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Konrad Möhring aus Berlin
am 26. November 2003

D77 Mainzer Dissertation



Tag der mündlichen Prüfung: 20. Februar 2004



Introduction

A sandwiched singularity is a surface singularity on the blowup of C2 in an
ideal defined by infinitely near points. Sandwiched singularities have been
studied by many authors including Zariski [Zar39], Lipman [Lip69], Hironaka
[Hir83], and Spivakovsky [Spi90]. The deformation theory of sandwiched
singularities has been studied by de Jong and van Straten in [dJvS98].

Sandwiched singularities are rational, in particular they are normal. In
general, they are not complete intersections and there are no particularly
simple or nice equations for them. For example, cyclic quotient singularities
are sandwiched, and more generally, all rational singularities with reduced
fundamental cycle (sometimes called minimal surface singularities) are sand-
wiched. Hence sandwiched singularities constitute a large class of rational
singularities, and we cannot expect to get easy access to information about
them by looking at their equations. On the other hand, that means that we
can hope to study phenomena which might be typical for general rational
singularities, but do not appear for hypersurfaces or complete intersection
singularities which are by far the singularities best understood. For exam-
ple, we will see that a general sandwiched singularity has many smoothing
components, whereas the base space of the semiuniversal deformation of a
hypersurface singularity is smooth. Instead of extracting information from
the equations, we will use the geometry of the plane which we have to blow up
to get the sandwiched singularity. More specifically, sandwiched singularities
can be connected to plane curve singularities in the following way:

An ideal generated by infinitely near points is by definition an ideal gen-
erated by the equations of curves in (C2, 0) with the property that their strict
transforms under some blowups pass through certain points with prescribed
multiplicities. By choosing a generic curve C with this property and attach-
ing to each branch Ci a number l(Ci) to specify the points on the exceptional
divisors, we get an object (C, l) called a decorated curve. A decorated curve
determines the singularity X(C, l) on the blowup. Now the central idea is
that there is a close connection between the geometry of the plane curve C
and the geometry of X(C, l). For example, we can easily read off the dual
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resolution graph of X(C, l) from the equisingularity class of C and the num-
bers l(Ci). Even more striking is the result of de Jong and van Straten which
states that all deformations of a sandwiched singularity X(C, l) are induced
by deformations of the decorated curve (C, l). This enables us to answer
many questions about sandwiched singularities by studying plane curve sin-
gularities, which are among the best understood geometric objects.

My intention while writing this thesis was two-fold. The first, of course,
was to contribute to the solution of several open problems, most of which have
been raised in [dJvS98]. My second intention was to write an introduction
to sandwiched singularities from a classical geometrical point of view. The
theory of infinitely near points in the study of plane curve singularities goes
back to the nineteenth century and is a very beautiful subject. Inspired by
the book [CA00] of Casas-Alvero which gives a modern account of Enriques’
treatment of the subject, I have tried to give as many proofs as possible
using only ‘elementary’ geometry of plane curves. I hope to convince the
reader that one can expect to prove any correct statement about topological
invariants of a sandwiched singularity, including statements which involve
deformations, by studying plane curves and their behaviour at infinitely near
points.

I will now give a general survey of the thesis and mention the main results.
Each chapter also has a short introduction containing some more details.

Chapter 1 is an introduction to the theory of infinitely near points and
complete ideals. Most of the material is contained in [CA00] except for
some remarks, the examples and the following exceptions: The notion of a
decorated curve and the associated ideal has been introduced in [dJvS98].
The description of the conductor of a plane curve as a complete ideal is
probably well known, but I do not have any references for it. I also have not
found the computations of the Hilbert-Samuel function of a complete ideal
and of the multiplicity of an arbitrary mC2,0-primary ideal via base points
anywhere in the literature.

Chapter 2 starts with the definition of sandwiched singularities and the
deduction of some of their most important properties. The notation for the
representations X(C, l) of a sandwiched singularity via decorated curves is
introduced and it is shown how the dual resolution graph of X(C, l) depends
on the equisingularity class of C or more precisely of (C, l). The content
of the first five sections is more or less known to the experts, but I had to
rewrite most of the proofs which are scattered over various papers and often
given in a very short form only. Also many of the proofs have not been
given explicitly for the complex-analytic case. I hope that this summary of
known results will be particularly helpful to someone who wishes to learn
about sandwiched singularities. The theorem on the multiplicity of X(C, l)



Introduction v

in section 2.6 is new. Van Straten has informed me that he has an idea for
a completely different proof. If we used his idea to prove the theorem, then
my method of proof would give us a new proof (for sandwiched singularities)
of the fact that every rational singularity of multiplicity n deforms into the
cone over the rational normal curve of degree n.

Chapter 2 ends with the classification of taut and pseudotaut plane curve
singularities. This classification has been obtained by reversing the usual
direction of the arguments: Instead of deducing properties of sandwiched
surface singularities from properties of plane curves, I use Laufer’s classifica-
tion of taut and pseudotaut surface singularities to obtain the corresponding
lists of plane curve singularities. The lists have already been published by
Gawlick in [Gaw92], but his proof is completely different. Equations and
associated graphs of taut and pseudotaut curve singularities can be found in
the appendices.

Chapter 3 contains one of the main results of the thesis. I start by
reviewing the result from [dJvS98] which states that every deformation of
the sandwiched singularity X(C, l) is induced by a deformation of (C, l).
Then I give some easy examples to demonstrate how this enables us to give
easy proofs for some statements on adjacencies of sandwiched singularities.
For example, it is almost trivial to see that cyclic quotient singularities only
deform into cyclic quotients.

The biggest drawback of the result in [dJvS98] is that the precise state-
ment is not very geometrical. Therefore, it was left as an open problem in
[dJvS98] to find a direct geometrical construction of the induced deformation
of X(C, l) for a given 1-parameter deformation of (C, l). I solve this prob-
lem by showing that deformations of the decorated curve (C, l) correspond
to equimultiple deformations of the fat point in which we have to blow up
(C2, 0) to obtain X(C, l). By a result of Teissier, equimultiplicity of this
1-parameter deformation implies that the blowup in the total space of the
deformation is the deformation of X(C, l) we are looking for. I also con-
jecture that the same construction works for deformations over an arbitrary
reduced base space. This seems very probable, because for the deforma-
tion of the fat point corresponding to a deformation of (C, l), I have shown
that the whole Hilbert-Samuel function is constant, not only the multiplicity.
So some well known results on the connection between normal flatness and
constant Hilbert-Samuel functions (Bennett’s theorem) strongly support my
conjecture.

Chapter 4 deals with multi-adjacencies of plane curve singularities. Since
all deformations of sandwiched singularities are induced by deformations of
plane curves, all the results of this chapter have a direct impact on the defor-
mation theory of sandwiched singularities. The most important application
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is the study of smoothing components of a sandwiched singularity in section
4.6. The first sections of the chapter are devoted to certain combinatorial
aspects associated to the problem of deciding whether a given plane curve
singularity has a deformation into a curve with certain prescribed singulari-
ties. The results in the sections ‘Semicontinuity of Multiplicity at Infinitely
Near Points’ and ‘Cutting Enriques Graphs’ may not be new but certainly
very hard to find in the literature. The result on δ-constant deformations of
a curve with four smooth branches is new.

Chapter 5 deals with the Kollár conjecture for sandwiched singularities.
The first four sections give a survey of results which have motivated the
Kollár conjecture. Then a result of de Jong is quoted which says that the
Kollár conjecture for sandwiched singularities is true if and only if the sym-
bolic power algebras of certain curves in three-space are finitely generated.
In section 5.7 I collect and generalize some known criteria which are equiva-
lent to the fact that the symbolic power algebra of certain curves is finitely
generated. Finally, I show how to apply the general results to the case which
is relevant for the Kollár conjecture and compute some examples. I think
these examples help to understand the geometry of a generic smoothing of a
sandwiched singularity. Unfortunately, I have not succeeded in proving the
Kollár conjecture right or wrong.

I want to close the introduction by mentioning a possible subject of fu-
ture work. Many of the results in the theory of complete ideals in the local
ring of (C2, 0) have been extended to complete ideals in the local ring of
an arbitrary two-dimensional rational singularity by Lipman [Lip69]. The
theory of infinitely near points on a rational singularity has been developed
by Reguera [Reg97]. Therefore, it seems natural to generalize results on
sandwiched singularities to singularities on the blowup of a rational singular-
ity. For example, it might be possible to achieve the following for a rational
surface singularity X: (1) Classify taut curves on X (compare chapter 2).
(2) Relate deformations of a singularity on the blowup of X in a complete
ideal to deformations of curves on X (compare chapter 3).

I thank everybody who has helped me in one way or another during the
time I have been writing this thesis. This includes my advisor and just about
everybody else working in pure mathematics at the university of Mainz, as
well as several people who have been bothered by emails all over the world,
and all my friends and family.
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x Notations and Conventions

Notations and Conventions

A singularity is a complex space germ.
A deformation of a complex space germ (X0, 0) is a flat map germ π :

(X, 0) → (S, 0) such that (X0, 0) is isomorphic to the fibre (π−1(0), 0) under
a given isomorphism i : (X0, 0) → (π−1(0), 0).

If I ⊂ OX is a coherent ideal sheaf, then

Σ(I) := (V (I),OX/I|V (I))

denotes the complex subspace of X defined by I. Analogously, if I ⊂ OX,x is
an ideal in the local ring of X at x, then Σ(I) denotes the complex subgerm
of (X, x) defined by I.

We often say curve for “plane curve singularity”.
By e(I) we denote the multiplicity of an ideal in the sense of Hilbert-

Samuel.
By ep(I) we denote the multiplicity of an ideal I ⊂ OC2,0 in the infinitely

near point p, see 1.1.5 for the precise definition.
When we talk about the components of the base space of a semiuniversal

deformation of a normal surface singularity, we always exclude the embedded
components.

We often write base space of the singularity X instead of ‘base space of a
semiuniversal deformation of X’.



Chapter 1

Complete Ideals

Sandwiched singularities are singularities on the blowup of (C2, 0) in com-
plete ideals. In the first chapter we are going to study these ideals and give
numerous examples.

Complete ideals in the local ring of (C2, 0) are ideals defined by infinitely
near points. They can be viewed as local analogues of complete linear systems
whose base points are infinitely near points.

The concept of infinitely near points was successfully used by M. Noether
(1844-1921) and systematically developed by Enriques, see [EC15, book IV],
to study plane curve singularities. The general theory of complete ideals in
two-dimensional regular rings comes from Zariski [ZS60, app. 4]. A modern
treatment is given in the book [CA00], which we recommend as a general
reference on the subject, including also more detailed historical information.
A short introduction which covers most of the contents of this chapter is
given in [LJ95]. We use the notations of [CA00].

Not included in the references on complete ideals mentioned above is the
following material: The conductor of a plane curve singularity as an example
of a complete ideal in section 1.2.2, and the notion of reduction of an ideal
and the related results in section 1.5. Decorated curves have been introduced
in [dJvS98].

In this thesis we only deal with complete ideals in the regular, two-
dimensional ring OC2,0

∼= C{x, y}. Much of the theory, including for example
the factorization into simple ideals, has been successfully generalized to local
rings of rational, two-dimensional singularities by Lipman, see [Lip69]. This
shows that the whole theory of sandwiched singularities may be generalized
to singularities on the blowup of a rational surface singularity in a complete
ideal. See [Reg97] for an exposition of complete ideals on a rational surface
singularity which is close in spirit to this thesis. See [CPRL99] for some
results on generalized sandwiched singularities over rational singularities.

1



2 Complete Ideals

1.1 Clusters of Infinitely Near Points

We need some definitions. Readers acquainted with infinitely near points
and Enriques diagrams should skip this section.

Definition 1.1.1. (Infinitely near points)

1. Let p be a smooth point on a surface S. The points in the first infinitely
near neighbourhood of p are the points on the exceptional divisor Ep of
the blowup of S in p. A point in the (i + 1)-th infinitely near neigh-
bourhood is a point in the first infinitely near neighbourhood of a point
in the i-th infinitely near neighbourhood of p.

The set of all points infinitely near to p is denoted by N ∗
p . We define

Np := {p} ∪ N ∗
p .

2. There is a natural partial ordering on Np:

q ≺ q′ ⇔ q′ ∈ N ∗
q .

We say that q precedes q′.

3. Assume q, q′ ∈ Np. We say that the point q′ is proximate to q and write
q′ → q, if q′ is a point on the exceptional divisor Eq of the blowup in q
or a point on a strict transform of Eq.

4. If a point in N ∗
p is proximate to more than one point, it is called a

satellite point, else a free point.

5. Let (C, p) ⊂ (S, p) be a reduced germ of a curve, q ∈ Np. We say that
q is on C, if the strict transform of C in q is not empty.

The (effective) multiplicity eq(C) of C in q is the multiplicity of the
strict transform of C in q. So q is on C iff eq(C) > 0.

From now on, 0 will be the zero in C2.

Definition 1.1.2. (Clusters)

1. A cluster is a set K ⊂ N0 such that the following two conditions hold:

(a) K is finite.

(b) If p ∈ K and q ≺ p, then q ∈ K.

2. A weighted cluster is a pair (K,µ), where K is a cluster and µ is a map
µ : K → Z.

We sometimes view µ as a map on N0 by setting µ(p) = 0 ∀p ∈ N0 \K.
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3. Let (K,µ) be a weighted cluster. The excess ρp = ρp(K,µ) of (K,µ)
at p ∈ K is

ρp = µ(p) −
∑

q∈K,q→p

µ(q).

4. A consistent cluster is a weighted cluster (K,µ), such that

µ(p) ≥
∑

q∈K,q→p

µ(q)

holds for all p ∈ K. So a weighted cluster (K,µ) is consistent if and
only if ρp(K,µ) ≥ 0 for all p.

This inequality is called the proximity inequality at p.

Proposition 1.1.3. A weighted cluster (K,µ) is consistent if and only if
there is a curve (C, 0) ⊂ (C2, 0) such that ep(C) = µ(p) for all p ∈ K.

Proof. A proof is given in [CA00, Th. 4.2.2].
The idea of the proof is this: On one hand, the existence of a curve with
ep(C) = µ(p) implies that the cluster is consistent. On the other hand,
assume that (K,µ) is consistent. For each p ∈ K choose a curve which
passes through p with multiplicity ρp and is transverse to the exceptional
divisor in p. So these curves are on various different blowups of (C2, 0).
Blow down these curves to curves in (C2, 0). The union C of these curves in
(C2, 0) has the property ep(C) = µ(p) for all p ∈ K.

Remark 1.1.4. In fact, [CA00, Th.4.2.2] is a statement which is slightly
stronger: If a consistent cluster (K,µ) and a finite set T of infinitely near
points with K ∩ T = ∅ are given, then it is possible to choose a curve pass-
ing through the points of K with multiplicity ep(C) = µ(p) and missing all
points in T .

Lemma 1.1.5. Let K be a cluster. Then there is a uniquely determined
minimal set of positive, consistent weights on K, i.e. the set of all µ : K → Z

such that (K,µ) is consistent and µ(p) > 0 for all p ∈ K has a unique
minimal element.

Proof. It is easy to see how to compute this minimal map minK inductively,
thus proving uniqueness: If no point in the first neighbourhood of p belongs
to K, then minK(p) = 1. Else minK(p) =

∑

q∈K,q→pminK(q).
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Remark 1.1.6. Following the proof of proposition 1.1.3, a curve having min-
imal positive multiplicity in each point of a cluster K can be constructed as
follows: For each point p in K which is maximal with respect to the prox-
imity relations, choose a smooth curve through p which is transversal to the
exceptional divisor through p. If you blow down the union of these curves,
you get a curve with the desired property.

1.1.1 Enriques Diagrams

A cluster contains two sorts of information: the discrete information given
by the number of points in the cluster and the proximity relations, and the
analytic information of the exact positions of the free points. We encode the
discrete information of a cluster K in an Enriques diagram.

An Enriques diagram of K is a tree-graph whose vertices correspond to
the points of K. We draw an edge from the vertex p to the vertex q if q is in
the first neighbourhood of p. To keep track of the proximity relations, there
are two kinds of edges, which must be drawn in the following way, beginning
at the root-vertex corresponding to 0:

• If q is a free point in the first neighbourhood of p, we join p and q by
a smooth curve which is not straight. If p 6= 0 and p is in the first
neighbourhood of p′, then the tangent in p of the (old) edge from p′ to
p and the tangent in p of the (new) edge from p to q must be the same.

• Assume that q0 is in the first neighbourhood of p, that qi is in the first
neighbourhood of qi−1 and that q1, . . . , qr are proximate to p. Then we
draw the r edges from qi−1 to qi onto a straight line through q0 which
is orthogonal to the tangent in q0 of the edge from p to q0.

Example 1.1.7. We consider a cluster consisting of five points, one each in the
0th, 1st, 2nd, 3rd and 4th neighbourhood. The points in the 0th, 1st and 4th
neighbourhood shall be free, the points in the 2nd and 3rd neighbourhood
proximate to 0 ∈ C2. An Enriques diagram of such a cluster looks like this:

0

1.1.2 Example: Simple Clusters

Let p ∈ N0 be an infinitely near point in the k-th neighbourhood. We define
the weighted cluster K(p) to be the smallest cluster which contains p with
the minimal set of positive weights making it consistent.
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So the set of points of K(p) is the union of {p} with the set of all points
in N0 preceding p, and the weights of p are inductively defined by µ(p) = 1
and µ(q) =

∑

qi→q µ(qi).
We call a weighted cluster simple iff it is equal to K(p) for some p ∈ N0.

So a consistent cluster which contains k points and has minimal positive
weights is simple if and only if it has exactly one point each in the zero-th
up to the (k − 1)-th neighbourhood.

For example, if we assign the weights 3, 1, 1, 1, 1 to the cluster of example
1.1.7, then we get a simple cluster.

1.1.3 Example: Enriques Cluster of a Curve

Definition 1.1.8. Let (C, 0) ⊂ (C2, 0) be an isolated curve singularity. A
weighted cluster (K,µ) is called an Enriques cluster of C, iff

1. All points of K are on C.

2. K contains all points in which we have to blow up to get a minimal
good embedded resolution of C.

3. K contains at least one point on each branch which is on no other
branch.

4. µ(p) = ep(C) for all p ∈ K.

An Enriques diagram of an Enriques cluster of (C, 0) is called an Enriques
diagram of (C, 0).

Remark 1.1.9. 1. The weights of an Enriques cluster (K,µ) are the mini-
mal positive consistent weights on K.

2. An Enriques cluster of C must contain all satellite points on C as well
as all points p ∈ N0 with ep(C) > 1. Every isolated curve singularity
does have Enriques clusters. This is equivalent to the fact that a finite
number of point blowups gives us a good resolution of the singularity.

Example 1.1.10. An Enriques cluster of a smooth curve can have an arbitrary
number of points k ∈ N>0. All points of an Enriques cluster are free and
have multiplicity 1. If the cluster contains k points, then there is one point
each in the zero-th up to the (k − 1)-th neighbourhood.

Example 1.1.11. An isolated plane curve singularity C is irreducible if and
only if there is only one point on C in each infinitely near neighbourhood. So
Enriques clusters of C are simple if and only if C is irreducible. For example,
we have already considered the simple cluster
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0

3

1

1

1 1

This is an Enriques diagram of an Enriques cluster of the E6-singularity
x3 + y4.

Example 1.1.12. The infinitely near points on the A2-singularity V (y2 − x3)
are shown in table 1.1. The minimal Enriques cluster consists of the three
points 0, p1, p2 with multiplicities 2, 1, 1.

Various other examples of Enriques diagrams of curve singularities are
shown in the appendices.

1.1.4 Example: Base Points of a Decorated Curve

Perhaps the most convenient way to describe a cluster of infinitely near points
is to give a curve going through all points and to specify how many points
on each branch belong to the cluster. The most natural way to count in-
finitely near points p on an irreducible curve C is to count them with their
multiplicities ep(C). It is also a good idea to choose the curve as simple as
possible. This leads to the following definition of a decorated curve. We use
some notations from [dJvS98].

Notation 1.1.13. Let (C, 0) ⊂ OC2,0 be an isolated plane curve singularity
with r irreducible components Ci, C =

⋃r
i=1 Ci.

1. m(i) = mC(i) = mC(Ci), i ∈ {1, . . . , r}, is the sum of the multiplicities
of the i-th branch of C in all points we have to blow up to obtain the
minimal resolution of C.

2. M(i) = MC(i) = MC(Ci), i ∈ {1, . . . , r}, is the sum of the multiplicities
of the i-th branch of C in all points we have to blow up to obtain the
minimal good resolution of C.

Let n :
∐r

i=1(Ci, 0i) → (C, 0) be a normalization of (C, 0) with (Ci, 0i) map-
ping onto (Ci, 0). Since we are considering germs of curves, a divisor l on the
normalization can only have support on {0i| i = 1, . . . , r} and is determined
by the r numbers

l(i) := l(Ci) := degree of l at 0i.

If l is a divisor on the normalization, we write l =
∑
l(i) · 0i, i.e. we use the

same letter l to denote the associated map from the set of branches to Z. So
the restriction of l to (Ci, 0i) is the zero-dimensional space germ defined by

m
l(i)
Ci,0i

.



Clusters of Infinitely Near Points 7

Infinitely near points Enriques diagrams
on V (y2 − x3)

0-th neighbourhood

0
0

2

1st neighbourhood

p_1 E_0 0

2

p_1

1

2nd neighbourhood

p_2 E_0

E_1

0

2

p_1

p_2

1

1

3rd neighbourhood

p_3

E_0E_1

E_2
0

2

p_1
1

1

p_2
1

p_3

k-th neighbourhood

p_k

E_(k−1)

E_0E_1

E_2

E_3

0

2

p_1
1

1

p_2
1

p_3

p_k

1

Table 1.1: The infinitely near points on an A2-singularity and Enriques dia-
grams for the clusters of the points in the 0-th up to the k-th neighbourhood.
For k ≥ 2 we have an Enriques cluster of A2.
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Definition 1.1.14. 1. A decorated curve is a pair (C, l) consisting of an
isolated plane curve singularity (C, 0) ⊂ (C2, 0) and a divisor l on the
normalization of C such that l(Ci) ≥ m(i).

2. Let (C, l) be a decorated curve.

BP (C, l) is the weighted cluster with the following properties: All
points of the cluster are on C, the weights of BP (C, l) are the multi-
plicites of C, and for each branch Ci of C the sum of the multiplicities
of Ci in the points of the cluster is equal to l(Ci).

BP (C, l) is called the (weighted) cluster of base points of the decorated
curve (C, l).

We sometimes write |BP (C, l)| for the underlying non-weighted cluster.

Remark 1.1.15. The condition l(Ci) ≥ mC(i) ensures that there actually does
exist a cluster such that for each branch Ci of C the sum of the multiplicities
of Ci in the points of the cluster is equal to l(Ci).

Example 1.1.16. We consider a Z12-singularity V
(
xy(x2 + y3)

)
. An Enriques

diagram of BP
(
Z12, (2, 1, 4)

)
looks like this:

4

2

1

Note that BP
(
Z12, (2, 1, 4)

)
is not an Enriques cluster of Z12.

This example shows that it is sometimes convenient to add some points of
multiplicity zero to a cluster. Weighted clusters obtained from one another
by adding or deleting points of multiplicity zero should be considered as being
equivalent. I expect that the reader will agree that the following Enriques
diagram gives a better picture of the base points of the decorated curve
(
Z12, (2, 1, 4)

)
:

2

4

0

0

01

1.1.5 Example: Base Points of an Ideal

This class of examples of weighted clusters is of central importance for this
thesis. The definitions may seem rather technical at first sight, but there is
a very geometrical way of understanding them, cf. remark 1.1.20.
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Definition 1.1.17. Let (C, 0) ⊂ (C2, 0) be an isolated curve singularity
and (K,µ) a weighted cluster. We give an inductive definition of the virtual
transforms Čp and the virtual multiplicities ěp(C) of C in the points p ∈ K:

1. We set Č0 := C0 and ě0(C) := e0(C).

2. If q is in the first neighbourhood of p, we define the virtual transform
Čq of C in q to be the strict transform of the virtual transform of C in
p plus ěp(C) − µ(p) times the exceptional divisor Ep.

So if xěp(C) · f(x, y) is an equation of the total transform of Čp in q,
where V (x) is the exceptional divisor Ep and f an equation of the
strict transform, then xěp(C)−µ(p) · f(x, y) is an equation of the virtual
transform of C in q.

The virtual multiplicity ěq(C) of C in q is the multiplicity of the virtual
transform.

Remark 1.1.18. The definition can be extended to the case that the virtual
multiplicities are negative, but we will not consider that case.

Definition 1.1.19. Let I ⊂ OC2,0 be an ideal. We give an inductive defini-
tion of the set of base points of I and their multiplicities.

1. The multiplicity of I in zero is

e0(I) := min{e0(f)| f ∈ I}

If e0(I) > 0, then zero is a basepoint of I.

2. If p is a basepoint of I and q is in the first neighbourhood of p, then
the multiplicity eq(I) is the minimum of the virtual multiplicities of
functions f ∈ I with respect to the multiplicities of I in the points
preceding q. If eq(I) > 0, then q is a basepoint of I.

We denote the weighted cluster of base points of I by BP (I).

Remark 1.1.20. This definition is natural if you think of it in terms of linear
systems as defined in [Zar71]. The (local) linear system of I is the set of
curves {

(
Σ(f),OC2,0/(f)

)
| f ∈ I}. Assume that the base locus of the linear

system has no fixed components, i.e. V (I) = {0}, otherwise remove the fixed

part. Then E
e0(I)
0 is the fixed part of the base locus of the linear system on the

blowup of 0 defined by the total transforms of functions in I, so the virtual
transforms are the variable part of the transformed linear system. Since the
(isolated) base points of a linear system are defined to be the base points of
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the variable part of the system, the base points in the first neighbourhood
are the base points of the transform of the linear system under a blowup.
Inductively, we see that the infinitely near base points of I are all (isolated)
base points of transforms of the linear system I under a finite number of
point blow ups.

Example 1.1.21. The only base point of (x, y)n is 0 ∈ C2, its multiplicity is
e0
(
(x, y)n

)
= n.

Example 1.1.22. The set of base points of a principal ideal (f) consists of
all points on the curve Σ(f). The multiplicity of (f) in a base point p is
the multiplicity ep(Σ(f)) of the curve in p, i.e. the multiplicity of the strict
transform of Σ(f) through p. Note that Σ(f) must not be reduced.

(Recall that Σ(I) ⊂ X denotes the subspace of X with structure sheaf
OX/I, in contrast to V (I) which always denotes a reduced space or the
underlying analytic set.)

Example 1.1.23. An Enriques diagram of the cluster of base points of (x12, y5)
is

5

5

2

2

1

1

Example 1.1.24. If f defines a smooth curve, g has order k and V (f) and
V (g) intersect transversally, then BP (f, g) is the simple cluster consisting of
k points on V (f) with multiplicity 1.

More generally, if (C, l) is a decorated curve, C irreducible, f an equa-
tion for C and g a function of order l such that V (g) and V (f) intersect
transversally, then BP

(
(f, g)

)
= BP (C, l).

1.2 Ideals Defined by Infinitely Near Points

If a weighted cluster (K,µ) is given, we would like to consider the set of all
curves C going effectively through (K,µ), i.e. of all curves with the property
that all points of K are on C and that ep(C) ≥ µ(p) for all p ∈ K. Unfortu-
nately, if the number of base points is greater than or equal to two, the set
of these curves does not form a linear system in general, i.e. the set of their
equations is not an ideal.

Example 1.2.1. We consider the cluster consisting of zero and the point on
V (x) in the first infinitely near neighbourhood, both weighted with one. An
Enriques diagram of the weighted cluster looks like this:
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1

0

1

(point on V(x) in first neighbourhood of 0)

A curve goes effectively through this cluster if and only if its tangent cone
at zero contains the y-axis or equivalently iff x divides the initial form of an
equation. Obviously, the ideal generated by the equations of these curves
is (x) + (x, y)2, including every function of order two. Indeed, if g(x, y) has
order two, then x + g(x, y) and x are members of the ideal, so the same is
true for g(x, y) = (x+ g(x, y)) − x.

So the best we can do is to look at the ideal which is generated by the
equations of the curves going effectively through (K,µ). A very nice geo-
metric interpretation of what it means for a curve to be in the linear system
generated by those curves going effectively through a weighted cluster, and
also a convenient way to compute whether f is in the ideal generated by
the equations of all curves going through a weighted cluster is given by En-
riques’ theory of virtual multiplicities. We have already defined what virtual
multiplicities are in definition 1.1.17.

Definition 1.2.2. Let (K,µ) be a weighted cluster. We write ěp(C) for the
virtual multiplicity of C in p with respect to (K,µ).
We say that C passes through (K,µ) iff ěp(C) ≥ µ(p) for all p ∈ K.
We say that C passes strictly through (K,µ) iff ěp(C) = µ(p) for all p ∈ K.
We define

H(K,µ) := {f ∈ OC2,0| Σ(f) passes through (K,µ).}

Remark 1.2.3. A curve passing strictly through (K,µ) has virtual multiplic-
ities equal to effective multiplicities, so it goes effectively through (K,µ).

Theorem 1.2.4. Let (K,µ) be a weighted cluster.

