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Abstract

New path integral simulation algorithms and their
application to creep in the quantum sine-Gordon
chain

A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)
is analyzed and compared to an approach which includes the correct quantum mechanical pair
interaction (effective Propagator (EPr)). It is found that the HOA algorithm converges to the
quantum limit with increasing Trotter number P as P~%, while the EPr algorithm converges as
P~2. The convergence rate of the HOA algorithm is analyzed for various physical systems such
as a harmonic chain, a particle in a double-well potential, gaseous argon, gaseous helium and
crystalline argon. New simulation techniques for the HOA algorithm are developed: The correct
estimator for the pair correlation function is presented and it is demonstrated that the estimators
for the simulation box volume or the lattice constant do not receive higher-order corrections in
the HOA algorithm.

A new path integral algorithm, the hybrid algorithm, is developed. It combines an exact treat-
ment of the quadratic part of the Hamiltonian and the higher-order Trotter expansion techniques.
For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works
more efficiently than all other improved path integral algorithms discussed in this work.

The new simulation techniques developed in this work allow the analysis of the DQSGC and
disordered model systems in the highly quantum mechanical regime using path integral molecu-
lar dynamics (PIMD) and adiabatic centroid path integral molecular dynamics (ACPIMD). The
ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.
It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two
different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless
phase where the excitation gap vanishes. The mean square displacement of the center of mass
mode and the diffusion constant are calculated for both phases. In the gapless phase, the diffusion
constant shows an Einstein diffusion like behavior, while it vanishes exponentially with decreas-
ing temperature in the phase with a gap. The reaction of the DQSGC to an external driving force
is analyzed at 7" = 0. In the gapless phase the system creeps if a small force is applied, and in
the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning
transition in both phases and flow is induced.

The analysis of the DQSGC is extended to models with disordered substrate potentials. Three
different cases are analyzed: Disordered substrate potentials with roughness exponent H = 0,
H = 1/2, and a model with disordered bond length. For all models, the ground state phonon
dispersion relation is calculated. The system with // = 0 and the system with disordered bond
length behave qualitatively similar to the DQSGC: A phase with a gap and a gapless phase are
found. In the phase with a gap, the phonon dispersion relation has one broad branch, while in
the gapless phase the dispersion relation is similar to that of the DQSGC. Disordered systems
with roughness H = 1/2 show a more complicated behavior. For these systems, the chain is
always pinned and no mobility due to quantum fluctuations can be observed. Here, the effect
of quantum and classical fluctuations on the mobility is different. Classical systems at finite
temperature show finite mobility, while the quantum system at 7" = 0 is always pinned. For
finite wave vectors, two different phonon branches are found for the quantum system.
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Introduction

The numerical treatment of many particle quantum systems is an important issue of theoretical
condensed matter physics. Quantum effects become important when the typical thermal energy
of the physical system kg7’ is smaller or of the same order as the energy quanta of the micro-
scopic system or when exchange processes due to the indistinguishability become important. For
atomistic simulations, this is the case in low temperature physics, e.g. liquid helium or crystalline
argon, but also for simulations in organic chemistry where hydrogen atoms have to be treated by
quantum mechanics. Recently it was found that the quantum nature of heavy molecular frame
atoms substantially enhances proton tunneling and can not be neglected even at room temperature
[TMO1]. This has far-reaching implications for common modeling strategies of proton transfers
in complex systems such as biomolecules and shows that the correct quantum description of
atoms is an necessary element of computer aided molecular design and materials modeling. For
this reason it is very desirable to have efficient algorithms which allow the numerical treatment
of these systems.

Here Feynman’s formulation of statistical mechanics in terms of path integrals has turned out
to be a very powerful tool for the development of numerical methods treating quantum mechan-
ical many-body problems at finite temperature. Not only do path integrals possess mathematical
elegance, but they can be rendered into a computationally traceable form with an inherent struc-
ture perfectly suited for implementation on modern day parallel computing architectures. While
in the calculation of the canonical partition function a classical particle appears as the integral
over one coordinate, for a quantum particle a functional integral over closed paths in imaginary-
time has to be performed. In a picture with discretized imaginary-time, one can treat a quantum
system in analogy to a classical system: Each particle has to be replaced by a ring polymer
representing an imaginary-time path (see Fig. 1). In this sense the path integral expression of
the partition function for an N particle system can be mapped to a classical system of N ring
polymers. This mapping is called quantum classical isomorphism and allows to perform the in-
tegration of the discretized path integrals with path integral Monte Carlo (PIMC) methods and
with path integral molecular dynamics (PIMD) methods. Thus, it is possible to calculate numer-
ous properties of quantum systems including thermodynamic quantities, structural properties,
and quantum effective potentials with numerical methods similar to those developed for classical
statistical mechanics.

With standard path integral simulations, it is not possible to calculate real-time dynamics on
long timescales because the inverse Laplace transformation which maps imaginary-time to real-
time dynamics is numerically unstable. Recently it was found that the center of mass dynamics
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Figure 1: Illustration of the transition from a classical to a quantum mechanical description of a particle
in statistical mechanics.

of the closed imaginary-time paths moving on the potential surface given by the average over all
closed paths with fixed center of mass is related to Kubo transformed time correlation functions
[CV93, JV99]. This leads to the centroid molecular dynamics method which is explained in
detail in chapter 4. The described development leads to PIMD and PIMC algorithms which scale
algebraically with the system size. The systematic error of the results is controlled by a small
parameter, the imaginary-time step, which discretize the imaginary-time path. Statistical errors
can be estimated from the standard derivation of the averages and can be reduced systematically
with longer simulation runs. In this sense, path integral algorithms allow the efficient treatment
of quantum many body problems at finite temperature, what means that if the error has to be
reduced by a factor f, the necessary computation time scales algebraically with f.

In spite of the power of path integrals as computational approach to quantum statistical me-
chanics, several important problems remain unsolved. The required antisymmetry of the wave
function describing fermions leads to the so called “Fermi sign problem”. A further disadvan-
tage of PIMC and PIMD is the scaling of the required computing time ¢cpy with decreasing
temperature 7' at a given required accuracy: Using the so-called primitive approximation for the
discretization of imaginary-time together with the most efficient sampling algorithms that com-
pletely eliminate critical slowing down (see Ref. [TBMKO93] and Ref. [CGC98] for a thorough
discussion), it is not possible to overcome tcpy o 1/7'. The reason for that is that the length of
the imaginary-time on which a closed path can evolve is proportional to the inverse temperature
and if one wants to keep the discretization step of the imaginary-time constant, the number of
time slices which is given by the so called Trotter number P has to be increased as P o< 1/T.

Because of the wide range of possible applications for path integral simulations, it is desir-
able to have efficient path integral algorithms. These algorithms should allow the treatment of
physical systems at low temperatures in the regime where quantum effects are very strong at
a reasonable computational cost. Different improvements of the primitive algorithm have been
suggested to render path-integral simulations more efficient. The bulk of such attempts may be
subdivided into three categories:

(1) Methods that are based on higher-order approximants (HOA) of the high-temperature den-
sity matrix [TI84, LB87, KMO02].

(i1)) Methods that use effective propagators (EPr) that automatically yield the proper two-
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particle behavior [Cep95, Pol88].

(iii)) Methods that decompose the Hamiltonian into a quadratic part and a rest (QR) contribution
before applying the Trotter formula [GT86, CMTV93].

One intention of this work is the further development of more efficient path integral algorithms.
The three different approaches (i, ii, iii) are analyzed [KMO02] (chapter 1, 2) with various test
models, e.g. the HOA (i) and EPr (i1) methods are applied to a harmonic chain, because the
analysis can be done analytically in this case. The convergence rate of the different algorithms
towards the quantum limit with increasing Trotter number is analyzed. New results on the ef-
ficient calculation of the pair correlation function or the particle probability distribution within
the HOA (i) approach are found. Simulation techniques for the calculation of the volume re-
spectively lattice constant in the constant pressure ensemble (NPT) are developed for the HOA
(1) algorithm. The new techniques are applied to test models, e.g. a particle in a double well
potential and crystalline Argon.

In chapter 3, a new path integral algorithm, the so called hybrid algorithm, is developed. The
hybrid algorithm combines higher order approximants (i) and an exact treatment of the harmonic
part of the Hamiltonian (ii1). It is applied to the discrete sine-Gordon chain for which it is shown
that it converges as 1/P* and furthermore shows a much smaller systematic error than the PA,
HOA (i), EPr (ii) or QR (iii1) algorithms.

With the new developed simulation techniques, the discrete quantum sine-Gordon chain
(DQSGC), also known as Frenkel-Kontorova (FK) model [FK38, BK98] is analyzed in the highly
quantum mechanical regime. The classical version of the FK model was originally suggested by
Frenkel and Kontorova in 1938 for the description of dislocations in metals. Since then it has
been successfully applied to various different physical problems. The discrete sine-Gordon (SG)
chain or Frenkel-Kontorova model can be considered as a generic model for the motion of an elas-
tic object composed of discrete degrees of freedom through an external potential (see Fig. 2). To

LWM@WM@MM@WW@WWM
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Figure 2: Illustration of the discrete sine-Gordon chain with periodic boundary conditions.

name a few of its applications, the SG model is used for the description of driven charge-density
waves in solids, coupled Josephson junctions [FM96], the sliding motion of an adsorbed layer of
atoms over a substrate [MURO3], and most recently electronic conductance in nanotubes [LT03],
see also the reviews [AA98, Zs99] on electronic transport in one-dimensional structures. A lot
of attention has been devoted to the (discrete) classical FK model both at zero and finite temper-
atures [BK98, FM96] and the (continuum) quantum-mechanical SG model [Zs99, STF79, STF].
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However, less is known about the quantum-mechanical properties of the discrete quantum FK
(QFK) model, in particular about its dynamical properties.

In the analysis of the quantum SG model or models with disordered substrate potentials, it is
necessary to go beyond standard renormalization group (RG) theories [CGD98, GFB02, Keh99]
because otherwise the effect of creep or, alternatively, the effect of a vanishing excitation gap
at zero wave vectors might be artificially removed. It is thus desirable to have numerical tech-
niques which allow to (a) verify the results of RG studies, (b) obtain results beyond continuum
approximations allowing an accurate determination of critical values, and (c) obtain dynamical
responses of the system for arbitrary external forces. The author intends to demonstrate that adi-
abatic centroid path integral molecular dynamics (ACPIMD) [TBMK93, CM96] is a well-suited
technique to tackle the many-body dynamics of elastic manifolds moving through embedding
systems. A path integral analysis of the commensurate discrete quantum sine-Gordon chain is
given in chapter 5. Special emphasis is given to the ground state structure of the DQSGM.
The phonon dispersion relation and various correlation functions are calculated. The study is
extended to the DQSGM in the presence of an external driving force. The dynamics in the pres-
ence of an external driving force is analyzed in both, the linear response region and the region
far from equilibrium. At a critical value for the external force, a pinning-depinning transition is
found.

An advantage of the numerical techniques developed in this work is that the effort for the
calculation does not increase if the underlying potential becomes more complex. This allows to
extend the analysis of the quantum sine-Gordon chain to related disordered models, where the
sinusoidal substrate potential is replaced by a disordered potential. Different models of this type
are analyzed in chapter 6 and the dispersion relations are calculated.



Chapter 1

Discretized path integrals: The so called
primitive and the higher-order
approximation

In the first part of this chapter a short introduction of the primitive algorithm is given, starting
with the path integral expression for the partition function, and it is explained that observables
are calculated as averages of so called estimators within this framework

Because of the increasing CPU time needed as the temperature is decreased (tcpy o< 1/7"), it
is desirable to use more efficient algorithms. The so called primitive algorithm converges to the
quantum limit as 1/P? if the potential is sufficiently well behaved. One very effective method
to save CPU time and improve the convergence rate to the quantum limit is the so called higher-
order approximation (HOA). This method uses a higher-order Trotter decomposition instead of
the leading order expression used in the primitive approximation.

The HOA algorithm is derived and compared to the primitive algorithm in the second part of
this chapter. In a HOA path integral simulation, generalized estimators have to be defined even
for those observables that are diagonal in real space. In particular, an expression for the HOA
estimator of the radial distribution function is derived. This has not been given hitherto which
might explain the sparse use of the method in the literature. The new estimator is used to cal-
culate the pair correlation function of an argon crystal and the probability distribution function
of a particle in a double-well potential. Another crucial point which has not yet been discussed
in the literature concerns simulations in the constant pressure (NPT) ensemble. It is important
to note that here the volume is a classical observable and that the estimator for the volume has
no corrections in the HOA algorithm. Besides the fact that the correct higher-order corrections
for the estimators have to be used, another reason why the HOA algorithm is not as established
as the standard technique for PIMD and PIMC simulations is that the HOA approach may be-
come problematic if the interaction potentials are not well-behaved. It has been argued that the
HOA algorithm has problems if the interaction diverges ([Cep95] page 315) as, for example, the
Lennard Jones potential which has a 1/r!'? singularity at small interatomic distances 7. In such a
situation, the prefactor of the 1/P* correction term may be ill-defined, resulting in a convergence
that is less favorable than that of well-behaved potentials. Therefore the study is extended to the
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6 1.1. THE PRIMITIVE ALGORITHM (PA)

HOA convergence of expectation values for observables in realistic systems. It is shown numeri-
cally for two examples, gaseous helium and crystalline argon, that the convergence rate is 1/ P4,
even though the Lennard Jones potential diverges at small distances. It is known that for other
divergent interactions as the attractive Coulomb potential the PA and HOA the convergence rate
is different from the standard behavior because the wave function does not vanish exponentially
at the divergence. It was also argued that the commutators appearing in the correction terms can
be slow to evaluate ([Cep95] page 315). It is shown in paragraph 1.5.2 that the scaling behavior
of the HOA algorithm is the same as for the primitive algorithm in the case of pair potentials.

1.1 The primitive algorithm (PA)

Path integral simulations are based on an expression for the partition function for the quantum
system which has the form similar to that of a classical system. This reduces the problem of
calculating statistic properties of the system to the calculation of a high-dimensional integral.
In the case of Boltzmann or Bose statistics this integral can be calculated with Monte Carlo or
molecular dynamics methods. For systems including fermions the situation is more difficult be-
cause of the alternating sign stemming from the anti-symmetrization of the wave function. In
this work the expression for the partition function is integrated with molecular dynamics tech-
niques. The classical equations of motion for the ring polymers representing quantum particles
are solved numerical with a 5" order Gear predictor-corrector algorithm or a 2°¢ order velocity
Verlet algorithm. To fix the kinetic temperature a heat bath is coupled to the system which is
modeled with a Langevin thermostat. In the following, the path integral expression for the parti-
tion function (Eq. 1.4) and for the potential used in the molecular dynamics simulation (Eq. 1.8)
will be derived. For an N particle system with the Hamilton operator

1A2

H= Z e L+ V ({1} (1.1

the partition function is given by )
Z(B) =Tre P, (1.2)

The expression for the partition function can be rewritten using the Trotter expansion formula

tr exp [—ﬁ (T n V)] — tr [eXp (—%T) exp <—§f/)] i +O(1/PY) . (13)

The application of the Trotter expansion formula (1.3) to the expression for the partition function
(Eq. 1.2) and (P — 1) insertions of the unity representation in real space 1 = [ HN ' dr’|r%) (rh|

lead to Feynman’s path integral expression for the partition function

2= [11 H (zwtm) -
Xexp{‘%m > sy () V() }*(D(uzﬂ)-




CHAPTER 1. DISCRETIZED PATH INTEGRALS: THE SO CALLED PRIMITIVE AND THE
HIGHER-ORDER APPROXIMATION 7

The integral measure appearing in Eq. (1.4) can be identified as the discretized version of the
functional integration measure over /V closed paths. The continuum limit is given by

T

7 m ! d.t P—
< W) dr; — Dlr;(7)] . (1.5)

t

Il
o

Here D|[r;(7)] stands for the functional integration over all paths ; : 7 — R? with 7;(0) = 7;(7).
7 is the imaginary-time and the upper index ¢ labels the discretized imaginary-time. They are
connected according to

;o %. (1.6)

The number of discrete imaginary-time steps P is commonly called the Trotter number, and the
index ¢ which labels the imaginary-time is called the Trotter index. In the limit P — oo, the
partition function (Eq. (1.4)) can be written as the functional integral

- [Tomeien{-; [" e [miosvamen]} - an

An alternative interpretation of the discretized path integral expression for the partition function
given in Eq. (1.4) is to consider Z to be the partition function of N classical ring polymers
where the neighboring monomers interact with a harmonic potential. This allows one to map
a quantum-mechanical /N particle system onto a classical system of N ring polymers. This
mapping becomes exact as the number of monomers P of each ring polymer goes to infinity.
The potential U,,({r}) that corresponds to the classical picture on N ring polymers is given by

P-1N-1

UM ({ ZZ [2712 3/ S (e =Y V({3 (1.8)

t=0 j=

with 3 = 1/(kgT). r} represents the position of monomer ¢ in the ring polymer j, and V' is the
real (physical) potential.

1.1.1 Estimators for the primitive algorithm

In a path integral simulation, many physical quantities can be calculated from the sampled
imaginary-time paths {ré} as averages of so called estimators for the corresponding quantity.
The statistical average of an observable L is given by

(L) = —i In ( Tr e*{ﬁHHL})

N (1.9

|)\:0 ’

If the observable L is diagonal in real space [L = L({r,})], the expectation value of L can be cal-
culated as an average of the estimator for L. The estimator is a function of the coordinates {r’}.
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Inserting the path integral expression of Ir (exp [—(ﬁf] + /\L)D in Eq. (1.9) and calculating

the derivative leads to the statistical average
d
dirt x
1 (/i) ™

/T
CLPA ({)) exp{——UPA }/z+o (1/P?)

(L2 () )y + O (1/P) (1.10)

P-1N-1

t=0

.

with the estimator
P—

L ({ Z ({r;}) (L.11)

t=0
The PIMD or PIMC program is then assumed to generate distributions in a way that the prob-
ability of configuration {r’;} to occur is proportional to exp[— (3/P) Ux,({r}})]. All statistical
averages of observables diagonal in real space can be determined directly from the configurations

(LY = lim lim —ZLeSt {r (1.12)

P—oo M—oo M

where rzz is the position of the ¢’th monomer of the polymer representing particle j in the ¢’th
Monte Carlo or molecular dynamics step and M is the number of observations in the Monte
Carlo or molecular dynamics simulation [Bar79, TBMK93, Cep95]. For example, the primitive
estimator for the potential energy is given by

Vi ({r5}) = 5 2V ({5}) - (1.13)

The expectation value of the kinetic energy can be calculated easily as well. The thermodynamic
relation

(T) = —d—ln Z(B) (1.14)

dNP 1
N =S P w19

The estimator given in Eq. (1.15) is problematic if large Trotter numbers P are used because the
statistical fluctuations diverge if P is increased, as (7% 8)?) — (TPAV2 — O (P) [HBBS2]. In

est est

order to rectify this, one can derive an equivalent form of the estimator using the virial theorem
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that involves only the potential and its first derivative. This alternative estimator, known as the
virial estimator is given by

TE () = 3 S S (6~ re) TV () (116

where repys; = 1/P Zf;ol r} is known as the path’s centroid and is simply the center of the path.
A short and new derivation of the virial estimator which takes advantage of the normal mode
representation of the path integral is given in appendix B. Alternatively, Miiser showed that if
the term dN P/2(3 in Eq. (1.15) is replaced with the actual dynamic kinetic energy of the PIMD
simulation, the time dependent variance ! can be reduced [Miis02].

It is important to note that two arbitrary observables which are a function of the momentum
or space operator respectively, cannot be calculated in the same simulation. This is a reflection
of the Heisenberg uncertainty relation. For the calculation of the momentum distribution of a
particle given by P(p) = (0 (p — p)), for example, open paths have to be sampled. The momen-
tum distribution is then related to the Fourier transformed distribution of the polymer’s end point
distances [Cep95].

1.2 The higher-order Trotter approximation (HOA)

The HOA method is based on a fourth-order Trotter decomposition of the high-temperature den-
sity matrix [RR83]. The decomposition was first applied to continuous degrees of freedom by
Takahashi and Imada [TI84] as well as by Li and Broughton [LB87]. The basic idea is to use a
higher-order Trotter expansion formula instead of Eq. (1.3). The fourth-order Trotter expansion
formula

ir exp [—ﬁ (T v v)} — tr {exp (—%T) exp (—%f/)} "o (1/P%) (1.19)

with
2 N 1 ﬁ 2 A A
V=V (5 [v, [T,V” (1.20)
! The time dependent variance of the kinetic energy in a MD simulation is given by
max\ )2 1 i PA (.t 2
(AT (£3535))% = s |, ditvp (T (v (tvp)) — (1)) 1.17)
MD
with
: b PA (.t
)= Jm o /0 At TR (v (b)) - (1.18)
MD MD
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. . . . ~ p2
turned out to be very useful for numerical simulations. ? For the physical case where T = >

and V is only a function of the space operator 7', the double commutator in Eq. (1.20) is diagonal
in real space making the effective potential V' a function of only the space operator

2 2 N-1
oy il (é) ST(VLV) =V VL (1.21)

J=0

The configurations {r’} that are generated in a PIMD or PIMC simulation have to be distributed

according to the weight function exp[—(3/P)U1°*] with the classical ring polymer potential
polfN-1
HOA __ t+1 t\2 > t
Un™ =2 LZ:; gy 5 ) YV (mY))| (1.22)

1.2.1 Estimators for the higher-order approximation algorithm (HOA)

The estimators for the higher-order approximation algorithm can be derived in analogy to the
estimators in the primitive algorithm starting from Eq. (1.9). If one uses the higher-order Trotter
expansion formula from Eq. (1.19), one finds for the thermodynamic average of an operator

L ({r;})

=] PHNH = 6/P)) i
X Li?A ({rz}) eXp{ ﬁUHOA ({r } }/Z—i—(’) 1/P4)
(L () + O (/)

with the estimator

L‘,;i?‘*—é%f( ({r;}) + 112Z( >2N21W V ({r;}f Hvr;L({rj}t)]) (1.24)

7=0

(1.23)

and the ring polymer potential for the HOA algorithm (Eq. (1.22)). Eq. (1.24) allows one to find
the estimator for the potential energy to be

P—-1
VoA ({ ! Z ({r;}") +2V. ({r;})] (1.25)
t:O

According to Eq. (1.15). The HOA estimator for the kinetic energy is given by

Tt ({r5)) = Tt ({ ZV {r;}) (1.26)

%In principal it is possible to formulate Trotter decompositions like Eq. (1.19) which include higher-orders of
(8/P) than Eq. (1.19). But in these expressions the operator V' is not diagonal in real space. For this reason,
expansions applicable for path integral simulations which go further than 1/P* are not known.
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and can be rewritten with the virial theorem as

P-1[N-1

TENO ({151) = 5 5 3 |30 () = o) Wt () + Ve ()| - 120

t=0 Lj

For further details on the calculation of thermal expectation values see Refs. [TI84, LB87].

The radial distribution function and the distance estimator

In this work and in [KMO2], it is discussed for the first time that also the estimator for the radial
distribution function g(r) needs to be altered with respect to the primitive approach, for which
the estimator can be written as

P
gen ({1 Z r— |t —rl [) /0%, (1.28)

t=0

r§ denoting the position of the ¢’s monomer in ring polymer (particle) j. Applying the expression
for the estimator in the HOA algorithm (Eq. (1.24)) to g(r) leads to a shift of the estimator in the
squared distance between particle j and j’ Simply applying Eq. (1.24) to the operator for the

squared distance between particle j and j yields the following distance estimator rfjoést'
1/2
it = {0 A} (1.29)
with
ez Vr§V Vr;,V . .
Biir = 6P2 \ m;  my | (rj =) - (1.30)

Thus rfjoeAst should replace | r; — r’, | in the argument of the d-function on the right hand side of
Eq. (1.28) in order to calculate g(r ) Note that the choice of the distance estimator in Eq. (1.29)
is by no means unique, because one can add correction terms in higher-orders of (3/P)%*h?/m
without affecting the convergence rate for well-behaved potentials. An alternative expression for

Eq. (1.29) which is always real is

’I“;I]gést = |r§ — r§/| exp <ﬁ> . (1.31)
J 3’

Eq. (1.31) may prove to be important if the potential energy V' has strongly repulsive parts at

small distances. Eq. (1.29) can then result in imaginary values of r; ;.. if the distance between

two interacting particles is sufficiently small, even though the probability of the configuration

to occur is non-zero. This situation was never observed in any of the simulations, because such

small separations are extremely unlikely.
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1.3 The double-well potential

The HOA method works without difficulty if the potentials are well behaved and the second
derivative in Eq. (1.21) is always well defined. To analyze the convergence, one-particle in a
double-well potential is considered as a test model. The numerical matrix multiplication (NMM)
method is applied to solve this one particle problem.

1.3.1 The numerical matrix multiplication method (NMM)

NMM [Sto68, TBB83, PC84, ML02] exploits the semi-group property of the density matrix.
Squaring of the thermal density matrix p((3/2) at temperature 7' = kg /(2/3) results in the density
matrix p(() at T = kg /f.

p(B) = (ale |2y = / da (e OR 2|2 (o |2 (1.32)

This procedure is repeated n times so that the low-temperature density matrix p(3) is caluculated
from a high-temperature density matrix p(3/P) with P = 2". For the high-temperature density
matrix, the action is approximated either by the decomposition underlying the primitive approach
or by the highr-order decomposition. The high-temperature approximations of p(3/P) for the
primitive (PA) and higher-order (HOA) algorithm are given by

PA : (1.33)
o (oo {- () o - (31} on (- (35) ) )
HOA : (1.34)

v

eSS
N——
~»
——
D
>
ko]
——
|
7N
[N}
Sl
N——
v
&
——

A 1P = (eleso { - () o) oo { - (
with V(z) = V(z)+ iﬁ% (g)z <d1;ix)>2

Iterative squaring of the high-temperature approximation for the density matrix results in expres-
sions for the low temperature matrix

PA : (1.35)
p - (-5 (2))om-())))
HOA : (1.36)

JHOA (3) — <x (exp {— (%) ﬁ(x)} exp {— (é) T} exp {— (%) ﬁ(@})P x> .
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For the primitive algorithm, the radial distribution function and the free and potential energy are
simply given by

[ dz B (B,,2)6 (r — )

gp(r) = T de o™ (B,z.2) (1.37)
1
(Fp) = —Bln/dxpp (B, x,x) (1.38)
[ depp? (B, 2,2) V(x)
(Vp) = Tde B (Gooe) (1.39)

If higher-order corrections are used to approximate the high-temperature matrix, higher-order
corrections have to be considered in the expressions for the estimators as well. This results in

i (0 (3024 i (1100 ) )
(8,

gP(T) = fd$ pHOA ) , (1.40)
(Fp) = —%ln/dpoOA (B,z,z) | (1.41)
2 2
fdpoOA (ﬁ,x,x) (V(:C) + 11_2% (%)2 (d\gi:::)) >
W : (1.42)

[ dzx pp* (8, z, x)

Here ¢’ (r — x) stands for the derivative of the delta distribution. For the NMM method, it turned
out to be practical not to use the expression for the radial distribution function given in Eq. (1.29)
directly, but to expand Eq. (1.29) in (3/P)* h*/m. This leads to the estimator for the radial
distribution function used in Eq. (1.40).

