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ZusammenfassungMit Hilfe von Molekulardynamik-Simulationen untersu
hen wir bürstenartige Sys-teme unter guten Lösungsmittelbedingungen. Diese Systeme sind, dank ihren vielfältigenBes
ha�enheiten, die von Molekularparametern und äuÿeren Bedingungen abhängig sind,wi
htig für viele industrielle Anwendungen. Man vermutet, dass die Polymerbürsten eineents
heidende Rolle in der Natur wegen ihrer einzigartigen Gleiteigens
haften spielen. Einvergröbertes Modell wird verwendet, um die strukturellen und dynamis
hen Eigens
haftenzweier ho
hkomprimierter Polymerbürsten, die eine niedrige Reibung aufweisen, zu unter-su
hen. Allerdings sind die Lubrikationseigens
haften dieser Systeme, die in vielen biologis-
hen Systemen vorhanden sind, beein�uÿt. Wir untersu
hen so-genannte �wei
he Kolloide�,die zwis
hen den beiden Polymerbürsten eingebettet sind, und wie diese Makroobjekte aufdie Polymerbürsten wirken.Ni
ht-Glei
hgewi
hts-Molekulardynamik-Simulationen werden dur
hgeführt, in denendie hydrodynamis
hen We
hselwirkungen dur
h die Anwendung des DPD-Thermostatenmit expliziten Lösungsmittelmolekülen berü
ksi
htigt werden. Wir zeigen, dass die Kennt-nis der Glei
hgewi
htseigens
haften des Systems erlaubt, dynamis
he Ni
htglei
hgewi
ht-sigens
haften der Doppels
hi
ht vorherzusagen.Wir untersu
hen, wie die e�ektive We
hselwirkung zwis
hen kolloidalen Eins
hlüÿendur
h die Anwesenheit der Bürsten (in Abhängigkeit der Wei
hheit der Kolloide und derPfropfdi
hte der Bürsten) beein�uÿt wird. Als nä
hsten S
hritt untersu
hen wir die rhe-ologis
he Antwort von sol
hen komplexen Doppels
hi
hten auf S
herung. Wir entwi
kelneine Skalen-Theorie, die die Abhängigkeit der makroskopis
hen Transporteigens
haften undder lateralen Ausdehnung der verankerten Ketten von der Weissenberg Zahl oberhalb desBerei
hs, in dem die lineare Antwort-Theorie gilt, voraussagt. Die Vorhersagen der Theoriestimmen gut mit unseren und früheren numeris
hen Ergebnissen und neuen Experimentenüberein. Unsere Theorie bietet die Mögli
hkeit, die Relaxationszeit der Doppels
hi
ht zubere
hnen. Wenn diese Zeit mit einer 
harakteristis
hen Längenskala kombiniert wird,kann au
h das �transiente� (ni
ht-stationäre) Verhalten bes
hrieben werden.Wir untersu
hen die Antwort des Dru
ktensors und die Deformation der Bürsten währendder S
herinvertierung für grosse Weissenberg Zahlen. Wir entwi
keln eine Vorhersage fürdie 
harakteristis
he Zeit, na
h der das System wieder den stationären Zustand errei
ht.Elektrostatik spielt eine bedeutende Rolle in vielen biologis
hen Prozessen. Die Lu-brikationseigens
haften der Polymerbürsten werden dur
h die Anwesenheit langrei
hweit-iger We
hselwirkungen stark beein�usst. Für unters
hiedli
he Stärken der elektrostatis
henWe
hselwirkungen untersu
hen wir rheologis
he Eigens
haften der Doppels
hi
ht und ver-glei
hen mit neutralen Systemen. Wir studieren den kontinuierli
hen Übergang der Sys-temeigens
haften von neutralen zu stark geladenen Bürsten dur
h Variation der Bjerrum-länge und der Ladungsdi
hte.
iii



Abstra
tBy means of Mole
ular Dynami
s simulations we investigate brush-like systems undergood solvent 
onditions. These systems are important in many industrial appli
ations dueto their ri
h properties depending on the mole
ular parameters and external 
onditions. Itis believed that polymer brushes play a 
ru
ial role in nature due to their unique lubri
ationproperties. A simple 
oarse-grained model is used to investigate stru
tural and dynami
properties of two highly 
ompressed polymer brushes that exhibit low fri
tion. However,the lubri
ation properties of these systems are strongly in�uen
ed by embedded mole
ules,whi
h often are present in biologi
al systems. We study so-
alled �soft 
olloids�, whi
h areembedded between two polymer brushes, and investigate how these ma
roobje
ts e�e
tthe brushes.Non-equilibrium Mole
ular Dynami
s simulations are performed, in whi
h hydrody-nami
 intera
tions are taken into a

ount applying the DPD thermostat in presen
e ofexpli
it solvent mole
ules. We show thatthe knowledge of the system's properties in stati
equilibrium allows to predi
t dynami
 properties of the bilayer.We study how the e�e
tive intera
tions between the 
olloidal in
lusions are in�uen
edby the presen
e of the brushes (as a fun
tion of the softness of the 
olloids and the graftingdensity of the brushes). As a next step, we investigate the rheologi
al response of su
h
omplex bilayers to steady shear. We develop a s
aling theory that predi
ts the dependen
eof the ma
ros
opi
 transport properties and the lateral extension of the grafted 
hains onthe Weissenberg number beyond linear response. The predi
tions are found to be in goodagreement with our and previous numeri
al results and re
ent experiments. Our theoryo�ers a way to 
al
ulate the relaxation time of the bilayer. This time, in a 
ombinationwith a 
hara
teristi
 length s
ale, 
an be used further for a des
ription of the transientbehavior.We investigate the response of the stress tensor and the deformation of the brushesduring shear inversion for large Weissenberg numbers. We develop a predi
tion for the
hara
teristi
 time after whi
h the system rea
hes again steady state.Ele
trostati
s play a 
ru
ial role in many biologi
al pro
esses. The lubri
ation prop-erties of polymer brushes are signi�
antly in�uen
ed by the presen
e of long-range in-tera
tions. For di�erent strengths of ele
trostati
 intera
tions we investigate rheologi
alproperties of the bilayer and 
ompare to neutral brushes. We show the 
ontinuous tran-sition of the system properties from neutral to strongly 
harged brushes by varying theBjerrum length and the 
harge density.
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Introdu
tionDas einzige Mittel, die Welt zu verändern, ist sie zu verstehen.Lion Feu
htwanger
A Polymer is a large mole
ule, 
alled ma
romole
ule, whi
h 
onsists of repeatingstru
tural units (monomers) 
onne
ted by 
ovalent bonds. The simplest polymers arepoly(ethylene) or poly(styrene). If all segments have the same 
hemi
al 
omposition, thepolymer is 
alled homopolymer. Properties of the polymers 
an be modi�ed, su
h thatthey adsorb on surfa
es. These systems are important in many phenomena and industrialappli
ations, su
h as adhesion[1�3℄, stabilization of 
olloidal dispersions[4, 5℄, prote
tionagainst 
orrosion[6℄, �otation of minerals[7�9℄, oil re
overy[10℄, smart materials[11℄,wetting and spreading phenomena[12, 13℄, biote
hnology[14℄, and so forth. A veryimportant role in bio-nano-te
hnology are playing so-
alled polymer brushes[12℄. Apolymer brush is a system of polymers irreversibly grafteted by one 
hain end onto asurfa
e. In a polymer brush, 
hains tend to stret
h away perpendi
ular from thesubstrate due to the steri
 repulsion between the monomers. Of parti
ular interest aretwo opposing brush-
overed surfa
es. They 
an 
arry very high normal loads, whereassimultaneously the resistan
e to lateral sliding motion 
an be extremely small. Theresulting fri
tion 
oe�
ients may be orders of magnitude smaller than those found in dryfri
tion[15, 16℄. Polymer brushes have thus important appli
ations as lubri
ants, e.g. inma
hine parts or arti�
ial joints[14℄. Moreover, they are believed to play a 
ru
ial role inbiolubri
ation, e.g. in synovial joints[17℄. This e�e
t of low fri
tion is well establishedexperimentally[15�18℄. The ma
roresponse, e.g. shear and normal for
es, or the vis
osity
an be measured experimentally, whereas investigations of the stru
ture, e.g. densitypro�les, or of the underlying me
hanism 
ausing the low fri
tion, are still in
omplete. Forthese purposes 
omputer simulation is the best tool. Like a high-resolution mi
ros
ope itallows to investigate in detail stationary and non-stationary properties, for
es a
ting inthe system, as well as response and stru
ture of the system on di�erent length s
ales.Like a ballet-performan
e in the theater polymer brushes a
t in nature. On
e one sits
lose to the stage, small details 
an be re
ognized - 
ostumes, mimi
s of dan
ers, parts of9



10 LIST OF FIGURESde
oration. It looks interesting and every detail is important - like mi
roproperties of thebrush, e.g. lo
al vis
osity, interpenetration depth of the brushes, for
es a
ting betweenthem, velo
ity pro�les of brushes, lo
al stru
ture of them. All these details depend onea
h other. They have their own rules - way of dan
ing, order of steps or order ofappearing on the stage of de
orations in 
orrespondan
e with the libretto - like thebehavior of mi
roobje
ts, e.g. mole
ules, monomers and 
hemi
al bonds, a

ordingly tothe laws of nature. All this 
reates the whole palette, whi
h 
an be seen only on thema
rolevel - further away from the stage, e.g. in the �rst 
ir
le in the middle. These bestseats are the most expensive. Summing up all the properties it allows to see the beautyof the performan
e, and we see the great lubri
ation properties of the brushes. The
orre
t model has to be 
hosen in order to see these e�e
ts, and to provide mole
ularfa
tors 
ausing the rheologi
al response of the grafted layers to external stimuli missingin experiments. These model systems have been investigated extensively over the pastde
ades, e.g. in Refs. [18�23, 26�38℄. The vast majority of the numeri
al approa
hes havetreated solvent e�e
ts without expli
itly in
luding solvent mole
ules in the simulations(impli
it solvent simulation). Many of them have been done via the appli
ation ofthermostats and the adjustment of the intera
tion potential between themonomers[13, 19, 21, 26, 31, 33, 34, 36, 37℄. Other approa
hes have beenmade[18, 20, 22, 27, 28℄ by solving the Brinkman equation[39℄ for solvent- andmonomer-�ow �eld self-
onsistently. Solvent e�e
ts as well 
an be 
onsidered impli
itlyvia the Latti
e-Boltzmann method (see [40℄ and Refs. therein) or sto
hasti
 rotationaldynami
s[41℄. Within the small number of investigations that have been 
arried out withan expli
it solvent (see, e.g. Refs. [30, 32, 35, 38℄), systemati
 studies of the e�e
tsnegle
ted in impli
it solvent simulations are rare[32℄.In nature, e.g. in hip joints, one �nds more 
omplex systems than monodisperse neutralbrushes, whi
h have been investigated in majority of the studies. The lubri
ation inanimals' and humans' joints are thought to be due to the presen
e 
hargedma
romole
ules, aggre
ens and lubri
ins - that extend to the surfa
e to form a brush-likelayer. Figure 1 shows a 
lose-up view of the arti
ular 
artilage surfa
e. The kineti
fri
tion 
oe�
ient between the arti
ular layers, 
ompressed to 50 atmospheres or more ina hip joint, 
an be as low as 0.001 [42, 43℄. Syntheti
 
harged brushes ([91℄) lead to lowfri
tion similar to that in the arti
ular 
artilage. It seems, that the me
hanisms 
ausing ade
rease of fri
tion 
oe�
ient in the simple system 
onsisting only of two opposingpolymer brushes is important also for these 
ompli
ated systems. However, in order tomodel nature more realisti
ally, the investigated systems have to be modi�ed by takinginto a

ount in
lusions, e.g. polymer stars or 
olloids and one 
an argue that simulationshave to be 
arried out in the presen
e of expli
it solvent mole
ules. Also ele
tri
 
hargesare believed to play a role for the properties of su
h systems.The main aim of the present work is to investigate the in�uen
e of su
h in
lusions
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Figure 1: S
hemati
 se
tion through part of a hip joint [42℄. Inset: 
harged ma
romole
ules- a
ids (blue), to whi
h aggre
ans (red) and lubri
ins (green) are atta
hed.between the polymer brushes, e.g. of polymer stars, 
olloids, or expli
it solventmole
ules, on the vis
oelasti
 properties and nanotribologi
al aspe
ts under steady shear
onditions or non-stationary external stimuli. Moreover, we want to des
ribe thestru
ture of the systems and understand the 
hara
teristi
 relaxation times. For thatpurpose we use Mole
ular Dynami
s simulations of a 
lassi
al 
oarse-grained model. Thesystems under 
onsideration 
onsist of two opposing polymer brushes under good solvent
onditions, with and without expli
it solvent mole
ules, and with additional in
lusions.We vary the degree of 
ompression, the density and the length of grafted 
hains, the sizeand shape of the in
lusions, e.g. 
on�gurations of the stars, size of 
olloids. Moreover, weextend our investigations to 
harged polymer brushes with expli
it 
ounterions. We studystati
 equilibrium properties, Couette �ows at various shear rates, and the response ofthe bilayer when the shear dire
tion, starting from steady-state 
on�gurations of di�erentshear rates, is instantaneously inverted.In Chapter 1 di�erent theoreti
al and experimental approa
hes are presented. InChapter 2 model and simulation te
hniques are des
ribed. Chapter 3 deals with stati




12 LIST OF FIGURESequilibrium properties and for
es a
ting on the in
lusions, whi
h are lo
ated in theinterfa
e between two opposing brushes. Chapter 4 is devoted to the simulations and thenewly developed s
aling theory des
ribing steady shear properties. These are followed bythe nonequilibrium Mole
ular Dynami
s simulations of the two opposing brushes duringshear inversion and the theoreti
al approa
h in Chapter 5. Results of the simulationsand the dis
ussion of 
harged systems are presented in Chapter 6. The 
on
lusions andplans for further work are given in Chapter 7.



Chapter 1
Theoreti
al and experimentalapproa
hes
1.1 Theoreti
al approa
hes1.1.1 Free polymer 
hains in solutionThe simplest model of a polymer 
hain is the freely-jointed 
hain model or random walk.A

ording to this model the 
hain 
onsisting of N+1 monomers is approximated by asequen
e of N steps. The step (so-
alled bond ve
tor) length is �xed, and equal to a, butthe dire
tion in whi
h the step is taken is 
ompletely random and independent of allprevious steps. This model is analogous to the randomly di�using parti
le and permitsthe ba
kfolding of a 
hain onto itself, the situation of a so-
alled random walk. Theaverage displa
ement of the parti
le in this 
ase is zero. Therefore, it is meaningful to usethe root mean square displa
ement as a 
hara
teristi
 parameter, whi
h, in this 
ase, isequal to the end-to-end radius Re,

R2
e ≡ Na2 = La, (1.1)where L = Na is the 
ontour length of the 
hain.For this model the 
hara
teristi
 length turns out to be proportional to the square root ofthe number of steps, N , Re ∝ N1/2. This model des
ribes ideal 
hains and does nota

ount for intera
tions between monomers (ex
luded volume e�e
ts). This situationapproximately is realized experimentally at a 
ertain temperature or solvent 
ondition,when the attra
tion between monomers e�e
tively 
an
els their steri
 repulsion. This isthe so-
alled theta-solvent 
ondition.Another way to 
hara
terize the average size of a polymer 
oil is to introdu
e the radius13
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R2

g ≡ 〈R2
g〉 ≡

1

N

〈

∑

i

(ri − rcm)2

〉

, (1.2)where rcm denotes the 
hain's 
enter-of-mass position ve
tor,
rcm ≡

∑

i

ri, (1.3)and ri is the position ve
tor of monomer i.In 
ase of good solvent 
onditions the intera
tion between polymer segments and solventmole
ules is favorable. Under this 
ondition the 
hain is swollen, be
ause monomers tryto avoid ea
h other in solution. The reason for this behavior is 
onformational entropy,whi
h prevents full stret
hing of the 
hain in 
ombination with the preferable intera
tionbetween monomers and solvent mole
ules. The standard model for taking into a

ountintera
tions between monomers is the mean �eld Flory theory[45℄. In 
ase of repulsiveintera
tions between the monomers, the positive se
ond virial 
oe�
ient, ν2, is of order ofthe monomer volume, ν2 ∝ a3. The repulsive intera
tion between the monomers isbalan
ed by the 
hain elasti
ity, whi
h is due to the entropy loss be
ause of 
hainstret
hing. A

ording to the Flory theory for a �exible 
hain of radius Rg the free energyof a 
hain in units of the thermal energy kBT (kB the Boltzmann 
onstant) writes as asum of two terms,
F ≈

R2
g

R2
i

+ ν2
N2

R3
g

(1.4)where Ri ∝ Re is the radius of gyration of an ideal 
hain. The �rst term is the entropi
elasti
 energy asso
iated with swelling of a polymer 
hain multiplied by the e�e
tivespring 
onstant of an ideal 
hain, kBT/R
2
i . The se
ond term is the se
ond virial repulsiveenergy, proportional to N times the se
ond virial 
oe�
ient, ν2, and the segment densityof a monomer gas. Minimizing the free energy with respe
t to Rg one gets Rg ∝ aNνwith ν = 3/5. This is the situation of the self-avoiding walk.1.1.2 Polymers in solutionIn the previous se
tion we have re
alled s
aling 
on
epts of a single polymer 
hain. Inthis se
tion we will deal with polymers in solution, where c is the 
on
entration of 
hains.There are three di�erent regimes:a) dilute systemsb) semidilute systems
) 
on
entrated systems or polymer meltsIn the 
ase of dilute systems, 
hains do not feel ea
h other and behave like single,independent 
hains. The s
aling exponent of the gyration radius remains the same,
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Rg ∝ aNν for good solvent 
onditions. The 
rossover from the dilute to the semidiluteregime o

urs at the 
riti
al 
on
entration, c∗, when 
hains start to overlap. In this 
asethe 
hain behaves on di�erent length s
ales di�erently. For this purpose another
hara
teristi
 length 
an be de�ned, the so-
alled blob size, ξc. Within this length the
hain behaves like a single independent 
hain of size ξc ∝ agν

c , where gc is the number ofmonomers within the blob. For distan
es larger than ξc the 
hain behaves like an ideal
hain 
onsisting of blobs of size ξc, and polymer segments 
an not distinguish any longerto whi
h polymer 
hain they are 
onne
ted. The gyration radius of 
hains reads
Rg ∝ ξcnc

1/2, (1.5)where nc is the number blobs per 
hain, nc = N/gc, su
h that
Rg ∝ (ξc/a)

1−2/νaN1/2. (1.6)The blob-pi
ture allows to represent a polymer solution as a network with a 
ertainaverage mesh size, whi
h is proportional to the blob size, ξc. While ξc depends on the
on
entration, the network stru
ture and its 
hara
teristi
 size should not depend on thedegree of polymerization N for a given c > c∗. We suppose, that the 
hains must belonger than the mesh size. When c ≈ c∗, where 
oils are in 
onta
t but do notinterpenetrate, the mesh size must be 
omparable with the size of one 
oil, Rg. Thesetwo requirements lead to the expression
ξc(c) ∝ Rg

(

c∗

c

)κ

. (1.7)Sin
e c ∝ N/Rg
3, one gets c∗ = a−3N1−3ν . The exponent κ must be su
h that the powersof N from Rg(∝ Nν) and from the c∗(∝ N1−3ν) 
an
el. This means that κ = ν/(1 − 3ν)and leads to

ξc ∝ a(ca3)(ν/1−3ν). (1.8)An in
rease of 
on
entration, c, leads to a de
rease of the blob size, ξc. When it rea
hesthe monomer size, ξc = a, at the se
ond 
riti
al 
on
entration, c∗∗, the system be
omeshighly 
on
entrated, and ex
luded volume intera
tions within a 
hain are fully s
reened.In this 
ase of so-
alled polymer melts the 
hain shows almost ideal behavior (ex
ludedvolume e�e
ts are negligible) and the polymers approximately follow random walkstatisti
s, Rg ∝ aN1/2.Dynami
 properties of the 
hains also depend on the 
on
entration. We will 
onsiderRouse and Zimm des
riptions.The Rouse model is the simplest model of polymer dynami
s. It is based on three keyassumptions. The �rst one is that the 
hains 
onsist of �beads� separated by bond-ve
tors
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ond assumption is that the 
hains are phantom 
hains,meaning that they are allowed to 
ross themselves, i.e. the 
hains are ideal. The thirdassumption is the lo
ality of response, whi
h means that ea
h bead experien
es a for
eonly from its two neighbors. In other words, while a Newtonian des
ription requires thepositions and momenta of all parti
les, the Rouse model only takes into a

ount thepositions of monomers and it does not take into a

ount all 
orrelation e�e
ts with other
hains, or hydro dynami
 intera
tions. The Rouse model assumes the following equationof motion
d

dt
ri =

1

ψ
Fi + ρi, (1.9)where ψ is the monomer fri
tion 
oe�
ient, ρi the random displa
ement per unit time ofmonomer i, and Fi the for
e a
ting on monomer i. The latter follows from

Fi = − ∂V

∂ri
, (1.10)where the potential, V , 
an be derived from the assumption that the 
hains are Gaussianand 
onsist out of beads and springs,

V =
3kBT

2a2

N−1
∑

i

(ri+1 − ri)
2. (1.11)The random displa
ement per unit time is Gaussian white noise satisfying the�u
tuation-dissipation theorem,

〈ρα
i 〉 = 0, (1.12)and

〈ρi
α(t)ρj

β(t′)〉 = 2
kBT

ψ
δijδαβδ(t − t′), (1.13)where greek indi
es denote Cartesian indi
es. The sto
hasti
 displa
ements in di�erentdire
tions and of di�erent monomers are assumed as statisti
ally independent.Looking at Eq. (1.9) for the 
enter of mass, one sees that the drift for
es 
an
el due toNewtons's third law. Moreover, the fri
tion 
oe�
ients of all the monomers 
an be addedup. This property we will use later for 
al
ulation of shear for
es for brush laers. Thedi�usion 
onstant in this model 
an be derived as

D =
kBT

Nψ
, (1.14)and therefore

D ∝ N−1 ∝ R−2
g (1.15)The longest relaxation time 
an be found 
onsidering that the obje
t will move its own
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DτR ∝ R2

g, (1.16)su
h that
τR ∝ R4

g ∝ N2. (1.17)While the Rouse model does not take into a

ount hydrodynami
 intera
tions, ortransport of momentum, the Zimm model does not ignore these self-
orrelation e�e
ts.The main e�e
t is the following: A monomer i is randomly ki
ked by a surroundingmonomer j and both are moved by their random displa
ements per unit time ρi and ρj.The motion in this 
ase is highly 
orrelated due to fast di�usive momentum transportthrough the medium. The equation of motion in this 
ase 
an be modi�ed to
d

dt
ri =

∑

j

µijFi + ρi, (1.18)where µij is the mobility tensor and the sto
hasti
 displa
ements satisfy the relation
〈ρi

αβ(t)ρj
αβ(t′)〉 = 2kBTµijδ(t − t′), (1.19)where ρi

αβ is the displa
ement tensor. This relation is due to the in
ompressibility
onstraints of the solvent �ow. One 
an show that the di�usion 
onstant in this 
ase 
anbe derived as
D ∝ 1

Rg
, (1.20)indi
ating that the 
hain as a whole essentially moves like a Stokes sphere. The longestrelaxation time of the Zimm model, τZ, 
an be found by requiring DτZ ∝ R2

g, su
h that
τZ ∝ R3

g ∝ N3ν .1.1.3 Polymer brushesIn this se
tion we will review theoreti
al approa
hes des
ribing polymer 
hains, whi
h aregrafted by one of their ends onto the surfa
e: polymer brushes. First, let us 
onsider asingle 
hain 
onsisting of N monomers end-grafted onto the surfa
e. Like a single 
hainin solution, it has its 
hara
teristi
 size, Rg ∝ Nν . In
reasing the number of 
hains, Ng,whi
h are grafted onto the surfa
e of area A, one rea
hes a situation, when 
hains startoverlapping, su
h that the grafting density,
ρg =

Ng

A
, (1.21)is equal to the so-
alled 
riti
al grafting density,

ρg
∗ =

1

πR2
g

, (1.22)



