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Zusammenfassung

Mit Hilfe von Molekulardynamik-Simulationen untersuchen wir biirstenartige Sys-
teme unter guten Losungsmittelbedingungen. Diese Systeme sind, dank ihren vielfiltigen
Beschaffenheiten, die von Molekularparametern und dufferen Bedingungen abhingig sind,
wichtig fiir viele industrielle Anwendungen. Man vermutet, dass die Polymerbiirsten eine
entscheidende Rolle in der Natur wegen ihrer einzigartigen Gleiteigenschaften spielen. Ein
vergrobertes Modell wird verwendet, um die strukturellen und dynamischen Eigenschaften
zweier hochkomprimierter Polymerbiirsten, die eine niedrige Reibung aufweisen, zu unter-
suchen. Allerdings sind die Lubrikationseigenschaften dieser Systeme, die in vielen biologis-
chen Systemen vorhanden sind, beeinflufst. Wir untersuchen so-genannte "weiche Kolloide”,
die zwischen den beiden Polymerbiirsten eingebettet sind, und wie diese Makroobjekte auf
die Polymerbiirsten wirken.

Nicht-Gleichgewichts-Molekulardynamik-Simulationen werden durchgefiihrt, in denen
die hydrodynamischen Wechselwirkungen durch die Anwendung des DPD-Thermostaten
mit expliziten Losungsmittelmolekiilen beriicksichtigt werden. Wir zeigen, dass die Kennt-
nis der Gleichgewichtseigenschaften des Systems erlaubt, dynamische Nichtgleichgewicht-
sigenschaften der Doppelschicht vorherzusagen.

Wir untersuchen, wie die effektive Wechselwirkung zwischen kolloidalen Einschliifsen
durch die Anwesenheit der Biirsten (in Abhéngigkeit der Weichheit der Kolloide und der
Pfropfdichte der Biirsten) beeinflufit wird. Als néchsten Schritt untersuchen wir die rhe-
ologische Antwort von solchen komplexen Doppelschichten auf Scherung. Wir entwickeln
eine Skalen-Theorie, die die Abhéngigkeit der makroskopischen Transporteigenschaften und
der lateralen Ausdehnung der verankerten Ketten von der Weissenberg Zahl oberhalb des
Bereichs, in dem die lineare Antwort-Theorie gilt, voraussagt. Die Vorhersagen der Theorie
stimmen gut mit unseren und fritheren numerischen Ergebnissen und neuen Experimenten
iiberein. Unsere Theorie bietet die Moglichkeit, die Relaxationszeit der Doppelschicht zu
berechnen. Wenn diese Zeit mit einer charakteristischen Langenskala kombiniert wird,
kann auch das "transiente” (nicht-stationére) Verhalten beschrieben werden.

Wir untersuchen die Antwort des Drucktensors und die Deformation der Biirsten wahrend
der Scherinvertierung fiir grosse Weissenberg Zahlen. Wir entwickeln eine Vorhersage fiir
die charakteristische Zeit, nach der das System wieder den stationfren Zustand erreicht.

Elektrostatik spielt eine bedeutende Rolle in vielen biologischen Prozessen. Die Lu-
brikationseigenschaften der Polymerbiirsten werden durch die Anwesenheit langreichweit-
iger Wechselwirkungen stark beeinflusst. Fiir unterschiedliche Stérken der elektrostatischen
Wechselwirkungen untersuchen wir rheologische Eigenschaften der Doppelschicht und ver-
gleichen mit neutralen Systemen. Wir studieren den kontinuierlichen Ubergang der Sys-
temeigenschaften von neutralen zu stark geladenen Biirsten durch Variation der Bjerrum-

léinge und der Ladungsdichte.



Abstract

By means of Molecular Dynamics simulations we investigate brush-like systems under
good solvent conditions. These systems are important in many industrial applications due
to their rich properties depending on the molecular parameters and external conditions. It
is believed that polymer brushes play a crucial role in nature due to their unique lubrication
properties. A simple coarse-grained model is used to investigate structural and dynamic
properties of two highly compressed polymer brushes that exhibit low friction. However,
the lubrication properties of these systems are strongly influenced by embedded molecules,
which often are present in biological systems. We study so-called "soft colloids”, which are
embedded between two polymer brushes, and investigate how these macroobjects effect
the brushes.

Non-equilibrium Molecular Dynamics simulations are performed, in which hydrody-
namic interactions are taken into account applying the DPD thermostat in presence of
explicit solvent molecules. We show thatthe knowledge of the system’s properties in static
equilibrium allows to predict dynamic properties of the bilayer.

We study how the effective interactions between the colloidal inclusions are influenced
by the presence of the brushes (as a function of the softness of the colloids and the grafting
density of the brushes). As a next step, we investigate the rheological response of such
complex bilayers to steady shear. We develop a scaling theory that predicts the dependence
of the macroscopic transport properties and the lateral extension of the grafted chains on
the Weissenberg number beyond linear response. The predictions are found to be in good
agreement with our and previous numerical results and recent experiments. Our theory
offers a way to calculate the relaxation time of the bilayer. This time, in a combination
with a characteristic length scale, can be used further for a description of the transient
behavior.

We investigate the response of the stress tensor and the deformation of the brushes
during shear inversion for large Weissenberg numbers. We develop a prediction for the
characteristic time after which the system reaches again steady state.

Electrostatics play a crucial role in many biological processes. The lubrication prop-
erties of polymer brushes are significantly influenced by the presence of long-range in-
teractions. For different strengths of electrostatic interactions we investigate rheological
properties of the bilayer and compare to neutral brushes. We show the continuous tran-
sition of the system properties from neutral to strongly charged brushes by varying the

Bjerrum length and the charge density.
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Introduction

Das einzige Mittel, die Welt zu verdndern, ist sie zu verstehen.

Lion Feuchtwanger

A Polymer is a large molecule, called macromolecule, which consists of repeating
structural units (monomers) connected by covalent bonds. The simplest polymers are
poly(ethylene) or poly(styrene). If all segments have the same chemical composition, the
polymer is called homopolymer. Properties of the polymers can be modified, such that
they adsorb on surfaces. These systems are important in many phenomena and industrial
applications, such as adhesion[1 3], stabilization of colloidal dispersions[4, 5], protection
against corrosion|6], flotation of minerals|7-9], oil recovery|10|, smart materials|11],
wetting and spreading phenomena|12, 13], biotechnology[14], and so forth. A very
important role in bio-nano-technology are playing so-called polymer brushes|12]. A
polymer brush is a system of polymers irreversibly grafteted by one chain end onto a
surface. In a polymer brush, chains tend to stretch away perpendicular from the
substrate due to the steric repulsion between the monomers. Of particular interest are
two opposing brush-covered surfaces. They can carry very high normal loads, whereas
simultaneously the resistance to lateral sliding motion can be extremely small. The
resulting friction coefficients may be orders of magnitude smaller than those found in dry
friction|15, 16]. Polymer brushes have thus important applications as lubricants, e.g. in
machine parts or artificial joints[14]. Moreover, they are believed to play a crucial role in
biolubrication, e.g. in synovial joints|17]|. This effect of low friction is well established
experimentally[15 18|. The macroresponse, e.g. shear and normal forces, or the viscosity
can be measured experimentally, whereas investigations of the structure, e.g. density
profiles, or of the underlying mechanism causing the low friction, are still incomplete. For
these purposes computer simulation is the best tool. Like a high-resolution microscope it
allows to investigate in detail stationary and non-stationary properties, forces acting in
the system, as well as response and structure of the system on different length scales.
Like a ballet-performance in the theater polymer brushes act in nature. Once one sits

close to the stage, small details can be recognized - costumes, mimics of dancers, parts of
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decoration. It looks interesting and every detail is important - like microproperties of the
brush, e.g. local viscosity, interpenetration depth of the brushes, forces acting between
them, velocity profiles of brushes, local structure of them. All these details depend on
each other. They have their own rules - way of dancing, order of steps or order of
appearing on the stage of decorations in correspondance with the libretto - like the
behavior of microobjects, e.g. molecules, monomers and chemical bonds, accordingly to
the laws of nature. All this creates the whole palette, which can be seen only on the
macrolevel - further away from the stage, e.g. in the first circle in the middle. These best
seats are the most expensive. Summing up all the properties it allows to see the beauty
of the performance, and we see the great lubrication properties of the brushes. The
correct model has to be chosen in order to see these effects, and to provide molecular
factors causing the rheological response of the grafted layers to external stimuli missing
in experiments. These model systems have been investigated extensively over the past
decades, e.g. in Refs. [18 23, 26 38]. The vast majority of the numerical approaches have
treated solvent effects without explicitly including solvent molecules in the simulations
(implicit solvent simulation). Many of them have been done via the application of
thermostats and the adjustment of the interaction potential between the

monomers|13, 19, 21, 26, 31, 33, 34, 36, 37]. Other approaches have been

made|18, 20, 22, 27, 28] by solving the Brinkman equation|39] for solvent- and
monomer-flow field self-consistently. Solvent effects as well can be considered implicitly
via the Lattice-Boltzmann method (see [40] and Refs. therein) or stochastic rotational
dynamics[41]. Within the small number of investigations that have been carried out with
an explicit solvent (see, e.g. Refs. |30, 32, 35, 38]), systematic studies of the effects

neglected in implicit solvent simulations are rare[32].

In nature, e.g. in hip joints, one finds more complex systems than monodisperse neutral
brushes, which have been investigated in majority of the studies. The lubrication in
animals’ and humans’ joints are thought to be due to the presence charged
macromolecules, aggrecens and lubricins - that extend to the surface to form a brush-like
layer. Figure 1 shows a close-up view of the articular cartilage surface. The kinetic
friction coefficient between the articular layers, compressed to 50 atmospheres or more in
a hip joint, can be as low as 0.001 [42, 43]. Synthetic charged brushes (|91]) lead to low
friction similar to that in the articular cartilage. It seems, that the mechanisms causing a
decrease of friction coefficient in the simple system consisting only of two opposing
polymer brushes is important also for these complicated systems. However, in order to
model nature more realistically, the investigated systems have to be modified by taking
into account inclusions, e.g. polymer stars or colloids and one can argue that simulations
have to be carried out in the presence of explicit solvent molecules. Also electric charges

are believed to play a role for the properties of such systems.

The main aim of the present work is to investigate the influence of such inclusions
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— Ligament and hip joint capsule

Articular cartilage

0

Femoral head

Figure 1: Schematic section through part of a hip joint [42]. Inset: charged macromolecules
- acids (blue), to which aggrecans (red) and lubricins (green) are attached.

between the polymer brushes, e.g. of polymer stars, colloids, or explicit solvent
molecules, on the viscoelastic properties and nanotribological aspects under steady shear
conditions or non-stationary external stimuli. Moreover, we want to describe the
structure of the systems and understand the characteristic relaxation times. For that
purpose we use Molecular Dynamics simulations of a classical coarse-grained model. The
systems under consideration consist of two opposing polymer brushes under good solvent
conditions, with and without explicit solvent molecules, and with additional inclusions.
We vary the degree of compression, the density and the length of grafted chains, the size
and shape of the inclusions, e.g. configurations of the stars, size of colloids. Moreover, we
extend our investigations to charged polymer brushes with explicit counterions. We study
static equilibrium properties, Couette flows at various shear rates, and the response of
the bilayer when the shear direction, starting from steady-state configurations of different

shear rates, is instantaneously inverted.

In Chapter 1 different theoretical and experimental approaches are presented. In

Chapter 2 model and simulation techniques are described. Chapter 3 deals with static
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equilibrium properties and forces acting on the inclusions, which are located in the
interface between two opposing brushes. Chapter 4 is devoted to the simulations and the
newly developed scaling theory describing steady shear properties. These are followed by
the nonequilibrium Molecular Dynamics simulations of the two opposing brushes during
shear inversion and the theoretical approach in Chapter 5. Results of the simulations
and the discussion of charged systems are presented in Chapter 6. The conclusions and

plans for further work are given in Chapter 7.



Chapter 1

Theoretical and experimental

approaches

1.1 Theoretical approaches

1.1.1 Free polymer chains in solution

The simplest model of a polymer chain is the freely-jointed chain model or random walk.
According to this model the chain consisting of N4+1 monomers is approximated by a
sequence of N steps. The step (so-called bond vector) length is fixed, and equal to a, but
the direction in which the step is taken is completely random and independent of all
previous steps. This model is analogous to the randomly diffusing particle and permits
the backfolding of a chain onto itself, the situation of a so-called random walk. The
average displacement of the particle in this case is zero. Therefore, it is meaningful to use
the root mean square displacement as a characteristic parameter, which, in this case, is

equal to the end-to-end radius R,
R? = Na? = La, (1.1)

where L = Na is the contour length of the chain.

For this model the characteristic length turns out to be proportional to the square root of
the number of steps, N, R. o< N'/2. This model describes ideal chains and does not
account for interactions between monomers (excluded volume effects). This situation
approximately is realized experimentally at a certain temperature or solvent condition,
when the attraction between monomers effectively cancels their steric repulsion. This is

the so-called theta-solvent condition.

Another way to characterize the average size of a polymer coil is to introduce the radius

13
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of gyration,
1
Ry =(R}) =+ <Z<ri - rcm>2> : (1.2)

where r¢y denotes the chain’s center-of-mass position vector,
Cem = E r;, (1.3)
i

and r; is the position vector of monomer 1.

In case of good solvent conditions the interaction between polymer segments and solvent
molecules is favorable. Under this condition the chain is swollen, because monomers try
to avoid each other in solution. The reason for this behavior is conformational entropy,
which prevents full stretching of the chain in combination with the preferable interaction
between monomers and solvent molecules. The standard model for taking into account
interactions between monomers is the mean field Flory theory[45]. In case of repulsive
interactions between the monomers, the positive second virial coefficient, v, is of order of
the monomer volume, v, o a3. The repulsive interaction between the monomers is
balanced by the chain elasticity, which is due to the entropy loss because of chain
stretching. According to the Flory theory for a flexible chain of radius R, the free energy
of a chain in units of the thermal energy k7T (kp the Boltzmann constant) writes as a

sum of two terms,

R? N?
F~_8 — 14
R12 + 9 Rg (1.4)

where R; « R, is the radius of gyration of an ideal chain. The first term is the entropic
elastic energy associated with swelling of a polymer chain multiplied by the effective
spring constant of an ideal chain, kBT/Riz. The second term is the second virial repulsive
energy, proportional to N times the second virial coefficient, v5, and the segment density
of a monomer gas. Minimizing the free energy with respect to R, one gets Ry oc alN”
with v = 3/5. This is the situation of the self-avoiding walk.

1.1.2 Polymers in solution

In the previous section we have recalled scaling concepts of a single polymer chain. In
this section we will deal with polymers in solution, where ¢ is the concentration of chains.
There are three different regimes:

a) dilute systems

b) semidilute systems

c¢) concentrated systems or polymer melts
In the case of dilute systems, chains do not feel each other and behave like single,

independent chains. The scaling exponent of the gyration radius remains the same,
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Ry oc aNV for good solvent conditions. The crossover from the dilute to the semidilute
regime occurs at the critical concentration, ¢*, when chains start to overlap. In this case
the chain behaves on different length scales differently. For this purpose another
characteristic length can be defined, the so-called blob size, {. Within this length the
chain behaves like a single independent chain of size & x ag¥, where g. is the number of
monomers within the blob. For distances larger than &. the chain behaves like an ideal
chain consisting of blobs of size &, and polymer segments can not distinguish any longer

to which polymer chain they are connected. The gyration radius of chains reads

R, Eenet/?, (1.5)

where n. is the number blobs per chain, n, = N/g., such that
Ry o< (€./a) =YV aNY2, (1.6)

The blob-picture allows to represent a polymer solution as a network with a certain
average mesh size, which is proportional to the blob size, £&.. While £, depends on the
concentration, the network structure and its characteristic size should not depend on the
degree of polymerization N for a given ¢ > ¢*. We suppose, that the chains must be
longer than the mesh size. When ¢ = ¢*, where coils are in contact but do not
interpenetrate, the mesh size must be comparable with the size of one coil, Rs. These

two requirements lead to the expression

C

cu(c) x Ry <—> (1.7)

C

Since ¢ N/Rg37 one gets ¢ = a3 N3, The exponent x must be such that the powers
of N from Rg(x N¥) and from the c*(oc N'=3) cancel. This means that k = v/(1 — 3v)
and leads to

€e o a(ca®)/1=3), (1.8)

An increase of concentration, ¢, leads to a decrease of the blob size, £&.. When it reaches
the monomer size, . = a, at the second critical concentration, ¢**, the system becomes
highly concentrated, and excluded volume interactions within a chain are fully screened.
In this case of so-called polymer melts the chain shows almost ideal behavior (excluded
volume effects are negligible) and the polymers approximately follow random walk
statistics, Ry o aN'/2.

Dynamic properties of the chains also depend on the concentration. We will consider

Rouse and Zimm descriptions.

The Rouse model is the simplest model of polymer dynamics. It is based on three key

assumptions. The first one is that the chains consist of "beads” separated by bond-vectors
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along the ”springs”. The second assumption is that the chains are phantom chains,
meaning that they are allowed to cross themselves, i.e. the chains are ideal. The third
assumption is the locality of response, which means that each bead experiences a force
only from its two neighbors. In other words, while a Newtonian description requires the
positions and momenta of all particles, the Rouse model only takes into account the
positions of monomers and it does not take into account all correlation effects with other
chains, or hydro dynamic interactions. The Rouse model assumes the following equation

of motion
d 1
— T = —
a '

where 1 is the monomer friction coefficient, p; the random displacement per unit time of

F; + pi, (1.9)

monomer ¢, and F; the force acting on monomer . The latter follows from

ov
8I'Z' ’

where the potential, V', can be derived from the assumption that the chains are Gaussian

F, = —

(1.10)

and consist out of beads and springs,

| 3kpT =
202

(rip1 — )2 (1.11)
i
The random displacement per unit time is Gaussian white noise satisfying the

fluctuation-dissipation theorem,

(pi") =0, (1.12)

and

(i 0 () = 275280t — ), (1.13)

where greek indices denote Cartesian indices. The stochastic displacements in different

directions and of different monomers are assumed as statistically independent.

Looking at Eq. (1.9) for the center of mass, one sees that the drift forces cancel due to
Newtons’s third law. Moreover, the friction coefficients of all the monomers can be added
up. This property we will use later for calculation of shear forces for brush laers. The

diffusion constant in this model can be derived as

kgT
D= —— 1.14
N¢ b ( )
and therefore
Dx N« R;? (1.15)

The longest relaxation time can be found considering that the object will move its own
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size within a time, 7R,
D1 o R, (1.16)

such that
TRocRgoch. (1.17)

While the Rouse model does not take into account hydrodynamic interactions, or
transport of momentum, the Zimm model does not ignore these self-correlation effects.
The main effect is the following: A monomer 7 is randomly kicked by a surrounding
monomer j and both are moved by their random displacements per unit time p; and p;.
The motion in this case is highly correlated due to fast diffusive momentum transport

through the medium. The equation of motion in this case can be modified to
d
P > piFi + pi, (1.18)
J
where ;5 is the mobility tensor and the stochastic displacements satisfy the relation
(02 ()0, () = 2 Tpigolt — 1), (1.19)

where p;*? is the displacement tensor. This relation is due to the incompressibility
constraints of the solvent flow. One can show that the diffusion constant in this case can
be derived as )

D x R—g, (1.20)
indicating that the chain as a whole essentially moves like a Stokes sphere. The longest
relaxation time of the Zimm model, 77, can be found by requiring D7y o Ré, such that

TzocRgocN?’”.

