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Abstract

In this thesis the elastic properties of DNA are investigated on various length scales using MC
and scaling arguments. Three different system are considered: a generic model for double-stranded
polymers, a mesoscopic model for DNA at the base-pair level, and a crossed-linker model of the
chromatin fiber.

We investigate a chain consisting of two coupled worm-like chains with constant distance be-
tween the strands. The effects due to double-strandedness of the chain are studied. In a previous
analytical study of this system an intrinsic twist-stretch coupling and a tendency of kinking is pre-
dicted. Even though a local twist structure is observed the predicted features are not recovered.

A new model for DNA at the base-pair level is presented. The base-pairs are treated as flat rigid
ellipsoids and the sugar-phosphate backbones are represented as stiff harmonic springs. The base-
pair stacking interaction is modeled by a variant of the Gay-Berne potential. This simple mesoscopic
model of DNA combines ideas of the stack-of-plates model and the worm-like chain model. The
resulting helical conformations are studied using energy minimization and Monte-Carlo simulations.

It is shown by systematic coarse-graining how the elastic constants of a worm-like chain are related
to the local fluctuations of the base-pair step parameters. Even though a lot of microscopic details
of the base-pair geometry is neglected the model can be optimized to obtain a B-DNA conformation
as ground state and reasonable elastic properties. The anisotropy of the bending angles is just a
consequence of the plate-like shape of the base-pairs and the twist-stretch coupling is the result of
the preferred stacking of neighboring base-pairs and the rigid backbones. Therefore these properties
are included in the model. Moreover the model allows to simulate much larger length scales thaniitis
possible with atomistic simulations due to the simplification of the force-field and in particular due to
the possibility of non-local Monte-Carlo moves. As a first application the behavior under stretching

is investigated. In agreement with micromanipulation experiments on single DNA molecules one
observes a force-plateau in the force-extension curves corresponding to an overstretching transition
from B-DNA to a so-called S-DNA state. The model suggests a structure for S-DNA with highly
inclined base-pairs in order to enable at least partial base-pair stacking.

Finally a simple model for chromatin is introduced to study its structural and elastic properties.
The underlying geometry of the modeled fiber is based on a crossed-linker model. The chromato-
somes are treated as disk-like objects. Excluded volume and short range nucleosomal interaction
are taken into account by a variant of the Gay-Berne potential. Under consideration is the influence
of the nucleosomal interactions on elastic and structural properties of the fiber. It is found that the
bending rigidity and the stretching modulus of the fiber increase with more compact fibers. For a
reasonable parameterization of the fiber for physiological conditions and sufficiently high attraction
between the nucleosomes a force-extension curve is found similar to stretching experiments on sin-
gle chromatin fibers. For very small stretching forces a kinked fiber forming a loop is observed. If
larger forces are applied the loop formation is stretched out and a decondensation of the fiber takes
place.



Zusammenfassung

In dieser Arbeit werden elastische und strukturelle Eigenschaften von DNA auf verschiedenen
Langenskalen untersucht. Dafwerden drei verschiedene Systeme mit Hilfe von Monte-Carlo
Simulationen und Skalenargumenteiher betrachtet: ein generisches Modéh Doppelstrang-
molekille, ein mesoscopisches ModailrfDNA und ein 'Crossed-Linker’-Modellidr Chromatin.

Auswirkungen der Doppelstrangstruktur einer Kette, die aus zwei gekoppelten wurmartigen
Ketten mit konstantem Abstand besteht, werden ermittelt. Obwohl lokal helikale Strukturen auftreten,
kdénnen die in einer frheren analytischen Arbeit vorausgesagten Eigenschaften wie eine Kopplung
zwischen Torsion und Streckung oder eine Tendenz zu Konformationen mit Knicken nicéltitdtest
werden.

Es wird ein neues Modellif DNA auf der Basenpaarebene vorgestellt. Die Basenpaare werden
als flache, steife Ellipsoide behandelt. Das Zuckerphosiptiagrat ist durch steife harmonische
Federn regisentiert. Die Basenpaarstapelwechselwirkungen werden mit einem modifizierten Gay-
Berne-Potential modelliert. Dieses einfache mesoskopische Modell verbindet die Ideen so genannter
'Stack-of-Plates’-Modelle und des Modells wurmartiger Ketten. Mit Hilfe von Energieminimierung
und Monte-Carlo-Simulationen werden die gewonnen helikalen Strukturen untersucht. Durch sys-
tematisches 'Coarse-Graining’ werden die elastischen Konstanten des Modells wurmartiger Ketten
als Funktion der lokalen Fluktuationen der Basenpaarschrittparameter berechnet. Obwohl einige
mikroskopische Details der Basenpaargeometrie verassigt werden, kann das Modell so opti-
miert werden, dal? man eine B-DNA-Konformation als Grundzustand undinftige elastische
Eigenschaften edit. Andererseits sind beispielsweise mikroskopische Details wie die Anisotropie
der Biegewinkel, die eine Folge der oblaten Form der Basenpaare ist, oder die Verdrehungs-Strek-
kungs-Kopplung, bedingt durch das bevorzugte Stapeln benachbarter Basenpaare und das steife
Rickgrat, in dem Modell enthalten. Verglichen mit atomistischen Computersimulationen ergeben
sich folgende Vorteile. Erstens ist das involvierte Kraftfeld einfacher und die Energieberechung
somit weniger zeitaufwendig, und zweitens ist man nicht auf lokale Monte-Carlo-Schritte angewiesen.
Daraus ergibt sich die Bylichkeit, wesentlichdngere Ketten zu simulieren. Als eine erste An-
wendung des Modells wird das Verhalten der DNA unter Spannung untersuchblbelreinstim-
mung mit Streckexperimenten an einzelnen DNA-Malek beobachtet man ein Kraftplateau in der
Spannungs-Dehnungs-Kurve, bei dem sich die DNA einem struktulgbengang von B-DNA zur
so genannten S-DNA unterzieht. Innerhalb des Modells findet man eine S-DNA-Struktur mit stark
geneigten Basenpaaren, so daf die Basenpaare wenigsten tdilberismander liegendknen.

SchlieR3lich wird ein einfaches Modellif die Chromatinfaser eingdfirt. Die zugrundeliegende
Geometrie der modellierten Faser basiert auf einem so genannten 'Crossed-Linker'-Modell. Das
Chromatosom wird als Zylinder behandelt. Volumenausschluf3 und kurzreichweitige Nukleosomen-
wechselwirkung sind durch ein modifiziertes Gay-Berne-Potentididisichtigt. Untersucht wird
der EinfluB der Nukleosomenwechselwirkung auf elastische und strukturelle Eigenschaften der
Chromatinfaser. Dabei stellt man fest, dal3 die Biegesteifigkeit und der Streckmodul der Faser
wachst, je kompakter die Faser istirfverriinftige Modellparameter der Faser, mit denen wichtige
experimentell bestimmte Observablen in physiologischen Bedingungen wiedergeben vienkem k
und ausreichend starker Anziehung der Chromatosoméitt enan eine globale Strukt@nderung,
wenn an der Faser gezogen wird.UrFsehr kleine Zugkifte wird eine Schleifenkonformation
beobachtet, bei der die Faser geknickt isilr Barkere Kafte offnet sich diese Struktur in einem
ersten Schritt gefolgt von einer Dekondensation der Faser.
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Chapter 1

Introduction

DNA

Since the discovery of the double-stranded helical structure of DNA by Watson and [Crick [WC53]
enormous progress was made in synthesis, sequencing, and manipulation techniques. Nowadays
it is possible to synthesize special DNA sequences, it is known how to determine the base-pair
sequence of a particular DNA chain, and how to insert genes. Physicist were actively involved in
these developments. Besides its biological role it is interesting to work on DNA since it comes
closest to the theorist’s notion of a polymer chain.

DNA structure

DNA is a polymer composed of only four types of subunits. These are the deoxyribonucleotides
containing the bases adenine (A), cytosine (C), guanine (G), and thymine (T), a sugar (deoxyri-
bose), and a negatively charged phosphate group. The nucleotides are linked together by covalent
phosphodiester bonds [AB194]. 1953 Watson and Crick [WC53] discovered the spatial structure
of DNA analyzing X-ray diffraction patterns of DNA fibers. It turned out that DNA is a double-
stranded helix where the bases are on the inside of the helix and the sugar phosphates are on the
outside. This requires specific base-pairing via hydrogen bonds between a large purine base (A or
C) on one strand and a small pyrimidine base (T or C) on the other chain. The base-pair sequence is
usually referred to as the primary structure of DNA.

Depending on the sequence, i.e. details of the chemical structure, and the external conditions

Thymine Cytosine {8 -
Guanine ‘ NHp q'
-

&

N3
-

Figure 1.1: Chemical structure of the four DNA bases. Taken from [Hall].



2 1 Introduction

Figure 1.2: Structure of a B-DNA configuration.

DNA can adopt different conformations which vary in helical repeat length and handedness of the
corresponding helix (this is the so-called secondary structure). Under physiological conditions the
DNA is found in the so-called B-form, a right-handed double-stranded helix with a helical repeat
length of about 10.4bp/34nm, a helix diameter of about 2nm and a base(-pair) thickness of about
0.34nm.

Imposing a torsion on the DNA the double-stranded helix can adopt particular (tertiary) struc-
tures. Either the helix forms a toroidal structure called solenoidal super-helix or it forms an in-
terwound structure called plectonemic super-helix. This interwound structure is well-known as an
annoyance in everyday life such as the snarling of the telephone cords.

What is interesting about DNA?

DNA carries the genetic code which is read by protein complexes. During transcription the DNA
molecule gets highly deformed due to mechanical forces exerted by these enzymes. Therefore the
mechanical properties of DNA play an important role for its functionality in the cell. Besides that
the DNA (about 1m) is compacted via several organization steps in order to fit into the cell nucleus
(with a diameter of aboyim).

DNA is a rather stiff polymer with a persistence length of about 50nm in contrast to most syn-
thetic polymers with persistence lengths of the order of 1nm. The elastic properties of DNA, that is
the resistance to bending and twisting, as well as the base-pair sequence are of biological interest.
The wrapping of the DNA around the histone core (protein complex composed of eight histone oc-
tamers), which is the first organization step of the DNA folding into the cell nucleus, is a competition
of the energy that must be paid to bend the DNA and the energy that is gained due to electrostatic



attraction of the negatively charged sugar phosphate backbone and positively charged histone tails.
During cellular processes such as replication or transcription the DNA is locally highly deformed by
enzymes in order to open the double-stranded helix and to read the genetic information. It is known
that the genetic information in DNA determines not only the amino acid sequences of encoded pro-
teins and RNA but also the geometry and deformability of DNA at the base-pair level. For example,
there is evidence that the TATA-box sequence, important in the initiation of DNA transcription, may
achieve this function by virtue of its enhanced flexibility [JC6,[DMK99].

Investigating the structure and elasticity of DNA on various length scales

In recent years a lot of experimental techniques have been developed for the investigation of the
elasticity and structure of DNA on various length scales. X-ray diffraction patterns of fibers or
single crystals of DNA oligomers have led to a detailed picture of possible DNA conformations with
atomistic resolutior{ [Dic92, DDE€82]. It has turned out to be useful to discuss these conformations

in terms of the relative position and orientation of adjacent bases and base-pairs [BPO94, HC95,
EHL97,LS88] according to certain guidelines [DBBS]. This provides a mechanical interpretation

of the biological function of particular sequences [CD99].

Various optical methods such as time-dependent fluorescence depolarization [MRZ82, HCFS96]
or electron microscopy [BWCY0, BFKO5] helped to quantify the bending and torsional persistence
length of DNA. In time-dependent fluorescence depolarization studies the decay of the fluorescence
depolarization anisotropy of a DNA-ethidium-bromide complex is investigated. Ethidium bromide
is a hydrophobic molecule of roughly the same size as the base-pairs that fluoresces green. It is
used as intercalating agent since it likes to slip between two base-pairs. The connection between the
fluorescence depolarization experiments and the torsion and bending dynamics of DNA has been
analyzed in detail by Barkley and Zimrn [BZ79]. Cryo-electron [BF36] microscopy makes it
possible to directly observe the path of DNA reportedly without any adsorption and drying arti-
facts known from classical electron microscopy (EM). The reconstructed contour of several DNA
fragments can then be used to calculate the bending persistence length. EM studies are also used
to deduce an average structure for supercoiled circular DNA in solution [BWC90]. Furthermore
cyclization experiments$ [VV02, PMSV00] which measure the probability that short DNA segments
form loops [MMK96, SY84] can be used as a probe for the local shape, bending and torsional
rigidity of the DNA.

An interesting development of the last decade are nanomechanical manipulation techniques on
single DNA molecules [BSLS00, LLAQ02,[BBS03]. These methods offer the opportunity to study
the mechanical response of a single DNA molecule to external forces and torques, to measure the
forces generated in biochemical reactions such as the DNA-polymerase reaction 0#3d to
measure the typical forces necessary to pull two DNA strands apart [ERBH97, BERH97, BERH98].
They have also been used to measure the relaxation dynamics of a stretched molecule by hydro-
dynamic flow when the flow stopped [PSLC95, PSIC97]. To manipulate a single molecule the
molecule needs to be caught by its extremities. Different strategies have been used: magnetic beads
[SEB92, SAB 96,[SABC98/ SCB98, SAB99,[SBC99], glass needles [SFB92, SCE96, ERBH9I7,
BERH97/BERH98], optical traps [BMSS94], and AFM [CSRTGO00]. External forces and/or torques
can deform DNA and induce new structures [CL®6,/ABLC98]. The force-extension curves of
Ref. [SCB96] show that under a critical stretching force of about 65pN torsionally relaxed double-
stranded DNA (dsDNA) molecules undergo a structural transition to an overstretched S-DNA con-
formation. The increase in length amounts to 1.8 of its B-form. Stickl. [SAB™96] developed
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Figure 1.3: Micromanipulation set-up and measured stress-strain curves.



a technique which allows to constrain the DNA torsionally. They found for positively supercoiled
DNA stretched by 3 pN a new highly twisted structure called P-DNA. The structure of S-DNA and
P-DNA is still under discussion [BSLSDO, LLA02]. Essevaz-Rouleit al. [ERBH97] have sepa-

rately attached the two complementary strands of a DNA double helix to a glass slide and a glass
micro-needle. Displacing the slide away from the needle opens the double helix. They measured
forces of about 10pN to open an AT sequence and 15pN to open a CG sequence. In principle it
is possible to determine the sequence of the DNA chain by the use of this method. But it turned
out that due to thermal fluctuations only variations of the AT versus GC content on a scale of 100
bases could be detected. An overview over the development of micromanipulation techniques and
the results can be found in [BBS03].

Interpretation of the experimental results

The experiments are usually rationalized within the framework of two models. (i) So-called stack-
of-plates models are used to compactify the X-ray diffraction data. The bases are treated as plates.
Attaching a coordinate frame to each base the configurations can be analyzed in terms of base-pair
and base-pair step variables [DB89,[BO94[ BPO94, EHL97, HC97a]. In this way a detailed pic-

ture of possible DNA configuration of specific DNA sequences is obtained. O'¢tain][OKLN98]
developed an elasticity theory in terms of small deviations of the translational and rotational degrees
of freedom of the base-pairs and calculated the twist-stretch coupling for three different ground
states. Manning and Maddocks [MMK96] investigated sequence effects on cyclization rates of
short DNA pieces using the unstressed shape of the underlying sequence and its elastic constants.
(i) On large length scales, that is in the low stretch-
ing force regime, DNA behaves effectively as a rigid
rod. Therefore it is convenient to treat the DNA as
a worm-like chain with a certain resistance to bend-
ing and torsion[[MS94, MS95¢C, MS95a, MS95b]. The
theory is in good agreement with experimental force-
extension data up to forces POpN. Later extensions

of the worm-like chain model accounted for effects
due to double-strandedness [LGK98, EBK95], for the
anisotropy of the bending angles [PR00a, PR0OOb], for
twist-stretch coupling [KLNO97, Mar97, Nel98] and
for topological effects/[PR0O1] to study the elastic re-
sponse of the chain depending on the linking number.
Zhou et al. [HYZc99, [YHZc00,[ZZOY00] proposed

a model based on bending and base-stacking interac-
tions in an attempt to provide a unified framework tgjgyre 1.4: B-DNA configuration. Bases
understand DNA elasticity for small as well as for larggre represented as color-coded plates.
stretching forces beyond the overstretching transiti9gken from [GAL].

[ZLO1]. Their results agree quite well with experi-

ments up to very large forces. Marko [Mar97, Mar98] incorporated the overstretching transition
by including extra terms into the worm-like chain Hamiltonian which take into account the high
cooperativity of the transition [CLH96] and define a stable S-DNA state. Storm and Nelson
[SNO2h,[SNO2a] recently proposed a two state model for the elasticity of nicked, double-stranded
DNA. It allows coexistence of two conformational states (B- and S-DNA) of the DNA, each with its
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own bending and stretching elastic constants. Fitting the model to an overstretched data set yields
values for the persistence length and the stretching modulus of each state as well as the energy which
is necessary to flip a B-DNA segment into the S-state.

Atomistic computer simulations have been used to predict possible DNA conformations for
overstretched S-DNA [CLH96,/SAB™99,[LL99] or stretched and overwound P-DNA JABLC98]
and to investigate electrostatic effects on DNA structure [HMIWWO00, HWWO02, HSHO03]. Fur-
thermore they allow for the calculation of all internal coupling constants of bases and base-pairs
[LSHLOQ]. The formulation of a mesoscopic model raises the question which atoms should be
combined to one monomer unit. To address this question the fluctuations of interatomic distances
were measured in atomistic computer simulations [BELG99]. If the mean squared fluctuations of
the distance between two atoms are smaller than a certain threshold value it is assumed that they
belong to the same rigid sub-unit. Depending on the threshold value a complete hierarchy of pos-
sible models can be formulated, e.g. treating the bases or the base-pairs and the backbone as rigid
entities. Existing mesoscopic models on the base-pair level are based on a harmonic energy func-
tional that incorporates the bending anisotropy and experimentally known correlations of base-pair
step parameters such as twist, roll and slide [0Z00]. Simulation methods on larger length scales
are essentially discretizations of the worm-like chain model with additional excluded volume and
electrostatic interactions. Sequence effects and details of the chemical structure such as the bending
anisotropy and the twist-stretch coupling are ignored [0Z00]. These low-resolution models are used
to account for the topological properties of supercoiled DNA [S092, CL94, TL96, VC95].



Chromatin

Chromatin structure

The cell nucleus contains DNA with a total contour length of akdeut Without any compaction
the DNA chain would form a swollen coil of approximatel90um diameter([Sch(3] which is a
factor of 100 larger than the cell diameter. In order to fit into the cell nucleus the DNA is compacted
via several organization steps. The first structural level of this process is the formation of an array of
nucleosomes. Eight histone octamers (two copies of H2A, H2B, H3 and H4) make a particle around
which the DNA wraps inl% turns [LMR™97] due to electrostatic interactions between negatively
charged DNA backbone and positively charged histone octamer units. Often the in- and outcoming
linker DNA is glued together by so-called linker histones (H1 and H5). The nucleosome is the
fundamental unit of the chromatin fiber. A nucleosome without linker DNA is called chromatosome.
The nucleosomes in turn organize further into the chromatin fiber probably mediated by positively
charged lysin rich histone tails [LMRO7]. Benninket al. [BPL™01] studied the compaction rate of
a DNA strand under stress in the presence of histones depending on the pulling force. They find an
8-fold compaction for moderate forces (1 pN). The folding hierarchy of DNA into the chromosome
is illustrated in Fig[]L.5.

While the structure of individual core particles is established with atomistic resolution fLMR
much less is known about the chromatin structure. In low salt concentration the fiber is in a

2 nm 10 nm
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Figure 1.5: Organization steps of the DNA into the chromosome. Taken dut of [Sch03].
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swollen state forming a 'bead-on-a-string’ structure referred to ad@hm fiber [TKK79]. With
increasing salt concentration the chromatin fiber starts to condense into more compact structures
[GR87,, BHDW98, BHG 98]. For very high salt concentrations close to physiological conditions
the fiber forms a very dense fiber with a diameter of al36aim.

There is still controversy about the structure of this so-cal@un fiber [HZ95/ HZ96]. The
two competing classes of models are the solenoid models [FK76] and the crossed-linker models
[WGHWO93,[SGBQOQL1]. In the solenoid models the position of successive nucleosomes form a helix
and the linker DNA is assumed to be bent being able to connect neighboring nucleosomes. In the
crossed-linker model the linker DNA is straight and connects nucleosomes on opposite sides of the
fiber building up a three-dimensional zig-zag pattern. In principle it should be possible to distinguish
between the two geometries using cryo-electron microscopy [BHDW98, BHE In fact, for low
and intermediate salt concentrations zig-zag-like patterns are found supporting the crossed-linker
models. But these methods cannot resolve the linker DNA geometry in physiological conditions
such that the solenoid model cannot be excluded [HZ96].

Chromatin elasticity

The elastic properties of the chromatin fiber strongly depend on the underlying geometry. Stretching
a solenoidal structure with a small helical pitch will cost much less energy than stretching a rather
straight zig-zag structure. Furthermore the elastic properties of the chromatin fiber will be influ-
enced by the state of compaction due to nucleosomal interactions. Nanomechanical manipulation
techniques helped to gain deeper insights into the structural and elastic properties of the chromatin
fiber. Cui and Bustamante [CB0OO] measured force-extension curves of single chromatin fibers in
different salt concentration. They found a purely extensible worm-like chain behavior for small
salt concentrations whereas for higher salt concentrations a force plateau occurred at Spbighly
indicating a structural transition of the fiber. This force plateau is probably due to short-ranged
nucleosome-nucleosome interactions which are not present in the more loose structures in low salt
concentrations. Stretching the fiber with forces uR%pN results in the release of the histones
[BLL T01,BTSY"02].

The low salt concentration force-extension curves can be compared with elastic theories based
on the solenoid and crossed-linker geometry. Schiestsal. [SGBO01, Sch03] and Ben-Haimt
al. [BHLVO1| BHLVO0Z?] calculated the mechanical response of the fiber to small stretching forces
around the undistorted ground state assuming a crossed-linker geometry. They derived a relationship
between the elastic constants of the fiber, the elastic constants of the linker DNA and the underlying
geometry. When comparing their predictions to the experimental results it seems that the crossed-
linker model is supported.

Computer simulations help to investigate effects due to excluded volume and short-ranged at-
tractive interactions between the nucleosomes. Katetchl. [KBOOQ] performed simulations
including the linker DNA elasticity, excluded volume of the chromatosomes represented as spher-
ical beads and a short-ranged attractive potential between chromatosomes. They investigated the
mechanical response of the simulated fiber for varying linker length, entry-exit angle of the linker
DNA and the bead diameter and compared their results to the experimental data of Cui and Busta-
mante [CBQ0]. Itis shown that for a given fiber geometry a force plateau appears if the well depth of
the attractive potential is increased. Wedemann and Langowski [WL02] introduced a model which
treats the chromatosomes as disks with a radid®wi and a height ddnm. The excluded volume
and short-ranged attractive interactions of the nucleosomes are taken into account by a Gay-Berne
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Figure 1.6: Force-extension curves for chicken erythrocyte chromatin fibers in 40mM NaCl. The
red curve corresponds to the stretch cycle while the blue curve refers to the release cycle. Taken out
of [CBOQ].

potential. Moreover the elastic and electrostatic energy of the DNA is included into the Hamilto-
nian. Structural properties such as the linear mass density and the persistence length of the fiber are
studied. For model parameters corresponding to physiological conditions they found a linear mass
density of abou6 nucleosome&l 1nm in good agreement with experimental data [GR87, BI9&]

and persistence lengths of ab@onm. Beard and Schlick [BS01] were interested in the folding
mechanism of oligonucleosomes depending on the salt concentration. Therefore they included all
253 charges distributed over the surface of the chromatosome. The linker DNA is treated as a nega-
tively charged elastic rod. For low salt concentrations the modeled trinucleosomes adopt disordered
Zig-zag conformations with rather straight linker DNA. High salt concentrations lead to condensa-
tion.
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Outline of the thesis

This thesis is organized as follows. In chapter 2 we discuss structural and elastic properties of a
system of two coupled worm-like chains. In particular we argue that there is neither a preference for
kinking, nor a twist-stretch coupling, nor oscillations in the autocorrelation function of the bond-
director field (pointing from one strand to the other) inherent in the system as predicted by an earlier
study [LGK98]. In chaptefr|3 a generic model of DNA at the base-pair level is presented. We dis-
cuss structural and elastic properties as functions of the model parameters. To parameterize the
model we demand that macroscopic variables such as the persistence length must be reproduced.
The undistorted ground-state should match a B-DNA conformation. For the final parameterization
of the model we perform simulations with an external stretching force. We also find an overstretch-
ing regime in the force-extension curves. The resulting S-DNA shows a skew ladder conformation.
Moreover structural as well as elastic properties of the simulated chain below, at and beyond the crit-
ical force are investigated. Some preliminary ideas are presented in dhjapter 4 about how measured
coupling constants from atomistic simulations can be mapped onto the effective coupling constants
of a quadratic Hamiltonian on a larger length scale. In chdgter 5 we study structural and elastic
properties of chromatin. We calculate a structural phase diagram characterizing allowed and forbid-
den structures depending on the model parameters. We discuss the influence of the excluded volume
interaction of the nucleosomes on the persistence length of the fiber. Furthermore we present some
results on simulations performed with an additional stretching force.



Chapter 2

Elastic and structural properties of two
coupled worm-like chains

We use computer simulations and scaling arguments to investigate statistical and structural proper-
ties of a semiflexible ribbon composed of isosceles triangles. We study two different models, one
where the bending energy is calculated from the angles between the normal vectors of adjacent trian-
gles, the second where the edges are viewed as semiflexible polymers so that the bending energy is
related to the angles between the tangent vectors of next-nearest neighbor triangles. The first model
can be solved exactly whereas the second is more involved. It was recently introduced by Liver-
pool and Golestanian [LGK98, GLDO0] as a model for double-stranded biopolymers such as DNA.
Comparing observables such as the autocorrelation functions of the tangent vectors and the bond-
director field, the probability distribution functions of the end-to-end distance, and the mean squared
twist we confirm the existence of local twist correlation, but find no indications for other predicted
features such as twist-stretch coupling, kinks, or oscillations in the autocorrelation function of the
bond-director field [MEEQ2].

2.1 Introduction

A characteristic feature of many biopolymers is their high bending stiffness. Contour lengths of the
order ofym and persistence lengths of the ordeb@fim in the case of DNA even allow microscopy
techniques to be used to directly observe their structure and dynamics [PSLC95| PSC97]. The model
mostly used to interpret recent experimental data of micromechanical manipulations of single DNA
chains[BMSS94, PSLCY95, PSC97, SA®,[SCB98, CLH 96] is that of the Kratky-Porod worm-
like chain in which the polymer flexibility is determined by a single length, the persistence lgngth
Generalizations account for the chain helicity and coupling terms between bending, stretching, and
twisting allowed by symmetry [Yam97, MS95c, MS94, MS95b, MS95a, MN97, KLNO97, PRO1,
PRO0&, PROOK, KM97, MMK96]. All these continuum models of DNA neglect the double-stranded
structure of DNA and one may ask, if this feature could not cause qualitatively different behavior.
The bending stiffness of single- and double-stranded DNA, for example, differs by a factor of 25
[EKQQ]. The simplest model which takes the double-strandedness into account is the railway-track
model [EBK95] where two worm-like chains are coupled with harmonic springs. In two dimensions
one finds drastical consequences: the bending fluctuations in the plane of the ribbon are strongly
suppressed. The molecule becomes effectively stiffer on larger length scales. But the relevant

11
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guestion is: what are the effects in three dimensions? Liverpioal [LGK98, (GLOJ] investigated
a version of the railway-track model in three dimensions where bending in the plane of the ribbon is
forbidden by a constraint. Using analytical and simulation techniques they predict the existence of a
low temperature regime where ribbons adopt a kink-rod structure due to a spontaneously appearing
short-range twist structure resulting in an oscillatory behavior of the autocorrelation function of the
bond-director field. Furthermore a twist-stretch coupling is predicted.

We study the discretized version of the simulation model of Livergaal. [LGK98| [GLOQ]
in the low temperature regime with the help of scaling arguments and MC simulations. In order to
understand and to quantify the effects arising from the local twist structure of the Liverpool model
we compare it with an analytically more tractable model where the bending stiffness is defined
via the interaction of the normal vectors so that there is no tendency to form helical structures.
Furthermore, we perform several MC simulation runs with an additional external force in order to
test if the preferred buckling mechanism occurs via kinks.

