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Abstract

We investigate the cases of moduli spaces of semistable sheaves on projec-
tive K3 surfaces not covered by [KLS06] - the cases of Mukai vector (0, c, 0)
as well as moduli spaces for nongeneral ample divisors - with regard to the
possible construction of new examples of compact irreducible symplectic ma-
nifolds. We establish a connection to the already investigated moduli spaces
or generalisations thereof, and we are able to extend the known results to all
of the open remaining cases for rank 0 and many of those for positive rank.
In particular, for these cases we can exclude the existence of new examples of
compact irreducible symplectic manifolds lying birationally over components
of the moduli space.

Zusammenfassung

Ich untersuche die nicht bereits durch [KLS06] abgedeckten Fälle von Mo-
dulräumen halbstabiler Garben auf projektiven K3-Flächen - die Fälle mit
Mukai-Vektor (0, c, 0) sowie die Modulräume zu nichtgenerischen amplen Di-
visoren - hinsichtlich der möglichen Konstruktion neuer Beispiele von kom-
pakten irreduziblen symplektischen Mannigfaltigkeiten. Ich stelle einen Zu-
sammenhang zu den bereits untersuchten Modulräumen und Verallgemeine-
rungen derselben her und erweitere bekannte Ergebnisse auf alle o�enen Fälle
von Garben vom Rang 0 und viele Fälle von Garben von positivem Rang.
Insbesondere kann in diesen Fällen die Existenz neuer Beispiele von kom-
pakten irreduziblen symplektischen Mannigfaltigkeiten, die birational über
Komponenten des Modulraums liegen, ausgeschlossen werden.
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Introduction

A compact complex manifold of Kähler type is Ricci �at if and only if its
�rst Chern class is trivial by [Yau78]. The structure of such manifolds is
described by the Bogomolov decomposition (see [Bea83] Theorem 2, [Ber55]
or [Bog74]):

Theorem. Let X be a compact manifold of Kähler type with trivial �rst
Chern class. Then there is a �nite étale covering X ′ of X, which is isomor-
phic to the product

T ×
∏

Vi ×
∏

Xj ,

where each Vi is a projective simply connected manifold of dimension mi ≥ 3
with trivial canonical sheaf and H0(Vi,Ω

p
Vi

) = 0 for 0 < p < mi, each Xj is
a compact irreducible symplectic manifold of Kähler type and T is a complex
torus.

The only compact irreducible simply connected Kähler manifolds with trivial
�rst Chern class hence are compact irreducible symplectic manifolds and
Calabi-Yau manifolds.

There is a recent publication [Bea10] on holomorphic symplectic geome-
try we want to advert to.

The compact irreducible symplectic manifolds are exactly the irreducible
compact hyperkähler manifolds ([Huy99] or [Bea83]). The symplectic form
can easily be de�ned on an irreducible compact hyperkähler manifold but
conversely there is only a pure existence result for a hyperkähler metric on
a compact irreducible symplectic manifold based on Yau's solution of the
Calabi conjecture.

Up to now only very few examples of compact irreducible symplectic
manifolds are known, these are up to deformation:

v
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• K3 surfaces

• Hilbert schemes of points on a K3 surface

• generalised Kummer varieties associated to an abelian surface

• a 10-dimensional example of O'Grady [O'G99]

• a 6-dimensional example of O'Grady [O'G03]

All examples above can be constructed from moduli spaces of semistable
sheaves on K3 or abelian surfaces. E.g. the Hilbert scheme Hilbn(X) over a
K3 surface X is isomorphic to the moduli space of sheaves on X with rank
1, c1 = 0 and c2 = n. By [KLS06] it is almost completely excluded that this
construction yields other examples than those mentioned above - proposition
1.6.4 summarises known results.

We want to investigate the missing cases but restrict our considerations to
sheaves on K3 surfaces. What is left here are the moduli spaces of semistable
sheaves with rank 0, given �rst Chern class, and Euler characteristic 0, and
the moduli spaces MH(v) of sheaves with Mukai vector v that are semistable
with respect to a not v-general ample divisor H.

In chapter 1 we recall the state of the art. We give the de�nition of a
symplectic variety and cite the important result of Huybrechts that birational
projective irreducible symplectic manifolds are deformation equivalent. We
recall the de�nition of the Mukai vector of a sheaf on a K3 surface together
with �rst properties and discuss the notion of a general ample divisor. The
last section collects known facts on moduli spaces of semistable sheaves on
K3 surfaces and their symplectic resolvability.

In chapter 2 we investigate irreducible components of the moduli space
MH(v). Our �rst result gives a relation to components of other moduli spaces
containing stable sheaves:

Proposition. (2.1.1) Let X be a projective K3 surface, H an ample divisor,
v ∈ Λ(X) := N0⊕NS(X)⊕Z ⊂ H2∗(X,Z) and M an irreducible component
of MH(v). Then there is a birational projective morphism

g :
m∏
i=1

SniMi →M

for a suitable decomposition v =
∑m

i=1 nivi with ni ∈ N and vi ∈ Λ(X) for
1 ≤ i ≤ m and a suitable choice of pairwise distinct irreducible components
Mi ⊂M s

H(vi) for 1 ≤ i ≤ m.
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This leads us to a section on products and symmetric products of symplectic
varieties. Furthermore, we generalise an important result of Namikawa:

Proposition. (2.3.4) If there is a singular Q-factorial projective symplectic
terminalisation of a projective scheme X then X admits no projective sym-
plectic resolution.

Therefore we will always try to �nd a Q-factorial projective symplectic ter-
minalisation. The chapter ends with the following result:

Theorem. (2.3.5) Assume the situation of proposition 2.1.1.

1. Assume that for each 1 ≤ i ≤ m there is a Q-factorial projective sym-
plectic terminalisation M̃i →Mi.

a) Let M̃i be nonsingular for all 1 ≤ i ≤ m and let v2
i ≤ 0 for all

1 ≤ i ≤ m with ni > 1. Then there is a projective symplectic
resolution M̃ →M .

If M̃ can be chosen to be an irreducible symplectic manifold then
it is deformation equivalent to M̃i for some 1 ≤ i ≤ m or to a
Hilbert scheme of points on a K3 surface.

b) Let M̃j be singular or let v2
j ≥ 2 and nj > 1 for some j with 1 ≤

j ≤ m. Then there is a singular Q-factorial projective symplectic
terminalisation M̃ → M . In particular, M admits no projective
symplectic resolution.

2. Let U := g(
∏m

i=1 S
niM s

i ) and U ′ be the normalisation of Ured. Then
there is a Q-factorial symplectic terminalisation Ũ → U and U ′ is a
Q-factorial symplectic variety.

Moreover, if v2
j ≥ 2 and nj > 1 for some j with 1 ≤ j ≤ m then there

is no projective symplectic resolution of M .

Chapter 3 gives a complete answer to our question for moduli spaces of
one-dimensional semistable sheaves on K3 surfaces. We follow the idea of
constructing a Q-factorial symplectic terminalisation. First we discuss how
one can construct morphisms between moduli spaces when the ample divisor
varies. The Mukai vector (0, c, 0) is usually excluded from considerations
because there is no notion of a general ample divisor. We are able to reduce
these special cases of MH(0, c, 0) to those we are able to treat later:
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Theorem. (3.1.4) Let X be a K3 surface with an ample divisor H and
0 6= c ∈ H2(X,Z) e�ective. Then there is an isomorphism

MH(0, c, 0) ∼= MH(0, c, c.H) ,

which is induced by tensoring with H, and one has c.H > 0.

So let v = (0, v1, v2) with v1 6= 0 e�ective and v2 6= 0. Then one can con-
struct a morphismMA(v)→MH(v) for nongeneral H choosing some general
A near H. MA(v) is known to be symplectically resolvable or Q-factorial
symplectic with terminal singularities. Thus we are able to answer our main
question for M s

H(v) and therefore for any component of MH(v):

Corollary. (3.2.3) Let X be a projective K3 surface, v = (0, v1, v2) ∈ Λ(X)
with v1 6= 0 e�ective, H an ample divisor on X and M an irreducible com-
ponent of MH(v). If there is a projective symplectic resolution M̃ →M with
M̃ an irreducible symplectic manifold then it is deformation equivalent to a
symplectic resolution of some MA(w), where w ∈ Λ(X) and A is some w-
general ample divisor.

We would like to work out the same steps for the case of moduli spaces
of two-dimensional semistable sheaves on K3 surfaces. Unfortunately, in the
case of sheaves of positive rank an H-semistable sheaf for general H might
become H-unstable when H is moved onto a so-called wall, i.e. when H
becomes nongeneral, and there is no morphism between the corresponding
moduli spaces in general. We need to �nd another way. In [MW97] the au-
thors construct a moduli space for twisted semistable sheaves of �xed Chern
character on a surface. They show under certain conditions an equivalence
of twisted semistability and semistability with an extra condition involving a
second ample divisor A. We give the latter one the name (H,A)-semistability.
Although in [MW97] the moduli space for (H,A)-semistable sheaves is con-
structed, we need much more details and properties, so we give another
construction following the one in the book [HL97] in order to generalise re-
sults therein and others. This is the topic of chapter 4. In our application
our semistable sheaves will be living on a K3 surface but as there seems to
be no reason for such a restriction we stay as general as possible without
getting into unnecessary trouble. This chapter is heavily based on the book
[HL97]. After some preparatory facts we introduce the notion of (H,A)-
(semi)stability, where H and A are two ample line bundles on a projective
scheme. As the new notion of (H,A)-(semi)stability includes the notion
of H-(semi)stability, we automatically recall the latter one and some of its
properties. The de�nition immediately yields the observation
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H-stable ⇒ (H,A)-stable ⇒ (H,A)-semistable ⇒ H-semistable.

Therefore we can get the needed morphisms between the corresponding mod-
uli spaces. We give di�erent characterisations of (H,A)-(semi)stability, ex-
plain the Jordan-Hölder �ltration and prove the openness property of (H,A)-
(semi)stability in �at families. Then the construction follows. The generali-
sation in the construction is made by using two di�erent ample line bundles
H and A, the �rst one in order to make the considered sheaves globally gener-
ated, and the second one in order to get the linearised line bundle. We prove:

Theorem. (4.6.5) There is a projective coarse moduli space MH,A(P ) for
(H,A)-semistable sheaves with �xed Hilbert polynomial P with respect to H.

Almost all proofs carry over literally replacing the expression H-(semi)stable
by the expression (H,A)-(semi)stable. The most interesting part might be
the equivalence of (semi)stable points (in the GIT sense) and (semi)stable
sheaves. This is the place where one sees where the de�nition of (H,A)-
semistability comes from. Finally we discuss some local properties and de-
duce the existence of a quasi-universal family on the stable locus.

In chapter 5 we leave the generality and return to our original question
for moduli spaces of torsion free semistable sheaves. We �rst calculate ex-
plicit expressions for the semistability condition on a nonsingular projective
surface. Then we further restrict to K3 surfaces and show that by choos-
ing A general one can force destabilising subsheaves of an (H,A)-semistable
sheaf to have a Mukai vector proportional to the Mukai vector of the given
sheaf, which is the key fact of the analysis of moduli spaces of sheaves on K3
surfaces for general ample divisors in [KLS06]. The moduli space MH,A(v)
of (H,A)-semistable sheaves with Mukai vector v is constructed analogously
to the case of H-semistable sheaves by taking the �bre of the determinant
morphism. We explain which properties of MH(v) carry over immediately
to MH,A(v), this time in particular with v-general A, and get the following
result:

Theorem. (5.2.5) Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive with v0 > 0, m ∈ N, H an ample divisor on X and A an mv-general
ample divisor on X. Assume that M s

H,A(mv) is nonempty. Then v2 ≥ −2.

1. If v2 = −2 then m = 1 and MH,A(v) consists of a reduced point.

2. If v2 = 0 then MH,A(mv) = M s
H,A(mv), and MH,A(mv) is a projective

symplectic nonsingular surface.



x INTRODUCTION

3. Let v2 ≥ 2 and M s
H,A(v) be nonempty. Then MH,A(mv) is a projective

symplectic variety of dimension 2 +m2v2.

a) If m = 1 then MH,A(v) = M s
H,A(v), and MH,A(v) is nonsingular.

b) If m ≥ 2 then the singular locus of MH,A(mv) is nonempty and
equals the strictly semistable locus.

i. If m = 2 and v2 = 2 then the singular locus has codimension
2 and MH,A(mv) admits a symplectic resolution.

ii. If m = 2 and v2 > 2 or m > 2 then MH,A(mv) is locally
factorial, the singular locus has codimension at least 4 and the
singularities are terminal. There is no open neighbourhood of
a singular point that admits a symplectic resolution.

4. Let v2 ≥ 2 but now M s
H,A(v) be empty. Then MH,A(v) is empty as well,

i.e. m > 1 by assumption. If m = 2 or 3 then MH,A(mv) = M s
H,A(mv),

and MH,A(mv) is a nonsingular projective symplectic variety of dimen-
sion 2 +m2v2.

The assumption that M s
H,A(mv) is nonempty is not crucial: in our applica-

tion this holds automatically. But the assumption thatM s
H,A(v) is nonempty

for v2 ≥ 2 and m > 2 or for v2 > 2 and m ≥ 2 is problematic. Not only that
the lacking of such sheaves kills our terminalisation, this might also produce
unexplored possibly nonsingular or symplectically resolvable symplectic va-
rieties, in particular as stated in the last item. Another question is whether
the nonsingular projective symplectic varieties are deformation equivalent to
known examples - of course, the surface case is not interesting as surfaces are
classi�ed. Because of theorem 1.1.4 it is enough to establish birational equiv-
alence. Anyway the moduli spaces MH,A(v) and their symplectic resolutions
are good candidates for Q-factorial projective symplectic terminalisations of
MH(v), and we can reduce our question on MH(v) to the investigation of
MH,A(v):

Proposition. (5.3.2) Let X be a projective K3 surface, v = (v0, v1, v2) ∈
Λ(X) with v0 ≥ 2, H a not v-general and A a v-general ample divisor.
Assume that M s

H(v) is nonempty and that there is a Q-factorial projective
symplectic terminalisation M̃H,A(v)→MH,A(v) . Then there is a Q-factorial
projective symplectic terminalisation f : M̃H,A(v)→M s

H(v) .

1. If there is a projective symplectic resolution M̃ → M s
H(v) and M̃ can

be chosen to be an irreducible symplectic manifold then M̃ is unique up
to deformation.
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2. If M̃H,A(v) is singular then M s
H(v) admits no projective symplectic res-

olution.

Corollary. (5.3.3) Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
with v0 ≥ 2, H a not v-general ample divisor on X and M an irreducible
component of MH(v) containing no H-stable sheaves.

Assume that for all w = (w0, w1, w2) ∈ Λ(X) with 1 < w0 < v0 and such
that H is not w-general, w1.H

w0
= v1.H

v0
and w2

w0
= v2

v0
there is a Q-factorial pro-

jective symplectic terminalisation ofMH,Aw(w) for a suitable w-general ample
divisor Aw. Then there is a Q-factorial projective symplectic terminalisation
M̃ →M .

If M̃ can be chosen to be an irreducible symplectic manifold then it is de-
formation equivalent to some symplectic resolution of some MH,A(w), where
w = (w0, w1, w2) ∈ Λ(X) has the above properties and A is a w-general ample
divisor, to a symplectic resolution of some MH(w), where 1 ≤ w0 < v0, H is
w-general, w1.H

w0
= v1.H

v0
and w2

w0
= v2

v0
, or to a Hilbert scheme of points on a

K3 surface.

Unfortunately, theorem 5.2.5 does not give a complete answer and the as-
sumptions are not necessarily satis�ed. The next section reduces the gaps
to the existence of certain stable sheaves. Hence we need existence results
for stable sheaves. After some preparatory calculations we can state the
numerical condition

v2 > 2

(
v3

0 − v2
0 − v0 − (v0 − 1)

⌊
v2

0

4

⌋−1
)

=: ϕ(v0) ,

which ensures the existence of the needed stable sheaves. After a separate
treatment of the case v2 = 2 = ϕ(2) with v0 = 2 we get:

Theorem. (5.7.1) Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive and m ∈ N with mv0 ≥ 2, H a not mv-general ample divisor on X
and A an mv-general ample divisor on X in a chamber touching H.

1. If (mv)2 > ϕ(mv0) then M s
H,A(mv) is nonempty.

2. Let m = 1 and assume v2 > ϕ(v0). Then MH,A(v) is an irreducible

symplectic manifold and deformation equivalent to Hilb
v2

2
+1(X).

3. Letm = 1 and v = (2, v1,
v21−2

4
). ThenMH,A(v) is birational to Hilb2(X)

or to X2 or it is empty. In the �rst case MH,A(v) is an irreducible sym-
plectic manifold and deformation equivalent to Hilb2(X), in the second
case it cannot be an irreducible symplectic manifold.
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4. Let m = 2, v2 = 2 and v0 = 1. Then the symplectic varieties MH,A(2v)
and MB(2v) are birational for a suitable 2v-general ample divisor B
on X, hence also any symplectic resolutions M of MH,A(2v) and M ′ of
MB(2v).

If furthermore M or M ′ is an irreducible symplectic manifold then both
are irreducible symplectic and deformation equivalent.

5. Let M s
H,A(mv) be nonempty, m ≥ 2 and (mv)2 ≥ 16, and assume

v0 = 1 or v2 > ϕ(v0). Then MH,A(mv) is a singular locally factorial
(and therefore Q-factorial) projective symplectic variety with only ter-
minal singularities, and in particular, there is no projective symplectic
resolution.

