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Abstract: The ability to respond flexibly to changing environmental circumstances is a hallmark of
goal-directed behavior, and compromised flexibility is associated with a wide range of psychiatric
conditions in humans, such as addiction and stress-related disorders. To identify neural circuits and
transmitter systems implicated in the provision of cognitive flexibility, suitable animal paradigms are
needed. Ideally, such models should be easy to implement, allow for rapid task acquisition, provide
multiple behavioral readouts, and permit combination with physiological and pharmacological
testing and manipulation. Here, we describe a paradigm meeting these requirements and employ it to
investigate the neural substrates and neurochemical modulation of adaptive behavior. Water-restricted
rats learned to emit operant responses for positive reinforcement (water reward) within minutes
in a free-operant conditioning environment. Without further training, animals were able to track
changes in the reward schedule. Given prior evidence that the medial prefrontal cortex (mPFC) and
the dopaminergic system are required for flexible behavior, we aimed to assess both in more detail.
Silencing of mPFC compromised flexible behavior when avoidance of punishment was required.
Systemic injections of the D2-receptor agonist quinpirole and the D2-receptor antagonist eticlopride
had complex, differential impacts on reward seeking and adaptive behavior.

Keywords: dopamine receptors; muscimol; matching law; operant conditioning; reversal
learning; punishment

1. Introduction

Cognitive flexibility (CF) is a core executive function generally defined as the capacity to efficiently
adjust behavior in response to changing situational demands [1]. In humans, CF confers a higher
potential for learning in children [2] and predicts academic achievement in college students [3].
Furthermore, CF facilitates resilience to negative life events and everyday stress among adults [4], and
is in turn impaired in adults exposed to early life stress [5]. Compromised CF is a common deficit
in many neurological and psychiatric conditions, such as anxiety- and stress-related disorders [6],
depression [7], mania [8], ageing [9], autism spectrum disorder [10], anorexia nervosa [11], and
obsessive-compulsive disorder (OCD; [12]). Better characterization of the neural substrates and
neurochemical modulation underlying CF will therefore not only provide a better understanding of
how the brain works to generate flexible behavioral output, but it can also provide insight into the
pathophysiology of these disorders and suggest novel treatment approaches.

In animals, different aspects of CF are usually measured by three different behavioral paradigms:
Attentional set shifting, the effortful T-maze task, and, most frequently, reversal learning (RL; [13]).
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Many different implementations of RL exist [14], which all have in common that one out of two or
more different stimuli or responses is associated with a specific outcome (usually reward), and that
this association is reversed after training. The main dependent variable in these paradigms is the time
it takes the animal to adapt its behavior as a consequence of the changed contingency.

RL hinges on many brain areas, including the prefrontal cortex (PFC). Substantial evidence
implicates PFC in a set of cognitive (executive) functions (e.g., References [15,16]), such as salience
detection and attention, working memory, inhibition and switching, that serve to effectively implement
cognitive flexibility and thus to optimize performance in complex environments [17]. Accordingly,
intactness of the PFC is required for successful adaptation to changes in the environmental circumstances.
In line with this premise, PFC dysfunction has been implicated in clinical disorders, such as
schizophrenia, autism, OCD and attention-deficit hyperactivity disorder, which are hallmarked by
difficulties to regulate and organize behavior and cognition in a proper way to situational requirements.
Moreover, considering the rich dopaminergic input to the PFC, it is believed that perturbation
in the dopaminergic neurotransmission may contribute to the pathophysiology of these disorders
(e.g., Reference [18]).

Here, we employed a reward-tracking paradigm to study the neural basis of adaptive behavior.
The paradigm is easy to implement, allows for rapid task learning, provides multiple behavioral
readouts of interest, and allows for combination with physiological recordings and pharmacological
manipulation. Although similar in spirit to spatial RL, the task is not trial-based, but instead constitutes
a free-operant procedure, in which the animal can continuously act to procure rewards. Free-operant
procedures carry the advantage that the continuous stream of behavior is not artificially partitioned into
discontinuous segments (trials). As a result, free-operant tasks are more time-efficient because behavior
is sampled continuously without the need for an intertrial interval, and we therefore hypothesized on
the basis of previous studies [19] that task learning would be extremely fast (1–2 sessions). Moreover,
it has repeatedly been argued that behavior under free-operant conditions differs from that in trial-based
paradigms, e.g., regarding the sampling of information (for example by visits to a reward location, or by
patterns of saccadic eye movements to scan a visual scenery) and changes in the rate of responding,
which can be used as a sensitive indicator of confidence or reward expectation in free-operant paradigms
only [20,21]. Abandoning a trial-based task structure (although hardly new; [22]) furthermore requires
devising fundamentally different kinds of quantitative models of behavioral performance (describing
behavior in real time rather than in discrete steps) which has led to important theoretical insights as to
the computations being carried out by the brain during task execution [23,24].

We will first describe the task structure and acquisition in detail. Then, we further characterize
task performance under conditions of changing reinforcement schedules (requiring adaptive behavior).
Last, we demonstrate in two experiments how the task can be combined with pharmacological
manipulation of the brain, and that inactivation of the medial prefrontal cortex (mPFC) and alterations
in dopaminergic transmission both affect adaptive behavior in a distinctive manner.

2. Results

We adapted, modified, and extended a simple reward-based learning task from Reference [19].
Rats were tested in an operant chamber featuring three conical nose ports arranged next to each other
at one wall of the chamber (Figure 1). Rats were required to poke into the left (L) and right (R) ports to
trigger reward delivery at the center (C) port. Reward delivery could be elicited by pokes of >0.4 s
duration into either the left or the right port on two concurrent RI (random interval) schedules. More
specifically, at each port, the reward could be triggered after a random time interval had elapsed (the
port is then said to be ‘armed’); the inter-reward time was the mean of the RI schedule, the distribution
of inter-reward times is geometric (see Section 4, Materials and Methods, for details). Two concurrent
and independent RI schedules were set up for the two operant ports L and R. The optimal strategy
to harvest as many rewards as possible in a given session from a given port is to poke at intervals
shorter than the minimum RI at that port. To harvest the maximum number of rewards from both
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ports, animals should distribute their responses such that they visit a port with a lower RI (more
frequent arming) more often than a port with a higher RI (less frequent arming). In such situations,
animals have been found to allocate their responses such that the relative response proportion for one
port approximates the relative reward proportion for that port, a classic finding from experimental
psychology known as the ‘Matching Law’ [25]:

RL/(RL + RR) = RfL/(RfL + RfR) (1)

In the context of our task, RL is the number of nose pokes allocated to the left nose port, RR is
the number of nose pokes allocated to the right nose port, RfL is the number of reinforcers (water
rewards) obtained after leftward choices (nose pokes), and RfR is the number of reinforcers obtained
after rightward nose pokes. In the following, the left-hand side of Equation (1) will be referred to as
P(RL), the right-hand side will be referred to as P(RfL). Matching behavior is optimal in the sense that
it maximizes long-term reward [26,27].
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2.1. Initial Learning 

Ideally, rats should pick up the task within a single session, without extended training 
involving gradual shaping of behavior. To see whether this is feasible we cast six naïve water-
restricted rats into the operant chamber and confronted them with the full paradigm. 

