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Introduction

In our every-day life, we are surrounded by amorphous solids. This does not only

cover the ordinary window glass or the optical fiber which we use for short and

long-range communications. Among other things, most of the engineering plastics

and also –honey– belong to this kind of material.

Although the technical processing of glasses has been known for millennia now,

the physical principles behind glass formation are still not fully understood. What is

clear is that the melt, upon sufficiently rapid cooling, remains in the liquid state in-

stead of crystallizing. Due to the low temperature, then, molecular motion becomes

very sluggish, e.g. happens on the time scale of seconds rather than picoseconds.

For this reason, the liquid is extremely viscous, thus acting very much like a solid.

Although the underlying crystal is the thermodynamically stable state, the system

is too slow to reach it within the experimental time scale; the liquid is said to be

metastable or supercooled.

On a phenomenological basis, one defines the glass transition temperature (Tg)

as the point where characteristic molecular relaxation times reach 102 s, or alter-

natively, where the shear viscosity exceeds η = 1013 poise. To get an impression

of the order of magnitude, consider a cubic centimeter of a substance with exactly

this viscosity, where a shear force of 100 N is constantly applied. After one day, the

deformation of the probe is ca. 1 mm.

For the development of glasses and their industrial application, it is highly de-

sirable to understand why certain compositions of materials readily form glasses on

cooling a melt while others have a strong tendency to crystallize. This remains

one of the great unsolved mysteries of glass science, although empirical descriptions

have been developed which successfully account for the glass-forming ability in cer-

tain specific cases. Nevertheless, choosing the right composition for a glass former

with some desired properties is still in an ’alchemy’ stage. Of course, the question

of the ease of glass formation on cooling a melt is intimately related to the problem

of how do glasses form.

One puzzling observation is that the dramatic slowdown of dynamics is accom-
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2 Introduction

panied by no more than subtle changes in structure. One also says that the glass

transition is a kinetic phenomenon. Moreover, the mobility of particles can vary by

orders of magnitude between different regions of the same sample, which is referred

to as dynamic heterogeneity. These, and other aspects of glass formation, like the

jump in specific heat at Tg, are not fully understood. The major goal would be

to predict dynamic (and also thermodynamic) properties of the system in question

from first principles, i.e. from the microscopic interaction potentials. The prob-

lem is that the lacking periodicity of the inter-molecular structure complicates the

application of the classical tools of theoretical physics.

The physics of glass-forming liquids is a complex many-body problem. This

shows up, e.g., in the non-exponential decay of dynamic response functions or

in the non-Arrhenius behavior of viscosities in many glass formers. Apart from

phenomenological models as that of (Adam and Gibbs, 1965) and analytical the-

ories like mode-coupling theory (Götze and Sjogren, 1992) or the theory of spin

glasses (Mezard et al., 1987), computer simulations are having an increasing im-

pact on this field of research. In particular, the potential energy landscape approach

(PEL) proposed by Goldstein over thirty years ago (Goldstein, 1969) could be im-

plemented numerically with considerable success (Stillinger and Weber, 1982). The

idea is to consider the high-dimensional vector of all particle coordinates as a point

moving on the surface of the total potential energy. At low temperatures, the sys-

tem stays near the local minima of the PEL, the so-called inherent structures. Using

only their local properties one is then able to predict all thermodynamic quantities.

At high temperatures, this attempt breaks down since the system is no longer con-

fined to the very vicinity of the local minima. In recent years, important pieces of

information have been gained about the PEL of different glass-forming systems via

extended computer simulations (Sastry, 2001; Sastry et al., 1998; Sciortino et al.,

2000; Sciortino et al., 1999). It has turned out that the PEL description starts to

work when cooling below T ≈ 2Tc, where Tc is the critical temperature of mode-

coupling theory (MCT). In this regime the equation of state could be expressed

completely in terms of a few parameters that characterize the statistical properties

of PEL minima (La Nave et al., 2002a).

The current understanding of dynamics in terms of the PEL structure is much

less satisfying. However, it is felt that the molecular slowing down, as expressed,

e.g., by the diffusion coefficient D(T ), should be related to the hopping over PEL

barriers which separate the minima. The quantification of this idea will be the main

subject of this thesis. The first question that arises is

• Is there a simple relation between D(T ) and the hopping between minima?

We shall demonstrate in chapter 4 that there is, if one considers whole superstruc-
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tures of many PEL minima (metabasins), rather than single minima. The existence

of metabasins has been hypothesized some years ago (Stillinger, 1995) and recently

been demonstrated within simulations (Büchner and Heuer, 2000; Middleton and

Wales, 2001). Metabasins are reminiscent of protein folding funnels (Bryngelson

et al., 1995) or related structures in the energy landscape of small clusters (Ball

et al., 1996). Next, one could ask

• How is the hopping rate between metabasins connected to their depth, i.e. to

the barriers that surround them?

This will be the subject of chapter 5, where we will prove that the mean residence

time inside deep metabasins can be quantitatively related to the local PEL struc-

ture. We will then be able to express D(T ) by the depths of metabasins and their

population at a given temperature. A question which is important with respect to

the current view on supercooled liquids is

• What is the temperature regime where the hopping description can be applied?

Mode-coupling theory predicts a power-law behavior of the form D(T ) ∝ (T −Tc)
γ

above the MCT critical temperature Tc. Since Tc is found to be higher than the glass

transition temperature Tg, the MCT divergence of 1/D(T ) at Tc is not observed in

practice. The common explanation for this shortcoming of MCT is that the theory

neglects ‘activated processes’, or ’hopping’, which is supposed to come into play

around and below Tc. In chapter 7, we will see that the temperature dependence

of D(T ) is governed by activated processes (barriers larger than 5kBT ) already

significantly above Tc. This is in contrast to many of the conclusions that have

been drawn in recent numerical studies of the PEL above Tc.

An important technical point concerns the choice of system size. In order to

optimize the information that can be extracted from a simulation, it is essential

to use small systems. Due to the experimentally observed, finite length scales of

correlated motion (Tracht et al., 1998; Russell and Israeloff, 2000) down to Tg,

different subsystems of a macroscopic sample are essentially independent of each

other. Thus, considering many of these quasi-independent subsystems in parallel,

one washes out much of the interesting PEL information about a single one. Guided

by this simple argument, we will mainly consider a small system of 65 particles in

this thesis. In order to show that no finite-size related artifacts arise, we give a

detailed comparison to larger systems of the same type in chapter 6.

The outline of the thesis is as follows. In chapter 1, we describe the salient fea-

tures of supercooled liquids from our point of view, together with some background

information about experimental and theoretical techniques. Chapter 2 defines the
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model system under investigation and the simulation technique applied. For reasons

of completeness, we give detailed results on the static PEL aspects in chapter 3.

Especially, we would like to draw the reader’s attention to sections 3.2 and 3.3,

where we present some interesting findings about the total number of minima and

the configurational entropy. Chapters 4 to 7 contain the main results of this thesis

as described above. They correspond to the following publications (in that order):

(Doliwa and Heuer, 2002c), (Doliwa and Heuer, 2002a), and (Doliwa and Heuer,

2002b).1

For the hasty reader we note that chapter 7 gives a compact summary of the

main results of the preceding chapters. Then, further aspects of metabasins will be

given (e.g., the differentiation between solid- and liquid-like metabasins), together

with a final comparison of the present work to that of other groups.

1Chapter 7 is still to be published.



Chapter 1

Supercooled Liquids and the Glass

Transition

Meßkunst wird und Forscherlust

einst noch Glas und Baum befragen:

und der Wissenschaft wird tagen,

was der Weisheit längst bewußt.

frei nach Christian Morgenstern

We begin with a brief overview of the salient features of supercooled liquids and

their current theoretical understanding. Of course, we will not attempt to cover all

the interesting developments in this field that have been achieved during the last

decades. In view of the large number of comprehensive review articles, we restrict

ourselves to the aspects of supercooling and glass formation, which are of direct

relevance for the present study.

1.1 Phenomenology.

The glass transition is the transition from the viscoelastic liquid to the amorphous

solid state. For many materials, e.g. oxidic melts, low-molecular organic substances

or alloys, one can avoid crystallization via rapid cooling (quenching) or other special

techniques (like vapor deposition or solid evaporation), so that a supercooled liquid

and finally a glass is formed (Angell, 1995). Supercooling is the more easy, the more

irregular the molecular structure. For that reason, the glass transition of polymers

is of special importance. The more complicated molecular structure as compared

to low-molecular substances and the entanglements in the polymeric melt prevent

5



6 Supercooled Liquids and the Glass Transition

the efficient self-organization into a crystal, in favor of the amorphous solid. If a

substance can readily be supercooled at normal cooling rates without being trapped

in the crystalline state, one speaks of a good glass former. The glassy state is

characterized both by liquid-like and solid-like properties, since the structure of a

glass is isotropic, without long-range order, although its macroscopic mechanical

properties are similar to those of a solid.

Figure 1.1 illustrates the temper-
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1.1: Schematic representation of the spe-
cific volume as a function of temperature (Edi-
ger, 1996). Glass 1 corresponds to a higher cool-
ing rate than glass 2. See text for details.

ature dependence of a liquid’s vol-

ume at constant pressure. If crystal-

lization below the freezing temper-

ature Tm is avoided by sufficiently

fast cooling, the liquid stays in a

metastable state which is charac-

terized by a volume higher than

that of the crystal. Upon further

cooling, its viscosity increases and

the molecules’ motion becomes more

and more sluggish. At some temper-

ature, consequently, the molecules

do not have a chance to rearrange

significantly before the temperature

is lowered further. Since these re-

arrangements are necessary to reach

equilibrium at that temperature,

the experimentally observed volume

starts to deviate from the equilibrium value. At still lower temperatures, the time

scale of single molecular rearrangements becomes comparable to the time scale of

experimental observation. The molecular structure is then frozen from the practical

view and we call the material a glass. Upon further cooling, the volume continues

to drop, but according to a much smaller thermal expansion coefficient than in the

supercooled liquid regime. As one can see from the figure, the thermal expansion

is similar in the glass and the crystal. This can be explained by the fact that the

volume changes are dominated by atomic vibrations, which are similar for glass and

crystal.

One way to define the glass transition temperature Tg is to use the change in

the thermal expansion coefficient, as seen in Fig. 1.1. Since this change is by no

means sharp, the location of Tg has some intrinsic arbitrariness. Moreover, if cooled
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more slowly, the supercooled liquid is able to reach a much smaller volume, and

the bend in the volume curve appears at a lower temperature. This dependence

of Tg upon cooling rate, though disturbing from a theoretical view, is relatively

weak; changing the cooling rate by one order of magnitude typically affects Tg by

no more than 3 − 5 K. For practical purposes, thus, Tg serves as an important

material property, which, for instance, is the most useful parameter for estimating

mechanical properties of polymers. By extrapolating Tg towards zero cooling rate,

one obtains the so-called ideal glass transition temperature T0. Alternatively, one

often uses the jump in the specific heat to determine Tg, which is then called the

calorimetric glass transition temperature, Tg,cal, see below.

The slowing down.

As mentioned in the in-

Figure 1.2: Arrhenius plot of the viscosity of differ-
ent glass formers over inverse temperature Tg,cal/T ,
from (Richert and Blumen, 1993).

troduction, another definition

for Tg is the temperature

at which the shear viscosity

reaches a value of 1013 poise

(1012 Nsm−2). As illus-

trated in the Arrhenius plot

of Fig. 1.2, the viscosity is

very sensitive to temperature

changes near Tg. For some

substances, which mostly are

covalent network glass form-

ers like SiO2, the tempera-

ture dependence of the vis-

cosity is well described by a

simple Arrhenius law, η(T ) ∝
exp(E/kBT ) (a straight line in

the Arrhenius plot). Here E

is a constant activation energy

and kB is Boltzmann’s constant. Other liquids exhibit an even stronger slow-down

close to Tg, which can be expressed by a temperature dependent activation energy

E(T ) in the above formula. After (Angell, 1988), the former substances are called

strong glass formers, the latter are termed fragile. An empiric law which often fits

experimental data very well is given by

η(T ) ∝ exp

(
A

T − TVFT

)
,
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the so-called VFT relation with a constant A (Vogel, 1921; Fulcher, 1925; Tammann

and Hesse, 1926). Interestingly, the temperature TVFT thus introduced often turns

out to be nearly identical to the ’ideal’ glass transition temperature T0.

The comprehension of η(T ) from first principles is one of the big unsolved prob-

lems in glass research. In the case of strong glass formers, the constant activation

energy E suggests that a simple molecular mechanism governs the temperature de-

pendence of η(T ). Indeed, for the network-forming SiO2, there are some indications

that E directly corresponds to the breaking of Si-O bonds (McMillan et al., 1994;

Horbach and Kob, 1999). Thus, the energetic cost of structural relaxation seems

to be dominated by these simple bond-breaking events, while possible subsequent

rearrangements are comparably ’cheap’. The situation is less clear for fragile glass

formers. There, nearest-neighbor interactions are generally weaker but more nu-

merous. Thus, more complicated, highly collective rearrangements are expected to

determine the temperature dependence of the viscosity. Some of the theoretical

approaches which try to incorporate these complex many-particle effects will be

described below.

Dynamic Heterogeneities and Length Scales. The presence of strong varia-

tions in mobility throughout a supercooled sample is a well-established fact (Sillescu,

1999). By numerous experimental techniques, like multi-dimensional NMR or non-

resonant dielectric hole burning (Bohmer et al., 1998), it could be shown that the

selection of intrinsically slow (or fast) sub-ensembles is feasible, in the sense that

the selected particles remain slow (or fast) for a certain time after selection. Partic-

ularly fragile glass formers exhibit this so-called dynamic heterogeneity. Of course,

the different mobility is expected to have a spatial aspect, meaning that, at a given

time, whole regions of a probe behave extremely sluggish, while other parts are

very mobile. The length scale of dynamic heterogeneity could indeed be measured

in multi-dimensional NMR experiments through spin diffusion (Tracht et al., 1998;

Reinsberg et al., 2002). The result is that at T ≈ Tg + 10 K, dynamical correla-

tions are of an average range of ca. 4 nm in polyvinylacetate, 3 nm in o-terphenyl,

and 1 nm in glycerol. The growth of dynamical length scales with decreasing tem-

perature has clearly been demonstrated in computer simulations (Yamamoto and

Onuki, 1998; Donati et al., 1999; Doliwa and Heuer, 2000). The divergence of

length scales at a temperature near the glass transition is still controversial. Some

theories, which claim the existence of an underlying phase transition, predict such

a divergence. However, the observation of this phenomenon in practice would be

difficult since the finiteness of cooling rates prevents the direct study of the putative

phase transition.
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For the present study, the aspect of dynamic length scales is of importance. Since

in our approach we consider rather small systems, the common large-scale dynamic

heterogeneity is certainly not captured. However, we shall demonstrate that the

essential physics of the viscous slowing is already contained in the energy landscape

of quite small model systems (chapter 6). This suggests that the occurrence of

large-scale dynamic heterogeneity is merely a concomitant of the molecular slowing

down.

Configurational entropy.

The specific entropy, s(T ), of a
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1.3: Schematic of (a) the temperature de-
pendence of the specific heat, cp(T ), and (b) the
specific entropy, s(T), of crystal, liquid, super-
cooled liquid, and glass. Again, different cooling
rates lead to different glasses 1 and 2 (Ediger,
1996).

supercooled liquid is usually calcu-

lated by integrating over the mea-

sured specific heat,

s(T ) = s(T1) +

∫ T

T1

cp(T
′)

T ′ dT ′.

(1.1)

A typical specific heat curve is il-

lustrated in Fig. 1.3(a) for the liq-

uid, supercooled liquid, glass, and

crystal. cp(T ) is largest in the su-

percooled liquid and drops to some

value close to the crystal near Tg.

In fact, the calorimetric glass tran-

sition temperature, Tg,cal, is defined

by this drop in cp(T ). Again, we find

a certain sensitivity of Tg,cal on cool-

ing rate. From such data, s(T ) can

be obtained via Eq. 1.1. The crystal

entropy s(T ), T ≤ Tm, can be cal-

culated after measuring cp(T ) from

T1 = 0 K to T . We then obtain the

entropy of the liquid by adding the

entropy of fusion to the crystal en-

tropy at Tm. By further heating and measuring cp(T ), we find s(T ) at higher liquid

temperatures. Upon sufficiently rapid re-cooling, we enter the supercooled liquid

regime and determine s(T ) in the same way as before. The resulting s(T ), schemat-

ically shown in Fig. 1.3(b), resembles very much the V (T ) of Fig. 1.1. It is inter-

esting to compare the s(T )’s of the supercooled and crystalline states. Neglecting
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defects, the configuration of the crystal is unique.1 Hence, the crystal entropy just

arises from lattice vibrations. The supercooled liquid, due to structural relaxation,

is still able to visit a large number of distinct configurations. The corresponding

’configurational’ entropy,

sc(T ) = s(T )− svib(T ). (1.2)

is a central quantity in many studies of the glass transition. Assuming that the

vibrational entropy, svib(T ), is similar to the one of the crystal, one is able to obtain

sc(T ) from experiment.2

Due to the larger value of cp(T ), the decrease of s(T ) upon cooling is larger

in the supercooled liquid than in the crystal, see Fig. 1.3(b). Ignoring the bend

in the curve, the extrapolation of s(T ) from the supercooled regime towards lower

temperatures yields a temperature, TK, where the supercooled s(T ) equals that of

the crystal. Under the above assumption of equal vibrational entropies, one con-

cludes that sc(TK) = 0, meaning that the glass is trapped in a unique configuration.

Pushing the extrapolation of the liquid s(T ) still further, one clearly reaches a

contradiction since sc(T ) would become smaller than zero. In a slightly different

formulation, the occurrence of a negative configurational entropy below TK was al-

ready noted by Kauzmann (the ’Kauzmann paradox’), which is why TK bears his

name (Kauzmann, 1948). However, the situation is not paradoxical at all. Due to

the drop of cp(T ) near Tg, the liquid entropy in practice never falls below that of

the crystal. In the literature, this is often expressed by saying that ’the entropy

crisis is thwarted by the glass transition’. Nonetheless, Fig. 1.3(b) suggests that in

the limit of small cooling rates one might be able to reach a liquid entropy equal to

that of the crystal at TK. In section 3.3, though, we will give evidence that this is

only possible if TK = 0.

1.2 Theories Describing the Viscous Slowing

Down.

The theoretical understanding of the glass transition is still far from being complete.

To date, no theory has been presented that captures all the prominent features

of supercooled liquids and the glass transition. During the last years, though,

considerable progress has been made both from the analytical and the numerical

side. For a comprehensive review see, e.g., (Jäckle, 1986) or (Debenedetti and

Stillinger, 2001). Here we concentrate on theories that describe the viscous slowing

down of molecular motion.
1apart from particle permutations
2In simulations, we can directly compute the vibrational part of the entropy of the liquid

without this assumption, see section 3.3.
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Theories involving a low-temperature phase transition. Some of the early

theories of the glass transition predicted a true phase transition at TK or TVFT. The

first among them related the viscosity to the free volume within in the system (Co-

hen and Turnbull, 1959). One assumed that a minimum of local free volume is

needed for particle transport to happen. If, by some fluctuation, this threshold

value is exceeded, some molecules may rearrange. Under simple assumptions about

the distribution function of these fluctuations and the mean free volume per par-

ticle, one arrived at the VFT relation for the viscosity. Later on, the free-volume

model was extended by some elements from percolation theory (Cohen and Grest,

1979). By intuitive arguments, the authors related the glass transition to the per-

colation of liquid-like clusters (i.e. those with sufficient free volume) through the

sample, which corresponds to a first-order phase transition.

In a rival theory, developed for polymers on a lattice, a second-order phase

transition was predicted if the number of occupied sites becomes sufficiently large,

leading to the vanishing of the configurational entropy (Gibbs and DiMarzio, 1958).

Later, Adam and Gibbs explained the temperature dependence of relaxation times

in glass-forming liquids in terms of the temperature variation of the size of ’cooper-

atively rearranging regions’ (CRRs). Their work is certainly one of the most cited

in the field of glass research (Adam and Gibbs, 1965). The important outcome is

the Adam-Gibbs relation of relaxation times with configurational entropy, namely

τ(T ) = τ0 exp

(
A

Tsc(T )

)
, (1.3)

with constants τ0 and A. If sc goes to zero at TK like sc(T ) ∝ (T − TK)/T , one

ends up again with the VFT equation, where we may then identify TK with TVFT.

This is supported by the common observation of similar TK and TVFT. Moreover,

Eq. 1.3 with τ(T ) replaced by the diffusion coefficient has recently been verified

for several model glass formers in numerical simulations (Saika-Voivod et al., 2001;

Scala et al., 2000; Starr et al., 2001; Sastry, 2001) and experimentally over a broad

range of substances (Richert and Angell, 1998; Casalini et al., 2002; Comez et al.,

2002).

Thus, Eq. 1.3 provides a suggestive connection between kinetics and thermo-

dynamics which seems to be more than coincidental. According to this equation,

the viscous slow-down originates from the decreasing number of configurations that

the system may sample. At the Kauzmann temperature, where sc = 0, the liquid

would reside in a unique, non-crystalline state which is termed the ideal glass. A

shortcoming of the treatment that leads to Eq. 1.3 is that no information about

the size of CRRs is given. Recent simulation results, which connect the number

of particles in collectively relaxing clusters to configurational entropy, seem to be
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a first step towards a better real-space understanding of Eq. 1.3 (Giovambattista

et al., 2002a).

We have mentioned the entropy theory by Adam and Gibbs because of two

reasons. First, in section 3.3, we provide evidence that the concept of a vanishing

configurational entropy at TK should be revised. Second, the results presented in

chapter 4 and chapter 5 might directly lead to a better understanding of Eq. 1.3 in

terms of the potential energy landscape. However, the latter problem must be left

unsolved in this thesis.

Mode-coupling theory. An alternative viewpoint to the concept of an under-

lying phase transition is provided by mode-coupling theory (MCT), where one

assumes a purely dynamical viewpoint. Without invoking diverging correlation

lengths, the theory provides a way of understanding diverging correlation times at

low temperatures, starting from first principles (Götze, 1989). The basic idea is a

quantitative formulation of a non-linear feedback of dynamic density correlations.

Using static density correlations as an input, one is able to deduce a detailed picture

for the dynamics, which comprises a two-step decay and certain factorization prop-

erties. Later, the MCT of simple liquids was generalized to molecular substances,

incorporating their rotational degrees of freedom (Schilling and Scheidsteger, 1997).

The ’idealized’ version of the theory predicts a divergence of correlation times

at a critical temperature Tc. Since Tc is significantly higher than the laboratory

glass transition, it is now widely understood that ideal MCT cannot be a theory

for the glass transition itself. As already noted in the introduction, this is generally

attributed to the fact that activated processes are not included in the theory. By a

subsequent modification (Franosch et al., 1997), these ’hopping’ contributions could

be built into the theory, so that relaxation could continue down to much lower

temperatures. Unfortunately, this improved version of MCT is not acknowledged

much in the glass community today, possibly due to its too complex character.

We briefly note that the structure of the MCT equations is reproduced by some

mean-field spin-glass models (Bouchaud et al., 1996). In general, the theory of spin

glasses has had a large impact on the field of supercooled liquids and the glass

transition. We do not attempt to discuss this here, but rather refer the reader to

the extensive literature on the subject; see, e.g., (Mezard et al., 1987; Mezard and

Parisi, 2000).

The generally presumed crossover of relaxation mechanism, from fluid-like above

Tc to activated hopping below Tc, will be discussed in detail in chapter 7. The

result will be that, upon cooling, activated barrier crossing becomes the dominant

relaxation mechanism much above Tc. Whether this is consistent with the ideal
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MCT picture or not shall be left open for discussion.
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Chapter 2

On the Simulations

To capture the behavior of supercooled metal alloys, Stillinger and Weber have

introduced a simple model potential of Lennard-Jones form (Weber and Stillinger,

1985a). As they have shown by an appropriate set of potential parameters, it is

possible to reproduce the experimental findings, e.g., for amorphous Ni80P20 quite

accurately (Weber and Stillinger, 1985b). Since these systems belong to the simplest

liquids exhibiting a glass transition, they are an obvious choice for a numerical study.

In section 2.1, we present the details of the interparticle potentials and discuss

the aspect of possible crystallization. Then we describe the equations of motion and

their integration within the simulations (section 2.2), before turning to the issue of

units (section 2.3).

2.1 Interaction Potentials.

In this thesis, we investigate a binary mixture of Lennard-Jones particles (BMLJ),

as introduced by Kob and Andersen (Kob and Andersen, 1995). This system has

only a weak tendency towards crystallization when cooled below the melting tem-

perature of its crystal. In the numerical investigation of supercooled liquids this is

quite essential. When trying to set up a simple system with spherical interaction

potentials, Vij(|xij|), one makes the experience that the driving force towards phase

separation or crystallization is often strong.

One way to avoid these ordering effects is to introduce a large polydispersity of

particle sizes. In systems of hard spheres with a gaussian distribution of particle

diameters, for example, one needs a width of ca. 10% of the average size to hamper

formation of large crystallites in the sample. For two-dimensional hard discs, one

even has to go to a relative width of 25% (Doliwa and Heuer, 2000). If we intend

to perform energy-landscape analyses, such large polydispersity has a drawback:

15
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Since the motion of the smallest particles is much faster than the average, most IS

transitions are related to the hopping of these small particles. This disturbs the

analysis of the relaxation of average particles.

Another way to avoid ordering is to work with a small number of particle species

and to carefully tune interaction potentials. The system of Kob and Andersen

consists of two components, A and B, which are characterized by the interaction

potentials of Lennard-Jones type (a, b ∈ {A,B})

V LJ

ab (r) = 4εab

{(σab

r

)12

−
(σab

r

)6
}

. (2.1)

One applies standard periodic boundary conditions. The minimum of the potential

is located at 2−1/6σab. The following choice of parameters has proved to yield a

stable supercooled liquid:

N = NA + NB, NA/NB = 80/20,

σBB = 0.8σAA, σBB = 0.88σAA,

εAB = 1.5εAA, εBB = 0.5εAA,

ρ = N/V = 1.2.

(2.2)

The remaining σAA and εAA serve as units of length and energy. Of special impor-

tance is the large value of εAB. It favors the formation of A − B next neighbors,

thus preventing phase separation.

This type of system has now become the drosophila of supercooled computer

liquids. Many results on the binary mixture Lennard-Jones (BMLJ) are available to-

day, ranging from large-scale simulations of dynamical heterogeneities (Kob et al.,

1997), over detailed PEL investigations (Sastry, 2001; Sciortino et al., 2000), to

aging phenomena (Kob and Barrat, 1997). In order to achieve a maximum compa-

rability with existing work, we try to stick as closely to Kob’s BMLJ as possible.

For reasons of continuity at the cutoff, the original potential is modified,

Vab(r) = V LJ

ab (r) + Cab(r). (2.3)

In the initial version of the potential (Kob and Andersen, 1995), the cutoff depended

on particle species, by rc,ab = 2.5σab. The potential was simply shifted, Cab(r) =

−Vab(rc,ab), and set to zero for r > rc,ab.

Generally, it is advisable to use a simulation box with dimensions larger than

twice the cutoff. In this way, one avoids self interactions of particles and multiple

interactions between pairs of particles.1 The maximum cutoff length in Kob’s BMLJ

1In the case of long-ranged interactions, like the Coulomb one, sophisticated techniques like
the Ewald summation have to be used.
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Figure 2.1: Comparison of the BMLJ potential by Kob and Andersen with the one used
in the present work.

is rc,AA = 2.5. Thus, the smallest possible system has the volume V = (2 × 2.5)3,

corresponding to a minimum of N = ρV = 150 particles at density ρ = 1.2. In

this thesis, we are interested in the PEL of small systems, so that the limitation

of N ≥ 150 is a bit too strong. The work of Büchner and Heuer has shown that

BMLJs of the size of 60 particles are very suitable for a PEL investigation (Büchner

and Heuer, 1999). We therefore modify the original BMLJ by using a smaller cutoff,

rc = 1.8, which is independent of species. In this way, we can have systems as small

as 56 particles.

So far, the introduction of a new cutoff only affects the shifting constants,

whereas the shape of the potential remains untouched. However, a further proviso

is needed. Some of the analyses carried out here need the continuity of interparticle

forces. This can be achieved by adding a linear term to the potential (Allen and

Tildesley, 1996),

Cab(r) = −V LJ

ab (rc)− V LJ ′
ab (rc)(r − rc). (2.4)

The expressions for the interparticle forces and for the Hessian, the second deriva-

tive matrix of the potential, are detailed in appendix B. Exactly the latter system

has recently been treated by two groups (Broderix et al., 2000; Hernandez-Rojas

and Wales, 2001). A comparison between the Kob-Andersen potential and our
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Figure 2.2: Two perspectives on the same crystal of a BMLJ with 130 particles. The
stacking of A and B particles and the alternating arrangement of columns are nicely
visible. For reasons of visualization, the A particles are depicted smaller than the B

particles. The potential energy of this configuration is ca. −616εAA.

modified version is given in Fig. 2.1. Obviously, the A−B and B −B interactions

are close to the original potential, whereas the A − A interaction is considerably

weaker than the one chosen by Kob and Andersen. Since the A−A interaction pre-

dominates, we will find massively higher values of potential energies. For instance,

the lowest amorphous minima found in our system have an energy of ca. −4.65εAA

per particle. In the Kob-Andersen system, Sciortino et al. find values down to

−7.7εAA. Due to these deviations, a quantitative comparison between both models

should be undertaken with care. Nonetheless, we will find that our brand of BMLJ

has qualitatively the same behavior as its cousins.

Recently, crystallization of this computer model system has been reported by

Wales and coworkers (Middleton et al., 2001). While these authors have used a

global optimization strategy, we very rarely encounter crystalline configurations

also in our regular simulations. It is interesting so see how the system finds a way

to establish a long-range order despite our precautions. A typical crystal can be

seen in Fig. 2.2. One finds columns of A particles, as well as of B particles, which

are arranged parallely. Due to the strong A − B interaction, A columns alternate

with B columns. We found this crystal in a simulation run of a BMLJ130 system
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Figure 2.3: Two of the many crystalline configurations found in the binary soft-sphere
system with 70 particles. On the left, the stacking of particles and the separation of A

and B particles is visible. On the right, A and B particles have been plotted with the
same size to better see the ordering.

(130 particles), after ca. 8× 108 MD steps. This demonstrates that we really deal

with a supercooled liquid here. Other runs at the same temperature (T = 0.45) have

not crystallized. Since we are only interested in the amorphous phase, we sort out

the rare simulation runs where crystallization occurs. These are easily detectable,

since the minimum energies of the crystals lie well below the amorphous packings.

For instance, the crystal depicted in the figure has a potential energy of −4.74εAA

per particle, whereas amorphous minima deeper than −4.65εAA can hardly be found

(see below). For a BMLJ60 with a nearly identical potential, Wales et al. report

a crystal energy of −4.71εAA, which is still below the deepest amorphous packings.

As a consequence, if the system is trapped in one of the crystalline structures, it

normally stays there for the rest of the simulation run.

We note here that another well-known, simple model liquid - equimolar soft

spheres with r−12 repulsions - does not have these convenient properties. Details

of the soft-sphere system are given in appendix B.4. Long simulation runs of a

small system (70 particle, see also (Grigera et al., 2002)) show crystalline, partly

phase-separated configurations. These, however, are not stable but alternate with

amorphous packings in the same run. The reason is that the minima energies of the

ordered structures are not well-separated from the disordered ones. For example,

the configurations shown in Fig. 2.3 have the energies 1.724εAA and 1.753εAA per

particle, whereas also amorphous packings down to 1.75εAA exist. Thus, small soft-

sphere systems have the serious drawback that crystallites are present in every

low-temperature simulation run. In a larger system of 280 particles, we have not



20 On the Simulations

found any crystalline configurations up to now. This indicates that the occurrence

of crystallinity is an artifact of small soft-sphere systems. Further strong finite-

size effects of soft-sphere systems are discussed in section 6.3; see also (Kim and

Yamamoto, 2000).

2.2 Equation of Motion and its Integration.

Almost invariably, dynamics in supercooled liquids is generated by integrating New-

ton’s equations of motion. From ’historical’ but also from technical2 reasons, we

have made another choice, namely the position Langevin equation (Allen and Tildes-

ley, 1996; Lax, 1966),

ẋi(t) = F i(t)/mζ + gi(t), (2.5)

where xi(t) is the position vector of particle i, F i(t) the force acting on particle

i, m the mass, which is identical for all particles, and ζ the friction constant.34

Thermal motion is induced by the last term in Eq. 2.5, gi(t), which is a ’random

velocity process’, as usual for Brownian motion. The quantity gi(t) is taken to be

δ-correlated (Allen and Tildesley, 1996),

〈
gα

i (0)gβ
i (t)

〉
=

2kBT

mζ
δαβδijδ(t). (2.6)

A simple integration scheme for Eq. 2.5 has been given by Ermak and Yeh (Er-

mak and Yeh, 1974),

xi(t + ∆t) = xi(t) + ∆tF i(t)/mζ + ∆gi(t). (2.7)

Here ∆t is the integration time step and

∆gi(t) =

t+∆t∫

t

dt′gi(t
′)

2Upon using the position Langevin equation, the instantaneous state during dynamics is speci-
fied solely by the particle coordinates and the random generator seed. Thus momenta do not have
to be stored.

3not to be confused with the energy elevation ζ(x) of section 3.2 or the transition state ζ of
chapter 5

4Henceforth, we will mainly use a short-hand notation which merges all the N particle positions
into a 3N -dimensional vector,

x = {x1, ..., xN} .

Similarly, the forces present in a given configuration x are combined to the vector F (x), which we
write as F (x) = −∂V (x). Components of vectors xi are denoted by Greek letters, xα

i .



Equation of Motion and its Integration. 21

are gaussian random variables with zero mean and width given by
〈
(∆gα

i )2〉 =

2kBT/mζ ≡ λ2. Alternatively, one may specify the width λ instead of ∆t,

xi(t + ∆t) = xi(t) +
βλ2

2
F i(t) + λ∆ni(t). (2.8)

where, additionally, we switched to the normal-distributed random variables ∆ni(t).

At fixed λ, the time step in Eq. 2.8 is given by

∆t = βλ2mζ/2, (2.9)

which means that it grows longer upon cooling. As can be seen from the above

equations, the choice of ζ sets the absolute time scale.

The dynamics generated by Eq. 2.8 might seem a bit artificial: On a short time

scale, e.g., particles move as if they were freely diffusing, which is clearly unphys-

ical. Nonetheless, there are arguments that this kind of propagation is equally

pertinent for the study of supercooled liquids as solving Newton’s equations. First,

Gleim et al. have demonstrated that stochastic dynamics simulations lead to the

same results in the BMLJ as does regular MD at low-enough temperatures (Gleim

et al., 1998). This was shown for a momentum-space Langevin equation which is

more general than our ansatz Eq. 2.8. Second, mode-coupling theory, which to a

large degree describes the viscous slowing down upon cooling, makes no assumptions

concerning the microscopic dynamics. This indicates that the interesting physics

begins beyond the short-time regime. Third, Newtonian dynamics trajectories in a

many-particle system are highly chaotic. It is easy to imagine that the momenta

are completely randomized after a few collisions of each particle. We shall see later

on that the activated crossing of potential energy barriers is the mechanism for the

long-time dynamics at low temperatures. Although the durations of barrier crossing

events are much smaller than the waiting times before them, they typically take

several hundred MD steps. Within this time, an initial concentration of kinetic en-

ergy along the configuration-space direction of the transition will certainly dissipate

into the remaining degrees of freedom. Hence, the crossing of potential barriers in

Newtonian dynamics simulations should be considered as a pseudo-stochastic effect,

which is qualitatively the same as in purely stochastic simulations. Thus, Langevin

and Newtonian dynamics should lead to the same result in the regime of barrier

crossing.

The choice of the elementary step size, λ, is essential. On the one hand, λ should

be as small as possible in order to obtain an accurate integration of Eq. 2.5. On the

other hand, due to the diffusive character of short-time dynamics (Eq. 2.9), reducing

λ by a factor of two will lead to a fourfold computational cost. Throughout the thesis

we use λ = 0.015, which is a good compromise between performance and precision.
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For reasons of convenience, we set the friction constant to ζ = 2/0.0152
√

mσ2
AA/εAA,

which results in the elementary time step ∆t = β
√

mσ2
AAεAA. We checked that

the dynamics (e.g., the long-time diffusion coefficients) for λ = 0.0075 is identical

to that found at λ = 0.015. However, care must be taken if one looks for very

precise values of the potential energy: Since the integration scheme Eq. 2.8 assumes

constant forces during the elementary time step, a larger step size λ leads to the

penetration of regions of higher energy, which would be avoided in the limit λ → 0.

Thus, a finite step size produces slightly elevated instantaneous energies (up to 5%)

and also elevated forces and pressures. A way to access these quantities accurately

is to combine the above dynamics with a second sampling scheme: Starting from

configurations obtained via Langevin dynamics, one performs a short Metropolis

sampling of configuration space. Since local equilibration is fast (e.g., in a potential

energy minimum), the Metropolis algorithm yields correct local averages of the

above quantities - without the shortcomings of a finite λ.

