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Abstract

In this thesis the elastic properties of DNA are investigated on various length scales using MC
and scaling arguments. Three different system are considered: a generic model for double-stranded
polymers, a mesoscopic model for DNA at the base-pair level, and a crossed-linker model of the
chromatin fiber.

We investigate a chain consisting of two coupled worm-like chains with constant distance be-
tween the strands. The effects due to double-strandedness of the chain are studied. In a previous
analytical study of this system an intrinsic twist-stretch coupling and a tendency of kinking is pre-
dicted. Even though a local twist structure is observed the predicted features are not recovered.

A new model for DNA at the base-pair level is presented. The base-pairs are treated as flat rigid
ellipsoids and the sugar-phosphate backbones are represented as stiff harmonic springs. The base-
pair stacking interaction is modeled by a variant of the Gay-Berne potential. This simple mesoscopic
model of DNA combines ideas of the stack-of-plates model and the worm-like chain model. The
resulting helical conformations are studied using energy minimization and Monte-Carlo simulations.
It is shown by systematic coarse-graining how the elastic constants of a worm-like chain are related
to the local fluctuations of the base-pair step parameters. Even though a lot of microscopic details
of the base-pair geometry is neglected the model can be optimized to obtain a B-DNA conformation
as ground state and reasonable elastic properties. The anisotropy of the bending angles is just a
consequence of the plate-like shape of the base-pairs and the twist-stretch coupling is the result of
the preferred stacking of neighboring base-pairs and the rigid backbones. Therefore these properties
are included in the model. Moreover the model allows to simulate much larger length scales than it is
possible with atomistic simulations due to the simplification of the force-field and in particular due to
the possibility of non-local Monte-Carlo moves. As a first application the behavior under stretching
is investigated. In agreement with micromanipulation experiments on single DNA molecules one
observes a force-plateau in the force-extension curves corresponding to an overstretching transition
from B-DNA to a so-called S-DNA state. The model suggests a structure for S-DNA with highly
inclined base-pairs in order to enable at least partial base-pair stacking.

Finally a simple model for chromatin is introduced to study its structural and elastic properties.
The underlying geometry of the modeled fiber is based on a crossed-linker model. The chromato-
somes are treated as disk-like objects. Excluded volume and short range nucleosomal interaction
are taken into account by a variant of the Gay-Berne potential. Under consideration is the influence
of the nucleosomal interactions on elastic and structural properties of the fiber. It is found that the
bending rigidity and the stretching modulus of the fiber increase with more compact fibers. For a
reasonable parameterization of the fiber for physiological conditions and sufficiently high attraction
between the nucleosomes a force-extension curve is found similar to stretching experiments on sin-
gle chromatin fibers. For very small stretching forces a kinked fiber forming a loop is observed. If
larger forces are applied the loop formation is stretched out and a decondensation of the fiber takes
place.



Zusammenfassung
In dieser Arbeit werden elastische und strukturelle Eigenschaften von DNA auf verschiedenen

Längenskalen untersucht. Dafür werden drei verschiedene Systeme mit Hilfe von Monte-Carlo
Simulationen und Skalenargumenten näher betrachtet: ein generisches Modell für Doppelstrang-
molek̈ule, ein mesoscopisches Modell für DNA und ein ’Crossed-Linker’-Modell f̈ur Chromatin.

Auswirkungen der Doppelstrangstruktur einer Kette, die aus zwei gekoppelten wurmartigen
Ketten mit konstantem Abstand besteht, werden ermittelt. Obwohl lokal helikale Strukturen auftreten,
können die in einer fr̈uheren analytischen Arbeit vorausgesagten Eigenschaften wie eine Kopplung
zwischen Torsion und Streckung oder eine Tendenz zu Konformationen mit Knicken nicht bestätigt
werden.

Es wird ein neues Modell für DNA auf der Basenpaarebene vorgestellt. Die Basenpaare werden
als flache, steife Ellipsoide behandelt. Das Zuckerphosphatrückgrat ist durch steife harmonische
Federn repr̈asentiert. Die Basenpaarstapelwechselwirkungen werden mit einem modifizierten Gay-
Berne-Potential modelliert. Dieses einfache mesoskopische Modell verbindet die Ideen so genannter
’Stack-of-Plates’-Modelle und des Modells wurmartiger Ketten. Mit Hilfe von Energieminimierung
und Monte-Carlo-Simulationen werden die gewonnen helikalen Strukturen untersucht. Durch sys-
tematisches ’Coarse-Graining’ werden die elastischen Konstanten des Modells wurmartiger Ketten
als Funktion der lokalen Fluktuationen der Basenpaarschrittparameter berechnet. Obwohl einige
mikroskopische Details der Basenpaargeometrie vernachlässigt werden, kann das Modell so opti-
miert werden, daß man eine B-DNA-Konformation als Grundzustand und vernünftige elastische
Eigenschaften erḧalt. Andererseits sind beispielsweise mikroskopische Details wie die Anisotropie
der Biegewinkel, die eine Folge der oblaten Form der Basenpaare ist, oder die Verdrehungs-Strek-
kungs-Kopplung, bedingt durch das bevorzugte Stapeln benachbarter Basenpaare und das steife
Rückgrat, in dem Modell enthalten. Verglichen mit atomistischen Computersimulationen ergeben
sich folgende Vorteile. Erstens ist das involvierte Kraftfeld einfacher und die Energieberechung
somit weniger zeitaufwendig, und zweitens ist man nicht auf lokale Monte-Carlo-Schritte angewiesen.
Daraus ergibt sich die M̈oglichkeit, wesentlich l̈angere Ketten zu simulieren. Als eine erste An-
wendung des Modells wird das Verhalten der DNA unter Spannung untersucht. InÜbereinstim-
mung mit Streckexperimenten an einzelnen DNA-Molekülen beobachtet man ein Kraftplateau in der
Spannungs-Dehnungs-Kurve, bei dem sich die DNA einem strukturellenÜbergang von B-DNA zur
so genannten S-DNA unterzieht. Innerhalb des Modells findet man eine S-DNA-Struktur mit stark
geneigten Basenpaaren, so daß die Basenpaare wenigsten teilweiseübereinander liegen können.

Schließlich wird ein einfaches Modell für die Chromatinfaser eingeführt. Die zugrundeliegende
Geometrie der modellierten Faser basiert auf einem so genannten ’Crossed-Linker’-Modell. Das
Chromatosom wird als Zylinder behandelt. Volumenausschluß und kurzreichweitige Nukleosomen-
wechselwirkung sind durch ein modifiziertes Gay-Berne-Potential berücksichtigt. Untersucht wird
der Einfluß der Nukleosomenwechselwirkung auf elastische und strukturelle Eigenschaften der
Chromatinfaser. Dabei stellt man fest, daß die Biegesteifigkeit und der Streckmodul der Faser
wächst, je kompakter die Faser ist. Für vern̈unftige Modellparameter der Faser, mit denen wichtige
experimentell bestimmte Observablen in physiologischen Bedingungen wiedergeben werden können,
und ausreichend starker Anziehung der Chromatosomen erhält man eine globale Strukturänderung,
wenn an der Faser gezogen wird. Für sehr kleine Zugkr̈afte wird eine Schleifenkonformation
beobachtet, bei der die Faser geknickt ist. Für sẗarkere Kr̈afte öffnet sich diese Struktur in einem
ersten Schritt gefolgt von einer Dekondensation der Faser.



Contents

1 Introduction 1

2 Elastic and structural properties of two coupled worm-like chains 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The worm-like chain model . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Rod theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Parameterization of a ribbon . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Continuous description of two coupled semiflexible chains . . . . . . . . . . . . . 16
2.4 Geometry of triangulated ribbons . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 MC Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Plaquette Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Edge Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Behavior under compression: Euler Buckling vs. Kinks . . . . . . . . . . . . . . . 31
2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Simulating DNA at the base-pair level 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 The worm-like chain model revisited: WLC with stretching modulus and
WLC under tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Helix geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Thermal fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Model and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Introduction of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 MC simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Energy minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Equilibrium structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Bending and torsional rigidity and stretching modulus . . . . . . . . . . . 58
3.4.3 Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

i



ii CONTENTS

4 Renormalization of coupling constants 77
4.1 Renormalization of Gaussian systems with additive variables . . . . . . . . . . . . 78

4.1.1 Decimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.2 Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.3 Comparison of derived scaling relations with brute force integration . . . . 81

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 A computer simulation study of chromatin structure and elasticity 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 The two-angle fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Geometrical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Elastic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 The chromatin model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Investigation of the fine-structure of the two-angle phase diagram . . . . . . . . . . 99
5.5 Monte-Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6 Structural and elastic properties of the simulated fiber . . . . . . . . . . . . . . . . 102

5.6.1 Influence of the nucleosomal interaction on the structure of the fiber . . . . 102
5.6.2 Influence of the nucleosomal interaction on the elastic properties of the fiber 102
5.6.3 Stretching the fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Summary of results and outlook on future work 121

A Multiple histogram method 125

B Calculation of the base-pair step parameters 127

C Relationship between twist/bending angles and the orientation of the base-pairs 131



List of Figures

1.1 Chemical structure of DNA bases . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of a B-DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Micromanipulation set-up and measured stress-strain curves . . . . . . . . . . . . 4
1.4 Stack-of-plates representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Organization steps of the DNA into the chromosome . . . . . . . . . . . . . . . . 7
1.6 Force-extension curves for chromatin fibers . . . . . . . . . . . . . . . . . . . . . 9

2.1 Illustration of ribbon frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Illustration of involved variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Geometrical derivation of rotation around vector . . . . . . . . . . . . . . . . . . . 18
2.4 Illustration of bending, twisting, and kinking . . . . . . . . . . . . . . . . . . . . . 21
2.5 ’Time’ autocorrelation function of the total twist . . . . . . . . . . . . . . . . . . . 22
2.6 Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Simulation versus scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Autocorrelation function of the tangent vectors . . . . . . . . . . . . . . . . . . . 27
2.9 Autocorrelation function of the bond-directors . . . . . . . . . . . . . . . . . . . . 28
2.10 Autocorrelation function of the normal vectors . . . . . . . . . . . . . . . . . . . . 29
2.11 Crosscorrelation function of the bond-directors and the tangent vectors . . . . . . . 30
2.12 Probability distribution functions of the total twist . . . . . . . . . . . . . . . . . . 31
2.13 Probability distribution functions of the end-to-end distance . . . . . . . . . . . . . 33
2.14 End-to-end distance as a function of the product of the twist left and right of the

center of the chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Stress-strain relations and mean squared end-to-end distance for the inextensible
and extensible WLC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Illustration of base-pair step parameters . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Illustration of DNA geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Illustration of the underlying idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Distance and angular dependence of the Gay-Berne potential . . . . . . . . . . . . 46
3.6 Symmetry break condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Time correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Mean step parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9 Contour plots of rise-twist, shift-tilt, and roll-tilt . . . . . . . . . . . . . . . . . . . 54
3.10 PDF of all base-pair parameters forε = 20kBT . . . . . . . . . . . . . . . . . . . 55
3.11 PDF of all base-pair parameters forε = 60kBT . . . . . . . . . . . . . . . . . . . 56

iii



iv LIST OF FIGURES

3.12 Orientational correlation functions: analytical expressions vs. numerics . . . . . . 57
3.13 Bending and torsional persistence length . . . . . . . . . . . . . . . . . . . . . . . 59
3.14 Stretching modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.15 Force-extension curve for final parameterization . . . . . . . . . . . . . . . . . . . 62
3.16 Experimentally measured stress-strain curves . . . . . . . . . . . . . . . . . . . . 63
3.17 PDF of the center-center distance of successive base-pairs . . . . . . . . . . . . . . 64
3.18 Contour plot of rise versus slide and versus twist . . . . . . . . . . . . . . . . . . 65
3.19 Snapshots of simulated DNA chains for various stretching forces . . . . . . . . . . 66
3.20 PDF of all base-pair parameters forf = 130pN . . . . . . . . . . . . . . . . . . . 67
3.21 PDF of all base-pair parameters forf = 140pN . . . . . . . . . . . . . . . . . . . 68
3.22 PDF of all base-pair parameters forf = 250pN . . . . . . . . . . . . . . . . . . . 69
3.23 Typical domain length of S-DNA and B-DNA . . . . . . . . . . . . . . . . . . . . 72
3.24 Relative population of S-DNA and B-DNA . . . . . . . . . . . . . . . . . . . . . 74

4.1 Blocking and decimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Simple sampling snapshots for large bending and torsional stiffness . . . . . . . . 82
4.3 Simple sampling vs. rescaling procedure for large bending and torsional stiffness . 83
4.4 Simple sampling vs. rescaling procedure for small bending and torsional stiffness . 84
4.5 Twist distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 Renormalization results by simple sampling . . . . . . . . . . . . . . . . . . . . . 86

5.1 Solenoidal and crossed-linker model . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Schematic representation of nucleosome . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Illustration of the two-angle model . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Two-angle phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Chromatin fiber model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Illustration of the measured correlation time . . . . . . . . . . . . . . . . . . . . . 100
5.7 Phase diagram with coupled linker length . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Fine structure of the phase diagram and energy surface of the two-angle model . . 103
5.9 Snapshots of fiber without nucleosomal interactions . . . . . . . . . . . . . . . . . 104
5.10 Fiber geometry used to estimate the bending persistence length . . . . . . . . . . . 104
5.11 Estimation of bending persistence length . . . . . . . . . . . . . . . . . . . . . . . 105
5.12 Analytical and simulation results of the bending persistence length and the stretch-

ing modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.13 Mean squared internal distances of the nucleosomes . . . . . . . . . . . . . . . . . 108
5.14 Effect of excluded volume interaction on the bending persistence length . . . . . . 109
5.15 Persistence length as a function of nucleosomal disk with and without nucleosomal

attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.16 Stretching modulus and mass density vs. nucleosomal disk size . . . . . . . . . . . 111
5.17 Force-extension curves of the modeled chromatin fiber . . . . . . . . . . . . . . . 112
5.18 Stretching force vs. mass density . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.19 Mean internal fiber distances withε = 4kBT . . . . . . . . . . . . . . . . . . . . 114
5.20 Histogram of contact matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.21 Force-extension curves of experiments . . . . . . . . . . . . . . . . . . . . . . . . 117
5.22 PDF of the end-to-end distance for various GB energy well depths and stretching

forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



LIST OF FIGURES v

5.23 Snapshots corresponding to different stretching forces forε = 4kBT . . . . . . . . 119

B.1 Illustration of the rotation of a body about a vector . . . . . . . . . . . . . . . . . 128

C.1 Bending and twist angles in two rotated frames . . . . . . . . . . . . . . . . . . . 131



vi LIST OF FIGURES



List of Tables

3.1 Dependence of mean values of all six step parameters and of the mean center-center
distance on the temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Mean values and mean squared fluctuations of all step parameters . . . . . . . . . 53

5.1 List of persistence lengths for various pairs of angles . . . . . . . . . . . . . . . . 114
5.2 Mass density for various values ofφ with θ = 145o andε = 1 . . . . . . . . . . . 115

vii





Chapter 1

Introduction

DNA

Since the discovery of the double-stranded helical structure of DNA by Watson and Crick [WC53]
enormous progress was made in synthesis, sequencing, and manipulation techniques. Nowadays
it is possible to synthesize special DNA sequences, it is known how to determine the base-pair
sequence of a particular DNA chain, and how to insert genes. Physicist were actively involved in
these developments. Besides its biological role it is interesting to work on DNA since it comes
closest to the theorist’s notion of a polymer chain.

DNA structure

DNA is a polymer composed of only four types of subunits. These are the deoxyribonucleotides
containing the bases adenine (A), cytosine (C), guanine (G), and thymine (T), a sugar (deoxyri-
bose), and a negatively charged phosphate group. The nucleotides are linked together by covalent
phosphodiester bonds [ABL+94]. 1953 Watson and Crick [WC53] discovered the spatial structure
of DNA analyzing X-ray diffraction patterns of DNA fibers. It turned out that DNA is a double-
stranded helix where the bases are on the inside of the helix and the sugar phosphates are on the
outside. This requires specific base-pairing via hydrogen bonds between a large purine base (A or
C) on one strand and a small pyrimidine base (T or C) on the other chain. The base-pair sequence is
usually referred to as the primary structure of DNA.

Depending on the sequence, i.e. details of the chemical structure, and the external conditions

Figure 1.1: Chemical structure of the four DNA bases. Taken from [Hal].

1



2 1 Introduction

Figure 1.2: Structure of a B-DNA configuration.

DNA can adopt different conformations which vary in helical repeat length and handedness of the
corresponding helix (this is the so-called secondary structure). Under physiological conditions the
DNA is found in the so-called B-form, a right-handed double-stranded helix with a helical repeat
length of about 10.4bp/34nm, a helix diameter of about 2nm and a base(-pair) thickness of about
0.34nm.

Imposing a torsion on the DNA the double-stranded helix can adopt particular (tertiary) struc-
tures. Either the helix forms a toroidal structure called solenoidal super-helix or it forms an in-
terwound structure called plectonemic super-helix. This interwound structure is well-known as an
annoyance in everyday life such as the snarling of the telephone cords.

What is interesting about DNA?

DNA carries the genetic code which is read by protein complexes. During transcription the DNA
molecule gets highly deformed due to mechanical forces exerted by these enzymes. Therefore the
mechanical properties of DNA play an important role for its functionality in the cell. Besides that
the DNA (about 1m) is compacted via several organization steps in order to fit into the cell nucleus
(with a diameter of aboutµm).

DNA is a rather stiff polymer with a persistence length of about 50nm in contrast to most syn-
thetic polymers with persistence lengths of the order of 1nm. The elastic properties of DNA, that is
the resistance to bending and twisting, as well as the base-pair sequence are of biological interest.
The wrapping of the DNA around the histone core (protein complex composed of eight histone oc-
tamers), which is the first organization step of the DNA folding into the cell nucleus, is a competition
of the energy that must be paid to bend the DNA and the energy that is gained due to electrostatic
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attraction of the negatively charged sugar phosphate backbone and positively charged histone tails.
During cellular processes such as replication or transcription the DNA is locally highly deformed by
enzymes in order to open the double-stranded helix and to read the genetic information. It is known
that the genetic information in DNA determines not only the amino acid sequences of encoded pro-
teins and RNA but also the geometry and deformability of DNA at the base-pair level. For example,
there is evidence that the TATA-box sequence, important in the initiation of DNA transcription, may
achieve this function by virtue of its enhanced flexibility [JCL+96, DMK99].

Investigating the structure and elasticity of DNA on various length scales

In recent years a lot of experimental techniques have been developed for the investigation of the
elasticity and structure of DNA on various length scales. X-ray diffraction patterns of fibers or
single crystals of DNA oligomers have led to a detailed picture of possible DNA conformations with
atomistic resolution [Dic92, DDC+82]. It has turned out to be useful to discuss these conformations
in terms of the relative position and orientation of adjacent bases and base-pairs [BPO94, HC95,
EHL97, LS88] according to certain guidelines [DBC+89]. This provides a mechanical interpretation
of the biological function of particular sequences [CD99].

Various optical methods such as time-dependent fluorescence depolarization [MRZ82, HCFS96]
or electron microscopy [BWC90, BFK+95] helped to quantify the bending and torsional persistence
length of DNA. In time-dependent fluorescence depolarization studies the decay of the fluorescence
depolarization anisotropy of a DNA-ethidium-bromide complex is investigated. Ethidium bromide
is a hydrophobic molecule of roughly the same size as the base-pairs that fluoresces green. It is
used as intercalating agent since it likes to slip between two base-pairs. The connection between the
fluorescence depolarization experiments and the torsion and bending dynamics of DNA has been
analyzed in detail by Barkley and Zimm [BZ79]. Cryo-electron [BFK+95] microscopy makes it
possible to directly observe the path of DNA reportedly without any adsorption and drying arti-
facts known from classical electron microscopy (EM). The reconstructed contour of several DNA
fragments can then be used to calculate the bending persistence length. EM studies are also used
to deduce an average structure for supercoiled circular DNA in solution [BWC90]. Furthermore
cyclization experiments [VV02, PMSV00] which measure the probability that short DNA segments
form loops [MMK96, SY84] can be used as a probe for the local shape, bending and torsional
rigidity of the DNA.

An interesting development of the last decade are nanomechanical manipulation techniques on
single DNA molecules [BSLS00, LLA+02, BBS03]. These methods offer the opportunity to study
the mechanical response of a single DNA molecule to external forces and torques, to measure the
forces generated in biochemical reactions such as the DNA-polymerase reaction [WSY+00] and to
measure the typical forces necessary to pull two DNA strands apart [ERBH97, BERH97, BERH98].
They have also been used to measure the relaxation dynamics of a stretched molecule by hydro-
dynamic flow when the flow stopped [PSLC95, PSC97]. To manipulate a single molecule the
molecule needs to be caught by its extremities. Different strategies have been used: magnetic beads
[SFB92, SAB+96, SABC98, SCB98, SAB+99, SBC99], glass needles [SFB92, SCB96, ERBH97,
BERH97, BERH98], optical traps [BMSS94], and AFM [CSRTG00]. External forces and/or torques
can deform DNA and induce new structures [CLH+96, ABLC98]. The force-extension curves of
Ref. [SCB96] show that under a critical stretching force of about 65pN torsionally relaxed double-
stranded DNA (dsDNA) molecules undergo a structural transition to an overstretched S-DNA con-
formation. The increase in length amounts to 1.8 of its B-form. Stricket al. [SAB+96] developed
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Objective

Objective

DNA molecule

Glass Micropipette

Polystyrene Bead

Laser Light

Laser Light

Polystyrene Bead

(a) Sketch of an experimental micromanipulation set-
up where one latex bead is caught in an optical trap
(optical tweezer). Taken out of [CB00].

(b) Force-extension measurements on ssDNA and dsDNA. Taken out of
[BSLS00].

Figure 1.3: Micromanipulation set-up and measured stress-strain curves.
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a technique which allows to constrain the DNA torsionally. They found for positively supercoiled
DNA stretched by 3 pN a new highly twisted structure called P-DNA. The structure of S-DNA and
P-DNA is still under discussion [BSLS00, LLA+02]. Essevaz-Rouletet al. [ERBH97] have sepa-
rately attached the two complementary strands of a DNA double helix to a glass slide and a glass
micro-needle. Displacing the slide away from the needle opens the double helix. They measured
forces of about 10pN to open an AT sequence and 15pN to open a CG sequence. In principle it
is possible to determine the sequence of the DNA chain by the use of this method. But it turned
out that due to thermal fluctuations only variations of the AT versus GC content on a scale of 100
bases could be detected. An overview over the development of micromanipulation techniques and
the results can be found in [BBS03].

Interpretation of the experimental results

The experiments are usually rationalized within the framework of two models. (i) So-called stack-
of-plates models are used to compactify the X-ray diffraction data. The bases are treated as plates.
Attaching a coordinate frame to each base the configurations can be analyzed in terms of base-pair
and base-pair step variables [DBC+89, BO94, BPO94, EHL97, HC97a]. In this way a detailed pic-
ture of possible DNA configuration of specific DNA sequences is obtained. O’Hernet al. [OKLN98]
developed an elasticity theory in terms of small deviations of the translational and rotational degrees
of freedom of the base-pairs and calculated the twist-stretch coupling for three different ground
states. Manning and Maddocks [MMK96] investigated sequence effects on cyclization rates of
short DNA pieces using the unstressed shape of the underlying sequence and its elastic constants.

Figure 1.4: B-DNA configuration. Bases
are represented as color-coded plates.
Taken from [GAL].

(ii) On large length scales, that is in the low stretch-
ing force regime, DNA behaves effectively as a rigid
rod. Therefore it is convenient to treat the DNA as
a worm-like chain with a certain resistance to bend-
ing and torsion [MS94, MS95c, MS95a, MS95b]. The
theory is in good agreement with experimental force-
extension data up to forces of20pN. Later extensions
of the worm-like chain model accounted for effects
due to double-strandedness [LGK98, EBK95], for the
anisotropy of the bending angles [PR00a, PR00b], for
twist-stretch coupling [KLNO97, Mar97, Nel98] and
for topological effects [PR01] to study the elastic re-
sponse of the chain depending on the linking number.
Zhou et al. [HYZc99, YHZc00, ZZOY00] proposed
a model based on bending and base-stacking interac-
tions in an attempt to provide a unified framework to
understand DNA elasticity for small as well as for large
stretching forces beyond the overstretching transition
[ZL01]. Their results agree quite well with experi-
ments up to very large forces. Marko [Mar97, Mar98] incorporated the overstretching transition
by including extra terms into the worm-like chain Hamiltonian which take into account the high
cooperativity of the transition [CLH+96] and define a stable S-DNA state. Storm and Nelson
[SN02b, SN02a] recently proposed a two state model for the elasticity of nicked, double-stranded
DNA. It allows coexistence of two conformational states (B- and S-DNA) of the DNA, each with its
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own bending and stretching elastic constants. Fitting the model to an overstretched data set yields
values for the persistence length and the stretching modulus of each state as well as the energy which
is necessary to flip a B-DNA segment into the S-state.

Atomistic computer simulations have been used to predict possible DNA conformations for
overstretched S-DNA [CLH+96, SAB+99, LL99] or stretched and overwound P-DNA [ABLC98]
and to investigate electrostatic effects on DNA structure [HMIWW00, HWW02, HSH03]. Fur-
thermore they allow for the calculation of all internal coupling constants of bases and base-pairs
[LSHL00]. The formulation of a mesoscopic model raises the question which atoms should be
combined to one monomer unit. To address this question the fluctuations of interatomic distances
were measured in atomistic computer simulations [BFLG99]. If the mean squared fluctuations of
the distance between two atoms are smaller than a certain threshold value it is assumed that they
belong to the same rigid sub-unit. Depending on the threshold value a complete hierarchy of pos-
sible models can be formulated, e.g. treating the bases or the base-pairs and the backbone as rigid
entities. Existing mesoscopic models on the base-pair level are based on a harmonic energy func-
tional that incorporates the bending anisotropy and experimentally known correlations of base-pair
step parameters such as twist, roll and slide [OZ00]. Simulation methods on larger length scales
are essentially discretizations of the worm-like chain model with additional excluded volume and
electrostatic interactions. Sequence effects and details of the chemical structure such as the bending
anisotropy and the twist-stretch coupling are ignored [OZ00]. These low-resolution models are used
to account for the topological properties of supercoiled DNA [SO92, CL94, CL96, VC95].
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Chromatin

Chromatin structure

The cell nucleus contains DNA with a total contour length of about1m. Without any compaction
the DNA chain would form a swollen coil of approximately100µm diameter [Sch03] which is a
factor of 100 larger than the cell diameter. In order to fit into the cell nucleus the DNA is compacted
via several organization steps. The first structural level of this process is the formation of an array of
nucleosomes. Eight histone octamers (two copies of H2A, H2B, H3 and H4) make a particle around
which the DNA wraps in13

4 turns [LMR+97] due to electrostatic interactions between negatively
charged DNA backbone and positively charged histone octamer units. Often the in- and outcoming
linker DNA is glued together by so-called linker histones (H1 and H5). The nucleosome is the
fundamental unit of the chromatin fiber. A nucleosome without linker DNA is called chromatosome.
The nucleosomes in turn organize further into the chromatin fiber probably mediated by positively
charged lysin rich histone tails [LMR+97]. Benninket al. [BPL+01] studied the compaction rate of
a DNA strand under stress in the presence of histones depending on the pulling force. They find an
8-fold compaction for moderate forces (1 pN). The folding hierarchy of DNA into the chromosome
is illustrated in Fig. 1.5.

While the structure of individual core particles is established with atomistic resolution [LMR+97]
much less is known about the chromatin structure. In low salt concentration the fiber is in a

DNA

2 nm 10 nm

30 nm 300 nm
scaffold

few    mµ

6 nm

octamer

nucleosome

chromosome

50000bp−loops

30−nm fiber
10−nm fiber

Figure 1.5: Organization steps of the DNA into the chromosome. Taken out of [Sch03].



8 1 Introduction

swollen state forming a ’bead-on-a-string’ structure referred to as the10nm fiber [TKK79]. With
increasing salt concentration the chromatin fiber starts to condense into more compact structures
[GR87, BHDW98, BHG+98]. For very high salt concentrations close to physiological conditions
the fiber forms a very dense fiber with a diameter of about30nm.

There is still controversy about the structure of this so-called30nm fiber [HZ95, HZ96]. The
two competing classes of models are the solenoid models [FK76] and the crossed-linker models
[WGHW93, SGB01]. In the solenoid models the position of successive nucleosomes form a helix
and the linker DNA is assumed to be bent being able to connect neighboring nucleosomes. In the
crossed-linker model the linker DNA is straight and connects nucleosomes on opposite sides of the
fiber building up a three-dimensional zig-zag pattern. In principle it should be possible to distinguish
between the two geometries using cryo-electron microscopy [BHDW98, BHG+98]. In fact, for low
and intermediate salt concentrations zig-zag-like patterns are found supporting the crossed-linker
models. But these methods cannot resolve the linker DNA geometry in physiological conditions
such that the solenoid model cannot be excluded [HZ96].

Chromatin elasticity

The elastic properties of the chromatin fiber strongly depend on the underlying geometry. Stretching
a solenoidal structure with a small helical pitch will cost much less energy than stretching a rather
straight zig-zag structure. Furthermore the elastic properties of the chromatin fiber will be influ-
enced by the state of compaction due to nucleosomal interactions. Nanomechanical manipulation
techniques helped to gain deeper insights into the structural and elastic properties of the chromatin
fiber. Cui and Bustamante [CB00] measured force-extension curves of single chromatin fibers in
different salt concentration. They found a purely extensible worm-like chain behavior for small
salt concentrations whereas for higher salt concentrations a force plateau occurred at roughly5pN
indicating a structural transition of the fiber. This force plateau is probably due to short-ranged
nucleosome-nucleosome interactions which are not present in the more loose structures in low salt
concentrations. Stretching the fiber with forces up to25pN results in the release of the histones
[BLL +01, BTSY+02].

The low salt concentration force-extension curves can be compared with elastic theories based
on the solenoid and crossed-linker geometry. Schiesselet al. [SGB01, Sch03] and Ben-Haimet
al. [BHLV01, BHLV02] calculated the mechanical response of the fiber to small stretching forces
around the undistorted ground state assuming a crossed-linker geometry. They derived a relationship
between the elastic constants of the fiber, the elastic constants of the linker DNA and the underlying
geometry. When comparing their predictions to the experimental results it seems that the crossed-
linker model is supported.

