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Abstract

Simulations of magnetization dynamics in a multiscale environment en-
able rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic
sample with nanoscopic accuracy in areas where such accuracy is required.
I have developed a multiscale magnetization dynamics simulation approach
that can be applied to large systems with spin structures that vary on small
length scales locally. To implement this, the conventional micromagnetic
simulation framework was expanded to include a multiscale solving routine.
The software selectively simulates different regions of a ferromagnetic sample
according to the spin structures located within in order to employ a suitable
discretization and use either a micromagnetic or an atomistic model. A track-
ing algorithm was developed in order to shift the atomistic region within the
sample to follow the spin structures which vary on a short length scale.

In the first part of this thesis, the theory necessary for the development
and the comprehension of this approach was introduced. This includes: the
derivation of the LLG equation, the phenomenological background and the
evaluation of the energy contributions in the two models, a review on mag-
netic structures of fundamental and technological interest, with a focus on
some structures which cannot be modeled using micromagnetism only, and an
analysis of the computational algorithms used in the multiscale simulation.

The second part of the thesis is focused on describing in detail the imple-
mentation of the multiscale approach, as well as demonstrating its necessity
and validity. To demonstrate the validity of the approach, we simulate the
spin wave transmission across the regions simulated with the two different
models and different discretizations. We find that the interface between the
regions is fully transparent for spin waves with frequency lower than a cer-
tain threshold set by the coarse scale micromagnetic model with no noticeable
attenuation due to the interface between the models. One further demonstra-
tion consists in the comparison of a multiscale DMI spiral with the analytical
theory. To demonstrate the reliability of the tracking algorithm, the motion
of a domain wall in a magnetic nanostrip was simulated. The approach was
then applied to magnetic Skyrmions to quantify their stability. Skyrmions
belong to the most interesting spin structures for the development of future
information technology as they have been predicted to be topologically pro-
tected. As a demonstration for the necessity of a multiscale approach, we
first show how the stability of a Skyrmion is influenced by the refinement of
the computational mesh and reveal that conventionally employed traditional



micromagnetic simulations are inadequate for this task. Furthermore, we
determine the stability quantitatively using our multiscale approach.

As a key operation for devices and as a first application of the approach,
the process of annihilating a Skyrmion by exciting it with a spin polarized
current pulse is analyzed, showing that different transformations in the topol-
ogy of the system can be reliably induced by designing the pulse shape.



Zusammenfassung

Simulationen von Magnetisierungsdynamik in einem multiskalen Umfeld
ermöglichen die schnelle Berechnung der Landau-Lifshitz-Gilbert Gleichung
mit nanoskopischer Genauigkeit in einem mesoskopicher Probe, in den Gebie-
ten, in denen eine solche Genauigkeit erforderlich ist. Ich habe einen Ansatz
zu Magnetisierungdynamiksimulationen entwickelt, die auf große Systeme
mit lokal in kleinen Skalenlängen abweichenden Spinstrukturen angewendet
werden kann. Für die Implementation wurde die übliche Grundstruktur der
micromagnetische Simulation erweitert, um eine multiskalen Lösungroutine
zu enthalten. Das Programm simuliert wahlweise verschiedene Gebiete von
einer ferromagnetischen Probe. Je nach den Spinstrukturen, die sich in dem
Gebiet befinden, benutzt das Programm eine geeignete Diskretisierung und
entweder ein micromagnetisches oder ein atomistisches Modell. Um das ato-
mistisches Gebiet innerhalb des Samples umzustellen, wurde ein Verfolgungs-
algorithmus entwickelt. Auf diese Weise werden Spinstrukturen, die lokal in
kleinen Skalenlängen abweichen, verfolgt.

Im ersten Teil dieser Doktorarbeit enthält die erforderliche Theorie, um
diesen Ansatz zu entwickeln und zu verstehen. Dieser Teil enthält: die Herlei-
tung der LLG Gleichung, den phänomenologischen Hintergrund und die Be-
rechnung von den energetischen Beiträgen in beide Modellen, einen Überblick
über magnetischen Strukturen von grundsätzlichem und technologischem In-
teresse mit Schwerpunkt auf Strukturen, die nicht mikromagnetisch model-
liert werden können sowie eine Analyse von den Algorithmen, die in Multis-
kalensimulationen benutzt werden.

Der zweite Teil dieser Doktorarbeit fokussiert sich auf auf die detaillier-
te Beschreibung der Umsetzung des Multiskalenansatzes, ebenso wie eine
Beweisführung dessen Notwendigkeit und Gültigkeit. Um die Gültigkeit des
Ansatzes zu beweisen, simulieren wir die Übertragung von Spinwellen durch
Gebiete mit 2 unterschiedlichen Modellen und Diskretisierungen. Wir finden
heraus, dass die Grenzfläche zwischen den Gebieten (für Spinwelle mit einer
niedrigeren Frequenz als einem gewissen Schwellenwert, den die grobe mikro-
magnetische Diskretisierung bestimmt) vollig durchsichtig ist, deswegen wird
keine Dämpfung durch die Grenzfläche verursacht. Eine weitere Betrachtung
besteht aus dem Vergleich einer DMI-Spirale zwischen der Multiskalensimu-
lation und analytischen Theorie. Um die Gültigkeit des Verfolgungsalgorith-
mus zu beweisen, wurde die Bewegung einer Domänenwände in einer ma-
gnetischen Nanostrip simuliert. Danach wurde der Ansatz auf magnetische



Skyrmionen angewandt, um ihre Stabilität quantitativ zu bestimmen Skyr-
mionen gehören zu den interessantesten Spinstrukturen fürs Entwicklung der
zukünftigen Informationstechnologie, da es Vorhersagen gibt, dass sie topo-
logisch geschützt sind. Um die Notwendigkeit eines Multiskalenansatzes zu
beweisen, zeigen wir zuerst, wie die Stabilität eines Skyrmions durch die Ver-
feinerung des Berechnungnetz beeinflusst wird, und finden heraus, dass die
traditionell üblich angewendeten mikromagnetischen Simulationen, für diese
Aufgabe nicht angemessen sind. Außerdem, bestimmen wir quantitativ, mit
unserem Multiskalenansatz, die Stabilität. Wir regen einen Skyrmion mit
einem spin-polarisiert Strompuls an, um den Vernichtungvorgang zu unter-
suchen.

Dieser ist ein wesentlicher Bestandteil um Geräte zu konstruiren, und die
erste Anwendung unseres Ansatzes. Wir zeigen, dass verschiedene Veränderungen
der Topologie des Systems betriebssicher durch die Gestaltung des Pulses
eingeleitet werden können.
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Motivation

The interest towards microscopic magnetic structures originated during the
20th century, when experimental techniques and the motivation for research
in this field increased dramatically. While research on magnetic patterns
was traditionally of fundamental interest, it became strongly technologically
oriented in the last decades of the century. Micromagnetic theory [?, ?, ?,
?], developed in the 1960s, constituted the main mathematical model to
describe magnetic structures and patterns, from domain walls [?,?,?,?] and
vortices [?,?,?,?], until Skyrmions, the latest, and therefore most discussed
spin structure within the community [?, ?, ?, ?, ?]. Advancements in data
storage technology in magnetic thin films made a further understanding of the
dynamics of magnetic structures necessary. The earliest example of magnetic
structures employed in data storage technology is constituted by magnetic
tapes and discs. These devices exploited domain walls in bubble materials
[?, ?, ?, ?] as information units. The technological obstacles of these device
had to be overcome in order to achieve currently used technology such as
hard drives.

The discovery of the giant magnetoresistance (GMR) effect advanced this
field, as, for this fundamental finding P. Grünberg [?,?] and A. Fert [?] were
rewarded with the Nobel Prize in Physics in 2007. The tunnel magnetoresis-
tance effect [?] (TMR), is an analogous magnetotransport effect that allowed
for a great reduction both in the price and in the size of magnetic hard drive
technology. In both the aforementioned effects, the electric resistance of a
multilayer stack consisting of at least two ferromagnetic layers, separated
by a non magnetic one, depends strongly on the relative orientation of the
magnetization of one magnetic layer with respect to the other one. The main
difference between the two effects lies in the non-magnetic material, which is
conducting for GMR, insulating for TMR. In devices based on these effect,
the exchange bias is used to pin one magnetic layer to an underlying anti-
ferromagnetic layer, while the orientation in the magnetization of the other
magnetic layer is free to rotate, a small external magnetic field results in a
large change of electrical resistance.
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Since such devices are very sensitive, the most obvious room for improve-
ment lies in the information density of hard drives. Due to the current in-
flation in the demand for higher data storage density, eventually a transition
from rotating discs to a novel storage technology could be necessary. Another
topic of widespread interest is that of the operating speed of devices, since
the increase in the amount of data being stored and retrieved should not be
accompanied by a proportional dilation in the time needed to manipulate it.

One device worthy of mention is the racetrack memory proposed by
S. Parkin [?], where bits encoded in magnetic domains in a ferromagnetic
nanowire were used as a shift register with the application of a spin transfer
torque [?,?,?,?,?].

Other suggestions propose the application of topologically stabilized mag-
netic structures, such as vortices [?] and Skyrmions [?]. Modelling such
structures from a computational point of view, and in particular simulating
phenomena involving the overcoming of their topological protection is the
central problem that is treated in this thesis.

Chapter 1 constitutes an introduction on magnetization dynamics, show-
ing how the LLG equation is derived and how its solution, the magnetization
vector M, is defined.

Chapter 2 presents the two main models currently used in the field, includ-
ing the derivation of the continuous micromagnetic model from the discrete,
atomistic, classical Heisenberg model. The different effective terms, used to
describe magnetic materials are derived in detail. A comparison between the
two models, describing their limits of validity and application is included.

Chapter 3 describes magnetic structures of technological and fundamental
interest, such as domain walls, vortices and Skyrmions. The analytical theory
desctibing Bloch points [?,?] is presented.

Chapter 4 includes a derivation and description of the computational
methods used to simulate magnetization dynamics. Namely, algorithms used
for the solution of differential equation, the approximation of a function on
a discrete grid and its interpolation are presented.

Chapter 5 motivates the development of a multiscale approach, showing
how a method which employs both the models presented in chapter 2, is nec-
essary to accurately simulate structures and phenomena of interest. Original
work, showing how the annihilation of a Skyrmion is strongly influenced by
the choice of the computational parameters is shown.

Chapter 6 describes the implementation of the multiscale approach. The
algorithms presented in chapter 4 are used to run in parallel simulations in
the two models, describing different regions of the same magnetic system.
Devising an accurate strategy to achieve this constitutes the main effort
towards the development of the multiscale approach.
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Chapter 7 presents a first application of the approach. In this applica-
tion the multiscale model was used to simulate the annihilation of Skyrmions
induced by spin-orbit torque pulses of different size and length. Three dif-
ferent regimes, corresponding to different topological transformations were
discovered.
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Chapter 1

The Landau-Lifshitz-Gilbert
equation

The aim of magnetization dynamics simulations is to numerically solve the
equations determining the dynamics of magnetic structures. Some equa-
tions are specific for the particular magnetization structures being consid-
ered. These can be derived from more general equations. Amongst the most
general ones, the Landau-Lifshitz-Gilbert equation predicts the dynamics of
the magnetization configuration. The multiscale approach, object of this the-
sis, proposes to solve this equation in an efficient and robust way, coupling
two different models with different advantages and drawbacks according to
the peculiarities of the magnetic structures and, in particular, to the spatial
resolution required in different regions of the magnetic system. L.D. Landau
and E.M. Lifshitz proposed the equation of motion for a spin in a ferro-
magnetic system in 1935 [?]. Here a derivation of their equation based on
quantum mechanical arguments is discussed [?]. Let Ĥ be the Hamiltonian
operator of the system and S a general spin, the dynamic time evolution of
a component Sj of S is described by the Heisenberg equation of motion for
an observable:

dSj
dt

=
i

~

[
Ĥ, Sj

]
=
i

~

( ∑
k=x,y,z

∂Ĥ

∂Sk
[Sk, Sj] +O

(
~2
))

(1.1)

where first order Taylor approximation of Ĥ was applied and O (~2) denotes
a vector function of at least quadratic order in ~. Applying the commutation
relations for the angular momentum

[Sk, Sj] = −i~
∑
l

εjklSl (1.2)
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to the spin components, eq.(??) reads:

dSj
dt

=
∑
k,l

∂Ĥ

∂Sk
εjkl Sl +O (~) , (1.3)

where the symbol εjkl denotes the antisymmetric tensor. Exploiting the re-
lation for the l-th component of the vector a× b:

(a× b)l =
3∑
j=1

3∑
k=1

εjklajbk (1.4)

eq.(??) can be written in terms of the vector product:

dS

dt
=
∂Ĥ

∂S
× S +O (~) (1.5)

where the notation ∂
∂S
≡
(

∂
∂Sx

, ∂
∂Sy

, ∂
∂Sz

)
was used. A quantum-mechanical,

discrete theory can be approximated to a semi-classical, continuous one, by
taking the limit ~→ 0, and transforming analogously its observables. In this
spirit we can assume an arbitrary volume of ferromagnetic material of size
∆τ to contain ∆N classical spins S with magnetic moment µ = −gµB

~ S. The
direction of the magnetic moment is opposite to the spin due to the electrons
having negative charge. It is then possible [?] to define the magnetization
vector M at the position corresponding to the volume element ∆τ :

M ≡ lim
∆τ→0

1

∆τ

∆N∑
i

µi = lim
∆τ→0

∆N

∆τ
〈µ〉 (1.6)

where the limit of ∆τ approaching zero is to be intended in macroscopic
terms, in order for it to be large enough to contain a statistically significant
number of spins to evaluate the average magnetic moment 〈µ〉. For practi-
cal applications on cubic lattices we will assume lim∆τ→0

∆N
∆τ

= cs
a3

with cs
the number of spins per lattice site and a the lattice constant. In such an
approximation eq.(??) can be written as:

dM

dt
= −γM×Heff (1.7)

where the gyromagnetic ratio γ = gµ0µB
~ contains fundamental constants of

quantum origin such as the Bohr magneton µB, the magnetic permeability
of vacuum µ0, and the g-factor. The effective field Heff is defined as:

Heff ≡
1

γ

〈
∂Ĥ

∂S

〉
= − 1

µ0

dE

dµ
, (1.8)
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where the average of the quantum operator Ĥ was replaced with the classical
observable E. Equation (??) describes the precession of the magnetization
around the effective field. In the continuum limit the effective field is defined
as − 1

µ0
δE
δM

with the δ symbol indicating the variational derivative:

δE [M (r)]

δM (r0)
≡ lim

ε→0

1

ε

E [M (r) + εexδ
3 (r− r0)]− E [M (r)]

E [M (r) + εeyδ
3 (r− r0)]− E [M (r)]

E [M (r) + εezδ
3 (r− r0)]− E [M (r)]

 , (1.9)

where ε has the dimensions of the magnetization
(

A
m

)
. It can be shown that

for a system where the dynamics is described by the equation of motion (??),
the energy is conserved:

dE

dt
=

∫
dV

δE

δM
· dM
dt

=

∫
dV (−µ0Heff ) · (−γM×Heff ) = 0. (1.10)

In order to account for some dissipative effects, occurring at a macroscopic
level, T.L. Gilbert proposed [?] to add to eq.(??) a phenomenological damp-
ing term. The effect of the damping term is to align the magnetization to
the effective field and it is therefore perpendicular to the precession term;
the Landau-Lifshitz-Gilbert equation yields:

dM

dt
= −γM×Heff +

α

Ms

M× dM

dt
(1.11)

with the saturation magnetization Ms ≡ |M| and the damping parameter α.
Since the terms on the right hand side of eq.(??) are perpendicular to M, its
module Ms is conserved. This can be demonstrated as follows:

d

dt
M2

s =
d

dt
|M|2 = 2M · dM

dt
= 2M ·

(
−γM×Heff +

α

Ms

M× dM

dt

)
= 0.