For completeness, we note that a small fraction of the simulations were per-

formed with regular Newtonian dynamics, as is commonly used in studies of super-

cooled liquids. In this way, we have checked that the Langevin approach does not

yield very different results (see section 4.1). To this end, we implemented the orig-

inal BMLJ FORTRAN code of Walter Kob into our program package. There, he

made use of the ’velocity verlet’ algorithm (Allen and Tildesley, 1996) to integrate

the equations of motion, i.e.

x(t + ∆t) = x(t) + ∆tv(t) +
(∆t)2

2m
F (t)

v(t + ∆t) = v(t) +
∆t

2m
(F (t) + F (t + ∆t)) ,

where v(t) is the high-dimensional vector formed by the N velocity vectors of the

individual particles.

2.3 Units.

In computer simulations it is often convenient to express quantities such as temper-

ature, density, pressure, and the like in reduced units. This means that we choose

a pertinent unit of energy, length and mass and then express all other quantities in

terms of these basic units. In our BMLJ, a natural (though not unique) choice for

the basic units is the following:

• Unit of length; σAA

• Unit of energy; εAA



Units. 23

• Unit of mass; m.

From these, we derive the other units needed:

• Unit of time;
√

mσ2
AA/εAA

• Unit of temperature; εAA/kB,

where kB is Boltzmann’s constant. Throughout the thesis, however, we will drop

units completely, which is a matter of convenience.

If desired, we can also express our quantities in experimentally relevant units.

For the case of Ni80P20, the translation can be done with the help of the following

table.

Quantity LJ units Ni80P20

length σAA 2.218 Å

energy εAA 1.289 10−20 J

mass m 1.028× 10−25 kg

time
√

mσ2
AA/εAA 0.626 ps

temperature k−1
B εAA 934 K

Table 2.1: Transformation from LJ to Ni80P20 units.
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Chapter 3

The Energy Landscape Approach

As a consequence of the amorphous structure of supercooled liquids, an accurate

theoretical description of their dynamic and thermodynamic properties is very dif-

ficult. Although the physical principles behind the process of glass formation seem

to be understood qualitatively today, there is still much disputation on their ap-

propriate quantitative formulation. For example, the concept of growing molecular

cooperativity for T → Tg is widely viewed as the reason for the slowing down of

dynamics. However, it is not clear whether the corresponding dynamic correlation

lengths diverge at Tg or not.

One of the possible approaches to a better understanding of glass-forming liquids

has been proposed by Goldstein many years ago (Goldstein, 1969), and is at the

basis of the present thesis.

To explain the idea, we first need some notation. Starting from the pair poten-

tials Vij(xij), where xij = xj − xi is the distance vector between particle i and j,

one writes the total potential energy

V (x) =
N∑

i,j=1,i<j

Vij(xij)

as a function of the high-dimensional coordinate x = (x1, ..., xN). The latter is an

Nd-dimensional vector, since it comprises the positions of all particles. Throughout

this thesis, we will only deal with three-dimensional systems, so that d = 3. The

function V (x) describes an extremely complex surface over configuration space,

PEL =
{
(x, V (x)), x ∈ IRNd

}
,

which we will call the potential energy landscape (PEL). For future use, we also

define the force F (x) = −∂V (x) and the Hessian matrix H(x) = ∂∂V (x) of second

derivatives (see appendix B for a detailed description of these objects).

25
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By definition, the full complexity of the system is contained in V (x). At low

temperatures, however, the high-energetic details of the PEL become irrelevant.

Therefore, the idea of the PEL approach is to reduce the information content of

the PEL to few characteristic, low-energetic features; see Fig. 3.1. Local minima,

in short minima, of V (x) are the most useful information about the structure of

the PEL (we denote the corresponding configuration by ξ ∈ IRNd). In the litera-

ture, they are also called inherent structures (Stillinger and Weber, 1982), and we

sometimes use the abbreviation IS for them. Minima are characterized by a van-

ishing force and a positive definite Hessian. At low temperatures, the system will

mainly reside in the very vicinity of minima, interrupted by rapid transitions among

them. Under such circumstances, thermodynamic properties can be derived from

the statistics of minima. From some configuration x, we obtain the nearby mini-

mum by a steepest descent (SD) path, as given by the equation dx/ds = F (x(s)),

where s is some curvilinear parameter. To every minimum ξ, we assign a basin of

attraction Ω(ξ), or shortly basin, as the set of all configurations x that end up in ξ

with their SD path.

Since at low temperatures the duration of inter-basin transitions is short com-

pared to the average residence time inside basins, the contribution of transitions to

thermodynamic (static) averages is negligible. For dynamics, however, they are of

outstanding importance. Transition rates can be characterized by so-called saddles,

i.e. configurations ζ on basin borders with vanishing forces. While minima are sta-

ble with respect to perturbations in all directions (the Hessian is positive), saddles

also have unstable directions. This information is contained in the eigenvalues λν

of the Hessian matrix H(ζ). If λν < 0, the eigenvector vν points into an unstable

direction, while λν > 0 implies stability along vν . The index n(x) is defined as the

number of negative eigenvalues of the Hessian H(x). In the case of n(ζ) = 1, we

call ζ a transition state (TS). It will turn out later on that the low-temperature

dynamics is mainly governed by TSs instead of higher-order saddles, which is why

we will mostly consider the former. A TS normally acts as a barrier between two

minima and thus limits the transition rate among them. From the difference in

potential energies one may estimate this rate.

At a higher level of sophistication where minima and transition states would not

suffice, one could also include in the analysis whole reaction paths (RPs), starting

at some minimum, passing through a TS and ending at another minimum. In this

way, rate constants can be determined more accurately.

In recent years, important pieces of information have been gained about the

PEL of different glass-forming systems via extended computer simulations. For a
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review, see (Debenedetti and Stillinger, 2001) and references therein. In particular,

it has turned out that the critical temperature Tc of mode-coupling theory serves as

a good indicator for the temperature range where the PEL standpoint is appropri-

ate: Below Tc (the so-called landscape-dominated regime), it is generally accepted

that the temporal evolution of a system happens through activated jumps among

PEL minima. Between Tc and 2Tc (the landscape-influenced regime), properties of

minima are still deemed to be relevant for the thermodynamic description, whereas

they are generally expected to be irrelevant for dynamics there. This has been

concluded from the analysis of higher-order stationary points, which start to be

populated above Tc. In this work, however, we provide evidence that this notion

should be revised (see chapter 7). In any event, above 2Tc the PEL description

breaks down due to the fact that the system no longer occupies the well-behaved

vicinity of minima (Büchner and Heuer, 1999; Sciortino et al., 2000; Sastry et al.,

1998).

In this chapter, we would like to

Figure 3.1: Two-dimensional sketch of the
PEL, including contour lines, minima, transition
states, saddles, basin borders, and steepest de-
scent paths.

present our results on the thermo-

dynamic properties of the BMLJ65

system, based on the PEL approach.

The analyses carried out in sec-

tion 3.1 are largely well established

in the field of supercooled liquids.

In section 3.2, we report a new

method for the computation of the

total number of minima and give a

comparison to standard techniques.

Some new aspects of configurational

entropy, sc(T ), are reported in sec-

tion 3.3. Due to a more rigorous

treatment than commonly found in

the literature, we reach the conclu-

sion that sc(T ) can only vanish at

T = 0, so that the notion of the

Kauzmann temperature as a rele-

vant concept should be revised.
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Figure 3.2: Population of minima energies ε at temperature T , p(ε;T ), for the BMLJ65
system. (a) T = 0.5, 0.8, and ∞. (Equilibrium configurations for T = ∞ are generated by
randomly choosing particle positions in the box.) (b) Low temperatures, where, appar-
ently, the lower end of the PEL is reached. We will discuss this issue in section 5.5, where
we will find that the apparent cutoff is probably due to insufficiently long simulation runs.
Smooth lines: prediction from gaussian distribution of minima, Eq. 3.7, see below. In (a),
we use εmin = −∞, whereas in (b), εmin = −302 seems to be a good choice for the lower
cutoff energy.

3.1 Statistics of Minima.

Since the set of all basins covers the configuration space, denoted Ωconf, we can write

the partition function

Z(T ) =
1

NA!NB!

∫

Ωconf

dx

u
e−βV (x) =

∑
i

∫

Ωi

dx

u
e−βV (x) =

∑
i

Zi(T ). (3.1)

Here, integration is over the (Nd− d)-dimensional configuration-space volume,

where center-of-mass degrees of freedom are excluded, and u is a constant, high-

dimensional reference volume. As will be assumed henceforth, we only sum over

the basins, Ωi ≡ Ω(ξi), of amorphous minima, ξi. This will be the case throughout

the thesis, unless otherwise stated. Since permutations of identical particles do not
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change the geometry, every minimum is only one of NA!NB! equivalent configu-

rations. To eliminate the entropy of mixing, and hence make ln Z extensive, we

have included the factorials in Eq. 3.1. Here and in the following, we adopt the

convention that summation over basins i involves only geometrically distinct, non-

crystalline, configurations. In a supercooled liquid, of course, the underlying crystal

corresponds to the true thermodynamic equilibrium. We have already noted that

its energy is considerably lower than that of the amorphous packings. Nonetheless,

if the supercooled liquid remains sufficiently long in the amorphous state, we may

apply equilibrium thermodynamics there.

The partition function is a dimensionless quantity, due to the normalization by

the reference volume u. For convenience, we will omit u in the following, i.e. set

it to unity. The population of basin i, pi(T ) = Zi(T )/Z(T ), is generally a very

small number, since the number of basins is large (see section 3.2). However, the

population of minima of a certain energy ε,

p(ε; T ) =
∑

i

δ(ε− εi)
Zi(T )

Z(T )
,

can be measured directly in the simulations. From Fig. 3.2, we see that p(ε; T ) shifts

towards lower energies upon decreasing temperature, and that the distributions are

approximately of gaussian shape, except for the very low temperatures. In what

follows, we would like to show that some general properties of the PEL can be

deduced from these distributions.

Harmonic approximation. The basins of attraction, Ωi, may have a very com-

plicated shape. Generally, we have no simple means to capture their structure.

However, in the limit of low temperatures, we will mostly find the system close to

the corresponding minima where the local PEL shape can be approximated by the

harmonic curvature. Hence, the contributions of the so-called basin anharmonicities

vanish in the limit T → 0, and single-basin partition functions follow solely from

the local information in the minima. An interesting question in this connection

is from what temperature on this description works, in particular, whether this is

already the case for temperatures above the glass transition. We will come back to

this point later.

In the harmonic approximation, we can expand the potential around the mini-

mum,

V (x) = εi +
1

2
(x− ξi)

T H(x− ξi) + ...,

where H is the Hessian matrix evaluated at the minimum ξi, with εi = V (ξi). If we

neglect contributions beyond the harmonic term, the basin partition functions can
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be calculated,

Zi(T ) ≈ e−βεi

∫

Ωi

dx exp

(
−β

2

∑
ν

λi,νx
2
ν

)

= e−βεi

∏
ν

(
2π

βλi,ν

)1/2

= T (Nd−d)/2Yie
−βεi ≡ Zharm,i(T ),

(3.2)

where

Yi =
∏
ν

(
2π

λi,ν

)1/2

= (2π)(Nd−d)/2 exp

(
−1

2

∑
ln λi,ν

)
(3.3)

is the temperature-independent information about the harmonic modes around

the minimum in question. By λν we denote the eigenvalues of the Hessian,

ν = 1, ..., (Nd−d). In systems without rotational degrees of freedom, like ours,

d eigenvalues vanish since they correspond to center-of-mass motion. These are

excluded from Eq. 3.3. Equivalently, the harmonic approximation can be written

pi(T ) ≈ pharm,i(T ) =
Yie

−βεi

Z̃(T )
, (3.4)

where Z̃(T ) =
∑

i Yie
−βεi . In the presence of anharmonic contributions, we have to

include a correction into Eq. 3.2,

Zi(T ) = zanh,i(T )T (Nd−d)/2Yie
−βεi . (3.5)

Anharmonic effects. The harmonic approximation is very attractive since it

enables an exact calculation of the basin partition functions from local properties

of the minima. Throughout the thesis, we will massively exploit this fact. We

therefore have to take a closer look at the accuracy of the approximation, in that

we find the temperature range where its accuracy is reasonable. In the literature

on supercooled liquid simulations, it is the general point of view that anharmonic

effects become negligible below 2Tc (Sciortino et al., 1999; Sastry, 2000).

The most direct test of the harmonic approximation is the comparison of the

local PEL around a minimum ξ with the parabolic shape predicted from the eigen-

values of the Hessian matrix in ξ. It is clear from the high dimensionality of con-

figuration space that only a limited number of directions from the minimum can

be explicitly checked. Here, we limit ourselves to the directions of eigenvectors vν

and compare the energy profile V (ξ + xνvν) − V (ξ) with the prediction from the

harmonic approximation, λνx
2
ν/2. From Fig. 3.3, we see that the quality of the

harmonic approximation strongly depends on the magnitude of the corresponding



Statistics of Minima. 31

- 1 . 0 - 0 . 5 0 . 0 0 . 5

0

2

4

6

8

1 0

- 1 . 0 - 0 . 5 0 . 0 0 . 5

0

2

4

6

8

1 0

- 1 . 0 - 0 . 5 0 . 0 0 . 5

0

2

4

6

8

1 0

- 1 . 0 - 0 . 5 0 . 0 0 . 5

0

2

4

6

8

1 0

l 1 0  =  2 4 . 9 l 2 0  =  5 2 . 6

l 5 0  =  1 3 0 . 0 l 1 5 0  =  5 5 3 . 4x 1 0  x 2 0  x 5 0  x 1 5 0  

- 1 . 0 - 0 . 5 0 . 0 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

- 1 . 0 - 0 . 5 0 . 0 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

- 1 . 0 - 0 . 5 0 . 0 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

- 1 . 0 - 0 . 5 0 . 0 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

l 4  =  8 . 6 l 5  =  1 3 . 8 l 6  = 1 7 . 1 l 7  =  2 0 . 4

x 4  x 5  x 6  x 7  k B T c   

k B T c   

Figure 3.3: Potential energy difference V (ξ + xνvν) − V (ξ) along some eigenvectors vν

of the Hessian in one randomly chosen minimum ξ of the BMLJ65 (solid lines). The
harmonic approximation λνx

2
ν/2 of the potential is given as dashed lines. Eigenvectors to

the four lowest, non-zero eigenvalues (top) and to four larger eigenvalues (bottom) were
used. For comparison, we have indicated the magnitude of kBTc.

eigenvalue. In ’soft’ directions (small eigenvalues), the susceptibility of the potential

to anharmonic effects is larger than along ’hard’ vibrational modes. However, the

data suggest that deviations from harmonic behavior should be small for kBT < 1.

Clearly, from the pure inspection by eye of a single minimum we cannot make more

quantitative statements. However, our later result that anharmonicities start to dis-

turb around T = 0.8 - a conclusion also reached in the literature - is very plausible

on the basis of the observations in Fig. 3.3.

Effective density of minima energies. Since in the harmonic approximation,

a minimum is characterized by εi and Yi, the partition function becomes

Zharm(T ) = T (Nd−d)/2

∫
dε

∫
dY G(ε, Y )Y e−βε,

where we have introduced the number density G(ε, Y ) of minima ε with vibrational

partition function T (Nd−d)/2Y . In this expression, the effective density of minimum

energies

Geff(ε) ≡
∫

dY G(ε, Y )Y = 〈Y |ε〉G G(ε) (3.6)
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Figure 3.4: Natural logarithm of the effective density Geff(ε) of minima, constructed
from reweighted distributions 〈exp(βε)δ(ε− ε′)〉T , for the BMLJ65 at temperatures T =
0.4, 0.435, 0.466, 0.48, 0.5, 0.6, and 0.8 where the harmonic approximation is supposed to
hold (landscape-influenced and landscape-dominated regimes). Higher temperatures (T =
2 and T = ∞) exhibit strong anharmonic effects, thus prohibiting an extension of Geff(ε)
towards high ε. The solid line is a gaussian fit to Geff(ε), with variance σ2

eff and mean ε0,eff.
For the time being, the overall multiplicative constant N0,eff in Geff(ε) remains unknown.

can be identified, which is different from the bare distribution

G(ε) ≡
∫

dY G(ε, Y )

by the mean vibrational partition function of minima with energy ε

〈Y |ε〉G ≡
1

G(ε)

∫
dY G(ε, Y )Y.

The probability of staying near a minimum of energy ε is given by

pharm(ε; T ) =
1

Z̃(T )

∫
dY G(ε, Y )Y e−βε =

e−βεG(ε) 〈Y |ε〉G
Z̃(T )

=
e−βεGeff(ε)

Z̃(T )
, (3.7)

and, since p(ε; T ) ≈ pharm(ε; T ) is a measurable distribution, we can invert this

relation to obtain the effective density of states, up to a constant, i.e., Geff(ε) ∝
eβεp(ε; T ). Clearly, from one temperature, one can only recover part of Geff(ε)
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because a limited window of energies is sampled; see Fig. 3.2. Thus, a combination

of runs with different T ’s is needed to obtain a larger part of Geff(ε). The procedure

is the so-called overlapping histogram method (Frenkel and Smit, 1996), where the

distributions aeβεp(ε; T ) and a′eβ′εp(ε; T ′) are matched in the region of common

energies ε by the appropriate choice of constants a and a′. In a logarithmic plot

as Fig. 3.4, we just have to shift curves vertically until the overlap is optimum.

For temperatures T < 1.0 the overlap is near perfect, whereas the distributions at

T = 2.0 and T = ∞ do not fall onto the others. This is a direct indication for the

presence of strong anharmonic effects at T ≥ 2.0, and more importantly, of their

dependence on ε, see below.

Note that the overall pre-factor in Geff(ε), which is related to the total number

of basins, N0, remains unknown; it will be computed in section 3.2. As we see in

Fig. 3.4, Geff(ε) can be excellently fitted by a gaussian (mean ε0,eff, variance σ2
eff).

This property of Geff(ε) was found in several model systems (Büchner and Heuer,

1999; Sciortino et al., 2000; Starr et al., 2001; La Nave et al., 2002a). Evidently,

the small number of low-energy minima is compensated by the Boltzmann factor

at low temperatures. Yet, the right, high-energetic wing of the distribution is not

accessible by straightforward simulation, since both the Boltzmann factor and the

number density are small there.

For huge systems, which, to a good approximation, are composed of many in-

dependent subsystems, the gaussianity of Geff(ε) is an immediate consequence of

the central limit theorem. However, as discussed in reference (Heuer and Büchner,

2000), a large degree of gaussianity must already be present in the subsystems that

are considered elementary.

’Raw’ density of minima energies. One may now ask in which way Geff(ε)

differs from the true number density G(ε) of minima with energy ε. From Eq. 3.6,

we have G(ε) = Geff(ε)/ 〈Y |ε〉G, so we only need to know 〈Y |ε〉G. The simple

calculation,

〈Y |ε〉G =

∫
dY G(ε, Y )Y∫

dY Y −1Y G(ε, Y )
=

1

〈Y −1|ε〉T
, (3.8)

shows that a canonical average1 over Y −1 yields the desired quantity (in harmonic

approximation). It turns out (Fig. 3.5) that ln 〈Y |ε〉G is to a great extent linear in ε,

i.e., 〈Y |ε〉G = ea+bε. With a gaussian Geff(ε) (variance σ2
eff, mean ε0,eff) this implies

a gaussian shape for G(ε), too (variance σ2 = σ2
eff, mean ε0 = ε0,eff − bσ2) (Sastry,

2001).

1Canonical averages 〈...〉T are easy to compute in simulations by taking time averages.
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Figure 3.5: Natural logarithm of the density G(ε) of minima in the BMLJ65, con-
structed from reweighted distributions

〈
Y −1 exp(βε)δ(ε− ε′)

〉
T
, for temperatures T =

0.4, 0.435, 0.45, 0.466, 0.5, 0.6, and 0.8. Again, curves were shifted for maximum overlap
and an overall constant remains unknown. The inverted parabola is −(ε− ε0)2/2σ2 plus
some constant, where σ2 = σ2

eff = 9.0 and ε0 = ε0,eff − bσ2
eff = −276.3. The curve for

T = ∞ is p(ε; T = ∞) times some constant, see text. Inset: Mean harmonic basin volume
ln 〈Y |ε〉G as a function of minimum energy ε. The straight line is the fit a + bε.

G(ε) can also be obtained by directly reweighting minima (εi, Yi) in a histogram

of ε. More precisely, in harmonic approximation, we have

G(ε′) ∝ 〈
Y −1eβεδ(ε− ε′)

〉
T

, (3.9)

in the same way as the effective density Geff(ε) can be obtained by reweighting with

the potential energy ε,

Geff(ε
′) ∝ 〈

eβεδ(ε− ε′)
〉

T
.

For different T , the respective parts of G(ε) were shifted to a maximum mutual

overlap (see Fig. 3.5). Evidently, the gaussian approximation of G(ε) works well

with the parameters (ε0 = ε0,eff−bσ2, and σ2 = σ2
eff) derived from Geff(ε) and 〈Y |ε〉G.

Let us come back to the anharmonic effects which appear at high temperatures.

We take T = ∞, where these are expected to be strongest. There, equilibrium

configurations consist of completely random particle positions within the simulation



Statistics of Minima. 35

box, so that the population of basins is proportional to their (high-dimensional)

volume,

p(ε; T = ∞) ∝
∑

i

δ(ε− εi)Ωi = G(ε) 〈Ω|ε〉G .

In this expression, we have to use the number density G(ε, Ω) of minima with energy

ε and basin volume Ω. Figure 3.5 shows that the mean basin volume 〈Ω|ε〉G depends

on the minimum energy ε, because p(ε; T = ∞) is not proportional to G(ε). Since

the maximum of p(ε; T = ∞) is shifted to lower energies with respect to G(ε),

we conclude that low-lying minima have larger volumes. More quantitatively, the

relative mean basin volumes are fixed by the ratio of p(ε; T = ∞) and G(ε),

〈Ωi|ε〉G
〈Ωi|ε0〉G

=
p(ε; T = ∞)/G(ε)

p(ε0; T = ∞)/G(ε0)
.

The absolute value of the mean basin volumes, however, is not known, contrary to

the basin partition function in harmonic approximation, T (Nd−d)/2Yi.

The difference between G(ε) and
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Figure 3.6: Distribution of minima energies in
the BMLJ65, found at T = ∞, reweighted by Yi

and Y 2
i (see text). Smooth line: G(ε′).

Geff(ε) arises from the fact that low-

energetic minima have larger vibra-

tional entropies. This kind of de-

pendence is expected from the mean

basin volume 〈Ω|ε〉 which also in-

creases with decreasing ε. A priori,

there is no need for a relation be-

tween the volume Ωi and the local

vibrational properties Yi at a mini-

mum. Therefore it is interesting to

know how strongly Ωi and Yi are

coupled. Suppose that the simple

relation Ωi = aYi holds, with some

constant a. In this case, we would

recover G(ε) from the reweighted population of minima energies at T = ∞, i.e.,

〈Y −1δ(ε′ − ε)〉T=∞ ∝ G(ε′). As shown in Fig. 3.6, this behavior is not present. In-

terestingly, the relation Ωi = aY 2
i is quite well fulfilled, since the ε′-dependence of

〈Y −2δ(ε′ − ε)〉T=∞ is similar to that of G(ε). - Whether this relation has a deeper

origin in PEL structure is not clear to us.

Throughout the thesis, the number densities G(ε) and Geff(ε) will serve as the

basis for a statistical description of static PEL properties. It has to be checked in
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every case which of either distribution must be used. Generally, if the vibrational

part Yi of the free energy is not explicitly considered, it is convenient to use Geff(ε),

since the weighting by 〈Y |ε〉G is implicit,

p(ε; T ) ∝ Geff(ε)e
−βε = G(ε) 〈Y |ε〉G e−βε.

It has to be noted that G(ε) and Geff(ε) only count geometrically distinct min-

ima. From every minimum, by interchanging particles of the same species, NA!NB!

configurations can be generated with exactly the same physical properties. It will

turn out (section 3.2) that this multiplicity is in fact much larger than the num-

ber of different minima. If, for instance, N = NA + NB = 52 + 13 = 65, about

NA!NB! ≈ 1077.7 permutations exist of one minimum, but only ca. 1022 different

minima can be found. Although the BMLJ65 is a small system, we already have

an astronomically large number of minima contributing to the partition function

Eq. 3.1. Under such circumstances, it is clear that only statistical considerations of

the PEL properties are sensible.

Since the number of minima is large but finite, G(ε) and Geff(ε) cannot be exact

gaussians. Below some minimum εmin, no or at least negligibly few minima can be

found, except for the crystalline states that lie far below εmin (Middleton et al., 2001).

Moreover, deviations from a gaussian should be expected around εmin, because there

is no a priori reason that the few, highly optimized low-energetic states should be

distributed according to the same law as the minima at high ε. For simplicity,

however, we will model G(ε) and Geff(ε) as gaussians with a cutoff, i.e.,

G(ε) =

{
1

I(εmin,0)
N0√
2πσ2

exp
(
− (ε−ε0)2

2σ2

)
, if ε > εmin

0 , if ε < εmin

. (3.10)

and analogously Geff(ε). The integral I(εmin, 0), Eq. C.8, takes care of the proper

normalization, N0 =
∫

dεG(ε). In the limit εmin = −∞, I(εmin, 0) is equal to unity,

but even for a finite εmin < −300, it can be neglected (e.g., 1 − I(εmin =−302, 0) ≈
10−6).

Mean and variance of IS energies. Eq. 3.10 allows the calculation of the

mean minimum energy 〈ε(T )〉 and variance σ2(T ) =
〈
(ε− 〈ε〉)2〉

T
, see Eq. C.13

and Eq. C.14. In the idealized case of a full gaussian, i.e. εmin = −∞, one gets

the simple form 〈ε(T )〉 = ε0,eff − βσ2
eff and σ2(T ) = σ2

eff = const. Corrections to

these laws arise at low minima energies, where the end of the PEL, εmin, is reached.

Again, the cutoff energy εmin = −302 seems to be in good agreement with the low-

temperature values of 〈ε(T )〉 and σ2(T ) as seen from Fig. 3.7. However, as we have

noted already in Fig. 3.2, the true PEL cutoff probably has a lower energy than
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Figure 3.7: (a) Mean IS energy as a function of temperature (2). Predictions from gaus-
sian Geff(ε), with εmin = −∞ (dotted line) and εmin = −302 (solid line). (b) Variance
σ2(T ) =

〈
(ε− 〈ε〉)2|T〉

of IS energies (2), again with the predictions from a gaussian
distribution of ε. The deviations at temperatures T < 0.5 are probably due to insuffi-
ciently long simulation runs (for a thorough discussion see section 5.5). The fat squares
at T = 0.435 (1/T ≈ 2.3) have been calculated from a second run at this temperature
which is six times longer. As can be seen, these data lie closer to the unrestricted gaussian
prediction of εmin = −∞.

−302 in the BMLJ65. From the data presented here, we probably find a wrong,

too high εmin. The reason lies in insufficiently long simulation runs at temperatures

T < 0.5. We will discuss in section 5.5 that this is less trivial than it might sound.

3.2 Total Number of Minima.

In this section, we would like to discuss three methods that allow the computation

of N0, the number of geometrically distinct minima. In general, it is not easy to get

hold of N0. As we have seen in the preceeding section, the distributions p(ε; T ) of

sampled minima permit the reconstruction of G(ε) up to the normalization constant.

In order to obtain this constant, a more thorough sampling of the PEL is needed.

Lower Bound for N0. A lower bound for N0 can be given with the help of a

simple reasoning. During a very long sampling of the PEL, some of the N0 geomet-

rically distinct minima will be found more than once. From the frequency of finding

the same minima, then, one can deduce their total number. The probability of re-
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visiting some minima is clearly largest for low temperatures, since there, low-lying

minima are sampled, which are small in number. Let us therefore concentrate on

the minima found below some ε̂1. If the frequency of finding the same minimum

below ε̂1 is known, one can estimate the total number of minima below ε̂1. In order

to obtain uncorrelated configurations, we do not use a long, linear simulation run,

but we proceed as follows. From a random configuration (T = ∞) of the BMLJ65

system, we initiate a simulation run at T = 0.5. Every 105 MD steps, minimiza-

tion unveils the underlying minimum. Due to the low T , one observes the system

descending within the PEL towards deeper and deeper minima. When a minimum

of energy ε ∈ [ε̂0, ε̂1] = [−302,−300] is found, the run is stopped and the mini-

mum is saved in a database. By repeated starts from uncorrelated configurations

at T = ∞, we have found n = 281 minima ε ∈ [ε̂0, ε̂1] in a total simulation time

of ca. 109 MD steps. Despite this enormous computational effort, no minimum

has been found more than once. Thus, we are far from an exhaustive sampling

of low-lying minima. This contrasts with an investigation of spin-glass inherent

structures, where Crisanti and coworkers were able to estimate the configurational

entropy (which is equivalent to the total number of inherent structures) by count-

ing the frequency of sampling the same minimum (Crisanti et al., 2001). For the

BMLJ65, seemingly, the number of minima is already too large to be susceptible to

this method. Due to the slow dynamics at T = 0.5, a faster sampling of low-lying

minima is not possible.

However, our negative result leads to a strong lower bound for N0: Suppose that

there is total of N̂ minima in [ε̂0, ε̂1]. We have n times chosen one of the N̂ minima,

and have not found a minimum twice. The probability for this to happen is

P =
N̂(N̂ − 1)...(N̂ − n + 1)

N̂n
,

if all N̂ minima are equally probable. Clearly, N̂ ≥ n, but a much stronger state-

ment about N̂ is possible if we require that the probability P to find our result have

some value substantially different from zero, say, a. Using Stirling’s formula, this

leads to

0 ≤ ln P − ln a ≈ (N̂ − n) ln

[
N̂

N̂ − n

]
− n− ln a. (3.11)

The smallest value of N̂ satisfying Eq. 3.11 can be easily found numerically. For

the parameters [ε̂0, ε̂1] = [−302,−300], n = 281, and a = 0.1 we find N̂ ≥ 17241.

The dependence on the confidence level (1−a) is rather weak, e.g., a = 0.001 yields

N̂ ≥ 5810.
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From the lower bound of N̂ , it is easy to find one for N0. We have

N̂ =

ε̂1∫

ε̂0

dεG(ε) =
N0√
2πσ2

ε̂1∫

ε̂0

dεe−
(ε−ε0)2

2σ2 =
N0

2
(erfc(x̂1)− erfc(x̂0)) , (3.12)

where

x̂0 =
ε0 − ε̂0√

2σ
, x̂1 =

ε0 − ε̂1√
2σ

.

With the above parameters (a = 0.1) this leads to

N0 ≥ 2N̂

erfc(x̂1)− erfc(x̂0)
= 1019.2 (BMLJ65).

If we had the computer time to obtain more configurations in [ε̂0, ε̂1], the lower

bound would increase as long as minima are still found only once. For example,

n = 1000 and n = 10000 would give N0 > 1020.3 and N0 > 1022.3, respectively.

Exhaustive Sampling Method. A very direct way of finding the number N0 of

minima will now be described. The starting point is the insight that knowledge of

the mean basin volume 〈Ω〉G is equivalent to knowing N0; since the total volume of

configurational space V N is known, we have2 N0NA!NB! = V N/ 〈Ω〉G. The mean

basin volume, in turn, follows from the mean volume of energy shells within basins,

i.e.,

〈Ω〉G =

∫
dζ 〈Ω(ζ)〉 , (3.13)

where ζ(x) ≡ V (x)− V (ξ(x)) is the energy elevation with respect to the ground of

the instantaneous basin3 and

〈Ω(ζ)〉 =
1

N0NA!NB!

∫

Ωconf

dxδ(ζ(x)− ζ).

Up to now, these are trivial relations, and the choice of ζ(x) is in no way unique.

However, the advantage of ζ(x) as the relevant parameter is that the limit of 〈Ω(ζ)〉
for small elevations ζ → 0 is known since one deals with small vibrations around

2The contribution from the crystalline structures is assumed to be small, since they are by far
less numerous than the amorphous packings. The fraction of V N consisting of crystalline basins
is given by the probability that by minimizing a random configuration in V N , one ends up in a
crystalline minimum. In our simulations, this has never happened within more than 104 quenches.
Thus, the fraction of crystalline configurations is much less than 10−4.

3not to be confused with the friction coefficient ζ of chapter 2 or the transition state ζ of
chapter 5
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minima. In other words, the limit of ζ → 0 can be recovered within harmonic

approximation (V (x)− V (ξ(x)) =
∑Nd−d

ν=1
1
2
λνx

2
ν),

〈Ω(ζ)〉 →
〈∫

IRNd−d

dxδ

(
Nd−d∑
ν=1

1

2
λνx

2
ν − ζ

)〉
, ζ → 0

For a given basin i, the integral can be evaluated,

∫

IRNd−d

dxδ

(
Nd−d∑
ν=1

1

2
λi,νx

2
ν − ζ

)
=

=
∏
ν

(
2

λi,ν

)1/2 ∫
dxδ(x2 − ζ) =

∏
ν

(
2

λi,ν

)1/2

SNd−d

∫ ∞

0

drrNd−d−1 δ(r − ζ1/2)

2r

=
∏
ν

(
2π

λi,ν

)1/2
1

Γ(Nd−d
2

)
ζ(Nd−d−2)/2 =

Yiζ
(Nd−d−2)/2

Γ(Nd−d
2

)
,

where the expression for the surface of the (Nd−d)-dimensional unit sphere was

used,

SNd−d =
2π(Nd−d)/2

Γ(Nd−d
2

)
.

Hence, for small arguments, Ω(ζ) is solely determined by the mean vibrational

partition function,

〈Ω(ζ)〉 → 〈Y 〉G ζ(Nd−d−2)/2

Γ(Nd−d
2

)
, ζ → 0 (3.14)

This is the crucial point of the method, since the function 〈Ω(ζ)〉 can be specified

from simulations only up to an overall multiplicative constant.

The main numeric task now is to compute 〈Ω(ζ)〉 from runs at different tem-

peratures. Again, as for G(ε), the idea is to sample ζ in overlapping windows and

to construct 〈Ω(ζ)〉 by matching the reweighted histograms by appropriate vertical

shifts, i.e.,

ln 〈Ω(ζ)〉 = ln p(ζ; T ) + βζ + const. (3.15)

Note that this reweighting requires a special kind of configurational sampling,

namely

p(ζ; T ) ∝
∫

dxδ(ζ(x)− ζ) exp (−βζ(x)) 6=
∫

dxδ(ζ(x)− ζ) exp (−βV (x)) .

(3.16)
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Figure 3.8: The volume on the energy shell ζ, averaged over basins, for the BMLJ65
system. The function is constructed by matching reweighted histograms in overlapping
windows (T = 0.30, 0.40, 0.45, 0.50, 0.60, 0.80, 1, 1.5, 2, 3, 4, 5, 10, 15, 20, 40, 50, 70, 100,
400, 1000, 4000, 10000, 100000, 1000000, and T = ∞). Overall normalization is provided
by the behavior for small ζ (dashed line), i.e. ln 〈Ω(ln ζ)〉 = ln 〈Y 〉G − ln Γ(Nd−d

2 ) +
Nd−d

2 ln ζ, see Eq. 3.14. Note the relation 〈Ω(ln ζ)〉 = ζ 〈Ω(ζ)〉. Inset: Magnification of
the maximum of 〈Ω(ln ζ)〉, which is entirely covered by the T = ∞ run.

The sampling becomes trivial at high temperatures where ζ(x) ≈ V (x) (e.g.,

T ≥ Ttrivial = 1000, where 〈V (x)− ζ(x)〉 / 〈V (x)〉 < 2%), i.e., the energy of minima

is negligible as compared to V (x). In this regime, it suffices to use ordinary MD

simulation, and record potential energies. At low T , a different strategy must be

used to obtain p(ζ; T ). We apply Metropolis dynamics with the elevation ’potential’

ζ(x), where frequent minimizations ensure to have the correct ζ(x). If minimiza-

tions are too scarce, many Metropolis steps rely on a wrong V (ξ(x)), resulting in

questionable distributions p(ζ; T ). Minimization every thousand for the lowest, and

every ten Metropolis steps for the highest temperatures turned out to be sensible.

If, finally, the distributions p(ζ; T ) have been calculated for sufficiently many

temperatures, reweighted and matched according to Eq. 3.15, and the resulting

master curve has been normalized with the help of Eq. 3.14, only the integral of

Eq. 3.13 remains to be performed. As seen from Fig. 3.8 for the BMLJ65 system, a

broad maximum at very high energies is the relevant part of the integral. For this
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example, the result is 〈Ω〉 = 1014.2±1.1, which, with V N = 10112.6, leads to4

N0 =
V N

NA!NB! 〈Ω〉G
= 1020.7±1.1. (3.17)

The minimum requirement N0 > 1 is thus fulfilled. Very interestingly, the present

value of N0 is only slightly larger than the lower bound of 1019.2, which, by a

completely different argument, has been derived at the beginning of this section.

There we have found that in the interval ε ∈ [−302,−300], there are more than 104

minima. From Eqs. 3.12 and 3.17, we find this number to be ca. 5× 105.