In the last section we return to H-semistable sheaves on K3 surfaces and
deduce the following:

Theorem. (5.8.1) Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive with v0 > 0, m ∈ N and H an ample divisor on X. Furthermore,
assume that M s

H(mv) is nonempty. Then one has v2 ≥ −2, and in the case
of equality one has m = 1 and MH(v) consists of a reduced point. Let now
v2 ≥ 0.

1. Let m = 1 or (mv)2 ≤ 14. Then there is a projective symplectic reso-
lution M → M s

H(mv). If H is not mv-general then M can be chosen
to be a symplectic resolution of MH,A(mv), where A is an mv-general
ample divisor.

Moreover, if M can be chosen to be irreducible symplectic then it is
unique up to deformation.

2. Let m ≥ 2 and (mv)2 ≥ 16. If H is mv-general or v0 = 1 or v2 > ϕ(v0)
then there is a singular locally factorial (and therefore Q-factorial) pro-
jective symplectic terminalisation of M s

H(mv) , and in particular, there
is no projective symplectic resolution of M s

H(mv).

We conclude the section with a discussion for small ranks and point out that
the moduli spaces of semistable rank two sheaves do not yield new examples
of irreducible symplectic manifolds.

Finally, in chapter 6, we discuss the relation of (H,A)-stability and twisted
stability.



Chapter 1

State of the art

In this chapter we recall the state of the art. We assume familiarity with the
book [HL97]. Our ground �eld for this chapter is C.

1.1 Symplectic varieties

We recall the de�nition of a symplectic variety following [Bea00].

De�nition 1.1.1 1. Let X be a variety. A nonsingular variety X̃ to-
gether with a proper birational morphism f : X̃ → X is called a resolu-
tion of singularities if it induces an isomorphism f−1(U)

∼=→ U , where
U is the nonsingular locus of X.

2. A closed nondegenerate holomorphic 2-form on a nonsingular variety
is called a (holomorphically) symplectic form.

3. A symplectic variety X is a normal variety together with a symplectic
form ω on the nonsingular locus U of X such that there is a resolution
of singularities f : X̃ → X for which the pullback

(
f |f−1(U)

)∗
ω extends

to a holomorphic 2-form on X̃.

One can show that if X is a symplectic variety and f : X̃ → X is any
resolution of singularities then the pullback of ω by the induced isomorphism
extends to a holomorphic 2-form on X̃, see [Bea00] section 1.

De�nition 1.1.2 An irreducible symplectic manifold is a simply connected
compact Kähler manifold with a holomorphically symplectic form that gener-
ates H0(X,Ω2

X).

1
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Theorem 1.1.3 Let X be a projective K3 surface. Then Hilbm(X) is a
projective irreducible symplectic manifold of dimension 2m.

Proof. [Bea83] theorem 3. �

Theorem 1.1.4 Let a projective irreducible symplectic manifold X and a
projective manifold X ′ carrying a nondegenerate 2-form be birationally equiv-
alent. Then X ′ is irreducible symplectic, too, and X and X ′ are deformation
equivalent and hence di�eomorphic.

Proof. X ′ is irreducible symplectic by the proof of [HL97] corollary 6.2.7,
and X and X ′ are deformation equivalent and di�eomorphic by [Huy99]. �

1.2 Symplectic resolutions

De�nition 1.2.1 1. If a morphism between schemes induces an isomor-
phism between open dense subsets then we say that the morphism is
birational.

2. Let X be a scheme. A nonsingular symplectic variety X̃ together with a
proper birational morphism f : X̃ → X is called a symplectic resolution.

Note that we do not require f to be an isomorphism over the nonsingular lo-
cus. For a projective symplectic resolution of a projective normal variety the
following proposition shows that this condition always holds true. Moreover,
if in this case ω is the symplectic form on the nonsingular locus of X induced
by f then the pullback of ω clearly extends to the original symplectic form
on X̃. Note that this is the usual de�nition for a resolution of singularities
f : X̃ → X of a symplectic variety X to be symplectic.

Proposition 1.2.2 Let f : X̃ → X be a projective symplectic resolution of
a projective scheme X. Then

1. X is irreducible,

2. the normalisation X ′ of Xred is a projective symplectic variety,

3. f factors through a projective symplectic resolution h : X̃ → X ′ and

4. h induces an isomorphism h−1(X ′sm)
∼=→ X ′sm, where X

′
sm is the nonsin-

gular locus of X ′.
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Proof. As X̃ is irreducible, so is f(X̃) = X. Hence X ′ is a normal integral
scheme, which is projective by [Mum99] theorem III.8.4, i.e.X ′ is a projective
normal variety.

The morphism f factors through X ′ and hence yields a projective bira-
tional morphism h : X̃ → X ′. In particular, there is an open dense subset
U ⊂ X̃ such that h induces an isomorphism U → h(U). We maximally
extend its inverse and get a morphism i : V → X̃ with h(U) ⊂ V and
(h◦i)|h(U) = idV |h(U) . Then by [Har77] lemma I.4.1 one already has h◦i = idV .

In particular, i is injective and induces an isomorphism Vsm
∼=→ i (Vsm)

where Vsm denotes the nonsingular locus of V , and we are able to pull
back the symplectic form ωX̃ on X̃ to a symplectic form ωVsm on Vsm. By
[Har77] lemma V.5.1 one has codimX′(X

′ \ V ) ≥ 2 as X ′ is normal, so one
has codimX′sm(X ′sm \ Vsm) ≥ 2 for the nonsingular loci, and the form ωVsm
can be extended to a closed 2-form ωX′sm on X ′sm. The degeneration locus
D := {p ∈ X ′sm | (ωX′sm)p is degenerate } is a divisor and must be contained
in X ′sm \ Vsm, which has codimension at least 2, and therefore D is empty,
i.e. ωX′sm is a symplectic form on X ′sm.

Let X̃o := h−1(X ′sm), ho : X̃o → X ′sm be the restriction of h to X̃o and
ω := (ho)∗ωX′sm , which is a closed 2-form on X̃o. The degeneration locus
{p ∈ X̃o | ωp is degenerate } is the canonical divisor, which is trivial as X̃o

is a symplectic variety, hence ω is a symplectic form on X̃o. Assume that ho

is not an isomorphism, so there is a p ∈ X ′sm such that Z := (ho)−1({p}) has
dimension at least 1, and ω degenerates on Z, a contradiction. Thus ho is an
isomorphism. �

Corollary 1.2.3 Let f : X̃ → X be a projective symplectic resolution of a
projective normal variety X. Then f is a resolution of singularities.

1.3 Sheaves on K3 surfaces

We skip introducing K3 surfaces and refer to [BHPVdV04]. Let X be a K3
surface and E and F coherent sheaves on X. One has χ(OX) = 2 and hence
td(X) = (1, 0, 2) ∈ H2∗(X,Z).

De�nition 1.3.1 The Mukai vector of E is v(E) := ch(E)
√

td(X) .

Mukai calls it the vector associated to E, see [Muk87] de�nition 2.1. By
Riemann-Roch one has χ(E) = ch2(E) + 2rkE , hence

v(E) = (rkE, c1(E), χ(E)− rkE) ∈ N0 ⊕ NS(X)⊕ Z .
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Notation 1.3.2 Λ(X) := N0 ⊕ NS(X)⊕ Z ⊂ H2∗(X,Z).

In [Muk87] section 2, Mukai de�nes a symmetric integral bilinear form on
Λ(X) by

〈(v0, v1, v2), (v
′
0, v
′
1, v
′
2)〉 := v1.v

′
1 − v0v

′
2 − v′0v2 ,

which is now called the Mukai pairing.

Proposition 1.3.3

χ(E,F ) := hom(E,F )− ext1(E,F ) + ext2(E,F ) = −〈v(E), v(F )〉 .

Proof. This follows from Riemann-Roch. �

Proposition 1.3.4 (Mukai) The pairing

Exti(E,F )× Ext2−i(F,E)→ H2(OX), (a, b) 7→ tr2(a ◦ b)

is nondegenerate for every i. In particular, ext1(E,F ) = ext1(F,E) and
ext2(E,F ) = hom(F,E).

Proof. [Muk87] proposition 2.3. �

Corollary 1.3.5 〈v(E), v(F )〉 = ext1(E,F ) − hom(E,F ) − hom(F,E) . In
particular, v(E)2 := 〈v(E), v(E)〉 = ext1(E,E) − 2end(E) . If E is simple,
i.e. end(E) = 1, then v(E)2 ≥ −2.

De�nition 1.3.6 A vector v of a lattice Λ is primitive or indivisible if there
is no decomposition v = mw with 2 ≤ m ∈ N and w ∈ Λ.

Proposition 1.3.7 (Mukai) Let H be an ample divisor on X, v ∈ Λ(X)
primitive, m ∈ N and E an H-stable sheaf with v(E) = mv. Then v2 ≥ −2.

Moreover, if v2 = −2 then m = 1, and if additionally F is any H-
semistable sheaf with v(F ) = v then F ∼= E.

Proof. By [HL97] corollary 1.2.8 the sheaf E is simple, hence m2v2 ≥ −2 by
corollary 1.3.5. Thus v2 ≥ − 2

m2 , i.e. either v2 = −2 and m = 1, or v2 ≥ 0.
Assume that v2 = −2 and that there is an H-semistable sheaf F with

v(F ) = v. By proposition 1.3.3 one has

2 = −〈v(E), v(F )〉 = χ(E,F ) = hom(E,F ) + hom(F,E)− ext1(E,F ) ,

hence hom(E,F ) > 0 or hom(F,E) > 0, and by [HL97] proposition 1.2.7 any
such homomorphism is an isomorphism. �



1.4. GENERAL AMPLE DIVISORS 5

1.4 General ample divisors

We recall the notion of a general ample divisor and explain its advantage.

1.4.1 Walls for two-dimensional sheaves

We follow the presentation in [HL97] section 4.C. Let X be a nonsingular
projective surface over an algebraically closed �eld k of characteristic zero,
and Num(X) := Pic(X)/ ≡, where ≡ denotes numerical equivalence. Let
r ≥ 2 and ∆ > 0 be integers.

De�nition 1.4.1 Let

W (r,∆) := {ξ⊥ ∩ Amp(X)Q | ξ ∈ Num(X) with − r2

4
∆ ≤ ξ2 < 0} ,

whose elements are called walls. The connected components of the comple-
ment of the union of all walls are called chambers. An ample divisor is called
general if it is not contained in a wall.

If X is a K3 surface and v = (v0, v1, v2) ∈ Λ(X) with ∆ = v2 + 2v2
0 (this

is the discriminant of a sheaf with Mukai vector v) then we also write more
precisely v-general instead of general. Furthermore, in the case of v0 = 1 we
agree that all divisors are v-general.

Lemma 1.4.2 The set W (r,∆) is locally �nite in Amp(X)Q.

Proof. [HL97] lemma 4.C.2. �

Theorem 1.4.3 Let H be an ample divisor, F a µH-semistable coherent
sheaf of rank r and discriminant ∆ and F ′ ⊂ F a subsheaf of rank r′, 0 <
r′ < r, with µH(F ′) = µH(F ). Then ξ := r.c1(F

′)− r′c1(F ) satis�es

ξ.H = 0 and − r2

4
∆ ≤ ξ2 ≤ 0 ,

and ξ2 = 0 if and only if ξ = 0.

Proof. [HL97] theorem 4.C.3. �

The proof of the theorem also works for ∆ = 0 and then yields ξ = 0.
This explains why there are no walls for ∆ = 0, so we assumed ∆ > 0 in the
beginning of this section, the case of ∆ < 0 being excluded by the Bogomolov
inequality (see e.g. [HL97] theorem 3.4.1).
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Corollary 1.4.4 Let the situation be as in the theorem and let µA(F ′) =
µA(F ) for some general ample divisor A. Then ξ = 0.

Proof. Assume ξ 6= 0. By the theorem one has − r2

4
∆ ≤ ξ2 < 0 , thus ξ

de�nes a wall containing H and A in contradiction to A being general. �

Lemma 4.C.5 of [HL97] can be generalised:

Lemma 1.4.5 Let H and H ′ be two ample divisors on X and F a torsion
free sheaf on X that is µH-semistable but not µH′-semistable. Then there is an
ample Q-divisor H0 ∈ [H,H ′[= {(1− t)H + tH ′ | t ∈ [0, 1[} and a nontrivial
proper saturated subsheaf F0 ⊂ F such that F and F0 are µH0-semistable with
µH0(F0) = µH0(F ) and µH′(F0) > µH′(F ).

Proof. If there is a nontrivial proper saturated subsheaf F0 ⊂ F with
µH(F0) = µH(F ) and µH′(F0) > µH′(F ) then we can choose H0 = H. So
we can assume that µH(F ′) < µH(F ) for all nontrivial proper saturated sub-
sheaves F ′ ⊂ F with µH′(F ′) > µH′(F ). This is the situation in the proof of
[HL97] lemma 4.C.5, so it carries over literally. Note that strictly speaking
the proof does not construct an H0 ∈ [H,H ′[ but rather a multiple of it,
which, of course, has no e�ect. �

The original lemma 4.C.5 of [HL97] is now an immediate consequence:

Corollary 1.4.6 Let H and H ′ be two ample divisors on X and F a torsion
free sheaf on X that is µH-stable but not µH′-stable. Then there is an ample
Q-divisor H0 ∈]H,H ′] and a nontrivial proper saturated subsheaf F0 ⊂ F
such that F and F0 are µH0-semistable with µH0(F0) = µH0(F ) and µH′(F0) ≥
µH′(F ).

Proof. If F is µH′-semistable then there is a nontrivial proper saturated
subsheaf F0 ⊂ F with µH′(F0) = µH′(F ) and we can choose H0 = H ′, and if
not the claim follows by lemma 1.4.5. Note that H 6= H0 as F is µH-stable.
�

Proposition 1.4.7 Let K be an open chamber of the ample cone, K its
closure in the ample cone, H ∈ K and H ′ ∈ K. Then one has

µH-semistable ⇒ µH′-semistable ⇒ µH′-stable ⇒ µH-stable

for torsion free sheaves of rank r and discriminant ∆ on X.
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Proof.

1. Let F be µH-semistable but not µH′-semistable. Then by lemma 1.4.5
there is an H0 ∈ [H,H ′[⊂ K and a nontrivial proper saturated subsheaf
F0 ⊂ F such that F and F0 are µH0-semistable with µH0(F0) = µH0(F )

and µH′(F0) > µH′(F ). But corollary 1.4.4 yields c1(F0)
rkF0

= c1(F )
rkF

, which
contradicts µH′(F0) > µH′(F ).

2. Let F be µH′-stable but not µH-stable. Then by corollary 1.4.6 there is
anH0 ∈]H ′, H] ⊂ K and a nontrivial proper saturated subsheaf F0 ⊂ F
such that F and F0 are µH0-semistable with µH0(F0) = µH0(F ). But
corollary 1.4.4 yields c1(F0)

rkF0
= c1(F )

rkF
, which contradicts the µH′-stability

of F . �

Corollary 1.4.8 Let K be an open chamber of the ample cone, H,H ′ ∈ K
and F a torsion free sheaf of rank r and discriminant ∆ on X. Then F is
H-(semi)stable if and only if it is H ′-(semi)stable.

Proof. Let F be H-(semi)stable. Hence it is in particular µH-semistable
and by proposition 1.4.7 also µH′-semistable. Let E ⊂ F be a nontrivial
proper saturated subsheaf with µH′(E) = µH′(F ). Then corollary 1.4.4 yields
µH(E) = µH(F ), and the H-(semi)stability ensures

χ(E)

rkE
(≤)

χ(F )

rkF
.

�

Note that a torsion free sheaf F of rank r and discriminant ∆ that is semi-
stable with respect to a general ample divisor H does not need to be H ′-
semistable when H ′ is on the boundary of the chamber containing H: there
might be a subsheaf E ⊂ F with µH(E) < µH(F ) and µH′(E) = µH′(F )
without satisfying

χ(E)

rkE
≤ χ(F )

rkF
.

Also an H ′-stable sheaf does not need to be H-stable. One only has the
following weaker result:

Lemma 1.4.9 Let H ′ be an ample divisor, H a general ample divisor and
F an H ′-stable and µH-semistable sheaf of rank r and discriminant ∆. Then
F is H-stable.

Proof. Let E ⊂ F be a proper nontrivial subsheaf with µH(E) = µH(F ). By
corollary 1.4.4 one has c1(E)

rkE
= c1(F )

rkF
. Hence χ(E)

rkE
< χ(F )

rkF
by the H ′-stability

of F . �
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1.4.2 Walls for one-dimensional sheaves

Even though this case is easier than the case of two-dimensional sheaves,
there is a small complication we treat �rst. Let X be a nonsingular projective
surface over an algebraically closed �eld k of characteristic zero, H an ample
divisor on X and F a pure one-dimensional sheaf on X, i.e. all nontrivial
subsheaves E ⊂ F are also one-dimensional.

For χ(F ) = 0, the notion of H-(semi)stability is independent of the choice
of H. Indeed, using Riemann-Roch one gets that the reduced Hilbert poly-
nomial of F is pH(F ) = m, and for a nontrivial subsheaf E ⊂ F one gets

pH(E) = m+
χ(E)

c1(E).H
.

Hence the semistability condition is that χ(E) ≤ 0 for all nontrivial proper
subsheaves E ⊂ F , with strict inequality in the case of stability. In particular,
this prevents one from introducing the notion of a general ample divisor in
this particular case. However, we can move away from this case:

Lemma 1.4.10 A one-dimensional sheaf F on X is H-(semi)stable if and
only if F ⊗H is H-(semi)stable.