(1.12)
Computational application requires eq.(??) to be made explicit in dM

dt
, this

can be accomplished by taking the vector product with M on both sides in
order to evaluate M× dM

dt
:

M× dM

dt
= M× (−γM×Heff ) + M×

(
α

Ms

M× dM

dt

)
. (1.13)

The Grassmann identity a× (b× c) = (a · c) b− (a · b) c can be applied to
the damping term, and yields:

M× dM

dt
= −γM× (M×Heff ) +

α

Ms

[(
M · dM

dt

)
M−M2

s

dM

dt

]
. (1.14)
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Since

M · dM
dt

=
1

2

dM2
s

dt
= 0, (1.15)

eq.(??) can be written as:

M× dM

dt
= −γM× (M×Heff )− αMs

dM

dt
. (1.16)

Inserting eq.(??) into the damping term in eq.(??) yields:

dM

dt
=− γM×Heff +

α

Ms

[
−γM× (M×Heff )− αMs

dM

dt

]
=− γ′

[
M×Heff −

α

Ms

M× (M×Heff )

] (1.17)

with γ′ ≡ γ
1+α2 .

1.1 Magnetization dynamics in a constant ef-

fective field

In order to fully understand eq.(??) it is interesting to solve it analytically
for a constant effective field, this can be easily achieved using a spherical
coordinates system. In this system the magnetization vector and its time
derivative read:

M =

Ms sinϕ cos θ
Ms sinϕ sin θ
Ms cosϕ

 , (1.18)

dM

dt
=
∂M

∂Ms

Ṁs +
∂M

∂θ
θ̇ +

∂M

∂ϕ
ϕ̇ (1.19)

where θ and ϕ denote respectively the polar and azimuthal angle. The partial
derivative terms can be easily evaluated as:

∂M

∂Ms

=

sinϕ cos θ
sinϕ sin θ

cosϕ

 ∂M

∂θ
=

−Ms sinϕ sin θ
Ms sinϕ cos θ

0

 ∂M

∂ϕ
=

Ms cosϕ cos θ
Ms cosϕ sin θ
−Ms sinϕ

 .

(1.20)
It can be easily noticed that in eq.(??) the time derivative appears as the
linear combination of three perpendicular vectors. We can assume without
loss of generality that Heff is aligned along the positive z direction, so that
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Heff = Hez. The two terms on the right-hand side of the LLG equation as
written in eq.(??) read in the chosen coordinate system:

M×Heff = −H∂M

∂θ

M×M×Heff = −MsH sinϕ
∂M

∂ϕ

(1.21)

so that the whole equation can be solved as a system of three independent
differential equations: 

Ṁs = 0

θ̇ = γ′H
ϕ̇ = −γ′Hα sinϕ

(1.22)

While the first equation recovers the result of constant Ms, the second equa-
tion determines the counterclockwise precession of the magnetization around
the direction set by Heff with constant angular velocity θ̇ = gµ0µBH/~ also
known as Larmor frequency. The third equation is nonlinear, an approxima-
tion is needed in order to solve it analytically, this can be achieved expanding
sinϕ to the first order in Taylor series:

ϕ̇ = −γ′Hαϕ+O
(
ϕ3
)
. (1.23)

Eq.(??) can be solved analytically and it results in the exponential decay of
ϕ which corresponds to the alignment of M in the direction of Heff . The

Figure 1.1: Effect of the two terms in the LLG equation on M: a conservative
precession motion in the plane perpendicular to Heff induced by the field
term, and the alignment induced by the damping term.
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solution of the LLG equation for a constant effective field, can therefore
be summarized as the linear combination of two perpendicular terms: the
gyrotropic motion around the effective field, and the alignment along the
effective field proportional to the α parameter.
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Chapter 2

From the Heisenberg model to
micromagnetism

Several theories have been developed in order to describe magnetism, accord-
ing to the different length scales on which magnetic problems can be studied,
from the atomic to the cosmic one. On the atomic scale ab-initio calcula-
tions are commonly used to obtain properties and parameters of materials
as a result of their electronic structure. Since the computational complexity
of such problems scales with the number of considered electrons (therefore
atoms), the size of the systems that can be treated by this method is very
restricted. These calculations are usually executed on very powerful clusters
or supercomputers, usually exploiting symmetrical properties to reduce the
computational time such as periodic boundary conditions.

If the focus of the problem is the orientation of magnetic moments, rather
than the electronic structure, a suitable approximation is to use Heisenberg
models. In these models interacting spins are located at discrete positions
within the atomic lattice. In this work we will restrict our focus on the
classical Heisenberg model, which treats each spin as a classical magnetic
moment µi located on the lattice site i. Spins can rotate continuously in
three dimensions and the exchange interaction between neighboring spins is
treated as a simple coupling between their moments. This model neglects
quantum effects while still considering some parameters, of quantum origin
such as the lattice constant, the exchange coupling, or the number of Bohr
magnetons per lattice site which can be calculated ab-initio or measured
experimentally.

Magnetic structures of technological and fundamental interest [?, ?, ?,?,
?, ?, ?, ?, ?, ?, ?, ?, ?], such as domain walls, vortices, and Skyrmions, come
about in ferromagnets on larger length scales than those which can be effi-
ciently simulated in the Heisenberg model. The most suitable tool to describe
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such structures is the micromagnetic theory, which can be considered a large
scale approximation of the Heisenberg model. In the micromagnetic theory,
magnetization (M) is considered as a continuous vector field with a constant
module (Ms).

Unlike the atomistic model, where the correct lattice constant must be
used in order to obtain realistic results, the micromagnetic model becomes
more and more accurate by refining the computational mesh used to approx-
imate the continuous function M [see ??]. Ideally, in the infinitely fine mesh
limit the analytical theory is recovered. Nevertheless even in the analytical
theory, predictions made by the micromagnetic model can be in disagree-
ment with the experimental evidence. These intrinsic limitations are derived
from the micromagnetic model neglecting of the length scales comparable
to the lattice constant. The magnetization vector itself, which is the fun-
damental quantity that the model investigates, is proportional to the local
average of the atomic magnetic moments, according to the definition of the
magnetization vector given in chapter ??:

M = lim
τ→0

1

τ

N∑
i

µi = lim
τ→0

N

τ
〈µ〉 (??)

where τ indicates a volume element containing N magnetic moments µ, with
the limit τ → 0 restricted to the volume of elements which are small com-
pared to the full magnetic system but large enough to contain a statistically
significant number of magnetic moments. One basic example is the excita-
tion of spin waves with a wavelength smaller than the lattice constant, a
phenomenon that does indeed arise in a continuum model despite being for-
bidden in experiments and in realistic atomistic simulations. This thus shows
that only a multiscale simulation can reproduce the dynamics realistically.

There are very few cases of magnetic structures varying on the scale of
the atomic lattice, the most prominent of which is the Bloch point. Such
structures constitute a fundamental limit of the theory and cannot be accu-
rately treated within it, in accord with the condition on eq.(??) for M to
be proportional to the average of a statistically meaningful number of mag-
netic moments. The aim of this chapter is to show how the micromagnetic
theory is derived as a continuum approximation of the classical Heisenberg
model by approximating different phenomenological effects which contribute
to the energy of the system and to the effective field. Furthermore, the lim-
itations in the spatial resolution of the micromagnetic theory are analyzed
quantitatively.
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2.1 Exchange Energy

Exchange interaction is a purely quantum-mechanical phenomenon arising
from the Pauli exclusion principle of fermions. Since it depends on the elec-
tronic structure of the individual ferromagnetic material, the most suitable
technique to evaluate the exchange interaction parameters consists in ab-
initio calculations. In this framework the scale of this effect is evaluated as
the overlap integral between two localized electronic orbitals. For the classi-
cal Heisenberg model, the result of such an integral, the exchange constant
J , is treated as a simple coupling energy between magnetic moments. The
focus of this section will be restricted to nearest neighbor interactions, the
phenomenon known as Dzyaloshinskii-Moriya Interaction (DMI) which can
be considered as a case of anisotropic exchange interaction is treated in ??.

In the classical Heisenberg model the exchange energy of two neigboring
spins S is defined as:

Exc = −J
∑
〈i,j〉

Si · Sj (2.1)

where the sum is intended to run on every couple of first neighboring spins
in the system. This can be rewritten as:

Exc = −J
∑
i

∑
nn

Si · Snn = −JS2
∑
i

∑
nn

cosφi,nn (2.2)

with φi,nn the angle between the two spins, the subscript nn indicates the
nearest neighbors of the spin labeled with i.

We assume that in the exact position of the lattice site where a spin is lo-
calized, the continuous magnetization function M (r) introduced in eq. (??),
is proportional to S according to

M (ri) = − cs
a3

gµB
~

Si = −Ms

S
Si,

the term cosφi,nn can be calculated as :

[M (ri + rnn)−M (ri)]
2 = 2M2

s − 2M2
s cosφi,nn (2.3)

in order to write eq.(??) as

Exc =
JS2

2M2
s

∑
i

∑
nn

[M (ri + rnn)−M (ri)]
2 (2.4)

where the constant term in eq.(??) was neglected. Applying first order Taylor
approximation, thus implying that this theory is restricted to structures with
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magnetization varying slowly in space, eq.(??) reads:

Exc =
JS2

2M2
s

∑
i

∑
nn

[(rnn · ∇) M (ri)]
2 . (2.5)

which in the case of a cubic lattice with lattice constant a, yields:

Exc =
JS2a2

M2
s

∑
i

[(
∂M

∂x

)2

+

(
∂M

∂y

)2

+

(
∂M

∂z

)2
]
. (2.6)

Introducing the density of spins per unit cells cs
a3

:

Exc =
JS2a2

M2
s

∫
V

dr
cs
a3

[(
∂M

∂x

)2

+

(
∂M

∂y

)2

+

(
∂M

∂z

)2
]

(2.7)

which is commonly written as:

Exc =
A

M2
s

∫
V

dr

[(
∂M

∂x

)2

+

(
∂M

∂y

)2

+

(
∂M

∂z

)2
]

=
A

M2
s

∫
V

dr |∇M|2

(2.8)
with A ≡ JS2cs

a
the exchange constant in the micromagnetic model. Using

eq.(??) it is possible to evaluate the exchange contribution to the effective
field as:

Hxc (r) ≡ − 1

µ0

δExc
δM (r)

= − 2A

µ0M2
s

∑
ξ=x,y,z


∫

V

dr′
∂M (r′)

∂ξ′
∂δ3 (r′ − r)

∂ξ′

 =

=− 2A

µ0M2
s

∑
ξ=x,y,z

 ∂M (r′)

∂ξ′
δ3 (r′ − r)

∣∣∣∣
r′∈∂V

−

∫
V

dr′
∂2M (r′)

∂ξ′2
δ3 (r′ − r)

 =

=
2A

µ0M2
s

[
∂2M (r)

∂x2
+
∂2M (r)

∂y2
+
∂2M (r)

∂z2

]
=

2A

µ0M2
s

∇2M (r)

(2.9)

where ∂V refers to the boundary of the system where the δ function vanishes.
It is intuitive that uniform magnetization constitutes the lowest exchange
energy configuration.
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2.1.1 Accuracy of the micromagnetic description at
atomic length scales

The aim of this subsection is to quantitatively show how much the micro-
magnetic theory deviates from the classical Heisenberg model [?]. Since the
description of the exchange interaction exposed in this section is isotropic
we can consider without loss of generality a one-dimensional spin spiral [see
Fig. ??] with wavelength λ, described by the formulas:

Si =

S sin π xi
λ

S cosπ xi
λ

0

 M (x) =

Ms sin π x
λ

Ms cos π x
λ

0

 (2.10)

in the Heisenberg model and in micromagnetic theory respectively. The
respective exchange energy density for the two models can be extrapolated
by eqs.(??, ??):

eH (λ) = − cs
a3
JS2

∑
nn

cosφnn = −2
cs
a3
JS2 cos

(πa
λ

)
(2.11)

eMM (λ) =
A

M2
s

(
∂M

∂x

)2

= A
π2

λ2

(
cos πx

λ

− sin πx
λ

)2

= A
π2

λ2
=
cs
a3
JS2

(πa
λ

)2

.

(2.12)
In order to compare the energy levels in the two models, their asymptotic
limit for λ can be exploited:

lim
λ→∞

eMM (λ) = 0

lim
λ→∞

eH (λ) = −2
cs
a3
JS2 = eoffs

(2.13)

so that the constant term eoffs must be subtracted from eH . As can be easily
demonstrated using Taylor expansion:

eH (λ)− eoffs = −2
cs
a3
JS2

[
cos
(πa
λ

)
− 1
]

=

=
cs
a3
JS2

(πa
λ

)2

+O
(
a4

λ4

)
= eMM (λ) +O

(
a4

λ4

)
.

(2.14)

The ratio between the two expressions can then be written as:

eH
eMM

=
2
[
1− cos

(
πa
λ

)](
πa
λ

)2 , (2.15)

a plot of this function (Fig. ??) shows how the energy density diverges in the
micromagnetic model for λ in the same order of magnitude as a.
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Figure 2.1: The magnetization structure described in Eq. ??.

Figure 2.2: The ratio between the exchange energy density in the Heisenberg
and micromagnetic model for a spin spiral as a function of λ/a shows how
the micromagnetic model fails to accurately predict the effect of exchange
interaction for magnetization structures varying on a length scale comparable
to that of the atomic lattice.
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2.2 Zeeman Energy

The energy of an external magnetic field Hext acting on a ferromagnetic
system can be written in the Heisenberg model as:

EZee = −µ0

∑
i

µi ·Hext, (2.16)

since this is a local effect, namely affecting individually each magnetic mo-
ment, it can be easily generalized to micromagnetic theory:

EZee = −µ0

∫
V

dr M ·Hext. (2.17)

It can be immediately noticed that the Zeeman energy has a minimum if all
the magnetic moments are aligned in the direction set by the external field.

2.3 Anisotropy Energy

The energy of a ferromagnetic system depends on the orientation of its mag-
netic moments, with respect to the structural axes of its crystal lattice.
Anisotropies in the electronic orbitals remove degeneracies in the spin-orbit
interaction making some particular orientations energetically favorable. This
phenomenon can be intrinsic of the crystal lattice, or can arise as a surface ef-
fect. In any case, it is a local effect, therefore its treatment in the Heisenberg
model does not differ from the micromagnetic one, with the obvious excep-
tion of treating individual magnetic moments rather than the continuous
magnetization field. Here only low order terms of the anisotropy energy are
given, since higher orders are usually averaged out by thermal agitation [?].

2.3.1 Uniaxial Anisotropy

In crystals with tetragonal or hexagonal structure, the magnetization tends
to align according to the direction of a particular axis depending on the
symmetry of the lattice. This is the case for materials such as gadolinium,
cobalt, or dysprosium. This effect can also be induced in a multilayer system,
in this case the axis will be perpendicular to the interface between layers of
different materials. The energy for this effect can be written as:

Euni =

∫
V

dr

[
−K1

M2
s

(M · eU)2 − K2

M4
s

(M · eU)4 +O (M · eU)6

]
. (2.18)
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It is noteworthy, that the even powers of the scalar product ensure the
presence of an easy axis rather than an easy direction. In the case of K2 = 0,
if K1 > 0, the axis eU is the easy axis of the system, while for K1 < 0 the
magnetization tends to align in the plane perpendicular to eU which is then
a hard axis.

Choosing for simplicity eU = ez, the effective field for uniaxial anisotropy,
can be written as:

Huni = − 1

µ0

δEuni
dM

=
2K1

µ0M2
s

 0
0
Mz

+
4K2

µ0M4
s

 0
0
M3

z

 . (2.19)

2.3.2 Cubic Anisotropy

In ferromagnetic materials with a cubic lattice, such as iron or nickel, the
anisotropy energy contribution can be deduced from the symmetry of the
system. The energy depends on the three components of the magnetization,
chosen for the sake of simplicity parallel to the axes of the crystal, therefore it
can be written as a series expansion of powers of the three components. Due
to inversion symmetry, only even power terms are considered, while invari-
ance for 90-degrees rotation ensures that this contribution is conserved under
the permutation of any two components. This means that the quadratic term
is proportional to M2

s , and therefore constant. The expressions for the cubic
anisotropy energy up to the sixth power, and the resulting effective field read:

Ecub =

∫
V

dr

[
K1

M4
s

(
M2

xM
2
y +M2

yM
2
z +M2

zM
2
x

)
+
K2

M6
s

(
M2

xM
2
yM

2
z

)]
(2.20)

Hcub = − 1

µ0

δEcub
dM

= − 2K1

µ0M4
s

MxM
2
y +MxM

2
z

MyM
2
z +MyM

2
x

MzM
2
x +MzM

2
y

− 2K2

µ0M6
s

MxM
2
yM

2
z

M2
xMyM

2
z

M2
xM

2
yMz

 .