18 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHESwhere πR2
g is the area 
overed by one unperturbed 
hain. For grafting densities below the
riti
al grafting density (ρg < ρg

∗) the polymers have a mushroom 
onformation, whenthe 
hains have a 
oiled form, similar to a mushroom, and do not intera
t with ea
hother. For grafting densities beyond the 
riti
al grafting density (ρg > ρ∗g) the polymersare stret
hed due to the repulsion between the 
hains, whi
h leads to loss of entropy ofea
h 
hain in 
omparison with the ungrafted 
hains. These brushes are 
alled semidilutebrushes. Further in
rease of the 
on
entration leads to molten brushes, when the brushesare highly 
on
entrated, su
h that no more solvent mole
ules 
an be in the system due tothe in
ompressibility of the brushes. Therefore, another important variation amongbrushes is also the presen
e or absen
e of solvent for the behavior of the grafted polymer
hains. With solvent the physi
al reason for the stret
hing of the 
hains from the surfa
eis their a�nity for the solvent or dislike of ea
h other. When no solvent is present (melt
onditions), the 
hains stret
h away from the substrate in order to avoid over�lling spa
e,sin
e they are in
ompressible.Due to the 
onstraint that the 
hains are grafted, the polymers will not behave like free
hains in solution. The oldest and simplest model des
ribing the regime of 
hains thatare fully stret
hed away from the surfa
e is the Alexander model[46℄. In this model ea
h
hain 
onsists of blobs of the same size in the strongly stret
hed limit (ρg ≫ ρg
∗) undergood solvent 
onditions. The free ends of the 
hains are lo
ated at the height h from thesurfa
e, su
h that the density pro�le has the form of a step-fun
tion,

ρ(z) = Nρg/h, (z ≤ h). (1.23)The stret
hing of the 
hains leads to an entropi
 free energy loss of h2/R2
g per 
hain, andthe repulsive energy density due to unfavorable monomer-monomer 
onta
ts isproportional to the monomer density times the ex
luded-volume parameter times thelength of the 
hains, ν2N . Analogous to the derivation of the gyration radius of a free
hain in a good solvent the free energy per 
hain is then

F

kBT
≃ h2

a2N
+ ν2

ρgN
2

h
. (1.24)Minimizing the free energy one obtains the equilibrium height h,

h = N(
2

3
ν2a

2ρg)
1/3. (1.25)In 
ontrast to the Alexander model, when the 
hains are supposed to be fully stret
hedaway from the interfa
e with uniform monomer density, experiments and simulationshave shown that brushes demonstrate a rather rounded behavior and density pro�lesapproa
h zero 
ontinuously.Theoreti
al studies of surfa
e-an
hored polymers based on the self-
onsistent �eld theory



1.1. THEORETICAL APPROACHES 19(SCFT) representing full mean-�eld treatments �rst introdu
ed by Edwards[47℄ and thestrong stret
hing theory(SST) formulated by Semenov[48℄ are more realisti
 in
omparison with the s
aling methodologies. These methods make no assumption aboutthe stru
ture of the system, i.e. about the density pro�le, but determine itself-
onsistently. Both theories are based on the same Gaussian 
hain model. Theadvantage of the SST is that it provides simple analyti
al predi
tions, while SCFT (ingeneral) only 
an be solved numeri
ally. The SST negle
ts �u
tuations around the�
lassi
al path�, whi
h 
onne
ts grafted and free end-monomers of a 
hain, by minimizingthe a
tion. This is in analogy with the 
lassi
al approximation of quantum me
hani
s,where the motion of a parti
le is given by the quantum path with maximum probability.The SST also 
an be used in polymer adsorption theories as a 
hain 
onne
tivityequation resembling the di�usion equation, su
h that this method is 
alled the di�usionequation approa
h. However, a major di�eren
e between a di�using parti
le and apolymer mole
ule is the fa
t, that a polymer mole
ule has two 
hain ends whereas adi�using parti
le does not have a spe
i�
 end. A polymer segment lo
ated near one of theends will in general behave di�erently from a middle segment, as the non grafted endshave more freedom of motion. In the original SST theory the importan
e of the 
hainends is negle
ted.A simple hypothesis about the free 
hain ends of a single polymer brush, that they maybe lo
ated at any distan
e from the surfa
e, leads to the predi
tion of a paraboli
mole
ular �eld[49℄,
Φ(z) = Φ0 −

1

2

(πz

2h

)2
, (1.26)with Φ0 a 
onstant and h the height of the Alexander brush (ex
ept prefa
tors). The
orresponding density pro�le is supposed to be proportional to the mole
ular �eld,

ρ(z) ∝ Φ(z). The end density distribution ǫ(z) obeys[49℄
ǫ(z) ∝ 2z(h2 − z2)1/2 + (A/B − h2)z(h2 − z2)−1/2, (1.27)where A and B are 
onstants derived in Ref. [49℄. This is so-
alled Milner-Witten-Cates(MWC) model brush.Now let us turn to the 
ase of two opposing brushes. The key assumptions of the MWCtheory are that two 
ompressed brushes ea
h have a paraboli
 mole
ular �eld and theydo not interpenetrate into ea
h other. Later 
al
ulations[50℄ showed the existen
e of anexponential tail in 
omplian
e with the SCFT. Further, assuming that the 
hains 
anslightly interpenetrate into ea
h other, leads to the following form of the end distributiontail and the tail of the density pro�le:

ǫ(z) ∝ ρ(z) ∝ exp

(

−π
(

z −D/2

ξt

)3/2
)

, (1.28)



20 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHESwhere ξt is the length of the tail, ξt = (D/2)−1/3a4/3N2/3, and D is the distan
e betweenthe opposing surfa
es. This equation is derived for the 
ase that only a small fra
tion ofthe 
hains stret
hes into the opposing brush, the so-
alled regime of weak 
ompression.With the full mean �eld approa
h[51℄ it 
an be shown that the tail exhibits the Gaussianform,
ǫ(z) ∝ z

aN1/2
exp

(

− 3z2

2a2N

)

, (1.29)and
ρ(z) ∝ aN1/2

z
exp

(

− 3z2

2a2N

)

. (1.30)These predi
tions are not in perfer
t agreement with 
omputer simulations results. Onlyin strongly stret
hed limit these two methods 
onverges. More re
ent SSTinvestigations[52�54℄ show that a depletion layer near the interfa
e o

urs, demonstratingthat a paraboli
 mole
ular potential does not ne
essarily imply a paraboli
 densitypro�le. Moreover, more re
ent studies have shown, that taking into a

ount the entropyof the free ends [53℄ and �nite-stret
hing 
orre
tions [54℄ lead to an almost perfe
tsuperposition of the SST and the SCFT, but the SST be
omes analyti
ally unsolvable.Allowing brushes to interpenetrate into ea
h other one 
an show that in the 
ase of
on
entrated or molten brushes the overlap thi
kness 
an be derived from the 
hange infree energy, ∆F , when a 
hain segment of length δ is pushed into the opposing layer.Witten et al. [55℄ demonstrated that by the 
al
ulation of the work in order to insert asingle 
hain into a brush, ∆F 
an be written as
∆F ∝

(

− δ
3

a2

∂Φ(z)

∂z

)1/2

, (1.31)where the mole
ular �eld, Φ(z), may be of the 
lassi
al paraboli
 form, Eq. 1.26. Theinterpenetration is due to thermal �u
tuations, thus ∆F is of the order kBT . We take thederivative of Φ(z) at the middle of the bilayer, z = D/2, and obtain from Eq. (1.31)
δ ∝

(

N2a4

D

)1/3 (1.32)for the interpenetration depth of strongly 
ompressed, molten bilayers.Equation (1.32) is similar to the expression found by Witten et al. [55℄,
δ ∝

(

N2a4

h

)1/3

,where D is repla
ed by the unperturbed brush height. The di�eren
e o

urs be
ause inRef. [55℄ the derivative of Φ(z) is taken at z = h, whi
h hen
e 
hara
terizes the behaviorof two brushes just 
oming into 
onta
t (weak 
ompression regime). The predi
tion of



1.1. THEORETICAL APPROACHES 21the interpenetration depth [Eq. 1.1.3℄ we will use below in the theoreti
al des
ription oftwo opposing brushes under shear.1.1.4 Charged brushesPolyele
trolytes are polymers 
ontaining ionizable subunits whi
h 
an disso
iate in apolar solvent providing 
harged ma
roions and 
ounterions. There are poly
ations(positively 
harged 
hains), polyanions (negatively 
harged 
hains) and polyampholytes,whi
h 
ontain both negatively and positively 
harged subunits pla
ed along the polymer
hain. The model of a polyele
trolyte 
hain in solution is similar to the neutral one. A
hain 
onsists of N monomers ea
h of size a. The degree of ionization or the monomer
harge fra
tion 
an be 
hara
terized by the number of 
harged monomers, m,
fi =

m

N
. (1.33)Many analyti
al 
al
ulations for polyele
trolytes in solution start from the Poissonequation,

∇2φ(r) = − ρ(r)

ǫ0ǫ(r)
, (1.34)where φ(r) is the potential at point r, ρ(r) is the lo
al 
harge density, ǫ0 is the va
uumpermittivity, and ǫ(r) is the diele
tri
 permittivity of the medium, whi
h in most modelsis a 
onstant, ǫ(r) = ǫ = const. For a point 
harge with a 
harge density

ρ(r) = Q1δ(r − r1) being lo
ated at r = r1 and having a total 
harge Q1 = z1e, where eis the elementary 
harge, the potential is given by
φ(r) =

1

4πǫ0ǫ

Q1

|r− r1|
. (1.35)For a system of several ioni
 spe
ies ea
h of valen
e zi and with lo
al 
on
entration ci thelo
al 
harge density reads

ρ(r) = e
∑

i

zici(r). (1.36)In the mean �eld approa
h, i.e. negle
ting �u
tuations, ci(r) obeys the Boltzmanndistribution
ci(r) = c

(0)
i exp

(

−zieφ(r)

kBT

)

, (1.37)where φ(r) is the time averaged value and c(0)i is the bulk 
on
entration, su
h that the
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troneutrality gives
∑

i

zic
(0)
i = 0. (1.38)In this 
ase the Poisson-Boltzmann (PB) equation

∇2φ(r) = − e

ǫ0ǫ

∑

i

zic
(0)
i exp

(

−zieφ(r)

kBT

) (1.39)
an not be solved analyti
ally. Another approximation is ne
essary. The linearized PBequation reads
∇2φ(r) =

1

λD
φ(r), (1.40)where the Debye length is the s
reening length, de�ned as

λD ≡
√

ǫ0ǫkBT

e2
∑

i z
2
i c

(0)
i

. (1.41)This is the so-
alled Debye-Hü
kel approximation. It is valid only for weak potentials
φ(r) ≪ kBT

zie
. (1.42)Assuming the 
harge of all the other ions to be 
ontinuously smeared around a test
harge, the spheri
ally symmetri
 solution of Eq. (1.40) is

φi(r) =
zie

4πǫ0ǫ

exp(−r/λD)

r
(1.43)and the 
orresponding pair intera
tion energy reads

Uij = zizjkBT
λB

r
exp(−r/λD), (1.44)with the Bjerrum length, λB, de�ned as the distan
e at whi
h the Coulomb intera
tionbetween two uns
reened elementary 
harges is equal to the thermal energy,

λB ≡ e2

4πǫ0ǫkBT
. (1.45)The Bjerrum length 
hara
terizes the strength of the Coulomb intera
tion, whereas fromEq. (1.43) it is evident that the 
harge 
loud around a test ion results in a s
reening ofthe Coulomb intera
tion. Hen
e, the Debye length gives the s
reening range of theresulting e�e
tive potential.The Flory-like mean �eld argument 
an be, analogously to the neutral systems, used to
al
ulate the end-to-end distan
e. Assuming all monomers are 
harged (monomer 
harge
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tion fi = 1) the free energy is written as
F

kBT
≃ R2

e

Na2
+ λB

N2

Re
, (1.46)where the �rst term is the elasti
 free energy of the Gaussian 
hain and the se
ond termrepresents the ele
trostati
 free energy of the 
harged monomers. The end-to enddistan
e in this 
ase is

Re ≃ λ
1/3
B a2/3N. (1.47)The linear dependen
e of Re on N makes the strongly 
harged 
hain rod-like. Thedeviation from the rod-like stru
ture is des
ribed by the Odijk-Skolni
k-Fixman (OSF)theory[56℄.To understand the s
aling pi
ture of 
harged brushes, one assumes a box model[57℄,where the brush is 
hara
terized by two length s
ales. The polymer 
hains are assumedto extend to a distan
e h from the grafting surfa
e, the 
ounterions in general form alayer of thi
kness H. There are two di�erent regimes. In the �rst one the 
ounterion
loud ex
eeds the height of the brush, H > h. In the se
ond regime they are 
on�nedinside the brush, H ≈ h. This is a strongly 
harged brush in 
ontrast to the �rst 
ase of aweakly 
harged brush.There are four 
ontributions to the free energy. First, the osmoti
 free energy Fosasso
iated with the entropy 
ost of 
on�ning the 
ounterions to a layer of thi
kness H isgiven by

Fos ≃ Nfiρg ln
Nfiρg

H
. (1.48)Afterwards the se
ond virial 
ontribution to the free energy and the stret
hing freeenergy have to be taken into a

ount. They are the same as for the neutral brushes [seeEq.( 1.24)℄.The third term is the ele
trostati
 
ontribution. This term is nonzero when the brush isnot lo
ally ele
troneutral throughout the system. This is given by [57℄

Fel ≃ λB(Nfiρg)
2 (h−H)2

H
. (1.49)For strongly 
harged brushes all 
ounterions are inside the brush, whi
h means that theGouy-Chapman length

λGC =
1

2πλBNfiρg
, (1.50)whi
h is the height at whi
h 
ounterions are e�e
tively bound to a surfa
e of 
hargedensity efiNρg [58℄. This height is small 
ompared to the brush height h. For weakly
harged brushes it 
an be shown that the 
ounterion height reads
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H ≃ h+

3

2
λGC. (1.51)In the 
ase of the so-
alled osmoti
 brush regime[58℄ one 
an show, via minimizingosmoti
 and stret
hing free energies, that the brush height reads

h ≃ Naf
1/2
i . (1.52)Minimization of stret
hing and ele
trostati
 free energies leads to the Pin
us brushregime, where the brush height is

h ≃ N3(afi)
2λBρg. (1.53)For both regimes there is a strong dependen
e on the Bjerrum length λB and the 
hargefra
tion fi.The pi
ture of the polyele
trolyte brush behavior 
hanges if salt is added to the solution.The salt 
on
entration is an important parameter to tune stru
ture and properties of thebrush. Both in experiments and in theoreti
al work the main attention is fo
ussed on thebehavior of the brush height and density pro�les. The brush height is predi
ted to be

h ≃ Na

(

ρgf
2
i

acs

)−1/3

, (1.54)where cs is the salt 
on
entration. There are, however, also another predi
tion[58℄expe
ting h ∝ c
−2/3
s and h ∝ c

1/3
s [59℄. Dispite of the di�erent predi
ted exponents of thepower laws one 
an 
on
lude that the stru
ture of the brushes strongly depends on thesalt 
on
entration.In 
ontrast to neutral brushes at low grafting densities, when 
hains are not overlapping,one observes a pan
ake 
onformation due to the long-range intera
tion. In
rease of the
riti
al grafting density leads to the mushroom 
on�rmation and further to the brush
onformation. The 
rossover appears at lower grafting densities and, therefore, at lower
riti
al 
on
entrations in 
omparison with neutral systems.Con
luding, one 
an see that polymer brushes exhibit ri
h behavior when 
hargeddepending on the strength of the long-range intera
tions and mole
ular parameters of thesystem.1.1.5 Sheared brushesNow let us turn to the des
ription of the brushes under shear. In 
ase of ideal vis
ous(Newtonian) �uids, the stress depends only on the 
urrent rate of deformation, and thereis no memory of previous deformations. At the other extreme of perfe
t elasti
 solids,stress depends only on the deformation from the preferred shape. Energy is dissipated in
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ous materials and stored in elasti
 bodies. Polymeri
 �uids are 
alled vis
oelasti
, asthey have both vis
ous and elasti
 properties depending on the time s
ale of observation.Elasti
ity is the ability of the �uid to return to its original state and shape after releaseof the applied stress. In most 
ases either the relaxation time of the material undergoingdeformation is so small that the �uid exhibits mostly vis
ous response, or the relaxationis very slow (stru
tural memory is very long) and materials behave like elasti
 bodies.Ma
romole
ular �uids are unique sin
e their stru
tural relaxation times often span manyorders of magnitude. For instan
e, 
hains grafted to surfa
es might have di�erentrelaxation times than free 
hains of the same length lo
ated in the interfa
e between twoopposing brushes. The relaxation time of the system as a whole is in�uen
ed by all
omponents.Ideal Newtonian liquids pla
ed between two opposing surfa
es exhibit a linear velo
itypro�le under shear. Complex systems, i.e. polymer brushes, do not show a linear velo
itypro�le during steady shear. The me
hani
al response of any �uid to shear might bedes
ribed by the vis
osity, whi
h 
an be 
al
ulated from the shear stress, σxz,
ηxz(γ̇) ≡ σxz/γ̇, (1.55)where γ̇ is the shear rate and σxz is an o�-diagonal element of the stress tensor (X is theshear and Z is the gradient dire
tion). For ideal vis
ous materials the shear for
es arealways proportional to the shear rate (linear response), and normal for
es represent thepressure in the system. Ma
romole
ular systems exhibit shear rate dependent vis
osities.Another 
hara
teristi
 of system under shear is the Weissenberg number, W , whi
h istypi
ally de�ned as a produ
t of the shear rate, γ̇, and the 
hara
teristi
 relaxation timeof the system τ ,

W = γ̇τ. (1.56)For su
h systems as polymer brushes one often takes the relaxation time of a single 
hainof equivalent length N in the bulk. Another example is the system of polymer stars,where the relaxation time of arms in the bulk is taken[60℄. As we will show in thefollowing, these de�nitions of the Weissenberg number is not appli
able for su
h 
omplexsystems. Let us (re)de�ne the Weissenberg number by the 
riti
al shear rate γ̇∗, whenthe 
rossover from the linear response regime to the non-Newtonian behavior o

urs,
W ≡ γ̇/γ̇∗. (1.57)The shear for
e in the linear response regime is proportional to the Weissenberg numberup to the 
riti
al shear rate γ̇∗. For Weissenberg numbers above the 
riti
al shear rate(W > 1), the system 
an exhibit a shear thinning or a shear thi
kening. Similarly to a



26 CHAPTER 1. THEORETICAL AND EXPERIMENTAL APPROACHESsystem of dendrimers or of polymer stars in the bulk the system of two opposing brushesmay reveal a power law dependen
e with an exponent α < 1 and α > 1, 
orrespondingly.As we will see in the following the �rst 
ase is appli
able independently of the mole
ularparameters, i.e. grafting density, 
hain length. This is the 
ase of the so-
allednon-Newtonian behavior.

1
W

1f x/f
x(W

=
1)

~W

~W
α<1

~W
α>1

linear response non-Newtonian behavior

Figure 1.1: S
hemati
 demonstration of shear thinning and shear thi
kening. Normalizedby its value at the 
riti
al shear rate the shear for
e shows linear response behavior up toa Weissenberg number W = 1. For W > 1 the system reveals non-Newtonian behavior.For in
reasing shear for
e there is a spontaneous symmetry breaking when the work ofthe shear for
e a
ting on a 
hain ex
eeds the thermal energy. At higher shear rates the
hains are de�e
ted in the shear dire
tion. Therefore, the 
riti
al shear rate γ̇∗ 
an bede�ned by the 
omparison of the thermal �u
tuations with the work. De�ning as a
hara
teristi
 length s
ale the gyration radius in shear dire
tion, Rg,x, and the total shearfor
es a
ting on the substrates, fx(γ̇), the Weissenberg number may be written as
W ≡ γ̇/γ̇∗ =

fx(γ̇)Rg,x

NgkBT
, (1.58)where γ̇∗ ∝ 1/τ , whi
h 
an be regarded as an inverse relaxation time of the bilayer, and

Rg,x ≡ 〈R2
g,x〉1/2 the gyration radius at zero shsear. This de�nition of the Weissenbergnumber we will use in the following.1.2 Experimental approa
hesExperimentally there are two basi
 ways of produ
ing a grafted polymer layer. The �rstmethod is the so-
alled �grafting from� method, when polymerization is started from thesurfa
e with a suitable surfa
e-linked initiator. The monomers have to di�use through



1.2. EXPERIMENTAL APPROACHES 27the forming brush layer and thus the rea
tion kineti
s is fast, and quite high graftingdensities 
an be rea
hed, but this method 
an result in quite high polydispersity [61℄.The se
ond method is the �grafting to� pro
edure, when polymers are atta
hed withspe
ial end-groups that a
t as an
hors on the surfa
e. This method has slow kineti
sduring the formation stage due to the fa
t that whole mole
ules have to di�use throughthe grafted layer; only smaller grafting densities 
an be a
hieved, but the length of thean
hored 
hains and their 
hemi
al 
omposition is under better 
ontrol. The 
hains 
anbe physi
ally or 
hemi
ally adsorbed to the substrates. An example for the �rst 
ase arezwitter-ioni
 end-groups atta
hed to poly(styrene) 
hains that lead to binding to mi
a inorgani
 solvents su
h as toluene or xylene [62℄. Or poly(ethylene oxide) (PEO) adsorbson inorgani
 surfa
es like mi
a via an ion-ex
hange rea
tion and forms a polymer brush.The se
ond method leads to stronger 
ovalent binding and therefore a more stableatta
hment of end-grafted 
hains is possible. The examples are poly(dimethylsiloxane)
hains whi
h 
arry hydroxyl end-groups and undergo 
ondensation rea
tions with silanolson a sili
a surfa
e[63℄. Diblo
k 
opolymers (two dissimilar polymers joint end-to-end) 
analso be used in order to produ
e polymer brushes, where one blo
k adsorbs on the surfa
ewhereas the other experien
es repulsion[64℄. Examples arepoly(styrene)(PS)-poly(vinylpyridine)(PVP) diblo
k 
opolymers on sapphire [65℄ orquartz substrates[66℄ in sele
tive solvent, whi
h is a poor solvent for the PVP and leadsto strong adsorption onto the surfa
e, but a good solvent for PS, stret
hing this blo
kfrom the substrate. The better 
ontrol and larger grafting densities 
an be a
hieved inthe 
ase of diblo
k 
opolymers on a liquid-air[67℄ or a liquid-liquid interfa
e. The graftingdensity 
an be varied via the variation of the lateral 
ompression and therefore of thearea of interfa
e[68℄. As an example diblo
k PS-PEO[69℄ 
an be taken. The PS blo
k isshorter, unsoluble in water, and 
an be used as an an
hor at the air/water interfa
e. Asthe surfa
e pressure in
reases and the unit area per polymer de
reases, the PEO isexpelled from the surfa
e and forms a polymer brush. Finally, the 
hain may be atta
hedto a �substrate� that is the narrow interfa
e between mi
rodomains in a melt or
on
entrated solution of diblo
k 
opolymers when the two blo
ks of the 
opolymer arestrongly segregated.Grafted polymer materials 
an be either non-
harged (neutral) or 
harged polymers,so-
alled polyele
trolytes. Polyele
trolytes 
an be 
ategorized in two groups: strong(quen
hed) or weak (annealed). A simplest polyele
trolyte may be de�ned as ahomopolymer, where at least one monomer unit 
arries an ionizable group. Su
h a groupmay be a strong salt, a
id or base, so that its 
harge is virtually independent of pH . Thisis the 
ase of strong polyele
trolytes. Weak polyele
trolytes 
arry weakly a
idi
(e.g. 
arboxili
) or basi
 (e.g. amino) groups. Their solution behavior depends on pH,whi
h 
an be varied, for example, by adding salt.The stru
ture of polymer brushes 
an be investigated using di�erent te
hniques. The
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e-balan
e te
hnique used in surfa
e for
e measurements allows to measure dire
tlyshear and normal for
es[15℄ in rheologi
al experiments. Moreover, this te
hnique gives arough measure of the brush height by measuring the for
e as a fun
tion of the separationbetween two solid surfa
es[70, 71℄. Atomi
 for
e mi
ros
opy (AFM) has been used toprobe the stru
ture of surfa
e-an
hored polymers by measuring the for
e between thepolymers and the AFM-tip[72℄. Experiments involving s
attering te
hniques have beenused to investigate the stru
ture of end-grafted polymer systems. These in
ludeellipsometry[73℄, evanes
ent wave �uores
en
e[74℄, infrared spe
tros
opy[75℄, neutronre�e
tivity[65℄, neutron s
attering[76℄, small angle s
attering (SANS)[77℄, et
. Thesete
hniques have been used to determine the extension of the 
opolymers from thesubstrate and the total number of mole
ules adsorbed onto the surfa
e. Most of thete
hniques la
k the resolution ne
essary to des
ribe monomer density pro�les near thesurfa
e. Neutron re�e
tivity and SANS are able to provide more 
omplete data about thestru
ture of the 
on
entration pro�les of end-an
hored polymers.



