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1
I N T R O D U C T I O N

During the past twenty years, numerical modelling of lithospheric deformation
has developed as a new branch of geosciences. Growing computer power has
increased both model resolution and complexity, such that numerical models
are now widely regarded as the first method of choice to understand geological
deformation processes on multiple scales by verifying results of laboratory ex-
periments or observations from the field (e.g., Burov et al., 2014; Burov, 2007).
In this context, the title of the thesis ‘Geodynamic inversion to constrain the rhe-
ology of the lithosphere’ is proposing a new direction in the field of lithosphere
geodynamics. Inversion is something that has already become well-established
in other geoscientific disciplines such as seismology. The term implies to sys-
tematically turn observations into models that are consistent with physical con-
ditions and observational constraints. This is usually done by minimising an
error that describes the misfit between model predictions and observations. Yet,
lithospheric-scale models have so far not been combined with data in an inverse
modelling sense, which is the topic of this thesis.

We link inversion techniques with dynamic models of lithospheric deform-
ation to constrain material properties of the lithosphere. The aim is to better
understand and to verify the underlying material parameters that control litho-
spheric deformation with an independent approach that does not rely on ex-
trapolating laboratory measurements to geological conditions. The following
sections provide a general introduction to the subject, as well as an overview of
the chapter contents.

rheology of the lithosphere

About the same time when Alfred Wegener published his ideas on plate tecton-
ics (Wegener, 1912), the concept of lithosphere and asthenosphere as outer shells of
the Earth was introduced. This goes back to the work of Joseph Barrell (e.g., Bar-
rell, 1914a,b), who showed, based on gravity measurements, that stresses first
increase and then decrease with depth – confirming the existence of a strong
outer layer (lithosphere) that overlies another weak layer (asthenosphere) be-
neath (Watts, 2007). Whereas at that time the denotation was still imprecise
(e.g., Love, 1911) and Andrija Mohorovičić just discovered (1910) the hom-
onymous seismic P-wave discontinuity (Moho) that marks a sudden change
in material properties and the transition from crust to mantle (e.g., Prodehl
et al., 2013), we nowadays understand the lithosphere as a strong layer that
also comprises parts of the upper mantle and supports stresses (e.g., Anderson,
2007). Compared to the Moho discontinuity, the transition from lithosphere to
asthenosphere is less clear and although a couple of physical properties such
as density and temperature are discriminative, the drop in seismic velocity is

1



2 introduction

most frequently equated with the lithosphere asthenosphere boundary (LAB,
Kind et al., 2012). Gutenberg (1926) was the first who identified this seismic dis-
continuity (Gutenberg discontinuity) below the Moho from analysing P-waves
(Kind & Li, 2015). Today, the LAB is mostly constrained through surface wave
dispersion or receiver function experiments (Kind et al., 2012). However, the
LAB is still vaguely determined and other quantities, such as thermal or chem-
ical and elastic (see below) definitions are used to describe the spatial extends
of the lithosphere (e.g., Anderson, 2007).

In general, the strength of the lithosphere depends on its structure and rhe-
ological properties (Burov, 2007). The term rheology describes the deformation
and flow behaviour of solid materials. The expression was firstly designated by
the colloid chemist E. C. Bingham after Heraclitus’ πανταρει (Ancient Greek:
panta rhei), which means ‘everything flows’ (Reiner, 1964). This leads to the
question of how a solid can flow, and stresses the relation of rheology to the
time of observation, or to the length of time for which stress is applied to the
solid (Lowrie, 2007). In this context, Reiner (1964) defines the Deborah number
D, which states the difference between solids and fluids:

D =
Time of relaxation

Time of observation
. (1.1)

On the one hand, it implies that rocks behave as solids when the time of obser-
vation is short compared to the time of material relaxation (D → ∞), and, on
the other hand, that rocks can also behave as fluids for small relaxation times,
i.e. D → 0. This point of view also applies to the multifaceted deformation be-
haviour of rocks within the lithosphere, which can be described with multiple
theoretical relationships. Depending on the time of observation and the mag-
nitude of applied stresses, the dominant deformation behaviour of rocks can be
either elastic, plastic, or viscous.

Deformation and strength of the lithosphere

By definition, elastic deformation is fully recoverable as long as the elastic limit
(yield stress) is not exceeded (e.g., Lowrie, 2007). Elastic properties of the litho-
sphere arise on different scales of time, as response to short-lasting stresses
due to seismic waves, and on a long-term basis through loading and unloading
events due to seamounts or ice shields (glacial rebound). These observations
suggest that the lithosphere behaves as a rigid plate that has a flexural rigidity
and is able to deform elastically, also on long-term time scales (10 ka to 1 Ma,
Watts, 2007). For example, a plate of thickness Te has a flexural rigidity

D =
E

12 (1− ν2)
T3e , (1.2)

that is a function of Young’s modulus E and Poisson’s ratio ν (e.g., Watts, 2001).
It was demonstrated that the concept of elastic thickness is applicable to oceanic
lithosphere, where a relation between lithospheric age and Te was observed,
which suggests that oceanic lithosphere becomes stronger with age t, i.e. (Watts,
1978):
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Figure 1.1: Lithospheric thickness and maximum strength profilesof the lithosphere.
a) Elastic (Te) and seismic thickness of oceanic lithosphere as a function of
lithospheric age (modified from Lowrie, 2007; Watts et al., 1980). Differ-
ences in thickness reflect the fact that only the upper part of the lithosphere
behaves elastically under loading at long time scales, which is approxim-
ately confined by the 300− 600◦C oceanic isotherms. b) Hypothetical pro-
files of lithospheric strength and brittle–ductile regimes of oceanic (left) and
continental (right) lithosphere. Original version of Molnar (1988), modified
after Lowrie (2007).

Te = (3.0± 1.5) t0.5, (1.3)

where Te is usually smaller than 50 km (Burov, 2007). Also the seismic thickness,
which refers to the LAB, increases with the age of the lithosphere. However, the
thickness obtained from seismic observations is usually two to three times lar-
ger (Fig. 1.1a), which reflects the fact that only the upper part of the lithosphere
behaves elastically (Lowrie, 2007).

In the late 1970s, the concept of yield strength envelopes (YSE, Fig.1.1b) was
developed to describe an upper limit for the strength of the lithosphere as a
function of depth (Kohlstedt et al., 1995). YSEs are constitutive relationships
that are empirically determined from rock deformation experiments in the
laboratory and scaled to lithospheric conditions (e.g., Brace & Kohlstedt, 1980;
Goetze & Evans, 1979).

In the shallow lithosphere the total strength is limited by plastic yield cri-
teria. More precisely, it is generally agreed that frictional resistance along faults
is the limiting factor of strength in the uppermost part of the lithosphere, as the
stress required for frictional sliding is much smaller than the stress required
for fracturing (Kohlstedt et al., 1995). Byerlee (1978) demonstrated that, under
conditions of low pressure and temperature, most rock types have similar fric-
tional strength that can be described consistently to the Mohr–Coulomb failure
criterion in terms of shear (τ) and normal (σn) stress:

τ = µfσn +Cf, (1.4)
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where µf is the coefficient of friction and Cf the frictional cohesive strength.
µf varies between 0.6 − 0.85 and Cf between 0 − 60MPa, depending on σn,
which is approximately equivalent to lithospheric pressure and increases lin-
early with depth, such that, in the brittle regime, the YSE increases approxim-
ately linearly with depth (Fig.1.1b) and is relatively insensitive to temperature
(Kohlstedt et al., 1995). Direct evidence for this comes from drilling experiments,
for example at KTB in Southern Germany up to a depth of about 9 km (Brudy
et al., 1997).

At larger depths, with higher pressures and temperatures, Byerlee’s law is no
longer applicable and viscous yield strength becomes dominant. Semi-brittle re-
gimes build a transition to ductile regimes, where the total strength is bounded
by viscous strength that decays exponentially with depth. A variety of ductile
(creep) deformation mechanisms can take place on an atomic scale (e.g., Ranalli,
1995; Karato, 2008). The term ‘ductile’ is often associated with strain rate de-
pendent rock properties (Burov, 2007), but creep mechanisms depend on mul-
tiple conditions. For example, the regime diagram in Fig.1.2a illustrates the
stress and temperature conditions under which the most common creep mech-
anisms are dominant. Whereas Peirl’s creep (low-temperature plastic flow, Goe-
tze & Evans, 1979) is relevant for large differential stresses, experimental data
from a wide range of conditions fit the general form of constitutive relationship
(e.g., Bürgmann & Dresen, 2008):

ε̇ ∝ A (σ3 − σ1)
n exp

(
E+ P V

RT

)
, (1.5)

which is used to describe dislocation and diffusion creep deformation mech-
anisms, such that differential stress of YSE is given as a function of strain-
rate ε̇ [s−1], material parameters A, stress exponent n [1], temperature T [K]

and pressure P [Pa]. Activation volume V [m3 mol−1] and energy E [J mol−1]

are material properties that control pressure and temperature dependence, and
R [J mol−1 K−1] is the gas constant. However, multiple parameters such as water
content or grain size have additional control on the deformation regime. For
example, Fig. 1.2b shows a regime diagram of wet olivine as a function of grain
size that is also temperature and pressure dependent.

Jelly sandwich or Crème brûlée?

The concept of elastic thickness works well to describe the integrated strength
of oceanic lithosphere (e.g., Watts, 2001). Observations of Te are in agreement
with YSEs that are estimated from laboratory experiments (Burov, 2007). On
the other hand, it has been shown that the same concept applied to contin-
ental lithosphere leaves a number of open questions (Burov & Diament, 1995).
Whereas it is generally accepted that continental lithosphere can be described as
rheologically stratified medium (e.g., Burov, 2007), the thickness and strength
of the layers are part of an ongoing discussion. The prevailing view of strength
profiles of continental lithosphere is commonly referred to as the ‘Jelly sand-
wich’ model, suggesting a weak lower crust sandwiched between a strong up-
per crust and mantle lithosphere (Fig. 1.3a). For this model, significant parts
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Figure 1.2: Ductile deformation (creep) regimes and effective viscosity of olivine;
a) as a function of differential stress and temperature (valid for dry olivine,
from Popov & Sobolev, 2008). b) Example of a water saturated sample, i.e.
wet olivine; effective viscosity and creep regime as a function of differen-
tial stress, grain size and temperature (modified from Bürgmann & Dresen,
2008). Original data from Hirth & Kohlstedt (2003).

of the integrative strength resides in the lithospheric mantle (Afonso & Ranalli,
2004). However, conflicting observations of elastic thickness (Te) and depth dis-
tributions of earthquakes (Jackson, 2002; Maggi et al., 2000b,a) provoked an on-
going discussion about the ‘Jelly sandwich’ model (Burov & Watts, 2006) and
an alternative model with a strong upper crust and a weak mantle lithosphere
(Fig. 1.3b, Jackson, 2002), later dubbed as ‘Crème brûlée model’ (Burov & Watts,
2006). In contrast to the Jelly sandwich model, the integrated strength of the
‘Crème brûlée model’ entirely resides within the crust, inferring a close cor-
relation of elastic thickness and seismogenic layer (Bürgmann & Dresen, 2008;
Burov & Watts, 2006).

Although the debate is ongoing (Jackson et al., 2008; Burov, 2007), it is now
understood that there is not only a single type of YSE that is characteristic for
all continental lithosphere (Burov & Watts, 2006) and it is rather a limit criterion
with a number of simplifications. This illustrates the necessity of alternative ap-
proaches, independent from Te estimations (Burov et al., 2014), which a-priori
assume the lithosphere to be an elastic plate floating on a viscous mantle.

constraining rheological properties of the earth

State of the art

The elastic thickness Te is one of the key quantities to describe the strength
of the lithosphere. However, Te is a proxy to describe the lithosphere’s first
order rheology with strictly simplifying assumptions (Watts, 2001). It is physic-
ally more consistent to estimate effective viscosity as it directly participates in
constitutive relationships that link conservation of mass and momentum when
considering continuum mechanics. There are a number of different approaches
to directly estimate viscosities of the lithosphere and lithospheric rocks. Each
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Figure 1.3: Schematic models of continental lithospheric ‘strength’ (from Bürgmann &
Dresen, 2008) that describe the ongoing discussions. a) The ‘Jelly-Sandwich’
model with weak lower crust sandwiched between a moderately strong
upper crust and mantle lithosphere (e.g., Burov & Diament, 1995; Burov
& Watts, 2006). b) Alternative ‘Crème brûlée model with a very strong
crust and without significant contribution of the lithopsheric mantle to total
strength (e.g., Jackson, 2002; Maggi et al., 2000b,a).

methodology has its own limitations and sensitivity to certain scales of time
and space. The following paragraphs give a complementary picture of the state
of the art methods.

Rock mechanics experiments

More than 30 years ago, Goetze & Evans (1979) were the first to draw inferences
on lithospheric long-term rheology from rock mechanics experiments. Since
then, a lot of progress has been made in terms of experimental design and ac-
curacy to study the deformation behaviour of rocks (e.g., Karato, 2008; Hirth &
Kohlstedt, 2003; Ranalli, 1995). Whereas elastic properties and Byerlee’s brittle
parameters for large scale deformation can be well constrained with rock mech-
anics experiments up to a satisfying accuracy of ±10− 30%, ductile properties
remain uncertain (Burov, 2007).

Burov (2007) summarises a number of sources for the uncertainties regarding
experimentally derived estimates of the ductile long-term rheology: The main
difficulty in determining robust quantities is the need for extrapolation, from
laboratory to geological conditions. Experimental strain rates are on the order
of 10−8 − 10−4 s−1, which implies a difference of 10 orders of magnitude com-
pared to strain rates under geological conditions (10−18 − 10−14 −1). Besides,
experimental design can only approximate geological conditions. Thus, most
experiments are realised as uniaxial or torque deformation tests of small rock
samples or monophase minerals under different pressure and temperature con-
ditions. Whereas different water contents can be included in the experiments,
the effect of macro structures in rocks and varying strain rates are difficult to
determine. Although experimental results of dry olivine fit to Te observations
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Figure 1.4: Proportions of scale differences between typical flow law experiments in the
laboratory and correspondent observations in nature, which implies an ex-
trapolation over 10 orders of magnitude in strain rate to scale experimental
results to geological conditions. After Burov (2007).

of oceanic lithosphere (e.g., Watts, 2001), rock mechanics data needs validation
with real-scale observations and models (Burov, 2011). Fig. 1.4 illustrates the
different scales of laboratory and tectonic conditions (strain rate, temperature,
differential stress) and gives an impression of the order of extrapolation that is
required to scale rock mechanics experiments to geological conditions. It also
implies that geological estimates of viscosity are time dependent.

Geophysical observations

Several geological loading and unloading processes can be analysed to infer vis-
cosities of the lithosphere and asthenosphere. For example, large earthquakes
are followed by elastic relaxation processes (postseismic relaxation) that can be
observed geodetically (c.f. review in Bürgmann & Dresen, 2008). Similar relaxa-
tion processes, but on a larger time scale, are (un-)loading events, for example of
retreating iceshields or glaciers, which is referred to as postglacial rebound. Infer-
ring mantle viscosity from glacial rebound observations goes back to the pion-
eer work of Haskell (1935), who provided first direct evidence of viscous mantle
deformation (Bürgmann & Dresen, 2008). His viscosity estimate (1021 Pa s) still
matches the order of magnitude of more recent observations (see for example
a study by Milne et al. (2001) as shown in Fig. 1.5). From inversion of GPS data
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Figure 1.5: Viscosity estimates from post glacial rebound observations in Fennoscandia
(modified from Milne et al., 2001). a) 3D velocity observations with GPS
indicate dome alike uplift. b) Grid-search ‘inversion’ using a viscoelastic
model reveals correlated viscosity parameters of upper and lower mantle.

(a), they estimate viscosities (b) of the asthenosphere (5− 10× 1020 Pa s) below
a fixed elastic lithosphere.

Related to these relaxation observations, the time dependence is an important
aspect, because the viscosity estimates of postseismic relaxation and postglacial
rebound observations differ by one to two orders of magnitude. This can be
explained by different deformation physics acting on different time scales, i.e.
deformation mechanisms, that are activated at seismic strain rates are independ-
ent of those activated at geodynamic strain rates (Fig.1.4, Burov, 2011). Differ-
ences can also occur because non-tectonic loading events are usually observed
far away from active faults, whereas for observations of postseismic deforma-
tion the opposite is the case (Bürgmann & Dresen, 2008). Therefore, viscosity
estimates from postseismic observations are not compatible to the long-term
rheology of the lithosphere, i.e. Te estimations, which can be up to six orders of
magnitude higher (Burov, 2007).

Whereas postglacial rebound data can only provide regional viscosity estim-
ates of the asthenosphere, global estimates of the Earth’s entire mantle viscosity
became a subject of very active research in the late 1970’s (Hager & O’Connell,
1979, 1981), alongside with inferences on mantle flow from geodetic and gravity
(geoid) data (e.g., Forte & Peltier, 1987; Ricard et al., 1984; Richards & Hager,
1984). In these studies, semi-analytical instantaneous mantle flow models are
used to constrain radial viscosity, but even today, the resolution power is lim-
ited. Hence, the method is used to focus on viscosity variations deep in the
mantle (Rudolph et al., 2015), but not on small radial scales close to the sur-
face where a lot of lateral variation is expected. However, the advantage of the
general approach is obvious: Despite limited resolution and other limitations,
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the underlying model is physically consistent and can be linked with arbitrary
inversion algorithms (e.g., Rudolph et al., 2015; Soldati et al., 2009; Simmons
et al., 2006; Ricard et al., 1989) to infer constitutive model properties from inde-
pendent data, such as plate velocities, gravity and geoid anomalies.

A new approach using numerical models of lithospheric deformation

As described above, the general idea of using an inversion algorithm to con-
strain rheological properties of the Earth directly from geophysical observations
is not new. It is also not new to incorporate data acquired from rock mechanics
experiments, such as extrapolated strength profiles, into physically consistent,
state-of-the-art numerical models of lithospheric temporal and spatial scale to
verify the rheology of the lithosphere through systematic forward modelling
(e.g., Burov, 2007; Burov et al., 1999).

However, the aim of this thesis is to link both, an inversion approach and
physically consistent numerical models of lithospheric deformation to infer rhe-
ological properties of the lithosphere directly from geophysical observations at
the Earth’s surface. Experimental results can be incorporated as prior know-
ledge with large uncertainties such that the method of geodynamic inversion is
complementary to rock deformation experiments and denotes an independent
approach to verify geodynamic and geological concepts.

As the rheological properties of the lithosphere are non-linear and also geo-
physical data is known to be non-unique, ambiguous inversion results are ex-
pected, which is the motivation to use a probabilistic, i.e. Bayesian inversion
approach (e.g., Tarantola, 2005) in this context. This might not always be feas-
ible as probabilistic inversion methods are computationally demanding and
require many forward models depending on the nature of the inverse problem
and on how many unknowns are involved (Sambridge & Mosegaard, 2002).
Consequently, two inversion methods are used within this thesis, a Bayesian ap-
proach and a deterministic method (Nelder-Mead downhill-simplex algorithm
Nelder & Mead, 1965), to respond to the different settings.

structure and abstract of the thesis

The thesis is a cumulative work with chapters being composed as mostly in-
dependent papers that have already been published in peer reviewed journ-
als, submitted or are prepared for submission. The thesis contains six chapters
including this introductory chapter and a final chapter with conclusions and
outlook. My contributions to each chapter are listed in separate tables.

chapter 2 : This chapter corresponds to the first publication ‘Constraining ef-
fective rheologies through parallel joint geodynamic inversion’ (Baumann et al., 2014,
authors’ contributions are listed in Tab. 1.1) and basically covers the first at-
tempts of constraining effective viscosities and densities through joint inversion
of gravity and surface velocity data. The study is divided into two parts, a the-
oretical part, where the benefits of a joint inversion of gravity and velocity are
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author contribution

Baumann, T.S. Main author. Wrote the publication. Fully conducted the
analytical part of the study. Implemented the parallel grav-
ity code and objective function into LaMEM1. Main de-
veloper of NAplus2. Created all figures. Fully conducted all
simulation and inversion runs. Evaluated the study results.

Kaus B.J.P. Co-author. Main PI of superordinated project. Provided ori-
ginal Stokes-flow code (LaMEM1) including erosion and
sedimentation algorithms to generate forward models. Gave
advice in planning and constructing the publication. Mod-
ified written contents for clarification and corrected lan-
guage and spelling mistakes.

Popov A.A. Co-author. Co-developer of NAplus2: Gave advice regard-
ing the parallel MPI3 development. Corrected language and
spelling mistakes of the publication.

Table 1.1: Authors and their contributions to chapter 2: ‘Constraining effective rheologies
through parallel joint geodynamic inversion’.1LaMEM: Lithospheric And Mantle
Evolution Model. 2NAplus: Optimised parallel version of the Neighbour-
hood Algorithm (original, sequential version from Sambridge, 1999a). 3MPI:
Message Passing Interface.

analytically demonstrated, and a synthetic case study to demonstrate the feas-
ibility of Bayesian-type inversions in the context of numerical geodynamics. In
the analytical part, we use the example of a rising sphere, which is a first-order
approximation of a rising plume or salt-diapir model (Schmeling et al., 1988).
In terms of gravity, a spherical anomaly model has a well-known, but non-
unique solution when inverting its gravity signal to find the density contrast
and volume of the spherical body. On the other hand, inverting the velocity
signal of a rising sphere also results in an ambiguous solution. However, these
trade-offs are different and involve the viscosity of the surrounding material,
such that a joint inversion of gravity and velocity results in a unique solution
in terms of for geometry, density contrast and viscosity. A joint velocity and
gravity inversion with geodynamic models must not result in unique solutions
in general, but it reduces the ambiguities, because the model is physically con-
sistent. This is also revealed in the second part, where densities and viscosities
of three dimensional salt-tectonics model can be constrained as long as the geo-
logical units contribute to the dynamics of the model. From a technical point
of view, a well established direct-search algorithm (Neighbourhood Algorithm
(NA), Sambridge, 1999a), was rewritten and reorganised in terms of MPI (Mes-
sage Passing interface) layout and memory management for an efficient usage
with parallelised geodynamic forward models on massively parallel computers
(NAplus, Baumann & Popov, 2014).
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chapter 3 : In this chapter, which is published as ‘Geodynamic inversion to
constrain the non-linear rheology of the lithosphere’ (Baumann & Kaus, 2015, au-
thors’ contributions in Tab. 1.2), the methodology is improved and applied to
the full scale of the lithosphere. It covers a theoretical resetting of the technique
including the implementation of Bayesian priors. A synthetic study is conduc-
ted to test the methodology for the use with non-linear rheologies, which natur-
ally involves a lot more of unknowns, but also the number of independent con-
straints is increased, as topography and vertical surface velocity are included
beside gravity and horizontal surface velocity. Tests with a known and a para-
meterised temperature structure reveal the effect of temperature on the inver-
sion results and show that the effective non-linear viscosity structure can be
estimated within the uncertainty limits. As our model has a free topography, a
technical part of the paper addresses the question of when a dynamic model
has to be stopped to catch the present-day dynamics that should be compared
with the observations. Beside the synthetical models, the major part of the paper
deals with a 2D profile through the India-Asia collision system whose geometry
is constructed from multiple seismological constraints. Assuming the geometry

author contribution

Baumann, T.S. Main author. Wrote the publication. Planned and conduc-
ted the entire inversion procedure. Implemented the ob-
jective function, the gravity forward modelling code, the
stopping criterion and the interfaces to NAplus1. Improved
Sambridge’s MCMC code (Sambridge, 1999b) for ‘ensemble
appraisals’ with the Metropolis-rule to make use of non-
uniform priors. Compiled all geophysical data to construct
the model setup. Pre-processed geophysical data that were
used as observational constraints (interpolation, filtering,
computation of Bouguer anomaly, etc.). Created all figures.
Fully conducted all simulation and inversion runs. Inter-
preted results.

Kaus B.J.P. Co-author. Main PI of superordinated project. Main de-
veloper of Milamin-VEP2, the 2D MATLAB based Stokes
code that is used to perform dynamic forward modelling.
Provided the idea of using an India-Asia cross section as
application in the study. Gave advice in conducting the syn-
thetic tests. Helped to interpret the synthetic inversion res-
ults. Partly modified written contents for clarification and
corrected language and spelling mistakes.

Table 1.2: Authors and their contributions to chapter 3: ‘Geodynamic inversion to con-
strain the non-linear rheology of the lithosphere’. 1NAplus: Optimised parallel
version of the Neighbourhood Algorithm (original, sequential version from
Sambridge, 1999a).
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is constrained, we conduct a two level approach, i. e. to reduce the parameter
space, a gravity-only inversion is performed prior to the full geodynamic inver-
sion. We find a posterior distribution, which is defined in a 19 dimensional para-
meter space, confining the complete non-linear rheology within the 2D cross
section. In this respect, the results are not unique and multiple end-member
models coexist. However, there are stable features that most of the acceptable
models have in common, for example a strong, i.e. high-viscosity, lithospheric
mantle of India.

chapter 4 : As the application in chapter 3 involves about 1.9 million for-
ward models, in ‘Appraisal of non-unique geodynamic inversion results: A data min-
ing approach’ (submitted), the question of how to appraise such large model
ensemble in a geological context is reposed. The appraisal is conducted with
a two-level approach that involves a well established unsupervised machine
learning technique (Self-Organizing Map, Kohonen, 1990) and additional clus-
tering. The analysis enables a successful classification of all models into 4 end-
member categories, which are mainly confined through the existence of a few
key characteristics. The end-member models either have a weak Asian mantle
lithosphere or a weak Tibetan lower crust and are distinguished through the
presence of a distinctive viscosity power-law behaviour of the Indian mantle
lithosphere. The classification also reveals what causes the non-uniqueness of
the inversion results in terms of observational constraints and demonstrates
that more accurate GPS observations of the uplift velocities will exclude end-
member models, and therefore help to massively improve the results on litho-
spheric rheology.

chapter 5 : ‘The present-day geodynamics of the India-Asia collision system: Con-
solidating structural and dynamic constraints to estimate rheological properties’ (Au-
thors’ contributions are given in Tab. 1.3) focusses on the India-Asia collision
system as well, but from a 3D perspective. The aim of this study is twofold and
involves (i) a compilation of multiple seismological data into a 3D geometry
of the present-day India-Asia collision, and (ii) inversion approach to constrain
a best-fit effective viscosity structure by minimising the misfit to the observed
horizontal GPS velocity field. For the construction process of the 3D geometry,
seismic tomography, P-/S receiver functions, focal mechanisms and other data
are jointly interpreted on horizontal and vertical cross sections and transferred
into 3D volumes. For the model compilation, a new MATLAB toolbox, ‘geomIO’
(Geometry I/O, Bauville & Baumann, 2015), was collaboratively developed.
The optimisation is realised with a Nelder-Mead Downhill Simplex method
(NMDS, Nelder & Mead, 1965) and the ‘best-fit’ model found by optimisation
reproduces the observed velocity field reasonably well such that several key is-
sues can be answered. For example, the analysis demonstrates that an interplay
of strike-slip faults, a low-viscous lower crust and lateral heterogeneities, i.e.
cratonic blocks, such as the Sichuan basin, are crucial to reproduce the charac-
teristic flow field, observed in the Eastern Himalayian syntaxis.



1.3 structure and abstract of the thesis 13

author contribution

Baumann, T.S. Main author. Wrote the paper. Planned the entire study and
conducted the inversion process. Linked NMDS-algorithm1

with LaMEM2. Implemented the objective function. Per-
formed all geophysical interpretations to construct the
model geometry. Planned and constructed the model setup,
including geographical settings and coordinate transform-
ations. Developer of geomIO3. Performed the entire data
preprocessing. Evaluated and discussed the results.

Kaus B.J.P. Co-author. Main PI of superordinated project. Gave ad-
vice in constructing the boundary conditions. Corrected lan-
guage and spelling mistakes.

Popov A.A. Co-author. Main developer of LaMEM2. Helped to find ap-
propriate options for iterative solvers.

Bauville A. Co-author. Developer of geomIO3.

Table 1.3: Authors and their contributions to chapter 5: ‘The present-day geodynamics of
the India-Asia collision system: Consolidating structural and dynamic constraints to
estimate rheological properties’.1NMDS-algorithm: Nelder-Mead Downhill Sim-
plex algorithm (Nelder & Mead, 1965). 2LaMEM: Lithospheric And Mantle
Evolution Model - revised version. 3geomIO: Geometry I/O (Bauville & Bau-
mann, 2015).
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C O N S T R A I N I N G E F F E C T I V E R H E O L O G Y T H R O U G H
PA R A L L E L J O I N T G E O D Y N A M I C I N V E R S I O N

This chapter has been published in:
Baumann, T. S., Kaus, B. J., & Popov, A. A. (2014). Constraining effective rheology
through parallel joint geodynamic inversion. Tectonophysics, 631, 197-211.

Abstract

The dynamics of crust and lithosphere is to a large extent controlled by its
effective viscosity. Unfortunately, extrapolation of laboratory experiments
indicates that viscosity is likely to vary over many orders of magnitude.
Additional methods are thus required to constrain the effective viscosity
of the present-day lithosphere using more direct geophysical observations.

Here we discuss a method, which couples 3D geodynamic models with ob-
servations (surface velocities and gravity anomalies) and with a Bayesian
inversion scheme on massively parallel high performance computers.

We illustrate that the basic principle of a joint geodynamic and gravity in-
version works well with a simple analytical example. In a next step, we test
our approach using a synthetic 3D model of salt tectonics with erosion and
sedimentation, and check how much noise conditions, model resolution,
and sparse data coverage affect the resolving power of the method. Res-
ults show that it is possible to constrain the effective viscosity and density
of layers that contribute to the large-scale dynamics, provided that those
layers are numerically well resolved. The properties of thin layers that do
not contribute much to the overall dynamics cannot be constrained, but
noise or sparse data sampling does not significantly affect the inversion
results.

This thus illustrates that a joint geodynamic and gravity inversion is a
potentially powerful method to constrain the dynamics of the crust and
lithosphere. Having better constraints on the structure of the present-day
crust and lithosphere will help to narrow the parameter space for models
that aim to unravel lithosphere dynamics on a geological time scale.

introduction

Arguably, one of the most uncertain parameters in geodynamic models is the
rheology that is employed in the models (e.g., Burov, 2007). Typically, rheolo-
gical parameters are estimated from laboratory experiments on small sample
sizes which results in creeplaws that have to be extrapolated over ten orders of
magnitude to geological conditions. Whether this is correct or not is question-
able and given that laboratory-based viscosity estimates vary widely between
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different rock types, it is desirable to have additional independent methods to
constrain the viscosity of the Earth or parts of it.

Doing this is not new, and one of the first to look at the problem was Haskell
(1935), who estimated the viscosity of the asthenosphere to be around 1021 Pas
based on postglacial rebound data. More recently, semi-analytical instantan-
eous mantle flow models were developed in which surface plate motions were
imposed as boundary conditions with the aim to find appropriate radial viscos-
ity distributions by comparing model predictions against observations such as
stresses associated with post-glacial rebound (Hager & O’Connell, 1979, 1981).
For a given a priori knowledge of mantle density distributions (e.g. seismic
tomography), these geodynamic models were extended to also fit the geoid (Ri-
card et al., 1984; Richards & Hager, 1984; Forte & Peltier, 1987), which can be
seen as the most reliable constraint on mass heterogeneities of the mantle apart
from seismic tomography (Thoraval & Richards, 1997).

On a global scale, several authors explicitly performed inversions of a num-
ber of different observations (e.g. plate motions, geoid undulations, global free
air gravity, seismic tomography, body wave traveltimes, post glacial rebound
data and mineral physics) to constrain radial viscosity profiles. A variety of in-
version methods has been applied, including Monte Carlo (Ricard et al., 1989),
probabilistic approaches (Ricard & Wuming, 1991; Forte et al., 1991), evolu-
tionary (Soldati et al., 2009) and more specific genetic algorithms (King, 1995),
simplex methods (Steinberger & Calderwood, 2006) and Occam inversion ap-
proaches (Simmons et al., 2006; Moucha et al., 2007). The authors of these stud-
ies use spectral, semi-analytical codes, which efficiently solve the instantaneous
mantle flow problem for a limited resolution, and in the case that there are no
lateral viscosity variations. A slightly different approach that theoretically al-
lows much higher resolution was followed by Bunge et al. (2003) (excluding
lateral viscosity variations) and Liu & Gurnis (2008) (temperature-dependent
viscosity structure) who use a fully numerical finite element mantle convection
method in conjunction with the adjoint method (Tarantola, 1984; Talagrand &
Courtier, 1987).

All of the geodynamic inverse approaches discussed so far focus on constrain-
ing the rheology of the mantle using flow models and large-scale first-order
observations. Many of these models assume: (i) that the Earth is radially sym-
metric, meaning that viscosity only varies with depth and lateral viscosity vari-
ations are ignored (e.g. King, 1995; Simmons et al., 2006; Steinberger & Calder-
wood, 2006; Soldati et al., 2009). (ii) that the Earth’s surface has a prescribed
horizontal plate-motion and no vertical motion, or that it is a free-slip bound-
ary condition. Whereas these assumptions may hold for mantle scale convec-
tion models, where lateral variations in viscosity have a minor influence on the
geoid (Moucha et al., 2007), it is questionable whether they are still correct for
inferring upper mantle and lithospheric viscosity (Thoraval & Richards, 1997).
This is supported by the results of Becker & Boschi (2002), who find minor
agreement between seismic tomography and semi-analytic geodynamic mod-
els for intermediate wavelengths, mainly because subducting slabs are not re-
solved. Subducting slabs are, however, the major driving-force of plate-tectonics
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(Lithgow Bertelloni & Richards, 1998; Bercovici, 2003) even though the dynam-
ics and the rheology of slabs are not perfectly understood (Becker & Faccenna,
2009). Recent findings also show that subduction dynamics is strongly affected
by the type of upper boundary condition (e.g. Kaus et al., 2010), and Crameri
et al. (2012b) demonstrate that a free surface boundary condition in combina-
tion with a sufficiently large viscosity contrast between slab and surrounding
mantle are required to obtain asymmetric subducting plates in self-consistent
spherical models of mantle convection. On a lithosperic-scale a free surface
provides a potential driving force of tectonic processes, through lateral vari-
ations in the gravitational potential energy, and many numerical codes of litho-
sphere dynamics therefore include this effect (e.g. Popov & Sobolev, 2008; Kaus
et al., 2008; Gerya & Yuen, 2007; Fullsack, 1995).

Compared to global mantle flow models with a radial viscosity variation
only, the presence of strong lateral variations in viscosity and a free surface
strongly increases the computational demands of the forward models. Yet, on a
lithospheric scale, the above mentioned complexities are likely to be important.
Therefore, fully three dimensional models of forward models of lithospheric
deformation have only appeared very recently, and nearly all studies perform
parameter studies by manually changing input parameters to get some insights
in the physics of the system (Li et al., 2013; Popov et al., 2012) or to constrain
the rheology of slabs (e.g. Moresi & Gurnis, 1996; Alisic et al., 2010).

There are a few numerical studies on lithospheric or crustal scale which aim
to infer best-fit rheologies. Burov et al. (1999) used a 2D numerical model to dis-
tinguish which rheological and density structures are dynamically most feasible
for a cross-section through the Alps. Kaus et al. (2009) made an attempt to fit
2D models to observed GPS data and earthquake focal mechanisms in south-
ern Taiwan. Yet, both studies changed model parameters manually. Boschetti
& Moresi (2001) and Wijns et al. (2003) partly automatise this approach, by us-
ing a genetic algorithm to vary the model parameters, but they evaluate the
mismatch of the models interactively.

