
Integrable systems and
a moduli space for (1,6)-polarised

abelian surfaces

Dissertation

zur Erlangung des Grades

�Doktor der Naturwissenschaften�

am Fachbereich Physik, Mathematik und
Informatik

der Johannes Gutenberg-Universität

in Mainz

Laura Biroth
geb. in Bad Homburg

Mainz, den 12.09.2019



Prüfungsdatum: 28. November 2019



Abstract

A Hamiltonian system is a type of di�erential equation used in physics to describe
the evolution of a mechanical system like a particle in a potential. Certain partic-
ularly well-behaved Hamiltonian systems are called integrable. For us an integrable
system on C2n is simply a set of n independent Poisson-commuting polynomials in
2n variables. In case the system is algebraically completely integrable the �bres of the
induced map are a�ne parts of abelian varieties.
In this thesis we study a projective model for the moduli-space of embedded (1,6)-
polarised abelian surfaces �rst described by Gross and Popescu. We analyse its
discriminant locus, the degenerations occurring, the form of the equations describing
each surface and the automorphisms of this moduli space.
In the last chapter we compute the cohomology of some quasi-homogeneous integrable
systems on C4.
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Zusammenfassung

Ein Hamiltonsches System ist ein Typ von Di�erentialgleichung, der in der Physik
benutzt wird um mechanische Systeme, wie zum Beispiel eine Punktmasse in einem
Potential, zu beschreiben. Eine bestimmte Klasse Hamiltonscher Systeme, die sich
besonders gut verhält, heiÿt integrabel. Für uns ist ein integrables System auf C2n

einfach eine Menge von n unabhängigen Poisson-kommutierenden Polynomen in 2n
Variablen. Im Fall dass das System algebraisch vollständig integrabel ist, sind die
Fasern der induzierten Abbildung a�ne Teile von abelschen Varietäten.
In dieser Arbeit untersuchen wir ein projektives Model für den Modulraum von einge-
betteten (1,6)-polarisierten abelschen Flächen, der erstmals von Gross und Popescu
beschrieben wurde. Wir analysieren seine Diskriminante, die auftretenden Entartun-
gen, die Form der Gleichungen, die jede Fläche beschreiben, und die Automorphismen
dieses Modulraums.
Im letzten Kapitel berechnen wir die Kohomologie einiger quasi-homogener inte-
grabler Systeme auf C4.
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Introduction

Hamiltonian systems are di�erential equations that describe the movement of a me-
chanical system with conservative forces. Written in Hamilton's canonical form, they
take the form of a �rst order system determined by a Hamiltonian function H, that
describes the total energy of the system. Already of great interest are Hamiltonians
of the form

H(p, q) =
1

2

∑
p2
i + V (q),

that consist of the sum of kinetic and potential energy, describing a point particle in
a potential �eld V . In the context of di�erential equations, to integrate an equation
means to solve it from given initial conditions. Liouville's insight was that this can
be done explicitly, if one can �nd enough constants of motion (c.f. [Lio55] or [Arn89]
p.271 �). In such a case we call the system integrable (in the sense of Liouville). In
the real domain, the level sets of these constants of motion are, if they are compact,
di�eomorphic to real tori and the motion on it is quasi-periodic given by a linear
vector �eld. This is also known as the Arnold-Liouville theorem.
In the complex domain, the best one can hope for is that the level sets are generically
a�ne parts of complex tori in projective space, i.e. abelian varieties. A Hamiltonian
system is called algebraically completely integrable or a.c.i., if this is the case and
furthermore the Hamiltonian vector �elds extend and are translation invariant when
restricted to these tori. The geodesic �ow on a general ellipsoid was recognised to
be a.c.i. by Jacobi, which leads to a description of the motions in terms of theta-
functions. So�a Kowalewskaya discovered a powerful method to �nd a.c.i systems,
that was developed further and put in a modern perspective by Adler and van Moer-
beke. Although not all integrable systems are a.c.i. (c.f. Section 1.5), the geometry
of abelian varieties and the geometry of integrable systems are closely interrelated
([Mum84]).
That integrability is a highly non-generic property of a Hamiltonian H was already
known to Liouville. Maria Przybylska has shown in several papers (for example
[Prz07]) that in a generic class of potentials V of degree k ≥ 3 in n variables only
a �nite number (up to change of coordinates) is integrable and listed these generic
integrable potentials for small values of n and k.
One of her integrable systems with a potential of degree 3 was originally described
by Dorizzi, Grammaticos and Ramani in [DGR82]. Semmel and van Straten have
shown in [SvS13] that this so-called DGR-system is a.c.i. and its �bres complete to
(1, 6)-polarised abelian surfaces.

Abelian varieties are complex tori which can be embedded into projective space and
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have a long history. Their �rst instances studied were elliptic curves. In the �rst half
of the nineteenth century this was extended by Abel, Jacobi and others to dimension
two, i.e. abelian surfaces. In 1857 Riemann laid the foundations for further work
on abelian varieties in dimension > 1, introducing the Riemann bilinear relations
and Riemann theta functions (c.f. [Rie57]). By the end of the 19th century, math-
ematicians had begun to use geometric methods in the study of abelian functions.
Eventually, in the 1920s, Lefschetz laid the basis for the study of abelian functions
in terms of complex tori. He also appears to be the �rst to use the name �abelian
variety�. It was André Weil in the 1940s who gave the subject its modern founda-
tions in the language of algebraic geometry. Around 1967 David Mumford developed
a new theory of the equations de�ning abelian varieties (see for example [Mum83],
[Mum84], [Mum91]).

There is a coarse moduli space of abelian abelian varieties of given type and di-
mension with or without di�erent additional structures (c.f. Chapter 3 and Section
7.4). Usually these are described as quotients of Siegel upper half space by certain
subgroups of the paramodular group. Igusa has shown that all these moduli spaces
are quasi-projective varieties, which in general posses quotient singularities. The
question of (uni) rationality of these moduli was answered positively for abelian sur-
faces of type (1, d) for some small values of d, while Gritsenko has shown in 1994
([Gri94]) that the moduli space Ad of (1, d)-polarised abelian surfaces is not unira-
tional for d ≥ 13 and d 6= 14, 15, 16, 20, 24, 30, 36. At that time it was not known if
A6 was unirational (or even rational) or not. In their 2001 paper [GP01] Gross and
Popescu give a nice projective model for the moduli space Aemb6 of embedded (1, 6)-
polarised abelian surfaces which is rational; in fact it can be identi�ed with a quadric.

The central question around which this thesis arose is the following:

Is it possible to identify the system of Dorizzi, Grammaticos and Ramani inside the
moduli space of (1,6)-polarised surfaces described by Gross and Popescu?

To achieve such a goal, a deeper study of the projective geometric properties of
such abelian surfaces is necessary. An explicit form of the coordinate transformation
would lead to the solution of the Hamilton equations for the DGR-potential in terms
of theta-functions belonging to the (1, 6)-polarised abelian surface.
In this thesis we give at least a partial answer to the above question in Section 5.7.

In Chapter 1 I give an introduction to Hamiltonian systems, integrability in the sense
of Liouville, algebraic complete integrability and some �niteness results about poly-
nomial integrable systems proven by Przybylska et al.

In Chapter 2 I give an introduction to abelian varieties over C, their line bundles and
theta functions. In Section 2.7.3 I introduce the Heisenberg group acting on each
abelian variety, which plays a crucial role for the understanding of the embedding of
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abelian varieties.

In Chapter 3 I describe the algebraic information encoding a Heisenberg invariant
embedding of an abelian variety and describe the moduli space of Heisenberg invari-
antly embedded abelian varieties of a given type as a quotient of Siegel upper half
space. Many authors are quite imprecise about this point.

In Chapter 4 I give a short overview of what is known about (1, d)-polarised abelian
varieties and their moduli spaces for d = 1, . . . , 5.

Chapter 5 is the central part of this thesis. Here I examine in detail the projective
model of the moduli space of Heisenberg invariantly embedded abelian surfaces of
type (1, 6) introduced by Gross and Popescu in [GP01]. I analyse its discriminant
locus, its strati�cation and the degenerations occurring, the form of the equations
describing each surface and the automorphisms of this moduli space. Furthermore I
identify two subfamilies described by Hulek and Ranestad in [HR00] and the family
described by Semmel and van Straten in [SvS13], related to the Dorizzi-Grammaticos-
Ramani integrable system.

Chapter 6 is a digression to understand the topology of some particular integrable
systems. Here I use a complex introduced by Garay and van Straten in [GvS10] to
compute the cohomology of the smooth �bres of four polynomial integrable systems.
Because we have no criterion when calculations are �nished, this only leads us to
some conjectures about the cohomology modules. This chapter is only loosely re-
lated to the others.

The appendix (Chapter 7) contains some further details about complex tori and
abelian varieties and is included for the convenience of the reader. In particular it
contains a more detailed version of the Appell-Humbert-Theorem that describes their
line bundles. Section 7.3 is devoted to the (rational) map induced by a line bundle,
and contains some criteria when it is base-point free or gives an embedding, and make
some statements about the equations describing its image. In Section 7.4 contains
known results about the moduli spaces of abelian varieties with several additional
structures.
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1 Introduction to integrable
systems

1.1 Classical mechanics

According to Newton, the equation of motion of a point particle of mass m, moving
in n-dimensional space Rn is given by

F = m · a,

where F denotes the force acting on the particle, and a = q̈ denotes its acceleration.
If the particle moves in a conservative force �eld given by a potential function V (q),
then the force is given by

F = −∂V
∂q

.

When we introduce the momentum p = mq̇ and the Hamiltonian

H(p, q) =
p2

2m
+ V (q),

the equations of motion can be rewritten as

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

.

(1.1)

Now for any other quantity K(p, q) depending on positions and momenta, we have

∂K

∂t
=

n∑
i=1

∂K

∂qi

∂qi
∂t

+
∂K

∂pi

∂pi
∂t

(1.1)
=

n∑
i=1

∂H

∂pi

∂K

∂qi
− ∂H

∂qi

∂K

∂pi
=: {H,K}.

With this notion, called the Poisson bracket, we can rewrite (1.1) as

q̇ = {H, q}
ṗ = {H,p}.

(1.2)
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These are called Hamilton's equations of motion.

As an example, consider in a radial symmetric potential in the plane, i.e. a potential
depending only on r2 = q2

1 + q2
2. In this case the angular momentum L = p1q2− p2q1

of a particle following (1.2) is constant:

∂L

∂t
= {H,L}

= −p1p2 −
∂H

∂q1

q2 + p2p1 +
∂H

∂q2

q1

= −p1p2 − 2q1
∂H

∂r2
q2 + p2p1 + 2q2

∂H

∂r2
q1

= 0.

We call L an constant of motion, (�rst) integral or conserved quantity.
In the case that we have as many �rst integrals as possible (see Section 1.2) we speak
of an integrable system because Equation (1.2) can be solved by using only algebraic
operations, the implicit function theorem and integration.

1.2 Poisson rings

Now we want to establish a more abstract notion of an integrable system. For this
we need the notion of a Poisson ring.

De�nition 1.1. A Poisson ring is a commutative ring with an additional binary
operation {·, ·} : R×R −→ R (called Poisson bracket or Poisson structure) satisfying
the following axioms:

• {·, ·} is skew-symmetric, i.e.

{f, g} = −{g, f}.

• {·, ·} is a derivation in both variables, i.e. it is bilinear and satis�es the Leibniz
identity

{f, gh} = {f, g}h+ g{f, h}.

• {·, ·} satis�es the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

So the Poisson bracket de�nes a Lie algebra structure on R.

De�nition 1.2. For each f ∈ R, we denote by Xf the derivation of R de�ned by
{f, ·}, called hamiltonian vector �eld associated to f .
Functions f for which Xf = 0 are called Casimir elements. Two elements f, g ∈ R
with {f, g} = 0 are said to Poisson commute or be in involution.

2



The map

R −→ Der(R)

f 7−→ Xf

is a morphism from the Lie algebra R (equipped with the Poisson bracket) to the Lie
algebra of derivations of R (w.r.t. the commutator).
Usually a Poisson ring consists of some kind of functions on some underlying space.

De�nition 1.3. A Poisson manifold is a smooth manifold M together with Poisson
structure on C∞(M).

We can make this de�nition also in the category of complex manifolds (replacing
C∞(M) by the algebra of holomorphic or meromorphic functions on M), or complex
a�ne varieties, that are possibly singular (replacing C∞(M) by the algebra of regular
functions OM(M)).

De�nition 1.4. For m ∈ M , {XH(m) | H ∈ C∞(M)} is an (even-dimensional)
vector space. We denote its dimension by rkm{·, ·} and call it the rank of {·, ·} at
m. The rank of {·, ·}, denoted by rk{·, ·}, is the maximum of all ranks rkm{·, ·} with
m ∈ M . For s ∈ N, we denote by M(s) the subset {m ∈ M | rkm{·, ·} ≥ 2s}. A
Poisson structure of constant rank is called a regular Poisson structure.
In this case the vector �eld XH for H ∈ C∞(M) is de�ned by XH := {H, ·} and
an integrable system on a Poisson manifold of rank 2r is de�ned to be a set of
s = dim(M)− r independent functions in involution.

Theorem 1.5 (Darboux). If the rank of {·, ·} is constant with value 2r in the neigh-
bourhood of a point m ∈ M , then there exist local coordinates (q1, . . . , qr, p1, . . . , pr,
z1, . . . , zs) around m such that the Poisson bracket takes the following canonical form:

{qi, qj} = {pi, pj} = {qi, zk} = {pi, zk} = {zk, zl} = 0 {qi, pj} = δij

for all 1 ≤ i, j ≤ r and 1 ≤ k, l ≤ s.

For us the key case is the symplectic case, i.e. a regular Poisson structure of rank r
where dim(M) = 2r. This means s = 0, i.e. there are no Casimir elements zi. In this
case the Poisson bracket can and is often described using a closed, non-degenerate
2-form ω on M . Then the vector �eld associated to a smooth function H : M −→ R
is given by

ωx(Y,XH(x)) = (dH)x(Y ) for all Y ∈ TxM
and the Poisson-bracket can be described as

{f, g} := Xf · g = ω(Xf , Xg).

Example 1.6. The Poisson bracket induced by the symplectic form ω =
∑
dpi∧dqi

on Rn × Rn is just the standard Poisson bracket

{f, g} =
n∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (1.3)

A general reference for Poisson varieties is for example [Van96].
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1.3 Integrable systems

Theorem 1.7 (Liouville, [Van08]). Let (M, {·, ·}) be a Poisson manifold of rank 2r,
s = dim(M)− r. Suppose we are given a point m ∈M and s functions f1, . . . , fs in
involution with di�erentials df1, . . . , dfs independent at m. Then the integral curve,
starting at m, of each of the Hamiltonian vector �elds Xfi can be obtained locally by
using only algebraic operations, the implicit function theorem and integration.

This leads us to the following de�nition:

De�nition 1.8. Let us call an s-tuple of functions F = (f1, . . . , fs) onM independent
when the open subset UF := {m ∈M | df1(m) ∧ · · · ∧ dfs(m) 6= 0} is dense in M .
Let (M, {·, ·}) be a Poisson manifold of rank 2r, s = dim(M) − r. Then an s-tuple
F = (f1, . . . , fs) of involutive and independent functions on M is called (Liouville)
integrable and (M, {·, ·}, F ) is a (Liouville) integrable system. The vector �elds Xfi

are then called integrable vector �elds and the map F is called the momentum map.

Theorem 1.9 (Liouville theorem: Liouville, Mineur, Arnold, [Van08]). Let (M, {·, ·}, F )
be a real integrable system, where F = (f1, . . . , fs), and consider a point m ∈
UF ∩M(r), where 2r denotes the rank of {·, ·}. Denote by Fm the connected com-
ponent of F−1(F (m)) ∩ UF ∩M(r) containing m. Then:

1. If Fm is compact, then it is di�eomorphic to a torus T r = (R/Z)r.

2. If Fm is not compact, but the �ow of each of the vector �elds Xfi is complete
on Fm, then Fm is di�eomorphic to a cylinder Rr−q × T q, (0 ≤ q < r).

In both cases the di�eomorphism can be chosen in such a way that the vector �elds
Xf1 , . . . , Xfs are mapped to linear (i.e. translation invariant) vector �elds.

A proof of this can be found for example in [Arn89].

1.4 First examples

Here are three examples of integrable systems on a symplectic manifold:

Example 1.10. 1. The Hamiltonian

H =
1

2
p2 +

1

2
q2

gives the di�erential system

q̇ = p, ṗ = −q

describing n independent harmonic oscillators. It has n independent Poisson
commuting �rst integrals, namely

fi =
1

2
p2
i +

1

2
q2
i , 1 ≤ i ≤ n,

the energy of the ith oscillator, hence it is completely integrable.

4



2. The spherical pendulum:

The restriction of the symplectic form on R3 × R3 to

TS2 = {(p, q) ∈ R3 × R3 | ‖q‖2 = 1 and q · p = 0}

continues to be a symplectic form.

The Hamiltonian
H =

1

2
‖p‖2 − Γ · q

then de�nes the di�erential system

q̇ = p, ṗ = Γ− (q · Γ + ‖p‖2)q.

It describes the motion of a mass moving on the surface of a sphere under the
gravitational force Γ. Besides the Hamiltonian itself, it has the �rst integral

K = (p× q) · Γ,

the angular momentum with respect to the axis Γ. Thus, the spherical pendu-
lum also is an integrable system.

More details about this example can be found in [Knö86].

3. A rigid body with mass 1, centre of gravity G �xed at point O in a constant
gravitational �eld, can be described as follows:

Use a frame attached to the rigid body. Then the constant gravitational �eld
becomes a vector Γ(t) depending on time. Denote by Ω the instantaneous
rotation, and by M the angular momentum of the solid. They are connected
via the relationM = J ·Ω, where J is the matrix of inertia of the solid, a real,
constant, symmetric matrix.

Then the total energy of the solid is

H(Γ,M ) =
1

2
M ·Ω + Γ ·L

(with L := O −G) leading to the equations of motion

Γ̇ = Γ×Ω

Ṁ = M ×Ω + Γ×L.

Such a rigid body is called Kovalevskaya top if the matrix of inertia is given by
J =

(
2

2
1

)
w.r.t. an orthonormal basis whose �rst vector is collinear with L.

If we �x L =
(
−1
0
0

)
and write in the same basis

Ω =

pq
r

 , Γ =

γ1

γ2

γ3

 ,

5



Figure 1.1: The rigid body

then
K = |(p+ iq)2 + (γ1 + iγ2)|2

is a �rst integral of the system, called the Kovalevskaya integral.

Some more details on this example can be found in [Aud08], an extensive
treatise in [Aud96] or [Kov89].

1.5 Algebraic integrability

We now discuss the notion of algebraic integrability. The idea is to consider complex
integrable systems, whose (complex) geometry is the best possible analogue of the
(real) geometry that appears in the Arnold-Liouville theorem. This idea goes back
to Kovalevskaya ([Kov89]) and was revived by Adler and van Moerbeke ([AvMV04]).

De�nition 1.11. Let (M, {·, ·}, F ) be an integrable system, where M is a non-
singular a�ne variety and F = (f1, . . . , fs). We say that (M, {·, ·}, F ) is an algebraic
completely integrable system or an a.c.i. system if for generic m ∈ M the invariant
manifold Fm is an a�ne part of an abelian variety and the Hamiltonian vector �elds
Xfi are translation invariant, when restricted to these tori.

In our examples from the last section we can see that not every real integrable system
is a.c.i. after complexi�cation:
For a single harmonic oscillator the generic invariant manifold looks like

{(p, q) ∈ C2 | p2 + q2 = m}, m 6= 0.

While this describes a circle over R, over C it is isomorphic to

{(p′, q′) ∈ C2 | p′ · q′ = m}, m 6= 0 (set p′ = p+ iq and q′ = p− iq),
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i.e. isomorphic to C∗ (via projection to one variable) which is a complex abelian Lie
group but not an open subset of an abelian variety.
In the case of the spherical pendulum the generic �bre is isomorphic to C∗ ×A with
A an a�ne part of an elliptic curve, while the Kovalevskaya top is indeed a.c.i..
So it might be the �better� notion to talk about semi-abelian varieties (i.e. extensions
of abelian varieties by some (C∗)r), and generalised algebraic complete integrability,
where the invariant manifold Fm only has to be a�ne part of a semi-abelian vari-
ety (c.f. the PhD thesis of Michael Semmel [Sem12] for more details about this topic).

The example of the Kovalevskaya top was found by a method developed by Ko-
valevskaya ([Kov89]) to show that a given Liouville integrable system F = (H =
f1(x1, . . . , x2n), . . . ,
fn(x1, . . . , x2n)) is a.c.i.. A modern treatment can be found in [AvMV04].
Reproducing the proof of the Liouville theorem over C one arrives (in the symplectic
case) at

Theorem 1.12 (Complex Liouville theorem, [Van08]). Let A ∈ C2n be a non-
singular a�ne variety of dimension n which supports n holomorphic vector �elds
V1, . . . , Vn and let ϕ : A −→ CN ⊂ PN be an embedding. We de�ne ∆ = ϕ(A) \ ϕ(A)
and denote the union of all irreducible components of ∆ of dimension r − 1 by ∆′.
Suppose the following:

1. The vector �elds commute pairwise, [Vi, Vj] = 0, for 1 ≤ i, j ≤ n.

2. At every point m ∈ A the vector �elds V1, . . . , Vn are independent.

3. The vector �eld ϕ∗V1 extends to a vector �eld V1 which is holomorphic on a
neighbourhood of ∆′ in PN .

4. The integral curves of V1 that start at points m ∈ ∆′ go immediately into ϕ(A).

Then ϕ(A) is an abelian variety of dimension r and the vector �elds ϕ∗V1, . . . , ϕ∗Vr
extend to holomorphic (hence linear) vector �elds on ϕ(A). Moreover, ∆′ = ∆.

This theorem can be used to show algebraic complete integrability of a given weighted
homogeneous Liouville integrable system F = (H = f1(x1, . . . , x2n), . . . ,
fn(x1, . . . , x2n)) in the following steps:
Let ν = (ν1, . . . , ν2n) be a weight-vector such that f1, . . . , fn are quasi-homogeneous
with respect to these weights.

1. Try and �nd Laurent series solutions

xi(t) =
∞∑
k=0

x
(k)
i tk−νi , i = 1, . . . , 2n

solving the di�erential equation

ẋ = {H,x}.
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This gives polynomial equations for the x(0)
i , namely

νix
(0)
i + gi(x

(0)
1 , . . . , x

(0)
2n ) = 0, i = 1, . . . , 2n (1.4)

where gi = {H, xi}. The zero locus I of (1.4) is called the indicial locus of F .
Decompose I into irreducible components (for n = 2 these will be just points).
Now for each m ∈ I compute the Kovalevskaya matrix

K(m)ij =
∂gi
∂xj

(m) + νiδij, 1 ≤ i, j ≤ 2n.

We are only interested in the principal balances of F , i.e. the solutions corre-
sponding to the irreducible components I(1), . . . , I(d) of I for which:

• K(m) has 2n−1 non-negative integer eigenvalues (counted with algebraic
multiplicities).

• K(m) is diagonalisable for all m ∈ I(j) and

• I is non-singular at all point of I(j).

For each principal balance I(j) compute the �rst kp + 1 terms (where kp is
the maximal eigenvalue of K(m), m ∈ I(j)) of the series x(t; I(j)) starting
at I(j) by substituting the Laurent polynomials (up to the term x(kp)) in the
di�erential equation ẋ = {H,x}. There will be 2n−1 free parameters showing
up in the series x(t; I(j)). Each (formal) Laurent-series obtained this way will
automatically be convergent.

2. To embed the �bre F c := F−1(c) into projective space, choose a pole vector
ρ = (ρ1, . . . , ρd) with ρi non-negative integers (ρ = (3, 0, . . . , 0) will always be
enough). Compute a C-basis z0 = 1, . . . , zN of the vector space

Zρ := {z ∈ C[x1, . . . , x2n] | ordt=0 z(x(t; I(j))) ≥ −ρi for 1 ≤ j ≤ d}

organising computations by weight. For su�ciently big ρ we obtain an isomor-
phic embedding

ϕc : F c −→ PN

x 7−→ (1 : z1(x) : · · · : zN(x)).

De�ne Ac := ϕc(F c), ∆c := ϕc(F c) \ ϕc(F c) and ∆′c as the union of all
irreducible components of ∆c of dimension n− 1.

3. Prove that the vector �eld ϕ∗XH extends to a holomorphic vector �eld on PN
by showing that the Wronskians W (zi, zj) := żizj − ziżj are expressible as a
quadratic polynomial in the zk

W (zi, zj) =
N∑

k,l=0

αklijzkzl
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(where each αklij depends on the values of c only) either by explicit computation
or by more abstract arguments if possible. It is enough to do this in two a�ne
charts zi 6= 0.

4. Show that the integral curves of XH starting at points m ∈ ∆′ do immediately
go into ϕc(F c). More details on this step can be found in [AvMV04], Chapter
7.

If one succeeds doing all of these steps, then Ac is an abelian variety and all the the
vector �elds ϕ∗Xfi extend to linear vector �elds on Ac i.e. the system is algebraic
completely integrable by the complex Liouville theorem.

This is the method Kovalevskaya essentially used to construct her top (c.f. Section
1.4).

1.6 About (non-)integrability

One question arising naturally is the following: Given a Hamiltonian H on M , can
it be completed to an integrable system f1 = H, f2, . . . , fn? In this case, H is called
integrable, and non-integrable otherwise.
While it is in principle clear how to prove integrability (just write down the necessary
�rst integrals), it is not obvious how to prove non-integrability.
There are powerful methods of Ziglin ([Zig82], [Zig83]) considering the monodromy
group of variational equations along a particular solution and generalisations by
Morales-Ruiz and Ramis ([MR99], [MRR01]) using di�erential Galois theory that
can be used e�ectively to prove non-integrability in many cases.

We are especially interested in polynomial integrable systems on C2n. Such polyno-
mial integrable systems are however very rare.
Maria Przybylska studied (for example in [Prz07]) Hamiltonians describing a particle
in a potential

H =
1

2

n∑
i=1

p2
i + V (q). (1.5)

A Darboux point is a point d ∈ Pn−1
C , such that V ′(d) = d in Pn−1. For each of these

Darboux points we choose a representative in d ∈ Cn such that V ′(d) = d in Cn. In
the case of a homogeneous potential the Kovalevskaya matrix is given by

K(d) = V ′′(d)− id .

Denote its n−1 nontrivial eigenvalues by Λ1(d), . . . ,Λn−1(d) (the nth so-called trivial
eigenvalue is always Λn(d) = k − 1). Let λi(d) := Λi(d) + 1 be the corresponding
eigenvalues of the Hessian V ′′(d). We call Λi the Kovalevskaya exponents of V .
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She proves that potentials with the maximal number of exactly (k−1)n−1
k−2

Darboux
points and all the Kovalevskaya exponents di�erent from zero form a non-empty
open set in the space of all homogeneous polynomials of degree k.
In the following she identi�es potentials that only di�er by an orthogonal linear
transformation of coordinates and states the following theorem:

Theorem 1.13 (Theorem 4 in [Prz07]). Among Hamiltonian systems given by (1.5)
with homogeneous potentials of �xed degree k > 2 admitting the maximal number of
Darboux points only a �nite number (of equivalence classes) is integrable.

In her proof the following theorem of Morales-Ruiz and Ramis is needed:

Theorem 1.14 ([MRR01]). If the Hamiltonian system given by (1.5) with the poly-
nomial homogeneous potential V (q) of degree k > 2 is meromorphically integrable in
the Liouville sense, then values of (k, λi) for i = 1, . . . , n belong to the following list

1. (k, k
2
p(p− 1) + p)

2. (k, k−1
2k

+ p(p+ 1)k
2
)

3. (3, 1
6
(1 + 3p)2 − 1

24
)

4. (3, 3
32

(1 + 4p)2 − 1
24

)

5. (3, 3
50

(1 + 5p)2 − 1
24

)

6. (3, 3
50

(2 + 5p)2 − 1
24

)

7. (4, 2
9
(1 + 3p)2 − 1

8
)

8. (5, 5
18

(1 + 3p)2 − 9
40

)

9. (5, 1
10

(2 + 5p)2 − 9
40

)

where p is an integer.

She derives several relations among the Λ(d) for all Darboux points d of the potential,
in particular ∑

d∈DV

n−1∑
i=1

1

Λi(d)
= −(k − 1)n − n(k − 2)− 1

(k − 2)2
(1.6)

where DV is the set of all Darboux points of V and concludes that there are only
�nitely many possibilities to solve equation (1.6) with values from Theorem 1.14.
Now she claims that these �nitely many solutions correspond only to a �nite number
of (equivalence classes of) potentials, although she only explains how to reconstruct
the potential from the spectra of K(d), d ∈ DV in the cases n = k = 3 in [Prz09a]
and for n = 2 in [MP05].