1.1.3 Polymer brushes

In this section we will review theoretical approaches describing polymer chains, which are
grafted by one of their ends onto the surface: polymer brushes. First, let us consider a
single chain consisting of N monomers end-grafted onto the surface. Like a single chain
in solution, it has its characteristic size, Ry oc N”. Increasing the number of chains, Ng,
which are grafted onto the surface of area A, one reaches a situation, when chains start
overlapping, such that the grafting density,

pe="E. (1.21)

is equal to the so-called critical grafting density,

P = (1.22)
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where 7rR§ is the area covered by one unperturbed chain. For grafting densities below the
critical grafting density (pg < pg*) the polymers have a mushroom conformation, when
the chains have a coiled form, similar to a mushroom, and do not interact with each
other. For grafting densities beyond the critical grafting density (pg > pg) the polymers
are stretched due to the repulsion between the chains, which leads to loss of entropy of
each chain in comparison with the ungrafted chains. These brushes are called semidilute
brushes. Further increase of the concentration leads to molten brushes, when the brushes
are highly concentrated, such that no more solvent molecules can be in the system due to
the incompressibility of the brushes. Therefore, another important variation among
brushes is also the presence or absence of solvent for the behavior of the grafted polymer
chains. With solvent the physical reason for the stretching of the chains from the surface
is their affinity for the solvent or dislike of each other. When no solvent is present (melt
conditions), the chains stretch away from the substrate in order to avoid overfilling space,

since they are incompressible.

Due to the constraint that the chains are grafted, the polymers will not behave like free
chains in solution. The oldest and simplest model describing the regime of chains that
are fully stretched away from the surface is the Alexander model[46]. In this model each
chain consists of blobs of the same size in the strongly stretched limit (pg > pg*) under
good solvent conditions. The free ends of the chains are located at the height h from the

surface, such that the density profile has the form of a step-function,
p(z) = Npg/h, (2 <h). (1.23)

The stretching of the chains leads to an entropic free energy loss of hz/Ré per chain, and
the repulsive energy density due to unfavorable monomer-monomer contacts is
proportional to the monomer density times the excluded-volume parameter times the
length of the chains, v /N. Analogous to the derivation of the gyration radius of a free

chain in a good solvent the free energy per chain is then

F h? pgN2
~ . 1.24
kT~ aN 7k (1.24)
Minimizing the free energy one obtains the equilibrium height A,
2
h = N(gugang)l/?’. (1.25)

In contrast to the Alexander model, when the chains are supposed to be fully stretched
away from the interface with uniform monomer density, experiments and simulations
have shown that brushes demonstrate a rather rounded behavior and density profiles

approach zero continuously.

Theoretical studies of surface-anchored polymers based on the self-consistent field theory
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(SCFT) representing full mean-field treatments first introduced by Edwards|[47] and the
strong stretching theory(SST) formulated by Semenov|48| are more realistic in
comparison with the scaling methodologies. These methods make no assumption about
the structure of the system, i.e. about the density profile, but determine it
self-consistently. Both theories are based on the same Gaussian chain model. The
advantage of the SST is that it provides simple analytical predictions, while SCFT (in
general) only can be solved numerically. The SST neglects fluctuations around the
"classical path”, which connects grafted and free end-monomers of a chain, by minimizing
the action. This is in analogy with the classical approximation of quantum mechanics,
where the motion of a particle is given by the quantum path with maximum probability.
The SST also can be used in polymer adsorption theories as a chain connectivity
equation resembling the diffusion equation, such that this method is called the diffusion
equation approach. However, a major difference between a diffusing particle and a
polymer molecule is the fact, that a polymer molecule has two chain ends whereas a
diffusing particle does not have a specific end. A polymer segment located near one of the
ends will in general behave differently from a middle segment, as the non grafted ends
have more freedom of motion. In the original SST theory the importance of the chain

ends is neglected.

A simple hypothesis about the free chain ends of a single polymer brush, that they may
be located at any distance from the surface, leads to the prediction of a parabolic
molecular field[49],

P(2) = o — % (g—;)z (1.26)

with ®g a constant and h the height of the Alexander brush (except prefactors). The
corresponding density profile is supposed to be proportional to the molecular field,
p(z) < ®(z). The end density distribution €(z) obeys[49]

e(z) o 2z(h% — 22)Y2 + (A/B — h?)z(h? — 22)~1/2, (1.27)

where A and B are constants derived in Ref. [49]. This is so-called Milner-Witten-Cates
(MWC) model brush.

Now let us turn to the case of two opposing brushes. The key assumptions of the MWC
theory are that two compressed brushes each have a parabolic molecular field and they
do not interpenetrate into each other. Later calculations[50] showed the existence of an
exponential tail in compliance with the SCFT. Further, assuming that the chains can
slightly interpenetrate into each other, leads to the following form of the end distribution

tail and the tail of the density profile:

L 3/2
€(z) o p(z) x exp (—71 <§7?/2> ) , (1.28)
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where & is the length of the tail, & = (D/2)~'/3a*3N?/3 and D is the distance between
the opposing surfaces. This equation is derived for the case that only a small fraction of
the chains stretches into the opposing brush, the so-called regime of weak compression.

With the full mean field approach|51] it can be shown that the tail exhibits the Gaussian

form,

z 322

(=) o< TN P <‘m> ’ (1.29)
and 12 )
aN 3z

p(z) x ~ €xp <_2CLTN> . (1.30)

These predictions are not in perferct agreement with computer simulations results. Only
in strongly stretched limit these two methods converges. More recent SST
investigations[52 54| show that a depletion layer near the interface occurs, demonstrating
that a parabolic molecular potential does not necessarily imply a parabolic density
profile. Moreover, more recent studies have shown, that taking into account the entropy
of the free ends 53] and finite-stretching corrections |54] lead to an almost perfect
superposition of the SST and the SCFT, but the SST becomes analytically unsolvable.

Allowing brushes to interpenetrate into each other one can show that in the case of
concentrated or molten brushes the overlap thickness can be derived from the change in
free energy, AF', when a chain segment of length 4 is pushed into the opposing layer.
Witten et al. |55| demonstrated that by the calculation of the work in order to insert a

single chain into a brush, AF can be written as

1/2
—ﬁa(p(z)> , (1.31)

a? 0Oz

AFO<<

where the molecular field, ®(z), may be of the classical parabolic form, Eq. 1.26. The
interpenetration is due to thermal fluctuations, thus AF is of the order kgT. We take the
derivative of ®(z) at the middle of the bilayer, z = D /2, and obtain from Eq. (1.31)

N2g4\ /3
5 ( Da > (1.32)

for the interpenetration depth of strongly compressed, molten bilayers.

Equation (1.32) is similar to the expression found by Witten et al. [55],

N2g4\ /3
0
(%)
where D is replaced by the unperturbed brush height. The difference occurs because in
Ref. [55] the derivative of ®(z) is taken at z = h, which hence characterizes the behavior

of two brushes just coming into contact (weak compression regime). The prediction of
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the interpenetration depth [Eq. 1.1.3] we will use below in the theoretical description of

two opposing brushes under shear.

1.1.4 Charged brushes

Polyelectrolytes are polymers containing ionizable subunits which can dissociate in a
polar solvent providing charged macroions and counterions. There are polycations
(positively charged chains), polyanions (negatively charged chains) and polyampholytes,
which contain both negatively and positively charged subunits placed along the polymer
chain. The model of a polyelectrolyte chain in solution is similar to the neutral one. A
chain consists of N monomers each of size a. The degree of ionization or the monomer

charge fraction can be characterized by the number of charged monomers, m,

m
Many analytical calculations for polyelectrolytes in solution start from the Poisson
equation,
p(r)
V2¢(r) = — : 1.34
o(r) =~ 20 (134)

where ¢(r) is the potential at point r, p(r) is the local charge density, € is the vacuum
permittivity, and €(r) is the dielectric permittivity of the medium, which in most models
is a constant, €(r) = e = const. For a point charge with a charge density

p(r) = Q16(r — ry) being located at r = ry and having a total charge Q1 = z1e, where e

is the elementary charge, the potential is given by

1 1

" dmege v —rq|

¢(r)

(1.35)

For a system of several ionic species each of valence z; and with local concentration ¢; the

local charge density reads

p(r)=e Z zic;i(r). (1.36)

In the mean field approach, i.e. neglecting fluctuations, ¢;(r) obeys the Boltzmann

distribution

ci(r) = iV exp (—%) , (1.37)

(0)

where ¢(r) is the time averaged value and cio is the bulk concentration, such that the



22 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHES

requirement of electroneutrality gives
S zd? =o. (1.38)
i

In this case the Poisson-Boltzmann (PB) equation

e zied(r)
V2p(r) = - ;zicgo) exp <— T > (1.39)

can not be solved analytically. Another approximation is necessary. The linearized PB

equation reads

V() = 1-o(r), (1.40)
D

where the Debye length is the screening length, defined as

/ kgT
€7 2. %G

This is the so-called Debye-Hiickel approximation. It is valid only for weak potentials

P(r) < ik (1.42)

zZ;e

Assuming the charge of all the other ions to be continuously smeared around a test

charge, the spherically symmetric solution of Eq. (1.40) is

zie exp(—r/Ap)

i\r) = 1.43
¢ilr) 4mege r ( )
and the corresponding pair interaction energy reads
AB
Uij = zizjksT— exp(—r/Ap), (1.44)
r

with the Bjerrum length, Ap, defined as the distance at which the Coulomb interaction

between two unscreened elementary charges is equal to the thermal energy,

62

A= ——.
B dregekpT

(1.45)
The Bjerrum length characterizes the strength of the Coulomb interaction, whereas from
Eq. (1.43) it is evident that the charge cloud around a test ion results in a screening of
the Coulomb interaction. Hence, the Debye length gives the screening range of the

resulting effective potential.

The Flory-like mean field argument can be, analogously to the neutral systems, used to

calculate the end-to-end distance. Assuming all monomers are charged (monomer charge
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fraction f; = 1) the free energy is written as

LNR_:%JFA N?
kT Na2 ' "PR.

where the first term is the elastic free energy of the Gaussian chain and the second term

(1.46)

represents the electrostatic free energy of the charged monomers. The end-to end

distance in this case is

/3 2/3
Re ~ A %a®PN. (1.47)

The linear dependence of R, on N makes the strongly charged chain rod-like. The
deviation from the rod-like structure is described by the Odijk-Skolnick-Fixman (OSF)
theory|[56].

To understand the scaling picture of charged brushes, one assumes a box model[57],
where the brush is characterized by two length scales. The polymer chains are assumed
to extend to a distance h from the grafting surface, the counterions in general form a
layer of thickness H. There are two different regimes. In the first one the counterion
cloud exceeds the height of the brush, H > h. In the second regime they are confined
inside the brush, H =~ h. This is a strongly charged brush in contrast to the first case of a
weakly charged brush.

There are four contributions to the free energy. First, the osmotic free energy Fis
associated with the entropy cost of confining the counterions to a layer of thickness H is

given by
Nfipg
H

Afterwards the second virial contribution to the free energy and the stretching free

Fos ~ N fipg In . (1.48)

energy have to be taken into account. They are the same as for the neutral brushes [see
Eq.( 1.24)].
The third term is the electrostatic contribution. This term is nonzero when the brush is

not locally electroneutral throughout the system. This is given by [57]

o (h— H)?
TR

For strongly charged brushes all counterions are inside the brush, which means that the

Fol ~ )\B(Nfipg) (1.49)

Gouy-Chapman length

1

- 1.
2 N fips’ (1.50)

Aac

which is the height at which counterions are effectively bound to a surface of charge
density efiNpg [58]. This height is small compared to the brush height h. For weakly

charged brushes it can be shown that the counterion height reads
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H:h—l—;)\gc. (1.51)

In the case of the so-called osmotic brush regime[58| one can show, via minimizing

osmotic and stretching free energies, that the brush height reads

h~ Naf!?. (1.52)

Minimization of stretching and electrostatic free energies leads to the Pincus brush

regime, where the brush height is

h~ N3(af)?\ppg. (1.53)

For both regimes there is a strong dependence on the Bjerrum length Ag and the charge

fraction f;.

The picture of the polyelectrolyte brush behavior changes if salt is added to the solution.
The salt concentration is an important parameter to tune structure and properties of the
brush. Both in experiments and in theoretical work the main attention is focussed on the
behavior of the brush height and density profiles. The brush height is predicted to be

2\ —1/3
h~ Na <@> : (1.54)

acs

where ¢ is the salt concentration. There are, however, also another prediction|58]
expecting h 0;2/3 and h C;/g [59]. Dispite of the different predicted exponents of the
power laws one can conclude that the structure of the brushes strongly depends on the
salt concentration.

In contrast to neutral brushes at low grafting densities, when chains are not overlapping,
one observes a pancake conformation due to the long-range interaction. Increase of the
critical grafting density leads to the mushroom confirmation and further to the brush
conformation. The crossover appears at lower grafting densities and, therefore, at lower
critical concentrations in comparison with neutral systems.

Concluding, one can see that polymer brushes exhibit rich behavior when charged
depending on the strength of the long-range interactions and molecular parameters of the

System.

1.1.5 Sheared brushes

Now let us turn to the description of the brushes under shear. In case of ideal viscous
(Newtonian) fluids, the stress depends only on the current rate of deformation, and there
is no memory of previous deformations. At the other extreme of perfect elastic solids,

stress depends only on the deformation from the preferred shape. Energy is dissipated in
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viscous materials and stored in elastic bodies. Polymeric fluids are called viscoelastic, as
they have both viscous and elastic properties depending on the time scale of observation.
Elasticity is the ability of the fluid to return to its original state and shape after release
of the applied stress. In most cases either the relaxation time of the material undergoing
deformation is so small that the fluid exhibits mostly viscous response, or the relaxation
is very slow (structural memory is very long) and materials behave like elastic bodies.
Macromolecular fluids are unique since their structural relaxation times often span many
orders of magnitude. For instance, chains grafted to surfaces might have different
relaxation times than free chains of the same length located in the interface between two
opposing brushes. The relaxation time of the system as a whole is influenced by all

components.

Ideal Newtonian liquids placed between two opposing surfaces exhibit a linear velocity
profile under shear. Complex systems, i.e. polymer brushes, do not show a linear velocity
profile during steady shear. The mechanical response of any fluid to shear might be

described by the viscosity, which can be calculated from the shear stress, o,

where ¥ is the shear rate and o, is an off-diagonal element of the stress tensor (X is the
shear and Z is the gradient direction). For ideal viscous materials the shear forces are
always proportional to the shear rate (linear response), and normal forces represent the

pressure in the system. Macromolecular systems exhibit shear rate dependent viscosities.

Another characteristic of system under shear is the Weissenberg number, W, which is
typically defined as a product of the shear rate, 4, and the characteristic relaxation time

of the system 7,

W =4 (1.56)

For such systems as polymer brushes one often takes the relaxation time of a single chain
of equivalent length N in the bulk. Another example is the system of polymer stars,
where the relaxation time of arms in the bulk is taken|60|. As we will show in the
following, these definitions of the Weissenberg number is not applicable for such complex
systems. Let us (re)define the Weissenberg number by the critical shear rate 4*, when

the crossover from the linear response regime to the non-Newtonian behavior occurs,
W =4/4% (1.57)

The shear force in the linear response regime is proportional to the Weissenberg number
up to the critical shear rate 4*. For Weissenberg numbers above the critical shear rate

(W > 1), the system can exhibit a shear thinning or a shear thickening. Similarly to a
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system of dendrimers or of polymer stars in the bulk the system of two opposing brushes
may reveal a power law dependence with an exponent o < 1 and « > 1, correspondingly.
As we will see in the following the first case is applicable independently of the molecular
parameters, i.e. grafting density, chain length. This is the case of the so-called

non-Newtonian behavior.

‘ ‘ ‘ T
linear response : non-Newtonian behavior

:1)

ff (W

Figure 1.1: Schematic demonstration of shear thinning and shear thickening. Normalized
by its value at the critical shear rate the shear force shows linear response behavior up to
a Weissenberg number W = 1. For W > 1 the system reveals non-Newtonian behavior.

For increasing shear force there is a spontaneous symmetry breaking when the work of
the shear force acting on a chain exceeds the thermal energy. At higher shear rates the
chains are deflected in the shear direction. Therefore, the critical shear rate 4* can be
defined by the comparison of the thermal fluctuations with the work. Defining as a
characteristic length scale the gyration radius in shear direction, R ., and the total shear

forces acting on the substrates, f,(7), the Weissenberg number may be written as

fo(V)Rg

1.58
e (1.58)

W=5/5 =
where 4* o< 1/7, which can be regarded as an inverse relaxation time of the bilayer, and
Ry, = (Rg,x>1/2 the gyration radius at zero shsear. This definition of the Weissenberg

number we will use in the following.

1.2 Experimental approaches

Experimentally there are two basic ways of producing a grafted polymer layer. The first
method is the so-called "grafting from” method, when polymerization is started from the

surface with a suitable surface-linked initiator. The monomers have to diffuse through
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the forming brush layer and thus the reaction kinetics is fast, and quite high grafting
densities can be reached, but this method can result in quite high polydispersity [61].
The second method is the "grafting to” procedure, when polymers are attached with
special end-groups that act as anchors on the surface. This method has slow kinetics
during the formation stage due to the fact that whole molecules have to diffuse through
the grafted layer; only smaller grafting densities can be achieved, but the length of the
anchored chains and their chemical composition is under better control. The chains can
be physically or chemically adsorbed to the substrates. An example for the first case are
zwitter-ionic end-groups attached to poly(styrene) chains that lead to binding to mica in
organic solvents such as toluene or xylene |62|. Or poly(ethylene oxide) (PEO) adsorbs
on inorganic surfaces like mica via an ion-exchange reaction and forms a polymer brush.
The second method leads to stronger covalent binding and therefore a more stable
attachment of end-grafted chains is possible. The examples are poly(dimethylsiloxane)
chains which carry hydroxyl end-groups and undergo condensation reactions with silanols
on a silica surface[63|. Diblock copolymers (two dissimilar polymers joint end-to-end) can
also be used in order to produce polymer brushes, where one block adsorbs on the surface
whereas the other experiences repulsion|64]|. Examples are
poly(styrene)(PS)-poly(vinylpyridine) (PVP) diblock copolymers on sapphire [65] or
quartz substrates|66| in selective solvent, which is a poor solvent for the PVP and leads
to strong adsorption onto the surface, but a good solvent for PS, stretching this block
from the substrate. The better control and larger grafting densities can be achieved in
the case of diblock copolymers on a liquid-air[67] or a liquid-liquid interface. The grafting
density can be varied via the variation of the lateral compression and therefore of the
area of interface[68|. As an example diblock PS-PEO[69] can be taken. The PS block is
shorter, unsoluble in water, and can be used as an anchor at the air/water interface. As
the surface pressure increases and the unit area per polymer decreases, the PEO is
expelled from the surface and forms a polymer brush. Finally, the chain may be attached
to a "substrate” that is the narrow interface between microdomains in a melt or
concentrated solution of diblock copolymers when the two blocks of the copolymer are

strongly segregated.

Grafted polymer materials can be either non-charged (neutral) or charged polymers,
so-called polyelectrolytes. Polyelectrolytes can be categorized in two groups: strong
(quenched) or weak (annealed). A simplest polyelectrolyte may be defined as a
homopolymer, where at least one monomer unit carries an ionizable group. Such a group
may be a strong salt, acid or base, so that its charge is virtually independent of pH . This
is the case of strong polyelectrolytes. Weak polyelectrolytes carry weakly acidic

(e.g. carboxilic) or basic (e.g. amino) groups. Their solution behavior depends on pH,

which can be varied, for example, by adding salt.

The structure of polymer brushes can be investigated using different techniques. The
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force-balance technique used in surface force measurements allows to measure directly
shear and normal forces|15] in rheological experiments. Moreover, this technique gives a
rough measure of the brush height by measuring the force as a function of the separation
between two solid surfaces|70, 71|. Atomic force microscopy (AFM) has been used to
probe the structure of surface-anchored polymers by measuring the force between the
polymers and the AFM-tip|72|. Experiments involving scattering techniques have been
used to investigate the structure of end-grafted polymer systems. These include
ellipsometry|73|, evanescent wave fluorescence|74|, infrared spectroscopy|75|, neutron
reflectivity[65], neutron scattering|76], small angle scattering (SANS)[77], etc. These
techniques have been used to determine the extension of the copolymers from the
substrate and the total number of molecules adsorbed onto the surface. Most of the
techniques lack the resolution necessary to describe monomer density profiles near the
surface. Neutron reflectivity and SANS are able to provide more complete data about the

structure of the concentration profiles of end-anchored polymers.
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Model and simulation technique

2.1 Model

In our simulations the system consists of two opposing compressed polymer brushes.
Chains include N monomers each of size a. The polymers are grafted onto a surface with
one chain end. The brushes are monodisperse. The degree of polymerization, N, is equal
to N =30 or N = 60. These lengths are small enough to avoid entanglements in the
bulk|78]. Reference [79] suggests that the entanglement length increases with decreasing
thickness of a confined concentrated solution, such that we expect non-entangled chains

for all systems under consideration.