Guiding the parameter search in a subjective manner is a possibility to reduce
the number of required geodynamic forward models, but it might become in-
feasible for an increasing complexity of the model, i.e. a larger parameter space.
Progress in computing power and in software to model 3D lithospheric deform-
ation has been quite significant in recent years such that tackling the inverse
approach, in which we determine optimal model parameters in an automated
fashion, is now becoming feasible. Recently, Afonso et al. (2013b,a) used such
an automated probabilistic inverse approach with a number of geophysical ob-
servables as constraints and thermal, seismological and petrological models as
forward models, but they employed kinematic rather than dynamic models.

In fact, a large number of inverse modelling approaches exist and many of
the sub-disciplines in geophysics routinely use, for example, descend-based
algorithms. The problem with those algorithms is that they can be trapped in
local minima in the parameter space, and that they give no information about
the uncertainty of the "best-fit" model parameters which is arguably at least
as interesting as the optimal parameters themselves. For that reason, we use a
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Monte Carlo based approach which was initially introduced in geophysics by
Keilis Borok & Yanovskaja (1967) and Press (1968, 1970) for seismological inver-
sion procedures and is still widely used in seismology. Particularly, the Neigh-
bourhood algorithm (NA, Sambridge, 1999a) is a popular method. It combines
the geometrical concepts of Voronoi diagrams (Voronoï, 1908) with a Monte
Carlo ensemble-based search approach (Sambridge, 1999a). The search process
is self-adaptive depending on the properties of all previously created models
(Sambridge, 1999a). Similar to genetic algorithms the sampling can be focused
on multiple regions of the parameter space and can therefore account for ambi-
guities and local minima, but also in high dimensional parameter spaces (Sam-
bridge & Mosegaard, 2002).

Although the NA can be used as a global optimisation algorithm (Mosegaard
& Sambridge, 2002), it was developed to efficiently sample a parameter space.
As Sambridge (1999b) shows, the resulting model ensemble, i.e. all evaluations
of the forward problem, can be used to estimate the posterior probability dens-
ity function (PPD) as function a of model parameters. The combined approach
can therefore be seen as an Bayesian approach (e.g. Tarantola & Valette, 1982a)
to solve high-dimensional nonlinear inverse problems.

Despite the fact that the Stokes problem is a computationally demanding task
and seem to be not feasible for a largely integrated probabilistic approach, we
do expect a complex nonlinear relationship between rheological model para-
meters and data, and we can not be sure that a single global minima exist.
Moreover, the dimension of the parameter space grows rapidly with the num-
ber of geological units of the model and at least some non-uniqueness is likely
to exist as the gravity problem is a well know non-unique problem. A Monte
Carlo based approach thus seems a natural choice to perform geodynamic in-
verse approach, although the major drawback of the method is that it require a
large amount of forward models.

We employ the NA as it is more efficient than a standard Monte Carlo ap-
proach and as it suits itself well for parallelisation (Rickwood & Sambridge,
2006). Yet in order to perform parallel inversions in combination with paral-
lel forward models (in which the solution time of different forward models can
vary dramatically), it was necessary to develop a completely new parallel layout
for the NA including a fully non-blocking architecture and explicit MPI-buffer
(Message Passing Interface) management.

In this paper we aim to demonstrate the potential of joint geodynamic in-
versions to constrain effective rheologies. We show that a Monte Carlo based,
probabilistic inversion is a feasible method to approach geodynamic inverse
problems with numerical three-dimensional models, which are computed in
parallel. In general, this approach is scalable and applicable to either small
scale dynamics or lithosphere scales. However, involving the entire lithosphere
requires power-law rheology, and thus a large parameter space. Here, we focus
on synthetic models with Newtonian rheology, for which we choose a salt-
tectonics model scenario to keep the number of model parameters limited, al-
though it has geometric complexities to benchmark the inverse approach.
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In the following sections, we first discuss an analytical experiment to demon-
strate that theoretically, performing an inversion with a geodynamic model
helps to reduce ambiguities of the inverse problem. Next, the general methodo-
logy is described including the forward problems that have to be solved. Finally,
we employ synthetic three-dimensional salt-tectonics models to conduct a de-
tailed feasibility study of the methodology, which includes how model resolu-
tion, model geometry and different constraints on the data affect the inversion
results. Details on the new parallel implementation of the NA and derivations
for the analytical experiment are described in the appendix.

geodynamic inversion - an analytical experiment

We employ a simple geodynamic model to illustrate the basic features of a
joint geodynamic-gravity inversion. The model setup consists of a solid, buried
sphere of radius R that is emplaced at a depth h below a horizontal free-slip in-
terface and has a lower density than its surroundings, which have linear viscous
rheology (see Fig. 2.1 and Table 2.1). The gravity problem has a well-known
analytical solution, and the geodynamic problem is similar to that of a Stokes
sphere with the difference that it rises in the vicinity of a free slip boundary
(for which an approximate solution exists).

Figure 2.1: Analytical model setup, which consists of a solid, low density sphere that is
surrounded by a linear viscous material and emplaced at depth h beneath
a free-slip horizontal interface. Two sorts of data are used for inversions: (i)
the gravity anomaly and (ii) the horizontal surface velocity.
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Name Symbol Value

Radius R 4 km

Depth h 8km

Density of sphere ρsphere 2000 kg/m3

Density of half-space ρ 2600 kg/m3

Viscosity of half-space η 1021 Pa s

Table 2.1: True model parameters of the analytical model in Fig. 2.1

Analytical solutions

The lower density of the sphere will result in a variation of the vertical gravity
component dgz along the horizontal surface r, that is given by (e.g. Jacoby &
Smilde, 2009; Turcotte & Schubert, 2002):

dgz(r) =
4

3
πG

h

(r2 + h2)3/2
∆ρR3, (2.1)

where G is the gravitational constant, ∆ρ the density difference between the
sphere and surrounding material, h the depth of the sphere and r the horizontal
distance to the sphere’s center.

The horizontal surface velocity at the surface can be found by combining
the results of Brenner (1961), Stimson & Jeffery (1926) and Pasol et al. (2005).
In bipolar coordinates (ξ,µ), the velocity along the top (free-slip) boundary
(ξ = 0) is:

v (µ)ξ=0 =
(1− cos(µ))1/2

c2 sin(µ)
(2.2)

·
∞∑
n=1

(
Bn

(
n−

1

2

)
+ Dn

(
n−

3

2

))
· Vn(cosµ), with

Vn(cosµ) = Pn−1(cosµ) − Pn+1(cosµ), (2.3)

where Pn (x) are Legendre polynomials. Along the top boundary of the model
µξ=0 is equivalent to r. Bn (R,h,∆ρ,η) and Dn (R,h,∆ρ,η) are constants de-
rived by Brenner (1961) which depend on the geometry, density contrast ∆ρ
and viscosity η (see appendix A for a detailed derivation).

Inversion results

The half-width w of the gravity anomaly (e.g. Jacoby & Smilde, 2009) can be

used to constrain the depth of the sphere, which is h = 1/2

(
4
1/3 − 1

)−1/2
w ≈

2/3w. Yet, at a given depth, the gravity signal is identical as long as the mass
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of the sphere remains constant. Let d̂gz(x) be the observed gravity anomaly at
the surface, in which case the density difference is (from eq. 2.1):

∆ρ(R) =
3

4πG
· d̂gz(r) · (r

2 + h2)3/2

h︸ ︷︷ ︸
const.

· 1
R3

(2.4)

The first part of this equation is constant for a given location r, which shows
that a nonlinear trade-off exists between density and radius (∆ρ ∝ 1/R3), which
is clearly visible if we plot misfit as a function of density and radius (Fig. 2.2c),
using a grid-search approach.

Now, we perform a grid-search inversion for the Stokes problem, using the
horizontal surface velocity as input data. Since the Stokes velocity also depends
on the viscosity of the half-space, η, the parameter space is increased by one di-
mension. If the viscosity of the surrounding media is known, results show that a
single minima exists in the parameter space (e.g. Fig. 2.2a, b). Yet, if the viscosity
is unknown, an infinite number of radii give equally good misfits. Interestingly,
however, the radius of the sphere is uniquely determined. The Stokes problem
in itself is thus also a non-unique problem, but since the trade-offs between
density and radius are different for the gravity and the Stokes problem, we can
combine them in a joint inversion to obtain a uniquely determined solution
(Fig. 2.2d).

This illustrates that the benefits of performing an inversion with geodynamic
models are two-fold. First it is obvious that we gain insights about the dynam-
ical properties, i.e. the rheology of model. Second, it also helps to reduce am-
biguities, despite the fact that the dimension of the parameter space increases.
This implies that more forward models will need to be performed to find a
(better) solution, but the pay-off is that this solution also gives insights into the
physics or dynamics of the model opposed to pure gravity inversions. Yet, the
model we studied here is a very simple one and it is thus desirable to tests this
with more complex (3D) models.

joint geodynamic inversion - general methodology

The method involves three parts, namely (i) numerically solving three-dimen-
sional forward problems for given input parameters many times, (ii) controlling
the forward modeling with an optimisation technique that changes the input
parameters with the aim to better fit surface observations and (iii) quantitatively
interpreting the resulting model misfits. In our approach we combined the two
first steps into a single massively parallel application, which we will discuss in
more detail before we test the methodology with synthetic data.

Forward problems

Similar to what we used for the analytical experiment in section 2.2, we assume
that observations of the gravity field and the surface velocity field are available,



26 constraining effective rheology

Figure 2.2: Model misfit versus radius and density difference. a,b) Only the Stokes
problem is considered under the assumption that depth is known from
gravity observations. For a given viscosity, a unique solution exist. c) Only
gravity is used in the inversion, which results in an infinite number of solu-
tions. d) Inversions are done for the Stokes problem for a viscosity range
of η = 1020.5 − 1021.5Pa s. There is a clear trade-off between radius R and
viscosity η. If this result is however combined with the gravity inversion
result (red line), we can uniquely determine all model parameters.

and that we have knowledge of the 3D geometry of the problem, which argu-
ably is the case for many places on earth were GPS observations and gravity
data are available. As forward models we use a 3D viscous Stokes code and a
3D gravity code.

Forward model (A): Variable viscosity Stokes

The governing equations are the conservation of mass for incompressible flu-
ids and the conservation of momentum, assuming a Newtonian viscous (but
variable) viscosity:

∂σ′ij
∂xj

−
∂P

∂xi
+ ρgi = 0 (2.5)

∂vi
∂xi

= 0 (2.6)

σ′ij = 2 η ε̇ij, (2.7)



2.3 joint geodynamic inversion - general methodology 27

where σ′ij is the deviatoric stress tensor, P pressure and vi the velocity field. σij
is linearly related to the strain rate tensor ε̇ij = 1/2

(
∂vi
∂xj

+
∂vj
∂xi

)
, where η is the

effective viscosity. The discretized equations (2.5 - 2.7) form a coupled system
of equations that can be expressed in a block form: K GT

G 0


 v

p

 =

 f

0

 , (2.8)

where the solution vector (v, p)T containing velocity and pressure solutions is
coupled to the right hand side (f, 0)T that incorporates body and boundary
forces with the Jacobian matrix. The jacobian contains the stiffness operator K
with the discrete rheology of the model, the discrete divergence operator G and
the discrete gradient operator GT.

We employ a staggered grid finite differences scheme to numerically evaluate
the system of algebraic equations in (2.8). The Stokes problem is implemented
and parallelised with the PETSc toolkit (Balay et al., 2012b,a, 1997), which al-
lows running massively parallel forward simulations using a range of iterative
solvers and algebraic multigrid preconditioners. The code is highly scalable
and has been tested on over 16’000 cores with more than 2 billion degrees of
freedom, although the runs performed here are done with significantly lower
resolution, to allow many runs to be performed simultaneously during the in-
version process. Material properties are stored on markers, and an internal free
surface is implemented using the ‘sticky air’ approach (Crameri et al., 2012a),
which is implemented as a low viscosity layer at the top of the domain. A fast
erosion and sedimentation algorithm is implemented which adds sediments
at a given, constant, rate to the model domain, which is important for mod-
elling salt diapirs formed by down-building. The fast erosion is implemented
after Kaus (2005) and Burg et al. (2004), where the average surface height is the
controlling parameter. Material that was transported above the average surface
height is eroded, for other areas that are below, sediments are deposited up to
this level. This process is performed for every time step of the Stokes forward
model.

Forward model (B): Gravity

In addition to the Stokes problem, we also have to solve the gravity forward
problem. The density anomaly is given as the resulting density distribution of
the Stokes problem. As we employ finite differences for the Stokes problem, we
deal with discrete densities that are constant over the cubic volumes of each
finite difference cell in the entire domain (Nx ×Ny ×Nz). There are different
ways to perform the gravity forward problem. A solution can either be found
by solving the gravitational potential equation or by explicitly evaluating the
gravitational attraction of solid bodies in combination with the superposition
principle. May & Knepley (2011) compared several approaches for computing
gravity anomalies in terms of parallel performance and conclude that, besides
the more advanced fast multipole technique, a classical summation technique
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Figure 2.3: Forward simulation of salt tectonics, which involves both sedimentation
and erosion, and results in various salt domes. Two snapshots of this simu-
lation are taken as reference geometries for the inversion setups. Geometry
A (number 10) is a case in which salt reached the surface, whereas geometry
B is an intermediate evolution step where the salt has not reached the sur-
face yet. For the inversion tests described in sections 2.4.1 and 2.4.2 model
geometry A is employed only. Model geometries A and B are used for a
comparative inversion test in section 2.4.3.

shows comparably good performance in accuracy, computation time and par-
allel scalability. As this summation approach is much more straightforward to
implement, we employ it here. In general, the vertical gravitational contribution
of a three dimensional body at a survey point s(ξ,η, ζ) is given as:

gz(s) = G

∫ ∫ ∫
ρ(x,y, z) ·

ζ− z

[(ξ− x)2 + (η− y)2 + (ζ− z)2]3/2
dxdydz, (2.9)

where G is the gravitational constant and ρ(x,y, z) is the discrete density in the
model. The classical summation technique numerically evaluates the integral
in eq. (2.9) by using a two point gauss quadrature scheme in each coordinate
direction for each of the finite difference cells. We compute the gravity anom-



2.3 joint geodynamic inversion - general methodology 29

aly of the entire domain by superposing all contributions. As calculating each
single contribution is an independent task, it can be parallelised in a straight-
forward manner without need for parallel MPI communication. We only need
to perform a single global MPI reduction at the end of the calculations. As long
as decomposing the domain into equally sized sub domains is possible, this
procedure is highly scalable (May & Knepley, 2011). Having a parallel forward
gravity code is necessary as the gravity computation otherwise becomes the
bottleneck of the forward simulations.

Inversion technique

The inversion procedure is a two stage approach. First, a direct-search method
is applied, which involves solving the forward problems described in section
2.3.1 and the computation of misfits based on observational data sets. The
direct-search method results in a discrete representation of the misfit function
in the parameter space. In a next step, this data set (model parameters and re-
spective misfit values) is analysed to estimate acceptable parameter ranges, i.e.
the posterior probability density function (PPD).

Direct-search approach

We use the Neighbourhood Algorithm (NA) by Sambridge (1999a), which com-
bines a Monte Carlo direct-search method with geometric concepts for partition-
ing the parameter space. This allows searching a high-dimensional parameter
space in a very efficient manner compared to the classical Monte Carlo methods,
which is very important if the forward problem is computationally expensive
as in our case. Moreover, because the NA is a Monte Carlo like inversion algo-
rithm, it is especially suitable when dealing with nonlinear inverse problems
and expected non-uniqueness. A parallel version of the NA was published by
Rickwood & Sambridge (2006). We found this version unsuited for our prob-
lem as (i) we have forward models that have to be performed in parallel and
(ii) we typically have large run time differences between the individual forward
models, which depends on the viscosity contrast and geometry of the Stokes
forward model. In the original parallel version of the NA, a synchronisation bar-
rier was been implemented after the initial sampling stage. This implied that
all processors had to wait until all initial forward models were finished before
they could continue the main sampling stage. On large scale computers, this
significantly degrades the parallel performance of the code. We therefore de-
veloped a new parallel layout (NAplus) that explicitly allows parallel forward
models and avoids synchronisation bottlenecks. In particular, we also employ
C++ containers to explicitly handle the MPI message buffer to avoid memory
problems. A detailed description of our new implementation is given in B.
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Layer Density ρ [kg/m3] Viscosity η [Pa s]

Salt 2200 1018.0

Sediments [1] 2810 1019.1

Sediments [2] 2790 1019.3

Sediments [3] 2750 1019.2

Sediments [4]* 2800 1019.5

Sticky-air* 0 1016.0

Table 2.2: Rheology of the reference model. The rheology of the reference model is
similar to the rheology of the forward evolution simulation in Fig. 2.3. This
is also the ‘target’ rheology for the inversion tests. We do not invert for the
rheology of sediment layer [4] and the rheology of the sticky-air layer.
(*) Layer is not part of the inversion.

The inversion is based on minimising an objective function in a weighted
least squares manner:

χ2 =
1

ν

Nobs∑
i=1

(
φobsi −φpredi

σi

)2
, (2.10)

ν = Nobs −Mmod

where ν is the number of degrees of freedom, which is the difference between
the number of observations Nobs and the number of model parameters Mmod.
φobsi describes the observations and φpredi the predictions of the model respect-
ively. The residual is normalized with the standard deviation σi, computed
from the data.

Estimation of acceptable parameter ranges

The resulting data set of the direct-search procedure contains a collection of
model-misfits depending on the respective model parameters. We follow Sam-
bridge (1999b) who proposed a resampling technique to estimate Bayesian in-
tegrals (i.e. marginal PPD). In this method, a Gibbs sampler (Geman & Geman,
1984) is used to importance sample an approximation of the PPD, which can be
estimated from the resulting ensemble of models of the direct-search process.
Additionally, this method provides estimates (potential scale reduction, PSR
values) that show whether the Gibbs sampler has converged, which is also a
good indicator on whether sufficient forward models have been performed.

Case study model geometry: Salt-tectonics

As test case, we use a forward model that simulates the formation of salt domes
under a sedimentary overburden of increasing thickness (Fig. 2.3), which is a
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synthetic scenario that is nevertheless not totally unrealistic and comes with a
certain geometric complexity.

The forward problem uses a box of 20× 20× 5 km with a numerical resolu-
tion of 128× 128× 32 finite-difference cells. The model consists of a basal layer
of low density salt that is overlain by a sedimentary layer that increases in thick-
ness with time due to (i) a constant sedimentation rate (1mm/yr) to introduce a
sedimentary layering and (ii) a constant erosion process. Besides the upwelling
of the salt, this adds a down-building effect to the dynamic system, which also
controls the spacing and shape of the salt domes. Gaussian random noise of
maximum amplitude 190 m is initially added at the salt-sediment interface.

We start the simulation with a flat salt layer of 1.25 km thickness, whereas the
initial sedimentary overburden consists of a single, 500m thick layer (sediments
[1]). The remaining part of the domain is initially filled with sticky air. During
the sedimentation process the properties (or phase number) of the sedimented
material change every 100 kyrs to ensure a change in lithology, where each
layer is given a particular density and viscosity, as listed in Table 2.2.

For the inversion, we use two different snapshots of the forward simulation;
Geometry A, describes a stage in the development where a few salt-diapirs
reached the free surface and the sedimentation of the fourth sedimentary layer
has just started. Geometry B, involves an earlier stage in which the salt does
not yet extrude to the surface. During the inversions, we only focus on the
geometry and the model output at the center of the model domain to minimize
the model bias due the free slip boundaries (see Fig. 2.4).

inversion test results

During the inversion runs we assume that the 3D geometry is perfectly well-
known, which is reasonable for salt-structures due to the availability of high-
resolution 3D seismic data in many sedimentary areas, and we seek the optimal
model parameters. Within these assumptions, we have eight unknown paramet-
ers, which are the densities and effective viscosities of the salt layer and the
sedimentary layers [1-3], which we will refer to as the ‘true’ model paramet-
ers. We exclude sediment layer four from the inversion targets because it is not
present in geometry B and is very thin in geometry A. Using the true model
parameters we create a synthetic set of surface observations, which is the grav-
ity anomaly and the horizontal and vertical surface velocities. For all inversion
tests, we at least add 5% of Gaussian noise to the data, which corresponds to a
signal-to-noise-ratio (SNR) of 20.

We investigate the robustness of the inverse approach with three different
tests. In a first test, we perform the inversion with models that have the same
numerical resolution as the original forward model. These results are compared
with inversion results of models that are performed at a lower numerical res-
olution, and that are thus computationally cheaper. In a second test, we test
the sensitivity of the results to changes in the noise-level and incomplete data
coverage of the surface observables. Finally, we check the sensitivity of the in-
version results to the input geometry. Uncertainties in geometry (for example in
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Name Cells Grid spacing

High resolution (HR) 128× 128× 32 156.25m

Intermediate resolution (IR) 96× 96× 24 208.33m

Low resolution (LR) 80× 80× 20 250.00m

Low lateral &
80× 80× 32

250.00m

high vertical resolution (MR) 156.25m

Table 2.3: Model properties for performing resolution tests. The aspect ratio of the FD
cells is 1 for all models except the mixed resolution (MR) model where the
aspect ratio is 1.6. The dimension of domain is kept at a constant size of
20× 20× 5 km.

layer thickness) can in principle also be taken into account during the inversion,
which would simply increase the number of unknowns. Here, we study the ef-
fect of differences in geometry by considering two geometrical end-member
models.

Inversion for different model resolutions

We use a setup with fully developed salt-diapirs (geometry A in Fig. 2.3), and
perform inversions using four different model resolutions (Table 2.3), with HR
being the high resolution model that is the same as that used for the forward
evolution simulation. The geometry of the salt-tectonics scenario is stored as a
field of markers with a corresponding lithological phase information. For the
inversions, the marker field of the high resolution model is also used for the
models of reduced resolution as geometry. Moreover, the data quality (SNR =

20) is the same for all inversion runs. However, since we work with different
lateral resolutions of the model, the velocity data has to be interpolated to a
grid that corresponds to the currently used model resolution.

For this experiment, about 38 ′000 forward models have been calculated for
every inversion. We started NAplus with 4000 randomly chosen initial mod-
els, and the controlling parameters of the algorithm were adjusted to act more
explorative than directive, which means 1500 new samples are generated to
resample 500 cells of lowest misfit (Sambridge, 1999a). We used 16384 CPUs in
total, and 16 CPUs for every forward model, which implies that 1024 forward
models were running simultaneously during the inversion. The overall runtime
of the inversion was approximately four hours for the high-resolution case.

The χ2 misfit values of all forward models of the HR inversion case are plot-
ted for all possible parameter combinations on Fig. 2.5, where each dot repres-
ents a simulation result and the true model values are marked as grey circles.
The inversion algorithm focusses on regions with a low misfit and the number
of models that are performed for a certain parameter range therefore gives a
first indication on the optimal parameters (histograms in Fig. 2.5).



2.4 inversion test results 33

Fi
gu

re
2

.4
:S

yn
th

et
ic

su
rf

ac
e

ob
se

rv
at

io
ns

co
m

pu
te

d
w

it
h

th
e

hi
gh

re
so

lu
ti

on
m

od
el

fo
r

ge
om

et
ry

A
.T

o
m

in
im

iz
e

bo
un

da
ry

ef
fe

ct
s,

w
e

on
ly

in
te

rp
re

t
re

su
lt

s
in

th
e

ce
nt

er
of

th
e

m
od

el
(a

t
2
.5

km
di

st
an

ce
fr

om
th

e
bo

un
da

ri
es

).
a)

G
ra

vi
ty

an
om

al
y

w
it

h
ad

de
d

G
au

ss
ia

n
no

is
e

(S
N

R
=
2
0

).
A

cl
ea

r
co

rr
el

at
io

n
ex

is
ts

be
tw

ee
n

gr
av

it
y

lo
w

s
an

d
th

e
in

te
rf

ac
e

be
tw

ee
n

sa
lt

-s
ed

im
en

t
in

te
rf

ac
e

(g
ra

y)
.b

)
Su

rf
ac

e
ve

lo
ci

ty
fie

ld
w

it
h

no
is

e
(S

N
R
=
2
0

),
co

m
pu

te
d

w
it

h
th

e
hi

gh
re

so
lu

ti
on

m
od

el
bu

ti
nt

er
po

la
te

d
to

th
e

in
te

rm
ed

ia
te

re
so

lu
ti

on
(I

R
)g

ri
d.

c)
Ve

lo
ci

ty
co

ns
tr

ai
nt

s
us

ed
fo

r
th

e
in

ve
rs

io
n

te
st

in
se

ct
io

n
2

.4
.2

,i
n

w
hi

ch
th

e
nu

m
be

r
of

su
rf

ac
e

da
ta

po
in

ts
is

lim
it

ed
to
3
0

,a
nd

da
ta

is
in

te
rp

ol
at

ed
to

a
re

gu
la

r
gr

id
us

in
g

a
na

tu
ra

ln
ei

gh
bo

ur
in

te
rp

ol
at

io
n.

A
qu

al
it

y
fa

ct
or

is
co

m
pu

te
d

as
a

fu
nc

ti
on

of
da

ta
sp

ar
si

ty
,w

hi
ch

is
ta

ke
n

in
to

ac
co

un
td

ur
in

g
th

e
in

ve
rs

io
ns

.



34 constraining effective rheology

The results show that a clear (single) misfit minima exists for the density and
viscosity of the salt layer (ρ0, η0) as well as that of the first sedimentary layer
(ρ1, η1), and that this misfit is in good agreement with the true model para-
meters. For other parameter combinations, such as (ρ2, η2) numerous misfit
minima are present, and the parameters of the third sedimentary layer (ρ3, η3)
are not as well constrained as those of the salt- and first sedimentary layer.

Figure 2.5: χ2 misfit as a function of model parameters after the first (direct-search)
stage of the inversion procedure for the high resolution (HR) inversion case.
Parameter indices correspond to respective layers, with 0 being the salt layer.
Grey markers indicate true model values, and every dot represents a single
3D forward model. Histograms indicate how many models have been per-
formed for certain material parameters. The true model parameters can be
well recovered for most layers.

Misfit as a function of density of the layers [0] and [1] is given in Fig. 2.6,
where we can observe a clear trade-off between the parameters, which is linear
in this case and correlates well with the true model value in this component-
plane of the parameter space. It also illustrates a basic feature of the NA, which
samples more models in ‘promising’ regions of the parameter space.

However, the results at this stage of the inversion procedure, the direct-search
results, only give a first overview of the variety of possibly acceptable models
in the parameter space. In order to get quantitative estimates, we follow Sam-
bridge (1999b) and estimate marginal PPDs in a Bayesian approach (section
2.3.2.2), for which a Gibbs sampler performs 100 random walks with 100 steps
each, starting from the best 100 model locations. For all computations of the
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Figure 2.6: Misfit of the high resolution model as a function of density of the salt and
first sedimentary layer. Every dot represents one forward model. A nearly
linear trade-off exists between the two parameters. Low misfit models are
located in the vicinity of the true model parameters, which are indicated
with a grey marker and the red lines.

marginal PPDs, the prior distributions are uniform between the boundaries of
the parameter space.

The results of this comparison can be visualized as 1D marginal PPDs for
each of the model parameters, with the peak corresponding to its most likely
value and the width of the peak to the uncertainty of the parameter (see Fig.
2.7, where red lines indicate the true model parameters). Results for the HR
inversion (blue line) show that the parameters of the basal salt layer as well as
those of the first sedimentary layer are very well constrained and almost ‘Gaus-
sian’ shaped. On the other hand, the marginal distributions of the parameters
of sedimentary layer [3] are not as clear, and exhibit two distinct maxima for
the density and three for viscosity. The marginal PPD of layer [2] shows several
maxima over a wide range, suggesting that we cannot constrain its parameters
very well. A cross-section of model geometry A (Fig. 2.3) reveals that this layer
is very thin and it is thus likely that it doesn’t contribute much to the overall
dynamics of the model, which is why an inversion will not be able to correctly
retrieve its properties.

If we compare the marginal PPDs of the high resolution model with those at
lower resolutions, we can see that the IR-model is fairly similar to that of the
HR-model, although the PPD amplitudes are slightly smaller and the results
look ‘smoother’.

The resulting distributions of the low resolution model (red) for the salt layer
have a clearly defined peak which is however offset from the true model para-
meters, and we can thus no longer reliably retrieve model parameters. In order
to understand whether this is mainly due to limited horizontal or vertical res-
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olution, we performed an inversion with a ‘mixed’ (MR) resolution model that
is highly resolved in vertical direction, but laterally low resolved. Its marginal
PPD in green correlates very well with the HR and IR results, which suggests
that it is mainly the vertical resolution of the model that matters in this partic-
ular setup. This result is expected because the material properties mainly vary
in vertical direction, which directly affects the down-building. Besides the up-
welling of the salt, this is the second of the two main driving processes in the
model.

Figure 2.7: 1D marginal PPDs for different model resolutions for each of the model
parameters. ‘True’ model values are shown with red lines. The marginals of
the high resolution model in blue can be seen as reference.

Surface constraints

Next, we study the influence of noise and data coverage of the surface con-
straints on the inversion results. All test were performed with the intermediate
resolution model, and we added 5% (SNR = 20) and 10% (SNR = 10) noise
to the data. Results show that we can retrieve the true model parameters in
both cases, even though the viscosity parameters are slightly better recovered if
there is less noise (Fig. 2.8). Thin layers, such as layer [2], cannot be constrained
in either case.

In the previous tests, we assumed homogeneous data coverage. In reality this
will rarely be the case and GPS stations are often more sparsely located. To test
the effect of this, we performed an inversion in which we use only 30 randomly
chosen velocity vectors of the reference data set for the inversion and added
Gaussian noise (SNR 20) to them. The velocity vectors were interpolated on
the free surface grid points of the finite-difference grid using natural neighbour
interpolation (Sibson, 1981), which uses a Voronoi tessellation of the lateral
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positions of the velocity observations. The inverse of the area of a Voronoi cell
represents the point density at any particular position, and we use this value
(which can be easily computed from the location of GPS sensors) as a quality
factor to evaluate the velocity vector as illustrated in Fig. 2.4c. The quality factor
is low for regions with low data coverage, such as in the top-right part, whereas
regions with a high point have a higher quality factor as can be seen in the
lower left corner. For the misfit computation, the quality factor is used as a
linear weighting factor for the velocity error at that particular position.

Inversion results show that the viscosities of the salt and sediment layer [1]

can still be retrieved, even though they are less well constrained as in the case
of homogeneous data coverage (red lines in Fig. 2.8), but as previously, we
cannot constrain the viscosities of the second and third sedimentary layer very
well. The results for the densities are not strongly affected by the reduction
in velocity constraints which is expected, because viscosity is only part of the
Stokes forward problem, whereas density is involved in the gravity and the
Stokes forward problem. We thus expect a reduction in velocity constraints to
have a first order effect on the viscosities results, but only a reduced effect on
the density results.

Introducing the quality factor for the velocity data helps to balance this im-
pact. In order to get a better understanding on how strongly the randomness
of the velocity constraints affects the viscosity PPDs, we repeated the inversion
five times, each run having 30 randomly chosen velocity constraints. We plot
the resulting marginal PPDs as a mean PPD and variance of marginal PPDs in
Fig. 2.9. The variance of the density PPDs is relatively small compared to the
variance of viscosity PPDs. This means that the density results are relatively
robust, also if only a limited number of velocity measurements is available. The
results also show that viscosities of important layers such as salt and first sedi-
ment layer can be resolved within the error limits. Nevertheless, the variations
can be quite significant depending on where velocity is measured on the sur-
face.

The result also gives a hint how the velocity data quality affects the determin-
ation of the density contrast, as the noise of the gravity field was kept the same
for all five independent inversions. Whereas for the salt layer, the variance in
density is almost not noticeable, there is an increase in variance for the density
PPDs of other layers. The uncertainty in density, which originates from the dis-
tribution of the velocity measurements can be as high as ∆ρ ≈ ±50 kg/m3 for
the layer [3] density.

Effect of model geometry

In a next step, we test the effect of changing the model geometry. As the for-
ward simulation was done with a constant density and viscosity for each of the
layers, we should ideally be able to retrieve these values irrespective of the geo-
metry of the setup. Yet, the model dynamics and velocity fields of the forward
model change quite drastically once the salt extrudes to the free surface and it
is thus interesting to compare the stage after extrusion (geometry A, which we
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Figure 2.8: Comparison of 1D marginal PPDs for different noise conditions added on
top of out synthetic data set. Results are shown for an inversion results with
SNR = 20, SNR = 10 and a third case in which we only used 30 velocity
constraints and additional quality weighting based on the sparsity of the
velocity data.

considered so far), with the stage prior to that (geometry B). We use HR mod-
els and added 5% of noise (SNR 20). The results (Fig. 2.10) show that we can
retrieve the true model parameters in both cases, but that the rheology of the
salt layer is less constrained for model geometry B. For both viscosity and dens-
ity the peak-amplitude is smaller and the peak-width (or uncertainty range) is
larger.

These results might be due to the fact that the salt structures are less evolved
and as a result, the velocity magnitudes and gravity anomalies are smaller for
geometry B. Strong differences are found for the parameters of sediment layer
[3], although it should be kept in mind that this layer is not fully developed in
geometry B (see Fig. 2.3), which implies that it has less impact on the overall
model dynamics. Contrary to the previous results, the relative thickness of layer
[2] is increased as the layer [3] thickness is smaller for model B. This increases
the impact of layer [2] on the entire dynamics of the system, which results in a
better fit of its viscosity. However, the layer [1] and [2] densities show trade-offs,
which is likely due to the fact that the two consecutive layers are less deformed
at this stage.

discussion

As with any model, the quality of the result of a geodynamic inverse problem
depends on the choice of the model, i.e. the expert knowledge, which is imple-
mented in terms of physics, geometry, boundary conditions, scaling and resol-
ution of the model. Together with a suitable parametrisation, this is part of the
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Figure 2.9: Mean PPD and variance of marginal PPDs as result of five independent in-
versions. For each inversion a different set of 30 surface velocity constraints
is employed. This test demonstrates the robustness of the inversion with
respect to a limited number of surface velocity measurements available.

a priori assumptions. In this respect, defining appropriate prior distributions
is essential in a probabilistic inversion approach (e.g. Mosegaard & Tarantola,
1995). In our case, we assume that the prior is uniform between the boundaries
of all model parameters, which is a reasonable choice for our synthetic model.
For real world cases (with a larger parameter space) the parameter boundaries
have to be chosen more carefully, and it has to be evaluated whether a uniform
distribution is the right choice for the prior, because it directly affects the PPD.
Moreover, it is up to the scientist to decide which sort of observed data can
be represented by the model, and how to appropriately pre-process the data
with selections, corrections and filters and how this affects the error of the data.
Finally, the quality of the inversion results also depends on the choice of the
inversion algorithm.

In our case, we assume that we have knowledge on the model geometry,
which is a strong simplification, but in terms of salt-tectonics probably a reas-
onable one. On a larger, lithospheric scale, this can be more problematic. Yet,
in many mountain belts (such as the Himalaya or Alps) quite a bit of geophys-
ical information is available already and in most cases at least the location of
the Moho has been determined to high precision. In addition, seismic tomo-
graphy models have been developed for most mountain belts and whereas the
tomographic models are not always necessarily in agreement with each other,
they can at least be used to derive end-member geometries for which a geody-
namic inversion can be performed. By comparing the inversion results for the
different end member models we get some idea on the sensitivity of the most
likely lithospheric rheologies to the model geometry and, ideally, which geo-
metry is most consistent with available data. Directly linking the tomography
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Figure 2.10: Comparison of marginal PPDs for two different model geometries (see
Fig. 2.3). Geometry A is a model with almost fully developed salt diapirs,
whereas model B is at an intermediate stage, when salt does not yet ex-
trude at the surface.

inverse problem with the geodynamic inverse problem in a joint-multiphysics
inversion is certainly an ambitious task and has potential for future approaches.
However, there is a lot of uncertainty how seismic velocities, attenuation and
other seismological quantities are linked with the temperature distribution and
geological units that are geodynamically relevant. For the moment, geological
interpretation is required to use this data. Other seismological observations
such as Moho depths derived from receiver functions are more precise and
should be tested in the first place.