RL/(RL + RR) = RfL/(RfL + RfR) (1)

Figure 1. Picture of the operant chamber with a rat poking into the center (reward) port. Reward (30 µL
of water) could be triggered by poking into the left (L) and right (R) ports at random intervals. Water
reward is delivered at the center (C) port. The stainless steel grid floor was used to deliver mild foot
shocks in later experiments.

In the following, we describe a series of experiments conducted to establish and characterize task
performance, as well as to investigate the degree to which responding is determined by prefrontal and
dopaminergic mechanisms. First, we examined how quickly animals acquire the basic structure of the
task. Second, we quantified the extent to which the animals exhibit matching behavior in stationary
environmental contingencies by running the animals on five different reinforcement schedules, each of
which lasted three days. Third, we explored how cognitive flexibility manifested itself as animals were
required to track repeated changes in reward rates and rapidly adapt behavior. Fourth, we extended
the task to require flexible avoidance of punishment for either RL or RR, and tested to what extent the
effects of punishment on behavior are altered by transient inactivation of mPFC. Finally, we carried out
systemic administration of drugs modulating dopaminergic D2-receptors to examine their involvement
in task performance.

2.1. Initial Learning

Ideally, rats should pick up the task within a single session, without extended training involving
gradual shaping of behavior. To see whether this is feasible we cast six naïve water-restricted rats into
the operant chamber and confronted them with the full paradigm.

Figure 2A,B shows the data from a representative animal confronted with the schedule conc
RI 30 s RI 10 s (i.e., concurrent random-interval schedules for RL (30 s) and RR (10 s); accordingly,
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the right response port was on average armed three times as often as the left response port). As a
result of random explorative behavior, the rat began poking into the operant and reward ports almost
immediately after introduction into the chamber, thereby triggering occasional rewards.
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Figure 2. Rats pick up the basic task structure in the very first training session. (A) Cumulative numbers
of operant responses in 1-min bins (time intervals) for pokes into the left (blue), right (red), and center
(reward, yellow) port for one example animal on the first day of training. (B) Cumulative responses
into the center port within 2 s after left (blue) or right pokes (red) for the same animal. (C) Cumulative
numbers of reinforcers (in bins of 10 min) for all six rats across the first three sessions (separated by
vertical dotted lines). The color code key for panels CDEF is given at the bottom of the figure. (D) The
number of reinforcers obtained per 10-min bin over the first three days, normalized to the maximum
number of reinforcers obtained in any bin by a given rat. For five out of six rats, the maximum number
was obtained well before the end of the third session. (E) Relative response proportions P(RL) for the
six rats over the first three days. (F) As in E, but after subtraction of programmed relative reinforcement
proportions P(RfL) from P(RL) to highlight that all animals attained matching (horizontal line, zero
difference) by the third day of training.
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Strikingly, within the first training session, the rat not only learned that nose poking yields water
reward (as indicated by accelerating response rates), but also developed a clear preference for the right
choice port within only 15–20 min, roughly matching its relative response proportion P(RL) = RL/(RL

+ RR) to the relative reward proportion P(RfL) = RfL/(RfL + RfR), consistent with the Matching Law
(Figure 2A). Similarly, the cumulative frequency of reward port entries following right port pokes
increased dramatically 30 min after the onset of the session (Figure 2B), indicating that the animal
anticipated the outcome and moved to the center port to retrieve the reward.

Figure 2C,D shows the progression of learning for all six subjects across the first three days.
All animals managed to obtain substantial numbers of reinforcements already on the first day. The rate
at which reinforcers were obtained increased significantly on the first two days, but not anymore on
the third day, indicating that performance reached maximal levels already by the end of the second
session, i.e., within less than two hours (n = 6; repeated-measures ANOVA across six 10-min bins;
day 1: F(5,25) = 2.9, p = 0.035; day 2: F(5,25) = 6.1, p = 0.0008; day 3: F(5,25) = 1.2, p = 0.324).

The six rats were tested with different conc RI RI schedules. Following the Matching Law, we
would expect each rat to match its P(RL) to its specific P(RfL). While rats on the first day exhibited
seemingly random preferences for L and R ports (Figure 2E,F), they all closely matched relative response
proportions to the programmed relative reinforcement rates by the end of the second day already.

To sum up, animals began poking for reward early after introduction into the chamber, rapidly
increased response rates to obtain rewards, and distributed their responses as predicted by the matching
law within two sessions only, signifying successful completion of task learning.

2.2. Matching Behavior under Steady-State Conditions

After confirming that task acquisition is rapid, we split subjects into two groups. In the first group,
we investigated whether the behavior was consistent with the Matching Law under a range of reward
contingencies. As is usual in the literature on matching, we kept reinforcement ratios constant for
several days, and assessed response rates only on the last (third) day after the contingency was in effect.
To that end, three animals were assigned to five different conc RI-RI combinations; each combination
was run for three consecutive days. The order of the conditions was counterbalanced across subjects
(Table 1).

Table 1. Testing sequence of reinforcement schedules to assess steady-state matching behavior. Each
column specifies reinforcement schedules that the respective subject was assigned to during the 15 days
of experimentation.

