composed of one or two lipid species, and with embedded natural proteins, sterols, or artificial
peptides, provide a model system for biological membranes. Understanding the physics of such simplified membranes
can yield further insight into their biological function, can help to understand the cause of diseases, and can finally
lead to the development of new therapeutics. Therefore, reconstituted membranes are extensively investigated by a
number of experimental methods, based on spectroscopy, microscopy, fluorescence, scattering, and calorimetry, as
well as by theoretical methods. In particular, the use of theories, modeling and computer simulations [9], has become
an important and necessary tool for understanding the structure–function relation: not only the results from theories
and model studies may provide a framework of interpretation of experimental data, but can also serve as a source of
inspiration for future experiments.

Cell membranes are made of three major types of lipids, the phospholipids, cholesterol and glycolipids, where the
phospholipids are one of the most abundant types. The backbone of a phospholipid is the glycerol group to which a
hydrophilic headgroup and two hydrocarbon chains are connected—as schematically illustrated in Fig. 2. The head
group consists of a phosphate group and an alcohol group. The hydrocarbon chains may vary in length and typically
contain between 12 and 20 carbon atoms; also, they can be unsaturated or saturated, depending on the presence or not
of one or more double bonds between consecutive carbon atoms. One of the most common types of phospholipids
found in biomembranes are the phosphatidylcholines (PC). The chemical structure shown in Fig. 2 refers to a specific
PC called dimyristoylphosphatidylcholine (DMPC); DMPC is one of the lipid types which are usually considered for
making reconstituted membranes.

The characteristic of these biomembrane lipids is that they are amphiphilic molecules made of a hydrophilic (water
loving, polar) head group and one or two hydrophobic (water repellent, non-polar) hydrocarbon chains. Because of
this amphiphilic nature, when lipids are dissolved in water at sufficiently high concentrations, they spontaneously
self-assemble into structures where the lipid ‘tails’ shield themselves from the polar environment of the water, while
the polar head groups prefer the contact with water. Depending on the shape of the lipids, different structures may form

glycoprotein
protein with
carbohydrate attached

glycolipid
lipid with carbohydrate
attached

phospholipid bilayer

cytoskeleton filaments

Figure 4.1.: Schematic drawing illustrating the complexity of a biomembrane taken from [64].

Because of the complexity of biomembrane structures, it is necessary to investigate simplified
systems, so-called reconstituted lipid bilayers. These systems are only composed of one or two
lipid species and embedded proteins or sterols. These reconstituted lipid bilayers provide a
model system for biological membranes. The understanding of the physics of such simplified
membranes yields further insight into their biological function. Furthermore they are used to
investigate the cause of diseases which leads to the development of new therapeutics. They have
been studied extensively by experimental methods such as spectroscopy, microscopy, fluorescence,
scattering and calorimetry. In addition, a lot of theoretical models exist which are important
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4. Molecular dynamics simulations of phospholipid bilayers

for the understanding of structure-function relations. They provide not only a framework of
experimental data, but can also serve as a source of inspiration for future experiment. [64]
On the theoretical level, the properties of lipid bilayers can be studied on different time and
length scales. In the easiest representation the bilayer is considered as an elastic sheet which
is sufficient to describe quantities such as bending rigidity, spontaneous curvature and surface
tension. [68] To gain further insight into the effect of molecular structure on the whole system,
a particle based model is needed. Some models take into account the details of individual atoms
but most of the time an intermediate approach is chosen. In this approach groups of atoms are
lumped together into pseudo-particles to arrive at a coarse-grained (CG) representation of the
system. This approach is also the method of choice in this work.
The chemical structure of phospholipids is illustrated in Figure 4.2. The backbone is the glycerol
group to which a hydrophilic headgroup and two hydrophobic hydrocarbon chains are connected.
The hydrocarbon chains may vary in length and degree of saturation and belong to a fatty acid.
The phospholipids are named according to their attached fatty acids. Here, the unsaturated
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and the saturated 1,2-dipalmitoyl-sn-glycero-
3-phosphocholine (DPPC) are shown. The attached fatty acids are therefore oleic acid (DOPC)
and palmitic acid (DPPC). These lipids are studied extensively in reconstituted lipid bilayers
and are typically chosen as examples for unsaturated and saturated phospholipids.
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Figure 4.2.: Chemical structures of the unsaturated phosholipid DOPC, the saturated phosholipid
DPPC and the sterol cholesterol. The stick models illustrate the coarse-grained
representation.

Due to their amphiphilic nature lipids spontaneously self-assemble when dissolved in water in
sufficiently high concentration. Depending on their shape they can form different structures such
as liposomes, micelles and the lipid bilayer (Figure 4.3). The bilayer has received the most at-
tention in research because it is very much a simplified model of a real membrane and is also
the focus of this work. A schematic representation of a one-component lipid bilayer is shown
in Figure 4.3 A. Here, the phospholipid is saturated and the hydrocarbon chains are therefore
straight. This allows a close packing of the lipid tails. In a two-component lipid bilayer, shown in
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B, the impact of unsaturated lipids on the packing of the lipid tails is shown. The packing of the
lipid tails is disrupted by the unsaturated lipids. This causes an increase in free space and the
bilayer gets more permeable. The degree of saturation has also an effect on the elasticity of the
bilayer. In general, polyunsaturated chain bilayers are thinner and more flexible than saturated
or monounsaturated chain bilayers. The membrane properties are important for the function and
survival of cells. Most phospholipids in mammalian cell membranes have saturated or monoun-
saturated hydrocarbon chains and have therefore a strong, nearly impermeable interface. Only
membranes in certain animal tissue like the brain are rich in polyunsaturated phospholipids and
therefore “softer” and more permeable. [69, 70]
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Figure 4.3.: Left: Schematic drawings of the spherical structures liposome and micelle and of
lipid bilayers. Right: A: Lipid bilayer consisting of only saturated phospholipids:
unordered/liquid phase Lα (high temperatures); ordered/gel phase Lβ (low temper-
atures). B: Two-component lipid bilayer consisting of saturated and unsaturated
lipids. Mixed phase at high temperatures, phase separation at low temperatures. C:
Illustration of the placement of cholesterol within a lipid bilayer which builds the
liquid-ordered phase LO. [63, 64]

The plasma membrane of mammalian cells contains up to 50 % cholesterol (cf. Figure 4.2 and
Figure 4.3 C). Cholesterol is important to maintain both structural integrity and fluidity in animal
cells and allows animal cells to dispense with a cell wall. Therefore animal cells can change their
shape and size and they can move as well due to not being restricted by cell walls. Cholesterol
is more rigid than lipids and has a relatively smooth hydrophobic section. The placement of
cholesterol within a lipid bilayer is shown in Figure 4.3 C. Due its rigid structure it acts like a
sheet and increases the order of the phospholipid tails up to 40 % and the liquid-ordered phase
LO is formed. It has therefore a direct impact on the physical properties of lipid bilayers and
with that also on the cell biology. [71] Addition of cholesterol to the lipid bilayer decreases the
permeability to water [72,73] and decreases the mobility of lipid tails [74]. Presence of cholesterol
increases therefore the mechanical rigidity of lipid bilayers in the fluid state. [75]
A one-component lipid bilayer can exist at a given temperature in two different phases: a liquid
phase Lα or a gel (solid) phase Lβ (Figure 4.3 A). At higher temperatures, the bilayer is in
the unordered phase Lα. The lipids can wander across the surface of the membrane. At lower
temperatures, the bilayer is in the ordered phase Lβ and its lipids are locked in place. Due to the
stretched lipid tails, the bilayer thickness is increased and the distance between the headgroups
is reduced compared with the fluid phase Lα. The overall packing of the lipids in the bilayer
is increased. Two-component bilayers (see Figure 4.3 B) undergo a phase separation at lower
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temperatures and build gel phases consisting of only one component. The temperature for the
liquid-gel transition is dependent on the overall composition of the bilayer.
For one-component bilayers a characteristic transition temperature exists which is influenced by
two major aspects: First of all, the length of hydrocarbon chain. Lipids with shorter tails have
a lower transition temperature and are also more fluid than lipids with longer chains at a given
temperature. Secondly, the degree of saturation. Unsaturated lipid tails prevent a close packing
and with increasing degree of unsaturation the transition temperature is lower. [76, 77]
A similar observation can be made in everyday life: butter contains about 70 % saturated fats,
thereof approximately 30 % palmitic acid, and is solid at room temperature. [78] On the contrary,
olive oil is liquid at room temperature and contains about 80 % oleic acid. [79] The same observa-
tion can be made for one-component bilayers consisting of DOPC or DPPC at room temperature.
The DOPC bilayer is in the liquid phase Lα (“olive oil”) and has a transition temperature of
256 K. The DPPC bilayer is in the gel phase Lβ (“butter”) and has a transition temperature of
314 K. [80] In order to investigate these reconstituted lipid bilayers and others in the fluid phase,
temperatures higher than room temperature have to be chosen. Most reconstituted lipid bilayers
are therefore analyzed at 323 K.
In cell membranes the large composition heterogeneity (up to 100 different lipids and even more
proteins) assure that the membrane stays in its functional fluid state even at lower tempera-
tures. [81] Nonetheless, ordered domains are believed to be of biological importance, and much
experimental effort is devoted to the study of gel domain formation in model lipid systems. [82]
An idea is that these gel domains have a high affinity for some proteins and a low affinity for oth-
ers, thereby contributing to sorting of proteins to their distinct membrane location. [63, 83] The
gel domains might also come into play during signaling cascades, if the membrane phase behavior
contributes to activation and inactivation of membrane bound enzymatic activities. [83, 84]
In this work one-component and two-component phospholipid bilayers of DPPC and DOPC based
on the popular MARTINI model [9] are studied using molecular dynamics (MD) simulations. This
widely used approach uses beads to describe lipids and is therefore a CG approach. These beads
have different Lennard-Jones type interaction parameters that can smoothly describe hydropho-
bic and hydrophilic interactions. Even though it is a very simple model it is fairly accurate
and can reproduce the properties of self-assembled lipid bilayers. [22, 85, 86] Furthermore, it is
capable of describing liquid-to-gel transitions of a one-component DPPC bilayer [82] but fails
to describe the transition for the monounsaturated DOPC. A correct, semi-quantitative descrip-
tion of the phase-temperature behavior is not only crucial to describe the ordered Lβ-phase but
also for the description of two-component systems and is therefore an important step towards
the simulation of biological relevant multicomponent systems. Therefore, the MARTINI DOPC
model is modified in section 4.1 and a new, improved DOPC model is presented which is able
to describe the liquid-to-gel transition. This new model is acquired by varying angle param-
eters for the kink which represents the C-C double bond in the lipid chain. Besides the new
DOPC model, an extensive study of the angle parameter dependency is presented. Furthermore,
a two-component model system consisting of DOPC and DPPC is investigated with respect to
the liquid-gel transformation and phase separation.
The so far discussed MARTINI model and other CG models offer a significant speed-up compared
to atomistic models. Still, such simulations are computationally very expensive when studying
processes on a mesoscopic time (> µs) and length scales (> 100 nm) and alternative computa-
tional models are constantly proposed. Simulation approaches aimed at accessing these long time
and length scales are relevant in order to successfully model biological processes. [8,25] So-called
field models offer a whole new approach to simulate soft matter problems at lower computational
cost. In the frame of the self-consitent field (SCF) theory, the systems are not represented by
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particles but by density fields. This results in a decoupling of the mutual interactions which are
now replaced by interaction between the segments and a field. The field is based on the spatially
inhomogeneous particle density distribution which is determined self-consistently. The molecules
are interacting through this field which reduces the amount of data exchange. With the SCF the-
ory numerous systems such as block copolymers [87–90], proteins [91], polymer composites [92]
and colloidal particles [93,94] have been simulated successfully and this method has been shown
to be a useful and powerful tool.
In more recent work by Milano, Kawakatsu and De Nicola [10, 21, 25], an SCF approach for
phospholipids in the frame of hybrid particle-field MD technique is presented which will from
now on be called particle-field (PF) approach. Within this approach the CG martini model is
considered as a basis for further approximation. Like with the MARTINI approach, it is possible
to simulate the self-assembly of a phospholipid bilayer. The PF approach has been especially
parametrized to give a correct representation of the liquid phase Lα at high temperatures (T =
323 K).
In this work, the temperature behavior of a one-component DPPC system using the PF approach
is investigated and the results are presented in section 4.2. Here the dimension of the box are
modified in order to get a correct representation of the liquid phase Lα at different temperatures.
It is shown, that this approach is capable of describing the liquid phase Lα and its temperature
behavior in a physical sensible manner. Furthermore, by modifying the here used PF approach it
is also possible to describe the gel phase Lβ. The PF approach is therefore capable of describing
the important phases Lα and Lβ. Another, important phase in mammalian cells is the liquid-
ordered phase LO which is build by the inclusion of cholesterol as pointed out before. This phase
has been modeled using different approaches, CG [81] and atomistic [95,96]. In this work the first
cholesterol model for the PF approach is presented in section 4.3. With this cholesterol model
one can reproduce all important aspects of the liquid-ordered phase LO.
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4.1. Phase transitions in coarse-grained saturated and unsaturated
phospholipid models

In this section one-component and two-component systems of the phopholipids DPPC and DOPC
are studied with respect to their liquid-gel transition using MD simulations. As a starting point,
the MARTINI model [9], which is primarily parametrized to represent lipids in the liquid phase
Lα, is used. The mapping and the bonded parameters of these lipids are illustrated in Figure 4.4.
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Figure 4.4.: Sketch of the mapping and the bonded parameters of the coarse-grained lipids DPPC
and DOPC according to the MARTINI model. [9]

In section 4.1.1 the liquid-gel transition of a one-component system consisting of DPPC (Figure
4.4 (a)) is studied. This section serves as an introduction to the setup of the simulations. Fur-
thermore, the important physical quantities for describing the phase transition are introduced.
This liquid-gel transition using the MARTINI model of DPPC was already extensively studied
in [82].
In section 4.1.2, the liquid-gel transition for the MARTINI model of DOPC (Figure 4.4 (b))
is investigated. The unsaturated C-C double bond produces a kink in the hydrocarbon chain.
This is shown in the standard MARTINI model by an equilibrium angle of θCDC = 120 ◦ and
by a force constant of KCDC = 45 kJ/mol. The here used angle potentials are cosine based:
Uangle(θCDC) = 1

2KCDC(cos(∠CDC) − cos(θCDC))2 with the angles ∠CDC and θCDC given in ◦

and the force constant KCDC given in kJ/mol. The angle parameters, θCDC and KCDC, are varied
in this work in order to match the transition temperature in a semi-quantitative agreement with
the experimental data (T exp

trans = 256 K [80]). Furthermore, the influence of the angle parameters
on the transition temperature is carefully examined.
Lastly, a two-component system consisting of DPPC and DOPC is investigated in section 4.1.3.
Again, the angle parameters θCDC and KCDC are varied. Besides investigating only the liquid-gel
transition, also the ability to describe a phase separation (cf. Figure 4.3 B) is examined.

