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ZusammenfassungMit Hilfe von Molekulardynamik-Simulationen untersuhen wir bürstenartige Sys-teme unter guten Lösungsmittelbedingungen. Diese Systeme sind, dank ihren vielfältigenBesha�enheiten, die von Molekularparametern und äuÿeren Bedingungen abhängig sind,wihtig für viele industrielle Anwendungen. Man vermutet, dass die Polymerbürsten eineentsheidende Rolle in der Natur wegen ihrer einzigartigen Gleiteigenshaften spielen. Einvergröbertes Modell wird verwendet, um die strukturellen und dynamishen Eigenshaftenzweier hohkomprimierter Polymerbürsten, die eine niedrige Reibung aufweisen, zu unter-suhen. Allerdings sind die Lubrikationseigenshaften dieser Systeme, die in vielen biologis-hen Systemen vorhanden sind, beein�uÿt. Wir untersuhen so-genannte �weihe Kolloide�,die zwishen den beiden Polymerbürsten eingebettet sind, und wie diese Makroobjekte aufdie Polymerbürsten wirken.Niht-Gleihgewihts-Molekulardynamik-Simulationen werden durhgeführt, in denendie hydrodynamishen Wehselwirkungen durh die Anwendung des DPD-Thermostatenmit expliziten Lösungsmittelmolekülen berüksihtigt werden. Wir zeigen, dass die Kennt-nis der Gleihgewihtseigenshaften des Systems erlaubt, dynamishe Nihtgleihgewiht-sigenshaften der Doppelshiht vorherzusagen.Wir untersuhen, wie die e�ektive Wehselwirkung zwishen kolloidalen Einshlüÿendurh die Anwesenheit der Bürsten (in Abhängigkeit der Weihheit der Kolloide und derPfropfdihte der Bürsten) beein�uÿt wird. Als nähsten Shritt untersuhen wir die rhe-ologishe Antwort von solhen komplexen Doppelshihten auf Sherung. Wir entwikelneine Skalen-Theorie, die die Abhängigkeit der makroskopishen Transporteigenshaften undder lateralen Ausdehnung der verankerten Ketten von der Weissenberg Zahl oberhalb desBereihs, in dem die lineare Antwort-Theorie gilt, voraussagt. Die Vorhersagen der Theoriestimmen gut mit unseren und früheren numerishen Ergebnissen und neuen Experimentenüberein. Unsere Theorie bietet die Möglihkeit, die Relaxationszeit der Doppelshiht zuberehnen. Wenn diese Zeit mit einer harakteristishen Längenskala kombiniert wird,kann auh das �transiente� (niht-stationäre) Verhalten beshrieben werden.Wir untersuhen die Antwort des Druktensors und die Deformation der Bürsten währendder Sherinvertierung für grosse Weissenberg Zahlen. Wir entwikeln eine Vorhersage fürdie harakteristishe Zeit, nah der das System wieder den stationären Zustand erreiht.Elektrostatik spielt eine bedeutende Rolle in vielen biologishen Prozessen. Die Lu-brikationseigenshaften der Polymerbürsten werden durh die Anwesenheit langreihweit-iger Wehselwirkungen stark beein�usst. Für untershiedlihe Stärken der elektrostatishenWehselwirkungen untersuhen wir rheologishe Eigenshaften der Doppelshiht und ver-gleihen mit neutralen Systemen. Wir studieren den kontinuierlihen Übergang der Sys-temeigenshaften von neutralen zu stark geladenen Bürsten durh Variation der Bjerrum-länge und der Ladungsdihte.
iii



AbstratBy means of Moleular Dynamis simulations we investigate brush-like systems undergood solvent onditions. These systems are important in many industrial appliations dueto their rih properties depending on the moleular parameters and external onditions. Itis believed that polymer brushes play a ruial role in nature due to their unique lubriationproperties. A simple oarse-grained model is used to investigate strutural and dynamiproperties of two highly ompressed polymer brushes that exhibit low frition. However,the lubriation properties of these systems are strongly in�uened by embedded moleules,whih often are present in biologial systems. We study so-alled �soft olloids�, whih areembedded between two polymer brushes, and investigate how these maroobjets e�etthe brushes.Non-equilibrium Moleular Dynamis simulations are performed, in whih hydrody-nami interations are taken into aount applying the DPD thermostat in presene ofexpliit solvent moleules. We show thatthe knowledge of the system's properties in statiequilibrium allows to predit dynami properties of the bilayer.We study how the e�etive interations between the olloidal inlusions are in�uenedby the presene of the brushes (as a funtion of the softness of the olloids and the graftingdensity of the brushes). As a next step, we investigate the rheologial response of suhomplex bilayers to steady shear. We develop a saling theory that predits the dependeneof the marosopi transport properties and the lateral extension of the grafted hains onthe Weissenberg number beyond linear response. The preditions are found to be in goodagreement with our and previous numerial results and reent experiments. Our theoryo�ers a way to alulate the relaxation time of the bilayer. This time, in a ombinationwith a harateristi length sale, an be used further for a desription of the transientbehavior.We investigate the response of the stress tensor and the deformation of the brushesduring shear inversion for large Weissenberg numbers. We develop a predition for theharateristi time after whih the system reahes again steady state.Eletrostatis play a ruial role in many biologial proesses. The lubriation prop-erties of polymer brushes are signi�antly in�uened by the presene of long-range in-terations. For di�erent strengths of eletrostati interations we investigate rheologialproperties of the bilayer and ompare to neutral brushes. We show the ontinuous tran-sition of the system properties from neutral to strongly harged brushes by varying theBjerrum length and the harge density.
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IntrodutionDas einzige Mittel, die Welt zu verändern, ist sie zu verstehen.Lion Feuhtwanger
A Polymer is a large moleule, alled maromoleule, whih onsists of repeatingstrutural units (monomers) onneted by ovalent bonds. The simplest polymers arepoly(ethylene) or poly(styrene). If all segments have the same hemial omposition, thepolymer is alled homopolymer. Properties of the polymers an be modi�ed, suh thatthey adsorb on surfaes. These systems are important in many phenomena and industrialappliations, suh as adhesion[1�3℄, stabilization of olloidal dispersions[4, 5℄, protetionagainst orrosion[6℄, �otation of minerals[7�9℄, oil reovery[10℄, smart materials[11℄,wetting and spreading phenomena[12, 13℄, biotehnology[14℄, and so forth. A veryimportant role in bio-nano-tehnology are playing so-alled polymer brushes[12℄. Apolymer brush is a system of polymers irreversibly grafteted by one hain end onto asurfae. In a polymer brush, hains tend to streth away perpendiular from thesubstrate due to the steri repulsion between the monomers. Of partiular interest aretwo opposing brush-overed surfaes. They an arry very high normal loads, whereassimultaneously the resistane to lateral sliding motion an be extremely small. Theresulting frition oe�ients may be orders of magnitude smaller than those found in dryfrition[15, 16℄. Polymer brushes have thus important appliations as lubriants, e.g. inmahine parts or arti�ial joints[14℄. Moreover, they are believed to play a ruial role inbiolubriation, e.g. in synovial joints[17℄. This e�et of low frition is well establishedexperimentally[15�18℄. The maroresponse, e.g. shear and normal fores, or the visosityan be measured experimentally, whereas investigations of the struture, e.g. densitypro�les, or of the underlying mehanism ausing the low frition, are still inomplete. Forthese purposes omputer simulation is the best tool. Like a high-resolution mirosope itallows to investigate in detail stationary and non-stationary properties, fores ating inthe system, as well as response and struture of the system on di�erent length sales.Like a ballet-performane in the theater polymer brushes at in nature. One one sitslose to the stage, small details an be reognized - ostumes, mimis of daners, parts of9



10 LIST OF FIGURESdeoration. It looks interesting and every detail is important - like miroproperties of thebrush, e.g. loal visosity, interpenetration depth of the brushes, fores ating betweenthem, veloity pro�les of brushes, loal struture of them. All these details depend oneah other. They have their own rules - way of daning, order of steps or order ofappearing on the stage of deorations in orrespondane with the libretto - like thebehavior of miroobjets, e.g. moleules, monomers and hemial bonds, aordingly tothe laws of nature. All this reates the whole palette, whih an be seen only on themarolevel - further away from the stage, e.g. in the �rst irle in the middle. These bestseats are the most expensive. Summing up all the properties it allows to see the beautyof the performane, and we see the great lubriation properties of the brushes. Theorret model has to be hosen in order to see these e�ets, and to provide moleularfators ausing the rheologial response of the grafted layers to external stimuli missingin experiments. These model systems have been investigated extensively over the pastdeades, e.g. in Refs. [18�23, 26�38℄. The vast majority of the numerial approahes havetreated solvent e�ets without expliitly inluding solvent moleules in the simulations(impliit solvent simulation). Many of them have been done via the appliation ofthermostats and the adjustment of the interation potential between themonomers[13, 19, 21, 26, 31, 33, 34, 36, 37℄. Other approahes have beenmade[18, 20, 22, 27, 28℄ by solving the Brinkman equation[39℄ for solvent- andmonomer-�ow �eld self-onsistently. Solvent e�ets as well an be onsidered impliitlyvia the Lattie-Boltzmann method (see [40℄ and Refs. therein) or stohasti rotationaldynamis[41℄. Within the small number of investigations that have been arried out withan expliit solvent (see, e.g. Refs. [30, 32, 35, 38℄), systemati studies of the e�etsnegleted in impliit solvent simulations are rare[32℄.In nature, e.g. in hip joints, one �nds more omplex systems than monodisperse neutralbrushes, whih have been investigated in majority of the studies. The lubriation inanimals' and humans' joints are thought to be due to the presene hargedmaromoleules, aggreens and lubriins - that extend to the surfae to form a brush-likelayer. Figure 1 shows a lose-up view of the artiular artilage surfae. The kinetifrition oe�ient between the artiular layers, ompressed to 50 atmospheres or more ina hip joint, an be as low as 0.001 [42, 43℄. Syntheti harged brushes ([91℄) lead to lowfrition similar to that in the artiular artilage. It seems, that the mehanisms ausing aderease of frition oe�ient in the simple system onsisting only of two opposingpolymer brushes is important also for these ompliated systems. However, in order tomodel nature more realistially, the investigated systems have to be modi�ed by takinginto aount inlusions, e.g. polymer stars or olloids and one an argue that simulationshave to be arried out in the presene of expliit solvent moleules. Also eletri hargesare believed to play a role for the properties of suh systems.The main aim of the present work is to investigate the in�uene of suh inlusions
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Figure 1: Shemati setion through part of a hip joint [42℄. Inset: harged maromoleules- aids (blue), to whih aggreans (red) and lubriins (green) are attahed.between the polymer brushes, e.g. of polymer stars, olloids, or expliit solventmoleules, on the visoelasti properties and nanotribologial aspets under steady shearonditions or non-stationary external stimuli. Moreover, we want to desribe thestruture of the systems and understand the harateristi relaxation times. For thatpurpose we use Moleular Dynamis simulations of a lassial oarse-grained model. Thesystems under onsideration onsist of two opposing polymer brushes under good solventonditions, with and without expliit solvent moleules, and with additional inlusions.We vary the degree of ompression, the density and the length of grafted hains, the sizeand shape of the inlusions, e.g. on�gurations of the stars, size of olloids. Moreover, weextend our investigations to harged polymer brushes with expliit ounterions. We studystati equilibrium properties, Couette �ows at various shear rates, and the response ofthe bilayer when the shear diretion, starting from steady-state on�gurations of di�erentshear rates, is instantaneously inverted.In Chapter 1 di�erent theoretial and experimental approahes are presented. InChapter 2 model and simulation tehniques are desribed. Chapter 3 deals with stati



12 LIST OF FIGURESequilibrium properties and fores ating on the inlusions, whih are loated in theinterfae between two opposing brushes. Chapter 4 is devoted to the simulations and thenewly developed saling theory desribing steady shear properties. These are followed bythe nonequilibrium Moleular Dynamis simulations of the two opposing brushes duringshear inversion and the theoretial approah in Chapter 5. Results of the simulationsand the disussion of harged systems are presented in Chapter 6. The onlusions andplans for further work are given in Chapter 7.



Chapter 1
Theoretial and experimentalapproahes
1.1 Theoretial approahes1.1.1 Free polymer hains in solutionThe simplest model of a polymer hain is the freely-jointed hain model or random walk.Aording to this model the hain onsisting of N+1 monomers is approximated by asequene of N steps. The step (so-alled bond vetor) length is �xed, and equal to a, butthe diretion in whih the step is taken is ompletely random and independent of allprevious steps. This model is analogous to the randomly di�using partile and permitsthe bakfolding of a hain onto itself, the situation of a so-alled random walk. Theaverage displaement of the partile in this ase is zero. Therefore, it is meaningful to usethe root mean square displaement as a harateristi parameter, whih, in this ase, isequal to the end-to-end radius Re,

R2
e ≡ Na2 = La, (1.1)where L = Na is the ontour length of the hain.For this model the harateristi length turns out to be proportional to the square root ofthe number of steps, N , Re ∝ N1/2. This model desribes ideal hains and does notaount for interations between monomers (exluded volume e�ets). This situationapproximately is realized experimentally at a ertain temperature or solvent ondition,when the attration between monomers e�etively anels their steri repulsion. This isthe so-alled theta-solvent ondition.Another way to haraterize the average size of a polymer oil is to introdue the radius13
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ri, (1.3)and ri is the position vetor of monomer i.In ase of good solvent onditions the interation between polymer segments and solventmoleules is favorable. Under this ondition the hain is swollen, beause monomers tryto avoid eah other in solution. The reason for this behavior is onformational entropy,whih prevents full strething of the hain in ombination with the preferable interationbetween monomers and solvent moleules. The standard model for taking into aountinterations between monomers is the mean �eld Flory theory[45℄. In ase of repulsiveinterations between the monomers, the positive seond virial oe�ient, ν2, is of order ofthe monomer volume, ν2 ∝ a3. The repulsive interation between the monomers isbalaned by the hain elastiity, whih is due to the entropy loss beause of hainstrething. Aording to the Flory theory for a �exible hain of radius Rg the free energyof a hain in units of the thermal energy kBT (kB the Boltzmann onstant) writes as asum of two terms,
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(1.4)where Ri ∝ Re is the radius of gyration of an ideal hain. The �rst term is the entropielasti energy assoiated with swelling of a polymer hain multiplied by the e�etivespring onstant of an ideal hain, kBT/R
2
i . The seond term is the seond virial repulsiveenergy, proportional to N times the seond virial oe�ient, ν2, and the segment densityof a monomer gas. Minimizing the free energy with respet to Rg one gets Rg ∝ aNνwith ν = 3/5. This is the situation of the self-avoiding walk.1.1.2 Polymers in solutionIn the previous setion we have realled saling onepts of a single polymer hain. Inthis setion we will deal with polymers in solution, where c is the onentration of hains.There are three di�erent regimes:a) dilute systemsb) semidilute systems) onentrated systems or polymer meltsIn the ase of dilute systems, hains do not feel eah other and behave like single,independent hains. The saling exponent of the gyration radius remains the same,
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Rg ∝ aNν for good solvent onditions. The rossover from the dilute to the semidiluteregime ours at the ritial onentration, c∗, when hains start to overlap. In this asethe hain behaves on di�erent length sales di�erently. For this purpose anotherharateristi length an be de�ned, the so-alled blob size, ξc. Within this length thehain behaves like a single independent hain of size ξc ∝ agν

c , where gc is the number ofmonomers within the blob. For distanes larger than ξc the hain behaves like an idealhain onsisting of blobs of size ξc, and polymer segments an not distinguish any longerto whih polymer hain they are onneted. The gyration radius of hains reads
Rg ∝ ξcnc

1/2, (1.5)where nc is the number blobs per hain, nc = N/gc, suh that
Rg ∝ (ξc/a)

1−2/νaN1/2. (1.6)The blob-piture allows to represent a polymer solution as a network with a ertainaverage mesh size, whih is proportional to the blob size, ξc. While ξc depends on theonentration, the network struture and its harateristi size should not depend on thedegree of polymerization N for a given c > c∗. We suppose, that the hains must belonger than the mesh size. When c ≈ c∗, where oils are in ontat but do notinterpenetrate, the mesh size must be omparable with the size of one oil, Rg. Thesetwo requirements lead to the expression
ξc(c) ∝ Rg

(

c∗

c

)κ

. (1.7)Sine c ∝ N/Rg
3, one gets c∗ = a−3N1−3ν . The exponent κ must be suh that the powersof N from Rg(∝ Nν) and from the c∗(∝ N1−3ν) anel. This means that κ = ν/(1 − 3ν)and leads to

ξc ∝ a(ca3)(ν/1−3ν). (1.8)An inrease of onentration, c, leads to a derease of the blob size, ξc. When it reahesthe monomer size, ξc = a, at the seond ritial onentration, c∗∗, the system beomeshighly onentrated, and exluded volume interations within a hain are fully sreened.In this ase of so-alled polymer melts the hain shows almost ideal behavior (exludedvolume e�ets are negligible) and the polymers approximately follow random walkstatistis, Rg ∝ aN1/2.Dynami properties of the hains also depend on the onentration. We will onsiderRouse and Zimm desriptions.The Rouse model is the simplest model of polymer dynamis. It is based on three keyassumptions. The �rst one is that the hains onsist of �beads� separated by bond-vetors



16 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHESalong the �springs�. The seond assumption is that the hains are phantom hains,meaning that they are allowed to ross themselves, i.e. the hains are ideal. The thirdassumption is the loality of response, whih means that eah bead experienes a foreonly from its two neighbors. In other words, while a Newtonian desription requires thepositions and momenta of all partiles, the Rouse model only takes into aount thepositions of monomers and it does not take into aount all orrelation e�ets with otherhains, or hydro dynami interations. The Rouse model assumes the following equationof motion
d

dt
ri =

1

ψ
Fi + ρi, (1.9)where ψ is the monomer frition oe�ient, ρi the random displaement per unit time ofmonomer i, and Fi the fore ating on monomer i. The latter follows from