Proof. This follows from pH(F ⊗ H)(m) = pH(F )(m + 1) for the reduced
Hilbert polynomials and the following lemma 1.4.11. �

Lemma 1.4.11 Let F be a coherent sheaf on a noetherian scheme X and
L a line bundle. Then dim(F ) = dim(F ⊗ L), and F is pure if and only if
F ⊗ L is pure.

Proof. For all coherent sheaves E on X the stalks of (E ⊗ L) and E are
isomorphic everywhere, in particular, one has Supp(E ⊗ L) = Supp(E) and

dim(E ⊗ L) = dim Supp(E ⊗ L) = dim Supp(E) = dim(E) .

The second claim follows from the exactness of the functor • ⊗ L. �

Lemma 1.4.12 Let F be a pure one-dimensional sheaf and E ⊂ F a non-
trivial subsheaf. Then 0 < c1(E).H ≤ c1(F ).H. Moreover, if pH(E) = pH(F )
then sgnχ(E) = sgnχ(F ) and |χ(E)| ≤ |χ(F )|.
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Proof. For any one-dimensional sheaf the �rst Chern class is e�ective, and
for any e�ective divisor D one has D.H > 0. The �rst Chern class is additive
on exact sequences, hence c1(E) = c1(F )− c1(F/E) , and the quotient F/E
has dimension at most 1, thus

c1(E).H = c1(F ).H − c1(F/E).H ≤ c1(F ).H . (1.1)

If pH(E) = pH(F ) then χ(E) = χ(F ) c1(E).H
c1(F ).H

, and hence sgnχ(E) = sgnχ(F )
and

|χ(E)| = |χ(F )|c1(E).H

c1(F ).H

(1.1)

≤ |χ(F )| .

�

We restrict to X being a projective K3 surface.

De�nition 1.4.13 Let v be the Mukai vector of a pure one-dimensional sheaf
F . For a subsheaf E ⊂ F we de�ne L := χ(E)c1(F ) − χ(F )c1(E), and for
L 6= 0 we call

WL := L⊥ ∩ Amp(X)Q

the v-wall de�ned by L.

Proposition 1.4.14 The number of nonempty v-walls is �nite for a given
Mukai vector v = (0, v1, v2) with v1 e�ective.

Proof. It is enough to show that the set S := {(c1(E), χ(E)) | there is
a subsheaf E of some pure one-dimensional sheaf F with v(F ) = v and
pH(E) = pH(F ) for some ample divisor H} is �nite.

As X is a K3 surface, the intersection pairing is nondegenerate, the ample
cone is open in NS(X)Q and NS(X) is free. Thus we can choose �nitely
many ample divisors H that span NS(X)Q such that every D ∈ NS(X) can
be regained from D.H.

By lemma 1.4.12 each (c1(E), χ(E)) ∈ S satis�es 0 < c1(E).A ≤ v1.A for
any ample divisor A and |χ(E)| ≤ |v2|. In particular there are only �nitely
many choices for χ(E) and for c1(E).A with A any �xed ample divisor, hence
one has only �nitely many choices for c1(E). �

Yoshioka proves this fact in [Yos01] section 1.4 for the case v2
1 > 0.

De�nition 1.4.15 An ample Q-divisor H is called v-general if H is not
contained in any v-wall. The connected components of the complement of
the union of all v-walls are called v-chambers.
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This de�nition immediately yields:

Lemma 1.4.16 Let F be a pure sheaf of dimension 1, E ⊂ F a subsheaf,
L := χ(E)c1(F ) − χ(F )c1(E) and H a v(F )-general ample Q-divisor. If
L.H = 0 then one has L = 0.

The following fact is essential in the local analysis of moduli spaces of
semistable sheaves on K3 surfaces and explains the importance of a general
ample divisor. We include the proof because of the lack of a good reference.

Lemma 1.4.17 Let v = (0, v1, v2) ∈ Λ(X) with v1 e�ective and v2 6= 0, H
a v-general ample divisor and F an H-semistable sheaf with Mukai vector
v. Then for every nontrivial subsheaf E ⊂ F with pH(E) = pH(F ) one has
χ(E) 6= 0 and

v(E)

χ(E)
=
v(F )

χ(F )
.

In particular, if such an F is H-polystable then this holds for every direct
summand E of F . Moreover, if v is primitive then an H-semistable sheaf F
as above must be already H-stable.

Proof. Let E ⊂ F with pH(E) = pH(F ), i.e. χ(E)c1(F ).H = χ(F )c1(E).H.
By lemma 1.4.16 one has χ(E)c1(F ) = χ(F )c1(E) . By assumption χ(F ) =
v2 6= 0, and c1(E) 6= 0 because E is one-dimensional, hence also χ(E) 6= 0,
and we get

v(E)

χ(E)
=
v(F )

χ(F )
.

In particular, if F is H-polystable then each direct summand E ⊂ F is a
nontrivial saturated subsheaf of F with pH(E) = pH(F ).

Let v be primitive, and assume there is a nontrivial saturated proper
subsheaf of an H-semistable sheaf F with pH(E) = pH(F ), so

χ(E)c1(F ) = χ(F )c1(E) .

We write g := gcd(|χ(E)|, |χ(F )|). Thus

χ(E)

g
c1(F ) =

χ(F )

g
c1(E) .

The Euler characteristics satisfy χ(F ) = χ(E) + χ(F/E). As the reduced
Hilbert polynomials for E, F and F/E are all the same, i.e.

χ(E)

c1(E).H
=

χ(F )

c1(F ).H
=

χ(F/E)

c1(F/E).H
,
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and the denominator is always positive, the Euler characteristics have all the
same sign, and one has |χ(F )| = |χ(E)|+ |χ(F/E)| > |χ(E)|. Thus

1 ≤ g ≤ |χ(E)| < |χ(F )| ,

and
|χ(F )|
g

> 1

and this integer divides c1(F ) and χ(F ), which is a contradiction to v being
primitive. �

1.5 Semistable sheaves on K3 surfaces

We continue section 1.3 having the notion of a general ample divisor at hand.

Lemma 1.5.1 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive with either v0 > 0 or v0 = 0, v1 6= 0 e�ective and v2 6= 0, m ∈ N
and H an mv-general ample divisor. Let E be an H-semistable sheaf with
Mukai vector v(E) = mv. Then v2 ≥ −2. In the case of equality, E is
Seshadri equivalent to a sheaf F⊕m with F the unique (up to isomorphism)
H-stable sheaf of Mukai vector v(F ) = v. In particular, there is no H-stable
sheaf with Mukai vector mv for m ≥ 2 if v2 = −2.

Proof. As the graded object gr(E) of the Jordan-Hölder �ltration is H-
polystable with v(gr(E)) = v(E) we can assume that E is H-polystable. Let
F be an H-stable direct summand of E. As H is v-general F has Mukai
vector nv for some n ∈ N, and corollary 1.3.5 together with [HL97] corollary
1.2.8 yields (nv)2 ≥ −2. Hence v2 ≥ − 2

n2 ≥ −2. In the case of v2 = −2, one
has equality everywhere and therefore n = 1. F is unique up to isomorphism
by proposition 1.3.7. �

1.6 Moduli spaces of sheaves on K3 surfaces

Let X be a projective K3 surface, H an ample divisor on X and v =
(v0, v1, v2) ∈ Λ(X). There is a projective coarse moduli space MH(v) that
parametrises H-polystable sheaves with Mukai vector v, see [HL97] chapter
6. Let M s

H(v) denote the open subset of H-stable sheaves.

Proposition 1.6.1 M s
H(v) is nonsingular and each connected component

has dimension 2 + v2.
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Proof. The original proof is given in Mukai [Muk84], see also [HL97] sections
4.5 and 6.1. �

Theorem 1.6.2 M s
H(v) admits a symplectic form.

Proof. The construction of the symplectic form is originally due to Mukai,
see [Muk84]. A detailed proof - for simplicity only for positive rank - is given
also in [HL97] chapter 10, the �nal result being stated in theorem 10.4.3. �

Theorem 1.6.3 If M ⊆MH(v) is a connected component with M ⊆M s
H(v)

then one already has M = MH(v).

Proof. [KLS06] theorem 4.1. �

The following summary is contained in [KLS06] section 1 - for simplicity only
for v0 > 0.

Proposition 1.6.4 Let v be primitive with either v0 > 0 or v0 = 0, v1 6= 0
e�ective and v2 6= 0. Let furthermore m ∈ N and H be mv-general.

1. If MH(mv) is nonempty then v2 ≥ −2.

2. Let v2 ≥ −2 and m = 1. If v0 > 0, v1 ample or v2 ≥ 2 then M s
H(v) is

nonempty.

3. If v2 = −2 then MH(mv) is empty or consists of a reduced point [E⊕m]
with E an H-stable sheaf of Mukai vector v.

4. Let v2 = 0.

a) If M s
H(mv) is nonempty then MH(mv) = M s

H(mv) and MH(mv)
is a projective symplectic nonsingular surface.

b) If m = 1 then MH(v) is a projective K3 surface or empty.

c) If m > 1 and M s
H(v) 6= ∅ - e.g. for v0 > 0 or v1 ample - then

MH(mv) ∼= SmMH(v).

5. Let v2 ≥ 2. Then MH(mv) is a projective symplectic variety of dimen-
sion 2 +m2v2.

a) If m = 1 then MH(v) = M s
H(v), and MH(v) is nonsingular.

If v0 > 0 or v1 ample then MH(v) is deformation equivalent to

Hilb
v2

2
+1(X).
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b) If m ≥ 2 then the singular locus of MH(mv) is nonempty and
equals the strictly semistable locus.

i. If m = 2 and v2 = 2 then the singular locus has codimension
2 and MH(mv) admits a symplectic resolution.

ii. If m = 2 and v2 > 2 or m > 2 then MH(mv) is locally
factorial, the singular locus has codimension at least 4 and the
singularities are terminal. There is no open neighbourhood of
a singular point that admits a symplectic resolution.

In particular, if M s
H(mv) is nonempty then MH(mv) and M s

H(mv) are irre-
ducible.

Proof. Assume �rst M s
H(mv) is nonempty. Every connected component of

M s
H(mv) is nonsingular of dimension 2 +m2v2 by theorem 1.6.1 and carries

a symplectic form by theorem 1.6.2. If m = 1 then there are no strictly
H-semistable sheaves, hence M s

H(v) = MH(v). If M s
H(mv) = MH(mv) then

MH(mv) is connected by theorem 1.6.3, hence irreducible. In particular,
MH(v) is a projective symplectic nonsingular variety.

1. This holds by lemma 1.5.1.

2. Let v2 ≥ −2 and m = 1. If v0 > 0 or v2 ≥ 2 then M s
H(v) is nonempty

by [KLS06] section 1 and section 2.4. If v1 is ample then this holds by
[Yos01] theorem 8.1.

3. This holds by lemma 1.5.1 as well.

4. Let v2 = 0.

a) It remains to show that there is no strictlyH-semistable sheaf with
Mukai vectormv. This follows from Mukai's claim in [Muk87] that
M s

H(av) is nonempty for at most one choice of a ∈ Q, the proof
being somewhat hidden in the paper - see also the proof of [Yos00]
lemma 1.8.

b) Let m = 1. Then M s
H(v) is a K3 surface or empty by [Muk87]

theorem 1.4.

c) Let m > 1 and M s
H(v) 6= ∅. Then M s

H(m̃v) = ∅ for all m̃ > 1 and
the canonical morphism SmMH(v)→MH(mv) is an isomorphism.
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5. Let v2 ≥ 2.

a) Let m = 1. Then MH(v) = M s
H(v) and MH(v) is nonsingular by

the statements at the beginning of the proof. If v0 > 0 or v1 ample

then MH(v) is deformation equivalent to Hilb
v2

2
+1(X) by [Yos01]

theorem 8.1.

b) The statements for m ≥ 2 are contained in [KLS06] and [LS06]
except that if m = 2 and v2 > 2 or m > 2 then the singularities
are terminal. This is given by [Nam01] corollary 1. �

The exceptional examples of irreducible symplectic manifolds constructed by
O'Grady belong to the case v2 = 2 and m = 2: He has chosen v = (1, 0,−1)
in [O'G99]. The question whether all symplectic resolutions of all MH(mv)
with v2 = 2, m = 2 and H mv-general are irreducible symplectic manifolds
is still open.

We want to investigate the cases of moduli spaces not covered by these
results.



Chapter 2

Irreducible components

For a nongeneral ample divisor H the moduli space MH(v) need not be irre-
ducible. In particular, there might occur components containing only strictly
semistable sheaves. In this chapter we decompose the moduli space and dis-
cuss �rst results on the existence of symplectic resolutions of components
containing no stable sheaves. Our ground �eld is still C.

2.1 A decomposition

Proposition 2.1.1 Let X be a projective K3 surface, v ∈ Λ(X), H an ample
divisor andM an irreducible component ofMH(v). Then there is a birational
projective morphism

g :
m∏
i=1

SniMi →M

for a suitable decomposition v =
∑m

i=1 nivi with ni ∈ N and vi ∈ Λ(X) for
1 ≤ i ≤ m and a suitable choice of pairwise distinct irreducible components
Mi ⊂M s

H(vi) for 1 ≤ i ≤ m.
Moreover, g induces an isomorphism between V :=

∏m
i=1 S

niM s
i and the

normalisation of g(V )red.

Proof. Let S be the at most countable set of �nite tuples (ni,Mi)i of pairs
of a natural number ni ∈ N and pairwise distinct connected components
Mi ⊂ M s

H(vi) for some vi ∈ Λ(X) such that there is an H-polystable sheaf[⊕
i

⊕ni
j=1 Fij

]
∈ M with Fij ∈ M s

i for all 1 ≤ j ≤ ni and all i. For every

such tuple t = (ni,Mi)i ∈ S consider the morphism

gt :
∏
i

SniMi →MH(v), ([Fij]) 7→

[⊕
i

ni⊕
j=1

Fij

]
,

15
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whose restriction gt|Qi S
niMs

i
is injective. Products of irreducible spaces are

irreducible, the same is true for images. Hence for all t ∈ S there is an
irreducible component of MH(v) containing Im gt, which gives a map σ from
S to the set C of irreducible components of MH(v). One has

M o := M \
⋃

c∈C\{M}

c ⊂
⋃

t∈σ−1({M})

Im gt ⊂ M ,

hence

dimM o ≤ dim
⋃

t∈σ−1({M})

Im gt = max
t∈σ−1({M})

dim Im gt ≤ dimM .

M o is dense in M , hence dimM o = dimM and there is in particular one
t0 ∈ σ−1({M}) such that dim Im gt0 = dimM . As both are irreducible and
closed, we already have Im gt0 = M . The image U := gt0 (

∏
i S

niM s
i ) is open

in M , and gt0 induces isomorphisms

g−1
t0

(Usm)
∼=−→ Usm and

∏
i

SniM s
i

∼=−→ Ũ

using [Gro61] corollary 4.4.9, where Usm denotes the nonsingular locus of U
and Ũ is the normalisation of Ured. In particular, gt0 is the claimed birational
morphism. �

Therefore we need to understand products and symmetric products.

2.2 Products and symmetric products

For a variety X we denote the singular locus by Xsing, and if X is nonsingular
then we agree that codimXX

sing =∞.

Proposition 2.2.1 1. Let Xi be two symplectic varieties for i = 1, 2.
Then X1 ×X2 is a symplectic variety with

codimX1×X2(X1 ×X2)
sing = min(codimX1X

sing
1 , codimX2X

sing
2 ) .

2. Let X be a symplectic variety and 2 ≤ n ∈ N. Then SnX is a symplectic
variety with

codimSnX(SnX)sing = min(codimXX
sing, dimX) .

Moreover, if X is a quasiprojective nonsingular surface then

Hilbn(X)→ SnX

is a symplectic resolution.
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Proof.

1. Beauville lists products of symplectic varieties as examples for symplec-
tic varieties in [Bea00] without a proof, so we give one here. Products
of normal varieties are again normal by [Gro65] proposition 6.14.1, and
the nonsingular locus of X1×X2 is the product of the nonsingular loci
of X1 and X2, so

codimX1×X2(X1 ×X2)
sing = min(codimX1X

sing
1 , codimX2X

sing
2 ) .

For i = 1, 2 let ωXi be the symplectic form on the nonsingular locus
Xsm
i of Xi, fi : X̃i → Xi a resolution of singularities, ωX̃i the 2-form

obtained by extending the pullback of ωXi , and pi : X1×X2 → Xi and
p̃i : X̃1×X̃2 → X̃i the canonical projections. Then (f1, f2) : X̃1×X̃2 →
X1 ×X2 is a resolution of singularities,

2∑
i=1

(
pi|Xsm

1 ×Xsm
2

)∗
ωXi

is a symplectic form on the nonsingular locus Xsm
1 ×Xsm

2 of X1 ×X2,
and its pullback extends to the 2-form p̃∗1ωX̃1

+ p̃∗2ωX̃2
on X̃1×X̃2, hence

X1 ×X2 is a symplectic variety.

2. By item 1 Xn is a symplectic variety with

codimXn(Xn)sing = codimXX
sing .

The symplectic form is invariant under the canonical Sn-action, hence
the quotient SnX = Xn/Sn is a symplectic variety by [Bea00] propo-
sition 2.4. Furthermore, taking the quotient yields a singular locus of
codimension dimX, hence

codimSnX(SnX)sing = min(codimXX
sing, dimX) .