NMM becomes increasingly more complex with increasing dimensionality of the Hilbert
space, i.e., exponentially more complex with the number of particles. As described previously in
Refs. [Sto68, TBB83, PC84], the calculations can be simplified for systems whose description
can be reduced to the case of one particle moving in a central potential. To analyze the con-
vergence with P in dimensions larger than one, it is necessary to expand the density matrix in
partial waves and use the proper modified Bessel functions for the free-particle kernel at given
angular momentum [, see Eq. (4.43) in Ref. [Cep95]. Otherwise the leading corrections cannot
vanish faster than 1/P?. Moreover, it is necessary to choose the discretization of the real space
sufficiently small as one uses larger Trotter numbers.

1.3.2 Numerical results for the quartic oscillator and the double-well po-
tential

The 1/P* convergence of the HOA method is confirmed for the one-dimensional quartic oscilla-
tor and the double-well potential in this work. The double-well potential is given by

2

V(z) = 77;;}2 («* — a2)2 : (1.43)
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Fig. 1.1 shows the convergence of the probability distribution function of a particle in a
double-well potential with increasing Trotter number. For P = 4, the contribution stemming
from the the correction of the estimator for the probability distribution function is not small com-
pared to the leading order term. This leads to the extra oscillations of the probability distribution
function calculated with the HOA algorithm. For P = 8, the HOA result for the probability
distribution function is almost exact while the primitive algorithm still shows an error of up to
10%. At P = 16, the error of the HOA approach is already smaller than the line thickness.

The convergence for the HOA algorithm is shown in Fig. 1.2 for the free and potential energy.
One may conjecture that similar behavior is found for more general ®* potentials, i.e., multi-well
potentials. Indeed, the HOA treatment of a linear rotor impurity in a three-dimensional multi-
well potential showed similar behavior as that found for our simple one-dimensional quartic
oscillator [Miis96]. In that HOA study, the Debye anomaly in the specific heat (due to tunneling
between equivalent minima in the potential energy) could be observed at much smaller Trotter
numbers than if the primitive approach had been used.

1.4 Gaseous helium

The proof for the 1/P* convergence of the HOA approach relies on the assumption that the
thermal expectation value of the commutator [T V] as well as higher-order commutators, such

as [V, [T, V]] are well-defined [TI84, Suz87, RR83]. More realistic potentials like the Lennard
Jones potential V' = 4¢[(c/r)'? — (o /r)%] may not satisfy this assumption. Hence it is important
to test how higher-order approximants perform for this class of potentials in particular in a situ-
ation where the system is far from being harmonic. The study of gaseous helium can therefore
elucidate the convergence of HOA methods because quantum effects are strong even in the dilute
gas phase as discussed recently, for example by Miiser and Luijten [ML02]. Moreover, gaseous
helium satisfies the condition of being strongly anharmonic.

In the low-density limit, noble gases are approximated rather well in terms of the second-
order virial coefficient By which can be expressed in terms of g(r)

By (B) = =27 /000 drr? [g12(r) — go(r)] . (1.44)

Here g15(r) and go(r) denote the radial distribution function in the interacting and non-interacting
case, respectively. The calculation of B; can be done in terms of numerical matrix multiplication
(NMM) method.

The analysis of the convergence rate of B; for gaseous argon (Lennard Jones potential) and
gaseous “He (Aziz potential [ACW87]) showed that the convergence of the higher-order approx-
imants remains 1/P* like. However, the crossover to the regime in which the leading correction
is in the order of 1/P* happens at values of P that are larger than those values of P where the
crossover takes place for the primitive approach. The reason why the singularity does not affect
the convergence rate at large P lies in the fact that there is no wave function in the singularity
and that its statistical weight near the singularity vanishes sufficiently fast.
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Figure 1.1: Convergence of the probability distribution function of a particle in a double-well potential
with iwB = 8v/2 and mw?a?B = 80. The calculation was done with the Fortran 77 numerical matrix
multiplication code given in appendix E.
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Figure 1.2: Relative error of the free and potential energy for the double-well potential with 7w = 8v/2
and mw?a®3 = 80. The calculation was done with the Fortran 77 numerical matrix multiplication code
given in appendix E.

Fig. 1.3 shows the relative error in the second virial coefficient of one dimensional Lennard
Jonesium at two different temperatures. The choice of the space dimension d = 1 is motivated
in part by the argument that the effect of a singularity is particularly large for small-dimensional
systems. Moreover, the numerical stability and the range of Trotter numbers that can be inves-
tigated are larger in d = 1 than in d = 3. In Fig. 1.3, results are shown for Lennard Jonesium
characterized by a de Boer parameter A = h/v/ Mo2e = 2.7, which reflects approximately ‘He.
The two thermal energies investigated in Fig. 1.3 correspond to 7' = 2 K and 7' = 16 K if we
interpret A = 2.7 Lennard Jonesium as “He. Fig. 1.3 shows that the convergence of the virial
coefficient in d = 1 is similar to that described above in the previous paragraph for d = 3. De-
spite the singularity, the HOA approach converges with 1/P* to the proper quantum limit. The
convergence starts at values of P that are slightly larger than those of the primitive approach. The
author has also analyzed the kinetic and potential energy in the dilute gas phase as a function of
Trotter number P. Both observables converge in a similar way as B5. The leading corrections
being in the order of 1/P* for HOA and of order 1/P? for PA.

1.5 Crystalline argon

It has been pointed out in section (1.2) that in order to calculate radial correlation functions and
energies, it is necessary to alter the estimators with respect to the the primitive algorithm. An
important question to address is, how well the HOA approach allows g(r) to be calculated. In



CHAPTER 1. DISCRETIZED PATH INTEGRALS: THE SO CALLED PRIMITIVE AND THE

HIGHER-ORDER APPROXIMATION 17
l 1 l l l l l l l l
100* S B ]
o+
L § - _
-2 <& X O +
10 [ 0N o ¥ . .
N N X O +
Q 10" o T
'2 B 07
10—~ + PA, T=02 -
L o HOA, T= 02 _
" x PA, T=16
10 [~ o HOA, T=1.6 ]
- — P Fit ]
10-10 | | 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 5121024
P

Figure 1.3: Relative error of the second virial coefficient B of Lennard Jonesium with de Boer param-
eter A\ = 2.7, an approximate description of *He. PA method and HOA method are compared at two
different temperatures, where the dimensionless temperatures 7' = 0.2 and 7' = 1.6 correspond to 2 K
and 16 K, respectively in the case of “He. The calculation was done with the Fortran 77 numerical matrix
multiplication code given in appendix E.

order to examine this issue the HOA method is applied to crystalline argon.

1.5.1 Constant pressure path integral simulations

The simulation of crystalline argon is performed in the constant pressure (NPT) ensemble. To
the knowledge of the author it has not yet been explained how calculations in the NPT ensemble
are performed within the HOA algorithm. In the following, it is shown why the estimator for
the volume does not receive higher-order corrections. Anderson [AAB*84] originally proposed
a method for constant pressure molecular dynamics, which involves coupling the system to an
external variable V', the volume of the simulation box. This mimics the action of a piston on a
real system. The method was extended by Parrinello and Rahman [PR80] to allow the simulation
box to change shape as well, which is done through the introduction of scaled coordinates s; and
momenta q; through

t, = hs

The columns of the transformation matrix h are the three vectors representing the sides of the
simulation box. A classical Hamilton function Hy for the box geometry is added to the Hamilton
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operator: . .
HNPT == H + HV . (146)

The Hamilton function for the transformation matrix A is given by

Hy =Ty + V, (1.47)
with the kinetic part
1 :
Ty = 5Q > b (1.48)
0,3

and the potential energy for the box geometry
Vv =pV =pdet (h) . (1.49)

Here p stands for the pressure and V' = det(h) is the volume of the simulation box. Rescaling
the coordinates and the canonical conjugated momenta with a non-orthogonal matrix is not a
symplectic transformation and the canonical commutation relations (CCR) do not remain form
invariant under such a transformation. In Cartesian coordinates, the CCR read

o o h oV
v {5 = (150

For the scaled coordinates, they transform to

@ v (&) = et

mr@S: N

(1.51)

with the metric tensor G, = (h' k). If the geometry of the box is not changed and the box is
only rotated, & is an orthogonal matrix and the metric tensor G is trivial (G = 1). It is important
to note that the matrix 5 is a classical variable. Therefore the commutators of [y with 57 and ¢
vanish:

(Hy, 87 = [Hy, @ = 0. (1.52)

The partition function is then given by

9V L A
Z = (—> /dﬁh dSSj {Sj} ‘ei’aHNPT
2mh23 o

In the last step, the commutation relation (Eq. (1.52)) was used to factorize the exponential
function. The statistical average is only performed over 6 of the 3 x 3 = 9 degrees of freedom
of the box geometry h. The three degrees of freedom corresponding to simple rotations would
contribute a factor [m/(27h23)]/? to the partition function which does not appear because the

{Sj}>
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orientation of the box is assumed to be fixed. The thermodynamic average of the volume is given
by the logarithmic derivative of the partition function.

(V) = _Ed_plnz (1.54)

— <%) 6/2/d6h]ji:[:d33j det (h) e "™V <{Sj} ‘e_ﬁﬁ‘ {Sj}> /Z

Eq. (1.54) shows that the estimator of the volume is always given by det(h). This statement is

independent of the Trotter equation that is used to calculate <{Sj} ‘e‘ﬁﬁ ’ {s;}).

1.5.2 Implementation of the effective force for a pair potential

In a PIMD simulation, an artificial dynamic has to be created in a way that in the coordinates are
distributed according to the weight function exp{—z UYIE)OA} in the simulation time average, with
UgOA given in Eq. (1.22). The effective force corresponding to the ring polymer potential Uy,
is needed as an input parameter for the integration routine. The force belonging to the harmonic
part of UgOA which connects the monomers together to form a ring polymer is simply given

by F™ — ey (20 — ritt — r!=1). Here, the index ¢ is the Trotter index and i labels the
particles. The interaction of different ring polymers with each other is determined by the effective
potential 1% given in Eq. (1.21). In the following, the Trotter index will be suppressed because all
expressions are local in imaginary-time. For many applications such as the simulation of noble

gas or Si0,, the potential can be approximated reasonably well as a sum of pair potentials

N
1
V=2 'Z'vpair (Iri;)) (1.55)
1,5;177
with V},.i; being the interaction of two particles and r;; = r; — r;. In the simulation of crystalline
argon, the pair potential is of the Lenard Jones type:

o 12 o 6
Voni () = ¢ <|1“z‘j|) _(|r,-j|) ' (130

The specific form of the pair interaction will not be important in the following. The classical

forces F{' = —V,V can be calculated in the simulation as
N-1
F'=— > (DVou) (Ir]) 15 (1.57)
J=055#1

with the operator D = (1/r)(d/dr). The effective potential which has to be used for force
calculation reads according to Eq. (1.20):

1 6 2 N-1 1

v 2 cl cl

Vvl (]—3) > (1.58)
j=0
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The effective force on particle ¢ is given by

: a, L (BN N~ (|F_FE
Fiff = Fil+ﬁh2 (1_3> Z m_]j_mi " Tij (DQ%air>(|rz‘j|)1‘ij
J=0557#1
Fs  Fd
DV.... A =L — =2 . 1.59
+ (DVpr) (Ir51) [mj o ) (19

In order to save CPU time, the functions DV,,,;; and DQVMr are tabulated up to the cut-off radius.
The calculation of the classical force scales linearly with the number of particles in the simulation
and the average number of neighbors of a particle with a distance to the particle smaller than the
cut-off radius. Please note that the classical forces have to be calculated first and stored, otherwise
the calculation of the effective force would become of quadratic order in the number of particles
and linear in the number of neighbors. They are also needed in the observation routine because
they enter the higher-order corrections of the estimators (Eq. (1.24)). The implementation of
Eq. (1.59) in a PIMD program which allows the box geometry to vary is given in appendix D.
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Figure 1.4: Snapshot of an argon crystal with 500 atoms at 7" = 2K. The HOA algorithm is used in the
simulation which reduces the systematic error to less than one percent. Each atom is represented as a ring
polymer with Trotter number P = 32. In every space direction there are five fcc cells. For the Fortran 77
source code of the HOA force routine applied, see appendix D.



22 1.5. CRYSTALLINE ARGON

1.5.3 Simulation details

The system is modeled with the same Lennard Jones potential as in Ref. [MNB95], namely
e = 120 kzK and 0 = 3.405 A. A cut-off-radius for the interaction r.y_of = 5.79 A is used.
This means that the first two neighbor shells of a particle in the argon crystal are able to interact
with the particle. The number of atoms used in the simulation cell was N = 500. The simulation
is performed in the NPT ensemble, the geometry and the size of the simulation cell are allowed
to fluctuate, and the initial state is chosen such that the average geometry is cubic. Fig. 1.4 shows
a snapshot of an argon crystal with 500 atoms at 7" = 2K. Each atom is represented as a ring
polymer with P = 32 monomers. In every space direction there are five fcc cells.

1.5.4 Simulation results

One intention of this work is to study the convergence with respect to P. Therefore, finite size
effects and the corrections due to the finite cut-off radius for the potential are not discussed.
The pair correlation function

The results for the pair correlation function ¢(r) are presented in Fig. 1.5. It is interesting to

10 \

- —— PA (P=8) T

) N e U PA (P=12)
—— quantum limit

I ---- HOA (P=12) 1

6 o ) HOA (P=8)
B0
4 |
2 n
0 3.5 4
r[A]

Figure 1.5: Next neighbor peak of the pair correlation function g(r) of crystalline argon at 7' = 2K
calculated with the PA and HOA algorithm for Trotter numbers P = 8 and P = 12. As a reference a
quasi-exact correlation function which corresponds to the quantum limit (HOA, P = 256) is included.

note that g(r) is too broad for the HOA approach, while it is too narrow using the PA algorithm.
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Obviously, the agreement of the P = 12 HOA calculation is already very close to the quantum
limit. This is a little surprising as the product of kg7 P is still far below the thermal energy
of the Debye temperature which is about 7 ~ 85 K. If the pair correlation function g(r) is
obtained without corrections, the agreement is distinctly reduced. This might explain the poor
convergence of g(r) reported by Li and Broughton for the attractive Coulomb potential [LB87].
They omitted the corrections to the g(r)-estimator leading to peaks in g(r) that were even sharper
than those obtained with PA using identical Trotter numbers.
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Figure 1.6: Imaginary-time mean square displacement [Ar(7)]? of crystalline argon at T = 2K, cal-
culated with the PA and HOA algorithms for Trotter numbers P = 8 and P = 16. As a reference, a
quasi-exact correlation function (HOA, P = 256) is included.

Imaginary-time mean square displacement

The delocalization of the argon atoms can be estimated with the imaginary-time mean square dis-
placement [Ar(7)]?. This function also contains useful information on the short-time dynamics
of the system. It is defined as

N—

[Ar(7))? = < % (r}- _ g, e_Tﬁ/n>2> . (1.60)

j=0

—_
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The estimators for [Axz(7)]? for the PA and HOA algorithm respectively are given by:

1 N 2
PA: A ({E]) (1) = 55 2o > (v ) (1.61)
j=0 t=0
HOA: I () = S 3 () + ] e
’ J NP J J J:J :
7=0 t=0
V eV
: tt+t’ 3 Vr§V o ot ettt — '@
with A = Pz < m; my (rj r; > and T—tP.

The results for [Ar(7)]* are shown in Fig. 1.6. The P = 16 HOA result approximates the exact
result with an error of about 5% while the corresponding PA calculation shows a rather large
error of about 20%. The P = 8 HOA calculation approximates the maximum of the imaginary
correlation function already better than the P = 16 PA result.

Energy

The convergence of the kinetic and potential energy is shown in Fig. 1.7. The kinetic and poten-
tial energy both cross over (individually) to the 1/P* convergence if the HOA is employed. The
cross-over to the values of P, where the leading corrections 1/P" dominate the finite P error, is
larger for HOA than for PA. Hence this behavior resembles that of the By expansion (discussed
in paragraph 1.4), despite the fact that the argon crystal is relatively harmonic, that is to say, the
harmonic approximation is stable and accounts for most of the ground state energy.

Volme

It is well-known that deviations of the (average) atomic volume (V/N) = (v) from its value
in the harmonic approximation are due to anharmonicity. Quantum fluctuations often enhance
anharmonicity. For solid argon at 7" = 2 K, the anharmonicity is dominated by quantum fluc-
tuations. Hence, the convergence of (v) with P to the quantum mechanical reference value is
an important test for the HOA method. Results are shown in Fig. 1.8 for crystalline argon at
T = 2 K. As in all other cases discussed above, HOA leads to distinctly reduced systematic
errors with respect to PA. It is possible to confirm the 1/P?* convergence for the HOA algorithm
within the statistical error bars.

Concluding all numerical results of this chapter, one finds that the HOA approach allows
to reduce the Trotter number, which leads to shorter computation times. The price for this im-
provement is that higher effort has to be put into the development of the code. This effort pays
off especially when one needs high accuracy, since one can take advantage of the better scaling
behavior of the HOA approach.
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Figure 1.7: Relative error of the kinetic and potential energy for crystalline argon at T" = 2K as a function
of Trotter number P.
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Figure 1.8: Relative error of the atomic volume for crystalline argon at 7' = 2K as a function of Trotter
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Chapter 2

Higher order Trotter approximation vs. an
effective propagator (EPr) approach

2.0.5 The EPr method

The effective propagator approach is a non-primitive path integral method which is an alternative
to the higher-order algorithm. It is based on the idea that the two-particle propagators are calcu-
lated prior to the simulation and are then reflected accurately in the simulation, e.g., are correct

in all orders of A. This is done by introducing an effective pair potential VpEaEr which is defined
as

VRS (1ymyi i 6/P) = —— In (rurafoxn {2 (7 +7) }rint) @)

o & <r1r2 exp {—% (T)} r’lr’2>

Vpgﬁr is a function that depends on ry, r}, ro, and rj. Therefore, the interaction is said to be non-

local in imaginary-time, e.g. r; does not couple directly to r/, in the primitive decomposition.
Configurations {rﬁ} have to be sampled in the simulation such that they are distributed according

to the statistical weight exp { —ZUEP"} with the potential

P-1N-1
U ({3} :ZZ <2h2 (3/P)* (17— 1)) Z Voair. (115717 375/P>> ~
t=0 j=0 3'=0:5"#j

(2.2)
The statistical averages of an observable diagonal in real space L ({r;}) are calculated with the
same estimators as in the primitive algorithm.

P-1N-1

st = [ TTTL (o) 5 228 ) 25700 i 1)

(2.3)
Compared to the primitive algorithm, only the interaction potential which determines the dynam-
ics of a PIMD program or the probability for the acceptance/rejection of a Monte Carlo move in
a PIMC simulation has to be changed. Still, due to the non-locality of the effective pair potential,

27
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the implementation is more complicated than it is for the primitive algorithm. It is necessary to
calculate VpEaﬁr prior to the simulation and store the result such that it can be evaluated quickly
during the simulation. While the classical pair potential used in the primitive approach can be
tabulated as a one dimensional table, a three-dimensional table is needed to store the effective
pair potential if the Hamiltonian is Galilei invariant. ' Alternately, fit functions for Uy, ({rg})
can be defined which reduce the three dimensional table to several one dimensional tables for
the fit coefficients [Cep95]. The calculation of both, the diagonal and the non-diagonal elements,
is not trivial for non-harmonic potentials. It can be done with the NMM method: First, the pair
density is factorized into a center of mass term that is free-particle like and a term that is a func-
tion of the relative coordinates. The factor of the density matrix which depends on the relative
coordinate can be treated like a single particle in a spherical potential. In one dimension, it can be
calculated as described in paragraph 1.3.1. For two- or three- dimensional systems, one expands
the relative pair density into partial waves. Each partial wave component is the density matrix of
a particle in one dimension with an additional centrifugal term and can be treated as described
in paragraph 1.3.1. In Ref. [Cep95] an in-depth discussion of that problem is given. For the
one-dimensional model system discussed in this work, however, the approach can be simplified
significantly, i.e. the pair density matrix can be calculated analytically. It should be noted that
the effective propagator (EPr) method is particularly useful for ill-behaved potentials such as the
attractive Coulomb potential [Pol88] because the singularity of the interaction is regularized due
to quantum fluctuations.

2.1 The reduced effective propagator (r-EPr) method

As mentioned above, the implementation of the full two-particle pair propagator with correct
diagonal and non-diagonal elements is rather expensive. On the other hand, if one restricts
oneself to the diagonal elements of the density matrix, it is possible to construct an algorithm
which can be implemented similarly to the primitive one: Only the specific shape of the classical
pair potential has to be changed to an effective potential depending on the temperature and the
particle mass. The main idea of the r-EPr is to incorporate only those corrections to the primitive
decomposition that are local or in other words the corrections on the diagonal elements of the
density matrix only. The reduced effective pair potential is given by

Via (eim el 6/P) =

pair

(VpEair (riro;riry; 5/ P) +szir (r’lr;;r’lr’z;ﬁ/P)) . 2.4)

[N

The terms in the high-temperature density matrix that involve coordinates at different Trotter
indices are neglected.

The EPr and r-EPr method are the same if P = 1. In the gas phase, the r-EPr approach allows
an almost exact treatment of the quantum effects already for P = 1. That fact was conjectured

! Due to the translational invariance of the Hamiltonian the density matrix can be factored into two scalar factors
pems (X, X’) and prei(r, r’). The center of mass part poys (X, X’) has the form of the density matrix for a free
particle. The interaction part p,1(r; r’) is a scalar and therefore invariant under rotations. For this reason it can only
depend on the three scalars r?, r’ Zandr -1,
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Figure 2.1: Illustration of coupling between atoms of the harmonic chain at discretized imaginary-time 7.
The straight horizontal lines represent springs between nearest neighbors of stiffness K, the solid vertical
lines represent springs of stiffness m/(h%(3/P)?).

in this work for gaseous Argon. For well-behaved potentials, the r-EPr method must converge to
the proper quantum limit because the leading differences between the r-EPr effective potential
and the true potential vanish with 1/P2. The calculation of observables in r-EPr approach is
similar to the EPr approach.

The r-EPr approach is similar to an idea suggested by Thirumalai et al. [THB84], who con-
structed effective interaction potentials from the diagonal elements of the high-temperature den-
sity matrix, see also a related paper by Pollock and Ceperley [PC84].

2.2 A test model for the convergence: The linear harmonic
chain

In order to analyze the convergence of PA, HOA and EPr and r-EPr method respectively, a one-
dimensional linear chain with harmonic next neighbor coupling

2
L

V= K (zj —xj41)? (2.5)

N | —
<.

I

(e

is chosen. Periodic boundary conditions, x5y = x are applied and the masses m are identical for
all atoms.

The HOA, EPr and r-EPr method invoke correction terms in the potential energy of the ring
polymers with respect to the original expression of the primitive algorithm in Eq. (1.8). All four
approaches can be represented as the limiting cases of a classical scalar field theory in a discrete
(2+1) dimensional space-time. A graphical illustration is given in Fig. 2.1. The new effective
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energy U,, that enters the Boltzmann factor reads

1
Un = 522 30| () (o) =)’
t=0 j=0 =+
+ (K + K (25 — )" + kel — 230)°
(2 — 210) | (2.6)

The expression for U,,, is diagonal in the normal mode representation with the normal coordinates
uj, given by

up = Y UgUyja 2.7)

The orthogonal normal mode transformation U is defined in appendix A. In terms of the normal
mode coordinates, U, reads

K (k,s) (u)? (2.8)

with
K (k,s) = (r+ k)dsin? (%s) + (K + K )4sin? <%k>
+ro4 [sin® (m(k/N + s/P) + sin® (w(k/N — s/P)] (2.9)
Lo (T
+ K54 sin (NQk)

and k = mP?/(3*h?). The partition function Z, for the classical system illustrated in Fig. 2.1
can be reduced to N P Gaussian integrals. Z is given by

K (ks) . (2.10)

For the four different algorithms (PA, HOA, EPr and r-EPr method), there are different functions
for K, K5, k1, and ko. The expressions for these effective coupling coefficients are summarized
in Tab. (2.1).

In the following, a derivation for the coupling coefficients and the thermal expectation value
of the potential energy (Vp) for a given Trotter number P will be given. One can expect that the
errors in different observables vanish with the same power of P, which is the reason why it is
sufficient to investigate (V) only. The prefactor of the corrections can certainly depend on the
observable. The calculations for the four approaches will be separated into four paragraphs.
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PA HOA EPr r-EPr
K | 0 (hBK)?/(3mP?) KA-C-1) KA-1)
Ky | 0 —(RBK)*/(12mP?) 0 0
K1 0 0 —KC 0
Ko 0 0 %KC 0

Table 2.1: Expressions for the effective coupling coefficients that are represented in Fig. 2.1

2.2.1 Solution for the PA method
For the primitive method U,,, is simply given by

P-1N-1

t 1 t
ZZ [hQ (B/P)? i ) +2K( G+ %‘)2 : 2.11)

t=0 j=

Comparison of Eq. (2.11) with Eq. (2.8) leads to K1 = Ky = k1 = k3 = 0. The usual
thermodynamic relationships can be applied in order to calculate the thermal expectation value
of (Vp):

V)y=—-———7—1In(%). 2.12
V)=~ g 2) @12)
This relationship simply follows the formal expression for the quantum mechanical partition
function of a linear, monoatomic harmonic chain with coupling constant K. The result for (Vp)
calculated with the primitive approximation is then given by

K= — 4sm 4sin” (mg/N) 213
Ve) 2522 KPA (%, s) (2.13)
s=0 k=0

2.2.2 Solution for the HOA method

As explained in chapter 1, the application of the higher-order Trotter decomposition (Eq. (1.19))
leads to a modification of the potential. The gradient of the potential energy V' according the
particle coordinate z; is given by

d N-1
EV = ]Z::O K (2 — 2jy41) (6550 — Oy415) = K (225 — 2500 — x5-1) (2.14)

N 116\
V= {§K () = Tj1) + 57—~ (ﬁ> K* (225 — @j41 — %‘1)2} (2.15)

TO=TN
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The dependence of V according to the particle coordinates can be expressed as squares of next
neighbor differences and next to next neighbors differences because

27—z — 1) =225 —2j0) + 2 (25 — 2j20)° = (2500 — 2501)” (2.16)

This results in the effective potential in the HOA algorithm:

N-—1 2

- 1 1 K2

V.= 3 { (K t3 (g) K2> () — wj41)°
Jj=0

(2.17)

TO=TN

The coefficients Ky, K5, k; and ks for the HOA method, given in Tab. (2.1) result from the
expression for V. With the coupling coefficients, the thermal expectation value at finite Trot-
ter number P for the potential energy can be calculated according to Eq. (2.12). The thermo-
dynamic relation given in Eq. (2.12) is also applicable for the HOA method because the only
modification with respect to the primitive approximation (PA) is that a better approximant for the
high-temperature density matrix is employed. This leads to the expression

K P—-1N-1 2h2 5 2 . T
(Vo) = 3522 {(H% (F) K)‘*S”f (¥)
212 (B\? . . T OA
3 (F) K sin? (NQQ> }/KH (k,s) (2.18)

for the thermal expectation value of the potential energy at the finite Trotter number P where
KMOA (. 5) refers to that expression for K (k, s) in Eq. (2.10) which is obtained by inserting the
HOA values for K; and K.