2.2 Theoretical background

2.2.1 The worm-like chain model

The nanomechanical stretching experiments on single DNA molecules led to a revival of interest in
the worm-like chain (WLC) model [SEB92, SCB96, MS95c]. The predicted stress-strain relations
agree quite well with the experimental data of double-stranded DNA.

The elastic energy of a WLC with constant contour lenftis given by the line integral:

s)\ 2 L dt(s)\ > L
wa—/ <d52 ) :f/o ds<ti(s)> :f/o dse(s)?,  (2.1)

wheres denotes arc length(s) = %r(s) denotes the unit tangent vector field,s) corresponds

to the curvature of the chain, E is the bending modulus. Eq] (2.1) describes the resistance of the
chain to bending. The tangent vector correlation functigs) - t(s’)) decays exponentially with
correlation lengtti, which is referred to as the bending persistence length:

(t(s) - t(s")) = exp <—|5 — S") . (2.2)

lp
The bending modulug’ is connected to the persistence lengthial, = E£/kgT. The mean square
end-to-end distancB? is given by [FK73[ HH65]:

Ry = ((R(L) — R(0))*)

L L
:/ dst(s) [ dst(s)

/ ds/ ds'{ (s") @3
= 2L, — 20 <1 — exp <—ZLP>> :

) {QLZP, > 1 random walk limit
E — 2 L
L=, .

The two limiting case are:

- . (2.4)
< 1 rigid rod limit
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A generalized theory does not only treat the resistance of the chain to bending but also to twist-
ing. This is done within the framework of rod theory.

2.2.2 Rod theory

A configuration of a rod is a parameterized space cuvg along with a parameterized family
of right-handed orthonormal triads;(s), that is three unit vectors which satisfy for eacthe
constraints

ds(s) = di(s) x da(s) (2.6)

with §;; being the Kronecker delta. Note that the orthonormal basigdsés) } contains additional
information to the space curwés). Itis not just defined by(s) and its derivatives as it is the case in
the Frenet-Serret frame. One should think ©f) as the centerline of the rod (the midcurve defined
by the two sugar-phosphate backbones in the case of DNA) Wliles)} specifies the orientation
of each cross-section of the rod (some smooth interpolation of the orientation of each set of base-pair
in the case of DNA)[MadQQ].

With no loss of generality the vectet(s) can be defined as

v(s) = %r(s) (2.7)

where the components of s) with respect to the triadld;(s)} is given by
vi(s) = v(s) - dy(s). (2.8)

As the triad is an orthonormal basis set they satisfy kinematic equations of the form

Lai(s) = u(s) x di(s) (2.9)
%di(s) — s (s)da(s) (2.10)

with u(s) = w;(s)d;(s). This can be shown in the following way. Sinéd;(s)} is a basis set it
exists a matrix such that

Oy = (jsdi> -d;. (2.11)

Differentiating the orthonormality relatiod;(s) - d;(s) = d;; yields Q;; = —Q;;. Multiplying
Eq. (2.9) withd,,, gives
Qjm = ejimui(s). (2.12)

Multiplying both sides bye;,,, and using the identity;,,¢;im = 20, results in the following
unique solution fom(s):

up(s) = *Ejmejm (213)

u(s) = () (6) = 565im i) = e ( (0] (o)) i), @210
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Figure 2.1: lllustration of the used frame. Taken from [Mad00].

Thus the so-called Darboux vectafs) exists and is given by

1 d

Eq. (2.9) can be regarded as the generalized Frenet equations.

The components;(s) determine the framéd;(s)} through integration of the differential equa-
tions of Eq. [(2.9). Once the framfel;(s)} is known the components af(s) determine the cen-
terline r(s) through integration of Eq[ (2.7). Therefore the six scalar functigits) and v;(s)
characterize the configuration of the rod and are called a set of strains. Together with specified
reference straing;(s) andv;(s) where the reference state is assumed to be the minimum energy or
unstressed configuration the strains can be related to shear, stretch, bending, andstisishdéen
to be arclength along the centerline of the reference ciweso that

d .
i) = [9()] = 1 (2.16)

|[v(s)] — 1 is a measure of the local extension and compression respectively. Furthermore the refer-
ence unit vector fieldl;(s) can be chosen such that it points into the direction of the tangent vector

field of the reference curvs):

%f“(s) = d3(s). (2.17)

In this case); andwvs corresponds to shear strains agatan be regarded as a stretch or compression.
uy1 andus describe bending strains whilg correspond to a twist strain [Mad00].
2.2.3 Parameterization of a ribbon

Aribbon is an inextensible, unshearable rod which can be parameterized by the argléiggéach
point s a triad of unit vectordd;(s)} is attached. The vectork (s) andds(s) are directed along
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the two principle axis of the cross section, the vealg(s) is the tangent vector. As the triad is
an orthonormal basis set they satisfy the kinematic equations o. (2.9 yvthrepresenting
bend ¢ (s) out-of-plane, andiz(s) in-plane) and twist strains.§(s)) respectively. One can find a
relation between the ordinary Frenet equations containing only two parameters, the curyature
and the torsion(s)

dt{;? = k(s)n(s) (2.18)
dtc’l(ss) — _r(s)n(s) (2.19)
dr;(j) = 7(s)b(s) — w(s)t(s) (2.20)

and Egs.[(2]9) by fixingls(s) = t(s) so thatd;(s) andd(s) are given by a rotation arourtds)
with angle¥(s)

dl(S)
da(s)

In this context¥ (s) can be seen as the twist andle [PR00a, Mag01]. A straightforward calculation
(see Eq.[(2.15)) gives for the generalized torsions:

ur(9) = T8 () = n(e)n(s) - (cos(¥(s))n(s) + sin(¥(s))b(s))
= k(s) cos U(s) (2.23)
us(s) =~ P9 g, (5) = n(s)n(s) - (cos(B(s))b(s) ~ sin(W(s))m(s)
= k(s)sin U(s) (2.24)
uy(s) =~ 1) g, )
d(cos(¥(s))b(s) —sin(¥(s))n(s))

= 7 -~ (cos(¥(s))n(s) + sin(¥(s))b(s))

_ (sin(\ll(s))b(s) (q’;j) + T(s)> + cos(¥(s))n(s) (Wd(ss Ly T(S)»

- (cos(¥(s))n(s) + sin(¥(s))b(s))

cos(¥(s))b(s) — sin(¥(s))n(s) (2.21)
cos(¥(s))n(s) + sin(¥(s))b(s) (2.22)

o (2.25)

The total twist Tw of a ribbon is thus given by the integration of the local twigts) along the
contour normalized by the factarr

L
Tw = 1/ ug(s)ds (2.26)

27T 0
with L being the contour length. Together with the parametef.ge?, which determines whether
the stress-free reference configuration includes spontaneous curvature and twist, the elastic part of
the Hamiltonian is usually defined by quadratic terms;ifs) —u;(s) [PR01,PR00a, PRO0Ob, MS94,
MS95b/MS954a, MN97, KLNOS7, KM97, MMKS6, NSJK96].
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The inextensibility and unshearability condition requires that the steg{r$ in any configura-
tion equal the straing;(s) in the reference configuration such that

v;i(s) = 0;(s) (2.27)
and

v1(s) = va(s) =0 (2.28)

v3(s) = 1. (2.29)

2.3 Continuous description of two coupled semiflexible chains

It is an interesting question to which extent this generic description applies to more microscopic
models of DNA[ZL01]. The simplest case is that of a “railway track” or ladder model consisting of
two (or more) semiflexible chains

ok L d?r1(s) 2 d?ry(s) 2
/Htt—2/0 d8{< 052 > +< 42 ) , (230)

plus a coupling between opposite points on different chains [EBK95]. Liverpioal. [LGK98|
GLOQ] considered the limit where the distanedetween the coupling points (i.e. the width of
the ribbon) is imposed as a rigid constraint which prevents bending in the plane of the ribbon:

d';l(j) -b(s) = 0 wheret(s) = le—(:) is the tangent vector to the mid-curwés) with

r(s) = ri(s) - T = py( 4 ORI MU0 H 0l (2:31)

andb(s) is the bond-director pointing from one strand to the other. Note, that the constraint is
equivalent tol'(s) = 0, that is

ui(s) = k(s) (2.32)
uz(s) =0 (2.33)
us(s) = 7(s). (2.34)

Rewriting Eq. [(2.3D) in terms of ribbon variables they found
ko[t d*r(s)  ad®b(s) 2 d*r(s)  ad®b(s) 2
e = 2/0 ds { < i T2 ds? > + ( ds2 2 ds? >

:];/OL ds{2 <Cil2(23)>2+6;2<d2;(;)>2} (2.35)
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Figure 2.2: lllustration of the used variables. The length of each trigmgleorresponds to the
bond lengthb and the height. = |b;| = b tan(«) defines the strand separation lengh;} terms
the folding angles.

which can also be expressed as

(dt;?>2 _eio)? (2.36)
(de'Z<25>)2 _ (b(s) (ul(S)W(S) - d“§§8)> —n(s) (ur()? + us(s)?)
+t(s) (ug(s)u3(s) + dués(s)»?

= (M8 4 (ua(o? usto)+ ()

Cds ds
_ (d’;g@)z + <d;f)>2 + (5(s)? +7()%)2. (2.37)

Thus the Hamiltonian is not just a quadratic function in the strajs) but derivatives as well as
higher order terms of the strains are involved.

Note, that henceforth we ud®(s) as the bond-director andl(s) as the normal vector to the
ribbon plane.

2.4 Geometry of triangulated ribbons

Following Liverpoolet al. [LGK98, |GLOC] we consider ribbons discretized by triangulation. In
order to extract some fundamental properties of double-stranded semiflexible polymers we consider
a ribbon-like system composed of isosceles triangles as shown in Fig. 2.2. The orientation of each
triangle is given byN — 1 rotations around the edges of the triangles with folding anfflies N

is the number of triangles characterized by a set of trihedfond;, n;} wheret; is the tangent

vector of theith triangle,b; is the bond-director, and; is the normal vector. Note that;, b;, n;}

is normalized. Going from one set of trihedrofts, b;, n; } to the neighbor seft; 1, bj11,nj41}

implies a rotatiorR; around the edge between the respective triangles with &nhgted a reflection
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Q(ve Q)

v—Q (ve Q)
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Figure 2.3: Geometrical derivation of Elg. 2.41. Decompose the vecidrich we want to rotate
around the unit vectof2 with angled into a parallel component; = (v - )2 and two perpen-
dicular components | ; = v —vjandv, » = v x 2 such thatv = vH +vi1+ vy Thetwo
perpendicular components has the same lergth; | = /(v — (v Q)2 =/12-(v-Q)?2=

v? —v2cos(a)? = wvsin(a) = |v x Q| = |v, 9| wherea is the angle betweem and Q.
Before the rotation the component in_»-direction is zero. The rotated vectef is given by
v = OJ‘ + v/ 1 + Vv, where the parallel componewq‘ = v is unchanged by the rota-
tion and one obtains by projecting the rotated vector intothg — v, »-plane for the per-
pendlcular components’, ; = cos(f)v,1 andv’ , = sin(f)vy 2. Thus it yields in the end:
vi=(v- Q)2+ cos(0)(v — (v-Q)Q) + sin(0)(v X Q).

of b; andn;, i.e.

tit1 t;
bii1 | =TRi | b (2.38)
nj1 n;
with
1 0 0
T=1{0 -1 o0 (2.39)
0O 0 -1
ti-tiy1 ti-bipr ti-migg
Ri= |bi-tiya bi-biyx bi-njq|. (2.40)

n;-tip1 nj-bipq NN

The matrix produc R; can be viewed as a transfer matrix. To evaluate the scalar produRts of
the neighbor set of trihedror{$;. 1, b;11, n; 1} has to be determined. In general a vectovhich
is rotated around an ax{3 with angled is given by [GoI91] (see Fi@.B)

¥’ = v'cos(f) + <q X 17) sin(0) + — Q <|$| > (1 —cos(6)). (2.41)
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Using EqJ 2.4]L one obtains foy,

-

tir1 = tjcos(6;) + ( dit1 X t; ) n(6;) + df“ ( C{f“ 'ti> (1 — cos(6;)) (2.42)

|1 |dit1] \ |dit1]

with

diy1 = % + b;. (2.43)

The evaluation of the cross product and the scalar product yields

£ 1\ E g
|3+ o BrhlA (2.44)
bi L bz _;
= t; cos(0;) + ‘_, | n; sin(6;) + 2_,+ i (1 —cos(6;))
|dz+1| ‘ 2+1| 2’dz+1|
WhereQ‘(‘if” = = cos(« )and‘ 15 o= = sin(«) for geometric reasons (see !.2 2). Thus the following
i+1 +
results for the 3 scalar products is obtained:
Ri11 =t - tip1 = cos(6;) + sin(a)? (1 — cos(6;)) (2.45)
Ri21 = b; - tit1 = sin(a) cos(a) (1 — cos(6;)) (2.46)
Riz1 =1n; - tip1 = sin(a) sin(6;). (2.47)

The remaining terms of the rotation matfi; can be calculated in an analogous fashion resulting
in

Rii1 = cos(6;) + cos(a )2 (1 —cos(6;))

Rii2 = —cos(a) sin(a) (1 — cos(6;))

Rii3 = —sin(a) sin(6;)

Ri21 = cos(a)sin(a) (1 — cos(6;))

Ria2 = cos(0;) + sin(a)? (1 — cos(6;)) (2.48)

Ri23 = — cos(a) sin(6;)
Ri31 = sin(a) sin(6;
Ri 32 = cos(a)sin(6;
Riz3 = cos(6;).

In order to quantify properties such as bending and twisting within the given discretization we
study the relation between the folding angtesand these quantities which is illustrated in Fig.
[2.4. One recognizes that the chain is not bent in cagg ef 6;,,1 = 06, = 0 and that purely
twisted structures correspondip= const. The chain is untwisted but benti#; = 26,. In case of
0; #+ +6,,1 andf; # 0 the chain is bent and twisted simultaneously resulting in solenoidal/torsional
structures as is illustrated in Fig. P.4(f). A kink is characterized by unlike twists meeting at an edge
as itis shown in Fig. 2]4(d).
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Due to the triangulation of the ribbon three triangles has to be considered to calculate the dis-
cretized expressions for the out-of-plane bending strain

ui(s) = — <C§it(s)) ‘n(s) ~ b AASz —ts) n(s) = —Aist(s +As)-n(s) (2.49)

and the twist strain
b As)—b 1
us(s) = (jsb(s)) -n(s) ~ (s + A"”i () ‘n(s)= 1-b(s + As) -n(s)  (2:50)
which we callx; and r; respectively. The local curvaturg and the local twist rate; between
trianglei andi + 2 are therefore given by

1 sin(a)
1 s cos(a)
= an ‘b~ (0 + Oi1), (2.52)
Jj=i

where the accuracy of the right-hand side expressions only depends on the refinement of the dis-
cretization, i.e. on the values éfand«. Hence a spontaneous bending can be introduced via an
additional term to the Hamiltonian with

. 2
i+1

Hewrv = keurv Z Z n;- tj—&—l - 5051},1’ (253)
i j=i
and a spontaneous twist can be introduced by an additional term

. 2
i+1

HTw = kTw Z Z l’lj : bj+1 - Hsp,i . (254)

% J=t

Note, that the total twist Tw is given by Tw 1/(27) >, 7;.

2.5 Model description

The bending stiffness within the given discretization can be taken into account by various interac-
tions. One possible definition of a bending stiffness, which makes the problem analytically tractable,
is a nearest neighbor interaction (plaquette stiffness) between the normal egfons analogy to
the triangulation of vesicles [KG92] which results in the following Hamiltonian

N-1
=k (1+mn;-niyq). (2.55)

=1
In contrast Liverpookt al. [LGK98| /GLOC] were interested in the statistical mechanics of coupled
worm-like chains and therefore chose a next-nearest neighbor interaction (edge stiffness) between
the tangent vectorgt; } with rigidity & so that the Hamiltonian is given by

Hon
kT

2 N-2
tt
el > (1t tiva). (2.56)

i=1
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(@ ) ©

Figure 2.4: lllustration of bending, twisting, and kinking. (a) A flat ribbon as ground state conforma-
tion. (b) A twisted structure (c) The same twisted structure obtained with a smoother discretization.
(d) Unlike twists meeting at the center resulting in a kink withpositive for: < N/2, negative for

i > N/2,and|0;| = [0;11],1.€.00; = 0, Vi # N/2anddtly/, = 20y/2. (€) A bent structure. (f) A
mixture of bent and twist resembling a solenoidal structure.

Both definitions lead to a flat ribbon as the ground state conformation for zero tempefatsrés

The above defined interactions lead to very distinct conformational features of the ribbon which
can be understood by building up the ribbon just by adding successively the triangles in the absence
of thermal fluctuations. Assuming thét #~ 0 all subsequent angléswith i > 1 vanish in the case
of the nearest neighbor interactioH.(,). In contrast the tangent-tangent interactigf,) leads to
the formation of a helix witl§; = 8,1 as a result of the enforced alignment of the tangent vectors.
This suggests a correlation of the folding andlés which entails at least locally helical structures.

Assuming that the chains are rather stiff (continuum limit), i.e. small folding arfigleme can
expand the Hamiltonians with respectito Since,,,, is diagonal ind;, it is sufficient to consider
terms up to second ordef;; contains coupling terms betweépandd,, 1 which makes it necessary
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Figure 2.5: Measurement of the 'time’ autocorrelation function of the total twist of the chain. The
longest correlation time we observed was, = 51 MC steps for the total twist T¢0, L) of the
chain.

to keep terms up to fourth order in the analysis:

me k 2

T ™3 ; 0 (2.57)

Hu k= 2502 L oo : 2 29292

T ~g Z sin(a)?007 ( 1 — 5591- + sin(a)” cos(a)“0; 07, ¢ (2.58)
i=1

with 66; = 0; — 02'4_1.

2.6 MC Simulation

Both models have local interactions and can be studied conveniently using a dynamic MC scheme.
Trial moves consist of small random changes of the folding angles by a small amplityde

wherek is the bending stiffness, and are accepted or rejected according to the Metropolis scheme
[MRR*53]. In the simulations we always use the full Hamiltonians Eqg. {2.55) fand](2.56). MC
moves changing the folding angles correspond to the well-known Pivot algofithm [LB0OO]. The
conformations are subsequently recalculated from Egs.|(4.38)-(2.48) and analyzed. Each simulation
run comprised 0> MC-moves where one MC move corresponds\oe- 1 trials with N being the
number of triangles. The longest correlation time we observed was on the order of 50 MC moves
for the total twist of the chain. In order to check if equilibrium is reached we compared simulation
runs with a flat initial conformation, i.8; = 0, with simulation runs with crumpled conformations
corresponding to equally distributed angfg®ut of the interval—1/v/k; 1/v/k]. Both runs yield

the same results for the calculated observables.
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Figure 2.6: Snapshots 6., (left) andH,; (right) with & = 50, N = 800, « = 7 /3. The figure
illustrates that just by watching conformational snapshots it is not possible to decide if kinks are
present due to projection of a three-dimensional object onto a two-dimensional plane (see[LGK98]).

2.7 Plaguette Stiffness

Since the Hamiltoniafi,,,, of Eq. (2.57) is quadratic and diagonaldnthe solution in angle space

is trivial. As a consequence of the independence of successive folding angles it{§jéjols= %61-3-
and(A) = ( i:i(TRk» = (TRy)’~* where the matrix product is carried out in the eigenvector
basis of (TR;) (the eigenvectors depend only on the geometry of the triangles). The diagonal
elements of(A) are the correlation functions @f; - t;), (b; - b;), (n; - nj). Thus one calculates
(TRx)

T | DO)Ry exp(— Z[;jﬁ)

TR = T(Ry) =
( k> < k> fD[Q] eXp(_Z[l:%)
2ar)

—1+4-4k+cos cos(a) sin(a 2.59
1 0 0 o Akcos( _ cos(a)sin(a) 0 (2.59)
=10 =1 0 cos(a) sin(a) —142k+sin(a)? 0 ,
2k 2k
0 0 -1 0 0 —1+ 5

diagonalizes it such thaT R;) = SDST with S being the eigenvector matrix afbeing the diag-
onalized matrix and rais& to the power ofj —i. Transforming back results i) = (TR;) ¢ =
SD’~iST. Finally the continuum chain limit can be performed wtk= (5 — )b, [, = bk/ sin(«a)?,

a = ibtan(a), (j —i) — oo, b — 0, i.e. a — 0, wherel, is the persistence length, is the

strand separatior, is the Kuhn segment length, < s < L is the arclength, and is the contour
length. Note that within this model is a fixed parameter that determines bending characteristics
of the ribbon. Since the calculation is rather demanding and gives very complicated expressions we
used a Mathematica script to evaluate the correlation matrix. In the end an exact expression for the
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autocorrelation functions is obtained:

(£(0) - £(5)) = exp (—l) (2.60)
(b(0) - b(s)) = exp (—ltn(a)) (2.61)
(n(0) - n(s)) = exp (—ln(a)> . 2.62)

For o = w/2 the triangles degenerate to rectangles such that bending can only occur out of the
plane of the ribbon and the usual worm-like chain result for two dimensions is recovered. All cross-
correlation functions (the off-diagonal elements(gf)) vanish. Eqs.[(2.61)[ (2.52) represent the
persistence length, ;, = 1, tan(«)? for bending within the plane of the ribbon and the persistence
lengthl,, ,.t = I, sin(a)? for bending out of the plane of the ribbon respectively [NSJK96]. This
model was recently treated as a twisted zig-zag fiber within the framework of a two-angle model for
studying structural properties of chromatin [SGBO01].

From the tangent-tangent correlation function the mean squared end-to-end distance can be cal-
culated:

L L
Rb = (R(L) = RO)) = [ “dn [ dsate(s1) - t(s2)

L
= 2L, — 2’ <1 — exp <_z>> .
P

Egs. [2.6D) and (2.63) are identical to results for single worm-like chains [DE86][ Eq} (2.63) inter-
polates between the limiting behaviors of random cdilslf) for L >> 1, and rigid rods (%) for
L <.

(2.63)

2.8 Edge Stiffness

In the following we present a simple scaling argument which allows us to rationalize the behavior
of the Liverpool model. Consider first th@ part of Eq. [[2.5B). In the absence of other terms the
folding angles would perform a simple random walk with step legth) = Wl((l)? The leading

term limiting the fluctuations of the folding angles around zero is of otdgt!). The behavior

of the coupled system can be inferred from scaling arguments similar to those used for polymer
adsorption. Consider a vanishing folding angle and follow the chain in either direction. Up to a
characteristic number of stegshe folding angles will show simple diffusion. As a consequence
the mean-squared folding angle averaged over this short segm@i is= ¢(367) corresponding

to a potential energyss, ~ g(0}) ~ 3¢(67)* ~ 3¢°(367). Note that for a Gaussian distribution

function P(x) the 4th and 2nd moment are related(b%) = 3(x2)2. The free diffusion of the
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Figure 2.7: Simulation versus scaling. We determine the correct prefagtor= 0.56 + 0.05 of
g from the numerical data of the folding angle correlation functi@s;) which is our solely free
parameter and use it for all following comparisons between scaling analysis and numerical results.

folding angles has to stop when this potential energy is of de@ét resulting in a condition foy:
sin(a)? cos(a)?k g(6%) = 1
3sin(a)? cos(a)?k g(6)? =1
3sin(a)? cos(a)?k g3 (66%)% = 1
(0%
2

g:<1 k2% sin( <)4 )
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As already mentioned in sectign P.5 the folding anglesire correlated. The previous scaling
considerations suggest that the correlation length is on the order @his is confirmed by the
following calculation. The mean square displacement of the folding angles is given by

(6~ 0))2) = 2(63) —20,07) = { 2SO0l <o (2.69
2(07), li — 7] >g.
Thus the correlation functio®;6;) can be expressed as
. _M . _\i—j| .
o) _ 1150 imdl <y few (KFE) lizil<s o o
(07) 0, i—jl>g |0, li—j|>g
Altogether we obtain
1
(667) = Tsn(a)? (2.67)
1
ktan(a)?\ 3
g~ (3( ) ) (2.68)
(67) = g(367) (2.69)
(0:0;) ( Ij—i|>
— =L —exp| ——— . (2.70)
(67) g

Fig.[2.7 shows that these arguments are fully supported by the results of our MC simulations with

1
— (0.56 = 0.05) (M)g
Using again the transfer matrix ansatz and considering only terms on the or@&p:f the
following expression fot; - t;, b; - b; andn; - n; is obtained in the low temperature limit:

Sll’l ]/2 i
ty -ty = Z 865, (2.71)
k=i/2
cos
bi - b = (ZGHQZ Z ekek,> (2.72)
k=i k'=k+1
1 i/2 j=1 j-1
nj-nj=1-— - Z 50% + cos(a Z Z 010 . (2.73)
k=i/2 k=i k'=k+1

Note thati, ; are either odd or even depending on which strand is under consideration. Without
loss of generality we choosej to be even. First of all we use thét(0) - t(s)) has to interpolate
betweenl for s = 0 and0 for s — oo and that the right hand side of E@Z%?l) is the Taylor

2
expansion up to first order of the exponential functiep (Sm o (Z]/ 120021 ) ). Substituting

thens = 2|j — i|b andl, = 4bk, performing the continuum chain limit with — 0 anda — 7/2
respectively, i.e. keeping the strand separatiaronstant, yields the following expression for the
autocorrelation function of the tangent vectors:

(t(0) - t(s)) = exp (—;) : (2.74)

P
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<t(0) - t(s) >

0.01 ‘ ‘ ‘
0 0.5 1 1.5 2

Figure 2.8. Comparison of MC data and analytical results (solid line) for the autocorrelation function
of the tangent vectors witk = 50 (squares)k = 100 (circles),k = 200 (upward triangles),

k = 500 (downward triangles) and = x/3, andk = 50 anda = 7 /4 (diamonds),« = /6
(pentagons).

Thus the mean squared end-to-end distaRgebecomes identical to Ed. (2]63). Ef. (3.74) is con-
firmed by our MC simulation data shown in Fjg. ]2.8.

To get an idea of the structural properties characterized by the autocorrelation function of the
bond-directorsb; - b;) we calculate the mean squared twiEw(i, j)?) of the ribbon. Following
the definition of the local twist rate; of Eq. {2.52) the total twist between two triangles of index
andj is just the sum of the local twist angles determined by the projections of the normal vector of
theith triangle onto the bond-director of the€ 1)th triangle, that is

L 1 it cos(a iy
Tw(i, j) = o Zni biy1 = 2; ) 29k~ (2.75)
k=i k=i

Comparing Eq[(2.12) anfl (2]75) we find for small twist angles
(b; - by) = 1 — 272 (Tw(s, j)?). (2.76)

Hence the autocorrelation function of the bond-directors can be seen as a measure for the local twist
structure of the ribbon.

In contrast to the plaquette stiffness model, the angjl@s the edge stiffness model are corre-
lated (see Eq[ (2.70)). Therefore the double summation @) in Eq. (2.72) proceeds along the
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Figure 2.9: (a) Autocorrelation function of the bond-directors withk= 50 (squares)k = 100
(circles),k = 200 (upward triangles)k = 500 (downward triangles) and = 7 /3. The data show
the predicted functional form (solid line) f¢b(0) - b(s)) of Eq. (2.79). In order to check the scaling
argument of Eq[(2.79) we determined the correct prefagtgr= 0.56 + 0.05 of g with the help of

the numerical data dp;0;) (see Fig[ 2]7) and inserted it into Eg. (4.79). The agreement is excellent.
(b) Comparison of our simulation data with the analytical result of Liverpoal. [LGK98| [GLO0C]

(dashed line). The predicted oscillation and resultant pitch is not recovered. But we find the same

1
scaling behavior of the helical persistence length Wjth= ¢gb ~ lﬁa%. It is also striking that the
predicted functional form of Liverpoatt al. is in very good agreement with our numerical data

within one helical persistence lengih

lines of the calculation of the mean squared end-to-end distance of the worm-like chain model

COS( 2 J J
h=i k=i i (2.77)

COS| & 2
- <Z<ez>+2z > <ekek/>)

k k=i k'=k+1
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Figure 2.10: Autocorrelation function of the normal vectors with= 50 (squares)k = 100
(circles),k = 200 (upward triangles)k = 500 (downward triangles) and = 7 /3. The ratio of the
normal vector correlation function and the tangent correlation functig - t(s)) (see Eq.[(2.81))
is shown (solid line) so that the same exponential decay a&f@) - b(s)) should be regained.
This is in agreement with the numerical data.