1. H(K,µ) is an ideal.

2. A non-negatively weighted cluster (K,µ) is consistent iff there is a curve
passing strictly through (K,µ).
If (K,µ) is a non-negatively weighted, consistent cluster, then H(K,µ) is
generated by equations of curves passing strictly through (K,µ).

3. There is exactly one consistent, positively weighted cluster (K ′, µ′) s.t.
H(K,µ) = H(K′,µ′).

For a proof see [CA00].
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Remark 1.2.5. Enriques gave an easy-to-handle algorithm to compute the
consistent cluster of the last statement of the theorem for a given (K,µ). It
consists of performing so-called unloadings, see [CA00].

We now give an algebraic characterization of the ideals H(K,µ).

Definition/Theorem 1.2.6. Let I ⊂ OC2,0 be an ideal.

1. f ∈ OC2,0 is integrally closed over I, iff there is an equation

fn + g1 · fn−1 + · · ·+ gn · f 0 = 0

with gk ∈ Ik.

2. The set of functions which are integrally closed over I form an ideal Ī.
This ideal is called the integral closure of I in OC2,0.

3. The ideal I is complete iff it is integrally closed, i.e. I = Ī.

Remark 1.2.7. The theory of complete ideals (in a more general setting)
goes back to Zariski. He defined complete ideals using valuations. Using his
definition, our definition of complete ideals is a theorem. See [ZS60, App. 4],
[Zar38] and [CA00, 8.3].

Remark 1.2.8. If X is a complex space and I ⊂ OX a coherent sheaf of ideals,
then the ideal sheaf Ī whose stalk at p ∈ X is the integral closure Ip of Ip

in OX,p is again coherent. See [Tei77, p. 591] and [Hir74, L. 7] for different
characterizations and geometric applications of integral closure in this more
general context.

Theorem 1.2.9. Let m be the maximal ideal in OC2,0.

1. An ideal I ⊂ OC2,0 is m-primary iff BP (I) is finite.

2. Let I ⊂ OC2,0 be an m-primary ideal. Then the integral closure of I is
Ī = HBP (I).

3. There are bijections, inverse to each other, from the set of positively
weighted, consistent clusters to the set of m-primary, complete ideals
in OC2,0 and vice versa, given by

(K,µ) 7→ H(K,µ) and I 7→ BP (I).

A proof of this theorem is in [CA00, chapter 8].

Corollary 1.2.10. Let I ⊂ OC2,0 be a complete, m-primary ideal. Then I is

the integral closure of an ideal which is generated by two elements, I = (f, g).

Proof. Corollary 4.2.8 in [CA00] says that there are two functions f, g going
strictly through BP (I) and having no other common base points.
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1.2.1 Example: Ideals Defined by Decorated Curves

Every weighted cluster defines a complete ideal, so in particular we can use
the clusters BP (C, l) of base points of decorated curves to define complete
ideals.

Definition 1.2.11. I(C, l) is the complete ideal HBP (C,l).

Remark 1.2.12. If f is a generic member of the complete ideal I, then
BP (I) = BP (V (f), l) for some l, so every complete ideal has a represen-
tation I = I(C, l).

Example 1.2.13. If f =
∑

α∈N2

0

cαx
α and g =

∑

α∈N2

0

dαx
α ∈ C{x} = C{x1, x2}

are equations of two smooth curves in (C2, 0), then V (f) and V (g) pass
through the same point in the k-th neighbourhood if and only if

∑

|α|≤k

cαx
α =

∑

|α|≤k

dαx
α.

This implies that I(V (f), k) = (f) + (x1, x2)
k.

Remark 1.2.14. More generally, if C is irreducible, then (x, y)l is the smallest
power of the maximal ideal which is contained in I(C, l), i.e. I(C, l) ⊃ (x, y)l

but I(C, l) 6⊃ (x, y)l−1.

Example 1.2.15. We consider the curve C = V (x2 + y3); the points on C can
be seen in table 1.1 on page 7. We must choose l ≥ 3 to get a decorated
curve. (C, 3) has two base points and I(C, 3) is generated by curves passing
through zero with multiplicity 2 and having the y-axis as a tangent. So
I(C, 3) = (x, y) ·

(
(x) + (x, y)2

)
.

For l = 4 we get I(C, 4) = (x2 + y3) + (x2) + (x) · (x, y)2 + (x, y)4.

Remark 1.2.16. If the curve C =
⋃
Ci is reducible, then the ideal I(C, l) is

the product I(C, l) =
∏
I(Ci, li), compare section 1.4.

Example 1.2.17. Consider the D6-singularity xy2 + x5 = x(y + ix2)(y− ix2).
An Enriques diagram of BP (D6, (2, 3, 3)) looks like this:

The complete ideal I(D6, (2, 3, 3)) is
(
(x) + (x, y)2

)
·
(
(y + ix2) + (x, y)3

)
·
(
(y − ix2) + (x, y)3

)
.
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1.2.2 Example: The Conductor of a Curve

Notation 1.2.18. If M and N are two R-modules, we denote the transport
ideal from N to M by

(M :R N) := {f ∈ R | f ·N ⊂M}.
Let (C, 0) ⊂ (C2, 0) be an isolated plane curve singularity and n : C̄ → C

the normalization. The semilocal ring OC̄,n−1(0) is the integral closure of OC,0

in its full quotient ring and (OC,0 :O
C2,0

OC̄,n−1(0)) is an m-primary ideal in

OC2,0. One out of many references for this is [CA00].

Definition 1.2.19. The conductor of the plane isolated curve singularity
(C, 0) ⊂ (C2, 0) is the ideal (OC,0 :O

C2,0
OC̄,n−1(0)) ⊂ OC2,0.

We define the δ-invariant of C as the degree of the conductor. So if J is
the conductor,

δ(C) := dimC OC2,0/J.

The following lemma is a well known formula of Max Noether for the
δ-invariant of a plane isolated curve singularity, see e.g.[CA00].

Lemma 1.2.20. Let (C, 0) ⊂ (C2, 0) be an isolated curve singularity. Then
the δ-constant of C is

δ(C) =
∑

p∈N0

ep(C)(ep(C) − 1)

2
.

Theorem 1.2.21. Let (C, 0) ⊂ (C2, 0) be an isolated plane curve singularity
and (K, e(C)) an Enriques diagram of C weighted by the multiplicities of C.
Then the conductor of C is the complete ideal H(K,e(C)−1).

Proof. Using the notations of [CA00, 3.11], we let Rk be the ring of C in
the k-th neighbourhood. For p ∈ N0, let Rp be the local ring of C in p. If
R = OC,0 has multiplicity e0, then (R : R1) = me0−1

0 , so we see that the
conductor J is included in

J = (R : R̄) ⊂
⋂

p on C

(Rp : R1
p) = H(K,ep−1).

Note that the cluster (K, ep − 1) is consistent. By theorem 1.5.5 and
Noethers formula for the δ-invariant

dimC C{x, y}/H(K,ep−1) =
∑ (ep − 1)ep

2
= δ

= dimC C{x, y}/J.
So H(K,ep−1) must be equal to the conductor J .
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1.3 Equisingularity

Definition 1.3.1. 1. Two clusters K,K ′ are equisingular, iff an Enriques
diagram of K is also an Enriques diagram of K ′. The equivalence class
of K with respect to equisingularity is the equisingularity class of K
and is denoted by E(K).

2. Two curves C,C ′ ⊂ (C2, 0) are equisingular iff they have equisingular
Enriques clusters. The equivalence class of C with respect to equisin-
gularity is the equisingularity class of C and is denoted by E(C).

3. Two decorated curves (C, l) and (C ′, l′) are equisingular iff an Enriques
diagram of (C, l) is also an Enriques diagram of (C ′, l′). The equivalence
class of (C, l) with respect to equisingularity is the equisingularity class
of (C, l) and is denoted by E(C, l).

There are many different characterizations of equisingularity of plane
curve singularities. Of some importance for this thesis are the following:

Theorem 1.3.2. Let (Ci, 0) ⊂ (C2, 0), i = 1, 2, be two isolated plane curve
singularities. The following statements are equivalent.

1. C1 is equisingular to C2.

2. C1 and C2 are topologically equivalent in the following sense: There
exist representatives (Ui, Ci) such that (U1, C1) is homeomorphic to
(U2, C2).

3. There is a µ-constant path from C1 to C2 in the following sense: Let fi

be any equations of Ci. Then there exists an F ∈ C{x, y, t} such that
the functions Ft ∈ C{x, y} with Ft(x, y) = F (x, y, t) satisfy: F1 = f1,
F2 = f2 and the function

t 7→ µt := dimC C{x, y}/(∂xFt, ∂yFt)

is constant on [1, 2].

The equivalence of the first two statements was proven by work of Brauner,
Burau and Zariski. The equivalence with the third statement is essentially
the so-called µ-constant theorem proven by Lê and Ramanujam in [LR73].
For more detailed references see [CA00, 3.8 and 7.3]. For twelve different
characterizations of µ-constant paths see [Tei77, p. 623].
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Remark 1.3.3. Statement 3 of the theorem says that the set of all equations
of curves in a given equisingularity class is a µ-constant stratum in the sense
of [AGLV98].

Normal forms for µ-constant strata with respect to right equivalence can
be computed using techniques described in [AGZV85]. In particular, we can
use the well-known normal forms with respect to right equivalence for the
µ-constant strata of all singularities in Arnold’s list, which are also given in
[AGZV85].

Example 1.3.4. The set of all smooth curves is an equisingularity class.

Example 1.3.5. The sets of germs of curves having a fixed simple singularity
Ak for k ≥ 1, Dk for k ≥ 4, E6, E7 or E8 are one equisingularity class each.

Example 1.3.6. An ordinary singularity of multiplicity k is a singularity con-
sisting of k smooth germs intersecting pairwise transversally. The set of all
ordinary singularities of multiplicity k is an equisingularity class for all k ∈ N.

Example 1.3.7. If (Ci, 0) ⊂ (C2, 0), i = 1, 2, are two isolated plane curve
singularities with smooth branches, then C1 is equisingular to C2 if and only
if there is a bijection from the set of branches of C1 to the set of branches of
C2 such that the intersection number of any two branches of C1 is the same
as the intersection number of the two corresponding branches of C2.

1.4 Factorization into Simple Ideals

Zariski wrote in [ZS60, App. 5] that the culminating point of his theory of
complete ideals was the theorem on unique factorization into simple complete
ideals. We are interested in this factorization, because it gives us a description
of the generic elements of a complete ideal. It will allow us to describe the
blowup of (C2, 0) in a complete ideal in the next chapter.

Definition 1.4.1. A non-trivial ideal I is simple if and only if it is not the
product of two non-trivial ideals J1, J2.

We define the sum of two clusters (K,µK) and (L, µL) as (K∪L, µK+µL),
where we put µK(p) = 0 if p ∈ L\K and vice versa. The following proposition
is immediately clear from the definition of base points of an ideal via virtual
transforms:

Proposition 1.4.2. Let I, J ⊂ OC2,0 be two m-primary ideals. Then

BP (I · J) = BP (I) +BP (J).
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Corollary 1.4.3. If an m-primary complete ideal I ⊂ OC2,0 is the product
I = J1 · J2 of two not necessarily complete ideals J1 and J2, then I is also
the product I = J1 · J2 of complete ideals.

Proof. J1·J2 contains J1·J2 and has the same base points. But since I = J1·J2

is complete, it is the biggest ideal with these base points.

This result can also be found in [ZS60, App. 5, p. 385]. On the same
page, we find the following theorem on complete ideals in a regular ring of
dimension two:

Theorem 1.4.4. The product of two complete ideals I, J is complete.

Now we want to describe the set of simple complete ideals. Because of
proposition 1.4.2, a complete ideal is simple if and only if its weighted cluster
of base points can not be written as the sum of two non-trivial consistent
clusters.

The key observation is the following: If (K,µ) is a non-empty, positively
weighted, consistent cluster, then the total excess

∑
ρp(K,µ) > 0, because

the excess at each point is non-negative and positive at points which are
maximal with respect to the proximity relation. Proposition 1.4.2 implies
∑
ρp(BP (I ·J)) =

∑
ρp(BP (I))+

∑
ρp(BP (J)). We deduce that a complete

ideal HK,µ with
∑
ρp(K,µ) = 1 is simple. The only consistent clusters with

positive weights and excess equal to one are the simple clusters K(p).
On the other hand, it is quite obvious that any consistent cluster (K,µ)

with positive weights is the sum (K,µ) =
∑

p∈K K(p)ρp, and that every
decomposition of (K,µ) as a sum of positively weighted, consistent clusters
can be refined to this decomposition.

This proves the following theorem, which is a special case of the theorem
on unique factorization for complete ideals in regular rings of dimension 2 of
Zariski, see [ZS60, App. 5, theorem 3]. The proof we have sketched here is
in [CA00, 8.4].

Theorem 1.4.5. A complete m-primary ideal in C{x, y} is simple if and
only if its cluster of base points is simple.

If I ⊂ C{x, y} is a complete, m-primary ideal and ρp := ρp(BP (I)), then

I =
∏

p∈BP (I)
ρp>0

H
ρp

K(p)

is the unique decomposition of I into a product of simple complete ideals.
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The curves in (C2, 0) going strictly through K(p) are those having K(p)
as an Enriques diagram. They are irreducible. So taking strict transforms
when blowing up the points of K(p) and blowing down again gives bijections,
inverse to each other, from the set of curves in (C2, 0) going strictly through
K(p) and smooth curves on the blowup intersecting the exceptional divisor
Ep in a free point.

The factorization into simple ideals generalizes this as follows:

Corollary 1.4.6. Let I ⊂ C{x, y} be a complete, m-primary ideal. I is
generated by the set of f ∈ C{x, y} such that the curve V (f) has the following
properties:

1. The number of branches is
∑

p ρp(BP (I)).

2. If we blow up all the base points of I, the strict transform consists of
∑

p ρp(BP (I)) smooth curves. Exactly ρp(BP (I)) of these intersect Ep

and the intersections are transversal.

Conversely, if we blow up (C2, 0) in all the base points of I successively and
pick any curve on the blowup that intersects each irreducible component Ep of
the exceptional divisor with intersection multiplicity at least ρp(BI(I)), then
it is the strict transform of a curve in I.

1.5 Some Numerical Invariants

The multiplicities of the base points of an m-primary ideal I ⊂ OC2,0 deter-
mine several well known invariants of the ideal and of generic members of
the ideal. In this section we define and compute some of these invariants.
The results will be especially useful when studying deformations of the zero-
dimensional space Σ(I) defined by I. We also present results of Rees relating
reductions, integral closure and the multiplicity of ideals.

Definition 1.5.1. Let I ⊂ OC2,0 be an m-primary ideal. We define the
δ-invariant of I to be

δ(I) :=
∑

p∈BP (I)

ep(I)(ep(I) − 1)

2
.

Corollary 1.5.2. Let I ⊂ OC2,0 be an m-primary ideal. Then

δ(I) = min{δ(V (f)) | f ∈ I, f reduced}.

The set of those f ∈ I whose δ-constant is δ(I) is Zariski-open in I.
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Proof. A generic curve of I goes strictly through BP (I) and is reduced, so
its δ-invariant is equal to δ(I) by Noethers formula for the δ-invariant of a
plane curve, lemma 1.2.20. This is the minimal value by the semicontinuity
of the δ-invariant.

A proof of the following lemma is also in [CA00].

Lemma 1.5.3. For f, g ∈ OC2,0 with gcd(f, g) = 1 the intersection multi-
plicity is

〈f, g〉 =
∑

p∈N0

ep(f) · ep(g).

As with the δ-invariant we can deduce:

Corollary 1.5.4. Let I ⊂ OC2,0 be an m-primary ideal. For a generic pair
f, g ∈ I we have

〈f, g〉 = min{〈f ′, g′〉| f ′, g′ ∈ I}
=

∑

p∈BP (I)

ep(I)
2.

For the next two theorems we restrict ourselves to complete ideals. The
next theorem is proposition 4.7.1 in [CA00].

Theorem 1.5.5. Let I ⊂ OC2,0 be a complete, m-primary ideal. Then the
degree of I is

deg(I) : = dimC OC2,0/I

=
∑

p∈BP (I)

ep(I)
2 + ep(I)

2
.

As a corollary we obtain

Theorem 1.5.6. Let I ⊂ OC2,0 be a complete, m-primary ideal.
The Hilbert-Samuel function of I is equal to the Hilbert-Samuel polynomial
of I and is equal to

n 7→
∑

p∈BP (I)

ep(I)
2 · n

2

2
+

∑

p∈BP (I) ep(I)

2
· n.

In particular, the multiplicity of I is e(I) =
∑

p∈BP (I) ep(I)
2.
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Proof. If I is complete, then so is In and the multiplicity of In at an infinitely
near point p is just n · ep(I), see section 1.4. So the Hilbert-Samuel function
of I is

n 7→ dimC C2/In

=
∑

p∈BP (I)

(n · ep)
2 + n · ep

2

=




∑

p∈BP (I)

ep(I)
2



 · n
2

2
+

∑

p∈BP (I) ep(I)

2
· n.

Definition 1.5.7. Let I ⊂ R be an ideal. An ideal J ⊂ I is called a reduction
of I iff J · In = In+1 for n� 0.
It is called a minimal reduction if it is minimal among all reductions with
respect to inclusion.

Recall that a local ring (R,m) is called quasi-unmixed or formally equidi-
mensional if and only if all minimal primes of the m-adic completion of R
have the same dimension. In particular, the local ring OX,p of a complex
space X at a point p is quasi-unmixed if and only if X is equidimensional at
p.

Theorem 1.5.8 (Northcott, Rees). Let (R,m) be a local ring of finite
dimension and I and J two m-primary ideals.

1. J is a reduction of I iff J ⊂ I and the integral closures are the same:
J̄ = Ī. If J is a reduction of I, then e(J) = e(I).

2. If R is quasi-unmixed, then J is a reduction of I iff J ⊂ I and e(J) =
e(I).

Proof. See [NR54] and [Ree61].

Corollary 1.5.9. Let I ⊂ C{x, y} be any m-primary ideal. Then the multi-
plicity of I is

e(I) =
∑

p∈BP (I)

ep(I)
2.

The second coefficient of the Hilbert-Samuel polynomial is ≥ 1
2

∑

p∈BP (I) ep(I).
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Corollary 1.5.10. Let I ⊂ C{x, y} be a complete, m-primary ideal, f, g ∈ I.
Then (f, g) = I if and only if their intersection multiplicity is

〈f, g〉 =
∑

p∈BP (I)

ep(I)
2.

Proof. f and g have finite intersection multiplicity if and only if they generate
an m-primary ideal and if and only if they form a regular sequence. In this
case the multiplicity of the ideal (f, g) is

e
(
(f, g)

)
= dimC C{x, y}/(f, g) = 〈f, g〉.

Remark 1.5.11. Of course we always have (f, g) = I if f and g both go
strictly through BP (I) without sharing any other infinitely near points. In
this case 〈f, g〉 =

∑

p∈BP (I) ep(I)
2 is clear. Starting from this observation it

is surely possible to give an elementary proof of the corollary without using
the general result of Rees.

Example 1.5.12. It is also possible that (f, g) = I if neither f nor g go strictly
through BP (I). For example, the cluster of base points of (x12, y5) is

5

5

2

2

1

1

So (x12, y5) is the complete ideal with this cluster of base points. The mul-
tiplicity of this ideal is

〈x12, y5〉 = 12 · 5 = 60 = 25 + 25 + 4 + 4 + 1 + 1 =
∑

p

e2p.





Chapter 2

Sandwiched Singularities

In this chapter we introduce the main objects we wish to study: sandwiched
singularities. Sandwiched singularities are singularities on the blowup of
(C2, 0) in a complete ideal. We use the results on complete ideals which
we have summarized in chapter one to deduce some important properties of
sandwiched singularities. In particular, we characterize sandwiched singu-
larities by their dual resolution graphs in section 2.2. Then we introduce
a convenient representation of sandwiched singularities via decorated curves
and explore some of the relations between sandwiched singularities and the
curves which we can use to represent them. We will pay special attention to
the case of cyclic quotients and singularities with reduced fundamental cycle.

Finally, I will use Laufer’s list of taut and pseudotaut surface singulari-
ties to give a new way of classifying taut and pseudotaut curves singularities.
These have already been classified by Gawlick in [Gaw92], but his method is
completely different. Equations and Enriques diagrams of taut and pseudo-
taut curve singularities as well as dual resolution graphs of the corresponding
sandwiched singularities are in the appendices.

2.1 Definition and Construction

Definition 2.1.1. A sandwiched singularity is a two-dimensional singularity
which is isomorphic to a singularity on the blowup of (C2, 0) in a complete,
m-primary ideal.

Recall that an m-primary ideal in OC2,0 is complete if and only if it is
integrally closed. In two-dimensional, regular local rings, the powers of in-
tegrally closed ideals are also integrally closed. An ideal with the property
that all powers are integrally closed is sometimes called normal, because the

23
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property is equivalent to the fact that the blowup in the ideal is normal.
More precisely we can state:

Theorem 2.1.2. Let I ⊂ OC2,0 be an m-primary ideal. Then the normaliza-
tion of the blowup of C2 in I is isomorphic to the blowup of C2 in the integral
closure of I.

A proof is in [Lê00]. I suppose that this was first noted by Zariski.

Remark 2.1.3. It is essential that OC2,0 is a two-dimensional ring, otherwise
powers of an integrally closed ideal need not be integrally closed. Examples
for this phenomenon occur in the last chapter of this thesis. The theorem does
hold more generally though for ideals in the local ring of a two-dimensional
rational singularity, see [Lip69] and the references given in [Vas94, 5.4, p.125].

Corollary 2.1.4. Sandwiched singularities are normal. In particular they
are isolated and Cohen-Macaulay.

The last statement is true because all two-dimensional, normal singular-
ities are isolated and Cohen-Macaulay.

We recall the definition of a rational surface singularity from [Art66]:

Definition 2.1.5. A surface singularity (X, x) is rational if and only if it is
normal and the following holds: If π : X ′ → X is a resolution, then the first
higher direct image sheaf R1f∗OX′ of the structure sheaf of X ′ vanishes at x.

We have just seen that sandwiched singularities are normal. Because
they are on the blowup of a smooth point, it is then clear that sandwiched
singularities are rational; more generally, if X ′ → X is a proper modification
of normal surfaces and X has only rational singularities, then X ′ does only
have rational singularities too, see e.g. [BR95, 2.4].

Corollary 2.1.6. Sandwiched singularities are rational.

Remark 2.1.7. Being rational is also equivalent to some numerical conditions
on a dual resolution graph, see [Art66]. These conditions can be checked by
Laufer’s algorithm given in [Lau72, IV]. It follows easily from this algorithm
that a normal surface singularity whose dual resolution graph is a subgraph
of the dual resolution graph of a rational singularity is also rational. With
this result, we can also derive the rationality of sandwiched singularities from
the description of their dual resolution graphs as subgraphs of non-singular
graphs we will give below.
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Notation 2.1.8. Let I ⊂ OC2,0 be a complete, m-primary ideal. We set
(S0, F0) := (C2, 0). If (Si, Fi) is defined, let πi+1 : (Si+1, Fi+1) → (Si, Fi)
be the blowup of (Si, Fi) in the base points of I in the i-th neighbourhood;
Fi+1 = π−1

i+1(Fi).
Denote the irreducible component of Fi which is the (strict transform of

the) exceptional divisor of the point blowup in p by Ep.
Let n be minimal such that I has no base points in the n-th neighbour-

hood. We put E :=
⋃{Ep| ρp(BP (I)) = 0} ⊂ Fn ⊂ Sn.

We can blow down E to a point, because we can blow down such a divisor
to a point iff the intersection matrix of the irreducible components is negative
definite, see [Mum61]. Since the intersection matrix of the components of E is
a submatrix of the intersection matrix of all components of Fn, it is negative
definite. We denote this blowdown by π̂ : (Sn, Fn) → (S, F ). We get the
following diagram: (Sn, Fn)

π̂

%%KKKKKKKKK

��. . .

��

(S, F )

π

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(S1, F1)

��

(C2, 0)

Note that E2
p = (−1) if and only if p is a base point of I such that no

other base point is proximate to it. In this case ρp(I) > 0. So the set E
which we contract contains no (−1)-curves.

Theorem 2.1.9. The modification π : (S, F ) → (C2, 0) is a blowup of (C2, 0)
in I.

Remark 2.1.10. It is because of this construction that sandwiched singulari-
ties are called sandwiched singularities: They are being sandwiched between
the two smooth surfaces Sn and C2.

Proof. The blowup in I is the minimal modification such that π∗(I) has no
base points. So to construct the blowup, we first blow up all the base points
to get rid of them. We obtain (Sn, Fn). But generic curves in the linear
system of I do only pass through those Ep with ρp > 0, so we can blow down
Ep with ρp = 0. On the other hand every curve on Sn which intersects every
Ep with multiplicity at least ρp is a strict transform of a curve in the linear
system of I. So the modification is indeed minimal among those removing
the base points of I.
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Theorem 2.1.11. At each point of (S, F ), the modification π̂ : (Sn, Fn) →
(S, F ) is a minimal resolution and also a minimal good resolution.

Remark 2.1.12. Of course, the minimal and the minimal good resolution
coincide for all rational surface singularities. This is clear from the charac-
terization of rational singularities via their resolution graphs. But here we
can see it directly from the construction.

Proof. Sn is smooth, so π̂ is a resolution at each point of S. The exceptional
divisor of π̂ is the set E in F that we have contracted. We have noted above
that E contains no (−1)-curves, so the resolution is minimal. We also see
from the construction of (Sn, F ) that no three components of the exceptional
divisor meet in one point and that there are no cycles.

Corollary 2.1.13. Let the notations be as above.

1. The (isomorphism class of a) blowup of C2 in the complete ideal I only
depends on the set of base points of I with ρp(I) > 0. In particular, if
the Ik are simple complete ideals, then a blowup in

∏n
k=1 I

ak

k is also a

blowup in
∏n

k=1 I
bk

k for all ak, bk ∈ N.

2. The blowup of C2 in the complete ideal I is smooth iff ρp(I) > 0 for all
base points p of I.

3. The dual resolution graphs of the minimal resolutions of the singulari-
ties on the blowup of C2 in the complete ideal I can be read off from a
weighted Enriques diagram of the cluster of base points of I.

4. If (C, l) is a decorated curve with l(Ci) > M(Ci) for all branches Ci of
C, then either I(C, l) = (x, y) and the blowup in I(C, l) is smooth, or
there is exactly one singular point on the blowup in I(C, l).

Proof. For the proof of the first statement note that the set of base points
with ρp(I) > 0 determines the set of all base points, because those base
points which are maximal with respect to the proximity relation have excess
greater than zero.

The proof of the second and third statement is a direct consequence of
the construction of the blowup in I as the blowup in all base points of I
followed by the contraction of all exceptional divisors Ep with ρp(I) > 0.

We come to the proof of the last statement. We see from the construction
of the blowup that there is at most one singular point on the blowup in I if
and only if the union of the Ep ⊂ Fn which we contract, i.e. the union of the
Ep with ρp(I) = 0, is connected.
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The condition l(Ci) > M(Ci) ensures that the set of base points with
ρp(I) > 0 is the set of base points with the property that no other base
points are proximate to them and furthermore that these base points are all
free. This implies that the components Ep with ρp(I) > 0 only meet one
other component of the exceptional divisor Fn each, so their complement is
connected and we can have at most one singularity on the blowup. It is easy
to see that under the above conditions the complement is empty if and only
if BP (I) consists of only one point with multiplicity one.

Remark 2.1.14. A special case of the fact that the blowup only depends on
the set of simple ideals in the unique factorization is the well known theorem
that blowups in a power of I are the same as blowups in I.

Example 2.1.15. Let C be a smooth curve. The blowup of (C2, 0) in the
complete ideal I(C, 1) = (x, y) is smooth. For k ≥ 1, the only singularity on
the blowup of (C2, 0) in the complete ideal I(C, k + 1) is an Ak-singularity.

Example 2.1.16. The D4-singularity is not sandwiched. This can be seen
from the dual resolution graph of D4 which looks like this:

 −2  −2  −2

 −2

We will show that the dual graph of the exceptional divisor of a series of
point blowups, starting with a smooth point, does not contain the D4-graph
as a subgraph.

The intersection number of the exceptional divisor of a point blowup is
−1. Blowing up a point on an irreducible curve lowers the self intersection
number by one. Now if the curve Ecentral corresponding to the central vertex
of the D4-graph had been the blowup of a free point, we would have had to
blow up at least two points on this curve and the self-intersection number
would be ≤ −3. So assume that it was the blowup of the intersection point
of two curves. One of these curves must have had intersection number at
most −2, so after the blowup it would have had intersection number at most
−3. If we wanted to get rid of this point by blowing up the intersection with
Ecentral, then Ecentral would have self intersection less than −2.

This argument shows that the dual resolution graph of a sandwiched
singularity cannot contain the D4-graph as a subgraph. So in particular, all
Dk, k ≥ 4, and E6, E7, E8 are not sandwiched.
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2.2 Dual Resolution Graphs

We have just seen how the dual resolution graph showed that the D4-singu-
larity is not sandwiched. On the other hand, theorem 2.2.3 states that every
singularity whose dual resolution graph does not allow a similar argument
to exclude the possibility that it is sandwiched, is in fact a sandwiched sin-
gularity! We introduce some notation from [Spi90]. Note that Spivakovsky
uses positive weights whereas we use negative weights.