58



4.1. Phase transitions in coarse-grained saturated and unsaturated phospholipid models

4.1.1. Gel phase formation in DPPC

The MARTINI model of DPPC is known to undergo a liquid-gel transition from the fluid or liquid-
crystalline phase Lα to the gel phase Lβ when cooled. [82] To induce a phase transition a well
equilibrated system is quenched to a lower temperature. The initial temperature is T = 323 K
like for most simulations of reconstituted bilayers. Therefore the starting temperature is well
above the transition temperature reported for the same system in [82] of Ttrans = 295± 5 K.
Two DPPC bilayer systems were simulated: a small patch, consisting of 128 lipids, and a large
patch, consisting of 1152 lipids. This is done to rule out system size-effects [97,98] and to validate
the use of the smaller system. The usage of the smaller system is highly beneficial because it allows
to probe many different temperatures at a reduced computational cost. Further computational
details are documented in App. C.1. In Figure 4.5, a snapshot of the big bilayer patch is shown.
The blue square illustrates the size of the small bilayer patch.

y

x

N	bead

P	bead

G	bead

C	bead

Figure 4.5.: Snapshot of the bilayer surface of a one-component system consisting of DPPC. The
total number of lipids is 1152. The blue square marks the size of the small system
which only consists of 128 lipids. The legend on the right shows the different beads.

As a solvent the MARTINI water model was used in two different modifications. The standard
MARTINI water model “W” represents four H2O-molecules as a sphere and has the tendency
to freeze too easily. Therefore, 20 % of the standard MARTINI water model W was replaced
with the slightly bigger MARTINI water model “WF” as “anti-freeze” to prevent freezing of
the water. Although the WF particles are bigger in size, they still only represent four water
molecules. The level of hydration for both simulated systems, small and big, was 62.5 H2O per
lipid which corresponds to 15.63 CG water spheres per lipid.
In Figure 4.3 A a schematic drawing of the liquid phase Lα and the gel phase Lβ is shown. Here,
it is pointed out that the phase Lβ differs from the phase Lα by the following points:

1. the lipid tails are almost fully extended with a few gauche defects remaining

2. the area per lipid is lower

3. the lateral mobility is strongly reduced. [82]

These points are now further illustrated and physically measurable quantities are introduced.
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4. Molecular dynamics simulations of phospholipid bilayers

1. Extension of the lipid tails In Figure 4.6 two snapshots of the small DPPC bilayer patch
(128 lipids) at T = 323 K (fluid phase, Lα, A) and T = 240 K (gel phase, Lβ, B) are shown. It is
clearly visible that the lipid tails are almost fully extended in the gel phase. From the snapshots,
it is also visible that the Lβ phase is “stretched” in the z-direction. This results in an increase
in the bilayer thickness and a decrease in the width of the bilayer patch with respect to the Lα
phase. These observations can be characterized by the order parameter 〈P2〉, the measured angle
〈∠CCC〉 and by the bilayer thickness ∆dP−P.

T = 323K T = 240K

z

A B

C

thickness

width

Figure 4.6.: Snapshot of the DPPC bilayer patch at T = 323 K (A, Lα phase) and T = 240 K
(B, Lβ phase). C: Single DPPC. The arrow indicates the long molecular axis.

The order parameter 〈P2〉 is given by

〈P2〉 =
1

2

〈
3 cos2 ϕ− 1

〉
(4.1)

where ϕ is the angle between the long molecular axis (see Figure 4.6 C) and the preferred
direction, which would here be the z direction. The order parameter is an indicator for the order
within the bilayer: 〈P2〉 = 1 means perfect alignment with the bilayer normal, 〈P2〉 = −0.5
anti-alignment, and 〈P2〉 = 0 corresponds to a random orientation.
In Figure 4.7 the order parameter 〈P2〉 is shown as a function of the temperature for both
investigated system sizes. Note, that the shown temperatures T are the temperatures the system
has been quenched to. The obtained values for the big system (red circles) and the small system
(black squares) agree for the few selected values of T . This agreement shows, that the smaller,
computationally not so demanding bilayer patch is describing the phases Lα and Lβ correctly.
The order parameter 〈P2〉 exhibits a big step of ≈ 0.17 at around 290 K. This step marks the
liquid-to-gel transition.
Another way to measure the “stretch” of the lipid tails is to monitor the angle between different
bonds in the lipid tail during a simulation. From the obtained angle distribution at a given
temperature the maximum is determined. This value will from now on be called measured angle
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Figure 4.7.: Order parameter 〈P2〉 vs temperature for DPPC. Here, like for all quantities which
are shown as a function of the temperature, the temperature T is the temperature
the system has been quenched to.

〈∠CCC〉 and is shown as a function of the temperature in Figure 4.8. Note, that the corresponding
equilibrium angle θCCC is set to 180 ◦ as shown in Figure 4.4 (a). A big step can be observed at
the transition temperature of ∆ 〈∠CCC〉 ≈ 25 ◦ and the angle in the liquid phase Lα is around
145 ◦ and in the gel phase Lβ the value fluctuates around 160 ◦. This means, that even in the
ordered gel phase the lipid tails are not completely stretched. From the observed values one can
assume that the preferred CCC-angle in the gel phase is Lβ is 160 ◦.

142

144

146

148

150

152

154

156

158

160

162

h6
C

C
C
i/

�

240 250 260 270 280 290 300 310 320 330

T / K

240 250 260 270 280 290 300 310 320 330

h 6 CCCi, DPPC, 128 lipids Ttrans

Figure 4.8.: 〈∠CCC〉 as a function of the temperature.

The overall thickness of the bilayer patch is determined via the number density of the P beads
(orange beads) along the z-axis, see Figure 4.9 (a). The thickness of the bilayer ∆dP−P is the
distance of the peaks and shown as a function of the temperature in Figure 4.9 (b). The values
for the small bilayer patch and the big bilayer patch agree for the chosen values of T . A large
discontinuity of ≈ 0.5 nm can be observed at the transition temperature Ttrans = 290 K.

2. Area per lipid APL In Figure 4.10 two snapshots of the DPPC bilayer surface at T = 323 K
(fluid phase) and T = 240 K (gel phase) are shown. Here the lateral box lengths in the gel phase
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Figure 4.9.: (a) Number density of the P beads along the z-axis for T = 323 K (dotted line) and
T = 240 K (solid line). (b) Thickness ∆dP−P as a function of temperature.

at T = 240 K are 86 % of the lengths in the fluid phase at T = 323 K. From the knowledge of the
box lengths the area per lipid APL can be calculated as

APL =
dxdy
Nlipid/2

(4.2)

where dx and dy are the lateral box lengths and Nlipid is the number of lipids.

T = 323K T = 240K

x
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G	bead

C	bead

Figure 4.10.: Snapshot of the bilayer surface at T = 323 K (fluid phase) and T = 240 K (gel
phase).

In Figure 4.11 the area per lipid as a function of the temperature is shown. There is a sudden
decrease in the APL at the transition temperature T = 290 K consistently with a phase transition
taking place. This sudden decrease of ≈ 0.8 nm2 is due to a closer packing of the lipid chains in
the gel phase Lβ (cf. Figure 4.6). The values obtained for the small and the big system agree
well with each other.
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Figure 4.11.: APL vs temperature for DPPC.

3. Lateral mobility Because of their amphiphilic nature, only lateral diffusion is possible in
lipid bilayers. The lateral diffusion coefficient Dxy gives the degree of lateral mobility. Due to
the more rigid structure of the DPPC bilayer at T < 290 K, one can also observe a jump in the
lateral diffusion Dxy. The lateral diffusion as a function of the inverse temperature is shown
in Figure 4.12. The lipid lateral diffusion rates in the gel phase are on the order of 10−9 cm2/s

which is a drop of two orders of magnitude with respect to the fluid phase. Such a drop in the
diffusion coefficient marks a phase transition. The here found values for the lateral diffusion
rate in the Lα-phase are in semi-quantitative agreement with the experimental values for DPPC:
0.6− 2 · 10−7 cm2/s between T = 315 K and 335 K. [99]
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Figure 4.12.: Lateral diffusion Dxy of DPPC as a function of 1/T .

Furthermore, the Arrhenius activation energy for the lipid lateral diffusion can be calculated for
both phases by using eq. (2.36). In this way one obtains for the Lα-phase an activation energy
of 17.9 kJ/mol and for the Lβ-phase an activation energy of 29.8 kJ/mol. Experimental data [100]
reports doubling in the activation energy when going from the liquid Lα-phase (Eexp

A ≈ 21 kJ/mol)
to the ordered Lβ-phase (Eexp

A ≈ 42 kJ/mol) and the here found data for DPPC one-component
system is therefore also in semi-quantitative agreement with this observation.
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4.1.2. Gel phase formation in different DOPC models

In this section, the DOPC MARTINI model [9] is studied with respect to its liquid-to-gel tran-
sition. Here, the focus is on the kink in the hydrocarbon chain which represents the C-C double
bond. The corresponding angular parameters are varied and their influence on the transition
temperature is investigated. The bonded parameters are illustrated in Figure 4.4 (b).
The equilibrium angle between the bonds CD and DC in the MARTINI model, θCDC, is set to
120 ◦ and the force constant for the angular deformation to KCDC = 45 kJ/mol. These are also the
standard parameters used within the MARTINI force field to describe a single cis-unsaturated
bond. Similar models, which are based on the MARTINI model, suggest a value of θCDC = 145 ◦

for the CDC angle in DOPC. [71] Both models were parametrized to describe the liquid phase
Lα in a semi-quantitative manner.
The procedure for the setup of the system is analogous the one described in section 4.1.1. Fur-
ther computational details can be found in App. C.1. To induce the phase transition, a well
equilibrated system at T = 323 K was quenched to a lower temperature. Again, two different
system sizes were investigated: a small bilayer patch with 128 lipids and a big bilayer patch with
1152 lipids. The found values for the order parameter 〈P2〉, the area per lipid APL and bilayer
thickness ∆dP−P obtained from the big system do agree, like for the one-component system of
DPPC, with the values from the smaller system. Therefore only the results for the smaller system
are shown in the following.
First, only the equilibrium angle is varied in order to investigate the influence on the transition
temperature Ttrans for the liquid-to-gel transition. Furthermore, the structure of the bilayer in
the gel phase is investigated. For these studies the force constant for the angular deformation
is set to KCDC = 45 kJ/mol which is the standard value. Secondly, the influence of the force
constant KCDC on the transition temperature Ttrans is investigated. Here again the focus is on
the description of the gel phase and its structure.

Variation of the equilibrium angle CDC

In Figure 4.13 snapshots of the different DOPC models at T = 240 K are shown. The tested values
for the equilibrium angles are θCDC = 120 ◦ (A, standard MARTINI model), θCDC = 132.5 ◦ (B),
θCDC = 138 ◦ (C) and θCDC = 145 ◦ (D). The choice of the tested angles is motivated by
geometrical reasons: θCDC = 132.5 ◦ is right in between the equilibrium angles already presented
in the literature: 120 ◦ in [9] and 145 ◦ in [71]. Furthermore, θ = 138 ◦ is approximately in the
middle of θCDC = 132.5 ◦ and θCDC = 145 ◦.
For the tested angles one can clearly see that the models with θCDC ≥ 132.5 ◦ (B, C, D) are in
the ordered gel phase Lβ whereas the the standard MARTINI model (A) is still in the unordered
liquid phase Lα. The DOPC model with θ = 132.5 ◦ has a kink in the hydrocarbon chains which
describes the unsaturated C-C bond. For higher values of θCDC, this kinks seems to completely
disappear in the gel phase (cf. C and D). Furthermore, the orientation and form of the lipids in
C and D are rather similar. To validate these observation, a closer look at the physical quantities
as described in section 4.1.1 is taken next.
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Figure 4.13.: Snapshots of the DOPC bilayer patches at T = 240 K for different DOPC models.
A: Standard MARTINI model for DOPC [9], θCDC = 120 ◦, B: θCDC = 132.5 ◦, the
dotted black lines illustrate the observed kink, C: θCDC = 138 ◦, D: θCDC = 145 ◦

as used in [71]. The force constant for all shown models is KCDC = 45 kJ/mol.

In Figure 4.14 the order parameter 〈P2〉 (a) and the area per lipid APL (b) are shown as a
function of the temperature T the system has been quenched to. The transition temperatures
are determined from the position of the discontinuities of the order parameter 〈P2〉 and the APL.
With an increasing angle θCDC the transition temperature increases and the values are collected
in Table 4.3. The APL in the Lα phase is, for a given temperature, higher for a smaller value of
θCDC. This is due to steric effects because small values of θCDC prevent a close packing of the
lipid chains.
Furthermore, one cannot observe a phase transition for the standard MARTINI DOPC model
(θCDC = 120 ◦) from the data shown in Figure 4.14. Even at a temperature of 200 K and simula-
tions times of 50µs an ordered gel phase could not be observed. This shows the clear limitations
of the standard MARTINI DOPC model of describing the gel phase in a semi-quantitative man-
ner. Therefore, the here performed variation of the θCDC-angle is a reasonable step towards a
CG model of an unsaturated lipid which shows physically correct behavior with respect to the
liquid-to-gel transition.
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and Kθ = 45 kJ/mol.
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Table 4.1.: Equilibrium angle θCDC and transition temperature Ttrans.

θCDC / ◦ Ttrans / K

132.5 250
138.0 270
145.0 280

To further investigate the influence of the set equilibrium angle θCDC on the structure and tran-
sition temperature, the measured CDC angle 〈∠CDC〉 is analyzed. In Figure 4.15 (a) 〈∠CDC〉
is shown as a function of T . Furthermore the bilayer thickness ∆dP−P is shown in Figure 4.15
(b). Here, one can see that the value of 〈∠CDC〉 is approximately proportional to the thickness
∆dP−P.
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Figure 4.15.: Mean CDC angle and bilayer thickness as a function of the temperature for different
θCDC and KCDC = 45 kJ/mol .

Jumps in the measured angle 〈∠CDC〉 can also be observed when quenching the system to lower
temperatures. In the gel phase the 〈∠CDC〉 angle is significantly higher than in the liquid
phase. The DOPC with the highest angle θCDC = 145 ◦ even reaches 〈∠CDC〉 = 160 ◦ in the gel
phase. For high temperatures 〈∠CDC〉 approaches the set equilibrium angle θCDC. The bilayer
thickness ∆dP−P shows according behavior to the observed trends in 〈P2〉, APL and 〈∠CDC〉.
Here, the jump in thickness is much more pronounced for the higher angles θCDC = 138 ◦ and
θCDC = 145 ◦. The measured mean angle in the gel phase ranges here from ≈ 150 ◦ to ≈ 160 ◦

which allows closer packing of the lipid chains. This results in a significant increase in ∆dP−P of
≈ 1 nm when undergoing the phase transition.
In conclusion, the DOPC model with an angle of θCDC = 132.5 ◦ describes the liquid-to-gel tran-
sition in a semi-quantitative way. It shows with 250 K the best agreement with the experimental
transition temperature of T exp

trans = 256 K [80] of all the tested angles. Furthermore, the transi-
tion temperature difference ∆Ttrans between this DOPC model and the MARTINI DPPC model
(TDPPC

trans = 295 ± 5 K) is ≈ 45 K which is consistent with the experimental difference of ≈ 60 K.
This agreement is important for the analysis of a two-component system consisting of DOPC and
DPPC in section 4.1.3.
Another important aspect is the kink in the lipid tail which should be still pronounced in the gel
phase. With a measured angle in the gel phase of 〈∠CDC〉 ≈ 140 ◦ for the DOPC model with
θCDC = 132.5 ◦, this structural property is present for this modified model.
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With this slight modification of the CDC angle, the MARTINI DOPC model which was originally
parametrized to give a semi-quantitative representation of the liquid phase Lα is now also suitable
to describe the liquid-to-gel transition and the gel phase Lβ. Note, that the original parameters for
the lipid tails in the MARTINI model were parametrized with the help of AA simulations at 323 K.
Here, systems of aliphatic fragments were studied as template chains such as cis-9-octadecene.
This fragment represents the lipid tail of DOPC. [101] Even though a good correspondence
between the AA and CG representation was found, it is not surprising that the DOPC MARTINI
model is not suitable to describe the complicated process of the liquid-to-gel transition and the
gel phase correctly.