Finally, the growth parameter (Stillinger, 1999; Wallace, 1997), is calculated to

be

α = N−1 ln N0 = 0.73± 0.04 (BMLJ65). (3.18)

Comparison with Thermodynamic Integration. A different approach to

the calculation of N0 has recently been discussed in the literature (Sciortino et al.,

1999; Mossa et al., 2002; Sastry, 2001; Scala et al., 2000; Sastry, 2000). The main

4The error results from the statistical error in the distributions p(ln ζ; T ). In every step of
reweighting and matching the overlapping parts of ln Ω(ln ζ), the uncertainty of the maximum of
Ω(ln ζ) increases. Consider the distributions p(ln ζ;T ) and p(ln ζ;T ′) at two nearby temperatures.
Assume that the corresponding histograms overlap by M bins. In the limit of infinitely long
sampling, we would recover the true distributions above, or, equivalently, the probabilities pi and
p′i in the bin at ζi, i = 1, ...M . Due to the finite simulation time, our estimates p̃i = ni/n and
p̃′i = n′i/n′ exhibit some statistical error, i.e.

p̃i = pi + δi, p̃′i = p′i + δ′i

(noisy quantities aquire the tilde). Here ni is the number of counts in bin i and n =
∑M

i=1 ni. On
average, the statistical noise has the strength δ2

i = pi(1− pi)/n ≈ p̃i/n and δ
′2
i ≈ p̃′i/n′, assuming

an underlying poissonian distribution of events. Assuming further that n is large enough to have√
δ2
i ¿ pi, we can approximate ln p̃i + βζi ≈ li + ∆i, where li ≡ ln pi + βζi and ∆i ≡ δi/p̃i

(analogously the primed quantities). Matching li and l′i is achieved by estimating the vertical
shift v = li − l′i from the noisy l̃i’s,

ṽ =
1
M

M∑

i=1

(l̃i − l̃′i),

which for ∆i → 0 coincides with v. What is the uncertainty in the estimator ṽ? A simple
calculation, involving uncorrelated ∆i, ∆′

j , yields

Var(ṽ) = ṽ2 − v2 =
1

M2

∑

i

(∆2
i + ∆′2

i ) =
1

M2

∑

i

(1/ni + 1/n′i),

where we have used ∆2
i ≈ 1/np̃i = 1/ni. Each time such two overlapping histograms are matched,

the overall error in the curve increases by the amount
√

Var(ṽ).
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step is to compute the partition function Z(T ) or, equivalently, the entropy via

thermodynamic integration from a known reference state. Equipped with Z(T ),

one can invert Eq. 3.7 to find the number density of minima,

ln G(ε) = ln p(ε; T ) + βε− ln 〈Y |ε〉G + ln Z(T )− Nd− d

2
ln T, (3.19)

where we work within the harmonic approximation. This fixes the total number

of minima, since N0 =
∫

dεG(ε). In the above-cited works, starting from a high-

temperature (T0), low-density (N/V0) state, one compressed the system until the

required volume V1 of the supercooled liquid was reached. Subsequently, one cooled

along the isochore down to T = T1. The procedure is depicted in Fig. 3.9. The

partition function at the state point (V1, T1) follows with the help of the relations

(
∂ ln Z

∂V

)

T

= βp(V, T ), and

(
∂ ln Z

∂β

)

V

= −E(V, T ),

ln Z(V1, T1) = ln Z(V0, T0) + β0

V1∫

V0

dV p(V, T0)−
β1∫

β0

dβE(V1, T ). (3.20)

Note that we write E(V, T ) instead of 〈V (x)〉 for potential energy here, in order to

avoid confusion with volume.

We start with the evaluation of the first in-

V 1 , T 0 V 0 = ¥

T

V

( V 1 , T 0 1 ' )

( V 1 , T 0 1 ' ' )

( V 1 , T 0 1 ' ' ' )

Figure 3.9: Thermodynamic inte-
gration path, circumventing the liq-
uid/gas first-order transition.

tegral. Measuring pressure in a computer sim-

ulation is most easily done with the help of the

Clausius virial function (Hansen and McDon-

ald, 1990),

Pex =
1

V d

∑
i

xi · F i,

where F i is the sum of interparticle forces act-

ing on particle i. Pex specifies the excess pres-

sure over the ideal gas, so we have

p =
NkBT

V
+ 〈Pex〉 .

The expression for Pex can be cast into a more convenient form, using the interpar-

ticle distances and forces,

Pex =
1

V d

∑
i<j

xij · Fij.
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Figure 3.10: Simulation data for the thermodynamic integration in Eq. 3.20. (a) Excess
pressure pex = p − NkBT/V over V/N in a double-logarithmic plot. The straight line
corresponds to the first correction to ideal-gas behavior, described by the second virial
coefficient B2(T ). (b) Temperature dependence of the mean potential energy E(T )/N ≡
〈V (x)〉 /N . Lines are fits of the form E(T ) = a + bT 3/5. Note that the data of BMLJ65
and BMLJ130 practically coincide.

In Fig. 3.10a, p(V, T0) is shown for the BMLJ65 and the BMLJ130 system as a

function of V/N . They are identical, as expected when finite-size effects are absent.

In the limit of small density or large volume, we may use the virial expansion

(pex = 〈Pex〉),

βpex

ρ
=

∞∑
i=2

Bi(T )ρi−1,

to find the volume dependence of p(V, T ). We see from the figure that towards

high volume, pex(V, T0) approaches quickly the term B2(T0)kBT0

(
N
V

)2
, which is the

first correction to the ideal-gas behavior. The second virial coefficient B2(T0) can

be calculated from the two-particle potential, which, for the present Lennard-Jones

mixture, is B2(T0) = 1.0038. For the identical BMLJ system, yet different cutoff

procedure, a significantly smaller value of 0.53 has been found (Sciortino et al.,

1999). From the data for pex(V, T0), we can now calculate the partition function at

the point (V1, T0). We obtain

ln Z(V1, T0) = −108.3± 0.7 (BMLJ65),

ln Z(V1, T0) = −218.5± 2.5 (BMLJ130).
(3.21)

The factor of two between these figures is in agreement with an extensive scaling of

free energy, already at these small system sizes.
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Figure 3.11: Number density of minima G(ε), computed via Eq. 3.24 from simulation
runs (a) of the BMLJ65 at T = 0.4, 0.435, 0.45, 0.466, 0.48, 0.5, and 0.6. At εmin ≈ −306,
the gaussian description breaks down. (b) Number density of minima of the BMLJ130,
computed from T = 0.4, 0.435, 0.45, 0.5, and 0.6. In (a) and (b), data for T ≥ 0.8 (+)
do not fall onto the master curve. Inset: Number density of minima of BMLJ65 and
BMLJ130, on a per-particle basis.

We will now consider the second integral of Eq. 3.20. Here, we need the mean

potential energy E(V, T ) along the isochore V = V1. In the literature, by means

of classical density functional theory, it was concluded that the temperature de-

pendence of E(V, T ) should be described by a + bT 3/5 for a large family of simple

liquids (Rosenfeld and Tarazona, 1998). This functional form has indeed proved

very successful in describing the numerical data on E(V, T ), see the above cited lit-

erature. The present case is no exception, as demonstrated in Fig. 3.10b. Although

for T < 1 a linear law works well, too, it is not able to cover the whole temperature

range up to T0 = 5. From the two fit parameters a and b, we can calculate the

second integral in Eq. 3.20,

β1∫

β0

dβ(a + bβ−3/5) = a(β1 − β0) +
5

2
b
(
β

2/5
1 − β

2/5
0

)
,

a = −361.4± 0.3, b = 171.5± 0.3 (BMLJ65),

a = −718.8± 0.8, b = 341.2± 0.9 (BMLJ130).

(3.22)

After Eq. 3.1, the partition function (the configurational part) of the ideal gas is

ZIG = N ln V − ln NA!− ln NB!. In the limit V0 →∞, we may replace ln Z(V0, T0)
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in Eq. 3.20 by the ideal gas term, so we finally find

ln Z(V1, T1) = N ln V1 − ln NA!− ln NB! +

+ β0

V1∫

V0

dV Pex(V, T0)− a(β1 − β0)− 5

2
b
(
β

2/5
1 − β

2/5
0

)
.

(3.23)

We now use these results to calculate N0. Instead of using Eq. 3.19 directly, we

work with the reweighted distribution function (compare Eq. 3.9),

ln G(ε′) = ln
〈
δ(ε′ − ε)Y −1eβε

〉
T

+ ln Z̃(T ). (3.24)

In contrast to section 3.1, we now have in hands the normalization factor. The

expectation value in Eq. 3.24 can be computed via regular simulations and Z̃(T ) =

T−(Nd−d)/2Z(T ). Thus, for temperatures where the harmonic approximation holds,

we are able to calculate the absolute value of G(ε). For the BMLJ65 and BMLJ130

systems, G(ε) is shown in Fig. 3.11(a) and (b), respectively. At temperatures

T ≤ 0.6, all reweighted distributions fall nicely onto a master curve, whereas for

T ≥ 0.8 the normalization does not work anymore due to anharmonic effects, see

reference (Sastry, 2000). Note that the section of T = 0.8 would fit well to the

master curve if vertical shifting was allowed. We now fit gaussians to the data at

T ≤ 0.6, yielding the complete G(ε). The number of minima can then be calculated

from N0 = max G(ε)
√

2πσ2. We obtain5

N0 = 1022.4±0.8 (BMLJ65),

N0 = 1045.0±2.5 (BMLJ130).
(3.25)

The result for the BMLJ65 agrees within error bars with N0 = 1020.7±1.1 as produced

by the Exhaustive Sampling Method above. In our opinion, this is quite reassuring,

since the calculation of N0 was carried out in two completely different ways.

Within error bars, the number of distinct minima in the BMLJ130 system is

just the square of the BMLJ65 number of distinct minima. This quantity therefore

displays the trivial scaling with system size expected from combinations of non-

interacting subsystems. Once again, these results corroborate our statement that

the BMLJ65 exhibits to a great extend the bulk properties of a BMLJ system,

i.e. it is free of major finite-size effects. Finally, we find for the growth parameter

α = N−1 ln N0,

α = 0.79± 0.03, (BMLJ65)

α = 0.80± 0.04, (BMLJ130).
(3.26)

5The errors from Eq. 3.21 and Eq. 3.22 accumulate to ca. 1.8 (BMLJ65) and 5.7 (BMLJ130).
Devision by ln 10 then yields the errors in Eq. 3.25.
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3.3 Configurational Entropy.

The perfect crystal has no remaining structural disorder except for the vibrations

of atoms around the lattice positions. In the PEL language this means only the

basin of the crystalline minimum is populated.6 Clearly, the supercooled liquid has

a higher degree of structural disorder. Yet, from the preceeding analysis of min-

ima population, we know that the set of accessible minima shrinks tremendously

upon decreasing temperature. Starting from the definition of Shannon entropy (ap-

pendix C.2), configurational and vibrational parts of the entropy may be separated

by use of the basin populations pi(T ) and the distribution p(x|i; T ) of vibrations in

a basin i,

S = −
∫

Ω

dxp(x) ln [p(x)u]

= −
∑

i

∫

Ωi

dxp(x, i) ln [p(x, i)u] = −
∑

i

∫

Ωi

dxpip(x|i) ln [pip(x|i)u]

= −
∑

i

pi ln pi −
∑

i

pi

∫

Ωi

dxp(x|i) ln [p(x|i)u] ≡ Sc + Svib.

(3.27)

Note that the reference volume, u, appears in both S and Svib, whereas the config-

urational entropy is free of this arbitrariness. The fact that Sc(T ) is well defined is

indispensable for the check of the Adam-Gibbs equation, see below.

Calculating Sc(T ) directly via thermodynamic integration. In the last sec-

tion, we obtained the partition function from thermodynamic integration. Thus,

the total entropy can be computed with the help of the relation

S(T ) =
1

T
(E(T )− F (T )) = kB(βE(T ) + ln Z(T )), (3.28)

where E(T ) is the average potential energy and F (T ) is the free energy at temper-

ature T . We now only need to know 〈Svib(T )〉. In harmonic approximation, the

vibrational entropy of a given basin i is (compare Eqs. C.1 and 3.3)

Svib,i =
(Nd− d)kB

2
+

1

2

∑
ν

ln

(
2πkBT

λν,i

)
=

(Nd− d)kB

2
(1 + ln kBT ) + ln Yi,

(3.29)

where ν runs over all 3N − 3 non-zero eigenvalues of the Hessian matrix in the

minimum. As we have seen in the last section, this is a good approximation below

T = 0.8. In order to estimate Svib(T ) (by averaging Eq. 3.29 over all minima),

6Of course, due to particles permutations, there exist NA!NB ! such minima in configuration
space.
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Figure 3.12: Total entropy per particle s(T ) = S(T )/N and vibrational entropy in har-
monic approximation, svib(T ) = Svib(T )/N . Data for N = 65 and N = 130 are shown,
they are nearly identical. Inset: 〈lnY |T 〉 = svib(T ) − Nd−d

2N (1 + ln kBT ) versus 1/T for
N = 65 and N = 130. When plotted versus 1/T , data can be fitted by linear functions,
parameters are given in the figure.

we have to compute 〈ln Y (T )〉 from the simulation. Results for the BMLJ65 and

BMLJ130 systems are shown in the inset of Fig. 3.12. For convenience, we plot

this quantity versus 1/T , where data is nearly linear over the present temperature

range. From the fits plus the first term in Eq. 3.29, we compute Svib(T ). In Fig. 3.12,

we show s(T ) ≡ S(T )/N and svib(T ) ≡ Svib(T )/N for the BMLJ65 and BMLJ130

systems. The fact that the entropies are less than zero is not a problem, since, as

said above, these entropies can only be specified up to a constant, the unit volume u.

As can be seen, the temperature dependence of svib(T ) is dominated by (1+ln kBT ),

so that the relatively low accuracy of the fits to 〈ln Y 〉 is not troublesome. From the

difference s(T )− svib(T ), we obtain the configurational entropy, see Fig. 3.14, curve

(i) (curves (ii)-(iv) will be discussed in the next paragraph). The configurational

entropies of the BMLJ65 and BMLJ130 are practically identical. They vanish

at the ’Kauzmann temperature’ TK ≈ 0.3 in conformance with the analysis of

Sastry (Sastry, 2000) and Sciortino et al. (Sciortino et al., 1999) for the standard

BMLJ system. Above T ≈ 1.35, Sc(i) drops again, similarly to the behavior found
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by Sciortino and coworkers (Sciortino et al., 1999). This is caused by the breakdown

of the harmonic approximation for Svib, because we know that Sc should increase

monotonously in the BMLJ: The population of minima at T = ∞ (see Fig. 3.4) is

still located left of the maximum of G(ε), so that a decrease of Sc(T ) with increasing

T is not possible.

Calculation of Sc(T ) from G(ε). One may partly circumvent the limitation of

the harmonic approximation by the use of G(ε), obtained in the last section, in

conjunction with the distribution p(ε; T ), taken directly from the simulation.

In the literature, we find the expression, Sc(T ) =
∫

dεp(ε; T ) ln G(ε), for the

configurational entropy ((Sastry, 2001), adapted to our notation). It is however

incomplete. This can be seen by a simple argument7: Assume that G(ε) is constant

and that the distribution p(ε; T ) becomes more and more concentrated around some

ε0 upon cooling. As the consequence, Sc(T ) should decrease, though this is not

reflected in the above formula, which yields a constant Sc(T ). Instead, the correct

formula would be Sc(T ) =
∫

dεp(ε; T ) ln(G(ε)/p(ε; T )), if no other parameters (like

Y ) are involved.

In what follows, we give a detailed derivation of Sc(T ) in terms PEL parameters.

With Eq. 3.4, we write

Sc = −
∑

pi ln pi

≈ −
∫

dε

∫
dY

∑
i

δ(ε− εi)δ(Y − Yi)pi ln

(
Y e−βε

Z̃(T )

)

=

∫
dε

∫
dY p(ε, Y ; T ) ln

(
G(ε, Y )

pharm(ε, Y ; T )

)
,

(3.30)

where G(ε, Y ) is the number density of minima with properties ε, Y . In the step

from the first to the second line, we made use of the harmonic approximation,

Eq. 3.4, for the second pi, and introduced integrals over delta functions. To arrive

at the third line, we used p(ε, Y ; T ) =
∑

i δ(ε−εi)δ(Y −Yi)pi and the trivial relation

pharm(ε, Y ; T ) ≡
∑

i

δ(ε− εi)δ(Y − Yi)
Yie

−βεi

Z̃(T )
=

Y e−βε

Z̃(T )
G(ε, Y ).

’Configurational disorder’ thus results from the distribution over both energies ε

and vibrational partition functions Y .

Clearly, the expression for Sc(T ), Eq. 3.30, is not very convenient. From sec-

tion 3.1, we know that G(ε) has a strong dependence on ε. We therefore separate

7Even more simple would be to check the units: Since G(ε) is one over energy, we cannot take
the logarithm without compensation.
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the disorder within ε from the disorder within Y . We write

G(ε, Y ) = G(Y |ε)G(ε)

and

pharm(ε, Y ; T ) = p(Y |ε)pharm(ε; T ),

where
∫

dY G(Y |ε) = 1

and

pharm(Y |ε) =
Y G(Y |ε)∫
dY Y G(Y |ε) .

Thus,

Sc =

∫
dεp(ε; T ) ln

(
G(ε)

pharm(ε; T )

)
+

∫
dεdY p(ε, Y ; T ) ln

(
G(Y |ε)
p(Y |ε)

)

≈
∫

dεp(ε; T ) ln

(
G(ε)

p(ε; T )

)
+

∫
dεp(ε; T ) ln

∫
dY Y G(Y |ε)−

∫
dεdY p(ε, Y ; T ) ln Y

=

∫
dεp(ε; T ) ln

(
G(ε)

p(ε; T )

)
+

∫
dεp(ε; T )

(
ln

〈
Y −1|ε〉

T
− 〈

ln Y −1|ε〉
T

)

≡ S(1)
c + S(2)

c ,

(3.31)

where 〈Y |ε〉G = 1/ 〈Y −1|ε〉T has been used.

The first term of Sc(T ) is the disorder with regard to the property ’ε’, whereas

the remaining disorder, due to the variation of Y , has been incorporated into the

second term. The advantage of this representation is that anharmonicities are partly

accounted for by p(ε; T ).

Essentially, S
(2)
c (T ) is the mean width8 of the distributions p(ln Y |ε; T ). Clearly,

if all Y ’s at constant ε were equal, S
(2)
c (T ) would vanish. A comparison of

ln 〈Y −1|ε〉T with 〈ln Y −1|ε〉T is given in Fig. 3.13. As can be seen, the integrand of

S
(2)
c (T ) is constant, and we find9 S

(2)
c (T ) = 1.9± 0.3. It is only a minor correction

to the first term, S
(1)
c (T ), as we will see.

8If p(ln Y |ε; T ) is gaussian with mean ln Y0 and width s, one calculates

ln 〈Y |ε〉G = − ln
〈
Y −1|ε〉

T
= ln Y0 − 1

2
s2 = 〈ln Y |ε〉T −

1
2
s2.

9error estimated
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Figure 3.13: Comparison of two different averages of the vibrational partition func-
tion. Here, 〈ln Y |ε〉T is the canonical average of lnY (see Eq. 3.3) at fixed energy and
− ln

〈
Y −1|ε〉

T
is the average of Y over minima with energy ε. Note that, in harmonic

approximation, these conditional averages are temperature independent.

Given the gaussian G(ε) (Eq. 3.10), S
(1)
c (T ) can be easily evaluated. The best

way is to use p(ε; T ) from the simulations and integrate over ε numerically. The

result is shown in Fig. 3.14, curve (ii).

We can also start from Eq. 3.7 within harmonic approximation. In this case,

S
(1)
c (T ) is given by the parameters characterizing G(ε) and Geff(ε). The analytic

expression can be found in appendix C.5, Eqs. C.15 and C.16. The corresponding

curve is shown in Fig. 3.14 (curve (iii)). In this computation of Sc(T ), the exis-

tence of a lower end of the PEL, εmin (given by G(εmin) = 1, see Eq. 3.10), has

been incorporated. Evidently, the cutoff influences the distributions p(ε; T ) at low

temperatures. The consequence is that the vanishing of Sc(T ) at TK is avoided.

In contrast, Sc(T ) obtained directly from thermodynamic integration vanishes at a

temperature TK ≈ 0.3, as suggested by curve (i). If the presence of the cutoff is

ignored (εmin = −∞), we find the same configurational entropy as from thermody-

namic integration ( curve (iv) ). Thus, the extrapolation of the fit E(T ) = a+ bT 3/5

towards low temperatures (Sciortino et al., 1999) seems to be equivalent to ignor-

ing the lower PEL cutoff (Sastry, 2001), both of which lead to the wrong result

Sc(TK) = 0, TK ≈ 0.3 > 0.
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Figure 3.14: Configurational entropy per particle, computed in different ways (results for
BMLJ65 and BMLJ130), (i) directly from the partition function after thermodynamic
integration, Eqs. 3.28 and 3.29, (ii) from the gaussian G(ε) with p(ε; T ) from simulation,
Eq. 3.31, and (iii,iv) from G(ε) and Geff(ε), with and without lower PEL cutoff εmin. The
following cutoffs have been used in the calculation of curves (ii) and (iii): εmin = −306 in
the BMLJ65 and εmin = −612 in the BMLJ130. Typical error bars are shown at T = 2.

Comparing all predictions for Sc(T ) (curves (i)-(iv)), we find that they practi-

cally coincide for Tc = 0.45 < T < 3Tc = 1.35. Above 3Tc, anharmonic contribu-

tions disturb the calculations: for curves (i), (iii), and (iv), we worked completely

within harmonic approximation, whereas in curve (ii), anharmonicities are partly

accounted for by using the full p(ε; T ) directly from the simulations. Thus, the

latter curve should be taken most seriously.

We have also included the data for the BMLJ130 in Fig. 3.14, which show the

same behavior. If we assume that a large system behaves essentially as the com-

position of small, independent subsystems (which is further verified in chapter 6),

we can conclude that the avoidance of a vanishing configurational entropy at some

temperature TK > 0 is no matter of the small system size of the BMLJ65.



Chapter 4

Dynamics: From Hopping to

Diffusion

One major goal with respect to the dynamics of structural glass formers is a quanti-

tative understanding of the molecular slowing down upon cooling. We have already

seen that the energy landscape picture is useful for describing static properties be-

low 2Tc. Henceforth, our goal shall be an understanding of dynamics from the PEL

perspective. Taking the practical viewpoint, average transport quantities like the

diffusion coefficient or the viscosity are of greatest interest. Here, we concentrate

on the long-time diffusion coefficient given by the Einstein relation

D(T ) = lim
t→∞

〈(x(t)− x(0))2〉
6Nt

, (4.1)

which describes the mean-square displacement of a particle during a long time t,

〈
(xi(t)− xi(0))2

〉 ≈ 6Dt.

It is well known that D(T ) can also be written in terms of the inherent dynamics

trajectory ξ(t) instead of x(t) (Schrøder et al., 2000). The simple reason is that the

size of basins is limited, implying that the difference ξ(t)−x(t) does not contribute

to Eq. 4.1 in the long-time limit. Thus, it is sufficient to consider the hopping motion

ξ(t) among minima, neglecting the more or less complicated vibrations x(t)− ξ(t)

around them.

Based on these arguments, we will provide a link between the average dynamics

of the system (as given by D(T ), section 4.1)) and the statistics of hopping events

in the PEL. From the above it is clear that such a link exists, but its quantitative

formulation could become more or less complicated. When studying the dynamics in

terms of hopping between PEL minima (section 4.2), we will find strong correlations

within groups of minima, which constitute superstructures in the PEL (metabasins).

53
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It will then turn out that the hopping between whole metabasins can be related to

D(T ) very easily (section 4.3), in contrast to a single-basin description (section 4.5).

It is important to note that we will

V ( t )

+ + +
+ + +

+
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Figure 4.1: Sketch of the mapping from
the real trajectory, x(t), to the minima,
ξ(t).

use the visited PEL minima merely as a

reduced description of the trajectory that

was chosen by the system, as the ’mile-

stones’, so to speak (Fig. 4.1). Normally,

the term ’hopping’ is used to describe the

rare, activated jumps between configura-

tions. In this chapter, by ’hopping’ we will

mean something more general (i.e. mov-

ing from one basin to another), without

referring to the physical mechanism be-

hind this. Later, in chapter 5, we will

trace back the temperature dependence

of residence times in stable metabasins to

the local PEL structure.

We finally remark that our approach

is complementary to the real-space in-

vestigations of single-particle hopping via

computer simulations (Miyagawa and Hi-

watari, 1991; Allegrini et al., 1999).

Since we consider hopping in configura-

tion space, we have the advantage of

incorporating the full many-particle ef-

fects (Keyes and Chowdhary, 2001).

4.1 The Long-Time Diffusion Coefficient.

The mean-square displacement. We first describe how D(T ) is extracted from

the simulations. The mean-square displacement

〈
r2(t)

〉
=

1

N

〈
(x(t)− x(0))2

〉
=

1

N

∑
i

〈
(xi(t)− xi(0))2

〉
(4.2)

is shown in Fig. 4.2 for different temperatures in the BMLJ65. The brackets in

Eq. 4.2 indicate the canonical average over different initial conditions at temperature

T . By fitting the data with the expected long-time behavior 〈r2(t)〉 = 2dD(T )t, we

obtain the diffusion coefficient D(T ). A measure for the accuracy of D(T ) is the
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Figure 4.2: Mean-square displacement for the BMLJ65 (average is over A and B particles),
at temperatures T = ∞, 5, 2, 1, 0.8, 0.6, 0.555, 0.5, 0.45, 0.435, and 0.4. Time is given
in units of MD steps which is ∆t = 1/T in reduced units. The T = ∞ line corresponds
to free diffusion. The short-time regime of

〈
r2(t)

〉
is not shown from technical reasons

(equidistant storage of particle configurations). The straight lines are fits to the long-time
behavior

〈
r2(t)

〉 ∝ t. For a comparison of distances, the typical next-neighbor distance
and the box width are given.

number of independent initial configurations in the above average, which in turn

is proportional to the total runtime. Alternatively, one may consider the distances

traveled by the particles: generally, after covering a distance of the order of a next-

neighbor separation, a particle is assumed to have structurally relaxed. This notion

is supported by Fig. 4.2, since 〈r2(t)〉 ∝ t for t > τcage (where 〈r2(τcage)〉 ≡ 1), which

means that subsequent displacements on the timescale of τcage are approximately

uncorrelated. In other words, after the cage formed by the surrounding particles

has been broken and a new one has been formed, a particle has lost its memory

and the further dynamics will essentially be uncorrelated from the past. We see

in Fig. 4.2 that all simulation runs are long enough to contain many τcage’s. For

instance, the total runtime at T = 0.5 is greater than 1000τcage. At T = 0.4, the

run is still longer than 30τcage, which allows every particle to travel more than the

length of the simulation box. One might intuitively think that this is sufficient for a
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Figure 4.3: Arrhenius plot of the diffusion coefficient D(T ) for the BMLJ65 (average
is over A and B particles). At the three lowest temperatures, error bars are unknown,
which is indicated by a lighter color of the corresponding data points. Apparently, D(T )
becomes Arrhenius-like when approaching Tc = 0.45± 0.01 from above, with an apparent
activation energy of ∆E = 5.9 ± 0.3 (straight line). The curved line is a Vogel-Fulcher
fit (D(T ) ∝ exp(−A/(T − TVFT))), yielding TVFT = 0.18. For comparison, the results
of Newtonian dynamics simulations (Kob and Andersen, 1995) have been included (×).
To better see the difference between Newtonian and Langevin dynamics we separately
performed Newtonian dynamics simulations for the BMLJ65 (◦). Kob’s and our data
from Newtonian dynamics simulations were multiplied by some constant to fall onto the
Langevin dynamics at T = 0.5. Inset: Determination of the mode-coupling temperature
Tc, according to the power law D(T ) ∝ (T − Tc)γ . If we assume γ = 2, D1/2(T ) should
be linear in T and vanish at Tc.

thorough sampling of configuration space. However, we will see later on (section 5.5)

that simulation runs for T < 0.435 are probably too short, due to the existence of

some very rare but extremely long-lived metabasins. We therefore exclude data for

T < 0.435 from deeper quantitative analysis.

The diffusion coefficient D(T ) for the BMLJ65 is shown in Fig. 4.3. In the limit

of high temperatures, it is clear that D(T ) → D0 = kBT/mζ: Firstly, because
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the attractive part of the interaction potential, being of the order of εAA is not

relevant at high temperatures, since εAA ¿ kBT . (A consequence is that only the

repulsive part of the interaction is relevant there, implying that the BMLJ resembles

more and more a soft-sphere system upon heating.) Secondly, the repulsive part

(∝ r−12) of the potential is probed at smaller and smaller distances r, due to the

large thermal energy. The consequence is that the effective size of particles shrinks

upon heating, which means that the distance where particle interactions disturb

the free diffusion becomes smaller and smaller.

We are mainly interested in the regime of low temperatures. For T ≤ 2.0, we

observe the typical non-Arrhenius behavior of fragile glass formers, i.e. a positive

curvature of D(T ) in the Arrhenius plot. A standard parameterization of such data

is given by

D(T ) ∝ exp

(
− A

T − TVFT

)
.

This celebrated fit formula is due to Vogel, Fulcher, and Tammann (Vogel, 1921;

Fulcher, 1925; Tammann and Hesse, 1926). As can be seen from the figure, it is

able to fit the whole set of data, except for the three points of lowest temperatures

(T < 0.435). If the latter points are correct, we would have a crossover around

T = 0.6 from a non-Arrhenius to an Arrhenius D(T ). At present, however, the

error bars of the data at T < 0.435 are unknown. As will be discussed in section 5.5,

there are some indications that the D(T ) at these temperatures is overestimated

due to insufficient statistics. Thus, the D(T ) below T = 0.435 should be considered

with reservation.

Mode-coupling theory (MCT) predicts the power law D(T ) ∝ (T − Tc)
γ (Götze

and Sjogren, 1992), where the exponent γ is typically of the order of two (Kob and

Andersen, 1995). To determine Tc, we therefore plot D1/2(T ) versus T , see Fig. 4.3,

inset. This yields the MCT ’critical’ temperature Tc = 0.45± 0.01. Below T = 0.5,

we find deviations from the power-law prediction of MCT towards larger D(T ).

For instance, D(T ) does not vanish at Tc. This failure of the MCT prediction is

generally attributed to ’activated processes’ which are not included in MCT but

become relevant near and below Tc. We will later discuss this aspect in detail.

We have chosen the Lennard-Jones system of (Kob and Andersen, 1995), in

short, KA, since it is one of the most widely studied super-cooled model liquids.

The changes made to the potential were necessitated by the need of small systems.

As we have seen in section 2, the reduced cutoff in conjunction with the continu-

ity conditions results in changes which are not small. It is therefore not obvious

how much our BMLJ differs from the one of Kob and Andersen. Three sources of

deviations are present: the different interparticle potentials, the system size (KA:
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Figure 4.4: (a) Adam-Gibbs plot to check the relation D(T ) ∝ exp(− A
Tsc(T )) in the

BMLJ65. Note the deviations from the straight line at T ≤ 0.45. (b) Test of the relation
D(T ) ∝ exp(BSc(T )). The straight line corresponds to B = 0.285.

N = 1000, here: N = 65), and the different type of dynamics (KA: Newtonian,

here: Langevin dynamics). In Fig. 4.3, we have included the KA data of D(T ).

The overall behavior is quite similar to that of the BMLJ65. At high T , the tem-

perature dependence of the KA system is larger than that found in our BMLJ65

with Langevin dynamics. To check the influence of the different dynamics, we also

show results for Newtonian dynamics of the BMLJ65 in Fig. 4.3. We now find an

high-T behavior similar to KA. A clear difference to the KA system remains: while

the BMLJ65 displays Arrhenius behavior1 below T = 0.6, a markable increase in

apparent activation energy is found by KA below T = 0.5. At the present stage,

it is not clear if the continued non-Arrhenius behavior found by KA is the more

generic one.

Adam-Gibbs plot. For completeness, we now test the Adam-Gibbs (AG) rela-

tion for the diffusion coefficient,

D(T ) ∝ exp(− A

Tsc(T )
), (4.3)

(see section 1.2). As we see from Fig. 4.4(a), log D(T ) is approximately linear in

1/Tsc between T = 0.466 and T = 1. However, an overall, slight curvature is

clearly present in this temperature regime. For larger temperatures (not shown in

the figure) and for T < 0.466, we find stronger deviations from the straight line.

The breakdown of the AG relation for high temperature has also been observed

1apart from the uncertainty within the T < 0.435 data (see section 5.5)
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in experiment (Richert and Angell, 1998). There, however, one has found devia-

tions from the AG relation already above 1.6TK. What concerns low temperatures,

agreement with Eq. 4.3 has been found down to Tg, experimentally and in simula-

tions (Saika-Voivod et al., 2001; Scala et al., 2000; Starr et al., 2001). For a very

similar BMLJ system, Eq. 4.3 has also been verified (Sastry, 2001). The origin of

the low-temperature deviations from the AG relation which we see in Fig. 4.4(a)

should therefore be clarified. Here we have to restrict ourselves to noting that our

value of the growth parameter (α ≈ 0.8) is smaller than the one found by Sastry

(α ≈ 0.9). If we used α = 0.9, the data points at T < 0.466 would much better fall

on the straight line with the others.

Interestingly, the relation D(T ) ∝ exp(BSc(T )) with B ≈ 0.3 is much better

fulfilled than the AG relation, see Fig. 4.4(b). We do not attempt to give a physical

interpretation of this, here.

4.2 Metabasin Hopping.

Some information about the waiting time distribution (WTD) has already been

gained from the analysis of hopping processes of single particles in real space via

computer simulations (Miyagawa and Hiwatari, 1991; Allegrini et al., 1999). In

contrast, we consider hopping in configuration space, with the advantage of incor-

porating the full many-particle effects. We shall study the statistics of hopping

events between PEL minima and, more importantly, between superstructures of

them (metabasins).

Time series of minima. As demonstrated in (Büchner and Heuer, 2000), the

time series of potential energies ε(t) = V (ξ(t)) reflects well the character of dynamics

in the super-cooled state. For T = 0.435, ε(t) is shown in Fig. 4.5 from which

we note an interesting structure in ε(t): The system is trapped in some stable

configurations for long times during which a small number of minima is visited over

and over again (e.g. between MD steps 425× 106 and 475× 106). Typically, one or

more low-lying minima are dominant in such groups of minima, and jumps to other

minima possess large (backward) correlations. Obviously, this behavior reflects the

dynamics within superstructures of minima which, following (Stillinger, 1995) we

call metabasins (MBs).

One may imagine that minima of long-lived MBs are organized in funnel-like

structures so that the system is stuck there for a long time. This seems to be a

general construction principle of energy landscapes near stable configurations: The

search for the native state in the process of protein folding, for instance, seems to
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Figure 4.5: The time series of minima energies measured for the BMLJ65 at T = 0.435.
The distance between minimizations is 105 MD Steps. The length of the total run is
2× 109 MD Steps, the time window covering a quarter of the total run.

be guided by strong correlations on the PEL, generally pictured as huge folding

funnels (Bryngelson et al., 1995). In the case of small clusters, similar funnel-like

structures can be observed around the ground states (Ball et al., 1996). For glass

formers, the existence of MBs has also been known for some while. After Still-

inger had conjectured their presence in glasses, they were indeed found in computer

simulations (Büchner and Heuer, 2000; Giovambattista et al., 2002b). What con-

cerns the relation to experiment with glass formers it has been argued that the

occurrence of β-relaxation at low temperatures is due to the MB substructure of

the PEL (Stillinger, 1995). This is supported by the real-space signature of MBs

found by Middleton and Wales. From the occurrence (or not) of particle-neighbor

changes, they divide IS transitions into diffusive and non-diffusive ones (Middleton

and Wales, 2001).

Interval bisection. All this indicates that MBs are the relevant, elementary

building blocks of the PEL. Fortunately, it turns out that the hopping between them

can be extracted from simulation data more easily than that between single basins.

The simple reason is that all elementary hopping events have to be resolved for a

complete description of dynamics. If we considered single basins, all IS transitions
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Figure 4.6: Time series of minima energies after applying interval bisection to the data
of Fig. 4.5. (a) Time window as in Fig. 4.5, (b) magnification by a factor of fifty. Note
that no interval bisection is carried out within the MBs known from Fig. 4.5.

would have to be detected. We would thus be forced to minimize x(t) after every

MD step. This is normally prohibited by computer time: For the BMLJ65, e.g., one

minimization takes between three and five seconds on a DEC XP 1000 machine. To

cover a typical low-temperature simulation run of 109 MD steps, we would therefore
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need more than 106 hours! This time exceeds every PhD thesis. Thus, a description

of dynamics on the basis of single-basin hopping is not very promising. We therefore

turn to techniques for resolving MB hopping now.

Simulation runs like the one shown in Fig. 4.5 are between 108 and 1010 MD steps

long. During a run, minimization is typically performed every 104 to 106 MD steps.

We denote these configurations by ξ(ti). The advantage of introducing MBs now is

that the back-and-forth jumps, which at low temperatures are especially numerous,

do not have to be resolved. If the same minimum is found for times ti and tj, we

need not care about transitions in the meantime. This is a clear computational

advantage. If, in contrast, ξ(ti) 6= ξ(ti+1), one or more transitions have happened

in the time interval [ti, ti+1]. A priori, we do not know whether ξ(ti+1) is the direct

successor of ξ(ti), or if other minima have been visited additionally. Therefore,

further minimizations in such time intervals are necessary.

For reasons of efficiency, we apply a straightforward interval bisection method

(IBM), which locates all relevant transitions with an accuracy of 1 MD step.