Using the scaling expressions of Eqp. (2.68) and {2.69), the same substitutions as[in Hq. (2.74),
and performing the continuum chain limit the following relationship for the mean-squared twist is

obtained

o=t (580 10 oo (5]
/2
_— {293(;:2@2@95 [2;% T <1—exp (—296))]} (2.78)

(ool (52)

and the autocorrelation function of the bond-directors

(b(0) - b(s)) = exp (—27*(Tw(0, 5)*)) (2.79)

with

1 1
Etan(a)? 3 I, tan(a)?\ 3
b= gu GO ap (2 (@) b
3 12b
5 (2.80)
3

1 2
I3 tan(a)3b: Jfit L 2
:gfit%z L ljas,

1
123 33
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3gb/(4a)< b(0) - t(s) >

s/gb

Figure 2.11: Crosscorrelation function of the bond-directors and the tangent vectoris with
(squares)k = 100 (circles),k = 200 (upward triangles)k = 500 (downward triangles); = 1000
(diamonds) and: = 7 /3. The data validate the predicted functional form (solid line)(0)-t(s))

of Eq. (2.82).

whereg;; = 0.56 = 0.05 is the fitted prefactor for the scaling functign a represents the strand
separation of the ribbon which is given by= |b;| = 3btan(a). Hence we observe two length
scales influencing the local twist structure of the ribbon: on the one hand the single strand persistence
lengthl, and on the other hand the strand separaidioiithe predicted scaling behavior @(0) -
b(s)) can be observed in the simulation data as it is shown in (2.9). Notéub@t- b(s))
as well as all other calculated observables within this model is independent of the geometry of the
triangles in contrast to the previous model wherevas a fixed parameter which influenced the
bending properties of the ribbon.

Eq. [2.73) can be evaluated in the same manner resulting in

(n(0) - n(s)) = (£(0) - t(s))(b(0) - b(s))

= exp (-ls — 272(Tw(0, 5)2)
P

) (2.81)

Eq. {2.8]) shows that the autocorrelation function of the normal vectors is the prodtig)ot (s))
and(b(0) - b(s)). For very stiff chains, the tangent correlation function gives just small corrections
to the normal vector correlation function. Therefore Hq. (2.79) can be interpreted as the rigid rod
limit of Eq. (2.87).

Other important structural properties of the ribbon can be extracted out of the crosscorrelation
functions. (n(0) - t(s)) and(n(0) - b(s)) describe the mean curvature and mean twist respectively
and vanish in both models for symmetry reasons. ) - t(s)) we empirically observe the
following relationship:

(b(0) - t(s)) = (27T)2adi<TW(O, 5)?) exp (—(271')2<TW(0, S)2>) . (2.82)

S
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Figure 2.12: Comparison of the probability distribution functions of the total twist of the ribbon
with f = f = {0,0.01,0.02, ...,0.09} andi, = L = 400 with the scaling analysis fof = 0. The
same Gaussian shape is recovered for all valugs of

Eq. (2.82) can be understood qualitatively in the following way. Due to the anisotropic rigidity of the
ribbon the scalar produtt(0) - t(s) is only non-zero if the chain is bent and twisted simultaneously.

In case the ribbon is either solely bent or solely twisted the bond-directors are always perpendicular
to the tangent vectors and the scalar prodw(@!) - t(s) vanishes for alk. The rate of mean twist of

one helical persistence lendih= gb which defines the size of the locally existing helical structures
can be calculated with Ed. (2]78) yielding

V(Tw(0,b9)%) = # [1 —2 (1 — exp (—;))] ~ %6 (2.83)

This corresponds to a typical twist angle 8f = ¢ using Tw = 27W¥. Within [, the twist rate
is determined by the derivative of the mean squared t\ﬁ;i(sTw(O, s)?) which gives rise to the
increasing correlation functiofb(0) - t(s)) up to the maximum value & = gb. For larger internal
distances of the chain the rate of mean twist is a random sequeticg sb that the crosscorrelation
function has to vanish and therefore decreases exponentiallyeith— (27)%(Tw(0, s)?)). Fig.
[2.17 compares Ed. (2.82) with our numerical data. It fully supports our argument.

2.9 Behavior under compression: Euler Buckling vs. Kinks

As discussed in sectipn 2.4 the edge stiffness model includes local twist correlations at least on small
length scales as a consequence of the correlation of the folding grigjesn order to understand

and to quantify the effects arising from the local twist we measured the probability distribution
functions of the folding angles, of the twist, and of the end-to-end-distance for different rigidities
and compared the latter with the usual worm-like chain model to see which differences occur.
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If there is a preference for kinking this property can be enforced by applying an additional
constant forc&',.r. = fRg/Rg which compresses the ribbon. In addition the change in the end-
to-end distancé& ; caused by the buckling force should affect the twist distribution funddtofv)
if R and Tw are coupled.

For small forces we calculate the change of twisTw(0, L)?) under the influence of the exter-
nal forceFy,.. = f within the framework of linear response theory. Expandifig(0, L)) around
f = 0yields

(Tw(0, L)?) = (Tw(0, L)?) o + < (Tw(0, L) >> f+0(f>. (2.84)

df -0

For small forces higher order terms frcan be neglected. The change of twist can be calculated by
straightforward differentiation:

(ATW(0, L)?) = (Tw(0, L)?) — (Tw(0, L)?) y—0

— (g wo.0 >>f ¥

{ <fD TW(O L)? exp(— ﬁ(Htt+fRE))>} !
df J D0 exp(—=B(Hu + fRE)) F=0

_ { J DIB)(—BRE)TW(, L)? exp(—ﬁmtt + fRp)) [ DI6exp(—B(Hu + [Rp))
(J DIO)exp(—B(Hu + fR)))*
] DIOITW(0, L) exp(=B(Hu + fRi)) | DI6)(~BRE) exp(—B(Hu + Rin)) } f
(/ Dl exp(—=B(Hu + fRE)))’ o
= —Bf ((ReTW(0, L)) =0 — (RE) f=0(TW(0, L)*) o)

(2.85)

with 3 = 1/kpT. This predicts a change of the mean squared twist of the chain if a twist-stretch
coupling determined byRgTw(0, L)?) s, exists. Note tha{ RgTw(0, L)) s—o vanishes due to
symmetry reasons. The evaluation of our numerical data yieldg&gfw(0, L)?) is uncorrelated,
too. To quantify if higher order terms ifi contribute to a change dffw(0, L)?) we carried out
several simulation runs with varying force strengghs- {0,0.01,0.02, ...,0.09} corresponding to

];E = {1,0.95,0.87,0.71,0.51,0.36,0.26,0.21,0.17,0.15}.

Flg [2.12 shows the same Gaussian shape for all measured probability distribution functions of
the total twist of the ribbor?(Tw(0, L), f). This implicates that there is no twist-stretch coupling
inherent in the system. The same is valid for the distribution function of the folding angles.

Moreover we measured the probability distribution functi®(R g, f) of the end-to-end dis-
tanceRg for all applied forcesf. Using the multiple histogram method developed by Ferrenberg
and Swendsen [FSB8] all measured histograms can then be recombined with a reweighting proce-
dure to a single probability distribution functidd(( R ) with overall very good statistics. Fi13
showsP(Rpg) for H; and the worm-like chain model. Quite contrary to a shift to noticeably shorter
end-to-end distanceRr as one would expect for the above described phenomena of kinks just the
usual worm-like chain behavior is recovered. This indicates that the ribbon just bends under the
external force in contradiction to a kink-rod structure. Another quantity which is sensitive to the
presence of kinks is a three-point correlation function of the end-to-end disignead the twist
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Figure 2.13: Probability distribution functions of the end-to-end distance of the edge stiffness model
for different discretizations{ = 800 upward trianglesN = 600 downward triangles) witlx = 7

andl, = L = 400 calculated with the help of the multiple histogram method [FS88] and the usual
worm-like chain model (solid line). The PDF of the worm-like chain model is calculated with the
derived analytical expression of Wilhelm and Frey [WF96] which is valid in the limit of very stiff
chains.

to the left TW(0, %), and to the right ng, L) of the center of the chain. Due to the buckling force

the center of the chain is labeled which means that a kink is detected if the end-to-end distances
with Tw(0, %)Tw(%, L) < 0 (unlike twists meeting at the center) are smaller than the end-to-end
distances with TW0, £)Tw(%, L) > 0 (like twists meeting at the center). Flg. 214 shows the mean
end-to-end distance depending on the value o(O‘l’@)Tw(%,L) for I, = 200, L = 400, and
f=0,f=0.03, f =0.06. We do not find an asymmetry between like and unlike twists meeting

at the center as it would support the prediction of kinks made by Livergioal [LGK98, [GLOQ].

2.10 Summary

We have reinvestigated the mechanical properties of the model introduced by LiverpbflLGK98,
GLOQ] of a double-stranded semiflexible polymer and rationalized the results of our MC simulations
with the help of a simple scaling argument. We recover the predicted simple exponential decay of the
tangent-tangent correlation function with the single strand persistence lgragtti that(t (0) - t(s))

is independent of the separatiarof the two strands, which is in addition tg the other relevant
length scale in the problem. Also in agreement with Ref. [LGK98, GL00] we find that the helical
persistence length, and the helical pitchP scale withl;/3a2/3. Qualitatively, one would expect

to see oscillations in the bond-director correlation functior? iK [,. This can be understood by
calculating the rate of mean twist withip = gb, i.e. \/(Tw(0, gb)?). If the mean twist exceeds

7 an oscillatory behavior has to be observed. But our calculation gives a twist rate lyithigb
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Figure 2.14: End-to-end distandeg as a function of the product of the twist left and right of

the center of the chain TW, %)TW(%,L), which is a measure for unlike (negative sign) and like
(positive sign) twists meeting at the center, and as a function of the applied buckling force with
f = 0(squares)0.03 (circles) 0.06 (triangles) and,, = 0.5L = 200. Rpg refers to the average

of one interval of T0, £)Tw(%, L) and(Rg) refers to the mean value of all sampled end-to-end
distances. One does not find an asymmetry between end-to-end distances for like and unlike twists
meeting at the center. The larger fluctuations for larger values (th,‘l%\bTw(é, L) are the result

of a poorer sampling rate.

of approximately+1/16. For larger distances of the chain the rate of mean twist is just given by

a random sequence dfl1 /16 and thus cannot account for an oscillatory behaviofbdg) - b(s)).
Liverpool et al. predict P = I, while our analysis indicateB = 161, as it is demonstrated in Fig.

[2.9 (b). The authors claimed support from their own simulations, but failed to provide a quantitative
comparison between their numerical and analytical results. In fact the presented oscillations seem to
be ordinary fluctuations within the statistical errors. But as can be seen in Hig. 2.9 (b) the predicted
functional form for the bond-director autocorrelation function is in very good agreement with our
numerical data as well as with our scaling results within one helical persistence lgagb.

Moreover our simulation results with applied constant buckling forces do not provide any ev-
idence of the predicted tendency of kinking or the claimed twist-stretch coupling. Thus contrary
to the claim made in Ref.[ JLGK98, GL0OQ] the local twist structure does not suffice to explain
experimental observations such as the twist-stretch coupling fTSAESABCI8] and the kink-
rod structures [KSBS93] of helical double-stranded molecules. These features require the inclu-
sion of a spontaneous twist incorporated by an additional term in the Hamiltoniante.g.=

) 2
krw 3, (S35 ny - byi1 — 04,:) , [PRO1L/PROC, PRODD. Mai97. KLNOS7. YHZE00, ZZOY 00,
HYZc99)].



Chapter 3

Simulating DNA at the base-pair level

We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne
potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate
backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length.
The competition of these two interactions and the introduction of a simple geometrical constraint
lead to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to
the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters
in order to reproduce the experimentally known observables such as persistence lengths, mean and
mean squared base-pair step parameters. For the optimized model parameters we measured the crit-
ical force where the transition from B- to S-DNA occurs to be approximdtéhpN. We recover an
overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking
of successive base-pairs [MEEO3].

3.1 Introduction

Following the discovery of the double helix by Watson and Crick [WC53], the structure and elastic-
ity of DNA has been investigated on various length scales. X-ray diffraction studies of single crystals
of DNA oligomers have led to a detailed picture of possible DNA conformations [DEXDic92]

with atomistic resolution. Information on the behavior of DNA on larger scales is accessible through
NMR [Jam95] and various optical methods [MRZ82, SS86], video [PQSC94] and electron mi-
croscopy[BWC9D]. An interesting development of the last decade are nanomechanical experiments
with individual DNA molecules[[SFB9Z, SCB95. CLF6,[ERBHI7| ABLC98] which, for exam-

ple, reveal the intricate interplay of supercoiling on large length scales and local denaturation of the
double-helical structure.

Experimental results are usually rationalized in the framework of two types of models: base-
pair steps and variants of the continuum elastic worm-like chain. The first, more local, approach
describes the relative location and orientation of neighboring base-pairs in terms of intuitive param-
eters such as twist, rise, slide, roll efc. [CD84, DE&T,[LO99, OBB 01]. In particular, it provides
a mechanical interpretation of the biological function of particular sequences [CD99]. The second
approach models DNA on length scales beyond the helical pitch as a worm-like chain (WLC) with
empirical parameters describing the resistance to bending, twisting and stretching [MS94] MS95c].
The results are in remarkable agreement with the nanomechanical experiments mentioned above
[PSLC95]. WLC models are commonly used in order to address biologically important phenomena

35
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such as supercoiling [CW90, SQ92, CL.94] or the wrapping of DNA around histones [SWBGO01].
In principle, the two descriptions of DNA are linked by a systematic coarse-graining procedure:
From given (average) values of rise, twist, slide etc. the shape of the corresponding helix on large
scales[[CD84, HC97lh, CDB9] can be reconstructed. Similarly, the elastic constant characterizing
the continuum model are related to the local elastic energies in a stack-of-platesimodel [OKLN98].

Difficulties are encountered in situations which cannot be described by a linear response anal-
ysis around the undisturbed (B-DNA) ground state. This situation arises routinely during cellu-
lar processes and is therefore of considerable biological intérest [CD99]. A characteristic feature,
observed in many nanomechanical experiments, is the occurrence of plateaus in force-elongation
curves [SCB96, CLF96,[ABLC98]. These plateaus are interpreted as structural transitions be-
tween microscopically distinct states. While atomistic simulations have played an important role
in identifying possible local structures such as S- and P-DNA [C861[ABLC98], this approach
is limited to relatively short DNA segments containing several dozen base-pairs. The behavior of
longer chains is interpreted on the basis of stack-of-plates models with step-type dependent param-
eters and free energy penalties for non-B steps. Realistic force-elongation are obtained by a suitable
choice of parameters and as the consequence of constraints for the total extension and twist (or
their conjugate forces) [ALCMO01]. Similar models describing the non-linear response of B-DNA to
stretching[[HYZc99] or untwisting [BCP99, CM99] predict stability thresholds for B-DNA due to
a combination of more realistic, short-range interaction potentials for rise with twist-rise coupling
enforced by the sugar-phosphate backbones.

Clearly, the agreement with experimental data will increase with the amount of details which
is faithfully represented in a DNA model. However, there is strong evidence both from atomistic
simulations[[BELG90] as well as from the analysis of oligomer crystal structures [HC97a] that the
base-pair level provides a sensible compromise between conceptual simplicity, computational cost
and degree of reality. While Lavery et al. [BELG99] have shown that the base-pairs effectively
behave as rigid entities, the results of El Hassan and Calladine [HHC97a] and of Hunter et al. [HL97,
Hun93] suggest that the dinucleotide parameters observed in oligomer crystals can be understood as
a consequence of van-der-Waals and electrostatic interactions between the neighboring base-pairs
and constraints imposed by the sugar-phosphate backbone.

The purpose of the present chapter is the introduction of a class of “DNA-like”-molecules with
simplified interactions resolved at the base or base-pair level. In order to represent the stacking inter-
actions between neighboring bases (base-pairs) we use a variant [EEQ3] of the Gay-Berne potential
[GB81] used in studies of discotic liquid crystals. The sugar-phosphate backbones are reduced to
semi-rigid springs connecting the edges of the disks/ellipsoids. Using Monte-Carlo simulations we
explore the local stacking and the global helical properties as a function of the model parameters.
In particular, we measure the effective parameters needed to describe our systems in terms of stack-
of-plates (SOP) and worm-like chain models respectively. This allows us to construct models of
our systems which faithfully represent the equilibrium structure, fluctuations and linear response of
DNA. At the same time we preserve the possibility of local structural transitions, e.g. in response to
external forces.

This chapter is organized as follows. In the second section we introduce the base-pair parameters
to discuss the helix geometry in terms of these variables. Furthermore we discuss how to translate
the base-pair parameters in macroscopic variables such as bending and torsional rigidity. In the third
section we introduce the model and discuss the methods (MC simulation, energy minimization) that
we use to explore its behavior. In the fourth section we present the resulting equilibrium structures,
the persistence lengths as a function of the model parameters, and the behavior under stretching.
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3.2 Theoretical Background

3.2.1 The worm-like chain model revisited: WLC with stretching modulus and WLC
under tension

We already introduced in sectipn 2.2.1 the Hamiltonian of the WLC. Let us examine the discretized
version of Eq.[(2]1) with an additional stretching term accounting for fluctuations of the bond length
of the segment along thet;-direction;

=

-1

N-1
Hwrc k gl (bi — bo)?
= t; -t - —_— 3.1
kT 2; HTy Ly, Gy

(2

with Z;i = 711 — 75 = bit; being theith bond vector with length;, 7; representing the position
vectors, and, being the length around which the segments fluctuate. Thus we only allow for
one-dimensional longitudinal fluctuations (along thelirection) in the segment length. In the
following we are interested in the change of the mean-square end-to-end di§&fceompared

to the incompressible WLC model. Under the assumptionithamdt; are uncorrelated it yields

N—1N-1 ..
(R =3 > (bi-by)
=1 j=1
N—1N-1
=) (bibiti-t;)
i=1 j=1
N—1N-1
=3 (bib)(ti - t))
i=1 j=1
N—1 N—-1N-1 (3:2)
=N D) (i) (by) (b t5)
i=1 i=1 j#1
N—1 N—-1N-1
=37 - )+ Y D i)t ty)
=1 i=1 j=1
N—-1N-1
= N({82) — (bi)?) + (bi) (8 - t5)

where the first term is the additional contribution from the stretching modulus of the segments and
the second part corresponds to the usual worm-like chain result. The first and second moment of the
bond vectors is given by

—1 (bj—bp)?
f db bi exXp (_Qk;T Zﬁif ( bDO) )
- - N1 (bi—b0)2\ bo
J db exp <_2kBT i=1 %o )

N—1 (b;—bp)?

9 fdbb?exp (—ﬁ i=1 %) 1

(b;) = ——— L =y (bo+— ). (3.4)
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(3.3)
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(b) lllustration of the calculated stress-strain relations for the WLC
model (red) and the WLC model extended by a linear stretching
term (green).

Figure 3.1: Stress-strain relations and mean squared end-to-end distance for the inextensible and
extensible WLC model.

In the limit of long chains the following relationship for the mean-square end-to-end distance is

obtained

L

(Ry) = 2LL, — 2 <1 — exp (—f)) + 5 (3.5)
P

with L = Nb, being the contour length ang = kby denoting the bending persistence length.
There is just an additional ter@ to the usual worm-like chain result of E.3). Note thas
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determined by
bo

T =0
The energy of a worm-like chain with bending persistence lehgththe presence of an external
stretching forcef in z-direction is given by
> — f/ z-t(s (3.7)

HWLC’ stretch ‘p /
kT

If the force f in Eq. (3.7) is used as a Lagrange multiplier to fix the end-to-end exteti&ior-

z- (7(L)—7(0)) of the chain the free energy corresponds to the quantum-mechanical ground state
energy of a dipolar rotator with moment of inertjgsubject to an electric fielf [BMSS94] MS95c].
The force extension relation can be solved numerically

(3.6)

(Rp)  kgT d dF

L= @ =T (3.8)

whereZ is the partition function given by the path integral

Z = Z(t9,0;ty, L / Dt exp < WLCStT@tCh) . (3.9)
kT

The large and small stretching force regime admit analytical asymptotic solutions [MS95c]

211
{rg) _Jaeor et (3.10)
L 1-(5E)" fip>1
which can be combined by the approximative interpolation formula
flp 1 (Re)\ > (Rp) 1
= (1- = ~—=l_ 11
kT 4 L + L 4 (3.11)

Since for large stretching forces the longitudinal component (along the stretching direction) of
the tangent vectar; does not contribute to the elastic energy the bending persistence Igndtn
worm-like chain under tension can be evaluated as a function of the appliedffarakthe average
of t2 [MS95¢]:

L (3.12)

T’

Experimental force-extension data show that for forces larger thpN the measured exten-
sions exceed the contour length of the DNA [SCB96, CI19d]. These deviations from the inex-
tensible worme-like chain case indicate that the constraint of fixed chain length has to be released by
adding a linear stretching term with stretch modujusto the energy (see Ed. (3.1)). By doing so
one obtains in the asymptotic stretching regime with > 1 the following stress-strain relation

[Odi95,[SNOZb]
(RE) ksT\? f
L 1T (4ﬂp> ” (313)
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Figure 3.2: lllustration of all six base-pair step parameters and the corresponding coordinate system.
The involved mathematics to calculate the step parameters is discussed in appendix B.

3.2.2 Helix geometry

To resolve and interpret X-ray diffraction studies on DNA oligomers the relative position and orien-
tation of successive base-pairs are analyzed in terms of Rise (Ri), Slide (SI), Shift (Sh), Twist (Tw),
Roll (Ro), and Tilt (Ti) [BPO94] (see Fig[ 3.2). In order to illustrate the relation between these
local parameters and the overall shape of the resulting helix we discuss a simple geometrical model
where DNA is viewed as a twisted ladder where all bars lie in one plane. For vanishing bending
angles with Ro= Ti = 0 each step is characterized by four parameters: Ri, Sl, Sh, and Tw [CD99].
Within the given geometry a base-pair can be characterized by its posiiod the angle of its

main axis with then/b-axis @ points into the direction of the large axls points into the direction

of the small axis, and, representing the tangent vector of the resulting helix, is perpendicular to the
n-b- plane as itis illustrated in Fif. 3.2). At each step the center points are displaced by a distance
/S + SK in then — b—plane. The angle between successive steps is equal to the twist angle and
the center points are located on a helix with radius \/SI* + SH /(2 sin(Tw/2)).

In the following we study the consequences of imposing a simple constraint on the bond lengths
l1 andis representing the two sugar phosphate backbones (the rigid bonds connect the right and left
edges of the bars along tleaxis respectively). Ri is the typical height of a step which we will try
to impose on the grounds that it represents the preferred stacking distance of neighboring base pairs.
We choose Ri= 3.3A corresponding to the B-DNA value. One possibility to fulfill the constraint
lh=l=1= 6A is pure twist. In this case a relationship of the twist angle and the width of the
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base-pairgl, the backbone lengthand the imposed rise Ri is obtained:

d? — 21% + 2Ri?
d2> . (3.14)
Another possibility is to keep the rotational orientation of the base pair=£T¥y, but to displace its
center in then-b-plane, in which case Ri+ SI* + SK* = /2. With Sh= 0, it results in a skewed
ladder with skew anglercsin(Sl/1) /7 [CD99].

The general case can be solved as well. In a first step a general condition is obtained that needs
to be fulfilled by any combination of Sh, Sl, and Tw independently of Ri. For non-vanishing Tw this

yields a relation between Sh and SI:

Tw = arccos <

tan(Tw) = S§T (3.15)
Using Eq.[(3.1p) the general equation can finally be solved:
_ i M 2 l’v 20972 _ J2 _ Ri2
Sl= 7 [cos( 5 ) \/sec( 5 )2(212 —d?> —Ri¥) | . (3.16)

Eq. (3.16) is a result of the mechanical coupling of slide and shift respectively and twist due to the
backbones. Treating the rise again as a constraint the twist is reduced for increasing slide or shift
motion. The center-center distancef two neighboring base-pairs is given by

c= \/Ri2 + SP (1 + tan(Tw)32). (3.17)

For Tw= 0 and a given value of Ri the center-center distance is equal to the backbonellandth
for Tw = arccos ((d* — 2{% + 2Ri?)/d?) one obtaing = Ri.

3.2.3 Thermal fluctuations

In this section we discuss how to calculate the effective coupling constants of a harmonic system
valid within linear response theory describing the couplings of the base-pair step parameters along
the chain. Furthermore we show how to translate measured mean and mean squared values of the 6
microscopic base-pair step parameters into macroscopic observables such as bending and torsional
persistence length. This provides the linkage between the two descriptions: WLC (worm-like chain)
versus SOP (stack-of-plates) model.

Within linear response theory it should be possible to map our model onto a Gaussian system
where all translational and rotational degrees of freedom are harmonically coupled. We refer to
this model as the stack-of-plates (SOP) model [OKLN98]. The effective coupling constants are
given by the second derivatives of the free energy in terms of base-pair step variables around the
equilibrium configuration. This yields x 6 matricesC™” describing the couplings of the base-pair
step parameters of neighboring base-pairs along the chain:

0?F

K= 836?83;}" ’

(3.18)

Therefor one can calculate tli& — 1) x (N — 1) correlation matrixC in terms of base-pair step
parametersN is thereby the number of base-pairs.

ICH K12 ’C13 }C14
<C>: ]C12 ]C22 ,C23 ,C24 . (319)

-1
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Figure 3.3: lllustration of DNA geometry for a diameter @f= 16A: (1) Twisted ladder with
Sl = Sh= 0, Ri = 3.3A, Tw =~ 27/10, (2) Skewed ladder with Tw= Sh = 0, Ri = 3.4A,
Sl~ 5.0A, (3) Helix with Tw = 27 /12, Ri = 3.4A, Sl ~ 2.7A, Sh~ 1.6A.

The inversion o results in a generalized connectivity matrix with effective coupling constants as
entries.

The following considerations are based on the assumption that one only deals with nearest-
neighbor interactions. Then successive base-pair steps are independent of each other and the cal-
culation of the orientational correlation matrix becomes feasible. In the absence of spontaneous
displacements (Sk Sh = 0) and spontaneous bending anglesTRo = 0) as it is the case for
B-DNA going from one base-pair to the neighboring implies three operations. In order to be inde-
pendent of the reference base-pair one first rotates the respective base-pair into the mid-frame with
R(Twsp/2) (R is arotation matrix7ws, denotes the spontaneous twist), followed by a subsequent
overall rotation in the mid-frame which takes the thermal motion of Ro, Ti and Tw into account

ti-tiyn ti-biyi  ti-mig
A= |[bj-tiz1 bi-biyr bi-nyy (3.20)
n;-tiz1 nj-bipr NN
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with
At = cos(Q) + (1 — cos(Q))-I;\;\f
Arz = (1~ cos(@) o~ R2in(@)
Ay = (1— cos(Q))TvgvﬂRo ;‘ §in(€Q)
Aoy = (1— cos(Q))T‘gQTi + %’ in(Q)
Ags = cos(Q) + (1 — cos(m);f (3.21)
Ags = (1— cos(Q))T'Qfo Ts‘;" §in()
Agr = (1— cos(Q))W;TRO - %sin(Q)
Ags = (1— cos(m)% £ sin(@)
R0’

Aszz = cos(Q) + (1 — COS(Q))W

and a final rotation due to the spontaneous t&éw,,/2). Note that) = /Tw? + Ti? + R0?
and thatR (T'w,,/2) is given by

1 0 0
R(Twep/2) = (0 cos (Twgp/2) —sin (Twsp/Z)) . (3.22)

0 sin(Twgp/2) cos(Twsy/2)
The orientational correlation matrix between two neighboring base pairs can be written as
(Oiit1) = R(Twgp/2) (A) R(Twgp/2) (3.23)

A describes the fluctuations around the mean values. Under the assumption of small angles Ro, Ti
and Tw it yields

H
o
I

— (Ti%) — (Re?)