Computer simulations help to investigate effects due to excluded volume and short-ranged at-
tractive interactions between the nucleosomes. Katritchet al. [KBO00] performed simulations
including the linker DNA elasticity, excluded volume of the chromatosomes represented as spher-
ical beads and a short-ranged attractive potential between chromatosomes. They investigated the
mechanical response of the simulated fiber for varying linker length, entry-exit angle of the linker
DNA and the bead diameter and compared their results to the experimental data of Cui and Busta-
mante [CB00]. It is shown that for a given fiber geometry a force plateau appears if the well depth of
the attractive potential is increased. Wedemann and Langowski [WL02] introduced a model which
treats the chromatosomes as disks with a radius of10nm and a height of6nm. The excluded volume
and short-ranged attractive interactions of the nucleosomes are taken into account by a Gay-Berne
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Figure 1.6: Force-extension curves for chicken erythrocyte chromatin fibers in 40mM NaCl. The
red curve corresponds to the stretch cycle while the blue curve refers to the release cycle. Taken out
of [CB00].

potential. Moreover the elastic and electrostatic energy of the DNA is included into the Hamilto-
nian. Structural properties such as the linear mass density and the persistence length of the fiber are
studied. For model parameters corresponding to physiological conditions they found a linear mass
density of about6 nucleosomes/11nm in good agreement with experimental data [GR87, BHG+98]
and persistence lengths of about200nm. Beard and Schlick [BS01] were interested in the folding
mechanism of oligonucleosomes depending on the salt concentration. Therefore they included all
253 charges distributed over the surface of the chromatosome. The linker DNA is treated as a nega-
tively charged elastic rod. For low salt concentrations the modeled trinucleosomes adopt disordered
zig-zag conformations with rather straight linker DNA. High salt concentrations lead to condensa-
tion.
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Outline of the thesis

This thesis is organized as follows. In chapter 2 we discuss structural and elastic properties of a
system of two coupled worm-like chains. In particular we argue that there is neither a preference for
kinking, nor a twist-stretch coupling, nor oscillations in the autocorrelation function of the bond-
director field (pointing from one strand to the other) inherent in the system as predicted by an earlier
study [LGK98]. In chapter 3 a generic model of DNA at the base-pair level is presented. We dis-
cuss structural and elastic properties as functions of the model parameters. To parameterize the
model we demand that macroscopic variables such as the persistence length must be reproduced.
The undistorted ground-state should match a B-DNA conformation. For the final parameterization
of the model we perform simulations with an external stretching force. We also find an overstretch-
ing regime in the force-extension curves. The resulting S-DNA shows a skew ladder conformation.
Moreover structural as well as elastic properties of the simulated chain below, at and beyond the crit-
ical force are investigated. Some preliminary ideas are presented in chapter 4 about how measured
coupling constants from atomistic simulations can be mapped onto the effective coupling constants
of a quadratic Hamiltonian on a larger length scale. In chapter 5 we study structural and elastic
properties of chromatin. We calculate a structural phase diagram characterizing allowed and forbid-
den structures depending on the model parameters. We discuss the influence of the excluded volume
interaction of the nucleosomes on the persistence length of the fiber. Furthermore we present some
results on simulations performed with an additional stretching force.



Chapter 2

Elastic and structural properties of two
coupled worm-like chains

We use computer simulations and scaling arguments to investigate statistical and structural proper-
ties of a semiflexible ribbon composed of isosceles triangles. We study two different models, one
where the bending energy is calculated from the angles between the normal vectors of adjacent trian-
gles, the second where the edges are viewed as semiflexible polymers so that the bending energy is
related to the angles between the tangent vectors of next-nearest neighbor triangles. The first model
can be solved exactly whereas the second is more involved. It was recently introduced by Liver-
pool and Golestanian [LGK98, GL00] as a model for double-stranded biopolymers such as DNA.
Comparing observables such as the autocorrelation functions of the tangent vectors and the bond-
director field, the probability distribution functions of the end-to-end distance, and the mean squared
twist we confirm the existence of local twist correlation, but find no indications for other predicted
features such as twist-stretch coupling, kinks, or oscillations in the autocorrelation function of the
bond-director field [MEE02].

2.1 Introduction

A characteristic feature of many biopolymers is their high bending stiffness. Contour lengths of the
order ofµm and persistence lengths of the order of50nm in the case of DNA even allow microscopy
techniques to be used to directly observe their structure and dynamics [PSLC95, PSC97]. The model
mostly used to interpret recent experimental data of micromechanical manipulations of single DNA
chains [BMSS94, PSLC95, PSC97, SAB+96, SCB98, CLH+96] is that of the Kratky-Porod worm-
like chain in which the polymer flexibility is determined by a single length, the persistence lengthlp.
Generalizations account for the chain helicity and coupling terms between bending, stretching, and
twisting allowed by symmetry [Yam97, MS95c, MS94, MS95b, MS95a, MN97, KLNO97, PR01,
PR00a, PR00b, KM97, MMK96]. All these continuum models of DNA neglect the double-stranded
structure of DNA and one may ask, if this feature could not cause qualitatively different behavior.

The bending stiffness of single- and double-stranded DNA, for example, differs by a factor of 25
[FK90]. The simplest model which takes the double-strandedness into account is the railway-track
model [EBK95] where two worm-like chains are coupled with harmonic springs. In two dimensions
one finds drastical consequences: the bending fluctuations in the plane of the ribbon are strongly
suppressed. The molecule becomes effectively stiffer on larger length scales. But the relevant

11
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question is: what are the effects in three dimensions? Liverpoolet al. [LGK98, GL00] investigated
a version of the railway-track model in three dimensions where bending in the plane of the ribbon is
forbidden by a constraint. Using analytical and simulation techniques they predict the existence of a
low temperature regime where ribbons adopt a kink-rod structure due to a spontaneously appearing
short-range twist structure resulting in an oscillatory behavior of the autocorrelation function of the
bond-director field. Furthermore a twist-stretch coupling is predicted.

We study the discretized version of the simulation model of Liverpoolet al. [LGK98, GL00]
in the low temperature regime with the help of scaling arguments and MC simulations. In order to
understand and to quantify the effects arising from the local twist structure of the Liverpool model
we compare it with an analytically more tractable model where the bending stiffness is defined
via the interaction of the normal vectors so that there is no tendency to form helical structures.
Furthermore, we perform several MC simulation runs with an additional external force in order to
test if the preferred buckling mechanism occurs via kinks.

2.2 Theoretical background

2.2.1 The worm-like chain model

The nanomechanical stretching experiments on single DNA molecules led to a revival of interest in
the worm-like chain (WLC) model [SFB92, SCB96, MS95c]. The predicted stress-strain relations
agree quite well with the experimental data of double-stranded DNA.

The elastic energy of a WLC with constant contour lengthL is given by the line integral:

HWLC =
E

2

∫ L

0
ds

(
d2r(s)
ds2

)2

=
E

2

∫ L

0
ds

(
dt(s)
ds

)2

=
E

2

∫ L

0
dsκ(s)2, (2.1)

wheres denotes arc length,t(s) = d
dsr(s) denotes the unit tangent vector field,κ(s) corresponds

to the curvature of the chain, E is the bending modulus. Eq. (2.1) describes the resistance of the
chain to bending. The tangent vector correlation function〈t(s) · t(s′)〉 decays exponentially with
correlation lengthlp which is referred to as the bending persistence length:

〈t(s) · t(s′)〉 = exp
(

−|s− s′|
lp

)
. (2.2)

The bending modulusE is connected to the persistence lengthlp via lp = E/kBT . The mean square
end-to-end distanceR2

E is given by [FK73, HH66]:

R2
E = 〈(R(L) − R(0))2〉

= 〈
∫ L

0
dst(s) ·

∫ L

0
ds′t(s′)〉

=
∫ L

0
ds

∫ L

0
ds′〈t(s) · t(s′)〉

= 2Llp − 2l2p

(
1 − exp

(
−L

lp

))
.

(2.3)

The two limiting case are:

R2
E =

{
2Llp, L

lp
� 1 random walk limit

L2, L
lp

� 1 rigid rod limit
. (2.4)
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A generalized theory does not only treat the resistance of the chain to bending but also to twist-
ing. This is done within the framework of rod theory.

2.2.2 Rod theory

A configuration of a rod is a parameterized space curver(s) along with a parameterized family
of right-handed orthonormal triadsdi(s), that is three unit vectors which satisfy for eachs the
constraints

di(s) · dj(s) = δij (2.5)

d3(s) = d1(s) × d2(s) (2.6)

with δij being the Kronecker delta. Note that the orthonormal basis set{di(s)} contains additional
information to the space curver(s). It is not just defined byr(s) and its derivatives as it is the case in
the Frenet-Serret frame. One should think ofr(s) as the centerline of the rod (the midcurve defined
by the two sugar-phosphate backbones in the case of DNA) while{di(s)} specifies the orientation
of each cross-section of the rod (some smooth interpolation of the orientation of each set of base-pair
in the case of DNA) [Mad00].

With no loss of generality the vectorv(s) can be defined as

v(s) =
d

ds
r(s) (2.7)

where the components ofv(s) with respect to the triad{di(s)} is given by

vi(s) = v(s) · di(s). (2.8)

As the triad is an orthonormal basis set they satisfy kinematic equations of the form

d

ds
di(s) = u(s) × di(s) (2.9)

d

ds
di(s) = εjikuj(s)dk(s) (2.10)

with u(s) = ui(s)di(s). This can be shown in the following way. Since{di(s)} is a basis set it
exists a matrix such that

Ωij =
(
d

ds
di

)
· dj . (2.11)

Differentiating the orthonormality relationdi(s) · dj(s) = δij yields Ωij = −Ωji. Multiplying
Eq. (2.9) withdm gives

Ωjm = εjimui(s). (2.12)

Multiplying both sides byεjpm and using the identityεjpmεjim = 2δpi results in the following
unique solution foru(s):

up(s) =
1
2
εjpmΩjm (2.13)

u(s) = ui(s)di(s) =
1
2
εjimΩjmdi(s) =

1
2
εjim

((
d

ds
dj(s)

)
· dm(s)

)
di(s). (2.14)
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Figure 2.1: Illustration of the used frame. Taken from [Mad00].

Thus the so-called Darboux vectoru(s) exists and is given by

ui =
1
2
εjim

(
d

ds
dj(s)

)
· dm(s). (2.15)

Eq. (2.9) can be regarded as the generalized Frenet equations.
The componentsui(s) determine the frame{di(s)} through integration of the differential equa-

tions of Eq. (2.9). Once the frame{di(s)} is known the components ofvi(s) determine the cen-
terline r(s) through integration of Eq. (2.7). Therefore the six scalar functionsui(s) and vi(s)
characterize the configuration of the rod and are called a set of strains. Together with specified
reference strainŝui(s) andv̂i(s) where the reference state is assumed to be the minimum energy or
unstressed configuration the strains can be related to shear, stretch, bending, and twist. Ifs is chosen
to be arclength along the centerline of the reference curver̂(s) so that

| d
ds

r̂(s)| = |v̂(s)| = 1 (2.16)

|v(s)| − 1 is a measure of the local extension and compression respectively. Furthermore the refer-
ence unit vector fieldd3(s) can be chosen such that it points into the direction of the tangent vector
field of the reference curvêr(s):

d

ds
r̂(s) = d3(s). (2.17)

In this casev1 andv2 corresponds to shear strains andv3 can be regarded as a stretch or compression.
u1 andu2 describe bending strains whileu3 correspond to a twist strain [Mad00].

2.2.3 Parameterization of a ribbon

A ribbon is an inextensible, unshearable rod which can be parameterized by the arclengths. To each
point s a triad of unit vectors{di(s)} is attached. The vectorsd1(s) andd2(s) are directed along
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the two principle axis of the cross section, the vectord3(s) is the tangent vector. As the triad is
an orthonormal basis set they satisfy the kinematic equations of Eq. (2.9) withuj(s) representing
bend (u1(s) out-of-plane, andu2(s) in-plane) and twist strains (u3(s)) respectively. One can find a
relation between the ordinary Frenet equations containing only two parameters, the curvatureκ(s)
and the torsionτ(s)

dt(s)
ds

= κ(s)n(s) (2.18)

db(s)
ds

= −τ(s)n(s) (2.19)

dn(s)
ds

= τ(s)b(s) − κ(s)t(s) (2.20)

and Eqs. (2.9) by fixingd3(s) = t(s) so thatd1(s) andd2(s) are given by a rotation aroundt(s)
with angleΨ(s)

d1(s) = cos(Ψ(s))b(s) − sin(Ψ(s))n(s) (2.21)

d2(s) = cos(Ψ(s))n(s) + sin(Ψ(s))b(s) (2.22)

In this contextΨ(s) can be seen as the twist angle [PR00a, Mag01]. A straightforward calculation
(see Eq. (2.15)) gives for the generalized torsions:

u1(s) =
dd3(s)
ds

· d2(s) = κ(s)n(s) · (cos(Ψ(s))n(s) + sin(Ψ(s))b(s))

= κ(s) cos Ψ(s) (2.23)

u2(s) = −dd3(s)
ds

· d1(s) = −κ(s)n(s) · (cos(Ψ(s))b(s) − sin(Ψ(s))n(s))

= κ(s) sinΨ(s) (2.24)

u3(s) = −dd1(s)
ds

· d2(s)

=
d(cos(Ψ(s))b(s) − sin(Ψ(s))n(s))

ds
· (cos(Ψ(s))n(s) + sin(Ψ(s))b(s))

=
(

sin(Ψ(s))b(s)
(

Ψ(s)
ds

+ τ(s)
)

+ cos(Ψ(s))n(s)
(

Ψ(s)
ds

+ τ(s)
))

· (cos(Ψ(s))n(s) + sin(Ψ(s))b(s))

= τ(s) +
dΨ(s)
ds

. (2.25)

The total twist Tw of a ribbon is thus given by the integration of the local twistu3(s) along the
contour normalized by the factor2π

Tw =
1
2π

∫ L

0
u3(s)ds (2.26)

with L being the contour length. Together with the parameter setûi(s), which determines whether
the stress-free reference configuration includes spontaneous curvature and twist, the elastic part of
the Hamiltonian is usually defined by quadratic terms inui(s)−ûi(s) [PR01, PR00a, PR00b, MS94,
MS95b, MS95a, MN97, KLNO97, KM97, MMK96, NSJK96].
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The inextensibility and unshearability condition requires that the strainsvi(s) in any configura-
tion equal the strainŝvi(s) in the reference configuration such that

vi(s) ≡ v̂i(s) (2.27)

and

v1(s) = v2(s) = 0 (2.28)

v3(s) = 1. (2.29)

2.3 Continuous description of two coupled semiflexible chains

It is an interesting question to which extent this generic description applies to more microscopic
models of DNA [ZL01]. The simplest case is that of a “railway track” or ladder model consisting of
two (or more) semiflexible chains

Htt =
k

2

∫ L

0
ds

{(
d2r1(s)
ds2

)2

+
(
d2r2(s)
ds2

)2
}
, (2.30)

plus a coupling between opposite points on different chains [EBK95]. Liverpoolet al. [LGK98,
GL00] considered the limit where the distancea between the coupling points (i.e. the width of
the ribbon) is imposed as a rigid constraint which prevents bending in the plane of the ribbon:
dt(s)
ds · b(s) = 0 wheret(s) = dr(s)

ds is the tangent vector to the mid-curver(s) with

r(s) = r1(s) − ab(s)
2

= r2(s) +
ab(s)

2
=

r1(s) + r2(s)
2

(2.31)

andb(s) is the bond-director pointing from one strand to the other. Note, that the constraint is
equivalent toΨ(s) = 0, that is

u1(s) = κ(s) (2.32)

u2(s) = 0 (2.33)

u3(s) = τ(s). (2.34)

Rewriting Eq. (2.30) in terms of ribbon variables they found

Htt =
k

2

∫ L

0
ds

{(
d2r(s)
ds2

+
a

2
d2b(s)
ds2

)2

+
(
d2r(s)
ds2

− a

2
d2b(s)
ds2

)2
}

=
k

2

∫ L

0
ds

{
2
(
d2r(s)
ds2

)2

+
a2

2

(
d2b(s)
ds2

)2
}

(2.35)
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Figure 2.2: Illustration of the used variables. The length of each triangle|ti| corresponds to the
bond lengthb and the heighta = |bi| = 1

2b tan(α) defines the strand separation length.{θi} terms
the folding angles.

which can also be expressed as

(
dt(s)
ds

)2

= κ(s)2 (2.36)(
d2b(s)
ds2

)2

=
(
b(s)

(
u1(s)u2(s) − du3(s)

ds

)
− n(s)

(
u1(s)2 + u3(s)2

)
+t(s)

(
u2(s)u3(s) +

du1(s)
ds

))2

=
(
du1(s)
ds

)2

+
(
u1(s)2 + u3(s)2

)2 +
(
du3(s)
ds

)2

=
(
dκ(s)
ds

)2

+
(
dτ(s)
ds

)2

+
(
κ(s)2 + τ(s)2

)2
. (2.37)

Thus the Hamiltonian is not just a quadratic function in the strainsui(s) but derivatives as well as
higher order terms of the strains are involved.

Note, that henceforth we useb(s) as the bond-director andn(s) as the normal vector to the
ribbon plane.

2.4 Geometry of triangulated ribbons

Following Liverpoolet al. [LGK98, GL00] we consider ribbons discretized by triangulation. In
order to extract some fundamental properties of double-stranded semiflexible polymers we consider
a ribbon-like system composed of isosceles triangles as shown in Fig. 2.2. The orientation of each
triangle is given byN − 1 rotations around the edges of the triangles with folding angles{θi}. N
is the number of triangles characterized by a set of trihedrons{ti,bi,ni} whereti is the tangent
vector of theith triangle,bi is the bond-director, andni is the normal vector. Note that{ti,bi,ni}
is normalized. Going from one set of trihedrons{ti,bi,ni} to the neighbor set{ti+1,bi+1,ni+1}
implies a rotationRi around the edge between the respective triangles with angleθi and a reflection



18 2 Elastic and structural properties of two coupled worm-like chains

v’

Ωv X

v − Ω )Ω (v

Ω )vΩ ( Ω

θ

v
α

Figure 2.3: Geometrical derivation of Eq. 2.41. Decompose the vectorv which we want to rotate
around the unit vectorΩ with angleθ into a parallel componentv‖ = (v · Ω)Ω and two perpen-
dicular componentsv⊥,1 = v − v‖ andv⊥,2 = v × Ω such thatv = v‖ + v⊥,1 + v⊥,2. The two

perpendicular components has the same length:|v⊥,1| =
√

(v − (v · Ω)Ω)2 =
√
v2 − (v · Ω)2 =√

v2 − v2 cos(α)2 = v sin(α) = |v × Ω| = |v⊥,2| whereα is the angle betweenv and Ω.
Before the rotation the component inv⊥,2-direction is zero. The rotated vectorv′ is given by
v′ = v′

‖ + v′
⊥,1 + v′

⊥,2 where the parallel componentv′
‖ = v‖ is unchanged by the rota-

tion and one obtains by projecting the rotated vector into thev⊥,1 − v⊥,2-plane for the per-
pendicular componentsv′

⊥,1 = cos(θ)v⊥,1 andv′
⊥,2 = sin(θ)v⊥,2. Thus it yields in the end:

v′ = (v · Ω)Ω + cos(θ)(v − (v · Ω)Ω) + sin(θ)(v × Ω).

of bi andni, i.e. ti+1

bi+1

ni+1

 = T Ri

ti
bi

ni

 (2.38)

with

T =

1 0 0
0 −1 0
0 0 −1

 (2.39)

Ri =

ti · ti+1 ti · bi+1 ti · ni+1

bi · ti+1 bi · bi+1 bi · ni+1

ni · ti+1 ni · bi+1 ni · ni+1

 . (2.40)

The matrix productT Ri can be viewed as a transfer matrix. To evaluate the scalar products ofRi

the neighbor set of trihedrons{ti+1,bi+1,ni+1} has to be determined. In general a vector~v which
is rotated around an axis~Ω with angleθ is given by [Gol91] (see Fig. 2.3)

~v ′ = ~v cos(θ) +

(
~Ω

|~Ω|
× ~v

)
sin(θ) +

~Ω

|~Ω|

(
~Ω

|~Ω|
· ~v

)
(1 − cos(θ)) . (2.41)
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Using Eq. 2.41 one obtains forti+1

ti+1 = ti cos(θi) +

(
~di+1

|~di+1|
× ti

)
sin(θi) +

~di+1

|~di+1|

(
~di+1

|~di+1|
· ti

)
(1 − cos(θi)) (2.42)

with

~di+1 =
~ti
2

+~bi. (2.43)

The evaluation of the cross product and the scalar product yields

ti+1 = ti cos(θi) +

(
~ti
2 +~bi

|~ti2 +~bi|
× ti

)
sin(θi) +

~ti
2 +~bi

|~ti2 +~bi|

(
~ti
2 +~bi

|~ti2 +~bi|
· ti

)
(1 − cos(θi))

= ti cos(θi) +
|~bi|

|~di+1|
ni sin(θi) +

~ti
2 +~bi
|~di+1|

|~ti|
2|~di+1|

(1 − cos(θi)) .

(2.44)

where |~ti|
2|~di+1|

= cos(α) and |~bi|
|~di+1|

= sin(α) for geometric reasons (see Fig. 2.2). Thus the following

results for the 3 scalar products is obtained:

Ri,11 = ti · ti+1 = cos(θi) + sin(α)2 (1 − cos(θi)) (2.45)

Ri,21 = bi · ti+1 = sin(α) cos(α) (1 − cos(θi)) (2.46)

Ri,31 = ni · ti+1 = sin(α) sin(θi). (2.47)

The remaining terms of the rotation matrixRi can be calculated in an analogous fashion resulting
in

Ri,11 = cos(θi) + cos(α)2 (1 − cos(θi))
Ri,12 = − cos(α) sin(α) (1 − cos(θi))
Ri,13 = − sin(α) sin(θi)
Ri,21 = cos(α) sin(α) (1 − cos(θi))

Ri,22 = cos(θi) + sin(α)2 (1 − cos(θi))
Ri,23 = − cos(α) sin(θi)
Ri,31 = sin(α) sin(θi)
Ri,32 = cos(α) sin(θi)
Ri,33 = cos(θi).

(2.48)

In order to quantify properties such as bending and twisting within the given discretization we
study the relation between the folding anglesθi and these quantities which is illustrated in Fig.
2.4. One recognizes that the chain is not bent in case ofθi − θi+1 = δθi = 0 and that purely
twisted structures correspond toθi ≡ const. The chain is untwisted but bent ifδθi = 2θi. In case of
θi 6= ±θi+1 andθi 6= 0 the chain is bent and twisted simultaneously resulting in solenoidal/torsional
structures as is illustrated in Fig. 2.4(f). A kink is characterized by unlike twists meeting at an edge
as it is shown in Fig. 2.4(d).
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Due to the triangulation of the ribbon three triangles has to be considered to calculate the dis-
cretized expressions for the out-of-plane bending strain

u1(s) = −
(
d

ds
t(s)

)
· n(s) ≈ −t(s+ ∆s) − t(s)

∆s
· n(s) = − 1

∆s
t(s+ ∆s) · n(s) (2.49)

and the twist strain

u3(s) =
(
d

ds
b(s)

)
· n(s) ≈ b(s+ ∆s) − b(s)

∆s
· n(s) =

1
∆s

b(s+ ∆s) · n(s) (2.50)

which we callκi andτi respectively. The local curvatureκi and the local twist rateτi between
trianglei andi+ 2 are therefore given by

κi ≡ −1
b

i+1∑
j=i

nj · tj+1 ≈ sin(α)
b

δθi (2.51)

τi ≡ 1
b

i+1∑
j=i

nj · bj+1 ≈ cos(α)
b

(θi + θi+1), (2.52)

where the accuracy of the right-hand side expressions only depends on the refinement of the dis-
cretization, i.e. on the values ofb andα. Hence a spontaneous bending can be introduced via an
additional term to the Hamiltonian with

Hcurv = kcurv
∑
i

 i+1∑
j=i

nj · tj+1 − δθsp,i

2

(2.53)

and a spontaneous twist can be introduced by an additional term

HTw = kTw
∑
i

 i+1∑
j=i

nj · bj+1 − θsp,i

2

. (2.54)

Note, that the total twist Tw is given by Tw= 1/(2π)
∑

i τi.

2.5 Model description

The bending stiffness within the given discretization can be taken into account by various interac-
tions. One possible definition of a bending stiffness, which makes the problem analytically tractable,
is a nearest neighbor interaction (plaquette stiffness) between the normal vectors{ni} in analogy to
the triangulation of vesicles [KG92] which results in the following Hamiltonian

Hnn

kBT
= k

N−1∑
i=1

(1 + ni · ni+1) . (2.55)

In contrast Liverpoolet al. [LGK98, GL00] were interested in the statistical mechanics of coupled
worm-like chains and therefore chose a next-nearest neighbor interaction (edge stiffness) between
the tangent vectors{ti} with rigidity k so that the Hamiltonian is given by

Htt

kBT
= k

N−2∑
i=1

(1 − ti · ti+2) . (2.56)
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Figure 2.4: Illustration of bending, twisting, and kinking. (a) A flat ribbon as ground state conforma-
tion. (b) A twisted structure (c) The same twisted structure obtained with a smoother discretization.
(d) Unlike twists meeting at the center resulting in a kink withθi positive fori < N/2, negative for
i ≥ N/2, and|θi| = |θi+1|, i.e. δθi = 0, ∀i 6= N/2 andδθN/2 = 2θN/2. (e) A bent structure. (f) A
mixture of bent and twist resembling a solenoidal structure.

Both definitions lead to a flat ribbon as the ground state conformation for zero temperaturesT = 0.

The above defined interactions lead to very distinct conformational features of the ribbon which
can be understood by building up the ribbon just by adding successively the triangles in the absence
of thermal fluctuations. Assuming thatθ1 6= 0 all subsequent anglesθi with i > 1 vanish in the case
of the nearest neighbor interaction (Hnn). In contrast the tangent-tangent interaction (Htt) leads to
the formation of a helix withθi = θi+1 as a result of the enforced alignment of the tangent vectors.
This suggests a correlation of the folding angles{θi} which entails at least locally helical structures.

Assuming that the chains are rather stiff (continuum limit), i.e. small folding anglesθi, one can
expand the Hamiltonians with respect toθi. SinceHnn is diagonal inθi, it is sufficient to consider
terms up to second order.Htt contains coupling terms betweenθi andθi+1 which makes it necessary
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Figure 2.5: Measurement of the ’time’ autocorrelation function of the total twist of the chain. The
longest correlation time we observed wasτTw = 51 MC steps for the total twist Tw(0, L) of the
chain.

to keep terms up to fourth order in the analysis:

Hnn

kBT
≈ k

2

N−1∑
i=1

θ2
i (2.57)

Htt

kBT
≈ k

2

N−2∑
i=1

{
sin(α)2δθ2

i

(
1 − 1

12
δθ2
i

)
+ sin(α)2 cos(α)2θ2

i θ
2
i+1

}
(2.58)

with δθi = θi − θi+1.

2.6 MC Simulation

Both models have local interactions and can be studied conveniently using a dynamic MC scheme.
Trial moves consist of small random changes of the folding angles by a small amplitude1/

√
k,

wherek is the bending stiffness, and are accepted or rejected according to the Metropolis scheme
[MRR+53]. In the simulations we always use the full Hamiltonians Eq. (2.55) and (2.56). MC
moves changing the folding angles correspond to the well-known Pivot algorithm [LB00]. The
conformations are subsequently recalculated from Eqs. (2.38)-(2.48) and analyzed. Each simulation
run comprises105 MC-moves where one MC move corresponds toN − 1 trials withN being the
number of triangles. The longest correlation time we observed was on the order of 50 MC moves
for the total twist of the chain. In order to check if equilibrium is reached we compared simulation
runs with a flat initial conformation, i.eθi = 0, with simulation runs with crumpled conformations
corresponding to equally distributed anglesθi out of the interval[−1/

√
k; 1/

√
k]. Both runs yield

the same results for the calculated observables.
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Figure 2.6: Snapshots forHnn (left) andHtt (right) with k = 50, N = 800, α = π/3. The figure
illustrates that just by watching conformational snapshots it is not possible to decide if kinks are
present due to projection of a three-dimensional object onto a two-dimensional plane (see [LGK98]).

2.7 Plaquette Stiffness

Since the HamiltonianHnn of Eq. (2.57) is quadratic and diagonal inθi the solution in angle space
is trivial. As a consequence of the independence of successive folding angles it yields〈θiθj〉 = 1

kδij

and〈A〉 = 〈
∏j
k=i(T Rk)〉 = 〈T Rk〉j−i where the matrix product is carried out in the eigenvector

basis of〈T Rk〉 (the eigenvectors depend only on the geometry of the triangles). The diagonal
elements of〈A〉 are the correlation functions of〈ti · tj〉, 〈bi · bj〉, 〈ni · nj〉. Thus one calculates
〈T Rk〉

〈T Rk〉 = T 〈Rk〉 =
T
∫

D[θ]Rk exp(−Hnn
kBT

)∫
D[θ] exp(−Hnn

kBT
)

=

1 0 0
0 −1 0
0 0 −1


−1+4k+cos(2α)

4k − cos(α) sin(α)
2k 0

cos(α) sin(α)
2k

−1+2k+sin(α)2

2k 0
0 0 −1 + 1

2k

 ,

(2.59)

diagonalizes it such that〈T Rk〉 = SDST with S being the eigenvector matrix andD being the diag-
onalized matrix and raisesD to the power ofj−i. Transforming back results in〈A〉 = 〈T Rk〉j−i =
SDj−iST . Finally the continuum chain limit can be performed withs = (j− i)b, lp = bk/ sin(α)2,
a = 1

2b tan(α), (j − i) → ∞, b → 0, i.e. a → 0, wherelp is the persistence length,a is the
strand separation,b is the Kuhn segment length,0 < s < L is the arclength, andL is the contour
length. Note that within this modelα is a fixed parameter that determines bending characteristics
of the ribbon. Since the calculation is rather demanding and gives very complicated expressions we
used a Mathematica script to evaluate the correlation matrix. In the end an exact expression for the
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autocorrelation functions is obtained:

〈t(0) · t(s)〉 = exp
(

− s

lp

)
(2.60)

〈b(0) · b(s)〉 = exp
(

− s

lp tan(α)2

)
(2.61)

〈n(0) · n(s)〉 = exp
(

− s

lp sin(α)2

)
. (2.62)

For α = π/2 the triangles degenerate to rectangles such that bending can only occur out of the
plane of the ribbon and the usual worm-like chain result for two dimensions is recovered. All cross-
correlation functions (the off-diagonal elements of〈A〉) vanish. Eqs. (2.61), (2.62) represent the
persistence lengthlp,in = lp tan(α)2 for bending within the plane of the ribbon and the persistence
lengthlp,out = lp sin(α)2 for bending out of the plane of the ribbon respectively [NSJK96]. This
model was recently treated as a twisted zig-zag fiber within the framework of a two-angle model for
studying structural properties of chromatin [SGB01].

From the tangent-tangent correlation function the mean squared end-to-end distance can be cal-
culated:

R2
E = 〈(R(L) − R(0))2〉 =

∫ L

0
ds1

∫ L

0
ds2〈t(s1) · t(s2)〉

= 2Llp − 2l2p

(
1 − exp

(
−L

lp

))
.

(2.63)

Eqs. (2.60) and (2.63) are identical to results for single worm-like chains [DE86]. Eq. (2.63) inter-
polates between the limiting behaviors of random coils (2Llp) for L � lp and rigid rods (L2) for
L � lp.