Day Rat #1 Rat #2 Rat #3

1–3 conc RI 45 s RI 15 s conc RI 15 s RI 45 s conc RI 30 s RI 30 s

4–6 conc RI 15 s RI 45 s conc RI 45 s RI 15 s conc RI 5 s RI 55 s

7–9 conc RI 55 s RI 5 s conc RI 5 s RI 55 s conc RI 55 s RI 5 s

10–12 conc RI 5 s RI 55 s conc RI 55 s RI 5 s conc RI 15 s RI 45 s

12–15 conc RI 30 s RI 30 s conc RI 30 s RI 30 s conc RI 45 s RI 15 s

The results from this experiment are summarized in Figure 3. Within the three days of each
condition during which reward schedules were kept stable, every animal quickly adjusted its P(RL)
such that it approached P(RfL) (matching). Put differently, the probabilistic performance of the animal
adjusts to invariant reward availability, which in turn decreases the variance in behavior and maximizes
the overall harvested reinforcement, thus approximating optimal behavior as predicted by the matching
law (Figure 3A). However, it is evident from Figure 3B that the rats’ actual behavior systematically
deviated from the predictions of Equation (1). Since Equation (1) does not provide a sufficiently good
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expression of the relations between the available and harvested reward of the actual data, we use
another equation known as the “Generalized Matching Law” [28],

log(RL/RR) = a × log(RfL/RfR) + log c (2)

where a is the slope and c is the intercept of the line fitted to the data; when a = c = 1, Equation (2)
reduces to Equation (1) (“strict” matching). Figure 3B shows that the observed behavior departed from
strict matching, such that the animals systematically allocated their responses to the more profitable
option less often than the matching law would predict (slopes <1, ‘undermatching’), which is rather
commonly seen [29]. In contrast, choice bias was close to 1 for all animals, indicative of only mild
biases for either of the two ports.
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Figure 3. Rats quickly adapt when reinforcement contingencies change every three days. (A) Adaptation
to new reward contingencies over five blocks. The panel depicts P(RL) of an example animal over time.
Horizontal dotted lines represent P(RL) which would perfectly match P(RfL) within each block. Vertical
lines separate blocks of conditions. (B) Matching behavior after three days of constant contingencies for
all three animals. Regression lines were fitted to the data separately for each animal using Equation (2).
Dotted black main diagonal represents the strict matching relation.

To summarize, we find (1) that animals are able to flexibly adapt to changes in reinforcement
schedules without extra training, and (2) that adaptation is mostly achieved within a single
behavioral session.

2.3. Adaptation to Changing Reward Contingencies

Ideally, a paradigm to study cognitive flexibility in animals should allow one to do so in a single
session. However, in trial-based reversal learning and set-shifting tasks with rodents, conditions are
only changed from one day to the next [14]. To see whether rats in our paradigm would exhibit rapid
adaptation to changes in reinforcement contingencies, we assigned three subjects to a testing sequence
in which relative reward proportions changed either every three sessions, once per session, or thrice
per session (see Table 2). Throughout testing, session duration was 60 min and schedules alternated
between conc RI 45 s RI 15 s and conc RI 15 s RI 45 s.

As expected, the animals rapidly adapted behavior in response to the effective P(RfL). Figure 4A
shows data from an example session. It is obvious that P(RL) closely tracks P(RfL) throughout
19 days of testing. This pattern was highly similar in the two other animals. In order to quantify
this finding, we applied a change-point detection algorithm [30] to both P(RL) and P(RfL). Due to
the near-instantaneous change in response allocation [24], we expected that the algorithm would
identify all changes in P(RfL) and, more importantly, would also detect change points in P(RL) at the
very same time points. This was indeed the case for nearly all switches (Figure 4A). Strikingly, rats
tracked changes closely also when they occurred with high frequency (thrice per session, i.e., every
20 min). Importantly, we found no obvious difference in the degree to which animals adapted to the
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new contingencies, regardless of whether these were in effect for 20 min on one day or for 180 min
over three consecutive days (Figure 4B). Nonetheless, adaptation was not complete after 20 min, as
indicated by a comparison of P(RL) over the last five minutes of each contingency (Figure 4C).

Table 2. The sequence of reward rate changes per experimental session for each of three animals.
We ran three different blocks of sessions with frequent (three per session) or infrequent (every third
day) changes in conc RI RI. Numbers in cells thus indicate the number of reward rate switches per day.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

rat #4 0 0 1 0 0 1 0 0 1 1 1 1 1 1 3 3 3 3 3

rat #5 3 3 3 3 3 1 1 1 1 1 0 0 1 0 0 1 0 0 1

rat #6 1 1 1 1 1 3 3 3 3 3 0 0 1 0 0 1 0 0 1

Int. J. Mol. Sci. 2019, 19, x FOR PEER REVIEW  7 of 20 

 

min over three consecutive days (Figure 4B). Nonetheless, adaptation was not complete after 20 
min, as indicated by a comparison of P(RL) over the last five minutes of each contingency (Figure 
4C). 

Table 2. The sequence of reward rate changes per experimental session for each of three animals. 
We ran three different blocks of sessions with frequent (three per session) or infrequent (every third 
day) changes in conc RI RI. Numbers in cells thus indicate the number of reward rate switches per 
day. 

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
rat #4 0 0 1 0 0 1 0 0 1 1 1 1 1 1 3 3 3 3 3 
rat #5 3 3 3 3 3 1 1 1 1 1 0 0 1 0 0 1 0 0 1 
rat #6 1 1 1 1 1 3 3 3 3 3 0 0 1 0 0 1 0 0 1 

 

 
Figure 4. Rats quickly adapt when reinforcement contingencies change multiple times per session. 
(A) Dynamic response allocation resulting from changes in P(RfL) across all 15 experimental sessions 
in 10-min bins for an example animal. Blue and red symbols denote change-points for responses 
(asterisks) and reinforcements (squares). Thin horizontal dotted line denotes unbiased responding; 
vertical dotted lines denote changes in P(RfL). (B) Relative choice proportion before and after 
changes in reinforcement contingency (vertical dotted line) for infrequent (purple), moderately 
frequent (green), and frequent (cyan) changes. The data from the other rats tested with different 
sequences were highly similar. (C) Comparison of relative response proportions during the last five 
minutes prior to transitions across all three conditions. 