Assume that X is a quasiprojective nonsingular surface. [Fog68] the-
orem 2.4 states that Hilbn(X) → SnX is a resolution of singularities.
By [Bea83] section 6 Hilbn(X) → SnX is a symplectic resolution if X
is projective. But the construction of the symplectic form is local, see
also the subsequent remark to [Nak99] theorem 1.10. �

Of course, by de�nition, products of (nonsingular) symplectic varieties are
never irreducible symplectic manifolds.
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Lemma 2.2.2 Let X be a Q-factorial normal variety and G a �nite group
acting on X such that the geometric quotient X/G exists. Then X/G is
Q-factorial.

Proof. The morphism X → X/G is �nite and surjective and X/G is normal,
so by [KM98] lemma 5.16 X/G is Q-factorial. �

Corollary 2.2.3 Let Xi be normal varieties and ni ∈ N for i = 1, .., n. If∏n
i=1X

ni
i is Q-factorial then

∏n
i=1 S

niXi is also Q-factorial. This holds in
particular if Xi is nonsingular for i = 1, .., n.

Samuel Bossière and Olivier Serman have announced the following result:

Theorem 2.2.4 (Bossière, Serman) The direct product of two Q-factorial
varieties (over C) is again Q-factorial.

Corollary 2.2.5 Let Xi be Q-factorial normal varieties and ni ∈ N for i =
1, .., n. Then

∏n
i=1 S

niXi is Q-factorial.

In our applications the varieties will be locally factorial, hence it is enough
if the direct product of two locally factorial varieties (over C) is again locally
factorial.

2.3 Symplectic resolvability of components

De�nition 2.3.1 Let X be a scheme. A (symplectic, Q-factorial, ...) nor-
mal quasiprojective variety X̃ with at most terminal singularities together
with a proper birational morphism f : X̃ → X is called a (symplectic, Q-
factorial, ...) terminalisation (of X).

There is an easy criterion available for symplectic varieties:

Proposition 2.3.2 Let X be a symplectic quasiprojective variety. X has
only terminal singularities if and only if the singular locus has codimension
at least 4.

Proof. [Nam01] corollary 1. �

Proposition 2.3.3 Let X be a singular Q-factorial quasiprojective symplec-
tic variety with codimXX

sing ≥ 4. Then X has no symplectic resolution.

Proof. This is contained in the proof of [KLS06] theorem 6.2. �
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Proposition 2.3.4 Let g : Y → X be a singular Q-factorial projective sym-
plectic terminalisation of a projective scheme X. Then X admits no projec-
tive symplectic resolution.

Proof. Assume there is a projective symplectic resolution f : X̃ → X. By
proposition 1.2.2 the normalisation X ′ of Xred is a projective symplectic
variety and f factors through a projective symplectic resolution h : X̃ → X ′.
Furthermore, g factors through a projective birational morphism h′ : Y →
X ′. As a symplectic variety has trivial canonical divisor, the morphisms h
and h′ are crepant. This is a contradiction to [Nam06] corollary 1. �

Theorem 2.3.5 Let X be a projective K3 surface, v ∈ Λ(X), H an ample
divisor on X and M an irreducible component of MH(v). Furthermore, let

g :
m∏
i=1

SniMi →M

be the projective birational morphism given by proposition 2.1.1, where Mi ⊂
M s

H(vi) are pairwise distinct irreducible components.

1. Assume that for each 1 ≤ i ≤ m there is a Q-factorial projective sym-
plectic terminalisation M̃i →Mi.

a) Let M̃i be nonsingular for all 1 ≤ i ≤ m and let v2
i ≤ 0 for all

1 ≤ i ≤ m with ni > 1. Then there is a projective symplectic
resolution M̃ →M .

If M̃ can be chosen to be an irreducible symplectic manifold then
it is deformation equivalent to M̃i for some 1 ≤ i ≤ m or to a
Hilbert scheme of points on a K3 surface.

b) 1 Let M̃j be singular or let v2
j ≥ 2 and nj > 1 for some j with 1 ≤

j ≤ m. Then there is a singular Q-factorial projective symplectic
terminalisation M̃ → M . In particular, M admits no projective
symplectic resolution.

2. Let U := g(
∏m

i=1 S
niM s

i ) and U ′ be the normalisation of Ured. Then
there is a Q-factorial symplectic terminalisation Ũ → U and U ′ is a
Q-factorial symplectic variety.

Moreover, if v2
j ≥ 2 and nj > 1 for some j with 1 ≤ j ≤ m then there

is no projective symplectic resolution of M .

1This result depends on theorem 2.2.4.
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Proof.

1. For all 1 ≤ i ≤ m set

M
(ni)
i :=

{
Hilbni(M̃i) if v2

i = 0,

SniM̃i otherwise.

Recall that Mi consists of exactly one reduced point if v2
i < 0. One has

the sequence

M̃ :=
m∏
i=1

M
(ni)
i →

m∏
i=1

SniM̃i →
m∏
i=1

SniMi →M

of projective birational morphisms, and M̃ is a Q-factorial projective
symplectic variety with at most terminal singularities by proposition
2.2.1 together with proposition 2.3.2.

a) Let M̃i be nonsingular for all 1 ≤ i ≤ m and let v2
i ≤ 0 for all

1 ≤ i ≤ m with ni > 1. Then M̃ is nonsingular.

If M ′ → M is any other projective birational morphism with M ′

a projective irreducible symplectic manifold then M̃ and M ′ are
deformation equivalent irreducible symplectic manifolds by theo-
rem 1.1.4. Furthermore, there is at most one j with 1 ≤ j ≤ m
and v2

j ≥ 0 and one has nj = 1 or v2
j = 0 for such a j. In the

second case M̃ = Hilbnj(M̃j), so M̃j must be a K3 surface.

b) Let M̃j be singular or let v2
j ≥ 2 and nj > 1 for some j with

1 ≤ j ≤ m. Then by proposition 2.2.1 and corollary 2.2.5 M̃ is
singular and Q-factorial. Thus proposition 2.3.4 can be applied.

2. Recall that M s
i is a nonsingular quasiprojective symplectic variety of

dimension 2 + v2
i for all 1 ≤ i ≤ m. For all 1 ≤ i ≤ m set

M
(ni)
i :=

{
Hilbni(M s

i ) if v2
i = 0,

SniM s
i otherwise.

One has the sequence

Ũ :=
m∏
i=1

M
(ni)
i →

m∏
i=1

SniM s
i

g→ U

of projective birational morphisms using propositions 2.1.1 and 2.2.1,
and together with corollary 2.2.3 one has that Ũ and U ′ ∼=

∏m
i=1 S

niM s
i
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are Q-factorial symplectic varieties, and that Ũ has at most terminal
singularities by proposition 2.3.2.

Let v2
j ≥ 2 and nj > 1 for some j with 1 ≤ j ≤ m, and assume there is

a projective symplectic resolution f : M̃ →M . Then f factors through
a projective symplectic resolution of the normalisationM ′ ofMred, and
therefore induces a projective symplectic resolution of any open subset
of M ′, hence also of any open subset of

∏m
i=1 S

niM s
i as well using the

isomorphism of proposition 2.1.1. Consider the open subset

∏
i 6=j

(SniM s
i )sm × S

njM s
j ⊂

m∏
i=1

SniM s
i ,

where the index sm denotes taking the nonsingular locus. By proposi-
tions 2.2.1 together with corollary 2.2.3 this open subset is a singular
Q-factorial symplectic variety with singular locus of codimension at
least 4, which has no symplectic resolution by proposition 2.3.3, a con-
tradiction. �
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Chapter 3

Moduli spaces for

one-dimensional sheaves

3.1 Morphisms between moduli spaces

This section explains a possibility to construct morphisms between moduli
spaces. This will yield partial symplectic resolutions of the moduli spaces
MH(v) for a nongeneral ample divisor H and an isomorphism MH(0, c, 0) ∼=
MH(0, c, c.H) for any choice of H.

For a category C let C ′ be the functor category with functors Co → (Sets)
as objects and natural transformations between functors as morphisms. For
an object x of C let x be the functor y 7→ MorC(y, x).

De�nition 3.1.1 A functor F ∈ Ob(C ′) is corepresented by F ∈ Ob(C) if
there is a C ′-morphism α : F → F such that every morphism µ : F → G
factors through a unique morphism f : F → G.

Lemma 3.1.2 Let F ∈ Coh(S ×X) be a �at family of coherent sheaves on
a scheme X with parameter scheme S, p : S ×X → S and q : S ×X → X
the two projections and L ∈ Pic(X) a line bundle. Then F ⊗ q∗L is a �at
family, too.

Proof. By de�nition F is a �at family if for all a ∈ S ×X the stalk Fa is a
�at OS,p(a)-module. The claim follows from (F ⊗ q∗L)a ∼= Fa. �

Proposition 3.1.3 Let L be a line bundle on a projective K3 surface X with
ample divisor H and v ∈ Λ(X). Assume that a sheaf F with Mukai vector
v is H-semistable if and only if F ⊗ L is H-semistable. Then there is an
isomorphism

MH(v) ∼= MH(v.ch(L)) .

23
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Proof. First of all one has (F ⊗ q∗L)s ∼= Fs ⊗ L for all s ∈ S. By lemma
3.1.2 the assignment F 7→ F ⊗ q∗L yields an invertible natural transforma-
tion between the corepresented functors, which in turn yields the claimed
isomorphism. �

We are ready to �nish the argument we began in section 1.4.2:

Theorem 3.1.4 Let X be a K3 surface with an ample divisor H and 0 6=
c ∈ H2(X,Z) e�ective. Then there is an isomorphism

MH(0, c, 0) ∼= MH(0, c, c.H) ,

which is induced by tensoring with H, and one has c.H > 0.

Proof. Proposition 3.1.3 together with lemma 1.4.10 yields the claimed iso-
morphism

MH(0, c, 0) ∼= MH(0, c, c.H) ,

as

(0, c, 0).ch(H) = (0, c, 0).(1, H,
1

2
H2) = (0, c, c.H) ,

and c.H > 0 because c 6= 0 is e�ective and H is ample. �

This justi�es why one can assume without loss of generality that χ 6= 0 when
investigating the moduli spaces of one-dimensional semistable sheaves on a
K3 surface.

Lemma 3.1.5 Let C be the category of schemes over a �eld k, and for i =
1, 2 let Mi ∈ C ′ be a functor that is corepresented by Mi ∈ C with an open
subfunctorMs

i ⊂Mi that is corepresented by an open subscheme M s
i ⊂Mi.

Assume there is a commutative diagram of natural transformations

M1
ϕ

//M2

Ms
1

?�

ι1

O

Ms
2 .ϕs

oo
?�

ι2

O

Then the induced morphisms form the following commutative diagram:

M1
f

// M2

M s
1

?�

i1

O

M s
2fs

oo
?�

i2

O

Proof. This follows from the uniqueness of the morphism induced by ι2 =
ϕ ◦ ι1 ◦ ϕs. �
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Proposition 3.1.6 For i = 1, 2 letMi the moduli functor of �at families of
sheaves with respect to a semistability condition (i) that is corepresented by
a projective scheme Mi and Ms

i the corresponding open subfunctor for (i)-
stable sheaves that is corepresented by an open subscheme M s

i ⊂Mi. Assume
that (2)-stable ⇒ (1)-stable ⇒ (1)-semistable ⇒ (2)-semistable. Then the
canonical natural transformations ϕ :M1 →M2 and ϕs :Ms

2 →Ms
1 yield

morphisms f : M1 → M2 and f s : M s
2 → M s

1 , and f induces a projective
birational morphism f−1(M s

2 ) → M s
2 . If furthermore M1 is irreducible then

one has M1 = f−1(M s
2 ), and M s

2 and M s
2 are irreducible.

Proof. By lemma 3.1.5 there is a commutative diagram

M1
f

// M2

M s
1

?�

i1

O

M s
2 ,fs

oo
?�

i2

O

which induces a commutative diagram

f−1(M s
2 )

f ′
// M s

2

f s(M s
2 )

?�

i

O

M s
2 .fs

oo

By assumption a (1)-semistable sheaf that is (2)-stable is already (1)-stable,
i.e. i is surjective. Hence f ′ is an isomorphism and one has the claimed bira-
tional morphism. This morphism is projective as M1 and M2 are projective.
The last statement is clear. �

The following lemma establishes the assumption of proposition 3.1.6 such
that one can construct morphisms between moduli spaces belonging to vary-
ing ample divisors. Moreover, one can see that the notion of (semi)stability
is independent of the choice of an ample divisor inside a chamber.

Lemma 3.1.7 Let X be a projective K3 surface, v = (0, v1, v2) ∈ Λ(X) with
v1 6= 0 e�ective and v2 6= 0, H an ample divisor in a v-chamber K and H ′

another ample divisor in the closure K of K in the ample cone. Then one
has H ′-stable ⇒ H-stable ⇒ H-semistable ⇒ H ′-semistable for sheaves of
Mukai vector v.



26CHAPTER 3. MODULI SPACES FOR ONE-DIMENSIONAL SHEAVES

Proof. Let F be a sheaf with Mukai vector v, E ⊂ F a nontrivial proper
subsheaf and

f : K → Q, h 7→ (χ(E)c1(F )− χ(F )c1(E)).h .

We consider the two following cases:

1. F is H-semistable, i.e. f(H) ≤ 0, and we assume, f(H ′) > 0, or

2. F is H ′-stable, i.e. f(H ′) < 0, and we assume, f(H) ≥ 0.

Then there is a Q-divisor H0 ∈ [H,H ′[⊂ K with f(H0) = 0, and lemma
1.4.16 yields the contradiction f ≡ 0. �

3.2 Results

Let X be a projective K3 surface, v = (0, v1, v2) ∈ Λ(X) primitive with
v1 6= 0 e�ective, m ∈ N and H an ample divisor on X. If v2 = 0 we have
seen that one fails to introduce the notion of a general ample divisor but as
we showed in theorem 3.1.4 one has an isomorphism

MH(0,mv1, 0) ∼= MH(0,mv1,mv1.H)

with v1.H > 0 so that we can assume without loss of generality that v2 6= 0.
We want to remark that the case of M s

H(mv) with v2 = 0 is not really
interesting regarding the locating of new examples for irreducible symplec-
tic manifolds as one knows already all irreducible symplectic manifolds of
(complex) dimension two to be K3 surfaces.

Lemma 3.2.1 Let v ∈ Λ(X) be primitive with v2 ≥ 0 and m ∈ N.

1. One has v2 = 0, or m = 1, or v2 = 2 and m = 2 if and only if mv is
primitive or (mv)2 ≤ 14, and

2. one has v2 ≥ 2 and m > 2, or v2 > 2 and m ≥ 2 if and only if mv is
not primitive and (mv)2 ≥ 16.

Proof. Let v2 = 0, or m = 1, or v2 = 2 and m = 2. If (mv)2 ≥ 16 then we
are in the case m = 1, i.e. mv is primitive.

Conversely, let mv be not primitive and 2 ≤ (mv)2 ≤ 14. Then v2

2
m2 is

divisible by a square ≥ 2, hence v2

2
m2 = 4 and therefore m = 2 and v2 = 2.

�
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Theorem 3.2.2 Let X be a projective K3 surface, v = (0, v1, v2) ∈ Λ(X)
with v1 6= 0 e�ective and v2 6= 0, and H an ample divisor on X. Assume that
M s

H(v) is nonempty. Then one has v2 ≥ −2, and in the case of equality, v
is primitive and MH(v) consists of a reduced point. Let now v2 ≥ 0.

1. Let v be primitive or v2 ≤ 14. Then there is a projective symplectic
resolution M → M s

H(v). If H is not v-general then M can be chosen
to be a symplectic resolution of MA(v), where A is a v-general ample
divisor in a chamber touching H.

Moreover, if M can be chosen to be irreducible symplectic then it is
unique up to deformation.

2. Let v be not primitive and v2 ≥ 16. Then there is a singular locally fac-
torial (and therefore Q-factorial) projective symplectic terminalisation
ofM s

H(v) , and in particular, there is no projective symplectic resolution
of M s

H(v).

Proof. If H is v-general then this is given by proposition 1.6.4. Assume
that H is not v-general. The �rst part is proposition 1.3.7. Assume v2 ≥ 0
and let A be a v-general ample divisor in a chamber touching H. Proposi-
tion 3.1.6 yields the projective birational morphism MA(v) → M s

H(v) using
lemma 3.1.7. The other statements are contained in the propositions 1.6.4,
1.1.4 and 2.3.4 using lemma 3.2.1 for the case di�erentiation. Note that lo-
cally factorial varieties are Q-factorial by [Har77] proposition II.6.11. �

Hence there are no new examples of projective irreducible symplectic ma-
nifolds lying birationally over the irreducible component M s

H(v) of MH(v).
Furthermore, we have established the assumption of theorem 2.3.5 item 1,
which extends the absence result to all irreducible components of MH(v).
The assumption v2 6= 0 can be omitted due to theorem 3.1.4.

Corollary 3.2.3 1 Let X be a projective K3 surface, v = (0, v1, v2) ∈ Λ(X)
with v1 6= 0 e�ective, H an ample divisor on X and M an irreducible com-
ponent of MH(v). If there is a projective symplectic resolution M̃ → M
with M̃ an irreducible symplectic manifold then it is deformation equivalent
to a symplectic resolution of some MA(w), where w ∈ Λ(X) and A is some
w-general ample divisor.

1This result depends on theorem 2.2.4.
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Chapter 4

Moduli spaces for

(H,A)-semistable sheaves

We introduce the notion of (H,A)-(semi)stability, establish some of its prop-
erties and construct a moduli space for (H,A)-semistable sheaves. We as-
sume familiarity with the material presented in [HL97] and use the notation
therein.