H
[\
I

[N}
]
I

o~ o~ o~~~
S

. LS. . .
—_

~  ~ ~ ~— ~
—
w

((Ti%) — (R0?*) — cos(Tw,,)(2(Tw?) + (Ti?) + (Ro?) — 2))

)
N
|

(3.24)
(2(Tw?) + (Ti?) + (R0?) — 2) sin(Tw,)

O NI, = O© O O =

(Oi01)32 = f% (20TW?) + (Ti%) + (R?) — 2) sin(Tw,y)

((RO*) — (Ti%) — cos(Tw,p)(2(Tw?) + (Ti?) + (R0?) — 2)).
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As a consequence of the independence of successive base-pair step parameters @fig; fines
(R(Twsp/2) (A) R(Tws,/2))’ " where the matrix product is carried out in the eigenvector basis

of R(Twgep/2) (A) R(Twsp/2). Inthe end a relationship of the mean and mean squared local base-
pair step parameters and the bending and torsional persistence length is obtained. The calculation
yields an exponentially decaying tangent-tangent correlation function

(£(0) - £(s)) = exp(—s/1,) (3.25)
with a bending persistence length

2(Ri)
"= (1) + R 820

In the following we will calculate the torsional persistence length. Making use of a simple
relationship between the local twist and the base-pair orientations turns out to be more convenient
than the transfer matrix approach.

The (bi)normal-(bi)normal correlation function is an exponentially decaying function with an
oscillating term depending on the helical repeat lerigth p(Ri) and the helical pitchh = 27 /(Tw)
respectively, namely

(n(0) - n(s)) = exp(—s/ly) cos(2m s/h). (3.27)

The torsional persistence length = [, can be calculated then in the following way. It can be

shown that the twist angle Tw of two successive base-pairs is related to the orien{atibna}

and{t’,b’,n’} through

n-n+b-b
1+t-t/

(see appendix|C). Taking the mean and using the fact that the orientational correlation functions and

twist correlation function decay exponentially

cos(Tw) = (3.28)

exp(—l/lTw) . QGXP(_l/ln)

~ 1+exp(—1/1,) (3:29)

yields in the case of stiff filaments a simple expressiof), afepending or, andir,,:

I, 1 2 1\ !
bn _ 2 1 3.30
2 2 <1Tw + l,,) ’ (3.30)

where the twist persistence length is defined as

(R
Iy = m (3.31)

3.3 Model and methods

Qualitatively the geometrical considerations suggest a B-DNA like ground state and the transition
to a skewed ladder conformation under the influence of a sufficiently high stretching force, because
this provides the possibility to lengthen the chain and to partially conserve stacking. Quantitative
modeling requires the specification of a Hamiltonian.
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Figure 3.4: (left) lllustration of the underlying idea. The base-pairs are represented as rigid ellip-
soids. The sugar-phosphate backbone is treated as semi-rigid springs connecting the edges of the
ellipsoid. (right) Introduced interactions lead to a right-handed twisted structure.

3.3.1 Introduction of the Hamiltonian

The observed conformation of a dinucleotide base-pair step represents a compromise between (i) the
base stacking interactions (bases are hydrophobic and the base-pairs can exclude water by closing
the gap in between them) and (ii) the preferred backbone conformation (the equilibrium backbone
length restricts the conformational space accessible to the base-pairs) [PH98]. Packer and Hunter
[PH9E] have shown that roll, tilt and rise are backbone-independent parameters. They depend
mainly on the stacking interaction of successive base-pairs. In contrast twist is solely controlled
by the constraints imposed by a rigid backbone. Slide and shift are sequence-dependent. While it
is possible to introduce sequence dependant effects into our model, they are ignored in the present
work.

We propose a generic model for DNA where the molecule is described as a stack of thin, rigid
ellipsoids representing the base-pairs (fFig] 3.4). The shape of the ellipsoids is given by three radii
a, b, c of the main axes in the body frames which can be used to define a structure matrix

S = (3.32)

o O Q2
o O O

0
b
0

2a corresponds to the thicknes3), to the depth which is a free parameter in the model, ane
18A to the width of the ellipsoid which is fixed to the diameter of a B-DNA helix. The thickaess
will be chosen in such a way that the minimum center-center distance for perfect stacking reproduces
the experimentally known value 8f3A.

The attraction and the excluded volume between the base-pairs is modeled by a variant of the
Gay-Berne potential [EE03] for ellipsoids of arbitrary sh&perelative position;, and orientation
A,. The potential can be written as a product of three terms:

U(A1,Az,712) = Ur(A1, A2, T12)m2(A1, Ag, T12) x12(A1, Ao, T12). (3.33)

The first term controls the distance dependence of the interaction and has the form of a simple LJ

potential
o 12 P 6
=4 — 34
v 6GB<<h+’ya> <h—|—’ya> > (3.34)
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Figure 3.5: Distance and angular dependence of the Gay-Berne potential between two similar oblate
ellipsoids with semi-axes (3.3,10,18) and= 1.0, 0 = 3.3.

where the interparticle distaneds replaced by the distanéeof closest approach between the two

bodies:
h = min(|7; — 75]) ¥(i, j) (3.35)

with i € Body 1 andj € Body 2. The range of interaction is controlled by an atomistic length scale
o = 3.3A, representing the effective diameter of a base-pair.
In general, the calculation df is non-trivial. We use the following approximative calculation
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scheme which is usually employed in connection with the Gay-Berne potential:

h(A1, As, 712) = 112 — 012(A1, Ag, 712) (3.36)

) 1, _ 1l
o12(A1, Ag, T12) = [§T£G121(A1,A2)T12] 1/2 (3.37)
Gi2(A1, Az) = ATSTA; + AJS3A,. (3.38)

In the present case of oblate objects with rather perfect stacking behavipr E§. (3.36) produces only
small deviations from the exact solution of Hg. (3.35) [PWLW94, PW85, PRPL96].

The other two terms in Eq]. (3.83) control the interaction strength as a function of the relative
orientationA’ A, and position; of interacting ellipsoids:

det[S1]/o? + det[S2] /03

ma2(Aq, Az, T12) = (3.39)
(det[Hyo] /(o1 + 02)) /2
1 1
Hiy(A1, Ay, 710) = —ATS2A| + —ATS2A, (3.40)
01 g9
oi(Ai i12) = (7T ATST2Ay 715) 7 (3.41)
and
X12(A1, Az, T12) = [271, Bfgl(A17A2) T12] (3.42)
Bi2(A1,Ag) = ATE1A; + AJE2A, (3.43)
with
b‘?zc 0 0
Ei=c| 0 2t o0 |=-—2_g2 (3.44)
;=0 a;c; o det[S;] i .

0 0

a; b;
In Fig.[3.5 the distance dependence of the Gay-Berne potential for all possible pole contacts as well
as the dependence on Tw, Sh, and Sl around the stacked (on top) conformation is shown.

We neglect electrostatic interactions between neighboring base-pairs since at physiological con-
ditions the stacking interaction dominates [Hur93, CD99].

At this point we have to find appropriate values for the thickrizsand the parametey of
Eq. (3.34). Both parameters influence the minimum of the Gay-Berne potential. There are essen-
tially two possible procedures. One way is to make use of the parameterization result of Everaers
and Ejtehadi[[EEQ3], i.e = 2'/6 — 30~1/6, and to choose a value of ~ 0.7 that yields the
minimum center-center distance ®BA for perfect stacking. Unfortunately it turns out that the
fluctuations of the bending angles strongly depend on the flatness of the ellipsoids. The more flat
the ellipsoids are the smaller are the fluctuations of the bending angles so that one ends up with
extremely stiff filaments with a persistence length of a few thousand base-pairs. This can be seen
clearly for the extreme case of two perfectly stacked plates: each bending move leads then to an
immediate overlap of the plates. That is why we choose the second possibility. We keepfree
parameter that is used in the end to shift the potential minimum to the desired value and fix the width
of the ellipsoids to be approximately half the known rise value 1.55A. This requiresy = 1.07
close to the standard choige= 1 employed in the literaturé [BEZ98].

The sugar phosphate backbone is known to be nearly inextensible. The distance between ad-
jacent sugars varies from5A to 6.5A [CD99]. This is taken into account by two stiff harmonic
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left—handed helix right—handed helix

backbones pass no overlap
through base—pairs

Figure 3.6: Consider two plates that are connected by two rigid bonds. The right bond is anchored
at the upper right corner whereas the left bond is anchored at the lower left corner. In case of a right-
handed helix there is no overlap of the backbone with the base-pairs whereas in case of a left-handed
twist the backbones pass through the plate. Such moves are rejected in the Monte Carlo procedure.

springs with length; = Iy = 6.0A connecting neighboring ellipsoids (see 3.4). The anchor
points are situated along the centerlinezkalirection (compare Fig. 3.2 and Fig. B.4) with a dis-
tance of-+8A from the center of mass. The backbone is thus represented by an elastic spring with
non-zero spring length, = 6A

k
He = = [(r1ie1 — 13 — 10)* + (Ir2,01 — T2, — 0)?] - (3.45)

2

The competition between the GB potential that forces the ellipsoids to maximize the contact area
and the harmonic springs with non-zero spring length that does not like to be compressed leads to
a twist in either direction of the order afr/5. The right-handedness of the DNA helix is due
to excluded volume interactions between the bases and the backbone which we do not represent
explicitly (Fig. [3.8). Rather we break the symmetry by rejecting moves which lead to local twist
smaller than-m/18.

Thus we are left with three free parameters in our model, the GB energy deptmin(U)
which controls the stacking interaction, the spring constawhich controls the torsional rigidity,
and the depthb of the ellipsoids which influences mainly the fluctuations of the bending angles.
All other parameters such as the width and the height of the ellipsoids, or the range of interaction
o = 3.3A which determines the width of the GB potential are fixed in order to reproduce the
experimental values for B-DNA.

3.3.2 MC simulation

In our model all interactions are local and it can therefore conveniently be studied using a MC
scheme. In addition to trial moves consisting of local displacements and rotations of one ellipsoid
by a small amplitude, it is possible to employ global moves which modify the position and the
orientation of large parts of the chain. The moves are analogous of (i) the well-known pivot move
[LBOQ], and (ii) a crankshaft move where two randomly chosen points along the chain define the
axis of rotation around which the inner part of the chain is rotated. The moves are accepted or
rejected according to the Metropolis scheme [MFR].
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Figure 3.7: Time correlation functions of the scalar product of the tangent vectors of the first and
the last monomer = #(0,1) - £(t, N) with N = 10 (red) N = 20 (green) N = 50 (blue) and

2b = 11A, ¢ = 20kpT, k = 64kpT/A* for (a) global and (b) local moves. It is observed that
Tglobal 1S INdependent of the chain length whereas,.,; scales asV3. The 'time’ is measured in

units of sweeps where one MC sweep correspondé toals. The CPU-time for one sweep scales
asN? in case of global moves and a&in case of local moves. Thus the simulation timscales
aStjpear < Nt andt giopq; < N2.
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Fig. [3.7 shows that these global moves significantly improve the efficiency of the simulation.
We measured the correlation timeof the scalar product of the tangent vectors of the first and the
last monomer of 200 independent simulation runs viith= 10, 20, 50 monomers using (i) only
local moves and (ii) local and global moves (ratio 1:1). The correlation time of the global moves is
independent of the chain length witfy,,.; =~ 78 sweeps whereas,.,; scales asvs.

Each simulation run compris@§® MC sweeps where one MC sweep correspondsNdrials
(one rotational and one translational move per base-pair)Witlenoting the number of monomers.

The amplitude is chosen such that the acceptance rate equals approximatéty. t&very 1000
sweeps we store a snapshot of the DNA conformation. We measured the 'time’ correlation functions
of the end-to-end distance, the rise of one base-pair inside the chain and all three orientational angles
of the first and the last monomer and of two neighboring monomers inside the chain in order to
extract the longest relaxation timg,,... We observe,,... < 1000 for all simulation runs.

An estimate for the CPU time required for one sweep for chains of leNgt 100 on a AMD
Athlon MP 2000+ processor resultsrf26s which is equivalent td.33 x 10~*s per move.

3.3.3 Energy minimization

We complemented the simulation study by zero temperature considerations that help to discuss
the geometric structure that is obtained by the introduced interactions and to rationalize the MC
simulation data. Furthermore zero temperature considerations can be used to obtain an estimate of
the critical forcef..;; that must be applied to enable the structural transition from B-DNA to the
overstretched S-DNA configuration as a function of the model paramigtgrsh}.

3.4 Results

In the following we will try to motivate an appropriate parameter{setk, b} that can be used for
further investigations within the framework of the presented model. Therefor we explore the pa-
rameter dependence of experimental observables such as the bending persistence length of B-DNA
l, ~ 150bp, the torsional persistence length~ 260bp [SBC99], the mean values and correla-
tions of all six base-pair parameters and the critical pulling fgigg ~ 65pN [CLHT96,[L[99,

LLA T02,[BSLS00] that must be applied to enable the structural transition from B-DNA to the over-
stretched S-DNA configuration. In fact, static and dynamic contributions to the bending persistence
lengthl,, of DNA are still under discussion. It is known thiatdepends on both the intrinsic cur-
vature of the double helix due to spontaneous bending of particular base-pair sequences and the
thermal fluctuations of the bending angles. Bensimbml. introduced disorder into the WLC

model by an additional set of preferred random orientation between successive segments/[BDM98].
They derived a relationship of the pure persistence lefigth, i.e. without disorder, the effec-

tive persistence length,, and the probability distribution function of a set of random orientation
P({¥;}) and compared their result to MC simulations. Assuming a Gaussian distribution function
for P({¥,}) one finds a simple renormalization formula in the limit of large and small disorder

1 / lpure lpure
leff = 1 - 2 l(iiforder ? ldi:or(ier << 1 (346)

isorder l :
lpure 2 ldz.sf)'rfie'r , .P’U«”'E >> 1
pure disorder

Since we are dealing with intrinsically straight filaments With4;sorqer = 0, We measuré,, ;...
Recent estimates &f;,q4. range between30 [BEK™95] and4800 [VV02] base-pairs using cryo-
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(Riy (Sh (S (Tw) (M) (Ro) () b
326 00 00 064 00 00 326
337 001 -001 062 00 00 347 1728
376 -001 -003 047 00 00 441 253
410 -001 001 034 00 -001 507 144
430 003 -002 027 00 001 539 136

g wN kP oM~

Table 3.1: Dependence of mean values of all six step parameters and of the mean center-center
distance(c) on the temperature f@b = 11A, ¢ = 20k5T, k = 64kgT/A”. (Ri), (Sh), (Sl) and
(c) are measured 4], ,, in base-pairs.

electron microscopy and cyclization experiments respectively implicating values bet@eand
140 base-pairs fot,,,. if it is assumed that the anglds are small.

3.4.1 Equilibrium structure

As a first step we study the equilibrium structure of our chains as a function of the model parameters.
To investigate the ground state conformation we rationalize the MC simulation results with the help
of the geometrical considerations and minimum energy calculations. In the end we will choose
parameters for which our model reproduces the experimental values of BDNA [CD99]:

(Ri) = 3.3 — 3.4A

(Sl) = 0A
(Sh = 0A
(Tw) = 27/10.5 — 27/10
(Tiy =0
(Ro) = 0.

We use the following reduced units in our calculations. The energy is measured in uhpg pf
lengths in units of, forces in units oﬁcBT,&_l ~ 40pN.

We start by minimizing the energy for the various conformations shown in[Fig. 3.3 to verify
that our model Hamiltonian indeed prefers the B-Form. Since we have only local (nearest neighbor)
interactions we can restrict the calculations to two base-pairs. There are three local minima which
have to be considered: (i) a stacked, twisted conformation witk Ri3, Sl, Sh, Ti, Ro= 0, Tw =
7 /10, (i) a skewed ladder with R 3.3, SI = 5.0, Sh, Tw, Ti, Ro= 0, and (iii) an unwound helix
with Ri = 6.0, SI, Sh, Ti, Ro= 0, Tw = 0. Without an external pulling force the global minimum
is found to be the stacked twisted conformation.

We investigated the dependence of Ri and Tw on the GB energy d#phcontrols the stacking
energy for different spring constants Ri depends neither oanor onk nor onb. It shows a
constant value of Riv 3.3A for all parameter set$e, k,b}. The resulting Tw of the minimum
energy calculation coincides with the geometrically determined value under the assumption of fixed
Ri up to a criticale. Up to that value the springs behave effectively as rigid rods. The critiisal
determined by the torqugk, €) that has to be applied to open the twisted structure for a given value
of Ri.

Using MC simulations we can study the effects arising from thermal fluctuations. PIgRihg
and(Tw) as a function of the GB energy deptlone recognizes that in genef&i) is larger than
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(b) Twist as a function ot. In addition to the MC data and
the minimum energy calculation we calculated the twist with
Eq. [3:1%) using the measured mean rise values of (a). It can
be observed thafTw) changes with all three model parameters.
Increasingy and k decreases especially the fluctuations of Tw
and Sh so thafTw) increases as a result of the mechanical cou-
pling of the shift and twist motion. In the limit af & — oo the
minimum energy value is reached.

Figure 3.8: Rise/i] and twist [°] as a function ot [kpT] for 2b = 8, 9, 10, 11A (red, green, blue,
purple). For every there are two data sets fér= 32 (plus), 64 (circles) VcBT/,&Q]. The dotted
line corresponds to the minimum energy value.
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Ri(T" = 0). It converges only for large values efto the minimum energy values. This can be
understood as follows. Without fluctuations the two base-pairs are perfectly stacked taking the
minimum energy configuration Ri 3.3A, SI, Sh, Ti, Ro= 0, and Tw= 7/10. As the temperature

is increased the fluctuations can only occur to larger Ri values due to the repulsion of neighboring
base-pairs. A decrease of Ri would cause the base-pairs to intersect. Increasing the stacking energy
reduces the fluctuations in the direction of the tangent vector and leads to s{Rallealue. In the

limit ¢ — oo it should reach the minimum energy value which is observed from the simulation data.

In turn the increase of the mean value of rise results in a smaller twist ahgje We can calculate

with the help of Eq.[(3.14) the expected twist using the measured mean val(ies .ofFig.

shows that there is no agreement. The deviations are due to fluctuations in SI and Sh which cause
the base-pairs to untwist. This is the mechanical coupling of SlI, Sh, and Tw due to the backbones
already mentioned in sectipn 3.p.2. It is observed that a stiffer sprimgd a larger depth of the
ellipsoidsb result in larger mean twist values. Increasing the spring conktangians decreasing the
fluctuations of the twist and, due to the mechanical coupling, of the shift motion around the mean
values which explains the larger mean twist values. An increase of the ellipsoidalidieptirn
decreases the fluctuations of the bending angles. The coupling of the tilt fluctuations with the shift
fluctuations leads to larger values f@w). The corresponding limit wher@w) — Tw(T = 0) is

given byk, e — oo.

The measurement of the mean values of all six base-pair step parameters for different tempera-
tures is shown in Tab[e 3.4.1. One can see that with increasing temperature the twist angles decrease
while the mean value of rise increase. The increase of the center-center distance is not only due to
fluctuations in Ri but also due to fluctuations in Sl and Sh. That is why there are strong deviations
of (c¢) from (Ri) even though the mean values of Sl and Sh vanish. Note that the mean backbone
length(I) always amounts to aboGA.

The calculation of the probability distribution functions of all six base-pair parameters shows
that especially the rise and twist motion do not follow a Gaussian behavior. The deviation of the
distribution functions from the Gaussian shape depends mainly on the stacking energy determined
by e. For smaller values of one observes larger deviations than for largalues.

It is worthwhile to mention that there are mainly two correlations between the base-pair param-
eters. The first is a microscopic twist-stretch coupling determined by a correlation of Ri and Tw, i.e.
an untwisting of the helix implicates larger rise values. A twist-stretch coupling was introduced in
earlier rod models [KLNO97, Mar97, Nel08] motivated by experiments with torsionally constrained
DNA [SAB™96] which allow for the determination of this constant. Here it is the result of the pre-
ferred stacking of neighboring base-pairs and the rigid backbones. The second correlation is due
to constrained tilt motion. If we return to our geometrical ladder model we recognize immediately
that a tilt motion alone will always violate the constraint of fixed backbone lehglven though
we allow for backbone fluctuations in the simulation the bonds are very rigid which makes tilt-
ing energetically unfavorable. To circumvent this constraint tilting always involves a directed shift

| Ri Sh Sl Tw Ti Ro
(z) 339 00 00 0621 00 00
(2%) —(x)*] 0.020 0.115 0.423 0.001 0.003 0.009

Table 3.2: Mean values and mean squared fluctuations of all step parameters=f@0kpT,
k = 64kpT /A%, 2b = 11A.
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(a) Contour plot of measured clouds for rise-twist. (b) Contour plot of measured clouds for shift-tilt.
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(c) Contour plot of measured clouds for roll-tilt.

Figure 3.9: Contour plots of measured clouds for rise-twist, shift-tilt, and roll-tilt to demonstrate in-
ternal couplings and the anisotropy of the bending angVe&(lL&, € =20kpT, k= 64k:BT/A2).

motion.

Fig.[3.9 shows that we recover the anisotropy of the bending angles Ro and Ti as a result of the
spatial dimensions of the ellipsoids. Since the overlap of successive ellipsoids is larger in case of
rolling it is more favorable to roll than to tilt.

The correlations can be quantified by calculating the correlation m@auhEg. (3.19). Inverting
C yields the effective coupling constants of the SOP mddet C~!. Due to the local interactions
it suffices to calculate mean and mean squared values of Ri, Sl, Sh, Tw, Ro, and Ti characterizing
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Figure 3.10: Comparison of probability distribution functions of all base-pair parametetrs=for
20kpT, k = 64kBT/A2, 2b = 8A. The Gaussians are plotted with the measured mean and mean
squared values of the MC simulation.
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Figure 3.12: Comparison of analytical expressions Egs. |(3.26) and (3.3p)dod!,, (solid lines)
with numerically calculated orientational correlation functions (data pointspfor= 8A, k =

64kpT/A”, ande = 20, .. ., 60 [kT] (from bottom to top).

the ’internal’ couplings of the base-pairs steps:

C = (U)ija Vi, j € {1, e ,6} (347)
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with o, = (z9) — (x)(y). One obtains for = 20kpT, k = 64kgT /A%, 2b = 114
ith o, = (zy) — (z)(y). One obtains for = 20kpT, k = 64kzT/A”, 2b = 11A

g1A72  _s5A7? 0 267AT 20A71 0
—5A"%  GOA? 0  —48A7' —340A7' 0
o 92 o 1
P 0 0 2A y 1A 0 0| (3.48)
267A 1 —48A7Y 1A 92211 261 )
20A™"  _340A71 0 261 2244 -1
0 0 0 ) ~1 117

Thus a significant twist-stretch, shift-tilt and twist-tilt coupling is recovered.

3.4.2 Bending and torsional rigidity and stretching modulus

The correlation matrix of Eq[ (3.47) can also be used to check (3.26) and (3.30). Therefore we
measured the orientational correlation functiotyst;), (n;-n;), (b;-b;) and compared the results
to the analytical expressions as it is illustrated in Fig. [3.12. The agreement is excellent.

The simulation data show that the bending persistence length does not depend on the spring
constantc. But it strongly depends onbeing responsible for the energy that must be paid to tilt or
roll two respective base-pairs. Since a change of twist for constant Ri is proportional to a change in
bond length the bond energy contributes to the twist persistence length explaining the dependence
of i1, onk (compare Figl 3.13).

We also measured the mean-square end-to-end dist&3geand find that R%) deviates from
the usual WLC chain result due to the compressibility of the chain. So as to investigate the origin
of the compressibility we caIcuIal(eR?E> for the following geometry. We consider two base-pairs
without spontaneous bending angles such that the end-to-end v&ectan be expressed as

Eg=)Y &= (Rit;+ Shb; + Sln;). (3.49)

The coordinate systeft;, b;, n;} is illustrated in Fig..cj- denotes the center-center distance

of two neighboring base-pairs. Since successive base-pair step parameters are independent of each
other, and the translational step parameters Ri and Sh and Sl are uncorrelated the mean-square end-
to-end distanceéR?,) is given by

(RE) =D > (@)
v g
=2 D ((RURL;) (6 - tj) + (SShy) (b - t;) + (SLSL) (ni - t5)

 (Ri;Rij) = (Ri;)(Ri;) = (Ri)? etc.,Vi # j, (SI) = (SH =0

= S URP) + (SF) + (SP) + Y SO(RIZ(E - t) (3.50)
g i j#i

=574 — R+ YN (R t5)

_ NRi) | 2N (Ri)l, — 212 (1 — exp (_N<Ri>>> .

vy lp
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Figure 3.13: Dependency of bending and torsional persistence length on the spring donstant
width of the ellipsoid$ and the energy depth We measured the persistence lengths for varying
width sizes2b = 8, 9, 10, 11A (red, green, blue, purple) and for two different spring constants
k = 32 (plus), 64 (circles) I_kBT//&2]. The bending persistence length depends solely amde. It

gets larger for largetr andb values. But it does not depend ér(the curves for differenk values
corresponding to the same widihie one upon the other). The torsional persistence length in turn
depends ort, since a change of twist for constant Ri is proportional to a change in bond length.
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Figure 3.14: Comparison of the simulation data with= 20k5T, k = 64kT/A”, 2b = 11A,
andT = 1,2,3,5 (from bottom to top) to Egs.[ (3.26), (350) ard (3.51) (solid lines). Using the
measured bending persistence lengths and the stretching moduli we find a good agreement with the

predicted behavior. F& = 1 we obtainy = 6.024 ",

N denotes the number of base-pairs. Note {B§tand(Sh vanish. Usingc?) = (Ri*) + (SF*) +
(SP) the stretching modulus is simply given by

(Ri)
((Ri?) — (Ri)2) + (SF?) + (SP)’

We compared the data for different temperatdree Eq. [3.50) using the measured bending persis-
tence lengthg, and stretching moduly (see Fig[ 3.14). The agreement is excellent. This indicates
thattransverseslide and shift fluctuations contribute to thmngitudinal stretching modulus of the
chain.

(3.51)

’y:

3.4.3 Stretching

Extension experiments on double-stranded B-DNA have shown that the overstretching transition
occurs when the molecule is subjected to stretching forcésmX or more [BSLS00]. The DNA
molecule thereby increases in length by a factor.8ftimes the normal contour length. This over-
stretched DNA conformation is called S-DNA. The structure of S-DNA is still under discussion.
First evidence of possible S-DNA conformations were provided by Lagta}. [CLH96,/LL98,

LLA T02] using atomistic computer simulations.

In principle one can imagine two possible scenarios how the transition from B-DNA to S-DNA
occurs within our model. Either the chain untwists and unstacks resulting in an untwisted ladder with
approximatelyl .8 times the equilibrium length, or the chain untwists and the base-pairs slide against
each other resulting in a skewed ladder with the same S-DNA length. The second scenario should be
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energetically favorable since it provides a possibility to partially conserve the stacking of successive
base-pairs. In fact molecular modeling of the DNA stretching process f@6;ILLIS,[LLAT02]
yielded both a conformation with strong inclination of base-pairs and an unwound ribbon depending
on which strand one pulls.

We expect that the critical forcé..;; where the structural transition from B-DNA to over-
stretched S-DNA occurs depends only on the GB energy deptimtrolling the stacking energy.
So as a first step to find an appropriate value ek input parameter for the MC simulation we
minimize the Hamiltonian with an additional stretching enefgy,; = fc;;+1, where the stretch-
ing force acts along the center-of-mass axis, with respect to Ri, SI and Tw for a given pulling
force f. Fig. [3.1% shows the resulting stress-strain curve. First the pulling force acts solely
against the stacking energy up to the critical force where a jump @y )/Lo ~ 1.05 to

L(ferits)/Lo = VRiZ + SP/Ri =~ 1.8 occurs, followed by another slow increase of the length
caused by overstretching the bonds, = L(F = 0) = Ri denotes the stress-free center-of-mass
distance. As already mentioned three local minima are obtained: (i) a stacked, twisted conforma-
tion, (ii) a skewed ladder, and (iii) an unwound helix. The strength of the applied stretching force
determines which of the local minima becomes the global one. The global minimum for small
stretching forces is determined to be the stacked, twisted conformation and the global minima for
stretching forces larger thafy,.;; is found to be the skewed ladder. Therefore the broadness of the
force plateau depends solely on the ratid @Ri determined by the geometry of the base-péirs

and the bond length = 6.0A. A linear relationship between the critical force and the stacking
energye is obtained so that it is possible to extrapolate to small@lues to extract thevalue that
reproduces the experimental valuefpf;; ~ 65pN. This suggests a value ot 7.

The simulation results of the previous sections show several problems when this valige of
chosen. First of all the correct persistence lengths cannot be reproduced, the chain is far to flexible.
Secondly the undistorted ground state is not a B-DNA anymore. The thermal fluctuations suffice to
unstack and untwist the chain locally. That is why one has to choose lavgres even though the
critical force is going to be overestimated.