2.4. Flexible Adaptation to Punishment and mPFC Involvement 

In most of the prevailing literature on adaptive behavior, animals are tested on tasks involving 
only positive consequences. In contrast, natural environments are challenging in that most action 
can have both negative and positive consequences. In rare cases, studies employing choice 
procedures, negative outcomes are indeed incorporated through time-out punishments (e.g., 
Reference [31]), which however tend to have relatively mild effects even when time-outs last for 
tens of seconds or even minutes [32]; furthermore, time-out punishments of extended duration may 

Figure 4. Rats quickly adapt when reinforcement contingencies change multiple times per session.
(A) Dynamic response allocation resulting from changes in P(RfL) across all 15 experimental sessions
in 10-min bins for an example animal. Blue and red symbols denote change-points for responses
(asterisks) and reinforcements (squares). Thin horizontal dotted line denotes unbiased responding;
vertical dotted lines denote changes in P(RfL). (B) Relative choice proportion before and after changes
in reinforcement contingency (vertical dotted line) for infrequent (purple), moderately frequent (green),
and frequent (cyan) changes. The data from the other rats tested with different sequences were highly
similar. (C) Comparison of relative response proportions during the last five minutes prior to transitions
across all three conditions.

2.4. Flexible Adaptation to Punishment and mPFC Involvement

In most of the prevailing literature on adaptive behavior, animals are tested on tasks involving
only positive consequences. In contrast, natural environments are challenging in that most action can
have both negative and positive consequences. In rare cases, studies employing choice procedures,
negative outcomes are indeed incorporated through time-out punishments (e.g., Reference [31]), which
however tend to have relatively mild effects even when time-outs last for tens of seconds or even
minutes [32]; furthermore, time-out punishments of extended duration may considerable prolong
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session durations. Foot-shock punishment, in contrast, can be very brief (0.5 s and even less), although
great care has to be taken not to completely suppress responding [33].

We wondered whether the task might also lend itself to the study of aversive action outcomes
(i.e., punishment). We modified our paradigm such that, in every behavioral session, animals were first
confronted with 20–30 min of testing under symmetric reward conditions. Then, the punishment was
introduced for responding to a randomly selected choice port under an RI 20 s schedule. The intensity
of punishment for each animal was adjusted such that a mild shift in response allocation was observed.
We found that shock intensity could be titrated such that it was mildly aversive, as indicated by a
measurable, but incomplete reduction of the punished response.

To investigate the role of the medial prefrontal cortex (mPFC), a structure believed to be involved
in adaptive behavior [14], we outfitted the same six rats as used before with guide cannulas for
intracerebral substance infusions, targeted to the mPFC of both hemispheres. We hypothesized that
transient inactivation of mPFC by local administration of the GABA-A receptor agonist muscimol
would prevent rats from adapting their behavior after the introduction of punishment for one of the
responses. Figure 5A shows that this was indeed the case. Under saline, animals exhibited a clear
increase in preference for the unpunished response, which was absent when muscimol was infused
prior to testing, as indicated by significant main effects of both factors drug and time, as well as a
significant interaction in a repeated-measures ANOVA (n = 6; time: F(12,60) = 3.8, p = 0.0003; drug:
F(1,5) = 11.9, p = 0.018; time × drug: F(12,60) = 2.0, p = 0.04). Moreover, introduction of punishment
resulted in a slight significant decrease of responding under both saline and muscimol, which was
somewhat more pronounced for saline (Figure 5B; repeated-measures ANOVA, time: F(12,60) = 10.3,
p = 1.4 × 10−10; drug: F(1,5) = 1.0, p = 0.35, time × drug: F(12,60) = 4.0, p = 0.0002).
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Figure 5. Adaptation to punishment and involvement of mPFC. (A) Mean P(RL) in consecutive,
non-overlapping 2-min bins across animals after saline (blue) or muscimol (red) infusion. P(RL) was
rectified, such that values <0.5 signify a preference for the unpunished response port. Under saline, the
animals exhibited a clear preference for the non-punished option. Vertical dotted line highlights the
time of punishment introduction. (B) As in (A), but showing operant responses. (C) As in (A), but
showing the number of rewards retrieved per time bin. (D) As in (A), but showing the number of
non-retrieved rewards in all panels. Shading represents SEM.
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Another behavioral measure to evaluate the organization of behavior is to count the number
of rewards that were actually retrieved, compared to those that were not. Under punishment-free
conditions, virtually all rewards were retrieved by the animals (Figure 5C,D). When punishment was
introduced, however, animals waived some of the outcomes (thus avoiding punishment, but also
missing rewards), but this type of behavior was not affected by mPFC inactivation (repeated-measures
ANOVA; time: F(12,60) = 2.6, p = 0.007; drug: F(1,5) = 0.02, p = 0.89; time × drug: F(12,60) = 0.69,
p = 0.75). In order to further characterize the effect of mPFC inactivation on the behavioral expression
of pain sensation, we tested six different animals on the hot-plate test after both muscimol and saline
infusion and found no significant difference in response latency (paired t-test; T(5) = 0.9, p = 0.40),
although the small sample size obviously does not allow a firm statement on this issue.

In sum, we were able to successfully incorporate negative action outcomes into the task.
Importantly, punishment-induced response suppression was highly reliable in all animals but
incomplete at the same time, allowing us to continuously measure the effects of muscimol and
punishment on operant behavior. Additionally, we found that transient inactivation of mPFC abolished
behavioral adaptation.

2.5. Effects of Systemic Dopamine Receptor Manipulations

As cognitive flexibility has previously been associated with dopaminergic function [14], we next
tested whether the dopaminergic system is implicated in task performance. Rats were injected with
either the dopamine (DA) D2-receptor agonist quinpirole, the D2-receptor antagonist eticlopride, or
vehicle (saline) subcutaneously approximately 20 min before testing. In these experiments, the sessions
lasted 60 min and employed a single switch in reinforcement ratios after 30 min from session begins.
The animals worked on conc RI 22 s RI 90 s (i.e., reward ratios of 4:1, and vice versa) schedules of
reinforcement which were maintained for 30 min before RI values were alternated between operant
ports. The first schedule on a given day was identical to the second schedule the preceding day, thus,
adjustment of response ratios was required only once per session.