The same result for (Vp) could have been obtained by calculating the second moments of

the eigenmodes ((u?) ?Y from equipartition. The resulting averages ((u2) %Y could then have been

used to calculate the proper HOA potential energy estimator V' + 2V,,.

2.2.3 Solution for the EPr method

The idea of the effective propagator algorithm (EPr) is to introduce an effective potential Vpgﬁr
which produces the correct pair correlation function for an arbitrary Trotter number in the low
density limit. In this paragraph, V0" is derived for the harmonic chain. To do this, one has to
consider a dimer of two atoms coupled by a harmonic spring of stiffness /K. The density matrix
of the dimer can be written as the product of a free particle density matrix for the center-of-mass

mode X and the density matrix for a harmonic oscillator for the reduced distance x.

P($1,$2;$/17$/2;5/P) = P(%X;l’/,XI;ﬁ/P) = PCMS(X§X/;5/P) Prel(JT, ;SUI;ﬁ/P) (2.19)
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Both, the free particle density matrix and the density matrix of an oscillator with spring constant
K and mass p are known exactly. The free particle density matrix is simply

p (X, X', B/P) =, /% exp {_WJZ/P)(X — X’)2} (2.20)

(see Eq. (1.8)), while the oscillator’s density matrix is given by [Fey72]:

N

p(z,z', B/ P) = Sehsinh(2f) < (2.21)
K
exp { - gfsTh(f) {(ZEQ + 1) cosh(f) — 2z m’} } ,
with the definition
_ B, K
f=pm) (2.22)

The Gallilei transformation from the center of mass (CMS) system to the laboratory system
reads:

T = T]—Toy X = (x1 + x9) /2
¥ = 2] — 1 X' = (2} +23) /2
w o= mj2 M =2m. (2.23)

The density matrix for the dimer in the CMS system is:
pdimer(an;x/7X/;6/P) (224)
= pous(X; X5 B/P) pra(z, ;2" B/ P)

M M N2
225/ P) P {‘ww/m (X=X }

><\/ Iz f
27h?(3/P) sinh [f]

X exp {— F /
21* (8 P) sinh [f]

Next, the product of the free and the oscillator density matrix needs to be transformed back into
the laboratory frame and the effective potential needs to be expressed in a form corresponding to
Eq. (2.6). It is useful to introduce the following variables for the squared particle distances:

((2® + 2"*) cosh [f] — 2:5'3:’)} : (2.25)

A = (21— 19)° + (2] — 2b)?
¢ = (v1— 17'1)2 + (w2 — x4)”

@ = (v —ah)° + (&) — 22)?, (2.26)
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which satisfy the relations

— 2z’ = ¢ —d*
AX =X = @#+d - N
2 4+2? = A%, (2.27)

The density matrix in the laboratory frame follows from Eq. (2.24) with Eq. (2.27):

m f
2h?(5/P) \| sinh [f]

ool 347
X exp{—ﬁlK(A C) AQ}

pdimer(wla X2, xlla 'I,27 ﬂ/P) -

P2 2
1 d?

According to the definition of the pair potential given in Eq. (2.1), the effective potential Vpaﬁp
for a harmonic chain can be written in the form

1. ( paimer (1, To; ), 2; B/ P)
VEPr (g a2t 2l B/P) = ——ln( AN L + const
pr (0003 P B OIE) = G e, a3 67 P)
1 ¢ 1 A2 1 C
= ——K —K (A — + —K—d?
2 C *3 2 ( ¢ 2 2 2d
1 2 A?
with the parameters
2 / 2 f
A= —tanh (| = d =—<1-— ) 2.
7 an (2) an C f2{ sinh(f)} (2.30)

The parameters K, K5, k; and ks are introduced in Tab. (2.1). They can be calculated by
inserting the result for V)" into the expression for UE™" in Eq. (2.2) and by compaing the result
with Eq. (2.8). As explained above the estimators do not receive corrections in the EPr algorithm.

According to Eq. (2.12), the potential energy (V},) is given by:

3
2

P-1N -1

11 11
V) = 5K Z< o)) = SK - 4Sin2<%k3><(ui)2>. 2.31)

t=0 j=0 s 1

I
=)
.
Il

The expectation value of the squared normal modes can be found with the equipartition theorem
as
1

W . (2.32)

S (k) ((u)?) =
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This leads to the result for the potential energy calculated with Trotter number P by the EPr
approach which is simply

_EP ‘= 4sin? (mq/N)
(Ve) = B;Z—KEPT ) (2.33)

Here K"F* is given by Eq. (2.10) with the effective coupling coefficients for the Epr method
given in Tab. 2.1.

2.2.4 Solution for the r-EPr method

The r-EPr potential Vprafpr is related to the diagonal elements of the pair density matrix. Inserting
the result for Vplzﬁr (Eq. (2.29)) into Eq. (2.4) leads to the reduced pair potential for the harmonic
chain
A2
Vo F (1, a5 2, 2, B/ P) = —KA— (2.34)

pair

From the expression for VralrE P* the effective coupling coefficients for the reduced propagator

algorithm given in Tab. 2.1 follow. The coupling of the neighbored particles is altered [K; =
(A—1) K] while there is no coupling (K = 0) to the second neighbor, and the coupling to modes
at different imaginary-time is not changed with respect to the PA approach (k; = ko = 0). The
expression for the potential energy follows in analogy to the EPr result. It is given by

4sm 7Tq/N
(Vp) = 2 ZZ R (L 5) (2.35)

s=0 j=1

Here K PP is given by Eq. (2.10) with the effective coupling coefficients for the r-Epr method
given in Table 2.1.

2.3 Comparison of the methods

The main issue of the comparative study presented here is the analysis of the convergence of
thermal expectation values such as the potential energy (Vp) to the proper quantum limit as
a function of Trotter number P. As a test model, a linear chain consisting of N = 5 atoms
and periodic boundary conditions is considered. The sums appearing in the expressions for the
thermal average of the potential energy are performed numerically with a Mathematica program.
For the source code see appendix F. The convergence does not depend on /V in a qualitative way.
It is examined at a fixed thermal energy well below the Debye frequency of the chain, namely at
inverse temperature 3 = 64/(h\/K/m).

A linear plot of (Vp) is shown in Fig. 2.2. It can be seen that at P = 1 the EPr and the r-EPr
method start off with estimates that are very close to the quantum limit while PA and HOA start
off with an estimate near the classical value. Upon increasing P, the EPr approaches the proper
value from below, while for the r-EPr method the deviation between estimate and proper result
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Figure 2.2: Thermal expectation value of the potential energy (Vp) for a N = 5 chain as a function of
Trotter number P; 6 =64, h=K =m = 1.

first increases before it decreases again. At a Trotter number P ~ 64, the HOA method becomes
similarly good as the EPr approach.

In order to study the convergence in a more quantitative way, it is convenient to consider the
relative deviation of (Vp) from the exact value (V) as a function of P in a double logarithmic
plot (Fig. 2.3). It can be seen that at large Trotter numbers the HOA method converges with
1/P* to the quantum limit, while all other methods converge with 1/P? only. The EPr method
starts at small Trotter numbers with a much smaller error than the PA and HOA methods. The
value of P at which convergence starts is similar in all approaches. The accuracy where HOA
becomes better than EPr is 1.7%. For this particular model system, this value of 1.7% was
found to be independent of temperature. One can expect it to be similar for all systems that
are dominated by harmonic interactions. An important practical question is how P has to be
increased for the various approaches if the temperature 7' is lowered and the required relative
accuracy is constant, e.g. 1%. The results are shown in Fig. 2.4. In order to keep the relative
accuracy constant, all methods require that P increases linearly with inverse temperature 3. The
r-EPr approach, which is a little more difficult to implement than the PA method, requires slightly
reduced Trotter numbers with respect to P A. It should be emphasized that the behavior shown in
Fig. 2.4 is qualitatively similar if the accuracy criterion for P is changed, however, the stricter the
criterion the larger the gap between EPr and HOA. This trend can be seen in Fig. 2.4 right, where
0.1 % accuracy is required instead of 1 % as shown in Fig. 2.4 left. Only if one is confined to the
use of very small P, EPr might be the better choice. One may conclude that the optimal method
depends on the desired accuracy: Effective propagator methods can be used if one is restricted
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Figure 2.3: Relative error of the potential energy for a N = 5 chain as a function of Trotter number P;
=64, h=K=m=1
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Figure 2.4: Necessary Trotter number P to reach a relative accuracy of 10~2(left) and 10_3(right) in
the potential energy (Vp) at different inverse temperatures 1/7" for the linear chain consisting of N = 5
atoms. All parameters other than temperature (%, k, m) are set to unity.
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to small Trotter numbers. In this regime they have advantages over the higher-order method. It
has to be taken care that the density is low enough that two particle collisions are the dominating
kind of interaction and three and more particles are unlikely to come close together at the same
time. The HOA method is optimal if a high accuracy is needed because one can take advantage
of the better scaling behavior. In addition to that, the approximation is well controlled by a small
parameter, namely (3/P)*h?/m. No such parameter can be identified for the EPr method.



Chapter 3
The hybrid algorithm (QR-HOA)

One of the main tasks of this work is the numerical study of the discrete quantum sine-Gordon
model and generalizations of this model with disorder. The results are presented in the last two
chapters (5 and 6 ). For this purpose, a new algorithm for path integral simulations was developed
in this work. To achieve better performance than the PA, HOA, ePr and r-EPr methods, three steps
are needed:

e The Hamiltonian is split into a harmonic part which is quadratic in the operators  and p
and in a rest part (quadratic-rest decomposition QR).

e The harmonic part is treated exactly by the analytic solution.

e The remaining part is treated with HOA techniques, as explained in chapter 1.

The result is an algorithm which we call hybrid or QR-HOA algorithm. For the discrete sine-
Gordon chain, it will be shown that the application of the hybrid algorithm can reduce the com-
putation time dramatically with respect to the PA or HOA algorithm. In addition, the knowledge
of the harmonic approximation of a system automatically implies eigen coordinates and dynam-
ical masses for the PIMD simulation. These coordinates and dynamical masses suppress critical
slowing down and improve the efficiency of sampling states. In the case of the Frenkel Kontorova
model, further optimization of the dynamical masses can scale all time scales of the system to
one single time scale.

Possible further applications for the hybrid algorithm are all systems with an interaction
which can be separated into a harmonic part and a small anharmonic rest. Examples for such
systems are crystals and molecules: For crystals, the harmonic approximation is well known
and can be treated analytically. The internal vibrational degrees of freedom of a molecule can
be parameterized in terms of normal mode coordinates and treated analytically in a harmonic
approximation, while the anharmonic rest is rather small and can be treated with HOA technics.

3.1 Derivation of the hybrid algorithm

In the first part of the derivation, the partition function is rewritten as a discretized path integral
including the improvements described above. From this expression, the weight function accord-

39
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ing to which states have to be sampled and estimators for the calculation of the observables can
be found.

3.1.1 The partition function

The main idea of the hybrid algorithm is to express the partition function as a discretized path
integral which has already included the exact solution of the harmonic part of the interaction and
higher-order corrections for the rest part. The starting point is the N particle Hamiltonian

N—1 A9
H - ;%+V<{@}> G.1)
with a potential V' which can be is decomposed into a harmonic part V},,,, and a rest part V1:
N1
V{#h =) Wy +Vi({as)) - (32)
7,3'=0

W; j» is a symmetric real matrix which can be diagonalized by an orthogonal transformation A.
In terms of the new eigen coordinates g, = > | i Apjx; of the matrix W, the Hamiltonian reads:

N-1 21
no= Y (B lr) +vitad

2m 2
k=0
N—-1 .o .
= _717€’L + Vi’larm + Vi ({qu?}) . (33)
k=0

Here K, are the eigenvalues of the matrix WW. The partition function is given by

20~ [ TT dax {(Lale P+ immt ) g, ), (34)

With the higher-order Trotter formula for the trace given in Eq. (1.19), the partition function can
be written as
P-1N-1

_ By _B _ By
2(8) = / TT T ot ({ae}0le s Fiem HT+Vimm) =5t (g, 1)

t=0 k=0 (35)

cox {ge} PN em P e BT Vi) o= 351 {,10) 4+ O (1/PY)
with
- 1 /B\?
Vi = Vi‘i_ﬁ F [‘/Ia[T_'_‘/harma‘/IH
1R (3 2N-1 g 2
= vie g (5) X (54) 39
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The high temperature density matrix appearing in Eq. (3.5) can be calculated exactly using the
analytical result for the density matrix of a harmonic oscillator ! The result reads

_ By _B B
(e} eF e BT+ ) =55 | {g, } 1) —

- H 27rh2ﬁ/P sm{lk[f]
X exp {__VI ({a}' )}
e {—éNz B (Kkztanh[fk/z]) (a0)* + () a7

Jr 2

m Ir

o3/ P)E sinb[f,] % qzﬂ)z”
X exp {—EV ({qk}t“)}

with f, = h(8/P)+/Ky/m. Insertion of the high temperature density matrix (Eq. (3.7)) into
Eq. (3.5) leads to an expression for the density matrix which includes the exact solution of the
harmonic part.

P-1N-1 o 7 t
Z2(8) = /t:O Pt \/QWHQﬂ/P sinhkffk] qu) (3-8)
6 P—-1[N-1 m fk . -
exp{_]_j t=0 ; (27:‘2(5/13) 2 sinh|fy] (q o )
5K %}W(q ) ) +V({qk})]}
+0(1/P%)

The term > _,(q} — ¢:™)? in Eq. (3.8) can be diagonalized with a normal mode transforma-
tion according to the Trotter index ¢. In terms of the normal coordinates uj = Y, Uqql =

! The density matrix of a harmonic oscillator is given by

<q\e P(T+2K<1 )‘q) \/27Th27(nﬁ/P) sinljlc(f)

e {‘\/2}12(7;@) SinIJ:(f) [(q2 +4%) (cosh(f) ~ 1) + (g - qﬂ } '

For a derivation see e.g [Fey72].
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> it UStAij§, the final result for the diagonalized partition function 2 is

Z(ﬁ> - /H H (\/QWHQﬁ/PSIH{lk[fk]d S) (3'9)

s=0 k=0

xexp{——

+0O(1/PY)

P-1N-1 7, S
- /H H (\/2ﬂh26/P81nh[fk] ) (3.10)

P1N1

Z Kleﬁtlme + Kggace(kﬂ (UZ)Q + ‘71 <{Uz})] }

s=0 k=0

xexp{ Y Ak (k) (u? +v1<{uk}>”
s=0 k=0
+0(1/PY) 3.11)
P—-1N-1 fk ) ﬁ Vo
= /Hﬂno <\/27rh26/Psmh[fk]duk> eXp{ pUn O ( })}
+0(1/P") (3.12)

with the effective spring constants for the space and imaginary-time dimension

off _ - 2tanh[f;/2]
Kspace(k> - Kk fk
e - m fk . z

Kf{i(k75) = Kleﬁtlme< )+K§§ace(k)

Note that all functions with the arguments {u}} (e.g. Vi, V., \71 L and V7 + AL) are defined
through the corresponding functions with the arguments {x; }* as

Vi ({up}) = ZVI ({z;}") (3.14)

wi=a}({ui})
The effective classical potential introduced in Eq. (3.9) which is used in the path integral molec-
ular dynamics (PIMD) simulation to sample states {u; } is given by

P-1N-14

UL TN () = 3037 2 (K )+ Kifeals)] () + Vi ({u})
, !3221 N
= o Kot (ks 9) ()" + Vi ({ui}) - (3.15)
s=0 k=0

2 The decomposition of K& into two summands depending on the imaginary-time and the space only is similar
to a simple cubic solid with next neighbor interaction and a vanishing shear module. For more complex crystalline
structures, e. g. triangular latticed, this decomposition does not hold any more.
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3.1.2 Estimators

The estimators for the physical observables differ from the estimators in the primitive algorithm
(PA). They can be determined from the corresponding expressions for thermodynamic expecta-
tion values.

Energy estimators

The thermodynamic expectation value for the kinetic energy is

m d
(T) = Fgmm(Z®)
_ EN_I Ji 1
Y [tanh[m 13
P—-1N-1 m fk 8

+/ HO EO (\/2@%/13 sinh[fy) d“k) (3.16)
1 P—-1N-1 1 d 2
P ; 2 5(— K e + {df KT (k, s)} %) (uf)” + Vc({uZ})]

g s
X exp { PUr%V HOA (£ 1) Z(B)+ O (1/P4)
= (TN D) g on + O (/P
The estimator for the kinetic energy is given by

QV—HOA . 1
T % ({u Z Lanh 7 1 5 (3.17)

ZZ%( K+ | (5 f;) (u’;)2+vc<{uz}>].

The virial estimator can be derived in analogy to the derivation given in appendix B. The result
reads:

QV—HOA((vir) lﬁ ENil |: fk :| l
Test ({ k‘}) 2 6 + 4 e tanh[fk-] -1 ﬁ
1 [ d
+55 2 [%K&i (k, s)] % (up) (3.18)
s=0
+l Pfll |:Keff () s+i‘~/<0 1 )}—FV({ })
P s 2“ i—time Uy dus {u,u, ’ c (U
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The fluctuations of this estimator do not diverge with the Trotter number P.
The thermodynamic average of the potential energy can be calculated as

P—1N-1 m Ir W | ex _ﬁ QV-HOA ([, s
+/g k0 <\/27Th2ﬁ/PSIDh[fk]d k) p{ PUrp ({ k})}
gips Z g (0 [t 0] B ) )"+ Tty + 2vc<{uz}>]
<z +O 0P
- <T(f§tv HOA({uZ})>UrQVHOA+O(1/p4). (3.19)

The estimator for the potential energy is given by

-1
QV—HOA P 1
Vtot est k} - Z ZO {tanh - } E
P-1N-14 d (3:20)
S35 (e | )| ) () 4 i ) + 2w <{ui})] -
s=0 k=0

In the expressions for the estimators, the derivative of the effective spring constant appears. It is
given by

d eff d eff eff
EKtot - df (Kl time T Kspace

B m 1 — frcoth[fy] o [T
)= <ﬁ/P>2( Sinhf;] )45”1 ()

fi — sinh[f
i (fs coshQ[fk/z]) |

(3.21)

Estimators for operators diagonal in real space

The estimator for an observable L ({g,}) which is diagonal in real space is the same as that for
the higher-order (HOA) method. This can easily be seen if one considers the QR-HOA path
integral expression for a generalized partition function which has an additional source term AL
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included. It is given by

P-1N-1 m fk s
= / I111 (\/277125/13 sinh| /i duk>

exp {—F S LRI ) (i) + (4 D) <{uz}>] }
on/Py
with
(Vi + AL) ({ul}) Z Vi ({a}') + AL ({a}) (3.22)

af=ap ({u;})

The thermodynamic expectation value of the operator L is the logarithmic derivative

—%%lntrexp{ —p <I:I—|— Aﬁ)}

A=0

P—1N—1 I 5
/H kl_[(] (\/27rh2ﬁ/Psmh[fk}duk eXp{_FUY(ﬁV—HOA({“Z})} (3.23)

L ({w}*) + 5 ih—2 (%)22 (di;vl ({uk}s)) (dzs

1 -1

“P

s=0

kL({uk}S>)]

1
Xx——+ O (1/P*) ,
which proves that LSSIE‘ HOA _ = LEOA Note that this allows an expression for the potential energy

estimator which is alternative to Eq. (3.20) to be derived.

3.1.3 Limiting cases of the hybrid algorithm

Expressions for the PA, HOA and QR algorithms can be recovered from the expression for the
hybrid (QR-HOA) algorithm. If one sets f; — 0 and V; — V' the HOA algorithm is recovered.
Skipping of all higher-order terms (V; = Vi, V. = 0 and LHOA . [PA) leads to the equations
for the QR algorithm, which includes an exact treatment of the harmonic interaction but scales
like 1/P2. The limit f, — 0, Vi — V4, V. — 0 and LI9A — LPA Jeads back to the primitive

est est
algorithm (PA).
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3.2 Molecular dynamics (MD) implementation

The main task of a path integral simulation program is to sample configurations {u}} in such a
way that they are distributed according to the weight function

W = exp {— (g) U@V—HOA({U;})} : (3.24)

Then, thermodynamic averages of observables can be approximately calculated as averages of
their estimators over the sampled configurations as

<O> = Flgrg(}(OeSQUr%foOA . (3.25)
The path integral simulation exploits the fact that classical particles which interact with the po-
tential Ur%V_HOA and are coupled to a heat bath with inverse temperature /P are distributed
with the weight W given in Eq. (3.24). In a PIMD simulation, a fictional dynamics for the

coordinates uj, is used to sample configurations. This dynamic is defined by the equations of
motion

miui = —Vuz Ur%V_HOA ({UZ}) + Fihermostat

= — K& TNk s)up — Vi V ({ug}) — mivig + Flagx - (3.26)

The dynamical masses mj, that appear in the equations of motion do not enter in the averages. In
principle, they can be chosen at will. This allows one to adjust the characteristic time scales of the
system. In the PIMD simulation, the equations of motion (Eq. (3.26)) are integrated numerically.
The finite time step At of the numerical integration routine is limited by the smallest time scale
of the system %,,;;,. On the other hand, the simulation time ¢, has to be large compared to
the largest time scale of the system %,,.,, otherwise the averages over the slow modes are not
accurate. For this reason, it is desirable to choose a set of dynamical masses m}, in a way that the
1atio (fmax/tmin) is as close to unity as possible. The knowledge of the harmonic approximation
for the system suggests the choice for the dynamical masses:

1
mip = — (Kv (k) + K& (K, s)) (3.27)

0

Here, wy is the sampling frequency of the simulation and Ky is a correction to the K¢ which
reflects the influence of V on the time scales of the coordinates uj. In the optimal case, it is
possible to determine the /i so that all time scales of the system are collapsed. That means that
2T i % s (3.28)
Wo
It is important to note that if all dynamical masses are set to the same value, the time scales
belonging to short-wavelength internal modes of one ring polymer diverge as the Trotter number
P is increased. This leads to a molecular dynamics time step At which has to be reduced pro-
portional to At oc P~/2. Because the time scale of the ring polymer’s center of mass mode does
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not depend on the Trotter number, the sampling efficiency is decreased like tyin /tmax X P12,

This problem, known as critical slowing down, is completely eliminated if the dynamical masses
are chosen according to Eq. (3.28).

To get the correct distribution W, the kinetic temperature of the molecular dynamics (MD)
simulation has to be fixed to be 7' = kg P/[3. There are various ways to model the coupling of
a system to a heat bath in a molecular dynamics simulation. In this work the so called Langevin
thermostat is used. An additional friction term —mj~u; and a fluctuating random force £,
are added to the equation of motion. Their size is related to the fluctuation dissipation theorem
for the Langevin equation

(Frana(t)) =0 and (Frand(t) Frana(t)) = 2m~kgTé (t —t') . (3.29)

3 The coupling of the coordinates to the fluctuating force makes the system ergodic. This is es-
pecially important for the discrete sine-Gordon chain and related systems which have a negative
Lyapunov exponent. The friction constant v determines the time scale of the thermostat. The
relation

1 2m
tim > — > — > At (3.32)
8 Wo

must hold for the different time scales of the system. Here, At is the time step of the integration

routine. 27 /wy is the sampling frequency, 1/ the time scale of the thermostat and ¢, the
simulation time.

3.3 Parallelization of the code

The hybrid path integral MD code developed in this work is parallelized with OpenMP. OpenMP
is an open standard for the parallelization of complex algorithms on shared memory machines.
The performance is tested on a 4 processor Compaq Alpha ES40 (4 x 667 MHz) computer,
running Compaq Tru64/SC UNIX V5.1 (Rev. 732) as operating system. The Compaq Fortran
90 compiler is used. Fig. 3.1 shows that the performance on the 4-CPU-machine is 3.34 times
larger than for the serial code on running on one-CPU. This allowed the calculation of the force
velocity relations presented in chapter 5. For more than 4 CPUs the efficiency of the code goes
down. The reason is that the creation and destruction of threads leads to a time overhead that
becomes more and more relevant compared to the real computation time as the number of threads
is increased.

3 In a simulation the time has to be discretized according to the MD time step in the integration routine. For the
discrete dynamics, the delta distribution has to be replaced by a Kronecker delta
1

S(t—t)= At(st“t“ )

(3.30)

The fluctuating force F},nq can be determined from a random number & which is distributed uniformly in the interval

[0,1] as
Frana = £/ 6ymikpT /At (22 — 1) . (3.31)
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Figure 3.1: Performance scaling with the number of used processors

3.4 Application to the Frenkel Kontorova model

To demonstrate how powerful the hybrid algorithm works, it is applied to the Frenkel Kontorova
model, the discrete version of the sine-Gordon equation. The Hamilton operator reads

1 ~2

N — D3 K R N
B =3 | 2542 (5 — 3n)” = Vo cos(iy /) (3.33)
j=0 | X ~~ g R

Q

with periodic boundary conditions xy = xn + 27 /N. The Hamiltonian can be interpreted as
a harmonic chain on a sinusoidal substrate potential. The Trotter breakup is done between the
quadratic part of the Hamiltonian () and the rest R. This leads to the special choice for V, W
and K, defined in Eq. (3.2)

N-1
Vi = Vo) cos(z))
=0
‘/I/jj' = K (26j]’ — j(j’-f—l) - 5(]4‘1)]/) y (334)
Kp = 4K sin? (%k)

The harmonic interaction of neighbored particles can be diagonalized with a normal mode trans-
formation (see appendix C). A unit system which is natural for the Frenkel Kontorova model
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Figure 3.2: Convergence of the total energy of the Frenkel Kontorova model to the quantum limit calcu-
lated with different algorithms.

can be defined with V|, as the energy scale, the length scale b, the Boltzmann constant kg and
the Planck constant h. For details see appendix C. In the following, explicit units will be sup-
pressed. In order to analyze the efficiency of the hybrid algorithm, the harmonic coupling is set
to K = 2.0 and the temperature is 7" = 0.2.