Definition 2.2.1. Let Γ = (Γ, µΓ) be a weighted graph.

1. Let x be a vertex of Γ. An elementary modification of the first kind,
ε(y; x), is a weighted graph (Γ′, µ′), which we obtain from Γ by adding
the new vertex y, joining y with x by an edge and choosing the following
weights:

µΓ′(y) := −1,

µΓ′(x) := µΓ(x) − 1,

µΓ′(z) := µΓ(z) ∀z 6∈ {x, y}.

2. Let x1, x2 be two vertices of Γ, joined by an edge. An elementary
modification of the second kind, ε(y; x1, x2), is a weighted graph (Γ′, µ′),
which we obtain from Γ by adding the new vertex y, deleting the edge
from x1 to x2, adding edges from x1 and x2 to y and choosing the
following weights:

µΓ′(y) := −1,

µΓ′(xi) := µΓ(xi) − 1,

µΓ′(z) := µΓ(z) ∀z 6∈ {x1, x2, y}.

3. A weighted graph is called non-singular, if it can be obtained by per-
forming a finite number of elementary modifications on the weighted
graph

−1
.

4. A weighted graph is called sandwiched, if it can be embedded into a
non-singular graph as a connected component of the complement of the
set of vertices with weight −1.

Lemma 2.2.2. Let (Γ, µ) be a sandwiched graph.

1. Let (Γ, µ′) be a graph with integer weights such that µ′(x) ≤ µ(x) for
all vertices of Γ. Then (Γ, µ′) is also a sandwiched graph.
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2. Every connected subgraph of a sandwiched graph is a sandwiched graph.

3. There is an embedding of Γ into a non-singular graph ∆ such that Γ is
the only connected component of the complement of the set of vertices
with weight −1 in ∆.

We call such an embedding a minimal embedding.

We leave the easy proof to the reader.

Theorem 2.2.3. A normal surface singularity is sandwiched if and only if
the dual resolution graph of its minimal resolution is a sandwiched graph.

Proof. That the dual resolution graph of a sandwiched singularity is sand-
wiched follows from theorem 2.1.9 and the fact that every connected subgraph
of a sandwiched graph is sandwiched.

Now let (X, 0) be a normal surface singularity such that the dual reso-
lution graph Γ of the minimal resolution π : (S, F ) → (X, 0) is sandwiched.
We choose a minimal embedding of Γ into a non-singular graph ∆. For each
(−1)-vertex of ∆ which is connected to p ∈ Γ we choose a free point on the
component Fp of F . In this point we transversally glue a (−1)-curve to F . It
follows from the definition of non-singular graphs that we can blow down the
union of F with the newly added (−1)-curves to (C2, 0). We see that (S, F )
is the blowup of (C2, 0) in a complete ideal whose base points correspond to
the vertices of ∆.

Remark 2.2.4. Note that the choice of the free points corresponding to the
(−1)-vertices was arbitrary!

2.3 Representations via Decorated Curves

The proof of theorem 2.2.3 in connection with lemma 2.2.2 also shows the
following theorem.

Theorem 2.3.1. Let (X, 0) be a sandwiched singularity. Then there exists
a complete ideal I ⊂ OC2,0 with the following properties:

1. (X, 0) is the only singularity on the blowup of (C2, 0) in I.

2. For all base points of I with excess ρp > 0 the following holds: ρp =
1, p is free and p is maximal in BP (I) with respect to the proximity
relations.
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Remark 2.3.2. An ideal I ⊂ OC2,0 has the two properties mentioned in the
theorem if and only if I = I(C, l) for a decorated curve with l > MC , i.e.
l(Ci) > MC(Ci) for all branches Ci of C.

Definition 2.3.3. If there is at most one singular point on the blowup of
(C2, 0) in I(C, l), then we denote this sandwiched singularity by X(C, l).

Example 2.3.4. If C is a smooth curve, then X(C, k+1) is an Ak-singularity
for k ≥ 1.

Example 2.3.5. If C is an A2-singularity, then we must have l ≥ 2 to get
a decorated curve (C, l). The singularity X(C, 2) is smooth. X(C, 3) is an
A1-singularity. The blowup in I(C, 4) has two A1-singularities. The dual
resolution graph of X(C, 5) has three vertices with weights −3,−2,−2, so
X(C, 5) is the cyclic quotient singularity A7,3 (see section 2.7 on cyclic quo-
tients). Finally, for l ≥ 6, X(C, l) is a rational singularity with a star-formed
dual resolution graph.

Example 2.3.6. We consider the following sandwiched graph:

 −3  −2  −2 

It is the dual resolution graph of the cyclic quotient singularity A7,3. There
are three different minimal embeddings into non-singular graphs:

(a)

−1  −3  −2  −2   −1

P_0 P_1 P_2 P_3
_

Q

(b)

 −3  −2  −2 

−1

P_0 P_2 P_1

P_3 _ (c)

 −2 

−1

 −1  −3 −2

P_4

P_1 P_0P_3 P_2

_

Enriques diagrams of the clusters of base points of corresponding complete
ideals look like this:

(a) p_0

p_1 p_2 p_3

q

_ (b) _

p_1

p_0
p_2

p_3
(c) _

p_1

p_2

p_0

p_3

p_4

This gives us three essentially different representations X(C, l) with l > MC :

(a)X
(
xy, (4, 2)

)
(b)X(x2 + y3, 5) (c)X

(
x(x + y3), (4, 4)

)

= X
(
A1, (4, 2)

)
= X(A2, 5) = X

(
A5, (4, 4)

)

The proof of theorem 2.2.3 also shows:
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Theorem 2.3.7. Let (C, l) be a decorated curve. Then (C ′, l′) 7→ X(C ′, l′)
induces a surjective map

E(C, l)/analytic isomorphism →







Isomorphism classes of normal
surface singularities with the same
dual resolution graph as X(C, l)







Remark 2.3.8. The use of the notation X(C, l) implicitly assumes that there
is only one singularity on the blowup in I(C, l). But we see from the proof
that the theorem is also true for arbitrary decorated curves if we let X(C, l)
denote the (finite) tuple of singularities on the blowup.

2.4 Non-Uniqueness of the Representations

X(C, l)

Let’s look at some examples to see how non-unique the representations X =
X(C, l) really are. For example, Corollary 2.1.13, (2) implies

Proposition 2.4.1. X(C, l) is smooth iff the excess of BP (C, l) is greater
than zero at all base points.

In particular, X(C, l) is smooth if C is an ordinary singularity and l(Ci) =
1 for each branch Ci of C.

So for smooth points, the non-uniqueness comes from the fact that the
blow up in a complete ideal only depends on the set of base points and on
the subset where the excess is equal to zero. But that is not the only possible
cause for non-uniqueness. In general, as we have seen in example 2.3.6, there
are different ways of embedding the dual resolution graph of a sandwiched
graph into a non-singular graph, which give rise to different representations
X(C, l) where the ideals I(C, l) have very different clusters of base points.

To eliminate the possible reasons for non-uniqueness we have noticed
so far, we do now choose a fixed embedding of the dual resolution graph
into a non-singular graph by adding only (−1)-curves, compute the Enriques
diagram of the cluster of base points of a corresponding complete ideal and
choose the minimal positive weights such that the cluster is consistent. The
following theorem characterizes the set of representations X(C, l) related to
these choices.

Theorem 2.4.2. Let (C, l) be a decorated curve with the property l > MC .
Let (C ′, l′) be a decorated curve equisingular to (C, l).
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Then the singularities X(C, l) and X(C ′, l′) are isomorphic iff there is an
automorphism of (C2, 0) inducing a bijection between the two sets

{p ∈ BP (C, l) | ∃q ∈ BP (C, l) : p ≺ q}
and {p ∈ BP (C ′, l′) | ∃q ∈ BP (C ′, l′) : p ≺ q}.

Proof. We start with X(C, l) and try to reconstruct I(C, l). Remember that
we can do it like this: For each branch of C we glue a (−1)-curve to the divisor
of the minimal resolution of X(C, l). Successive blowdowns of (−1)-curves
delete the added curves as well as all components of the minimal resolution,
and we end up with a smooth point. The points to which we have blown
down the irreducible curves are infinitely near points of this resulting smooth
points; they are the base points of the complete ideal I in which we have to
blow up to regain X(C, l).

Non-uniqueness of the complete ideals stems from two facts: Choice of
coordinates of the smooth point and the fact that the choice of the positions
of the points where we glued the (−1)-curves to the minimal resolution was
arbitrary. Changing coordinates is the same as letting an automorphism act
on (C2, 0). The (−1)-curves correspond to those base points of the complete
ideal I which are maximal with respect to the proximity relation, i.e. not in
{p ∈ BP (C, l) | ∃q ∈ BP (C, l) : p ≺ q}.

Corollary 2.4.3. Let C be an isolated plane curve singularity. If l is suffi-
ciently big, then the map

E(C, l)/analytic isomorphism →







Isomorphism classes of normal
surface singularities with the same
dual resolution graph as X(C, l)







is a bijection.

Proof. Curves equisingular to C all have the same Milnor number µ, as we
see from the formula µ(C) = 2δ(C) − #(branches of C) + 1, which holds
for all plane curve singularities, see e.g. [CA00]. This implies that all curves
equisingular to C are (µ(C) + 1)-determined. So if l is sufficiently big, then
{p ∈ BP (C, l) | ∃q ∈ BP (C, l) : p ≺ q} determines the analytic type of C ′

for all (C ′, l′) equisingular to (C, l).

2.5 Reduced Fundamental Cycle

Theorem 2.5.1. 1. Every rational surface singularity with reduced fun-
damental cycle is sandwiched.
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2. A sandwiched singularity has reduced fundamental cycle if and only if
the dual resolution graph of its minimal resolution can be minimally
embedded into a non-singular graph which has been obtained from

−1
by

performing only elementary modifications of the first kind, i.e. iff it is
on the blowup in a complete ideal whose base points are all free.

3. A rational, normal surface singularity X has reduced fundamental cycle
iff it is sandwiched and has a representation X = X(C, l) where C is
a curve whose branches are all smooth.

Proof. We know that the dual resolution graph of the minimal resolution of
a rational singularity is a tree and all self intersection numbers are ≤ −2. It
follows from Laufer’s algorithm for the computation of the fundamental cycle,
given in [Lau72, IV], that a rational surface singularity has reduced funda-
mental cycle iff no component Ei of the exceptional divisor of the minimal
resolution intersects more than −E2

i other components.

The reverse operation of an elementary modification of the first kind will
be called blowing down.

Assume the dual resolution graph Γ = (Γ, w) of a rational singularity
with reduced fundamental cycle given. We use induction on the number of
vertices of the dual resolution graph Γ:

We join each vertex with the number of new (−1)-vertices needed such
that the weight is equal to the number of edges, except for one vertex v0,
which we join with one less. Call the new graph ∆. We claim that ∆ is
a non-singular graph which has been obtained from the graph whose only
vertex is v0, weighted by −1, by elementary modifications of the first kind.

If v0 was the only vertex of Γ, the claim is obvious. Otherwise, remember
that Γ is a tree. Choose an ’end’-vertex of Γ different from v0 and blow
down all (−1)-vertices you have just joined it with. It will end up to be a
(−1)-vertex itself. This has reduced the number of vertices of Γ by one. The
claim is thus proved by induction.

On the other hand, the graph
−1

has the property that no vertex v has
more neighbours than its negative weight. This property is preserved if we
perform elementary modifications of the first kind or delete vertices. That
also proves the second part of the theorem.

The third statement is an immediate consequence of the second, because
the points on a curve C are all free if and only if all branches of C are
smooth.
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2.6 Multiplicity of X(C, l)

Theorem 2.6.1. Let X = X(C, l) be a sandwiched singularity and l > MC .
Then the multiplicity of X is

e
(
X(C, l)

)
= 1 + e(C).

I want to sketch a proof which makes use of the deformation theory of
sandwiched singularities which we will study in the remaining chapters.

We exploit the fact that every rational surface singularity of multiplicity
n deforms into the cone over the rational normal curve of degree n, which
we denote by Xn. This has been conjectured by Wahl in [Wah79a] and
proven by Karras in [Kar83]. Xn is the unique rational singularity whose
dual resolution graph is one vertex with weight −n. The multiplicity of Xn

is n, so by the semicontinuity of the multiplicity, the multiplicity of a rational
surface singularity X is the maximal n such that there exists a deformation
of X into Xn.

As we will see later on, every deformation of a sandwiched singularity
X(C, l) is induced by a deformation of the decorated curve (C, l). The ex-
istence of the Scott deformation of C described in section 4.4.1 implies that
X(C, l) with l > MC has a deformation to Xe(C)+1, so e(X) ≥ 1 + e(C). On
the other hand, if p is a base point of I(C, l) and Ep the corresponding com-
ponent of the exceptional divisor of the minimal resolution of X(C, l), then
−E2

p is one plus the number of base points of I(C, l) which are proximate
to p. So e(C) + 1 = e0(C) + 1 gives an upper bound for the −E2

i in the
minimal resolution of X(C, l). Since the multiplicity of C cannot increase
under a deformation, it follows that e(C) + 1 is also an upper bound for the
multiplicity of X(C, l).

I also want to mention a proof for the special case of a rational singularity
with reduced fundamental cycle:

Assume that we have a representation X(C, l) where all branches of C
are smooth. Then the multiplicity of C is the number of branches. We
use [Art66, Cor. 6], which says that the multiplicity of a rational singularity
is minus the self intersection number of the fundamental cycle. So if the
fundamental cycle is reduced, the multiplicity is 2 +

∑
(−E2

i − 2). If C has
a single branch, the singularity is an Ak-singularity and this number is two.
For every additional branch, the number goes up by one.

Remark 2.6.2. Of course, we can compute the multiplicity of any sandwiched
singularity X(C, l), because we know the dual resolution graph, so we can
compute the fundamental cycle F . For a rational singularity, the multiplicity
is −F 2. If the divisor l is small, the multiplicity will be smaller than e(C)+1.
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2.7 Example: Cyclic Quotient Singularities

We introduce an interesting class of examples which has been very well stud-
ied.

A (two-dimensional) cyclic quotient singularity is a singularity that is
isomorphic to the quotient (C2, 0)/G, where G is a finite cyclic group G ⊂
Aut(C2, 0). If the order of G is n, then there is a change of coordinates such
that G acts as

G = 〈
(

exp(2πi/n) 0
0 exp(2πiq/n)

)

〉
with 0 < q < n and gcd(q, n) = 1. We call this singularity An,q. Cyclic
quotient singularities are also called Hirzebruch-Jung singularities.

It is well known that the dual resolution graph is a chain

P_1 P_2 P_3 P_r

−e_1 −e_2 −e_3 −e_r

_

and the self-intersection numbers −ei can be computed from a continued
fraction of n/q:

n

q
= e1 −

1

e2 −
1

. . .

=: [e1, . . . , er].

We have ei ≥ 2 for all i and we easily see that cyclic quotient singularities
are sandwiched.

We want to find a representation via a decorated curve. Our first idea
might be to add (−1)-vertices to the dual resolution graph to get a repre-
sentation X(C, l) where C has many branches which are all smooth. Let us
do this in such a way that one of the end points of the graph corresponds to
the exceptional divisor E0 of the blowup of 0 ∈ C2. An Enriques diagram of
(C, l) then looks like this:

1
1

1
...

1
1

...

1

1

1
...

...

1
1...

We have the following characterizations of these representations:

Lemma 2.7.1. A two-dimensional singularity is a cyclic quotient if and only
if it is a sandwiched singularity that can be represented by a decorated curve
(C, l) with smooth branches Ci such that

min{l(i), l(j)} = 〈Ci, Cj〉 + 1 ∀i 6= j.
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Now let us look at another interesting representation:

Theorem 2.7.2. Assume 0 < q < n and gcd(q, n) = 1. The singularity An,q

is isomorphic to the unique singularity lying over 0 ∈ C3 in the normalization
of the surface Wn,q = {(x, y, z) ∈ C3| xn−qz − yn = 0}.

For a proof see [BPdV84, p. 81].

Now Wn,q is obviously a chart of the blowup of C2 in (xn−q, yn)! With
theorem 2.1.2 this implies:

Corollary 2.7.3. The singularity An,q is isomorphic to a singularity on the
blowup of (C2, 0) in the integral closure of the ideal (xn−q, yn).

We leave the verification of the following facts as an easy exercise to the
reader: All base points of (xn−q, yn) are on the curve xn−q + yn. There are
d n

n−q
e free base points, which are all on the smooth curve x, the other base

points are all satellite points. The number of base points and the proximity
relations can be read off from the numbers occurring in the Euclidean algo-
rithm performed on n and n − q. In general there are two singularities on
the blowup of (xn−q, yn).

Example 2.7.4. Let’s take a look at A17,5. The Euclidean algorithm on n and
n− q yields:

17 = 1 · 12 + 5

12 = 2 · 5 + 2

5 = 2 · 2 + 1

2 = 2 · 1.

The cluster of base points of (xn−q, yn) has the following Enriques diagram:

12

5
5

2

2

1

1

Blowing up in all the base points leads to a divisor with the following dual
graph:

−4 −2 −3 −1 −2 −4 −2
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Deleting the (−1)-vertex leaves two connected components. The left is the
dual resolution graph of A17,5 as we see from

17 = 4 · 5 − 3

5 = 2 · 3 − 1

3 = 3 · 1

=⇒ 17

5
= [4, 2, 3]

2.8 Taut and Pseudotaut Singularities

A surface singularity X is taut iff every normal surface singularity with the
same dual resolution graph is isomorphic to X. It is called pseudotaut iff
it is normal and there are only a finite number of isomorphism classes of
normal surface singularities with the same dual resolution graph. Taut and
pseudotaut surface singularities have been completely classified by Laufer in
[Lau73].

In this section we will first give a few examples of how corollary 2.4.3
shows that certain X(C, l) are taut or pseudotaut. In the next section we
will apply our observations to obtain a complete list of those equisingularity
classes of plane curves which contain only one respectively finitely many
isomorphism classes.

Example 2.8.1. Ak-singularities have representations X(smooth curve, k+1).
Since all smooth curves are right-equivalent, we see that Ak is taut.

Example 2.8.2. A cyclic quotient singularity has a representation X(C, l)
such that (C, l) has an Enriques diagram:

1
1

1
...

1
1

...

1

1

1
...

...

1
1...

We see that the set of base points with the property that no base points are
proximate to them consists of points lying all on one smooth curve. Assume
that we are given two such decorated curves which are equisingular. We
choose an automorphism of (C2, 0) that maps the smooth curve which con-
tains the free base points with no other points proximate to them of the first
decorated curve onto that of the second decorated curve and conclude that
any two cyclic quotient singularities X(C, l) with the same dual resolution
graph are isomorphic by theorem 2.4.2. (Of course, this result is well known.)
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Remark 2.8.3. The argument used in the last example proves the following
more general statement: If X is a taut sandwiched singularity with dual
resolution graph (Γ, µ) and X ′ is a normal surface singularity with dual
resolution graph (Γ, µ′) such that µ′ ≤ µ, then X ′ is also taut.

In fact, this statement is true for all taut singularities X, see [Lau73].

Example 2.8.4. We have seen that cyclic quotient singularities are also on the
blowup of a complete ideal whose base points are all satellite points except
for some points lying all on a single smooth curve. Given two equisingular
such clusters (C, l) and (C ′, l′), any automorphism of (C2, 0) mapping the
smooth curve containing the free points of BP (C, l) to the smooth curve of
BP (C ′, l′) automatically maps all of BP (C, l) bijectively onto BP (C ′, l′). So
we have one more proof of the fact that cyclic quotient singularities are taut.

Example 2.8.5. We consider the following sandwiched graph:

−2 −2  −3−2

−3

−2

−2

There is only one minimal embedding of this graph into a non-singular graph
(up to permutation of the left and the lower arm of the graph). The corre-
sponding Enriques diagram with its minimal weights is

1

 3

 3

 2  1

 1
   1

The curves going strictly through this cluster are the E13-curve singularities.
In [AGZV85], the following normal form for their equations with respect to
right-equivalence has been given: x3 +xy5 + ay8, a ∈ C. So a normal surface
singularity with the above dual resolution graph is of the form X

(
x3 +xy5 +

ay8, (7, 5)
)
, where 7 is the value on the singular branch and 5 is the value of

the smooth branch.
The class E13 contains two analytic isomorphism classes, the one of the

homogeneous equation x3 + xy5 and the class of the semiquasihomogeneous
equations with a 6= 0. That the semiquasihomogeneous equations all define
isomorphic curves can be seen via the change of coordinates x 7→ ( b

a
)5x,

y 7→ ( b
a
)2y. So there can be at most two isomorphism classes of normal

surface singularities with the given dual resolution graph.
In fact, the singularity X

(
x3+xy5+ay8, (7, 4)

)
is taut, because x 7→ x+y3,

y 7→ y maps the reduced cluster of base points of x3 + xy5 to the reduced
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cluster of base points of x3 + xy5 + y8. But if l is at least (7, 5), the reduced
cluster of base points is big enough to separate the two isomorphism classes of
E13 and we get a double-indexed series of classes of pseudotaut singularities
X
(
E13, (7 + a, 5 + b)

)
, a, b ∈ N0, each class containing two isomorphism

classes.

As in the above example, most other plane curve singularities which are
unimodal with respect to right-equivalence are pseudotaut. The only excep-
tions are the simply elliptic curve singularities Ẽ7 and Ẽ8. For the other
unimodal curve singularities a change of coordinates of the form x 7→ ax,
y 7→ by with a, b ∈ C depending on the weights of the homogeneous part of
the equations in Arnold’s normal forms shows that they are pseudotaut.

But these are not all the examples of pseudotaut curves, the complete list
of taut and pseudotaut plane curve singularities is given in the next section.
We will now demonstrate by a direct computation that the J3,1-singularities,
which are bimodal with respect to right-equivalence, are taut. In fact, it can
be shown by similar computations that all Jk,i-singularities, i > 0, are taut,
even though their modality with respect to right-equivalence is k − 1.

Example 2.8.6. Consider the equisingularity class J3,1. The normal form
of the J3,1-singularities with respect to right-equivalence given by Arnold is
x3 + x2y3 + a0y

10 + a1y
11, a0 6= 0.

Let us compute the normal form of (1 + by)(x3 + x2y3 + y10), b ∈ C.
We use the technique described in [AGZV85]. The terms which bother us
are bx3y + bx2y3, so we try to express them as a C[x, y]-linear combination
of the partial derivatives ∂f/∂x and ∂f/∂y plus higher order terms. The
coefficients of the partial derivatives are (b/3)xy and (b/9)y2, so we make
the change of coordinates x 7→ x − (b/3)xy and y 7→ y − (b/9)y2. The
result is x3 + x2y3 + y10 − (b/9)y11 + f1(y)x

3y2 + f2(y)x
2y5 + f3(y)y

12 for
some polynomials f1, f2, f3. In the next step we want to eliminate the terms
f1(0)x3y2 + f2(0)x2y5 + f3(0)y12. This is possible, because we can write this
sum as a C-linear combination of xy2 · ∂f/∂x, x · ∂f/∂y and y3 · ∂f/∂y
plus higher order terms. The corresponding change of coordinates leads to
x3 +x2y3 +y10− (b/9)y11 +g1(y)x

3y3 +g2(y)x
2y6 +g3(y)y

13, so the powers of
y in the terms we want to eliminate has been raised by one. Inductively, we
can raise the power of y until the unwanted terms have order greater than the
Milnor number, which implies that (1+by)(x3+x2y3+y10) is right-equivalent
to x3 + x2y3 + y10 − (b/9)y11.

Now, similar as in the preceding example of E13, the change of coordinates
x 7→ c3x, y 7→ cy transforms x3 + x2y3 + y10 − (b/9)y11 into c9(x3 + x2y3 +
cy10 − (b/9)c2y11). Solving a0 = c and a1 = −(b/9)c2, we get c = a0 and
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b = −9(a1/a
2
0) (remember that a0 6= 0). So we have shown:

a2
0 − 9a1y

a11
0

·
(
x3 + x2y3 + y10

)
∼R

(
x3 + x2y3 + a0y

10 + a1y
11
)
,

which means that the J3,1-singularity is taut.

2.9 Curves Determined by Their Topological

Type

Definition 2.9.1. 1. We call an isolated plane curve singularity C taut,
iff every singularity C ′ ∈ E(C) equisingular to C is analytically isomor-
phic to C.

2. We call an isolated plane curve singularity C pseudotaut, iff there is only
a finite number of analytic isomorphism classes in the equisingularity
class E(C) of C.

Remark 2.9.2. Two plane curve singularities are analytically isomorphic iff
they are contact-equivalent or k-equivalent for short.

Remark 2.9.3. Remember from theorem 1.3.2 that two isolated plane curve
singularities (Ci, 0) ⊂ (C2, 0), i ∈ {1, 2}, are equisingular if and only if they
are topologically equivalent in the following sense: There exist representatives
(Ui, Ci) such that (U1, C1) is homeomorphic to (U2, C2). For references on
this see [CA00, 3.8, p. 96].

So taut curve singularities are curves determined by their topological
type. Pseudotaut curve singularities could be called curves which are almost
determined by their topological type.

Remark 2.9.4. A singularity is called equisingularity-rigid if and only if every
equisingular deformation is trivial. Obviously, taut curve singularities as well
as generic members of a pseudotaut equisingularity class are equisingularity-
rigid. It is shown in [Gaw92] that these are indeed all equisingularity-rigid
plane curve singularities. In the same article, it is explicitly stated which
pseudotaut singularities are equisingularity-rigid in terms of the normal forms
of the equations from [AGZV85].

The following lemma is a consequence of Corollary 2.4.3. We have already
exploited it in the last example of the previous section.

Lemma 2.9.5. If C is a taut isolated plane curve singularity with r branches,
then X(C,mC + α), α ∈ Nr

0, is an r-indexed series of taut singularities.
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If C is a pseudotaut isolated plane curve singularity with r branches, then
X(E(C), mC + α), α ∈ Nr

0, is an r-indexed series of pseudotaut singularities
and there is an l ≥ mC such that the number of isomorphism classes in
X(E(C), l + α) does not depend on α ∈ Nr

0.

As an application, we can go through the list of dual resolution graphs
of taut and pseudotaut surface singularities given in [Lau73] to find all such
series X(C, l), thus getting complete lists of taut and pseudotaut plane curve
singularities. The result is given by the following two theorems. They repro-
duce the result of [Gaw92].

Theorem 2.9.6. An isolated plane curve singularity (C, 0) is taut, if and
only if it is in the following list:

1. A smooth curve: A0.

2. A simple singularity: Ak, k ≥ 1, Dk, k ≥ 4 or E6, E7, E8.

3. A hyperbolic triangle singularity: T2,p,q with 1
p

+ 1
q
< 1

2
.

4. Jk,i with k > 1 and i > 0.

5. Zi,p with p > 0.

6. W1,p with p > 0.

7. W#
1,p with p > 0.

A list with equations, Enriques diagrams and the dual resolution graphs of
the corresponding taut sandwiched singularities is in appendix A.

Theorem 2.9.7. An isolated plane curve singularity (C, 0) is pseudotaut, if
and only if it is taut or in the following list:

1. E6k, E6k+1 or E6k+2 with k ≥ 2.

2. Z6i+11, Z6i+12 or Z6i+13 with i ≥ 0.

3. W12, W13, W17 or W18.

A list with equations and Enriques diagrams of the curve singularities and
the dual resolution graphs of the corresponding taut sandwiched singularities
is in appendix B.

Remark 2.9.8. 1. We see from the lists that all taut and pseudotaut plane
curve singularities have multiplicity ≤ 4. It would be nice to have a
direct argument for this.
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2. The singularities Jk,0, Zi,0, Ẽ7 = T2,4,4 and Ẽ8 = T2,3,6 are missing in
the above lists. This shows that taut and pseudotaut singularities can
be adjacent to singularities which are not taut or pseudotaut.

That these singularities are not pseudotaut can be seen directly as
follows: Take the quasihomogeneous part of the normal form equa-
tion and add z2. You get a class of quasihomogeneous, normal surface
singularities. These singularities can be constructed from factors of
automorphy, see e.g. [Dol75] and [Pin77]. For the above singularities,
there is a modulus in the family of Fuchsian groups in the correspond-
ing factors of automorphy, see [Möh00]. This is also a modulus for the
analytic isomorphism types in the equisingularity class of plane curve
singularities. So even if we restrict to the quasihomogeneous part of the
above equisingularity classes, we can already see that the singularities
are not taut or pseudotaut. The same argument does not work e.g.
for the classes W12k,W12k+1,W12k+5 and W12k+6, k ≥ 2; for these equi-
singularity classes all quasihomogeneous equations define isomorphic
singularities.

Proof. To verify this proof, the reader will have to look at Laufer’s list com-
piled in [Lau73]. We observe the following important facts:

1. The shape of the dual resolution graph of a taut surface singularity is
a point, a line, a star or two stars, so it has no more than four arms;
the dual resolution graph of a pseudotaut surface singularity which is
not taut is a star. This restricts the possible number of branches of
corresponding curves to four. A block of consecutive satellite points
also gives an extra arm, which might coincide with the arm of another
branch. This already restricts the set of Enriques diagrams we have to
consider.

