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Deutsche Zusammenfassung 

Seit ihrer Entdeckung in den 90er Jahren wurden die Wirkungsmechanismen kleiner RNAs 

intensiv untersucht, wodurch ein komplexes Geflecht aus interagierenden Mechanismen und 

Organismus-spezifischen Anpassungen erkennbar wurde. Dennoch konzentrieren sich die 

meisten Studien auf die vermeintlich kanonischen Funktionen der drei großen kleinen RNA-

Klassen (miRNAs, siRNAs und piRNAs). Ziel dieser Dissertation ist es verschiedene unerforschte 

Aspekte kleiner RNA-Pathways zu beleuchten. 

Zunächst werden neue Akteure im Universum der kleinen RNAs untersucht: tRNA-Fragmente 

(tRFs). In Kapitel 1 wird der aktuelle Wissensstand über tRFs dargestellt. In Kapitel 2 werden 

öffentlich verfügbare und eigene Sequenzierungsdaten kleiner RNAs analysiert, um einen 

ersten Überblick über die Expression von tRFs in verschiedenen Geweben und Arten zu geben. 

Diese Analysen deuten darauf hin, dass ein hohes Level an 5' tRNA-Hälften (5' tRHs) ein 

spezifisches Merkmal des Hippocampus von Primaten ist. Durch Modulation der 

Regulationskapazität ausgewählter 5' tRHs in HEK293T- und HepG2-Zellen und anschließender 

Analyse von RNA-Sequenzierungsdaten werden potenzielle Ziel-Transkripte identifiziert, 

welche zum Teil eine Rolle in der Neurogenese spielen. Darüber hinaus wird ein neuartiger 

k-mer-Ansatz verwendet, um die Targeting-Regel ausgewählter 5' tRHs zu identifizieren. Diese 

Analysen deuten darauf hin, dass anstelle eines miRNA-ähnlichen 5'-seeds eher der mittlere 

Teil der 5' tRHs für ein effektives Silencing wichtig ist. 

Darüber hinaus wird der in der Keimbahn von Tieren gut erforschte piRNA-Pathway in dem 

bislang vernachlässigten Soma untersucht. In Kapitel 3 wird das PIWI-Repertoire und die 

Expression der jeweiligen PIWI Paraloge in der Keimbahn und in somatischen Geweben von 

Weichtieren analysiert. Exemplarisch für die Spitzschlammschnecke und die pazifische Auster 

wird gezeigt, dass PIWI-Proteine in somatischen Geweben flächendeckend exprimiert werden, 

was vergleichbare, in Arthropoden gewonnen Erkenntnisse bestärkt. Dies deutet darauf hin, 

dass ein funktioneller somatischer piRNA-Pathway der Ur-Zustand von Protostomen ist und 

nicht eine Besonderheit bestimmter Taxa. Die putativen piRNAs und piRNA-Cluster 

verschiedener Entwicklungsstadien werden zudem charakterisiert. Angesichts fehlender 

Antikörper gegen PIWI-Proteine, um potenzielle somatische piRNAs kopräzipitieren zu 

können, wird in Kapitel 4 ein neuartiger RNAi-basierter Ansatz beschrieben, um kleiner RNAs 

zu identifizieren, deren Expression von PLD6 abhängt. PLD6 ist eine Endonuklease, die 

unabdinglich für die Produktion von primären piRNAs in der tierischen Keimbahn ist. 

Zuletzt wird eine mögliche, bisher unbekannte Strategie von einzelsträngigen RNA-Viren, 

kleinen RNA-basierten Abwehrmechanismen des Wirtes zu entkommen beschrieben, die 

durch die in Kapitel 5 beschriebenen Analysen der Dimension der strukturellen Selektion von 

protein-kodierenden Sequenzen offenbart wird. Da insbesondere bei einzelsträngigen RNA-

Viren extreme Sekundärstrukturen von kodierende Sequenzen häufiger als erwartet 

auftreten, wird vermutet, dass sich die viralen Genome zugunsten hochgefalteter Transkripte 

entwickelt haben, um dem RNAi-System des Wirtes weniger Angriffsfläche zu bieten.  
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Abstract 

Since their discovery in the 1990s, small RNA pathways were intensively studied unravelling a 

complex mesh of interacting mechanisms and organism-specific adaptations. Still, most 

studies concentrate on the alleged canonical functions of the three major small RNA classes 

(miRNAs, siRNAs and piRNAs). This thesis aims to tackle various unexplored aspects of small 

RNA pathways. 

First, the new players in the small RNA universe, the tRNA fragments (tRFs), are investigated. 

In chapter 1, the current knowledge on tRFs (in the review named tRNA-derived small RNAs; 

tsRNAs) is reviewed. In chapter 2, publicly available and own small RNA sequencing data is 

analyzed to give an initial overview on tRF expression across various tissues and species. These 

analyses indicate that high levels of 5’ tRNA-halves (5’ tRHs) are a specific trait of the primate 

hippocampus. By modulating the regulation capacity of selected 5’ tRHs in HEK293T and 

HepG2 cells and subsequent RNA sequencing analyses, potential target transcripts are 

identified which in part seem to be implicated in neurogenesis. Furthermore, a novel k-mer 

approach is used to dissect the targeting rule of selected 5’ tRHs, indicating that instead of a 

miRNA-like 5’ seed rather the middle part of 5’ tRHs is important for effective silencing. 

Second, the piRNA pathway, which is well studied in the germline of animals, is examined in 

the previously neglected soma. In chapter 3, the PIWI repertoire and expression is investigated 

in the germline and somatic tissues of two representative mollusks (the great pond snail and 

the pacific oyster) showing that PIWI proteins are ubiquitously expressed in the soma. 

Reinforcing analogous findings made for arthropods, this suggests that a functional somatic 

piRNA pathway is the ancestral state of protostomes and not a peculiarity of certain taxa. 

Furthermore, lineage-specific adaptations of piRNA targets and a dynamic expression of 

piRNA cluster during different developmental stages are shown. Faced with the non-

availability of adequate antibodies against PIWI proteins to co-immunoprecipitate potential 

somatic piRNAs, in chapter 4, a novel RNAi-based approach is described in order to identify 

small RNAs whose expression depend on Phospholipase D family member 6 (PLD6), an 

endonuclease that is critical for the production of primary piRNAs in the animal germline. 

Third, a previously unperceived strategy of single-stranded RNA viruses to evade small RNA-

based defense mechanisms of the host is revealed by studying the dimension of structural 

selection of coding sequences, which is described in chapter 5. As especially for single-

stranded RNA viruses extreme secondary structures of coding sequences are found to occur 

more often than expected by chance, it is suspected that viral genomes evolved in favor of 

highly folded transcripts in order to be less attackable for the host’s RNAi system. 
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Introduction 

Precisely regulated gene expression and genome integrity is crucial for the homeostasis of 

every living cell and the development of organisms. Besides protein-based regulators, small 

non-coding RNAs govern a big part of this. Small RNAs have several advantages over protein-

based regulators, like transcription factors, as they evolve and act faster and their metabolic 

cost is rather low (Chen and Rajewsky 2007). Additionally, they offer tailor-made regulation 

as their sequence and structure can be arbitrarily varied (Beisel and Storz 2010). 

Small RNAs were long under the radar of scientists, as they were neglected as degradation 

products of longer transcripts if they were perceived at all. In the 1990s, however, a series of 

stunning findings changed the view on these tiny molecules. When plant researchers aimed 

to overexpress a flower pigment gene by introducing a homologous transgene, they achieved 

silencing of the endogenous gene instead (Napoli et al. 1990; van der Krol et al. 1990). Next, 

studies in the nematode Caenorhabditis elegans showed that sense RNAs silence endogenous 

homologues equally effective as antisense RNAs (Guo and Kemphues 1995). Few years later, 

it was revealed that double-stranded RNA is silencing the endogenous gene even more 

effective than the single strands individually (Fire et al. 1998). Interestingly, only few double-

stranded RNA molecules were required for an effective silencing effect, suggesting a catalytic 

or amplifying mechanism. After its discovery in nematodes, this dsRNA-mediated silencing 

phenomenon termed RNA interference (RNAi) was found within a broad spectrum of 

eukaryotes ranging from plants and fungi over planarians and cnidarians to insects 

(Waterhouse et al. 1998; Cogoni and Macino 1999; Sánchez Alvarado and Newmark 1999; 

Lohmann et al. 1999; Kennerdell and Carthew 1998). 

A study in plants finally discovered that 25 nucleotide (nt) long antisense RNAs accumulate 

during RNAi, suggesting that these small RNAs are critical for silencing (Hamilton and 

Baulcombe 1999). It was then shown that cells process double-stranded RNAs to 21-25 nt 

fractions and that the resulting small antisense RNAs guide an RNA-induced silencing complex 

(RISC) to specifically cleave target mRNAs within the homologous region (Hammond et al. 

2000; Zamore et al. 2000). Shortly after, proteins of the Argonaut family were identified as the 

core enzymes of the RISC (Tabara et al. 1999; Hammond et al. 2001). Argonauts are classified 

into three clades: the commonly shared AGOs, the animal-specific PIWIs and the worm-

specific WAGOs. They share an N-terminal domain, a PAZ domain, a Mid domain and the PIWI 

domain (Hutvagner and Simard 2008). While the N-terminal domain is unwinding the duplex 

during RISC assembly (Kwak and Tomari 2012), the PAZ domain is anchoring the 3’ end of the 

small RNA and the interface between the Mid and the PIWI domain is binding its 5’ end. In 

case of catalytic active Argonauts, the endonucleolytic function is executed by the PIWI 

domain (Hutvagner and Simard 2008). While only few Argonauts like AGO2 are able to silence 

transcripts by cleavage (Liu et al. 2004), others mediate silencing by decapping or 

deadenylating target mRNAs or block translation (Behm-Ansmant et al. 2006; Lu et al. 2009; 

Olsen and Ambros 1999). Even though post-transcriptional silencing is the major mechanism 

observed for small RNA guided Argonauts, RISCs can also translocate to the nucleus, where 
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they initiate epigenetic silencing of target genes by recruiting factors remodeling chromatin 

or methylating DNA (Volpe et al. 2002; Zilberman et al. 2003; Pal-Bhadra et al. 2004; Robert 

et al. 2005; Bühler et al. 2006). It has additionally become apparent that small RNAs can act 

as transgenerational transmitters of epigenetic information (Brennecke et al. 2008; Gapp et 

al. 2014; Rechavi and Lev 2017; Neeb and Nowacki 2018). Only recently, a study revealed that 

neuronal small RNAs in C. elegans transgenerationally control the chemotaxis behavior by 

silencing transcripts in the germline showing that small RNAs do not care too much about the 

‘‘Weismann Barrier’’ (Posner et al. 2019). 

Both transcriptional and post-transcriptional RNAi pathways evolved as eukaryote-specific 

defense mechanisms against RNA viruses and transposable elements that later expanded to 

regulate the expression of protein-coding genes as well (Waterhouse et al. 2001; Borges and 

Martienssen 2015). Although prokaryotes do not possess RNAi, they likewise developed small 

RNA based defense mechanisms like CRISPR that have similar functionalities, but involve 

different protein effectors (Barrangou et al. 2007). While the key factors of RNAi are conserved 

in plants, fungi and animals, the mechanisms evolved individually within each organism 

leading to a plethora of different realizations of RNAi pathways in eukaryotes (Shabalina and 

Koonin 2008). Despite this, there are three major small RNA classes (classified by their 

biogenesis and associated Argonaut protein) that are known to regulate genes via RNAi: 

microRNAs (miRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). 

Other small RNA classes are small nucleolar RNAs (snoRNAs) and small nuclear RNA (snRNAs), 

as well as fragments of tRNAs (tRFs) and ribosomal RNAs (rRFs). While snoRNAs and snRNAs 

are known to be involved in RNA processing (Matera et al. 2007), tRFs and rRFs were long seen 

as mere degradation products of their abundant parental RNAs and were often depleted from 

small RNA sequencing data due to this reason. However, this view has changed over the last 

few years. Especially tRFs are becoming increasingly accepted as regulators of gene expression 

and virus replication (see chapter 1), but also rRFs are considered to be involved in translation 

control (Lambert et al. 2019). With the rise of deep sequencing techniques, it is likely that yet 

unknown small RNA species will be discovered in the near future. 

 

miRNA and siRNA pathways 

Interacting with proteins of the AGO-clade, siRNAs and miRNAs act in the soma and the 

germline of most eukaryotic species (Carthew and Sontheimer 2009). Originating from double 

stranded RNAs, these 20-25 nt long small RNAs share a similar biogenesis pathway that can 

be divided in two fundamental processes. First, Dicer cuts double stranded RNA generating a 

21-23 nt long duplex with 3’ dinucleotide overhangs (Grishok et al. 2001; Ketting et al. 2001; 

Hutvágner et al. 2001). In the next step, the RISC assembly, an Argonaut protein first takes up 

this duplex before ejecting the passenger strand to keep only the guide strand (Leuschner et 

al. 2006; Yoda et al. 2010; Gu et al. 2011). Besides these shared features, there are many 

possible sources for double stranded RNA that can serve as precursor. 
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Canonical miRNA-precursors are transcribed by RNA polymerase II and fold to imperfectly 

paired hairpin structures that are cut by Drosha in animals and the Dicer homologue Dcl1 in 

plants (Lee et al. 2003; Basyuk et al. 2003; Kim 2005). In animals, introns that are liberated by 

splicing, so called mirtrons, can additionally serve as miRNA-precursors (Ruby et al. 2007; 

Okamura et al. 2007). While in animals the miRNA-precursors are diced in the cytoplasm, in 

plants, this process takes place in the nucleus and miRNAs are 2’-O-methylated at their 3’ end 

by HEN1 before being exported to the cytoplasm (Kurihara and Watanabe 2004; Yu et al. 

2005). For many miRNAs several isoforms exist that vary in length and sequence (Neilsen et 

al. 2012). These so-called isomiRs arise from variabilities in Drosha and Dicer cleavage, single-

nucleotide extensions at the 3’ end, exonucleolytic trimming and RNA editing (Morin et al. 

2008; Neilsen et al. 2012). The different properties of the isomiRs influence not only the 

stability of the miRNA (Li et al. 2005; Lu et al. 2010; Ibrahim et al. 2010), but also affect target 

recognition (Wu et al. 2007; Seitz et al. 2008; Chiang et al. 2010; Starega-Roslan et al. 2011) 

and AGO loading (Azuma-Mukai et al. 2008; Mi et al. 2008; Montgomery et al. 2008; Takeda 

et al. 2008; Juvvuna et al. 2012). 

Initially, it was assumed that siRNAs are only produced from exogenous sources, such as 

viruses and foreign genes. Later, however, so called endo-siRNAs were discovered that are 

generated from endogenous sources (Golden et al. 2008). Their precursors are generated by 

transcription of inverted repeats or dual strand encoded loci and display perfect base pairing. 

Plants, fungi and some animals like C. elegans additionally possess an RNA-dependent RNA 

polymerase (RdRP) that is able to synthesize a second strand on single stranded RNA 

templates (Sugiyama et al. 2005; Zong et al. 2009). 

Both siRNAs and miRNAs recognize their targets mainly via sequence complementarity to their 

7 nt seed region that ranges from the second to the eighth position of its 5’ end (Zamore and 

Haley 2005; Wang 2014). In contrast to siRNAs and miRNAs of plants, miRNAs of animals do 

not require perfect complementarity to regulate their targets (Shabalina and Koonin 2008). 

Because of this imperfect binding, animal miRNAs can regulate many different targets. Target 

sites in animal mRNAs are predominantly located within the 3’ UTR, while plant mRNAs are 

mostly targeted within the coding sequence (Millar and Waterhouse 2005). While siRNA and 

miRNAs in plants predominantly cleave their targets, the majority of animal miRNAs silence 

their targets by deadenylation, decapping and inhibition of translation (He and Hannon 2004). 

In addition to post-transcriptional silencing, siRNAs were found to regulate genes on a 

transcriptional level by inducing the methylation of promotors or restructuring chromatin via 

repressive histone marks (Mette et al. 2000; Volpe et al. 2002; Zilberman et al. 2003; Verdel 

et al. 2004; Bühler et al. 2006; Fagegaltier et al. 2009). 

Even though siRNAs were shown to regulate endogenous genes in plants (Vazquez et al. 2004; 

Allen et al. 2005), most siRNAs target viruses and transposons (Obbard et al. 2009). Inversely, 

most miRNAs regulate protein-coding genes, while an additional role in transposon control is 

controversially discussed (Gebert and Rosenkranz 2015). Since siRNAs co-evolved within each 

species according to the respective threads and due to the conserved role of many miRNA 
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families in developmental processes, miRNAs are generally more conserved than siRNAs 

across large evolutionary distances (Bentwich et al. 2005; Axtell and Bowman 2008). 

 

piRNA pathway 

While the miRNA and the siRNA pathways are present in all eukaryotes, the piRNA pathway is 

specific to animals, where it is mainly described to silence transposons in the germline. piRNAs 

are with 26-31 nt substantially longer than miRNAs/siRNAs and originate from single stranded 

transcripts that are transcribed by RNA polymerase II (Aravin et al. 2006; Li et al. 2013). Most 

piRNA-precursors are derived from genomic regions, where sequence chunks of transposons 

are overrepresented, so-called piRNA clusters (Brennecke et al. 2007). These clusters either 

uni- or bidirectionally code for piRNA precursors. While unistrand clusters are the default 

piRNA source in most organisms, dualstrand clusters that produce piRNA precursors from both 

genomic strands are predominant in the Drosophila germline (Brennecke et al. 2007; Malone 

et al. 2009). 

Precursor transcripts that are derived from unistrand clusters seem to lack common 

properties that make them distinguishable from protein-coding transcripts. Residing in 

euchromatic regions, their promotors likewise carry histone 3 lysine 4 dimethylation 

(H3K4me2) marks and the transcripts are similarly spliced, capped and polyadenylated as 

mRNAs (Li et al. 2013). By so far unknown mechanisms, however, only piRNA precursors are 

recruited to the nuage, a perinuclear granular structure in the cytoplasm where piRNA 

processing takes place (Rogers et al. 2017). Dual-strand clusters in the Drosophila germline 

reside within heterochromatin or in its close proximity and harbor H3K9me3-chromatin marks 

that get recognized by the Rhino-Deadlock-Cutoff Complex, which initiates transcription and 

controls transcript processing (Mohn et al. 2014; Chen et al. 2016). How the Rhino-Deadlock-

Cutoff Complex specifically binds to piRNA clusters and not to other H3K9me3-marked 

genomic regions remains unclear. Recently, it has been shown that Bootlegger recruits Nxf3-

Nxt1, a variant of the mRNA export receptor dimer Nxf1-Nxt1, to these heterochromatic 

clusters, which mediates the nuclear export of piRNA precursors and directs their delivery to 

the nuage (ElMaghraby et al. 2019). 

In the nuage (Yb bodies in Drosophila follicle cells), piRNA precursors get cut by the 

mitochondrially-bound endonuclease Zucchini (PLD6 in humans) releasing so-called primary 

piRNAs that have a pronounced bias for a uridine at the first position of their 5’ end (1U bias) 

(Huang et al. 2011; Watanabe et al. 2011; Ipsaro et al. 2012; Nishimasu et al. 2012). In 

Drosophila, these primary piRNAs are loaded into P-element induced wimpy testis (Piwi) or 

Aubergine (Aub) (Vagin et al. 2006) and get 2’ O-methylated at their 3’ end by Hen1 (Horwich 

et al. 2007; Saito et al. 2007). When loaded on Piwi, the piRNA-Piwi-complex will translocate 

to the nucleus and silence transposons on a transcriptional level (Le Thomas et al. 2013). 

piRNA-Aub-complexes, however, stay in the cytoplasm. Here, transposon transcripts, which 

are recognized by antisense piRNAs via a miRNA-like pairing, get sliced by the associated Aub 

in a 10-nt offset from the piRNA’s 5’ end (Gunawardane et al. 2007; Brennecke et al. 2007; 
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Shen et al. 2018). The slicing product complementary to the primary piRNA will therefore likely 

contain an adenosine at its tenth position (10A bias) and when taken up by Argonaut 3 (Ago3) 

becomes a so-called secondary piRNA that gets resected by Nibbler and 2’-O-methylated by 

Hen1 (Hayashi et al. 2016). The secondary piRNAs itself can direct the associated Ago3 to a 

piRNA precursor, whose cleavage again gives rise to primary piRNAs. As by this process 

primary and secondary piRNAs get amplified in a self-sustaining loop by consuming piRNA 

precursors and target transcripts likewise, it is commonly referred to as ping-pong loop 

(Brennecke et al. 2007). Consistently, the 10-nucleotide sequence overlap between primary 

and secondary piRNAs, which is a key feature of the piRNA pathway, is termed ping-pong 

signature. This mechanism only amplifies piRNAs of the same sequence. Triggered by 

secondary piRNAs, Zucchini can additionally produce piRNAs in 3’-directed phased manner, 

which allows to diversify the piRNA pool (Mohn et al. 2015; Han et al. 2015). Again, these 

Zucchini-generated piRNAs have a strong 1U bias. As in vitro Zucchini does not show any 

nucleotide preference, it is likely that a nuage-specific cofactor is driving this specificity (Ipsaro 

et al. 2012; Nishimasu et al. 2012). While in Drosophila, phased Zucchini cleavage is defining 

the 5’ and the 3’ end at the same time, in mice the 3’ end of piRNAs needs to be resected by 

PNLDC1 (Mohn et al. 2015; Ding et al. 2017). Generally, piRNAs have different lengths 

depending on the associated PIWI paralogue (Aravin et al. 2006; Girard et al. 2006; Brennecke 

et al. 2007; Aravin et al. 2008). 

The number of expressed PIWI paralogues varies greatly amongst different metazoan 

lineages. As already described, Drosophila melanogaster is equipped with the three PIWI 

paralogues Piwi, Aub and Ago3. However, the insect lineage faced diverse duplication and 

diversification events of RNAi genes that also include changes of the PIWI repertoire (Lewis et 

al. 2016). The mosquito Aedes aegypti, for instance, bears 7 isoforms of Piwi and expresses 

Ago3 (Campbell et al. 2008), while the silkworm Bombyx mori only harbors the two PIWI 

paralogues SIWI and BmAgo3 (Kawaoka et al. 2008). Not only the amount of PIWI genes varies, 

but also the expression distribution. While in D. melanogaster the PIWI proteins are solely 

expressed in the germline (with the exception of germline-adjacent follicle cells), most 

arthropods show additional somatic expression (Lewis et al. 2018). In vertebrates, however, 

PIWI expression appears to be restricted to the germline (Tosar et al. 2018). While zebrafish 

only express the two PIWI paralogues Ziwi and Zili (Houwing et al. 2008), mammals generally 

express four PIWI paralogues, Piwil1-4 (Girard et al. 2006; Aravin et al. 2006; Aravin et al. 

2008). Mice, however, lack a homologue of the oocyte-specific Piwil3, whose function is taken 

over by a Dicer isoform (Flemr et al. 2013; Roovers et al. 2015). 

As revealed for the germline development of mice, expression of the different PIWI paralogues 

is dynamic. While Mili is expressed already in primordial germ cells and persists throughout 

spermatogenesis in the adult animal, Miwi2 expression is limited to early gonocytes, when de 

novo methylation takes place and transposons are active (Aravin et al. 2008). In contrast, the 

expression of Miwi begins in the pachytene stage of meiosis and lasts until the end of meiosis 

(Deng and Lin 2002; Aravin et al. 2008). The shifted expression is accompanied with different 

sets of piRNA populations. piRNAs of pre-pachytene germ cells are associated with transposon 
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control, whereas the more abundant pachytene piRNAs are rather depleted of transposon-

derived sequences (Aravin et al. 2006; Girard et al. 2006; Li et al. 2013). The function of 

pachytene piRNAs remains elusive as most of their sequences map only to the locus producing 

them. While several studies suggest that pachytene piRNAs are involved in the post-

transcriptional regulation of protein-coding genes (Gou et al. 2014; Gebert et al. 2015; Zhang 

et al. 2015), another study suggests that they stabilize mRNAs in a sequence-independent 

manner (Vourekas et al. 2012). A piRNA function beyond transposon control was also 

observed in the Drosophila embryo, where the piRNA pathway triggers the degradation of 

maternal mRNAs by recruiting deadenylation complexes (Rouget et al. 2010). Furthermore, 

the piRNA pathway was shown to be involved in the viral defense of mosquitos (Morazzani et 

al. 2012; Schnettler et al. 2013; Miesen et al. 2015) and was found to play a role in the control 

of memory-related synaptic plasticity in the sea slug Aplysia californica (Rajasethupathy et al. 

2012). While silencing transposons seems to be the ancestral function of the piRNA pathway 

(Aravin et al. 2007; Lewis et al. 2018), these findings are probably just the tip of the iceberg 

and more piRNA pathway functions beyond transposon control will certainly be discovered in 

the future. 

 

Co-evolution of small RNA pathways and their targets 

A fascinating aspect of small RNA regulation is that it comes in plethora of different shapes 

and styles, which is a consequence of the immense potential of small RNA pathways to adapt 

quickly to both endogenous and exogenous forces. Thus, in up to 1.6 billion years of eukaryotic 

evolution (Wang et al. 1999; Simpson and Roger 2004), manifold duplication and specification 

events of the core components of small RNA pathways took independently place in the 

eukaryotic lineages giving rise to different realizations of small RNA biogenesis and effector 

factors (Chapman and Carrington 2007). A prime example for the adaptation to species-

specific threads is the piRNA pathway. While the transposon classes represented in the piRNA 

clusters are conserved among Drosophila species, the individual elements of these classes are 

not, suggesting that piRNA clusters co-evolve with the respective transposon repertoire 

(Malone et al. 2009). Similar observations were made for the nematode C. elegans, where 

piRNA clusters evolve to target active transposons (Bagijn et al. 2012). Additionally to piRNA 

cluster adaptation, there is evidence that RNAi genes are under recurrent positive selection 

to keep genomic parasites in check (Kolaczkowski et al. 2011; Obbard et al. 2011). However, 

it is not only the piRNA pathway evolving to catch up with emerging transposable elements. 

Evolutionary forces also act on the prosecuted transposons to evade piRNA-mediated 

repression leading to an evolutionary arms race between small RNA silencing pathways and 

transposons. For instance, it has been noted that during the evolution of transposons of the 

LINE-1 (L1) family, the 5’ UTRs of L1s frequently changed (Khan et al. 2006). Since MILI and 

MIWI2 repress L1s by establishing de novo DNA marks at the 5’ UTR of L1s in mice (Kuramochi-

Miyagawa et al. 2008), exchanging the 5’ UTR might be a silencing-avoiding strategy. In other 

cases, transposons were found to evade the silencing process by either expressing proteins 

that are able to revert repressing methylation marks from its promotor (Cui and Fedoroff 
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2002), or capturing host gene sequences to potentially avoid methylation by confusing the 

host defense system (Juretic et al. 2005; Hollister et al. 2011). 

Relentless co-evolutionary struggle with one another has also been noted for plants and 

viruses. While plants produce virus-derived siRNAs to protect themselves from viral infection, 

plant viruses have evolved several suppressors of small RNA-mediated silencing (Ding and 

Voinnet 2007). But also animal viruses were found to express proteins that counteract RNAi 

control (Li et al. 2002; Li et al. 2004; Lecellier et al. 2005; Otsuka et al. 2007). Such viral 

suppressors of RNA silencing (VSRs) inhibit different steps of small RNA pathways. For 

instance, the B2 proteins of alphanoda- and betanodaviruses protect double-stranded RNA 

from being processed by Dicer, which impedes the production of anti-viral small RNAs (Lingel 

et al. 2005; Fenner et al. 2007). Other plant VSRs like P1/HC‐Pro, p21 and p19 trigger the 

degradation of anti-viral small RNAs by inhibiting microRNA methylation (Yu et al. 2006), while 

the 2b protein of the cucumber mosaic virus inhibits silencing by associating with the PAZ-

domain of siRNA-loaded AGO1 (Zhang et al. 2006). For the respiratory syncytial virus (RSV), it 

has been additionally shown that small RNA pathways of the host can be exploited by viruses 

to abrogate anti-viral defense mechanism (Deng et al. 2015). 

Apart from transposons and viruses, small RNA pathways have also co-evolved with protein-

coding targets. This is best observable for miRNA-mediated gene regulation, whose 

development has been hypothesized to be a crucial step for multicellular organisms to evolve 

due to their role in spatiotemporal gene regulation (Moran et al. 2017). It has been shown 

that nonconserved miRNA target sites most likely evolve in the 3’ UTR of genes, which are 

expressed in tissues where the miRNA is absent. In contrast, genes that are preferentially 

expressed spatiotemporal with a miRNA evolved to selectively lack target sites for this miRNA 

(Farh et al. 2005). In order not to accidently provide a target site for miRNAs, genes that carry 

out basal cellular functions, so called housekeeping genes, have chosen a special strategy. In 

order to avoid fortuitously nonconserved miRNA target sites to arise, they developed short 

3’ UTRs (Stark et al. 2005). By the means of conserved targeting, selective avoidance and 

emerging nonconserved targeting, miRNAs may have shaped the evolution of nearly all 

mammalian mRNAs (Bartel 2009). 

 

Aims of the thesis 

One focus of this thesis is to shed light on a less well-studied small RNA class, the tRNA-derived 

fragments. Here, an initial overview of the tRF expression profile across tissues and species 

will be given and the gene regulatory mechanism of a certain subclass, the 5’ tRNA-halves, will 

be studied. Besides the identification of potential tRF targets, it will be investigated whether 

5’ tRHs regulate their targets by miRNA- or piRNA-like mechanisms and whether targeting is 

conserved across species. 

Another aim of this thesis is to study a putative somatic function of the piRNA pathway in the 

bilateralian branch. In contrast to non-bilaterian species, where PIWI proteins were found to 
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be expressed in somatic stem cells (Funayama et al. 2010; Alié et al. 2011; Seipel et al. 2004; 

Juliano et al. 2014), in bilaterian species the piRNA pathway was considered to be restricted 

to the germline and early developmental processes until recently (Lewis et al. 2018). Here, a 

deeper analysis of molluskan species, which had yet been unstudied in this context, shall 

unravel whether a somatic piRNA pathway is a conserved feature of the molluskan lineage. 

While there is growing evidence that a somatic function of the piRNA pathway has been the 

ancestral state that later got lost in some species, especially in the branch of vertebrates 

(Lewis et al. 2018; Palakodeti et al. 2008; Perrat et al. 2013; Jones et al. 2016; Teixeira et al. 

2017; Juliano et al. 2014; Funayama et al. 2010), some studies suggest that a somatic function 

persists in vertebrates in few special niches (Nandi et al. 2016; Ross et al. 2014). Faced with 

the non-availability of adequate antibodies for pull-down experiments with PIWI proteins, this 

hypothesis is only based on indications by bioinformatics analyses so far. Hence, another aim 

of this thesis is to develop an antibody-independent in vitro method that enables the 

detection and further characterization of putative piRNAs in somatic cells. 

It was shown that natural selection can act directly on the level of DNA or RNA, favoring 

specific structures of single stranded DNA or RNA molecules (Katz and Burge 2003; Chamary 

and Hurst 2005; Hoede et al. 2006; Fricke et al. 2018). Currently it is unknown whether this is 

a peculiarity of only a few genomic loci in a limited number of species, or rather a widespread 

phenomenon throughout life. Therefore, another aim of this thesis is to evaluate on a 

genome-wide scale if the synonymous codons (codons that do not change the amino acid 

sequence of the encoded protein) within the open reading frame are selected towards higher 

or lower folded mRNA structures. Furthermore, potential explanations for the selection of 

extreme secondary structures will be discussed. 
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1.1. Abstract 

Due to the abundance and conserved role of tRNAs, fragments thereof were considered as 

mere degradation products for a long time. Lately, however, it was unveiled that these 15–35 

nucleotides-long tRNA (-precursor) -derived small RNAs (tsRNAs) can modulate gene 

expression by different mechanisms and act in a variety of contexts. While some tsRNAs inhibit 

translation globally by impeding the formation of the translation initiation complex, many 

studies find tsRNAs to silence target genes in a sequence-specific manner that is potentially 

mediated by Argonaute proteins. This function plays a role in transposon control, but was also 

found to be exploited by viruses and trypanosoma to regulate host genes. Beyond their 

involvement in infectious disease, aberrant tsRNA expression is linked to several other 

diseases such as cancer or neurological disorders. Furthermore, it was recently shown that 

tsRNAs residing in sperm of high-fat or low-protein diet mice can act as transgenerational 

transmitters that induce metabolic disorders and addictive behavior in the offspring. A better 

understanding of tsRNA-mediated gene regulation pathways, will not only expand our 

knowledge on how parental lifestyle influences the epigenome of the progeny, but may also 

enable the development of new drugs and biomarkers. 