3.4.1 The Trotter convergence

In the following, the Trotter convergence of four different algorithms is analyzed. In the primitive
(PA) and the higher-order approximation (HOA) algorithm, the Hamilton operator is split into
kinetic and potential energy terms. Higher-order Trotter expansions for the trace are used in the
HOA approach. In QR-PA and hybrid (QR-HOA) algorithms, the Hamilton operator is split up
into terms quadratic in the momentum and space operators and the rest as explained above. The
standard Trotter formula is used in the QR-PA algorithm, while a higher-order Trotter expression
for the trace is used for the hybrid algorithm (QR-HOA). The convergence of the total energy to
the quantum limit with increasing Trotter number P is shown in Fig. 3.2 for all algorithms. The
relative systematic error of the energy due to the finite size of the Trotter number P is shown in
Fig. 3.3. The convergence is found to be 1/P* with the HOA and QR-HOA algorithms, while
the convergence rate is only 1/P? for the PA and QR algorithms. The exact treatment of the
harmonic part of the interaction reduces the systematic error at fixed Trotter number by one
order of magnitude for the specific choice of parameters used here. The improvement achieved
by the QR technique depends on the accuracy of the harmonic approximation. For large values
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Figure 3.3: Systematic error because of a finite Trotter number

of Vj it is useful to include the harmonic part of the substrate potential in V},,,,, and choose for
the rest V; = =1 Zj.\f:gl (cos(x;/b) — 1/2(x;/b)?). The result for the energy obtained with the
QR and QR-HOA algorithm at P = 4 is already better than the PA result with P = 64. Using
the QR-HOA scheme allows the needed CPU time to be reduced for this specific model system,

depending on the required accuracy.

3.4.2 Effective sampling of states with optimized artificial masses

As mentioned above, in order to to sample the phase space of all N x P coordinates ug, it is
important to choose the dynamical masses in a way that the ratio between the smallest and the
largest time scale is as close as possible to unity. It is known that the normal mode representation
of the closed imaginary-time paths allows to collapse all the internal time scales. This is done by
the following choice of dynamical masses

V b2 + Kleff ime
o/ T d (3.35)

s _
my = m

which will be called physical choice for the dynamical masses, because the centroid variables
uy have the physical value m as dynamical mass. VT is an effective strength for the substrate
potential that has to be optimized. For the parameters used in this chapter Vi = 14 is a good
choice. In the strong quantum regime, VT has to be reduced. The different characteristic time
scales of the modes u; are shown in Fig. 3.4. The time scales of the internal modes are all col-
lapsed, and critical slowing down with increasing Trotter number is completely avoided. Still
the centroid density of states, shown in Fig. 3.5, is nonzero over a wide frequency spectrum.
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Figure 3.4: Time scales of the coordinates u;, for the discrete sine-Gordon chain for three different choices
of the dynamical masses. On the z axis the wave vector ¢ = %% is plotted. For each wave vector ¢ = %%
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Figure 3.5: Centroid density of states for the discrete sine-Gordon chain. The dotted line shows the
physical density of states, calculated with physical values for the dynamical masses belonging to the ug
coordinates (Eq. (3.35)). The dashed line shows the result of the optimization according to Eq. (3.36) and
the straight line is the result of an automatic optimization.
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Slow centroid modes are still sampled with poor efficiency because the time step is limited by
the fastest mode. This problem can be eliminated by a higher sophisticated choice of dynamical
masses, which takes advantage of the fact that the simulation is done in coordinates that diago-
nalize the quadratic part of the Hamilton operator and for which the non-diagonal elements of
the complete Hamiltonian are small. The harmonic approximation of the model suggests for the
dynamical masses:

K& (k 3.36

mk_w_% b2 + tot(as) (3.36)
as explained in the previous paragraph. The parameter VT is chosen to the classical value V;
and the typical sampling frequency is set to wy = 10. This very simple optimization reduces
the gap between the slowest and fastest time scale by a factor of 4.5 with respect to the physical
centroid masses. Fig. 3.5 shows that the typical frequencies of all modes are close to the sampling
frequency w,. For modes with long wave length (small values of ¢), the internal modes of the
ring polymers differ by a factor of less than 1.25. The centroid spectrum is sharply peaked at the
frequency wy but has still a contribution at smaller frequencies.

Further optimization of the masses, which can be done automatically with the data of a test
run or during the equilibration, allows to scale all time scales almost perfectly to the value ?TZ’ as
itis shown in Fig. 3.4. The centroid density of states given in Fig. 3.5 is sharply peaked around wy
if automatic optimization is used. The ratio between the largest and smallest time scale occurring
in the PIMD simulation can be reduced by a factor of 8 compared to the standard method which
uses the physical masses for the centroid modes. This factor can be much higher if the harmonic
coupling K is large and V,, is small.



Chapter 4

The centroid molecular dynamics (CMD)
method

Path integral molecular dynamics or path integral Monte Carlo simulations allow one to calculate
thermodynamic averages of static quantities such as structural properties or specific heat in the
limit P — oo. Though the imaginary-time correlation functions contain all dynamical informa-
tion, the inverse Laplace transformation is numerically highly instable, which makes it unfeasible
to find the real-time evolution from imaginary-time correlation functions. J. Cao and G.A. Voth
introduced a novel and very promising method for the computation of real-time quantum po-
sition and velocity correlation functions, which is called centroid molecular dynamics (CMD)
[CV93]. This method has been applied to systems such as water [LV97], proton solvated in
water [LV96, PCL*97], lithium-para hydrogen clusters [KMK97], liquid para hydrogen [Kin98]
and liquid helium [MOK99], to name only a few of its applications.

In the original CMD derivation, it was proven that the centroid trajectories allow the calcula-
tion of a well-defined approximation for Kubo transformed time correlation functions correctly
up to the the order A2. A more rigorous formulation of centroid molecular dynamics was given
by S. Jang and G.A. Voth in 1999 [JV99]. The essential step for this improved derivation was the
definition of an operator, called quasi-density operator, whose representation in a position basis
corresponds to a fixed centroid path integral. The main result of Jang and Voth was to prove that
time correlation functions of the form

((a+ B2 +75(1) BO)) @1

can be calculated exactly within CMD. The fundamental quantity in the formulation of centroid
molecular dynamics is the geometric center of the closed imaginary-time path

I
L cent [I‘} = %/0 dr .I'(T), (42)

the so called centroid variable. In the discretized picture, this is simply the center of mass of the
classical ring polymer. The centroid density can be defined as the sum over all closed paths with
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a fixed geometric center, the centroid variable x.. The centroid density is given by

o) = [ Dla] 30 = s o)) exp { 52, @3

where Sg[z] is the Euclidian-time action functional

Se [¢] = /0 " ar (5%() + Via(r) - (4.4)

The centroid molecular dynamics method is based on the classical time evolution of the centroid
variable on the potential surface defined by the centroid potential

- _l 0 pe(ze)

The centroid potential is temperature dependent, for high temperatures (3 — 0), classical dy-
namics is recovered because limg_o V.(z.) ~ V(z.). The time evolution of the centroid variable
is then defined by the Newton equation of motion

e = fil) (4.6)
with the centroid force !
d
Frelee) = =g Vel @)
h8 -
B ﬁ/pm 0 (e = Teem [2]) %/0 dT(—vv)(x(T))exp{ S;;[fc]} .

By integration of the equation of motion (Eq. (4.6)), one can obtain the centroid trajectory
(xc(t), pe(t)), from which correlation functions can be calculated as

CB (t) = (A (2c(t), pe(t)) B (c(0), pe(0))),,, - (4.8)

! Because of the special form of the functional T ey [x], the derivative of the delta distribution according to the
number . can also be written as a functional derivative according to z(7)

d )
dxC(S (xc — Tcent [1']) = 5$(T) ) (xc — Tcent ['TD hﬁ .
Note that the right hand side of this equation is independent of 7. After a partial integration and the insertion of
1= % Ohﬁ dr the, centroid force can be written as

- d%ch(xc) = pc(lxc) /D[x] 8§ (Te — Teent [7]) % /Ohﬁ dT(Sx(zT) exp { —Sh[ﬂd } '

Computation for the functional derivative yields the result for the centroid force given in Eq. (4.7).
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Here (...), signifies the average over the initial configurations (z.(0),p.(0)), which are dis-
tributed according to the phase space centroid density given in Eq. (4.16). The Kubo transformed
time correlation functions of the quantum system

1 [ R R
CKubopy — L / dr (A(t + i7)B(0)) 4.9)
h3 Jo
are connected with the centroid correlation functions. The relation
Chp°(w) = C5B'(w) (4.10)

between Kubo transformed quantum correlation functions and centroid correlation functions is
exact if the operator A has the form

~

A=a+Bi+p. @.11)

For more complicated operators A, Eq. (4.10) holds up to the order 1. Here C'(w) is the Fourier
transformed real-time correlation function

C(w) 1 / dt C(t)e ™" . (4.12)

:27T

For the Fourier transformed time correlation functions of the space and momentum operator, the
relations

Cps(w) = iwmCypy(w) and Cop(w) = —w*m?*Cpp(w) (4.13)

hold. The Fourier transformed time correlation function and the Kubo and Fourier transformed
time correlation function are connected by the simple relation

CR0 () = hwB/2 (coth [AwB/2] + 1) Cap(w) . (4.14)

4.1 Adiabatic centroid path integral molecular dynamics
(ACPIMD)

The calculation of quantum dynamics with centroid molecular dynamics described above re-
quires the motion of a variable on a quantum mechanical potential of mean force. The adiabatic
path integral molecular dynamics method (ACPIMD), capable for generating this dynamics, is
formed by the combination of an effective path integral MD method and a classical adiabatic
principal [CM96]. The implementation of ACPIMD can be done very similar to a path integral
molecular dynamics simulation which uses the normal mode representation of the ring polymers.
The modes ug are proportional to the particles’ centroid coordinates ug = \/Fxcem. One can
choose the dynamical masses in a way that an adiabatic separation of the centroid modes and the
ring polymer’s internal modes cause the slow centroid modes to move on the potential of mean
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force of the fast variables. To achieve that, the dynamic masses of the centroid modes ug have to
be small compared to the internal modes’ masses. The choice

Ky + K
m) =m ; and mi = ma’ vt Kltlme(s) , s#0 (4.15)
1%

collapses the time scales of all internal modes of the ring polymers at a time scale which is a
times faster than the one of the centroid. In a simulation a has to be determined empirically:
One has to increase a until the dynamics of the centroids becomes invariant under further growth
of the time scale gap. For the simulations in this work, a = 6 turned out to be sufficient (see
Fig. 4.1). The average over the initial conditions in Eq. (4.8) can be done in different ways.
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Figure 4.1: Time scales of the centroid and internal modes of the ring polymers. The dynamical masses
are adjusted such that the internal modes are six times faster than the centroid modes.

The straight forward method is to use a Monte Carlo algorithm to sample centroid phase space
configurations which are distributed according to the centroid density

2
p (e, pe) X pe(ze) exp (—me> : (4.16)

A more indirect method is used in this work: The centroid variables are coupled to a Langevin
thermostat. Because the thermostat may not disturb the observed dynamics, the thermostat’s
time scales must be large compared to the decay time of the correlation functions. It must be
checked that the centroid correlation functions converge as the time scale 1/ of the thermostat
is increased. This is shown explicitly for the square displacement and the force velocity relation
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calculated in chapter 5. (see Fig. 5.11 right and Fig 5.15 ). The equations of motion for the
centroid variables coupled to a Langevin thermostat are

mi. = F, (x.) — myi, — FX (1), 4.17)

rand

with the delta correlated fluctuating force

(FZe ()F (t")) = 2dm~ykgTo(t — t') . (4.18)

rand rand

In terms of the normal modes ©° = v/ Px., with the centroid force on the normal mode coordi-
nates F,_ (u.) = v PF,_(z.), these equations read

mil. = Fy, (uc) — myt. — Fie 4 (t) (4.19)
and
(Faea(t) Flae a(t) = 2dmykp(TP)o(t — ') . (4.20)

Equation (4.20) shows that the modes u” have to be coupled to a heat bath with the temperature
TP.

4.2 Static and dynamic properties

In principle, is is possible to calculate static and dynamic properties of a system within the same
simulation run. As discussed above, for the calculation of dynamic properties, the dynamical
masses have to be chosen according to Eq. (4.15) which makes the calculation of static properties
inefficient. Expecially, if one is interested in a high precision measurement of static properties, it
is wise to perform different simulation runs for the calculation of static and dynamic properties
which use the optimal choice of dynamical masses.

4.3 Non-primitive centroid molecular dynamics methods

The most CPU time consuming task of a CMD simulation is the calculation of the restricted
path integral for the effective force given in equation (4.7). For this task all improved algorithms
described above can be applied. If HOA techniques are applied, the correct estimator for the
centroid force has to be used.
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4.3. NON-PRIMITIVE CENTROID MOLECULAR DYNAMICS METHODS




Chapter 5

The discrete quantum sine-Gordon chain
(DQSGCO)

The discrete sine-Gordon (SG) chain, also known as Frenkel-Kontorova (FK) model [FK38,
BK98], is a generic model for the motion of an elastic object composed of discrete degrees of
freedom through an external potential. It is given by a discrete, elastic chain which is commen-
surate with the underlying potential or substrate. The Hamiltonian H reads

J

—1 ~9D
R D5 1 . . .
H 3 (ﬁ + 5K (& = #j41)°* = Vocos(xj/b)) : (5.1)

where p; and 2; are the momentum and position of particle j, K is the stiffness of the spring
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Figure 5.1: Illustration of the Hamiltonian (Eq.5.1) for the discrete sine-Gordon chain

connecting two neighbored particles, Vj is the coupling strength to the embedding system, and
27b is the substrate’s lattice constant. The periodic boundary condition z;,n = x; + 27bN
makes the chain commensurate with the substrate. The system of units is defined by Vj, b, h, and
Boltzmann’s constant k. The units for the quantities considered are given in appendix C. In the
following, the units will not be given explicitly. Unless otherwise noted, the mass m is varied,
and the harmonic intra-chain coupling K = 0.1 is left constant. This value of /K is much smaller
than the maximum curvature of the potential max(9>V (x)) = 1 which challenges the validity of
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continuum approximations that assume slow variations of the reduced positions x; — 27jb with
index j.

To name a few of its applications, the SG model is used for the description of driven charge-
density waves (CDW) in solids, coupled Josephson junctions [FM96], the sliding motion of an
adsorbed layer of atoms over a substrate [MURO3], and most recently electronic conductance
in nanotubes [LTO03]; see also the reviews [AA98, SCP00, Zs99] on electronic transport in one-
dimensional structures.

A lot of attention has been devoted to the classical FK model both at zero and finite tem-
peratures [BK98, FM96, HMR90] and the continuum quantum-mechanical SG model [Zs99,
STF79, STF]. However, less is known about the quantum-mechanical properties of the discrete
quantum FK (QFK) variant which concerns in particular its dynamical properties. Numerical
approaches have lead to a clear picture how quantum fluctuations renormalize the thermal equi-
librium structure, but results are often limited to zero (or small) external fields [HL99, TLHO02] or
to variational approaches [HCO1]. While quantum Monte Carlo (QMC) simulations yield quasi-
exact results for static properties, they only allow the indirect calculation of small-frequency
dynamical properties. Conclusions on the existence of a phonon gap are drawn by studying the
temperature dependence of the internal energy [BGS89, BB94]. In some cases, more dynamical
information can be withdrawn from QMC if the functional form of the low-energy spectrum is
known [AGO2].

Itis well established for the continuous SG model that the effects due to thermal and those due
to quantum fluctuations differ qualitatively. Thermal fluctuations automatically lead to a creep
motion if an external force is applied, while quantum fluctuations do not. At finite temperature,
kink/anti-kink pairs will be activated and a small external force will eventually be able to drive
the pairs apart, resulting in net mass transport. In order for the 1-d quantum sine-Gordon model to
creep, it is not sufficient to have arbitrarily small quantum fluctuations, but the effective masses
m (defined as density times period of substrate potential) must be less than a certain critical
value m,. (at fixed momentum cut-off and fixed substrate strength) [STF79, STF]. For m > m,,
thermal fluctuations and/or finite external forces are required to initiate mass transport. Recent
renormalization group (RG) studies [GFB02] suggest that m,. is also finite in higher dimensions
if the elastic manifold is pinned through an external random potential.

In many of the above mentioned cases, including the quantum SG model, it is necessary
to go beyond standard RG theories [CGD98, GFB02, Keh99] because otherwise the effect of
creep or alternatively the effect of a vanishing excitation gap at zero wave vectors might be
artificially removed. It is thus desirable to have numerical techniques which allow one to (i)
verify the results of RG studies, (i1) obtain results beyond continuum approximations allowing
an accurate determination of critical values such as m, for discrete systems, and (iii) obtain
dynamical responses of the system for arbitrary external forces. In this chapter, it is shown that
adiabatic centroid path integral molecular dynamics (ACPIMD) [TBMK93, CM96], is a well-
suited technique to tackle the many-body, non-equilibrium/far-from-equilibrium dynamics of
elastic manifolds moving through embedding systems. The study includes the exact calculation
of the phonon dispersion relation for 7" = 0 and an analysis of the dynamics at the presence of
an external field in both, the linear response regime and the regime far from equilibrium.
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5.1 The dispersion relation for the discrete sine-Gordon chain

The phonon dispersion relation of the discrete sine-Gordon chain is a quantity of particular in-
terest. To the authors knowledge, it has not yet been calculated exactly. For the calculation, the
ACPIMD method is used, which is a special variant of the centroid dynamics method explained
in detail in chapter 4. Classically, the zero-temperature dispersion relation of the chain is simply
given by

Wi (q) = % [Ko + 4K sin®*(qb/2)] (5.2)

where ¢ denotes the phonon’s wave number and Ky = 1. Eq. (5.2) can be found by a simple
harmonic approximation of the sin potential around the minima. The quantum dispersion relation
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Figure 5.2: Steps in the calculation of the dispersion relation. Left: time dependence of the centroid ve-
locity v.. Middle: centroid velocity autocorrelation function. Right: Fourier transformed autocorrelation
function. The data correspond to the zero wave vector mode for a system with m = 0.1 (black curves)
and m = 0.02 (red curves). The system size is N = 128 and the temperature is set to 7' = 0.032. At this
temperature the system is dominated by the ground state wave function (compare Fig. 5.3)

can be found from the centroid velocity autocorrelation function. Fig. 5.2 illustrates the three
steps in the calculation. First the centroid trajectory is observed during the simulation. From the
data v.(t), the centroid velocity autocorrelation function (v.(t)v.(0)) is calculated. This is done
for every normal mode separately. The Fourier transformed correlation functions are defined as:

_2mky 1 it (Ve (£) e (0))
va (w,q = m) = % /dte T . (53)

Here k is the index that labels the normal modes u{ and their velocities v*, and ¢ = 2k /Nb is the
corresponding phonon wave vector. The correlation function C,,(w, ¢) has the shape of a Lorenz
profile for w values larger or of the order of the value at which C,,(w, ¢) has it’'s maximum
Wmax (q). For w < wnax(q) the correlation functions C,(w, q¢) decay exponentially with the
exception of the zero wave vector mode in the gapless phase. The frequency wyax(¢) at which the
correlation function C, (w, ¢) becomes maximal is shown in the dispersion relations for different
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Figure 5.3: Left: Phonon excitation gap at ¢ = 0 as a function of the particle mass m. The arrow indicates
the value of the critical mass in the continuum limit. Right: Centroid dispersion relations calculated with
ACPIMD for two systems with mass m = 0.1 and m = 0.02. The classical zero-temperature disper-
sion relation is shown for comparison. Variation of the particle number N and the inverse temperature
B (with sufficiently small but fixed (3/P)) allows one to conclude that the curves above represent the

thermodynamic and zero-temperature limit.
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masses (see Fig. 5.3 right). The right-hand side of Fig. 5.3 shows the phonon dispersion relation
for two different masses. The classical zero-temperature dispersion relation which corresponds
to the m — oo limit of the quantum dispersion relation is plotted for comparison.

The dispersion relation does not change when particle number N and inverse temperature
B (sufficiently small but fixed 3/ P) are increased. This allows one to conclude that the disper-
sion relations given in Fig. 5.3 represent the thermodynamic and zero-temperature limit within
error bars smaller than the used symbols. The quantum dispersion relations can be fitted with a
function similar to the classical result:

W (q) = % [f(o + 4K sin?(gb/2)| . (5.4)

Each curve requires only one fit parameter, namely the value for K. The left-hand side of
Fig. 5.3 shows the phonon excitation gap at zero wave vector. The gap size is determined from
the fit parameter Koy in Eq. (5.4) which is fitted to the data for the dispersion relation. Early calcu-
lations [TT85, MT79] suggested that the classical zero-temperature value for K is renormalized
to a reduced effective coupling K due to to zero-point quantum fluctuations and/or thermal fluc-
tuations. The phonon excitation gap apparently becomes zero at a value m. ~ 0.02, as shown in
the left-hand side of Fig. 5.3. This in turn implies that sliding can be induced at arbitrarily small
external driving forces for m < 0.02. As will be shown later, the system creeps in the zero-gap
regime when subjected to a small external driving force. The discreteness of the chain alters the
value of the mass m, at which the transition from finite gap (no creep) to zero gap (creep) takes
place. The continuum model predicts this transition to occur at m,. = 0.016 [Col75]. This is in
close agreement with the value of m, = 0.02 obtained for the discrete model in this work, which
is valid for the choice of K = 0.1. The discrepancy between continuum and discrete model will
decrease further as the spring stiffness within the chain increases as compared to the maximum
curvature K = 1 of the embedding potential.

5.2 Centroid and imaginary-time dynamics

Standard path integral simulations make it possible to calculate the imaginary-time evolution
along closed paths in imaginary-time. It is almost impossible to determine real-time evolution
properties from the imaginary-time correlation function because the inverse Laplace transforma-
tion which maps imaginary-time correlation functions to the real-time correlation functions is
numerical highly unstable [Cep95]. This is a reflection of the sign problem which appears in the
numerical treatment of the real-time evolution operator U (t) = e~"#/" while the imaginary-time
evolution operator eH/M s numerically unproblematic. To check the results obtained from cen-
troid dynamics for the real-time correlation functions, one can calculate imaginary-time proper-
ties from the real-time properties obtained with ACPIMD and compare them with the imaginary-
time evolution obtained in a PIMD simulation. As a test quantity for the results obtained with
centroid dynamics, the imaginary-time mean square displacement [Axz(7)]? is considered. It is
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given by

o (e—ﬁH (x B e_fﬁ/ﬁj;em/ﬁf)

tre—0H

[Az(r)]* = ((#(0) — &(7))*) = (5.5)

Fig. 5.4 shows the imaginary-time mean square displacement calculated with a PIMD simulation

20

— centroid dispersion relation
O PIMD simulation

0 1/1.024 2/1.024 3/1.024 471.024
T

Figure 5.4: Mean square displacements in imaginary-time calculated with a PIMD simulation
and from the dispersion relation obtained with a ACPIMD. The particle masses are set to m =
0.02, 0.04, 0.06, 0.1 (from above)

and from the dispersion relation obtained with ACPIMD. This confirms that ACPIMD allows one
to calculate real-time quantum dynamics for the quantum sine-Gordon chain. The imaginary-
time mean square displacement is calculated from the centroid dispersion relation as follows:
One considers a harmonic chain with each particle trapped in a harmonic oscillator:

N-1 ﬁQ 1 1 ~
0 = (—j + 5K (&) = &) + 5 Ko (35— 2ij)2)
0
1

, 2m 2
J:
N— A2
1 .
= (5—;2 + §mwﬁqi) + const (5.6)
k=0

with the dispersion relation

W2 = % (f(o 4 4K sin? <%k)) . (5.7)
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Here ¢, and pj are the space and the momentum operators of the normal modes defined in
appendix A. The effective strength of the external oscillator Ky is given by the fit parameter for
the centroid dispersion relations. For a simple harmonic oscillator the imaginary-time correlation
function is given by !

(AP = 2 (oot (o) - SO/ O2Y

sinh [hw(3/2] (5-10)

The imaginary-time correlation function for the harmonic chain [Az}am (7)) is the sum over all
normal modes correlation functions [Ax,, (7)]?

=

Atan(7)]? = 1 3 (A (1) 6.1

i

with the frequencies wy, given by the dispersion relation Eq. (5.7).

5.3 Correlation functions

The phase transition from the phase with a gap to the gapless phase can also be characterized in
terms of the imaginary-time correlation function given by

G(An, A1) = {xj1an(T + AT) — 2;(1) — 27bANR}?) . (5.12)

For m > m,, G(An, A7) remains finite in the limits An — oo and AT — oo (see. Fig. 5.5).
G(An, A7) increases logarithmically with A7 and An for m < m.. An accurate determination
of the critical mass m, would yet remain much more difficult in terms of an imaginary-time
analysis as compared to the one based on centroid dynamics.

5.4 Particle delocalization and tunneling

In the previous paragraphs, it was shown that the ground state of the quantum sine-Gordon chain
undergoes a phase transition from a phase with a gap to a gapless phase as the mass is decreased

! The imaginary-time correlation function of an harmonic oscillator can be calculated as

—BH 5 rH/h s, ~TH/R - R En o7 B | (|50 |2
Tr (e~ PHgemH/hpe—TH/R) > € BT W EeTEw (] [n/)|

(@O)2(n) = Tre—BH B >, e PEn
ho Y ne Phen h  cosh [hw (7/h — (3/2)]
= n —06/2)] = .
2mw Y, e Phw(nt1/2) cosh [fuw (r/h = 5/2)] 2mw sinh [hw3/2] (58)
with matrix elements of the space operator given by
ot h
(n|2n) = y/ —— (5,17 WAV 4 G sV 1) . (5.9)
2mw

From (2(0)#(7)), the imaginary-time mean square displacement of a harmonic oscillator [Ax,,(7)]? follows.
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Figure 5.5: Imaginary-time correlation function. Calculated with 7" = 0.016 and N = 128.

below a critical value m.. The different structures of the two ground states in the two phases
were characterized in terms of the phonon dispersion relation (Fig. 5.3) and the imaginary-time
correlation function G(An, A1) (Fig. 5.6). For a more physical understanding of the processes
that lead to this behavior, the gyration radius of the imaginary-time path and the imaginary-
time minima correlation function are analyzed in this paragraph. It will be shown that tunnel-
ing in imaginary-time is the process that drives the phase transition and that the importance of
imaginary-time tunneling with decreasing temperature is qualitatively different in the two phases.