Provided that ξ(t
(0)
start) 6= ξ(t

(1)
start),

(a) set t(0) ← t
(0)
start, t(1) ← t

(1)
start,

(b) reconstruct the trajectory x(t) at time t(2) = (t(0) + t(1))/2,

(c) calculate ξ(t(2)),

(d) if ξ(t(2)) = ξ(t(0)), set t(0) ← t(2), else set t(1) ← t(2),

(e) repeat (b)-(d) until t(1) − t(0) = 1 MD step.

Note that in the end, ξ(t(0)) = ξ(t
(0)
start), per construction. However, if ξ(t

(1)
start) is

not the direct successor of ξ(t
(0)
start), we have ξ(t(1)) 6= ξ(t

(1)
start). Repeated application2

of the interval bisection to a simulation run x(t) finally gives a set of transition

times t′i. The times t′i have the properties ξ(t′i) 6= ξ(t′i + δt) (i.e., an IS transition

occurs at time ti) and ξ(t′i + δt) = ξ(t′i+1) (i.e., a basin is entered at t′i and left at

t′i+1). In this way, the jumps ξ(t′i) → ξ(t′i + δt) are guaranteed to form a contiguous

trajectory.

In Fig. 4.6 we show the series of energies, ε(t′i), after the IBM has been applied

to the equidistant configurations of Fig. 4.5. One can see that in the regions of

rapid transitions, many intermediate minima were detected. Since the very short-

lived minima are often high-energetic, this yields many minima above −290, which

2From the technical point of view, the reconstruction of the trajectory at some arbitrary point
is straightforward. In the case of Langevin dynamics, the random number generator has to be
reset to the initial state, i.e. the random state has to be saved in addition to a configuration, in
the same way as the momenta must be memorized in the case of Newtonian dynamics.
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were not present in Fig. 4.5. Note, however, that unresolved IS transitions may be

present between the initial ti and ti+1. This may happen if the lifetime of minimum

ξ(ti) is interrupted by a visit to some third minimum (ξ(ti) → ξ′ → ξ(ti)). If the

residence in the basin of the third minimum is short enough, it may be overseen

during the IBM. As already discussed, it is exactly such back- and forth hopping

which is removed by the MB construction. Thus, if such an event is not detected,

this will not harm the MB lifetimes. Although computationally demanding, the

IBM most efficiently resolves the relevant details of MB hopping.

Metabasin lifetime construction. The strong correlations between groups of

minima will lead us to a precise definition of MBs in section 5.3, based on the proba-

bilities of returning to a previous minimum. To obtain these return probabilities, we

will need some more sophisticated simulation techniques, including repeated starts

from certain minima. This kind of analysis will be necessary for the determination

of MB depths.

Here, for computing MB lifetimes3, we will take a more pragmatic view.

From a given MD run and the corresponding minima (e.g. Fig. 4.6), the lifetimes

of MBs can be obtained through the following algorithm (Büchner and Heuer, 2000).

(a) determine the intervals [t∗i , t
†
i ] where t∗i is the time of the first and t†i the time

of the last occurrence of minimum ξ(t∗i ),

(b) any two intervals (t∗i < t∗j < t†i < t†j) with an overlap of less than fifty percent

(i.e. (t∗j − t†i )/ max{(t†i − t∗i ), (t
†
j − t∗j)} < 50%) are cut so that the new intervals

fulfill [t∗i , t
†
i ] ∩ [t∗j , t

†
j] = ∅, either by setting t†i = max{t|ξ(t) = ξ(t∗i ), t < t∗j} or

t∗j = min{t|ξ(t) = ξ(t†j), t > t†i} (randomly, with equal probability), new intervals

[min{t|ξ(t) = ξ(t∗i ), t > t∗j}, max{t|ξ(t) = ξ(t∗i ), t > t∗j}] or [min{t|ξ(t) = ξ(t†j), t <

t†i}, max{t|ξ(t) = ξ(t†j), t < t†i}] are introduced, respectively,

(c) any two intervals overlapping by more than fifty percent are combined to

[t∗i , t
†
i ] ∪ [t∗j , t

†
j],

(d) intervals [t∗j , t
†
j] are deleted if there is some [t∗i , t

†
i ] with [t∗j , t

†
j] ⊂ [t∗i , t

†
i ]

(e) the lifetimes of MBs are defined by the intervals after step (d),

(f) the MB configuration ξMB is defined as the lowest minimum visited during

the MB lifetime, εMB being its energy.

A few comments on the procedure are in order. Time intervals in (a) are deter-

mined by the interval bisection method which yields the time of transitions from

one minimum to another with an accuracy of one MD step. Step (b) is motivated

3We use ’lifetime’ as a synonym for ’residence time’ or ’waiting time’ inside a basin or metabasin.
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by the observation that recrossings of a basin border during a transition are very

probable. If we ignored this fact, i.e. combined all overlapping intervals in step (c),

we would merge nearly all intervals and end up with unphysically long MBs. The

choice of fifty percent mutual overlap in steps (b) and (c) is a bit arbitrary. How-

ever, we found that the results for MB lifetimes are not very susceptible to taking

values other than fifty percent. Step (c) itself and step (d) are the realization of the

MB concept, since back-and-forth motion is removed. It is important to note that,

different from (Büchner and Heuer, 2000), we will treat all MBs on the same footing

here, no matter if they are short-lived or long-lived. We stress again that the MB

lifetime construction rests upon single trajectories, which only partially reflect the

configuration space topology. For the computation of lifetimes, though, this poses

no serious problem, see the discussion in section 5.3.

We find that the metabasin lifetimes, τ , range from a few MD steps to many

millions of them. This large span can only be covered with the help of the interval

bisection method. The distribution of lifetimes will be denoted ϕ(τ, T ). For the

following considerations, its expectation value, 〈τ(T )〉, will be a key quantity.

4.3 From Hopping to Diffusion.

One major advantage of analyzing metabasins rather than basins is that the sim-

plistic picture of a random walk in configuration space will be better fulfilled on

the level of metabasins rather than basins since direct back- and forth correlations

among minima are already taken into account. Thus, at a given temperature, one

may hope that dynamics can be expressed by a typical jump distance and the mean

lifetime of MBs. Upon changing temperature, however, both of them might vary.

Interestingly, as we shall show in this section, the spatial aspects of MB hopping are

fairly temperature independent below 2Tc. As the consequence, the whole temper-

ature dependence is contained in the average waiting time 〈τ(T )〉. This will lead to

a simple description of diffusion as has been expressed in phenomenological models,

see (Zwanzig, 1983; Monthus and Bouchaud, 1996; Odagaki et al., 1994).

As said above, the temperature dependence of the diffusion coefficient may gen-

erally be related to spatial and temporal aspects of hopping, as expressed by the

relation

D(T ) =
a2(T )

6N 〈τ(T )〉 . (4.4)

With this ansatz, we anticipate the important role of the MB mean waiting time and

collect the spatial details of hopping in an effective jump length a(T ). The latter

involves (i) the average jump distance, (ii) correlations of jump lengths with waiting
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Figure 4.7: Squared displacement
〈
R2(n)

〉
after n metabasin jumps for the temperatures

T = 0.4, 0.435, 0.466, 0.5, 0.6, 0.8, and 2.0. We have included lines of slope 1.

times, and (iii) directional correlations of successive jumps. To our knowledge this

decomposition into spatial and temporal contributions has not been systematically

implemented within the PEL framework so far. A priori it is not clear to which

degree the temperature dependence of a(T ) is relevant; see, e.g., (Vardeman and

Gezelter, 2001; Schulz, 1998).

Our goal is to find an expression for the effective jump length a(T ) of Eq. 4.4.

The key idea is to introduce the squared distance 〈R2(n)〉 after n jumps (Maass

et al., 1995), averaged over different realizations. This quantity is purely spatial

since it does not involve any time scale. In the limit of large n one obtains4 due

to the central limit theorem limn→∞〈R2(n)〉/〈ξ2
MB(n 〈τ〉)〉 = 1 where 〈ξ2

MB(n 〈τ〉)〉 is

the average squared displacement5 after time n 〈τ〉. Thus,

D(T ) = lim
n→∞

〈ξ2
MB(n 〈τ〉)〉
6Nn 〈τ〉 =

[
lim

n→∞
〈R2(n)〉

6n

]
1

N 〈τ〉 (4.5)

where the first factor may be identified as a2(T )/6. Note that both factors are

4To some, this may seem an obvious relation. Those who need a more strict derivation of
Eq. 4.5 are referred to appendix C.3.

5Strictly speaking, we should write
〈
(ξMB(t)− ξMB(0))2

〉
for the displacement which is a bit

clumsy, so we abbreviate it by
〈
ξ2
MB(t)

〉
as long as the meaning is clear.
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independent of system size because IS transitions are localized (〈R2(1)〉 = O(1))

and mean waiting times decrease with system size (〈τ〉 = O(1/N)). We may now

calculate a(T ) from the simulations, results are shown in Fig. 4.7. The most im-

portant observation is that a(T ) is temperature independent for T ≤ 2Tc = 0.9.

Interestingly, this is not affected by the variation of the elementary jump width

〈R2(1)〉, which increases with temperature, a fact that was recently observed by

Schulz et. al. (Schulz et al., 2001). A possible explanation for this might be found

in the increasing population of higher-order stationary points (Angelani et al.,

2000a) upon heating, which provokes many of the so-called ’bookkeeping’ IS tran-

sitions (Keyes and Chowdhary, 2001). On the one hand, the minima visited in

this way are known to be the more distant from each other the higher the index

of the stationary points, resulting in a larger 〈R2(1)〉. On the other hand, stronger

backward correlations are found for these bookkeeping transitions, so that the same

long-time limit limn→∞ 〈R2(n)〉 /6n is recovered.

In any event, the constancy of a(T ) in the landscape-influenced regime T ≤ 2Tc

implies that the temperature dependence of D(T ) follows alone from 〈τ(T )〉, i.e.

D(T ) ∝ 〈τ(T )〉−1. (4.6)

This simple picture breaks down above the landscape-influenced regime, T > 2Tc,

where, probably, the explored regions of configuration space have a completely

different structure. It has to be noted that the constancy of a(T ) for T < 2Tc relies

heavily on our resolution of all elementary MB transitions leading to relaxation.

This might explain the discrepancy of our results with that of related studies (Schulz

et al., 2001), which find jump distances that increase with temperature.

A further insight from Fig. 4.7 is that the dynamics on the level of metabasins is

basically a random walk except for minor back-correlations for n ≤ 5. As expected

from Fig. 4.5, massive correlations are present between single basins, as will be

shown in section 4.5, the consequence being a significant deviation from the relation

〈R2(n)〉 ∝ n. More importantly, we will see that a(T ) would strongly depend on

temperature, if we used single basins rather than MBs in the above investigation.

It remains unclear why for a very small LJ system (N=32) the correlations among

adjacent basins are irrelevant for T ≈ Tc (Keyes and Chowdhary, 2001), and why

intra- rather than inter-basin dynamics is deemed to be the key to the understanding

of diffusion (Keyes and Chowdhary, 2002).

We can check the relation D(T ) ∝ 1/ 〈τ(T )〉 within our simulations. Figure 4.8

shows that, for T ≤ 1 it is indeed well fulfilled. As expected, we find the deviation

for T = 2.



Waiting Time Distributions. 67

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5

4

6

8

1 / T

l o g 1 0  1 / D ( T )

l o g 1 0 < t ( T ) > + l o g 1 0  6 N / a 2

Figure 4.8: Arrhenius plot of the inverse one-particle diffusion coefficient 1/D(T ) versus
the MB mean waiting time 〈τ(T )〉 multiplied by a constant (a2 = 1.0). Error bars are of
the order of the symbol size.

4.4 Waiting Time Distributions.

In this section, we discuss the properties of the waiting time distributions (WTDs),

ϕ(τ, T ). Some information about WTDs has already been gained from the analysis

of hopping processes of single particles in real space via computer simulations (Miya-

gawa and Hiwatari, 1991; Allegrini et al., 1999). In these works, a definition of

lifetimes is given by the requirement that a particle move some distance larger than

δ before it is said to have relaxed. The choice of δ, though arbitrary, has a great

influence on the WTDs (e.g. on their long-time decay). Furthermore, due to the

single-particle description, collective effects are not accounted for: If, for instance, a

particle and its neighbors move collectively into the same direction by more than δ,

all of them are considered as relaxed, although at least the central particle has not

at all left its cage. Due to the many-particle aspect of the PEL and the presence of

well-defined basins, our WTDs do not have these drawbacks.

Figure 4.9 shows ϕ(τ, T ) for some temperatures T ≤ 1. For short τ , all curves

exhibit a power-law behavior with exponent −1/2, similarly to (Michele and Lep-



68 Dynamics: From Hopping to Diffusion

0 . 4 0 0 . 4 5 0 . 5 0 0 . 5 5 0 . 6 0

1 . 8

2 . 0

2 . 2

2 . 4
T c = 0 . 4 5

l o g 1 0 j ( t )

l o g 1 0 t

t - 1 / 2  

t - 2  

0 2 4 6 8

- 1 0

- 5

0

Figure 4.9: Distributions of waiting times, ϕ(τ, T ), for T = 1.0, 0.8, 0.6, 0.5, and 0.435
(from left to right). Curves have been shifted to overlap for small τ . Lines corresponding
to algebraic decays with exponents 0.5 and 2 are shown as guides to the eye. The arrows
mark τ∗(T ), i.e. the waiting time with the property

∫∞
τ∗(T ) dτϕ(τ)τ = 0.9 〈τ〉. Inset:

Power-law exponent α(T ) from fits to the long-time decay. Within the possible accuracy,
α(T ) ≈ T/Tx + 1, with Tx ≈ Tc = 0.45.

orini, 2001). At larger τ a crossover to a faster decay can be observed, which again

is compatible with a power-law, ϕ(τ, T ) ∝ τ−α(T ).

For T = 0.435, e.g., one finds α ≈ 2.0 for which the expectation value 〈τ〉 would

diverge. However, the behavior ϕ(τ) ∝ τ−α cannot extend to infinitely large τ . Due

to the finite number of metabasins in the system, there exists a maximum effective

barrier Emax, giving rise to an exponential cutoff at some minimum rate γmin. This

crossover to exponential decay at very large times is not seen in our data. One

might therefore ask where this crossover should be found and, more importantly, if

there is missing some relevant part of the long-time tail of ϕ(τ ; T ), in the sense of

contributing significantly to 〈τ(T )〉ϕ. In the latter case, a more thorough sampling

of the PEL would be necessary to find the correct 〈τ(T )〉ϕ, meaning that our present

runs are too short. This is an important issue, which, after Eq. 4.6, concerns the

accuracy of D(T ) and the equilibration of our runs in general. We shall show in

section 5.5, how such questions can be answered. The result will be that for our
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simulations at T ≥ 0.435, the contribution from the unseen long-time tail of ϕ(τ ; T )

is small.

Dominance of the large τ ’s. It is now interesting to ask which part of ϕ(τ)

dominates the mean waiting time 〈τ(T )〉ϕ. On the one hand, the majority of valleys

is short lived, but these are weighted only by a small τ . On the other hand, the

long-lived states are rare, but contribute a large τ . The slow decay of the WTDs

now leads to the important observation that 〈τ〉 is dominated by the contributions

from large τ (see arrows in Fig. 4.9). For example at T = 0.435, 90% of 〈τ〉 are made

up by the six percent longest waiting times (i.e. 224 out of 3993 metabasins), with

lifetimes greater than 0.5× 106 MD Steps. Hence, only the very stable metabasins

are of statistical relevance for the temperature dependence of the diffusion coeffi-

cient. This may come as a surprise because one might intuitively think that the

diffusion coefficient and thus 〈τ〉 is dominated by the fast particles. We note that

our result is in qualitative agreement with the approach of Wolynes and Xia who re-

gard the relaxation of long-lived local structures as the time-determining step (Xia

and Wolynes, 2001).

Bouchaud’s trap model. Interestingly, the algebraic decay of the WTDs follows

for some theoretical models of diffusion with built-in traps. Bouchaud and coworkers

discuss a model where relaxation is a consequence of activated jumps out of traps

with depths E and distribution function ρ(E) (Monthus and Bouchaud, 1996). In

the exponential case ρ(E) ∝ e−E/Tx , they find WTDs ϕ(τ, T ) with algebraic decay

for long τ

ϕ(τ, T ) ∝ τ−(T/Tx+1).

(Details of Bouchaud’s model can be found in appendix D.) As said above, our

data is compatible with an algebraic long-time decay - which does not mean that

all alternative forms can be excluded (see the recent paper by Bouchaud et al.,

where a detailed comparison of WTDs in a binary Lennard-Jones system with that

of trap models can be found (Denny et al., 2002)). Within the possible accuracy,

though, the exponent α(T ) agrees with that of Bouchaud’s model if we choose

Tx = 0.45 = Tc, see the inset of Fig. 4.9.

Does this mean that the basic assumptions of the trap model hold for the

BMLJ65? The main assumption in the model is that the depths and lifetimes

are related one-to-one, by γ(E) = γ0 exp(−βE). In the notation of chapter 5, this

means Eapp(E) = d ln 〈τ |E〉 /dβ = E. Alternatively, this can be expressed by the

temperature independence of the distribution of visited traps, i.e. ϕ(E; T ) = ρ(E).
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Figure 4.10: (a) Average subsequent MB waiting time
〈
τ(n+1)|τ(n)

〉
, as a function of τ(n) in

the BMLJ65. Temperatures are T = 0.435, 0.5, 0.6, and 0.8 from top to bottom. (b) Av-
erage subsequent MB energy 〈εMB(n + 1)|εMB(n)〉, vs. εMB(n), for the same temperatures
as in (a), from bottom to top. For comparison, (c) and (d) show the corresponding quan-
tities for a system comprised of two independent trap models à la Bouchaud (Tx = 0.45).
Temperatures are T = 0.33, 0.4, 0.5, 0.667, 1.0, and 2.0, from top to bottom in (c) and vice
versa in (d). Auxiliary lines of slope one have been included.

Neither of these features is found in the BMLJ65, see section 5.1. An explanation

for these findings could be the fact that the BMLJ65 is not a completely corre-

lated entity, i.e. subsystems may sometimes relax independently. This leads to a

weaker dependence of Eapp(E) of E. Thus, the reason for the good agreement of

the power-law exponents α(T ) between the trap model and the BMLJ65 remains

to be clarified. Finally we mention that also the trapping diffusion model (Odagaki

et al., 1994) predicts a similar temperature dependence of α(T ).
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Correlations among subsequent MBs. As stressed above, the MB construc-

tion is devised to eliminate trivial back-and-forth correlations among IS transitions

which are irrelevant for structural relaxation. We have seen that this works quite

well in that the sequence of hops between MBs is near to a random walk. For rea-

sons of completeness, we shall report further results in this connection: First, it is

interesting to check for correlations between the lifetimes of subsequent MBs. For

this purpose, we calculate the mean lifetime
〈
τ(n+1)|τ(n)

〉
of MB (n+1), as a function

of the preceding τ(n). As depicted in Fig. 4.10(a), this kind of correlation is absent,

independently of temperature. Second, it is obvious to check for statistical interde-

pendence among MB energies, εMB(n). Again, we compute the average εMB(n+1)

as a function of εMB(n), see Fig. 4.10(b). The strong correlations which we find are

striking. The results obtained so far might have produced the impression that the

choice of what MB to visit next is independent of the preceding one (like in the

trap model). That this is not true is not a drawback of our MB approach - it rather

reflects a deeper principle of PEL structure: Since (hopefully) our BMLJ65 is not

a completely correlated entity, we expect that different parts of the system decou-

ple to a certain extent. Stated otherwise, different parts of the system may relax

independently - at least to some degree. To put this into perspective, we note that

the ’string-like’ motion, found in larger BMLJ systems, mostly comprises clusters

of less than 10 particles (Donati et al., 1998). Taking this for granted, we imme-

diately recognize that a single MB jump (say, corresponding to one of the above

strings) cannot lead to a completely uncorrelated point in configuration space. Al-

though dynamic backward correlations towards former MBs are essentially absent,

the structure of the new MB is correlated with that of the former MB, which is

what we find in Fig. 4.10(b).

To gain a better understanding of what is going on, we compare our findings

with Bouchaud’s trap model. We mimic the quasi-decoupled regions in our BMLJ65

by combining two independent copies of the trap model. The waiting times, τ(n),

of the combined system are given by the time spans where neither of the copies

makes a hop. In Fig. 4.10(c), we see the correlation of subsequent waiting times

(which we computed numerically for this model, since the analytic solution seemed

too lengthy). As in the BMLJ65, no correlations among waiting times can be found.

The energy correlations can easily be computed analytically,

〈E(n+1)|E(n)〉ϕ = Tx − T +
E(n)

1− e−βE(n)
,

where E(n) is the total energy of both copies, see Eq. D.13. As shown in Fig. 4.10(d),

we find similarly strong correlations of subsequent energies as in the BMLJ65. Thus,

as the conclusion, the lacking correlations between MB waiting times and their
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presence with respect to energies, can be explained by the fact that parts of the

BMLJ65 relax quasi-independently.

Probably, a more quantitative study of the observed correlations in

Fig. 4.10(a),(b) would yield a much deeper comprehension of PEL topology than

we can provide here.

4.5 All this does not work with single basins.

We noted above that MBs are very suitable for numerical study since we may use

interval bisection to locate the MB transitions. When dealing with single basins, in

contrast, one has to minimize very frequently to resolve all IS transitions, including

the numerous back-and-forth hops within MBs. Here we would like to demonstrate

that this is not only numerically expensive, but also unprofitable for the compre-

hension of diffusion.

For three temperatures (T = 0.5, 0.6, and 0.8), we generated time series of

minima over periods of 107 MD steps, with a spacing of 10 MD steps6. In this way,

we find nearly all elementary IS transitions, including those within MBs. We now

carry out the same analyses as we before did with MBs.

Average squared displacement after n jumps. Again, 〈R2
basin(n; T )〉, provides

some information about the spatial aspect of hopping, now between single basins.

In Fig. 4.11, we see 〈R2
basin(n; T )〉 calculated for jumps between basins, compared

with the respective 〈R2(n; T )〉 between MBs for the same set of temperatures. Two

important differences are evident: (i) The subdiffusive regime for basins is much

more pronounced than for MBs. (ii) The quantity a2
basin(T ) = limn→∞ 〈R2

basin(n)〉 /6n
depends on temperature, in contrast to the MB a2(T ) (also compare Fig. 4.7).

The explanation for (i) is obvious from what we understand so far about the

nature of MBs. Due to the frequent back-and-forth hops within MBs, one expects

a long subdiffusive regime of 〈R2
basin(n)〉. Since the number of intra-MB transitions

increases with the lifetime of a MB, the subdiffusive regime grows upon cooling.

This leads to the decrease of a2
basin(T ). The back-and-forth jumps can nicely be seen

in the oscillations of R2
basin(n) at small n. The growing importance of such motion

towards low temperatures is also clearly visible.

Is evident from Fig. 4.11 that Eq. 4.6 cannot be valid on the single-basin level.

This is directly demonstrated in Fig. 4.12: As expected, the mean basin waiting time

has a too weak dependence on temperature to reproduce D(T ) up to a constant.

Since part of the temperature dependence is contained in a2
basin(T ), we have no

6The total runtime was ca. one month for each temperature on a DEC XP1000.
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Figure 4.11: Squared displacement after n single-basin jumps for the temperatures T =
0.5, 0.6, and 0.8 (lower curves). The upper curves correspond to MBs jumps (copied from
Fig. 4.7). Data stem from runs with high-frequent minimization (every 10 MD steps).
Lines of slope 1 have been included.

contradiction to Eq. 4.5, which is valid for basins as well as MBs. Thus, although

computationally demanding, the single-basin waiting times are not very useful for

the comprehension of D(T ).

Single-basin vs. MB WTDs - the short-time decay. It is also instructive to

consider the single-basin WTDs, see Fig. 4.13. Here we are interested in their short-

time behavior, which follows a power law with exponent 3/2, for all temperatures.

We would like to show that this finding can be related to the recrossings of basin

borders.7 If the system moves from one basin to another, it has to overcome some

barrier between them. Having reached the top of such a barrier, the forces dragging

the system back to the old basin or stirring it towards the new one become small.

Thus, motion in the very vicinity of the (high-dimensional) basin border is quasi free

along the direction perpendicular do the border. Since we use Langevin’s equations

of motion, this results in a dynamics which is close to free diffusion along that one

7The possibility of having some very small basins could be excluded as an explanation for the
short τ by a more detailed analysis of entry and exit points on the basin borders.
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Figure 4.12: Arrhenius plot of the inverse one-particle diffusion coefficient 1/D(T ) and
the mean single-basin waiting time, multiplied by a constant. For comparison, we have
included the mean MB waiting times, multiplied by a constant (a2 = 1.0). Error bars are
of the order of the symbol size.

direction in configuration space. It is then clear that recrossings of basin borders

are highly probable, leading to a number of short visits to the basins of either side of

the border. For one-dimensional diffusion along some coordinate y, starting in the

origin, the first-passage times τ for the point y are distributed according to (Hughes,

1995)

ψ(τ ; y) =
1

(4πDτ)3/2
exp

(
− y2

4Dτ

)
.

Evaluating this expression at y = 0, we obtain the distribution of first-return times,

which is proportional to τ−3/2.

The fact that the single-basin WTDs are not normalizable is annoying. It is due

to the assumption of an idealized, mathematical diffusion process, whose trajectory

is a fractal object8. As the consequence of the τ−3/2 decay, we should find shorter

8In the real world, in contrast, one should introduce a lower cutoff time scale where self-
similarity stops. Therefore, it would be interesting to study the WTDs in a Newtonian dynamics
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T = 0.5, 0.6, and 0.8. Auxiliary lines corresponding to power-laws have been included.

and ever shorter basin residence times by using smaller elementary time steps in

our simulations. The basin 〈τ〉ϕ therefore depends on our integration time step,

too! This renders the single-basin description even less attractive. On the level of

MBs, again, no problems arise: Since the WTDs decay approximately as τ−1/2 at

short times, extremely short waiting times do not contribute much to the average

〈τ〉ϕ and also the normalization is uncritical.

The MB WTDs of the BMLJ65, determined from the simulation runs with high-

frequent minimization, are shown in Fig. 4.13(a). The most important observation

is that they are identical to the WTDs depicted in Fig. 4.9, which were computed

with the help of the interval-bisection technique. Thus –as expected on the level of

MBs– high-frequent minimizations do not yield any new information.

We finally note that, at the moment, we do not have a strict explanation for the

short-time behavior ∝ τ−1/2 of the MB WTDs. At this point, we can only state

that the slower decay is very plausible since the MB construction eliminates the

back-and-forth motion on basin borders, so that much less of the extremely short

waiting times occur.

simulation, where - in contrast to our Langevin dynamics - the short-time regime is purely ballistic.
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Chapter 5

From PEL Structure to Hopping

Looking for a quantitative link of bulk diffusion D(T ) to PEL properties, we have

investigated hopping dynamics on the PEL in great detail in chapter 4. A priori,

temporal and spatial aspects of hopping events had to be considered, the former in

the shape of the waiting time distribution (WTD) of jumps, the latter by the jump

lengths and directions, and correlations thereof. We found that strong backward

correlations of jumps arise from the organization of minima into superstructures,

which we have called metabasins (MB). MBs were identified with the help of a

straightforward algorithm such that close-by minima between which the system

performs several back- and forth jumps are identified as a single MB. Then, indeed,

hopping among MBs was found to be close to a random walk with a distribution

ϕ(τ ; T ) of MB waiting times. Motivated by this fact, we have expressed D(T ) in

the simple form,

D(T ) =
a2

6N 〈τ(T )〉 , (5.1)

with the mean waiting time 〈τ(T )〉 and the effective jump length a(T ). With

this ansatz, we anticipated that waiting times would carry the major part of the

temperature dependence. Indeed, a(T ) turned out to be constant for T < 2Tc,

which is why we have dropped the argument of a(T ) here. Eq. 5.1 constitutes an

important step towards the understanding of diffusion in supercooled liquids: It

suffices to look for the physics behind MB waiting times, spatial details of hopping

being expressed by a single constant.

On might wonder whether there is much use in expressing one dynamical quan-

tity by another. However, the MB waiting times are especially pertinent for an

analysis in the PEL spirit. The reason for this can be understood at the simple

example of relaxation in a one-dimensional double-well potential: We consider the

behavior at low temperatures where there is a time-scale separation between vi-

brational motion and relaxation from one well to the other. We may then use

77
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transition-state theory to compute the rates from the barrier height and the local

vibrational properties of the stationary states only (Hänggi et al., 1990). More

complicated, non-local information on the shape of the potential is not needed.

Transferred to the high-dimensional case of our BMLJ liquid, we shall predict MB

lifetimes from local PEL properties, too, most notably, from barrier heights. If

there were an additional temperature dependence of jump lengths, we would have

to include the sizes of MBs into our analysis. Evidently, this would render the

overall picture much more complicated. Instead, the results of chapter 4 indicate

that the notion of random jumps between traps of equal size is quite appropriate.

As a consequence of the slowly decaying WTDs, the mean value 〈τ(T )〉 has been

found to be dominated by the few, very long waiting times. In other words, the

temperature dependence of D(T ) follows alone from the durations of trapping in the

very stable MBs. These results were obtained for the small binary Lennard-Jones

mixture of N = 65 particles. For a macroscopic system, which, due to its dynamic

heterogeneity (Sillescu, 1999), contains many slow and fast subsystems in parallel,

this implies the dominance of slow regions in the temperature dependence of D(T ).

The logical continuation along this line of thinking is to relate MB lifetimes to

the PEL topography. The most prominent characteristics of a MB is, of course,

its energy εMB, which is defined as the lowest energy of all its constituent minima.

It is then natural to introduce the mean MB lifetime 〈τ(εMB; T )〉 at constant εMB.

Knowledge of 〈τ(εMB; T )〉, together with the population of MBs,

p(εMB; T ) = 〈δ(εMB(t)− εMB)〉T ,

is sufficient to calculate 〈τ(T )〉 and thus D(T ), as we will show now. We write

〈τ(T )〉 =

∫
dεMB 〈τ(εMB; T )〉ϕ(εMB; T ), (5.2)

where ϕ(εMB; T ) is the distribution of MBs visited at temperature T . We will

see that this decomposition can be achieved by a detailed analysis of the hopping

dynamics. Since p(εMB; T ) denotes the probability that at a given time the system

is in a MB with energy εMB, it is proportional to ϕ(εMB; T ) and the time 〈τ(εMB; T )〉
the system remains in MBs of this energy. With the appropriate normalization one

gets

p(εMB; T ) =
〈τ(εMB; T )〉
〈τ(T )〉 ϕ(εMB; T ). (5.3)

From Eqs. 5.1, 5.2 and 5.3, it immediately follows the representation

D(T ) =
a2

6N

〈
1

〈τ(εMB; T )〉
〉

T

. (5.4)
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Here, 〈...〉T denotes the canonical time average (w.r.t. p(εMB; T )), while 〈...〉 is the

average over MBs. Hence,

{〈τ(εMB; T )〉 , p(εMB; T )} → 〈τ(T )〉 → D(T ), (5.5)

where the second implication has been established in chapter 4. For temperatures

T < 2Tc, the population p(εMB; T ) is nearly identical to p(ε; T ), as we will see in

section 5.1. The latter distribution has been extensively discussed in chapter 3. It

is a purely static quantity that can be derived from the approximately gaussian

number density Geff(ε). Thus, the population of MBs,

p(εMB; T ) ≈ p(ε; T ) ∝ Geff(ε)e
−βε, T < 2Tc (5.6)

can be expressed by three parameters describing the global PEL structure. In the

present chapter, we focus on 〈τ(εMB; T )〉, our goal being to deduce it from the local

barriers around MBs. If this succeeds, we have established the following connection,

local + global PEL structure → long-time dynamics,

which, in our opinion, pushes the understanding of diffusion in supercooled liquids

a step further.

We proceed as follows. Firstly, we extract mean MB lifetimes from ordinary

simulations, in order to have in hands the quantities of interest (section 5.1). We

start with the relaxation from four single, randomly selected MBs. By an exhaustive

sampling of these MBs, we will be able to get some first insights into MB topology.

Then, many MBs of fixed energy are considered and their lifetimes 〈τ(εMB; T )〉 are

calculated. Secondly, we relate MB lifetimes to PEL structure, by quantifying the

MB depths, or effective barriers, which determine the temperature dependence of

〈τ(εMB; T )〉 (section 5.3). The physical scenario which will emerge from the results of

this chapter implies that MBs can be regarded as traps, surrounded by high barriers.

From exhaustive explorations of PEL connectivity (Doye and Wales, 2002) it turned

out that due to the high dimensionality of configuration space the number of escape

paths from every minimum is enormous. Thus, one may anticipate that the effective

barrier to leave a specific MB results as a complex superposition of individual escape

paths. Therefore, enormous numerical effort is required to quantify their multitude

for many different MBs.

Note that the whole analysis will be carried out in the spirit of activated barrier

crossing. The extent to which this is present in supercooled liquids is quite dis-

puted in literature. However, we will show that for temperatures in the landscape-

influenced regime below 2Tc, the apparent activation energy

Eapp(εMB; T ) =
d

dβ
ln 〈τ(εMB; T )〉 , (5.7)
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can indeed be identified with PEL barriers much larger than kBT which the system

encounters when leaving a MB. Thus, together with Eq. 5.4, we will find that the

activated escape out of deep traps is the physical mechanism behind diffusion.

To our knowledge, such a connection between dynamics and PEL barriers has

never been established for a fragile glass former. In contrast, for SiO2, the apparent

activation energy of diffusion below Tc could be related to the simple breakage of

Si−O bonds (McMillan et al., 1994; Horbach and Kob, 1999).

The organization of the chapter is as follows. Section 5.1 deals with the compu-

tation of apparent activation energies from relaxation dynamics. The corresponding

energy barriers will be addressed in section 5.3, after introducing our technique for

finding transition states (section 5.2). In section 5.4, we independently demonstrate

that barriers and associated reaction paths indeed govern relaxation. Finally, we

discuss further aspects of our results in section 5.6. All data given in this chapter

stem from the BMLJ65.

5.1 Activation Energies from Metabasin

Lifetimes.

As noted above, the temperature dependence of D(T ) is dominated by the long-lived

MBs. Generally, these are low-lying MBs, i.e. deep traps in the PEL. Since different

MBs differ in their stability, a statistical treatment will be needed. As a first step,

however, we restrict ourselves to the investigation of single MBs. Afterwards, we

address the general behavior of MBs at given depth εMB. This will not only involve

the mean lifetimes 〈τ(εMB; T )〉, but also the distribution over MBs at temperature

T , ϕ(εMB; T ).

Activation Energies for Single MBs. The relaxation times computed in this

section do not stem from regular, linear simulation runs, but are obtained by artifi-

cally placing the system in a specific MB and waiting for its escape (’escape runs’).

The algorithm for the MB lifetime construction (cf. section 4.2) implicitly assumes

that MBs finally have been left. In other words, the algorithm may not be used

to determine the time where to stop the simulation due to successful escape. For-

tunately, we can avoid running into this paradoxical situation by judging from an

independent criterion whether an escape has been completed: if the distance of the

instantaneous minimum to the starting position is greater than dmax = 4, returning

to the original basin can practically be excluded (see section 5.3 for a justification

of dmax = 4). Then, by applying the MB construction algorithm to the escape run,

we obtain the lifetime of the MB.
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Figure 5.1: Mean lifetimes of four low-lying, randomly selected metabasins, computed
from repeated escape runs (εMB = −301.64,−300.47,−300.16, and −300.74, from top to
bottom). The number of runs are 85,59,175, and 105, from top to bottom. Arrhenius
fits work well in the temperature range T ≤ 1 ≈ 2.2Tc, the corresponding activation
energies are given in the figure. Curves have been shifted vertically by 0.5(4 − i) orders
of magnitude for better inspection.

We analyzed four low-lying (εMB < −300), randomly selected MBs in greater

detail. By repeated starts from the bottom of the MBs, we computed the mean

lifetimes 〈τi(T )〉 as a function of temperature. From Fig. 5.1, we see that the

relaxations from all MBs follow nicely an Arrhenius law. We note that, due to

starting at minima, a short intra-basin equilibration time1 has been subtracted

from the raw 〈τi(T )〉.
The fact that an Arrhenius form of 〈τ(εMB; T )〉 is observed indicates that the

barriers do not change any further upon lowering temperature. Put differently, MBs

serve as traps surrounded by barriers with heights around Eapp(i) = d ln 〈τi(T )〉 /dβ.

We will see in section 5.3 that this is indeed correct. Since Eapp(i)/kBTc > 10, this

1Starting from the bottom of different basins at t = 0, we computed the potential energy
autocorrelation function, 〈δV (0)δV (t)〉 / 〈

δV (0)2
〉
. Its decay yields the relaxation time τmol ≈ 40,

which turns out to be temperature independent.
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implies a strongly activated dynamics near Tc.

Activation Energies vs. MB energies. As a further step, we analyze the mean

relaxation time from MBs with the same energy, 〈τ(εMB; T )〉; see Eq. 5.2. Clearly,

the low εMB are not populated at high temperatures so that regular simulation does

not yield 〈τ(εMB; T )〉 over a wide temperature range. We therefore artificially place

the system in the desired MBs (in the lowest minima εMB thereof) and measure the

escape times as a function of temperature. Averaging over many different MBs, we

obtain 〈τ(εMB; T )〉. Results are shown in Fig. 5.2 as a function of εMB. Below T = 1,

all relaxation times display Arrhenius behavior. Thus, the apparent activation

energies Eapp(εMB; T ), Eq. 5.7, are temperature independent. In the following we

will therefore omit the second argument. Thus, we can write

〈τ(εMB; T )〉 = τ0(εMB)eβEapp(εMB). (5.8)

As expected, the properties of MBs as expressed by Eapp(εMB) significantly depend

on their ground state energy εMB.