 

1.2. Introduction 

1.2.1. Small non-coding RNAs 

A major advance in understanding gene expression was the discovery of regulatory non-

coding RNAs (ncRNAs). ncRNAs are transcripts that, unlike messenger RNA (mRNAs), do not 

code for proteins. Apart from mutations within protein-coding genes, perturbations in ncRNA 

pathways can lead to severe disease. 

The most abundant and conserved ncRNAs are ribosomal RNAs (rRNAs) and transfer RNAs 

(tRNAs). While rRNAs together with ribosomal proteins form the ribosome, the 

macromolecular machine where protein synthesis takes place, tRNAs translate the codon 

information of the mRNAs during the protein synthesis as tRNAs with the matching anticodon 
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carry the respective amino acid to the end of the growing protein chain. rRNAs and tRNAs thus 

constitute central factors in protein translation. 

Other ncRNAs such as small ncRNAs (<200 nt) and long ncRNAs (>200 nt) add yet another layer 

to the control of gene expression, as they can enhance or repress either the transcription 

(transcriptional level) or the translation (post-transcriptional level) of genes by various 

mechanism. As their expression is often specific to certain tissues or developmental stages, 

their regulatory potential critically contributes to cell-specific gene expression. While long 

ncRNAs can modulate gene expression and protein modifications by acting as a scaffold to 

bring molecular interaction partners together or to sponge up either antisense mRNAs or 

other regulators of gene expression, small ncRNAs usually guide effector proteins to their 

targets. The three most prominent small ncRNA classes, the micro RNAs (miRNAs), the small-

interfering RNAs (siRNAs) and the PIWI-interacting RNAs (piRNAs), are loaded onto members 

of the Argonaute family, which can be subdivided into the AGO and the PIWI clade. While the 

26–32 nt long piRNAs interact with proteins of the PIWI clade, the 22–24 nt long miRNAs and 

21–22 nt long siRNAs bind to proteins of the AGO clade. Together with the respective 

Argonaute protein, these small ncRNAs form the heart of the RNA-induced silencing complex 

(RISC). Depending on the AGO/PIWI paralogue involved, the RISC can act either at the 

transcriptional level, inducing DNA methylation and histone modifications that lead to 

changes in chromatin structure, or at the post-transcriptional level by slicing mRNA, inducing 

its decay via decapping and deadenylation or inhibiting translation. 

miRNAs and siRNAs typically post-transcriptionally regulate transcripts that have a target site 

complementary to the small ncRNA. While siRNAs require almost perfect complementarity to 

the target mRNA, miRNAs allow more imperfect complementarity for target regulation, 

requiring near-perfect match only within the 7 nt seed region located in the 5′ portion of the 

miRNA (Hutvágner and Zamore 2002). Similar to this, the piRNA seed is located at position 

second to seventh of the 5′ end and effective targeting is established for complementary 

target sites permitting also GU wobble base pairing (Zhang et al. 2018a). 

While their ability to regulate gene expression bases on similar principles, the biogenesis of 

small ncRNAs differs substantially. miRNAs and siRNAs are generated from RNA polymerase II 

transcribed double-stranded precursors, that get cut by Drosha in the nucleus and are further 

processed by Dicer in the cytoplasm. The resulting duplex is then taken up by an AGO protein 

which only keeps the main strand while releasing the so-called passenger strand (Ha and Kim 

2014). piRNAs, however, derive from single-stranded RNA pol II transcripts that mainly 

originate from conserved genomic loci called piRNA clusters. In a 3′-directed phased manner 

these precursors are cut by Zucchini that generates the 5′ end of primary piRNAs (Mohn et al. 

2015; Han et al. 2015). Pre-mature piRNAs with a bias for a uridine at the 5′ end are loaded on 

a PIWI protein and get first trimmed and then 2’O-methylated at the 3′ end (Hayashi et al. 

2016; Saxe et al. 2013; Ding et al. 2017). In case of post-transcriptional silencing, the piRNA 

guides the PIWI protein to a target site of a transcript, which gets sliced with an offset of 10 nt 

starting from the 5′ end of the guiding piRNA. This induces the generation of secondary, target-

derived piRNAs that are again loaded onto PIWI proteins and in turn trigger the production of 
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piRNAs that resemble primary piRNAs, as they can target and slice complementary piRNA 

precursors. This results in a self-sustaining so-called ping-pong-loop that, while silencing the 

target transcripts, generates more piRNAs at the same time (Czech et al. 2018). 

Given their important roles in normal physiology, it is not surprising that the dysregulation of 

small ncRNA pathways is involved in a variety of diseases. The piRNA pathway was discovered, 

as its disruption led to a strong infertility phenotype in fruit flies (Lin and Spradling 1997). An 

active piRNA pathway ensures genomic integrity by silencing transposable elements (so-called 

selfish, jumping genes). miRNAs, on the other hand, were found to act as oncogenes or tumor 

suppressors and are potential biomarkers for specific cancer types (Lan et al. 2015). Pathologic 

miRNA expression also plays a role in diabetes and cardiovascular disease (Paul et al. 2018). 

 

1.2.2. tRNA-derived small RNAs as emerging small ncRNAs 

The recently established high-throughput sequencing techniques of small ncRNA 

transcriptomes did not only expand the knowledge on the three prominent small ncRNA 

classes, but also opened up the field to study small ncRNA classes whose functions are far less 

well understood. One of these emerging new players in the small ncRNA zoo are tRNA-derived 

small RNAs (tsRNAs). While miRNA, siRNA and piRNA pathways were intensively studied over 

the last decades, tsRNAs were considered as mere degradation products of the abundant 

tRNAs until recently. First indications, that tsRNAs have a functional role came from studies in 

Escherichia coli, where tRNA-halves generated upon bacteriophage T4 infection were found 

to orchestrate a molecular defense response (Levitz et al. 1990). 

In this review, we want to give an overview of how tsRNAs are generated and how they 

regulate genes, highlighting similarities and differences to other small ncRNA pathways. As 

tsRNAs were very recently shown to be important players in transgenerational epigenetics of 

metabolic disorders and addiction behavior, we focus especially on their role in disease. 

 

1.3. Biogenesis and classification 

tRNA precursors are transcribed by RNA polymerase III. Still in the nucleus, the so-called leader 

and trailer sequences are cut off from the tRNA precursors by the endonucleases RNase P and 

RNase Z, respectively. The trailer sequence being liberated from the 3′ end of the precursor 

gives rise to a first class of tsRNAs: the tsRNA1 series (also called 3′ U tsRNAs; figure 1.1). 

tsRNAs of the tsRNA1 series are approximately 15–22 nt in size and have a poly-U-stretch at 

their 3′ end resembling the Pol-III transcription termination signal (Haussecker et al. 2010; 

Kumar et al. 2014). If present, intronic sequences are spliced. The mature tRNA sequence is 

then folded and receives several chemical base modifications. Finally, a CCA signature is 

attached to its 3′ end before it is exported to the cytoplasm. The structure of tRNAs is highly 

conserved. With its four arms (D loop, anticodon loop, variable region, TψC loop) and the 

acceptor stem, the secondary structure of a tRNA resembles a cloverleaf. These secondary 
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structure elements are winded up to an L-shaped tertiary structure. By yet not fully elucidated 

mechanisms, mature tRNAs can get sliced into tRNA halves (tRHs) and smaller tsRNAs (figure 

1.1). Please note that within this review the umbrella term tsRNA includes tRNA halves as well 

as the shorter tRNA-derived small RNAs. Depending from which end of the tRNA the tsRNAs 

are originating, they are part of the 5′ or the 3′ tsRNA series. Most tRHs are generated by 

bisecting tRNAs near the anticodon. Smaller tsRNAs can be produced by slicing either mature 

tRNAs or tRHs. In individual cases of potentially misfolded tRNAs this is done by Dicer (Cole et 

al. 2009; Babiarz et al. 2008), but generally their production is Dicer-independent (Kuscu et al. 

2018; Li et al. 2012). tsRNAs seem to have the small RNA typical 5′ terminal phosphate group 

and 3′ terminal hydroxyl group (Couvillion et al. 2010, p. 2742; Haussecker et al. 2010). As 

5′ and 3′ tsRNAs derive from mature tRNAs, they likewise carry plenty of base modifications, 

lack introns and in case of the 3′ tsRNAs (also called 3′ CCA tsRNAs) have the post-

transcriptionally added 3′ CCA sequence. Importantly, the pool of tsRNAs within a cell does 

not at all reflect the abundance of the corresponding paternal tRNAs (Kumar et al. 2014; Reifur 

et al. 2012). There is emerging evidence that isodecoder-tRNAs (tRNAs having the same 

anticodon sequence, but bearing sequence variabilities) are tissue-specifically expressed and 

that their abundance influences the tsRNA pool generated thereof (Torres et al. 2019, 

p. 8453). Additionally, the cleavage does not seem to occur randomly as certain cleavage sites 

are enriched for the respective parental tRNAs (Kumar et al. 2014). 

Apart from tsRNAs that are expressed under physiological conditions, a different tRH type is 

produced under stress conditions such as hypoxia. These tRNA-derived, stress-induced small 

RNAs (tiRNAs; 31–40 nt long) are generated by Angiogenin in mammalian cells (RNY1 in yeast). 

Angiogenin is a RNase Type A ribonuclease, which under stress conditions preferably slices 

mature tRNAs within the anticodon loop (Yamasaki et al. 2009). This creates 5′ tiRNAs with a 

3′ phosphate group and 3′ tiRNAs with an 5′ hydroxyl group (Rybak and Vallee 1988). Notably, 

standard small ncRNA library preparation protocols that rely on the ligation of 5′ and 

3′ adapter molecules will necessarily fail to include 5′ tiRNAs, carrying a phosphate group at 

both ends, and 3′ tiRNAs, carrying a hydroxyl group at both ends. This might have considerably 

contributed to the fact that these tsRNAs remain under the radar of a special scientific 

attention. 
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Figure 1.1: Biogenesis of tRNA-derived small RNAs. The trailer sequences being clipped off from the 3′ end of the 

tRNA precursors by RNase Z are tsRNAs of the tsRNA1 series (orange). Additionally, RNase P cuts off the leader 

sequence of the 5′ end of the tRNA precursor. The pre-tRNA is properly folded and extensively post-

transcriptionally modified before it gets exported to the cytoplasm. Slicing of mature tRNAs by enzymes such as 

Angiogenin and Dicer produces tRNA halves and shorter tsRNAs. Depending on their derivation within the 

parental tRNA, these tsRNAs and tRhs are classified as 5′ tsRNAs/tRHs (dark green) or 3′ tsRNAs/tRHs (light 

green). 

 

Most tsRNAs are generated from tRNAs that are encoded in the nucleus. However, tsRNAs can 

also derive from tRNAs that are encoded by organelles such as mitochondria and chloroplasts 

(Hirose et al. 2015; Telonis et al. 2015; Cognat et al. 2017). While in species like Triops 

cancriformis, nuclear-derived tsRNAs are about 400 times more prevalent than mitochondrial-

derived tsRNAs (confirmed by Northern Blot analysis) (Hirose et al. 2015), organellar tsRNAs 

make up to one quarter of the tsRNA population in Arabidopsis thaliana and are exclusively 

located in the cytoplasm (confirmed by Northern Blot analysis) (Cognat et al. 2017). In case of 

Triops cancriformis, the pool of mitochondrial-derived tsRNAs is more diverse in terms of the 

region of origin within the parental tRNA, while the nuclear-derived tsRNA pool predominantly 

consists of 5′ tRHs (Hirose et al. 2015). Thus, organellar tsRNAs might regulate other biological 

processes than tsRNAs derived from nuclear encoded tRNAs. 

 

1.4. Gene regulatory function 

Indications that tsRNAs are generated by defined cutting of tRNAs imply that these small 

ncRNAs might have a relevant function in the cells. As the major small ncRNA classes are 

known to regulate gene expression, it seems natural to assume that tsRNAs may also be 

involved in modulating gene expression. When studying gene regulation mechanisms, an 

important hint towards the mechanism of action is the subcellular localization of the involved 
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factors. Even though tsRNAs of the tsRNA1 series are generated in the nucleus, they seem to 

be widely distributed in the cytoplasm (confirmed by Northern Blot analysis) (Liao et al. 2010; 

Haussecker et al. 2010). This suggests that they play a role in post-transcriptional gene 

regulation. 5′ and 3′ tsRNAs are also predominantly localized in the cytoplasm (confirmed by 

Northern Blot analysis) (Haussecker et al. 2010; Kumar et al. 2014). Contrasting this, 5′ tsRNAs 

were found to be enriched in the nucleoli deep sequencing data of HeLa cells, suggesting a 

role in transcriptional regulation, after being reimported to the nucleus (Kumar et al. 2014). 

In general, the subcellular distribution of the different tsRNA series is not sufficiently 

supported by data and requires further investigation. 

tsRNAs of all three series could be identified in all domains of life (Levitz et al. 1990; 

Gebetsberger et al. 2012; Couvillion et al. 2012; Garcia-Silva et al. 2010; Hsieh et al. 2010; 

Kumar et al. 2014; Kumar et al. 2015). It is therefore reasonable to assume that they have 

similar and conserved modes of action in the different organisms. Studies exploring the gene 

regulatory mechanism of tsRNAs commonly point to two mechanisms: while one cohort of 

studies describes a sequence-specific post-transcriptional silencing that closely resembles the 

miRNA pathway, other studies describe a tsRNA-induced global translation repression. 

 

1.4.1. Global translation repression 

Under stress conditions, cells globally shut down protein synthesis to quickly adapt their gene 

expression to the present situation. Part of that is induced by cleaving tRNAs with Angiogenin 

(Yamasaki et al. 2009). This not only decreases the amount of available tRNAs, which slows 

down translation, but more importantly generates tiRNAs that trigger a stress response 

program that inhibits the assembly of the translation initiation machinery at mRNAs. Ivanov 

et al. showed that stress-induced 5′ tiRNAs with a 5′ terminal oligoguanine (TOG; four to five 

guanine residues) motif such as 5′ tiRNA-Ala displace components of the protein complex 

eukaryotic initiation factor 4F (eIF4F) from the 5′ cap of mRNAs. This impedes the assembly of 

translation initiation complexes around mRNAs and in consequence blocks the translation of 

mRNAs (Ivanov et al. 2011). They could further show that displacing eIF4E and eIF4G is not 

driven by sequence specificity, but depends on the assembly of four 5′ TOG-containing tiRNAs 

to a RNA G-quadruplex (RG4) structure (figure 1.2A) that might recruit additional factors 

(Lyons et al. 2017). This RG4 structure and an intrinsic stem-loop structure of these 5′ tiRNAs 

are also required for the association with the cold shock domain of Y-Box Binding Protein 1 

(YBX1), which induces the formation of stress granules in a phospho-eIF2α-independent 

manner (Emara et al. 2010; Ivanov et al. 2014). In these cytoplasmic foci, the mRNAs with 

attached stalled translation preinitiation complexes are transiently stored and can be released 

upon stress resolution to quickly reestablish homeostatic translation (Panas et al. 2016). 

Later, Guzzi et al. discovered that 18 nt long TOG-containing tsRNAs, which they refer to as 

mini TOGs (mTOGs), are enriched in human embryonic stem cells (Guzzi et al. 2018). They 

could show that only mTOGs that are pseudouridylated at their eighth position (mediated by 

the Pseudouridine Synthase 7 (PUS7)) repress translation and that their loss impairs early 
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embryogenesis and hematopoietic stem cell differentiation. As they found pseudouridylated 

mTOGs to strongly interact with Polyadenylate Binding Protein 1 (PABPC1), a central 

translation initiation factor, while YBX1 predominantly binds to unmodified mTOGs, they 

hypothesize that pseudouridylation may lead to structural rearrangements that allows mTOGs 

to orchestrate different cell processes by binding to the respective protein partner. 

Similar results were obtained by Krishna et al. (Krishna et al. 2019). They observed that a 

specific set of 5′ tRHs (30–35 nt) that is generated independently of Angiogenin is specifically 

enriched during retinoic acid induced differentiation of mouse embryonic stem cells 

(confirmed by Northern Blot analysis). As these 5′ tRHs were found to associate with individual 

subunits of polysomes as well as with completely assembled polysomes this suggests that 

5′ tRHs are able to regulate translation at various stages. However, how this is accomplished 

remains an open question. Further, they could show that depending on the differentiation 

state these 5′ tRHs are interacting with distinct effector proteins and bind to different mRNA 

pools suggesting that these 5′ tRHs contribute to stem cell differentiation. As the 

differentiation-dependent 5′ tRHs mainly interact with the same protein, it is likely that they 

exert similar functions. Exemplarily for 5′ tRH-Gln-CTG, they provide a mechanistic explanation 

how these 5′ tRHs drive differentiation: by sequestering the ribosomal binding protein Igf2bp1 

the mRNA of cMyc, a potent regulator of pluripotency, is no longer stabilized and gets 

degraded, which in turn perpetuates differentiation processes. 

In case of the model archaeon Haloferax volcanii, protein synthesis is inhibited by binding of 

a 5′ tsRNA (tsRNA-Val; 26 nt) that is generated under alkaline stress conditions to the small 

subunit of the ribosome (confirmed by Northern Blot analysis) (Gebetsberger et al. 2012). The 

endonuclease that generates this tsRNA is not known. In a follow-up study Gebetsberger et 

al. introduced synthetic Val-tsRNAs in S. cerevisiae and E. coli, to show that the inhibitory 

potential of this tsRNA on mRNA translation is conserved in all three domains of life 

(Gebetsberger et al. 2017). They further showed that the 5′ tsRNA-Val specifically binds in 

close proximity to the mRNA channel of the 30S ribosomal subunit. This impedes the binding 

of this ribosomal subunit to mRNAs and thereby interrupts the formation of translation 

initiation complexes (figure 1.2C). 
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Figure 1.2: Mechanisms of tsRNA-mediated repression of translation initiation and polypeptide elongation. (A) 

5′ tiRNAs with a 5′ TOG motif form a R4G structure that is required to displace the translation initiation complex 

eIF4F from the 5′ cap of mRNAs. In case of embryonic stem cells this is mediated by the protein PABPC1 that 

interacts with R4G structures of smaller mTOCs. (B) 5′ tsRNAs associated with Argonaute proteins sequence-

specifically silence the mRNAs of translation initiation factors and ribosomal proteins. Target sites are distributed 

all over the respective mRNAs and efficient silencing is not restricted to a miRNA-like complementarity (see also 

figure 1.3B). (C) 5′ tsRNA-Val binds nearby the mRNA channel of the small ribosomal subunit (eukaryotic 40S and 

archaeal/bacterial 30S), which impedes binding to mRNA. (D) 5′ tsRNAs with a 3′ terminal GG motif block 

translation. At least 5′ tsRNA-Gln is primarily associated with the protein complex MSC that potentially inhibits 

polypeptide elongation. 

 

With luciferase reporter assays in HeLa cells, Sobala and Hutvagner could show an inhibitory 

effect on translation for 5′ tsRNAs (e.g., tsRNA-Gln; 19 nt) that are generated independent of 

Angiogenin (figure 1.2D). Here, effective translation inhibition was dependent on a 3′ “GG” 

dinucleotide sequence in the tsRNA, while a sequence complementarity to the silenced mRNA 

was not required (Sobala and Hutvagner 2013). As 5′ tsRNAs were found to associate with 

actively elongating polysomes (confirmed by Northern Blot analysis) and overexpression of 

5′ tsRNA-Gln did not reduce the number of reporter mRNAs being present in polysomes, the 

authors suggest that ribosome assembly is not impaired but the elongation of the peptide 

chain. By combining isotopic labeling SILAC mass spectrometry analysis with RNA 

immunoprecipitation, they later identified the Multisynthetase Complex (MSC) as major 

binding partner of 5′ tsRNA-Gln (Keam et al. 2017). As MSC is involved in the processivity of 

translation, binding of 5′ tsRNA-Gln might impede translation by blocking polypeptide 

elongation (Negrutskii and Deutscher 1991; Kaminska et al. 2009; Mirande 2010; David et al. 

2011). 
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1.4.2. Sequence-specific gene regulation 

A different mode of translation suppression was revealed by Luo et al. via mRNA sequencing 

and ribosome profiling of tsRNA mimic transfected S2 cells (Luo et al. 2018). Here, 5′ tsRNAs 

(20–22 nt) do not inhibit translation by displacing or blocking proteins of the translation 

machinery, but instead silence the mRNAs of key components of the translation machinery 

(e.g., ribosomal proteins and translation initiation factors) by sequence-specific binding (figure 

1.2B and 3B). The 7 nt long target sites that were associated with a reduced translation 

efficiency were perfectly complementary to the respective 5′ tsRNAs and were conserved 

across different Drosophila genomes. The tsRNA-mediated target silencing was further found 

to be dependent on AGO2 and the fact that 5′ tsRNAs were co-immunoprecipitated with AGO2 

suggests that tsRNAs inhibit specific targets via RNA interference (RNAi). However, unlike 

miRNAs, these 5′ tsRNAs bind equally effective all over the mRNA and a complementary 

5′-portion of the tsRNA is not critical for the silencing effect. A miRNA-untypical gene targeting 

was also observed by Deng et al. in virus infected A549 cells, where the 3′-portion of a 5′ tRH 

(tRH-Glu-CTC; 31 nt) suppresses anti-viral target genes by sequence-specific binding to the 

3′ UTR of their mRNAs (Deng et al. 2015). These findings contradict RNAi-typical Argonaute-

induced silencing, as the structural and biophysical environment of the Argonaute MID-PIWI 

domain favors a tight binding of the 5′-portion of the small RNA, which is then used for target 

recognition (Boland et al. 2011). 

On the other hand, several studies showed that tsRNAs from different series (18 nt 3′ tsRNA, 

5′ and 3′ tsRNAs, 22 nt 3′ tsRNA) not only associate with the different Argonaute paralogs 

(confirmed by Northern Blot analysis in (Kuscu et al. 2018)), but also silence mRNAs via 

sequence complementary matching of their 5′-portion to target sites within the 3′ UTR (figure 

1.3A) (Maute et al. 2013; Kumar et al. 2014; Kuscu et al. 2018). As Kuscu et al. noted, 3′ tsRNA-

mediated target silencing mainly depends on a miRNA-like 5′ seed, but sequence 

complementarity beyond the seed sequence is also required (Kuscu et al. 2018). By 

performing Renilla luciferase reporter assays in HCT116 cells, Haussecker et al. observed a 

sequence-dependent target inhibition for 5′ tsRNAs and 3′ tsRNAs, but not tsRNA1s 

(Haussecker et al. 2010). In line with this, Kumar et al. found 5′ and 3′ tsRNAs, but not tsRNA1s, 

to associate with the four human AGO paralogs when analyzing PAR-CLIP data from HEK293 

cells (Kumar et al. 2014). While 5′ and 3′ tsRNAs had read counts in the range of miRNAs for 

AGO1, AGO3 and AGO4, there were almost no read counts for AGO2. 
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Figure 1.3: Mechanisms of tsRNA-mediated sequence-specific gene silencing. (A) Typical AGO-mediated 

silencing: 3′ tsRNAs and 5′tsRNAs, but not tsRNA1s, were found to associate with all four human AGO paralogs. 

The tsRNA-AGO complexes silence mRNAs that have a target site within the 3′ UTR that is complementary to the 

5′ portion of the tsRNA. (B) Untypical AGO2-mediated silencing: 5′ tsRNAs associate with AGO2. Target sites are 

complementary to various portions of the tsRNA (e.g., the 3′ portion) and distributed all over the mRNA. 

(C) tsRNAs interact with yet unknown effector proteins or act independent of effectors to silence target mRNAs. 

Target recognition may be miRNA-untypical. (D) RNase Z mediated silencing: 5′ tRHs can form hybrids with 

mRNAs that structurally resemble pre-tRNAs. RNase Z recognizes such RNA hybrids and cleaves the mRNA. 

 

While Argonaute-mediated RNAi is restricted to eukaryotic cells, tsRNAs are found in all 

domains of life. It was therefore speculated whether tsRNAs are part of an ancient regulatory 

pathway that was later complemented by the powerful RNAi pathways in the eukaryotic 

lineage (Keam and Hutvagner 2015). If tsRNA-mediated gene regulation is not a eukaryotic-

specific trait, this would either require other tsRNA-interacting effector proteins, or regulatory 

mechanisms that do not rely on tsRNA-interacting protein partners (figure 1.3C). One 

potential tsRNA-directed modulator is the full-length form of the tRNA 3′ processing 

endoribonuclease tRNase Z, which cuts off the trailer sequence of pre-tRNAs. Due to its highly 

conserved function, it is expressed in all domains of life. As shown by Elbarbary et al., RNase 

Z can cut RNA hybrids that have secondary structures like tRNA-precursors. The existence of 

such RNase Z-interacting small ncRNAs was confirmed by Northern Blot analysis. More 

importantly, they could show that 5′ tRHs can form such tRNA-precursor-like secondary 

structures with mRNAs that get recognized by cytoplasmic RNase Z, leading to the 

endonucleolytic cleavage and thus degradation of these mRNAs (figure 1.3D) (Elbarbary et al. 

2009). 

Besides these examples of tsRNA-mediated post-transcriptional gene repression, there is also 

a study by Kim et al. showing that binding of tsRNAs to mRNAs can also have the contrary 

effect of enhancing translation (Kim et al. 2017). They showed that a 3′ tsRNA (tsRNA-Leu-
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CAG; 22 nt; confirmed by Northern Blot analysis) increases the translation of at least two 

ribosomal proteins by binding to sequence-complementary target sites that presumably lies 

within the coding sequence of their mRNA and hypothesize that this binding removes 

translation-inhibiting secondary structures. 

In summary, present studies strongly indicate that tsRNAs can regulate mRNA targets by 

sequence-specific recognition. However, given the displayed objections, it is still unclear which 

the effector protein of this tsRNA-mediated gene regulation pathway is and if such an effector 

is needed in every case. Thus, more research is needed to pin down the exact mechanisms of 

target regulation. 

 

1.5. Association with diseases and infections 

1.5.1. tsRNAs as transgenerational epigenetic transmitters of metabolic disorders 

and addiction behavior 

Increasing evidence is found that environmental stimuli such as an imbalanced diet or stress 

can influence the gene expression of next generations, which may foster the development of 

certain disease. This can be mediated by passing on parental small RNAs to the emerging 

offspring. So far strongest evidence for small RNA mediated transgenerational effects are 

found in nematodes, plants and ciliates (Rechavi and Lev 2017; Neeb and Nowacki 2018), but 

such phenomena could be observed also in mammals (Gapp et al. 2014; Grandjean et al. 

2015). First detected for miRNAs, several studies could now show that tsRNAs may also act as 

transmitters of epigenetic information (figure 1.4A). Peng et al. first observed that mature 

mouse sperm is extremely enriched for 5′ tRHs (29-34 nt) suggesting that these tsRNAs may 

play a role in early embryo development and transgenerational epigenetic inheritance (Peng 

et al. 2012). Later, Chen et al. could show that male mice subjected to a high-fat diet inherit a 

susceptibility for metabolic disorders, which is transmitted by 5′ tRHs (30–34 nt) in their sperm 

(Chen et al. 2016). They could trace this back to 5′ tRHs, as microinjection of the 30–40 nt 

fraction (predominantly 5′ tRHs) from sperm of high-fat diet mice into normal-diet zygotes did 

phenocopy this effect in the F1 offspring. In a parallel-published study, Sharma et al. aimed to 

unveil the mechanism of how paternal low-protein diet alters the hepatic cholesterol 

biosynthesis in the offspring (Sharma et al. 2016). They could show that sperm of low-protein 

diet mice contains higher levels of 5′ tRHs (28–34 nt) and indicate that these 5′ tRHs are loaded 

via vesicles called epididymosomes into the maturing sperm (supported by Northern Blot 

analysis). Exemplarily for one of the low-protein diet-upregulated tRHs, they show that, in the 

early embryo, 5′ tRH-Gly-GCC can downregulate the expression of ribosomal proteins as well 

as transcripts that are driven by the long terminal repeat retrotransposon MERVL. However, 

it remains unclear whether the repression of MERVL-driven transcripts or the slower growth 

kinetics due to the impaired ribosomal biogenesis leads to the observed metabolic changes in 

the offspring of low-protein diet mice. 
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Chen et al. additionally observed that injecting unmodified tsRNA into zygotes failed to 

phenocopy the high-fat diet-induced metabolic disturbances, while RNA modifications such 

as m5C and m2G are enriched in the sperm small RNA population of high-fat diet mice (Chen 

et al. 2016). In a follow-up study, they could show that the tRNA methyltransferase DNMT2 is 

upregulated in the caput epididymis under high-fat diet conditions (Zhang et al. 2018b). 

DNMT2 has been shown in previous studies to 5′-methylate the cytosine of certain tRNAs at 

position 38 (Goll et al. 2006; Tuorto et al. 2012). By generating Dnmt2-knockout mice, they 

could demonstrate that DNMT2 is required for intergenerational transmission of high-fat diet-

induced metabolic disorders via sperm small RNAs (Zhang et al. 2018b). They showed that 

DNMT2 elevates the level of m5C modifications in high-fat diet-induced sperm small RNAs and 

that it alters the composition of the sperm small RNA population (supported by Northern Blot 

analysis) stressing that RNA modifications are an important feature of small RNA mediated 

transgenerational effects. 

Besides transgenerationally induced metabolic disorders, tsRNAs are also suspected to be a 

transmitter of inherited behavior. A study from Short et al. suggests that altered levels of 

miRNAs in mouse sperm, but also altered tsRNA levels (more 5′ tRHs, less 3′ tsRNAs), are 

related to inherited affective behaviors, which is reflected by a reduced anxiety and fear 

memory in the male offspring of physical active mice (Short et al. 2017). A more compelling 

evidence that sperm tsRNAs also induces behavioral phenotypes across generations was 

presented by Sarker et al. (Sarker et al. 2019). Here, they show that feeding pregnant female 

mice with a high-fat diet led to tsRNA-mediated disturbances of the fat metabolism and 

addictive-like behaviors in the paternal lineage for at least three generations. Again, 

microinjection of sperm tsRNAs from F1-males of high-fat diet mice into normal-diet zygotes 

did phenocopy the observed effects. 

 

1.5.2. Host regulation by vesicle-transferred parasite tsRNAs 

As suggested by Sharma et al., tsRNAs are generated in the epididymis and shuttled via 

extracellular vesicles into maturing sperm (Sharma et al. 2016). Another form of vesicle-

mediated tsRNA-transfer was observed in the infection process of the parasite Trypanosoma 

cruzi (T. cruzi). T. cruzi is a parasitic protozoan that has a life cycle with two main 

developmental stages (replicative or infective) each in an invertebrate and a vertebrate host 

(Jimenez 2014). Transmission usually occurs when an insect vector (typically members of the 

Triatominae) feeds on the blood of an infected mammal, thereby taking up the non-replicative 

trypomastigotes, which are circulating in the bloodstream. Inside insects, the trypomastigotes 

differentiate into epimastigotes that actively divide before they differentiate into non-

replicative metacyclic trypomastigotes. During blood feeding on the next person or animal, 

the insects release the infective metacyclic trypomastigotes by defecation. Through the bite 

wound or mucous membranes the parasites can enter the vertebrate host, where they 

differentiate into replicating amastigotes. After several replication rounds the amastigotes 

differentiate into bloodstream trypomastigotes that can invade other tissues or can be taken 
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up by new blood feeding insects. Humans infected with this parasite develop the Chagas 

disease, which is endemic in most parts of Latin America (Moncayo and Silveira 2017). 

Although T. cruzi lacks canonical Argonaute-mediated small RNA pathways (Ullu et al. 2004), 

it can apparently post-transcriptionally regulate gene expression (Clayton and Shapira 2007). 