2. Consider the continued fractions

[b1, . . . , br] = b1 −
1

b2 −
1

· · · − 1

br

If all bi ≥ 2, then an easy induction over n shows:

[b1, . . . , bn − 1] < [b1, . . . , bn, . . . , br] < [b1, . . . , bn] ∀1 ≤ n < r.

The limit of [2, . . . , 2] as the number of 2’s goes to infinity is 1.
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It is advisable to consider irreducible curves first. An irreducible taut curve
can have no more than two blocks of consecutive satellite points; an irre-
ducible pseudotaut curve no more than one. Using the above observations,
it is an elementary exercise to show that all irreducible curves which are not
in the above two lists are indeed not taut or pseudotaut.

Obviously, all branches of a reducible taut or pseudotaut curve must be
taut or pseudotaut. To obtain a list of all taut and pseudotaut curves with
two branches, we have to go through all pairs of irreducible curves in our lists
and for each pair through all possible contact orders of the branches. In the
same way, we obtain the lists of curves with three and four branches.

Remark 2.9.9. The fact that an irreducible curve with three or more blocks
of consecutive satellite points cannot be taut or pseudotaut has already been
observed by Zariski, cf. [Gaw92].





Chapter 3

Deformations of Sandwiched
Singularities

In this chapter we study deformations of a sandwiched singularity X(C, l).
We start by reviewing the main result of [dJvS98], which says that every
deformation of a sandwiched singularity X(C, l) is induced by a deformation
of the decorated curve (C, l). After some technical preparations, we give a
precise statement of their results in theorems 3.1.7 and 3.2.1.

In section 3.2 we give some examples of easy corollaries on (multi)-
adjacencies of sandwiched singularities which follow immediately from the
result. The main virtue of these examples is not to be seen in the results
themselves, which are not new, but in demonstrating that we have gained
complete control over multi-adjacencies of sandwiched singularities up to
equisingularity, even though computations may be tough for complicated
examples. Very similar is the application of theorem 3.2.1 in the study of
smoothings and smoothing components of sandwiched singularities. This will
be the main topic of the next chapter, in particular in sections 4.5 and 4.6.

Theorem 3.1.7 is a strong result, but it is not very geometrical. I cite
from [dJvS98, p. 477]: ‘As the above construction involves blowing up,
it is not obvious how to obtain a flat family of surfaces X(CS, lS) directly
from any 1-parameter deformation of decorated curves (CS, lS).’ I solve this
problem by showing that a deformation of (C, l) describes an equimultiple
deformation of the zero-dimensional space Σ(I(C, l)). For 1-parameter de-
formations, equimultiplicity is equivalent to the fact that the family of fibres
of the blowup in the total space of the deformations is flat, thus giving us the
direct construction we were looking for, see section 3.5, simultaneous blowup.

In fact, we get more. The deformation of Σ(I(C, l)) is not only equimulti-
ple, but the whole Hilbert-Samuel function of the fibres is independent of the
deformation parameter. I conjecture that this implies flatness of the fibres

45
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of the blowup for deformations over any reduced base space, see conjecture
3.5.4. At the end of the chapter there is a short review of some results on
normal flatness which support the conjecture.

The study of deformations of the space Σ(I(C, l)) also yields another
important result: For an equimultiple deformation Σ(I(Ct, lt)) the number of
base points of I(Ct, lt) is upper-semicontinuous in t. This gives an interesting
and easy-to-handle restriction to the existence of multi-adjacencies of the
plane curve singularity C, which we will study in chapter 4.

3.1 Deformations of Decorated Curves

Let (C, l) be a decorated curve, n : C̄ → C the normalization.

Definition 3.1.1. Let (S, 0) be normal. A deformation of the decorated
curve (C, l) over S is a collection of the following data:

1. A δ-constant deformation CS → S of C over S.

2. The simultaneous normalization n : C̄ × S → CS.

3. A flat deformation lS of the divisor l on C̄, such that (Cs,p, ls,p) is a dec-
orated curve for all p ∈ Cs ⊂ CS in a sufficiently small neighbourhood
of 0 ∈ CS.

The main result in [dJvS98] is that every deformation of the sandwiched
singularity X(C, l) is induced by a deformation of the decorated curve (C, l).
The precise statement of their result will be given in theorem3.1.7. But first
we have to discuss some technical problems.

The main problem is that we have only defined deformations over a nor-
mal base space. This is necessary for simultaneous normalization, compare
section 4.2. But in classical deformation theory, the starting point for the
construction of a deformation space forX are deformations over non-reduced,
zero-dimensional base spaces, see e.g. [Pal90]. In fact, the first space to con-
sider is the space T 1(X) of first-order deformations, which is obtained by
evaluating the deformation functor DefX on Specan C[ε]/(ε2).

The normalization X̃ of a complex space germ (X, 0) is constructed by
taking the integral closure of the total quotient ring of OX,0. Since all nilpo-
tent elements ε/x are integral, the straight forward approach to defining
the functor of deformations which admit simultaneous normalization does
not work. Instead, we define the functor of simultaneous normalization
of X as the functor of deformations of the diagram of the normalization
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Def (X̃
n−→ X), see [dJvS90] and [Buc81]. Here a deformation of the diagram

means that we are allowed to deform the map as well as both X̃ and X.
In order to define deformations of decorated curves over an arbitrary base,

de Jong and van Straten used another way of generalizing deformations over a
normal base which admit simultaneous normalizations. For the case of plane
curves, the functor they define is equivalent to the functor of simultaneous
normalization, see theorem 3.1.5. The basic idea is the following:

If the base space is normal, a deformation of a plane, isolated curve
singularity admits a simultaneous normalization if and only if it is δ-constant,
which is equivalent to the condition that the deformation of the curve induces
a deformation of the conductor of the curve, see section 4.2.

The key observation of de Jong and van Straten is that these induced de-
formations of the conductor satisfy the so-called ring condition (R.C.), which
makes sense over any base space, and that this condition gives us the correct
generalization of deformations which admit simultaneous normalization over
arbitrary base spaces.

3.1.1 R.C. Deformations

In this section we quote the definition and some basic properties of R.C.
deformations from [dJvS90].

Let n : C̄ → C be the normalization of the curve C. By definition, OC̄

is the integral closure of O in its total quotient ring. It is well known, that
every OC-linear homomorphism from OC̄ to OC is just multiplication with
an h ∈ OC . Indeed, if α ∈ HomOC

(OC̄ ,OC) and f is a non-zero divisor, then
h = α(f)/f is independent of f , because fα(g) = α(fg) = gα(f). So we
can identify the conductor of C with HomOC

(OC̄ ,OC), compare definition
1.2.19.

The definition of the conductor only made use of the fact that OC̄ is a
OC -submodule of the total quotient ring. The fact that it is also a ring is
reflected in the so-called ring condition which the conductor satisfies. We
give the definition for a more general situation.

Definition 3.1.2. Let (S,mS) be a Noetherian local ring,
(R,mR) a Noetherian local S-algebra, M an R-module,
R̄ = R⊗R (S/mS) and M̄ = M ⊗R (S/mS).

1. M is Cohen-Macaulay over S (CM over S), if and only if

(a) M̄ is Cohen-Macaulay as an R̄-module and

(b) M is S-flat.
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M is a maximal Cohen-Macaulay module over S (MCM over S) if and
only if M is CM over S and the codimension dim(R̄)− dimR̄(M̄) of M
is zero.

2. A fractional ideal is a finitely generated R-moduleM which is contained
in the total quotient ring of R and contains a non-zero divisor.

With the same proof as above, we see that if M,N are two fractional
ideals, then HomR(M,N) is again a fractional ideal. If a fractional ideal
R̃ ⊃ R is also a ring, we call the ideal HomR(R̃, R) ⊂ R the conductor of
R̃. So with this notation, the conductor of a plane curve singularity is the
conductor of the semilocal ring of its normalization.

Definition 3.1.3. The ideal I ⊂ R satisfies the ring condition (R.C.) iff the
natural injection HomR(I, I) ↪→ HomR(I, R) is an isomorphism.

Proposition 3.1.4. Let R̃ ⊃ R be a fractional MCM over S and set J :=
HomR(R̃, R) ⊂ R.
Then the following two statements are equivalent:

1. R̃ is a ring (whose ring structure is induced by the ring structure of the
total quotient ring of R).

2. J satisfies the ring condition.

This equivalence is proved in [dJvS90, Prop. 1.8].

The next theorem is [dJvS90, Th. 1.1].

Theorem 3.1.5. Let X̃ → X be a finite surjective and generically injective
mapping. Let Σ = Σ(J) be the subspace of X defined by the conductor ideal
J = HomX(OX̃ ,OX). Assume that X̃ is Cohen-Macaulay and that X is
Gorenstein.

Then there is a natural equivalence of functors

Def (X̃ → X) → Def (Σ ↪→ X,R.C.).

Here the second functor describes deformations of the diagram Σ ↪→ X for
which the ideal of ΣS in XS satisfies the ring condition (R.C.).

So the result says that the study of deformations which admit simulta-
neous normalization is the same as the study of R.C.-deformations of the
conductor.
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3.1.2 Normal Form Deformations

Let (C, l) be a decorated curve, Σ the fat point defined by the conductor and
g ∈ OC2,0 a function whose intersection multiplicity with the i-th branch of
C is l(i). The last condition is equivalent to the fact that l is the divisor of
zeroes of the pullback of g to the normalization of C. We also say that g cuts
out the divisor l on C. So we can recover the decorated curve (C, l) from
the triple (Σ, C, g); but for a given decorated curve, the triple is not unique,
because we can choose different g.

Definition 3.1.6. Let S be a local analytic space. A triple (ΣS, CS, gS) is
called a nice triple or a normal form deformation if and only if

1. (ΣS, CS) is an R.C.-deformation of (Σ, C) over S and

2.
(
ΣS,Σ(gS)

)
is an R.C. deformation of (Σ, g) over S.

Two nice triples (ΣS, CS, gS) and (Σ′
S, C

′
S, g

′
S) are isomorphic if there is

a coordinate transformation in the x, y-plane over S that maps (ΣS , CS) to
(Σ′

S, C
′
S) and gS to g′S modulo some multiple of an equation for CS.

We define the functor Def(Σ, C, g) of normal form deformations by putting

Def(Σ, C, g)(S) := {(ΣS, CS, gS) nice triple over S}/{isomorphisms}

Over a normal base space, a normal form deformation induces a deforma-
tion of the decorated curve in the sense of section 3.1 and every deformation
of a decorated curve is induced by a normal form deformation. So it would
be natural to define a deformation of a decorated curve over an arbitrary
base as an equivalence class of normal form deformations. However, since
this approach is not very elegant and probably would not lead to a better
understanding of the situation, we will not follow it any further. It would
be interesting though to find a definition of deformations of decorated curves
which does not make use of normal forms at all.

In [dJvS98, §3] it is shown that the functor of normal form deformations
satisfies the condition of Schlessinger’s theorem, so it has a hull, which means
that there is a semiuniversal normal form deformation.

The main result of [dJvS98] is

Theorem 3.1.7. There is a natural transformation of functors

Def(Σ, C, g) → Def
(
X(C, l)

)
.

This transformation is formally smooth.
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The proof is [dJvS98, §3].
Formal smoothness implies that every deformation of the sandwiched sin-

gularity X(C, l) is induced by a normal form deformation and furthermore
that the base spaces of the semiuniversal deformation spaces are the same
up to a smooth factor.

3.2 Adjacencies of Sandwiched Singularities

If we restrict ourselves to deformations over a normal base space, theorem
3.1.7 implies the following:

Theorem 3.2.1 (de Jong, van Straten). Let (T, 0) be a normal complex
space germ, for example T = C.

1. For every deformation (CT , lT ) of a decorated curve (C, l) there is a
deformation XT of X(C, l), such that Xt = X(Ct, lt) for all t.

2. For every deformation XT of a sandwiched singularity X(C, l) over
(T, 0), there is a deformation (CT , lT ) of (C, l) over (T, 0), such that
Xt = X(Ct, lt) for all t.

Remark 3.2.2. Note that writing Xt = X(Ct, lt) is an abbreviation for the
following: We can choose a representative of XT such that the fibre Xt is
isomorphic to the blowup of C2 in the ideals I(Ct,p, lt,p) ⊂ OC2,p where p
ranges over all points of Ct where lt is not zero.

Corollary 3.2.3. Sandwiched singularities only deform into sandwiched sin-
gularities.

Similarly, assume that we have a class of decorated curves of which we
know that it is closed under deformations. By the above theorem it corre-
sponds to a class of normal surface singularities which is closed under defor-
mations. For example, rational singularities with reduced fundamental cycle
are those sandwiched singularities which can be represented by a decorated
curve with smooth branches, see theorem 2.5.1. So we get as a corollary that
rational singularities with reduced fundamental cycle only deform into ratio-
nal singularities with reduced fundamental cycle. Of course, this is rather
trivial. But we also obtain a new proof of

Corollary 3.2.4. Two-dimensional cyclic quotient singularities only deform
into cyclic quotient singularities.
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That quotient singularities only deform into quotient singularities has
been proved in [EV85]. That cyclic quotient singularities only deform into
cyclic quotient singularities was conjectured by Riemenschneider and has
been proved in [KSB88, §7].

Proof. This follows directly from the standard representation of a cyclic quo-
tient via a decorated curve with smooth branches, see lemma 2.7.1.

The above corollaries are very coarse statements on adjacencies of sand-
wiched singularities. But we can also choose to go more into details, because
the theorem tells us that knowing all adjacencies of a curve C to multi-
equisingularity classes gives us all multi-adjacencies of the sandwiched singu-
larities X(C, l) to classes of normal surface singularities with given resolution
graphs.

Here is the easiest example:

Example 3.2.5. An Ak-singularity can be represented as X(C, k + 1), where
C is a smooth curve. All deformations of a smooth curve are trivial, so all
we can do is deform the divisor, i.e. split up the value k+ 1 at 0 into r parts
k1, . . . , kr at different points with

∑r
i=1 ki = k + 1. We get a new proof of

the following result:

Proposition 3.2.6. There is a multi-adjacency of the Ak-surface singularity
to (Ak1

, . . . , Akr
) if and only if

∑r
i=1 ki ≤ k + 1 − r. This gives all multi-

adjacencies of the Ak-singularities.

This example is rather trivial, because an Ak-surface singularity is stably
equivalent to the singularity Σ(xk+1) ⊂ (C, 0), but it demonstrates the point.

In general, finding all adjacencies of a given isolated plane curve singular-
ity C to multi-equisingularity classes is a very hard task. Chapter 4 contains
several necessary and sufficient conditions for such adjacencies to exist.

The situation gets easier if we consider decorated curves (C, l) with a
small divisor l, because this restricts the number of deformations of C we
have to consider.

Example 3.2.7. Let Xn be the cone over the rational normal curve of degree
n, i.e. the unique singularity whose dual resolution graph consists of a single
vertex with weight −n. Let C be an ordinary singularity of multiplicity
n − 1. Then we have Xn = X(C, (2, . . . , 2)). It is easy to see the following:
If n 6= 4 and (Ct, lt) is a 1-parameter deformation of (C, (2, . . . , 2)), then CT

is a trivial deformation, i.e. we can transform CT into C × T by a change of
coordinates. If n = 4, then Ct can also look like this for t 6= 0:
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For any n ∈ N, we deduce that every 1-parameter deformation (Ct, lt) of
(C, (2, . . . , 2)) with (Ct, lt) 6∈ E(C, l) for t 6= 0 has the property thatBP (Ct, lt)
has excess greater than zero at every base point.

This shows that every non-trivial deformation of Xn over a reduced base
space is a smoothing. The fact that there are two essentially different de-
formations of the decorated curve of X4 corresponds to the fact that X4 has
two smoothing components, compare section 4.6.

Note that it is essential that we only consider reduced base spaces, because
for n ≥ 5, the base space of a semiuniversal deformation of Xn has an
embedded zero-dimensional component, see [Pin74, Ch. II, 8]. This means
that Xn has obstructed infinitesimal deformations i.e. non-trivial first-order
deformations which cannot be lifted to 1-parameter deformations.

Example 3.2.8. Let Xa,b be the cyclic quotient singularity whose dual reso-
lution graph consists of two vertices with weights −a, −b.

As in the last example we can easily see that every fibre of a 1-parameter
deformation of Xa,b is either smooth or has a single singularity, which must
be either Xa,b or Xa or Xb or Xa+b−2. Here Xn denotes the cone over the
rational normal curve of degree n, compare the above example.

3.3 Geometric Construction of Deformations

Theorem 3.2.1 tells us that a 1-parameter deformation (CT , lT ) of a decorated
curve (C, l) induces a deformation X(CT , lT ) of the sandwiched singularity
X(C, l), but it does not tell us how to construct X(CT , lT ) directly from
(CT , lT ). To find a direct construction of X(CT , lT ) using blowups was there-
fore left as an open problem in [dJvS98]. We devote the rest of this chapter
to the solution of this problem. I give a short summary of the results we
obtain:

To solve the problem, we will take a look at the family of zero-dimensional
spaces Σ(I(Ct, lt)). We prove that deformations of the decorated curve (C, l)
correspond exactly to equimultiple deformations of the fat point Σ(I(C, l)).
The notion of equimultiplicity is known to be important when consider-
ing blowups, see e.g. [HIO88] and [Lip82]. We will then see that for 1-
parameter deformations equimultiplicity implies that the fibres of the blowup
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in Σ(I(CT , lT )) are a deformation of X(C, l), thus giving us the direct con-
struction via simultaneous blowup.

In fact the construction works for deformations over an arbitrary reduced
base space: Our analysis of the deformation Σ(I(CT , lT )) shows that it is not
only equimultiple but that the whole Hilbert-Samuel function is independent
of the fibre. I conjecture that this implies that the blowup in Σ(I(CT , lT )) is
a flat deformation of X(C, l).

Along the way, we will also show that the number of base points of I(Ct, lt)
is an upper semicontinuous function in t. This gives an interesting restriction
to the existence of certain deformations of a decorated curve and also for the
existence of δ-constant deformations of plane curve singularities without a
decoration. We will make use of this application in the next chapter.

3.4 Deformations of Fat Points

3.4.1 Notations

Notation 3.4.1. A fat point in the plane is a zero-dimensional complex sub-
space of C2, whose support consists of a single point, say 0 ∈ C2. This is the
same as saying that a fat point is a complex space of the form Σ(I), where
I ⊂ OC2,0 is an mC2,0-primary ideal.

Let (T, 0) be a complex space germ. A family of fat points over T whose
special fibre is the fat point Σ(I) is a complex space Σ(I) ⊂ (C2 ×T, 0) with
I ⊗ OT,0/mT,0

∼= I. We will mostly consider base spaces (T, 0) which are
reduced or even normal. Note that the general fibre of such a family may
consist of several fat points.

We always choose sufficiently small representatives in the usual way, so
by abuse of notation we view I as a coherent ideal sheaf on an open neigh-
bourhood of 0 ∈ C2 × T . We let It denote the restriction of I to C2 × {t},
i.e. the ideal sheaf of the fibre over t.

Definition 3.4.2. Let Σ(I) be a family of fat points in the plane over the
reduced base space (T, 0).

1. The family is relative complete if and only if It,p is a complete ideal for
all t ∈ T , p ∈ V (It).
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2. We define the degree of a fibre by

deg Σ(It) :=
∑

p∈V (It)

deg It,p

=
∑

p∈V (It)

dimC OC2,p/It,p.

We recall the well known fact that a family of zero-dimensional complex
spaces over a reduced base space (T, 0) is flat if and only if the degree
is constant in t for t sufficiently small.

3. We define the δ-constant of a fibre by

δ(Σ(It)) :=
∑

p∈V (It)

δ(It,p)

=
∑

p∈V (It)

1

2

∑

q∈N
e2q(It) − eq(It) by 1.5.1.

The family is δ-constant if and only if the δ-invariant of the fibres is
constant in t.

4. We define the Hilbert-Samuel function of a fibre to be

HIt
(n) =

∑

p∈V (It)

dimC OC2,p/(It,p)
n.

5. We define the multiplicity of a fibre to be

e(Σ(It)) :=
∑

p∈V (It)

e(It,p)

=
∑

p∈V (It)

∑

q∈Np

e2q(It) by corollary 1.5.9.

The family is equimultiple if and only if the multiplicity of the fibres is
constant in t.

3.4.2 Decorated Curves and Equimultiplicity

Now we link the invariants just defined with the notion of a deformation of
a decorated curve.
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Proposition 3.4.3. Let (T, 0) be a normal complex space germ.

For every deformation (CT , lT ) of a decorated curve (C, l) over (T, 0) there
is a unique coherent ideal sheaf I on an open neighbourhood of zero in C2 ×
T with It = I(Ct, lt). The space Σ(I) is a δ-constant, relative complete
deformation of the fat point Σ(I(C, l)).

Conversely, if Σ(I) is a δ-constant, relative complete deformation over
(T, 0) such that I0 = I/(t) is the complete ideal I(C, l), then there exists a
deformation (CT , lT ) of the decorated curve (C, l) such that It = I(Ct, lt).

Proof. Note that for a generic g ∈ I(C, l) the intersection multiplicity of
Σ(g) with the i-th branch of C is l(i). This is equivalent to the fact that l
is the zero divisor of the pullback of g under the normalization of C, see e.g.
[CA00, corollary 3.11.6]. So g ∈ I(C, l) if and only if the pullback of g to the
normalization of C is in O(−l).

Let (Ct, lt) be a deformation of the decorated curve (C, l). We have to
show the existence of a coherent ideal sheaf I with It = I(Ct, lt). Choose
F ∈ OC2×T such that Ct = V (Ft). Let J be the coherent ideal on the
simultaneous normalization C̄ × T of Ct with the property Jt = O(−lt).
Then n∗(J) is a coherent ideal on V (F ), so there is a coherent ideal I with
V (I) = V (F ) and I/(F ) = n∗(J). By construction It = I(Ct, lt), so Σ(I)
is relative complete. The δ-invariant of the fibre Σ(It) can be written as
1
2

∑
(e2q − eq) where the sum is taken over all base points of It and is equal

to the δ-invariant of Ct, so it is constant by the definition of deformations of
decorated curves. Also by definition,

∑
eq = (the degree of lt) is constant

in t. Because all fibres are defined by complete ideals, this implies that the
degree deg(Σ(I)) = 1

2

∑
(e2q+eq) is constant in t, which means that the family

is flat.

Conversely, let I be a δ-constant, relative complete deformation of the
complete ideal I(C, l), C = V (f) and g ∈ OC2,0 a function such that l is the
divisor of zeros of the pullback of g to the normalization of C. Then generic
sections F,G in I with F0 = f and G0 = g define (Ct, lt).

The deformations of complete ideals that are associated to deformations
of decorated curves have the property of being flat, relative complete and δ-
constant. This may seem to be a rather strange condition. But for the case
that the special fibre is defined by a complete ideal, we will now show that this
condition is equivalent to equimultiplicity. Note that a priori equimultiplicity
seems to be the weaker condition, because equimultiplicity means that

∑
e2q

is constant in t, while the above conditions mean that
∑
e2q and

∑
eq both

are constant in t plus the fact that the family is relative complete.
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Proposition 3.4.4. Let Σ(I) be a family of fat points in the plane over the
reduced base space (T, 0). Assume that the ideal I0 ⊂ OC2,0 of the special
fibre is a complete ideal.

Then the family is equimultiple if and only if it is flat, relative complete
and δ-constant.

The proof refers to the following lemma:

Lemma 3.4.5. Let Σ(I) be a family of fat points in the plane over the reduced
base space (T, 0).

Then the degree, the δ-constant and the multiplicity of the fibres are upper-
semicontinuous functions in t. In particular, for all sufficiently small t 6= 0:

deg I0 ≥ deg It,

δ(I0) ≥ δ(It),

e(I0) ≥ e(It).

Proof. Semicontinuity of the degree is well known.

Semicontinuity of the δ-invariant follows from the fact that the δ-invariant
of an ideal describing a fat point in the plane is equal to the δ-invariant of a
generic member of the ideal.

Semicontinuity of the multiplicity is also well known. For ideals describing
fat points in the plane, the multiplicity is equal to the intersection multiplicity
of a pair of generic elements of the ideal, which also shows the result.

Proof of theorem 3.4.4. Assume that the family is equimultiple. Equimulti-
plicity (3.1) and semicontinuity of the δ-invariant (3.2) imply (3.3):

∑

q∈N0

eq(I0)
2 =

∑

p∈V (It)

∑

q∈Np

eq(It,p)
2 (3.1)

1

2

∑

q∈N0

(
eq(I0)

2 − eq(I0)
)
≥ 1

2

∑

p∈V (It)

∑

q∈Np

(
eq(It,p)

2 − eq(It,p)
)

(3.2)

=⇒
∑

q∈N0

eq(I0) ≤
∑

p∈V (It)

∑

q∈Np

eq(It,p). (3.3)
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(3.3) implies

deg I0 =
1

2

∑

q∈N0

e2q(I0) + eq(I0)

≤ 1

2

∑

p∈V (It)

∑

q∈Np

eq(It,p)
2 + eq(It,p) by (3.1) and (3.3)

=
∑

p∈V (It)

deg(It,p)

≤
∑

p∈V (It)

deg(It,p)

= deg(It).

But since the degree is upper-semicontinuous, we must have equality every-
where. The equality deg I0 = deg(It) is flatness, equality in (3.3) implies
δ-constancy and the equality

∑

p∈V (It)
deg(It,p) =

∑

p∈V (It)
deg(It,p) means

that the family is relative complete.

Reversing the argument proves the other implication.

We summarize our result as follows:

Theorem 3.4.6. 1. Every deformation (Ct, lt) of a decorated curve (C, l)
over a reduced base space (T, 0) induces a deformation Σ(I(Ct, lt)) of
Σ(I((C, l)) over (T, 0) with the property that the Hilbert-Samuel func-
tions of the fibres are independent of t. In particular, the deformation
Σ(I(Ct, lt)) is equimultiple.

2. Every equimultiple family Σ(I) over (T, 0) with special fibre Σ(I0) =
I(C, l) is induced by a deformation (Ct, lt) of the decorated curve (C, l),
i.e. It = I(Ct, lt). In particular, the family is flat and the whole Hilbert-
Samuel function of the fibres is constant in t.

Proof. The only thing left to prove is the statement on the Hilbert-Samuel
function. In the preceding proofs we have seen that

∑
e2q and

∑
eq are

constant in t and that all It,p are complete. So the statement follows from
the description of the Hilbert-Samuel function given in the first chapter, see
theorem 1.5.6.

The following proposition will be useful in the chapter on the Kollár
conjecture.
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Proposition 3.4.7. Let Σ(I) be an equimultiple deformation of a zero-
dimensional space in C2 over (T, 0). Assume that there are arbitrarily small
t such that the stalks of It are complete, but that I0 is not complete.

Then the deformation is not δ-constant.

Proof. The proof is essentially the same as that of theorem 3.4.4. We leave
the details to the reader.

3.4.3 Semicontinuity of the Number of Base Points

We prove one more theorem using the semicontinuity of invariants which can
be expressed as sums of some multiplicities or squares of multiplicities of
base points. It gives interesting restrictions on possible multi-adjacencies of
decorated and also on non-decorated curves, compare section 4.3.

Theorem 3.4.8. Let I ⊂ OC2,0 be an m-primary, complete ideal and Σ(I)
an equimultiple deformation of Σ(I) = Σ(I0) over (T, 0). Then the number
of base points

#BP (It) :=
∑

p∈V (It)

#{q ∈ Np| eq(It) ≥ 1}

is upper-semicontinuous in t. In particular for all sufficiently small t:

#BP (I0) ≥ #BP (It).

The number of base points is constant if and only if the induced deformation
of the conductor is δ-constant and if and only if the induced deformation of
the conductor is equimultiple.

Remark 3.4.9. For non-equimultiple deformations of Σ(I) the number of base
points is not upper-semicontinuous, even if we assume that the deformation is
relative complete. The simplest counter-example is given by the deformation
of the fat point defined by (x, y)2 into three reduced points.

Conjecture 3.4.10. The equisingularity class of a plane curve singularity C
is coded in the so-called combinatorial representation of C, see section 4.3.1.
I conjecture the following:

In the theorem 3.4.8, equality holds if and only if the combinatorial rep-
resentation of the singularity Σ(I0) is equal to the sum of the combinatorial
representations of the singularities of Σ(It).
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Remark 3.4.11. Assume I = I(CT , lT ). Then the conjecture is equivalent to
the following statement: #BP (I0) = #BP (It) if and only if X(Ct, lt) is a
deformation over the Artin component, see chapter 5. This shows that the
conjecture is equivalent to conjecture 5.8.5.

If I = I(CT , lT ) and Ct for t 6= 0 has only ordinary singularities, then the
conjecture is equivalent to the following statement: #BP (I0) = #BP (It) if
and only if CT is a Scott deformation.

Proof. An equimultiple deformation is δ-constant, so it implies a deformation
of the (space defined by the) conductor. The conductor of a complete ideal
I is by definition the conductor of a generic function in I and by theorem
1.2.21 equal to the complete ideal with base point cluster (BP (I), ep(I)−1).
So the δ-constant of a generic function in the conductor is

δ =
1

2

∑

(eq − 1)(eq − 2) =
1

2

∑

e2q −
3

2

∑

eq + #BP.