Therefore we choose the following way to fix the parametef&et k}. First of all we choose
a value for the stacking energy that reproduces correctly the persistence length. Afterwards the
torsional persistence length is fixed to the experimentally known values by choosing an appropriate
spring constank. The depth of the base-pairs has also an influence on the persistence lengths
of the chain. If the deptlh is decreased larger fluctuations for all three rotational parameters are
gained such that the persistence lengths get smaller. Furthermore the geometric structure and the
behavior under pulling is very sensitive ioToo small values provoke non-B-DNA conformations
or unphysical S-DNA conformations. We choosefar value ofL 1A for those reasons. Fer= 20
andk = 64 a bending stiffness df, = 170bp and a torsional stiffness &f = 270bp are obtained
close to the experimental values. We use this parameter set to simulate the corresponding stress-
strain relation.

The simulated stress-strain curves30tbase-pairs show three different regimes (see[Fig] 3.15).
(i) For small stretching forces the WLC behavior of the DNA in addition with linear stretching elas-
ticity of the backbones is recovered. This regime is completely determined by the chainéngth
Due to the coarse-graining procedure that provides analytic expressions of the persistence lengths
depending on the base-pair parameters it is not necessary to simulate a chain of a few thousand
base-pairs. The stress-strain relation of the entropic and WLC stretching regime (small relative ex-
tensiong./ Ly and small forces) is known analytically [MS95c, Odi95]. (ii) Around the critical force
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Figure 3.15: Force-extension curve for final parameterization. We simufated0 and N = 500
monomers, so that the WLC behavior (red solid line in (b)) is recovered for small stretching forces
followed by a structural transition. The elastic response of S-DNA is controlled by overstretching

the bonds.
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Figure 3.16: Experimentally measured stress-strain curves by [BSLS00].

ferit &= 140pN which is mainly determined by the stacking energy of the base-pairs the structural
transition from B-DNA to S-DNA occurs. (iii) For larger forces the bonds become overstretched.
Our MC simulations suggest a critical for¢g.;; ~ 140pN which is slightly smaller than the value
ferit = 180pN calculated by minimizing the energy. This is due to entropic contributions.

In order to further characterize the B-to-S-transition we measured the mean, mean-square val-
ues and the probability distribution functions of rise, slide, shift, etc. as a function of the applied
forces. The evaluation of the MC data shows that the mean values of shift, roll and tilt are com-
pletely independent of the applied stretching force and vanish fgt &ise increases at the critical
force from the undisturbed value 6f3A to approximately4.0A and decays subsequently to the
undisturbed value. Quite interestingly, the mean value of slide jumps from its undisturbed value of
0 to +5A (no direction is favored) and the twist changes at the critical force frgi® to 0. The
calculation of the distribution function of the center-center distarmigtwo neighboring base-pairs
for f = 140pN yields a double-peaked distribution (see Fig. B.17) indicating that part of the chain
is in the B-form and part of the chain in the S-form. The contribution of the three translational de-
grees of freedom to the center-center distaniseshown in Fig[ 3.17. The S-DNA conformation is
characterized by R& 3.3A, Sl = +5A and Tw= 0. In agreement with Refs, [CLFR6,[LL99] we
obtain a conformation with highly inclined base-pairs still allowing for partial stacking of successive

base-pairs.

The evolution of the S-DNA conformation depending on the applied stretching force is illus-
trated in Figs| 3.70-3.22. We measured the probability distribution functions of all six step variables
around the critical force fof = 130pN andf = 140pN, and beyond,,;; for f = 250pN. Figs.

[3.20 and 3.2]1 stress the fact that around the critical force part of the chain is in the B-form and part
of the chain is in the S-form giving rise for large fluctuations in Ri, SI and Tw. Note that the twist
distribution function shows a cutoff at/16 which represent the geometrical constraint in order to
enforce a right-handed helical structure as ground state conformation. Moreover it can be observed
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Figure 3.17: Probability distribution function of the center-center distance of successive base-pairs
and contributions of the translational degrees of freedorfep Note that(Tw) of the resulting
S-DNA conformation vanishes as predicted by [Eq. (3.16).
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Figure 3.18: Contour plot of rise versus slide and versus twist respectivelyf foe

130pN, 140pN, 250pN. This illustrates how the S-DNA structure builds up with increasing stretch-
ing forcef.

that for the S-DNA conformation the shift, twist and roll fluctuations are much larger than in the
B-DNA conformation. In the S-DNA state the contact area of two successive base-pairs is much
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(a) zero stretching force

(c) beyond the critical force

Figure 3.19: Snapshots of chains with length= 50 for the final parameterization of Ed. (3]52).
One can clearly see the right-handed B-DNA conformation (a) and the skewed ladder structure of
the S-DNA conformation (c).

smaller than in the B-DNA state such that the energy loss due to fluctuations around the S-DNA
ground state is strongly reduced. In addition twist fluctuations lead to much smaller fluctuations in
the backbone length.

3.5 Discussion

We have introduced a simple model Hamiltonian describing double-stranded DNA on the base-
pair level. Due to the simplification of the force-field and, in particular, the possibility of non-
local MC moves our model provides access to much larger length scales than atomistic simulations.
For examplegh on a AMD Athlon MP 2000+ processor are sufficient in order to generate 1000
independent conformations for chains consistingvof 100 base-pairs.

In the data analysis, the main emphasis was on deriving the elastic constants on the elastic rod
level from the analysis of thermal fluctuations of base-pair step parameters. Assuming a twisted lad-
der as ground state conformation one can provide an analytical relationship between the persistence
lengths and the local elastic constants given by ¢gs.|(3[26)] (8.Bdjure work has to show, if itis

1The general case where the ground state is characterized by spontaneous rotations as well as spontaneous displace-
ments as in the A-DNA conformation is more involved. This is the subject of ongoing work.
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Figure 3.20: Comparison of probability distribution functions of all base-pair parameters for the
final parameterization with = 20, k¥ = 64, 2b = 11 and a stretching force of = 130pN, i.e.
slightly below the critical force. The Gaussians are plotted with the measured mean and mean
squared values of the MC simulation with 50 monomers.
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Figure 3.22: Comparison of probability distribution functions of all base-pair parameters for the
final parameterization with = 20, k¥ = 64, 2b = 11 and a stretching force of = 250pN, i.e.

beyond the critical force. The Gaussians are plotted with the measured mean and mean squared
values of the MC simulation with 50 monomers.
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possible to obtain suitable parameters for our mesoscopic model from a corresponding analysis of
atomistic simulations [LLOOa] or quantum-chemical calculations [GB99]. In the present paper, we
have chosen a top-down approach, i.e. we try to reproduce the experimentally measured behavior of
DNA on length scalebeyondthe base diameter. The analysis of the persistence lengths, the mean
and mean squared values of all six base-pair parameters and the critical force, where the structural
transition from B-DNA to S-DNA takes place, as a function of the model paraméhekse} and

the applied stretching forcg suggests the following parameter set:

2b = 11A
€ = 20kpT (3.52)
k = 64kpT/A”.

It reproduces the correct persistence lengths for B-DNA and entails the correct mean values of
the base-pair step parameters known by X-ray diffraction studies. While the present model does
not include the distinction between the minor and major groove and suppresses all internal degrees
of freedom of the base-pairs such as propellor twist, it nevertheless reproduces some experimen-
tally observed features on the base-pair level. For example, the anisotropy of the bending angles
(rolling is easier than tilting) is just a consequence of the plate-like shape of the base-pairs and the
twist-stretch coupling is the result of the preferred stacking of neighboring base-pairs and the rigid
backbones.

The measured critical force is overestimated by a factdr ahd cannot be improved further
by fine-tuning of the three free model parametgisk,e}. f..ix depends solely on the stacking
energy value that cannot be reduced further. Otherwise neither the correct equilibrium structure
of B-DNA nor the correct persistence lengths would be reproduced. Our model suggests a structure
for S-DNA with highly inclined base-pairs so as to enable at least partial base-pair stacking. This is
in good agreement with results of atomistic B-DNA simulations by Laetigl. [CLH™96,[LL99].

They found a force plateau aftOpN for freely rotating ends [CLH96]. The mapping to the SOP
model yields the following twist-stretch (Ri-Tw) coupling constagf 7, = (C_l)Ri,Tw = 267/,5\.
kri T is the microscopic coupling of rise and twist describing the untwisting of the chain due to an
increase of rise (compare also Hig.|3.9).

Possible applications of the present model include the investigation of (i) the charge renormal-
ization of the WLC elastic constants [PHF00], (ii) the microscopic origins of the cooperativity of
the B-to-S transition [SNO2a], and (iii) the influence of nicks in the sugar-phosphate backbone on
force-elongation curves. In particular, our model provides a physically sensible framework to study
the intercalation of certain drugs or of ethidium bromide between base pairs. The latter is a hy-
drophobic molecule of roughly the same size as the base-pairs that fluoresces green and likes to slip
between two base-pairs forming an DNA-ethidium-bromide complex. The fluorescence properties
allow to measure the persistence lengths of DNA [$S86]. It was also used to argue that the force
plateau is the result of a DNA conformational transition [CL36)].

In the future, we plan to generalize our approach to a description on the base level which in-
cludes the possibility of hydrogen-bond breaking between complementary bases along the lines of
Ref. [BCP99. CM989]. A suitably parameterized model allows a more detailed investigation of DNA
unzipping experiments [BERH97] as well as a direct comparison between the two mechanism cur-
rently discussed for the B-to-S transition: the formation of skewed ladder conformations (as in the
present paper) versus local denaturation WWRBO01, REOQla, RB0O1b]. Clearly, itis possible to study
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sequence-effects and even more refined models of DNA. For example, it is possible to mimic minor
and major groove by bringing the backbones closer to one side of the ellipsoids without observing
non-B-DNA like ground states. The relaxation of the internal degrees of freedom of the base-pairs
characterized by another set of parameters (propeller twist, stagger, etc.) should help to reduce
artifacts which are due to the ellipsoidal shape of the base-pairs. Sequence effects enter via the
strength of the hydrogen bond&8{- = 2.9k5T versusEar = 1.3kpT) as well as via base depen-

dent stacking interactions [Hun93]. For example, one finds for guanine a concentration of negative
charge on the major-groove edge whereas for cytosine one finds a concentration of positive charge
on the major-groove edge. For adanine and thymine instead there is no strong joint concentration of
partial charges [CD99]. It is known that in a solution of water and ethanol where the hydrophobic
effect is less dominant these partial charges cause GG/CC steps to adopt A- or C-forms [FSH99] by
a negative slide and positive roll motion and a positive slide motion respectively. Thus by varying
the ratio of the strengths of the stacking versus the electrostatic energy it should be possible to study
the transition from B-DNA to A-DNA and C-DNA respectively.

3.6 Summary

Inspired by the results of EI Hassan and Calladine [HC97a] and of Hunter &t al. [HL97, Hun93]
we have put forward the idea of constructing simplified DNA models on the base(-pair) level where
discotic ellipsoids (whose stacking interactions are modeled via coarse-grained potentials [EE03,
GB81]) are linked to each other in such a way as to preserve the DNA geometry, its major mechan-
ical degrees of freedom and the physical driving forces for the structure formation [CD99].

In the present paper, we have used energy minimization and Monte Carlo simulations to study
a simple representative of this class of DNA models with non-separable base-pairs. For a suitable
choice of parameters we obtained a B-DNA like ground state as well as realistic values for the bend
and twist persistence lengths. The latter were obtained by analyzing the thermal fluctuations of long
filaments as well as by a systematic coarse-graining from the stack-of-plates to the elastic rod level.
In studying the response of DNA to external forces or torques, models of the present type are not
restricted to the regime of small local deformations. Rather by specifying a physically motivated
Hamiltonian forarbitrary base-(step) parameters, our ansatz allows for realistic local structural
transitions. For the simple case of a stretching force we observed a transition from a twisted helix to
a skewed ladder conformation. While our results suggest a similar structure for S-DNA as atomistic
simulations|[CLH 96], the DNA model studied in this paper can, of course, not be used to rule out
the alternate possibility of local strand separations [WWRBO01, REO1a, RBO1b].

In our opinion, the base(-pair) level provides a sensible compromise between conceptual sim-
plicity, computational cost and degree of reality. Besides providing access to much larger scales than
atomistic simulations, the derivation of such models from more microscopic considerations provides
considerable insight. At the same time, they may serve to validate and unify analytical approaches
aiming at (averaged) properties on larger scales [ALCMO1, HYZc99, BCP99, M99, SNO02a]. Fi-
nally we note that the applicability of linked-ellipsoid models is not restricted to the base-pair level
of DNA as the same techniques can, for example, also be used to study chromatin [WL02,|KBOOQO,
MSE]. This is the subject of chapfer 5.
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Figure 3.23: Typical domain length [bp] of (a) S-DNA, (b) B-DNA as a function of the stretching
force f [pN]. The parameter set of Eq. (3]52) is used. The simulated chains consist base-

pairs. We averaged over three independent runs. There are two S-DNA states corresponding to
positive (+) and negative (-) slide. None of the states should be preferred which is indicated by the

simulation data.
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3.7 Outlook

Recently Storm and Nelson [SN0Zb, SNO2a] introduced a two-state model for the elasticity of
double-stranded DNA that could be solved analytically. The energy contains an Ising part tak-
ing into account the free energy cost of converting a single segment from B- to S-state and the
energy creating a B-to-S-interface, an elastic part taking into account the bending stiffness of B- and
S-DNA and the bending rigidity between a S- and B-segment. The full energy functional reads

N-1

&
W ; [%(O’z‘ + 0it1) +v(0ioit1 — 1)
I (1) 1 o= DOt (0 £ 1)+ (001 — 1)Otigs -z)  353)
okpgT \ 241 i i 5 (ot i+1 i1
—% (i(l —0i)(1 = oit1) + |og — oiyaln + i(l +oi)(1+ Uz’+1)> 92-27¢+1] :

o; takes into account in which state segmeéig found. o; = 1 corresponds to the B-state and

o; = —1to the S-state2akpT denotes the B-to-S conversion eneyyk T the B-to-S interfacial

energy. b refers to the B-DNA segment lengthi) to the S-DNA segment length. The bending

stiffness of B-DNA (S-DNA) is denoted byl (3¢ A). The bending rigidity of a B-DNA and a S-

DNA segment is termegA. f refers to the applied stretching force ands a normalized vector

pointing into the stretching directiom; denotes the tangent vector of tile segments; corresponds

to the bending angle between segmieand: + 1. Using transfer matrix technigues they fitted their

theory to the force-extension data of Refs. [C1$6,[SCB96]. The stretching moduli for the B-

(EP) and S-DNA E°) is implemented to first order by replacirfgwith f(1 + QE%,B) for the two

respective states in the transfer matrix. With the obtained valueafog T, 2vkpT, (, EB, ES,

and A they calculated the typical length of a S-domain and the relative population of the S-state

versus the applied stretching force. It is possible to apply their theory to our simple but realistic

DNA model. With our model it is possible to measure these quantities directly and to compare it

to the fitting results of Storm and Nelsdn [SNO2b, SN02a]. One major difference is that it is not

possible to define a pure B- or S-state as it is the case in the theory. Moreover our model allows for

more than just two states. Open ladder conformations are found, too, and the S-state is divided in a

S(+)- and S(-)-state with positive and negative slide respectively. None of the S-state is preferred.
We analyze data of simulations with applied stretching force and chain lengftis-o60 and

N = 500. We use the final parameterization of EQ. (3.52). Without stretching force the simulated

chain fluctuates around the B-DNA form wiiARi*) = 0.02, (ASH) = 0.12, (ASP) = 0.42,

(ATw?) = 0.001, (AR?) = 0.010, (ATi?) = 0.003, whereas beyond the critical force ZitOpN

the fluctuations around the S-form amount(tsRi?) = 0.21, (ASK) = 2.32, (ASP) = 0.28,

(ATw?) = 0.011, (ARC?) = 0.08, (ATi?) = 0.002. That is why we count conformations with

Sl > 3.0 as S(+)-state and with St —3.0 as S(-)-state respectively. A B-DNA conformation is

counted if Tw> /6. For the calculation of the compartment length of a S- or a B-domain we

determine the mean number of base-pairs in a row belonging to one domaip. Efy. (3.12) can be used

to measure the bending persistence length of S-DNA. We find the effective bending persistence

length of the S-state to be abaifiA, which is order of magnitudes smaller than the value found

for the B-state. It is about three times as large as it is expected for two single DNA strands within

our model. Note that the Kuhn segment length corresponds to two times the backbone length such
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Figure 3.24: Relative populatioR of S-DNA and B-DNA as a function of applied strajn[pN]
for chains with500 (blue) and50 (red) base-pairs. The parameter set of Eq. (3.52) is used. The
measured population of the S-state looks very similar to the result calculated by [SNO2b] SNO02a].

thatl, sspyva = 12A. Thus the partial stacking of the base-pairs in the skewed ladder conformation
contributes to the bending stiffness of the chain. Storm and Nelson [SNO2b] predict persistence
lengths of about2 — 120A from the fitting of the experimental data of Refs. [CEB6] and
[SCB96] respectively. The value obtained from stretching experiments on ssDNA amounts to about
7.5A [CSRTGO0).
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Figs.[3.28] 3.24 show measured relative populations and typical domain lengths of S-DNA and
B-DNA as a function of applied strain. In contrast to the model of Storm and Nelson [SNO2b] the
S-DNA state is divided into a S(+) state with positive slide and a S(-) state with negative slide.
Neither should be preferred. In fact the analysis of three different runss@itivase-pairs indicate
that the relative population of the S(+) and S(-) state beyond the critical force amounts to about
0.5. It has to be noted that the diffusion time of the interface seems to be quite large such that one
has to average over a sufficiently large number of independent runs. The measured functions of the
S-state, where the S(+)- as well as S(-)-state are counted, are quite similar to the result obtained by
Storm and Nelsor [SNO2b]. We measure an asymptotic slope of the increase of domain length of

S-DNA of aboul[).25% which is roughly 40 times smaller than the value determined by Storm and

Nelson. A first analysis of the interface between the S(+) and S(-) state indicate that the segments
in between unstack to form an open ladder conformation. For large stretching forces essentially no
B-DNA states are left.
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Chapter 4

Renormalization of coupling constants

We presented in the previous chapter a systematic way of coarse-graining. For a pure B-DNA ground
state, i.e. there is only a spontaneous twist involved, and under the assumption of local interactions
(no next-nearest neighbor interactions) we calculated the bending and torsional persistence length as
a function of the mean-square fluctuations of the rotational degrees of freedom. For more complex
ground state geometries, i.e. with spontaneous displacements and spontaneous bending angles, the
derived relationships are not valid anymore. In what follows we discuss how to rescale the effective
coupling constants using renormalization techniques if one goes to larger length scales.

Since in the presented model only local interactions are involved one can determine the renor-
malized coupling constants with a simple sampling procedure using the measured coupling constants
of section 3.4]1. In such a way one can produce a long sequence of base-pairs which can subse-
quently be analyzed for neighbors, next-nearest neighbors and so forth. Snapshots of the simple
sample method for B- and A-DNA conformations are illustrated in Figl 4.2. If the model contains
long-range interactions one has to use Monte-Carlo renormalization methods [LB0O].

Renormalization always implies that certain degrees of freedom will be integrated out. In the
present case there are six degrees of freedom per base-pair (3 translations and 3 rotations) which can
be expressed by six step parameters or by fluctuations of positions and orientations of each base-pair.
We will discuss two general strategies to renormalize the measured elastic constants for Gaussian
systems on larger length scales. One strategy involves a blocking procedure where a certain number
of variables is combined in one 'super’-variable whereas in the other strategy the renormalized cou-
pling constants between varialland: + 1,0 are calculated where,.,.-» > 1 is an integer.

As an example consider the renormalization of Ising spin systems. Blocking corresponds to sum-
ming up a certain amount of spins to one 'super’ spin whereas decimation corresponds to choosing
a single spin out of each renormalized cell [LBOO]. In general one can express the transformation by
an operatofr acting on the Hamiltonian to be renormalized.reduces the number of degrees of
freedom by a factor of.......,. The free energy remains unchanged by the renormalization process
since it is only expressed in terms of new variables. Note that due to the renormalization procedure
one can encounter interactions between monomers separated by an arbitrarily large distance.

77
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) L L L )
Xio X Xy Xin X Xis3
blocking
) L L L )
Xio Xio Xy Xin X Xis3

Figure 4.1: lllustration of blocking and decimation for a one dimensional Gaussian chain. The
chain variables are eithé¥; representing the position vectors of each monomer or the center-center
distances of neighboring monomets= X, ,; — X;. Decimation of every second position vector

X, is equivalent to blocking of; andr; 1.

4.1 Renormalization of Gaussian systems with additive variables

In general the Hamiltonian of a Gaussian system can be expressed as

A (X X)TK (X -
o = (X X0 (X - Xy) )

=X"KX -2X{ KX+ X{ KX,

K denotes the elastic matrix with/N x d N dimensions wheréV is the number of monomers
andd is the number of degrees of freedom. Its entries are the coupling constants along the chain
analogously to the connectivity matrix of a polymer network. Note g symmetric.X is adN-
dimensional vectorX refers to spontaneous values around whicHuctuates. The free energy is
given by F = kpT In(Z) = H where the partition functio is given by

Z = / D[X]exp <—£T> . (4.2)

In the following we consider two renormalization procedures of a Gaussian system (as illustrated
in Fig.[4.] for a 1d Gaussian chain) with a generalized Hamiltonian of the form
Hy
kgT

=X"KX-2"X+C (4.3)

where(C' is a constant. We calculate the scaling of the effective interactions of the remaining vari-
ables under the assumption that the variafeare additive We split the Hamiltonian into two
parts corresponding to the variablEs we want to keep and the variabl&s, we integrate out. The
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Hamiltonian can be rewritten in terms of the new variables and the matrices that connect them as
follows [Mag85]:

Hy _

XTKX+2" X +C
kgT ~— = AA A+ A

K K X X
- ) (g ) () 2 ) (§) e (44
=21 =22 —

=X{K X+ X[ (K, +E)Xo+ XTK, Xy +2k{ X, +2k5 X, +C.

4.1.1 Decimation

Decimation implies keeping every second, or every third, etc. monomer and integrating out all other
variables. The integration over the variablés can be performed by completing the square:

xp(bT A1
/ DIY] exp(-YTAY —b'Y) = epiiet(AJ)) (4.5)
with
P AY) ie
( J)ij - W ( . )

This results in the following equations for the scaling of the effective coupling constants and the
spontaneous values containediin- X{ K andC = X[ K X;:

1
r_ T T gr—1( 7T
K=K, - 1(£12 +K,) K, (K, + K,))
1
K= (], + K)ok, @)
1
C'=C — k3 K, by + 5 In(det (K7 22)

Note thatC' scales in order to conserve the absolute value of the free energy after each decimation

step, i.ef, = F/ = ... = F,. The renormalized partition function is thus given by
z! / D[X,]e ", det(K.720) "2 (4.8)
= X e .
g A 1] €Xp kT J,22
with
/Hgi T -1 " /
T Xy KX, +k" X, +C. (4.9)

4.1.2 Blocking

The calculation of the renormalization formulas for the blocking procedure is slightly more involved.
In general the integration scheme can be written as

k
[ TP exe 0000 - 3 x)). (4.10)
j i=1
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The vectorsX; are chosen such that each block cont&invariables. For the sake of simplicity we
discuss the case where each block consists of two variables. Blocking more than two variables can
be done iteratively.

Starting again from Eq.[ (4.4) one has to perform two integrations where in the first step (1)
one of the variables, sa¥ ;, is replaced b}y’ — X,. The second integration step (2) yields the
renormalized Hamiltonian expressed in terms of the new varidbles

[ DX DL expl )3 (Y — (X, + X))

It
T T T T T
Xo (K — Ky — K +K,) X + [V (K, + Ky, —2K,) +2(ky — k)" | Xy
+YTK Y +2kY +C)
2 Hy

1
T T T ~1( T
14 [Kll B Z(£12 +E) - 2511)(£11 K, K+ £22) (£12 tE) - 2Ku)] Y

)&

1 T
+2 [kl o §(£12 +£21 —2K

+C = (ky — k)" (K

T
T —1
K,-K' +K,) wfwﬂ v

11 1 =29

T -1
B £12 B £21 + égg) (ky — ky).

11
(4.11)

Hence we obtain the following scaling relations for the coupling constants and the spontaneous
values:

T —1/ 7T
£12 o £21 + £22) (£12 + £21 —2K

711)

1
! T
K=K, - Z(£12 +E) - 2£11)(£11 n

1 _
=k - 5(512 +£§1 — 2K ) (K - Ky, - £2T1 +Kp) H(kp — ky)

_ 1
C'=C— (ky— E1)T(£n —K,- £§1 +Ky) Hky = ky) + 2 In(det(K.7))
(4.12)

where the matrixC 7 is given by

2 T T
0 (52 (£1 - éu - £21 + £22)K2>

890272-8952,]-

1

(Ka)ij = : (4.13)

Note that the discussed decimation and blocking strategy are special cases of a general renor-
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malization scheme [Mag85] given by

X/TKX/ DX XTKX S(X' -TX 4.14
exp “hal / | exp “ET (7 —:7). (4.14)

Because of the special nature of Gaussian integrals the renormalized Hamiltonians will always be
guadratic in the variableX’.

The derived scaling relations are only valid for the renormalizatioGadfissiansystems with
additivevariables. Interestingly, even though the distribution functions are non-Gaussian one can
use the renormalization procedure to calculate the rescaled coupling constants within linear response
theory, since it yields

(X' xr /D X)X e <—ij(§)>
= / DIX'| X} X, / DIX] exp (—éﬁ?)é(}f’ LX)

(4.15)
_ / DIX] (EX)(LX5)" exp (‘Zg)

— X, X517)

=0 (X, X7)I7.

4.1.3 Comparison of derived scaling relations with brute force integration

We derived a calculation scheme for the rescaled variables of a Gaussian system for decimation
and blocking. In order to test whether Eqs. [4.7) dnd (4.12) are correct we constriieted 3t

large symmetric matri¥< and compared rescaling results of our matrix manipulation scheme using
MatLab with brute force integration using Mathematica, that is

/ H H dziexp (X" K X) (4.16)

1=1 1=13

in case of decimation and
24 6
/ Hd:):, exp ( X K X) H — (x5 + j16)) 0 (Y — (Tjt12 + Tj418)) (4.17)
=1 j=1
in case of blocking. The resulting rescaletix 12 large matrices are identical (data not shown).

4.2 Discussion

We already know that both the rotational and the translational base-pair step parameters are in gen-
eralnon-additive The angular parameters between bases@aid; can be calculated by the scheme
discussed in appendiX B where the rotation maRix; is given by
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open ladder conformation

B-DNA conformation g“{

(large bending and torsional rigidity)

A-DNA conformation

W%é (small bending and torsional rigidity)
&\@““ e %

Figure 4.2. Simple sampling snapshots for a B-DNA conformation with coupled twist and rise
motion, a A-DNA conformation with negative slide (-2Pand positive roll (0.2), and straight
conformations with no spontaneous rotations or displacements.

%\

with A4; = H;‘:l Rjyjfl andRiyi,l = R(TWi,ifl, Ti i,i—1s ROi’ifl). Eq. ) defines how the ro-
tational step parameters sum up along the chain. Only for small rotations one finds that the angular
parameters such as Tw, Ti, Ro are additive while even in that case the translational degrees of free-
dom are not. Going from one base-pair to the next-nearest neighbor implies then for the rotational
base-pair step parameters

TWi 101 = TW_q1; + Tw; 541
Ti i—litl = Ti i—14 Ti i+l (4.19)
RO;_1,i+1 = RO;—1; + RO; j41.

On the other hand the calculation of the translational step parameters is more complicated. The

translational vectof7;_; ; between two neighboring base-pairand: — 1 expressed in terms of
Ri;_14, Shi_1;, and St ; (see Eq.[(B.15)) can be written as

_1
7;—1,1‘ = R'_Ql,iAi_l(Ei - é;—l) (420)

7

with ¢ being the position vector of the center-of-mass of base+péee appendik |B). Using
iteratively Eq. [(4.2D) and
Ci = Ci—1+ AzR Ti—1 ) (421)

one can calculate the translational vector between next-nearest neighbors:

i—1,1

[un

7;71,141 .2 +1Az+1~’4 R 7; 1 + Rz 1 z—i—le 2—}-117;1+1 (422)

1—1,2
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Figure 4.3: Comparison of simple sampling results for large bending and torsional stiffness with
rescaling procedure for 2, 4, 8, 16, and 32 blocked variables
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Figure 4.4. Comparison of simple sampling for small bending and torsional stiffness results with
rescaling procedure for 2, 4, 8, 16, and 32 blocked variables.