(2.21)

2.4 Demagnetization Energy

The demagnetization field accounts for the interaction between one magnetic
moment and the magnetic induction field generated by all the other magnetic
moments in the system. In order to derive an analytical expression for this
term, one can refer to the Coulomb experiment [?], where the force that two
magnetic charges p1 and p2, at a distance r, exert on each other was measured
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as:
F = k

p1p2

r2
er = p1H (2.22)

with k = 1/4πµ0, the potential energy of an hypothetical magnetic monopole,
in its own field can be therefore written as:

U = k
p

r
. (2.23)

Since isolated magnetic monopoles are forbidden by the Maxwell equations,
we will consider two poles, of equal magnitude p and opposite sign, at a
relative position l, forming the magnetic dipole:

µ =
p

µ0

l, (2.24)

inducing the potential energy:

Udip = U+ + U− = kp

(
1

|r− l |
− 1

r

)
(2.25)

that can be approximated to the first order in Taylor expansion as:

Udip = −kp l · ∇
(

1

r

)
= −kp l · r

r3
(2.26)

which recalling eq.(??) can be written as:

Udip = − 1

4π

µ · r
r3

(2.27)

and the related dipole field:

Hdip =
∂Udip
∂r

= − 1

4π

(µ
r3
− 3

µ · r
r5

r
)
. (2.28)

The demagnetization field generated by a system of dipoles can therefore be
written as:

HD = − 1

4π

∑
i

[
µ

|r− ri|3
− 3

µ · (r− ri)

|r− ri|5
(r− ri)

]
(2.29)

and the corresponding energy term:

ED =
µ0

8π

∑
j

µj ·
∑
i 6=j

[
µi

|rj − ri|3
− 3

µi · (rj − ri)

|rj − ri|5
(rj − ri)

]
. (2.30)
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To derive the same contribution in the micromagnetic model, the theory of
Maxwell equations in magnetic media can be used, in the absence of currents
or electric fields Ampere’s law yields:

∇×H = 0 (2.31)

the magnetic field is therefore conservative and can be written as the gradient
of a scalar potential:

H = −∇UD. (2.32)

From the Gauss’s law for magnetism

∇ ·B = 0 (2.33)

and the relation
B = µ0 (H + M) (2.34)

follows:
∇ ·H = −∇ ·M, (2.35)

therefore the scalar potential fulfills the Poisson equation:

∇2UD = ∇ ·M (2.36)

for which the general solution is:

UD (r) =
1

4π


∫

V

dr′
−∇′ ·M (r′)

|r− r′|
+

∮
∂V

dr′
M (r′) · en (r′)

|r− r′|

 (2.37)

with en (r) perpendicular to the surface ∂V at position r and pointing out-
wards. Applying eq.(??):

HD (r) = −∇
4π


∫

V

dr′
−∇′ ·M (r′)

|r− r′|
+

∮
∂V

dr′
M (r′) · en (r′)

|r− r′|

 . (2.38)
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The demagnetization energy then yields:

ED = −µ0

2

∫
V

dr M (r) ·HD (r) =

=
µ0

8π

∫
V

dr M (r) · ∇


∫

V

dr′
−∇′ ·M (r′)

|r− r′|
+

∮
∂V

dr′
M (r′) · en (r′)

|r− r′|

 =

=
µ0

8π


∮

∂V

dr′M (r′) · en (r′)−

∫
V

dr′∇′ ·M (r′)


∫

V

dr M (r) · ∇ 1

|r− r′|
.

(2.39)

Using the divergence theorem:∮
∂V

dr
M (r) · en (r)

|r′ − r|
=

∫
V

dr∇ · M (r)

|r′ − r|
=

=

∫
V

dr

[
∇ ·M (r)

|r′ − r|
+ M (r) · ∇ 1

|r′ − r|

] (2.40)

one finds: ∫
V

dr M (r) · ∇ 1

|r′ − r|
=

=

∮
∂V

dr
M (r) · en (r)

|r′ − r|
−

∫
V

dr
∇ ·M (r)

|r′ − r|

(2.41)

so that eq.(??) can be rewritten as:

ED =

=
µ0

8π

(∮
∂V

dr′M · en −
∫
V

dr′∇′ ·M
)(∮

∂V

dr M · en −
∫
V

dr∇ ·M
)

1

|r− r′|
=

=
µ0

8π

[∮
∂V

dr′ σ (r′) +

∫
V

dr′ ρ (r′)

] [∮
∂V

drσ (r) +

∫
V

dr ρ (r)

]
1

|r− r′|
(2.42)
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where the volume charge density ρ ≡ −∇·M and the surface charge density
σ ≡ M · en are used. It can be immediately noticed that these quantities
are minimized for a closed flux magnetization pattern, which corresponds to
a magnetization field that does not have any source or drain. Alternatively
eq.(??) can be written in a form similar to eq.(??) by explicitly evaluating
the derivatives and using the divergence theorem in the form expressed in
eq.(??) as:

ED =
µ0

8π

∫
V

dr′

∫
V

dr M (r′) · ∇′
[
M (r) · ∇ 1

|r− r′|

]

=
µ0

8π

∫
V

dr′

∫
V

dr M (r′) · ∇′
[

M (r) · (r− r′)

|r− r′|3

]

=
µ0

8π

∫
V

dr′

∫
V

dr

{
M (r) ·M (r′)

|r− r′|3
− 3

[M (r) · (r− r′)] [M (r′) · (r− r′)]

|r− r′|5

}
.

(2.43)

2.4.1 Reciprocity theorem for magnetism

It can be easily shown that the energy of two ferromagnets, interacting with
each other through the demagnetizing field is equally distributed between
the two bodies: let Bi be the magnetic induction field generated by the
ferromagnetic body τi and Hi the related magnetic field. From Maxwell’s
equations

∇ ·B = 0 ∇×H = 0

follows that Bi is solenoidal and Hi is irrotational, therefore:∫
R3

dr Bi ·Hj = 0 (2.44)

for i, j = 1, 2. Using the constitutive relation

Bi = µ0 (Hi + Mi)
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where Mi is the magnetization in the body τi, it is possible to write the
demagnetization energy for τj in the field generated by τi as:

Eji
D =

∫
R3

dr Hi ·Mj =

∫
R3

dr Hi ·
(

1

µ0

Bj −Hj

)
= −

∫
R3

dr Hi ·Hj

=

∫
R3

dr

(
1

µ0

Bi −Hi

)
·Hj =

∫
R3

dr Hj ·Mi = Eij
D

(2.45)

where the integral on the whole three dimensional space R3 can be restricted
to the volume occupied by the ferromagnetic systems without loss of gener-
ality.

2.4.2 Demagnetization tensor

The demagnetizing field generated by a uniformly magnetized system can be
written as [?]

H = −N ·M (2.46)

where N denotes the demagnetization tensor. Since N depends only on the
shape of the ferromagnetic system, the demagnetization tensor needs to be
calculated only once, at the beginning of the simulation, thereby decreasing
dramatically the computational complexity of evaluating this effective field
term. In order to carry out the evaluation of the tensor, the system is assumed
to be composed of several uniformly magnetized domains, this abstraction is
mirrored in numerical approaches based on the finite difference method due
to the necessity for any continuous system to be discretized for computational
application. Eq.(??) can be written, with the aid of eq.(??) as:

UD (r) =
1

4π

∫
τ ′

dr′M (r′) · ∇′
(

1

|r− r′|

)
=

M′

4π
·

∫
τ ′

dr′∇′
(

1

|r− r′|

)
(2.47)

where τ ′ is a volume element with uniform magnetization M′. The aver-
age field generated in the volume element τ by the magnetization in τ ′ is
therefore:

〈H′〉τ = −1

τ

∫
τ

dr ∇UD (r) = −M′

4πτ
·

∫
τ

dr

∫
τ ′

dr′∇⊗∇′
(

1

|r− r′|

)
= −M′·N

(2.48)
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where the symbol ⊗ denotes the tensor product

∇⊗∇′ =


∂2

∂x∂x′
∂2

∂y∂x′
∂2

∂z∂x′

∂2

∂x∂y′
∂2

∂y∂y′
∂2

∂z∂y′

∂2

∂x∂z′
∂2

∂y∂z′
∂2

∂x∂z′

 . (2.49)

Following the operative definition from eq.(??) used in eq.(??) the demag-
netization tensor can be written as:

N =
1

4πτ

∫
τ

dr

∫
τ ′

dr′∇⊗∇′
(

1

|r− r′|

)
=

= − 1

4πτ

∫
τ

dr

∫
τ ′

dr′∇′ ⊗∇′
(

1

|r− r′|

) (2.50)

since ∇
(

1
|r−r′|

)
= −∇′

(
1

|r−r′|

)
. The demagnetization energy induced in the

body τ with uniform magnetization M by the body τ ′ reads:

ED = −τµ0

2
M ·N ·M′. (2.51)

The properties of N can be easily derived. It is clearly symmetric, due to
the Schwarz theorem. By choosing reference coordinates r0 in τ , and r′0 in
τ ′, the tensor is a function of R ≡ r0−r′0. Applying the reciprocity theorem,
and exploiting the symmetry of N :

M ·N (R) ·M ′ = M ′ ·N (−R) ·M = M ·N (−R) ·M ′ (2.52)

therefore: N (R) = N (−R). The trace of N satisfies:

Tr (N) = − 1

4πτ

∫
τ

dr

∫
τ ′

dr′∇′2
(

1

|r− r′|

)
=

1

τ

∫
τ

dr

∫
τ ′

dr′ δ3 (r− r′)

(2.53)
this integral is equal to the fraction of τ which overlaps τ ′, if the two volume
elements coincide, Tr (N) = 1, if they do not overlap Tr (N) = 0. Using the
Gauss theorem, the integrals in eq.(??) can be reduced to surface integrals:

N ≡ 1

4πτ

∫
τ

dr

∫
τ ′

dr′∇⊗∇′
(

1

|r− r′|

)
=

=
1

4πτ

∫
∂τ

dr

∫
∂τ ′

dr′
en (r)⊗ en (r′)

|r− r′|
.

(2.54)
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This formula is particularly convenient when evaluating the demagnetization
tensor for an array of rectangular blocks, such as in the case of a system
simulated numerically in the finite difference method. This allows one to
reduce the interaction between two blocks to the interaction between each
face of one block with each face of the other. These contributions were
calculated by A.J. Newell in Ref. [?]. In the Heisenberg model, an expression
for the demagnetization tensor, to be applied to magnetic moments can be
recovered from eq.(??):

N =
1

4π

[
1

|r− r′|3
− 3

(r− r′)⊗ (r− r′)

|r− r′|5

]
, (2.55)

the demagnetization energy of two magnetic moments can be written as:

Ei,j
D = µi N µj =

1

4π
µi

[
1

|ri − rj|3
− 3

(ri − rj)⊗ (ri − rj)

|ri − rj|5

]
µj.

2.5 Anisotropic Exchange

The exchange energy expressed in eq.(??) constitutes not only the simplest
case of exchange interaction, but also the predominant one, in terms of mag-
nitude, for most ferromagnets. The exchange interaction, can be written in
a general form with the aid of the exchange tensor J .

Exc = −1

2

∑
i 6=j

Si J ij Sj

where J ij =
{
Jαβij

}
for α, β = x, y, z, is a 3 × 3 matrix. The decomposition

of this matrix,
J ij = Jij1+ Jsij + Jaij

in a diagonal, a symmetrical, and an antisymmetric matrix; is akin to study-
ing the exchange interaction as three separated phenomena. The diagonal
term, with

Jij ≡
1

3
Tr
(
J ij
)

constitutes the isotropic exchange exposed in section ??, it is interesting to
notice that Jij is defined as the average value of the diagonal terms of J ij.
The symmetric term is defined as

Jsij ≡
1

2

(
J ij + JTij

)
− Jij1
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where the superscript T denotes the transposed matrix, so that(
JTij
)αβ

= Jβαij .

Since it usually constitutes a small correction to the isotropic exchange, it
is frequently neglected [?]. The trace of Jsij is evidently zero, due to the
properties of the average:

Tr
(
Jsij
)

=
∑

α=x,y,z

(
Jααij − Jij

)
=
∑

α=x,y,z

(
Jααij −

〈
Jξξij

〉)
= 0

where Jξξij denotes the general diagonal element of J ij. The energy contribu-
tion related to the antisymmetric term

Jaij ≡
1

2

(
J ij − JTij

)
can be written in the form

Ea
xc = −1

2

∑
i 6=j

Si J
a
ij Sj = −1

2

∑
i 6=j

Dij · (Si × Sj) (2.56)

and is known as Dzyaloshinsky-Moriya [?,?] interaction (DMI).

2.5.1 Dzyaloshinskii-Moriya Interaction

Asymmetric exchange interaction occurs naturally in bulk materials which
exhibit broken inversion symmetry. It can also be induced, in properly engi-
neered structures, at the asymmetric interface of thin magnetic layers. Due to
the innovative features of this phenomenon, materials or devices, exhibiting
such behavior, are being investigated for the production of next generation
information technology [?, ?, ?]. The components of Dij can be derived, as
follows, from eq.(??):

Si J
a
ij Sj = Si ·

(
Jaij Sj

)
= Si ·

∑
α=x,y,z

( ∑
β=x,y,z

Ja,αβij Sβj

)
α̂ =

=
∑

α,β=x,y,z

Sαi J
a,αβ
ij Sβj =

∑
α<β

Sαi J
a,αβ
ij Sβj − S

β
i J

a,βα
ij Sαj =

=
∑
α<β

Ja,αβij

(
Sαi S

β
j − S

β
i S

α
j

)
=
∑

γ=x,y,z

Dγ
ijεαβγ

(
Sαi S

β
j − S

β
i S

α
j

)
=

= Dij · (Si × Sj)

(2.57)
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with

Dij =

(
Ja,yzij − Ja,zyij

2
,

Ja,zxij − Ja,xzij

2
,

Ja,xyij − Ja,yxij

2

)
In order to obtain a micromagnetic formulation for the DMI, a similar ap-
proach as the one for the isotropic exchange can be used, exploiting

M(ri) = −Ms

S
Si

and applying a first order Taylor approximation:

EDMI = −1

2

∑
i 6=j

Dij · (Si × Sj) = − S2

2M2
s

∑
i 6=j

Dij · [M (ri)×M (rj)] =

= − S2

2M2
s

∑
i 6=j

Dij ·
[
M (ri)× ((rj − ri) · ∇) M (ri) +O (rj − ri)

2]
(2.58)

neglecting higher orders in the Taylor series, applying the cyclical invariance
property for the parallelepiped product, and the fact that the cross product
is antisymmetric:

EDMI = − S2

2M2
s

∑
i 6=j

Dij · [M (ri)× ((rj − ri) · ∇) M (ri)] =

=
S2

2M2
s

∑
i 6=j

M (ri) · [Dij × ((rj − ri) · ∇) M (ri)] =

=
S2

2M2
s

∑
i 6=j

M (ri) · [Dij ((rj − ri) · ∇)×M (ri)]

(2.59)

where in the last term the fact that (rj − ri) · ∇ is a scalar was exploited.
Defining r ≡ rj − ri and Dξ the generic component of Dij, the first term in
the cross product can be rewritten further:

Dij (r · ∇) =

Dxrx
∂
∂x

+Dxry
∂
∂y

+Dxrz
∂
∂z

Dyrx
∂
∂x

+Dyry
∂
∂y

+Dyrz
∂
∂z

Dzrx
∂
∂x

+Dzry
∂
∂y

+Dzrz
∂
∂z

 = (Dij ⊗ rij)∇ (2.60)

so that:

EDMI =
S2

2M2
s

∑
i 6=j

M (ri) · [((Dij ⊗ rij)∇)×M (ri)] =

=
S2

2M2
s

∑
i

M (ri) · [(Di∇)×M (ri)]

(2.61)
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where the tensor Di was defined as:

Di ≡
∑
j 6=i

Dij ⊗ rij.