Fi = − ∂V

∂ri
, (1.10)where the potential, V , an be derived from the assumption that the hains are Gaussianand onsist out of beads and springs,

V =
3kBT

2a2

N−1
∑

i

(ri+1 − ri)
2. (1.11)The random displaement per unit time is Gaussian white noise satisfying the�utuation-dissipation theorem,

〈ρα
i 〉 = 0, (1.12)and

〈ρi
α(t)ρj

β(t′)〉 = 2
kBT

ψ
δijδαβδ(t − t′), (1.13)where greek indies denote Cartesian indies. The stohasti displaements in di�erentdiretions and of di�erent monomers are assumed as statistially independent.Looking at Eq. (1.9) for the enter of mass, one sees that the drift fores anel due toNewtons's third law. Moreover, the frition oe�ients of all the monomers an be addedup. This property we will use later for alulation of shear fores for brush laers. Thedi�usion onstant in this model an be derived as

D =
kBT

Nψ
, (1.14)and therefore

D ∝ N−1 ∝ R−2
g (1.15)The longest relaxation time an be found onsidering that the objet will move its own
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DτR ∝ R2

g, (1.16)suh that
τR ∝ R4

g ∝ N2. (1.17)While the Rouse model does not take into aount hydrodynami interations, ortransport of momentum, the Zimm model does not ignore these self-orrelation e�ets.The main e�et is the following: A monomer i is randomly kiked by a surroundingmonomer j and both are moved by their random displaements per unit time ρi and ρj.The motion in this ase is highly orrelated due to fast di�usive momentum transportthrough the medium. The equation of motion in this ase an be modi�ed to
d

dt
ri =

∑

j

µijFi + ρi, (1.18)where µij is the mobility tensor and the stohasti displaements satisfy the relation
〈ρi

αβ(t)ρj
αβ(t′)〉 = 2kBTµijδ(t − t′), (1.19)where ρi

αβ is the displaement tensor. This relation is due to the inompressibilityonstraints of the solvent �ow. One an show that the di�usion onstant in this ase anbe derived as
D ∝ 1

Rg
, (1.20)indiating that the hain as a whole essentially moves like a Stokes sphere. The longestrelaxation time of the Zimm model, τZ, an be found by requiring DτZ ∝ R2

g, suh that
τZ ∝ R3

g ∝ N3ν .1.1.3 Polymer brushesIn this setion we will review theoretial approahes desribing polymer hains, whih aregrafted by one of their ends onto the surfae: polymer brushes. First, let us onsider asingle hain onsisting of N monomers end-grafted onto the surfae. Like a single hainin solution, it has its harateristi size, Rg ∝ Nν . Inreasing the number of hains, Ng,whih are grafted onto the surfae of area A, one reahes a situation, when hains startoverlapping, suh that the grafting density,
ρg =

Ng

A
, (1.21)is equal to the so-alled ritial grafting density,

ρg
∗ =

1

πR2
g

, (1.22)



18 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHESwhere πR2
g is the area overed by one unperturbed hain. For grafting densities below theritial grafting density (ρg < ρg

∗) the polymers have a mushroom onformation, whenthe hains have a oiled form, similar to a mushroom, and do not interat with eahother. For grafting densities beyond the ritial grafting density (ρg > ρ∗g) the polymersare strethed due to the repulsion between the hains, whih leads to loss of entropy ofeah hain in omparison with the ungrafted hains. These brushes are alled semidilutebrushes. Further inrease of the onentration leads to molten brushes, when the brushesare highly onentrated, suh that no more solvent moleules an be in the system due tothe inompressibility of the brushes. Therefore, another important variation amongbrushes is also the presene or absene of solvent for the behavior of the grafted polymerhains. With solvent the physial reason for the strething of the hains from the surfaeis their a�nity for the solvent or dislike of eah other. When no solvent is present (meltonditions), the hains streth away from the substrate in order to avoid over�lling spae,sine they are inompressible.Due to the onstraint that the hains are grafted, the polymers will not behave like freehains in solution. The oldest and simplest model desribing the regime of hains thatare fully strethed away from the surfae is the Alexander model[46℄. In this model eahhain onsists of blobs of the same size in the strongly strethed limit (ρg ≫ ρg
∗) undergood solvent onditions. The free ends of the hains are loated at the height h from thesurfae, suh that the density pro�le has the form of a step-funtion,

ρ(z) = Nρg/h, (z ≤ h). (1.23)The strething of the hains leads to an entropi free energy loss of h2/R2
g per hain, andthe repulsive energy density due to unfavorable monomer-monomer ontats isproportional to the monomer density times the exluded-volume parameter times thelength of the hains, ν2N . Analogous to the derivation of the gyration radius of a freehain in a good solvent the free energy per hain is then

F

kBT
≃ h2

a2N
+ ν2

ρgN
2

h
. (1.24)Minimizing the free energy one obtains the equilibrium height h,

h = N(
2

3
ν2a

2ρg)
1/3. (1.25)In ontrast to the Alexander model, when the hains are supposed to be fully strethedaway from the interfae with uniform monomer density, experiments and simulationshave shown that brushes demonstrate a rather rounded behavior and density pro�lesapproah zero ontinuously.Theoretial studies of surfae-anhored polymers based on the self-onsistent �eld theory



1.1. THEORETICAL APPROACHES 19(SCFT) representing full mean-�eld treatments �rst introdued by Edwards[47℄ and thestrong strething theory(SST) formulated by Semenov[48℄ are more realisti inomparison with the saling methodologies. These methods make no assumption aboutthe struture of the system, i.e. about the density pro�le, but determine itself-onsistently. Both theories are based on the same Gaussian hain model. Theadvantage of the SST is that it provides simple analytial preditions, while SCFT (ingeneral) only an be solved numerially. The SST neglets �utuations around the�lassial path�, whih onnets grafted and free end-monomers of a hain, by minimizingthe ation. This is in analogy with the lassial approximation of quantum mehanis,where the motion of a partile is given by the quantum path with maximum probability.The SST also an be used in polymer adsorption theories as a hain onnetivityequation resembling the di�usion equation, suh that this method is alled the di�usionequation approah. However, a major di�erene between a di�using partile and apolymer moleule is the fat, that a polymer moleule has two hain ends whereas adi�using partile does not have a spei� end. A polymer segment loated near one of theends will in general behave di�erently from a middle segment, as the non grafted endshave more freedom of motion. In the original SST theory the importane of the hainends is negleted.A simple hypothesis about the free hain ends of a single polymer brush, that they maybe loated at any distane from the surfae, leads to the predition of a parabolimoleular �eld[49℄,
Φ(z) = Φ0 −

1

2

(πz

2h

)2
, (1.26)with Φ0 a onstant and h the height of the Alexander brush (exept prefators). Theorresponding density pro�le is supposed to be proportional to the moleular �eld,

ρ(z) ∝ Φ(z). The end density distribution ǫ(z) obeys[49℄
ǫ(z) ∝ 2z(h2 − z2)1/2 + (A/B − h2)z(h2 − z2)−1/2, (1.27)where A and B are onstants derived in Ref. [49℄. This is so-alled Milner-Witten-Cates(MWC) model brush.Now let us turn to the ase of two opposing brushes. The key assumptions of the MWCtheory are that two ompressed brushes eah have a paraboli moleular �eld and theydo not interpenetrate into eah other. Later alulations[50℄ showed the existene of anexponential tail in ompliane with the SCFT. Further, assuming that the hains anslightly interpenetrate into eah other, leads to the following form of the end distributiontail and the tail of the density pro�le:

ǫ(z) ∝ ρ(z) ∝ exp

(

−π
(

z −D/2

ξt

)3/2
)

, (1.28)



20 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHESwhere ξt is the length of the tail, ξt = (D/2)−1/3a4/3N2/3, and D is the distane betweenthe opposing surfaes. This equation is derived for the ase that only a small fration ofthe hains strethes into the opposing brush, the so-alled regime of weak ompression.With the full mean �eld approah[51℄ it an be shown that the tail exhibits the Gaussianform,
ǫ(z) ∝ z

aN1/2
exp

(

− 3z2

2a2N

)

, (1.29)and
ρ(z) ∝ aN1/2

z
exp

(

− 3z2

2a2N

)

. (1.30)These preditions are not in perfert agreement with omputer simulations results. Onlyin strongly strethed limit these two methods onverges. More reent SSTinvestigations[52�54℄ show that a depletion layer near the interfae ours, demonstratingthat a paraboli moleular potential does not neessarily imply a paraboli densitypro�le. Moreover, more reent studies have shown, that taking into aount the entropyof the free ends [53℄ and �nite-strething orretions [54℄ lead to an almost perfetsuperposition of the SST and the SCFT, but the SST beomes analytially unsolvable.Allowing brushes to interpenetrate into eah other one an show that in the ase ofonentrated or molten brushes the overlap thikness an be derived from the hange infree energy, ∆F , when a hain segment of length δ is pushed into the opposing layer.Witten et al. [55℄ demonstrated that by the alulation of the work in order to insert asingle hain into a brush, ∆F an be written as
∆F ∝

(

− δ
3

a2

∂Φ(z)

∂z

)1/2

, (1.31)where the moleular �eld, Φ(z), may be of the lassial paraboli form, Eq. 1.26. Theinterpenetration is due to thermal �utuations, thus ∆F is of the order kBT . We take thederivative of Φ(z) at the middle of the bilayer, z = D/2, and obtain from Eq. (1.31)
δ ∝

(

N2a4

D

)1/3 (1.32)for the interpenetration depth of strongly ompressed, molten bilayers.Equation (1.32) is similar to the expression found by Witten et al. [55℄,
δ ∝

(

N2a4

h

)1/3

,where D is replaed by the unperturbed brush height. The di�erene ours beause inRef. [55℄ the derivative of Φ(z) is taken at z = h, whih hene haraterizes the behaviorof two brushes just oming into ontat (weak ompression regime). The predition of



1.1. THEORETICAL APPROACHES 21the interpenetration depth [Eq. 1.1.3℄ we will use below in the theoretial desription oftwo opposing brushes under shear.1.1.4 Charged brushesPolyeletrolytes are polymers ontaining ionizable subunits whih an dissoiate in apolar solvent providing harged maroions and ounterions. There are polyations(positively harged hains), polyanions (negatively harged hains) and polyampholytes,whih ontain both negatively and positively harged subunits plaed along the polymerhain. The model of a polyeletrolyte hain in solution is similar to the neutral one. Ahain onsists of N monomers eah of size a. The degree of ionization or the monomerharge fration an be haraterized by the number of harged monomers, m,
fi =

m

N
. (1.33)Many analytial alulations for polyeletrolytes in solution start from the Poissonequation,

∇2φ(r) = − ρ(r)

ǫ0ǫ(r)
, (1.34)where φ(r) is the potential at point r, ρ(r) is the loal harge density, ǫ0 is the vauumpermittivity, and ǫ(r) is the dieletri permittivity of the medium, whih in most modelsis a onstant, ǫ(r) = ǫ = const. For a point harge with a harge density

ρ(r) = Q1δ(r − r1) being loated at r = r1 and having a total harge Q1 = z1e, where eis the elementary harge, the potential is given by
φ(r) =

1

4πǫ0ǫ

Q1

|r− r1|
. (1.35)For a system of several ioni speies eah of valene zi and with loal onentration ci theloal harge density reads

ρ(r) = e
∑

i

zici(r). (1.36)In the mean �eld approah, i.e. negleting �utuations, ci(r) obeys the Boltzmanndistribution
ci(r) = c

(0)
i exp

(

−zieφ(r)

kBT

)

, (1.37)where φ(r) is the time averaged value and c(0)i is the bulk onentration, suh that the
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∑

i

zic
(0)
i = 0. (1.38)In this ase the Poisson-Boltzmann (PB) equation

∇2φ(r) = − e

ǫ0ǫ

∑

i

zic
(0)
i exp

(

−zieφ(r)

kBT

) (1.39)an not be solved analytially. Another approximation is neessary. The linearized PBequation reads
∇2φ(r) =

1

λD
φ(r), (1.40)where the Debye length is the sreening length, de�ned as

λD ≡
√

ǫ0ǫkBT

e2
∑

i z
2
i c

(0)
i

. (1.41)This is the so-alled Debye-Hükel approximation. It is valid only for weak potentials
φ(r) ≪ kBT

zie
. (1.42)Assuming the harge of all the other ions to be ontinuously smeared around a testharge, the spherially symmetri solution of Eq. (1.40) is

φi(r) =
zie

4πǫ0ǫ

exp(−r/λD)

r
(1.43)and the orresponding pair interation energy reads

Uij = zizjkBT
λB

r
exp(−r/λD), (1.44)with the Bjerrum length, λB, de�ned as the distane at whih the Coulomb interationbetween two unsreened elementary harges is equal to the thermal energy,

λB ≡ e2

4πǫ0ǫkBT
. (1.45)The Bjerrum length haraterizes the strength of the Coulomb interation, whereas fromEq. (1.43) it is evident that the harge loud around a test ion results in a sreening ofthe Coulomb interation. Hene, the Debye length gives the sreening range of theresulting e�etive potential.The Flory-like mean �eld argument an be, analogously to the neutral systems, used toalulate the end-to-end distane. Assuming all monomers are harged (monomer harge



1.1. THEORETICAL APPROACHES 23fration fi = 1) the free energy is written as
F

kBT
≃ R2

e

Na2
+ λB

N2

Re
, (1.46)where the �rst term is the elasti free energy of the Gaussian hain and the seond termrepresents the eletrostati free energy of the harged monomers. The end-to enddistane in this ase is

Re ≃ λ
1/3
B a2/3N. (1.47)The linear dependene of Re on N makes the strongly harged hain rod-like. Thedeviation from the rod-like struture is desribed by the Odijk-Skolnik-Fixman (OSF)theory[56℄.To understand the saling piture of harged brushes, one assumes a box model[57℄,where the brush is haraterized by two length sales. The polymer hains are assumedto extend to a distane h from the grafting surfae, the ounterions in general form alayer of thikness H. There are two di�erent regimes. In the �rst one the ounterionloud exeeds the height of the brush, H > h. In the seond regime they are on�nedinside the brush, H ≈ h. This is a strongly harged brush in ontrast to the �rst ase of aweakly harged brush.There are four ontributions to the free energy. First, the osmoti free energy Fosassoiated with the entropy ost of on�ning the ounterions to a layer of thikness H isgiven by

Fos ≃ Nfiρg ln
Nfiρg

H
. (1.48)Afterwards the seond virial ontribution to the free energy and the strething freeenergy have to be taken into aount. They are the same as for the neutral brushes [seeEq.( 1.24)℄.The third term is the eletrostati ontribution. This term is nonzero when the brush isnot loally eletroneutral throughout the system. This is given by [57℄

Fel ≃ λB(Nfiρg)
2 (h−H)2

H
. (1.49)For strongly harged brushes all ounterions are inside the brush, whih means that theGouy-Chapman length

λGC =
1

2πλBNfiρg
, (1.50)whih is the height at whih ounterions are e�etively bound to a surfae of hargedensity efiNρg [58℄. This height is small ompared to the brush height h. For weaklyharged brushes it an be shown that the ounterion height reads
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H ≃ h+

3

2
λGC. (1.51)In the ase of the so-alled osmoti brush regime[58℄ one an show, via minimizingosmoti and strething free energies, that the brush height reads

h ≃ Naf
1/2
i . (1.52)Minimization of strething and eletrostati free energies leads to the Pinus brushregime, where the brush height is

h ≃ N3(afi)
2λBρg. (1.53)For both regimes there is a strong dependene on the Bjerrum length λB and the hargefration fi.The piture of the polyeletrolyte brush behavior hanges if salt is added to the solution.The salt onentration is an important parameter to tune struture and properties of thebrush. Both in experiments and in theoretial work the main attention is foussed on thebehavior of the brush height and density pro�les. The brush height is predited to be

h ≃ Na

(

ρgf
2
i

acs

)−1/3

, (1.54)where cs is the salt onentration. There are, however, also another predition[58℄expeting h ∝ c
−2/3
s and h ∝ c

1/3
s [59℄. Dispite of the di�erent predited exponents of thepower laws one an onlude that the struture of the brushes strongly depends on thesalt onentration.In ontrast to neutral brushes at low grafting densities, when hains are not overlapping,one observes a panake onformation due to the long-range interation. Inrease of theritial grafting density leads to the mushroom on�rmation and further to the brushonformation. The rossover appears at lower grafting densities and, therefore, at lowerritial onentrations in omparison with neutral systems.Conluding, one an see that polymer brushes exhibit rih behavior when hargeddepending on the strength of the long-range interations and moleular parameters of thesystem.1.1.5 Sheared brushesNow let us turn to the desription of the brushes under shear. In ase of ideal visous(Newtonian) �uids, the stress depends only on the urrent rate of deformation, and thereis no memory of previous deformations. At the other extreme of perfet elasti solids,stress depends only on the deformation from the preferred shape. Energy is dissipated in