In experiments it is impossible to synthesize and investigate pure brushes. Not all free
chain are adsorbed on the substrates due to slow kinetics; some of them are ribbed off the
surfaces, especially in rheology experiments. Moreover, in nature even more complex
systems occur, which have different kinds of inclusions. In this way special functions can
be realized, for example, in natural cells as studied in tribology[80]. In these systems
bilayers of lipids play an important role, which form effectively two highly fluctuating
brush layers, where proteins are located inside of them. As inclusions in our systems we
simulate colloids of different softness. Star polymers can be a good model for such
inclusions allowing to vary configurations from "fluffy” stars to spherical-like[60]|. The
configuration of polymer stars is varied through functionality, f, and number of
monomers in each arm arm Np,o,. Varying these two values we change the "softness” of
the stars from rather "hard” stars with small length of arms, Ny, = 3, and large
functionality, f = 50, to "softer” stars, with Nyon = 15 and f = 10 and to bigger stars
with longer arms up to Ny,on = 30, which is comparable with the degree of
polymerization of our brushes. Hard colloids were simulated as hard spheres of size

o = 3. A more detailed list of investigated parameters can be seen in Table 2.1.

We vary the surface density of the grafted chains, p,. Our smallest grafting density for
N =301is pg = 1.1p,, and the biggest is pg = 8.8p,, where p; is the critical grafting

29
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D N Pe/pe* Narms | Nmon | pst Solvent
12 30 2.2 - - 0 A
14.75 | 30 2.2 - - 0 A
17.5 30 2.2 - - 0 A
12 30 2.2 - - 0 B
14.75 | 30 2.2 - - 0 B
17.5 30 2.2 - - 0 B
12 30 1.1; 2.2 5 30 0.22 C
12 30 2.2 3 50 0.22 C
12 30 2.2 10 15 0.22 C
12 30 2.2 15 10 0.22 C
12 30 2.2 12 12 0.22 C
12 30 2.2 30 15 0.44 D
12 30 2.2 21 21 0.44 D
14.75 | 30 1.1; 44 5 30 0.22 C
14.75 | 30 1.1;4.4 10 15 0.22 C
14.75 | 30 2.2 3 50 0.22 C
14.75 | 30; 60 | 2.2 5 30 0.22 C
14.75 | 30; 60 | 2.2 10 15 0.22 C
14.75 | 30 2.2 15 10 0.22 C
14.75 | 30 2.2 12 12 0.22 C
14.75 | 30 2.2 15 30 0.44 C
14.75 | 30 2.2 30 15 0.44 C
14.75 | 30 2.2 21 21 0.44 C
17.5 30 1.1;4.4 10 15 0.22 C
17.5 30 1.1; 44 5 30 0.22 C
17.5 30; 60 | 2.2 5 30 0.22 C
17.5 30; 60 | 2.2 10 15 0.22 C
17.5 30 2.2 3 50 0.22 C
17.5 30 2.2 15 10 0.22 C
17.5 30 2.2 15 30 0.44 D
17.5 30 2.2 30 15 0.44 D
17.5 30 2.2 21 21 0.44 D
12 30 2.2, 3.3 5 30 0.08 2
12 30 3.3; 3.3 10 15 0.08 2
14.75 | 30 9.2: 3.3; 4.4 5 30 0.06 |2
14.75 | 30 2.2, 3.3;4.4 10 15 0.06 2
175 | 30 9.2: 3.3; 4.4; 6.6 5 30 0.005 | 2
175 | 30 9.2 3.3; 4.4: 6.6 10 15 0.005 | 2
17.5 30 3.3;6.6 21 21 0.015 | 2
21 30 2.2,3.3;4.4;6.6; 88 | b 30 0.04 2
21 30 2.2;3.3;4.4;6.6; 8.8 | 10 15 0.04 2

Table 2.1: Different parameter combinations under consideration: distance D between
grafting planes, chain length N, and ratio between grafting density and (approximate)
critical grafting density for chains of length N = 30, star configurations ("—" denotes
systems without stars). Solvent A - implicit solvent systems without stars, Solvent B
- explicit solvent as dimers without stars, Solvent C Solvent D - with stars of density
pst = 0.22 and pgy = 0.44 respectively. 72”7 denotes the case when only two stars are
present in the system (for the simulations of the effective interactions).
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density. With pg &~ p;, we consider a system just at the mushroom-to-brush crossover for
the chain length N = 30. For N = 60 we consider one grafting density,

pg = 2.2p5(N = 30).

The distances between the grafting surfaces, D, investigated is equal to D = 120,

D =14.750, D = 17.50, and D = 210. With that we consider four different degrees of
compression. Depending on N and pg, this corresponds to compressions between

2h/D =~ 2 and 2h/D =~ 6.5 relative to the height h of a single, uncompressed brush

without explicit solvent|81].

In many previous simulations|13, 19, 21, 26, 31, 33, 34, 36, 37|, the solvent was treated
implicitly, i.e. the kinetic energy dissipated to the solvent is mimicked by the application
of a thermostat. We consider four different types of solvents; referred to as solvent A, B,
C, and D in the following. Solvent A accounts for solvent effects only via the repulsive
potential acting amongst the monomers in the brush. Solvent B consists of dimers,
corresponding to “polymer" chains of N = 2. We use dimers instead of (e.g.) monomers
for the solvent in order to hamper packing and to account for rotational and vibrational
degrees of freedom. However, our approach does not aim at describing all features of a
real solvent but rather attempts to reflect excluded volume and finite inertia effects, as
well as the momentum transport of an explicit solvent. For a given parameter
combination of N, pg, and D we add solvent dimers until a total number density of

p = 0.9 is reached. Solvent C is a mixture of dimers and star polymers of different
functionalities and arm lengths, such that the density of star monomers is pg ~ 0.22.
The total number of monomers in one star is fNpyon + 1 taking into account the central
monomer to which all arms are connected. Solvent D corresponds to density of star
monomers pg ~ 0.44. For all parameters (IV,pg,D), except systems of Solvent A, we keep

the total number density at p = 0.9.

Periodic boundary conditions are applied parallel to the surfaces in X- and Y- directions.
The substrates are represented by rigid, face-centered cubic (fcc) crystalline surfaces with
area A= L,L, = 420 x 36.3730 = 1527.666052.

The components of the system are represented by the Kremer-Grest (KG) model[24, 25],
which is a generic coarse-grained model that has been applied in many previous
studies|[13, 19, 21, 24, 26, 31, 33, 34, 36, 37, 78, 81]. In the KG model, monomers interact
via the Lennard-Jones (LJ) potential,

de[(a/rij)'? — (o /rij)° = (0/re)? + (o /re)°],  (rij <7e)

Ury(rij) =
07 (TZJ 2 TC) )

(2.1)

where € = 1 and o = 1 define the units of energy and length, respectively. r;; denotes the
distance between monomer ¢ and j and r. is the cut-off radius of the potential. We

consider a purely repulsive polymer model, i.e. we choose r, = 21/65. and shift Uy to
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0.6

Figure 2.1: Interaction potentials between non-bonded and bonded beads, cut and shifted
Lennard-Jones and FENE potentials and their sum (LJ+FENE).

avoid a discontinuous force at the cut-off. The excluded volume parameter in this case is
vy ~ a®[82]. Since vy is positive, we have good solvent conditions, independent of the

temperature.

The connectivity along the chain backbone is assured via the FENE potential[24],

-1 7,2 nL—(r/r 2 r T
Uren(r) = 2’“215 )(/ REERN 22)
oo, r=2rTo

where r is the distance between neighboring monomers in a chain, k = 30¢/o, and

ro = 1.50. The equilibrium bond length, b = 0.970, follows from the minimum of

Urj(r) + Upeng(r). The KG model prevents bond crossing and yields the characteristic
properties of polymer solutions and melts|24, 78]. The potentials can be seen in Fig. 2.1.
We mimic the interaction of monomers and solvent with the wall atoms by Eq. (2.1)
using the same values for r¢, o, and € as for the monomer-monomer interaction. The only
exception concerns the interaction between the grafted end-monomers and the wall
atoms, where we increase € by a factor of 250 with respect to the monomer-monomer
interaction and make the LJ potential attractive by doubling r.. The wall atoms remain
at fixed relative positions and move only with the given shear velocity. Using this
approach, we imply chemisorbed polymer chains on a substrate with infinite mass.
Solvent molecules are simulated as L.J dimers. The connectivity of the latter, as well as of
arms in stars and their bonding to the center monomer are assured via the

FENE-potential, Eq. (2.2), with the same interaction parameters as for the
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monomer-monomer interaction in the brush.
Figure 2.2 shows a typical snapshot of the simulated system. A top view on the stars,
which shows the distribution of them in the system can be seen in Fig. 2.3. They

strongly interact with each other as well as with the brushes.

Figure 2.2: Typical snapshot of two polymer brushes with stars and explicit solvent
molecules at static equilibrium. The distance between grafting planes is D = 12. Each
brush consists of chains with N = 30 monomers per chain (blue and red beads). The
grafting density is approximately twice the critical grafting density, at which the chains
overlap. Green spheres are the stars and white spheres are solvent molecules (dimers).

2.2 Electrostatic interaction and Ewald summation

In charged systems ions are interacting via the long-range Coulomb interaction

kT q;q;i X\
UCoul(T) = %a (23)

where ¢; and g; are the corresponding charges in units of the elementary charge e, and A
is the Bjerrum length|Eq. 1.45].

In order to take this long-range interaction into account the Ewald Summation
technique|83] was implemented. The electrostatic potential may be divided into the
following contributions: interactions due to continuous background charge,

self-interaction and real contribution due to screened charges. The first contribution may



34 CHAPTER 2. MODEL AND SIMULATION TECHNIQUE

Figure 2.3: Top view of the system, only the stars are presented (green objects in the
Fig. 2.2). They are located in the middle of the bilayer. The functionality of stars is
f =30, the number of monomers per arm is Ny, = 5.

be computed using Fourier transformation

1 dm _K2/4a
Ur= 5y Z §|P(k)\2€ e (2.4)
k#0
where
N .
pk) = qie™T, (2.5)
i=1

with p(k) the charge density in Fourier space, a the width of the Gaussian distribution,
which is the compensating charge surrounding the ion, k the lattice vectors in Fourier
space, V' the volume of the simulation box.

The second self-interaction contribution must be subtracted from the sum due to the

periodic interaction of the continuous charge cloud, which is compensating the point

Uself = (%) 231%2- (2.6)

The electrostatic energy due to the point charges and the compensating cloud in real

charge g;,

D=

space has the form

N
1 q;qierfc(y/ar;;
fhe - L3 BTl .

y T
1#] J
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where r;; is the distance between particles 7 and j, and

—1_ 2 gce_“2 U
erfc(z) =1 ﬁ/o du. (2.8)

In order to take into account that the system is periodic only in two directions (slab
geometry), it was shown|85], that one can add a correction term to obtain the correct
limiting behavior in the limit of infinitely thin geometry (D < L, and D < Ly)

2T
Ug = _7M22’ (2.9)
where
N
M= gz, (2.10)
i=1

with z; the coordinate of the point charge g;.

The total Coulomb energy is

U. =U; + Us_; — Ugarr — Uyg. (2.11)

We vary degree of ionization from f; = 1 (strongly charged polyelectrolyte), when every
monomer of the chain has a charge ¢ = —1, to f; = 1/30 (the chain length is fixed

N = 30), where only the end-monomer is charged. The Bjerrum length in this case is
equal to size of monomers A\gp = ¢ = 1. Fixing the degree of ionization at fi = 1 we also

vary the Bjerrum length from Ag = 0.0l up to A = 3o.

Charged systems are simulated under strong compression at a distance D = 12 between
the walls; the grafting density is varied between pg = 1.1pg, pg = 2.2p; and pg = 4.4p5;

only the case of Solvent B is considered.

In order to keep the system electroneutral, such that

> =0, (2.12)

where ¢ goes over all charges in the system, counterions are added. Two cases of
counterions are investigated. First, we treat counterions as LJ dimers like the solvent
molecules. Every monomer of the dimer is charged, such that it is bivalent. In addition,
we investigate systems with both monovalent counterions and solvent molecules, which,
only for this special case, are treated as single monomers. Simulation results of the

charged systems will be presented in Chapter 6.
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2.3 DPD-thermostat

Temperature is kept constant at 7' = 1.68¢/kp using a Dissipative Particle Dynamics
(DPD) thermostat|83, 87-90|. The thermostat adds to the total conservative force on
each particle i a dissipative force, F;P, and a random force, F;®. Both forces are applied
in a pair-wise form, such that the sum of thermostating forces acting on a particle pair

vanishes. With I the friction constant, the dissipative force reads

FZ'D =-I Z wD(rij)(f'ij . Vij)f‘ij, (2.13)
J(F#)
where t;; = (r; — rj)/ri; and v;; = v; — v; with r; and rj, v; and v; position vectors and
velocities of particles ¢ and j respectively. We choose the commonly employed weight

function

(L=rij/re)* (g <re)

0 (rij >re)

D

WP (ri) = (2.14)

with the same cut-off range r., as for the LJ interaction. The random force is given by

FZ’R = )\ Z wR(rij)Hijfij, (2.15)
J(#9)

where 6;; is a random variable with zero mean, unit variance, and 6;; = 0;;. wR(rij)
denotes the weight function for the random force. Friction and noise strength, A, define
the temperature via A2 = 2kgTT". We choose I' = 57'L_J1 for the friction constant. In
Ref. [35], a larger value (I" = 12.5TL_J1) was chosen. However, we want to avoid
overdamping of the dynamics by the thermostat. During the simulation we monitor T°

and find isothermal conditions for all shear velocities considered here.

The fluctuation-dissipation theorem demands that the weight functions for dissipative
and random forces satisfy
[WH)? = WP. (2.16)

The weight function does not necessarily have to be of the specific form of Eq. (2.14).
Instead one can choose a different function, as long as Eq. (2.16) is fulfilled. The
strengths and weaknesses of different weight functions have been studied recently for the
KG model without explicit solvent|[37] and a slightly different model with solvent[35].
Using the DPD thermostat hydrodynamic interactions are taken into account and local
momentum is conserved, such that the Zimm model is applicable to our results, which we

will demonstrate in the following.
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2.4 MD Simulations

To study the system we use Molecular Dynamics simulation methods|[83]. The equation

of motion for particle 7 is
dzri
m
dt?

where F; is the sum of the all forces acting on the particle

~F, (2.17)

F,=-VU+FR+FP (2.18)
where F;® is defined in Eq. (2.15), F;® in Eq.(2.13) and the potential is
U = ULj + Ureng + U (2.19)

where Uy in Eq. (2.1), Upgng in Eq. (2.2) and U, in Eq. (2.11).
We solve the classical equations of motion via the Velocity-Verlet algorithm|[83]. It can be

written in the following form:

r(t + 6t) = r(t) + otv(t) + %5t2a(t), (2.20)

v{t +6t) = v(t) + %& (a(t) + a(t + 6t)] . (2.21)

The algorithm is implemented in the following way. First, the new positions at time

t + Ot are calculated using Eq. (2.20), and velocities at the mid-step are computed using
1 1
V(t + §5t) = V(t) + 5515&(1:). (222)
The forces and accelerations at time t 4 §t are computed and the velocity move completed
1 1
v(t+dt) =v(t+ 5525) + §5ta(t + 0t). (2.23)

The whole process is iterated using the newly computed positions and velocities. Since
we get the velocities at each time step from Eq. (2.23), the instantaneous temperature

can be calculated as
Ntot

m Z<Vi2> = 3Niot kBT, (2.24)
i—1

where Ny is the total number of monomers excluding surfaces particles.

We use a time-step of 0t = 2 - 107373, where 13 = o(m/€)'/? represents the LJ time
unit. The particle mass, m, is set to unity for all monomers and solvent particles. We
systematically checked that our results remain unchanged when the time-step is reduced
to 0t =5-10"%7m,;.
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We consider stationary Couette flows, which are applied by shearing the substrates with
a constant relative velocity of 2V at fixed distance D. The corresponding shear rate is
defined as 4 = 2V/D. All quantities will be presented in LJ units.

The response to shear may be characterized by the stress tensor, which can be calculated

using the Irving-Kirkwood formula[86]

1 1 YoijT 3. 1 z— z 2 — 2
Taf = 3 (Z:VQVBH(ZZ')> ~Iily ; ’I]'ijf ]Fijzj€< = >9< ]Zij >
(2.25)
When the system is divided in the Z-direction into slabs of thickness Az, H(z;) is
expressed as
1 z- % <z <zA4+ %

H(z) = (2.26)
0 otherwise



Chapter 3

Static Equilibrium

3.1 Introduction

Polymer brushes are deeply investigated by means of theory|[28, 49, 50, 55, 84],
experiments|15, 17, 62, 65, 91, 92| and computer simulations|30, 31, 33, 34, 36, 37, 82|. In
static equilibrium two opposing brushes can interpenetrate strongly into each other due
to the non-parabolic tails of the brush-profiles. Computer simulations |93] demonstrate
that highly fluctuating interface region between the brushes is built. A single brush
expels macroobjects out of it [94, 95]. The influence of a single brush on two inclusions
was extensively investigated by means of theory and computer simulations|94, 95|. These
so-called effective interactions are observed in many systems, e.g. in biomembranes

[96, 97|, at fluid-fluid interfaces [98], in liquid crystals [99], in bilayer lipid membranes
[100 102], in polymer-colloid mixtures [103] and so forth. Particularly, they are very
important in cellular processes which lead to aggregation of proteins. We are interested
in the interactions between two macroobjects located between two opposing brushes.
These macroobjects are colloids or polymer stars of different softness. By varying the
functionality, f, and the number of the monomers per arm, Npyon, we vary the size and
the shape of the object. We will investigate the influence of the brushes on the
interactions between these objects.

In this section, the results of simulations concerning the effective interactions in static

equilibrium between stars and colloids in the brush-brush interface will be presented.

3.2 Brushes-induced interactions

The stars, when located close to each other, experience steric repulsion|104], therefore
they do not prefer to be in contact. In order to investigate effective interactions between
two objects and to ”scan” all distances between them one can use, for example, umbrella

sampling|83]. Experimentally, rare configurations can be investigated using laser
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(a) Distance between t (b) Distance between t (c¢) Distance between the
stars d/o = 12 stars d/o =17 stars d/o = 3

Figure 3.1: Snapshots of the system, two opposing brushes and two stars in the interface
between them. Blue and red beads correspond to top and bottom brushes, green beadsto
the stars, light green to the center monomer. Close to each other two stars build one
big object (3.1c). When the brushes are slightly separated the brushes start to penetrate
between the stars (3.1b). At large enough distances the stars do not feel each other (3.1a).
The grafting density is pg = 3.3pg, the distance between the walls is D = 17.5, the star
configuration is Nyen = 5, f = 30.

traps[105], where the interaction potential is probed using laser tweezers. Similarly to
this method we connect the center monomers of the stars to a fixed position in space by a
spring. The spring constant is taken to be k = 100. This spring allows us to keep the
objects close to each other. Due to interactions between polymer stars the position of the
center monomers after equilibration differs from the pinning position. There is an

effective potential between the stars, which is

EAx?
2 M

Usot—st = (31)

where Az is the difference between the measured position of the center monomer and the
pinning position. Ax depends on the relative position of the center of mass of the stars.
Our aim is to investigate the deformation of the stars, moreover to study how the
effective potential between these two objects is influenced by the presence of the brushes.
The latter can be calculated from the difference between the potential, which acts
between the stars in the presence of the brushes, U? ., and the pure potential acting

between them, when there are no brushes in the system, UJ_
b 0
Up—st = Usi—st — Usp—st- (32)

In both situations the potentials between the stars can be directly measured via the
position of the center monomers. Computer simulations allow to investigate in detail the
relative deformations of each object in order to understand the nature of the occurring
interactions.