We have seen in the preceding proofs that equimultiplicity of the deformation
Σ(I) implies that the first two terms on the right side are constant. The
semicontinuity of the δ-invariant then gives the result.

Since the deformation of the conductor is relative complete, the deforma-
tion is δ-constant if and only if it is equimultiple.

Remark 3.4.12. In fact we have proven more by showing that the number of
base points plus a constant is equal to the δ-constant of a generic function
in the conductor, namely that the sets {t ∈ T | #BP (It) ≥ k} are analytic
subsets of T .

Remark 3.4.13. The number of base points is only defined for an ideal in
OC2,0. It would be interesting to interpret the number of base points as a
function of algebraic or homological invariants which generalizes to a more
general situation.

3.5 Simultaneous Blowups

3.5.1 One-Parameter Deformations

The results in [dJvS98] include that every 1-parameter deformation ofX(C, l)
is of the form X(CT , lT ), where (CT , lT ) is a 1-parameter deformation of the
decorated curve (C, l), theorem 3.2.1. It was left as an open problem though
to find a direct construction of the deformationX(CT , lT ) for a given (CT , lT ).
We now prove that the deformation X(CT , lT ) can be constructed by a single
blowup whose fibres are the X(Ct, lt).
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Theorem 3.5.1. Let (CT , lT ) be a 1-parameter deformation of (C, l) over
(T, 0) = (C, 0) and I a coherent sheaf of ideals on a well chosen neighbour-
hood U of zero in C2 × T with fibres I(Ct, lt).

Then the blowup of C2×T respectively U in Σ(I) is flat over T with fibres
X(Ct, lt).

Proof. Theorem 3.4.6 tells us that a deformation of Σ(I) over (T, 0) = (C, 0)
is equimultiple if and only if it is of the form Σ(I(CT , lT )). The following
result from [Tei82, ch.I, 5.1] completes the proof.

Theorem 3.5.2 (Teissier). Let Σ(I) ⊂ Cr × C be a family of zero-dimen-
sional spaces in Cr over (C, 0). Let π : X → Cr × C be the blowup in Σ(I)
with exceptional divisor E = π−1(Σ(I)). We define the divisor of vertical
components Evert to be the union of those irreducible components of E which
map to zero. We define its degree to be degEvert := deg(OEvert

(1)).
Then for all sufficiently small t 6= 0:

degEvert = e(Σ(I0)) − e(Σ(It)).

In particular, no component of the exceptional divisor is contained in the
fibre over zero if and only if I is equimultiple.

3.5.2 Conjecture on Multi-Parameter Deformations

We have proven that one-parameter deformationsX(Ct, lt) can be constructed
as the blowup of C2×T in the total space of the deformation Σ(I(CT , lT )) of
the fat point Σ(I(C, l)). I believe that the same can be done for deformations
X(Ct, lt) over any reduced base space T .

Conjecture 3.5.3. Let (CT , lT ) be a deformation of the decorated curve
(C, l) over the reduced base space T .

Then the blowup of C2 × T in Σ
(
I(CT , lT )

)
is a deformation of X(C, l)

over T .

More specifically, I believe that the following conjecture 3.5.4 holds, which
implies conjecture 3.5.3. Recall that we have defined the Hilbert-Samuel
function of a fibre Yt of a deformation of a zero-dimensional space as the
finite sum of the Hilbert-Samuel functions of Yt at the points of Yt.

Conjecture 3.5.4. Let Y ⊂ Cr×T be a deformation of the zero-dimensional
space Y0 ⊂ Cr over the reduced base space T . Assume the Hilbert-Samuel
function HS(Yt) is independent of t for sufficiently small t.

Then the blowup of Cr×T in Y is flat over T and the fibres of the blowup
are equal to the blowup of Cr in Yt for sufficiently small t.
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3.5.3 Normal Flatness

For the rest of this section, I want to report on normal flatness and its
relation to Hilbert functions. This is related to conjecture 3.5.4, because
normal flatness would imply flatness of the blowup as we need it.

Loosely speaking, normal flatness of X along Y means that the family
of tangent cones is flat over Y . Normal flatness was introduced by Hironaka
in his proof of the existence of a resolution of singularities in characteristic
zero in [Hir64]. He used it as a condition on the center of blowups which
guarantees that the singularities on the blowup are ‘not worse’ than the
singularities you start from, see also [Hir74, lecture 3] and [HSV77].

Definition 3.5.5. Let X be a complex analytic space, Y ⊂ X a closed
complex subspace, i : Y ↪→ X the natural inclusion and IY ⊂ OX the ideal
sheaf of Y . We use the notation

grY (X) = i∗

( ∞⊕

d=0

Id
Y /I

d+1
Y

)

.

X is normally flat along Y if and only if the graded ring grY (X) is flat over
its degree zero part grY (X)0

∼= OY .

There are various criteria for normal flatness in terms of Hilbert functions.
The first results were obtained by Bennett, see [Ben70] and also [HSV77].

For the resolution of singularities it is sufficient to consider normal flatness
along smooth subspaces. If x ∈ Y is a point on a smooth subspace Y ⊂ X,
the following conditions are equivalent, see [Hir74, lecture 3].

1. X is normally flat along Y at x.

2. grY (X) is locally free at x.

3. The Hilbert-Samuel function of X in y ∈ Y is locally constant around
x.

Now our situation is different in two respects: We are interested in sub-
spaces Y ⊂ X which are not smooth and we are in a relative situation.

Relative normal flatness has been studied in [LJT74]. One of their results
is the following theorem:

Theorem 3.5.6 (Lejeune-Jalabert, Teissier). Let X be a complex space
over S and Y a subspace of X which is smooth over S. The following condi-
tions are equivalent:
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1. (grYX)y is OY,y-flat.

2. The application y 7→ HX/S,y is constant in a neighbourhood of y in Y .

Normal flatness along arbitrary subspaces and similar notions as well
as their connections with Hilbert functions have been studied by various
authors including M. Herrmann, B. Herzog, U. Orbanz and L. Robbiano, see
e.g. [OR84] and the references given there. Unfortunately, I was unable to
use their results to prove the above conjecture.



Chapter 4

Multi-Adjacencies of
Equisingularity Classes of
Plane Curves

Deformations of a sandwiched singularity X(C, l) are induced by deforma-
tions of the decorated curve (C, l). So we can reduce the study of adjacencies
of sandwiched singularities to the presumably simpler study of adjacencies
of plane curves.

In fact, our main focus is not on adjacencies between singularities but on
smoothings of an X(C, l). A generic smoothing of X(C, l) corresponds to a δ-
constant deformation of C into a curve which has only ordinary singularities.
We can define the combinatorial type of such a deformation of C. We call this
type a combinatorial deformation, see section 4.3. As with all combinatorial
matters, the notations may seem to be rather complicated at first sight, even
though the idea behind them is simple.

It is clear that smoothings over the same component of the base space of
a semiuniversal deformation of X(C, l) are induced by deformations of the
same combinatorial type. This has been observed in [dJvS98]. It is an open
question whether combinatorial deformations always distinguish components
for a general sandwiched singularity.

The largest part of this chapter deals with finding necessary and sufficient
conditions for the existence of δ-constant deformations of a plane curve singu-
larity C into curves with prescribed singularities, especially into curves with
prescribed ordinary singularities respectively a given combinatorial type. We
deal with necessary conditions until section 4.3.2, with sufficient conditions
in sections 4.3.4 and 4.4. In sections 4.5 and 4.6 we explain the connection
with smoothing components of sandwiched singularities mentioned above.
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4.1 Multi-Adjacencies

A multi-equisingularity class is a finite set of equisingularity classes with
assigned multiplicities in N.

Let (C, 0) ⊂ (C2, 0) be an isolated curve singularity and consider a 1-
parameter deformation (Ct). Then for a sufficiently small representative and
t 6= 0 the number and the equisingularity classes of the singularities of Ct are
fixed, i.e. Ct has a fixed multi-equisingularity class.

We call (C, 0) adjacent to a multi-equisingularity class E if and only if
there exists a 1-parameter deformation (Ct) of C such that Ct has class E for
small t 6= 0.

We call an equisingularity class E of plane curve singularities adjacent to
a multi-equisingularity class E ′ if and only if every C ∈ E is adjacent to E ′.

Example 4.1.1. This example is taken from [dJvS98, Ex. 6.4]: An ordinary
singularity of multiplicity 6 is adjacent to the multi-equisingularity class con-
sisting of four ordinary triple points and three ordinary double points if and
only if the tangent directions of the six branches are paired by an involution
of P1. Note that this is an example of a δ-constant deformations.

This example proves:

Proposition 4.1.2. There do exist isolated plane curve singularities C and
multi-equisingularity classes E ′ such that C is adjacent to E ′, but E(C) is not
adjacent to E ′.

Remark 4.1.3. In [ACR01], necessary and sufficient conditions for linear adja-
cency between equisingularity classes are given in terms of Enriques diagrams.
Unfortunately, the method fails for non-linear adjacencies. Also, the paper
does not deal with multi-adjacencies, but Roé has told me that he knows
how to extend the method to give sufficient criteria for multi-adjacencies of
equisingularity classes as well.

4.2 Simultaneous Normalization

The most important fact about δ-constant deformations of plane curves is
that they admit a simultaneous normalization. This implies some very strong
necessary conditions for δ-constant deformations. These conditions are well
known, but we give a short proof using the theory of infinitely near points,
because it fits nicely into the overall exposition of this thesis.

Let f : (X, 0) → (T, 0) be a deformation over a reduced base (T, 0). A
simultaneous normalization is a proper modification π : X̃ → X such that
for each sufficiently small representative the following holds:
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1. The composed map f ◦ π : X̃ → T is flat, i.e. a deformation.

2. For each t ∈ T the restriction πt : X̃t → Xt to the fibre over t is a
normalization.

For a deformation of isolated curve singularities a simultaneous normal-
ization is the same as a very weak simultaneous resolution and we have the
following result from [Tei80]:

Theorem 4.2.1. A deformation of isolated curve singularities over a normal
base space admits a simultaneous normalization if and only if it is δ-constant.

Furthermore, if it exists, a simultaneous normalization π : X̃ → X is
necessarily the normalization of the total space X of the deformation.

The normalization of an isolated curve singularity C with r branches
Ci is a disjoint union of r smooth germs (C, 0), each mapping onto one
irreducible component. So the fact that a δ-constant deformation Ct has a
simultaneous normalization implies that Ct also has r branches Ct,i where
Ct,i is a deformation of Ci. Assume that the number of branches is > 1 and
denote by C ′ the union of the branches C2, . . . , Cr.

Using the formula of Noether for the δ-invariant, lemma 1.2.20, we get

2δ(Ct) = 2
∑

p∈Sing(Ct)

δ(Ct,p)

=
∑

p∈Sing(Ct)

∑

q∈Np

eq(Ct,p)
2 − eq(Ct,p)

=
∑

p∈Sing(Ct)

∑

q∈Np

(
eq(Ct,1,p) + eq(C

′
t,p)
)2 −

(
eq(Ct,1,p) + eq(C

′
t,p)
)

=
∑

p∈Sing(Ct)

∑

q∈Np

(
eq(Ct,1,p)

2 − eq(Ct,1,p)
)

+
(
eq(C

′
t,p)

2 − eq(C
′
t,p)
)

+ 2eq(Ct,1,p) · eq(C
′
t,p)

=
∑

p∈Sing(Ct)

2δ(Ct,1,p) + 2δ(C ′
t,p) + 2〈Ct,1,p, C

′
t,p〉

= 2δ(Ct,1) + 2δ(C ′
t) + 2〈Ct,1, C

′
t〉.

By semicontinuity of the δ-invariant and the intersection multiplicity, this
proves the following well known corollary by induction:

Corollary 4.2.2. Let (C, 0) be an isolated plane curve singularity. A de-
formation Ct of C = C0 over a reduced base is δ-constant if and only if
the following holds: The number of branches and the pairwise intersection
multiplicities of the branches are constant in t, and each branch is deformed
δ-constant.
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4.3 Combinatorial Restrictions

4.3.1 Combinatorial Representations and Deformations

Corollary 4.2.2 gives several restrictions on the possible adjacencies of equi-
singularity classes. We introduce some notation to handle these.

Definition 4.3.1. 1. Let (C, 0) ⊂ (C2, 0) be an isolated curve singularity
with r numbered branches C1, . . . , Cr. The combinatorial representa-
tion of the equisingularity class of C is the map φC : Nr

0 7→ N0 with

φC(x) := #{p ∈ N0| ep(C) > 1 and x = (ep(C1), . . . , ep(Cr))}.

2. Let (C, l) be a decorated curve. The combinatorial representation of
the equisingularity class of (C, l) is the map φC,l : Nr

0 → N0 with

φC,l(x) := #{p ∈ |BP (C, l)| | x = (ep(C1), . . . , ep(Cr))}.

Example 4.3.2. Let C be a smooth curve. Then

φC ≡ 0, φC,k(1) = k, φC,k(x) = 0 ∀x 6= 1.

Example 4.3.3. Let C be an A2-singularity. Then

φC(2) = 1, φC(x) = 0 ∀x 6= 2,

φC,k(2) = 1, φC,k(1) = k − 2, φC(x) = 0 ∀x 6∈ {1, 2}.

Example 4.3.4. Let C be an A1-singularity. Then

φC

(
(1, 1)

)
= 1, φC(x) = 0 ∀x 6= (1, 1),

φC,(a,b)

(
(1, 1)

)
= 1, φC,(a,b)

(
(1, 0)

)
= a− 1,

φC,(a,b)

(
(0, 1)

)
= b− 1, φC,(a,b)(x) = 0 ∀x 6∈ {(1, 1), (1, 0), (0, 1)}.

Calling φC and φC,l combinatorial representations of equisingularity classes
is justified by the following obvious lemma. As usual, we let the symmetric
group Sr act on Nr

0 by permutations of the standard basis.

Lemma 4.3.5. Let (Ci, 0) ⊂ (C2, 0) be two isolated curve singularities. Then
there exists a permutation σ ∈ Sr such that φC1

= φC2
◦σ if and only if (C1, 0)

is equisingular to (C2, 0).
Let (Ci, li) be two decorated curves. Then there exists a permutation σ ∈

Sr such φC1,l1 = φC2,l2 ◦ σ if and only if (C1, l1) is equisingular to (C2, l2).
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We also note:

φC(x) = φC,l(x) ∀x with |x| 6= 1.

φC(x) = 0 ∀x with |x| = 1.

φC,l(ek) = lC(Ck) −mC(Ck),

where ek is the k-th unit vector in Nr
0, i.e. ek,i = δk,i.

Now consider δ-constant deformations Ct and deformations of decorated
curves (Ct, lt). Since each branch of C is deformed separately, we have well-
defined maps

φCt
: Nr

0 → N0

x 7→
∑

q∈Sing(Ct)

#{p ∈ Nq| ep(Ct) > 1 and x = (ep(Ct,1), . . . , ep(Ct,r))}

φCt,lt : Nr
0 → N0

x 7→
∑

q∈n(Supp(lt))

#{p ∈ |BP (Ct,q, lt,q)| | x = (ep(Ct,1), . . . , ep(Ct,r))}

for all sufficiently small t 6= 0. If the deformation is a 1-parameter-deforma-
tion, the map is independent of t.

Examples of combinatorial deformations are given in the next section.

Remark 4.3.6. Unfortunately, the combinatorial deformation of a 1-parameter
deformation Ct does not determine the (multi)-equisingularity class of a
generic fibre Ct, t 6= 0. One of the reasons for this is, of course, that we
do not treat each singularity of a fibre Ct separately. But that is not the
main problem: Even if we did not sum over all singular points on Ct, but
defined maps Nr

0 → N0 for each singular point q of Ct separately, these could
not determine the equisingularity type of Ct at q in general, because Ct,i

might be locally reducible at q. For example, Ct = V (x2 + y3 − ty2) is a
deformation of the irreducible A2-singularity into an ordinary double point
A1 which locally has two branches. But since globally the two branches are
on the same curve, the maps φCt

do not detect the difference between the
A2- and the A1-singularity.

We deal with this problem by considering only deformations into a curve
which has only ordinary singularities. This is the case we are most interested
in anyway, because our main application is the study of smoothing compo-
nents in section 4.6, and generic smoothings are induced by deformations
into ordinary singularities. In this case, the maps φCt

and φCt,lt carry even
more information than just the multi-equisingularity type: They also tell us
which branches pass through which of the singular points.
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The main task now is to find a good characterization of the set of maps
Nr

0 → N0 which occur as φCt
or φCt,lt for a given singularity (C, 0) or decorated

curve (C, l). The existence of the Scott deformation proved in section 4.4.1
shows that if ψ = φCt

or φCt,lt for some deformation, then we can choose Ct

or (Ct, lt) such that Ct has only ordinary singularities.
Proposition 4.2.2 implies the following restrictions on φCt

and φCt,lt:

Corollary 4.3.7. 1. Let Ct be a δ-constant 1-parameter-deformation of
an isolated plane curve singularity C with r branches Ci. For suffi-
ciently small t, the map φCt

: Nr
0 → N0 satisfies:

(a)
∑

x φCt
(x) ·

(
x2

i − xi

)
= 2δ(Ci) ∀i ∈ {1, . . . , r}.

(b)
∑

x φCt
(x) ·

(
xi · xk

)
= 〈Ci, Ck〉 ∀i 6= k.

2. Let (Ct, lt) be a 1-parameter-deformation of a decorated curve with r
branches. For sufficiently small t, the map φCt,lt : Nr

0 → N0 satisfies
conditions (a) and (b) above and

(c)
∑

x φCt,lt(x) · xi = l(i) ∀i ∈ {1, . . . , r}.
Definition 4.3.8. 1. A combinatorial deformation of a decorated curve

(C, l) with r branches is a map φ : Nr
0 → N0 satisfying properties (a),

(b) and (c) above as well as

(d)
∑

x φ(x) ≤ #|BP (C, l)|.

2. A combinatorial deformation of a plane, isolated curve singularity C
with r branches is a map φ : Nr

0 → N0 satisfying properties (a) and
(b) above such that altering the values φ(x) of the vectors x ∈ Nr

0 with
|x| = 1 gives a combinatorial deformation of a decorated curve (C, l)
for some divisor l.

3. We say that a combinatorial deformation φ : Nr
0 → N0 can be realized

if and only if there exists a 1-parameter-deformation Ct respectively
(Ct, lt), where Ct has only ordinary singularities, with φ = φCt

respec-
tively φ = φCt,lt.

4. We say that the combinatorial deformation φ contains n points through
which the branches Ci pass with multiplicity xi if and only if φ(x) = n.

So a combinatorial deformation is nothing but an a priori possible δ-
constant adjacency to a multi-equisingularity class of ordinary singularities.
We have seen that the first three conditions are necessary. The necessity of
condition (d) is given by theorem 3.4.8.

We give examples of combinatorial deformations in section 4.3.2 below.
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Remark 4.3.9. In [dJvS98] combinatorial deformations are defined in a similar
way. The only difference is that they did not impose condition (d) and that
they used a different notation.

Note that conditions (a)–(c) imply condition (d) if all branches of C are
smooth.

Remark 4.3.10. The idea behind our definition of a combinatorial deforma-
tion is the following: ψ should be a combinatorial deformation of C if and
only if ψ can be realized as a combinatorial deformation of some curve C ′

that is equisingular to C. Our examples below show that this is the best we
can hope for. But they also show that there are examples of combinatorial
deformations of a curve C which cannot be realized for any C ′ which is eq-
uisingular to C. So we regard our definition as being preliminary only. A
more detailed discussion of this problem is in the next section, 4.3.2.

By definition, the set of combinatorial deformations of a decorated curve
(C, l) is a subset of the set of combinatorial deformations of C. One should
note:

Lemma 4.3.11. A combinatorial deformation φ of (C, l) can be realized if
and only if it can be realized as a combinatorial deformation of C.

We know that certain classes of combinatorial deformations can always
be realized, see theorem 4.3.27 and section 4.4.

Note that a combinatorial deformation is a map with only finitely many
values unequal zero.

Notation 4.3.12. 1. We write maps φ : Nr
0 → N0 as formal products

∏

x∈Nr
0

xφ(x).

2. If all components of x ∈ Nr
0 are zero or one, then we write (i1, . . . , is)

for x, where i1, . . . , is are the indices of the non-zero components.

More generally, we denote a vector x ∈ Nr
0 by (1(x1), . . . , r(xr)), skipping

the numbers with xi = 0 and omitting exponents equal to (1).

3. If φ, ψ : Nr
0 → N0 are two maps, then we write

φ→ ψ

if ψ is a combinatorial deformation of a curve with combinatorial rep-
resentation φ.
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4.3.2 Examples and Missing Restrictions

Example 4.3.13. Every plane isolated curve singularity C hat at least one
combinatorial deformation, namely its combinatorial representation φC . It
can always be realized by a Scott deformation, see proposition 4.4.1.

Example 4.3.14. An ordinary triple point has combinatorial representation
(123). It has two combinatorial deformations, (123) and (12)(13)(23). Both
can be realized.

Example 4.3.15. An A2k-singularity has combinatorial representation (1(2))k,
which is its only combinatorial deformation. Without condition (d) there
would be more combinatorial deformations for k ≥ 3, for example (1(2))3 →
(1(3)), which would mean an adjacency A6 → D4. Of course, it is obvious
that A6 does not deform into D4, because A6 has multiplicity 2 and D4 has
multiplicity 3. Note that the non-existence of the adjacency A6 → D4 cannot
be seen from the semicontinuity of the singularity spectrum.

Example 4.3.16. Example 4.1.2 can now be written as follows: An ordinary
6-fold point has the combinatorial deformation

(123456) → (126)(135)(234)(456) (14)(25)(36).

This combinatorial deformation can only be realized, if the six tangent direc-
tions of the ordinary 6-fold point are paired by an involution of P1 as follows:
1 ↔ 4, 2 ↔ 5, 3 ↔ 6. A picture of a deformation with this combinatorial
deformations looks like this:

Example 4.3.17. This example is taken from [dJvS98, Ex. 4.20]. Set C =
V (x4 + y5). The decorated curve (C, 9) has combinatorial representation
(1(4))(1)5. There are three combinatorial deformations: (1(4))(1)5, (1(3))(1(2))3

and (1(3))2(1)3. The last combinatorial deformation, (1(3))2(1)3, represents a
deformation into two ordinary triple points and cannot be realized even if we
are allowed to replace C by an arbitrary singularity C ′ ∈ E(C).

One way of proving this is the following: Assume that we have a defor-
mation into two D4-singularities. Without loss of generality we can assume
that the two D4-singularities are on the line V (y), say at zero and at (t, 0).
Let J be the induced deformation of the conductor. Then J0 = (x, y)3 and
Jt,0 = (x, y)2, Jt,(t,0) = (x− t, y)2. So y2 ∈ Jt for all t 6= 0, but y2 6∈ J0.



Semicontinuity of Multiplicity at Infinitely Near Points 71

Remark 4.3.18. I believe that example 4.3.17 is typical in that it is a defor-
mation into few singular points with high multiplicities. Supporting evidence
for this is a result of Alexander and Hirschowitz proven in [AH00]: Suppose
you have a fat point in (C2, 0) defined by (x, y)N and r numbers ni such that
N2 + N =

∑

i n
2
i + ni. Then a priori there could be a deformation of the

fat point Σ((x, y)N) into r fat points of the form Σ((x, y)ni), but there are
cases where such a deformation does not exist; e.g. we used the fact that
the fat point defined by (x, y)3 does not deform into two points of the form
Σ((x, y)2) in example 4.3.17. The result in [AH00] says that such a deforma-
tion does exist if N is big and the number r of points is much bigger than
the maximum of the ni.

The last two examples show that there are combinatorial deformations
which cannot be realized. But in the example with smooth branches, at
least there did exist some curves in the equisingularity class for which the
combinatorial deformation could be realized. I do not know any example of a
combinatorial deformation of a curve C with smooth branches which cannot
be realized for any curve in the equisingularity class E(C).

Question 4.3.19. Does there exist a combinatorial deformation of a plane
curve singularity C with smooth branches which cannot be realized for any
C ′ ∈ E(C)?

If the answer is yes, then we say that we are ‘missing some restrictions
to combinatorial deformations’ of curves with smooth branches. We already
know, see example 4.3.17, that we are missing restrictions to combinatorial
deformations in general.

Question 4.3.20. What are ‘the’ missing restrictions to combinatorial de-
formations of curves, especially curves with non-smooth branches?

Remark 4.3.21. A well known restriction to the existence of multi-adjacencies
is provided by the semicontinuity of the singularity spectrum. The spec-
trum of an isolated hypersurface or complete intersection singularity does
not change under µ-constant deformations; so in particular, the spectrum of
an isolated plane curve singularity only depends on its equisingularity class,
see [Ste85]. An algorithm to compute the spectrum from an Enriques dia-
gram of an irreducible plane curve singularity has been given by M. Saito,
see [Sai00].

Another well known restriction to the existence of multi-adjacencies is
given by the semicontinuity of the multiplicity. We can generalize this to a
statement which includes multiplicities at infinitely near points.
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4.3.3 Semicontinuity of Multiplicity at Infinitely Near
Points

One of the restrictions that is missing is given by the fact that the multiplicity
is upper-semicontinuous. We can easily prove a generalization which includes
multiplicities at infinitely near points. We begin by stating some trivial facts:

• The multiplicity of a curve C does not increase when blowing up points,
so ep(C) ≥ eq(C) for all p ≺ q. In particular, if we define

x ≥ y ⇔ xi ≥ yi ∀i ∈ {1, . . . , r}

for vectors x, y ∈ Nr
0, then (e0(C1), . . . , e0(Cr)) is the maximum of

{x ∈ Nr
0| φC(x) 6= 0}.

• Assume that Ct is a deformation of C into an ordinary singularity of
the same multiplicity as C. Semicontinuity of multiplicity then implies
that the multiplicity is constant on each branch.

This implies the following: Assume that Ct is a δ-constant deformation
of C into ordinary singularities such that one of the ordinary singulari-
ties has the same multiplicity as C. Then φCt

(
e0(C1), . . . , e0(Cr)

)
> 0.

• Let (C, 0) ⊂ (C2, 0) be an isolated plane curve singularity. Let φ1, . . . , φk

be the combinatorial representations of the strict transforms of C under
the point-blowup of C2 in zero. Then the combinatorial representation
of C is the sum φC = (e0(C1), . . . , e0(Cr)) +

∑k
j=1 φj.

∑k
j=1 φj is the finest partition of φC − (e0(C1), . . . , e0(Cr)) with the

following property: If i 6= j and x, y ∈ Nr
0 with φi(x) 6= 0 and φj(y) 6= 0,

then xk or yk is zero for all k ∈ {1, . . . , r}.
We leave the proof of the following easy lemma to the reader. The main

arguments are similar to those in the proof of the existence of Scott defor-
mations, theorem 4.4.1.

Lemma 4.3.22. Let Ct be a δ-constant deformation of the isolated plane
curve singularity C into ordinary singularities. Assume that one of the ordi-
nary singularities has the same multiplicity as C. Without loss of generality
we assume that this ordinary singularity is at zero, i.e. that the multiplicities
e0(Ct,i) of the branches in 0 ∈ C2 is constant under the deformation.

Then Ct induces induces δ-constant deformations of the strict transforms
of C under the point-blowup of C2 in zero. These induced deformations are
deformations into ordinary singularities such that the deformed transforms
intersect the exceptional divisor transversally.
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Let ψ1, . . . , ψk be the combinatorial deformations of the induced deforma-
tions of the strict transforms. Then the combinatorial deformation φCt

is the
sum (e0(C1), . . . , e0(Cr)) +

∑k
j=1 ψj.

We have now proven the following:

Theorem 4.3.23 (Semicontinuity of Multiplicities). Let Ct be a δ-
constant deformation of the isolated plane curve singularity C into ordinary
singularities. Let the φj be the combinatorial representations of the strict
transforms of C under a point-blowup. Note that the φj only depend on the
combinatorial representation of φC of C and that φC = (e0(C1), . . . , e0(Cr))+∑k

j=1 φj.

Then the following holds for the combinatorial deformation φCt
:

1. φCt
(x) = 0 ∀x ∈ Nr

0 with |x| >∑ e0(C).

2. φCt
(x) = 0 ∀x ∈ Nr

0 with |x| =
∑
e0(C) and x 6= (e0(C1), . . . , e0(Cr)).

3. If φCt

(
(e0(C1), . . . , e0(Cr))

)
6= 0, then φCt

= (e0(C1), . . . , e0(Cr)) +
∑k

j=1 ψj, where ψj is a combinatorial deformation of φj which can be
realized. In particular, the statements of this theorem hold for the ψj.

Remark 4.3.24. This does not give additional restrictions for combinatorial
deformations of a curve with smooth branches.

Remark 4.3.25. For curves with non-smooth branches this does give addi-
tional restrictions, but example 4.3.17 shows that these are still not all.

4.3.4 Results Proved Via Sandwiched Singularities

The basic idea from [dJvS98], which we have pursued further in this thesis,
is to use easy-to-prove facts about plane curve singularities to obtain results
on sandwiched surface singularities. But sometimes we can also go the other
way, which is what we did for example in the classification of taut and pseu-
dotaut plane curve singularities. In this section we mention two more results
obtained in this way.