Variation of the force constants for the angular deformation of the CDC angle

The influence of the force constant KCDC on the transition temperature is studied next. For these
investigations the CDC angle was kept at θCDC = 132.5 ◦ because it describes the liquid-to-gel
transition and the gel phase in a semi-quantitative way as shown above. In Figure 4.16 the order
parameter 〈P2〉 and the measured angle 〈∠CDC〉 are shown for the DOPC models with force
constants ranging from 40 kJ/mol to 90 kJ/mol.
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Figure 4.16.: Order parameter 〈P2〉 and measured angle 〈∠CDC〉 as a function of the temperature.

From the positions of the jumps in Figure 4.16 (a) one can determine the transition temperatures
Ttrans. These are shown in Table 4.2. From the values of Ttrans and trend of the curves of the order
paramter 〈P2〉 as a function of the temperature T one can conclude that Ttrans is independent
of the choice of KCDC in the given range. Only the 〈P2〉 curve for the “hardest” force constant
KCDC = 90 kJ/mol and the one for the standard force constant KCDC = 45 kJ/mol differ from the
other curves shown here.
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Table 4.2.: Angle CDC θCDC = 132.5 ◦ at different KCDC and their transition temperatures.
TDOPC

trans is the transition temperature for the pure DOPC lipid system.

KCDC/kJ/mol TDOPC
trans / K

25 260
40 252.5
45 250
50 252.5
60 252.5
90 250

Even though there are no big changes in the order parameter 〈P2〉, the structure of the DOPC
still depends on the different values for KCDC. This is shown in Figure 4.16 (b) for the mean
measured angle 〈∠CDC〉. For temperatures T < Ttrans, the mean measured angle 〈∠CDC〉 for
KCDC ≤ 45 kJ/mol can be higher than 〈∠CDC〉 = 137 ◦ which is the found angle at the transition
temperature for all KCDC. The 〈∠CDC〉 angles for KCDC ≥ 50 kJ/mol are smaller than 137 ◦ for
temperatures T < Ttrans.
One can therefore conclude that the lipid chains for KCDC ≥ 50 kJ/mol in the gel phase Lβ are
bent more than the ones with KCDC ≤ 45 kJ/mol. This steric effect should have an influence on
the packing of the chains and the thickness of the bilayer. For a dense packing of the chains the
APL should be comparably small and the thickness ∆dP−P larger. In Figure 4.17 the APL and
the thickness ∆dP−P are shown as function of T . Even though there are a lot of fluctuations, the
lowest values in the phase Lβ for the APL are found for KCDC = 25 kJ/mol and the highest values
for KCDC = 90 kJ/mol. The thickness ∆dP−P in Figure 4.17 (b) shows according behavior with
KCDC = 25 kJ/mol reaching values up to≈ 5.5 nm in the ordered phase Lβ and forKCDC = 90 kJ/mol

only a maximum value of≈ 5.2 nm. One can clearly see that the found values forKCDC = 25 kJ/mol

shows divergent behavior from the other discussed force constants.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

hP
2
i

220 240 260 280 300 320

T / K

220 240 260 280 300 320

DOPC, ✓ = 132.5 �

KCDC = 40 kJ
mol

KCDC = 45 kJ
mol

KCDC = 50 kJ
mol

KCDC = 60 kJ
mol

KCDC = 90 kJ
mol

0.45

0.5

0.55

0.6

0.65

0.7

A
P

L
/

n
m

2

220 240 260 280 300 320

T / K

220 240 260 280 300 320

DOPC, ✓ = 132.5 �

K✓ = 25 kJ
mol

K✓ = 40 kJ
mol

K✓ = 45 kJ
mol

K✓ = 50 kJ
mol

K✓ = 60 kJ
mol

K✓ = 90 kJ
mol

130

132

134

136

138

140

142

144

146

148

h6
C

D
C
i

220 240 260 280 300 320

T / K

220 240 260 280 300 320

DOPC, ✓ = 132.5 �

KCDC = 40 kJ
mol

KCDC = 45 kJ
mol

KCDC = 50 kJ
mol

KCDC = 60 kJ
mol

KCDC = 90 kJ
mol

Ttrans

Ttrans

Ttrans

(a) APL as a function of T for different force con-
stants KCDC.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

hP
2
i

220 240 260 280 300 320

T / K

220 240 260 280 300 320

DOPC, ✓ = 132.5 �

KCDC = 40 kJ
mol

KCDC = 45 kJ
mol

KCDC = 50 kJ
mol

KCDC = 60 kJ
mol

KCDC = 90 kJ
mol

0.45

0.5

0.55

0.6

0.65

0.7

A
P

L
/

n
m

2

220 240 260 280 300 320

T / K

220 240 260 280 300 320

DOPC, ✓ = 132.5 �

K✓ = 25 kJ
mol

K✓ = 40 kJ
mol

K✓ = 45 kJ
mol

K✓ = 50 kJ
mol

K✓ = 60 kJ
mol

K✓ = 90 kJ
mol

130

132

134

136

138

140

142

144

146

148

h6
C

D
C
i

220 240 260 280 300 320

T / K

220 240 260 280 300 320

DOPC, ✓ = 132.5 �

KCDC = 40 kJ
mol

KCDC = 45 kJ
mol

KCDC = 50 kJ
mol

KCDC = 60 kJ
mol

KCDC = 90 kJ
mol

Ttrans

Ttrans

Ttrans

4.6

4.8

5.0

5.2

5.4

5.6

�
d
P
�

P
/

n
m

240 250 260 270 280 290 300 310 320

T / K

240 250 260 270 280 290 300 310 320

DOPC, ✓ = 132.5 �

K✓ = 25 kJ
mol

K✓ = 40 kJ
mol

K✓ = 45 kJ
mol

K✓ = 50 kJ
mol

K✓ = 60 kJ
mol

K✓ = 90 kJ
mol

Ttrans

(b) Thickness ∆dP−P as a function of T for different
force constants KCDC.

Figure 4.17.: Area per lipid APL and thickness ∆dP−P as a function of the temperature.

For KCDC = 25 kJ/mol, the measured quantities 〈P2〉, APL and 〈∠CDC〉 are shown in Figure 4.18.
The jump in APL, 〈P2〉 and 〈∠CDC〉 are all well defined at Ttrans = 260 K which is ≈ 10 K higher
than the transition temperatures observed with the other force constants. The lipid is also more
stretched in the gel phase. The 〈∠CDC〉 is here ≈ 158 ◦ and therefore as high as for the DOPC
model with θCDC = 145 ◦ (cf. Figure 4.15 (a). The same angle is also found for 〈∠CCC〉 of the
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standard DPPC model in the gel phase Lβ (cf. Figure 4.8). Assuming that an angle of 160 ◦ is
the favorable angle in the lipid chains of fully saturated lipid models, one can conclude that a
force constant of KCDC = 25 kJ/mol is not adequate to correctly describe the unsatured DOPC
model in the gel phase.
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Figure 4.18.: APL, 〈P2〉 and 〈∠CDC〉 as a function of T for the DOPC model with KCDC = 25 kJ
mol

and θCDC = 132.5 ◦.

4.1.3. Phase transitions in DOPC/DPPC mixtures

Membranes in biological systems often consist of a mixture of different lipids which can have
different degrees of saturation. [102] In order to study this aspect, systems consisting of a mixture
of the unsaturated DOPC and the saturated DPPC were studied. The systems studied here
consist of 64 DOPC and 64 DPPC for a total of 128 lipids or of 576 DOPC and 576 DPPC
for a total of 1152 lipids. Like for the one-component systems of DOPC and DPPC, the results
obtained from the big system consisting of 1152 lipids agree with the results of the smaller system
of 128 lipids. Therefore, only the smaller system is showcased here.
Snapshots of different perspectives of the mixture of the small system at different temperatures,
T = 240 K and T = 323 K are shown in Figure 4.19. The upper panel shows side views of the
bilayer patch at T = 323 K (A) and T = 240 K (B) and in the lower panel the corresponding
bilayer surfaces (C and D) at the given temperatures are shown. The parameters chosen for the
CDC angle are θCDC = 132.5 ◦ and KCDC = 45 kJ/mol.
At T = 240 K the system is in the gel phase Lβ, while at T = 323 K it is in the fluid phase Lα.
In the Lβ phase no tilt is visible and the lipid chains of DOPC seem to be perfectly stretched.
By looking at the bilayer surface of this phase, it is possible to observe that DOPC and DPPC
have built patches but the two lipids are still mixed. This observation can be further quantified
by counting the neighboring lipids of the same kind. For this kind of analysis for each DPPC
the number of neighboring DPPC were counted and averaged. The procedure was repeated for
the DOPC lipids accordingly. In this way one finds at T = 323 K that each DPPC and each has
on average 2.83 neighbors of the same kind of lipid. At a lower temperature of T = 240 K one
finds higher values for the number of neighboring lipids of the same kind: for DPPC 3.52 and
for DOPC 3.58 on average. This increased number at lower temperatures can be taken as an
indication that the patches are getting bigger at lower temperatures. In order to exclude system
size effects, the same analysis was performed for the bigger system (576 DOPC and 576 DPPC)
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and the here found values for the averaged numbers of neighbors for both kind of lipids at both
temperature agree with the found values for the smaller system.

x

y

z
A B

C D

T = 240KT = 323K

DPPC

DOPC

Figure 4.19.: Snapshots of the DOPC/DPPC system for different temperatures. The different
kinds of lipids are color coded, DOPC is shown in purple and DPPC in green. Upper
panel: Side view on the bilayer patches at different temperatures. A: T = 323 K
and B: T = 240 K. Lower panel: Bilayer surface at different temperatures. C:
T = 323 K and D: T = 240 K. For the CDC angle parameters θCDC = 132.5 ◦ and
KCDC = 45 kJ/mol were chosen.

The influence of DPPC on the structural properties of DOPC and vice versa will be examined
next. For this, the angle distribution of all angles were calculated and the maximum was deter-
mined. This was done for the pure DPPC system (cf. section 4.1.1), the pure DOPC system
(cf. section 4.1.2) and for the mixture of the two lipids. In Figure 4.20 DOPC and DPPC are
sketched with the maximum angles found in the distributions for the temperatures T = 240 K
and T = 323 K. Here, the black solid lines represent the structure in the two-component system
and the grey lines are the structures obtained from the one-component systems.
For DPPC (A) the structures are almost identical for the mixed and the pure system at both
temperatures. The influence of DOPC on DPPC in the mixed system is therefore not strong.
On the contrary, the influence of DPPC on DOPC in the mixed lipid system is much stronger
(B). Here, a clear difference in the CDC angle can be observed at both temperatures. At 240 K,
the CDC angle is far more stretched in the mixed system, while the opposite effect is seen at the
higher temperature. A reason for this behavior at high temperatures can be the smaller overall
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T = 240K T = 240KT = 323K T = 323K

A:		DPPC B:		DOPC

Figure 4.20.: Comparision of the different measured angles for the used DPPC model and the
DOPC model (θCDC = 132.5 ◦ and KCDC = 45 kJ/mol). The structure obtained from
the two-component system is shown as solid lines and the structure of the lipid
in the one-component system is shown as grey lines. A: DPPC, T = 240 K, Lβ
phase (left) and T = 323 K, Lα phase (right). B: DOPC, T = 240 K, Lβ phase and
T = 323 K, Lα phase (right).

bilayer thickness of the mixed system (∆dP−P = 4.4 nm) compared to the pure DOPC system
(∆dP−P = 4.7 nm) at T = 323 K.
Next, the behavior of the CDC and the CCC angles undergoing the liquid-to-gel transition will be
analyzed. In Figure 4.21 the measured mean angles 〈∠CDC〉 and 〈∠CCC〉 in the two-component
system are shown as full symbols and for comparison the values for the one-component systems
are shown as open symbols. The two-component system shows a discontinuity at T = 265 K for
both angles. The trends of the curves are almost identical but shifted by ≈ 10 ◦. Comparing
these curves to the ones for the one-component systems, the strong influence of DPPC on DOPC
in the mixture can be clearly seen. The curve form of DPPC is almost identical for both studied
systems, with solely the position of the jump being shifted to lower temperatures for the mixed
system. On the contrary, the curves for DOPC for the pure and mixed system differ much more
especially at low temperatures. A difference of ≈ 10 ◦ can be found. These observation coincide
with the ones made for Figure 4.20.
The APL for the mixture and the pure system is shown in Figure 4.22 (a). Here a discontinuity
can be seen at T ≈ 270 K for the two-component system (full symbols). Such a discontinu-
ity is between the transition temperatures for the pure DOPC system (Ttrans = 250 K) and
the pure DPPC system (Ttrans = 290 K) (open symbols). The values for the APL of the two-
component system are lower than the values for the pure DOPC and higher than the values for
the one-component DPPC system at all temperatures. This is consistent with the behavior of
the measured mean angles 〈∠CXC〉 shown in Figure 4.21, where DOPC exhibits a larger value of
〈∠CDC〉 in the mixture than in the pure system. This allows a denser packing of the lipid tails
and therefore a reduced value of the APL.
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In Figure 4.22 (b) the order parameter 〈P2〉 is shown as a function of the temperature for the
different systems. A discontinuity at 270 K marks the phase transition in the DOPC/DPPC two-
component system. The shape of the curves in the mixed system are almost identical, with the
DOPC curve being shifted to lower values of 〈P2〉 by ≈ 0.05. Because DPPC and DOPC show a
discontinuity at the same temperature and therefore have the same phase transition temperature,
one can conclude that this system does not undergo a phase separation which can be observed
in experiments. [103]
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Figure 4.22.: Comparision of the APLs (a) and the order paramters (b) found in the two-
component system and in the one-component systems.

Next, the influence of the force constant KCDC on the transition temperature Ttrans in a two-
component DPPC/DOPC system will be investigated. Again, force constants ranging from
KCDC = 25 kJ/mol to KCDC = 90 kJ/mol were tested (cf. section 4.1.2). The course of the 〈∠CDC〉,
APL and 〈P2〉 curves (cf. Figure C.1) do not differ much and are in agreement with the ones
already discussed for a force constant of KCDC = 45 kJ/mol. Therefore also the transition tem-
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peratures (see Table 4.3) do not vary much and are fluctuating between 265 K and 270 K. These
fluctuations are due to the big steps in temperatures of up to 10 K at which the individual simu-
lations were performed. The transition temperatures for the mixture are ≈ 10 K higher than the
ones found for the pure DOPC system (see Table 4.2).

Table 4.3.: Angle CDC θCDC = 132.5 ◦ at different KCDC and their transition temperatures for a
mixed DPPC/DOPC system.