The DMI effective field can then be written in the micromagnetic theory as:

HDMI (ri) =
S2

µ0M2
s

[(Di∇)×M (ri)] . (2.62)

2.6 Current Induced Spin Torques

The magnetization in a ferromagnet can be influenced by the injection of
current, producing effects that cannot be achieved using magnetic fields.
The magnetic interaction between injected and localized electrons generates
current induced spin torques. While it is not possible to unambiguously
distinguish conduction electrons from localized ones, this effect is explained,
in good agreement with the experimental evidence, within the sd-model [?,?,
?,?,?], where the interaction between an itinerant spin and a localized one in
3d transition metal ferromagnets such as Iron, Cobalt, and Nickel is described
by an energy term analogous to the one used for exchange interaction [see
Eq. ??]: Esd = −JsdSs · Sd.

2.6.1 Spin currents

In order for the collective effect of the itinerant electrons on the magnetization
to be finite, their average spin must be non-zero, for this reason it is important
to distinguish between charge current and spin current. While the charge
current density, defined as

je = e (v+n+ + v−n−)

with n± the electron density for each spin state and v± the respective velocity,
describes the total electric charge flowing in the system, the spin current
density

js =
~
2

(v+n+ − v−n−)

describes the flow of spin, therefore of magnetic moment. It can be easily no-
ticed that for v+n+ = −v−n− a vanishing charge current leads to a finite spin
current js = 2v+n+, this is the case of a pure spin current. If v+ and v− are
collinear, the polarization defined as P = |v+n+ − v−n−| / |v+n+ + v−n−|
relates the two currents:

js =
~P
2e

je. (2.63)
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2.6.2 Spin transfer torque

The earliest attempts [?, ?, ?] to generate such torques were based on the
injection of current from a non-magnetic metal into a conducting ferromag-
net. Multilayer systems, such as spin valves, were employed to polarize the
current travelling in the direction perpendicular to the layers. Such a de-
vice is based on a pinned layer which polarizes the current and a free layer
whose magnetization can be manipulated by the torque. An analytical ex-
pression for the torque can be derived from the continuity equation for the
unit magnetic moment of the itinerant spin m [?,?]:

dm

dt
+ 2

µB
~
∇ · js = − Jsd

~Ms

(m×M)− Γsf (m) (2.64)

where the first term on the right-hand side is derived from the Heisenberg
equation of motion [see Eq. ??] and describes the precession of the itinerant
magnetization m around the localized one M, while the second term contains
phenomenological effects related to scattering which cause itinerant electrons
to flip their spin.

Introducing the characteristic times τsd = ~/Jsd and τsf Eq. ?? can be
rewritten as:

dm

dt
+ 2

µB
~
∇ · js = −m×M

τsdMs

− δm

τsf
(2.65)

where the relation m = m0M/Ms+δm was used to separate the equilibrium
component of m, parallel to M, from the perpendicular one δm.

Assuming a linear response and neglecting the derivatives of order higher
than the second in δm, Eq. ?? leads to

m0

Ms

dM

dt
− µBP

eMs

(je · ∇) M = −δm×M

τsdMs

− δm

τsf
(2.66)

where Eq. ?? was used.
Eq. ?? is an implicit equation in δm which can be made explicit, as

shown in chapter ??, taking the vector product on both terms. The explicit
formulation of Eq. ?? reads:

δm =
µBPτsd

eMs (1 + ξ2)

[
ξ (je · ∇) M +

1

Ms

M× (je · ∇) M

]
(2.67)

where terms proportional to m0/Ms were neglected and ξ = τsd/τsf was
defined.

The torque acting on the local magnetization reads then:

T = −M× δm
τsdMs

= − bJ
Ms

[
ξM× (je · ∇) M +

1

Ms

M× [M× (je · ∇) M]

]
(2.68)
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with bJ = µBP/eMs (1 + ξ2).
In a similar fashion to the two terms of Eq. ??, analysed in section ??, the

two terms in the brackets are perpendicular to each other and cause, respec-
tively, a precession of the magnetization around the direction of (je · ∇) M
and alignment towards it. In particular since the latter is not conservative
and could in principle compete with the damping term [?] in Eq. ?? it is
often referred to as non adiabatic or anti-damping torque. Notably, it was
suggested as a mechanism to switch the magnetization of domains in data
storage devices [?]. It can be easily noticed that if spin flip is neglected,
which is the limiting case of τsf → ∞ or ξ → 0, the adiabatic torque in
Eq. ?? vanishes, therefore it can be considered to be a direct consequence of
the spin flip phenomena.

The right side of Eq. ?? can be inserted in the LLG equation in order to
predict the magnetization dynamics in the presence of a current.

2.6.3 Spin orbit torque

Multilayered systems with broken inversion symmetry, and in particular
those composed of a thin ferromagnetic layer between a heavy metal and
an oxide, have shown a response to currents which is not compatible with
the effects of the spin transfer torque [?,?,?] described in the previous subsec-
tion. In particular domain walls moving against the direction of the electron
flow and at higher speeds than those predicted by the theory of the spin
transfer torque were measured [?,?,?]. These effect could be ascribed to spin
polarized currents, generated via the spin Hall effect [?,?,?,?].

The spin Hall effect generates a polarized current, perpendicular to the
original injected current that allows for faster manipulation of magnetic
domains and the possibility to apply torques to a wider range of geome-
tries [?, ?, ?, ?]. The LLG equation, can be written including the spin Hall
torque [?] as:

dM

dt
= −γM×

[
Heff +

aj
M2

s

(M× uP ) +
bj
Ms

uP

]
+

α

Ms

M× dM

dt
(2.69)

where uP is the polarization of the spin current while aJ and bJ are con-
stants dependent on the applied current intensity. The term proportional
to aJ aligns the magnetization along uP , while the one proportional to bJ
generates a gyrotropic motion around it. For this reason the two terms are
usually termed damping-like and field-like. Like the original LLG equation
(Eq. ??), the version including torques can be brought to an explicit form
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for computational application:

M×dM
dt

= −γM×M×
[
Heff +

aj
M2

s

(M× uP ) +
bj
Ms

uP

]
+
α

Ms

M×M×dM
dt

(2.70)
since:

M×M× dM

dt
= −M2

s

dM

dt
, (2.71)

as shown in Eq. ??, Eq. ?? can be written as:

M× dM

dt
= −γM×M×

[
Heff +

aj
M2

s

(M× uP ) +
bj
Ms

uP

]
− αMs

dM

dt
.

(2.72)
Plugging this expression for M× dM

dt
into Eq. ?? an explicit equation for the

magnetization is recovered:

dM

dt

(
1 + α2

)
=− γM×

[
Heff +

aj
M2

s

(M× uP ) +
bj
Ms

uP

]
−

− γ α

Ms

{
M×M×

[
Heff +

aj
M2

s

(M× uP ) +
bj
Ms

uP

]},
(2.73)

this expression can be simplified employing the definition γ′ = γ
1+α2 and

applying the parallelepiped product:

M×M×(M× uP ) = [M · (M× uP )] M−M2
s (M× uP ) = −M2

s (M× uP ) .
(2.74)

The LLG equation, inclusive of spin orbit torques can then be written as:

dM

dt
=− γ′M×

[
Heff +

α

Ms

M×Heff

]
−

− γ′

M2
s

(aJ + αbJ) M× (M× uP )− γ′

Ms

(bJ − αaJ) (M× uP )

.

(2.75)

Defining ξ ≡ bJ
aJ

as the ratio between field-like and damping-like torque:

dM

dt
=− γ′

[
M×Heff +

α

Ms

(M×M×Heff )

]
−

− γ′aJ
Ms

[
(ξ − α) (M× uP ) +

1 + αξ

Ms

(M×M× uP )

]. (2.76)
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2.7 Previous efforts towards a multiscale ap-

proach

In continuum mechanics [?,?], multiscale approaches are commonly applied
to the investigation of mechanical properties of materials, such as their re-
sponse to deformations and fractures. While in magnetization dynamics,
adaptive mesh refinement techniques [?,?] have been used, none of these em-
ployed different models for different scales. One related approach has been
proposed, addressing the problem of interfaces between layers of different
magnetic materials [?,?,?]. However, the chosen interface conditions, in par-
ticular the choice of applying a coarse scaled exchange field on the magnetic
moments along the interface in the fine scale region, restricts the validity of
this approach to the systems with uniform magnetization across the inter-
face. While this shortcoming has been later resolved in Refs. [?, ?], these
approaches were devised to evaluate equilibrium configurations rather than
simulating the dynamics of the systems.

One further related approach [?] employed the finite elements method.
It should be noted however that while in this case the atomic lattice in the
Heisenberg model can be rendered more accurately, the computational time
cannot be dramatically reduced as shown for our finite differences approach
in [?], making this approach considerably slower. One further multiscale
approach [?], devised for a different scale combination than the presented
one, proposed to use the micromagnetic model as the fine scale model and
the Maxwell equations as the coarse scale model, this is however restricted
to systems with slowly varying magnetization. Another work [?] uses spe-
cial relativity to evaluate a corrective term to the Landau-Lifshitz-Gilbert
equation in the case of domain wall motion.
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Chapter 3

Magnetic Structures

In principle the magnetization configuration or the solution of the LLG equa-
tion, is a three-dimensional vector field defined on a domain in the three-
dimensional space. Nevertheless some patterns (magnetic structures) can be
easily recognized and therefore used to easily characterize the state of a fer-
romagnetic system. Following this treatment, analytical approaches can be
applied to a smaller number of variables. The aim of this chapter is to out-
line some elementary structures which can be easily recognized and employed
both in fundamental and technological applications.

3.1 Domain Walls

Room temperature ferromagnets tend to form domains of uniform magneti-
zation in order to minimize exchange energy. Nevertheless, multiple domains
can occur as a consequence of the interplay between the exchange interac-
tion and the other contributions, such as the demagnetization which tends to
favour closed flux structures. The region separating two adjacent domains is
called a domain wall (DW). The simplest examples of DWs are 180◦ Bloch [?]
or Néel [?] domain walls, which separate domains of opposite magnetization.
In a Bloch DW the magnetization rotates in the plane defined by the direc-
tion of the domains and the wall itself, while in a Néel DW the magnetization
rotates out of the plane [see fig ??]. In other words, the magnetization in the
center of a symmetric Bloch DW is parallel to the direction defined by the
wall, while in a Néel DW it is perpendicular.
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Figure 3.1: The magnetization structure in a Néel DW (a), a Bloch DW (b),
and a vortex (c).

The energy of a Bloch or Néel DW can be written as [?]:

EBN =

∫
V

dV

[
A

(
∂θ

∂x

)2

+ A sin2 θ

(
∂φ

∂x

)2

+K sin2 θ +K⊥ sin2 θ sin2 φ

]
,

(3.1)
where x is the coordinate perpendicular to the wall, θ is the angle between
the magnetization and the easy axis, φ is the angle around the easy axis.
The terms proportional to A are the exchange energy contributions. The
terms proportional to K and K⊥ depend on the crystalline and on the shape
anisotropy.

It can be immediately noticed that for a uniform value of φ the second
term in the DW energy is minimized, furthermore, the fourth term is min-
imized for φ = 0, the magnetization in a DW will then tend to rotate in a
well-defined plane. The two remaining terms:

eBN = A

(
∂θ

∂x

)2

+K sin2 θ (3.2)

can be minimized analytically. The solution for the variational equation

δEBN
δθ

= 2A
∂2θ

∂x2
+ 2K sin θ cos θ (3.3)

is given by the angle:

θ (x) = 2 arctan
(
e±

x−X
λ

)
(3.4)

with X the position of the DW and λ =
√

A
K

its width. It can be readily

noticed that both types of DW are fourfold degenerate since there are two
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possible orientation of the magnetization in the domains, which allow one
to distinguish between head-to-head and tail-to-tail DW, and two possible
orientation of the magnetization in the domain wall [see fig ??].

Figure 3.2: Degenerate orientations in a tail-to-tail (a,b) and head-to-head
(c,d) tranverse DW [?] in the xy plane.

3.2 Vortices

In nanostructured ferromagnetic thin films the magnetization tends to curl
around a central core if the lateral size of the system is included within a
certain range [?,?,?,?,?]. In particular, this occurs if the linear dimensions
of the systems are large enough to favor a flux closure structure, which min-
imizes the demagnetization energy contribution, over a single domain state.
In a flux closure state, the magnetization aligns along the edges of the system.
To prevent singularities in the exchange energy density, the magnetization
of the core points out of the film plane. The in-plane component of such
structures can be described analytically as [see Fig. ??]

Θ = Nθ +
cπ

2
(3.5)

where Θ denotes the angle that the magnetization forms with the x axis, θ
the polar component of the two dimensional position vector r centered on
the vortex core, and c the chirality. While the vorticity N could assume any
integer value, this chapter will be focused on N = ±1 which is the case of
vortices and antivortices respectively.

The vorticity, can be evaluated as:

N =
1

2π

∮
`

φ (θ) d` (3.6)

where ` is any closed loop encircling the vortex core [?,?]. This number can
be related to the topological charge Q by the formula Q = Np/2, where
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Figure 3.3: Structures generated by the function in Eq. ?? for different values
of N and c in the xy plane.
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the polarization p = ±1 is the direction of the magnetization in the vortex
core [?].

In continuous models the vorticity, as well as the topological charge, is a
conserved quantity [?,?,?], while in experiments and in discrete models it is
possible to change it once a potential barrier is overcome [?].

Since in the absence of an external field structures with opposite polar-
ization are degenerate, it is possible to switch the system between the two
stable states. Due to this feature magnetic vortices have been considered
for the realization of data storage devices [?, ?]. During the vortex core re-
versal process, a vortex-antivortex pair, with polarization opposite to the
one of the original vortex, is generated in the system. Since a vortex and
an antivortex have opposite N this process conserves the topological charge.
Once the vortex-antivortex pair is generated, the original vortex and the an-
tivortex annihilate, leaving in the system only the new vortex with opposite
polarization. It should be noticed that the annihilation of the vortex an-
tivortex couple involves a change in Q, therefore it cannot be described by a
continuous model.

3.3 Skyrmions

In field theory Skyrmions are defined as fields that can be mapped on a sphere
[?]. Magnetic Skyrmions are structures consisting of a domain pointing in the
out of plane direction, within a system magnetized in the opposite direction,
while the magnetization in the DW separating the two uniformly magnetized
regions points in all the directions in the plane. Skyrmions tend to arise in
the spin pattern of ferromagnetic systems with broken inversion symmetry,
such as chiral crystals [?,?,?] or thin magnetic films with different top and
bottom interfaces [?, ?, ?, ?, ?, ?]. Skyrmions lattices [?, ?, ?, ?] constitute
the ground state in some systems, while isolated Skyrmions can appear as
metastable states in magnetic nanostructures [?]. Isolated Skyrmions [see
Fig. ??] have been recently considered [?, ?, ?] as the building blocks for
ultradense magnetic storage devices [?].

Skyrmions carry a topological charge Q = ±1 defined as [?]:

Q =
1

4π

∫
S

m ·
(
∂m

∂x
× ∂m

∂y

)
dxdy, (3.7)

where S is the area of the system and m the unit magnetization vector. Since
transitions that change Q are forbidden [?] in a continuous description of m,
such structures are topologically protected. Nevertheless, in a real system
composed of discrete magnetic moments localized on the atomic lattice sites,
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Figure 3.4: (a) A magnetic nanodisk hosting an isolated magnetic Skyrmion.
(b) Detail of the Skyrmion core and domain wall. Only moments with an in
plane magnetization larger than 10%Ms are marked with an arrow.

no strict topological protection exists [?]. Thus it is necessary to overcome
a finite energy barrier to induce transformations that change Q, such as the
annihilation of a Bloch line (BL) [see ??] and Refs. [?, ?, ?, ?, ?, ?, ?]. The
stability against external fields is indeed a key feature of Skyrmions, making
them a good candidate as information carriers in next generation storage
devices [?,?]. Ascertaining the stability of Skyrmions, as well as reliably an-
nihilating them, are the fundamental prerequisites for applications. The com-
putational treatment of processes involving annihilating Skyrmions is very
delicate. In analytical micromagnetic theory, singularities in the exchange
field arise during topological transformations, making numerical simulations
very susceptible to the mesh being used [?] and therefore often inaccurate.
The necessity for a computational model, capable of performing quantita-
tively accurate simulations is therefore obvious and a key prerequisite. While
more accurate atomistic simulations would overcome this problem, the com-
putational power required to run such simulations for a sample of realistic
experimental size makes this possibility infeasible. The multiscale approach
developed in this thesis proposes to overcome this issue.