We cite the following theorem from [dJvS98, th. 4.16]:

Theorem 4.3.26. If X(C, l) is isomorphic to X(C ′, l′) and all branches
of C and C ′ are smooth, then there is a natural bijection from the set of
combinatorial deformations of (C, l) to the set of combinatorial deformations
of (C ′, l′).
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The proof uses elementary combinatorics to associate to each combinato-
rial deformation a so-called Γ-representation of the dual resolution graph of
X(C, l). For details we refer to [dJvS98]. The article also gives an example
that shows that the condition that all branches of C and C ′ are smooth can-
not be dropped. But in the example, the combinatorial deformation that is
‘excluded from the bijection’ is the one from example 4.3.17 that cannot be
realized. So we might hope that we will always get a bijection if we are able
to find all necessary restrictions to combinatorial deformations.

In general, a sandwiched singularity with reduced fundamental cycle will
have different representations X(C, l) and X(C ′, l′) with both C and C ′ hav-
ing smooth branches and such that C and C ′ are not equisingular. If a
combinatorial deformation of C cannot be realized, it seems to be quite mys-
terious why there should be a corresponding combinatorial deformation of
C ′. So the theorem makes it seem rather likely that all combinatorial defor-
mations of curves C with smooth branches can be realized, at least for some
D equisingular to C. This has only been proven for some special cases. One
case is proven in this thesis: Every combinatorial deformation of a curve with
up to four smooth branches can be realized, see theorem 4.4.16. The other
class of examples I know is given by [dJvS98, theorem 6.18]:

Theorem 4.3.27. If X(C, l) is a cyclic quotient singularity and all branches
of C are smooth, then every combinatorial deformation of (C, l) can be real-
ized.

4.4 Existence of Special Deformations

In this section we show how to construct δ-constant 1-parameter-deformations
of plane curves such that the general fibre has certain prescribed singulari-
ties. Essentially, the technique is to blow up, translate strict transforms and
to blow down again. The method is quite old, it dates back to the work of
Ch. Scott in the late nineteenth century. Many mathematicians have used
this or similar techniques, including e.g. S. Gusein-Zade in [GZ74] and N.
A’Campo in [A’C75].

An important principle when searching for multi-adjacencies of isolated
singularities is the so-called openness of versality, proved in great generality
in [Bin80]. It implies that if we have an adjacency from S to a multi-class
of singularities (Si)i and adjacencies from Si to (Sij)j, then we have an ad-
jacency from S to (Sij)i,j.



Scott Deformations 75

4.4.1 Scott Deformations

Theorem 4.4.1. Let (C, 0) ⊂ (C2, 0) be an isolated plane curve singularity
and p1, . . . , pr ∈ N0 the infinitely near points where C has multiplicity greater
than one.

Then there is a 1-parameter-deformation Ct of C such that Ct, for t 6=
0, has r ordinary singularities with multiplicities ep1

(C), . . . , epr
(C) and no

other singularities.

Remark 4.4.2. We call such deformations Scott deformations after the work
of Charlotte A. Scott, who constructed these deformations in the 1892-
article [Sco92]; see also [Sco93]. Her motivation was to give a geometri-
cal meaning to M. Noethers purely algebraically deduced formula δ(C) =
∑r

i=1
1
2
epi

(C)(epi
(C) − 1).

It is also quite common to call them deformations which make the infinitely
near points visible. Some mathematicians, especially Russians, call these
deformations sabirfications after the work of Sabir Gusein-Zade.

Remark 4.4.3. We can rephrase the proposition as follows: Let (C, 0) ⊂
(C2, 0) be an isolated plane curve singularity with combinatorial represen-
tation φC. Then there is a deformation Ct into ordinary singularities with
φCt

= φC.

Proof. The proof is elementary. We successively blow up singular points on
the curve until we get to an infinitely near point p such that the strict trans-
form in p has smooth branches and such that the curve has multiplicity not
greater than 1 in all points proximate to p. Then we move the singular-
ity away from the exceptional divisor, which is to say that we deform the
strict transform by translating it, such that the ordinary singularity is not
on the exceptional divisor any more and such that the intersections of the
strict transform with the exceptional divisor are all transversal. Since we
only translate the strict transform, the intersection multiplicity with each
component of the exceptional divisor stays constant by the Bézout theorem.
So the deformation blows down to a deformation of the curve. We have thus
succeeded in splitting off an ordinary singularity with multiplicity ep(C).

Furthermore, if p is in the k-th infinitely near neighbourhood and q is
the point in the (k − 1)-st infinitely near neighbourhood to which p is prox-
imate, then the strict transforms at q of the deformations of the branches
which pass through p form an ordinary singularity, because we arranged their
strict transforms after the blowup in q to intersect the exceptional divisor
Eq transversally. Induction on the number of infinitely near points in an
Enriques diagram of C finishes the proof.
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Remark 4.4.4. Note that the proof is constructive. The construction involves
nothing more than translations and blowing up, which makes the computa-
tions so easy that we don’t even need to use computer algebra to construct
interesting examples.

Lemma 4.3.22 shows that all Scott deformations can be constructed by
successive blowups and translations as in the proof.

Example 4.4.5. The E8-singularity has the following Enriques diagram:

3

2

1

1
1

So a Scott deformation is a deformation into an ordinary triple and an ordi-
nary double point. The construction is shown in table 4.1. As can be seen
directly from the construction, the ordinary triple point of the deformed
curve is at (0, 0) ∈ C2 and the ordinary double point is at (−t, 0) ∈ C2.

Corollary 4.4.6. Let (C, l) be a decorated curve. Then there exists a defor-
mation (Ct, lt) such that lt is a reduced divisor on the normalization of Ct for
all t 6= 0. It follows that Ct has only ordinary singularities.

Proof. Obviously, curves with ordinary singularities are the only curves with
the property that a reduced divisor l on the normalization may define a
decorated curve. We choose Ct to be a Scott deformation. On each branch,
the sum of the multiplicities in the singular points stays constant under a
Scott deformation, so we can deform the divisor l such that (Ct, lt) is a
deformation of the decorated curve.

Corollary 4.4.7. Let (C, 0) ⊂ (C2, 0) be an isolated plane curve singularity.
Then there is a 1-parameter-deformation Ct of C such that Ct, for t 6= 0,

has δ(C) ordinary double points as its only singularities.

Proof. The statement is trivial for ordinary singularities, so the corollary
follow from the existence of Scott deformations by openness of versality.

Remark 4.4.8. Note that the statement is not true for decorated curves,
because the divisor l might be too small. For example, let C be an ordinary
singularity with four branches and l(Ci) = 2, for i = 1, 2, 3, 4. If we deform
C into δ = 6 ordinary double points, then there are three such points on each
branch, but the degree of a deformation lt of l on each branch would have to
be 2. Contradiction!

Corollary 4.4.7 implies the following well known fact:
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E8-singularity x5 − y3

1st blowup x3(x2 − y3)

2nd blowup y2x3(x2 − y)

translation y2x3(x2 − y − 2t)

blowing down x3(x2 − y3 − 2ty2)

translation x3
(
(x + t)2 − y3 − 2ty2

)

blowing down x3(x + t)2 − y3 − 2txy2

Table 4.1: Scott deformation of E8-singularity
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Corollary 4.4.9. A generic δ-constant deformation of a plane curve singu-
larity is a deformation into δ ordinary double points. This means that there
is a Zariski-open subset of the δ-constant stratum, such that deformations
over this subset are deformations into δ ordinary double points.

4.4.2 ‘Cutting Enriques Graphs’

Of course, the principle that blowing up and translating strict transforms
gives rise to δ-constant deformations produces not only the Scott deformation
but also a lot of others. A Scott deformation is a generic such deformation,
because moving singularities away from the exceptional divisors and having
only transversal intersections is generic. Looking at an Enriques diagram of
the curve, we see that a Scott deformation ‘cuts the Enriques diagram into
pieces’, each piece consisting of just one vertex. In general, we can get the
following result for singularities with smooth branches, which we will need
for the proof of theorem 4.4.16.

By slight abuse of notation, we might also call a map φ : Nr
0 → N0 a

combinatorial representation of a curve singularity with fewer than r branches
if for some indices i ∈ {1, . . . , r} we always have φ(x) = 0 if xi 6= 0.

Theorem 4.4.10. Let (C, 0) ⊂ (C2, 0) be an isolated curve singularity with
smooth branches and combinatorial representation φC : Nr

0 → N0. If φC =
∑
φi and φi : Nr

0 → N0, for i = 1, . . . , k, are combinatorial representations
of singularities (Ci, 0) with up to r (necessarily smooth) branches, then E(C)
is multi-adjacent to (E(C1), . . . , E(Ck)).

Remark 4.4.11. Of course, we can also use blowing up and translations of
the strict transforms to construct deformations for singularities with non-
smooth branches. But in that case, the use of combinatorial representations
is not appropriate for a statement of the result; just think of the deformation
A2 → A1, cf. remark 4.3.6.

Proof. The proof is essentially the same as the proof of the existence of Scott
deformations. I start with some preliminary remarks:

1. Each summand φi of φC =
∑
φi corresponds to an essentially unique

subset of the set of vertices of an Enriques diagram of C. For this reason
we speak of splitting or cutting the Enriques diagram into pieces.

2. There exists a singularity (Ci, 0) such that φi is a combinatorial repre-
sentation of (Ci, 0) if and only if the subset of vertices corresponding
to φi contains a vertex p such that all other vertices of the subset are
in the unique maximal subdiagram with root p.
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3. It is sufficient to show that we can split the Enriques diagram into two
pieces. The general case follows by induction.

First assume that we want to split off a singularity corresponding to a con-
nected subdiagram ΓC2

of the Enriques diagram ΓC . Let p 6= 0 be the root
of ΓC2

, p → q and {0, q1, . . . qr} the roots of the connected components of
ΓC \ ΓC2

. In the picture, ΓC2
is the subdiagram in the box:

q

p

q_1

0
q_2

q_3

As in the proof of the existence of a Scott deformation, we can certainly do the
following. We can blow up until we get to the point p on Eq and translate the
strict transform through p to split off a singularity whose Enriques diagram
is the maximal subdiagram of ΓC with root p. Then we can blow up further
to translate the strict transforms through the qi. In this way we have split
off a singularity with Enriques diagram ΓC2

, but without wanting it we have
also dissected the rest into r + 1 singularities, whose Enriques diagrams are
the connected components of ΓC \ ΓC2

.

So what we need is the following: When pushing the singularity through
p off the exceptional divisor Eq while at the same time splitting off the
singularities in the points qi, we have to arrange for the singularities through
the qi to be translated in such a way that they are always on Eq for each
value of the deformation parameter t.

To see that this is possible, consider the total transform of Eq under
the blowups leading from p to qi. This total transform contains all the
exceptional divisors of the point blowups. When pushing the singularity
through p off the exceptional divisor (or equivalently when translating Eq

such that p is no longer on Eq), the total transform deforms in a flat way.
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Since the singularities through the qi are on the total transform of Eq for
t = 0, we can translate them in such a way that they are on Eq for all t.

The situation is demonstrated in table 4.2.
The proof for the case that φ2 corresponds to a subgraph of the Enriques

diagram which is not connected follows by induction. I believe that the best
way to demonstrate this is to give an example. Consider a singularity with
combinatorial representation (12345)(1234)(123)(12). It has the following
Enriques diagram:

5

4

3
2

1

1

1

1 1

We choose φ2 = (1234)(12), i.e. we want to split off a singularity correspond-
ing to the two boxed vertices. In other words, we are trying to construct a
deformation into two singularities with Enriques diagrams

5

3

1

1

11

1

and

1

1

1

2

4

1

The first step is to deform the singularity on the first blowup, which has
combinatorial deformation (1234)(123)(12) into two singularities with com-
binatorial representations (1234)(12) and (123). This can be done, because
(123) corresponds to a connected subdiagram. Now for the second step the
situation is as above: When splitting off the ordinary triple point with rep-
resentation (123), we have to move the singularity of type (1234)(12) away
from the exceptional divisor E0 while letting the ordinary triple point stay
on E0. Blowing down gives the deformation we are looking for.

For example, one equation of a singularity with combinatorial represen-
tation (12345)(1234)(123)(12) and the above Enriques diagram is

y(y + x4)(y + x3)(y + x2)(y + x).

The reader is invited to check that the construction leads to the deformation
given by the following equation (I have used the translations x 7→ x± t):

y ·
(
y + x2(x+ t)2

)
·
(
y + x2(x + t)

)
·
(
y + x(x + t)

)
·
(
y + x

)
.
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blowup in q blowup in p

p E_q E_p

E_q

translating the
singularity in p

E_q

p’

E_q

E_q

E_p’

translating the
singularity in qi

E_qp

p’

E_q

E_q

E_p’

Table 4.2: A schematic demonstration of the construction principle
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As can be easily seen, for t 6= 0 the singularity of type (12345)(123) is at zero
and the singularity of type (1234)(12) is at the point given by x+ t = 0 and
y = 0.

Example 4.4.12. The combinatorial representation of A2k−1 is (1, 1)k. So
A2k−1 is multi-adjacent to (A2k1−1, . . . , A2ks−1) with

∑s
i=1 ki = k. These are

all δ-constant multi-adjacencies of A2k−1.

Remark 4.4.13. The Ak-singularities are the only singularities with the prop-
erty that all δ-constant deformations can be obtained by cutting Enriques
graphs. For all other curve singularities, a deformation into δ double points
cannot be constructed with this technique.

Example 4.4.14. The combinatorial representation ofD4+2k is (1, 1, 1)·(1, 1, 0)k

So D4+2k is multi-adjacent to (D4+k0
, A2k1−1, . . . , A2ks−1) with

∑s
i=0 ki = k.

Example 4.4.15. Consider C = V
(
x(x + y4)(x − y2)(x − y2 + y4)

)
. The

combinatorial type is (1234)2(12)2(34)2. An Enriques diagram looks like
this:

4

4 2
2

2

2

1

1

1

1

From now on, I will always omit the points of multiplicity one. Let us cut
out the following subdiagram:

4

4 2
2

2

2

So we want to find a deformation into two singularities of type (1234)(12)(34),
which we picture like this:

4

4 2
2

2

2

4 4
2

2 2

2

The construction of the deformation is shown in table 4.3. As can be seen
directly from the construction, the singularities of the deformed curve are at
(0, 0) and (t, 0).
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starting point y(y + x4)(y − x2)(y − x2 + x4)

1st blowup x4y(y + x3)(y − x)(y − x+ x3)

2nd blowup of 3rd and
4th branch

x2(y − 1)(y − 1 + x2)

3rd blowup of 3rd and
4th branch. (Strict
transform of E1 is in
the other chart)

x4y(y + x)

translation x4y(y + x+ t)

blowing down twice (y − x)(y − x+ x3 + tx2)

same with 1st & 2nd
branch ⇒ double
points at (−t, 0) and
(−t,−t)

x4y(y+x3+tx2) (y−x)(y−x+x3+tx2)

translation
x4y(y+(x− t)3 + t(x− t)2) (y−(x−
t)) (y− (x− t)+(x− t)3 + t(x− t)2)

final blowdown
y(y+x(x− t)3 + tx(x− t)2) (y−x(x−
t)) (y−x(x−t)+x(x−t)3+tx(x−t)2)

Table 4.3: An example for cutting Enriques diagrams. The exceptional divi-
sor is always the y-axis.
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4.4.3 Curves with Four Smooth Branches

In this section I prove the following theorem:

Theorem 4.4.16. Let (C, 0) be an isolated plane curve singularity with no
more than four branches, all branches being smooth. Then every combinato-
rial deformation of C can be realized.

Remark 4.4.17. Example 4.1.2 shows that the statement is not true for curves
with six smooth branches. I do not know whether it holds for curves with
five smooth branches.

Remark 4.4.18. The corresponding sandwiched singularities X(C, l) are the
singularities with reduced fundamental cycle and multiplicity less or equal to
five, see theorem 2.6.1.

Proof. The case of one smooth branch is trivial.

A curve with two smooth branches has only one combinatorial deforma-
tion, the Scott deformation, which can be realized. This is a deformation of
an A2k−1-singularity into k ordinary double points.

A curve with three smooth branches has a combinatorial representa-
tion (123)a(12)b. There are a + 1 combinatorial deformations; these are
(123)a−k(12)k(13)k(23)k(12)b, k ∈ {0, . . . a}. By openness of versality, they
can all be realized by making a Scott deformation first and then splitting up
k of the triple points into three double points each.

Now we come to the case of four smooth branches. The idea is the
same as for the case of three branches: I claim that there is a finite set of
multi-adjacencies of equisingularity classes E(Ci) → E(Cij) such that the
following holds: Let φi be a combinatorial representation of Ci and φi → ψi

the combinatorial deformation of E(Ci) → E(Cij). Assume that C is a curve
with four smooth branches, φ the combinatorial representation of C and
φ → ψ a combinatorial deformation. Then there exist ni ∈ N0 such that
φ =

∑
φi and ψ =

∑
ψi.

This implies that φ → ψ can be realized. Indeed, by cutting Enriques
graphs we can construct a δ-constant deformation of C such that the generic
fibre has ni singularities of class E(Ci), and by openness of versality we can
deform each Ci separately into the multi-class (Cij)j.

For the case of three branches, the finite set of multi-adjacencies consisted
of the adjacency with combinatorial deformation (123) → (12)(13)(23) only.
For the case of four branches, we need the adjacencies with combinatorial
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deformations

(123) → (12)(13)(23)

(1234) → (123)(14)(24)(34)

(1234)2 → (123)(124)(134)(234)

(1234)(12) → (123)(124)(34)

as well as the last three adjacencies followed by a deformation of one or
two triple points into three ordinary double points. All these combinatorial
deformations can be realized, the non-trivial cases being dealt with in lemma
4.4.20.

According to lemma 4.4.19, we have to distinguish two cases. We are
left with some rather boring combinatorial details, which we leave to the
reader.

Lemma 4.4.19. An isolated, plane curve singularity with four smooth branches
has one of the following combinatorial representations:

(i) (1234)a (123)b (12)c, a, b, c ∈ N0,

(ii) (1234)a (12)b (34)c, a, b, c ∈ N0.

Proof. This lemma is trivial.

Lemma 4.4.20. The combinatorial deformations

(1234)2 → (123)(124)(134)(234)

and (1234)(12) → (123)(124)(34)

of plane curve singularities can always be realized.

Proof. Let C1 and C2 be two curves whose combinatorial representations
are (1234)2 and (1234)(12) and put l1 = (3, 3, 3, 3), l2 = (3, 3, 2, 2). Then
X(C1, l1) and X(C2, l2) are cyclic quotients, so all their combinatorial defor-
mations can be realized by theorem 4.3.27.

Remark 4.4.21. Of course, we could have proven the preceding lemma di-
rectly. For example, consider the singularity

x(x+ ay2)(x + by2)(x+ cy2),

with 0, a, b, c ∈ C pairwise different. It has combinatorial representation
(1234)2. The combinatorial deformation (1234)2 → (123)(124)(134)(234)
can be realized by

(x− t2)(x + ay2 − t · a b+ c√
abc

y)(x+ by2 − t · ba + c√
abc

y)(x+ cy2 − t · ca + b√
abc

y).
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For t 6= 0 the curve has four ordinary triple points at

(0, 0), (t2,
a√
abc

t), (t2,
b√
abc

t), (t2,
c√
abc

t),

with the i-th branch passing through all but the i-th of these points. The
equation for this deformation was found using a blow up. Here is a picture
of such a deformation:

4.5 Smoothings of Sandwiched Singularities

The basic idea in the study of sandwiched singularities is that we can reduce
the study of surface singularities to the presumably easier study of plane
curve singularities. Application of this principle to deformations has already
led to very simple new proofs of some well known facts in section 3.2. Here
is one more example: The existence of Scott deformations implies that every
decorated curve (C, l) has a deformation (Ct, lt) such that Ct has only ordi-
nary singularities and such that lt is reduced for t 6= 0, see corollary 4.4.6.
By openness of versality this implies

Proposition 4.5.1. A generic 1-parameter-deformation of a sandwiched sin-
gularity is a smoothing of the form X(Ct, lt), where Ct has only ordinary
singularities and lt is reduced.

Remark 4.5.2. In [dJvS98] smoothings of this form are called picture defor-
mations.

Here generic means that there is a Zariski-open subset of the base space of
a semiuniversal deformation of X(C, l) whose complement is nowhere dense,
such that 1-parameter-deformations over this set can be represented in the
above form.

In particular we see that we have smoothings over every component of
the base space of a semiuniversal deformation. Once again, this is a result
which is well known for all rational singularities, but here we have a very
simple, ‘sandwiched’ proof.
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4.6 Smoothing Components of Sandwiched Sin-

gularities

The main result from [dJvS98], which we have cited as theorem 3.1.7, says
that there is a smooth transformation of functors from the functor of normal
form deformations of (C, l) to the deformation functor of X(C, l). This im-
plies that the base spaces of their semiuniversal deformations are the same
up to a smooth factor.

In particular, we can study the set of (non-embedded) irreducible compo-
nents of the base space of X(C, l) by studying deformations of the decorated
curve (C, l). Since we have excluded the embedded components, we do not
have to bother with normal form deformations but can use deformations over
a reduced base space, in particular one-parameter-deformations.

Recall that every component of a rational singularity is a smoothing com-
ponent. A generic smoothing is of the form X(Ct, lt) where Ct has only ordi-
nary singularities and lt is reduced. Such deformations are classified by their
associated combinatorial deformations φCt,lt : Nr

0 → N0.
Because the transformation of functors is smooth, combinatorial defor-

mations associated to smoothings over the same component are equal. So we
have a well-defined map from the set of smoothing components of X(C, l) to
the set of combinatorial deformations. In [dJvS98] this map was denoted by
ϕ : S(X(C, l)) → I(C, l). The image of this map is the set of combinatorial
deformations which can be realized. It is an open question whether this map
is injective. The question is equivalent to the following:

Question 4.6.1. Let (C, 0) be an isolated plane curve singularity and (S, 0)
the base space of a semiuniversal deformation (C, 0) of (C, 0). Let φ be a
combinatorial deformation of (C, 0).

Is it always possible to choose arbitrarily small representatives, such that
the (possibly empty) set of s ∈ S, for which the fibres Cs have combinatorial
type φ, is connected?

I do not know the answer to this question. I believe that the answer is
yes for curves with smooth branches, but might be no in general.

The following partial results are known:

1. The δ-constant-stratum of a plane curve singularity C is the subspace
of the base space of a semiuniversal deformation of C whose fibres have
the same δ-constant as C. If C is irreducible, then the δ-constant-
stratum is irreducible.
From this it follows by corollary 4.4.9 that the subspace of the base
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space of a semiuniversal deformation of C whose fibres have δ ordinary
double points is connected.

2. Lemma 4.3.22 shows that the subspace corresponding to the Scott de-
formations is irreducible. This is also clear from the fact that the Scott
deformations correspond to generic smoothings over the Artin compo-
nent, which is known to be smooth, see section 5.1.

3. If the multiplicity of C is less than four, the corresponding sandwiched
singularities are rational double, triple or quadruple points. Since these
surface singularities are well understood, we know that in this case the
answer to question 4.6.1 is yes, see [dJvS98, 4.13, (3)].

4. If X(C, l) is a cyclic quotient and C has smooth branches, the above
map is a bijection from the set of combinatorial deformations to the
set of components of the base space of X(C, l), see [dJvS98, Th. 6.18].

Remark 4.6.2. The subspace corresponding to equisingular deformations, the
so-called µ-constant-stratum, is smooth, see [Wah74]. The equisingular de-
formations of the curve C do not correspond to a smoothing component but
to the equisingular deformations of X(C, l), i.e. the deformations where all
fibres have the same dual resolution graph.



Chapter 5

The Kollár Conjecture for
Sandwiched Singularities

For a cyclic quotient singularity X, Kollár and Shepherd-Barron have found
a natural bijection from the set of certain partial resolutions of X to the set
of irreducible components of the base space of a semiuniversal deformation of
X. This has led to an easy combinatorial description of the set of components
of a cyclic quotient. The Kollár conjecture 5.5.1 grew out of an attempt to
extend this result from cyclic quotients to arbitrary rational singularities. So
far, the conjecture has only been verified for a few cases, see section 5.5. I will
review the result on cyclic quotients and other results which are necessary in
order to understand the Kollár conjecture in sections 5.1 to 5.5.

Now consider a sandwiched singularity X(C, l). In [dJ02], de Jong has
shown that the statement of the Kollár conjecture for X(C, l) is equivalent
to a condition on the conductor of a δ-constant 1-parameter deformation of
C, namely that the symbolic power algebra of the induced deformation of
the conductor is finitely generated.

In section 5.7 I collect conditions which are equivalent to the fact that
the symbolic power algebra of a curve is finitely generated. The main re-
sult is theorem 5.7.24 which extends work of Huneke and Morales, who have
considered symbolic power algebras of reduced, irreducible curves. Theorem
5.7.24 generalizes their results to certain non-reduced curves with an arbi-
trary number of branches. Finally I show how to apply this to the Kollár
conjecture for sandwiched singularities and compute some examples.

5.1 Simultaneous Resolutions

In this section, all deformations will be over a reduced base space.

89
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Let X be a rational surface singularity and X̃ → X a minimal resolution.
Then every deformation of X̃ “blows down” to a deformation of X. We get
an induced map Res between the base spaces of semiuniversal deformations.
We say that a deformation of X allows a simultaneous resolution if and only
if it can be obtained by blowing down a deformation of X̃. For the rational
double points, Brieskorn has shown that the map Res is a surjective Galois
covering and that its group of automorphisms is the Weyl group of the Lie
group having the same name as the rational double point. This implies that
every deformation of a rational double point allows a simultaneous resolution
after a finite base change (the base change is Res).

This has been generalized by joint work of Artin and Schlessinger, see
[Art70]: If X is a rational surface singularity, then the image of Res is an
irreducible, non-embedded component of the base space of the semiuniversal
deformation of X; this component is now commonly called the Artin compo-
nent. The map Res is a finite Galois map and every deformation of X allows
a simultaneous resolution after a finite base change. The Galois group is a
direct product of the Weyl groups associated to the (−2)-configurations in
the dual resolution graph.

Finally, in [Lip79] the following is proved:

Theorem 5.1.1 (Lipman). Let X be a rational surface singularity and
X̃ → X a minimal resolution. We call the contraction of all (−2)-curves in
X̃ the rational double point resolution of X (RDP-resolution for short).

Every deformation of the RDP-resolution of X blows down to a deforma-
tion over the Artin component. The induced map from the base space of a
semiuniversal deformation of the RDP-resolution to the Artin component is
bijective. Conversely, every deformation over the Artin component allows a
unique simultaneous double point resolution (without base change!).

Remark 5.1.2. 1. The Artin component is smooth.

2. Assume that the equations for the rational surface singularity X are
given by the 2×2 minors of a 2×d matrix. Then the deformations over
the Artin component can be characterized as those deformations which
are given by a perturbation of the entries of the matrix, see [Wah79b].

5.2 Small Modifications and Symbolic Blowups

The total space of a 1-parameter deformation of a surface singularity is a
threefold. So results from three-dimensional geometry can be applied to the
study of such deformations. This has been done by Kawamata, Kollár and
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Shepherd-Barron in [Kaw88], [KSB88] and [Kol91]. In the following three
sections, we present some of their results.

Definition 5.2.1. A small modification of a three-dimensional, normal sin-
gularity (X, 0) is the contraction f : (Y, C) → (X, 0) of a curve C to 0 ∈ X.

Examples for small modifications are simultaneous resolutions of 1-para-
meter smoothings of normal surface singularities: Because the general fibre is
smooth, a simultaneous resolution is biholomorphic outside the special fibre,
and in the special fibre we have the contraction of a curve to a point.

Proposition 5.2.2 (Kawamata). Let X = (X, 0) be a three-dimensional,
normal singularity.

1. Let f : Y → X be a small modification and D ⊂ Y an f -ample divisor.
Then the following holds:

(a) mf(D) ⊂ X is not Cartier for all m > 0,

(b) f∗OY (mD) = OX(mf(D)) for all m ≥ 0, and

(c)
∑∞

m=0 OX(mf(D)) is a finitely generated OX-algebra.

2. Assume that D′ ⊂ X is a divisor such that

(a) no multiple of D′ is Cartier, and

(b)
∑∞

m=0 OX(mD′) is a finitely generated OX-algebra.

Then the projection from Y = Proj
∑∞

m=0 OX(mD′) to X is a small
modification of X.

A proof is in [Kaw88, section 3]. See also [Kol91, §6] for further comments.
The ideal sheaf OX(mD′) is the m-th symbolic power of the ideal sheaf

OX(D′). See section 5.6 for definitions and properties of symbolic powers.
An important special case is the symbolic power algebra of the canonical
divisor.

Notation 5.2.3. 1. The algebra
∑∞

m=0 OX(mD′) is called the symbolic power
algebra of D′. The modification Proj

∑∞
m=0 OX(mD′) is called sym-

bolic blowup.