2.8 Edge Stiffness

In the following we present a simple scaling argument which allows us to rationalize the behavior
of the Liverpool model. Consider first theδθ part of Eq. (2.58). In the absence of other terms the
folding angles would perform a simple random walk with step length〈δθ2

i 〉 = 1
k sin(α)2

. The leading

term limiting the fluctuations of the folding angles around zero is of orderO(θ4
i ). The behavior

of the coupled system can be inferred from scaling arguments similar to those used for polymer
adsorption. Consider a vanishing folding angle and follow the chain in either direction. Up to a
characteristic number of stepsg the folding angles will show simple diffusion. As a consequence
the mean-squared folding angle averaged over this short segment is〈θ2

i 〉 = g〈δθ2
i 〉 corresponding

to a potential energyEex
kBT

∼ g〈θ4
i 〉 ∼ 3g〈θ2

i 〉2 ∼ 3g3〈δθ2
i 〉. Note that for a Gaussian distribution

function P(x) the 4th and 2nd moment are related by〈x4〉 = 3〈x2〉2. The free diffusion of the
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Figure 2.7: Simulation versus scaling. We determine the correct prefactorgfit = 0.56 ± 0.05 of
g from the numerical data of the folding angle correlation function〈θiθj〉 which is our solely free
parameter and use it for all following comparisons between scaling analysis and numerical results.

folding angles has to stop when this potential energy is of orderkBT resulting in a condition forg:

sin(α)2 cos(α)2k g〈θ4〉 = 1

3 sin(α)2 cos(α)2k g〈θ2〉2 = 1

3 sin(α)2 cos(α)2k g3〈δθ2〉2 = 1

g =
(

1
3

k2 sin(α)4

sin(α)2 cos(α)2k

) 1
3

g =
(
k tan(α)2

3

) 1
3

. (2.64)
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As already mentioned in section 2.5 the folding anglesθi are correlated. The previous scaling
considerations suggest that the correlation length is on the order ofg. This is confirmed by the
following calculation. The mean square displacement of the folding angles is given by

〈(θi − θj)2〉 = 2〈θ2
i 〉 − 2〈θiθj〉 =

{
2|i− j|〈δθ2

i 〉, |i− j| � g,

2〈θ2
i 〉, |i− j| � g.

(2.65)

Thus the correlation function〈θiθj〉 can be expressed as

〈θiθj〉
〈θ2
i 〉

=

{
1 − |i−j|

g , |i− j| � g

0, |i− j| � g
≈

{
exp

(
− |i−j|

g

)
, |i− j| � g

0, |i− j| � g
. (2.66)

Altogether we obtain

〈δθ2
i 〉 =

1
k sin(α)2

(2.67)

g ∼
(
k tan(α)2

3

) 1
3

(2.68)

〈θ2
i 〉 = g〈δθ2

i 〉 (2.69)

〈θiθj〉
〈θ2
i 〉

= exp
(

−|j − i|
g

)
. (2.70)

Fig. 2.7 shows that these arguments are fully supported by the results of our MC simulations with

g = (0.56 ± 0.05)
(
k tan(α)2

3

) 1
3
.

Using again the transfer matrix ansatz and considering only terms on the order ofO(θ2
i ) the

following expression forti · tj, bi · bj andni · nj is obtained in the low temperature limit:

ti · tj = 1 − sin(α)2

2

 j/2∑
k=i/2

δθ2k

2

(2.71)

bi · bj = 1 − cos(α)2

2

(
j−1∑
k=i

θ2
k + 2

j−1∑
k=i

j−1∑
k′=k+1

θkθk′

)
(2.72)

ni · nj = 1 − 1
2

j/2∑
k=i/2

δθ2
2k + cos(α)2

j−1∑
k=i

j−1∑
k′=k+1

θkθk′ . (2.73)

Note thati, j are either odd or even depending on which strand is under consideration. Without
loss of generality we choosei, j to be even. First of all we use that〈t(0) · t(s)〉 has to interpolate
between1 for s = 0 and0 for s → ∞ and that the right hand side of Eq. (2.71) is the Taylor

expansion up to first order of the exponential functionexp
(

sin(α)2

2

(∑j/2
k=i/2 δθ2k

)2
)

. Substituting

thens = 2|j − i|b andlp = 4bk, performing the continuum chain limit withb → 0 andα → π/2
respectively, i.e. keeping the strand separationa constant, yields the following expression for the
autocorrelation function of the tangent vectors:

〈t(0) · t(s)〉 = exp
(

− s

lp

)
. (2.74)
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Figure 2.8: Comparison of MC data and analytical results (solid line) for the autocorrelation function
of the tangent vectors withk = 50 (squares),k = 100 (circles),k = 200 (upward triangles),
k = 500 (downward triangles) andα = π/3, andk = 50 andα = π/4 (diamonds),α = π/6
(pentagons).

Thus the mean squared end-to-end distanceR2
E becomes identical to Eq. (2.63). Eq. (2.74) is con-

firmed by our MC simulation data shown in Fig. 2.8.

To get an idea of the structural properties characterized by the autocorrelation function of the
bond-directors〈bi · bj〉 we calculate the mean squared twist〈Tw(i, j)2〉 of the ribbon. Following
the definition of the local twist rateτi of Eq. (2.52) the total twist between two triangles of indexi
andj is just the sum of the local twist angles determined by the projections of the normal vector of
theith triangle onto the bond-director of the (i+ 1)th triangle, that is

Tw(i, j) =
1
2π

j−1∑
k=i

ni · bi+1 =
cos(α)

2π

j−1∑
k=i

θk. (2.75)

Comparing Eq. (2.72) and (2.75) we find for small twist angles

〈bi · bj〉 = 1 − 2π2〈Tw(i, j)2〉. (2.76)

Hence the autocorrelation function of the bond-directors can be seen as a measure for the local twist
structure of the ribbon.

In contrast to the plaquette stiffness model, the anglesθi in the edge stiffness model are corre-
lated (see Eq. (2.70)). Therefore the double summation over〈θiθj〉 in Eq. (2.72) proceeds along the
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Figure 2.9: (a) Autocorrelation function of the bond-directors withk = 50 (squares),k = 100
(circles),k = 200 (upward triangles),k = 500 (downward triangles) andα = π/3. The data show
the predicted functional form (solid line) for〈b(0)·b(s)〉 of Eq. (2.79). In order to check the scaling
argument of Eq. (2.79) we determined the correct prefactorgfit = 0.56 ± 0.05 of g with the help of
the numerical data of〈θiθj〉 (see Fig. 2.7) and inserted it into Eq. (2.79). The agreement is excellent.
(b) Comparison of our simulation data with the analytical result of Liverpoolet al. [LGK98, GL00]
(dashed line). The predicted oscillation and resultant pitch is not recovered. But we find the same

scaling behavior of the helical persistence length withlb = gb ∼ l
1
3
p a

2
3 . It is also striking that the

predicted functional form of Liverpoolet al. is in very good agreement with our numerical data
within one helical persistence lengthlb.

lines of the calculation of the mean squared end-to-end distance of the worm-like chain model

〈Tw(i, j)2〉 =
cos(α)2

(2π)2

j∑
k=i

j∑
k′=i

〈θkθk′〉

=
cos(α)2

(2π)2

(∑
k

〈θ2
k〉 + 2

j∑
k=i

j∑
k′=k+1

〈θkθk′〉

) (2.77)
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Figure 2.10: Autocorrelation function of the normal vectors withk = 50 (squares),k = 100
(circles),k = 200 (upward triangles),k = 500 (downward triangles) andα = π/3. The ratio of the
normal vector correlation function and the tangent correlation function〈t(0) · t(s)〉 (see Eq. (2.81))
is shown (solid line) so that the same exponential decay as for〈b(0) · b(s)〉 should be regained.
This is in agreement with the numerical data.

Using the scaling expressions of Eqs. (2.68) and (2.69), the same substitutions as in Eq. (2.74),
and performing the continuum chain limit the following relationship for the mean-squared twist is
obtained

〈Tw(0, s)2〉 = lim
b→0

α→π/2

{
cos(α)2

(2π)2
〈θ2
i 〉
[
s

b
+ 2g

s

b
− 4g2

(
1 − exp

(
− s

2gb

))]}

= lim
b→0

α→π/2

{
2g3 cos(α)2

(2π)2
〈δθ2

i 〉
[

s

2g2b
+

s

gb
− 2

(
1 − exp

(
− s

2gb

))]}

=
1

6π2

(
s

gb
− 2

(
1 − exp

(
− s

2gb

)))
,

(2.78)

and the autocorrelation function of the bond-directors

〈b(0) · b(s)〉 = exp
(
−2π2〈Tw(0, s)2〉

)
(2.79)

with

gb = gfit

(
k tan(α)2

3

) 1
3

b = gfit

(
lp tan(α)2

12b

) 1
3

b

= gfit
l
1
3
p tan(α)

2
3 b

2
3

12
1
3

=
gfit

3
1
3

l
1
3
p a

2
3 ,

(2.80)
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Figure 2.11: Crosscorrelation function of the bond-directors and the tangent vectors withk = 50
(squares),k = 100 (circles),k = 200 (upward triangles),k = 500 (downward triangles),k = 1000
(diamonds) andα = π/3. The data validate the predicted functional form (solid line) for〈b(0)·t(s)〉
of Eq. (2.82).

wheregfit = 0.56 ± 0.05 is the fitted prefactor for the scaling functiong. a represents the strand
separation of the ribbon which is given bya = |bi| = 1

2b tan(α). Hence we observe two length
scales influencing the local twist structure of the ribbon: on the one hand the single strand persistence
lengthlp and on the other hand the strand separationa. The predicted scaling behavior of〈b(0) ·
b(s)〉 can be observed in the simulation data as it is shown in Fig. (2.9). Note that〈b(0) · b(s)〉
as well as all other calculated observables within this model is independent of the geometry of the
triangles in contrast to the previous model whereα was a fixed parameter which influenced the
bending properties of the ribbon.

Eq. (2.73) can be evaluated in the same manner resulting in

〈n(0) · n(s)〉 = 〈t(0) · t(s)〉〈b(0) · b(s)〉

= exp
(

− s

lp
− 2π2〈Tw(0, s)2〉

)
.

(2.81)

Eq. (2.81) shows that the autocorrelation function of the normal vectors is the product of〈t(0)·t(s)〉
and〈b(0) · b(s)〉. For very stiff chains, the tangent correlation function gives just small corrections
to the normal vector correlation function. Therefore Eq. (2.79) can be interpreted as the rigid rod
limit of Eq. (2.81).

Other important structural properties of the ribbon can be extracted out of the crosscorrelation
functions.〈n(0) · t(s)〉 and〈n(0) · b(s)〉 describe the mean curvature and mean twist respectively
and vanish in both models for symmetry reasons. For〈b(0) · t(s)〉 we empirically observe the
following relationship:

〈b(0) · t(s)〉 = (2π)2a
d

ds
〈Tw(0, s)2〉 exp

(
−(2π)2〈Tw(0, s)2〉

)
. (2.82)
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Figure 2.12: Comparison of the probability distribution functions of the total twist of the ribbon
with f = f = {0, 0.01, 0.02, ..., 0.09} andlp = L = 400 with the scaling analysis forf = 0. The
same Gaussian shape is recovered for all values off .

Eq. (2.82) can be understood qualitatively in the following way. Due to the anisotropic rigidity of the
ribbon the scalar productb(0) ·t(s) is only non-zero if the chain is bent and twisted simultaneously.
In case the ribbon is either solely bent or solely twisted the bond-directors are always perpendicular
to the tangent vectors and the scalar productb(0) · t(s) vanishes for alls. The rate of mean twist of
one helical persistence lengthlb = gb which defines the size of the locally existing helical structures
can be calculated with Eq. (2.78) yielding

√
〈Tw(0, bg)2〉 =

1
3π2

[
1 − 2

(
1 − exp

(
−1

2

))]
≈ 1

16
. (2.83)

This corresponds to a typical twist angle ofΨ = π
8 using Tw = 2πΨ. Within lb the twist rate

is determined by the derivative of the mean squared twistd
ds〈Tw(0, s)2〉 which gives rise to the

increasing correlation function〈b(0) · t(s)〉 up to the maximum value atlb = gb. For larger internal
distances of the chain the rate of mean twist is a random sequence of± 1

16 so that the crosscorrelation
function has to vanish and therefore decreases exponentially withexp

(
−(2π)2〈Tw(0, s)2〉

)
. Fig.

2.11 compares Eq. (2.82) with our numerical data. It fully supports our argument.

2.9 Behavior under compression: Euler Buckling vs. Kinks

As discussed in section 2.4 the edge stiffness model includes local twist correlations at least on small
length scales as a consequence of the correlation of the folding angles{θi}. In order to understand
and to quantify the effects arising from the local twist we measured the probability distribution
functions of the folding angles, of the twist, and of the end-to-end-distance for different rigidities
and compared the latter with the usual worm-like chain model to see which differences occur.
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If there is a preference for kinking this property can be enforced by applying an additional
constant forceFbuck = fRE/RE which compresses the ribbon. In addition the change in the end-
to-end distanceRE caused by the buckling force should affect the twist distribution functionP (Tw)
if RE and Tw are coupled.

For small forces we calculate the change of twist〈∆Tw(0, L)2〉 under the influence of the exter-
nal forceFbuck = f within the framework of linear response theory. Expanding〈Tw(0, L)2〉 around
f = 0 yields

〈Tw(0, L)2〉 = 〈Tw(0, L)2〉f=0 +
(
d

df
〈Tw(0, L)2〉

)
f=0

f + O(f2). (2.84)

For small forces higher order terms inf can be neglected. The change of twist can be calculated by
straightforward differentiation:

〈∆Tw(0, L)2〉 = 〈Tw(0, L)2〉 − 〈Tw(0, L)2〉f=0

=
(
d

df
〈Tw(0, L)2〉

)
f=0

f

=
{
d

df

(∫
D[θ]Tw(0, L)2 exp(−β(Htt + fRE))∫

D[θ] exp(−β(Htt + fRE))

)}
f=0

f

=

{∫
D[θ](−βRE)Tw(0, L)2 exp(−β(Htt + fRE))

∫
D[θ] exp(−β(Htt + fRE))(∫

D[θ] exp(−β(Htt + fRE))
)2

−
∫

D[θ]Tw(0, L)2 exp(−β(Htt + fRE))
∫

D[θ](−βRE) exp(−β(Htt + fRE))(∫
D[θ] exp(−β(Htt + fRE))

)2
}
f=0

f

= −βf
(
〈RETw(0, L)2〉f=0 − 〈RE〉f=0〈Tw(0, L)2〉f=0

)
(2.85)

with β = 1/kBT . This predicts a change of the mean squared twist of the chain if a twist-stretch
coupling determined by〈RETw(0, L)2〉f=0 exists. Note that〈RETw(0, L)〉f=0 vanishes due to
symmetry reasons. The evaluation of our numerical data yields that〈RETw(0, L)2〉 is uncorrelated,
too. To quantify if higher order terms inf contribute to a change of〈Tw(0, L)2〉 we carried out
several simulation runs with varying force strengthsf = {0, 0.01, 0.02, ..., 0.09} corresponding to
RE(f)
RE(0) = {1, 0.95, 0.87, 0.71, 0.51, 0.36, 0.26, 0.21, 0.17, 0.15}.

Fig. 2.12 shows the same Gaussian shape for all measured probability distribution functions of
the total twist of the ribbonP (Tw(0, L), f). This implicates that there is no twist-stretch coupling
inherent in the system. The same is valid for the distribution function of the folding angles.

Moreover we measured the probability distribution functionP (RE , f) of the end-to-end dis-
tanceRE for all applied forcesf . Using the multiple histogram method developed by Ferrenberg
and Swendsen [FS88] all measured histograms can then be recombined with a reweighting proce-
dure to a single probability distribution functionP (RE) with overall very good statistics. Fig. 2.13
showsP (RE) for Htt and the worm-like chain model. Quite contrary to a shift to noticeably shorter
end-to-end distancesRE as one would expect for the above described phenomena of kinks just the
usual worm-like chain behavior is recovered. This indicates that the ribbon just bends under the
external force in contradiction to a kink-rod structure. Another quantity which is sensitive to the
presence of kinks is a three-point correlation function of the end-to-end distanceRE and the twist



2.10 Summary 33

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

en
d-

to
-e

nd
 d

is
ta

nc
e 

PD
F

RE/L

0.0001

0.001

0.01

0.1

1

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.13: Probability distribution functions of the end-to-end distance of the edge stiffness model
for different discretizations (N = 800 upward triangles,N = 600 downward triangles) withα = π

4
andlp = L = 400 calculated with the help of the multiple histogram method [FS88] and the usual
worm-like chain model (solid line). The PDF of the worm-like chain model is calculated with the
derived analytical expression of Wilhelm and Frey [WF96] which is valid in the limit of very stiff
chains.

to the left Tw(0, L2 ), and to the right Tw(L2 , L) of the center of the chain. Due to the buckling force
the center of the chain is labeled which means that a kink is detected if the end-to-end distances
with Tw(0, L2 )Tw(L2 , L) < 0 (unlike twists meeting at the center) are smaller than the end-to-end
distances with Tw(0, L2 )Tw(L2 , L) > 0 (like twists meeting at the center). Fig. 2.14 shows the mean
end-to-end distance depending on the value of Tw(0, L2 )Tw(L2 , L) for lp = 200, L = 400, and
f = 0, f = 0.03, f = 0.06. We do not find an asymmetry between like and unlike twists meeting
at the center as it would support the prediction of kinks made by Liverpoolet al. [LGK98, GL00].

2.10 Summary

We have reinvestigated the mechanical properties of the model introduced by Liverpoolet al. [LGK98,
GL00] of a double-stranded semiflexible polymer and rationalized the results of our MC simulations
with the help of a simple scaling argument. We recover the predicted simple exponential decay of the
tangent-tangent correlation function with the single strand persistence lengthlp and that〈t(0) ·t(s)〉
is independent of the separationa of the two strands, which is in addition tolp the other relevant
length scale in the problem. Also in agreement with Ref. [LGK98, GL00] we find that the helical
persistence lengthlb and the helical pitchP scale withl1/3p a2/3. Qualitatively, one would expect
to see oscillations in the bond-director correlation function, ifP ≤ lb. This can be understood by
calculating the rate of mean twist withinlb = gb, i.e.

√
〈Tw(0, gb)2〉. If the mean twist exceeds

π an oscillatory behavior has to be observed. But our calculation gives a twist rate withinlb = gb
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Figure 2.14: End-to-end distanceRE as a function of the product of the twist left and right of
the center of the chain Tw(0, L2 )Tw(L2 , L), which is a measure for unlike (negative sign) and like
(positive sign) twists meeting at the center, and as a function of the applied buckling force with
f = 0 (squares), 0.03 (circles), 0.06 (triangles) andlp = 0.5L = 200. RE refers to the average
of one interval of Tw(0, L2 )Tw(L2 , L) and〈RE〉 refers to the mean value of all sampled end-to-end
distances. One does not find an asymmetry between end-to-end distances for like and unlike twists
meeting at the center. The larger fluctuations for larger values of Tw(0, L2 )Tw(L2 , L) are the result
of a poorer sampling rate.

of approximately±1/16. For larger distances of the chain the rate of mean twist is just given by
a random sequence of±1/16 and thus cannot account for an oscillatory behavior of〈b(0) · b(s)〉.
Liverpool et al. predictP = lb, while our analysis indicatesP = 16lb as it is demonstrated in Fig.
2.9 (b). The authors claimed support from their own simulations, but failed to provide a quantitative
comparison between their numerical and analytical results. In fact the presented oscillations seem to
be ordinary fluctuations within the statistical errors. But as can be seen in Fig. 2.9 (b) the predicted
functional form for the bond-director autocorrelation function is in very good agreement with our
numerical data as well as with our scaling results within one helical persistence lengthlb = gb.

Moreover our simulation results with applied constant buckling forces do not provide any ev-
idence of the predicted tendency of kinking or the claimed twist-stretch coupling. Thus contrary
to the claim made in Ref. [LGK98, GL00] the local twist structure does not suffice to explain
experimental observations such as the twist-stretch coupling [SAB+96, SABC98] and the kink-
rod structures [KSBS93] of helical double-stranded molecules. These features require the inclu-
sion of a spontaneous twist incorporated by an additional term in the Hamiltonian, e.g.HTw =

kTw
∑

i

(∑i+1
j=i nj · bj+1 − θsp,i

)2
, [PR01, PR00a, PR00b, Mar97, KLNO97, YHZc00, ZZOY00,

HYZc99].



Chapter 3

Simulating DNA at the base-pair level

We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne
potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate
backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length.
The competition of these two interactions and the introduction of a simple geometrical constraint
lead to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to
the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters
in order to reproduce the experimentally known observables such as persistence lengths, mean and
mean squared base-pair step parameters. For the optimized model parameters we measured the crit-
ical force where the transition from B- to S-DNA occurs to be approximately140pN. We recover an
overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking
of successive base-pairs [MEE03].

3.1 Introduction

Following the discovery of the double helix by Watson and Crick [WC53], the structure and elastic-
ity of DNA has been investigated on various length scales. X-ray diffraction studies of single crystals
of DNA oligomers have led to a detailed picture of possible DNA conformations [DDC+82, Dic92]
with atomistic resolution. Information on the behavior of DNA on larger scales is accessible through
NMR [Jam95] and various optical methods [MRZ82, SS86], video [PQSC94] and electron mi-
croscopy [BWC90]. An interesting development of the last decade are nanomechanical experiments
with individual DNA molecules [SFB92, SCB96, CLH+96, ERBH97, ABLC98] which, for exam-
ple, reveal the intricate interplay of supercoiling on large length scales and local denaturation of the
double-helical structure.

Experimental results are usually rationalized in the framework of two types of models: base-
pair steps and variants of the continuum elastic worm-like chain. The first, more local, approach
describes the relative location and orientation of neighboring base-pairs in terms of intuitive param-
eters such as twist, rise, slide, roll etc. [CD84, DBC+89, LO99, OBB+01]. In particular, it provides
a mechanical interpretation of the biological function of particular sequences [CD99]. The second
approach models DNA on length scales beyond the helical pitch as a worm-like chain (WLC) with
empirical parameters describing the resistance to bending, twisting and stretching [MS94, MS95c].
The results are in remarkable agreement with the nanomechanical experiments mentioned above
[PSLC95]. WLC models are commonly used in order to address biologically important phenomena

35
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such as supercoiling [CW90, SO92, CL94] or the wrapping of DNA around histones [SWBG01].
In principle, the two descriptions of DNA are linked by a systematic coarse-graining procedure:
From given (average) values of rise, twist, slide etc. the shape of the corresponding helix on large
scales [CD84, HC97b, CD99] can be reconstructed. Similarly, the elastic constant characterizing
the continuum model are related to the local elastic energies in a stack-of-plates model [OKLN98].

Difficulties are encountered in situations which cannot be described by a linear response anal-
ysis around the undisturbed (B-DNA) ground state. This situation arises routinely during cellu-
lar processes and is therefore of considerable biological interest [CD99]. A characteristic feature,
observed in many nanomechanical experiments, is the occurrence of plateaus in force-elongation
curves [SCB96, CLH+96, ABLC98]. These plateaus are interpreted as structural transitions be-
tween microscopically distinct states. While atomistic simulations have played an important role
in identifying possible local structures such as S- and P-DNA [CLH+96, ABLC98], this approach
is limited to relatively short DNA segments containing several dozen base-pairs. The behavior of
longer chains is interpreted on the basis of stack-of-plates models with step-type dependent param-
eters and free energy penalties for non-B steps. Realistic force-elongation are obtained by a suitable
choice of parameters and as the consequence of constraints for the total extension and twist (or
their conjugate forces) [ALCM01]. Similar models describing the non-linear response of B-DNA to
stretching [HYZc99] or untwisting [BCP99, CM99] predict stability thresholds for B-DNA due to
a combination of more realistic, short-range interaction potentials for rise with twist-rise coupling
enforced by the sugar-phosphate backbones.

Clearly, the agreement with experimental data will increase with the amount of details which
is faithfully represented in a DNA model. However, there is strong evidence both from atomistic
simulations [BFLG99] as well as from the analysis of oligomer crystal structures [HC97a] that the
base-pair level provides a sensible compromise between conceptual simplicity, computational cost
and degree of reality. While Lavery et al. [BFLG99] have shown that the base-pairs effectively
behave as rigid entities, the results of El Hassan and Calladine [HC97a] and of Hunter et al. [HL97,
Hun93] suggest that the dinucleotide parameters observed in oligomer crystals can be understood as
a consequence of van-der-Waals and electrostatic interactions between the neighboring base-pairs
and constraints imposed by the sugar-phosphate backbone.

The purpose of the present chapter is the introduction of a class of “DNA-like”-molecules with
simplified interactions resolved at the base or base-pair level. In order to represent the stacking inter-
actions between neighboring bases (base-pairs) we use a variant [EE03] of the Gay-Berne potential
[GB81] used in studies of discotic liquid crystals. The sugar-phosphate backbones are reduced to
semi-rigid springs connecting the edges of the disks/ellipsoids. Using Monte-Carlo simulations we
explore the local stacking and the global helical properties as a function of the model parameters.
In particular, we measure the effective parameters needed to describe our systems in terms of stack-
of-plates (SOP) and worm-like chain models respectively. This allows us to construct models of
our systems which faithfully represent the equilibrium structure, fluctuations and linear response of
DNA. At the same time we preserve the possibility of local structural transitions, e.g. in response to
external forces.

This chapter is organized as follows. In the second section we introduce the base-pair parameters
to discuss the helix geometry in terms of these variables. Furthermore we discuss how to translate
the base-pair parameters in macroscopic variables such as bending and torsional rigidity. In the third
section we introduce the model and discuss the methods (MC simulation, energy minimization) that
we use to explore its behavior. In the fourth section we present the resulting equilibrium structures,
the persistence lengths as a function of the model parameters, and the behavior under stretching.
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3.2 Theoretical Background

3.2.1 The worm-like chain model revisited: WLC with stretching modulus and WLC
under tension

We already introduced in section 2.2.1 the Hamiltonian of the WLC. Let us examine the discretized
version of Eq. (2.1) with an additional stretching term accounting for fluctuations of the bond length
of the segmenti along theti-direction:

HWLC

kBT
=
k

2

N−1∑
i=1

ti · ti+1 +
γ

2

N−1∑
i=1

(bi − b0)2

b0
(3.1)

with ~bi = ~ri+1 − ~ri = biti being theith bond vector with lengthbi, ~ri representing the position
vectors, andb0 being the length around which the segments fluctuate. Thus we only allow for
one-dimensional longitudinal fluctuations (along theti-direction) in the segment lengthbi. In the
following we are interested in the change of the mean-square end-to-end distance〈R2

E〉 compared
to the incompressible WLC model. Under the assumption thatbi andti are uncorrelated it yields

〈R2
E〉 =

N−1∑
i=1

N−1∑
j=1

〈~bi ·~bj〉

=
N−1∑
i=1

N−1∑
j=1

〈bi bj ti · tj〉

=
N−1∑
i=1

N−1∑
j=1

〈bi bj〉〈ti · tj〉

=
N−1∑
i=1

〈b2i 〉 +
N−1∑
i=1

N−1∑
j 6=1

〈bi〉〈bj〉〈ti · tj〉

=
N−1∑
i=1

(〈b2i 〉 − 〈bi〉2) +
N−1∑
i=1

N−1∑
j=1

〈bi〉2〈ti · tj〉

= N(〈b2i 〉 − 〈bi〉2) +
N−1∑
i=1

N−1∑
j=1

〈bi〉2〈ti · tj〉

(3.2)

where the first term is the additional contribution from the stretching modulus of the segments and
the second part corresponds to the usual worm-like chain result. The first and second moment of the
bond vectors is given by

〈bi〉 =

∫
db bi exp

(
− γ

2kBT

∑N−1
i=1

(bi−b0)2

b0

)
∫
db exp

(
− γ

2kBT

∑N−1
i=1

(bi−b0)2

b0

) = b0 (3.3)

〈b2i 〉 =

∫
db b2i exp

(
− γ

2kBT

∑N−1
i=1

(bi−b0)2

b0

)
∫
db exp

(
− γ

2kBT

∑N−1
i=1

(bi−b0)2

b0

) = b0

(
b0 +

1
γ

)
. (3.4)
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(b) Illustration of the calculated stress-strain relations for the WLC
model (red) and the WLC model extended by a linear stretching
term (green).

Figure 3.1: Stress-strain relations and mean squared end-to-end distance for the inextensible and
extensible WLC model.

In the limit of long chains the following relationship for the mean-square end-to-end distance is
obtained

〈R2
E〉 = 2Llp − 2l2p

(
1 − exp

(
−L

lp

))
+
L

γ
(3.5)

with L = Nb0 being the contour length andlp = kb0 denoting the bending persistence length.
There is just an additional termLγ to the usual worm-like chain result of Eq. (2.3). Note thatγ is
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determined by

γ =
b0

〈(bi − b0)2〉
. (3.6)

The energy of a worm-like chain with bending persistence lengthlp in the presence of an external
stretching forcef in z-direction is given by

HWLC,stretch

kBT
=
lp
2

∫ L

0
ds

(
dt(s)
ds

)2

− f

∫ L

0
z · t(s). (3.7)

If the forcef in Eq. (3.7) is used as a Lagrange multiplier to fix the end-to-end extensionRE =
z ·(~r(L)−~r(0)) of the chain the free energyF corresponds to the quantum-mechanical ground state
energy of a dipolar rotator with moment of inertialp subject to an electric fieldf [BMSS94, MS95c].
The force extension relation can be solved numerically

〈RE〉
L

=
kBT

L

d

df
ln(Z) = − d

df

F
L
, (3.8)

whereZ is the partition function given by the path integral

Z = Z(t0, 0; t1, L) =
∫

Dt exp
(

HWLC,stretch

kBT

)
. (3.9)

The large and small stretching force regime admit analytical asymptotic solutions [MS95c]

〈RE〉
L

=


2flp
3kBT

flp � 1

1 −
(
kBT
4flp

) 1
2

flp � 1
(3.10)

which can be combined by the approximative interpolation formula

flp
kBT

=
1
4

(
1 − 〈RE〉

L

)−2

+
〈RE〉
L

− 1
4
. (3.11)

Since for large stretching forces the longitudinal component (along the stretching direction) of
the tangent vectort⊥ does not contribute to the elastic energy the bending persistence lengthlp of a
worm-like chain under tension can be evaluated as a function of the applied forcef and the average
of t2

⊥ [MS95c]:

lp =
1

f〈t2
⊥〉2

. (3.12)

Experimental force-extension data show that for forces larger than15pN the measured exten-
sions exceed the contour length of the DNA [SCB96, CLH+96]. These deviations from the inex-
tensible worm-like chain case indicate that the constraint of fixed chain length has to be released by
adding a linear stretching term with stretch modulusγ into the energy (see Eq. (3.1)). By doing so
one obtains in the asymptotic stretching regime withflp � 1 the following stress-strain relation
[Odi95, SN02b]

〈RE〉
L

= 1 −
(
kBT

4flp

) 1
2

+
f

γ
. (3.13)
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Figure 3.2: Illustration of all six base-pair step parameters and the corresponding coordinate system.
The involved mathematics to calculate the step parameters is discussed in appendix B.