We can interpret Eapp(εMB) as the mean effective depth of MBs at εMB. No deeper

traps than εMB ≈ −302 have been found (compare Fig. 3.2). A simple statement

for the depths of traps would follow if the rims of all traps were at the same level

εth. The consequence would be Eapp(εMB) = εth − εMB, for all εMB < εth. This simple

scenario is ruled out by the data, see Fig. 5.2(b). Actually, a more complicated

energy dependence of Eapp(εMB) is expected from the very fact that the system -

despite its small size - is not a completely cooperative unit.

The fact that we still observe Arrhenius-like relaxation in Fig. 5.2 indicates that

the variation of trap depths at constant εMB is not large, compare Eapp(i) from

Fig. 5.1. Otherwise, Eapp(εMB; T ) would increase upon decreasing temperature, due

to the more and more dominant, extremely deep traps. In contrast, trap depths at

constant εMB seem to be rather well defined by εMB, which suggests the existence of

some underlying topological principle.

As seen from Fig. 5.2(c), the pre-factor τ0(εMB) has no strong dependence on

εMB. From high energies, it decreases at most an order of magnitude and seems to

level off below εMB = −297. Hence, for the range of energies that dominate 〈τ(T )〉
at low temperatures, it can be considered constant within error bars, see below. In

contrast to Eapp(εMB), we will not be able to deduce τ0(εMB) from PEL structure.

Its weak variation is therefore quite fortunate.

Population of MBs. We will now analyze the second factor of the integrand

in Eq. 5.2, ϕ(εMB; T ). The distributions are shown in Fig. 5.3(a). The variation of
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Figure 5.2: (a) Arrhenius plot of mean MB lifetimes 〈τ(εMB;T )〉, for different εMB. A
MB equilibration time of τmol = 40 was subtracted. Straight lines are fits of the form
Eq. 5.8. (b) apparent activation energies Eapp(εMB). (c) pre-factors τ0(εMB). Curved lines
are interpolations of the data.

ϕ(εMB; T ), as given by its mean value (Fig. 5.3(b)), is much weaker than the variation

of p(εMB; T ). After Eq. 5.3, this is because the MB residence times 〈τ(εMB; T )〉
contain a certain part of the temperature dependence of p(εMB; T ). From Eqs. 5.3
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Figure 5.3: (a) distribution ϕ(εMB; T ) of MB energies, for four temperatures. (b) Mean
energies, from ϕ(εMB; T ) and from p(εMB; T ). (c) Variances of the distributions ϕ and p.
Polynomial fits to the data are shown in (b) and (c). Straight lines are predictions for
p from an ideally gaussian distribution Geff(εMB) (mean ε0, variance σ2). The deviations
from the gaussian prediction at the lowest T are probably caused by insufficient statistics,
as discussed in section 5.5.

and 5.8, one concludes2 that the constancy of the distribution ϕ(εMB; T ) is equivalent

2We assume that the distribution of MB energies follows from that of the single basins, i.e.
p(εMB; T ) ≈ exp(−βεMB)Geff(εMB)/z(T ) (Eq. 5.6), where z(T ) =

∫
dεMB exp(−βεMB)Geff(εMB).
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Figure 5.4: Population of MBs energies, p(εMB;T ), compared with the single-basin p(ε;T ).

to having Eapp(εMB) = εth− εMB, with some constant εth. This simple relation arises,

for instance, in Bouchaud’s trap model (see appendix D). There, the rims of all

traps lie at the same height, namely, zero. In the BMLJ65, Eapp(εMB) shows a

different behavior (Fig. 5.2(b)), so that the residual temperature dependence of

ϕ(εMB; T ) has to be expected.

What concerns p(εMB; T ), it turns out that p(εMB; T ) is nearly identical to the

distribution of minima, p(ε; T ), within the landscape-influenced/dominated regime

(i.e. for T < 2Tc). In Fig. 5.4, we see that at T = 2, p(εMB; T ) is shifted to

the left with respect to p(ε; T ). Already at T = 0.8, both distributions nearly

agree, whereas at still lower temperatures they can be considered identical within

statistical error. Here we give a plausible explanation for these findings, noting

that a deeper statistical investigation of the basin-MB relation would be necessary

to back (or not) the following argument. Since the energy of a MB is defined as that

of its lowest minimum, the mapping from basins to MBs transfers the weights of

the elevated minima of a MB to its lowest one, which lies at εMB. This explains the

shift between p(εMB; T ) and p(ε; T ). First consider the case of low temperatures,

say T < 2Tc. At high εMB, no pronounced MBs are observed (Fig. 4.5), so that

the transition from basins to MBs has little effect. Considering a deep MB with

generally many minima, we have seen that the population is concentrated around

After Eq. 5.3, the T -independence of ϕ(εMB; T ) is equivalent to

0 =
d
dβ

(ln p(εMB; T ) + ln 〈τ(T )〉 − ln 〈τ(εMB; T )〉) = −εMB +
d
dβ

(− ln z(T ) + ln 〈τ(T )〉)− Eapp(εMB).

Thus, Eapp(εMB) = f(T ) − εMB, with an εMB-independent function f(T ). Since Eapp(εMB) does
not depend on temperature, this function must be a constant which we denote εth.
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Figure 5.5: Arrhenius plot of the mean waiting time 〈τ(T )〉 versus the indirectly de-
termined counterpart, 〈τ(T )〉

ind
. For comparison, we also show the inverse one-particle

diffusion coefficient 1/D(T ) multiplied by a constant (a2 = 1.0), see chapter 4. Error bars
are of the order of the symbol size.

εMB. Again, switching from basins to metabasins does not produce dramatical

changes in the distributions. This is why p(εMB; T ) and p(ε; T ) agree at low T . At

higher temperatures, in contrast, the elevated minima of MBs become populated,

so that the transition from basins to MBs transfers more weight to the bottom of

the MBs. In this way, one may understand the larger deviation between p(εMB; T )

and p(ε; T ) seen in Fig. 5.4, at T = 2.

As a consistency check, we use the data from Fig. 5.2 and 5.3 to reproduce

〈τ(T )〉 indirectly via Eqs. 5.2 and 5.8 (denoted 〈τ(T )〉
ind

). The match with 〈τ(T )〉
is not completely trivial since the data for 〈τ(T )〉 and ϕ(εMB; T ) were gathered from

a linear simulation run, while 〈τ(εMB; T )〉 results from selected MBs of certain εMB,

where the system has been artificially placed. As shown in Fig. 5.5, the agreement of

〈τ(T )〉 and 〈τ(T )〉
ind

is good for T ≤ 1 within the possible accuracy. Note that there

is no free fit parameter between them. The deviation at T = 2 can be explained

by the fact that 〈τ(εMB; T )〉, above T = 1, and especially for the high εMB, departs

from Arrhenius behavior (see Fig. 5.2(a)), so that the parametrization of Eq. 5.8 is
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no longer valid.

So far, all barriers or trap depths have been derived indirectly, from the tem-

perature dependence of waiting times. A link to the PEL structure is still lacking.

For instance, the activation energies Eapp(i) of this section are expected to reflect

the local topography of the selected MBs. Indeed, they can be identified from the

barriers of escape paths, as will be demonstrated in section 5.3.

5.2 Non-Local Ridge Method for Finding

Transition States.

First of all, the barriers between neighboring minima are of interest. These are

known once we have in hands the corresponding transition states (TSs).

We now describe how to determine those from the simulation, by what we call the

(non-local) ridge method. The principle idea is that TSs are local minima of basin

borders. They can be pictured as the lowest points of mountain ridges on the PEL. If

the system crosses a basin border at time t, the steepest descent path starting from

x(t) should end up in a TS, see (Ionova and Carter, 1993). In practice, however, the

descent will deviate from the ridge due to numerical error, finally ending up in one

of the minima ξ0 ≡ ξ(t−) or ξ1 ≡ ξ(t+). As a way out, we let the system perform

two descents in parallel, on either side of the basin border, as schematically depicted

in Fig. 5.6. More specifically, if a transition happened at time t, interval bisection

yields the configurations x(t) ≡ y0 and x(t + 1 MD step) ≡ y1. From these, by

further interval bisection on the straight line between y0 and y1, the distance to the

border may be further reduced if necessary, resulting in two configurations, again

called y0 and y1. Close as they are, they still belong to different basins. If we now let

descend y0 and y1 in parallel, they first move along the ridge towards the transition

state until they finally bend off to their respective minima. This separation is clearly

not wanted, so from time to time we reduce their distance by interval bisection.

After a few iterations (descents+interval bisection) the vicinity of the transition

state is reached in most cases. We then use a short minimization of the auxiliary

potential Ṽ = 1
2
|F (x)|2 followed by a few steps of Newton-Raphson type, which

bring the search for the TS to a quick convergence. Besides a vanishing force, the

resulting configuration ζ has a Hessian matrix with one negative eigenvalue. After

small displacements along the corresponding eigenvector, one reaches the adjacent

minima via steepest descent. This yields the reaction path (RP) ζ(s), where s is a

curvilinear parameter. We set ζ(0) = ζ, ζ(s0) = ξ0, and ζ(s1) = ξ1, where s0 < 0

and s1 > 0.
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Figure 5.6: Sketch of the TS search with the ridge method.

It can happen, though, that no saddle between y0 and y1 is found, but that

the interval bisection locates a third minimum. The basin border splits into two at

this point, and no direct saddle between the initial and final minimum is available.

Thus, we also have to split the descent along the basin border into two processes

and then continue separately. If the two descents are successful without further

bifurcations, we are finished and have the optimum reaction path which takes a

detour via a third minimum. In such a situation, the RP is clearly not very useful.

It has to be stressed that bifurcations are no artifacts of the ridge method, but a

topological feature of some basin borders on the PEL. Fortunately, as a signature

of strong anharmonicity, they are quite rare and happen to occur only in the high-

energetic regions of the PEL. For the escapes from long-lived MBs, they are of no

importance.

A similar algorithm is described in the literature (Ionova and Carter, 1993),

which, instead of minimization and interval bisection, uses local maximization be-

tween y0 and y1 to prevent the configurations from moving apart. Although com-

putationally less expensive, this method is not appropriate for our purpose. As an

effect of the high dimensionality, the local shape of the PEL around y0 and y1 gives

no direct clue to the membership to basins. When descending, one may thus loose
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the important property of y0 belonging to the basin of ξ0 and y1 belonging to that

of ξ1. This effect has indeed been reported in (Ionova and Carter, 1993).

In the literature, plenty of methods exist dealing with the computation of tran-

sition states. For our purpose, however, each of them has some kind of drawback,

which we briefly discuss now. One kind of them starts from the knowledge of the

initial and final minimum (Elber and Karplus, 1987; Matro et al., 1994; Deaven

et al., 1996; Angelani et al., 2000b). Common to the latter methods is that, after

a more or less educated guess for an initial trial RP, one iteratively improves the

RP according to some prescription, e.g., the minimization of an action functional.

Two sources of erroneous results have to be addressed in this connection. First, the

two minima in question have to be true neighbors. This can only be verified by

locating two points close to the basin border, e.g. by interval bisection of the initial

trial path. The numerical cost is not small; for our ridge method, for instance,

about one third of the calculation time is consumed by fixing y0 and y1 (depending

on the minimization interval of the original MD run). Second, the iterative path

optimization may become stuck in a local extremum, due to an unfortunate choice

of the initial path.

The other kind of TS search methods start from an initial minimum and climb up

to a transition state guided by the shape of the PEL. Just walking against the force,

however, would be a fatal strategy, as one can see by turning the PEL upside down:

ending up in a TS is numerically impossible, since one quickly runs into one of the

PEL singularities (two or more identical particle positions). Eigenvector-following

algorithms (Wales, 2001) overcome this defocusing of steepest ascent paths by walk-

ing into the direction of negative local PEL curvature. The ’activation-relaxation

technique’ by Mousseau and coworkers, in contrast, steps against the force in the

direction leading away from the minimum, while descending the PEL perpendicular

to that direction (Barkema and Mousseau, 1996). A drawback of the latter methods

is that the choice for the next TS to mount is not well under control. From the min-

imum, a starting direction is chosen, either by purely random displacements or by

some hard-sphere-like particle moves (Doye and Wales, 2002). Unfortunately, the

number of escape directions from a minimum is generally very large (at least O(Nd)

as we found in the BMLJ65, see also (Doye, 2002)), whereas the majority of those

is dynamically inaccessible at low T . Hence, eigenvector-following and activation-

relaxation techniques yield many TSs which only negligibly contribute to relaxation

rates. Striving for the simulation of low-temperature hopping dynamics based on

these methods (Hernandez-Rojas and Wales, 2001; Mousseau, 2000; Ball and Berry,

1999), one may therefore suffer a considerable reduction of efficiency. In our point

of view, this renders straightforward molecular simulation rather competitive for
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Figure 5.7: Potential energy along the reaction path ζ(s), which was calculated from the
dynamics during 105 MD Steps, at the end of a typical MB of life span 8×106 MD Steps in
the BMLJ65. The mapping of s to time is non-linear. The small barriers for s < 5 belong
to fast intra-MB transitions. pback denotes the probability of returning to the bottom of
the MB. As a comparison, the potential energy at that temperature (T = 0.5) fluctuates
around −249.3± 6.1!

many purposes.

Furthermore, we mention two complementary means of studying energy barriers.

The ’lid’ algorithm, proposed by Schön and coworkers (Wevers et al., 1999), is able

to find upper bounds for the depths of single basins. By performing random walks

below different potential energy thresholds and by regular minimizations, one is able

to compute the elevation necessary for transitions to neighboring minima. From a

more theoretical perspective, Schulz has specified a relation between transition rates

and the overlap of vibrations in neighbouring basins (Schulz, 1998).

Finally, we remark that in the field of supercooled liquids, another method

for locating general stationary states (saddles) has become quite fashionable. One

defines the auxiliary potential Ṽ = 1
2
|F (x)|2 and looks for its local minima. A

detailed discussion of this method and a comparison to the ridge method is given

in section 7.3.

5.3 Energy Barriers from PEL Topology.



Energy Barriers from PEL Topology. 91

Return Probabilities and Metabasin Definition. With the tools of interval

bisection and TS search, we are now in the position to analyze the escapes from

MBs in full detail. When a MB is left, we first resolve all minima visited during the

escape. Second, all corresponding TSs and, if desired, reaction paths are calculated.

An example is shown in Fig. 5.7. The successive RPs were spliced together to a

long, multi-minima RP ζ(s). One might take the energy profile, V (ζ(s)), depicted

in the figure, for one of the common cartoons of a PEL. However, it rests upon

real data. Berry and coworkers have produced similar charts for the relaxation of

small atomic clusters towards their global minima (Ball et al., 1996; Ball and Berry,

1999). For s < 5 one can see the typical back-and-forth hopping among the ground

minima of the MB. Obviously, the corresponding barriers are not large compared

to kBT = 0.5. The escape starts at s = 5. The first minimum reached is very

unstable as expected from the small backward barrier. Indeed, if we repeatedly

start in this minimum and perform a number of short simulation runs (here: 99)

with different random numbers, the system will return to the bottom of the MB

with probability pback = 98% and leave the range of attraction only rarely. Thus,

the escape is far from being complete at this stage. Going to the next minimum,

the return probability decreases, but does not drop to zero. We say that the system

is free if pback is smaller than 50%. As the outcome of this investigation, we obtain

the energy barrier surmounted before the first minimum with pback < 50% was

reached, see below. The exits from other long-lived MBs mostly look the same

as in the example, while the escape in one jump is not common. In other words,

MBs usually have the form of a funnel with some ledges on the walls (Stillinger,

1995; Middleton and Wales, 2001). Minima with pback > 50% are said to belong

to the MB. This criterion is reminiscent of the definition of dynamic bottlenecks

introduced by Chandler and coworkers (Bolhuis et al., 2002).

An interesting property of a MB is its diameter d. It is defined as the maximum

distance between its minima. For the MBs found in the simulation at T = 0.5,

the distribution of diameters is depicted in Fig. 5.8. The delta-peak from single-

minimum MBs has been omitted. No MB with d > dmax = 4 has been found. As a

consequence, if a minimum has a distance larger than dmax to some MB minimum, we

can safely assume pback ¿ 50%. This criterion has already been used in section 5.1.

Based on these insights, we can now provide a more complete description of MBs

(Fig. 5.9). First, the ground state of a MB has to be identified (kernel minimum),

since the definition of pback rests upon it. At low enough temperatures, the kernel

minimum will certainly be visited during the MB lifetime, due to the very low

barriers among the minima on the bottom of the MB. Second, for minima beyond

the distance dmax from the kernel, we set pback to zero. Third, the probability pback for
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Figure 5.8: Distribution of MB diameters, d, defined as the maximum distance between
all minima that were visited during a MB lifetime (T = 0.5, BMLJ65). The delta-peak
from single-minimum MBs has been omitted.

returning to the kernel before reaching a distance greater than dmax can be assigned

to every remaining minimum and -in principle- be computed by simulation. To this

end, one repeatedly starts in the minimum and checks if a recurrence to the kernel

occurs. Fourth, the minima with pback > 50% are defined as the MB.

Please bear in mind that pback will in general depend on temperature, since it is

defined by the dynamics at a given T . Correlations among minima are expected to

increase towards lower temperatures, implying that MBs are no static concept but

rather grow with decreasing T . In Fig. 5.7, e.g., the minimum at s ≈ 6.5 has the

’critical’ value of pback ≈ 47% at T = 0.5. Although we do not know the details of

PEL connectivity around this minimum, the small backward barrier suggests that

the minimum would exceed pback = 50% for still lower temperatures, thus joining the

MB. However, we may also conceive some situations where a critical pback ≈ 50%

is quite insusceptible to temperature changes. This is the case if backward and

forward barriers are of about the same size. We will come back to that issue later.

We further note that the explicit computation of pback can be extremely expen-

sive. This is mainly the case when pback is small, and complete escapes beyond dmax

have to be awaited. However, the exact value of pback is of no great interest. In fact,

it suffices to know whether pback < 50% or pback > 50%. This decision can often be

reached to a high confidence with few trials.

The MB lifetime algorithm in section 4.2 is based on the detection of back-and-
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forth jumps between minima. One mostly observes the dominant minima on the

bottom of the MBs, whereas the more elevated members are only weakly populated,

see Fig. 5.9. If MB lifetimes are to be read from a simulation run, it suffices to notice

when the set of dominant MB minima has been left, since the visits to the elevated

minima at the end of the MB lifetime happen quite rapidly. Thus, the algorithm

of section 5.1 reduces the MB to the most populated minima, which is sufficient for

the purpose of lifetime calculation from a given simulation run. In contrast, for the

prediction of MB relaxation behavior as pursued in this section, the minima close

to the rim of MBs are of special interest. Their elevations from the bottom of the

MB give the depth of the MB.

Barriers for Metabasin Relaxations. In the spirit of the above remarks, we

will now carry out a systematic investigation of the energy barriers overcome when

escaping MBs. The goal is to recover the apparent activation energies computed in

section 5.1 from PEL topology.

The mean lifetime 〈τi〉 of MB i can be expressed in terms of escape rates γi,α of



94 From PEL Structure to Hopping

different relaxation channels α,

〈τi〉−1 =
∑

α

γi,α. (5.9)

In general, each γi,α reflects a multi-minima escape path

ξ0
ζ01−→ ξ1

ζ12−→ ξ2 ... ξM−1

ζM−1,M−→ ξM (5.10)

as the one shown in Fig. 5.7. Here ξ0 is the kernel minimum (ξa 6= ξ0, a > 0) and ζab

is the TS for ξa → ξb. Suppose that the number M of jumps in the sequence Eq. 5.10

is large enough to completely quit the MB’s range of attraction, i.e., pback(M) ≈ 0.

For the escape shown in Fig. 5.7, e.g., M ≥ 7 would be fine.

We further take for granted that the rates for single barrier crossings follow

quantitatively -via transition state theory- from the height of barriers, Eab =

V (ζab) − V (ξa) (the energy difference between the minimum ξa and the TS be-

tween a and b). Hence, rates gab for single transitions ξa → ξb are characterized

by

gab ∝ e−βEab . (5.11)

A justification for this assumption, even for temperatures above Tc, will be given

in section 5.4.

Generally, the probability of upward jumps is small at low T . Hence, climbing

out of a MB in a back-and-forth fashion (e.g., ξa = ξa+2 and ξa+1 = ξa+3) is not

probable. (This is reminiscent of the fact that the activated crossing of single

potential barriers happens on a short time scale, i.e. in a rather straight way.) In

contrast, excursions from the main path may happen. As shown in Fig. 5.7, the

minimum at s = 6.5 is revisited at s = 9 after taking a look at another minimum

(s ≈ 8). The latter does not appear again later on. Clearly, running into such ’dead

ends’ should not contribute to the escape rate via the successful main path. We

therefore eliminate such excursions from the sequence of minima, Eq. 5.10. From

these remarks we take the liberty of assuming that no minimum appears more than

once along the escape path,

ξa 6= ξb, a 6= b. (5.12)

We are now interested in the contribution of the path, Eq. 5.10, to the total

escape rate, Eq. 5.9. Particularly, we have to consider the question of how many

single transitions are relevant for the escape process. The probability to jump from

minimum ξa to ξa+1 is ga,a+1/ga, where ga denotes the inverse lifetime of minimum

ξa. The rate of escape via a longer pathway now is given by the rate of the first
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jump times the probability that the minima ξa (a = 1, ...M) are visited in correct

order thereafter,

γi,α = g01
g12

g1

g23

g2

...
gM−1,M

gM−1

. (5.13)

In this expression, we have neglected the residence times in the elevated MB minima

(ξ1, ξ2, ...) during the escape, which, at sufficiently low temperatures, are short as

compared to the total MB lifetime. With the help of Eq. 5.11 one calculates

− d

dβ
ln γi,α = E01 +

M−1∑
a=1

pret(a)(Ea,a+1 − Ea,a−1), (5.14)

where pret(a) = ga,a−1/ga is the probability to jump back to minimum a − 1 from

minimum a. In the derivation of Eq. 5.14, we have neglected a term proportional to

Ea,a+1 minus the average barrier when jumping from a to a neighbouring minimum

other than a− 1. This term strictly vanishes when performing the final summation

in Eq. 5.9. Moreover, we made use of Eq. 5.12.

One possibility for calculating activation energies from Eq. 5.14 would be to

consider the complete paths, Eq. 5.10, where pback(M) ≈ 0, and determine all terms

in the sum of Eq. 5.14. However, an accurate computation of all the desired pret(a)’s

would even be more costly than the determination of the point where pback changes

from above to below 50%. We therefore use the following approximation of Eq. 5.14,

which is in conformance with our previous definition of MBs: Let m(T ) be the first

minimum along the path, Eq. 5.10, where pback < 50%. Then, for all a < m(T ), we

set pret(a) to unity, while for a ≥ m(T ) (i.e. outside the MB), we let pret(a) = 0.

Thus,

− d

dβ
ln γi,α ≈ Ei,α ≡ E01 +

m−1∑
a=1

(Ea,a+1 − Ea,a−1)

= εm−1 − ε0 + Em−1,m,

(5.15)

where m = m(T ). In this way, the terms a < m(T ) in Eq. 5.14 are given higher

weights, whereas those of a ≥ m(T ) are neglected. We will dwell on the quality

of this approximation later on; for a more thorough discussion see (Saksaengwijit

et al., 2002).

Note that, due to the temperature dependence of pback, energy barriers Ei,α

generally increase upon cooling: At high temperatures, in contrast, correlations

among minima are small, such that MBs (even the low-lying) consist of only one

minimum. This effect is included in Eq. 5.15 by the temperature dependence of

m(T ).



96 From PEL Structure to Hopping

0 5 1 0
0

5

1 0

1 5

T = 0 . 5

E

P ( E )

0 5 1 0
0

5

1 0

1 5

2 0

T = 0 . 5

E

P ( E ) = 6 . 7 ± 0 . 3
= 6 . 7 ± 0 . 5
= 4 . 1 ± 0 . 5

E a p p

E a p p

E 0 1

e s t

M B  1 M B  2

= 5 . 3 ± 0 . 3
= 5 . 3 ± 0 . 5
= 3 . 7 ± 0 . 5

E a p p

E a p p

E 0 1

e s t

0 5 1 0

0

2 0

1 0
T = 0 . 5

P ( E )

M B  3

= 5 . 2 ± 0 . 2
= 5 . 6 ± 0 . 5
= 2 . 9 ± 0 . 5

E a p p

E a p p

E 0 1

e s t

0 5 1 0
0

1 0

2 0

3 0

4 03 0
= 4 . 9 ± 0 . 3
= 5 . 0 ± 0 . 5
= 4 . 0 ± 0 . 5

E a p p

E a p p

E 0 1

e s t

T = 0 . 5

M B  4

P ( E )

Figure 5.10: Bold curves: Histograms of barriers Ei,α(k) overcome when escaping single
MBs (i = 1, 2, 3, 4 at T = 0.5). Light curves: Respective histograms of barriers E01

from first jumps. Apparent activation energies Eapp(i), mean barriers Eest
app(i), and mean

barriers from first jumps Ē01 are given in the figure.

Single Metabasins. We now relate the lifetimes of the single, selected MBs

(cf. section 5.1) to PEL barriers. By repeated starts from these MBs, the local

PEL topography is sampled thoroughly, yielding sets of typical escape pathways.

Whenever a MB is left, we locate the transitions by interval bisection and obtain the

corresponding TSs with the help of the ridge method. Then, pback is calculated for

the minima visited, until for the first time, pback < 50%. Finally, the barrier Ei,α(k)

is computed according to Eq. 5.15, where α(k) denotes the escape path chosen at

the kth escape. The histograms of barriers are shown in Fig. 5.10, for the four

MBs of Fig. 5.1, at T = 0.5 = 1.1Tc. Due to the slow dynamics at this temperature,

the computation of pback was rather expensive. Nevertheless, the statistics should

be sufficient for a reasonable estimate of the apparent activation energy. To this

end, we express Eapp(i) of MB i in terms of the contributions Ei,α,

d

dβ
ln 〈τi〉 ≈ 〈τi〉

∑
α

Ei,αγi,α =
∑

α

pi,αEi,α ≡ Eest

app(i), (5.16)
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where Eqs. 5.9 and 5.15 have been used. Thus, the barriers Ei,α are weighted by the

probabilities pi,α = γi,α/
∑

α γi,α that the escape happens via pathway α. Note that

the Ei,α(k) correspond to the pathways that were chosen by the system, i.e. they are

already weighted correctly by pi,α(k), compare Eq. 5.16. Therefore, Eest
app(i) is just

the average of the Ei,α(k). The values of Eapp(i) and Eest
app(i), given in Fig. 5.10, are

in good agreement. Also shown in Fig. 5.10 is the distribution of first barriers, E01,

belonging to the step ξ0 → ξ1. Evidently, the neglect of the multi-minima nature

of escapes leads to a considerable underestimation of apparent activation energies.

We now continue the discussion of the temperature dependence of barriers

Ei,α(T ). At the example of MB 1 from Fig. 5.10, we have carried out the above

program for two other temperatures, T = 0.6 and 0.8. The obtained distributions of

barriers, P (Ei,α), are shown in Fig. 5.11. We find that the estimates for the appar-

ent activation energy (Eest
app(1; T =0.6) = 6.9± 0.5 and Eest

app(1; T =0.8) = 6.8± 0.5)

remain in good agreement with Eapp(1) = 6.7 ± 0.3 from section 5.1. The distri-

butions of barriers, however, grow narrower with decreasing temperature. Single,

high barriers, contributing to the right wing of the distribution, become inaccessible
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the contributions of transition states, we naturally find smaller barriers, as shown by the
histogram of εm − εMB (light line). The barriers E01 from only the first jumps are given
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at low T , i.e., the relative weights pi,α of the corresponding escapes become small.

This suppression of high barriers at low T is a trivial effect.

More interesting is the vanishing of small barriers upon cooling, i.e., of the

barriers E < 5 in the figure. Naively, one would expect these to dominate the escape

rate at low T . However, due to the stronger backward correlations (increased pback),

jumps over these barriers eventually do not suffice anymore to escape. As described

above, the respective escape paths, ξ0 → ... → ξm(T ), grow longer, and the barriers

change to a different, mostly larger value.

Average over Metabasins. During our analysis of the MB lifetimes in sec-

tion 5.1 the apparent activation energies Eapp(εMB) emerged as useful quantities.

Although the above results already indicate that barrier hopping is the relevant

motional mechanism, a clear-cut verification requires the comparison with the av-

erage barrier the system has to cross when leaving a MB of energy εMB.

For this purpose we now carry out a similar program as before, with many MBs
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visited during an ordinary MD run. We concentrate on MBs with lifetimes of more

than 105 MD steps (179 MBs) at T = 0.5. When such a MB is left, we locate

the transitions by interval bisection and obtain the corresponding TSs by the ridge

method. Then, we calculate pback and identify the barrier Ek ≡ Ei(k),α(k) according

to Eq. 5.15. The histogram of barriers is shown as the bold line in Fig. 5.12. For

comparison, we also show the barriers minus the contribution of the TSs, E(m−1)m.

Ignoring multi-minima correlations, we further show the histogram of first barriers

E01 of escapes. Evidently, the neglect of TSs or of backward correlations leads to

much smaller barriers.

From the above barriers, we will now calculate estimates of apparent activation

energies. When the average over lifetimes of different MBs is considered, each MB

i acquires a weight ϕi corresponding to its probability of occurrence,

〈τ〉 =
∑

i

ϕi 〈τi〉 .

At fixed εMB, the analog to Eq. 5.16 can then be derived

d

dβ
ln 〈τ(εMB; T )〉 ≈

∑
i

〈τi〉ϕi

〈τ(εMB; T )〉
∑

α

pi,αEi,α, (5.17)

where summation goes over MBs of energy εMB. As in Eq. 5.16, the barriers in

Eq. 5.17 are weighted according to their probability of occurrence, but, additionally,

with the respective MB lifetimes.

In Eq. 5.17 we have neglected terms stemming from the variation of the ϕi’s with

temperature. This is justified, since the ϕi’s belong to the same εMB. Their relative

weights will only vary if these MBs differ considerably in their barrier heights. As

already stated above, however, MBs of the same energy seem to be fairly uniform

regarding this property. For the finite sample of MBs visited during an MD run,

Eq. 5.17 then takes the form

Eest

app(εMB) =

∑
τkEk∑
τk

, (5.18)

where summation goes over MBs of energy εMB. Again, the correct weighting is

implicit here. This expression converges to the right-hand side of Eq. 5.17 in the

limit of infinitely long sampling. In Fig. 5.13 we show the values of Eest
app(εMB),

determined in this way. They perfectly agree with the apparent activation energies,

derived from the analysis of relaxation times at different temperatures. Thus, we

have a clear-cut proof that the apparent activation energies Eapp(εMB) are indeed

related to barriers on the PEL and thus reflect activated dynamics significantly

above Tc. This again demonstrates that we not only deal with the right order of

barrier sizes, but we also quantitatively link PEL topography to dynamics.
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Figure 5.13: Eapp(εMB) (Fig. 5.2) vs. estimated Eest
app(εMB) from PEL barriers. Considering

only the first jumps of escapes, we find a much smaller estimate (E1st
app(εMB)). Data stem

from a regular MD run at T = 0.5, where MBs of lifetime greater than 105 MD steps
were analyzed (179 MBs, see Fig. 5.12).

For comparison, we have included the apparent activation energy which results if

only the first transitions of escapes, ξ0 → ξ1, are considered (E01 = V (ζ01)−ε0). One

ends up with much too small apparent activation energies. Again, multi-minima

correlations turn out to be crucial for the characterization of MB depths.

In principle, the results of Fig. 5.13 may slightly change if all MBs rather than

those with lifetimes larger 105 MD steps were considered. However, our analysis

has clearly revealed (see, e.g., Fig. 5.1) that the depths of MBs of similar εMB’s only

mildly vary. Thus, inclusion of MBs with smaller values of τ would not significantly

change the apparent activation energies Eest
app(εMB).

Finally, we show that these results, in conjunction with p(εMB; T ), largely explain

the behavior of the diffusion coefficient D(T ). This is a conceptually important

step, since we link D(T ) to purely structural and thermodynamical quantities, see

Eq. 5.5. The key is the mean lifetime 〈τ(εMB; T )〉 of MBs at energy εMB, which is

parametrized by τ0(εMB) and Eapp(εMB) (Eq. 5.8). The former, τ0(εMB), however,

has not been deduced from PEL properties. Its variation with MB energy is not
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Figure 5.14: Comparison of the inverse diffusion coefficient, 1/D(T ), with the prediction
1/Dest(T ) from Eq. 5.19, τ0 = 200.

strong (Fig. 5.2(c)), so we can hope that setting it to a constant will be a good

approximation. Thus, Eq. 5.4 becomes

D(T ) ≈ a2

6Nτ0

∫
dεMBp(εMB; T )e−βEest

app(εMB) ≡ Dest(T ). (5.19)

The estimated diffusion coefficient derived from this expression is shown in Fig. 5.14.

The agreement of D(T ) with our estimate is satisfactory below T = 1. The deviation

at T = 2 is due to the depart of 〈τ(εMB; T )〉 from Arrhenius behavior for T > 1, see

Fig. 5.2(a).

5.4 Barrier Crossing.

When making use of Eq. 5.11, we presumed that the barriers V (ζab) − V (ξa) in

fact govern the temperature dependence of rates. The excellent agreement between

Eapp(εMB), determined from dynamics, and the Eest
app(εMB), from the analysis of the

PEL, strongly indicates that this presumption is indeed true. We will show here in

a very detailed way that at T = 0.5 = 1.1Tc, escapes from stable MBs are perfectly
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activated. More precisely, two conditions are fulfilled, (i) the potential barriers are

much larger than kBT , (ii) rates follow from the one-dimensional energy profile of

the RP plus corrections from perpendicular curvatures.

We will check these conditions explicitly here by an analysis of escape dynamics

out of MBs. We made the observation that during every escape from a stable MB,

at least one single barrier larger than 6kBT must be surmounted. Moreover, this

larger jump is mostly undertaken from one of the lowest minima of the MB, compare

Fig. 5.7. From the repeated escape runs of section 5.1, we selected the most frequent

ten transitions of that kind. From the respective TSs, ζl, we computed the RPs,

denoted ζl(s), l = 1...10. We then investigated the motion within the MBs over a

long period of the simulation where no escape had happened (107 MD steps in each

MB). The goal was to observe how the system tries to climb the different RPs. To

this end, we projected the instantaneous configuration x(t) onto each of the RPs,

according to

sl(t) ≡
{

s′ : ||x(t)− ζl(s
′)|| = min

s
||x(t)− ζl(s)||

}
,

which means the point on the RP next to x(t). Due to the long residences in the

MBs, motion therein is largely equilibrated. Hence, if the potential energy profiles

Vl(sl) = V (ζl(sl)) along the reaction paths are of importance for the transition

rates, we expect that the populations pl(sl) of the RPs follow from Boltzmann’s

law3

pl(sl) ∝ exp {−βVl(sl)}Y ⊥
l (sl) ≡ exp {−βFl(sl)} . (5.20)

The vibrations perpendicular to path l are accounted for by the harmonic partition

function

Y ⊥
l (sl) =

∫
dy exp

{
−β

2

∑
λνy

2
ν

}
δ(y · t̂(sl)),

where the origin y = 0 corresponds to the point ζl(sl), λν are the eigenvalues of the

Hessian matrix, H(sl), yν the components of y along the eigenvectors, and t̂(sl) is

the tangent to the reaction path.

The upper inset of Fig. 5.15 shows an example of pl(sl) and Fl(sl)/kBT . The

population of the reaction path follows nicely the prediction from its energy pro-

file. For RPs with complicated shapes, this correspondence can be disturbed. The

worst agreement of the considered RPs is shown in the second inset. Still, a clear

correlation of RP population with energy is present. We compiled the results for

all 10 RPs in Fig. 5.15 as a parametric plot of − ln pl vs. Fl/kBT . Curves of slope

3Please do not confuse the free energy Fl(sl) defined here with the force vector F (x).
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Figure 5.15: Parametric plot showing the correspondence, Eq. 5.20, of −∆pl(sl) =
− ln pl(sl)+const. to the free energy profile ∆Fl(sl)/kBT = Fl(sl)/kBT +const., l = 1...10,
T = 0.5, BMLJ65. All curves were shifted to start in the origin. Insets: comparison of
the free energy profiles of two reaction paths with the population along the path.

one would result from a perfect equivalence of pl to Fl/kBT , Eq. 5.20. Here, we find

an average slope of 0.92. Since transition rates are proportional to the population

of TSs, the implications of these results are obvious: MB jump rates follow from

energy barriers. We finally note that the vibrational terms ln Y ⊥
l (sl) are minor

corrections to βV (sl).

5.5 Where is the PEL ground?

It is an interesting question how far down to low energies we can find amorphous

minima. From the gaussian density G(ε), Eq. 3.10, we conclude that practically no

minimum4 should be present below εmin, given by5 G(εmin) = 1. After Eq. 3.10, this

4In intervals of width dε = 1 below εmin, one finds less than one minimum, which is negligible.
5more correctly, G(εmin) = ε−1

AA
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cutoff is6

εmin = ε0 − σ
√

2αN − ln 2πσ2,

which in the BMLJ65 amounts to εmin ≈ −306. From the low-temperature p(ε; T ) of

Fig. 3.2, and its mean and variance in Fig. 3.7, a lower PEL cutoff at εmin = −302 is

indicated. However, we will show here that this value of εmin should not be inferred

from the data presented in chapter 3, for the following reason. The fact that no

minima are found below some εmin does not necessarily mean that they do not exist.