KCDC/kJ/mol T
DPPC/DOPC
trans / K

25 270
40 265
45 270
50 265
60 270
90 270

Besides the simulation of the small bilayer patches also simulations of the big bilayer patch of
1152 lipids (576 DOPC and 576 DPPC) were performed. At temperatures of 240 K and 260 K
and a simulation time of 50µs no phase separation could be observed. The models here used for
DPPC and DOPC are therefore not adequate to describe the phase separation on the µs-time
scale.

4.1.4. Conclusion

In this section, different lipid models based on the Martini models for DPPC and DOPC were
investigated with respect to the description they provide of the liquid-to-gel transition and the
phase separation of a DPPC/DOPC mixture. These phospholipids are the standard examples for
a saturated (DPPC) and an unsaturated (DOPC) lipid. In section 4.1.1 the already well studied
DPPC Martini model [82] was used to introduce the simulation techniques and the differences
between the gel phase Lβ and the liquid crystalline phase Lα.
In section 4.1.2, it was shown that the standard DOPC MARTINI model is not able to reproduce
the liquid-to-gel transition. In order to solve this problem the properties of DOPC were studied
as a function of the various model parameters with a particular focus on the CDC equilibrium
angle θCDC and its associated force constant KCDC. These parameters represent the kink due to
the C-C double bond in the hydrocarbon chain. It was shown that with an increasing value of
θCDC the transition temperature is increasing. A value of θCDC = 132.5 ◦ gives semi-quantitative
agreement with the experimental transition temperature.
The phase transition temperature shows little or no dependence on the force constant KCDC in
the interval studied (25−90 kJ/mol). On the contrary, KCDC has a marked effect on the structural
properties of DOPC in the gel phase and therefore on the observed kink in the lipid tail. For
values KCDC ≥ 50 kJ/mol the lipid tails are bent more than for KCDC ≤ 45 kJ/mol.
Finally, the liquid-to-gel transition and the phase separation in DPPC/DOPC mixtures was
examined in section 4.1.3. Here, a strong influence of DPPC on DOPC in the gel phase Lβ was
found. The lipid chains of DOPC are stretched due to the influence of DPPC. This results in a
denser packing of the lipid chains and in a smaller APL and is accompanied with an increase in
the order parameter 〈P2〉. The influence of DPPC on DOPC in the liquid phase is still existent
but not as strong as in the gel phase. A variation of the force constant KCDC does not result in a
change of the transition temperature nor in the structure of the lipid tails. Mixtures of different
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lipids with significantly different Ttrans are known to undergo phase separation. This could not
be observed for the here studied DPPC/DOPC system. The influences of DPPC on the structure
of the DOPC model are too strong to adequately describe a phase separation.
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4.2. Phase transitions in a coarse-grained saturated phospholipid
bilayers using hybrid particle-field methods

In section 4.1 the temperature behavior of reconstituted DPPC and DOPC bilayers were studied
extensively using the MARTINI model. Even though this CG approach offers a significant speed
up compared to atomistic approaches, these particle-particle (PP) simulations are still computa-
tionally very expensive when simulating on a mesoscopic scale. A simulation approach accessing
these long time and length scales is relevant for a successful modeling strategy of biological pro-
cesses within a biomembrane. The hybrid particle-field (PF) method proposed by Kawakatsu
and Milano in [10] for phospholipid bilayers is able to simulate on these scales at low computa-
tional cost. Extensive studies of self-assembly and physical behavior of a one-component DPPC
system using this approach have already been presented in ref. [10, 21,25]. In these publications
it has been shown that this particle-field based model is suitable to describe the liquid phase Lα.
All these studies have been performed at T = 323 K. In this work, the focus is on the overall
temperature behavior and a correct representation of the important phases Lα and Lβ at temper-
atures ranging from T = 240 K to T = 323 K. Besides the PF approach, also the particle-particle
particle-field (PPPF) is used. This approach can be understood as a refined version of the PF
approach as it includes particle-particle interactions.
In order to better understand the differences between the used approaches (PP, PF and PPPF) a
short overview over the similarities and the differences between these methods is given next. For
the particle-field based approaches PF and PPPF, the intermolecular interactions are described
by eq. (2.30). These two methods only differ in the second term for the short-range interactions.
The term used to calculate the short-range interactions and a sketch of the used potentials are
shown in Figure 4.23. The potentials for the PF approach is U ∝ r−1 whereas the PPPF approach
uses a truncated Lennard-Jones potential. Also the PP approach uses a Lennard-Jones potential
but with a larger cut-off. Besides different ways to compute the short-range interactions, the long-
range interactions for the particle-field based approaches PF and PPPF are taken into account
via a CG density grid (cf. Figure 2.6) whereas the PP approach uses the PME method (cf. Figure
2.3).
To further illustrate the impact of the used potential for the short-range interaction on the
structural properties of the DPPC system, the radial distribution function (RDF) given by

gXY(r) =
1

〈ρY〉local

1

NX

NX∑

i∈X

NY∑

i∈Y

δ(rij − r)
4πr2

(4.3)

is shown for the different approaches in the lower panel of Figure 4.23. 〈ρY〉local is the particle
density of type Y averaged over all spheres around particle X with radius rmax. [50] The RDF
is a description how the particle density varies as a function of the distance from a reference
particle. A major impact on the structure of g(r) has the form of the potential which describes
short-range interaction. The RDF gCC(r) shown in Figure 4.23 is for the C-beads (cf. inlay in
the lower right corner in Figure 4.23).
Comparing the RDFs obtained by using the PP and PPPF approach, one can see that these
show the same trends. A maximum for both approaches can be found at rmax = 0.5 nm and a
second maximum at 1.0 nm. The maxima for the PP approach are more pronounced. This due
to the fact that not only the repulsive forces up to rcut = rm = 6

√
2σ = 0.53 nm with σ = 0.47 nm

are taken into account but also the attractive forces up to a cut-off of 0.9 nm. From the RDF for
these approaches one can also conclude that at small distances there is no overlap between the
beads because of g(0) = 0.
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Figure 4.23.: Comparison of the different approaches to calculate the short-range interactions. A
sketch of a typical potential is shown in the upper panel and the resulting radial
distribution function gCC(r) for the C-beads (marked green beads in the stick model)
of DPPC is shown in the lower panel. The radial distribution function gCC(r) are
calculated at T = 323 K.

The result for the RDF of the PF approach looks different. The maximum is shifted to a smaller
r-value of 0.47 nm and g(0) ≈ 2. This non-zero value means that there is a spatial overlap of the
beads which is due to the fact that the potential used for the short-range interactions has a much
smaller slope than the Lennard-Jones based potentials. Although an overlap is physically not
correct, this approach is still valuable due to its ability to describe the liquid phase Lα sufficiently.
This chapter is organized as follows. In section 4.2.1, the PF approach is used to investigate the
behavior of the the Lα-phase at a large range of temperature. Here, the main focus is on the
description this model gives of the area per lipid and the lateral diffusion at various temperatures.
Furthermore, the one-component DPPC system is investigated with the PPPF approach in sec-
tion 4.2.2. Because of its inclusion of particle-particle interaction, this approach is more suitable
to describe the ordered phase Lβ.
For all simulations using the PF and the PPPF approach the program package OCCAM [10] has
been used. Further technical details can be found in App. C.2.

4.2.1. Phase transitions of DPPC using the particle-field approach

In this section, the DPPC model [82] is investigated using the PF approach. Earlier studies of this
model by Milano, Kawakatsu and De Nicola [10,21,25] using the PF approach are only focusing
on the correct representation of the Lα-phase at T = 323 K. In this work, the DPPC model is
studied with respect to its temperature behavior in the range from T = 240 K to T = 323 K.
The results of the PP simulation presented in section 4.1.1 are used as a reference. In order to
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4.2. Phase transitions in a coarse-grained saturated phospholipid bilayers using hybrid particle-field methods

achieve a good representation of the liquid phase Lα using the PF approach, two major issues
have to be solved:
Firstly, reasonable values for the mean field parameters χij have to be found. As a basis the
Flory-Huggins approach is used, cf. eq. (2.31). The here needed ε-values are taken from the
MARTINI force field and the calculated mean field parameters are then further optimized. For
bilayer systems, this optimization is done by comparing the number densities along the z-axis of
the PF and the PP approach and changing the mean field parameters accordingly.
Secondly, the box size has to be adjusted because only NVT-ensembles can be simulated with the
PF approach. As a starting point the box-dimensions obtained by a PP simulation of the same
system are used and adjusted in such a way that the bilayer shows no curvature. This means
that the APL is changed to a reasonable value. If the bilayer shows micelle-like structure, the
APL is chosen too high whereas a wave-like structure indicates a too low APL.
The PF model of DPPC presented in [10] has proven to give a good representation of the liquid
phase Lα at 323 K and is used as a starting point for further simulations at lower temperatures.
The mean field parameters are shown in Table 4.4. These parameters are calculated using the
Flory-Huggins approach as described in section 2.1.4, eq. (2.31).

Table 4.4.: PF interaction matrix for DPPC as described in [10]. The interaction parameter is
given in RT × ( kJ

mol).

χij N P G C W

N 0.00 -1.50 6.30 9.00 -8.10
P -1.50 0.00 4.50 13.50 -3.60
G 6.30 4.50 0.00 6.30 4.50
C 9.00 13.50 6.30 0.00 33.75
W -8.10 -3.60 4.50 33.75 0.00

For a better agreement with the results of the PP approach the mean field parameter χCW which
describes the interactions between the C-beads of the lipid tails and the water beads W has been
multiplied by a factor of 2.5. A snapshot of the bilayer patch simulated with the PF approach
and the particle density along the z-axis can be found in Figure 4.24.

z

A B

0

2

4

6

8

10

12

p
ar

ti
cl

e
d
en

si
ty

/
n
m

�
3

-4 -3 -2 -1 0 1 2 3 4

z / nm

-4 -3 -2 -1 0 1 2 3 4

PF approach:
DPPC
W

PF approach:
DPPC
W

0

2

4

6

8

10

12

p
a
rt

ic
le

d
en

si
ty

/
n
m

�
3

-4 -3 -2 -1 0 1 2 3 4

z / nm

-4 -3 -2 -1 0 1 2 3 4

PP approach:
DPPC
W

PF approach:
DPPC
W

Figure 4.24.: Snapshot of the DPPC bilayer patch simulated with the PF approach (A) and
particle density as a function of the z-axis (B) at T = 323 K.
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The snapshot A can directly be compared with the snapshot shown in Figure 4.6 A for the
PP approach. The lipids in the PF approach seem to be somewhat more “unordered” than the
snapshot of the PP approach. This observation can be easily validated by comparing the number
densities of both approaches along the z-axis as shown in Figure 4.24 B. The number density of
DPPC using the PF is stretched from z = −4 nm to z = 4 nm whereas the number density of
DPPC obtained with PP reaches only from −3 nm to 3 nm. Furthermore the number density of
W beads reaches further into the lipid bilayer using the PF approach than when using the PP
approach. From these observations one can conclude that the PF model gives a weaker phase
separation between DPPC and W than the PP approach.
The basic details for the performed simulations are discussed next. More in-depth and technical
details can be found in App. C.2. For the here performed PF simulation the APL, and therefore
the box dimensions, have to be chosen by hand. As shown in section 4.1.1, a change in the APL
is vital to observe a phase transition. In order to overcome this problem three different box sizes
and starting configuration at different temperatures were tested:

• APL1: Box sizes and starting configurations are obtained from a well-equilibrated PP
simulation at the same temperature.

• APL2: Box sizes are obtained by a linear fit of the APL1-values for T ≥ 290 K. The starting
configurations are the same as used for APL1.

• APL3: Box sizes and starting configurations are all obtained from a well-equilibrated PP
simulation at 290 K.

In Figure 4.25 (a) the different APLs as a function of the temperature are illustrated. Note, that
the goal of these simulations is to test the ability of the PF approach to give a physically sensible
description of the DPPC bilayer patch at lower temperature and not to determine the correct
value for the APL.
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Figure 4.25.: The order parameter 〈P2〉 and the area per lipid APL as a function of temperature.

The order parameter 〈P2〉 as a function of the temperature for the different values of the APL
are shown in Figure 4.25 (b). For APL1 the order parameter 〈P2〉 is at T ≥ 290 K at around
〈P2〉 ≈ 0.4. This is much lower than the order parameter for the PP simulations (see Figure
4.7) in this area which ranges from ≈ 0.6 to ≈ 0.7. This due to the fact, that within the PF
approach the beads can overlap (cf. Figure 4.23). The amount of overlap is only restricted
by the compressibility κ which is here 0.05 Pa−1. The order parameter decreases for APL1 at
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temperatures T < 290 K. This is due to too little space in the lateral direction. The same also
happens for APL2 at the same temperature, but the curvature is less pronounced due to a higher
APL. A snapshot of the simulations at these temperatures can be found in 4.26. For the highest
APL at this temperature, APL3, there is no visible curvature and therefore also 〈P2〉 is at the
highest value.

APL1 APL2 APL3
z

Figure 4.26.: Snapshots of the lipid bilayer at T = 270 K for the different APL. For APL1 and
the APL2 the bilayer shows a curvature due to too less space in the xy directions,
for APL3 almost no curvature of the bilayer can be observed.

The bilayer thickness ∆dP−P for the different APL sets is shown in Figure 4.27. For APL3,
∆dP−P is the lowest in the area 250 − 290 K because there is no curvature in the bilayer. For
APL1 and APL2 there is a step increase in the bilayer thickness at 290 K which is due to the
curvature and not caused by a stretch in the lipid tails (cf. order parameter in Figure 4.25 (b)).
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Figure 4.27.: Bilayer thickness ∆dP−P as a function of the temperature for the different APL.

Conclusion One can conclude, that a combination of APL1 for T ≥ 290 K and APL3 for
T < 290 K gives the most reasonable results at lower temperatures. Even though a clear phase
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transition is not visible as seen in the PP approach, a slight increase in 〈P2〉 and ∆dP−P with
decreasing temperature can be observed. This physically correct behavior validates the PF ap-
proach also for simulations at T < 323 K. The here used PF approach therefore gives a physically
sensible description of the Lα-phase whereas it fails to describe the Lβ-phase. This failure of de-
scribing the Lβ-phase could be a matter of the chosen box size: for incorrect box parameters the
APL is incorrect and therefore a transition to the higher ordered Lβ-phase is not visible. On
the other side one could also say that the here chosen approach for describing the short-range
interaction is too coarse and the level of resolution too low. Especially the possible spatial overlap
between different beads in the PF approach could be a big hindrance in describing the Lβ-phase.
In order to include “stronger” short-range interactions, the PPPF approach (see Figure 4.23 (b))
is tested in section 4.2.2.