Another assumption we made implicitly in our inversion is that homogen-
eously observed gravity data is available (which is the case for much of the
planet thanks to recent satellite missions, although their quality varies with
scale) and that measured surface velocities are representative of lithospheric
deformation on a geological time-scale. This latter assumption has been dis-
cussed quite vigorously in the literature. One location where it can be tested is
the western US, where a large amount of GPS stations have been installed in re-
cent years. Platt & Becker (2010) performed such a comparison with recent data
and found that GPS-derived slip rates compare well with geological estimates
which suggests that present-day velocity field is representative of long-term
motions. Even if this is not perfectly satisfied, performing a geodynamic inver-
sion give still important insights as it will excluded models that result in total
unrealistic velocities.

Another important limiting factor is how the physics is incorporated and dis-
cretised in the forward model. In our synthetic inversion tests, we experimented
with four distinct lithological units, each of which had only two effective para-
meters: a constant linear viscosity and density. This was mainly done to restrict
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the number of free parameters in the model and make the inverse model feas-
ible. Yet, real rocks are more likely to have a nonlinear or even plastic rheology.
As these rheologies do not have a memory, it is technically possible to take
these complexities into account during the inversion procedure. Yet, it will of
course increase the dimension of the parameter space, and as temperature of
the lithosphere is often imprecisely known, it will also require a viscosity para-
metrisation that does not depend on temperature.

This emphasises the need for an ‘intelligent’ sampling strategy that reliably
works in high dimensional parameter spaces. The neighbourhood algorithm is
a well-tested and frequently applied algorithm, which allows to efficient and re-
liably sample a multidimensional space. However, in our experience a scalable
parallelisation without blocking communication strategies is crucial in order to
effectively deal with geodynamic forward models of different run-times. Nev-
ertheless, the inversion approach is a Monte Carlo type approach, which is in
fact the worst method to choose in terms of computational efficiency. On the
other hand, a Monte Carlo type approach is easy to parallelise and scalable.
The obviously nonlinear geodynamic inverse problem must not be linearised,
neither additional efforts must be undertaken to account for ambiguities. Fu-
ture projects of this kind must not disregard other approaches. In particular,
it would be interesting to compare with other inverse approaches (such as the
adjoint method) in terms of inversion results and computational efficiency.

In our approach, we limited the number of observables to the gravity field
and the surface velocities. In reality, many more (reliable) datasets exists for
many places on Earth, such as topography, lithospheric stresses, seismicity
(which might be a proximity to the plastic or brittle part of the lithosphere),
or seismic anisotropy. Adding these additional constraints to the inversion al-
gorithm is rather straightforward as long as we have a forward model to predict
each data set from a synthetic model, and having more constraints will likely
help to reduce the ambiguities (Afonso et al., 2013b,a). Here, we demonstrate
that performing the Stokes forward model within such a Monte Carlo type in-
verse approach is possible if a highly scalable parallel implementation is used,
which shows the great potential of the Stokes forward problem being used as a
complementary part of a multi-observable probabilistic inversion.

The usual way to compute the strength (or effective parameters) of the litho-
sphere is through estimating the effective elastic thickness (EET) of the litho-
sphere from the coherence of the gravity and topography (e.g., Burov, 2007;
Watts, 2001). The disadvantage of that method is that it assumes a priori that
the lithosphere is a thin elastic plate floating on a viscous mantle. Whereas this
might be an appropriate simplification for oceanic lithosphere (where estimates
of EET between various groups largely agree), it is certainly incorrect for many
active mountain belts where estimates of the EET between various authors vary
dramatically. In those locations, we typically have many additional geophysical
data-sets available, and it is thus important to take this data into account in
order to better understand which rheologies are consistent with the given data.
The results here are a first step in this direction and show that geodynamic
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inversion is feasible even with 3D models, although more work is required to
understand how rheological complexities can be resolved.

conclusions

We describe a new method to constrain the rheology of the lithosphere which
combines surface observations (gravity and surface velocity) with forward mod-
els of lithospheric deformation and a Bayesian inversion approach.

The advantages of using such a geodynamic inversion method are illustrated
with a simple example of a rising low density sphere for which analytical res-
ults exist. Whereas a gravity inversion alone gives non-unique results, a joint
gravity and geodynamic inversion increases the parameter space but gives a
uniquely constrained result.

In order to study more complicated cases, we developed a massively parallel
inversion method that combines a frequently used Monte Carlo direct-search
approach, the Neighbourhood algorithm, with parallel, three dimensional geo-
dynamic forward models. The parallel layout of the Neighbourhood algorithm
was rewritten to robustly and optimally perform the inverse approach with
parallel geodynamic Stokes and parallel gravity forward models runs on over
16 ′000 cores.

To test the inverse method we perform a 3D forward simulation that simu-
lates the formation of salt diapirs under sedimentation and fast erosion. Snap-
shots of this model are taken as an input for the inversion algorithm and results
show that we can reliably retrieve the true model parameters even if noise is
present in the data, as long as the layers (i) contribute to the overall, large scale
dynamics of the model and (ii) are numerically sufficiently well resolved.

This thus suggests that a joint geodynamic inversion is a potentially powerful
technique that links geophysical observables with the dynamics of the crust and
lithosphere.
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appendix

The surface velocity signal of a rising sphere

The analytical inverse problem described in section 2.2 has a kinematic compon-
ent, as the low density sphere will want to rise through the surrounding vis-
cous material. For very slow motions and sufficient small times the set-up can
be simplified with a non-deformable sphere embedded in an infinite large half-
space of a viscous fluid which mimics the properties of the sediments. Thus,
the problem can be described with the simplified Navier-Stokes equations for
low Reynolds numbers, the Stokes equations:

∇p = κ∇2~v. (2.11)

In addition, there is the continuity equation for an incompressible fluid

∇ ·~v = 0 (2.12)

where p is the pressure and ~v the velocity field of the fluid. The problem can
be written in terms of a stream function Ψ:

∇4Ψ = 0. (2.13)
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Stimson & Jeffery (1926) provide a general solution for the stream function in
bipolar coordinates that satisfies equation 2.13:

Ψ(ξ,η) =
c2

(cosh ξ− µ)3/2

∞∑
n=1

Un(ξ) · Vn(µ), with

µ = cos(η)

c = b · sinh(α)

α = cosh−1

(
h

b

)
, (2.14)

where h is the normal distance of sphere’s centre to the plane surface and b the
radius of the sphere. Moreover,

Vn(η) = Pn−1(µ) − Pn+1(µ) (2.15)

with Legendre polynomials Pn(µ) and

Un(ξ) = An cosh
(
n−

1

2

)
ξ+Bn sinh

(
n−

1

2

)
ξ+

Cn cosh
(
n+

3

2

)
ξ+Dn sinh

(
n+

3

2

)
ξ. (2.16)

The expressions An, · · · ,Dn must be derived in order to fulfill the boundary
conditions. Brenner (1961) derived a solution for no-slip boundary conditions
on the surface of the sphere and free-slip boundary conditions at the plane
surface. He found

An = Cn = 0, and (2.17)

Bn =
b2 sinh2(α U n(n+ 1))√

2 (2n− 1)
·[

4 cosh2(n+ 1
2)α+ 2(2n+ 1) sinh2 α

2 sinh(2n+ 1)α− (2n+ 1) sinh(2α)
− 1

]
(2.18)

Dn =
b2 sinh2(α U n(n+ 1))√

2 (2n+ 3)
·[

1−
4 cosh2(n+ 1

2)α− 2(2n+ 1) sinh2 α
2 sinh(2n+ 1)α− (2n+ 1) sinh(2α)

]
(2.19)

Bn and Dn depend on U, the constant rising-velocity of the sphere. By setting
up a force balance of drag-force and buoyancy-force, it can be shown that U is
a function of ∆ρ and b:

Fdrag = 6π · κ · b ·U ·β

Fbuoyancy =
4

3
π · b3 · g ·∆ρ

U =
2

9
· b
2 ·∆ρ
κ ·β

. (2.20)
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where β is a correction factor of Stokes’ law. Brenner (1961) derived β that
satisfy the boundary conditions:

β =
4

3
sinhα

∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)
·[

4 cosh2(n+ 1
2)α+ 2(2n+ 1)2 sinh2 α

2 sinh(2n+ 1)α− (2n+ 1) sinh(2α)

]
. (2.21)

Pasol et al. (2005) show the velocity components in bipolar coordinates are
dependent on the solution for the stream function (eq. 2.13)

vξ =
(cosh ξ− µ)2

c2 sin(η)
∂Ψ

∂µ
(2.22)

vη =
(cosh ξ− µ)2

c2
∂Ψ

∂ξ
(2.23)

∂Ψ

∂ξ
=

∞∑
n=1

∂Un(ξ)

∂ξ
· Vn(η)

=

∞∑
n=1

Bn cosh(ξ(n− 1
2))(n− 1

2) +Dn cosh(ξ(n− 3
2))(n− 3

2)

(cosh(ξ) − µ)3/2

−
3 · sinh(ξ) · (Bn sinh(ξ(n− 1

2)) +Dn sinh(ξ(n+ 1
2))

2(cosh(ξ) − µ)5/2

·Vn(η). (2.24)

At the surface (ξ = 0) vη=0 = 0 and

vξ=0 =
(1− cos(η))1/2

c2 sin(η)
·

∞∑
n=1

(
Bn

(
n−

1

2

)
+

Dn

(
n−

3

2

))
· Vn(η). (2.25)

vξ=0 =
(1− cos(µ))1/2

c2 sin(µ)
·

∞∑
n=1

(
Bn (h,R,∆ρ,η)

(
n−

1

2

)
+

Dn (h,R,∆ρ,η)
(
n−

3

2

))
· Vn (cos (µ)) . (2.26)

Highly scalable implementation of the Neighbourhood algorithm

In order to have a highly scalable algorithm on massively parallel computers, it
is important to allow for parallel forward models and to avoid MPI synchroniz-
ation calls (e.g. MPI_Allreduce) within the code, which required us to redesign
the parallel layout of the NA algorithm. Our implementation scheme is shown
in Fig. 2.11. One of the basic additional features is a grouping procedure which
creates processor groups, as illustrated in Fig. 2.11a. The forward modeling
tasks are assigned to these CPU-groups during the optimisation. Each group
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has a leading processor, which is responsible for the optimisation, which means
that only this CPU shoulders the workload of the optimisation routine. The
rest of the group processors wait for instructions of the leading CPU (LCPU).
We embedded the core of the original NA routine into a new parallel layout
(NAplus, Fig. 2.11b). As for the original NA, the workflow can be broken down
into two major parts: (i) an initial parameter search and (ii) a main parameter
search controlled by the NA. In our framework, this is implemented by mainly
changing the subroutine in stage (4) (Fig. 2.11b). Generally, the method to com-
pute the initial set of model parameters is arbitrary. Similar to the original NA
implementation we use a pseudo-random or quasi-random number generator
to compute a uniformly distributed set of initial parameters. For the parallel-
isation, this set of precomputed model parameters is redundantly provided
as look-up table, and is partitioned into as many subsets as LCPUs are avail-
able. Usually, the size of the look-up table should be larger than the number
of initial models required by the user to account for run-time differences of
the forward models and imbalances between CPUs. Each LCPU is keeping re-
cord of the globally computed number of models, which allows to switch from
initial stage to the main stage as soon as the required number of initial mod-
els is reached. To illustrate the new parallel layout, we begin at step (4) of the
process, where new model parameters are assigned to the LCPU, either by the
precomputed set of model parameters (initial sampling) or by the NA based on
the previous model history. In a second step, the LCPU informs its own group
to start performing new forward models (5). As soon as the forward modeling
is finished, the new model and model misfit is sent to all other LPUS (1) and
is attached to the own model history (3). In general, none of the other LCPUs
is immediately available to receive this information. Therefore, we explicitly
implemented a sending routine that combines MPI_Isend and MPI_Test with a
C++ a container object that works as a message buffer (2). This construct allows
a completely asynchronous communication. All messages stay in the message
buffer until the sending operation is terminated, meaning the model was re-
ceived by the destination LCPU or the message was copied to the internal MPI
system buffer. As soon as the sending process is terminated, respective models
can be removed from the dynamic message buffer, which is important to avoid
memory problems. To complete the asynchronous communication, models and
respective misfit values of other processes have to be received and added to the
own model history (3). Based on the model history, the new model parameters
are either chosen with the NA (main stage) or they are taken from the look-up
table (initial stage).

The parallel layout is completely written in C++, but there is a large freedom
in what language the forward model should be implemented. For this study we
have implemented an interface to a forward modeling code written in C with
PETSc support. The code also supports other (sequential) forward modeling
codes written in fortran90 and MATLAB.
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Figure 2.11: Parallel layout and workflow of NAplus. a) The available CPUs are parti-
tioned into groups, here illustrated with colors. In each group, one CPU is
assigned as leading CPU (LCPU), whereas all others are denoted as group
CPUs (GCPUs). The LCPUs are integrated in another MPI-communicator,
in which the parallel NA workflow is performed. b) The workflow is
shown for a particular LCPU.
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Abstract

One of the main methods to determine the strength of the lithosphere is
by estimating its effective elastic thickness. This method assumes that the
lithosphere is a thin elastic plate that floats on the mantle and uses both to-
pography and gravity anomalies to estimate the plate thickness. Whereas
this seems to work well for oceanic plates, it has given controversial results
in continental collision zones. For most of these locations, additional geo-
physical datasets such as receiver functions and seismic tomography exist
that constrain the geometry of the lithosphere and often show that it is
rather complex. Yet, lithospheric geometry by itself is insufficient to under-
stand the dynamics of the lithosphere as this also requires knowledge of
the rheology of the lithosphere. Laboratory experiments suggest that rocks
deform in a viscous manner if temperatures are high and stresses low, or
in a plastic/brittle manner if the yield stress is exceeded. Yet, the experi-
mental results show significant variability between various rock types and
there are large uncertainties in extrapolating laboratory values to nature,
which leaves room for speculation.

An independent method is thus required to better understand the rhe-
ology and dynamics of the lithosphere in collision zones. The goal of this
paper is to discuss such an approach. Our method relies on performing nu-
merical thermo-mechanical forward models of the present-day lithosphere
with an initial geometry that is constructed from geophysical datasets. We
employ experimentally determined creep laws for the various parts of the
lithosphere, but assume that the parameters of these creep-laws as well as
the temperature structure of the lithosphere are uncertain. This is used as
a priori information to formulate a Bayesian inverse problem that employs
topography, gravity, horizontal and vertical surface velocities to invert for
the unknown material parameters and temperature structure.

In order to test the general methodology, we first perform a geodynamic
inversion of a synthetic forward model of intra-oceanic subduction with
known parameters. This requires solving an inverse problem with 14− 16
parameters, depending on whether temperature is assumed to be known
or not. With the help of a massively parallel direct-search combined with a
Markov Chain Monte Carlo method, solving the inverse problem becomes
feasible. Results show that the rheological parameters and particularly the
effective viscosity structure of the lithosphere can be reconstructed in a
probabilistic sense. This also holds, with somewhat larger uncertainties,
for the case where the temperature distribution is parameterised.

53
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Lastly, we apply the method to a cross-section of the India-Asia collision
system. In this case, the number of parameters is larger, which requires
solving around 1.9 × 106 forward models. The resulting models fit the
data within their respective uncertainty bounds, and show that the Indian
mantle lithosphere must have a high viscosity. Results for the Tibetan plat-
eau are less clear, and both models with a weak Asian mantle lithosphere
and with a weak Asian lower crust fit the data nearly equally well.

introduction

The effective elastic thickness model has been successfully applied to estimate
the strength of the lithosphere (e.g., Burov, 2007; Watts, 2001). The underly-
ing assumptions are strict in that they assume the lithosphere to be a thin
elastic plate floating on a linear viscous (or inviscid) mantle and, although the
distribution of seismicity is sometimes used for additional argumentation (e.g.
Maggi et al., 2000), the only input data are gravity and topography. Whereas the
model is widely accepted to work well for oceanic lithosphere, its application
to the continental lithosphere is controversially discussed (Burov & Diament,
1995), with some authors favouring small values of elastic thickness (e.g. Jack-
son, 2002) and others much larger values (e.g. Burov & Watts, 2006). That is
unfortunate as these collision zones are impressive witnesses of the collision of
tectonic plates, and their formation has intrigued geoscientists since centuries.

Thankfully, for many places on Earth, a large number of other geophysical
datasets exist that give additional insights into the deformation and geometry
of the crust and lithosphere. Ideally, we would like to incorporate these data in
a dynamic model and in this manner learn more about the rheology of the litho-
sphere. On a laboratory scale, the rheological properties of minerals and rock
samples are well understood for relevant pressure and temperature conditions
of the lithosphere and upper mantle (e.g. Ranalli, 1995; Hirth & Kohlstedt, 2003;
Karato, 2008). These results, however, suffer from intrinsic scaling problems in
terms of geological time spans and spatial scales (Burov, 2007). Moreover, there
is significant variability between the experiments, depending on which laborat-
ory performed the experiments and on factors such as the chemistry or water
content of the deformed rock samples. Thus, independent validations are re-
quired to better understand their reliability. Ideally, we would like to link the
rheology relations known from laboratory experiments with independent geo-
physical data in a joint, physically consistent approach.

A possibility to fill this gap can be provided with the help of geodynamic
deformation models that incorporate the rheological relations, but can also be
used for the forward modelling of geophysical observations. The idea of do-
ing this is not new, and has been developed before in the context of mantle
flow models (e.g. Ricard et al., 1989; Ricard & Wuming, 1991; Forte et al., 1991;
Bunge et al., 2003; Liu & Gurnis, 2008). These previous approaches focused on
global scales and have underlying simplifications such as lateral homogeneous
material properties, and linear viscosities. In a recent study, we focussed on a
3D crustal-scale problem with multiple geological units (Baumann et al., 2014)
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and demonstrated that a Bayesian inversion strategy with numerical 3D Stokes-
flow models can be conducted on massively parallel computers to constrain the
linear viscosities from surface observations. We also demonstrated analytically
that a joint geodynamic inversion of gravity and velocity data gives unique res-
ults in terms of density and viscosity, as opposed to a gravity inversion only
which is known to be non-unique (Baumann et al., 2014). Yet, a drawback of
our previous work is that it was limited to linear viscous rheologies. Here, we
further extend the approach and test its applicability for more complex nonlin-
ear rheologies known from laboratory experiments that are widely applied to
lithospheric scale 2D models.

The paper is composed into four parts. First, we describe the inversion me-
thod and the physics underlying the forward models. In the following part, we
apply the inversion method to a synthetic case to test its ability to constrain
nonlinear rheologies of a typical geodynamic model scenario. Here, we also
investigate the role of a unknown temperature distribution and its impact on
the rheology-inversion results. We conduct two inversions, one for which we as-
sume a known temperature distribution and another one with a parameterised
temperature, with 14 and 16 inversion parameters respectively. Part three is ded-
icated to a real world example of our methodology. We construct a 2D model
of the India-Asia collision system from seismological data. Compared to the
synthetic cases, the model complexity is larger, which is why we encounter the
inverse problem with an increased number of inversion parameters (19). Finally,
we discuss the advantages and the current limitations of the methodology and
elaborate possible modifications and future applications.

methods

Geodynamic inversion

Whereas in our previous approach (Baumann et al., 2014), we directly followed
Sambridge (1999a,b) in tackling the inverse problem, we here establish our ap-
proach into a more fundamental Bayesian framework, which also includes the
use of non-uniform parameter priors. In the subsequent sections we give a the-
oretical introduction into the theory of Bayesian inversion and we outline our
technical implementation focusing on the geodynamic forward problem.

Bayesian inversion

From a Bayesian viewpoint, the solution of the inverse problem is the posterior
probability density function (pdf) σ (d, m), which is, in the most general case,
a joint distribution in the model parameter space M and the data space D. We
use the terminology of Tarantola (2005, chapter 1.4 to 1.5) to introduce how the
posterior is defined in this paper. Starting with the most general formulation of
the posterior pdf (Tarantola & Valette, 1982a) in the joint model and data space

σ (d, m) =
ρ (d, m) θ (d, m)

µ (d, m)
, (3.1)



56 constraining the non-linear rheology of the lithosphere

it becomes clear that the inverse problem is composed of three parts. θ (d, m)

represents the possible correlations between the model m and the observa-
tions d, which describes the theoretical uncertainties in the forward model-
ling process. A reasonable approximation θ (d, m) = θ (d|m)µm (m) is obtained
when it expresses no information about m (Mosegaard, 2011). The a priori in-
formation on data and model parameters can be decomposed as ρ (d, m) =

ρd (d) ρm (m) provided the prior information on model parameters is inde-
pendent of data. From this it directly follows that the homogeneous probab-
ility density µ (d, m) = µd (d)µm (m) can be decomposed in a similar man-
ner. When incorporating these assumptions, the a posteriori information in the
model space can be computed as a marginal distribution

σm (m|d) = k ρm (m)

∫
D

ρd (d) θ (d|m)

µd (d)
dd, (3.2)

σm (m|d) = k ρm (m)L (m) , (3.3)

where k is a constant. The integral over the data is referred to as likelihood
L (m) and expresses the model fit to the observations. If we employ Gaussian
error statistics, the likelihood can be written as

L (m) = k exp
(
−
1

2
(d − g (m))T

(
C−1
d +C−1

T

)
(d − g (m))

)
, (3.4)

where

C−1
D = C−1

d +C−1
T , (3.5)

denotes theoretical and measurement uncertainties, both expressed in terms of
covariance matrices and g (m) denotes the model predictions. Here, we neglect
the theoretical uncertainties (CT ) because the distribution of data uncertainty
and theoretical uncertainty is hardly known. When assuming Gaussian statist-
ics, the likelihood is associated with the well-known least-squares misfit if data
correlations are neglected as well

χ2 (m) = (d − g (m))T C−1
D (d − g (m)) . (3.6)

In the same manner, the uncertainties of the model parameters can also be
Gaussian, such that the model prior probability can be written as

ρm (m) = k exp
(
−
1

2
(m − 〈m〉)T C−1

M (m − 〈m〉)
)

, (3.7)

with 〈m〉 being the arithmetic mean of the model vectors and C−1
M the model

covariance matrix.
This completes the mathematical formulation of the inversion result, includ-

ing the uncertainties for both, observations and model parameters, and we can
now turn to the practical implementation and computation.
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Implementation of the Bayesian approach

The key challenge of solving the inverse problem with a Bayesian approach is
to solve many thousands or even millions of forward models, which can be
seen as samples of the posterior distribution (eq. 3.2 and eq. 3.3). Obviously, for
computationally demanding, geodynamic forward models, the emphasis is on
optimizing the sampling strategy as much as possible without underestimating
the non-unique and nonlinear character of the geodynamic inversion problem.

Markov Chain Monte Carlo (MCMC) methods are frequently used to dir-
ectly sample the posterior (eq .3.3, e.g. Tarantola, 2005; Mosegaard & Tarantola,
1995; Sambridge & Mosegaard, 2002; Mosegaard & Sambridge, 2002). A mod-
ified (two-step) approach to sample the posterior is described by Sambridge
(1999a,b). The method is separated into an optimised direct-search (Neighbour-
hood algorithm, NA, Sambridge, 1999a) and a Bayesian evaluation of the direct-
search models (Sambridge, 1999b), where the likelihood function (eq. 3.4) is ap-
proximated and a Gibbs sampler (Geman & Geman, 1984) is employed to create
samples of the posterior distribution. A new evaluation of forward models is
not required during this appraisal stage. As our forward models are computa-
tionally demanding, this is a crucial argument in favour of using Sambridge’s
approach rather than directly performing the MCMC. Moreover, the parallelisa-
tion of Markov chains that is required in the classical MCMC method can be an
issue, especially if poor mixing and long burn-in times exist (Wilkinson, 2006).
In contrast, the NA can efficiently be parallelised and optimized for the usage
with geodynamic forward models (NAplus, Baumann et al., 2014). A summary
of the optimized parallel implementation (NAplus) is given in appendix A.

Considering complex rheologies for a geodynamic inversion strongly increas-
es the number of inversion parameters. Even in the simplest case, that will be
discussed in the next section, the number of unknown inversion parameters
increased by almost a factor of two compared to our previous synthetic tests
with constant Newtonian rheology (Baumann et al., 2014). Obviously, an in-
crease in the number of inversion parameters causes an increase in volume
of the parameter space and a reasonable initial sampling is required before
the direct-search stage with the NA. Therefore, the aim of the initial sampling
stage is to sample the parameter space as uniformly as possible (Sambridge &
Mosegaard, 2002). Pseudo random sampling as in our previous study can no
longer be a method of choice. Instead, quasi-random sampling can be applied,
but their correlation effects in higher dimensions can not be reliably controlled,
which is why our strategy is to conduct the initial sampling on a regular, pre-
defined grid to ensure a minimum distance between forward models and to
handle the increased volume of the parameter space. For details we refer to
the appendix B, where we also address a few technical obstacles that have to
be resolved, including the question how independent random numbers can be
reliably created in a parallel programming environment (appendix C) and how
many direct-search samples (forward models) are needed for a N-D problem
(appendix D).

In Sambridge (1999b) the prior distribution (eq. 3.7) is assumed to be uni-
form, and the sampling of the posterior is approximated with the neighbour-
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hood approximation of the likelihood function. Yet, priors are informative in
general and are eventually required to regularise a high dimensional inverse
problem. We therefore decided to slightly adapt the way the random walk is
performed in Sambridge (1999b). Instead of using the proposed rejection rule
(Press et al., 1992) and a uniform prior distribution, we implemented the Met-
ropolis rule suggested by Mosegaard & Tarantola (1995) to draw deviates from
an arbitrary prior distribution. Hereafter, the random step mi → mj accord-
ing to the a-priori probability ρm, is modified with an acceptance rule. For ex-
ample, the random walk may start at the location of maximum prior probability
mi,max.prior, then the transition i → j to the proposed location is only accep-
ted if the condition L (mi) 6 L

(
mj
)

is achieved for the likelihoods L (mi) at the
current and L

(
mj
)

at the proposed location. Alternatively, if L (mi) > L
(
mj
)
,

the proposed step is accepted with the probability L(mj)/L(mi). The proposed
step will always be accepted for a uniform likelihood. In this case, the resulting
distribution is equal to the prior probability distribution.

Geodynamic forward modelling

Governing equations

On a geological time-scale, the deformation of rocks can be approximated with
Stokes flow and a nonlinear rheology. The governing equations

ρcp

(
∂T

∂t
+ vi

∂T

∂xi

)
=

∂

∂xi

(
k
∂T

∂xi

)
+Hr (3.8)

∂P

∂xi
−
∂τij

∂xj
= ρgi (3.9)

∂vi
∂xi

= 0 (3.10)

form a coupled system and describe the conservation of energy, momentum
and mass for incompressible fluids, where the Boussinesq approximation is
employed.

The conservation equation of energy assembles with a convective term de-
pending on density ρ, temperature T , the heat capacity cp, as well as the spatial
coordinates xi, velocities vi, and a time component t. The right hand side in-
dicates a conduction term with the conductivity k and a source term due to
radioactive Hr heating.

Focussing on the momentum equation (eq. 3.9), gi and ρ denote a gravity
component and density respectively. τij is the deviatoric stress tensor related to
the stress tensor σij as τij = σij + P, where the pressure is defined as P = −σii3 .

The system is of equations (eq. 3.8-3.10) is coupled with a constitutive rela-
tionship that relates the deviatoric stress tensor τij with the strainrate tensor

ε̇ij = ε̇
viscous
ij + ε̇plasticij =

1

2µeff
τij + λ̇

∂Q

∂σij
. (3.11)
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The strainrate tensor is a function of velocities ε̇ij = 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
and

describes the viscous (ε̇viscousij ) and plastic (ε̇plasticij ) deformation behaviour
of the continuum. µeff, the effective viscosity indicates a viscous, strainrate-
dependent power-law rheology. The latter term in eq. (3.11) describes the influ-
ence of plasticity with the plastic flow potential Q and the plastic multiplier
λ̇ (Moresi et al., 2007; Popov & Sobolev, 2008; Kaus, 2010). A more detailed
description of the viscous and plastic deformation behaviour is given below.

Numerics

To perform geodynamic forward models, we employ a finite element based
Stokes code (MVEP2, a further development of MILAMIN_VEP, e.g. Kaus, 2010;
Thielmann & Kaus, 2012), which employs the efficient MATLAB based finite
element library MILAMIN to speed up the matrix assembly (Dabrowski et al.,
2008).

The code includes several quadrilateral and triangular elements types (Kaus,
2010). Here we employ a Q1P0 element with a constant shape function for
pressure and bilinear (4-nodes) shape functions for velocities. The argument
of not using an higher order element type with larger accuracy (e.g. Q2P−1) is
the massive trade-off between accuracy and computational requirements, as we
will compute 105 − 106 forward models with rather small time steps.

MVEP2 is employed in an arbitrary Lagrangian-Eulerian manner, where the
mesh undergoes remeshing after every time step. The material properties are
tracked with markers, which are used to transfer the properties from the old to
the deformed mesh (Thielmann & Kaus, 2012). To avoid numerical instabil-
ities, the effective viscosity is limited by an upper and lower threshold of
1018 Pa s 6 µeff 6 1025 Pa s. Other instabilities can result from a free surface
that is implemented as a self-consistent stress-free boundary. Nonetheless, mod-
elling the free surface of the Earth is of major importance as in this study, model
surface signals (topography ad surface velocities) are directly compared with
observations. Moreover it is known from benchmarks that a free surface influ-
ences the slab dynamics (Schmeling et al., 2008). We therefore employ a free-
surface stabilization algorithm (FSSA) that allows us to take larger time steps
than in normal free surface models (Kaus et al., 2010).

Although the FSSA is employed, large surface velocities can occur due to the
automatised parameter setting with the direct-search method. This eventually
results in density and viscosity distributions, which cause an isostatic imbal-
ance in the model and consequently triggers a period of isostatic compensation.
As this a model-dependent effect, we are required to separate this motion from
the motion resulting from dynamic effects, which is the model result we want
to compared with observations. We found an empirical criterion based on the
dynamic model topography to determine the end of the isostatic compensation
to which we refer to as stopping criterion. A detailed description is given in the
appendix, section E.
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Rheology implementation

Dislocation creep

To describe the effective viscosity, we implement a dislocation creep viscosity,
which is an exponential power law relationship:

µeff = µ0 ·
(
ε̇II
ε0

)(1/n−1)

· exp
(
E+ P · V
n · R · T

)
. (3.12)

The exponential function is both temperature and pressure-dependent, where
the influence of temperature and pressure by itself is adjusted by the activation
energy E and activation volume V respectively. The power-law behaviour of µeff

is additionally controlled by a power-law exponent n, which also controls the
dependency on the second invariant of the strain rate tensor ε̇II that is scaled
with the reference strain rate of the model ε0. The entire expression is linearly
adjusted with a constant pre-factor µ0. For us, µ0 is the effective viscosity at a
reference strain rate ε̇0 = 10−15 s−1.

In many cases (eq. 3.12) is formulated differently. Here, we construct (eq. 3.12)
from a parameterised relationship sometimes referred to as flow-law, where AD
is a material constant and independent of stress and grain size (see e.g. Gerya,
2009):

γ̇ = AD · σnd · exp
(
E+ P · V
R · T

)
, (3.13)

γ̇ =

 2√
3
ε̇II (uni-axial compression)

2ε̇II (simple shear)
(3.14)

σd =


√
3σII (uni-axial compression)

2σII (simple shear).
(3.15)

Substituting (eq. 3.14) into (eq. 3.13) and solving for the effective viscosity µeff =
σII
2ε̇II

gives

µ0 = F2 ·A
−1/n
D · (ε̇0)(1/n−1) , (3.16)

F2 =

 1
2(n−1)n 3(n+1)/2n

(uni-axial compression)
1

2(2n−1)/n
(simple shear).

(3.17)

In order to understand over which ranges these parameters vary, we compiled
a non-comprehensive summary of viscous power-law creep parameter that are
commonly used in geodynamic modelling (Fig. 3.1). Many of these paramet-
ers are taken from studies that described the corresponding laboratory experi-
ments, whereas others are frequently employed values in geodynamic model-
ling studies. We notice that the parameters are distributed over a wide range,
which we use to define upper and lower bounds for each of the inversion para-
meters.
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Figure 3.1: Power-law dislocation creep viscosity parameters: A (incomplete) literature
review of what is regularly used in geodynamic modelling (e.g. Ranalli,
1995; Hirth & Kohlstedt, 2003; Burg & Schmalholz, 2008; Schmalholz et al.,
2009). The variation of the parameters is the underlying basis of our inver-
sion parameter bounds and the prior assumptions.

Drucker-Prager plasticity

Brittle or plastic deformation in MVEP2 is a Drucker-Prager model implemen-
ted after Vermeer & De Borst (1984) as follows (Kaus, 2010):

F = τ∗ − σ∗ sin (φ) −C cos (φ) (3.18)

Q = τ∗ (3.19)

with φ and C being friction angle and cohesion respectively, σ∗ = −
(σxx+σzz)

2

and τ∗ =

√
0.25 (σxx − σzz)

2 − σ2xz denoting the radius of the Mohr circle. In
this, we assume a zero dilation angle which thus results in a non-associated
and pressure-dependent plasticity model for friction angles larger than zero. In
general, plasticity only occurs for stresses higher than the yield stress, which is
defined with the conditions λ̇ > 0, F 6 0, λ̇F = 0.

Temperature-dependent density

The density in (eq. 3.9) is implemented as temperature-dependent density

ρ(T) = ρ0 (1−α (T − T0)) , (3.20)

where α denotes the thermal expansion coefficient. ρ0 and T0 are the refer-
ence values of density and temperature respectively. We note that realistic rock
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densities vary as a function of pressure, temperature and composition, and can
be computed for real rock compositions through Gibbs-energy minimisation
(Kaus et al., 2005). For reasons of simplicity we ignore this here, but in future
studies this could be taken into account (even as an inversion parameter).

Gravity forward modelling

Similar to our synthetic 3D application in Baumann et al. (2014), we solve the
gravity forward problem in an explicit manner as a summation of the gravit-
ational contributions of all discrete control volumes within the computational
domain. The gravitational contributions can be computed numerically using
Gaussian quadrature rules, or analytically, which is more precise and to be pre-
ferred if the computational costs are not prohibitive. As we deal with Q1P0
elements, we have to integrate over a possibly distorted quadrilateral element
volume, which is a four sided polygon in 2D space that can be solved analytic-
ally. We implemented the solution suggested by Won & Bevis (1987).