They could also be extremely rare but, when encountered, contribute strongly to

p(ε; T ), due to their long lifetimes. This suggests that longer simulation runs could

produce still lower minima and that the value of εmin = −302 inferred in chapter 3

could be caused by an insufficient exploration of the PEL. After Fig. 3.2, this would

affect the simulations at T < 0.5, where the cutoff becomes visible. Moreover, one

should ask to what degree other quantities like D(T ) or 〈τ(T )〉 would be affected by

missing the very deepest MBs which contribute the largest waiting times. We shall

see in this section that such questions can be answered by the PEL parametrization

that we have obtained so far.

As p(εMB; T ) and p(ε; T ) are nearly identical below 2Tc (section 5.1), we may also

use the gaussian parametrization of p(ε; T ) (chapter 3) in conjunction with Eq. 5.3

to compute an estimate of ϕ(εMB; T ),

ϕest(εMB; T ) ∝ p(ε = εMB; T )

〈τ(εMB; T )〉 , εMB > εmin. (5.21)

Here by p(ε = εMB; T ) we denote the population of single basins, evaluated at εMB.

From Fig. 5.16, we see that this estimate is consistent with the ϕ(εMB; T ) stem-

ming directly from the metabasins found in the simulations (the ones also shown

in Fig. 5.3). This is not only a consistency check. The ϕest(εMB; T ) computed in

this way may also serve as an extrapolation of ϕ(εMB; T ) towards lower MB energies

that were not found within the simulations.

The case that the PEL is not sampled sufficiently within a given simulation

run corresponds to a non-equilibrium situation. Unfortunately, there is no general

means to test for equilibration. One rather has to check for all measured quan-

tities whether the respective time averages become stationary within the limited

simulation time. In this connection, one generally faces the problem that different

quantities are differently sensitive to the finite sampling of phase space. In our case,

e.g., good estimates of the average MB waiting times, 〈τ(T )〉, seem to require a long

equilibration. This is caused by the slowly-decaying WTDs, where the weight of

6more correctly, εmin = ε0 − σ
√

2αN − ln(2π(σ/εAA)2)



Where is the PEL ground? 105

T = 0 . 8

- 3 0 0 - 2 8 0

e M B
1 0

- 2 0

1 0
- 1 5

1 0
- 1 0

1 0
- 5

1 0
0

j ( e M B ; T )

T = 0 . 6

T = 0 . 5
T = 0 . 4 3 5T = 0 . 4

- 2 9 0- 3 1 0

( a . u . )

e m i n

Figure 5.16: Estimated distribution of MB energies, ϕest(εMB;T ) (solid lines), compared
with the distributions extracted directly from the simulations. For every temperature,
data from long simulation runs with equidistant minimization (+) and from shorter runs
with additional interval bisection (2) are shown. The long simulations encounter more of
the deepest MBs, while they miss the fast, high-energetic MBs. These are discovered only
in the shorter interval-bisection runs. Note that the solid-line curves of ϕest(εMB; T ) are no
gaussians, since Eapp(εMB) is not linear in εMB over the whole range of εMB; see Fig. 5.2(b).
The mean lifetimes of MBs below −302 have been calculated by extrapolating Eapp(εMB)
linearly down to lower energies and by keeping τ0(εMB) constant.

the rare but long waiting times is large. Other demanding quantities are the mean

of the MB energies, or their variance, since again, low MBs are rare but long-lived.

On the other hand, the distribution of MB energies encountered, ϕ(εMB; T ), is less

expensive, due to the lacking weighting with MB lifetimes; see Eq. 5.21. As shown

in Fig. 5.16, the deep, long-lived MBs have a small weight in ϕ(εMB; T ). Thus,

averages with respect to ϕ(εMB; T ) (e.g., 〈εMB〉ϕ(εMB;T ) or Varϕ(εMB; T )) quickly be-

come stationary. For simplicity, we therefore assume that right from the start of

a simulation run, equilibrium with respect to ϕ(εMB; T ) is already present, whereas

’aging’ of the τ -weighted quantities like 〈τ(T )〉 still has to be expected.
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from ϕest(εMB; T ), T = 0.435. For each M , 500 values of ε̄MB(M) contribute to the
corresponding histogram. Inset: Most probable and average value of ε̄MB(M).

Average metabasin energy. We first check the influence of a finite simulation

time on the average metabasin energy. We assume that the total simulation run

corresponds to M times drawing a MB energy from ϕ(εMB; T ), where M equals the

total time of the run divided by 〈τ(T )〉. For each εMB , using the parametrization of

〈τ(εMB; T )〉, we choose a random MB lifetime τ from the distribution γe−γτ , where

γ = 〈τ(εMB; T )〉−1. From this set of MBs, we calculate the estimated average MB

energy,

ε̄MB(M) =

∑
εMBτ∑

τ
,

where the sum goes over the M MBs. How well does ε̄MB(M) agree with the canon-

ical expectation value 〈εMB(T )〉, which would be found in the limit M →∞? If M

is too small, we expect that too few of the low MBs will be found, so that the true

average is generally overestimated by a finite sample of MBs. To check this, we

took 500 samples of M metabasins and each time calculated ε̄MB(M). In Fig. 5.17

the histograms of ε̄MB(M) are shown for different sample sizes M at T = 0.435.

Evidently, for finite M , it is most probable to find a too large estimate ε̄MB(M)
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Figure 5.18: Number of MBs below εMB = −302 found in the BMLJ65 at different tem-
peratures (◦), compared to their expected number, Mϕ< (2). The error bars have the
size

√
Mϕ<(1− ϕ<). Inset: ϕ<(T ) as defined in the text, vs. 1/T .

of 〈εMB(T )〉. With increasing M , naturally, the expected error decreases. The

T = 0.435 data presented in chapter 3 originated from a simulation run of approxi-

mately M = 17000 MBs. From the inset of Fig. 5.17, we find that such a simulation

will most probably yield an estimate of 〈εMB(T )〉 which is about one energy unit too

high. This is consistent with the value of 〈ε(T =0.435)〉 reported in Fig. 3.7(a). As

a further check, we performed a much longer simulation run at T = 0.435, corre-

sponding to M ≈ 105. As we saw in Fig. 3.7(a), this leads to a decreased estimate

for the mean IS energy. From the above discussion and Fig. 5.17 this result is very

plausible.

A similar analysis is possible for the variance of MB energies. The result is that

Varp(εMB; T ) is even more susceptible to finite simulation lengths than 〈εMB(T )〉,
which confirms the findings of Fig. 3.7(b).

Number of MBs found below εMB = −302. A further application of

ϕest(εMB; T ) is to predict the number of low-lying MBs that we should find in some

given simulation run. If the total length of the run is M 〈τ〉, we should on average
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For comparison, the long-time parts of the WTDs obtained directly from the simulations
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encounter Mϕ< of such MBs, where

ϕ<(T ) =

−302∫

−∞

dεMBϕest(εMB; T )

is the probability to find a MB below εMB = −302 when drawing once from

ϕest(εMB; T ). The inset of Fig. 5.18 shows ϕ<(T ) vs. 1/T . Again, we assumed

that the amorphous minima extend down to εmin = −306. The number of low MBs

that were indeed found is depicted in the main panel of the figure and is compared

to the prediction Mϕ<. Despite T = 0.555, we find an agreement of figures within

error bars.

Accuracy of the mean MB lifetime. In section 4.4, we have found that the

waiting-time distributions of MBs near Tc attain power-law tails with exponents of

about two. As noted there, the τ−2 behavior cannot persist in the limit τ → ∞,

due to the finite (but large) set of MBs in the PEL. At very large τ , the deepest

MB will dominate the WTD, leading to an exponential decay of ϕ(τ). However,



Where is the PEL ground? 109

1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6

1 / T

1 0 - 4

0 . 0 1

1

1 0 0

s i m u l a t i o n  t i m e

1 0
c o m p u t a t i o n a l  l i m i t

1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6

1 / T1 0

1 0 0

1 0 0 0

1 0 0 0 0 v a r  t  /  < t > 2

v a r  t  /  < t >
    x  1 0 - 9

Figure 5.20: Total simulation time (in LJ units) needed to reach a relative accuracy
of Var(τ)/ 〈τ〉2 < 1, versus 1/T . Inset: Relative variance of τ versus 1/T . Here the
computational limit is defined by a simulation length of one month on a single-processor
machine (DEC XP1000).

this crossover to exponential decay has not been observed in the simulations. Thus,

one might worry about the contribution of the missing, long τ ’s, which could signif-

icantly alter the value of 〈τ(T )〉. We shall now estimate the complete distribution

ϕest(τ ; T ) from ϕest(εMB; T ) and γ(εMB) = 〈τ(εMB; T )〉−1. The result is shown in

Fig. 5.19 for different temperatures. The deviations from the power-law towards a

faster decay start around log τ ≈ 8, just outside the time window covered by our

simulations. This indicates that much larger lifetimes than those already found in

the simulations do not contribute strongly to 〈τ(T )〉. We shall demonstrate this

more quantitatively in the following.

Since MB lifetimes are mutually uncorrelated (Fig. 4.10), we can obtain an

estimate τM of 〈τ(T )〉 by drawing M times from ϕest(τ ; T ). Since Var(τM) =

Var(τ)/(M − 1), we need of the order of M > Var(τ)/ 〈τ〉2 draws to obtain a

relative accuracy of Var(τM)/ 〈τ〉2 < 1. In the inset of Fig. 5.20, Var(τ)/ 〈τ〉2 is

shown versus 1/T . At T = 0.4, for instance, we need of the order of 105 MBs to

reach an acceptable accuracy of 〈τ〉. As shown in the main panel of Fig. 5.20, the
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total simulation time of 105 〈τ〉 at this temperature7 exceeds the limit of feasible

calculations. In contrast, T = 0.435, which is slightly below Tc, can still be tackled.

5.6 Discussion.

For repeated relaxation from the same MB, we calculated the mean relaxation

times 〈τi〉 in section 5.1 and found Arrhenius behavior in all cases (Fig. 5.1). The

simplest view is that the apparent activation energies Eapp(i) from 〈τi〉 correspond

to the depths of these MBs, i.e. to the typical heights of barriers that surround the

MBs. Indeed, this has been quantitatively confirmed for the four randomly selected,

low-lying MBs (see Fig. 5.10). A direct conclusion from the constancy of Eapp(i) is

that the system does not find smaller and ever smaller barriers8 upon decreasing T .

Although not of statistical relevance for the whole PEL, the results for the four

single MBs give us a detailed picture of the local PEL topography. An impor-

tant outcome is the variation of barrier heights with temperature, see Fig. 5.11.

We have already discussed that low barriers grow upon cooling, due to enhanced

multi-minima correlations (growing MBs), while unnecessarily high barriers are

suppressed. Both effects seem to cancel, so that the mean barrier, Eest
app(1), remains

constant, leading to Arrhenius behavior below T = 1. This cancellation may be for-

tunate, at least we can offer no explanation for it, here. As depicted in Fig. 5.11, the

distribution of barriers becomes more and more narrow when going from T = 0.8 to

T = 0.5, but the mean value, i.e. Eest
app(1), remains constant. The constant apparent

activation energy of MB 1 down to T = 0.45 implies that the mean value of the

distribution of barriers has not increased. We thus speculate that the growth of bar-

riers due to increasing multi-minima correlations has essentially come to an end at

T ≤ 0.5. Although the temperature dependence of the barrier distribution has only

been analyzed for a single MB, the constancy of apparent activation energies of the

other three MBs and the temperature independence of Eapp(εMB) support this idea.

Stated differently, the development of superstructures of minima seems to cease at

some temperature above Tg. Expressed by pback, this means that no minimum with

pback < 50% will surpass pback = 50% upon further cooling, thus being unable to join

the MB in question. Hence, an escape sequence found at one temperature T ≤ 0.5

has the same length at another one, i.e., from some temperature on, the minimum

ξm(T ) remains at pback < 50% for T → 0; we then say it terminates the sequence. It

7corresponding to approximately two years of computer time on a DEC XP1000
8In the infinite-dimensional random energy model (Derrida, 1981), for instance, the PEL topol-

ogy of the BMLJ65 is therefore insufficiently represented. There, every minimum has some neigh-
bors with arbitrarily close energy, which are favored by the Boltzmann factor at low temperatures.
This causes Eapp(i) → 0 for T → 0.
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is an interesting question under what circumstances such termination happens. A

trivial example would be a ’transit’ minimum with one backward and one forward

exit, where taking the forward leads to a minimum with pback ≈ 0. If the backward

barrier was higher than the forward one, pback would go to zero for T → 0. On the

other hand, the minima inside MBs generally feature growing pback’s upon cooling,

because the energetic gain of returning becomes more and more attractive. Ideally,

thus, for T → 0, we would have pback → 1 within MBs, and pback → 0 outside.

This provides a plausible, physical basis for computing barrier heights according to

Eq. 5.15, at least in the limit T → 0. Clearly, a more detailed investigation of the

temperature dependence of pback is necessary to back these conclusions.

Next, we analyzed the average relaxation times 〈τ(εMB; T )〉 from MBs at fixed

energy εMB. Again, they displayed Arrhenius behavior, with apparent activation

energy Eapp(εMB) (see Fig. 5.2), which compared well with the prediction from PEL

barriers (Fig. 5.13). In this connection, a recent paper (Grigera et al., 2002) is of

interest. The authors use the auxiliary potential Ṽ = 1
2
|F 2(x)| to compute general

stationary states (saddles) in a binary soft-sphere mixture (N = 70). From the

TSs among these saddles (index one, no shoulder), they perform steepest descents

to obtain the connected minima. They define barriers as the energy difference ∆U

from the TSs to the lower one of the connected minima ε = min(ε0, ε1). Plotting the

average ∆U(ε), they find a similar curve to our Eapp(εMB), Fig. 5.13, i.e., a strong

increase of barriers towards lower energies. In contrast, when carrying out the same

analysis for our BMLJ65, we found a nearly constant ∆U(ε), a curve close to the

first barriers of escapes E01 shown in Fig. 5.13. We would have expected this result,

since the multi-step nature of escapes in the BMLJ65 has clearly been demonstrated.

On the other hand, the contrasting result of Grigera et al. would indicate that the

soft-sphere PEL is not organized in multi-minima superstructures. However, as

noted in section 2.1, it is not clear to what extent the results of Grigera et al. are

blurred by the presence of crystalline configurations. A clarification of this point

would be very useful.

The results shown in Fig. 5.14, obtained via Eqs. 5.4 and 5.8, demonstrate the

use of the present chapter. From PEL barriers (Eest
app(εMB)) and thermodynamics

(p(εMB; T )) we are able to produce a reasonable estimate of dynamics. An overall

proportionality factor 1/τ0 remains as an adjustable parameter, since it could not

be predicted from PEL structure. As discussed in section 5.1, one may use p(ε; T )

for p(εMB; T ), since they are nearly identical. This is very convenient, because upon

constructing p(ε; T ), no information about dynamics is needed. The breakdown

of the Arrhenius form of 〈τ(εMB; T )〉, Eq. 5.8, above 2Tc limits our description

to the temperatures T ≤ 2Tc. In any event, we would not have dared to make
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quantitative statements on the basis of the hopping picture above the landscape-

influenced temperature regime.



Chapter 6

Finite-Size Effects

It is clear alone from the number of dimensions that the PEL of a large system

will be more complex than that of a small system of the same kind. However,

it is also clear that there should exist a critical system size from which on the

growth in complexity becomes trivial: To see this most clearly, imagine a large

system, say, a macroscopic sample of a supercooled liquid of one cubic centimeter.

Clearly, its energy landscape will be less complicated than that of one liter of the

same liquid. Due to negligible surface effects, though, the one liter will behave

like thousand independent, single cubic centimeters. Thus, the PEL of the larger

system factorizes into thousand PELs of much lower dimension, symbolically,

(1l) ≈ (1cm3)⊗ (1cm3)⊗ ...⊗ (1cm3).

In this chapter, we will study the influence of the system size on various static

and dynamic properties of the supercooled binary Lennard-Jones liquid. In this

way, we shall provide evidence that the results obtained in chapters 4 and 5 for a

system as small as the BMLJ65 are also relevant for the bulk behavior. Systems of

N = 130, 260, and 1000 particles will be investigated and compared to the BMLJ65.

Especially, we shall demonstrate that the BMLJ130 behaves essentially like two

non-interacting BMLJ65s,

(BMLJ130) ≈ (BMLJ65)⊗ (BMLJ65).

We will study static quantities in section 6.1 and turn to dynamic observables

in section 6.2. Further aspects of our results are discussed in section 6.3.

6.1 Static properties.

Pair-correlation function. A first test for finite-size effects is to compare the

distributions of interparticle distances gab(r) for different system sizes. Here, we
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Figure 6.1: Pair-correlation function, gAA(r), between A particles, for N = 1000, 130, and
65. Periodic images of the simulation box have been used to compute gAA(r) for distances
larger than half the box width, r > LN/2 (N = 130 and 65).

restrict ourselves to the pair-correlation function of the A-particles, gAA(r), see

Fig. 6.1. Within a simulation box of width LN , we may only calculate gab(r) for

r < LN/2. For larger values of r, periodic images of the simulation box must be

used. We find that gAA(r) of the BMLJ65 is identical to the one of the BMLJ1000

for r < L65/2. At larger distances, deviations from the bulk distribution can be

seen. This is plausible, since the simple duplication of the simulation box can surely

not reproduce all details of the long-ranged bulk correlations. Nevertheless, the

oscillations corresponding to higher-order neighbor shells in the BMLJ1000 are also

present in the duplicated BMLJ65. Similarly, the BMLJ130 matches the BMLJ1000

gAA(r) for r < L130/2, whereas deviations for larger r already seem to be negligibly

small.

Statistics of minima. We now turn to the question how the properties of the

PEL are affected by changes in system size. The most prominent characteristics

of a PEL minimum are its energy ε and vibrational partition function T (3N−3)/2Y ,

see chapter 3. Since the number of PEL minima is large, a statistical treatment is

needed. As a starting point, we analyze the mean energy of minima at temperature

T , 〈ε(T ; N)〉, and their variance σ2(T ; N). For systems composed of independent

subsystems, 〈ε(T ; N)/N〉 and σ2(T ; N)/N do not depend on system size. In
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Figure 6.2: (a) Mean minimum energy per particle vs. 1/T . Data of different system
sizes are given. (b) Variance of minimum energies, also on a per-particle base, again vs.
1/T . In (a) and (b), the straight lines are the predictions from a gaussian density of
minima. At 1/T = 0, minimizations were performed from configurations with random
particle positions.

Fig. 6.2, these quantities are shown for N = 65 and N = 130, plus some data points

of N = 260 and N = 1000. Concerning the mean energies, we find a good overall

agreement of different system sizes. The maximum difference is about 1% between

the BMLJ65 and the BMLJ260 at T = ∞. In the landscape-influenced regime

below T = 2Tc, data for different N show a perfect match. A similar conclusion can

be drawn from Fig. 6.2(b), where we see σ2(T )/N . A systematically larger value

is found for the BMLJ65 at high temperatures, as compared to the BMLJ130. For

T ≤ 2Tc, the difference is less than 20%, but more precise statements are prohibited

by the statistical uncertainty of σ2(T )/N below T = 0.6. Thus, small but significant

finite-size effects can be observed in this quantity.

We shortly comment on the deviations from the gaussian prediction at T <

0.435, as seen in Fig. 6.2(a) and below T = 0.5 in Fig. 6.2(b). As discussed in

detail in section 5.5, our simulations below T = 0.435 were too short to sample the

PEL thoroughly at the lowest energies. The result is an overestimation of 〈ε(T )〉.
Deviations in the variance of ε are even more pronounced if a simulation run is too

short. This whole issue is directly related to the interplay between 〈τ(εMB; T )〉 and

the distribution of MBs sampled at a given temperature, ϕ(εMB; T ). Particularly

important in this connection is the location of the lower PEL cutoff, εmin.

Total number of minima and configurational entropy. A further check for

the influence of system size on the energy landscape has already been can carried

out in chapter 3. There, we have calculated the total number of PEL minima,
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Figure 6.3: Ratios of diffusion coefficients DN (T ) for three system sizes versus 1/T .

N0(N) for N = 65 and N = 130 (Eq. 3.25). Within error bars, we have found

N0(130) = (N0(65))2, which is the trivial scaling behavior expected from combina-

tions of non-interacting subsystems. Moreover, we have reached the same conclusion

after calculating the configurational entropy per particle (Fig. 3.14): Sc(T ; N)/N

turns out to be identical for N = 65 and N = 130 within statistical error.

6.2 Dynamic properties.

We now discuss the influence of system size on dynamics. Here, more drastic effects

than in static quantities are to be expected: In fact, it is the most puzzling feature

of the glass transition itself that a dramatic slowdown of molecular motion cannot

be traced back to changes in static quantities easily.

Diffusion coefficients. We start with the long-time diffusion coefficient DN(T ),

defined by the Einstein relation. One finds that the DN(T ) for N = 65, 130, and

1000 differ only very little. In Fig. 6.3, we see D65/D1000 and D65/D130 as functions

of temperature. The difference between D65 and D1000 -we assume the latter to be

identical to the bulk diffusion coefficient- is twenty percent or less above Tc. Since

data for D1000 are not available below Tc, no such comparison is possible there.

The fact that the BMLJ65 is systematically slower than the bulk is in qualitative

agreement with results on soft spheres. In the latter systems, though, finite-size
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Figure 6.4: Distributions of MB lifetimes, p(log τ) at T = 0.5. As discussed in the text,
the distribution p130(log τ) should be reproducible from p65(log τ) by a special kind of
convolution, Eq. 6.1. The corresponding function p65⊗65(log τ) is given in the figure.

effects are much more pronounced (Kim and Yamamoto, 2000).

As reflected by D65/D130, the deviations are already present between N = 65

and N = 130. Below Tc, however, the BMLJ65 seems to become slightly faster than

the BMLJ130. Since error bars are large for the two low-temperature data points,

it is hard to judge whether this is a systematic effect that further increases upon

cooling. In any event, in the temperature range studied, the overall variation of

DN(T ) is more than three orders of magnitude. Regarding the small deviation of

the BMLJ65 relative to the BMLJ1000, finite-size effects in the long-time diffusion

should be judged small.

Waiting-time distributions. As a more refined comparison of dynamics be-

tween different system sizes, we consider the distributions of MB lifetimes (waiting

times), see chapter 4. At some arbitrary time of a simulation run, the probability to

be in a MB of length τ is p(τ) =
∑

i τiδ(τ−τi)/
∑

i τi, where the τi’s are the lifetimes

found in the run. (Since the MB lifetimes span more than six orders of magnitude,

our numerical computations will involve the distributions p(log τ) = p(τ)τ ln 10

rather than p(τ).) The temperature dependence of p(τ) will be suppressed for nota-

tional convenience. Analogously to Eq. 5.3, we have the relation p(τ) = τϕ(τ)/ 〈τ〉,
where 〈τ〉 =

∫
dτϕ(τ)τ .
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Guided by the idea that a BMLJ130 system is basically a duplication of two

independent BMLJ65s, we may ask whether the distribution p130(τ) of the larger

system can be reproduced by some sort of convolution of the distribution p65(τ) of

the smaller one. (For a combined system, MB lifetimes are defined as the periods

where neither of the subsystems relaxes.) Indeed, after a lengthy calculation (see

appendix E), one finds for the duplicated system,

p65⊗65(τ) = − d

dτ

∞∫

τ

dτ ′p65(τ
′)

∞∫

τ

dτ ′′p65(τ
′′)

(
1− τ 2

τ ′τ ′′

)
. (6.1)

This expression can be simplified and, upon using p(log τ), it reads

p65⊗65(log τ) = 2p65(log τ)I(τ) + 2τ Ĩ(τ)
(
Ĩ(τ)τ ln 10− p65(log τ)

)
, (6.2)

where

I(τ) =

∞∫

τ

dτ ′p(τ ′) and Ĩ(τ) =

∞∫

τ

dτ ′p(τ ′)/τ ′.

In Fig. 6.4, we show p65(log τ), together with p130(log τ) at the temperature T =

0.5. The distribution resulting from the duplication, p65⊗65(log τ), is also given in

the figure. It agrees reasonably with p130. Thus, on the refined level of waiting-

time distributions, we find further evidence that larger systems basically behave

as consisting of non-interacting BMLJ65-type building blocks. Essentially, p130 is

shifted to the left with respect to p65. This is no wonder, because time intervals

where both independent systems are inert, are generally shorter than the waiting

times of a single system. For instance, the mean waiting times obey the relation

〈τ〉65 = 2 〈τ〉65⊗65 ,

which can be shown with the help of Eq. 6.1, see appendix E.

Metabasin depths. As discussed above, metabasins turn out as the relevant

structures in the PEL for describing the slowdown of molecular motion in su-

percooled liquids. In chapter 5, we have reported on how the average lifetimes

〈τ |εMB; T 〉 of MBs depend on their energies εMB. At some fixed εMB, we have found

that 〈τ |εMB; T 〉 is Arrhenius-like below T ≈ 2Tc, leading to the parametrization

〈τ |εMB; T 〉 = τ0(εMB)eβEapp(εMB). (6.3)

The apparent activation energy Eapp(εMB) shows a strong dependence on εMB, as soon

as one drops below εMB/N ≈ −4.5. This can be seen in Fig. 6.5 where Eapp(εMB)

versus εMB/N is depicted both for N = 65 and N = 130.
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Figure 6.5: Apparent activation energies Eapp(εMB/N) derived from mean lifetimes at fixed
metabasin energy εMB (Eq. 6.3). Data for N = 65 and N = 130 are shown versus εMB/N .
The interpolation of the N = 65 data has been used to compute Eapp for the union of two
non-interacting BMLJ65, as described in the text. The result of this calculation is given
in the figure (solid line). Three further duplications yield Eapp for N = 1040 (dashed
line).

Here we concentrate on the dependence of Eapp(εMB) on system size. As can be

seen from Fig. 6.5, the activation energies Eapp(εMB/N) of N = 65 and N = 130 are

quite close. However, the N = 130 data for εMB/N < −4.5 show the tendency to

fall slightly below that of N = 65. We shall show that this trend can be understood

again in terms of a simple duplication of a BMLJ65. Hence, we are interested in

the combination of two independent BMLJ65 systems. Consider a MB of energy

εMB = ε(1)

MB + ε(2)

MB in the combined system. Then assume that its average lifetime can

be expressed through the lifetimes of both subsystems, i.e.

〈τ |ε(1)

MB, ε
(2)

MB〉−1
65⊗65 = 〈τ |ε(1)

MB〉−1
65 + 〈τ |ε(2)

MB〉−1
65 . (6.4)

Averaging
〈
τ |ε(1)

MB, ε
(2)

MB

〉
65⊗65

over the population of ε(1)

MB and ε(2)

MB at constant εMB then

yields 〈τ |εMB; T 〉 for the combined system1. The mean lifetimes produced in this

way are again Arrhenius-like below 2Tc (data not shown here). Thus, data can again

be fitted by a function of the form of Eq. 6.3, yielding Eapp(εMB) for the duplicated

1Here we assumed that p(εMB; T ) ≈ p(ε; T ), as demonstrated in section 5.1.
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BMLJ65. The result is shown in Fig. 6.5. Again, the artificial BMLJ65 duplication

reproduces the observations for the real system of N = 130 particles.

Finally, we note that further duplication of the BMLJ65 leads to an interesting

result: The activation energies from duplication nearly fall on top of each other for

all N ≥ 130 and εMB/N > −4.6. In Fig. 6.5, this is shown at the example of sixteen

non-interacting BMLJ65s (N = 1040).

6.3 Discussion.

For several static and dynamic observables, we have verified the factorization prop-

erty

BMLJ130 ≈ BMLJ65 ⊗ BMLJ65 .

The BMLJ130, in turn, seems to be close to a bulk system. Some of the results

presented here have already been obtained in earlier work for a very similar Lennard-

Jones type system (Büchner and Heuer, 1999). Again, the conclusion can be drawn

that binary Lennard-Jones systems of ca. 60 particles are a very good compromise

between the desired smallness needed for our PEL investigations and the required

absence of large finite-size related artifacts.

It is known from the study of cooperative length scales that they increase with

decreasing temperature (Donati et al., 1999; Bennemann et al., 1999; Doliwa and

Heuer, 2000). Thus, at some lower temperatures one might expect that 65 particles

are no longer enough and finite-size effects become visible. For a similar Lennard-

Jones system it has been shown that finite-size effects are reflected by the fact that

the bottom of the PEL is frequently probed (Büchner and Heuer, 1999). From what

we have learned so far, this should lead to an enhancement of diffusion, since deeper

MBs - and thus larger Eapp(εMB) - are not available. In the present case still longer

simulations at lower temperatures have to be performed to check whether also for

N = 65 the PEL bottom can be reached; see section 5.5. Then the interesting

question arises whether or not differences to the N = 130 system become visible.

In this connection, the simulation results of Kim and Yamamoto on the standard

binary soft sphere mixture are of interest (Kim and Yamamoto, 2000). Comparing

systems of N = 108 and 1000 particles above Tc, the authors find the small system

to be up to an order of magnitude slower than the large one. These findings suggest

a fundamental difference between the Lennard-Jones and the soft-sphere systems.

Evidently, soft spheres exhibit a larger length scale of cooperative motion than

do Lennard-Jones systems; see (Yamamoto and Onuki, 1998; Poole et al., 1998).

We have seen in Fig. 6.3 that at T > Tc, the BMLJ65 is slower than the bulk



Discussion. 121

system, which is the same trend as reported by Kim and Yamamoto for soft spheres.

However, this behavior changes below Tc since the diffusion of the BMLJ65 is slightly

enhanced with respect to the bulk.

The results presented in this chapter suggest that the essential physics of the

supercooled BMLJ is already contained in the system of N = 65 particles. For the

temperatures under investigation here, as already noted, structures of collectively

moving particles (’strings’) have been reported in large systems (Donati et al., 1998).

However, the size of these strings rarely exceeds ten particles, so that they may fit

into our BMLJ65 as well. Preliminary results2 show that the distributions of string

sizes in the BMLJ65 are very similar to the ones reported by Donati et al. However,

the length scale of correlated particle motion in large BMLJ systems (Poole et al.,

1998) during typical structural relaxation times is relatively large. At the lowest

temperatures under study (T = 0.451), Poole et al. find appreciable, pairwise

correlations of mobile particles over up to five next-neighbor distances3. One would

therefore think that a minimum simulation box of width ten is needed in order to

avoid finite-size related artifacts. Apparently, this is in contradiction to the results of

the present chapter where a box size of less than four has been used in the BMLJ65.

As a conjecture, a possible resolution would be that large dynamical length scales

at long observation times, consisting of a superposition of many single relaxation

events (say, many different MB escapes), are only concomitants of the molecular

slowing down. In other words, large-scale dynamical correlations are probably only

indirectly related to the temperature dependence of the diffusion coefficient.

2Michael Vogel, unpublished.
3Poole et al. also report that the decay constants of the corresponding correlation functions

are between 0.05 and 0.33, which seems to be wrong or -at least- misleading, when compared to
their other results.
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Chapter 7

The Molecular Slowing Down

The aim of the present chapter is to assemble the results obtained to far and to put

them into a perspective with the current understanding of supercooled liquids, as

can be found in the literature. In order to render the chapter self-contained, the

essential steps in the argumentation will be repeated. For the reader who skipped

the last chapters, thus, it might be convenient to find the main results in a nutshell.

The metabasin concept is at the heart of the present study. Following the pi-

oneering work by Stillinger and Weber, we calculate the time series of inherent

structure energies, ε(t), see Fig. 7.1(a). It is important to realize that the true

potential energy of the system at time t, V (t), lies far above ε(t): By the minimiza-

tion procedure, the vibrational degrees of freedom -which contribute of the order

of 3NkBT/2 to V (t)- are removed. For the temperature shown in Fig. 7.1, the

mean value of V (t) is located around 〈V 〉T ≈ −250. In Fig. 7.1(a) one immediately

recognizes that there are long time intervals during which the system jumps back

and forth between a finite number of minima - the system is caught in some region

of the PEL (compare Figs. 4.5 and 4.6). In real space this corresponds to a stable

structure. In chapter 4, this observation gave rise to the notion of metabasins (MBs)

as a way to group these strongly correlated inherent structures together. Then the

total simulation run may be regarded as a continuous sequence of MB visits with

individual waiting times τ . We denote the probability distribution of waiting times

by ϕ(τ ; T ) and their average by 〈τ(T )〉. Beyond ϕ(τ) we also introduce the distri-

bution p(τ), expressing the probability that at a given time the present MB has a

waiting time τ , i.e. p(τ ; T ) = τϕ(τ ; T )/ 〈τ(T )〉.
Interestingly, we observed in chapter 4,

D(T ) =
a2

6N 〈τ(T )〉 , for T < 2Tc (7.1)

with a temperature-independent effective jump length (a ≈ 1.0 in BMLJ units).

Thus, the temperature dependence of D(T ) is exclusively determined by the average

123
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Figure 7.1: (a) The sequence of inherent structure energies ε(t) for T = 1.1Tc in the
BMLJ65 system. One can see the large time intervals during which the system is jumping
between a finite number of inherent structures, thus giving rise to the notion of metabasins
(MBs). (b) Detailed analysis of the transitions in one MB. The reaction path for every
transition has been determined via an explicit transition-state search algorithm and the
distance s is measured along the curvilinear reaction coordinate. Successive transitions
are spliced together, leading to the potential energy profile V (s). The quantity pback

denotes the probability to end up in the lowest minimum of the MB after starting from
the corresponding minimum. All inherent structures with pback > 0.5 belong to the MB
by definition. The barrier E (indicated by the arrow) is given by the difference between
the ground state of the MB and the transition state which is necessary to reach the first
inherent structure with pback < 0.5.

waiting time in the MBs whereas all spatial aspects of diffusion are temperature

independent. Such a simple relation does not hold on the level of single inherent

structures (section 4.5). In order to understand the temperature dependence of the
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molecular slowing down on the basis of PEL structure, it is therefore sufficient to

relate the average MB waiting time to the properties of the PEL regions that are

explored at different temperatures.

At the example of the BMLJ65 model glass former, we show in section 7.1 that

two types of MBs exist: some allowing for quasi-free motion on the PEL (liquid-

like), the others acting as traps (solid-like). In this framework we obtain an intuitive

description of the glass transition by analyzing the temperature dependence of their

relative weights and their impact on dynamics. Especially, we identify a tempera-

ture -much above the glass transition- below which D(T ) is governed by activated

hopping events out of the before-mentioned traps. As discussed in section 7.3, this

is in contrast to the current understanding of the glass transition, where hopping

is deemed to set in at much lower temperatures. The quantitative relation of these

activated hops to the local PEL structure will be discussed before, in section 7.2.

7.1 Liquid-like and Solid-like Regions on the

PEL.

The distribution ϕ(τ ; T ) is shown in Fig. 7.2(a), where waiting times for different

temperature are reported over up to 8 orders of magnitude. By pure visual inspec-

tion, one identifies two different time regimes with a crossover at τ ∗ ≈ 5000, as

indicated by the vertical line. In terms of energetics one expects that the long τ ’s

arise from deep traps where the system is caught for long times. In the opposite

limit one may imagine that there are quite shallow MBs which do not strongly con-

fine the system so that it will mainly stay close to the high-dimensional boundary

of MBs. Thus, short waiting times should correspond to just scratching a MB. To

quantify this expectation we have calculated the angle α between the entry point

of a MB, the inherent structure of this MB with the lowest energy and the exit

point. The expectation value 〈cos α〉ϕ is shown in Fig. 7.2(b) as a function of τ .

We see that short visits to MBs lead to small values of α, meaning that the system

indeed merely scratches these MBs. For τ > τ ∗, 〈cos α〉ϕ reaches a limiting value

of 0.2. Hence, the entry and exit points are largely uncorrelated which should be

the case after a long residence in a MB with many possible exits. The non-zero

value of 〈cos α〉ϕ ≈ 0.2 indicates that residual correlations between MB entry and

exit remain, also for long residences. The origin of those is not fully clear: After

section 4.2, the dynamics between MBs is not completely a random walk, so that

minor backward correlations are expected. On the other hand, an un-symmetric lo-

cation of the lowest MB minimum (which serves as the point of the angle α) within



126 The Molecular Slowing Down

< c o s  a ( t ) >

- 1 0

- 8

- 6

- 4

- 2

0

 t

l o g  j ( t ) + c o n s t .

0
1 0

2
1 0

4
1 0

6
1 0

81 0

s l o p e  - 1 / 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

T = 0 . 4 3 5
T = 0 . 5
T = 0 . 6

T = 0 . 8

T = 1 . 0

T = 0 . 4

1 0
0

1 0
2

1 0
4

1 0
6

1 0
8

t
a

M B+

x ( t )

M B

a
+ x ( t )

' s c r a t c h i n g '
 t h e  M B

e q u i l i b r a t i n g
w i t h i n  M B

( a )

( b )

Figure 7.2: (a) The distribution ϕ(τ ; T ) of waiting times. By visual inspection, one can
distinguish two different time regimes, indicated by the vertical line. (b) Average value
of 〈cosα〉, where α is the angle between the entry point, the lowest inherent structure
of the MB and the exit point. Again two time regimes with a temperature-independent
crossover time τ∗ ≈ 5000 can be identified.

the MB also leads to a non-zero 〈cos α〉ϕ, even if entry and exit are uncorrelated1.