4.2.2. Phase transitions of DPPC using the particle-particle particle-field approach

In this section, the DPPC one-component system is investigated using the PPPF approach at
different temperatures. Here the focus is on the description of the phase transition and the overall
temperature behavior. The PPPF approach is a combination of the PF and the PP approach
and is illustrated in Figure 4.23 (b).
In Figure 4.28 the mixed resolution scheme for all performed simulations is presented. The
intermolecular interactions of the water beads W are described by the PF approach whereas the
intermolecular interactions within the lipid bilayer are described by the PF approach. This means
that the DPPC lipids are described at a higher resolution than the water beads. The interaction
between the solvent beads W and the lipids are described by the PF approach.

lipid bilayer:	PPPF	

water:	PF	

water:	PF	

PF

PF

lower resolution

lower resolution

higher resolution

bilayer surface
transition region

Figure 4.28.: Snapshot to illustrate the mixed resolution scheme in the one-component DPPC
system. The intermolecular interaction between the water beads are described via
the PF approach whereas the intermolecular interactions in the lipid bilayer are
described via the PPPF approach. The interactions between water–lipid bilayer are
described using the PF approach.
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A common problem of simulations at different resolution levels is the description of the interaction
between these levels especially in the transition region, here the bilayer surface. A stable and
correct description of the bilayer surface is necessary in order to describe the whole system in a
sensible manner. As a reference for a stable lipid bilayer surface the results of the PP approach
are considered and furthermore compared with the results of the PF approach. Within the PP
approach the bilayer surface is stabilized by several hydration shells. This can be visualized with
the help of the RDF between the P beads of the lipids and the W beads, see Figure 4.29.
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Figure 4.29.: Comparision of the P–W RDF obtained with the PP and PF approach at T = 323 K.

From the well pronounced structure of the RDF (PP approach) in Figure 4.29 one can conclude
that each P bead is neatly surrounded by W beads. This extra layer of W beads around each P
bead prevents the lipid heads to move too close to each other and results in an equal distribution
of the lipid heads over the whole bilayer surface which is a characteristic of a stable lipid surface.
Looking at the RDF obtained with the PF approach one can clearly see that the P and W beads
do spatially overlap (g(0) 6= 0). Furthermore, there are no peaks within the shown RDF and
therefore the W beads are not surrounding the P beads in a well structured manner as in the
PP approach. The hydration shell around the lipid heads is therefore not described in a physical
sensible way by the PF approach which can lead to an unstable description of the bilayer surface.
This is due to the fact that the interaction within the bilayer described by particle-particle
interaction are “stronger” than the particle-field interactions.
In order to overcome this problem for the here chosen PPPF approach, the intermolecular inter-
actions of the lipids have to be adjusted so that they build a stable surface. In this work two
different parameter sets to achieve this kind of distribution were tested:

1. In parameter set PPPF(1) the bilayer surface is stabilized via an increased effective bead
size σ of the P and N beads of the head group. In this way, the beads are restricted in their
movement and locked in place.

2. Parameter set PPPF(2) aims at increasing the overall structural integrity of the bilayer.
This is done by increasing the attractive interactions of the C beads within the lipid tails
by a slightly reduced the effective bead size σ and an increased depth of the potential given
by the ε-value.
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The values for these parameter sets can be found in Figure 4.30 (left panel). The varied param-
eters are the cut-off distance rcut, the effective bead size σ and the depth of the Lennard-Jones
potential ε. Next, the bilayer surface using these parameter sets at two different temperatures is
investigated.

Bilayer surface

Figure 4.30 shows snapshots of the resulting bilayer surfaces at T = 323 K and T = 240 K for the
two parameter sets PPPF(1) and PPPF(2). For comparison, snapshots at the same temperatures
of stable bilayer surfaces obtained with the PP approach can be found in Figure 4.10.
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Figure 4.30.: Comparasion of the bilayer surface at different for the different parameter sets
PPPF(1) and PPPF(2). The used non-bonded parameters and the cut-off are listed
in the right panel (σ in nm and ε in kJ/mol). Snapshot of the bilayer surfaces at
T = 240 K are shown in the middle panel and snapshots for T = 323 K in the right
panel.

For both of the here used parameter sets, PPPF(1) and PPPF(2), there are patches at 323 K in
which the lipid heads are aggregated. This results in hydrophobic lipid tail beads C (green beads)
being directly at the surface of the bilayer which is marked by black dashed lines in Figure 4.30
(right panel). The area of the patch for the PPPF(1) parameter set is smaller than for PPPF(2).
The reason for this difference in the distribution are the different chosen parameters for the head
groups. The effective bead size of the beads N and P in the PPPF(1) parameter set is bigger than
in the PPPF(2) parameter set and the bilayer surface is therefore stabilized by the short-range
interaction of the head beads. The slightly increased aggregation of the head beads using the
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PPPF(2) parameter set is therefore due to the small effective bead size of the lipid head beads.
As a result, the hydrophobic C beads (green beads) are directly exposed to the water which is
not a correct representation of a bilayer surface.
In the middle panel in Figure 4.30 the head beads P and N are evenly distributed over the whole
bilayer surface which indicates a stable bilayer. This is due to the chosen length of the box vectors
dx and dy which are almost 15 % smaller than the ones at T = 323 K. By choosing this APL
smaller the head of the lipids are forced to get much closer together. The here shown bilayer
surfaces can directly be compared with the surfaces at T = 240 K for the PP approach (cf. Figure
4.10 right panel).

Investigation of the temperature dependence

Next, the temperature dependence of the DPPC system is investigated and the ability of the
approaches and parameter sets to describe a phase transition are tested. Here, the focus is on
the order parameter 〈P2〉 and the lateral diffusion coefficient Dxy.

Order parameter 〈P2〉 In Figure 4.31 the order parameter 〈P2〉 is shown as a function of the
temperature T for the different parameter sets PPPF(1) and PPPF(2). For PPPF(1) one can
find no signs of a phase transition but a decrease in 〈P2〉 with decreasing T . The parameter set
PPPF(2) shows a clear jump in the 〈P2〉-value. From these results one can conclude that only
the PPPF approach using the PPPF(2) parameter set is describing the phase transition similar
to the PP approach (black squares). The PPPF(1) parameter set fails like the PF approach
to describe a phase transition. This could be due to the fact that the lateral movement is too
restricted due to the large effective bead size σN,P = 0.62 nm.
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Figure 4.31.: 〈P2〉 as a function of T for the different approaches: PP, PF, PPPF(1) and PPPF(2).

Lateral diffusion coefficient Dxy In Figure 4.32 the lateral diffusion coefficient for the different
approaches is shown as a function of the inverse temperature. Note, that only for the PP approach
a phase transition is visible at T = 290 K which is marked by a drop of the lateral diffusion
coefficient by two orders of magnitude. The other approaches are therefore not undergoing
a phase transition with respect to their lateral diffusion coefficient. Furthermore, their lateral
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diffusion coefficient is lower than the one obtained for PP approach. From this one could conclude
that the here used PPPF approach is describing the Lβ-phase in a reasonable way but fails to
describe the Lα-phase.
Still, the Dxy-value for the PPPF is steadily decreasing over the here monitored temperature
range by two orders of magnitude from approximately 10−8 cm2/s to 10−10 cm2/s. Furthermore a
change in the slope can be observed around T = 290 K (1/T = 0.035 K−1) which indicates a
changes in the activation energy EA. The curves for the PPPF(1) and PPPF(2) approach only
differ slightly and no real trend can be observed. The different activation energies EA for the
different approaches are shown in Table 4.5. As already stated in section 4.1.1, the activation
energy is doubling for a transition from Lα- to Lβ-phase which can be observed for the PPPF(2)
approach. For the PPPF(1) parameter set a tripling of the EA-value can be observed.
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Figure 4.32.: Lateral diffusion coefficients Dxy as a function of the inverse temperature 1/T for
the different approaches: PP, PF, PPPF(1) and PPPF(2).

Table 4.5.: Activation energy EA for the lateral diffusion coefficients for different temperature
ranges: T ≥ 290 K (Lα) and T < 290 K (Lβ).

approach Lα: EA / kJ/mol Lβ: EA / kJ/mol

PP 17.89 29.84

PF 3.08 -

PPPF(1) 24.34 70.54
PPPF(2) 29.74 63.32

Conclusion One can conclude, that the here chosen PPPF approach with the PPPF(2) parame-
ter set is describing the gel-phase Lβ in a reasonable fashion. The results for the order parameter
and the diffusion coefficient at low temperatures T ≤ 290 K are comparable with the much more
precise and computational more expensive PP approach. The here proposed PPPF is therefore
an important step towards mesoscale simulations of lipid bilayers at low temperatures in the gel
phase.

84



4.2. Phase transitions in a coarse-grained saturated phospholipid bilayers using hybrid particle-field methods

4.2.3. Conclusion

In this section two different approaches to simulate a DPPC system at temperatures T ≤ 323 K
were presented: the PF approach (cf. section 4.2.1) and the PPPF approach (cf. section 4.2.2).
These approaches consider the CG MARTINI model of DPPC (section 4.1.1) as a basis for
further approximations. Both approaches replace the long-range particle-particle interaction with
interactions with a field and are therefore less accurate but also the computational cost is reduced.
Furthermore the short-range particle-particle interactions are replaced by interactions with a
particle density (PF approach) or by a truncated Lennard-Jones potential (PPPF approach).
The two particle-field approaches PF and PPPF were tested with respect to the description they
give of the lipid bilayer at different temperatures. As a reference the results of the PP approach
were taken.
The PP approach is able do describe the DPPC bilayer over a large range of temperatures and
also describes the liquid and the gel phase in a physically correct manner. Therefore this approach
is also able to describe the phase transition Lα → Lβ (cf. Table 4.6).
The PF approach is able to describe a stable bilayer surface over a wide range of temperatures.
At lower temperatures the bilayer surface is still stable, i.e., the lipid heads are still equally
distributed over the surface, but there is no jump in the area per lipid which would indicate the
more ordered gel phase. The other physical properties such as the lateral diffusion coefficient Dxy

and the order parameter 〈P2〉 are indicating the existence of a Lα phase over the tested range of
temperatures. Furthermore, the PF approach fails to describe the gel phase Lβ. These results
are also visualized in Table 4.6.

Table 4.6.: Summary of the results of the simulated DPPC system using the different approaches
PP, PF and PPPF. For a good description of the phase (Lα, Lβ) with respect to the

inspected property (surface, Dxy, 〈P2〉) the cell is colored green, for a bad description

red and for a satisfying , yet not good description, orange.

PP PF PPPF(1) PPPF(2)

bilayer surface Lα Lβ Lα Lβ Lα Lβ Lα Lβ
lateral diffusion Dxy Lα Lβ Lα Lβ Lα Lβ Lα Lβ
order parameter 〈P2〉 Lα Lβ Lα Lβ Lα Lβ Lα Lβ

For the PPPF approach two different parameter sets were tested: PPPF(1) and PPPF(2). Here,
a special focus is on the bilayer surface which acts as an interface between two levels of resolution:
the DPPC bilayer which is described at a higher resolution with the PPPF approach and the
water beads W which are described at a lower resolution with the PF approach. The DPPC
bilayer and the surrounding water beads are are interacting via the PF approach.
Both parameter sets were investigated thoroughly at a large range of temperatures with respect
to their phase behavior. Only the parameter set PPPF(2) is able to describe the Lβ phase with
respect to the investigated properties (see Table 4.6).
From these results one can conclude that even though the particle-field based approaches PF
and PPPF do not describe the phase transition of the DPPC bilayer, they still are important
and interesting approaches due to their ability to describe the liquid phase Lα (PF approach)
and the gel phase Lβ (PPPF). These two phases are important for the description of biological
membranes. Because of the significant speed-up of particle-field based approaches, they are an
important step towards simulations of membranes on a mesoscopic scale.
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4.3. Cholesterol model for hybrid particle-field molecular dynamics
simulations

In the previous section it was shown that the particle-field approaches PF and PPPF are suitable
to describe the phases Lα and Lβ at various temperatures. Besides the liquid phase Lα and the
ordered gel phase Lβ, the liquid-ordered phase LO which is formed in the presence of cholesterol
(CHOL) plays an important role in biomembranes of mammals. The liquid-ordered phase can
be understood as a combination of the Lα- and Lβ-phase: the packing of the lipids is increased
(similar to the gel phase) while maintaining a high lateral diffusion coefficient (similar to the
liquid phase). In order to reproduce the LO-phase with the PF approach, a cholesterol (CHOL)
model for this method is needed.
In this section, the development of such a model and the properties of the resulting LO-phase
are discussed. As a starting point the improved MARTINI model of cholesterol [71] was used.
Its mapping is shown in Figure 4.33 A and further details about the bonded and the constraint
parameters can be found in App. C.6. Figure 4.33 B shows the definition of the long molecular
axis of the cholesterol model. The CG model of cholesterol shown here is fairly rigid, only the
the C2 bead which represents the alkane chain is able to move more freely.
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Figure 4.33.: A: Mapping of the cholesterol according to [71]. In the stick models the defined
bonds and the constraints are shown. B: Long molecular axis of the cholesterol
model.

For introductionary purposes a system consisting of DPPC and cholesterol is studied with the PP
approach in section 4.3.1. Such systems using the PP approach are already studied extensively
in [9, 104, 105]. Here the methods to characterize the LO-phase in a DPPC/CHOL system are
introduced. Based on these results a newly parametrized cholesterol model for the PF approach
is presented in section 4.3.2.

4.3.1. Liquid-ordered phase simulated with the PP approach

The results of a PP simulation of a system consisting of 128 DPPC and 32 cholesterol (CHOL)
are discussed in this section. The simulation was performed at 323 K and further computational
details can be found in App. C.1. A snapshot of the bilayer patch is shown in Figure 4.34 A
which can be directly compared with the snapshot of the DPPC system (Lα-phase) shown in
Figure 4.6. In the DPPC/CHOL system the lipids are more stretched and the system is in the
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liquid-ordered phase LO (cf. Figure 4.3 C). In order to better understand the difference between
the liquid-ordered phase LO and the liquid phase Lα it is best to compare the order parameter
〈P2〉 and the lateral diffusion coefficient Dxy of these two phases:

• Order parameter 〈P2〉: For the order parameter of the DPPC system (Lα-phase) pre-
sented in section 4.1.1 one gets a value of 0.58 whereas for the DPPC/CHOL system (LO-
phase) the order parameter is 0.66 and is therefore increased by 0.08. The 〈P2〉-value in the
LO-phase therefore correspondents to the 〈P2〉-value at 290 K in the Lα-phase of the neat
DPPC system.

• Lateral diffusion coefficient Dxy: For the LO-phase and the Lα-phase the lateral diffu-
sion coefficient is identical and has a value of 0.07± 0.02 · 10−5 cm2/s.

This means that even though the order parameter in the LO-phase is higher than in the Lα-phase
at 323 K, both phases have the same lateral diffusion coefficient. For comparison: the lateral
diffusion coefficient at T = 290 K of the neat DPPC system in the Lα-phase is 0.0214 ± 0.022 ·
10−5 cm2/s and therefore more then three times smaller than the lateral diffusion in the LO-phase.
Furthermore, the APL-value of DPPC in the LO-phase can be approximated using the APL-value
of 0.56 nm of the neat DPPC system at T = 290 K (see Figure 4.11). With this value, the area
per cholesterol can be estimated. The xy-plane of the simulation box has an averaged value of
41.5 nm2 thereof are 35.904 nm2 taken by the lipid which yields a total area for the cholesterol of
5.596 nm2. By assuming that the cholesterol is equally distributed throughout both lipid layers
one gets for the area per cholesterol 0.350 nm2. This is a reasonable result because it is larger
than the value for a bead with σ = 0.47 nm. The diameter for such a bead is approximately given
by rm = 6

√
2σ = 0.5264 nm and therefore the area is π(rm/2)2 = 0.2176 nm2.
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Figure 4.34.: A: Side view of bilayer patch consisting of 128 DPPC and 32 cholesterol simulated
with the PP approach. The cholesterols are highlighted and colorcoded as in Figure
4.33. B: Corresponding number density along the z-axis.