3.2.2 Helix geometry

To resolve and interpret X-ray diffraction studies on DNA oligomers the relative position and orien-
tation of successive base-pairs are analyzed in terms of Rise (Ri), Slide (Sl), Shift (Sh), Twist (Tw),
Roll (Ro), and Tilt (Ti) [BPO94] (see Fig. 3.2). In order to illustrate the relation between these
local parameters and the overall shape of the resulting helix we discuss a simple geometrical model
where DNA is viewed as a twisted ladder where all bars lie in one plane. For vanishing bending
angles with Ro= Ti = 0 each step is characterized by four parameters: Ri, Sl, Sh, and Tw [CD99].
Within the given geometry a base-pair can be characterized by its positionr and the angle of its
main axis with then/b-axis (n points into the direction of the large axis,b points into the direction
of the small axis, andt, representing the tangent vector of the resulting helix, is perpendicular to the
n-b- plane as it is illustrated in Fig. 3.2). At each step the center points are displaced by a distance√

Sl2 + Sh2 in then−b−plane. The angle between successive steps is equal to the twist angle and
the center points are located on a helix with radiusr =

√
Sl2 + Sh2/(2 sin(Tw/2)).

In the following we study the consequences of imposing a simple constraint on the bond lengths
l1 andl2 representing the two sugar phosphate backbones (the rigid bonds connect the right and left
edges of the bars along then-axis respectively). Ri is the typical height of a step which we will try
to impose on the grounds that it represents the preferred stacking distance of neighboring base pairs.
We choose Ri= 3.3Å corresponding to the B-DNA value. One possibility to fulfill the constraint
l1 = l2 = l = 6Å is pure twist. In this case a relationship of the twist angle and the width of the
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base-pairsd, the backbone lengthl and the imposed rise Ri is obtained:

Tw = arccos
(
d2 − 2l2 + 2Ri2

d2

)
. (3.14)

Another possibility is to keep the rotational orientation of the base pair (Tw= 0), but to displace its
center in then-b-plane, in which case Ri2 + Sl2 + Sh2 ≡ l2. With Sh= 0, it results in a skewed
ladder with skew anglearcsin(Sl/l)/π [CD99].

The general case can be solved as well. In a first step a general condition is obtained that needs
to be fulfilled by any combination of Sh, Sl, and Tw independently of Ri. For non-vanishing Tw this
yields a relation between Sh and Sl:

tan(Tw) =
Sh
Sl
. (3.15)

Using Eq. (3.15) the general equation can finally be solved:

Sl =
1√
2

[
cos(

Tw
2

)2
√

sec(
Tw
2

)2(2l2 − d2 − Ri2)

]
. (3.16)

Eq. (3.16) is a result of the mechanical coupling of slide and shift respectively and twist due to the
backbones. Treating the rise again as a constraint the twist is reduced for increasing slide or shift
motion. The center-center distancec of two neighboring base-pairs is given by

c =
√

Ri2 + Sl2 (1 + tan(Tw)2). (3.17)

For Tw = 0 and a given value of Ri the center-center distance is equal to the backbone lengthl and
for Tw = arccos

(
(d2 − 2l2 + 2Ri2)/d2

)
one obtainsc = Ri.

3.2.3 Thermal fluctuations

In this section we discuss how to calculate the effective coupling constants of a harmonic system
valid within linear response theory describing the couplings of the base-pair step parameters along
the chain. Furthermore we show how to translate measured mean and mean squared values of the 6
microscopic base-pair step parameters into macroscopic observables such as bending and torsional
persistence length. This provides the linkage between the two descriptions: WLC (worm-like chain)
versus SOP (stack-of-plates) model.

Within linear response theory it should be possible to map our model onto a Gaussian system
where all translational and rotational degrees of freedom are harmonically coupled. We refer to
this model as the stack-of-plates (SOP) model [OKLN98]. The effective coupling constants are
given by the second derivatives of the free energy in terms of base-pair step variables around the
equilibrium configuration. This yields6×6 matricesKnm describing the couplings of the base-pair
step parameters of neighboring base-pairs along the chain:

Knm =
∂2F

∂xni ∂x
m
j

. (3.18)

Therefor one can calculate the(N − 1) × (N − 1) correlation matrixC in terms of base-pair step
parameters.N is thereby the number of base-pairs.

〈C〉 =

K11 K12 K13 K14 . . .
K12 K22 K23 K24 . . .

...


−1

. (3.19)
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3
2

1

Figure 3.3: Illustration of DNA geometry for a diameter ofd = 16Å: (1) Twisted ladder with
Sl = Sh = 0, Ri = 3.3Å, Tw ≈ 2π/10, (2) Skewed ladder with Tw= Sh = 0, Ri = 3.4Å,
Sl ≈ 5.0Å, (3) Helix with Tw = 2π/12, Ri = 3.4Å, Sl ≈ 2.7Å, Sh≈ 1.6Å.

The inversion ofC results in a generalized connectivity matrix with effective coupling constants as
entries.

The following considerations are based on the assumption that one only deals with nearest-
neighbor interactions. Then successive base-pair steps are independent of each other and the cal-
culation of the orientational correlation matrix becomes feasible. In the absence of spontaneous
displacements (Sl= Sh = 0) and spontaneous bending angles (Ti= Ro = 0) as it is the case for
B-DNA going from one base-pair to the neighboring implies three operations. In order to be inde-
pendent of the reference base-pair one first rotates the respective base-pair into the mid-frame with
R(Twsp/2) (R is a rotation matrix,Twsp denotes the spontaneous twist), followed by a subsequent
overall rotation in the mid-frame which takes the thermal motion of Ro, Ti and Tw into account

A =

ti · ti+1 ti · bi+1 ti · ni+1

bi · ti+1 bi · bi+1 bi · ni+1

ni · ti+1 ni · bi+1 ni · ni+1

 (3.20)
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with

A11 = cos(Ω) + (1 − cos(Ω))
Tw2

Ω2

A12 = (1 − cos(Ω))
Tw Ti
Ω2

− Ro
Ω

sin(Ω)

A13 = (1 − cos(Ω))
Tw Ro

Ω2
+

Ti
Ω

sin(Ω)

A21 = (1 − cos(Ω))
Tw Ti
Ω2

+
Ro
Ω

sin(Ω)

A22 = cos(Ω) + (1 − cos(Ω))
Ti2

Ω2

A23 = (1 − cos(Ω))
Ti Ro
Ω2

− Tw
Ω

sin(Ω)

A31 = (1 − cos(Ω))
Tw Ro

Ω2
− Ti

Ω
sin(Ω)

A32 = (1 − cos(Ω))
Ti Ro
Ω2

+
Tw
Ω

sin(Ω)

A33 = cos(Ω) + (1 − cos(Ω))
Ro2

Ω2

(3.21)

and a final rotation due to the spontaneous twistR(Twsp/2). Note thatΩ =
√

Tw2 + Ti2 + Ro2

and thatR(Twsp/2) is given by

R(Twsp/2) =

1 0 0
0 cos (Twsp/2) − sin (Twsp/2)
0 sin (Twsp/2) cos (Twsp/2)

 . (3.22)

The orientational correlation matrix between two neighboring base pairs can be written as

〈Oi i+1〉 = R(Twsp/2) 〈A〉 R(Twsp/2) (3.23)

A describes the fluctuations around the mean values. Under the assumption of small angles Ro, Ti
and Tw it yields

〈Oi i+1〉11 = 1 − 〈Ti2〉 − 〈Ro2〉
〈Oi i+1〉12 = 0
〈Oi i+1〉13 = 0
〈Oi i+1〉21 = 0

〈Oi i+1〉22 =
1
2
(
〈Ti2〉 − 〈Ro2〉 − cos(Twsp)(2〈Tw2〉 + 〈Ti2〉 + 〈Ro2〉 − 2)

)
〈Oi i+1〉23 =

1
2
(
2〈Tw2〉 + 〈Ti2〉 + 〈Ro2〉 − 2

)
sin(Twsp)

〈Oi i+1〉31 = 0

〈Oi i+1〉32 = −1
2
(
2〈Tw2〉 + 〈Ti2〉 + 〈Ro2〉 − 2

)
sin(Twsp)

〈Oi i+1〉33 =
1
2
(
〈Ro2〉 − 〈Ti2〉 − cos(Twsp)(2〈Tw2〉 + 〈Ti2〉 + 〈Ro2〉 − 2)

)
.

(3.24)
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As a consequence of the independence of successive base-pair step parameters one finds〈Oi j〉 =
(R(Twsp/2) 〈A〉 R(Twsp/2))j−i where the matrix product is carried out in the eigenvector basis
of R(Twsp/2) 〈A〉 R(Twsp/2). In the end a relationship of the mean and mean squared local base-
pair step parameters and the bending and torsional persistence length is obtained. The calculation
yields an exponentially decaying tangent-tangent correlation function

〈t(0) · t(s)〉 = exp(−s/lp) (3.25)

with a bending persistence length

lp =
2〈Ri〉

(〈Ti2〉 + 〈Ro2〉)
. (3.26)

In the following we will calculate the torsional persistence length. Making use of a simple
relationship between the local twist and the base-pair orientations turns out to be more convenient
than the transfer matrix approach.

The (bi)normal-(bi)normal correlation function is an exponentially decaying function with an
oscillating term depending on the helical repeat lengthh = p〈Ri〉 and the helical pitchp = 2π/〈Tw〉
respectively, namely

〈n(0) · n(s)〉 = exp(−s/ln) cos(2π s/h). (3.27)

The torsional persistence lengthln = lb can be calculated then in the following way. It can be
shown that the twist angle Tw of two successive base-pairs is related to the orientations{t,b,n}
and{t′,b′,n′} through

cos(Tw) =
n · n′ + b · b′

1 + t · t′ (3.28)

(see appendix C). Taking the mean and using the fact that the orientational correlation functions and
twist correlation function decay exponentially

exp(−1/lTw) =
2 exp(−1/ln)

1 + exp(−1/lp)
(3.29)

yields in the case of stiff filaments a simple expression ofln depending onlp andlTw:

ln
2

=
lb
2

=
(

2
lTw

+
1
lp

)−1

, (3.30)

where the twist persistence length is defined as

lTw =
〈Ri〉

〈Tw2〉
. (3.31)

3.3 Model and methods

Qualitatively the geometrical considerations suggest a B-DNA like ground state and the transition
to a skewed ladder conformation under the influence of a sufficiently high stretching force, because
this provides the possibility to lengthen the chain and to partially conserve stacking. Quantitative
modeling requires the specification of a Hamiltonian.
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l 0

2a

2c

Figure 3.4: (left) Illustration of the underlying idea. The base-pairs are represented as rigid ellip-
soids. The sugar-phosphate backbone is treated as semi-rigid springs connecting the edges of the
ellipsoid. (right) Introduced interactions lead to a right-handed twisted structure.

3.3.1 Introduction of the Hamiltonian

The observed conformation of a dinucleotide base-pair step represents a compromise between (i) the
base stacking interactions (bases are hydrophobic and the base-pairs can exclude water by closing
the gap in between them) and (ii) the preferred backbone conformation (the equilibrium backbone
length restricts the conformational space accessible to the base-pairs) [PH98]. Packer and Hunter
[PH98] have shown that roll, tilt and rise are backbone-independent parameters. They depend
mainly on the stacking interaction of successive base-pairs. In contrast twist is solely controlled
by the constraints imposed by a rigid backbone. Slide and shift are sequence-dependent. While it
is possible to introduce sequence dependant effects into our model, they are ignored in the present
work.

We propose a generic model for DNA where the molecule is described as a stack of thin, rigid
ellipsoids representing the base-pairs (Fig. 3.4). The shape of the ellipsoids is given by three radii
a, b, c of the main axes in the body frames which can be used to define a structure matrix

S =

a 0 0
0 b 0
0 0 c

 . (3.32)

2a corresponds to the thickness,2b to the depth which is a free parameter in the model, and2c =
18Å to the width of the ellipsoid which is fixed to the diameter of a B-DNA helix. The thickness2a
will be chosen in such a way that the minimum center-center distance for perfect stacking reproduces
the experimentally known value of3.3Å.

The attraction and the excluded volume between the base-pairs is modeled by a variant of the
Gay-Berne potential [EE03] for ellipsoids of arbitrary shapeSi, relative position~r12 and orientation
Ai. The potential can be written as a product of three terms:

U(A1,A2, ~r12) = Ur(A1,A2, ~r12)η12(A1,A2, r̂12)χ12(A1,A2, r̂12). (3.33)

The first term controls the distance dependence of the interaction and has the form of a simple LJ
potential

Ur = 4εGB

((
σ

h+ γσ

)12

−
(

σ

h+ γσ

)6
)

(3.34)
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Figure 3.5: Distance and angular dependence of the Gay-Berne potential between two similar oblate
ellipsoids with semi-axes (3.3,10,18) andγ = 1.0, σ = 3.3.

where the interparticle distancer is replaced by the distanceh of closest approach between the two
bodies:

h ≡ min(|~ri − ~rj |) ∀(i, j) (3.35)

with i ∈ Body 1 andj ∈ Body 2. The range of interaction is controlled by an atomistic length scale
σ = 3.3Å, representing the effective diameter of a base-pair.

In general, the calculation ofh is non-trivial. We use the following approximative calculation
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scheme which is usually employed in connection with the Gay-Berne potential:

h(A1,A2, ~r12) = r12 − σ12(A1,A2, r̂12) (3.36)

σ12(A1,A2, r̂12) = [
1
2
r̂T12G

−1
12 (A1,A2)r̂12]−1/2 (3.37)

G12(A1,A2) = AT
1 S2

1A1 + AT
2 S2

2A2. (3.38)

In the present case of oblate objects with rather perfect stacking behavior Eq. (3.36) produces only
small deviations from the exact solution of Eq. (3.35) [PWLW94, PW85, PRPL96].

The other two terms in Eq. (3.33) control the interaction strength as a function of the relative
orientationAt

1A2 and position~r12 of interacting ellipsoids:

η12(A1,A2, r̂12) =
det[S1]/σ2

1 + det[S2]/σ2
2

(det[H12]/(σ1 + σ2))
1/2

(3.39)

H12(A1,A2, r̂12) =
1
σ1

AT
1 S2

1A1 +
1
σ2

AT
2 S2

2A2 (3.40)

σi(Ai, r̂12) ≡
(
r̂T12 AT

1 S−2
i A1 r̂12

)−1/2
(3.41)

and

χ12(A1,A2, r̂12) = [2r̂T12 B−1
12 (A1,A2) r̂12] (3.42)

B12(A1,A2) = AT
1 E1A1 + AT

2 E2A2 (3.43)

with

Ei = σ


ai
bi ci

0 0
0 bi

ai ci
0

0 0 ci
ai bi

 =
σ

det[Si]
S2
i . (3.44)

In Fig. 3.5 the distance dependence of the Gay-Berne potential for all possible pole contacts as well
as the dependence on Tw, Sh, and Sl around the stacked (on top) conformation is shown.

We neglect electrostatic interactions between neighboring base-pairs since at physiological con-
ditions the stacking interaction dominates [Hun93, CD99].

At this point we have to find appropriate values for the thickness2a and the parameterγ of
Eq. (3.34). Both parameters influence the minimum of the Gay-Berne potential. There are essen-
tially two possible procedures. One way is to make use of the parameterization result of Everaers
and Ejtehadi [EE03], i.e.γ = 21/6 − 30−1/6, and to choose a value ofa ≈ 0.7 that yields the
minimum center-center distance of3.3Å for perfect stacking. Unfortunately it turns out that the
fluctuations of the bending angles strongly depend on the flatness of the ellipsoids. The more flat
the ellipsoids are the smaller are the fluctuations of the bending angles so that one ends up with
extremely stiff filaments with a persistence length of a few thousand base-pairs. This can be seen
clearly for the extreme case of two perfectly stacked plates: each bending move leads then to an
immediate overlap of the plates. That is why we choose the second possibility. We keepγ as a free
parameter that is used in the end to shift the potential minimum to the desired value and fix the width
of the ellipsoids to be approximately half the known rise valuea = 1.55Å. This requiresγ = 1.07
close to the standard choiceγ = 1 employed in the literature [BFZ98].

The sugar phosphate backbone is known to be nearly inextensible. The distance between ad-
jacent sugars varies from5.5Å to 6.5Å [CD99]. This is taken into account by two stiff harmonic



48 3 Simulating DNA at the base-pair level

left−handed helix

backbones pass
through base−pairs

no overlap

right−handed helix

Figure 3.6: Consider two plates that are connected by two rigid bonds. The right bond is anchored
at the upper right corner whereas the left bond is anchored at the lower left corner. In case of a right-
handed helix there is no overlap of the backbone with the base-pairs whereas in case of a left-handed
twist the backbones pass through the plate. Such moves are rejected in the Monte Carlo procedure.

springs with lengthl1 = l2 = 6.0Å connecting neighboring ellipsoids (see Fig. 3.4). The anchor
points are situated along the centerline in~n-direction (compare Fig. 3.2 and Fig. 3.4) with a dis-
tance of±8Å from the center of mass. The backbone is thus represented by an elastic spring with
non-zero spring lengthl0 = 6Å

Hel =
k

2
[
(|r1,i+1 − r1,i| − l0)2 + (|r2,i+1 − r2,i| − l0)2

]
. (3.45)

The competition between the GB potential that forces the ellipsoids to maximize the contact area
and the harmonic springs with non-zero spring length that does not like to be compressed leads to
a twist in either direction of the order of±π/5. The right-handedness of the DNA helix is due
to excluded volume interactions between the bases and the backbone which we do not represent
explicitly (Fig. 3.6). Rather we break the symmetry by rejecting moves which lead to local twist
smaller than−π/18.

Thus we are left with three free parameters in our model, the GB energy depthε = min(U)
which controls the stacking interaction, the spring constantk which controls the torsional rigidity,
and the depthb of the ellipsoids which influences mainly the fluctuations of the bending angles.
All other parameters such as the width and the height of the ellipsoids, or the range of interaction
σ = 3.3Å which determines the width of the GB potential are fixed in order to reproduce the
experimental values for B-DNA.

3.3.2 MC simulation

In our model all interactions are local and it can therefore conveniently be studied using a MC
scheme. In addition to trial moves consisting of local displacements and rotations of one ellipsoid
by a small amplitude, it is possible to employ global moves which modify the position and the
orientation of large parts of the chain. The moves are analogous of (i) the well-known pivot move
[LB00], and (ii) a crankshaft move where two randomly chosen points along the chain define the
axis of rotation around which the inner part of the chain is rotated. The moves are accepted or
rejected according to the Metropolis scheme [MRR+53].
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Figure 3.7: Time correlation functions of the scalar product of the tangent vectors of the first and
the last monomerτ = ~t(0, 1) · ~t(t,N) with N = 10 (red), N = 20 (green), N = 50 (blue) and
2b = 11Å, ε = 20kBT , k = 64kBT/Å

2
for (a) global and (b) local moves. It is observed that

τglobal is independent of the chain lengthN whereasτlocal scales asN3. The ’time’ is measured in
units of sweeps where one MC sweep corresponds toN trials. The CPU-time for one sweep scales
asN2 in case of global moves and asN in case of local moves. Thus the simulation timet scales
astlocal ∝ N4 andtglobal ∝ N2.
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Fig. 3.7 shows that these global moves significantly improve the efficiency of the simulation.
We measured the correlation timeτ of the scalar product of the tangent vectors of the first and the
last monomer of 200 independent simulation runs withN = 10, 20, 50 monomers using (i) only
local moves and (ii) local and global moves (ratio 1:1). The correlation time of the global moves is
independent of the chain length withτglobal ≈ 78 sweeps whereasτlocal scales asN3.

Each simulation run comprises106 MC sweeps where one MC sweep corresponds to2N trials
(one rotational and one translational move per base-pair) withN denoting the number of monomers.
The amplitude is chosen such that the acceptance rate equals approximately to50%. Every 1000
sweeps we store a snapshot of the DNA conformation. We measured the ’time’ correlation functions
of the end-to-end distance, the rise of one base-pair inside the chain and all three orientational angles
of the first and the last monomer and of two neighboring monomers inside the chain in order to
extract the longest relaxation timeτmax. We observeτmax < 1000 for all simulation runs.

An estimate for the CPU time required for one sweep for chains of lengthN = 100 on a AMD
Athlon MP 2000+ processor results in0.026s which is equivalent to1.33 × 10−4s per move.

3.3.3 Energy minimization

We complemented the simulation study by zero temperature considerations that help to discuss
the geometric structure that is obtained by the introduced interactions and to rationalize the MC
simulation data. Furthermore zero temperature considerations can be used to obtain an estimate of
the critical forcefcrit that must be applied to enable the structural transition from B-DNA to the
overstretched S-DNA configuration as a function of the model parameters{ε, k, b}.

3.4 Results

In the following we will try to motivate an appropriate parameter set{ε, k, b} that can be used for
further investigations within the framework of the presented model. Therefor we explore the pa-
rameter dependence of experimental observables such as the bending persistence length of B-DNA
lp ≈ 150bp, the torsional persistence lengthlt ≈ 260bp [SBC99], the mean values and correla-
tions of all six base-pair parameters and the critical pulling forcefcrit ≈ 65pN [CLH+96, LL99,
LLA +02, BSLS00] that must be applied to enable the structural transition from B-DNA to the over-
stretched S-DNA configuration. In fact, static and dynamic contributions to the bending persistence
lengthlp of DNA are still under discussion. It is known thatlp depends on both the intrinsic cur-
vature of the double helix due to spontaneous bending of particular base-pair sequences and the
thermal fluctuations of the bending angles. Bensimonet al. introduced disorder into the WLC
model by an additional set of preferred random orientation between successive segments [BDM98].
They derived a relationship of the pure persistence lengthlpure, i.e. without disorder, the effec-
tive persistence lengthleff , and the probability distribution function of a set of random orientation
P ({Ψi}) and compared their result to MC simulations. Assuming a Gaussian distribution function
for P ({Ψi}) one finds a simple renormalization formula in the limit of large and small disorder

leff
lpure

=

1 − 1
2

√
lpure

ldisorder
,

lpure

ldisorder
� 1

2 ldisorder
lpure

,
lpure

ldisorder
� 1

. (3.46)

Since we are dealing with intrinsically straight filaments with1/ldisorder = 0, we measurelpure.
Recent estimates ofldisorder range between430 [BFK+95] and4800 [VV02] base-pairs using cryo-
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T 〈Ri〉 〈Sh〉 〈Sl〉 〈Tw〉 〈Ti〉 〈Ro〉 〈c〉 lp
0 3.26 0.0 0.0 0.64 0.0 0.0 3.26 ∞
1 3.37 0.01 -0.01 0.62 0.0 0.0 3.47 172.8
2 3.76 -0.01 -0.03 0.47 0.0 0.0 4.41 25.3
3 4.10 -0.01 0.01 0.34 0.0 -0.01 5.07 14.4
5 4.30 0.03 -0.02 0.27 0.0 0.01 5.39 13.6

Table 3.1: Dependence of mean values of all six step parameters and of the mean center-center
distance〈c〉 on the temperature for2b = 11Å, ε = 20kBT , k = 64kBT/Å

2
. 〈Ri〉, 〈Sh〉, 〈Sl〉 and

〈c〉 are measured in [Å], lp in base-pairs.

electron microscopy and cyclization experiments respectively implicating values between105 and
140 base-pairs forlpure if it is assumed that the anglesΨi are small.

3.4.1 Equilibrium structure

As a first step we study the equilibrium structure of our chains as a function of the model parameters.
To investigate the ground state conformation we rationalize the MC simulation results with the help
of the geometrical considerations and minimum energy calculations. In the end we will choose
parameters for which our model reproduces the experimental values of B-DNA [CD99]:

〈Ri〉 = 3.3 − 3.4Å

〈Sl〉 = 0Å

〈Sh〉 = 0Å

〈Tw〉 = 2π/10.5 − 2π/10
〈Ti〉 = 0
〈Ro〉 = 0.

We use the following reduced units in our calculations. The energy is measured in units ofkBT ,
lengths in units of̊A, forces in units ofkBT Å

−1 ≈ 40pN.
We start by minimizing the energy for the various conformations shown in Fig. 3.3 to verify

that our model Hamiltonian indeed prefers the B-Form. Since we have only local (nearest neighbor)
interactions we can restrict the calculations to two base-pairs. There are three local minima which
have to be considered: (i) a stacked, twisted conformation with Ri= 3.3, Sl, Sh, Ti, Ro= 0, Tw =
π/10, (ii) a skewed ladder with Ri= 3.3, Sl = 5.0, Sh, Tw, Ti, Ro= 0, and (iii) an unwound helix
with Ri = 6.0, Sl, Sh, Ti, Ro= 0, Tw = 0. Without an external pulling force the global minimum
is found to be the stacked twisted conformation.

We investigated the dependence of Ri and Tw on the GB energy depthε that controls the stacking
energy for different spring constantsk. Ri depends neither onε nor onk nor on b. It shows a
constant value of Ri≈ 3.3Å for all parameter sets{ε, k, b}. The resulting Tw of the minimum
energy calculation coincides with the geometrically determined value under the assumption of fixed
Ri up to a criticalε. Up to that value the springs behave effectively as rigid rods. The criticalε is
determined by the torqueτ(k, ε) that has to be applied to open the twisted structure for a given value
of Ri.

Using MC simulations we can study the effects arising from thermal fluctuations. Plotting〈Ri〉,
and〈Tw〉 as a function of the GB energy depthε one recognizes that in general〈Ri〉 is larger than
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2
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line corresponds to the minimum energy value.
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Ri(T = 0). It converges only for large values ofε to the minimum energy values. This can be
understood as follows. Without fluctuations the two base-pairs are perfectly stacked taking the
minimum energy configuration Ri= 3.3Å, Sl, Sh, Ti, Ro= 0, and Tw= π/10. As the temperature
is increased the fluctuations can only occur to larger Ri values due to the repulsion of neighboring
base-pairs. A decrease of Ri would cause the base-pairs to intersect. Increasing the stacking energy
reduces the fluctuations in the direction of the tangent vector and leads to smaller〈Ri〉 value. In the
limit ε → ∞ it should reach the minimum energy value which is observed from the simulation data.
In turn the increase of the mean value of rise results in a smaller twist angle〈Tw〉. We can calculate
with the help of Eq. (3.14) the expected twist using the measured mean values of〈Ri〉. Fig. 3.8
shows that there is no agreement. The deviations are due to fluctuations in Sl and Sh which cause
the base-pairs to untwist. This is the mechanical coupling of Sl, Sh, and Tw due to the backbones
already mentioned in section 3.2.2. It is observed that a stiffer springk and a larger depth of the
ellipsoidsb result in larger mean twist values. Increasing the spring constantk means decreasing the
fluctuations of the twist and, due to the mechanical coupling, of the shift motion around the mean
values which explains the larger mean twist values. An increase of the ellipsoidal depthb in turn
decreases the fluctuations of the bending angles. The coupling of the tilt fluctuations with the shift
fluctuations leads to larger values for〈Tw〉. The corresponding limit where〈Tw〉 → Tw(T = 0) is
given byk, ε → ∞.

The measurement of the mean values of all six base-pair step parameters for different tempera-
tures is shown in Table 3.4.1. One can see that with increasing temperature the twist angles decrease
while the mean value of rise increase. The increase of the center-center distance is not only due to
fluctuations in Ri but also due to fluctuations in Sl and Sh. That is why there are strong deviations
of 〈c〉 from 〈Ri〉 even though the mean values of Sl and Sh vanish. Note that the mean backbone
length〈l〉 always amounts to about6Å.

The calculation of the probability distribution functions of all six base-pair parameters shows
that especially the rise and twist motion do not follow a Gaussian behavior. The deviation of the
distribution functions from the Gaussian shape depends mainly on the stacking energy determined
by ε. For smaller values ofε one observes larger deviations than for largeε values.

It is worthwhile to mention that there are mainly two correlations between the base-pair param-
eters. The first is a microscopic twist-stretch coupling determined by a correlation of Ri and Tw, i.e.
an untwisting of the helix implicates larger rise values. A twist-stretch coupling was introduced in
earlier rod models [KLNO97, Mar97, Nel98] motivated by experiments with torsionally constrained
DNA [SAB+96] which allow for the determination of this constant. Here it is the result of the pre-
ferred stacking of neighboring base-pairs and the rigid backbones. The second correlation is due
to constrained tilt motion. If we return to our geometrical ladder model we recognize immediately
that a tilt motion alone will always violate the constraint of fixed backbone lengthl. Even though
we allow for backbone fluctuations in the simulation the bonds are very rigid which makes tilt-
ing energetically unfavorable. To circumvent this constraint tilting always involves a directed shift

Ri Sh Sl Tw Ti Ro
〈x 〉 3.359 0.0 0.0 0.621 0.0 0.0

〈x2 〉 − 〈x 〉2 0.020 0.115 0.423 0.001 0.003 0.009

Table 3.2: Mean values and mean squared fluctuations of all step parameters forε = 20kBT ,
k = 64kBT/Å

2
, 2b = 11Å.
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Figure 3.9: Contour plots of measured clouds for rise-twist, shift-tilt, and roll-tilt to demonstrate in-
ternal couplings and the anisotropy of the bending angles (2b = 11Å, ε = 20kBT , k = 64kBT/Å

2
).

motion.

Fig. 3.9 shows that we recover the anisotropy of the bending angles Ro and Ti as a result of the
spatial dimensions of the ellipsoids. Since the overlap of successive ellipsoids is larger in case of
rolling it is more favorable to roll than to tilt.

The correlations can be quantified by calculating the correlation matrixC of Eq. (3.19). Inverting
C yields the effective coupling constants of the SOP modelK = C−1. Due to the local interactions
it suffices to calculate mean and mean squared values of Ri, Sl, Sh, Tw, Ro, and Ti characterizing
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20kBT , k = 64kBT/Å

2
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, 2b = 8Å. The Gaussians are plotted with the measured mean and mean

squared values of the MC simulation. One can see that for largeε values the distribution functions
are essentially Gaussian.



3.4 Results 57

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

< 
t(

0)
 . t(

s)
 >

s [bp]

(a) Tangent vector correlation function〈ti · tj〉.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

< 
n(

0)
 . n(

s)
 >

s [bp]

(b) Normal vector correlation function〈ni · nj〉.

Figure 3.12: Comparison of analytical expressions Eqs. (3.26) and (3.30) forlp andln (solid lines)
with numerically calculated orientational correlation functions (data points) for2b = 8Å, k =
64kBT/Å

2
, andε = 20, . . . , 60 [kBT ] (from bottom to top).

the ’internal’ couplings of the base-pairs steps:

C = (σ)ij , ∀i, j ∈ {1, . . . , 6} (3.47)
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with σx,y = 〈xy〉 − 〈x〉〈y〉. One obtains forε = 20kBT , k = 64kBT/Å
2
, 2b = 11Å

K = C−1 =



81Å
−2 −5Å

−2 0 267Å
−1 29Å

−1 0
−5Å

−2 60Å
−2 0 −48Å

−1 −340Å
−1 0

0 0 2Å
−2 −1Å

−1 0 0
267Å

−1 −48Å
−1 −1Å

−1 2211 261 −2
29Å

−1 −340Å
−1 0 261 2244 −1

0 0 0 −2 −1 117


. (3.48)

Thus a significant twist-stretch, shift-tilt and twist-tilt coupling is recovered.