Injection of quinpirole led to a marked suppression of operant behavior, as indicated by reduced
nose-poking into both side ports (Figure 6A, n = 10, right port: T(9) = 4.89, p = 0.0008; left port:
T(9) = 3.62, p = 0.006; in this and the following analyses, paired t-tests were used). Since the animals
visited the response ports L and R less frequently after quinpirole administration, they also triggered
fewer rewards compared to the saline condition (Figure 6C, T(9) = 4.56, p = 0.001). Therefore, one
would expect also a decrease in center port poking, as responding is extinguished, due to lack of
positive reinforcement. Interestingly however, the average response rate at C was unaffected, The latter
finding is even more surprising given that the animals not only failed to produce usual numbers
of rewards (as noted above), but they additionally failed to retrieve a considerable fraction of the
few triggered rewards (Figure 6B,C; non-retrieved Sal vs. non-retrieved Qnp: T(9) = 3.38, p = 0.008).
The same effect was observed with a lower dosage of quinpirole (~2/3; data not shown). Additionally,
quinpirole administration interfered with adaptive response reallocation after a mid-session reversal
in the reward ratios for L and R responses. As shown in Figure 6D, animals changed their responses
according to the change in reinforcement ratio from the first to the second block of the session after
saline injection, but not after quinpirole injection (Sal block 1 vs. Sal block 2: T(9) = 7.33, p = 0.00004;
Qnp block 1 vs. Qnp block 2: T(9) = 1, p = 0.35). This result indicates that the dopamine D2-receptor is
involved in adaptive behavior.
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Figure 6. Systemic administration of dopamine D2-receptor compounds alters task performance.
(A) Left: Quinpirole administration reduced overall responding to both response ports (L and R), but
not at the reward port (C). Right: Total number of pokes at the L, R and C ports displayed separately for
saline (Sal) and quinpirole (Qnp). (B) Quinpirole significantly increased the number of non-retrieved
rewards. (C) A total number of triggered rewards with those that were retrieved in blue and those that
were not retrieved in black. (D) P(RL) before (Block 1) and after (Block 2) mid-session change in the
reward schedule, which required the animals to adapt their responses to the reversed reward ratio as
in the first half of the session. Animals changed their responses, according to the reinforcement ratio
(indicated in the graph) after saline administration, but not after quinpirole administration. Dashed
horizontal lines indicate optimal behavior as predicted by the Matching law. (E–G) As in A–D, but for
behavior after eticlopride vs. vehicle administration. In all box plots, individual data points (black
dots) are laid over a box depicting the 25th and 75th percentiles; the horizontal red mark indicates the
median, whiskers extend to the most extreme observations, outliers are plotted individually. Asterisks
indicate significant differences between drug and vehicle as determined by paired samples t-tests
(** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001).

Not unexpectedly, the effects of eticlopride differed from those of quinpirole. While eticlopride also
led to a drastic reduction in operant responding (Figure 6E, n = 9, right port: T(8) = 4.87, p = 0.001; left
port: T(8) = 3.8, p = 0.005), in turn resulting in low numbers of triggered rewards (Figure 6G, T(8) = 4.8,
p = 0.001), unlike quinpirole, the number of non-retrieved rewards was not affected (Figure 6F,G,
T(8) = 1.35, p = 0.21), indicating that responding to the reward signaling cue remained intact.

The effect of eticlopride on task execution was too marked to allow detailed analysis of switching
behavior in the middle of the session, precluding us to investigate whether dopamine D2-receptor
antagonism is implicated in adaptive reward-tracking.

3. Discussion

Our main intention was to implement and characterize a behavioral paradigm built on previous
ones [19] that would enable us to study adaptive behavior. We found (1) that rats reached asymptotic
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operant performance in two to three sessions, (2) that they matched relative response rates to relative
reward rates already by the end of the second training session, and (3) that multiple changes in
reinforcement contingencies could be carried out per session (in rodents, reversals often take several
sessions [14,34]; see Reference [35]).

Rapid task acquisition not only saves experimental time, but will also allow for the tracking
of single neurons electrophysiologically during learning, which is often not feasible in operant
conditioning which frequently takes several days or weeks, and it is difficult to track the same neurons
over more than a few hours with standard electrode arrays designed for chronic implantation. Also,
the rapidness of learning will easily allow for an investigation into the effects of certain drugs on the
establishment of an operantly conditioned response.

In a similar vein, being able to change reinforcement contingencies multiple times per session
allows conducting electrophysiological recordings of single neurons to see how firing changes from
before to after the change, and also when conditions are changed back to initial again, as is easily
accomplished in monkeys [36] and pigeons [37], but rarely in rodents. Similarly, drug effects are
most straightforward to interpret when only a single injection is necessary to observe effects on
adaptive behavior.

A critical feature of the task is that it constitutes a free-operant paradigm in which the animal is
free to emit responses and consume rewards on a real-time basis. Free-operant tasks do not shoehorn
behavior into a trial structure, they are more time-efficient because no intertrial intervals are needed,
and it is likely for these reasons that learning progressed so quickly. Moreover, adjustment to a change
in reward contingency was observed immediately upon its first introduction, in line with previous
suggestions that the reward-tracking behavior we harnessed for our task is unconditioned, i.e., natural
behavior [19]. Lastly, although learning and adaptation behavior was characterized in only six animals,
the high degree of similarity of the behavioral results (learning speed, adaptation, matching) between
animals testifies to the robustness of the paradigm.

A possible future addition to the task would be to construct a cognitive model of reward-tracking
under free-operant conditions [24] containing one or two free parameters representing latent variables
to be fitted to individual animals’ data with and without pharmacological brain manipulation.

Having established the basic structure of the free-operant reward-tracking task, we explored
whether it can be extended to encompass studying how animals change behavior upon introduction
of negative outcomes (punishment), an arguably understudied aspect of decision-making (as also
pointed out by [38]). One frequently encountered problem in the study of punishment is that behavior
can be completely and permanently suppressed when it is too intense [39], while at the same time
response suppression is only transient when punishment is too mild ([40]; for classic, but still relevant
reviews, see Reference [33,41,42]). Through a gradual increase in shock intensity every few days,
we managed to repeatedly produce a significant, but incomplete response suppression, a crucial
factor for conducting single-neuron recordings in upcoming experiments. The reliability of response
suppression and the high consistency of the effect across rats, along with the paradigm providing a more
powerful within-subject statistical comparison [43], enabled us to perform additional pharmacological
experiments and to find significant and consistent effects, even with a small sample size of only
six animals.