The reason for the special properties of the LO-phase is the placement of the cholesterol which
can also be seen in the snapshot. The cholesterol is positioned within the bilayer in a “sheet”-like
fashion and stretches the tails of the neighboring lipids and increasing the short-range order but
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allowing lateral movement of the lipids hence the relatively high lateral diffusion coefficient. The
polar head-group ROH is positioned right underneath the G-beads of the lipids and the whole
cholesterol is aligned along the z-axis. Like for lipids one can calculate an order parameter which
is again a measurement of the alignment of the long molecular axis (see Figure 4.33 B) along the
z-axis. With an order parameter of 0.75 the cholesterol shows a good alignment along the z-axis.
In Figure 4.34 B the placement of the cholesterol is further illustrated via the number density
along the z-axis. Two peaks can be found due to the placement in the upper and lower lipid
layer. Between these two peaks the number density is not reaching a value of zero. This is due to
the following two reasons: firstly the placement along the z-axis is fluctuating. Secondly one can
observe a rather fast flip-flop mechanism of the cholesterol. The approximate time a cholesterol
stays in between the two lipid layers during this flip-flop event is 2 ns which is in agreement with
the times found for the standard MARTINI cholesterol model as presented in [104]. A cholesterol
between the two lipid layers can also be seen in the snapshot A. Nonetheless a flip-flop event of
a cholesterol is rare and for the here shown DPPC/CHOL system only an approximate number
of 15 events could be observed over the course of a 500 ns simulation.

4.3.2. Liquid-ordered phase simulated with the PF approch

In this section a new cholesterol model for the PF approach is presented and its ability to describe
the liquid-ordered phase LO is discussed. As a basis for all simulations, a system consisting of
2000 W and 128 DPPC is used. The development of the cholesterol model is done in two steps:
Firstly, the placement of just one cholesterol within the bilayer is investigated using the PF
approach. Furthermore the influence of different mean-field parameters χij is analyzed and the
placement of the cholesterol is adjusted by varying these parameters.
Secondly, 32 of these newly parametrized cholesterols are added to the bilayer. Here the focus is
on the question if this new parametrized cholesterol gives a physically sensible representation of
the LO-phase using the PF approach and the results are directly compared with the ones obtained
in section 4.3.1 for the PP approach.

1. Placement of cholesterol within the bilayer using the PF approach

The correct placement of one cholesterol within the bilayer is crucial in order to get a physically
correct description of the LO-phase. Using the PF approach, the interactions between different
bead types and therefore the placement of certain molecules is heavily influenced by the chosen
χij-parameters. A first set of χij-parameters is calculated using the Flory-Huggins approach eq.
(2.31) and is shown in Table 4.8. A snapshot of the system using these calculated χij-parameters
can be found in Figure 4.35 A and the corresponding number density in B.
The snapshot and the number density are indicating that the cholesterol is placed in between
the bilayer at z = 5 nm which is not an accurate description of the placement of cholesterol as
discussed in section 4.3.1. For comparison the number density of the cholesterol obtained with
the PP approach is shown in B as a red dotted line. Furthermore, the cholesterol is not aligned
along the z-axis. In order to improve the overall placement and orientation of the cholesterol,
the χ-parameters shown in Figure 4.36 are optimized and are marked in the same color in Table
4.8.
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Figure 4.35.: A: Snapshot of the system consisting of 128 DPPC and one CHOL simulated with
the PF approach. B: Number density along the z-axis for DPPC, W and the
cholesterol CHOL (solid lines) using the PF approach. For comparision the number
density of cholesterol obtained from a simulation of the same system using the PP
approach is shown as a red dotted line.
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3.4. Cholesterol model for hybrid particle-field molecular dynamics simulations

For an factor of two (blue line) the maximum of the number density shifts nearer to the bilayer
surface at z ⇡ 9 nm but also the number density is broadening and for a factor three (green line)
this trend is even increasing. By increasing the factor further to five, the shift towards the bilayer
surface is decreasing but the number density is further broadening. The observed broadening for
higher factors is due to the fact that now the reach of the attractive interactions between the
lipid head-group and the ROH-bead is so far increased that the position of the cholesterol is also
influenced by opposite lipid bilayer surface.

2. Variation of the cholesterol / water mean field parameters Here the parameters marked
in teal , blue and gray were varied. Here, the � -values describes the interactions between
the hydrophilic head-group ROH and the the water beads W. The � -values describe the hy-
drophobic interactions between the “body” of the cholesterol and the water beads. The mean
field interactions of the hydrophobic “tail” C2 are described by the � -values. Again these �-
parameters were multiplied with di↵erent factors and the number densities were monitored. The
results are shown in Figure 3.38.
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Figure 3.38.: Comparision of the number densities. The black dotted line is the number density
of DPPC and is there to visualize the position of the cholesterol.

Varying these parameters has only a minor e↵ect on the placement of the cholesterol within the
lipid bilayer. This is due to the fact that the turned up attractive parameters of the ROH-bead
are counteracted by the repulsive parameters between the C-type beads of the cholesterol. Still
there is an important aspect which one can learn from the variation of these parameters: for
higher factors the shape of the number density changes and the shape is similar to the shape
of the number density obtained for the PP approach. These parameters therefore influence the
alignment of the cholesterol along the z-axis. This alignment can be furthermore monitored with
the help of the order parameter hP2i of the cholesterol. By increasing the the order parameter for
the here marked values by factors up to five, one gets for the order parameter of the cholesterol
the following values:

• � , � , � ⇥2.5: hP2i = 0.42

• � , � , � ⇥3: hP2i = 0.46

• � , � , � ⇥5: hP2i = 0.43.

This means that that increasing the here marked �-parameter equally by the same factor has not
the desired e↵ect. Even though the order parameter for the cholesterol is increases for the factor
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three, another approach to parametrize the mean field parameter has to be chosen. In order to
improve the orientation of the cholesterol the � were not varied and only the interaction between
the head group ROH and the “tail” group C2 were varied. Because the head-group should be
oriented towards the

3. Fully optimized Next the best parameters are presented and discussed:

• �⇥ 5 and �⇥ 10 : By increasing the attractive interaction between the ROH-bead and
the beads of the head group of lipid, the cholesterol is placed nearer to the bilayer surface.
Note that these values are higher than the sensible values discussed above. There, the
best results are obtained for a factor of three and for higher factors a broadening of the
number density is observed. This broadening is not observed here because the interaction
between cholesterol and the water beads are chosen so that they counteract this problem
(see below).

• �⇥ 5 , �⇥ 1 and �⇥ 2.5 : The attractive interaction between the ROH bead and the
water W were increased by a factor of five. Therefore the head bead is further attracted
towards the bilayer surface but not as much as towards the beads of the head group of the
lipid. In order to align the cholesterol along the z-axis the repulsive interaction between
the C2 bead and the water beads was multiplied by 2.5. The remaining C-beads of the
cholesterol “body” were left as they are.

The resulting number densities for the ROH-bead and the whole cholesterol CHOL along the
z-axis are shown in Figure 3.39. In (a) one can clearly see that the ROH-bead is clearly shifted
towards the lipid bilayer surface. Still the overall shape and position of the number densities of
the optimized PF and the PP approach do not agree but are a clear improvement in comparison to
the original PF parameters can be observed. In (b) the number densities of the whole cholesterol
CHOL are compared. Here again one can see a significant increase of the optimized PF model
towards the original PF model. The position of the number densities of the optimized PF model
and the PP model do almost agree. The slight broadening and the less pronounced peak of the
optimized PF is due the more di↵use bilayer surface in the PF approach.
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Figure 3.39.: Comparision of the number densities. The black dotted line is the number density
of DPPC and is there to visualize the position of the cholesterol.
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For an factor of two (blue line) the maximum of the number density shifts nearer to the bilayer
surface at z ⇡ 9 nm but also the number density is broadening and for a factor three (green line)
this trend is even increasing. By increasing the factor further to five, the shift towards the bilayer
surface is decreasing but the number density is further broadening. The observed broadening for
higher factors is due to the fact that now the reach of the attractive interactions between the
lipid head-group and the ROH-bead is so far increased that the position of the cholesterol is also
influenced by opposite lipid bilayer surface.

2. Variation of the cholesterol / water mean field parameters Here the parameters marked
in teal , blue and gray were varied. Here, the � -values describes the interactions between
the hydrophilic head-group ROH and the the water beads W. The � -values describe the hy-
drophobic interactions between the “body” of the cholesterol and the water beads. The mean
field interactions of the hydrophobic “tail” C2 are described by the � -values. Again these �-
parameters were multiplied with di↵erent factors and the number densities were monitored. The
results are shown in Figure 3.38.
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Figure 3.38.: Comparision of the number densities. The black dotted line is the number density
of DPPC and is there to visualize the position of the cholesterol.

Varying these parameters has only a minor e↵ect on the placement of the cholesterol within the
lipid bilayer. This is due to the fact that the turned up attractive parameters of the ROH-bead
are counteracted by the repulsive parameters between the C-type beads of the cholesterol. Still
there is an important aspect which one can learn from the variation of these parameters: for
higher factors the shape of the number density changes and the shape is similar to the shape
of the number density obtained for the PP approach. These parameters therefore influence the
alignment of the cholesterol along the z-axis. This alignment can be furthermore monitored with
the help of the order parameter hP2i of the cholesterol. By increasing the the order parameter for
the here marked values by factors up to five, one gets for the order parameter of the cholesterol
the following values:

• � , � , � ⇥2.5: hP2i = 0.42

• � , � , � ⇥3: hP2i = 0.46

• � , � , � ⇥5: hP2i = 0.43.

This means that that increasing the here marked �-parameter equally by the same factor has not
the desired e↵ect. Even though the order parameter for the cholesterol is increases for the factor
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three, another approach to parametrize the mean field parameter has to be chosen. In order to
improve the orientation of the cholesterol the � were not varied and only the interaction between
the head group ROH and the “tail” group C2 were varied. Because the head-group should be
oriented towards the

3. Fully optimized Next the best parameters are presented and discussed:

• �⇥ 5 and �⇥ 10 : By increasing the attractive interaction between the ROH-bead and
the beads of the head group of lipid, the cholesterol is placed nearer to the bilayer surface.
Note that these values are higher than the sensible values discussed above. There, the
best results are obtained for a factor of three and for higher factors a broadening of the
number density is observed. This broadening is not observed here because the interaction
between cholesterol and the water beads are chosen so that they counteract this problem
(see below).

• �⇥ 5 , �⇥ 1 and �⇥ 2.5 : The attractive interaction between the ROH bead and the
water W were increased by a factor of five. Therefore the head bead is further attracted
towards the bilayer surface but not as much as towards the beads of the head group of the
lipid. In order to align the cholesterol along the z-axis the repulsive interaction between
the C2 bead and the water beads was multiplied by 2.5. The remaining C-beads of the
cholesterol “body” were left as they are.

The resulting number densities for the ROH-bead and the whole cholesterol CHOL along the
z-axis are shown in Figure 3.39. In (a) one can clearly see that the ROH-bead is clearly shifted
towards the lipid bilayer surface. Still the overall shape and position of the number densities of
the optimized PF and the PP approach do not agree but are a clear improvement in comparison to
the original PF parameters can be observed. In (b) the number densities of the whole cholesterol
CHOL are compared. Here again one can see a significant increase of the optimized PF model
towards the original PF model. The position of the number densities of the optimized PF model
and the PP model do almost agree. The slight broadening and the less pronounced peak of the
optimized PF is due the more di↵use bilayer surface in the PF approach.
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Figure 3.39.: Comparision of the number densities. The black dotted line is the number density
of DPPC and is there to visualize the position of the cholesterol.
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Figure 4.36.: Schematic illustration of the varied χ-paramters.

Note that a positive value of χ describes a repulsive interaction whereas a negative value an
attractive interaction (cf. Figure 4.36, right side). Finding the right parameters is a rather
complicated procedure because the parameters are heavily dependent on each other. In order to
do this systematically the χ-parameters have been multiplied step-wise by a factor. A more in
depth discussion of the influences of the different varied χ-parameters can be found in App. C.7.
The parameters which give the best placement and orientation of the cholesterol are discussed
next.
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Attractive interactions By increasing the attractive interactions the placement of the choles-
terol along the z-axis is influenced and it is moved nearer to the bilayer surface. In combination
with the modified repulsive parameters shown in the next paragraph, the following χ-parameters
give the best placement of the cholesterol:

• χ× 5 and χ× 10 : By increasing the attractive interaction between the ROH-bead and
the beads of the head group of lipid, the ROH group is more attracted to these beads and
therefore placed nearer to them. A factor of ten for the ROH-G interactions ( χ ) is placing
the ROH-bead nearer to the G beads than to the P and N beads which results in a more
accurate description of the placement of the ROH-bead within the bilayer.

• χ× 5 : The attractive interactions between the ROH-bead and the water beads W are in-
creased by a factor of five. In this way the hydrophilic interactions are correctly represented
and the head group is again placed nearer to the bilayer surface.

Repulsive interactions By varying the repulsive χ-parameters the alignment along the z-axis
is influenced.

• χ× 2.5 : In order to align the cholesterol along the z-axis the hydrophobic interaction
between the C2 bead and the water beads was multiplied by 2.5. In this way the tail of the
cholesterol is repulsed from the water and in combination with the above chosen parameters
for the attractive interactions the cholesterol is aligned along the z-axis.

• χ× 1 : The mean-field parameter for the repulsive interaction of the cholesterol “body”
with the water beads were left as they are. Increasing this value would not only increase
the alignment along the z-axis but also the “flip-flop” rate (cf. section 4.3.1) beyond a
reasonable value.

The resulting number density for the whole cholesterol CHOL along the z-axis is shown in Figure
4.37 and it has an order parameter 〈P2〉 of 0.45. One can see a significant increase of the optimized
PF model towards the original PF model. The position of the number densities of the optimized
PF model and the PP model do almost agree. The slight broadening and the less pronounced
peak of the optimized PF is due the more diffuse bilayer surface in the PF approach. This newly
parametrized cholesterol model is therefore placed and positioned within the bilayer similar to the
cholesterol model used in the PP approach. In the next section this new cholesterol is analyzed
with respect to its description of the LO-phase using the PF approach.

2. Simulation of the liquid-ordered phase using the PF approach

In order to investigate the new cholesterol model with respect to its description of the liquid-
ordered phase LO, a system consisting of 128 DPPC and 32 CHOL as in section 4.3.1 is analyzed.
Computational details of the setup of the simulation can be found in App. C.5.
In Figure 4.38 A a snapshot of the DPPC/CHOL system simulated using the PF approach is
shown. When comparing this snapshot with the one obtained by using the PP approach (see
Figure 4.34) one can see that the lipids and the cholesterol are less ordered than in the system
simulated with the PP approach. This reduction in the order is expected when using the PF
approach (see Figure 4.23) and can be quantified with the help of the order parameter and directly
be compared with the one of the PP approach of section 4.3.1. The obtained values are shown
in Table 4.7.
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Figure 4.37.: Comparision of the number densities. The black dotted line is the number density
of DPPC and is there to visualize the position of the cholesterol.