It was therefore asked whether alternative small RNA pathways have evolved in T. cruzi in 

order to orchestrate the differentiation processes and adjust gene expression to the changing 

environment (Garcia-Silva et al. 2010). Thus, several studies analyzed the small RNA 

transcriptome of T. cruzi and found distinct tsRNA proportions and types in the different 

developmental forms (confirmed by Northern Blot analysis) (Reifur et al. 2012; Garcia-Silva et 

al. 2010). While tsRNAs (majorly 5′ tRHs) make up only 26% of the small RNA population in the 

epimastigote form of T. cruzi, 63% of the small RNAs of the infective metacyclic form are 

tsRNAs (majorly 3′ tRHs). The developmental stage-dependent tsRNAs not only differ in their 

abundance and tsRNA class, but also originate from a different set of parental tRNAs and have 

a distinct subcellular localization pattern (posterior cytoplasmic granules in the epimastigote, 

even cytoplasmic distribution in the metacyclic form). Later it was revealed that T. cruzi 

secretes extracellular vesicles that are highly loaded with tsRNAs and TcPIWI-tryp proteins 

(supported by fluorescence in situ hybridization assays) (Garcia-Silva et al. 2014b). TcPIWI-

tryp is the only Argonaute protein reported in T. cruzi which was shown to bind tsRNAs 

(Garcia-Silva et al. 2014c). These extracellular vesicles can fuse with other parasites but can 

also invade mammalian cells. By incorporating extracellular vesicles of T. cruzi into HeLa cells, 

Garcia-Silva et al. could demonstrate that the tsRNA cargo is able to downregulate HeLa cell 

genes (Garcia-Silva et al. 2014a). As most differentially expressed host genes are related with 

structural cell components and immune responses pathways, this suggests that vesicle-

transmitted tsRNAs play a major role in promoting the susceptibility of the mammalian host 

cells (figure 1.4B). A better understanding of this tsRNA-mediated host-parasite interaction 

may allow the development of effective anti-parasitic drugs. As trypanosomatids lack 

orthologues of the mammalian enzymes for tRNA half processing such as Angiogenin (Fricker 

et al. 2019), targeting Trypanosoma-specific tsRNA biogenesis factors might be a promising 

approach. 

 

1.5.3. tsRNAs in of virus infections and retrotransposition 

Another example of tsRNA-mediated host gene regulation was observed for the respiratory 

syncytial virus (RSV) (Deng et al. 2015). By studying the small RNA population of RSV-infected 

A549 cells, Wang et al. revealed that virus infection triggers predominantly the production of 

~30 nt long 5′ tRHs (confirmed by Northern Blot analysis) (Wang et al. 2013). Exemplarily for 

one of the RSV-induced tsRNAs (5′ tsRNA-Glu-CTC), they could further show that this 

Angiogenin-dependent tsRNA is able to repress target mRNAs and promote RSV replication 

(figure 1.4B). In a follow-up study, Deng et al. were able to characterize the underlying 

molecular mechanism (Deng et al. 2015). With apolipoprotein E receptor 2 (APOER2) they 

could not only identify a target gene of 5′ tRH-Glu-CTC, but could also show that this target is 



33 
 

an anti-viral protein. Thus, RSV exploits tsRNA-generation of the host to shut down an anti-

viral mechanism. APOER2 has a target site for 5′ tRH-Glu-CTC in the 3′ UTR of its mRNA. 

However, as already indicated previously, they observed a miRNA-untypical target silencing. 

By performing luciferase assays of target site mutations, they demonstrated that the 3′ end of 

the 5′ tRH-Glu-CTC is crucial for target repression, while its 5′ end is only contributing to target 

recognition. 

Using 5′ tRHs to modulate host genes might not be a unique mechanism of RSV, as Selitsky et 

al. observed increased levels of 5′ tRHs in liver samples of human adults that have chronical 

hepatitis B virus and hepatitis C virus infections (Selitsky et al. 2015). While this study did not 

investigate whether these 5′ tRHs have a similar role in virus progression, in silico analysis of 

5′ tRHs that get produced by Angiogenin upon Rickettsia conorii infection (confirmed by 

Northern Blot analysis) suggest that endothelial factors of the host are targeted, which would 

facilitate this bacteria to overcome the hosts endothelial barrier (Gong et al. 2013). 

While the mechanism described for RSV progression bases on a quite specific tsRNA-mediated 

repression of a host anti-viral protein, tsRNAs may have a more general role in the promotion 

of retroviruses and retrotransposons, since tRNAs serve as primers for their reverse 

transcription (figure 1.4C) (Marquet et al. 1995, p. 114). This may be the case especially for 

3′ tsRNAs, as the primer binding site (PBS) is usually complementary to the 3′ end of the 

priming tRNA. Indeed, Ruggero et al. provided evidence that Human  

T-Cell Leukemia Virus Type 1 (HTLV-1) exploits host 3′ tsRNAs (18 nt, 3′ tsRNA-Pro) as primer 

for reverse transcription (Ruggero et al. 2014). When analyzing the small RNA population of 

CD4+ T cells infected with HTLV-1, they observed that 3′ tsRNA-Pro was the most abundant 

tsRNA. Previously, its parental tRNA (tRNA-Pro) has been suggested to act as a primer for 

reverse transcription of HTLV-1 by binding via its 3′ portion to the PBS of HTLV-1 transcripts 

(Seiki et al. 1982). In a reverse transcription assay, Ruggero et al. could confirm that 3′ tsRNA-

Pro can serve as a primer for HTLV-1 reverse transcriptase (Ruggero et al. 2014). They could 

further show that both the parental tRNA-Pro as well as the 3′ tsRNA-Pro are enriched in virus 

particles suggesting an important role for virus progression. 

Contrasting conclusions were drawn by Yeung et al., who found high levels of a 18 nt 3′ tsRNA 

(3′ tsRNA-Lys; confirmed by Northern Blot analysis) in human immunodeficiency virus type 1 

(HIV-1) infected MT4 T-cells (Yeung et al. 2009). 3′ tsRNA-Lys is antisense to the PBS of the 

HIV-1. As they saw this 3′ tsRNA to be associated with AGO2, they suggested that 3′ tsRNA-Lys 

directs an RNAi-based defense mechanism of the host against HIV-1. Supporting this 

hypothesis, they observed a 3′ tsRNA-Lys-dose-dependent depletion of HIV-1 transcripts and 

further showed that HIV-1 replication is increased in cells where 3′ tsRNA-Lys is antagomir-

inhibited. 

Similar observations were made for long terminal repeat (LTR)-retrotransposons, for which 

Schorn et al. could show that 3′ tsRNAs play a role in inhibiting their retrotransposition in 

mouse stem cells (Schorn et al. 2017). Retrotransposons are “parasitic genes” within a genome 

that amplify themselves and jump to other genome loci utilizing a mechanism that involves 
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reverse transcription. Schorn et al. noted that 3′ tsRNAs are especially abundant in mouse 

stem cells that are depleted for histone H3 lysine 9 tri-methylation and therefore are impaired 

in transcriptional silencing of retrotransposons. Intriguingly, the 3′ tsRNAs that were found to 

be enriched are antisense to the 18 nt PBS of the most active mouse transposon families. 

Using transposition reporter assays, they could not only show that 3′ tsRNAs inhibit 

retrotransposition, but present two different mechanisms that depend on the size of the 

3′ tsRNA. While 18 nt 3′ tsRNAs are only able to block the reverse transcription by binding to 

the PBS of LTR-retrotransposon transcripts, 22 nt 3′ tsRNAs post-transcriptionally silence the 

LTR-retrotransposons by reducing the retrotransposon transcript levels. The authors suggest 

that this effect is mediated by an RNAi-mechanism, as in a previous study 22 nt 3′ tsRNAs were 

shown to cleave target RNA in association with AGO2 (Li et al. 2012). 

Instead of complementarity to the 3′ portion of tRNAs, few retrotransposons have a PBS that 

is complementary to an internal region of the primer tRNA. In case of the fruit fly 

retrotransposon copia, which is such an exceptions, it was suggested that the 39 nt 5′ tRH-

Met, but not its parental tRNA, serves as a primer for reverse transcription (Marquet et al. 

1995). Similar to the situation in retroviruses, 5′ tRHs may not only promote retrotransposon 

activity, but may also inhibit it. As described above, 5′ tRHs transmitted via sperm (confirmed 

by Northern Blot analysis) are able to downregulate transcripts that are driven by the LTR-

retrotransposon MERVL in the developing mouse embryo (Sharma et al. 2016). Other 

indications come from plants, where 19 nt 5′ tsRNAs that are enriched in the pollen of 

Arabidopsis (confirmed by Northern Blot analysis) associate with AGO1 and cleave LTR-

retrotransposons of the gypsy family (Martinez et al. 2017). 

In conclusion, tsRNAs can be accounted to the pool of small ncRNAs that repress reactivated 

retrotransposons, thereby safeguarding the genome of germline cells and stem cells. While a 

tsRNA was also shown to inhibit virus progression by degrading viral transcripts, several 

studies found retroviruses to exploit tsRNAs to foster their own replication, or to 

downregulate the host’s defense mechanisms. Targeting infection-promoting tsRNAs may 

therefore be a promising attempt to develop anti-viral treatment. 
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Figure 1.4: Association of tsRNAs with diseases. (A) 5′ tRHs as transgenerational transmitters inducing metabolic 

disorders and addictive behavior. 5′ tRHs are loaded into maturing sperm via epididymosomes. (B) tsRNAs 

repress host genes to facilitate infection. T. cruzi secretes vesicles containing tRHs and TcPIWI-tryp proteins that 

can fuse with host cells. RSV infection triggers the accumulation of host-generated 5′ tRHs. (C) Generally, the 3′ 

portion of tRNAs primes reverse transcription of retroviruses. Similarly, tsRNAs can act as primers, but can also 

block primer binding sites (PBS) of RNA from retroviruses and retrotransposons. (D) Proliferation-enhancing 

tsRNA1s can foster cancer progression (upper part), while e.g. specific 3′ tsRNAs act anti-tumorigenic. tsRNAs 
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generated under hypoxia sequester YBX1, which prevents stabilization of pro-oncogenic transcripts. As 

metastatic cells inhibit generation of these tsRNAs, YBX1 is able to stabilize tumor-promoting mRNAs (middle 

part). By degrading the mRNA of JAG, a 3′ tsRNA inactivates the cancer promoting Notch pathway (lower part). 

(E) Angiogenin secreted by stressed motor neurons is endocytosed by adjacent astroglia where tRNAs are cleaved 

to generate tiRNAs. 5′ tiRNAs forming R4G structures can associate with YBX1, which triggers stress granule 

assembly that contributes protecting motor neurons from undergoing apoptosis (upper part). Angiogenin-

mediated tiRNA-generation can also promote apoptosis when the tRNA-methylase NSun2 is defective (middle 

part). Mutations in the Kinase CLP1 induce the accumulation of leader-sequence-containing 5′ tsRNAs, which 

trigger p53-dependent apoptosis of motor neurons (lower part). 

 

1.5.4. tsRNAs in cancer progression 

Initially, tsRNAs were deeper characterized and recognized as functional small ncRNAs in the 

context of cancer. In 2009 Lee et al. analyzed small RNA sequencing data of the human 

prostate cancer cell line HCT116 (Lee et al. 2009). Here, they found tsRNAs to be the second 

most abundant small ncRNA class following miRNAs. They deeper investigated a tsRNA1 

(tsRNA1-Ser-TGA, 19 nt), which was more abundant in small RNA libraries of a variety of 

cancer cell lines compared to normal tissue libraries (confirmed by Northern Blot analysis). By 

siRNA-mediated knockdown and rescue co-transfection, they could show that tsRNA1-Ser-

TGA is required for cell cycle propagation and proliferation of HCT116 cells (figure 1.4D, upper 

part). As luciferase reporter assays did not reveal any modulation effect, the authors suggest 

an RNAi-independent mechanism, which is in line with the above-mentioned PAR-Clip data 

analysis of Kumar et al. (Kumar et al. 2014). 

So far, the best mechanistic explanation for a role of tsRNAs in cancer progression was found 

for a specific set of hypoxia-induced tsRNAs (figure 1.4D, middle part) (Goodarzi et al. 2015). 

As hypoxia is a major stress encountered by progressing cancerous cells, Goodarzi et al. 

analyzed the tsRNA levels in breast cancer cells under low oxygen conditions. While hypoxia 

induced the expression of a group of tsRNAs in breast cancer cells (MDA-231 cells) as well as 

in normal mammary epithelial cells, this specific set of tsRNAs was not upregulated in highly 

metastatic breast cancer cells (MDA-LM2 cells), indicating that these tsRNAs might have a 

tumor suppressive role. Interestingly, these particular tsRNAs (tsRNA-Glu, -Asp, -Gly, and -Tyr) 

share a sequence motif (“SCUBYC”) suggesting that they interact with a common trans factor. 

Indeed, by using a streptavidin-coupled tsRNA-Gly mimetic, they could identify the RNA-

binding protein YBX1 as a specific interactor. As mentioned previously, YBX1 was found to 

induce stress granule formation when interacting with 5′ tiRNAs (Ivanov et al. 2011). Unlike 

the 5′ tiRNAs of the study conducted by Ivanov et al., the tsRNAs here are not generated by a 

cleavage in the anticodon loop of the parental tRNA (Ivanov et al. 2011), but originate from a 

cleavage site within the D loop and cover at least the complete anticodon loop (Goodarzi et 

al. 2015). High-throughput sequencing of the YBX1-crosslinked small ncRNAs confirmed a 

specific interaction with this subset of tsRNAs. The fact that relatively low expressed tsRNAs 

(tsRNA-Glu and -Asp) were found to be enriched in this YBX1-crosslink sequencing data, but 

not highly expressed tsRNAs that are not part of this potentially tumor suppressive tsRNA set, 

suggests that the relative abundance of tsRNAs not necessarily represents an indicator for 
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functional activity. Goodarzi et al. could further show that this specific set of hypoxia-induced 

tsRNAs competes with pro-oncogenic transcripts for YBX1 binding. As YBX1 stabilizes pro-

oncogenic transcripts by binding to their 3′ UTR, displacement of YBX1 from these mRNAs 

leads to their degradation, which in turn inhibits tumor progression. In contrast, highly 

metastatic breast cancer cells evade this mechanism, as they are able to block the induction 

of these tumor suppressive tsRNAs. Here, YBX1 continues to stabilize pro-oncogenic 

transcripts, which is fostering metastasis of these breast cancer cells even more. 

Another tumor suppressive tsRNA was found to be involved in colorectal cancer (Huang et al. 

2017). Since this specific 17 nt 3′ tsRNA can be derived from both, the 3′ end of tRNA-Leu, as 

well as from the pre-miRNA-1280 (supported by Northern Blot analysis), 3′ tsRNA-Leu is also 

listed as miR-1280 in popular databases. Several studies indicated a tumor suppressive activity 

of 3′ tsRNA-Leu/miR-1280 in various cancer types such as melanoma, medulloblastoma, bladder 

cancer and thyroid carcinoma (Sun et al. 2015; Majid et al. 2012; Wang et al. 2015; Meng et al. 

2016; Xu et al. 2015; Piepoli et al. 2012). In line with this, Huang et al. demonstrated that 

3′ tsRNA-Leu/miR-1280 inhibits the proliferation and colony formation of colorectal cancer 

cells (figure 1.4D, lower part) (Huang et al. 2017). They could mechanistically explain this as 

they identified Jagged Canonical Notch Ligand 2 (JAG2) as a direct target of 3′ tsRNA-

Leu/miR-1280. Upon binding of 3′ tsRNA-Leu/miR-1280 to the 3′ UTR of JAG2, the JAG2 

transcript gets degraded, which in turn inactivates the Notch signaling pathway. Notch 

signaling is important for key functions of cancer progression such as proliferation, metastasis 

and the maintenance of cancer stem cell phenotypes. 3′ tsRNA-Leu/miR-1280 can therefore 

be considered as a powerful tumor suppressive factor. 

In contrast to that, a slightly bigger tsRNA originating from the 3′ end of tRNA-Leu (tsRNA-Leu-

CAG; 22 nt; confirmed by Northern Blot analysis) was shown to be essential for viability of the 

cancer cell lines HCT116 and HeLa (Kim et al. 2017). As inhibition of this 3′ tsRNA in a 

hepatocellular carcinoma mouse model induced apoptosis of the tumorigenic cells, 3′ tsRNA-

Leu-CAG might be used as a potential drug target. The fact that two similar tsRNAs may induce 

completely converse functions is astonishing, but may be a prevalent feature of tsRNA-

mediated processes in tumor progression. In line with this are the results of a study that 

compared the small RNA profiles of different prostate cancer states. While samples from 

organ-confined prostate cancer predominantly had 18 nt long tsRNAs, samples from 

metastatic lymph node prostate cancer expressed mainly 27 nt long tsRNAs (Martens-

Uzunova et al. 2011). It is therefore likely that specific tsRNA populations play different roles 

in tumor progression. 

Beside these reports on the implication of individual tsRNAs in cancer progression, tiRNAs 

generated by Angiogenin may play a more general role, as this ribonuclease is upregulated in 

almost all types of cancer (Tello-Montoliu et al. 2006). This assumption is supported by the 

finding, that the ribonucleolylitc activity of Angiogenin is required for angiogenesis and thus 

tumor formation (Shapiro and Vallee 1989; Kao et al. 2002). How exactly tiRNAs are involved 

in cancer progression is not clear yet. 
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1.5.5. tsRNAs in neurodegeneration 

While its relevance for cancer progression is yet unclear, several studies could demonstrate 

that Angiogenin treatment is able to protect stressed motor neurons from degeneration 

(Kieran et al. 2008; Aparicio-Erriu and Prehn 2012; Thiyagarajan et al. 2012; Sebastià et al. 

2009). Mutations of Angiogenin are strongly associated with amyotrophic lateral sclerosis 

(ALS) and Parkinson disease, where the degeneration of motor neurons is a major symptom 

(.van Es et al. 2011; Greenway et al. 2006). Notably, most of the mutations that are associated 

with ALS impair the RNase function of Angiogenin (Greenway et al. 2006; Crabtree et al. 2007). 

Thus, it was suggested that Angiogenin-generated tiRNAs play an important role in the survival 

of motor neurons. Skorupa et al. revealed that stressed motor neurons secrete Angiogenin, 

which is endocytosed by astroglia in close proximity (Skorupa et al. 2012). Astroglia that are 

deficient in Angiogenin under normal conditions then generate tiRNAs, which seem to 

mediate neuroprotection of motor neurons in paracrine. Ivanov et al. could later demonstrate 

that 5′ tiRNA-Ala and 5′ tiRNA-Cys forming RG4 structures via their 5′ TOG motif can enter 

motor neurons, where they interact with YBX1 to induce stress granule formation, which 

might be a central part of the neuroprotective response (figure 1.4E, upper part) (Ivanov et al. 

2014). As the pathological GGGGCC repeats in the C9ORF72 gene, which is the most common 

genetic cause of ALS (Mori et al. 2013), are able to form similar RG4 structures, Ivanov et al. 

suggest that these repeats interfere with the tiRNA-YBX1-mediated processes such as stress 

granule formation that in turn induces apoptosis (Ivanov et al. 2014). 

Angiogenin-treatment was also shown to protect cortical neurons that are exposed to 

hyperosmotic stress (Saikia et al. 2014). Even though not validated for the neurons, the study 

by Saikia et al. provided a mechanism for cell survival of similarly stressed mouse embryonic 

fibroblasts. They showed that a set of 20 Angiogenin-dependent tiRNAs can form complexes 

with Cytochrome C (Cyt C) that gets released by the mitochondria in order to trigger the 

apoptosis cascade. The tiRNA-Cyt C interaction, however, blocks the formation of 

apoptosomes, which prevents that cells undergo apoptosis. 

Contrasting effects were observed by Blanco et al., where accumulation of Angiogenin-

generated 5′ tiRNAs in NSun2-mutants leads to reduced cell size and increased apoptosis of 

cortical, hippocampal and striatal neurons (figure 1.4E, middle part) (Blanco et al. 2014). NSun2 

is a cytosine-5 RNA methyltransferase, whose mutation can cause hereditary intellectual 

disability and the microcephaly causing Dubowitz-like syndrome (Abbasi-Moheb et al. 2012; 

Khan et al. 2012; Martinez et al. 2012). Blanco et al. could demonstrate that functional NSun2 

methylates all tRNAs carrying a cytosine in their variable loop at position 48 or 49 and that 

this m5C modification protects the tRNA to be cleaved by Angiogenin (Blanco et al. 2014). In 

NSun2-deficient cells, target tRNAs remain hypo-methylated and are cleaved by Angiogenin, 

which leads to an accumulation of 5′ tiRNAs. As 5′ tiRNAs are able to block translation globally 

(Ivanov et al. 2011), the lower translation rates may explain the reduction of neuronal cell size 
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and synapse formation in NSun2 knockout brains (Blanco et al. 2014). Importantly, these 

neurodegenerative phenotypes can be reverted by inhibiting Angiogenin. 

Another report where tsRNAs are involved in degeneration of motor neurons links distortions 

in tRNA biogenesis to neurological defects in the peripheral and the central nervous system 

(Hanada et al. 2013; Karaca et al. 2014; Schaffer et al. 2014). Hanada et al. showed that 

mutations in the RNA kinase CLP1 leads to defects in the processing of intron-containing pre-

tRNAs, which gives rise to untypical 5′ tsRNAs that contain the 5′ leader sequence (confirmed 

by Northern Blot analysis) (Hanada et al. 2013). Accumulation of these 5′ leader exon tsRNAs 

in motor neurons can trigger the activation of p53-dependent apoptosis (figure 1.4E, lower 

part). As shown by Schaffer et al. these neurodegeneration effects of mutant CLP1 is a 

conserved feature in vertebrate neurogenesis (Schaffer et al. 2014). 

 

1.6. Perspectives, open questions, and considerations 

Given the broad range of known tsRNA-associated diseases, it is likely that more diseases will 

be linked to aberrant tsRNA expression in the near future. To be able to develop tsRNA-based 

biomarkers or therapies, a deeper understanding of tsRNA pathways is required. Major 

remaining questions are: 

• Which enzymes generate tsRNAs in which context? 

• How are certain tsRNAs exported/imported to the nucleus? 

• What are the protein interactors of tsRNAs involved in gene regulation? 

• How does this work mechanistically? 

• Which role do post-transcriptional modifications of mature tRNAs and tsRNAs play? 
 

While answering these questions, future studies should consider the following aspects. First 

of all, in most of the reviewed studies conclusions are drawn from experiments that focus on 

individual tsRNAs. However, as we learn from the overall picture these studies give, different 

subsets of tsRNAs even from the same biogenesis-pathway may exert different functions in 

distinct contexts. It is therefore essential to investigate the mechanisms of different tsRNA 

subpopulations conjunctively within one experimental setting. Furthermore, most of the 

studies test the regulatory potential of tsRNAs using synthetic mimetics. As tsRNAs are heavily 

modified and it was shown that RNA modifications can be important features of small RNA 

function, the use of mimetics without the endogenous base modifications might lead to 

artifact results and wrong conclusions. It will be interesting to see whether mimetics including 

the natural base modifications will have, e.g., different affinities to certain protein interactors. 

In line with this, future studies should investigate differences in post-transcriptional 

modifications of tsRNAs and their parental tRNAs. This may not only explain why specific 

tsRNAs are enriched compared to their source tRNA, but also reveal why certain tsRNAs have 

different effects under distinct conditions. It is likely that aberrant tsRNA modifications are a 

major feature in the development and progression of disease. Moreover, future studies 
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should also investigate the role of organelle-derived tsRNAs. This might be especially relevant 

as mitochondrial-derived tsRNAs can be differentially expressed during development and as 

RNA modifications within mitochondrial tRNAs were shown to be associated with 

mitochondrial disease (Asano et al. 2018; Hirose et al. 2015). Additionally, library preparation 

protocols should be improved in order to obtain unbiased sequencing data. Currently, post-

transcriptional base modifications as well as untypical 5′ end 3′ end modifications (e.g., 

tiRNAs) are factors that prevent tsRNAs from being faithfully represented in RNA sequence 

libraries and can cause sequencing arrests of longer transcripts that would then be 

erroneously interpreted as tsRNAs. Thus, the development of more sophisticated adapter 

ligation and reverse transcription protocols is required to obtain an unbiased picture of the 

real tsRNA population within biological samples. In addition, it advisable to verify small RNA-

sequencing based expression data with Northern Blot analysis. Taking these considerations 

into account, research in this emerging field will open possibilities to develop therapies against 

certain viruses or parasites or to improve the diagnosis of severe disease such as cancers or 

neurodegenerative disorders. 
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2.1. Abstract 

Fragments of mature tRNAs have long been considered as mere degradation products without 

physiological function. However, recent reports show that tRNA fragments (tRFs) play 

prominent roles in diverse cellular processes across a wide spectrum of species. Contrasting 

the situation in other small RNA pathways the mechanisms behind these effects appear more 

diverse, more complex and are generally less well understood. In addition, surprisingly little is 

known about the expression profiles of tRFs across different tissues and species. Here, we 

provide an initial overview of tRF expression in different species and tissues, revealing very 

high tRF-levels particularly in the primate hippocampus. We further modulated the regulation 

capacity of selected tRFs in human cells by transfecting synthetic tRF mimics 

(“overexpression”) or antisense-RNAs (“inhibition”) and identified differentially expressed 

transcripts based on RNAseq. We then used a novel k-mer mapping approach to dissect the 

underlying targeting rules, demonstrating that 5’ tRNA halves (5’ tRHs) silence genes in a 

sequence-specific manner, while the most efficient target sites align to the mid-region of the 

5’ tRH and are located within the CDS or 3’ UTR of the target. This amends previous 

observations that tRFs guide Argonaut proteins to silence their targets via a miRNA-like 5’ seed 

match and suggests a yet unknown mechanism of regulation. Finally, our data suggests that 

some 5’ tRHs are also able to sequence-specifically stabilize mRNAs as upregulated mRNAs are 

also significantly enriched for 5’ tRH target sites. 

 

2.2. Introduction 

tRNAs are well known for their conserved role in protein biosynthesis. However, mature tRNAs 

and their precursors give also rise to a class of small non-coding RNAs, the tRNA fragments 

(tRFs). While tRF1s (15-22 nt) are generated by clipping off the trailer sequence from the tRNA 

precursor molecule, 5’ tRFs and 3’ tRFs (18-35 nt) stem from the respective end of mature 
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tRNAs (70-90 nt). Primarily considered as degradation products, tRFs are now recognized as 

additional players in small RNA-mediated gene regulation that act in a variety of cellular 

processes across species from all domains of life. 

tRFs were found to play a role in fundamental physiological processes such as proliferation 

(Lee et al. 2009) and protein translation control (Ivanov et al. 2011; Gebetsberger et al. 2017; 

Keam et al. 2017; Guzzi et al. 2018). Moreover, tRFs are implicated in defense mechanisms of 

Escherichia coli against bacteriophages (Levitz et al. 1990) and human cells against 

trypanosoma or viruses (Garcia-Silva et al. 2014; Deng et al. 2015). Additionally, tRFs were 

found to prime the reverse transcription or inhibit the promotion of retroviruses and 

retrotransposons (Ruggero et al. 2014; Yeung et al. 2009; Schorn et al. 2017; Martinez et al. 

2017). Furthermore, tRFs are associated with several diseases such as cancer (Lee et al. 2009; 

Goodarzi et al. 2015; Huang et al. 2017) and amyotrophic lateral sclerosis (Greenway et al. 

2006; Ivanov et al. 2014) and were lately revealed to act as transgenerational transmitters 

that induce metabolic disorders and addictive behavior in mice (Chen et al. 2016; Sharma et 

al. 2016; Short et al. 2017; Sarker et al. 2019). While some of the described effects seem to 

base on similar mechanisms, tRFs from the same class were shown to trigger completely 

converse functions in other cases (Jehn and Rosenkranz 2019), suggesting that the regulatory 

potential of tRFs is more complex than observed for the well-studied major small RNA classes. 

So far, two superordinate concepts that aim explain how tRFs regulate gene expression have 

been identified. While some studies show that tRFs globally repress translation by inhibiting 

the assembly of the translation initiation machinery (Ivanov et al. 2011; Gebetsberger et al. 

2017; Keam et al. 2017; Guzzi et al. 2018), others report a sequence-specific gene regulation 

(Haussecker et al. 2010; Deng et al. 2015; Kuscu et al. 2018; Luo et al. 2018). As tRFs were 

found to associate with Argonaut proteins, a miRNA-like gene regulation mechanism seems 

apparent (Maute et al. 2013; Kumar et al. 2014; Kuscu et al. 2018). Indeed, studies could show 

that tRF-mediated transcript silencing is dependent on a 5’ seed, which is complementary to 

target sites within the 3’ UTR (Haussecker et al. 2010; Kuscu et al. 2018). Contrasting this, 

other studies observed sequence-specific gene silencing effects, where complementarity of 

the 5’ seed was neglectable in favor for other tRF portions (Deng et al. 2015; Luo et al. 2018). 

Since Argonaut structure coerces the 5' end of small RNAs for target recognition (Boland et al. 

2011), the results of these studies suggest that tRFs interact with other effector proteins or 

act protein-independent to regulate genes. Indications from recent studies where tRFs were 

shown to interact with different proteins depending on the differentiation state of the cell or 

the modification status of the tRF further erode the AGO-centric view (Krishna et al. 2019; 

Guzzi et al. 2018) illustrating that we still lack a sufficiently deep understanding of how tRFs 

regulate gene expression mechanistically. 

Surprisingly, although it has been noted that tRFs are much more abundant in tissues than in 

cultured cells (Torres et al. 2019), their expression profile across tissues and species has not 

yet been investigated. We therefore initially analyzed several available and own small RNA 

sequencing datasets to provide a first overview on tRF expression profiles. Subsequently, we 

tested if 5’ tRHs regulate genes by modulating the level of 5’ tRHs-Glu-CTC and 5’ tRH-Gly-GCC 
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in cultured cells by transfecting either synthetic RNA mimics or inhibiting antisense RNAs. By 

RNA sequencing, in silico target predictions and a novel k-mer mapping-based approach, we 

then dissected the targeting rules of the respective 5’ tRHs. Finally, applying the k-mer analysis 

on similar RNA sequencing datasets of other species, we examined whether the identified 

targeting patterns of individual tRFs are conserved across species. 

 

2.3. Results and Discussion 

2.3.1. 5’ tRHs are highly abundant in the hippocampus of primates 

To investigate the expression levels of tRFs across different tissues, we annotated available 

human small RNA sequencing datasets complemented by own small RNA sequencing data and 

found 5’ tRHs to be predominantly expressed in the hippocampus (figure 2.1A). Here, 30% of 

all mapped reads were classified as tRNA-fragments with 82% of these tRF-annotated 

sequences being 5’ tRHs (figure 2.1B). In comparison, the overall tRF level was only 13% in 

both the frontal cortex and the cerebellum (figure 2.1B and C). Amongst the predominant 

tRNA-derived sequences in the hippocampus were the 5’ tRNA-halves 5’ tRH-Glu-CTC (26%) 

and 5’ tRH-Gly-GCC (10%). Notably, these 5’ tRHs were also amongst the most abundant 

5’ tRHs in the analyzed small RNA sequencing libraries of other tissues (figure 2.1A). Both, 

5’ tRH-Glu-CTC and 5’ tRH-Gly-GCC have been previously shown to play major roles in various 

cellular functions. They were amongst the sperm small RNAs that are involved in the 

epigenetic inheritance of paternal diet-induced metabolic disorders and addictive-like 

behavior in mice (Chen et al. 2016; Sharma et al. 2016; Zhang et al. 2018b; Sarker et al. 2019). 

Additionally, they were found amongst a group of 5’ tRHs to be upregulated in cells upon 

infection by the Respiratory Syncytial Virus (Wang et al. 2013). 5’ tRH-Gly-GCC was 

furthermore found to be part of a specific subset of 5’ tRHs that is dynamically expressed 

during stem cell differentiation (Krishna et al. 2019), while 5’ tRH-Glu-CTC was found to be 

highly expressed in human monocytes, where it triggers the transcriptional suppression of the 

surface glycoprotein CD1 (Zhang et al. 2016). 
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Figure 2.1: (A) Reads per million (RPM) of small RNAs annotated as 5’ tRHs in small RNA sequencing datasets of 

human tissues. The mean value of multiple datasets is shown. (B-D) Small RNA annotation of mapped reads from 

small RNA libraries of the human hippocampus, frontal cortex and cerebellum. 