1.1. THEORETICAL APPROACHES 25visous materials and stored in elasti bodies. Polymeri �uids are alled visoelasti, asthey have both visous and elasti properties depending on the time sale of observation.Elastiity is the ability of the �uid to return to its original state and shape after releaseof the applied stress. In most ases either the relaxation time of the material undergoingdeformation is so small that the �uid exhibits mostly visous response, or the relaxationis very slow (strutural memory is very long) and materials behave like elasti bodies.Maromoleular �uids are unique sine their strutural relaxation times often span manyorders of magnitude. For instane, hains grafted to surfaes might have di�erentrelaxation times than free hains of the same length loated in the interfae between twoopposing brushes. The relaxation time of the system as a whole is in�uened by allomponents.Ideal Newtonian liquids plaed between two opposing surfaes exhibit a linear veloitypro�le under shear. Complex systems, i.e. polymer brushes, do not show a linear veloitypro�le during steady shear. The mehanial response of any �uid to shear might bedesribed by the visosity, whih an be alulated from the shear stress, σxz,
ηxz(γ̇) ≡ σxz/γ̇, (1.55)where γ̇ is the shear rate and σxz is an o�-diagonal element of the stress tensor (X is theshear and Z is the gradient diretion). For ideal visous materials the shear fores arealways proportional to the shear rate (linear response), and normal fores represent thepressure in the system. Maromoleular systems exhibit shear rate dependent visosities.Another harateristi of system under shear is the Weissenberg number, W , whih istypially de�ned as a produt of the shear rate, γ̇, and the harateristi relaxation timeof the system τ ,

W = γ̇τ. (1.56)For suh systems as polymer brushes one often takes the relaxation time of a single hainof equivalent length N in the bulk. Another example is the system of polymer stars,where the relaxation time of arms in the bulk is taken[60℄. As we will show in thefollowing, these de�nitions of the Weissenberg number is not appliable for suh omplexsystems. Let us (re)de�ne the Weissenberg number by the ritial shear rate γ̇∗, whenthe rossover from the linear response regime to the non-Newtonian behavior ours,
W ≡ γ̇/γ̇∗. (1.57)The shear fore in the linear response regime is proportional to the Weissenberg numberup to the ritial shear rate γ̇∗. For Weissenberg numbers above the ritial shear rate(W > 1), the system an exhibit a shear thinning or a shear thikening. Similarly to a



26 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHESsystem of dendrimers or of polymer stars in the bulk the system of two opposing brushesmay reveal a power law dependene with an exponent α < 1 and α > 1, orrespondingly.As we will see in the following the �rst ase is appliable independently of the moleularparameters, i.e. grafting density, hain length. This is the ase of the so-allednon-Newtonian behavior.
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Figure 1.1: Shemati demonstration of shear thinning and shear thikening. Normalizedby its value at the ritial shear rate the shear fore shows linear response behavior up toa Weissenberg number W = 1. For W > 1 the system reveals non-Newtonian behavior.For inreasing shear fore there is a spontaneous symmetry breaking when the work ofthe shear fore ating on a hain exeeds the thermal energy. At higher shear rates thehains are de�eted in the shear diretion. Therefore, the ritial shear rate γ̇∗ an bede�ned by the omparison of the thermal �utuations with the work. De�ning as aharateristi length sale the gyration radius in shear diretion, Rg,x, and the total shearfores ating on the substrates, fx(γ̇), the Weissenberg number may be written as
W ≡ γ̇/γ̇∗ =

fx(γ̇)Rg,x

NgkBT
, (1.58)where γ̇∗ ∝ 1/τ , whih an be regarded as an inverse relaxation time of the bilayer, and

Rg,x ≡ 〈R2
g,x〉1/2 the gyration radius at zero shsear. This de�nition of the Weissenbergnumber we will use in the following.1.2 Experimental approahesExperimentally there are two basi ways of produing a grafted polymer layer. The �rstmethod is the so-alled �grafting from� method, when polymerization is started from thesurfae with a suitable surfae-linked initiator. The monomers have to di�use through



1.2. EXPERIMENTAL APPROACHES 27the forming brush layer and thus the reation kinetis is fast, and quite high graftingdensities an be reahed, but this method an result in quite high polydispersity [61℄.The seond method is the �grafting to� proedure, when polymers are attahed withspeial end-groups that at as anhors on the surfae. This method has slow kinetisduring the formation stage due to the fat that whole moleules have to di�use throughthe grafted layer; only smaller grafting densities an be ahieved, but the length of theanhored hains and their hemial omposition is under better ontrol. The hains anbe physially or hemially adsorbed to the substrates. An example for the �rst ase arezwitter-ioni end-groups attahed to poly(styrene) hains that lead to binding to mia inorgani solvents suh as toluene or xylene [62℄. Or poly(ethylene oxide) (PEO) adsorbson inorgani surfaes like mia via an ion-exhange reation and forms a polymer brush.The seond method leads to stronger ovalent binding and therefore a more stableattahment of end-grafted hains is possible. The examples are poly(dimethylsiloxane)hains whih arry hydroxyl end-groups and undergo ondensation reations with silanolson a silia surfae[63℄. Diblok opolymers (two dissimilar polymers joint end-to-end) analso be used in order to produe polymer brushes, where one blok adsorbs on the surfaewhereas the other experienes repulsion[64℄. Examples arepoly(styrene)(PS)-poly(vinylpyridine)(PVP) diblok opolymers on sapphire [65℄ orquartz substrates[66℄ in seletive solvent, whih is a poor solvent for the PVP and leadsto strong adsorption onto the surfae, but a good solvent for PS, strething this blokfrom the substrate. The better ontrol and larger grafting densities an be ahieved inthe ase of diblok opolymers on a liquid-air[67℄ or a liquid-liquid interfae. The graftingdensity an be varied via the variation of the lateral ompression and therefore of thearea of interfae[68℄. As an example diblok PS-PEO[69℄ an be taken. The PS blok isshorter, unsoluble in water, and an be used as an anhor at the air/water interfae. Asthe surfae pressure inreases and the unit area per polymer dereases, the PEO isexpelled from the surfae and forms a polymer brush. Finally, the hain may be attahedto a �substrate� that is the narrow interfae between mirodomains in a melt oronentrated solution of diblok opolymers when the two bloks of the opolymer arestrongly segregated.Grafted polymer materials an be either non-harged (neutral) or harged polymers,so-alled polyeletrolytes. Polyeletrolytes an be ategorized in two groups: strong(quenhed) or weak (annealed). A simplest polyeletrolyte may be de�ned as ahomopolymer, where at least one monomer unit arries an ionizable group. Suh a groupmay be a strong salt, aid or base, so that its harge is virtually independent of pH . Thisis the ase of strong polyeletrolytes. Weak polyeletrolytes arry weakly aidi(e.g. arboxili) or basi (e.g. amino) groups. Their solution behavior depends on pH,whih an be varied, for example, by adding salt.The struture of polymer brushes an be investigated using di�erent tehniques. The



28 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHESfore-balane tehnique used in surfae fore measurements allows to measure diretlyshear and normal fores[15℄ in rheologial experiments. Moreover, this tehnique gives arough measure of the brush height by measuring the fore as a funtion of the separationbetween two solid surfaes[70, 71℄. Atomi fore mirosopy (AFM) has been used toprobe the struture of surfae-anhored polymers by measuring the fore between thepolymers and the AFM-tip[72℄. Experiments involving sattering tehniques have beenused to investigate the struture of end-grafted polymer systems. These inludeellipsometry[73℄, evanesent wave �uoresene[74℄, infrared spetrosopy[75℄, neutronre�etivity[65℄, neutron sattering[76℄, small angle sattering (SANS)[77℄, et. Thesetehniques have been used to determine the extension of the opolymers from thesubstrate and the total number of moleules adsorbed onto the surfae. Most of thetehniques lak the resolution neessary to desribe monomer density pro�les near thesurfae. Neutron re�etivity and SANS are able to provide more omplete data about thestruture of the onentration pro�les of end-anhored polymers.



Chapter 2Model and simulation tehnique
2.1 ModelIn our simulations the system onsists of two opposing ompressed polymer brushes.Chains inlude N monomers eah of size a. The polymers are grafted onto a surfae withone hain end. The brushes are monodisperse. The degree of polymerization, N , is equalto N = 30 or N = 60. These lengths are small enough to avoid entanglements in thebulk[78℄. Referene [79℄ suggests that the entanglement length inreases with dereasingthikness of a on�ned onentrated solution, suh that we expet non-entangled hainsfor all systems under onsideration.In experiments it is impossible to synthesize and investigate pure brushes. Not all freehain are adsorbed on the substrates due to slow kinetis; some of them are ribbed o� thesurfaes, espeially in rheology experiments. Moreover, in nature even more omplexsystems our, whih have di�erent kinds of inlusions. In this way speial funtions anbe realized, for example, in natural ells as studied in tribology[80℄. In these systemsbilayers of lipids play an important role, whih form e�etively two highly �utuatingbrush layers, where proteins are loated inside of them. As inlusions in our systems wesimulate olloids of di�erent softness. Star polymers an be a good model for suhinlusions allowing to vary on�gurations from ��u�y� stars to spherial-like[60℄. Theon�guration of polymer stars is varied through funtionality, f , and number ofmonomers in eah arm arm Nmon. Varying these two values we hange the �softness� ofthe stars from rather �hard� stars with small length of arms, Nmon = 3, and largefuntionality, f = 50, to �softer� stars, with Nmon = 15 and f = 10 and to bigger starswith longer arms up to Nmon = 30, whih is omparable with the degree ofpolymerization of our brushes. Hard olloids were simulated as hard spheres of size
σ = 3. A more detailed list of investigated parameters an be seen in Table 2.1.We vary the surfae density of the grafted hains, ρg. Our smallest grafting density for
N = 30 is ρg ≈ 1.1ρ∗g, and the biggest is ρg ≈ 8.8ρ∗g, where ρ∗g is the ritial grafting29



30 CHAPTER 2. MODEL AND SIMULATION TECHNIQUE
D N ρg/ρg

∗ Narms Nmon ρst Solvent12 30 2.2 - - 0 A14.75 30 2.2 - - 0 A17.5 30 2.2 - - 0 A12 30 2.2 - - 0 B14.75 30 2.2 - - 0 B17.5 30 2.2 - - 0 B12 30 1.1; 2.2 5 30 0.22 C12 30 2.2 3 50 0.22 C12 30 2.2 10 15 0.22 C12 30 2.2 15 10 0.22 C12 30 2.2 12 12 0.22 C12 30 2.2 30 15 0.44 D12 30 2.2 21 21 0.44 D14.75 30 1.1; 4.4 5 30 0.22 C14.75 30 1.1; 4.4 10 15 0.22 C14.75 30 2.2 3 50 0.22 C14.75 30; 60 2.2 5 30 0.22 C14.75 30; 60 2.2 10 15 0.22 C14.75 30 2.2 15 10 0.22 C14.75 30 2.2 12 12 0.22 C14.75 30 2.2 15 30 0.44 C14.75 30 2.2 30 15 0.44 C14.75 30 2.2 21 21 0.44 C17.5 30 1.1; 4.4 10 15 0.22 C17.5 30 1.1; 4.4 5 30 0.22 C17.5 30; 60 2.2 5 30 0.22 C17.5 30; 60 2.2 10 15 0.22 C17.5 30 2.2 3 50 0.22 C17.5 30 2.2 15 10 0.22 C17.5 30 2.2 15 30 0.44 D17.5 30 2.2 30 15 0.44 D17.5 30 2.2 21 21 0.44 D12 30 2.2; 3.3 5 30 0.08 212 30 3.3; 3.3 10 15 0.08 214.75 30 2.2; 3.3; 4,4 5 30 0.06 214.75 30 2.2; 3.3; 4.4 10 15 0.06 217.5 30 2.2; 3.3; 4.4; 6.6 5 30 0.005 217.5 30 2.2; 3.3; 4.4; 6.6 10 15 0.005 217.5 30 3.3; 6.6 21 21 0.015 221 30 2.2; 3.3; 4.4; 6.6; 8.8 5 30 0.04 221 30 2.2; 3.3; 4.4; 6.6; 8.8 10 15 0.04 2Table 2.1: Di�erent parameter ombinations under onsideration: distane D betweengrafting planes, hain length N , and ratio between grafting density and (approximate)ritial grafting density for hains of length N = 30, star on�gurations (�−� denotessystems without stars). Solvent A - impliit solvent systems without stars, Solvent B- expliit solvent as dimers without stars, Solvent C Solvent D - with stars of density
ρst = 0.22 and ρst = 0.44 respetively. �2� denotes the ase when only two stars arepresent in the system (for the simulations of the e�etive interations).



2.1. MODEL 31density. With ρg ≈ ρ∗g, we onsider a system just at the mushroom-to-brush rossover forthe hain length N = 30. For N = 60 we onsider one grafting density,
ρg ≈ 2.2ρ∗g(N = 30).The distanes between the grafting surfaes, D, investigated is equal to D = 12σ,
D = 14.75σ, D = 17.5σ, and D = 21σ. With that we onsider four di�erent degrees ofompression. Depending on N and ρg, this orresponds to ompressions between
2h/D ≈ 2 and 2h/D ≈ 6.5 relative to the height h of a single, unompressed brushwithout expliit solvent[81℄.In many previous simulations[13, 19, 21, 26, 31, 33, 34, 36, 37℄, the solvent was treatedimpliitly, i.e. the kineti energy dissipated to the solvent is mimiked by the appliationof a thermostat. We onsider four di�erent types of solvents; referred to as solvent A, B,C, and D in the following. Solvent A aounts for solvent e�ets only via the repulsivepotential ating amongst the monomers in the brush. Solvent B onsists of dimers,orresponding to �polymer" hains of N = 2. We use dimers instead of (e.g.) monomersfor the solvent in order to hamper paking and to aount for rotational and vibrationaldegrees of freedom. However, our approah does not aim at desribing all features of areal solvent but rather attempts to re�et exluded volume and �nite inertia e�ets, aswell as the momentum transport of an expliit solvent. For a given parameterombination of N , ρg, and D we add solvent dimers until a total number density of
ρ = 0.9 is reahed. Solvent C is a mixture of dimers and star polymers of di�erentfuntionalities and arm lengths, suh that the density of star monomers is ρst ≈ 0.22.The total number of monomers in one star is fNmon + 1 taking into aount the entralmonomer to whih all arms are onneted. Solvent D orresponds to density of starmonomers ρst ≈ 0.44. For all parameters (N ,ρg,D), exept systems of Solvent A, we keepthe total number density at ρ = 0.9.Periodi boundary onditions are applied parallel to the surfaes in X- and Y - diretions.The substrates are represented by rigid, fae-entered ubi (f) rystalline surfaes witharea A = LxLy = 42σ × 36.373σ = 1527.666σ2 .The omponents of the system are represented by the Kremer-Grest (KG) model[24, 25℄,whih is a generi oarse-grained model that has been applied in many previousstudies[13, 19, 21, 24, 26, 31, 33, 34, 36, 37, 78, 81℄. In the KG model, monomers interatvia the Lennard-Jones (LJ) potential,

ULJ(rij) =







4ǫ[(σ/rij)
12 − (σ/rij)

6 − (σ/rc)
12 + (σ/rc)

6], (rij < rc)

0, (rij ≥ rc) ,
(2.1)where ǫ = 1 and σ = 1 de�ne the units of energy and length, respetively. rij denotes thedistane between monomer i and j and rc is the ut-o� radius of the potential. Weonsider a purely repulsive polymer model, i.e. we hoose rc = 21/6σ, and shift ULJ to
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Figure 2.1: Interation potentials between non-bonded and bonded beads, ut and shiftedLennard-Jones and FENE potentials and their sum (LJ+FENE).avoid a disontinuous fore at the ut-o�. The exluded volume parameter in this ase is
ν2 ≈ a3[82℄. Sine ν2 is positive, we have good solvent onditions, independent of thetemperature.The onnetivity along the hain bakbone is assured via the FENE potential[24℄,

UFENE(r) =







−1
2kr

2
0 ln[1 − (r/r0)

2], (r < r0)

∞, (r > r0) ,
(2.2)where r is the distane between neighboring monomers in a hain, k = 30ǫ/σ, and

r0 = 1.5σ. The equilibrium bond length, b = 0.97σ, follows from the minimum of
ULJ(r) + UFENE(r). The KG model prevents bond rossing and yields the harateristiproperties of polymer solutions and melts[24, 78℄. The potentials an be seen in Fig. 2.1.We mimi the interation of monomers and solvent with the wall atoms by Eq. (2.1)using the same values for rc, σ, and ǫ as for the monomer-monomer interation. The onlyexeption onerns the interation between the grafted end-monomers and the wallatoms, where we inrease ǫ by a fator of 250 with respet to the monomer-monomerinteration and make the LJ potential attrative by doubling rc. The wall atoms remainat �xed relative positions and move only with the given shear veloity. Using thisapproah, we imply hemisorbed polymer hains on a substrate with in�nite mass.Solvent moleules are simulated as LJ dimers. The onnetivity of the latter, as well as ofarms in stars and their bonding to the enter monomer are assured via theFENE-potential, Eq. (2.2), with the same interation parameters as for the



2.2. ELECTROSTATIC INTERACTION AND EWALD SUMMATION 33monomer-monomer interation in the brush.Figure 2.2 shows a typial snapshot of the simulated system. A top view on the stars,whih shows the distribution of them in the system an be seen in Fig. 2.3. Theystrongly interat with eah other as well as with the brushes.