The usefulness of this result is stressed by the following fact: A polynomial potential
V (q) can be written as a sum of homogeneous components V (q) = Vmin(q) + · · · +
Vmax(q) where Vmin(q) and Vmax(q) are the homogeneous components of the lowest
and the highest order, respectively. By scaling the coordinates (i.e. replacing q by
λq) and looking at the limits λ→ 0 and λ→∞, one sees: If the Hamiltonian (1.5)
with polynomial potential V (q) is integrable, then so are the homogeneous polyno-
mial potentials Vmin(q) and Vmax(q).
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In the following papers she gives lists of all integrable potentials for certain values of
n and k:
In [MP04] Przybylska and Maciejewski describe all integrable Hamiltonians of this
type for n = 2, k = 3, which are up to coordinate transformation the following �ve
potentials:

V1 = q3
1

V2 =
1

3
q3

1 +
1

3
q3

2

V3 =
1

2
q2

1q2 + q3
2

V4 =
1

2
q2

1q2 +
8

3
q3

2

V5 =

√
−3

18
q3

1 +
1

2
q2

1q2 + q3
2

which actually all had been known for a long time. Potential V1 depends on one
variable, potentials V2 to V4 are of Hénon-Heiles type. The �fth one was discovered
over thirty years ago by Dorizzi, Grammaticos and Ramani in 1982 ([DGR82]). Let
us call this one the DGR-system in the following. We will revisit potentials V3 to V5

in Chapter 6 after a slight change of coordinates.
In [Prz09a] she found all integrable potentials for n = k = 3 with the maximal
number of Darboux points.
In [Prz09b] she classi�es the non-generic potentials for these values of n and k.
In [MP05] Przybylska and Maciejewski analyse the case n = 2, k = 4.

In their paper [SvS13] Michael Semmel and Duco van Straten examined the DGR-
system and an integrable (but non-homogeneous) deformation of it using Kovalevs-
kayas method described in Section 1.5. They showed

Theorem 1.15. The system of Dorizzi-Grammaticos-Ramani is algebraic completely
integrable. Its general �bre is isomorphic to A\D, where A is an abelian surface and
D a curve of geometric genus 4 having a singularity of type D4. The Hamiltonian
vector �elds extend to linear vector �elds on A and D puts a (1,6)-polarisation on
A. If the deformation parameter a = 0 (i.e. for the potential V5 given above), A is
isomorphic to the self-product of the elliptic curve with an automorphism of order 6.

Since the �bres of algebraically completely integrable systems complete to abelian
varieties, one is interested in studying these in the following chapters. The DGR-
system gives a particular interest in (1,6)-polarised abelian surfaces. In Chapter 5
we describe their equations and their moduli space and we will �nd a codimension
one subset which contains the DGR-system.
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2 Preliminaries about abelian
varieties

In this chapter we give some basic information and notation about abelian varieties.
More details can be found in the appendix and in the book [BL04], which serves as
our standard reference and where proofs of most statements can be found.

2.1 Complex tori

The quotient of a complex vector space V ∼= Cg by a lattice Z2g ∼= Λ ⊂ V is
an abelian compact complex Lie group (with respect to the operation + induced
from the vector space), called a complex torus X = V/Λ. We denote the canonical
projection by π : V −→ X, which also is the universal covering of X as a topological
space.

Proposition 2.1. The n-th singular cohomology group Hn(X,Z) of a complex torus
X is isomorphic to the group Altn(Λ,Z) of Z-valued alternating linear n-forms on
its lattice Λ.

Proof. For any su�ciently nice topological space X (in particular a complex torus
homeomorphic to (S1)2g) we have

H1(X,Z) ∼= Hom(π1(X),Z).

Since for a complex torus π1(X) ∼= Λ, we get that H1(X,Z) ∼= Hom(Λ,Z) ∼=
Alt1(Λ,Z).
The rest follows by induction on the dimension using the Künneth formula.

2.2 Line bundles on complex tori and the

Appell-Humbert-Theorem

An abelian variety is a complex torus which can be embedded into projective space,
i.e. which carries an ample line bundle. For this reason we will have a closer look at
line bundles on complex tori.

Recall that a hermitian form on a vector space V is a map H : V × V −→ C that is
C-linear in the �rst argument and satis�es H(v, w) = H(w, v) for all v, w ∈ V .
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De�ne the Néron-Severi group NS(Λ) to be the (additive) group of hermitian forms
H : V × V −→ C with ImH(Λ,Λ) ⊆ Z. It is isomorphic to the group of R-valued
alternating forms E on V satisfying E(Λ,Λ) ⊆ Z and E(iv, iw) = E(v, w) via

H 7→ E = Im(H).

By restriction to Λ, one can see NS(X) as a subgroup of H2(X,Z) ∼= Alt2(Λ,Z). To
each line bundle L on X we can associate an element of NS(Λ) ⊆ H2(X,Z), called
its �rst Chern class.

A semicharacter for a hermitian form H ∈ NS(Λ) is a map χ : Λ −→ S1 ⊂ C∗
satisfying

χ(λ+ µ) = χ(λ)χ(µ) exp(πi ImH(λ, µ)) for all λ, µ ∈ Λ.

We de�ne
P(Λ) := {(H,χ) | H ∈ NS(Λ), χ semicharacter for H}.

Obviously P(Λ) is a group with respect to the composition

(H1, χ1) ◦ (H2, χ2) = (H1 +H2, χ1χ2).

Theorem 2.2 (Appell-Humbert-Theorem). There is an isomorphism

P(Λ) −→ Pic(X).

We will denote the line bundle associated to a pair (H,χ) by L(H,χ).

Recall that the �rst Chern class H of a line bundle L on X is a hermitian form on V ,
whose alternating form E = ImH takes integer values on the lattice Λ. According
to the elementary divisor theorem, there is a basis λ1, . . . , λg, µ1, . . . , µg � called
symplectic basis � with respect to which E is given by the matrix(

0 D
−D 0

)
,

where D = diag(d1, . . . , dg) with non-negative integers dj satisfying dj|dj+1 for j =
1, . . . , g − 1. The elementary divisors d1, . . . , dg are uniquely determined by L. We
call D or the tuple (d1, . . . , dg) the type of L.

Proposition 2.3. L is ample if and only if di > 0 for all i.

2.3 Certain Subgroups

For a line bundle L on X we de�ne

K(L) := {x ∈ X | t∗xL ' L},
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where
tx : X −→ X, y 7−→ y + x

is the translation by x. Clearly K(L) is a subgroup of X.
If L = L(H,χ), we set

Λ(L) := {v ∈ V | ImH(v,Λ) ⊆ Z}.

Then K(L) can be described as

K(L) = Λ(L)/Λ.

Since K(L) only depends on H = c1(L), we sometimes write K(H) instead of K(L).

2.4 Decompositions and characteristics

Let L be a ample line bundle on X. A decomposition for L (or H or E) is a direct
sum decomposition

Λ = Λ1 ⊕ Λ2,

where Λ1 and Λ2 are isotropic with respect to E, i.e. E|Λ1×Λ1 = 0 and E|Λ2×Λ2 = 0.
Such a decomposition always exists, because Λ = 〈λ1, . . . , λg〉 ⊕ 〈µ1, . . . , µg〉 is a
decomposition for L whenever λ1, . . . , λg, µ1, . . . , µg is a symplectic basis. The other
way around, each decomposition is of this form for some choice of symplectic basis.
A decomposition

V = V1 ⊕ V2

with real subvector spaces V1 and V2 is called a decomposition for L if (V1 ∩ Λ) ⊕
(V2 ∩ Λ) is a decomposition of Λ for L. Clearly a decomposition of V for L is a
decomposition into maximal isotropic subvector spaces, but not every decomposition
of V into maximal isotropic subvector spaces is a decomposition for L.

Lemma 2.4. Let L be an ample line bundle on X and Λ = Λ1⊕Λ2 a decomposition
for L with induced decomposition V = V1 ⊕ V2. Then:

1. Λ(L) = Λ(L)1 ⊕ Λ(L)2 with Λ(L)i = Vi ∩ Λ(L) for i = 1, 2.

2. K(L) = K1 ⊕K2 with Ki = Λ(L)i/Λi for i = 1, 2.

3. Ki ' Zg/DZg =
⊕g

j=1 Z/djZ for i = 1, 2 if the line bundle L is of type
D = diag(d1, . . . , dg)

The decompositions of Lemma 2.4 are also called decompositions for L.

For each non-degenerate H ∈ NS(X) and each decomposition V = V1⊕V2 for H we
can de�ne a map χ0 : V −→ S1 by

χ0(v) = exp(πiE(v1, v2)),

where v = v1 + v2 with vi ∈ Vi. χ0|Λ is a semicharacter for H. Let L0 = L(H,χ0)
denote the corresponding line bundle. With this notation we have:
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Lemma 2.5. Suppose H is a non-degenerate hermitian form on V and V = V1⊕ V2

a decomposition for H. Then:

1. L0 is the unique line bundle in PicH(X) whose semicharacter is trivial on
Λi = Vi ∩ Λ for i = 1, 2.

2. For every L = L(H,χ) there is a point c ∈ V , uniquely determined up to
translation by elements of Λ(L), such that L ' t∗c̄L0 or equivalently χ =
χ0 exp(2πiE(c, ·)).

We call c a characteristic of the line bundle L with respect to the chosen decomposition.
If a decomposition for L is �xed, we speak only of a characteristic c of L.

2.5 Theta functions

If L = L(H,χ) is a line bundle on X, then its space of global sections H0(L) can be
identi�ed with the set of holomorphic functions ϑ : V −→ C satisfying

ϑ(v + λ) = aL(λ, v)ϑ(v) for all v ∈ V, λ ∈ Λ,

where aL : Λ× V −→ C∗ is a factor of automorphy for L(H,χ) given by

aL(λ, v) = χ(λ) exp(πH(v, λ) +
π

2
H(λ, λ)).

Such a function is called a theta function for aL.
For a characteristic c ∈ V of L with respect to the decomposition V = V1 ⊕ V2 we
de�ne a function

ϑc(v) = exp
(
−πH(v, c)− π

2
H(c, c) +

π

2
B(v + c, v + c)

)
·∑

λ∈Λ1

exp
(
π(H −B)(v + c, λ)− π

2
(H −B)(λ, λ)

)
where B is the C-linear extension of the symmetric form H|V2×V2 to V × V .
We can de�ne the so called canonical theta functions by

ϑcw̄(v) = aL(w, v)−1ϑc(v + w).

Theorem 2.6. Suppose L = L(H,χ) is an ample line bundle on X and let c be
a characteristic with respect to a decomposition V = V1 ⊕ V2 for L. Then the set
{ϑcw̄ | w̄ ∈ K(L)1} is a basis of the vector space H0(L).
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2.6 Polarised abelian varieties

A polarisation on a complex torus X = V/Λ is by de�nition the �rst Chern class
H = c1(L) of an ample line bundle L on X. By abuse of notation sometimes the line
bundle L itself is considered as a polarisation. The type of L is called the type of the
polarisation. A polarisation of type (1, . . . , 1) is called a principal polarisation.
An abelian variety is de�ned to be a complex torus X admitting a polarisation
H = c1(L). The pair (X,H) or (X,L) is called a polarised abelian variety.
A homomorphism of polarised abelian varieties f : (Y,M) −→ (X,L) is a homomor-
phism of complex tori such that f ∗c1(L) = c1(M). This does not mean that f ∗L = M
but only that f ∗L and M are analytically equivalent.

A line bundle L on a complex torusX = V/Λ induces in the usual way a meromorphic
map X 99K P(H0(L)∗). After a choice of basis ϑ0, . . . , ϑN of H0(L), ϕL can be
described as a map

ϕL : X 99K PN ,

given by
ϕL(v̄) = (ϑ0(v) : · · · : ϑN(v)),

whenever not all ϑj vanish simultaneously at v. This version of ϕL depends on the
choice of the basis of H0(L) and a change of this basis means composing ϕL with a
projective transformation of PN .
There are several useful theorems which imply that ϕL, under certain conditions, is
base point free or an embedding. For more details see Section 7.3.

2.7 Theta- and Heisenberg-groups

Let L be a (very) ample line bundle on an abelian variety X = V/Λ and ϕL : X 99K
PN the corresponding rational map (embedding). Recall the group K(L) consisting
of all x ∈ X with t∗xL ' L. We will see that the translations of X by elements of
K(L) extend to linear automorphisms of PN . This leads to a projective representation
ρ : K(L) → PGLN(C), with respect to which the embedding ϕL is equivariant. It
will be an important tool in the investigation of equations and geometric properties
of the embedded abelian variety ϕL(X) in PN . We will de�ne an extension group
G(L), the so called theta group of L, for which ρ lifts to an ordinary representation
ρ̃ : G(L) → GLN(C). We will also introduce the Heisenberg group H(L) which is
an abstract version of the theta group depending only on the type of L, plus a
corresponding representation.

2.7.1 Theta-group

De�nition 2.7. The theta-group G(L) of a line bundle L is the set of all pairs (ϕ, x)
where x ∈ X and ϕ : X → X is a linear automorphism of L over x, i.e. such that
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the diagram
L

ϕ //

��

L

��
X

tx
// X

commutes. It is a group with respect to the composition (ϕ1, x1)(ϕ2, x2) = (ϕ1ϕ2, x1+
x2).

We write (ϕ, x) for convenience, although the automorphism ϕ determines the point
x uniquely.

Proposition 2.8. The sequence

1 −→ C∗ i−→ G(L)
p−→ K(L) −→ 0

with i(α) = (α, 0) and p((ϕ, x)) = x is exact and G(L) is a central extension of K(L)
by C∗.

Since G(L) is a central extension of abelian groups, its commutator induces a map

eL : K(L)×K(L) −→ C∗.

The map eL can be expressed in terms of the �rst Chern class H of L as follows:

Proposition 2.9. For all w1, w2 ∈ Λ(L)

eL(w̄1, w̄2) = exp(−2πi ImH(w1, w2)).

The map eL is a multiplicative alternating form with values in C∗. We will come
back to this in Section 7.4.3.

2.7.2 Canonical representation of the theta group

Assume s is a section of the line bundle L and (ϕ, x) ∈ G(L). As the following
commutative diagram shows

L
ϕ // L

X
tx
//

s

OO

X

ϕst−x

OO

ϕst−x is also a section of L. The assignment ((ϕ, x), s) 7→ ϕst−x de�nes an action of
G(L) on H0(L). The corresponding map

ρ̃ : G(L) −→ GL(H0(L))

is called the canonical representation of the theta group G(L).
Since C∗ acts by multiplication on H0(L), ρ̃ induces a projective representation

ρ : K(L) −→ PGL(H0(L)).
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2.7.3 The Heisenberg group

For an ample line bundle L and a basis ϑ0, . . . , ϑN of H0(L) the associated rational
map is given by ϕL : X 99K PN , v̄ 7−→ (ϑ0(v) : · · · : ϑN(v)). The group K(L) acts on
both sides, by translation on X and via the representation ρ on PN . The map ϕL is
equivariant with respect to these actions. In particular the image ϕL(X) is invariant
under the action of K(L) which can be described explicitly as a matrix with respect
to a basis of H0(L) ([BL04] Proposition 6.4.2). This can be used for example to
derive information on the equations for ϕL(X).
However, the projective variety ϕL(X) does not depend on the particular choice of
L within its algebraic equivalence class, whereas the formula describing the action of
K(L) on H0(L) does. Thus it would be desirable to have a description of the theory
of theta functions depending only on the polarisation. This leads to the theory of
Heisenberg groups which we will discuss now.
Let H ∈ NS(X) be a polarisation of type D = diag(d1, .., dg). Then de�ne the group

K(D) := Zg/DZg ⊕ Zg/DZg

and as a set
H(D) := C∗ ×K(D).

The Heisenberg group of D is the set H(D) together with the following group struc-
ture: Let f1, . . . , f2g be the standard basis of K(D). De�ne the alternating, Z-linear
map eD : K(D)×K(D) −→ C∗ via

eD(fν , fµ) =


exp(−2πi

dν
) µ = g + ν

exp(2πi
dν

) ν = g + µ

1 else

and set for any (α, x1, x2), (β, y1, y2) ∈ H(D):

(α, x1, x2) · (β, y1, y2) =
(
αβeD

(
(x1, 0), (0, y2)

)
, x1 + y1, x2 + y2

)
.

Lemma 2.10. With this composition H(D) is a group and the following sequence is
exact

1 −→ C∗ i−→ H(D)
p−→ K(D) −→ 0

and H(D) is a central extension.
Here, i(α) = (α, 0, 0) and p(α, x1, x2) = (x1, x2). The neutral element of H(D) is
(1, 0, 0) and (α, x1, x2)−1 = (α−1eD(−(x1, 0), (0, x2)),−x1,−x2).

An isomorphism b : G(L) −→ H(D) that restricts to the identity on C∗ is called a
theta structure. Such a theta structure induces an isomorphism b̄ : K(L) −→ K(D)
such that the following diagram commutes:

1 // C∗ // G(L) //

b
��

K(L) //

b̄
��

0

1 // C∗ //H(D) // K(D) // 0

18



Lemma 2.11. For any theta structure b : G(L) −→ H(D), the induced map

b̄ : K(L) −→ K(D)

is a symplectic isomorphism with respect to the forms eL and eD, i.e.

b̄∗eD = eL.

We will come back to this topic in Section 7.4.3.

Theorem 2.12. Every ample line bundle L on X of type D admits exactly

#Sp(D) · h0(L)2

theta structures, where Sp(D) is the group of all automorphisms of K(D) which
preserve the alternating form eD.
In particular, G(L) is isomorphic to H(D).

2.7.4 Schrödinger representation

Now we build a substitute for the canonical representation ρ̃ : G(L) −→ GL(H0(L))
for the Heisenberg group.

Let C(Zg/DZg) be the C-vector space of complex valued functions on Zg/DZg. A
basis of this vector space is given by {δx | x ∈ Zg/DZg} where

δx(y) =

{
1 x = y

0 else.

The group H(D) acts on this vector space via

(α, x1, x2) · γ = αeD((·, 0), (0, x2))γ(·+ x1).

The induced representation

ρ̃ : H(D) −→ GL(C(Zg/DZg))

is called the Schrödinger representation of H(D).
Let b : G(L) −→ H(D) be a theta structure, b̄ : K(L) −→ K(D) = (Zg/DZg)1 ⊕
(Zg/DZg)2 the induced symplectic isomorphism. De�ne a decomposition K(L) =
K1 ⊕ K2 by Kj := b̄−1((Zg/DZg)j). Let c be a characteristic for L with respect
to this decomposition. According to Theorem 2.6 the vector space H0(L) has a
basis indexed by K1. Then b̄ induces an isomorphism β : H0(L) −→ C(Zg/DZg) via
β(ϑcx) = δb̄(x).
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Proposition 2.13. The following diagram commutes:

G(L)×H0(L)
ρ̃ //

(b,β)

��

H0(L)

β

��
H(D)× C(Zg/DZg)

ρ̃
// C(Zg/DZg)

This exactly means that there is an isomorphism between the Schrödinger represen-
tation ρ̃ : H(D) −→ GL(C(Zg/DZg)) and the canonical representation ρ̃ : G(L) −→
GL(H0(L)) in the category of representations. Because the centre C∗ of H(D) acts
by multiplication by a scalar, ρ̃ descends to a projective representation ρ : K(D) −→
PGLN(C) which is isomorphic to the representation K(L) −→ PGLN(C) of Section
2.7.2.

Example 2.14. Let X be an abelian surface, i.e. g = 2 and D =
(
d1 0
0 d2

)
. Then

H(D) = C∗ × (Z/d1Z× Z/d2Z)× (Z/d1Z× Z/d2Z)

and

eD((ν̄1, ν̄2, ν̄
′
1, ν̄
′
2), (µ̄1, µ̄2, µ̄

′
1, µ̄

′
2)) = exp

(2πi

d1

(ν ′1µ1 − ν1µ
′
1) +

2πi

d2

(ν ′2µ2 − ν2µ
′
2)
)

where νj, ν ′j, µj, µ
′
j are representatives in Z of ν̄j, ν̄ ′j, µ̄j, µ̄

′
j in Z/djZ.

The generators (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) of K(D) are represented
by σ1 = (1, 1, 0, 0, 0), σ2 = (1, 0, 1, 0, 0), τ1 = (1, 0, 0, 1, 0), τ2 = (1, 0, 0, 0, 1) in H(D).
Their images under ρ̃ act on {δ(ν1,ν2) | (ν1, ν2) ∈ Z2/DZ2} as follows:

σ1 : δ(ν1,ν2) 7−→ δ(ν1−1,ν2)

σ2 : δ(ν1,ν2) 7−→ δ(ν1,ν2−1)

τ1 : δ(ν1,ν2) 7−→ ξ−ν11 δ(ν1,ν2)

τ2 : δ(ν1,ν2) 7−→ ξ−ν22 δ(ν1,ν2)

where ξj = exp(2πi
dj

).

For (d1, d2) = (1, d) the elements σ1, τ1 ∈ GL(C(Zg/DZg)) are the identity. So, with
ξ = exp(2πi

d
) there are only two generators left, namely

σ : δν 7−→ δν−1

τ : δν 7−→ ξ−νδν .

We will write Hd for the subgroup of H(1, d) generated by σ and τ in the sequel. Hd

is a �nite group of order d3.
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2.7.5 Symmetric theta structures

If the line bundle L is symmetric, i.e. (−1)∗L ∼= L, we can get an even bigger group
acting on ϕL(X).
Think of K(L) as a group of translations of X, i.e. K(L) ⊆ Aut(X). Since
(−1)Xtx(−1)X = t−x, conjugation by elements of 〈(−1)X〉 leaves K(L) �xed. Hence
we can consider the semidirect product Ke(L) := K(L) o 〈(−1)X〉.
Similarly, we can construct the extended theta group Ge(L), Ke(D) and the extended
Heisenberg group He(D). They all sit in similar exact sequences and form central
extensions as their unextended analogues that we will not spell out, but in particular
He(D) is isomorphic to Ge(L).

De�nition 2.15. An extended theta structure is an isomorphism

be : Ge(L) −→ He(D),

which restricts to the identity on C∗.

Any extended theta structure can be restricted to a ordinary one, but not every
ordinary theta structure extends; it extends to an extended theta structure if and
only if it is symmetric, i.e. the following diagram commutes

G(L)

b
��

(−1)L // G(L)

b
��

H(D) ι
//H(D)

where ι((α, x, y)) = (α,−x,−y).
The Schrödinger representation can also be extended to He(D) via

ρ̃(ι) : δx 7−→ δ−x.

2.8 Moduli spaces

De�ne a polarised abelian variety of type D with symplectic basis to be a triplet

(X,H, {λ1, . . . , λg, µ1, . . . , µg})

where X = V/Λ is an abelian variety, H a polarisation of type D on X, and
{λ1, . . . , λg, µ1, . . . , µg} a basis of Λ for H such that H is of the form

(
0 D
−D 0

)
with

respect to this basis.

The set
Hg := {Z ∈ Cg×g | Z> = Z, Im(Z) > 0}

is called the Siegel upper half space. It is a 1
2
g(g + 1)-dimensional open submanifold

of the vector space Cg×g.

21



The assignment
Φ: Z 7−→ (XZ , HZ , {columns of (Z,D)})

with ΛZ := (Z,D)Z2g, XZ := Cg/ΛZ and HZ the hermitian form described by
(Im(Z))−1 with respect to the standard basis of Cg, associates a polarised abelian
variety with symplectic basis to any point in Hg. The other way around, Riemann's
bilinear relations tell us that any polarised abelian variety with symplectic basis is
isomorphic to one in the image of Φ. Since for Z 6= Z ′ ∈ Hg the associated p.a.v.
with symplectic basis are never isomorphic, we have:

Proposition 2.16. Given a type D, the Siegel upper half space Hg is a coarse moduli
space for polarised abelian varieties of type D with choice of a symplectic basis.

If we do not include a symplectic basis in the datum but consider simply polarised
abelian varieties of a given type or abelian varieties with a level D-structure, we
obtain certain quotients of Siegel upper half space as moduli spaces.

Theorem 2.17. The normal complex analytic space AD := Hg/ΓD is a moduli space
for polarised abelian varieties of type D. Here

ΓD = {M ∈ R2g×2g |M
(

0 D
−D 0

)
M> =

(
0 D
−D 0

)
}

is the paramodular group acting on Hg via

M〈Z〉 = (aZ + bD)(D−1cZ +D−1dD)−1 for all M = ( a bc d ) .

A symplectic basis cannot be given in algebraic terms, but a level D-structure is kind
of the closest replacement for this notion.

Let (X = V/Λ, H) be a polarised abelian variety of type D = diag(d1, . . . , dg).
Recall the (multiplicative) alternating form eH : K(H) ×K(H) −→ C∗, eH(v̄, w̄) =
exp(−2πi ImH(v, w)). In Section 2.7.3 we introduced the group K(D) = (Zg/DZg)2

and the (multiplicative) alternating form eD : K(D) × K(D) −→ C∗. A level D-
structure on (X,H) is by de�nition a symplectic isomorphism b̄ : K(H) −→ K(D).
The symplectic isomorphism b̄ : K(H) −→ K(D) can be identi�ed with the ordered
set {b̄−1(f1), . . . , b̄−1(f2g)} where f1, . . . , f2g denotes the standard generators ofK(D).
This is a basis of K(L).

Theorem 2.18. The normal complex analytic space AD(D) := Hg/ΓD(D) with

ΓD(D) = {( a bc d ) ∈ ΓD | a− 1g ≡ b ≡ c ≡ d− 1g ≡ 0 mod D}

where we write a ≡ 0 mod D for a ∈ D · Zg×g is a moduli space for polarised
abelian varieties of type D = diag(d1, . . . , dg) with level D-structure. The embedding
ΓD(D) ↪→ ΓD induces a holomorphic map AD(D)→ AD of �nite degree.
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3 The moduli space of Heisenberg
invariantly embedded abelian
varieties

Given a polarised abelian variety A with a very ample line bundle L of type D, the
embedding

ϕL : A −→ PN

depends of course on the choice of a basis of H0(L). Two di�erent choices of a basis
lead to maps that di�er by a projective linear transformation.
In this section we want to �nd an algebraic description of the datum necessary to
describe a particular Heisenberg invariant embedding and derive a description of the
moduli space of Heisenberg invariantly embedded abelian surfaces of a given type D
as a quotient of Siegel upper half space (cf. Section 7.4).

3.1 The algebraic datum encoding an embedding

Lemma 3.1. The centraliser of H(D) in GLN(C) is C∗.

Proof. For D = diag(1, d) this can be seen as follows (a similar argument works in
general): Suppose β(ei) =

∑
j bijej. Then commutativity with σ, which sends ei to

ei−1, means that bi−1,j = bi,j+1 for all i and j, i.e. the entries of the matrix (bij)
for β are constant on diagonals. Commutativity with τ , where τ sends ei to ζ−id ei
(ζd = exp(2πi

d
)), translates to the condition that bij = 0 for i 6= j. So (bij) has to be

of the form c · id for c ∈ C∗.

Proposition 3.2. There is a 1-to-1-correspondence between Heisenberg invariant
embeddings ϕ : X −→ PN of an abelian variety X of type D and injective group ho-
momorphisms Zg/DZg −→ Zg/DZg⊕Zg/DZg which can be extended to a symplectic
automorphism of Zg/DZg ⊕ Zg/DZg.

Proof. Under which condition is an embedding Heisenberg invariant? In Section
2.7 we de�ned the groups G(L) and H(D) to be central extensions of K(L) resp.
K(D) = (Zg/DZg)2 by C∗. We de�ned a theta-structure to be a group isomor-
phism b : G(L) −→ H(D) that restricts to the identity on C∗ and saw that such a
theta structure always exists. A theta structure induces a symplectic isomorphism
b̄ : K(L) −→ K(D) (and any such symplectic isomorphism is induced by a theta
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structure) and an isomorphism of vector spaces β : H0(L) −→ C(Zg/DZg). These
isomorphisms make the following diagram commute

G(L)×H0(L) //

(b,β)

��

H0(L)

β

��
H(D)× C(Zg/DZg) // C(Zg/DZg).

where the horizontal arrows indicate the action of G(L) on H0(L) resp of H(D) on
C(Zg/DZg) as described in Section 2.7.
Given b, we can show that β is (up to multiplication by a constant) the unique vec-
tor space isomorphism making the above diagram commute, by the following argu-
ment: Suppose there are two di�erent vector space isomorphisms β1, β2 : H0(L) −→
C(Zg/DZg) making the above diagram commute. Then β̃ := β1 ◦ β−1

2 is an isomor-
phism of C(Zg/DZg) �tting into the following commutative diagram:

H(D)× C(Zg/DZg) //

(id,β̃)
��

C(Zg/DZg)

β̃
��

H(D)× C(Zg/DZg) // C(Zg/DZg).

This means that β̃ commutes with any element from H(D). By Lemma 3.1 this
means that β̃ is only multiplication by a constant.
From this we can see that the embedding is Heisenberg-invariant if and only if the
chosen basis of H0(L) is of the form c · β−1(δx), x ∈ Zg/DZg, c ∈ C∗, β and δx as
in Section 2.7. So for each β there is exactly one Heisenberg invariant projective
embedding ϕ : X −→ PN .

Now try and count such bases: The map β and thus the basis of H0(L) is completely
determined by b̄. Suppose we are given two symplectic isomorphisms b̄1, b̄2 : K(L) −→
K(D). Then their di�erence b̄1 ◦ b̄−1

2 is a symplectic automorphism of K(D).
But not all b̄ give di�erent bases because β only depends on b̄|K1 . More pre-
cisely: b̄1 and b̄2 give the same basis if and only if b̄−1

1 |(Zg/DZg)1 = b̄−1
2 |(Zg/DZg)1

where (Zg/DZg)1 is the �rst summand of K(D). These restricted maps live in
HomZ(Zg/DZg, K(L)) and are injective. By composition with one �xed symplec-
tic isomorphism b̄0 : K(L) −→ K(D) = (Zg/dZg)2 we obtain the desired result.

Remark 3.3. 1. For D = diag(1, d), the group K(D) is isomorphic to (Z/dZ)2

and any automorphism of this group is symplectic, so the group of symplectic
automorphisms of K(D) is isomorphic to GL2(Z/dZ).

2. In the case d = 6 the group GL2(Z/dZ) has 288 elements.

Since we will later look at abelian surfaces of type (1, d) (in particular of type (1,6)
in Chapter 5), the following fact is of interest:
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Lemma 3.4. Any injective group homomorphism from Z/dZ to (Z/dZ)2 can be
extended to an automorphism of (Z/dZ)2.