 

In order to investigate whether high 5’ tRH levels in the hippocampus are a common feature 

in mammals, we generated small RNA sequencing libraries of chimpanzee and macaque 

hippocampus samples, and additionally analyzed publicly available small RNA sequencing 

datasets from pig, rat and mouse hippocampus. Interestingly, we found even higher 

proportions of reads being annotated as tRFs in the hippocampal libraries of the two primates 

(42% in the chimpanzee / 51% in the macaque; figure 2.2) compared to the human 

hippocampus libraries (30%). Again, 5’ tRHs made up the majority of the tRF-annotated reads 

(82% / 75%, figure 2.2) and 5’ tRH-Gly-GCC (15% / 33%) and 5’ tRH-Glu-CTC (14% / 11%) were 

amongst the most abundantly expressed tRFs. In contrast, even though 5’ tRHs are also the 
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predominant tRF class in the analyzed sequencing libraries of the other mammals, only 10% 

of the pig and 3% of the rodent mapped reads were classified as tRFs (figure 2.2). This suggests 

that high levels of 5’ tRHs in the hippocampus are a primate-specific trait, which raises the 

question if a conserved subset of 5’ tRHs specifically fine-tunes hippocampal gene expression 

in primates. 

 

 

Figure 2.2: Phylogenetic tree and small RNA annotation of mapped reads from small RNA sequencing libraries of 

hippocampal samples from mouse, rat, pig, human, chimpanzee and macaque. 
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2.3.2. miRNA- and piRNA-like targeting rules scarcely identify targets of the 

5’ tRNA-halves Glu-CTC and Gly-GCC in HEK293T 

In order to identify genes that are regulated by these 5’ tRHs, we overexpressed 5’ tRH-Glu-

CTC and 5’ tRH-Gly-GCC in HEK293T cells by transfecting 50 nM synthetic 5’ tRH mimics. 

HEK293T cells were chosen as 5’ tRHs are barely expressed in this cell line: from the 9% of all 

mapped reads that were assigned as tRNA-fragments, only 1% are 5’ tRHs (S-Figure 2.1A). As 

validated by quantitative RT-PCR (qPCR), transfection of the RNA mimics successfully 

increased the number of 5’ tRH copies in comparison to a non-target-siRNA transfection 

control (S-Figure 2.2A). 

As a first test, we quantified the expression change of twenty abundantly expressed 

transcripts, which were predicted to represent targets of the respective tRFs according to 

miRNA (miRanda) or piRNA targeting rules, via qPCR. For piRNA-like target prediction, we 

developed a software named piRanha that by default applies targeting rules empirically 

verified by Zhang et al. (Zhang et al. 2018a). All ten tested potential targets of 5’ tRH-Gly-GCC 

were lower expressed in the overexpression cells compared to the control cells. In contrast, 

neither the five miRanda- nor the five piRanha-predicted 5’ tRH-Glu-CTC-target transcripts 

were differentially expressed upon overexpression of the 5’ tRH-Glu-CTC (figure 2.3A), 

suggesting that target rules might differ between different tRFs. 

To get a global overview of 5’ tRH-regulated genes, we then sequenced the transcriptome of 

HEK293T 5’ tRH-overexpression and control cells and performed differential expression 

analysis. Upon overexpression of the respective 5’ tRH, more genes were significantly 

downregulated than upregulated (adjusted p-value < 0.01). However, most of the potential 

5’ tRH targets previously quantified by qPCR were not significantly differentially expressed 

(figure 2.3B). 

When analyzing the cumulative distribution of all miRanda and piRanha predicted genes, only 

miRanda-targets of 5’ tRH-Gly-GCC were enriched for downregulated genes over the general 

distribution (figure 2.3C and D). We therefore conclude that for 5’ tRNA-halves, the targeting 

rules of piRNAs are not applicable, while the targeting rules of miRNAs cannot satisfyingly 

predict 5’ tRH targets neither. 

 



54 
 

 

Figure 2.3: (A) n-fold expression of potential 5’ tRH targets in 5’ tRH overexpression HEK293T cells compared to 

control cells as quantified by qPCR. The selected transcripts were predicted by miRanda (red) and piRanha 

(orange) to be targets of the 5' tRNA-halves Glu-CTC (left) or Gly-GCC (right). The housekeeping genes β-actin 

and RPS18 were used as normalizers. Note that either β-actin or RPS18 expression changes upon transfection of 

the 5' tRNA-half Glu-CTC. (B) Volcano plot of differential expression analysis for protein-coding genes of 5’ tRH 

overexpression and control HEK293T cells (blue, adjusted p-value < 0.01). The 10 previously tested putative 
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target genes are highlighted in red (miRanda prediction) and orange (piRanda prediction). For the 5’ tRH-Glu-CTC 

analysis (left), the housekeeping genes β-actin and RPS18 are additionally highlighted in pink, showing that β-

actin (ACTB) gets upregulated upon 5’ tRH-Glu-CTC overexpression, while the RPS18 expression is not affected. 

(C/D) Cumulative plots for log2-fold-change values of genes that were identified as potential targets of the 

5' tRHs Glu-CTC or Gly-GCC by miRanda (red) or piRanha (orange) and of all genes (black). Only in 5’ tRH-Gly-GCC 

overexpression HEK293T cells miRanda-predicted genes are significantly more repressed. 

 

2.3.3. Non-miRNA-like targeting rules for 5’ tRHs 

To unravel the targeting rules of 5’ tRHs, we developed a k-mer mapping approach, where 

k-mers of the 5’ tRH sequences with all possible lengths (k ≥ 5) and start positions within the 

tRH are mapped separately to the three major regions of each human transcript (5’ UTR, CDS 

and 3’ UTR). By calculating the fraction of “targeted” (k-mer alignment) or “not targeted” (no 

k-mer alignment) genes per k-mer that get significantly downregulated (adjusted p-value 

< 0.01) we identify the portion within the tRH that is most likely to be important for target 

recognition and thus silencing. Figure 2.4 visualizes the underlying principles of the analysis. 
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Figure 2.4: Graphical overview of identification of tRF targeting rules via a k-mer mapping approach. 

 

Our analysis revealed that downregulation of transcripts with k-mer alignment (“targeted”) is 

significantly enriched over the number of downregulated transcripts without k-mer alignment 

(“not targeted”) particularly when k-mers of 5-10 nt length with start positions in the middle 

of the 5’ tRH align to the 3’ UTR or the CDS of the target (figure 2.5). Thus, unlike miRNAs that 

bind to the 3’ UTR of their targets via a 7 nt long seed at the 5’ end, 5’ tRNA-halves such as 

5’ tRH-Glu-CTC and 5’ tRH-Gly-GCC downregulate transcripts mainly by binding with a 5-10 nt 

long stretch of their middle region to the 3’ UTR or the CDS of the target transcripts. 

The resulting target pattern additionally suggests that 5’ tRH-Gly-GCC, but not 5’ tRH-Glu-CTC, 

is able to downregulate targets by binding with its miRNA-seed like 5’end to the transcript. 
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This is in line with, the different target regulation behavior of 5’ tRH-Glu-CTC and 5’ tRH-Gly-

GCC as revealed by qPCR quantification of target transcripts predicted with miRanda. 

 

 

Figure 2.5: k-mer analysis to elucidate the targeting rules of 5’ tRH-mediated transcript regulation in HEK293T 

cells. The plots shows for each k-mer the percentage of transcripts with (blue) and without k-mer alignment (red) 

that are down/-upregulated. The fraction of genes targeted by the respective k-mer is displayed in black. 

 

As a previous study found that 5’ tRH-Glu-CTC interacts with PIWIL4 to transcriptionally silence 

the surface glycoprotein CD1 in human monocytes (Zhang et al. 2016), we wanted to check 

whether we find indications for transcriptional silencing by 5’ tRH-Glu-CTC and 5’ tRH Gly-GCC 

in our datasets. We therefore restricted our k-mer analysis to alignments that span target 

gene exon-junctions. If the corresponding 5’ tRHs suppresses their target genes at the 

transcriptional level, we would expect a decreasing fraction of transcripts that have an exon-

junction spanning alignment and that are downregulated. In contrast, the fraction of 

transcripts that have a non-exon-junction spanning alignment and that are downregulated 
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should not change. As we did not observe such an effect, we conclude that the studied 5’ tRHs 

silence their targets at the post-transcriptional level in HEK293T cells (S-Figure 2.3). 

Interestingly, mRNA quantification by qPCR and RNA sequencing revealed that the 

housekeeping gene ACTB gets upregulated upon 5’ tRH-Glu-CTC transfection (figure 2.3A and 

B). Unexpectedly, ACTB has several potential binding sites for 5’ tRH-Glu-CTC. Hence, we were 

curious to check whether upregulated genes might be enriched for 5’ tRHs target sites as well, 

which would indicate that 5’ tRH targeting might also have a protective effect. Indeed, our 

analysis revealed that transcripts that have target sites in their 3’ UTR for the 5’ and 3’ ends 

of 5’ tRH-Glu-CTC are more likely to be upregulated than those that do not have a target site, 

while a corresponding upregulating effect was not detectable for 5’ tRH-Gly-GCC (figure 2.5). 

Concluding from the above outlined target pattern analyses we assume that tRNA-fragments, 

even from the same tRF-series, may recognize their targets via different parts of the tRF 

instead of a dominating 5’ seed match (figure 2.5). This demonstrates that a Argonaut-

dependent regulation mechanism as proposed for tRFs previously (Haussecker et al. 2010; 

Kuscu et al. 2018) cannot fully explain the observed changes in gene expression. However, our 

results are in line with other studies identifying miRNA-untypical targeting (Deng et al. 2015; 

Luo et al. 2018). The mechanism seems to act at the post-transcriptional level, as transcripts 

with exon-junction spanning k-mer alignments were similarly often downregulated compared 

to transcripts with intra-exonic k-mer alignment (S-Figure 2.3). Our analysis additionally 

suggests that some tRFs (e.g. 5’ tRH-Glu-CTC) trigger not only the downregulation of target 

genes, but may also stabilize target transcripts (figure 2.5). This is a rather unexpected finding, 

since a stabilizing effect of small RNAs is rarely seen in eukaryotes, but rather a trait of 

prokaryotic small RNA pathways (Fröhlich and Vogel 2009). However, a recent study showed 

that sequence-specific binding of a 3’ tRF to the mRNAs of ribosomal proteins enhances the 

translation of the target transcript (Kim et al. 2017). It was suggested that structural changes 

induced by this interaction allow for higher transcription rates. Similar alterations in the 

secondary structure could also lead to a stabilization of the transcript. 

 

2.3.4. Identification of genuine 5’ tRH targets by antisense-inhibition of 5’ tRH-

Glu-CTC suggests a role of 5’ tRHs in neurogenesis 

Noteworthiliy, drawing conclusions regarding tRF targets only from overexpression 

experiments has several shortcomings. First, our synthetic RNA mimic does not carry post-

transcriptional modifications as endogenous tRFs do. Thus, we might observe an artificial 

regulation behavior that does not reflect the physiological situation. Second, genes that were 

found to be differentially expressed upon tRF overexpression in cells that typically express 

these tRFs at very low levels must not necessarily be genuine targets of the modulated tRF 

under natural conditions. To circumvent these distorting effects and gain support for our 

conclusion, we additionally performed an inverse experiment where we inhibited the 

regulation capacity of 5’ tRH-Glu-CTC by transfecting an antisense RNA. 
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We chose to perform the experiment with HepG2 cells, in order to exclude cell line specific 

regulation effects. HepG2 cells have a similar overall tRF level compared to HEK293T cells (6% 

of the total reads compared to 9% in HEK293T cells; S-Figure 2.1B), but express a higher 

proportion of 5’ tRHs according to small RNA sequencing data (17% of the reads assigned to 

tRNAs compared to 1% in HEK293T cells; S-Figure 2.1B). Like in HEK293T cells, 5’ tRH-Glu-CTC 

and 5’ tRH-Gly-GCC are the most abundant 5’ tRHs (6% and 3% of the reads assigned to tRNAs) 

in the analyzed library. As quantified by qPCR, transfection of the antisense-RNA decreased 

the number of 5’ tRH-Glu-CTC copies in HepG2 cells by about 70% (S-Figure 2.2B). Even though 

the level of 5’ tRH-Glu-CTC was decreased, only a small amount of genes was significantly 

differentially expressed compared to the control state (818 downregulated and 717 

upregulated genes, adjusted p-value < 0.01; figure 2.6A). While the majority of significantly 

differentially expressed genes of the antisense-inhibited HepG2 was likewise regulated as in 

the overexpression HEK293T cells (figure 2.6B grey areas), only few genes were inversely 

regulated (figure 2.6B rosy and lutescent area) and we assume these genes to represent the 

genuine targets of 5’ tRH-Glu-CTC. In the following we refer to the 34 genes that might get 

downregulated by 5’ tRH-Glu-CTC as “perish targets” (figure 2.6B rosy area) and name the 

subset of 50 genes that get upregulated possibly due to stabilizing effects exerted by 5’ tRH-

Glu-CTC “shelter targets” (figure 2.6B lutescent area). 

In order to characterize 5’ tRH-targeting further, we subsetted the three major transcript 

regions (5’ UTR, CDS, 3’ UTR) of the potential perish and shelter targets and computed the 

thermodynamics for RNA-duplex formation with the 5’ tRH-Glu-CTC. Considering the free 

energy needed to open intrinsic secondary structures, the free energy of the interaction and 

the so-called “dangling end” energies that non-interacting sequence stretches are causing, we 

identified the energetic optimal region of interaction. For the CDS and the 3’ UTR of both the 

potential perish targets and the potential shelter targets, these optimal binding sites were 

enriched for k-mer alignments with a length of around 20 bp (figure 2.6C and D) and 

alignments preferentially started around the sixth position from the 5’ end of the tRH. Thus, 

most thermodynamically favored interactions involved big stretches of the middle part of 

5’ tRH-Glu-CTC. This is in line with the target pattern identified by the k-mer mapping 

approach in case of the potential perish targets, but not with the target pattern for the 

potential shelter targets. As stabilizing effects probably involve other protein interactors than 

silencing effects, this objection may be a result of the stabilizing interactor exposing only the 

ends of the tRH for target recognition. 

 



60 
 

 

Figure 2.6: (A) Volcano plot of differential expression analysis for protein-coding genes of 5’ tRH antisense-

inhibition and control HepG2 cells (blue, adjusted p-value < 0.01). (B) Venn diagram of significantly differentially 

expressed genes. Genes that are likewise regulated in HEK as in HepG2 cells are highlighted in grey. Genes that 

are inversely regulated in HEK overexpression and HepG2 inhibition cells are highlighted rosy (“potential 

targets”) and lutescent (“potential anti-targets”). (C/D) Analysis of thermodynamically favored alignments for 

the major transcript regions of “potential targets” or “potential anti-targets” with 5’ tRH-Glu-CTC. 

 

As we found 5’ tRHs like 5’ tRH-Glu-CTC to be extremely abundant in small RNA libraries of 

primate hippocampal tissues and previous studies suggested a role in targeting genes involved 

in neural processes (Sarker et al. 2019; Krishna et al. 2019), we were interested whether the 

identified potential targets of 5’ tRH-Glu-CTC are implicated in neuronal processes. Indeed, 

we found 20% of the potential shelter targets (transcripts might be stabilized), but only 5% of 

the potential perish targets (transcripts might be degraded) to have an assigned neuronal 

function. In comparison only 7% and 8% of all expressed genes in HEK293T and HepG2 cells 

were assigned the gene ontology term “neurogenesis” (GO:0022008). Hence, there is a 

statistic correlation between genes that are potential targets of 5’ tRH-Glu-CTC and 

neurogenesis (α<0.001 for shelter targets and α<0.01 for perish targets; chi-squared test). 

While genes like MDK, VEGFA and EVL play a role in the regulation of axon outgrowth 
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(Kurosawa et al. 2001; He et al. 2015; Drees and Gertler 2008), genes like NOTCH1 and NP1L1 

are involved in neuronal differentiation (Patten et al. 2006; Qiao et al. 2018). Interestingly, 

decapitation studies with the planarian Dugesia japonica showed that 5’ tRH-Gly-GCC is not 

only upregulated in regenerating animals, but is furthermore required for proper head 

regeneration (Z Cao, D Rosenkranz, S Wu, H Liu, Q Pang, B Liu, B Zhao; manuscript in 

preparation). Taking into consideration that planarians share many CNS genes with humans 

(Mineta et al. 2003), and that the hippocampus is one of the few brain regions known to have 

high rates of adult neurogenesis (Eriksson et al. 1998; Boldrini et al. 2018), it is tempting to 

speculate that 5’ tRHs may have critical functions in human neurogenesis as well. 

 

2.3.5. Targeting pattern of 5’ tRHs/tRFs are unique for each fragment, but seem to 

be conserved across species 

In order to gain further support for our assumptions, we checked whether the identified 5’ tRH 

target patterns are conserved among different species. We therefore analyzed published RNA 

sequencing data from Drosophila S2 cells that were transfected with a 20 nt long 5’ tRF-Glu-

CTC, which exhibits high sequence homology with the human 5’ tRNA-half (S-Figure 2.4). As is 

the case for the human 5’ tRNA-half, the fly 5’ tRNA-fragment of the tRNA-Glu-CTC showed 

the strongest downregulating effect on targets when its ~7 nt long middle part binds to the 

3’ UTR or CDS of the target transcript (figure 2.7). However, unlike the human 5’ tRNA-half, 

the both ends of the fly 5’ tRF did not seem to contribute to target upregulation (data not 

shown), which is possibly due to its shorter sequence which lacks the corresponding 

nucleotides. Given the similar target regulation pattern, we suggest that 5’ tRNA-fragments 

can regulate their targets via conserved mechanisms across different species, while the 

sequence stretch being most important for target regulation can vary for fragments from 

different parental tRNAs. 

To confirm this assumption, we analyzed additional published RNA sequencing datasets from 

fly S2 cells that were transfected with the 20 nt long 5’ tRNA-fragments Asp-GTC and Lys-TTT 

(figure 2.7). These analyses support our hypothesis, that 5’ tRNA-fragments from different 

parental tRNAs act via different regions to regulate their targets on a sequence-

complementary basis. What they have in common, is that 3’ UTR and CDS targeting leads to 

the biggest regulatory effect. 
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Figure 2.7: Target pattern analysis of published RNA sequencing data of fly S2 cells, where the 20 nt long 5’ tRF 

Glu-CTC, 5’ tRFs Asp-GTC or Lys-TTT was overexpressed by tRF mimic transfection (Luo et al. 2018). Plotted is the 

percentage of genes with (blue) or without (red) k-mer alignment that get downregulated. 

 

2.3.6. Concluding remarks 

Despite the rise of NGS techniques, exploring the mechanisms by which small RNAs target 

genes remains challenging. Even for miRNAs, where gene regulation mechanisms are well 

studied, correct target prediction is difficult since the in vivo accessibility of potential target 

sites is difficult to assess. RNA binding proteins may not only occupy the putative binding site, 

but may also change the secondary structure of the target when binding elsewhere in the 

transcript. Predicting and identifying targets of rather unexplored small RNAs like tRFs is the 

more complicated, as it is unknown if and to which extend mismatches, wobble base pairs and 

bulges are tolerated. Aggravatingly is that target interactions can be surprisingly variable 

(Backofen and Hess 2010). 

Using a k-mer mapping approach, we sought to identify the target patterns of 5’ tRHs. Our 

analysis suggested that 5’ tRHs silence genes, which have complementary binding sites for 

long stretches of the tRNA half that not necessarily need to include the miRNA-typical 

5’ region. This finding strongly suggests that Argonaut proteins are not necessarily 

indispensable as effector proteins for tRF-dependent gene regulation as it had been suggested 

by other studies (Haussecker et al. 2010; Kuscu et al. 2018). Whether 5’ tRHs independently 

regulate targets, or do so in association with other effector proteins than Argonauts remains 

to be investigated. As it was shown that specific subsets of tRFs bind to certain proteins (Saikia 
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et al. 2014; Goodarzi et al. 2015; Krishna et al. 2019; Ivanov et al. 2011), it is likely that 5’ tRHs 

might interact with different proteins to regulate distinct targets. The tRNA 3’ processing 

endoribonuclease RNase Z might be such an effector protein, as it was shown to cleave 

transcripts, which form RNA hybrids with 5’ tRHs that have similar secondary structures like 

pre-tRNAs (Elbarbary et al. 2009). Identifying more proteins involved in tRF-mediated gene 

regulation and elucidating the underlying mechanism will greatly enhance our understanding 

of gene regulation. 

Analyzing the expression profile of tRFs across tissues and species, we found 5’ tRHs to be 

particularly high expressed in the hippocampus of primates, while their expression was rather 

low in the hippocampus of the pig, the rat and the mouse. In the hippocampus of all three 

tested primate species (human, chimpanzee and macaque), 5’ tRH-Glu-CTC and 5’ tRH-Gly-

GCC were amongst the most abundant 5’ tRHs suggesting that they have a conserved role in 

the primate hippocampus. As we find transcripts that are presumably stabilized by 5’ tRH-Glu-

CTC targeting to be substantially enriched for a function in neuronal processes such as axon 

outgrowth and neuronal differentiation, while transcripts that are presumably degraded upon 

5’ tRH-Glu-CTC targeting are rather depleted of a function in neurogenesis, we hypothesize 

that 5’ tRHs play a role in fine-tuning primate neurogenesis. Alternatively, since 

retrotransposons are highly active in hippocampal neurons (Upton et al. 2015) and as 5’ tRH-

Gly-GCC was shown to downregulate transcripts that are driven by the LTR-retrotransposon 

MERVL in the developing mouse embryo (Sharma et al. 2016), it is also possible that 

hippocampal 5’ tRH expression serves the purpose of regulating transposition-related events. 

 

2.4. Materials and Methods 

2.4.1. Small RNA sequencing, data processing and annotation 

Small RNA sequencing data of various human tissues was downloaded from the SRA Database 

(for accession numbers see S-Table 2.1) and quality checked by FastQC (version 0.11.2). 

Adapter and quality trimming was performed using BBDuk (version 36.77; ktrim=r 

overwrite=true k=20 mink=9 ziplevel=2  hdist=1  qtrim=rl trimq=10 minlen=15 maxlen=34; for 

Encode data additionally: forcetrimleft=6) before the reads were FastQC checked again and 

mapped to the human genome (version GCA_000001405.27_GRCh38.p12) using Bowtie 2 

(version 2.3.0). Based on these map-files small RNA annotation was performed with unitas 

(version 1.7.3; Gebert et al. 2017). Using the custom Perl script annotationtable2RPM.pl the 

RPM values were calculated for the respective tRF species. 

Total RNA from adult normal male human hippocampal tissue was obtained from AMS 

Biotechnology (Cat. Nr: R1234052-10). A small RNA library was prepared as described in 

Gebert et al. 2015. In brief, small RNAs (15-40 nt) were extracted from a denaturing 

polyacrylamide gel. Subsequently, a 3’ adapter (5’-rAppCTGTAGGCACCATCAATddC-3’) and a 

5’ adapter (5’- GACUGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGAAA-3’) were 

ligated to the small RNAs. Following cDNA synthesis with the RT-Primer 5’-
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ATTGATGGTGCCTACAG-3’, the cDNA transcripts were PCR amplified using the forward primer 

5’-ACATGGACTGAAGGAGTAGA-3’ and the index-containing reverse primer 5’-

ggctcATTGATGGTGCCTACAG-3’. The generated library was high throughput sequenced in 

parallel with six other indexed samples by GENterprise (Mainz) on an Illumina HiSeq 2000 

system. After converting the fastq file to fasta formate using the NGS toolbox Perl script 

fastq2fasta, the 5’ adapter sequence was clipped off the 120 nt long reads using the NGS 

toolbox Perl script clip (-m 5.AGTAGAAA). As reads may contain the reverse complementary 

sequence, the reverse complementary variant of the 5’ adapter sequences were also clipped 

off (-m TTTCTACT.3) and the remaining sequences were transcribed to the original sequence 

direction using the NGS toolbox Perl script rev-comp. Both outputs were then concatenated 

using the NGS toolbox Perl script concatenate. To extract only the reads with the right index 

and to remove the 3’ adapter sequence the NGS toolbox Perl script clip (-m CTGTA.GAGCC.3) 

was applied. Subsequent analysis was performed as described below. 

Total RNA from tissue samples of human adult brain regions (hippocampus, cortex, 

cerebellum) was obtained from the BioChain Institute (Newark, CA, USA). Total RNA of 

hippocampal tissue samples of a female and a male chimpanzee brain was obtained from the 

National Chimpanzee Brain Resource (www.chimpanzeebrain.org, USA). A macaque brain 

provided by the Primate Brain Bank (The Netherlands Institute for Neuroscience, Amsterdam, 

Netherlands) was dissected and hippocampal tissue was homogenized in TRIzol™ (Thermo 

Fisher). Total RNA was isolated according to the manufacturers protocol. The total RNA was 

sent to LC Sciences (Houston, TX, USA) for small RNA library preparation and small RNA 

sequencing. The 3’ adapter sequences were clipped off using the NGS toolbox (version 2.1; 

http://www.smallrnagroup.uni-mainz.de/) Perl script clip (-m TGGAATTC.3). 

Small RNA sequencing data of hippocampal tissue from three male adult Wistar rats (Study: 

PRJEB24026, Run accessions: ERR2226477, ERR2226482 and ERR2226487) was downloaded 

from the European Nucleotide Archive. Subsequent analysis was performed as described 

below. 

Small RNA sequencing data of hippocampal tissue from the pig (SRR3105507 and SRR3105508) 

and the mouse (SRR5144167, SRR5144168 and SRR5144169) was downloaded via the SRA 

toolkit tool fastq-dump (version 2.8.2). The 3’ adapter sequences were clipped off using the 

NGS toolbox (version 2.1) Perl script clip (-m TGGAATTC.3). Subsequent analysis was 

performed as described below. 

Total RNA of HEK293T cells was extracted with TRI Reagent™ (Thermo Fisher) 24 h after 

transfection with 10 nM Silencer™ Select Negative Control No. 1 siRNA (4390843; Thermo Fisher) 

using Lipofectamine™ RNAiMAX (Thermo Fisher). The RNA was sent to BGI (Hongkong) for small 

RNA library preparation and 50 bp single-end sequencing. The reads were delivered adapter-

trimmed. Subsequent analysis was performed as described below. 

Small RNA sequencing data of HepG2 cells (SRR6823987) was downloaded via the SRA toolkit 

tool fastq-dump (version 2.8.2). 3’ adapter sequences were clipped off using the NGS toolbox 
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(version 2.1) Perl script clip (-m AGATCGGA.3). Subsequent analysis was performed as 

described below. 

Adapter-trimmed data was first quality checked by FastQC (version 0.11.2), then converted to 

the fasta-format, length filtered (15-40 nt), collapsed to non-identical reads and depleted for 

low complexity reads using the NGS toolbox Perl scripts length-filter, collapse and duster 

(version 2.1; http://www.smallrnagroup.uni-mainz.de/). The remaining sequences were 

mapped to the respective genome (versions GCA_000001405.27_GRCh38.p12, 

GCA_000001515.5_Pan_tro_3.0, GCA_000772875.3_Mmul_8.0.1, 

GCA_000003025.6_Sscrofa11.1, GCA_000001895.4_Rnor_6.0 and 

GCA_000001635.8_GRCm38.p6) using the Perl script sRNAmapper (version 1.0.5; -a best) that 

employs SeqMap (Jiang and Wong 2008) as mapping tool. The map-files were used for small 

RNA annotation with unitas (version 1.6.1; Gebert et al. 2017). 

 

2.4.2. Transfection of tRF-mimics and tRF antisense 2'-OMe-RNAs 

HEK293T (2.5E4 cells/well) and HepG2 (1E5 cells/well) cells were seeded in 24-well plates and 

cultured in 1x GlutaMAX™-I DMEM supplemented with 10% FBS (Thermo Fisher). The next 

day the cells were transfected with 50 nM tRF-mimics or tRF antisense 2' OMe-RNAs (biomers) 

using Lipofectamine™ RNAiMAX (Thermo Fisher) according to the manufacturer’s protocol. 

Sequences of the transfected RNAs are available in S-Table 2.2. As control, cells were 

transfected with Silencer™ Select Negative Control No. 1 siRNA (Thermo Fisher). 48 hours after 

transfection, the RNA was isolated according to the TRI Reagent™ protocol (Thermo Fisher). 

 

2.4.3. RT-PCR quantification of tRFs 

In order to measure the tRF level after transfection, the 15-40 nt small RNA fraction was eluted 

from a denaturing polyacrylamide gel (see Gebert et al. 2015) and polyadenylated using the 

A-Plus Poly(A) Polymerase Tailing Kit (Cellscript). After ethanol precipitation the poly-A tailed 

RNA was reversely transcribed with the SuperScript™ IV reverse transcriptase (Thermo Fisher) 

using the RT-primer 5’-CGAATTCTAGAGCTCGAGGCAGGCGACATGT25VN-3’. For qPCR 1 µL of 

cDNA was mixed 0.5 µL 10 µM sequence-specific forward primer, 0.5 µL 10 µM RT-primer-

specific reverse primer, 3 µL water and 5 µL 2x QuantiFast® SYBR® Green PCR Master Mix 

(Qiagen). Technical duplicates of this reaction mix were then analyzed on a Corbett Rotor-

Gene 6000 real-time PCR cycler. Finally, the copy numbers of the respective tRFs were 

quantified by standard curves of the individual primer pair amplicons. As normalizers the 

miRNAs miR25, miR532 and miR99a were used. The boxplots were created with R using the R 

packages ggplot2 and Cairo (version 3.4.3). qPCR primer sequences are available in S-Table 

2.3. 
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2.4.4. RT-PCR quantification of miRanda/piRanha predicted targets 

Potential target transcripts of the tRFs were predicted using the algorithm miRanda (version 

3.3a) that bases on miRNA targeting rules (Enright et al. 2003) and a self-developed software 

named piRanha (version 0.0.0) that bases on piRNA targeting rules (Zhang et al. 2018a). The 

reference transcriptome was downloaded from the Ensembl database (release 94). The 

custom Perl scripts MRscript.pl and PRscript.pl were applied to extract and sort the transcript 

IDs from the output files by the respective miRanda and piRanha score, which is the sum of 

binding energies of all alignments with the tRF seed. It is assumed that the lower the miRanda 

or piRanha score (i.e. free energy of the alignments) of a transcript, the more likely it is a target 

of the respective tRF. For further analysis, only transcripts that have a TPM value above 0.2 in 

HEK293 cells were considered. Therefore the RNA sequencing datasets SRR629569 and 

SRR629570 were downloaded with NCBI's fastq-dump (-I --split-files --gzip) and uploaded to 

the Galaxy server (usegalaxy.org), where they were mapped to the human genome (Galaxy 

hg38) using RNA STAR (Galaxy Tool Version 2.6.0b-1). Transcript wise counting was performed 

with featureCounts (Galaxy Tool Version 1.6.0.6) on basis of an Ensemble GTF-file 

(Homo_sapiens.GRCh38.90), which had been converted to UCSC coordinates using the File 

Chameleon tool of Ensembl. The generated count tables and gene length files were used to 

calculate the mean TPM values and select the expressed transcripts with R using the R 

packages biomaRt and stats (version 3.4.3). For each tRF and algorithm, the five transcripts 

with the lowest miRanda or piRanha scores were chosen for RT-PCR quantification. Primers 

with the length of ~20 nt were designed to be either exon-junction spanning or to include 

intronic regions that are bigger than 700 bp. Furthermore, only primers that exclusively 

amplify the same amplicon from the different splicing isoforms that are potential targets were 

taken into account. For each primer pair a test PCR with cDNA from untransfected HEK293T 

cells was performed to check the amplicon quality and length on an agarose gel. In order to 

compare the relative copy number of the selected potential tRF targets in tRF-mimic and 

control transfected cells, the respective total RNA was extracted with TRI Reagent™ (Thermo 

Fisher), reversely transcribed and quantified as described for the poly-A tailed RNA above. The 

housekeeping genes ACTB and RPS18 were used as normalizers to calculate the relative 

expression by means of the delta-delta-CT method. qPCR primer sequences are available in S-

Table 2.3. The boxplots were created with R using the R packages ggplot2 and Cairo (version 

3.4.3). 