Figure 2.2: Typial snapshot of two polymer brushes with stars and expliit solventmoleules at stati equilibrium. The distane between grafting planes is D = 12. Eahbrush onsists of hains with N = 30 monomers per hain (blue and red beads). Thegrafting density is approximately twie the ritial grafting density, at whih the hainsoverlap. Green spheres are the stars and white spheres are solvent moleules (dimers).
2.2 Eletrostati interation and Ewald summationIn harged systems ions are interating via the long-range Coulomb interation

UCoul(r) =
kBTqiqjλB

r
, (2.3)where qi and qj are the orresponding harges in units of the elementary harge e, and λBis the Bjerrum length[Eq. 1.45℄.In order to take this long-range interation into aount the Ewald Summationtehnique[83℄ was implemented. The eletrostati potential may be divided into thefollowing ontributions: interations due to ontinuous bakground harge,self-interation and real ontribution due to sreened harges. The �rst ontribution may
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Figure 2.3: Top view of the system, only the stars are presented (green objets in theFig. 2.2). They are loated in the middle of the bilayer. The funtionality of stars is
f = 30, the number of monomers per arm is Nmon = 5.be omputed using Fourier transformation

Uf =
1

2V

∑

k 6=0

4π

k2
|ρ(k)|2e−k2/4α, (2.4)where

ρ(k) ≡
N
∑

i=1

qie
ik·ri , (2.5)with ρ(k) the harge density in Fourier spae, α the width of the Gaussian distribution,whih is the ompensating harge surrounding the ion, k the lattie vetors in Fourierspae, V the volume of the simulation box.The seond self-interation ontribution must be subtrated from the sum due to theperiodi interation of the ontinuous harge loud, whih is ompensating the pointharge qi,

Uself =
(α

π

)
1

2

N
∑

i=1

qi
2. (2.6)The eletrostati energy due to the point harges and the ompensating loud in realspae has the form

Us−r =
1

2

N
∑

i6=j

qiqjerfc(
√
αrij)

rij
, (2.7)



2.2. ELECTROSTATIC INTERACTION AND EWALD SUMMATION 35where rij is the distane between partiles i and j, and
erfc(x) ≡ 1 − 2√

π

∫ x

0
e−u2

du. (2.8)In order to take into aount that the system is periodi only in two diretions (slabgeometry), it was shown[85℄, that one an add a orretion term to obtain the orretlimiting behavior in the limit of in�nitely thin geometry (D ≪ Lx and D ≪ Ly)
Ud = −2π

V
Mz

2, (2.9)where
Mz =

N
∑

i=1

qizi, (2.10)with zi the oordinate of the point harge qi.The total Coulomb energy is
Uc = Uf + Us−r − Uself − Ud. (2.11)We vary degree of ionization from fi = 1 (strongly harged polyeletrolyte), when everymonomer of the hain has a harge q = −1, to fi = 1/30 (the hain length is �xed

N = 30), where only the end-monomer is harged. The Bjerrum length in this ase isequal to size of monomers λB = σ = 1. Fixing the degree of ionization at fi = 1 we alsovary the Bjerrum length from λB = 0.01σ up to λB = 3σ.Charged systems are simulated under strong ompression at a distane D = 12 betweenthe walls; the grafting density is varied between ρg = 1.1ρ∗g, ρg = 2.2ρ∗g and ρg = 4.4ρ∗g;only the ase of Solvent B is onsidered.In order to keep the system eletroneutral, suh that
∑

qi = 0, (2.12)where i goes over all harges in the system, ounterions are added. Two ases ofounterions are investigated. First, we treat ounterions as LJ dimers like the solventmoleules. Every monomer of the dimer is harged, suh that it is bivalent. In addition,we investigate systems with both monovalent ounterions and solvent moleules, whih,only for this speial ase, are treated as single monomers. Simulation results of theharged systems will be presented in Chapter 6.



36 CHAPTER 2. MODEL AND SIMULATION TECHNIQUE2.3 DPD-thermostatTemperature is kept onstant at T = 1.68ǫ/kB using a Dissipative Partile Dynamis(DPD) thermostat[83, 87�90℄. The thermostat adds to the total onservative fore oneah partile i a dissipative fore, Fi
D, and a random fore, Fi

R. Both fores are appliedin a pair-wise form, suh that the sum of thermostating fores ating on a partile pairvanishes. With Γ the frition onstant, the dissipative fore reads
Fi

D = −Γ
∑

j(6=i)

ωD(rij)(r̂ij · vij)r̂ij , (2.13)where r̂ij = (ri − rj)/rij and vij = vi − vj with ri and rj , vi and vj position vetors andveloities of partiles i and j respetively. We hoose the ommonly employed weightfuntion
ωD(rij) =







(1 − rij/rc)
2 (rij < rc) ,

0 (rij ≥ rc) ,
(2.14)with the same ut-o� range rc as for the LJ interation. The random fore is given by

Fi
R = λ

∑

j(6=i)

ωR(rij)θij r̂ij , (2.15)where θij is a random variable with zero mean, unit variane, and θij = θji. ωR(rij)denotes the weight funtion for the random fore. Frition and noise strength, λ, de�nethe temperature via λ2 = 2kBTΓ. We hoose Γ = 5τ−1
LJ for the frition onstant. InRef. [35℄, a larger value (Γ = 12.5τ−1

LJ ) was hosen. However, we want to avoidoverdamping of the dynamis by the thermostat. During the simulation we monitor Tand �nd isothermal onditions for all shear veloities onsidered here.The �utuation-dissipation theorem demands that the weight funtions for dissipativeand random fores satisfy
[ωR]2 = ωD. (2.16)The weight funtion does not neessarily have to be of the spei� form of Eq. (2.14).Instead one an hoose a di�erent funtion, as long as Eq. (2.16) is ful�lled. Thestrengths and weaknesses of di�erent weight funtions have been studied reently for theKG model without expliit solvent[37℄ and a slightly di�erent model with solvent[35℄.Using the DPD thermostat hydrodynami interations are taken into aount and loalmomentum is onserved, suh that the Zimm model is appliable to our results, whih wewill demonstrate in the following.



2.4. MD SIMULATIONS 372.4 MD SimulationsTo study the system we use Moleular Dynamis simulation methods[83℄. The equationof motion for partile i is
m
d2

ri

dt2
= Fi, (2.17)where Fi is the sum of the all fores ating on the partile

Fi = −∇iU + Fi
R + Fi

D (2.18)where Fi
R is de�ned in Eq. (2.15), Fi

R in Eq.(2.13) and the potential is
U = ULJ + UFENE + Uc (2.19)where ULJ in Eq. (2.1), UFENE in Eq. (2.2) and Uc in Eq. (2.11).We solve the lassial equations of motion via the Veloity-Verlet algorithm[83℄. It an bewritten in the following form:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t), (2.20)

v(t+ δt) = v(t) +
1

2
δt [a(t) + a(t+ δt)] . (2.21)The algorithm is implemented in the following way. First, the new positions at time

t+ δt are alulated using Eq. (2.20), and veloities at the mid-step are omputed using
v(t+

1

2
δt) = v(t) +

1

2
δta(t). (2.22)The fores and aelerations at time t+ δt are omputed and the veloity move ompleted

v(t+ δt) = v(t+
1

2
δt) +

1

2
δta(t+ δt). (2.23)The whole proess is iterated using the newly omputed positions and veloities. Sinewe get the veloities at eah time step from Eq. (2.23), the instantaneous temperaturean be alulated as

m

Ntot
∑

i=1

〈vi
2〉 = 3NtotkBT, (2.24)where Ntot is the total number of monomers exluding surfaes partiles.We use a time-step of δt = 2 · 10−3τLJ, where τLJ = σ(m/ǫ)1/2 represents the LJ timeunit. The partile mass, m, is set to unity for all monomers and solvent partiles. Wesystematially heked that our results remain unhanged when the time-step is reduedto δt = 5 · 10−4τLJ.



38 CHAPTER 2. MODEL AND SIMULATION TECHNIQUEWe onsider stationary Couette �ows, whih are applied by shearing the substrates witha onstant relative veloity of 2V at �xed distane D. The orresponding shear rate isde�ned as γ̇ ≡ 2V/D. All quantities will be presented in LJ units.The response to shear may be haraterized by the stress tensor, whih an be alulatedusing the Irving-Kirkwood formula[86℄
σαβ =

1

V
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∑
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vαvβH(zi)
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∑

i<j

rα,ijrβ,ij

|rij |
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(
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(
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 .(2.25)When the system is divided in the Z-diretion into slabs of thikness ∆z, H(zi) isexpressed as
H(zi) =







1 z − ∆z
2 < zi < z + ∆z

2

0 otherwise
(2.26)



Chapter 3Stati Equilibrium
3.1 IntrodutionPolymer brushes are deeply investigated by means of theory[28, 49, 50, 55, 84℄,experiments[15, 17, 62, 65, 91, 92℄ and omputer simulations[30, 31, 33, 34, 36, 37, 82℄. Instati equilibrium two opposing brushes an interpenetrate strongly into eah other dueto the non-paraboli tails of the brush-pro�les. Computer simulations [93℄ demonstratethat highly �utuating interfae region between the brushes is built. A single brushexpels maroobjets out of it [94, 95℄. The in�uene of a single brush on two inlusionswas extensively investigated by means of theory and omputer simulations[94, 95℄. Theseso-alled e�etive interations are observed in many systems, e.g. in biomembranes[96, 97℄, at �uid-�uid interfaes [98℄, in liquid rystals [99℄, in bilayer lipid membranes[100�102℄, in polymer-olloid mixtures [103℄ and so forth. Partiularly, they are veryimportant in ellular proesses whih lead to aggregation of proteins. We are interestedin the interations between two maroobjets loated between two opposing brushes.These maroobjets are olloids or polymer stars of di�erent softness. By varying thefuntionality, f , and the number of the monomers per arm, Nmon, we vary the size andthe shape of the objet. We will investigate the in�uene of the brushes on theinterations between these objets.In this setion, the results of simulations onerning the e�etive interations in statiequilibrium between stars and olloids in the brush-brush interfae will be presented.3.2 Brushes-indued interationsThe stars, when loated lose to eah other, experiene steri repulsion[104℄, thereforethey do not prefer to be in ontat. In order to investigate e�etive interations betweentwo objets and to �san� all distanes between them one an use, for example, umbrellasampling[83℄. Experimentally, rare on�gurations an be investigated using laser39
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(a) Distane between thestars d/σ = 12

(b) Distane between thestars d/σ = 7

() Distane between thestars d/σ = 3Figure 3.1: Snapshots of the system, two opposing brushes and two stars in the interfaebetween them. Blue and red beads orrespond to top and bottom brushes, green beadstothe stars, light green to the enter monomer. Close to eah other two stars build onebig objet (3.1). When the brushes are slightly separated the brushes start to penetratebetween the stars (3.1b). At large enough distanes the stars do not feel eah other (3.1a).The grafting density is ρg = 3.3ρ∗g, the distane between the walls is D = 17.5, the staron�guration is Nmon = 5, f = 30.traps[105℄, where the interation potential is probed using laser tweezers. Similarly tothis method we onnet the enter monomers of the stars to a �xed position in spae by aspring. The spring onstant is taken to be k = 100. This spring allows us to keep theobjets lose to eah other. Due to interations between polymer stars the position of theenter monomers after equilibration di�ers from the pinning position. There is ane�etive potential between the stars, whih is
U0

st−st =
k∆x2

2
, (3.1)where ∆x is the di�erene between the measured position of the enter monomer and thepinning position. ∆x depends on the relative position of the enter of mass of the stars.Our aim is to investigate the deformation of the stars, moreover to study how thee�etive potential between these two objets is in�uened by the presene of the brushes.The latter an be alulated from the di�erene between the potential, whih atsbetween the stars in the presene of the brushes, Ub

st−st, and the pure potential atingbetween them, when there are no brushes in the system, U0
st−st,

Ub−st = Ub
st−st − U0

st−st. (3.2)In both situations the potentials between the stars an be diretly measured via theposition of the enter monomers. Computer simulations allow to investigate in detail therelative deformations of eah objet in order to understand the nature of the ourringinterations.The pinning distane d is the distane between the enter monomers of the stars. Wevaried the pinning distane between d/σ = 3 and d/σ = min(Lx/2, Ly/2), where Lx and
Ly are the sizes of the simulation box in X- and Y - diretions, in whih periodiboundary onditions are applied. The position of the enter of mass of eah star depends



3.2. BRUSHES-INDUCED INTERACTIONS 41on its deformation by the brushes. All measured variables will be presented as a funtionof the distane between the enter of mass of eah star, rcm.The monomers in the system are harge neutral. The length of the hains in the brushesis �xed to N = 30 for all simulations. The grafting density, ρg is varied between
ρg = 0.085 and ρg = 0.34. This orresponds to 2.2ρ∗g and 8.8ρ∗g, where ρ∗g is the ritialgrafting density from whih on hains within a brush start to overlap. Several staron�gurations were investigated as well as di�erent separations between the walls.Snapshots of the investigated systems for di�erent pinning distanes of the stars, d arepresented in the Figs. 3.1. The stars are loated in the middle of the bilayer between thetwo opposing brushes. The Y -oordinate of the pinning position is �xed for allsimulations. The pinned enter monomers are able to �utuate around their equilibriumpositions. The resulting �utuations around the pinning points are less than 1% of thedistane between the walls, D. Via variation of the pinning positions in X-diretion wevary the distane d. The Figure 3.1 shows the system, when two stars are lose to eahother and the distane between the pinning points is d/σ = 3. The stars build one bigobjet in this ase. They interat with the brushes as a whole, suh that the brushes arenot able to interpenetrate between the stars. Both stars are signi�antly deformedompared to their free on�guration, they beome aspherial. Figure 3.1b shows thesituation, when the stars still interat with eah other, but the brushes startinterpenetrating between them, whereas Fig. 3.1a orresponds to the situation, when twostars are separated ompletely. One an see that in all three snapshots the stars alsostrongly deform the brushes.In the following we fous on two star on�gurations. The �rst one is f = 30, Nmon = 5,whih is rather olloid-like, and the seond one is f = 15, Nmon = 10, whih is softer andeasier deformable as will be seen below. The �rst star exhibits in the bulk the gyrationradius Rst

g = 1.74 and the seond one Rst
g = 2.3. The distane between the walls is �xedto D = 17.5 and we ompare two grafting densities, ρg = 6.6ρ∗g and ρg = 3.3ρ∗g.It is known that two ompressed brushes try to prevent penetration into eah other.Similarly to the brushes, it is not favourable for the stars to penetrate into the brush andtherefore they are strongly deformed in Z-diretion. The dependene of the gyrationradius of the stars on the distane between the enter of mass of eah stars normalized bytheir unperturbed size, rcm/Rst

g , an be seen in Fig. 3.2.Let us �rst analyse the on�guration of the stars when they are far apart from eah other(rcm > 4Rst
g ). The higher is the grafting density of the brushes the more aspherialbeomes the star. Compared to the unperturbed star size, X- and Y -diretions arein�uened by the presene of brushes, but remain almost equal (Rst

g,x ≈ Rst
g,y). The starsare squeezed in Z-diretion. One an see that the softer is the star, the more ompressedit is in Z-diretion.Let us turn now to the situation when the stars are lose to eah other (rcm < 3Rst

g ). Due
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Figure 3.2: Normalized volume fration of brush beads between the stars (upper panel),the gyration radius of stars (left bottom and the right panels) in X- (blak lines), Y -(green lines) and Z-diretions (red lines) as a funtion of redued distane between entersof mass for di�erent star on�gurations. The volume fration of the brush beads inreasesontinuously up to the distane of �ve times the gyration radius, rcm ≈ 5Rst
g . The gyrationradius of the stars is in�uened up to rcm ≈ 4Rst

g . Left bottom graph orresponds to thestar on�guration Nmon = 10, f = 15 with the gyration radius Rst
g = 2.3 (size of theunperturbed star), the right panel to the star on�guration Nmon = 5, f = 30 with thegyration radius Rst

g = 1.74 (blue dashed-dotted line).to the interation with the other star the most signi�ant deformation is in the
X-diretion, along whih the pinning distane is varied. Due to the deformation in thisdiretion, the stars are swollen in Y - and Z-diretions. The size of stars di�ers in X- andin Y -diretions up to rcm ≈ 4Rst

g , when the brush starts penetrating between the stars.In order to haraterize it quantitatively we measure the volume fration of the beadsbetween two stars, φb(rcm), whih is normalized by its value when the stars are in�nitelyfar apart, for instane, in the half of the simulation box, φb(Lx/2).
gb(rcm) =

φb(rcm)

φb(Lx/2)
. (3.3)The left upper panel of Fig 3.2 shows gb(rcm). One an see that this number is growingupon inrease of the distane between the stars. Comparing two on�gurations of the



3.2. BRUSHES-INDUCED INTERACTIONS 43stars one an see that the softer the star, the more deformable it is and, therefore, thenumber of brush beads between the stars is larger. The denser the brushes are, theearlier they penetrate between the stars. gb(rcm) reahes unity at the distane
rcm ≈ 5Rst

g . This orresponds to the distanes at whih the brush between the stars donot feel the presene of the stars.
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Figure 3.3: Brushes-indued potential between the two stars Ub−st of di�erent on�gura-tions for di�erent grafting densities of the brushes and the number of interations betweenthe stars and the brushes normalized by the number of interations when the stars do notinterat with eah other (at the distane between the stars equal to the half of the simu-lation box, Lx/2) as a funtion of distane between the inlusions. The potential reaheszero approximately when the number of interations between the brushes and stars reahesa onstant.Now let us haraterize how the brushes modify the interation between the inlusions.One an see in Fig. 3.3 that it leads to attrative potential. Suh behavior have beenobserved in polymer melts, when the attrative depletion interation between olloids wasobserved [104℄. Similarly to the ase of polymer melts, an inrease of the polymer densityleads to a stronger attration. But due to the irreversible anhoring to the walls and