Proof. For any group monomorphism α : Z/dZ → (Z/dZ)2 the image α(1) is an
element of order d in (Z/dZ)2. Such an element is of the form (a, b) with a, b ∈ Z
and gcd(a, b, d) = 1. This means there are coe�cients s, t, u ∈ Z such that

sa+ tb+ ud = 1.

We claim that (a, b) and (−t, s) together generate (Z/dZ)2, so

α̃ : (Z/dZ)2 → (Z/dZ)2, (1, 0) 7→ (a, b), (0, 1) 7→ (−t, s)

is an automorphism extending α. For this, we look at the matrix

M =

(
a −t
b s

)
.

It has determinant equal to 1 ∈ Z/dZ, thus is invertible and the columns of any
invertible matrix in R2×2 (R any ring) generate the free module R2.

Example 3.5. For general diagonal matrix D not every injective group homomor-
phism Zg/DZg −→ Zg/DZg ⊕ Zg/DZg can be extended to an automorphism of
Zg/DZg ⊕ Zg/DZg:
Consider the case D = diag(2, 4). We write G := Z2/DZ2 ∼= Z/2Z × Z/4Z and
consider the monomorphism

α : G −→ G⊕G
given by α(e1) = 2f2 and α(e2) = f4, where e1, e2 and f1, f2, f3, f4 are generators
for the cyclic factors on the left- resp. right-hand side in the given order. This
monomorphism can not be extended to an automorphism of the right-hand group
because

(G⊕G)/α(G) ∼= Z/2Z× Z/2Z× Z/2Z = 〈f1〉 × 〈f̄2〉 × 〈f3〉.

But if there was an automorphism α̃ extending α, then α̃(e4) would need to have
order four in (G⊕G)/α(G) and there is no such element.

Corollary 3.6. So for D = diag(1, d) the number of embedding maps is exactly the
number of elements of order d in K(L) ∼= (Z/dZ)2.

If we only want to count images of such embeddings, there will be at most half as
many. To see this, consider any (symplectic) isomorphism b̄ : K(L) −→ (Zg/DZg)2.
Then −b̄ is another isomorphism. Let by e0, e1, . . . , eN be all elements of Zg/DZg
in a �xed ordering and let σi := b̄−1(ei). Then b̄ gives us the basis ϑσ0 , ϑσ1 , . . . , ϑσN ,
whereas −b̄ gives us the same basis but in a di�erent order ϑ−σ0 , ϑ−σ1 , . . . , ϑ−σN . If we
denote the corresponding coordinates of PN by xσ0 , . . . , xσN , then the linear projective
transformation converting one embedding into the other is given by ι : xi 7−→ x−i
(indices read as elements of Zg/DZg).
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Proposition 3.7. Let X be any abelian variety, ϕL : X −→ PN a H(D)-invariant
embedding. Then X := ϕL(X) is also invariant under ι.

Proof. Lemma 4.6.1 in [BL04] tells us that

X
tx //

ϕt∗xL !!

X

ϕL~~
PN

commutes for the right choice of bases of H0(L) and H0(t∗xL). Since two line bundles
L and L′ are algebraically equivalent if and only if L′ = t∗xL for some x ∈ X this
implies that the image X of ϕL in PN does not depend on L itself but only on its
algebraic equivalence class. So instead of the given line bundle L = L(H,χ) we can
consider the line bundle L0 = L(H,χ0) as described in Section 2.4 giving the same
embedding. The advantage of L0 is that it is symmetric and admits an extended
theta structure (proof of Theorem 6.9.5 in [BL04]). This means that the extended
Heisenberg group He(D) = 〈H(D), ι〉 acts on H0(L0) and X := ϕL0(X) is He(D)-
invariant.

3.2 The moduli space of Heisenberg invariantly

embedded abelian varieties of type D

In Proposition 3.2 we have seen that there is a 1-to-1-correspondence between Heisen-
berg equivariant embeddings ϕL : X −→ PN of a polarised abelian variety (X,L) of
type D and injective group homomorphisms Zg/DZg −→ K(L) which can be ex-
tended to a symplectic automorphism of K(L).
Such a monomorphism λ : Zg/DZg −→ K(D) can be identi�ed with the ordered
set {λ(f1), . . . , λ(fg)} where f1, . . . , fg denotes the standard generators of Zg/DZg.
Since λ can be extended to a symplectic automorphism, this is (the �rst) half of a
symplectic basis of K(D).
We de�ne an isomorphism of polarised abelian varieties with a half-basis similarly to
the de�nition made in Section 7.4.3 as an isomorphism of polarised abelian varieties
that maps the j-th element of the given half-basis of K(L) to the corresponding
element of the given half-basis of K(L′).
Given a symplectic isomorphism b̄ : K(L) → K(D), there is a symplectic basis
λ1, . . . , λg, µ1, . . . , µg of Λ for H such that b̄( 1

di
λi) = fi for 1 ≤ i ≤ g.

Now will use an argument similar to those we sketched in Section 7.4 (and which
can be found in more detail in [BL04], Chapter 8) to describe the moduli space of
Heisenberg invariantly embedded abelian varieties:
Every Z ∈ Hg determines a polarised abelian variety of type D with half-basis of
K(D):

Z 7−→
(
XZ , HZ ,

{
1
d1
λ1, . . . ,

1
dg
λg
})
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where (XZ , HZ , {λ1, . . . , λg, µ1, . . . , µg}) is the polarised abelian variety of type D
with symplectic basis of Proposition 7.26.
By what we said above it is clear that every polarised abelian variety with level
D-structure is isomorphic to one of these. Suppose that

ϕ :
(
XZ , HZ ,

{
1
d1
λ1, . . . ,

1
dg
λg
})
−→

(
XZ′ , HZ′ ,

{
1
d1
λ′1, . . . ,

1
dg
λ′g
})

is an isomorphism of polarised abelian varieties with a half-basis. Let A ∈ Cg×g be
the analytic and RT ∈ Q2g×2g the rational representation of ϕ. Then ϕ being an
isomorphism of polarised abelian varieties with half-basis translates to

1. A(Z ′, D) = (Z,D)RT (cf. Section 2.1) and

2. AZ ′D−1 ≡ ZD−1 mod ΛZ = (Z,D)Z2g.

Condition 2 is equivalent to

AZ ′D−1 − ZD−1 ∈ (Z,D)Z2g×g

or (after multiplying with D) to

AZ ′ − Z ∈ (Z,D)Z2g×gD. (3.1)

Now we will reformulate condition 1 writing RT =
(
R11 R12
R21 R22

)
with g × g-blocks Rij.

Looking only at the right block of condition 1 states

AZ ′ = ZR11 +DR21.

Plugging this in shows that (3.1) is equivalent to

(Z,D)
(
R11−1
R21

)
= Z(R11 − 1) +DR21 ∈ (Z,D)Z2g×gD.

Since (Z,D) encodes an isomorphism of R-vector spaces R2g −→ Cg it is invertible
and we arrive at (

R11−1
R21

)
∈ Z2g×gD.

Thus, the matrix R is an element of the group

ΓembD = {( a bc d ) ∈ ΓD | a− 1g ≡ b ≡ 0 mod D}

where we write a ≡ 0 mod D for a ∈ D · Zg×g.
Similarly to ΓD(D) in Chapter 7, ΓembD is a subgroup of �nite index in ΓD and acts
properly and discontinuously on Hg. So we obtain

Theorem 3.8. The normal complex analytic space AembD := Hg/Γ
emb
D is a moduli

space for polarised abelian varieties of type D = diag(d1, . . . , dg) with a Heisenberg
equivariant embedding map (i.e. a half-basis of K(D)). The embedding ΓembD ↪→ ΓD
induces a holomorphic map AembD → AD of �nite degree.
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4 Abelian surfaces

Given an embedding of an abelian variety ϕL : A → PN , it is natural to ask for
the geometrical properties of image. In particular, one would like to understand the
de�ning ideal of ϕL(A) and write down explicit equations. If we vary the abelian
variety A in its moduli space, the coe�cients of these equations will depend on the
moduli point.
Igusa has shown in [Igu72] that the moduli spaces AD and AD(D) etc. discussed in
Section 7.4 all are (possibly singular) quasi-projective varieties. These can be resolved
and compacti�ed in various ways to smooth projective varieties and the boundary
strata will correspond to certain singular degenerations of A. We refer to Hulek, Kahn
and Weintraub who in [HKW93] described certain non-singular compacti�cations ÃD
resp. ÃD(D) in the case of abelian surfaces.
It is of great interest to know if these moduli spaces are rational (i.e. birational to
Pn for some n) or unirational (X is called unirational, if there exists a dominant
rational map from Pn to X). If this is the case, one may hope to be able to write
down explicit equations for the image ϕL(A) ⊂ PN . Gritsenko has proven in [Gri94]
that Ãd := Ã(1,d) is not unirational for d ≥ 13 and d 6= 14, 15, 16, 18, 20, 24, 30, 36, by
constructing cusp forms of weight 3 with respect to the paramodular group ΓD(D),
while it was known that Ãd is rational or unirational for d = 1, 2, 3, 4, 5, 7, 9.
In this chapter we want to review embeddings of abelian surface A of type (1, d)
for d = 1, 2, 3, 4, 5. One always starts with a basis of H0(L) such that ϕL(A) is
Heisenberg-invariant in the sense of Section 2.7.4. We note that for a very ample line
bundle L of type (d1, d2) we have dim(H0(L)) = d1d2 so that the image

ϕL(A) ⊂ Pd1d2−1

is a surface of degree 2d1d2.
Caveat: Many authors write moduli space of abelian varieties with level structure,
but actually mean di�erent things. We adapted the notation to our de�nitions in
Section 7.4 and 3.1 as far as possible.

4.1 Polarisation of type (1,1)

A treatise of the principally polarised case can be found for example in [BL04] (Chap-
ter 10.2), but the analyses of the Kummer surface appearing goes back to the nine-
teenth century.
For an irreducible principal polarisation L, the map

ϕ = ϕL2 : A −→ P3
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factors via an embedding

ψ : K := A/〈(−1)X〉 −→ P3

(cf. Theorem 7.15).

We will identify K with its image under ψ and try to �nd equations describing it.

Starting with the standard coordinates xij, i, j ∈ Z/2Z, on which H(2, 2) acts in the
standard way:

σ1 : xij 7→ xi+1,j τ1 : xij 7→ (−1)ixij

σ2 : xij 7→ xi,j+1 τ2 : xij 7→ (−1)jxij

It is useful to introduce new coordinates

y0 = x01 + x10 y2 = x01 − x10

y1 = x11 + x00 y3 = x11 − x00.

In these coordinates one can show:

1. K is singular in the coordinate points.

2. The coordinate planes touch K in smooth conics.

These properties can be used to �nd an equation for K. The map

ϕ : A −→ K ⊂ P3

is H(2, 2)-equivariant. In the new coordinates y0, . . . , y3 the elements σ1 and τ1 act
as follows:

σ :


y0 7→ y2

y1 7→ y3

y2 7→ y0

y3 7→ y1

τ :


y0 7→ y1

y1 7→ y0

y2 7→ −y3

y3 7→ −y2

(4.1)

Let Q be the quartic de�ning the Kummer surface K, i.e.

K = {y ∈ P3 | Q(y) = 0}.

The Kummer surface K is invariant under the action of K(L2
0), i.e. there is a char-

acter χ : K(L2
0) −→ C∗ such that

α∗Q = χ(α)Q for all α ∈ K(L2
0). (4.2)

From Property 2 it follows that

Q(y0, . . . , yi−1, 0, yi+1, . . . , y3) = F 2
i (y0, . . . , yi−1, yi+1, . . . , y3)
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for some quadric polynomials Fi, i = 0, . . . , 3.
Since K contains all four coordinate points (Property 1), it follows that F0 is of the
shape

F0(y1, y2, y3) = λ1y2y3 + λ2y1y3 + λ3y1y2

for some λi ∈ C.
Now by using Equation (4.2), and the fact that σ and τ act on the yi as described
in (4.1) one obtains

F 2
1 (y0, y2, y3) = χ(τ)F 2

0 (y0,−y3,−y2),

F 2
2 (y0, y1, y3) = χ(σ)F 2

0 (y3, y0, y1),

F 2
3 (y0, y1, y2) = χ(στ)F 2

0 (y2,−y1,−y0).

Under the assumption that χ ≡ 1 we obtain

F 2
0 + F 2

1 + F 2
2 + F 2

3 =2λ2
1(y2

2y
2
3 + y2

0y
2
1) + 2λ2

2(y2
1y

2
3 + y2

0y
2
2) + 2λ2

3(y2
1y

2
2 + y2

0y
2
3)

+ 2λ1λ2(y0y1 + y2y3)(y1y3 − y0y2)

+ 2λ1λ3(y0y3 − y1y2)(y0y1 − y2y3)

+ 2λ2λ3(y1y2 + y0y3)(y1y3 + y0y2).

Now for p = Q− F 2
0 − F 2

1 − F 2
2 − F 2

3 we have

p|y0=0 = −F 2
1 |y0=0 − F 2

2 |y0=0 − F 2
3 |y0=0, hence

p ≡ −λ2
1y

2
2y

2
3 − λ2

2y
2
1y

2
3 − λ2

3y
2
1y

2
2 mod y0.

This congruence together with the three other ones obtained by setting y1, . . . , y3 = 0
have a solution in degree four unique modulo y0y1y2y3, hence

p = −λ2
1(y2

2y
2
3 + y2

0y
2
1)− λ2

2(y2
1y

2
3 + y2

0y
2
2)− λ2

3(y2
1y

2
2 + y2

0y
2
3) + λ2

0y0y1y2y3.

If χ 6≡ 1, the congruences determining p have no solution in degree four, so these
cases can not occur.
This means:

Proposition 4.1. The coordinates of P3 can be chosen in such a way that the Kum-
mer surface K associated to the abelian surface A with irreducible principle polarisa-
tion is given by an equation of the form

Q =λ2
1(y2

2y
2
3 + y2

0y
2
1) + λ2

2(y2
1y

2
3 + y2

0y
2
2) + λ2

3(y2
1y

2
2 + y2

0y
2
3)

+ 2λ1λ2(y0y1 + y2y3)(y1y3 − y0y2)

+ 2λ1λ3(y0y3 − y1y2)(y0y1 − y2y3)

+ 2λ2λ3(y1y2 + y0y3)(y1y3 + y0y2)

+ λ2
0y0y1y2y3

(4.3)

for some λ = (λ0 : λ1 : λ2 : λ3) ∈ P3.
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Figure 4.1: The Kummer surface in the a�ne chart y0 = −x + y + z + 1, y1 =
x− y + z + 1, y2 = x+ y − z + 1, y3 = x+ y + z − 1 for di�erent values
of the parameters

The Kummer surface has many interesting geometrical properties, that can be found
in classical literature, like for example [Hud90]:

• K has 16 singular points which are exactly the images of the 16 two-torsion
points z ∈ A2 ⊂ A.

• For any z ∈ A2 we will denote the unique divisor in the linear system |t∗zL| by
Dz. The curve Cz = ϕ(Dz) is a conic and 2Cz is a complete intersection of K
with a plane in P3. We denote this plane by Pz. Geometrically this means that
Pz touches K along Cz. The 16 planes Pz, z ∈ A2, are called singular planes
of K in P3.

Now we can analyse the con�guration of these points and planes explicitly. Summa-
rizing we get:

1. The 16 singular planes and the 16 singular points ofK form a 166 con�guration,
i.e.

• any singular plane contains exactly 6 singular points.

• any singular point is contained in exactly 6 singular planes.

2. Any two di�erent singular planes have exactly two singular points in common.

3. Three pairwise di�erent singular planes Pz1 , Pz2 and Pz3 always intersect in one
point p. The point p is singular if and only if the singular points z1, z2 and z3

span the singular plane Pp. This re�ects some kind of self-duality of K (see
[Hud90]).
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We can consider two di�erent kinds of tetrahedra build by these singular planes:

1. A Rosenhain tetrahedron for K is a tetrahedron in P3 with singular planes of
K as faces and singular points of K as vertices.

2. A Göpel tetrahedron for K is a tetrahedron in P3 with singular planes of K as
faces such that the vertices are not singular points.

The following relations between points z1, . . . , z4 determine if their corresponding
singular planes form a Göpel or a Rosenhain tetrahedron:

1. Singular planes Pz1 , Pz2 , Pz3 and Pz4 form a Rosenhain tetrahedron if and only
if z1, z2 and z3 span a singular plane and z4 = z1 + z2 + z3.

2. There are exactly 80 Rosenhain tetrahedra for K.

3. Singular planes Pz1 , Pz2 , Pz3 and Pz4 form a Göpel tetrahedron if and only if
z1, z2 and z3 do not span a singular plane and z4 = z1 + z2 + z3.

4. There are exactly 60 Göpel tetrahedra for K.

The coordinates used in the equation given above correspond to a Rosenhain tetra-
hedron.

The equation given above allows the following statement about moduli spaces:

Remark 4.2. The moduli space A(1,1) of principally polarised abelian varieties is of
dimension three. Hence the family of Kummer surfaces is also of dimension three.
Since the family of quartics given above is parametrised by P3, this implies that for a
general λ ∈ P3 Equation (4.3) de�nes a Kummer surface.
In other words: The moduli space of Kummer surfaces is birational to P3.
According to [BLvS89] the exceptional locus is ∆ = {λ1λ2λ3 = 0}.

4.2 Polarisation of type (1,2)

The case of the (1,2)-polarisation was analysed by Wolf Barth in his paper Abelian
surfaces with (1,2)-polarisation ([Bar87]). His motivation was the work of Adler-van
Moerbeke ([AvM82]) and Haine ([Hai83]) on certain cases of geodesic �ow on SO(4)
leading to integrable Hamiltonian systems.
In this case ϕL is a rational map from the abelian surface to P1, so even for dimen-
sional reasons it can not be an embedding.
But the line bundle L2 of type (2, 4) is very ample, hence induces an embedding

ϕL2 : A −→ P7.
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In this case let {xjk | 0 ≤ j ≤ 1, 0 ≤ k ≤ 3} be the standard coordinates of P7 (in
the sense of Section 2.7.4) on which He(2, 4) acts as follows:

σ1 : xjk 7→ xj+1,k

σ2 : xjk 7→ xj,k+1

τ1 : xjk 7→ (−1)jxjk

τ2 : xjk 7→ ikxjk

ι : xjk 7→ x−j,−k

He introduces new coordinates on P7 by

y1 = x00 + x02 y3 = x01 + x03 y5 = x00 − x02 y7 = x01 − x03

y2 = x10 + x12 y4 = x11 + x13 y6 = x10 − x12 y8 = x11 − x13.

Then in the new coordinates ϕL2(A) is cut out by the six quadrics

q1 = µ1(y2
1 + y2

2)− λ1(y2
3 + y2

4) + µ1(y2
5 + y2

6) + λ1(y2
7 + y2

8)

q2 = −λ1(y2
1 + y2

2) + µ1(y2
3 + y2

4) + λ1(y2
5 + y2

6) + µ1(y2
7 + y2

8)

q3 = µ1(y2
1 − y2

2)− λ1(y2
3 − y2

4) + µ1(y2
5 − y2

6) + λ1(y2
7 − y2

8)

q4 = −λ1(y2
1 − y2

2) + µ1(y2
3 − y2

4) + λ1(y2
5 − y2

6) + µ1(y2
7 − y2

8)

q5 = µ1(y1y2)− λ1(y3y4) + µ1(y5y6) + λ1(y7y8)

q6 = −λ1(y1y2) + µ1(y3y4) + λ1(y5y6) + µ1(y7y8)

(4.4)

for some projective parameters (λj : µj) ∈ P1, j = 1, 2, 3.
The other way around, one may ask, under which condition a point (λ1 : µ1), (λ2 :
µ2), (λ3 : µ3) in (P1)3 actually describes an abelian surface. For this purpose Barth
de�nes

rjk = rjk(λ, µ) := (λ2
jµ

2
k − λ2

kµ
2
j)(λ

2
jλ

2
k − µ2

jµ
2
k)

and r = r12 · r23 · r31.

The equation r = 0 is equivalent to the fact there exists some k 6= l such that
µj
λj

= ±(µk
λk

)±1.

Theorem 4.3. For (λ1 : µ1), (λ2 : µ2), (λ3 : µ3) ∈ (P1)3 the following properties are
equivalent:

1. r 6= 0.

2. The quadrics q1, . . . , q6 generate the ideal sheaf of a smooth abelian surface (of
degree 16 with a (2,4)-polarisation) in P7.

In other words: The moduli space Aemb(2,4) for Heisenberg invariantly embedded abelian
surfaces with a (2,4)-polarisation is (P1 × P1 × P1) \∆ where ∆ = {((λ1 : µ1), (λ2 :
µ2), (λ3 : µ3)) ∈ (P1)3 | r = 0}. In particular, this moduli space is rational.
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4.3 Polarisation of type (1,3)

In their paper [BL95] Christina Birkenhake and Herbert Lange study the moduli
spaces Aiso(1,d) of abelian surfaces of type (1, d) with an isogeny to a principally po-
larised abelian surface, especially for the cases d = 2 and d = 3.

In a �rst step, they identify Aiso(1,d) with the moduli space Cd2 of cyclic étale d-fold
coverings of curves of genus 2 in the following way:
Any isogeny π from a (1, d)-polarised abelian surface (X,L) to a principally polarised
abelian surface (Y, P ) is restricted to π|C : C −→ H where H is a curve of genus two
such that Y is the Jacobian J(H) and C = π−1(H).
The other way around any cyclic étale d-fold covering f : C −→ H extends to a d-fold
covering (i.e. isogeny of degree d) π : X −→ Y = J(H) and L = π∗OY (H) de�nes a
polarisation of type (1, d) on X.

Let A0
(1,3) ⊂ Aiso(1,3) be the subset of abelian surfaces of type (1,3) with an isogeny

onto a Jacobian of a smooth curve of genus 2.
Let us construct a map as follows: Let (X,L, π) be an element of A0

(1,3). By our
considerations at the beginning of this section it corresponds to an étale 3-fold cov-
ering f : C −→ H in C3

2 . The hyperelliptic covering lifts to a covering C −→ E,
where E is an elliptic curve uniquely determined by f . Let Ξ̂ denote the polarisation
on E × E de�ned by the divisor E × {0} + {0} × E + A. Then one can show that
there exists an embedding C ↪→ E×E whose image is contained in the linear system
|E×{0}+{0}×E+A| and it is uniquely determined modulo translation by elements
of K(Ξ̂). By looking at the action of T = ( 0 1

−1 −1 ) on E ×E they prove that C does
not contain any point from K(Ξ̂).
Denote byM the (coarse) moduli space of pairs (E,C) where E is an elliptic curve
and C a smooth curve in the linear system |E × {0} + {0} × E + A| such that
K(Ξ̂) ∩ C = ∅ modulo translation by elements in K(Ξ̂).
Now we have constructed a map ψ : Aiso(1,3) −→M.

Theorem 4.4. ψ : Aiso(1,3) −→M is an isomorphism of algebraic varieties.

To show this, they construct the inverse map as follows: For (E,C) ∈ M the au-
tomorphism T of E × E given above acts on every curve of the linear system. In
particular, T restricts to an automorphism τ of C which is of order 3. Moreover, τ
is �xed point free, so it induces an étale 3-fold covering C −→ H = C/τ , which then
corresponds to an element (X,L, π) ∈ A0

(1,3).

Corollary 4.5. Aiso(1,3) is rational.

The idea of the proof here is to show thatM0 := {(E,C) ∈M | E admits no nontrivial
automorphisms} is rational. To show that, they consider the open set U = C \
{0, 1728} parametrising elliptic curves without nontrivial automorphisms and the
universal family E −→ U . They construct a vector bundle of rank 3 over U whose
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projectivisation PU parametrises the linear system |E × {0} + {0} × E + A|. By
construction M0 is an open subset of the quotient PU/K(Ξ̂). Since every vector
bundle on U is trivial, PU ∼= P2 × U and PU/K(Ξ̂) ∼= P2/(Z/3Z× Z/3Z)× U , which
is rational by Lüroth's theorem.

Since Aiso(1,3) is a �nite covering of A(1,3), this shows:

Corollary 4.6. The moduli space A(1,3) of (1,3)-polarised abelian surfaces without
extra structure is at least unirational.

4.4 Polarisation of type (1,4)

The case of the (1,4)-polarisation is treated by Birkenhake, Lange and van Straten
in their paper Abelian surfaces of type (1,4) ([BLvS89]).

They consider A to be a complex abelian surface with an ample line bundle L of type
(1,4) on it. One can assume L to be symmetric without changing the corresponding
map

ϕL : A −→ P3.

First of all they exclude the case that (A,L) is isomorphic to a product of elliptic
curves as polarised abelian variety, i.e. that there are elliptic curves E1 and E2 on
A and line bundles L1 on E1 of degree 4 and L2 on E2 of degree 1, s.t. (A,L) ∼=
(E1×E1, p

∗
1L1⊗p∗2L2), in which the complete linear system |L| has a �xed component.

From now on we will assume that A is not a product of elliptic curves. Then |L| is
base point free (Lemma 7.23).
So ϕL is a well-de�ned map on the whole of A whose image Ā ⊂ P3 is invariant under
the action of He

4 = 〈σ, τ, ι〉 acting on P3 with coordinates x0, . . . , x3 via

σ : xj 7−→ xj−1 τ : xj 7−→ i−jxj ι : xj 7−→ x−j.

Now they introduce other coordinates similar to Barth in Section 4.2

y0 = x0 + x2 y1 = x0 − x2 y2 = x1 + x3 y3 = x1 − x3

and show:

Lemma 4.7. 1. Ā is a surface of degree d = 8 or 4 in P3.

2. The de�ning polynomial Q of Ā is actually a polynomial in the squares y2
0, y

2
1, y

2
2,

y2
3, i.e. there is a Q̃ ∈ C[z0, . . . , z3] such that

Q(y0, y1, y2, y3) = Q̃(y2
0, y

2
1, y

2
2, y

2
3).

Denote by C the subset of P3 = P3(z0, . . . , z3) de�ned by Q̃(z0, z1, z2, z3) = 0. Then
our reasoning above means geometrically:
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Lemma 4.8. The map P3(y0, . . . , y3) −→ P3(z1, . . . , z3), zi = y2
i induces a covering

p : A −→ C that is 8 : 1 outside the coordinate planes.

In the case A is of degree eight, one �nds with the same arguments than in Section
4.1 that Q̃ is of the form

Q̃ =λ2
1(z2

2z
2
3 + z2

0z
2
1) + λ2

2(z2
1z

2
3 + z2

0z
2
2) + λ2

3(z2
1z

2
2 + z2

0z
2
3)

+ 2λ1λ2(z0z1 + z2z3)(z1z3 − z0z2)

+ 2λ1λ3(z0z3 − z1z2)(z0z1 − z2z3)

+ 2λ2λ3(z1z2 + z0z3)(z1z3 + z0z2)

+ µ0z0z1z2z3

(4.5)

for some (λ1, λ2, λ3, µ0) ∈ C4 \ {0}.

If A and hence Q is a quartic, then Q(y0, y1, y2, y3) = Q̃(y2
0, y

2
1, y

2
2, y

2
3) for some

quadratic polynomial Q̃ ∈ C[z0, . . . , z4] and up to a projective transformation Q̃
is of the form

Q̃ = λ1(z0z1 + z2z3) + λ2(z1z3 − z0z2) (4.6)

for some (λ1 : λ2) ∈ P2.

An alternative description of the two cases occurring is as follows: Consider K(L) =
K1 ⊕K2 a decomposition into maximal isotropic subspaces (K1

∼= K2
∼= Z/4Z) and

denote by π : A −→ B = A/K2 the natural projection. There is a line bundle M on
B with L = π∗M . Let X be the unique divisor of |M | and Y = π−1(X).
With this set-up they prove the following two characterisations:

Theorem 4.9. Suppose X and Y do not admit elliptic involutions compatible with
the action of K2. Then A is an octic and ϕL : A −→ A ⊆ P3 is birational.

Theorem 4.10. Assume X and Y admit elliptic involutions compatible with the
action of K2. Then A is an quartic and ϕL : A −→ A ⊆ P3 is of degree 2 onto its
image.

In both cases A is cut out set-theoretically by the equation Q = 0 with

Q(y0, y1, y2, y3) =λ2
1(y4

2y
4
3 + y4

0y
4
1) + λ2

2(y4
1y

4
3 + y4

0y
4
2) + λ2

3(y4
1y

4
2 + y4

0y
4
3)

+ 2λ1λ2(y2
0y

2
1 + y2

2y
2
3)(y2

1y
2
3 − y2

0y
2
2)

+ 2λ1λ3(y2
0y

2
3 − y2

1y
2
2)(y2

0y
2
1 − y2

2y
2
3)

+ 2λ2λ3(y2
1y

2
2 + y2

0y
2
3)(y2

1y
2
3 + y2

0y
2
2)

+ λ2
0y

2
0y

2
1y

2
2y

2
3

(4.7)

for some λ = (λ0 : · · · : λ3). In the octic case this is achieved by just setting λ0 to be
a square-root of µ0. In the quartic case one has to square Equation (4.6) to obtain
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(4.7) with λ3 = 0 and λ2
0 = 2(λ2

1 − λ2
2) (or λ2 = 0 and λ2

0 = −2(λ2
1 + λ2

3) resp. λ1 = 0
and λ2

0 = 2(λ2
2 − λ2

3) in the other two cases).
Finally they show that in the octic case a point λ ∈ P3 determines an abelian surface
via Equation (4.7) or more precisely:

Theorem 4.11. Let ∆ be the set of all λ ∈ P3 such that (4.5) does not describe a
Kummer surface, i.e. ∆ = {λ1λ2λ3 = 0}. Then

(P3 \∆)/(λ0 7→ −λ0)

is the moduli space of embedded abelian surfaces of type (1, 4).