This illustrates thenon-additivebehavior of the translational degrees of freedom under blocking.
Thus one cannot expect the rescaling formula of £q. [4.12) to work. Moreover it is very unlikely
that one can find a rescaling relation in case of blocking using (4.22) an{l (4.18) since the
integrals to be carried out are not Gaussian anymore.

To check this further we determined renormalized coupling constants using simple sampling
of a stack-of-plates model. First of all we consider a system where no spontaneous displacements
and no spontaneous rotations are involved. Furthermore there are no internal couplings such as a
twist-stretch coupling. Every step is sampled using

= L ; 4.23

x—zspﬁL\/T—x‘n’r‘and([*l’l]) ( : )
wherez is a step parametek,, refers to the corresponding coupling constan}, denotes a spon-
taneous value, and, .4 ([—1;1]) is a Gaussian random number betwéesnd —1. 20000 chain
conformations are produced and subsequently analyzed. For the measurement of a decimated chain
with renormalization numbet,..,,,-,, we sample®0000 - 7,cnorm t0 have the same statistics. The
elastic constants are chosen such that only small angles are involved. The resulting renormalized
coupling constants can be compared with the result obtained by Eq| (4.12) using the original elastic
matrix K. Therefore we build 42 x 12 matrix

K 0
(£ 1) w2s

which is blocked subsequently. The same is done with the resulting renorméliz&dmatrix in
order to go to larger renormalization numbers with,..,., = 2° (i > 1 is an integer). Note that
decimation in the simple sampling routine corresponds to blocking base-pair step parameters. The
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Figure 4.5: Twist distribution function for different renormalization steps measured by simple sam-
pling. The solid lines correspond to the corresponding Gaussians functions calculated with the mea-
sured mean squared values. For largg,.,, one recovers deviations from the Gaussian shape.
The distribution function tends towards the Gaussian limit (uniform distribution, black dotted line)
for large renormalization numbers.

results are illustrated in Fig. 4.3. Indeed the rotational part of the elastic matrix can be renormal-
ized using the derived scaling relation for the blocking procedure since the rotational parameters
are additive for small rotations. Of course, for even larger.....» the additivity of the angular
parameters will break down, since they are not small anymoren &gk, — oo one recovers the
Gaussian chain limit where the plates can freely rotate. In Fig. 4.5 the twist distribution for various
degrees of renormalization is shown. One observesm(a&tv) converges to a uniform distribu-
tion for n,enorm — 00 Which corresponds to the freely rotating chain limit. For the translational
part one recovers quite substantial deviations of the blocking procedure from the simple sampling
results, especially for large renormalization numbers. It underlineadheadditivityof the base-
pair step parameters displayed in Hg. (#.22) which is not taken into account in the renormalization
calculation of Eq.[(4.72).
The situation gets even worse if one introduces a geometrical coupling between the rise and
twist degree of freedom. For the sampling procedure we used coupling constanith &, =
((z%) — (x)?)~! where the mean and mean squared values of the step parameters measured
for the final parameterization set of Efj. (3.52). The twist-rise coupling is introduced via EG. (3.14).
We used = 16A for the plate diameter, = 6A for the length of the respective rods connecting
the edges of the plates and we impose a spontaneous rise withBRIA. The renormalized twist
coupling constant does not coincide with the one measured by simple sampling due to the introduced
coupling. The renormalized elastic matrix measured by simple sampling is illustrated in Fig. 4.6.
Thus the presented renormalization procedure can only be used to calculate the renormalized
angular coupling constants (in case of rather stiff filaments) for small,-» in a system where
translational and rotational motion is not coupled. Otherwise one has to use the described sim-
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18876 0 0 216838 0 0
0 9 0 -2 0 0
K 0 0 2 0 0 0
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Figure 4.6: Renormalization results by simple sampling. The renormalized elastic matrices for
Nrenorm = 2, 4, 8 are shownC corresponds to the original system.

ple sampling method to create long sequences which can subsequently be used to calculate the
renormalized elastic matrix for an elastic rod model. The necessary coupling constants which are
needed for the sampling procedure can be extracted out of atomistic molecular dynamics simula-
tions. Depending on the underlying sequence and on solvent conditions the effective constants and
the spontaneous values will vary from B-DNA to A- and C-DNA values. The parameterized rod
model can subsequently be used to investigate structural and elastic properties of linear and circular
DNA [KML97] MRKL98] EMMOQQ], cyclization rates[[MMK96], and effects on supercoiling phe-
nomenal[CL95] on much larger length scales. Instead of including empirically some coupling terms
in the worm-like chain model this is a systematic way of calculating the present coupling terms from
the underlying base-pair sequence. The introduction of geometrical couplings, e.g. between shift
and tilt, can be quite demanding. One has to find analytical relationships as the ones discussed in
sectior{ 3.2.2. In order to circumvent this problem the following strategy can be embarked for the
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simple sampling procedure:
e calculation of the elastic matrix by inverting the correlation matrix
¢ diagonalization of the elastic matrix
e independent random numbers can be drawn for the eigen-modes
o the conformation is obtained by transforming back.

If long-ranged interactions are involved certainly the simple sampling method cannot be used any-
more. Rather one has to implement Monte-Carlo renormalization techniques to measure the renor-
malized coupling constants along the chain.

It is even more challenging to keep the non-linear aspects of the DNA such as the overstretching
transition during renormalization. In principle one could renormalize separately the elastic matrix of
the B-DNA and the S-DNA provided that it is possible to write down an effective Hamiltonian such
that the critical force where the structural transition occurs is an invariant under the renormalization
group operator. An Ising-like model as it is introduced by Storm and Nelson [SNO2b, SN02a] could
be a good starting point.
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Chapter 5

A computer simulation study of the
Influence of nucleosomal interactions on
chromatin structure and elasticity

We introduce a simple model for the chromatin fiber to study its structural and elastic properties.
The underlying geometry (of the modeled fiber) is based on the two-angle model [SGB01], which
belongs to the class of crossed-linker models. The chromatosomes are treated as disk-like objects.
Excluded volume and short range nucleosomal attraction is taken into account by a variant of the
Gay-Berne potential [GB81]. We investigate the influence of the nucleosomal interactions on elastic
properties of the fiber, such as the bending stiffness and the stretching modulus, and on structural
properties, such as the mass density. We find that the bending rigidity and the stretching modulus
of the fiber increase with larger nucleosomal disk sizes. Moreover, we apply an external stretching
force to the system and measure the resulting force-extension curves. For a reasonable parameteriza-
tion of the chain for physiological conditions and sufficiently high attraction we find a force-plateau

in agreement with experiments [CBOO], where the plateau corresponds to a structural transition of
the fiber. In a first step the overall fiber geometry — a loop conformation — is stretched out, followed
by a decondensation of the fiber as the second step.

5.1 Introduction

It is known that inside the cells of all procaryotic organisms DNA is wrapped around so-called
histone octamers. This complex is called nucleosome. The nucleosomes linked together by DNA
segments organize further into the chromatin fiber (see s¢gtion 1). Electrostatic interactions between
the nucleosomes (probably mediated by lysin rich histone tails [IE®TR) give rise to higher order
structures of the chromatin fibér [HZ96, BHG8]. For low salt concentrations a 'beads-on-a-string’
structure is observed, sometimes referred to as the 10-nm fiber. For higher salt concentsadions (
mM) the fiber appears to thicken folding into a condensed structure with a diameter of r@aghly
nm. Furthermore, linker histones strongly influence the higher order structure of chromatin. They
glue the DNA strands entering and exiting the histone core particle together by forming a stem
structure [BHG 98]. In the absence of linker histones the entry-exit angle of the in- and outcoming
DNA s larger, leading to more open structures. While the structure of the nucleosome is known with
atomistic resolution [LMR 97] there is still considerable controversy about the structure of the 30-

89
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n+1

n+1

(a) (b)

Figure 5.1: Top and side view of (a) the solenoidal and (b) the crossed-linker model. Taken from
[Sch03]. Note that the chromatin structure is not a regular helix. Thermal fluctuations [KBOOQO,
WLO02] as well as varying linker lengths lead to irregularities of the overall strudture [WGHW93].

nm chromatin fiber. Essentially there are two classes of models: (i) the solenoid models$ [FK76]

and (ii) the crossed-linker models [WGHW93, SGBO01]. In the solenoid models one assumes that
the successive nucleosomes form a helix where the normal vector of the nucleosomes is roughly
perpendicular to the solenoidal axis. The entry-exit side faces inward towards the solenoidal axis
and the linker DNA must bend in order to connect neighboring nucleosomes. In the crossed-linker
model the linker DNA is straight and connects nucleosomes on opposite sides of the fiber (compare

Fig.[5.1).

The higher order structure of chromatin for various salt concentration has been studied experi-
mentally for oligonucleosomes using electron cryo-microscopy [BHDW98, B8R}, neutron scat-
tering and scanning transmission electron microscopy [GR87, HZ95]. Structural parameters such as
the mass density (number of nucleosomes per 11nm) and the linker entry-exit angle are measured
to characterize the state of compaction. All these studies show an open zig-zag like fiber structure
for low salt concentration. Furthermore, studies on di- and trinucleosomes indicate that increas-
ing the salt concentration towards physiological conditions does not induce a bending of the linker
DNA, in contradiction to the solenoidal model [GR87, HZ96, HZ95, BHDW98, Bt38]. Rather
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nucleosome axis A

DNA HI1 linker histone core histone

entry-exit angle histone octamer
- _

~
nucleosome core particle

Figure 5.2: Schematic representation of nucleosome. The DNA is wouh%j farns around the
histone octamer. Taken from [SGEBO01].

nucleosome-nucleosome interactions, the existence of the linker histone and the salt dependence of
the entry-exit angle [WGHW93, HZ96, BHDW#28, BH®8,/Sch0?] seem to be the relevant ingre-
dients to account for the different folding states. Another parameter that controls the compaction of
the fiber is the helical twist of the linker DNA between two nucleosomes. Fluctuations of 1bp linker
length would lead to a change in twist &#f27/10. However, it has been pointed out by Widom

and coworkers [Wid92, YLWZS3] that such changes in twist lead to very large free energy penalties.
Therefore this possibility is very unlikely and can be excluded. Unfortunately none of these tech-
niques permit to resolve the internal structure in a compacted fiber, such as the conformation of the
linker DNA. All these experimental observations still cannot exclude the possibility of solenoidal
structures at high ionic strengths.

The development of micromanipulation techniques on single molecules permits to gain new in-
sight into the structural and elastic properties of the chromatin fiber. Cui and Bustamante [CB0O]
measured force-extension curves of single chromatin fibers under different ionic conditions. For low
salt concentration the fiber behaves like an extensible WLC, whereas for high salt concentrations
one finds a force plateau at around 5 pN where the fiber starts to get longer with little increase in ten-
sion. This transition is identified with the termination of nucleosomal-nucleosomal attraction. The
comparison of the predictions made by computer simulations [KBOOO, |[BS01, WL02] and of ana-
lytical approaches [SGBOL, BHLVOL, BHLV0D2] with the stretching experiments seems to support
the crossed-linker models.

In the following we will discuss possible structures that one obtains for a regular two-angle
model [SGBOL], which belongs to the class of crossed-linker models. Accounting for the geometry,
the elasticity of the linker DNA, and the twist-stretch coupling of the fiber, one can calculate within
linear response the effective bending and torsional persistence length, stretching modulus and twist
stretch coupling, and the resulting stress-strain curves. In these analytical considerations excluded
volume effects of the nucleosomes as well as the attractive interaction between nucleosomes are not
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Figure 5.3: lllustration of the two-angle model.— 6 corresponds to the entry-exit angigis the
rotational angleb is the linker length and the nucleosomal diameter. The arrows denote the axis
determined by the superhelix of the nucleosomal DNA. Taken from [SGBO01].

taken into account. This is reasonable for low salt concentration where one finds open zig-zag-like
structures with large internucleosomal distances. However, under physiological conditions the fiber
is closely packed and excluded volume as well as nucleosomal attraction is important. These effects
can be addressed with the help of computer simulations.

In sectior] 5.P we recapitulate earlier results of the two-angle model concerning the fiber geom-
etry and concerning the elastic properties as a function of the underlying geometry and linker DNA
elasticity. The chromatin model is introduced in secfion 5.3. We use MC simulations to investigate
the structural and elastic properties of the modeled fiber. Details on the MC moves and the correla-
tion time are summarized in sectipn5.5. In secfiof 5.4 we study the phase diagram which classifies
allowed and forbidden structures in the two-angle plane as a function of nucleosomal size and linker
DNA length. The influence of nucleosome-nucleosome interactions on the elastic properties of the
fiber is discussed in sectipn .6. In secfion §.6.3 the response of the fiber to stretching is investigated.

5.2 The two-angle fiber

The two-angle model assumes that the geometric structure of the 30-nm fiber can be derived from
the single-nucleosome structure [SGBO1]. Consider for example the wrapping of the DNA around
the histone core. It is found that DNA does not wind an integral number of turns around the histone
core. Rather, only about% turns are completed which implies a non-zero entry-exit angle of the
in- and outcoming DNA (see Fg §.2). In the presence of linker histones which glue the two strands
together one obtains stem-like structures [BHI8]. Even though the exact value of the entry-exit
angler — 0 depends on salt concentration and on the presence or absence of linker histones, one
can nevertheless assume thas determined at the single-nucleosome level. In addition there is a
rotational angle) involved (see Fig. 5]3) which determines the orientation of the nucleosomes along
the string. The rotational angle is a periodic function on the length of the linker bbd#necting

two nucleosomes. Thusis given by multiples o27 /10, the twist angle associated with individual
base-pair steps.
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Figure 5.4: Overview of resulting conformations in the-plane. The drawn green and blue line
show the boundaries to forbidden structures due to long range excluded volume effectsp(small
values), and due to short range excluded volume effects ($hwalues) respectively. Taken from
[SGBO1].

5.2.1 Geometrical considerations

The two-angle model characterizes the fiber structure via three parameters: the linkeb|ength
entry-exit angler — ¢ and the twist angle. It assumes that the linker DNA is straight, that the
chromatin fiber is regular, and that the nucleosomes are point-like situated at the joints of the linker
DNA. Exclude volume effects are not considered.

In Fig. [5.4 different possible structures are depicted. If either one of the andlesris the
resulting structure is planar. In case @f= 0 one obtains planar structures varying fré’gﬁ
polygons forg = 27” with n being an integer to star-like structures. In the special cage-ofr /2

one finds a square. Fér= @ closed star-like structures are encountered. In particutar5
corresponds to the regular pentagram. In cage ef0 a straight line is recovered) = « yields
planar zig-zag structures afid= 7 produces ‘dumbbell’ conformations [SGBO01].

Non-zero values off and ¢ lead to three-dimensional fibers. They can be further subdivided
into three classes. Structures with sntalind ¢ values resemble solenoids. Structures wheig
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still small buté takes large values form fibers with crossed linkers. Finally, fibers vitlose tor
lead to twisted zig-zag structures.

The overall fiber geometry can be described as a function of the underlying three local geometric
parameter$b, 0, ¢}. One can construct a spiral characterized by a ralliaad a pitch angle such
that the nucleosomes (but not necessarily the linker chain) are situated along this spiral. The distance
b of successive nucleosomes along the spiral is fixed. It is possible to derive a relationBrapof
¥ and the local parametef$, 0, ¢} [Sch03]:

R bsin (g) (5.1)
2 2 '
2 — 2cos (g) Ccos (%)
tan (g) arccos <2 cos (g)2 cos (%)2 — 1>
cot(y) = (5.2)

2sin (%) \/1 — Cos (g)2 cos (%)2

Furthermore one can calculate the distasicef two successive nucleosomes along the fiber axis

Sg = - (5.3)
\/sec (g)2 — COS (%)
Thus the mass density(the number of nucleosomes per 11 nm) is given by
A= 1inm (5.4)
50

The contour lengti of the fiber consisting oV nucleosomes is determined By= N sy.

Up to now we neglected excluded volume interactions. However, certain areasjepthlease
diagram are forbidden due to overlapping nucleosomes. In the following considerations we assume
that the nucleosomes are spherical with a radiasd that their centers are located at the joints of
the linker DNA. One can distinguish between two types of interactions: (i) short range excluded
volume interactions between monomemd: + 2. This requires that the entry-exit angle has to be

sufficiently large with
-0
bsin (W 5 ) >a

0 < 2arccos (%) (5.5)

(compare blue line in Fig. §.4). (ii) Long range excluded volume interactions in case of very small
¢ values. This becomes clear if one considers planar structuregwith that run into themselves.
Circular structures witld = %’T will have an overlap after nucleosomal steps if

nsp < 2a, (5.6)

wherensy = %’so corresponds to one helical pitch. EES.G) can be solved)forielding a
condition that must be fulfilled to avoid a steric clash afiesteps [[Schd3] (compare green line
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in Fig. [5.4). The examination of a circular structure provides an upper bound estimation for the
angle¢. Structures that deviate sightly from the n-polygon case lead to a fine structure of possible
¢ values. We will discuss this in more detail in secfion 5.4.

It is interesting to consider the implications of this geometrical model for the compaction and
accessibility of DNA in chromatin. Due to the very large ratio of DNA length to cell nucleus
diameter it is clear that inactive regions with DNA sequences that do not carry genetic information
should be packed as densely as possible. On the other hand active regions must be also accessible to
protein complexes that bind to the DNA to read a specific sequence. This leads to the question where
in the phase diagram the point is situated that maximizes both the compaction and the accessibility.

Maximum compaction is reached if the bulk density (the number of nucleosomes per unit vol-

ume of the master solenoid)
1

ﬂ'RQS()
is maximized. Clearly this will be the case for structures with internal linker DNA. In particular, the
highest density that satisfies the condition of excluded volume is obtained for the largest possible
value off# and the smallest possible value @f That corresponds to a structure where the nucle-
osomes are in closest contact with its- 2 neighbors and the neighbors after/before one helical
turn.

To achieve maximum accessibility for highly compacted structures with a given entry-exit angle
m — 0 Schiessett al [SGBO1] searched for structures which give the maximum reduction of the line
densitypy, with

p= (5.7)

op =~ (5.8)

S0
for a small change of the angle This is identical with looking for the maximum (%% which was
termed accessibility. Interestingly this analysis results in the same pair of angles as it is obtained by
the calculation of the maximum bulk density (compare red point in[Fig. 5.4).

5.2.2 Elastic properties

The stretching experiments of Cui and Bustamante indicate that the chromatin fiber is a highly
flexible chain with a large amount of twistable and bendable linker DNA. Of course, the elastic
properties also depend on the geometry of the fiber. A zig-zag fiber with aéwadlie will have a

larger stretching modulus than a compact star-like structure.

In order to calculate the mechanical parameters of the chromatin fiber BenetlaifBHLV01|
BHLVO02| describe the two-angle fiber as an extensible WLC with additional terms accounting for
the twist rigidity of the fiber and the twist-stretch coupling. Within linear response theory one can
calculate the elastic free energy of the fiber in terms of the local relative extensipof the fiber,
its local twist€2(s), and its local curvaturg(s)

}_fz'ber A 2 C 2 v 2
— = — —Q -~ DQ .
Loer— [ as (o6 + S0P+ JulsP + DAsIuts)). 59)
whereA denotes the bending stiffness of the fillércorresponds to the twist rigidity, denotes the
stretching modulus, an® refers to the twist-stretch coupling. This description has recently been
used to discuss the force-extension relations of single DNA molecules [Mar97, IMar98]. Using the
fact that the elastic energy stored in the solenoid is nothing but the sum of elastic energies stored
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in its linkers, i.e. Friper = Flinker it is possible to derive a relationship between the fiber elastic
constants, the DNA elastic constants and the parameters describing the rélaxey geometry of

the fiber. Treating the DNA as an inextensible WLC with bending and torsional rigidity Ben-Haim

et al [BHLVO1| BHLV02] calculated the elastic energies stored in the linker DNA corresponding to
the twisting and bending degrees of freedom and compared this result to the energy expression of
the fiber. This results in the following equatiohs [Sch03]:

50 C + AS cos(z)?

B 12 5.10
v ]{:BT blinker RQ coS (g)2 f(77 ) ( )
_ lpSO 2lTw
A= blinker l + lTw — AS COS(Z)2 (511)
_ %0 1w n 2 B 9
¢= blinker < 3 tan (2) + lp AS COS(Z) ) f(777 Z) (512)
D— S0 AS cos(z) sin(z) 519
kBT biinker R cos ( ) f(r]’ )
where
3l
fn.2) = P (5.14)

31, + tan (2)? (Irw + AS cos(2)2)

and the fiber radiu® ands, are given by Eq[(5]1) anfl (3.3).denotes the angle between the fiber
axis and the linker:

Z = arccos < %0 > . (5.15)

blinker

7 refers to the angle between neighboring nucleosomes, as seen when viewed down the fiber axis,
and can thus be identified with the twist angle of the solenoid given by

= cot(q/))s—o = arccos | 2cos 4 2cos ¢ i -1 (5.16)
= R~ 2 2 '

where the result ofy of Eq. ) has been mserte& corresponds to the twist rate of the unper-
turbed fiber.l,, andlr,, describe the bending and tW|st rigidity of the linker DNA aAd is given
by their dlfferencel — lprw- binker denotes the linker length.

Egs. [5.1D) anqml) can be compared to results obtained by fitting the extensible WLC model
to stress-strain curves of measurements in low salt concentration [CB00]. One obtains a value of
about30nm for the fiber bending persistence lengthand 1.25nm for the stretching modulus.

It should be stressed that these results are based on the release part of the force-extension curves
at low ionic strength, i.e. open chromatin fibers, where one does not find nucleosome-nucleosome
interactions such that the underlying theory is valid. Using a val#e-ef50° one obtains with Eq.

(5.13) and[(5.7)0) similar result for linker lengths= 31 + k p base-pairs wherk is an integer and

p = 10 corresponds to the DNA pitch [BHLV02].

As already mentioned, in high salt concentration, where the fiber adopts very compact struc-
tures there are also nucleosome-nucleosome interactions involved which are neglected in the present
model. These attractive interaction can be mediated by the lysin-rich core histone tails and cause
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Figure 5.5: lllustration of the modeled fiber. The red cylinders correspond to the stem, the blue ones
to the linker DNA.

the fiber to contract. Liquid crystal studies on core particles have indeed shown fiber-like columnar
structures, presumably due to attractive nucleosome-nucleosome interactions [LL97, LLOOb].

Wedemanret al [WL02| performed MC simulations of the 30-nm fiber where they modeled
the nucleosomes as disks with a radiu$imn and a height ofnm. Excluded volume and attrac-
tive nucleosome-nucleosome interaction were included via a Gay-Berne potential. The underlying
geometry and elasticity of the fiber was closely related to the two-angle model. Electrostatic and
hydrodynamic interactions were also taken into account. They found fer154°, ¢ = 110°,
bunker = 11bp a persistence length df = 260nm which is about 20 times larger than the corre-
sponding value of3nm calculated with Eq[(5.11).

We want to study in more detail the nucleosomal effects due to excluded volume and due to
nucleosome-nucleosome attraction on the elastic properties of the fiber and on the behavior under
stretching. For this we use a model which is based on the previously discussed two-angle-fiber with
additional nucleosomal interactions. We model the nucleosomal interactions with a variant of the
Gay-Berne potential [EE03] similarly to Wedemaenal [WL02]. The geometry of the fiber is
slightly modified in order to take the stem structure of the nucleosomes in the presence of linker
histones into account.
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5.3 The chromatin model

Concerning the geometry of the modeled fiber we assume that the in- and outcoming DNA is glued
together by a linker histone forming a stem [BH@8]. This will be of importance when we cal-
culate the effective length of the linker DNA. The DNA length per nucleosome varies from tissue
to tissue. In case of chicken erythrocyte the DNA length amounts to about 212 base-pairs. We will
use this value in the following considerations. Later in this chapter the effect of linker length vari-
ations on the fiber geometry and elasticity will be discussed in more detail. About 146 base-pairs
wrap in 1% turns around the histone core particle. Thus 2 turns correspond to 177 base-pairs. The
stem ends at about 7nm from the center of the core particle. Assuming that the linker histones are
situated directly at the core particles, 2 times 7 base-pairs are involved in forming the stem. This
means for chicken erythrocyte chromatin fibers that there are roughly 21 base-pairs of linker DNA
left. Fig.[5.5 shows a sketch of the chromatin model. The core particle with its DNA is treated as
ellipsoidal disks with a diameter of 10nm and a height of 6nm corresponding to the experimental
values [LL97, LMR"97]. The stem (red cylinders) has a length of 2nm and the linker DNA (blue
cylinders) is 7.14nm long.

The linker DNA is discretized in four segments in order to allow for bending and torsional de-
formations. Each segmentepresents about 5bp and is labeled by a set of basis vd¢tors, b; }
wheret; denotes the tangent vectar; the normal and, the binormal vector. The elastic energy
of the linkers is thus described by

4(N—-1)+2 4(N—1)42

> (Bi—By)+ lg—g’ > (mi—Ty) (5.17)

=1 =1

Hel o lfp
kT — 2b

wherel,, andlr,, are the bending and twist rigidity respectively,is the number of nucleosomes
andb denotes the segment length;, = arccos(t; - t;+1) refers to the bending angle between two
neighboring segments angdenotes the twist angle given by Efg. (B.11). The spontaneous bending
angles,, = 0 takes the kink of in- and outcoming linker DNA into account and is only non-zero for
those segment pairs that are connected to a stgm= ¢/3 enforces the right-handed helicity of

the DNA which in turn gives rise for the fiber twist angle Note that the linker length and the fiber
twist angle are actually coupled. This is so because the DNA has to face with its minor groove the
binding sites on the histone spool. Thus an increase of 1bp causes an increase of2xwisofA
calculated linker length of 21bp correspondsgte- 27/10. However, for simplicity we keep as a

free parameter which controls the fiber geometry while the linker length variations amount at most
to £1nm and can thus be neglected.

To account for the orientation of the chromatosomes the disks are also labeled by a set of three
orthonormal basis vectosT;, N;, B;}. N; is the normal vector perpendicular to the disk plane
given by
= fiX T (5.18)

‘7“1‘ X 7"1‘4_1’
The vectors{7; } connect the stems of neighboring chromatosomes (se¢ Fig. B;$oints from
the joint of the linker DNA towards the disk resulting in

T~ il

Bi=—5—7%—.
‘Ti—TiH’

(5.19)
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T, is obtained by orthonormality of the basis set:

As already mentioned we use a variant of the Gay-Berne potential [EEO03] (compare[section 3.3.1) to
model the excluded volume interactions and the attractive interactions due to bridging of lysin-rich
tails between the chromatosomes. We choepsel.0 of Eq. (3.34) and the effective diameter of the
nucleosomal disks is chosen to de= h whereh is the height of the chromatosome. The structure
matrix is given by|[LMR™97]

/2 0 0
S=[0 42 o (5.21)
0 0 d/2

whered = 1.67h is the diameter of the chromatosome. Using the experimentally determined spatial
dimensions of the nucleosome core particle [LMK] this leads to

30 0 0
S=[0 50 0] nm (5.22)
0 0 50

The parameterization of the GB potential entails a lateral spacirg®® nm and a vertical spacing
of ~ 11.0 nm of the disks in good agreement with experimental results of Livaaat[LL97]. It
should be noted that the diameter of the chromatosome represenfei lspmposed of two times
the DNA diameter and the histone core diameter. The GB paramegterhich determines the
energy well depth will be chosen such thatamounts to about 14T close to the experimental
value found by stretching a chromatin fiber [CB00]. The effect oh the stress-strain relation is
discussed in more detail in section 516.3.

The parameters characterizing the underlying geometry such as the entry-exit anglethe
rotational angle> and the linker lengtlh;,, .., Will be varied in order to study their influence on the
elastic and structural properties of the fiber.