3.4.2 Bending and torsional rigidity and stretching modulus

The correlation matrix of Eq. (3.47) can also be used to check Eqs. (3.26) and (3.30). Therefore we
measured the orientational correlation functions〈ti ·tj〉, 〈ni ·nj〉, 〈bi ·bj〉 and compared the results
to the analytical expressions as it is illustrated in Fig. 3.12. The agreement is excellent.

The simulation data show that the bending persistence length does not depend on the spring
constantk. But it strongly depends onε being responsible for the energy that must be paid to tilt or
roll two respective base-pairs. Since a change of twist for constant Ri is proportional to a change in
bond length the bond energy contributes to the twist persistence length explaining the dependence
of lTw onk (compare Fig. 3.13).

We also measured the mean-square end-to-end distance〈R2
E〉 and find that〈R2

E〉 deviates from
the usual WLC chain result due to the compressibility of the chain. So as to investigate the origin
of the compressibility we calculate〈R2

E〉 for the following geometry. We consider two base-pairs
without spontaneous bending angles such that the end-to-end vector~RE can be expressed as

~RE =
∑
i

~ci =
∑
i

(Ri ti + Shbi + Slni). (3.49)

The coordinate system{ti,bi,ni} is illustrated in Fig. 3.2.~ci denotes the center-center distance
of two neighboring base-pairs. Since successive base-pair step parameters are independent of each
other, and the translational step parameters Ri and Sh and Sl are uncorrelated the mean-square end-
to-end distance〈R2

E〉 is given by

〈R2
E〉 =

∑
i

∑
j

〈~ci · ~cj〉

=
∑
i

∑
j

(〈RiiRij〉〈ti · tj〉 + 〈ShiShj〉〈bi · tj〉 + 〈SliSlj〉〈ni · tj〉)

⇓ 〈RiiRij〉 = 〈Rii〉〈Rij〉 = 〈Ri〉2, etc.,∀i 6= j, 〈Sl〉 = 〈Sh〉 = 0

=
∑
i

(〈Ri2〉 + 〈Sh2〉 + 〈Sl2〉) +
∑
i

∑
j 6=i

〈Ri〉2〈ti · tj〉

=
∑
i

(〈c2i 〉 − 〈Ri〉2) +
∑
i

∑
j

〈Ri〉2〈ti · tj〉

=
N〈Ri〉
γ

+ 2N〈Ri〉lp − 2l2p

(
1 − exp

(
−N〈Ri〉

lp

))
.

(3.50)
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Figure 3.13: Dependency of bending and torsional persistence length on the spring constantk, the
width of the ellipsoidsb and the energy depthε. We measured the persistence lengths for varying
width sizes2b = 8, 9, 10, 11Å (red, green, blue, purple) and for two different spring constants
k = 32 (plus), 64 (circles) [kBT/Å

2
]. The bending persistence length depends solely onb andε. It

gets larger for largerε andb values. But it does not depend onk (the curves for differentk values
corresponding to the same widthb lie one upon the other). The torsional persistence length in turn
depends onk, since a change of twist for constant Ri is proportional to a change in bond length.
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2
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andT = 1, 2, 3, 5 (from bottom to top) to Eqs. (3.26), (3.50) and (3.51) (solid lines). Using the
measured bending persistence lengths and the stretching moduli we find a good agreement with the
predicted behavior. ForT = 1 we obtainγ = 6.02Å

−1
.

N denotes the number of base-pairs. Note that〈Sl〉 and〈Sh〉 vanish. Using〈c2i 〉 = 〈Ri2〉 + 〈Sh2〉 +
〈Sl2〉 the stretching modulusγ is simply given by

γ =
〈Ri〉

(〈Ri2〉 − 〈Ri〉2) + 〈Sh2〉 + 〈Sl2〉
. (3.51)

We compared the data for different temperaturesT to Eq. (3.50) using the measured bending persis-
tence lengthslp and stretching moduliγ (see Fig. 3.14). The agreement is excellent. This indicates
that transverseslide and shift fluctuations contribute to thelongitudinalstretching modulus of the
chain.

3.4.3 Stretching

Extension experiments on double-stranded B-DNA have shown that the overstretching transition
occurs when the molecule is subjected to stretching forces of65pN or more [BSLS00]. The DNA
molecule thereby increases in length by a factor of1.8 times the normal contour length. This over-
stretched DNA conformation is called S-DNA. The structure of S-DNA is still under discussion.
First evidence of possible S-DNA conformations were provided by Laveryet al. [CLH+96, LL99,
LLA +02] using atomistic computer simulations.

In principle one can imagine two possible scenarios how the transition from B-DNA to S-DNA
occurs within our model. Either the chain untwists and unstacks resulting in an untwisted ladder with
approximately1.8 times the equilibrium length, or the chain untwists and the base-pairs slide against
each other resulting in a skewed ladder with the same S-DNA length. The second scenario should be
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energetically favorable since it provides a possibility to partially conserve the stacking of successive
base-pairs. In fact molecular modeling of the DNA stretching process [CLH+96, LL99, LLA+02]
yielded both a conformation with strong inclination of base-pairs and an unwound ribbon depending
on which strand one pulls.

We expect that the critical forcefcrit where the structural transition from B-DNA to over-
stretched S-DNA occurs depends only on the GB energy depthε controlling the stacking energy.
So as a first step to find an appropriate value ofε as input parameter for the MC simulation we
minimize the Hamiltonian with an additional stretching energyEpull = fci,i+1, where the stretch-
ing force acts along the center-of-mass axis, with respect to Ri, Sl and Tw for a given pulling
force f . Fig. 3.15 shows the resulting stress-strain curve. First the pulling force acts solely
against the stacking energy up to the critical force where a jump fromL(fcrit−)/L0 ≈ 1.05 to

L(fcrit+)/L0 =
√

Ri2 + Sl2/Ri ≈ 1.8 occurs, followed by another slow increase of the length
caused by overstretching the bonds.L0 = L(F = 0) = Ri denotes the stress-free center-of-mass
distance. As already mentioned three local minima are obtained: (i) a stacked, twisted conforma-
tion, (ii) a skewed ladder, and (iii) an unwound helix. The strength of the applied stretching force
determines which of the local minima becomes the global one. The global minimum for small
stretching forces is determined to be the stacked, twisted conformation and the global minima for
stretching forces larger thanfcrit is found to be the skewed ladder. Therefore the broadness of the
force plateau depends solely on the ratio ofl/Ri determined by the geometry of the base-pairsS
and the bond lengthl = 6.0Å. A linear relationship between the critical force and the stacking
energyε is obtained so that it is possible to extrapolate to smallerε values to extract theε value that
reproduces the experimental value offcrit ≈ 65pN. This suggests a value ofε ≈ 7.

The simulation results of the previous sections show several problems when this value ofε is
chosen. First of all the correct persistence lengths cannot be reproduced, the chain is far to flexible.
Secondly the undistorted ground state is not a B-DNA anymore. The thermal fluctuations suffice to
unstack and untwist the chain locally. That is why one has to choose largerε values even though the
critical force is going to be overestimated.

Therefore we choose the following way to fix the parameter set{b, ε, k}. First of all we choose
a value for the stacking energy that reproduces correctly the persistence length. Afterwards the
torsional persistence length is fixed to the experimentally known values by choosing an appropriate
spring constantk. The depth of the base-pairs has also an influence on the persistence lengths
of the chain. If the depthb is decreased larger fluctuations for all three rotational parameters are
gained such that the persistence lengths get smaller. Furthermore the geometric structure and the
behavior under pulling is very sensitive tob. Too small values provoke non-B-DNA conformations
or unphysical S-DNA conformations. We choose forb a value of11Å for those reasons. Forε = 20
andk = 64 a bending stiffness oflp = 170bp and a torsional stiffness ofln = 270bp are obtained
close to the experimental values. We use this parameter set to simulate the corresponding stress-
strain relation.

The simulated stress-strain curves for50 base-pairs show three different regimes (see Fig. 3.15).
(i) For small stretching forces the WLC behavior of the DNA in addition with linear stretching elas-
ticity of the backbones is recovered. This regime is completely determined by the chain lengthN .
Due to the coarse-graining procedure that provides analytic expressions of the persistence lengths
depending on the base-pair parameters it is not necessary to simulate a chain of a few thousand
base-pairs. The stress-strain relation of the entropic and WLC stretching regime (small relative ex-
tensionsL/L0 and small forces) is known analytically [MS95c, Odi95]. (ii) Around the critical force
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Figure 3.15: Force-extension curve for final parameterization. We simulatedN = 50 andN = 500
monomers, so that the WLC behavior (red solid line in (b)) is recovered for small stretching forces
followed by a structural transition. The elastic response of S-DNA is controlled by overstretching
the bonds.
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Figure 3.16: Experimentally measured stress-strain curves by [BSLS00].

fcrit ≈ 140pN which is mainly determined by the stacking energy of the base-pairs the structural
transition from B-DNA to S-DNA occurs. (iii) For larger forces the bonds become overstretched.
Our MC simulations suggest a critical forcefcrit ≈ 140pN which is slightly smaller than the value
fcrit ≈ 180pN calculated by minimizing the energy. This is due to entropic contributions.

In order to further characterize the B-to-S-transition we measured the mean, mean-square val-
ues and the probability distribution functions of rise, slide, shift, etc. as a function of the applied
forces. The evaluation of the MC data shows that the mean values of shift, roll and tilt are com-
pletely independent of the applied stretching force and vanish for allf . Rise increases at the critical
force from the undisturbed value of3.3Å to approximately4.0Å and decays subsequently to the
undisturbed value. Quite interestingly, the mean value of slide jumps from its undisturbed value of
0 to ±5Å (no direction is favored) and the twist changes at the critical force fromπ/10 to 0. The
calculation of the distribution function of the center-center distancec of two neighboring base-pairs
for f = 140pN yields a double-peaked distribution (see Fig. 3.17) indicating that part of the chain
is in the B-form and part of the chain in the S-form. The contribution of the three translational de-
grees of freedom to the center-center distancec is shown in Fig. 3.17. The S-DNA conformation is
characterized by Ri= 3.3Å, Sl = ±5Å and Tw= 0. In agreement with Refs. [CLH+96, LL99] we
obtain a conformation with highly inclined base-pairs still allowing for partial stacking of successive
base-pairs.

The evolution of the S-DNA conformation depending on the applied stretching force is illus-
trated in Figs. 3.20-3.22. We measured the probability distribution functions of all six step variables
around the critical force forf = 130pN andf = 140pN, and beyondfcrit for f = 250pN. Figs.
3.20 and 3.21 stress the fact that around the critical force part of the chain is in the B-form and part
of the chain is in the S-form giving rise for large fluctuations in Ri, Sl and Tw. Note that the twist
distribution function shows a cutoff atπ/16 which represent the geometrical constraint in order to
enforce a right-handed helical structure as ground state conformation. Moreover it can be observed
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Figure 3.17: Probability distribution function of the center-center distance of successive base-pairs
and contributions of the translational degrees of freedom to〈c2〉. Note that〈Tw〉 of the resulting
S-DNA conformation vanishes as predicted by Eq. (3.16).



3.4 Results 65

3 3.5 4 4.5 5 5.5 6
−5

0

5

Ri

Sl

3 3.5 4 4.5 5 5.5 6

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Ri

T
w

3 3.5 4 4.5 5 5.5 6

−3

−2

−1

0

1

2

3

4

5

Ri

Sl

3 3.5 4 4.5 5 5.5 6

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Ri

T
w

3 3.5 4 4.5 5 5.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ri

Sl

3 3.5 4 4.5 5 5.5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Ri

T
w

Figure 3.18: Contour plot of rise versus slide and versus twist respectively forf =
130pN, 140pN, 250pN. This illustrates how the S-DNA structure builds up with increasing stretch-
ing forcef .

that for the S-DNA conformation the shift, twist and roll fluctuations are much larger than in the
B-DNA conformation. In the S-DNA state the contact area of two successive base-pairs is much
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(a) zero stretching force

(b) at the critical force

(c) beyond the critical force

Figure 3.19: Snapshots of chains with lengthN = 50 for the final parameterization of Eq. (3.52).
One can clearly see the right-handed B-DNA conformation (a) and the skewed ladder structure of
the S-DNA conformation (c).

smaller than in the B-DNA state such that the energy loss due to fluctuations around the S-DNA
ground state is strongly reduced. In addition twist fluctuations lead to much smaller fluctuations in
the backbone length.

3.5 Discussion

We have introduced a simple model Hamiltonian describing double-stranded DNA on the base-
pair level. Due to the simplification of the force-field and, in particular, the possibility of non-
local MC moves our model provides access to much larger length scales than atomistic simulations.
For example,4h on a AMD Athlon MP 2000+ processor are sufficient in order to generate 1000
independent conformations for chains consisting ofN = 100 base-pairs.

In the data analysis, the main emphasis was on deriving the elastic constants on the elastic rod
level from the analysis of thermal fluctuations of base-pair step parameters. Assuming a twisted lad-
der as ground state conformation one can provide an analytical relationship between the persistence
lengths and the local elastic constants given by eqs. (3.26), (3.30)1. Future work has to show, if it is

1The general case where the ground state is characterized by spontaneous rotations as well as spontaneous displace-
ments as in the A-DNA conformation is more involved. This is the subject of ongoing work.
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Figure 3.20: Comparison of probability distribution functions of all base-pair parameters for the
final parameterization withε = 20, k = 64, 2b = 11 and a stretching force off = 130pN, i.e.
slightly below the critical force. The Gaussians are plotted with the measured mean and mean
squared values of the MC simulation with 50 monomers.
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Figure 3.21: Comparison of probability distribution functions of all base-pair parameters for the
final parameterization withε = 20, k = 64, 2b = 11 and a stretching force off = 140pN, i.e. at
the critical force. The Gaussians are plotted with the measured mean and mean squared values of
the MC simulation with 50 monomers.
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Figure 3.22: Comparison of probability distribution functions of all base-pair parameters for the
final parameterization withε = 20, k = 64, 2b = 11 and a stretching force off = 250pN, i.e.
beyond the critical force. The Gaussians are plotted with the measured mean and mean squared
values of the MC simulation with 50 monomers.
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possible to obtain suitable parameters for our mesoscopic model from a corresponding analysis of
atomistic simulations [LL00a] or quantum-chemical calculations [GB99]. In the present paper, we
have chosen a top-down approach, i.e. we try to reproduce the experimentally measured behavior of
DNA on length scalesbeyondthe base diameter. The analysis of the persistence lengths, the mean
and mean squared values of all six base-pair parameters and the critical force, where the structural
transition from B-DNA to S-DNA takes place, as a function of the model parameters{b, k, ε} and
the applied stretching forcef suggests the following parameter set:

2b = 11Å

ε = 20kBT

k = 64kBT/Å
2
.

(3.52)

It reproduces the correct persistence lengths for B-DNA and entails the correct mean values of
the base-pair step parameters known by X-ray diffraction studies. While the present model does
not include the distinction between the minor and major groove and suppresses all internal degrees
of freedom of the base-pairs such as propellor twist, it nevertheless reproduces some experimen-
tally observed features on the base-pair level. For example, the anisotropy of the bending angles
(rolling is easier than tilting) is just a consequence of the plate-like shape of the base-pairs and the
twist-stretch coupling is the result of the preferred stacking of neighboring base-pairs and the rigid
backbones.

The measured critical force is overestimated by a factor of2 and cannot be improved further
by fine-tuning of the three free model parameters{b, k, ε}. fcrit depends solely on the stacking
energy valueε that cannot be reduced further. Otherwise neither the correct equilibrium structure
of B-DNA nor the correct persistence lengths would be reproduced. Our model suggests a structure
for S-DNA with highly inclined base-pairs so as to enable at least partial base-pair stacking. This is
in good agreement with results of atomistic B-DNA simulations by Laveryet al. [CLH+96, LL99].
They found a force plateau of140pN for freely rotating ends [CLH+96]. The mapping to the SOP
model yields the following twist-stretch (Ri-Tw) coupling constantkRi,Tw = (C−1)Ri,Tw = 267/Å.
kRi,Tw is the microscopic coupling of rise and twist describing the untwisting of the chain due to an
increase of rise (compare also Fig. 3.9).

Possible applications of the present model include the investigation of (i) the charge renormal-
ization of the WLC elastic constants [PHP00], (ii) the microscopic origins of the cooperativity of
the B-to-S transition [SN02a], and (iii) the influence of nicks in the sugar-phosphate backbone on
force-elongation curves. In particular, our model provides a physically sensible framework to study
the intercalation of certain drugs or of ethidium bromide between base pairs. The latter is a hy-
drophobic molecule of roughly the same size as the base-pairs that fluoresces green and likes to slip
between two base-pairs forming an DNA-ethidium-bromide complex. The fluorescence properties
allow to measure the persistence lengths of DNA [SS86]. It was also used to argue that the force
plateau is the result of a DNA conformational transition [CLH+96].

In the future, we plan to generalize our approach to a description on the base level which in-
cludes the possibility of hydrogen-bond breaking between complementary bases along the lines of
Ref. [BCP99, CM99]. A suitably parameterized model allows a more detailed investigation of DNA
unzipping experiments [BERH97] as well as a direct comparison between the two mechanism cur-
rently discussed for the B-to-S transition: the formation of skewed ladder conformations (as in the
present paper) versus local denaturation [WWRB01, RB01a, RB01b]. Clearly, it is possible to study
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sequence-effects and even more refined models of DNA. For example, it is possible to mimic minor
and major groove by bringing the backbones closer to one side of the ellipsoids without observing
non-B-DNA like ground states. The relaxation of the internal degrees of freedom of the base-pairs
characterized by another set of parameters (propeller twist, stagger, etc.) should help to reduce
artifacts which are due to the ellipsoidal shape of the base-pairs. Sequence effects enter via the
strength of the hydrogen bonds (EGC = 2.9kBT versusEAT = 1.3kBT ) as well as via base depen-
dent stacking interactions [Hun93]. For example, one finds for guanine a concentration of negative
charge on the major-groove edge whereas for cytosine one finds a concentration of positive charge
on the major-groove edge. For adanine and thymine instead there is no strong joint concentration of
partial charges [CD99]. It is known that in a solution of water and ethanol where the hydrophobic
effect is less dominant these partial charges cause GG/CC steps to adopt A- or C-forms [FSH99] by
a negative slide and positive roll motion and a positive slide motion respectively. Thus by varying
the ratio of the strengths of the stacking versus the electrostatic energy it should be possible to study
the transition from B-DNA to A-DNA and C-DNA respectively.

3.6 Summary

Inspired by the results of El Hassan and Calladine [HC97a] and of Hunter et al. [HL97, Hun93]
we have put forward the idea of constructing simplified DNA models on the base(-pair) level where
discotic ellipsoids (whose stacking interactions are modeled via coarse-grained potentials [EE03,
GB81]) are linked to each other in such a way as to preserve the DNA geometry, its major mechan-
ical degrees of freedom and the physical driving forces for the structure formation [CD99].

In the present paper, we have used energy minimization and Monte Carlo simulations to study
a simple representative of this class of DNA models with non-separable base-pairs. For a suitable
choice of parameters we obtained a B-DNA like ground state as well as realistic values for the bend
and twist persistence lengths. The latter were obtained by analyzing the thermal fluctuations of long
filaments as well as by a systematic coarse-graining from the stack-of-plates to the elastic rod level.
In studying the response of DNA to external forces or torques, models of the present type are not
restricted to the regime of small local deformations. Rather by specifying a physically motivated
Hamiltonian forarbitrary base-(step) parameters, our ansatz allows for realistic local structural
transitions. For the simple case of a stretching force we observed a transition from a twisted helix to
a skewed ladder conformation. While our results suggest a similar structure for S-DNA as atomistic
simulations [CLH+96], the DNA model studied in this paper can, of course, not be used to rule out
the alternate possibility of local strand separations [WWRB01, RB01a, RB01b].

In our opinion, the base(-pair) level provides a sensible compromise between conceptual sim-
plicity, computational cost and degree of reality. Besides providing access to much larger scales than
atomistic simulations, the derivation of such models from more microscopic considerations provides
considerable insight. At the same time, they may serve to validate and unify analytical approaches
aiming at (averaged) properties on larger scales [ALCM01, HYZc99, BCP99, CM99, SN02a]. Fi-
nally we note that the applicability of linked-ellipsoid models is not restricted to the base-pair level
of DNA as the same techniques can, for example, also be used to study chromatin [WL02, KBO00,
MSE]. This is the subject of chapter 5.
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Figure 3.23: Typical domain lengthL [bp] of (a) S-DNA, (b) B-DNA as a function of the stretching
forcef [pN]. The parameter set of Eq. (3.52) is used. The simulated chains consist of500 base-
pairs. We averaged over three independent runs. There are two S-DNA states corresponding to
positive (+) and negative (-) slide. None of the states should be preferred which is indicated by the
simulation data.
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3.7 Outlook

Recently Storm and Nelson [SN02b, SN02a] introduced a two-state model for the elasticity of
double-stranded DNA that could be solved analytically. The energy contains an Ising part tak-
ing into account the free energy cost of converting a single segment from B- to S-state and the
energy creating a B-to-S-interface, an elastic part taking into account the bending stiffness of B- and
S-DNA and the bending rigidity between a S- and B-segment. The full energy functional reads

E
kBT

= −
N−1∑
i=1

[α
2

(σi + σi+1) + γ(σiσi+1 − 1)

+
fb

2kBT

(
1
2
((σi + 1) + (σi − 1)ζ)ti · z +

1
2
((σi+1 + 1) + (σi+1 − 1)ζ)ti+1 · z

)
−A

2b

(
β

4
(1 − σi)(1 − σi+1) + |σi − σi+1|η +

1
4
(1 + σi)(1 + σi+1)

)
θ2
i,i+1

]
.

(3.53)

σi takes into account in which state segmenti is found. σi = 1 corresponds to the B-state and
σi = −1 to the S-state.2αkBT denotes the B-to-S conversion energy,2γkBT the B-to-S interfacial
energy. b refers to the B-DNA segment length,ζb to the S-DNA segment length. The bending
stiffness of B-DNA (S-DNA) is denoted byA (βζA). The bending rigidity of a B-DNA and a S-
DNA segment is termedηA. f refers to the applied stretching force andz is a normalized vector
pointing into the stretching direction.ti denotes the tangent vector of theith segment,θi corresponds
to the bending angle between segmenti andi+ 1. Using transfer matrix techniques they fitted their
theory to the force-extension data of Refs. [CLH+96, SCB96]. The stretching moduli for the B-
(EB) and S-DNA (ES) is implemented to first order by replacingf with f(1 + f

2ES,B ) for the two
respective states in the transfer matrix. With the obtained values for2αkBT , 2γkBT , ζ, EB, ES ,
andA they calculated the typical length of a S-domain and the relative population of the S-state
versus the applied stretching force. It is possible to apply their theory to our simple but realistic
DNA model. With our model it is possible to measure these quantities directly and to compare it
to the fitting results of Storm and Nelson [SN02b, SN02a]. One major difference is that it is not
possible to define a pure B- or S-state as it is the case in the theory. Moreover our model allows for
more than just two states. Open ladder conformations are found, too, and the S-state is divided in a
S(+)- and S(-)-state with positive and negative slide respectively. None of the S-state is preferred.

We analyze data of simulations with applied stretching force and chain lengths ofN = 50 and
N = 500. We use the final parameterization of Eq. (3.52). Without stretching force the simulated
chain fluctuates around the B-DNA form with〈∆Ri2〉 = 0.02, 〈∆Sh2〉 = 0.12, 〈∆Sl2〉 = 0.42,
〈∆Tw2〉 = 0.001, 〈∆Ro2〉 = 0.010, 〈∆Ti2〉 = 0.003, whereas beyond the critical force at210pN
the fluctuations around the S-form amount to〈∆Ri2〉 = 0.21, 〈∆Sh2〉 = 2.32, 〈∆Sl2〉 = 0.28,
〈∆Tw2〉 = 0.011, 〈∆Ro2〉 = 0.08, 〈∆Ti2〉 = 0.002. That is why we count conformations with
Sl > 3.0 as S(+)-state and with Sl< −3.0 as S(-)-state respectively. A B-DNA conformation is
counted if Tw> π/6. For the calculation of the compartment length of a S- or a B-domain we
determine the mean number of base-pairs in a row belonging to one domain. Eq. (3.12) can be used
to measure the bending persistence length of S-DNA. We find the effective bending persistence
length of the S-state to be about60Å, which is order of magnitudes smaller than the value found
for the B-state. It is about three times as large as it is expected for two single DNA strands within
our model. Note that the Kuhn segment length corresponds to two times the backbone length such
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Figure 3.24: Relative populationP of S-DNA and B-DNA as a function of applied strainf [pN]
for chains with500 (blue) and50 (red) base-pairs. The parameter set of Eq. (3.52) is used. The
measured population of the S-state looks very similar to the result calculated by [SN02b, SN02a].

thatlp,ssDNA = 12Å. Thus the partial stacking of the base-pairs in the skewed ladder conformation
contributes to the bending stiffness of the chain. Storm and Nelson [SN02b] predict persistence
lengths of about72 − 120Å from the fitting of the experimental data of Refs. [CLH+96] and
[SCB96] respectively. The value obtained from stretching experiments on ssDNA amounts to about
7.5Å [CSRTG00].
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Figs. 3.23, 3.24 show measured relative populations and typical domain lengths of S-DNA and
B-DNA as a function of applied strain. In contrast to the model of Storm and Nelson [SN02b] the
S-DNA state is divided into a S(+) state with positive slide and a S(-) state with negative slide.
Neither should be preferred. In fact the analysis of three different runs with500 base-pairs indicate
that the relative population of the S(+) and S(-) state beyond the critical force amounts to about
0.5. It has to be noted that the diffusion time of the interface seems to be quite large such that one
has to average over a sufficiently large number of independent runs. The measured functions of the
S-state, where the S(+)- as well as S(-)-state are counted, are quite similar to the result obtained by
Storm and Nelson [SN02b]. We measure an asymptotic slope of the increase of domain length of

S-DNA of about0.25 bp
pN which is roughly 40 times smaller than the value determined by Storm and

Nelson. A first analysis of the interface between the S(+) and S(-) state indicate that the segments
in between unstack to form an open ladder conformation. For large stretching forces essentially no
B-DNA states are left.
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Chapter 4

Renormalization of coupling constants

We presented in the previous chapter a systematic way of coarse-graining. For a pure B-DNA ground
state, i.e. there is only a spontaneous twist involved, and under the assumption of local interactions
(no next-nearest neighbor interactions) we calculated the bending and torsional persistence length as
a function of the mean-square fluctuations of the rotational degrees of freedom. For more complex
ground state geometries, i.e. with spontaneous displacements and spontaneous bending angles, the
derived relationships are not valid anymore. In what follows we discuss how to rescale the effective
coupling constants using renormalization techniques if one goes to larger length scales.

Since in the presented model only local interactions are involved one can determine the renor-
malized coupling constants with a simple sampling procedure using the measured coupling constants
of section 3.4.1. In such a way one can produce a long sequence of base-pairs which can subse-
quently be analyzed for neighbors, next-nearest neighbors and so forth. Snapshots of the simple
sample method for B- and A-DNA conformations are illustrated in Fig. 4.2. If the model contains
long-range interactions one has to use Monte-Carlo renormalization methods [LB00].

Renormalization always implies that certain degrees of freedom will be integrated out. In the
present case there are six degrees of freedom per base-pair (3 translations and 3 rotations) which can
be expressed by six step parameters or by fluctuations of positions and orientations of each base-pair.
We will discuss two general strategies to renormalize the measured elastic constants for Gaussian
systems on larger length scales. One strategy involves a blocking procedure where a certain number
of variables is combined in one ’super’-variable whereas in the other strategy the renormalized cou-
pling constants between variablei andi+ nrenorm are calculated wherenrenorm > 1 is an integer.
As an example consider the renormalization of Ising spin systems. Blocking corresponds to sum-
ming up a certain amount of spins to one ’super’ spin whereas decimation corresponds to choosing
a single spin out of each renormalized cell [LB00]. In general one can express the transformation by
an operatorR acting on the Hamiltonian to be renormalized.R reduces the number of degrees of
freedom by a factor ofnrenorm. The free energy remains unchanged by the renormalization process
since it is only expressed in terms of new variables. Note that due to the renormalization procedure
one can encounter interactions between monomers separated by an arbitrarily large distance.

77
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X XX X X Xii−2 i−1 i+1 i+2 i+3
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X XX X X Xii−2 i−1 i+1 i+2 i+3
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Figure 4.1: Illustration of blocking and decimation for a one dimensional Gaussian chain. The
chain variables are eitherXi representing the position vectors of each monomer or the center-center
distances of neighboring monomersri = Xi+1 − Xi. Decimation of every second position vector
Xi is equivalent to blocking ofri andri+1.

4.1 Renormalization of Gaussian systems with additive variables

In general the Hamiltonian of a Gaussian system can be expressed as

H
kBT

= (X −X0)
T K (X −X0)

= XT KX − 2XT
0 KX +XT

0 KX0.

(4.1)

K denotes the elastic matrix withdN × dN dimensions whereN is the number of monomers
andd is the number of degrees of freedom. Its entries are the coupling constants along the chain
analogously to the connectivity matrix of a polymer network. Note thatK is symmetric.X is adN -
dimensional vector.X0 refers to spontaneous values around whichX fluctuates. The free energy is
given byF = kBT ln(Z) = H where the partition functionZ is given by

Z =
∫

D[X] exp
(

− H
kBT

)
. (4.2)

In the following we consider two renormalization procedures of a Gaussian system (as illustrated
in Fig. 4.1 for a 1d Gaussian chain) with a generalized Hamiltonian of the form

Hg

kBT
= XT KX − 2kT X + C (4.3)

whereC is a constant. We calculate the scaling of the effective interactions of the remaining vari-
ables under the assumption that the variablesX areadditive. We split the Hamiltonian into two
parts corresponding to the variablesX1 we want to keep and the variablesX2 we integrate out. The
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Hamiltonian can be rewritten in terms of the new variables and the matrices that connect them as
follows [Mag85]:

Hg

kBT
= XT KX + 2kT X + C

=
(
XT

1 XT
2

)(K
11

K
12

K
21

K
22

)(
X1

X2

)
+ 2

(
kT1 kT2
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)
+ C

= XT
1 K11

X1 +XT
1 (K

12
+KT

21
)X2 +XT

2 K22
X2 + 2kT1 X1 + 2kT2 X2 + C.

(4.4)

4.1.1 Decimation

Decimation implies keeping every second, or every third, etc. monomer and integrating out all other
variables. The integration over the variablesX2 can be performed by completing the square:∫

D[Y ] exp(−Y T AY − bT Y ) =
exp(bT A−1 b)√

det(AJ )
(4.5)

with

(AJ )ij =
∂2(Y T AY )
∂yi∂yj

. (4.6)

This results in the following equations for the scaling of the effective coupling constants and the
spontaneous values contained ink = XT

0K andC = XT
0KX0:

K ′ = K
11

− 1
4
(KT

12
+K

21
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22
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2
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22
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1
2

ln(det(KJ ,22))

(4.7)

Note thatC scales in order to conserve the absolute value of the free energy after each decimation
step, i.e.F ′

g = F ′′
g = . . . = Fg. The renormalized partition function is thus given by

Z ′
g =

∫
D[X1] exp

(
−

H′
g

kBT

)
det(KJ ,22)− 1

2 (4.8)

with

H′
g

kBT
= XT

1 K
′X1 + k′T X1 + C ′. (4.9)

4.1.2 Blocking

The calculation of the renormalization formulas for the blocking procedure is slightly more involved.
In general the integration scheme can be written as∫ ∏

j

D[Xj ] exp(
Hg

kBT
)δ(Y −

k∑
i=1

Xi). (4.10)
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The vectorsXi are chosen such that each block containsk variables. For the sake of simplicity we
discuss the case where each block consists of two variables. Blocking more than two variables can
be done iteratively.