Quantities related to 〈cos α〉ϕ, like the distance in configuration space between MB

entry and exit points as a function of τ , support the conclusion that the short MB

1This can be seen by a simple two-dimensional argument. Assume that the MB has the shape
of a circle and that entry and exit points lie at some random, uncorrelated positions on the circle.
If the lowest MB minimum is not at the center, but at some random position within the circle,
the average cosine of the angle between these three points will be non-zero, too (ca. 0.1).
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Figure 7.3: The temperature dependence of psol (the fraction of time spent in solid-like
configurations), ϕsol (the fraction of solid-like configurations encountered during the time
evolution), and pact (a measure for the contribution of activated processes to the diffusion
coefficient). In the lower part we depict schematic plots of the scenarios in the three
temperature regimes. The squares stand for the different MBs.

visits (τ < τ ∗) are completely different in nature from the long ones. Due to the

difference in stability, we will call the MBs with τ > τ ∗ solid-like, the other MBs

liquid-like. This notation has been borrowed from two-state models where these

two types of configurations have been postulated (Fischer et al., 2002).

In chapter 5, we quantitatively related the escape from solid-like structures to

barriers in the PEL (see also section 7.2). For the liquid-like regions, this is not

possible, since the corresponding MBs are too shallow, i.e. their depth is only of

the order of kBT .

The very different properties of solid-like and liquid-like structures indicate that
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the slowing down upon cooling may be rationalized in terms of an enhancement of

solid-like contributions. This can be quantified in two different ways. Firstly, one

may determine the number of solid-like vs. liquid-like configurations the system

encounters during its dynamics in configuration space. The fraction of solid-like

regions is given by ϕsol ≡
∫∞

τ∗ dτϕ(τ), where ϕsol < 0.5 implies that more liquid-

like than solid-like configurations are visited. Secondly, we can specify the fraction

of time spent in solid-like configurations. Using the distribution p(τ) this can be

expressed as psol ≡
∫∞

τ∗ dτ p(τ). Since

D−1(T ) ∝ 〈τ(T )〉 =

τ∗∫

0

dττϕ(τ ; T ) +

∞∫

τ∗

dττϕ(τ ; T ),

psol > 0.5 implies that the time scale of dynamics is dominated by the escape from

solid-like configurations. In Fig. 7.3 we show the temperature dependence of ϕsol

and psol. Three different temperature regimes can be distinguished (see the sketch

in Fig. 7.3): For T > 2Tc both quantities are smaller than 0.5. Thus, the system

behaves liquid-like. Interestingly, it is exactly the temperature regime for which the

inherent structures no longer influence the thermodynamic properties of the system.

Below 2Tc, psol is larger than 0.5. Thus, for T < 2Tc the temperature dependence

of D(T ) is dominated by the escape from solid-like configurations. Finally, below a

temperature close to Tc, also ϕsol exceeds 0.5, i.e., we have a trap-to-trap motion.

7.2 From PEL Structure to Diffusion.

It is possible to go one step further and to characterize the escape mechanism from

solid-like MBs in terms of the local PEL structure. This has been analysed in detail

in chapter 5, where we have found that the mean residence time in MBs of energy

εMB is given by

〈τ(εMB; T )〉 = τ0(εMB)eEapp(εMB)/kBT , for T < 2Tc. (7.2)

With regard to the complexity of MBs, the multitude of escape paths, and the

multi-step nature of either of these paths, it is quite surprising that such a simple

parameterization of 〈τ(εMB; T )〉 is possible and that even τ0(εMB) only weakly de-

pends upon εMB. As discussed at length in chapter 5, the apparent activation energy

Eapp(εMB) is a complex superposition of all barriers surrounding a MB. Since their

relative weights change with temperature, is seems to be fortunate that Eapp(εMB)

remains constant (see the discussion of Fig. 5.11 in section 5.3). At present, we

cannot give an explanation for the constancy of Eapp(εMB), but only take it as
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convenient enough for the parameterization of 〈τ(εMB; T )〉. The activation energy

Eapp(εMB) is shown in Fig. 7.4(a). The deeper the MB lies in the PEL, i.e. the lower

εMB, the higher the activation energy. In contrast, τ0(εMB) turns out to be basically

independent of εMB (see Fig. 5.2).

It is natural to check whether Eapp(εMB) indeed corresponds to the barrier heights

around MBs (see section 5.3). To this end, we have analysed the entry and exit

events of MBs in detail: For every individual transition between inherent structures

we determined the respective transition state. We have then computed the potential

energy profile, V (s), along the ideal reaction path over the transition state, as a

function of the curvilinear reaction coordinate s. Splicing these functions together,

we obtain a multi-barrier energy profile V (s) which gives a good impression of

the PEL structure underlying the dynamics, see Fig. 7.1(b). One clearly observes

the several back- and forth jumps in the MB, which cross only small barriers as

compared to kBT . One also notes that the entry and exit events are given by a

sequence of staircase-like steps rather than by a single transition. From these one

can identify the barrier E that has been surmounted when escaping the MB, see

Fig. 7.1(b). Averaging these barriers over all escapes one indeed recovers Eapp(εMB)

(see Fig. 5.13). Thus, relaxation dynamics, as expressed through Eq. 7.2, is indeed

stirred by the local barriers around MBs.

The consequences of these observations for the macroscopic dynamics have al-

ready been expressed in Fig. 5.14. Together with Eq. 7.1 we can estimate the

diffusion coefficient (denoted Dest(T ), Eq. 5.19) via

Dest(T ) =
a2

6Nτ0

∫
dεMBp(εMB, T )e−Eapp(εMB)/kBT ≡ D0 exp(−Eeff(T )/kBT ) (7.3)

where the integral is written as exp(−Eeff(T )/kBT ). Eeff(T ) can be interpreted as an

effective activation energy at temperature T . p(εMB, T ) denotes the probability to be

in a MB of energy εMB and is also plotted in Fig. 7.4(a). Eq. 7.3 expresses the average

jump rate out of MBs as an integral over εMB, using the specific information about

the average time scale to leave a MB with energy εMB. Note that the ingredients of

the constant D0, i.e. a and τ0, have been obtained from the different simulations

mentioned above. However, D0 cannot be inferred directly from the local PEL

structure. In the units of our simulation we have D0 ≈ 1.2 · 10−5. The validity

of Eq. 7.3 is checked in Fig. 7.4(b) by comparing Dest(T ) with the true diffusion

coefficient D(T ).

The r.h.s of Eq. 7.3 contains information about the thermodynamics, i.e. the

population of MBs as expressed by p(εMB, T ), and information about local bar-

riers via Eapp(εMB). Actually, it turns out that to a very good approximation

p(εMB, T ) ≈ p(ε, T ) (Fig. 5.4), corresponding to the distribution of inherent struc-



130 The Molecular Slowing Down

- 3 0 5 - 3 0 0 - 2 9 5 - 2 9 0 - 2 8 5 - 2 8 0
0

1

2

3

4

5

1 / T

D - 1 ( T )E ( e M B )

e M B

E e f f ( T = 0 . 5 )

T = 0 . 5
0 . 6

0 . 8

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5

1 0
5

1 0
6

1 0
7

1 0
8

1 0
9

D 0  =  a 2 / 6 N t 0  =  1 . 2  x  1 0 - 5

E e f f ( T = 0 . 6 )

E e f f ( T = 0 . 8 )

P E L  d e s c r i p t i o n

T c2 T c

D 0
- 1

D e s t ( T )
- 1

( a ) ( b )

Figure 7.4: (a) The barrier height Eapp(εMB) and the population of MBs p(εMB, T ) for
different temperatures. From these quantities, according to Eq. 7.1, we obtain an estimate
for the diffusion coefficient, Dest(T ) = D0 exp(−Eeff(T )/kBT ), with the effective barrier
height Eeff(T ). A comparison of the predicted with the true diffusion coefficient D(T )−1

(squares) is shown in (b).

tures, which has been studied in great detail. Thus it is possible for T < 2Tc to

predict the macroscopic dynamics from knowledge of the thermodynamics and the

local barriers. Furthermore, Eq. 7.3 implies that the activation energy which is

obtained from connecting (0, D = D0) and (1/T, D(T )) in an Arrhenius plot by a

straight line can indeed be interpreted as the typical barrier height the system ex-

periences at a given temperature. This non-trivial interpretation has just recently

been confirmed experimentally by hyper-quench experiments (Angell et al., 2002).

Crossover to activated dynamics. With Eq. 7.3 we can also analyze the ques-

tion in which temperature regime the diffusion coefficient is determined by activated

processes. Here we denote a process as activated if the activation energy is larger

than 5kBT . Using Eq. 7.3 we may write D(T ) = Dact(T ) + Drest(T ) where the

first term denotes the integral over all εMB for which Eapp(εMB) > 5kBT and the

second term the integral over the other MBs. The ratio pact = Dact(T )/D(T ) is

thus a measure for the relevance of activated processes. Its temperature depen-

dence is also shown in Fig. 7.3. The crossover temperature for which pact = 0.5 is
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close to 1.5Tc. Thus, already significantly above Tc, the temperature dependence of

the diffusion coefficient is dominated by activated processes. This is an additional

information to our earlier observation that already far above Tc the escapes from

solid-like configurations determine the mean MB lifetime.

To reduce a bit the reader’s confusion concerning the relation of the quanti-

ties psol and pact, we note again that psol is the relative weight in 〈τ〉 of all long

waiting times (τ > τ ∗). To pact, only the MBs with Eapp(εMB) > 5kBT , i.e. with

τ0(εMB) exp(βEapp(εMB)) > min (τ0(εMB)) e5 ≈ 5 × 103 = τ ∗ contribute. Thus, at

least, pact ≤ psol. At intermediate temperatures (T ≈ 1.5Tc), however, the weight

of MBs longer than τ ∗, but with Eapp < 5kBT is relatively large, so that pact is

significantly smaller than psol.

7.3 Relation to Existing Work.

Instantaneous-normal-mode studies. We now discuss the relation of our work

to the instantaneous normal mode approach (INM) which considers the number of

’diffusive modes’, fdiff, to be at the physical basis of diffusion (La Nave et al., 2000;

La Nave et al., 2001; La Nave et al., 2002b; Chowdhary and Keyes, 2002). From the

directions corresponding to negative eigenvalues of the Hessian H(x(t)) (unstable

directions), one filters out the ’diffusive’ directions. We do not discuss the procedure

for doing so here, but merely remark that it is by no means unique. Considering

the energy profile on the straight lines along the unstable directions, La Nave et al.

observed extremely small barriers, indicating completely ’entropic’ dynamics at the

considered temperatures (La Nave et al., 2001). This conclusion, though reached

for a model of supercooled water, is in contrast to our findings of the relevance

of energetic barriers. A possible key to this apparent contradiction is that fdiff is

directly related to the fraction of time spent in ’mobile’ regions of configuration

space. In contrast, we have concentrated on the durations of the stable, immobile

structures. As the consequence of longer and longer residences in deep MBs, the

mobile fraction becomes smaller and smaller. Thus, one observes a relation between

D(T ) and fdiff(T ), although it is the long trapping times which are the reason for

the slowing down of dynamics.

To be more quantitative, let us assume that the average number of free directions

is proportional to the fraction of time spent in the liquid regions of configuration

space, i.e. fdiff(T ) ∝ pliq(T ), where

pliq = 1− psol =

τ∗∫

0

dτ
τϕ(τ)

〈τ〉 =
ϕliq 〈τ〉liq
〈τ〉 .
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Figure 7.5: The fraction of time, pliq(T ), spent in MBs shorter than τ∗, parametrically
plotted against D(T ).

Here 〈τ〉
liq

denotes the average lifetime of liquid-like configurations and ϕliq = 1−ϕsol.

From Fig. 7.2(a) it is evident that 〈τ〉
liq

does not depend on temperature. Moreover,

if ϕliq > 0.5 (i.e. for T > Tc), the main temperature dependence of pliq stems from the

denominator, i.e. pliq ∝ 1/ 〈τ〉. Thus, one has fdiff(T ) ∝ pliq(T ) ∝ 1/ 〈τ(T )〉 ∝ D(T ).

We have explicitly checked the validity of this proportionality in Fig. 7.5. Thus,

a strong correlation between fdiff(T ) and D(T ), as found in the INM studies, is

expected in the BMLJ65 system. Nevertheless, it remains correct that the diffusion

coefficient is determined by the activated escape from the solid-like configurations

rather than by the search of barrier-free modes.

The whole argument may be rationalized by a very simple model. Picture a

random walk on a surface with traps which are of depth E. Despite the traps, the

surface is flat. Escapes from traps are assumed to be given by the Arrhenius law,

i.e. happen after a mean waiting time of τ0e
βE. On top of the surface, no activation

is needed to continue the walk, and we take the waiting times to be equal to the

constant τ0, there. If the surface is covered half by traps, the mean waiting time

during the walk is 〈τ(T )〉 = τ0(e
βE + 1)/2. Since the long-time diffusion coefficient

follows D ∝ 1/ 〈τ〉, we have D ∝ 1/(eβE + 1). The mobility on top of the surface

is high, which would correspond to the presence of many unstable directions in the

INM approach. For simplicity, we assume fdiff = 1 on top of the surface and zero in

the traps. Under these assumptions, we find on average, fdiff(T ) = 1/(eβE+1), which
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is equal to the population of the top of the surface. Thus, the relation D ∝ fdiff

arises, as in the INM analyses for supercooled liquids. It is clear from the model,

however, that this connection is rather indirect: At low temperature, D(T ) is small

due to the long trapping times, whereas fdiff(T ) is small since the population of

the surface is low, both of which are determined by the trap depth E. Hence, the

interrelation between D(T ) and fdiff(T ) as found in the instantaneous-normal-mode

approach is of the kind: ’autumn leaves fall because they change their color.’

We further note that the MB concept is in no way implemented in the INM

approach. Supercooled water, e.g., exhibits very pronounced MB correlations in

the time series of minima, even for a ’large’ system of 216 particles (Giovambattista

et al., 2002b). Generally, fragile glass formers are expected to have a ’rugged’ PEL,

i.e. exhibit extensive superstructures of minima (Stillinger, 1995). In view of this

insight, the success of INM analyses for the latter type of systems is quite surprising.

Higher-order stationary points (’saddles’). In the recent literature, much

attention has been paid to the generalization of the inherent-structure concept to

higher-order stationary points (Angelani et al., 2000a; Broderix et al., 2000). With

the help of the auxiliary potential of the squared force, Ṽ (x) = 1
2
|F (x)|2, one parti-

tions the configurational space into a new set of basins, corresponding to the local

minima of Ṽ (x). Since Ṽ (x) is never negative, all stationary points (i.e. configu-

rations with vanishing forces) are absolute minima of Ṽ (x). Thus, by minimizing

Ṽ (x) starting from equilibrium configurations, one can hope to find a representa-

tive set of stationary states, or ’saddles’, that are populated at a given temperature.

(Sometimes, these are fondly called italo saddles.) The number of negative eigen-

values of the Hessian matrix, H(x), evaluated in a saddle configuration is defined as

the saddle index n. Clearly, PEL minima correspond to n = 0 and transition states

to n = 1. Generally, the saddle index is interpreted as a measure for the stability

of the respective configuration: If n is large, the system has many possibilities to

descend from the saddle, so that this will be an unstable configuration. Moreover,

an equilibrium configuration which is located in the Ṽ -basin of a high-order saddle

is expected to be as unstable as the saddle itself. This, in turn, should mean that

the system is highly mobile in this region of configuration space. Thus, the study

of the statistics of stationary points on the PEL should teach us more about the

mobility of the system, which seems to be a promising advance2.

2Recently, it became clear that most of the Ṽ -minima reached from equilibrium configurations
are no stationary points, due to non-zero forces (Doye and Wales, 2002). Thus, most of them are
no global but only local minima of Ṽ (’false’ saddles). The desired partitioning of configuration
space into basins of saddles is therefore incomplete. Later on, some of the authors of the original
saddle investigations could show that their initial findings remain valid because ’false’ saddles,
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In the above-cited works, Angelani and coworkers calculated the mean saddle

index, n(T ) = 〈n(x)〉T , as a function of temperature for the BMLJ of N = 1000

particles. Interestingly, they found a linear relation of n(T ) with T covering a large

range of temperatures. Moreover, n(T ) was found to vanish exactly at Tc, i.e.

n(T ) ≈ A(T − Tc), for T > Tc, (7.4)

with some constant A, and n(T ) ≈ 0 below Tc. At T = 1.1Tc, for instance, an

average index of n(T ) ≈ 15 was reported. These results were then interpreted

as follows. Above Tc, the system has permanent access to high-order stationary

points, giving rise to many unstable directions in configuration space. Thus, for

diffusion to take place there is no need for traversing additional energy barriers by

thermally activated processes. The system rather wanders around until it finds one

of the unstable directions which then enables the relaxation to a neighboring part

of configuration space. Below Tc, where n(T ) ≈ 0, these unstable directions are not

available anymore, since the system now resides close to the PEL minima. Thus,

after Angelani et al., thermally activated processes are relevant for relaxation only

below Tc.

A priori, the numerical results of Angelani et al. do not contradict our findings.

As we have seen in Fig. 7.1(b), the MB depth E is much larger than the typical

barriers that are constantly crossed by the intra-MB dynamics. In time-averaged

quantities, however, the latter barriers are predominant. Thus, it is no wonder that

higher-order stationary points are constantly found above Tc. Since they merely

connect inherent structures within the same MB, though, they are irrelevant for

relaxation. Thus, it is the interpretation of Angelani et al. which goes too far, since

it ignores the existence of metabasins.

In the following, however, we give a criticism of the Ṽ -saddles, which is serious

in our opinion. In chapter 5, we demonstrated that the relaxation from MBs can

be described correctly by taking into account the transition states that govern the

single transitions along the multi-minima escape paths. These were located by the

ridge method, as described in section 5.2. The advantage of the ridge method is

that we definitely find the relevant barrier for a transition, i.e. a first order saddle

on the basin border next to the point where the border was crossed (see Fig. 5.6).

In contrast, by using the auxiliary potential Ṽ as described above, we encounter two

major drawbacks: First, as already said, one obtains higher-order saddles and, most

frequently, non-stationary points (’false’ saddles or shoulders). These configurations

are of no use to us because for the calculation of reaction rates via transition state

theory, we need ’true’ first-order saddles. Second, and more importantly, the Ṽ

despite the non-zero forces, have the same properties as the ’true’ saddles (Angelani et al., 2002).
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Figure 7.6: Comparison of transition states, obtained via the ridge method, with minima
of the auxiliary potential Ṽ . Starting points for saddle computations lay close to basin
borders. Main plot: histogram of Ṽ -saddle minus TS energies. Inset: histogram of indices
of Ṽ -saddles.

minimization locates saddles, even if they are not kinetically accessible. This is

because the expression F †(x)H(x)F (x) = (∂V (x))†∂Ṽ (x) is not positive. Thus,

the Ṽ -minimization can climb up to a saddle.

To shed more light on the second point and on the interrelation between TSs and

Ṽ -saddles, we have minimized Ṽ by steepest descent, starting only from configura-

tions x(t) near basin borders, i.e. we start from x(t) only if ξ(t) 6= ξ(t+1 MD step)

(like y0 in Fig. 5.6). In other words, we have calculated Ṽ -saddles exactly at transi-

tion times. If this yielded the correct TSs, our more time-consuming ridge method

would clearly be useless. The energy difference ∆ε = εṼ − εTS specifies the overesti-

mation of the true barrier by the Ṽ -saddle. It may also happen that the index of the

Ṽ -saddle is different from one. The distributions of ∆ε and the index are shown in

Fig. 7.6 (for T = 0.5). Obviously, the Ṽ -saddles considerably overestimate barriers

and the correct TSs are only found very rarely. Moreover, most of the Ṽ -saddles

have an index different from one, i.e. are no TSs at all. In turn, the energy of the

TS is never undersold by a Ṽ -saddle. In conclusion, Ṽ -saddles turn out to have the

undesired quality of being decorrelated from the relevant TSs, i.e., from the barriers
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that control relaxation (see section 5.43).

Population of Basin Borders. Since the preceeding paragraph may cast some

doubts on the significance of Ṽ -saddles, we now want to discuss an alternative

analysis of the way the population of minima versus unstable configurations evolves

upon decreasing temperature. More specifically, we determine the population of

basin borders,

pBB(T ) =
1

Z(T )

∫
dB

∫
dxe−βV (x)δ(x− B), (7.5)

where integration is over the non-crystalline part of configuration space, also in

the partition function Z(T ), and B runs over all basin borders of the PEL. This

expression is impractical in numerical simulation; one may rather ask if, for some

instantaneous configuration x, there is a basin border nearby. In this case, small

random displacements (length δ ∈ IR, direction ω ∈ IRNd, |ω| = 1) possibly lead

into another basin, i.e. ξ(x) 6= ξ(x + ωδ). This kind of PEL analysis has been

carried out very recently (Fabricius and Stariolo, 2002). One calculates

pBB(T ; δ) = 〈P (ξ(x) 6= ξ(x + ωδ))〉T,ω , (7.6)

which is the probability that random disturbances ωδ will cause crossings of basin

borders at temperature T . The brackets denote the canonical average plus the

average over the random directions ω. One obtains the behavior

pBB(T ; δ) → const× pBB(T )δ, δ → 0 (7.7)

(the constant is set to unity for convenience). The validity of Eq. 7.7 is demonstrated

in the left inset of Fig. 7.7, where pBB(T ; δ)/δ has been calculated as a function of

δ. We find that pBB(T ; δ)/δ is constant within statistical error below δ = 1.2. As

an orientation, the typical distance between neighboring minima is larger than 2.0,

whereas intra-MB neighbors on average are less than 1.0 apart.

The main part of Fig. 7.7 shows results for pBB(T ) in an Arrhenius plot, with

δ = 0.7. Over the whole temperature range considered, pBB(T ) is Arrhenius-like.

The apparent activation energy is ca. 1.8, which is small in comparison with the

typical values observed for MB lifetimes. One reason for this lies in the multi-step

3In view of the results in section 5.4, it is a little surprising that the TS location with the help
of the auxiliary potential Ṽ is that unsuccessful. Since the RP population suits well the harmonic
description of the RP, one expects that motion near the TS is quite harmonic, too. Minimizing
Ṽ in an harmonic potential directly yields the stationary state. Consequently, one should easily
find the TS when starting from a configuration at s ≈ 0. As shown here, this is not the case, so
at least minor anharmonicities must be present.
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on δ of pBB(T ), for T = 0.5 and T = 0.6. Right inset: pBB(T ) plotted linearly against T .

nature of MB escapes. Therefore, the temperature dependence becomes stronger

if we impose the constraint of a minimum distance between neighboring minima

(data not shown). In this way, we eliminate the fast intra-MB transitions, which

have small barriers.

In any event, no indication for an abrupt change of relaxation mechanism could

be observed in pBB(T ) when approaching and crossing4 Tc. Stated differently, the

data suggest that the increasing timescale separation upon cooling happens rather

smoothly, with no distinctly new physics emerging near Tc. This is in qualitative

agreement with the work of Schrøder et al., who use the incoherent scattering

functions from hopping dynamics ξ(t) to deal with the separation of intra- and inter-

basin dynamics (Schrøder et al., 2000). There, the short-time decay of scattering

functions (quantified by the so-called non-ergodicity parameter) is nothing else than

a measure of the population of basin borders. Thus, there is no qualitative change

around Tc.

4In a different graphical representation (see right inset) one might wrongly conclude that pBB(T )
disappears at some finite temperature.
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Hopping and mode-coupling theory (MCT). From the fact that we could

quantitatively relate MB lifetimes to PEL barriers below 2Tc and the results from

section 5.4, we see that there exist activated barrier crossing events significantly

above Tc. As shown in chapter 4, these escape processes from stable MBs determine

the temperature dependence of the diffusion coefficient also above Tc. Thus, the

general statement that hopping events are not relevant there (see, e.g. (Franosch

and Götze, 1999)) is not correct for the BMLJ system. This implies that the ideal

MCT can be applied to systems for which activated processes determine the time-

scale of relaxation. Thus it seems that the theoretical description of the cage effect

in terms of structural quantities, as done in MCT, works independently of whether

the cage effect is purely entropic (like in hard-sphere systems) or is to a large degree

based on barrier-crossing events.

7.4 Conclusion.

We conclude the thesis with a summary of the essential results and an outlook to

possible further research.

Summary. The main purpose of this thesis was to shed more light on the molec-

ular slowing down upon supercooling and glass formation. Within the energy land-

scape description, we have demonstrated that macroscopic dynamic quantities like

the diffusion coefficient, D(T ), can be inferred from a local PEL analysis at temper-

atures below 2Tc. The essential step has been to consider whole superstructures of

many PEL minima (metabasins), rather than single minima. Metabasins are remi-

niscent of protein folding funnels (Bryngelson et al., 1995) or related structures in

the energy landscape of small clusters (Ball et al., 1996). Their depths, as given by

the surrounding energy barriers, directly determine the system’s average residence

time therein. As we have shown, the temperature dependence of the diffusion coeffi-

cient, D(T ), is dominated by the long residences in stable (solid-like) configurations

for T < 2Tc. This might have come as a surprise, since, after the common view,

the highly mobile particles are deemed to determine the temperature dependence of

D(T ). The relation of D(T ) to the fraction of liquid-like configurations, as found in

related computational studies, does not contradict our results. However, as we have

shown, the reduction of liquid-like configurations upon cooling is merely a concomi-

tant of the long trapping times in low-energy metabasins. Hence, the escape from

long-lived MBs is the relevant process for a quantitative description of diffusion.

A second, unexpected observation was the dominance of activated processes

much above Tc. On the one hand, it is clear that an abrupt cease of ’entropy-driven’
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relaxation in favor of activated barrier crossing at Tc would be hard to justify.

Hence, our finding that hopping sets in smoothly seems to be very plausible. On

the other hand, the extent to which hopping is relevant -to our knowledge- has never

been quantified before. Our finding that thermal activation becomes dominant upon

cooling already below 1.5Tc might come as a surprise to some since after the general

view, hopping sets in at Tc. We thus feel that the present study might remove some

misunderstandings in this connection.

An essential point in this study was to consider small systems. In this way, we

were able to reduce the energy-landscape complexity to the minimum needed for

a realistic description of the bulk behavior. As we have argued, the existence of

many quasi-independent subsystems in a large sample renders the corresponding

PEL unnecessarily complicated. The main physics is already contained in a single

subsystem. A quantitative check of this hypothesis has been presented in chap-

ter 6. We have also demonstrated that, in principle, the same analyses are possible

in larger systems. In much larger systems, however, besides the washed-out PEL

information, one runs into serious technical problems arising from the many inde-

pendent subsystems: Due to the much higher frequency of IS transitions (Eq. E.7)

one has to reduce the elementary integration time step in order to obtain the same

resolution of transitions as in a small system. In addition to the larger computa-

tional cost of larger systems, this renders such studies rather expensive. As we have

discussed at length, though, no additional insights should be expected from much

larger systems.

Outlook. From a purist’s perspective, it would be more satisfactory to prove

the ’factorization’ of the PEL into that of small subsystems by starting from a

macroscopic sample. However, this kind of study would require a much better

understanding of PEL structure than we were able to gain here. For instance, one

immediately encounters the serious problem of how to define the subsystems and

on what time scale. A related aspect is the generalization of the MB concept to

larger systems. The back-and-forth motion between minima, a characteristic of

our MBs, will be strongly reduced in larger systems due to independently relaxing

subsystems. Although one subsystem might remain immobile, this will be concealed

by simultaneous relaxations in other regions of the system. Thus, clearly, the MBs

of large systems should be defined locally in space. We feel that such investigations

would constitute a formidable task.

We would now like to discuss a further possible extension of our work, which is

related to the previous statements. The MB definition is devised to eliminate the

information on trivial back-and-forth jumps within MBs. This strongly correlated
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type of motion is reminiscent of the particles’ rattling in the cages formed by their

neighbors. Similarly, escaping from MBs seems to be equivalent to the breaking

of cages and thus to structural relaxation. Of course, this speculation can only

be verified by unveiling the real-space aspects of MB relaxation. A more general

question along this line would be whether some of the collective phenomena found

in supercooled liquids, e.g., string-like motion (Donati et al., 1998), can be traced

back to energy-landscape features.

Another promising line of further research would be to strive for an understand-

ing of the Adam-Gibbs relation, Eq. 1.3, from PEL principles. One might feel that

this is not too far in reach since all ingredients of the relation can be determined in

the PEL framework: the configurational entropy on the one side (see section 3.3),

on the other side the barriers, Eapp(εMB), and the population of MBs (see chapter 5).

Since the Adam-Gibbs relation is valid for the BMLJ, these quantities have to be

related in a specific way. However, what we need to know is why this is so. Of

course, this requires an understanding of sc(T ) and Eapp(εMB) from more fundamen-

tal principles. For doing so, one will probably need to establish a link from the

molecular architecture (i.e. interparticle potentials) to the PEL features specified

above. In our opinion, this is one of the great challenges in this field of research.
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Notation

A.1 Statistics.

The symbol p(x, y, z, ...; C) is generally used for (probability) distributions of

variables x, y, z, ... under some condition C. An example is the probability

p(ε, Svib; T, N) of finding a system of size N in basins of minima with energy ε

and vibrational entropy Svib at temperature T . When there is no danger of con-

fusion, parameters are omitted for convenience. Integrating out some variables

p(x, y, z, ...; C) leads to reduced distributions, e.g.

p(x) =

∫
dydz...p(x, y, z, ...).

Averages of observables A(x, y, z...) over distributions p(x, y, z, ...) are denoted by

〈A〉p =

∫
dxdydz...A(x, y, z, ...)p(x, y, z, ...),

restricted averages by

〈A|y〉p =

∫
dxdz...A(x, y, z, ...)p(x, y, z, ...)∫

dxdz...p(x, y, z, ...)
=

∫
dxdz...A(x, y, z, ...)p(x, y, z, ...)

p(x, z, ...)
.

The indexp is left out if it is convenient and if there is no danger of confusion.

Thermal averages in the canonical ensemble (β = 1/kBT ) result from the distri-

bution

p(x; T ) =
e−βV (x)

Z(T )
,
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with x ∈ Ωconf and the partition function Z(T ) =
∫

dx exp(−βV (x)). The equiva-

lence of configurational and time averages is assumed, i.e.

〈A(x)〉T =
1

Z(T )

∫
dxA(x)e−βV (x) = lim

t→∞
1

t

t∫

0

dτA(x(τ)),

where x(τ) is the system trajectory according to the equations of motion. This

is a consequence of the ergodicity hypothesis, which tells us that in the limit of

long observation times t, all regions of configuration space will be visited with

frequency ∝ exp(−βV (x)). In this limit, the population of configuration space

approaches the equilibrium distribution implying that the choice of the initial con-

dition x(0) is of no importance.

A.2 Symbols and Acronyms.

Acronyms.

BMLJ binary mixture of Lennard-Jones particles

BMLJ65 BMLJ with N = 65

CRR cooperatively rearranging region

IBM interval-bisection method

IS inherent structure = local PEL minimum

MB metabasin

MCT mode-coupling theory

PEL potential energy landscape

SD steepest descent

WTD waiting-time distribution

Important symbols.

N number of particles in the system

xi position of particle i

x = {x1, ..., xN} high-dimensional configuration vector

ξ high-dimensional configuration of an IS

ε energy of an IS

εMB MB energy, i.e., the lowest IS within a MB

V (x) total potential energy

F (x) high-dimensional force vector

H(x) Hesse matrix of V (x)

λν eigenvalues of H(x)

log log10
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System Specifications

B.1 Calculation of the Hesse Matrix.

For reasons of completeness, we give some further details on the calculations in-

volving the interparticle potential, including the explicit computation of the Hesse

matrix. The total potential energy is

V =
1

2

∑

i6=j

Vij(rij).

The total force on particle i is

Fα
i = −∂α

i V =
∑

j 6=i

V ′
ij(rij)

xα
ij

rij

,

where by α, β = 1, 2, 3 we denote the components of vectors in real space and

xα
ij = xα

j − xα
i . The Hessian is defined by

Hαβ
ik = −∂β

k Fα
i .

In the calculation of Hαβ
ik , we differentiate between the two cases k 6= i and k = i.

In the case k 6= i we have

−Hαβ
ik = ∂β

k Fα
i =

∑

j 6=i

∂β
k

(
V ′

ij(rij)
xα

ij

rij

)
= ∂β

k

(
V ′

ik(rik)
xα

ik

rik

)

= V ′′
ik(rik)

xβ
ik

rik

xα
ik

rik

+ V ′
ik(rik)

(
δαβ

rik

+ xα
ik

−1

r2
ik

xβ
ik

rik

)

= V ′′
ik(rik)(x̂ik ⊗ x̂ik)αβ +

V ′
ik(rik)

rik

(δαβ − (x̂ik ⊗ x̂ik)αβ),

which means

Hαβ
ij = −δαβ

V ′
ij(rij)

rij

+ (x̂ij ⊗ x̂ij)αβ

[
V ′

ij(rij)

rij

− V ′′
ij (rij)

]
, (B.1)
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and in the case k = i,

−Hαβ
ii = ∂β

i Fα
i =

∑

j 6=i

∂β
i

(
V ′

ij(rij)
xα

ij

rij

)
= −

∑

j 6=i

∂β
j

(
V ′

ij(rij)
xα

ij

rij

)
=

∑

j 6=i

Hαβ
ij .

(B.2)

Thus, the Hessian has the helpful properties,

Hαβ
ij = Hαβ

ji = Hβα
ij , Hαβ

ii = −
∑

j 6=i

Hαβ
ij .

B.2 Details of the BMLJ Potential.

The BMLJ potential is (compare Eqs. B.3, 2.3 and 2.4)

V (r) =4ε

[(σ

r

)12

−
(σ

r

)6
]
− 4ε

[(
σ

rc

)12

−
(

σ

rc

)6
]

+
12ε

rc

[
4

(
σ

rc

)12

− 2

(
σ

rc

)6
]

(r − rc),

(B.3)

where

V LJ ′(r) = −12ε

r

[
4
(σ

r

)12

− 2
(σ

r

)6
]

has been used. For later use, we calculate

V ′(r) = −12ε

r

[
4
(σ

r

)12

− 2
(σ

r

)6
]

+
12ε

rc

[
4

(
σ

rc

)12

− 2

(
σ

rc

)6
]

V ′′(r) =
12ε

r2

[
13 · 4

(σ

r

)12

− 7 · 2
(σ

r

)6
]

.

(B.4)

Depending on particle species, σ and ε have to replaced by σab and εab, a, b ∈ {A, B}.
We drop the indices of species here for convenience. By F ij(r), we define the force

acting on particle i resulting from the interaction with particle j. It is given by

F ij(r) = x̂ijV
′
ij(r), xij = xj − xi,

where the hat produces unit vectors. Explicitly, for the BMLJ with linear correction

term at the cutoff, we have

F ij(rij) = −12xij

(
ε

[
4
σ12

r14
ij

− 2
σ6

r8
ij

]
− 1

rij

ε

[
4
σ12

r13
c

− 2
σ6

r7
c

])
,

where again the indices at potential parameters were dropped.
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From Eq. B.1, we find the Hessian matrix elements,

Hαβ
ij =24εδαβ

[
2
σ12

r14
− σ6

r8
− 2

σ12

rr13
c

+
σ6

rr7
c

]

− 24ε(x̂ij ⊗ x̂ij)αβ

[
28

σ12

r14
− 8

σ6

r8
− 2

σ12

rr13
c

+
σ6

rr7
c

]
.

(B.5)

B.3 Simulation Runs.