The gyration radius 1R, can be considered as a measure for the delocalization of a particle. It

is defined as
tr <€_5H (i — e‘ﬁﬁ/%eﬂﬁmy)

— (5.13)

Ry(T) = [Az(h3/2)]* = ((x(0) — x(hB/2))*) =

with § = 1/(kgT'). The temperature dependence of the gyration radius R, is shown in Fig. 5.6
for particle masses m = 0.02,0.04,0.06 and 0.1. In addition, the corresponding gyration radii for
ensembles of harmonic oscillators with the frequencies given by the centroid spectra (Fig. 5.3) are
shown. The gyration radii for the ensemble of harmonic oscillators can be calculated as explained
in paragraph (5.2) if one takes into account that R,(T") = [Az(h3/2)]*. The agreement between
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Figure 5.6: Temperature dependence of the gyration radius. The symbols are the results from a PIMD
simulation and the lines correspond to harmonic ensembles given by the centroid dispersion relations.

gyration radii calculated from the centroid dispersion relations and the results stemming from
the PIMD simulation is very good in the weak quantum region at masses m > 0.06 and in the
unpinned phase for m < m. = 0.02. In the region close above the critical mass, the consistence
of ACPIMD and PIMD results is less accurate but still good. One reason for this might be that in
this region one has to use very large system sizes to approximate the thermodynamic limit well
because the energy barriers stemming from the small but finite excitation gap at zero phonon
wave vector become very small. In the phase with the gap where K, > 0, the gyration radius R,
levels at a finite value as the temperature is decreased, while in the gapless phase with Ky = Othe
gyration radius diverges logarithmically with 5 = 1/kgT". This means that in the gapless phase
the delocalization of a particle becomes increasingly important with decreasing temperature,
while a particle’s delocalization remains finite in the phase with the gap as the temperature goes
to zero.

Another quantity which can characterize the structure of the different discrete quantum sine-
Gordon chain’s ground states can be found if one observes the importance of the tunneling pro-
cess in imaginary-time. Fig. 5.7 shows typical imaginary-time trajectories at different masses.
One for m = 0.02 in the gapless region and the other for m = 0.1 in the phase with a gap.
While the particles are mainly located at one minimum in the phase with the gap, particles are
delocalized over various minima in the gapless phase.

For a more qualitative understanding of the importance of the tunneling process, the imaginary-

time minima correlation function (s(0)s(7)) is considered. Here the function s(x) can be either
1 or (—1) and it changes its sign between neighbored minima as illustrated in Fig. 5.8. The be-
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Figure 5.8: Illustration of the alternating sign function s(X) which has opposite signs for neighbored
minima.

havior of the correlation function (s(0)s(7)) is a measure for the importance of tunneling along
the imaginary-time axis. For 7 = (, the minima correlation function is always unity by construc-
tion. If tunneling never occurs, (s(0)s(7)) would remain constantly 1 along the imaginary-time
axis. Fig. 5.9 shows the imaginary-time minima correlation functions for different temperatures
and particle masses m = 0.1 and 0.02. The system size is chosen such that finite size effects are
smaller then the line thickness. For the higher temperatures a system size of N = 64 particles
turned out to be sufficient while below 7" = 0.032 N = 128 was used. As shown in Fig. 5.10,
(s(0)s(7)) decays exponentially to finite value in the phase with the gap (m = 0.1). The minima
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Figure 5.9: The imaginary-time minima correlation function in the phase with and without gap. In the
phase with a gap (m = 0.1) the correlation function levels to a finite value as the temperature is decreased,
while in the gapless phase the correlation function decays to zero.
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Figure 5.10: Left: algebraic fit of the minima correlation function for m = 0.02 with xk = 0.085 according
to Eq. (5.15). Right: exponential fit of the minima correlation function for m = 0.1 with p = 2.0
according to Eq. (5.14). The dotted line indicates the size of the statistical noise.
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correlation function can be fitted well with the functional form:

(5(0)s(7)) oc C + {eXp (_—T) +exp (ﬂ)} . (5.14)

To To

Because of the finite constant term C one can conclude that each particle is located mainly in
one minimum of the substrate potential. In contrast to that, (s(0)s(7)) decreases algebraically in
the gapless phase with the power law:

(5(0)s(7)) o [(%) . (1 - hiﬁ) _H] . (5.15)

Within the accuracy of the simulation there was no evidence of a finite offset in Eq. (5.15) to
which (s(0)s(7)) converges as 7 — oo and 5 = 27/h. The different behavior of the correla-
tion function in the two phases is in accordance with the predictions for the continuum model
[GNTI8].

5.5 The mean square displacement

Because of the ground state’s different characters in the phases with and without gap, one can
expect that the mean square displacement of the center of mass mode ((Aug)?) behaves qual-
itatively different in the low temperature limit for the two phases. Of special interest is the
temperature dependence of the center of mass mode’s diffusion constant as the temperature 7'
goes to zero. The central mode is defined as

=1/ % > . (5.16)

The central mode’s mean square displacement remains finite in the thermodynamic limit, while
the mean square displacement of the center of mass Xcys = +/1/Nuy is zero for N — oo.

The mean square displacements of the central mode for different temperatures are shown
in Fig. 5.11 for the mass m = 0.02 and in Fig. 5.12 for m = 0.1. Variation of the number
of particles NV confirmed that finite size effects are much smaller than the statistical errors for
systems with NV = 32 or more particles. As explained in chapter 4, a thermostat is coupled to
the centroid modes to average over the centroid equations’ starting conditions according to the
centroid density (Eq. (4.16)). It was confirmed that the calculated mean square displacements
do not depend on the thermostat’s time scales: reduction of the time scales for the thermostat
coupled to the internal and/or the central mode’s time scale (Vint/voms) leaves the results for
the square displacement invariant (Fig. 5.11 right). This confirms that the time scales belonging
to the centroids’ thermostats are large compared to the characteristic time scales of the system
which are observed. The simulation time is chosen to be 20 times larger than the maximal time
plotted in Fig. 5.11 and 5.12, such that the average over the equation of motions’ initial conditions
is sufficiently accurate. Each curve is an average over eight independent simulation runs.
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Figure 5.11: Left: Centroid square displacement of the central mode in the gapless phase (m = 0.02).
The trivial temperature dependence is factored out. Right: Mean square displacement for N=32 and T =
0.256. The centroid thermostat’s time scales are varied.

The gapless phase

In Fig. 5.11 the results for the mean square displacement for m = 0.02 are shown. This is the
value for m where the phonon excitation gap closes. The curves are normalized in a way that the
trivial temperature and mass dependence is factored out and all curves are equal in the ballistic
regime where ((Aug)?)) = kgTt*/m. In this normalization, the mean square displacements
for all temperatures are scaled on one curve. To get a better understanding of mean square dis-
placement’s low temperature behavior the diffusion constant is considered, which can be defined
through Einstein’s relation:
2
D = lim M : (5.17)

t—o0 2t

In the gapless phase, the diffusion constant D shows an Einstein diffusion behavior and the
temperature dependence of the diffusion constant is of the form

kgT

B fcreep

in the low temperature regime. The numerical value for the effective friction constant defined in
Eq. (5.18) is fereep = 0.0025 £ 0.0005 for m = 0.02. This value for fe,eep 1S in agreement with
the results for the driven sine-Gordon chain presented in the following paragraph.

Dgapless (T)

(5.18)

The phase with the gap

In the phase with a gap, the low temperature dependence of the diffusion constant differs from
the Einstein diffusion behavior found for the gapless case. The results for the mean square
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Figure 5.12: Left: Mean square displacement of the central mode in the phase with a gap (m = 0.1)
Right: Arrhenius plot of the diffusion constant; the diffusion constant is determined from the mean square
displacement (circles) and the linear response to a small external force (diamonds).

displacement for various temperatures are shown on the left hand side of Fig. 5.12. The particle
mass is set to m = 0.1. At this m value, the phonon dispersion relation has a finite excitation
gap. For the larger temperatures, the central mode’s mean square displacement shows a simple
crossover from the ballistic regime to the diffusive regime. As the temperature is decreased, a
plateau develops between the ballistic and diffusive regimes. The size of the plateau increases
as the temperature is decreased further. For 7" < (.128, no finite diffusion can be measured
during the simulation time. For very small temperatures, the mean square displacement shows
a behavior similar to that of a harmonic oscillator. On the right hand side of Fig. 5.12, the
temperature dependence of the diffusion constant is shown in an Arrhenius plot. The results for
the diffusion constant Dy,,(7") fulfill the Arrhenius law:

Dygap(T') o exp (—%) . (5.19)
The energy E is a barrier that has to be crossed by thermal activation if the central mode moves.
Mass transport is induced by kink motion. The barrier £ can be interpreted as the sum of the
energy that is necessary to create a kink/anti-kink pair, the smallest energy barrier a kink has to
overcome to move through the system which is called Peierls-Nabarro barrier and higher order
multi-kink interactions. Thermal activated barrier crossing leads to the Arrhenius law behavior
given in Eq. (5.19). For m = 0.1 the numerical value for the energy barrieris £/ = 1.5 + 0.2.
The diffusion constant can also be determined from the linear response of the system through
a fluctuation dissipation theorem. This is done in the following paragraph (Fig. 5.17). The
results are shown in the Arrhenius plot given in Fig. 5.12. They are in very good agreement with
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the results for the diffusion constant obtained from the mean square displacement of the central
mode.

5.6 The driven discrete sine-Gordon chain

One of the main differences of the phases with and without gap is their response to a small
external force F' at T' = 0. This is of particular interest for the description of transport phenom-
ena. Here the velocity vs. applied force characteristics can be directly related to the transport
of magnetic domain walls, vortex systems and charge density waves. The reaction of a discrete
sine-Gordon chain on an external driving force is the subject of this paragraph. The analysis
focuses on the ground state properties which can be determined by the extrapolation from finite
T to zero T'. Special emphasis is given to the fluctuation dissipation relation between the results
obtained from the mean square displacement in the last paragraph and the linear response of the
system to a small force.

To study the response to an externally applied field, a homogeneous force F'is applied to each
particle by adding a term —F' Ej.vz_ol Z; to H. The thermostats coupled to the centroid variables
are needed to dissipate the energy added to the system by the external driving force F'. The
Hamiltonian which is considered has the form

N-1 ~9
; 1
H = (p—J + —K<.1A/’j - .fj+1)2 - ‘/0 COS(QATj/b) - F.i']) + Hbath (520)
j=0

where the bath is modeled as a Langevin equation with a classical fluctuating force and a friction
term as discussed in chapter 4. It will be shown that the particular choice of the time constants
belonging to the centroid thermostat does not affect the results in the creep regime if the time
scales are sufficiently large.

The classical case

Before one studies the quantum mechanical case, it is instructive to look at the classical system.
Chauve et al. analyzed interfaces of a harmonic manifold on a disordered substrate potential with
a functional renormalization group approach [CGD98]. They found that the interface remains
pinned until a critical force F., is reached at zero temperature. As the external force reaches the
depinning threshold, the system undergoes the depinning transition and starts moving. For large
external driving forces, the interface moves with a velocity proportional to the force (Fig. 5.13).
At finite temperature, the interface moves by thermal activation below F... This leads to a round-
ing of the depinning transition when F' ~ F.

The gapless case

The force-velocity relation of a quantum sine-Gordon chain with the particle mass m = 0.02
is shown in Fig. 5.14. This is the value of m where the phonon excitation gap closes. A finite
size analysis confirms that size effects are not important for N > 32 in the creep regime. For
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Figure 5.13: Typical force velocity curves for a classical system [CGD98]
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Figure 5.14: Sliding velocity v as a function of the externally applied force F' for mass m = 0.02, system
sizes N = 32 and N = 64 and temperatures 7' = 0.064 and T" = 0.032, starting with a system at rest and
slowly increasing F'. The inset is an magnification of the small-v regime of the main figure.

F' < 0.01, increasing or decreasing the thermostat (e.g. the externally imposed damping) has
almost no effect on the v(F") curve (Fig. 5.14). It is found that the response in v is linear with
I at very small and very large [’ with different values for the effective damping coefficient
fer = F/v. While (quantum) continuum approximations predict fog to be zero [Zs99], the
chain’s discreteness is known to change this property in classical systems because kink-phonon
interactions damp solitons [CY83, PK83]. Interestingly, f.q is independent of the temperature as
T approaches zero in both linear regimes. This rules out the possibility that thermal fluctuations
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Figure 5.15: Sliding velocity v as a function of the applied force F' for mass m = 0.02, N = 32 and
T = 0.256. The time constant of the thermostat coupled to the central mode ycn g is varied.

assist the system to overcome energy barriers at small F'.

Another similarity with the dynamics of the classical (discrete) sine-Gordon chain is seen
at an external force F' = (.02, where the friction-velocity relation exhibits a cusp, separating
a high-friction, low-velocity from a low-friction, high-velocity regime [CY83, PK83]. Finally,
at external forces [’ > 0.025, the response crosses over into a completely unpinned regime in
which the motion of the sine-Gordon chain is mainly opposed by the drag coefficient associated
with the heat bath. In that regime, soliton-related dissipation mechanisms become unimportant.

In the linear response regime at very small external forces [, one can define an effective
friction constant as

F
forr = lim — . (5.21)

F—0 v
This friction constant is connected to the diffusion constant by a fluctuation dissipation theorem:

D
g(T) = — . 5.22
ferr(T) T (5.22)
The inset of Fig. 5.14 shows that the creep motion is temperature independent. This implies

that in the low temperature regime the effective friction constant f5:*'°* is temperature indepen-

dent. This behavior is in accordance with the results found from the mean square displacements
which have an Einstein diffusion like temperature dependence in the gapless phase. The zero
temperature limit of the effective friction constant is finite:

%}ln)o fff?pless(T> —. gapless ) (523)

creep
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For m = 0.02, the numerical value for the friction coefficient in the creep regime is f82Pless =

creep

0.0016 = 0.0008. The corresponding value for f§12§ss determined from the mean square dis-

placement is f&2¢* = (.0025 £ 0.0008. The finite zero temperature limit of FEPIS(T) Jeeds to
a creep motion which is temperature independent and does not vanish at 7" = 0 (Fig. 5.14). Zero
temperature creep motion in the gapless phase is an example for a macroscopic property that is

qualitatively changed by quantum fluctuations with respect to the classical system.

The phase with a gap

In the phase with a gap, the reaction of the system to an external force at 7' = 0 does not
differ qualitatively from the classical system. Fig. 5.16 shows the force-velocity relation for
m = 0.1. The system remains pinned until the force reaches a critical value F,. ~ 0.05 where the
depinning transition occurs. At finite temperature, the system creeps thermally activated. The
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Figure 5.16: Force velocity relation in the phase with a gap (m = 0.1); the calculation is started with a
system at rest and the force F' is increased in small steps.

response of the system to a small driving force at finite temperature is shown in Fig. 5.17. The
creep motion is suppressed exponentially as the temperature is decreased. This can be described
phenomenologically by a divergence of the effective friction constant in the creep regime. The
temperature dependence is described by the Arrhenius law:

1 1 E
—a X —= —— . 5.24
B % T i) oy
Numerical results for D = T'/ f&* determined form the data presented in Fig. 5.17 are plotted in

the Arrhenius plot (Fig. 5.12) together with the corresponding results from the mean square dis-
placements. They are in good agreement with Eq. (5.24). As already mentioned, £ = 1.54+0.2 s
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Figure 5.17: Linear response of the sine-Gordon chain to an external driving force I at various tempera-
tures. The particle mass is set to m = 0.1 and the system size is N = 32. The slope of the curves is the
inverse effective friction constant 1/ f52”.

found for m = 0.1 from both, mean square displacement and linear response. This confirms that
the non-equilibrium analysis presented in this paragraph is in accordance with the equilibrium
results. Eq. (5.24) leads to a pinning of the system as the temperature approaches zero (Fig. 5.17)
because

lim fE°(T) = o0 . (5.25)

T—0"°
One can conclude that the transport of chains consisting of beads with masses m > m, requires

either finite temperatures and/or finite forces. For example, for m = 5m,, the numerical data
provides an upper bound for the inverse mobility or effective damping f72=0! > 0.5-10° fm=0-02,
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Chapter 6

Disordered substrate potentials

The previous analysis shows that path integral molecular dynamics can distinguish well between
systems with a finite gap in the phonon dispersion relation and systems without excitation gap at
phonon wave vector ¢ =0. It is now possible to analyze more complicated systems for which the
quantum mechanical ground state of the continuum model is not known analytically. One of the
topics of current scientific interest is the interplay of disorder and quantum fluctuations [GFB02].
In the following, the author investigates the effect of disorder on the spectral properties of the
discrete quantum sine-Gordon chain (DQSGC). This is either done by replacing the external po-
tential Vj cos(x,,/b) of the discrete sine-Gordon chain with a random potential, or by introduction
of a fluctuating bond length a;. In the latter case, the harmonic interaction of next neighbored
particles is set to be (K/2)(x; — xj41 — a;)* with randomly chosen parameters a;, distributed
according the probability distribution shown in Fig. 6.5. This kind of harmonic interaction can be
also interpreted as a substrate potential cos(x;/b+ ¢;) with uniformly distributed random phases
¢;. The disordered potentials are classified by the roughness exponent H which is defined as

V(x4 Az) = V(2)}?) o< Ax?H . (6.1)

In a simulation with periodic boundary conditions (V' (x) = V(z + 27 N)), Eq. (6.1) holds for
b < Az < wbN. As in the previous analysis, the unit system is defined by Vj, b, i and kg (see
appendix C). The harmonic coupling is set to X = 0.1 for all simulations and the mass m is
varied. For the calculation of the quantum dispersion relation in the limit 7' — 0, the numerical
value for the temperature 7" = 0.064 turned out to be sufficiently small. For this temperature, the
Trotter number is set to P = 256.

6.1 Roughness exponent H = 0

In order to construct a random substrate potential with /I = 0, the potential is either zero on a
length of b or - with same probability - it takes the functional form of V,{1 + cos(x/b)} on the
interval —m < /b < 7. The numerical analysis of the results for the case H = 0 suggests a
finite gap for a mass m > mi=" and zero gap for m < miH=0 (see Fig. 6.1) in agreement with
the predictions by Gorokhov et al. [GFB02]. The critical value for the mass m=Y is larger than

[
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Figure 6.1: Quantum ground state phonon dispersion relations for a system with disordered potential with
roughness exponent H = 0, The results are averages over 12 different realizations of the potential. Left:
m = 0.1, right: m = 0.02. For each dispersion relation, the zero wave vector spectrum C(w, g = 0) is
shown separately on the left. Here w)(q =0) stands for the classical excitation gap of the corresponding
sine-Gordon chain, which is given by wq(¢=0) = /Vo/(b?>m).

the value for the DQSGC found in chapter 5. For the model potential under consideration, one
phonon branch is observed. For masses larger than but in the order of m,., it forms a broad band.
Atm < m,, the substrate potential becomes irrelevant and the system shows the same dispersion
relation as the commensurate discrete sine-Gordon model in the gapless phase: there is only one
relatively narrow branch, which can be well described with Eq. (5.4) and K, o =0.

6.2 Roughness exponent H = 1/2

The disordered potential with roughness exponent H = 1/2 is constructed in the following way:
Patches of the functional form Vj cos(x/b) and of the length 7b are added where the underlying
domain is chosen randomly to be either [0, 7b] or [wb, 27b]. The patches are shifted by a constant
in a way that no discontinuity in the potential occurs. This leads to a potential which does a
random walk in it’s magnitude. The mean square difference of the potential at two different
values for x which are separated by Az behaves as ({V (z + Az) — V(z)}?) o< Az’ on scales
b < Azr < 7bN for large N. The corresponding surface roughness exponent H takes the
value H = 1/2. Fig. 6.2 shows a typical random potential and a snapshot of the imaginary-time
trajectories of the particles.

The results for the classical and quantum dispersion relations for three different values of the
mass m (m = 0.1, 0.02, 0.01) are depicted in Fig. 6.3. For each dispersion relation, the zero
wave vector spectrum is shown separately on the left. The shown quantum dispersion relations
correspond to the ground state while for the classical dispersion relations the temperature 7°
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Figure 6.2: Above: Snapshot of the imaginary-time trajectories of a typical configuration, calculated with
N = 256, T = 0.064, P = 256, m = 0.02. Below: Typical realization of the disordered substrate
potential with roughness exponent H = 1/2 belonging to the configuration shown above.

was chosen in a way that the classical kinetic energy is equal to the expectation value for the
kinetic energy of the corresponding quantum ground state (7" = %(Ekin)qm). It is found that
the situation is more complex for disordered potentials with roughness H = 1/2 than it is for
the case H = 0. While for /' = 0 the system behaves qualitatively equal to the DQSGC, the
observations for the H = 1/2 system differ qualitatively from the DQSGC. In agreement with
the predictions by Chauve et al. [CGD98], there is no indication for the classical mobility to
become zero at finite temperatures. In contrast, the quantum mechanical mobility at 7" = 0
always appears to be zero for H = 1/2, no matter how small m is. The zero wave vector
spectrum C'(¢=0, w) for classical and quantum mechanical chains shows a qualitative difference
in the limit (¢,w) — (0,0). While the classical value for C'(0,0) is finite, C'(0,0) vanishes for
the quantum systems. (Note that due to statistical uncertainties and finite system size, one can
never observe C'(0,0) = 0 in a computer simulation.) This is confirmed by the finite size analysis
shown in Fig. 6.4. While thermal fluctuations can lead to mobility, the system remains pinned if
only quantum fluctuations and no classical fluctuations are present.

The spectrum at finite wavelengths of the quantum system shows two phonon branches. The
numerical results are the average over 12 different disorder realizations. A single realization
shows much sharper lines. It appears that the system is not self-averaging.
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Figure 6.3: Phonon dispersion relations for systems with disordered substrate potential with roughness
exponent H = 1/2 for three different masses: above: m = 0.1, middle: m = 0.02, below: m = 0.01.
Left: classical systems at finite temperature 7' = %(Ekin)qm, above T' = 0.987 , middle: T' = 1.635,
below 7" = 1.980. Right: quantum system in the ground state. For each dispersion relation the zero wave
vector spectrum is shown separately on the left. Here w (¢ =0) stands for the zero wave vector excitation
gap of the corresponding classical sine-Gordon chain, which is given by w.(¢=0) = \/Vy/(b%m).
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Figure 6.4: Finite size analysis for the disordered systems with H = 1/2 for m = 0.02. The system sizes
are: above: N = 64, middle: N = 128, below: N = 256. Left: classical systems at finite temperature
T = %(Ekin)qm, T = 1.980. Right: quantum system in the ground state. For each dispersion relation
the zero wave vector spectrum is shown separately on the left. Here w. (¢ = 0) stands for the classical
excitation gap of the corresponding sine-Gordon chain, which is given by w¢ (¢ = 0) = /Vi/(b*m).
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6.3 Disordered bond length or phase

A model system with disordered bond length a; is described by the Hamiltonian

N-1 AQ
H= < Tj— 2y — a;)? —Vbcos(a:j/b)) : (6.2)

Jj=0

With the transformation
Ty =y; + (27 + ¢;) b, 6.3)

this system can be mapped on a discrete sine-Gordon chain with the random phases ¢; in the
substrate potential, given by

N—-1 ~9
H = Z (pj + K — §j11)° — Vocos(4/b + cbj)) : (6.4)

Jj=

For the numerical analysis, the random phases ¢; are chosen to be uniformly distributed in the
interval [—, |. They are connected with the random bond length as

=b (277' + §Z5j - ¢j+1) . (65)

This leads to the probability distribution for the bond length a; shown in Fig. 6.5. The simula-
tions show that the model system with disordered bond length behaves similar to the one with a
disordered potential with roughness exponent /7 = 0. A broad band can be seen in the dispersion
relation with a finite excitation gap for large masses (e.g. m = 0.1). As the mass is decreased,
the excitation gap becomes smaller and vanishes at a the critical value m>°", Fig. 6.6 shows
phonon dispersion relations for the masses m = 0.1, 0.08, 0.06, 0.04 and 0.02. From the simu-
lation results, the critical value for the mass m>°"® can be estimated to be slightly smaller than
= 0.04. At m = 0.02, the system is already in the gapless phase.
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Figure 6.6: Dispersion relations for DQSGC with disordered bond length. The particle mass is varied.
For each dispersion relation the zero wave vector spectrum is shown separately on the left. Here w (¢ =0)
stands for the zero wave vector excitation gap of the corresponding classical sine-Gordon chain which is

given by wa(g=0) = /Vo/(2?m).
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Chapter 7

Conclusion and outlook

A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)
is analyzed and compared to an approach which includes the correct quantum mechanical pair
interaction (EPr). It is found that the HOA algorithm converges to the quantum limit with in-
creasing Trotter number P as 1/P*, while the EPr algorithm converges as 1/P? but starts with
a better estimate for very low Trotter numbers. For the comparative study, a harmonic chain is
considered as a test model. This model has the advantage that all calculations can be performed
analytically. The convergence rate of the HOA algorithm is analyzed for physical systems as a
particle in a double well potential, gaseous argon, gaseous helium and crystalline argon. It is
found that the 1/P* convergence holds also in the case that the interaction potential has strong
repulsive divergences as the 7' divergence of the Lennard Jones potential. New simulation
techniqus for the HOA algorithm are developed: The estimators for the pair correlation func-
tion and for the particle position and distance are derived and it is shown for a particle in the
double-well potential and crystalline argon that the HOA approach allows one to reduce strongly
the systematic error of these quantities at a fixed Trotter number. As a further result, it is shown
that the estimators for the volume or the lattice constant in a simulation in the constant pressure
ensemble do not receive higher-order corrections in the HOA algorithm.

A new path integral algorithm, the hybrid algorithm is developed which combines an ex-
act treatment of the quadratic part of the Hamiltonian and the higher-order Trotter expansion
techniques. For the discrete quantum sine-Gordon chain (DQSGC), it is demonstrated that this
algorithm works more efficiently than all other improved path integral algorithms discussed in
this work. The hybride algorithm shows a 1/P* convergence to the quantum limit and starts at
small Trotter numbers P with a good estimate for the quantum system. The sampling efficency
can be improved by an optimization of the dynamical masses, which allows to adjust all time
scales of the system to one typical sampling frequency. This is possible if a harmonic approx-
imation of the Hamiltonian exists and the simulation is performed in the normal coordinates of
this approximation.