Starting again from Eq. (4.4) one has to perform two integrations where in the first step (1)
one of the variables, sayX1, is replaced byY − X2. The second integration step (2) yields the
renormalized Hamiltonian expressed in terms of the new variablesY :∫

D[X1]D[X2] exp(
Hg

kBT
)δ (Y − (X1 +X2))
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(4.11)

Hence we obtain the following scaling relations for the coupling constants and the spontaneous
values:
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(4.12)

where the matrixKJ is given by

(KJ )ij =
∂2
(
XT

2 (K
11

−K
12

−KT
21

+K
22

)X2

)
∂x2,i∂x2,j

. (4.13)

Note that the discussed decimation and blocking strategy are special cases of a general renor-
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malization scheme [Mag85] given by

exp

(
−
X ′TK ′X ′

kBT

)
=
∫

D[X] exp

(
−
XT KX

kBT

)
δ
(
X ′ − ΓX

)
. (4.14)

Because of the special nature of Gaussian integrals the renormalized Hamiltonians will always be
quadratic in the variablesX ′.

The derived scaling relations are only valid for the renormalization ofGaussiansystems with
additivevariables. Interestingly, even though the distribution functions are non-Gaussian one can
use the renormalization procedure to calculate the rescaled coupling constants within linear response
theory, since it yields
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(4.15)

4.1.3 Comparison of derived scaling relations with brute force integration

We derived a calculation scheme for the rescaled variables of a Gaussian system for decimation
and blocking. In order to test whether Eqs. (4.7) and (4.12) are correct we constructed a24 × 24
large symmetric matrixK and compared rescaling results of our matrix manipulation scheme using
MatLab with brute force integration using Mathematica, that is∫ 6∏

i=1

18∏
i=13

dxi exp
(
−XT KX

)
(4.16)

in case of decimation and∫ 24∏
i=1

dxi exp
(
−XT KX

) 6∏
j=1

δ (yj − (xj + xj+6)) δ (yj − (xj+12 + xj+18)) (4.17)

in case of blocking. The resulting rescaled12 × 12 large matrices are identical (data not shown).

4.2 Discussion

We already know that both the rotational and the translational base-pair step parameters are in gen-
eralnon-additive. The angular parameters between base-pairi andj can be calculated by the scheme
discussed in appendix B where the rotation matrixRi,j is given by

Ri,j = AT
i Aj (4.18)
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open ladder conformation

A−DNA conformation
(small bending and torsional rigidity)

(large bending and torsional rigidity)

B−DNA conformation

Figure 4.2: Simple sampling snapshots for a B-DNA conformation with coupled twist and rise
motion, a A-DNA conformation with negative slide (-2.0Å) and positive roll (0.1o), and straight
conformations with no spontaneous rotations or displacements.

with Ai =
∏i
j=1 Rj,j−1 andRi,i−1 = R(Tw i,i−1,Ti i,i−1,Roi,i−1). Eq. (4.18) defines how the ro-

tational step parameters sum up along the chain. Only for small rotations one finds that the angular
parameters such as Tw, Ti, Ro are additive while even in that case the translational degrees of free-
dom are not. Going from one base-pair to the next-nearest neighbor implies then for the rotational
base-pair step parameters

Tw i−1,i+1 = Tw i−1,i + Tw i,i+1

Ti i−1,i+1 = Ti i−1,i + Ti i,i+1

Roi−1,i+1 = Roi−1,i + Roi,i+1.

(4.19)

On the other hand the calculation of the translational step parameters is more complicated. The
translational vectorTi−1,i between two neighboring base-pairsi and i − 1 expressed in terms of
Ri i−1,i, Shi−1,i, and Sli−1,i (see Eq. (B.15)) can be written as

Ti−1,i = R− 1
2

i−1,iA
−1
i (~ci − ~ci−1) (4.20)

with ~ci being the position vector of the center-of-mass of base-pairi (see appendix B). Using
iteratively Eq. (4.20) and

~ci = ~ci−1 + AiR
1
2
i−1,iTi−1,i (4.21)

one can calculate the translational vector between next-nearest neighbors:

Ti−1,i+1 = R− 1
2

i−1,i+1A
−1
i+1AiR

1
2
i−1,iTi−1,i + R− 1

2
i−1,i+1R

1
2
i,i+1Ti,i+1. (4.22)
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Figure 4.3: Comparison of simple sampling results for large bending and torsional stiffness with
rescaling procedure for 2, 4, 8, 16, and 32 blocked variables
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Figure 4.4: Comparison of simple sampling for small bending and torsional stiffness results with
rescaling procedure for 2, 4, 8, 16, and 32 blocked variables.

This illustrates thenon-additivebehavior of the translational degrees of freedom under blocking.
Thus one cannot expect the rescaling formula of Eq. (4.12) to work. Moreover it is very unlikely
that one can find a rescaling relation in case of blocking using Eqs. (4.22) and (4.18) since the
integrals to be carried out are not Gaussian anymore.

To check this further we determined renormalized coupling constants using simple sampling
of a stack-of-plates model. First of all we consider a system where no spontaneous displacements
and no spontaneous rotations are involved. Furthermore there are no internal couplings such as a
twist-stretch coupling. Every step is sampled using

x = xsp +
1√
kx

· nrand ([−1; 1]) (4.23)

wherex is a step parameter,kx refers to the corresponding coupling constant,xsp denotes a spon-
taneous value, andnrand ([−1; 1]) is a Gaussian random number between1 and−1. 20000 chain
conformations are produced and subsequently analyzed. For the measurement of a decimated chain
with renormalization numbernrenorm we sampled20000 · nrenorm to have the same statistics. The
elastic constants are chosen such that only small angles are involved. The resulting renormalized
coupling constants can be compared with the result obtained by Eq. (4.12) using the original elastic
matrixK. Therefore we build a12 × 12 matrix(

K 0
0 K

)
(4.24)

which is blocked subsequently. The same is done with the resulting renormalized6 × 6 matrix in
order to go to larger renormalization numbers withnrenorm = 2i (i > 1 is an integer). Note that
decimation in the simple sampling routine corresponds to blocking base-pair step parameters. The
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Figure 4.5: Twist distribution function for different renormalization steps measured by simple sam-
pling. The solid lines correspond to the corresponding Gaussians functions calculated with the mea-
sured mean squared values. For largenrenorm one recovers deviations from the Gaussian shape.
The distribution function tends towards the Gaussian limit (uniform distribution, black dotted line)
for large renormalization numbers.

results are illustrated in Fig. 4.3. Indeed the rotational part of the elastic matrix can be renormal-
ized using the derived scaling relation for the blocking procedure since the rotational parameters
areadditive for small rotations. Of course, for even largernrenorm the additivity of the angular
parameters will break down, since they are not small anymore. Fornrenorm → ∞ one recovers the
Gaussian chain limit where the plates can freely rotate. In Fig. 4.5 the twist distribution for various
degrees of renormalization is shown. One observes thatP (Tw) converges to a uniform distribu-
tion for nrenorm → ∞ which corresponds to the freely rotating chain limit. For the translational
part one recovers quite substantial deviations of the blocking procedure from the simple sampling
results, especially for large renormalization numbers. It underlines thenon-additivityof the base-
pair step parameters displayed in Eq. (4.22) which is not taken into account in the renormalization
calculation of Eq. (4.12).

The situation gets even worse if one introduces a geometrical coupling between the rise and
twist degree of freedom. For the sampling procedure we used coupling constantskx with kx =
(〈x2〉 − 〈x〉2)−1 where the mean and mean squared values of the step parametersx were measured
for the final parameterization set of Eq. (3.52). The twist-rise coupling is introduced via Eq. (3.14).
We used = 16Å for the plate diameter,l = 6Å for the length of the respective rods connecting
the edges of the plates and we impose a spontaneous rise with Ri= 3.3Å. The renormalized twist
coupling constant does not coincide with the one measured by simple sampling due to the introduced
coupling. The renormalized elastic matrix measured by simple sampling is illustrated in Fig. 4.6.

Thus the presented renormalization procedure can only be used to calculate the renormalized
angular coupling constants (in case of rather stiff filaments) for smallnrenorm in a system where
translational and rotational motion is not coupled. Otherwise one has to use the described sim-
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K =


18876 0 0 216838 0 0

0 9 0 −2 0 0
0 0 2 0 0 0

216838 −2 0 2497586 0 −1
0 0 0 0 322 0
0 0 0 −1 0 116


⇓nrenorm = 2

104 0 0 1127 0 0
0 3 0 0 −2 8
0 0 2 0 −2 −5

1127 0 0 15316 1 −1
0 −2 −2 0 131 −4
0 8 −5 −1 −4 84


⇓nrenorm = 4

12 0 0 89 0 0
0 1 0 0 −3 2
0 0 1 0 −2 −4
89 0 0 1910 0 0
0 −3 −2 0 41 1
0 2 −4 0 1 50


⇓nrenorm = 8

1 0 0 10 0 0
0 0 0 0 2 4
0 0 0 0 −3 3
10 0 0 675 0 0
0 2 −3 0 99 −2
0 4 3 0 −2 126



Figure 4.6: Renormalization results by simple sampling. The renormalized elastic matrices for
nrenorm = 2, 4, 8 are shown.K corresponds to the original system.

ple sampling method to create long sequences which can subsequently be used to calculate the
renormalized elastic matrix for an elastic rod model. The necessary coupling constants which are
needed for the sampling procedure can be extracted out of atomistic molecular dynamics simula-
tions. Depending on the underlying sequence and on solvent conditions the effective constants and
the spontaneous values will vary from B-DNA to A- and C-DNA values. The parameterized rod
model can subsequently be used to investigate structural and elastic properties of linear and circular
DNA [KML97, MRKL98, FMM00], cyclization rates [MMK96], and effects on supercoiling phe-
nomena [CL96] on much larger length scales. Instead of including empirically some coupling terms
in the worm-like chain model this is a systematic way of calculating the present coupling terms from
the underlying base-pair sequence. The introduction of geometrical couplings, e.g. between shift
and tilt, can be quite demanding. One has to find analytical relationships as the ones discussed in
section 3.2.2. In order to circumvent this problem the following strategy can be embarked for the
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simple sampling procedure:

• calculation of the elastic matrix by inverting the correlation matrix

• diagonalization of the elastic matrix

• independent random numbers can be drawn for the eigen-modes

• the conformation is obtained by transforming back.

If long-ranged interactions are involved certainly the simple sampling method cannot be used any-
more. Rather one has to implement Monte-Carlo renormalization techniques to measure the renor-
malized coupling constants along the chain.

It is even more challenging to keep the non-linear aspects of the DNA such as the overstretching
transition during renormalization. In principle one could renormalize separately the elastic matrix of
the B-DNA and the S-DNA provided that it is possible to write down an effective Hamiltonian such
that the critical force where the structural transition occurs is an invariant under the renormalization
group operator. An Ising-like model as it is introduced by Storm and Nelson [SN02b, SN02a] could
be a good starting point.
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Chapter 5

A computer simulation study of the
influence of nucleosomal interactions on
chromatin structure and elasticity

We introduce a simple model for the chromatin fiber to study its structural and elastic properties.
The underlying geometry (of the modeled fiber) is based on the two-angle model [SGB01], which
belongs to the class of crossed-linker models. The chromatosomes are treated as disk-like objects.
Excluded volume and short range nucleosomal attraction is taken into account by a variant of the
Gay-Berne potential [GB81]. We investigate the influence of the nucleosomal interactions on elastic
properties of the fiber, such as the bending stiffness and the stretching modulus, and on structural
properties, such as the mass density. We find that the bending rigidity and the stretching modulus
of the fiber increase with larger nucleosomal disk sizes. Moreover, we apply an external stretching
force to the system and measure the resulting force-extension curves. For a reasonable parameteriza-
tion of the chain for physiological conditions and sufficiently high attraction we find a force-plateau
in agreement with experiments [CB00], where the plateau corresponds to a structural transition of
the fiber. In a first step the overall fiber geometry – a loop conformation – is stretched out, followed
by a decondensation of the fiber as the second step.

5.1 Introduction

It is known that inside the cells of all procaryotic organisms DNA is wrapped around so-called
histone octamers. This complex is called nucleosome. The nucleosomes linked together by DNA
segments organize further into the chromatin fiber (see section 1). Electrostatic interactions between
the nucleosomes (probably mediated by lysin rich histone tails [LMR+97]) give rise to higher order
structures of the chromatin fiber [HZ96, BHG+98]. For low salt concentrations a ’beads-on-a-string’
structure is observed, sometimes referred to as the 10-nm fiber. For higher salt concentrations (> 40
mM) the fiber appears to thicken folding into a condensed structure with a diameter of roughly30
nm. Furthermore, linker histones strongly influence the higher order structure of chromatin. They
glue the DNA strands entering and exiting the histone core particle together by forming a stem
structure [BHG+98]. In the absence of linker histones the entry-exit angle of the in- and outcoming
DNA is larger, leading to more open structures. While the structure of the nucleosome is known with
atomistic resolution [LMR+97] there is still considerable controversy about the structure of the 30-

89
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Figure 5.1: Top and side view of (a) the solenoidal and (b) the crossed-linker model. Taken from
[Sch03]. Note that the chromatin structure is not a regular helix. Thermal fluctuations [KBO00,
WL02] as well as varying linker lengths lead to irregularities of the overall structure [WGHW93].

nm chromatin fiber. Essentially there are two classes of models: (i) the solenoid models [FK76]
and (ii) the crossed-linker models [WGHW93, SGB01]. In the solenoid models one assumes that
the successive nucleosomes form a helix where the normal vector of the nucleosomes is roughly
perpendicular to the solenoidal axis. The entry-exit side faces inward towards the solenoidal axis
and the linker DNA must bend in order to connect neighboring nucleosomes. In the crossed-linker
model the linker DNA is straight and connects nucleosomes on opposite sides of the fiber (compare
Fig. 5.1).

The higher order structure of chromatin for various salt concentration has been studied experi-
mentally for oligonucleosomes using electron cryo-microscopy [BHDW98, BHG+98], neutron scat-
tering and scanning transmission electron microscopy [GR87, HZ95]. Structural parameters such as
the mass density (number of nucleosomes per 11nm) and the linker entry-exit angle are measured
to characterize the state of compaction. All these studies show an open zig-zag like fiber structure
for low salt concentration. Furthermore, studies on di- and trinucleosomes indicate that increas-
ing the salt concentration towards physiological conditions does not induce a bending of the linker
DNA, in contradiction to the solenoidal model [GR87, HZ96, HZ95, BHDW98, BHG+98]. Rather
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Figure 5.2: Schematic representation of nucleosome. The DNA is wound in13
4 turns around the

histone octamer. Taken from [SGB01].

nucleosome-nucleosome interactions, the existence of the linker histone and the salt dependence of
the entry-exit angle [WGHW93, HZ96, BHDW98, BHG+98, Sch02] seem to be the relevant ingre-
dients to account for the different folding states. Another parameter that controls the compaction of
the fiber is the helical twist of the linker DNA between two nucleosomes. Fluctuations of 1bp linker
length would lead to a change in twist of±2π/10. However, it has been pointed out by Widom
and coworkers [Wid92, YLW93] that such changes in twist lead to very large free energy penalties.
Therefore this possibility is very unlikely and can be excluded. Unfortunately none of these tech-
niques permit to resolve the internal structure in a compacted fiber, such as the conformation of the
linker DNA. All these experimental observations still cannot exclude the possibility of solenoidal
structures at high ionic strengths.

The development of micromanipulation techniques on single molecules permits to gain new in-
sight into the structural and elastic properties of the chromatin fiber. Cui and Bustamante [CB00]
measured force-extension curves of single chromatin fibers under different ionic conditions. For low
salt concentration the fiber behaves like an extensible WLC, whereas for high salt concentrations
one finds a force plateau at around 5 pN where the fiber starts to get longer with little increase in ten-
sion. This transition is identified with the termination of nucleosomal-nucleosomal attraction. The
comparison of the predictions made by computer simulations [KBO00, BS01, WL02] and of ana-
lytical approaches [SGB01, BHLV01, BHLV02] with the stretching experiments seems to support
the crossed-linker models.

In the following we will discuss possible structures that one obtains for a regular two-angle
model [SGB01], which belongs to the class of crossed-linker models. Accounting for the geometry,
the elasticity of the linker DNA, and the twist-stretch coupling of the fiber, one can calculate within
linear response the effective bending and torsional persistence length, stretching modulus and twist
stretch coupling, and the resulting stress-strain curves. In these analytical considerations excluded
volume effects of the nucleosomes as well as the attractive interaction between nucleosomes are not
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φ θ

b
d

Figure 5.3: Illustration of the two-angle model.π − θ corresponds to the entry-exit angle,φ is the
rotational angle,b is the linker length andd the nucleosomal diameter. The arrows denote the axis
determined by the superhelix of the nucleosomal DNA. Taken from [SGB01].

taken into account. This is reasonable for low salt concentration where one finds open zig-zag-like
structures with large internucleosomal distances. However, under physiological conditions the fiber
is closely packed and excluded volume as well as nucleosomal attraction is important. These effects
can be addressed with the help of computer simulations.

In section 5.2 we recapitulate earlier results of the two-angle model concerning the fiber geom-
etry and concerning the elastic properties as a function of the underlying geometry and linker DNA
elasticity. The chromatin model is introduced in section 5.3. We use MC simulations to investigate
the structural and elastic properties of the modeled fiber. Details on the MC moves and the correla-
tion time are summarized in section 5.5. In section 5.4 we study the phase diagram which classifies
allowed and forbidden structures in the two-angle plane as a function of nucleosomal size and linker
DNA length. The influence of nucleosome-nucleosome interactions on the elastic properties of the
fiber is discussed in section 5.6. In section 5.6.3 the response of the fiber to stretching is investigated.

5.2 The two-angle fiber

The two-angle model assumes that the geometric structure of the 30-nm fiber can be derived from
the single-nucleosome structure [SGB01]. Consider for example the wrapping of the DNA around
the histone core. It is found that DNA does not wind an integral number of turns around the histone
core. Rather, only about13

4 turns are completed which implies a non-zero entry-exit angle of the
in- and outcoming DNA (see Fig 5.2). In the presence of linker histones which glue the two strands
together one obtains stem-like structures [BHG+98]. Even though the exact value of the entry-exit
angleπ − θ depends on salt concentration and on the presence or absence of linker histones, one
can nevertheless assume thatθ is determined at the single-nucleosome level. In addition there is a
rotational angleφ involved (see Fig. 5.3) which determines the orientation of the nucleosomes along
the string. The rotational angle is a periodic function on the length of the linker DNAb connecting
two nucleosomes. Thusφ is given by multiples of2π/10, the twist angle associated with individual
base-pair steps.
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Figure 5.4: Overview of resulting conformations in theθ-φ-plane. The drawn green and blue line
show the boundaries to forbidden structures due to long range excluded volume effects (smallφ
values), and due to short range excluded volume effects (smallθ values) respectively. Taken from
[SGB01].

5.2.1 Geometrical considerations

The two-angle model characterizes the fiber structure via three parameters: the linker lengthb, the
entry-exit angleπ − θ and the twist angleφ. It assumes that the linker DNA is straight, that the
chromatin fiber is regular, and that the nucleosomes are point-like situated at the joints of the linker
DNA. Exclude volume effects are not considered.

In Fig. 5.4 different possible structures are depicted. If either one of the angles is0 or π the
resulting structure is planar. In case ofφ = 0 one obtains planar structures varying from2πθ -
polygons forθ = 2π

n with n being an integer to star-like structures. In the special case ofθ = π/2
one finds a square. Forθ = π(n−1)

n closed star-like structures are encountered. In particularn = 5
corresponds to the regular pentagram. In case ofθ = 0 a straight line is recovered.φ = π yields
planar zig-zag structures andθ = π produces ’dumbbell’ conformations [SGB01].

Non-zero values ofθ andφ lead to three-dimensional fibers. They can be further subdivided
into three classes. Structures with smallθ andφ values resemble solenoids. Structures whereφ is
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still small butθ takes large values form fibers with crossed linkers. Finally, fibers withφ close toπ
lead to twisted zig-zag structures.

The overall fiber geometry can be described as a function of the underlying three local geometric
parameters{b, θ, φ}. One can construct a spiral characterized by a radiusR and a pitch angleψ such
that the nucleosomes (but not necessarily the linker chain) are situated along this spiral. The distance
b of successive nucleosomes along the spiral is fixed. It is possible to derive a relationship ofR and
ψ and the local parameters{b, θ, φ} [Sch03]:

R =
b sin

(
θ
2

)
2 − 2 cos

(
θ
2

)2
cos
(
φ
2

)2 (5.1)
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Furthermore one can calculate the distances0 of two successive nucleosomes along the fiber axis

s0 =
b sin

(
φ
2

)
√

sec
(
θ
2

)2 − cos
(
φ
2

)2
. (5.3)

Thus the mass densityλ (the number of nucleosomes per 11 nm) is given by

λ =
11nm
s0

. (5.4)

The contour lengthL of the fiber consisting ofN nucleosomes is determined byL = Ns0.
Up to now we neglected excluded volume interactions. However, certain areas of theθ-φ phase

diagram are forbidden due to overlapping nucleosomes. In the following considerations we assume
that the nucleosomes are spherical with a radiusa and that their centers are located at the joints of
the linker DNA. One can distinguish between two types of interactions: (i) short range excluded
volume interactions between monomeri andi± 2. This requires that the entry-exit angle has to be
sufficiently large with

b sin
(
π − θ

2

)
> a

θ < 2 arccos
(a
b

)
(5.5)

(compare blue line in Fig. 5.4). (ii) Long range excluded volume interactions in case of very small
φ values. This becomes clear if one considers planar structures withφ = 0 that run into themselves.
Circular structures withθ = 2π

n will have an overlap aftern nucleosomal steps if

ns0 < 2a, (5.6)

wherens0 = 2π
ψ s0 corresponds to one helical pitch. Eq. (5.6) can be solved forφ, yielding a

condition that must be fulfilled to avoid a steric clash aftern steps [Sch03] (compare green line
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in Fig. 5.4). The examination of a circular structure provides an upper bound estimation for the
angleφ. Structures that deviate sightly from the n-polygon case lead to a fine structure of possible
φ values. We will discuss this in more detail in section 5.4.

It is interesting to consider the implications of this geometrical model for the compaction and
accessibility of DNA in chromatin. Due to the very large ratio of DNA length to cell nucleus
diameter it is clear that inactive regions with DNA sequences that do not carry genetic information
should be packed as densely as possible. On the other hand active regions must be also accessible to
protein complexes that bind to the DNA to read a specific sequence. This leads to the question where
in the phase diagram the point is situated that maximizes both the compaction and the accessibility.

Maximum compaction is reached if the bulk density (the number of nucleosomes per unit vol-
ume of the master solenoid)

ρ =
1

πR2s0
(5.7)

is maximized. Clearly this will be the case for structures with internal linker DNA. In particular, the
highest density that satisfies the condition of excluded volume is obtained for the largest possible
value ofθ and the smallest possible value ofφ. That corresponds to a structure where the nucle-
osomes are in closest contact with itsi ± 2 neighbors and the neighbors after/before one helical
turn.

To achieve maximum accessibility for highly compacted structures with a given entry-exit angle
π−θ Schiesselet al [SGB01] searched for structures which give the maximum reduction of the line
densityρL with

ρL =
1
s0

(5.8)

for a small change of the angleθ. This is identical with looking for the maximum ofdρL
dθ which was

termed accessibility. Interestingly this analysis results in the same pair of angles as it is obtained by
the calculation of the maximum bulk density (compare red point in Fig. 5.4).

5.2.2 Elastic properties

The stretching experiments of Cui and Bustamante indicate that the chromatin fiber is a highly
flexible chain with a large amount of twistable and bendable linker DNA. Of course, the elastic
properties also depend on the geometry of the fiber. A zig-zag fiber with a smallθ value will have a
larger stretching modulus than a compact star-like structure.

In order to calculate the mechanical parameters of the chromatin fiber Ben-Haimet al [BHLV01,
BHLV02] describe the two-angle fiber as an extensible WLC with additional terms accounting for
the twist rigidity of the fiber and the twist-stretch coupling. Within linear response theory one can
calculate the elastic free energy of the fiber in terms of the local relative extensionu(s) of the fiber,
its local twistΩ(s), and its local curvatureρ(s)

Ffiber

kBT
=
∫

ds

(
A

2
ρ(s)2 +

C

2
Ω(s)2 +

γ

2
u(s)2 +DΩ(s)u(s)

)
, (5.9)

whereA denotes the bending stiffness of the fiber,C corresponds to the twist rigidity,γ denotes the
stretching modulus, andD refers to the twist-stretch coupling. This description has recently been
used to discuss the force-extension relations of single DNA molecules [Mar97, Mar98]. Using the
fact that the elastic energy stored in the solenoid is nothing but the sum of elastic energies stored
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in its linkers, i.e.Ffiber = Flinker it is possible to derive a relationship between the fiber elastic
constants, the DNA elastic constants and the parameters describing the relaxed (T = 0) geometry of
the fiber. Treating the DNA as an inextensible WLC with bending and torsional rigidity Ben-Haim
et al [BHLV01, BHLV02] calculated the elastic energies stored in the linker DNA corresponding to
the twisting and bending degrees of freedom and compared this result to the energy expression of
the fiber. This results in the following equations [Sch03]:
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D = − s0
kBT blinker
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f(η, z) =
3lp

3lp + tan
(η

2

)2 (lTw + ∆S cos(z)2)
(5.14)

and the fiber radiusR ands0 are given by Eq. (5.1) and (5.3).z denotes the angle between the fiber
axis and the linker:

z = arccos
(

s0
blinker

)
. (5.15)

η refers to the angle between neighboring nucleosomes, as seen when viewed down the fiber axis,
and can thus be identified with the twist angle of the solenoid given by

η = cot(ψ)
s0
R

= arccos

(
2 cos
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2

)2
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)
(5.16)

where the result ofψ of Eq. (5.2) has been inserted.ηs0 corresponds to the twist rate of the unper-
turbed fiber.lp andlTw describe the bending and twist rigidity of the linker DNA and∆S is given
by their differencelp − lTw. blinker denotes the linker length.

Eqs. (5.10) and (5.11) can be compared to results obtained by fitting the extensible WLC model
to stress-strain curves of measurements in low salt concentration [CB00]. One obtains a value of
about30nm for the fiber bending persistence lengthA and1.25nm for the stretching modulusγ.
It should be stressed that these results are based on the release part of the force-extension curves
at low ionic strength, i.e. open chromatin fibers, where one does not find nucleosome-nucleosome
interactions such that the underlying theory is valid. Using a value ofθ = 50◦ one obtains with Eq.
(5.11) and (5.10) similar result for linker lengthsn = 31 ± k p base-pairs wherek is an integer and
p = 10 corresponds to the DNA pitch [BHLV02].

As already mentioned, in high salt concentration, where the fiber adopts very compact struc-
tures there are also nucleosome-nucleosome interactions involved which are neglected in the present
model. These attractive interaction can be mediated by the lysin-rich core histone tails and cause
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Figure 5.5: Illustration of the modeled fiber. The red cylinders correspond to the stem, the blue ones
to the linker DNA.

the fiber to contract. Liquid crystal studies on core particles have indeed shown fiber-like columnar
structures, presumably due to attractive nucleosome-nucleosome interactions [LL97, LL00b].

Wedemannet al [WL02] performed MC simulations of the 30-nm fiber where they modeled
the nucleosomes as disks with a radius of5nm and a height of6nm. Excluded volume and attrac-
tive nucleosome-nucleosome interaction were included via a Gay-Berne potential. The underlying
geometry and elasticity of the fiber was closely related to the two-angle model. Electrostatic and
hydrodynamic interactions were also taken into account. They found forθ = 154◦, φ = 110◦,
blinker = 11bp a persistence length ofA = 260nm which is about 20 times larger than the corre-
sponding value of13nm calculated with Eq. (5.11).

We want to study in more detail the nucleosomal effects due to excluded volume and due to
nucleosome-nucleosome attraction on the elastic properties of the fiber and on the behavior under
stretching. For this we use a model which is based on the previously discussed two-angle-fiber with
additional nucleosomal interactions. We model the nucleosomal interactions with a variant of the
Gay-Berne potential [EE03] similarly to Wedemannet al [WL02]. The geometry of the fiber is
slightly modified in order to take the stem structure of the nucleosomes in the presence of linker
histones into account.
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5.3 The chromatin model

Concerning the geometry of the modeled fiber we assume that the in- and outcoming DNA is glued
together by a linker histone forming a stem [BHG+98]. This will be of importance when we cal-
culate the effective length of the linker DNA. The DNA length per nucleosome varies from tissue
to tissue. In case of chicken erythrocyte the DNA length amounts to about 212 base-pairs. We will
use this value in the following considerations. Later in this chapter the effect of linker length vari-
ations on the fiber geometry and elasticity will be discussed in more detail. About 146 base-pairs
wrap in13

4 turns around the histone core particle. Thus 2 turns correspond to 177 base-pairs. The
stem ends at about 7nm from the center of the core particle. Assuming that the linker histones are
situated directly at the core particles, 2 times 7 base-pairs are involved in forming the stem. This
means for chicken erythrocyte chromatin fibers that there are roughly 21 base-pairs of linker DNA
left. Fig. 5.5 shows a sketch of the chromatin model. The core particle with its DNA is treated as
ellipsoidal disks with a diameter of 10nm and a height of 6nm corresponding to the experimental
values [LL97, LMR+97]. The stem (red cylinders) has a length of 2nm and the linker DNA (blue
cylinders) is 7.14nm long.