 

2.4.5. RNA sequencing, data processing and differential expression analysis  

Total RNA isolated from tRF-mimic, tRF-antisense and control transfected cells was send for 

library construction and paired-end sequencing to BGI (Hong Kong). On average 35 million 

paired-end reads were obtained. Using the online platform Galaxy (usegalaxy.org) the reads 

were first mapped to the human genome (Galaxy hg38) by RNA STAR (Galaxy Tool Version 

2.6.0b-1). Afterwards, gene wise counting was performed with featureCounts (Galaxy Tool 

Version 1.6.0.6) on basis of the above mentioned GTF-file. Based on the generated count 

tables, DESeq2 (Galaxy Tool Version 2.11.40.2) was used to identify differentially expressed 
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genes (adjusted p-value < 0.01). Analysis of the Drosophila datasets (Study: PRJNA378597, Run 

accessions: SRR6930617, SRR6930619, SRR6930621; Luo et al. 2018) was likewise conducted 

using the organism-specific files. Volcano plots based on the DESeq2 result file and cumulative 

distribution plots based on the DESeq2 result file with thresholds of -80 for miRanda scores 

and -40 for piRanha scores were created with R using the R packages ggplot2, ggrepel and 

Cairo (version 3.4.3). 

 

2.4.6. Identification of targeting patterns using a k-mer mapping approach 

tRF sequences with length n were split into all possible k-mers with k=5..n. All k-mers were 

mapped individually to the 5’ UTR, the CDS and the 3’ UTR of the transcripts of the 

corresponding organism in reverse complementarity to identify putative target sites. Only the 

longest transcript per annotated gene was taken into account. The transcriptomes and 

respective genome annotation files were downloaded from Ensembl database (release 94). 

Splitting the transcripts into 5’ UTR, CDS and 3’ UTR was performed using the custom Perl 

scripts select+split_dmel.pl and select+split_hsap.pl. The following numbers of total 

mismatches (mm, including insertions/deletions) within a k-mer alignment were allowed: For 

k≥6 1 mm, for k≥12 2 mm, for k≥18 3 mm, for k≥22 4 mm, for k≥26 5 mm. The numbers of 

allowed insertions/deletions (indel) within a k-mer alignment were: For k≥12 1 indel, for k≥18 

2 indels, for k≥22 3 indels. Mismatches were not allowed in the first two or last two position 

of the alignment. Nested k-mer alignments, i.e. alignments that completely overlapped with 

larger k-mer alignments, were ignored. k-mer mapping and filtering was performed using the 

custom Perl script map_kmers.pl. 

Gene expression values (fpkm) were calculated based on the featureCounts count tables and 

genes with an average expression ratio below 1 fpkm were depleted from the DESeq2 result 

file for further analysis using the R script DESeq2-Analysis-for-get_targets.R. The custom Perl 

script get_targets_for_DESeq2.pl was then used to count for each tRF and its k-mers defined 

by start position and length the number of significantly up-/downregulated genes (adjusted 

p-value < 0.01) that have a corresponding k-mer alignment, and the number of significantly 

up-/downregulated genes that do not have a corresponding k-mer alignment. The R script 

get_targets_visualization.R was used to visualize for each transcript region the fraction of 

targeted as well as not targeted genes that are up-/downregulated. For the individual plots, 

the script calculates the average values of a 5 nt sliding window for the start position with 

sliding window increment of 1 nt. 

To check whether the transfected tRFs act on a transcriptional or post-transcriptional level, 

the adapted Perl script select+split4exonjunction_hsap_EJ.pl was used to first split the 

transcripts into 5’ UTR, CDS and 3’ UTR and then mask all nucleotides, but eight nucleotides 

at the ultimate exon end (EE), the ultimate exon start (ES) or symmetrically situated around 

the exon-junction (EJ). Subsequently, 5-mers of the respective tRF sequence was mapped to 

the masked sequence files using the adapted Perl script map_kmers_EJ.pl. Further analysis 

and visualization was performed as described above. 
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2.4.7. Analysis of potential targets regarding thermodynamically favored 

alignments with 5’ tRH-Glu-CTC and GO term annotation 

Based on the DESeq2 result tables, a Venn diagram of significantly differentially expressed 

genes (adjusted p-value<0.01) was generated using the R packages VennDiagram and polyclip 

(version 3.4.3). Genes that were inversely regulated in the HEK overexpression and the HepG2 

inhibition cells were assigned to the groups “potential perish targets” (HEK: log2FC<0; HepG2: 

log2FC>0) and “potential shelter targets” (HEK: log2FC>0; HepG2: log2FC<0). 

Input files for the program RNAup were generated using the custom Perl script 

RNAup_input.pl, which prints for each potential target gene the sequence of each transcript 

region (5’ UTR, CDS, 3’ UTR) together with the tRF sequence as fasta-format. RNAup (version 

2.4.13) from the ViennaRNA Package (Lorenz et al. 2011) was executed for each input file with 

the parameters -b -d2 --noLP -c 'S'. Using the custom Perl script merge_RNAupOutput.pl the 

RNAup output information was merged per transcript region. Using the R script 

visualize_RNAup.R the respective merged RNAup output files were visualized as a histogram 

displaying the alignment length, a histogram displaying the alignment start within the tRF and 

a bar plot displaying the alignment count per position within the tRF. 

The list of human protein-coding genes with the gene ontology term “neurogenesis” 

(GO:0022008) was downloaded from AmiGO 2 (http://amigo.geneontology.org/amigo). 

Corresponding Ensembl gene identifier for the UniProt identifiers were retrieved from UniProt 

(https://www.uniprot.org/uploadlists/). To evaluate a potential statistical correlation 

between the perish or shelter targets of 5’ tRH-Glu-CTC and the GO term “neurogenesis” the 

chi-squared test was applied. 

 

2.4.8. Code availability and data deposition 

All above mentioned custom Perl and R scripts are freely available at GitHub 

(github.com/jjehn/tRH-targeting). Sequencing datasets are accessible at NCBI’s sequence 

read archive (SRA) under the accession numbers SRR10091207 (1st sRNAseq human 

hippocampus), SRR10091206 (2nd sRNAseq human hippocampus), SRR10091205 (sRNAseq 

human cortex), SRR10091204 (sRNAseq human cerebellum), SRR10092006 (sRNAseq female 

chimpanzee hippocampus), SRR10092005 (sRNAseq male chimpanzee hippocampus), 

SRR10092004 (sRNAseq macaque hippocampus), SRR10082984 (sRNAseq HEK293T cells), and 

SRR10085693 to SRR10085704 (RNAseq of the HEK293T and HepG2 experiments). 
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human hippocampus. RNK dissected the macaque brain and homogenized the hippocampal 

tissue sample. IF isolated the total RNA from the macaque sample and coordinated the 

procurement and sequencing of all primate brain samples. JJ analyzed the small RNA 

sequencing datasets of the cell lines, the primate brain samples and the pig, rat and mouse 
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the RNA sequencing data. JJ and DR wrote the manuscript. 
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2.8. Supplement 

 

S-Figure 2.1: Small RNA annotation of mapped reads from small RNA libraries of (A) HEK293T cells and (B) HepG2 

cells. 

 

 

S-Figure 2.2: (A) qPCR quantification of the 5' tRNA-halves Glu-CTC (left) and Gly-GCC (right) in HEK293T cells that 

were transfected with the synthetic 5’ tRH-mimics (green) or a control non-target siRNA (blue). The three miRNAs 

miR25, miR532 and miR99a were used as normalizers. The given n‑fold change is the ratio between the relative 

5’ tRH expression in the overexpression and the control cells. (B) qPCR quantification of the 5' tRNA-half Glu-CTC 

in HepG2 cells that were transfected with an antisense RNA targeting this 5’ tRH (green) or a control non-target 

siRNA (blue). The three miRNAs miR25, miR532 and miR99a were used as normalizers. The given n fold change 

is the ratio between the relative 5’ tRH-Glu-CTC expression in the antisense transfected and the control cells. 
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S-Figure 2.3: Analysis of 5-mer mapping spanning (EJ) or being adjacent to (EE and ES) exon junctions. Displayed 

is the percentage of transcripts with (blue) or without (red) 5-mer alignment that are downregulated in HEK293T 

cells upon 5’ tRH mimic transfection. 

 

 

S-Figure 2.4: Sequence alignment between human and fly 5’ tRF Glu-CTC. 

 

S-Table 2.1: SRA Run Accession numbers and respective tissue of analyzed small RNA sequencing datasets. 

Tissue SRA Run Accession# 

brain (PFC) SRR1635903 

brain (cerebellum) SRR1635904 

brain (cerebellum) SRR553573 

fibroblast SRR4235732 

fibroblast SRR4235731 

heart SRR4421857 

heart SRR4422132 

heart SRR553574 

heart SRR4422133 

kidney SRR1635906 

kidney SRR553575 

liver SRR1273998 

liver SRR1273999 
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Tissue SRA Run Accession# 

liver SRR1274001 

liver SRR4422422 

liver SRR4422421 

lung SRR1240787 

lung SRR1240796 

lung SRR1240797 

muscle SRR1820680 

muscle SRR1820682 

muscle SRR1820684 

muscle SRR1820686 

muscle SRR1820688 

muscle SRR1820690 

ovary SRR4422259 

ovary SRR4422260 

pancreas SRR4421754 

pancreas SRR4422182 

pancreas SRR4422183 

pancreas SRR4421755 

prostate SRR4421462 

prostate SRR4421463 

prostate SRR4421707 

prostate SRR4421708 

skin SRR4421488 

skin SRR4421489 

skin SRR4422314 

skin SRR4422315 

testis SRR4422669 

testis SRR4422670 

testis SRR553576 

testis SRR4422476 

testis SRR4422477 

thyroid SRR4421964 

thyroid SRR4421965 

uterus SRR4421536 

uterus SRR4421537 

uterus SRR4421943 

uterus SRR4421944 
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S-Table 2.2: Sequences of transfected RNAs. 

RNA name RNA type Sequence from 5’ to 3’ 

5’ tRH-Glu-CTC RNA UCCCUGGUGGUCUAGUGGUUAGGAUUCGGCGCU 

5’ tRH-Gly-GCC RNA GCAUUGGUGGUUCAGUGGUAGAAUUCUCGCCU 

anti-5' tRH-Glu-CTC 2’-OMe-RNA AGCGCCGAAUCCUAACCACUAGACCACCAGGGA 

 

 

S-Table 2.3: Sequences of qPCR primers. 

Primer name Sequence from 5’ to 3’ cDNA type 

5’ tRH-Glu-CTC-fwd TCCCTGGTGGTCTAGTGGTTAG 

Polyadenylated small 
RNAs 

5’ tRH-Gly-GCC-fwd GCATTGGTGGTTCAGTGGTAG 

miR25-fwd CATTGCACTTGTCTCGGTCTG 

miR-532-fwd CATGCCTTGAGTGTAGGACCGT 

miR99a-fwd AACCCGTAGATCCGATCTTGT 

PCR-against-RT-PolyT-rev CGAATTCTAGAGCTCGAGGCAGG 

KIAA1109_fwd ATCATTTTTCGGTGGTGGAA 

Polyadenylated transcripts 

KIAA1109_rev CAACTCTTGAAGGCGTCCAT 

VPS13D_fwd CTTACAGGGCAGCATTGGGA 

VPS13D_rev CTGCCTGGAAACGCTGAGTA 

SYNE1_fwd TTTGGAGGCCTGGATAGTGG 

SYNE1_rev AGATCAGAGACCAATGGCGG 

FAT1_fwd CGAGGCATTTGATCCAGATT 

FAT1_rev TCGGTCTAGCTTCCTTGACG 

JAG1_fwd CGATGAATGTGCCAGCAACC 

JAG1_rev CCTTCAGGTGTGTCGTTGGA 

RIF1_fwd TTCTGGAATGCCACTTTTGC 

RIF1_rev CCACTGGATTCCTCCATCAT 

HDAC4_fwd GCAGCACATGGTCTTACTGG 

HDAC4_rev CTGGAACTGCTGCTTGTGTT 

IGSF8_fwd GAAGGTGGCATCCAGAACAT 

IGSF8_rev GGTACACTGTGCCTCCTGCT 

HEG1_fwd AGGAGCGGCTCTTCAAGTAG 

HEG1_rev TGGATGGCAGGTGAAGACTT 

RUNX2_fwd CTGTGGTTACTGTCATGGCG 

RUNX2_rev AGGTAGCTACTTGGGGAGGA 

OBSCN_fwd AGGGCCGAAAATACATCCTG 

OBSCN_rev GACCACATCATACTTCTGGC 

HSPG2_fwd ACTTCATCTCCTTCGGCCTC 

HSPG2_rev TTCCTCGTTCAGATCCAGGC 

KLC1_fwd TGTTCACAAACAGAGGGTGG 

KLC1_rev GCTGCTGTCGTTTTCCACAA 

LAMA5_fwd CAGTACTGTGACATCTGCAC 

LAMA5_rev GGCAAACTTGATGAGGACGT 
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Primer name Sequence from 5’ to 3’ cDNA type 

PLEC_fwd GAGAAGGTCTTGGCCCTACC 

Polyadenylated transcripts 

PLEC_rev ACCAGGCTGATGGTCTTGAG 

COL4A3_fwd TGGCCAGAAAGGATTCACAG 

COL4A3_rev GTACACCGACAAGTCCGTAA 

EMILIN3_fwd CCTCCCGCTACAGTCTCTAC 

EMILIN3_rev CCCATCTACACTGCCGGTAT 

TMEM69_fwd GCCTAGGAACCAATTAGCGC 

TMEM69_rev CTTCTGGATGAAGCGAAGCA 

INAVA_fwd GTGTCCGAGGAGCTCAAGT 

INAVA_rev GATCTCCGCAGCACACAAAC 

TMEM8A_fwd CTGTGCATCCTCAGCTACGA 

TMEM8A_rev TGGAGGCCATGATCACGAAG 

ACTB_fwd CGAGCACAGAGCCTCGCCTTT 

ACTB_rev CATGCCCACCATCACGCCCTGG 

RPS18_fwd GCGGCGGAAAATAGCCTTTG 

RPS18_rev GGATCTTGTACTGGCGTGGA 
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3.1. Abstract 

PIWI proteins and PIWI-interacting RNAs (piRNAs) suppress transposon activity in animals, 

thus protecting their genomes from detrimental insertion mutagenesis. Here, we reveal that 

PIWI genes and piRNAs are ubiquitously expressed in mollusks, similar to the situation in 

arthropods. We describe lineage specific adaptations of transposon composition in piRNA 

clusters in the great pond snail and the pacific oyster, likely reflecting differential transposon 

activity in gastropods and bivalves. We further show that different piRNA clusters with unique 

transposon composition are dynamically expressed during oyster development. Finally, 

bioinformatics analyses suggest that different populations of piRNAs presumably bound to 

different PIWI paralogs participate in homotypic and heterotypic ping-pong amplification 

loops in a tissue- and sex specific manner. Together with recent findings from other animal 

species, our results support the idea that somatic piRNA expression represents the ancestral 

state in metazoans. 

 

3.2. Introduction 

In virtually all animals, PIWI proteins protect germ cells from the steady threat of mobile 

genetic elements, so-called transposons (Thomson and Lin 2009; Iwasaki et al. 2015). Based 

on sequence complementarity to their target transcripts, 23-31 nt non-coding RNAs, termed 

PIWI-interacting (pi-) RNAs, function as guide molecules for PIWI proteins that slice matching 

targets through their endonuclease activity. Besides post-transcriptional transposon control, 

PIWI proteins and piRNAs can trigger the establishment of repressive epigenetic DNA or 

chromatin modifications, thus inducing efficient transposon silencing on the transcriptional 

level (Reuter et al. 2011; Di Giacomo et al. 2013; Pezic et al. 2014; Manakov et al. 2015). 
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Analyses of piRNA pathways in representatives of many animal taxa have unveiled a great 

diversity of lineage specific adaptations, challenging the universal validity of insights obtained 

from model organisms (Grimson et al. 2008; Houwing et al. 2008; Das et al. 2008; Li et al. 2013; 

Lim et al. 2014; Ha et al. 2014; Hirano et al. 2014; Gebert et al. 2015; Roovers et al. 2015; 

Rosenkranz et al. 2015b; Madison-Villar et al. 2016; Praher et al. 2017; Lewis et al. 2018). For 

a long time, PIWI proteins and piRNAs were thought to be dispensable for female germ cell 

development in mammals until it became clear that the model organisms mouse and rat 

represent an exception from the mammalian rule in that they employ an oocyte specific Dicer 

isoform for transposon control instead of Piwil3 which is expressed in the bovine and human 

female germline (Roovers et al. 2015; Flemr et al. 2013). Similarly, evidence for a gene 

regulatory role of piRNAs (Gebert et al. 2015; Zhang et al. 2015; Russell et al. 2017; Rouget et 

al. 2010; Gou et al. 2014; Watanabe and Lin 2014; Barckmann et al. 2015; Rojas-Ríos et al. 

2017) and their widespread somatic expression in many animals (Lewis et al. 2018; Palakodeti 

et al. 2008; Perrat et al. 2013; Nandi et al. 2016; Jones et al. 2016; Teixeira et al. 2017; Ross et 

al. 2014; Juliano et al. 2014; Funayama et al. 2010) have eroded the dogma that the piRNA 

pathway is restricted to the germline, being exclusively responsible for silencing of 

transposons. Indeed, it has been shown that piRNAs are essential for regeneration and stem 

cell maintenance in the flatworm Schmidtea mediterranea (Palakodeti et al. 2008), provide an 

adaptive immunity against virus infections in Aedes aegypti (Miesen et al. 2015), are 

responsible for sex determination in Bombyx mori (Kiuchi et al. 2014) and memory-related 

synaptic plasticity in Aplysia californica (Rajasethupathy et al. 2012). 

Despite the likely more than seventy thousand living molluskan species (Rosenberg 2014) 

there exist only a few functional descriptions of PIWI proteins or piRNAs for this taxon based 

on experiments in the sea slug Aplysia californica (Rajasethupathy et al. 2012), the Farrer's 

scallop Chlamys farreri (Ma et al. 2017) and in the dog whelk Nucella lapillus (Waldron et al. 

2018). Importantly, Waldron and coworkers recently showed that piRNA-like small RNAs 

matching virus and transposon sequences are somatically expressed in Nucella lapillus. 

However, the available data does not allow to draw any conclusions on whether this 

represents a conserved or lineage-specific feature of the PIWI/piRNA system within mollusks. 

In order to further elucidate the evolution of the PIWI/piRNA system in mollusks, we have 

reconstructed the evolution of PIWI genes in this phylum based on 11 sequenced genomes 

showing that Piwil1 and Piwil2 are conserved in mollusks. We perform quantitative real-time 

PCR experiments to analyze the expression patterns of the identified PIWI paralogs across a 

representative set of tissues from the great pond snail Lymnaea stagnalis (L. stagnalis) and 

the pacific oyster Crassostrea gigas (C. gigas). We apply high-throughput sequencing of small 

RNAs from L. stagnalis to verify the presence of piRNAs in germline and muscle tissue. We 

further reanalyze published small RNA sequence data from C. gigas to characterize the 

dynamic expression of piRNAs from distinct piRNA clusters during oyster development. Finally, 

we use bioinformatics approaches to show that different piRNA populations and PIWI paralogs 

participate in the ping-pong amplification loop in a tissue- and sex specific manner. 
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3.3. Results 

3.3.1. The molluskan PIWI gene repertoire 

Many PIWI gene tree reconstructions have been published in the past years, however they do 

not provide a coherent picture regarding the evolution of PIWI genes in early bilaterians. Thus, 

we first wanted to characterize the PIWI protein equipment of sequenced mollusks to infer 

the ancestral molluskan state and subsequent evolution of PIWI paralogs within the molluskan 

clade. To this end, we used available PIWI protein sequence data from six molluskan species 

(Biomphalaria glabrata, Aplysia californica, Crassostrea gigas, Crassostrea virginica, 

Mizuhopecten yessoensis, Octopus bimaculoides) and further manually annotated PIWI genes 

based on five publicly available but not yet (sufficiently) annotated genomes (Lymnaea 

stagnalis, Radix auricularia, Lottia gigantea, Bathymodiolus platifrons, Pinctada martensii). 

We found that the PIWI family members Piwil1 and Piwil2 are conserved in mollusks and are 

orthologous to Piwil1 and Piwil2 in vertebrates, suggesting a duplication event in an early 

bilaterian ancestor prior to the split of protostomes and deuterostomes. According to our 

results and in consistency with a number of previously published gene trees, Drosophila AGO3 

shares a common ancestral gene with Piwil2 clade members (Praher et al. 2017; Zhou et al. 

2007; Schurko et al. 2009; Lewis et al. 2016). However, the insect-specific PIWI genes Piwi and 

Aubergine, the latter one resulting from a duplication event in dipteran flies (Lewis et al. 2016; 

Kerner et al. 2011), do not group with the Piwil1 clade (figure 3.1A). It is worth mentioning in 

this context that different rates of sequence evolution, selective regimes and gene turnover 

for Argonaute subfamilies make it difficult to infer their ancient evolutionary history, which is 

mirrored by numerous published but contradicting PIWI gene trees, none of which correctly 

mirrors the phylogenetic relationship of the included species. Consequently, the presented 

gene tree reconstruction aims to provide a reliable reconstruction of molluskan PIWI gene 

evolution while the deeper topology should be considered with caution. 
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Figure 3.1: Evolution and expression of PIWI genes in mollusks. (A) PIWI gene tree reconstruction of molluskan 

PIWI genes. (B) Control PCR with PIWI paralog specific primers and L. stagnalis cDNA from the reproductive tract. 

The complete gel is shown in electronic supplemental figure 1g (C) RT-qPCR results for PIWI paralog expression 

in different tissues of L. stagnalis, measured as n-fold expression of the housekeeping gene GPI. Center line 

indicates median, box limits represent the 50th percentile, whiskers show the upper and lower extremes. (D) PIWI 

paralog expression in different tissues of L. stagnalis, normalized by the expression of the housekeeping gene 

GPI, values from reproductive tract set to 1. Center line indicates median, box limits represent the 50th percentile, 

whiskers show the upper and lower extremes. (E) Control PCR with PIWI paralog specific primers and C. gigas 

cDNA from the adductor muscle. The complete gel is shown in electronic supplemental figure 1h (F) RT-qPCR 

results for PIWI paralog expression in different tissues of C. gigas, measured as n-fold expression of the 

housekeeping gene PPIA. Center line indicates median, box limits represent the 50th percentile, whiskers show 

the upper and lower extremes. (G) PIWI paralog expression in different tissues of C. gigas, normalized by the 

expression of the housekeeping gene PPIA, values from male gonad set to 1. Center line indicates median, box 

limits represent the 50th percentile, whiskers show the upper and lower extremes. 
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While we did not observe further gene duplication events within the molluskan Piwil2 clade, 

several duplication events are present in the Piwil1 clade resulting in two Piwil1 paralogs in 

Bathymodiolus platifrons and even three Piwil1 paralogs in Lymnaea stagnalis and Radix 

auricularia. Generally, PIWI gene duplication events are in line with the previously described 

erratic evolution of PIWI family genes in arthropods (Lewis et al. 2018; Lewis et al. 2016; 

Kerner et al. 2011; Dowling et al. 2016). Noteworthily, it was also a successive duplication of 

Piwil1 on the eutherian lineage that gave rise to Piwil3 (with subsequent loss on the murine 

lineage) and Piwil4 (Sasaki et al. 2003; Murchison et al. 2008) (figure 3.1A). 

 

3.3.2. Expression of PIWI genes in L. stagnalis and C. gigas 

To investigate the expression of PIWI genes in mollusks we chose two representative species, 

the pacific oyster Crassostrea gigas (C. gigas, Bivalvia) showing no Piwil1 duplication, and the 

great pond snail Lymnaea stagnalis (L. stagnalis, Gastropoda), featuring three predicted Piwil1 

paralogs (figure 3.1A). We performed quantitative real-time PCR (qPCR) for each PIWI paralog 

on a representative set of tissues from both species. 

For the great pond snail L. stagnalis we measured PIWI expression on the mRNA level in the 

hermaphroditic reproductive tract, comprising both male and female gametes, foot muscle, 

lung and brain. Relevant expression was detectable for Piwil1 and particularly Piwil2, while 

the Piwil1 duplicates Piwil1b and Piwil1c were only expressed at very low levels (figure 3.1B+C 

and electronic supplemental figure 1) suggesting a spatiotemporal sub-functionalization. As 

expected, we observed the highest expression of Piwil1 and Piwil2 in the reproductive tract. 

However, both genes were significantly expressed in the other analyzed tissues as well, 

reaching 62%, 21% and 15% of germline expression for Piwil1 in muscle, lung and brain 

respectively, and 36%, 53% and 12% of germline expression for Piwil2 in muscle, lung and 

brain, respectively (figure 3.1D). 

For the dioecious pacific oyster C. gigas, PIWI mRNA expression was measured in the male 

gonad, labial palps, gill, adductor muscle and mantle. We detected significant expression of 

Piwil1 and Piwil2 across all analyzed tissues, particularly in gonadal tissue (figure 3.1E+F), 

confirming data on Piwil1 expression in the Hong Kong Oyster Crassostrea honkongensis (Tong 

et al. 2015). In relation to gonadal expression, Piwil1 and Piwil2 were expressed in levels 

ranging from 21% (Piwil1 in labial palps) to 111% (Piwil2 in adductor muscle, figure 3.1G). The 

observed expression patterns suggest that a functional PIWI machinery acting in the soma and 

the germline is conserved in mollusks. Considering the somatic expression of PIWI proteins 

and piRNAs in many arthropod species (Lewis et al. 2018), it is parsimonious to assume that 

somatic PIWI/piRNA expression represents the ancestral state that was established in an early 

protostomian ancestor. 
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3.3.3. piRNAs in L. stagnalis muscle and reproductive tract 

In order to characterize molluskan piRNAs, we sequenced small RNA transcriptomes from 

L. stagnalis extracted from the hermaphroditic reproductive tract and (foot-) muscle, since 

muscle tissue was found to exhibit the highest somatic PIWI expression in both L. stagnalis 

and C. gigas. Importantly, we want to clarify that we will use the term piRNA bona fide, 

without formal evidence for physical interaction with PIWI proteins but based on the evidence 

provided in the following. 

The sequence read length profiles for both tissues show a maximum for 21 nt RNAs, with a 

considerable amount of 22 nt RNAs being present in the muscle, but not in the reproductive 

tract. We further observed a smaller fraction of RNAs in the range of 24-29 nt in both samples 

(figure 3.2A). Annotation of sRNA sequences with unitas (Gebert et al. 2017) revealed a similar 

proportion of different sRNA classes in each tissue type, with miRNAs accounting for 47% and 

53% of reads in the reproductive tract and muscle, respectively (figure 3.2B, electronic 

supplemental table 1). Interestingly, we found a substantial difference in the abundance of 

tRNA fragments (tRFs). In both samples, 21 nt RNAs derived from the 3’ end of tRNAs (3’ tRFs, 

particularly from tRNA-Gly-TCC) constitute the vast majority of tRNA fragments. However, the 

share of 3’ tRFs in the reproductive tract is considerably higher compared to muscle (17% and 

10%, respectively, electronic supplemental table 1). Recently, 3’ tRFs were found to silence 

Long Terminal Repeat (LTR) retrotransposons in mouse stem cells by targeting their 

functionally essential and highly conserved primer binding sites (Schorn et al. 2017). The 

remarkable amount of 3’ tRFs in the analyzed samples supports the idea proposed by Schorn 

and coworkers who assume that this mechanism could be highly conserved across different 

species, providing an innate immunity against LTR propagation. 
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Figure 3.2: Characterization of small RNAs from L. stagnalis (foot-) muscle and reproductive tract. (A) Sequence 

read length distribution of mapped (top) and unannotated (intergenic) reads (bottom). (B) Results from small 

RNA annotation with unitas (top) and transposon content of intergenic reads (bottom). (C) Ping-pong signature. 

P-values are deduced from the corresponding Z-scores. P-values for all reads and reads that match mRNA are 

shown. (D) Differential expression of 307 predicted piRNA clusters. Colors refer to expression relative to 

highest/lowest expression within one tissue. Dots indicate n-fold expression of a given cluster in reproductive 

tract relative to muscle. (E) Amount of clustered reads and ping-pong reads per million bootstrapped reads (ppr-

mbr). (F) Representation of transposons in the genome of L. stagnalis, plotted by divergence [%] from transposon 

consensus. (G) Representation of transposons within piRNA clusters of L. stagnalis, plotted by divergence [%] 

from transposon consensus. (H) Prominent transposons that are enriched or depleted in L. stagnalis piRNA 

clusters. 

 

Focusing on putative piRNAs, we analyzed the fraction of sequence reads that did not match 

to any other class of non-coding RNA nor mRNA. This dark matter of intergenic sRNAs 

comprises 27% and 23% of sequence reads in the reproductive tract and in muscle, 

respectively, and is enriched for transposon sequences, suggesting a role in transposon 

control (figure 3.2B). Analyses of their sequence read length distribution revealed a prominent 

class of 22 nt molecules in muscle and to a lesser extend in the reproductive tract, suggesting 

that transposon defense in L. stagnalis involves 22 nt siRNAs in addition to piRNAs (figure 

3.2A). To verify the presence of piRNAs, we checked for the so-called ping-pong signature (bias 

for 10 bp 5’ overlap of mapped sequence reads), which is a hallmark of secondary piRNA 
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biogenesis and requires the catalytic activity - and thus expression - of PIWI proteins (Czech 

and Hannon 2016). Remarkably, we detected a significant ping-pong signature in both, the 

reproductive tract and muscle (figure 3.2C), suggesting active PIWI/piRNA-dependent 

transposon silencing in the germline and in the soma. In addition, a ping-pong signature can 

also be observed for sequence reads that match protein coding genes, indicating piRNA-

dependent gene regulation (figure 3.2C). 

Next, we used proTRAC (Rosenkranz and Zischler 2012) to identify 308 piRNA producing loci 

in the reproductive tract, and 246 piRNA producing loci in muscle tissue. Merging of 

independently annotated contiguous (<10 kb distance) or overlapping piRNA producing loci 

revealed a total of 307 distinct piRNA clusters in L. stagnalis, covering 0.27% of the genome 

(figure 3.2D, electronic supplemental data 1). More precisely, all piRNA producing loci 

identified in muscle tissue correspond to predicted piRNA clusters based on piRNAs from the 

reproductive tract, which illustrates that piRNAs in muscle originate from the same set of 

piRNA clusters compared to the reproductive tract. Nonetheless, there exist 12 clusters whose 

expression is 14- to 36-fold higher in the reproductive tract compared to muscle tissue, while 

no clusters show muscle-specific expression to a comparable extent. We found that 15.9% of 

sequence reads from the reproductive tract map to piRNA clusters, while only 6.7% of 

sequence reads from muscle do so, indicating rather moderate production of primary piRNAs 

in the soma compared to the germline (figure 3.2E). Besides the presence of primary piRNAs, 

we found that the number of piRNAs that participate in ping-pong-amplification (measured as 

ping-pong reads per million bootstrapped reads, ppr-mbr) is slightly higher in muscle (~39k 

ppr-mbr) compared to the situation in the reproductive tract (~35k ppr-mbr), suggesting 

higher amounts of secondary piRNAs and emphasizing the functional importance of somatic 

PIWI/piRNA expression (figure 3.2E). In line with the transposon-suppressive role of piRNAs, 

the identified piRNA clusters show a 2-fold enrichment for transposon sequences compared 

to the whole genome situation (59% and 31%, respectively, figure 3.2F+G), whereas only 1.7% 

of piRNA cluster sequence represents protein coding sequence. Interestingly, the transposon 

composition in piRNA clusters does not at all reflect the transposon landscape of the genome. 

Instead, piRNA clusters are enriched for Gypsy retrotransposons and particularly DNA 

transposons such as Kolobok, hAT5 or hATw showing up to 108-fold enrichment in piRNA 

clusters (figure 3.2G+H). This non-random distribution suggests a selective regime that favors 

insertion events of transposons with low divergence from their consensus sequence, likely 

representing evolutionary young and active elements. 