Chapter 2Model and simulation te
hnique
2.1 ModelIn our simulations the system 
onsists of two opposing 
ompressed polymer brushes.Chains in
lude N monomers ea
h of size a. The polymers are grafted onto a surfa
e withone 
hain end. The brushes are monodisperse. The degree of polymerization, N , is equalto N = 30 or N = 60. These lengths are small enough to avoid entanglements in thebulk[78℄. Referen
e [79℄ suggests that the entanglement length in
reases with de
reasingthi
kness of a 
on�ned 
on
entrated solution, su
h that we expe
t non-entangled 
hainsfor all systems under 
onsideration.In experiments it is impossible to synthesize and investigate pure brushes. Not all free
hain are adsorbed on the substrates due to slow kineti
s; some of them are ribbed o� thesurfa
es, espe
ially in rheology experiments. Moreover, in nature even more 
omplexsystems o

ur, whi
h have di�erent kinds of in
lusions. In this way spe
ial fun
tions 
anbe realized, for example, in natural 
ells as studied in tribology[80℄. In these systemsbilayers of lipids play an important role, whi
h form e�e
tively two highly �u
tuatingbrush layers, where proteins are lo
ated inside of them. As in
lusions in our systems wesimulate 
olloids of di�erent softness. Star polymers 
an be a good model for su
hin
lusions allowing to vary 
on�gurations from ��u�y� stars to spheri
al-like[60℄. The
on�guration of polymer stars is varied through fun
tionality, f , and number ofmonomers in ea
h arm arm Nmon. Varying these two values we 
hange the �softness� ofthe stars from rather �hard� stars with small length of arms, Nmon = 3, and largefun
tionality, f = 50, to �softer� stars, with Nmon = 15 and f = 10 and to bigger starswith longer arms up to Nmon = 30, whi
h is 
omparable with the degree ofpolymerization of our brushes. Hard 
olloids were simulated as hard spheres of size
σ = 3. A more detailed list of investigated parameters 
an be seen in Table 2.1.We vary the surfa
e density of the grafted 
hains, ρg. Our smallest grafting density for
N = 30 is ρg ≈ 1.1ρ∗g, and the biggest is ρg ≈ 8.8ρ∗g, where ρ∗g is the 
riti
al grafting29
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D N ρg/ρg

∗ Narms Nmon ρst Solvent12 30 2.2 - - 0 A14.75 30 2.2 - - 0 A17.5 30 2.2 - - 0 A12 30 2.2 - - 0 B14.75 30 2.2 - - 0 B17.5 30 2.2 - - 0 B12 30 1.1; 2.2 5 30 0.22 C12 30 2.2 3 50 0.22 C12 30 2.2 10 15 0.22 C12 30 2.2 15 10 0.22 C12 30 2.2 12 12 0.22 C12 30 2.2 30 15 0.44 D12 30 2.2 21 21 0.44 D14.75 30 1.1; 4.4 5 30 0.22 C14.75 30 1.1; 4.4 10 15 0.22 C14.75 30 2.2 3 50 0.22 C14.75 30; 60 2.2 5 30 0.22 C14.75 30; 60 2.2 10 15 0.22 C14.75 30 2.2 15 10 0.22 C14.75 30 2.2 12 12 0.22 C14.75 30 2.2 15 30 0.44 C14.75 30 2.2 30 15 0.44 C14.75 30 2.2 21 21 0.44 C17.5 30 1.1; 4.4 10 15 0.22 C17.5 30 1.1; 4.4 5 30 0.22 C17.5 30; 60 2.2 5 30 0.22 C17.5 30; 60 2.2 10 15 0.22 C17.5 30 2.2 3 50 0.22 C17.5 30 2.2 15 10 0.22 C17.5 30 2.2 15 30 0.44 D17.5 30 2.2 30 15 0.44 D17.5 30 2.2 21 21 0.44 D12 30 2.2; 3.3 5 30 0.08 212 30 3.3; 3.3 10 15 0.08 214.75 30 2.2; 3.3; 4,4 5 30 0.06 214.75 30 2.2; 3.3; 4.4 10 15 0.06 217.5 30 2.2; 3.3; 4.4; 6.6 5 30 0.005 217.5 30 2.2; 3.3; 4.4; 6.6 10 15 0.005 217.5 30 3.3; 6.6 21 21 0.015 221 30 2.2; 3.3; 4.4; 6.6; 8.8 5 30 0.04 221 30 2.2; 3.3; 4.4; 6.6; 8.8 10 15 0.04 2Table 2.1: Di�erent parameter 
ombinations under 
onsideration: distan
e D betweengrafting planes, 
hain length N , and ratio between grafting density and (approximate)
riti
al grafting density for 
hains of length N = 30, star 
on�gurations (�−� denotessystems without stars). Solvent A - impli
it solvent systems without stars, Solvent B- expli
it solvent as dimers without stars, Solvent C Solvent D - with stars of density
ρst = 0.22 and ρst = 0.44 respe
tively. �2� denotes the 
ase when only two stars arepresent in the system (for the simulations of the e�e
tive intera
tions).



2.1. MODEL 31density. With ρg ≈ ρ∗g, we 
onsider a system just at the mushroom-to-brush 
rossover forthe 
hain length N = 30. For N = 60 we 
onsider one grafting density,
ρg ≈ 2.2ρ∗g(N = 30).The distan
es between the grafting surfa
es, D, investigated is equal to D = 12σ,
D = 14.75σ, D = 17.5σ, and D = 21σ. With that we 
onsider four di�erent degrees of
ompression. Depending on N and ρg, this 
orresponds to 
ompressions between
2h/D ≈ 2 and 2h/D ≈ 6.5 relative to the height h of a single, un
ompressed brushwithout expli
it solvent[81℄.In many previous simulations[13, 19, 21, 26, 31, 33, 34, 36, 37℄, the solvent was treatedimpli
itly, i.e. the kineti
 energy dissipated to the solvent is mimi
ked by the appli
ationof a thermostat. We 
onsider four di�erent types of solvents; referred to as solvent A, B,C, and D in the following. Solvent A a

ounts for solvent e�e
ts only via the repulsivepotential a
ting amongst the monomers in the brush. Solvent B 
onsists of dimers,
orresponding to �polymer" 
hains of N = 2. We use dimers instead of (e.g.) monomersfor the solvent in order to hamper pa
king and to a

ount for rotational and vibrationaldegrees of freedom. However, our approa
h does not aim at des
ribing all features of areal solvent but rather attempts to re�e
t ex
luded volume and �nite inertia e�e
ts, aswell as the momentum transport of an expli
it solvent. For a given parameter
ombination of N , ρg, and D we add solvent dimers until a total number density of
ρ = 0.9 is rea
hed. Solvent C is a mixture of dimers and star polymers of di�erentfun
tionalities and arm lengths, su
h that the density of star monomers is ρst ≈ 0.22.The total number of monomers in one star is fNmon + 1 taking into a

ount the 
entralmonomer to whi
h all arms are 
onne
ted. Solvent D 
orresponds to density of starmonomers ρst ≈ 0.44. For all parameters (N ,ρg,D), ex
ept systems of Solvent A, we keepthe total number density at ρ = 0.9.Periodi
 boundary 
onditions are applied parallel to the surfa
es in X- and Y - dire
tions.The substrates are represented by rigid, fa
e-
entered 
ubi
 (f

) 
rystalline surfa
es witharea A = LxLy = 42σ × 36.373σ = 1527.666σ2 .The 
omponents of the system are represented by the Kremer-Grest (KG) model[24, 25℄,whi
h is a generi
 
oarse-grained model that has been applied in many previousstudies[13, 19, 21, 24, 26, 31, 33, 34, 36, 37, 78, 81℄. In the KG model, monomers intera
tvia the Lennard-Jones (LJ) potential,

ULJ(rij) =







4ǫ[(σ/rij)
12 − (σ/rij)

6 − (σ/rc)
12 + (σ/rc)

6], (rij < rc)

0, (rij ≥ rc) ,
(2.1)where ǫ = 1 and σ = 1 de�ne the units of energy and length, respe
tively. rij denotes thedistan
e between monomer i and j and rc is the 
ut-o� radius of the potential. We
onsider a purely repulsive polymer model, i.e. we 
hoose rc = 21/6σ, and shift ULJ to
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Figure 2.1: Intera
tion potentials between non-bonded and bonded beads, 
ut and shiftedLennard-Jones and FENE potentials and their sum (LJ+FENE).avoid a dis
ontinuous for
e at the 
ut-o�. The ex
luded volume parameter in this 
ase is
ν2 ≈ a3[82℄. Sin
e ν2 is positive, we have good solvent 
onditions, independent of thetemperature.The 
onne
tivity along the 
hain ba
kbone is assured via the FENE potential[24℄,

UFENE(r) =







−1
2kr

2
0 ln[1 − (r/r0)

2], (r < r0)

∞, (r > r0) ,
(2.2)where r is the distan
e between neighboring monomers in a 
hain, k = 30ǫ/σ, and

r0 = 1.5σ. The equilibrium bond length, b = 0.97σ, follows from the minimum of
ULJ(r) + UFENE(r). The KG model prevents bond 
rossing and yields the 
hara
teristi
properties of polymer solutions and melts[24, 78℄. The potentials 
an be seen in Fig. 2.1.We mimi
 the intera
tion of monomers and solvent with the wall atoms by Eq. (2.1)using the same values for rc, σ, and ǫ as for the monomer-monomer intera
tion. The onlyex
eption 
on
erns the intera
tion between the grafted end-monomers and the wallatoms, where we in
rease ǫ by a fa
tor of 250 with respe
t to the monomer-monomerintera
tion and make the LJ potential attra
tive by doubling rc. The wall atoms remainat �xed relative positions and move only with the given shear velo
ity. Using thisapproa
h, we imply 
hemisorbed polymer 
hains on a substrate with in�nite mass.Solvent mole
ules are simulated as LJ dimers. The 
onne
tivity of the latter, as well as ofarms in stars and their bonding to the 
enter monomer are assured via theFENE-potential, Eq. (2.2), with the same intera
tion parameters as for the
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tion in the brush.Figure 2.2 shows a typi
al snapshot of the simulated system. A top view on the stars,whi
h shows the distribution of them in the system 
an be seen in Fig. 2.3. Theystrongly intera
t with ea
h other as well as with the brushes.

Figure 2.2: Typi
al snapshot of two polymer brushes with stars and expli
it solventmole
ules at stati
 equilibrium. The distan
e between grafting planes is D = 12. Ea
hbrush 
onsists of 
hains with N = 30 monomers per 
hain (blue and red beads). Thegrafting density is approximately twi
e the 
riti
al grafting density, at whi
h the 
hainsoverlap. Green spheres are the stars and white spheres are solvent mole
ules (dimers).
2.2 Ele
trostati
 intera
tion and Ewald summationIn 
harged systems ions are intera
ting via the long-range Coulomb intera
tion

UCoul(r) =
kBTqiqjλB

r
, (2.3)where qi and qj are the 
orresponding 
harges in units of the elementary 
harge e, and λBis the Bjerrum length[Eq. 1.45℄.In order to take this long-range intera
tion into a

ount the Ewald Summationte
hnique[83℄ was implemented. The ele
trostati
 potential may be divided into thefollowing 
ontributions: intera
tions due to 
ontinuous ba
kground 
harge,self-intera
tion and real 
ontribution due to s
reened 
harges. The �rst 
ontribution may
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Figure 2.3: Top view of the system, only the stars are presented (green obje
ts in theFig. 2.2). They are lo
ated in the middle of the bilayer. The fun
tionality of stars is
f = 30, the number of monomers per arm is Nmon = 5.be 
omputed using Fourier transformation

Uf =
1

2V

∑

k 6=0

4π

k2
|ρ(k)|2e−k2/4α, (2.4)where

ρ(k) ≡
N
∑

i=1

qie
ik·ri , (2.5)with ρ(k) the 
harge density in Fourier spa
e, α the width of the Gaussian distribution,whi
h is the 
ompensating 
harge surrounding the ion, k the latti
e ve
tors in Fourierspa
e, V the volume of the simulation box.The se
ond self-intera
tion 
ontribution must be subtra
ted from the sum due to theperiodi
 intera
tion of the 
ontinuous 
harge 
loud, whi
h is 
ompensating the point
harge qi,

Uself =
(α

π

)
1

2

N
∑

i=1

qi
2. (2.6)The ele
trostati
 energy due to the point 
harges and the 
ompensating 
loud in realspa
e has the form

Us−r =
1

2

N
∑

i6=j

qiqjerfc(
√
αrij)

rij
, (2.7)
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e between parti
les i and j, and
erfc(x) ≡ 1 − 2√

π

∫ x

0
e−u2

du. (2.8)In order to take into a

ount that the system is periodi
 only in two dire
tions (slabgeometry), it was shown[85℄, that one 
an add a 
orre
tion term to obtain the 
orre
tlimiting behavior in the limit of in�nitely thin geometry (D ≪ Lx and D ≪ Ly)
Ud = −2π

V
Mz

2, (2.9)where
Mz =

N
∑

i=1

qizi, (2.10)with zi the 
oordinate of the point 
harge qi.The total Coulomb energy is
Uc = Uf + Us−r − Uself − Ud. (2.11)We vary degree of ionization from fi = 1 (strongly 
harged polyele
trolyte), when everymonomer of the 
hain has a 
harge q = −1, to fi = 1/30 (the 
hain length is �xed

N = 30), where only the end-monomer is 
harged. The Bjerrum length in this 
ase isequal to size of monomers λB = σ = 1. Fixing the degree of ionization at fi = 1 we alsovary the Bjerrum length from λB = 0.01σ up to λB = 3σ.Charged systems are simulated under strong 
ompression at a distan
e D = 12 betweenthe walls; the grafting density is varied between ρg = 1.1ρ∗g, ρg = 2.2ρ∗g and ρg = 4.4ρ∗g;only the 
ase of Solvent B is 
onsidered.In order to keep the system ele
troneutral, su
h that
∑

qi = 0, (2.12)where i goes over all 
harges in the system, 
ounterions are added. Two 
ases of
ounterions are investigated. First, we treat 
ounterions as LJ dimers like the solventmole
ules. Every monomer of the dimer is 
harged, su
h that it is bivalent. In addition,we investigate systems with both monovalent 
ounterions and solvent mole
ules, whi
h,only for this spe
ial 
ase, are treated as single monomers. Simulation results of the
harged systems will be presented in Chapter 6.



36 CHAPTER 2. MODEL AND SIMULATION TECHNIQUE2.3 DPD-thermostatTemperature is kept 
onstant at T = 1.68ǫ/kB using a Dissipative Parti
le Dynami
s(DPD) thermostat[83, 87�90℄. The thermostat adds to the total 
onservative for
e onea
h parti
le i a dissipative for
e, Fi
D, and a random for
e, Fi

R. Both for
es are appliedin a pair-wise form, su
h that the sum of thermostating for
es a
ting on a parti
le pairvanishes. With Γ the fri
tion 
onstant, the dissipative for
e reads
Fi

D = −Γ
∑

j(6=i)

ωD(rij)(r̂ij · vij)r̂ij , (2.13)where r̂ij = (ri − rj)/rij and vij = vi − vj with ri and rj , vi and vj position ve
tors andvelo
ities of parti
les i and j respe
tively. We 
hoose the 
ommonly employed weightfun
tion
ωD(rij) =







(1 − rij/rc)
2 (rij < rc) ,

0 (rij ≥ rc) ,
(2.14)with the same 
ut-o� range rc as for the LJ intera
tion. The random for
e is given by

Fi
R = λ

∑

j(6=i)

ωR(rij)θij r̂ij , (2.15)where θij is a random variable with zero mean, unit varian
e, and θij = θji. ωR(rij)denotes the weight fun
tion for the random for
e. Fri
tion and noise strength, λ, de�nethe temperature via λ2 = 2kBTΓ. We 
hoose Γ = 5τ−1
LJ for the fri
tion 
onstant. InRef. [35℄, a larger value (Γ = 12.5τ−1

LJ ) was 
hosen. However, we want to avoidoverdamping of the dynami
s by the thermostat. During the simulation we monitor Tand �nd isothermal 
onditions for all shear velo
ities 
onsidered here.The �u
tuation-dissipation theorem demands that the weight fun
tions for dissipativeand random for
es satisfy
[ωR]2 = ωD. (2.16)The weight fun
tion does not ne
essarily have to be of the spe
i�
 form of Eq. (2.14).Instead one 
an 
hoose a di�erent fun
tion, as long as Eq. (2.16) is ful�lled. Thestrengths and weaknesses of di�erent weight fun
tions have been studied re
ently for theKG model without expli
it solvent[37℄ and a slightly di�erent model with solvent[35℄.Using the DPD thermostat hydrodynami
 intera
tions are taken into a

ount and lo
almomentum is 
onserved, su
h that the Zimm model is appli
able to our results, whi
h wewill demonstrate in the following.



2.4. MD SIMULATIONS 372.4 MD SimulationsTo study the system we use Mole
ular Dynami
s simulation methods[83℄. The equationof motion for parti
le i is
m
d2

ri

dt2
= Fi, (2.17)where Fi is the sum of the all for
es a
ting on the parti
le

Fi = −∇iU + Fi
R + Fi

D (2.18)where Fi
R is de�ned in Eq. (2.15), Fi

R in Eq.(2.13) and the potential is
U = ULJ + UFENE + Uc (2.19)where ULJ in Eq. (2.1), UFENE in Eq. (2.2) and Uc in Eq. (2.11).We solve the 
lassi
al equations of motion via the Velo
ity-Verlet algorithm[83℄. It 
an bewritten in the following form:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t), (2.20)

v(t+ δt) = v(t) +
1

2
δt [a(t) + a(t+ δt)] . (2.21)The algorithm is implemented in the following way. First, the new positions at time

t+ δt are 
al
ulated using Eq. (2.20), and velo
ities at the mid-step are 
omputed using
v(t+

1

2
δt) = v(t) +

1

2
δta(t). (2.22)The for
es and a

elerations at time t+ δt are 
omputed and the velo
ity move 
ompleted

v(t+ δt) = v(t+
1

2
δt) +

1

2
δta(t+ δt). (2.23)The whole pro
ess is iterated using the newly 
omputed positions and velo
ities. Sin
ewe get the velo
ities at ea
h time step from Eq. (2.23), the instantaneous temperature
an be 
al
ulated as

m

Ntot
∑

i=1

〈vi
2〉 = 3NtotkBT, (2.24)where Ntot is the total number of monomers ex
luding surfa
es parti
les.We use a time-step of δt = 2 · 10−3τLJ, where τLJ = σ(m/ǫ)1/2 represents the LJ timeunit. The parti
le mass, m, is set to unity for all monomers and solvent parti
les. Wesystemati
ally 
he
ked that our results remain un
hanged when the time-step is redu
edto δt = 5 · 10−4τLJ.



38 CHAPTER 2. MODEL AND SIMULATION TECHNIQUEWe 
onsider stationary Couette �ows, whi
h are applied by shearing the substrates witha 
onstant relative velo
ity of 2V at �xed distan
e D. The 
orresponding shear rate isde�ned as γ̇ ≡ 2V/D. All quantities will be presented in LJ units.The response to shear may be 
hara
terized by the stress tensor, whi
h 
an be 
al
ulatedusing the Irving-Kirkwood formula[86℄
σαβ =

1

V

(

∑

i

vαvβH(zi)

)

− 1

LXLY





∑

i<j

rα,ijrβ,ij

|rij |
Fij

1

zij
θ

(

z − zi
zij

)

θ

(

zj − z

zij

)



 .(2.25)When the system is divided in the Z-dire
tion into slabs of thi
kness ∆z, H(zi) isexpressed as
H(zi) =







1 z − ∆z
2 < zi < z + ∆z

2

0 otherwise
(2.26)



Chapter 3Stati
 Equilibrium
3.1 Introdu
tionPolymer brushes are deeply investigated by means of theory[28, 49, 50, 55, 84℄,experiments[15, 17, 62, 65, 91, 92℄ and 
omputer simulations[30, 31, 33, 34, 36, 37, 82℄. Instati
 equilibrium two opposing brushes 
an interpenetrate strongly into ea
h other dueto the non-paraboli
 tails of the brush-pro�les. Computer simulations [93℄ demonstratethat highly �u
tuating interfa
e region between the brushes is built. A single brushexpels ma
roobje
ts out of it [94, 95℄. The in�uen
e of a single brush on two in
lusionswas extensively investigated by means of theory and 
omputer simulations[94, 95℄. Theseso-
alled e�e
tive intera
tions are observed in many systems, e.g. in biomembranes[96, 97℄, at �uid-�uid interfa
es [98℄, in liquid 
rystals [99℄, in bilayer lipid membranes[100�102℄, in polymer-
olloid mixtures [103℄ and so forth. Parti
ularly, they are veryimportant in 
ellular pro
esses whi
h lead to aggregation of proteins. We are interestedin the intera
tions between two ma
roobje
ts lo
ated between two opposing brushes.These ma
roobje
ts are 
olloids or polymer stars of di�erent softness. By varying thefun
tionality, f , and the number of the monomers per arm, Nmon, we vary the size andthe shape of the obje
t. We will investigate the in�uen
e of the brushes on theintera
tions between these obje
ts.In this se
tion, the results of simulations 
on
erning the e�e
tive intera
tions in stati
equilibrium between stars and 
olloids in the brush-brush interfa
e will be presented.3.2 Brushes-indu
ed intera
tionsThe stars, when lo
ated 
lose to ea
h other, experien
e steri
 repulsion[104℄, thereforethey do not prefer to be in 
onta
t. In order to investigate e�e
tive intera
tions betweentwo obje
ts and to �s
an� all distan
es between them one 
an use, for example, umbrellasampling[83℄. Experimentally, rare 
on�gurations 
an be investigated using laser39
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(a) Distan
e between thestars d/σ = 12

(b) Distan
e between thestars d/σ = 7

(
) Distan
e between thestars d/σ = 3Figure 3.1: Snapshots of the system, two opposing brushes and two stars in the interfa
ebetween them. Blue and red beads 
orrespond to top and bottom brushes, green beadstothe stars, light green to the 
enter monomer. Close to ea
h other two stars build onebig obje
t (3.1
). When the brushes are slightly separated the brushes start to penetratebetween the stars (3.1b). At large enough distan
es the stars do not feel ea
h other (3.1a).The grafting density is ρg = 3.3ρ∗g, the distan
e between the walls is D = 17.5, the star
on�guration is Nmon = 5, f = 30.traps[105℄, where the intera
tion potential is probed using laser tweezers. Similarly tothis method we 
onne
t the 
enter monomers of the stars to a �xed position in spa
e by aspring. The spring 
onstant is taken to be k = 100. This spring allows us to keep theobje
ts 
lose to ea
h other. Due to intera
tions between polymer stars the position of the
enter monomers after equilibration di�ers from the pinning position. There is ane�e
tive potential between the stars, whi
h is
U0

st−st =
k∆x2

2
, (3.1)where ∆x is the di�eren
e between the measured position of the 
enter monomer and thepinning position. ∆x depends on the relative position of the 
enter of mass of the stars.Our aim is to investigate the deformation of the stars, moreover to study how thee�e
tive potential between these two obje
ts is in�uen
ed by the presen
e of the brushes.The latter 
an be 
al
ulated from the di�eren
e between the potential, whi
h a
tsbetween the stars in the presen
e of the brushes, Ub

st−st, and the pure potential a
tingbetween them, when there are no brushes in the system, U0
st−st,