This means that this moduli space is unirational.
They also describe some degenerations occurring for λ ∈ ∆.

4.5 Polarisation of type (1,5)

The case of the (1,5)-polarisation was treated by G. Horrocks and D. Mumford taking
another approach than in the previous cases. In [HM73] they construct a rank 2 vector
bundle F on P4 from the Koszul complex of O(1) ⊗C V where V = C(Z/5Z) is the
Schrödinger representation of H5. This bundle turns out to be irreducible. Before,
it was not known if any indecomposable vector bundles of rank 2 on P4 exist.
Since

∧2F ' O(5) and all global sections of F are H5-invariant,
∧2 Γ(F) '

Γ(O(5))H5 . The dimension of Γ(O(5))H5 is computed to be 6 using character theory
and an explicit C-basis is given by

S =
∑
i

x5
i Q =

∑
i

xi−1x
3
ixi+1 Q′ =

∑
i

xi−2x
3
ixi+2

Y = 5
∏
i

xi R =
∑
i

x2
i−1xix

2
i+1 R′ =

∑
i

xi−2x
2
ix

2
i+1.

The simultaneous vanishing locus L of all elements of ΓH5(O(5)) consists of 25 skew
lines.
They analyse the normalizer N of the Heisenberg group H5 which turns out to be an
semidirect product N = H5 o SL2(Z/5Z) with 15000 elements all given in explicit
matrix form.
Using this they proof the two main theorems

Theorem 4.12. For almost all s ∈ Γ(F), V (s) is a non-singular surface Xs ⊂ P4

of degree 10. Whenever Xs is not singular, it is an abelian surface.

Singularities may only occur where Xs intersects L.

Theorem 4.13. Every abelian surface Z ⊂ P4 is projectively equivalent to the zero
set of some section s of F .
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Now denote by A(1,5)(1, 5)∗ the subset of all (X,λ, α) ∈ A(1,5)(1, 5) for which Lλ is
very ample and by P(Γ(F))∗ the subset of all Cs ∈ P(Γ(F)) for which V (s) is smooth.
Then ΓD/ΓD(D) ∼= SL2(Z/5Z) acts on A(1,5)(1, 5) (c.f. Section 7.4) and N/H ∼=
SL2(Z/5Z) acts on P(Γ(F)).
Finally, they state the following result

Theorem 4.14. A(1,5)(1, 5)∗ ∼= P(Γ(F))∗ as quasi-projective varieties and the action
of ΓD/ΓD(D) on A(1,5)(1, 5) corresponds to the action of N/H on P(Γ(F)).

This shows that A(1,5)(1, 5) is rational.
They also describe some degenerations occurring outside the open sets *. A complete
analysis of all degenerations was given by Barth, Hulek and Moore in [BHM87]:
Despite being an smooth abelian surface, Xs can also take the following forms:

1. a translation scroll associated to a normal elliptic quintic curve,

2. the tangent scroll of a normal elliptic quintic curve,

3. a quintic elliptic scroll of multiplicity 2,

4. a union of �ve smooth quadric surfaces,

5. a union of �ve planes, each of multiplicity 2,

and this list is complete, i.e. these are the only degenerations that can occur.
The hierarchy of this degenerations is as follows:

abelian surface dim 3

translation scroll dim 2

tangent scroll quintic scroll 5 quadrics dim 1

5 double planes dim 0

Let us have a closer look at the degeneration in case 4: In this case, the �ve smooth
quadric surfaces Qi intersect in the following manner building combinatorially a kind
of twisted torus:

P3 P3

P1P1

P4

P2

P0

P3

P1

P4

P2

P0

Q0 Q1 Q2 Q3 Q4
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In his paper [Man88] Manolache shoes that the ideal of a general such surface is
generated by 3 (Heisenberg invariant) quintics and 15 sextics.

In the next chapter we will take a closer look at (1, 6) polarised surfaces and we
will see in Section 5.4.3 that the diagram of degenerations in that case shares some
common features with the above.
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5 Moduli and geometry of
(1,6)-polarised abelian surfaces

At the time Gritsenko wrote his paper [Gri94], it was not known, if A6 was rational
resp. unirational. To our knowledge this question was �rst answered by Gross and
Popescu in their paper [GP01].
In this chapter we will study the projective model Q of the moduli space Aemb6 they
describe in some detail, and �nd for example its discriminant, that is the locus
of points of Q, which do not describe a smooth abelian surface. We describe the
degenerations of the surfaces occurring and the automorphisms of Q as a moduli
space.
In Section 5.6 and 5.7 we will identify certain subfamilies of (1, 6)-polarised abelian
surfaces inside Q. One of these is the family of abelian surfaces that appear in the
DGR-integrable system.

5.1 Introduction

If L is a line bundle of type (1, 6) on an abelian surface A, then dim(H0(L)) = 6, so
L induces a rational map ϕL : A 99K P5. It follows from Lemma 7.23 that ϕL is in
fact basepoint free. If A does not contain an elliptic curve, then a result of Ramanan
(Lemma 7.24 in this thesis) implies that L is very ample, so we get an embedding

ϕL : A ↪→ P5.

The image then is a smooth surface of degree 2 · 1 · 6 = 12.

In the following we want to study the image of this embedding. From examples e.g.
from [SvS13], we expect the general surface to be cut out by four cubics and six
quartics. From the exact sequence for the ideal sheaf IA of A, twisted by O(3),

0 −→ IA(3) −→ OP5(3) −→ OA(3) = L3 −→ 0,

we learn that

dimH0(IA(3)) ≥ dimH0(OP5(3))− dimH0(L3) = 56− 54 = 2,

so that there are at least two cubics in the ideal of A. To see that there are in fact
at least four cubics in the ideal, we need to take the Heisenberg group into account.
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5.1.1 A representation of the Heisenberg group

First we look at the �nite Heisenberg group H6 generated by σ and τ . H6 acts on
the polynomial ring C[x0, . . . , x5] by

σ(xi) = xi−1, τ(xi) = ξ−ixi,

where ξ is a primitive sixth root of unity. As the image of A is H6-invariant, also the
ideal generated by the cubics in the ideal has to be invariant under H6. One might
hope for invariant cubics, but one has:

Lemma 5.1. H0(OP5(3))H6 = 0.

The proof is an argument similar to the one of Lemma 5.3.
Now a crucial idea of Gross and Popescu is to look at cubic polynomials that are
invariant under a certain subgroup of H6.

De�nition 5.2. We de�ne H′ as the subgroup of H6 generated by the elements σ2

and τ 2.

H′ is isomorphic to the Heisenberg group H3 of a (1,3)-polarised abelian surface. σ2

and τ 2 both have order 3 and commute up to a constant from the subgroup µ3 ⊂ C∗
of third roots of unity. So H′ has 27 elements.

Lemma 5.3. The space H0(OP5(3))H
′
of H′ invariant cubic forms on P5 has a basis

f0, . . . , f3, g0 = σf0, . . . , g3 = σf3 where

f0 = x3
0 + x3

2 + x3
4 g0 = x3

1 + x3
3 + x3

5

f1 = x2
1x4 + x2

3x0 + x2
5x2 g1 = x2

2x5 + x2
4x1 + x2

0x3

f2 = x1x2x3 + x3x4x5 + x5x0x1 g2 = x2x3x4 + x4x5x0 + x0x1x2

f3 = x0x2x4 g3 = x1x3x5.

Proof. All monomials are eigenvectors with respect to the action of τ and there are
exactly 20 monomials of degree 3 invariant under τ 2, namely those belonging to the
fi and gi in the statement of this lemma. Half of them (those belonging to the fi)
have τ -eigenvalue 1, the others have τ -eigenvalue −1.
The whole group H6 acts on H0(OP5(3))H

′
. We will show now that we can choose a

basis of H0(OP5(3))H
′
in such a way that it consists only of eigenvectors of τ . Suppose

f ∈ H0(OP5(3))H
′
with f = v+w such that τv = v, τw = −w and v 6= 0 6= w. Then

H0(OP5(3))H
′
also contains τf = v − w. Thus 〈f, τf〉C = 〈v, w〉C.

To obtain such a basis, we may only combine monomials from the same eigenspace.
A polynomial in ker(τ ± id) containing a certain monomial m is invariant under σ2

if and only if it contains σ2m and σ4m with the same coe�cient. So it has to be a
linear combination of the fi and gi given above. Conversely, it is easy to check that
these are all H′-invariant.
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H6 acts on this space (σ by interchanging fi and gi, τ by leaving the fi �xed and
multiplying all gi by −1). Thus H0(OP5(3))H

′
as a representation of H6 splits up

into four isomorphic irreducible subrepresentations

H0(OP5(3))H
′ ∼=

3⊕
i=0

〈fi, gi〉.

De�nition 5.4. We will identifyH0(OP5(3))H
′
with V0⊗W where V0 is an irreducible

two-dimensional representation of H6 (σ acting as ( 0 1
1 0 ), τ as ( 1 0

0 −1 )) andW is a four-
dimensional complex vector space with basis e0, . . . , e3 such that V0 ⊗ ei = 〈fi, gi〉.

Then any H6-subrepresentation of H0(OP5(3))H
′
is of the form V0 ⊗ T for some

subspace T ⊆ W .

Lemma 5.5. Let A be an abelian surface of type (1, 6) embedded He
6-invariantly into

P5 and let IA be the homogeneous ideal de�ning A. Then

dim(H0(IA(3))H
′
) ≥ 4.

The idea of the proof is to look at the restriction map

H0(OP5(3))H
′ −→ H0(L3)H

′

and the action of ι on both sides. While ι �xes the elements of H0(OP5(3))H
′
, Gross

and Popescu argue that H0(OP5(3))H
′
is as a H6-representaion isomorphic to H0(M)

for a (1,6)-polarised line bundle M . So H0(L3)H
′ ∼= C6 decomposes into a two- and

a four-dimensional eigenspace for ι. So H0(OP5(3))H
′
must map to one of these two

eigenspaces. Hence the kernel H0(IA(3))H
′
of the above restriction map is at least

four dimensional.

5.1.2 Points, lines and planes

There are several important H6-invariant loci in P5. The following facts can be
veri�ed by a simple calculation, preferably using a computer algebra system:

Proposition 5.6. 1. The simultaneous vanishing locus of all fi and gi are exactly
the nine lines lij, i, j ∈ Z/3Z, given by {xi = xi+3 = xi−1 + ωjxi+1 = xi+2 +
ωjxi+4 = 0} with ω a third root of unity.

2. The radical ideal Ilines corresponding to the union L of these nine lines is gen-
erated by the eight cubics fi, gi and the three determinantal conics

x1x2 − x4x5, x0x1 − x3x4, x2x3 − x0x5.

3. H6 acts on the nine lines as follows: σ sends lij to li−1,j and τ sends lij to
li,j−1.
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Proposition 5.7. 1. The four polynomials f0, . . . , f3 de�ne a scheme B of di-
mension 2 and degree 12, decomposing into ten planes

P = {x0 = x2 = x4 = 0} (counted three times) and

Pij = {x2i = x2i−1 − ωjx2i+1 = x2i−2 + ωjx2i+2 = 0}, i, j ∈ Z/3Z,

(each counted once) and the nine lines described in Proposition 5.6.

2. τ �xes the plane P while it permutes the Pij in 3-cycles: Pij 7→ Pi,j−1.
σ2 �xes P and maps Pij to Pi−1,j.

3. The scheme C de�ned by g0, . . . , g3 is isomorphic to B via the action of σ.
We will write P ′ for σP and P ′ij for σPij in the sequel.

The following locus will also play an important role.

De�nition 5.8. The scheme Z ⊂ P5 is de�ned by the ideal generated by the six
2× 2 minors of the matrix (

f0 f1 f2 f3

g0 g1 g2 g3

)
.

Clearly, Z is the locus where the vectors

f(y) := (f0(y), f1(y), f2(y), f3(y)) and
g(y) := (g0(y), g1(y), g2(y), g3(y))

become linearly dependent.

Proposition 5.9. Z is a three-dimensional scheme of degree 18. Its reduction is
also of dimension three and of degree 18.
The ideal of minors of the Jacobi-matrix of the given ideal de�ne a one-dimensional
subscheme of degree 45 of Z. It decomposes into the nine lines described in Proposi-
tion 5.6 (each with multiplicity 5) and 144 isolated points.
72 of these points lie on the nine lines (8 on each line) and form two orbits of length
36 under the H6-action. The other 72 points lie not on the lines and form 12 orbits
of length 6.

So we have Heisenberg-invariant con�gurations of objects in di�erent dimensions:

Dimension Objects
3 the locus Z
3 the scroll S = {x1x2 − x4x5 = x0x1 − x3x4 = x2x3 − x0x5 = 0}
2 20 planes P, P ′, Pij, P ′ij
1 9 lines lij
0 144 points: 72 points on the lines

and 72 points o� the lines

One can easily check the following facts about this con�guration:
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Proposition 5.10. 1. The intersection of Z with the scroll S consists of certain
lines and 6 planes P (k), including P and P ′ described above.

2. Each plane Pij resp. P
′
ij intersects each P

(k) in a line. Write l̃ij = P ∩ Pij.
Caveat: l̃ij is di�erent from lij given above.

3. Each of the planes P (k) contains 12 of the o�-line points from Proposition 5.9.

4. Each of these points is contained in three lines and each of these lines con-
tains four points. This means, the 12 points and 9 lines form a dual Hesse
con�guration inside P (K).

5. Each line lij intersects each of the planes P (k) in one point not belonging to the
designated points from Proposition 5.9.

These facts give an indication of the great richness and complexity of the H6-geometry
of P5.

5.1.3 The morphism φ

Gross and Popescu de�ne a rational map that plays a fundamental role in the ge-
ometry of (1, 6)-polarised abelian surfaces. The simplest way to describe it as the
map

ψ : P5 99K P5, y 7→ (p01(y) : p02(y) : . . . : p23(y))

where pij(y) is the (i, j)-minor of the matrix(
f0 f1 f2 f3

g0 g1 g2 g3

)
.

Clearly, by the de�nition of Z, the domain of de�nition of the map ψ is precisely
P5 \ Z.
However, the two copies of P5 in the above de�nition of ψ play a very di�erent role.

In more intrinsic terms, the map is the composition of the map

φ : P5 99K Grass(2,W∨), y 7→ Vy

and the Plücker-embedding

Grass(2,W∨) ↪→ P(∧2W∨) = P5.

Here we denote, for y ∈ P5 \ Z, by

Vy := 〈(f0(y), . . . , f3(y)), (g0(y), . . . , g3(y))〉C ⊆ W∨
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the plane spanned by f(y) and g(y). The Plücker-embedding Grass(2,W∨) ↪→ P5

is realised using Plücker coordinates. The coordinates for a 2-plane spanned by
(x0, . . . , x3) and (y0, . . . , y3) are

pij = xiyj − xjyi.

These satisfy the Plücker relation

p03p12 − p02p13 + p01p23 = 0,

which gives the equation for Grass(2,W∨) ⊆ P5.

De�nition 5.11. We put

G := {p03p12 − p02p13 + p01p23 = 0},
H := {p03 + p12 = 0},
Q := H ∩G.

We note that Q, the intersection of the hyperplane H with the Plücker quadric G, is
a smooth quadric.

Proposition 5.12. The image of φ is contained in the quadric Q.

Proof. Check that
(f0g3 − f3g0) + (f1g2 − f2g1) = 0,

so the image of φ actually lies in Q.

So we will consider now φ as a rational map

φ : P5 99K Q,

de�ned outside the locus Z.

There is a slightly di�erent point of view on the map φ. First remark that the map
which maps a subspace V ⊆ W∨ to its annihilator V 0 ⊆ W de�nes an isomorphism

Grass(2,W∨) −→ Grass(2,W ).

The composition of this isomorphism with the map φ : P5 99K Grass(2,W∨) maps
any point y ∈ P5 to the subspace V 0

y ⊆ W which is characterised by the property
that

V0 ⊗ V 0
y ⊂ V0 ⊗W

is the largest H6-subrepresentation ofH0(OP5(3))H
′
consisting entirely of polynomials

vanishing at the point y ∈ P5 \ Z.
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5.1.4 The �bres of φ

In order to speak sensibly about the �bres of φ, we have to close them up. So we
consider the following diagram

X ⊆ P5 ×Q
π1

yy

π2

%%P5
φ

// Q

where X is the closure of the graph of φ and π1 and π2 are the projections to P5

respectively Q. Then π1 : X −→ P5 is birational and π2 = φ ◦ π1 wherever all maps
are de�ned. The �bres of the resulting map

π2 : X −→ Q

are birational to the (closures of) the �bres of φ, hence have the same dimension. We
note that as dimQ = 3 and dimX = 5, all non-empty �bres XV of π2 have dimension
≥ 2. It is useful to introduce another space C that sits in a diagram:

X

��

� � // C

��

� � // P5 ×Q

||
Q

De�nition 5.13. For a point V ∈ Q, considered as a two-dimensional subspace
V ⊂ W∨, let

IV ⊂ H0(OP5(3))H
′

be the ideal generated by the cubics in V0 ⊗ V 0.

We let CV be the subscheme of P5 de�ned by the ideal IV and write C for the smallest
subscheme of P5 ×Q containing all pairs (CV , V ), V ∈ Q.

Proposition 5.14. The �bre of C −→ Q over

V = 〈(1, 0, 0, 0), (0, 1, 1, 0)〉C ∈ Gr(2,W∨)

is of dimension 2 and degree 12.

Proof. For V given above, V 0 = 〈(0, 1,−1, 0), (0, 0, 0, 1)〉C, so the ideal IV is generated
by

f1 − f2, g1 − g2, f3, g3.

Explicitly, CV is described by the equations

x0x2x4 = x1x3x5 = x2
1x4 + x2

3x0 + x2
5x2 − (x1x2x3 + x3x4x5 + x5x0x1) =

x1x
2
4 + x3x

2
0 + x5x

2
2 − (x2x3x4 + x4x5x0 + x0x1x2) = 0.

46



By factorising the �rst two equations, it is clear that CV is contained in the union
of the nine 3-dimensional linear subspaces Lij = {xi = xj = 0} for i ∈ {0, 2, 4} and
j ∈ {1, 3, 5}.
If i = j + 3 (in Z/6Z), then Lij ∩ CV is given by

xi = xj =
∑
k∈0,2,4
k 6=i

x2
kxk+3 =

∑
k∈0,2,4
k 6=i

xkx
2
k+3 = 0,

which can easily seen to be a curve.
If i 6= j + 3, for example i = 0, j = 1, then Lij ∩ CV is described by the equations

x0 = x1 = x2
5x2 − x3x4x5 = x5x

2
2 − x2x3x4 = 0,

which are satis�ed if either x2 = x5 = 0 or x5x2 − x3x4 = 0. Thus, in this case
Lij ∩ CV is the union of a line and a quadric surface.
So CV is a union of 6 quadric surfaces and a number of (possibly embedded) curves,
so it is two-dimensional and of degree 12.

As XV ⊂ CV and dimXV ≥ 2 by semicontinuity we may conclude:

Corollary 5.15. The map φ is dominant and the closure of the generic �bre of φ
has dimension two and degree 12.

5.1.5 Moduli-interpretation of φ

Lemma 5.16. For a general abelian surface A of type (1,6) embedded H6-invariantly
into P5 with ideal IA

dim(H0(IA(3))H
′
) = 4

and the cubics in H0(IA(3)))H
′
cut out a scheme of dimension ≤ 2.

Proof. To prove the statement about the dimension of H0(IA(3))H
′
, let y ∈ A be a

general point (at which φ is de�ned), V = φ(y), V 0 its annihilator. Then V0 ⊗ V 0

is the largest H6-subrepresentation of H0(IA(3))H
′
consisting entirely of polynomi-

als vanishing at y. In other words V0 ⊗ V 0 is the largest subspace of H0(IA(3))H
′

consisting of polynomials vanishing at the whole orbit H6y. Thus,

H0(IA(3))H
′ ⊆ H0(IH6y(3))H

′ ⊆ V 0 ⊗ V0.

But the latter is four-dimensional and the �rst has dimension ≥ 4 by Lemma 5.5, so
equality holds.
That the dimension of the scheme de�ned by H0(IA(3)))H

′
is ≤ 2 is shown again by

a degeneration argument.

This leads to the key observation that relates the map φ to abelian surfaces:
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Proposition 5.17. For a general (1, 6)-polarised abelian surface A ⊂ P5 the set

φ(A ∩ (P5 \ Z))

consists of a single point.

Corollary 5.18. The closure of the general �bre of φ contains exactly one H6-
invariant abelian surface.

Proof. By Corollary 5.15 the �bres are non-empty and there cannot be two distinct
abelian surfaces A,A′ in one �bre.

Corollary 5.19. Proposition 5.17 means that φ induces a rational map

Θ6 : Aemb6 99K Q ⊂ Grass(2,W∨)

by sending the general Heisenberg invariant (1,6)-polarized abelian surface A ⊆ P5

to φ(A ∩ P5 \ Z). By 5.18, Θ6 must be generically 1 to 1.

5.2 Finding the discriminant

According to Corollary 5.15 for general V ∈ Q the scheme CV is two dimensional,
but it obviously it also contain the union L of the nine lines lij (c.f. Proposition 5.6).

De�nition 5.20. We write
AV := CV \ L.

It turns out that AV is in general smooth of pure dimension 2 and each line lij
intersects the abelian surface in four points, making in total 36 (di�erent) singular
points of CV . To give AV a scheme structure, we use

(IV : I∞lines)

as an de�ning ideal. It seems to be always generated by the four cubics we started
with and six additional quartics, as expected. For further details about this see Sec-
tion 5.5.

In the following we want to study the �bres AV in more detail. Q is only birational
to the moduli space of embedded abelian surfaces, so there are points in Q which
actually do not encode smooth abelian surfaces, but also a singular degeneration
thereof. We denote the set of all points where this is the case by

D̃ := {V ∈ Q | AV is not smooth}

and call it the discriminant.
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It is easy to see that V ∈ D̃ whenever p12 = p03 = 0 in the corresponding Plücker-
coordinates (c.f. Section 5.4.3). Thus, we know that D̃ is non-empty and has codi-
mension 1.

Computing equations for D̃ using for example Singular is very time consuming
respectively does not terminate at all on my computer if it is done in the straight
forward manner. We need two tricks to approach the problem nevertheless:

1. Work in a�ne charts.

2. Look at as many 1-parameter families in one chart as necessary to �nd at least
the codimension one part of D̃ in this chart.

The projective variety Q ⊂ P5 is covered by the four a�ne charts {p01 6= 0}, {p02 6=
0}, {p13 6= 0} and {p23 6= 0}. The two other charts {p03 6= 0} and {p12 6= 0} belonging
to the standard a�ne cover of P5 are not necessary to cover Q because

Q ∩ {p01 = p02 = p13 = p23 = 0}
={p01 = p02 = p13 = p23 = p03 + p12 = p03p12 = 0} = ∅ ⊂ P5.

The following table shows how the vector spaces and their annihilators belonging to
a point in each chart look like:

Chart V ⊂ W V 0 ⊂ W∨ p-coordinates

p01 = 1 〈
(

1
0
a
b

)
,

(
0
1
c
a

)
〉 〈

( −a
−c
1
0

)
,

(
−b
−a
0
1

)
〉 c = p02, a = p03 = −p12,

b = −p13, p23 = a2 − bc

p02 = 1 〈
(

1
−a
0
b

)
,

(
0
c
1
a

)
〉 〈

(
a
1
−c
0

)
,

(
−b
0
−a
1

)
〉 c = p01, a = p03 = −p12,

b = −p23, p13 = −a2 − bc

p13 = 1 〈
(
a
1
c
0

)
,

(
b
0
−a
1

)
〉 〈

(
1
−a
0
−b

)
,

(
0
−c
1
a

)
〉 b = −p01, a = p03 = −p12,

c = p23, p02 = −a2 − bc

p23 = 1 〈
(
a
c
1
0

)
,

(
b
a
0
1

)
〉 〈

(
1
0
−a
−b

)
,

(
0
1
−c
−a

)
〉 p01 = a2 − bc, a = p03 =

−p12, b = −p02, c = p13

In general, the annihilator V 0 of the vector space V belonging to a point p is generated
by the four linearly dependent vectors(

p12
−p02
p01
0

)
,

( p13
p12
0
p01

)
,

( p23
0
−p03
p02

)
,

(
0
−p02
p13
−p12

)
.

Remember that the equations of CV are exactly the cubics in V 0⊗V0 ⊂ H0(OP5(3)).
To reduce the number of parameters and so the computational complexity, calcula-
tions should be done in these charts whenever necessary.

Finding the discriminant locus in the �rst chart, i.e. the set of all V ∈ Q where C̃V
is not smooth, using Singular could be done in the following manner:
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ring R = 0, (x(0..5),a,b,c), dp;

poly f0 = x(0)^3+x(2)^3+x(4)^3;

poly g0 = x(1)^3+x(3)^3+x(5)^3;

poly f1 = x(1)^2*x(4)+x(3)^2*x(0)+x(5)^2*x(2);

poly g1 = x(2)^2*x(5)+x(4)^2*x(1)+x(0)^2*x(3);

poly f2 = x(1)*x(2)*x(3)+x(3)*x(4)*x(5)+x(5)*x(0)*x(1);

poly g2 = x(2)*x(3)*x(4)+x(4)*x(5)*x(0)+x(0)*x(1)*x(2);

poly f3 = x(0)*x(2)*x(4);

poly g3 = x(1)*x(3)*x(5);

LIB "primdec.lib";

ideal lines = x(2)*x(3)-x(0)*x(5), x(1)*x(2)-x(4)*x(5), x(0)*x(1)-x(3)*x(4),

f0, g0, f1, g1, f2, g2, f3, g3;

ideal I = -a*f0-c*f1+f2, -a*g0-c*g1+g2, -b*f0-a*f1+f3, -b*g0-a*g1+g3;

ideal re = quotient(I,lines);

re = mres(re,1)[1]; //reduces number of generators to 22

matrix m = jacob(re);

matrix B = submat(m,1..22,1..6);

ideal sing = I+wedge(B,3);

ideal sings = sat(sing, maxid)[1];

ideal disc = eliminate(sings,x(0)*x(1)*x(2)*x(3)*x(4)*x(5));

Unfortunately, the calculation of sat(sing, maxid) does not seem to terminate and
it does not seem to get better using only a subset of the Jacobi minors.

The best thing we could do is to look at linear 1-parameter-families like a = b = 0
or a = 1, b = 1 and compute their discriminant. This method actually can be used
to determine the codimension one part of the discriminant.

De�nition 5.21. In the following we will write D for the codimension one part of
the discriminant D̃.

With this method nothing can be said about potential lower dimensional parts. D
has to be non-empty and determined by one single polynomial f ∈ C[pij]. Of course,
f is only unique modulo IQ = 〈p01p23 − p02p13 + p03p12, p03 + p12〉.
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5.2.1 The degree of D

To �nd the degree of the discriminant D, we count the number of intersection points
of D with a general line in P5 that is contained in Q. We use the line

C = {2p23 = p12, 3p23 = p02, 4p23 + 3p13 = p01, p03 + p12 = 0}.

In the chart p23 = 1, C corresponds to the line given by a = −2, b = −3; we could
have chosen almost any other values for a and b and any other chart here.
The following table shows how C is described in the di�erent charts and for which
values it intersects the discriminant (the polynomials gij is obtained by the compu-
tation shown above after replacing a and b with −2 and −3):

Chart
p01 6= 0: General point: (2 : 3c : −2c : 2c : 2−4c

3
: c)

Vector spaces: V = 〈
(

6
0
−6c

2(2c−1)

)
,

(
0
6
9c
−6c

)
〉, V 0 = 〈

(
6c
−9c

6
0

)
,

(
2(1−2c)

6c
0
9

)
〉

Discriminant: g01 = 138975c9 − 80030c8 − 39034c7 + 26514c6 − 2226c5

+3552c4 − 2832c3 + 608c2 − 32c

p02 6= 0: General point: (4− 3c : 3 : −2 : 2 : −c : 1)

Vector spaces: V = 〈
(

3
2
0
−1

)
,

(
0

4−3c
3
−2

)
〉, V 0 = 〈

( −2
3

3c−4
0

)
,

(
1
0
2
3

)
〉

Discriminant: g02 = 243c8 + 486c7 − 7074c6 + 14184c5 + 3339c4 − 19198c3

−14892c2 − 4088c− 392

p13 6= 0: General point: (3− 4c : −3c : 2c : −2c : 1 : −c)

Vector spaces: V = 〈
(

2c
1
−c
0

)
,

(
4c−3

0
−2c

1

)
〉, V 0 = 〈

(
1
−2c

0
3−4c

)
,

(
0
c
1
2c

)
〉

Discriminant: g13 = 392c9 + 4088c8 + 14892c7 + 19198c6 − 3339c5

−14184c4 + 7074c3 − 486c2 − 243c

p23 6= 0: General point: (4− 3c : 3 : −2 : 2 : −c : 1)

Vector spaces: V = 〈
(
−2
−c
1
0

)
,

( −3
−2
0
1

)
〉, V 0 = 〈

(
1
0
2
3

)
,

(
0
1
c
2

)
〉

Discriminant: g23 = 243c8 + 486c7 − 7074c6 + 14184c5 + 3339c4 − 19198c3

−14892c2 − 4088c− 392

Since neither 0 nor 4
3
is a zero of g02 = g23, all 8 intersection points of C with the

discriminant in these charts lie in all four charts simultaneously. The ninth point in
p01 6= 0 corresponding to c = 0 lies in {p01 6= 0} ∩ {p13 6= 0} but not in the other two
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charts and is identical with the point corresponding to c = 0 in {p13 6= 0}. These are
in total 9 intersection points, so D is of degree 9.