4.1 Preliminaries

Let X be a noetherian scheme and E a coherent sheaf on X.

De�nition 4.1.1 Let L be a line bundle on X. A section s ∈ H0(X,L) is
called E-regular if E⊗L∨ ·s→ E is injective. A sequence s1, ..., s` ∈ H0(X,L)
is E-regular if si is E/(s1, ..., si−1)(E ⊗ L∨)-regular for all i = 1, ..., `.

We also say that the divisor H ∈ |L| is E-regular if the corresponding
section s ∈ H0(X,L) is E-regular.

Lemma 4.1.2 Let L and M be two line bundles on X and s1, ..., s` ∈
H0(X,L) an E-regular sequence. Then it is also E ⊗M-regular.

Proof. If s ∈ H0(X,L) is E-regular then E ⊗ L∨ ·s→ E is injective. Hence
E⊗M ⊗L∨ ·s→ E⊗M is injective as well, i.e. s is E⊗M -regular. Thus if si
is E/(s1, ..., si−1)(E⊗L∨)-regular, then it is (E/(s1, ..., si−1)(E ⊗ L∨))⊗M -
regular. The claim now follows because of (E/(s1, ..., si−1)(E ⊗ L∨))⊗M =
(E ⊗M)/(s1, ..., si−1)(E ⊗M ⊗ L∨). �

29
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4.2 Semistable sheaves

Let X be a projective scheme over a �eld k and H and A two ample line
bundles on X. For a coherent sheaf E we write

E(mH + nA) := E ⊗H⊗m ⊗ A⊗n .

Recall that the Hilbert polynomial PH(E) of a coherent sheaf E with respect
to H is

PH(E)(m) := χ(E(mH)) ,

which is a polynomial in m. Indeed:

Lemma 4.2.1 Let E be a coherent sheaf of dimension d and let H1, ..., Hd ∈
|H| be an E-regular sequence. Then

PH(E)(m) =
d∑
i=0

χ(E|∩ij=1Hj
)

(
m+ i− 1

i

)
.

Proof. [HL97] lemma 1.2.1. �

In particular, PH(E) can be written in the form

PH(E)(m) =
dimE∑
i=0

αHi (E)
mi

i!
(4.1)

with αHi (E) ∈ Q.

αHdimE(E) is called the multiplicity of E with respect to H.

Corollary 4.2.2 Let L be a line bundle. Then αHdimE(E⊗L) is independent
of L and always positive for E nontrivial.

Proof. First note that
(
m+i−1

i

)
= (m+i−1)···m

i!
is a polynomial in m of degree

i. Hence by lemma 4.2.1 one has

αHdimE(E ⊗ L) = χ((E ⊗ L)|∩dj=1Hj
) .

As the sequence H1, ..., Hd is E⊗L-regular, (E⊗L)|∩dj=1Hj
is zerodimensional

and
αHdimE(E ⊗ L) = h0((E ⊗ L)|∩dj=1Hj

) = h0(E|∩dj=1Hj
) > 0 .

�
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De�nition 4.2.3 The reduced Hilbert polynomial of a nontrivial coherent
sheaf E of dimension d is de�ned by

pH(E) :=
PH(E)

αHd (E)
.

Notation 4.2.4 In order to avoid case di�erentiation for stable and semista-
ble sheaves we follow the notation 1.2.5 in [HL97] using bracketed inequality
signs, e.g. an inequality with (≤) for (semi)stable sheaves means that one
has ≤ for semistable sheaves and < for stable sheaves.

De�nition 4.2.5 A coherent sheaf E of dimension d is H-(semi)stable if it
is pure and every proper nontrivial subsheaf F ⊂ E satis�es the condition
pH(F ) (≤) pH(E).

For a coherent sheaf E we de�ne

PH,A(E)(m,n) := χ(E(mH + nA)) .

Clearly one has PH,A(E)(•, 0) = PH(E).

Lemma 4.2.6 Let E be a coherent sheaf of dimension d. Then PH,A(E)(m,n)
is a polynomial in m and n, and it has degree d in n and m and total degree
d.

Proof. Let A1, ..., Ad ∈ |O(A)| be an E-regular sequence. By lemma 4.2.1
and equation 4.1 one has

PH,A(E)(m,n) = PA(E(mH))(n)

=
d∑
i=0

χ(E(mH)|∩ij=1Aj
)

(
n+ i− 1

i

)

=
d∑
i=0

PH(E|∩ij=1Aj
)

(
n+ i− 1

i

)

=
d∑
i=0

d−i∑
k=0

αHk (E|∩ij=1Aj
)
mk

k!

(
n+ i− 1

i

)
.

�
For a nontrivial coherent sheaf E we de�ne

pH,A(E)(m,n) :=
χ(E(mH + nA))

αHdimE(E)
∈ Q[m,n] .

Clearly one has pH,A(E)(•, 0) = pH(E).
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Recall that there is a natural ordering of polynomials in one variable
given by the lexicographic ordering of their coe�cients. This generalises to
polynomials of two variables by the identi�cation Q[m,n] = (Q[m])[n], i.e.
we consider the elements as polynomials in n and use the ordering of Q[m]
for comparing coe�cients.

We introduce another ordering on Q[m,n] by de�ning

f ≤0 g :⇔ (f(•, 0),−f) ≤ (g(•, 0),−g)

for f, g ∈ Q[m,n], where on the right hand side we use lexicographic ordering
on the product Q[m]×Q[m,n], i.e. f ≤0 g if and only if f(•, 0) < g(•, 0) or
f(•, 0) = g(•, 0) and f ≥ g.

Clearly one has f =0 g if and only if f = g.

Observation 4.2.7 This ordering is invariant under rescaling the arguments,
i.e. for f, g ∈ Q[m,n] and f̃(m,n) := f(am, bn), g̃(m,n) := g(am, bn) with
a, b ∈ Q+ one has f ≤0 g if and only if f̃ ≤0 g̃.

We come to the central notion of this chapter, (H,A)-stability. The de�-
nition is motivated by [MW97] as the condition is contained therein without
getting a name in the case of X being a surface.

De�nition 4.2.8 A coherent sheaf E of dimension d is (H,A)-(semi)stable
if it is pure and if for any proper nontrivial subsheaf F ⊂ E one has

pH,A(F ) (≤0) pH,A(E) .

If E is strictly (H,A)-semistable, i.e. (H,A)-semistable but not (H,A)-stable,
then there is always a proper nontrivial subsheaf F ⊂ E with pH,A(F ) =
pH,A(E), which is then called an (H,A)-destabilising subsheaf.

By observation 4.2.7 this de�nition is independent of the choice of the two
ample line bundles in Q ·H × Q · A. In particular, (H,A)-(semi)stability is
well-de�ned for ample Q-line bundles, and H or A can be chosen to be very
ample without changing the (H,A)-(semi)stability.

De�nition 4.2.8 can be restated as follows: A coherent sheaf E of dimen-
sion d is (H,A)-(semi)stable if it is H-semistable and if for any proper non-
trivial subsheaf F ⊂ E with pH(F ) = pH(E) one has pH,A(F ) (≥) pH,A(E).

Observation 4.2.9 One has the implications

H-stable ⇒ (H,A)-stable ⇒ (H,A)-semistable ⇒ H-semistable.
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This trivial observation must not be neglected: it is the reason why we can
get morphisms between the corresponding moduli spaces. Conversely, there
might be (H,A)-stable sheaves that are not H-stable, and there might be
H-semistable sheaves that are not (H,A)-semistable.

(H,A)-(semi)stability is a generalisation of H-(semi)stability in the fol-
lowing sense:

Lemma 4.2.10 (H,H)-(semi)stability is equivalent to H-(semi)stability, and
one has pH(F ) = pH(E) for two coherent sheaves E and F if and only if
pH,H(F ) = pH,H(E).

Proof. Use pH,H(E)(n,m) = pH(E)(n+m). �

In particular, everything we can prove for (H,A)-(semi)stability also holds
for H-(semi)stability.

Conversely, one can generalise known facts onH-(semi)stability to (H,A)-
(semi)stability.

Lemma 4.2.11 Let 0→ E → F → G→ 0 be an exact sequence of coherent
sheaves. Then PH,A(F ) = PH,A(E) + PH,A(G). Assume furthermore that all
three are of dimension d. Then αHd (F ) = αHd (E)+αHd (G). Furthermore, one
has

αHd (E)(pH,A(E)− pH,A(F )) = αHd (G)(pH,A(F )− pH,A(G)) .

Proof. The functor • ⊗ O(mH + nA) is exact and χ is additive on exact
sequences, hence the �rst two equalities. Let all three sheaves be of dimension
d. Then one calculates

αHd (E)(pH,A(E)− pH,A(F )) = PH,A(E)− (αHd (F )− αHd (G))pH,A(F )

= PH,A(E)− PH,A(F ) + αHd (G)pH,A(F )

= −PH,A(G) + αHd (G)pH,A(F )

= αHd (G)(pH,A(F )− pH,A(G)) .

�

Lemma 4.2.12 Let E be an H-semistable sheaf and F ⊂ E a proper non-
trivial subsheaf with pH(E) = pH(F ). Then F is saturated, i.e. E/F is pure
of dimension dimE.

Proof. If d := dim(E) = 0 then F is always saturated. Assume d > 0 and
let F ′ be the saturation of F in E. Thus one has an exact sequence

0→ F ′ → E → (E/F )/Td−1(E/F )→ 0 ,
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see [HL97] section 1.1. Assume F is not saturated, i.e. Td−1(E/F ) 6= 0. By
lemma 4.2.11 one has

PH(E)− PH(F ′) = PH((E/F )/Td−1(E/F ))

= PH(E)− PH(F )− PH(Td−1(E/F )) ,

hence
PH(F )− PH(F ′) = −PH(Td−1(E/F )) .

As the right hand side is of degree at most d− 1, one has αHd (F ) = αHd (F ′)
and thus

pH(F )− pH(F ′) = −PH(Td−1(E/F ))

αHd (F )
< 0 .

By H-semistability of E this yields the chain

pH(F ) < pH(F ′) ≤ pH(E)

in contradiction to the assumption pH(F ) = pH(E). �

Corollary 4.2.13 Let E be an H-semistable sheaf of dimension d and E →
G a proper d-dimensional quotient sheaf with pH(E) = pH(G). Then G is
pure.

Proof. Let F := ker(E → G). As E is H-semistable, E is in particular pure,
thus F is d-dimensional. By lemma 4.2.11 one has pH(F ) = pH(E) and by
lemma 4.2.12 F is saturated, hence G ∼= E/F is pure. �

Proposition 4.2.14 Let E be a pure sheaf of dimension d. Then the fol-
lowing conditions are equivalent:

1. E is H-(semi)stable.

2. For all proper saturated subsheaves F ⊂ E one has pH(F ) (≤) pH(E).

3. For all proper quotient sheaves E → G with αHd (G) > 0 one has
pH(E) (≤) pH(G).

4. For all proper pure d-dimensional quotient sheaves E → G one has
pH(E) (≤) pH(G).

Proof. [HL97] proposition 1.2.6. �
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Proposition 4.2.15 Let E be an H-semistable sheaf of dimension d. Then
the following conditions are equivalent:

1. E is (H,A)-(semi)stable.

2. For all proper saturated subsheaves F ⊂ E with pH(F ) = pH(E) one
has pH,A(F ) (≥) pH,A(E).

3. For all proper d-dimensional quotient sheaves E → G with pH(E) =
pH(G) one has pH,A(E) (≥) pH,A(G).

4. For all proper pure d-dimensional quotient sheaves E → G with pH(E) =
pH(G) one has pH,A(E) (≥) pH,A(G).

Proof. The implications 1) ⇒ 2) and 3) ⇒ 4) are obvious, and the implica-
tions 2) ⇒ 1) and 4) ⇒ 3) are trivial by lemma 4.2.12 and corollary 4.2.13.

Let 0→ F → E → G→ 0 be an exact sequence with F ⊂ E proper and
nontrivial. Then F is saturated if and only if G is pure and d-dimensional.
If one of these conditions and thus both are given then lemma 4.2.11 yields
pH(F ) = pH(E) if and only if pH(E) = pH(G) and pH,A(F ) (≥) pH,A(E) if
and only if pH,A(E) (≥) pH,A(G), i.e. 2) ⇔ 4). �

Corollary 4.2.16 Let E be a pure sheaf of dimension d. Then the following
conditions are equivalent:

1. E is (H,A)-(semi)stable.

2. For all proper saturated subsheaves F ⊂ E one has pH,A(F ) (≤0) pH,A(E).

3. For all proper quotient sheaves E → G with αHd (G) > 0 one has
pH,A(E) (≤0) pH,A(G).

4. For all proper pure d-dimensional quotient sheaves E → G one has
pH,A(E) (≤0) pH,A(G).

Corollary 4.2.17 Any pure sheaf of rank one is (H,A)-(semi)stable.

Proof. This follows from the characterisation 2 of corollary 4.2.16. �
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Proposition 4.2.18 Let F and G be two (H,A)-semistable sheaves of di-
mension d.

1. If pH,A(F ) >0 pH,A(G) then Hom(F,G) = 0.

2. If pH,A(F ) = pH,A(G) and f : F → G is nontrivial then f is injective
if F is (H,A)-stable and surjective if G is (H,A)-stable.

3. If PH,A(F ) = PH,A(G) then any nontrivial homomorphism f : F → G
is an isomorphism provided F or G is (H,A)-stable.

Proof. The proof carries over literally from [HL97] proposition 1.2.7. �

Corollary 4.2.19 If E is an (H,A)-stable sheaf then End(E) is a �nite
dimensional division algebra over k. In particular, if k is algebraically closed
then k ∼= End(E), i.e. E is a simple sheaf.

Proof. The proof carries over literally from [HL97] corollary 1.2.8. �

4.3 Jordan-Hölder �ltration and S-equivalence

De�nition 4.3.1 Let E be an (H,A)-semistable sheaf of dimension d. A
Jordan-Hölder �ltration of E is a �ltration

0 = E0 ⊂ E1 ⊂ ... ⊂ E` = E

such that the factors gri(E) := Ei/Ei−1 are (H,A)-stable with pH,A(gri(E)) =
pH,A(E) for all i = 1, ..., `.

Proposition 4.3.2 Jordan-Hölder �ltrations always exist. The graded ob-
ject gr(E) :=

⊕`
i=1 gri(E) does not depend on the choice of the Jordan-

Hölder �ltration.

Proof. The proof carries over from [HL97] proposition 1.5.2. �

De�nition 4.3.3 Two (H,A)-semistable sheaves E1 and E2 with pH,A(E1) =
pH,A(E2) are called Seshadri equivalent or S-equivalent if gr(E1) ∼= gr(E2).

Let E be an (H,A)-semistable sheaf of dimension d and

0 = E0 ⊂ E1 ⊂ ... ⊂ E` = E

a Jordan-Hölder �ltration of E. By observation 4.2.9 E is in particular H-
semistable but the factors gri(E) are not necessarily H-stable. Thus one gets
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a Jordan-Hölder �ltration of E with respect to H-stability by re�ning the
given �ltration.

Passing from the set of H-semistable sheaves to the set of (H,A)-semista-
ble sheaves one looses sheaves, and the S-equivalence classes become smaller.
This is the reason why a moduli space for (H,A)-semistable sheaves para-
metrising (H,A)-polystable sheaves can partially resolve a component of a
moduli space for H-semistable sheaves parametrising H-polystable sheaves.

Proposition 4.3.4 If k is algebraically closed and E is an (H,A)-stable
sheaf then E is also geometrically (H,A)-stable.

Proof. The proof carries over from [HL97] section 1.5. �

4.4 Flat families

Proposition 4.4.1 Let f : X → S be a projective morphism of noetherian
schemes, H and A two f -ample invertible sheaves on X and F a �at family of
sheaves on the �bres of f . Then the polynomial PHs,As(Fs) is locally constant
as a function of s ∈ S.

Proof. The family F (`H) is S-�at as well for all ` ∈ N0, so by [HL97]
proposition 2.1.2 the Hilbert polynomial

PAs(Fs(`Hs)) = PHs,As(Fs)(`, •) ∈ Q[n]

is locally constant as a function of s ∈ S for all ` ∈ N0. The polynomial
PHs,As(Fs) can be regained from PHs,As(Fs)(`, •) for �nitely many choices of
`, hence it is locally constant as a function of s ∈ S as well. �

Proposition 4.4.2 The following properties of coherent sheaves are open in
�at families: being (H,A)-semistable, or (H,A)-stable.

Proof. Let f : X → S be a projective morphism of noetherian schemes, H
and A two f -very ample invertible sheaves on X and F a �at family of d-
dimensional sheaves on the �bres of f with Hilbert polynomial P with respect
to Hs for all s ∈ S. As we want to show the openness of certain subsets we
can assume S to be connected. Furthermore, we can replace S by the open
subset of all s ∈ S such that Fs is Hs-semistable as this condition is open
by [HL97] proposition 2.3.1, having in mind observation 4.2.9. Let α ∈ N be
the multiplicity associated to P .
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For each α′ ∈ N with α′ ≤ α we consider the relative Quot scheme

π : Q(α′) := QuotX/S(F,
α′

α
P )→ S ,

see [HL97] section 2.2. Let C(α′) be the set of connected components of Q(α′)
and U ∈ Coh(Q(α′)×SX) the universal quotient family. By proposition 4.4.1
PH,A := PHs,As(Fs) is independent of s ∈ S and

PH,A(C) := PHπ(q),Aπ(q)
(Uq)

is independent of q ∈ C for C ∈ C(α′). Let pH,A and pH,A(C) be the reduced
polynomials associated to PH,A and PH,A(C), respectively.