The linker DNA is discretized in four segments in order to allow for bending and torsional de-
formations. Each segmenti represents about 5bp and is labeled by a set of basis vectors{ti,ni,bi}
whereti denotes the tangent vector,ni the normal andbi the binormal vector. The elastic energy
of the linkers is thus described by

Hel

kBT
=
lp
2b

4(N−1)+2∑
i=1

(βi − βsp)2 +
lTw
2b

4(N−1)+2∑
i=1

(τi − τsp)2 (5.17)

wherelp andlTw are the bending and twist rigidity respectively,N is the number of nucleosomes
andb denotes the segment length.βi = arccos(ti · ti+1) refers to the bending angle between two
neighboring segments andτi denotes the twist angle given by Eq. (B.11). The spontaneous bending
angleβsp = θ takes the kink of in- and outcoming linker DNA into account and is only non-zero for
those segment pairs that are connected to a stem.τsp = φ/3 enforces the right-handed helicity of
the DNA which in turn gives rise for the fiber twist angleφ. Note that the linker length and the fiber
twist angle are actually coupled. This is so because the DNA has to face with its minor groove the
binding sites on the histone spool. Thus an increase of 1bp causes an increase of twist of2π/10. A
calculated linker length of 21bp corresponds toφ = 2π/10. However, for simplicity we keepφ as a
free parameter which controls the fiber geometry while the linker length variations amount at most
to ±1nm and can thus be neglected.

To account for the orientation of the chromatosomes the disks are also labeled by a set of three
orthonormal basis vectors{Ti,Ni,Bi}. Ni is the normal vector perpendicular to the disk plane
given by

Ni =
~ri × ~ri+1

|~ri × ~ri+1|
. (5.18)

The vectors{~ri} connect the stems of neighboring chromatosomes (see Fig. 5.5).Bi points from
the joint of the linker DNA towards the disk resulting in

Bi =
~ri − ~ri+1

|~ri − ~ri+1|
. (5.19)
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Ti is obtained by orthonormality of the basis set:

Ti = Ni × Bi. (5.20)

As already mentioned we use a variant of the Gay-Berne potential [EE03] (compare section 3.3.1) to
model the excluded volume interactions and the attractive interactions due to bridging of lysin-rich
tails between the chromatosomes. We chooseγ = 1.0 of Eq. (3.34) and the effective diameter of the
nucleosomal disks is chosen to beσ = h whereh is the height of the chromatosome. The structure
matrix is given by [LMR+97]

S =

h/2 0 0
0 d/2 0
0 0 d/2

 (5.21)

whered = 1.67h is the diameter of the chromatosome. Using the experimentally determined spatial
dimensions of the nucleosome core particle [LMR+97] this leads to

S =

3.0 0 0
0 5.0 0
0 0 5.0

 nm. (5.22)

The parameterization of the GB potential entails a lateral spacing of≈ 7.0 nm and a vertical spacing
of ≈ 11.0 nm of the disks in good agreement with experimental results of Livolantet al [LL97]. It
should be noted that the diameter of the chromatosome represented byS is composed of two times
the DNA diameter and the histone core diameter. The GB parameterεGB which determines the
energy well depthε will be chosen such thatε amounts to about 1-4kBT close to the experimental
value found by stretching a chromatin fiber [CB00]. The effect ofε on the stress-strain relation is
discussed in more detail in section 5.6.3.

The parameters characterizing the underlying geometry such as the entry-exit angleπ − θ, the
rotational angleφ and the linker lengthblinker will be varied in order to study their influence on the
elastic and structural properties of the fiber.

5.4 Investigation of the fine-structure of the two-angle phase diagram

Before we perform simulations to study the elastic properties of the modeled chromatin fiber we
first investigate the structural properties within the described geometry of Fig. 5.5. We measured
the two-angle diagram and the energy landscape depending on{θ, φ} for a given linker length
blinker. The nucleosomal disk size is fixed tod = 10nm andh = 6nm. To calculate the phase
diagram we start with a configuration given byθ = θinitial andφ = π/2 for a fixed linker length
blinker. We add successively nucleosomes building up the fiber and check if there is an overlap
or not. In case of overlap we update the rotational angle byφnew = φold + φold

2 . Otherwise, if the
building procedure satisfies the conditionL > 2π

ψ s0, i.e. the actual fiber lengthL exceeds one helical

pitch without producing an overlap, the rotational angle is updated byφnew = φold − φold
2 . This

results in a phase boundary between allowed and forbidden structures determined by the excluded
volume condition which is shown for various linker lengths in Fig. 5.8. One can observe that with
increasing linker lengthblinker the fine structure of the phase boundary is increased. This can be
understood as follows. Imagine a situation where the nucleosomes are closely packed on a solenoid
for a certain linker length. Increasing the linker length entails more space between nucleosomei
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Figure 5.6: Illustration of the measured correlation time of the energy, the mass density the end-to-
end distance and twist for a fiber with100 nucleosomes, andb = 7.14nm, θ = 145◦, φ = 100◦,
ε = 1kBT . It is shown that the longest relaxation time amounts to approximately 100 MC steps.

andi+ 1 such that after one helical turn it is possible (depending onblinker) that a nucleosome fits
in. This creates an additional bump into the phase boundary. Fig. 5.8 shows the calculated energy
landscape for straight linkers of lengthblinker = 7.14 nm, i.e. there is no bending energy involved.
The energetically favored conformations can be found close to the phase boundary. Note that the
boundary due to short range excluded volume interactions is smeared out to smaller values of the
rotational angleφ due to the stem structure of the nucleosomes. Without a stem the boundary would
be a straight line following Eq. (5.2.1). The previously introduced method for the calculation of the
phase diagram cannot resolve this overhang.

In fact, the rotational angleφ and the length of the linker DNAblinker are coupled. An additional
linker length of one base-pair corresponds to an increase inφ of 36o. In Fig. 5.7 the phase boundary
between allowed and forbidden structures concerning nucleosomal clashes is shown for coupled
blinker andφ, and for two different nucleosomal disk sizes. Starting withblinker = 0.1nm we
increase successively the linker length for a given angle ofθ and check if the respective structure
shows an overlap of nucleosomes or not. Each time a boundary between overlap and no overlap or
vice versa is passed we write out the corresponding angle space coordinate. Note that the rotational
angleφ is updated for every step byφ = blinker/0.34nm · 36o. All structures belonging to the area
right of the phase boundary in Fig. 5.7 are forbidden.

5.5 Monte-Carlo simulations

We use a Monte-Carlo scheme to simulate the chromatin fiber which relies on three moves: (i) a
local move where one chooses randomly one nucleosome which is rotated around an axis determined
by two points on the in- and out-coming linker DNA by a small random angle, (ii) a non-local pivot
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Figure 5.7: Phase diagram forθ andφ where the linker lengthblinker is coupled to the rotational
angleφ via blinker = φ/36o · 0.34nm. The snapshots correspond to structures lying directly on the
boundaries forθ = 140o and the respectiveφ values indicated by the arrows. One observes an in-
crease of the fiber diameter with increasing linker length. The red data points refer to a nucleosomal
disk size ofd = 10nm andh = 6nm, whereas the blue data set corresponds to half the disk size.

move where a random segment point is chosen around which the shorter part of the chain is rotated
around a random axis by a random angle, (iii) a non-local crankshaft move where two random
points along the DNA segments define the axis of rotation around which the inner part of the chain
is rotated. The moves are accepted or rejected according to the Metropolis scheme [MRR+53].

Each simulation run consists of 200000 MC sweeps where one trial corresponds toNDNA trials
with NDNA being the number of DNA segments. We simulated either fibers withN = 50 (simu-
lations with applied stretching force) orN = 100 nucleosomes such that the linker DNA segments
amounts toNDNA = 202 andNDNA = 404 respectively. The amplitudes are chosen such that
the acceptance rate equals approximately 50%. Every 20 moves we save a configuration. As initial
conformation we used the relaxed (T = 0) fiber structure. In order to determine the longest relax-
ation timeτcorr of the system we measured the ’time’ correlation functions of the energy, the mass
density, the end-to-end distance and twist (see Fig. 5.6). It is found thatτcorr ≈ 100 MC sweeps.

Note that the entry-exit angleθ is not varied during the simulation.

We use the following reduced units: lengths are measured in [nm] and forces are measured in
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[kBT/nm = 4pN].

5.6 Structural and elastic properties of the simulated fiber

5.6.1 Influence of the nucleosomal interaction on the structure of the fiber

In section 5.2 we discussed the implications of entry-exit angle, rotational angle and linker length
on the structure of the ground state (T = 0). In the absence of excluded volume interactions thermal
motion leads to rather distorted conformations due to twist and bend fluctuations of the linker DNA
(see Fig. 5.9). If the excluded volume of the nucleosomes is taken into account these fluctuations are
reduced resulting in more ordered structures. The fiber fluctuates only slightly around the ground
state conformation since the accessible space for bending and twist fluctuations is strongly reduced
due to the spatial extensions of the nucleosomes. In case ofθ = 145◦, φ = 100◦ a helical structure
can be observed. If additionally nucleosomal attraction is included, the fiber can form loops. The
occurrence of loops only depends on the ratio of the attractive well of the Gay-Berne potential
and the contour length of the fiber. For a given attractive well and sufficiently large chains a loop
formation is observed. The occurrence of loops has strong effects on the behavior of the fiber under
stretching. This point will be discussed in more detail in section 5.6.3.

5.6.2 Influence of the nucleosomal interaction on the elastic properties of the fiber

Rough estimate of excluded volume effects

For a given pair of angles one can also estimate the maximum possible size of the nucleosomes
for which no nucleosomal overlap is found. This can also be done the other way around using the
phase diagram of Fig. 5.8. Here the disk size is kept constant. The most compact structure for a
given value ofθ is found to be the smallest possible value ofφ that does not lead to an overlap.
This is nearly identical to the energy minimum for the imposedθ value. For such a configuration
there is no space left for bending motions such that the bending persistence length is infinitely large.
Scaling down the disk size enables bending fluctuations, the bending persistence length becomes
smaller. This explains qualitatively the results shown in Fig. 5.14 (see below). A more quantitative
analysis can be carried out for the geometry shown in Fig. 5.10, where we consider for the sake of
simplicity a bending motion in two dimensions. We assume that the nucleosomes are spheres with
radiusR0 and consider a fiber geometry where the nucleosomes are stacked on top of each other
with a center-center distancec forming columns which are parallel to the fiber axis. Bending such
a fiber by an angleβ leads to a curvature of the fiber axis withκ = β

bpitch
and radiusRκ = 1

κ .
bpitch refers to the helical pitch of the chromatin fiber. The distancec between the centers of two
neighboring nucleosomes (within one column) is given byc ≈ (Rκ − s − R0)β wheres denotes
the stem length. Thus the available space between two spheres results inc − 2R0. This yields a
condition for the maximum possible bending angleβmax that does not lead to an overlap of the
nucleosomes for given values ofR0, s andbpitch:

βmax =
bpitch − 2R0

s+R0
. (5.23)

Note that the diameter of the nucleosomes has to be smaller than or equal tobpitch. The bending
persistence lengthAsphere is related to the mean squared fluctuations ofβ. Assuming that the
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(a) without nucleosomal interactions (b) with nucleosomal interactions

Figure 5.9: Snapshots of fiber with (b) and without (a) nucleosomal interactions forθ = 145◦,
φ = 100◦ andblinker = 7.14nm,d = 10nm,h = 6nm.

bending fluctuations are suppressed by the accessible space between the nucleosomes one can use
Asphere ≈ bpitch

β2
max

as a rough estimate of the resulting persistence length. Fig. 5.11 shows the bending
persistence lengthAsphere as a function of the radius of the spheres. It is found thatAsphere increases
rapidly as2R0 comes close tobpitch. For2R0 = bpitch, i.e. θmax = 0,Asphere diverges. The overall
behavior of the estimated bending persistence lengthAsphere is very similar to the simulation result
(compare Fig. 5.11). Deviations are encountered for several reasons: (i) we neglect the disk-like

h=2R 0

c

b

s
2R0

pitch

c
β

bpitch

β

d

Figure 5.10: Illustration (side view) of fiber geometry with nucleosomal spheres of radiusR0 to
estimate the bending persistence length as a function of sphere size for given linker lengthblinker
and stems. On the right one can see the bent fiber where we substituted the spheres with disks of
sizeh = 2R0 andd = 1.6h. Here an overlap is found for the same bending angleβ.
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Figure 5.11: Comparison of the estimated bending persistence length of the fiber (Asphere: red
line, Adisk: green line) using the geometry illustrated in Fig. 5.10 and the simulation data (blue
data points) withθ = 145◦ andφ = 100◦. The helical pitch is fixed tobpitch = 15.67 nm in
order to enforce a divergence of the persistence length for a radius of7.8 nm as it is found in the
simulation. The length of the stem amounts tos = 2 nm. Deviations are mainly due to the fact
that the nucleosomes of the simulated fiber do not stack perfectly in columns which is one of our
assumptions for an estimate ofAsphere andAdisk.

structure of the nucleosomes. The diameter of the spheres corresponds to the height of the disks
so that we underestimateA depending on the 3-d structure under consideration. An analogous
calculation of the distance between the edges of the disks results inβmax = bpitch−2R0

s+d whered is
the diameter of the disk, i.e.Asphere < Adisk. (ii) We only treat bending in 2 dimensions. Bending
out of the plane becomes important for zig-zag-like structures. In this case we overestimate the
bending persistence length. Only for very compact structures (largeθ smallφ) where one encounters
isotropic bending in all directions our estimate becomes comparable to the simulation results.

Simulation results

To test our simulation, we also measured the bending persistence length and the stretching modulus
of the fiber for various combinations ofθ andφ where we take nothing but the elasticity of the linker
DNA into account. The calculation is done as follows: first of all we determine the fiber axis by
calculating subsequently the centers of mass{~ci} defined by nucleosomesi up toi +Nc, i + 2 up
to i + 2 + Nc, etc.Nc is chosen to match approximately one or two helical turns. Afterwards one
can calculate the autocorrelation function of the tangent vectors defined by the fiber axis

ti =
~ci+1 − ~ci
|~ci+1 − ~ci|

(5.24)
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Figure 5.12: Analytical and simulation results of the bending persistence length and the stretching
modulus
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in order to extract the persistence length of the fiberA from an exponential fit

〈ti · tj〉 = exp
(

−|i− j|blinker
A

)
. (5.25)

The stretching modulus can be calculated via

γ =
〈L〉

〈∆L〉2
(5.26)

with ∆L = L−〈L〉 being the mean deviations around the average contour length of the fiber (length
of the fiber axis). It should be noted that depending onNc the estimated persistence length as well
as the stretching modulus and the contour length of the fiber vary. In case ofNc being too large for
example the stretching modulus is underestimated since bending fluctuations withini andi + Nc

contribute toγ. On the other hand values ofNc which are too small lead to a helicoidal fiber axis
and the contour length of the fiber is overestimated. This entails a systematic error which must be
minimized. Values ofNc corresponding to one or two helical turns appear to be reasonable.

Even though the analytical calculations determine the elastic constants of the fiber by a per-
turbation analysis around theT = 0 structure, the agreement between the simulation data and the
analytical result for different pairs of angles is very good (see Fig. 5.12). In general the fluctuations
lead to bending and twisting of the linker DNA away from the straightT = 0 conformation. This
in turn leads to a smaller effective length per linker DNA and a subsequent change of the elastic
constants. For rather extended zig-zag-like ground structures this effect is most pronounced and one
finds the largest deviations from the analytical expressions.

Another possible method of analysis is the measurement of the mean squared nucleosomal dis-
tancesR2

E along the chain. The data can subsequently be fitted to the extensible WLC model. Fit
parameters are the contour lengthL, the persistence lengthA and the stretching modulusγ. We
obtain:

• for θ = 145◦, φ = 100◦, d = 11nm,h = 6.6nm:

– fitting result:L/N = 1.92nm,A = 340nm,γ = 59nm−1, λ = 5.8

– averaged contour method:L/N = 1.90nm,A = 330nm,γ = 15nm−1, λ = 5.6

• for θ = 145◦, φ = 100◦, d = 10nm,h = 6nm:

– fitting resultL/N = 1.84nm,A = 244nm,γ = 47nm−1, λ = 6.0

– averaged contour method:L/N = 1.82nm,A = 236nm,γ = 14nm−1, λ = 6.1.

The differences ofL andA between both methods are smaller than5%. But one should mention
that some of the data forR2

E could not be fitted properly due to strong data scattering for small
j − i, especially for the simulations with pure bending stiffness. That is also why one finds strong
deviations for the stretching modulusγ between both methods, sinceγ is determined by the small
distance region ofR2

E . The bending persistence length, on the other hand, is dominated by large
distances where the data do not scatter strongly. In Fig. 5.13 we compareR2

E calculated with the
raw data and with the average contour length data. One can see how the data set ofR2

E is smoothed
by the averaging procedure for small internal distances, while the large distance behavior does not
change. The red line corresponds to the extensible WLC fit to the averaged data.
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Figure 5.13: Mean squared internal distances of the nucleosomesR2
E measured with the center-of-

mass of the nucleosomes (blue squares) and the smoothed contour (red circles) forθ = 145◦, φ =
100◦, d = 10nm,h = 6nm. i denotes the monomer index. Fitting result (red line):L/N = 1.84nm,
A = 244nm, γ = 47nm−1, λ = 6.0; averaged contour method:L/N = 1.82nm,A = 236nm,
γ = 14nm−1, λ = 6.1. The fitting procedure results in a3 − 4 times larger stretching modulus
compared to the averaged contour method while the obtained contour lengthL, the persistence
lengthA and the mass densityλ are in good agreement.

We already discussed the limitations of the analytical approach due to the negligence of nu-
cleosomal interactions. For low salt concentrations, that is for large entry-exit angles, one expects
that the chromatin fiber is a highly flexible and extendable object. This behavior is captured by Eq.
(5.11). However, for higher salt concentrations the structure becomes more compact such that ex-
cluded volume interactions play an important role. In order to investigate excluded volume effects
on the bending persistence length of the fiber, we simulated various fibers with different nucleosome
volumes. This is done without attractive forces. We simply check during the simulation if an overlap
occurs and, if yes, such a move is then rejected. We keep the ratio of the nucleosomal heighth to its
diameterd constant withhd = 0.67. For rather compact structures the bending fluctuations are im-
peded by the excluded volume of the disks. Thus one anticipates large bending persistence lengths
of the fiber for large nucleosomal disk sizes. This is indeed confirmed by our simulations. Fig. 5.14
illustrates the dependence of the persistence length for given anglesθ andφ on the nucleosomal disk
size. We observe that the effect is smaller for less compact structures such as zig-zag fibers, since
there is more room for bending fluctuations. The snapshots for different nucleosomal disk sizes in
Fig. 5.14 nicely illustrate the stiffening of the fiber with increasing disk size.

In Fig. 5.15 the bending persistence lengthA of a fiber with and without nucleosomal attraction
is shown. It is observed that the bending persistence length of a fiber withθ = 145◦, φ = 110◦

is reduced if nucleosomal attraction is present. Since neighboring nucleosomes come closer to
each other if the fiber bends (see Fig. 5.10) the energy contribution due to nucleosomal attraction
is enhanced. That is why bending is enhanced compared to the case of pure excluded volume
interaction.

The stretching modulusγ of the fiber also increases with increasing disk size which is caused
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Figure 5.14: Effect of excluded volume interaction on the bending persistence length of the fiber
for various pairs of anglesθ andφ is shown (see inset). For a given linker lengthblinker the fiber
persistence lengthA [nm] grows if one increases the overall size of the nucleosomal disks while
keeping the aspect ratio constant. The vertical lines show the limit where the ground structure
T = 0 shows overlap of nucleosomes. Note that the divergence limits of the red and green data
set are nearly identical. The persistence lengths of compact structures diverge for these values ofh
[nm]. For very small disk sizes the measured persistence lengths converge to the analytical values
calculated with Eq. (5.11).
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Figure 5.15: Persistence lengthA [nm] as a function of nucleosomal disk size (h [nm]) withθ =
145◦, φ = 110◦. We compare fibers with (ε = 1kBT ) and without (ε = 0kBT ) nucleosomal
attraction whereε is the Gay-Berne energy depth for two stacked disks.

by the hindrance of longitudinal fluctuations due to the excluded volume of the nucleosomes. The
mass densityλ decreases with increasing disk size. This displays the already mentioned fact, that
in general the fluctuations lead to bending and twisting of the linker DNA away from the straight
T = 0 conformation. That in turn leads to a smaller effective length per linker DNA and a smaller
contour length respectively. Since these bending and twisting fluctuations are reduced for larger
nucleosomal disk sizes the mass density decreases. Fig. 5.16 illustrates the dependence ofγ and
λ on the nucleosomal disk size for fibers withθ = 145o, φ = 100o, andblinker = 7.14nm. For
d = 10nm, h = 6nm corresponding to the experimentally determined spatial dimension of the
chromatosomes [LMR+97] we find a mass density of aboutλ = 6.1 very close to experimental
values under physiological conditions [BHG+98] and a stretching modulus of aboutγ = 13.6nm−1

which is roughly 10 times larger than the value determined by a fit of the release part of the force-
extension curves at low ionic strength [CB00].

5.6.3 Stretching the fiber

In the stretching experiments of Cui and Bustamante [CB00] on chicken erythrocyte chromatin
fibers in physiological conditions, i.e. for very compact fibers, a force-plateau at around 3-5 pN is
found. The authors propose that the plateau corresponds to a condensation-decondensation transi-
tion due to nucleosome-nucleosome interactions.

Within our model the responsible parameter for a condensation-decondensation transition caused
by short range attractive interaction between nucleosomes is the energy well depthε of the GB po-
tential. It determines the energy that must be paid to pull two nucleosomes apart. For sufficiently
large values ofε one should find a force-plateau in the force-extension curve. On the other hand,
one could also imagine that the fiber will get more and more compact until it prefers to form loop
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Figure 5.16: Stretching modulusγ [nm] and mass densityλ [number of nucleosomes/11nm] vs.
nucleosomal disk size (heighth [nm]) for θ = 145o, φ = 100o, and blinker = 7.14nm. For
d = 10nm,h = 6nm corresponding to the experimental values [LMR+97] we find a mass density
of aboutλ = 6.1 very close to experimental values under physiological conditions [BHG+98] and
a stretching modulus of aboutγ = 13.6nm−1 which is roughly 10 times larger than the value
determined by a fit of the release part of the force-extension curves at low ionic strength [CB00].

structures with a kink near the center of the chain in order to maximize the contact area of the surface
of the fiber. This will be discussed later on in more detail.

Since we are interested in the stretching behavior of a chromatin fiber under physiological con-
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Figure 5.17: Force-extension curves for a fiber where only the linker DNA elasticity is taken into
account and for fibers with hard-core repulsion (ε = 0) and soft-core attraction between the nucle-
osomes withε = 2, 3, 4kBT . A further increase ofε should shift the plateau to larger stretching
forcesf .

ditions we choose the following structural parameter set to simulate the fiber with external stretching
force:

θ = 145o

φ = 110o

blinker = 7.14nm.

π− θ is chosen in order to match the experimental value of35o measured in high salt concentration
[BHG+98]. blinker andφ are fixed such that one obtains a reasonable value for the mass densityλ of
about6.1 nucleosomes per11nm measured withε = 1kBT . Note thatblinker coincides with linker
lengths of erythrocyte chromatin fibers in the presence of linker histones measured by digestion
experiments [K. 89]. Even though the mass density will increase with increasing potential well
depthε it does not exceed a value of7.5 nucleosomes per 11nm. This is still close to experimental
data which suggest values of about6 − 7 nucleosomes per 11nm [GR87]. Certainly other pairs of
{blinker, φ} exist which produce a mass density of about6 nucleosomes per 11nm, but the overall
behavior of the stress-strain relations should not be influenced. Longer linker DNA segments will
decrease the mass density and will increase the flexibility of the fiber for fixedφ. Therefore one will
find the already mentioned kink instability for smaller values ofε.

We measure the force-extension relation for various values ofε. The stretching force acts along
the center-to-center distance of the chain. The results are illustrated in Fig. 5.17. For small values of
ε no force plateau is found. The force-extension curves follow the extensible WLC behavior. Note
that since we simulate quite short chromatin fibers, finite size effects are present. Forε = 4kBT we
find a force-plateau at about 2pN which looks quite similar to the experimental data [CB00] (see Fig.
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Figure 5.18: Stretching forcef vs. mass densityλ for a fiber with θ = 145o, φ = 110o, and
blinker = 7.14nm where only the linker DNA elasticity is taken into account and for fibers with
nucleosomal interactions withε = 0, 2, 3, 4kBT . One can nicely see how the mass density stays
constant forε = 4kBT up to 2pN. Up to these stretching forces only the loop formation of the fiber
is pulled out.

5.21). A further increase ofε should shift the plateau to larger stretching forcesf . The stress-strain
curve is averaged over 10 different simulation runs. For the different runs the data scatter quite a
lot in the low stretching force regime. This is due to a kinked loop formation of the fiber. Once
the chain forms a kink at a certain position along the chain and the two parts of the chain are glued
together the kink position seems to be quite immobile while the loop conformation can open due to
thermal fluctuations. In principle the kink location can diffuse along the chain. But this diffusion
process would lead to states of much higher energy. One possibility to overcome this problem is to
run several simulations where the chains form kinks at different fiber positions. Subsequently one
performs a kind of ensemble averaging over the different simulation runs.

In Fig. 5.22 we show the probability distributions of the end-to-end distanceRE for different
GB energy well depths. One can clearly observe a shift to smaller values ofRE for ε ≥ 3kBT
corresponding to the formation of kinks. By stretching the fiber the nucleosomal contacts of the two
parts of the chain are pulled out in a first step (up to 2pN), followed by a decondensation transition
of the fiber. Moreover, it is found that for large stretching forces (> 5pN) the probability distribution
functions for the differentε values coincide. The measurement of the mean internal distances〈RE〉
underline the kink observation. For several runs〈RE〉 shows a parabolic shape where the maximum
is found at the kink location (compare Fig. 5.19). Another possibility to detect kinked structures
is the measurement of the contact matrixMcontact of the fiber for each snapshot. If a pair of
nucleosomesi andj is in contact we countM(ij)

contact = 1 otherwiseM(ij)
contact = 0. By adding

up the contact matrices of each snapshot we obtain a two dimensional histogram as it is shown in
Fig. 5.20. If no kinks are present and the nucleosomes of the fiber form a quite regular solenoidal
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Figure 5.19: Mean internal distances〈RE〉 for the individual simulation runs (different colors cor-
respond to different runs) withε = 4kBT , θ = 145o, φ = 110o, andblinker = 7.14nm and no
applied stretching force.i refers to the monomer index. Parabolic shapes are recovered where the
maximum is found at the kink location.

structure two main stripes with some less pronounced side stripes parallel to the main diagonal are
observed. In the presence of kinks some side branches perpendicular to the main diagonal, i.e.
along the secondary diagonal, can be found. If loop conformations are present, the histograms show
a cross-like pattern where the kink location is found where the two branches along the main and
secondary diagonal respectively cross each other.

5.7 Discussion

We introduced a simple model based on the two-angle model by Schiesselet al. [SGB01] which
additionally accounts for excluded volume and attractive interaction of the nucleosomes. The struc-
tural analysis of the two-angle phase diagram helped to identify the boundary between allowed and
forbidden geometries. Moreover we investigated the influence of the nucleosome-nucleosome inter-

θ φ A Ael
90 100 75 34
145 100 236 14
145 110 216 15

Table 5.1: Measured persistence lengthsA in [nm] for various pairs of anglesθ andφ in [◦]. Ael
denotes the analytical result without excluded volume, i.e. the contribution from the linker DNA.
The spatial dimension of the nucleosomes is chosen to match the experimental values ofd = 10nm
andh = 6nm.
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θ φ λ

145 79 7.0
145 100 6.3
145 110 6.1

Table 5.2: Mass densityλ [number of nucleosomes/11nm] for various values ofφ with θ = 145o

andε = 1kBT . For larger rotational anglesφ the fiber gets less compact resulting in smaller mass
densitiesλ.

action on structural as well as elastic properties of the chromatin fiber. We find a drastical increase
in the bending persistence length of the fiber for increasing nucleosomal disk sizes. In particu-
lar for a disk size ofd = 10nm andh = 6nm and an underlying geometry given byθ = 145o,
φ = 110o, andblinker = 7.14nm where the entry-exit angle is fixed to the experimental value of35◦

[BHG+98] and the mass density of the fiber under physiological conditions [GR87] could be repro-
duced the bending persistence length amounts to216nm close to the value260nm found by earlier
computer simulation studies [WL02]. Note that in Ref. [WL02] a linker length ofblinker = 3.74nm
is chosen corresponding to 11 base-pairs which explains the slightly larger value. Since the den-
sity ρ = (πRs0)−1 of a fiber with given entry-exit angleπ − θ and given linker lengthblinker is
decreased if one goes to larger values of the rotational angleφ there is more space left for bending
fluctuations and one recovers smaller persistence lengths. On the other hand for fixedφ andblinker
one finds smaller densities for larger entry-exit angles which in turn leads to smaller persistence
lengths (compare table 5.1).

We characterized the found transition for reasonable values of the model parametersθ, φ, blinker,
d, h to simulate a fiber under physiological conditions. The entry-exit angle is fixed to the experi-
mental value of35◦ [BHG+98] and the mass density [GR87] could be reproduced.

For a rotational angle ofφ = 100o we recover a mass density of aboutλ = 6.1 very close to
experimental values under physiological conditions [BHG+98] and a stretching modulus of about
γ = 13.6nm−1 which is roughly 10 times larger than the value determined by the fitting procedure
of Cui and Bustamante [CB00] (see Fig. 5.16). Remember that they used a fit of the release part
of the force-extension curves at low ionic strength where the fiber is less compact and no excluded
volume effects are present. The large stretching modulus is caused by the hindrance of longitudinal
fluctuations due to the excluded volume of the nucleosomes. For larger rotational anglesφ and fixed
θ the fiber gets less compact resulting in smaller mass densitiesλ. This is displayed in table 5.2.