To focus the sensitivity of the gravity field on heterogeneities within the crust
and lithosphere, one typically considers the Bouguer anomaly, as it is not correl-
ated with short wavelength topography such as the free-air anomaly. Instead, it
is dominated by the long wavelength signal of the crustal root of the mountain
range (e.g. Blakely, 1996). The Bouguer anomaly reflects the density differences
with respect to a reference model (e.g. Ebbing et al., 2001). Typically the ref-
erence model is laterally homogeneous and is subtracted from the absolute
densities stored in the finite element mesh. In the application part of this pa-
per (section 3.4), we use the PREM model (Dziewonski & Anderson, 1981) as
a reference, but replace the upper-most density with 2670 kg/m3 as this is the
density that is typically used to perform topographic corrections (e.g. Blakely,
1996). For finite sized models, the gravity signal is overlain by the artificial long-
wavelength signal of the computational domain, which is sometimes referred
to as edge effect (Ebbing et al., 2001). This effect is largely reduced when re-
lative densities (Bouguer anomaly) are used. It can further be attenuated by
padding additional largely scaled elements to the sides of the domain (Fullea
et al., 2009). As the grid of our model is refined towards the center, we extend
the model with about 50 copies of the largest elements at the boundaries. In
addition, the densities in these elements are gradually decreased towards zero,
which helps to smooth out the effect of the box-domain.

synthetic tests : intra-oceanic subduction

To test whether the described approach is applicable for complex rheologies,
we start with conducting a synthetic study. Thus, we extract a reference model
from a geodynamic forward evolution simulation of intra-oceanic subduction
and compute a set of synthetic observations. Under the assumption that we
know the model geometry, we perform two geodynamic inversions to recon-
struct the effective rheology of the reference model from the surface observa-
tions. To test the effect of temperature on the inversion results, we conduct a
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first inversion with the full knowledge of the temperature field and perform a
second inversion, where the unknown temperature field is parameterised with
two half-space cooling profiles.

Reference model and uncertainties

The reference model is created from a snapshot of the subduction evolution
arbitrarily chosen at approximately 8.6Myrs (see Fig. 3.2 and 3.16). Additional
information of the subduction simulation such as initial conditions and numer-
ical model parameters are provided in appendix F. Fig. 3.2 A shows the ‘known’
model geometry which is composed of a mantle, mantle lithosphere, a serpent-
inized harzburgite layer and an oceanic crust. The subduction channel, which
was treated as a separate phase during the forward model is now merged with
the subducting oceanic crust. Each of the geological units is associated to a par-
ticular set of rheology model parameters that are listed in Table 3.1, which can
be seen as the ‘true’ model parameters that we are trying to constrain with the
inversion. We use the evolved model geometry and temperature field of that
time step as a synthetic ‘present-day’ situation and compute a set of surface
expressions, i.e. the topography, the Bouguer anomaly and the velocity field
in vertical and horizontal direction respectively. The data signals are filtered
with a second order, zero-phase low-pass filter of λ = 30 km and we refer to
these data as synthetic observations. Later on, during the direct-search process,
we also apply the same filter to the model data. The filtering is necessary to
avoid spikes, mainly in the velocity fields, that are caused by local, short-term,
localized plastic zones. In addition to the synthetic observations, we need reas-
onable uncertainties in our synthetic data in order to compute the covariance
matrix CD. One possibility to achieve this, is to compute a certain number of
model realisations, but with noisy input parameters (e.g. Afonso et al., 2013b).
We perform 300 realisations of the reference model. The noise, which is added
to the input parameters, is assumed to be Gaussian and is defined by stand-
ard deviations that correspond to 10% of the parameter ranges configured for
the synthetic inversions (Table 3.2). We furthermore compute the variances of
the model surface observations and determine their average. For simplicity, we
neglect any correlations within the data and only consider the variances, i.e. the
trace of the covariance matrix. To reduce the effect of the model boundaries on
the inversion, we limit our synthetic surveys to ‖x‖ . ±520 km.

Geodynamic inversion with known temperature

As the temperature distribution of subduction zones is usually only poorly con-
strained, it would ideally be required to model the full evolution of the temper-
ature within the subducting slab (e.g. Sobolev et al., 2006). Another possibility
is to infer temperature from seismic velocities (e.g. Sobolev & Babeyko, 1994).
However, in this section, we want to exclude the effect of an unknown temperat-
ure on the inversion results, and we assume a known temperature distribution
in addition to the known geometry, which is thus an idealised ‘best-case’ scen-
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Figure 3.2: A snapshot of intra-oceanic subduction, which serves as a ‘present-day’ ref-
erence model. a) The geometry prior information of the synthetic inversions.
In the case of an inversion with unknown temperature (section 3.3.3), a
half-space cooling model is assumed to parameterise the temperature field
within the lithosphere. For the subducted part of the lithosphere, we discret-
ised the Benioff-zone, and define z within the half-space cooling equation
(eq. 3.26) as the distance to the closest point on the surface, which is either
the Benioff-zone or the sea floor. b) The effective viscosity structure of the
reference model used to compute the surface observation.

ario. Nevertheless, we aim to constrain 14 parameters of the reference model
that represent the nonlinear rheology (dislocation creep and plasticity) and the
density structure of the model (Table 3.1). Table 3.2 contains the parameter
ranges that are used during the direct-search. Labels show the parameter num-
ber and also indicate which parameters are representative for multiple phases.
For example, the overriding and the subducting crust share the same inversion
parameters except of the friction angle and the cohesion parameter.

The technical details of this inversion are summarised in Table 3.3. About
120’000 forward models were initially sampled on a regular grid with 50 grid
points along each parameter axis. The main sampling, performed with NAplus
and the number of CPU used for this inversion was mainly driven by the char-
acteristics of the computational hardware. As one computational node on the
cluster we used had 64 CPUs, a computation with a multiple of 64 is preferred
over other CPU configurations. Due to the run time limitation of 5 hours, the
direct-search process was separated into several parts, for which the resampling
parameter could be adapted to the current sampling results. Fig. 3.3 illustrates
the direct-search results for a particular parameter combination. Each point
represents one forward model, where their color represents the misfit (eq. 3.6).
Here, the models are plotted for the pre-factor of the viscosity power-law (eq.
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Sampling Resampling parameter Cumulative number of
models

Number of processors

Initial – 120571 1024

Main 1200 162201 768

Main 900 247107 768

Main 600 341859 768

Main 300 726445 768

Table 3.3: Numerical parameters and technical details of the direct-search part of the
inversion. Values are referred to the geodynamic inversion with full temperat-
ure knowledge (14 dimensions, section 3.3.2). The direct-search is separated
into several parts, because of the wall time limits of the cluster we used (5
hrs). The resampling parameter was adapted after visual inspection of the
sampling distribution.

3.13) of the crust and the respective activation energy. For visualisation pur-
poses, the models are sorted and plotted according to their misfit value, with
models with a low misfit on top of the distribution. Two local minima for this
parameter combination are detected by the direct-search. The one associated
with a smaller pre-factor correlates with the reference model that is indicated
with the black marker. The direct-search results with NAplus (Fig. 3.3) can only
provide a first visual impression of the misfit function. As discussed in sec-
tions 3.2.1.1 and 3.2.1.2, we want to determine the posterior distribution of the
model parameters, which is achieved with the appraisal technique in a Markov
Chain Monte Carlo manner after Sambridge (1999b). Our priors are defined to
be Gaussian, centred at the midpoints of the parameter ranges given in Table
3.2. The standard deviation are adapted to 75 % of the parameter ranges to
give models closer to the centre a slightly higher priority. The appraisal was
performed on 128 CPUs, with 508 independent random walks and 2000 steps
each, where 1000 steps were assigned for the burn-in phases, such that 508000

random steps were realised in total.
An example is given in Fig. 3.4. In A, we show the 1D marginal distribu-

tions of the cohesion of the subducting crust (C (sc)) in combination with the
power-law exponent of the mantle lithosphere (n (ml/um)). The joint distribu-
tion forms a 2D marginal distribution, which is illustrated in terms of samples
per bin (with 200 bins per parameter axis). A sample denotes one random step
after the burn-in phase. We also show confidence intervals of 20, 40, 60, 80 and
95% respectively. They are constructed in the following manner. All bins are
sorted according to the related number of samples, then we compute the cumu-
lative sum of samples for each bin and normalise it with the total number of
samples.

In the context of n (ml/um), we observe a single maximum of the posterior
pdf unlike the two local extrema of the scatter plot example of Fig. 3.3. Also
the other parameter (C (sc)) shows a single maximum, but its peak is wider.
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Figure 3.3: Direct-search results for the case of full temperature knowledge (section
3.3.2). Each point represents one forward model, the color indicates the
misfit of the models respectively. The models are plotted for two viscosity
parameters of the upper and lower crust, the power law pre factor and
the activation energy. We observe two local minima, where the one with a
smaller pre-factor correlates with the true solution that is denoted with the
black marker.

Obviously, the impact of n (ml/um) on the dynamics is more significant, which
causes the parameter to be better constrained. However, both parameters fit
the true solution well. The other example (Fig. 3.4b) illustrates the marginal
posterior distribution of the activation energy of the crust (E (c)) and friction
angle of the subducting crust (φ (sc)). Although a minor local maximum exist
at E ≈ 150kJ/mol and φ ≈ 12◦, it shows a clear single global maximum of the
posterior that correlates well with the reference model. Both model parameters
thus seem to play an important role in the dynamics and only show minor trade-
offs. An activation energy of the crust (E (c)) that is larger than 300 kJ/mol is
clearly preferred, which indicates that the crust needs to have a certain strength
in order to reproduce the surface observations. The same applies to the friction
angle, which needs to be sufficiently small to prevent the subducting crust from
locking and hence buckling.

A representation of the entire parameter space of this kind is provided in Fig.
3.18 of appendix section H. It can be seen that most of the marginal distribu-
tions of non-viscosity parameters are very closely correlated with the reference
model. On the other hand, there are a few viscosity parameters that show trade-
offs. For these parameters, the maximum posterior probability does not always
correlate with the reference model, but show a certain offset. However, we want
to stress that the reference model is in most cases related to the trade-offs and
that the effective viscosity that results from these parameter combinations along
the trade-offs can be rather similar. We will describe the effective viscosity struc-
ture resulting from this geodynamic inversion in section 3.3.4.
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Figure 3.4: 1D and 2D marginal distributions of the posterior probability for two para-
meter combinations. We used 508 random walks with 2000 steps each
(508000 MCMC samples) to determine the posterior. The 2D marginal dis-
tributions are illustrated in terms of samples per bin, which is denoted with
color. The black lines show the associated confidence intervals with a step-
width of 20% and the red markers indicate the true model values. a) This
is an example of the cohesion of the subducting crust and the power-law
exponent of the mantle lithosphere/upper mantle. Here, as opposed to the
scatter plot of Fig. 3.3, we find a global maximum, where the true model is
associated with a location within the 20 % confidence area. We can also see
that n (ml/um) has a higher sensitivity. b) In this case the friction angle of
the subducting crust is plotted against the activation energy of the crust. We
have a clear maximum, which is also well correlated with the true solution.
An overview of all marginal distributions of the posterior is provided in the
appendix section H.

Geodynamic inversion with estimated temperature

In order to estimate the temperature distribution within the lithosphere we
have various methods from mineralogy, seismology (i.e. vp/vs ratios) and heat
flow measurements. These constraints are either sparse (mineralogy), ambigu-
ous (seismology), or, can vary dramatically due to local conditions (heat flow),
which is why a precise temperature distribution within the lithosphere is usu-
ally not known. As we deal with a oceanic intra oceanic subduction scenario,
a reasonable description of the temperature field is the analytical half-space
cooling model (eq. 3.26, Turcotte & Schubert, 2002), which was also used to
create an initial temperature field for the evolution modelling (see appendix F).
If we have a constant (known) thermal diffusivity and a nearly-constant mantle
temperature, we have only one free parameter, the lithospheric age, that con-
trols the temperature, which only depends on the depth. However, as the litho-
sphere is laterally not homogeneous, we define the depth as the lot-distance
(normal-distance) to the closest surface. This is either the sea floor, or the slab
surface, which approximately coincides with the Benioff-zone (see Fig. 3.2a).
This approximation of course lacks generality, but we will demonstrate that
it is first order accurate. Towards the nose of the subducting slab the error of
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Sampling Resampling parameter Cumulative number of
models

Number of processors

Initial – 120038 1600

Main 1200 209565 768

Main 900 311861 768

Main 600 554690 768

Main 300 820816 768

Table 3.4: Direct-search parameters of direct search with synthetic model of paramet-
erised temperature structure (16 inversion parameters).

this temperature approximation increases as heat conduction took place during
the subduction process, which can not be taken into account accurately. Also
towards the surface of the slab the error of the approximation increases, as it
is difficult to determine the exact location of the slab surface. With the litho-
spheric ages of the overriding part (left) and the subducting part (right) of the
model, we increase the parameter space by two dimensions and perform an
inversion with 16 parameters indicated in Table 3.2. Consequently, we need
more forward models to sample the additional space. Table 3.4 summarises the
technical parameters, but the procedure of the direct-search and the appraisal
procedure is analogue to what was described in the previous section. Fig. 3.5 il-
lustrates the same parameter combinations as described for the case of full tem-
perature knowledge. We observe that the relative importance of the parameters
controlling the plasticity increased at the expense of the parameters controlling
the power-law viscosity. In particular the friction angle of the subducting crust
is now much better constrained, but also the cohesion shows a clear maximum,
which seems to be a clear effect of the less constrained temperature distribution.
We observe similar trends for other parameter combinations (see appendix H,
Fig. 3.19). Furthermore, we observe more extended trade-offs as in the previ-
ous case and that the correlations with the reference model parameters are less
pronounced. For both examples shown here, the true solution is, however, still
within the 40 % confidence interval.

For a broader perspective, we also need to consider the two additional tem-
perature parameters that are shown in Fig. 3.6. The colorscale for all examples
is the same, such that we can directly see that their relative importance is large
compared to other viscosity parameters and approximately equally important
as the friction angle. The lithospheric age of the left part of the model (over-
riding plate) is very well constrained. This is not surprising, as the overriding
lithosphere is not very much deformed. On the other hand, the posterior of
the lithospheric age of the subducting part of the model shows a clear trend
towards the lower parameter boundary - a younger age is preferred in general.
This implies that the lithosphere would be warmer, which causes an adjustment
of other viscosity parameters and explains why the reference values do not fit
as well as in the previous case. In addition, it also correlates with the plate age
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Figure 3.5: Inversion results of the intra-oceanic subduction model with parameterised
temperature. Marginals of the posterior are given for the same parameter
combinations as in Fig. 3.4. Plasticity parameters become more important
and get, relatively seen, better constraint. a) The true solution does not cor-
relate with the maximum pdf, but is correlated with the trade-off and the 40

% confidence interval. b) The friction angle is now much better constrained
as it is apparently more relevant for reproducing similar surface observa-
tions. Nevertheless, the subducting crust still needs be to sufficiently strong.
The posterior for all other parameter combinations is shown in appendix H,
Fig. 3.19.

of the overriding lithosphere. We see that as the subducting plate gets younger
(warmer), the overriding plate is required to be younger as well. The younger
plate age of the subducting lithosphere is caused by our crude approximation
of the lithospheric temperature. For example, lateral temperature changes along
the slab surface are not incorporated. At this point we want to emphasis that it
is not our aim to prescribe a very precise temperature model, we rather want
to estimate the influence of a first order accurate temperature approximation,
because in many real world scenarios precise information on temperature is
simply not available. To summarise the observations, we can state that the in-
accuracies of the temperature within the subducting slab cause an adjustment
of other parameters. We will demonstrate with the following analysis that this
is mainly an compensation effect, which results in very similar structures of
effective viscosity.

Summary of synthetic geodynamic inversion results

Although many model parameters are involved in describing the rheology,
most of them directly influence the effective viscosity structure in one way
or the other (eq. 3.13). Thus, many very similar viscosity structures, construc-
ted from different parameters, can coexist and explain the geodynamic surface
observations approximately equally well. In order to identify major ‘stable’ fea-
tures, but also the uncertainties of the effective viscosity structure, we determ-
ine arithmetically averaged viscosity structures and their standard deviations,
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Figure 3.6: Marginals of the posteriors controlling the temperature parameterisation of
the model (section 3.3.3). The lithospheric ages of the reference model are
denoted with red lines and the marker. Referring to the posterior, younger
lithospheric ages are preferred. However, a trade-off exist, which correlates
with the true solution. Younger ages are related with lower temperatures,
which results in higher viscosities.

resulting from inverted parameters in a weighted manner. We also directly com-
pare the results of the two synthetic inversions, to better understand the resolv-
ing power of the inversion approach. The averaging is performed in the follow-
ing manner. First, we identify forward models and their associated Voronoi cells
(‘nearest neighbour’ regions in which the particular model is the closest model
in the parameter space) that contain samples of the resampling with the MCMC
appraisal approach (Sambridge, 1999b). In other words, these are the forward
models that came in touch with one of the random walks. Many of the Voronoi
cells will never be affected by the random walks because of the low associated
likelihood, and for a growing dimension of the parameter space, the number of
Voronoi cells that were ‘visited’ by at least one of the random walks decreases.
However, we can come up with a ranking of the Voronoi cells that were ‘visited’
and with how many steps (samples) of the random walks they are associated.
These values are used to weight the viscosity structures that are associated with
the Voronoi cells respectively, and to compute their arithmetic average. In a sim-
ilar manner, we compute the weighted standard deviations. The result is shown
in Fig. 3.7. The top row shows the weighted arithmetic averages µ̄eff of the ef-
fective viscosity for the cases with and without temperature information. Below,
we estimate the uncertainty limits by plotting the average effective viscosity
with two times the standard deviation (µ̄eff ± 2σµeff). We gain further insights
by computing the residual viscosity structures, which are shown in the bottom
row, which are the differences with the true model. The reference structure is
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Figure 3.7: Comparison of the final inversion results. Arithmetically averaged viscos-
ity structures for both synthetic inversions described in the text (sections
3.3.2 and 3.3.3). The averaging is a weighted averaging according to the
posteriors probabilities. The residuals are computed as the difference of the
weighted average viscosity and effective viscosity structure of the reference
model (Fig. 3.2b).

given in Fig. 3.2b. The most striking similarity between the results is the effect-
ive viscosity of the crust. This is a very stable feature that is consistent within
the uncertainty limits. Even the small plastically weakened zones at x ≈ 20 km
(overriding plate) and x ≈ 150 km (subducting plate) are consistently present in
both results. Moreover, the former subduction channel subduction (now regular
subducting crust), to which a particular friction angle is attributed, consistently
shows a low effective viscosity. This can be explained by the fact that this is
one of the main requirements to reproduce the horizontal velocity field. If the
friction angle would be too high, the model would lock and folding would take
place and the topography would be deformed accordingly. The most obvious
mismatch is recognisable at the nose of the subduction slab, where the estim-
ated effective viscosity is consistently higher

(
log10 (∆µeff) > 3 log10 (Pa s)

)
in

both cases. Other areas of obvious mismatch are the boundary between geolo-
gical units, such as the Moho or the Benioff zone. All of the named regions are
often correlated with higher strain rates, which also goes into the equation of
effective viscosity, which can explain the larger uncertainties in those areas. In
the lithosphere, similarities occur in terms of a consistent power-law behaviour,
which is also present for the upper uncertainty limits. However, the model with
parameterised temperature does not show this feature at the lower uncertainty
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limit, which is confirmed by the residual plot. The effective viscosity of the
subducting slab is underestimated, but this seems to be not only an effect of
the inaccurate temperature approximation as the model with full temperature
knowledge shows a similar trend towards too low viscosities. Another incon-
sistency is the viscosity towards the nose of the slab, which is overestimated.
This is a clear effect of the inaccuracy of the temperature approximation.

To obtain an impression of the match of the model data with the synthetic
observations, we compare the ±2σ variations of the model data selected by the
MCMC appraisal with the reference data in Fig. 3.8. The MCMC walk selected
6992 and 4022 models regarding the inversion with and without full temperat-
ure knowledge respectively. The variation in the model data (gray band with
dashed boundaries) is plotted as µarithm± 2σ. The selected models show a good
fit and have only very small variations with regard to topography and Bouguer
anomaly, but much larger variations in terms of velocities. Whereas the hori-
zontal velocities are well-fitted at the left and right side of the signal, they have
larger variations towards the convergence zone even though the reference sig-
nal still overlaps with the ±2σ interval. The majority of the selected models is,
however, associated with larger velocities of the subducting slab close to the
convergence zone (x ≈ 100km). Probably this is also reflected in the effective
viscosity, as the viscosity of the upper crust is, on average, slightly larger and
slightly lower for the weak channel. This is less clear in the parameterised tem-
perature inversion. Here, the vertical velocity has the largest variation and is
not limited to the region around the conversion zone, but rather more equally
distributed over the profile, which probably reflects bending effects of the litho-
sphere. This can be caused by multiple reasons. Most likely, a high friction
angle in the subduction channel is involved in many cases. The largest vari-
ations are observed towards the convergent margin. Here, the observation is
not fully reflected by the variation of the selected model data for the case with
parameterised temperature. As the vertical velocity has the largest uncertain-
ties, it is possible that the selected models do not reflect the entire interval of
variation at this part of the profile.

real case scenario : india-asia collision

In this section we apply the inverse approach to the India-Asia continental
collision. The collision of the Indian and Asian continent resulted in the highest
mountains on Earth (Molnar & Tapponnier, 1975; Fielding et al., 1994; Hatzfeld
& Molnar, 2010), which is one of the reasons that the Himalayas and the Tibetan
plateau are scientifically interesting. Particularly dense GPS-velocity data are
available (e.g. Zhang et al., 2004; Gan et al., 2007; Liang et al., 2013; Zubovich
et al., 2010) that show a high convergence rate of India of up to 40− 55mm/yr
(DeMets et al., 1990). Despite the fact that there are many observations, the
rheology and the temperature distribution within the collision zone are heavily
disputed, with some claiming that the Indian mantle lithosphere has a low
effective viscosity (e.g., Jackson, 2002), whereas others suggest that the viscosity
is large (e.g., Burov, 2007; Watts, 2001). These questions are closely related to
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Figure 3.8: Representation of model and reference data for both synthetic inversions
respectively (section 3.3.2 and 3.3.3). The reference data in red is low-pass
filtered. The same filter was applied to the model data, its variation is il-
lustrated in terms of the 95% confidence interval (µarithm± 2σ). To compute
the interval, only models selected by the MCMC-appraisal are taken into
account. The collection consists of 6992 and 4022 models for the cases with
and without full temperature knowledge.

the question about the manner and mechanisms by which the Indian crust and
lithosphere underthrusts Tibet and how this results in the development of a
mountain-belt and high elevation continental plateau.

To obtain additional insights in this question, we here apply our new inver-
sion method to a cross-section through the collision zone as indicated in Fig. 3.9.
Along this cross-section, we combine the results from several nearby regional
geophysical studies to create a model setup (shown in Fig. 3.10). The location
and orientation of our profile are chosen to match and combine the informa-
tion of profiles from other studies and was partly inspired by the structural
interpretation of Klemperer et al. (2013). The 3401 km long cross section with
a strike of 35◦ is centred at 79.05◦ E/33.28◦N on the Karakorum fault (KKF),
which is thought to be one of the possible separators of Indian and Asian crust
in the western Himalayas (Klemperer et al., 2013; Nabelek et al., 2009).
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Figure 3.9: Geographic configuration of the 2D model geometry described in sec-
tion 3.4.1. The cross-section is 3401 km long, and intersects with the In-
dian shield, the Himalayas, the Tibetan plateau and the Tarim basin in a
SW-NE (strike: 35◦) orientation, approximately perpendicular to the Main
Boundary Thrust (MBT). The profile is centred at the Karakorum fault at
79.05◦ E/33.28◦N as a cross section through the Himalaya the Tibetan plat-
eau. The profiles of studies that were used to construct the geometry are
marked with same colors as in Fig. 3.10. The underlying map projection
is a conic projection with the origin at 80◦ E/31◦N and the two standard
parallels at 23◦N and 40◦N.

Model geometry

Our model geometry is based on various sources. As a coarse crustal model
geometry, we take the global crustal model CRUST 1.0 (Laske et al., 2013),
which we refine with regional receiver function studies (Fig. 3.9 & 3.10). Rai
et al. (2006) determined the Moho location, in a profile that is approximately
parallel to ours with an average lateral offset of about 200 km, which is why we
consider their Moho signal as a strong constraint for our model geometry. After
projecting their Moho signal to our profile, we aligned their interpretation at
the Main Frontal Thrust (MFT). We also project and align the results of Cald-
well et al. (2013) on our profile, who focused on localising the main Himalayan
Thrust (MHT). In comparison with the data of Rai et al. (2006) we interpret their
Moho signal as the upper crust/lower crust interface. To further estimate the



3.4 real case scenario : india-asia collision 77

Figure 3.10: Our interpreted cross section of the profile in Fig. 3.9, used as a model geo-
metry for the forward simulations. The structure of the Indian and Asian
lithosphere is based on the recent S-wave tomography model (SL2013sv)
by Schaeffer & Lebedev (2013). The crustal structures and interfaces
are interpreted from projected profiles of several receiver function stud-
ies. The respective profiles are indicated with same the colors as in the
mapview perspective of Fig. 3.9. Additional crustal geometry is inferred
from CRUST 1.0 (Laske et al., 2013). Focal mechanisms of the CMT cata-
logue (1976–2014 Dziewoński et al., 1981; Ekström et al., 2012) with a max-
imum perpendicular displacement of ±100 km with respect to the profile,
were used to construct the weak zone of the model.

location of the MHT, we use the focal mechanisms of the CMT catalogue (1976–
2014 Dziewoński et al., 1981; Ekström et al., 2012). The MHT is constructed
as a wide plastic weak zone that incorporates the MFT, MBT and MCT (Main
Boundary and Central Thrust) due to resolution limitations of our model. We
further extend the weak zone through the entire upper crust up to the KKF and
treat it as a thin crustal layer on top of the Indian lithosphere that has different
plastic parameters than the surrounding units, consistent with it being a heav-
ily deformed mylonitic shear zone. Towards the northern end of the profile we
use the interpretations of Wittlinger et al. (2004). As the MFT, the KKF and the
Altyn Tagh (ATF) fault diverge towards East, we align their Moho and upper
crust/lower crust boundary with the location of the ATF on our profile. Zhao
et al. (2010) provide an additional constraint of the Moho in that region, but
with a profile to the east of ours. The projected Moho horizon correlates well
with the results of Wittlinger et al. (2004). To construct the LAB of the Indian
and Asian continents, we based our interpretations mainly on the S-wave tomo-
graphy model (SL2013sv) by Schaeffer & Lebedev (2013). The Indian shield is
clearly visible as a high velocity anomaly, which suggests a northern extend of
the Indian lithosphere up to the ATF. The vertical upper limit of the anomaly
also correlates well with deep earthquakes at 150 6 x 6 200km, which are
plotted with their focal mechanisms in Fig. 3.10. In addition, the LAB depth es-
timates by Zhao et al. (2010) are employed suggesting a depth of dLAB ≈ 150 km
under the Tarim basin and an offset of about 50 km to the Indian LAB at larger
depth. The distance between both profiles towards the southern end is admit-
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tedly large and it is known that the Indian lithosphere varies in depth and is
underthrusting Tibet in a shallower angle towards the western Himalayan syn-
tax (Zhao et al., 2010), which is why we do not employ their LAB interpretation
in that part of our profile.

Surface constraints

To estimate the likelihood function we compute the misfit against a set of four
different observations. In this section, we describe the details of the prepro-
cessing of these data. Fig. 3.11 shows the original, unfiltered data (blue), the
associated uncertainties (±2σ, black dashed lines) together with the processed
data (red), which are used to compare with the estimated model data. To min-
imise the effect of the model boundaries and the part of the model where we
impose the velocities, we limit the Bouguer anomaly and remaining observa-
tions to −500 km 6 x 6 750 km and −1000 km 6 x 6 900 km respectively. In
addition, we do not consider correlations between the data sets, and therefore
only the trace of the covariance matrix is non-zero.

Topography

The surface topography is probably the most accurate data that exists for the
region. We use ETOPO1 data (Amante & Eakins, 2009), which has a resolution
of 1 arc-minute. The data is filtered with a 4th order Butterworth low pass
filter and with a corner wave number of k = 1/100 km. The associated error is
estimated to be σtopo = 50m, based on the difference between the filtered and
unfiltered signal.

Gravity

For the gravity anomaly, we take the Bouguer anomaly as it is mostly correl-
ated with density differences between the crust and lithosphere and is less
sensitive to short-wavelength topographic effects. Therefore, the gravity model
EGM2008 (Pavlis et al., 2012) that provides the free-air anomaly is taken as
input data for the software FA2BOUG by Fullea et al. (2008) to compute the
Bouguer anomaly. The software is able to compute simplified Bouguer slab-
anomalies and terrain corrected Bouguer anomalies. As our region has strong
variations in topography, a simple Bouguer slab-correction is inaccurate and
a terrain correction with high resolution topography is required (e.g. Blakely,
1996). We use the lower resolution ETOPO1 (including water) and the high res-
olution topography shuttle radar data (SRTM data, Jarvis et al., 2008) as input
input for FA2BOUG. Both are provided for the entire map (Fig. 3.9). To correct
for topographic masses ρtopo = 2670 kg/m3 and ρwater = 1030, kg/m3 are used.
Moreover, the parameters Dri = 20m and Drd = 167m required for a proper
terrain correction are chosen as suggested by Fullea et al. (2008). Similar to the
topography pre-processing, we lowpass-filter the resulting 2D Bouguer anom-
aly with a 4th order low pass filter. As we are not able to resolve crustal details
we take a lower corner wave number of k = 1/200 km. The standard deviation is
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Figure 3.11: Surface constraints and uncertainties used for the geodynamic inversion
described in section 3.4. Blue signals show the extracted or interpolated
data. Red signals denote the filtered data, which we employ in the inver-
sions. The uncertainties are illustrated as black dashed lines. In case of
the Bouguer anomaly and topography, the uncertainties are estimated as
constant standard deviations. The velocity uncertainties are in accordance
with the measurements. Vertical dashed lines mark the part of the gravity
profile that is taken into account (−500 km 6 x 6 750 km). For the remain-
ing signals, we choose the following limits: −1000 km 6 x 6 900 km. Due
to the limited extend of the model, the horizontal velocity is normalised
with the magnitude at the northern end of the profile (x = 1600 km).

estimated in the same manner, based on the difference of filtered and unfiltered
signal and is σboug = 15mGal.

3D surface velocities

The surface velocity data that we use is a combined data set of several GPS
measurement campaigns. The horizontal data are provided by several authors
(Zhang et al., 2004; Gan et al., 2007; Liang et al., 2013) whereas the vertical
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velocity data of Fig. 3.11 is only provided by Liang et al. (2013). For the pro-
cessing, we separated the velocity data into two parts, an Indian and an Asian
dataset, which are separated by the MBT, which is also prescribed in the model
geometry. To geographically divide the data set, we used the MBT geometry
provided by the fault data base of Styron et al. (2010). For each part, we con-
struct a triangulation of the irregularly located measurements and interpolate
the data on the regularly spaced profile using a natural and nearest neigh-
bour interpolation from which we extract the three components of the velocity
field (east, north, vertical) along the profile. The horizontal components are
then projected on a Cartesian reference frame (vx, vy) from which we compute
the component in profile direction (vh), where positive values correspond to
northwards directed velocities. The associated errors of the velocity field are
processed in the same manner. The velocity data is provided with respect to a
fixed Eurasian reference frame, but as our 2D model is limited in northern direc-
tion with a vertical free-slip boundary condition, we normalise the magnitude
of horizontal velocity to the northern end of the profile.

Model parametrisation

Numerics

The model domain, which is 3401 km wide and spread up to a depth of 660 km,
is discretised with 209× 69 Q1P0 elements. We use a no-stress (free-surface)
top boundary and free-slip boundaries at the sides and a no-slip boundary at
the bottom, which is justified by the 660km discontinuity, which serves as a
barrier for subducting slabs (e.g. Fukao et al., 2009; Ringwood, 1994; Tackley
et al., 1993). The energy boundary conditions are insulating at the sides and
isothermal at the top (20 ◦C) and bottom (T

660km = 1531 ◦C) of the domain.
The bottom temperature is based on an adiabatic temperature profile with a
potential mantle temperature of Tpot = 1300 ◦C and an adiabatic gradient of
γ = 0.35K/km. We employ an internal horizontal pushing boundary condition
in which we prescribe the horizontal velocity between x = −1600 km and x =

−1300 km and above a depth of 100 km.
For the inversion, to remain numerically feasible, we have to limit the number

of inversion parameters to no more than around 20. This implies that we cannot
leave all model parameters free, but have to combine several units into a single
one. Below, we discuss our choices. An overview of all inversion parameters
used here is given in Table 3.5.

Densities

The density model is temperature-dependent (eq. 3.20) and parametrised ac-
cording to the model geometry. Each unit is associated with a particular ρ0, but
the absolute density changes with temperature. In addition, we also refine the
density structure by adding three sub-regions in the model geometry. Hence,
the variation is attributed with three scalar factors. Below 20 km, the crustal
densities of (i) India and (ii) Asia are free to increase up to 25% and (iii) we also
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account for an additional density increase of up to 15 % due to eclogitisation
of the Indian crust north of the KKF. Eclogitisation as a mechanism to increase
the density of the Indian crust has been proposed by several authors to match
the gravity anomaly (Hetényi et al., 2007; Nabelek et al., 2009).

The entire density parametrisation is listed in Table 3.6. In order to test our
density model (11 parameters) we first perform a computationally cheaper
gravity-only inversion to find trade-offs between density model parameters. For
the joint geodynamic inversion, we then use these parameter relationship to re-
duce the number of free model parameters, as there is little point to run a full
mechanical inversion if the density structure does not fit the gravity field.

Rheology & plasticity

Viscosity and plasticity are parameterised with 13 and 3 parameters respect-
ively. The Indian crust and mantle lithosphere have the same power-law viscos-
ity pre-factor µ0(I) and effective friction coefficient φ(I). However, they differ
in terms of the viscous power-law exponent (n(Ic) and n(Iml)). Moreover, indi-
vidual activation energy values are given for each part, upper, lower crust and
mantle lithosphere. To enable the weak channel to behave differently than the
Indian crust, we add an individual effective friction angle for the channel. In
total, we use 8 parameters to describe the rheology of the Indian shield, and
we apply the same rule to parameterise the Asian crust and lithosphere (7 para-
meters). The rheology of the mantle is mostly prescribed with the values for
dry olivine found by Hirth & Kohlstedt (2003). We impose activation energy,
pre-factor and power-law exponent, but take the activation volume V(M) into
account as an inversion parameter as this might result in a significant viscosity
variations with depth.

Temperature

Viscosity has a strong, exponential dependence on temperature (eq. 3.12). An
accurate temperature model is therefore required in an ideal case. However,
the continental geotherms are usually only poorly constraint. Especially for
mountainous regions heatflow measurements can be highly inaccurate (Jaupart
& Mareschal, 2011). Using xenolith data, we at least have indirect methods to
quantify geotherms for various regions (Priestley et al., 2008).

For our model setup, we do not rely on direct temperature constraints but
rather use approximate geotherms for the Indian and Asian lithosphere part
of the model. The geotherms are constructed as step-wise linear approxima-
tions that are fully defined with two free parameters, that are used as inversion
parameters. A detailed description of our approximation can be found in ap-
pendix G. For this model, the geotherms are controlled by (i) the local depth
of the lithosphere asthenosphere boundary (LAB) and (ii) the temperature at
the boundary of upper and lower crust, to which we will refer to as interface
temperature.

Potentially, the LAB can be parameterised with certain degrees of freedom,
e.g. locally varying depths. We decided to prescribe the location of the LAB.
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However, due to the power-law character of the mantle lithosphere’s viscosity
and the related degrees of freedom, the strength of the lithosphere is sufficiently
parameterised.

In order to apply this temperature approximation, we have to make a few ad-
dition assumptions. We assume that the temperature within the upper mantle
only varies adiabatically with a known adiabatic temperature gradient of γadb =

0.35K/km, and that the potential temperature of the mantle Tpot.,mantle = 1300◦C.
Moreover, we assume a constant surface temperature of Tsurface = 20◦C.