Since the dorsomedial (prelimbic) prefrontal cortex has been implicated in some forms of adaptive
behavior [14,35], as well as the processing of pain [44,45] before, we investigated the effects of
mPFC inactivation on responding. We found that mPFC inactivation resulted in a slight decrease of
responding even before the onset of punishment and prevented the shift of choice allocation away
from the punished port, relative to saline controls. What could be the reason that animals fail to adjust
their behavior after the introduction of punishment? In principle, there are three explanations.

First, pain sensation could be altered. However, Reference [44] showed that muscimol-induced
mPFC inactivation lowered the perceptual threshold for painful thermal stimuli, while leaving the
threshold for mechanical pain unaffected. Also, we did not find an increase in response latency under
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muscimol, although the small sample size prevents a firm conclusion on this issue. A second possibility
is that not the sensation itself, but the aversiveness of the pain might be reduced (i.e., the emotional
response). Third, it could be that the punishment inflicted pain and emotional stress response during
mPFC inactivation just as in control sessions, but that flexible control of responding was impaired.
Further experiments using larger samples are required to differentiate these possible explanations.

Stimulating D2-receptors with quinpirole strongly suppressed operant responding, although
animals did not exhibit any obvious general deficits in motor activity. These results are consistent with
previous reports describing robust suppression of lever press responding for food or water reward
after quinpirole administration [46,47]. In contrast, quinpirole did on average not decrease responding
to the reward port, arguing against an unspecific suppression of behavior. Moreover, we observed that
frequently after obtaining the reward at the center port, most of the animals continued to persistently
poke into the reward port beyond the time of reward consumption, indicating that this behavior was
dissociated from the ingestion of the water reward, as reported previously [48]. Similarly, quinpirole
has been found to induce compulsive checking behavior [49,50]. In line with these findings, medication
with DA agonists is related to impulsive and compulsive patterns of goal-directed behaviors, such as
pathological gambling, overeating, compulsive shopping, and hypersexuality [12,51,52]. Furthermore,
the animals in our study not only persisted in visiting the reward port, but additionally ignored the
fact that the majority of these visits did not result in reward delivery, and were even unable to retrieve
a substantial fraction of rewards which they did trigger (non-retrievals, Figure 6C), which together
would be expected to extinguish poking into the center port. Against this expectation, the animals in
our experiment did not show a reduction of responding, indicating that this behavior is resistant to
extinction, as has been suggested before [48,53].

It has been demonstrated that the dopamine activity reflects the discrepancy between expected
and obtained reward [54,55]. Thus, phasic alterations in dopamine release can serve as a learning signal
when the environmental circumstances have changed, and behavior needs to re-adjust to suit new
demands. Additionally, reward-paired cues can potentially initiate reward seeking actions by evoking
both an increase in phasic mesolimbic dopamine release and sustained elevation in extracellular
dopamine concentration [56,57]; similarly, phasic reductions in dopaminergic activity accompany
the omission of an expected reward. Quinpirole might blunt dopamine signaling such that, due to
sustained postsynaptic D2-receptor activation, rewards are continuously expected, and the absence
of these expected rewards is not properly signaled, thereby hampering animals to efficiently adjust
behavior in response to the changing demands of the situation and to thereby suppress responses that
no longer represent an optimal solution to the problem. The suppression of responding to the operant
ports might therefore directly result from increased attention to the reward port.

While eticlopride also suppressed operant responding, it did not increase the number of
non-retrieved rewards. Since the animals retrieved the larger proportion of the triggered rewards,
it was not possible to directly observe the effect of eticlopride on extinction. However, previous
reports showing that the D2-like receptor antagonist sulpiride facilitates learning of extinction [58].
The reduction in operant performance might therefore be interpreted such that the sustained
postsynaptic antagonism, due to eticlopride was interpreted as a negative reward prediction error,
thereby leading to the extinction of the operant behavior.

In summary, administration of drugs acting on dopamine D2 receptors led to alterations in operant
behavior presumably by interfering with the postulated involvement of dopaminergic signaling in
reward-related processes and related modulation of cognitive flexibility.

4. Materials and Methods

4.1. Subjects

Subjects were twelve male Long Evans rats (Charles River, Sulzfeld, Germany). The rats were six
weeks old upon arrival in the lab and weighed between 200 and 250 g. All experimental protocols and



Int. J. Mol. Sci. 2019, 20, 3098 13 of 21

animal procedures were approved by local authorities (Landesuntersuchungsamt Rheinland-Pfalz, the
national investigation office of the state of Rhineland-Palatinate, Germany, permit G14-1-069, issued
2014/10/10). Animals had free access to food, but their water consumption was restricted. During the
weekend and on days without experimental sessions, animals were given ad libitum access to water.
On days of testing, animals received their daily water ration in the experimental chamber. The weight
of the animals, as well as the amount of water reward obtained during the session was controlled
on a daily basis, and supplemental water was provided if an animal received less than 8 mL water
reward during a single training session. Previous studies showed that rats continuously gain weight
under similar water restriction schedules and do not exhibit weight loss or suffer from physiological
impairments as assessed by post-mortem organ inspection and hematologic examination [59–61]. Rats
were housed in individual cages in an air flow cabinet (UniProtect, Zoonlab, Castrop-Rauxel, Germany)
which maintained a constant temperature around 23 ◦C and humidity at >50%. Animals were kept on
a 12-h inverted light-dark cycle (lights on at 8 pm). Experiments were carried out at a regular time
during the dark phase.

4.2. Behavioral Apparatus

Behavioral testing was performed in an operant conditioning test chamber (ENV-008, Med
Associates, Georgia, VT, USA) with inner dimensions 48 × 27 × 28 cm (L ×W × H), equipped with
three nose ports with a conical entry (LIC.80117RM, Lafayette Instrument, Lafayette, IN, USA) and a
stainless steel grid rod floor (Figure 1). The operant chamber was enclosed within a sound-attenuating
cubicle. Nose ports were located 4 cm above the level of the floor at the front wall and had a diameter
of 3 cm and were spaced at intervals of six centimeters. The chamber was constantly illuminated by a
house light. A webcam was used for continuous monitoring of behavioral performance. The center
port (“reward port”) was used for water reward delivery, and the two side ports (henceforth, “operant
ports” or “response ports”) were used as operant response devices. Entries of the nose ports were
signaled by a photo beam detector. Water rewards were delivered via silicone tubing into the apertures
of the central port from an external peristaltic pump. Behavioral testing and online data collection were
controlled by a Windows computer system with in-house software written in Spike2 and a Power1401-3
data acquisition interface (Cambridge Electronic Design Limited, Cambridge, UK). The auditory
stimulus used in punishment and pharmacology experiments (1.4-kHz pure tone, 4 s, ~85 dB SPL)
was delivered through a speaker attached to the ceiling of the sound-attenuating chamber. Scrambled
foot shocks were administered through a stainless-steel grid floor at intensities of 0.27–0.53 mA using
a standalone shocker module (ENV-414SA, Med Associates, Georgia, VT, USA). The intensity was
adjusted individually for rats.