3.4 Singularities

As it was mentioned in the previous section, topological transformations that
occur in nature cannot be predicted in a continuous model. Such processes
involve the sudden motion of a small number of magnetic moments, or discon-
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tinuous distributions in the spin pattern. Both cases cannot be included in
the fundamental approximation of micromagnetism (Eq. ??), which defines
the vector field M as the local average of the discrete spin distribution.

The existence of point singularities in magnetic materials was first sug-
gested by E. Feldtkeller [?] where angles in the magnetization are large [see
Fig. ??]. In particular, on any closed surface around a Bloch point M maps
every direction on a sphere. As a consequence of this condition, the analytical
prolongations of the magnetization provide different results when they are
evaluated on lines crossing the singularity from different directions [?]. Since
the presence of a Bloch point constitutes a discontinuity in M as well as a
point where the saturation magnetization vanishes, such structures disobey
the constraints of the micromagnetic model. Bloch points are rotationally
symmetric around an axis, therefore they can be categorized by parameters
similar to the ones used for vortices [see Sec. ??]. Without loss of generality
the symmetry axis of a Bloch point was be chosen in this section as the z
axis. In the case of the Bloch point, the polarization p = ±1 defines whether
the magnetization along the z axis points respectively outwards or inwards
the singularity, while the vorticity defines the direction of M in the z = 0
plane according to the examples shown in Fig. ??. The remaining degree of
freedom is constituted by the angle γ that M forms with the radial direction
in the z = 0 plane.

Figure 3.5: Magnetic configurations on a sphere containing Bloch points for
different parameters combination.

Another case of a magnetic singularity occurs during the annihilation
of a Bloch line. Bloch lines are winding structures [see Fig. ??], therefore
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they carry a topological charge. During their annihilation large angles in
M are formed, thus breaking the continuity of the magnetization and the
conservation of the topological charge which are key characteristics of the
micromagnetic model. One noteworthy phenomenon which includes the an-
nihilation of a Bloch line is the annihilation of a vortex-antivortex couple
with opposite polarization.

Figure 3.6: Example of a Bloch line as a winding Bloch domain wall.

3.4.1 Analytical treatment of Bloch points

While impossible to model micromagnetically, Bloch points can still occur in
experiments and atomistic simulations. It is therefore interesting to study
the magnetization pattern in the vicinity of a Bloch point from an analyti-
cal point of view. In this chapter the approach suggested by W. Döring [?]
was followed to evaluate the most stable configuration for the angle γ in the
micromagnetic model. In order not to break the validity of the model, the
singularity itself was neglected, rather, the approach studied a small sphere
around the Bloch point. For this purpose the polar coordinates presented in
section ??, are used to describe the position vector r and the unit magneti-
zation m according to the following definitions:

r =

r sinϕ cos θ
r sinϕ sin θ
r cosϕ

 m =

sin Φ cos Θ
sin Φ sin Θ

cos Φ

 . (3.8)

The exchange energy density, written according to Eq. ?? as:

exc = A
∑

j=x,y,z

(
∂m

∂xj

)2

, (3.9)

diverges for r → 0 proportional to 1/r2. Its surface integral on a sphere V ,
with radius r = R arbitrarily small, is finite and assumes a minimum value
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at the equilibrium configuration of the Bloch point:

Exc = AR2

∫
∂V

∑
j=x,y,z

(
∂m

∂xj

)2

dΩ =

= AR2

∫∫ [(
∂m

∂θ
· ∇θ

)2

+

(
∂m

∂ϕ
· ∇ϕ

)2
]
dϕdθ =

= A

∫∫ [(
1

sinϕ

∂m

∂θ

)2

+

(
∂m

∂ϕ

)2
]

sinϕdϕdθ,

(3.10)

where the integral runs on the whole sphere.
It is convenient to introduce the set of variables defined as:

z = ξ + iη = tan
(ϕ

2

)
exp iθ

which runs over the whole complex plane since ϕ and θ span the whole sphere,
the same transformation can be written for m as:

w = u+ iv = tan

(
Φ

2

)
exp iΘ =

mx + imy

1 +mz

.

The integral in Eq. ?? reads in the current coordinates system:

Exc = 4A

∫∫
∞

−∞

(
∂u

∂ξ

)2

+

(
∂u

∂η

)2

+

(
∂v

∂ξ

)2

+

(
∂v

∂η

)2

(1 + u2 + v2)2 dξdη. (3.11)

The minimization of the expression in Eq. ?? leads to two nonlinear
coupled differential equations of the second order in u and b. While the
general solution of these equation is quite complicated [?], it is possible to find
simple solutions for an arbitrary analytical function f , such that w = f (z).

Under this hypothesis Eq. ?? reads:

Exc = 4A

∫
C

2

∣∣∣∣dfdz
∣∣∣∣2

(1 + f 2)2 dz (3.12)
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where C is the complex plane. For f the quotient of two polynomial functions
with highest degree N such that

w = u+ iv = f (z) =

∑M
i=0 aiz

i∑L
j=0 bjz

j

with max(M,L) = N , the integral in Eq. ?? reads:

Exc = 8NA

∫∫
∞

−∞

du dv

(1 + u2 + v2)2 = 8πNA. (3.13)

Eq. ?? shows that the solutions that minimizes the exchange energy are those
with N = 1, thus those where each possible orientation of m occurs exactly
once, therefore n = ±1. Nevertheless, all the solutions with the same value
of N are degenerate in the exchange energy. It is thus necessary to consider
the second strongest energy term, the demagnetization energy.

Recalling the theory from section ??, the demagnetization field can be
written in terms of a scalar potential field UD (Eq. ??). The potential field
depends on the magnetization as shown in Eq. ??:

UD (r) =
1

4π


∫

V

dr′
−∇′ ·M (r′)

|r− r′|
+

∮
∂V

dr′
M (r′) · en (r′)

|r− r′|

 . (??)

Applying the divergence theorem as in Eq. ?? UD reads:

UD (r) =
1

4π


∮

∂V

dr′
σ (r′)

|r− r′|
+

∫
V

dr′
ρ (r′)

|r− r′|

 =

=
1

4π

∫
V

dr′M (r′) · ∇′ 1

|r′ − r|
.

(3.14)

The function |r′ − r|−1 can be written in polar coordinates as a series of
spherical harmonics:

1

|r′ − r|
=

1

r>

∞∑
l=0

l∑
m=−l

4π

2l + 1

(
r<
r>

)l
Yl,m (θ, ϕ)Yl,−m (θ′, ϕ′) (3.15)

where the definitions r> = max(r, r′) and r< = min(r, r′) were used.
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We consider the following magnetization distribution in polar coordinates
[see eq. ??]:

Θ (θ) = nθ + γ; Φ (ϕ) = pϕ+ π (1− p) 2

with n = ±1 as recovered in the exchange energy calculation, and p = ±1.
Introducing this expression for M into the last term in Eq. ?? yields for a
spherical sample with radius R [?,?]:

UD (r) = −Ms

24
[3r (p− cos γ) cos 2ϕ+ p (9r − 8R) + (16r − 15R) cos γ] .

(3.16)
Using the expression in Eq. ?? it is possible to evaluate the demagneti-

zation field as Hdem = −∇UD. In the original approach from Döring [?] the
demagnetization energy was evaluated as:

Edem =
µ0

2

∫
V

|Hdem|2 dr,

an equilibrium angle γ = − arccos
(
p · 11

29

)
was found as the lowest energy

configuration. This approach was later refined [?, ?, ?] in order to take in
consideration the stray field generated outside of the small sphere V , evalu-
ating the demagnetization energy as:

Edem =
µ0

2

∫
V

M ·Hdem dr.

This calculation resulted in a configuration with an angle γ = − arccos (p/4).
Other approaches towards the evaluation of the structure of a Bloch point

included models with variable Ms [?,?], nevertheless, analytical [?] and com-
putational [?] studies showed that in a discrete system, Bloch points tend to
be localized between lattice sites. According to these descriptions, models
that consider a local reduction in the magnetic moments are not necessary.
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Chapter 4

Computational background

As a fundamental tool to derive accurate results from analytical theories,
computational physics proposes to employ algorithms in order to solve prob-
lems that could not be solved otherwise. The fundamental rule in this field, is
that for any given algorithm, the more computational power one uses, either
by increasing its iterations or the number of variables, the better it approx-
imates exact results. In spite of being established as a research field only
during the 20th century, due to the large scale employment of electronic cal-
culators, the history of computational physics can be traced back to the early
times of human civilization, when numeric systems were invented in order to
keep track of commercial transactions and the motion of stars [?]. Notably,
millennia later, economy and astrophysics still are among the fields where
computational physics is mostly employed. One of the earliest attempts of
computational physics, devised to approximate π from the perimeter of a
regular polygon, was made in the third century by Chinese mathematician
Liu Hui [?]. By using two polygons, approximating a circle of radius r, from
the inside and from the outside [see Fig. ??], Liu Hui could predict a lower
and upper bounds for π given by the perimeter of the two polygons, whose
precision increased with the number of sides in the polygon. Liu Hui used
for his calculations a 3072-sided polygon to obtain 3,1410< π <3,1427, two
centuries later two further Chinese mathematicians, Zu Chongzhi and his son
Zu Gengzhi, employed a 24576-sided polygon in order to improve the approx-
imation to obtain 3,1415926< π <3,1415927. Using a computer and modern
computational physics, it is possible to devise an algorithm which relies on
a similar technique to obtain more accurate results by using polygons with
a manageable amount of sides.

Let k be the number of sides of a given regular polygon and πk the ratio
between its perimeter and the diameter of the circle the polygon is inscribed
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Figure 4.1: The system used by Liu Hui to approximate π.

within. The correct value for π is given by the expansion:

πk = π +
∞∑
j=1

cj
kj
,

whose coefficients do not depend on k. An approximation of π can then be
evaluated by solving the set of equations:

N∑
j=1

ajxj = πk

if the expansion is truncated at the N -th order in 1/k, with aj = 1/kj−1,
x1 = π, and xj = cj−1 for N different values of πk. For N = 3 and k =
32, 64, 128, 256 the value of π can be evaluated with five digits of accuracy,
comparable to the results found by the Zus using a 24576-sided polygon [?].

In modern physics powerful computational techniques are implemented
with the aid of computers. As a consequence of the digital revolution, com-
putational physics was established as a research field. Numerical calculation
is a prerogative of modern research. The aim of the following chapters is to
present the algorithms that were used in the multiscale approach object of
this thesis.

The basic mathematics presented in this chapter, and in particular the
algorithms used to evaluate derivatives, solve differential equations, and in-
terpolate functions refer to Ref. [?].

4.1 Solution of differential equations

The LLG equation written in Eq. ??, as well as the versions of the equa-
tion presenting spin torques presented in section ?? are ordinary differential
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equations of the first order in the time coordinate. Furthermore, in the
micromagnetic model partial derivatives and integrals of M in the spatial
coordinates occur when evaluating the exchange and the demagnetization ef-
fective field respectively. In particular, solving the LLG equation in order to
describe the time evolution of a magnetic system constitutes an initial-value
problem.

A generic initial-value problem can be expressed as:
dM (r, t)

dt
= G (r, t, M (r, t))

M (r, 0) = M0 (r)

(4.1)

where the field G on the right-hand side is the generalized velocity vector.
In order to describe the computational methods commonly employed to

solve a differential equation we will refer in the following to a simpler case,
such as the motion of a particle under an elastic force, this problem reads:

d2x

dt2
= −kx

m

x (0) = x0, v (0) = v0

(4.2)

or 

dx

dt
= v (t)

dv

dt
= −kx

m

x (0) = x0, v (0) = v0

(4.3)

where x denotes the position of the particle, v its velocity, m its mass, and k
the elastic constant. In this case, an equation of the second order was written
as a set of two first order equations, this is a fundamental step when com-
putationally solving a differential equation of order higher than one. From
a computational point of view, such a set of equations is analogous to a set
showing the components of a vector on each equation, as in the case of the
LLG equation.

4.1.1 The Euler and Picard methods

The core idea behind the computational solution of differential equations
consists in iteratively evaluate the unknown function x (t), in a discrete set of
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time instants {ti}i∈N, with N the set of the natural numbers. For the sake of
simplicity we will consider ti+1−ti = ∆t, ∀i. For this purpose the derivatives
of x are approximated at the same time instants. The simplest approximation
for the derivative of a function consists in the two-point formula:

dx

dt

∣∣∣∣
ti+1

= lim
∆t→0

xi+1 − xi
∆t

=
xi+1 − xi

∆t
+O (∆t) = vi+1, (4.4)

where xi = x (ti) and vi = v (ti). In the Euler method this formula is inverted
and applied to the differential equation ?? to evaluate its left-hand side as:

xi+1 = xi + vi∆t+O (∆t2)

vi+1 = vi −
kxi
m

∆t+O (∆t2)

(4.5)

This method is analogous to considering the first order Taylor approximation
of the unknown function, it is the simplest method to solve an ordinary
differential equation and this simplicity strongly impacts the accuracy of the
prediction, since the accumulated error after n computational steps amounts
to nO (∆t2) ' O (∆t).

In order to increase the accuracy of the Euler method, Eq. ?? can be
rewritten as: 

xi+j = xi +

∫
ti+j

ti
v (x, t) dt

vi+j = vi −
k

m

∫
ti+j

ti
x (t) dt

(4.6)

for any given couple of integers i and j. The Picard method proposes to use
the trapezoid rule to approximate the integrals in ??, this reduces the error
at each iteration to O (∆t3). This consists in approximating the integrand
function with a straight line between ti and ti+j, in order to do this an initial
prediction of xi+1 and vi+1 is needed, this can be evaluated in the Euler
method and then refined so that:

x
(1)
i+1 = xi +

(
v

(0)
i+1 − vi

) ∆t

2
+O (∆t3)

v
(1)
i+1 = vi −

k

m

(
x

(0)
i+1 − xi

) ∆t

2
+O (∆t3)

, (4.7)

where the values x
(0)
i+1, and v

(0)
i+1 can be calculated using the Euler method as

shown in Eq. ??, or can be predicted by making an ansatz for the solution
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the differential equation. The calculated values, x
(1)
i+1, and v

(1)
i+1 can either be

used to evaluate the next step, labeled with i+2 or to refine the prediction at
the step i+ 1. In order to obtain a more accurate prediction. When refining
the result of a fixed time step, a convergence criterion can be used to obtain
a number of iterations suitable for the expected accuracy. The accuracy of
the Picard method is strongly influenced by the prediction in the earliest
iterations. In particular, an inaccurate prediction of the unknown function
in the early steps can lead to slowly or non-converging results, or to large
inaccuracies after many iterations.

A state of the art method for solving differential equations is the Runge-
Kutta method [?]. Like the Cauchy problem, this method needs only the
initial condition of the unknown function to reach a solution, therefore it is
not so susceptible to the predictions for the earliest time-steps as the Picard
method. Furthermore the Runge-Kutta method is particularly relevant in the
context of this thesis since such a method was employed in the solving routine
of our multiscale approach. A second order predictor-corrector approach of
the Adams type [?] is used in the widely employed OOMMF package [?]. A
fourth order Runge-Kutta is used in this package if the predictor corrector
approach fails.

4.1.2 The Runge-Kutta method

The Runge-Kutta method is based on a double Taylor expansion of the un-
known function. In order to describe this method we will refer to the generic
first-order differential equation:

df

dt
= g (f, t) ,

where g is the generalized velocity of the unknown function f that can in
principle be any analytic function of f and of the time variable.