44 CHAPTER 3. STATIC EQUILIBRIUMstrong ability to deform of the inlusions, the e�et is muh stronger(up to 40kBT ) forthe ase of two opposing brushes with the stars. One an see, that the softer the star, theless in�uene has the brush on the e�etive interation between them, eventhough softerstars are larger than the stars with higher funtionality. The e�etive potential reaheszero at the distanes between the enters of mass of about four times the radius ofgyration of the unperturbed star, d ≈ 4Rst
g , whih is in the strong orrelation with thedeformation of the stars.The e�etive potential an be haraterized also in terms of the number of binaryinterations between the brushes and the stars, Nb−st (see Fig. 3.3, lower plot). Whenthe maroobjets are lose to eah other, Nb−st is smaller than when they are far apart.Similarly to the number of beads ourring between the stars, gb(rcm), the number ofinterations grows upon inrease of the distane between the stars. Nb−st reahes aonstant at distanes rcm ≈ 4Rst

g . At this distane the stars stop interating with eahother and eah maroobjet behaves like a separate, independent one.In ase of so-alled ��uid� brushes (allowing the grafted ends to freely move on thesurfae in X- and Y -diretions), we expet a smaller in�uene of the brushes.Next we replae the stars by two hard spheres. The diameter of the spheres, Rc = 3σ, isthree times larger than the size of monomers in the brushes. In the ase of the polymermelt one an observe entropy-indued short-range depletion fores[104℄. The depletionzone is de�ned around the spheres at 2Rc < d < 3Rc. These fores an be desribed andunderstood in terms of the Asakura-Oosawa approah [103℄, whih predits depletioninterations between them. The e�et of the end-grafting of the hains does not inreasestrongly the depletion potential ompared to the polymer melts Upper plot of Fig. 3.4shows the e�etive potential ating between two hard sphers as a funtion of the pinningdistane between them, Ub−co(d), for di�erent grafting densities.The higher the grafting density the more signi�ant the in�uene of the anhored polymerhains. For the highest grafting density, ρg = 6.6ρ∗g, a small periodiity appears. Thismay be due to the penetration of the brush-monomers between the pinned hard spheres.Inrease of the distane between the walls �xing the grafting density of the brushes leadsto a derease of the density of the brushes in the system and, therefore, to a derease ofthe in�uene on the interations between the maroobjets. Our investigations revealthat the bigger the olloids, whih are plaed in the interfae, the bigger the fores atingon them (not shown here).Similarly to the ase of stars, an inrease of the grafting density leads to an inrease ofthe number of binary interations between the brushes and inlusions (Fig. 3.4, lowerplot). For the highest grafting density one an see that the number of interations showsan overshooting e�et of ≈ 3% and beomes even larger than for the ase, when the twoinlusions are far apart from eah other. This happens at the distanes when thepotential shows a minimum in its periodi behavior. Sine the brushes build a highly
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Figure 3.4: Brushes-indued potential between two olloids (hard spheres with radius
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Chapter 4Steady-state shear
4.1 IntrodutionIn this setion we will present our investigations of two opposing, highly ompressedpolymer brushes with soft olloids. Our aim is to investigate the in�uene of the polymerstars on the response to shear, to study the struture of the bilayer and its relaxationtime, and, moreover, to understand a possible mehanism of the low frition phenomenabetween two opposing brushes reported in experiments[15℄. We start our desription fromthe theoretial approah, whih gives preditions for the behavior of the lateralextensions of the brushes, as well as shear fores and visosity. Afterwards, we presentomputer simulation results whih are in a good agreement with the newly developedtheory. In our theoretial approah we �rst analyse the behavior of the system in linearresponse (W<1), when shear fores are proportional to the Weissenberg number and thestruture of the system is not in�uened signi�antly by shear. Then, we study thebehavior of the system for large Weissenberg numbers (W ≫ 1) when the hains of thebrush are strongly strethed. The starting point of our theory is that the two opposingbrushes are highly ompressed (2h/D ≥ 2), suh that the density pro�le in gradientdiretion exhibits an almost uniform behavior (exept the layering e�et at the walls).Moreover, we assume that the high ompression leads to a �at density pro�le for allonsidered shear rates, suh that the sum of the monomer density pro�les of the brushes,
ρ1(z) + ρ2(z),(ρ1(z) and ρ2(z) are density pro�les of the top and bottom brushes,respetively) is uniform. In the following, we therefore assume a uniform monomeronentration, c ∝ Nρg/D, in the overlap region. We will use this feature below for thelinear response regime. Moreover, let us assume that the brushes an be approximated bythe MWC approah[55℄, suh that eah polymer brush provides paraboli moleular �eld[see Eq. (1.26)℄. Let us allow the hain ends to interpenetrate into the opposing brushdue to thermal �utuations, suh that the interpenetration depth, i.e. the overlapthikness of the bilayer, an be derived as in Eq. (1.32). The interpenetration depth, δ,47



48 CHAPTER 4. STEADY-STATE SHEARdepends on the degree of the polymerization, N , monomer size, a, the distane betweenthe substrates, D, and the grafting density ρg.4.2 Theoretial approah4.2.1 Zimm dynamisLet us �rst onsider semidilute brushes. In this ase, a brush may be onsidered as adense melt of onentration blobs[45℄. Eah grafted hain in this ase onsist of the
nc = N/gc blobs, where gc is the number of monomers in eah blob, the size of eah blobis ξc depends expliitly on the onentration of the system, c (see Eq. (1.8)). Therefore,Eq. (1.32) still holds with the replaements

N → N/gc, a→ ξc. (4.1)With the uniform onentration c ∝ Nρg/D, Eq. (1.32) yields for the interpenetrationdepth
δ ∝ a

[

N2ν(ρga
2)2(1−2ν)

( a

D

)1−ν
]1/3(3ν−1) (4.2)for strongly ompressed, semidilute brushes. Under melt onditions, the gyration radiusin shear diretion (lateral extension) of a hain is given by Rg,x(0) ∝ N1/2a. With thesame transition to the blob piture [see Eq. (4.1)℄ we get

Rg,x(0) ∝
(

N

gc

)1/2

ξc ∝ a

[

Nν

(

D

ρga3

)2ν−1
]1/2(3ν−1) (4.3)for semidilute brushes in linear response.In the next step, we estimate the frition fore per unit area (fx/A) for Weissenbergnumbers W ≤ 1 by assuming Zimm dynamis in the blob[45℄. Sine the size of the blobsis the same in the whole bilayer, the knowledge of the interpenetration depth [see Eq. 4.2℄allows to alulate the number of blobs in the overlap region. Sine there are cδ/gc blobs(per unit area) in the overlap region, eah having a frition oe�ient ηsξc (ηs the solventvisosity), and a typial veloity is the shear rate multiplied by the distane between thewalls, γ̇D, we may write

fx(γ̇)

A
∝ cδ

gc
ηsξcγ̇D (W ≤ 1). (4.4)With Eqs. (1.8) and (4.2) this leads to

fx(γ̇) ∝
[

N8ν(ρga
2)2(1+ν)

( a

D

)4(ν−1)
]1/3(3ν−1)

ηsγ̇A (4.5)



4.2. THEORETICAL APPROACH 49in the linear response regime. This result is di�erent from the original alulation byKlein[16℄, who obtains
fx(γ̇) ∝ hρ1/2

g

(

h

D

)2/3(3ν−1)

ηsγ̇A (W ≤ 1). (4.6)This expression an be transformed into
fx(γ̇) ∝

[

N9ν−1(ρga
2)(7ν−1)/2ν

( a

D

)2
]1/3(3ν−1)

ηsγ̇A, (4.7)when the relation h ∝ aN(ρga
2)(1−ν)/2ν [81℄ is used. A omparison with Eq. (4.5) revealsan almost idential exponent for N , but di�erent saling-laws for ρg and D. We attributethese deviations to the fat that Klein starts out from

δ ∝ ρ−1/2
g

(

h

D

)1/3

, (4.8)whih rather desribes the interpenetration for weakly ompressed, molten brushes, andto a di�erent estimate of the number of blobs in the interpenetration zone. However,sine we base the following saling argument on the N -dependene of the shear fore,Klein's approah would lead to minor di�erenes.We antiipate that thermal �utuations allow the hains of a brush to exhange betweenthe overlap region and deeper layers[106℄. Hene, the shear stress should be sustained bymore hains than only those that are in the overlap region at a given time. However, ourdesription is based on the lateral hain extension averaged over the whole layer. This isformally equivalent to the assumption that all hains sustain the stress equally.The ritial shear rate follows from the de�nition of the Weissenberg number Eq. (1.58)with W = 1. Using ρg = Ng/A with Eqs. [4.3℄ and (4.5), we �nd
γ̇∗ ∝ kBT

ηsa3

[

N−19ν(ρga
2)20ν−13

( a

D

)14ν−11
]1/6(3ν−1)

, (4.9)or, with ν ≈ 0.588, γ̇∗ ∝ N−2.44ρ−0.27
g D0.6. For the shear fore at W = 1, [see Eq. (1.58)℄,we obtain
fx(γ̇∗) ≈ NgkBT

Rg,x(0)
. (4.10)From the Eqs. (4.3) and (4.10) one �nds

fx(γ̇
∗) ∝ NgkBT

a

[

N−ν

(

ρga
3

D

)2ν−1
]1/2(3ν−1)

. (4.11)We now address the regime beyond linear response. At large shear rates, the hains



50 CHAPTER 4. STEADY-STATE SHEARstrongly streth in the shear diretion, suh that Rg,x(γ̇) ∝ N . Now let us de�ne theratios for the hain extension, shear fores, and visosities between the non-Newtonianresponse regime and stati equilibrium. For the hain extension
qα ≡

R2
g,α(γ̇)

R2
g,α(0)

, (4.12)with α = x (shear diretion), or α = z (gradient diretion) for shear fores
u ≡ fx(γ̇)

fx(γ̇∗)
; (4.13)and for the visosity

s ≡ ηxz(γ̇)

ηxz(0)
, (4.14)with ηxz(0) the zero shear visosity.Sine fx/A = σxzγ̇, one may write for the shear visosity

s ∝ fx(γ̇)

fx(γ̇∗)
W−1 ⇒ u ∝ sW. (4.15)With Eq. (4.3) we obtain

qx ∝ N (2−5ν)/(1−3ν) (W > 1). (4.16)On the other hand, Eq. (4.9) yields
W ∝ γ̇∗−1 ∝ N19ν/6(3ν−1), (4.17)suh that

qx ∝W 6(5ν−2)/19ν (W > 1). (4.18)For strongly strethed hains, we expet the shear fore to be proportional to the totalnumber of monomers (∝ NgN) and the typial veloity, i.e.
fx(γ̇) ∝ NgNγ̇D ∝ N (W > 1). (4.19)Hene, upon inserting Eqs. (4.11) and (4.19) into Eq. (4.13), one �nds

u ∝ N (2−7ν)/2(1−3ν) , (4.20)for the regime beyond linear response. In ombination with Eq. (4.17), this yields forshear fores
u ∝W 3(7ν−2)/19ν (W > 1), (4.21)



4.2. THEORETICAL APPROACH 51and with Eq. (4.15) for the visosity
s ∝W−2(3−ν)/19ν . (4.22)4.2.2 Rouse dynamisSo far we have desribed strongly ompressed, semidilute brushes in the Zimm model(inluding hydrodynami interations). Let us assume that hydrodynami interationsare fully sreened and that the monomers obey Rouse dynamis instead of Zimmdynamis. This would orrespond to the ase of �dry� brushes.In the following, we distinguish two ases, a molten brush, where in addition tohydrodynami interations also the exluded volume interations are sreened, and asemidilute brush onsisting of exluded volume blobs as in Se. 4.2.1.For brushes without hydrodynami interations, the frition fore is proportional to thenumber of monomers in the overlap region, the frition oe�ient, ψ, and the typialshear veloity in the system, γ̇D,

fx(γ̇) ∝ cδψγ̇DA (W ≤ 1). (4.23)Let us �rst onsider molten brushes. In this regime, Eqs. (1.32) and (4.23) yield
fx(γ̇) ∝ N5/3 (W ≤ 1). (4.24)Sine Rg,x(0) ∝ N1/2 under melt onditions, we �nd with Rg,x(γ̇) ∝ N and Eq. (1.58)
γ̇∗ ∝ kBT

ψa2
N−13/6

(

D

a

)1/3

. (4.25)In the non-linear regime, this yields
qx ∝ N ∝W 6/13 (W > 1) (4.26)With fmelt

x (γ̇) ∝ N at large shear rates and fx(γ̇∗) ∝ 1/Rg,x(0) [ Eq. (1.58)℄, we �nd
u ∝ N3/2 ∝W 9/13 (W > 1) (4.27)and for the visosity

s ∝W−4/13. (4.28)This result an be ompared to the earlier preditions of the visosity of the moltenbrushes[107℄. In that study the brushes were under weak ompression. This leads to thepredition for the shear visosity s ∝W 1/2.Now let us turn to the semidilute brushes with Rouse dynamis. Although this ase



52 CHAPTER 4. STEADY-STATE SHEARappears awkward from an experimental point of view, it an be ompared to numerialapproahes where hydrodynami interations are not taken into aount, e.g. due tospei� thermostat implementations (e.g. Langevin theromostat).When the hains are swollen, the interpenetration length is given by Eq. (4.2). WithEq. (4.23), the shear fore for dry, semidilute brushes in linear response sales as
fx(γ̇) ∝ N (11ν−3)/3(3ν−1) (W ≤ 1). (4.29)The ritial shear rate follows from Eqs. (1.58) and (4.3), suh that

γ̇∗ ∝ kBT

ψa2

[

N6−25ν(ρga
2)7(2ν−1)

( a

D

)8ν−5
]1/6(3ν−1)

. (4.30)Beyond linear response this yields, together with Eq. (4.16),
qx ∝W 6(5ν−2)/(25ν−6) (W > 1) (4.31)for the lateral hain extension, and the saling of u with W follows from Eqs. (4.20) and(4.30), suh that
u ∝W 3(7ν−2)/(25ν−6) (W > 1), (4.32)for the shear fores.4.3 Computer simulationsIn this setion, we present data of omputer simulations for two ompressed, opposingpolymer brushes under lateral steady-state motion of the adsorbing substrates. Weompare systems with stars and without stars, i.e. Solvent C, D and Solvent B, whihwere de�ned in Chapter 2. We ompare the simulation results with the theoretialpreditions made above.4.3.1 Density pro�les and overlap regionLet us �rst analyse the struture of the system. An investigation of monomer and solventdensity pro�les (Fig. 4.1) reveals that solvent moleules aumulate at the substrates(seen also for a similar model[38℄) and in the interfae of the two brushes, even in statiequilibrium inspite of the presene of stars. The brushes interpenetrate into eah other.Solvent moleules are distributed in the system, even at the surfaes. The stars areloated in the middle of the system between the brushes. Brushes under shear beomemore dense and squeeze solvent moleules into the interfaial region between the brushes(see Fig. 4.1 lower left plot). The stars beome more ompressed and are pushed out ofthe brush more signi�antly, suh that the interpenetration between brushes and stars
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Iov(γ̇) ∝

∫

dzρi(z)ρj(z), (4.33)where ρi(z) and ρj(z) are the density pro�les of the omponent with i = 1 and j = 2orresponding to the top and bottom brushes, i = 1 and j = 3 to the pro�les of the top



54 CHAPTER 4. STEADY-STATE SHEARbrush and stars.The upper plot of Fig. 4.1 shows the overlap between di�erent omponents of the systemharaterized as de�ned in Eq. (4.33). It reveals, that the interpenetration betweenbrushes with stars (Solvent C) is redued ompared to the star free ase(Solvent B).Furthermore, we observe that, under su�iently strong shear, the layer thiknessdereases and this leads to a redued interpenetration depth. The right upper plot showsthe interpenetration between the stars and brushes. Similarly to the ase of two brushesit has a Gaussian form.
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Figure 4.2: Distribution of brush ends and enter monomer of stars atD = 17.5 betweengrafting planes for hain length N = 30. The grafting density is ρg ≈ 4.4ρ∗g. Blak linesorrespond to brushes, green lines to stars, dotted lines to steady shear motion, full lines tostati equilibrium. The system without stars in stati equilibrium is presented by dashedlines.Figure 4.2 proves that brushes interpenetrate deeply into eah other. The end-monomerdistribution shows that hain ends of one brush interpenetrate deeply into the opposingbrush. This e�et dereases under shear. The interpenetration of the brushes stillremains but is signi�antly dereased, the hains beome more strethed, whih an beonluded from the derease of the maximum of the distributions. The stars hinder theinterpenetration between the brushes. The distribution of enter monomers beomesmore narrow, stars are expelled out of the brushes similarly to the solvent moleules andonentrate in the interfae of the bilayer.The brushes and the stars deform eah other signi�antly. The deformation of the starswas desribed in Chapter 3. Let us turn now to the deformation of the brushes. It an be