The pinning distance d is the distance between the center monomers of the stars. We
varied the pinning distance between d/o =3 and d/o = min(L,/2, L, /2), where L, and
L, are the sizes of the simulation box in X- and Y- directions, in which periodic

boundary conditions are applied. The position of the center of mass of each star depends
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on its deformation by the brushes. All measured variables will be presented as a function
of the distance between the center of mass of each star, rem.

The monomers in the system are charge neutral. The length of the chains in the brushes
is fixed to N = 30 for all simulations. The grafting density, py is varied between

pg = 0.085 and pg = 0.34. This corresponds to 2.2p; and 8.8p;, where pg is the critical
grafting density from which on chains within a brush start to overlap. Several star
configurations were investigated as well as different separations between the walls.
Snapshots of the investigated systems for different pinning distances of the stars, d are
presented in the Figs. 3.1. The stars are located in the middle of the bilayer between the
two opposing brushes. The Y-coordinate of the pinning position is fixed for all
simulations. The pinned center monomers are able to fluctuate around their equilibrium
positions. The resulting fluctuations around the pinning points are less than 1% of the
distance between the walls, D. Via variation of the pinning positions in X-direction we
vary the distance d. The Figure 3.1c shows the system, when two stars are close to each
other and the distance between the pinning points is d/o = 3. The stars build one big
object in this case. They interact with the brushes as a whole, such that the brushes are
not able to interpenetrate between the stars. Both stars are significantly deformed
compared to their free configuration, they become aspherical. Figure 3.1b shows the
situation, when the stars still interact with each other, but the brushes start
interpenetrating between them, whereas Fig. 3.1a corresponds to the situation, when two
stars are separated completely. One can see that in all three snapshots the stars also

strongly deform the brushes.

In the following we focus on two star configurations. The first one is f = 30, Npon = 5,
which is rather colloid-like, and the second one is f = 15, Nyon = 10, which is softer and
easier deformable as will be seen below. The first star exhibits in the bulk the gyration
radius Ry’ = 1.74 and the second one Rg' = 2.3. The distance between the walls is fixed
to D =17.5 and we compare two grafting densities, pg = 6.6p; and pg = 3.3p;.

It is known that two compressed brushes try to prevent penetration into each other.
Similarly to the brushes, it is not favourable for the stars to penetrate into the brush and
therefore they are strongly deformed in Z-direction. The dependence of the gyration
radius of the stars on the distance between the center of mass of each stars normalized by
their unperturbed size, rcm/RZt, can be seen in Fig. 3.2.

Let us first analyse the configuration of the stars when they are far apart from each other
(rem > 4R§t). The higher is the grafting density of the brushes the more aspherical
becomes the star. Compared to the unperturbed star size, X- and Y-directions are
influenced by the presence of brushes, but remain almost equal (RS, ~ Ry',). The stars
are squeezed in Z-direction. One can see that the softer is the star, the more compressed
it is in Z-direction.

Let us turn now to the situation when the stars are close to each other (r¢py, < 3R§t). Due
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Figure 3.2: Normalized volume fraction of brush beads between the stars (upper panel),
the gyration radius of stars (left bottom and the right panels) in X- (black lines), Y-
(green lines) and Z-directions (red lines) as a function of reduced distance between centers
of mass for different star configurations. The volume fraction of the brush beads increases
continuously up to the distance of five times the gyration radius, 7y, & 5R§t. The gyration
radius of the stars is influenced up to rey = 4th. Left bottom graph corresponds to the
star configuration Nyo, = 10, f = 15 with the gyration radius th = 2.3 (size of the
unperturbed star), the right panel to the star configuration Nyon, = 5, f = 30 with the
gyration radius Rg' = 1.74 (blue dashed-dotted line).

to the interaction with the other star the most significant deformation is in the
X-direction, along which the pinning distance is varied. Due to the deformation in this
direction, the stars are swollen in Y- and Z-directions. The size of stars differs in X- and
in Y-directions up to rep & 4R§t, when the brush starts penetrating between the stars.
In order to characterize it quantitatively we measure the volume fraction of the beads
between two stars, gbb(rcm), which is normalized by its value when the stars are infinitely

far apart, for instance, in the half of the simulation box, ¢"(L,/2).

PP (Tem)

(LoD (3:3)

9b (Tcm) =

The left upper panel of Fig 3.2 shows gy, (7em). One can see that this number is growing

upon increase of the distance between the stars. Comparing two configurations of the
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stars one can see that the softer the star, the more deformable it is and, therefore, the
number of brush beads between the stars is larger. The denser the brushes are, the
earlier they penetrate between the stars. gp(rem) reaches unity at the distance

Tem = 5R§t. This corresponds to the distances at which the brush between the stars do

not feel the presence of the stars.

— Nmonzlo, f=15, pg: 3.3pg

2 oL < N,,=5, =30, p= 3.3p,
2 < N,,,=10, =15, p = 6.6p,
=0 v N,,=5. =30, p = 3.3p,
40—

cm g

Figure 3.3: Brushes-induced potential between the two stars Up_g of different configura-
tions for different grafting densities of the brushes and the number of interactions between
the stars and the brushes normalized by the number of interactions when the stars do not
interact with each other (at the distance between the stars equal to the half of the simu-
lation box, L,/2) as a function of distance between the inclusions. The potential reaches
zero approximately when the number of interactions between the brushes and stars reaches
a constant.

Now let us characterize how the brushes modify the interaction between the inclusions.
One can see in Fig. 3.3 that it leads to attractive potential. Such behavior have been
observed in polymer melts, when the attractive depletion interaction between colloids was
observed [104]. Similarly to the case of polymer melts, an increase of the polymer density

leads to a stronger attraction. But due to the irreversible anchoring to the walls and
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strong ability to deform of the inclusions, the effect is much stronger(up to 40kgT) for
the case of two opposing brushes with the stars. One can see, that the softer the star, the
less influence has the brush on the effective interaction between them, eventhough softer
stars are larger than the stars with higher functionality. The effective potential reaches
zero at the distances between the centers of mass of about four times the radius of
gyration of the unperturbed star, d ~ 4R§t, which is in the strong correlation with the
deformation of the stars.

The effective potential can be characterized also in terms of the number of binary
interactions between the brushes and the stars, N,_g; (see Fig. 3.3, lower plot). When
the macroobjects are close to each other, Nj,_g is smaller than when they are far apart.
Similarly to the number of beads occurring between the stars, gy(rem), the number of
interactions grows upon increase of the distance between the stars. Ny_g reaches a
constant at distances rey, ~ 4R§t. At this distance the stars stop interacting with each
other and each macroobject behaves like a separate, independent one.

In case of so-called "fluid” brushes (allowing the grafted ends to freely move on the
surface in X- and Y-directions), we expect a smaller influence of the brushes.

Next we replace the stars by two hard spheres. The diameter of the spheres, R, = 30, is
three times larger than the size of monomers in the brushes. In the case of the polymer
melt one can observe entropy-induced short-range depletion forces[104]. The depletion
zone is defined around the spheres at 2R, < d < 3R.. These forces can be described and
understood in terms of the Asakura-Oosawa approach [103], which predicts depletion
interactions between them. The effect of the end-grafting of the chains does not increase
strongly the depletion potential compared to the polymer melts Upper plot of Fig. 3.4
shows the effective potential acting between two hard sphers as a function of the pinning
distance between them, Up_co(d), for different grafting densities.

The higher the grafting density the more significant the influence of the anchored polymer
chains. For the highest gratting density, pg = 6.6p, a small periodicity appears. This
may be due to the penetration of the brush-monomers between the pinned hard spheres.
Increase of the distance between the walls fixing the grafting density of the brushes leads
to a decrease of the density of the brushes in the system and, therefore, to a decrease of
the influence on the interactions between the macroobjects. Our investigations reveal
that the bigger the colloids, which are placed in the interface, the bigger the forces acting
on them (not shown here).

Similarly to the case of stars, an increase of the grafting density leads to an increase of
the number of binary interactions between the brushes and inclusions (Fig. 3.4, lower
plot). For the highest grafting density one can see that the number of interactions shows
an overshooting effect of & 3% and becomes even larger than for the case, when the two
inclusions are far apart from each other. This happens at the distances when the

potential shows a minimum in its periodic behavior. Since the brushes build a highly
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Figure 3.4: Brushes-induced potential between two colloids (hard spheres with radius
R. = 30) as a function of distance between the pinning points, d. The more brush beads
are in the system, the more pronounced is the effective depletion interaction between the
inclusions. The number of interactions between the brushes and hard spheres demonstrates
an overshooting effect for the highest grafting density, when the periodicity appeares in
the brush-induced potential.

fluctuating interface, this periodicity may be interpreted also as a fluctuation induced
forces, which have been discovered in the systems that consist of bilayer membranes with
proteins [101].

Comparing the stars and the hard spheres one can conclude, that the shape, softness, the
size and the components of the inclusions play a very significant role. The effective
interactions between the stars are strong at small distances, when the objects are close to
the direct contact with each other, therefore observed brush-induced potential of the soft
inclusions has elastic nature. The periodicity of the potential that is observed for the
hard spheres has not been measured for the soft objects. These forces are rather small
with the small signal-to-noise ration due to high fluctuations of both, the brushes and the

stars, and need a significant increase of statistics.



46

CHAPTER 3. STATIC EQUILIBRIUM



Chapter 4

Steady-state shear

4.1 Introduction

In this section we will present our investigations of two opposing, highly compressed
polymer brushes with soft colloids. Our aim is to investigate the influence of the polymer
stars on the response to shear, to study the structure of the bilayer and its relaxation
time, and, moreover, to understand a possible mechanism of the low friction phenomena
between two opposing brushes reported in experiments|[15]. We start our description from
the theoretical approach, which gives predictions for the behavior of the lateral
extensions of the brushes, as well as shear forces and viscosity. Afterwards, we present
computer simulation results which are in a good agreement with the newly developed
theory. In our theoretical approach we first analyse the behavior of the system in linear
response (W<1), when shear forces are proportional to the Weissenberg number and the
structure of the system is not influenced significantly by shear. Then, we study the
behavior of the system for large Weissenberg numbers (W > 1) when the chains of the
brush are strongly stretched. The starting point of our theory is that the two opposing
brushes are highly compressed (2h/D > 2), such that the density profile in gradient
direction exhibits an almost uniform behavior (except the layering effect at the walls).
Moreover, we assume that the high compression leads to a flat density profile for all
considered shear rates, such that the sum of the monomer density profiles of the brushes,
p1(z) + p2(2),(p1(2) and pa(z) are density profiles of the top and bottom brushes,
respectively) is uniform. In the following, we therefore assume a uniform monomer
concentration, ¢ < Npg/D, in the overlap region. We will use this feature below for the
linear response regime. Moreover, let us assume that the brushes can be approximated by
the MWC approach[55], such that each polymer brush provides parabolic molecular field
[see Eq. (1.26)]. Let us allow the chain ends to interpenetrate into the opposing brush
due to thermal fluctuations, such that the interpenetration depth, i.e. the overlap

thickness of the bilayer, can be derived as in Eq. (1.32). The interpenetration depth, 4,
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depends on the degree of the polymerization, N, monomer size, a, the distance between

the substrates, D, and the grafting density p,.

4.2 Theoretical approach

4.2.1 Zimm dynamics

Let us first consider semidilute brushes. In this case, a brush may be considered as a
dense melt of concentration blobs[45]. Each grafted chain in this case consist of the

n. = N/gc blobs, where g. is the number of monomers in each blob, the size of each blob
is & depends explicitly on the concentration of the system, ¢ (see Eq. (1.8)). Therefore,
Eq. (1.32) still holds with the replacements

N — N/g., a—&. (4.1)

With the uniform concentration ¢ o< Npg /D, Eq. (1.32) yields for the interpenetration
depth

B 1] 1/36r=1)
0xa [NQ”(pgaQ)Q(1 2v) (5) ] (4.2)

for strongly compressed, semidilute brushes. Under melt conditions, the gyration radius
in shear direction (lateral extension) of a chain is given by Rg(0) o< N¥/2a. With the
same transition to the blob picture [see Eq. (4.1)] we get

1/2 2v—171/2Bv=1)
o o (V) gcoca[N(A) ] 43)

9c pga3

for semidilute brushes in linear response.

In the next step, we estimate the friction force per unit area (f;/A) for Weissenberg
numbers W < 1 by assuming Zimm dynamics in the blob|45]. Since the size of the blobs
is the same in the whole bilayer, the knowledge of the interpenetration depth [see Eq. 4.2]
allows to calculate the number of blobs in the overlap region. Since there are ¢d/g. blobs
(per unit area) in the overlap region, each having a friction coefficient ns&. (15 the solvent
viscosity), and a typical velocity is the shear rate multiplied by the distance between the

walls, ¥D, we may write

L0) o ;—fnsécw W< 1), (1.4)

With Eqs. (1.8) and (4.2) this leads to

fol3) o | N¥(pga?) 47 (5

D

s(r—1)]1/3(Bv=1)
“) } niA (45)
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in the linear response regime. This result is different from the original calculation by
Klein[16|, who obtains

B\ 2/3(3v—1)
) nyA (W < 1), (4.6)

fo(8) o< hpy!? (5

This expression can be transformed into

an2]1/30 -1
)} neiA, (4.7)

AN R
when the relation h oc aN(pga?)(1=)/2[81] is used. A comparison with Eq. (4.5) reveals
an almost identical exponent for N, but different scaling-laws for p; and D. We attribute

these deviations to the fact that Klein starts out from

B /3
s (5) 43

which rather describes the interpenetration for weakly compressed, molten brushes, and
to a different estimate of the number of blobs in the interpenetration zone. However,
since we base the following scaling argument on the N-dependence of the shear force,

Klein’s approach would lead to minor differences.

We anticipate that thermal fluctuations allow the chains of a brush to exchange between
the overlap region and deeper layers[106]. Hence, the shear stress should be sustained by
more chains than only those that are in the overlap region at a given time. However, our
description is based on the lateral chain extension averaged over the whole layer. This is

formally equivalent to the assumption that all chains sustain the stress equally.

The critical shear rate follows from the definition of the Weissenberg number Eq. (1.58)
with W = 1. Using pg = N, /A with Eqgs. [4.3] and (4.5), we find

14v—11 1/6(3v—1)
k‘BT a > :| 7 (4.9)

< x N1 2\200—13 <_
fy X nsag (pga ) D

or, with v ~ 0.588, 4* N_2'44pg_0'27D0'6. For the shear force at W = 1, [see Eq. (1.58)],

we obtain
NgkpT

Rg(0)

fe(77) = : (4.10)

From the Eqs. (4.3) and (4.10) one finds

N 1/2(3v—1)
N~ <p%> ] : (4.11)

We now address the regime beyond linear response. At large shear rates, the chains

NgkpT
“ _
a

fa(77)
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strongly stretch in the shear direction, such that Re »(¥) oc N. Now let us define the
ratios for the chain extension, shear forces, and viscosities between the non-Newtonian

response regime and static equilibrium. For the chain extension

RE o ()
Go = BT (4.12)
Rg o(0)
with a = z (shear direction), or a = z (gradient direction) for shear forces
w= 0 (4.13)
fu (%)
and for the viscosity
s = , 4.14
122(0) @14
with 7,.(0) the zero shear viscosity.
Since f;/A = 04,7, one may write for the shear viscosity
x fm(v*) W = u o sW. (4.15)
fa ()
With Eq. (4.3) we obtain
e 0x NC=/A=30) (7 5 ), (4.16)
On the other hand, Eq. (4.9) yields
W ,7*—1 o N19V/6(3I/—1)’ (417)
such that
gz o< WOOV=2/19% (7 5 1), (4.18)

For strongly stretched chains, we expect the shear force to be proportional to the total

number of monomers (o< NgV) and the typical velocity, i.e.
f2(§) x NeNYD < N (W > 1). (4.19)
Hence, upon inserting Eqgs. (4.11) and (4.19) into Eq. (4.13), one finds
u ox N@-)/20-3v) (4.20)

for the regime beyond linear response. In combination with Eq. (4.17), this yields for

shear forces

woc W=D > 1), (4.21)
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and with Eq. (4.15) for the viscosity

s oc W23/ (4.22)

4.2.2 Rouse dynamics

So far we have described strongly compressed, semidilute brushes in the Zimm model
(including hydrodynamic interactions). Let us assume that hydrodynamic interactions
are fully screened and that the monomers obey Rouse dynamics instead of Zimm
dynamics. This would correspond to the case of "dry” brushes.

In the following, we distinguish two cases, a molten brush, where in addition to
hydrodynamic interactions also the excluded volume interactions are screened, and a
semidilute brush consisting of excluded volume blobs as in Sec. 4.2.1.

For brushes without hydrodynamic interactions, the friction force is proportional to the
number of monomers in the overlap region, the friction coefficient, v, and the typical

shear velocity in the system, yD,
fo(3) o< B4 DA (W < 1). (4.23)
Let us first consider molten brushes. In this regime, Eqgs. (1.32) and (4.23) yield
fo(3) x N°/3 (W < 1). (4.24)

Since Ry .(0) o N'/2 under melt conditions, we find with Ry . (%) oc N and Eq. (1.58)

o e NTBE () 4.25
’7 (8 ¢a,2 a ( )

In the non-linear regime, this yields
ge < N oc WO/B3 (W > 1) (4.26)

With fmelt(%) oc N at large shear rates and fi(5*) < 1/Rg(0) | Eq. (1.58)], we find
wo N32 oc WO (W > 1) (4.27)

and for the viscosity
s oc W13, (4.28)

This result can be compared to the earlier predictions of the viscosity of the molten
brushes|107]. In that study the brushes were under weak compression. This leads to the
prediction for the shear viscosity s oc W1/2.

Now let us turn to the semidilute brushes with Rouse dynamics. Although this case
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appears awkward from an experimental point of view, it can be compared to numerical
approaches where hydrodynamic interactions are not taken into account, e.g. due to
specific thermostat implementations (e.g. Langevin theromostat).

When the chains are swollen, the interpenetration length is given by Eq. (4.2). With

Eq. (4.23), the shear force for dry, semidilute brushes in linear response scales as
fo(3) oc NOW=3)/36Gv=1) ()7 < 1), (4.29)

The critical shear rate follows from Eqs. (1.58) and (4.3), such that

kT ) g\ sy—5]1/6Gr=1)
A o = N6 25V(pga2)7(21/ 1) (5) ] ) (4.30)
Beyond linear response this yields, together with Eq. (4.16),
p o WOOV=2)/(Bv=6) (17 > 1) (4.31)

for the lateral chain extension, and the scaling of w with W follows from Egs. (4.20) and
(4.30), such that
w oc W3=2)/(2v=6) (7 > 1), (4.32)

for the shear forces.

4.3 Computer simulations

In this section, we present data of computer simulations for two compressed, opposing
polymer brushes under lateral steady-state motion of the adsorbing substrates. We
compare systems with stars and without stars, i.e. Solvent C, D and Solvent B, which
were defined in Chapter 2. We compare the simulation results with the theoretical

predictions made above.