The simulations with applied stretching forces show forε = 4kBT a force-plateau in the stress-
strain curve rather similar to the one observed in micromanipulation experiments on single chro-
matin fibers [CB00] (see Fig. 5.21). Due to the strong nucleosomal attraction the fiber forms kinks,
and the two parts of the fiber glue together in order to maximize the contact area of the fiber surface.
For small forces the chain is unglued, but kinks are still present. In contrast to DNA, the chromatin
fiber does not undergo an instantaneous local structural transition if a critical stretching force is ex-
ceeded. Instead we observe a global structural change up to2pN where the two parts of the loop
are torn apart. For stretching forces larger than2pN a decondensation of neighboring nucleosomes
along the fiber takes place, but the overall structure of the fiber is not strongly distorted. For even
larger forces the fiber is lengthened by increasing the angle formed by nucleosomei− 1, i andi+1
which is realized by strong bending and by untwisting of the linker DNA. This stretching behavior
of the fiber is additionally confirmed by the measurement of the mass density as a function of the
stretching forcef (see Fig. 5.18). In case ofε = 4kBT one can clearly see a plateau up to forces
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Figure 5.20: Density plot of measured histograms of the contact matrix of the fiber withε = 4kBT ,
θ = 145o, φ = 110o, andblinker = 7.14nm and withf = 0pN in case of (b), (c), and (d) and with
f = 3.5pN in case of (a).i andj denote the nucleosome index.

f = 2pN. In this regime the loops are pulled out. For larger stretching forces the fiber starts to
decondense by untwisting and strong bending of the linker DNA which results in smaller values for
λ. For very large forces the fiber will from an extended string of nucleosomes. Some snapshots



5.7 Discussion 117

25

20

15

10

5

0

µextension [   m]
1 2 30

fo
rc

e 
[p

N
]

Figure 5.21: Force-extension curves for chicken erythrocyte chromatin fibers in 40mM NaCl. The
red curve corresponds to the stretch cycle while the blue curve refers to the release cycle. Taken out
of [CB00].

corresponding to different stretching forces forε = 4kBT are illustrated in Fig. 5.23. Even for quite
large stretching forcesf some of the nucleosomes are in contact such that there is no full deconden-
sation. This appears also in the measured force-extension curves. In the high stretching regime one
can observe a shift towards smaller end-to-end distancesRE asε becomes larger. In case of longer
linker DNA segments bending and untwisting the fiber after the decondensation transition would be
easier such that neighboring nucleosomes are farther apart and a full decondensation can take place.
As an additional result the mass density would decrease faster to the value corresponding to a fully
extended fiber conformation. Moreover, the fiber will form more easily a kinked structure. For even
larger values ofε one expects the force-plateau to be shifted to larger stretching forces.

Katritchet al [KBO00] used a similar model to simulate force-extension curves. The major dif-
ference consists in their assumption thatφ is fully randomized. A quenched disorder of the rotational
angleφ has rather strong effects on the structural as well as the elastic properties of the simulated
fiber [KBO00]. Furthermore, spheres are used instead of disks. They investigated the dependence of
linker length, entry-exit angle and rotational angle on the shape of the force-extension curves. The
comparison of their simulation results to the relaxation data of the stretching experiments on chicken
erythrocyte chromatin fibers [CB00] postulated values ofblinker = 40bp, θ = 130o, an effective
nucleosomal diameter ofdeff = 14nm, and a random distribution of the rotational angleφ. While
the determined entry-exit angle is close to the experimental value,blinker = 40bp is in contradiction
to digestion experiments yielding a value of about20bp [K. 89], anddeff = 14nm is quite large.
For the optimized model they introduced an additional short ranged attractive potential between the
nucleosomes. For large attraction they also recovered a force-plateau and a very strong reduction in
the end-to-end distance without applied stretching force, but failed to provide a quantitative analysis
of the structural changes during stretching.

We characterized the found transition for reasonable values of the model parametersθ, φ, blinker,
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Figure 5.22: PDF ofRE of a fiber withθ = 145o, φ = 110o, andblinker = 7.14nm for various
GB energy well depths and stretching forces (see legends). Forf = 0pN andε ≥ 3kBT a shift to
smaller values ofRE is recovered corresponding to the formation of kinks. By stretching the fiber
the nucleosomal contacts of the two parts of the chain, i.e. the loop formation, are stretched out.

d, andh to simulate a fiber under physiological conditions. The entry-exit angle is fixed to the
experimental value of35◦ [BHG+98] and the mass density [GR87] could be reproduced. Within
our model we predict a loop formation for strong nucleosomal attraction which is stretched out for
forces up to2pN. Whether or not kinks are present depends solely on the length of the fiber and
on ε. For a givenε loop formations will emerge if the fiber length exceeds a critical value. We
can measure the additional attractive energy due to the loop formation in the following way: we
calculate the GB energy for a loop conformation and subtract the GB energy of a condensed but
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Figure 5.23: Snapshots of fibers withθ = 145o, φ = 110o, andblinker = 7.14nm corresponding to
different stretching forces forε = 4kBT . To facilitate the detection of a loop formation or a kink
one half of the chain is dyed green while the other half is dyed cyan. The first and last nucleosomes
are labeled red. Forf = 0pN a kink is detected close to the center of the chain such that the fiber
forms a loop in order to maximize the contact area of its surface. Up tof = 2pN the kink is still
present but the loop gets pulled out. Forf = 15pN the fiber is partially decondensated.

straight conformation for a givenεGB. We obtain a value ofEloop = 3kBT/4nm for ε = 4kBT . If
we assume a loop conformation which is composed of two straight chains connected by a semicircle

we obtain an estimate for the radius of curvature withR =
√

lp
2 Eloop. With lp ≈ 200nm the radius

of curvature amounts to about9nm which is about the size of the diameter of the nucleosomes
d = 10nm.



120 5 A computer simulation study of chromatin structure and elasticity



Chapter 6

Summary of results and outlook on
future work

We have investigated the structural and elastic properties of three different systems: (i) a generic
model for double-stranded polymers consisting of two coupled worm-like chains, (ii) a mesoscopic
model for DNA at the base-pair level, and (iii) a crossed-linker model of the chromatin fiber.

In a first step towards more microscopic models of DNA we studied the effects caused by the
double-strandedness of DNA. We introduce the coupling between the two strands - taking into ac-
count the hydrogen bonding - as a rigid one such that bending in the plane of the ribbon is forbidden.
We performed MC simulations and rationalized the results with the help of a simple scaling argu-
ment. Two relevant length scales are found in the problem: the single strand persistence lengthlp
and the separation lengtha of the two strands. We recover the predicted simple exponential decay
of the tangent-tangent correlation function with the single strand persistence length. The tangent-
tangent correlation function is independent of the separation of the two strands. Also in agreement
with Ref. [LGK98, GL00] we find an inherent local twist structure with a helical persistence length
lb and a helical pitchP which scale withl1/3p a2/3. But in contradiction to Ref. [LGK98, GL00] we
do not observe an oscillatory behavior of the bond-director correlation function. Qualitatively, one
would expect to see oscillations in the bond-director correlation function, ifP ≤ lb. If the mean
twist within one helical persistence length exceedsπ an oscillatory behavior has to be observed. But
our calculation gives a twist rate withinlb = gb of approximately±1/16. Moreover our simulation
results with applied constant buckling forces do not provide any evidence of a tendency of kinking
or an inherent twist-stretch coupling. A twist-stretch coupling has to be incorporated by the inclu-
sion of an additional term in the Hamiltonian along the lines of Refs. [KLNO97, Mar97, Nel98].
We have dealt with these effects in chapter 3 where we have seen that the twist-stretch coupling is a
natural result of the preferred stacking of neighboring base-pairs and the rigid backbones and must
not be included by an extra term in the Hamiltonian. Interestingly, kinked structures are recovered
in the modeled chromatin fiber.

In chapter 3 we have introduced a simple mesoscopic model of DNA on the base-pair level
combining the ideas of SOP and WLC model. We studied the resulting helical conformation using
energy minimization and Monte Carlo simulations. We showed by systematic coarse-graining that
the elastic constants of the WLC model are related to the local fluctuations of the base-pair step
parameters. Assuming a twisted ladder as ground state conformation an analytical relationship be-
tween the persistence lengths and the stretching modulus respectively, and the local elastic constants
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can be provided given by Eqs. (3.26), (3.30), and (3.51). The general case where the ground state
is characterized by spontaneous rotations as well as spontaneous displacements as in the A-DNA
conformation is more involved. This is the subject of chapter 4.

For a suitable choice of parameters we obtained a B-DNA like ground state as well as realistic
values for the bend and twist persistence lengths. The latter were obtained by analyzing the thermal
fluctuations of long filaments as well as by a systematic coarse-graining from the stack-of-plates
to the elastic rod level. In studying the response of DNA to external forces or torques, models of
the present type are not restricted to the regime of small local deformations. The measured critical
force is overestimated by a factor of2 and cannot be improved further by fine-tuning of the three
free model parameters{b, k, ε}. fcrit depends solely on the stacking energy valueε that cannot be
reduced further since it would reproduce neither the correct equilibrium structure of B-DNA nor
the correct persistence lengths. It is an interesting question if the introduction of other stacking
potentials can solve this problem (see for example Ref. [EE03]).

Our model suggests a structure for S-DNA with highly inclined base-pairs in order to enable
at least partial base-pair stacking. This is in good agreement with results of atomistic B-DNA
simulations by Laveryet al. [CLH+96, LL99]. They found a force plateau of140pN for freely
rotating ends [CLH+96]. The mapping to the SOP model yields the following twist-stretch (Ri-Tw)
coupling constantkRi,Tw = (C−1)Ri,Tw = 267/Å (see Eq. (3.48)). HerekRi,Tw is the microscopic
coupling of rise and twist describing the untwisting of the chain due to an increase of rise (compare
also Fig. 3.9).

While our results suggest a similar structure for S-DNA as atomistic simulations [CLH+96], the
DNA model studied in this paper can, of course, not be used to rule out the alternate possibility of
local strand separations [WWRB01, RB01a, RB01b]. Therefore one future project is the generaliza-
tion of our approach to a description on the base level which includes the possibility of hydrogen-
bond breaking between complementary bases along the lines of Ref. [BCP99, CM99]. Additionally
a suitably parameterized model allows a more detailed investigation of DNA unzipping experiments
[BERH97]. Clearly, it is possible to study sequence-effects and even more refined models of DNA.
For example, it is possible to mimic minor and major groove by bringing the backbones closer to
one side of the ellipsoids without observing non-B-DNA like ground states. The relaxation of the
internal degrees of freedom of the base-pairs characterized by another set of parameters (propeller
twist, stagger, etc.) should help to reduce artifacts which are due to the ellipsoidal shape of the
base-pairs. Sequence effects enter via the strength of the hydrogen bonds (EGC = 2.9kBT versus
EAT = 1.3kBT ) as well as via base dependent stacking interactions [Hun93]. For example, one
finds for guanine a concentration of negative charge on the major-groove edge whereas for cytosine
one finds a concentration of positive charge on the major-groove edge. For adanine and thymine in-
stead there is no strong joint concentration of partial charges [CD99]. It is known that in a solution of
water and ethanol where the hydrophobic effect is less dominant these partial charges cause GG/CC
steps to adopt A- or C-forms [FSH99] by a negative slide and positive roll motion and a positive slide
motion respectively. Thus by varying the ratio of the strengths of the stacking versus the electrostatic
energy it should be possible to study the transition from B-DNA to A-DNA and C-DNA respectively.
The introduction of electrostatic interactions in the model also provides the possibility to investigate
the charge renormalization of the WLC elastic constants [PHP00]. As a last future perspective it
should be mentioned that the presented model may serve to validate and unify analytical approaches
aiming at (averaged) properties on larger scales [ALCM01, HYZc99, BCP99, CM99, SN02a]. We
already started to quantify the B-to-S transition and the structural and elastic properties of the S-
DNA state in more detail and to compare it to the fitting results of the two-state model of Storm and
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Nelson [SN02b, SN02a].
In chapter 4 we discuss possible renormalization procedures to obtain the elastic constants of the

WLC model. It is shown that in case of nearest-neighbor interaction we can work out a convenient
simple sampling procedure to calculate the effective coupling constants on larger length scales.
Therefor one has to implement the following steps: (i) calculation of the elastic matrix by inverting
the correlation matrix, (ii) diagonalization of the elastic matrix, (iii) independent random numbers
can be drawn for the eigen-modes, and (iv) the conformation is obtained by transforming back. If
long-ranged interactions are involved certainly the simple sampling method cannot be used anymore.
Rather one has to implement Monte-Carlo renormalization techniques to measure the renormalized
coupling constants along the chain. These techniques are important if long-ranged electrostatic
interactions are included in the DNA model. In the future one should make a thorough investigation
of the renormalization of the elastic constants for different DNA ground states.

Another challenging project is to keep the non-linear aspects of the DNA such as the over-
stretching transition during renormalization. In principle one could renormalize separately the elas-
tic matrix of the B-DNA and the S-DNA provided that it is possible to write down an effective
Hamiltonian such that the critical force where the structural transition occurs is an invariant under
the renormalization group operator. An Ising-like model as it is introduced by Storm and Nelson
[SN02b, SN02a] could be a good starting point.

One major advantage of linked-ellipsoid models as introduced in chapter 3 is that they are not
restricted to the base-pair level of DNA as the same techniques can, for example, also be used to
study chromatin. This is the subject of chapter 5. In the case of chromatin the ellipsoids represent
chromatosomes. The underlying geometry of the linker DNA is based on the two-angle model by
Schiesselet al [SGB01]. A variant of the Gay-Berne potential [EE03] takes the excluded volume
interactions and the attractive interactions (probably due to bridging of lysin-rich tails between the
chromatosomes) into account. Parameters characterizing the underlying geometry such as the entry-
exit angleπ − θ, the rotational angleφ and the linker lengthblinker were varied in order to study
their influence on the elastic and structural properties of the fiber. The structural analysis of the two-
angle phase diagram helped to identify the boundary between allowed and forbidden geometries.
Taking in a first step only the excluded volume interactions into account we find a drastical increase
in the bending persistence length of the fiber for increasing nucleosomal disk sizes. In particular
for a disk size ofd = 10nm andh = 6nm and an underlying geometry given byθ = 145o,
φ = 110o, andblinker = 7.14nm, where the entry-exit angle [BHG+98] and the spatial dimension
of the chromatosomes [LMR+97] are fixed to their experimental values and the mass density of the
fiber under physiological conditions [GR87] could be reproduced, the bending persistence length
amounts to216nm. The stretching modulus amounts to aboutγ = 13.6nm−1. Both values are order
of magnitudes larger than the values determined by the fitting procedure of Cui and Bustamante
[CB00]. Note that they fitted the extensible WLC model to the release part of the force-extension
curves at low ionic strength where the fiber is less compact and no excluded volume effects are
present.

Interestingly, we observe kinked fiber structures in the presence of nucleosomal attraction.
Whether kinks are present or not depends solely on the length of the fiber andε. For a givenε
loop formations will emerge if the fiber length exceeds a critical value in order to maximize the
contact area of the surface of the fiber.

For a reasonable parameterization of the chain for physiological conditions and sufficiently high
attraction we find a force-plateau corresponding to a structural transition of the fiber in agree-
ment with experiments [CB00]. In a first step the overall fiber geometry - a loop conformation -
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is stretched out, followed by a decondensation of the fiber as the second step.
Up to now we studied exclusively fibers with a regular geometry. It would be interesting to

introduce irregularities in the linker length and the rotational angle respectively and to study its
consequences on the elastic properties and the behavior under stretching of the fiber.

Another interesting project is the formulation of a new coarse-grained model on the next level
of DNA compaction. It is known that the chromatin fiber further organizes into the chromosome.
Unfortunately there are no reliable experimental data on this length scale which could provide access
to structural or elastic properties. Maybe our chromatin model can help to measure these elastic
properties and to come up with a possible ground structure on this length scale.



Appendix A

Multiple histogram method

The multiple histogram method of Ferrenberg and Swendsen [FS88] is a convenient tool to study
the free energy barrier of two conformational states or phases. Depending on applied external fields
one can enforce the system to stay in either state. They developed a tool which makes it possible to
recombine measured histograms of different field strengths with a reweighting procedure to a single
probability distribution function with overall very good statistics.

Consider the case where the unperturbed state is characterized by the HamiltonianH0. The
application of an external force determines which of the local minima of the system are preferentially
sampled by the simulation. Thus one performs several simulations of systemsi characterized by the
HamiltonianHi = H0+Vi whereVi can be a function of a order parameterQ. In the case discussed
in section 2.9 the external potential is given byVi = fRE wheref is the buckling or stretching
force andRE corresponds to the end-to-end distance. Higher probabilities (compared to the usual
wormlike chain result) of small end-to-end distances suggest the occurrence of kinks. ThusRE is
sensitive to the underlying structure. The parameterf should enhance the formation of a kink-rod
structure in case with an intrinsic preference for such structures. In the case of a canonical ensemble
the probability distribution functionPi(Q) of the order parameterQ for a given external fieldVi is
given by

Pi(Q) =

∫
drNδ

(
Q−Q(rN )

)
exp(−βH0 + Vi)

Zi
(A.1)

with Zi being the partition function:

Zi =
∫

drN exp(−βH0 + Vi). (A.2)

The unperturbed system is characterized by

P0(Q) =

∫
drNδ

(
Q−Q(rN )

)
exp(−βH0)

Z0
. (A.3)

In the following we will address the question howP0(Q) can be estimated by the knowledge of
Pi(Q) (see e.g. [FS96, LB00]).

In computer simulations the probability distribution functionPi(Q) can be computed by his-
togramsHi(Q) which measure how often the system with energyH0 + Vi is found to take a value
betweenQ andQ+ ∆Q such that

Pi(Q)∆Q =
〈Hi(Q)〉
Ni

(A.4)
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whereNi denotes the number of saved simulation steps and〈Hi(Q)〉 denotes the average over
different simulation runs. Certainly〈Hi(Q)〉

Ni
will fluctuate aroundPi(Q)∆Q due to the finite length

of a simulation run.
It can be shown [FS96, LB00] thatP0(Q) can be reconstructed from every individual histogram

Pi(Q) (as long as there is an overlap of the sampled distribution functions) by

P0(Q) = exp(βVi)
Zi

Z0
Pi(Q). (A.5)

This leads to the following ansatz where one reconstructsP est0 (Q) by a linear combination of the
measured histogramsPi(Q) corresponding to different external fieldsVi [FS96]:

P0(Q) =
n∑
i=1

ωi(Q) exp(βVi)
Zi

Z0
Pi(Q). (A.6)

whereωi(Q) is a normalized weight function with

n∑
i=1

ωi(Q) = 1 (A.7)

which has to be determined. The weights are chosen in such a way that the variance ofP est0 (Q), i.e.
〈P est0 (Q)2〉 − 〈P est0 (Q)〉2, is minimized under the constraint of eq. (A.7) resulting in

P est0 (Q) =
∑n

i=1Hi(Q)∑n
i=1 exp(−βVi)Ni

Z0
Zi

(A.8)

wheren denotes the number of histograms that should be recombined (details of the calculation can
be found in [FS96]). Inserting eqs. (A.8),(A.5) in eq. (A.2) yields an implicit equation forZi that
must be solved self-consistently:

Zi =
∫

dQ exp(−βVi)
∑n

j=1Hj(Q)∑n
k=1 exp(−βVk)Nk

Zk

. (A.9)

Actually it is not possible to determine all absolute values ofZi. Rather one is interested in calculat-
ing their ratioZi/Z0 in order to obtain the estimate of the probability distribution functionP est0 (Q)
(see eq. (A.8)). Thus we can fix one of theZi, sayZ0, at a constant value and solve the set of
eqs. (A.9)) until self-consistency is reached, that is until a new iteration step fulfills the condition

n∑
i=1

|Zit,new
i − Zit,old

i | < ε (A.10)

whereε denotes the desired accuracy of the iteration procedure.



Appendix B

Calculation of the base-pair step
parameters

The following considerations are based on the base-pair step calculation scheme developed by Bab-
cock et al [BPO94].

The definition of the base-pair step parameters has to ensure that the calculated rotational and
translational step parameters should be independent of the direction of measurement, i.e. indepen-
dent of the chain end one starts with. Only the signs of the parameters should change if one changes
the direction of measurement. It is known that Euler angles do not satisfy this condition. Simultane-
ous rotations of a rigid body, on the other hand, fullfil the desired requirements. In general a vector
~v which is rotated around an axis~Ω with angleΩ is given by

~v ′ = ~v cos(Ω) +

(
~Ω

|~Ω|
× ~v

)
sin(Ω) +

~Ω

|~Ω|

(
~Ω

|~Ω|
· ~v

)
(1 − cos(Ω)) . (B.1)

as already discussed in section 2.4. This produces an overall rotation of the body about the origin
along the vector~Ω = {Ωx,Ωy,Ωz} with

Ω = |~Ω| =
√

Ti2 + Ro2 + Tw2 (B.2)

(see Fig. B.1). This can be written as a rotation matrixR [JJ56]

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (B.3)
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[Ti, Ro, Tw]Ω = 

Ω = [0, 0, Tw]

x

y

z

Ti

Tw

Ro

|Ω|

y

x

z

Figure B.1: Illustration of the rotation of a body about a vector~Ω = {Ωx,Ωy,Ωz}.

with

R11 = cos(Ω) + (1 − cos(Ω))
Ω2
x

Ω2
= cos(Ω) + (1 − cos(Ω))

Ti2

Ω2

R12 = (1 − cos(Ω))
ΩxΩy

Ω2
− Ωz

Ω
sin(Ω) = (1 − cos(Ω))

TiRo
Ω2

− Tw
Ω

sin(Ω)

R13 = (1 − cos(Ω))
ΩxΩz

Ω2
+

Ωy

Ω
sin(Ω) = (1 − cos(Ω))

TiTw
Ω2

+
Ro
Ω

sin(Ω)

R21 = (1 − cos(Ω))
ΩxΩy

Ω2
+

Ωz

Ω
sin(Ω) = (1 − cos(Ω))

TiRo
Ω2

+
Tw
Ω

sin(Ω)

R22 = cos(Ω) + (1 − cos(Ω))
Ω2
y

Ω2
= cos(Ω) + (1 − cos(Ω))

Ro2

Ω2

R23 = (1 − cos(Ω))
ΩyΩz

Ω2
− Ωx

Ω
sin(Ω) = (1 − cos(Ω))

RoTw
Ω2

− Ti
Ω

sin(Ω)

R31 = (1 − cos(Ω))
ΩxΩz

Ω2
− Ωy

Ω
sin(Ω) = (1 − cos(Ω))

TiTw
Ω2

− Ro
Ω

sin(Ω)

R32 = (1 − cos(Ω))
ΩyΩz

Ω2
+

Ωx

Ω
sin(Ω) = (1 − cos(Ω))

RoTw
Ω2

+
Ti
Ω

sin(Ω)

R33 = cos(Ω) + (1 − cos(Ω))
Ω2
z

Ω2
= cos(Ω) + (1 − cos(Ω))

Tw2

Ω2
.

(B.4)

R is the rotation matrix which characterizes one base-pair step, i.e. it determines the rotation angles
{Ti,Ro,Tw} which are involved to go from one base-pair to the neighboring one. Since only one
rotation is involved changing the perspective from one coordinate frame to the other simply has
the effect of reversing the direction of the rotation. For neighboring base-pair parameters changing
the direction of measurement is equivalent to transposing the rotation matrix. Using Eq. (B.4) one
obtains

R(Ti,Ro,Tw)T = R(-Ti, -Ro, -Tw). (B.5)

Thus changing the direction of measurement causes a change in signs of tilt, roll and twist while
leaving their magnitudes unaltered.
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The rotation angleΩ can be calculated by determining the trace ofR

tr(R) =
3∑
i=1

Rii = 3 cos(Ω) + (1 − cos(Ω))
Ti2 + Ro2 + Tw2

Ω2
= 2 cos(Ω) + 1. (B.6)

Thus one obtains forΩ

cos(Ω) =
1
2
(R11 + R22 + R33 − 1) (B.7)

Ω = arccos
(

1
2
(R11 + R22 + R33 − 1)

)
. (B.8)

Substituting Eq. B.7 into the diagonal terms of the rotation matrixR of Eq. B.4 results in a calcu-
lation scheme for{Ti,Ro,Tw}:

|Ti| = Ω
√

−R11 + R22 + R33 − 1
R11 + R22 + R33 − 3

(B.9)

|Ro| = Ω
√

R11 − R22 + R33 − 1
R11 + R22 + R33 − 3

(B.10)

|Tw| = Ω
√

R11 + R22 − R33 − 1
R11 + R22 + R33 − 3

. (B.11)

With Eqs. (B.8-B.11) the values of the rotational base-pair parameters are completely determined.
In order to identify the signs of{Ti,Ro,Tw} one can make use of the signs and relative magnitudes
of the off-diagonal elements of the rotation matrixR. Eq. (B.8) restricts the value ofΩ to lie in the
interval of [0, π]. Thussin(Ω) must be non-negative. As a consequence one finds that Ti≥ 0 in
case ofR32 ≥ R23. Otherwise Ti is negative. Furthermore if Ti is positive (negative) the sign of
Ro is the same (opposite) as the sign ofR21 + R12 and the sign of Tw is the same (opposite) as the
sign ofR31 + R13. These considerations lead to the following rules:

if R32 ≥ R23 then

Ti = +|Ti|
if R21 + R12 ≥ 0 then Ro= +|Ro| else Ro= −|Ro|
if R31 + R13 ≥ 0 then Tw= +|Tw| else Tw= −|Tw|

if R32 < R23 then

Ti = −|Ti|
if R21 + R12 ≥ 0 then Ro= −|Ro| else Ro= +|Ro|
if R31 + R13 ≥ 0 then Tw= −|Tw| else Tw= +|Tw| (B.12)

For reasons of numerical stability these rules are only employed if|Ti| ≥ |Ro| and |Ti| ≥ |Tw|.
Other rules are used if|Ro| or |Tw| are largest in magnitude. For these two remaining cases one can
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derive analogous sign rules [BPO94]: (i)|Ro| ≥ |Ti| and|Ro| ≥ |Tw|:

if R13 ≥ R31 then

Ro = +|Ro|
if R21 + R12 ≥ 0 then Ti= +|Ti| else Ti= −|Ti|
if R32 + R23 ≥ 0 then Tw= +|Tw| else Tw= −|Tw|

if R13 < R31 then

Ro = −|Ro|
if R21 + R12 ≥ 0 then Ti= −|Ti| else Ti= +|Ti|
if R32 + R23 ≥ 0 then Tw= −|Tw| else Tw= +|Tw| (B.13)

and (ii) |Tw| ≥ |Ti| and|Tw| ≥ |Ro|:

if R21 ≥ R12 then

Tw = +|Tw|
if R31 + R13 ≥ 0 then Ti= +|Ti| else Ti= −|Ti|
if R32 + R23 ≥ 0 then Ro= +|Ro| else Ro= −|Ro|

if R21 < R12 then

Tw = −|Tw|
if R31 + R13 ≥ 0 then Ti= −|Ti| else Ti= +|Ti|
if R32 + R23 ≥ 0 then Ro= −|Ro| else Ro= +|Ro|. (B.14)

Equations (B.8-B.14) provide the calculation scheme for the rotational base-pair step parameters.
With the knowledge of the rotational step parameters it is now possible to calculate the transla-

tional step parameters along thex-, y- andz- direction (shift, slide, rise). This vector is given by

~Ti,i+1 =

Sh
Sl
Ri

 = R− 1
2~ri,i+1 (B.15)

where the entries of~ri,i+1 are the coordinates of the origin of framei + 1 as measured in frame

i. The rotation matrixR− 1
2 ensures that the translational step parameters are measured in a mid-

way coordinate frame such that the magnitudes of{Sh,Sl,Ri} are independent of the direction of
measurement. The effect of measuring in the reverse direction is again a change in sign of~Ti,i+1

~Ti,i+1 = −~Ti+1,i. (B.16)

In order to calculate the square-root of the rotation matrixR one can use the following general
property ofR of Eq. (B.4). For all values ofk andm one can show [BPO94] that

R(kTi, kRo, kTw)R(mTi,mRo,mTw) = R((k +m)Ti, (k +m)Ro, (k +m)Tw) (B.17)

Thus square-roots can be calculated by settingk = m = 1
2 . This implicates that we use the

calculated values of{Ti,Ro,Tw} divide them by two and make use of eqs (B.2) to (B.4) to generate
the square-root matrix.



Appendix C

Relationship between twist/bending
angles and the orientation of the
base-pairs

Consider the following three systemsS, S ′, S ′′, where systemS ′ is randomly rotated with respect
to S. To find for example the twist angleτ betweenS andS ′ we rotateS ′ about a unit vectorz with

z =
t × t′

|t × t′|
=

t × t′

sin(θ)
(C.1)

which is perpendicular to thet-t′-plane. This undoes the bending and results in theS ′′ frame (see
Fig. C.1). The vectort′′ is thus parallel tot and the angleτ betweenn′′ andn andb′′ andb

bend + twist twist
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Figure C.1: Bending and twist angles in two rotated framesS andS ′.
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respectively corresponds to the twist angle Tw, such that

cos(τ) = cos(Tw) = n′′ · n = b′′ · b. (C.2)

Furthermore we can use Eq. (2.41) to calculaten′′ andb′′:

n′′ = n′ cos(θ) + sin(θ)z × n′ + (1 − cos(θ))(n′ · z)z (C.3)

b′′ = b′ cos(θ) + sin(θ)z × b′ + (1 − cos(θ))(b′ · z)z. (C.4)

Combining Eq. (C.2) and (C.3) we get

cos(Tw) = (n · n′) cos(θ) + sin(θ)n · (z × n′) + (1 − cos(θ))(n′ · z)(n · z). (C.5)

We can make use of Eq. (C.1) to calculate the scalar and vector products of Eq. (C.5):

n′ · z =
1

sin(θ)
(t × t′) · n′ =

1
sin(θ)

(n′ × t′) · t =
1

sin(θ)
b′ · t (C.6)

n · z =
1

sin(θ)
(t × t′) · n =

1
sin(θ)

(n × t) · t′ = − 1
sin(θ)

b · t′ (C.7)

z × n′ =
1

sin(θ)
(t × t′) × n′ =

1
sin(θ)

(t′(n′ · t) − t(n′ · t′)) =
1

sin(θ)
t′(n′ · t). (C.8)

Substituting these equations into Eq. (C.5) results in

cos(Tw) = (n · n′) cos(θ) − (n · t′)(n′ · t) − 1 − cos(θ)
sin(θ)2

(b · t′)(b′ · t)

= (n · n′)(t · t′) − (n · t′)(n′ · t) − 1 − t · t′

(t × t′) · (t × t′)
(b · t′)(b′ · t)

= (n · n′)(t · t′) − (n · t′)(n′ · t) − 1 − t · t′

(t · t)(t′ · t′) − (t · t′)2
(b · t′)(b′ · t)

= (n · n′)(t · t′) − (n · t′)(n′ · t) − (b · t′)(b′ · t)
1 + (t · t′)

.

(C.9)

Using that

(n · n′) = (b × t) · (b′ × t′)
= (b′ · b)(t′ · t) − (b′ · t)(t′ · b) (C.10)

(b · b′) = (t × n) · (t′ × n′)
= (t′ · t)(n′ · n) − (n′ · t)(t′ · n) (C.11)

and

(b′ · t)(t′ · b) = (b′ · b)(t′ · t) − (n · n′) (C.12)

(n′ · t)(t′ · n) = (t′ · t)(n′ · n) − (b · b′) (C.13)

respectively one can rewrite Eq. (C.9) obtaining the following relationship between the twist angle
and the base vectors of frameS andS ′:

cos(Tw) =
n · n′ + b · b′

1 + t · t′ . (C.14)
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The respective bending angles Ro (aroundn-axis, compare Fig. 3.2) and Ti (aroundb-axis) can be
calculated in an analogous fashion. One finds that they are given by permutations oft, n, andb in
Eq. (C.14):

cos(Ti) =
n · n′ + t · t′

1 + b · b′ (C.15)

cos(Ro) =
t · t′ + b · b′

1 + n · n′ . (C.16)
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