Ub−st = Ub
st−st − U0

st−st. (3.2)In both situations the potentials between the stars 
an be dire
tly measured via theposition of the 
enter monomers. Computer simulations allow to investigate in detail therelative deformations of ea
h obje
t in order to understand the nature of the o

urringintera
tions.The pinning distan
e d is the distan
e between the 
enter monomers of the stars. Wevaried the pinning distan
e between d/σ = 3 and d/σ = min(Lx/2, Ly/2), where Lx and
Ly are the sizes of the simulation box in X- and Y - dire
tions, in whi
h periodi
boundary 
onditions are applied. The position of the 
enter of mass of ea
h star depends



3.2. BRUSHES-INDUCED INTERACTIONS 41on its deformation by the brushes. All measured variables will be presented as a fun
tionof the distan
e between the 
enter of mass of ea
h star, rcm.The monomers in the system are 
harge neutral. The length of the 
hains in the brushesis �xed to N = 30 for all simulations. The grafting density, ρg is varied between
ρg = 0.085 and ρg = 0.34. This 
orresponds to 2.2ρ∗g and 8.8ρ∗g, where ρ∗g is the 
riti
algrafting density from whi
h on 
hains within a brush start to overlap. Several star
on�gurations were investigated as well as di�erent separations between the walls.Snapshots of the investigated systems for di�erent pinning distan
es of the stars, d arepresented in the Figs. 3.1. The stars are lo
ated in the middle of the bilayer between thetwo opposing brushes. The Y -
oordinate of the pinning position is �xed for allsimulations. The pinned 
enter monomers are able to �u
tuate around their equilibriumpositions. The resulting �u
tuations around the pinning points are less than 1% of thedistan
e between the walls, D. Via variation of the pinning positions in X-dire
tion wevary the distan
e d. The Figure 3.1
 shows the system, when two stars are 
lose to ea
hother and the distan
e between the pinning points is d/σ = 3. The stars build one bigobje
t in this 
ase. They intera
t with the brushes as a whole, su
h that the brushes arenot able to interpenetrate between the stars. Both stars are signi�
antly deformed
ompared to their free 
on�guration, they be
ome aspheri
al. Figure 3.1b shows thesituation, when the stars still intera
t with ea
h other, but the brushes startinterpenetrating between them, whereas Fig. 3.1a 
orresponds to the situation, when twostars are separated 
ompletely. One 
an see that in all three snapshots the stars alsostrongly deform the brushes.In the following we fo
us on two star 
on�gurations. The �rst one is f = 30, Nmon = 5,whi
h is rather 
olloid-like, and the se
ond one is f = 15, Nmon = 10, whi
h is softer andeasier deformable as will be seen below. The �rst star exhibits in the bulk the gyrationradius Rst

g = 1.74 and the se
ond one Rst
g = 2.3. The distan
e between the walls is �xedto D = 17.5 and we 
ompare two grafting densities, ρg = 6.6ρ∗g and ρg = 3.3ρ∗g.It is known that two 
ompressed brushes try to prevent penetration into ea
h other.Similarly to the brushes, it is not favourable for the stars to penetrate into the brush andtherefore they are strongly deformed in Z-dire
tion. The dependen
e of the gyrationradius of the stars on the distan
e between the 
enter of mass of ea
h stars normalized bytheir unperturbed size, rcm/Rst

g , 
an be seen in Fig. 3.2.Let us �rst analyse the 
on�guration of the stars when they are far apart from ea
h other(rcm > 4Rst
g ). The higher is the grafting density of the brushes the more aspheri
albe
omes the star. Compared to the unperturbed star size, X- and Y -dire
tions arein�uen
ed by the presen
e of brushes, but remain almost equal (Rst

g,x ≈ Rst
g,y). The starsare squeezed in Z-dire
tion. One 
an see that the softer is the star, the more 
ompressedit is in Z-dire
tion.Let us turn now to the situation when the stars are 
lose to ea
h other (rcm < 3Rst

g ). Due
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Figure 3.2: Normalized volume fra
tion of brush beads between the stars (upper panel),the gyration radius of stars (left bottom and the right panels) in X- (bla
k lines), Y -(green lines) and Z-dire
tions (red lines) as a fun
tion of redu
ed distan
e between 
entersof mass for di�erent star 
on�gurations. The volume fra
tion of the brush beads in
reases
ontinuously up to the distan
e of �ve times the gyration radius, rcm ≈ 5Rst
g . The gyrationradius of the stars is in�uen
ed up to rcm ≈ 4Rst

g . Left bottom graph 
orresponds to thestar 
on�guration Nmon = 10, f = 15 with the gyration radius Rst
g = 2.3 (size of theunperturbed star), the right panel to the star 
on�guration Nmon = 5, f = 30 with thegyration radius Rst

g = 1.74 (blue dashed-dotted line).to the intera
tion with the other star the most signi�
ant deformation is in the
X-dire
tion, along whi
h the pinning distan
e is varied. Due to the deformation in thisdire
tion, the stars are swollen in Y - and Z-dire
tions. The size of stars di�ers in X- andin Y -dire
tions up to rcm ≈ 4Rst

g , when the brush starts penetrating between the stars.In order to 
hara
terize it quantitatively we measure the volume fra
tion of the beadsbetween two stars, φb(rcm), whi
h is normalized by its value when the stars are in�nitelyfar apart, for instan
e, in the half of the simulation box, φb(Lx/2).
gb(rcm) =

φb(rcm)

φb(Lx/2)
. (3.3)The left upper panel of Fig 3.2 shows gb(rcm). One 
an see that this number is growingupon in
rease of the distan
e between the stars. Comparing two 
on�gurations of the



3.2. BRUSHES-INDUCED INTERACTIONS 43stars one 
an see that the softer the star, the more deformable it is and, therefore, thenumber of brush beads between the stars is larger. The denser the brushes are, theearlier they penetrate between the stars. gb(rcm) rea
hes unity at the distan
e
rcm ≈ 5Rst

g . This 
orresponds to the distan
es at whi
h the brush between the stars donot feel the presen
e of the stars.
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Figure 3.3: Brushes-indu
ed potential between the two stars Ub−st of di�erent 
on�gura-tions for di�erent grafting densities of the brushes and the number of intera
tions betweenthe stars and the brushes normalized by the number of intera
tions when the stars do notintera
t with ea
h other (at the distan
e between the stars equal to the half of the simu-lation box, Lx/2) as a fun
tion of distan
e between the in
lusions. The potential rea
heszero approximately when the number of intera
tions between the brushes and stars rea
hesa 
onstant.Now let us 
hara
terize how the brushes modify the intera
tion between the in
lusions.One 
an see in Fig. 3.3 that it leads to attra
tive potential. Su
h behavior have beenobserved in polymer melts, when the attra
tive depletion intera
tion between 
olloids wasobserved [104℄. Similarly to the 
ase of polymer melts, an in
rease of the polymer densityleads to a stronger attra
tion. But due to the irreversible an
horing to the walls and



44 CHAPTER 3. STATIC EQUILIBRIUMstrong ability to deform of the in
lusions, the e�e
t is mu
h stronger(up to 40kBT ) forthe 
ase of two opposing brushes with the stars. One 
an see, that the softer the star, theless in�uen
e has the brush on the e�e
tive intera
tion between them, eventhough softerstars are larger than the stars with higher fun
tionality. The e�e
tive potential rea
heszero at the distan
es between the 
enters of mass of about four times the radius ofgyration of the unperturbed star, d ≈ 4Rst
g , whi
h is in the strong 
orrelation with thedeformation of the stars.The e�e
tive potential 
an be 
hara
terized also in terms of the number of binaryintera
tions between the brushes and the stars, Nb−st (see Fig. 3.3, lower plot). Whenthe ma
roobje
ts are 
lose to ea
h other, Nb−st is smaller than when they are far apart.Similarly to the number of beads o

urring between the stars, gb(rcm), the number ofintera
tions grows upon in
rease of the distan
e between the stars. Nb−st rea
hes a
onstant at distan
es rcm ≈ 4Rst

g . At this distan
e the stars stop intera
ting with ea
hother and ea
h ma
roobje
t behaves like a separate, independent one.In 
ase of so-
alled ��uid� brushes (allowing the grafted ends to freely move on thesurfa
e in X- and Y -dire
tions), we expe
t a smaller in�uen
e of the brushes.Next we repla
e the stars by two hard spheres. The diameter of the spheres, Rc = 3σ, isthree times larger than the size of monomers in the brushes. In the 
ase of the polymermelt one 
an observe entropy-indu
ed short-range depletion for
es[104℄. The depletionzone is de�ned around the spheres at 2Rc < d < 3Rc. These for
es 
an be des
ribed andunderstood in terms of the Asakura-Oosawa approa
h [103℄, whi
h predi
ts depletionintera
tions between them. The e�e
t of the end-grafting of the 
hains does not in
reasestrongly the depletion potential 
ompared to the polymer melts Upper plot of Fig. 3.4shows the e�e
tive potential a
ting between two hard sphers as a fun
tion of the pinningdistan
e between them, Ub−co(d), for di�erent grafting densities.The higher the grafting density the more signi�
ant the in�uen
e of the an
hored polymer
hains. For the highest grafting density, ρg = 6.6ρ∗g, a small periodi
ity appears. Thismay be due to the penetration of the brush-monomers between the pinned hard spheres.In
rease of the distan
e between the walls �xing the grafting density of the brushes leadsto a de
rease of the density of the brushes in the system and, therefore, to a de
rease ofthe in�uen
e on the intera
tions between the ma
roobje
ts. Our investigations revealthat the bigger the 
olloids, whi
h are pla
ed in the interfa
e, the bigger the for
es a
tingon them (not shown here).Similarly to the 
ase of stars, an in
rease of the grafting density leads to an in
rease ofthe number of binary intera
tions between the brushes and in
lusions (Fig. 3.4, lowerplot). For the highest grafting density one 
an see that the number of intera
tions showsan overshooting e�e
t of ≈ 3% and be
omes even larger than for the 
ase, when the twoin
lusions are far apart from ea
h other. This happens at the distan
es when thepotential shows a minimum in its periodi
 behavior. Sin
e the brushes build a highly
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Figure 3.4: Brushes-indu
ed potential between two 
olloids (hard spheres with radius
Rc = 3σ) as a fun
tion of distan
e between the pinning points, d. The more brush beadsare in the system, the more pronoun
ed is the e�e
tive depletion intera
tion between thein
lusions. The number of intera
tions between the brushes and hard spheres demonstratesan overshooting e�e
t for the highest grafting density, when the periodi
ity appeares inthe brush-indu
ed potential.�u
tuating interfa
e, this periodi
ity may be interpreted also as a �u
tuation indu
edfor
es, whi
h have been dis
overed in the systems that 
onsist of bilayer membranes withproteins [101℄.Comparing the stars and the hard spheres one 
an 
on
lude, that the shape, softness, thesize and the 
omponents of the in
lusions play a very signi�
ant role. The e�e
tiveintera
tions between the stars are strong at small distan
es, when the obje
ts are 
lose tothe dire
t 
onta
t with ea
h other, therefore observed brush-indu
ed potential of the softin
lusions has elasti
 nature. The periodi
ity of the potential that is observed for thehard spheres has not been measured for the soft obje
ts. These for
es are rather smallwith the small signal-to-noise ration due to high �u
tuations of both, the brushes and thestars, and need a signi�
ant in
rease of statisti
s.
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Chapter 4Steady-state shear
4.1 Introdu
tionIn this se
tion we will present our investigations of two opposing, highly 
ompressedpolymer brushes with soft 
olloids. Our aim is to investigate the in�uen
e of the polymerstars on the response to shear, to study the stru
ture of the bilayer and its relaxationtime, and, moreover, to understand a possible me
hanism of the low fri
tion phenomenabetween two opposing brushes reported in experiments[15℄. We start our des
ription fromthe theoreti
al approa
h, whi
h gives predi
tions for the behavior of the lateralextensions of the brushes, as well as shear for
es and vis
osity. Afterwards, we present
omputer simulation results whi
h are in a good agreement with the newly developedtheory. In our theoreti
al approa
h we �rst analyse the behavior of the system in linearresponse (W<1), when shear for
es are proportional to the Weissenberg number and thestru
ture of the system is not in�uen
ed signi�
antly by shear. Then, we study thebehavior of the system for large Weissenberg numbers (W ≫ 1) when the 
hains of thebrush are strongly stret
hed. The starting point of our theory is that the two opposingbrushes are highly 
ompressed (2h/D ≥ 2), su
h that the density pro�le in gradientdire
tion exhibits an almost uniform behavior (ex
ept the layering e�e
t at the walls).Moreover, we assume that the high 
ompression leads to a �at density pro�le for all
onsidered shear rates, su
h that the sum of the monomer density pro�les of the brushes,
ρ1(z) + ρ2(z),(ρ1(z) and ρ2(z) are density pro�les of the top and bottom brushes,respe
tively) is uniform. In the following, we therefore assume a uniform monomer
on
entration, c ∝ Nρg/D, in the overlap region. We will use this feature below for thelinear response regime. Moreover, let us assume that the brushes 
an be approximated bythe MWC approa
h[55℄, su
h that ea
h polymer brush provides paraboli
 mole
ular �eld[see Eq. (1.26)℄. Let us allow the 
hain ends to interpenetrate into the opposing brushdue to thermal �u
tuations, su
h that the interpenetration depth, i.e. the overlapthi
kness of the bilayer, 
an be derived as in Eq. (1.32). The interpenetration depth, δ,47



48 CHAPTER 4. STEADY-STATE SHEARdepends on the degree of the polymerization, N , monomer size, a, the distan
e betweenthe substrates, D, and the grafting density ρg.4.2 Theoreti
al approa
h4.2.1 Zimm dynami
sLet us �rst 
onsider semidilute brushes. In this 
ase, a brush may be 
onsidered as adense melt of 
on
entration blobs[45℄. Ea
h grafted 
hain in this 
ase 
onsist of the
nc = N/gc blobs, where gc is the number of monomers in ea
h blob, the size of ea
h blobis ξc depends expli
itly on the 
on
entration of the system, c (see Eq. (1.8)). Therefore,Eq. (1.32) still holds with the repla
ements

N → N/gc, a→ ξc. (4.1)With the uniform 
on
entration c ∝ Nρg/D, Eq. (1.32) yields for the interpenetrationdepth
δ ∝ a

[

N2ν(ρga
2)2(1−2ν)

( a

D

)1−ν
]1/3(3ν−1) (4.2)for strongly 
ompressed, semidilute brushes. Under melt 
onditions, the gyration radiusin shear dire
tion (lateral extension) of a 
hain is given by Rg,x(0) ∝ N1/2a. With thesame transition to the blob pi
ture [see Eq. (4.1)℄ we get

Rg,x(0) ∝
(

N

gc

)1/2

ξc ∝ a

[

Nν

(

D

ρga3

)2ν−1
]1/2(3ν−1) (4.3)for semidilute brushes in linear response.In the next step, we estimate the fri
tion for
e per unit area (fx/A) for Weissenbergnumbers W ≤ 1 by assuming Zimm dynami
s in the blob[45℄. Sin
e the size of the blobsis the same in the whole bilayer, the knowledge of the interpenetration depth [see Eq. 4.2℄allows to 
al
ulate the number of blobs in the overlap region. Sin
e there are cδ/gc blobs(per unit area) in the overlap region, ea
h having a fri
tion 
oe�
ient ηsξc (ηs the solventvis
osity), and a typi
al velo
ity is the shear rate multiplied by the distan
e between thewalls, γ̇D, we may write

fx(γ̇)

A
∝ cδ

gc
ηsξcγ̇D (W ≤ 1). (4.4)With Eqs. (1.8) and (4.2) this leads to

fx(γ̇) ∝
[

N8ν(ρga
2)2(1+ν)

( a

D

)4(ν−1)
]1/3(3ν−1)

ηsγ̇A (4.5)



4.2. THEORETICAL APPROACH 49in the linear response regime. This result is di�erent from the original 
al
ulation byKlein[16℄, who obtains
fx(γ̇) ∝ hρ1/2

g

(

h

D

)2/3(3ν−1)

ηsγ̇A (W ≤ 1). (4.6)This expression 
an be transformed into
fx(γ̇) ∝

[

N9ν−1(ρga
2)(7ν−1)/2ν

( a

D

)2
]1/3(3ν−1)

ηsγ̇A, (4.7)when the relation h ∝ aN(ρga
2)(1−ν)/2ν [81℄ is used. A 
omparison with Eq. (4.5) revealsan almost identi
al exponent for N , but di�erent s
aling-laws for ρg and D. We attributethese deviations to the fa
t that Klein starts out from

δ ∝ ρ−1/2
g

(

h

D

)1/3

, (4.8)whi
h rather des
ribes the interpenetration for weakly 
ompressed, molten brushes, andto a di�erent estimate of the number of blobs in the interpenetration zone. However,sin
e we base the following s
aling argument on the N -dependen
e of the shear for
e,Klein's approa
h would lead to minor di�eren
es.We anti
ipate that thermal �u
tuations allow the 
hains of a brush to ex
hange betweenthe overlap region and deeper layers[106℄. Hen
e, the shear stress should be sustained bymore 
hains than only those that are in the overlap region at a given time. However, ourdes
ription is based on the lateral 
hain extension averaged over the whole layer. This isformally equivalent to the assumption that all 
hains sustain the stress equally.The 
riti
al shear rate follows from the de�nition of the Weissenberg number Eq. (1.58)with W = 1. Using ρg = Ng/A with Eqs. [4.3℄ and (4.5), we �nd
γ̇∗ ∝ kBT

ηsa3

[

N−19ν(ρga
2)20ν−13

( a

D

)14ν−11
]1/6(3ν−1)

, (4.9)or, with ν ≈ 0.588, γ̇∗ ∝ N−2.44ρ−0.27
g D0.6. For the shear for
e at W = 1, [see Eq. (1.58)℄,we obtain
fx(γ̇∗) ≈ NgkBT

Rg,x(0)
. (4.10)From the Eqs. (4.3) and (4.10) one �nds

fx(γ̇
∗) ∝ NgkBT

a

[

N−ν

(

ρga
3

D

)2ν−1
]1/2(3ν−1)

. (4.11)We now address the regime beyond linear response. At large shear rates, the 
hains



50 CHAPTER 4. STEADY-STATE SHEARstrongly stret
h in the shear dire
tion, su
h that Rg,x(γ̇) ∝ N . Now let us de�ne theratios for the 
hain extension, shear for
es, and vis
osities between the non-Newtonianresponse regime and stati
 equilibrium. For the 
hain extension
qα ≡

R2
g,α(γ̇)

R2
g,α(0)

, (4.12)with α = x (shear dire
tion), or α = z (gradient dire
tion) for shear for
es
u ≡ fx(γ̇)

fx(γ̇∗)
; (4.13)and for the vis
osity

s ≡ ηxz(γ̇)

ηxz(0)
, (4.14)with ηxz(0) the zero shear vis
osity.Sin
e fx/A = σxzγ̇, one may write for the shear vis
osity

s ∝ fx(γ̇)

fx(γ̇∗)
W−1 ⇒ u ∝ sW. (4.15)With Eq. (4.3) we obtain

qx ∝ N (2−5ν)/(1−3ν) (W > 1). (4.16)On the other hand, Eq. (4.9) yields
W ∝ γ̇∗−1 ∝ N19ν/6(3ν−1), (4.17)su
h that

qx ∝W 6(5ν−2)/19ν (W > 1). (4.18)For strongly stret
hed 
hains, we expe
t the shear for
e to be proportional to the totalnumber of monomers (∝ NgN) and the typi
al velo
ity, i.e.
fx(γ̇) ∝ NgNγ̇D ∝ N (W > 1). (4.19)Hen
e, upon inserting Eqs. (4.11) and (4.19) into Eq. (4.13), one �nds

u ∝ N (2−7ν)/2(1−3ν) , (4.20)for the regime beyond linear response. In 
ombination with Eq. (4.17), this yields forshear for
es
u ∝W 3(7ν−2)/19ν (W > 1), (4.21)



4.2. THEORETICAL APPROACH 51and with Eq. (4.15) for the vis
osity
s ∝W−2(3−ν)/19ν . (4.22)4.2.2 Rouse dynami
sSo far we have des
ribed strongly 
ompressed, semidilute brushes in the Zimm model(in
luding hydrodynami
 intera
tions). Let us assume that hydrodynami
 intera
tionsare fully s
reened and that the monomers obey Rouse dynami
s instead of Zimmdynami
s. This would 
orrespond to the 
ase of �dry� brushes.In the following, we distinguish two 
ases, a molten brush, where in addition tohydrodynami
 intera
tions also the ex
luded volume intera
tions are s
reened, and asemidilute brush 
onsisting of ex
luded volume blobs as in Se
. 4.2.1.For brushes without hydrodynami
 intera
tions, the fri
tion for
e is proportional to thenumber of monomers in the overlap region, the fri
tion 
oe�
ient, ψ, and the typi
alshear velo
ity in the system, γ̇D,

fx(γ̇) ∝ cδψγ̇DA (W ≤ 1). (4.23)Let us �rst 
onsider molten brushes. In this regime, Eqs. (1.32) and (4.23) yield
fx(γ̇) ∝ N5/3 (W ≤ 1). (4.24)Sin
e Rg,x(0) ∝ N1/2 under melt 
onditions, we �nd with Rg,x(γ̇) ∝ N and Eq. (1.58)
γ̇∗ ∝ kBT

ψa2
N−13/6

(

D

a

)1/3

. (4.25)In the non-linear regime, this yields
qx ∝ N ∝W 6/13 (W > 1) (4.26)With fmelt

x (γ̇) ∝ N at large shear rates and fx(γ̇∗) ∝ 1/Rg,x(0) [ Eq. (1.58)℄, we �nd
u ∝ N3/2 ∝W 9/13 (W > 1) (4.27)and for the vis
osity

s ∝W−4/13. (4.28)This result 
an be 
ompared to the earlier predi
tions of the vis
osity of the moltenbrushes[107℄. In that study the brushes were under weak 
ompression. This leads to thepredi
tion for the shear vis
osity s ∝W 1/2.Now let us turn to the semidilute brushes with Rouse dynami
s. Although this 
ase



52 CHAPTER 4. STEADY-STATE SHEARappears awkward from an experimental point of view, it 
an be 
ompared to numeri
alapproa
hes where hydrodynami
 intera
tions are not taken into a

ount, e.g. due tospe
i�
 thermostat implementations (e.g. Langevin theromostat).When the 
hains are swollen, the interpenetration length is given by Eq. (4.2). WithEq. (4.23), the shear for
e for dry, semidilute brushes in linear response s
ales as
fx(γ̇) ∝ N (11ν−3)/3(3ν−1) (W ≤ 1). (4.29)The 
riti
al shear rate follows from Eqs. (1.58) and (4.3), su
h that

γ̇∗ ∝ kBT

ψa2

[

N6−25ν(ρga
2)7(2ν−1)

( a

D

)8ν−5
]1/6(3ν−1)