4.3. COMPUTER SIMULATIONS 55haraterized by the analysis of the brush height around the enter monomer of the stars,
H(r− rm), with rm is the position of the enter monomer of the star. This is presented inFig. 4.3. The brush height is lower around the enter monomer. It ontinuously grows upto the level when the brush is not in�uened by the presene of the stars. Thedeformation of the brushes dereases upon inreasing softness of the stars. Under strongshear ondition the brush around the star gets muh weaker. The brush height beomesalmost onstant, the deformation is smoothed away, this leads on turn also to a strongdeformation of the stars under shear, as we will see below.
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g,x) for two di�erent star on�gurations. The full symbols orrespond to thesteady shear, the empty symbols to stati equilibrium. Blak urves orrespond to the staron�guration f = 30, Nmon = 5, red lines to f = 15, Nmon = 10. The brushes are stronglydeformed by the stars. Under shear the deformation is smoothed. The distane betweenthe walls is D = 12, the grafting density is ρg ≈ 2.2ρ∗g, the hain length is N = 30.Let us turn bak to the interpenetration region between the brushes and fores ating inthis region. The omponents are the brushes, stars and solvent moleules. Correspondingin the following to the indies �b�, �so�, �st�. The fores ating between the di�erentomponents, e.g. between brushes and solvent moleules, will be signatured by the index�b-so�. A previous study[31℄ revealed that Iov(γ̇) is proportional to the number of binaryinterations between monomers of di�erent brushes, Nb−b
int , whereas the latter isproportional to the fores ating between the brushes in shear diretion, F b−b

x , i.e.
Iov(γ̇) ∝ Nb−b

int ∝ F b−b
x (4.34)
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x as a funtion of shear rate for di�erent star on�gurations anddistanes between the walls, D. The presene of stars dereases the fore ating betweenthe brushes, sine the interpenetration dereases due to the fat that the stars are loatedin the middle of the system. Let us ompare �rst the fores ating between the brushesfor di�erent star on�gurations. One an see (pronouned at the highest shear rate) thatthe softer the stars the quiker dereases the fore between the brushes upon inrease ofthe shear rate. Moreover, upon inrease of the distanes between the walls the forestarts dereasing at higher shear rates. The same onlusion an be drawn when oneompares the systems with and without stars, namely that the fores between the
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α , with α = x or α = z, respetively,the following law:
Ib−st(γ̇) ∝ Nb−st

int ∝ F b−st
α . (4.35)
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ρg = 2.2ρ∗g, the hain length, N=30In Fig. 4.7 the last part of the relation (4.35) is demonstrated. The fores ating the starsand brushes are larger in the shear diretion between, than in the gradient diretion. Onepossible explanation may be that the brush interpenetrates through the layer of stars intothe opposing brush, suh that inreasing the shear rate the brush has to leave �rst theopposing brush, whih results also in a strong interation with the stars in sheardiretion; upon further inrease of the shear rate the brush starts leaving the layer ofstars resulting in further derease of the fore. As an be seen, the fores in gradientdiretion derease similarly to the fores in shear diretion with inreasing shear rate.4.3.2 Kineti frition oe�ientA di�erent behavior of systems with and without stars an be observed for the kinetifrition oe�ient, µ. We de�ne µ as the ratio between shear and normal fores,
µ(γ̇) =

fx(γ̇)

fz(γ̇)
, (4.36)
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ρg = 1.1ρ∗g (when the brushes are in a slightly strethed regime) and ρg = 4.4ρ∗g (forhighly strethed brushes), is presented in Fig. 4.8. It demonstrates that the inrease ofthe grafting density at �xed D (suh that the density of solvent dereases) results inhigher frition. If one inreases the length of hains, N , but keeps the density of thebrush or the grafting density onstant, leads in both ases to higher frition, too. Thisresult is on�rmed experimentally[108℄.The solvent plays a ruial role in polymer-brush lubriation proesses[32℄. E�ets of
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4.3. COMPUTER SIMULATIONS 65square end-to-end distane instead of using R2
g,α. Both quantities follow the sameuniversal behavior.4.3.4 Struture of starsIn this setion we will analyse the behavior of stars in shear diretion. For the ase ofsheared stars in the bulk [60℄ it is possible to produe saling plots of the gyration radiusin shear diretion as a funtion of the Weissenberg number whih is de�ned by therelaxation time of a single arm. However, due to the fat that the arms are onneted tothe enter monomer of the star the relaxation times of eah arm is in�uened by thepresene of the neighbor hains. The relaxation time of eah star will strongly depend onthe funtionality of the star, f . In the following, we will demonstrate that the response ofthe stars on the shear not only strongly depends on the moleular parameters (f and

Nmon), but also on the external environment, i.e. on the struture of the brushes.
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Figure 4.13: Gyration radius of stars Rg vs. shear rate γ̇ for di�erent star on�gurations(from small and olloid-like with f = 50 and Nmon = 3 inreasing the size and softnessof the stars up to f = 15 and Nmon = 30). The grafting density is ρg = 2.2ρ∗g, hainlength of brushes, N = 30, and distane between the substrates, D = 17.5. Di�erent starsdemonstrate di�erent type of behavior from onstant to power-law. The power-law seemsto depend on the density of stars in the system (ompare System C and System D).In Fig. 4.13 one an see the dependene of the gyration radius on the shear rate. Thestrongest response shows the star on�guration with the longest arms, Nmon = 30.Dereasing the length of arms while keeping the density of stars onstant leads to aweaker response, as expeted. For large shear rates the system with lower density of stars(Solvent C) an be more deformed in shear diretion in omparison to systems, where thestars are paked denser (Solvent D).
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Figure 4.14: Gyration radius of stars Rg of on�guration f = 30, Nmon = 5 vs. shear rate
γ̇ for di�erent hain lengths (N = 30 and N = 60) and distanes between substrates D.The grafting density is kept onstant, ρg = 2.2ρ∗g. The larger the distane between wallsthe less deformed the stars. The inrease of the hain length leads to stronger response ofthe stars.Figure 4.14 shows the dependene of the gyration radius of olloid-like stars (f = 30,
Nmon = 5) for di�erent hain lengths, N , and distanes between the substrates, D, on γ̇.Keeping the grafting density onstant while inreasing the hain length one observesstronger deformation of the stars. Stars have less freedom due to the strongerinterpenetration between the brushes. In ase of longer hains, the brushes leave thelinear response regime at lower shear rates[109℄, whih in turn in�uenes the behavior ofthe stars as well.Figure 4.15 presents the response of stars on steady shear for rather �soft� stars (f = 15,
Nmon = 10) for di�erent grafting densities of the brush. Sine stars under highompression are already strongly deformed and shear leads to further deformation, asituation, when the gyration radius does not depend on the shear rate anymore, an beahieved. For small shear rates an inrease of the grafting density leads to an inrease ofthe stars' gyration radius in shear diretion. Further inrease of the shear rate may leadto the saturation of the stars' response (as an be seen in the ase of the highestinvestigated grafting density, ρg = 4.4ρ∗g, when the gyration radius approahes a plateaubehavior).The properties of the surfaes an be tuned easily by the polymer brushes. By varyingthe grafting density or hain length, the ritial shear rate γ̇∗ an be modi�ed. Addingstars of funtionality f and length of arms Nmon leads to a modi�ation of theharateristi relaxation time (Eq. [4.9℄, whih results in a modi�ation of the gyration
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Figure 4.15: Gyration radius of stars of on�guration f = 15, Nmon = 10 vs. shear ratefor di�erent grafting densities. The distane between substrates is D=17.5, hain length
N = 30. For small shear rates the higher the grafting density of brushes the more deformedis the star in shear diretion. For large shear rates, due to the inompressibility of stars,this behavior is modi�ed.radius of the stars. It turns out, that the relaxation time of stars ruially depends notonly on the funtionality and arm length, but also on the total density of stars, ρst, and,moreover on the moleular parameters of the brush, i.e. it depends on ρg, N , f , Nmon, ρst.4.3.5 Visosity and shear foresTo perform saling plots for the transport properties, it is not su�ient to know theritial shear rate. For instane, to plot the ratio (4.14), where ηxz(γ̇) represents theshear visosity, we need ηxz(0) for eah examined system. In order to ompute the(olletive) zero-shear visosity we have to perform simulations in the linear responseregime at small Weissenberg numbers and this is related to a bad signal-to-noise ratio.However, in priniple we an alulate ηxz(0) from the measured shear fores for W < 1.In the linear response regime, the Weissenberg number may be expressed via the aquiredenergy per hain [see Eq. (1.58)℄; the ritial shear rate an be found from therequirement that the aquired energy is omparable to kBT , i.e. when W is of order unity.The shear fore is proportional to γ̇ in linear response. With the zero-shear visosity

ηxz(0) =
fx(γ̇)

Aγ̇
, (W ≤ 1), (4.38)one thus may write

γ̇∗ ≈ ρgkBT

ηxz(0)Rg,x(0)
, (4.39)



68 CHAPTER 4. STEADY-STATE SHEARwhere we have used ρg = Ng/A.Equation (4.39) provides the possibility to ompute ηxz(0) for a given ritial shear rateup to a (onstant) numerial fator. Unfortunately, when plotting the ratio s [Eq. (4.14)℄,we �nd strong statistial �utuations. Therefore, we use a di�erent way of presentationby shifting the data along the ordinate to obtain an estimate for the zero-shear visosity.Figure 4.16 shows the visosity ηxz as a funtion of Weissenberg number W = γ̇/γ̇∗,where γ̇∗ is taken from the saling plot of gyration radius (Fig. 4.12).
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Figure 4.16: Double-logarithmi saling plot for the shear visosity as a funtion of theWeissenberg number. Similarly to Fig. 4.12 we show systems with stars of Solvent B, C, andD of grafting density ρg ≥ 2.2ρ∗g, the hain length is N = 30 (if not mentioned di�erentlyin legend), star on�gurations. The �rst number in the legend orresponds to the distanebetween the walls, D, the seond number to the length of arms in the stars, Nmon, thethird to the funtionality of the stars, f , the fourth to the grafting density devided bythe ritial grafting density, ρg/ρ
∗
g, the last letter orresponds to the type of solvent. Thenormalization onstant, ηxz(0), follows from shifting the data along the ordinate, suhthat s → 1 for W ≪ 1. The straight line orresponds to the analytially derived relation,

s ≈W−0.43 for ν = 0.588 [see Eq. (4.22)℄. All data an be mapped onto eah other.Systems without expliit solvent moleules (Solvent A), with solvent moleules as dimers(Solvent B) and with polymer stars (Solvent C and Solvent D) an be mapped onto eahother. This again is a non-trivial result, whih indiates a strong orrelation between thedeformation of hains and the marosopi response. Beyond linear response the datafollow a power-law,
s ∝W ζ (W > 1). (4.40)The exponent ζ = −0.43 (indiated by a straight line) is derived analytially [Eq. (4.22)℄in Setion 4.2.1.



4.3. COMPUTER SIMULATIONS 69The values for ηxz(0) used in Fig. 4.16 were ross-heked with [Eq. (4.39)℄ for allsimulated systems[109℄. However, the data reveal strong �utuations, whih explains whyit is almost impossible to produe a suessful saling plot for s from the diretalulation of ηxz(0).Polymer brushes demonstrate a universal power-law behavior in the non-linear responseregime independently of the grafting density, distane between the substrates and hainlength. In ase of solutions of polymer stars the visosity demonstrates di�erentpower-laws depending on the onentration of stars[110℄. In our simulations of a mixturebetween polymer brushes and stars we observe deviations from the universal behaviorwhen the brushes are not dominating the harateristi relaxation time of the system andand for a larger density of stars.
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Figure 4.17: Shear visosity as a funtion of Weissenberg number W , grafting density
ρg = 1.1ρ∗g, hain length N=30, Solvent C, density of stars ρst ≃ 0.22, when the stars leadto deviations from the predited behavior s ≈W 0.43 (plotted as a line).Figure 4.17 indiates that for systems of grafting density ρg = 1.1ρ∗g the presene of stars(of the density ρst ≃ 0.22) leads to a smaller exponent of the power-law. Computersimulations of an equivalent system of a solution of polymer stars without brushes reveala power-law with an exponent s ≈W−0.35[110℄. It indiates that inlusions mightstrongly in�uene the rheologial properties of suh omplex systems.Plotting the shear visosity always reveals strong �utuations at small shear rates. Asomewhat learer piture is obtained from the analysis of the shear fore. Here, wemeasure fx(γ̇) at the substrates.Figure 4.18 shows the ratio (4.13) as a funtion of W for all onsidered parameterombinations. The data ollapse is even better than for the visosity. As expeted, u
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Figure 4.18: Double-logarithmi saling plot for the shear fore as a funtion of the Weis-senberg number. Data is shown for two hain lengths, di�erent surfae overage at distanes
D = 12, D = 14.75, and D = 17.5 between grafting planes, also di�erent star on�gu-rations and di�erent densities of stars (Solvent C and Solvent D). The same systems arepresented as in Fig. 4.12. The normalization onstant, fx(γ̇∗), is obtained by shifting thedata along the ordinate suh that u = 1 for W = 1.sales linearly with W for W ≤ 1. Beyond linear response we obtain a power-law,

u ∝W κ (W > 1). (4.41)The dashed-dotted lines represent an exponent of κ = 1 + ζ = 0.57, whih follows fromEq. (4.15).The values for fx(γ̇
∗) are obtained by shifting the data along the ordinate, suh that

u(W = 1) = 1. For the same reason as before, we do not get a satisfying saling plotwhen using the relation Eq. (4.10).We emphasize that we observe deviations between shear fores at the ritial shear ratesand Eq. (4.11) due to a dependene of the e�etive solvent visosity, ηs, and monomersize, a, on the variation of ompression and moleular parameters, beause ηs and adepend on solvent and monomer density, hene impliitly on N , ρg, and D[109℄.In onlusion, it is possible to desribe systems of Solvent A, B, C and D on the basis ofthe same analytial onept. For this purpose we extrat a harateristi time sale andthe related length sale, whih determine the response of a given system to shear. Wesuggest a method to obtain the time sale, where we assume that the mean extension of agrafted hain in shear diretion represents a relevant length sale.



4.3. COMPUTER SIMULATIONS 71We expet deviations from our approah for weaker ompression, when the distanebetween the grafting planes exeeds h, suh that the assumption of a uniform monomeronentration is no longer valid. This regime was onsidered in Ref. [111℄ for moltenbrushes, where a disentanglement instability is predited for a ritial shear rate. Thispoints in the same diretion as the shear thinning we observe. It is to be noted thatextrapolating from the strong to the weak overlap regime reveals a minimum in theinterpenetration depth[109℄.The above results are built on the hain deformation averaged over the entire layer. Theritial shear rate we obtained does not orrespond to any simple harateristifrequeny. As a matter of fat, the struture of the sheared layer is more omplex thanre�eted by the averaged deformations. Chain deformation takes plae in the interfaeand is subsequently transported deeper into the layer by longitudinal hain end di�usion,whih leads to hain end exhange between the interfae and the bulk of the layers.Beause the lateral deformation relaxes in the same time, deformed hains are hardlyfound far away from the interfae. Though hains that reside temporarily rather thanpermanently in the interfae are less deformed and hains outside the interfae aredeformed to some extend as well, hain end exhange does not distribute the haindeformation evenly aross the layer.The exponents for the non-linear regime predited by both theories are very lose.Simulation results ould hardly disriminate between them.For muh longer hains, eah grafted hain laterally wiggles around many others. Ourtheory desribes a non-entangled entral sublayer (omprising the interfae) embeddedinto a gel-like elasti layer. A slightly di�erent approah is needed when the interfae iswide enough to be entangled itself. Inspite of that, the entanglements between twoopposing brushes are not ruial for our theory. Our approah predits the power-lawbehavior in the non-Newtonian regime. For large Weissenberg numbers, here, hainsmust disentangle or break.4.3.6 Comparison to experiment and other numerial approahesExperimental limitations prevent the exploration of equivalently large ompressions andshear rates as they an be studied in simulations. However, some experimental data thatreah the non-Newtonian regime have beome available. Shorr et al. reently measuredshear fores in bilayers of polystyrene brushes on mia with the Surfaes ForesApparatus (SFA)[18℄. In toluene (good solvent), the authors observe linear response overa wide range of ompressions and shear rates. However, at large ompression(2h/D ≈ 4.6) they �nd a sublinear inrease of the shear fore with sliding veloity.Interestingly, the experimental data is omparable with Eq. (4.21) [or Eq. (4.41)℄, as anbe seen from Fig. 4.19. Identifying the ritial shear rate and fx(γ̇∗) via the rossoverfrom linear to non-Newtonian behavior, we an ompare the SFA data to our results at
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Figure 4.19: SFA data from PS/PVP [25/4℄k in toluene at T = 32oC (taken from Ref. [18℄).Shear fore and veloity have been saled by the same proedure as our simulation data[D = 14.75, N = 60, ρg ≈ 1.1ρ∗g(N = 30), solvent-free℄ using fx(γ̇∗) ≈ 88µN and γ̇∗ ≈
16.8/s. Both experiment and simulation �nd a linear inrease of the shear fore for W ≤ 1and are in agreement with Eq. (4.21) in the non-Newtonian regime. The inset showsdata[18℄ (in LJ units) from Brownian dynamis simulations, whih agree niely with thepredited power-law of Eq. (4.21) (dash-dotted line).similar ompression and hain length. For this purpose we use a solvent-free system with
D = 14.75, N = 60, and ρg ≈ 1.1ρ∗g(N = 30), orresponding to a ompression of
2h/D ≈ 4.1[81℄.In the same study, Shorr et al. performed Brownian dynamis simulations using aBrinkman type equation to desribe the solvent �ow. They observe shear thinning attheir largest ompression (2h/D ≈ 7.4) over the entire range of investigated shear rates.As shown in the inset of Fig. 4.19, also this data follows the saling-law predited byEq. (4.21), despite the di�erent approah to treat solvent e�ets.Goujon et al.[35℄ reently investigated sheared polymer brushes with an o�-lattiebead-spring model by means of MD simulations using a DPD thermostat with largerintrinsi frition. The length of the grafted polymers (N = 20) was somewhat smallerthan onsidered here.More importantly their study di�ers from ours in the way solvent moleules areinorporated. While our simulations are performed at onstant partile number, Goujonet al. operate in the grand-anonial ensemble, allowing the number of solvent partilesto �utuate. This proedure guarantees a onstant normal pressure for all shear rates.However, our numerial data indiates that the normal stress hanges very weakly with
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W > 1. We �nd a reasonable agreement to the exponent suggested by Eq. (4.21) (dash-dotted line) beyond linear response. The distane between the walls is D = 14.75, SolventC, the on�guration of stars is f = 30 and Nmon = 5.shear rate.On the other hand, a grand-anonial solvent treatment might bear the risk ofsuppressing some hydrodynami orrelations. Also this e�et seems negligible, as an beseen from Fig. 4.20, where we ompare our data for the frition oe�ient to the resultsof Goujon[112℄. Sine fz is virtually onstant, the dependene of the frition oe�ientand fx on W must be similar. We �nd that both numerial approahes reveal the sameuniversal behavior, whih is in good agreement with Eq. (4.21). The data superimposeswhen the kineti frition oe�ient is normalized by µ∗ = µ(W = 1) to obtain a salingplot.In onlusion, we �nd the same universal marosopi response in numerial simulationsdespite very di�erent approahes to inorporate solvent-e�ets, inluding the impliittreatment using a DPD thermostat or the self-onsistent solution of the Brinkmanequation. Approahes with expliit solvent moleules in di�erent thermodynamiensembles provide the same general piture. All these methods seem equivalently validfor steady-shear simulations of strongly ompressed brushes, providing hydrodynamiorrelations on the relevant length sales.To the best of our knowledge, there is only one study[33℄ that reported a power-lawbehavior of the hain extension beyond linear response. In this investigation a Langevin



74 CHAPTER 4. STEADY-STATE SHEARthermostat without expliit solvent moleules is used; an approah widely used in thepast (see, e.g. Refs. [19, 21, 26, 30, 31, 33, 34, 37℄). However, the Langevin thermostatannot aount for hydrodynami orrelations, beause it does not apply random anddissipative fores in a pair-wise form[113℄. In this ase, the response to shear should bedesribed by our saling theory for semidilute, dry brushes. The previous study reportedan exponent of φ ≈ 0.6, whih is slightly smaller than our predited value, 0.65.