The centroid dynamics method, a method which allows the efficient and exact calculation
of several correlation functions is applied to the DQSGC. In this work, a special variant, the
adiabatic centroid path integral molecular dynamics (ACPIMD) method is applied. Within this
method, the time scales of the system have to be adjusted in a way that the centroid variables
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move adiabatically on a mean potential. The correct choice for the dynamic masses which deter-
mine the time scales occurring in the simulation is deeply discussed and a concrete implementa-
tion of the ACPIMD method with a Langevin thermostat is presented. This implementation has
the advantage that it also allows the treatment of non-ergodic systems.

The newly developed simulation techniques allow the analysis of the DQSGC and related
disordered model systems in the highly quantum mechanical regime. The ground state phonon
dispersion relation is calculated for the DQSGC within the ACPIMD method. It is found that
the excitation gap at zero wave vector is reduced by quantum fluctuations. The size of the ex-
citation gap can be used as an order parameter to distinguish two different phases. A phase
which has an excitation gap at ¢ = 0 and a gapless phase without excitation gap a ¢ = 0. The
real-time correlation functions obtained with ACPIMD are found to be in good agreement with
the imaginary-time dynamics obtained from PIMD. The correlation function G(An, A7) which
measures the correlation of two particles separated by An in the topology of the chain or At
in imaginary-time is calculated in the phase with gap and the gapless phase. GG diverges in the
gapless phase for An or A7 — oo, while it converges to a finite value in the other phase. Tun-
neling of the imaginary-time paths is found to be the process that drives the phase transition
from the phase with a gap to the gapless phase. The importance of imaginary-time tunneling is
analyzed qualitatively with the minimum correlation function which vanishes analytically in the
gapless phase and converges exponentially to a finite value in the phase with a gap for 7 — oo,
AT = hf3/2. The mean square displacement of the center of mass mode is calculated for both
phases. From the mean square displacement the diffusion constant D can be determined. The
temperature dependence of the diffusion constant differs qualitatively in the phase with a gap
and the gapless phase: While in the phase with a gap the diffusion constant shows an Einstein
diffusion like behavior and is proportional to the temperature, it vanishes exponentially in the
gapless phase by the Arrhenius law. The reaction of the DQSGC to the presence of an external
driving force is calculated for the ground state. In the gapless phase, the system starts to creep
when an arbitrarily small driving force is applied. At a critical value of the force, the system
undergoes a depinning transition and enters a flow regime. In contrast to that, the DQSGC chain
is pinned at 7" = 0 in the phase with a gap. The system shows no reaction to a small external
force until a critical value for the force is reached and the system undergoes a depinning tran-
sition. For finite temperature 7', the mobility of the DQSGC goes to zero exponentially in the
phase with a gap as the temperature is decreased. The diffusion constant is determined form the
linear response of the chain to a small external force. The results are in good accordance with
the diffusion constants obtained from the mean square displacements.

The analysis of the DQSGC is generalized to models with disordered substrate potentials.
Three different cases are analyzed: Disordered substrate potentials with roughness exponents
H =0, H = 1/2, and a system with disordered bond length. For all models, the ground state
phonon dispersion relation is calculated. It is found that the disordered system with = 0
behaves qualitatively similar to the DQSGC. A phaes with a gap and a gapless phase are found.
In the phase with a gap, the phonon dispersion relation has one broad branch while the dispersion
relation in the gapless phase is equal to that of the DQSGC. Disordered systems with roughness
H = 1/2 show a more complicated behavior. For these systems the chain is always pinned
and no mobility due to quantum fluctuations can be observed. Here, the effect of quantum and
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classical fluctuations on the mobility is different. Classical systems at finite temperature show a
creep motion while the quantum system is pinned at 7' = 0. For finite wave vectors, two different
phonon branches are found for the quantum system. The corresponding classical system shows
only one broad phonon brach in the dispersion relation. The DQSGC with disordered bond
length behaves similarly to the disordered case with I = 0. A transition between a phase with
a gap and a gapless phase is found. For the gapless phase, the dispersion relation is equal to
the one found for the ordered system while in the phase with a gap, the phonon branch is much
broader than for the ordered system.

For further studies, it would be interesting to extend the study of the disordered systems to
models with continuous roughness exponent /. Here the question arises whether the mobility of
the quantum ground state vanishes for any 4 > 0 or if a finite critical value for H exists. With
the techniques developed, it is possible to calculate a complete phase diagram for the DQSGC.
Here, the highly discrete region is of special interest because large differences might be expected
to the continuum model which is analytically solvable.

With increasing computer power, it is also possible to analyze higher dimensional systems.
For these systems, it can be expected that the correlation lengths are smaller than for the one
dimensional system. This allows to reduce the system sizes used in the simulation with respect
to the calculations in one dimension.
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Appendix A

The normal mode transformation

The normal mode transformation is an orthogonal transformation which is closely related to
the Fourier transformation. If {z;} is a set of N coordinates, the normal mode transformed
coordinates {Z,} can be calculated in the following way: The complex Fourier transformed

coordinates ¢ are given by
=,
mijk/N
ck:,/ﬁj;é RN (A.1)

Ck=C" = Cn_p - (A.2)

and fulfill the relation

The normal modes 7, are real numbers and are defined over the ¢, as

Co — jo
.

T = §(ZE1 —ZfEN_l)
.

cT = 5 (l’g — Zl’N_Q)
T, . .

CN/2-1 = 5 (xN/Q—l - ’LIN/2+1)
CN/2 = fN/2 (A.3)

1, .
CNj24+1 = \/;(SUN/Q_1+M:N/2+1)

1 . .
CN—2 = §(CE2+Z!L‘N—2)

1 . .
CN—1 = 5(931+sz—1)
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98 APPENDIX A. THE NORMAL MODE TRANSFORMATION

The normal mode transformation is orthogonal

xi=) i (A4)

(2 — 2j00)* = Y dsin’ (%k) 72 (A.5)



Appendix B

The virial estimator

Several derivations for the virial estimator can be found in the literature. In the original work by
Hermann et al.[HBB82], an integration by parts of the partition function is used for the derivation.
A simpler derivation is given by David Ceperley which uses rescaled, dimensionless variables.
In this work, it was found that writing the partition function in terms of normal mode coordinates
leads to a further simplification of the derivation.

Hermann et al. applied the virial theorem to all modes of the imaginary time path, including
the center of mass (CMS) mode of the path. This leads to problems if particles are not bound by
an external potential, what is reflected in the well known fact that the virial theorem applies only
for particles which have trajectories that are confined in a finite region for £ — oo. In a more
sophisticated version, the virial theorem is applied to the internal modes of the imaginary time
path [Cep95] only which have always bound trajectories due to the kinetic term in the action.

In the following, a derivation of the virial theorem is given for a one particle system in one
dimension. A generalization to a N particle system in three dimensions is trivial. The starting
point is the partition function of one particle

pP-1

2= | 11 (\/ e )

exp {_F S [#/P) (a4 —at)? v (;&)1 }

-/ h (\/ ™)

oo St (50) gty - 260

(B.1)

with the normal mode coordinates u® = Uz’ defined in Appendix A and the abbreviation
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V(... uP) =V (at (w0, .., uP")) . Rescaling the coordinates according to
0 = W

s s m

/ , /#ﬁ/mdvo Ii_[j (&dm) (B.3)
eXp{—Pz_:l(vs)zélsin2 (;3 ——V ( hZﬁ/P ,\/%UP_I)} .

s=1

leads to

Please, note that the CMS mode u° = (1/+/P) 0 ' 2 is treated separately from the internal
modes. The thermodynamic average of the kinetic energy is

m d
(1) = ﬁ@ln (2)
P-1
11 1 d
_ o= s V(lut Pt
25 2P <“ parl CRURTIPNY .
A (vir)
= (T3 }>Urp (B.4)
what leads to the virial estimator in the normal mode representation
1 — ,d
PA (vir s -
Tos )({ = QPS luduSV(uO,ul,...,uP H (B.5)

Eq. (B.5) can be re expressed in terms of the coordinates z‘. For the derivative one finds the
relation: - -
= d W0 d —~ ~drt d
s — _— . B.6
;u du? SZ_: aluS du® tzz(;x dzt — duf dz' (B.6)
In the last step the orthogonality of the normal mode transformation was used. The final result
for the virial estimator is
1 t
— —V (a") (B.7)

est

TPA(Vlr) ( ) _ 1
2

with . = (1/P) S0, ot



Appendix C

Natural units for the discrete sine-Gordon

chain

For the discrete sine-Gordon chain and related disordered models, the Hamiltonian can be written

as

-y

J=

( I 4 l(

)i vocos@j/m) ,

(C.1)

where the cos(z;/b) term is replaced by a random function f(z,/b) for the disordered systems.
The system of units is defined by Vj, b, h, and Boltzmann’s constant kg. This leads to the
following units for the physical quantities considered in this work:

Energy:
Action:
Space:
Time:
Force:
Mass:

Temperature:

Vo
h

b

A%
Vo/b
n?/(Vob?)
Vo ks
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Appendix D

Source code of the HOA pair potential
force routine

The Fortran 77 source code of the force routine of the PIMD code for the simulation of crystalline
Argon in the NPT ensemble is given in the following. This code was used to obtain the results
on crystalline Argon given in chapter 1.
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end subroutine



Appendix E

Source code of the numerical matrix
multiplication program

The numerical matrix multiplication Fortran 77 code is given in the following. This code was
used to obtain the results given in chapter 1.
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Appendix F

Source code for the numerical summation
of the eigenmodes

In the following the Mathematica source code for the calculations presented in chapter 2 is given.

~ -

s s

Aalp_] := 2 Tanh[f[pl/2] /flpl
Cclp_] =2/ f[pl"2 ( 1- flpl/ Sinh[f[p]l] )
flp_] := hbar Sqgrt[2 k /m] beta / p
kst[g_,om_,p_,n_] =4 (mp"2 / beta”2 hbar”2 Sin[Pi/p om] "2 \
+ k Sin[Pi/n gl"2 )
ktak[g_,om_,p_,n_] := 4 (m p"2 / beta”2 hbar”"2 Sin[Pi/p om] "2
+ ( k+ 1/3 hbar"2 / m (beta/p) "2 k"2 )
Sin[Pi/n g]~2
- 1/12 hbar"2 / m (beta/p) "2 k"2
Sin[Pi/n 2 g]~2 )
knd[q_,om_,p_,n_] := 4( (m p"2 / beta”2 hbar”2 + - k Cclp] )
Sin Pi/p om] "2
+ (k + k (Aalp]l-Cclpl- )
Sln[Pl/n ql 2
+ k Cclpl /2 | Sin[Pi ( g/n — om / p)]~2
+ Sin[P (g/n +om / p)l°2 ) )
rknd[g_,om_,p_,n_] := 4( m p~2 / beta”2 hbar”2 Sin[Pi/p om] "2 \
+ k ARAa[p] Sin[Pi/n g]l”"2 )
values = {n->5, k ->1, m -> 1, beta -> 64 , hbar -> 1 }

stsummand[qg_,om_,p_,n_] 4 Sin[Pi/n g]"2 k / (2 beta) / kst[gq,om,p,n]

ndsummand [g_,om_,p_,n_] := 4 Sin[Pi/n gl"2 k / (2 beta) / knd[g,om,p,n]
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rndsummand[q_,om_,p_,n_] := 4 Sin[Pi/n g]l"2 k / (2 beta) /rknd[g,om,p,n]

taksummand[g_,om_,p_,n_] := D[ktak[g,om,p,n], k] * k \
/ ( 2 beta) / ktak[g,om,p,n]

sts[p_,n_] := Sum[Sum[N[ stsummand[qg, om,p,n] /. values 1, \
{om,1,p}1,{gq,1,n-1}]1/.values

taks[p_,n_] := Sum[Sum[N[ taksummand[g,om,p,n] /. values ], \
{Oml llp}J ’ {q, 1, n-1}] /.values

nds[p_,n_] = Sum[Sum[N[ ndsummand[g,om,p,n] /. values 1, \
{om,1,p}],{qg,1,n-1}]/.values
rnds [p_, n_] := Sum[Sum[N[ rndsummand[q,om,p,n] /. values ], \

{om,1,p}],{qg,1,n-1}]1/.values

stream=OpenWrite["result.out"]

Do[ WriteString[stream,FortranForm([i], "\t", FortranForm[ sts[i,5]] ,"\t", \
FortranForm|[ taks[i,5]1]1,"\t", \
FortranForm[ nds[i,5]] ,"\t", \
FortranForm[ rnds([i,5]],"\n" ],\

{1,1,1000,5}]
Close[stream]



Appendix G

Source code of the path integral molecular
dynamic program

The Fortran 90 source code for the path integral molecular dynamics simulation is given in the
following. This program was used for the calculation of the results given in the chapters 3, 4, 5
and 6. The random number generator and the fast Fourier transform are take from [PTVF92].
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G.3. OBSERVATION ROUTINES

op pus
axed wT | ‘0 = (z+33ed T4Z)23aed Auump InoJy
axed a1 | (3xed T/30I17 T)N X = (T+3Ied Tyz)3axed Auump InoJ
T1-2xed u ‘ o = 3aed T op
1-3013°u ‘ Q0 = 30I3° T Op
SI0JBTTTOSO USISIITP STdNOOSpP—-|
op pus
op pus
(3aed T)uoTaersuerl - (3xed 1’30137 T)sAuyd x = (2red T/3013 T)n X
T- 3013°u ‘ Q0 = 3013 T op
I- 3aedu ‘ o = 3xed T op
uoT3eTsueIl —-j
( (T-3xed u:Q ‘1-2013 uU:Q )N ¥ )21EDOTTE
( ( 3xed uyz:1 )2xed Awwnp INOJ )23LDOTTE
Jxed Auump InoJ :: STge3e0O0TTe ‘( : )uoTsuswTp ‘(dp=puTy) TeSI

n~x :: S[geledoTTe ‘( * 4 1 )uoTsuswTtp ‘(dp=puTy)TES1
iii Tesx1 uoTstooxad oTPUTS speau (GzI | OO0T uUBI :: TeaX
ueI 1013 T ‘3013 3 I9bL93uT

suou 3ToTTdWT
suoTlouny asn
elep (0GzI osn
B1eP UOTIBAISSCO asn
elep” Spow TewIou asn
szo3ouweied InduTt asn
sojeuTprooo 1aed asn
UOTIBTSII0D USPOW SUTINOIYNS

3

((

i
PUTIISTO3 3UT SUTINOIQNS PUSD

op pus

T pus

,weTqoad e sey butais o3 3juTr, do3ls
asTa

.6, // (238bTp-p:)3Ino HUTIIS = N0 HUTIIS
usyl ( 6 ‘ber brpToOT) JT °sT®

48, // (39bTp-p:)3Ino butils = Ino” butals
usy3l ( g *bs* brp o0T7) JT °sT®

L. // (39BTP-F:)3IN0THUTIIS = N0 bUTIIs
usyy ( . -"bs* brpTo0T) JT SsT®

.9, // (238bTp-p:)3Ino HUTIIS = INO HUTIIS
usyl (9 "bsr BIPToOT) JT °sT®

4G4 // (39bTp-p:)3Ino butils = Ino” butals
usy3l ( G -bs* brp o0T7) JT °sT®

. // (39BTP-F:)3In0oTbuTals = 3Ino  burtiis
usyy (y *ba- brp o0T) JT SsT®

,€., // (238bTp-p:)3Ino HUTIIS = INO HUTIIS
usyl ( ¢ "bsr BTpToOT) JT °sT®

44 // (39BTp-p:)Ino butils = Ino” butals
usyl ( ¢z -bsr brpTo0T7) JT °sT®

T, // (39bTp-F:)3In0o buTals = 3Ino butiis
usyy ( T -"bs* brpTo0T) JT SsT®

.0, // (39bTp-F:)3Ino BUTI3Is = 3Ino buTIys
usyl ( o0 ‘ber BTpPToOT) IT

(1-296TP) xx0T / 3
(T-39BTP) xx0T ‘UT  3UT)pow — (38BTP4xQT‘UT 3JuT)pow ) = BTP 00T
-/ 1 ' v = 3°b1P OP

,butazsTo3T3qur 303 dur drq o3, dois ( 6666 "3H° uT IUT) IT

,butaisTo3T3ur z03 dutr Hou, dois ( 0 "3IT° UT JUT) IT
Ino buTtils :: (p=uST)I930BIRYD
brtp 00T 4 296TPp ‘uT 3JuTr :: I9bajuT

suou j3ToTTdWT
(3Ino~huTI3s ‘UT JUT)HUTIIST 03 JUT LSuUTINOIgNS

(

(

1
INOTUOTIBAISSUO BUTINOIGNS PuUS

(0T)®sot12
op pus
jox3 u/o u/ (3xed T)snTtper uoTieilAb jxed Bl
3 ‘( (3aed”1/0)x )oqd 3
3 ‘( (3xed T)3uswedeTdsTp )oqd ]
3‘(3zed T)uorlersueal (,(8°0zef) ,=WI’‘QT)SITIM
1-3xed u ‘ o = 3xed T op
( ,umousun,=snjels’,3no-jusweoeTdsIp,=2T1F ‘QT=3Tun ) uado

(0T)®s0T2
op pus

o u / (z'’azed T)II00 ZI ®
» ‘oTu / (T‘3xed T)I1007zx ‘ 3xed T (,(8°0Z2Z‘0TT) ,=3wWI’QT)S3TIM
T-3xed u ‘ g = 3xed T Op
( ,umouduUN,=snjels’,Ino 1100 8suUsp,=aTTI ‘QT=3Tun ) uado
uoTIOUNT UOTIRTSII0D AJTSUSP 9ITIM ——j

(0T)®soT2
op pus
(3aed u x o u 4 Td 4 g) / oseyd u y (sseyd T)3sTp =oseyd 3
5 ‘ oseyd u / (Td y g s oseyd 1) (,(8°0z°Z) ,=3wWI’QT)S3TIm
sseyd u ‘ g = sseuyd T op
( wumouxun,=snjels’,Ino-3stp oseyd,=a717 ‘QT=3Tun ) usdo
uoTINqTIlsTP oseyd 91TIM ——j

(0T)®s0T2
op pus
ebawo P y xew ebswo T ‘ 3xed T (,(8°0Z2‘0TT) ,=3WI‘QT)S3ITIM
op pus
eHswo T = xew ebswo T 3
3 ( (xew ebswo T‘3xed T)3usd s -3b° (ebswo T ‘3aed T)3uso s ) IT
( (( ebowo™ 4 do3s™sqo 4 3P x ¢ ) / Td 4 Z )3IuTu ‘ebowo u)utu ®
3 4/ 0 = ebswo T op
‘nbaxjg sanseaw 9yl JO JTeY ST ebawo Tewrxeuw
"0 = Xeu ebswo T

T-3xed u ‘ g = 3xed T Op
( ,umoumun,=snjels’,jno-wniloads Jusd,=9TTJ ‘QT=3Tun ) usdo
wnijoads PTOIJUSD SITIM ——j

(0T)®s0T2
op pus
( T-3aedu ‘ g = 3zed T / (ebswo T ‘3xed T)jusd s ) ®
3 ‘/ ebPswo P y eHSWO T (JPWIOI II0D N=3WI‘QT) S3TIM
( (( ebowo™ 4 do3s7sqo 4 AP x ¢ ) / Td x z )3IuUTuU ‘ebowo” u)uTuw 3
3 4 0 = ebswo T op

( ,UMOUMUN,=SN3B3S‘,IN0 " II007 JU8D,=1TTF ‘Ql=31Tun ) uado

op pus
op pus
wIou Jue0/ (ebswo T ‘3red T)3usd s = (ebswo T‘3aed T)Iuso” s
(( ebowo™p 4 de3s™sqO x AP x 7 ) / Td x Z )3uTu ‘ebHswo u)uTw 3
3 4/ 0 = ebawo T op
op pus
ebswo P y (eHswo T ‘jred T)IUSD S 4+ WIOU JUSD = WIOU JUSD
(( ebowo™p 4 de3s™sqo x IP x ¢ ) / Td x z )3IuTu ‘ebowo u) 3

u
3 4 0 = ebawo T op
Q0 = wIou jued

1-3xed u ‘ o = 3aed T op

9ZTTRWIOU ——j

uoTIOUNT II0D PTOIIUSD SITIM ——j

(0T)®soT2j



APPENDIX G. SOURCE CODE OF THE PIMD PROGRAM

124

o007 OTaJ :: (dp=puty) eI

suou 3TOoTTdWT
sazojaweaed 3nduTt asn
elRp pWw asn
sejeuTprooo 1aed asn
S3]Ue]1SUOD BSN

90I03 UOTIDTIJ SUTINOIANS

i
90103 WOPURI SUTINOIGNS PUS

0a TATIVYVA NI dHO$ i
op pus
op pus
puei F + (T‘3xed 1‘30137T)n = (T‘3aed T‘30I3 T)n
0PG s puel I + (0‘3xed T/30I13 T)n = (p‘3xed T‘30x3 T)n
A y 121X puUB X 0] UOTJRIS[SD0® UOPURI pPpe ———j

i IT pus i
i ‘9 / puei 3 = puex J i
i usya( ( o "ber 30137T) rpue- (1'be- ssew 0TI 3) ) IT
i usyl( ( 0 "be: 30137T) rpue- (g berized T) ) IT

\\\\\\\\\\\\\\\\\\\\ sOTWeuAQ PTOIIUSD I0J 90103 UWOPUBRI 9ONPOI ————— |

77 x (37ed T/30I3 T)SSEW J / puer J = pueI 3
Z.3P SSWT3} UOT3RI=T=200F" wWopu®el ——-—j
( OP"T- (T+30I37T)PURT X x OP°Z ) x (37ed T/30137T)90I0J PUBT = puURT J
©0I0J WOpPUBRI 21BTNDTED ———j
T-30137U ‘ 0 = 30I3 T Op
TYDILI¥D ANE dWOSi
(z3dy ‘30I13 Uu‘pues X ‘zZW) (QGZI TTRO
TYOILIED dWOSi
T-23ed”u 4 g = 37ed T OpP
(puea™x ‘puea”3) AIVAIYd Od TITIVIVd dWO$i
i Teex uotrstoead oTPUTs UR oC 03 SBY Puel X (0GZI @Yl I0J |

puei X :: (3013 U:T)UOTSUSWIP ‘Tesx
puei J 11 (dp=puty) TES1

suou 3TOoTTdWT
elep 0GZI 9sn
szojouweied andut asn
elep pu osn
sojeuTpIooo 31ed Ssn
$3UB]SUOD Bsn

90103 WOPURI SUTINOIYNS

1
1oTpaad sutrinoiqns pus

IT pus
swoTx = (0‘0‘0)n
usyl ( [ == swd 3 ) IT
op pus
op pus
0Q TATIVIVd ANE dWOSi
op pus
op pus

(xepao L 3aed T‘30177 T)N 4 (I9pao [ ‘x9pao” T) 200 30Tpaid + 3
3 (19pao T/3aed T/30137 T)n = (I9pao T/3xed Tl0117T)n
1-30I1I37u ‘ 0 = 1013 T Op
T-3xed u ‘ o = 3zed T op
0 TATIVYYd dWO$i
IspIo U ‘T + I9PIO T = I9PIO [ op

T-ISpIo U ‘T = I9pPIO” T Op
SOATIRATISP UYL ————]

90I0J wopuex TTeD

op pus
0d TATIVYVd ANE dWOS |
op pus

op pus
(zopao [ ‘3xed T/30237 T)Nn 4 (I9pa0 [ ‘I8pIx0o  T)F=200 30Tpaxd + »
3 (I9pao T/aaed T/30137T)n = (I8pao T3aed T/30I3 T)n
1-30137uU ‘ 0 = 30137 T Oop
T-3azed u ‘ g = 1xed T op
0d TATIVIVd dWOSi
Iepio u’l = Ispio [ op
0 = I9pIo T
suotatsod 3SITI -—-———j

saojaweied 3nduT osn

BlEp pw Ssn

se3euTpIo0d 3Ied Ssn
10Tpaad suT3inoagns

SaunNnoJa womaﬁﬁhﬁ JBINII[OIN ™5

I
auTInoIqNsS pua
op pus
(3aed 1/0)%x = (3xed T)3uswsdeldsIp
T-3x3ed u ‘ g = 3xed T Op

suou 3ToTTdWT
©1EPPTUOTILAISSUO oSN
sejeuTprood 3xed asn
31e3s dSTp BuT3InoIgqns

I
UOTIBTSITI0O USPOW SUTINOIYNS Pus

op pus
op pus
(3aed T/3013 )N x 4 (3aed T/uel 3013 T)0 X ®
3 + (3xed 1t/3013 [)xxoo 3 n = (3axed T/3013 [)a1x00 3y n
(30137 U ‘307137 [ + UeI 3033 T )pow = 3013 Y
T-30337U ‘ 0 = 3013 [ op
1-3xed u ‘ g = 3aed T op

( (T-20127U) 4 O0T UBI)IUTU = URI 3017 T
(z3dy ‘T ‘00T uea‘ZU) 0GZI TTED

op pus
op pus
N 3absTutr , (3xed T‘3013 T)n X = (3xed T/3013 T)0 X
1-3013"u ‘ 0 = 30137 T Oop
1-3xed u ‘ o = 3xed T op

301377 | op pue

op pus
z2abs y  (z+33ed T4z + 27ed u)3aed Awuwnp Inol = (gz/3xed u+ixed T/10I1°T)N X
z3abs y  (T+33ed Tyz)3aed Auwnp InoJ = (3xed T/3013 T)0 X

T - ¢g/3xedu / 1 = 3aed T op

3T pue

( T+3xed u)axed Awwnp InoI = (z/3Ied u‘l013”T)n X
usyy ( T "3b 3xedu ) IT

(1) 3xed Auwnp Inoj = (0‘2013 T)n X

(3aed u‘T ‘37ed u‘jaed Awwnp InoJ) TInoj TTeD



125

G.4. MOLECULAR DYNAMICS ROUTINES

v/'€ = (1)39007 1300
jussqge je3souwrayl JT ATuo (0ZI/'6T = (0)3JI=200 1100 i

06/°61 = (0) 320071100
usyl (y-bes-zepaoT) IT SST°
€/°T = (g€)3FL®00 1300
9/°G = (1)3800 1100
9/°1T = (0)3®007 1100
uayl (g¢'barispio 1) IT =sT°
“T = (T)3F=00 1100
0 = (0)3F®00 13100

wyjltaobre I9TI9A AJTOOT®A  ————j
usyl (z-bari19pioTT)IT
I9pPIO U = IL9PIO T
op pus
0 = (ISPIO”T)FS0O II0D
IspIo Uu’‘l = ISPIO T Op
103091100 SZTTETITUT ———]

op pus
op pus
(z9pa0 [ “I9p70~ T) J900 paid = (I9px0 [ ‘I9pI0 T)F200 30Tpaid
I9pIO U ‘ISPIO T = ISpIO [ op
op pus
‘0 = (x9pao [ ‘xepao  T)IF=00 3oTpaad
Ieopio u‘Qg = I9pI0 [ Op
T-I9pIo u‘Q = ISPIO” T Op