Table 4.7.: Comparision of the different lateral diffusion Dxy and order parameters of the DPPC
lipids and cholesterols obtained with different approaches.

approach system Dxy/10−5 cm2/s 〈P2〉DPPC 〈P2〉CHOL phase

PF 128 DPPC, 32 CHOL 0.2153± 0.0334 0.53 0.44 LO

PF 128 DPPC 0.2183± 0.0378 0.35 - Lα
PP 128 DPPC, 32 CHOL 0.0719± 0.0173 0.66 0.75 LO

PP 128 DPPC 0.0709± 0.0152 0.58 - Lα

In Figure 4.38 B the number densities for DPPC, W and CHOL along the z-axis are shown.
For comparison the number density of cholesterol obtained with the PP approach is shown as
a red dotted line. Both approaches show two peaks for CHOL but the one of the PF approach
are less pronounced which is due to the character of the interactions in the mean field. One can
conclude that the PF approach gives a reasonable description of the placement and orientation
of the cholesterols in the bilayer.
Next the DPPC/CHOL system simulated using the PF approach is further investigated with
respect to its ability to describe the liquid-ordered phase LO. All results are compared with the
results of the DPPC system and with the results of the PP simulations. The order parameter
and the lateral diffusion for both approaches and both systems are shown in Table 4.7.
For the PF approach one can observe a significant increase in the order parameter of the lipid
from the DPPC system to the DPPC/CHOL system of 0.18 whereas the lateral diffusion Dxy of
the lipids stays constant in both system. Such a behavior clearly indicates that the DPPC/CHOL
system simulated with the PF approach is in the liquid-ordered phase LO. Note that the observed
〈P2〉-values are lower and the Dxy-values are higher in the PF approach than in the PP approach
due to the different descriptions of the intermolecular interactions.
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Figure 4.38.: A: Side view of bilayer patch consisting of 128 DPPC and 32 cholesterol simulated
with the PF approach. B: Corresponding number density along the z-axis. For
comparision the number density of he PP approach is shown as a dotted red line.

4.3.3. Conclusion

In this section a new cholesterol model for the PF approach based on the improved MARTINI
model of [71] was presented and investigated with respect to the description it provides of the
liquid-ordered LO-phase. In order to gain insight into the characteristics of this phase, a system
consisting of 128 DPPC and 32 CHOL using the PP approach was discussed first in section 4.3.1.
The obtained results were taken as a basis for the parameterization of the cholesterol within the
PF approach.
In section 4.3.1 the influences of different mean field parameters χij and their impact on the
placement of a single cholesterol within the lipid-bilayer were thoroughly discussed. The param-
eters which agree the most with the placement found using the PP approach were used in order
to construct a system with 32 cholesterols and 128 DPPC. In this way a system was obtained
which offers a physical sensible description of the LO-phase. Due to the computational speed-up
gained by using the PF approach, this is a big step towards the simulation of bilayer-systems on
a mesoscopic scale.
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Table 4.8.: Mean field parameters for the DPPC-cholesterol system.

χij N P G C ROH R1 R2 R3 R4 R5 C1 C2 W

N 0.000 -1.500 6.300 9.000 -3.375 6.375 4.575 6.375 6.375 6.375 6.375 9.000 -8.100
P -1.500 0.000 4.500 13.500 -4.875 10.875 9.075 10.875 10.875 10.875 10.875 13.500 -3.600
G 6.300 4.500 0.000 6.300 -4.875 3.675 3.675 3.675 3.675 3.675 3.675 6.300 4.500
C 9.000 13.500 6.300 0.000 4.425 -2.625 -2.625 -2.625 -2.625 -2.625 -2.625 0.000 33.750

ROH -3.375 -4.875 -4.875 4.425 0.000 5.850 2.250 5.850 5.850 5.850 5.850 4.425 -1.875
R1 6.375 10.875 3.675 -2.625 5.850 0.000 0.000 0.000 0.000 0.000 0.000 -2.625 10.875
R2 4.575 9.075 3.675 -2.625 2.250 0.000 0.000 0.000 0.000 0.000 0.000 -2.625 6.675
R3 6.375 10.875 3.675 -2.625 5.850 0.000 0.000 0.000 0.000 0.000 0.000 -2.625 10.875
R4 6.375 10.875 3.675 -2.625 5.850 0.000 0.000 0.000 0.000 0.000 0.000 -2.625 10.875
R5 6.375 10.875 3.675 -2.625 5.850 0.000 0.000 0.000 0.000 0.000 0.000 -2.625 10.875
C1 6.375 10.875 3.675 -2.625 5.850 0.000 0.000 0.000 0.000 0.000 0.000 -2.625 10.875
C2 9.000 13.500 6.300 0.000 4.425 -2.625 -2.625 -2.625 -2.625 -2.625 -2.625 0.000 13.500
W -8.100 -3.600 4.500 33.750 -1.875 10.875 6.675 10.875 10.875 10.875 10.875 13.500 0.000
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This work comprises detailed studies of two different systems using MD simulation. Besides using
the same simulation technique, both studies treat model systems which lay the groundwork in
order to understand more complex biological systems. The investigated key feature of both
studies is self-organization, whether it be reversible bond breakage under force in chapter 3 or
self-assembled phospholipid bilayers in chapter 4. The performed simulations are completing the
view on this feature and offer a detailed insight which would not be accessible by experimental
methods. MD simulations serve therefore indeed as a computational microscope.

5.1. Pulling parameter dependence in reversible force probe
molecular dynamics simulations

With the invention of the AFM, micromanipulation of single molecules have become readily
available and are an innovative way to study nanoscopic systems under force. Such stretching ex-
periments offer a unique way to investigate fundamental theories of statistical mechanics but lack
an atomistic description. Due to big advances in computational power and simulation techniques,
FPMD simulations can provide a detailed atomistic view of such experiments. Biomolecules like
proteins and RNA have been studied already extensively but from a physical point of view they
have a major drawback: because of their complex structure, the probed energy landscape cannot
be controlled. More sophisticated systems like the studied calix[4]arene-catenanes in chapter 3
offer the opportunity to study the energy landscape as a function of molecular design and external
force. There, three different variations are studied. They differ in the length of their mechanically
interlocked loops and can therefore be stretched more or less. Previous studies have shown that
the system with the shorter loops, T14, can be understood as a two state model and the one
with the longer loops, T17 and T20, represent three state models. The investigations done in
this work extend these studies and a special focus is on the dependence of FPMD simulations
on the pulling parameters K and V . In most existing models to understand FPMD simulations,
only the loading rate, µ = KV , does matter but not the individual values of K and V .
In section 3.3 FPMD simulations of the calixarene T14 are studied for various values of K and
loading rates ranging from 0.08305 N/s to 83.05 N/s. After a short introduction into the structural
and mechanical features of the system, the dependence of the characteristic forces on the pulling
parameters are investigated. It is shown that some of the rupture and rejoin forces are depending
only very weakly on variations of K for a given loading rate whereas others show a strong K-
dependence. This behavior can be easily understood in terms of a harmonic model for the energy
landscape which allows to reproduce the found characteristic forces.
A special feature of the here studied systems is the hydrogen bond network. The two different
states, open and closed, are stabilized by two different sets of hydrogen bonds. The average
number of hydrogen bonds is studied as a function of the average end-to-end distance. Here, the
number of hydrogen bonds which stabilize the open state depend on the chosen loading rate and
for a given loading rate the number of these hydrogen bonds shows only a minimal dependence
on K. For the average number of hydrogen bonds which stabilize the closed state, neither a µ-
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nor a K-dependence can be found. Interestingly, these observed trends for the open and closed
state are identical for the pull and relax mode. Furthermore, with the help of the hydrogen bond
network, a working definition of the transition state T can be defined. The found transition state
is nearer to the closed state than to the open state. This means, that the found open state has
a rather brittle structure in the range of the here tested forces.
The kinetics of the transition from the closed to the open state is of great interest and many
different models exist to rationalize the determined rates for such transitions. For the calculated
rates for both transitions, closed to open in the pull mode and open to closed in the relax mode, no
fit to existing expression derived from the mean first passage times for model energy landscapes
nor a model-free determination of the distance to the barrier gives reasonable results. All of
the here tested expression have the underlying assumption of a thermally activated transition.
The failure of these fits can be a hint towards the fact that the simulations are performed in
the crossover region from activated to diffusive dynamics. In order to further investigate this
assumption, the reversible bond breaking observed in the FPMD simulations is considered to be
a process of diffusive barrier crossing in a model potential. The potential of mean force of the
investigated calixarene T14 was used and an external force applied. Trajectories were generated
via KMC simulations and transition rates were calculated as inverse MFPTs. From the found
results one can conjecture that the FPMD simulations are most probably in the dynamical regime
of a crossover from activated dynamics to diffusive dynamics.
Section 3.4 treats FPMD simulations of the calixarene T17 and T20. These systems can be
understood as three state models and are directly compared with the calixarene T14 due to
structural similarities. A particular focus is on the hydrogen bond network, which is stabilizing
the closed and intermediate state of the calixarenes T17 and T20 and the closed and open state
of the calixarene T14. The open state O of the calixarenes T17 and T20 are only stabilized
by the entangled loops. Comparing the characteristic forces and their corresponding end-to-end
distances of all three systems, one finds a big similarity: as long as the hydrogen bond network is
involved, the found values differ only minimally. Furthermore the degree of reversibility is tuned
by the length of the entangled loops: the further the calixarene system can be stretched, the less
likely it is that the system finds its way back into the closed state. This gives complete control
over the energy landscape and the degree of reversibility.
In this work, FPMD simulations of the sophisticated model systems calixarene T14, T17 and T20
are shown to give a detailed insight into the behavior of reversible bond breakage which would not
be possible experimentally. Furthermore, these systems offer complete control over the degree of
reversibility and it is possible to tune the energy landscape. They are therefore an ideal model
system to study two and three state models. In this work the FPMD simulations were performed
due to computational limitations with relatively high loading rates (∼ 10−2 N/s) compared to
those experimentally accessible (∼ 10−8 N/s). In order to link the results obtained by FPMD
simulations and by pulling experiments, slower pulling velocities for the simulations are needed.
This can be achieved by reducing computational cost. The majority of the computational effort
arises from the calculation of the solvent. By using a CG solvent, the costs can be reduced but
calculating the interactions between CG solvent and an atomistic model is complex. Innovative
methods like the adaptive resolution simulations (AdResS) method [106] allow to change the
number of degrees of freedom of a system on-the-fly and are therefore promising approaches.
The system can then pass from atomistic to CG resolution and vice versa as a function of the
position of a molecule in the simulation box. For the FPMD simulations, the transition region
from atomistic to CG has to be dynamic and change with the stretch of the calixarene. Such
a dynamic approach for force probe simulations is not yet implemented in the existing program
package. The well-studied calixarene systems offer an ideal testbed for the development of such
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an approach because of the available information about the atomistic system.
Besides altering the systems and changing the solvent, the already performed FPMD simulations
could be analyzed with the help of recent improvements in the theory of rapid force spectroscopy.
The model by Bullerjahn [61] starts from a rigorous probabilistic model of bond dynamics and
allows to extract expressions for the rupture force distributions and mean unbinding forces for slow
and fast loading rates. With this model it could be further verified that the here performed FPMD
simulations are indeed performed in the crossover region from activated to diffusive dynamics.

5.2. Molecular dynamics simulation of phospholipid bilayers

In order to understand functions and properties of lipid bilayers, a deep understanding of the
overall structure and dynamics of these systems is required. MD simulations of simplified one-
component and two-component models, so-called reconstituted lipid bilayers, offer deep insight
into the properties and behavior of lipids even on a coarse grained level.
In this work the CG model of the phospholipid DPPC and DOPC are studied extensively using
different MD approaches. The main focus of this work is on the phase behavior of these lipids.
In order to induce a phase transition, the studied bilayer system are investigated over a large
range of temperatures. Furthermore, the influence of cholesterol is investigated.
Through this work, a new parametrized CG model of the unsaturated DOPC is introduced.
It is based on the CG MARTINI model but unlike the original model it is able to reproduce
the liquid-to-gel transition in semi-quantitative agreement with the experimental data. This
new model was obtained by varying the angle parameters of the bead which represents the C-
C double bond. Furthermore, the influence of the mechanism of the phase transition and the
influence in a two-component system on the saturated DPPC are investigated. In two-component
systems, a phase-separation is expected for low temperatures which could not be observed on the
investigated timescale.
The well-studied CG model of DPPC is investigated with particle-field approaches: the PF and
the PPPF approach. These approaches take the CG model as a basis for further approximations
and offer a significant speed-up of the simulations but are less accurate. Nonetheless, these
approaches are an important step towards the simulation of systems on a mesoscale. Even
though a phase transition could not be observed for neither one of the approaches, the liquid
phase is well described by the PF approach and the gel phase by the PPPF approach.
Besides the abundant phospholipids, cholesterol is an important component in mammalian cells.
Due to its rigid structure it increases the order within the lipid bilayer and a liquid-ordered phase
is formed. This phase is important for the abundance of a cell wall in mammalian cells. The
characteristics of the liquid-ordered phase is a compact structure of the bilayer while maintaining
a relatively high lateral diffusion coefficient of the lipids. Here, a new parametrized cholesterol
model has been introduced for the PF approach which is able to reproduce the liquid-ordered
phase with its main characteristics.
In this work, MD simulations of lipid bilayer systems using different approaches are shown to be
a powerful tool for the investigation of reconstituted bilayer systems. All biological important
phases (liquid, liquid-ordered and gel phase) have been shown to be described even by less accu-
rate but vastly more efficient approaches. This offers new possibilities for future investigations
of biological multicomponent bilayer systems on a mesoscale. Such future investigation could
also involve integral membrane proteins which are important for the proper cell function. [107]
Atomistic systems have already been studied but the large simulation volume of up to 300 000
atoms poses a major computational challenge. [108] By using the CG models for the lipids and
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the PF approach used in this work the cost could be reduced.
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A. Computational details

A.1. Periodic Boundary Conditions PBC

The aim of MD simulations is to provide information about the properties of a macroscopic system
but most simulated systems only probe a system with a few hundred to thousand particles and
are thereby far away from the thermodynamic limit. For such small systems, boundary conditions
do not have a negligible effect because for N particles in a system, N 2/3 are at the surface. Even
for a system consisting of N = 106 particles this would mean that 1 % are at the surface.
A solution to this problem are periodic boundary conditions (PBC). The volume containing the
N particles is treated as the primitive cell in a lattice of identical cells (see Figure A.1). Here a
given particle interacts with all the periodic images and as well with its own periodic image.

Figure A.1.: Representation of periodic boundary conditions.