Chapter 5Non-stationary shear
5.1 IntrodutionThe results presented in the previous Chapter dealt with the stationary sliding of twoopposing surfaes. In this setion we present the results onerning the transient behaviorof the system during shear inversion, when we start from a steady state on�guration andhange the shear diretion. In order to better understand these omplex systems it isneessary to investigate the transient dynamis from one on�guration to another. Forinstane, most of the experiments are performed under osillatory shear onditions, whenshear inversion is performed several times. The shear and normal fores an be measureddiretly. The authors of these measurements report an inrease of the normalfores[15, 91℄ with inreasing frequeny of the osillatory shear or during shear inversionand an overshooting of the shear fores[92, 108℄. This an be applied also for the onset ofmotion, when a starting on�guration from stati equilibrium is taken. These e�etsdepend strongly on the solvent onditions[92℄. However, exept Ref. [33℄, there is nodetailed analysis of the interplay between the stati equilibrium and steady shearproperties and the behavior during the rossover from one state to the other. The vastmajority of investigations dealt with the e�ets of the waiting time[108℄ after whih shearis performed and explained an inrease of the frition oe�ient and overshooting of theshear fore with inreasing waiting time through the presene of entanglements. Previousnumerial investigations[33℄ were done using the Langevin thermostat, whih does nottake into aount hydrodynami interations and without expliit solvent moleules,whih might be ruial in non-equilibrium simulations. In our study, we investigate thesystems under good solvent onditions with expliit solvent moleules. We take rathershort hains and vary the grafting densities and omposition of the system (inludingstars). We intend to understand the behavior of the shear and normal fores via ananalysis of their omponents and haraterize the struture of the system, i.e. byinterpenetration between the brushes, gyration radius of the hains and brush height.75



76 CHAPTER 5. NON-STATIONARY SHEARMoreover, the in�uene of the stars and their struture will be disussed.5.2 Shear inversionThe shear inversion is started from a steady state on�guration and performed during a�nite time tturn after whih the �nal veloity in the opposite diretion is reahed. Thistime tturn is small ompared to the relaxation time of the bilayer. A veloity protool forthe walls is presented in Fig. 5.1.
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steady stateFigure 5.1: Shear protool of the walls during shear inversion. The turn time is muhshorter than the relaxation time of the bilayer, tturn ≪ τ .In ontrast with the previous simulations we do not perform a stritly instantaneousinversion of the shear, as it has been done in Ref. [33℄(a step funtion shear protool).Instead we use a ontinuous hange of the shear diretion and imply a smooth shearprotool

V = V cos
(t− pturn)π

tturn
(5.1)where V is the shear veloity. pturn is the time, when shear inversion is started,

tturn + pturn when the inversion is �nished.First, let us analyse the response of the shear stress to the shear inversion. Figure 5.2shows the time series of the response of the system for di�erent ompositions and shearrates during shear inversion. Let us de�ne a harateristi time of the bilayer via therelaxation of the shear stress when it reahes a steady state value. As an be seen, thesystems with impliit solvent moleules reat very quikly on the inversion; theseon�gurations demonstrate the shortest harateristi time due to the low density in thesystem. Derease of the shear rate and inrease of the density leads to an inrease of theharateristi time.
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V = 0.23. Solvent C and Solvent D ontain stars of on�guration f = 30, Nmon = 5. Theturn time is tturn = 1.25 in LJ units. The replaement of dimers by the stars leads to aderease of the overshooting.Keeping the density of the system and the shear rate onstant, one an ompare thebehavior of di�erent types of solvent. Solvent B, C, and D approah the steady statevalue di�erently, as an be seen in the inset. Solvent B shows an overshooting e�et attime t0 = 50 of approximately 6%. The replaement of the dimers by stars leads to adamping of this e�et. It seems that the phenomenon depends on the size of the solventmoleules, and might be onneted with their inertia. Solvent C shows approximately
2.5% overshooting above the steady state value, whereas Solvent D does not produe anovershooting at all. Moreover, systems with the highest density of stars demonstrate thelongest harateristi time for the shear stress. This is due to the slow relaxation ofbinary interations between the brushes and stars as well as between the interatingbrushes. The brush experienes a strong deformation during the inversion. The inversionis started from a steady state on�guration, in whih the hains are strethed and theinterpenetration between the brushes is low, as it was shown in the previous hapter.During the inversion the interpenetration between brushes signi�antly inreases; thebrushes beome also strongly deformed in X- and Y -diretions. The size of the brush in
X-diretion dereases quikly, whereas in Y - and Z-diretion an inrease is observed forshort times; it reahes an extremum at di�erent times depending on the type of solvent.



78 CHAPTER 5. NON-STATIONARY SHEARAfterwards, the gyration radius of the hains slowly relaxes bak to the steady state value
Rb

g,α(ss), where �ss� is the abbreviation for steady state, α orresponds to threediretions, X, Y , and Z(see Fig. 5.3). Note, that in all three diretions the extremum isreahed simultaneously at time t1.
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Figure 5.3: Gyration radius in X-, Y -, and Z-diretions of the brush during shear inver-sion normalized by its steady state value Rb
g,α(t)/(Rb

g,α(ss) with α = x, α = x, α = xrespetively. The grafting density is ρg = 4.4ρ∗g, the distane between walls D = 17.5, thesystems of Solvent C and Solvent D inlude the stars of on�guration f = 30, Nmon = 5,the shear veloity is V = 0.23. The biggest relative response shows the system of SolventD. The harateristi time when the steady state value is reahed in X- and in Y -diretionsis the shortest for the system of Solvent B, whereas in Z-diretion one �nds the oppositee�et.As an be seen, the more stars are in the system the longer it takes to reah a steadystate value. The higher is the density of the stars in the system the larger is the relativedeformation of the brushes during shear inversion. Comparing di�erent diretions onean see that the brush shows a longer relaxation in X- and in Z-diretions than in
Y -diretion. The most signi�ant deformation of about 55% is in the shear diretionwhere the hains have to hange the diretion of the strething. Change of the sheardiretion leads also to the deformation in Y -diretion of about 7 − 12% depending on thetype of solvent. Under steady state shear, hains were strongly strethed and the brushshows a response of about 8% in gradient Z-diretion. The latter an be betterharaterized by the interpenetration between the opposing brushes, brushes and stars aswell as the brush height.The stars hamper the interpenetration of the brushes into eah other; this e�et is morepronouned under steady shear than in stati equilibrium. During shear inversion thebrushes interpenetrate deeply into eah other, as an be seen in Fig. 5.4b). The relative
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Figure 5.4: a) Relative interpenetration [see Eq. (4.33)℄ between brushes and stars forsystems Solvent C and Solvent D; b) Relative interpenetration between opposing brushes;)Brush height and d) Inlination angle of the hains in the brush. All variables arenormalized by their steady state values (�ss�). The grafting density is ρg = 4.4ρ∗g, thedistane between the walls D = 17.5, on�guration of stars for Solvent C and Solvent D is
f = 30, Nmon = 5.interpenetration at the time t1 is the larger, the more stars are present in the system. Atthe same time t1 the brushes interpenetrate 40% deeper into the stars [see Fig. 5.4a)℄than during the steady shear and the brush height exhibits a maximum [Fig. 5.4)℄. Itan be seen, that the more stars are loated in the interfae between the brushes, thequiker the brush height relaxes after shear inversion.After reahing a maximum solvent moleules slowly di�use out of the brush into theinterfae between the brushes and it takes the longest time until the system reahes thesteady state in ase of Solvent B. One an see, that the bigger the solvent moleules arethe more ompressed the brushes beome in steady state and therefore the larger is themaximum of the relative brush height ompared to the steady state value, h/h(ss).Brushes almost do not interpenetrate into eah other in ase of System D in steady-state;the derease of the density of stars (from Solvent D to Solvent B) leads to an inrease ofinterpenetration between the brushes. During shear inversion they interpenetrate deeplyinto eah other through the layer of stars. Brushes do not prefer to be on�ned by thelayer of stars during the inversion but to deform them and interpenetrate through thestars exhibiting a high relative interpenetration depth.The inlination angle, θ, of the brushes behaves independently on the omposition of the



80 CHAPTER 5. NON-STATIONARY SHEARsystem. θ is measured via the diretion of the end-to-end distane,
θ = arccos

(

Re,z

Re,x

)

, (5.2)where Re,x and Re,z are end-to-end distanes in shear and gradient diretionsrespetively. It reahes the stati equilibrium value, θ = 0, shortly before time t1 whenthe brush height shows its maximum. It means that the free hain ends �rst reah theposition above the grafted heads of the hains, shortly afterwards, due to theinompressibility of the brushes, they deform the layer of stars and the brush heightreahes the maximum, as well es the interpenetration between the brushes.Figure 5.4a) shows that an inrease of the density of the stars leads also to a derease ofthe relative interpenetration between brushes and stars. Our investigations reveal, thatthe softer the stars, the more interpenetration between the brushes and stars ours. Dueto their size the stars an not penetrate deeply into the brush. Dimers are smaller andmore mobile, they are distributed in the whole system and an easier interpenetrate intothe brush than the stars. In a steady state on�guration beyond linear response solventmoleules are expelled out of the brush to the enter of the bilayer. During the shearinversion in turn the solvent is pulled bak into the brush. This e�et an be analysed viathe density pro�le of solvent moleules omparing stati equilibrium and steady stateon�gurations with the situation when the brush height shows the maximum at time t1during shear inversion. Figure 5.5 presents this omparison.
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Figure 5.5: Comparison of the distribution of solvent moleules in the bilayer in statiequilibrium, in steady state (V=0.23) and during shear inversion at time t1 when theinterpenetration between the brushes shows a maximum. The grafting density is ρg =
4.4ρ∗g, the distane between walls D = 17.5, the star on�guration of Solvent C is f = 30,
Nmon = 5. Green lines orrespond to the stars and red lines to the solvent moleules.



5.2. SHEAR INVERSION 81Our results reveal that during very short times solvent moleules are expelled out of theinterfae between the brushes and then beome distributed within the brushes again.The brushes do not reah the interpenetration depth that they have in stati equilibrium,as well as the solvent moleules do not have enough time to enter the brush as deep asunder stati equilibrium onditions. The same onlusion an be drawn about the stars,whih beome thiker during shear inversion but still remain more ompressed than instati equilibrium.During the shear the brushes an show slip, stik or slip-stik behavior depending on thegrafting density, whih an hange the hydrodynami boundary hange between thedi�erent regimes. This phenomenon an be in�uened by the presene of the stars. Inorder to haraterize it one should analyse the veloity pro�les of eah omponent of thesystem[36℄.
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Figure 5.6: Veloity pro�les of eah omponent in the system. The omparison betweenthe on�gurations under steady shear [Figs. a) and d)℄, the on�guration when interpene-tration between brushes exhibits a maximum [Fig. b)℄ and the on�guration shortly afterinversion [Fig. )℄. The systems of the Solvent B (dotted lines) and Solvent C (full lines)are ompared. The grafting density of the brushes is ρg = 4.4ρ∗g, the distane between thewalls D = 17.5, the star on�guration in system of Solvent C is f = 30, Nmon = 5, theshear veloity is V = 0.23. The blak lines orrespond to the pro�les of the brush, theblue lines to the stars, the red lines to the solvent moleules. The dashed lines show thelinear approximation of the pro�les in the middle of the system for di�erent omponents.The full green lines orrespond to the enter monomer of the stars.



82 CHAPTER 5. NON-STATIONARY SHEARFigures 5.6a) and d) show the veloity pro�les in steady state (W ≫ 1). Figure 5.6a)orresponds to the pro�les before shear inversion and Fig. 5.6d) shows the veloity pro�leafter shear inversion in the inverted steady state on�guration. These states areequivalent but the shear is applied in the opposite diretion. The hydrodynamiboundary an be haraterized by the slip length, z = −b, behind the substrate, when theextrapolation of the linear pro�le v(z) attains the steady state substrate veloity V , asassumed when no slip ours. As an be seen, the slip length is positive for allomponents, therefore the brushes show strong stiking e�ets with b1 = 0.443 withoutstars (Solvent B) and b2 = 0.428 when half of the solvent moleules are replaed by stars(Solvent C). Solvent moleules follow the behavior of the brushes exhibiting a smallerstiking e�et. Similarly to the behavior of brushes the slip length is smaller in ase ofSolvent C (b2 = 0.383 and b3 = 0.26). Stars are loated in the middle of the bilayer, theyare rotating sine the enter monomers reveal zero pro�le [see Fig. 5.6) and d)℄. The sliplength is �nite for the stars and equal to b1 = 0.04. Shortly after the shear inversion[Fig. 5.6b℄, when the shear inversion is almost performed (t < tturn), brushes and solventmoleules follow the behavior of the substrates lose to them, but the pro�le of thebrushes in the middle of the bilayer is still not altered, whereas stars stop rotating andsolvent moleules yield a muh smaller slip length. Stars reat on the external hangesvery quikly, solvent moleules follow the behavior of stars and the pro�le of the solventmoleules is altered. When the interpenetration of the brushes show a maximum (at time
t1) [see Fig. 5.4)℄, brushes and solvent moleules for the systems without stars (SolventB) show a linear pro�le. At this time the brushes behave like an ideal Newtonian liquidand �forget� e�etively that they have a bakbone onnetivity. Solvent moleules followthe behavior of the brushes. In ase of Solvent C brushes and solvent moleules seem tofollow the behavior of stars in the middle of the bilayer and build a plateau. In the nexton�gurations this e�et is slowly destroyed and the brushes start dominating.This an be observed more preisely in the time series of the slip length for eahomponent. The modi�ation of the slip length due to the presene of the stars an beseen in Fig. 5.7a). In presene of stars the brushes reah the steady state slip length laterthan in ase of Solvent B. The behavior of the solvent moleules is also altered by thepresene of the stars but less signi�antly as for the brushes. Stars show a slightovershooting e�et by exhibiting a larger slip length than in the steady state. Similarlyto the overshooting e�et of the shear stress, σxz, the e�et ours also at time point t0.Further analysis of the struture an be done via the hain end distribution. The relativeinterpenetration of the hain ends into the opposing brush is strongly in�uened by thepresene of the stars.Figure 5.7b) shows that the maximum of the interpenetration of the hain ends into theopposing brush is not orrelated with the maximum of the interpenetration of thebrushes into eah other (t = t1) in the presene of the stars. It is onneted with the fat,
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Figure 5.7: The time series of the slip length normalized by its value in steady state (leftplot) and the relative interpenetration of the hain ends (right plot) during shear inversion.The grafting density is ρg = 4.4ρ∗g, the hain length N = 30, the distane between thewalls is D = 17.5, the star on�guration of Solvent C and Solvent D is f = 30, Nmon = 5.Di�erent ompositions of the system exhibit di�erent harateristi times for approahingthe steady state after shear inversion.that the hain ends �rst reah the stati equilibrium position (at time t < t1) when thetilting angle is zero. Then, the interpenetration of the brushes reahes the maximum (at
t = t1), suh that hain ends start pushing on the layer of the stars, penetrate throughthem and enter the opposing brush. Afterwards, the maximum of the interpenetration ofthe hain ends distribution is reahed.In the steady state the hains are tilted and strethed, the stars are ompressed in theinterfae between the brushes as it is shown shematially in Fig. 5.8a).Con�gurations, where the walls start moving in the opposing diretion and shearinversion is already started are shown in Fig. 5.8b). In this time the brushesinterpenetrate through the stars with a part of their hains. This leads to a signi�antinrease of the interpenetration depth between the brushes. The layer of stars is stronglydeformed. After a harateristi time the system reahes again the steady stateon�guration [Fig. 5.8)℄.In order to omplete the haraterization of the system let us analyse the gyration radiusof the stars. Figure 5.9 shows the response of the stars in X-, Y -, and Z-diretions.Stars experiene deformation in all three diretions. The strongest relative deformationan be seen in Z-and in X-diretions due to the fat, that the stars are squeezed stronglyin the gradient and strethed out in the shear diretion in steady state beyond linearresponse. The more stars are loated in the system and, therefore, the less freedom and



84 CHAPTER 5. NON-STATIONARY SHEAR

Figure 5.8: Shemati piture of brushes and stars during shear inversion. a) orrespondsto the on�guration in steady state with shear veloity V . Chains are tilted and strethed.Strething an be haraterized by the gyration radius Rg,x. b) is the on�guration duringshear inversion, stars are loated in the interfae between brushes and strongly deformed,hains interpenetrate through the layer of stars into the opposing brush. ) shows the new�re�eted� steady state on�guration after shear inversion.spae is left in the interfae between the brushes, the smaller is the relative deformationof the stars during shear inversion. The Y -diretion shows a response of about 1%. In thease of Solvent D one an see that the stars follow the olletive motion in Y -diretionshowing periodi movement, whih was �rst observed in bulk systems[60℄.Let us turn bak to the gyration radius of the brushes. As it was already mentioned, itshows a di�erent behavior with di�erent harateristi times depending on theomposition of the system. As an be seen in Fig. 5.10, the response of the system ofSolvent A is very small, the system is in a rossover from the linear response regime tothe non-Newtonian behavior. The systems of Solvent B, C, and D demonstrate moresigni�ant responses. The steady state value of the gyration radius for eah ompositionof the system depends on the density of stars in the sytem. Furthermore, the gyrationradius of the brushes exhibit a di�erent behavior depending on the shear rate.To haraterize the rossover behavior from one steady state on�guration to the invertedone we follow an idea originally developed in Ref. [33℄. From the steady-stateinvestigations we know the dependene of the gyration radius of the brushes on the shearrate. As it was shown, it has a power-law behavior
R2

g,x(γ̇)