The final temperature model has two variables that are modified during
the inversion process, which are the interface temperatures (Ti(I) and Ti(A))
at the upper crust lower crust boundary of India and Asia. It is expected
that the Indian shield is relatively cold compared to the Tibetan lower crust
and mantle lithosphere. We therefore allow its interface temperature to vary
between 300◦C 6 Ti(I) 6 600◦C. For the Asian part of the model, higher
crustal temperatures are expected due to the presence of local volcanism (e.g.
Kulun Volcanic Group), which is why we extend the upper limit in this case,
300◦C 6 Ti(A) 6 800◦C.

Inversion results

The inversion procedure is separated into two separate inversions, a gravity-
only inversion (11 parameters, see Table 3.6) to reduce the number of free
model parameters, and a full, joint geodynamic inversion (19 parameters, see
Table 3.5). For the latter, we use linear combinations of correlated parameters
that were found from the pure gravity inversion to describe the full paramet-
erisation. This two step procedure is justified, because the computation of a
gravity forward model is relatively cheap and only takes about 10% of the com-
putation time of a combined gravity-geodynamic forward model. In addition,
gravity data are potential field data, which is well-known to be non-unique. We
therefore expect parameter trade-offs, which would unnecessarily expand the
low misfit regions of the joint inversion.

Gravity-only inversion

We computed 621532 gravity forward models in the direct-search manner with
NAplus. The forward models performed for the gravity inversion are illustrated
with respect to two model parameters in Fig. 3.12, where the model misfit is
color coded. Linear correlations clearly exist between the Asian crustal interface
temperature Ti(A) and the density pre-factor ρ0(Aml).

Assuming linear correlations only, a principal component analysis can be ap-
plied to find the orientation of the correlation axes. This was done by computing
eigenvalues and eigenvectors for a subset of ‘best-fit’ model parameters respect-
ively (Fig. 3.13). We find that ρ0 of Asian lower crust and mantle lithosphere
are directly correlated with the temperature at the interface between upper and
lower crust (Ti(A)). Correlation also exist between ρ0 of the upper crust and
Ti(A), but its correlation with ρ0(Aml) is much more pronounced. In this man-
ner, the density parameters of Asia can be directly or indirectly described with
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Name Density Temperature

Parameterisation T-dependent Dens. Step-wise linear

Parameter ρ0 factor Ti

Units [kg/m3] [1] [◦C]

India

Weak zone

2600–2800(3)

300–600(2)

Upper crust

Deep upper crust* 1.0–1.25(10)

Sub. upper crust** 1.0–1.15(9)

Lower crust

2650–3100(4)
Deep lower crust* 1.0–1.25(10)

Sub. lower crust** 1.0–1.15(9)

Mantle lithosphere 3490–3550(5)

Asia

Upper crust
2600–2800(6)

300–800(1)Deep upper crust* 1.0–1.25(11)

Lower crust 2800–3400(7)

Mantle lithosphere 3490–3550(8)

Table 3.6: Gravity inversion parameter boundaries.
(*) The crust has an additional degree of freedom (densification factor) to
increase ρ0 by up to 25 %. (**) The subducted Indian crust north of the KKF
is allowed to get even denser, according to an additional factor to account
for the effect of eclogitisation. Labels (1–11) indicate the inversion parameter
numbers (IDs).

the interface temperature Ti(A). For the geological units of the Indian shield,
we do not observe equally strong correlations with the interface temperature
Ti(I), but find a correlation of the lower crustal ρ0(Ilc) with ρ0(Iml). For the
entire parametrisation, we found that 7 out of 11 parameters are linearly correl-
ated. One parameter, the densification factor due to eclogitisation is uniquely
constrained (feclogite = 1.015), suggesting that the effect of eclogitisation seems
to be rather weak. However, this part of the Indian crust is also affected by
another densification parameter (Fig. 3.13 right), which is determined to vary
between 1.14 . fdepth . 1.24. This results in an increase of ρ0 between ∼ 16%
and 26% for the model regions where eclogitisation is expected. As a result of
the pure gravity inversion, we keep the two temperature parameters and ρ0
of the Indian mantle lithosphere as free parameters of the joint geodynamic
inversion. Other parameters are described with linear combinations of these
parameters (see Table 3.7).
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Parameter Linear combination

ρ0(Iuc) −0.48 ◦C−1 · Ti(I) + 2888.85 kg/m3

ρ0(Ilc) −11.95 · ρ0(Iml) + 44632.72 kg/m3

ρ0(Aml) 0.061 ◦C−1 · Ti(I) + 3451.40 kg/m3

ρ0(Alc) 0.073 ◦C−1 · Ti(A) + 3367.25 kg/m3

ρ0(Auc) −8.10 · ρ0(Aml) + 30923.93 kg/m3

fdepth(I) −4.86 · 10−4m3/kg · ρ0(Iuc) + 2.50

fdepth(A) −6.33 · 10−4m3/kg · ρ0(Auc) + 2.86

feclogite 1.015

Table 3.7: Resulting linear combinations for correlated parameters of the gravity-only
inversion. The linear combinations are found with a principal component
analysis applied to a ‘best-fit’ subset of the direct-search forward models. The
linear combinations are used in the joint geodynamic inversion to reduce the
dimensionality of the parameter space.

Full geodynamic inversion

A total number of about 1.9× 106 forward models were computed during the
direct-search process using NAplus (Table 3.8 for technical details). Despite
the fact that the dimensions of the parameter space increased by three addi-
tional parameters (now 19, see Table 3.5), we do not increase the number of
initial samples much compared to the earlier synthetic examples (sections 3.3.2
& 3.3.3). We, however, coarsen the discrete grid to 20 instead of 30 (50) values
per parameter direction to account for the increased dimensionality. In addi-
tion, the main sampling is tuned to be very explorative at the beginning of the
NA-sampling. As for the synthetic cases, the wall-time limits for the cluster are
prescribed to 5 hours and restarts are required, which is why the sampling is
separated into smaller blocks.

The appraisal of the direct-search ensemble is performed with 128 CPUs. We
conduct 635 random walks with 2000 steps each (again, 1000 steps are attrib-
uted as burn-in period), starting from the 635 ‘best-fit’ models. The priors are
adjusted such that models towards the center of the parameter bounds are pre-
ferred over models close to the boundaries. As before, we therefore formulate
the priors as Gaussians, centred between the parameter limits and spread with
standard deviations that are equivalent to 75 % of the total parameter ranges.

The entire set of marginal distributions of the posterior are provided in the
appendix H (Fig. 3.20). However, analysing the appraisal results more carefully
reveals that 815 Voronoi cells are selected by the MCMC walks.

As the models are occasionally very different in terms of viscosity structure,
we do not compute average structures from all selected models, but instead
try to identify classes of models that have distinct viscosity structures. As it is
infeasible and possibly imprecise to do this manually, we use a neural network
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Figure 3.12: Direct-search examples of the pure gravity inversion, where each point
represents a forward model, color-coded by its misfit value. The density
pre-factor of the Asian mantle lithosphere ρ0(Aml) is plotted versus the
Asian interface temperature (Ti(A)), and clear linear correlation can be
observed.

approach to identify the end-member model classes. A detailed description of
this post-processing step is described in Baumann (2016). In a nutshell, we ex-
tract three characteristic viscosity profiles of the model, for India, Tibet and the
Tarim region. These profiles are then used to construct feature vectors as in-
put for the neural network. The algorithm pre-sorts the models and a standard
clustering algorithm, such as k-means can be used to summarise the models
even further. In Fig. 3.14, we illustrate the inversion results in terms of the ‘best-
fit’ representatives of the identified classes. Two examples classes are shown
together with the ‘best-fit’ model found by the direct-search.

To interpret the inversion results, we first focus on the viscosity structures.
There are a few very robust features that exist in all model classes. For all of
them, we find that the Indian lithosphere must be strong under all circum-
stances. Very often, as represented here, the Indian lithosphere is additionally
characterised by a strong power-law behaviour of the viscosity. On the other
hand, the Indian crust is dominated by plastic yielding. This correlates with
a well constrained Ti(I) that suggests temperatures of the order of ∼ 500 ◦C
at the inner crustal boundary. The corresponding temperature of the Asian
model part is consistently higher, its marginal posterior distribution is centred
at ∼ 600 ◦C. This temperature can cause a weakened lower crust in Tibet, where
the lower crust is thicker. It also suggests that partial melting would occur for
some of the end-member models, which is, however, not taken into account in
our forward models. Focussing on the Asian part of the model, we notice that
most model classes except the ‘yellow’ class have a significant strong Asian
lithosphere, which resembles a craton like behaviour. In addition, we observe
that for these models, the interaction of temperature and effective power-law
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Figure 3.14: Summary of inversion results in section 3.4.4.2. Six model classes were
identified that represent distinct viscosity distributions and result in ap-
proximately similar misfit values. a) Best fit model and representative mod-
els of two characteristic classes with a weak Tibetan lower crust and weak
Asian mantle lithosphere. Results are shown in terms of effective viscos-
ity, stress, temperature and density distribution. b) Observations (red) and
model data of identified classes. Colours indicate the models shown above.
Dashed lines show uncertainty limits. c) Examples of marginal distribu-
tions of the posterior. Markers indicate the models shown above.
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Sampling Resampling
parameter

Cumulative
number of

models

Number of
processors

Runtime [hrs]

Initial – 297919 3456 5

Main 15000 400660 640 5

Main 7500 501799 640 5

Main 3500 604897 640 5

Main 1500 710159 640 5

Main 750 816357 640 5

Main 500 924241 640 5

Main 350 1250171 640 15

Main 500 1472277 640 10

Main 350 1886896 640 25

Table 3.8: Direct-search characteristics of the India-Asia collision example (section
3.4.4.2). Wall-time limitations of the cluster require restarts after 5 hours. In-
stead of an extensive initial sampling, a large resampling parameter was
chosen at the beginning of the main sampling to compensate for the in-
creased dimensionality of the parameter space. Visualizing intermediate
sampling results helps to adjust the resampling parameter.

viscosity parameters forms a weakened layer at intermediate depths in the up-
per crust. This ‘Christmas tree’ pattern of the effective viscosity does not exist
if the strong Asian lithosphere is missing as for the yellow class models. Here,
a very strong upper and lower Asian crust are required to resist the Indian
indentor and to maintain the topographic loading. At this point, it is useful
to have a more detailed look at the corresponding model data. The Bouguer
anomaly and particularly the topography are very well represented by all selec-
ted models (Fig. 3.14B). Only models associated with a very large misfit value
show significant discrepancies with these data because of the small variances
in the data covariance matrix. The models differ mainly in terms of vertical and
horizontal velocity. Focussing on vh, we observe only very little variation for
the Indian part of the profile, whereas the shape of the drop in velocity at the
convergence zone and north of the MBT has larger variations as the uncertainty
bounds increase. If the Asian mantle lithosphere is weak, the vh signal shows
a sharper step at the convergence zone and varies less north of KKF due to the
very strong crust. The main differences in terms of surface expressions are, how-
ever, observed in the vv signal. The variation for the Indian part of the profile
is, again, rather minor. The jump of ∼ 4mm/yr from −2mm/yr to 2− 3mm/yr
at x = −400km is represented by all models shown here. If a strong Asian
lithosphere exists, the plateau like feature between −400 km . x . 150km
seems to be present. On the other hand, a weak Asian lithosphere correlates
with decreased uplift or even subsidence between −200km . x . 800km. We
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attribute this behaviour with the buckling example of a thin plate under axial
compression that is deflected downwards. For the Indian part of the model, we
can observe the same effect, but less pronounced and reversely directed. This
is a good example, where high effective friction parameters are dominating the
deformation behaviour. Compared to the other models, the φeff parameter are
highest for this model (see Fig. 3.14c left and center).

The deformation behaviour is also well reflected in terms of the stress pat-
terns of the various end-member models (Fig. 3.14a). For the latter case, most
stresses accumulate in the upper crust and close to the Tibetan Moho and bend-
ing stresses occur in the Indian lithosphere. On the other hand, the stresses are
very differently distributed for the cases without weak Asian lithosphere. Both
models have rather low stresses in the Indian and Tibetan lower crust, but the
stresses appear at the lower upper crust and in the Tibetan mantle lithosphere.
Bending stress patterns can be observed in the Indian lithosphere, which correl-
ates with deep normal fault earthquakes (Fig. 3.10) at x ≈ 100 km. The remain-
ing seismicity pattern in Tibet is in better agreement with the stress pattern
of the ‘yellow’ model with a weak Asian mantle lithosphere. At this point we
want to emphasis that the Tarim basin is not taken into account as a separate
geological unit in our inversion. Having a separated Tarim lithospheric block
might allow for a lower viscosity of the Tibetan lithosphere, which could result
in larger effective viscosities and correspondingly higher stresses in the Tibetan
upper crust.

So far, we have focused on lithospheric properties of the model, but also the
effective viscosity of the upper mantle shows very little variation between the
models and results in relatively high viscosities below 400 km. The effective
viscosity of the upper mantle is mainly controlled by the activation volume as
the other parameters (activation energy, power-law exponent and prefactor) are
prescribed with typical (laboratory) values of dry olivine (Table 3.5). Although
its prior is relatively weak as we find a large variation in literature (0 . V .
25 · 10

−6m3/mol), the activation volume is one of the best constrained inversion
parameters in our models, suggesting V & 15 · 10

−6m3/mol (appendix H, Fig.
3.20).

In Fig. 3.14c, we demonstrate a few examples of the marginal posterior dis-
tributions, which are provided for the entire parameter space in appendix H
(Fig. 3.20). As we already analysed the effective viscosity structures of the mod-
els, we can easily explain the relative euclidean distances between the model
locations in the parameter space. The triangle (green class) is always in the vi-
cinity of the square (blue class model), whereas the yellow class, represented by
the diamond, represents a distinct region of the parameter space. For example,
the posterior of the effective friction angle of Asia (Fig. 3.14c left) is dominated
by the blue and green class models. The yellow class, however, causes a certain
shift in the marginal distribution towards higher friction angles (stronger crust).
At the same time, the yellow class has a lower activation energy of the Asian
mantle lithosphere. It seems that E(Aml) of the yellow class is not much lower,
but the weakening effect is amplified due to high temperatures.



3.5 discussion 91

The effective friction angles of the weak channel (Fig. 3.14c, center) are con-
centrated in a small range (20 ◦ − 30 ◦), although the yellow class friction angle
is still slightly increased. As discussed, this correlates well with the vertical
velocity signal. It also correlates with a low power-law exponent (n(Ac) ≈ 1),
which implies a homogeneous and stable Asian crust. The other models have a
power-law exponent of n(Ac) ≈ 3, which explains the ‘Christmas tree’ structure
in the effective viscosity that has been discussed.

The consistent power-law behaviour within the Indian lithosphere is illus-
trated in Fig. 3.14c, where all model examples share the same local maximum
of the marginal distribution of the power-law exponent (n(Iml) ≈ 2.5 − 5).
In addition, they also have very similar crustal activation energies (E(Iuc) ≈
300 kJ/mol), consistent with the similarities of the effective viscosity patterns.

discussion

We separate the discussions into two parts. First, we evaluate our approach in
general and discuss possible improvements. Then, as the arguments are more
specific, we discuss the application of the presented method to the India-Asia
collision with all its regional characteristics.

General aspects

One of the main assumptions we make in our inversion method is that we
know the geometry of the lithosphere reasonably well. This is admittedly a
very strong assumption, but one could very easily attribute several degrees of
freedom to the geometry as part of an inversion. For example, the LAB, which
is only first order accurate, could be parameterised with a variable depth. An-
other possibility for oceanic subduction scenarios would be to vary the sub-
duction angle or the width of the weak channel. Related to the India Asia
collision, one could vary the northern extend of the Indian shield as different
studies suggest different locations (see for example an overview by Klemperer
et al., 2013). Nonetheless, adding new parameters to describe the geometry
quickly increases the parameter space. For many subduction zones the slab
surfaces are well constrained as 2D cross sections or 3D contours from ana-
lysing Wadati-Benioff zones (local seismicity distribution) and moment tensor
solutions (Hayes et al., 2012; Syracuse & Abers, 2006). In general, this also ap-
plies to continental collision, albeit with more uncertainty as there is usually
much less deep seismicity. Nevertheless, as we showed, the existing seismi-
city distribution, CMT solutions, tomographic models and Moho-signals from
receiver function studies are usually well constrained, together with LAB estim-
ates, which can be used in a joint approach to construct geological end-member
models for the further usage in geodynamic inversions. Moreover, by perform-
ing a similar inversion for another geometrical end-member model at the same
cross-section gives additional insights in the sensitivity of the inversion output
to changes in the model geometry.
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The first argument is closely related with another crucial question, which
is how many model parameters can be used for this approach in practice, as
well as a related question namely how many forward models are required to
address the inverse problem with a NA-search. In general, the base of the NA,
the computation of the Voronoi cells can in principle be performed for many
dimensions (Sambridge, 1999a). Thus, the limiting factor is how many forward
models can be computed in a reasonable amount of time. In appendix section D
we provide a benchmark problem that is symmetric for infinite dimensions and
is characterised by one global minimum and many local minima. We use this
test function as a benchmark to address the question of limiting dimensionality
and to estimate the number of forward models needed. Of course, the actual
misfit topology can be very different and it is rather unlikely that as many
local extrema exist. A good initial sampling strategy thus becomes much more
important for higher dimensions. We employ a pseudo random sampling on a
regular, predefined grid (section B that can be coarsened for higher dimensions,
which has a clear advantage over other methods such as Quasi Monte Carlo
sampling in that it can be used with random numbers initialized on many
CPUs (which is an issue for many other methods).

The temperature parameterisation within our approach is another import-
ant factor. Temperature affects the effective viscosity in an exponential manner
as well as the densities of the forward model. The way we parameterised the
temperature for the synthetic model is admittedly a very rough approxima-
tion and might be too inaccurate for other scenarios. Especially close to the
slab surface and towards the deeper parts of the slab, we clearly introduce er-
rors. We, however, showed that this effect is at least partly compensated for
the effective viscosity by other viscosity parameters. Nonetheless, we believe
that there is some room for improvements. In particular cases, a good prior
knowledge may exist from numerical forward modelling of the temperature
evolution and could lead to more realistic temperatures within subducting
slabs. On the other hand, one should consider that this also requires many
assumptions (material properties and boundary conditions) as well (Syracuse
et al., 2010; Sobolev et al., 2006). Integrated instantaneous forward modelling
approaches (Fullea et al., 2009) might be more appropriate in this respect as
many different data sets are combined to compute temperature estimates. For
example, temperature can be estimated from seismic velocities (tomographies)
(Sobolev et al., 1997; Sobolev & Babeyko, 1994), compositional as well as electro-
magnetic data (Vozar et al., 2014), which could in principle be combined with
our geodynamic inversion approach, although it would further increase the
parameter space (Afonso et al., 2013a,b). However, a two step approach with
a precursory thermo-compositional inversion to construct a reasonable a priori
temperature (and compositional) parameterisation, would significantly reduce
the parameter space of a geodynamic inversion (with more computationally ex-
pensive) Stokes forward models. Exemplary, the gravity-only inversion applied
for the India-Asia scenario (section 3.4.4.1) demonstrated that a precursory in-
version with fast forward models can be efficient in identifying correlations. A
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dimensionality reduction with a PCA can be applied to estimate linear correla-
tions.

In principle, estimating more sophisticated relations and a priori distribu-
tions can be a non-trivial task (Mosegaard & Tarantola, 1995). In this study, we
only used Gaussian priors with large standard deviations to relax the parameter
ranges, which are in principle rather weak priors and might not be the best
choice. On the other hand, Fig. 3.1 shows that we have only very little statistic-
ally independent data, which would justify the usage of stronger, non-Gaussian
priors. Here, we just slightly prefer parameters in the center of the domain to-
wards parameter combinations close to the parameter boundaries. Related to
this, it is also unclear whether the empirical parameters found by laboratory
experiments are directly applicable for geodynamic models or whether there
are implicit scaling errors in going from the laboratory to natural conditions.
Moreover, is it correct to summarise the parameters of several geological units
(i.e. same power law exponent for upper and lower crust)? This can only be ad-
dressed, if we apply the geodynamic inversion for several real-world scenarios
on Earth.

Compared to other lithospheric-scale inversions and forward models, the
geodynamic inversion has an intrinsic time component. Two time-dependent
processes are involved in the dynamics. At the beginning of the forward mod-
elling, the motion is dominated by isostatic effects, which cause strong artificial
motions. The resulting model surface observations are biased. As soon as the
model is isostatically equilibrated, the surface motions are dominated by the
stress-strain distribution in the lithosphere and asthenosphere, hence the effect-
ive viscosity structure. The question is than how long a forward model needs
to be run until it can be compared with geodynamic data (topography and
velocity). We addressed this with an empirical stopping criterion, where a stat-
istical property of a quasi-dynamic topography (elevation based on a pressure
difference at a compensation depth) signal is analysed (see section E for details).
The empirical criterion only serves as an approximation and is not a definite
proof that all isostatic motions have ended. Further work is required to find
automatic model stopping criteria. At the same time, it is also unclear whether
an investigated region is isostatically or dynamically compensated.

So far, we discussed the limitations of the forward model itself and the im-
plications on the inversion results. Moreover, the inversion result depends on
the data we use, the data pre-processing and probably even more on how the
data covariance matrix is constructed (how the data is relatively weighted). In
this study, we neglected correlations in the data. Although the long wavelength
of the topography is anti-correlated with the Bouguer anomaly signal, we neg-
lect it because both quantities clearly originate from physically distinct sources
(Afonso et al., 2013b).

Regarding the pre-processing, we always low-pass filter the data to assure
that data that can not be represented with the current model resolution is not
part of the reference data. As the wavelength is chosen subjectively, there is
always a certain risk that important data is missing that influence the inversion
result. Another issue is the handling of interpolations because the lithosphere
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is heterogeneous. This mainly affects the surface velocities, because faults in the
crust should be accounted for during the interpolation process. In terms of the
application of the India Asia collision, we therefore separated the interpolation
of the velocity field for both continents. Other major faults in this area are not
taken into account as only the MHT is represented in the model. This prob-
ably leads to small inaccuracies. However, for this approach, including smaller
faults into the model is not feasible resolution-wise and because of the large
uncertainties of GPS data. Even if the velocity field is only first order accurate,
it will be possible to neglect many models with velocity fields that are far off.

Another open question refers to the applicability of GPS data for a geody-
namic inversion in general, or whether the present-day velocity field can be
interpreted in terms of long-term motions. Platt & Becker (2010) looked at the
San Andreas fault and suggest that GPS data are consistent with long-term geo-
logical motion of the lithosphere, suggesting that GPS data can indeed be used
in combination with geodynamic models.

In this respect, it has to be tested if replacing the surface velocities with their
spatial derivatives (strainrates) improves the inversion results, as strainrates
might be more sensitive to the model rheology. Using a similar argument, fu-
ture studies could consider to incorporate gravity gradients instead of Bouguer
anomalies, as these data are available from the newest satellite missions (GOCE)
and have a certain potential for lithospheric scale modelling (Bouman et al.,
2015).

Application to India-Asia

Besides the discussed possibility to introduce geometrical parameters, which
also applies to this model, our end-member model geometry is simplified be-
cause the Tarim basin is not treated as a separate geological unit as suggested
by some authors (e.g. Cook & Royden, 2008). Although the presented model
classes partially show a weakened lower crust of Tibet, the Asian lithosphere
which is treated as a whole block, is possibly too strongly represented in these
models. Having a separated Tarim basin and attributing a distinct rheology to
this unit, might change the effective viscosity pattern.

Regarding the Indian lithosphere, it is not entirely clear whether a connection
to old oceanic lithosphere exist. Whereas in Eastern Tibet a subducting Indian
lithosphere is clearly observed (e.g. Kosarev, 1999; Agius & Lebedev, 2013), it
becomes more diffuse along the convergence zone towards the Western syntax
where many tomographic modes suggest India underthrusting Tibet (Agius &
Lebedev, 2013; Li et al., 2008). The high seismic velocity suggest low temperat-
ures, which corresponds well to our inversion results. In the upper mantle, the
cross-section of the SL2013sv model (Schaeffer & Lebedev, 2013) in Fig. 3.10

shows a decreased velocity anomaly at 0 6 x 6 400 km, probably reflecting a
low temperature anomaly which is possibly correlated with subducted oceanic
lithosphere. This is an observation that we did not account for in our model
because the temperature distribution is limited parameter-wise, as the temper-
ature in the mantle does not change laterally, and only varies adiabatically.
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Related to temperature, tomographic models also show anomalous low shear
wave speed for Tibetan middle crust, suggesting high temperatures or even par-
tial melting (e.g. Agius & Lebedev, 2014), which is also supported by electro-
magnetic studies for southern Tibet (Nelson et al., 1996). Here, the interpreted
partially molten parts are rather shallow (∼ 15 km). In terms of effective vis-
cosity our end-member models partly correspond to these observations, as we
have shallow weak zones in Asia, and a weakened lower Tibetan crust. Our in-
verted temperatures for Asia are rather large (∼ 600 ◦C at the upper crust lower
crust boundary). This implies that partial melting can occur in the lower crust,
which would cause an additional weakening effect on viscosity.

For the mantle part of the model, we observed a relatively high effective vis-
cosity below 400 km, which correlates with a high activation volume. Models
that do not have these high effective viscosities do not fit the data equally well.
Additional inversions, also for different locations on Earth, are required to in-
vestigate whether such high activation volumes are a global feature of upper
mantle rheologies.

conclusions

We demonstrated that it is possible to combine numerical geodynamic mod-
els with geophysical observations and use massively parallel inversions in a
Bayesian sense to fit the observed data (which are gravity, topography and GPS
velocities in our case). Synthetic results demonstrate that this joint inversion
approach can indeed be used to retrieve the rheology of the models as well
as their uncertainties and parameter trade-offs, even if this rheology is nonlin-
ear. Models with a parameterised temperature have larger uncertainties than
models in which the thermal structure is well known.

We also apply our method to a cross-section of the India-Asia collision sys-
tem. The resulting models fit the data within their respective uncertainty bounds,
but the results also show that different classes of models are found that fit the
data nearly equally well. Whereas the Indian mantle lithosphere must have a
high effective viscosity to fit the observations, the mechanical structure of the
Tibetan lithosphere is less well constrained.

We conclude that geodynamic inversion is a powerful, but computationally
expensive, new method to constrain the rheology and dynamics of the litho-
sphere. In the future, additional datasets could be taken into account during
the inversions which is likely to reduce the number of required forward mod-
els.
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appendix

Parallel implementation of NA: NAplus

NAplus is a revised C++ implementation of the parallel layout of the Neigh-
bourhood algorithm (Rickwood & Sambridge, 2006; Sambridge, 1999a) that is
optimized for (parallel) geodynamic forward models. A detailed description of
NAplus is given in Baumann et al. (2014), but we shortly recap the main aspects
and further developments here.

Geodynamic forward models can vary by an order of magnitude or more in
terms of runtime depending on the largest viscosity contrast, especially for lar-
ger setups when iterative solvers are required. The runtime differences can be
even larger if plasticity is part of the nonlinear rheology implementation as this
requires additional inner iterations with a Picard or Newton-Raphson method
(e.g. Kaus, 2010; Popov & Sobolev, 2008). For the parallel layout of the direct-
search, it is thus crucial to avoid blocking and collective MPI communication
mechanisms. This involves blocking sending operations (MPI_Send) as well
as collective sending or reduction operations (such as MPI_Bcast, MPI_Gather,
etc.). In our implementation we make use of a fully non-blocking commu-
nication scheme based on the functions MPI_Isend, MPI_Test and MPI_Recv,
and a dynamic message-buffer, realised with C++ container objects. Moreover,
NAplus offers a large freedom in which programming language the forward
models can be implemented. Whereas in (Baumann et al., 2014) we linked par-
allel PETSc-supported (Balay et al., 2014) 3D forward models implemented in
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standard C, we here link compiled MATLAB forward models with the inver-
sion algorithm. Forward models implemented in Fortran have been tested as
well.

Sampling a high dimensional parameter space

Solving a high dimensional integral by Monte Carlo sampling depends on how
uniformly the (pseudo) random numbers are distributed. Typically, higher di-
mensional random deviates generated with pseudo random number generat-
ors form small clusters, which is why the convergence could be better if the
samples would be distributed more evenly. The class of quasi random num-
ber generators that makes use of low-discrepancy series is an alternative that
yields more homogeneously distributed samples. In general, the convergence
rate is much faster when using quasi random deviates (e.g. Niederreiter, 1992;
Morokoff & Caflisch, 1994; Caflisch, 1998). Also in terms of Monte Carlo inver-
sion the usage of quasi random number generators can speed up the computa-
tion (Sambridge & Mosegaard, 2002). However, when it comes to higher dimen-
sions, the sequences can correlate dramatically resulting in gaps and repetitive
structures in the parameter space, although permuting the quasi-random se-
quences reduces the correlation effect (Caflisch, 1998). When (quasi-) random
numbers are required to be present on multiple CPUs, the handling gets more
complicated, because the random number seeds must be chosen more carefully.

As the sampling problem mainly affects the ‘initial sampling’ prior to the
(main) NA sampling, we use a different strategy to keep minimum distances
between the models of the initial sampling. Our strategy is to predefine a regu-
lar grid with a fixed amount of discrete values along each parameter axis. We
then use the pseudo random generator after (L’ecuyer et al., 2002), which is
made for parallel usage (appendix C) to randomly choose locations on the grid.
By decreasing the number of possibilities per dimension, we can account for
larger dimensions.

Independent random numbers for parallel Monte Carlo based algorithms

A crucial aspect when performing Monte Carlo type simulations or inversions
is the reproducibility of the simulation or inversion results, as they depend
on random numbers and their respective generators. In particular, precisely
controlling the random number streams becomes important when the parallel
simulation is split into several (sub-) jobs on a computer cluster. For us, the ini-
tial sampling is such a case. It can be subdivided into completely independent
sub-tasks as it is a pure Monte Carlo sampling of the parameter space. Due to
heterogeneous loading of the computer cluster, the queuing system of the HPC
environment might privilege jobs with less CPUs as they better fit into the free
capacities. Thus, we have to assign a random number seed to each sub-task to
guarantee independent models. Another case is the restart of a simulation, dur-
ing which we need to assure that the random number stream of the previous
simulation does not overlap with the one of the restarted simulation.
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We use the random number generator described in L’ecuyer et al. (2002),
which is constructed in a way that a very long random number stream with
a period of approximately 2191 is subdivided into subsequent streams, each
with streamlength of 2127. Each stream in itself is subdivided into 251 sub-
streams with a periods of 276. Every substream can be assigned to a new
(restart-) invocation of the simulation, whereas the subsequent streams are dis-
tributed over the parallel processes of the simulation, e.g. all forward model-
ling groups. Our parallel MPI implementation of the random number gener-
ator is straight forward as it only depends on a single C++ class and associ-
ated library functions, which is provided with two source files (RngStream.cpp
and RngStream.h) that are GNU licensed and can be downloaded from http:

//www.iro.umontreal.ca/~lecuyer.
A draft of our MPI parallel C++ implementation scheme is given as follows:

// Get rank and size for mpi communicator

MPI_Comm_rank(mpi_comm, &mpi_rank);

MPI_Comm_size(mpi_comm, &mpi_size);

// Create as many random number streams

// as mpi processes are available

prngstream = new RngStream[mpi_size];

// Advance the random number stream

// for each process as many times as required

// by the restart ID

// In our case the restart ID is saved in the

// restart file, so that the substream will auto-

// matically be advanced to the next substream

for(int k=0;k<restart_ID;k++)

{

prngstream[mpi_rank].ResetNextSubstream();

}

// Retrieve random double between

// 0 and 1 (including 0 and 1) from stream

rnd = prngstream[mpi_rank].RandU01();

// Destroy the allocated RngStream array

delete [] prngstream;

Benchmarking the parameter sampling in high dimensions

To estimate how many forward models are required for a particular n dimen-
sional inverse problem, we employ the Rastrigin function for n dimensional
space (Mühlenbein et al., 1991) to perform a test case. The function is character-
ised by a high number of local minima and a global minimum at f(x = 0) = 0
and is defined a as follows

f(x) = 10n+

n∑
i=1

[
x2i −A cos(2πxi)

]
, (3.21)

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer
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where x = (x1, . . . , xn) and xi ∈ [−5.12, 5.12]. For each of the inverse problems
described in this paper, we performed several tests, which are identical in terms
of dimensions, but different in terms of tuning parameters of the NA (i.e. the
resampling parameter nr and the number of initial models ni) to estimate the
optimal inversion parameters.

Stopping criteria for forward models

Statistical properties such as variance, kurtosis and skewness are often used
to detect sudden transitions in dynamic systems in a broad variety of fields
(e.g. Guttal & Jayaprakash, 2008; Scheffer et al., 2009). Especially the skewness,
which is a measure of asymmetry of a distribution is a good indicator of regime
shifts and is defined as follows

γ =
E (x− µ)3

σ3
, (3.22)

where E is the expectation operator, and µ and σ are the mean and the standard
deviation of a random variable x respectively. If we have a set of n values, the
sample skewness can be computed as

γ =
1
n

∑n
i=1 (xi − x̄)

3(
1
n−1

∑n
i=1 (xi − x̄)

2
)3/2 , (3.23)

with x̄ being the sample mean.
We found the skewness to be an interesting property to evaluate the state of

the isostatic compensation of a geodynamic model and its dynamic topography.
Randomly changing the parameters of a forward model within a certain toler-
ance will in many cases lead to a process of isostatic equilibration during the
first stages of the forward model. As a consequence, large vertical velocities
will appear, in particular if the viscous properties or the density properties of
the asthenosphere and upper mantle are affected. One possibility to monitor
the state of the isostatic equilibration is to compute an approximation of the dy-
namic topography from the pressure difference at the bottom of the domain, to
which one refers to as depth of compensation (e.g. Panasyuk & Hager, 2000, al-
though, these authors use a different code without a free surface). The pressure
deviation of the average pressure,

∆P (x)|z=zcomp.
= P (x)|z=zcomp.

− P̄
∣∣
z=zcomp.

(3.24)

results in a approximated dynamic topography

Tdynamic (x) =
∆Pc.d. (x)

ρ̄ (x)g
, (3.25)

where ρ̄ (x) is the average density of the model.
For a model in perfect isostatic balance, the pressure at the compensation

depth should not have any lateral variations in the absence of dynamic contribu-
tions (Panasyuk & Hager, 2000). As a consequence, the dynamic topography of
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Figure 3.15: Example of monitoring the surface signals after a) decreasing the power-
law exponent of the crust by a factor of ∆n = 2, which corresponds to a
change of 50% of the parameter range. b) Decreasing the activation volume
of the asthenosphere by a factor of ∆V = 12.5 · 10−6m3/mol, which cor-
responds to a change of 50% of the parameter range. The color indicates
the timestep after the change. We measure the skewness γ (dimensionless
number) of the dynamic topography, which is a good proxy of the state
of isostatic equilibration. γ converges very small constant rate of change,
which we interpret as dynamic change only, as soon the isostatic equi-
libration of the model is being completed. Consequently, the change in
skewness converges towards very small but constant value that is charac-
teristic for the current dynamic regime. From empirical tests, we conclude
that isostatic equilibration is completed as soon as the running average of
three consecutive timesteps gives

(
∆γ/∆t

)
< 0.03

[
1/103yrs

]
.

the model is flat and its skewness (asymmetry) is zero. However, for a subduc-
tion scenario we do have dynamic effects, such that the dynamic topography is
not flat after isostatic equilibration. The asymmetric shape of the dynamic topo-
graphy can be characterised with a constant value of skewness. An advantage
of the skewness over the variance is that the skewness is non-dimensional and
does not depend on the amplitude of the signal.