. (4.30)Beyond linear response this yields, together with Eq. (4.16),
qx ∝W 6(5ν−2)/(25ν−6) (W > 1) (4.31)for the lateral 
hain extension, and the s
aling of u with W follows from Eqs. (4.20) and(4.30), su
h that
u ∝W 3(7ν−2)/(25ν−6) (W > 1), (4.32)for the shear for
es.4.3 Computer simulationsIn this se
tion, we present data of 
omputer simulations for two 
ompressed, opposingpolymer brushes under lateral steady-state motion of the adsorbing substrates. We
ompare systems with stars and without stars, i.e. Solvent C, D and Solvent B, whi
hwere de�ned in Chapter 2. We 
ompare the simulation results with the theoreti
alpredi
tions made above.4.3.1 Density pro�les and overlap regionLet us �rst analyse the stru
ture of the system. An investigation of monomer and solventdensity pro�les (Fig. 4.1) reveals that solvent mole
ules a

umulate at the substrates(seen also for a similar model[38℄) and in the interfa
e of the two brushes, even in stati
equilibrium inspite of the presen
e of stars. The brushes interpenetrate into ea
h other.Solvent mole
ules are distributed in the system, even at the surfa
es. The stars arelo
ated in the middle of the system between the brushes. Brushes under shear be
omemore dense and squeeze solvent mole
ules into the interfa
ial region between the brushes(see Fig. 4.1 lower left plot). The stars be
ome more 
ompressed and are pushed out ofthe brush more signi�
antly, su
h that the interpenetration between brushes and stars
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z/DFigure 4.1: Monomer and solvent density pro�les at distan
e D = 17.5 between graftingplanes for 
hains of lengthN = 30. The grafting density is ρg ≈ 4.4ρ∗g for all systems. Stati
equilibrium (�rm lines) is 
ompared to the steady shear 
onditions at our largest shearvelo
ity, v = 0.23 (dotted lines). The dashed lines represent the Solvent B system. Bla
klines 
orrespond to the brushes; green lines to stars of 
on�guration f = 30, Nmon = 5;red lines to the solvent mole
ules. The panel above shows a plot of the overlap betweenthe brushes (left) and between the top brush and stars (right), whi
h 
an be quanti�ed bythe area under ρ1(z)ρ2(z) and ρ1(z)ρ3(z) 
orrespondingly (see text). Both overlaps brush-brush and brush-star reveal Gaussian distributions. The lower panel shows density pro�lesof the brushes, solvent mole
ules, and stars. The left plot below shows a 
omparisonbetween the sheared and unsheared systems of Solvent C, the right plot 
ompares theSolvent B and Solvent C systems. The blue dashed line shows a sum of all 
omponents inthe system.redu
es. The sum of the all 
omponents does not reveal signi�
ant di�eren
es, su
h thatshear does not indu
e density �u
tuations; the system keeps its low 
ompressibility.While repla
ing the solvent mole
ules by stars the total density of the system remains thesame. The systems without stars exhibit a larger brush thi
kness (see Fig. 4.1 lower rightplot); the brushes in the presen
e of the stars are strongly deformed. The sum of all
omponents reveal a �at density pro�le.The interpenetration between the brushes 
an be quanti�ed by an overlap integral[31, 37℄,
Iov(γ̇) ∝

∫

dzρi(z)ρj(z), (4.33)where ρi(z) and ρj(z) are the density pro�les of the 
omponent with i = 1 and j = 2
orresponding to the top and bottom brushes, i = 1 and j = 3 to the pro�les of the top



54 CHAPTER 4. STEADY-STATE SHEARbrush and stars.The upper plot of Fig. 4.1 shows the overlap between di�erent 
omponents of the system
hara
terized as de�ned in Eq. (4.33). It reveals, that the interpenetration betweenbrushes with stars (Solvent C) is redu
ed 
ompared to the star free 
ase(Solvent B).Furthermore, we observe that, under su�
iently strong shear, the layer thi
knessde
reases and this leads to a redu
ed interpenetration depth. The right upper plot showsthe interpenetration between the stars and brushes. Similarly to the 
ase of two brushesit has a Gaussian form.
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Figure 4.2: Distribution of brush ends and 
enter monomer of stars atD = 17.5 betweengrafting planes for 
hain length N = 30. The grafting density is ρg ≈ 4.4ρ∗g. Bla
k lines
orrespond to brushes, green lines to stars, dotted lines to steady shear motion, full lines tostati
 equilibrium. The system without stars in stati
 equilibrium is presented by dashedlines.Figure 4.2 proves that brushes interpenetrate deeply into ea
h other. The end-monomerdistribution shows that 
hain ends of one brush interpenetrate deeply into the opposingbrush. This e�e
t de
reases under shear. The interpenetration of the brushes stillremains but is signi�
antly de
reased, the 
hains be
ome more stret
hed, whi
h 
an be
on
luded from the de
rease of the maximum of the distributions. The stars hinder theinterpenetration between the brushes. The distribution of 
enter monomers be
omesmore narrow, stars are expelled out of the brushes similarly to the solvent mole
ules and
on
entrate in the interfa
e of the bilayer.The brushes and the stars deform ea
h other signi�
antly. The deformation of the starswas des
ribed in Chapter 3. Let us turn now to the deformation of the brushes. It 
an be
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hara
terized by the analysis of the brush height around the 
enter monomer of the stars,
H(r− rm), with rm is the position of the 
enter monomer of the star. This is presented inFig. 4.3. The brush height is lower around the 
enter monomer. It 
ontinuously grows upto the level when the brush is not in�uen
ed by the presen
e of the stars. Thedeformation of the brushes de
reases upon in
reasing softness of the stars. Under strongshear 
ondition the brush around the star gets mu
h weaker. The brush height be
omesalmost 
onstant, the deformation is smoothed away, this leads on turn also to a strongdeformation of the stars under shear, as we will see below.
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Figure 4.3: The brush height around the 
enter monomer of a star. The brush height isnormalized by its value, when the brush is not in�uen
ed by the presen
e of the stars (at
r − rm = 3Rst

g,x) for two di�erent star 
on�gurations. The full symbols 
orrespond to thesteady shear, the empty symbols to stati
 equilibrium. Bla
k 
urves 
orrespond to the star
on�guration f = 30, Nmon = 5, red lines to f = 15, Nmon = 10. The brushes are stronglydeformed by the stars. Under shear the deformation is smoothed. The distan
e betweenthe walls is D = 12, the grafting density is ρg ≈ 2.2ρ∗g, the 
hain length is N = 30.Let us turn ba
k to the interpenetration region between the brushes and for
es a
ting inthis region. The 
omponents are the brushes, stars and solvent mole
ules. Correspondingin the following to the indi
es �b�, �so�, �st�. The for
es a
ting between the di�erent
omponents, e.g. between brushes and solvent mole
ules, will be signatured by the index�b-so�. A previous study[31℄ revealed that Iov(γ̇) is proportional to the number of binaryintera
tions between monomers of di�erent brushes, Nb−b
int , whereas the latter isproportional to the for
es a
ting between the brushes in shear dire
tion, F b−b

x , i.e.
Iov(γ̇) ∝ Nb−b

int ∝ F b−b
x (4.34)
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Figure 4.4: Overlap integral Iov vs. number of binary intera
tions Nb−b
int . The full linerepresents the previously observed linear dependen
e for the star-free 
ase[31℄. All systems
orrespond to the solvent C.In Fig. 4.4 the dependen
e of the overlap integral on the number of intera
tions betweenthe brushes 
an be seen for the systems with stars. Stars de
rease signi�
antly theinterpenetration between the brushes, but do not modify the proportionality given inEq. (4.34).Various numeri
al investigations[31�34, 36, 37℄ demonstrated shear thinning behavior. Itwas shown that this 
oin
ides with a redu
ed overlap between the grafted layers and thatma
ros
opi
 transport properties, e.g. the shear vis
osity, are 
orrelated to Iov(γ̇).While the overlap integral, in prin
iple, may be measurable experimentally, we 
anstraightforwardly 
ount the number of binary inter-brush intera
tions or measure thefor
es a
ting between the brushes and other 
omponents of the system.Figure 4.5 shows F b−b

x as a fun
tion of shear rate for di�erent star 
on�gurations anddistan
es between the walls, D. The presen
e of stars de
reases the for
e a
ting betweenthe brushes, sin
e the interpenetration de
reases due to the fa
t that the stars are lo
atedin the middle of the system. Let us 
ompare �rst the for
es a
ting between the brushesfor di�erent star 
on�gurations. One 
an see (pronoun
ed at the highest shear rate) thatthe softer the stars the qui
ker de
reases the for
e between the brushes upon in
rease ofthe shear rate. Moreover, upon in
rease of the distan
es between the walls the for
estarts de
reasing at higher shear rates. The same 
on
lusion 
an be drawn when one
ompares the systems with and without stars, namely that the for
es between the
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Figure 4.5: For
es a
ting between the brushes as a fun
tion of shear rate on a double-logarithmi
 s
ale. For the di�erent 
onsidered systems, the for
e F b−b
x varies over almosttwo orders of magnitude in stati
 equilibrium. The presented systems, with the graftingdensity ρg = 2.2ρ∗g, demonstrate di�erent behaviors upon in
rease of the distan
e betweenthe walls. The softer the star the qui
ker de
reases the for
e a
ting between the brushes.brushes in the 
ase of the Solvent B start de
reasing at lower shear rates than in the 
aseof the Sovent C, when the half of the dimers is repla
ed by the stars.In Fig. 4.6 the dependen
e of the for
es a
ting between the brushes and stars on theshear rate is presented. It reveals that the in
rease of the distan
e between the substratesresults in less interpenetration between the brushes and stars - the same e�e
t, whi
h isobserved in the star-free 
ase between the brushes. When the density of stars is kept
onstant, the systems with di�erent star 
on�gurations demonstrate di�erent responsesto shear. The softer the star, the more intera
tions between stars and brushes o

ur. Theinterpenetration between them starts de
reasing for smaller shear rates upon in
reasingthe �softness� of stars.The same law as in Eq. 4.34 
an be observed for the interpenetration between thebrushes and polymer stars. It demonstrates, for the overlap between the stars and thebrushes, Ib−st, the number of binary intera
tions between them, Nb−st
int , and the for
es inshear and in gradient dire
tion between them F b−st

α , with α = x or α = z, respe
tively,the following law:
Ib−st(γ̇) ∝ Nb−st

int ∝ F b−st
α . (4.35)
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Figure 4.6: Semi-log plot of the for
es, a
ting between the brushes and stars in sheardire
tion (F b−st
x ) as a fun
tion of shear rate. With in
reasing distan
e, D, between thesubstrates the for
es between brushes and stars de
rease. Varying the �softness� of thestars via their fun
tionality, f , and length of arms, Nmon, results in a di�erent behavior.The shorter the length of the arms the less intera
tion o

urs. The grafting density is

ρg = 2.2ρ∗g, the 
hain length, N=30In Fig. 4.7 the last part of the relation (4.35) is demonstrated. The for
es a
ting the starsand brushes are larger in the shear dire
tion between, than in the gradient dire
tion. Onepossible explanation may be that the brush interpenetrates through the layer of stars intothe opposing brush, su
h that in
reasing the shear rate the brush has to leave �rst theopposing brush, whi
h results also in a strong intera
tion with the stars in sheardire
tion; upon further in
rease of the shear rate the brush starts leaving the layer ofstars resulting in further de
rease of the for
e. As 
an be seen, the for
es in gradientdire
tion de
rease similarly to the for
es in shear dire
tion with in
reasing shear rate.4.3.2 Kineti
 fri
tion 
oe�
ientA di�erent behavior of systems with and without stars 
an be observed for the kineti
fri
tion 
oe�
ient, µ. We de�ne µ as the ratio between shear and normal for
es,
µ(γ̇) =

fx(γ̇)

fz(γ̇)
, (4.36)
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Figure 4.7: For
es in gradient and in shear dire
tion F b−st
α with α = x 
orresponding toshear dire
tion (full symbols) and α = z gradient dire
tion (empty symbols) as a fun
tionof number of intera
tions between brushes and stars Nb−st
int , demonstrating the relation(4.35). The systems are the same as in Fig. 4.6.whi
h we apply to the 
enter-of-mass of the 
on�ning substrates to maintain 
onstant vand D. We veri�ed that our results are independent of whether we 
hara
terize thema
ros
opi
 response by measuring for
es at the substrate or by 
al
ulating elements ofthe stress tensor, using the Irving-Kirkwood method[86℄ [see Eq. (2.25)℄.All systems keep their low 
ompressibility even under strong shear. Therefore, fz remainsalmost independent of γ̇ , and only at our largest velo
ities we �nd (for some 
ases) asmall in
rease of fz by approximately 4%.Upon in
rease of the shear rate and de
rease of the distan
e between the walls while�xing the other parameters leads to an in
rease of the fri
tion 
oe�
ient µ.The dependen
e of µ on the shear rate γ̇, where we vary the grafting density ρg between

ρg = 1.1ρ∗g (when the brushes are in a slightly stret
hed regime) and ρg = 4.4ρ∗g (forhighly stret
hed brushes), is presented in Fig. 4.8. It demonstrates that the in
rease ofthe grafting density at �xed D (su
h that the density of solvent de
reases) results inhigher fri
tion. If one in
reases the length of 
hains, N , but keeps the density of thebrush or the grafting density 
onstant, leads in both 
ases to higher fri
tion, too. Thisresult is 
on�rmed experimentally[108℄.The solvent plays a 
ru
ial role in polymer-brush lubri
ation pro
esses[32℄. E�e
ts of
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Figure 4.8: Kineti
 fri
tion µ as a fun
tion of the shear rate γ̇. In
rease of the graftingdensity ρg and of the 
hain length N leads to the in
rease of the fri
tion 
oe�
ient. Thedistan
e between the walls is D = 14.75, Solvent C, the 
on�guration of stars is f = 30and Nmon = 5.solvent are also in details analysed in Ref. [109℄. The presen
e of expli
it solvent leads tosmaller values of µ. For solvent-free systems, µ de
reases for larger grafting densities dueto larger normal for
es. Repla
ing a part of the solvent by stars leads e�e
tively to anin
rease of the size of the solvent mole
ules.Figure 4.9 shows the kineti
 fri
tion 
oe�
ient µ for systems of Solvent C and Solvent D.In
rease of both size of stars and density of stars results in higher fri
tion. Thisdemonstrates that the bigger the solvent mole
ules or in
lusions are and the morein
lusions are in the system the higher the fri
tion. The e�e
t of mobile polymers onnormal and shear for
es between polymer brushes was investigated alsoexperimentally[91℄ and in previous simulations[36℄ 
on�rming these tenden
ies.The whole pi
ture is shown in Fig. 4.10, where the kineti
 fri
tion 
oe�
ient is presentedfor the solvent-free 
ase (Solvent A), with dimers (Solvent B), and star mole
ules(Solvent C and Solvent D).In Ref. [109℄ it was demonstrated, that an in
rease of the grafting density for thesolvent-free 
ases leads to a de
rease of fri
tion. Experiments[108℄ 
on�rm this e�e
t.Fgure. 4.10 shows that repla
ing the solvent mole
ules by stars leads to a higher fri
tion,whi
h means, in other words, that all in
lusions presented in experimental systems or innature, i.e. disadsorbed 
hains, or any foreign 
hains, whi
h 
an form either �soft� 
oils or�hard� globules depending on the 
hemi
al in
ompatibility with the brush, or proteins, oreven dust or 
olloids, lead to higher fri
tion.
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Figure 4.9: Comparison of the kineti
 fri
tion 
oe�
ient µ for di�erent densities of starsof the systems Solvent C and Solvent D and di�erent star 
on�gurations from small and
olloid-like stars (f = 50, Nmon = 3) up to larger and softer ones (f = 15, Nmon = 30).The distan
e between the walls is D=14.75, the grafting density is ρg = 2.2ρ∗g, the 
hainlength is N = 30.4.3.3 Stru
ture of brushesNow let us 
hara
terize the size of the brush in shear and gradient dire
tions. The 
hainextension may be 
hara
terized by the radius of gyration [Eq. (1.2)℄ for di�erent shearrates γ̇. The gyration radius, Rg, as a fun
tion of shear rate, γ̇, 
an be seen in Fig. (4.11).It reveals that systems of di�erent 
omposition, when we vary the grafting density, ρg,the 
hain length, N , the distan
e between the walls, D, fun
tionality, f , and length ofarms in stars, Nmon, also when we take the di�erent solvent types from Solvent A toSolvent D, demonstrate di�erent behaviors, similar to the behavior of for
es between thebrushes shown in Fig. 4.5. Some systems do not 
hange their stru
ture signi�
antlyunder steady shear, other systems are in a 
rossover from the linear response regime tothe non-Newtonian behavior, other systems exhibiting only non-Newtonian response.Often in 
omputer simulations[60℄ one plots the gyration radius as a fun
tion ofWeissenberg number, where the latter is de�ned via the relaxation time of a single 
hainin bulk of length N [see Eq. 1.56℄. We will show below that another de�nition of theWeissenberg number is ne
essary.Linear response should apply for small values of W , while non-linear e�e
ts areimportant for large values. However, the pre
ise s
ale for W is somewhat arbitrary,be
ause the bilayer has a broad spe
trum of relaxation times and it is not 
lear whi
h ofthem is best suited. Therefore, it is 
onvenient to use an operational de�nition that sets
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Figure 4.10: Comparison of kineti
 fri
tion 
oe�
ient µ as a fun
tion of shear rate, γ̇, forfour di�erent investigated systems: Solvent A, Solvent B, Solvent C and Solvent D. Thedistan
e between the walls is D = 12, the grafting density is ρg = 2.2ρ∗g, the 
hain lengthis N = 30. Systems with expli
it solvent mole
ules demonstrate the smallest fri
tion.In
rease of the size of solvent mole
ules leads to an in
rease of fri
tion.the s
ale for W . Here, we determine γ̇∗ operationally by plotting the raw data for qx [seeEq. 4.12℄ against γ̇ and shifting the data su
h that a master 
urve results. The fa
t thatthis pro
edure yields an (almost) perfe
t data 
ollapse (Fig. 4.12) is a non-trivial resultbe
ause the raw data strongly di�er from ea
h other. With this pro
edure we measurethe 
riti
al shear rate, γ̇∗, whi
h is inversely proportional to the relaxation time, τ , of thebilayer.Figure 4.12 shows that qz de
reases only weakly for W > 1. The 
hain extension in thegradient dire
tion saturates at di�erent values of W , depending on the 
hosen parameters(ρg, D, N , f , Nmon), due to the �nite 
ompressibility of the grafted layers. Moreover,Fig. 4.12 reveals that in gradient dire
tion the relaxation time is di�erent as 
ompared tothe shear dire
tion.In agreement with the early simulation studies[19℄, we �nd a pronoun
ed stret
hing of the
hains along the shear dire
tion beyond the linear response regime. The data do notrea
h the limit of fully extended 
hains, where qx should be
ome 
onstant. Rather weobtain a universal power-law,
qx ∝W φ, (4.37)for Weissenberg numbers W > 1. The exponent φ ≈ 0.5 (indi
ated by straight lines) is inperfe
t agreement with the predi
tions (4.18) derived analyti
ally in Se
. 4.2.1 forsemidilute brushes with Zimm dynami
s. For ν = 0.588 the predi
ted exponent is equal
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=30Figure 4.11: Log-log plot of the gyration radius squared R2

g of brushes in shear dire
tion.Sele
ted simulated systems, whi
h have di�erent distan
es between the substrates D, 
hainlengths N , grafting densities ρg, star 
on�gurations, with solvent demonstrate di�erentbehavior.to 6(5ν − 2)/19ν ≈ 0.5.Analyzis of the stati
 equilibrium properties shows that the lateral 
hain extensionde
reases upon in
reasing grafting density[109℄. The opposite behavior is observed for thedire
tion perpendi
ular to the surfa
es. As expe
ted, the brush thi
kness de
reases under
ompression.Larger values of γ̇∗ are obtained for solvent-free systems 
ompared to systems withexpli
it solvent, whi
h indi
ates that the latter leave linear response earlier due to theadditional monomer-solvent fri
tion. A similar observation 
an be made for the surfa
eseparation. With de
reasing 
ompression, i.e. larger values of D, we systemati
ally �ndlarger 
riti
al shear rates. The presen
e of stars in�uen
es the relaxation times. In
reaseof the softness of stars leads to an in
rease of the gyration radius in both gradient andshear dire
tions, and the brushes be
ome e�e
tively more 
ompressed. The 
riti
al shearrate is slightly in
reased due to the presen
e of the stars 
omparing systems with andwithout stars at �xed grafting density and D. The dependen
e of the relaxation time onthe star 
on�guration, i.e. its fun
tionality and the length of the arms, τ(f,Nmon), israther 
omplex. The 
riti
al sear rate γ̇∗ is still dominated by the brushes sin
e therelaxation time of the arms in the stars (and of the star as whole) is smaller than of the
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Figure 4.12: Double-logarithmi
 s
aling plot for the 
hain extension in shear (x) andgradient (z) dire
tions as a fun
tion of the Weissenberg number for D = 12, D = 14.75,and D = 17.5 (from above). The legend is shown for D = 17.5. Similarly, di�erent star
on�gurations, 
hain lengths, N , types of Solvent are presented for D = 12 and D = 17.5.Systems without solvent mole
ules are not deformated for W ≤ 1 (not presented here, seeRef. [109℄). Upon in
reasing W , the grafted layers shrink slightly and remain at 
onstantheight for larger shear rates. The 
hains stret
h in shear dire
tion, following a universalpower-law (indi
ated by straight lines). Independently of the type of solvent (A, B, C orD) data for di�erent values of D 
an be brought onto the same master 
urve (not shown).brush due to the fa
t, that the length of arms in the stars is smaller than the length ofthe 
hains in the brush (Nmon < N).The for
e that drives the system out of the linear-response regime in
reases with
ompression. This observation agrees with previous simulations[30℄ and experiments[18℄.In
reasing the 
hain length at �xed D and grafting density leads to a larger fri
tionalfor
e per 
hain. Moreover, larger 
hains need more time to relax. Systems with N = 60thus leave the regime of linear response earlier than those with N = 30.Interestingly, the stru
tural response in shear dire
tion is universal, independent ofwhether the solvent is expli
itly in
luded or not (when the density of the systems is notthe same), and whether stars are in
luded or not. The �rst 
on
lusion is 
orrelated withthe fa
t that the DPD thermostat a

ounts for hydrodynami
 
orrelations, at least atsu�
iently large polymer 
on
entrations. The se
ond fa
t demonstrates universalbehavior independently of the size of the solvent mole
ules or in
lusions, provided theyare small 
ompared to the grafted 
hains, eventhough the interpenetration between thebrushes is strongly in�uen
ed.Finally, we point out that the same results are obtained when we de�ne qα via the mean
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e instead of using R2
g,α. Both quantities follow the sameuniversal behavior.4.3.4 Stru
ture of starsIn this se
tion we will analyse the behavior of stars in shear dire
tion. For the 
ase ofsheared stars in the bulk [60℄ it is possible to produ
e s
aling plots of the gyration radiusin shear dire
tion as a fun
tion of the Weissenberg number whi
h is de�ned by therelaxation time of a single arm. However, due to the fa
t that the arms are 
onne
ted tothe 
enter monomer of the star the relaxation times of ea
h arm is in�uen
ed by thepresen
e of the neighbor 
hains. The relaxation time of ea
h star will strongly depend onthe fun
tionality of the star, f . In the following, we will demonstrate that the response ofthe stars on the shear not only strongly depends on the mole
ular parameters (f and

Nmon), but also on the external environment, i.e. on the stru
ture of the brushes.
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Figure 4.13: Gyration radius of stars Rg vs. shear rate γ̇ for di�erent star 
on�gurations(from small and 
olloid-like with f = 50 and Nmon = 3 in
reasing the size and softnessof the stars up to f = 15 and Nmon = 30). The grafting density is ρg = 2.2ρ∗g, 
hainlength of brushes, N = 30, and distan
e between the substrates, D = 17.5. Di�erent starsdemonstrate di�erent type of behavior from 
onstant to power-law. The power-law seemsto depend on the density of stars in the system (
ompare System C and System D).In Fig. 4.13 one 
an see the dependen
e of the gyration radius on the shear rate. Thestrongest response shows the star 
on�guration with the longest arms, Nmon = 30.De
reasing the length of arms while keeping the density of stars 
onstant leads to aweaker response, as expe
ted. For large shear rates the system with lower density of stars(Solvent C) 
an be more deformed in shear dire
tion in 
omparison to systems, where thestars are pa
ked denser (Solvent D).
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Figure 4.14: Gyration radius of stars Rg of 
on�guration f = 30, Nmon = 5 vs. shear rate
γ̇ for di�erent 
hain lengths (N = 30 and N = 60) and distan
es between substrates D.The grafting density is kept 
onstant, ρg = 2.2ρ∗g. The larger the distan
e between wallsthe less deformed the stars. The in
rease of the 
hain length leads to stronger response ofthe stars.Figure 4.14 shows the dependen
e of the gyration radius of 
olloid-like stars (f = 30,
Nmon = 5) for di�erent 
hain lengths, N , and distan
es between the substrates, D, on γ̇.Keeping the grafting density 
onstant while in
reasing the 
hain length one observesstronger deformation of the stars. Stars have less freedom due to the strongerinterpenetration between the brushes. In 
ase of longer 
hains, the brushes leave thelinear response regime at lower shear rates[109℄, whi
h in turn in�uen
es the behavior ofthe stars as well.Figure 4.15 presents the response of stars on steady shear for rather �soft� stars (f = 15,
Nmon = 10) for di�erent grafting densities of the brush. Sin
e stars under high
ompression are already strongly deformed and shear leads to further deformation, asituation, when the gyration radius does not depend on the shear rate anymore, 
an bea
hieved. For small shear rates an in
rease of the grafting density leads to an in
rease ofthe stars' gyration radius in shear dire
tion. Further in
rease of the shear rate may leadto the saturation of the stars' response (as 
an be seen in the 
ase of the highestinvestigated grafting density, ρg = 4.4ρ∗g, when the gyration radius approa
hes a plateaubehavior).The properties of the surfa
es 
an be tuned easily by the polymer brushes. By varyingthe grafting density or 
hain length, the 
riti
al shear rate γ̇∗ 
an be modi�ed. Addingstars of fun
tionality f and length of arms Nmon leads to a modi�
ation of the
hara
teristi
 relaxation time (Eq. [4.9℄, whi
h results in a modi�
ation of the gyration



4.3. COMPUTER SIMULATIONS 67

0.001 0.01
γ .