 

3.3.4. Ubiquitous and dynamic expression of piRNAs in C. gigas 

Based on our observation that PIWI genes and piRNAs are expressed in the soma and the 

germline of L. stagnalis, we reanalyzed previously published small RNA datasets from C. gigas 

that were used to investigate the dynamic expression of miRNAs during oyster development 

without further examination of a putative piRNA fraction (Xu et al. 2014) (NCBI Sequence Read 

Archive Project ID SRP007591). We annotated C. gigas sRNAs from the male and female 
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gonad, different developmental stages ranging from the egg to juvenile, and a representative 

set of somatic tissues from adult animals (electronic supplemental table 2). In all datasets, 

particularly in gonadal tissues, eggs and early embryo stages but also in hemolymph we 

detected a large amount of sequence reads that did not match to any known ncRNA class but 

was instead enriched for transposon sequences. The transposon-matching sub-fraction itself 

was enriched for antisense sequences (electronic supplemental table 2). Analogous to the 

procedure applied for the L. stagnalis datasets, we verified the presence of primary and 

secondary piRNAs by analyzing the ping-pong signature of each dataset. Remarkably, we 

detected a significant ping-pong signature across all analyzed datasets (figure 3.3A, electronic 

supplemental figure 2), but also found that the number of ping-pong reads (measured as ppr-

mbr) differs considerably depending on the tissue and developmental stage (figure 3.3A, 

electronic supplemental figure 3). Noteworthily, as is the case with L. stagnalis, a ping-pong 

signature is also detectable when taking only those reads into account that match protein 

coding sequences, suggesting a relevant and conserved role of the PIWI/piRNA pathway in 

post-transcriptional regulation of protein coding genes in gonads, egg, blastula, digestive 

gland and hemolymph (electronic supplemental table 3). We further used sequences without 

ncRNA annotation to predict piRNA clusters with proTRAC (electronic supplemental data 2) 

and checked whether we can observe a differential expression of specific piRNA clusters in 

time and space (figure 3.3A). 
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Figure 3.3: Characterization of small RNAs and piRNA clusters from different C. gigas samples. (A) Sequence reads 

without annotation produce a significant ping-pong signature (top row of bars, only Z-scores for 10 bp 5’ overlap 

are shown). The number of ping-pong reads per million bootstrapped reads (middle row of bars), and the number 

of clustered reads (bottom row of bars) differs considerably across the samples. Heatmap shows the differential 

expression of the top 100 piRNA clusters in terms of maximum rpm coverage. Different classes of piRNA clusters 

are expressed during oyster development and in adult somatic tissues (bottom). (B) Transposon composition of 

piRNA clusters belonging to four different classes. (C) Representation of transposons in the genome of C. gigas, 

plotted by divergence [%] from transposon consensus. (D) Representation of transposons within piRNA clusters 

of C. gigas, plotted by divergence [%] from transposon consensus. (E) Prominent transposons that are enriched 

or depleted in C. gigas piRNA clusters. Error bars indicate standard deviation. 

 

In contrast to the situation in L. stagnalis, we found that different genomic loci are responsible 

for production of primary piRNAs in the germline and in the soma, but also during different 
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developmental stages, which is similar to the situation in the sea anemone Nematostella 

vectensis (Praher et al. 2017) and the German cockroach Blatella germanica (Llonga et al. 

2018). A clustering approach based on average linkage (Babicki et al. 2016) revealed four 

distinct groups of piRNA clusters which we named class 1-4 piRNA clusters (figure 3.3A). Class 

1 piRNA clusters are active in the adult germline (male and female) and in the early embryo 

until the D-shaped veliger stage where larvae are approximately 14 hours old. The same 

applies to class 2 piRNA clusters, however, following the D-shape veliger stage, class 1 piRNA 

clusters become inactive, while class 2 piRNA clusters remain active and class 3 piRNA clusters 

start piRNA production. Both, class 2 and class 3 piRNA cluster activity is measurable until the 

juvenile stage, where oysters are approximately 20 days old. In somatic tissues of adult 

oysters, class 4 piRNA clusters represent the main source of primary piRNAs (figure 3.3A, 

bottom). Interestingly, all four classes of piRNA clusters are active in hemocytes, which also 

feature the highest amount of clustered reads, and ping-pong reads compared to other 

somatic tissues. This might reflect the presence of stem cells within the hemocyte cell 

population, which are subject to complex differentiation processes (Fisher 1986; Lau et al. 

2017). 

Interestingly, the four classes of piRNA clusters differ considerably regarding the overall 

transposon content as well as the specific transposon composition (figure 3.3B-D). Class 1 and 

class 2 piRNA clusters are generally enriched for transposon sequences showing 38% and 36% 

transposon derived sequences, respectively, compared to a genomic transposon content of 

29%. The surprisingly high accumulation of young (as deduced from the divergence from their 

consensus) Gypsy elements in piRNA clusters, suggests a strong selection for Gypsy element 

insertions, probably as a consequence of Gypsy activity in C. gigas. Noteworthily, the 

accumulation of young transposons in molluskan piRNA clusters sharply contrasts the 

situation in Drosophila and human, where older transposons are more abundant in piRNA 

producing loci (Senti et al. 2015; Gainetdinov et al. 2017) Considering transposons that are 

generally enriched in piRNA clusters, we found that R2 retrotransposons (149-fold enrichment 

in piRNA clusters) and Dada DNA transposons (40-fold enrichment in piRNA clusters) are most 

abundant in class 1 piRNA clusters (figure 3.3E). In contrast, Polinton DNA transposons (32-fold 

enrichment in piRNA clusters) and BEL retrotransposons (5-fold enrichment in piRNA clusters) 

are most abundant in class 2 piRNA clusters. Different from class 1 and class 2 piRNA clusters, 

class 3 and class 4 piRNA clusters display only slight transposon enrichment (30% and 31%, 

respectively). Noteworthily, high copy number Gypsy retrotransposons (5-fold enrichment in 

piRNA clusters) are most abundant in class 3 piRNA clusters, while Academ, Crypton and Tx1 

transposons are most abundant in class 4 piRNA clusters. 

The fact that different piRNA clusters are expressed in the germline (class 1 and class 2) and 

in adult somatic tissues (class 4) of C. gigas contrasts with the situation in L. stagnalis, where 

identical piRNA producing loci are active in the germline and in the soma. Moreover, we can 

observe considerable differences in the transposon composition of piRNA clusters in the two 

species, which likely reflect a divergent transposon activity in gastropods and bivalves, 

resulting in varying selective constraints on the different phylogenetic lineages. 
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3.3.5. Homotypic and heterotypic ping-pong amplification 

The ping-pong amplification loop describes a process that is responsible for the post-

transcriptional silencing of transposable elements (Czech and Hannon 2016). In Drosophila 

and mouse, this process typically involves two PIWI paralogs (heterotypic ping-pong), one 

loaded with antisense piRNAs targeting transposon transcripts, and the other loaded with 

sense piRNAs targeting piRNA cluster transcripts, which contain transposon sequences in 

antisense orientation (Brennecke et al. 2007; Aravin et al. 2008). Likely for steric reasons, 

premature piRNAs loaded onto the different PIWI paralogs are more or less rigorously 

trimmed at their 3’ ends. This is why piRNA populations bound to different PIWI paralogs not 

only differ regarding the amount of sense- and antisense-transposon sequences, but also in 

their sequence length profiles (Czech and Hannon 2016; Aravin et al. 2007; Kawaoka et al. 

2011). In addition to the heterotypic ping-pong amplification, homotypic ping-pong has been 

shown to occur in qin mutant flies (Aub:Aub, Zhang et al. 2011), and wildtype prenatal mouse 

testis (Miwi2:Miwi2, Mili:Mili, Aravin et al. 2008). 

Since the typical molluskan genome encodes two ubiquitously expressed PIWI paralogs, Piwil1 

and Piwil2, we asked whether we can provide evidence for the participation of distinct piRNA 

populations and PIWI paralogs in the ping-pong cycle. We conducted a bioinformatics 

approach under the premise that Piwil1- and Piwil2-bound piRNAs exhibit different length 

profiles, which is the case for the corresponding mouse homologs Piwil1 (Miwi) that 

preferentially binds 29/30 nt piRNAs, and Piwil2 (Mili) which preferentially binds 26/27 nt 

piRNAs (Vourekas et al. 2012). A similar, yet not equally pronounced, difference between 

Piwil1 (Ziwi) and Piwil2 (Zili) -bound piRNAs also exists in zebrafish, suggesting the 

evolutionary conservation of this pattern (Houwing et al. 2008). We analyzed pairs of mapped 

C. gigas and L. stagnalis sequence reads that showed a 10 bp 5’ overlap (ping-pong pairs), with 

respect to the sequence length of each ping-pong partner (figure 3.4, electronic supplemental 

figure 4). In the female gonad of C. gigas, most ping-pong pairs combine piRNAs with a length 

of 25 nt and 29 nt (figure 3.4A), suggesting heterotypic Piwil1-Piwil2-dependent ping-pong 

amplification as depicted in figure 3.4B. In support of this, 29 nt piRNAs, presumably bound to 

Piwil1, are heavily biased for a 5’ uridine (a hallmark of primary piRNAs), whereas 25 nt 

piRNAs, presumably bound to Piwil2, show a stronger bias for an adenine at position 10 

(typical for secondary piRNAs). In contrast, ping-pong pairs in C. gigas muscle predominantly 

combine two 29 nt piRNAs, suggesting homotypic, Piwil1-dependent ping-pong amplification 

(figure 3.4B). Generally, the observed patterns of ping-pong pairs are very diverse across the 

different samples, for instance displaying heterotypic ping-pong in the digestive gland and 

homotypic Piwil2-dependent ping-pong in hemolymph cells (electronic supplemental 

figure 4). 
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Figure 3.4: Analysis of piRNAs that participate in the ping-pong amplification loop. (A) Ping-pong matrices 

illustrate frequent length-combinations of ping-pong pairs (sequences with 10 bp 5’ overlap). Sequence read 

length distribution and 1U/10A bias [bits] for ping-pong sequences are shown. (B) Proposed model of ping-pong 

amplification in the germline and muscle of C. gigas and L. stagnalis. 

 

Since the expression of Piwil1 compared to Piwil2 is considerably lower in L. stagnalis, we 

were curious to check whether the corresponding ping-pong pairs might reflect this fact. 

Indeed, 26/26 nt pairs (homotypic, Piwil2-dependent ping-pong) represent the majority of 

ping-pong pairs in the reproductive tract (figure 3.4A). In addition, homotypic Piwil2-

dependent ping-pong amplification with 24/25 nt ping-pong pairs is also dominant in the 

L. stagnalis muscle (figure 3.4B). However, we also observed differences in ping-pong patterns 

that do not correlate with the measured mRNA levels of Piwil1 and Piwil2. For example, our 

data suggests homotypic Piwil2-dependent ping-pong amplification in the oyster gill but 

homotypic Piwil1-dependent ping-pong amplification in the oyster muscle (electronic 
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supplemental figure 4), while both tissues display a very similar expression of both PIWI 

paralogs on the mRNA level (figure 3.1F). Thus, we assume that factors other than mere PIWI 

expression critically influence characteristics of the ping-pong amplification loop. 

Moreover, we clearly cannot rule out the possibility that binding preferences of PIWI paralogs 

have changed on the molluskan lineage and are different from those observed in fly, fish and 

mouse. This could mean that length profiles of piRNAs associated to each of the molluskan 

PIWI paralogs might be exactly reciprocal compared to our presumption. One could even 

speculate that both PIWI paralogs may bind the whole range of piRNAs, which is not possible 

to disprove without performing corresponding co-Immunoprecipitation experiments. 

However, based on the presence of piRNA populations with different length profiles (figure 

3.2A), their representation in ping-pong pairs together with the differences in their amount of 

1U and 10A reads (figure 3.4A), we believe that the above made interpretations are a 

reasonable and parsimonious interpretation of the data at hand, yet not the only possible one. 

 

3.4. Discussion 

Our results reveal that mollusks utilize the PIWI/piRNA pathway as a defense against 

transposable elements in the germline and in the soma, which corresponds to the situation in 

arthropods and therefore suggests somatic PIWI/piRNA expression to represent a 

plesiomorphic protostomian character state. In fact, available data from deeper branching 

metazoans such as poriferans and cnidarians supports the view that this system was 

established in the soma even long before the split of protostomes and deuterostomes 

(Grimson et al. 2008; Praher et al. 2017; Waldron et al. 2018). In addition, based on the 

observation that a substantial fraction of arthropod and mollusk piRNAs targets messenger 

RNAs producing the generic ping-pong signature, it seems likely that the last common 

ancestor of arthropods and mollusks applied the PIWI/piRNA pathway also for post-

transcriptional regulation of protein coding genes. Recently, the Xenacoelomorpha phylum, a 

group of marine worms that were previously thought to belong to the Platyhelminthes clade, 

was found to represent the sister group of Nephrozoa which comprise protostomes and 

deuterostomes (Cannon et al. 2016; Rouse et al. 2016). Presently, piRNAs for this outgroup 

are not characterized but having such data would doubtlessly provide valuable insights and 

allow to draw conclusions regarding the function of the PIWI/piRNA system in the last 

common ancestor of all bilaterians, particularly with respect to an ancestral gene-regulatory 

role. Especially with regard to the latter, functional studies in non-model organisms are 

urgently needed since the pure bioinformatical evidence for piRNA-dependent processing of 

protein coding genes does not give any information on its factual biological relevance this 

process might have in different species. In vertebrates, somatic PIWI/piRNA expression 

appears to have faded away and reports on somatically expressed piRNAs in mammals are 

often considered with skepticism for good reasons (Tosar et al. 2018). However, remnants of 

the former somatic expression might have outlasted to fulfill special functions in specific cells 

and/or in narrowly defined timespans of development or cell differentiation in the one or the 
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other clade. Our results indicate that studying the PIWI/piRNA pathway in organisms outside 

of the main experimental models of Drosophila and mouse is necessary to fully understand its 

evolution and functions. 

 

3.5. Materials and Methods 

3.5.1. PIWI gene annotation and tree reconstruction 

In order to reconstruct the phylogenetic relations of mollusk Piwi proteins, we first searched 

for PIWI genes in species with an available genome sequence that lack proper annotation 

(Lymnaea stagnalis, Radix auricularia, Lottia gigantea, Bathymodiolus platifrons, Pinctada 

martensii). To this end, we scanned the relevant genomes for sequences that are homologous 

to annotated PIWI paralogs of the pacific oyster (EKC35279 and EKC29295) by aligning 

translated DNA sequences using tblastx (v2.7.1+, Camacho et al. 2009). Neighboring hits with 

a distance smaller than 10 kb were grouped as exons of distinct gene loci. Only groups 

containing the overall best hits for a given locus were retained. Finally, the predicted gene 

sequences were checked for presence of PIWI and PAZ domains using NCBI conserved domain 

database (Marchler-Bauer et al. 2015). Similarly, for PIWI expression analysis by qPCR in the 

pond snail, we identified the housekeeping gene GPI (glucose-6-phosphate isomerase) by 

comparison with the human ortholog (ARJ36701). 

The predicted and annotated PIWI protein sequences of the 11 available molluskan species 

together with PIWI paralogs of human (Piwil1-4) and fly (Ago3, Piwi, Aub), as well as fly 

argonaute Ago1 were aligned using MUSCLE (v.3.8.31, Edgar 2004). Subsequently, the 

resulting protein alignment was curated with Gblocks (v.0.91b), allowing smaller final blocks 

with gap positions and less strict flanking positions. Using ModelGenerator (v.0.85, Keane et 

al. 2006) we determined LG+G+F (Le and Gascuel 2008) to be the best-fitting model of 

substitution for our data. The curated alignment (electronic supplemental data 3) was then 

used for phylogenetic tree reconstruction with PhyML (v3.1, Guindon et al. 2009) applying 

approximate likelihood-ratio test (SH-like) and LG substitution model, including empirical 

gamma distribution (G) and character frequencies (F). Support values were generated by 

bootstrap with 100 replicates. 

 

3.5.2. qPCR 

Experiments were performed on commercially available C. gigas animals from the western 

French Atlantic coast (lle d'Oleron) and captured wild living L. stagnalis animals from South-

western Germany (Heppenheim). To estimate the expression of the Piwil homologs in several 

tissues of L. stagnalis and C. gigas we performed qPCR with cDNA synthesized from the total 

RNA fraction of these tissues. Total RNA was isolated with TriReagent and the polyadenylated 

transcriptome was reversely transcribed with SuperScript IV using the RT-primer 5’-

CGAATTCTAGAGCTCGAGGCAGGCGACATGT25VN-3’. Primers amplifying ~ 200 bp long products 
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of the respective Piwil homologs and housekeeping genes were designed with the NCBI tool 

primer-BLAST on basis of the L. stagnalis genome assembly GCA_900036025.1 v1.0 and the 

C. gigas genome assembly GCA_000297895.1 oyster_v9. To prevent amplification of residual 

genomic DNA, primers were designed to be exon-junction spanning or to span at least several 

intronic regions. The respective biological replicates were analyzed as technical duplicates on 

a Corbett Rotor-Gene 6000 real-time PCR cycler and the copy numbers of the genes of interest 

were quantified by standard curves of the individual primer pair amplicons. For each cDNA 

sample the calculated Piwil copy numbers were relativized by the calculated copy numbers of 

the housekeeping genes to calibrate for variabilities in sample preparation. These n-fold 

expression values were finally used to calculate the mean and standard deviation of the 

replicates. For an improved visualization, the n-fold expression values of each Piwi homolog 

are additionally displayed as a percentage of the respective gonad value. 

 

3.5.3. Small RNA extraction and sequencing 

We extracted total RNA from L. stagnalis reproductive tract (incl. ovotestis, oviduct, 

spermatheca, spermiduct, prostate, uterus, vagina, vas deferens) and foot muscle, and total 

RNA from C. gigas adductor muscle and gonadal tissue with TriReagent according to the 

manufacturer’s instructions. For each species we sampled two different individuals per tissue. 

The small RNA fractions of each obtained total RNA sample were sequenced at BGI, Hong 

Kong, on a BGISEQ-500 unit. Small RNA sequence datasets for L. stagnalis and C. gigas are 

deposited at NCBI’s Sequence Read Archive (SRA) and can be accessed under the SRA project 

IDs SRP130729 and SRP130745. We further used previously published small RNA sequence 

data from C. gigas (Xu et al. 2014) to analyze piRNA expression and characteristics with respect 

to different developmental stages. 

 

3.5.4. Repeat annotation 

We performed de novo prediction of repetitive elements in the genome of L. stagnalis with 

RepeatScout (v. 1.0.5, Price et al. 2005). Predicted repetitive elements were classified with 

RepeatClassifier which is part of the RepeatModeler (v. 1.0.11) package. Transposons that 

failed to be classified based on known transposons from other species are referred to as 

unclassified Lymnaea-specific transposons (uLtra). The resulting repeat sequences, as well as 

a complete collection of currently available molluskan repeat sequences from RepBase (Bao 

et al. 2015) were used as reference sequences for repeat masking of the L. stagnalis and 

C. gigas genomes with RepeatMasker (v. 4.0.7) using the cross_match search engine and the 

option -s for most sensitive masking. Annotated repeats in the RepeatMasker output were 

analyzed with respect to transposon families and divergence from their consensus sequence 

using the Perl script TE_landscape.pl. Analysis was conducted with the entire repeat dataset 

as well as with repeats localized in predicted piRNA clusters. TE_landscape.pl is freely available 

at https://sourceforge.net/projects/protrac/files/tools/. 



94 
 

 

3.5.5. Gene annotation 

We performed de novo gene annotation of the L. stagnalis genome assembly gLs_1.0 (Davison 

et al. 2016) using the MAKER genome annotation pipeline (v.2.31.8) in order to identify sRNAs 

that match protein-coding sequences (Cantarel et al. 2008). Initially, we masked the 

L. stagnalis genome with WindowMasker (Morgulis et al. 2006) using default settings 

including the duster option to mask low complexity regions. Then, we used available 

molluskan cDNA data from Ensembl database (release 92) and available mRNA and protein 

data from L. stagnalis deposited at NCBI (Effective April 25, 2018) as input for MAKER. MAKER 

output files for separate scaffolds were merged using the Perl script mergeMAKERoutput.pl 

which is freely available at https://sourceforge.net/projects/protrac/files/tools/. The 

complete genome annotation in GFF3 format and a corresponding mRNA sequence file in 

FASTA format are available as electronic supplemental data 4 and electronic supplemental 

data 5. 

 

3.5.6. Processing and annotation of small RNA sequence data 

Small RNA sequence datasets were collapsed to non-identical sequences, retaining 

information on sequence read counts using the Perl script collapse. Sequences >36nt were 

rejected using the Perl script length-filter. Finally, low complexity sequences were filtered 

using the Perl script duster with default parameters. All Perl scripts mentioned are part of the 

NGS toolbox (Rosenkranz et al. 2015a). 

We then applied a customized mapping strategy of the remaining small RNA sequence reads 

based on the consideration that our datasets presumably contain considerable amounts of 

transposon-derived piRNAs as well as post-transcriptionally edited (e.g. A-to-I) or tailed 

miRNAs and piRNAs. Genomic mapping was performed with SeqMap (Jiang and Wong 2008) 

using the option /output_all_matches and allowing up to three mismatches. The obtained 

alignments were further filtered using the Perl script seqmap_filter.pl that is freely available 

at https://sourceforge.net/projects/protrac/files/tools/. For the final alignments we allowed 

up to two non-template 3’ nucleotides and up to one internal mismatch. For each sequence, 

we only considered the best alignments in terms of mismatch counts, but did not reject 

alignments with equal quality in case of multiple mapping sequences. Sequences that did not 

produce at least one valid alignment to the reference genome were rejected. 

To improve small RNA sequence annotation, we performed de novo tRNA, rRNA and miRNA 

prediction based on the available reference genome assemblies gLs_1.0 (L. stagnalis) and 

GCA_000297895.1 oyster_v9 (C. gigas). tRNA annotation was performed with a local copy of 

tRNAscan (v.1.3.1, Lowe and Chan 2016). Only tRNAs with less than 5% N’s were taken for 

further analysis. rRNA sequences were predicted using a local copy of RNAmmer (v.1.2, 

Lagesen et al. 2007) and hmmer (v.2.2g, Johnson et al. 2010). Both tools were run with default 

parameters. We pooled small RNA sequence reads from different replicates and tissues for 
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each species separately to perform miRNA de novo prediction with ShortStack (v.3.8.4, Axtell 

2013) using default parameters. The predicted tRNA, rRNA and miRNA precursor sequences, 

as well as previously published miRNA precursor sequences (Xu et al. 2014; Zhou et al. 2014; 

Zhao et al. 2016), were used as additional reference sequences for small non-coding RNA 

annotation with unitas (v.1.4.6, Gebert et al. 2017) which was run with the option -riborase. 

For L. stagnalis, we also included predicted cDNA data based on MAKER annotation (see 

above). sRNA sequences that did not match to any ncRNA or mRNA of C. gigas or L. stagnalis 

were blasted against NCBI nucleotide collection (nr) to search for possible contaminants of 

parasitic species. Sequences that produced better alignments to genomes of species that 

possibly parasitized the sampled individuals (Dicrocoelium, Legionella, Panagrellus, Thelazia, 

Trichobilharzia) were considered as contaminants and not used for downstream analyses. 

 

3.5.7. piRNA cluster identification 

Sequences that did not produce a match to known non-coding RNAs were considered as 

putative piRNAs and were used for prediction of piRNA clusters with proTRAC (v. 2.4.0, 

Rosenkranz and Zischler 2012) applying default settings. piRNA clusters were predicted for 

each dataset and species separately. The resulting piRNA cluster predictions for each species 

were condensed, merging clusters with less than 10 kb distance from each other using the 

Perl script merge_clusters which is freely available at 

https://sourceforge.net/projects/protrac/files/tools/. To preclude false positive annotation of 

e.g. tRNA or rRNA genes as piRNA clusters, we validated predicted piRNA clusters by analyzing 

sRNA reads that mapped to them with respect to their relation to mRNA or other ncRNA 

classes (electronic supplemental figure 5A). To further check whether piRNA cluster calling 

may under- or overestimate the number of primary piRNAs in our datasets, we performed an 

arithmetical approach to estimate the fraction of genuine primary piRNAs based on the 

fraction of 5’ U reads in annotated and non-annotated reads with 24-29 nt length which yields 

results very close to the number of clustered reads (electronic supplemental methods, 

electronic supplemental figure 5B). We calculated the sequence read coverage [rpm] for each 

of the resulting piRNA clusters per dataset. For C. gigas piRNA clusters, a heat map for the top 

100 piRNA clusters in terms of maximum rpm coverage (accounting for 64% of summed rpm 

values) was constructed with Heatmapper (Babicki et al. 2016) applying Pearson distance and 

average linkage clustering. Finally, predicted piRNA clusters were analyzed with respect to 

their repeat and gene content using the Perl script piC_content.pl which is freely available at 

https://sourceforge.net/projects/protrac/files/tools/. 

 

3.5.8. Ping-pong quantification 

In order to compare ping-pong signatures across multiple datasets with different sequencing 

depth, we constructed a software tool, PPmeter (v.0.4), that creates bootstrap pseudo-

replicates from original datasets and subsequently analyzes the ping-pong signature and 
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number of ping-pong sequence reads of each pseudo-replicate (default: 100 pseudo-

replicates each comprising one million sequence reads). The obtained parameters ‘ping-pong 

score per million bootstrapped reads’ (pps-mbr) and ‘ping-pong reads per million 

bootstrapped reads’ (ppr-mbr) can be used for quantification and direct comparison of ping-

pong activity in different small RNA datasets. The software is freely available at 

http://www.smallRNAgroup.uni-mainz.de/software.html and 

https://sourceforge.net/projects/protrac/files/tools/. 

 

3.5.9. Data availability 

Sequence data have been uploaded to NCBI’s Sequence Read Archive and can be accessed via 

the accessions SRP130729 and SRP130745. 

 

3.5.10. Code availability 

Source code of software that has been written for data processing and analysis is freely 

available at https://sourceforge.net/projects/protrac/files/tools/. 
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4.1. Abstract 

Recently it was shown that a functional somatic piRNA pathway is not only a special trait of 

lower metazoans like the Cnidaria but is also widespread in protostomian species like 

arthropods and mollusks. While it seems that a somatic piRNA pathway got lost in the branch 

of vertebrates, several studies indicate that it may still be active in specific niches like stem 

cells of mammalian brains. To identify piRNAs, co-immunoprecipitation with PIWI proteins is 

the gold standard. As appropriate antibodies against PIWI proteins are not available, crawling 

small RNA sequencing data for sequence-homology and certain characteristics is the general 

approach to identify putative piRNAs in the soma. This method is only predictive and does not 

allow the identification of novel characteristics and functions of this pathway. Here, we 

developed a RNAi-based approach to verify the expression of small RNAs whose expression 

depend on Phospholipase D family member 6 (PLD6). PLD6 is an endonuclease that is critical 

for production of primary piRNAs in the animal germline. By siRNA-mediated knockdown of 

PLD6 in cultured cells, followed by small RNA sequencing, we identify somatic PLD6-

dependent small RNAs (putative piRNAs) in vitro. We demonstrate that in somatic cells PLD6 

acts as a functional endonuclease generating small RNAs with the typical size range of piRNAs. 

 

4.2. Introduction 

While PIWI proteins and piRNAs are ubiquitously expressed in arthropods and mollusks (Lewis 

et al. 2018; Jehn et al. 2018), the piRNA pathway appears to be restricted to the germline in 

vertebrates. Reports on somatic piRNAs in mammals base on pure sequence homology (Lee 

et al. 2011; Yan et al. 2011; Wu et al. 2010; Rizzo et al. 2014; Ghosheh et al. 2016; Dharap et 

al. 2011; Zhang et al. 2013; Ortogero et al. 2014; Phay et al. 2018; Nandi et al. 2016) and are 

controversially discussed in the field (Tosar et al. 2018). This skepticism is encouraged by the 

fact, that transposons are highly methylated and thus inactivated in somatic cells. As 

transposons are the main targets of the piRNA pathway this challenges the functional 

relevance of somatic piRNAs. In mammals, transposons were thought to be active solely in the 

germline, where the genome of gametes undergoes epigenetic reprogramming including 

global genomic de- and re-methylation. Recently transposon activity was also found in human 

brain tissue, particularly in the hippocampus (Upton et al. 2015). Interestingly, the dentate 
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gyrus within the hippocampus is one of the few brain regions known to have high rates of 

adult neurogenesis (Eriksson et al. 1998; Boldrini et al. 2018). Epigenetic modifications taking 

place during the early stages of neuronal differentiation seem to de-repress the promoter of 

L1 retrotransposons for a short time (Muotri et al. 2005; Coufal et al. 2009), which is 

reminiscent of the gonadal processes. It is therefore possible, that transposon-regulating 

mechanisms like the piRNA pathway are also active in the human brain. Thus, in vertebrates, 

a somatic piRNA pathway might have remained to be active in this particular niche. This 

hypothesis is supported by the finding that induced pluripotent stem cells (iPS cells) of non-

human primates, which have a lower expression of Piwil2 than human iPS cells, show higher 

L1 transposition rates (Marchetto et al. 2013). 

As due to the lack of appropriate antibodies there is no reliable method to identify human 

piRNAs, we sought to develop an alternative, antibody-independent approach that targets a 

key factor of piRNA biogenesis: Phospholipase D family member 6 (PLD6). PLD6, also called 

Zucchini, is a mitochondria-bound endonuclease that generates primary piRNAs in the 

germline. In a 3′-directed and phased process it catalyzes the endonucleolytic cleavage of 

large, single-stranded piRNA precursor transcripts into almost fully mature piRNAs (Ipsaro et 

al. 2012; Nishimasu et al. 2012; Mohn et al. 2015; Han et al. 2015). Knockout experiments in 

mice demonstrated that no piRNAs are formed during spermatogenesis in the absence of PLD6 

(Watanabe et al. 2011). Recently, it was shown that PLD6 is also involved in the processing of 

secondary piRNAs in germline cells (Mohn et al. 2015). Figure 4.1 schematically shows the 

function of PLD6 during piRNA biogenesis in the female germline of Drosophila. As PLD6 is 

broadly expressed in somatic tissues, it might also produce potential somatic piRNAs. 

 

 

Figure 4.1: Schematic overview of the piRNA biogenesis and transposon silencing mechanism in the female 

germline of Drosophila. Highlighted are the processes where PLD6 (Zucchini in Drosophila) is involved in the 

generation of piRNAs. 
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Hence, in order to identify putative somatic piRNAs, our approach is to downregulate PLD6 in 

cultured cells by transfecting an antisense siRNA and compare the small RNA profile to a 

control. As a proof of concept, we tested this RNAi-based approach in HEK293T cells, where 

we characterized the detected PLD6-dependent small RNAs further and investigated potential 

target transcripts. 

 

4.3. Results 

4.3.1. PLD6 acts as an endonuclease in HEK293T cells 

To test whether PLD6 generates small RNAs in somatic cells in a similar way as it does in germ 

cells, we performed siRNA mediated PLD6-knockdown experiments in HEK293T cells. After the 

knockdown efficacy was validated by qPCR and western blot (S-Figure 4.1), small RNA libraries 

from knockdown and control cells were generated and sequenced. 

The obtained sequence reads (see S-Figure 4.2 and S-Figure 4.3 for the read length 

distribution) were subjected to several quality filters (S-Table 4.1) and mapped to the human 

genome. We then analyzed the differential small RNA read abundancy between the two 

libraries using the annotation tool unitas. According to these calculations, 899 non-identical 

sequences represented by 2,704,936 reads are significantly more abundant in the non-target 

control (these are presumably PLD6-dependent small RNAs), while 172 non-identical 

sequences represented by 249,829 reads are higher expressed in the PLD6-knockdown cells 

(figure 4.2, S-Table 4.1). 
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Figure 4.2: Plotted rpm values of small RNAs being differentially expressed between PLD6-KD and control as 

calculated by unitas (-diffexpr_estdev 0.1). The highlighted sequences were selected for further qPCR 

analysis to crosscheck the differential expression (DE-qPCR) and to check for 2’-O-methylation of the 3’ ends of 

PLD6-dependent small RNAs (NaIO4-qPCR). 

 

Strikingly, the majority of the small RNAs likely to be PLD6-dependent has the typical length 

of piRNAs (24-32 nt, figure 4.3). In contrast to that, only few of the sequences being higher 

expressed in the PLD6-knockdown HEK293T cells lies in this size range. This indicates that PLD6 

works as an endonuclease not only in the germline, but also in somatic cells. Although the 

PLD6-dependent small RNAs exhibit the typical piRNA length distribution, they mainly 

originate from different transcripts compared to piRNAs in the germline (figure 4.4). 
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Figure 4.3: Length distribution of small RNAs being differentially expressed between PLD6-KD and control. It 

shows that upon PLD6-knockdown sequences with the typical length of piRNAs are diminished. The dashed line 

depicts the non-identical sequences per million being represented by the reads of a specific length. 