2. Let X0 be a rational surface singularity, X a 1-parameter smoothing of
X0 and KX the canonical divisor of X. The canonical algebra of the
smoothing X is the OX -algebra

⊕∞
n=0 O(nKX).
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5.3 Smoothing Components of Cyclic Quo-

tient Singularities

Let f : Y → X be a small modification of a 1-parameter smoothing of
a normal surface singularity X0. The restriction to the special fibre is a
modification of X0. Set Y0 := f−1(X0). Since f is biholomorphic outside the
special fibre, Y is a smoothing of Y0.

A normal variety Y is called Q-Gorenstein iff some non-zero integral mul-
tiple mKY of the canonical divisor KY is Cartier and Y is Cohen-Macaulay.
In the situation of proposition 5.2.2, we know that Y is Q-Gorenstein, see
[Kaw88, Lemma 3.1].

Now we consider the special case that X0 is a cyclic quotient singular-
ity. The study of small modifications of one-parameter smoothings of cyclic
quotients in [KSB88] gave rise to the following definition:

Definition 5.3.1. Let X0 be a two-dimensional cyclic quotient singularity.
A P -resolution of X0 is a partial resolution f : Z0 → X0 such that

1. All singularities of Z0 are quotient singularities and admit a one-parameter
smoothing which is Q-Gorenstein.

2. The canonical divisor KZ0
is ample relative to f .

The following theorem is a generalization of the characterization of the
Artin component given in theorem 5.1.1.

Theorem 5.3.2 (Kollár, Shepherd-Barron). Let X0 be a two-dimensio-
nal cyclic quotient singularity.
The canonical algebra of any 1-parameter smoothing of X0 is finitely gener-
ated. The special fibre of the symbolic blowup in the canonical algebra is a
P -resolution. If two smoothings give rise to isomorphic P -resolution, then
the two smoothings are over the same component of the base space of a semi-
universal deformation of X0.

This induces a bijection between isomorphism classes of P -resolutions and
components of the base space of a semiuniversal deformation of X0.

The proof of this theorem is in [KSB88]. See also [Kol91].

So for each component of the base space, there is a unique ‘partial res-
olution’ with the property that certain smoothings of this partial resolution
blow down to smoothings over the given component. The P -resolutions cor-
responding to the Artin-component are the RDP-resolutions.
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Remark 5.3.3. In general, the base space of a semiuniversal deformation will
have embedded components. These are always excluded when we talk of
components of the base space.

Remark 5.3.4. Recall that all componentsof the base space of a semiuniversal
deformation are smoothing components for any rational surface singularity.

This theorem has led to a very nice combinatorial description of the com-
ponents of the base space of a cyclic quotient singularity in [Chr91] and
[Ste91a].

5.4 P -modifications

In [Kol91], Kollár asks whether the above results on cyclic quotient singular-
ities can be generalized to the class of all rational surface singularities. This
leads to the following open questions.

Question 5.4.1. Let X0 be any rational surface singularity. Is the canonical
algebra of an arbitrary 1-parameter smoothing of X0 finitely generated?

Kollár conjectures that the answer is yes. We call this conjecture the
Kollár conjecture. We will discuss the conjecture in the next section and the
rest of the chapter. But before we do that, we want to mention some more
open questions.

If the canonical algebra is finitely generated, then the symbolic blowup
in the canonical algebra is a small modification and the special fibre is a
modification of X0.

Definition 5.4.2. These modifications of X0 are the P -modifications of X0.

If the smoothing is over the Artin component, then the P -modification is
an RDP-resolution.

Question 5.4.3. How can we characterize P -modifications?

This is the central question in [Kol91, 6.2]. The normal P -modifications
f : Y0 → X0 are characterized by the property that the canonical divisor of
Y0 is f -ample and that every singularity of Y0 has a 1-parameter smoothing
Y ′ such that the canonical divisor of Y ′ is Q-Cartier. For non-normal P -
modifications, the situation is not so clear. Kollár works with the assumption
that P -modifications are reduced and Cohen-Macaulay with at worst double
normal crossing points in codimension one, but it is not clear at all if these
conditions are always satisfied.

If the canonical algebra of a smoothing is always finitely generated, then
we can ask
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Question 5.4.4. Let X0 be any rational surface singularity. Is there a nat-
ural bijection from the set of isomorphism classes of P -modifications to the
set of smoothing components of X0?

Actually, this might be asking for too much because we cannot exclude the
possibility that a P -modification has several smoothing components which
correspond to different smoothing components of X0. So we might have to
refine the question to ask for a bijection not from the set of isomorphism
classes of P -modifications but of smoothing components of P -modifications
over which there are Q-Gorenstein deformations. Again, Kollár has conjec-
tured that the answer is yes, see [Kol91, conjecture 6.2.15].

The idea behind all these questions is to get control over the compo-
nents of the base space of a rational surface singularity. This has worked
very well for cyclic quotient singularities. Unfortunately, it has turned out
that P -modifications of arbitrary rational singularities can behave quite un-
pleasantly; for example, they might be non-normal. So even if there is a
bijection from isomorphism classes of P -modifications to components of the
base space of a semiuniversal deformation, it might be quite hard to get
information about the components by studying P -modifications.

We will now return to the first of these questions and see what we can
say for the case of sandwiched singularities.

5.5 The Kollár Conjecture

The Kollár Conjecture is Conjecture 6.2.1 in [Kol91] and reads:

Conjecture 5.5.1. Let X be a 1-parameter smoothing of a rational surface
singularity and KX the canonical divisor on X. Then the canonical algebra
⊕∞

n=0 O(n ·KX) is a finitely generated OX -algebra.

We have discussed the motivation to study this conjecture in the preced-
ing sections.

The following partial results are known:

1. The statement of the Kollár conjecture is true for smoothings over the
Artin component. So the Kollár conjecture is true if the base space of
the semiuniversal deformation is irreducible. This is e.g. the case for
all rational double and triple points and for hypersurface singularities.
Kollár has conjectured that the base space of a rational surface sin-
gularity is irreducible if every vertex of the dual resolution graph has
weight ≤ −5. In [dJvS98] the theory of sandwiched singularities has
been used to show that this is true if the fundamental cycle is reduced.
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2. The Kollár conjecture is true for cyclic quotient singularities and for
quotients of simple elliptic and cusp singularities, see [KSB88].

3. The Kollár conjecture is true for rational quadruple points, see [Ste91b].

5.5.1 The Case of Sandwiched Singularities

Let X(Ct, lt) be a 1-parameter smoothing of the sandwiched singularity
X(C, l). Since the deformation Ct is δ-constant, it implies a flat deformation
of the conductor of C. We denote the ideal of the deformation of the con-
ductor by J , so J ⊂ OC2×T,0

∼= C{x, y, t} and J0 = J/(t) is the conductor of
C. J (n) denotes the n-th symbolic power of J .

Theorem 5.5.2 (de Jong). Let the notations be as above. The canoni-
cal algebra of the smoothing X(Ct, lt) is finitely generated if and only if the
symbolic algebra

⊕∞
n=0 J

(n) is a finitely generated C{x, y, t}-algebra.
A proof is given in [dJ02].

Remark 5.5.3. There are irreducible curves in three-dimensional regular rings
whose symbolic algebra is not finitely generated, see [Nag60], [Rob85] and
[GNW94]. For example it is shown in [GNW94] that the symbolic algebra of
the monomial prime ideal (t25, t72, t29) = (x11 − yz7, y3 − x4z4, z11 − x7y2) in
C[[x, y, z]] is not finitely generated. If we replace C by a field of characteristic
> 0, then the symbolic algebra is finitely generated, but the blow up ring is
not Cohen-Macaulay.

These examples cannot occur as the deformation of the conductor of a
plane curve singularity under a δ-constant deformation though, because they
are reduced curves. This means that the corresponding curve deformation
would have to be a deformation into δ ordinary double points. But for
such a deformation, the symbolic algebra of the conductor is always finitely
generated, see proposition 5.9.1.

Still, it might be possible to construct a counterexample to the Kollár
conjecture from one of these examples. To do so, it would suffice to find
a deformation into ordinary singularities, all having the same multiplicity
n ≥ 3, such that the conductor is the (n − 1)-st symbolic power of one the
reduced curves of which we know that the symbolic algebra is not finitely
generated.

Corollary 5.5.4. If the Kollár conjecture is true for X(C, l) and l ≥ l′, then
the Kollár conjecture is true for X(C, l′).
If the divisor l is so big that every δ-constant deformation of C implies a
deformation of X(C, l), then the Kollár conjecture is true for X(C, l) if and
only if it is true for all X(C, l′).
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Proof. The algebra
⊕∞

n=0 J
(n) does not depend on the divisor l or lt but only

on the deformation of C. The only thing that does depend on l is whether a
certain deformation of C implies deformations of the sandwiched singularity
or not.

5.5.2 Construction of P -modifications

Theorem 5.5.2 only gives a criterion to decide whether a P -modification
does exist or not. Now we would like to have more information on the P -
modification and we would like to read off this information directly from
the deformation (Ct, lt) of the decorated curve respectively of the associated
combinatorial deformation.

Let us take a look at the proof of theorem 5.5.2 given in [dJ02]: Under the
assumption that the symbolic algebra of the conductor is finitely generated,
de Jong constructs a small modification of the smoothing as follows: First
you have to take the symbolic blowup in the conductor J ; call this blowup
W . De Jong shows that the deformation lT of l can be seen as a subspace
of W and that it makes sense to define the set D of irreducible components
of lT which are not contained in the zero set of the conductor. The blowup
WD of W in D is a small modification of the smoothing X(Ct, lt).

Example 5.5.5. Let X(Ct, lt) be a smoothing over the Artin component, J
the induced deformation of the conductor. Then J (n) = Jn for all n, see
corollary 5.8.4, so the symbolic blowup is equal to the ordinary blowup. The
conductor J0 = J/(t) of C is the complete ideal whose multiplicity at the
infinitely near point p is ep(C)−1, see theorem 1.2.21. So the base points p of
J0 with excess ρp(J0) > 0 are the points on C with the property that there are
≥ 2 points on C proximate to p. These points correspond to the irreducible
components Ep of the minimal resolution of X(C, l) with −E2

p > 2.
Using the description of the blow up in a complete ideal from chapter 2,

we see that the special fibre of the small modification WD can be obtained
as follows: Blow up all base points of (C, l), then contract the (−2)-curves.
This gives the RDP-resolution of X(C, l).

Smoothings over the Artin component are of course the easiest to handle.
In general, the computation of the P -modification is more complicated, but
can be done in a similar way:

If the symbolic algebra of the conductor is finitely generated, then there
is a k such that the symbolic blowup in J is equal to the ordinary blowup in
J (k), see theorem 5.7.24. The hardest task is to find this k and to compute
J (k)/(t). The special fibre of the symbolic blowup W is the blowup of C2 in
J (k)/(t). If J (k)/(t) is complete, we have a good description of the special
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fibre of the symbolic blowup W and can compute the special fibre of WD as
in the case of the Artin component, i.e. as the blowup of W0 in those base
points of (C, l) which are not base points of J (k)/(t).

If J (k)/(t) is not complete, then the special fibre of the symbolic blowup
W is not normal, and the P -modification probably will not be normal either.
But at least we will still get some information on the P -modification if we
know the cluster of base points of J (k)/(t). In particular, I expect that
replacing J (k)/(t) by its integral closure will lead to the normalization of the
P -modification.

We compute several examples in section 5.9. The most interesting phe-
nomena occur in example 5.9.4.

5.6 Computation of Symbolic Powers

We remind the reader of the definition and some basic properties of symbolic
powers, see e.g. [Eis94, chapter 3].

Definition 5.6.1. Let p be a prime ideal in a Noetherian ring. The n-th
symbolic power p(n) is the p-primary component of pn.

Let I be an arbitrary ideal in a Noetherian ring and In =
⋂

qi a primary
decomposition of the n-th power of I. Let qi be pi-primary. Then the primary
components of the primes pi minimal in Ass(I) are uniquely determined by
I and we define

I(n) :=
⋂

pi minimal
in Ass(I)

qi

to be the n-th symbolic power of I.

So the n-th symbolic power is the ordinary n-th power without the em-
bedded components. The geometric idea is the following: If I is a reduced
ideal, then I (n) consists of the functions having vanishing order ≥ n in a
generic point of the zero set V (I).

Proposition 5.6.2. Let I be an ideal in a Noetherian ring R, p a minimal
prime of I. Then the p-primary component of I is the contraction R∩ (IRp)
of IRp. So

I(n) =
⋂

p∈Ass(
√

I)

(In ·Rp) ∩ R.

A curve V (I) in (C3, 0) can have no more but one embedded component,
a zero-dimensional component in zero. We can eliminate this component by
passing to the saturation of I in the maximal ideal at zero:
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Proposition 5.6.3. Let I ⊂ C{x, y, t} be a one-dimensional ideal. Then the
symbolic power I (n) is the saturation of In with respect to m = (x, y, t):

I(n) =

∞⋂

i=1

(In : mi).

Passing to the saturation with respect to a maximal ideal is an operation
which is well suited for the use of computer algebra, see e.g. [GP02].

Proposition 5.6.4. Let R be a Noetherian ring, p1, . . . , pr ⊂ R prime ideals
such that Rpi

is regular and ni ∈ N.

Then I =
⋂r

i=1 p
(ni)
i is integrally closed.

Proof. Since a finite intersection of integrally closed ideals is integrally closed,
we only have to consider a single prime p ⊂ R. In a regular local ring, the
powers of the maximal ideal are integrally closed. For every ideal I ⊂ Rp we
have Ī ∩ R ⊃ I ∩ R, because an integral equation in R over the contraction
I ∩ R is also an integral equation in Rp over I itself.

We obtain

p(n) = (pnRp) ∩R = (pnRp) ∩ R ⊃ p(n),

so p(n) is integrally closed.

5.7 When is the Symbolic Algebra Finitely

Generated?

We now gather criteria to decide when the symbolic algebra of a curve is
finitely generated. The result is summarized in theorem 5.7.24, which the
reader may prefer to read before going through the technical sections on
multiplicities and analytic spread.

The part of the main theorem which cannot be found in the literature is
a generalization of work of Huneke and Morales, see [Hun87] and [Mor91].
Huneke gives a criterion for curves in three-space, Morales generalized this to
curves in an arbitrary analytically unramified and formally equidimensional
local domain of dimension d ≥ 3 with regular localization. The proof given
here follows Morales proof closely and generalizes further from irreducible
curves to curves with several components and a certain non-reduced struc-
ture. At the same time we restrict ourselves to curves in a regular local ring.
I believe that it would also work under Morales’ assumptions, but reading
the proof probably would become a burden for a reader who is not into the
subject.
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5.7.1 Multiplicities

The basics on multiplicities can be found in [Nor68, chapter 7]. Our notations
are the same as in [Mor91].

We denote the length of an R-module M by λR(M).

Definition/Theorem 5.7.1. Let (R,m) be a local Noetherian ring of di-
mension d and E a finitely generated R-module of dimension r.

Then x = x1, . . . , xr is a parameter system of E if and only if x1, . . . , xr ∈
E and the length λR(E/(x)E) is finite.

Now assume that x = x1, . . . , xr is a parameter system of E. Then for
n � 0 the function n 7→ λR(E/(x)nE) coincides with a polynomial whose
leading term is of the form e(x|E)nr

r!
with e(x|E) an integer.

We define the multiplicity of E with respect to x to be the integer e(x|E).

Definition/Theorem 5.7.2. Let (R,m) be a local Noetherian ring of di-
mension d, I ⊂ R an m-primary ideal.

Then for n� 0 the function n 7→ λR(R/In) coincides with a polynomial

whose leading term is of the form e(I)nd

d!
with e(I) an integer.

We define the multiplicity of I to be the integer e(I).

Remark 5.7.3. If I is generated by a regular sequence x, then obviously
e(I) = e(x|R).

Remark 5.7.4. We have e(x|E) ≤ λR

(
E/(x)E

)
and equality if and only if

E is Cohen-Macaulay. So in particular, if E = R/I is a curve, i.e. one-
dimensional, we have equality if and only if the curve has no embedded
components.

Remark 5.7.5. We have e(xn1

1 , . . . , x
nr
r |E) = (

∏r
i=1 ni) · e(x|E), see [Nor68,

ch. 7, Cor. 1, p. 311]. Some people call this the associativity of the multiplicity
symbol.

Definition/Theorem 5.7.6. Let (R,m) be a local Noetherian ring of di-
mension d, I ⊂ R an ideal, dimR/I = r and x = x1, . . . , xr a parameter
system of R/I.

Then for n� 0 the function n 7→ e(x|R/In) coincides with a polynomial
whose leading term is of the form e(x; I)nr

r!
with e(x; I) an integer.

We define the relative multiplicity of I with respect to x to be the integer
e(x; I).

Theorem 5.7.7. Let (R,m) be a local Noetherian ring, E a Noetherian R-
module and x = x1, . . . , xr a parameter system of E. Then

e(x|E) =
∑

λRp
(Ep)e(x|R/p),
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where the sum is being taken over all primes p ⊃ Ann(E) containing the
annihilator of E with dim(R/p) = r.

For a proof see [Mor91, Theorem 1.2] or [Nor68, Ch. 7, Prop. 11, p. 341].

Corollary 5.7.8. With the above notations:

e(x; I) =
∑

eRpi
(Ipi

) · e(x|R/pi).

Proof. The relative multiplicity is defined as the (r!)-multiple of the leading
coefficient of the polynomial in n whose values for n� 0 are

e(x|R/In) =
∑

λRp
(Rpi

/In
pi

) · e(x|R/pi).

Now e(x|R/pi) doesn’t depend on n, while λRp
(Rpi

/In
pi

) is a polynomial with
leading coefficient eRpi

(Ipi
)/r! for n� 0.

Corollary 5.7.9. Let x, f1, . . . , fd−1 be a regular sequence in the regular,
local, d-dimensional ring (R,m). Then

e
(
x; (f1, . . . , fd−1)

)
= e(x, f1, . . . , fd−1).

Proof. Let p be an associated prime of the ideal (f1, . . . , fd−1). Then f1, . . . , fd−1

is a regular sequence in Rp. We deduce

e
(
x; (f1, . . . , fd−1)

)
=
∑

p

eRp

(
(f1, . . . , fd−1)p

)
· e(x|R/p) by 5.7.8

=
∑

p

eRp

(
f1, . . . , fd−1|Rp

)
· e(x|R/p) by 5.7.3

=
∑

p

λ
(
Rp/(f1, . . . , fd−1)

)
· e(x|R/p) Rp is CM

= e
(
x|R/(f1, . . . , fd−1)

)
by 5.7.7

= e(x, f1, . . . , fd−1|R)

= e(x, f1, . . . , fd−1).

Corollary 5.7.10. Let J and I be of pure dimension r, J ⊂ I be a reduction.
Then

e(x; I) = e(x; J).
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Proof. Since J is a reduction of I and both are pure dimensional, they have
the same associated primes. Localizing we see that Jpi

is a reduction of Ipi
,

so according to remark 1.5.8

eRpi
(Jpi

) = eRpi
(Ipi

).

Corollary 5.7.8 implies

e(x; I) =
∑

eRpi
(Ipi

) · e(x|R/pi)

=
∑

eRpi
(Jpi

) · e(x|R/pi)

= e(x; J).

Corollary 5.7.11. Let (R,m) be a regular, Noetherian local ring of dimen-

sion d and I =
⋂

p
(ni)
i ⊂ R the ideal of a curve without embedded components

and x ∈ m \⋃ pi. Then

e(x; I (k)) = kd−1 ·
∑

nd−1
i λ

(
R/(x) + pi

)
.

Proof. The condition x ∈ m \ ⋃ pi means that x is a regular sequence of
length one on R/pi, for all pi. So we get

e(x; I (k)) =
∑

eRpi
(I

(k)
pi

) · e(x|R/pi) by Corollary 5.7.8

=
∑

eRpi
(pi

kni
pi

) · e(x|R/pi)

=
∑

(kni)
d−1 · e(x|R/pi)

=
∑

(kni)
d−1 · λ

(
R/(x) + pi

)
, because R/pi is CM.

Lemma 5.7.12. Let (R,m) be a regular, Noetherian local ring, I =
⋂

p
(ni)
i ⊂

R the ideal of a curve without embedded components, x ∈ m \ ⋃ pi and
S = R/(x).
Then for all k ∈ N the function n 7→ λR(S/I (kn)S) coincides for n� 0 with

a polynomial with leading term e
(
x; I(k)

)
nd−1

(d−1)!
.

Proof. We localize to separate the primary components from each other.
After localizing we only have to deal with the maximal ideals in the local
rings Rpi

, so life gets fairly easy. Since I was of the form I =
⋂

p
(ni)
i , the

same hold for I (k); we set I (k) =
⋂

i p
(ki)
i .
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Theorem 5.7.7 implies

e(x|R/I (k)n) =
∑

i

λRpi

(
(R/

⋂

j

p
(kj)n
j ) ⊗ Rpi

)
· e(x|R/pi)

=
∑

i

λRpi

(
Rpi

/
⋂

j

(p
(kj)n
j ·Rpi

)
)
· e(x|R/pi)

=
∑

i

λRpi

(
Rpi

/(p
(ki)n
i ·Rpi

)
)
· e(x|R/pi)

=
∑

i

λRpi

(
Rpi

/(pkin
i ·Rpi

)
)
· e(x|R/pi).

In the line before the last line of the preceding computation we have made use
of the fact that pj ·Rpi

= Rpi
for all i 6= j. The last equality is a consequence

of the characterization of symbolic powers via contractions, see proposition
5.6.2.

By definition, e(x; I (k)) is (d−1)! times the leading coefficient of the poly-
nomial in n which coincides with e(x|R/I (k)n) for n � 0. In the expression
for e(x|R/I (k)n) that we have just computed, the factor e(x|R/pi) does not
depend on n, while the other factor is, for n� 0, an polynomial with leading
term

eRpi

(
pki

i

) nd−1

(d− 1)!
= kd−1

i eRpi

(
pi

) nd−1

(d− 1)!
.

We conclude:

e
(
x; I(k)

)
=
∑

i

kd−1
i eRpi

(pi) · e(x|R/pi). (5.1)

Now let’s take look at the function the theorem is about:

λR(S/I (kn)S) = λR

(
(R/(x))/I (kn)

)

= λR

(
R/(x) + I (kn)

)

= λR

(
(R/I (kn))/(x)

)

= e(x|R/I (kn)) R/I (kn) is CM

=
∑

i

λRpi

(
(R/p

(kin)
i ) ⊗ Rpi

)
· e(x|R/pi) by theorem 5.7.7.

=
∑

i

λRpi

(
Rpi

/(pkin
i ·Rpi

)
)
· e(x|R/pi).

For n� 0, the expression λRpi
(Rpi

/(pkin
i ·Rpi

)) in the last sum is a polynomial

with leading term eRpi

(
pi

) (kin)d−1

(d−1)!
. So for n� 0, n 7→ λR(S/I (kn)S) coincides
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with a polynomial with leading term

∑

i

eRpi

(
pi

)(kin)d−1

(d− 1)!
· e(x|R/pi).

Substituting e
(
x; I(k)

)
for the expression on the right of equation 5.1 on page

102 completes the proof.

5.7.2 Analytic Spread

Definition/Theorem 5.7.13. Let I be an ideal in a local Noetherian ring
(R,m). The function n 7→ (minimal number of generators needed for In)
coincides for n� 0 with a polynomial P (n).

We define the analytic spread of I to be the integer

l(I) = (degree of P ) + 1.

Remark 5.7.14. Obviously l(I) = l(In) for all n ∈ N.

Remark 5.7.15. The analytic spread is the dimension of the special fibre of
the Rees-algebra in I, i.e. the Krull dimension of R[tI] ⊗R R/m, see [Vas94,
5.1]. So the geometric meaning of the analytic spread is that l(I) − 1 is the
dimension of the special fibre of the blowup in I.

Recall from section 1.5 that an ideal J ⊂ I is called a reduction of I if
and only if J · In = In+1 for n� 0, and a minimal reduction if it is minimal
among all reductions with respect to inclusion.

Theorem 5.7.16. If R/m is infinite, then l(I) is the minimal number of
generators of a minimal reduction of I.

Proof. See [NR54] or [McA83].

The following theorem is 1.4.2 in [Mor91].

Theorem 5.7.17. Let I be an ideal in a formally equidimensional ring, such
that the height of I is equal to the analytic spread, h(I) = l(I). Then the
integral closure of I has no embedded components.

The next theorem is 1.4.3 in [Mor91], where it is called Dade’s theorem.

Theorem 5.7.18. Let (R,m) be a formally equidimensional ring, whose
residue field is infinite. For an ideal I the following conditions are equiv-
alent:
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1. l(I) = h(I).

2. There is a sequence x = x1, . . . , xr in R such that

(a) (x) + I is m-primary.

(b) dim
(
R/(x)

)
= dimR− r = dimR− dimR/I.

(c) If r < dimR, then e(x; I) = eR/(x)

(
I ·
(
R/(x)

))
.

(d) If r = dimR, then e(x; I) = e
(
(x)
)
.

Theorem 5.7.19. Let (R,m) be a formally equidimensional local Noetherian

ring, pi ⊂ R primes such that Rpi
is regular and I =

⋂r
i=1 p

(mi)
i an ideal

containing non-zero-divisors. Assume that R is excellent and reduced.
If l(I (k)) = h(I (k)), then the symbolic algebra of I (k) is finitely generated.

Remark 5.7.20. Let X be a reduced, equidimensional complex space, p ∈ X.
Then the local ring OX,p satisfies the conditions of the theorem.

For the proof we need the following lemma, which is included in [LJT73,
prop. 1.14].

Lemma 5.7.21. Assume that A is an excellent, reduced ring and I ⊂ A an
ideal containing a non-zero divisor. Then there exists an integer N such that
for all n ≥ N : I · Īn = In+1.

Proof of theorem 5.7.19. It follows trivially from l(I (k)) = h(I (k)) that l(I (k)n) =
l(I (k)) = h(I (k)) = h(I (k)n). The symbolic powers of I are integrally closed

by theorem 5.6.4, so we have an inclusion I (kn) ⊃ I (k)n. By theorem 5.7.17,
we have an inclusion I (kn) ⊂ I (k)n, so the symbolic powers of I (k) are the
integral closures of the ordinary powers. By lemma 5.7.21, this implies that
the symbolic algebra is finitely generated.

Remark 5.7.22. Under the additional assumptions that V (I) is a curve and
R is a three-dimensional, regular ring, l(I (k)) = h(I (k)) implies I (k)n = I (kn)

for all n, which is stronger than the statement in the theorem.

If I is the ideal of a curve in a ring with infinite residue field, the converse
of the theorem also holds:

Theorem 5.7.23. Let (R,m) be a formally equidimensional, local Noetherian
ring of dimension d with infinite residue field, I ⊂ R an ideal of height 1 and
k ∈ N.

If (I (k)n) = (I (kn)) for all n, then l(I (k)) = h(I (k)) = d− 1.
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Proof. We want to use theorem 5.7.18, so all we have to do is to show the
following: Let x ∈ R such that (x)+I is an m-primary ideal. Then e(x; I (k)) =
e
(
I(k) · (R/(x))

)
.

We have

λ
(
R/(x) + I (k)n

)
= λ

(
R/(x) + I (kn)

)
by assumption

= e
(
(x)|R/I (kn)

)
because R/I (kn) is Cohen-Macaulay

= e
(
(x)|R/I (k)n

)
by assumption

= e
(
x|R/I (k)n

)
.

So the polynomials whose leading terms define eR/(x)

(
I(k) · (R/(x))

)
and

e(x; I (k)) are the same.

5.7.3 Main Theorem

Theorem 5.7.24. Let (R,m) be a d-dimensional, regular local ring with in-

finite residue field and I =
⋂

p
(ni)
i ⊂ R an ideal of height 1 without embedded

components.
Then the following eleven statements are equivalent:

1. The symbolic algebra
⊕

I(n) is finitely generated.

2. The ring
⊕

I(n) is Noetherian.

3. ∃k ∈ N such that I (k)n = I (kn) for all n ∈ N.

4. ∃k ∈ N such that l(I (k)) = d− 1 = h(I (k)).

5. ∃k ∈ N such that the dimension of the special fibre of the symbolic
blowup of R in I (k) is equal to d− 2.

6. (a) ∃k ∈ N and f1, . . . , fd−1 ∈ I (k), such that for all x ∈ m \⋃ pi:

e(x, f1, . . . , fd−1) = e(x; I (k)).

(b) ∃k ∈ N and f1, . . . , fd−1 ∈ I (k), such that for some x ∈ m \⋃ pi:

e(x, f1, . . . , fd−1) = e(x; I (k)).

7. (a) ∃k ∈ N and f1, . . . , fd−1 ∈ I (k), such that for all x ∈ m \⋃ pi:

λ
(
R/(x, f1, . . . , fd−1)

)
= kd−1

∑

nd−1
i λ

(
R/(x) + pi

)
.
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(b) ∃k ∈ N and f1, . . . , fd−1 ∈ I (k), such that for some x ∈ m \⋃ pi:

λ
(
R/(x, f1, . . . , fd−1)

)
= kd−1

∑

nd−1
i λ

(
R/(x) + pi

)
.

8. (a) ∃k ∈ N and fj ∈ I (kj), j = 1, . . . , d − 1, such that for all x ∈
m \⋃ pi:

λ
(
R/(x, f1, . . . , fd−1)

)
= (

d−1∏

j=1

kj) ·
∑

nd−1
i λ

(
R/(x) + pi

)
.