1

R
g,

xSt

D=12,  ρ
g
= 2.2ρ

g

* 
, N=30

D=14.75,  ρ
g
= 2.2ρ

g

* 
,N=30

D=14.75, ρ
g
= 4.4ρ

g

* 
, N=30

D=17.5,ρ
g
= 1.1ρ

g

* 
,  N=30

D=17.5, ρ
g
= 2.2ρ

g

* 
, N=30

D=17.5, ρ
g
= 4.4ρ

g

* 
, N=30

Figure 4.15: Gyration radius of stars of 
on�guration f = 15, Nmon = 10 vs. shear ratefor di�erent grafting densities. The distan
e between substrates is D=17.5, 
hain length
N = 30. For small shear rates the higher the grafting density of brushes the more deformedis the star in shear dire
tion. For large shear rates, due to the in
ompressibility of stars,this behavior is modi�ed.radius of the stars. It turns out, that the relaxation time of stars 
ru
ially depends notonly on the fun
tionality and arm length, but also on the total density of stars, ρst, and,moreover on the mole
ular parameters of the brush, i.e. it depends on ρg, N , f , Nmon, ρst.4.3.5 Vis
osity and shear for
esTo perform s
aling plots for the transport properties, it is not su�
ient to know the
riti
al shear rate. For instan
e, to plot the ratio (4.14), where ηxz(γ̇) represents theshear vis
osity, we need ηxz(0) for ea
h examined system. In order to 
ompute the(
olle
tive) zero-shear vis
osity we have to perform simulations in the linear responseregime at small Weissenberg numbers and this is related to a bad signal-to-noise ratio.However, in prin
iple we 
an 
al
ulate ηxz(0) from the measured shear for
es for W < 1.In the linear response regime, the Weissenberg number may be expressed via the a
quiredenergy per 
hain [see Eq. (1.58)℄; the 
riti
al shear rate 
an be found from therequirement that the a
quired energy is 
omparable to kBT , i.e. when W is of order unity.The shear for
e is proportional to γ̇ in linear response. With the zero-shear vis
osity

ηxz(0) =
fx(γ̇)

Aγ̇
, (W ≤ 1), (4.38)one thus may write

γ̇∗ ≈ ρgkBT

ηxz(0)Rg,x(0)
, (4.39)



68 CHAPTER 4. STEADY-STATE SHEARwhere we have used ρg = Ng/A.Equation (4.39) provides the possibility to 
ompute ηxz(0) for a given 
riti
al shear rateup to a (
onstant) numeri
al fa
tor. Unfortunately, when plotting the ratio s [Eq. (4.14)℄,we �nd strong statisti
al �u
tuations. Therefore, we use a di�erent way of presentationby shifting the data along the ordinate to obtain an estimate for the zero-shear vis
osity.Figure 4.16 shows the vis
osity ηxz as a fun
tion of Weissenberg number W = γ̇/γ̇∗,where γ̇∗ is taken from the s
aling plot of gyration radius (Fig. 4.12).
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Figure 4.16: Double-logarithmi
 s
aling plot for the shear vis
osity as a fun
tion of theWeissenberg number. Similarly to Fig. 4.12 we show systems with stars of Solvent B, C, andD of grafting density ρg ≥ 2.2ρ∗g, the 
hain length is N = 30 (if not mentioned di�erentlyin legend), star 
on�gurations. The �rst number in the legend 
orresponds to the distan
ebetween the walls, D, the se
ond number to the length of arms in the stars, Nmon, thethird to the fun
tionality of the stars, f , the fourth to the grafting density devided bythe 
riti
al grafting density, ρg/ρ
∗
g, the last letter 
orresponds to the type of solvent. Thenormalization 
onstant, ηxz(0), follows from shifting the data along the ordinate, su
hthat s → 1 for W ≪ 1. The straight line 
orresponds to the analyti
ally derived relation,

s ≈W−0.43 for ν = 0.588 [see Eq. (4.22)℄. All data 
an be mapped onto ea
h other.Systems without expli
it solvent mole
ules (Solvent A), with solvent mole
ules as dimers(Solvent B) and with polymer stars (Solvent C and Solvent D) 
an be mapped onto ea
hother. This again is a non-trivial result, whi
h indi
ates a strong 
orrelation between thedeformation of 
hains and the ma
ros
opi
 response. Beyond linear response the datafollow a power-law,
s ∝W ζ (W > 1). (4.40)The exponent ζ = −0.43 (indi
ated by a straight line) is derived analyti
ally [Eq. (4.22)℄in Se
tion 4.2.1.



4.3. COMPUTER SIMULATIONS 69The values for ηxz(0) used in Fig. 4.16 were 
ross-
he
ked with [Eq. (4.39)℄ for allsimulated systems[109℄. However, the data reveal strong �u
tuations, whi
h explains whyit is almost impossible to produ
e a su

essful s
aling plot for s from the dire
t
al
ulation of ηxz(0).Polymer brushes demonstrate a universal power-law behavior in the non-linear responseregime independently of the grafting density, distan
e between the substrates and 
hainlength. In 
ase of solutions of polymer stars the vis
osity demonstrates di�erentpower-laws depending on the 
on
entration of stars[110℄. In our simulations of a mixturebetween polymer brushes and stars we observe deviations from the universal behaviorwhen the brushes are not dominating the 
hara
teristi
 relaxation time of the system andand for a larger density of stars.

10
2

W = γ / γ* 
 .  .

10
0

s 
=

 η
xz

(γ
) 

/ η
xz

(0
) 

 .

D=12, f =30, N
mon

=5

D=14.75, f =30, N
mon

=5

D=14.75, f =15, N
mon

=10

D=17.5, f =15, N
mon

=10

s ~ W
-0.43

Figure 4.17: Shear vis
osity as a fun
tion of Weissenberg number W , grafting density
ρg = 1.1ρ∗g, 
hain length N=30, Solvent C, density of stars ρst ≃ 0.22, when the stars leadto deviations from the predi
ted behavior s ≈W 0.43 (plotted as a line).Figure 4.17 indi
ates that for systems of grafting density ρg = 1.1ρ∗g the presen
e of stars(of the density ρst ≃ 0.22) leads to a smaller exponent of the power-law. Computersimulations of an equivalent system of a solution of polymer stars without brushes reveala power-law with an exponent s ≈W−0.35[110℄. It indi
ates that in
lusions mightstrongly in�uen
e the rheologi
al properties of su
h 
omplex systems.Plotting the shear vis
osity always reveals strong �u
tuations at small shear rates. Asomewhat 
learer pi
ture is obtained from the analysis of the shear for
e. Here, wemeasure fx(γ̇) at the substrates.Figure 4.18 shows the ratio (4.13) as a fun
tion of W for all 
onsidered parameter
ombinations. The data 
ollapse is even better than for the vis
osity. As expe
ted, u



70 CHAPTER 4. STEADY-STATE SHEAR

10
0

10
2

W = γ / γ* 
 .  .

10
0

10
1

10
-1

10
0

10
1

10
2

u 
=

 f
x(γ

) 
/ f

x(γ
*)

 
 .

 .
10

0

u ~ W

u ~ W
0.57

D = 12

D = 14.75

D = 17.5

Figure 4.18: Double-logarithmi
 s
aling plot for the shear for
e as a fun
tion of the Weis-senberg number. Data is shown for two 
hain lengths, di�erent surfa
e 
overage at distan
es
D = 12, D = 14.75, and D = 17.5 between grafting planes, also di�erent star 
on�gu-rations and di�erent densities of stars (Solvent C and Solvent D). The same systems arepresented as in Fig. 4.12. The normalization 
onstant, fx(γ̇∗), is obtained by shifting thedata along the ordinate su
h that u = 1 for W = 1.s
ales linearly with W for W ≤ 1. Beyond linear response we obtain a power-law,

u ∝W κ (W > 1). (4.41)The dashed-dotted lines represent an exponent of κ = 1 + ζ = 0.57, whi
h follows fromEq. (4.15).The values for fx(γ̇
∗) are obtained by shifting the data along the ordinate, su
h that

u(W = 1) = 1. For the same reason as before, we do not get a satisfying s
aling plotwhen using the relation Eq. (4.10).We emphasize that we observe deviations between shear for
es at the 
riti
al shear ratesand Eq. (4.11) due to a dependen
e of the e�e
tive solvent vis
osity, ηs, and monomersize, a, on the variation of 
ompression and mole
ular parameters, be
ause ηs and adepend on solvent and monomer density, hen
e impli
itly on N , ρg, and D[109℄.In 
on
lusion, it is possible to des
ribe systems of Solvent A, B, C and D on the basis ofthe same analyti
al 
on
ept. For this purpose we extra
t a 
hara
teristi
 time s
ale andthe related length s
ale, whi
h determine the response of a given system to shear. Wesuggest a method to obtain the time s
ale, where we assume that the mean extension of agrafted 
hain in shear dire
tion represents a relevant length s
ale.



4.3. COMPUTER SIMULATIONS 71We expe
t deviations from our approa
h for weaker 
ompression, when the distan
ebetween the grafting planes ex
eeds h, su
h that the assumption of a uniform monomer
on
entration is no longer valid. This regime was 
onsidered in Ref. [111℄ for moltenbrushes, where a disentanglement instability is predi
ted for a 
riti
al shear rate. Thispoints in the same dire
tion as the shear thinning we observe. It is to be noted thatextrapolating from the strong to the weak overlap regime reveals a minimum in theinterpenetration depth[109℄.The above results are built on the 
hain deformation averaged over the entire layer. The
riti
al shear rate we obtained does not 
orrespond to any simple 
hara
teristi
frequen
y. As a matter of fa
t, the stru
ture of the sheared layer is more 
omplex thanre�e
ted by the averaged deformations. Chain deformation takes pla
e in the interfa
eand is subsequently transported deeper into the layer by longitudinal 
hain end di�usion,whi
h leads to 
hain end ex
hange between the interfa
e and the bulk of the layers.Be
ause the lateral deformation relaxes in the same time, deformed 
hains are hardlyfound far away from the interfa
e. Though 
hains that reside temporarily rather thanpermanently in the interfa
e are less deformed and 
hains outside the interfa
e aredeformed to some extend as well, 
hain end ex
hange does not distribute the 
haindeformation evenly a
ross the layer.The exponents for the non-linear regime predi
ted by both theories are very 
lose.Simulation results 
ould hardly dis
riminate between them.For mu
h longer 
hains, ea
h grafted 
hain laterally wiggles around many others. Ourtheory des
ribes a non-entangled 
entral sublayer (
omprising the interfa
e) embeddedinto a gel-like elasti
 layer. A slightly di�erent approa
h is needed when the interfa
e iswide enough to be entangled itself. Inspite of that, the entanglements between twoopposing brushes are not 
ru
ial for our theory. Our approa
h predi
ts the power-lawbehavior in the non-Newtonian regime. For large Weissenberg numbers, here, 
hainsmust disentangle or break.4.3.6 Comparison to experiment and other numeri
al approa
hesExperimental limitations prevent the exploration of equivalently large 
ompressions andshear rates as they 
an be studied in simulations. However, some experimental data thatrea
h the non-Newtonian regime have be
ome available. S
horr et al. re
ently measuredshear for
es in bilayers of polystyrene brushes on mi
a with the Surfa
es For
esApparatus (SFA)[18℄. In toluene (good solvent), the authors observe linear response overa wide range of 
ompressions and shear rates. However, at large 
ompression(2h/D ≈ 4.6) they �nd a sublinear in
rease of the shear for
e with sliding velo
ity.Interestingly, the experimental data is 
omparable with Eq. (4.21) [or Eq. (4.41)℄, as 
anbe seen from Fig. 4.19. Identifying the 
riti
al shear rate and fx(γ̇∗) via the 
rossoverfrom linear to non-Newtonian behavior, we 
an 
ompare the SFA data to our results at
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Figure 4.19: SFA data from PS/PVP [25/4℄k in toluene at T = 32oC (taken from Ref. [18℄).Shear for
e and velo
ity have been s
aled by the same pro
edure as our simulation data[D = 14.75, N = 60, ρg ≈ 1.1ρ∗g(N = 30), solvent-free℄ using fx(γ̇∗) ≈ 88µN and γ̇∗ ≈
16.8/s. Both experiment and simulation �nd a linear in
rease of the shear for
e for W ≤ 1and are in agreement with Eq. (4.21) in the non-Newtonian regime. The inset showsdata[18℄ (in LJ units) from Brownian dynami
s simulations, whi
h agree ni
ely with thepredi
ted power-law of Eq. (4.21) (dash-dotted line).similar 
ompression and 
hain length. For this purpose we use a solvent-free system with
D = 14.75, N = 60, and ρg ≈ 1.1ρ∗g(N = 30), 
orresponding to a 
ompression of
2h/D ≈ 4.1[81℄.In the same study, S
horr et al. performed Brownian dynami
s simulations using aBrinkman type equation to des
ribe the solvent �ow. They observe shear thinning attheir largest 
ompression (2h/D ≈ 7.4) over the entire range of investigated shear rates.As shown in the inset of Fig. 4.19, also this data follows the s
aling-law predi
ted byEq. (4.21), despite the di�erent approa
h to treat solvent e�e
ts.Goujon et al.[35℄ re
ently investigated sheared polymer brushes with an o�-latti
ebead-spring model by means of MD simulations using a DPD thermostat with largerintrinsi
 fri
tion. The length of the grafted polymers (N = 20) was somewhat smallerthan 
onsidered here.More importantly their study di�ers from ours in the way solvent mole
ules arein
orporated. While our simulations are performed at 
onstant parti
le number, Goujonet al. operate in the grand-
anoni
al ensemble, allowing the number of solvent parti
lesto �u
tuate. This pro
edure guarantees a 
onstant normal pressure for all shear rates.However, our numeri
al data indi
ates that the normal stress 
hanges very weakly with
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Figure 4.20: Renormalized kineti
 fri
tion 
oe�
ient (see text) as a fun
tion of the Weis-senberg number. Results of grand-
anoni
al MD simulations[112℄ are in
luded. One 
ansee a 
rossover from the linear behavior (solid line), W ≤ 1, to the non-Newtonian regime
W > 1. We �nd a reasonable agreement to the exponent suggested by Eq. (4.21) (dash-dotted line) beyond linear response. The distan
e between the walls is D = 14.75, SolventC, the 
on�guration of stars is f = 30 and Nmon = 5.shear rate.On the other hand, a grand-
anoni
al solvent treatment might bear the risk ofsuppressing some hydrodynami
 
orrelations. Also this e�e
t seems negligible, as 
an beseen from Fig. 4.20, where we 
ompare our data for the fri
tion 
oe�
ient to the resultsof Goujon[112℄. Sin
e fz is virtually 
onstant, the dependen
e of the fri
tion 
oe�
ientand fx on W must be similar. We �nd that both numeri
al approa
hes reveal the sameuniversal behavior, whi
h is in good agreement with Eq. (4.21). The data superimposeswhen the kineti
 fri
tion 
oe�
ient is normalized by µ∗ = µ(W = 1) to obtain a s
alingplot.In 
on
lusion, we �nd the same universal ma
ros
opi
 response in numeri
al simulationsdespite very di�erent approa
hes to in
orporate solvent-e�e
ts, in
luding the impli
ittreatment using a DPD thermostat or the self-
onsistent solution of the Brinkmanequation. Approa
hes with expli
it solvent mole
ules in di�erent thermodynami
ensembles provide the same general pi
ture. All these methods seem equivalently validfor steady-shear simulations of strongly 
ompressed brushes, providing hydrodynami

orrelations on the relevant length s
ales.To the best of our knowledge, there is only one study[33℄ that reported a power-lawbehavior of the 
hain extension beyond linear response. In this investigation a Langevin
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it solvent mole
ules is used; an approa
h widely used in thepast (see, e.g. Refs. [19, 21, 26, 30, 31, 33, 34, 37℄). However, the Langevin thermostat
annot a

ount for hydrodynami
 
orrelations, be
ause it does not apply random anddissipative for
es in a pair-wise form[113℄. In this 
ase, the response to shear should bedes
ribed by our s
aling theory for semidilute, dry brushes. The previous study reportedan exponent of φ ≈ 0.6, whi
h is slightly smaller than our predi
ted value, 0.65.



Chapter 5Non-stationary shear
5.1 Introdu
tionThe results presented in the previous Chapter dealt with the stationary sliding of twoopposing surfa
es. In this se
tion we present the results 
on
erning the transient behaviorof the system during shear inversion, when we start from a steady state 
on�guration and
hange the shear dire
tion. In order to better understand these 
omplex systems it isne
essary to investigate the transient dynami
s from one 
on�guration to another. Forinstan
e, most of the experiments are performed under os
illatory shear 
onditions, whenshear inversion is performed several times. The shear and normal for
es 
an be measureddire
tly. The authors of these measurements report an in
rease of the normalfor
es[15, 91℄ with in
reasing frequen
y of the os
illatory shear or during shear inversionand an overshooting of the shear for
es[92, 108℄. This 
an be applied also for the onset ofmotion, when a starting 
on�guration from stati
 equilibrium is taken. These e�e
tsdepend strongly on the solvent 
onditions[92℄. However, ex
ept Ref. [33℄, there is nodetailed analysis of the interplay between the stati
 equilibrium and steady shearproperties and the behavior during the 
rossover from one state to the other. The vastmajority of investigations dealt with the e�e
ts of the waiting time[108℄ after whi
h shearis performed and explained an in
rease of the fri
tion 
oe�
ient and overshooting of theshear for
e with in
reasing waiting time through the presen
e of entanglements. Previousnumeri
al investigations[33℄ were done using the Langevin thermostat, whi
h does nottake into a

ount hydrodynami
 intera
tions and without expli
it solvent mole
ules,whi
h might be 
ru
ial in non-equilibrium simulations. In our study, we investigate thesystems under good solvent 
onditions with expli
it solvent mole
ules. We take rathershort 
hains and vary the grafting densities and 
omposition of the system (in
ludingstars). We intend to understand the behavior of the shear and normal for
es via ananalysis of their 
omponents and 
hara
terize the stru
ture of the system, i.e. byinterpenetration between the brushes, gyration radius of the 
hains and brush height.75



76 CHAPTER 5. NON-STATIONARY SHEARMoreover, the in�uen
e of the stars and their stru
ture will be dis
ussed.5.2 Shear inversionThe shear inversion is started from a steady state 
on�guration and performed during a�nite time tturn after whi
h the �nal velo
ity in the opposite dire
tion is rea
hed. Thistime tturn is small 
ompared to the relaxation time of the bilayer. A velo
ity proto
ol forthe walls is presented in Fig. 5.1.
p

turn

~Vcos(t-p
turn

)π/t
turn

t
turn

<<τ

steady state
V

-V
steady stateFigure 5.1: Shear proto
ol of the walls during shear inversion. The turn time is mu
hshorter than the relaxation time of the bilayer, tturn ≪ τ .In 
ontrast with the previous simulations we do not perform a stri
tly instantaneousinversion of the shear, as it has been done in Ref. [33℄(a step fun
tion shear proto
ol).Instead we use a 
ontinuous 
hange of the shear dire
tion and imply a smooth shearproto
ol

V = V cos
(t− pturn)π

tturn
(5.1)where V is the shear velo
ity. pturn is the time, when shear inversion is started,

tturn + pturn when the inversion is �nished.First, let us analyse the response of the shear stress to the shear inversion. Figure 5.2shows the time series of the response of the system for di�erent 
ompositions and shearrates during shear inversion. Let us de�ne a 
hara
teristi
 time of the bilayer via therelaxation of the shear stress when it rea
hes a steady state value. As 
an be seen, thesystems with impli
it solvent mole
ules rea
t very qui
kly on the inversion; these
on�gurations demonstrate the shortest 
hara
teristi
 time due to the low density in thesystem. De
rease of the shear rate and in
rease of the density leads to an in
rease of the
hara
teristi
 time.
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Figure 5.2: Time series of shear stress σxz normalized by the steady-state value for dif-ferent 
ompositions of the system (Solvent A, B, C, D). The distan
e between the wallsis D = 17.5, grafting density is ρg = 4.4ρ∗g. Depending on the shear rate and the system
omposition bilayers show di�erent 
hara
teristi
 times. The inset shows how three dif-ferent systems with Solvent B, C, D approa
h a steady state value. The shear velo
ity is
V = 0.23. Solvent C and Solvent D 
ontain stars of 
on�guration f = 30, Nmon = 5. Theturn time is tturn = 1.25 in LJ units. The repla
ement of dimers by the stars leads to ade
rease of the overshooting.Keeping the density of the system and the shear rate 
onstant, one 
an 
ompare thebehavior of di�erent types of solvent. Solvent B, C, and D approa
h the steady statevalue di�erently, as 
an be seen in the inset. Solvent B shows an overshooting e�e
t attime t0 = 50 of approximately 6%. The repla
ement of the dimers by stars leads to adamping of this e�e
t. It seems that the phenomenon depends on the size of the solventmole
ules, and might be 
onne
ted with their inertia. Solvent C shows approximately
2.5% overshooting above the steady state value, whereas Solvent D does not produ
e anovershooting at all. Moreover, systems with the highest density of stars demonstrate thelongest 
hara
teristi
 time for the shear stress. This is due to the slow relaxation ofbinary intera
tions between the brushes and stars as well as between the intera
tingbrushes. The brush experien
es a strong deformation during the inversion. The inversionis started from a steady state 
on�guration, in whi
h the 
hains are stret
hed and theinterpenetration between the brushes is low, as it was shown in the previous 
hapter.During the inversion the interpenetration between brushes signi�
antly in
reases; thebrushes be
ome also strongly deformed in X- and Y -dire
tions. The size of the brush in
X-dire
tion de
reases qui
kly, whereas in Y - and Z-dire
tion an in
rease is observed forshort times; it rea
hes an extremum at di�erent times depending on the type of solvent.