4.3.1 Density profiles and overlap region

Let us first analyse the structure of the system. An investigation of monomer and solvent
density profiles (Fig. 4.1) reveals that solvent molecules accumulate at the substrates
(seen also for a similar model|38]) and in the interface of the two brushes, even in static
equilibrium inspite of the presence of stars. The brushes interpenetrate into each other.
Solvent molecules are distributed in the system, even at the surfaces. The stars are
located in the middle of the system between the brushes. Brushes under shear become
more dense and squeeze solvent molecules into the interfacial region between the brushes
(see Fig. 4.1 lower left plot). The stars become more compressed and are pushed out of

the brush more significantly, such that the interpenetration between brushes and stars
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Figure 4.1: Monomer and solvent density profiles at distance D = 17.5 between grafting
planes for chains of length N' = 30. The grafting density is pg ~ 4.4p, for all systems. Static
equilibrium (firm lines) is compared to the steady shear conditions at our largest shear
velocity, v = 0.23 (dotted lines). The dashed lines represent the Solvent B system. Black
lines correspond to the brushes; green lines to stars of configuration f = 30, Nypon = 5;
red lines to the solvent molecules. The panel above shows a plot of the overlap between
the brushes (left) and between the top brush and stars (right), which can be quantified by
the area under p1(z)p2(z) and p;(2)p3(z) correspondingly (see text). Both overlaps brush-
brush and brush-star reveal Gaussian distributions. The lower panel shows density profiles
of the brushes, solvent molecules, and stars. The left plot below shows a comparison
between the sheared and unsheared systems of Solvent C, the right plot compares the
Solvent B and Solvent C systems. The blue dashed line shows a sum of all components in
the system.

reduces. The sum of the all components does not reveal significant differences, such that
shear does not induce density fluctuations; the system keeps its low compressibility.
While replacing the solvent molecules by stars the total density of the system remains the
same. The systems without stars exhibit a larger brush thickness (see Fig. 4.1 lower right
plot); the brushes in the presence of the stars are strongly deformed. The sum of all
components reveal a flat density profile.

The interpenetration between the brushes can be quantified by an overlap integral|31, 37],

() [ depi(2)oy(c). (4:33)

where p;(2) and p;(z) are the density profiles of the component with ¢ =1 and j =2
corresponding to the top and bottom brushes, : = 1 and j = 3 to the profiles of the top



o4 CHAPTER 4. STEADY-STATE SHEAR

brush and stars.

The upper plot of Fig. 4.1 shows the overlap between different components of the system
characterized as defined in Eq. (4.33). It reveals, that the interpenetration between
brushes with stars (Solvent C) is reduced compared to the star free case(Solvent B).
Furthermore, we observe that, under sufficiently strong shear, the layer thickness
decreases and this leads to a reduced interpenetration depth. The right upper plot shows
the interpenetration between the stars and brushes. Similarly to the case of two brushes

it has a Gaussian form.

0.04 T T T T T

0.03

Q 0.02

0.01

Figure 4.2: Distribution of brush ends and center monomer of stars atD = 17.5 between
grafting planes for chain length N = 30. The grafting density is pg ~ 4.4p,. Black lines
correspond to brushes, green lines to stars, dotted lines to steady shear motion, full lines to
static equilibrium. The system without stars in static equilibrium is presented by dashed
lines.

Figure 4.2 proves that brushes interpenetrate deeply into each other. The end-monomer
distribution shows that chain ends of one brush interpenetrate deeply into the opposing
brush. This effect decreases under shear. The interpenetration of the brushes still
remains but is significantly decreased, the chains become more stretched, which can be
concluded from the decrease of the maximum of the distributions. The stars hinder the
interpenetration between the brushes. The distribution of center monomers becomes
more narrow, stars are expelled out of the brushes similarly to the solvent molecules and
concentrate in the interface of the bilayer.

The brushes and the stars deform each other significantly. The deformation of the stars

was described in Chapter 3. Let us turn now to the deformation of the brushes. It can be
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characterized by the analysis of the brush height around the center monomer of the stars,
H(r —ry,), with 7y, is the position of the center monomer of the star. This is presented in
Fig. 4.3. The brush height is lower around the center monomer. It continuously grows up
to the level when the brush is not influenced by the presence of the stars. The
deformation of the brushes decreases upon increasing softness of the stars. Under strong
shear condition the brush around the star gets much weaker. The brush height becomes
almost constant, the deformation is smoothed away, this leads on turn also to a strong

deformation of the stars under shear, as we will see below.

0.95

o
©

H(r-rm)/H(SRg’XS)

0.8

0.75

Figure 4.3: The brush height around the center monomer of a star. The brush height is
normalized by its value, when the brush is not influenced by the presence of the stars (at
r— T, = 3R§t,x) for two different star configurations. The full symbols correspond to the
steady shear, the empty symbols to static equilibrium. Black curves correspond to the star
configuration f = 30, Npon = 5, red lines to f = 15, Nyon = 10. The brushes are strongly
deformed by the stars. Under shear the deformation is smoothed. The distance between
the walls is D = 12, the grafting density is pg ~ 2.2p, the chain length is N = 30.

Let us turn back to the interpenetration region between the brushes and forces acting in
this region. The components are the brushes, stars and solvent molecules. Corresponding
in the following to the indices "b”, "s0”, "st”. The forces acting between the different
components, e.g. between brushes and solvent molecules, will be signatured by the index
"b-s0”. A previous study|31] revealed that I, (¥) is proportional to the number of binary
interactions between monomers of different brushes, Nil;t_b, whereas the latter is

proportional to the forces acting between the brushes in shear direction, FP~P, i.e.

Iow(3) ox NP o Fb=0 (4.34)

int
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Figure 4.4: Overlap integral I,, vs. number of binary interactions Ni];t_b- The full line

represents the previously observed linear dependence for the star-free case|31]|. All systems
correspond to the solvent C.

In Fig. 4.4 the dependence of the overlap integral on the number of interactions between
the brushes can be seen for the systems with stars. Stars decrease significantly the
interpenetration between the brushes, but do not modify the proportionality given in

Eq. (4.34).

Various numerical investigations|[31 34, 36, 37| demonstrated shear thinning behavior. It
was shown that this coincides with a reduced overlap between the grafted layers and that

macroscopic transport properties, e.g. the shear viscosity, are correlated to Lo, (7).

While the overlap integral, in principle, may be measurable experimentally, we can
straightforwardly count the number of binary inter-brush interactions or measure the

forces acting between the brushes and other components of the system.

Figure 4.5 shows F°~P as a function of shear rate for different star configurations and
distances between the walls, D. The presence of stars decreases the force acting between
the brushes, since the interpenetration decreases due to the fact that the stars are located
in the middle of the system. Let us compare first the forces acting between the brushes
for different star configurations. One can see (pronounced at the highest shear rate) that
the softer the stars the quicker decreases the force between the brushes upon increase of
the shear rate. Moreover, upon increase of the distances between the walls the force
starts decreasing at higher shear rates. The same conclusion can be drawn when one

compares the systems with and without stars, namely that the forces between the



4.3. COMPUTER SIMULATIONS o7

T T 1 T T
D=12,f =50, N, =3
D=12,f=30,N, =5
D=12,f =15, N, =10
D=12,f=10,N, =15
mon
D=175,f=30,N_ =5

D=17.5, Solvent B

1000

x4 POoueO

100

T |||||||
» D
D

= b-b

>o me

10 v X

T |||||||
X
1 IIIIIII

Figure 4.5: Forces acting between the brushes as a function of shear rate on a double-
logarithmic scale. For the different considered systems, the force F'° varies over almost
two orders of magnitude in static equilibrium. The presented systems, with the grafting
density pg = 2.2p,, demonstrate different behaviors upon increase of the distance between
the walls. The softer the star the quicker decreases the force acting between the brushes.

brushes in the case of the Solvent B start decreasing at lower shear rates than in the case
of the Sovent C, when the half of the dimers is replaced by the stars.

In Fig. 4.6 the dependence of the forces acting between the brushes and stars on the
shear rate is presented. It reveals that the increase of the distance between the substrates
results in less interpenetration between the brushes and stars - the same effect, which is
observed in the star-free case between the brushes. When the density of stars is kept
constant, the systems with different star configurations demonstrate different responses
to shear. The softer the star, the more interactions between stars and brushes occur. The
interpenetration between them starts decreasing for smaller shear rates upon increasing

the "softness” of stars.

The same law as in Eq. 4.34 can be observed for the interpenetration between the
brushes and polymer stars. It demonstrates, for the overlap between the stars and the
brushes, I;,_st, the number of binary interactions between them, Nizt_St, and the forces in
shear and in gradient direction between them F’=! with o = x or a = z, respectively,

the following law:

It (4) o< NPt o FL (4.35)

int
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Figure 4.6: Semi-log plot of the forces, acting between the brushes and stars in shear
direction (FP~') as a function of shear rate. With increasing distance, D, between the
substrates the forces between brushes and stars decrease. Varying the “softness” of the
stars via their functionality, f, and length of arms, Npyon, results in a different behavior.
The shorter the length of the arms the less interaction occurs. The grafting density is
pg = 2.2pg, the chain length, N=30

In Fig. 4.7 the last part of the relation (4.35) is demonstrated. The forces acting the stars
and brushes are larger in the shear direction between, than in the gradient direction. One
possible explanation may be that the brush interpenetrates through the layer of stars into
the opposing brush, such that increasing the shear rate the brush has to leave first the
opposing brush, which results also in a strong interaction with the stars in shear
direction; upon further increase of the shear rate the brush starts leaving the layer of
stars resulting in further decrease of the force. As can be seen, the forces in gradient

direction decrease similarly to the forces in shear direction with increasing shear rate.

4.3.2 Kinetic friction coefficient

A different behavior of systems with and without stars can be observed for the kinetic

friction coefficient, u. We define p as the ratio between shear and normal forces,

o f2(9)
n(y) = TG (4.36)
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Figure 4.7: Forces in gradient and in shear direction Fab_St with a = z corresponding to
shear direction (full symbols) and o = z gradient direction (empty symbols) as a function
of number of interactions between brushes and stars Nililt_St, demonstrating the relation
(4.35). The systems are the same as in Fig. 4.6.

which we apply to the center-of-mass of the confining substrates to maintain constant v
and D. We verified that our results are independent of whether we characterize the
macroscopic response by measuring forces at the substrate or by calculating elements of
the stress tensor, using the Irving-Kirkwood method|86| [see Eq. (2.25)].

All systems keep their low compressibility even under strong shear. Therefore, f, remains
almost independent of 4 , and only at our largest velocities we find (for some cases) a

small increase of f, by approximately 4%.

Upon increase of the shear rate and decrease of the distance between the walls while

fixing the other parameters leads to an increase of the friction coefficient p.

The dependence of p on the shear rate 4, where we vary the grafting density p, between
pg = 1.1p; (when the brushes are in a slightly stretched regime) and pg = 4.4pg (for
highly stretched brushes), is presented in Fig. 4.8. It demonstrates that the increase of
the grafting density at fixed D (such that the density of solvent decreases) results in
higher friction. If one increases the length of chains, IV, but keeps the density of the
brush or the grafting density constant, leads in both cases to higher friction, too. This

result is confirmed experimentally[108].

The solvent plays a crucial role in polymer-brush lubrication processes|32|. Effects of
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Figure 4.8: Kinetic friction p as a function of the shear rate 4. Increase of the grafting
density pgs and of the chain length IV leads to the increase of the friction coefficient. The
distance between the walls is D = 14.75, Solvent C, the configuration of stars is f = 30
and Nyon = 5.

solvent are also in details analysed in Ref. [109]. The presence of explicit solvent leads to
smaller values of . For solvent-free systems, p decreases for larger grafting densities due
to larger normal forces. Replacing a part of the solvent by stars leads effectively to an
increase of the size of the solvent molecules.

Figure 4.9 shows the kinetic friction coefficient p for systems of Solvent C and Solvent D.
Increase of both size of stars and density of stars results in higher friction. This
demonstrates that the bigger the solvent molecules or inclusions are and the more
inclusions are in the system the higher the friction. The effect of mobile polymers on
normal and shear forces between polymer brushes was investigated also
experimentally|91] and in previous simulations|36]| confirming these tendencies.

The whole picture is shown in Fig. 4.10, where the kinetic friction coefficient is presented
for the solvent-free case (Solvent A), with dimers (Solvent B), and star molecules
(Solvent C and Solvent D).

In Ref. [109] it was demonstrated, that an increase of the grafting density for the
solvent-free cases leads to a decrease of friction. Experiments[108] confirm this effect.
Fgure. 4.10 shows that replacing the solvent molecules by stars leads to a higher friction,
which means, in other words, that all inclusions presented in experimental systems or in
nature, i.e. disadsorbed chains, or any foreign chains, which can form either "soft” coils or
"hard” globules depending on the chemical incompatibility with the brush, or proteins, or

even dust or colloids, lead to higher friction.
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Figure 4.9: Comparison of the kinetic friction coefficient p for different densities of stars
of the systems Solvent C and Solvent D and different star configurations from small and
colloid-like stars (f = 50, Npon = 3) up to larger and softer ones (f = 15, Npon = 30).
The distance between the walls is D—14.75, the grafting density is pg = 2.2pg, the chain
length is N = 30.

4.3.3 Structure of brushes

Now let us characterize the size of the brush in shear and gradient directions. The chain
extension may be characterized by the radius of gyration |[Eq. (1.2)] for different shear
rates 4. The gyration radius, R, as a function of shear rate, 4, can be seen in Fig. (4.11).
It reveals that systems of different composition, when we vary the grafting density, pg,
the chain length, N, the distance between the walls, D, functionality, f, and length of
arms in stars, Nyon, also when we take the different solvent types from Solvent A to
Solvent D, demonstrate different behaviors, similar to the behavior of forces between the
brushes shown in Fig. 4.5. Some systems do not change their structure significantly
under steady shear, other systems are in a crossover from the linear response regime to
the non-Newtonian behavior, other systems exhibiting only non-Newtonian response.
Often in computer simulations[60| one plots the gyration radius as a function of
Weissenberg number, where the latter is defined via the relaxation time of a single chain
in bulk of length N [see Eq. 1.56]. We will show below that another definition of the
Weissenberg number is necessary.

Linear response should apply for small values of W, while non-linear effects are
important for large values. However, the precise scale for W is somewhat arbitrary,
because the bilayer has a broad spectrum of relaxation times and it is not clear which of

them is best suited. Therefore, it is convenient to use an operational definition that sets
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Figure 4.10: Comparison of kinetic friction coefficient p as a function of shear rate, , for
four different investigated systems: Solvent A, Solvent B, Solvent C and Solvent D. The
distance between the walls is D = 12, the grafting density is pg = 2.2p, the chain length
is N = 30. Systems with explicit solvent molecules demonstrate the smallest friction.
Increase of the size of solvent molecules leads to an increase of friction.

the scale for W. Here, we determine 4* operationally by plotting the raw data for g, [see
Eq. 4.12] against 4 and shifting the data such that a master curve results. The fact that
this procedure yields an (almost) perfect data collapse (Fig. 4.12) is a non-trivial result
because the raw data strongly differ from each other. With this procedure we measure
the critical shear rate, ¥*, which is inversely proportional to the relaxation time, 7, of the
bilayer.
Figure 4.12 shows that ¢, decreases only weakly for W > 1. The chain extension in the
gradient direction saturates at different values of W, depending on the chosen parameters
(pg; D, N, f, Nmon), due to the finite compressibility of the grafted layers. Moreover,
Fig. 4.12 reveals that in gradient direction the relaxation time is different as compared to
the shear direction.
In agreement with the early simulation studies|19], we find a pronounced stretching of the
chains along the shear direction beyond the linear response regime. The data do not
reach the limit of fully extended chains, where ¢, should become constant. Rather we
obtain a universal power-law,

qe X WO, (4.37)

for Weissenberg numbers W > 1. The exponent ¢ ~ 0.5 (indicated by straight lines) is in
perfect agreement with the predictions (4.18) derived analytically in Sec. 4.2.1 for

semidilute brushes with Zimm dynamics. For v = 0.588 the predicted exponent is equal
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Figure 4.11: Log-log plot of the gyration radius squared Ré of brushes in shear direction.
Selected simulated systems, which have different distances between the substrates D, chain
lengths NN, grafting densities pg, star configurations, with solvent demonstrate different
behavior.

to 6(5v — 2)/19v ~ 0.5.

Analyzis of the static equilibrium properties shows that the lateral chain extension
decreases upon increasing grafting density[109]. The opposite behavior is observed for the
direction perpendicular to the surfaces. As expected, the brush thickness decreases under

compression.

Larger values of 4* are obtained for solvent-free systems compared to systems with
explicit solvent, which indicates that the latter leave linear response earlier due to the
additional monomer-solvent friction. A similar observation can be made for the surface
separation. With decreasing compression, i.e. larger values of D, we systematically find
larger critical shear rates. The presence of stars influences the relaxation times. Increase
of the softness of stars leads to an increase of the gyration radius in both gradient and
shear directions, and the brushes become effectively more compressed. The critical shear
rate is slightly increased due to the presence of the stars comparing systems with and
without stars at fixed grafting density and D. The dependence of the relaxation time on
the star configuration, i.e. its functionality and the length of the arms, 7(f, Nyon), is
rather complex. The critical sear rate 4* is still dominated by the brushes since the

relaxation time of the arms in the stars (and of the star as whole) is smaller than of the
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Figure 4.12: Double-logarithmic scaling plot for the chain extension in shear (x) and
gradient (z) directions as a function of the Weissenberg number for D = 12, D = 14.75,
and D = 17.5 (from above). The legend is shown for D = 17.5. Similarly, different star
configurations, chain lengths, N, types of Solvent are presented for D = 12 and D = 17.5.
Systems without solvent molecules are not deformated for W < 1 (not presented here, see
Ref. [109]). Upon increasing W, the grafted layers shrink slightly and remain at constant
height for larger shear rates. The chains stretch in shear direction, following a universal
power-law (indicated by straight lines). Independently of the type of solvent (A, B, C or
D) data for different values of D can be brought onto the same master curve (not shown).

brush due to the fact, that the length of arms in the stars is smaller than the length of
the chains in the brush (Npyen < N).

The force that drives the system out of the linear-response regime increases with
compression. This observation agrees with previous simulations|30] and experiments|[18].
Increasing the chain length at fixed D and grafting density leads to a larger frictional
force per chain. Moreover, larger chains need more time to relax. Systems with N = 60
thus leave the regime of linear response earlier than those with N = 30.

Interestingly, the structural response in shear direction is universal, independent of
whether the solvent is explicitly included or not (when the density of the systems is not
the same), and whether stars are included or not. The first conclusion is correlated with
the fact that the DPD thermostat accounts for hydrodynamic correlations, at least at
sufficiently large polymer concentrations. The second fact demonstrates universal
behavior independently of the size of the solvent molecules or inclusions, provided they
are small compared to the grafted chains, eventhough the interpenetration between the
brushes is strongly influenced.

Finally, we point out that the same results are obtained when we define g, via the mean
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square end-to-end distance instead of using Réa. Both quantities follow the same

universal behavior.

4.3.4 Structure of stars

In this section we will analyse the behavior of stars in shear direction. For the case of
sheared stars in the bulk [60] it is possible to produce scaling plots of the gyration radius
in shear direction as a function of the Weissenberg number which is defined by the
relaxation time of a single arm. However, due to the fact that the arms are connected to
the center monomer of the star the relaxation times of each arm is influenced by the
presence of the neighbor chains. The relaxation time of each star will strongly depend on
the functionality of the star, f. In the following, we will demonstrate that the response of
the stars on the shear not only strongly depends on the molecular parameters (f and

Nmon), but also on the external environment, i.e. on the structure of the brushes.

T T T T
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| | @@ SolventC,f=50,N =3
m

m

4 Solvent D, f =15, N m=30
%—x SolventD, f =21, N ur‘:21
A—A SolventD,f=30,N__ =15

g.x

Figure 4.13: Gyration radius of stars Ry vs. shear rate 4 for different star configurations
(from small and colloid-like with f = 50 and Np,on = 3 increasing the size and softness
of the stars up to f = 15 and Nyon = 30). The grafting density is p; = 2.2p;, chain
length of brushes, N = 30, and distance between the substrates, D = 17.5. Different stars
demonstrate different type of behavior from constant to power-law. The power-law seems
to depend on the density of stars in the system (compare System C and System D).

In Fig. 4.13 one can see the dependence of the gyration radius on the shear rate. The
strongest response shows the star configuration with the longest arms, Npyon = 30.
Decreasing the length of arms while keeping the density of stars constant leads to a
weaker response, as expected. For large shear rates the system with lower density of stars
(Solvent C) can be more deformed in shear direction in comparison to systems, where the

stars are packed denser (Solvent D).
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Figure 4.14: Gyration radius of stars Ry of configuration f = 30, Nypon = 5 vs. shear rate
4 for different chain lengths (N = 30 and N = 60) and distances between substrates D.
The grafting density is kept constant, pg = 2.2p;. The larger the distance between walls
the less deformed the stars. The increase of the chain length leads to stronger response of
the stars.