5.2.2 Determination of the polynomial f

Now we make the ansatz

f(p01, . . . , p23) =
∑

i01+···+i23=9

fi01...i23p
i01
01 · · · pi2323 , fi01...i23 ∈ Q.

Since f is only given modulo IQ, we can force i03 = 0 and i12 ∈ {0, 1}. Hence we
have to �nd

(
12
3

)
+
(

11
3

)
= 385 unknown coe�cients.

Now we go back to the chart p01 6= 0. Here we have

p01 = 1, p02 = c, p03 = −p12 = a, p13 = −b and p23 = a2 − bc.

Denote the corresponding map C[p01, . . . , p23] −→ C[a, b, c] by ϕ. So ϕ(f) = f̃(a, b, c)
is a unique (inhomogeneous) polynomial f̃ of degree at most 18. f̃ lies in the linear
subspace of C[a, b, c] generated by

ϕ(pi0101 p
i02
02 p

i12
12 p

i13
13 p

i23
23 ), 0 ≤ ikl ≤ 9, 0 ≤ i12 ≤ 1,

∑
ikl = 9. (5.1)

To determine the unknown coe�cients we repeat the computations given in the
code above after replacing a and b by some constants A,B ∈ Q. This results in a
polynomial in c,

gA,B(c) =
∑

gA,Bn cn ∈ C[c],

which should have the same zero locus as f̃(A,B, c).
This means that √

〈gA,B(c)〉 =

√
〈f̃(A,B, c)〉 ⊂ C[c].

From this we get the weaker, but easier to evaluate condition that

gsfA,B(c) | f̃(A,B, c),

where gsfA,B =
gA,B

gcd(gA,B ,g
′
A,B)

denotes the square-free part of gA,B.
This can be rewritten as

f̃ 〈a−A,b−B,g
sf
A,B(c)〉 = 0.

Here gI denotes the reduction of g modulo the ideal I. Note that this is easy to
compute, because a−A, b−B, gsfA,B(c) is already a Groebner basis (in any monomial
ordering), since the three polynomials consist of disjoint variables.

This condition can be translated into a system of linear equations in the following
way:

1. Reduce all basis elementsmi given by (5.1) modulo IA,B = 〈a−A, b−B, gsfA,B(c)〉.
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2. You will receive a polynomial in c of degree ≤ 8 (in fact ≤ 7), say
∑8

j=0 aijc
j.

3. If f =
∑

i fimi, then, since reduction modulo I is C-linear,
∑

i fiaij = 0 for all
0 ≤ j ≤ 8.

4. Repeat this for di�erent A and B until you have enough equations.

Doing this for all (B,C) ∈ {−4,−7
2
,−3,−5

2
, . . . , 7

2
, 4}2, yields a linear system of

equations which has a one-dimensional kernel, generated by the following polynomial:

Proposition 5.22. The polynomial f describing the codimension one part D of the
discriminant is

f =p12 · (−p2
02 − 10p02p13 − 9p2

13 + 4p01p23) · g with

g =− p3
01p

2
02p13 − 2p3

01p02p
2
13 − 27p4

02p
2
13 − p3

01p
3
13 − 108p3

02p
3
13 − 162p2

02p
4
13 − 108p02p

5
13

− 27p6
13 + 4p4

01p13p23 + 18p01p
3
02p13p23 + 198p01p

2
02p

2
13p23 + 342p01p02p

3
13p23

+ 162p01p
4
13p23 + p2

01p
2
02p

2
23 − 78p2

01p02p13p
2
23 − 207p2

01p
2
13p

2
23 − 4p3

01p
3
23 − 16p3

02p
3
23

− 72p2
02p13p

3
23 − 864p02p

2
13p

3
23 + 216p3

13p
3
23 + 72p01p02p

4
23 + 648p01p13p

4
23 − 432p6

23.

5.3 Geometry of Q and its discriminant

5.3.1 Geometry of the discriminant

All factors of f given above are irreducible over Q, but the ideal ID = IQ + 〈f〉
describing the codimension one part of the discriminant D decomposes into four
primary factors.

Theorem 5.23. D decomposes over Q into four irreducible components:
E1, E2, E3 and ∆ described by the following ideals

IE1 = IQ + 〈p12〉
IE2 = IQ + 〈p02 − 2p03 + 3p13〉
IE3 = IQ + 〈p02 + 2p03 + 3p13〉
I∆ = IQ + 〈g〉

where g is the factor of degree six in the decomposition of f given in Proposition 5.22.

The singular locus and the intersection behaviour of the components of D can be
described as follows:

Proposition 5.24. 1. The hyperplane sections Ei are smooth quadric surfaces.

2. They all intersect in one smooth conic:

E1 ∩ E2 = E1 ∩ E3 = E2 ∩ E3 = E1 ∩ E2 ∩ E3 = {p12 = p02 + 3p13 = 0} ⊂ Q
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Proposition 5.25. The intersection of ∆ with each of the Ei is a curve of degree
12. It consists of the following four irreducible components over Q:
• Two lines,

• a curve of degree two that decomposes into two lines over Q[ω] (ω third root of
unity),

• a curve of degree four counted twice. This is the curve Ci described in detail in
the next proposition.

The four lines are skew.

Proposition 5.26. 1. The singular locus of ∆ is a curve of degree 24.

2. Sing(∆) decomposes into four irreducible components over Q:
• Three curves Ci of degree 4 and genus 0, each of them lying in the inter-
section of ∆ with one of the Ei.
The curves Ci ⊂ Q are described by the following equations:

C1 : p3
13 − p01p13p23 − 4p3

23 = 0

p01p
2
13 − p2

01p23 − 4p02p
2
23 = 0

p2
01p02 − p2

01p13 + 4p2
02p23 = 0

C2 : 4p12p
2
13 + 4p3

13 + p01p13p23 − p3
23 = 0

p01p12p13 + p01p
2
13 − p12p

2
23 + 3p13p

2
23 = 0

p2
01p13 + 4p12p13p23 − 12p2

13p23 − p01p
2
23 = 0

C3 : 4p12p
2
13 − 4p3

13 − p01p13p23 + p3
23 = 0

p01p12p13 − p01p
2
13 − p12p

2
23 − 3p13p

2
23 = 0

p2
01p13 − 4p12p13p23 − 12p2

13p23 − p01p
2
23 = 0.

• One curve R of degree 12 and genus 1. R ⊂ Q is described by the following
equations:

p2
01 − 12p02p23 + 36p13p23 = 0

9p2
02p13 + 18p02p

2
13 + 9p3

13 − p01p02p23 − 33p01p13p23 = 0

3. The curve R has twelve singular points, four on each of the Ei.

4. Each Ci has eight singular points:

• Four of them lie on all Ei and Ci simultaneously. Explicitly these are:

(−3 : −3 : 0 : 0 : 1 : 1)

(−3ω2 : −3ω : 0 : 0 : ω : 1)

(−3ω : −3ω2 : 0 : 0 : ω2 : 1)

(1 : 0 : 0 : 0 : 0 : 0)

• The other four coincide with the singularities of R lying on Ei.
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5.3.2 Automorphisms of Q

Given a polarised abelian variety A with a line bundle L of type D, the rational map
ϕL : A −→ PN depends on the choice of a basis of H0(L). Two di�erent choices of a
basis lead to maps that di�er by a projective linear transformation.
Gross and Popescu classi�ed Heisenberg invariantly embedded abelian varieties. Thus
it has to be expected that they distinguish several embeddings of the same variety
that only di�er by a projective linear transformation.

From Corollary 3.6 we know that for a (1,6)-polarised abelian surface there is one
Heisenberg equivariant embedding map for each element of order 6 in (Z/6Z)2.
These are exactly

#(Z/6Z)2−#3-torsion of (Z/6Z)2−#2-torsion of (Z/6Z)2 +1 = 36−9−4+1 = 24.

So there are exactly 24 Heisenberg invariant embedding maps from A to P5 which
yield at most 12 di�erent images.
In the sequel we will for a general such surface indeed �nd 12 di�erent embeddings,
so this estimate is sharp now.

We hope that the projective transformations mapping one embedding of A to another
do not only act set-theoretically on the points of Q, but induce global automorphisms
of the projective variety Q.
In the following we will also write Ip or Cp instead of IV or CV , if V ⊂ W∨ is encoded
by p ∈ G ⊂ P5.

Example 5.27. If p = (p01 : p02 : p03 : p12 : p13 : p23) is a point in Q, then
p′ = (p01 : p02 : −p03 : −p12 : p13 : p23) is also in Q and the corresponding ideals Ip
and Ip′ are isomorphic via

ϕ : x0 7→ ζx0 x1 7→ x1 x2 7→ ζ5x2

x3 7→ ζ4x3 x4 7→ ζ9x4 x5 7→ ζ8x5,

where ζ is a primitive twelfth root of unity.
This means the maps ϕ and

ψ : (p01 : p02 : p03 : p12 : p13 : p23) 7−→ (p01 : p02 : −p03 : −p12 : p13 : p23)

make the following diagram commute:

P5

ϕ
��

φ // H

ψ
��

P5
φ
// H

Here H is hyperplane p03 +p12 = 0 introduced in Section 5.1.3 and φ : P5 −→ Q ⊂ H.
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In this section we will study the group Autmod(Q) of all such automorphisms of Q.

De�nition 5.28. An automorphism of Q as a moduli space is a linear isomorphism
ψ : H −→ H which restricts to an automorphism of Q and which is induced by a
linear isomorphism ϕ : P5 −→ P5 such that the following diagram commutes:

P5

ϕ
��

φ // H

ψ
��

P5
φ
// H

To see if any given ϕ : P5 −→ P5 induces such a map ψ : H −→ H, one can look at the
corresponding map of rings ϕ∗ : C[x0, . . . x5] −→ C[x0, . . . x5] write pij = figj − fjgi
as a polynomial in the xi and then check if ϕ∗(pij) can be expressed as a linear
combination of all pij for all 0 ≤ i < j ≤ 3. Here one can see that ψ being linear
and hence an automorphism of H and not only of Q is a direct consequence of being
induced by a linear map on the xi and not a restriction for ψ.
Since Ip describes the preimage of p under φ, saying that ψ is induced by ϕ in the
above sense is equivalent to Iψ(p) = ϕ∗(Ip) for all p ∈ H. Recall that we denote
by Ip the ideal IV = 〈V 0 ⊗ W 〉 where V ⊆ W∨ is the subspace corresponding to
p ∈ Q ⊂ Gr(2,W∨) ⊂ P5.

Theorem 5.29. The automorphism group Autmod(Q) of Q as a moduli space is
generated by the three projective transformation ψ0, ψ1 and ψ2 described in the proof,
permutes the hyperplanes Ei arbitrarily and is isomorphic to

Autmod(Q) ∼= Z/2Z× S3
∼= D6.

The subgroup Aut0(Q) of automorphisms �xing all three hyperplanes Ei is generated
by ψ0 and is isomorphic to Z/2Z.

Proof. Let us describe two automorphisms of Q explicitly: There are linear isomor-
phisms

ϕ∗1, ϕ
∗
2 : C[x0, . . . , x5] −→ C[x0, . . . , x5]

given by

ϕ∗1 : x0 7→ ζx0 ϕ∗2 : x0 7→ x0 + x3

x1 7→ x1 x1 7→ x5 − x2

x2 7→ ζ5x2 x2 7→ x1 + x4

x3 7→ ζ4x3 x3 7→ x3 − x0

x4 7→ ζ9x4 x4 7→ x2 + x5

x5 7→ ζ8x5 x5 7→ x1 − x4

where ζ is a primitive twelfth root of unity.
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ϕ∗1 acts on H0(OP5(3))H
′
as follows:

f0 7→ if0 f1 7→ −if1 f2 7→ −if2 f3 7→ if3

g0 7→ g0 g1 7→ −g1 g2 7→ −g2 g3 7→ g3

whereas

ϕ∗2 : f0 7→ f0 + g0 + 3f1 + 3g1 g0 7→ −f0 + g0 − 3f1 + 3g1

f1 7→ f0 + g0 − f1 − g1 g1 7→ −f0 + g0 + f1 − g1

f2 7→ −f2 − g2 + 3f3 + 3g3 g2 7→ f2 − g2 − 3f3 + 3g3

f3 7→ f2 + g2 + f3 + g3 g3 7→ −f2 + g2 − f3 + g3.

Hence both induce maps

ψ∗1, ψ
∗
2 : C[p01, . . . , p23]/(p03 + p12) −→ C[p01, . . . , p23]/(p03 + p12)

given by pij = figj − fjgi which can (after rescaling, because we are only interested
in projective properties) be described as follows:

ψ∗1 : p01 7→ p01 ψ∗2 : p01 7→ 4p01

p02 7→ p02 p02 7→ p02 − 6p03 − 9p13

p03 7→ −p03 p03 7→ −p02 + 2p03 − 3p13

p13 7→ p13 p13 7→ −p02 − 2p03 + p13

p23 7→ p23 p23 7→ 4p23.

Let ψi : H → H be the corresponding projective isomorphisms.
The maps ψi restrict to isomorphisms Q→ Q and D → D where ψ2 maps E1 to E2

and vice versa �xing E3, while ψ1 exchanges E2 and E3 and leaves E1 �xed.
As projective automorphisms of H both ψi are diagonalisable and have four times the
eigenvalue 1 and one time the eigenvalue −1, so both are of order two, whereas their
product ψ1 ◦ψ2 has order three. So they induce a faithful action of D3 = S3 = 〈s, t |
s2, t2, (st)3〉 on H resp. Q resp. D which permutes the three hyperplanes E1, E2, E3

arbitrarily and changes the equations of the corresponding varieties C̃p only by a
linear change of coordinates.

Since the existence of ψ1 and ψ2 is everything we need in Section 5.4, we can use the
results derived in this section from now on.
Any element of Autmod(Q) has to map the discriminantD to itself and hence permutes
E1, E2 and E3. Since the group S3 = 〈ψ1, ψ2〉 already allows arbitrary permutations
of the Ei, any element α ∈ Autmod(Q) can be written as α = ψβ with ψ ∈ S3 and β
�xing all the Ei.
Denote the group of all such automorphisms by Aut0(Q).
Following our considerations above we have an exact sequence

0 −→ Aut0(Q) −→ Autmod(Q) −→ S3 −→ 0
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which right-splits, because S3 is realised as the subgroup generated by ψ1 and ψ2 in
Autmod(Q). Thus, Autmod(Q) = Aut0(Q) o S3.

A computation along the following lines will �nd all elements of Aut0(Q):
From Section 5.4 we know that for a generic point p ∈ E1, the surface Ap is singular
along the curves

C1 = {x1 = x3 = x5 = f0 − af3 = 0}
and C2 = {x0 = x2 = x4 = g0 − ag3 = 0}.

Similarly for p ∈ E2 we have Ap is singular along

C ′1 = {x0 + x3 = x1 + x4 = x2 + x5 = f0 − bf3 = 0}
and C ′2 = {x0 − x3 = x1 − x4 = x2 − x5 = g0 − bg3 = 0},

and for p ∈ E3 along the curves

C ′′1 = {x0 + ix3 = x1 + ix4 = x2 + ix5 = f0 − cf3 = 0}
and C ′′2 = {x0 − ix3 = x1 − ix4 = x2 − ix5 = g0 − cg3 = 0}.

Thus any element of Aut0(Q) will have to either �x or exchange the vector spaces

〈x0, x2, x4〉C and 〈x1, x3, x5〉C

and the same for

〈x0 + x3, x1 + x4, x2 + x5〉C and 〈x0 − x3, x1 − x4, x2 − x5〉C

(C ′′1 and C ′′2 give no further restrictions). These are four cases which can be treated
separately.
Let us work out the case that each of these four spaces is mapped to itself. In this
case the map ϕ∗ : C[x0, . . . , x5] −→ C[x0, . . . , x5] can be represented by the matrix

a1 a2 a3 0 0 0
a4 a5 a6 0 0 0
a7 a8 a9 0 0 0
0 0 0 a9 a7 a8

0 0 0 a3 a1 a2

0 0 0 a6 a4 a5


in the basis x0, x2, x4, x1, x3, x5 for any invertible matrix A = (ai).
Further we need that ϕ∗(f0), ϕ∗(f3) ∈ 〈f0, f3〉. From each of these conditions we can
derive eight equations in the ai by reducing ϕ∗(f0) resp. ϕ∗(f3) (with the parameters
ai) modulo 〈f0, f3〉 with the division algorithm, interpret the remainder as a polyno-
mial in C[a1, . . . a9][x0, . . . , x5], and set all its coe�cients to zero. Together with the
normalisation det(A) = 1 this de�nes a zero-dimensional ideal in C[a1, . . . , a9]. It
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decomposes into 648 distinct points over Q(ζ36) (ζ36 a primitive 36th root of unity).
A direct primary decomposition might not be successful, but for example Singular
can �nd a primary decomposition over Q and then decompose the resulting factors
further over Q(ζ36).
One can easily check that each of these ϕ∗ induces a map ψ∗ : C[p01, . . . , p23] −→
C[p01, . . . , p23] but only 108 of them map Q to itself. In fact, these 108 ϕ induce only
two di�erent ψ, the identity and

ψ∗0 =


−1

3
−1

3
0 1

9
1
9

−2
3

1
3

0 2
9
−1

9

0 0 1 0 0
2 2 0 1

3
1
3

4 −2 0 2
3
−1

3


described with respect to the basis p01, p02, p03, p13, p23. ψ∗0 is induced for example by
the following map on the xi:

ϕ∗0 : x0 7→ x0 + x2 + x4

x1 7→ ω2x1 + x3 + ωx5

x2 7→ x0 + ω2x2 + ωx4

x3 7→ x1 + x3 + x5

x4 7→ x0 + ωx2 + ω2x4

x5 7→ ωx1 + x3 + ω2x5

where ω is a primitive third root of unity.
In the other three cases, we only �nd the same maps id and ψ∗0.
This shows that Autmod(Q) = 〈ψ0, ψ1, ψ2〉.

The observation that ψ2
0 = id and that ψ0 commutes with both ψ1 and ψ2, proves

Autmod(Q) ∼= Z/2Z× S3,

whereas the last isomorphism Z/2Z×S3
∼= D6 is a known result from the classi�cation

of small groups.

The reason that we �nd 4 ·54 = 216 = 3 ·72 maps ϕ∗ : C[x0, . . . , x5] −→ C[x0, . . . , x5]
for each automorphism ψ : Q −→ Q is the fact that our abelian surfaces parametrised
by Q are invariant under the 72 elements of the extended Heisenberg group He

6 and
our normalisation det(A) = 1 �xes the matrix belonging to each element of He

6 only
up to multiplication with ω.

Small orbits

Under the action of Autmod(Q) the general point ought to have an orbit of length
twelve. Finding points with smaller orbits (which probably correspond to more sym-
metric embedded surfaces) can be done as follows:
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Any point with a small orbit (i.e. less than twelve elements) has to be �xed by
a nontrivial element of Autmod(Q). The points in H �xed by ψ ∈ Autmod(Q) can
easily be computed using linear algebra as the eigenspaces of the matrix describing
ψ. There are in total 18 di�erent subspaces of P4 = H occurring as eigenspaces of
the non-trivial elements of Autmod(Q). Luckily their intersection behaviour is quite
simple, which means no new subspaces occur as their intersections.
Looking at them carefully, we arrive at the following results:

• There are six isolated points in H which have orbits as follows:

� The point (6 : −3 : 0 : 0 : 1 : 1) is �xed by all elements of Autmod(Q) (orbit
of length 1). It does not lie in Q and has no obvious geometric meaning.

� The points (0 : 3 : ±
√

3 : ∓
√

3 : 1 : 0) form together an orbit of length 2.
They both lie in Q \ D, so they encode two very special smooth abelian
surfaces.

� The three points (0 : 0 : 1 : −1 : 0 : 0), (0 : 3 : 1 : −1 : 1 : 0),
(0 : 3 : −1 : 1 : 1 : 0) form together an orbit of length 3. They do not
lie in Q, so they do not de�ne abelian surfaces. But they will show up as
projection points in Section 5.3.3 again.

• There are four lines in H with small orbits. They each intersect Q in two
points.

� The two points (−12∓ 6
√

3 : −3∓ 3
√

3 : 0 : 0 : 1±
√

3 : 1) are �xed by all
the automorphisms (i.e. their orbit consists of one point each). They are
generic within the the intersection of the three hyperplanes E1 ∩E2 ∩E3.

� The six points (6 : −3± 3
√

3 : 0 : 0 : 1±
√

3 : 1), (6 : −3± 3
2

√
3 : ∓3

2

√
3 :

±3
2

√
3 : 1 ±

√
3

2
: 1) and (6 : −3 ± 3

2

√
3 : ±3

2

√
3 : ∓3

2

√
3 : 1 ±

√
3

2
: 1)

form two orbits of length 3. They all lie in the degree four component of
the intersection of ∆ with one of the hyperplanes Ei. The corresponding
surfaces are described in Section 5.4.3.

• The �ve two-dimensional subspaces of H with small orbits look as follows:

� All points of E1∩E2∩E3, except the two �x-points described above, build
orbits of length 2.

� The subspace de�ned by the equations p01 + p02 − 3p13 = p01 − 6p23 = 0
is �xed pointwise by ϕ0, while ϕ1 and ϕ2 act non-trivially on that space.
Thus, its points form orbits of length 6.
It intersects Q in a smooth curve of degree two with no obvious geometric
meaning.

� The three subspaces de�ned by the equations p01 + 6p13 + 6p23 = p02 +
3p13 = 0 resp. p01 − 6p03 + 6p13 + 6p23 = p02 − 6p03 + 3p13 = 0 resp.
p01 + 6p03 + 6p13 + 6p23 = p02 + 6p03 + 3p13 = 0 each intersect Q in a
smooth curve of degree two with no obvious geometric meaning.
Their points also form orbits of length 6 spread over all three planes.
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• The points on each of the hyperplanes E1, E2 and E3 have orbits of length 6 if
they do not belong to one of the special cases described above.

5.3.3 The three double covers

The Plücker quadric q = p01p23 − p02p13 + p03p12 gives a correspondence between
linear subspaces of complementary dimension in P5 via

L 7→ {p′ ∈ P5 |
∑

0≤i<j≤3

∂ijq(p) · p′ij = 0 for all p ∈ L}.

We call the image of L under this map the subspace polar to L.

Each of the components Ei of the discriminant is the intersection of Q with a hyper-
plane in P5, denote this hyperplane by Ai. We observe that for any of the hyperplanes
Ai, qi the point polar to Ai, the projection πi : P5 99K Ai from qi ∈ H onto Ai induces
a double cover Q −→ P3 = Ai ∩H branched along a smooth quadric.
The points polar to each hyperplane are

A1 : q1 = (0 : 0 : 1 : −1 : 0 : 0)

A2 : q2 = (0 : 3 : 1 : −1 : 1 : 0)

A3 : q3 = (0 : −3 : 1 : −1 : −1 : 0).

We take a closer look at the projection from q1 onto A1. The other two look the same
via the automorphisms given in Section 5.3.2.
In coordinates this reads as

π1 : P5 99K P3

(p01 : p02 : p03 : p12 : p13 : p23) 7−→ (p01 : p02 : p13 : p23) =: (v : w : x : y).

In this case the branching locus is described by vy − wx = 0.
The isomorphism ψ1 exchanges exactly the two preimages of a point in P3. This
means it induces the identity on P3. ψ0 induces an automorphism of P3 of order 2,
while ψ2 and all products involving ψ2 are not compatible with the projection. So
only the Z/2Z-action by ψ0 is left on P3.

π1 maps the components of the discriminant to the following subvarieties of P3: E1

(which is �xed by ψ1) is mapped to the branching locus of π1

ε1 = {vy − wx = 0}.

E2 and E3 (which are exchanged by ψ1) are mapped both to the same quadric

ε2 = {w2 + 10wx+ 9x2 − 4vy = 0}.

The image δ of ∆ is again described by the same polynomial g. Note that neither
p03 nor p12 occur in g, c.f. page 53!
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The singular curve R of ∆ is mapped to the curve C6 described below.
This means that ∆0 := {x ∈ H | g(x) = 0} is the cone over δ with apex q1, i.e. for
any point p ∈ δ the whole line spanned by p and q1 lies in ∆0 and ∆0 is exactly the
union of all these lines, and ∆ = Q ∩∆0.

Figure 5.1: The component δ of D

Figure 5.2: A closer look at δ from di�erent perspectives

δ is a surface of degree 6 in P3, singular along a curve of degree 16, that decomposes
into a smooth curve C4 of degree four and a curve C6 of degree 6 (counting twice)
which has four cusps. C6 is given by the equations:

g1 := v2 − 12wy + 36xy = 0

g2 := 9w2x+ 18wx2 + 9x3 − vwy − 33vxy + 36y3 = 0

Both of these curves have genus zero. C4 intersects C6 exactly in its singular points

P0 =(0 : 1 : −1 : 0)
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P1 =(24 : 15 : 1 : 4)

P2 =(24ω2 : 15 : 1 : 4ω)

P3 =(24ω : 15 : 1 : 4ω2).

Here ω is a primitive third root of unity. In these intersection points C4 has the same
tangent direction as C6.

Proposition 5.30. The tangent scroll TanC6 :=
⋃
p∈C6
smooth

TpC6 is exactly the surface δ.

Proof. Its a simple computation using a computer algebra system to �nd equations
for ⋃

p∈X

TpX = {x ∈ P3 | ∃y ∈ P3 s.t.
3∑
i=0

∂igj(y)xi = 0 for j = 1, 2}.

One can check that this variety decomposes into the four tangent planes at the cusps
and the surface δ.

As already stated above, C6 is a rational curve. A parametrisation can be found as
follows:
Project C6 to P2 by eliminating v. We denote the image of this projection by C6.
Now consider the radical ideal J6 describing Sing(C6). Its degree three part is two-
dimensional while it contains no elements of degree less or equal than two. So there
is a pencil of cubics through the singular points of C6 parametrised by, say t. Each
of its elements intersects C6 in its singularities and one more point depending on t.
Writing the pencil in the form

(495x2y − 18xyz − yz2) + t(63x3 − 12y3 + 62x2z − xz2)

the moving point is described by

16yt6 − 108wt4 − 756yt3 + 729y = 0

−128

729
yt5 +

32

27
wt3 +

220

27
yt2 + x+ w = 0

which yields the parametrisation

t 7−→ (16t6 − 756t3 + 729 : −108t3 − 729 : 108t4)

for C6.
Now plugging this into the equations describing the original curve C6 and computing
a Groebner basis w.r.t. the lexicographical ordering with v > t gives an equation
linear in v which can easily be solved for v.
This all together yields the following parametrisation:

Proposition 5.31. The map µ : P1 −→ P3 given by

t 7−→ (−144t5 + 1944t2 : 16t6 − 756t3 + 729 : −108t3 − 729 : 108t4)

is a parametrisation of C6.
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Under this parametrisation the parameter values for the four cusps are

t0 = 0 t1 = −3 t2 = −3ω t3 = −3ω2

which yields a cross-ratio

λ =
t1 − t3
t2 − t1

:
t0 − t3
t2 − t0

= −ω (ω3 = 1)

and a j-invariant of

j = 28 (λ2 − λ+ 1)3

λ2(1− λ)2
= 0.

From this parametrisation we obtain a parametrisation of the tangent variety δ as
follows:
Compute the Jacobi matrix of C6 at the point µ(t). It has entries in the polynomial
ring C[t]. A computer algebra system tells us, that its kernel is generated by

v1(t) =


27
0

8t3 − 27
−36t2

 and v2(t) =


9t
−6t2

27t
4t3 − 54

 ,

which span TpC6 for any smooth point p = µ(t). Then (s, t) 7→ v1(t) + sv2(t) is a
parametrisation of its tangent variety.

Proposition 5.32. The map ν : P1 × P1 −→ P3 given by

(s, t) 7−→ (27 + 9st : −6st2 : 8t3 + 27st− 27 : 4st3 − 36t2 − 54s)

is a parametrisation of δ.

The intersection behaviour of δ, ε1 and ε2 can be described as follows:

• ε1 and ε2 intersect in a smooth conic of genus 0, counted twice.

• δ intersects each εi in a smooth genus zero quartic and four skew lines. The
quartic intersects each of the lines in two di�erent points (with multiplicity two
in one of them).

• Each line from ε1 ∩ δ intersects exactly one of the lines from ε2 ∩ δ in the same
point where the quartic intersects.

Compare with the picture on page 68, which shows the intersection behaviour on E1

which is projected to ε1.
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5.4 Degenerations on the discriminant

5.4.1 Translation scrolls

A line bundle of degree d ≥ 3 on an elliptic curve E is very ample so de�nes an
embedding

ϕL : E −→ Pd−1

and the image is called elliptic normal curve of degree d in Pd−1. For d = 3 we have
the usual plane cubic, for d = 4 the intersection of two quadrics in P3, etc.
The union of all lines Le,e+a connecting a point e ∈ E and the point e + a ∈ E,
obtained by translating e by a �xed a ∈ E form a surface, called a translation scroll

S = S(E, a) =
⋃
e∈E

Le,e+a.

The two lines Le,e+a and Le−a,e pass through e and hence in general S is a surface of
degree 2d, singular along E. There are two notable exceptional cases:
First, if a = 0, these two lines degenerate to the tangent line TeE, counted twice and
the surface degenerates into the tangent scroll of E, which has a cuspidal ridge along
E.
If a is a non-trivial 2-torsion point, then e+a = e−a, so these two lines also coincide.
The union of all the 2-torsion secants forms a smooth surface of degree d, called degree
d elliptic scroll, and the scroll S degenerates to this surface, counted twice.
These scrolls appear naturally as degenerations of abelian surfaces of type (1, d) in
Pd−1.