= (g’p) Fsoo paad
(G “¢) 3200 paad
= (p‘g)I=200 paad

°S
‘ot
v
*0T = (§’¢) 3900 paad
‘9
‘e

= (p’z) 3200 poaad
= (g’7z)3=00 paad

op pus
T = (I9pI0 T ‘I9pI0O T) I200 paad
I+I9PI0° T = (T+I9pI0 T T)I200 paad ([°9H I19pa0” T)IT
*T = (I+I9pI07T’Q) J900 paad
op pus
‘0 = (79pa0o [ ‘I9pI0™ T)JI®00 paad
Xeur Ispi1o u’Q = ISpIo [ op
T-XeWw ISpIO Uu‘(Q = ISPIO T Op
S3IUSTOTJIIS00 1030Tpaid SZTTETITUT ———|
J900T IJ0D :: (XBW JI9PIO  U:(Q)uoTsusuwIp ‘(dp=puTy) [esx
J900 paad :: (XBW JIS9PIO U:(Q‘I-XBW ISPIO u:(Q)uoTsuswTp ‘(dp=puty) Tes1

suou 3ToTTdWT

rvlep pw asn

szojauweaed 3ndut asn

sojeuTprood 3aed asn

S3]ue]lSUOD BSN
elep pPW 3TUT SUuT3inoigns

i
109IJ0D0 S2UT3NOIQNS pus

IT pue
suoTx = (0‘0‘0)n
uay3l ( T == swo 3) IT
op pus
04 TETIVIVA ANE dWOS i
op pus

op pus
(37ed T/30137T)0F x (ISPIO T)JS0D 309II0D0 ¥®
%+ (F9pao  T/3xed T’301]17 T)N= (I9pI0 T‘3xed T‘30I13 T)n
T-3013° U ‘ 0 = 30313 T Op
T1-3xed u ‘g = 3aed T op

(I9pI0T T /03 ‘320073091300 ‘n) QEYVYHS (30337 T/3aed T)ILVAINd OQ THTIVEVA dWOSi

IspIo u ‘p = ISPIO” T Op
N $931BUTPIOOD SYJ 30SITI0D———|

JT pue
T pue
wonow rsuwouour,dols
sanTTey ‘,: jo0x3 T/3aed T .3

3 ‘xewIoo ‘, iz, (WIsYylTo/aa0d7a), (,(STZ0ZR'PTZIST0TR) ,‘x)23TIM
asTe
UOT3RAISSCO 2TUT TTBO
BIEP PW ITUT TTEO
P/ 0P°T = 3P UuT
P x P =27
86" x 3IP = 3P
usyl ( Xersi u 3T pw T) JT
usyl (Xew xew J10D'3H°xew 100) IT
0a TATIVIVd ANE dWOSi
op pus
op pus
3T pud
30137T = (gz)eanTres
3xed T = (1)sanTrey
UOT3D3IIOD” 81 = Xew JI0D
usyl (xeu 100 -3H6° UOT308II0D [8I) T
Z wrisyi A / Awunp y Auump = UOT108II0D  [8X
K3TOOT®A 9Yl 03 UOTIDDIIO0D | (T)IF200 30911004 (2aed T430137 T)0I = Auwnp
( (3aed T‘30137T)ssew 3 y deisq ) / (OP'T) = Z wisyl 4
0PG ¥ T 3P« (3xed 1’30137 T)ssew 3 / (3aed T/30X37T)2030F *®
® 4+ (g’3xed T‘30137T)n- = (31ed T/30137T)0F

T-30I137 U ‘Q = 30137 T Op
1-3xed u ‘g = 3aed T op

(UOT3081I00™ [ ‘Awwnp ‘Z-wisyly A ‘30137 T/31ed T)JIVAINd O0d TATIVIVA dWOS|

‘0 = Xeuw 10D
UOTI09II00 3Y3 JO 9ZTS 9Yl }O9Ud———|

UOTJeIST[900E paInsesul pue UoTleIafsdde i
po10Tpaid uSeMlS] 9OUSISIFTP JO buTuesw sey (F ‘ox9y —-——j

sanTTeI :: (z:T)uoTsuswip ‘Isbsjut

0F :: (T-xew 3xed u:Q‘T-Xew 3013 u:Q)uoTsuswtp ‘(dp=puTy) TeaI
Auwmnp ‘zTwIsyl A ‘UOTI09II0D” [9I ‘Xeuw 100 :: (dp=puty) [esx
pO-o1 = ¥eu xew I00 :: x932weied ‘(dp=puty) [eaIx

suou 3ToTTdWT
sxojswered nduT ssn
elep pw asn
s@j3euTpiood” 3aed ssn
S1Ue]1SUOD asn
1091100 BUTINOIYNS

1
90103 UOTIDTAF SUTINOIQNS PUS

0a TATTVIVA NI dWOS |

op pus
op pus
D0T OTIJ 4 2P UTx(T‘3xed T/3013 T)nN 3
3 — (3aed T‘30137T)°010F = (3xed T‘30I13 T)SDI03F
i

i 3T pus i
i ‘9€ / 00T OTA3 = 00T OTiF
i usyl( ( 0 *ber 30137T) -puer (T-bar ssew ©TI J) ) IT
i usy3( ( 0 tber 30137T) -puer (p'be 3jxedTT) ) 3T

SOTwWeuAQ PTOIJUSD I0J UOTIDTIF 9ONPOT ————m i

(2xed T/3013 T)SSEW J 4 UOTIDTII = DOT OTIJ
T- 30137 u ‘Q = 30137 T Op
1- 3a3ed u ‘g = 3xed T Op
(3P UT ‘n ‘90103 ‘Sseu J‘UOTIDTIT) AEUVHS LNt
3 (00T OTIF’I0I] T)IIVAIYA 0 THTIVIVd dWOSi



Nd 23absTut ‘g 1absTutr ‘N 23absTur ‘zizbsur ‘z3abs ‘3suoo o :: (dp=puTy) [eax anes
uoTjeTsueI] :: ([-xew 3rxed u:Q)uoTrsuswrp ‘(dp=puTy) [ES1 suou 3ToTTdWT
S]IUB]ISUOCD STnNpow
snes
suou 3TOoTTdWT
xeuw 3axed u : ATuo ‘s9j3euTlpiood 3xed asn eleq paieys YiTM SOTNPOW ——————————————

dp : ATuo ‘s3ue3suod asn

suonouny pue sAMPOJA  §°H

i
szo3swexed 3nduT STnpou pus

APPENDIX G. SOURCE CODE OF THE PIMD PROGRAM

oTdwes ebawo 4 wiousi A :: (dp=puty)eaI
souewrozrad :: ( dp = putry) eex
paiyl u ‘ToaTu :: Isbsa3jut
J ‘AD AP ‘ADTE ‘AD WP ‘ADY i (T-xXew 3aed u:g)uotsusutp ‘ (dp=puty)TeSx ®IeP PUW 3TUT SUTINOIQNS pud
UOTIDTIF ‘3P UT ‘Zz73Ip ‘3Ip :: (dp=puty) [esx
pess :: Isbejut
swo™ X :: (dp=puTy)Tesx op pus
oseyd puea J ‘ssew OTI I ‘ssauybnoi 3 :: 1s9boqut op pus
swo™ 3 ‘dwodosep 3 ‘YOH F ‘Teriusijod 3 ‘Juod 3 :: I9ba3UT 0PS xx( 3P/ d e3eq / (31ed T/30137 T)SSew J x UOTIDTIF yx OP'9) %
ssew :: (dp=puTy)ea1 % = (3xed T‘30137 T)90I0J puel
eoy o :: (dp=puTy)TeSx
yabusaisT3od ‘wbTy ‘e ‘y :: (dp=puTy) Tes1 JTUT SSew JO pus
eydre ‘dTeisq ‘eisq ‘y3 :: (dp=puty) [eex 3T pus
pur T ‘de3sTsqo ‘sqo u ‘xeTex u :: IsbojuT , ©suas ou sejew ssew OoTJI I, dois
EERE]
aaes *9¢ / (2aed T/3013 T)Sseuw J 3
suou 3TOTTAWT 3 = (3xed T/30I3 T)Ssew F ( (0 ‘SU° 30IF T) IT
xew 3xed u : ATuo ‘ssjeurpiood 3aed ssn ( Zxx(272d"T 4 3a2d U / TA)UTS x OQOP'F ®
dp : ATuo ‘s3jue3suod asn ® x(3xed T)AD G ¥ M 4+ wIOUSI A ) B
szojeuweied 3nduTl oTnpour 3 / ( (1xed T‘30I3°T)S8H ¥ + wWIOUSI A ) ¥
3 yx ssew = (1xed T‘’30I13 T)Sseu J
i SOTWeuiAp pPTOIlULD |
ss3euTpIo0d jIed STNPOU pPus usyl ( 1 "bs* ssew o137 ) JT SsT®
SSBW / WIOUSI A x ¥
20103 %o :: (dp=puty) eaI 3 ZyxyoTdwes ebswo ,/ (3I1ed T‘30x3  T)ssew J = (3xed T‘3013 T)Ssew J
p :: (dp=puty) Teox wrousi A / ( (3aed T/30I37T)S9H Y + wIOUSI A) B
buTtputm u :: x9b9]UT 3 yx ssew = (3xed T‘’30I13 T)Sseuw J
ejep j0d pueI :: (I- XBW TOA UxZ:(Q)UOTSuswTIp ‘Isbajutr uteyo o213 sdeTToo
90103 zaX1 [0 T-xew 3xed u:Q‘I-XPW 30X} u:Q)uoTsuswip ‘(dp=puTy) [es1 usyl ( o "bs* ssew oTI 7 ) JT

(
(T-xew 3Ied Uu:Q‘I-Xew 30I3 U:()UOTSUSUTP dp=puTy) TE2I sessew sSnNOT310TJF 189S

)
20I0J [0 :: ) o
(T-xew 3xed Uu:(Q‘T-XeW 30I3 U:(Q)UuoTsuswtp ‘(dp=puty) [eax
) ‘o

20107 ' X

n :: (Xew I9pIo u:(‘r-xeu jxed u:(Q’l-xeuw 30I3 U:()UOTSUSUTIP dp=puTty) Te9I JT pus
1epao [ ‘zepao T ‘azed [ ‘3zed T ‘3013 [ ‘jox3" T :: I9Hb2quT Zxx ( Zxx (372d Ty3xed U/TA)UTS &« "F x Y ) B
% x BOU O ®
87T = XBW TOA™ U ‘G = Xeu IspJxo u :: I93swered ‘Isbsjur 3 4+ (3xed T/30137T)Sseb ) = (3xed T/30I13 T)Ssb ¥
usy3 ( z-be' eOUTF) 3T
i Zx%(30I37T x 303137 U / TA)UTS x %
i Z Jo siaemod agq 03 aary (xew )3xed U pue (Xew )30I3 U j 3 0P'F x(33ed T)AD V¥ x Zxxd ®BISQ / Ssew + ®
i 3 Zxx (3104 T 4 3xRd U / TA)UTS 4 ¥
i ZIG = xew 30I3 u ‘gzl = xeu 3xed u :: 193swered ‘Isbojut ® 0P'F «(3732d T)AD 9 x ¥ = (3xed T‘3013 T)Sab 3y

- - - I
1-30137u ‘ 0 = 3013 T Op

I9pxo~u ‘j0x3"u ‘jaed u :: I8bejur T-3xed u ‘ g = 3axed T Op
SosSsew SNOTOTIOTI pue OTIF ‘sabh ™y 385 |

126

anes
suou 3TOoTTdWT op pus
dp : ATuo ‘s3ue3suod asn (I9PI07 T) FJS0O II0D = (ISPIO T) FJ20D 3081100
ss3euTpI000 3xed STNPOUr ISpIo u’Q = ISPIO T Op
i *T = (7)3®00 1100
BlepPT0GZI STNpow pus IT pus
Zw :: (QGz:T)uoTsuswip ‘Ii9bajut ,9TqeTTeArUN 103091100 1030Tpaid 103 19pi0, dois
z3dy :: xebequt osT®
aaes 09/°T = (G)3F=00 1100
suou j3ToTTdWT 9/°T = (F)3F=00 13100
®IEP T 0GZI STnpou 8T/°1T = (£)3F=200 1300
i 09€/°15Z = (T1)3F®007 1300
S3UB]SUOD STNPOW pud juasqe jejsowrsyl JT ATuo 0z/°¢ = (0)3200 110D
G9Z6GTFT € = 1td :: z928weaed ‘(dp=puty) [ea1 9T1/°€ = (0) 3200 1100
g = dp :: zo23swexaed ‘xsbsjur | usyy (g-berispao~T) JT SSTS
(0€“9) puTy Te®1 pa3joaTss = dp z93suwezed ‘IsbsjuT i ZT/°T = (§)3F=00 1100
(66T ‘GT)PUTY Teax pojosTss = dp :: xo3suwexed ‘IsbsjuT Z2/°1T = (€)3F=200 1100




127

G.5. MODULES AND FUNCTIONS

S3uUP3SUOD dsn
(uT) Td"pow uoT3douny (dp=putry) [ESI

- - - i

Tdz pow uOT3IOUNI PUSD
1d x z » Tdg pow = tdgpou

IT pus
0p"T + Tdg pow = Tdz pow

usyl ( 0 37" tdg pow ) IT

( (1d x 2) / Tdg7pow )3juTr - ( 1d 4 7) / Tdz pow = Tdz pou

ut = tdgTpou

ut (dp=puty) Tesx
suou jToTTdWT
S3UB3SUOD 3SnN
(ut) Tdz"pow uoT3ouny (dp=putry)TesT

1
10adxa”x UOTIOUNT PuUD

q0x3"u / 30adxe x = 30adxe” x

op pus
(3xed 3 ‘301737 T)sAyd x + 230adxs x = 30adxs” %
T-30x37u ‘ 0 = 3013 T op
0 = 20adxe™x
qxed y :: 19bo3uT

suou j3ToTTdWT
szojswezed 3ndut ssn
sojeuTpIooo 31ed Ssn

(3xed y) 30odxe” x uoTlouny (dp=puTy) Tes1

1
sAyd™n uoTiouny pus

IT pue

( (0“33ed 330337 ®)N x Zxx( 3TRd 3y3aed U/TA)UTS & X x b ®

® — (3a3ed 3y ‘30137 E)9DI0I O ) x BOY O - sAyd n = sAyd n
usyl ( z-be* eoy 1) IT 9ST®

(1xed ‘3013 ) 9DI0I zZ8I [0 x POY O - sAyd n = sAyd n
usyl ( T *ber eoy 3 ) 3T
UOT109II00 ISPIO ISYLTY |
(0“‘3xed ‘302137 €)n = sAyd n

j0x3" e ‘aaed ¥ :: I9bojut
suou 3TOTTdWT
S3jue]lsuod asn
szojswezed 3ndut ssn
sojeuTproo0 31ed Ssn
(3xed ‘30137 ®) sAyd n uotiouny (dp=puTy)TeaIx

(

i

1
sAyd~x uoT3iouny pus

IT pue
( 00T T -(ooT 3aed (‘30137 B)X - 3
(00T 3aed T/30I3 B)X - (37ed {‘30I3 B)X 4 T ) x A B
3 — (3xed ‘30137 B)80I0I [0 ) x BOY O - sAyd x = sAyd x
3T pus
"0 = 00T T

T+ 3aed 3 = oo1 3xed [
T- 3aed ¥ = oo1 3xed T
SsTe
P x butpurmTu = 2017 T
0 = oo7 3xed C
z-23a1ed u = oo1 3zed T
usyl ( 1-3xed u *bs* 3zed 3 ) JIT 9ST°
P x buTputmTu - = DOT T
T = ooT 3xed [
1-3xed u = 207 3xed T
usyy ( 0 ber jaedy ) IT
usyl ( z-bs* eoy 3) 3T °sT°
(3xed 3 ‘3013 ) 20I0F [0 x BOY O - sAuyd x = sAuyd x
usyy ( T *be eOUTF ) IT
UOT109II00 ISPIO ISYDTY |

(3xed ‘30131 ®)xX = sAuyd x

20T T :: (dp=putTy)TeSaI
oor 23xed [ ‘ ooT 3xed T I9bH97UT
qox3" e ‘jaed ¥y :: I8bajur

suou 3TOoTTdWT
S]UB]}SUOD Bsn
szo3sweaed 3ndut asn
so3euTpIOoOO 1xed Osn
(3xed ‘30177 ®)sAyd x uoT3ouny (dp=puTy) Tes1

i
SuTe3uo0d

dp : ATuo ‘s3ue3suod asn
suoT}ouny STNpou

I
elep T pU STNPoOW pPud

90103 pueIl @
sob™y ‘sseu I

(T-xew 3aed u:Q ‘T-xeu 1013 u:Q)uoTsuawip ‘(dp=puty) Tes1
¢ (T-xew 3xed u:Q‘I-xBW 2013 U:Q)uoTsuswIp ‘(dp=put3f) [eSI

J9007 309100 :: (Xew I9pi0 Uu:()uoTsuswip ‘(dp=puTy) TeSI
F200 30Tpaxd :: (Xeuw ISpIO U:(‘I-Xew ISpIO Uu:()uoTsuswip ‘(dp=puTy) Tesx
anes

suou 3TOoTTdWT
XPWw 3013 u ‘xXew x9pxo u ‘xew 3ied u : ATuo ‘sejeurpioood jied asn
dp : ATuo ‘s3ue3suod asn

elep pw aTnpow

I
©1EPTUOTILAISSUO STNPOW pPus
1 (T-xew 2xed u:(Q )uortsusawIip ‘ (dp=puty) eI
quaweoeTdsTp :: (T-Xeu 3Ied u:(Q )uoTsuswip ‘ (dp=puTy)eo1
II00 gI :: (z:T ‘T-xew 3aed u:g)uoTsuswip ‘ (dp=puTy)TeSI
queo~s ‘T°s ‘ I7s :: (ebswo u:Q’T-xew 3xed u:p)uoTsuswip ‘ (dp=puTy)TeSI
ebpsuwo p ‘e3Tep :: (dp=putTy) TeSa
007 3ued  u ‘sqo jued u ‘ ebawo T IsbajuT
0007 = ebswo u :: z93sweied ‘/ Isbojut
dy tpw xd g ‘dy 3s ad g :: (dp=puty) (e8I
ZSNTpeI uoTileIAb ‘snTpex uoTierkb :: (dp=puTy) Tesx
1 b :: (b axed u:T‘z b u:Q)uoTsuswIp ‘ I9H93jUT
xew 3xed u = I b 3axed u ‘pppz = I H u :: xo3swexaed ‘ x9bHojuT
I b1 :: x9bojut
I100" Y n :: (T-xew 3aed u:(Q‘xeu’ 1013”u:()uoTsuawip ‘(dp=puTy) eI
dojy ™ u Is9bajut
1sTp oseyd :: (8seyd u:p)uoTsuswip ‘ (dp=puTy) TeSI
sseyd T Isbsjut
00T = @seyd u :: xo3swexed ‘ zsbsjuT
H (xew 013 u:Q)uoTsuswIip ‘(dp=putTy) Tesx
(xew 2013 u:Q)uoTsuswIip ‘(dp=put3y) [eaI

snTpei uoTilerkb 1xed

swo~uni1~ b ‘uni— b
swo~ewr b ‘1xed ewt b

asTtp 21ed :: (pTibu:Q’i-xeuw jxed u:(Q)UOTSUSUTIP ‘I8bsjuT
pTab T I9b9qUT

00Z = PTIHb U :: xo3swexaed ‘ zsbajuTt

uoTlouny TTNY :: (T-xew 3xed u:Q)uoTsuswTp ‘ (dp=puTy)Tesl

AbIsus™ ITATUTY ¥
Abrsus wiey 3
Abrsua uTy Yy

i (T-xew 3xed u:Q ‘I-Xew J0I3 u:(Q)uoTsuawip ‘ (dp=puTy)TeSI
¢ (T-xew 3xed u:Q ‘T-xXew 013 u:(Q)uoTsuswip ‘ (dp=putTyf)TeSI
¢ (T-xew 3aed u:Q ‘I-Xew 1013 u:(Q)uoTsuswip ‘ (dp=putT3f) [eSI
o u :: xsbsjut
(dp=puty) Tes1
(dp=puty) Tesx
(dp=puty) Te81
(dp=puty) 131

ZYOH 2 N ' YOH 2 N

zutad 3 ‘wrad 3

zata wb™3 ‘ataTuwb 3  ‘zwb 3 ‘wbT1 ‘zwxey o ‘wIiey o
ziod xo A ‘jod %o A ‘gsselo 1 ‘sselo 2

saes
suou 3ToTTdWT
xeuw 013" u ‘xew 3aed u : ATuo ‘ssjeurpiood” 3ied ssn
dp : ATuo ‘sjue3lsuod asn
©1EPTUOTIRAISSCO STNPoW

I
©'lep opow [eWIOU STNpow pus



SuUOT3IOUNI STNPow pus

APPENDIX G. SOURCE CODE OF THE PIMD PROGRAM

128

TeTausjod uoTloUNI puS
yjzbusiizsTjod 4 Terjusjod = Terjusjod
J09719s pus

,osuss ou sayjew TeT3iusjod 7, doils
3Inejysp ssed

3T pus
0P T = Teriusjod
usyl ( g == ATISP T) IT 9STd
dwsy 007 x = TeT3usj0d
usyl ( I == ATISP T) JT °sTe
dws37 00T X 4 dwe3l D07 X y QPG = Terjusjod
usyl ( 0 == ATISP T) 3IT

Td 4y 7 s 3Ied W — 20T x = dw®@l 00T ¥
7 xx (Td z 2aed w -x ) SI0ABTITIOSO OTUOWIRH |

(g)oseo

3T pue

((00T %) Td 3uT)e3ep 10d PUBI 4 (DOT X)SOD = Tetjusjod
usyy ( ¢ == ATISP T) 3T BST®

((007 %) Td 3ut)e3lep od puex , (DOT X)UuTs = Tetjuajod
usyl ( T == ATISP T) IT 9STd

20T 2SUOD 4+ ®

(ooT Td 3uT)e3ep 30d puBI 4 (DOT X)SOD — = Terjusjod

( oo7 td 3utT )ejep 10d puel 4+ DOT 3JSUOD 4 g = D0T 3JSUOD

op pus

ubts - = ubts

ubTs y (30d T)elEp 30d PUBRI 4+ OOT 3JSUOD = DOT 3JSUOD
T-007 td 3ur ‘ o = 30d T Op
(0017 x) Td 3uT = 207 1d 3uT
1 = ubts
0P'0 = O0T 3suoo

usul ( 0 == ATISP T) 3T
TetauslodsTTRIING |
(y) =seo
3T pus
( T- 20T7% x( g+ D207T7X) ) x § = Teriusjod
usyl ( g == ATISP T) IT 9STd
20T % x (I- Zxx20T X) x ¥ = Terjusjod
usyl ( I == ATISP T) JT °sTe
Zxx( T— ZxxD20T x ) = TeTjusjod
usyl ( 0 == ATISP T) 3IT
(2. (1-2.%) » yabusais jod ) treriuslog usprnuraeddoq j
(¢) oseo
3T pue
( 0207 % )sod = TeT3usjod
usyl ( g == ATISP T) JT SST2
( 20T X )uTrs = Tetjuajod
ueyl ( T == ATISP 1) IT OSTd
( 207 % )sod — = Tetjus3jod
usul ( 0 == ATISP T) 3T
( ( x )sod 4 yabusijzs 3od - ) BAOIOJUOM-TOYUSIT |
(z) sseo
3T pus
0P°T = Teriusjod
usyl ( g == ATISP T) IT 9STd
o0T ¥ = TeT3usjod
usyl ( I == ATISP T) JT °sTe
2077 X y 20T X x 0PG° = Terjusiod

usyl ( 0 == ATISP T) 3T

(T = 3) Teraustiod oTuowrey |
(1) °oseo

0pP*0 = TEeTiuslod

Tet3usiod ou i
(0) oseo
(Tetausjod J) 9sed 3109T8s

207 Td 3quT :: I9HojuUT
Jaxed w ‘ubts ‘jod T ‘ATISpP T :: I9bojuTt
dure3 00T X ‘DOT 2suod ‘D07 x :: (dp=puty) [esax

suou 3ToTTdWT
ss3euTPIOOD 3xed Ssn
sas3swered InduT osn
S3UB31SUOD Bsn
(2xed w’aATIop T’0O0T ¥)Teriusjod uoTtiouni (dp=puty) Teax

I
ogd uoT3ounjy pus

op pus
p + oqd = oqd
(0 > oqd ) oTtum op

op pus

p - oqd = oqd
(p =< 2qd ) aTTym op
20T x = oqd

20T % (dp=puTy) Te81
suou 3ToTTdWT

sejeuTpIOOd 3xed °sn
(0ooT x)ogd uotiouny (dp=puTy) Teax

1
TdzT3uT uoT3OUNI pudj

(td « *z) /( (ur)Tdz Pow - uT) )3uTu )pow = Tdz 3JUT |

Tdpow (dp=puty) Teex

ut (dp=puty) Teex
szo3suwered nduT ssn
S3Uur3lsuUOdD 9asn i

(ut) Tdz73uT uotiouny I18He3UT]

I
TdT3uT uoT3OUNI pud

Zs TOATU +Td3quT = Td 3uT ( 0 37" Td 3ur ) IT

Toa™Uu x g ‘ (1d /( (uT)Td pow - uT) )3uTu )pow = Td JuT

ut (dp=puty) esx
suou 3TOoTTdWT
szo3swered nduT ssn
S31UB]1SUOCD Ssn
(uT) Td 3uT uoT3dounjy Isbsjut

I
Td pow uoTiIOUNT PUS

Td x Td pow = Td pouw

IT pus
0P"T + Td pow = Td pow
usy3l ( 0 *3T° Td pow ) JT

( (td) / tdpow )autr - ( 1d ) / td pow = td pou
ut = 1td pou

ut (dp=puty) Tesx
suou 3TOoTTdWT



129

G.6. NORMAL MODE TRANSFORMATION

(3013 u’3xed u‘z3labsut ‘X ‘n) AIIVHS
3 (3013 Awwnp~anoj ‘30137 T ‘3xed T) ALVATHEA