Now Fs is (Hs, As)-(semi)stable if and only if it is not contained in the
closed union

α⋃
α′=1

π

 ⋃
C∈C(α′) : pH,A (<) pH,A(C)

C

 .

�

4.5 The moduli functor

We come to the construction of the moduli space of (H,A)-semistable sheaves.
We generalise the construction in [HL97] chapter 4 according to the idea in
[MW97]. There are only very little changes, so it might be very repetitive
for readers familiar with the book [HL97].

Let X be a projective scheme over an algebraically closed �eld k with
two ample line bundles H and A. For a �xed polynomial P ∈ Q[m] de�ne a
functor

M′ : (Sch/k)o → (Sets)

from the category opposed to the category of k-schemes to the category of sets
as follows. For a k-scheme S letM′(S) be the set of all isomorphism classes
of S-�at families of (H,A)-semistable sheaves on X with Hilbert polynomial
P , and for a k-morphism f : S ′ → S let

M′(f) :M′(S)→M′(S ′), [F ] 7→ [(f × idX)∗F ] .

If we consider the equivalence relation F ∼ F ′ for two F, F ′ ∈ M′(S) if
and only if F ∼= F ′ ⊗ p∗L for some L ∈ Pic(S), where p : S × X → S is
the projection onto the �rst factor, then we get our moduli space functor as
quotient functor:

M :=M′/ ∼
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is the moduli functor for (H,A)-semistable sheaves on X with Hilbert poly-
nomial P .

Considering only families of (H,A)-stable sheaves yields open subfunctors
M′s ⊂ M′ andMs ⊂ M as the stability condition is open in �at families,
see proposition 4.4.2. Note that as our ground �eld is algebraically closed,
being (H,A)-stable is equivalent to being geometrically (H,A)-stable, see
lemma 4.3.4.

De�nition 4.5.1 A schemeM is called a moduli space for (H,A)-semistable
sheaves if M corepresents M. We will denote M by MH,A(P ), and analo-
gously the functors.

Lemma 4.5.2 SupposeM corepresentsM. Then Seshadri equivalent sheaves
correspond to identical closed points inM . In particular, if there is a properly
(H,A)-semistable sheaf F , thenM cannot be represented.

Proof. The proof carries over literally from [HL97] lemma 4.1.2. �

4.6 The construction of the moduli space

Let X be a connected projective scheme over an algebraically closed �eld k
of characteristic zero, H and A two ample line bundles on X and P ∈ Q[x].

At �rst we follow exactly the construction in [HL97] section 4.3. Details
can be found therein. According to [HL97] theorem 3.3.7 the family of H-
semistable sheaves on X with Hilbert polynomial with respect to H equal to
P is bounded. In particular, there is an integer m such that any such sheaf
F is m-regular. Let V := k⊕P (m) and H := V ⊗k OX(−mH). Then there is
a surjection

ρ : H → F ,

which gives a closed point

[ρ : H → F ] ∈ R ⊂ Quot(H, P ) ,

where Quot(H, P ) is Grothendieck's Quot scheme of quotients of H with
Hilbert polynomial P on X, see e.g. [HL97] section 2.2, and R is the open
subset of Quot(H, P ) of all quotients [H → E], where E is H-semistable and
the induced map

V = H0(H(mH))→ H0(E(mH))

is an isomorphism.
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LetRss ⊂ R denote the open subscheme of those points which parametrise
(H,A)-semistable sheaves, and Rs ⊂ R the open subscheme of those para-
metrising (H,A)-stable sheaves.

There is a Gl(V )-action on Quot(H, P ), and R, Rss and Rs are Gl(V )-
invariant.

Lemma 4.6.1 If Rss → M is a categorical quotient for the Gl(V )-action
then M corepresents the functorM′. Conversely, if M corepresentsM′ then
the morphism Rss →M induced by the universal quotient module on Rss×X
is a categorical quotient. Similarly, Rs →M s is a categorical quotient if and
only if M s corepresents the functorMs.

Proof. The proof from [HL97] lemma 4.3.1 carries over literally. �

Lemma 4.6.2 Let [ρ : H → F ] ∈ Quot(H, P ) be a closed point such that
F (mH) is globally generated and such that the induced map H0(ρ(mH)) :
H0(H(mH)) → H0(F (mH)) is an isomorphism. Then there is a natural
injective homomorphism Aut(F ) → Gl(V ) whose image is precisely the sta-
biliser subgroup Gl(V )[ρ] of the point [ρ].

Proof. [HL97] lemma 4.3.2. �

Proposition 4.6.3 If ` is su�ciently large then the line bundle

L` := det(p∗(F ⊗ q∗OX(mH + `A)))

on Quot(H, P ) is very ample and carries a natural Gl(V )-linearisation, where
p and q are the two projections from Quot(H, P )×X to the �rst and second
factor, respectively, and F is the universal quotient sheaf on Quot(H, P )×X,
see [HL97] section 2.2.

Proof. If E is a sheaf with Hilbert polynomial P with respect to H then
E(mH) has Hilbert polynomial

PH(E(mH))(x) = P (x+m) =: P ′(x)

with respect to H. As tensoring with a line bundle is exact, one has an
isomorphism

ϕ : Quot(H, P )→ Quot(H(mH), P ′)

and
L′` := (ϕ−1)∗L` = det(p′∗(F ′ ⊗ q′∗OX(`A))) ,
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where p′ and q′ are the two projections from Quot(H(mH), P ′) × X to the
�rst and second factor, respectively, and F ′ is the universal quotient sheaf
on Quot(H(mH), P ′)×X. So we can assume without loss of generality that
m = 0.

Let S ⊂ Quot(H, P ) be a connected component. The universal family F
is Quot(H, P )-�at, hence the Hilbert polynomials PA(Fs) are constant on S
by [HL97] proposition 2.1.2, say PA(Fs) = P ′ for all s ∈ S. Hence one has
an injective morphism

ψ : S → QuotA(H, P ′) ,

where the index A denotes that the Hilbert polynomial is with respect to A,
and not to H as before. For su�ciently large `

L′` := det(p′∗(F ′ ⊗ q′∗OX(`A)))

is very ample by proposition [HL97] 2.2.5, where p′ and q′ are the two pro-
jections from QuotA(H, P ′)×X to the �rst and second factor, respectively,
and F ′ is the universal quotient sheaf on QuotA(H, P ′) × X, and L′` car-
ries a natural Gl(V )-linearisation as explained in [HL97] section 4.3. Thus
L`|S = ψ∗L′` is very ample as well and carries a natural Gl(V )-linearisation,
hence also L` itself. �

As the center of Gl(V ) is contained in the stabiliser of each point in
Quot(H, P ) we can restrict the action to Sl(V ). Thus one has the notion of
(semi)stable points of Quot(H, P ) with respect to L` and the Sl(V )-action.

Parts of the following theorem are contained in [MW97] Key GIT lemma
2.4 but only for X being a surface.

Theorem 4.6.4 Suppose that m, and for �xed m also ` are su�ciently large
integers. Then Rss = R

ss
(L`) and Rs = R

s
(L`). Moreover, the closures of

the orbits of two points [ρi : H → Fi], i = 1, 2, in Rss intersect if and only
if grJH(F1) ∼= grJH(F2). The orbit of a point [ρ : H → F ] is closed in Rss if
and only if F is polystable.

The proof of this theorem will take up section 4.7. Together with lemma
4.6.1 and [HL97] theorem 4.2.10 it yields:

Theorem 4.6.5 There is a projective scheme MH,A(P ) that universally co-
represents the functor MH,A(P ). Closed points in MH,A(P ) are in bijection
with Seshadri equivalence classes of (H,A)-semistable sheaves with Hilbert
polynomial P . Moreover, there is an open subset M s

H,A(P ) that universally
corepresents the functorMs

H,A(P ).
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4.7 The construction - Proofs

Theorem 4.7.1 Let p be a polynomial of degree d, and let r be a positive
integer. Then for all su�ciently large integers m the following properties are
equivalent for a purely d-dimensional sheaf F of multiplicity r and reduced
Hilbert polynomial p with respect to H.

1. F is H-(semi)stable.

2. rp(m) ≤ h0(F (mH)), and h0(F ′(mH)) (≤) r′p(m) for all subsheaves
F ′ ⊂ F of multiplicity r′, 0 < r′ < r.

3. r′′p(m) (≤) h0(F ′′(mH)) for all quotient sheaves F → F ′′ of multipli-
city r′′, r > r′′ > 0.

Moreover, for su�ciently large m, equality holds in 2. and 3. if and only if
F ′ or F ′′, respectively, are destabilising.

Proof. [HL97] theorem 4.4.1. �

Proposition 4.7.2 If F is a coherent OX-module of dimension d which can
be deformed to a pure sheaf, then there exists a pure sheaf E with PH(E) =
PH(F ) and a homomorphism ϕ : F → E with kerϕ = Td−1(F ).

Proof. [HL97] proposition 4.4.2. �
Let [ρ : V ⊗OX(−mH)→ F ] be a closed point in R, λ : Gm → Sl(V ) a

one-parameter subgroup and V =
⊕

n∈Z Vn the weight space decomposition.
De�ne ascending �ltrations on V and F by

V≤n :=
⊕
ν≤n

Vν and F≤n := ρ(V≤n ⊗OX(−mH)).

Then ρ induces surjections ρn : Vn ⊗OX(−mH)→ Fn := F≤n/F≤n−1. Sum-
ming up over all weights we get a closed point[

ρ :=
⊕
n∈Z

ρn : V ⊗OX(−mH)→ F :=
⊕
n∈Z

Fn

]
∈ Quot(H, P ) .

Lemma 4.7.3 [ρ] = limt→0[ρ] · λ(t).

Proof. [HL97] lemma 4.4.3. �
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Lemma 4.7.4 The weight of the action of Gm via λ on the �bre of L` at the
point [ρ] is given by ∑

n∈Z

nχ(Fn(mH + `A)) =

− 1

dim(V )

∑
n∈Z

(dim(V )χ(F≤n(mH + `A))− dim(V≤n)χ(F (mH + `A))) .

Proof. This is [HL97] lemma 4.4.4 with minor changes due to the more
general situation. However the proof is the same:

Gm acts on the direct summands Fn of F via a character of weight n,
hence it acts with weight n on the complex which de�nes the cohomology
groups H i(Fn(mH+ `A)), i ≥ 0. This complex has (virtual) total dimension∑

i

(−1)ihi(Fn(mH + `A)) = χ(Fn(mH + `A)) ,

so that Gm acts on the determinant with weight nχ(Fn(mH + `A)). Since

L`([ρ]) =
⊗
n∈Z

det(H∗(Fn(mH + `A))) ,

the weight of the action of Gm via λ on L`([ρ]) is
∑

n∈Z nχ(Fn(mH + `A)).
This can be rewritten in the claimed form, see also [HL97] section 4.4. �

Lemma 4.7.5 A closed point [ρ : H → F ] ∈ R is (semi)stable if and only
if for all nontrivial proper linear subspaces V ′ ⊂ V and the induced sheaf
F ′ := ρ(V ′ ⊗OX(−mH)) ⊂ F the following inequality holds:

dimV · χ(F ′(mH + `A)) (≥) dim(V ′) · χ(F (mH + `A)) .

Proof. This is the generalisation of [HL97] lemma 4.4.5. The proof carries
over literally using the replacement

P (•, `) 7→ χ(•(mH + `A)) .

�

In the following we denote H0(ρ(mH))−1(H0(F ′(mH))) by V ∩H0(F ′(mH)).

Lemma 4.7.6 If ` is su�ciently large, a closed point [ρ : H → F ] ∈ R
is (semi)stable if and only if for all coherent subsheaves F ′ ⊂ F and V ′ =
V ∩H0(F ′(mH)) the following inequality holds:

dimV · χ(F ′(mH + zA)) (≥) dim(V ′) · χ(F (mH + zA))

as polynomials in z.
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Proof. This is the generalisation of [HL97] lemma 4.4.6. The proof carries
over almost literally again. �

Recall our choice of the ordering ≤ on Q[m,n] explained in section 4.2.

Lemma 4.7.7 Let M ⊂ Q[m,n] be a �nite set of polynomials. Then there
is an m0 ∈ N such that for all m′ ≥ m0 and for all P,Q ∈ M the following
conditions are equivalent:

1. P ≤ Q,

2. P (m′, •) ≤ Q(m′, •) (as polynomials in n) and

3. P (m′, n′) ≤ Q(m′, n′) for some n′ � 0.

Proof. If |M | = 1 then all three conditions are always satis�ed for any choice
made, so one can assume |M | ≥ 2. Let P,Q ∈ M with P 6= Q. Expand
P −Q =

∑d
i=0 ain

i with d = degn(P −Q) and ai ∈ Q[m] for i = 0, .., d and
choose mP,Q ∈ N large enough such that ad < 0 if and only if ad(m′) < 0 for
all m′ ≥ mP,Q. Let m0 := max{mP,Q | P,Q ∈ M with P 6= Q}. This one
does the job: Choose m′ ≥ m0 and P,Q ∈ M . If P = Q then P (m′, •) =
Q(m′, •). If P < Q then P (m′, •) < Q(m′, •) because m′ ≥ m0 ≥ mP,Q.
Hence condition 1 is equivalent to condition 2. The equivalence of condition
2 and condition 3 is clear. �

Proposition 4.7.8 Let P ∈ Q[m] be a polynomial. The setM := {PH,A(G) |
G is a quotient of an H-semistable sheaf F with PH(F ) = P and pH(F ) =
pH(G)} ⊂ Q[m,n] is �nite.

Proof. An immediate consequence of the de�nition of H-semistability is
that any H-destabilising quotient of an H-semistable sheaf is H-semistable
as well. Let α be the multiplicity associated to P , α′ ∈ N with α′ ≤ α
and F = (Fi)i∈I the family of H-semistable sheaves with Hilbert polynomial
α′p with respect to H. By [HL97] theorem 3.3.7 this family is bounded.
Hence the family F(m′H) := (Fi(m

′H))i∈I is bounded as well for any choice
of m′ ∈ N. Therefore by [HL97] lemma 1.7.6 the set of Hilbert polynomials
{PA(Fi(m

′H)) | i ∈ I} is �nite for any choice of m′ ∈ N0. As the polynomials
PH,A(Fi) can be regained from PA(Fi(m

′H)) for �nitely many choices of m′

the set Mα′ := {PH,A(Fi) | i ∈ I} is �nite. Altogether one has that M is
�nite because M ⊂

⋃α
α′=1Mα′ . �
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Corollary 4.7.9 Let P be a polynomial in one variable. Suppose that m,
and for �xed m also ` are su�ciently large integers. Then the following
conditions for an H-semistable sheaf F with PH(F ) = P are equivalent:

1. F is (H,A)-(semi)stable,

2. for all nontrivial proper subsheaves F ′ ⊂ F with pH(F ′) = pH(F ) one
has pH,A(F ′) (≥) pH,A(F ),

3. for all nontrivial proper subsheaves F ′ ⊂ F with pH(F ′) = pH(F ) one
has

χ(F ′(mH + zA))

r′
(≥)

χ(F (mH + zA))

r

as polynomials in z, where r′ and r denotes the multiplicity of the
sheaves F ′ and F , and

4. for all nontrivial proper subsheaves F ′ ⊂ F with pH(F ′) = pH(F ) one
has

χ(F ′(mH + `A))

r′
(≥)

χ(F (mH + `A))

r
.

Proof. The equivalence of conditions 1 and 2 follows immediately from the
de�nition, see also section 4.2. The equivalence of conditions 2-4 is estab-
lished using lemma 4.7.7 and proposition 4.7.8. �

Proof of theorem 4.6.4. Let m be large enough in the sense of theorem 4.7.1
and of corollary 4.7.9 and such that any H-semistable sheaf with multiplicity
ρ ≤ r and Hilbert polynomial ρ ·p with respect to H is m-regular. Moreover,
let ` be large enough in the sense of lemma 4.7.6, proposition 4.6.3 and
corollary 4.7.9.

First assume that [ρ : H → F ] is a closed point in R. By de�nition of R,
the map V → H0(F (mH)) is an isomorphism. Let F ′ ⊂ F be a subsheaf of
multiplicity 0 < r′ < r and let V ′ = V ∩H0(F ′(mH)). According to theorem
4.7.1 one has either

1. pH(F ′) = pH(F ), or

2. h0(F ′(mH)) < r′ · p(m).

In the �rst case F ′ ism-regular, and we get dim(V ′) = h0(F ′(mH)) = r′·p(m)
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and therefore

1

rr′
(dimV · χ(F ′(mH + `A))− dim(V ′) · χ(F (mH + `A)))

=
dimV

r
· χ(F ′(mH + `A))

r′
− dim(V ′)

r′
· χ(F (mH + `A))

r

=
dimV

r

(
χ(F ′(mH + `A))

r′
− χ(F (mH + `A))

r

)
.

In the second case

dim(V ) · r′ = rr′p(m) > h0(F ′(mH)) · r = dim(V ′) · r .

These are the leading coe�cients of the polynomials of lemma 4.7.6 up to a
factor, so that

dimV · χ(F ′(mH + zA)) > dim(V ′) · χ(F (mH + zA))

as polynomials in z. By lemma 4.7.6 and corollary 4.7.9 this proves the
implications

1. [ρ] ∈ Rs ⇒ [ρ] ∈ Rs
(L`),

2. [ρ] ∈ Rss \Rs ⇒ [ρ] ∈ Rss
(L`) \R

s
(L`) and

3. [ρ] ∈ R \Rss ⇒ [ρ] /∈ Rss
(L`).