4.3. Behavioral Testing

Rats were handled daily (1–2 h per day) for five days prior to the start of training. The handling
involved the experimenter playing with the animals and offering them peanut butter, yogurt, fruits, or
nuts. On the first day of training, animals were individually placed into the operant chamber for one
hour. Reinforcement (30 µL of water which could be retrieved from the center port) could be obtained
by nose-poking for >0.4 s into either the left- or the right-side port. In this session, animals had to
learn that some of the pokes to the left and right response ports yielded reward at the center port.
Nose-pokes triggered reward delivery on concurrent random-interval (RI) schedules. Two animals
were tested on conc RI 30 s RI 30 s, another two animals on conc RI 15 s RI 45 s, and another two animals
on conc RI 30 s RI 10 s (counterbalanced as to which operant port was associated with the higher RI
value). RIs give expected inter-reinforcement intervals and were implemented such that, once per
second, a random number x between 0 and 1 was generated. If x was smaller than the reciprocal of
the RI value in seconds (p, i.e., p = 1/RI [s]), a reward was automatically delivered at the center port.
For example, an RI of 30 s was implemented by setting p to 1/30 = 0.0333. This way, the expected
inter-reward interval is 1/p = 30 s. The distribution of inter-reinforcement intervals for RI schedules
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varies according to a geometric distribution. Once x < p at a certain response port (i.e., the port was
“armed”), reward delivery at the center port would be triggered by the next nose-poke of the subject
with a duration of at least 0.4 s (changeover delay; [25]), regardless of when that nose-poke would
occur. The two choice ports were independent, i.e., at any given time either of the ports could be
armed, both of them, or none of them. An implication of using RI schedules is that, the longer the
subject has not visited a specific port, the higher the probability that it has been armed, and that a
reward can be triggered. When two concurrent RIs are implemented, as in the present study, subjects
will accordingly visit both response ports. Since both response ports may be armed simultaneously,
a subject can collect the maximum possible reward if it repeatedly switches between both options at
intervals shorter than the expected RIs.

After three days of training, we changed RI reinforcement ratios for all six subjects. In three rats,
we investigated whether animals show matching behavior. For these rats, we kept ratios constant
for three consecutive days and then switched to a new contingency. In total, five contingencies were
tested over fifteen days (every weekday; Table 1). In the other three rats, we investigated whether
subjects could switch to another reinforcement contingency within a short period of time—a hallmark
of cognitive flexibility [13,14]. In these animals, we swapped reinforcement contingencies multiple
times from conc RI 45 s RI 15 s to conc RI 15 s RI 45 s, at a rate of from one switch in three days to three
switches per day over nineteen days (Table 2).

For the punishment experiment, we tested six animals on a constant reinforcement schedule of
conc RI 45 s RI 45 s. After 20–30 min, punishment (foot shock, 0.5 s duration, 0.32–0.48 mA intensity)
was introduced on an RI 20 s schedule for one of the two responses for another 20 min. In the last
20 min, no punishment was administered. We started out with punishment intensities of around
0.3 mA for all animals (based on previous experiments), but found that it was necessary to occasionally
increase intensities in steps of 0.01–0.05 mA to stabilize punishment-induced response suppression.
At the same time, it is necessary to keep shock-intensities well below levels that will completely
suppress responding (ideally around 50%) to the punished nose port. These shock intensities are
well below those commonly used in fear conditioning paradigms (up to 1.5 mA [62]). The degree to
which shock intensity had to be titrated to reliably elicit a response suppression depended strongly
on the individual animal—for some rats, no or only infrequent adjustments were required, for other
animals, it proved more difficult to elicit reliable bias. In any case, pharmacological testing was only
conducted when punishment-induced response suppression was stable. Importantly, we took care
to avoid systematic biases with respect to muscimol vs. saline sessions (also see Section 4.6 below).
Moreover, animals were now required to retrieve the reward from the center port within 5 s after it was
triggered at a choice port, and availability of a reward (or a punishment) was signaled by a 5-s pure
tone at 1400 Hz.

Lastly, to investigate whether dopamine is implicated in task performance, we tested the same
and additional six subjects after injection of either a dopamine D1-receptor agonist (quinpirole) or a
D2-receptor antagonist. Before the start of the pharmacological tests, we slightly modified the behavioral
procedure. First, we moved the center reward port to the opposite side of the chamber. This was done
after we observed that after extensive training (several months during which intracerebral infusions
of the GABA-A agonist muscimol into the medial prefrontal cortex were made), animals became
insensitive to reward contingency changes and executed seemingly stereotypic action sequences (pokes
left–center–right–center–left, etc.). Moving the reward port to the opposite side of the chamber was
intended to disrupt habitual behavior and render responding sensitive to reward manipulations again
(which was successful). Moreover, in order to signal animals when a visit to the center port was in
order, we introduced a tone whenever poking into a side port triggered reinforcement at the center port.
After tone onset, animals had four seconds to enter the reward port and to trigger reward delivery.
Entering the center port turned off the tone and triggered reward delivery, while poking after tone offset
was not rewarded, and the reward was omitted altogether. Within 1–2 sessions, the animals picked
up the changed arrangement and successfully harvested more than 90% of the scheduled rewards.
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Motivated by the observation that animals switch between left and right at a very high frequency,
we added another variable that defines the minimum time that a poke triggering a reward can have
to the previous poke in the opposite response port (CODOP, 2 s). If the animals switch between the
options quicker than determined by CODOP, the clock reset, and no reward is delivered. This makes
sure that the animals are not uniformly switching between left and right response ports.

These descriptions apply to the first batch of six rats. A second batch of six rats was trained in
a similar way to add to the body of pharmacology data (administration of DA-receptor agonist and
antagonist). Behavioral data in Figures 1–5 are from the first batch of rats; data from the second batch
are contained in Figure 6. Table 3 gives an overview of which rat was used in a certain experiment.