5.4.2 Statement

Theorem 5.33. An overview about all degenerations occurring is given in the fol-
lowing diagram:

abelian surface dim 3

smooth irred.
singular curve of deg 6
(translation scroll?)

two smooth
singular curves of deg 3

dim 2

6 quadrics
smooth irred.

singular curve of deg 6
(tangent scroll)

double smooth
surface of degree 6

(sextic elliptic scroll?)
dim 1

6 double planes 3× P3 + 3 lines dim 0

65



These are the subsets of Q on which each type of degeneration occurs (the correspond-
ing equations can be found in Section 5.3.1):

general point dim 3

∆ E1, E2, E3 dim 2

Ei ∩∆ \ Sing(∆) R
E1 ∩ E2 ∩ E3,
C1, C2, C3

dim 1

type 1 points type 2 points dim 0

Points of type 1 are the points in the intersection of all four components of the
discriminant, i.e. ∆∩E1 ∩E2 ∩E3. They are singular points of all curves Ci but of
R.
Points of type 2 can be characterised as the singular points of R. They automatically
lie on one of the Ei.

A list of all points of type 1 resp. type 2 can be found below:

type 1 type 2
(−3 : −3 : 0 : 0 : 1 : 1) (0 : 1 : 0 : 0 : 0 : 0)

(−3ω2 : −3ω : 0 : 0 : ω : 1) (6 : −3 : 0 : 0 : −2 : 1)
(−3ω : −3ω2 : 0 : 0 : ω2 : 1) (6ω2 : −3ω : 0 : 0 : −2ω : 1)

(1 : 0 : 0 : 0 : 0 : 0) (6ω : −3ω2 : 0 : 0 : −2ω2 : 1)
(0 : −1 : 1 : −1 : 1 : 0)
(24 : 15 : 9 : −9 : 1 : 4)

(24ω2 : 15ω : 9ω : −9ω : ω : 4)
(24ω : 15ω2 : 9ω2 : −9ω2 : ω2 : 4)

(0 : 1 : 1 : −1 : −1 : 0)
(24 : 15 : −9 : 9 : 1 : 4)

(24ω2 : 15ω : −9ω : 9ω : ω : 4)
(24ω : 15ω2 : −9ω2 : 9ω2 : ω2 : 4)

5.4.3 Proof

The hyperplanes

In Section 5.3.2 we have seen that there are isomorphisms ψ1 and ψ2 of Q as a moduli
space that act transitively on the three hyperplanes E1, E2 and E3.
Thus it is enough to study one hyperplane. We choose E1 because here the equations
are simpler. All results carry over to the other two hyperplanes via those isomor-
phisms.
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The hyperplane E1

For each point in E1, i.e. 2-dimensional subspace V = 〈x, y〉 ⊆ W∨ with p03 = p12 = 0
the projections of x and y to the �rst and last respectively the middle two components
get linear dependent. So the annihilator is of the form

V 0 = 〈
(

a1
0
0
−a2

)
,

(
0
b1
−b2

0

)
〉

with (a1, a2), (b1, b2) ∈ P1, i.e. the ideal de�ning CV is generated by

a1f0 − a2f3, a1g0 − a2g3, b1f1 − b2f2, b1g1 − b2g2.

By computing the singular locus using these parameters one can show that CV (with
V as above) is always singular along the two curves

C1 = {x1 = x3 = x5 = a1f0 − a2f3 = 0}
and C2 = {x0 = x2 = x4 = a1g0 − a2g3 = 0}.

To simplify computations we choose the chart p23 6= 0 (for V !) so we can normalize
our generators to

f0 − af3, g0 − ag3, f1 − bf2, g1 − bg2

with a = −p02 and b = p13.

Now we can again compute the singular locus, divide out C1 and C2 and project
the remaining part to the a-b-plane, and �nd out that there are worse singularities
exactly above

a3 = 27, a = 3b and ab2 + b3 = 4.

An examination of the special values a =∞ or b =∞ shows that there are no further
badly singular �bres over b =∞, while the whole line a =∞ has more singularities.

The line a = 3b (resp. p02 + 3p13 = 0) is exactly the intersection locus of all the
hyperplanes Ei, the vertical lines a3 = 27, a =∞, and the curve ab2 + b3 = 4 are the
components of the intersection of E1 with ∆.
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a

b

3 3 ω 3 ω2 ∞

type 1

type 2

Bad a-values

For a3 = 27 or a = ∞ the polynomials f0 − af3 = x3
0 + x3

2 + x3
4 − ax0x2x4 resp.

g0 − ag3 = x3
1 + x3

3 + x3
5 − ax1x3x5 become reducible, so also CV decomposes into

several components.

Let us study the case a =∞ in more detail: In this case CV is given by the equations

x0x2x4 = x1x3x5 = f1 − bf2 = g1 − bg2 = 0.

Thus, CV is contained in the union of the subspaces Lij = {xi = xj = 0}, i = 0, 2, 4,
j = 1, 3, 5.
Now CV ∩ Li,i+1 is given by the equations

xi = xi+1 = xi−1(xi+2xi−1 − bxi+3xi−2) = xi+2(xi+2xi−1 − bxi+3xi−2) = 0.

Here all indices are meant to be read modulo 6. So it is the union of the quartic
surface Si = {xi = xi+1 = xi+2xi−1 − bxi+3xi−2 = 0} and the line l′i+3,i+4 = {xi−1 =
xi = xi+1 = xi+2 = 0} where the indices of l′ stand for the free coordinates.
Similarly, CV ∩ Li,i+3 is given by the equations

xi = xi+3 = x2
i+1xi−2 + x2

i−1xi+2 = xi+1x
2
i−2 + xi−1x

2
i+2 = 0

which turns out to be the union of the four lines l′i+1,i+2, l
′
i+2,i−2, l

′
i−1,i+1, l

′
i−2,i−1 and

the three lines lij, j = 0, 1, 2, described in Proposition 5.6. Since the lines l′ij are all
contained in some of the surfaces Si, CV actually consists of six quadric surfaces and
the nine lines lij.
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Thus, AV is the union of the six quadrics Si. The components intersect as follows:

Si ∩ Si+1 = l′i−1,i+1 ∪ pi−2

Si ∩ Si+2 = l′i−2,i−1

Si ∩ Si+3 = pi−1 ∪ pi+2

where P5 3 pi = (0, . . . , 1, . . . , 0) with all but the ith component equal to zero.
Now we have:

• Each quadric intersects all but one of the others in a line. In total there are
twelve lines, four on each quadric.

• The lines do not depend on the value of b.

• In each of the six points pi intersect exactly four lines.

• The four lines on each quadric cut out a square. The six squares build a
(degenerate) torus glued with a twist of two in one direction.

5 5

11

0

2

1

3

2

4

3

5

4

0

For the other special values of a the exact formulas for the six quadrics Si, the twelve
lines l′ij and the six points pi di�er, but qualitatively exactly the same happens. We
always obtain a degenerate torus with a twist of two in one direction.

The line a = 3b

If a = 3b, our degree 12 surfaceAV degenerates to a double smooth surface of degree 6.
The reduced variety associated to AV corresponds to the ideal minimally generated
by the four given cubics and the three determinantal conics x1x2 − x4x5, x0x1 −
x3x4, x2x3 − x0x5.

The curve ab2 + b3 = 4

For a, b on the curve ab2 + b3 = 4 we also get to a double smooth surface of degree
6. But this time the ideal of the reduced variety corresponding to AV is minimally
generated by only the two cubics f0 − af3 and g0 − ag3 and the three conics

xi+1xi+2 + 2xixi+3 + xi−1xi−2, i = 0, 1, 2.
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Intersection points

The lines and curves given above have less intersection points then one would expect.
Wherever the line b = 3a intersects the vertical lines a = const this is also an
intersection point with the curve ab2 + b3 = 4. Let us call these intersection points
of type 1.
Despite this the curve ab2 + b3 = 4 has only one more intersection point with each
of the vertical lines, but with multiplicity two. Call these intersection points of type 2.

In each intersection point of type 1 the �bre CV becomes three-dimensional of degree
three. For the case a = b = ∞ a direct primary decomposition shows that it is the
union of the three linear subspaces {x0 = x3 = 0}, {x1 = x4 = 0}, {x2 = x5 = 0}
and the three lines l′i,i+3 with some multiplicities.
In the other cases a direct primary decomposition of AV is not successful, but one
can decompose the singular locus into three �vefold lines, combine each two of them
to get a three-dimensional linear subspace of P5, and in fact AV turns out to be the
union of these three subspaces and these three lines.

In each intersection point of type 2 AV degenerates into six plains (each with multi-
plicity two). Each plane intersects exactly two of the others in a line. The six lines
form a hexagon.

The component ∆

For the component ∆ of D described by g, we have the problem that there is no
obvious rational point lying on ∆ but on none of the hyperplanes. This problem
can be approached in positive characteristic. For example in characteristic 601 the
point p = (1 : 7 : 5 : −5 : −6 : −17) belongs to ∆ but to none of the hyperplanes.
This and similar experiments show that the corresponding variety Ap is a surface of
degree twelve singular along a smooth irreducible curve of degree 6, whose ideal is
generated by nine quadrics.

The curve R ⊂ Sing(∆)

A point on R can be found using the parametrisation µ from Proposition 5.31. For
t = 1 we obtain the point (1800 : −11 : −837 : 108) ∈ C6. Choosing a characteristic
such that 1800 · 108− 11 · 837 has a square root x, we �nd a point (1800 : −11 : x :
−x : −837 : 108) on R.
In characteristic 73, this yields the point p = (−25 : −11 : 24 : −24 : −34 : 35) lying
on R. The corresponding variety Ap is a reduced surface of degree 12 singular along
a smooth curve of degree 6, which turns out to be an elliptic normal curve de�ned
by nine quadrics.
The original surface Apis in fact the tangent scroll of this curve. This is what we
expected by comparison with the (1, 5)-polarised case (Section 4.5).
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5.5 The Quartics

In this section we want to describe the generators of the ideal corresponding to AV
i.e. the saturation ĨV = (IV : I∞lines).
In all examples we studied so far ĨV is minimally generated by the four original cubics
and a number of (in general and at most six) quartics which can be chosen in such
a way that σ acts on them as a permutation in three-cycles.

In Section 5.5 we gave a basis f0, . . . , f3, g0, . . . , g3 of H0(OP5(3))H
′
, where H′ is the

subgroup of the Heisenberg group generated by σ2 and τ 2, and decomposed it as
V0 ⊗W where W is a four dimensional complex vector space with basis e0, . . . , e3

such that V0 ⊗ ei = 〈fi, gi〉.
Now we will do similarly for quartics invariant under σ3 and τ 3.
A basis of H0(OP5(4))〈σ

3,τ3〉 is given by si, σsi, σ2si, i = 1, . . . , 12 where si are the
following polynomials:

s1 = x4
0 + x4

3 s7 = x2
0x2x4 + x2

3x5x1

s2 = x2
0x

2
3 s8 = x2

5x0x2 + x2
2x3x5

s3 = x2
1x

2
2 + x2

3x
2
4 s9 = x2

1x4x0 + x2
4x1x3

s4 = x2
2x

2
4 + x2

5x
2
1 s10 = x2

0x1x5 + x2
3x4x2

s5 = x3
1x3 + x3

4x0 s11 = x0x1x2x3 + x3x4x5x0

s6 = x3
2x0 + x3

5x3 s12 = x1x2x4x5.

H6 acts on this space: σ as a permutation of order three on this basis interchang-
ing si, σsi and σ2si, τ by multiplying σjsi by ωj, ω being a third root of unity.
Thus H0(OP5(4))〈σ

3,τ3〉 as a representation of H6 splits up into twelve isomorphic
subrepresentations

H0(OP5(4))〈σ
3,τ3〉 ∼=

12⊕
i=1

〈si, σsi, σ2si〉.

We will identify H0(OP5(4))〈σ
3,τ3〉 with T0 ⊗ S where T0 is a three dimensional rep-

resentation of H6 and S is a twelve dimensional complex vector space with basis
e1, . . . , e12 such that T0 ⊗ ei = 〈si, σsi, σ2si〉.
By abuse of notation we will identify W resp. S with the vector spaces generated by
f0, . . . , f3 and s1, . . . , s12 i.e. the eigenspace of τ with eigenvalue 1 in H0(OP5(3))H

′

resp. H0(OP5(4))〈σ
3,τ3〉.

In this sense tensoring with V0 resp. T0 and intersecting with W resp. S are opera-
tions inverse to each other.

Thus the map
φ : IV 7→ (IV : I∞lines)

can apparently be interpreted as a map from the set I3 of all ideals in C[x0, . . . , x5]
generated by a four-dimensional subrepresentation of H0(OP5(3))H

′
to the set I4

71



of all ideals in C[x0, . . . , x5] generated by a four-dimensional subrepresentations of
H0(OP5(3))H

′
and an at most six-dimensional subrepresentation of H0(OP5(4))〈σ

3,τ3〉.

According to our consideration above any 2-dimensional subspace V ⊆ W induces
an ideal IV in I3 generated by the subrepresentation V 0 ⊗ V0 of H0(OP5(3))H

′
. Ac-

cordingly, any pair (V, T ) of a 2-dimensional subspace V ⊆ W and an at most 2-
dimensional subspace T ⊆ S induce an ideal IV,T in I4 generated by V 0⊗V0⊕T⊗T0 ⊆
H0(OP5(3))H

′ ⊕H0(OP5(4))〈σ
3,τ3〉 ⊆ C[x0, . . . x5]. Let us call these maps p3 and p4.

Example 5.34. Consider the ideal IV given by 〈f0, g0, f1, g1〉 corresponding to the
vector space V = 〈e2, e3〉.
Then

ĨV = (IV : I∞lines) = 〈f0, g0, f1, g1, h1, σ(h1), σ2(h1), h2, σ(h2), σ2(h2)〉

with h1 = s5 − 2s12 and h2 = −s10 + s11.
But we can �nd other generators of this form, for example

h′1 = h1 + x0f0 + x3σ(f0) = s1 + 2s5 + s6 − 2s12

h′2 = h2 + x0f1 + x3σ(f1) = 2s4 + s7 + s9 − s10 − s11.

So (V, T ) and (V, T ′) with

T = 〈e5 − 2e12,−e10 + e11〉 and

T ′ = 〈e1 + 2e5 + e6 − 2e12, 2e4 + e7 + e9 − e10 − e11〉
are two pairs of subspaces of W resp. S with p4(V, T ) = p4(V, T ′) = ĨV .
More generally, we can add any linear combination of x0f0+x3σ(f0) and x0f1+x3σ(f1)
to h1 and h2 without changing the ideal ĨV nor the way H acts on its generators.

Now let us say a few words about how uniquely V and T can be reconstructed from
their images in I3 resp I4 in general:
For I3 ∈ I3 the subspace V ⊆ W such that p3(V ) = I3 is uniquely given by the
annihilator of the intersection of I3 with W .
For I4 ∈ I4 we have V = (I

(3)
4 ∩ W )0 where I(k) denotes the degree k part of

an homogeneous ideal I. The subspace T representing the degree 4 generators is
not unique. Let J be a complement of mI(3)

4 in I
(4)
4 , i.e. I

(4)
4 = mI

(3)
4 ⊕ J as C-

vector spaces. After Maschke's theorem J can be chosen to be subrepresentation of
H0(OP5(4))〈σ

3,τ3〉. If the ideal is of the general form described above, J has dimension
6 (in special cases less). So T = J ∩ S is a two-dimensional subspace of S and
p4(V, T ) = I4.
The other way around, if p4(V, T ) = I4, then J = T0⊗T always is a subrepresentation
of H in I

(4)
4 , complementary to mI

(3)
4 where I(3)

4 = V0 ⊗ V . So the only choice we
have to make is those of the complement J .
If I(3)

4 = 〈q1, . . . , q4〉 (with σ(qi) = qi+1 mod 2, τ(qi) = (−1)i−1qi) and J and J ′ are two
such complements, J = 〈h1, . . . , h6〉, σ(hi) = hi+1 mod 3, τ(hi) = ωi−1hi, then J ′ can
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be generated by h′1, . . . , h
′
6 where h

′
i = hi + bi, bi ∈ mI

(3)
4 and σ and τ act in the same

way. The condition that σ3(h′i) = h′i implies that bi ∈ 〈q1x0 + q2x3, q3x0 + q4x3〉.
So T is only de�ned up to addition of these polynomials to its generators. This
ambiguity can be used to modify the map f such that the diagramm below commutes.
To make this more visible we choose another basis for H0(OP5(4))〈σ

3,τ3〉, namely
ti, σti, σ

2ti for:
t1 = x0f0 + x3g0 t7 = s4

t2 = x0f1 + x3g1 t8 = s5

t3 = x0f2 + x3g2 t9 = s6

t4 = x0f3 + x3g3 t10 = s7

t5 = s2 t11 = s11

t6 = s3 t12 = s12.

(5.2)

In this basis the subspace T belonging to a given subspace V may only vary by adding
elements of the form ι(v), v ∈ V, to its generators. Here ι : W −→ S, ei 7−→ ti means
the embedding of W into the �rst four components of S.

For any element x ∧ y of V ∧ V the �minors� pij = xiyj − xjyi are well de�ned
(independent of the choice of a representative). Let Q be the 5-dimensional subspace
of V ∧ V given by p03 + p12 = 0. By Q0 we denote the set of non-zero �elementary
wedges� in Q, i.e. Q0 = {x ∧ y | x, y ∈ V, x0y3 − x3y0 + x1y2 − x2y1 = 0}.
A basis of Q lying in Q0 is given by

b1 = e0 ∧ e1 b2 = e0 ∧ e2 b3 = e1 ∧ e3

b4 = (e1 + e2) ∧ e3 b5 = (e1 − e3) ∧ (e2 − e4).
(5.3)

Let π3 : Q0 −→ I3 be the map sending an element v1∧v2 of Q0 to the ideal generated
by V0 ⊗ 〈v1, v2〉 ⊂ H0(OP5(3))H

′
, i.e. p3(〈v1, v2〉).

Let π4 : Q0×(S×S) −→ I4 be the map sending (v1∧v2, s1, s2) to the ideal generated
by V0⊗〈v1, v2〉⊕T0⊗〈s1, s2〉 ⊂ H0(OP5(3))H

′ ⊕H0(OP5(4))〈σ
3,τ3〉 ⊂ C[x0, . . . x5], i.e.

p4(〈v1, v2〉, 〈s1, s2〉).
In the following we will construct a map f : Q 7−→ S × S such that we have the
following diagram

Q0

π3

����

id×f |Q0 // Q0 × (S × S)

π4

����
I3

φ

IV 7→(IV :I∞lines)
// I4

(5.4)

We discussed above that 〈v1, v2〉 can be uniquely reconstructed from its corresponding
ideal whereas 〈s1, s2〉 can not. This means in particular that the preimage of some
ideal I ∈ I3 under π3 is unique up to a scalar.
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Proposition 5.35. There is a map of C-vector spaces f : Q 7−→ S×S such that the
following holds:

• If IV = π3(v1 ∧ v2) ∈ I3, then AV is cut out set-theoretically by the ideal
π4(id× f |Q0(v1 ∧ v2)).

• The ideal (IV : I∞lines) actually contains π4(id× f |Q0(v1 ∧ v2)).

Proof. 1. According to our considerations above, if f(bi) = (vi, wi), then (v′i, w
′
i)

with v′i = vi + riι(b
(1)
i ) + siι(b

(2)
i ), w′i = wi + tiι(b

(1)
i ) + uiι(b

(2)
i ) will generate the

same ideal. So the fact that the diagram commutes for the �ve base vectors bi
leaves us with twenty free parameters. But considering the images of further
linear combinations of the base vectors, results in linear relations between these
parameters, so that only eight of them survive. For the same reason, the set of
all admissible parameters has to be a linear subspace of C8.

So if there is an f that makes the diagram above commute, it has to be one of
the maps fp1,p2,q1,q2,r1,r2,s1,s2 given by

b1 7→(−s1 −
1

3
, p1 − r1,−

2

3
, 0, 0, 1, 0, 0, 0, 0, 3, 0),

(−s2 +
5

3
, p2 − r2 −

1

3
,−5

3
,
1

3
, 2, 0, 0,−2,−2, 0, 2, 4)

b2 7→(p1 + r1,
1

3
, p1 − r1 − 1, 0, 0, 0, 0, 0, 0, 0, 0, 3),

(p2 + r2 +
1

3
,−1

3
, p2 − r2, 0, 2, 0, 0, 0, 0, 0, 0,−4)

b3 7→(−1

3
, q1 − s1,

1

3
, s1, 1, 0, 0, 0, 0, 0, 0, 1),

(0, q2 − s2 − 2,
1

3
, s2, 0, 0, 6, 0, 0, 0, 0, 0)

b4 7→(0, q1 − s1 +
1

3
, q1 − s1, s1 − p1 − r1, 0, 0, 0, 0, 0, 0, 0, 1),

(0, q2 − s2 −
4

3
, q2 − s2, s2 − p2 − r2 −

1

3
, 0, 0, 2, 0, 0, 0, 0, 0)

b5 7→(−q1, 2p1 +
1

3
, q1 +

1

3
,−2p1 +

1

3
, 0, 0, 0, 0, 0, 0, 0, 1),

(−q2, 2p2 −
1

3
, q2 −

1

3
,−2p2 −

1

3
, 0, 0, 2, 0, 0, 0, 2, 0)

in the basis ti for some pi, qi, ri, si ∈ C, i = 1, 2.

2. For pi = qi = ri = si = 0 for example we can show the following:

Take a generic point from each chart of Q as described in the table on page

49 e.g. V = 〈
(

1
0
a
b

)
,

(
0
1
c
a

)
〉. Calculate the ideal ĨV = (IV : I∞lines) in the ring

C[x0, . . . , x5, a, b, c].
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On the other hand lift V to an element of v1 ∧ v2 ∈ Q0 e.g.
(

1
0
a
b

)
∧
(

0
1
c
a

)
. This

is unique up to a scalar, thus (V, T ) := π4 ◦ (id × f)(v1 ∧ v2) is well-de�ned.
Find generators of the ideal p4(V, T ) ⊆ C[x0, . . . , x5, a, b, c]. Now we can check
using for example Singular that these ideals are the same for all four charts.

3. In the same manner we can show that the ideal π4(v1∧v2, f(v1,∧v2)) is the same
for f1,0,...,0, . . . , f0,...,0,1 and f0,...,0. Since the space of all admissible parameter
values is a linear, it has to be empty or all of C8. So the choice of parameters
does not matter.

4. Since lifting along π3 is unique up to a scalar, the map along the upper way of
diagram (5.4)

g : I3 −→ I4, I 7−→ π4 ◦ (id× f)(v1 ∧ v2) where I = π3(v1 ∧ v2)

is well-de�ned and commutativity of (5.4) is equivalent to the equality of g and
φ.

Any ideal I ∈ I3 corresponds to a 2-dimensional subspace V of W . In the

following we only treat subspaces of the form 〈
(

1
0
z1
z2

)
,

(
0
1
z3
z1

)
〉, z = (z1, z2, z3) ∈

C3, and denote the corresponding ideal by Iz. In the other charts the argument
is completely equivalent.

In point 2 we considered the parameters a, b and c as variables which is equiv-
alent to tensoring the whole diagram with C[a, b, c]. Denote the corresponding
maps in this diagram by gabc and φabc.

Denote by Iabc the ideal in C[x0, ..., x5, a, b, c] corresponding to 〈
(

1
0
a
b

)
,

(
0
1
c
a

)
〉.

Then we have already shown that

gabc(Iabc) = φabc(Iabc). (∗)

Let ϕz : C[x0, ..., x5, a, b, c] −→ C[x0, ..., x5] be the map that inserts the complex
numbers z1, z2, z3 for a, b resp. c. For simplicity we denote the induced maps
on any of the sets occurring above also by ϕz. Then Iz = ϕz(Iabc) and g ◦ϕz =
ϕz ◦ gabc because the construction of g involves only linear algebra.

We would like to show that

g(Iz) = φ(Iz) for all z ∈ C3. (∗∗)

This does in fact not follow from (∗). To get a taste of the problem look at
Example 5.37 given below.

But we can conclude that:
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(i) g(I) and φ(I) have the same zero set for all I ∈ I3.

(ii) g(I) ⊆ (I : I∞lines) for all I ∈ I3.

For (i): Denote by Iabclines resp. Ilines the ideals generated by

fi, gi, i = 0, . . . , 3, x1x2 − x4x5, x0x1 − x3x4, x2x3 − x0x5

in C[x0, ..., x5, a, b, c] resp. C[x0, ..., x5] as discussed in Proposition 5.6.

We have g(Iz) = g(ϕz(Iabc)) = ϕz(gabc(Iabc)) = ϕz(Iabc : Iabclines
∞

).

Let us describe the zero set of this ideal: Denote by Cz the zero-set in P5

corresponding to Iz.

Then the zero set of Iabc is

C := {(z, Cz) | z = (z1, z2, z3) ∈ C3 ∼= A3} ⊂ A3 × P5

and Iabclines corresponds to A3 × L ∈ A3 × P5.

So Jabc := (Iabc : Iabclines
∞

) describes the set C \ (A3 × L).

Let a, b, c be the coordinates of A3. Then ϕz(Jabc) corresponds to the set

(C \ (A3 × L)) ∩ {a = z1, b = z2, c = z3} = Cz \ L

which is exactly the set described by (Iz : I∞lines) = φ(Iz).

For (ii): Let I be any ideal from I3 such that I = ϕz(Iabc) for z ∈ C3. Then we
have

(I : I∞lines) = (ϕz(Iabc) : ϕz(I
abc
lines)

∞) ⊇ ϕz(Iabc : Iabclines

∞
)

= ϕz(φabc(Iabc)) = ϕz(gabc(Iabc)) = g(ϕz(Iabc)) = g(I)

using the following lemma and corollary plus the fact that ϕz1,z2,z3(I
abc
lines) =

Ilines.

Lemma 5.36. Let ι : R −→ S be a ring extension and ϕ : S −→ R a ring homomor-
phism with ϕ ◦ ι = idR. Let I, J be two ideals in S. Then

ϕ(I : J) ⊆ (ϕ(I) : ϕ(J)).

The other inclusion in in general not true.

Proof. Let f be any element of ϕ(I : J). This means that there existst an h ∈ S
such that f = ϕ(h) and h · j ∈ I for all j ∈ J . But then

f · ϕ(j) = ϕ(h) · ϕ(j) = ϕ(h · j) ∈ ϕ(I)

for all j ∈ J , so f ∈ (ϕ(I) : ϕ(J)).
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Example 5.37. For the other inclusion consider R = C[x], S = C[x, a], I = (x2−a),
J = (x) and ϕ : S −→ R the C-algebra homomorphism given by x 7→ x and a 7→ 0.
Then (I : J) = (x2 − a), so ϕ(I : J) = (x2), but ϕ(I) = (x2) and ϕ(J) = (x), so
(ϕ(I) : ϕ(J)) = (x) which is actually the larger ideal.

Corollary 5.38. The same inclusion holds for the saturation (I : J∞) =
⋃∞
k=0(I :

Jk) i.e.

ϕ(I : J∞) ⊆ (ϕ(I) : ϕ(J)∞).

In other words, this means that given an ideal IV to determine the generators of ĨV
one can go along the following steps:

• Choose any two generators v1 and v2 of V 0.

• Decompose v1 ∧ v2 in basis (5.3). This can be done by looking at the minors.

• Use the description of f given above to determine f(v1∧v2) = (s1, s2) ∈ S×S.

• Then ĨV is generated by the σ-orbits of the linear combinations of the fi cor-
responding to v1, v2 and the linear combinations of the ti corresponding to s1

and s2.

5.6 A subfamily with two �brations

In [HR00] Klaus Hulek and Kristian Ranestad describe the family A of all abelian
surfaces of type (1,6) embedded He

6-invariantly into P5 with two plane cubic �bra-
tions.
This subfamily can be characterised as follows: There are four special points in Q
corresponding to He

6-orbits of three lines in P5. These are described in Lemma 7.4,
Proposition 7.7 and Remark 7.8 in [HR00]. They can be given explicitly by

p1 = (1 : 0 : 0 : 0 : 0 : 0) V1 = 〈
(

0
0
1
0

)
,

(
0
0
0
1

)
〉

p2 = (3 : 3 : 0 : 0 : −1 : −1) V2 = 〈
(

1
0
0
−3

)
,

(
0
1
−1
0

)
〉

p3 = (3 : 3ω : 0 : 0 : −ω : −ω2) V3 = 〈
(

ω
0
0
−3

)
,

(
0
ω
−1
0

)
〉

p4 = (3 : 3ω2 : 0 : 0 : −ω2 : −ω) V4 = 〈
(

ω2

0
0
−3

)
,

(
0
ω2

−1
0

)
〉

with ω a primitive third root of unity. These are exactly the intersection points of
type 1 from Section 5.4.
Now recall that points in Q ⊆ Gr(2,W∨) correspond to lines in P3. The proofs of
Corollary 7.12 and 7.13 tell us that an abelian surfaces has two plane cubic �brations
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if and only if it corresponds to a line that intersects two of the special lines given
above.
Equations for the component Aij of A consisting of all lines in P3 intersecting the
lines Vi and Vj can be found as follows:
If L ⊂ W two-dimensional intersects for example V1 and V2 non-trivially, then there
has to be an 0 6= x ∈ L ∩ V1 and an 0 6= y ∈ L ∩ V2. Since V1 ∩ V2 = 0, it follows

that L = 〈x, y〉. This means that L = 〈
(

0
0
a
b

)
,

(
c
d
−d
−3c

)
〉 for some (a : b), (c : d) ∈ P1.