Figure 4.14 shows the dependence of the gyration radius of colloid-like stars (f = 30,
Nmon = 5) for different chain lengths, N, and distances between the substrates, D, on 4.
Keeping the grafting density constant while increasing the chain length one observes
stronger deformation of the stars. Stars have less freedom due to the stronger
interpenetration between the brushes. In case of longer chains, the brushes leave the
linear response regime at lower shear rates[109], which in turn influences the behavior of

the stars as well.

Figure 4.15 presents the response of stars on steady shear for rather "soft” stars (f = 15,
Nmon = 10) for different grafting densities of the brush. Since stars under high
compression are already strongly deformed and shear leads to further deformation, a
situation, when the gyration radius does not depend on the shear rate anymore, can be
achieved. For small shear rates an increase of the grafting density leads to an increase of
the stars’ gyration radius in shear direction. Further increase of the shear rate may lead
to the saturation of the stars’ response (as can be seen in the case of the highest
investigated grafting density, pg = 4.4p,, when the gyration radius approaches a plateau

behavior).

The properties of the surfaces can be tuned easily by the polymer brushes. By varying
the grafting density or chain length, the critical shear rate 4* can be modified. Adding
stars of functionality f and length of arms Ny, leads to a modification of the

characteristic relaxation time (Eq. [4.9], which results in a modification of the gyration
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Figure 4.15: Gyration radius of stars of configuration f = 15, Nyon = 10 vs. shear rate
for different grafting densities. The distance between substrates is D=17.5, chain length
N = 30. For small shear rates the higher the grafting density of brushes the more deformed
is the star in shear direction. For large shear rates, due to the incompressibility of stars,
this behavior is modified.

radius of the stars. It turns out, that the relaxation time of stars crucially depends not
only on the functionality and arm length, but also on the total density of stars, ps, and,

moreover on the molecular parameters of the brush, i.e. it depends on pg, N, f, Nmon, pst-

4.3.5 Viscosity and shear forces

To perform scaling plots for the transport properties, it is not sufficient to know the
critical shear rate. For instance, to plot the ratio (4.14), where 7,.(¥) represents the
shear viscosity, we need 7,.(0) for each examined system. In order to compute the
(collective) zero-shear viscosity we have to perform simulations in the linear response
regime at small Weissenberg numbers and this is related to a bad signal-to-noise ratio.
However, in principle we can calculate 7,,(0) from the measured shear forces for W < 1.
In the linear response regime, the Weissenberg number may be expressed via the acquired
energy per chain [see Eq. (1.58)]; the critical shear rate can be found from the
requirement that the acquired energy is comparable to kg7, i.e. when W is of order unity.
The shear force is proportional to 4 in linear response. With the zero-shear viscosity
f2(4)

N22(0) = TR (W <1), (4.38)

one thus may write
L I ,ng‘BT

T N22(0) Ry, (0)” 439
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where we have used py = Ny /A.

Equation (4.39) provides the possibility to compute 7,,(0) for a given critical shear rate
up to a (constant) numerical factor. Unfortunately, when plotting the ratio s [Eq. (4.14)],
we find strong statistical fluctuations. Therefore, we use a different way of presentation
by shifting the data along the ordinate to obtain an estimate for the zero-shear viscosity.
Figure 4.16 shows the viscosity 7., as a function of Weissenberg number W = 4//53*,

where 4* is taken from the scaling plot of gyration radius (Fig. 4.12).
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Figure 4.16: Double-logarithmic scaling plot for the shear viscosity as a function of the
Weissenberg number. Similarly to Fig. 4.12 we show systems with stars of Solvent B, C, and
D of grafting density pg > 2.2p;, the chain length is N = 30 (if not mentioned differently
in legend), star configurations. The first number in the legend corresponds to the distance
between the walls, D, the second number to the length of arms in the stars, Ny, the
third to the functionality of the stars, f, the fourth to the grafting density devided by
the critical grafting density, pg/pg, the last letter corresponds to the type of solvent. The
normalization constant, 7,,(0), follows from shifting the data along the ordinate, such
that s — 1 for W <« 1. The straight line corresponds to the analytically derived relation,
s~ W04 for v = 0.588 [see Eq. (4.22)]. All data can be mapped onto each other.

Systems without explicit solvent molecules (Solvent A), with solvent molecules as dimers
(Solvent B) and with polymer stars (Solvent C and Solvent D) can be mapped onto each
other. This again is a non-trivial result, which indicates a strong correlation between the
deformation of chains and the macroscopic response. Beyond linear response the data

follow a power-law,

soxc WS (W >1). (4.40)

The exponent ¢ = —0.43 (indicated by a straight line) is derived analytically [Eq. (4.22)]
in Section 4.2.1.
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The values for 7,,(0) used in Fig. 4.16 were cross-checked with [Eq. (4.39)] for all
simulated systems|109|. However, the data reveal strong fluctuations, which explains why

it is almost impossible to produce a successful scaling plot for s from the direct

calculation of 7,,(0).

Polymer brushes demonstrate a universal power-law behavior in the non-linear response
regime independently of the grafting density, distance between the substrates and chain
length. In case of solutions of polymer stars the viscosity demonstrates different
power-laws depending on the concentration of stars[110]. In our simulations of a mixture
between polymer brushes and stars we observe deviations from the universal behavior
when the brushes are not dominating the characteristic relaxation time of the system and

and for a larger density of stars.
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Figure 4.17: Shear viscosity as a function of Weissenberg number W, grafting density
pg = 1.1pg, chain length N30, Solvent C, density of stars pst ~ 0.22, when the stars lead
to deviations from the predicted behavior s &~ W43 (plotted as a line).

Figure 4.17 indicates that for systems of grafting density pg; = 1.1p, the presence of stars
(of the density pg ~ 0.22) leads to a smaller exponent of the power-law. Computer
simulations of an equivalent system of a solution of polymer stars without brushes reveal
a power-law with an exponent s &~ W~935[110]. It indicates that inclusions might

strongly influence the rheological properties of such complex systems.

Plotting the shear viscosity always reveals strong fluctuations at small shear rates. A
somewhat clearer picture is obtained from the analysis of the shear force. Here, we

measure f, () at the substrates.

Figure 4.18 shows the ratio (4.13) as a function of W for all considered parameter

combinations. The data collapse is even better than for the viscosity. As expected, u
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Figure 4.18: Double-logarithmic scaling plot for the shear force as a function of the Weis-
senberg number. Data is shown for two chain lengths, different surface coverage at distances
D =12, D = 14.75, and D = 17.5 between grafting planes, also different star configu-
rations and different densities of stars (Solvent C and Solvent D). The same systems are
presented as in Fig. 4.12. The normalization constant, f,(%*), is obtained by shifting the
data along the ordinate such that u =1 for W = 1.

scales linearly with W for W < 1. Beyond linear response we obtain a power-law,
ux Wr (W >1). (4.41)

The dashed-dotted lines represent an exponent of kK =14 ¢ = 0.57, which follows from
Eq. (4.15).

The values for f,(%*) are obtained by shifting the data along the ordinate, such that
u(W =1) = 1. For the same reason as before, we do not get a satisfying scaling plot
when using the relation Eq. (4.10).

We emphasize that we observe deviations between shear forces at the critical shear rates
and Eq. (4.11) due to a dependence of the effective solvent viscosity, 75, and monomer
size, a, on the variation of compression and molecular parameters, because 7s and a
depend on solvent and monomer density, hence implicitly on NN, p,, and D[109].

In conclusion, it is possible to describe systems of Solvent A, B, C and D on the basis of
the same analytical concept. For this purpose we extract a characteristic time scale and
the related length scale, which determine the response of a given system to shear. We
suggest a method to obtain the time scale, where we assume that the mean extension of a

grafted chain in shear direction represents a relevant length scale.



4.3. COMPUTER SIMULATIONS 71

We expect deviations from our approach for weaker compression, when the distance
between the grafting planes exceeds h, such that the assumption of a uniform monomer
concentration is no longer valid. This regime was considered in Ref. [111] for molten
brushes, where a disentanglement instability is predicted for a critical shear rate. This
points in the same direction as the shear thinning we observe. It is to be noted that
extrapolating from the strong to the weak overlap regime reveals a minimum in the
interpenetration depth[109].

The above results are built on the chain deformation averaged over the entire layer. The
critical shear rate we obtained does not correspond to any simple characteristic
frequency. As a matter of fact, the structure of the sheared layer is more complex than
reflected by the averaged deformations. Chain deformation takes place in the interface
and is subsequently transported deeper into the layer by longitudinal chain end diffusion,
which leads to chain end exchange between the interface and the bulk of the layers.
Because the lateral deformation relaxes in the same time, deformed chains are hardly
found far away from the interface. Though chains that reside temporarily rather than
permanently in the interface are less deformed and chains outside the interface are
deformed to some extend as well, chain end exchange does not distribute the chain
deformation evenly across the layer.

The exponents for the non-linear regime predicted by both theories are very close.
Simulation results could hardly discriminate between them.

For much longer chains, each grafted chain laterally wiggles around many others. Our
theory describes a non-entangled central sublayer (comprising the interface) embedded
into a gel-like elastic layer. A slightly different approach is needed when the interface is
wide enough to be entangled itself. Inspite of that, the entanglements between two
opposing brushes are not crucial for our theory. Our approach predicts the power-law
behavior in the non-Newtonian regime. For large Weissenberg numbers, here, chains

must disentangle or break.

4.3.6 Comparison to experiment and other numerical approaches

Experimental limitations prevent the exploration of equivalently large compressions and
shear rates as they can be studied in simulations. However, some experimental data that
reach the non-Newtonian regime have become available. Schorr et al. recently measured
shear forces in bilayers of polystyrene brushes on mica with the Surfaces Forces
Apparatus (SFA)[18]. In toluene (good solvent), the authors observe linear response over
a wide range of compressions and shear rates. However, at large compression

(2h/D = 4.6) they find a sublinear increase of the shear force with sliding velocity.
Interestingly, the experimental data is comparable with Eq. (4.21) |or Eq. (4.41)], as can
be seen from Fig. 4.19. Identifying the critical shear rate and f,(%*) via the crossover

from linear to non-Newtonian behavior, we can compare the SFA data to our results at
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Figure 4.19: SFA data from PS/PVP [25/4]k in toluene at 7" = 32°C (taken from Ref. [18]).
Shear force and velocity have been scaled by the same procedure as our simulation data
|D = 14.75, N = 60, pg ~ 1.1pz(N = 30), solvent-free| using f,(7*) ~ 88uN and ¥* ~
16.8/s. Both experiment and simulation find a linear increase of the shear force for W < 1
and are in agreement with Eq. (4.21) in the non-Newtonian regime. The inset shows
data|18] (in LJ units) from Brownian dynamics simulations, which agree nicely with the
predicted power-law of Eq. (4.21) (dash-dotted line).

similar compression and chain length. For this purpose we use a solvent-free system with
D =14.75, N = 60, and pg ~ 1.1pg(N = 30), corresponding to a compression of

2h/D =~ 4.1|81].

In the same study, Schorr et al. performed Brownian dynamics simulations using a
Brinkman type equation to describe the solvent flow. They observe shear thinning at
their largest compression (2h/D ~ 7.4) over the entire range of investigated shear rates.
As shown in the inset of Fig. 4.19, also this data follows the scaling-law predicted by
Eq. (4.21), despite the different approach to treat solvent effects.

Goujon et al.[35] recently investigated sheared polymer brushes with an off-lattice
bead-spring model by means of MD simulations using a DPD thermostat with larger
intrinsic friction. The length of the grafted polymers (N = 20) was somewhat smaller
than considered here.

More importantly their study differs from ours in the way solvent molecules are
incorporated. While our simulations are performed at constant particle number, Goujon
et al. operate in the grand-canonical ensemble, allowing the number of solvent particles
to fluctuate. This procedure guarantees a constant normal pressure for all shear rates.

However, our numerical data indicates that the normal stress changes very weakly with
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Figure 4.20: Renormalized kinetic friction coefficient (see text) as a function of the Weis-
senberg number. Results of grand-canonical MD simulations|112] are included. One can
see a crossover from the linear behavior (solid line), W < 1, to the non-Newtonian regime
W > 1. We find a reasonable agreement to the exponent suggested by Eq. (4.21) (dash-
dotted line) beyond linear response. The distance between the walls is D = 14.75, Solvent
C, the configuration of stars is f = 30 and Nyen = 5.

shear rate.

On the other hand, a grand-canonical solvent treatment might bear the risk of
suppressing some hydrodynamic correlations. Also this effect seems negligible, as can be
seen from Fig. 4.20, where we compare our data for the friction coefficient to the results
of Goujon|112]. Since f, is virtually constant, the dependence of the friction coefficient
and f, on W must be similar. We find that both numerical approaches reveal the same
universal behavior, which is in good agreement with Eq. (4.21). The data superimposes
when the kinetic friction coefficient is normalized by p* = u(W = 1) to obtain a scaling

plot.

In conclusion, we find the same universal macroscopic response in numerical simulations
despite very different approaches to incorporate solvent-effects, including the implicit
treatment using a DPD thermostat or the self-consistent solution of the Brinkman
equation. Approaches with explicit solvent molecules in different thermodynamic
ensembles provide the same general picture. All these methods seem equivalently valid
for steady-shear simulations of strongly compressed brushes, providing hydrodynamic

correlations on the relevant length scales.

To the best of our knowledge, there is only one study[33] that reported a power-law

behavior of the chain extension beyond linear response. In this investigation a Langevin
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thermostat without explicit solvent molecules is used; an approach widely used in the
past (see, e.g. Refs. |19, 21, 26, 30, 31, 33, 34, 37]). However, the Langevin thermostat
cannot account for hydrodynamic correlations, because it does not apply random and
dissipative forces in a pair-wise form|[113]. In this case, the response to shear should be
described by our scaling theory for semidilute, dry brushes. The previous study reported
an exponent of ¢ ~ 0.6, which is slightly smaller than our predicted value, 0.65.



Chapter 5

Non-stationary shear

5.1 Introduction

The results presented in the previous Chapter dealt with the stationary sliding of two
opposing surfaces. In this section we present the results concerning the transient behavior
of the system during shear inversion, when we start from a steady state configuration and
change the shear direction. In order to better understand these complex systems it is
necessary to investigate the transient dynamics from one configuration to another. For
instance, most of the experiments are performed under oscillatory shear conditions, when
shear inversion is performed several times. The shear and normal forces can be measured
directly. The authors of these measurements report an increase of the normal

forces|15, 91| with increasing frequency of the oscillatory shear or during shear inversion
and an overshooting of the shear forces[92, 108]. This can be applied also for the onset of
motion, when a starting configuration from static equilibrium is taken. These effects
depend strongly on the solvent conditions|[92]. However, except Ref. [33], there is no
detailed analysis of the interplay between the static equilibrium and steady shear
properties and the behavior during the crossover from one state to the other. The vast
majority of investigations dealt with the effects of the waiting time[108] after which shear
is performed and explained an increase of the friction coefficient and overshooting of the
shear force with increasing waiting time through the presence of entanglements. Previous
numerical investigations[33] were done using the Langevin thermostat, which does not
take into account hydrodynamic interactions and without explicit solvent molecules,
which might be crucial in non-equilibrium simulations. In our study, we investigate the
systems under good solvent conditions with explicit solvent molecules. We take rather
short chains and vary the grafting densities and composition of the system (including
stars). We intend to understand the behavior of the shear and normal forces via an
analysis of their components and characterize the structure of the system, i.e. by

interpenetration between the brushes, gyration radius of the chains and brush height.
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Moreover, the influence of the stars and their structure will be discussed.

5.2 Shear inversion

The shear inversion is started from a steady state configuration and performed during a
finite time ¢4y after which the final velocity in the opposite direction is reached. This
time tyr, 18 small compared to the relaxation time of the bilayer. A velocity protocol for

the walls is presented in Fig. 5.1.

steady state

~Vceos(t-p, )Ttk

turn

t

i \_ | steady state
| ' "V

Figure 5.1: Shear protocol of the walls during shear inversion. The turn time is much
shorter than the relaxation time of the bilayer, ¢y < 7.

In contrast with the previous simulations we do not perform a strictly instantaneous
inversion of the shear, as it has been done in Ref. |33](a step function shear protocol).
Instead we use a continuous change of the shear direction and imply a smooth shear

protocol
(t - pturn)ﬂ'

turn

V =V cos (5.1)

where V' is the shear velocity. pgym is the time, when shear inversion is started,

tturn + Prurn When the inversion is finished.

First, let us analyse the response of the shear stress to the shear inversion. Figure 5.2
shows the time series of the response of the system for different compositions and shear
rates during shear inversion. Let us define a characteristic time of the bilayer via the
relaxation of the shear stress when it reaches a steady state value. As can be seen, the
systems with implicit solvent molecules react very quickly on the inversion; these
configurations demonstrate the shortest characteristic time due to the low density in the
system. Decrease of the shear rate and increase of the density leads to an increase of the

characteristic time.
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Figure 5.2: Time series of shear stress o,, normalized by the steady-state value for dif-
ferent compositions of the system (Solvent A, B, C, D). The distance between the walls
is D = 17.5, grafting density is pg = 4.4p,. Depending on the shear rate and the system
composition bilayers show different characteristic times. The inset shows how three dif-
ferent systems with Solvent B, C, D approach a steady state value. The shear velocity is
V =0.23. Solvent C and Solvent D contain stars of configuration f = 30, Nyon = 5. The
turn time is tyuen = 1.25 in LJ units. The replacement of dimers by the stars leads to a
decrease of the overshooting.

Keeping the density of the system and the shear rate constant, one can compare the
behavior of different types of solvent. Solvent B, C, and D approach the steady state
value differently, as can be seen in the inset. Solvent B shows an overshooting effect at
time to = 50 of approximately 6%. The replacement of the dimers by stars leads to a
damping of this effect. It seems that the phenomenon depends on the size of the solvent
molecules, and might be connected with their inertia. Solvent C shows approximately
2.5% overshooting above the steady state value, whereas Solvent D does not produce an
overshooting at all. Moreover, systems with the highest density of stars demonstrate the
longest characteristic time for the shear stress. This is due to the slow relaxation of
binary interactions between the brushes and stars as well as between the interacting
brushes. The brush experiences a strong deformation during the inversion. The inversion
is started from a steady state configuration, in which the chains are stretched and the
interpenetration between the brushes is low, as it was shown in the previous chapter.
During the inversion the interpenetration between brushes significantly increases; the
brushes become also strongly deformed in X- and Y-directions. The size of the brush in
X-direction decreases quickly, whereas in Y- and Z-direction an increase is observed for

short times; it reaches an extremum at different times depending on the type of solvent.
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Afterwards, the gyration radius of the chains slowly relaxes back to the steady state value
Rga(ss), where "ss” is the abbreviation for steady state, a corresponds to three
directions, X, Y, and Z(see Fig. 5.3). Note, that in all three directions the extremum is

reached simultaneously at time ;.

Solvent D

Figure 5.3: Gyration radius in X-, Y-, and Z-directions of the brush during shear inver-
sion normalized by its steady state value nga(t)/(Rga(ss) with o =2z, a =2, a =2
respectively. The grafting density is pg = 4.4pg, the distance between walls D = 17.5, the
systems of Solvent C and Solvent D include the stars of configuration f = 30, Nyon = 5,
the shear velocity is V' = 0.23. The biggest relative response shows the system of Solvent
D. The characteristic time when the steady state value is reached in X- and in Y-directions
is the shortest for the system of Solvent B, whereas in Z-direction one finds the opposite
effect.

As can be seen, the more stars are in the system the longer it takes to reach a steady
state value. The higher is the density of the stars in the system the larger is the relative
deformation of the brushes during shear inversion. Comparing different directions one
can see that the brush shows a longer relaxation in X- and in Z-directions than in
Y-direction. The most significant deformation of about 55% is in the shear direction
where the chains have to change the direction of the stretching. Change of the shear
direction leads also to the deformation in Y-direction of about 7 — 12% depending on the
type of solvent. Under steady state shear, chains were strongly stretched and the brush
shows a response of about 8% in gradient Z-direction. The latter can be better
characterized by the interpenetration between the opposing brushes, brushes and stars as
well as the brush height.