The unknown function can be approximated at a given time instant t+∆t
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as :

f (t+ ∆t) =

= f (t) + ∆tf ′ (t) +
∆t2

2
f ′′ (t) +

∆t3

3!
f ′′′ (t) + · · · =

= f (t) + ∆tg (t) +
∆t2

2

[
dg

dt

∣∣∣∣
t

+
dg

df

∣∣∣∣
t

g (t)

]
+

+
∆t3

6

[
d2g

dt2

∣∣∣∣
t

+ 2
d2g

dtdf

∣∣∣∣
t

g (t) + 2
d2g

df 2

∣∣∣∣
t

g2 (t) + 2

(
dg

df

∣∣∣∣
t

)2

g (t) +
dg

df

∣∣∣∣
t

dg

dt

∣∣∣∣
t

]
+

+ · · · .
(4.8)

The formula ?? can be formally written, up to the m-th order in ∆t, as:

f (t+ ∆t) = f (t) +
m∑
i=1

αici +O
(
∆tm+1

)
(4.9)

with the parameters ci:

c1 = ∆t g (f, t)
c2 = ∆t g (f + ν21c1, t+ ∆tν21)
c3 = ∆t g (f + ν31c1 + ν32c2, t+ ∆t (ν31 + ν21))
...

cm = ∆t g
(
f +

∑m−1
i=1 νmici, t+ ∆t

∑m−1
i=1 νmi

)
,

(4.10)

where αi (for i < m) and νij (for j < i) are parameters to be determined.
Carrying out a Taylor expansion for all ci, Eq. ?? can be written in terms

of series of powers of ∆t. This expression can be then compared term by
term to Eq. ??. This provides a set of equations for αi and νij. This is a set
of m equations for m+m (m+ 1) /2 parameters to be determined, therefore
its solution is not unique.

Let us illustrate the case for m = 2: in this case Eq. ?? reads:

f (t+ ∆t) = f (t) + ∆tg (t) +
∆t2

2

[
dg

dt

∣∣∣∣
t

+
dg

df

∣∣∣∣
t

g (t)

]
. (4.11)

By truncating Eq. ?? at the second order, another expression for the unknown
function is recovered:

f (t+ ∆t) = f (t) + α1c1 + α2c2, (4.12)
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since the term c2 can be expanded in a Taylor series, up to O (∆t)2 as:

c2 = ∆t g (f + ν21c1, t+ ∆tν21) = ∆t g + ∆t2ν21

[
dg

dt

∣∣∣∣
t

+
dg

df

∣∣∣∣
t

g (t)

]
.

(4.13)
In this terms Eq. ?? reads:

f (t+ ∆t) = f (t) + ∆t (α1 + α2) g + ∆t2α2ν21

[
dg

dt

∣∣∣∣
t

+
dg

df

∣∣∣∣
t

g (t)

]
. (4.14)

By comparing eqs. ?? and ?? a set of two equations for three parameters
can be written: {

α1 + α2 = 1
α2ν21 = 1

2

. (4.15)

As pointed out earlier in the text no unique solution exists for the equation
set ??, therefore one parameter can be chosen arbitrarily. This flexibility
allows the user to improve on the accuracy of the method by choosing the
free parameters according to the particular problem to be solved.

4.2 Discretization of the equation

The dynamics of a point particle constitutes a practical example when dis-
cussing methods to solve differential equations numerically. Alongside the
discretization of the time domain, in the case of the dynamics of a field, such
as the magnetization in the LLG equation, the discretization of the spa-
tial coordinates needs to take place as well, in order for the computational
algorithms to be implemented.

In the finite difference method (FDM), the space occupied by the physical
system of interest is divided in a discrete set of cells. The cells are labeled
according to the coordinates of their centers. In the discretized space the
cell labeled by (i, j, k), with i, j, and k natural numbers, is located on the
point with coordinates (xi, yj, zk) in the continuous space. Such positions
are separated along each axis by a fixed interval, so that for the generic
component ξ = x, y, z, the relation ξi+1 = ξi + ∆ξ holds. As a consequence,
all the cells are identical rectangles with sides (∆x,∆y,∆z).

Just like the discretization in time, the discretization of space introduces
inaccuracies that are reduced if the cells are refined, therefore increasing
their number as well as the computational effort necessary for executing an
algorithm. One further source of inaccuracy occurs when modeling curved
systems. In this case, a curved body, such as a sphere or a circle, is approx-
imated by a set of rectangular cells, introducing effects that are not present
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in the ideal analytical case and decreasing the symmetry of the system [see
Fig. ??].

Figure 4.2: Circular system modeled using the finite different method with
a different number of cells per side n.

In some differential equations, the generalized velocity can be expressed
in terms of the partial derivatives of the unknown function. This is the case
for the LLG equation in the micromagnetic model, where the exchange field is
calculated as the derivative of M [see Eq. ??]. In order to calculate a partial
derivative of a discretized function a further approximation is necessary.

The first order partial derivative can be evaluated using the two-point
formula as shown in Eq. ??:

∂M (xi, yj, zk, t)

∂x
=

M (xi+1, yj, zk, t)−M (xi, yj, zk, t)

∆x
+O (∆x) , (4.16)

or the three-point formula, which improves the accuracy by one order of
magnitude in ∆x:

∂M (xi)

∂x
=

M (xi+1)−M (xi−1)

2∆x
+O

(
∆x2

)
, (4.17)

where the y, z, and t variables are not shown for the sake of tidiness. It is in
principle possible to further improve the accuracy of the derivation algorithm
by using more points to evaluate the derivative, such as in the case of the
five-point formula:

∂M (xi)

∂x
=

M (xi−2)− 8M (xi−1) + 8M (xi+1)−M (xi+2)

12∆x
+O

(
∆x4

)
.

(4.18)
In order to evaluate second order derivatives a minimum of three points

is needed:

∂2M (xi, yj, zk, t)

∂x2
=

M (xi+1)− 2M (xi) + M (xi−1)

∆x2
+O

(
∆x2

)
. (4.19)
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As shown in ??, the micromagnetic evaluation of the exchange effective
field is intrinsically limited by the model itself, exponentially decreasing in
accuracy when the magnetization changes on the scale of the atomic lattice.
A stronger limitation is introduced by the algorithms used to evaluate the
derivatives, since their accuracy depends on the discretization. Since the
chosen cell size is usually larger than the elementary cell of the ferromagnetic
material, the user must make sure that the magnetization does not change
at the scale of the computational cell, in order to ensure an accurate solution
of the equation.

4.3 Interpolation

The discretization of a function is a fundamental step towards the implemen-
tation of computational algorithms. In some cases it is necessary to evaluate
a function at an intermediate position between two cells, or at an instant
between two steps in the solution of a differential equation. Interpolation
algorithms are used to approximate a function in such occasions.

The simplest example of an interpolation scheme consists of the linear
interpolation algorithm. By means of this algorithm, functions of a single
variable are approximated as a straight line between two points where their
value is known. Let fi = f (xi) be a discretized function for any i ∈ N. The
value f (x) that such a function takes in x ∈ [xi, xi+1], is given by:

f (x) = fi +
x− xi
xi+1 − xi

(fi+1 − fi) + ∆f = fx + ∆f, (4.20)

with ∆f the difference between the actual value of f (x) and its approxima-
tion fx. It can be easily noticed that ∆f = 0 in xi and xi+1. Furthermore,
the dependence of ∆f on x must be at least quadratic, therefore it can be
approximated as

∆f (x) =
γ

2
(x− xi) (x− xi+1) , (4.21)

where γ is a parameter depending on the particular form of f (x). An upper
bound for the parameter γ can be evaluated as

γmax = max (f ′′ (x)) , (4.22)

with x ∈ [xi, xi+1]. A second order Taylor expansion can be used to estimate
the upper bound for the error ∆f as:

|∆f (x)| ≤ γmax
8

(xi+1 − xi)2 . (4.23)
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The error can be decreased by refining the set {xi}, which in most cases
is not a practical choice. Another possibility consists in increasing the order
of the interpolation by using a higher order polynomial, therefore a curve of
an higher order, to approximate the function. In principle, the maximum
interpolation order is limited by the number of data points available for
the function. For a set of n data points the maximum interpolation order
available is n− 1.

4.3.1 Interpolating functions of two variables

The bilinear interpolation constitutes an immediate extension on the one-
dimensional concept of linear interpolation when approximating a discretized
function of two variables f (xi, yj). The key idea behind the bilinear interpo-
lation scheme consists of performing linear interpolations of f (xi, yj) along
the direction of one of the two axes, then one further interpolation between
the two interpolated values along the other axis. In order to calculate the ap-
proximated value fx, y for x ∈ [xi, xi+1], and y ∈ [yj, yj+1], first one evaluates
fx, j and fx, j+1 as:

fx, j = fi, j +
x− xi
xi+1 − xi

(fi+1, j − fi, j)

fx, j+1 = fi, j+1 +
x− xi
xi+1 − xi

(fi+1, j+1 − fi, j+1)

, (4.24)

then, as the interpolation of the two values calculated in eq. (??):

fx, y = fx, j +
y − yj
yj+1 − yj

(fx, j+1 − fx, j) . (4.25)

The order in which the axes are interpolated does not influence the result of
the approximation, an identical result can be evaluated as the interpolation
of fi, y and fi+1, y given by:

fi, y = fi, j +
y − yj
yj+1 − yj

(fi, j+1 − fi, j)

fi+1, y = fi+1, j +
y − yj
yj+1 − yj

(fi+1, j+1 − fi+1, j)

. (4.26)

The bilinear interpolation is quadratic in order since it involves the prod-
uct of two linear functions. Furthermore it is linear in amplitude, this
means that the interpolated function is linear along any direction in the
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two-dimensional space (the particular case for the directions parallel to the
axes is obvious). The obvious extension of this method for functions of three
variables, the trilinear interpolation, involves the linear interpolation of two
values, calculated on parallel planes, using bilinear interpolations.

Linear interpolation schemes can be interpreted as the weighted average
of fi and fi+1. The weights for each value are the normalized distances along
the interpolation axis of the interpolated point from the coordinate of the
opposite known value. This is easily noticed by rearranging the terms in
eq. (??). Namely, the weight of fi is (xi+1 − x) / (xi+1 − xi) and the weight
of fi+1 is (x− xi) / (xi+1 − xi). This interpretation can be generalized to a
larger number of dimensions as shown in Fig. ?? (b) in the case of the bilinear
interpolation. In this case the weight is given by the normalized area of the
rectangle opposite to the point where the value of f is known.

Figure 4.3: Interpretation of the linear (a) and bilinear (b) interpolation as
weighted averages. The black dot shows the coordinate where the function is
interpolated. (a) The length of the colored segments constitutes the weight
for the known value of f in the point marked with the same color. (b) In the
bilinear interpolation the area of the each rectangle constitutes the weight
for the corresponding known value of f .

4.3.2 Interpolation in the multiscale approach

The multiscale approach that is the focus of this thesis, proposes to use the
Runge-Kutta algorithm to solve the LLG equation on two different grids.
On one grid the finite difference method is applied to the micromagnetic
model to describe the magnetic system in its entirety. The second, finer, grid
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is located on regions of the system where a singularity can arise or where
anyway more precision is required; on this grid the classical simulation of the
LLG equation is performed in the Heisenberg spin model. The cell size of
the finer grid corresponds to the elementary cell of the material chosen for
the simulation, thus each cell of this grid can be considered as a lattice site.
For the sake of the portability of the algorithms from one grid to the other,
the atomic lattice is always considered to be simple cubic. To improve on
the quality of this approach, the size of the micromagnetic cell is chosen in
order to contain an odd number of atomistic cells, this way a fixed amount of
atomistic sites is in every micromagnetic cell. Furthermore one atomistic site
occupies the center of each micromagnetic cell. In this context, interpolation
algorithms are used to approximate the value of functions discretized on the
micromagnetic grid to the corresponding atomistic sites. If the interpolated
function is M, the interpolated value is rescaled according to eq. (??) in
order to obtain the magnetic moment µ. The interpolation algorithms used
for this purpose are linear, bilinear or trilinear according to the dimensions of
the micromagnetic grid. While the interpolation always introduces an error,
as stated in eq. (??), these inaccuracies are considered to disappear during
the course of the simulation. This assumption is based on the fact that in
the variational approach, on which the LLG equation is based [see eq. (??)],
small perturbations on the magnetic state of the system lead to the same
lowest energy configuration.
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Chapter 5

The necessity of a multiscale
approach

To model magnetization dynamics, currently two paradigms analyzed in
depth in chapter ?? are commonly used: the micromagnetic model and the
classical Heisenberg spin model. In contrast to the Heisenberg model, the
micromagnetic model [?] is ideal when simulating systems with linear dimen-
sions of the order of a few nanometers or larger; since it is a continuous model
that is discretized for computational application. The immediate advantage
of approximating a large number of lattice sites with a single cell [see section
??] consists in a sizeable decrease in terms of computational effort. Nonethe-
less, many magnetic structures and phenomena of general interest cannot be
realistically simulated in this model. As shown in the previous chapters of
this thesis, a twofold limitation occurs when the micromagnetic model is used
to simulate magnetic structures which change on short length scales. The
computational limitation of the algorithms used to evaluate the derivatives
of M [see section ??], which are needed when evaluating the exchange inter-
action effective field [see section ??], produce an upper bound to the possible
size of a micromagnetic cell. While this limitation can in principle be lifted
by refining the mesh, this practice would increase the computational effort
needed for a simulation, removing the main advantage of micromagnetics
compared to the Heisenberg model. A stronger, fundamental limitation, is
given by the intrinsic approximation of the model [see section ?? for details
of the errors introduced by the micromagnetic model for rapidly varying spin
structures]. This limitation does not depend on the numeric implementa-
tion, rather it affects micromagnetism in its original, analytical formulation,
making accurate analyses of magnetic structures that change on the length
scale of the atomic lattice unattainable. A textbook example for this scenario
is offered by Bloch points [?] [see Fig. ?? and section ??]. Certain domain
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walls and spin waves also belong to this category for particular values of the
material parameters.

As a discrete description, where with every atom in the lattice of the
ferromagnet a magnetic moment is associated, the capability for Heisenberg
model to simulate any magnetic structure is not limited by computational
artifacts originating from the discretization of a continuous model. On the
other hand, the Heisenberg model cannot be efficiently used to simulate sys-
tems larger than a few nanometers due to the computational time increasing
faster than linearly with the number of lattice sites [?,?]. In the presented ap-
proach, the entire system is simulated using the micromagnetic model while
one or more regions of which contain structures that exhibit a large gradient
(e.g. Bloch points), are simulated using the discrete Heisenberg model. The
main obstacle for the development of a combined multiscale technique con-
sists of devising accurate conditions to make the interface between regions
on two different scales magnetically smooth, in order to prevent any interface
related artifacts.

Figure 5.1: (a) Schematic of a magnetization structure with a micromagnetic
singularity (Bloch point). The two domains depicted by grey arrows are
separated by two Bloch walls (black). The Bloch walls have opposite sense
of rotation and are separated by two Néel/Bloch lines (blue). Between the
two Néel/Bloch lines with opposite orientations, a micromagnetic singularity
(red) is formed. A magnification of the red square is shown in (b). (c)
A micromagnetic singularity also occurs during the reversal of a magnetic
vortex core [?,?]. These diagrams were adapted from Ref. [?].
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5.1 Skyrmion annihilation in a constant field

As a demonstration for the necessity of a multiscale approach to magneti-
zation dynamics, simulations of Skyrmions shrinking and annihilating in an
external magnetic field were performed. The content of this chapter refers
to Ref. [?]. The implementation of the multiscale approach is presented in
detail in chapter ??.

The chosen system is a ferromagnetic disk with a radius of 53 nm and
thickness of 3 nm, the saturation magnetization Ms = 106 A/m, out-of-
plane anisotropy constant Kz = 1.3 × 106 J/m3, and the exchange constant
A = 1.1×10−11 J/m. These parameters are comparable to those of CoFeB [?]
in multilayer stacks that are widely used in thin film nanostructures that
exhibit Skyrmions [?]. The central part of the system was simulated in the
Heisenberg model (fine scale region), while the remaining part was simulated
using the micromagnetic model (coarse scale region). The size of the fine scale
region was chosen in order to fit the entire Skyrmion at rest, but without
sacrificing too much computational time. It should be stressed that larger
Skyrmions can still be simulated accurately as far as no discontinuities occur
in the coarse scale region.

First, magnetic Néel Skyrmion states were relaxed for different values of
the Dzyaloshinskii-Moriya interaction (DMI), then simulations with a con-
stant uniform magnetic field, applied in the direction opposite to the magne-
tization inside the Skyrmion were performed. All the micromagnetic parame-
ters were kept fixed, whereas the atomistic ones were changed. In particular,
the distance a between two neighboring nodes of the mesh was changed, in
order to increase the density of spins. While a can be interpreted as the
lattice constant of the material, it is treated in this case just as a compu-
tational parameter. As a result, the magnetic moment of the spins µ and
the exchange constant J were rescaled according to µ = a3Ms and J = aA.
These all effectively simulate a single material that is described with the
same micromagnetic parameters, which are used for the coarse scale region.