5.4 Investigation of the fine-structure of the two-angle phase diagram

Before we perform simulations to study the elastic properties of the modeled chromatin fiber we
first investigate the structural properties within the described geometry of Fig. 5.5. We measured
the two-angle diagram and the energy landscape dependifd,@r} for a given linker length
biinker- The nucleosomal disk size is fixed #do= 10nm andh = 6nm. To calculate the phase
diagram we start with a configuration given by= 0;,,;.;.; and¢ = = /2 for a fixed linker length
binker- We add successively nucleosomes building up the fiber and check if there is an overlap
or not. In case of overlap we update the rotational angle.Ry, = ¢o1q + %. Otherwise, if the
2

building procedure satisfies the conditibn> 50, i.e. the actual fiber length exceeds one helical

pitch without producing an overlap, the rotational angle is updated,by = ¢o1q — %. This

results in a phase boundary between allowed and forbidden structures determined by the excluded
volume condition which is shown for various linker lengths in Fig.,] 5.8. One can observe that with
increasing linker lengtly;,.. the fine structure of the phase boundary is increased. This can be
understood as follows. Imagine a situation where the nucleosomes are closely packed on a solenoid

for a certain linker length. Increasing the linker length entails more space between nucléosome
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Figure 5.6: lllustration of the measured correlation time of the energy, the mass density the end-to-
end distance and twist for a fiber witl®0 nucleosomes, and = 7.14nm, 8 = 145°, ¢ = 100°,
e = 1kgT. Itis shown that the longest relaxation time amounts to approximately 100 MC steps.

and: + 1 such that after one helical turn it is possible (depending;oR.-) that a nucleosome fits
in. This creates an additional bump into the phase boundary] Fig. 5.8 shows the calculated energy
landscape for straight linkers of lendil,x. = 7.14 nm, i.e. there is no bending energy involved.
The energetically favored conformations can be found close to the phase boundary. Note that the
boundary due to short range excluded volume interactions is smeared out to smaller values of the
rotational angle due to the stem structure of the nucleosomes. Without a stem the boundary would
be a straight line following Eq[ (5.9.1). The previously introduced method for the calculation of the
phase diagram cannot resolve this overhang.

In fact, the rotational angleé and the length of the linker DNA&y;,,., are coupled. An additional
linker length of one base-pair corresponds to an increag®fr86°. In Fig.[5.7 the phase boundary
between allowed and forbidden structures concerning nucleosomal clashes is shown for coupled
brnker and ¢, and for two different nucleosomal disk sizes. Starting Vbiths., = 0.1nm we
increase successively the linker length for a given angle afd check if the respective structure
shows an overlap of nucleosomes or not. Each time a boundary between overlap and no overlap or
vice versa is passed we write out the corresponding angle space coordinate. Note that the rotational
angle¢ is updated for every step iy = b,k /0.34nm - 36°. All structures belonging to the area
right of the phase boundary in Fig. 5.7 are forbidden.

5.5 Monte-Carlo simulations

We use a Monte-Carlo scheme to simulate the chromatin fiber which relies on three moves: (i) a
local move where one chooses randomly one nucleosome which is rotated around an axis determined
by two points on the in- and out-coming linker DNA by a small random angle, (ii) a non-local pivot
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Figure 5.7: Phase diagram férand ¢ where the linker lengtlh;;,..- iS coupled to the rotational
angleo via byinker = ¢/36° - 0.34nm. The snapshots correspond to structures lying directly on the
boundaries fop = 140° and the respective values indicated by the arrows. One observes an in-
crease of the fiber diameter with increasing linker length. The red data points refer to a nucleosomal
disk size ofd = 10nm andh = 6nm, whereas the blue data set corresponds to half the disk size.

move where a random segment point is chosen around which the shorter part of the chain is rotated
around a random axis by a random angle, (iii) a non-local crankshaft move where two random
points along the DNA segments define the axis of rotation around which the inner part of the chain
is rotated. The moves are accepted or rejected according to the Metropolis schemég8]RR

Each simulation run consists of 200000 MC sweeps where one trial correspaNgs;tptrials
with Npn 4 being the number of DNA segments. We simulated either fibers Witk 50 (simu-
lations with applied stretching force) & = 100 nucleosomes such that the linker DNA segments
amounts toNpy4 = 202 and Npya = 404 respectively. The amplitudes are chosen such that
the acceptance rate equals approximately 50%. Every 20 moves we save a configuration. As initial
conformation we used the relaxefl & 0) fiber structure. In order to determine the longest relax-
ation timer.,,- of the system we measured the 'time’ correlation functions of the energy, the mass
density, the end-to-end distance and twist (see[Fig. 5.6). It is foundthats 100 MC sweeps.

Note that the entry-exit angkeis not varied during the simulation.

We use the following reduced units: lengths are measured in [nm] and forces are measured in
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[T /nm = 4pN].

5.6 Structural and elastic properties of the simulated fiber

5.6.1 Influence of the nucleosomal interaction on the structure of the fiber

In sectior] 5. we discussed the implications of entry-exit angle, rotational angle and linker length
on the structure of the ground stafe £ 0). In the absence of excluded volume interactions thermal
motion leads to rather distorted conformations due to twist and bend fluctuations of the linker DNA
(see Fig[ 5.9). If the excluded volume of the nucleosomes is taken into account these fluctuations are
reduced resulting in more ordered structures. The fiber fluctuates only slightly around the ground
state conformation since the accessible space for bending and twist fluctuations is strongly reduced
due to the spatial extensions of the nucleosomes. In cate-0f45°, ¢ = 100° a helical structure

can be observed. If additionally nucleosomal attraction is included, the fiber can form loops. The
occurrence of loops only depends on the ratio of the attractive well of the Gay-Berne potential
and the contour length of the fiber. For a given attractive well and sufficiently large chains a loop
formation is observed. The occurrence of loops has strong effects on the behavior of the fiber under
stretching. This point will be discussed in more detail in segtion 5.6.3.

5.6.2 Influence of the nucleosomal interaction on the elastic properties of the fiber
Rough estimate of excluded volume effects

For a given pair of angles one can also estimate the maximum possible size of the nucleosomes
for which no nucleosomal overlap is found. This can also be done the other way around using the
phase diagram of Fig. §.8. Here the disk size is kept constant. The most compact structure for a
given value off is found to be the smallest possible valuegothat does not lead to an overlap.

This is nearly identical to the energy minimum for the impo8edilue. For such a configuration

there is no space left for bending motions such that the bending persistence length is infinitely large.
Scaling down the disk size enables bending fluctuations, the bending persistence length becomes
smaller. This explains qualitatively the results shown in Fig.]5.14 (see below). A more quantitative
analysis can be carried out for the geometry shown in[Fig.| 5.10, where we consider for the sake of
simplicity a bending motion in two dimensions. We assume that the nucleosomes are spheres with
radius Ry and consider a fiber geometry where the nucleosomes are stacked on top of each other
with a center-center distanedorming columns which are parallel to the fiber axis. Bending such

a fiber by an angle? leads to a curvature of the fiber axis with= bpfch and radiusRk,, = %
bpiter, refers to the helical pitch of the chromatin fiber. The distanbetween the centers of two
neighboring nucleosomes (within one column) is givercby (R, — s — Ry)3 wheres denotes
the stem length. Thus the available space between two spheres results2iRy. This yields a
condition for the maximum possible bending anglg,. that does not lead to an overlap of the

nucleosomes for given values 8f, s andby;;.x:

biteh — 2Ro
maxr — pztsc+ Ro . (523)
Note that the diameter of the nucleosomes has to be smaller than or ed¢paltoThe bending
persistence lengthl,, ;... is related to the mean squared fluctuations3of Assuming that the
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(a) We calculated the boundary between forbidden and allowed structures
for different linker lengths corresponding to 7.3, 7.9, 10.5, 21, 42 and 84
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(b) Overlap is found in the dark red area. The energy minima
are located at the blue spots (compare the color code of the
energy scale).

Figure 5.8: lllustration of fine structure of the two-angle phase diagram (using hard core repulsion)
and contour plot of the energy surface bgf,.... = 7.14 nm (using soft core attraction).
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(a) without nucleosomal interactions (b) with nucleosomal interactions

Figure 5.9: Snapshots of fiber with (b) and without (a) nucleosomal interactiorts for145°,
¢ = 100° andby;,ker = 7.14nM,d = 10nm, AL = 6nm.

bending fluctuations are suppressed by the accessible space between the nucleosomes one can use
Agphere = lg'Tth as a rough estimate of the resulting persistence lengthl Fig. 5.11 shows the bending
persistence”féﬁgﬂqsphm as a function of the radius of the spheres. Itis found g, increases

rapidly as2 Ry comes close t6,;;.;,. FOr2Ry = bpitch, 1.€. ez = 0, Agphere diverges. The overall

behavior of the estimated bending persistence ledgfh.,.. is very similar to the simulation result
(compare Fig[ 5.71). Deviations are encountered for several reasons: (i) we neglect the disk-like

pitch

- @
S

Figure 5.10: lllustration (side view) of fiber geometry with nucleosomal spheres of r&jits
estimate the bending persistence length as a function of sphere size for given linkem}gnagth

and sterms. On the right one can see the bent fiber where we substituted the spheres with disks of
sizeh = 2Ry andd = 1.6h. Here an overlap is found for the same bending apgle
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Figure 5.11: Comparison of the estimated bending persistence length of theAipgr,.{: red

line, Ags,: green line) using the geometry illustrated in Fg. 5.10 and the simulation data (blue
data points) withd = 145° and¢ = 100°. The helical pitch is fixed td,;, = 15.67 nm in

order to enforce a divergence of the persistence length for a radiu8 o as it is found in the
simulation. The length of the stem amountsste= 2 nm. Deviations are mainly due to the fact
that the nucleosomes of the simulated fiber do not stack perfectly in columns which is one of our
assumptions for an estimate 4f,,c,. and Ag;;.

structure of the nucleosomes. The diameter of the spheres corresponds to the height of the disks
so that we underestimaté depending on the 3-d structure under consideration. An analogous
calculation of the distance between the edges of the disks results.in= %7;2% whered is

the diameter of the disk, i.edspnere < Aaisk- (i) We only treat bending in 2 dimensions. Bending

out of the plane becomes important for zig-zag-like structures. In this case we overestimate the
bending persistence length. Only for very compact structures @#lssgell¢) where one encounters

isotropic bending in all directions our estimate becomes comparable to the simulation results.

Simulation results

To test our simulation, we also measured the bending persistence length and the stretching modulus
of the fiber for various combinations éfand¢ where we take nothing but the elasticity of the linker

DNA into account. The calculation is done as follows: first of all we determine the fiber axis by
calculating subsequently the centers of mg$$ defined by nucleosomésup toi + N, i + 2 up

toi + 2 + N, etc. N, is chosen to match approximately one or two helical turns. Afterwards one
can calculate the autocorrelation function of the tangent vectors defined by the fiber axis

Cit1 — G
t =

= 0 (5.24)
|Cit1 — G
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(a) Comparison of analytical results of the bending persistence length
Aineo and the measured valuds;,,, of the simulation for different pairs
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(b) Comparison of analytical results of the stretching modulus, and the
measured values;,, of the simulation for different pairs of anglésand.

Figure 5.12: Analytical and simulation results of the bending persistence length and the stretching
modulus
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in order to extract the persistence length of the fiddrom an exponential fit

(t; - t;) = exp <—’Z_3£’l"’f) . (5.25)
The stretching modulus can be calculated via
L
Y= <2L>>2 (5.26)

with AL = L— (L) being the mean deviations around the average contour length of the fiber (length
of the fiber axis). It should be noted that depending\grthe estimated persistence length as well

as the stretching modulus and the contour length of the fiber vary. In cagelmding too large for
example the stretching modulus is underestimated since bending fluctuationsivétidia + N,
contribute toy. On the other hand values &f. which are too small lead to a helicoidal fiber axis

and the contour length of the fiber is overestimated. This entails a systematic error which must be
minimized. Values ofV, corresponding to one or two helical turns appear to be reasonable.

Even though the analytical calculations determine the elastic constants of the fiber by a per-
turbation analysis around th#e = 0 structure, the agreement between the simulation data and the
analytical result for different pairs of angles is very good (see[Fig] 5.12). In general the fluctuations
lead to bending and twisting of the linker DNA away from the straigjiht 0 conformation. This
in turn leads to a smaller effective length per linker DNA and a subsequent change of the elastic
constants. For rather extended zig-zag-like ground structures this effect is most pronounced and one
finds the largest deviations from the analytical expressions.

Another possible method of analysis is the measurement of the mean squared nucleosomal dis-
tancesR? along the chain. The data can subsequently be fitted to the extensible WLC model. Fit
parameters are the contour lendththe persistence length and the stretching modulus We
obtain:

e for 6 = 145°, ¢ = 100°,d = 11nm,h = 6.6nm:

— fitting result: L/N = 1.92nm, A = 340nm,~ = 59nm~!, A = 5.8
— averaged contour method;/N = 1.90nm, A = 330nm,~y = 15nm~}, \ = 5.6

e for § = 145°, ¢ = 100°, d = 10nm, h = 6nm:

— fitting resultL /N = 1.84nm, A = 244nm,~ = 47nm~!, A = 6.0
— averaged contour method;/N = 1.82nm, A = 236nm,~y = 14nm~1, A = 6.1.

The differences of. and A between both methods are smaller ttséh But one should mention

that some of the data fak% could not be fitted properly due to strong data scattering for small

j — 1, especially for the simulations with pure bending stiffness. That is also why one finds strong
deviations for the stretching modulgsbetween both methods, singds determined by the small
distance region of:%. The bending persistence length, on the other hand, is dominated by large
distances where the data do not scatter strongly. In|Fig/ 5.13 we compacalculated with the

raw data and with the average contour length data. One can see how the dati?sét sfnoothed

by the averaging procedure for small internal distances, while the large distance behavior does not
change. The red line corresponds to the extensible WLC fit to the averaged data.
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Figure 5.13: Mean squared internal distances of the nucleos&heseasured with the center-of-
mass of the nucleosomes (blue squares) and the smoothed contour (red cirdes) fd5°, ¢ =
100°, d = 10nm, h = 6nm. ; denotes the monomer index. Fitting result (red lingjN = 1.84nm,
A = 244nm, v = 47nm~ !, A = 6.0; averaged contour method:/N = 1.82nm, A = 236nm,

v = 14nm~!, X\ = 6.1. The fitting procedure results in3a— 4 times larger stretching modulus
compared to the averaged contour method while the obtained contour |Bndjtie persistence
length A and the mass densityare in good agreement.

We already discussed the limitations of the analytical approach due to the negligence of nu-
cleosomal interactions. For low salt concentrations, that is for large entry-exit angles, one expects
that the chromatin fiber is a highly flexible and extendable object. This behavior is captured by Eq.
(5.11). However, for higher salt concentrations the structure becomes more compact such that ex-
cluded volume interactions play an important role. In order to investigate excluded volume effects
on the bending persistence length of the fiber, we simulated various fibers with different nucleosome
volumes. This is done without attractive forces. We simply check during the simulation if an overlap
occurs and, if yes, such a move is then rejected. We keep the ratio of the nucleosomat bkeight
diameterd constant With% = 0.67. For rather compact structures the bending fluctuations are im-
peded by the excluded volume of the disks. Thus one anticipates large bending persistence lengths
of the fiber for large nucleosomal disk sizes. This is indeed confirmed by our simulations. F|g. 5.14
illustrates the dependence of the persistence length for given @haheks on the nucleosomal disk
size. We observe that the effect is smaller for less compact structures such as zig-zag fibers, since
there is more room for bending fluctuations. The snapshots for different nucleosomal disk sizes in
Fig.[5.14 nicely illustrate the stiffening of the fiber with increasing disk size.

In Fig.[5.1% the bending persistence lengtbf a fiber with and without nucleosomal attraction
is shown. It is observed that the bending persistence length of a fibepwith145°, ¢ = 110°
is reduced if nucleosomal attraction is present. Since neighboring nucleosomes come closer to
each other if the fiber bends (see Hig. $.10) the energy contribution due to nucleosomal attraction
is enhanced. That is why bending is enhanced compared to the case of pure excluded volume
interaction.

The stretching modulus of the fiber also increases with increasing disk size which is caused
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Figure 5.14: Effect of excluded volume interaction on the bending persistence length of the fiber
for various pairs of angleg and¢ is shown (see inset). For a given linker length .. the fiber
persistence lengtid [nm] grows if one increases the overall size of the nucleosomal disks while
keeping the aspect ratio constant. The vertical lines show the limit where the ground structure
T = 0 shows overlap of nucleosomes. Note that the divergence limits of the red and green data
set are nearly identical. The persistence lengths of compact structures diverge for these values of
[nm]. For very small disk sizes the measured persistence lengths converge to the analytical values
calculated with Eq[(5.11).
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Figure 5.15: Persistence length[nm] as a function of nucleosomal disk size (h [nm]) with=
145°, ¢ = 110°. We compare fibers withe(= 1kpT) and without ¢ = 0kpT) nucleosomal
attraction where is the Gay-Berne energy depth for two stacked disks.

by the hindrance of longitudinal fluctuations due to the excluded volume of the nucleosomes. The
mass density\ decreases with increasing disk size. This displays the already mentioned fact, that
in general the fluctuations lead to bending and twisting of the linker DNA away from the straight
T = 0 conformation. That in turn leads to a smaller effective length per linker DNA and a smaller
contour length respectively. Since these bending and twisting fluctuations are reduced for larger
nucleosomal disk sizes the mass density decreases| Fig. 5.16 illustrates the dependeru of

A on the nucleosomal disk size for fibers with= 145°, ¢ = 100°, andb;,ke, = 7.14nm. For

d = 10nm, h = 6nm corresponding to the experimentally determined spatial dimension of the
chromatosomes [LMR97] we find a mass density of abodt= 6.1 very close to experimental
values under physiological conditions [BHG8] and a stretching modulus of about= 13.6nm~!

which is roughly 10 times larger than the value determined by a fit of the release part of the force-
extension curves at low ionic strength [CB0O].

5.6.3 Stretching the fiber

In the stretching experiments of Cui and Bustamante [CBO00] on chicken erythrocyte chromatin
fibers in physiological conditions, i.e. for very compact fibers, a force-plateau at around 3-5 pN is
found. The authors propose that the plateau corresponds to a condensation-decondensation transi-
tion due to nucleosome-nucleosome interactions.

Within our model the responsible parameter for a condensation-decondensation transition caused
by short range attractive interaction between nucleosomes is the energy welt d¢phle GB po-
tential. It determines the energy that must be paid to pull two nucleosomes apart. For sufficiently
large values ot one should find a force-plateau in the force-extension curve. On the other hand,
one could also imagine that the fiber will get more and more compact until it prefers to form loop
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(a) Stretching modulus vs. nucleosomal disk size (heighj.
The dotted line corresponds to the analytical result.
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(b) Mass density\ vs. nucleosomal disk size (heigh).

Figure 5.16: Stretching modulus[nm] and mass densitx [number of nucleosomes/11nm] vs.
nucleosomal disk size (height [nm]) for 8 = 145°, ¢ = 100°, andbjinker = 7.14nm. For

d = 10nm, h = 6nm corresponding to the experimental values [LMR]] we find a mass density
of about\ = 6.1 very close to experimental values under physiological conditions [B88} and

a stretching modulus of about = 13.6nm~! which is roughly 10 times larger than the value
determined by a fit of the release part of the force-extension curves at low ionic stiength [CBOQ].

structures with a kink near the center of the chain in order to maximize the contact area of the surface
of the fiber. This will be discussed later on in more detail.

Since we are interested in the stretching behavior of a chromatin fiber under physiological con-
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Figure 5.17. Force-extension curves for a fiber where only the linker DNA elasticity is taken into
account and for fibers with hard-core repulsier= 0) and soft-core attraction between the nucle-
osomes withe = 2, 3, 4kpT'. A further increase of should shift the plateau to larger stretching
forcesf.

ditions we choose the following structural parameter set to simulate the fiber with external stretching
force:

0 = 145°
¢ = 110°
blinker = 7.14nM.

m — 6 is chosen in order to match the experimental valugs6fmeasured in high salt concentration
[BHG™98]. bk @andg are fixed such that one obtains a reasonable value for the mass deoisity
about6.1 nucleosomes pdarlnm measured with = 1kgT. Note thath;;,,.., coincides with linker
lengths of erythrocyte chromatin fibers in the presence of linker histones measured by digestion
experiments[[K. 89]. Even though the mass density will increase with increasing potential well
depthe it does not exceed a value ©f nucleosomes per 11nm. This is still close to experimental
data which suggest values of abdut 7 nucleosomes per 11nm [GR87]. Certainly other pairs of
{biinker, ¢} €xist which produce a mass density of abéutucleosomes per 11nm, but the overall
behavior of the stress-strain relations should not be influenced. Longer linker DNA segments will
decrease the mass density and will increase the flexibility of the fiber forfix@terefore one will
find the already mentioned kink instability for smaller values.of

We measure the force-extension relation for various valuesTiie stretching force acts along
the center-to-center distance of the chain. The results are illustrated jn Fig. 5.17. For small values of
e no force plateau is found. The force-extension curves follow the extensible WLC behavior. Note
that since we simulate quite short chromatin fibers, finite size effects are present=RBatzT we
find a force-plateau at about 2pN which looks quite similar to the experimental datal[CBO00] (see Fig.
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Figure 5.18: Stretching forc¢ vs. mass density for a fiber withd = 145°, ¢ = 110°, and
bunker = 7.14nm where only the linker DNA elasticity is taken into account and for fibers with
nucleosomal interactions with= 0, 2, 3, 4kgT. One can nicely see how the mass density stays
constant for = 4kgT up to 2pN. Up to these stretching forces only the loop formation of the fiber
is pulled out.

[5.23). A further increase afshould shift the plateau to larger stretching for¢eJhe stress-strain

curve is averaged over 10 different simulation runs. For the different runs the data scatter quite a
lot in the low stretching force regime. This is due to a kinked loop formation of the fiber. Once
the chain forms a kink at a certain position along the chain and the two parts of the chain are glued
together the kink position seems to be quite immobile while the loop conformation can open due to
thermal fluctuations. In principle the kink location can diffuse along the chain. But this diffusion
process would lead to states of much higher energy. One possibility to overcome this problem is to
run several simulations where the chains form kinks at different fiber positions. Subsequently one
performs a kind of ensemble averaging over the different simulation runs.

In Fig. [5.22 we show the probability distributions of the end-to-end distdt)céor different
GB energy well depths. One can clearly observe a shift to smaller valuBg, ¢or ¢ > 3kpT
corresponding to the formation of kinks. By stretching the fiber the nucleosomal contacts of the two
parts of the chain are pulled out in a first step (up to 2pN), followed by a decondensation transition
of the fiber. Moreover, it is found that for large stretching force$5pN) the probability distribution
functions for the different values coincide. The measurement of the mean internal distaRges
underline the kink observation. For several r4Rg;) shows a parabolic shape where the maximum
is found at the kink location (compare Fig. 5§.19). Another possibility to detect kinked structures

is the measurement of the contact matmxmm of the fiber for each‘ shapshot. If a pair of
nucleosomes andj is in contact we counI\/l((:Z,ztact =1 otherwise/\/lf:fgtact = 0. By adding

up the contact matrices of each snapshot we obtain a two dimensional histogram as it is shown in
Fig. [5.20. If no kinks are present and the nucleosomes of the fiber form a quite regular solenoidal
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Figure 5.19: Mean internal distancé8y) for the individual simulation runs (different colors cor-
respond to different runs) with = 4kgT, 8 = 145°, ¢ = 110°, andbypker = 7.14nm and no
applied stretching force. refers to the monomer index. Parabolic shapes are recovered where the
maximum is found at the kink location.

structure two main stripes with some less pronounced side stripes parallel to the main diagonal are
observed. In the presence of kinks some side branches perpendicular to the main diagonal, i.e.
along the secondary diagonal, can be found. If loop conformations are present, the histograms show
a cross-like pattern where the kink location is found where the two branches along the main and
secondary diagonal respectively cross each other.

5.7 Discussion

We introduced a simple model based on the two-angle model by Schessel[SGB01] which

additionally accounts for excluded volume and attractive interaction of the nucleosomes. The struc-
tural analysis of the two-angle phase diagram helped to identify the boundary between allowed and
forbidden geometries. Moreover we investigated the influence of the nucleosome-nucleosome inter-

9 o | A Ay
90 100| 75 34
145 100| 236 14
145 110| 216 15

Table 5.1: Measured persistence lengths [nm] for various pairs of angleé and¢ in [°]. Ag;
denotes the analytical result without excluded volume, i.e. the contribution from the linker DNA.
The spatial dimension of the nucleosomes is chosen to match the experimental valued @im

andh = 6nm.
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0 o | A
145 79 | 7.0
145 100| 6.3
145 110| 6.1

Table 5.2: Mass density [number of nucleosomes/11nm] for various valuegafith § = 145°
ande = 1kgT. For larger rotational anglesthe fiber gets less compact resulting in smaller mass
densitiesh.

action on structural as well as elastic properties of the chromatin fiber. We find a drastical increase
in the bending persistence length of the fiber for increasing nucleosomal disk sizes. In particu-
lar for a disk size ol = 10nm andh = 6nm and an underlying geometry given By= 145°,

¢ = 110°, andby;, ke = 7.14nm where the entry-exit angle is fixed to the experimental valé of

[BHG 98] and the mass density of the fiber under physiological conditions [GR87] could be repro-
duced the bending persistence length amoun®d éom close to the valu60nm found by earlier
computer simulation studiels [WLD2]. Note that in Ref._[WI.02] a linker length.@f... = 3.74nm

is chosen corresponding to 11 base-pairs which explains the slightly larger value. Since the den-
sity p = (mRsg) ! of a fiber with given entry-exit angle — @ and given linker lengttb;,xc, is
decreased if one goes to larger values of the rotational antilere is more space left for bending
fluctuations and one recovers smaller persistence lengths. On the other hand fordinal;,, ;...

one finds smaller densities for larger entry-exit angles which in turn leads to smaller persistence
lengths (compare table 5.1).

We characterized the found transition for reasonable values of the model parametérs.ce,,

d, h to simulate a fiber under physiological conditions. The entry-exit angle is fixed to the experi-
mental value o85° [BHG 98] and the mass density [GR87] could be reproduced.

For a rotational angle ap = 100° we recover a mass density of about= 6.1 very close to
experimental values under physiological conditions [BH8] and a stretching modulus of about
~ = 13.6nm~! which is roughly 10 times larger than the value determined by the fitting procedure
of Cui and Bustamanté [CBOO0] (see F[g. §.16). Remember that they used a fit of the release part
of the force-extension curves at low ionic strength where the fiber is less compact and no excluded
volume effects are present. The large stretching modulus is caused by the hindrance of longitudinal
fluctuations due to the excluded volume of the nucleosomes. For larger rotational aagkfixed
0 the fiber gets less compact resulting in smaller mass denAiti€kis is displayed in table 5.2.

The simulations with applied stretching forces showefer 4k 5T a force-plateau in the stress-
strain curve rather similar to the one observed in micromanipulation experiments on single chro-
matin fibers[[CBOD] (see Fif. 5.p1). Due to the strong nucleosomal attraction the fiber forms kinks,
and the two parts of the fiber glue together in order to maximize the contact area of the fiber surface.
For small forces the chain is unglued, but kinks are still present. In contrast to DNA, the chromatin
fiber does not undergo an instantaneous local structural transition if a critical stretching force is ex-
ceeded. Instead we observe a global structural change Navhere the two parts of the loop
are torn apart. For stretching forces larger tBahN a decondensation of neighboring nucleosomes
along the fiber takes place, but the overall structure of the fiber is not strongly distorted. For even
larger forces the fiber is lengthened by increasing the angle formed by nuclebsoméeandi + 1
which is realized by strong bending and by untwisting of the linker DNA. This stretching behavior
of the fiber is additionally confirmed by the measurement of the mass density as a function of the
stretching forcef (see Fig[ 5.18). In case ef= 4kpT one can clearly see a plateau up to forces
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(c) two kinks and one loop can be observed (d) one loop is present with kink location near the
center of the fiber

Figure 5.20: Density plot of measured histograms of the contact matrix of the fibet withk: g T,
0 = 145°, ¢ = 110°, andbj;prer = 7.14nm and withf = OpN in case of (b), (c), and (d) and with
f = 3.5pN in case of (a)i and; denote the nucleosome index.

f = 2pN. In this regime the loops are pulled out. For larger stretching forces the fiber starts to
decondense by untwisting and strong bending of the linker DNA which results in smaller values for
A. For very large forces the fiber will from an extended string of nucleosomes. Some snapshots
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Figure 5.21: Force-extension curves for chicken erythrocyte chromatin fibers in 40mM NacCl. The
red curve corresponds to the stretch cycle while the blue curve refers to the release cycle. Taken out
of [CBOQ].

corresponding to different stretching forces o 4k 5T are illustrated in Fig. 5.23. Even for quite

large stretching forceg some of the nucleosomes are in contact such that there is no full deconden-
sation. This appears also in the measured force-extension curves. In the high stretching regime one
can observe a shift towards smaller end-to-end distaRgease becomes larger. In case of longer

linker DNA segments bending and untwisting the fiber after the decondensation transition would be
easier such that neighboring nucleosomes are farther apart and a full decondensation can take place.
As an additional result the mass density would decrease faster to the value corresponding to a fully
extended fiber conformation. Moreover, the fiber will form more easily a kinked structure. For even
larger values ot one expects the force-plateau to be shifted to larger stretching forces.