T-33edu ‘ o = 3aed T op
3 S
0a THTIVEYA dHOS$ |

jxed Auump—InoJy ::
jox3 Awwmp Inojy ::

WIOFSULIJ-OTINOT XSPUT 1933013 ——|

(xew 371ed Uyz:T)UOTSUSWIP
(Xew 30I3 UxZ:T)UOTSUSWIP

! (dp=puty) Te=21
‘ (dp=put¥) TES1

suou 3ToTTdWT
elep” 9pow TRWIOU asn
sojeuTprood 3aed asn
TesI suexl auTINOIQNS

I
SSATIPATISP 3TUT SUTINOIGNS PUD

I
i op pus

i op pus
i op pus

i ‘0 = (7spro T/axed T/3013°T)N

i T-30337uU ‘0 = 30337 T op

i T-23x3ed u ‘g = 3xed T op
i Ispio-u

T = I8pIo” T Op
\\\\\\\\\\\\\\ 0 01 SOATIRATISP 3I8S———————]

suou j3ToTTdWT
ssjeuTpIood jxed asn
S9ATIBATISP 3TUT LUTINOIgNS

N4 3IbsTuTr

(zepro T/3xed T/20I137T)N =

1
droex"sueal SUTINOIGNS Pud
op pus
op pus
(zopxo T/3aed T/302137T)N
T-30137u ‘ Q0 = 30I3°T Op
T-2a3ed u 4 g = 3aed T OpP
Q0 = I9pIo T

z3abs

x

(Z+30337TxZ + 30237 U) 3013 Auump INoj =
z3abs

qzed wt
jaed a1

(

i
qzed T | op pus

op pus

( 0“3xed T‘z/30I3 U+3013 T)N

(T+30337 T42) 3023 Awump™anozy = (0 ‘3zed T/30137T)n0
T - 2/30137u ‘ T = 30137 T op

3T pue

T+30137 U) 3013 Auump™ Inoy = (Q‘3xed T/z/3013 U)n
usyl (T -3b° jJox3"u) JT

(1) 3013 Auunp~a1nojy = (p‘3xed T/Q)n

(30137 U‘T ‘3013 Uu‘3013 Awump INnoJ) TINOJF TTeD

op pus

(Z+30137T42) 2013 Awunp—anoJ

(T+30337 T4Z) 3013 Auump™anoz
T-30I37U ‘ 0 = 3033 T Op

‘0 =
(0“3xed T/302137T)N =

T-3xed u ‘ g = 3aed T op
szswATod 1933013 9yl SZTTOUOCHETIP |

i

z3abs

*

(z+31xed T4z + 237ed Uu)3xed Auunmp InoJ =

Z33bs

(

i
301377 | op pus

op pus

( 0‘z/23ed ut+azed T/30137T)N

(T+338d T47) 32ed Awwnp—anoy = (0 ‘3xed 130137 T)n
1 - z/2zed u ‘ 1 = 3xed T op

3T pue
T+3aed u) 3xed Awwmp Inol = (p‘z/3xed u‘joxl T)n

usy3l ( T "36° 3aedu ) JT
(1) 3aed Awump—ano3y = (0‘0‘30I137T)n

(3aed u’t‘2x1ed u‘jred Awwnp InoJ) [Inoj TTeD

op pus
axed wr | ‘0 = (z+33ed TyZ)23xed Auump InoJy
2xed o1 | (3aed T/3013 T)X = (T+373ed Tyz)2xed Auwnp InoJ

1-3xed u ‘ o = 3aed T op

1-30I37u ‘ 0 = 3013 T Op
SI0]eTTTOSO JuaIaIITP oT7dnodsp |

op pua
op pus
(37ed"T/30237T)%x = (3xed T/30I137 D)X
T- 3013 u ‘0 = 3013 T Op
I- 33ed u ‘ o = 3aed T op
uoT3leTsueIl —-j

(3xed T)uoT3ETSURIL —

( ( 2xed uygz:1 )3aed Auwnp Inoj )o3ed0TTe

( ( 20I2 UyZ:T )30I3 Awwnp Inoj )o3ed0TTe

Jaed Auump InoJ oTge3e0O0TTE ‘( : )uoTsuswTp ‘(dp=puTy) TeSI
jox3 Auump InoJ :: STge3IedOTTe ‘( : )uoTsuswTip ‘(dp=puTy) TesI
suou 3ToTTdWT

elep Spow TewlIou asn

sejeutpiood 3xed asn

dros1~suell suTinoigqns

(

Spow TewIOU 3TUT SUTINOIGNS Pus

i
i (3redU 4 QP'T)/ Zx«BUTPUTM U = 3SUODTD
O JUE3SUOD S3ETNOTEO-|

IT pue
op pus
(3xed T)uoT3eTsueal = (3aed T)uoTleTsSueIl
(x2dy ‘T ‘00T ueI‘ZW) 0GZI TTED
T-3xed u ‘ o = 2xed T op
usyl (T ‘bs- sseyd puer J) IT
oseyd pISpPIOSTP |

(Gro-ooT uex) x 1d x Z +

op pus
/ P x butputMmTu = (3aed T)uoTieTsueI]

T1-3xed u ‘ o = 3xed T op

———--I03109A\ UOT]ATESUBRIL 9]1eTndTed |

31ed T 4 O0P'T ) x ( 3xRd U 4 OP'T)

d 2absTutr 4 N 3absTutr = Ng 23absTut
(0PG*—) xx (30137 U) = g 3xbs™ur
(0PS*—) xx (372d U) = N 33bsTutr

(0PS " =) xxZ = z3absut
(0PS ) xxz = zaabs

D07 uex TeaIx

suou 3TOoTTdWT

el1ep (0GzI esn

sajeuTpIood” 3aed asn

S31UB]1SUOD Ssn

sxo3aweaed 3nduTr ssn

elep Spouw [ewIou asn

i buTtpuTMTUu pue p JO SNTEBA 109II0D SYJ SPISU BUTINOINGNS STYL |

Spow TBWIOU 2ATUT SUTINOIqNs

i
UOTJPWIOJSURIL SPOW TPWIOU 33Uyl I0J SaUTINOY;|

uoneurIojsue.a) spouw jeuioN 9°r)



APPENDIX G. SOURCE CODE OF THE PIMD PROGRAM

130

Jox3 Auump InoJ :: STgele00TTe ‘( : )uoTsuswTp ‘(dp=puTy)TesSI Jred Awump InoJ :: STge3edO0TTe ‘( : )uoTsusawIip ‘(dp=puty)TesaI |
suou 3ToTTdWT Jox3 Aump InoJ :: STqe3IeOOTTe ‘( : )uoTsuswTp ‘(dp=puTy) TeSI |

Blep epow TewIou asn suou 3TOTTdWT

s@3euTpIood” 3ied asn ©vlep opow TPuIOU Ssn

90107 [0  wIOJsueIL LUTINOIgNs s@j3eutpiood” 3aed asn

i 90103 WIOJSURIL SUTINOINS

1 I
90107 WIOJSURIL SUTINOIQNS PUSD TesI sueI] SUTINOIGNS PUS

0ad TATIVIVA ANI dWO$ i

3xed”T | op pue 0a TATIVIVA ANE dWOS$ |

101371 | Op pue

op pus op pus
ud 3absTuT 4 (3Ied T‘30137T)8010F = (3xed T‘30I3 T)SD0I0T (3xed T)uoTjeTsuerl + (3xed T3013° T)X = (3xed T/30I13 T)X
I-30137U ‘ 0 = 30137 T Op ud 3absTuT 4 (T+37ed Tyz)2xed Auwmp InoJ = (3aed T/30I37T)X

T-3xed u ‘ g = 3xed T Op

op pus (xew 3xed u’T-‘1xed u‘jred Awwnp InoJ) [InoJ TTed
Z3abs x (Z+30I37 TxZ + 30I3 U) 3013 Auump InoJ = (3xed T/z/30I37 U+30I37 T)=0I03F
Z3Ibs 4 (T+230I37 Txg) 3013 Aunmp Inoj = (3xed T‘3013 T)S0103F
T - 2/30137u ‘ T = 30137 T op
op pus
IT pus Jxed wrj zazbsur 3
( T+301237u)1013 Auwmp InoJ = (2xed T‘z/30I3 u)o010] ] (z/3xed u+aaed T/3033 T)X = (2Ied u+z+31aed Tyz)aed Auunp InoJ
usyl (T "3b° 30137U) 3IT Jxed wIj z3Ibsut 3
(1) 3013 Auump~anojy = (3xed T‘Q)s01037 3 (3xed utared T-/30I137°T)X - = (z+3xed Tyz )3aed Auump InoJ
Jaed ey | z3xbsur ]
(Xew 30137 U‘3013 U’T‘30I3 U ‘30I3 AUWNP INOF) TINOF TTED 3 (z/3xed u+ared T-/3013 T)X = (3xed u+T+3Ixed Txz)3xed Awwmp Inoj
qxed oy | zaabsur , (33ed T/30I117T)X = (T+33ed T4Z)23xed Awump InoJ
T - ¢/3aedu ‘ 1 = 3xed T op
op pus
jxed wt | "0 = (Z+230I31 TyZ)30I3 Aummp InoJ JT pus
qxed a1 | (3xed T‘30I37 T)90I0F = (T+30I1 TxZ) 3013 Awwnp InoJ ‘0 = ( z+3xed u)a3zed Auump InoJ
I-3013"U ‘ 0 = 30137 T Op (z/33ed U’30137 T)X = ( T+3xed u)ared Auump InoJ
usyl (1 -3b6° 3xed u) It
T-2a3ed u 4 g = 3a1ed T Op 0 = (z)23xed Auump InoJ
(30717 u‘axed u‘z31abs ‘201071) AAYVHS ® S (0“201737T)%x = (1)23xed Awwnp InoJg
% (3033 Awump anoz ‘30137 T‘3aed T)AIVAIMd 04 TATIVIVA dWO$ i
|||||||||| sazswATod 19330173 Syl SzTTouobeTp——| T-30I3° U ‘ 9 = 3013 T Op
(uotjeTsuexy‘ud 3abs uT‘jox3 u‘qaed Uu’Z31absSuT ‘X) QEIVHS 3 &
0a TATTYYVd dNd dWO$ i 3 (3xed Auwmp~InoJ ‘30137 T‘3xed T)HIVAI¥YA O TATIVEVd dWOS i
30137T | Op pus UOTJRWIOISURI] STINOJ XopuT Jxed ——j
op pus
z33bs 4 ®
] (z+33ed T4z + 237ed u)azed Awump Inojy = ( z/3xed u+3ixed T430137 T)20I037 0a TETIVIVA AN dWOS$ i
z3abs (T+373ed T4z)3xed Awmmp anoJ = (3xed T‘/3013 T)90I107 axed T | op pus
T - ¢/3zedu ‘ 1 = 3xed T op
op pus
T pus d73absTUT 4 | (T+30237 Txg) 30137 Aummp  xn03y = (3xed 130137 T)x
( T+3xed u)3xed Awwnp Inoj = (g/3red u‘30x3 T)e0103 I-30I3°u ‘ 0 = 3013 T Op
usyl ( T *36b° 3aed U ) IT
(1) 3aed Aummp~—anojy = (0‘30137 T)od0107

(Xew 30X3 u‘I-‘3013 u‘30x3” Awunp InoJ) [INOJ TTed
(xew 3xed u‘qxed u‘1‘3aed u‘laed Auwnp Inoj) [Inoj TTeD

op pus
op pus jaxed wrj gz3absutr ]
azed wt | "0 = (z+37ed Tyz)3xed Auump anoJ 3  (0’37ed T’Z/30I37U+30IF T)N = (30IF U+Z+30I3F TxZ) 30T Awwnp InoJ
qxed a1 | (3xed T‘30137T)80710F = (T+373ed T,z)3xed Awwnp InoJg qxed wr; gzixbsur 3
T-23ed u 4 g = 3aIed T OpP 3 (0“3aed T‘30I37U430I3 T-)N — = (Z+30I3 Tz ) 3013 Awmmp InoJ
Jxed oy | zaabsut 3
1-30137u ‘ 0 = 30137 T Op 3 (0‘3xed T/Z/30I37U+3013 T-)N = (30I3 U+T+30I3 Ty7) 3013 Aumnp InoJ
(30137 u’3aed U ’z31bs ‘90103) ATIVHS 3 & 3xed ey | ziabsur y (0‘3xed T/30137T)0 = (T+30I3 Txg) 3013 Auump Inoj
3 (3aed AwumpTanoy ‘3013 T/3aed T)AIVAIMd Od TITIVIVA dWOS| T - Z/30a3u ‘ T = 30137 T Op
SIOQBTTTOSO JUSISIITP STdNOOSpP——|
3T pue
‘0 = ( z+30137u)30x3 Auump InoJ
Jxed Awwnp - Inol :: (xeu 3xed Uygz:T)uoTsuswIip ‘(dp=puty)[esax (0“2xed T/z/303177U)n = ( T+30I37 U) 2011 Awwnp INnoJ
1013 Auump~InoJ (¥ew 3013 uyz:T)uoTsuswTtp ‘(dp=puTy)Teax ueyl (1 *2b* 0137U) IT
*0 = (2)30a3 Auumpanog
( ( 3zeduyz:1 )23xed Awwmnp InoJ )s3ed0TTe | (0“3xed T/p)n = (T)230I3 Auump InoJ

( ( 30I37Uyz:T )230I13 Awwnp INoJ )o3edOoTTe |




131

G.7. RANDOM NUMBER GENERATOR

T = ¥lax
oi
oi

(0002) ANYYY TVEY
(000T) 29adv¥I‘ (000T) THAAVI YEDIINI
(T€) 91/ (1€) AN YEOILNI
o1
MId¥ ‘QEESI ¥EADIINI
(062) ZW ¥EOILNI
oi
dNI¥VIS ¥0d4 NAS SISO O
i XAINO S¥EINdWOD LId z€ ¥0d Di
YOIVHENTD JIIWAN WOANYM 0G2d ¥Od ANILNOY NOILVZITVYILINI i
oi
(41a¥ ‘qIAST ‘ZW) 0GZENI ENIINOYENS

0000000000

JI0)JBJIIUIS JAquINU wopuey /9

*[1+ saem3yog sedrosy TedTIsunN z6-986T "Idod (D) i
TInoJ autinoigqns aNd
3T pus
Z 030b6
de3sT = xeuuw
SnuTIUOD €1

TM4+TdMydwe M+ IdMy TM=TM
IM+TdMy TM—TIdMyx IM=TM

am=duaIm

2nuUT3UO0D Z1
Tdwel + (T+T)e3ep = (T+T)eB3IRpP
adwel + (T)e3iep = (T)e3ep
Tdwel - (T+T)e3ep = (T+[)e3ep
adwel - (T)e3ep = ([)ezep
(C)eaepy 1M +(1+0)e3epy Im = Tdwejl
(C)e3epy (TM) TOUSH (T+0) @3EPX (2M) THUS = Tdwel
(T+0)e3eDY TM —(C)ejepy Im = zdws?
(T+0) e3epy (Tm) THhUus— ([) e3epy (M) Thus = adwsgy
xeuw + T = C

de3sT ‘u ‘w =T ZT op
Z ‘xeuwr ‘T=w €T Op
0P°0 = T
0P°"T = Im
(e32y3)uts = 1dm
Zxx (BA2YIL0PG " 0) UTS 40P " Z-=1dM
(xewu,uBbTST) / OP6S6LTLOEGETESZ 9 = ©3IdUd
Xeullyz = dolsT

usyl (xeww-3b-u) T z
Z=X'uu
SnNuUT3U0D 1T
w4+ L =C
T pus
1 o30b8
z/w = u
w-C = C
usyl ((w-3b6°[) ‘pue- (z-eb-w)) IT T
z/u = u
T pus
Tdwel = (T+T)e3ep
Idwel = (T)elep
(T+1T) B3RP = (T+[()e3EP
(t)e3zep = ([)e3ep

(1+0)e3ep = tdwey
(C)ezep = zdwel
usyl (t-36°() IT
Z'u ‘T =T 1T op
="
Uuyxg = U
dwojm‘amxdm’/Tdm‘Tm ‘R3] (dp=pUuT) TY=d

Tdwe3y‘tdwel (dp=puTs) TYEI

u‘xeuw‘u’C ‘de3sT /T WEDIINI

(Aexxe~uyz)eiep (dp=puty) Tvad

(uuyz)eiep (dp=puty) TVEd

Aexze~u ‘uu‘ubTST YADAINI

S3Uue3sSUOD Iasn

(UPTST ‘U ‘B3BP) TANOF HANIINOYENS i

(Aezze u/ubTsT‘uu’‘elep) TINOF HENIINOYENS
Uyyxg I9D23UT ue ST uu

I

901037 [0 wWIOJsueI] SUTINOIQNS pus

op pus
op pus
ud 21absTuT 4 (3xed T‘30137 T)®0103 z81 1O = (23aed T/3013 T)9D010I zZaI [0
1-30I1I3°u ‘ (0 = 1013 T Op
T-3a3ed u ‘ g = 3xed T Op

11ed T | op pue

op pus
z31abs 3
3 (Z+30I3 TxZ + 30I37U)30x3 Auump Inoj = (3xed T‘z/30I3 U+30I37 T)90I0J 2Z8I O
z3Ibs 4 (T+30I37 Txg) 3013 Awmmp Inojy = (3xed T‘30I137 T)90I03 zaX O

T - z/30337u ‘ T = 301371 Op

IT pue

( T+30137u)3013 Auwmp InoJ = (3Ixed T‘z/30I317 U)920I0J zZdI TO
usyl (T -3b° 30337U) 3IT

(1) 3013 Aummp~anojy = (3xed T‘Q)o0I0F zaI 1O

(3013 Uu‘T ‘2013 Uu‘3013 AwWwnNpP INOJ) [INOJF TTeED

op pus
3xed wr | "0 = (Z+3033 TxZ) 3013 Aummp™ anog
axed o1 | (3Ied T‘30X37 T)SD0I0J 29I TO = (I+30I3 TyZ) 0TI Aump InoJ

T-3013"U ‘ 0 = 30313 T Op

1-3xed u ‘ o = 3xed T op
\\\\\\\\\\ szowA1od 1233013 9yl 2zTToUCheRIp——|

301371 | op pue
op pus
z31bs 4 3
3 (z+31ed Txz + 23xed u)aired Auump inojy = ( z/3xed u+3zzed T/30I37 T)90I03J Z8I 1O
z33bs y  (T+233ed Tyg)3xed Auump anojy = (3xed T‘30137 T)90I0J zaI 1O

T - Z/3xedu / 1 = 3a3ed T Op

3T pus

( T+3aed u)3zed Auwnp inoJ = (z/3xed u‘30I11” T)9010J zd1 TO
usyl ( T 36 3aedu ) 3T

(1) 37ed Auump~anoJy = (‘30137 T)SDI0F zaI 1O

(3aed u‘T‘2xed u‘jzed Awwnp InoJ) [Inoj TTeD

op pus
axed wt | ‘0 = (z+3xed Tyz)aaed Auwnp InoJ
qzed a1 | (2Ied T‘30I13 T)90I03F 10 = (T+37ed Ty7z)2xed Auuwmp InoJ

T-3xed u ‘ g = 3xed T Op

T-30137U ‘ 0 = 30313 T Op
SIOJeTTTIOSO ULIDIITP oTdnodep——j

( ( 3aed uygz:1 )3aed Auwnp Inoj )o3eD0TTE
( ( 30I37U4Z:T )30I3 Aunp INOJ )S3e00TTe
Jxed Auwump InoJ :: STgeledoTTe ‘( : )uoTsuswTip ‘(dp=puTy) Tesx



APPENDIX G. SOURCE CODE OF THE PIMD PROGRAM

132

002220222202222222D

and
NINIEd

T + XUWM = ¥Ldd

i
AT aNF
0T 0109
0§z - 1T = T
T = dlax
NFHL (0§Z "0F° XVWM) dI
i
IANIINOD 002
ANTE x (1) ZW = (I)NVY
T+ 1= I
((LYT = M) ZW’ (1) 2ZW) ¥oFT = (M) ZW

XYM ‘NINM = ¥ 002 Od
DHMAON ‘d00T TOOAx i

(0SZ'TI)NIW = XYWM

(T+XYIAN ‘NIWM) XYW = NIWM

oi
FANIINOD 00T
ANIM x (1) ZW = (I)NvY
T+ 1= I
((€0T + M) ZW’ (M) ZW) FOHAT = (M) ZKW
XYWM ‘NIWM = ¥ 00T Od
(LPTT)NIN = XYM
MId¥ = NIWM
oi
FANIINOD 0T
Ji
T - ¥I1ad + N =1
0=1
oi
oi

T'I YEOEINI

(N) N¥d TVEd

NI ‘N ¥HEDFINI

(0G62) ZW YIOILINI

(6ALY9EBYLYT 2/  T=ANIY) LAWYV

B1q 03 uvorstosad butuzem : OIT | ("LFIE8YLPTZ/  T=ANIY) SHLINTEYI

(T'0) TVYANEINI FHL NI NOILNEIYISIA WJIOJINA HAVH SYHIWAN WOANYY HHL
ZW NI SYdOHINI HHI ONISN NVd NI SYFIIWAN WOANVY TVEd N SHIO0LS

(JIdM ‘N ‘NVY ‘ZW) 0628 ENILNOYdNS

and
NEALEE
2i
FANIINOD 00T
(9) TONS = (I).JINYd
(000" T “901DVdx¥) AONA=Y
N‘T = I 00T Od

AI ANz
T-=QEEST
(000" T “90IDVIx¥) AONA=Y
8Z0ML/ (QEEST) IT9d=¥
NEHL (0 "¥9° JdESI) JdI

/000" 9S¥SEF89Z/ 8ZOML ‘/0Q0°LSSSLPTY/ ¥OIOVA YIVA

oi
oi
(N) ANVY TYad
qEEST WADAINI
oi
(z-0 “H-¥) NOISIDEYA FT1900d IIDITAWI
oi
ANTYA dNI¥YLIS ¥ SI QHESI i
ANV NI SYEEWAN WOANYY TYId N SEJYOIS i

oi
(NANYY ‘qdESI) NOS INILINOY¥ENS
Ji
2i
2i
and
NINITE
oi
FANIINOD 008
2i
FNNIINOD 0zL
((LPT = M) 2ZW’ (1) ZW) ¥OIT = () ZW
0SZ‘8%T = ¥ 0ZL 0O
oi
FANIINOD 0TL
((E0T + ) ZW* (M) ZW) HOHI = (M) ZW
LPT'T =¥ 0TL 0d
oi
8T = I 008 OQ
oi
an ONIWGYM Oi
2i
AANILNOD 009
dWEIN = ((I)Z¥davi)z
((I)29aavi) zWw = ((I)T¥aavI)z
((I) T9AAYI) ZW = JWILN
000T‘T = I 009 04
Ji
IANIINOD 00§
(000T + I)ANVYY x "0GZ + "1 = (I)Z9davi
(I)aNYdd » 0G6Z + "1 = (I)T™aavI
000T’T = I 00G Oa
oi
(000¢ ‘ ANYYY ‘QIESI) NAS TTIVD
oi
ONIXINW Oi
oi

IANIINOD 00F
((I)d0I”“(I)ZW) ANVI = (I)Z
1€‘T = I 007 OQ
Qi
IANIINOD 00€
(1) 391’ (1) ZW ¥0I = (I)Z
T€'T = I 00€ Oa

oi
SYEEWAN T€ LS¥I4 HHL 30 INIWLVEMI TYIDEAS Oi
oi
IANIINOD 00T
((((T€)JaNI)IVOTd) ITdx ( (I) ANYIY) ITdd) ININAI = (I)ZW
0SZ’T = I 002 0Oa
2i
SYEOHINI HAILISOd OL STVHY HHL dVW O
oi
(0GZ ‘ANVYY ‘QEEST) NQS TIVD
oi
(T - 0€xxZ) + 0€xxZ = (I€)d4nI
0€xxZ = (T€)4d9T
oi
INANIINOD 00T
T - I xx = (I)ant
(T - I) xx 2 = (I)as1
0€‘T = I 00T OQ
2i



G.8 Input/output parameter file

500000

1000000
0.64000000E-01
0.10000000E+00
0.10000000E+00
0

Relaxation Steps
Observation Steps
Temperature [K]

Mass (=
Spring Constant [k_B K/A"2]
0 : default conf

1 : read conf.sta

0.48496606E+01amu)

——— Data for def configuration

64
1

0
0
2
0.10000000E+01

0

0.00000000E+00
1

0.10000000E+00
0.10000000E+02

Simulation Parameters:

0.50000000E-02
0.20000000E+00
853901

5

1

256

64

2

0.81802335E+01
0.22125529E+00
0.19739209E+01
0.33932825E+00

0.53164508E+00
0.53717840E+00

.00000000E+00
.38222657E-02
.31358549E+01
.51098544E+01
.84315996E+01

o O O oo

d =2 pi n_vol, for def. conf.
n_winding

f_roughness 0: alpha=0; 1: alpha =.5
f_rand_phase 0: det phase , l:rand phase
0 : no potential

1 harm. osz.

2 : — cos( x)

3 @ (x72-1)"2

4 : random

5 (x—i_part 2 pi)~2

Potential strength

Primitiv Algorithem
use HOA for ex. pot
use HOA for all
T V Decomposition
Q V Decomposition
X_Cms moves
x_cms 1is fixed
_cms
mass for coll. h.c.
cent. dynamic. mass.
ren. gap for fic. masses
sampling frequency

POX P ORONREO

Time Step
Friction
issed (random gen. init)
Observation Step
Number of Threds

(= 0.38193000E-13s)

Trotter Number (2°x )

Number of Particles (27°x )

Order of the Integrator ( <=5 )

0.89346836E-01 class. Kinetic Energy
0.97140554E-02 Pot. Energy in the springs
0.00000000E+00 minimal Pot. Energy in the springs
0.13375693E-01 Pot. Energy with external potential

0.86101955E-01
0.98870488E-02

Kinetic Energy (Primitive Estimator)
Kinetic Energy (Virial Estimator)

0.00000000E+00 Correction to Pot (*2) and Kin(*1) Energy
prob. for a Particle to be on top of the pot

Fisher’s disorder parameter

0.32818491E+00 Gyration radius

Time needed from i_md = 400 to i_md = 900
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Mainz, den 4. August 2003

(Florian Krajewski)
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