The stars hamper the interpenetration of the brushes into each other; this effect is more
pronounced under steady shear than in static equilibrium. During shear inversion the

brushes interpenetrate deeply into each other, as can be seen in Fig. 5.4b). The relative



5.2. SHEAR INVERSION 79

C
3 0 50 100 150 200 )O 50 100 150 2

00
[T I I T I T I I I I I T I 1.05
14+
— Solvent B
i Solvent C 104
13- — Solvent D

1037
8

I O/, (9

H
= e

T —T
P

Lo/ o (s9)

3]
=)
T

Figure 5.4: a) Relative interpenetration [see Eq. (4.33)] between brushes and stars for
systems Solvent C and Solvent D; b) Relative interpenetration between opposing brushes;
c)Brush height and d) Inclination angle of the chains in the brush. All variables are
normalized by their steady state values ("ss”). The grafting density is py = 4.4py, the
distance between the walls D = 17.5, configuration of stars for Solvent C and Solvent D is
f =30, Npmon = 5.

interpenetration at the time ¢1 is the larger, the more stars are present in the system. At
the same time ¢; the brushes interpenetrate 40% deeper into the stars [see Fig. 5.4a)]
than during the steady shear and the brush height exhibits a maximum [Fig. 5.4¢)]. It
can be seen, that the more stars are located in the interface between the brushes, the

quicker the brush height relaxes after shear inversion.

After reaching a maximum solvent molecules slowly diffuse out of the brush into the

interface between the brushes and it takes the longest time until the system reaches the
steady state in case of Solvent B. One can see, that the bigger the solvent molecules are
the more compressed the brushes become in steady state and therefore the larger is the

maximum of the relative brush height compared to the steady state value, h/h(ss).

Brushes almost do not interpenetrate into each other in case of System D in steady-state;
the decrease of the density of stars (from Solvent D to Solvent B) leads to an increase of
interpenetration between the brushes. During shear inversion they interpenetrate deeply
into each other through the layer of stars. Brushes do not prefer to be confined by the
layer of stars during the inversion but to deform them and interpenetrate through the

stars exhibiting a high relative interpenetration depth.

The inclination angle, @, of the brushes behaves independently on the composition of the
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system. @ is measured via the direction of the end-to-end distance,

Rez
0= — 5.2
arccos (R > , (5.2)

e,r

where R, and R, . are end-to-end distances in shear and gradient directions
respectively. It reaches the static equilibrium value, 8§ = 0, shortly before time ¢; when
the brush height shows its maximum. It means that the free chain ends first reach the
position above the grafted heads of the chains, shortly afterwards, due to the
incompressibility of the brushes, they deform the layer of stars and the brush height
reaches the maximum, as well es the interpenetration between the brushes.

Figure 5.4a) shows that an increase of the density of the stars leads also to a decrease of
the relative interpenetration between brushes and stars. Our investigations reveal, that
the softer the stars, the more interpenetration between the brushes and stars occurs. Due
to their size the stars can not penetrate deeply into the brush. Dimers are smaller and
more mobile, they are distributed in the whole system and can easier interpenetrate into
the brush than the stars. In a steady state configuration beyond linear response solvent
molecules are expelled out of the brush to the center of the bilayer. During the shear
inversion in turn the solvent is pulled back into the brush. This effect can be analysed via
the density profile of solvent molecules comparing static equilibrium and steady state
configurations with the situation when the brush height shows the maximum at time #;

during shear inversion. Figure 5.5 presents this comparison.

08— — Static equilibrium H
-— Timet,
B //’—_ AN — — Steady shear 7
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Figure 5.5: Comparison of the distribution of solvent molecules in the bilayer in static
equilibrium, in steady state (V—0.23) and during shear inversion at time t; when the
interpenetration between the brushes shows a maximum. The grafting density is py =
4.4py, the distance between walls D = 17.5, the star configuration of Solvent C is f = 30,
Nmon = 5. Green lines correspond to the stars and red lines to the solvent molecules.
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Our results reveal that during very short times solvent molecules are expelled out of the
interface between the brushes and then become distributed within the brushes again.
The brushes do not reach the interpenetration depth that they have in static equilibrium,
as well as the solvent molecules do not have enough time to enter the brush as deep as
under static equilibrium conditions. The same conclusion can be drawn about the stars,
which become thicker during shear inversion but still remain more compressed than in

static equilibrium.

During the shear the brushes can show slip, stick or slip-stick behavior depending on the
grafting density, which can change the hydrodynamic boundary change between the
different regimes. This phenomenon can be influenced by the presence of the stars. In
order to characterize it one should analyse the velocity profiles of each component of the

system|36].

Figure 5.6: Velocity profiles of each component in the system. The comparison between
the configurations under steady shear [Figs. a) and d)], the configuration when interpene-
tration between brushes exhibits a maximum |Fig. b)| and the configuration shortly after
inversion [Fig. c¢)|. The systems of the Solvent B (dotted lines) and Solvent C (full lines)
are compared. The grafting density of the brushes is pg = 4.4p;, the distance between the
walls D = 17.5, the star configuration in system of Solvent C is f = 30, Npon = 5, the
shear velocity is V' = 0.23. The black lines correspond to the profiles of the brush, the
blue lines to the stars, the red lines to the solvent molecules. The dashed lines show the
linear approximation of the profiles in the middle of the system for different components.
The full green lines correspond to the center monomer of the stars.
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Figures 5.6a) and d) show the velocity profiles in steady state (W > 1). Figure 5.6a)
corresponds to the profiles before shear inversion and Fig. 5.6d) shows the velocity profile
after shear inversion in the inverted steady state configuration. These states are
equivalent but the shear is applied in the opposite direction. The hydrodynamic
boundary can be characterized by the slip length, z = —b, behind the substrate, when the
extrapolation of the linear profile v(z) attains the steady state substrate velocity V, as
assumed when no slip occurs. As can be seen, the slip length is positive for all
components, therefore the brushes show strong sticking effects with b; = 0.443 without
stars (Solvent B) and bs = 0.428 when half of the solvent molecules are replaced by stars
(Solvent C). Solvent molecules follow the behavior of the brushes exhibiting a smaller
sticking effect. Similarly to the behavior of brushes the slip length is smaller in case of
Solvent C (by = 0.383 and b3 = 0.26). Stars are located in the middle of the bilayer, they
are rotating since the center monomers reveal zero profile [see Fig. 5.6¢) and d)|. The slip
length is finite for the stars and equal to b1 = 0.04. Shortly after the shear inversion

[Fig. 5.6b|, when the shear inversion is almost performed (¢ < tgum), brushes and solvent
molecules follow the behavior of the substrates close to them, but the profile of the
brushes in the middle of the bilayer is still not altered, whereas stars stop rotating and
solvent molecules yield a much smaller slip length. Stars react on the external changes
very quickly, solvent molecules follow the behavior of stars and the profile of the solvent
molecules is altered. When the interpenetration of the brushes show a maximum (at time
t1) [see Fig. 5.4c)|, brushes and solvent molecules for the systems without stars (Solvent
B) show a linear profile. At this time the brushes behave like an ideal Newtonian liquid
and "forget” effectively that they have a backbone connectivity. Solvent molecules follow
the behavior of the brushes. In case of Solvent C brushes and solvent molecules seem to
follow the behavior of stars in the middle of the bilayer and build a plateau. In the next

configurations this effect is slowly destroyed and the brushes start dominating.

This can be observed more precisely in the time series of the slip length for each
component. The modification of the slip length due to the presence of the stars can be
seen in Fig. 5.7a). In presence of stars the brushes reach the steady state slip length later
than in case of Solvent B. The behavior of the solvent molecules is also altered by the
presence of the stars but less significantly as for the brushes. Stars show a slight
overshooting effect by exhibiting a larger slip length than in the steady state. Similarly

to the overshooting effect of the shear stress, o,,, the effect occurs also at time point #g.

Further analysis of the structure can be done via the chain end distribution. The relative
interpenetration of the chain ends into the opposing brush is strongly influenced by the
presence of the stars.

Figure 5.7b) shows that the maximum of the interpenetration of the chain ends into the
opposing brush is not correlated with the maximum of the interpenetration of the

brushes into each other (¢ = ¢1) in the presence of the stars. It is connected with the fact,
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Figure 5.7: The time series of the slip length normalized by its value in steady state (left
plot) and the relative interpenetration of the chain ends (right plot) during shear inversion.
The grafting density is pg = 4.4pg, the chain length N = 30, the distance between the
walls is D = 17.5, the star configuration of Solvent C and Solvent D is f = 30, Nyon = 5.
Different compositions of the system exhibit different characteristic times for approaching
the steady state after shear inversion.

that the chain ends first reach the static equilibrium position (at time ¢ < ¢1) when the
tilting angle is zero. Then, the interpenetration of the brushes reaches the maximum (at
t = t1), such that chain ends start pushing on the layer of the stars, penetrate through
them and enter the opposing brush. Afterwards, the maximum of the interpenetration of
the chain ends distribution is reached.

In the steady state the chains are tilted and stretched, the stars are compressed in the
interface between the brushes as it is shown schematically in Fig. 5.8a).

Configurations, where the walls start moving in the opposing direction and shear
inversion is already started are shown in Fig. 5.8b). In this time the brushes
interpenetrate through the stars with a part of their chains. This leads to a significant
increase of the interpenetration depth between the brushes. The layer of stars is strongly
deformed. After a characteristic time the system reaches again the steady state
configuration [Fig. 5.8¢)].

In order to complete the characterization of the system let us analyse the gyration radius
of the stars. Figure 5.9 shows the response of the stars in X-, Y-, and Z-directions.

Stars experience deformation in all three directions. The strongest relative deformation
can be seen in Z-and in X-directions due to the fact, that the stars are squeezed strongly
in the gradient and stretched out in the shear direction in steady state beyond linear

response. The more stars are located in the system and, therefore, the less freedom and
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Figure 5.8: Schematic picture of brushes and stars during shear inversion. a) corresponds
to the configuration in steady state with shear velocity V. Chains are tilted and stretched.
Stretching can be characterized by the gyration radius R, ,. b) is the configuration during
shear inversion, stars are located in the interface between brushes and strongly deformed,
chains interpenetrate through the layer of stars into the opposing brush. c) shows the new
"reflected” steady state configuration after shear inversion.

space is left in the interface between the brushes, the smaller is the relative deformation
of the stars during shear inversion. The Y-direction shows a response of about 1%. In the
case of Solvent D one can see that the stars follow the collective motion in Y-direction
showing periodic movement, which was first observed in bulk systems|60].
Let us turn back to the gyration radius of the brushes. As it was already mentioned, it
shows a different behavior with different characteristic times depending on the
composition of the system. As can be seen in Fig. 5.10, the response of the system of
Solvent A is very small, the system is in a crossover from the linear response regime to
the non-Newtonian behavior. The systems of Solvent B, C, and D demonstrate more
significant responses. The steady state value of the gyration radius for each composition
of the system depends on the density of stars in the sytem. Furthermore, the gyration
radius of the brushes exhibit a different behavior depending on the shear rate.
To characterize the crossover behavior from one steady state configuration to the inverted
one we follow an idea originally developed in Ref. [33|. From the steady-state
investigations we know the dependence of the gyration radius of the brushes on the shear
rate. As it was shown, it has a power-law behavior
2 . . 0.5

%ﬁg; - (%) . (W 1) (5.3)
for semidilute brushes under good solvent conditions.
The characteristic time of the system, 7., after which the shear stress reaches its steady
state value, can be defined by the characteristic length scale divided by the characteristic

velocity in the system, V. During shear inversion the free chains’ ends move above the
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Figure 5.9: Gyration radius of stars in X-, Y-, and Z-directions normalized by its value
in steady state as a function of time during shear inversion(RS', (t)/ (R, (ss) with o =
a =z, a = z, respectively). The grafting density is py = 4.4pg, the chain length N = 30,
the distance between the walls is D = 17.5, the star configuration of Solvent C and Solvent
Dis f = 30, Npon = 5. The strongest deformation is observed in shear (X) and gradient(Z)
directions, whereas in Y-direction stars show a weak response.

grafted chain ends from one steady state configuration [see Fig. 5.8a)|, when the chains
exhibit the gyration radius Ry, (7)(ss) in shear direction, to the equivalent reflected
steady state configuration |Fig. 5.8¢)|, such that the free chain ends traveled an
approximate distance proportional to twice the gyration radius in shear direction.
Therefore, Ry (%)(ss) can be defined as a characteristic length scale, meaning that the
whole chain has to travel over its own (extended) size during the characteristic time 7.
Therefore, for the decay of the gyration radius in time after the shear inversion is started,

one may write
Ry (7)(55) Te

Using the definition of the Weissenberg number as a ratio of the shear rate 4 and the

(5.4)

critical shear rate 4%, where 4 = 2V/D [see Eq. 5.3|, the characteristic time of the system

can be written as

R 2Ry . (0) [ 5 \**
Te ox —22% = gw( ) X . (5.5)
V D A*

This approximation should work for systems far beyond the linear response regime, where

the power-law behavior [Eq. 5.3 dominates.
Figure 5.11 shows the gyration radius of chains, which are normalized by their value

under steady shear, R, ,(ss), as a function of time divided by the characteristic time, 7.
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Figure 5.10: Gyration radius of brushes in shear direction as a function of time during shear
inversion for different compositions of systems and shear rates. The distance between the
walls is D—17.5, the grafting density is pg = 4.4pj, the chain length N = 30. The systems
show different behaviors from the case when the gyration radius does not respond on
shear inversion up to the strong deformation. The behavior depends on the shear rate,
components of the system, molecular parameters of the brushes and stars (if present).

One can see that the decay of the gyration radius of different parameters from the steady
state configuration shortly after inversion can be mapped onto each other and it follows
the ratio (5.4). Moreover, the steady state value is reached on the same time scale for the

different systems.

The same procedure can be done with the shear stress for large shear rates corresponding
to the non-Newtonian behavior. This is shown in Fig. 5.12. The shear stress is
normalized by its value in steady state and the time is rescaled by the characteristic time
Te- One can see that, independently of the shear rate, systems with different molecular
parameters (grafting densities, chain lengths, star configurations etc.) and different types
of the solvent can be mapped onto each other. The way how the shear stress approaches
the steady state value still slightly depends on the type of the solvent (the overshooting
effect discussed above). This cmay be explained by the fact that objects of different sizes

in the brush have different diffusion constants.

The same scaling plots can be performed not only for the shear inversion, but also for the
onset of motion, when as a starting point the static equilibrium configuration is taken
and afterwards shear is started. Moreover, it is tested that the same scaling arguments

work also for the end-to-end distance of the chains, number of binary interactions
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Figure 5.11: The gyration radius of the chains normalized by its value in steady state,
R, +/Rg +(ss), as a function of rescaled time, t/7.. The distance between the walls is
D = 17.5, the grafting density is p; = 4.4p,, the chain length N = 30. Different systems of
different compositions show the same decay of the gyration radius shortly after inversion;
the steady state value is reached on the same time scale in non-Newtonian regime (W > 1).
The dashed line corresponds to the predicted decay of the gyration radius [Eq. 5.4|.

between opposing brushes and therefore also for lateral forces acting between them. It
shows that knowledge of characteristics of the system in static equilibrium, such as the
gyration radius of chains, Rg(0), and the critical shear rate 4*, delivers non-equilibrium

characteristics of the system even for non-stationary shear.
Now let us turn to the response of the stress tensor in the gradient direction, o, .

Systems with implicit solvent molecules show no response for the normal stress [see

Fig. 5.13]. Due to the low density of the system compared to systems with explicit
solvent molecules, fluctuations are much stronger. In order to get a signal with the
fluctuations of o, of about 1% it is necessary to average over more than 500 different
configurations. Inspite of that the response of the normal stress can not be seen. This
can be also due to the fact, that the critical shear rate for these systems is much larger
than for the systems of the Solvent B, C and D. For systems with explicit solvent
molecules the averaging was done over 100 configurations. Let us now analyse the system
of Solvent B. The system does not show any response to the inversion for the shear rates
in the linear response regime. Increase of the shear rate leads to the occurrence of the
non-trivial response. With the highest simulated shear rate of V' = 0.23 we observe a

minimum of about 1.2%. The normal stress starts showing a response for shear rates
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Figure 5.12: The shear stress normalized on its value in steady state, o,,(t)/0..(ss),
as a function of rescaled time ¢/7.. The distance between the walls is D = 17.5, the
grafting density is pg = 4.4pg, the chain length N = 30. Different systems with different
characteristic times can be mapped onto each other for shear velocities beyond linear
response regime.

higher than the critical shear rate. Also, the systems of the Solvent C and D do not show
any differences in the normal stress in the linear response regime. Fixing the shear
velocity and increasing the size of the solvent molecules (going to the Solvents C and D)
leads to a larger response. We find that the more macroobjects arepresent in the system,
the stronger is the observed response. Increase of the chain length N leads to a slight
increase of the response and to a significant increase of the characteristic time while

approaching the steady state value (similarly to the steady shear).

For systems without stars (Solvent B) we observe a small overshooting effect of about

~ 1%. This phenomenon appears during short times just after the inversion due to the
inertia of the brushes and the solvent molecules. An increase of the turn time, tyum, leads
to a decrease of the effect (see the inset of Fig. 5.13). The overshooting effect was not
observed for the systems with stars since the stars are located in the middle of the system
and dissipate the energy via rotation instead of following the movement of the brushes in

shear direction.

In order to understand the response of the normal stress let us analyse the components of
b

it. It consists of the LJ interactions and the backbone connectivity of the brushes, o2,

st
229

SO

and solvent molecules, 032,

stars, o as well as of the pairwise LJ interactions between

b—so

D50 solvent molecules and stars, 05975% brushes

the solvent molecules and the brushes, o

b—st

=- '. The total normal stress then reads

and stars, o
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Figure 5.13: Normal component of the stress tensor normalized by the steady state value,
O'ZZ/O'ZZ(SS), as a function of time during shear inversion. Depending on the shear rate and
components of the system, the stress shows a different response. Distance between the
walls is D = 17.5, the grafting density is pg = 4.4p, the chain length N = 30, the turn
time of the inversion t,;, = 10. The higher the shear rate is and the more stars are present
in the system, the more pronounced is the response. The inset shows the response of o,
for different turning times tiyn = 1.25, tum = 2.5, tturn = 9, tturn = 10 for the system of
Solvent B. The quicker the shear inversion is performed, the larger is the overshooting of
the normal component.

b st so b—so so—st b—st
Ozz = Uzz + Uzz + Uzz + Uzz + Uzz + Uzz N (56)

The Fig. 5.14a) shows the response of these components, that reveal a minimum. These

b st

are 0, 05, boso

and o7

. All the other components exhibit a maximum. Due to the
presence of the stars the number of binary interactions between the brushes decreases.
This fact leads also to the undershooting effect of this component. The stars can be
interpreted as a brushes in the limit of high grafting density and finite radius of curvature
for the anchored surfaces. Therefore, the stars reveal similarities to the brush behavior.
The solvent molecules show a more complicated behavior. First, the number of binary
interactions between the brush and solvent molecules decreases; the dimers penetrate

back into the brush from the middle of the bilayer. At this time the brush has a strong



90 CHAPTER 5. NON-STATIONARY SHEAR

interaction with the opposing brush showing a strong interpenetration. Further
relaxation from this configuration leads to an increase of the interaction between the
brushes and the solvent molecules, such that the brush tends to expel the solvent
molecules back to the interface. This two-step process can be seen in more detail in the
layer resolved analysis of the interaction between the brushes and the solvent molecules.
Figure 5.14b) shows that in different layers of the system one can see different processes.
The middle layer (5) shows an increase of the interactions between the brushes and the
solvent molecules. The stars are dominating the middle layer. Therefore the

brush-solvent component, ab 50

is rather small for this layer [see inset of Fig. 5.14b)].
The analysis of the 4th layer shows how the solvent is expelled from the layer. Closer to
the substrates a two-step process appears. The contributions of the 2nd and the 3d layers
are the most significant. They reveal a slow diffusion of the solvent molecules back to the

interface between the brushes.
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Figure 5.14: Components of the normal stress in the systems during shear inversion. The
distance between the walls is D—17.5, the grafting density is py = 4.4pg, the chain length
N = 30. The system of the Solvent C with the stars of configuration f = 30, Nyon = 5.
Left panel shows the response of the normal stress of the different components. Right panel
shows the layer resolved response of the interactions between brush and solvent molecules.
The numbers from 1 to 5 correspond to the layer number. The 5th layer is the middle
layer. The inset shows the steady state value in each layer.