Thus, L corresponds to the point (−3ac + bd : bd : −ad : −bc : ac : 0) ∈ Gr(2,W∨).
Equations describing all points of this form can be computed by a simple elimination
argument and we obtain

A12 = {p23 = p01 − p02 + 3p13 = 0}
A13 = {p23 = p01 − ω2p02 + 3ω2p13 = 0}
A14 = {p23 = p01 − ωp02 + 3ωp13 = 0}
A23 = {p02 − 3p13 − 3ωp23 = p01 + 3ω2p23 = 0}
A24 = {p02 − 3p13 − 3ω2p23 = p01 + 3ωp23 = 0}
A34 = {p02 − 3p13 − 3p23 = p01 + 3p23 = 0},

all described in Q.

5.7 Finding the integrable systems

As we have already seen in Chapter 1, Theorem 1.15, the DGR system is algebraically
completely integrable, and its �bres embed as (1,6)-polarized abelian surfaces in P5.
In [SvS13] Semmel and van Straten give explicit equations (four cubics and six quar-
tics) which describe these surfaces. We want to determine where these surfaces sit
in the moduli space of (1,6)-polarized abelian surfaces studied here.

This is not possible by just looking at the cubic equations, because they are not
Heisenberg invariant in our sense of the word, respectively the Heisenberg group
acting on these surfaces is not in standard form.
One approach might be to change this by looking at the lines that are cut out by
the cubics in addition the surface and �nd a change of coordinates that converts
them in the standard form described in Proposition 5.6. But this seems to be quite
challenging, especially because the lines in the form given in that paper can only be
distinguished over a quite complicated �eld extension.

A simpler �rst approach is given by the observation that one of the nine lines in the
DGR-system is de�ned over Q. It has the remarkable property that it intersects each
surface in four points, whose j-invariant is zero.
In the coordinates described here any of the lines lij described in Proposition 5.6
intersects the general surface in four points and the j-invariant of these points is
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independent of the choice of the line lij, because H6 acts linearly and transitively on
the nine lines, the surface itself is H6-invariant and the j-invariant does not change
under linear changes of coordinates.
But the j-invariant in fact depends on the choice of the particular surface. So only
those surfaces whose j-invariant with respect to these lines is 0 can come from the
DGR-system.
Let us look at surfaces encoded by a point in the chart p23 6= 0 and the line

l00 = {x0 = x3 = x1 + x5 = x2 + x4 = 0}.

Then the surface Cp is described by the ideal

〈
(

1
0
a
c

)
,

(
0
1
b
a

)
〉 ⊗W = 〈f0 + af2 + cf3, g0 + ag2 + cg3, f1 + bf2 + af3, g1 + bg2 + ag3〉

for some a, b, c ∈ C and Ap intersects l00 in the points

(0 : −1 : −x4 : 0 : x4 : 1) with ax4
4 + (c− 3b)x2

4 + a = 0. (∗)

Equation (∗) has less than four solutions if and only if either a = 0 or y2+ c−3b
a
y+1 = 0

has only one solution y. The latter condition is equivalent to (c − 3b)2 = (2a)2, i.e.
±2a− 3b+ c = 0. These three cases read like

p12 = 0 and p02 ± 2p12 + 3p13 = 0

which corresponds exactly exactly to the three hyperplane components E1, E2, E3 of
the discriminant. In these cases the j-invariant is said to be in�nite.

Now assume the point p lies on none of these hyperplanes and abbreviate α = 3b−c
a
.

Let u and v be the solutions of y2−αy+ 1 = 0, i.e. v+w = α and v ·w = 1. Now let
ũ, ṽ ∈ C such that ũ2 = u and ṽ2 = v. This means that ũ,−ũ, ṽ,−ṽ are the solutions
of (∗).
Then the (or better: a possible) cross ratio of these four values is:

λ :=
ũ− (−ũ)

(−ṽ)− ũ
:
ṽ − (−ũ)

(−ṽ)− ṽ
=

2ũ

−(ũ+ ṽ)
:
ũ+ ṽ

−2ṽ
=

4ũṽ

(ũ+ ṽ)2
.

Now ũ · ṽ = ±1 and without loss of generality we can choose them in such a way that
ũ · ṽ = 1. Furthermore

(ũ+ ṽ)2 = ũ2 + 2ũṽ + ṽ2 = u+ 2 + v = α + 2.

So λ = 4
α+2

and the j-invariant can be simpli�ed to

j = 28 (λ2 − λ+ 1)3

λ2 · (λ− 1)2
=

16(α2 + 12)3

(α2 − 4)2
.
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Hence j = 0 if and only if α2 = −12 i.e. α = ±(4ω + 2).
Translating this back to the global pij-coordinates we arrive at the equation (p02 +
3p13)2 + 12p2

12 = 0.

The closure of all other �bres of the function j : Q \ (E1 ∪E2 ∪E3) −→ C is de�ned
by the equation

j ·
(
(3p13 + p02)2p03 − 4p3

03

)2 − 16 ·
(
(3p13 + p02)2 + 12p2

03

)3
= 0.

For j 6= 0,∞ this is a surface of degree twelve which is singular exactly along the
curve given by

p12 = p02 + 3p13 = 3p2
13 + p01p23 = p03 + p12 = 0

which is exactly the intersection of the hyperplanes E1 ∩ E2 ∩ E3 in Q.

A similar calculation in the other charts gives the same result modulo IQ if one pays
attention to the fact that homogenising a given set of generators is not the same as
homogenising an ideal. For example in the chart p02 6= 0 by doing this one arrives at
the ideal

IQ+〈(p2
02−3p2

03 +3p01p23)2 +12(p02p03)2〉 = (IQ+〈(p02 +3p13)2 +12p2
12〉)∩(IQ+〈p2

02〉)

where the latter ideal is obviously an artefact from bad homogenisation.

Theorem 5.39. The subset of all (1,6)-polarised abelian surfaces which intersect the
lines cut out by their cubic equations with a j-invariant of 0 is described by the ideal

Ij=0 = IQ + 〈(p02 + 3p13)2 + 12p2
12〉.

Since this is a subvariety of Q of dimension 2 and the integrable system in [SvS13]
depends on two parameters, we already have found a subvariety of the right dimen-
sion. But the subvariety of Q describing the abelian surfaces with j = 0 is obviously
reducible over C. So it is not clear yet if all or only one (and in this case which)
component really contains this integrable system.
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6 Cohomology calculations

In this chapter we want to calculate the cohomology of the smooth �bres of the four
integrable systems introduced in Section 6.3. To do this, we use a complex associated
to each system introduced by Garay and van Straten.

6.1 The complex

In their paper [GvS10] M. Garay and D. van Straten associate to each involutive
system (f1, . . . , fn) in a Poisson ring R a complex in the following way: Set T =
C[t1, . . . , tn]. Then R becomes a T -module via the rule ti · g := fi · g. They de�ne
the complex

C•f : 0 −→ C0 ∂0−→ C1 ∂1−→ · · · ∂n−1−→ Cn −→ 0

with Ck = R ⊗T
∧k T n and ∂k(g ⊗ v) =

∑n
i=1{fi, g}ei ∧ v where e1, . . . , en is the

standard basis of T n.
Because of the Leibniz identity for the Poisson bracket and because all fk Poisson-
commute, the morphisms ∂k are morphisms of T -modules (but not of R-modules!)
and ∂2 = 0. So also the cohomology groups

H i(f) := H i(C•f )

are T -modules, but in general not R-modules.
In the special caseR = C[p1, . . . , pn, q1, . . . , qn] there is a relation between the complex
C•f and the relative de Rham-complex Ω•R/T de�ned by

Ω0
R/T = R, Ωk

R/T = Ωk
R/f

∗Ω1
T ∧ Ωk−1

r for k ≥ 0.

We de�ne a morphism of graded complexes

ϕ• : (Ω•R/T , d) −→ (C•f , δ)

as follows: Denote by v1, . . . , vn the hamiltonian vector �elds of the functions f1, · · · , fn.
Then the mapping

ϕ1 : Ω1
R/T −→ C1

f ' Rn

α 7−→ (iv1α, . . . , ivnα)

induces morphisms

ϕk : Ωk
R/T =

k∧
Ω1
R/T −→

k∧
C1
f = Ck

f ,
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which form a morphism of complexes

ϕ• : (Ω•R/T , d) −→ (C•f , δ),

i.e. commute with di�erentials.
Both complexes Ω•R/T and C•f can be shea��ed to complexes of sheaves (Ω•f , d) and
(C•f , δ) on the a�ne space C2n = Spec(R) with analytic topology.

Proposition 6.1. If the morphism f : Spec(R) −→ Spec(T ) is smooth at a point,
then the map ϕ• : (Ω•f , d) −→ (C•f , δ) is an isomorphism of di�erential graded algebras
at this point.

This implies in particular that the cohomology modules H i(f) are isomorphic to the
de Rham cohomology of the smooth �bres of f .
Garay and van Straten also state the following theorem, which we will not use here,
but which inspires my conjecture in Section 6.9:

Theorem 6.2. If f is a pyramidal (cf. Section 6.9) holomorphic integrable sys-
tem, then the direct image sheaves of the complex C•f are coherent and (Rif∗C•f )0 is
isomorphic to H i(f).

In our non-sheaf language, this means that H i(f) is �nitely generated for pyramidal
systems f .

6.2 The quasihomogeneous case n = 2

We use this to compute the cohomology of smooth �bres for some two-dimensional
integrable systems (H,G) in R := C[p, P, q,Q], i.e. we compute the cohomology of
the complex

0 −→ C0 = R
∂0−→ C1 = R2 ∂1−→ C2 = R −→ 0 (6.1)

with
∂0 : f 7−→ ({H, f}, {G, f})

∂1 : (f, g) 7−→ {G, f} − {H, g}.

This is not a straight-forward-calculation with a computer algebra system, as the
terms in in the complex C• are not �nitely generated as T -modules.
But we can consider R as a graded ring R =

⊕∞
d=0Rd. Then all our four examples

are quasi-homogeneous with wt(p) = wt(P ) = w1 and wt(q) = wt(Q) = w2. In
this case all arrows above are homomorphisms of graded algebras, using the gradings
(with the abbreviations k1 := deg(H)− w1 − w2 and k2 := deg(G)− w1 − w2)

C0
d = Rd,

C1
d = Rd+k1 ⊕Rd+k2 ,

C2
d = Rd+k1+k2 ,
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i.e. C0 = R, C1 = R(k1)⊕R(k2), C2 = R(k1 + k2) as graded R-modules.

In the following we will try to �nd generators (and relations) of the cohomology
modules, by going through Ci degree by degree and compute the kernel and image
of the above maps in each degree via (�nite dimensional) linear algebra.
We will explain this at the example of H1(f). For H0(f) and H2(f) only part
of these calculation is needed, because there is no image, hence no relations in
H0(f) = ker(∂0), and we don't have to specify a kernel for H2(f) = C2/ im(∂1).

I used Maple for these computations, but any other program able to handle poly-
nomials and vector spaces will do.

Algorithm for the generators of H1(f)

For all degrees d from 0 to some upper bound dmax do:

• Determine a C-basis of the kernel Zd of ∂1|C1
d

: C1
d −→ C2

d .

• Determine a C-basis of the image Bd of ∂0|C0
d

: C0
d −→ C1

d .

• Determine a basis of those elements of Zd which already are multiples of gen-
erators found in lower degrees, i.e. H · Zd−deg(H) and G · Zd−deg(G).

• Complete the joint bases of Bd , H ·Zd−deg(H) and G ·Zd−deg(G) to a basis of Zd.
The elements we have to add are (minimal) generators of H1.

Algorithm for the relations of H1(f)

Given generators e1, . . . , en with degree d1, . . . , dn, �rst search for (a C-basis of) all
relations in degree d:

• Write down generic coe�cients c1, . . . , cn with deg(ci) = d− di.

• Use the basis g(d)
1 , . . . , g

(d)
m of Bd we computed while searching for generators.

• Solve the system of linear equations given by
∑n

i=1 ciei =
∑m

j=1 ajg
(d)
j .

• Forget about the aj and keep a basis of all ci solving the system.
These form a C-basis of all relations Reld in degree d.

Now to �nd minimal generators of the C[t1, t2]-module of all relations Rel up to degree
d̃max (reasonably we choose d̃max ≥ dmax) we complete a basis of H · Reld−deg(H) ⊕
G ·Reld−deg(G) to a basis of Reld for each d ≤ d̃max.
The elements we have to add are (minimal) generators of Rel (up to the given degree
d̃max).
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6.3 The Examples

In this chapter we will study the cohomology of several examples of the form (1.5),
all four mentioned by Michael Semmel in his thesis [Sem12]. Three of them come
from Przybylskas and Maciejewskis paper [MP04] and have potentials of degree 3.
The fourth one is another example of Grammaticos, this time with a potential of
degree 4.
Here we give a �rst overview over these examples and �rst elementary algebraic ge-
ometric properties. Note that every integrable system F = (f1, . . . , fn) in n degrees
of freedom induces a map C2n −→ Cn by (p, q) 7−→ (f1(p, q), . . . , fn(p, q)). We will
give some description for the �bres of these maps in the following.

Our systems will all be two-dimensional. For simplicity of notation we will write
q,Q, p, P instead of q1, q2, p1, p2 and H,G instead of f1, f2. We will denote the �bre
{H = h,G = g} by Xg,h.

6.3.1 The Hénon-Heiles potential

The Hénon-Heiles potential is given by

V (q,Q) =
1

2
(q2 +Q2) +

ε

3
q3 + qQ2.

Often one also �nds
V (q,Q) =

ε

3
q3 + qQ2 (6.2)

where integrability of the latter implies integrability of the �rst variant because its
the homogeneous component of maximal degree (c.f. Section 1.6).
It was considered by Michel Hénon and Carl Heiles in the 1960s ([HH64]) to describe a
star moving around a galactic centre in a slightly perturbed axial symmetric potential.
It turned out that (6.2) is integrable only in some special cases, namely if and only if
ε ∈ {1, 6, 16}. For ε = 1, the system decomposes as a product of two one-dimensional
integrable systems, thus is not interesting to us.

Parameter 6

The polynomials

H =
1

2
(p2 + P 2) + 2q3 + qQ2,

G = pPQ− P 2q + q2Q2 +
1

4
Q4

are quasi-homogeneous of degree 6 resp. 8 with wt(p) = wt(P ) = 3 and wt(q) =
wt(Q) = 2.
The �bre Xg,h is always a surface of degree 6. It is smooth except for

g(64g3 + 27h4) = 0.
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g = 064g3 + 27h4 = 0

In the case g = 0, h 6= 0, X0,h becomes singular along the smooth curve Q = P =
p2 + 4q3− 2h = 0 (degree 2), while for 64g3 + 27h4 = 0 the singular locus is a smooth
curve of degree 4. In both cases Xg,h has a singularity of type A1 transverse to the
singular curve.
The zero �bre X0,0 of this system is reduced and irreducible. The singular loci of the
two cases described above coincide, the singular curve is given by Q = P = p2+4q3 =
0 and has a cusp in the origin.

Parameter 16

The polynomials

H =
1

2
(p2 + P 2) +

16

3
q3 + qQ2,

G = P 4 + 4qQ2P 2 − 4

3
Q3pP − 4

3
q2Q4 − 2

9
Q6

are quasi-homogeneous of degree 6 resp. 12 with wt(p) = wt(P ) = 3 and wt(q) =
wt(Q) = 2.
The �bre over (g, h) is always a surface of degree 8. It is smooth except for

g(g − 4h2) = 0.

g = 0 g − 4h2 = 0

Over the line g = 0, it becomes singular with the smooth curve given by Q = P =
3p2 + 32q3 − 6h = 0 as singular locus, transverse to this curve the �bre has an Ẽ7-
singularity (i.e. a fourfold point with four di�erent tangents), while for g − 4h2 = 0
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the singular locus is a smooth curve of degree 8 with an A2-singularity transverse to
it.
The �bre over 0 of this system is reduced and irreducible, singular along a the curve
given by Q = P = 3p2 + 32q3 = 0 with a cusp in the origin.

6.3.2 Grammaticos example of degree 3

The polynomials

H =
1

2
p2 − 1

6
P 2 + q3 − 3

2
qQ2 +

1

2
Q3,

G =
1

9
(p− 1

2
P )P 3 − 3

2
Q3p2 − 3

2
qQ2pP − 3

2
Q3pP + (

1

2
Q3 − qQ2 − q2Q)P 2

− 3

2
q3Q3 +

9

8
q2Q4 +

9

4
qQ5 − 15

8
Q6

are quasi-homogeneous of degree 6 resp. 12 with wt(p) = wt(P ) = 3 and wt(q) =
wt(Q) = 2.
Here Xg,h is always a surface of degree 8. It is smooth except for

g(2g + 3h2) = 0.

g = 02g + 3h2 = 0

In both cases g = 0 resp. 2g + 3h2 = 0 the �bre becomes singular along a smooth
curve of degree 2 with a D4-singularity transverse to this curve.
For this system X0,0 decomposes into two components, both of degree 4, one of which
is reduced, while the other corresponds to a reduced surface of degree 2, counted
twice. The singular locus of the degree 4 surface is a line with an E8-singularity
transverse to it, while the degree 2 component is singular only in the origin. The two
components intersect each other in two cuspidal curves.

6.3.3 Grammaticos example of degree 4

The polynomials

H =
1

2
(p2 + P 2) + q4 +

3

4
q2Q2 +

1

8
Q4,
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G = P 4 +
1

2
Q4p2 − 2qQ3pP + (3q2Q2 +

1

2
Q4)P 2 +

1

4
q4Q4 +

1

4
q2Q6 +

1

16
Q8

are quasi-homogeneous of degree 4 resp. 8 with wt(p) = wt(P ) = 2 and wt(q) =
wt(Q) = 1.
The �bre over (g, h) is always a surface of degree 8. It is smooth except for

g(g − 4h2) = 0.

g = 0 g − 4h2 = 0

In the case g = 0 it has a singularity of type Ẽ7 along a smooth curve plane curve
of degree 2, while for g − 4h2 = 0 the singular locus also is smooth curve of degree 2
with an A2-singularity transverse to it.
The �bre X0,0 of this system decomposes into two components one of degree 4,
one of which is reduced, while the other corresponds to a reduced surface of degree
2, counted twice. The singular locus of the degree 4 surface is a curve of degree
3 (decomposing into a line and a singular conic), while the degree 2 component is
singular only in the origin. The two components intersect each other in an irreducible
curve of degree 2 with multiplicity 6 with an A3-singularity in the origin.

6.4 Zeroth Cohomology

In all four examples a search (up to degree 36 in the �rst three, and up to degree
24 in the last example) suggests ker({H, ·}) and ker({G, ·}) are both generated as
T -module by the constant polynomial 1, i.e. ker({H, ·}) = ker({G, ·}) = C[H,G].
Hence H0(f) = ker({H, ·}) ∩ ker({G, ·}) = 〈1〉T as expected.

6.5 First Cohomology

One consideration about ker(∂1):
Since 0 ∈ Rd for every d, C1

d consists not only of the pairs (f, g) with deg(f) = d+k1

and deg(g) = d + k2, but also of the 2-tuples (f, 0) and (0, g) with f resp. g of the
right degree. The latter are mapped by ∂1 to {G, f} resp. −{H, g}. So we already
found all elements of ker(∂1) that are of this form by our calculations in Section 6.4.
In all our four examples these elements are generated by the two generators (1, 0),
(0, 1) of ker(∂1).
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Thus in the following we only have to look for pairs of the form (f, g) with deg(f) =
d + k1 and deg(g) = d + k2 (f, g 6= 0). I ran the algorithm described above until
either the runtime exceeded some hours or Maple started crashing because of over�ow
problems. The following table gives the bound dmax reached in each example and all
generators of H1(f) found up to this bound. The name ed for a generator indicates
that it lives in C1

d .

Example Search in degrees Generators found
Hénon-Heiles 6 dmax = 31 e1, e3

Hénon-Heiles 16 dmax = 29 e′1, e7

Grammaticos 3 dmax = 29 e′′1, e
′
7

Grammaticos 4 dmax = 15 e0, e
′′′
1 , e5

There were no relations found in any of the examples (despite a search up to degree
41 in the �rst three and up to degree 29 in the last example).

Conjecture 6.3. In any of the examples H1(f) is a free module with either four or
�ve generators. Their degrees can be read o� from the table above.

6.6 Second Cohomology

The second cohomology modules are the most complicated ones. A search up to
degree dmax found the following number of generators in each degree:

Hénon-Heiles 6 (dmax = 33)
degree -3 -1 1 3 5 6 7 · · ·

# generators 1 2 1 2 1 0 0 · · ·

Hénon-Heiles 16 (dmax = 23)
degree -7 -5 -3 -2 -1 1 3 4 5 7 9 10 11 · · ·

# generators 1 2 1 1 2 3 2 1 1 2 1 0 0 · · ·

Grammaticos degree 3 (dmax = 16)
degree -8 -6 -4 -3 -2 0 2 3 4 6 8 10 12 14 16

# generators 1 2 1 1 2 3 2 1 1 2 1 1 1 1 1

Grammaticos degree 4 (dmax = 11)
degree -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

# generators 1 2 3 3 5 5 6 5 5 3 3 2 2 2 2 2 2

Both lists for the Hénon-Heiles examples seem to be complete, while in the examples
by Grammaticos we seem to see an in�nite sequence of one generator in every even
degree resp. two generators in every degree for large enough degrees.

We �nd no relations in the Hénon-Heiles examples.
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In Grammaticos example of degree 3 looking for relations among these generators we
�nd one nontrivial relation (i.e. which can not be used to eliminate a generator) in
every even degree between 10 and 28, and we may suspect that it will go further on
like this. If so, these in�nitely many generators and relations generate a module of
exactly the dimension in any degree as the Poincaré series calculated in Section 6.7.3
suggests.
In Grammaticos example of degree 4 we �nd one relation in degree 7 (making one of
the degree −1 generators e−1 torsion, i.e. (G− 4H2) · e−1 ∈ im(∂1)) and two in each
higher degree (up to 15, where I stopped searching). Together this gives the right
dimensions w.r.t. the calculations in Section 6.7.4.

Conjecture 6.4. 1. For the Hénon-Heiles examples H2(f) is a �nitely generated
free T -module with 7 resp. 17 generators in the degrees given above.

2. In the examples by Grammaticos H2(f) is an in�nitely generated T -modules
with in�nitely many relations.

6.7 Poincaré series

We use the theory of Poincaré series to check the consistency of our previous calcu-
lations.

De�nition 6.5. Let M =
⊕

j∈ZMj be a graded k-module with all Mk �nite di-
mensional k vector spaces. Then the Poincaré series of M is given by PM(t) :=∑

j∈Z dimk(Mj)t
j

Lemma 6.6. For the polynomial ring R = k[x1, . . . , xn] with deg(xi) = wi we have

PR(t) =
1

(1− tw1) · · · (1− twn)
.

Lemma 6.7. If M is a graded k-module with Poincaré series PM and M(d) is its
shift by d, i.e. M(d)k = Mk+d, then PM(d) = t−dPM .

Theorem 6.8. Let C• : 0 −→ Cn −→ · · · −→ C1 −→ C0 −→ 0 be a �nite chain
complex of graded k-algebras with (Cj)k �nite dimensional for all j and k. Then the
Euler characteristic of this complex

χC := PC0 − PC1 + PC2 − · · · ± PCn

is equal to the Euler characteristic of its homology

χH := PH0(C) − PH1(C) + PH2(C) − · · · ± PHn(C).

The proofs are just elementary combinatorics and linear algebra.
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With respect to our gradings given in Section 6.1, the maps ∂0, ∂1 of our complex
are homomorphisms of graded algebras. With respect to this grading we have the
following Poincaré series:

PC0 =
1

(1− tw1)2(1− tw2)2

PC1 =
t−k1 + t−k2

(1− tw1)2(1− tw2)2

PC2 =
t−k1−k2

(1− tw1)2(1− tw2)2
.

So the Euler characteristic of our complex (for n = 2) is:

χC := PC0 − PC1 + PC2

=
1− t−k1 − t−k2 + t−k1−k2

(1− tw1)2(1− tw2)2
.

A check with Singular gives in all four cases, that C[t1, t2] −→ C[p, P, q,Q], t1 7→
G, t2 7→ H is injective, i.e. C[G,H] ∼= C[t1, t2].

6.7.1 Hénon-Heiles 6

In this example we have w1 = 3, w2 = 2, deg(H) = 6, deg(G) = 8, so k1 = 1 and
k2 = 3, hence

χC =
1− t−1 − t−3 + t−4

(1− t2)2(1− t3)2
.

Following the calculations in Section 6.4 and 6.5 we assume H0 = C[G,H], so

PH0 =
1

(1− t6)(1− t8)

and H1
d+1 = C[G,H]d(1, 0)⊕ C[G,H]d+2(0, 1)⊕ C[G,H]d−2e2 ⊕ C[G,H]d−4e

(2)
4 , so

PH1 =
t3 + t+ t−1 + t−3

(1− t6)(1− t8)
.

So we expect the following Poincaré series for H2:

PH2 =
t4 + 2t2 + 1 + 2t−2 + t−4

(1− t6)(1− t8)
.

This matches our calculations in Section 6.6.
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6.7.2 Hénon-Heiles 16

In this example we have w1 = 3, w2 = 2, deg(H) = 6, deg(G) = 12, so k1 = 1 and
k2 = 7, hence

χC =
1− t−1 − t−7 + t−8

(1− t2)2(1− t3)2
.

Following the calculations in Section 6.4 and 6.5 we assume H0 = C[G,H], so

PH0 =
1

(1− t6)(1− t12)

and H1
d+1 = C[G,H]d(1, 0)⊕ C[G,H]d+6(0, 1)⊕ C[G,H]d−2e2 ⊕ C[G,H]d−8e8 so

PH1 =
t−7 + t−1 + t+ t7

(1− t6)(1− t12)
.

So we expect the following Poincaré series for H2:

PH2 =
t8 + 2t6 + t4 + t3 + 2t2 + 3 + 2t−2 + t−3 + t−4 + 2t−6 + t−8

(1− t6)(1− t12)
.

This also matches our calculations in Section 6.6.

Note, that this calculation as well as the degrees of all generators coincide exactly
with those in Grammaticos example of degree 3. But a check in Singular tells us,
that the two are not isomorphic in the sense of [Prz07] (i.e. there is no symplectic
matrix A s.t. HHH16(p, q) = HG3(A ·(p, q))). This is also obvious from the fact, that
the Hénon-Heiles examples have reduced �bre over 0 while those by Grammaticos
have not. Additionally, they are also listed as two di�erent integrable potentials in
[MP04].

6.7.3 Grammaticos 3

In this example we have w1 = 3, w2 = 2, deg(H) = 6, deg(G) = 12, so k1 = 1 und
k2 = 7, hence

χC =
1− t−1 − t−7 + t−8

(1− t2)2(1− t3)2
.

The calculations in Section 6.4 and 6.5 suggest H0 = C[G,H], so

PH0 =
1

(1− t6)(1− t12)

and H1
d+1 = C[G,H]d(1, 0)⊕ C[G,H]d+6(0, 1)⊕ C[G,H]d−2e2 ⊕ C[G,H]d−8e8 so

PH1 =
t7 + t+ t−1 + t−7

(1− t6)(1− t12)
.
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So if our calculations are correct, we expect the following Poincaré series for H2:

PH2 = χC − PH0 + PH1

=
t8 + 2t6 + t4 + t3 + 2t2 + 3 + 2t−2 + t−3 + t−4 + 2t−6 + t−8

(1− t6)(1− t12)
.

Also this looks like the Poincaré series of a free module with the generators in Section
6.6 up to degree 8, it also matches the module with in�nitely many generators and
relations described there.

To see this, one can argue as follows: Suppose the module H2 has a free resolution

0 −→ R −→ F −→ H2 −→ 0

where F is the free module generated by the generators given in Section 6.6, and R
is the free module generated by the relations described there.
Note: We do not know a priori, that a free resolution really ends after R, but we
know that a minimal free resolution (a beginning of which we have computed with F
and R) could have at most one additional term because of Hilberts syzygy theorem.
(The ring T = C[t1, t2] has projective dimension two.) Since PH2 = PF − PR if our
conjectures are right, the potential third term of a minimal free resolution is zero.
Then F had a Poincaré series given by

PF =
1 + 2t2 + t4 + t5 + 2t6 + 3t8 + 2t10 + t11 + t12 + 2t14 +

∑∞
k=8 t

2k

t8(1− t6)(1− t12)

and the Poincaré series of R would look like

PR =

∑∞
k=9 t

2k

t8(1− t6)(1− t12)
.

From this we get that the Poincaré series PH2 = PF − PR is like stated above.
So the sheer fact that we have the same number of generators as of free relations
in any degree up from a certain point, hides the generators and relations from the
Poincaré series.

6.7.4 Grammaticos 4

In this example we have w1 = 2, w2 = 1, deg(H) = 4, deg(G) = 8, so k1 = 1 and
k2 = 5, hence

χC =
1− t−1 − t−5 + t−6

(1− t)2(1− t2)2
.

Following the calculations in Section 6.4 and 6.5 we assume H0 = C[G,H], so

PH0 =
1

(1− t4)(1− t8)
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and

H1
d+1 = C[G,H]d+4(0, 1)⊕C[G,H]d(1, 0)⊕C[G,H]d−1e1⊕C[G,H]d−2e2⊕C[G,H]d−6e6

so

PH1 =
t−5 + t−1 + 1 + t+ t5

(1− t4)(1− t8)
.