Table 3. Assignment of rats to experiments. (+) the animal participated in the experiment, (±), the
animal participated, but data were excluded from the analysis.

Experiment/Rat # 1 2 3 4 5 6 7 8 9 10 11 12

Initial Learning (n = 6) + + + + + +

Matching (n = 3) + + +

Adaptation (n = 3) + + +

Punishment (n = 6) + + + + + +

Quinpirole (n = 10) + + + + + ± + + + + +

Eticlopride (n = 9) + + + + + ± ± + + + +

Hote-Plate Test (n = 6) + + + + + +

4.4. Hot-Plate Test

To assess the effect of mPFC inactivation on pain perception, we employed the hot-plate test
(Hot/Cold Plate NG 35100, Ugo-Basile, Gemonio, Italy). Animals were placed on a metal plate which
was enclosed in a transparent plastic cylinder to prevent the animal from escaping. The temperature
of the plate was set to 50 ◦C. The dependent variable was the time from placement until the animal
either licked its hind paws or jumped. As soon as either of the two responses was observed, the plastic
cylinder was removed, and the animal could move off the plate. Every examination was video recorded
and scored by impartial observers. Unlike the simpler tail-flick test which is believed to predominantly
reflect spinal pain reflexes, the withdrawal responses observed in the hot-plate test reflects supraspinal
functioning [63].

4.5. Surgical Procedures

Animals were anesthetized via intraperitoneal injection of Medetomidine (0.15 mg kg−1),
Midazolam (2.0 mg kg−1) and Fentanyl (0.005 mg kg−1). The fur was shaved off the head, and
the animals were placed in the stereotaxic frame (Parallel Rail Stereotaxic Instrument; Stoelting,
DublinIreland) and fixed using atraumatic ear bars. To maintain a surgical plane of anesthesia, half of
the initial dose was administered subcutaneously after 45 min or as soon as the animal exhibited a
reflexive toe pinch-response. The scalp was retracted, and the skull was exposed. Stainless steel guide
cannulas for intracranial drug infusion (C315G, PlasticsOne, Roanoke, VA, USA, diameter 0.5 mm)
were implanted bilaterally at the following coordinates: Anteroposterior (AP), +3.0 mm from bregma;
mediolateral (ML), ± 0.6 mm from the midline, dorsoventral (DV) −3.1 mm below the dural surface.
Cannulas were implanted at an outwards angle of 10◦. After the cannulas were slowly inserted into
the brain, the cannula assembly was fixed with dental cement to five skull screws. Dummy cannulas
consisting of a stylet and cap were used as protection. During surgery, the rats received between 10 and
18 mL of isotonic saline and 5% glucose solution as fluid substitution and to maintain circulation
and metabolism. After completion of the surgery and administration of analgesics (Carprofen) and
antibiotics (Enrofloxacin) the anesthesia was antagonized by a subcutaneously administered mixture
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of Atipamezole (0.75 mg kg–1), Flumazenil (0.2 mg kg−1) and Naloxone (0.12 mg kg−1). Rats were
given 7 to 10 days to recover from surgery before behavioral training recommenced. During recovery,
rats were given ad libitum access to food and water and were handled for at least 30 min per day.

4.6. Intracerebral Drug Infusions

The GABA-A receptor agonist muscimol (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in
0.9 % saline at a concentration of 1 µg/µL and was stored at −18 ◦C. Before each infusion, rats were
mildly anesthetized with isoflurane. An injection cannula (C315I, PlasticsOne) was connected to a
10-µL Hamilton syringe placed in the syringe holder of an infusion pump (Pump 11 Elite, Harvard
Apparatus, Holliston, MA, USA). The injection cannula was inserted into the guide cannula to deliver
either saline or muscimol into the mPFC at a flow rate of 0.25 µL/min. After the infusion was complete,
the injector cannula was left in place for one additional minute to allow for drug diffusion. Anesthesia
was discontinued, and rats were placed in their home cage and tested 45 min after the infusion.
Muscimol is known to abolish cortical activity for several hours [64]. Due to the explorative nature of
these experiments, we tested different dosages of muscimol (range: 0.35–0.6 µL), but found that the
effects were extremely similar. Therefore, we averaged the data across dosages separately for each
animal and conducted statistical analyses on that data.

4.7. Systemic Drug Administration

The D2-type receptor agonist quinpirole and D2-type receptor antagonist eticlopride hydrochloride
(both Sigma Aldrich) were dissolved in physiological 0.9% saline and stored at −4 ◦C. The dose was
chosen based on published experiments, as well as on data from pilot experiments with the same
rats. We injected either the dopamine D2-receptor agonist quinpirole (0.125 mg/kg dissolved in 0.5 mL
physiological saline), the D2-receptor antagonist eticlopride (0.05 mg/kg, dissolved in 0.5 mL saline),
or 0.5 mL vehicle (saline) subcutaneously.

Prior to injection, rats were briefly anesthetized with isoflurane (EZ-B800, World Precision
Instruments, Sarasota, FL, USA) and received a subcutaneous injection of either the drug or saline.
Approximately 20 min after the injection, the animals were tested on the behavioral task (as in previous
studies [65]).

Two rats were excluded from the analysis of eticlopride data, due to the insufficient number of
operant responses (less than 20). Another rat had to be excluded from the pharmacology experiments
altogether because it exhibited increasing difficulties to perform the task even without drug injection.

4.8. Histology

After experiments were completed, the rats were given an infusion of 0.025 % Evans Blue
(Sigma Aldrich) in order to verify cannula placement. Approximately 30 min following infusion
of the dye, the rats were anesthetized with a mixture of ketamine/xylazine and perfused with 4%
paraformaldehyde fixative. Brains were removed and post-fixed in the same fixative for several days,
and were subsequently transferred to a 30% sucrose solution for another 2–3 days before slicing.
The brains were then frozen and sectioned coronally into 100-µm slices. Prior to mounting onto slides,
every other slice was stained with cresyl violet (Nissl), while the other slices were left unstained to
better visualize the Evans Blue labeled regions under a fluorescence microscope (Keyence BZ-8000K,
Osaka, Japan). All cannula tips were found to be located in mPFC (Figure 7).
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GABA gamma-aminobutyric acid
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