In Fig. ??(a) we show that an application of an external out-of-plane mag-
netic field leads to the Skyrmion shrinking until it reaches its new equilibrium
size. This behavior is reproduced for magnetic fields up to a critical value
Hdel. For fields larger than Hdel, the Skyrmion shrinks until it completely
annihilates. The analysis of the Skyrmion dynamics in nonzero out-of-plane
fields shows that the spins magnetized in plane, corresponding to the cen-
ter of the Skyrmion’s circular domain wall, tilt clockwise while the Skyrmion
shrinks [see Figs. ??(b) and ??]. When the shrinking stops, i.e. the Skyrmion
reaches a new equilibrium size, the magnetization in the domain wall aligns
along the radial direction again, recovering the Néel Skyrmion character.
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Figure 5.2: Dynamics of a Skyrmion for different values of a constant out-
of-plane field. The system shows an oscillatory behavior, where both (a) its
size, expressed in terms of the Skyrmion magnetic moment S, and (b) the
angle θ between the in-plane magnetization components of the domain wall
and the radial direction, reach a certain nonzero value before relaxing back to
the equilibrium. The data corresponding to 250 kA/m shows the Skyrmion
annihilation. The inset (c) illustrates how the angle θ is defined. The color
code showing the out of plane component of M is clarified in Fig. ??.
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Figure 5.3: Dynamic snapshots at various stages of the annihilation process
in 300 kA/m external magnetic field. The initial configuration of a Néel
Skyrmion is changed when the structure is shrinking. The scale on the axes
is expressed in units of the micromagnetic computational cell (3 nm).

As a measure of the Skyrmion size we use the total magnetic moment S
inside the Skyrmion’s domain wall. It is proportional to

∑
i (mz,i − 1), where

mz,i is the out-of-plane component of the normalized magnetization at the
lattice site i, and the sum runs over all sites in the fine scale region, which al-
ways completely includes the Skyrmion’s domain wall. For fields below Hdel,
we observe that S reaches a minimum, depending on Gilbert damping α, be-
fore relaxing back to a slightly larger value [Fig. ??(a)]. While the Skyrmion
increases in size, the magnetization in the domain wall tilts counterclockwise
[Fig. ??(b)]. The aim here is to demonstrate how the simulation results can
be influenced by the refinement of the mesh rather than testing the stability
of the Skyrmion for different material parameters, as previously investigated
e.g. in Ref. [?].

We find that decreasing a, i.e. increasing the density of magnetic mo-
ments, leads to an increase of Hdel [see Fig. ??]. This is in agreement with
Ref. [?] and shows how the minimum size which a Skyrmion can reach be-
fore the annihilation strongly depends on the lattice constant. Furthermore,
these results agree with the asymptotic behavior of indestructible Skyrmions
in a continuous model [?,?]. Topological protection can thus be considered
a limiting case of the energy barrier [?] separating the metastable Skyrmion
state from the ferromagnetic state.

The energy barrier is shown in Fig. ??, where the internal energy Eint
of a Skyrmion shrinking under the influence of a constant magnetic field is
plotted as a function of time. It can be noticed that Eint, consisting of the ex-
change, anisotropy, dipolar energy, and DMI contribution, increases until the
annihilation occurs. The energy barrier is overcome by the application of the
Zeeman energy. The Skyrmion moment S is also shown, to stress that once
the Skyrmion reaches its minimum size, the topological barrier is overcome,
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Figure 5.4: The minimum magnetic field Hdel necessary to adiabatically an-
nihilate a Skyrmion for different values of the DMI constant D and linear
spin density a−1. Hdel is shown to linearly increase as a function of the spin
density. Data points corresponding to the lowest value of a−1 were simulated
in purely micromagnetic simulations.

Figure 5.5: Path to annihilation of a Skyrmion in 300 kA/m external mag-
netic field. The internal energy Eint of the system and the total energy
(internal plus Zeeman energies) are compared as functions of time. A poten-
tial barrier exists for the internal energy which has to be overcome by the
application of an external field. The size S and the topological charge Q are
shown. All the quantities are presented in arbitrary units.
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and the system relaxes in the more stable uniform ferromagnetic state. It
can be further noticed that the Skyrmion charge Q instantly switches to zero
when the barrier is overcome. A purely micromagnetic simulation with a 1.5
nm cell size (a−1 ' 0.667 nm−1) was included for comparison. It cannot be
understated that a multiscale approach is able to simulate the singularities
atomistically using realistic material parameters, and the uniformly magne-
tized external region in the micromagnetic model, allows one to predict the
dynamics of a similar system with better quantitative accuracy than obtain-
able using only the micromagnetic model.

Determining the stability using a multiscale approach demonstrates that
the annihilation of Skyrmions is strongly influenced by computational param-
eters, such as the mesh size. Using the multiscale approach overcomes this
problem, and allows one to obtain the realistic stability parameters. The
cell size here is fixed by the appropriate lattice constant of the simulated
material, and the computational efforts are far lower than those of a purely
atomistic simulation. Furthermore, this approach reproduces the dynamics
including the spin spectrum realistically, which even allows in the future to
include thermal effects.
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Chapter 6

Implementation

The multiscale approach, implemented as an expansion of the MicroMagnum
micromagnetic simulator [?], solves the Landau-Lifshitz-Gilbert equation nu-
merically for two different models: the coarse grained micromagnetic model,
which simulates the whole sample; and the classical Heisenberg spin model,
which is used for magnetic structures that cannot be accurately described
by the micromagnetic model, discretizing the magnetization field at atomic
resolution [see Fig. ??]. Parts of this chapter have been published in Ref. [?]

Figure 6.1: The basis of the multiscale model. a) Purely micromagnetic
simulation: each cell in the vortex core region is simulated in the coarse
scale. b) The multiscale simulation, where a small region (central 9 cells) is
simulated using the atomistic model, while the rest of the sample is simulated
using the micromagnetic model. The color code shows the out of plane
component of the unit magnetization.
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The software executes in parallel two independent solving routines, one
for each model (it is in principle possible to execute any number of fine scale
solving routines), performing one full computational step on the coarse scale
one and then a short series of steps on the fine scale one centered around the
time coordinate of the coarse one [see Fig. ??].

The main task towards the development of this technique consisted in
modeling the interaction between different regions. This was achieved by
applying, after each coarse scale step, a set of magnetic fields designed to
approximate the effect of the non-local terms of the effective magnetic field
from one region on the other, see Fig. ??, namely exchange and stray field.

Figure 6.2: The multiscale model in the time domain: after each coarse com-
putational time step the corrections to the effective field in the fine scale
region, generated by the coarse one are evaluated, a short series of fine steps
centered around the latest coarse step, of length h, is executed, then correc-
tions to the coarse scale effective field (generated by the Heisenberg fine scale
one) are evaluated.

6.1 Exchange field

The exchange field, generated by the fine scale magnetic moments closest to
the interface (’interfacial moments’), on their ’neighboring’ cells in the coarse
scale (’interfacial cells’) is evaluated by averaging all the interfacial moments
inside each coarse scale cell [see Fig. ??]. The average vector is rescaled by
the volume Va = csa

3 [see Eq. ??] of a cell in the atomic lattice, in order to
obtain the magnetization (A/m), rather than the magnetic moment (Am2).
A new finite difference mesh, with coarse scale discretization is created and
the cells corresponding to the internal surface of the fine scale region are filled
with the difference between the magnetization of the same cell in the original
coarse mesh and the new vectors. In this way, the linearity of the exchange
field with respect to the magnetization is exploited to evaluate a correction
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to the field, calculated in the micromagnetic formulation, generated by the
original coarse scale cells alone. The corrected exchange field, exerted by the
multiscale cell j on the micromagnetic cell i is calculated as:

Hex, corr (Mj) = Hex (Mint,j −Mj) + Hex (Mj) . (6.1)

Here Mj denotes the magnetization in the cell j in the purely micromagnetic
simulation, while Mint,j is defined as:

Mint,j =
Ms

|µ|Nint

Nint∑
k

µk =

∑Nint
k µk

VaNint

, (6.2)

where the sum runs over all the magnetic moments µ located along the
interface on the side of cell j that is neighboring cell i. This formula is only
fully valid in the case of complete cells, without additional or missing atoms.
This effective field term is evaluated in the micromagnetic model.

Likewise, to evaluate the exchange field generated by interfacial cells on
interfacial moments, interpolation is employed in order to define a set of
new magnetic moments (’ghost moments’ [?]) to act as first neighbors to the
interfacial ones. The exchange field generated by the ghost moments is eval-
uated in the Heisenberg spin model. A combination of fine scale moments
and coarse scale magnetization is used in the interpolation in order to ensure
a smooth transition in the magnetic pattern across the interface. This means
that each ghost moment results from the interpolation of atomistic and aptly
renormalized micromagnetic vectors. The same techniques, based on the av-
erage of interfacial magnetic moments, and the calculation of ghost moments
through interpolation across the interface, are employed when evaluating an-
tisymmetric exchange (Dzyaloshinskii-Moriya interaction) across the scale
interface.

6.2 Demagnetization field

The stray field contains all the long range contributions to the effective fields.
The implementation of this field constitutes one of the main differences be-
tween the two models. In both scales the demagnetization tensor formulation
was employed, [?] as well as the calculation method based on FFT for effi-
cient calculation [?]. While for the coarse cells the demagnetization tensor
describes the interaction between two uniformly magnetized solid rectangles,
according to the calculations carried on by Newell et al., [?] the demagneti-
zation tensor used for two full magnetic moments in the fine scale, is defined
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Figure 6.3: The key components in the evaluation of the cross-scale effective
field terms: magnetic moments (red), micromagnetic cells (black), interfacial
moments and cells (highlited in blue), ghost moments, which are not part
of the LLG solving routine (white). The dashed lines show how the ghost
moments, and in particular the one marked in green, are evaluated as the
bilinear interpolation of fine scale moments and coarse scale magnetization.
(Inset) Zoom on the square formed by the dashed interpolation lines, which
is a practical case of the one shown in figure ??(b).
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as:
1

4π

[
1

|ri − rj|3
− 3

(ri − rj)⊗ (ri − rj)

|ri − rj|5

]
, (6.3)

where ri and rj are the position of two magnetic moments, 1 is 3 × 3 identity
matrix, and symbol ⊗ denotes the tensor product.

Similarly to the exchange field, the stray field is linear in the magneti-
zation vector and this property is exploited likewise. The correction to the
stray field generated in the micromagnetic system by fine scale regions is
evaluated using the averaged value of magnetic moments in each cell. In
order to evaluate the complete demagnetization field acting on the fine scale
system, the coarse scale magnetization structure is copied into a new mesh
and the cells corresponding to the fine scale region are filled with null vec-
tors. The stray field generated by this system is evaluated. This technique
is employed in order for the field generated by the fine scale region on itself
not to be evaluated twice. Since the field has the same discretization as the
structure generating it, the result is then interpolated, in order for it to have
the discretization of the fine scale mesh. The type of linear interpolation
depends, as for the ghost moments, on the dimensionality of the mesh. This
is the only case for an effective field term evaluated micromagnetically to be
applied on the fine scale region. This approximation is made necessary by
the computational complexity of the algorithm calculating the field, increas-
ing with N log(N) where N is the number of cells. This dependence is due
to the method employed for calculating the demagnetization tensor based on
Fast Fourier Transform (FFT) [?,?].

6.3 Tests

Having implemented the approach, a series of tests was performed as a
demonstration of the validity of this method. First, some basic tests were run,
in order to make sure that the effective field terms were evaluated correctly.
This was achieved mainly by comparing the numerical results to the analyt-
ical theory for small systems and comparing micromagnetic and atomistic
results for larger systems. The results for the dynamics of a single magnetic
moment in an external field derived in ?? were compared to the numerical
results generated by the multiscale approach in order to make sure that the
Runge-Kutta algorithm was implemented correctly in both scales.

In order to test the interface conditions at the interface two customized
tests were performed. These results are published in [?] along with the details
of the implementation of such interface conditions.
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6.3.1 Spin wave transmission

A one-dimensional nanowire, 1.8µm long with a square 0.3×0.3 nm2 section
was simulated. The fine scale domain was 90 nm long [see Fig. ??], the
material parameters for this system are those commonly used for permalloy,
namely: Ms = 8 × 105 A/m, exchange constant A = 1.3 × 10−11 J/m, and
Gilbert damping constant α = 0.01 [?]. The lattice constant chosen for the
atomistic region was l = 0.3 nm, comparable to the ones of iron and nickel.

Figure 6.4: The fine scale region of the nanowire and its immediate surround-
ings. An oscillating magnetic field Halt is applied to a section of the fine scale
region to excite spin waves. The amplitude of the spin wave is evaluated in
the atomistic fine scale cell j and the coarse scale cell i which is described
micromagnetically.

Spin waves of different frequencies ω0 were excited applying an alternating
transversal magnetic field, Halt, to a short (3 nm long) section of the wire.
The magnetization as a function of time was measured on the atomistic
moment furthest from the region where Halt is applied (µj(t)), and on the
neighboring micromagnetic cell (Mi(t)), the transversal component of the
two arrays was normalized, and then analyzed using FFT in order to find
µj(ω) and Mi(ω). Peaks with frequency corresponding to the frequency of
Halt were easily identifiable. The height of such peaks increased linearly
with the amplitude of Halt. The peaks, µj(ω0) and Mi(ω0), were squared
and the transmission coefficient T across the interface has been evaluated by
calculating the ratio between the two:

T (ω0) =
|µj(ω0)|2

|Mi(ω0)|2
. (6.4)

For some values of the frequency, a purely atomistic simulation was per-
formed for comparison, and with the aim of obtaining the relation between
frequency and wavelength. Using FFT in the space domain, the correspond-
ing wavenumber k was measured for each value of the excitation frequency.
In particular, such Fourier transforms were evaluated at different time in-
stants and then averaged. Once again peaks were easily identifiable. By
means of linear regression [see Fig. ??] the dependence k2(ω) was measured
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Figure 6.5: Linear regression used to measure the relation between excited
wavevector k and the excitation frequency ω.

and the wavelength corresponding to each value of the excitation frequency
was calculated as λ(ω) = 2π/k(ω).

Three sets of simulations were performed, with different lengths of the mi-
cromagnetic cells, corresponding to ten, twenty and thirty times the atomic
lattice constant. The data show ideal transmission for frequency values
smaller than a sharply defined cut-off frequency. The same data, as a func-
tion of the wavelength, show consistently that the transmission drops to zero
at a cut-off wavelength corresponding to a specific value of the coarse cell
size [Fig. ??].

Considering the cut-off as a consequence of the coarse scale not being
able to resolve waves with such a small wavelength, a similar system was
simulated, this time with the excitation being applied on the coarse scale
region only. Here the waves propagate into and then out of the fine scale
region and the transmission is measured for waves leaving the fine scale region
[Fig. ??(a)]. The test was repeated using periodic boundary conditions to
make sure that the sharp cut-off was not caused by the waves being reflected
at the end of the wire. Both tests were then repeated for different values of
the exchange constant. In order to measure the cut-off frequencies, a linear
regression was executed on all the transmission values between 0.1 and 0.9,
the intersection of this line with the transmission value of 0.5 was defined as
the cut-off frequency.

The cut-off wavelength of the order of a few computational cells is at-
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Figure 6.6: The measured transmission for waves excited in the fine scale
region with open boundary conditions as a function of their frequency ω
(a) and wavelength λ (b). A transmission of 1 (100%) for a wide range of
wavelengths demonstrates the numerical validity of the model.

tributed to the approximation performed in evaluating the exchange interac-
tion, which is due to the limited accuracy of the algorithms used to calculate
the derivatives of M [see sections ?? and ??]. This universal behavior can
be considered as a limitation of computational micromagnetism, which does
not allow one to simulate very short wavelength spin waves without refining
the mesh, introducing therefore a dramatic increase in the computation time.
The dependence of the cut-off frequency on the exchange constant supports
this hypothesis [see Fig. ??(b)].