Conversely, suppose that [ρ : V ⊗OX(−mH)→ F ] ∈ Rss
(L`). It remains

to show that [ρ] ∈ R. By lemma 4.7.6 one has an inequality

dimV · χ(F ′(mH + zA)) ≥ dim(V ′) · χ(F (mH + zA))

as polynomials in z for any F ′ ⊂ F and V ′ = V ∩H0(F ′(mH)). Passing to
the leading coe�cient of the polynomials we get

p(m) · r · r′ = dim(V ) · r′ ≥ dim(V ′) · r .

This is the inequality (4.4) in the proof of [HL97] theorem 4.3.3 in chapter
4.4, and the remaining part of this proof carries over literally. �

4.8 Local properties and dimension estimates

Let X be a connected projective scheme over an algebraically closed �eld k
of characteristic zero, H and A two ample line bundles on X and P ∈ Q[x].
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Theorem 4.8.1 Let F be an (H,A)-stable sheaf on X represented by a
point [F ] ∈ MH,A(P ). Then the completion of the local ring OMH,A(P ),[F ]

pro-represents the deformation functor DF .

Proof. The proof of [HL97] theorem 4.5.1 carries over literally. �

As a consequence of this theorem and [HL97] proposition 2.A.11 we get

Corollary 4.8.2 Let [F ] be a stable point. Then the Zariski tangent space
of MH,A(P ) at [F ] is canonically given by T[F ]MH,A(P ) ∼= Ext1(F, F ). If
Ext2(F, F ) = 0 then MH,A(P ) is nonsingular at [F ]. In general there are
bounds

ext1(F, F ) ≥ dim[F ]MH,A(P ) ≥ ext1(F, F )− ext2(F, F ) .

Theorem 4.8.3 Let X be a nonsingular projective variety and F an (H,A)-
stable sheaf of rank r > 0 and determinant bundle Q. Let M(Q) be the
�bre of the morphism det : MH,A(P ) → Pic(X) over the point [Q]. Then
T[F ]M(Q) ∼= Ext1(F, F )0. If Ext2(F, F )0 = 0 then MH,A(P ) and M(Q) are
nonsingular at [F ]. Moreover,

ext1(F, F )0 ≥ dim[F ]M(Q) ≥ ext1(F, F )0 − ext2(F, F )0 .

Proof. See [HL97] theorem 4.5.4. �

4.9 Universal families

De�nition 4.9.1 A �at family E of (H,A)-stable sheaves on X parametrised
by M s

H,A(P ) is called universal if the following holds: if F is an S-�at family
of (H,A)-stable sheaves on X with Hilbert polynomial P and if ΦF : S →
M s

H,A(P ) is the induced morphism then there is a line bundle L on S such
that F ⊗ p∗L ∼= Φ∗FE, where p : S ×X → S is the projection. An M s

H,A(P )-
�at family E is called quasi-universal if there is a locally free OS-module W
such that F ⊗ p∗W ∼= Φ∗FE.

Proposition 4.9.2 There exist Gl(V )-linearised vector bundles on Rs with
Z-weight 1, where Z ⊂ Gl(V ) denotes the center. If A is any such vector
bundle then Hom(p∗A, F̃ ) descends to a quasi-universal family E, where F̃ is
the universal quotient restricted to Rs, and any quasi-universal family arises
in this way. If A is a line bundle then E is universal.

Proof. The proof carries over from [HL97] proposition 4.6.2 literally. Recall
that by corollary 4.2.19 Rs parametrises simple sheaves, i.e. lemma [HL97]
4.6.3 holds as well. �
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Chapter 5

Moduli spaces for

two-dimensional sheaves

In this chapter we investigate the moduli spaces of torsion free semistable
sheaves on a K3 surface. The main question is still whether there is a sym-
plectic resolution of the moduli spaces MH(v) for a not v-general ample
divisor H. We follow the idea of constructing a Q-factorial symplectic termi-
nalisation. A good candidate will be the moduli space for (H,A)-semistable
sheaves with v-general A.

5.1 Semistable sheaves

Let X be a nonsingular projective surface over an algebraically closed �eld k
of characteristic zero, H and A two ample divisors on X, KX the canonical
divisor ofX and E a coherent sheaf onX. For a line bundle L Riemann-Roch
yields

χ(E ⊗ L) =
rkE

2
c1(L)2 +

(
c1(E)− rkE

2
KX

)
.c1(L) + χ(E) ,

and therefore

PH,A(E)(m,n)

=
rkE

2
(mH + nA)2 +

(
c1(E)− rkE

2
KX

)
.(mH + nA) + χ(E)

= PH(E)(m) + αH2 (E)

(
n2 A

2

H2
+ 2mn

H.A

H2

)
+ αA1 (E)n .

49
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In particular, PH,A(E) depends only on PH(E) and PA(E). If rkE > 0 then

H2 · pH,A(E)(m,n) =
1

2
(mH +nA)2 +

(
c1(E)

rkE
− 1

2
KX

)
.(mH +nA) +

χ(E)

rkE

and

H2 · pH(E)(m) =
1

2
m2H2 +

(
c1(E)

rkE
− 1

2
KX

)
.Hm+

χ(E)

rkE
.

From these formulae one can read o� the explicit inequalities for (H,A)-
(semi)stability of sheaves on surfaces de�ned in the last chapter. The condi-
tion for (H,A)-semistability can be found already in [MW97].

Lemma 5.1.1 Let E be a pure two-dimensional sheaf and F ⊂ E a non-
trivial subsheaf. Then pH,A(F ) ≤0 pH,A(E) if and only if(

µH(F ),
χ(F )

rkF
,−µA(F )

)
≤
(
µH(E),

χ(E)

rkE
,−µA(E)

)
,

and pH(F ) ≤ pH(E) if and only if
(
µH(F ), χ(F )

rkF

)
≤
(
µH(E), χ(E)

rkE

)
, where

we consider the lexicographic ordering on Q2 and Q3.

Lemma 5.1.2 Let r ≥ 2 and ∆ > 0 be integers, so that we have the notion of
a general ample divisor (see section 1.4.1). Let A and B be two general ample
divisors such that there is a unique nongeneral ample divisor H ∈ [A,B],
and assume there is an A-stable and H-semistable sheaf E of rank r and
discriminant ∆. Then E is (H,B)-stable.

Proof. Let E ′ ⊂ E be a proper nontrivial subsheaf with pH(E ′) = pH(E). In
particular, µH(E ′) = µH(E), hence the linear map

[A,B]→ R, h 7→ µh(E
′)− µh(E)

is either zero everywhere or changes the sign when passing through H. In
the �rst case one has µA(E ′) = µA(E) and therefore χ(E′)

rkE′
< χ(E)

rkE
by the

A-stability of E. In the second case one has µA(E ′) < µA(E) and there-
fore µB(E ′) > µB(E). By the characterisation in lemma 5.1.1 one has that
pH,B(E ′) <0 pH,B(E) in both cases. �

Note that one can always choose such A and B given any nongeneral am-
ple divisor H if one replaces H by a su�ciently high multiple of H, which
does not a�ect the stability notion. We will tacitly assume this replacement
whenever necessary.

The proof of lemma 1.4.9 yields already its generalisation to (H,A)-stable
sheaves:
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Lemma 5.1.3 Let r ≥ 2 and ∆ > 0 be integers, H and A two ample divisors
and B a general ample divisor, and assume there is an (H,A)-stable and µB-
semistable sheaf E of rank r and discriminant ∆. Then E is B-stable.

We restrict to K3 surfaces. The following proposition gives the key fact
why to prefer a general ample divisor. The proportionality of the Mukai
vector for destabilising subsheaves is essential in the local analysis of the sin-
gularities of moduli spaces of H-semistable sheaves, and in order to generalise
the proof to (H,A)-semistable sheaves we need to establish this property.

Proposition 5.1.4 Let X be a K3 surface, F a coherent sheaf on X of
positive rank and H and A two ample divisors on X.

1. If A is v(F )-general, F (H,A)-semistable and F ′ ⊂ F a nontrivial
proper subsheaf with pH,A(F ′) = pH,A(F ) then

v(F ′)

rkF ′
=
v(F )

rkF
.

2. If A is v(F )-general and F is (H,A)-semistable with v(F ) primitive
then F is (H,A)-stable.

3. Assume that H is v(F )-general. Then F is (H,A)-(semi)stable if and
only if it is H-(semi)stable.

Proof.

1. By lemma 4.2.12 F ′ is saturated, so 0 < rkF ′ < rkF . By lemma 5.1.1
one has(

µH(F ′),
χ(F ′)

rkF ′
,−µA(F ′)

)
=

(
µH(F ),

χ(F )

rkF
,−µA(F )

)
,

and as F is µH-semistable, we can apply corollary 1.4.4, i.e.

c1(F
′)

rkF ′
=

c1(F )

rkF
.

The claim follows using v(F ) = (rkF, c1(F ), χ(F )− rkF ).

2. As v(F ) is primitive clearly (rkF, c1(F ), χ(F )) is primitive as well. As-
sume E ⊂ F is a nontrivial saturated proper subsheaf with pH,A(E) =
pH,A(F ), so

rkE(c1(F ), χ(F )) = rkF (c1(E), χ(E))
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by item 1. Thus

rkE

gcd(rkE, rkF )
(c1(F ), χ(F )) =

rkF

gcd(rkE, rkF )
(c1(E), χ(E)) .

Clearly
1 ≤ gcd(rkE, rkF ) ≤ rkE < rkF ,

hence
rkF

gcd(rkE, rkF )
> 1

and this integer divides (c1(F ), χ(F )) and rkF , which is a contradiction
to (rkF, c1(F ), χ(F )) being primitive.

3. Let F be H-semistable. By de�nition one only has to show that

a) F is already (H,A)-semistable and

b) if F is (H,A)-stable then F is H-stable.

Let E ⊂ F be a nontrivial saturated proper subsheaf with pH(E) =
pH(F ). Then recalling lemma 4.2.10 by item 1 one has µA(E) = µA(F ).
Using lemma 5.1.1 this shows the �rst claim and gives a contradiction
proving the second claim. �

The third part of this proposition sheds more light into the relation of H-
semistability and (H,A)-semistability. In particular, (H,A)-semistability is
only of interest for nongeneral H.

Proposition 5.1.5 Let H and A be two ample divisors on X, v ∈ Λ(X)
primitive, m ∈ N and E an (H,A)-stable sheaf with v(E) = mv. Then
v2 ≥ −2.

Moreover, if v2 = −2 then m = 1, and if in addition F is any (H,A)-
semistable sheaf with v(F ) = v then F ∼= E.

Proof. The proof carries over literally from proposition 1.3.7 using corollary
4.2.19 instead of [HL97] corollary 1.2.8, and proposition 4.2.18 instead of
[HL97] proposition 1.2.7. �

Lemma 5.1.6 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive with v0 > 0, m ∈ N, H an ample divisor and A an mv-general
ample divisor. Let E be an (H,A)-semistable sheaf with Mukai vector v(E) =
mv. Then v2 ≥ −2. In the case of equality E is Seshadri equivalent to a
sheaf F⊕m with F the unique (up to isomorphism) (H,A)-stable sheaf of
Mukai vector v(F ) = v. In particular, there is no (H,A)-stable sheaf with
Mukai vector mv for m ≥ 2 if v2 = −2.
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Proof. The proof carries over literally from proposition 1.5.1 using now propo-
sition 5.1.4, corollary 4.2.19 and proposition 5.1.5. �

5.2 The moduli space MH,A(v)

We come to the moduli space of (H,A)-semistable sheaves and state the
analogous results to MH(v) whenever possible. Let X be a projective K3
surface, H and A two ample divisors on X and v = (v0, v1, v2) ∈ Λ(X) with
v0 > 0. The somehow traditional restriction to v0 > 0 is just for simplicity
as we don't need the case of v0 = 0.

The Hilbert polynomial associated to the Mukai vector v, i.e. the Hilbert
polynomial of any sheaf with Mukai vector v, is

P (m) :=

∫
X

v. exp(mH).
√

td(X) = v0H
2m

2

2
+ v1.Hm+ (v2 + v0) .

As the map
c1 : Pic(X)→ NS(X)

is a group isomorphism the sheaves with Mukai vector v are exactly those
with Hilbert polynomial P and determinant Q := c−1

1 (v1), so we can de�ne

MH,A(v) := M(Q)

where M(Q) is the �bre of the morphism det : MH,A(P ) → Pic(X) over Q.
This moduli space parametrises (H,A)-polystable sheaves with Mukai vector
v. Let M s

H,A(v) denote the open subset of (H,A)-stable sheaves.
Recall the construction of the moduli space MH,A(P ) in section 4.6. Let

det : Quot(H, P )→ Pic(X)

be the determinant morphism and Quot(H, P )Q := det−1(Q) the �bre over
a line bundle Q. De�ne

R(v) := R ∩Quot(H, P )Q ,

Rs(v) := Rs ∩Quot(H, P )Q and

Rss(v) := Rss ∩Quot(H, P )Q .

These schemes are Gl(V )-invariant, and

M := MH,A(v) = Rss(v)//PGl(V ) and M s
H,A(v) = Rs(v)//PGl(V )

as by [HL97] section 4.3 it amounts to the same if one replaces Sl(V ) by
PGl(V ).
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By lemma 4.6.2 the stabiliser subgroup PGl(V )[q] of a point [q : H →
E] with (H,A)-polystable E is isomorphic to PAut(E). Luna's Etale Slice
Theorem [HL97] 4.2.12 yields a PAut(E)-invariant locally closed subscheme
S ⊂ Rss(v) through [q] and an étale morphism

S//PAut(E)→M .

For more details see [Leh02] section 3.3 or [KLS06] section 2.5. In particular,
there is the Kuranishi map κ, a linear PAut(E)-equivariant map

κ : Ext2(E,E)∗0 → C[Ext1(E,E)]̂

such that
ÔM,[E]

∼=
(
C[Ext1(E,E)]̂ /(Imκ)

)PAut(E)
.

Proposition 5.2.1 M s
H,A(v) is nonsingular and each connected component

has dimension 2 + v2.

Proof. Any (H,A)-stable sheaf E is simple by corollary 4.2.19, thus

ext2(E,E)0 = hom(E,E)0 = hom(E,E)− 1 = 0 ,

hence by theorem 4.8.3 MH,A(v) is nonsingular in [E] and

dim[E]MH,A(v) = ext1(E,E)0 = ext1(E,E) .

The claim follows from v2 = −χ(E,E). �

Theorem 5.2.2 M s
H,A(v) admits a symplectic form.

Proof. The construction of the symplectic form onM s
H,A(v) carries over from

[HL97] chapter 10. �

Theorem 5.2.3 If M ⊆ MH,A(v) is a connected component with M ⊆
M s

H,A(v) then one already has M = MH,A(v).

Proof. The proof of [KLS06] theorem 4.1 carries over literally. �

Corollary 5.2.4 If M s
H,A(v) = MH,A(v) then MH,A(v) is irreducible.

Proof. Any connected component of MH,A(v) is contained in M s
H,A(v), hence

MH,A(v) is connected. Furthermore, M s
H,A(v) is nonsingular, hence MH,A(v)

is irreducible. �
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Theorem 5.2.5 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive with v0 > 0, m ∈ N, H an ample divisor on X and A an mv-general
ample divisor on X. Assume that M s

H,A(mv) is nonempty. Then v2 ≥ −2.

1. If v2 = −2 then m = 1 and MH,A(v) consists of a reduced point.

2. If v2 = 0 then MH,A(mv) = M s
H,A(mv), and MH,A(mv) is a projective

symplectic nonsingular surface.

3. Let v2 ≥ 2 and M s
H,A(v) be nonempty. Then MH,A(mv) is a projective

symplectic variety of dimension 2 +m2v2.

a) If m = 1 then MH,A(v) = M s
H,A(v), and MH,A(v) is nonsingular.

b) If m ≥ 2 then the singular locus of MH,A(mv) is nonempty and
equals the strictly semistable locus.

i. If m = 2 and v2 = 2 then the singular locus has codimension
2 and MH,A(mv) admits a symplectic resolution.

ii. If m = 2 and v2 > 2 or m > 2 then MH,A(mv) is locally
factorial, the singular locus has codimension at least 4 and the
singularities are terminal. There is no open neighbourhood of
a singular point that admits a symplectic resolution.

4. Let v2 ≥ 2 but now M s
H,A(v) be empty. Then MH,A(v) is empty as well,

i.e. m > 1 by assumption. If m = 2 or 3 then MH,A(mv) = M s
H,A(mv),

and MH,A(mv) is a nonsingular projective symplectic variety of dimen-
sion 2 +m2v2.

Proof. By lemma 5.1.6 one has v2 ≥ −2. Every connected component of
M s

H,A(mv) is nonsingular of dimension 2+m2v2 by theorem 5.2.1 and carries
a symplectic form by theorem 5.2.2. If m = 1 then M s

H,A(v) = MH,A(v) by
proposition 5.1.4. IfM s

H,A(mv) = MH,A(mv) thenMH,A(mv) is irreducible by
corollary 5.2.4. In particular, MH,A(v) is a projective symplectic nonsingular
variety.

1. Let v2 = −2. By lemma 5.1.6 one has m = 1 and all (H,A)-semistable
sheaves with Mukai vector v are (H,A)-stable and isomorphic.