R2
g,x(0)

=

(

γ̇

γ̇∗

)0.5

, (W ≫ 1) (5.3)for semidilute brushes under good solvent onditions.The harateristi time of the system, τc, after whih the shear stress reahes its steadystate value, an be de�ned by the harateristi length sale divided by the harateristiveloity in the system, V . During shear inversion the free hains' ends move above the



5.2. SHEAR INVERSION 85
0 50 100 150 200

0.94

0.96

0.98

1

R
g,

xst
/R

g,
xst

(s
s)

Solvent C
Solvent D

0 50 100 150 200

0.99

0.995

1

1.005

R
g,

yst
/R

g,
yst

(s
s)

0 50 100 150 200

1

1.02

1.04

1.06

1.08

R
g,

zst
/R

g,
zst

(s
s)

Figure 5.9: Gyration radius of stars in X-, Y -, and Z-diretions normalized by its valuein steady state as a funtion of time during shear inversion(Rst
g,α(t)/(Rst

g,α(ss) with α = x,
α = x, α = x, respetively). The grafting density is ρg = 4.4ρ∗g, the hain length N = 30,the distane between the walls is D = 17.5, the star on�guration of Solvent C and SolventD is f = 30, Nmon = 5. The strongest deformation is observed in shear (X) and gradient(Z)diretions, whereas in Y-diretion stars show a weak response.grafted hain ends from one steady state on�guration [see Fig. 5.8a)℄, when the hainsexhibit the gyration radius Rg,x(γ̇)(ss) in shear diretion, to the equivalent re�etedsteady state on�guration [Fig. 5.8)℄, suh that the free hain ends traveled anapproximate distane proportional to twie the gyration radius in shear diretion.Therefore, Rg,x(γ̇)(ss) an be de�ned as a harateristi length sale, meaning that thewhole hain has to travel over its own (extended) size during the harateristi time τc.Therefore, for the deay of the gyration radius in time after the shear inversion is started,one may write

Rg,x(γ̇, t)

Rg,x(γ̇)(ss)
= 1 − t

τc
. (5.4)Using the de�nition of the Weissenberg number as a ratio of the shear rate γ̇ and theritial shear rate γ̇∗, where γ̇ = 2V/D [see Eq. 5.3℄, the harateristi time of the systeman be written as

τc ∝
Rg,x

V
=

2Rg,x(0)

γ̇D

(

γ̇

γ̇∗

)0.25

. (5.5)This approximation should work for systems far beyond the linear response regime, wherethe power-law behavior [Eq. 5.3 dominates.Figure 5.11 shows the gyration radius of hains, whih are normalized by their valueunder steady shear, Rg,x(ss), as a funtion of time divided by the harateristi time, τc.



86 CHAPTER 5. NON-STATIONARY SHEAR

0 50 100 150
t

2

2.5

3

3.5

4

4.5

R
g,

x

Solvent A, V=0.005
Solvent A, V=0.1
Solvent A, V=0.23
Solvent B, V=0.1
Solvent B, V=0.23
Solvent C, V=0.1
Solvent C, V=0.23
Solvent D, V=0.1
Solvent D, V=0.23Figure 5.10: Gyration radius of brushes in shear diretion as a funtion of time during shearinversion for di�erent ompositions of systems and shear rates. The distane between thewalls is D=17.5, the grafting density is ρg = 4.4ρ∗g, the hain length N = 30. The systemsshow di�erent behaviors from the ase when the gyration radius does not respond onshear inversion up to the strong deformation. The behavior depends on the shear rate,omponents of the system, moleular parameters of the brushes and stars (if present).One an see that the deay of the gyration radius of di�erent parameters from the steadystate on�guration shortly after inversion an be mapped onto eah other and it followsthe ratio (5.4). Moreover, the steady state value is reahed on the same time sale for thedi�erent systems.The same proedure an be done with the shear stress for large shear rates orrespondingto the non-Newtonian behavior. This is shown in Fig. 5.12. The shear stress isnormalized by its value in steady state and the time is resaled by the harateristi time

τc. One an see that, independently of the shear rate, systems with di�erent moleularparameters (grafting densities, hain lengths, star on�gurations et.) and di�erent typesof the solvent an be mapped onto eah other. The way how the shear stress approahesthe steady state value still slightly depends on the type of the solvent (the overshootinge�et disussed above). This may be explained by the fat that objets of di�erent sizesin the brush have di�erent di�usion onstants.The same saling plots an be performed not only for the shear inversion, but also for theonset of motion, when as a starting point the stati equilibrium on�guration is takenand afterwards shear is started. Moreover, it is tested that the same saling argumentswork also for the end-to-end distane of the hains, number of binary interations
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≈ 1%. This phenomenon appears during short times just after the inversion due to theinertia of the brushes and the solvent moleules. An inrease of the turn time, tturn, leadsto a derease of the e�et (see the inset of Fig. 5.13). The overshooting e�et was notobserved for the systems with stars sine the stars are loated in the middle of the systemand dissipate the energy via rotation instead of following the movement of the brushes inshear diretion.In order to understand the response of the normal stress let us analyse the omponents ofit. It onsists of the LJ interations and the bakbone onnetivity of the brushes, σb

zz,stars, σst
zz, and solvent moleules, σso

zz, as well as of the pairwise LJ interations betweenthe solvent moleules and the brushes, σb−so
zz , solvent moleules and stars, σso−st

zz , brushesand stars, σb−st
zz . The total normal stress then reads
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Figure 5.13: Normal omponent of the stress tensor normalized by the steady state value,
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σzz = σb
zz + σst

zz + σso
zz + σb−so

zz + σso−st
zz + σb−st

zz . (5.6)The Fig. 5.14a) shows the response of these omponents, that reveal a minimum. Theseare σb
zz, σst

zz, and σb−so
zz . All the other omponents exhibit a maximum. Due to thepresene of the stars the number of binary interations between the brushes dereases.This fat leads also to the undershooting e�et of this omponent. The stars an beinterpreted as a brushes in the limit of high grafting density and �nite radius of urvaturefor the anhored surfaes. Therefore, the stars reveal similarities to the brush behavior.The solvent moleules show a more ompliated behavior. First, the number of binaryinterations between the brush and solvent moleules dereases; the dimers penetratebak into the brush from the middle of the bilayer. At this time the brush has a strong



90 CHAPTER 5. NON-STATIONARY SHEARinteration with the opposing brush showing a strong interpenetration. Furtherrelaxation from this on�guration leads to an inrease of the interation between thebrushes and the solvent moleules, suh that the brush tends to expel the solventmoleules bak to the interfae. This two-step proess an be seen in more detail in thelayer resolved analysis of the interation between the brushes and the solvent moleules.Figure 5.14b) shows that in di�erent layers of the system one an see di�erent proesses.The middle layer (5) shows an inrease of the interations between the brushes and thesolvent moleules. The stars are dominating the middle layer. Therefore thebrush-solvent omponent, σb−so
zz is rather small for this layer [see inset of Fig. 5.14b)℄.The analysis of the 4th layer shows how the solvent is expelled from the layer. Closer tothe substrates a two-step proess appears. The ontributions of the 2nd and the 3d layersare the most signi�ant. They reveal a slow di�usion of the solvent moleules bak to theinterfae between the brushes.
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Chapter 6Charged systems
6.1 IntrodutionUp to now we have dealt with eletrially neutral brushes. Charged brushes have a veryrih spetrum of properties depending on grafting density, hain length, harge fration,and salt onentration. They enable ontrolling of segregation and aggregation proessesand therefore are important in many industrial appliations, suh as food industry, watertreatment, mining, medial siene et. Moreover, experiments reveal that the fritionoe�ient between two opposing polymer brushes an be signi�antly dereased forharged grafted hains with ounterions and added salt [42℄. As for neutral systems, alsofor harged brushes there is no omplete piture of the rheologial mehanisms ausingthe small frition. In ontrast to the experiment, omputer simulations with softpotentials report equivalent frition oe�ients when omparing harged and neutralsystems[114℄. In this hapter, we present our results for harged systems and show howharges modify the lubriation properties of polymer brush bilayers.6.2 In�uene of long-range interationsAs a �rst step we ensured, that the program and implemented tehnique work orretly.We tested the program for a simple system, whih onsists of two types of monomers,positively and negatively harged. The number of negatively harged ions is larger thanthe number of positively harged ions, n− > n+. The Gouy-Chapman theory[115℄predits for this situation the double layer e�et in monomeri pro�les[116℄. Measureddensity pro�les from our simulations an be �tted well by the theoretial preditions.Moreover, the measured densities of the positive and the negative ion speies in the bulkare in good agreement with Poisson-Boltzman equation [see Eq. 1.39℄ and are in goodagreement.Moreover, we performed simulations of harged opposing brushes and diretly ompared93
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6.2. INFLUENCE OF LONG-RANGE INTERACTIONS 95dissoiation of the harged hains. Similarly to the inrease of the Bjerrum length, theinrease of the number of harged monomers in the grafted hains leads to a modi�ationof the power-law behavior and shows a rossover from the neutral regime to stronglyharged systems (Fig. 6.1a). Up to now, we modeled ounterions and solvent moleules asa dimers. This may lead to a bridging e�et, when two monomers of di�erent hains are�onneted� by an oppositely harged dimer between them. In order to surpress thise�et, we simulate systems with the harged monomeri ounterions and ompare theshear fores to the ase of dimers. Independently of the size and valene of theounterions we observe a onvergene of the power law to fx ∝ γ̇2/3 for strongly hargedsystems.
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96 CHAPTER 6. CHARGED SYSTEMSof the size of solvent moleules leads to a derease of the frition oe�ient, the sameresult that is observed for neutral systems when di�erent types of solvent are used.
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6.2. INFLUENCE OF LONG-RANGE INTERACTIONS 97that inrease of the Bjerrum length leads to a stronger inlination of the hains. Thehains beome sti�er and more strethed, but still the gyration radius in shear diretioninreases while inreasing the strength of the long-range interation. The ounterions aremore and more ondensed on the hains being strongly attrated.
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Chapter 7Conlusions and outlookIn the present study, we investigated neutral and harged brush-like systems by means ofMoleular Dynamis simulations using a lassial oarse-grained polymer model.Investigations of systems onsisting of two opposing brushes with soft inlusions (polymerstars), reveal strong modi�ations of the size and shape of the polymer stars and brushes,ompared to the pure polymer-brush bilayer or the stars in the bulkBoth brushes and stars are strongly deformed. Stars experiene a signi�ant deformationin all three spatial diretions in the presene of the brushes, they beome ompressed andaspherial. Inspite of that the presene of the brushes leads to the derease of thee�etive repulsion ating between the stars suh that the resulting interation potentialbetween them is smaller than for brush-free ases. E�etive attrations betweeninlusions mediated by the brushes are found to be to about 40kBT depending on thesoftness of the stars, hain length, grafting density of the brushes. Inrease of the densityof the brushes, as well as inrease of the funtionality of stars, lead to an inrease of theattration. It is shown that the number of beads that belong to the brushes play animportant role for this interations. The loser the stars, the more brush moleules isexpelled from the region between the stars. When the stars start overlapping, thenumber of interations between the brushes and stars starts dereasing, and e�etiveattrations our. Dereasing the funtionality down to linear hains leads to potentialsless than kBT [119℄. In ase of �uid brushes, where the grafted hains are allowed to moveon the surfae without detahing, we expet therefore the e�et to beome signi�antlysmaller. These investigations are left for future work.Investigations of the response of two opposing brushes in presene of polymer stars tostationary Couette �ows of di�erent shear rates indiate, that the relaxation time of thebilayer is modi�ed by the presene of the stars. The ritial shear rate, whih separatesliear from non-Newtonian response, beomes larger in the presene of stars ompared tothe star-free ase. We varied the ompression of the on�ned layers and their moleularparameters, grafting density and hain length, as well as the funtionality of stars and101



102 CHAPTER 7. CONCLUSIONS AND OUTLOOKlength of arms. Star-free ases have been ompared to systems with inlusions. Ourinvestigations revealed that the inrease of the grafting density or the hain length leadsto a derease of the ritial shear rate. Moreover, we observe the formation of a �uidlayer between the brushes for large shear rates, suh that solvent moleules and polymerstars are expelled out of the brushes.In agreement with previous omputer studies (see Refs. in [30℄ and [31�34, 36, 37℄), weobserve only small hanges of the layer thikness, but a pronouned swelling of polymerhains along the shear diretion. This behavior goes along with a non-Newtonianresponse, i.e. a sublinear inrease of the lateral frition fore with sliding veloity.Our data indiates that the swelling of hains in the shear diretion an be desribed bya universal power-law inrease of the hain extension (haraterized by the radius ofgyration) with the Weissenberg number. Using the shear-indued deformation of thegrafted hains, we demonstrated how to estimate the ritial shear rate. This allows tosuperimpose the data of all onsidered parameter ombinations, revealing a rather losedpiture that relates the hain deformation to the marosopi response. Despite theirdistint di�erenes, systems with stars, star-free ases, and even solvent-free ases[109℄an be desribed onsistently. Independently of the star on�guration we observe similarresponses of the system. The behavior is modi�ed when the stars start dominating theresponse at large densities.We developed a saling theory that allows one to explain the strutural hanges of thebilayer and its marosopi response to shear. Our analytial approah is apable ofreproduing not only the data stemming from very di�erent numerial models but alsoreent experimental observations. A entral result of our saling approah is that theritial shear rate, at whih the linear response regime is left and non-Newtonianbehavior sets in, depends on ompression and moleular parameters as
γ̇∗ ∝ N−2.44ρ−0.27

g D0.6, (7.1)in the limit of strongly ompressed, semidilute brushes with Zimm dynamis (N is thehain length, ρg the grafting density, D the distane between grafting planes. A Test ofthis relation is numerially rather di�ult due to the fat that the dependene of γ̇∗ ongrafting density and ompression is rather weak. In addition, the parameter regime thatan be probed for ρg and D is limited beause one has to assure strongly ompressedbrushes. The theory works also for long hains, when the brushes are entangled in statiequilibrium. These entanglements have to be released for large Weissenbergnumbers(W ≫ 1).We have shown that the de�nition of the Weissenberg number via the relaxation time ofa single hain of equivalent length in the bulk is not suitable. The relaxation time of suhomplex systems is strongly dependent on the system parameters.



103Our results and previous investigations[18, 35℄ indiate that the universal marosopiresponse, as we report it here for the �rst time, is not in�uened by the type of the solventmoleules inorporated in the system, although the interpenetration between the brushesis strongly in�uened by the stars. The strutural response is altered when hydrodynamie�ets are suppressed in simulations, and when the solvent moleules are ompletelyreplaed by the stars, while e�etively inreasing the size of the solvent moleules[118℄.We have demonstrated, that an inrease of the size of solvent moleules (replaing dimersby polymer stars) and an inrease of the density of inluded objets lead to the inreaseof the kineti frition oe�ient. A omparison of systems where solvent moleules aremodelled as monomers instead of dimers reveal the same tendeny.Investigations of the non-stationary shear, i.e. shear inversion, show a diret onnetionbetween stati properties of the system and its dynami behavior. The harateristitime of eah system an be desribed in terms of the gyration radius and ritial shearrate. Independently of the grafting density, the on�guration of the stars, the distanebetween the walls, as well as the shear rate beyond linear response, the behavior of thegyration radius of the brushes, as well as the shear stress, an be explained by a simplesaling approah. The systems in linear response reveal di�erent relaxation behaviors.We demonstrated that the response of the normal stress to shear inversion show atwo-step e�et: �rst an overshooting (depending on the turn time) and then anundershooting. Inrease of the turn time, suh that shear inversion is performedsmoother, leads to a derease of the overshooting e�et, whereas the undershootingremains une�eted. The systems in the linear response regime do not show any response.The e�et appears only for shear rates, where non-Newtonian behavior is observed. Thelarger the shear rate, the larger is the response. Moreover, our investigations revealed,that the presene of the stars leads to an inrease of the e�et.While the stars lead to an inrease for the response of the normal stress, it overdamps anovershooting of the shear stress. The more stars are in the system, the smoother theshear inversion an be performed. This fat an be ruial for the experiments withosillatory shear, when inversion is performed several times. Here, large overshootinge�et may lead to a rupture break of the grafted hains. Our data show thet for longtimes after shear inversion the total shear stress is almost onstant, whereas singleomponents, as e.g. the brush-solvent interation, are still not fully relaxed. This fatmay ruially in�uene the measurements of the struture and rheologial properties inreal osillatory shear experiments.The strutural behavior is modi�ed when brushes are harged. The system exhibit aontinuous transition from the neutral to a highly harged behavior. Our measurementsshow a larger frition oe�ient ompared to the neutral brushes. Inrease of thestrength of the Coulomb interation leads to an inrease of the shear fores. Normalfores are in�uened only slightly. Both gyration radius and shear fores show a



104 CHAPTER 7. CONCLUSIONS AND OUTLOOKpower-law behavior. A theoretial desription, similar to the neutral systems, an bedone by taking into aount the Poisson-Boltzman equation. However, we leave these(non-trivial) alulations for future work.We plan to ontinue all investigations mentioned above with di�erent inlusions,e.g. bottle brushes, or under modi�ation of the grafted polymers, suh that, e.g. bothhain ends are grafted to the surfaes or that the grafted linear are replaed by hainswith side groups.We an not hange the world right now, but we are making steps forward inunderstanding it. We live and learn.
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