(b) ∃k ∈ N and fj ∈ I (kj), j = 1, . . . , d − 1, such that for some
x ∈ m \⋃ pi:

λ
(
R/(x, f1, . . . , fd−1)

)
= (

d−1∏

i=j

kj) ·
∑

nd−1
i λ

(
R/(x) + pi

)
.

Proof. The equivalence of the first three statements is well known, see [Sch88].
The equivalence of 3 and 4 is given by theorem 5.7.19 using the equiva-

lence of 1 and 3 and theorem 5.7.23.
The equivalence of 4 and 5 is given by remark 5.7.15.
The implications from a to b in the last three statements are trivial.
4 =⇒ 6a: By theorem 5.7.16, the condition l(I (k)) = d − 1 implies

that there is a reduction (f1, . . . , fd−1) of I (k) generated by d − 1 elements.
Corollaries 5.7.9 and 5.7.10 imply

e(x; I (k)) = e
(
x; (f1, . . . , fd−1)

)
= e(x, f1, . . . , fd−1).

6b =⇒ 4: Dade’s Theorem 5.7.18 says that we have to show that

e(x; I (k)) = eR/(x)(I
(k)).

The residue classes f̄1, . . . , f̄d−1 von f1, . . . , fd−1 in R/(x) are a system of
parameters of I (k) ·R/(x). According to [Nor68, S.300] eR(x, f1, . . . , fd−1) =
eR/(x)(f̄1, . . . , f̄d−1). We conclude:

eR/(x)(I
(k)) ≤ eR/(x)(f̄1, . . . , f̄d−1) = eR(x, f1, . . . , fd−1) = e(x; I (k)).

On the other hand, we notice I (k)n ·R/(x) ⊂ I (kn) ·R/(x), so

λ
(
(R/(x))/I (k)n

)
≥ λ

(
(R/(x))/I (kn)

)
.
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By lemma 5.7.12 a comparison of leading terms implies

eR/(x)(I
(k)) ≥ e(x; I (k)).

6 ⇔ 7: Since R is regular and Cohen-Macaulay, we have e(x, f1, . . . , fd−1) =
λ
(
R/(x, f1, . . . , fd−1)

)
. Corollary 5.7.11 implies

e(x; I (k)) = kd−1 ·
∑

nd−1
i λ

(
R/(x) + pi

)
.

7 ⇔ 8: The equivalence follows from

e(xn1

1 , . . . , x
nr

r |E) = (

r∏

i=1

ni) · e(x|E),

cf. remark 5.7.5.

5.7.4 Application to the Kollár Conjecture

Let us now apply theorem 5.7.24 to the symbolic power algebra of the con-
ductor considered in theorem 5.5.2.

Theorem 5.7.25. Let X(Ct, lt) be a 1-parameter smoothing of X(C, l) and
J the induced deformation of the conductor of C.

The following statements are equivalent:

1. The statement of the Kollár conjecture holds for the smoothingX(Ct, lt).

2. There is an k ∈ N such that J (k)n = J (kn) for all n ∈ N.

3. There is an k ∈ N such that J (k) is an equimultiple deformation.

If, in addition to the above assumptions, Ct has r singularities which are
ordinary of multiplicity n1, . . . , nr, then the above three statements are also
equivalent to the following:

4. There exist k1, k2 ∈ N and f1 ∈ J
(k1)
0 , f2 ∈ J

(k2)
0 with intersection

multiplicity

〈f1, f2〉 = k1k2 ·
r∑

i=1

(ni − 1)2.

Proof. Theorem 5.5.2 says that the Kollár conjecture holds if and only if the
symbolic algebra of the conductor J is always finitely generated.

By theorem 5.7.24, the symbolic algebra is finitely generated if and only
if ∃k ∈ N such that J (k)n = J (kn) for all n ∈ N.
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Also by theorem 5.7.24, the symbolic algebra of the conductor J is finitely
generated if and only if ∃k ∈ N such that the exceptional divisor of the
blowup in J (k) has no components which are contained in the special fibre.
By theorem 3.5.2 this is equivalent to the fact that J (k) is an equimultiple
deformation.

Finally, we show that the third and the fourth statement are equivalent.
We may assume that k1 = k2 = k in the fourth statement; otherwise set
k = lcm(k1, k2) and replace fi by its (k/ki)-th power. The term k2

∑
(ni−1)2

is the multiplicity of a fibre J
(k)
t with t 6= 0. From corollary 1.5.4 and the

semicontinuity of the multiplicity we get

〈f1, f2〉 ≥ e(J
(k)
0 ) ≥ e(J

(k)
t ) = k2

∑

(ni − 1)2.

Equality holds if and only if f1 and f2 are generic and J (k) is an equimultiple
deformation, thus proving the equivalence.

Remark 5.7.26. We see from the proof that the relative multiplicity e(t; J (k))

is equal to the multiplicity of a fibre J
(k)
t for small t 6= 0.

In the proof we have not used the last criteria of theorem 5.7.24. To see
how they fit into the picture, I will now show how we could have deduced
the fourth statement of theorem 5.7.25 directly from the last statement of
theorem 5.7.24:

We identify

R = C{x, y, t}
I = deformation of the conductor

=
⋂

i

pni−1
i

x = t ∈ m \
⋃

pi

λ
(
R/(x, f1, . . . , fd−1)

)
= dimC C{x, y, t}/(t, f1, f2)

= dimC C{x, y}/(f1, f2)

= 〈f1, f2〉
λ
(
R/(x) + pi

)
= dimC C{x, y, t}/

(
(t) + pi

)

= number of points in V (pi) ∩ (C2 × {t}) for t 6= 0

The last equality holds because pi has no embedded components, so the
curve V (pi) is a flat deformation over t, which means that the degree of (pi)t

is constant in t. For t 6= 0, the points are all reduced, so the degree is equal
to the number of points in V (pi) ∩ (C2 × {t}).
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5.8 Deformations of the Conductor

Recall that the conductor of the isolated plane curve singularity (C, 0) ⊂
(C2, 0) is the mC2,0-primary, complete ideal whose multiplicity at an infinitely
near point p is ep(C)−1, see 1.2.2. Since the degree of the conductor is δ(C),
a deformation Ct of C induces a deformation of the conductor if and only if
Ct is a δ-constant deformation.

Lemma 5.8.1. Let Ct be a δ-constant 1-parameter deformation of C into
s ordinary singularities with multiplicities m1, . . . , ms and J ⊂ OC2×C the
induced deformation of the conductor. Then

dimC C{x, y}/
(
J (n)/(t)

)
=

s∑

i=1

n(mi − 1) ·
(
n(mi − 1) + 1

)

2
.

Proof. The conductor of an ordinary plane curve singularity of multiplicity
m is the (m − 1)-th power of the maximal ideal. So the term on the right

is the degree of a fibre J
(n)
t with t 6= 0. Since the symbolic power has no

embedded components, this is equal to the degree of J
(n)
0 = J (n)/(t).

Theorem 5.8.2. Let X(Ct, lt) be a (generic) smoothing of X(C, l), J the
induced deformation of the conductor of C. Assume that J (k)/(t) ⊂ OC2,0 is
a complete ideal.

Then J (k)n = J (kn) for all n ∈ N if and only if Σ(J (k)) is a δ-constant
deformation.

Proof. This follows directly from theorem 3.4.4 on page 55.

There are cases where J (k) is not relative complete, but J (k)n = J (kn) for
all n ∈ N. This corresponds to non-normal P-modifications of the sandwiched
singularity X(C, l), see section 5.5.2 and example 5.9.4.

For these cases we know:

Theorem 5.8.3. Let X(Ct, lt) be a generic smoothing of X(C, l) and J the
induced deformation of the conductor of C. Assume that J (k)/(t) is not
complete and that J (k)n = J (kn) for all n ∈ N.

Then the deformation Σ(J (k)) is not δ-constant.

Proof. This follows from proposition 3.4.7 on page 58.

Smoothings over the Artin component of X(C, l) correspond to Scott
deformations of C. This implies that the induced deformation of the con-
ductor is relative complete and δ-constant, which gives a ‘sandwiched proof’
of the well known fact that the statement of the Kollár conjecture is true for
smoothings over the Artin component:
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Corollary 5.8.4. Let X(Ct, lt) be a smoothing of X(C, l) over the Artin
component, J the induced deformation of the conductor of C. Then Jn = J (n)

for all n, so the symbolic algebra is generated by its degree-one part.

Proof. This follows from the last statement of theorem 3.4.8.

Conjecture 5.8.5. Jn = J (n) for all n if and only if the deformation is over
the Artin component.

Remark 5.8.6. This conjecture is true if and only if conjecture 3.4.10 is true.

5.9 Examples

Proposition 5.9.1 (Deformation into ordinary double points). Let Ct

be a 1-parameter deformation of an isolated plane curve singularity C into
δ(C) ordinary double points, J the induced deformation of the conductor.

Then the symbolic algebra of J is finitely generated (by J ⊕ J (2)).

Proof. Let F ∈ OC2×T,0 be an equation of the deformation Ct. Since the
general fibre of the deformation has only ordinary double points, the curve
defined by J is the reduced set of singular points

⋃

t∈T Sing(Ct) and F ∈ J (2).
By theorem 1.2.21, the conductor J0 ⊂ OC2 of the curve C is the complete

ideal whose base points are the infinitely near points with ep(C) > 1 with
multiplicities ep(J0) = ep(C) − 1.

So the intersection multiplicity of F0, which is an equation of C, with a
generic element of J0 is

∑

p∈N0
ep(C)(ep(C) − 1) = 2δ(C), satisfying the last

criterion of theorem 5.7.25.

Proposition 5.9.2. Let C be an ordinary singularity of multiplicity s + 1
and Ct a deformation with combinatorial representation

(0, 1, . . . , s) → (0, 1)(0, 2) . . . (0, s)(1, 2, . . . s).

In other words, Ct is a δ-constant deformation into one ordinary singularity
of multiplicity s and s ordinary double points, obtained by ‘moving away one
branch from the singularity’. Let J denote the induced deformation of the
conductor.

Then the symbolic algebra of J is finitely generated (by
⊕s

n=1 J
(n)).

Proof. Let C0 = V (f0) be the branch which is moved by the deformation,
Ci = V (fi), i = 1, . . . , s the branches that are fixed and Fi equations of the
deformations. Then the restriction of F0 ·

∏s
i=1 F

s−1
i to a fibre with t 6= 0

passes through the s-fold point of Ct with multiplicity s(s− 1) and through
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each of the double points with multiplicity s, so F0 ·
∏s

i=1 F
s−1
i ∈ J (s). For

this to work, we only require F0 to pass through the s double points and Fi to
pass through two singular points. That means that if we alter f0 by adding
a function of order s and fi by adding a function of order 2, then we end
up with functions f ′

0 and f ′
i for which we can find deformations F ′

i passing

through the same points, i.e. F ′
0 ·
∏s

i=1 F
′s−1
i ∈ J (s). So J

(s)
0 contains the

complete ideal I =
(
(f0) + (x, y)s

)
·∏s

i=1

(
(fi) + (x, y)2

)s−1
, whose weighted

cluster of base points looks like this:

1

1

1

p_1

p_2

p_(s−1)

s−1

s−1s^2−s+1

(branch #0)

(branch #1)

(branch #s)

s−1
s−1

The multiplicity of the complete ideal I is equal to
∑
e2p(I), which is:

(s2 − s+ 1)2 + s · (s− 1)2 + (s− 1) · 12 = s4 − s3 + s2

= s2 ·
(
(s− 1)2 + 12 + · · · + 12

︸ ︷︷ ︸

s times

)
.

So the criterion of theorem 5.7.25 is satisfied. We can also deduce that J (s)

is equal to this complete ideal, because otherwise e(J
(s)
0 ) < e(J

(s)
t ) for t 6= 0,

but the multiplicity is upper-semicontinuous. (We could also check that J (s)

is the given complete ideal by computing the degree.)

Example 5.9.3. Now let us look at δ-constant deformations of ordinary sin-
gularities with low multiplicity.

A δ-constant deformation of an ordinary double point is trivial.
An ordinary triple point has two kinds of δ-constant deformations: the

trivial deformation, which in this case is a Scott deformation, and the defor-
mation into three double points. We know for both that the symbolic power
is finitely generated.

An ordinary quadruple point has three kinds of δ-constant deformations:
the trivial or Scott deformation, the deformation into six double points and
deformations into one triple and three double points. By the above results,
the symbolic algebra is finitely generated in all these cases.

An ordinary quintuple point has five kinds of δ-constant deformations: the
first three are the Scott deformation, the deformation into δ ordinary double
points and the deformations into an ordinary quadruple point and four double
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points. Of these we know that the symbolic power is finitely generated by
the above results. We are left with deformations into one triple and seven
double points and with deformations into two triple and four double points.

Let us deal with the deformations into two triple points and four double
points first. Up to a permutation of branches the corresponding combinato-
rial deformation is (12345) → (123)(145) (24)(25)(34)(35). As in the proof
of the preceding proposition we see that F 2

1 ·∏5
i=2 Fi ∈ J (2) and

J
(2)
0 =

(
f1 + (x, y)2

)2 ·
5∏

i=2

(
fi + (x, y)3

)
.

The cluster of base points of J
(2)
0 has Enriques diagram

1

1

1

1

1

1

1

16

2

and the multiplicity of J
(2)
0 is 48, which satisfies our criterion for the finite

generation of the symbolic power.
With the deformation into one triple and seven double points, a new

phenomenon occurs. Up to a permutation of branches the corresponding
combinatorial deformation is (12345) → (123) (14)(15)(24)(25)(34)(35)(45).
Let fi be equations of the five branches as before and g the equation of a
smooth branch having a tangent direction such that it can be deformed to
pass through the triple point and the intersection of the fourth and the fifth
branch for t 6= 0. Then F 3

1F
3
2F

3
3F

2
4F

2
5G ∈ J (5) and by the same kind of

computations as before we see

J
(5)
0 =

(
f1 + (x, y)3

)3 ·
(
f2 + (x, y)3

)3 ·
(
f3 + (x, y)3

)3

·
(
f4 + (x, y)4

)2 ·
(
f5 + (x, y)4

)2 ·
(
g + (x, y)2

)
.

(The reader may find it helpful to draw himself a picture of a fibre with
t 6= 0.) So unlike before, the fibre over t = 0 of the symbolic powers of
the deformed conductor has base points which are not on the curve we have
started with! An Enriques diagram of J

(5)
0 is

3 3
3

3

3

3

2

 2

2

2

2

2

1

14
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The multiplicity is 275 = 52 · (22 + 7 · 12), so our criterion is satisfied.

Example 5.9.4. Now I want to study example 6.3.3 of [Kol91]. Consider a
normal surface singularity with the following dual resolution graph:

 −2

−2

 −2 −3   −4    −2

This singularity is sandwiched. It is the only singularity on the blowup of
C2 in a complete ideal with the following Enriques diagram:

4

3

1

1

1

1 1

1

1
1

The complete ideal can be represented as I = I(C, l) where (C, l) is a dec-
orated with four smooth branches such that the first three branches have
pairwise intersection multiplicity two, the fourth is transversal to the others
and l(1) = 5, l(2) = l(3) = 4 and l(4) = 2. The combinatorial deformations
of this decorated curve are the following:

1. (1234) (123) (1)3(2)2(3)2(4) (Scott deformation).

2. (1234) (12)(13)(23) (1)3(2)2(3)2(4).

3. (123) (124) (13)(23)(34) (1)2(2),
(123) (134) (12)(23)(24) (1)2 (3) and
(123) (234) (12)(13)(14) (1) (2)(3).

4. (12)(13)(23) (234) (12)(13)(14) = (234) (12)2(13)2(14)(23).

Since C has four smooth branches, all combinatorial deformations can be
realized, which means that the singularity has six smoothing components. In
[Kol91] six P -modifications have been constructed, so there is one for each
smoothing component.

The first combinatorial deformation is the Scott deformation.
The second combinatorial deformation corresponds to the second P -mo-

dification in [Kol91], which is constructed from the minimal resolution by
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contracting the (−4)-curve and the (−2)-curve on the right. As in the previ-

ous examples we note that f1f2f3f
3
4 ∈ J

(2)
0 and deduce that J

(2)
0 is a complete

ideal with Enriques diagram

6

3

1

0

1

 
   1

The multiplicity is e(J
(2)
0 ) = 48 = 22(9 + 1 + 1 + 1) = e(J

(2)
t ), which means

our criterion for finite generation of the symbolic power algebra is satisfied.
Compare this with the general description of the construction of a P -mo-
dification corresponding to a smoothing X(Ct, lt) in section 5.5.2, and note

that indeed all base points of J (2)/(t) = J
(2)
0 are also base points of (C, l),

and that the curves of the minimal resolution which we had to contract to
obtain the P -modification are those which correspond to base points where
the excess of J (2)/(t) is zero.

The next three P -modifications in [Kol91, example 6.3.3] are obtained
from the minimal resolution by blowing up the intersection point of the (−3)-
and the (−4)-curve and contracting a −5 −2 configuration and the (−2)-curve
on the right, if it does not intersect the contracted curves. They are normal
P -modifications which are not dominated by the minimal resolution. Obvi-
ously, these three P -modifications correspond to the next three combinatorial
deformations in our list. We see that J (k)/(t) seems to have an additional
satellite base point in these three cases.

The last combinatorial deformation must correspond to the non-normal
P -modification. The general fibre of a realization of the last combinatorial
deformation looks like this:

We see that J
(6)
0 contains the two complete ideals with Enriques diagrams

14

10

2

2

2

4 2

4

2
4

15

9

3

3

3

3 3

3

3
3
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So the integral closure of J
(6)
0 must be contained in the complete ideal with

Enriques diagram

3 3

3
14

10

2

2

4

2

3

The multiplicity of this ideal is 360, satisfying our criterion, so it must be the
integral closure of J

(6)
0 . But the degree of this complete ideal is 203, while

the degree of J
(6)
0 is equal to the degree of the fibres J

(6)
t with t 6= 0, which

is 204.
We find that the sixth symbolic power is a deformation with constant

multiplicity which is not relative complete. So as conjectured in section
5.5.2, the fact that the P -modification is not normal corresponds to the fact
that J

(6)
0 is not complete.





Appendix A

List of Taut Curves

1. A0 (smooth curve)
Equation: x.
Enriques diagram and graph of corresponding taut sandwiched singu-
larities, class (II) in [Lau73]:

_
O

2. Ak, k ≥ 1 (curve with two smooth branches)
Equation: x2 + yk+1.

(a) k odd.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (III.1) in [Lau73]:

0

−3

  O

117
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(b) k even.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (III.3) in [Lau73]:

p

0

−3

O P

3. Dk, k ≥ 4.
Equation: x2y + yk−1).

(a) k = 4.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (III.1) in [Lau73]:

0 O
_

−4

(b) k > 4 even.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (III.1) in [Lau73]:

0

−3−3

O

(c) k odd.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (III.3) in [Lau73]:
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0

−3

O

−3

4. The E6-singularity
Equation: x3 + y4.
Enriques diagram and graph of corresponding taut sandwiched singu-
larities, class (III.4) in [Lau73]:

0
O

−4

5. The E7-singularity
Equation: x(x2 + y3).
Enriques diagram and graph of corresponding taut sandwiched singu-
larities, class (III.3) in [Lau73]:

0

p

q

_

−3

−3

O

PQ

6. The E8-singularity
Equation: x3 + y5.
Enriques diagram and graph of corresponding taut sandwiched singu-
larities, class (III.4) in [Lau73]:

−3

−3

O

7. T2,p,q,
1
p

+ 1
q
< 1

2
, 3 < p ≤ q (two Ak-singularities Ap−3 and Aq−3,

transversal to each other)
Remark: The T2,3,q, q ≥ 7, are the J2,i-singularities, i > 0.
Normal form: (ax2 + yp−2)(ay2 + xq−2), a 6= 0.
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(a) p− 3 and q − 3 even.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L8, R8) in [Lau73]:

0

−3−3

O

−3

(b) p− 3k even, q − 3 odd.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L1, R8) in [Lau73]:

0

−3

O

−3−3

(c) p− 3 and q − 3 odd.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L1, R1) in [Lau73]:

0 O

−3−3 −3

8. Jk,i, k ≥ 2, i > 0 (An A2k+i−1-singularity plus a smooth branch having
contact order k)
Remark: The J2,i, i > 0 are the T2,3,6+i-singularities.
Normal form from [AGZV85]: x3 + x2yk + (a0 + · · · + ak−2y

k−2)y3k+i,
a0 6= 0. (Note that there is a printing error in [AGZV85].)

(a) i even.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L1, R1) in [Lau73]:
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0

−3−3

O

(b) i odd.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L1, R8) in [Lau73]:

0

−3 −3

O

9. Zi,p, p > 0 (Ji+1,p plus a smooth branch transversal to it)
Normal form from [AGZV85]: y

(
x3 + x2yi+1 + (b0 + · · ·+ biy

i)y3i+p+3
)
,

b0 6= 0.

(a) p even.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L1, R1) in [Lau73]:

0

−3−3−3

O

(b) p odd.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L1, R8) in [Lau73]:
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_

0 −3 −3

0

−3

10. W1,p, p > 0. (An A2-singularity tangential to an Ap+2-singularity)
Normal form from [AGZV85]: x4 + x2y3 + (b0 + b1y)y

6+p, b0 6= 0.

(a) p even.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L8, R8) in [Lau73]:

−3

0

P_2 P_1

−3

−3

(b) p odd.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L8, R1) in [Lau73]:

p_2

p_1

0

−3 −3

0

P_2 P_1

−3

11. W#
1,p, p > 0.

(a) p = 2q − 1 odd. (irreducible curve with two satellite points, the
first one proximate to zero, the second one not proximate to zero
or the first)
Normal form from [AGZV85]: (x2 +y3)2 +(a0 +a1y)xy

4+q, a0 6= 0.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L2, R8) in [Lau73]:



List of Taut Curves 123

0 _

−3−3

O

(b) p = 2q even. (Two A2-singularities having contact order q + 3)
Normal form from [AGZV85]: (x2+y3)2+(a0+a1y)x

2y3+q, a0 6= 0.
Enriques diagram and graph of corresponding taut sandwiched
singularities, class (IV, L2, R1) in [Lau73]:

0

_

−3

O

−3
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List of Pseudotaut Curves

This appendix contains all pseudotaut isolated plane curve singularities which
are not taut.

1. E6k, k > 1 (irreducible curve with exactly two satellite points, both
proximate to the same point in the (k − 1)-th neighbourhood)
Normal form from [AGZV85]: x3 + y3k+1 + (a0 + · · ·+ ak−2y

k−2)xy2k+1

Enriques diagram and graph of corresponding taut sandwiched singu-
larities:

q_2

q_1

q_0

0

Q_0

Q_1

_

 −4

O Q_2

The continued fraction of the left arm is > 3.
The continued fraction of the upper arm is 3

2
.

The continued fraction of the right arm tends to 1 from above.
Graph is included in line 18 in [Lau73, table 3.2].

2. Z6i+11, i > 0 (E6(i+1) singularity plus a transversal, smooth branch)
Normal form from [AGZV85]: x3y + y3i+5 + (b0 + · · · + biy

i)xy3i+4

Enriques diagram and graph of corresponding taut sandwiched singu-
larities:

124
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q_0

q_1

q_2

0

Q_1

Q_0

_

 −4−3

Q_2O

If r = 1, then the weight of P1 = Pr is −5.
The continued fraction of the left arm is > 3.
The continued fraction of the upper arm is 3

2
.

The continued fraction of the right arm tends to 1 from above.
Graph is included in line 18 in [Lau73, table 3.2].

3. E6k+1, k > 1 (irreducible A2k-singularity plus a smooth branch having
contact order k)
Normal form from [AGZV85]: x3 + y2k+1 + (a0 + · · ·+ ak−2y

k−2)xy3k+2

Enriques diagram and graph of corresponding taut sandwiched singu-
larities:

q_0

q_1

0 _
Q_1

−3

Q_0

 −3

The continued fraction of the left arm is > 2.
The continued fraction of the upper arm is > 2.
The continued fraction of the right arm tends to 1 from above.
Graph is included in line 21 in [Lau73, table 3.2].

4. Z6i+12, i > 0 (E6(i+1)+1 singularity plus a transversal, smooth branch)
Normal form from [AGZV85]: y(x3 + xy2i+3 + (b0 + · · ·+ biy

i)y5+3i)
Enriques diagram and graph of corresponding taut sandwiched singu-
larities:
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q_0

q_1

0 _

−3

 −3−3

O

Q_0

Q_1

If k = 1, the weight of P1 = Pk is −4.
The continued fraction of the left arm is > 2.
The continued fraction of the upper arm is > 2.
The continued fraction of the right arm tends to 1 from above.
Graph is included in line 21 in [Lau73, table 3.2].

5. E6k+2, k > 1 (irreducible curve with exactly two satellite points p and
q, p proximate to q, q in the k-th neighbourhood)
Normal form from [AGZV85]: x3 + y3k+2 + (a0 + · · ·+ ak−2y

k−2)xy2k+2

Enriques diagram and graph of corresponding taut sandwiched singu-
larities:

0

p

q

−3

−3

_PO

Q

The continued fraction of the left arm is ≥ 5
3
.

The continued fraction of the upper arm is 3.
The continued fraction of the right arm tends to 1 from above.
Graph is included in line 13 in [Lau73, table 3.2].

6. Z6i+13 oder Z6i+11, i > 0 (E6(i+1)+2 singularity plus a transversal,
smooth branch)
Normal form from [AGZV85]: x3y + y3i+6 + (b0 + · · · + biy

i)xy2i+5

Enriques diagram and graph of corresponding taut sandwiched singu-
larities:
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0

p
q

−3

−3−3

Q

PO

(If k = 1, then the weight of O = P is −4.)
The continued fraction of the left arm is ≥ 5

3
.

The continued fraction of the upper arm is 3.
The continued fraction of the right arm tends to 1 from above.
Graph is included in line 13 in [Lau73, table 3.2].

7. W12 (irreducible curve with exactly three satellite points, all proximate
to zero)
Normal form from [AGZV85]: x4 + y5 + ax2y3

Enriques diagram and graph of corresponding taut sandwiched singu-
larities:

p

 q_0

q_3
Q_0

_
Q_3

−5

  P

The continued fraction of the left arm is 4
3
.

The continued fraction of the upper arm is 5.
The continued fraction of the right arm tends to 1 from above.
Graph is included in line 7 in [Lau73, table 3.2].

8. W13. (An E6-singularity with a smooth branch tangent to it)
Normal form from [AGZV85]: x4 + xy4 + ay6.
Enriques diagram and graph of corresponding taut sandwiched singu-
larities:
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p_1

p_2

p_3

0
O

−4

−3

P_1P_3 P_2

The continued fraction of the left arm tends to 1 from above.
The continued fraction of the upper arm is 4.
The continued fraction of the right arm tends to 3

2
from above.

Graph is included in line 13 in [Lau73, table 3.2].

9. W17 (An E8-singularity with a smooth branch tangent to it.)
Normal form from [AGZV85]: x4 + xy5 + (a0 + a1y)y

7

Enriques diagram and graph of corresponding taut sandwiched singu-
larities:

0

p

−3

−4

O

P

The continued fraction of the left arm is ≥ 7
4
.

The continued fraction of the upper arm is 4.
The continued fraction of the right arm tends to 1 from above.
Graph is included in line 13 in [Lau73, table 3.2].

10. W18 (irreducible curve with exactly three satellite points, one proximate
to zero, the other two proximate to the point in the first neighbour-
hood)
Normal form from [AGZV85]: x4 + y7 + (a0 + a1y)x

2y4

Enriques diagram and graph of corresponding taut sandwiched singu-
larities:

0

p

−4

−3

O

P
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The continued fraction of the left arm is 7
5
.

The continued fraction of the upper arm is 4.
The continued fraction of the right arm tends to 1 from above.
Graph is included in line 7 in [Lau73, table 3.2].
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Mathematics. Birkhäuser, Boston, Basel, Stuttgart, 1985.

[AH00] J. Alexander and A. Hirschowitz. An asymptotic vanishing theo-
rem for generic unions of multiple points. Invent. Math., 140:303–
325, 2000.

[Art66] M. Artin. On Isolated Rational Singularities of Surfaces. Am. J.
Math., 88:129–136, 1966.

[Art70] M. Artin. Algebraic Construction of Brieskorn Resolutions. J.
Algebra, 29:88–135, 1970.

[Ben70] B. Bennett. On the Characteristic Functions of a Local Ring.
Ann. of Math., 91:25–87, 1970.

[Bin80] J. Bingener. Offenheit der Versalität in der analytischen Geome-
trie. Math. Z., 173:241–281, 1980.

[BPdV84] W. Barth, C. Peters, and A. Van de Ven. Compact Complex
Surfaces. Springer, Berlin, Heidelberg, New York, Tokyo, 1984.

131



132 Bibliography

[BR95] K. Behnke and O. Riemenschneider. Quotient Surface Singulari-
ties and Their Deformations. In D.T. Lê, K. Saito, and B. Teissier,
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[LJT74] M. Lejeune-Jalabert and B. Teissier. Normal Cones and Sheaves
of Relative Jets. Compos. Math., 28:305–331, 1974.
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