 

 

Figure 4.4: Unitas annotation of significantly higher expressed small RNAs in control (upper) and PLD6-KD (lower) 

HEK293T cells. 
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To rule out erroneous distortions arising from library preparations, we crosschecked the 

differential expression of 14 selected small RNAs by using qPCR. These 14 small RNAs, that 

cover the whole length spectrum, were chosen due to their relative high abundance in the 

control library (figure 4.2, yellow bullets). Blast analyses of these small RNAs show hits for e.g. 

miRNAs, tRNA fragments, snoRNAs and piRNAs. 

 

 

Figure 4.5: qPCR on selected small RNAs (n=2) supports the differential expression in PLD6-knockdown (KD) and 

non-target control (NT) HEK293T cells at 24 and 48 hours as determined by unitas analysis of the small RNA 

sequencing data. Primer pair f5 did not amplify any product. 

 

The expression profile of the tested small RNAs confirms the differential expression revealed 

by sequencing (figure 4.5). Hence, qPCR analysis on 14 small RNAs from PLD6-knockdown and 

control HEK293T cells supports the notion that PLD6 can generate small RNAs in somatic cells 

by acting as an endonuclease. 

 

4.3.2. PLD6-dependent small RNAs in HEK293T cells do not have typical piRNA 

characteristics 

As small RNA sequences with the typical length of piRNAs were significantly depleted in the 

PLD6-knockdown cells, we asked whether these small RNAs bear the typical characteristics of 

piRNAs. In the germline, PLD6-generated piRNAs are usually primary piRNAs, which show a 

bias for a uridine at the first position of the 5’ end. Like all piRNAs, they have a protective 

2’ O-methylation at their 3’ end. 
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We analyzed the sequences that are more abundant in the control library for the base 

proportion at their first position of the 5’ end. Neither for the non-identical sequences, nor 

for the total reads a 1U bias could be observed (figure 4.6A). Thus, the sequences likely to be 

PLD6-dependent in somatic cells do not seem to have a 1U bias. 

 

  

Figure 4.6: (A) Unlike piRNAs, somatic PLD6-dependent small RNAs do not show a 1U bias at the 5’ end. (B) 

Sodium periodate treatment followed by qPCR analysis (n=2) reveals that the tested PLD6-dependent small RNAs 

are not 2’-O-methylated at their 3’ end. Small RNAs listed as piRNAs (green) show a slightly higher resistance to 

this treatment indicating a residual modification. 

 

To check for potential 2’-O-methylation of the 3’ ends, eight of the previously tested small 

RNAs were submitted to sodium periodate treatment (figure 4.2, orange crosses). As figure 

4.6B shows, for each of the eight tested small RNAs, almost no amplification was detectable 

by qPCR compared to a non-treatment control. Hence, PLD6-dependent small RNAs in 

HEK293T cells do not seem to be 2’-O-methylated at their 3’ ends. 

Interestingly, the two small RNAs, which are listed as piRNA sequences in the NCBI database 

(figure 4.6B, green bars), show a slightly higher resistance to the treatment than the other 

ones. This suggests that there might be a residual activity of the piRNA processing pathway in 

somatic cells. 

 

4.3.3. RNA sequencing of PLD6-knockdown HEK293T cells does not reveal target 

transcripts of PLD6-dependent small RNAs 

To investigate, whether the PLD6-dependent small RNAs have a gene regulatory function, we 

sequenced the transcriptome of the PLD6-knockdown HEK293T cells and analyzed the 

differential expression in comparison to non-target control HEK293T cells. As figure 4.7A 
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shows, 8265 genes were found to be significantly differentially expressed between the PLD6-

knockdown and the control cells (adjusted p-value < 0.01). While slightly more genes get 

upregulated (4,179 genes) upon PLD6-knockdown, genes that are downregulated (4,086 

genes) tend to have higher n-fold changes. As expected, PLD6 is significantly downregulated. 

Its expression is reduced about 70% (log2FC = -1.73). 

 

 

Figure 4.7: (A) Volcano plot of differential expression analysis for protein-coding genes of PLD6-knockdown and 

control HEK293T cells. Genes with an adjusted p-value below 0.01 were considered significantly differentially 

expressed (blue). (B) Cumulative plot for log2-fold-change values of genes that were identified by piRanha as 

potential targets of PLD6-dependent small RNAs (orange) and of all genes (black). 

 

In order to check for genes that might be higher expressed in the PLD6-knockdown cells due 

to the loss of regulating PLD6-dependent small RNAs, we mapped the identified PLD6-

dependent small RNAs to the human transcriptome. Depending on the number of alignments 

that follow the piRNA targeting rules according to Zhang et al. 2018 and the differential 

expression of the matching small RNAs a score for each transcript was calculated using the 

self-developed Perl script piRanha.pl. If the PLD6-dependent small RNAs silence genes by 

following the piRNA targeting rules, transcripts with high piRanha scores should be enriched 

to get upregulated when PLD6-dependent small RNAs are depleted by PLD6-knockdown. 

When analyzing the differential expression of transcripts that might be targets according to 

piRanha (piRanha score > 500) we do not see any difference to the transcriptome in general 

(figure 4.7B). This suggests that the PLD6-dependent small RNAs in HEK293T cells do not 

regulate protein-coding transcripts by a piRNA-like RNAi mechanism. 

In order to find an explanation for the high number of differentially expressed genes upon 

PLD6-knockdown in HEK293T cells, we performed GO term enrichment analysis. The only 

molecular function that was significantly enriched for the upregulated genes was the 

structural molecule activity of ribosome components (figure 4.8A; 13 genes downregulated, 

76 genes upregulated). This is in line with the small RNA sequencing data, where ribosomal 

small RNAs were found to be upregulated upon PLD6-knockdown (figure 4.4). Thus, knocking 

down PLD6 seems to influence the ribosomal dynamics in HEK293T cells. 
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As PLD6 is a major component of the lipid-signaling pathway of mitochondrial fusion and 

fission processes, we also checked for the differential expression of genes involved in 

mitochondrial fusion and fission. As figure 4.8B shows, most of the 41 analyzed mitochondria-

related genes are significantly down- or upregulated (15 down and 14 up; adjusted p-value 

< 0.01), with the extent of regulation being stronger for the downregulated genes. 

 

 

Figure 4.8: Volcano plot of differential expression analysis for protein-coding genes of PLD6-knockdown and 

control HEK293T cells with (A) genes assigned to selected GO terms of molecular function being highlighted and 

(B) genes involved in mitochondrial dynamics being marked in red. 

 

As the major targets of piRNAs are transposable elements, we wanted to check whether the 

expression of repetitive sequences goes up upon PLD6-knockdown. According to DESeq2 

analysis (figure 4.9A), 186 of the 1077 analyzed repetitive elements were significantly 

differentially expressed (adjusted p-value < 0.01). However, there is no difference in number 

or extend of regulation when comparing down- to upregulated repetitive elements. This 

suggests that PLD6-dependent small RNAs are not likely to downregulate repetitive elements 

in HEK293T cells. This assumption is further supported by the fact that most of the PLD6-

dependent small RNAs are mapping in sense orientation to the repetitive elements (figure 

4.9C). Moreover, two third of the differentially expressed repetitive elements are not 

transposable elements, but tRNAs, scRNAs or rRNAs (figure 4.9B). Thus, transposable 

elements do not get upregulated upon diminishing the population of PLD6-dependent small 

RNAs in HEK293T cells. 
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Figure 4.9: (A) Volcano plot of differential expression analysis for repetitive elements of PLD6-knockdown and 

control HEK293T cells. (B) Percentage share of differentially expressed repetitive elements to assigned classes. 

(C) Mapping orientation of PLD6-dependent small RNAs to the respective repetitive element classes.  

 

4.4. Discussion 

Since its discovery, the piRNA pathway is generally considered to be restricted to the germline 

and early developmental processes. Only few studies on non-vertebrate metazoans like Aedes 

aegypti and Aplysia californica could reliably prove an expression and function in gonadal-

unrelated processes like virus-defense and memory-related synaptic plasticity (Miesen et al. 

2015; Rajasethupathy et al. 2012). Recently, this speckled map of somatic piRNA existence 

was essentially extended by large-scale analyses of arthropods and mollusks (Lewis et al. 2018; 

Jehn et al. 2018). The two studies suggest that a somatic piRNA pathway targeting 

transposable elements existed in the ancestral protostome and is maintained by most 

protostomian species to day. As PIWI proteins were found to be expressed in somatic stem 

cells of nonbilaterian species as well (Funayama et al. 2010; Alié et al. 2011; Seipel et al. 2004; 

Juliano et al. 2014), it is probable that somatic function might have been a common state that 

later got lost in some species, especially in the branch of vertebrates. Despite this, some 

studies claim that a somatic function persist in vertebrates in few niches like the hippocampus 

(Nandi et al. 2016; Ross et al. 2014). However, data supporting this hypothesis only consists 

of favorable indications by bioinformatics analyses, while crushing in vitro evidence do not 

exist yet. One obstacle is that adequate antibodies against the PIWI proteins are not available. 

To circumvent this, we developed an RNAi-based approach to pin down small RNAs that 

depend on PLD6, which is the central player of piRNA biogenesis. 

As a proof of principle, this method was first applied on HEK293T cells, which are easy to 

transfect and where PLD6 is reasonably expressed (data not shown). By siRNA-mediated 
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knockdown of PLD6, followed by small RNA sequencing we could identify a small RNA 

population that is diminished upon PLD6-knockdown in HEK293T cells (figure 4.3). As these 

PLD6-dependent small RNAs have the typical size range of piRNAs, PLD6 seems to act as an 

endonuclease also in the soma. This function could not be expected since several studies 

claimed that in somatic cells PLD6 and its mouse and fly homologues only act as 

phospholipases that degrade cardiolipin to phosphatidic acid thereby triggering mitochondrial 

fusion, while their endonucleolytic function is only active within the piRNA processing center 

of germline cells called nuage (Nureki 2014; Huang et al. 2011; Choi et al. 2006; Watanabe et 

al. 2011). A recent study even proposed a mechanism in which the phospholipase reactivity is 

induced by a conformational change due to the interaction with the two orthologues of MIGA 

(Zhang et al. 2016). Despite this, our small RNA sequencing data suggest that PLD6 executes 

its nucleolytic function also in somatic cells. Thus, our PLD6 knockdown approach might be 

applicable to identify potential somatic piRNAs. Although the PLD6-dependent small RNAs in 

HEK293T cells exhibit the typical piRNA length distribution, they mainly originate from 

different transcripts compared to piRNAs in the germline (figure 4.4). This illustrates an 

advantage our method has over homology-based bioinformatics approaches, as piRNAs in the 

soma might have alternative origins apart from the canonical germline piRNA clusters. Unlike 

germline-expressed piRNAs, PLD6-dependent RNAs in HEK293T cells do not have a 1U bias at 

their 5’ end (figure 4.6A). As it was shown that PLD6 does not have a nucleotide preference in 

vitro, this might be the consequence of the absence of PIWI proteins or other components of 

the piRNA pathway machinery that would direct PLD6 to cleave before U (Ipsaro et al. 2012; 

Nishimasu et al. 2012). Furthermore, PLD6-dependent RNAs in HEK293T cells hardly show the 

piRNA-typical 2’ O-methylation at their 3’ end (low resistance to NaIO4 treatment). However, 

those PLD6-dependent RNAs that are listed as piRNAs in the NCBI database have a relatively 

higher NaIO4 resistance, suggesting that there is a residual piRNA maturation machinery in 

this artificial cell system (figure 4.6B). Even though HEK293T cells lack most of the relevant 

piRNA pathway components, our initial study in HEK293T cells suggests that our PLD6-

knockdown and sequencing approach allows the identification of piRNAs in the soma. 

Another advantage of our method is that it allows to assess the functional relevance of these 

putative piRNAs by studying knockdown phenotypes (e.g. via transcriptome sequencing). A 

limitation that comes along with the approach is that besides its function in piRNA biogenesis, 

PLD6 is also a major constituent of the lipid-signaling pathway of mitochondrial fusion and 

fission. Knocking down PLD6 therefore not only inhibits the production of potential piRNAs, 

but also disturbs the mitochondrial metabolism. This is also reflected in our transcriptome 

sequencing data of PLD6-knockdown and control cells, where most of the analyzed 

mitochondria-related genes are differentially expressed (figure 4.8B). Additionally, analysis of 

our transcriptome and small RNA sequencing data revealed that knocking down PLD6 seems 

to increase the abundancy of ribosomal constituents in HEK293T cells (figure 4.8A, figure 4.4). 

As noticed by Tanwar et al. 2016, genes involved in mitochondrial dynamics like Drp1 and 

Mfn2 are associated with changes in ribosomal pathways. Therefore, it is probable that the 

upregulation of structural constituents of the ribosome is a consequence of disturbing 

mitochondrial dynamics by knocking down PLD6. This needs to be considered, when analyzing 
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differential expression of protein-coding genes in order to identify potential targets of the 

putative piRNAs. 

As transposable elements are the major targets of gonadal piRNAs, we checked the differential 

expression of repetitive elements in PLD6-knockdown and control cells. Only few repetitive 

elements were differentially expressed and most of them are repeats of structural RNAs rather 

than transposable elements (figure 4.9A+C). Thus, transposable elements are not de-

repressed in HEK293T upon depleting the PLD6-dependent small RNA population. This is not 

surprising, since transposable elements are considered to be stably epigenetically silenced in 

somatic non-stem cells like HEK293T cells (Bourque et al. 2018). Furthermore, most of the 

PLD6-dependent small RNAs map in sense direction to the repetitive elements, indicating that 

these molecules are not generated in order to serve as transposon control (figure 4.9B). 

Beyond transposon control, it was shown that the gonadal piRNA pathway is also involved in 

the posttranscriptional regulation of protein-coding genes (Rouget et al. 2010; Gou et al. 2014; 

Gebert et al. 2015; Zhang et al. 2015). We therefore analyzed the differential expression of 

protein-coding genes to check whether PLD6-dependent small RNAs have a similar function in 

HEK293T cells. Although many protein-coding genes were differentially expressed upon PLD6-

knockdown, we did not identify an upregulation that could be explained by piRNA-like 

targeting of the PLD6-dependent small RNAs (figure 4.7B). Yet, we do not see this as a disproof 

of the explanatory power of our approach, as the lack of gene regulatory function of the PLD6-

dependent small RNAs in HEK293T cells might be explained by the absence of PIWI proteins 

in this cell line. To evaluate the value of our method on a final basis, it is therefore essential 

to test the method on physiologically more relevant stem cells, where PLD6 and the PIWI 

proteins are substantially expressed (Sharma 2001; Wu et al. 2010; Nolde et al. 2013; Nandi 

et al. 2016). A good starting point might be primary cells of the human dentate gyrus, as adult 

neurogenesis and active retrotransposition is taking place in this particular subregion of the 

adult hippocampus (Eriksson et al. 1998; Boldrini et al. 2018; Muotri et al. 2005; Coufal et al. 

2009). 

 

4.5. Materials and Methods 

4.5.1. PLD6-knockdown in HEK293T cells by antisense-siRNA transfection 

HEK293T cells (5E4 cells/well) were seeded in 24-well plates and cultured in 1x GlutaMAX™-I 

DMEM supplemented with 10% FBS (Thermo Fisher). The next day the cells were transfected 

with 10 nM Silencer™ Select antisense-PLD6 No. 3 (4392420_s47323; Thermo Fisher) or with 

10 nM Silencer™ Select Negative Control No. 1 siRNA (4390843; Thermo Fisher) using 

Lipofectamine™ RNAiMAX (Thermo Fisher) according to the manufacturer’s protocol. 24 and 

48 hours after transfection, the total RNA and proteins were isolated according to the TRI 

Reagent™ protocol (Thermo Fisher). 
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4.5.2. qPCR to validate PLD6-knockdown 

In order to determine the relative mRNA concentration of PLD6 in the cultured cells, the total 

RNA was reverse transcribed to cDNA with SuperScript™ IV Reverse Transcriptase (Thermo 

Fisher) using random hexamers. Exon-spanning primers amplifying ~200 bp amplicons were 

designed for PLD6 and ACTB (S-Table 4.2) using the NCBI tool Primer-BLAST 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). These primers were utilized to analyze 

the obtained cDNA as technical duplicates on a Corbett Rotor-Gene 6000 real-time PCR cycler. 

The copy numbers of the respective genes were quantified by standard curves of the 

individual primer pair amplicons and normalized by the housekeeping gene ACTB to calibrate 

for variabilities in sample preparation. 

 

4.5.3. Western blot to validate PLD6-knockdown 

The protein expression of PLD6 in the cultured cells was quantified in relation to β-actin by 

western blot analysis. Therefore, the protein-containing phenol phase of the TRI Reagent™ 

extraction was dialyzed at 4°C for 20 h, 4 h and finally 2 h in a MWCO 14000 cellulose dialysis 

tube (Carl Roth) against a 1% SDS solution. Afterwards Halt™ Protease Inhibitor Cocktail 

(Thermo Fisher) was added and the protein solution was concentrated at room temperature 

in 10K-Amicon columns (Merck Millipore) for 15 min at 14,000 x g. The protein concentration 

was determined with the Qubit™ Protein Assay Kit (Thermo Fisher) and 40 µg of total protein 

were applied on a SDS-polyacrylamide gel (4% stacking gel, 12.5% running gel) after they had 

been denaturated for 5 mins at 100°C in the presence of equal amounts of 2x Lämmli sample 

buffer. After electrophoretic separation, the proteins were blotted on a methanol-activated 

0.45 µm Roti®-PVDF membrane (Carl Roth). The membrane was blocked in 5% milk blocking 

buffer and incubated with the primary antibodies for PLD6 (ab170183; Abcam) and β-actin 

(ab8226; Abcam). For signal detection with a Bio-Rad ChemiDoc™ Imaging System, HRP-

conjugated secondary antibodies (ab6721; Abcam | ABIN101802; antikoerper-online.de) were 

added and a luminol-containing ECL solution was applied. Relative signal intensity was 

calculated with the supplied Image Lab™ software. 

 

4.5.4. Small RNA sequencing, annotation and data analysis 

After the knockdown efficacy was validated by qPCR and western blot, total RNA (m > 1 µg, 

c > 50 ng/µL) of PLD6-knockdown and non-target control HEK293T cells isolated 24 h after 

transfection was sent to BGI in Hong Kong for library preparation and 50 bp single-end 

sequencing of the small RNA population. On average 86 million single-end reads were 

obtained, where adapter sequences had been already clipped off. After conversion to the 

fasta-format by TBr2_fastq2fasta.pl, sequences were filtered for length (15-40 nt) by 

TBr2_length-filter.pl, collapsed to non-identical reads by TBr2_collapse.pl and depleted for 

low-complexity sequences by TBr2_duster.pl. Furthermore, reads obtained for the knockdown 

cells that contain the sequence of the transfected PLD6-siRNA were removed by RemovePLD6-
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siRNA-Nr3.pl. The remaining reads were mapped to the human genome (Ensembl, 

GRCh38.p11) by sRNAmapper.pl (version 1.0.4), while setting the parameters to keep only the 

best alignments. Using unitas.pl (version 1.0.0), the mapped sequences were annotated and 

differential expression of small RNAs was analyzed for an estimated deviation of 10% among 

replicates. The used Perl scripts, except for RemovePLD6-siRNA-Nr3.pl, are part of the NGS 

toolbox (version 2.1). 

 

4.5.5. qPCR to validate small RNA sequencing analysis and check for 2’OMe-

modification at 3’ end 

To crosscheck the differential expression revealed by small RNA sequencing, we selected 

14 small RNAs to measure their relative expression using qPCR. These 14 small RNAs cover the 

whole length spectrum and were selected as they have relatively high read counts in the 

control library. To be able to quantify the small RNAs via qPCR without disturbing precursors, 

the small RNA fraction was size-separated (15-40 nt) by a urea-polyacrylamide gel. The small 

RNAs were eluted from the gel by shaking the crushed gel slices in RNase-free water in the 

presence of RiboLock™ RNase Inhibitor (Thermo Fisher) for 2 h at 37°C. After removing the gel 

pieces with a 0.45 µm Ultrafree-MC column (Merck Millipore), the small RNAs were washed 

twice with RNase-free water using 3K-Amicon columns (Merck Millipore). In order to provide 

an annealing site for a reverse primer, the purified small RNAs were then polyadenylated at 

their 3’ end using the A-Plus Poly(A) Polymerase Tailing Kit (CellScript). After ethanol 

precipitation, the polyadenylated small RNAs were reverse transcribed with the SuperScript™ 

IV reverse transcriptase (Thermo Fisher) using the “RT-PolyT” primer. Using the respective 

small RNA sequence as forward primer and “PCR against RT-PolyT” as reverse primer, the 

cDNA copies of the 14 small RNAs were quantified as technical duplicates on a Corbett Rotor-

Gene 6000 real-time PCR cycler using the standard curve method (for primer sequences refer 

to S-Table 4.2). To normalize for sample quantity the copy numbers were relativized by the β-

actin copy numbers determined during knockdown-validation. To check for potential 2’-O-

methylation of the 3’ ends, eight of these 14 small RNAs were submitted to sodium periodate 

treatment (like described in Rajasethupathy et al. 2012) prior to polyadenylation. By this 

approach, the sugar of the 3’ end nucleoside of small RNAs without the protective 

modification is broken up and therefore not accessible for the addition of the polyA-tail 

necessary for qPCR amplification. Apart from the sodium periodate treatment the 

quantification procedure was unchanged. 

 

4.5.6. RNA sequencing, data processing and differential expression analysis 

Total RNA isolated 48 h after transfection from PLD6-knockdown and non-target control 

HEK293T cells (n=3) was send for library construction and paired-end sequencing to BGI (Hong 

Kong). On average 35 million paired-end reads were obtained. Using the online platform 

Galaxy (usegalaxy.org) the reads were first mapped to the human genome (Galaxy hg38) by 
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RNA STAR (Galaxy Tool Version 2.6.0b-1). Afterwards, gene wise counting was performed with 

featureCounts (Galaxy Tool Version 1.6.0.6) on basis of an Ensemble GTF-file 

(Homo_sapiens.GRCh38.90), which had been converted to UCSC coordinates using the File 

Chameleon tool of Ensembl. Based on the generated count tables, DESeq2 (Galaxy Tool 

Version 2.11.40.2) was used to identify significantly differentially expressed genes (adjusted 

p-value < 0.01). Volcano plots based on the DESeq2 result file were created with R (version 

3.4.3). In order to check whether the expression of repetitive sequences would go up upon 

PLD6-knockdown, we repeated the differential expression analysis this time allowing the 

reads to map to multiple locations in the genome (Maximum number of alignments to output 

a read's alignment results: 100). We then fractionally counted mapping events for repetitive 

elements based on a GTF file containing the coordinates of repeatmasker-identified repetitive 

elements (“hg38_rmsk_TE.gtf.gz”, version 18-Mar-2018 15:32, downloaded from 

labshare.cshl.edu/shares/mhammelllab/www-data/TEToolkit/TE_GTF/) with featureCounts 

and likewise analyzed the differential expression with DESeq2 and R. 

 

4.5.7. Evaluation of piRNA-like gene regulation and GO term analysis 

In order to check for genes that might be higher expressed in the PLD6-knockdown cells due 

to the loss of regulating PLD6-dependent small RNAs, we used the self-developed perl script 

piRanha.pl. By using the option -use_scores, piRanha calculated a score for each transcript 

that reflects how likely it is that the transcript is a target of the PLD6-dependent small RNAs 

according to the piRNA targeting rules (Zhang et al. 2018) including the number of target sites 

and the differential expression of the small RNAs. The score is calculated as described in figure 

4.10. To test for an enrichment of differential expression, cumulative functions of log2FC 

values were plotted for the subset of potential target genes of PLD6-dependent small RNAs 

(piRanha score > 500) in comparison to all quantified genes. Additionally, GO term analysis for 

significantly differentially up- and downregulated genes was performed with the Panther 

functional classification tool (http://pantherdb.org/). 

 

Figure 4.10: Exemplary representation of how piRanha scores were calculated. 
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4.9. Supplement 

 

S-Figure 4.1: Validation of PLD6-knockdown on the transcript level via qPCR (left) and on the protein level via 

western blot (right). 

 

 

S-Table 4.1: Numerical summary of the output generated by the respective analysis steps. 

Applied processes Non-Target Control PLD6-Knockdown 

Clean Reads BGI 82,491,565 reads  
(3,415,186 non-id) 

89,592,331 reads  
(2,937,180 non-id) 

Fastq2fasta Not affected Not affected 

Length-filter 15-40 nt 82,485,954 reads  
(3,410,868 non-id) 

89,590,131 reads  
(2,935,278 non-id) 

Collapse Not affected Not affected 

Duster 3,405,257 non-id 2,929,545 non-id 

RemovePLD6-siRNA-Nr3 Not affected 2,908,766 non-id 

sRNA-mapper (–a best) 66,711,467 reads  
(1,173,992 non-id) 

59,241,468 reads  
(1,059,552 non-id) 

Unitas-filter 66,235,564 reads 58,784,723 reads 

Unitas diffexpr  
(-diffexpr_estdev 0.1) 

2,704,936 reads  
(899 non-id) 

249,829 reads  
(172 non-id) 
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S-Figure 4.2: Length profile of small RNA reads sequenced from HEK293T cells transfected with a non-target-

control-siRNA (control). The dashed line depicts the proportion of non-identical sequences being represented by 

the reads of a specific length. 

 

 

S-Figure 4.3: Length profile of small RNA reads sequenced from HEK293T cells transfected with an anti-PLD6-

siRNA (PLD6-KD). The dashed line depicts the proportion of non-identical sequences being represented by the 

reads of a specific length. 

 

S-Table 4.2: Sequences of oligonucleotide ordered from biomers.net. 

Name Stock Sequence 5' -> 3' Gene Design by 

PLD6 
fwd 

1711 ATCTCTGCCTGTTCGCCTT PLD6 Julian 
Kiefer 

PLD6 
rev 

1706 CCACGATGGCAAACTTGTGA PLD6 Julian 
Kiefer 

ACTB 
fwd 

1715 CGAGCACAGAGCCTCGCCTTT ACTB Julian 
Kiefer 

ACTB 
rev 

1716 CATGCCCACCATCACGCCCTGG ACTB Julian 
Kiefer 
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Name Stock Sequence 5' -> 3' Gene Design by 

f1 1730 AGCTACATCTGGCTACTGGGTCTCAA MIR222 Julia Jehn 

f2 1731 ATCTGTGATGATCTTATCCCGAACCTGAA SNORD50A Julia Jehn 

f3 1732 TCCCTGGTGGTCTAGTGGTTAGGATTCGG LncRNA 
/tRNA-Glu 

Julia Jehn 

f4 1727 GGCTGGTCCGAAGGTAGTGAGTTATCTCAAT RNY1 Julia Jehn 

f5 1728 TCTGGTGATGAAATGGAACGTTTCTGATG IL37/DIAPH
1 

Julia Jehn 

f6 1729 ACCGCCTGGGAATACCGGGTGCTGTAGGCTT RNA5SP358 Julia Jehn 

f7 1724 CTTCGTGATCGATGTGGTGACGTCGTGCTC 45S pre-
ribosomal 5 

Julia Jehn 

f8 1725 AGAGGGTCTTTTTCACCCCGCTGTTGCTCTT Gly-tRNA Julia Jehn 

f9 1726 AATGTGTGACTGAAAGGTATTTTCTGAGC SNORD31 Julia Jehn 

f10 1721 CGAGAGGGGCTGTGCTCGCAAGGTTTCTT SLC6A6 Julia Jehn 

f11 1722 ATTAATGATGAGATATAACCTTGACTGAAG SNORD119 Julia Jehn 

f12 1723 GTCAATGATGAATGGTAAAAGGTCTGAGT piR-36338 
/SCARNA6 

Julia Jehn 

f13 1718 GTGGGGTTCGTTTTCGGGCATGAAAATTT tRNA-Arg Julia Jehn 

f14 1719 TTCGATGAAGAGATGATGACGAGTCTGACT piRNA piR-
60668 

Julia Jehn 

PCR 
against 
RT-
PolyT 

RNA 
#4 

CGAATTCTAGAGCTCGAGGCAGG 
 

David 
Rosenkranz 

RT-
PolyT 

RNA 
#3 

CGAATTCTAGAGCTCGAGGCAGGCGACATGT2

5VN 

 
David 
Rosenkranz 
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5.1. Abstract 

Codon composition, GC-content and local RNA secondary structures can have a profound 

effect on gene expression and mutations affecting these parameters, even though they do not 

alter the protein sequence, are not neutral in terms of selection. Although evidence exists that 

in some cases selection favors more stable RNA secondary structures, we currently lack a 

concrete idea of how many genes are affected within a species, and if this is a universal 

phenomenon in nature. We searched for signs of structural selection in a global manner, 

analyzing a set of one million coding sequences from 73 species representing all domains of 

life, as well as viruses, by means of our newly developed software PACKEIS. We show that 

codon composition and amino acid identity are main determinants of RNA secondary 

structure. In addition, we show that the arrangement of synonymous codons within coding 

sequences is non-random, yielding extremely high, but also extremely low RNA structuredness 

significantly more often than expected by chance. Together, we demonstrate that selection 

for high and low levels of secondary structure is a widespread phenomenon. Our results 

provide another line of evidence that synonymous mutations are less neutral than commonly 

thought, which is of importance for many evolutionary models. 

 

5.2. Introduction 

The genetic code of DNA uses units of three nucleotides (codons) to code for one amino acid. 

Since the number of possible codons exceeds the number of proteogenic amino acids, most 

amino acids are encoded not by a single but several different codons. Therefore, mutations 

on the DNA level do not necessarily result in an altered amino acid sequence of the 

corresponding protein. These silent (synonymous) substitutions have long been assumed to 

be neutral in terms of natural selection (Kimura 1977). However, silent substitutions will 

necessarily result in altered codon composition of a gene and further have the potential to 

alter a gene’s GC-content, both being features that can indeed be subject to selection (Sharp 
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et al. 1995). Moreover, silent substitutions can change the secondary structure of an mRNA, 

thereby affecting the process of translation (Babendure et al. 2006; Kudla et al. 2009; Mao et 

al. 2014; Huang et al. 2019) and non-random patterns of secondary structures within protein 

coding genes in different species have been explained by natural selection (Katz and Burge 

2003; Chamary and Hurst 2005; Hoede et al. 2006; Fricke et al. 2018). 

However, the currently available data does not allow to assess whether selection that acts on 

secondary structures within coding sequences represents a peculiarity of a few genomic loci 

in a limited number of species, or rather a widespread phenomenon, affecting many genes in 

species throughout the domains of life. It is further unknown, if selection acts only in one 

direction, favoring strong secondary structures as suggested by previous studies, or 

alternatively yields extremes at both ends of the spectrum. 

To address these issues, we analyzed protein coding sequences of 73 species representing all 

domains of life and further included more than 240 thousand non-identical viral coding 

sequences. Using our newly developed software PACKEIS, we compared the predicted 

secondary structure of the evolutionary realized variants with that of corresponding artificial 

coding sequences that could have been realized in order to encode the same peptide 

sequence. We show that codon usage and amino acid identity both massively influence 

secondary structures. Beyond that, we identified protein coding sequences that exhibit 

extremely high or low structuring, compared to their artificial counterparts, independent of 

altered GC-content or codon usage, which is due to a non-random arrangement of 

synonymous codons within the coding sequence. Importantly, these extreme solutions occur 

significantly more often than we would expect when assuming absence of selection that favors 

structural extremes (structural selection). For the species under examination, we 

conservatively evaluate the fraction of protein coding sequences being subject to structural 

selection at on average 2-3%. We propose that altered structures of coding sequences affect 

a transcript’s stability and/or its translation efficiency, which in turn are traits that evolution 

can act on, this way yielding the unexpectedly high number of structural extremes. A 

remarkably high number of coding sequences under structural selection was found in RNA 

viruses and we speculate that small RNA based host immune systems have exerted a selective 

regime on viral genomes favoring highly backfolded transcripts to avoid targeting by anti-viral 

small RNAs (Ding and Voinnet 2007; Ding and Lu 2011). 