Table B.1: Simulation runs of the BMLJ65. The step size invariably was λ = 0.015.
Columns have the following meaning: ’#save’-spacing of saved configurations (MD steps),
’#configs’-number of saved configurations, ’#steps’-total number of steps, ’τα’-structural
relaxation time in MD steps, ’DT ’-diffusion coefficient times temperature, ’#τα’-number
of structural relaxation times covered in the run. See also next table.

token T #save #configs #steps τα DT # τα

h2 0.400 105 104 109 1.7× 107 -8.20 59

j 0.410 105 104 109 107 -8.06 100

g 0.425 105 104 109 7.7× 106 -7.83 130

e 0.435 105 26053 2.6× 109 4.5× 106 -7.81 578

eX 0.435 106 17752 1.8× 1010 5.0× 106 -7.90 3600

l 0.450 106 1100 1.1× 109 1.9× 106 -7.49 579

a2 0.466 105 104 109 1.0× 106 -7.43 1000

G 0.480 105 23653 2.4× 109 9.1× 105 -7.20 2637

D2 0.500 105 36835 3.7× 109 3.9× 105 -7.04 9487

H 0.555 105 4479 4.5× 108 5.2× 104 -6.53 8824

B2 0.600 104 104 108 2.5× 104 -6.26 4000

A2 0.800 5000 5000 2.5× 107 4.0× 103 -5.61 6250

E2 1.000 3000 3000 9.0× 106 1.5× 103 -5.29 6000

F 2.000 500 3000 1.5× 106 4.5× 102 -4.82 3333

Tinf ∞ 104
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Table B.2: Simulation runs of the BMLJ130. Again, step size λ = 0.015; see previous
caption for more details. Note that at T = ∞, we performed no dynamics, but only used
random configurations as starting points for minimizations.

token T #save #configs #steps τα DT # τα

h 0.400 105 8245 0.8× 109 2.3× 107 -8.35 35

e2 0.435 105 104 109 5.3× 106 -7.85 189

l 0.450 105 8630 0.9× 109 2.0× 106 -7.58 450

a2 0.466 105 4000 4.0× 108 1.0× 106 -7.43 400

D 0.500 104 104 108 3.3× 105 -7.03 303

B2 0.600 104 5253 5.3× 107 1.7× 104 -6.19 3118

A2 0.800 5000 104 5.0× 107 5.0× 103 -5.54 10000

E 1.000 1000 104 1.0× 107 1.7× 103 -5.25 5882

F 2.000 500 1901 9.5× 105 4.2× 102 -4.77 2263

Tinf ∞ 104

Table B.3: Simulation runs of the BMLJ260, λ = 0.015.

token T #save #configs #steps τα DT # τα

l 0.450 105 104 109 1.9× 106 -7.99 526

Tinf ∞ 3704

Table B.4: Simulation runs of the BMLJ1000, λ = 0.015.

token T #save #configs #steps τα DT # τα

l 0.450 104 8651 9.0× 107 3.7× 106 -7.84 24

D 0.500 5000 104 5.0× 107 2.6× 105 -7.00 192

B 0.600 5000 1000 5.0× 106 1.3× 104 -6.16 384

C 0.700 5000 2500 1.3× 107 4.6× 103 -5.75 2826

A2 0.800 5000 1525 7.6× 106 2.5× 103 -5.55 3050

E 1.000 1000 7304 7.3× 106 1.6× 103 -5.26 4562

B.4 Details of the BMSS70 Potential.

The BMSS potential is given by (see Cavagna et al. (Grigera and Parisi, 2001;

Grigera et al., 2002))

V SS

ab (r) =





(
σa+σb

r

)12
+ Cab , if r < rc

Bab(A− r)3 , if rc < r < A

0 , if r > A

, (B.6)
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where a, b ∈ {A,B} denote the particle species in an equimolar mixture. The

parameters are

σA

σB

= R = 1.2

σA =

(
2

4R3 + 4 + (1 + R)3

)1/3

= 0.452683, σB = 0.543219

rc =
√

3, a =
15rc

13
,

Bab = 169
(σa + σb)

12

r15
c

, Cab = − 5

13

(σa + σb)
12

r12
c

.

(B.7)

The modifications to the simple r−12 potential are introduced for the sake of conti-

nuity at the cutoff rc. We compute

V SS ′
ab (r) =





−12
r

(
σa+σb

r

)12
, if r < rc

−3Bab(A− r)2 , if rc < r < A

0 , if r > A

, (B.8)

and

V SS ′′
ab (r) =





12·13
r2

(
σa+σb

r

)12
, if r < rc

6Bab(A− r) , if rc < r < A

0 , if r > a

. (B.9)

The non-diagonal elements (i 6= k) of the Hessian are (Eq. B.1),

Hαβ
ij (r) =

{
12 [δαβ − 14(x̂ij ⊗ x̂ij)αβ]

(σi+σj)
12

r14 , if r < rc

3Bij(A− r)
[
δαβ

A−r
r
− (x̂ij ⊗ x̂ij)αβ(A−r

r
+ 2)

]
, if rc < r < A

.

(B.10)
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Appendix C

Miscellaneous

C.1 Configurational Partition Function of an

Harmonic Oscillator.

The potential is V (x) = 1
2
λx2, with spring constant λ. The (purely configurational)

partition function can then be calculated,

Z =

∫
dx

u
e−βV (x) =

(
2πkBT

λ

) 1
2

,

where u, a reference length, has been set to unity. For M independent oscillators

with constants λν , we obtain

Z =
∏
ν

(
2πkBT

λν

) 1
2

≡ T
M
2 Y.

By Y we denote the T -independent part of the partition function (Büchner and

Heuer, 1999). From F = −kBT ln Z, U = −(∂ ln Z/∂β) and F = U − TS, we find

U =
MkBT

2
and S =

MkB

2
+

1

2

∑
ν

ln

(
2πkBT

λν

)
. (C.1)

Note that the inclusion of the kinetic part in the partition function leads to U =

MkBT and S = MkB +
∑

ln(2πkBT
√

m/λν).

C.2 A Comment on Entropy.

The canonical, configurational partition function is generally given by

Z =

∫
dx

u
e−βV (x),
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where x is a multi-dimensional vector and u a reference volume, e.g., the unit

volume. Thus, the partition function is dimensionless. We now calculate the entropy

via S = ∂(kBT ln Z)/∂T ,

S = kB ln Z + kBT

∫
dx

1

uZ
e−βV (x) V (x)

kBT 2

= kB

∫
dx

1

uZ
e−βV (x) (ln Z + βV (x))

= −kB

∫
dxp(x) ln [p(x)u] .

The last expression is the definition of Shannon entropy. Note that the entropy

is only defined up to the volume element u, which naturally arises in a quantum-

mechanic formulation of statistical mechanics. For classical systems as the ones

under investigation here, no definition of u is preferred. Thus, thermodynamic

quantities (like F or S) can only be specified up to a constant.

C.3 Derivation of Eq. 4.5.

Here we give a strict derivation of Eq. 4.5, i.e. of

lim
n→∞

〈R2(n)〉
〈ξ2

MB(n 〈τ〉)〉 = 1, (C.2)

under the following assumptions. The brackets denote the canonical average, 〈...〉 =

〈...〉T . The squared displacement after n MB jumps is defined as

R2
x(n) = ξ2

x(tn), tn =
n∑

i=1

τi,

where, for convenience, we write ξ(t) ≡ ξMB(t) for the MB configuration at time t.

The index x indicates that, before averaging, a quantity depends on the choice

of time origin, i.e. on the starting configuration x. The τi’s are the waiting times

between MB jump i−1 and i. Note that 〈τ1〉 6= 〈τ〉ϕ, since the starting configuration

is drawn from the canonical distribution, p(x; T ) = e−βV (x)/Z(T ). However, due

to the lacking correlations among subsequent waiting times, we have 〈τ2〉 = 〈τ3〉 =

... = 〈τ〉ϕ. tn is the time needed for n MB jumps. Thus, in the limit of (moderately)

large n, 〈tn〉 = n 〈τ〉. The essential assumption is that dynamics for long times is

diffusive, i.e.

lim
t→∞

ξ2
x(t)

6Nt
= Dx = const, (C.3)



Useful Integrals. 151

or

lim
t→∞

〈
ξ2
x(t)

6Nt

〉
= 〈Dx〉 = D, (C.4)

where D = D(T ) is the diffusion coefficient. We have

R2
x(n)− ξ2

x(n 〈τ〉) ≤6NDx(tn − n 〈τ〉) + |ξ2
x(tn)− 6NDxtn|+ |ξ2

x(n 〈τ〉)− 6NDxn 〈τ〉 |
≤ 6NDx(tn − n 〈τ〉) + ε(tn + n 〈τ〉),

where the last inequality is due to Eq. C.3: For every given ε > 0, we can find an

n0 such that for all n > n0, |ξ2
x(tn)− 6NDxtn| < εtn and |ξ2

x(n 〈τ〉)− 6NDxn 〈τ〉 | <
εn 〈τ〉. By averaging, we find

∣∣〈R2
x(n)− ξ2

x(n 〈τ〉)
〉∣∣ ≤ |〈6NDx(tn − n 〈τ〉)〉|+ 2εn 〈τ〉
≤ 6N 〈Dx |tn − n 〈τ〉|〉+ 2εn 〈τ〉
≤ 6N

〈
D2

x

〉1/2 〈
(tn − n 〈τ〉)2〉1/2

+ 2εn 〈τ〉 ,
(C.5)

where the last line stems from the Hölder inequality. Please note that 〈D2
x〉 does

not depend on n. Due to the central limit theorem, the variance of tn is given by

nVar(τ), where Var(τ) is the variance of the distribution ϕ(τ). Thus, the last line

of Eq. C.5 can be written as

cn1/2 + 2εn 〈τ〉 ,

with some n-independent constant c. With this in mind we compute

|〈R2
x(n)− ξ2

x(n 〈τ〉)〉|
〈ξ2

x(n 〈τ〉)〉
<

(
2ε +

c

n1/2 〈τ〉
)

/

(〈ξ2
x(n 〈τ〉)〉
n 〈τ〉

)
. (C.6)

Since the last denominator converges to 6ND for n →∞ (Eq. C.4), we are finished

with the proof of Eq. C.2: For every ε̃ > 0, we can find an n1 such that the L.H.S.

of Eq. C.6 is smaller than ε̃ for all n > n1.

To arrive at Eq. 4.5 from Eq. C.2 is trivial.

C.4 Useful Integrals.

We define

G(ε) =

{
1

I(εmin,0)
N0√
2πσ2

exp
(
− (ε−ε0)2

2σ2

)
, if ε > εmin

0 , if ε < εmin

, (C.7)
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where

I(εmin, β) ≡ 1√
2πσ2

∞∫

εmin

dεe− 1
2σ2 (ε− (ε0 − βσ2))

2

=
1√
π

∞∫

�
εmin−(ε0−βσ2)√

2σ2

� dεe−ε2 =
1

2
erfc

(
εmin − (ε0 − βσ2)√

2σ2

) (C.8)

with the complementary error function (Abramowitz and Stegun, 1984),

erfc(x) =
2√
π

∞∫

x

dte−t2 . (C.9)

Hence, erfc(∞) = 0, erfc(−∞) = 2. We also use Geff(ε) and Ieff(εmin, β), with the

parameters

ε0,eff = ε0 + bσ2, σeff = σ, N0,eff = N0e
a+ 1

2
b2σ2+ε0b, (C.10)

where the constants a and b stem from the parametrization 〈Y |ε〉G = ea+bε. The

partition function is

Z(εmin, T ) =

∞∫

−∞

dεGeff(ε)e
−βε = N0

Ieff(εmin, β)

Ieff(εmin, 0)
exp

(
−β

(
ε0,eff − 1

2
βσ2

eff

))
. (C.11)

The population of minima at temperature T is

p(ε; T ) =
1

Z(T )
e−βεGeff(ε) =

1

Ieff(εmin, β)

1√
2πσ2

eff

e
− 1

2σ2
eff

(ε− (ε0,eff − βσ2
eff))

2

.

(C.12)

The expectation value of ε is given by

〈ε〉 − ε0,eff + βσ2
eff = − d

dβ
ln Ieff(εmin, β)

=
σeff√

2πIeff(εmin, β)
exp

(
−(εmin − ε0,eff + βσ2

eff)
2

2σ2
eff

)
εmin→−∞−→ 0.

(C.13)

The variance is

〈
(ε− 〈ε〉)2〉− σ2

eff =

(
− d

dβ

)2

ln Ieff(εmin, β)

=
σeff√

2πIeff(εmin, β)
(εmin − ε0,eff + βσ2

eff) exp

(
−(εmin − ε0,eff + βσ2

eff)
2

2σ2
eff

)
− (〈ε〉 − ε0,eff + βσ2

eff

)2

εmin→−∞−→ 0.
(C.14)
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Also needed will be
〈
ε2

〉
=

〈
(ε− 〈ε〉)2〉 + 〈ε〉2

= σ2 + Eq. C.14 +
(
ε0 − βσ2 + Eq. C.13

)2
.

C.5 Configurational Entropy from Gaussian

Distributions.

We now calculate the first term of Eq. 3.31, i.e.

∫
dεp(ε; T ) ln G(ε)−

∫
dεp(ε; T ) ln p(ε; T ) ≡ I1 + I2.

We have

I1 = ln

(
1

I(εmin, 0)

N0√
2πσ2

)
− 1

2σ2

(〈
ε2

〉− 2ε0 〈ε〉+ ε2
0

)
, (C.15)

where the expectation values are given by Eq. C.13 and Eq. C.14. The second term,

I2, is constant as long as the lower end εmin of the PEL is not reached, since then,

p(ε; T ) is a gaussian with constant width. With the help of Eq. C.12 we calculate

I2 = ln
(
Ieff(εmin, β)

√
2πσ2

eff

)
+

1

2σ2
eff

(〈
ε2

〉− 2(ε0,eff − βσ2
eff) 〈ε〉+ (ε0,eff − βσ2

eff)
2
)
.

(C.16)
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Appendix D

Bouchaud’s Trap Model

Bouchaud and coworkers have introduced a very simple model for activated relax-

ation out of traps (Monthus and Bouchaud, 1996). The system is supposed to be

found in traps of depths E > 0, which are distributed according to some ρ(E).

Escapes happen with rates γ(E) = γ0 exp(−βE), after which a new depth is drawn

from ρ(E). We will deal with the special case of an exponential distribution here,

ρ(E) = βxe
−βxE,

which is motivated by the fact that it reproduces the algebraic decays of waiting

time distributions in the BMLJ65; see section 4.4. This choice of ρ(E) causes the

mean waiting time to diverge at β = βx, since traps of arbitrarily large depths exist.

As argued in section 4.4, a truncated version (E < Emax) of the trap model is more

appropriate for a comparison with the BMLJ65. After compiling some properties

of a single trap model, we will take a look at the parallel and independent operation

of two of them.

D.1 Single System.

In the presence of a cutoff Emax, we have

ρ(E) =
βxe

−βxE

1− e−βxEmax
, E ∈ [0, Emax] (D.1)

p(E; T ) =
ρ(E)eβE

∞∫
0

dEρ(E)eβE

=
(βx − β)e−(βx−β)E

1− e−(βx−β)Emax
, (D.2)

where we assume β < βx. The distribution of visited traps is temperature indepen-

dent, because there are no correlations between subsequent traps,

ϕ(E; T ) = ϕ(E) = ρ(E). (D.3)
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We denote by ϕ(τ, E; T ) the probability to find a waiting time τ in a trap E,

ϕ(τ |E; T ) being the conditional probability. Since the rate of escape from a trap E

is γ(E) ≡ γ0e
−βE, we have ϕ(τ |E; T ) = γ(E)e−τγ(E), and thus,

〈τ(T )〉ϕ =

∞∫

0

dEϕ(E; T )

∞∫

0

dτϕ(τ |E; T )τ

=
βx

γ0(βx − β)

1− e−(βx−β)Emax

1− e−βxEmax
.

(D.4)

Clearly,

Eapp(E; T ) ≡ d

dβ
ln 〈τ |E; T 〉ϕ = E, (D.5)

where we defined 〈τ |E; T 〉ϕ =
∫

dτϕ(τ |E; T )τ . The distributions p and ϕ are related

by

p(τ, E; T ) =
τϕ(τ, E; T )

〈τ(T )〉ϕ
, (D.6)

which implies 1/ 〈τ〉ϕ = 〈1/τ〉p, where subscripts ϕ and p denote respective averages.

The average apparent activation energy is (β > βx)

Eapp(T ) ≡ d

dβ
ln 〈τ(T )〉 = − 1

β − βx

+
Emaxe

(β−βx)Emax

e(β−βx)Emax − 1
, (D.7)

which is the same expression for β < βx,

d

dβ
ln 〈τ(T )〉 = − d

dβ
ln(βx − β) +

d

dβ
ln(1− e−(βx−β)Emax) =

1

βx − β
+
−Emaxe

−(βx−β)Emax

1− e−(βx−β)Emax
.

For βx − β = ε, ε → 0, we obtain

Eapp(T ) =
1

ε
+

Emax

1− eεEmax
≈ 1

ε
+

Emax

−εEmax − ε2E2
max/2

=
1

ε
− 1

ε

1

1 + εEmax/2

=
1

ε

εEmax/2

1 + εEmax/2
=

Emax

2

1

1 + εEmax/2
→ Emax

2
.

At very low temperatures, only the deepest traps contribute, i.e.

Eapp(T ) → Emax, for β →∞

which follows directly from Eq. D.7.

The behavior of 〈τ(T )〉 in these limiting cases is displayed in Fig. D.1 with

parameters realistic to the BMLJ65 system. Evidently, the trap model is not able

to reproduce the temperature dependence of D(T ) in the BMLJ65.
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T c = T x = 0 . 4 5

l o g < t ( T ) >

E m a x = 5 . 9

E m a x = 1 1 . 8

l o g  1 / D ( T ) ,   B M J L 6 5

0 1 2 3 4 5

4

6

8

1 0

1 2

1 4

1 / T

Figure D.1: Arrhenius plot of mean waiting times 〈τ(T )〉, for parameters Emax = 5.9 and
Emax = 2 × 5.9, Tx = 0.45 in the trap model. For comparison, we show 1/D(T ) of the
BMLJ65. The auxiliary, straight line has the slope 5.9/ ln(10).

D.2 Combination of Two Independent Systems.

The distribution of traps E = E1 + E2, is

ρ2(E) =

min(Emax,E)∫

max(0,E−Emax)

dE1ρ(E1)ρ(E − E1)

=
β2

x

(1− e−βxEmax)2
e−βxE ×

×
{

E , E < Emax

2Emax − E, Emax < E < 2Emax

}
,

(D.8)
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their population at temperature T > Tx = 1/kBβx is

p2(E; T ) =

min(Emax,E)∫

max(0,E−Emax)

dE1p(E1; T )p(E − E1; T )

=
(βx − β)2

(1− e−(βx−β)Emax)2
e−(βx−β)E ×

{
E , E < Emax

2Emax − E, Emax < E < 2Emax

}
.

(D.9)

The mean waiting time in a trap of joint energy E is

〈τ |E; T 〉ϕ = 1/

〈
1

τ
|E; T

〉

p

. (D.10)

We calculate the latter expectation value,

p2(E)

〈
1

τ
|E; T

〉

p

=

min(Emax,E)∫

max(0,E−Emax)

dE1p(E1)p(E − E1)

∫
dτ

1

τ
p(τ |E1, E − E1)

=
(βx − β)2

(1− e−(βx−β)Emax)2
e−(βx−β)E

min(Emax,E)∫

max(0,E−Emax)

dE1γ(E1, E − E1).

(D.11)

Here, the relation p(τ |E1, E2) = τγ2(E1, E2)e
−τγ(E1,E2) has been used. Since

γ(E1, E2) = γ0(e
−βE1 + e−βE2), we find

〈τ |E; T 〉ϕ =

=
β

2γ0

{
E

1−e−βE , E < Emax

2Emax−E
e−β(E−Emax)−e−βEmax

, Emax < E < 2Emax

}
.

Hence, the apparent activation energy becomes

Eapp(E; T ) =
d

dβ
ln 〈τ |E; T 〉ϕ =

1

β
+

+

{
−E

eβE−1
, E < Emax

(E−Emax)eβ(2Emax−E)−Emax

eβ(2Emax−E)−1
, Emax < E < 2Emax

}
.

In the limit T → ∞ this expression tends to E/2, while for T → 0, one has

Eapp(E; T ) → (E − Emax)θ(E − Emax).
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Correlations of subsequent traps (cf. Fig. 4.10). Here, for simplicity, we

assume Emax = ∞. Since, generally, ϕ(τ) = τp(τ)/ 〈τ〉, we have (dropping the T

argument)

ϕ(E1, E2) = 〈τ〉2
p(E1, E2)

〈τ |E1, E2〉 = 〈τ〉2 γ(E1, E2)p(E1, E2)

= 〈τ〉2 γ0

(
e−βE1 + e−βE2

)
(βx − β)2e−(βx−β)(E1+E2)

and

ϕ2(E) =
p2(E) 〈τ〉2
〈τ |E〉2

=
βx(βx − β)

β
(1− e−βE)e−(βx−β)E, (D.12)

which is the distribution of traps of joint energy E = E1 + E2 encountered at

temperature T (at distributions and averages, no subscripts or subscripts ’1’ denote

a single subsystem, subscripts ’2’ the combined system, if necessary). Hence, the

average subsequent trap is

ϕ2(E) 〈E ′|E〉2 =

E∫

0

dE1ϕ(E1, E − E1)×

× 1

γ1 + γ2


γ1




∞∫

0

dE ′
1ϕ(E ′

1)E
′
1 + E − E1


 + γ2




∞∫

0

dE ′
2ϕ(E ′

2)E
′
2 + E1







= 2γ0 〈τ〉 (βx − β)2e−(βx−β)E

E∫

0

dE1e
−βE1 (〈E〉1 + E − E1)

= 2γ0 〈τ〉 (βx − β)2e−(βx−β)E

{
(〈E〉1 + E)

1

β
(1− e−βE) +

E

β
e−βE +

1

β2
e−βE − 1

β2

}

=
βx(βx − β)

β
e−(βx−β)E

{
〈E〉1 (1− e−βE) + E − 1

β
(1− e−βE)

}
,

where we have used 〈τ〉2 = 1
2
〈τ〉1, which holds in general, after Eq. E.7. The first

line of the calculation expresses that either the first or the second copy may make

a hop, with probabilities γ1/(γ1 + γ2) and γ2/(γ1 + γ2), respectively (γi = γ(Ei)).

Thus, with Eq. D.12 and 〈E〉1 = 1/βx,

〈E ′|E〉2 =
1

βx

− 1

β
+

E

1− e−βE
. (D.13)

Correlations between subsequent τ ′s are harder to calculate analytically. Hence, we

compute them numerically (see chapter 4).
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Appendix E

Waiting Times of a System

Composed of Two Independent

Subsystems

The goal of this chapter is to calculate the distribution of waiting times of a system

which is comprised of two independent, identical subsystems with known WTD.

This kind of information is useful to test whether a larger system behaves like two

un-coupled smaller ones (see chapter 6). The notation we use is the following. By

ϕ(τ), we denote the distribution of waiting times in the small systems. As before,

the probability to find a certain waiting time (WT) at some arbitrary instance is

p(τ) = τϕ(τ)/ 〈τ〉. The corresponding distributions of the combined system aquire

the index ’2’. All averages 〈...〉 are with respect to the ϕ-distributions here.

E.1 Distribution of Waiting Times.

Here we compute p2(τ) from p(τ). At some instance (say, t = 0), the probability

p>(τ) to find a WT in the combined system larger than τ is given by the following

expression:

p>(τ) = 2

∞∫

τ

dτ1
p(τ1)

τ1

τ1∫

τ

dτ2
p(τ2)

τ2

0∫

−τ1

ds1

0∫

−τ2

ds2θ(u(τ1, s1, τ2, s2)− τ), (E.1)

where the ’overlap’ u is defined in Fig. E.1 and θ(t) = 1 if t > 0 and zero otherwise.

(The waiting time of the combined system found at t = 0 is identical to u.) At

t = 0, the probability to find the first system with WT τ1 is given by p(τ1). The

start of this WT is specified by some s1 < 0, over which we have to integrate. We

then assume that the WT of the second subsystem is τ2 < τ1, starting at s2 < 0.

161



162 Waiting Times of a System Composed of Two Independent Subsystems

t = 0

t = s 1 t = t 1 + s 1

t = s 2 t = t 2 + s 2

t h e  o v e r l a p  u ( t 1 , s 1 , t 2 , s 2 ) = m i n ( t 1 + s 1 , t 2 + s 2 ) - m a x ( s 1 , s 2 )

u = ( t 1 + s 1 ) - s 2

u = ( t 2 + s 2 ) - s 1

u = ( t 2 + s 2 ) - s 2 = t 2

c a s e  ( i ) :    s 1 < s 2    a n d
               s 1 + t 1  >  s 2 + t 2

c a s e  ( i i ) :    s 1 < s 2    a n d
               s 1 + t 1  <  s 2 + t 2

c a s e  ( i i i ) :    s 1 > s 2    a n d
               s 1 + t 1  >  s 2 + t 2

Figure E.1: Possible overlaps, where τ2 < τ1.

0

0s 1

s 2

- t 1  
- t 2  

c a s e  ( i ) :

s 1 < s 2

s 1 + t 1  >  s 2 + t 2

A ( i ) = t 1 t 2   -  t 2
2

0

0s 1

s 2

- t 1  
- t 2  

c a s e  ( i i ) :

s 1 + t 1  <
s 2 + t 2

A ( i ) = ( t 2  -  t  ) / 22

- t  
s 1 < s 2

2

0

0s 1

s 2

- t 1  
- t 2  

c a s e  ( i i i ) :

A ( i i ) = ( t 2  -  t  ) / 22

- t  

s 1 > s 2

2

- t 2  

u = t 2 > t  

u = ( t 1 + s 1 ) - s 2 u = ( t 2 + s 2 ) - s 1

s 1 + t 1  >  s 2 + t 2

u  >  t

Figure E.2: Graphical illustration of the constraints in Fig. E.1.

The contribution of a pair τ1, τ2 to p>(τ) is given by the fraction of overlaps larger

than τ , i.e. the s-integrals divided by τ1τ2. Thus, Eq. E.1 has a direct intuitive

meaning.

The different situations that may occur, depending on s1 and s2, are illustrated

in Fig. E.1. We now look for the cases where the overlap of both WTs is larger than

τ , i.e. where θ(u(τ1, s1, τ2, s2)− τ) = 1. We have to differentiate between the three
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cases shown in Fig. E.1. Rather than doing this by massive case differentiation1, we

will obtain the result graphically. We are interested in the s-integrals corresponding

to (i)-(iii). The given constraints on si can be pictured in the s1-s2 plane, as shown

in Fig. E.2. The shaded areas correspond to the desired value of the s-integrals,

A(i) = τ1τ2 − τ 2
2

A(ii) =
1

2
(τ 2

2 − τ 2) = A(iii).
(E.2)

With this in mind, Eq. E.1 can be rewritten as

p>(τ) =

∞∫

τ

dτ1
p(τ1)

τ1

∞∫

τ

dτ2
p(τ2)

τ2

(A(i) + A(ii) + A(iii))

=

∞∫

τ

dτ1p(τ1)

∞∫

τ

dτ2p(τ2)

(
1− τ 2

τ1τ2

)
.

(E.3)

The distribution p2(τ) is then obtained by differentiation,

p2(τ) = −dp>(τ)

dτ
. (E.4)

E.2 Mean Waiting Time of the Combined

System.

From Eqs. E.3 and E.4 we have

τϕ2(τ)

〈τ〉2
= p2(τ) = 2I(τ)p(τ) + 2τ Ĩ(τ)(Ĩ(τ)− p(τ))

= 2
1

〈τ〉J(τ)
1

〈τ〉τϕ(τ) + 2τ
1

〈τ〉 J̃(τ)

(
1

〈τ〉 J̃(τ)− 1

τϕ
τϕ(τ)

)

=
2τ

〈τ〉2
(
J(τ)ϕ(τ) + J̃(τ)2 − J̃(τ)τϕ(τ)

)
(E.5)

with the definitions

I(τ) =

∞∫

τ

dτ ′p(τ ′), Ĩ(τ) =

∞∫

τ

dτ ′
p(τ ′)
τ ′

J(τ) =

∞∫

τ

dτ ′τ ′ϕ(τ ′), J̃(τ) =

∞∫

τ

dτ ′ϕ(τ ′).

1which costs about one night
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Dividing Eq. E.5 by τ and integrating over τ yields

1

〈τ〉2
=

2

〈τ〉2
∞∫

0

dτ
(
J(τ)ϕ(τ) + J̃(τ)2 − J̃(τ)τϕ(τ)

)
. (E.6)

If the integral equals 〈τ〉, which is shown hereafter, it follows that

〈τ〉2 =
〈τ〉
2

, (E.7)

i.e. the mean waiting time of a combination of two independent systems is half the

mean waiting time of one of them.

The three integrals in Eq. E.6 are abbreviated A+B−C. We calculate explicitly,

A =

∞∫

0

dτ

∞∫

τ

dτ1τ1ϕ(τ1)ϕ(τ) =

∞∫

0

dτ






−τ1

∞∫

τ1

dτ ′1ϕ(τ ′1)



∞

τ

+

∞∫

τ

dτ1J̃(τ1)



 ϕ(τ)

=

∞∫

0

dττ J̃(τ)ϕ(τ) +

∞∫

0

dτϕ(τ)

∞∫

τ

dτ1J̃(τ1) = C +

∞∫

0

dτϕ(τ)

∞∫

τ

dτ1J̃(τ1).

Therefore,

A− C =

∞∫

0

dτϕ(τ)

∞∫

τ

dτ1J̃(τ1) =


−

∞∫

τ

dτ2ϕ(τ2)

∞∫

τ

dτ1J̃(τ1)



∞

0

+

∞∫

0

dτ J̃(τ)(−J̃(τ))

= −0 + 1

∞∫

0

dτ1J̃(τ1)−
∞∫

0

dτ J̃(τ)2 = 〈τ〉 − B,

where the relation

∞∫

0

dτ

∞∫

τ

dτ1ϕ(τ1) =

∞∫

0

dττϕ(τ) = 〈τ〉

has been used. Thus, A + B − C = 〈τ〉, which proofs Eq. E.7.
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Büchner, S. and Heuer, A. (2000). Metastable states as a key to the dynamics of

supercooled liquids. Phys. Rev. Lett., 84(10):2168–2171.



BIBLIOGRAPHY 167

Casalini, R., Capaccioli, S., Lucchesi, M., Paluch, M., Corezzi, S., and Rolla, P. A.

(2002). Temperature and pressure behavior of the structural relaxation time

in glass formers. J. Non-Cryst. Solids, 307:264–269.

Chowdhary, J. and Keyes, T. (2002). Conjugate gradient filtering of instantaneous

normal modes, saddles on the energy landscape, and diffusion in liquids. Phys.

Rev. E, 65(2):6125.

Cohen, M. H. and Grest, G. S. (1979). Liquid-glass transition, a free-volume ap-

proach. Phys. Rev. B, 20(3):1077–1098.

Cohen, M. H. and Turnbull, D. (1959). Molecular transport in liquids and glasses.

J. Chem. Phys., 31(5):1164–1169.

Comez, L., Fioretto, D., Kriegs, H., and Steffen, W. (2002). Temperature and

pressure dependence of the alpha relaxation and configurational entropy of a

prototype glass former. Phys. Rev. E, 66(3):2501.

Crisanti, A., Marinari, E., Ritort, F., and Rocco, A. (2001). A new method to

compute the configurational entropy in spin glasses. e-print cond-mat/0105391.

Deaven, D. M., Tit, N., Morris, J. R., and Ho, K. M. (1996). Structural optimization

of lennard-jones clusters by a genetic algorithm. Chem. Phys. Lett., 256(1-

2):195–200.

Debenedetti, P. G. and Stillinger, F. H. (2001). Supercooled liquids and the glass

transition. Nature, 410(6825):259–267.

Denny, R. A., Reichman, D. R., and Bouchaud, J.-P. (2002). Trap model and slow

dynamics in supercooled liquids. e-print cond-mat/0209020.

Derrida, B. (1981). Random-energy model - an exactly solvable model of disordered-

systems. Phys. Rev. B, 24(5):2613–2626.

Doliwa, B. and Heuer, A. (2000). Cooperativity and spatial correlations near the

glass transition: Computer simulation results for hard spheres and disks. Phys.

Rev. E, 61(6):6898–6908.

Doliwa, B. and Heuer, A. (2002a). Energy barriers and activated dynamics in a

supercooled lennard-jones liquid. e-print cond-mat/0209139.

Doliwa, B. and Heuer, A. (2002b). Finite-size effects in a supercooled liquid. e-print

cond-mat/0210121.



168 BIBLIOGRAPHY

Doliwa, B. and Heuer, A. (2002c). Hopping in a supercooled lennard-jones liq-

uid: Metabasins, waiting time distribution, and diffusion. e-print cond-

mat/0205283.

Donati, C., Douglas, J. F., Kob, W., Plimpton, S. J., Poole, P. H., and Glotzer,

S. C. (1998). Stringlike cooperative motion in a supercooled liquid. Phys. Rev.

Lett., 80(11):2338–2341.

Donati, C., Glotzer, S. C., and Poole, P. H. (1999). Growing spatial correlations

of particle displacements in a simulated liquid on cooling toward the glass

transition. Phys. Rev. Lett., 82(25):5064–5067.

Doye, J. P. K. (2002). Network topology of a potential energy landscape: A static

scale-free network. Phys. Rev. Lett., 88(23):8701.

Doye, J. P. K. and Wales, D. J. (2002). Saddle points and dynamics of lennard-jones

clusters, solids, and supercooled liquids. J. Chem. Phys., 116(9):3777–3788.

Ediger, M. D. (1996). Supercooled liquids and glasses. J. Phys. Chem.,

100(31):13200–13212.

Elber, R. and Karplus, M. (1987). A method for determining reaction paths in large

molecules - application to myoglobin. Chem. Phys. Lett., 139(5):375–380.

Ermak, D. L. and Yeh, Y. (1974). Equilibrium electrostatic effects on behavior

of polyions in solution - polyion-mobile ion interaction. Chem. Phys. Lett.,

24(2):243–248.

Fabricius, G. and Stariolo, D. A. (2002). Distance between inherent structures

and the influence of saddles on approaching the mode coupling transition in a

simple glass former. Phys. Rev. E, 66(3):1501.

Fischer, E. W., Bakai, A., Patkowski, A., Steffen, W., and Reinhardt, L. (2002).

Heterophase fluctuations in supercooled liquids and polymers. J. Non-Cryst.

Solids, 307:584–601.

Franosch, T., Fuchs, M., Götze, W., Mayr, M. R., and Singh, A. P. (1997). Asymp-

totic laws and preasymptotic correction formulas for the relaxation near glass-

transition singularities. Phys. Rev. E, 55(6):7153–7176.

Franosch, T. and Götze, W. (1999). Relaxation rate distributions for supercooled

liquids. J. Phys. Chem. B, 103(20):4011–4017.



BIBLIOGRAPHY 169

Frenkel, D. and Smit, B. (1996). Understanding molecular simulation. Academic

Press.

Fulcher, G. S. (1925). J. Am. Chem. Soc., 77:3701.

Gibbs, J. H. and DiMarzio, E. A. E. (1958). Nature of the glass transition and the

glassy state. J. Chem. Phys., 28(3):373–383.

Giovambattista, N., Buldyrev, S. V., Starr, F. W., and Stanley, H. E. (2002a).

Connection between adam-gibbs theory and spatially heterogeneous dynamics.

e-print cond-mat/0209395.

Giovambattista, N., Starr, F. W., Sciortino, F., Buldyrev, S. V., and Stanley, H. E.

(2002b). Transitions between inherent structures in water. Phys. Rev. E,

65(4):1502.

Gleim, T., Kob, W., and Binder, K. (1998). How does the relaxation of a su-

percooled liquid depend on its microscopic dynamics? Phys. Rev. Lett.,

81(20):4404–4407.

Goldstein, M. (1969). Viscous liquids and glass transition - a potential energy

barrier picture. J. Chem. Phys., 51(9):3728–3728.

Götze, W. (1989). in Liquids, Freezing and the Glass Transition, edited by J.P.

Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1989).

Götze, W. and Sjogren, L. (1992). Relaxation processes in supercooled liquids. Rep.

Prog. Phys., 55(3):241–376.

Grigera, T. S., Cavagna, A., Giardina, I., and Parisi, G. (2002). Geometric approach

to the dynamic glass transition. Phys. Rev. Lett., 88(5):5502.

Grigera, T. S. and Parisi, G. (2001). Fast monte carlo algorithm for supercooled

soft spheres. Phys. Rev. E, 63(4):5102.

Hänggi, P., Talkner, P., and Borkovec, M. (1990). Reaction-rate theory - 50 years

after kramers. Rev. Mod. Phys., 62(2):251–341.

Hansen, J. P. and McDonald, I. R. (1990). Theory of simple liquids. Academic

Press.

Hernandez-Rojas, J. and Wales, D. J. (2001). Supercooled lennard-jones liquids

and glasses: a kinetic monte carlo approach. e-print cond-mat/0112128.



170 BIBLIOGRAPHY
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Burkhard Doliwa

The Dynamics of a Small Model Glass Former as
Viewed from Its Potential Energy Landscape

Despite intensive research during the last decades, the theoretical understanding

of supercooled liquids and the glass transition is still far from being complete. Be-

sides analytical investigations, the so-called energy-landscape approach has turned

out to be very fruitful. In the literature, many numerical studies have demon-

strated that, at sufficiently low temperatures, all thermodynamic quantities can be

predicted with the help of the properties of local minima in the potential-energy-

landscape (PEL).

The main purpose of this thesis is to strive for an understanding of dynamics in

terms of the potential energy landscape. In contrast to the study of static quantities,

this requires the knowledge of barriers separating the minima. Up to now, it has

been the general viewpoint that thermally activated processes (’hopping’) determine

the dynamics only below Tc (the critical temperature of mode-coupling theory), in

the sense that relaxation rates follow from local energy barriers. As we show here,

this viewpoint should be revised since the temperature dependence of dynamics is

governed by hopping processes already below 1.5Tc. At the example of a binary

mixture of Lennard-Jones particles (BMLJ), we establish a quantitative link from

the diffusion coefficient, D(T ), to the PEL topology. This is achieved in three steps:

First, we show that it is essential to consider whole superstructures of many PEL

minima, called metabasins, rather than single minima. This is a consequence of

strong correlations within groups of PEL minima. Second, we show that D(T ) is

inversely proportional to the average residence time in these metabasins. Third,

the temperature dependence of the residence times is related to the depths of the

metabasins, as given by the surrounding energy barriers.

We further discuss that the study of small (but not too small) systems is essenti-

al, in that one deals with a less complex energy landscape than in large systems. In

a detailed analysis of different system sizes, we show that the small BMLJ system

considered throughout the thesis is free of major finite-size-related artifacts.
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