A.2. Calixarene FPMD simulations

All simulations were performed using the GROMACS 4.0.7 program package [50] employing the
OPLS-AA force field [51] [52]. For the short-ranged interactions a cut-off of 1.4 nm was used,
the long-range Coulomb-interactions were treated using the particle mesh Ewald summation
method [18] and for the van der Waals interaction a dispersion correction [109] was applied.
Periodic boundary conditions were used and the simulation time-step was 2 fs which is possible
because the bonded interactions were constrained to their equilibrium values using the LINCS-
algorithm [110]. The neighbor list was updated every 10 fs. As solvent, mesitylene like in the
experiment [46] was used.
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B. Bulk properties

B.1. Dynamic strength
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Figure B.1.: Dynamic strength (pull mode), i.e. the Ff curves averaged over 100 simulation
for a loading rate of µ = 83.05 N/s plotted versus the applied force f = µt. The
parameters for the curves are as follows: (1) K = 0.2048 N/m and V = 400 m/s, (2)
K = 0.4153 N/m and V = 200 m/s , (3) K = 0.8305 N/m and V = 100 m/s, (4)K =
1.661 N/m and V = 50 m/s, (5) K = 3.322 N/m and V = 25 m/s, (6) K = 6.644 N/m

and V = 12.5 m/s, (7) K = 13.288 N/m and V = 6.25 m/s, (8) K = 26.576 N/m and
V = 3.125 m/s.
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Figure B.2.: Dynamic strength (relax mode), i.e. the Ff curves averaged over 100 simulation
for a loading rate of µ = 83.05 N/s plotted versus the applied force f = µt. The
parameters for the curves are as follows: (1) K = 0.2048 N/m and V = 400 m/s, (2)
K = 0.4153 N/m and V = 200 m/s , (3) K = 0.8305 N/m and V = 100 m/s, (4)K =
1.661 N/m and V = 50 m/s, (5) K = 3.322 N/m and V = 25 m/s, (6) K = 6.644 N/m

and V = 12.5 m/s, (7) K = 13.288 N/m and V = 6.25 m/s, (8) K = 26.576 N/m and
V = 3.125 m/s.
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Figure B.3.: Dynamic strength (pull mode), i.e. the Ff curves averaged over 100 simulation for a
loading rate of µ = 8.305 N/s plotted versus the applied force f = µt. The parameters
for the curves are as follows: (1) K = 0.4153 N/m and V = 20 m/s , (2) K = 0.8305 N/m

and V = 10 m/s, (3)K = 1.661 N/m and V = 5 m/s, (4) K = 3.322 N/m and V = 2.5 m/s,
(5) K = 6.644 N/m and V = 1.25 m/s.
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Figure B.4.: Dynamic strength (relaxl mode), i.e. the Ff curves averaged over 100 simulation
for a loading rate of µ = 8.305 N/s plotted versus the applied force f = µt. The
parameters for the curves are as follows: (1) K = 0.4153 N/m and V = 20 m/s , (2)
K = 0.8305 N/m and V = 10 m/s, (3)K = 1.661 N/m and V = 5 m/s, (4) K = 3.322 N/m

and V = 2.5 m/s, (5) K = 6.644 N/m and V = 1.25 m/s.
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Figure B.5.: Dynamic strength (pull mode), i.e. the Ff curves averaged over 100 simulation for
a loading rate of µ = 0.8305 N/s plotted versus the applied force f = µt. The
parameters for the curves are as follows: (1) K = 0.4153 N/m and V = 2 m/s , (2)
K = 0.8305 N/m and V = 1 m/s, (3)K = 1.661 N/m and V = 0.5 m/s, (4) K = 3.322 N/m

and V = 0.25 m/s.
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Figure B.6.: Dynamic strength (relax mode), i.e. the Ff curves averaged over 100 simulation
for a loading rate of µ = 0.8305 N/s plotted versus the applied force f = µt. The
parameters for the curves are as follows: (1) K = 0.4153 N/m and V = 2 m/s , (2)
K = 0.8305 N/m and V = 1 m/s, (3)K = 1.661 N/m and V = 0.5 m/s, (4) K = 3.322 N/m

and V = 0.25 m/s.
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Figure B.7.: Dynamic strength (pull mode), i.e. the Ff curves averaged over 100 simulation for
a loading rate of µ = 0.8305 N/s plotted versus the applied force f = µt. The
parameters for the curves are as follows: (1) K = 0.4153 N/m and V = 0.2 m/s , (2)
K = 0.8305 N/m and V = 0.1 m/s, (3)K = 1.661 N/m and V = 0.05 m/s.
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Figure B.8.: Dynamic strength (relax mode), i.e. the Ff curves averaged over 100 simulation
for a loading rate of µ = 0.8305 N/s plotted versus the applied force f = µt. The
parameters for the curves are as follows: (1) K = 0.4153 N/m and V = 0.2 m/s , (2)
K = 0.8305 N/m and V = 0.1 m/s, (3)K = 1.661 N/m and V = 0.05 m/s.

111



B. Bulk properties

112
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B.2. Hydrogen bonds
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Figure B.9.: Pull mode: UU and UE bonds as a function of R for a loading rates ranging from
µ = 0.08305− 83.05 N/s and different sets of V and K.
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(a) Averaged UU bonds as a function of the end-to-end
distance R.
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(b) Averaged UE bonds as a function of the end-to-end
distance R.
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(c) Averaged UU bonds as a function of the end-to-end
distance R.
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(d) Averaged UE bonds as a function of the end-to-end
distance R.
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(e) Averaged UU bonds as a function of the end-to-end
distance R.
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(f) Averaged UE bonds as a function of the end-to-end
distance R.
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distance R.
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Figure B.10.: Relax mode: UU and UE bonds as a function of R for a loading rates ranging from
µ = 0.08305− 83.05 N/s and differemt sets of V and K.
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B.3. Polynomial describtion of the PMF

B.3. Polynomial describtion of the PMF

The PMF VPMF(q) from [48] for the OPLS AA force field was fitted with eq. (3.22) using poly-
nomial regression. The obtained parameters are a = 7575.000, b = −54187.208 c = 143930.350
d = −167235.988 and e = 71631.237. The extrema (qC, qT, qO) of eq. (3.22) are given by

qC(f) = u(f) + v(f)− α

3
for u(f) < 0

qO(f) = u(f) + v(f)− α

3
for u(f) > 0

qT(f) = −
√
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3
p cos
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1

3
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with

u(f) =
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√
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+
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∆(f) (B.2)

v(f) =
3

√
−x(f)

2
−
√

∆(f) (B.3)

x(f) =
2α3

27
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3
+ γ(f) (B.4)

p = b− α2

3
(B.5)

and
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(
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)2

+
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3

)3
(B.6)

α =
3b

4a
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β′ =
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(B.8)

γ(f) =
d− f −Kq0

C

4a
. (B.9)
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C. Computational details: Lipids and cholesterol

C.1. Particle-particle simulations

All particle-particle (PP) simulations were performed using the GROMACS 4.6 [50] program
package employing the MARTINI force field [9]. For the short ranged interactions a cut-off
of 0.9 nm was used. The long-range Coulomb-interactions and the van der Waals interaction
were treated using shifted potentials. A semi-isotropic simulation box with periodic boundary
conditions was used. The simulation time step was 40 fs which is possible because the bonded
interactions were constrained to their equilibrium values using the LINCS-algorithm [110]. The
neighbor list was updated every 400 fs.
The lipid systems were setup as follows: The simulated lipid was randomly distributed in a
simulation box and the energy of this system was then minimized. The water and the anti freeze
was added and the system was again energy minimized. After that, a NVT simulation was run
until the bilayer was built. Then a NPT simulation with semi-isotropic pressure coupling was
run to equilibrate the system. This equilibration run was stopped when the pressure and the
temperature reached the desired value.
For the two-component systems consisting of DPPC and cholesterol the setup of the system is
equivalent to the setup of the lipid system described above. The only exceptions are that the
cholesterol was randomly distributed in the simulation box together with the lipid before the first
energy minimization and only the standard MARTINI water model W was used. Here, no anti
freeze particle are used because the system is not quenched to lower temperatures.

C.2. Particle-field and particle-particle particle-field simulations

All particle-field (PF) and particle-particle particle-field simulations were performed using the
OCCAM package [21]. For the short-ranged interactions a cut-off of 0.9 nm for the PF simulations
was used. The cut-off in PPPF simulations was subject to change but in most simulations around
0.52 nm The simulation time step was 30 fs and density field was updated every 300 fs. The
box size was kept constant and the Andersen thermostat [111] was used. The values for the
non-bonded parameters for the discussed lipids are subject to change. Charge, mass and the
bonded-parameters for the used DPPC model are shown in Table C.1.
The starting configuration were taken from well equilibrated PP simulations. The box size was
adjusted to an averaged value. The antifreeze particles from the PP simulations were replaced by
water. The volume of the box had to be further adjusted in z direction because the anti freeze
particles are larger than the used water particles.
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C. Computational details: Lipids and cholesterol

C.3. Parameters for the phospholipid models

Table C.1.: Parameters for charge and mass and the bonded and angle functions [9] for the PP,
PF and PPPF approach for DPPC.

i bead charge mass i j length K i j k θ K

1 N 1 72 1 2 0.47 1250 2 3 3 120.0 25.0
2 P -1 72 2 3 0.47 1250 2 3 4 180.0 25.0
3 G 0 72 3 3 0.37 1250 3 4 4 180.0 25.0
4 C 0 72 3 4 0.47 1250 4 4 4 180.0 25.0

Table C.2.: Parameters for charge and mass and the bonded and angle functions [9] for the PP,
PF and PPPF approach for DOPC.

i bead charge mass i j length K i j k θ K

1 N 1 72 1 2 0.47 1250.00 2 3 3 120.00 25.000
2 P -1 72 2 3 0.47 1250.00 2 3 4 180.00 25.000
3 G 0 72 3 3 0.37 1250.00 3 4 4 180.00 25.000
4 C 0 72 3 4 0.47 1250.00 4 4 4 180.00 25.000
5 D 0 72 4 4 0.47 1250.00 4 5 4 120.00 45.000
- - - - 5 4 0.47 1250.00 5 4 4 180.00 25.000

C.4. Additional graphs for the DPPC/DOPC two-component system
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Figure C.1.: Order parameter 〈P2〉 and measured angle 〈∠CDC〉 as a function of the temperature
for a DPPC/DOPC mixture with different values for KCDC.
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C.5. Particle-field simulations of the liquid-ordered phase

C.5. Particle-field simulations of the liquid-ordered phase

Here the setup of a system consisting of 128 DPPC, 32 CHOL and 2000 W simulated with the
PF approach is described. As a starting configuration for the PF simulation, a snapshot of
a well-equilibrated PP system of the same system (128 DPPC, 32 CHOL, 2000 W) was used.
The initial box-size parameters were taken from a well-equilbrated PP simulation of a system
consisting of 128 DPPC and 2000 W. In order to approximate additional volume taken by the 32
cholesterol, the results of section 4.3.1 were used. Here the area per cholesterol was approximated
to be 0.350 nm2. With a bilayer thickness of about 0.41 nm the volume of the 32 cholesterol is
2.296 nm3. Assuming that the volume of a cholesterol is the same in the PF and PP approach is
justified by the rigid structure.
In order to verify that the system is stable, a simulation of 1µs starting from an well equilibrated
snapshot was performed. The order parameter 〈P2〉 was recorded and showed only minor fluc-
tuations and averaged at 0.53± 0.02. Furthermore number densities of DPPC, CHOL and ROH
were recorded over 200 ns intervals and are in agreement with each other. Besides the structural
properties, also the the recorded pressure and the potential energy stayed constant.

C.6. Parameters for the cholesterol model

Table C.3.: Bonded parameters as listed in [71].

i j rij / nm Kij / kJ mol−1

1 2 0.184 2.0 · 104

2 3 0.267 2.0 · 104

2 4 0.433 2.0 · 104

4 6 0.194 2.0 · 104

4 7 0.499 2.0 · 104

5 6 0.379 2.0 · 104

6 7 0.599 2.0 · 104

7 8 0.421 1.25 · 103

2 6 0.416 2.0 · 104

3 6 0.296 2.0 · 104

Table C.4.: Constraints as listed in [71].

i j rij / nm

1 3 0.415
1 4 0.614
3 4 0.288
3 5 0.434
4 5 0.265
5 7 0.343
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C. Computational details: Lipids and cholesterol

C.7. Influence of different mean-field parameters on the placement
of CHOL

In order to improve the placement of the cholesterol, the influence of the different χ-parameters
marked in different colors (see Table 4.8) are investigated in the following three paragraphs.
An illustration of the varied parameters χ can be found in Figure 4.36. Firstly, the interaction
between the head group ROH of the cholesterol and the head group of DPPC (N,P and G bead)
is systematically analyzed. Secondly, the influence of the cholesterol with the water beads W is
monitored.

1.Variation of the ROH-cholesterol / head-lipid mean field parameters Here, the mean field
parameters χ and χ are varied. These parameters represent the attractive short-range inter-
actions between the head group of the lipids and the group of the cholesterol (see Figure 4.36).
By multiplying these parameters with a factor up to five, the influence on the placement of the
cholesterol of these χ-paramters are investigated. The resulting number densities are shown in
Figure C.2 and compared with the results obtained from the PP simulation (solid black line).
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Figure C.2.: Comparision of the number densities. The black dotted line is the number density
of DPPC and is there to visualize the position of the cholesterol.

For an factor of two (blue line) the maximum of the number density shifts nearer to the bilayer
surface at z ≈ 9 nm but also the number density is broadening. For an even higher factor of
three (green line) this trend is even increasing. By increasing the factor further to five, the
shift towards the bilayer surface is decreasing but the number density is further broadening. The
observed broadening for higher factors (≥ 5) is due to the fact that now the reach of the attractive
interactions between the lipid head-group and the ROH-bead is so far increased that the position
of the cholesterol is also influenced by opposite lipid bilayer surface.

2. Variation of the cholesterol / water mean field parameters Here the parameters χ , χ
and χ were varied. These parameters describe the interactions between the hydrophilic head-
group ROH and the the water beads W and the hydrophobic interactions between the “body” /
the tail of the cholesterol and the water beads (see Figure 4.36). Like in the previous paragraph,
the χ-parameters were multiplied with different factors and the number densities were monitored.
The results are shown in Figure C.3.
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Figure C.3.: Comparision of the number densities. The black dotted line is the number density
of DPPC and is there to visualize the position of the cholesterol.

Varying these parameters all at once with the same factor has only a minor effect on the place-
ment of the cholesterol within the lipid bilayer. This is due to the fact that the turned up
attractive parameters of the ROH-bead are counteracted by the repulsive parameters between
the C-type beads of the cholesterol. In order to improve the orientation of the cholesterol only
the interaction between the head group ROH and the “tail” group C2 were varied. Here, the
hydrophilic interactions between the head group and the water were increased by a factor of five
( χ× 5 ) and the hydrophobic interactions between the tail of the cholesterol were increased by

an factor of 2.5 ( χ× 2.5 ). By doing that, the head group is attracted more towards the lipid
bilayer and at the same time the tail group is repulsed. This forces the cholesterol to align along
the z-axis which can also be seen in Figure C.3 (solid orange line). The peak at z ≈ 3.5 nm is
due to the fact that the cholesterol also attracted to the bilayer surface at the other side and
therefore shows an flip-flop mechanism.

Optimized parameters

• χ× 5 and χ× 10 : By increasing the attractive interaction between the ROH-bead and
the beads of the head group of lipid, the cholesterol is placed nearer to the bilayer surface.
Note that these values are higher than the sensible values discussed above in the first
paragraph. There, the best results are obtained for a factor of three and for higher factors
a broadening of the number density is observed. This broadening is not observed here
because the interaction between cholesterol and the water beads are chosen so that they
counteract this problem (see below).

• χ× 5 , χ× 1 and χ× 2.5 : The attractive interaction between the ROH bead and the
water W were increased by a factor of five. Therefore the head bead is further attracted
towards the bilayer surface but not as much as towards the beads of the head group of the
lipid. In order to align the cholesterol along the z-axis the repulsive interaction between
the C2 bead and the water beads was multiplied by 2.5. The remaining C-beads of the
cholesterol “body” were left as they are.
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