Typically, the forward models with randomly modified input parameters
start with a lateral imbalance in density or viscosity or topography resulting
in a lateral pressure difference at the compensation depth and a motion of iso-
static compensation. The question is when to stop the simulation to achieve
characteristic surface observations that are not biased by signals that origin-
ate from isostatic equilibration of the model. During the isostatic equilibration
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there is a strong change in dynamic topography, which also means that the
skewness of the isostatic topography changes remarkably. After isostatic equi-
libration, the dynamic topography stays in a quasi equilibrated state of constant
skewness.This means that the change in skewness is a characteristic value that
we are able to monitor. The proxy can also be extended to 3D models, as the
skewness can also be computed for 2D surfaces.

Creating a reference model of intra-oceanic subduction

To create a reference model for the synthetic inversion tests, we perform a full
forward simulation of intra-oceanic subduction, starting with an initial model
geometry that is 2000 km wide and 660 km deep (see Fig. 3.16a). The computa-
tional domain is discretised with linear Q1P0 elements, which are quadrilateral
finite elements. We use 209 by 69 elements with a horizontal and vertical mesh
refinement towards the center and the top of the model respectively. Moreover,
we implement constant strain rate and shear stress free boundary conditions at
the sides and bottom of the model, but have a free surface condition at the top
boundary. In addition, a constant background strain rate (ε̇BG = −10−15 Pa s)
is applied to laterally compress the model on a continuous basis and to stimu-
late the subduction process of oceanic plates. The thermal boundary conditions
are flux-free at the lateral sides and isothermal at the top and lower boundary
with 20 ◦C and 1350 ◦C respectively. The initial temperature distribution has
different lithospheric ages at the left (tage = 30Myrs) and right (tage = 50Myrs)
of the weak zone, which are given by a half-space cooling model (e.g. Turcotte
& Schubert, 2002):

T (z) = (Ts − Tm) · erfc

(
z

2 ·
√
κ · tage

)
+ Tm, (3.26)

where Tm, Ts and κ = 10−6m2/s are mantle, surface temperature and thermal
diffusivity respectively.

The geometry of the initial model setup is illustrated in Fig. 3.16a, where the
lithosphere consists of an oceanic upper crust, a lower crust - modelled as ser-
pentinized Harzburgite - and a lithospheric mantle. To initialize the subduction
process, we implemented a trapezoidal weak zone that is thinning with increas-
ing depth. A summary of all model parameters is given in Table 3.1. Fig. 3.16b

and c show the forward evolution of the subduction process, where the largest
strainrates occur within the subduction channel. We stop the simulation at ap-
proximately 8.6Myrs (Fig. 3.16d) and take the geometry and the temperature
structure of this timestep as a reference model of the synthetic inversions that
are described in sections 3.3.2 and 3.3.3.

A step-wise linear approximation of the geotherm

As oceanic lithosphere is characterised by a conductive geothermal gradient
and the asthenosphere is dominantly described by an adiabatic geothermal
gradient, a stepwise linear approximation for lithosphere and asthenosphere
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Figure 3.16: Synthetic forward modelling of oceanic subduction. a) The initial model
geometry consists of an oceanic crust, a serpentinized harzburgite layer,
a mantle lithosphere and a mantle. Moreover, a subduction channel is in-
cluded to initiate subduction. The initial temperature model is derived for
two different lithospheric ages of 30Myrs and 50Myrs. The geotherms de-
rived from a lithospheric cooling model are shown within the limits of sur-
face (20 ◦C) and mantle temperature (1350 ◦C). The mantle lithosphere is
limited by the 1200 ◦C isotherm. b) & c) Forward evolution after 2.6Myrs
and 6.6Myrs. Areas of large deformation are indicated by a large strain
rate, which is overlaid on top of the lithology markers. d) The forward
simulation is stopped at 8.6Myrs. This time step is equivalent to the ref-
erence model that is used within the inversion process. Velocity field and
effective viscosity illustrate a strong lithosphere with little internal deform-
ation, but a characteristic nonlinear viscosity pattern in the mantle, as well
as areas dominated by plastic deformation in the bending zone of the sub-
ducting plate.
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is a reasonable first order approximation. However, the lithospheric geotherm
usually behaves more nonlinear, which is why we prefer an approximation with
at least three segments for the crust, mantle lithosphere and asthenosphere. In
general a linear segment of a step-wise linear approximation of a geotherm can
be described as

T (z) = γi · z+ T0,i, (3.27)

where γi is the geothermal gradient, and T0,i the potential temperature of that
segment. Due to the fact that consecutive linear segments must intersect at each
interface, we can couple their expressions with the following condition:

γi =
T0,i+1 − T0,i

zi+1
+ γi+1. (3.28)

If we consider a system composed of three layers such as illustrated in Fig. 3.17

with crust, mantle lithosphere and upper mantle, we can construct a coupled
system of three equations based on (eq. 3.27) and (eq. 3.28):

γ0 =
T0,1 − T0,0

z1
+ γ1 (3.29)

γ1 =
T0,2 − T0,1

z2
+ γ2 (3.30)

T (z1) = T0,1 + γ1 · z1. (3.31)

In these equations, there are a number of variables that are well known to be
stable or that at least have a relatively small variance and can be assumed to be
known from a priori. Obviously, this is the surface temperature T0,0, but also
the potential mantle temperature T0,2 and the adiabatic geothermal gradient
γ2. In addition, the Moho depth (z1) is usually a well constrained parameter
too. Following this approach, the step-wise linear geotherm of the three-layered
system crust – mantle lithosphere – upper mantle can be parameterised with
only two variables. We choose (i) the temperature at the Moho (T (z1)) and (ii)
the depth of the lithosphere asthenosphere boundary (z2) to be free parameters
and solve the system of equations (eq. 3.29-3.31) for the geothermal gradients
of crust and mantle lithosphere as well as for the potential temperature of the
mantle lithosphere to fully define the geotherm:

γ1 =
T0,2 − T(z1) + z2γ2

z2 − z1
(3.32)

T0,1 = T (z1) − γ1 · z1 (3.33)

γ0 =
T0,1 − T0,0

z1
+ γ1. (3.34)

In principle, this parameterisation is very general. Instead of using the Moho
as an internal interface, we can also use the upper crust/lower crust boundary
as internal separator if this better fits the model geometry, as is the case in our
application in section 3.4.
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Figure 3.17: Step-wise linear approximation of a geotherm. For a given surface tem-
perature, the potential mantle temperature, a known adiabatic gradient
within the mantle, and an interface depth (upper crust/lower crust bound-
ary or Moho), the parametrisation is only controlled by two parameters,
the depth of the lithosphere asthenosphere boundary (LAB) and the tem-
perature at the interface (Intermediate crustal or Moho temperature.

Posterior distributions

The posterior distributions of the synthetic and the India-Asia applications are
given in terms of 1D and 2D marginal distributions. Results are illustrated with
a high degree of detail. The reader is therefore referred to the electronic version
of the work for an enlarged view.
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Figure 3.18: Geodynamic inversion results of the synthetic oceanic subduction scenario
with full temperature knowledge described in section 3.3.2. Results are
given in terms of marginal distributions of the posterior probability. Red
lines and red markers show true model values.
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Figure 3.19: Geodynamic inversion results of the synthetic oceanic subduction scenario
with parameterised temperature (section 3.3.3). Indications are similar to
those in Fig. 3.18.
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Figure 3.20: Geodynamic inversion results of the India-Asia collision scenario (section
3.4). Indications correspond to those given in Fig. 3.14.
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D ATA M I N I N G A P P R O A C H

This chapter has been submitted:
Baumann, T. S. (submitted to Geophysical Journal International). Appraisal of geody-
namic inversion results: A data mining approach.

Abstract

Bayesian-type inversions require many thousands or even millions of for-
ward models, depending on how non-linear or non-unique the inverse
problem is, and how many unknowns are involved. The result of such a
probabilistic inversion is not a single ‘best-fit’ model, but rather a probab-
ility distribution that is represented by the entire model ensemble. Often,
a geophysical inverse problem is non-unique, and the model distribution
forms clusters of similar models that represent the observations equally
well. In these cases, we would like to visually see the characteristic prop-
erties within these clusters of models, for example similar material proper-
ties, which can be different from the inversion parameters. However, even
for a moderate number of model parameters, a manual appraisal for such
a large number of models is not feasible, which poses the question whether
it is possible to extract end-member models that represent each of the best
fit regions including their uncertainties.

Here, I show how a machine learning tool can be used to determine end-
member models, including their uncertainties, from a complete model en-
semble that represents a posterior probability distribution. The model en-
semble used here, results from a non-linear geodynamic inverse problem,
where rheological properties of the lithosphere are constrained from mul-
tiple geophysical observations. It is demonstrated that by taking vertical
cross-sections through the viscosity structure of each of the models, the
entire model ensemble can be classified into 4 end-member model categor-
ies that have a similar viscosity structure. These classification results are
helpful to explore the non-uniqueness of the inverse problem and can be
used to compute typical data fits for each of the end member models. Con-
versely, these insights also reveal how new observational constraints could
reduce the non-uniqueness. As the method is not limited to geodynamic
applications, a generalised MATLAB code is provided to perform the ap-
praisal analysis.

introduction

Inverse problems are usually separated into two sub tasks, (i) the estimation
task, where (optimal) model parameters are estimated from the observed data,
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and (ii) an appraisal part, where model uncertainties and properties are de-
termined (e.g. Snieder & Trampert, 1999). For non-linear inverse problems, es-
pecially the latter task is challenging as no general theory exist to describe the
model uncertainties (Snieder, 1999). As an numerical alternative, the class of
Monte Carlo and direct-search methods is widely used to tackle the estima-
tion part of non-linear inverse problems (e.g. Sambridge & Mosegaard, 2002).
Here, the misfit is computed for a large number of forward models, which is
referred to as a ‘model ensemble’. In terms of appraising the model ensemble,
uncertainties can be estimated in the framework of Bayesian statistics, where
the full result is the posterior distribution (e.g. Tarantola, 2005). Provided that
the distribution of acceptable models has a single dominant maximum, linear-
ised concepts can be applied and Bayesian measures, such as approximated
model covariance and resolution matrix can be computed (Sambridge, 1999b).
Yet, posterior distributions are generally not similar to multivariate Gaussian
distributions, i.e. the inversion results are non-unique, such that the posterior
distribution rather resembles a conglomerate of disjoint distributions that even-
tually have smooth transitions. The question is, what are the discriminating
properties of all acceptable models within the ensemble? And, moreover, is it
possible to identify end-member representatives that help to better understand
the non-uniqueness of the inversion result?

In this study, a geodynamic model ensemble (Baumann & Kaus, 2015) is used
as case example to address the questions above. The previous study addressed
the India-Asia collision, and performed about 1.9 million forward models to
invert different geophysical surface observations to estimate non-linear rheolo-
gical properties of the lithosphere. The model ensemble has typical non-linear
and non-unique characteristics, such that many models with different effective
viscosity structures represent the surface observations equally well. As manu-
ally discriminating these models is not feasible, the ensemble is examined with
a neural network approach. Neural networks belong to the class of machine
learning algorithms, which is associated with the term ‘data-mining’ that be-
came increasingly popular during the last two decades when growing com-
puter power started to produce large amounts of data, from which useful in-
formation had to be extracted into a human-usable format (e.g. Witten & Frank,
2005). In fact, this also applies to model ensembles of Monte Carlo inversions,
which contain a diversity of non-obvious properties especially for high para-
meter dimensions. Usually one differentiates between ‘supervised’ and ‘unsu-
pervised’ machine learning, where the first term denotes that the algorithm re-
quires training data that comprises labelled examples similar to the target data
to detect. On the other hand, ‘unsupervised’ algorithms can be used without a
priori training and are used to discover groups of similar data, i.e. clustering
purposes (e.g. Bishop, 2006). One of them is the self-organizing map algorithm
by Kohonen (2001). A major advantage of SOMs is that they can be used to
visualize high-dimensional data in two dimensions (Vesanto, 1999). This makes
it attractive to a wide range of applications, for example in finance (e.g. De-
boeck & Kohonen, 1998), genome analysis (e.g. Törönen et al., 1999), but also in
industry, linguistics, bioinformatics and natural sciences (Kohonen, 2013). Liu
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& Weisberg (2011) give an overview of applications in meteorology and ocean-
ography. Applications in geosciences are often related to signal detection in
seismology and volcanic tremor analysis (e.g. Köhler et al., 2009, 2010).

The paper is composed as follows. Basic principles of SOMs are shortly intro-
duced in the following section, which also contains methodological details on
an additional clustering analysis to classify the data into major categories. As
the selection of characteristic model properties differs between each application,
it is a crucial part of the procedure and is discussed in detail, before examining
and discussing the results of the study. A short coding example that enables
the reader to easily repeat the SOM analysis is enclosed in the appendix of this
paper.

method

Self-organizing map

The Self-organizing map (SOM) belongs to the group of unsupervised learning
methods. Its original implementation resembles a gradient-decent algorithm
(Kohonen, 2013) and vector quantisation algorithms (Vesanto et al., 2000; Gray,
1984) such as k-means (e.g. Jain & Dubes, 1988). The SOM consists of a set of
MSOM neurons that are organised on a regular, low dimensional (typically 2D)
grid in a N–dimensional space, where N denotes to the dimension of the input
data of size Mdata. Both, data (xi) and neurons (mj) are described through N–
dimensional Euclidean vectors, where mj are usually referred to as ‘prototype
vectors’ with i = 1, . . .MSOM. The total number of neurons and the aspect ratio
of the SOM are usually not known in advance, but are determined during the
initialisation process in a trial and error manner. According to a rule of thumb,
the size is aboutMSOM ≈ 50 ·Mdata, and the aspect ratio roughly corresponds to
the relation of the two largest principal components of the input data (Kohonen,
2013).

The SOM learns the topology (characteristics) of the data in an iterative pro-
cess referred to as ‘training’, during which the SOM behaves similar to an elastic
net that folds onto ‘clouds’ formed by the input data (Vesanto & Alhoniemi,
2000). In this study, we make use of the MATLAB SOM toolbox by Vesanto
et al. (2000) and the general procedure can be described as follows.

After an initialisation of the prototype vectors (mi), the ‘training’ starts with
the selection of a random data sample (x) and Euclidean distances between this
sample and all prototype vectors are computed. The prototype vector with the
minimal Euclidean distance (mc, i.e. ‖x − mc‖ = min

i
{‖x − mi‖}) is determined,

which is also referred to as the best-matching unit (BMU). The BMU and neigh-
bouring prototype vectors move towards the current data sample as illustrated
in Fig. 4.1, and the adapted SOM after one time step is given as follows:

mi (t+ 1) = mi (t) + hci (t) [x − mi (t)] . (4.1)
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Figure 4.1: Learning process of the Self-Organizing Map after Vesanto et al. (2000). The
‘best matching unit’ (green), i.e. the neuron closest to the data sample, and
neighbouring neurons move towards the current sample vector (red) accord-
ing to eq. (4.2). Grey nodes corresponds to the adjusted SOM after a training
step t.

hci (t) denotes the neighbourhood function centred at the BMU, which defines
the rate the neighbouring node locations are modified. Typically, hci (t) is
defined as Gaussian,

hcj (t) = α (t) exp

(
−

d2c,i

2σ2 (t)

)
, (4.2)

where dc,i denotes the distance between nodes mc and mi. α (t) and σ (t) are
monotonically scalar functions of t (Kohonen, 2013).

Additional clustering of the SOM

The SOM analysis is a clustering process itself, as the feature vectors are as-
sociated to their nearest neighbour prototype vectors of the SOM. How many
groups or clusters exist depends on the number of nodes of the SOM. However,
distances between adjacent prototype vectors are not necessarily taken into ac-
count. Therefore, similar nodes of the SOM can be grouped through additional
clustering, which can be applied after the SOM learning process (Vesanto &
Alhoniemi, 2000). As described in Vesanto & Alhoniemi (2000), k-means clus-
tering (e.g. Jain & Dubes, 1988) is a suitable clustering approach in this respect.
A disadvantage is, however, that k-means assumes spherical clusters and that
the number of clusters has to be known a priori. A workaround is to com-
pute a validity index. A possibility is to determine a ratio between the sum of
intra-cluster distances and inter-cluster distances. This measure is referred to as
Davies-Bouldin index (DB-index, Davies & Bouldin, 1979) and can be used to
quantify how well a specific number of clusters is suited for the distribution of
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prototype vectors. In terms of evaluating the k-means clustering, the DB-index
minimises for an optimal number of spherical clusters.

One of the great benefits of using the SOM is the ability to visualise the high-
dimensional properties of the input space directly on the SOM. This opens up
the possibility of cross-validating the clustering results by visual inspection.

data set

The model ensemble that is examined in this study results from an earlier study
of non-linear geodynamic inversion (Baumann & Kaus, 2015). Geodynamic in-
version is a technique to constrain rheological properties of the lithosphere
based on Stokes-flow models by jointly inverting geophysical surface observa-
tions. A detailed description of the technique is given in Baumann & Kaus
(2015) and Baumann et al. (2014), but the key aspects are shortly recapped in
this section. Moreover, the model ensemble is characterised by a set of 19 inver-
sion parameters, but each geodynamic model provides a full range of charac-
teristic physical properties that are linked with the inversion parameters. For
example, solution variables, such as the velocity, stress or strainrate fields, and
effective material properties, such as viscosity structure can be used as features
to discriminate the model ensemble.

Geodynamic inversion of the India-Asia collision system

In Baumann et al. (2014) and Baumann & Kaus (2015), we mainly adopted
the Bayesian inversion approach of Sambridge (1999a) and Sambridge (1999b).
This is a two-step procedure that is designed with (i) a direct-search method to
explore the parameter space and to minimise a objective function (Sambridge,
1999a), and (ii) an appraisal method to evaluate Bayesian integrals from the
direct-search model ensemble (Sambridge, 1999b). During the appraisal part,
a Markov chain Monte Carlo (MCMC) method is employed to perform an
‘importance-sampling’ of the original model ensemble, which results in an ap-
proximate posterior distribution. The appraisal method relies on the so-called
‘Neighbourhood approximation’, which denotes that the objective function is in-
terpolated with a nearest neighbour interpolation. For this reason, each MCMC-
sample is automatically associated with one of the direct-search forward mod-
els, implying that the MCMC implicitly selects and weights the forward models
of the direct-search part. The importance sampling with MCMC can therefore
be seen as a selection process of acceptable forward models with respect to
their model error.

The case study of Baumann & Kaus (2015) corresponds to a SW-NE cross
section across the India-Asia collision system that transects the Himalayas, the
Tibetan plateau and the Tarim region. In Fig. 4.2a, the model geometry is illus-
trated that was constructed from several seismological data sets and calibrated
with Bouguer anomalies. We jointly inverted four kinds of geophysical observa-
tions, namely gravity anomalies, topography as well as horizontal and vertical
surface velocity data, to constrain 19 unknown model parameters. These para-
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meters describe the full non-linear model rheology, including the parameterised
temperature and density structure of the model. Fig. 4.2b exemplifies the mar-
ginal posterior distribution of two inversion parameters, which indicates the
non-unique character of the inverse problem with two distinct maxima. The
model ensemble of the direct-search process contains about 1.9 million forward
models. However, the importance sampling with the MCMC method revealed
that only 815 of these forward models actually contribute to the posterior dis-
tribution. This means that the MCMC importance sampling works as efficient
pre-selector of acceptable models in terms that they fit the surface observations
within the uncertainty range. Yet, this set of 815 forward models is still too large
for a manual evaluation and the question is: What are the representative model
characteristics to classify all models into end-member categories?

Constructing feature vectors from viscosity profiles

A crucial part of the unsupervised analysis with the SOM is the construction of
the input data set. The input data is composed of so-called ‘feature-vectors’ that
store the extracted model characteristics. In general it is possible to construct
feature vectors from very different data if a suitable normalisation is applied
to the data before the SOM-learning process. However, selecting characteristic
model features is essential for the SOM to discriminate models successfully,
and it is in particular important to avoid correlated features (e.g. Kohonen,
2013; Köhler et al., 2009). This is the main reason to not use inversion para-
meters directly and to rather extract invariant representatives of the effective
viscosity structure of the models. Other model data, such as the stress state, the
density structure or the strain rate pattern can possibly be used to construct
feature vectors as well, but the effective viscosity structure is also known to be
most significant in geodynamic modelling as it directly affects the dynamics of
the lithosphere (e.g. Baumann & Kaus, 2015). To avoid scaling problems, only
markers of the viscosity structure are incorporated into the feature vectors, such
that normalisation in addition to the standard log10-scaling of the viscosity is
not required.

Features vectors for SOMs can not only consist of very different data, but can
also have a very high dimension. Even images can be transformed into vectors
to be analysed with SOMs. Of course, one has to pay attention that adding
further components to the feature vector also increases the information content
of the vector. High resolution images must not be necessary yield improved
results because of a possibly higher degree of correlation (e.g. Kohonen, 2013).

For this application, the viscosity structure is partly prescribed by the geo-
metric a priori assumptions of the geodynamic inversion, therefore the model
changes laterally only very gradually. On the other hand, the power-law char-
acter of the effective viscosity can rapidly change its behaviour in vertical direc-
tion. The feature vector is therefore constructed from three viscosity profiles at
characteristic locations along the cross-section (Fig. 4.2c). Profiles are taken at
x = −500 km, x = 200 km and x = 1000 km for the Indian shield, Tibet, and the
Tarim region respectively. In the vertical direction, the profiles are limited to a
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Figure 4.2: a) Cross section of the India Asia collision system, which is the a priori
model geometry used for the geodynamic inversion. The model is con-
structed of many different seismological data sources (Caldwell et al., 2013;
Dziewonski et al., 1981; Laske et al., 2013; Rai et al., 2006; Schaeffer &
Lebedev, 2013; Wittlinger et al., 2004; Zhao et al., 2010). b) Marginal pos-
terior distributions for particular parameter combination. The distribution
is the result of an MCMC approach, where steps of random walks are re-
ferred to as samples. Each sample is associated to a forward model of the
previous direct-search. The triangle indicates an example forward model il-
lustrated in c). Here, the model is shown in terms of viscosity structure. We
use the characteristic viscosity structure to construct a feature vector of this
model. It is created from three viscosity profiles at the indicated locations
for India, Tibet and the Tarim regions respectively.

depth of z ≈ 400 km to not bias the feature vector with many viscosity prop-
erties of the upper mantle in relation to the lithosphere. Each viscosity profile
has 150 viscosity values, such that the feature vector space has 450 dimensions
dimensions.

results

The SOM analysis is fully conducted with the MATLAB library provided here
http://www.cis.hut.fi/somtoolbox/ (Vesanto et al., 2000). All single steps

http://www.cis.hut.fi/somtoolbox/
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that are performed here can be retraced with the exemplifying MATLAB script
that is provided in appendix A.

The SOM is organised on a hexagonal grid and the input data contains 815

vectors with 450 components (features) each, such that the SOM-initialisation
results in a map size of 7× 21 neurons. After the training process, the results
can be visualized in many ways (Vesanto, 1999). Here, the results are given in
Fig. 4.3. The histogram perspective in Fig. 4.3a is an obvious way of illustrating
the SOM classification results. The circular markers represent the SOM-nodes
(neurons) and the size of the hexagonal shapes in the background indicate the
number of models (feature vectors) that are associated with each node. Col-
ours represent the classification result that is discussed later. Independent of
the colouring and based on the number of associated models, it is obvious that
separated nodes exist that are offset from their adjacent nodes. An effective
way of presenting these offsets of trained SOM is the unified distance matrix
(Fig. 4.3b, Ultsch, 1993) that shows distance between adjacent neurons. Here,
additional hexagonal fields are introduced between the nodes. Their colouring
is scaled according to inter-node distances, where cold and warm colors rep-
resent small and large distances, respectively. The colouring of the nodal fields
corresponds to the average distance to all adjacent nodes. The representation re-
veals two strictly separated parts at the left edge of the map that correlates with
the histogram representation. Likewise, but less pronounced, another horizont-
ally oriented separation is visible from the center up to the right edge of the
map. The DB-index does not clearly prefer a distinct unique number of clusters,
but suggests a good validation with 3-6, or 11 clusters. In fact, the lowest and
second lowest DB-indices are determined for 3 and 6 clusters, respectively. Be-
cause the visual inspection of the U-matrix suggests 4 clusters, but disagrees
with the corresponding k-means clusters, a partitioning in favour of 6 clusters is
preferred, where the cluster 4-6 are manually summarised into cluster 4. This
completely agrees with the inspection of the classified feature vectors in the
following section.

Classified forward models

So far, the classification result was only shown on the SOM. In Fig. 4.4, the
feature vectors are illustrated in a class-wise manner, where each column cor-
responds to a feature vector of three concatenated viscosity profiles. The colours
and numbers in the top bar indicate the class affiliation and corresponding k-
means clusters, respectively.

The main features of the classified groups are as follows. Class 1 (red) has
a characteristic power-law viscosity behaviour within the Asian crust, and a
strong upper and weak lower crust in Tibet, whereas the Indian mantle litho-
sphere is very strong and has no viscosity reduction with temperature. Class 2

(yellow) is related to one of the most stable clusters, which remains constant for
various k-means clusterings of different total numbers of clusters. The reason
for this is a weak Asian mantle lithosphere, which affects many components
of the feature vectors. The main properties of the third class (light blue) are a
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Figure 4.3: 2D visualisations of the SOM. Circular nodes indicate neurons that are ar-
ranged such that each neuron has six neighbours if not located at the bound-
ary. a) SOM histogram representation shows the amount of data vectors as-
sociated with each neuron. The colouring indicates the classification result
(c). The representation illustrates ‘gaps’ within the SOM (nodes that are not
related to any data vectors), which indicates a distortion of the map and
outlines cluster boundaries. This is related to b), the unified distance matrix
(U-matrix), which indicates inter-nodal distances. Warm colors represent
large distances, and cold colors indicate short distances. Shapes that coin-
cide with nodes correspond to averaged distances to neighbouring nodes. c)
Additional partitive clustering (k-means) of SOM prototype vectors yields
the final classification result, where the total number of 4 clusters is selec-
ted with respect to the U-matrix visualisation and a quantitative validation
criterion (DB-index).

very strong Asian and Indian mantle lithosphere, and a rather weak crust of
Tibet. The viscosity profile of the Tarim region of this class is very similar to its
correspondent parts of the class 4-6 (dark blue). The classes 4 to 6 are, however,
different in terms of Indian mantle lithosphere. They all show a relatively strong
power-law behaviour, which supports the argument of summarising them into
a single class 4, similar to what is suggested by the visual inspection of the
U-matrix.
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Figure 4.4: Classified feature vectors. Each feature vector is associated with a forward
model that was selected during the MCMC walk. The feature vectors are
constructed from three viscosity profiles of the associated forward models
at x = −500 km, x = 200 km and x = 1000 km. They show a character-
istic viscosity structure of the the Indian shield, Tibet and the Tarim region,
respectively. The classification was performed with the SOM and a post-
clustering of the trained SOM using k-means. A clustering with 6 clusters is
preferred by the DB-index analysis. A visual of inspection of the U-matrix
(Fig. 4.3b) suggests to summarise clusters 4 to 6 into a single class (dark
blue).

Classified regions of the parameter space

Each forward model is linked to a certain number of MCMC-samples that dir-
ectly follow the posterior distribution. A separation of the forward models into
classes therefore also enables a separation of the a posteriori distribution into
new distributions that correspond to the end-member model classes. This is
shown as normalised marginal distributions in Fig. 4.5. The colour of the dis-
tributions represents the associated classification of the SOM and the k-means
clustering. The normalisation is done to balance the difference in number of
samples per class and to enable a reasonable comparision between the distri-
butions. However, due to the normalisation the information on the relative im-
portance of the respective classes is lost in this illustration. Yet, the aim of this
analysis is to understand (i) the non-uniqueness of the inversion results and (ii)
the properties of the end-member models. In the following paragraphs, the dis-
tributions are analysed with respect to their classification results. The analysis
is led by the numeration indicated in the sub plots of Fig. 4.5.
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(1) The weak Asian mantle lithosphere that is seen in the viscosity structure
of class 2 (yellow), corresponds to a relatively low activation energy. This
has to be stabilized with a stronger upper crust, i.e. with a higher activa-
tion energy of the upper crust.

(2) Class 2 is characterized by a weak lower Tibetan crust, which is mainly
caused due the low activation energy. As for case (1), the weak part must
be stabilized with strong counter part, i.e. a strong mantle lithosphere.

(3) The classes 3 (light blue) and 4 (dark blue) are relatively similar with re-
spect to the Asian part of the model: A strong mantle lithosphere and
lower crust are compensated by a low viscosity upper crust and reduced
friction angles. Compared to the other classes, the crustal temperature is
increased, which also has a softening effect. However, the mantle litho-
sphere stays very strong, and is characterised by low power-law expo-
nents.

(4) One of the most robust results of the inversion is a strong Indian mantle
lithosphere. All of the clusters clearly have a high activation energy. The
Indian lithosphere can be slightly weaker if the lower Asian crust is sig-
nificant weak. In any case the activation energy is very likely to be above
300 kJ/mol.

(5) The friction angles of India and the weak channel are anti-correlated with
the friction angle of Asia. Models with high Indian friction angles have a
low friction angle for Asia and vice versa. This also means that in case of
of a weak Asian lower crust or lithospheric mantle, the friction angle of
the weak channel is likely to be very small (< 15◦).

(6) In general, the Indian shield of class 4 has a significant vertical variation
in effective viscosity. Obviously, this correlates with high power-law expo-
nents for crust and mantle lithosphere.

(7) The density pre-factor of the Indian mantle lithosphere is shown to correl-
ate with the crustal temperature: A higher density pre-factor (yellow and
blue classes) corresponds to lower crustal interface temperatures, which
can be explained with the effect of thermal expansion.

Comparison of classification results with experimental data

As the separated a posteriori distributions are now clearly associated to end-
member models, a logical next step is to compare these classified distributions
with constraints from laboratory experiments. For example, since the upper
mantle predominantly (> 60%) consists of olivine (e.g. Bürgmann & Dresen,
2008), the distributions of activation energy and power-law exponent of the In-
dian and Asian mantle lithosphere can be compared with experimental data of
olivine. In Fig. 4.6 such a comparison is shown with experimental results from
Hirth & Kohlstedt (2003). In terms of power-law exponents, most of the end-
member distributions have a distinct correlation with one of the experiment-
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Figure 4.6: Classified posterior distributions of viscosity power-law parameters from
Asian and Indian mantle lithosphere in comparison with experimental data
for olivine by Hirth & Kohlstedt (2003). In particular, the class that is repres-
enting most models (class 4, dark blue) shows a distinct correlation of the
Indian lithospheric mantle with dislocation creep proxies. Regarding the
Asian mantle lithosphere, a good correlation with diffusion creep proxies
is observed. Other end-members predominantly indicate a linear, diffusion
creep dominated, deformation behaviour.

ally determined exponents. Class 4 (dark blue), which is representing most
forward models, also indicates a good correlation in terms of activation ener-
gies. Whereas the Indian lithospheric mantle correlates well with experimental
dislocation creep proxies, the Asian mantle lithosphere has a clear linear diffu-
sion creep character. For other less dominant end-member models, the results
are less clear, but there is a tendency of dominant linear diffusion creep deform-
ation behaviour.

Surface expressions of classified forward models

In this final appraisal part of the geodynamic inversion results, the surface
expressions of the classified end-member models are examined. All of the end-
member models have a very similar misfit and represent the surface constraints
approximately equally well within the uncertainty limits. Fig. 4.7 illustrates
the model surface data for the four classes that have been identified with the
clustering approach. The red signals and black dashed lines show the show
the observed data and ±2σ uncertainty limits, respectively. The model data is
represented by the mean surface data (solid black lines) and coloured shaded
areas, which show the ±2σ variation of the model surface data. The topography
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and the Bouguer anomaly show very little variances for the models, and all of
the end-member models represent these data almost equally well, although the
model variations in Bouguer anomaly for the classes 1 and 2 are slightly larger
than for the classes 3 and 4. The main differences are, however, observed for
the velocity fields, where also the largest uncertainties exist.

In terms of horizontal velocities, the classes 1 and 2 show an increase towards
the convergence zone at x ≈ −300 km. This ‘peak’-like feature does not exist for
other classes and is related with a steeper decrease, i.e. a more significant step-
like drop in velocity. The horizontal velocity pattern of the Tarim region is fairly
similar among all classes except class 2, where the very gradual peak followed
by a gradual decrease at x > 400 km is missing. This might be an effect of a
strong mantle lithosphere in the Tarim region, which is missing for the class
2 models. One can speculate about a correlation with the small anomaly seen
in the observed data, which could be evidence for a strong lithospheric mantle
below the Tarim basin.

Regarding the uplift velocity, the most obvious difference is observed for class
2 in the Tibet and Tarim part of the profile, which corresponds to a weak mantle
lithosphere of the respective models. Class 3 and 4 are more similar in this
respect, as also their viscosity structure is very similar in the Tarim region. They
show a characteristic double peak between −400km 6 x 6 50 km, followed by
a local negative anomaly at x ≈ 200 km and an increase towards the end of the
profile. For the Indian part, the uplift velocity differs for theses classes. On the
other hand, the Indian viscosity structure of class 3 is very similar to the one of
class 1 and also their uplift velocity seem to be very similar. All of the models’
uplift velocities share the same strong increase north of the convergence zone
and a local positive anomaly at −300 km 6 x 6 50 km. This could possibly
be explained with very similar densities and activation energies of the mantle
lithosphere of the Indian shield, as seen in Fig. 4.5.

Because the observational uncertainties of the velocity constraints are largest,
the differences of the end-member models are also mostly indicated by these
fields. This also reveals that if observational uncertainties of the vertical velocity
became smaller, certain end-member models could be excluded, and in fact the
non-uniqueness of the inverse problem could likely be reduced.

discussion

For non-unique inverse problems, the Bayesian approach allows a probabilistic
description of the solution. The actual solution to the problem, i.e. the a posteri-
ori distribution gives a complete, but not necessarily a comprehensive picture,
in particular if many model parameters are involved and the distribution is
complex. In the Earth sciences, we often think in terms of ‘Earth models’ to
describe the solution to an inverse problem. However, a single Earth model
is insufficient to describe the complete non-unique solution. This study demon-
strates a way to overcome this common problem with the help of machine learn-
ing algorithms; although, it only demonstrates the results of a single application
and cannot serve as a complete comparative study with multiple methods. In
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the field of geophysics, there have been only very few other attempts to find
common properties of model ensembles for classification purposes, for example
by using statistical techniques (Vasco et al., 1993) or orthogonal function ana-
lysis (Douma et al., 1996). However, these concepts only work if the ensemble of
models form a single cluster (Sambridge & Mosegaard, 2002). In machine learn-
ing, many methods exist that overcome this issue and can be used for similar
type of work (e.g. Bishop, 2006). Besides dozens of SOM variants, SOM alternat-
ives exist, for example the Generative Topographic Mapping algorithm (GTM,
Bishop et al., 1996), which can be seen as a probabilistic version of the SOM,
or the (growing) Neural-Gas algorithm by Fritzke (1995), which has adaptive
connectivity between neurons and can even insert and remove neurons, such
that multiple manifolds of different dimensions within the parameter space can
be better resolved through adaptivity.

Besides all advantages of SOM variants and alternatives, the SOM provides
a high degree of usability also to non-computer scientists, as only very few
adjusting parameters are necessary and a user friendly MATLAB toolbox is
available (Vesanto et al., 2000).