78 CHAPTER 5. NON-STATIONARY SHEARAfterwards, the gyration radius of the 
hains slowly relaxes ba
k to the steady state value
Rb

g,α(ss), where �ss� is the abbreviation for steady state, α 
orresponds to threedire
tions, X, Y , and Z(see Fig. 5.3). Note, that in all three dire
tions the extremum isrea
hed simultaneously at time t1.
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Figure 5.3: Gyration radius in X-, Y -, and Z-dire
tions of the brush during shear inver-sion normalized by its steady state value Rb
g,α(t)/(Rb

g,α(ss) with α = x, α = x, α = xrespe
tively. The grafting density is ρg = 4.4ρ∗g, the distan
e between walls D = 17.5, thesystems of Solvent C and Solvent D in
lude the stars of 
on�guration f = 30, Nmon = 5,the shear velo
ity is V = 0.23. The biggest relative response shows the system of SolventD. The 
hara
teristi
 time when the steady state value is rea
hed in X- and in Y -dire
tionsis the shortest for the system of Solvent B, whereas in Z-dire
tion one �nds the oppositee�e
t.As 
an be seen, the more stars are in the system the longer it takes to rea
h a steadystate value. The higher is the density of the stars in the system the larger is the relativedeformation of the brushes during shear inversion. Comparing di�erent dire
tions one
an see that the brush shows a longer relaxation in X- and in Z-dire
tions than in
Y -dire
tion. The most signi�
ant deformation of about 55% is in the shear dire
tionwhere the 
hains have to 
hange the dire
tion of the stret
hing. Change of the sheardire
tion leads also to the deformation in Y -dire
tion of about 7 − 12% depending on thetype of solvent. Under steady state shear, 
hains were strongly stret
hed and the brushshows a response of about 8% in gradient Z-dire
tion. The latter 
an be better
hara
terized by the interpenetration between the opposing brushes, brushes and stars aswell as the brush height.The stars hamper the interpenetration of the brushes into ea
h other; this e�e
t is morepronoun
ed under steady shear than in stati
 equilibrium. During shear inversion thebrushes interpenetrate deeply into ea
h other, as 
an be seen in Fig. 5.4b). The relative
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Figure 5.4: a) Relative interpenetration [see Eq. (4.33)℄ between brushes and stars forsystems Solvent C and Solvent D; b) Relative interpenetration between opposing brushes;
)Brush height and d) In
lination angle of the 
hains in the brush. All variables arenormalized by their steady state values (�ss�). The grafting density is ρg = 4.4ρ∗g, thedistan
e between the walls D = 17.5, 
on�guration of stars for Solvent C and Solvent D is
f = 30, Nmon = 5.interpenetration at the time t1 is the larger, the more stars are present in the system. Atthe same time t1 the brushes interpenetrate 40% deeper into the stars [see Fig. 5.4a)℄than during the steady shear and the brush height exhibits a maximum [Fig. 5.4
)℄. It
an be seen, that the more stars are lo
ated in the interfa
e between the brushes, thequi
ker the brush height relaxes after shear inversion.After rea
hing a maximum solvent mole
ules slowly di�use out of the brush into theinterfa
e between the brushes and it takes the longest time until the system rea
hes thesteady state in 
ase of Solvent B. One 
an see, that the bigger the solvent mole
ules arethe more 
ompressed the brushes be
ome in steady state and therefore the larger is themaximum of the relative brush height 
ompared to the steady state value, h/h(ss).Brushes almost do not interpenetrate into ea
h other in 
ase of System D in steady-state;the de
rease of the density of stars (from Solvent D to Solvent B) leads to an in
rease ofinterpenetration between the brushes. During shear inversion they interpenetrate deeplyinto ea
h other through the layer of stars. Brushes do not prefer to be 
on�ned by thelayer of stars during the inversion but to deform them and interpenetrate through thestars exhibiting a high relative interpenetration depth.The in
lination angle, θ, of the brushes behaves independently on the 
omposition of the



80 CHAPTER 5. NON-STATIONARY SHEARsystem. θ is measured via the dire
tion of the end-to-end distan
e,
θ = arccos

(

Re,z

Re,x

)

, (5.2)where Re,x and Re,z are end-to-end distan
es in shear and gradient dire
tionsrespe
tively. It rea
hes the stati
 equilibrium value, θ = 0, shortly before time t1 whenthe brush height shows its maximum. It means that the free 
hain ends �rst rea
h theposition above the grafted heads of the 
hains, shortly afterwards, due to thein
ompressibility of the brushes, they deform the layer of stars and the brush heightrea
hes the maximum, as well es the interpenetration between the brushes.Figure 5.4a) shows that an in
rease of the density of the stars leads also to a de
rease ofthe relative interpenetration between brushes and stars. Our investigations reveal, thatthe softer the stars, the more interpenetration between the brushes and stars o

urs. Dueto their size the stars 
an not penetrate deeply into the brush. Dimers are smaller andmore mobile, they are distributed in the whole system and 
an easier interpenetrate intothe brush than the stars. In a steady state 
on�guration beyond linear response solventmole
ules are expelled out of the brush to the 
enter of the bilayer. During the shearinversion in turn the solvent is pulled ba
k into the brush. This e�e
t 
an be analysed viathe density pro�le of solvent mole
ules 
omparing stati
 equilibrium and steady state
on�gurations with the situation when the brush height shows the maximum at time t1during shear inversion. Figure 5.5 presents this 
omparison.
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Figure 5.5: Comparison of the distribution of solvent mole
ules in the bilayer in stati
equilibrium, in steady state (V=0.23) and during shear inversion at time t1 when theinterpenetration between the brushes shows a maximum. The grafting density is ρg =
4.4ρ∗g, the distan
e between walls D = 17.5, the star 
on�guration of Solvent C is f = 30,
Nmon = 5. Green lines 
orrespond to the stars and red lines to the solvent mole
ules.



5.2. SHEAR INVERSION 81Our results reveal that during very short times solvent mole
ules are expelled out of theinterfa
e between the brushes and then be
ome distributed within the brushes again.The brushes do not rea
h the interpenetration depth that they have in stati
 equilibrium,as well as the solvent mole
ules do not have enough time to enter the brush as deep asunder stati
 equilibrium 
onditions. The same 
on
lusion 
an be drawn about the stars,whi
h be
ome thi
ker during shear inversion but still remain more 
ompressed than instati
 equilibrium.During the shear the brushes 
an show slip, sti
k or slip-sti
k behavior depending on thegrafting density, whi
h 
an 
hange the hydrodynami
 boundary 
hange between thedi�erent regimes. This phenomenon 
an be in�uen
ed by the presen
e of the stars. Inorder to 
hara
terize it one should analyse the velo
ity pro�les of ea
h 
omponent of thesystem[36℄.
0 0.2 0.4 0.6 0.8

-0.2

-0.1

0

0.1

0.2

V

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

V

0 0.2 0.4 0.6 0.8
z/D

-0.2

-0.1

0

0.1

0.2

V

0 0.2 0.4 0.6 0.8 1
z/D

-0.2

-0.1

0

0.1

0.2

V

a) b) 

c) 

b
1
=0.443D

b
2
=0.428D

b
3
=0.383D

b
4
=0.26D

b
5
=0.04D

d) 

V=0.23

V=0.23

Figure 5.6: Velo
ity pro�les of ea
h 
omponent in the system. The 
omparison betweenthe 
on�gurations under steady shear [Figs. a) and d)℄, the 
on�guration when interpene-tration between brushes exhibits a maximum [Fig. b)℄ and the 
on�guration shortly afterinversion [Fig. 
)℄. The systems of the Solvent B (dotted lines) and Solvent C (full lines)are 
ompared. The grafting density of the brushes is ρg = 4.4ρ∗g, the distan
e between thewalls D = 17.5, the star 
on�guration in system of Solvent C is f = 30, Nmon = 5, theshear velo
ity is V = 0.23. The bla
k lines 
orrespond to the pro�les of the brush, theblue lines to the stars, the red lines to the solvent mole
ules. The dashed lines show thelinear approximation of the pro�les in the middle of the system for di�erent 
omponents.The full green lines 
orrespond to the 
enter monomer of the stars.



82 CHAPTER 5. NON-STATIONARY SHEARFigures 5.6a) and d) show the velo
ity pro�les in steady state (W ≫ 1). Figure 5.6a)
orresponds to the pro�les before shear inversion and Fig. 5.6d) shows the velo
ity pro�leafter shear inversion in the inverted steady state 
on�guration. These states areequivalent but the shear is applied in the opposite dire
tion. The hydrodynami
boundary 
an be 
hara
terized by the slip length, z = −b, behind the substrate, when theextrapolation of the linear pro�le v(z) attains the steady state substrate velo
ity V , asassumed when no slip o

urs. As 
an be seen, the slip length is positive for all
omponents, therefore the brushes show strong sti
king e�e
ts with b1 = 0.443 withoutstars (Solvent B) and b2 = 0.428 when half of the solvent mole
ules are repla
ed by stars(Solvent C). Solvent mole
ules follow the behavior of the brushes exhibiting a smallersti
king e�e
t. Similarly to the behavior of brushes the slip length is smaller in 
ase ofSolvent C (b2 = 0.383 and b3 = 0.26). Stars are lo
ated in the middle of the bilayer, theyare rotating sin
e the 
enter monomers reveal zero pro�le [see Fig. 5.6
) and d)℄. The sliplength is �nite for the stars and equal to b1 = 0.04. Shortly after the shear inversion[Fig. 5.6b℄, when the shear inversion is almost performed (t < tturn), brushes and solventmole
ules follow the behavior of the substrates 
lose to them, but the pro�le of thebrushes in the middle of the bilayer is still not altered, whereas stars stop rotating andsolvent mole
ules yield a mu
h smaller slip length. Stars rea
t on the external 
hangesvery qui
kly, solvent mole
ules follow the behavior of stars and the pro�le of the solventmole
ules is altered. When the interpenetration of the brushes show a maximum (at time
t1) [see Fig. 5.4
)℄, brushes and solvent mole
ules for the systems without stars (SolventB) show a linear pro�le. At this time the brushes behave like an ideal Newtonian liquidand �forget� e�e
tively that they have a ba
kbone 
onne
tivity. Solvent mole
ules followthe behavior of the brushes. In 
ase of Solvent C brushes and solvent mole
ules seem tofollow the behavior of stars in the middle of the bilayer and build a plateau. In the next
on�gurations this e�e
t is slowly destroyed and the brushes start dominating.This 
an be observed more pre
isely in the time series of the slip length for ea
h
omponent. The modi�
ation of the slip length due to the presen
e of the stars 
an beseen in Fig. 5.7a). In presen
e of stars the brushes rea
h the steady state slip length laterthan in 
ase of Solvent B. The behavior of the solvent mole
ules is also altered by thepresen
e of the stars but less signi�
antly as for the brushes. Stars show a slightovershooting e�e
t by exhibiting a larger slip length than in the steady state. Similarlyto the overshooting e�e
t of the shear stress, σxz, the e�e
t o

urs also at time point t0.Further analysis of the stru
ture 
an be done via the 
hain end distribution. The relativeinterpenetration of the 
hain ends into the opposing brush is strongly in�uen
ed by thepresen
e of the stars.Figure 5.7b) shows that the maximum of the interpenetration of the 
hain ends into theopposing brush is not 
orrelated with the maximum of the interpenetration of thebrushes into ea
h other (t = t1) in the presen
e of the stars. It is 
onne
ted with the fa
t,
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Figure 5.7: The time series of the slip length normalized by its value in steady state (leftplot) and the relative interpenetration of the 
hain ends (right plot) during shear inversion.The grafting density is ρg = 4.4ρ∗g, the 
hain length N = 30, the distan
e between thewalls is D = 17.5, the star 
on�guration of Solvent C and Solvent D is f = 30, Nmon = 5.Di�erent 
ompositions of the system exhibit di�erent 
hara
teristi
 times for approa
hingthe steady state after shear inversion.that the 
hain ends �rst rea
h the stati
 equilibrium position (at time t < t1) when thetilting angle is zero. Then, the interpenetration of the brushes rea
hes the maximum (at
t = t1), su
h that 
hain ends start pushing on the layer of the stars, penetrate throughthem and enter the opposing brush. Afterwards, the maximum of the interpenetration ofthe 
hain ends distribution is rea
hed.In the steady state the 
hains are tilted and stret
hed, the stars are 
ompressed in theinterfa
e between the brushes as it is shown s
hemati
ally in Fig. 5.8a).Con�gurations, where the walls start moving in the opposing dire
tion and shearinversion is already started are shown in Fig. 5.8b). In this time the brushesinterpenetrate through the stars with a part of their 
hains. This leads to a signi�
antin
rease of the interpenetration depth between the brushes. The layer of stars is stronglydeformed. After a 
hara
teristi
 time the system rea
hes again the steady state
on�guration [Fig. 5.8
)℄.In order to 
omplete the 
hara
terization of the system let us analyse the gyration radiusof the stars. Figure 5.9 shows the response of the stars in X-, Y -, and Z-dire
tions.Stars experien
e deformation in all three dire
tions. The strongest relative deformation
an be seen in Z-and in X-dire
tions due to the fa
t, that the stars are squeezed stronglyin the gradient and stret
hed out in the shear dire
tion in steady state beyond linearresponse. The more stars are lo
ated in the system and, therefore, the less freedom and
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Figure 5.8: S
hemati
 pi
ture of brushes and stars during shear inversion. a) 
orrespondsto the 
on�guration in steady state with shear velo
ity V . Chains are tilted and stret
hed.Stret
hing 
an be 
hara
terized by the gyration radius Rg,x. b) is the 
on�guration duringshear inversion, stars are lo
ated in the interfa
e between brushes and strongly deformed,
hains interpenetrate through the layer of stars into the opposing brush. 
) shows the new�re�e
ted� steady state 
on�guration after shear inversion.spa
e is left in the interfa
e between the brushes, the smaller is the relative deformationof the stars during shear inversion. The Y -dire
tion shows a response of about 1%. In the
ase of Solvent D one 
an see that the stars follow the 
olle
tive motion in Y -dire
tionshowing periodi
 movement, whi
h was �rst observed in bulk systems[60℄.Let us turn ba
k to the gyration radius of the brushes. As it was already mentioned, itshows a di�erent behavior with di�erent 
hara
teristi
 times depending on the
omposition of the system. As 
an be seen in Fig. 5.10, the response of the system ofSolvent A is very small, the system is in a 
rossover from the linear response regime tothe non-Newtonian behavior. The systems of Solvent B, C, and D demonstrate moresigni�
ant responses. The steady state value of the gyration radius for ea
h 
ompositionof the system depends on the density of stars in the sytem. Furthermore, the gyrationradius of the brushes exhibit a di�erent behavior depending on the shear rate.To 
hara
terize the 
rossover behavior from one steady state 
on�guration to the invertedone we follow an idea originally developed in Ref. [33℄. From the steady-stateinvestigations we know the dependen
e of the gyration radius of the brushes on the shearrate. As it was shown, it has a power-law behavior
R2

g,x(γ̇)

R2
g,x(0)

=

(

γ̇

γ̇∗

)0.5

, (W ≫ 1) (5.3)for semidilute brushes under good solvent 
onditions.The 
hara
teristi
 time of the system, τc, after whi
h the shear stress rea
hes its steadystate value, 
an be de�ned by the 
hara
teristi
 length s
ale divided by the 
hara
teristi
velo
ity in the system, V . During shear inversion the free 
hains' ends move above the
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Figure 5.9: Gyration radius of stars in X-, Y -, and Z-dire
tions normalized by its valuein steady state as a fun
tion of time during shear inversion(Rst
g,α(t)/(Rst

g,α(ss) with α = x,
α = x, α = x, respe
tively). The grafting density is ρg = 4.4ρ∗g, the 
hain length N = 30,the distan
e between the walls is D = 17.5, the star 
on�guration of Solvent C and SolventD is f = 30, Nmon = 5. The strongest deformation is observed in shear (X) and gradient(Z)dire
tions, whereas in Y-dire
tion stars show a weak response.grafted 
hain ends from one steady state 
on�guration [see Fig. 5.8a)℄, when the 
hainsexhibit the gyration radius Rg,x(γ̇)(ss) in shear dire
tion, to the equivalent re�e
tedsteady state 
on�guration [Fig. 5.8
)℄, su
h that the free 
hain ends traveled anapproximate distan
e proportional to twi
e the gyration radius in shear dire
tion.Therefore, Rg,x(γ̇)(ss) 
an be de�ned as a 
hara
teristi
 length s
ale, meaning that thewhole 
hain has to travel over its own (extended) size during the 
hara
teristi
 time τc.Therefore, for the de
ay of the gyration radius in time after the shear inversion is started,one may write

Rg,x(γ̇, t)

Rg,x(γ̇)(ss)
= 1 − t

τc
. (5.4)Using the de�nition of the Weissenberg number as a ratio of the shear rate γ̇ and the
riti
al shear rate γ̇∗, where γ̇ = 2V/D [see Eq. 5.3℄, the 
hara
teristi
 time of the system
an be written as

τc ∝
Rg,x

V
=

2Rg,x(0)

γ̇D

(

γ̇

γ̇∗

)0.25

. (5.5)This approximation should work for systems far beyond the linear response regime, wherethe power-law behavior [Eq. 5.3 dominates.Figure 5.11 shows the gyration radius of 
hains, whi
h are normalized by their valueunder steady shear, Rg,x(ss), as a fun
tion of time divided by the 
hara
teristi
 time, τc.
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Solvent D, V=0.23Figure 5.10: Gyration radius of brushes in shear dire
tion as a fun
tion of time during shearinversion for di�erent 
ompositions of systems and shear rates. The distan
e between thewalls is D=17.5, the grafting density is ρg = 4.4ρ∗g, the 
hain length N = 30. The systemsshow di�erent behaviors from the 
ase when the gyration radius does not respond onshear inversion up to the strong deformation. The behavior depends on the shear rate,
omponents of the system, mole
ular parameters of the brushes and stars (if present).One 
an see that the de
ay of the gyration radius of di�erent parameters from the steadystate 
on�guration shortly after inversion 
an be mapped onto ea
h other and it followsthe ratio (5.4). Moreover, the steady state value is rea
hed on the same time s
ale for thedi�erent systems.The same pro
edure 
an be done with the shear stress for large shear rates 
orrespondingto the non-Newtonian behavior. This is shown in Fig. 5.12. The shear stress isnormalized by its value in steady state and the time is res
aled by the 
hara
teristi
 time

τc. One 
an see that, independently of the shear rate, systems with di�erent mole
ularparameters (grafting densities, 
hain lengths, star 
on�gurations et
.) and di�erent typesof the solvent 
an be mapped onto ea
h other. The way how the shear stress approa
hesthe steady state value still slightly depends on the type of the solvent (the overshootinge�e
t dis
ussed above). This 
may be explained by the fa
t that obje
ts of di�erent sizesin the brush have di�erent di�usion 
onstants.The same s
aling plots 
an be performed not only for the shear inversion, but also for theonset of motion, when as a starting point the stati
 equilibrium 
on�guration is takenand afterwards shear is started. Moreover, it is tested that the same s
aling argumentswork also for the end-to-end distan
e of the 
hains, number of binary intera
tions
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Figure 5.11: The gyration radius of the 
hains normalized by its value in steady state,
Rg,x/Rg,x(ss), as a fun
tion of res
aled time, t/τc. The distan
e between the walls is
D = 17.5, the grafting density is ρg = 4.4ρ∗g, the 
hain length N = 30. Di�erent systems ofdi�erent 
ompositions show the same de
ay of the gyration radius shortly after inversion;the steady state value is rea
hed on the same time s
ale in non-Newtonian regime (W ≫ 1).The dashed line 
orresponds to the predi
ted de
ay of the gyration radius [Eq. 5.4℄.between opposing brushes and therefore also for lateral for
es a
ting between them. Itshows that knowledge of 
hara
teristi
s of the system in stati
 equilibrium, su
h as thegyration radius of 
hains, Rg(0), and the 
riti
al shear rate γ̇∗, delivers non-equilibrium
hara
teristi
s of the system even for non-stationary shear.Now let us turn to the response of the stress tensor in the gradient dire
tion, σzz.Systems with impli
it solvent mole
ules show no response for the normal stress [seeFig. 5.13℄. Due to the low density of the system 
ompared to systems with expli
itsolvent mole
ules, �u
tuations are mu
h stronger. In order to get a signal with the�u
tuations of σzz of about 1% it is ne
essary to average over more than 500 di�erent
on�gurations. Inspite of that the response of the normal stress 
an not be seen. This
an be also due to the fa
t, that the 
riti
al shear rate for these systems is mu
h largerthan for the systems of the Solvent B, C and D. For systems with expli
it solventmole
ules the averaging was done over 100 
on�gurations. Let us now analyse the systemof Solvent B. The system does not show any response to the inversion for the shear ratesin the linear response regime. In
rease of the shear rate leads to the o

urren
e of thenon-trivial response. With the highest simulated shear rate of V = 0.23 we observe aminimum of about 1.2%. The normal stress starts showing a response for shear rates
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Figure 5.12: The shear stress normalized on its value in steady state, σxz(t)/σxz(ss),as a fun
tion of res
aled time t/τc. The distan
e between the walls is D = 17.5, thegrafting density is ρg = 4.4ρ∗g, the 
hain length N = 30. Di�erent systems with di�erent
hara
teristi
 times 
an be mapped onto ea
h other for shear velo
ities beyond linearresponse regime.higher than the 
riti
al shear rate. Also, the systems of the Solvent C and D do not showany di�eren
es in the normal stress in the linear response regime. Fixing the shearvelo
ity and in
reasing the size of the solvent mole
ules (going to the Solvents C and D)leads to a larger response. We �nd that the more ma
roobje
ts arepresent in the system,the stronger is the observed response. In
rease of the 
hain length N leads to a slightin
rease of the response and to a signi�
ant in
rease of the 
hara
teristi
 time whileapproa
hing the steady state value (similarly to the steady shear).For systems without stars (Solvent B) we observe a small overshooting e�e
t of about
≈ 1%. This phenomenon appears during short times just after the inversion due to theinertia of the brushes and the solvent mole
ules. An in
rease of the turn time, tturn, leadsto a de
rease of the e�e
t (see the inset of Fig. 5.13). The overshooting e�e
t was notobserved for the systems with stars sin
e the stars are lo
ated in the middle of the systemand dissipate the energy via rotation instead of following the movement of the brushes inshear dire
tion.In order to understand the response of the normal stress let us analyse the 
omponents ofit. It 
onsists of the LJ intera
tions and the ba
kbone 
onne
tivity of the brushes, σb

zz,stars, σst
zz, and solvent mole
ules, σso

zz, as well as of the pairwise LJ intera
tions betweenthe solvent mole
ules and the brushes, σb−so
zz , solvent mole
ules and stars, σso−st

zz , brushesand stars, σb−st
zz . The total normal stress then reads
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Figure 5.13: Normal 
omponent of the stress tensor normalized by the steady state value,
σzz/σzz(ss), as a fun
tion of time during shear inversion. Depending on the shear rate and
omponents of the system, the stress shows a di�erent response. Distan
e between thewalls is D = 17.5, the grafting density is ρg = 4.4ρ∗g, the 
hain length N = 30, the turntime of the inversion tturn = 10. The higher the shear rate is and the more stars are presentin the system, the more pronoun
ed is the response. The inset shows the response of σzzfor di�erent turning times tturn = 1.25, tturn = 2.5, tturn = 5, tturn = 10 for the system ofSolvent B. The qui
ker the shear inversion is performed, the larger is the overshooting ofthe normal 
omponent.