The same layer resolved analysis can be done for the contribution of the interactions
between the solvent molecules. The same two-step process can be seen in the 4th layer.
The solvent is first compressed by the brushes and hence solvent molecules interact
stronger with each other. Afterwards, they leave the layer and diffuse back after some

relaxation time. The results are presented in Fig. 5.15a). The inset shows the profile of
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this component. Since the solvent molecules are expelled out of the brush, the most

significant input is observed in the middle of the system. The pressure of the solvent

decreases moving towards the substrates.
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Figure 5.15: Component of the normal pressure (layer resolved) due to the interactions
between the solvent molecules (a) and component of the shear stress (layer resolved) due to
the interactions between the brushes during the shear inversion (b). The distance between
the walls is D=17.5, the grafting density is pg = 4.4p;, the chain length N = 30. The
system of Solvent C with the stars of configuration f = 30, Npon = 5. Insets show the
profiles of the steady state values in each layer.

The layer resolved analysis can be helpful also in explaining the overshooting effects of
the shear stress. As can be seen in Fig. 5.15b), the first 4 layers show a universal
behavior of the shear stress, whereas the 5th layer shows the overshooting. This effect is
more pronounced in the absence of stars (the case of the Solvent B) in correspondence
with the data presented above for the whole shear stress. The chain ends, as well as the
binary interactions between the brushes and the other components in the

interpenetration region play a crucial role.
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Chapter 6

Charged systems

6.1 Introduction

Up to now we have dealt with electrically neutral brushes. Charged brushes have a very
rich spectrum of properties depending on grafting density, chain length, charge fraction,
and salt concentration. They enable controlling of segregation and aggregation processes
and therefore are important in many industrial applications, such as food industry, water
treatment, mining, medical science etc. Moreover, experiments reveal that the friction
coefficient between two opposing polymer brushes can be significantly decreased for
charged grafted chains with counterions and added salt [42]|. As for neutral systems, also
for charged brushes there is no complete picture of the rheological mechanisms causing
the small friction. In contrast to the experiment, computer simulations with soft
potentials report equivalent friction coefficients when comparing charged and neutral
systems|114]. In this chapter, we present our results for charged systems and show how

charges modify the lubrication properties of polymer brush bilayers.

6.2 Influence of long-range interactions

As a first step we ensured, that the program and implemented technique work correctly.
We tested the program for a simple system, which consists of two types of monomers,
positively and negatively charged. The number of negatively charged ions is larger than
the number of positively charged ions, n_ > n4. The Gouy-Chapman theory|115]
predicts for this situation the double layer effect in monomeric profiles[116]. Measured
density profiles from our simulations can be fitted well by the theoretical predictions.
Moreover, the measured densities of the positive and the negative ion species in the bulk
are in good agreement with Poisson-Boltzman equation [see Eq. 1.39] and are in good
agreement.

Moreover, we performed simulations of charged opposing brushes and directly compared
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(a) Shear forces for different charge fractions (b) Shear forces for different Bjerrum lengths

Figure 6.1: Shear forces normalized by the predicted power-law, %57, for the neutral sys-
tems as a function of the shear rate 7. The dashed lines correspond to the predicted linear
response (linear dependence) and the non-Newtonian behavior (power-law dependence).
The full line corresponds to empirically measured for strongly charged systems power-law.
The grafting density is pg = 2.2pg, the distance between the walls is D = 12.

with already existing results from Ref. [117] for the same model static equilibrium.

In this chapter we will focus on sheared opposing polyelectrolyte brushes. Similarly to
the neutral brushes we characterize the charged brushes by the lateral gyration radius.
Our simulations reveal the same power-law behavior as for the neutral systems (see

Fig. 4.12). The charged and neutral systems can be mapped onto each other for different
grafting densities, py, Bjerrum lengths, Ag, and charge fractions, f;. We observe that the
critical shear rate becomes smaller, such that the crossover from the linear response to
the non-newtonian behavior occurs at smaller shear rates.

In order to observe crossover in the behavior from neutral to charged systems we varied
the strength of the long-range interactions through the Bjerrum length, Ap, and the
charge fraction, f; and analysed the shear stress. Due to the presence of the Coulomb
interactions, the shear forces should be influenced significantly compared to neutral
systems. In this section we investigate only the case without stars (Solvent B).

Figure 6.1 shows the shear forces as a function of the shear rate for different charge
fractions and Bjerrum lengths. The shear forces are normalized by the prediction for the
shear force of neutral systems, f, oc %57, such that for large 4 and neutral systems a
plateau is reached. Increasing the Bjerrum length (Fig. 6.1b) leads to a modification of
the power law. The systems with larger Bjerrum lengths leave the linear regime earlier
than the neutral systems. The charges lead to a swelling of the brushes in Z-direction.
One can observe, that there is an interplay between the long-range interactions and the
steric contributions. As can be seen, the Coulomb interaction starts dominating from the
Bjerrum lengths Ag > 0.5 and the exponent of the power-law converges to 42/ for large

AB. The variation of the charge fraction can be interpreted as a variation of the degree of
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dissociation of the charged chains. Similarly to the increase of the Bjerrum length, the
increase of the number of charged monomers in the grafted chains leads to a modification
of the power-law behavior and shows a crossover from the neutral regime to strongly
charged systems (Fig. 6.1a). Up to now, we modeled counterions and solvent molecules as
a dimers. This may lead to a bridging effect, when two monomers of different chains are
“connected” by an oppositely charged dimer between them. In order to surpress this
effect, we simulate systems with the charged monomeric counterions and compare the
shear forces to the case of dimers. Independently of the size and valence of the
counterions we observe a convergence of the power law to f, o 42/ for strongly charged

Systems.
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Figure 6.2: Kinetic friction coefficient as a function of shear rate. Comparison of different
charge fractions fi for a given Agp = 1. Increase of the strength of the long-range interactions
leads to an increase of the friction. The distance between the walls is D = 12, the grafting
density p = 2.2p*, the length of the grafted chains N = 30.

Measurements of the shear and normal forces allow to compare the friction coefficients
for different strengths of the Coulomb interactions. Figure 6.2 shows the kinetic friction
coefficient as a function of the shear rate. It reveals that an increase of the Bjerrum
length leads to an increase of the friction coefficient. Similarly, an increase of the charge
fraction, while fixing the Bjerrum length at Ag = 1, increases the friction. Comparing
different types of counterions reveals that monovalent counterions (modeled as monomers)
yield a lower friction coefficient than bivalent counterions (simulated as dimers). One can
see that the system of the monovalent counterions with the charge fraction, f; = 1/N,
when only the end-monomers are charged, shows a lower friction coefficient than the

neutral system with the solvent molecules simulated as dimers. This means that decrease
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of the size of solvent molecules leads to a decrease of the friction coefficient, the same

result that is observed for neutral systems when different types of solvent are used.
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Figure 6.3: Density profile of each component of the system (right plot) and distribution of
end-monomers for charged (dashed-dotted lines) and neutral (full lines) systems. The red
lines represent the solvent molecules, black lines the brushes. The distance between the
walls is D = 12, the grafting density is p = 2.2p*, the chain length N = 30, the Bjerrum
length Ap = 1, the shear velocity V' = 0.23. Charged systems expell less solvent molecules
to the center of the bilayer and result in a larger interpenetration between the brushes as
compared to neutral systems.

In order to understand the mechanisms of the rheological response we analyse the density
profiles. Figure 6.3 shows the difference between charged and neutral systems. Compared
to simulations with soft potentials[114|, our model reveals a larger overlap region.
Similarly to the solvent in neutral systems, charged brushes expel the counterions under
shear. This effect is less pronounced due to the attraction between counterions and
brushes. One can see that the brushes are swollen compared to the neutral case. The
brush height is larger and so is the interpenetration region, which leads to a larger
friction coefficient. A comparison of the distribution of the chain ends between charged
and neutral systems shows that the chains are more stretched in the shear direction. The
maximum of the distribution of the free chain ends is closer to the center of the bilayer
and is higher compared to the neutral brushes. One can see that the free chain ends
interpenetrate into the opposing brush deeper than in the neutral case.

Let us compare the overlap integrals [see Eq. (4.33)] for the different Bjerrum lengths. As
can be seen in Fig. 6.4, increasing the Bjerrum length leads to an increase of the overlap
integral. A slight increase of the overlap integral upon increasing the Bjerrum length is
observed for all simulated shear rates; this fact effects also the shear forces, which show
the same tendency. As mentioned above, the brushes become swollen, which was

confirmed by the measurements of the brush height. Moreover, our simulations reveal,
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that increase of the Bjerrum length leads to a stronger inclination of the chains. The
chains become stiffer and more stretched, but still the gyration radius in shear direction
increases while increasing the strength of the long-range interaction. The counterions are

more and more condensed on the chains being strongly attracted.
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Figure 6.4: Overlap integral of the brushes vs. shear rate for different Bjerrum lengths (left
plot) and dependence of the overlap integral on the Bjerrum length in static equilibrium
and steady state (right plot). The distance between the walls is D = 12, the grafting
density is p = 2.2p*, the chain length N = 30. An increase of the strength of the Coulomb
interaction leads to an increase of the overlap between the brushes.

In order to further compare neutral and charged systems under static equilibrium and
steady shear, we measure the pair correlation function between the solvent and brush
monomers, g(r). This function is normalized such that it reaches unity on large distances
and can be interpreted as the probability to find another particle at the distance r away
from a test particle.

It turns out that in static equilibrium the neutral systems show smaller correlations than
the charged systems, which is an expected effect due to the long-range interactions. A
periodical structure appears at small distances (r < 30); the periodicity is proportional
to the size of the monomers, o. The neutral systems show larger correlations at larger
distances (r > 30) in steady shear, while the charged systems exhibit stronger
correlations at smaller distances (r < 20), when more counterions are attracted by the
oppositely charged chains. A continuous increase of the Bjerrum length from Ag = 0.01

up to Ag = 3 shows a continuous change of this property.

The expulsion of counterions can be characterized by the charge distribution. It can be
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Figure 6.5: Difference between the pair correlation functions of the brush monomers with
the counterion monomers in static equilibrium and steady shear [g(r)y =0 — g(r)v=0.23] for
different Bjerrum lengths. The distance between the walls is D = 12, the grafting density
p = 2.2p*, the chain length N = 30. The inset shows pair correlation functions for the
neutral system (black line) and the strongly charged system, A\g = 3 (red line).

calculated as a difference between the density profiles of the counterions, that are
positively charged, and the brush monomers, that are negatively charged, p. = ps — pp-
Figure 6.6 shows the charge distribution for different Bjerrum lengths in static

equilibrium and steady shear(V = 0.23).

Let us first focus on the systems without shear. For the almost neutral systems when the
Bjerrum length is Ap = 0.01, one can see that the counterions are distributed through the
whole layer, but the steric repulsion dominates over the electrostatic interactions and one
observes an overcharging effect in the middle of the system. The integral under the curve
is zero, such that the whole system is electrically neutral. Upon increase of the Bjerrum
length the influence of the electrostatic interactions increases and the positively charged
counterions are pulled inside the brush by the negatively charged chains. The charge
distribution becomes flat; however for the largest simulated Bjerrum length the system is
still not completely neutral in the middle of the bilayer and yields about 1.5%

overcharging.

Let us now turn to the sheared systems. As we have already seen, the solvent molecules
are expelled out of the neutral brushes upon increasing shear rate. This effect remains for
charged systems, but decreases with an increase of the Bjerrum length. The larger the

Bjerrum length, the stronger is the attraction between the grafted chains and
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Figure 6.6: Charge distribution for V=0 and V=0.23 for different Bjerrum lengths. The
distance between the walls is D = 12, the grafting density p = 2.2p*, the length of the
grafted chains N = 30. The stronger the system is charged the less overcharging effects
(maximum in the middle of the system) occurs. The effect is stronger upon increasing
shear rate.

counterions, and therefore the less counterions are expelled to the middle of the bilayer.
The molecular field, which is known theoretically for neutral brushes (see Eq. (1.26)) is
modified by the presence of charges. In order to derive a similar theory that describes the
power-law behavior of the gyration radius and the shear forces for the charged systems,
one has to take into account electrostatic interactions. Two variables are strongly
modified, the molecular field, ¢(z), and the electrostatic correlation length. One of the
possible ways for taking into account the long-range interactions in the system is to solve
the Poisson-Boltzman equation, Eq. (1.39). Moreover, one has still to take into account
excluded volume interactions. All this may deliver an explicit molecular field which may
allow to recalculate the interpenetration length for charged bilayers leading finally to a
prediction for the dependence of the shear force on the shear rate, as it has been done for
neutral bilayers (Chapter 4). However, these calculations are, due to the interplay
between electrostatics and excluded volume effects, non-trivial. We leave this for future

work.
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Chapter 7

Conclusions and outlook

In the present study, we investigated neutral and charged brush-like systems by means of
Molecular Dynamics simulations using a classical coarse-grained polymer model.

Investigations of systems consisting of two opposing brushes with soft inclusions (polymer
stars), reveal strong modifications of the size and shape of the polymer stars and brushes,

compared to the pure polymer-brush bilayer or the stars in the bulk

Both brushes and stars are strongly deformed. Stars experience a significant deformation
in all three spatial directions in the presence of the brushes, they become compressed and
aspherical. Inspite of that the presence of the brushes leads to the decrease of the
effective repulsion acting between the stars such that the resulting interaction potential
between them is smaller than for brush-free cases. Effective attractions between
inclusions mediated by the brushes are found to be to about 40kgT depending on the
softness of the stars, chain length, grafting density of the brushes. Increase of the density
of the brushes, as well as increase of the functionality of stars, lead to an increase of the
attraction. It is shown that the number of beads that belong to the brushes play an
important role for this interactions. The closer the stars, the more brush molecules is
expelled from the region between the stars. When the stars start overlapping, the
number of interactions between the brushes and stars starts decreasing, and effective
attractions occur. Decreasing the functionality down to linear chains leads to potentials
less than kpT'[119]. In case of fluid brushes, where the grafted chains are allowed to move
on the surface without detaching, we expect therefore the effect to become significantly

smaller. These investigations are left for future work.

Investigations of the response of two opposing brushes in presence of polymer stars to

stationary Couette flows of different shear rates indicate, that the relaxation time of the
bilayer is modified by the presence of the stars. The critical shear rate, which separates
liear from non-Newtonian response, becomes larger in the presence of stars compared to
the star-free case. We varied the compression of the confined layers and their molecular

parameters, grafting density and chain length, as well as the functionality of stars and
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length of arms. Star-free cases have been compared to systems with inclusions. Our
investigations revealed that the increase of the grafting density or the chain length leads
to a decrease of the critical shear rate. Moreover, we observe the formation of a fluid
layer between the brushes for large shear rates, such that solvent molecules and polymer

stars are expelled out of the brushes.

In agreement with previous computer studies (see Refs. in [30] and [31 34, 36, 37]), we
observe only small changes of the layer thickness, but a pronounced swelling of polymer
chains along the shear direction. This behavior goes along with a non-Newtonian

response, i.e. a sublinear increase of the lateral friction force with sliding velocity.

Our data indicates that the swelling of chains in the shear direction can be described by
a universal power-law increase of the chain extension (characterized by the radius of
gyration) with the Weissenberg number. Using the shear-induced deformation of the
grafted chains, we demonstrated how to estimate the critical shear rate. This allows to
superimpose the data of all considered parameter combinations, revealing a rather closed
picture that relates the chain deformation to the macroscopic response. Despite their
distinct differences, systems with stars, star-free cases, and even solvent-free cases[109]
can be described consistently. Independently of the star configuration we observe similar
responses of the system. The behavior is modified when the stars start dominating the

response at large densities.

We developed a scaling theory that allows one to explain the structural changes of the
bilayer and its macroscopic response to shear. Our analytical approach is capable of
reproducing not only the data stemming from very different numerical models but also
recent experimental observations. A central result of our scaling approach is that the
critical shear rate, at which the linear response regime is left and non-Newtonian
behavior sets in, depends on compression and molecular parameters as

,-7* x N—2.44pg0.27D0.6’ (71)

in the limit of strongly compressed, semidilute brushes with Zimm dynamics (NN is the
chain length, p, the grafting density, D the distance between grafting planes. A Test of
this relation is numerically rather difficult due to the fact that the dependence of 4* on
grafting density and compression is rather weak. In addition, the parameter regime that
can be probed for ps and D is limited because one has to assure strongly compressed
brushes. The theory works also for long chains, when the brushes are entangled in static
equilibrium. These entanglements have to be released for large Weissenberg

numbers(W > 1).

We have shown that the definition of the Weissenberg number via the relaxation time of
a single chain of equivalent length in the bulk is not suitable. The relaxation time of such

complex systems is strongly dependent on the system parameters.
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Our results and previous investigations|18, 35| indicate that the universal macroscopic
response, as we report it here for the first time, is not influenced by the type of the solvent
molecules incorporated in the system, although the interpenetration between the brushes
is strongly influenced by the stars. The structural response is altered when hydrodynamic
effects are suppressed in simulations, and when the solvent molecules are completely
replaced by the stars, while effectively increasing the size of the solvent molecules[118].
We have demonstrated, that an increase of the size of solvent molecules (replacing dimers
by polymer stars) and an increase of the density of included objects lead to the increase
of the kinetic friction coefficient. A comparison of systems where solvent molecules are
modelled as monomers instead of dimers reveal the same tendency.

Investigations of the non-stationary shear, i.e. shear inversion, show a direct connection
between static properties of the system and its dynamic behavior. The characteristic
time of each system can be described in terms of the gyration radius and critical shear
rate. Independently of the grafting density, the configuration of the stars, the distance
between the walls, as well as the shear rate beyond linear response, the behavior of the
gyration radius of the brushes, as well as the shear stress, can be explained by a simple
scaling approach. The systems in linear response reveal different relaxation behaviors.
We demonstrated that the response of the normal stress to shear inversion show a
two-step effect: first an overshooting (depending on the turn time) and then an
undershooting. Increase of the turn time, such that shear inversion is performed
smoother, leads to a decrease of the overshooting effect, whereas the undershooting
remains uneffected. The systems in the linear response regime do not show any response.
The effect appears only for shear rates, where non-Newtonian behavior is observed. The
larger the shear rate, the larger is the response. Moreover, our investigations revealed,
that the presence of the stars leads to an increase of the effect.

While the stars lead to an increase for the response of the normal stress, it overdamps an
overshooting of the shear stress. The more stars are in the system, the smoother the
shear inversion can be performed. This fact can be crucial for the experiments with
oscillatory shear, when inversion is performed several times. Here, large overshooting
effect may lead to a rupture break of the grafted chains. Our data show thet for long
times after shear inversion the total shear stress is almost constant, whereas single
components, as e.g. the brush-solvent interaction, are still not fully relaxed. This fact
may crucially influence the measurements of the structure and rheological properties in
real oscillatory shear experiments.

The structural behavior is modified when brushes are charged. The system exhibit a
continuous transition from the neutral to a highly charged behavior. Our measurements
show a larger friction coefficient compared to the neutral brushes. Increase of the
strength of the Coulomb interaction leads to an increase of the shear forces. Normal

forces are influenced only slightly. Both gyration radius and shear forces show a
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power-law behavior. A theoretical description, similar to the neutral systems, can be
done by taking into account the Poisson-Boltzman equation. However, we leave these
(non-trivial) calculations for future work.

We plan to continue all investigations mentioned above with different inclusions,

e.g. bottle brushes, or under modification of the grafted polymers, such that, e.g. both
chain ends are grafted to the surfaces or that the grafted linear are replaced by chains

with side groups.

We can not change the world right now, but we are making steps forward in

understanding it. We live and learn.
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