An important aspect of unsupervised learning techniques such as the SOMs,
is the selection of characteristic features (Kohonen, 2013, 2001). In this geody-
namical study, the viscosity structure serves as the only input quantity. This
is evident as the effective viscosity field is an effective material property that
summarises the impact of most of the inversion parameters (e.g. power-law ex-
ponent, activation energy, temperature) that therefore also avoids the need of
additional normalisation. In general, however, the proxies of the density struc-
ture or even the characteristic solution variables, e.g. velocities or strain-rates,
could be used as well. To test what features actually matter and to avoid cor-
related features, a feature selection has to be conducted in the first place, for
example by using principle component analysis (PCA, Jolliffe, 2002; Pearson,
1901), or the SOM itself (Köhler et al., 2009).

The classification in this study is realised as a two-level approach, where
the SOM clusters the model ensemble and k-means is used to cluster the SOM
prototype vectors. Strictly speaking, k-means could be used to directly cluster
the ensemble. However, without using the SOM visualisation techniques and
with quantitative measures only, it is difficult to determine an optimal number
of clusters. The additional visual validity check clearly supports the robustness
of the classification result.

conclusions

Within geodynamics, conducting systematic modelling studies, in which we
vary the input parameters automatically and perform many thousands of mod-
els, is now becoming (computationally) possible. Yet, large ensembles of models
also require efficient classification methods to draw comprehensive conclusions.

Here, such a classification method is presented in the context of geodynamic
modelling and in combination with a Bayesian inversion study. A two-level ap-
proach including self-organizing maps, an unsupervised machine learning tech-
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nique, and partitive clustering is used to analyse and interpret the non-unique
results of a Bayesian inversion with application to the rheological structure of
the lithosphere within the India-Asia collision system.

The approach of performing the SOM-learning with characteristic profiles
of effective model viscosity results in a reasonable model classification. It is
possible to identify four end-member models that represent the major part of
the non-uniqueness of the inversion results. The striking differences between
the end-member models can be reduced to the existence of three model char-
acteristics: a weak lower Tibetan crust, a weak Asian lithospheric mantle and a
strong dislocation creep character of the Indian mantle lithosphere.

Evaluating the classification results in terms of surface expressions that are
linked with the end-member categories, reveals that mainly the uplift rates
show significant class-wise characteristics. The fact that these vertical velocity
signals vary approximately within the observational uncertainty bounds sug-
gests that reducing observational uncertainties of vertical velocities is crucial to
reduce the model ambiguities. Potentially, this can help to largely improve the
constraints on lithospheric rheology.
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appendix

Applying the SOM toolbox: A coding example

The appraisal procedure in this study was performed using the SOM MATLAB
toolbox by Vesanto et al. (2000). Here, the generalised work flow is illustrated
as code example, which can be useful for interested readers. Descriptions of
functions can be found within the toolbox documentation (Vesanto et al., 2000).

% (1) Construct a input data set (feature vectors) for the SOM, for

% example, viscosity profiles:

som.sD = [Profile1(:), ..., ProfileN(:)];

% (2) Normalisation of feature vectors. This would be the place to

% normalize the feature vectors. If the feature components of the

% vectors have a different scaling this step crucial.
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% som.sD = som_normalize(som.sD);

% (3) Create and initialize and train the SOM. Several options are

% available. By default, the SOM is initialised randomly.

som.sM = som_make(som.sD);

% (4) Extract IDs of BMUs for all feature vectors. This is the first

% classification result:

som.bmus = som_bmus(som.sM,som.sD);

% (5) Visualise the SOM and create an unified-distance matrix:

um = som_umat(som.sM);

som_cplane( ’hexaU’,som.sM.topol.msize,um(:));

% (6) Apply k-means clustering to the SOM. Here, the k-means

% clustering is computed 19 times, for 2 to 20 clusters:

[~,som.cl,~,som.ind] = kmeans_clusters(som.sM,20);

% (7) Visualize the Davies-Bouldin index and estimate the theoretically

% best matching number of clusters:

figure( ’name’, ’DB index ’)
plot(1:length(som.ind),ind, ’o−’)
[~,som.min_i] = min(som.ind);

% (8) Visualise the clustering result, assuming 4 clusters fit best, and

% create a colour map with colours:

cmap = jet(4) ;

figure( ’name’, ’SOM clusters ’);
som_cplane(som.sM,cmap(som.cl{4},:))
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Abstract

We present a 3D geodynamic model of the present-day India-Asia collision
system. The model is separated into multiple tectonic blocks, for which we
estimate the first order rheological properties and their impact on the dy-
namics of the collision system. This is done by performing systematic sim-
ulations with different rheologies to minimize the misfit to observational
constraints such as the GPS-velocity field. The simulations are performed
with the parallel staggered grid FD code LaMEM using a numerical res-
olution of at least 512× 512× 256 cells to resolve dynamically important
shear zones reasonably well. A fundamental part of this study is the recon-
struction of the 3D present-day geometry of Tibet and the adjacent regions.
Our interpretations of crust and mantle lithosphere geometry are jointly
based on a globally available shear wave tomography and a global crustal
model. We regionally refined and modified our interpretations based on
seismicity distributions and focal mechanisms and incorporated regional
receiver function studies to improve the accuracy of the Moho in particular.
Results suggest that we can identify at least one ‘best-fit’ solution in terms
of rheological model properties that reproduces the observed velocity field
reasonably well, including the strong rotation of the GPS velocity around
the eastern syntaxis of the Himalaya. We also present model co-variances
to illustrate the trade-offs between the rheological model parameters, their
respective uncertainties, and the model fit. The results also demonstrate
that only a combination of strike-slip faults, strong cratonic blocks and
weak layers (partial melting) within the crust can reproduce the observed
surface deformation field.

introduction

The active continental collision system of India and Asia results in a large area
of deformed lithosphere (e.g. Molnar & Tapponier, 1975), which is one of the
main reasons why it is one of the most widely investigated regions on Earth.
Especially through numerous studies of GPS velocity observations, the long-
term deformation of crust and mantle lithosphere is partly examined with very
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high spatial sampling densities over large areas, such as in the eastern syntaxis
(e.g. Zhang et al., 2004). Although, many observations are available, basic issues
remain. Whether it is the evolution of the Tibetan plateau (e.g. Royden et al.,
2008; Tapponnier et al., 2001) or driving mechanisms of the collision, such as
the role of ridge push and slab pull (e.g. Jagoutz et al., 2015; Van Hinsbergen
et al., 2011; Capitanio et al., 2010) that are debated, all of these issues are fun-
damentally linked with the rheology of crust and lithosphere, which define
the underlying strength profiles and, hence, the deformation mechanism of the
continental collision.

Irrespective of the discussion on the rheological structure of the continental
lithosphere itself (e.g. Burov & Watts, 2006; Jackson, 2002), several deforma-
tion mechanisms have been proposed over the last thirty years, which can be
categorized into three end-member models. Each of them comes with rather
strict model assumptions. Firstly, kinematic models with rigid blocks are pro-
posed, where the entire deformation is accommodated by shortening along
major thrust zones and strike-slip faults, favoring a mostly eastward directed
extrusion of Tibet (e.g. Avouac & Tapponnier, 1993; Tapponnier et al., 1982; Tap-
ponnier & Molnar, 1976). Contrary to this, dynamic models of viscous deforma-
tion favour a crustal thickening to accommodate the deformation (thin viscous
sheet models, Houseman & England, 1986; England & Houseman, 1986; Eng-
land & McKenzie, 1982) and to explain surface velocities (Vergnolle et al., 2007;
Flesch et al., 2001). These models assume vertically averaged viscosities, but
can incorporate lateral heterogeneities (England & Houseman, 1985) to account
for local effects. However, boundaries between geological units are vertical and
horizontal velocities remain constant with depth (Lechmann et al., 2014). This is
the striking difference with a third category of models favouring a lower crust
‘channel flow’ as a key mechanism for the ongoing deformation in the upper
Tibetan crust, which is decoupled from the mantle lithosphere (e.g. Beaumont
et al., 2001; Clark & Royden, 2000; Royden, 1996; Royden et al., 1997; Bird, 1991).
Although this mechanism seems inconsistent with centroid moment tensors of
large earthquakes, which suggest mechanical coupling in south-western Tibet
(Copley et al., 2011), similarities exist between observed GPS velocities and pre-
dicted deformation by ‘channel flow’ models in eastern Tibet, where crustal
heterogeneities are taken into account (Cook & Royden, 2008). Recently, Lech-
mann et al. (2014) tried to avoid the shortcomings of the previous approaches
by using a fully dynamic thermomechanical 3D model of the present-day India-
Asia collision to estimate non-linear lithospheric rheologies. They account for
major strike slip faults and rigid blocks, and incorporate other geophysical ob-
servations to confine the model geometry.

Similar to Lechmann et al. (2014), we employ a 3D mechanical Stokes-flow
code (LaMEM, Kaus et al., 2016) to study a physically consistent deformation
behaviour of the India-Asia collision. However, compared to their models, we
employ a high resolution and couple the Stokes model with an optimisation (in-
version) algorithm, which automatically optimises the model viscosity structure
with respect to GPS-derived surface velocities. Our model domain is composed
of multiple tectonic blocks and geological units, which results from a joint inter-
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pretation of various geophysical data sets. We employ our code on 4096 CPUs
and due to the high model resolution, we can account for localised deformation
behaviour within strike-slip faults and thrust imitating weak zones.

The work is composed into five main parts. Firstly, we describe the numerical
approach of the mechanical forward model and introduce the methods used
for parameter quantification. The second part is dedicated to the 3D model con-
struction and observational constraints of the optimisation procedure. Results
are described hereafter. We separate between minimisation of the model misfit
and an other section addressed for error quantification and estimation of para-
meter uncertainties. We discuss the results with respect to the forward model
and methodological aspects and end with a conclusion of the key aspects.

method

Our methodology involves four key aspects, which are (i) to construct a realistic
three dimensional present-day geometry of the India-Asia collision zone, and
(ii) to comprise the geometry into a dynamic, physically consistent Stokes-flow
model. Furthermore, (iii) we link the dynamic forward model with an optim-
isation algorithm to find best-fit viscosity model parameters with respect to the
observed deformation field, and (iv) identify the key parameters and geological
units of the model by estimating model uncertainties.

Model geometry

Data basis

The input model geometry is based on five different seismological records. A
SV-wave tomography by Schaeffer & Lebedev (2013) forms the basis of the
model. We have also analysed 24 receiver function (RF) profiles in the region
to collect complementary information on the depths of the Lithosphere As-
thenosphere boundary (LAB) and the Moho (Zhang et al., 2014; Xu et al., 2014;
Mechie & Kind, 2013; Schneider et al., 2013; Sippl et al., 2013; Zhao et al., 2010;
Nábelek et al., 2009; Kumar et al., 2006; Rai et al., 2006; Schulte-Pelkum et al.,
2005; Wittlinger et al., 2004; Vergne et al., 2002). Additional information was
also extracted from teleseismic tomography (He et al., 2010) and seismic reflec-
tion studies (Gao et al., 2013). Locations and orientations of all seismic studies
incorporated in this work are illustrated in Fig. 5.1. The Moho signals of these
profiles can be seen as a refinement of the Crust 1.0 model (Laske et al., 2013),
which is also included in our joint interpretation, but, because of its limited res-
olution (1◦ × 1◦) and averaged character, it is always reinterpreted when local
information is available. For the interpretation of shear and subduction zones,
seismicity distribution and focal solutions (Ekström et al., 2012; Dziewonski
et al., 1981) are involved as well. Locations of strike-slip faults are transferred
from literature (Tapponnier et al., 2001; Gordon & DeMets, 1989; Molnar & Tap-
ponier, 1975). The Talas-Fergana fault is presently inactive (Feld et al., 2015;
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Figure 5.1: Geographical setting of the 3D model. 24 profiles of receiver function stud-
ies in the Himalaya region are indicated as black lines and with a marked
area. We use these profiles in combination with the global shear wave
tomography model SL2013SV (Schaeffer & Lebedev, 2013), to construct the
model lithosphere. In addition, CRUST 1.0 (Laske et al., 2013) is incorpor-
ated as a reference of the Moho. Local interpretations (shear zones, sub-
duction channels, etc.) are supported with CMT solutions, and seismicity
data. The black framed box with arrows indicates an internal boundary
condition, where velocities are superimposed to imitate the motion of India
(38mm/yr). White symbols mark free-slip model boundary conditions.

Ghose et al., 1998), and is therefore included for a consistency-check and also
because it is in the vicinity of many GPS observation points (Fig. 5.4).

Cross-sectional interpretation and volumetric interpolation

To construct the model geometry, we interpret the data described in section
5.2.1.1 in horizontal slices and vertical cross-sections (every 1◦) that are either
oriented in South-North, or West-East direction. On each vertical section, we
plot the shear wave tomography, focal solutions and other seismic events (mb >
5).

For crustal heterogeneities, we found a map view interpretation most suit-
able as fault zones (e.g. Tapponnier et al., 2001) and traces of surface tectonics
in topography (ETOPO1, Amante & Eakins, 2009) can be taken into account
more easily. Horizontal interpretations lack vertical precision, therefore inter-
pretations are conducted for various depth levels and are projected on vertical
cross sections to continue the interpretation in more detail. An example is given
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Figure 5.2: Example slice indicating the construction process of the model geometry.
A south north transect along the 89◦ meridian is illustrated including all
data that supports the interpretation procedure. Background image indic-
ates seismic velocity anomalies of Schaeffer & Lebedev (2013). Shaded areas
mark existing interpretations from different projections, here, map-view in-
terpretations.

in Fig. 5.2, where projected (horizontal) interpretations are shown and espe-
cially lithospheric interpretations can be performed more precisely. Moreover,
we adjust the Crust 1.0 Moho signal, which is used to automatically separate
crustal phases from their lithospheric counterparts, which were previously in-
terpreted as a whole, such as seen for Tibet in this example. We use the geomIO
software package (Bauville & Baumann, 2015) to interpolate, summarize and
re-project our interpretations on other slices. geomIO also renders 3D geomet-
ries from our joint 2D interpretations, which were all conducted in a standard
vector graphics program, and allows us to look at these geometries in three
dimensions with appropriate software (e.g. Paraview, www.paraview.org) to re-
consider our interpretations. The final geometry interpretation is given in Fig.
5.3. We use these geometries to assign phases to markers that set the input
geometry and material properties of the Stokes-flow model described in the
following section.

Geodynamic model and governing equations

As the model geometry allows for distinct material properties for crust and
mantle lithosphere within each unit, we choose a constant viscosity and solve
for the viscous Stokes flow within a 3D Cartesian model domain (xi, with i =
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Figure 5.3: 3D volumes generated from multiple 2D interpretations on NS- EW cross
sections and mapview projections. The transformation was performed with
the geomIO software package (Bauville & Baumann, 2015). Each geological
unit participating in the forward model can be assigned with different ma-
terial properties.

1, 2, 3). This comprises the governing equations, which are the conservation of
momentum (eq. 5.1) and mass (eq. 5.2) for incompressible fluids, with velocity
(vi) and pressure (pi) as primary unknowns. Here, we give a brief abstract of
the comprehensive description in Kaus et al. (2016):

∂τij

∂xj
−
∂p

∂xi
+ ρgi = 0 (5.1)

∂vi
∂xi

= 0. (5.2)

τij = σij + p δij denotes the Cauchy stress deviator, ρ density and gi grav-
itational acceleration. A constitutive relationship relates deviatoric stress and
strainrate (ε̇ij) tensors:

τij =
τII
ε̇vsII

ε̇ij = 2 η
∗ε̇ij, (5.3)

where ε̇ij = 1
2(
∂vi
∂xj

+
∂vj
∂xi

) − 1
3
∂vk
∂xk

δij is a function of velocities. The subscript II
denotes the square root of the second invariant of a corresponding tensor, e.g.
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Dir. Number of
CPUs

Number of
cells

Number of
c.g.1 cells

Width [km] Resolution [km]

x 16 512 32 6166 8.0 (center) < dx < 16.1

y 16 512 32 3860 6.7 (center) < dy < 8.3

z 16 256 16 700 2.6 (top) < dz < 2.9

Table 5.1: Numerical model characteristics. Model resolution of adaptive FD-mesh is
given in terms of minimal and maximal cell widths (dx,dy,dz). c.g.1 denotes
‘coarse grid’ of the Galerkin geometric multigrid preconditioner, where 5

multigrid levels are used in total.

for the deviatoric stress τII =
(
1
2τijτij

)1/2
. η∗ describe the variable effective

viscosity, which is the key variable that we optimize with respect to surface
observations.

The conservation equations are discretised with a staggered grid finite dif-
ference approach (Harlow et al., 1965) and implemented into the code LaMEM
(Lithosphere and Mantle Evolution Model, Kaus et al., 2016). The most im-
portant numerical characteristics are given in Tab. 5.1. Additional information
on the numerical implementation and solving techniques are provided in ap-
pendix A.

Parameter optimisation

We optimise the model rheology (effective viscosities) with respect to the pre-
sent-day surface velocity field, observed with GPS sensors (see following sec-
tion 5.3). In this study, parameter optimisation is separated into a manual and
an automated part. As the model geometry involves many geological units (37),
the parameter space is large, and even for a simple gradient based method, the
inverse problem becomes challenging through the curse of dimensionality.

Whereas in previous studies (Baumann & Kaus, 2015; Baumann et al., 2014),
we were following a Bayesian strategy to tackle the inverse problem of con-
straining lithospheric rheology, we make use of a different, computationally
cheaper, method in this paper to find first order accurate solutions that can
be used as prior information for future Bayesian based projects. The Nelder-
Mead downhill simplex method (NMDS, Nelder & Mead, 1965) is capable to
find a local minimum of the misfit function, but it does this in a rather efficient
manner. Keeping in mind that other solutions may coexist, we are still able to
find one possible best-fit solution in terms of optimal model viscosities through
which the observed surface velocity field can be reproduced. Assuming Gaus-
sian error statistics, we can even evaluate the Hessian (see following subsection)
to find parameter correlations and uncertainties of the involved model paramet-
ers.
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Estimating model uncertainties

To estimate correlations and uncertainties, we approximate the Hessian in the
local minimum that is found with the NMDS method. Let f (m) be the objective
function at the (local) minimum m to which the NMDS method has converged,
then

H (f (m)) = ∂2f
∂mi∂mj

(5.4)

≈ f(m+δiei+δjej)−f(m+δiei)−f(m+δjej)+f(m)

δiδj
(5.5)

is the Hessian that can be approximated using forward finite differences (Den-
nis Jr. & Schnabel, 1996, p. 77 ff.). Here, ei,j are unit vectors and δi,j are small
quantities in directions i and j respectively. As H (f (m)) is symmetric, and

provided that parameters have same units and scale (hence, δi = δj),
(d2−3d)

2

additional function evaluations are required for the approximation, where d is
the dimension of the parameter space. Once the approximate Hessian is found,
it can be transformed into the model covariance matrix, which is proportional
to the inverse of the Hessian (Menke, 2012):

[Cov m] = σ2d

[
1

2
H (f (m)) |m=mmin

]−1
, (5.6)

where the inverse is scaled with the data variance σ2d. Care must be taken
according to the positive definiteness of the Hessian and local convexity of the
objective function, which is the case for local minima. However, due to the
approximation and numerical inaccuracies, small negative eigenvalues might
occur, such that H (f (m)) must be regularized before inverting.

observational constraints

We compare the model velocity field at the surface with the GPS velocity field
observed during different studies (Liang et al., 2013; Zubovich et al., 2010; Gan
et al., 2007; Vernant et al., 2004; Zhang et al., 2004). A fixed Eurasian frame is
assumed, and the misfit between predicted and the observed velocity field is
computed as weighted RMS error, i.e.:

misfitRMS =

√∑
iwi ·

(
vobs.,i − vmod.,i

)2∑
iwi

(5.7)

The observed velocities (Fig. 5.4) are interpolated on a rectilinear grid that cor-
responds to the FDSTAG-nodes of the numerical discretisation. As the velocity
data is sparsely sampled, the interpolation errors can be significantly higher
than the observation errors themselves. For this reason, we compute a weighted
RMS error, where the weights are based on how dense the data is sampled in
the local neighbourhood (Voronoi cell) of a grid point. We follow (Baumann
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Figure 5.4: Observational constraints. GPS velocity field (black arrows) and uncertain-
ties (ellipses) from literature (Liang et al., 2013; Zubovich et al., 2010; Gan
et al., 2007; Vernant et al., 2004; Zhang et al., 2004). Observed velocities are
interpolated on a rectilinear grid to match the model surface velocities. Un-
derlying coloured map represents the quality of respective (interpolated)
velocity vectors, based on the sampling density of observed data. See sec-
tion 5.3 for details. Warm colours represent large weighting factors (strong
constraints) and bluish colours highlight a downgrading of data quality,
corresponding to a sparse data base.

et al., 2014), where the coordinates of a gridpoint are included into the Voro-
noi diagram of the data to determine the inverse of the corresponding Voronoi
cell area, which corresponds to a local sampling density. The sampling dens-
ity is logarithmised to remove notches, very small values (< 10−6) are cut off,
and the result, to which we refer to as velocity quality is normalised to a scale
between 0 and 1 (see Fig. 5.4). Moreover, velocities close to the boundaries of
the model are not taken into account for the misfit calculation. Corridors of 300

and 600 km at the northern and southern boundary of the domain and 400 km
at the other boundaries are omitted. Velocities within the area where velocity is
assigned due to internal boundary conditions are ignored too. Due to the effect
of the weighting factors, large model errors in bluish regions is downgraded,
the misfit of other areas with warm colors is enhanced. For example, model
misfits within Afghanistan and Pakistan have a lower impact on the total error
than model misfits within the eastern Himalayan syntaxis.
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results

We perform instantaneous simulations where the effective viscosity of the vari-
ous geological model units is changed systematically to gradually optimise the
model viscosity structure. The density structure of the model is constructed
with averaged density values from a reference Earth model (PREM, Dziewon-
ski & Anderson, 1981), but is excluded from the model optimisation in this
particular study. The model evaluation is carried out according to a model mis-
fit defined in section 5.3. This is followed by a series of independent tests before
we perform an uncertainty analysis to quantify the best-fit model sensitivities.

Finding optimal effective viscosities

After a manual optimisation of the model on a ‘trial-and-error’ basis, which
is not further described here, an automatic optimisation is conducted with the
NMDS optimisation method. We perform a number of consecutive optimisa-
tions with varying inversion parameters (see Fig. 5.5, 5.6). The previous best-fit
result is always adopted as initial guess of subsequent optimisations. An over-
view of the inversion parameters is given in Tab. 5.2.

Figure 5.5: Geological units that are optimised during each separate NMDS inversion
step (1-10, see Tab. 5.2). Red cuboid shows the volume where velocities are
assigned as internal pushing boundary condition.
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Optimisation no. Init. 1 2 3 4 5 6 7 8 9 10

Number of models 53 21 26 32 22 27 24 20 39 39

Crust India 22.00 21.75 21.97 22.01 21.51 21.65

Crust India subd. 22.90 23.06 22.96 22.91 22.99

Crust India subd. E 22.48 22.55 22.57 22.98 22.95

Lith. India subd. 24.00 24.06 24.07 24.01

Lith. India subd. E 23.00 22.85 23.01 22.71

Crust Tibet 22.70 22.82 22.82 22.64 22.66 22.62

Lith. Tibet 21.00 20.51 20.28 20.18

Crust Tarim 24.00 24.32 24.61

Lith. Tarim 24.00 23.92

Crust Sichuan 25.00 24.32 24.66

Lith. Sichuan 25.00 24.02 23.14

Crust (lower) Tibet SE 21.00 21.10 21.20

Lith. Tibet SE 22.00 21.97 21.82

Crust China oc. 22.70 23.20

Lith. China oc. 22.70 22.63

Crust Eurasia block 23.00 23.50

Lith. Eurasia block 23.00 23.50

Crust China 24.00 24.05 24.39

Lith. China 23.00 23.17 23.00

Crust Ordos 24.00 24.10

Lith. Ordos 24.00 23.47

Crust Pamir subd. 22.00 21.95 21.10 21.25 21.24

Crust Eurasia 23.00 22.65 23.29

Lith. Eurasia 24.00 23.91 23.63

Lith. Iran 24.00 23.66 23.37

Crust Arabia oc. 22.00 22.75 22.96

Lith. Arabia oc. 23.00 23.75 24.75

Fault Altyn Tagh 22.00 22.22 23.26 23.97

Fault Xianshuihe 21.00 20.64 19.22 19.56

Fault Sagaing 22.00 22.22 22.31

Fault Karakorum 22.00 22.22 22.74

Fault Kunlun 21.00 21.63 20.26

Fault Chaman/OFS 21.00 22.22 22.60 22.95 21.98 22.62

Fault Talas-Fergana 21.00 21.91

Boundary South 22.70 22.77 22.97

Boundary East 22.70 22.48 22.46

Mantle 21.00

Table 5.2: Model parameters and respective values during the optimisation process. In-
version parameters are effective viscosities, i. e. log10 (η [Pa s]). Subsets of
geological units that participate at each NMDS inversion are visualized in
Fig. 5.5 and the misfit progression in Fig. 5.6.
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Figure 5.6: Convergence behaviour of NMDS optimisation. The gray line illustrates the
model misfit with respect to a consecutive model number. In each section
a separate NMDS inversion is performed for a different subset of model
parameters (see Fig. 5.5). Enhanced markers indicate best-fit model of each
optimisation run.

Optimisation of the central model domain: Tibet, India, and adjacent cratonic basins

We start with optimising the rheological structure of the central model domain
(Fig. 5.5, 1), i.e. Tibet blocks (crust and mantle lithosphere) and Indian compon-
ents, such as the northwards (Main Himalayan thrust) and eastwards directed
subducting crust (Indo-Burman subduction zone) and their mantle lithospheric
counterparts of the Indian plate. Adjacent cratonic blocks, such as the Tarim
and the Sichuan basin are included as well. Tibet, in particular, is fragmented
into a central and a south-eastern mantle lithosphere, which was observed to
be necessary during the first manual tests. More details on this are given in ap-
pendix B. We further introduced a lower crustal phase for south-eastern Tibet
additionally, to account for a potentially necessary decoupling effects in the
eastern Tibet. In section 5.4.2.1, we dedicate an additional test for that. During
the NMDS, the misfit first decreases quickly for the first ≈ 30 models, before
it stagnates and even diverges. The NMDS is stopped after ≈ 50 models to
continue with a different parameter subset (Fig. 5.6). The viscosities that have
changed most compared to the initial values are the ones of Sichuan (Crust, C,
and mantle lithosphere, ML) and Tibet ML, which became significantly weaker.
In contrast, Tarim C viscosity increased.
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Crustal phases, convergent zones and strike slip faults

As strike slip faults were excluded previously, we focus on the crustal viscosit-
ies of India and Tibet and effective viscosities of the six major faults (Fig. 5.3), as
a correlation is expected, and keep viscosities of mantle lithosphere unchanged
(Fig. 5.5, 2). The diverging behaviour of the misfit reduces and the previous
best-fit model can be slightly improved (Fig. 5.6). Parameterwise, the effective
viscosity of faults has changed most. Especially the viscosity of the Xianshuihe
fault decreased significantly, while the strength of the others moderately in-
creased. Initial fault viscosities are different, such that Xianshuihe and Kunlun
faults are now weaker than others.

Western model domain

As the results of the previous optimisation still contain the largest misfits in
the western syntaxis of the Himalayas, we further investigate the western part
of the model domain. This includes crust and lithosphere of the Arabic plate,
the Iranian lithosphere and the Chaman fault and Owen-Fracture-Zone. Most
of this area is represented as Eurasian crust and mantle lithosphere, which is
modelled as a single, effectively acting geological unit. Except of the Eurasian
ML viscosity, all involved parameters changed notably that we interpret as a
balancing behaviour.

Eastern model domain

In analogy to the previous part, we also optimise the eastern model adja-
cency and introduce the free parameters for the Chinese ocean and continental
block, the Eurasian and Ordos block and two additional boundary domains
that should imitate the far-field influence of various subduction systems. Para-
meters approximately changed by equal amounts to probably further relax the
system.

Strike slip faults - revisited

After optimising the western and eastern part, we now optimise the faults only
to test their reported significance (Avouac & Tapponnier, 1993). We observe a
striking misfit reduction and a major adaptation of most of the effective fault
viscosities. In particular, the Altyn-Tagh fault is noticeable, where the viscosity
increased by one order of magnitude, and the Xianshuihe and Kunlun fault,
which show a massive viscosity decrease. In comparison with optimisation no.
2, the trends are stable with the exception of the Kunlun fault viscosity, that
increased in the first place, and then decreased by more than one order of
magnitude.

Subsequent optimisations

We continue this procedure with five additional NMDS optimisations until the
misfit decreases more and more gradually. Especially the latest optimisation
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with model viscosity parameters of the model center results in no significant
model improvement, while parameters are essentially unchanged.

Best-fit model

The best-fit model model error is shown in Fig. 5.7, and in Fig. 5.8, the difference
in velocity error, before and after the NMDS inversion. The misfit is given as
a weighted misfit, as weights computed from GPS sampling density are taken
into account (see Fig. 5.4). Regarding the separate NMDS inversion steps, the
misfit does not decrease homogeneously throughout the observed area and
rather decreases for characteristic regions, depending on which of the model
viscosities, the current NMDS inversion is tuned for. Overall, the improvements
mainly affect regions of interest (regions with a high GPS sensor density), Tibet,
Tarim, ant the eastern syntaxis with the return-flow area. However, this is on
the cost of the western model domain (Pakistan, Afghanistan), where less GPS
stations are available and the model misfit has more freedom to deteriorate (Fig.
5.7a). Fig. 5.7b illustrates the weighted model error. The contour lines indicate
the weighting factors (see Fig. 5.4). The weighted error is more concentrated,
mainly along the main thrusts, i.e. the main Himalayan thrust and the Pamir
region, but also along the Xianshuihe strike-slip fault and in central Tibet. Fig.
5.8 reveals that particularly at the eastern syntaxis and in the Tarim region, the
model error has massively improved (bluish colors). On the other hand, it also
reveals that in some parts of the model, for example the Quaidam basin or
Tien-Shan, the local misfit increased (reddish colors). At least for these example
regions, introducing additional geological units will allow the model to adapt
with distinct rheologies and can possibly reduce this deterioration.

For detailed insights into the characteristic surface velocity field of the east-
ern syntaxis, and how the predicted velocity field compares to the observations,
we show this region in an enlarged representation (Fig. 5.9). Here, the predicted
velocity field is interpolated on the locations of observations published by (Gan
et al., 2007). The data is provided with the 2σ-confidence intervals, and in al-
most all cases, the predicted velocities match the data taking into account the
standard deviations. In Fig. 5.10, we illustrate the best-fit model in a 3D per-
spective. Velocity arrows at the surface are scaled according to absolute values.
Label (1) indicates the area, where velocities are superimposed and label (2)
highlights eastern Himalayian syntaxis, where the model is able to reproduce
the characteristic ‘extrusive return flow’ pattern. The strainrate field is shown
underneath, and indicates areas of moderate (dark blue) and strong (green and
red) model deformation. Only very minor deformation is observed for cratonic
blocks (Tarim, Ordos, Sichuan, label 3) and most of Eurasia. Surprisingly, we
also observe only very little deformation along the Altyn-Tagh fault (label 4),
which was found to have a large effective viscosity (log10 (η

∗) = 23.97± 1.08).
Taking the large standard deviation into account, it still acts as a unit with
almost no internal deformation, preventing a more pronounced clockwise rota-
tion of Tibet. However, it is strongly anti-correlated with the Tibetan crust and
the Xianshuihe fault (Fig. 5.14), allowing a lower viscosity provided they have
larger viscosities.
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Figure 5.7: Velocity error of best-fit model. a) Observed (interpolated) and modelled ve-
locity fields are illustrated with black and gray arrows respectively. Colours
indicate the total velocity error in cm/yr. b) Weighted error that is used for
optimisation. ∗ indicates that units are scaled. Weighting factors are plotted
on top as smoothed contour lines. In comparison with a), ‘trusted’ model
regions have enhanced errors, for other regions with sparse data coverage,
errors are downgraded.
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Figure 5.8: Model misfit improvement through NMDS optimisation to be compared
with Fig. 5.7b. Units are scaled by weighting factors. bluish and reddish
colours indicate improved and deteriorated model areas respectively.

The deformation behaviour is also seen on three transects (A-C) along char-
acteristic collision settings. Profile B reveals that the central Tibetan crust ex-
periences moderate deformation, and highest strain rates are localised at the
surface of the underthrusting Indian shield (crustal phase). The Indian mantle
lithosphere has a well constrained high viscosity (log10 (η

∗) = 24.01 ± 0.19 )
and basically acts as strong indenter. This matches the fact that in this region,
deep earthquakes are localised close to the Moho (Priestley et al., 2008). We also
observe that the Tibetan mantle lithosphere has a particular low viscosity.

Along transect A, which crosses the Pamir region, most of the deformation is
localised as well. Here, it is mainly concentrated in the southwards subducting
continental crust (Crust sub. Asia) and coincides well with the deep seismicity
observed here (Schneider et al., 2013; Sippl et al., 2013).

Transect C crosses eastern Tibet and a number of key features in particular.
First, we see that the ‘Tibet SE ML’ unit, to which an extra phase has been as-
signed as tomographic models show anti-correlated features (appendix section
B), has indeed a distinct, lower viscosity log10 (η

∗) = 21.82±0.66 and compared
to the Indian and Asian lithosphere, it deforms noticeably (ε̇II ≈ 10−151/s). The
‘Tibetan ML’ is also present on this transect, indicated with a very low viscos-
ity, which can be explained through radioactive heating from the thick Tibetan
crust (McKenzie & Priestley, 2008). It is linked with the two strike slip faults,
Xianshuihe and Kunlun that reach the Moho. Second, we observe a concen-
tration of increased strainrate at the Kunlun fault down to the level of lower
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Figure 5.9: Enlarged visualisation of the velocity field in eastern Himalayien syntaxis.
Observations for this plot are taken from (Gan et al., 2007). Ellipses corres-
pond to standard deviations (95 % confidence intervals) of the data.

crust and upper mantle lithosphere. These observations agree very well with
tomographic images by Ceylan et al. (2012) and Liang et al. (2012) that reveal
low velocity zones concentrated along the eastern Kunlun fault at mid-lower
crustal down to lithospheric depths, which Ceylan et al. (2012) interpreted as
trapped strain heating caused by shearing. Moreover, this profile shows the low
viscosity of the ‘Tibetan lower C’ unit, which can contribute to an decoupling
of upper crust and mantle flow (e.g. Royden et al., 1997) in this region.

Fig. 5.11 shows the horizontal velocity components of the model in the East-
ern Himalayien syntaxis and for a series of depth levels (0 to 400 km). The figure
reveals a decoupled horizontal velocity field in the eastern syntaxis. Whereas at
the surface, an extrusive outflow is observed, the horizontal velocity at depth
resembles a large scale convection cell, approximately centred on Burma. The
flow field at depth is perpendicularly directed to the eastwards subducting
Indian lithosphere and is aligned with the surface deformation in Tibet.



152 the present-day dynamics of the the india asia collision

Figure 5.10: Optimised model with best-fit surface velocity field and a exaggerated to-
pography (ETOPO1) for orientation. Three transects (A-C) are given along
characteristic collision settings, where viscosity, strain rate and deviatoric
stress illustrate the model dynamics. Unlike the surface velocity field, velo-
city arrow lengths on transects are normalised to illustrate the flow pattern.
Markers 1-4 are labels for detailed description in section 5.4.1.7.