σzz = σb
zz + σst

zz + σso
zz + σb−so

zz + σso−st
zz + σb−st

zz . (5.6)The Fig. 5.14a) shows the response of these 
omponents, that reveal a minimum. Theseare σb
zz, σst

zz, and σb−so
zz . All the other 
omponents exhibit a maximum. Due to thepresen
e of the stars the number of binary intera
tions between the brushes de
reases.This fa
t leads also to the undershooting e�e
t of this 
omponent. The stars 
an beinterpreted as a brushes in the limit of high grafting density and �nite radius of 
urvaturefor the an
hored surfa
es. Therefore, the stars reveal similarities to the brush behavior.The solvent mole
ules show a more 
ompli
ated behavior. First, the number of binaryintera
tions between the brush and solvent mole
ules de
reases; the dimers penetrateba
k into the brush from the middle of the bilayer. At this time the brush has a strong
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tion with the opposing brush showing a strong interpenetration. Furtherrelaxation from this 
on�guration leads to an in
rease of the intera
tion between thebrushes and the solvent mole
ules, su
h that the brush tends to expel the solventmole
ules ba
k to the interfa
e. This two-step pro
ess 
an be seen in more detail in thelayer resolved analysis of the intera
tion between the brushes and the solvent mole
ules.Figure 5.14b) shows that in di�erent layers of the system one 
an see di�erent pro
esses.The middle layer (5) shows an in
rease of the intera
tions between the brushes and thesolvent mole
ules. The stars are dominating the middle layer. Therefore thebrush-solvent 
omponent, σb−so
zz is rather small for this layer [see inset of Fig. 5.14b)℄.The analysis of the 4th layer shows how the solvent is expelled from the layer. Closer tothe substrates a two-step pro
ess appears. The 
ontributions of the 2nd and the 3d layersare the most signi�
ant. They reveal a slow di�usion of the solvent mole
ules ba
k to theinterfa
e between the brushes.
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Figure 5.14: Components of the normal stress in the systems during shear inversion. Thedistan
e between the walls is D=17.5, the grafting density is ρg = 4.4ρ∗g, the 
hain length
N = 30. The system of the Solvent C with the stars of 
on�guration f = 30, Nmon = 5.Left panel shows the response of the normal stress of the di�erent 
omponents. Right panelshows the layer resolved response of the intera
tions between brush and solvent mole
ules.The numbers from 1 to 5 
orrespond to the layer number. The 5th layer is the middlelayer. The inset shows the steady state value in ea
h layer.The same layer resolved analysis 
an be done for the 
ontribution of the intera
tionsbetween the solvent mole
ules. The same two-step pro
ess 
an be seen in the 4th layer.The solvent is �rst 
ompressed by the brushes and hen
e solvent mole
ules intera
tstronger with ea
h other. Afterwards, they leave the layer and di�use ba
k after somerelaxation time. The results are presented in Fig. 5.15a). The inset shows the pro�le of
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omponent. Sin
e the solvent mole
ules are expelled out of the brush, the mostsigni�
ant input is observed in the middle of the system. The pressure of the solventde
reases moving towards the substrates.
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Figure 5.15: Component of the normal pressure (layer resolved) due to the intera
tionsbetween the solvent mole
ules (a) and 
omponent of the shear stress (layer resolved) due tothe intera
tions between the brushes during the shear inversion (b). The distan
e betweenthe walls is D=17.5, the grafting density is ρg = 4.4ρ∗g, the 
hain length N = 30. Thesystem of Solvent C with the stars of 
on�guration f = 30, Nmon = 5. Insets show thepro�les of the steady state values in ea
h layer.The layer resolved analysis 
an be helpful also in explaining the overshooting e�e
ts ofthe shear stress. As 
an be seen in Fig. 5.15b), the �rst 4 layers show a universalbehavior of the shear stress, whereas the 5th layer shows the overshooting. This e�e
t ismore pronoun
ed in the absen
e of stars (the 
ase of the Solvent B) in 
orresponden
ewith the data presented above for the whole shear stress. The 
hain ends, as well as thebinary intera
tions between the brushes and the other 
omponents in theinterpenetration region play a 
ru
ial role.
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Chapter 6Charged systems
6.1 Introdu
tionUp to now we have dealt with ele
tri
ally neutral brushes. Charged brushes have a veryri
h spe
trum of properties depending on grafting density, 
hain length, 
harge fra
tion,and salt 
on
entration. They enable 
ontrolling of segregation and aggregation pro
essesand therefore are important in many industrial appli
ations, su
h as food industry, watertreatment, mining, medi
al s
ien
e et
. Moreover, experiments reveal that the fri
tion
oe�
ient between two opposing polymer brushes 
an be signi�
antly de
reased for
harged grafted 
hains with 
ounterions and added salt [42℄. As for neutral systems, alsofor 
harged brushes there is no 
omplete pi
ture of the rheologi
al me
hanisms 
ausingthe small fri
tion. In 
ontrast to the experiment, 
omputer simulations with softpotentials report equivalent fri
tion 
oe�
ients when 
omparing 
harged and neutralsystems[114℄. In this 
hapter, we present our results for 
harged systems and show how
harges modify the lubri
ation properties of polymer brush bilayers.6.2 In�uen
e of long-range intera
tionsAs a �rst step we ensured, that the program and implemented te
hnique work 
orre
tly.We tested the program for a simple system, whi
h 
onsists of two types of monomers,positively and negatively 
harged. The number of negatively 
harged ions is larger thanthe number of positively 
harged ions, n− > n+. The Gouy-Chapman theory[115℄predi
ts for this situation the double layer e�e
t in monomeri
 pro�les[116℄. Measureddensity pro�les from our simulations 
an be �tted well by the theoreti
al predi
tions.Moreover, the measured densities of the positive and the negative ion spe
ies in the bulkare in good agreement with Poisson-Boltzman equation [see Eq. 1.39℄ and are in goodagreement.Moreover, we performed simulations of 
harged opposing brushes and dire
tly 
ompared93
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(b) Shear for
es for di�erent Bjerrum lengthsFigure 6.1: Shear for
es normalized by the predi
ted power-law, γ̇0.57, for the neutral sys-tems as a fun
tion of the shear rate γ̇. The dashed lines 
orrespond to the predi
ted linearresponse (linear dependen
e) and the non-Newtonian behavior (power-law dependen
e).The full line 
orresponds to empiri
ally measured for strongly 
harged systems power-law.The grafting density is ρg = 2.2ρ∗g, the distan
e between the walls is D = 12.with already existing results from Ref. [117℄ for the same model stati
 equilibrium.In this 
hapter we will fo
us on sheared opposing polyele
trolyte brushes. Similarly tothe neutral brushes we 
hara
terize the 
harged brushes by the lateral gyration radius.Our simulations reveal the same power-law behavior as for the neutral systems (seeFig. 4.12). The 
harged and neutral systems 
an be mapped onto ea
h other for di�erentgrafting densities, ρg, Bjerrum lengths, λB, and 
harge fra
tions, fi. We observe that the
riti
al shear rate be
omes smaller, su
h that the 
rossover from the linear response tothe non-newtonian behavior o

urs at smaller shear rates.In order to observe 
rossover in the behavior from neutral to 
harged systems we variedthe strength of the long-range intera
tions through the Bjerrum length, λB, and the
harge fra
tion, fi and analysed the shear stress. Due to the presen
e of the Coulombintera
tions, the shear for
es should be in�uen
ed signi�
antly 
ompared to neutralsystems. In this se
tion we investigate only the 
ase without stars (Solvent B).Figure 6.1 shows the shear for
es as a fun
tion of the shear rate for di�erent 
hargefra
tions and Bjerrum lengths. The shear for
es are normalized by the predi
tion for theshear for
e of neutral systems, fx ∝ γ̇0.57, su
h that for large γ̇ and neutral systems aplateau is rea
hed. In
reasing the Bjerrum length (Fig. 6.1b) leads to a modi�
ation ofthe power law. The systems with larger Bjerrum lengths leave the linear regime earlierthan the neutral systems. The 
harges lead to a swelling of the brushes in Z-dire
tion.One 
an observe, that there is an interplay between the long-range intera
tions and thesteri
 
ontributions. As 
an be seen, the Coulomb intera
tion starts dominating from theBjerrum lengths λB > 0.5 and the exponent of the power-law 
onverges to γ̇2/3 for large
λB. The variation of the 
harge fra
tion 
an be interpreted as a variation of the degree of
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iation of the 
harged 
hains. Similarly to the in
rease of the Bjerrum length, thein
rease of the number of 
harged monomers in the grafted 
hains leads to a modi�
ationof the power-law behavior and shows a 
rossover from the neutral regime to strongly
harged systems (Fig. 6.1a). Up to now, we modeled 
ounterions and solvent mole
ules asa dimers. This may lead to a bridging e�e
t, when two monomers of di�erent 
hains are�
onne
ted� by an oppositely 
harged dimer between them. In order to surpress thise�e
t, we simulate systems with the 
harged monomeri
 
ounterions and 
ompare theshear for
es to the 
ase of dimers. Independently of the size and valen
e of the
ounterions we observe a 
onvergen
e of the power law to fx ∝ γ̇2/3 for strongly 
hargedsystems.
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Figure 6.2: Kineti
 fri
tion 
oe�
ient as a fun
tion of shear rate. Comparison of di�erent
harge fra
tions fi for a given λB = 1. In
rease of the strength of the long-range intera
tionsleads to an in
rease of the fri
tion. The distan
e between the walls is D = 12, the graftingdensity ρ = 2.2ρ∗, the length of the grafted 
hains N = 30.Measurements of the shear and normal for
es allow to 
ompare the fri
tion 
oe�
ientsfor di�erent strengths of the Coulomb intera
tions. Figure 6.2 shows the kineti
 fri
tion
oe�
ient as a fun
tion of the shear rate. It reveals that an in
rease of the Bjerrumlength leads to an in
rease of the fri
tion 
oe�
ient. Similarly, an in
rease of the 
hargefra
tion, while �xing the Bjerrum length at λB = 1, in
reases the fri
tion. Comparingdi�erent types of 
ounterions reveals that monovalent 
ounterions (modeled as monomers)yield a lower fri
tion 
oe�
ient than bivalent 
ounterions (simulated as dimers). One 
ansee that the system of the monovalent 
ounterions with the 
harge fra
tion, fi = 1/N ,when only the end-monomers are 
harged, shows a lower fri
tion 
oe�
ient than theneutral system with the solvent mole
ules simulated as dimers. This means that de
rease
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ules leads to a de
rease of the fri
tion 
oe�
ient, the sameresult that is observed for neutral systems when di�erent types of solvent are used.
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Figure 6.3: Density pro�le of ea
h 
omponent of the system (right plot) and distribution ofend-monomers for 
harged (dashed-dotted lines) and neutral (full lines) systems. The redlines represent the solvent mole
ules, bla
k lines the brushes. The distan
e between thewalls is D = 12, the grafting density is ρ = 2.2ρ∗, the 
hain length N = 30, the Bjerrumlength λB = 1, the shear velo
ity V = 0.23. Charged systems expell less solvent mole
ulesto the 
enter of the bilayer and result in a larger interpenetration between the brushes as
ompared to neutral systems.In order to understand the me
hanisms of the rheologi
al response we analyse the densitypro�les. Figure 6.3 shows the di�eren
e between 
harged and neutral systems. Comparedto simulations with soft potentials[114℄, our model reveals a larger overlap region.Similarly to the solvent in neutral systems, 
harged brushes expel the 
ounterions undershear. This e�e
t is less pronoun
ed due to the attra
tion between 
ounterions andbrushes. One 
an see that the brushes are swollen 
ompared to the neutral 
ase. Thebrush height is larger and so is the interpenetration region, whi
h leads to a largerfri
tion 
oe�
ient. A 
omparison of the distribution of the 
hain ends between 
hargedand neutral systems shows that the 
hains are more stret
hed in the shear dire
tion. Themaximum of the distribution of the free 
hain ends is 
loser to the 
enter of the bilayerand is higher 
ompared to the neutral brushes. One 
an see that the free 
hain endsinterpenetrate into the opposing brush deeper than in the neutral 
ase.Let us 
ompare the overlap integrals [see Eq. (4.33)℄ for the di�erent Bjerrum lengths. As
an be seen in Fig. 6.4, in
reasing the Bjerrum length leads to an in
rease of the overlapintegral. A slight in
rease of the overlap integral upon in
reasing the Bjerrum length isobserved for all simulated shear rates; this fa
t e�e
ts also the shear for
es, whi
h showthe same tenden
y. As mentioned above, the brushes be
ome swollen, whi
h was
on�rmed by the measurements of the brush height. Moreover, our simulations reveal,
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rease of the Bjerrum length leads to a stronger in
lination of the 
hains. The
hains be
ome sti�er and more stret
hed, but still the gyration radius in shear dire
tionin
reases while in
reasing the strength of the long-range intera
tion. The 
ounterions aremore and more 
ondensed on the 
hains being strongly attra
ted.
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Figure 6.4: Overlap integral of the brushes vs. shear rate for di�erent Bjerrum lengths (leftplot) and dependen
e of the overlap integral on the Bjerrum length in stati
 equilibriumand steady state (right plot). The distan
e between the walls is D = 12, the graftingdensity is ρ = 2.2ρ∗, the 
hain length N = 30. An in
rease of the strength of the Coulombintera
tion leads to an in
rease of the overlap between the brushes.In order to further 
ompare neutral and 
harged systems under stati
 equilibrium andsteady shear, we measure the pair 
orrelation fun
tion between the solvent and brushmonomers, g(r). This fun
tion is normalized su
h that it rea
hes unity on large distan
esand 
an be interpreted as the probability to �nd another parti
le at the distan
e r awayfrom a test parti
le.It turns out that in stati
 equilibrium the neutral systems show smaller 
orrelations thanthe 
harged systems, whi
h is an expe
ted e�e
t due to the long-range intera
tions. Aperiodi
al stru
ture appears at small distan
es (r . 3σ); the periodi
ity is proportionalto the size of the monomers, σ. The neutral systems show larger 
orrelations at largerdistan
es (r > 3σ) in steady shear, while the 
harged systems exhibit stronger
orrelations at smaller distan
es (r < 2σ), when more 
ounterions are attra
ted by theoppositely 
harged 
hains. A 
ontinuous in
rease of the Bjerrum length from λB = 0.01up to λB = 3 shows a 
ontinuous 
hange of this property.The expulsion of 
ounterions 
an be 
hara
terized by the 
harge distribution. It 
an be
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Figure 6.5: Di�eren
e between the pair 
orrelation fun
tions of the brush monomers withthe 
ounterion monomers in stati
 equilibrium and steady shear [g(r)V =0 − g(r)V =0.23℄ fordi�erent Bjerrum lengths. The distan
e between the walls is D = 12, the grafting density
ρ = 2.2ρ∗, the 
hain length N = 30. The inset shows pair 
orrelation fun
tions for theneutral system (bla
k line) and the strongly 
harged system, λB = 3 (red line).
al
ulated as a di�eren
e between the density pro�les of the 
ounterions, that arepositively 
harged, and the brush monomers, that are negatively 
harged, ρc = ρs − ρb.Figure 6.6 shows the 
harge distribution for di�erent Bjerrum lengths in stati
equilibrium and steady shear(V = 0.23).Let us �rst fo
us on the systems without shear. For the almost neutral systems when theBjerrum length is λB = 0.01, one 
an see that the 
ounterions are distributed through thewhole layer, but the steri
 repulsion dominates over the ele
trostati
 intera
tions and oneobserves an over
harging e�e
t in the middle of the system. The integral under the 
urveis zero, su
h that the whole system is ele
tri
ally neutral. Upon in
rease of the Bjerrumlength the in�uen
e of the ele
trostati
 intera
tions in
reases and the positively 
harged
ounterions are pulled inside the brush by the negatively 
harged 
hains. The 
hargedistribution be
omes �at; however for the largest simulated Bjerrum length the system isstill not 
ompletely neutral in the middle of the bilayer and yields about 1.5%over
harging.Let us now turn to the sheared systems. As we have already seen, the solvent mole
ulesare expelled out of the neutral brushes upon in
reasing shear rate. This e�e
t remains for
harged systems, but de
reases with an in
rease of the Bjerrum length. The larger theBjerrum length, the stronger is the attra
tion between the grafted 
hains and
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e between the walls is D = 12, the grafting density ρ = 2.2ρ∗, the length of thegrafted 
hains N = 30. The stronger the system is 
harged the less over
harging e�e
ts(maximum in the middle of the system) o

urs. The e�e
t is stronger upon in
reasingshear rate.
ounterions, and therefore the less 
ounterions are expelled to the middle of the bilayer.The mole
ular �eld, whi
h is known theoreti
ally for neutral brushes (see Eq. (1.26)) ismodi�ed by the presen
e of 
harges. In order to derive a similar theory that des
ribes thepower-law behavior of the gyration radius and the shear for
es for the 
harged systems,one has to take into a

ount ele
trostati
 intera
tions. Two variables are stronglymodi�ed, the mole
ular �eld, φ(z), and the ele
trostati
 
orrelation length. One of thepossible ways for taking into a

ount the long-range intera
tions in the system is to solvethe Poisson-Boltzman equation, Eq. (1.39). Moreover, one has still to take into a

ountex
luded volume intera
tions. All this may deliver an expli
it mole
ular �eld whi
h mayallow to re
al
ulate the interpenetration length for 
harged bilayers leading �nally to apredi
tion for the dependen
e of the shear for
e on the shear rate, as it has been done forneutral bilayers (Chapter 4). However, these 
al
ulations are, due to the interplaybetween ele
trostati
s and ex
luded volume e�e
ts, non-trivial. We leave this for futurework.
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Chapter 7Con
lusions and outlookIn the present study, we investigated neutral and 
harged brush-like systems by means ofMole
ular Dynami
s simulations using a 
lassi
al 
oarse-grained polymer model.Investigations of systems 
onsisting of two opposing brushes with soft in
lusions (polymerstars), reveal strong modi�
ations of the size and shape of the polymer stars and brushes,
ompared to the pure polymer-brush bilayer or the stars in the bulkBoth brushes and stars are strongly deformed. Stars experien
e a signi�
ant deformationin all three spatial dire
tions in the presen
e of the brushes, they be
ome 
ompressed andaspheri
al. Inspite of that the presen
e of the brushes leads to the de
rease of thee�e
tive repulsion a
ting between the stars su
h that the resulting intera
tion potentialbetween them is smaller than for brush-free 
ases. E�e
tive attra
tions betweenin
lusions mediated by the brushes are found to be to about 40kBT depending on thesoftness of the stars, 
hain length, grafting density of the brushes. In
rease of the densityof the brushes, as well as in
rease of the fun
tionality of stars, lead to an in
rease of theattra
tion. It is shown that the number of beads that belong to the brushes play animportant role for this intera
tions. The 
loser the stars, the more brush mole
ules isexpelled from the region between the stars. When the stars start overlapping, thenumber of intera
tions between the brushes and stars starts de
reasing, and e�e
tiveattra
tions o

ur. De
reasing the fun
tionality down to linear 
hains leads to potentialsless than kBT [119℄. In 
ase of �uid brushes, where the grafted 
hains are allowed to moveon the surfa
e without deta
hing, we expe
t therefore the e�e
t to be
ome signi�
antlysmaller. These investigations are left for future work.Investigations of the response of two opposing brushes in presen
e of polymer stars tostationary Couette �ows of di�erent shear rates indi
ate, that the relaxation time of thebilayer is modi�ed by the presen
e of the stars. The 
riti
al shear rate, whi
h separatesliear from non-Newtonian response, be
omes larger in the presen
e of stars 
ompared tothe star-free 
ase. We varied the 
ompression of the 
on�ned layers and their mole
ularparameters, grafting density and 
hain length, as well as the fun
tionality of stars and101



102 CHAPTER 7. CONCLUSIONS AND OUTLOOKlength of arms. Star-free 
ases have been 
ompared to systems with in
lusions. Ourinvestigations revealed that the in
rease of the grafting density or the 
hain length leadsto a de
rease of the 
riti
al shear rate. Moreover, we observe the formation of a �uidlayer between the brushes for large shear rates, su
h that solvent mole
ules and polymerstars are expelled out of the brushes.In agreement with previous 
omputer studies (see Refs. in [30℄ and [31�34, 36, 37℄), weobserve only small 
hanges of the layer thi
kness, but a pronoun
ed swelling of polymer
hains along the shear dire
tion. This behavior goes along with a non-Newtonianresponse, i.e. a sublinear in
rease of the lateral fri
tion for
e with sliding velo
ity.Our data indi
ates that the swelling of 
hains in the shear dire
tion 
an be des
ribed bya universal power-law in
rease of the 
hain extension (
hara
terized by the radius ofgyration) with the Weissenberg number. Using the shear-indu
ed deformation of thegrafted 
hains, we demonstrated how to estimate the 
riti
al shear rate. This allows tosuperimpose the data of all 
onsidered parameter 
ombinations, revealing a rather 
losedpi
ture that relates the 
hain deformation to the ma
ros
opi
 response. Despite theirdistin
t di�eren
es, systems with stars, star-free 
ases, and even solvent-free 
ases[109℄
an be des
ribed 
onsistently. Independently of the star 
on�guration we observe similarresponses of the system. The behavior is modi�ed when the stars start dominating theresponse at large densities.We developed a s
aling theory that allows one to explain the stru
tural 
hanges of thebilayer and its ma
ros
opi
 response to shear. Our analyti
al approa
h is 
apable ofreprodu
ing not only the data stemming from very di�erent numeri
al models but alsore
ent experimental observations. A 
entral result of our s
aling approa
h is that the
riti
al shear rate, at whi
h the linear response regime is left and non-Newtonianbehavior sets in, depends on 
ompression and mole
ular parameters as
γ̇∗ ∝ N−2.44ρ−0.27

g D0.6, (7.1)in the limit of strongly 
ompressed, semidilute brushes with Zimm dynami
s (N is the
hain length, ρg the grafting density, D the distan
e between grafting planes. A Test ofthis relation is numeri
ally rather di�
ult due to the fa
t that the dependen
e of γ̇∗ ongrafting density and 
ompression is rather weak. In addition, the parameter regime that
an be probed for ρg and D is limited be
ause one has to assure strongly 
ompressedbrushes. The theory works also for long 
hains, when the brushes are entangled in stati
equilibrium. These entanglements have to be released for large Weissenbergnumbers(W ≫ 1).We have shown that the de�nition of the Weissenberg number via the relaxation time ofa single 
hain of equivalent length in the bulk is not suitable. The relaxation time of su
h
omplex systems is strongly dependent on the system parameters.



103Our results and previous investigations[18, 35℄ indi
ate that the universal ma
ros
opi
response, as we report it here for the �rst time, is not in�uen
ed by the type of the solventmole
ules in
orporated in the system, although the interpenetration between the brushesis strongly in�uen
ed by the stars. The stru
tural response is altered when hydrodynami
e�e
ts are suppressed in simulations, and when the solvent mole
ules are 
ompletelyrepla
ed by the stars, while e�e
tively in
reasing the size of the solvent mole
ules[118℄.We have demonstrated, that an in
rease of the size of solvent mole
ules (repla
ing dimersby polymer stars) and an in
rease of the density of in
luded obje
ts lead to the in
reaseof the kineti
 fri
tion 
oe�
ient. A 
omparison of systems where solvent mole
ules aremodelled as monomers instead of dimers reveal the same tenden
y.Investigations of the non-stationary shear, i.e. shear inversion, show a dire
t 
onne
tionbetween stati
 properties of the system and its dynami
 behavior. The 
hara
teristi
time of ea
h system 
an be des
ribed in terms of the gyration radius and 
riti
al shearrate. Independently of the grafting density, the 
on�guration of the stars, the distan
ebetween the walls, as well as the shear rate beyond linear response, the behavior of thegyration radius of the brushes, as well as the shear stress, 
an be explained by a simples
aling approa
h. The systems in linear response reveal di�erent relaxation behaviors.We demonstrated that the response of the normal stress to shear inversion show atwo-step e�e
t: �rst an overshooting (depending on the turn time) and then anundershooting. In
rease of the turn time, su
h that shear inversion is performedsmoother, leads to a de
rease of the overshooting e�e
t, whereas the undershootingremains une�e
ted. The systems in the linear response regime do not show any response.The e�e
t appears only for shear rates, where non-Newtonian behavior is observed. Thelarger the shear rate, the larger is the response. Moreover, our investigations revealed,that the presen
e of the stars leads to an in
rease of the e�e
t.While the stars lead to an in
rease for the response of the normal stress, it overdamps anovershooting of the shear stress. The more stars are in the system, the smoother theshear inversion 
an be performed. This fa
t 
an be 
ru
ial for the experiments withos
illatory shear, when inversion is performed several times. Here, large overshootinge�e
t may lead to a rupture break of the grafted 
hains. Our data show thet for longtimes after shear inversion the total shear stress is almost 
onstant, whereas single
omponents, as e.g. the brush-solvent intera
tion, are still not fully relaxed. This fa
tmay 
ru
ially in�uen
e the measurements of the stru
ture and rheologi
al properties inreal os
illatory shear experiments.The stru
tural behavior is modi�ed when brushes are 
harged. The system exhibit a
ontinuous transition from the neutral to a highly 
harged behavior. Our measurementsshow a larger fri
tion 
oe�
ient 
ompared to the neutral brushes. In
rease of thestrength of the Coulomb intera
tion leads to an in
rease of the shear for
es. Normalfor
es are in�uen
ed only slightly. Both gyration radius and shear for
es show a
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al des
ription, similar to the neutral systems, 
an bedone by taking into a

ount the Poisson-Boltzman equation. However, we leave these(non-trivial) 
al
ulations for future work.We plan to 
ontinue all investigations mentioned above with di�erent in
lusions,e.g. bottle brushes, or under modi�
ation of the grafted polymers, su
h that, e.g. both
hain ends are grafted to the surfa
es or that the grafted linear are repla
ed by 
hainswith side groups.We 
an not 
hange the world right now, but we are making steps forward inunderstanding it. We live and learn.
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