The transmission data for the spin waves shows that information about
magnetic structures in the fine region can cross perfectly the scale interface,
thus demonstrating the reliability and numerical validity of the model. A
thorough analysis of the cut-off phenomenon found for spin wave transmis-
sion shows that in the presence of spin waves with a short wavelength the
multiscale approach can be reliably used under the condition that the waves
do not leave the fine scale region. Meanwhile, the traditional approach –
a refinement of the whole mesh – would increase the computational time
dramatically.

6.3.2 Continuity of a DMI spiral

To demonstrate the reliability of the method used to evaluate effective fields
across the interface by direct comparison to analytical theory, a system
exhibiting antisymmetric exchange [?, ?] was simulated, as this leads to a
spin structure that can be analytically calculated. A nanowire, similar in
shape to the one used to test spin wave transmission, with the parameters
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Figure 6.7: (a) The average transmission for waves of all possible frequencies
excited in the coarse scale region, before entering the fine scale one, with
closed and periodic boundary conditions (BC) for different values of the ex-
change constant A. The data shown is the result of an average on all the
frequencies. Peaks with frequency higher than 3.5 THz were not visible in
the Fourier transform, underlining the fact that the cut-off is a consequence
of the waves not being resolved for the chosen cell-size. The observed trans-
mission of approximately 1 shows the validity of the method with no artificial
attenuation at the interface between the regions where different models are
used. (b) The cut-off frequency ωcut for waves excited in the fine scale region
with closed and periodic boundary conditions (BC) for different values of
the exchange constant A. A cut-off frequency depending on the exchange
constant demonstrates that this phenomenon is strictly micromagnetic and
is not introduced by the multi-scale approach.
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Figure 6.8: (a) The two components of the magnetization for a multiscale
DMI helix in the xz plane, showing continuity and consistency of the period in
the coarse and fine scale. The dashed lines show the position of the fine scale
region. (b) The pitch of the helix increases linearly with the DMI constant
and is consistent with the value expected from an analytical calculation [?].
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Ms = 1.05 × 106 A/m, exchange constant A = 11 × 1011 J/m. Different
values of D = |Dij| were used. The vector Dij scales the energy density
of the Dzyaloshinskii-Moriya interaction (DMI) as calculated in Ref. [?] and
shown in ??:

eDMI = Dij · (µi × µj) / |µ|2 .

The system was relaxed in a coarse scale simulation, then a fine scale region
was applied on a section of the wire and the system was relaxed again. The
relaxed state [see Fig. ??] showing continuity in the helix structure, typical
of systems exhibiting DMI, with a pitch in agreement with the predicted [?]
value of D/(4πA). The pitch was evaluated from the Fourier transform in
the space domain for the two components of the helix, using the data points
from both scales and taking the peak value from the Fourier transform. The
components of M evidently have a perfectly sinusoidal shape, see Fig. ??.

This data further shows that the method employed for evaluating cross
scale interactions ensures continuity between the regions of different scales
and yield quantitative agreement with the analytical theory.

6.4 Tracking

A tracking algorithm was devised in order to keep the fine scale region as
small as possible, it scans the fine scale region for the position of the structure
of interest (SOI), usually where a singularity is likely to occur, and shifts
the fine scale region by an integer number of coarse scale cells units, in
order to always have the SOI close to its center. When micromagnetic cells
previously not part of the fine scale region become included, interpolation
is applied in order to fill in the fine scale mesh with magnetic moments
that accurately reproduce the coarse scale magnetization and are continuous
within and across the scale interface.

To show that the fine scale area can be reliably moved, a test was per-
formed. This test simulated domain wall motion in a nanostrip (3µm ×
33 nm×0.3 nm) induced by a unidirectional magnetic field. The material pa-
rameters of the strip are the same as the nanowire from the previous test with
the only exception of Gilbert damping α = 0.1. The domain wall is initially
in the center of the fine scale region, when the distance from the starting po-
sition becomes larger than a certain threshold (tracking distance), the whole
fine scale region is shifted, in order to keep it centered. The test was repeated
for different tracking distances to show that this process does not influence
the dynamics of the system (Fig. ??). These results indicate the reliability
of the tracking algorithm and its effectiveness as a method to keep the size of
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Figure 6.9: Domain wall displacement after the application of a unidirectional
Gaussian-shape magnetic field pulse with different values of height and width
as a function of the tracking distance. This is the distance traveled by the
domain wall before the fine scale region is centered around it. We expect this
parameter not to influence the dynamics of the system and the data confirms
this assumption.

the fine scale regions at a minimum and not introducing significant artifacts
to the simulated results.
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Chapter 7

Topological transformations in
magnetic Skyrmions

Magnetic Skyrmions are one of the most interesting spin structures for the
development of future information technology as they have been predicted
to be topologically protected. As shown in Ref. [?] a BL can be formed and
annihilated in a Bloch Skyrmion via application of a field gradient. Since the
process of annihilating a Skyrmion is a key operation for devices, the effect
of a spin polarized current pulse was analyzed to see that Skyrmions can be
reliably deleted by designing the pulse shape. For this purpose current pulses
that generate spin-orbit torques [?,?,?] were employed, in order to show how
the shape of these pulses influences the Skyrmion and induces changes to
the topology. In general, using spin currents is more advantageous than
using fields to manipulate magnetization due to more favorable scaling. The
influence of the spin-orbit torques on Skyrmions [?, ?], in particular yields
many promising possibilities towards the implementation of Skyrmions as
information bits.

As the annihilation of a Skyrmion includes the annihilation of a Bloch
line (BL) [?], this phenomenon cannot be properly simulated in the micro-
magnetic framework. Because of this change in topology of the spin structure
during the process [?], the charge Q [see eq. (??)] of the system changes from
±1 to 0, thus lifting the topological protection.

Within the multiscale approach the core of an isolated Skyrmion was
simulated atomistically, while the remaining part of a nanodisk hosting the
Skyrmion was simulated using the Heisenberg model. The material parame-
ters employed for this simulation were the same as the stability simulations
presented in ?? with the damping constant α = 0.1. Furthermore the Hall
angle αH = 0.1 and the constant ξ = 0.5 were used.

The LLG equation implemented to include the effect of a spin-polarized
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current, generated for instance via the inverse spin galvanic effect or the
spin-Hall effect, is eq. (??) presented in chapter ?? derived from Ref. [?],
and reads:

dm

dt
=− γ′ [m×Heff + α (m× (m×Heff ))]

− γ′aJ [(ξ − α) (m× p) + (1 + αξ) (m× (m× p))] ,
(??)

where γ′ = γ/ (1 + α2) with γ being the gyromagnetic ratio, Heff is the
effective field, p the average polarization of the current generated by the
spin-Hall effect, aJ the damping-like term constant [?, ?, ?], and ξ the ratio
between damping-like and field-like torques. Current density pulses of Gaus-
sian shape, J(t) = J0 exp[−t2/(2σ2)] were applied along the x-direction.

Figure 7.1: Spin structure of the Skyrmion during the annihilation process
in cases I and II. The color code for the arrows shows the out-of-plane com-
ponent, from red, to white to blue. The initial state corresponds to a relaxed
Skyrmion centered on the cell with coordinates (50, 50). (a) Case I: A BL is
formed in the domain wall of the Skyrmion within a vortex-antivortex pair.
The spins in the domain wall turn clockwise starting from the position of the
pair, meanwhile, the Skyrmion increases in size and reaches a maximum then
starts shrinking in size. As the Skyrmion shrinks below the minimum size,
it is finally annihilated. The system relaxes into the ferromagnetic ground
state. (b) Case II: The vortex-antivortex pair annihilates, the Skyrmion
number immediately turns to zero, the system quickly relaxes back to the
ferromagnetic state.

The results show that during the application of the pulse the topological
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charge density, defined as

q =
1

4π
m ·

(
∂m

∂x
× ∂m

∂y

)
,

accumulates in a vortex antivortex couple. It is indeed possible to form
a vertical BL, as a vortex-antivortex couple within the domain wall of the
Skyrmion. In the process the domain wall deforms, increases in width on one
side of the Skyrmion and decreases on the opposite side. The duration of the
pulse plays a fundamental role, since a pulse that is too short would not de-
form the domain wall enough, while a pulse too long would act adiabatically
on the whole Skyrmion and push it beyond the edge of the magnetic system.
Intermediate values result in the formation of the BL that can either anni-
hilate or relax. While the annihilation is a topological transformation and
leads to the annihilation of the Skyrmion, the relaxation of the BL results in
its rapid expansion. We can explain the rapid expansion of the Skyrmion as a
consequence of the large exchange energy density of the BL being dissipated
in the breathing mode excitation of the Skyrmion.

Figure 7.2: Details of the case I annihilation process. (a) The topological
charge density is accumulated in a vortex-antivortex pair. (b) The system
relaxes. (c) The Skyrmion size increases until the Néel character is recovered.
(d) The Skyrmion shrinks and then annihilates.

It is possible to distinguish three different regimes [see Fig. ??]. In the
nonannihilating regime the relaxation of the BL is accompanied by size oscil-
lations of the Skyrmion, which do not lead to collapse. As was noted in ??,
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Figure 7.3: Zoom on the case II annihilation process shown in Fig. ??(b). (a)
The topological charge density is accumulated in a vortex-antivortex pair.
(b) A Bloch line is formed. (c) The Bloch line annihilates, generating a
topological charge density of the opposite sign. (d) The system relaxes into
the ferromagnetic state.

Skyrmions collapse once their size becomes too small to stabilize them in the
antiparallelly aligned surrounding magnetization. This occurs in the annihi-
lation regime of case I [Fig. ??(a)], which (while qualitatively similar to the
nonannihilating regime) results in stronger size oscillations that annihilate
the Skyrmion due to overshooting in the shrinking phase. The annihilation
regime of case II, see Fig. ??(b), is indeed qualitatively different since the
vortex-antivortex pair with opposite polarities forms and subsequently anni-
hilates [?, ?], leading to the immediate annihilation of the Skyrmion. This
regime could thus be exploited for practical applications since it allows one
to lift the topological protection of Skyrmions in a quick and reliable manner.

Some considerations can be inferred about the energetic landscape of the
Skyrmion in the three regimes. In the nonannihilating regime, the injected
pulse does not provide enough energy to overcome the potential barrier dis-
cussed in chapter ??. Topological charge density accumulates on one side of
the domain wall and is then redistributed to the whole Skyrmion. During
this process the size of the Skyrmion increases. The energy provided by the
pulse is then dissipated as the size of the Skyrmion fluctuates until it reaches
equilibrium. If the energy provided by the pulse is higher than the potential
barrier, the size oscillations of the Skyrmion are large enough to annihilate
the Skyrmion in the case I regime. A larger amount of energy needed to
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Figure 7.4: Different regimes depending on the peak height J0 and half-
width σ of the Gaussian pulse. The error bars were evaluated by performing
simulations with different values of σ.

form and annihilate a Bloch line on the domain wall, as it happens in the
case II regime. In this case the energy is not dissipated by relaxing the struc-
ture, increasing the size of the Skyrmion. Rather, due to the instability of
the topological charge being accumulated on a few magnetic moments [see
Fig. ??] the Bloch line is immediately annihilated. During the annihilation
of the Bloch line a topological charge of the opposite sign is generating. As a
consequence, the topological protection is overcome and the system quickly
relaxes into the ferromagnetic state.

The application of spin-orbit torques due to spin-polarized current pulses
was shown to be a very fast and efficient method to delete isolated Skyrmions
as required for applications, since certain combinations of pulse parameters
exist, which robustly annihilate the Skyrmion. This may open up a path to
delete Skyrmions reliably as required for future spintronic memory.

78



Chapter 8

Summary and outlook

The extensive attention given to the theory in the early chapters of this
thesis, is aimed to provide the reader with all the necessary information
to understand the need for a multiscale approach, and the main challenges
towards its implementation.

The main observables in the theory, the spin S and the magnetization
M, are presented in the first chapter. The LLG equation, determining their
dynamics, is derived from basic quantum mechanical calculations and phe-
nomenological observations.

In the second chapter the effective field terms of the LLG equation are
evaluated in the micromagnetic model as a continuum approximation of the
classical Heisenberg spin model. Particular focus is dedicated to the nonlo-
cal terms, the exchange and demagnetization fields. The former imposes the
main shortcoming on the micromagnetic model, since it cannot be evaluated
accurately for tightly wound magnetization structures. The latter accounts
for the long range interaction of all the spins in the magnetic system with
each other. The computational complexity of the algorithms needed to eval-
uate the demagnetization field constitutes the main disadvantage of atom-
istic models when simulating systems of a size comparable to that of certain
devices of technological interest. Furthermore, the Dzyaloshinskii-Moriya in-
teraction, responsible for the stabilization of Skyrmions, and the spin-Hall
torque, commonly used to excite this structures, are presented in detail.

The third chapter focuses on some magnetic structures of interest. Chiral
structures such as vortices and Skyrmions are described and their topologi-
cal properties are explained. In order to underline the need for a multiscale
approach, structures and phenomena that cannot be simulated in the mi-
cromagnetic model, such as Bloch points and unwinding Bloch lines, are
detailed.

The fourth chapter presents different algorithms employed in the ap-
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proach. The Runge-Kutta algorithm, used to calculate the solution of differ-
ential equations is the fundamental computational tool when running a sim-
ulation. The finite difference method, which discretizes a continuous model
provides one further limitation to the micromagnetic model, whose accu-
racy in evaluating the exchange field, is not only intrinsically limited by the
micromagnetic approximation, but by the effect that the refinement of the
mesh has on the evaluation of the spatial derivatives as well. Interpolation
algorithms, employed to approximate atomistic quantities from micromag-
netism are essential in order to understand how the multiscale approach was
implemented.

The arguments in favor of a multiscale approach are summarized in the
fifth chapter. As a further proof of concept, the stability of Skyrmions was
evaluated for different sets of computational and physical parameters in order
to show how an accurate atomistic model is needed to accurately simulating
Skyrmion annihilation.

The implementation of the approach is the focus of the sixth chapter.
Here the model used to evaluate the exchange and demagnetization fields
between regions on a different scale is detailed. The validity of the approach
was tested by evaluating the transmission coefficient for spin waves traveling
through the interface between the two regions. One further demonstration
is provided by the simulation of a DMI spiral. This structure arises as a
consequence of the interplay between isotropic and antisymmetric exchange
interaction (DMI). The correct evaluation of the spiral relies on an accurate
implementation of this effect across the model interface. The tracking algo-
rithm was tested as well by simulating domain wall motion. The importance
of tracking the structure to simulate atomistically, in this case the domain
wall, cannot be understated since it allows to greatly reduce the size of the
fine scale region.

The seventh chapter presents the first application of the multiscale ap-
proach. Skyrmions are excited and annihilated by using spin-Hall torques.
The topological aspects of the Skyrmion annihilation are analyzed with un-
precedented detail for a numerical approach. The operating range of a mem-
ory device based on this technology is evaluated quantitatively, identifying
a regime where Skyrmions, encoding an information bit, can be annihilated
quickly and reliably.

Future developments on this multiscale approach include the implemen-
tation of atomic lattices other than the simple cubic one and thermal effects.
In particular, simulating lattices other than the simple cubic one would allow
for a more realistic implementation of the DMI and of the thermal effects,
which cannot be accurately simulated in a discretized micromagnetic model,
since the computational grid would induce an artificial cut-off wavelength
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to the magnon spectrum. One further direction for improvement consists in
employing higher order interpolation algorithms, in order to ensure an even
smoother transition between the two models.

Furthermore, the basic elements of the multiscale approach, such as the
interpolation of ghost moments or the tracking algorithm, could be applied
to other fields of physics involving equations similar to the LLG.

The current interest towards structures with topological properties could
generate several applications of the multiscale approach, since transforma-
tions involving changes in the topology of a system can only be simulated
accurately in an atomistic model. This opens the path for a wide variety of
investigations of both fundamental and technological interest.
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Wohlhüter, J.-M. George, M. Weigand, J. Raabe, V. Cros, A. Fert, Addi-
tive interfacial chiral interaction in multilayers for stabilization of small
individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448
(2016).

[91] A. Bogdanov and A. Hubert, Thermodynamically stable magnetic vortex
states in magnetic crystals. J. Magn. Magn. Mater. 138, 255-269 (1994).
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