 

5.3. Results  

5.3.1. Approach and software development 

Prior to our actual survey, we had to develop a software tool that allowed us to assess whether 

or not a realized open reading frame (original ORF, oORF) represents an extreme solution in 

terms of backfolding (base pairing with itself through self-complementarity), considering the 

alternative ORFs (aORFs) that could have been realized in order to encode the given peptide 

sequence based on usage of synonymous codons. To this end, we have developed the highly 
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parallelizable software PACKEIS which compares the degree of backfolding (DBF) of the oORFs 

with that of a defined number of aORFs, this way yielding a DBF-score ranging from 0 to 1, 

referring to the degree of backfolding in the light of alternative codon usage with 0 

representing extremely low structuredness and 1 representing extremely high structuredness. 

Details on the PACKEIS algorithm can be found in the Methods section. 

 

5.3.2. ORFs exhibit extreme structures more often than expected by chance 

Initially we speculated that particularly ORFs of viral genes may exhibit high levels of 

backfolding in order to escape small RNA based anti-viral responses of host immune systems. 

A piRNA-based immunity against viruses has been described in mosquito species such as 

Aedes aegyptii, and virus derived siRNAs that confer antiviral immunity can be found in plants, 

mosquitoes as well as in mice and human somatic cells (Ding and Voinnet 2007; Ding and Lu 

2011; Qiu et al. 2017; Varjak et al. 2018; Huang and Li 2018). We thus started our analyses 

with ORFs of polyproteins from 13 human-pathogenic mosquito-borne viruses (Powell 2018). 

Contrasting our expectation, we found that only the Edge Hill virus ORF exhibits DBF-scores 

that imply a significant high degree of backfolding (DBF-scoremodel0=0.99, DBF-

scoremodel2=1.00) while the ORFs of the other tested viral polyproteins have unremarkable 

DBF-scores in the range of >0.05 to <0.95 (figure 5.1A). 

 

 

Figure 5.1: (A) DBF of aORFs from mosquito-borne RNA viruses for the purpose of illustration. X-axis shows the 

distribution of DBFs relative to the average value of all aORFs. Genomes of the Yellow Fever virus and the Edge 

Hill virus genomes both encode a single polyprotein. DBFs and the corresponding DBF-scores are indicated in 

red. Only the ORF of the Edge Hill virus shows an exceptional DBF which is considerably higher compared to the 

corresponding aORFs (DBF-scoremodel0=0.99, DBF-scoremodel2=1.00). (B) The analysis of DBF-scores for all available 
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viral ORF sequences reveals a consistent and significant enrichment for extremely high DBF-scores. (C) Lines in 

the heatmap represent species, rows represent DBF-scores from 0 to 1 in steps of 0.01 using model2 (shuffle). 

The color indicates row Z-scores with Z-scores above 1.96 (p<0.05 for the two-tailed hypothesis) indicated in 

shades from yellow to red. Lines for viruses represent dsDNA-, dsRNA, ssDNA-, ssRNA(-)- and ssRNA(+)-viruses. 

 

In order to assess whether at all ORFs with extremely high or low DBF-scores occur 

significantly more often than expected by chance, we extended our analyses to a complete 

collection of non-identical viral ORFs (n=244,314) that are deposited at NCBI’s GenBank 

sequence database. Indeed, we observed a significant enrichment for ORFs with high DBF-

scores (figure 5.1B). While we would expect that under neutral conditions each DBF-score 

from 0 to 1 in steps of 0.01 accounts for roughly the same amount (1/101) of analyzed ORFs, 

the fraction of ORFs with a DBF-score of 1 accounts for 6.2%, 5.3% and 2.3% of all viral ORFs 

according to model0, model1 and model2, respectively (figure 5.1B). Despite the significant 

enrichment for ORFs with high DBF-scores, the fact that the large majority of ORFs showed no 

signs of selection for strong secondary structures casted doubt on our initial speculation that 

small RNA based immune responses have exerted strong selective regimes favoring highly 

backfolded ORFs. 

Alternative explanations for favoring extreme levels secondary structures base on altered RNA 

stability and altered translation efficiency or a tradeoff between both, which would be a 

fundamental principal whose footprints should be present in all organisms. We thus sampled 

73 representatives from all domains of life and calculated DBF-scores of their ORFs in a 

genome wide manner (electronic supplementary material, table S1). We found that applying 

model2 yielded the most modest results and we will thus refer to the results that base on 

model2 in the following, in order to give conservative estimates on the number of ORFs that 

we assume to be under structural selection, and to exclude effects related to GC content and 

biased codon usage. For the entirety of analyzed aORFs the fraction of paired bases relative 

to the oORF follows a Gaussian distribution ranging from 91% to 109% compared to the oORF. 

For 59 species we observed a significant enrichment of ORFs with DBF-scoremodel2>0.95 (figure 

5.1C). Of these, nine species additionally showed a significant enrichment of ORFs with DBF-

scoremodel2<0.05. Nine species exhibited only a significant enrichment of ORFs with DBF-

scoremodel2<0.05 but not ORFs with DBF-scoremodel2>0.95. For the remaining five species, 

neither significant enrichment for extremely high nor low DBF-scores could be observed 

(figure 5.1C; electronic supplementary material, table S1). When comparing the DBF-scores of 

homologous genes across different species we did not find significant correlations, suggesting 

fluctuating structural selective forces on homologous genes along different phylogenetic 

branches (electronic supplementary material, table S2). We did further find no correlation 

between DBFscoresmodel2 and gene expression, neither on the transcript nor the protein level 

(electronic supplementary material, table S3). 

Remarkably, an enrichment for ORFs with DBF-scoremodel2<0.05, suggesting selection that 

favors low levels of secondary structure, is present in 16 out of 33 sampled eukaryotic species 

(and 7 out of 8 plant species), while the same applies only to 1 out of 20 sampled archaeal, 
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and 1 out of 20 sampled bacterial species. To quantify the fraction of ORFs that is presumably 

subject to structural selection within a given species, we summed up the fraction of ORFs with 

DBF-scoresmodel2<0.05 and DBF-scoresmodel2>0.95, taking only quantiles with Z-score≥1.96 

(p<0.05 for the two tailed hypothesis) into account. We then subtracted the share of ORFs 

expected to be allotted to the corresponding quantiles assuming a uniform distribution of 

DBF-scores under absence of selection (see Methods section). On average, we obtained 

similar fractions of ORFs under structural selection per species in the three domains of life 

ranging from 1.98% in archaea to 2.06% in eukaryotes and 2.54% in bacteria (figure 5.3A; 

electronic supplementary material, table S4). 

Interestingly, the number of ORFs under structural selection from species representing all 

three domains of life is considerably lower compared to what we initially observed for virus 

ORFs, reviving the idea that small RNA based immune systems may have contributed to the 

realized structuring patterns. If so, we would expect that particularly viruses that encode their 

genome in form of single stranded RNA, which represents a putative target for antisense small 

RNAs of a host, would be exposed to a selective pressure that favors highly structured ORFs. 

We thus grouped viruses according to virus types into five classes (double stranded (ds) DNA 

viruses, single stranded (ss) DNA viruses, dsRNA viruses, ssRNA plus-strand viruses and ssRNA 

minus-strand viruses) and checked the structuring patterns of ORFs for each class separately 

(figure 5.2A). Remarkably, the fraction of genes under structural selection is significantly 

higher in viruses and on average more than twice as high as in any of the three domains of life 

(figure 5.2B). Moreover, we found that ssDNA and dsDNA viruses show the lowest amount of 

ORFs under structural selection within viruses, while ssRNA plus-strand and ssRNA minus-

strand viruses exhibit the highest amount of ORFs under structural selection. Notably, 11.5% 

of ORFs from ssRNA minus-strand viruses are presumably subject to structural selection, a 

value that surpasses that of any other of the 73 species under examination (figure 5.2A). 
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Figure 5.2: (A) Estimation on the fraction of ORFs under structural selection. (B) Virus ORFs are significantly more 

often under structural selection. P values represent two-tailed p values from unpaired t-tests. Error bars refer to 

standard deviation. (C) Codon frequencies in ORFs sorted by DBF-score. Data exemplarily taken from Mus 

musculus. (D) Amino acid frequencies in ORFs sorted by DBF-score. Data exemplarily taken from Mus musculus. 

(E) Structuring of ORFs that code for identical peptide sequences but use different sets of codons (top) and 

structuring of ORFs that code for peptides being composed of different sets of amino acids (bottom). 
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5.3.3. Codon composition and amino acid identity contribute to extreme 

secondary structures in ORFs 

When we compared DBF-scores obtained with different models we were surprised by the 

observation that a considerable fraction of ORFs shows extremely high or low score values 

applying model0 and model1 while showing only intermediate values when applying model2. 

Hence, we considered it unlikely that these ORFs were in fact subject to structural selection. 

Instead we presumed that this pattern is caused by features other than ORF structure alone, 

features which must be differentially implemented in the different models. 

In contrast to model2, model0 and model1 allow to generate aORFs that differ in GC content 

and codon usage from the oORF. This applies in particular to oORFs that have an extremely 

biased codon usage compared to a random codon usage (in case of model0) or the global 

codon usage of the corresponding species (in case of model1). We thus assumed that aberrant 

codon usage can lead to extreme structuring of ORFs and checked codon frequencies of oORFs 

separately for each DBF-score quantile and species, using the three different models. 

Remarkably, when applying model0 and model1 we observed that codons of all amino acids 

(except for M and W which are only encoded by one codon) can be divided into those that are 

found more frequently in highly structured oORFs, or those codons that are found more 

frequently in lowly structured oORFs, while a corresponding bias is absent when applying 

model2 (figure 5.2C). Interestingly, we made an analogous finding when focusing on different 

amino acids instead of codons, suggesting that amino acid identity also influences the degree 

of structuring (figure 5.2D). The above described division of codons for model0 and model1 

invariably follows the combined number of G and C bases in the respective codons for each 

amino acid, where a higher codon GC content correlates with greater frequency in highly 

structured oORFs (electronic supplementary material, figure S2a), an observation recently 

also made by Fricke et al (2018). Similarly, amino acids that are more frequently found in highly 

structured oORFs tend to exhibit higher mean GC shares in their respective codons (p<0.001, 

Mann-Whitney-U test) (electronic supplementary material, figure S2b,c). 

To verify the influence of divergent codon usage on secondary structure, we built a set of 

10,000 random peptides with a length of 500 amino acids each. For each peptide, we 

constructed two corresponding aORFs, using only those codons that are most frequent in 

lowly structured oORFs (set 1) for the first aORF, and only those codons that are most frequent 

in highly structured oORFs (set 2) for the second aORF. Then we compared the degree of 

backfolding for both aORF groups as measured in the amount of paired bases. Confirming our 

observation on codon bias across highly and lowly structured oORFs, we found that using 

different sets of synonymous codons can have a massive effect on the degree of backfolding 

with aORFs being composed of set 1 codons having an average amount of paired bases 

corresponding to the 0.88-fold of the total average (figure 5.2E). Accordingly, aORFs being 

composed of set 2 codons have an average amount of paired bases corresponding to the 1.12-

fold of the total average (figure 5.2E). Since species with large effective population size (Ne) 

are those where codon preferences correlate strongly with tRNA abundance (dos Reis and 
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Wernisch 2008), we checked for a connection between the number of genes under structural 

selection and Ne but did not observe any correlation. 

To check whether amino acid identity also contributes to oORF secondary structure, we built 

another two sets of 10,000 random peptides with a length of 500 amino acids each. Peptides 

in the first set were composed only of those 10 amino acids which are more frequently 

encoded in lowly structured oORFs (set 1 amino acids), while peptides in the second set were 

composed only of those 10 amino acids which are more frequently encoded in highly 

structured oORFs (set 2 amino acids). Equal probabilities for each codon of a given amino acid 

were used. As is the case for divergent codon usage, we found that also amino acid identity is 

an important determinant of oORF secondary structure, with aORFs of peptides being 

composed of set 1 amino acids having an average amount of paired bases corresponding to 

the 0.82-fold of the total average (figure 5.2E). Accordingly, ORFs of peptides being composed 

of set 1 amino acids have an average amount of paired bases corresponding to the 1.28-fold 

of the total average (figure 5.2E). 

 

5.4. Discussion 

Owing to the degenerate nature of the genetic code, synonymous substitutions have initially 

been regarded as neutral in terms of natural selection. Since that, a plethora of studies has 

demonstrated that synonymous codon usage can ultimately alter gene expression, clearly a 

trait that selection can act on. 

As early as 1988, Denis Shields and coworkers found that usage of synonymous codons among 

91 Drosophila melanogaster genes varied greatly (Shields et al. 1988). Further they observed 

that enhanced GC-content due to preference for C-ending synonymous codons correlates with 

gene expression, a finding that has been earlier established also for different unicellular 

organisms (Gouy and Gautier 1982; Shields and Sharp 1987; Bennetzen and Hall 1982). 

Mechanistically, this can be explained by more stable and efficient transcription of GC-rich 

genes and the fact that unfavorable GC-contents can trigger heterochromatization (Kudla et 

al. 2006; Barahimipour et al. 2015; Newman et al. 2016). Apart from GC-content, it is well 

known that codon usage also correlates with tRNA abundance, which is likely the outcome of 

a co-evolution of codon usage and tRNA expression to optimize translation of highly expressed 

genes (Moriyama and Powell 1997; Duret and Mouchiroud 1999; Duret 2000; Kanaya et al. 

2001). 

In contrast to our knowledge on how GC-content and synonymous codon usage affects gene 

expression, far less is known about how secondary structure itself shapes gene expression 

patterns, which is possibly due to the fact that it is not trivial to disentangle these factors since 

one will influence the other and any difference in amino acid or synonymous codon usage will 

likely result in different degrees of RNA secondary structure (Mathews et al. 1999). In regards 

to this issue, we show here that ORFs with unusual levels of backfolding are indeed biased for 

specific sets of codons and amino acids, and our analysis of artificial coding sequences using 
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these different codon and amino acid sets confirmed the close interweaving of codon usage 

bias, amino acid identity and extreme secondary structures. With these results in mind, we 

want to point out that any inferences on which traits evolution in fact acts on should be made 

with particular caution. 

The possible role of mRNA secondary structure in the regulation of gene expression has been 

evaluated previously, though in a limited number of studies and species. Carlini et al. (2001) 

compared two related drosophilid genes Adh and Adhr with respect to codon bias, expression 

and ability to form secondary structures. They noticed that the weakly expressed and weakly 

biased gene Adhr has a much stronger potential for backfolding compared to its heavily 

expressed and biased counterpart. Soon after, a more comprehensive study that compared 

folding energies of original and corresponding artificial coding sequences generated by codon 

shuffling reported widespread selection for local RNA secondary structure, particularly in 

bacterial species but also in some archaea and eukaryotic organisms (Katz and Burge 2003). 

Similar findings were subsequently presented for mammals (Chamary and Hurst 2005). 

Functional evidence for the importance of mRNA structures was provided by Kudla and 

colleagues, who showed that the stability of mRNA folding near the ribosomal binding site is 

a major determinant for the expression of a GFP reporter protein encoded by a set of mRNAs 

that randomly differ at synonymous sites (Kudla et al. 2009). A general correlation of folding 

energies and profiles of ribosomal density in Escherichia coli and Sacharomyces cerevisae 

emphasized the importance of mRNA secondary structure and translation efficiency (Tuller et 

al. 2010). Finally, a subtle large-scale analysis of coding sequences conducted by Fricke and 

colleagues revealed that not only the amount of secondary structure but also their nature is 

non-random, with base pairing events between the first bases of two opposing codons being 

significantly underrepresented, suggesting presence of selective forces (Fricke et al. 2018). 

Noteworthily, Hoede et al. (2006) have proposed that selection also acts on the level of DNA 

structure during transcription and favors local intra-strand secondary structures to reduce the 

extent of transcriptional mutagenesis, a phenomenon that can particularly observed at highly 

expressed genes. An important contribution to this complex issue was recently made by Lai et 

al. (2018) who demonstrated that mRNAs as well as long non-coding RNAs intrinsically form 

secondary structures that result in short 5’- to 3’-end distances which possibly affects the 

process of translation initiation.  

Considering the available data, the unveiled widespread selection for high or low levels of 

secondary structure in coding sequences throughout the analyzed species is not surprising, 

and we propose that evolutionary adjustment of the degree of secondary structure in ORFs 

contributes to fine-tuning of gene expression. If at all, one could argue that our estimates on 

the fraction of genes that is subject to this kind of selection appears surprisingly small. 

However, we want to emphasize that our estimates represent the lower limit, deduced from 

the enrichment of genes with extremely high or low DBF-scores, additionally excluding those 

genes were we cannot rule out that selection acts on the level of codon usage and/or GC-

content instead of secondary structure alone. For these genes we assume that restrictions on 

the amino acid sequence level prevent mRNAs to be optimally folded and that synonymous 
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codon usage is exhaustively used to shift the mRNA towards the optimum. This would be a 

plausible explanation for the enrichment of genes at both ends of the DBF-score spectrum. 

For an undeterminable fraction of genes, the optimal folding might be realized without 

requiring a suspicious arrangement of synonymous codons, though possibly not being less 

subject to structural selection that maintains the current state. 

Interestingly, we found the highest amount of genes under structural selection in RNA viruses. 

Many viral RNA structures, so called cis-acting elements, are important for viral replication but 

are typically restricted to non-translated regions of the viral genome and the function of 

structures within coding sequences is poorly understood (Liu et al. 2009). We speculate that 

highly structured viral coding sequences could be at least in part promoted by anti-viral host 

RNAi pathways. Many species have developed siRNA- and piRNA-based defense strategies to 

combat viral infections (Ding and Voinnet 2007; Ding and Lu 2011; Szittya and Burgyán 2013; 

Bronkhorst and van Rij 2014). Since it has been shown that target secondary structure is a 

major determinant of RNAi efficiency (Shao et al. 2007; Rosenkranz et al. 2015; Fast et al. 

2017), we assume that the evolutionary arms race between viruses and hosts in many cases 

gave rise to viral transcripts that are characterized by a high degree of backfolding in order to 

provide as little attack surface as possible for single-stranded guiding RNAs. 

In summary, our results demonstrate the close connection between codon usage bias, amino 

acid identity and RNA secondary structure. Moreover, using a yet unrivaled broad data basis 

and an algorithm that excludes the effect of altered codon usage and GC-content, we show 

that selection for extreme secondary structures within coding sequences is a widespread 

phenomenon throughout life and, with respect to viral ORFs, even beyond. Finally, with 

PACKEIS we provide a tool that allows other researchers to easily conduct corresponding 

genome wide analyses in any species of their choice not considered in the course of this study. 

 

5.5. Materials and Methods 

5.5.1. Data selection 

In total 73 representative species from the three domains of life (eukaryotes n=33, archaea 

n=20, bacteria n=20) were selected, paying attention to a balanced representation of sub-

clades within a given domain. ORF sequences from eukaryotes were downloaded from 

Ensembl database (release 94, Zerbino et al. 2017). The longest transcripts for each gene were 

extracted using the custom Perl script select_longest_transcripts.pl. For archaea and bacteria 

species, we downloaded cDNA data and peptide data from Ensembl (release 94). We 

translated cDNA in all possible forward frames and checked for presence of the resulting 

peptide sequences in the corresponding peptide dataset. Candidate ORFs with a match in the 

peptide dataset were collected for each species. Prediction of ORF sequences from cDNA and 

peptide datasets was conducted using the custom Perl script ORF_from_cDNA.pl. 

Viral genome sequences were downloaded from NCBI GenBank. ORF sequences were 

extracted from GenBank files and converted into FASTA format using the custom Perl script 
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GB_2_FASTA.pl. Viral sequences were further sorted into separate files according to viral 

classes (ssRNA positive strand, ssRNA negative strand, dsRNA, ssDNA, dsDNA) and hosts 

(algae, archaea, bacteria, environment, human, invertebrates, plants, protozoa, vertebrates) 

using the custom Perl script sort_viral_genomes.pl. All custom Perl scripts used in the course 

of this study are available at https://sourceforge.net/p/packeis. 

Gene expression data was downloaded from PaxDb Protein Abundance Database and EBI 

Expression Atlas (Wang et al. 2015; Petryszak et al. 2016). 

 

5.5.2. The PACKEIS algorithm 

In a first step, PACKEIS calculates average probabilities for base pairing in predicted local RNA 

structures using algorithms of the ViennaRNA package (Lorenz et al. 2011). Therefore it runs 

RNAfold or RNAplfold (depending on the input ORF length) on a number of input sequences 

(FASTA file) and parses the resulting output files. Next, it calculates the degree of backfolding 

(DBF) as measured in the fraction of paired bases within the original ORF (oORF) defined by 

the sum of the average base pairing probabilities for each position divided by the number of 

total bases. In a second step, PACKEIS generates a set of alternative ORFs (aORFs, default 

n=100), each of which still codes for the same amino acid sequence, and calculates the DBF 

for each aORF as described above. By comparing the DBF of the oORF with those of the aORFs, 

PACKEIS outputs a measurand (DBF-score) that allows to assess the probability that the DBF 

of the oORF is a product of chance, where a DBF-score of 0 means that none of the aORFs 

exhibits a lower DBF, while a DBF-score of 1 means that none of the aORFs exhibits a higher 

DBF. The DBF-score is calculated according to the following formula 

DBF − score =
ⅈ ∕ (ⅈ + 𝑗 + 𝑘 ∕ 2)

𝑗 ∕ (ⅈ + 𝑗 + 𝑘 ∕ 2)
 

 

Where i refers to the number of aORFs with higher DBF and j refers to the number of aORFs 

with lower DBF. k refers to the number of aORFs with identical DBF compared to the oORF so 

that the DBF score amounts to 0.5 in case that all aORFs behave exactly as the oORF. 

For the construction of aORFs, PACKEIS implements three different models. Model0 (free) 

uses equal frequencies for all synonymous codons of a specific amino acid. Model1 (strict) 

uses specified codon frequencies that reflect the codon usage of the species in question (or 

alternatively codon usage frequencies as defined by the user). Model2 (shuffle) constructs 

aORFs by shuffling those codons that are already present in a given oORF. In contrast to 

model0 and model1, codon frequencies and GC-content are perfectly preserved in each of the 

aORFs compared to the oORF when applying model2 (figure 5.3). Thus, applying model2 

allows to exclude the impact of aberrant codon usage or GC-content of a given oORF and to 

assess whether the present codons are arranged in a non-random fashion regarding the effect 

on secondary structure (figure 5.3). 
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Figure 5.3: PACKEIS uses different models to generate artificial ORFs based on the original ORF. Colors refer to 

the probability for a specific codon to be placed at a given position. When applying model0 (free) PACKEIS uses 

equal probabilities for all codons of a specific amino acid. When applying model1 (strict) the probabilities are 

derived from the global codon usage of the species in question. When applying model2 (shuffle), codons of the 

original ORF are randomly shuffled. Note that in the above example Valine can only be encoded by GUG when 

applying model2 since no alternative Valine codons are present in the given ORF. 

 

PACKEIS produces a number of output files including a table that lists the DBF-scores for each 

input sequence, a text file that shows the distribution of DBF-scores from 0 to 1 in steps of 

0.01, a table that refers to codon composition, amino acid identity and GC content for ORFs 

with a specific DBF-score, and finally one text file per input sequence that lists the DBF-scores 

for each of the corresponding aORFs. 

To check whether the implemented models yield coherent results, we pairwise compared 

DBF-scores for 27,628 Arabidopsis thaliana ORFs obtained when applying the three different 

models. Indeed we observed a high degree of correlation across the results obtained applying 

the different models as deduced from Pearson’s correlation coefficients ranging from r=0.86 

to r=0.97, supporting the general validity of the results (electronic supplementary material, 

figure S1). 

The PACKEIS software including a detailed documentation and test datasets is freely available 

at https://sourceforge.net/p/packeis and http://www.smallRNAgroup.uni-

mainz.de/software.html. 
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5.5.3. DBF score calculation with PACKEIS 

DBF-scores were calculated using the PACKEIS software which was developed in the course of 

this study. PACKEIS will use RNAplfold to calculate base pairing probabilities based on local 

rather than global RNA folding which is more reliable for larger sequences. Therefore, we set 

the minimum length [nt] of an input sequence for PACKEIS to run RNAplfold instead of 

RNAfold to 100 with the option -l 100. PACKEIS was run three times using different models for 

the construction of aORFs applying the option -m 0, -m 1 and -m 2, respectively. 

 

5.5.4. Quantifying the number of ORFs under structural selection 

We sectioned DBF-scores into 101 quantiles ranging from 0 to 1 in steps of 0.01 (Q0.00 ... Q1.00). 

ORFs that fell in the range of 0 to 0.04 (p<0.05) were considered as candidates for being 

subject to selection that favors low structuring. ORFs that fell in the range of 0.96 to 1 (p>0.95) 

were considered as candidates for being subject to selection that favors high structuring. The 

null hypothesis (absence of selection) was rejected, if any of the lower or upper five quantiles 

showed a significant enrichment for ORFs. The summed fractions of genes in the lower (slow) 

or upper (shigh) five quantiles with Z scores ≥1.96, deducting the share of ORFs that would be 

expected for each quantile assuming an even distribution in absence of selection (1/101), was 

considered as the fraction of genes that is subject to structural selection (S=slow+shigh) 

according to the following formula: 

𝑠𝑙𝑜𝑤/ℎ𝑖𝑔ℎ =∑𝑓(𝑧
𝑄

𝑘
100

)

𝑗

𝑘=𝑖

⋅ (𝑎
𝑄

𝑘
100

−
1

101
) 

 

where f (Z<1.96)=0 and f (Z≥1.96)=1. For slow i=0 and j=4, for shigh i=96 and j=100. a refers to 

the number of ORFs within the specific quantile. According to the definition of f, each of the 

lowest and highest five quantiles is only taken into account if ORFs from the corresponding 

quantile are significantly over-represented (p<0.05, Z>=1.96). The term 𝑧
𝑄

𝑘

100

 refers to the Z-

score of a specific quantile, e.g. Q1.00 for k=100. The function value 𝑓 (𝑧
𝑄

𝑘

100

) becomes 0 for 

𝑧
𝑄

𝑘

100

<1.96. slow represents the number of genes were selection acts to reduce structuredness 

while shigh represents the number of genes were selection acts to enhance structuredness. 

Both fractions together represent the total number of genes S that is subject to structural 

selection. 
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5.5.5. Generating random peptides and ORFs 

To simulate the effect of using different sets of codons on secondary structure we first sorted 

codons according to a bias in codon frequency across oORFs with high and low 

DBFscoresmodel1. A bias was attested in case that we observed a steady increase or decrease 

of the average codon frequency from the upper five quantiles via the middle 91 quantiles to 

the lower five quantiles. Since the observed bias was not always consistent across all species 

under examination, we decided based on the status in the majority of species (electronic 

supplementary material, table S5). Set 1 codons were those being more frequent in oORFs 

with DBFscoresmodel1 ranging from 0 to 0.04 in the majority of species, set 2 codons were those 

being more frequent in oORFs with DBFscoresmodel1 ranging from 0.96 to 1 in the majority of 

species. Amino acids were grouped into set 1 and set 2 amino acids accordingly. 

To analyze the effect of using different sets of codons on secondary structure, we built a set 

of 10,000 random peptides with a length of 500 amino acids each. The first amino acid of each 

peptide was methionine. For each of the 10,000 random peptides we constructed one 

corresponding aORF using set 1 codons and one corresponding aORF using set 2 codons. Then 

we predicted and compared the fraction of paired bases for aORFs being composed of set 1 

codons and aORFs being compared of set 2 codons using the custom Perl script 

test_codon_sets.pl. 

To analyze the effect of using different sets of amino acids on secondary structure, we built 

two sets of 10,000 random peptides with a length of 500 amino acids each, with the first 

peptide set being composed of set 1 amino acids and the second peptide set being composed 

of set 2 amino acids. One ORFs for each of the 20,000 peptides was constructed with equal 

probabilities for possible codons of a given amino acid. We predicted and compared the 

fraction of paired bases for ORFs from set 1 peptides and ORFs from set 2 peptides using the 

custom Perl script test_aa_sets.pl. Note that in contrast to the analysis of set 1 and set 2 

codons, we did not compare sets of two aORFs that encode an identical peptide, but rather 

independent ORFs that code for different peptides (set 1 and set 2 peptides). All custom Perl 

scripts used in the course of this study are available at https://sourceforge.net/p/packeis. 
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Conclusion 

The overarching aim of this thesis is to tackle various unexplored aspects of small RNA 

pathways. Following this goal, the study on tRNA fragments provides a first overview of tRF 

expression across tissues and species. It revealed that 5’ tRNA halves are highly abundant in 

the hippocampus of primates, but not in the hippocampus of other analyzed mammals. Thus, 

high levels of 5’ tRHs in the hippocampus might be a primate-specific trait, which would be 

the first report of a lineage-specific differential tRF expression in the animal kingdom to the 

best of my knowledge. As transcripts that are presumably stabilized by 5’ tRH targeting were 

enriched for a function in neurogenesis, while transcripts that are presumably degraded upon 

5’ tRH targeting were depleted of this function, it can be hypothesized that 5’ tRHs play a role 

in fine-tuning primate neurogenesis. Furthermore, the dissection of 5’ tRH targeting rules via 

a novel k-mer approach provides surprising new findings suggesting a sequence-specific, but 

non-miRNA-like mechanism of target recognition that erodes the AGO-centric view on tRF-

mediated gene regulation of previous studies (Haussecker et al. 2010; Kuscu et al. 2018). It 

will be interesting to see with which proteins certain tRF subsets interact in distinct tissues 

and cell states. As the developed k-mer approach may not only be used to study the targeting 

rules of other tRFs, but also other (yet unknown) small RNAs, new insights in small RNA target 

recognition may be gained with this approach in the future. 

Lewis et al. have recently shown that somatically expressed piRNAs are a common state in 

arthropods (Lewis et al. 2018). Here, the study of molluskan piRNAs and PIWI proteins 

demonstrates that PIWI paralogs are ubiquitously expressed in the representative mollusk 

species L. stagnalis and C. gigas, suggesting that a somatic piRNA pathway was already 

established in an early protostomian ancestor. To reinforce this theory, it will be interesting 

to investigate the situation of other protostomes in this context. The characterization of the 

putative molluskan piRNAs showed that transposons as well as messenger RNAs are targeted 

both in the germline and in the soma and enhances the view that a presumably germline-

restricted piRNA pathway targeting only transposons represents a vertebrate-specific trait 

rather than the general rule within metazoans. The revealed lineage-specific adaptations of 

molluskan piRNA cluster composition and the dynamic expression of piRNA clusters during 

oyster development emphasize once more the evolutionary plasticity of the PIWI/piRNA 

system. 

Lately, also the dogma of a germline-restricted piRNA pathway in vertebrates was challenged, 

as some studies suggest that a somatic piRNA pathway function might have persisted in 

certain niches (Nandi et al. 2016; Ross et al. 2014). However, these findings are controversially 

discussed as (due to the lack of appropriate anti-PIWI-antibodies) they are mainly based on 

sequence-homology approaches and piRNA databases are known to be contaminated by 

other small RNA classes (Tosar et al. 2018). With the approach to knockdown PLD6 in cultured 

cells and identify the small RNAs that depend on PLD6 via small RNA sequencing, a method is 

provided to identify putative piRNAs without the need of anti-PIWI antibodies. The underlying 

idea is that small RNAs that depend on PLD6 can be considered as putative piRNAs, as PLD6 is 
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the central factor of primary piRNA biogenesis. As a proof of concept, this RNAi-based 

approach was tested in HEK293T cells, which showed that the expression of small RNAs in the 

size range of piRNAs is dependent on PLD6, suggesting that PLD6 acts as an endonuclease 

generating small RNAs in somatic cells like HEK293T cells similar to germline cells. piRNA-like 

target silencing for PLD6-dependent small RNAs was not observed in HEK293T cells, which is 

presumably due to the lack of PIWI protein expression in this cell line. It will be interesting to 

assess the full potential of this approach on physiologically more relevant stem cells, where 

PIWI expression has been reported (Sharma 2001; Wu et al. 2010; Nolde et al. 2013; Nandi et 

al. 2016). 

In the end, the study on the dimension of natural selection of secondary structure of coding 

sequences not only revealed that the structural selection of coding regions is a widespread 

phenomenon throughout all domains of life, but also found highly structured coding regions 

to be enriched in single-stranded RNA viruses. It is likely that the genomes of single-stranded 

RNA viruses evolved in favor of highly structured transcripts in order to evade the RNAi-

mediated defense of the host, which would be yet another example of the evolutionary arms 

race between RNAi pathways and their targets. Collectively, the results presented in this thesis 

contribute to a more variegated understanding of small RNA pathways. 
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