Katritch et al [KBOOO] used a similar model to simulate force-extension curves. The major dif-
ference consists in their assumption thad fully randomized. A quenched disorder of the rotational
angle¢ has rather strong effects on the structural as well as the elastic properties of the simulated
fiber [KBOOQ]. Furthermore, spheres are used instead of disks. They investigated the dependence of
linker length, entry-exit angle and rotational angle on the shape of the force-extension curves. The
comparison of their simulation results to the relaxation data of the stretching experiments on chicken
erythrocyte chromatin fiber§ [CB0O] postulated value$,0f... = 40bp, 8 = 130°, an effective
nucleosomal diameter af s = 14nm, and a random distribution of the rotational anglé/Nhile
the determined entry-exit angle is close to the experimental vialyg,. = 40bp is in contradiction
to digestion experiments yielding a value of ab20bp [K. 89], andd.;; = 14nm is quite large.

For the optimized model they introduced an additional short ranged attractive potential between the
nucleosomes. For large attraction they also recovered a force-plateau and a very strong reduction in
the end-to-end distance without applied stretching force, but failed to provide a quantitative analysis
of the structural changes during stretching.

We characterized the found transition for reasonable values of the model paramelérs.ie,,
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Figure 5.22: PDF ofRp of a fiber withd = 145°, ¢ = 110°, andbynker = 7.14nm for various
GB energy well depths and stretching forces (see legends)f EofpN ande > 3kgT a shift to
smaller values of? is recovered corresponding to the formation of kinks. By stretching the fiber
the nucleosomal contacts of the two parts of the chain, i.e. the loop formation, are stretched out.

d, andh to simulate a fiber under physiological conditions. The entry-exit angle is fixed to the
experimental value a$5° [BHG 98] and the mass density [GR87] could be reproduced. Within
our model we predict a loop formation for strong nucleosomal attraction which is stretched out for
forces up to2pN. Whether or not kinks are present depends solely on the length of the fiber and
one. For a givene loop formations will emerge if the fiber length exceeds a critical value. We
can measure the additional attractive energy due to the loop formation in the following way: we
calculate the GB energy for a loop conformation and subtract the GB energy of a condensed but
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Figure 5.23: Snapshots of fibers with= 145°, ¢ = 110°, andby;, ke = 7.14nm corresponding to
different stretching forces far = 4kgT. To facilitate the detection of a loop formation or a kink

one half of the chain is dyed green while the other half is dyed cyan. The first and last nucleosomes
are labeled red. Fof = OpN a kink is detected close to the center of the chain such that the fiber
forms a loop in order to maximize the contact area of its surface. Up<02pN the kink is still
present but the loop gets pulled out. Ko 15pN the fiber is partially decondensated.

straight conformation for a givest;z. We obtain a value of},., = 3kgT'/4nm fore = 4kpT. If
we assume a loop conformation which is composed of two straight chains connected by a semicircle

we obtain an estimate for the radius of curvature with= \/%’Sloop. With [, ~ 200nm the radius
of curvature amounts to abo@hm which is about the size of the diameter of the nucleosomes
d = 10nm.
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Chapter 6

Summary of results and outlook on
future work

We have investigated the structural and elastic properties of three different systems: (i) a generic
model for double-stranded polymers consisting of two coupled worm-like chains, (ii) a mesoscopic
model for DNA at the base-pair level, and (iii) a crossed-linker model of the chromatin fiber.

In a first step towards more microscopic models of DNA we studied the effects caused by the
double-strandedness of DNA. We introduce the coupling between the two strands - taking into ac-
count the hydrogen bonding - as a rigid one such that bending in the plane of the ribbon is forbidden.
We performed MC simulations and rationalized the results with the help of a simple scaling argu-
ment. Two relevant length scales are found in the problem: the single strand persistencé,length
and the separation lengthof the two strands. We recover the predicted simple exponential decay
of the tangent-tangent correlation function with the single strand persistence length. The tangent-
tangent correlation function is independent of the separation of the two strands. Also in agreement
with Ref. [LGK98,/GL00] we find an inherent local twist structure with a helical persistence length
I, and a helical pitchP which scale witH}/?)a?/?’. But in contradiction to Ref/ [LGK98, GL00] we
do not observe an oscillatory behavior of the bond-director correlation function. Qualitatively, one
would expect to see oscillations in the bond-director correlation functioR, 4 ;. If the mean
twist within one helical persistence length exceeds oscillatory behavior has to be observed. But
our calculation gives a twist rate withip = gb of approximatelyt+-1/16. Moreover our simulation
results with applied constant buckling forces do not provide any evidence of a tendency of kinking
or an inherent twist-stretch coupling. A twist-stretch coupling has to be incorporated by the inclu-
sion of an additional term in the Hamiltonian along the lines of Refs. [KLNQ97, Mar97, Nel98].
We have dealt with these effects in chaplier 3 where we have seen that the twist-stretch coupling is a
natural result of the preferred stacking of neighboring base-pairs and the rigid backbones and must
not be included by an extra term in the Hamiltonian. Interestingly, kinked structures are recovered
in the modeled chromatin fiber.

In chaptell B we have introduced a simple mesoscopic model of DNA on the base-pair level
combining the ideas of SOP and WLC model. We studied the resulting helical conformation using
energy minimization and Monte Carlo simulations. We showed by systematic coarse-graining that
the elastic constants of the WLC model are related to the local fluctuations of the base-pair step
parameters. Assuming a twisted ladder as ground state conformation an analytical relationship be-
tween the persistence lengths and the stretching modulus respectively, and the local elastic constants

121
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can be provided given by Eqs. (3126), (3.30), dnd (3.51). The general case where the ground state
is characterized by spontaneous rotations as well as spontaneous displacements as in the A-DNA
conformation is more involved. This is the subject of chapger 4.

For a suitable choice of parameters we obtained a B-DNA like ground state as well as realistic
values for the bend and twist persistence lengths. The latter were obtained by analyzing the thermal
fluctuations of long filaments as well as by a systematic coarse-graining from the stack-of-plates
to the elastic rod level. In studying the response of DNA to external forces or torques, models of
the present type are not restricted to the regime of small local deformations. The measured critical
force is overestimated by a factor ®fand cannot be improved further by fine-tuning of the three
free model parametef®, k, €}. f..ix depends solely on the stacking energy valtleat cannot be
reduced further since it would reproduce neither the correct equilibrium structure of B-DNA nor
the correct persistence lengths. It is an interesting question if the introduction of other stacking
potentials can solve this problem (see for example Ref. [EEO3]).

Our model suggests a structure for S-DNA with highly inclined base-pairs in order to enable
at least partial base-pair stacking. This is in good agreement with results of atomistic B-DNA
simulations by Lavenet al. [CLH™96,[L[99]. They found a force plateau aflOpN for freely
rotating ends [CLH 96]. The mapping to the SOP model yields the following twist-stretch (Ri-Tw)
coupling constant z; 7 = (C~*) rirw = 267/A (see Eq.[(3.48)). Herkg; 1., is the microscopic
coupling of rise and twist describing the untwisting of the chain due to an increase of rise (compare
also Fig[3.D).

While our results suggest a similar structure for S-DNA as atomistic simulations {@6Hthe
DNA model studied in this paper can, of course, not be used to rule out the alternate possibility of
local strand separatioris WWRB01, RB0O1a, RB0O1b]. Therefore one future project is the generaliza-
tion of our approach to a description on the base level which includes the possibility of hydrogen-
bond breaking between complementary bases along the lines of Ref. [RCP99, CM99]. Additionally
a suitably parameterized model allows a more detailed investigation of DNA unzipping experiments
[BERH97]. Clearly, it is possible to study sequence-effects and even more refined models of DNA.
For example, it is possible to mimic minor and major groove by bringing the backbones closer to
one side of the ellipsoids without observing non-B-DNA like ground states. The relaxation of the
internal degrees of freedom of the base-pairs characterized by another set of parameters (propeller
twist, stagger, etc.) should help to reduce artifacts which are due to the ellipsoidal shape of the
base-pairs. Sequence effects enter via the strength of the hydrogen Bipds=(2.9k5T versus
Ear = 1.3kpT) as well as via base dependent stacking interactions [Hun93]. For example, one
finds for guanine a concentration of negative charge on the major-groove edge whereas for cytosine
one finds a concentration of positive charge on the major-groove edge. For adanine and thymine in-
stead there is no strong joint concentration of partial charges [CD99]. Itis known that in a solution of
water and ethanol where the hydrophobic effect is less dominant these partial charges cause GG/CC
steps to adopt A- or C-forms [ESH99] by a negative slide and positive roll motion and a positive slide
motion respectively. Thus by varying the ratio of the strengths of the stacking versus the electrostatic
energy it should be possible to study the transition from B-DNA to A-DNA and C-DNA respectively.
The introduction of electrostatic interactions in the model also provides the possibility to investigate
the charge renormalization of the WLC elastic constents [PHPO0O]. As a last future perspective it
should be mentioned that the presented model may serve to validate and unify analytical approaches
aiming at (averaged) properties on larger scales [ALCMO01, HYZc99, BICP99, CM99, SN02a]. We
already started to quantify the B-to-S transition and the structural and elastic properties of the S-
DNA state in more detail and to compare it to the fitting results of the two-state model of Storm and
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Nelson [SNO2b, SNO2a].

In chaptef # we discuss possible renormalization procedures to obtain the elastic constants of the
WLC model. It is shown that in case of nearest-neighbor interaction we can work out a convenient
simple sampling procedure to calculate the effective coupling constants on larger length scales.
Therefor one has to implement the following steps: (i) calculation of the elastic matrix by inverting
the correlation matrix, (ii) diagonalization of the elastic matrix, (iii) independent random numbers
can be drawn for the eigen-modes, and (iv) the conformation is obtained by transforming back. If
long-ranged interactions are involved certainly the simple sampling method cannot be used anymore.
Rather one has to implement Monte-Carlo renormalization techniques to measure the renormalized
coupling constants along the chain. These techniques are important if long-ranged electrostatic
interactions are included in the DNA model. In the future one should make a thorough investigation
of the renormalization of the elastic constants for different DNA ground states.

Another challenging project is to keep the non-linear aspects of the DNA such as the over-
stretching transition during renormalization. In principle one could renormalize separately the elas-
tic matrix of the B-DNA and the S-DNA provided that it is possible to write down an effective
Hamiltonian such that the critical force where the structural transition occurs is an invariant under
the renormalization group operator. An Ising-like model as it is introduced by Storm and Nelson
[SNO2b] SNO2a] could be a good starting point.

One major advantage of linked-ellipsoid models as introduced in clidpter 3 is that they are not
restricted to the base-pair level of DNA as the same techniques can, for example, also be used to
study chromatin. This is the subject of chapter 5. In the case of chromatin the ellipsoids represent
chromatosomes. The underlying geometry of the linker DNA is based on the two-angle model by
Schiessekt al [SGBO01]. A variant of the Gay-Berne potential [EE03] takes the excluded volume
interactions and the attractive interactions (probably due to bridging of lysin-rich tails between the
chromatosomes) into account. Parameters characterizing the underlying geometry such as the entry-
exit angler — 6, the rotational anglé and the linker lengtlb;;,,.., were varied in order to study
their influence on the elastic and structural properties of the fiber. The structural analysis of the two-
angle phase diagram helped to identify the boundary between allowed and forbidden geometries.
Taking in a first step only the excluded volume interactions into account we find a drastical increase
in the bending persistence length of the fiber for increasing nucleosomal disk sizes. In particular
for a disk size ofd = 10nm andh = 6nm and an underlying geometry given By= 145°,
¢ = 110°, andby;,ker = 7.14nm, where the entry-exit angle [BH®8] and the spatial dimension
of the chromatosomes [LMRO7] are fixed to their experimental values and the mass density of the
fiber under physiological conditions [GR87] could be reproduced, the bending persistence length
amounts t@16nm. The stretching modulus amounts to abput 13.6nm~!. Both values are order
of magnitudes larger than the values determined by the fitting procedure of Cui and Bustamante
[CBOQ]. Note that they fitted the extensible WLC model to the release part of the force-extension
curves at low ionic strength where the fiber is less compact and no excluded volume effects are
present.

Interestingly, we observe kinked fiber structures in the presence of nucleosomal attraction.
Whether kinks are present or not depends solely on the length of the fibet. dfat a givene
loop formations will emerge if the fiber length exceeds a critical value in order to maximize the
contact area of the surface of the fiber.

For a reasonable parameterization of the chain for physiological conditions and sufficiently high
attraction we find a force-plateau corresponding to a structural transition of the fiber in agree-
ment with experiments [CB0O0]. In a first step the overall fiber geometry - a loop conformation -
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is stretched out, followed by a decondensation of the fiber as the second step.

Up to now we studied exclusively fibers with a regular geometry. It would be interesting to
introduce irregularities in the linker length and the rotational angle respectively and to study its
consequences on the elastic properties and the behavior under stretching of the fiber.

Another interesting project is the formulation of a new coarse-grained model on the next level
of DNA compaction. It is known that the chromatin fiber further organizes into the chromosome.
Unfortunately there are no reliable experimental data on this length scale which could provide access
to structural or elastic properties. Maybe our chromatin model can help to measure these elastic
properties and to come up with a possible ground structure on this length scale.



Appendix A

Multiple histogram method

The multiple histogram method of Ferrenberg and Swendsen [FS88] is a convenient tool to study

the free energy barrier of two conformational states or phases. Depending on applied external fields
one can enforce the system to stay in either state. They developed a tool which makes it possible to
recombine measured histograms of different field strengths with a reweighting procedure to a single

probability distribution function with overall very good statistics.

Consider the case where the unperturbed state is characterized by the Hamilgnidine
application of an external force determines which of the local minima of the system are preferentially
sampled by the simulation. Thus one performs several simulations of systéascterized by the
HamiltonianH,; = Hq+V; whereV; can be a function of a order paramefgrin the case discussed
in sectior[ 2.p the external potential is given By= fRg where f is the buckling or stretching
force andR g corresponds to the end-to-end distance. Higher probabilities (compared to the usual
wormlike chain result) of small end-to-end distances suggest the occurrence of kinksR#lisis
sensitive to the underlying structure. The paramétehould enhance the formation of a kink-rod
structure in case with an intrinsic preference for such structures. In the case of a canonical ensemble
the probability distribution functio; (@) of the order parametep for a given external field; is
given by
[ drNo(Q — Q(xN)) exp(—fHo + Vi)

P(Q) 4 (A1)
with Z; being the partition function: Z
Z; = / dr™ exp(—pfHo + Vy). (A.2)
The unperturbed system is characterized by
R(Q) = J drVs (Q - Q(xY)) eXP(—ﬁHO)' (A3)

2

In the following we will address the question hd#(Q) can be estimated by the knowledge of
P;i(Q) (see e.g.[[FS96, LB0O]).

In computer simulations the probability distribution functiéf(Q) can be computed by his-
togramsH;(Q) which measure how often the system with enekgy+ V; is found to take a value
between) and@ + AQ such that

Pi(Q)AQ = = (A4)
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where N; denotes the number of saved simulation steps @hd(Q)) denotes the average over
different simulation runs. Certainl&’# will fluctuate aroundp; (Q)AQ due to the finite length
of a simulation run.

It can be shown [FS96, LB0O] th#&, (Q) can be reconstructed from every individual histogram
P;(Q) (as long as there is an overlap of the sampled distribution functions) by

Ro(Q) = exp(ﬂvi)ZB(Q)- (A5)

This leads to the following ansatz where one reconstrits(Q) by a linear combination of the
measured histogrant3 () corresponding to different external fieltls[FS96]:

Py(Q) =) wi(Q) exp(BVi) 5 Fi(Q)- (A.6)
i=1
wherew; (@) is a normalized weight function with
Y wil@ =1 (A7)
i=1

which has to be determined. The weights are chosen in such a way that the vari&jté @}, i.e.
(P§*H(Q)?) — (P§*4(Q))?, is minimized under the constraint of elg. (A.7) resulting in

Yo Hi(Q)
> e eXp(—ﬁvi)Ni%

wheren denotes the number of histograms that should be recombined (details of the calculation can
be found in[[FS96]). Inserting eq$. (A.8),(A.5) in €g. (A.2) yields an implicit equatiorZfathat
must be solved self-consistently:

Pi(Q) =

(A.8)

2 =1 H;(Q)
2 k=1 exp(—ﬁvk)%’; '

Actually it is not possible to determine all absolute valuegpfRather one is interested in calculat-
ing their ratioZ;/ Z, in order to obtain the estimate of the probability distribution funci§f (Q)
(see eq.[(A8)). Thus we can fix one of thg, say 2, at a constant value and solve the set of
egs.[(A.9)) until self-consistency is reached, that is until a new iteration step fulfills the condition

Z = / dQ exp(—BV%) (A9)

n
Z ’Z;‘t,new o Ziz't,ald‘ <e (AlO)
i=1

wheree denotes the desired accuracy of the iteration procedure.



Appendix B

Calculation of the base-pair step
parameters

The following considerations are based on the base-pair step calculation scheme developed by Bab-
cock et al[BPO94].

The definition of the base-pair step parameters has to ensure that the calculated rotational and
translational step parameters should be independent of the direction of measurement, i.e. indepen-
dent of the chain end one starts with. Only the signs of the parameters should change if one changes
the direction of measurement. It is known that Euler angles do not satisfy this condition. Simultane-
ous rotations of a rigid body, on the other hand, fullfil the desired requirements. In general a vector
7 which is rotated around an axiswith anglef is given by

- D)@+ (2 5) 1 eos
v = cos(Q)+<|Q,‘>< )s (Q)+|Q,| <|ﬁ\ )(1 cos(Q)) . (B.1)

as already discussed in sectjon|2.4. This produces an overall rotation of the body about the origin
along the vectof? = {2, Q,, Q. } with

Q=0 = VTi2 + R + Tw? (B.2)

(see Fig[ B.[1). This can be written as a rotation m&aRifJJ56]

Ri1 Ri2 Ris
R=|Ror Ros Ros (B.3)

R31 Rz2 Ras3
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Q=10,0, Tw]

A

T
W ~~<._ Q=[Ti, Ro, Tw]
1< |
1
| Ro
e
< : >y
Ti \\\\ I,,\‘
U g /4

X
Figure B.1: lllustration of the rotation of a body about a ve€tor: {9, Qy, Q. }.
with
Rt = cos() + (1 — COS(Q))Q—% = cos(9) + (1 — cos,(Q))Li2
02
Riz = (1 - cos(Q))Qggy - % sin(Q) = (1 — cos(Q))Tgi)R;) . %W sin(Q)
Riz = (1 — cos(Q)) Q;z? - % sin(Q) = (1 — cos(Q))TgQW '?20 sin(€)
Ro1 = (1— COS(Q))QEZ??J + % sin(Q) = (1 —co (Q))T;;:\;O + Tg\;v in(Q)
Rao = cos(2) + (1 — cos(Q))gg =cos(2) + (1 — COS(Q))F\;;;2 (B.4)
Roz = (1 - COS(Q))Qé?z - % sin(Q) = (1 — cos(Q))R;#v - gsin(Q)
Rar = (1 — cos(Q))Q;;zZ - % sin(Q) = (1 — cos(Q))TgQW - %’ sin()
Rap = (1— cos(Q))Qé?Z + % sin(Q) = (1 — cos(Q2)) Rg‘g"" g sin()
Ra = cos(Q) + (1 — cos(Q))gg — cos(Q) + (1 — COS(Q))-I;\;\QZ.

‘R is the rotation matrix which characterizes one base-pair step, i.e. it determines the rotation angles
{Ti, Ro, Tw} which are involved to go from one base-pair to the neighboring one. Since only one
rotation is involved changing the perspective from one coordinate frame to the other simply has
the effect of reversing the direction of the rotation. For neighboring base-pair parameters changing
the direction of measurement is equivalent to transposing the rotation matrix. Usirig Hq. (B.4) one
obtains

R(Ti,Ro, Tw)T = R(-Ti,-Ro,-Tw). (B.5)
Thus changing the direction of measurement causes a change in signs of tilt, roll and twist while
leaving their magnitudes unaltered.
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The rotation angl€) can be calculated by determining the trac&of

3 .2 2

Ti? + R&?> + Tw
tr(R) = Z Rii = 3cos(Q) + (1 — cos(Q)) 02 = 2cos(?) + 1. (B.6)

i=1
Thus one obtains fdn
1
cos(2) = 5(7211 + Rao2 +Rs3 — 1) (B.7)
1

Q) = arccos (2(R11 + Raz + Raz — 1)> . (B.8)

Substituting Eq[ BJ7 into the diagonal terms of the rotation ma®iaf Eq.[B.4 results in a calcu-
lation scheme fofTi, Ro, Tw}:

—Ri1+Ra2+Raz—1

Ti|=Q B.9

m Ri1 + Roz + R3z — 3 (B9)
Ri1 — Raz+ Rgz — 1

Rol = Q B.10

IRol Ri1+ Ra2+ Rs3 —3 (B.10)
- p—

Tw| = 0 Ri1+ Ro2 — Ras (B.11)

Ri1 + Raz + Rz — 3~

With Eqgs. [B.8-B.1I]L) the values of the rotational base-pair parameters are completely determined.
In order to identify the signs ofTi, Ro, Tw} one can make use of the signs and relative magnitudes

of the off-diagonal elements of the rotation matRx Eq. [B.8) restricts the value 6i to lie in the
interval of [0, 7]. Thussin(£2) must be non-negative. As a consequence one finds that Tiin

case ofR3y > Ro3. Otherwise Tiis negative. Furthermore if Ti is positive (negative) the sign of
Ro is the same (opposite) as the sigriBfi + R12 and the sign of Tw is the same (opposite) as the
sign of R3; + R13. These considerations lead to the following rules:

if RSQ > R23 then
Ti = +|Ti|
if Ro1 + R12 > 0then Ro= +|Ro| else Ro= —|R0|
if Rg1 + R13 > 0then Tw= +|Tw| else Tw= —|Tw|

if R32 < Rog then

Ti = —|Ti|
if Ro1 + R12 > 0then Ro= —|R0| else Ro= +|Ro|
if R31 + Ri3 > 0then Tw= —|Tw| else Tw= +|Tw| (B.12)

For reasons of numerical stability these rules are only employgd|if> |Ro| and|Ti| > |Tw]|.
Other rules are used fiRo| or |[Tw| are largest in magnitude. For these two remaining cases one can
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derive analogous sign rules [BPO94]: |®o| > |Ti| and|Ro| > |Tw|:
if R13 Z Rgl then
Ro = +|Ro|
if Ro1 + R12 > 0then Ti= +|Ti| else Ti= —|Ti|
if R32 + Raz > 0then Tw= +|Tw| else Tw= —|Tw]|

if R13 < Rs31 then

Ro= —|R0|
if Ro1 + Ri2 > 0then Ti= —|Ti| else Ti= +|Ti|
if Ra2 + Ra3 > 0then Tw= —|Tw| else Tw= +|Tw| (B.13)

and (i) [Tw| > |Ti| and|Tw| > |Ro|:
if Ra1 > Ria then
Tw = +|Tw|
if Ra1 + Ri3 > 0then Ti= +|Ti| else Ti= —|Ti|
if Ra2 + Ra3 > 0 then Ro= +|Ro| else Ro= —|Ro|

if Ro1 < Ri2 then

Tw = —|Tw|
if R31 + R13 > 0then Ti= —|Ti| else Ti= +|Ti|
if R32 + Ra3 > 0then Ro= —|Ro] else Ro= +|Ro|. (B.14)

Equations[(B.B-B.14) provide the calculation scheme for the rotational base-pair step parameters.
With the knowledge of the rotational step parameters it is now possible to calculate the transla-
tional step parameters along the y- and z- direction (shift, slide, rise). This vector is given by

Sh )
Tiiv1=| SI'| =R 27,41 (B.15)
Ri

where the entries of; ;. are the coordinates of the origin of frame- 1 as measured in frame

i. The rotation matrixk ~2 ensures that the translational step parameters are measured in a mid-
way coordinate frame such that the magnitude$Si Sl, Ri} are independent of the direction of
measurement. The effect of measuring in the reverse direction is again a change in&ign of

ﬁ,i+1 = —ﬁ+1,i- (B.16)
In order to calculate the square-root of the rotation ma®@igne can use the following general
property ofR of Eq. (B.4). For all values of andm one can show [BPO94] that
R(kTi, kRo, kTW)R(mTi, mRo,mTw) = R((k + m)Ti, (k + m)Ro, (k + m)Tw) (B.17)
1

Thus square-roots can be calculated by settingg m = ;5. This implicates that we use the
calculated values ofTi, Ro, Tw} divide them by two and make use of efjs (B.2) to [B.4) to generate
the square-root matrix.



Appendix C

Relationship between twist/bending
angles and the orientation of the
base-pairs

Consider the following three syster§s S’, S”, where systend’ is randomly rotated with respect
to S. To find for example the twist angtebetweenS andS’ we rotateS’ about a unit vectoz with

txt  txt
It x t/|  sin(f)

7z =

(C.1)

which is perpendicular to thet’-plane. This undoes the bending and results indtiérame (see
Fig. [C.1). The vectot” is thus parallel tot and the angle- betweenn” andn andb” andb

S A\ s§??
n n’ n
t t
———————— (== —_—
NA - t°
t’ i
b b’
bend + twist twist

Figure C.1: Bending and twist angles in two rotated frafiesdS’.
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respectively corresponds to the twist angle Tw, such that
cos(t) = cos(Tw) =n” -n=b" - b. (C.2)
Furthermore we can use E{. (2.41) to calcuttendb”:

n” = n'cos(f) + sin(f)z x n’ + (1 — cos(9))(n’ - z)z (C.3)
b” = b’ cos(6) + sin(0)z x b’ + (1 — cos(0))(b’ - z)z. (C.49)

Combining Eq.[(CR) and (C.3) we get
cos(Tw) = (n - n’) cos(f) + sin(@)n - (z x n’) + (1 — cos(A))(n’ - z)(n - z). (C.5)

We can make use of Eq. (€.1) to calculate the scalar and vector products pf Eq. (C.5):

/‘Z: 1 X/'n/: 1 rl/ . — 1 /‘
" sin(6) (&xt) sin(@)( xt) -t sin(@)b ¢ (C.6)
1 / NN = 1 n . ! e — . /
n-z—m(txt) sin(@)( Xt)-t sin(@)b t (C.7)
2 xn = Sml(e) (b x t) x 0 = sinl(H) (E 0l 6) bl €)= 0. ()
Substituting these equations into Hq. (C.5) results in
cos(Tw) = (m-n’)cos(d) — (n-t')(n’ - t) — 1S—mc(<:;s)(29)(b t)(b' - t)
/ ) — (n-t(n -t) — 1—t-t oY I
= (o0t 8) = ()0 6) = e (b () co
(w6 ) — ()0 )~ ()b )
— (n-n)(t-t) — (n-t) (0 t) - W
Using that
(n-n')=(bxt) (b xt)
= (b -b)(t'-t) — (b -t)(t' - b) (C.10)
(b-b')=(t xn)-(t' xn')
= (t'-t)(n’-n) — (n'-t)(t' - n) (C.11)
and
(b’ t)(t'-b) = (b’ -b)(t'-t) — (n-n') (C.12)
(n'-t)(t'-n)=(t'-t)(n’-n) — (b-b) (C.13)

respectively one can rewrite E¢. (C.9) obtaining the following relationship between the twist angle
and the base vectors of franfeandS’:

n-n+b-b

cos(Tw) = T

(C.14)
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The respective bending angles Ro (arowraxis, compare Fig. 3/2) and Ti (aroubeaxis) can be
calculated in an analogous fashion. One finds that they are given by permutatigns ahdb in

Eq. (C.19):

. n-n+t-t
t-t . b’
cos(Ro) = tvrb-b (C.16)

1+n-n
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