Independent tests

The role of a partially molten lower crustal layer in eastern Tibet

Seismological (e.g. Brown et al., 1996; Nelson et al., 1996; Kind et al., 1996) and
magnetotelluric (Le Pape et al., 2012; Bai et al., 2010; Wei et al., 2001) studies sug-
gest a partially molten lower crust in the south eastern syntaxis of the Tibetan
plateau that is extended up to the Kunlun fault. This hypothesis is also suppor-
ted by numerical models that demonstrate the importance of a low-viscosity
crustal layer to establish an extrusive return flow field, which is characteristic
for eastern Tibet and adjacent regions (e.g. Sternai et al., 2014; Clark & Royden,
2000; Bird, 1991). To account for these observations, we have embedded such a
lower crustal layer in the model geometry (see Fig. 5.3). During the optimisa-
tion its viscosity value does not deviate much from its initial value and stays
low (η = 1021.20 Pa s). Yet, to estimate its total effect, we remove the volume
that assigns low viscosities in this area, such that the material is replaced by
the ‘Tibet-crust’ phase. Fig. 5.12 demonstrates the effect that this modification
has on the current best-fit model. The error increase is quite significant, which
is about the same order of magnitude as the error reduction of the entire NMDS
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Figure 5.11: Horizontal model velocity field (directions) in eastern Himalayian syntaxis.
Velocities are interpolated on a regular grid with a horizontal and vertical
spacing of δh = 100 km and δv = 5 km respectively. Bars are oriented
into flow direction. Colours indicate depth levels and bar scales express
horizontal velocity magnitudes.

optimisation, but concentrated in the eastern syntaxis. Locally, the absolute er-
ror is of the order > 0.5 cm/yr. This shows that a weak lower crust is required
to fit the data.

Weakening the Indian mantle lithosphere

As a second example, we illustrate the effect of an Indian mantle lithosphere
that is one order of magnitude weaker (viscosity decrease from 1024.01 to
1023.00 Pa s) in Fig. 5.13. The new viscosity is still one order of magnitude higher
as the viscosity of the Tibetan (SE) mantle lithosphere. Obviously, the Indian
mantle lithosphere affects a much larger area compared to the previous test
with the weak lower crustal phase. Weakening the Indian ML provokes espe-
cially large errors in the central model domain (Tibet and adjacent regions), but
also moderate errors at western and eastern bounds. However, some other parts,
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such as the northern model boundary in fact improve their fits. The model fit
is also improved for a small region in central Tibet.

The effect of different boundary conditions

All our simulations so far were performed in a free-slip box. The southern and
eastern boundary are additionally damped with thick vertical boundary layers
to mimic far field effects. The viscosities of those layers are even integrated into
the inversion scheme. However, the northern and western boundary as well
as the bottom boundary at 700 km depth were left untouched. We therefore
perform an additional test, where the northern ‘Eurasian’ boundary is modified
into a no-slip boundary instead, which is another reasonable choice. In the same
manner, we also test a no-slip bottom boundary condition. Yet, both simulations
show that the velocity-fit is not affected by these changes. The Eurasian part of
the model has a high viscosity (see Tab. 5.2), which strongly attenuates the
model velocities.

Uncertainties of optimisation results

For a particular set of model parameters we compute an approximation of the
Hessian (eq. 5.5) to get an impression of the parameter uncertainties of the
optimised solution. Our approach, described in section 5.2.4, can only serve
as a first order approximation, simply because the number of forward solves
grows quadratically when approximating the components of the Hessian with
forward finite differences (eq. 5.4). This is cheaper but also less accurate than
higher order approximations, such as central differences. Yet, the forward finite
difference approximation for first and second derivatives are computed for 21

selected model viscosities.
As the effective viscosities vary on an exponential scale, our numerical para-

meter space is scaled to the range [17.0, . . . 25.0], which corresponds to the log10
values of the cut-off viscosities for which we can generally expect numerically
stable results. According to this range, the finite difference increments are set
to δi = +0.25. The Altyn-Tagh-fault viscosity parameter is an exception in this
respect, and δi = −0.25 because its viscosity is already very high, such that a
further increase results in non-convergence.

By definition, the objective function must be perfectly convex and H (f (m))

semi positive definite. In reality, the objective function f (m) might be a lot more
bumpy and probably bears trade-offs and maybe multiple local minima close
to each other, such that the positive definiteness of H (f (m)) also strongly de-
pends on the particular increments δi. In some cases, this analysis results in
slightly smaller or similar values of the objective function when increasing a
parameter. To enforce the convex shape of f (m) and the semi-positve definite-
ness of H (f (m)), we enforce f

(
mopt,i + 2δiei

)
> f

(
mopt,i + δiei

)
> f

(
mopt,i

)
by shifting the function values with small εi of the order 10−4. Practically, this
can be done by increasing small, but negative eigenvalues of H (f (m)) by very
small increments, to yield an new approximate Hessian H∗ (f (m)). This process
can be repeated several times (here 6 iterations) until H∗ (f (m)) is semi-positive
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Figure 5.12: The effect of a lower crustal low viscosity (LCLV) layer in eastern Tibet is
illustrated as difference in model misfit between the best-fit model and a
model without a LCVC layer. The model misfit without LCLV layer is sig-
nificantly increased. Green outline indicates the lateral extend the LCVC
layer.

Figure 5.13: Effect of weakening the Indian mantle lithosphere by one order of mag-
nitude (viscosity decrease from 1024.01 to 1023.00 Pa s) has a significant
deteriorating effect on the model misfit, although the error in northern
model boundary locally reduces. Green outline indicates the laterally most
extended outline of the northwards subducting Indian mantle lithosphere.
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Figure 5.14: a) Approximated model covariance matrix for a selected subset of the para-
meter space. Reddish colours represent positive correlation. bluish colours
indicate anti-correlated parameters. Diagonal entries show model para-
meter variances b) Two parameter correlation examples of (a) represented
with Gaussian confidence intervals (0.5, 1, 2.5, 5, 10 % and 90, 95, 97.5, 99,
99.5 % ). Both examples show anti-correlated parameters. The upper case
shows that viscosities of Indian and Tibetan mantle lithosphere are well
constrained. We find a strong Indian shield and a weak Tibetan mantle
lithosphere. Both have low correlation with other parameters as well (see
a). The lower example is more specific and illustrates a stronger correlation
between the a weak lower crustal layer in eastern Tibet and the Kunlun
fault.

definite. According to eq. 5.6, we compute the covariance matrix, by inverting
H∗ (f (m)) and scaling it with the data variance, for which we assume a constant
standard deviation of σ = 1mm/year.

The model covariance is given in Fig. 5.14. Fig. 5.14a shows the colour-coded
covariance matrix, where negative correlation is indicated with bluish and pos-
itive correlation with reddish colours. Standard deviations in a Gaussian sense
can be computed from the diagonal of the covariance matrix, which is equi-
valent to model parameter variances, i.e. σi =

√
diag ([Cov mi]). An overview

of these standard deviations is given in Tab. 5.3. Both, this listing and 5.14a

reveal that the mantle lithosphere of Tibet and Tarim, the Kulun fault and that
part of the Indian lithosphere that is underthrusting Tibet have small variances
and covariances in particular. This is also partly the case for the eastwards
subducting-Indian mantle lithosphere, referred to as Burma slab. All of these
model viscosities have a significant impact on the dynamics of the model.

Our interpretation of this behaviour is as follows. The Indian lithosphere has
to be strong (high viscosity) and a large convergence rate (34− 44mm/yr, Mol-
nar & Stock, 2009) can only be observed if a weak Tibetan Mantle lithosphere is
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Name log10
(
ηi,opt. ± σi [Pa s]

)
Crust Tibet 22.62± 0.56

Lith Tibet 20.18± 0.10

Crust Tarim 24.61± 0.59

Lith Tarim 23.92± 0.01

Crust Sichuan 24.66± 1.17

Lith Sichuan 23.14± 0.99

Crust India 21.65± 0.99

Lith Sub N India 24.01± 0.19

Lith Sub E India 22.71± 0.36

Crust Sub N India 22.99± 0.95

Crust Sub E India 22.95± 0.67

Lower crust E Tibet 21.20± 1.31

Lith SE Tibet 21.82± 0.66

Crust Sub Asia 21.24± 0.62

Fault Talas-Fergana 21.91± 1.30

Fault Karakorum 22.74± 0.69

Fault Sagaing 22.31± 0.80

Fault Xianshuihe 19.56± 0.73

Fault Altyn Tagh 23.97± 1.08

Fault Kunlun 20.26± 0.24

Fault Chaman/Owen-Fracture-Zone 22.62± 0.91

Table 5.3: Optimisation results and model uncertainties for selected parameters. Uncer-
tainties result from the diagonal of the model covariance matrix given in Fig.
5.14a.

able to accommodate the strong indenter. In addition, the Tarim basin plays an
important role as a strong resisting block is in agreement with earlier studies
(e.g. Cook & Royden, 2008). The modelling results show that this behaviour
can not easily be adopted by other tectonic blocks and there are little trade-offs
with other model parameters. The Tibetan crust also does not show any correl-
ation except with the lower crustal part in eastern Tibet that was introduced
additionally (see 5.4.2.1). The Kunlun fault, and this was already qualitatively
observed during the NMDS inversion plays a key role without any significant
correlation with other parts of the model. The role of the Burma slab is more
complicated as it is correlated with a couple of other units, such as the Sichuan
basin (crust and mantle lithosphere). However, its viscosity matters because it
controls the return flow in the eastern Himalayan syntaxis within the mantle.
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In Fig. 5.14b, we illustrate the parameter correlation with Gaussian error el-
lipses for two end-member cases. In the upper example, the viscosity solution
is plotted for Indian and Tibetan lithosphere, where standard deviations are
relatively small and only a very moderate negative correlation exists, meaning
if India would have a higher viscosity, the viscosity of the Tibetan lithosphere
would decrease at the same time to accommodate the change. The other ex-
ample shows a stronger correlation of the viscosities in the Tibetan lower crust
and the Kunlun fault. Both have an impact on the eastern syntaxis flow field
within the crust and the result shows that a stronger lower Tibetan crust would
require a stronger Kunlun fault as well to explain the (clockwise rotational) dy-
namics. This observation is in agreement with Fig. 5.10, which shows that both
units are coupled.

discussion

Forward model

The resolution of tomographic images is limited and varies significantly between
P-wave and S-wave tomographies, such that the interpretation of this data re-
mains very challenging and involves a lot of uncertainty. Here, we tried to
incorporate a large number of additional, independent constraints, such as sig-
nals of LAB and Moho from receiver functions of independent studies. Yet,
creating a three dimensional model structure based on such a large data set
also leaves some room for personal interpretation, hence, variance. This also
applies to deeper model regions, where the resolution of tomographic models
noticeably decreases.

Our boundary conditions are chosen to be free-slip at all sides, which can
be discussed, yet the effect was tested to not influence the inversion result. The
effect of the bottom boundary is negligible because in our model, slabs do
not reach very deep, close to this boundary. Of course, this must be re-assessed
when the model geometry accounts for deep hanging slabs that might be visible
in future with improved tomographic images. Compared to similar studies (e.g.
Lechmann et al., 2014; Cook & Royden, 2008), our model does not take into
account a free surface. This certainly has to be tested, how topography affects
the horizontal flow field in a fully dynamic 3D model. Nevertheless, as the
current model fit without topography is already reasonably good, and taking
into account that deflections of the Earth’s surface induced by dynamic effects
is not more than 300m (Molnar et al., 2015), we only expect a minor impact.

In our model, we add an additional internal velocity boundary, which is a
defined area of prescribed velocity and direction. This approach is justified
due to the fact that the Indian continent shows little internal deformation al-
most moves with a constant, reliably observed velocity (Molnar & Stock, 2009).
However, this effect might be overestimated due to the fact that the connection
between subducted cratonic Indian mantle lithosphere and even older (deeper)
parts of the subducted slab is not represented in our model. A change in mech-
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anism, and especially a dynamically sensitive connection of subducted Indian
lithosphere and old oceanic slabs might cause changes of the best-fit rheology.

Inversion method and challenges

We use a steepest gradient alike inversion method that is capable to find a local
solution. However, multiple solutions and trade-offs between correlated para-
meters are likely to coexist (Baumann & Kaus, 2015; Baumann et al., 2014). We
partly overcome this issue by computing the approximate Hessian to estimate
parameter uncertainties and identify correlated parameters. Hence, estimated
trade-offs at least give a hint which other parameter combinations (models) are
likely to give similar accurate results. However, this approach has the strong
assumption that one has to be already close to the global solution. To fully over
come this problem, a probabilistic sampling based approach has to be aimed
for, although it might be computationally challenging without very good prior
knowledge on the rheological properties and we believe that the results of this
study can certainly contribute to find good prior conditions.

As inversion results are usually ambiguous, additional data constraints can
be used for regularisation. Here , we only used the GPS-velocities, because we
were primarily interested in reproducing the characteristic surface velocity field
of Tibet and adjacent regions. However, when inverting for complex (power-
law) rheologies, one has to reduce the ill-posed character of the inverse problem
by including other observational data in the inversion process (Baumann &
Kaus, 2015).

conclusions

Using a highly resolved geodynamic 3D model, we can reproduce the surface
velocity field of the India-Asia collision system reasonably well and find op-
timal viscosities for predefined geological units. We find that only an interac-
tion of end-member models proposed in literature, can do a reasonable job in
explaining the surface deformation field.

1. Our model demonstrates that strike-slip zones within the crust are import-
ant. This confirms kinematic models favouring a brittle behaviour and a
major role of strike slip faults.

2. We find that the Kunlun and Xianshuihe faults are most ‘active’, in the
sense that we observed largest strain rates for them. Opposing to this, the
Altyn-Tagh fault is effectively locked.

3. Lateral heterogeneities play a major role too, in agreement with thin
viscous sheet models that incorporate Tarim and Sichuan basin for ex-
ample. In fact, we find the lowest uncertainties for the high viscosity Tarim
mantle lithosphere.

4. Models with vertically averaged viscosities can serve as a good first ap-
proximation for the observed surface deformation. However, they can-
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not be a sufficient explanation, because important aspects are underes-
timated. Our results demonstrate the importance of vertical heterogen-
eities in the crust (low viscosity zones) and lithosphere (strong Indian
and weak Tibetan) with acceptable standard deviations. A strong Indian
mantle lithosphere indenting in a weak Tibetan mantle lithosphere also
confirms our previous findings (Baumann & Kaus, 2015).
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appendix

Numerical formulation of the forward problem

Here, we summarise the key aspects of the detailed description given in (Kaus
et al., 2016). The conservation equations (5.1)-(5.2) are discretised with stag-
gered grid finite differences (Harlow et al., 1965). This is a low-order and stable
discretisation for (nearly) incompressible fluid flow. The implementation is par-
allelised using the PETSc library (Balay et al., 2014) and we make use of distrib-
uted arrays (DMDA) and iterative solvers (KSP, SNES) to gain a high scalability
on massively parallel computers.

Material properties are retained with markers within the frame of a Marker
And Cell (MAC) method (Harlow et al., 1965), which corresponds to mater-
ial advection in an Eulerian kinematical framework. The advection scheme is
implemented with a combination of a 4

th-order Runge-Kutta method and a
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conservative velocity interpolation to avoid artificial clustering effects of the
markers (Wang et al., 2015).

In each time step iteration k, we solve the entire coupled system of nonlinear
algebraic equations using a combination of the preconditioned Jacobian-Free
Newton-Krylov (JFNK) and a line-search method, such as implemented in the
PETSc SNES nonlinear solver framework (Balay et al., 2014):

A−1J (xk) δxk = −A−1r (xk) , xk+1 = xk +α δxk, (5.8)

where r and x are the coupled residual and solution vectors, and δx the iterative
correction vector, respectively. α indicates the line-search step length.

We use the current effective viscosity to obtain the preconditioning matrix
(A) by discretising the conservation equations (5.1-5.2).

A =

K G

D C

 , (5.9)

where K and C indicate the stiffness matrices of the velocity and pressure
blocks, respectively. G denotes the pressure gradient matrix and D is the ve-
locity divergence matrix.

The Jacobian (J) is defined implicitly by a matrix-vector product approxim-
ated by finite differencing.

Jy ≈ r (x + h y) − r (x)
h

, (5.10)

where h denotes the perturbation parameter and y is an arbitrary vector to be
multiplied with the Jacobian. We achieve optimal scalability of the linear solver
by employing a multigrid method to approximately invert the Stokes block
into the preconditioning matrix. The coarse grid operators for the k-th level are
obtained algebraically via Galerkin coarsening:

Ak = Rkk+1 Ak+1 Pk+1k , (5.11)

where custom restriction (R) and prolongation (P) operators suitable for the
staggered grid discretization (Cai et al., 2014) are incorporated into the PETSc
multigrid framework. For this study, we use a multigrid preconditioner (A) that
is implemented in a uncoupled form, where the pressure Schur complement is
approximated by the inverse viscosity matrix:

A =

K G

0 − 1
η∗ I

 . (5.12)

Tomographic interpretation: The upper mantle beneath the south-eastern Tibetan plat-
eau

The underlying tomographic model for our interpretation, SVSL2013 (Schaeffer
& Lebedev, 2013) shows anomalous large S-wave velocities (Fig. 5.15a, green
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framed area), which could be interpreted as cold, underthrusted Indian mantle
lithosphere (Agius & Lebedev, 2013). However, comparing this with a P-wave
tomography (Fig. 5.15b, Li et al., 2008a) of the same area, an anti-correlation
between P- and S-wave reveals. This P-S discrepancy has been observed before
with other S-wave tomographies (e.g. Agius & Lebedev, 2013; Li et al., 2008b;
Priestley et al., 2006), and also newer S-wave tomography show fast propaga-
tion velocities (e.g. Pandey et al., 2014; Ceylan et al., 2012). The interpretations
for this portion of mantle lithosphere are manifold and reach from delaminat-
ing Tibetan lithosphere through convective instability (Houseman et al., 1981) to
underthrusted Indian mantle lithosphere (Pandey et al., 2014; Agius & Lebedev,
2013) and thickened lithosphere by continental collision (McKenzie & Priestley,
2008) or Asian, southwards dipping lithospheric mantle slabs (Tapponnier et al.,
2001; Kosarev et al., 1999). In our interpretation, we followed additional receiver
function measurements by Kosarev et al. (1999), which suggests an interpret-
ation in favour of a gently southwards dipping subhorizontal lithosphere of
Asian origin.

Figure 5.15: Ambiguous tomographic anomalies exist for south-eastern Tibet (green)
between a) P- and b) S-wave tomographies (i.e., Li et al., 2008a; Schaeffer
& Lebedev, 2013). As this area has a crucial role for the dynamics, we in-
troduce a new geological unit (‘Tibet SE lithosphere’, outlined in green) to
account for a possibly different rheology compared to the central Tibetan
and Indian lithosphere.
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summary of the main conclusions

The following paragraphs summarise the central aspects and main conclusions
of each chapter.

Chapter 2 – Constraining rheology through parallel joint geodynamic inversion

The first publication can be seen as generic feasibility test of geodynamic inver-
sion. It contains two independent parts, a theoretical example of joint geody-
namic and gravity inversion and a numerical study to test the feasibility of a
Bayesian inversion approach in combination with 3D geomechanical deforma-
tion models.

The analytical test demonstrates the advantages of an inversion with phys-
ically consistent dynamic models over static models used for gravity-only in-
versions. Whereas the inversion of the gravity anomaly of a buried sphere at
the model surface denotes a well-known, but non-unique inverse problem, we
demonstrate that the inversion of the velocity anomalies at the model surface
also yields non-unique results provided that the model is embedded in a dy-
namic context. However, the joint inversion of gravity anomaly and velocity
anomaly of a rising or sinking sphere results in a unique solution because the
trade-offs linked with the inversion parameters are different. Thus, we can re-
solve the effective viscosity of the half-space, the density contrast and the geo-
metry of the sphere.

In the second part, we present the feasibility of our general approach: An
effectively parallelised direct-search algorithm is combined with a massively
parallel geomechanical 3D deformation code. We apply the code to invert for
effective viscosities and densities of several layers (8 unknown parameters) in
a predefined salt-tectonics model geometry and we show that we are able to
identify the parameters of each geological unit including its uncertainty limits
as long as they contribute to the dynamics of the forward problem.

Chapter 3 – Geodynamic inversion to constrain the non-linear rheology of the litho-
sphere

Experimental results of rock deformation suggest that, in addition to brittle
deformation that is suggested for shallow parts of the lithosphere, large (and
deeper) parts are dominated by non-linear deformation behaviour in the vis-
cous regime. We use these empirical relationships established on experimental
results to parameterise the rheology of lithospheric scale deformation models,
and, similar to chapter 2, perform a massively parallel Bayesian joint inver-

169



170 conclusions and outlook

sion of topography, gravity and surface velocities to constrain the rheological
parameters. Here, experimentally determined parameter values serve as pri-
ors for the inversion. We demonstrate with synthetic tests of an intra oceanic
subduction scenario that, although the parameter space increases a lot (14 un-
knowns) compared to the study in chapter 2, the rheology can be retrieved, but
involves a higher degree of non-uniqueness. Furthermore, we test the effect of
an unknown temperature distribution. The inversion therefore involves two ad-
ditional unknowns to account for a parameterised model temperature. Despite
using more models, and an even higher degree of non-uniqueness, the essential
parts of the effective viscosity structure can be retrieved again.

The second part of the chapter covers a first application of the methodology
to a real scenario and data. We considered a SW-NE cross-section through the
Himalayas and the Tibetan plateau for which we constructed a structural model
from many geophysical data such as seismic tomography, P- and S-receiver
functions and focal mechanisms. In a first step, we performed a gravity-only
inversion to identify correlated density and temperature parameters, and per-
formed a principal component analysis to determine a reduced number of ef-
fective parameter proxies. In the second step, a full geodynamic inversion was
performed with 19 unknowns and about 1.9 million forward model evaluations.
Regarding the viscosity of the Indian lithospheric mantle, the results are very
clear. Models with acceptable misfit contain an Indian mantle lithosphere with
a high effective viscosity that acts as a strong indenter. Results for the Asian
part of the model are less clear and a number of end-member models exist that
can explain the data almost equally well.

Chapter 4 – Appraisal of geodynamic inversion results: A data-mining approach

Depending on the number of unknowns involved in a Bayesian inversion, a
large number of model evaluations can be needed. In case of chapter 3, the
India-Asia application involves about 1.9 million models, and all of them bear
some information on the solution of the inverse problem. It can therefore be
very useful to automatically extract key properties of characteristic groups of
models to make the results more human-readable. Here, we analysed a subset
of the entire ensemble with acceptable model misfit based on the model vis-
cosity structure and using a combination of an unsupervised machine learning
technique (Self-organizing map, SOM) and partitive clustering.

It was possible to identify four end-member model categories that represent
the major part of the non-uniqueness. The striking characteristics are related to
the presence of a strong dislocation creep character of the Indian mantle litho-
sphere, a weak lower Tibetan crust and a weak Asian lithospheric mantle. All
model classes can explain the observations almost equally well within the un-
certainty limits. Whereas the predicted characteristic topography and Bouguer
anomaly of the end-member models are not very different from each other, the
horizontal, and mainly the vertical velocity at the model surfaces show charac-
teristic patterns. This indicates that the non-uniqueness of the inverse problem
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can potentially reduced a lot by increasing the number and improving the qual-
ity of vertical velocity observations.

Chapter 5 – The present-day dynamics of the India-Asia collision: Consolidating struc-
tural and dynamic properties

This study is the first of its kind, where a fully dynamic, geodynamic 3D model
of lithospheric scale deformation is linked with an inversion algorithm to per-
form a systematic parameter study. We find an optimal viscosity structure be-
neath Tibet and adjacent regions and provide model uncertainties for the key
units of the model to explain the observed GPS-velocity field. The fit of the
model predictions is particularly good for regions with a dense data coverage,
for example in the Eastern Himalayan syntaxis, where the observations can be
reproduced within the range of observational uncertainties.

The dynamics of the India-Asia collision is attributed to different mechan-
isms, and a number of end-member models has been proposed in the literature.
Our results confirm that only an interaction of the proposed mechanisms can
explain the observed surface deformation field. First of all, strike-slip zones
play an important role. In our model, the surface deformation field cannot be
reproduced without them, which is in agreement with kinematic models that
favour a major role of strike slip faults. In this context, we observe largest strain
rates for the Kulun and Xianshuihe faults. On the other hand, the Altyn-Tagh
fault is found to be effectively locked. As reported many times, lateral hetero-
geneities have a large impact on the surface dynamics too. In particular, this
has been tested with thin viscous sheet models. Our results also confirm these
observations. For example, we find that the Tarim and Sichuan basin must
have high viscosities for both, mantle lithosphere and crust, in agreement with
the observed strong cratonic blocks. In other regions of the model, however,
we also observe that a layered lithosphere with distinct effective viscosities for
crust and mantle lithosphere is necessary to fit the surface deformation. We
find that large viscosity contrasts are necessary, in particular for Tibet, where
an additional layer of low viscous material, coinciding with partially molten
material in the mid and lower crust, significantly improves the model fit. Fur-
thermore, the results agree with the previous findings of chapter 3, where we
showed that the Indian mantle lithosphere must have a high viscosity in order
to fit the observations.

general remarks and generic issues of geodynamic inversion on

lithospheric scales

Geodynamic inversion is a promising new method to verify experimental res-
ults of lithospheric rheology. Also the fact that the model space can be analysed
to understand the sensitivity of the solution to each model parameter is con-
sidered to be an important aspect in the field of lithospheric scale numerical
modelling (Burov et al., 2014). Yet, a few questions remain to be addressed.
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This section briefly names three generic issues of geodynamic inversion, which
should be investigated in more detail in future studies.

Temperature

Good estimates of lithospheric temperature profiles are essential as temperat-
ure directly affects the activation energy parameter and thus viscosity (Burov,
2007). Whereas the temperature structure of oceanic lithosphere is well known
and dependent on a few parameters only (half-space cooling model, e.g. Tur-
cotte & Schubert, 2002), the temperature distribution of subducting slabs and
continental lithosphere in general is much more difficult to estimate. For sub-
ducting oceanic lithosphere, it has been shown that a parameterisation adjus-
ted to the slab surface works reasonable well, such that the effective viscosity
structure can essentially be resolved (see chapter 3). For continental lithosphere,
however, more advanced parameterisations need to be used that involve addi-
tional unknowns. As density is temperature dependent, gravity-only inversions
can be used to pre-assess the sensitivity of single parameters and to eventu-
ally summarise groups of parameters with appropriate proxies (see chapter 3).
Nevertheless, there is room for improving the temperature parameterisation de-
pending on the geological setting. Additional constraints such as from xeono-
lith data and melting can eventually be included, which has to be assessed
separately in each case. There are also other constraints such as heat flux obser-
vations. However, these may not be reliable enough for continental lithosphere
as radioactive heat sources in the crust pollute heat flux measurements at the
surface (Burov, 2007).

Elasticity

Another aspect that has been omitted from the inversion approach so far is the
elastic deformation behaviour of the lithosphere, which can potentially have
and effect in certain scenarios where the viscosities are high and the stress is
not in steady state. However, this introduces certain complexities. Regarding
a viscoelastic rheology, the elastic part of the strain rate ε̇ij depends on the
Jaumann derivative D

Dt of the deviatoric stress tensor (ε̇ij ∝
(
2 · tr DDt + 1

)
τij)

and the Maxwell relaxation time tr = η
G , which denotes the ratio of viscosity η

and shear modulus G. The Jaumann derivative describes rotation and advection
of the stress tensor, i.e. it contains a time derivative and thus depends on the
history of the stress state (e.g. Ismail-Zadeh & Tackley, 2010). For a present-day
model, the stress history is usually unknown, but can eventually be estimated
to some extend such that it can be parameterised and made part of the inverse
problem. In future work, this will be thoroughly tested with synthetic models.

Geometry

We usually have good constraints on the structural present-day geometry of
the shallow parts of the lithosphere, where, predominantly due to seismolo-
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gical observations, the Moho is well imaged. However, deeper parts of the
lithosphere can only be resolved with techniques that make use of larger seis-
mic wavelengths, and as a result the base of the lithosphere (LAB) is less con-
strained and has significant uncertainties. A parameterisation of the geometry
in this model domain therefore makes sense at first glance. However, it should
be noted that such a parameterisation is likely to be correlated with a para-
meterisation of temperature (see chapter 3). A geometry parameterisation is
definitely correlated with the model densities, such that a gravity-only inver-
sion prior to a geodynamic inversion is indispensable.

General remarks

It becomes obvious that as more degrees of freedom are permitted to satisfy
all challenges, it all amounts to the same result: a larger parameter space. This
attaches additional value to an appropriate definition of the objective (misfit)
function, such that as many independent data as possible can be used to reg-
ularise and to improve the sensitivity of the objective function. Furthermore,
it emphasises the importance of using the best possible approximation of the
objective function with a minimum number of forward models.

future perspectives and challenges of geodynamic inversion

Too many model parameters imply an implicit barrier for sampling based meth-
ods and the curse of dimensionality prohibits a straightforward increase of inver-
sion parameters. Two common examples are given in Fig. 6.1. Fig. 6.1a refers to
a D-dimensional unit sphere (radius r = 1, volume VD ∝ rD), where the frac-
tion of volume of the outer shell (r = [1− ε . . . 1]), i.e. VD,ε = VD(1)−VD(1−ε)

VD(1) =

1− (1− ε)D is plotted against the thickness of the shell ε. This demonstrates
that almost the entire volume is concentrated in a thin outer shell (Bishop, 2006).
As the parameter space is usually associated with a high-dimensional cuboid,
much of the volume actually refers to the corners of the parameter space (Fig.
6.1b). Here, the difference in volume between a cube with unit length edges
and a unit sphere is examined conceptually. As the dimension D increases,
the distance from the center to a vertex of the hypercube increases with

√
D
2

whereas the volume stays constant. On the other hand, the radius of the unit
sphere stays one, but the the volume decreases with increasing dimension (see
Hopcroft (2008) for details). Thus, most of the volume of a hypercube in high
dimensions is concentrated towards the vertices – outside of the unit sphere.

The example demonstrates that a proper guidance of the sampling is very
important. One possibility is to guide the sampling according to prior distri-
butions, which will help to focus the sampling on ‘interesting regions’ of the
parameter space and to avoid extreme parameter combinations. The availabil-
ity of good priors is indispensable, and in the context of lithospheric rheologies,
should be studied in more detail. As the number of forward models is limiting
the factor of each sampling approach, it is self-evident to optimise this number
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Figure 6.1: Examples of the curse of dimensionality. a) The fraction of volume within
a thin outer shell (thickness ε) of the unit sphere quickly increases with di-
mension D (Bishop, 2006). b) Conceptual illustration of the increase in frac-
tional volume with D that lies between the unit hypersphere and the unit
hypercube. In 2 dimensions, the cube is fully inside the sphere, in higher
dimensions, however, the majority of the hypercube volume accumulates in
the corners (after Hopcroft, 2008).

as much as possible. A guidance of the sampling with priors will help with the
dimensionality issue, but it is an additional task to find optimal location for
new forward models based on the previous model history. In this context, the
concept of the Neighbourhood Algorithm (Sambridge, 1999a) provides a smart
partitioning of the parameter space, where the objective function is approxim-
ated piece-wise constant, such that at least confined regions with low misfit
values are proposed to insert new models. However, the proposal of new suit-
able model locations can be enhanced by far, if in addition to the value (misfit)
of the objective function, the gradient can be evaluated.

As we usually deal with numerical solutions, the gradient of the objective
function has to be approximated and is not for free. For example, finite dif-
ferences can be used, which involves additional forward modelling depending
on the order of the Taylor-approximation. An alternative is the adjoint method,
which requires just a single solve with the transposed of the forward problem
Jacobian operator to evaluate the objective function’s gradient. The method is
a technique developed in meteorology (Talagrand & Courtier, 1987) with in-
creasing adoption in seismology (e.g. Fichtner et al., 2006; Tromp et al., 2004),
geodynamics (Ratnaswamy et al., 2015; Worthen et al., 2014; Liu & Gurnis, 2008;
Bunge et al., 2003) and ice-flow (Isaac et al., 2015; Petra et al., 2012), where it
is often used in combination with a Newton method to solve inverse prob-
lems, which can be problematic as it is only capable to find a local, but not
a global solution. Whereas the approach is justifiable for ice-sheet modelling,
where material properties vary smoothly, the structure of the lithosphere is
much more complex, such that it is at least questionable whether in lithosphere-
geodynamics, an adjoint-based gradient approach is the method of choice we
should ultimately aim for. A reliable solution at least requires multiple solves
with different starting positions in the parameter space to verify the inversion
result, otherwise it can only give an a priori solution for more comprehensive
inversions.
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Figure 6.2: 2D benchmark of the MISO algorithm (Multivariate Inversion through Sur-
rogate Optimisation, Baumann & Popov, in prep.). a) Styblinski–Tang ob-
jective function for multidimensional optimisation problems; it has exactly
one global minimum at xmin = [−2.9035, . . . ,−2.9035] and three local min-
ima in 2D (Styblinski & Tang, 1990). Filled circles and stars indicate initial
models and additional models at optimal locations, respectively. b) MISO
approximation of the objective function after 5 iterations and 18 forward
models. New proposal model locations of the following iteration are indic-
ated with green squares. c) Neighbourhood approximation of objective func-
tion, using the final MISO model ensemble. Low misfit regions are much
larger compared to (b), thus new locations for additional forward models
are less confined. Importance sampling would yield a much less accurate
approximation of the likelihood function (c.f Sambridge, 1999b).

Yet, the adjoint approach itself is a low-cost method to evaluate the gradient
of the objective function and can be combined with sampling based methods
to improve our knowledge of the shape of the objective function with each
forward model. This is a particularly valuable information in terms of geody-
namics, as forward models are computationally expensive. The piece-wise con-
stant approximation of the objective function within the concept of the Neigh-
bourhood algorithm can be improved to a piece-wise linear or even higher or-
der variant, provided that some sort of adjacency graph between neighbouring
models exist and local interpolation, which includes the gradient information,
can be applied (Alfeld, 1989). Computing adjacency graphs, for example, find-
ing the Voronoi-neighbours, is a task of linear programming and can be solved
efficiently also for high dimensions (Fukuda, 2004). However, it has to be tested
how dense an adjacency graph is in very high dimensions (> 8), and whether
this is still computable in an appropriate amount of time. Alternatively, unsu-
pervised machine learning techniques such as Self-organizing maps (Kohonen,
2001) or Growing Neural Gas networks (Fritzke, 1995) can be used to detect
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lower dimensional manifolds for which local adjacency graphs can be estab-
lished.

Definitely, a higher order interpolation of the objective function (higher than
piecewise constant) helps to find optimal locations for new forward models.
An example is given in Fig. 6.2, where a non-unique benchmark function (Sty-
blinski-Tang function, Fig. 6.2a, Styblinski & Tang, 1990) is well approxim-
ated with only 18 models (Fig. 6.2b) using the MISO algorithm (Multivariate
Inversion through Surrogate Optimisation, Baumann & Popov, in prep.). The
MISO algorithm uses a high-dimensional interpolant of the objective function
to locate new samples in the parameter space. Here, the sampling started with
three random samples (Fig. 6.2d, 1), and subsequent models are placed at local
minima of the current approximation of the objective function (Fig. 6.2d, 2-5).
The minima are found by applying a gradient based method to the surrogate
(interpolant) of the objective function. As this only involves an interpolation
problem, new locations can be found very efficiently. In comparison with the
neighbourhood approximation of the objective function (Fig. 6.2c Sambridge,
1999b), the MISO approximation (Fig. 6.2b) is thus much more accurate, and the
Neighbourhood approximation would require a much large number of models
to reach a similar accuracy. This thus demonstrates how the current approach
based on the Neighbourhood algorithm can potentially be improved for future
applications with computationally demanding (3D) models and non-trivial rhe-
ology parameterisations that require many parameters.
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