So we expect the following Poincaré series for H2:

PH2 =
t6 + 2t5 + 2t4 + t3 + 2t2 + 2t+ 1

t6(1− t2)2(1 + t2)

=
t6 + 2t5 + 3t4 + 3t3 + 5t2 + 5t+ 6 + 5t−1 + 5t−2 + 3t−3 + 3t−4 + 2t−5 + t−6

(1− t4)(1− t8).

This looks like the Poincaré series of a free module with the generators in Section 6.6
up to degree 6 and one of the generators in degree 7. But our presumably in�nite
series of generators and relations also produces the same Poincaré series with the
same argument than above.

6.8 An observation

In all four examples the Poincaré series for all cohomology modules H i(f) has a
numerator, that is symmetric in the sense, that there is always the same coe�cient
in front of tk as in front of t−k. This means, it could be written as a polynomial in
t+ t−1. This fact might re�ect some kind of self-duality of the cohomology modules.

6.9 Attempt of an explanation

In both of our Hénon-Heiles examples all cohomology modules are free modules,
whereas both examples by Grammaticos have nontrivial relations in the H2-module.
There are several aspects that di�er between these two pairs of examples each of
which could be an explanation for this di�erence:

• As already mentioned in Section 6.3, the Hénon-Heiles examples have reduced
zero-�bre while the examples by Grammaticos have not.

• In the Hénon-Heiles examples H has isolated singularity, while in the examples
by Grammaticos, it has not.

• In their paper [GvS10] Garay and van Straten de�ne a similar but stronger cri-
terion of being pyramidal from which they deduce that all Hk(f) are coherent.
They denote by v1, . . . , vn the hamiltonian vector �elds of f1, . . . , fn and put

Mk(f) = {x ∈M | dim Span{v1(x), ..., vn(x)} = k}.
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They call an integrable system pyramidal if

dimMk(f) ≤ k.

Again, both Hénon-Heiles examples are pyramidal, those by Grammaticos are
not.

I suspect pyramidality is the right criterion to look at. It would be interesting to
look at examples that di�er only in one or two of the aspects above, but this may
be di�cult, since, following Przybylska, there are only �nitely many polynomial
integrable potentials in each given degree and number of variables (in particular, we
analysed all interesting examples in degree 3 in 2 variables), and raising the degree
and/or the number of variables will probably increase computational complexity quite
quickly.
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7 Appendix: More about abelian
varieties

In this chapter we give some more details about abelian varieties, their embeddings
and their moduli. Proofs and further details can be found in [BL04]. As in Chapter
2 X = V/Λ is a complex torus.

7.1 Homomorphisms of complex tori

With the group structure onX we can de�ne the translation maps given by tx : X −→
X, y 7−→ x+ y.

Proposition 7.1. Let X = V/Λ and X ′ = V ′/Λ′ be two complex tori and h : X −→
X ′ a holomorphic map. Then:

1. There exists a unique homomorphism f : X −→ X ′ s.t. h = th(0) ◦ f .

2. There exists a unique C-linear map F : V −→ V ′ inducing f . F maps the
lattice Λ to Λ′.

Both maps F : V −→ V ′ and F |Λ : Λ −→ Λ′ determine f uniquely, i.e. there are
injective homomorphisms of abelian groups

ρa : Hom(X,X ′) −→ Hom(V, V ′), f 7−→ F

and
ρr : Hom(X,X ′) −→ Hom(Λ,Λ′), f 7−→ F |Λ,

called the analytic resp. rational representation of Hom(X,X ′). The maps ρa(f)
and ρr(f) are also called analytic resp. rational representation of f .

Analytic and rational representation of a homomorphism f can be seen as matri-
ces, which are connected in the following way: Let e1, . . . eg be a C-basis of V and
λ1, . . . , λ2g a Z-basis of the lattice Λ. Write λi in terms of the basis e1, . . . , eg:
λi =

∑g
j=1 λijej. The matrix

Π =

λ11 · · · λ1,2g
...

...
λg1 · · · λg,2g

 ∈ Cg×2g

95



is called a period matrix for X.
Let Π′ be the period matrix for Λ′ ⊂ V ′ w.r.t. the bases e′1, . . . , e

′
g′ and λ

′
1, . . . , λ

′
2g′ .

Let A ∈ Cg×g′ be the matrix of ρa(f) : V −→ V ′ w.r.t. the bases e1, . . . , eg resp.
e′1, . . . , e

′
g′ and R ∈ Z2g×2g′ the matrix of ρr(f) with respect to the bases λ1, . . . , λ2g

and λ′1, . . . , λ
′
2g′ . Then V resp. V ′ can be identi�ed with Cg resp. Cg′ , Λ and Λ′ with

Z2g and Z2g′ , Π and Π′ represent the embeddings of Λ in V resp. Λ′ in V ′ and the
fact that R and A represent the same map translates to the commutativity of the
following diagram

Z2g R //

Π
��

Z2g′

Π′
��

Cg
A
// Cg′ ,

i.e. A · Π = Π′ ·R.

De�nition 7.2. A homomorphism f : X −→ X ′ of complex tori is called an isogeny
if it is surjective and has �nite kernel.

A special case of isogenies are the maps nX : X −→ X (n ∈ Z) which send a point
x to its n-fold sum nx. For n 6= 0 this is an isogeny whose kernel are the n-torsion
points of X, denoted by Xn

∼= (Z/nZ)g.

7.2 Line bundles on complex tori and the

Appell-Humbert-Theorem

Here we give some more details about the description of line bundles in terms of a
factor of automorphy and the Appel-Humbert-Theorem.

For the next paragraphs let X be a arbitrary complex manifold and π : X̃ −→ X the
universal covering, π1(X) the fundamental group. We will describe all line bundles
on X with trivial pullback to X̃.
A factor of automorphy is a holomorphic function f : π1(X) × X̃ −→ C∗ such that
f(g1g2, x̃) = f(g2, g1x̃) · f(g1, x̃).
Such functions can be identi�ed with 1-cocycles in the sense of group cohomology,
i.e. with elements of Z1(π1(X), H0(O∗

X̃
)).

Theorem 7.3. There is a canonical isomorphism

φ : H1(π1(X), H0(O∗
X̃

)) −→ ker(H1(X,O∗X)
π∗→ H1(X̃,O∗

X̃
)).

In other words: Every line bundle on X which has trivial pull-back to X̃ can be de-
scribed by a factor of automorphy which is unique up to an element of
B1(π1(X), H0(O∗

X̃
)).
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One possible description of φ is as follows: Any factor of automorphy f , seen as a
holomorphic function f : π1(X) × X̃ −→ C∗ as above, describes an action of π1(X)

on the trivial line bundle X̃ × C −→ X̃ by

λ · (x̃, t) := (λx̃, f(λ, x̃)t).

Note that the cocycle condition for f translates to the fact that λ1 · λ2 · (x̃, t) =

(λ1λ2) · (x̃, t). Then φ(f) = (X̃ × C)/π1(X).
For another description see [BL04], Appendix B.

Now for a complex torus X the universal cover is π : V −→ X, π1(X) ∼= Λ. Because
every vector bundle on a complex vector space is trivial, we obtain:

Corollary 7.4.

H1(X,O∗X) ∼= H1(Λ, H0(O∗V )).

But Pic(X) ∼= H1(X,O∗X), which can be seen best by thinking about line bundles
in the topological sense i.e. as maps p : L −→ X whose �bres are one-dimensional
vector spaces and which can be trivialised over certain subsets forming an open cover
(Ui)i∈I . Then the collection of all transition functions gij : Ui ∩ Uj −→ C∗ is an
element of the �ech cohomology H1(O∗X).
So every holomorphic line bundle on X can be described by a factor of automorphy.

Now we are looking for a simpler description for the factors of automorphy on a
complex torus X.
For this consider the exponential exact sequence

0 −→ Z −→ OX −→ O∗X −→ 0

and its long exact cohomology sequence

· · · −→ H1(X,Z) −→ H1(X,OX) −→ H1(X,O∗X)
c1−→ H2(X,Z) −→ · · · .

As H1(X,O∗X) ∼= Pic(X) and H2(X,Z) ∼= Alt2(Λ,Z) by Proposition 2.1, we can see
c1 as a map associating to each line bundle L a Z-valued alternating form c1(L) on
the lattice Λ. We will call c1(L) the �rst Chern-class of the line bundle L. c1(L) can
be described explicitly in terms of the factor of automorphy of L.

Proposition 7.5. For an alternating form E : V ×V −→ R the following conditions
are equivalent:

1. E|Λ = c1(L) for a holomorphic line bundle L on X.

2. E(Λ,Λ) ⊆ Z and E(iv, iw) = E(v, w).

Recall that a hermitian form on V is a map H : V × V −→ C that is C-linear in the
�rst argument and satis�es H(v, w) = H(w, v) for all v, w ∈ V .
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Lemma 7.6. There is a one-to-one-correspondence between the set of hermitian
forms H on V and the set of real valued alternating forms E on V satisfying E(iv, iw) =
E(v, w) given by

E(v, w) = ImH(v, w) and H(v, w) = E(iv, w) + iE(v, w)

for all v, w ∈ V .

In the sequel we will consider the �rst Chern class of a line bundle L on X either as
an alternating or a hermitian form on V .
De�ne the Néron-Severi group NS(X) to be the image of the homomorphism

c1 : H1(O∗X) −→ H2(X;Z).

According to Proposition 7.5 and Lemma 7.6, NS(X) can be identi�ed either with the
group of hermitian forms H : V ×V −→ C with ImH(Λ,Λ) ⊆ Z or with the group of
R-valued alternating forms E on V satisfying E(Λ,Λ) ⊆ Z and E(iv, iw) = E(v, w).

A semicharacter for a hermitian form H is a map χ : Λ −→ S1 ⊂ C∗ satisfying

χ(λ+ µ) = χ(λ)χ(µ) exp(πi ImH(λ, µ)) for all λ, µ ∈ Λ.

The semicharacters for 0 ∈ NS(X) are exactly the group homomorphisms from Λ to
S1.
We de�ne

P(Λ) = {(H,χ) | H ∈ NS(Λ), χ semicharacter for H}.
Obviously, P(Λ) is a group with respect to the composition

(H1, χ1) ◦ (H2, χ2) = (H1 +H2, χ1χ2)

and the following sequence is exact

0 −→ Hom(Λ, S1)
ι−→ P(Λ)

p−→ NS(X)

where ι(χ) = (0, χ) and p(H,χ) = H.
In fact, p : P(Λ) −→ NS(X) is surjective and we have the following theorem:

Theorem 7.7 (Appell-Humbert-Theorem). There is a canonical isomorphism of
exact sequences

0 // Hom(Λ, S1) //

'
��

P(Λ) //

'
��

NS(X) // 0

0 // Pic0(X) // Pic(X) // NS(X) // 0

where the isomorphism P(Λ) −→ Pic(X) is given by associating to each pair (H,χ) ∈
P(Λ) the line bundle L on X that is described by the factor of automorphy

a(H,χ)(λ, v) = χ(λ) exp
(
πH(v, λ) +

π

2
H(λ, λ)

)
.
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We will denote the line bundle associated to a pair (H,χ) by L(H,χ).
Using this theory one can see for example:

Lemma 7.8. For any L = L(H,χ) ∈ Pic(X) and v̄ ∈ X with representative v ∈ V

t∗v̄L(H,χ) = L
(
H,χ exp(2πi ImH(v, ·))

)
.

Lemma 7.9. Let f : X ′ −→ X be a homomorphism with analytic representation
F : V ′ −→ V and rational representation FΛ : Λ′ −→ Λ. Then

f ∗L(H,χ) = L(F ∗H,F ∗Λχ).

7.3 Projective embeddings and equations

In this section we will study the map ϕL and see for example in which cases ϕL is an
embedding. We will also make some statement about the equations describing the
image ϕL(X).

Proposition 7.10. If L is a positive de�nite line bundle on X of type (d1, . . . , dg)
and d1 ≥ 2, then ϕL has no base point, i.e. is a holomorphic map.

Theorem 7.11 (Lefschetz). If L is a positive de�nite line bundle on X of type
(d1, . . . , dg) and d1 ≥ 3, then ϕL is an embedding.

Note that the type of Ln is n times the type of L.

Corollary 7.12. If L is an ample line bundle on X, then Ln is very ample for every
n ≥ 3.

Now we want to study the case d1 = 2. One can show that a line bundle of type
(2, d2, . . . ) is of the form L2 for an ample line bundle L on X.

Theorem 7.13 (Decomposition Theorem). Let L be a line bundle on X. Then as
polarised abelian varieties

(X,L)
∼=−→ (X1 ×X2 × · · · ×Xr, q

∗
1M ⊗ q∗2N2 ⊗ · · · ⊗ q∗rNr)

whereM is a line bundle on X1 without �xed components (in the corresponding linear
system of divisors), the Ni are irreducible principal polarisations on the Xi and the
qi are the projections from X1 ×X2 × · · · ×Xr onto its factors.

To study the map ϕL2 , decompose L as in the theorem above. Let ϕM2 : XM → Pn1

and ϕN2
i

: Xi → Pni , i = 2, . . . , r, be the corresponding holomorphic maps and denote
by ψ : Pn1 × · · · × Pnr → PN the Segre embedding. Then the holomorphic map
ϕL2 : X → PN decomposes as

ϕL2 = ψ ◦ (ϕM2 × ϕN2
2
× · · · × ϕN2

r
).

Thus it is enough to consider the cases
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1. L = M a polarisation without �xed components,

2. L = Ni an irreducible principal polarisation.

In this two cases we have the following results:

Theorem 7.14. If L is an ample line bundle without �xed components, then L2 is
very ample.

Theorem 7.15. If L is a symmetric line bundle de�ning an irreducible principal
polarisation on X, then ϕL2 induces an embedding of the Kummer variety KX :=
X/〈(−1)X〉 to PN .

It is no restriction to assume that L is symmetric because of the following facts:

Lemma 7.16. Let L be an ample line bundle on X and x ∈ X a point. Let ϑ0, . . . , ϑN
be an basis of H0(L). Then t∗xϑ0, . . . , t

∗
xϑN is a basis of H0(t∗xL) and with ϕL, ϕt∗xL

the corresponding maps to PN the following diagram commutes:

L
tx //

ϕt∗xL   

L

ϕL~~
PN

Proposition 7.17. For two line bundles L and L′ on X the following statements
are equivalent:

1. L and L′ are analytically equivalent.

2. L′ = t∗xL for some x ∈ X.

3. c1(L) = c1(L′).

So the image X of ϕL in PN does not depend on L itself but only on its analytic
equivalence class resp. its �rst Chern class.

De�nition 7.18. A line bundle L is called symmetric if (−1)∗XL
∼= L.

The following argument shows that for each H ∈ NS(X) there is a symmetric line
bundle L on X such that c1(L) = H: Lemma 7.9 shows that L(H,χ) is symmetric
if and only if χ has values in {±1}. But since NS(X) consists only of those hermi-
tian forms whose imaginary part takes integral values on Λ × Λ, the semicharacter
χ0 : V −→ S1 de�ned by χ0(v) = exp(πiE(v1, v2)) where v = v1 + v2 with vi ∈ Vi
(V = V1 ⊕ V2 a decomposition for H) only takes values ±1. So for each H, L(H,χ0)
is symmetric.

Now we want to make some statements about the equations describing the image of
ϕL:
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De�nition 7.19. A projective variety Y ⊆ PN is called projectively normal in PN if
its homogeneous coordinate ring is an integrally closed domain.
We call a line bundle M on Y normally generated if it is very ample and Y is
projectively normal under the associated projective embedding.

Theorem 7.20. Let L be an ample line bundle on an abelian variety X. Then:

1. Ln is normally generated for any n ≥ 3.

2. If L is of characteristic c, then L2 is normally generated if and only if no point
of t∗c̄ is a base point of L.

A very ample line bundle onM on an abelian varietyX gives an associated embedding
ϕM : X ↪→ PN . For the degree of the generators of the homogeneous ideal I(M) of
all polynomials vanishing on ϕM(X) ⊆ PN we have the following theorem:

Theorem 7.21. Suppose L is an ample line bundle on X and Ln is normally gen-
erated, then

1. the ideal I(Ln) is generated by forms of degree 2 whenever n ≥ 4,

2. the ideal I(L3) is generated by forms of degree 2 and 3,

3. the ideal I(L2) is generated by forms of degree 2, 3 and 4.

For the special case of abelian surfaces the Decomposition Theorem reads like:

Lemma 7.22. L has a �xed component if and only if there are elliptic curves E1

and E2 with line bundles L1 of type (1) on E1 and L2 of type (d) on L2 such that
(X,L) ∼= (E1 × E2, p

∗
1L1 ⊗ p∗2L2).

Assuming L has no �xed components, we have:

Lemma 7.23. Let L be a line bundle of type (1, d).

1. If d ≥ 3, L has no base point.

2. If d = 2, L has exactly four base points.

Some more results about ampleness in dimension two can be found in the paper
[Ram85] by Ramanan.

Theorem 7.24. Let A be an abelian surface not containing elliptic curves and let L
be an ample line bundle on A with c1(L) of type (d1, d2). Then L is very ample in
either of the following cases

1. d1 = 1 and d2 ≥ 5,

2. d1 = 2 and d2 ≥ 4, or

3. d1 ≥ 3.
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7.4 Moduli spaces

7.4.1 Siegel upper half space

Suppose X = V/Λ is an abelian variety of dimension g and H ∈ NS(X) a hermitian
form on V de�ning a polarisation of type D = diag(d1, . . . , dg). Then by de�nition
there is a symplectic basis λ1, . . . , λg, µ1, . . . , µg of Λ for H such that the alternating
form Im(H) is given by the matrix

(
0 D
−D 0

)
with respect to this basis.

De�ne eν = 1
dν
µν for ν = 1, . . . , g. The vectors e1, . . . , eg form a C-basis for V . With

respect to these bases the period matrix is of the form

Π = (Z,D)

for some Z ∈ Cg×g.

Proposition 7.25 (Riemann Bilinear Relations).

1. Z> = Z and Im(Z) is positive de�nite.

2. (Im(Z))−1 is the matrix of the hermitian form H with respect to the basis
e1, . . . , eg.

De�ne a polarised abelian variety of type D with symplectic basis to be a triplet

(X,H, {λ1, . . . , λg, µ1, . . . , µg})

where X = V/Λ is an abelian variety, H a polarisation of type D on X, and
{λ1, . . . , λg, µ1, . . . , µg} a basis of Λ for H such that H is of the form

(
0 D
−D 0

)
with

respect to this basis.
Two polarised abelian varieties (X = V/Λ, H, {λ1, . . . , µg}) and (X ′ = V ′/Λ′, H ′,
{λ′1, . . . , µ′g}) of type D with symplectic basis are said to be isomorphic if there is a
linear isomorphism ϕ : V −→ V ′ which maps λj to λ′j and µj to µ

′
j for all j = 1, . . . , g.

In this case ϕ automatically maps Λ to Λ′ and pulls back H ′ to H i.e. it is an iso-
morphism of polarised abelian varieties.

The set
Hg := {Z ∈ Cg×g | Z> = Z, Im(Z) > 0}

is called the Siegel upper half space. It is a 1
2
g(g + 1)-dimensional open submanifold

of the vector space Cg×g.
We have seen that a polarised abelian variety of type D with symplectic basis deter-
mines a point Z in Hg. Conversely, given a type D, the assignment

Φ: Z 7−→ (XZ , HZ , {columns of (Z,D)})

with ΛZ := (Z,D)Z2g, XZ := Cg/ΛZ and HZ the hermitian form described by
(Im(Z))−1 with respect to the standard basis of Cg, associates a polarised abelian
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variety with symplectic basis to any point in Hg. As we argued above, any polarised
abelian variety of type D with symplectic basis is isomorphic to one in the image of
Φ. By de�nition for Z 6= Z ′ ∈ Hg the associated p.a.v. with symplectic basis are
never isomorphic. Hence we have:

Proposition 7.26. Given a type D the Siegel upper half space Hg is a moduli space
for polarised abelian varieties of type D with choice of a symplectic basis.

7.4.2 The analytic moduli space

To construct a moduli space for polarised abelian varieties of type D we have to
analyse which points of Hg determine isomorphic polarised abelian varieties.
By analysing the action of the matrices of ρa(f) and ρr(f) of the analytic and the
rational representation of an possible isomorphism f on Z one obtains:

Proposition 7.27. For a given type D and Z,Z ′ ∈ Hg the following statements are
equivalent:

1. The polarised abelian varieties (XZ , HZ) and (XZ′ , HZ′) are isomorphic.

2. Z ′ = M(Z) for some M ∈ GD.

Here
GD := {M ∈ Sp2g(Q) |M>ΛD ⊆ ΛD}

where ΛD :=
(

1g
D

)
Z2g and

Sp2g(R) = {M ∈ R2g×2g | N>
(

1g
−1g

)
N =

(
1g

−1g

)
}

is called the symplectic group for any commutative ring R with 1. The action of GD

on Hg is given by M(Z) := (αZ + β)(γZ + δ)−1 for M =
(
α β
γ δ

)
∈ GD and Z ∈ Hg.

One can show that GD is a discrete subgroup of Sp2g(R) and that any such subgroup
G acts properly and discontinuously on Hg. This implies that the quotient

A′D := Hg/GD

is a normal complex analytic space of dimension g(g+1)
2

.
Hence the last proposition translates to:

Theorem 7.28. The normal complex analytic space A′D := Hg/GD is a moduli space
for polarised abelian varieties of type D.

There is another formulation: For any commutative ring R with 1 of characteristic
0 de�ne the group

SpD2g(R) = {M ∈ R2g×2g |M
(

0 D
−D 0

)
M> =

(
0 D
−D 0

)
}.

103



The map

σD : SpD2g(R) −→ Sp2g(R), σD(M) :=
(

1g 0
0 D

)−1
M
(

1g 0
0 D

)
is an isomorphism of groups that maps ΓD := SpD2g(Z) to GD. Both groups GD and
ΓD are often called the paramodular group.
The associated action of SpD2g(R) in Hg is given by

M〈Z〉 = (aZ + bD)(D−1cZ +D−1dD)−1 for all M = ( a bc d ) ∈ SpD2g(R).

Corollary 7.29. The normal complex analytic space AD := Hg/ΓD is a moduli space
for polarised abelian varieties of type D.

7.4.3 Level D-structure

In the last sections we saw that Hg/ΓD is a moduli space for polarised abelian va-
rieties of type D, while Hg itself is a moduli space for polarised abelian varieties of
type D with symplectic basis. A symplectic basis cannot be given in algebraic terms,
but one can consider several additional structures to (X,H), either because they
reduce the number of automorphisms and allow the construction of a ��ner� moduli-
space or because they carry interesting geometric information. The more additional
structure we want to encode, the smaller is the subgroup of ΓD acting on HG. A
level D-structure is kind of the closest replacement for the notion of a symplectic basis.

Let (X = V/Λ, H) be a polarised abelian variety of type D = diag(d1, . . . , dg).
Recall the (multiplicative) alternating form eH : K(H) ×K(H) −→ C∗, eH(v̄, w̄) =
exp(−2πi ImH(v, w)). In Section 2.7.3 we introduced the group K(D) = (Zg/DZg)2

and the (multiplicative) alternating form eD : K(D) × K(D) −→ C∗. A level D-
structure on (X,H) is by de�nition a symplectic isomorphism b̄ : K(H) −→ K(D).
The symplectic isomorphism b̄ : K(H) −→ K(D) can be identi�ed with the ordered
set {b̄−1(f1), . . . , b̄−1(f2g)} where f1, . . . , f2g denotes the standard generators ofK(D).
This is a basis of K(L).
So we can de�ne an isomorphism of polarised abelian varieties with level D-structure
similarly to the de�nition we made in Section 7.4.1 as an isomorphism of polarised
abelian varieties that maps the j-th element of the given basis of K(L) to the corre-
sponding element of K(L′).
Given a symplectic isomorphism b̄ there is a symplectic basis λ1, . . . , λg, µ1, . . . , µg of
Λ for H such that b̄( 1

di
λi) = fi and b̄( 1

di
µi) = fg+i for 1 ≤ i ≤ g.

Every Z ∈ Hg determines a polarised abelian variety of typeD with levelD-structure:

Z 7−→
(
XZ , HZ ,

{
1
d1
λ1, . . . ,

1
dg
λg,

1
d1
µ1, . . . ,

1
dg
µg
})

where (XZ , HZ , {λ1, . . . , µg}) is the polarised abelian variety of type D with sym-
plectic basis of Proposition 7.26.
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By what we said above it is clear that every polarised abelian variety with level
D-structure is isomorphic to one of these. One can show that

ϕ :
(
XZ , HZ ,

{
1
d1
λ1, . . . ,

1
dg
µg
})
−→

(
XZ′ , HZ′ ,

{
1
d1
λ′1, . . . ,

1
dg
µ′g
})

is an isomorphism of polarised abelian varieties with level D-structure if and only if
the matrix R of the rational representation of ϕ is an element of the group

ΓD(D) = {( a bc d ) ∈ ΓD | a− 1g ≡ b ≡ c ≡ d− 1g ≡ 0 mod D}

where we write a ≡ 0 mod D for a ∈ D · Zg×g.
It might not be clear from the de�nition, but ΓD(D) is a normal subgroup of �nite
index in ΓD. As a subgroup of ΓD it also acts properly and discontinuously on Hg

and we obtain

Theorem 7.30. The normal complex analytic space AD(D) := Hg/ΓD(D) is a mod-
uli space for polarised abelian varieties of type D = diag(d1, . . . , dg) with level D-
structure. The embedding ΓD(D) ↪→ ΓD induces a holomorphic map AD(D) → AD
of �nite degree.

7.4.4 Generalised level n-structure

A level n-structure on a principally polarised abelian variety (X,H) is by de�nition a
level (n1g)-structure on the polarised abelian variety (X,nH) in the sense of Section
7.4.3, i.e. a symplectic basis of the n-division points Xn. We want to generalise the
notion of a level n-structure to a polarised abelian variety (X,H) of arbitrary type
D. But in this case H does in general not induce a nondegenerate multiplicative
alternating form on Xn.
Let (X = V/Λ, H) be a polarised abelian variety of type D. A symplectic ba-
sis λ1, . . . , λg, µ1, . . . , µg of Λ for H determines a basis of the group Xn, namely
1
n
λ1, . . . ,

1
n
λg,

1
n
µ1, . . . ,

1
n
µg. A generalised level n-structure for (X,H) is de�ned to

be a basis of Xn coming from a symplectic basis in this way. We call two such
triplets (X,H, {x1, . . . , x2g}) and (X ′, H ′, {x′1, . . . , x′2g}) isomorphic, if there is an
isomorphism ϕ : (X,H) −→ (X ′, H ′) as polarised abelian varieties, and ϕ(xi) = x′i
for all 1 ≤ i ≤ 2g.
For every Z ∈ Hg (

XZ , HZ , { 1
n
λ1, . . . ,

1
n
λg,

1
n
µ1, . . . ,

1
n
µg}
)

is a polarised abelian variety with level n-structure, where (XZ , HZ , {λ1, . . . , λg,
µ1, . . . , µg}) is the polarised abelian variety of type D with symplectic basis as in
Proposition 7.26. Conversely, it is clear that every polarised abelian variety with
level n-structure is isomorphic to one of these and again we have to analyse when
two of them are isomorphic.
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With an argument similar to the one in the last section, one can see that Z and
Z ′ ∈ Hg determine isomorphic polarised abelian varieties with generalised level n-
structure if and only if Z ′ = R〈Z〉 and R is an element of the group

ΓD(n) = {R ∈ ΓD | R ≡ 12g mod n}.

Theorem 7.31. The normal complex analytic space AD(n) := Hg/ΓD(n) is a moduli
space for polarised abelian varieties of type D = diag(d1, . . . , dg) with generalised level
n-structure. The embedding ΓD(n) ↪→ ΓD induces a holomorphic map AD(n)→ AD
of �nite degree.

7.4.5 Decomposition of the lattice

In Section 2.4 we de�ned a decomposition of Λ (for H) to be a decomposition

Λ = Λ1 ⊕ Λ2

with isotropic subgroups Λ1,Λ2 ⊆ Λ for Im(H). Any symplectic basis λ1, . . . , λg,
µ1, . . . , µg of Λ for H determines such a decomposition via

Λ1 = 〈λ1, . . . , λg〉, Λ2 = 〈µ1, . . . , µg〉.

Thus every Z ∈ Hg determines a polarised abelian variety of type D with a decom-
position, namely

Z 7−→ (XZ , HZ ,ΛZ = Λ1 ⊕ Λ2),

where Λ1 := ZZg and Λ2 := DZg. An isomorphism of polarised abelian varieties
with a decomposition ϕ : (X,H,Λ = Λ1 ⊕ Λ2) −→ (X ′, H ′,Λ = Λ′1 ⊕ Λ′2) is de�ned
to be an isomorphism ϕ of polarised abelian varieties, such that ρr(ϕ)(Λ1) = Λ′1 and
ρr(ϕ)(Λ2) = Λ′2. It follows from the proof of the elementary divisor theorem that
every polarised abelian variety with a decomposition is of this form.
It turns out that (XZ , HZ ,ΛZ = Λ1⊕Λ2) and (XZ′ , HZ′ ,Λ′Z = Λ′1⊕Λ′2) are isomor-
phic if and only if Z ′ = R〈Z〉 for R ∈ ∆D with

∆D := {( a bc d ) ∈ ΓD | b = c = 0} .

Proposition 7.32. The normal complex analytic space A∆
D := Hg/∆D is a moduli

space for polarised abelian varieties with a decomposition.

The embedding ∆D ↪→ ΓD yields holomorphic maps Hg
π1−→ A∆

D
π2−→ AD which both

have in�nite �bres.
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