2. Let v2 = 0. The proof of proposition 1.6.4 item 4a can be generalised
to hold here as well.

3. Let v2 ≥ 2 andM s
H,A(v) be nonempty. The case ofm = 1 is clear by the

above statements, so let m ≥ 2. The results herein are straightforward
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generalisations of [KLS06] and carry over literally as they are based
on a local analysis using proposition 5.1.4 and the local description of
MH,A(mv) is analogous as indicated above.

Theorem 5.2.6 MH,A(mv) is a normal irreducible variety of dimen-
sion 2 + v2.

Proof. See [KLS06] theorem 4.4. �

Theorem 5.2.7 Assumem = 2 and v2 > 2 orm > 2. ThenMH,A(mv)
is locally factorial.

Proof. See [KLS06] theorem 5.3. �

Proposition 5.2.8 The singular locus MH,A(mv)sing of MH,A(mv) is
nonempty and equals the strictly semistable locus. If m = 2 and v2 = 2
then codim MH,A(mv)sing = 2, otherwise ≥ 4.

Proof. See [KLS06] proposition 6.1. �

Theorem 5.2.9 Assumem = 2 and v2 > 2 orm > 2. ThenMH,A(mv)
is a locally factorial symplectic variety of dimension 2 + v2. The singu-
lar locus is nonempty and has codimension at least 4. All singularities
are symplectic but there is no open neighbourhood of a singular point
that admits a symplectic resolution.

Proof. See [KLS06] theorem 6.2. �

If m = 2 and v2 > 2 or m > 2 the singularities are terminal by propo-
sition 2.3.2.

We come to the case m = 2 and v2 = 2.

Theorem 5.2.10 Assume m = 2 and v2 = 2. Then the blow-up of
MH,A(mv) along its reduced singular locus is a symplectic resolution.

Proof. The proof carries over from [LS06] theorem 1.1. �

4. Let v2 ≥ 2 and M s
H,A(v) be empty. If m = 2 or 3 then MH,A(mv) =

M s
H,A(mv), and the claim follows from the statements at the beginning

of the proof.

This �nishes the proof of theorem 5.2.5. �
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5.3 Terminalisations for MH(v)

The moduli spaces MH,A(v) and their symplectic resolutions are good candi-
dates for Q-factorial projective symplectic terminalisations of MH(v) due to
theorem 5.2.5 and the following result.

Proposition 5.3.1 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
with v0 > 0, H and A two ample divisors. Assume that M s

H(v) is nonempty.
Then there is a projective birational morphism

f : M →M s
H(v) ,

where M is the closure of the open subset of M s
H,A(v) of H-stable sheaves

in MH,A(v). If MH,A(v) is irreducible then M = MH,A(v), and M s
H(v) is

irreducible as well.
Moreover, if v0 = 1 then f : MH,A(v) → MB(v) is an isomorphism for any
choice of an ample divisor B.

Proof. Proposition 3.1.6 yields the claimed projective birational morphism
using observation 4.2.9 and the claimed isomorphism for v0 = 1 using corol-
lary 4.2.17. �

Hence we can reduce our question onMH(v) to the investigation ofMH,A(v):

Proposition 5.3.2 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
with v0 ≥ 2, H a not v-general and A a v-general ample divisor. Assume
that M s

H(v) is nonempty and that there is a Q-factorial projective symplectic
terminalisation

M̃H,A(v)→MH,A(v) .

Then there is a Q-factorial projective symplectic terminalisation

f : M̃H,A(v)→M s
H(v) .

1. If there is a projective symplectic resolution M̃ → M s
H(v) and M̃ can

be chosen to be an irreducible symplectic manifold then M̃ is unique up
to deformation.

2. If M̃H,A(v) is singular then M s
H(v) admits no projective symplectic res-

olution.

Proof. Concatenating the terminalisation of MH,A(v) with the morphism of
proposition 5.3.1 yields the Q-factorial projective symplectic terminalisation
of M s

H(v). Thus item 1 follows from theorem 1.1.4 and item 2 from proposi-
tion 2.3.4 �
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Corollary 5.3.3 1 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
with v0 ≥ 2, H a not v-general ample divisor on X and M an irreducible
component of MH(v) containing no H-stable sheaves.

Assume that for all w = (w0, w1, w2) ∈ Λ(X) with 1 < w0 < v0 and such
that H is not w-general, w1.H

w0
= v1.H

v0
and w2

w0
= v2

v0
there is a Q-factorial pro-

jective symplectic terminalisation ofMH,Aw(w) for a suitable w-general ample
divisor Aw. Then there is a Q-factorial projective symplectic terminalisation
M̃ →M .

If M̃ can be chosen to be an irreducible symplectic manifold then it is de-
formation equivalent to some symplectic resolution of some MH,A(w), where
w = (w0, w1, w2) ∈ Λ(X) has the above properties and A is a w-general ample
divisor, to a symplectic resolution of some MH(w), where 1 ≤ w0 < v0, H is
w-general, w1.H

w0
= v1.H

v0
and w2

w0
= v2

v0
, or to a Hilbert scheme of points on a

K3 surface.

Proof. Consider the decomposition v =
∑m

i=1 niv
(i) given by proposition

2.1.1. As the Mukai vectors v(i) for 1 ≤ i ≤ m belong to H-stable direct
summands of a strictly H-polystable sheaf with Mukai vector v one has
1 < v

(i)
0 < v0,

v
(i)
1 .H

v
(i)
0

=
v1.H

v0

and
v

(i)
2

v
(i)
0

=
v2

v0

for all 1 ≤ i ≤ m. If H is v(i)-general for some 1 ≤ i ≤ m then MH(v(i)) is a
symplectic variety that admits a Q-factorial projective symplectic terminal-
isation by proposition 1.6.4. Note that for rank one every ample divisor is
general. Thus we have established the assumption of theorem 2.3.5 item 1,
which hence yields the claim. �

Unfortunately, theorem 5.2.5 does not give a complete answer and the as-
sumptions are not necessarily satis�ed.

Question 5.3.4 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive with v0 > 0 and v2 ≥ 2, 4 ≤ m ∈ N, H a not mv-general am-
ple divisor on X and A an mv-general ample divisor on X. Assume that
M s

H,A(mv) is nonempty.

1. Is M s
H,A(v) nonempty?

2. If M s
H,A(v) is empty, is there a Q-factorial projective symplectic termi-

nalisation of MH,A(mv)?

1This result depends on theorem 2.2.4.
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If one could close this gap then any projective irreducible symplectic manifold
lying birationally over any component of some MH(v) always arises also as a
symplectic resolution of some MH,A(v). This leads us to the next question.

Question 5.3.5 Do the moduli spaces MH,A(v) yield new examples of pro-
jective irreducible symplectic manifolds?

Due to theorem 1.1.4 one can reduce this question to the existence of bira-
tional maps.

5.4 Birational maps between moduli spaces

It is not possible in general to construct morphisms between moduli spaces of
semistable sheaves of positive rank for di�erent choices of ample divisors, so
one has to settle for birational maps. Fortunately one knows that birational
projective irreducible symplectic manifolds are deformation equivalent, as
stated in theorem 1.1.4.

Let X be a projective K3 surface and v = (v0, v1, v2) ∈ Λ(X) with v0 > 0.

Proposition 5.4.1 Let (Hi, Ai) be a pair of two ample divisors for i = 1, 2.
Then the two open subsets U1 ⊂ M s

H1,A1
(v) and U2 ⊂ M s

H2,A2
(v) containing

all sheaves that are (Hi, Ai)-stable for i = 1, 2 are isomorphic.

Proof. Let π : Rs(v) → M s
H1,A1

(v) be the quotient map, see the construc-
tion of the moduli space in section 5.2. Rs(v) carries a universal family.
By proposition 4.4.2 the maximal subset W ⊂ Rs(v) parametrising only
(H2, A2)-stable sheaves is open. As W is PGl(V )-invariant U1 = π(W ) is the
open subset of M s

H1,A1
(v) containing all sheaves that are (Hi, Ai)-stable.

The universal family on Rs restricted to W induces a morphism f : W →
M s

H2,A2
(v) by the universal property of coarse moduli spaces, and its image is

U2. This morphism is PGl(V )-invariant and hence descends to a morphism
f : U1 → U2 . Exchanging 1 and 2 yields the inverse morphism. �

Corollary 5.4.2 Let H be an ample divisor on X and A and B two v-general
ample divisors on X. Assume there is a coherent sheaf F with Mukai vector
v that is (H,A)-stable and B-stable.

1. If MH,A(v) is irreducible then MH,A(v) and MB(v) are birational.

2. Let v be primitive.

a) If v2 = 0 then MH,A(v) is a projective K3 surface.

b) If v2 ≥ 2 then MH,A(v) is deformation equivalent to Hilb
v2

2
+1(X).
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Proof.

1. By proposition 1.6.4 MB(v) is also irreducible, so nonempty open sub-
sets are dense and the isomorphism of proposition 5.4.1 gives the desired
birational map.

2. By theorem 5.2.5 MH,A(v) is irreducible, so one has that MH,A(v) is
birational to MB(v) in both cases as just seen. The claim follows from
proposition 1.6.4 together with theorem 1.1.4. For the �rst case note
that an irreducible symplectic surface is already K3. �

5.5 On the discriminant

We need some preliminaries before we can deduce an existence result for the
stable sheaves needed in corollary 5.4.2.

Let X be a nonsingular projective surface with an ample divisor H and
F a coherent sheaf on X. Recall that

∆(F ) := 2rkF c2(F )− (rkF − 1)c1(F )2 = c1(F )2 − 2rkF ch2(F ) (5.1)

is called the discriminant of F , see e.g. [HL97] section 3.4, and if X is a K3
surface then

∆(F ) = v(F )2 + 2(rkF )2 . (5.2)

Warning: There are di�erent conventions of the de�nition of the discrimi-
nant in the literature!

The following statement is contained in [HL97] corollary 7.3.2. As the calcu-
lation is omitted therein, we give the details here.

Lemma 5.5.1 Let 0 = F0 ⊂ F1 ⊂ ... ⊂ Fn = F be a �ltration of a coherent
sheaf F on X with positive rank such that the graded objects gri := Fi/Fi−1

have positive rank for i = 1, ..., n. Then
n∑
i=1

∆(gri)

rk gri
− ∆(F )

rkF
=
∑
i<j

rk gri rk grj
rkF

(
c1(gri)

rk gri
− c1(grj)

rk grj

)2

.

Proof. We calculate

1

2rkF
(c1(F )2 −∆(F ))

(5.1)
= ch2(F ) =

n∑
i=1

ch2(gri)

(5.1)
=

n∑
i=1

1

2rk gri
(c1(gri)

2 −∆(gri))
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and
n∑
i=1

∆(gri)

rk gri
− ∆(F )

rkF

=
n∑
i=1

c1(gri)
2

rk gri
− c1(F )2

rkF

=
n∑

i,j=1

(
rk grj
rkF

c1(gri)
2

rk gri
− c1(gri)c1(grj)

rkF

)
=

∑
i<j

(
rk grj
rkF

c1(gri)
2

rk gri
+

rk gri
rkF

c1(grj)
2

rk grj
− 2

c1(gri)c1(grj)

rkF

)
=

∑
i<j

rk gri rk grj
rkF

(
c1(gri)

2

(rk gri)2
+

c1(grj)
2

(rk grj)2
− 2

c1(gri)c1(grj)

rk gri rk grj

)

=
∑
i<j

rk gri rk grj
rkF

(
c1(gri)

rk gri
− c1(grj)

rk grj

)2

.

�

Corollary 5.5.2 If all gri have the same slope with respect to H then one
has

n∑
i=1

∆(gri)

rk gri
≤ ∆(F )

rkF
.

Moreover, if X is a K3 surface and c1(gri)
rk gri

6= c1(grj)

rk grj
for all 1 ≤ i < j ≤ n then

one even has

n∑
i=1

∆(gri)

rk gri
≤ ∆(F )

rkF
−
∑
i<j

2rk grirk grj
rkF lcm(rk gri, rk grj)2

≤ ∆(F )

rkF
−
∑
i<j

2

rkF rk grirk grj
,

where lcm denotes the least common multiple.

Proof. By assumption one has(
c1(gri)

rk gri
− c1(grj)

rk grj

)
.H = 0 ,

hence (
c1(gri)

rk gri
− c1(grj)

rk grj

)2

≤ 0
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for all i, j by the Hodge index theorem, see e.g. [HL97] theorem V.1.9. If X
is a K3 surface then the intersection pairing is even and nondegenerate, and
therefore even(

c1(gri)

rk gri
− c1(grj)

rk grj

)2

=
1

lcm(rk gri, rk grj)2

(
lcm(rk gri, rk grj)

(
c1(gri)

rk gri
− c1(grj)

rk grj

))2

≤ − 2

lcm(rk gri, rk grj)2
.

�

Lemma 5.5.3 Let X be a K3 surface with ample divisor H, 2 ≤ n ∈ N
and 0 = F0 ⊂ F1 ⊂ ... ⊂ Fn = F a �ltration of a coherent sheaf F on X
with positive rank r such that all gri = Fi/Fi−1 have positive rank ri, are
µH-semistable, have the same slope with respect to H and c1(gri)

rk gri
6= c1(grj)

rk grj
for

all 1 ≤ i < j ≤ n. Then

∑
i<j

χ(gri, grj) ≤ −
∆(F )

2r
(n− 1) + r2 −

n∑
i=1

r2
i −

r − n+ 1

r

∑
i<j

1

rirj
.

Proof. One has ri ≤ r − n + 1 for all i = 1, .., n. Furthermore, ∆(gri) ≥ 0
by the Bogomolov inequality (see e.g. [HL97] theorem 3.4.1). So we can
calculate

∑
i<j

χ(gri, grj)
prop. 1.3.3

= −
∑
i<j

〈v(gri), v(grj)〉

=
1

2

(
−

n∑
i,j=1

〈v(gri), v(grj)〉+
n∑
i=1

v(gri)
2

)

=
1

2

(
n∑
i=1

v(gri)
2 − v(F )2

)
(5.2)
=

1

2

(
n∑
i=1

(
∆(gri)− 2r2

i

)
−∆(F ) + 2r2

)

≤
n∑
i=1

r − n+ 1

2ri
∆(gri)−

n∑
i=1

r2
i −

∆(F )

2
+ r2
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cor. 5.5.2

≤ r − n+ 1

2

(
∆(F )

r
−
∑
i<j

2

rrirj

)
−

n∑
i=1

r2
i −

∆(F )

2
+ r2

= −∆(F )

2r
(n− 1) + r2 −

n∑
i=1

r2
i −

r − n+ 1

r

∑
i<j

1

rirj
.

�

5.6 Existence of stable sheaves

Some parts of the proof of the following proposition are based on an idea we
learned from an unpublished note of Christoph Sorger.

Proposition 5.6.1 Let X be a K3 surface, v = (v0, v1, v2) ∈ Λ(X) with
v0 ≥ 2 and H, A and B three ample divisors on X. Assume that M s

A,B(v)
is nonempty and contains no H-semistable sheaves, and let Rs → M s

A,B(v)
be the geometric quotient of the construction of the moduli space MA,B(v) in
section 5.2 and F ∈ Coh(Rs ×X) the universal quotient family. Then there
is an open dense subset S ⊂ Rs and a subsheaf F ′ ⊂ F |S such that for all
s ∈ S one has

1. an exact sequence 0→ F ′s → Fs → F ′′s → 0 on the �bre over s with

2. pH(F ′s) > pH(Fs) > pH(F ′′s ),

3. hom(F ′s, F
′′
s ) = 0 and

4. 1− χ(F ′s, F
′′
s ) = ext2

−(Fs, Fs) ≤ end(F ′s) + end(F ′′s ),

where we calculate ext2
−(Fs, Fs) with respect to the �ltration F ′s ⊂ Fs (for a

de�nition see [HL97] section 2.A), and if v0 = 2 then additionally

1. ext2
−(Fs, Fs) = 2,

2. −χ(F ′s, F
′′
s ) = ext1(F ′s, F

′′
s ) = 1 and

3. 0 ≥ (c1(F
′
s)− c1(F

′′
s ))2 = v2 − 4 = v(F ′s)

2 + v(F ′′s )2 − 2 .
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Proof. By corollary 4.2.19 one has

ext2(Fs, Fs) = hom(Fs, Fs) = 1 (5.3)

for all s ∈ S. By the same arguments as in the proof of [HL97] theorem
10.2.1 Rs is nonsingular and the Kodaira-Spencer map κ is given by the
concatenation of the two maps

TsR
s −→ T[Fs]M

s
A(v)

∼=−→ Ext1(Fs, Fs) .

Furthermore, the �rst map is surjective, hence κ is surjective as well.
In the following every notion is understood to be with respect to the ample

divisor H whenever not explicitly stated di�erently. By [HL97] theorem
2.3.2 there is a relative Harder-Narasimhan �ltration F• and an open dense
subscheme S ⊂ Rs such that the restriction of the �ltration to a �bre over
s ∈ S is a Harder-Narasimhan �ltration of Fs. As the open subset of Rs

containing H-semistable sheaves is empty the �ltration is nontrivial. We
only take the �rst step F ′ := F`−1|S ⊂ F`|S = F |S of the �ltration restricted
to S, which gives us an exact sequence

0→ F ′s → Fs → F ′′s → 0 (5.4)

on the �bres over s ∈ S with

pH(F ′s) > pH(Fs) > pH(F ′′s ) . (5.5)

By the proof of [HL97] theorem 2.3.2 one has

hom(F ′s, F
′′
s ) = 0 (5.6)

and
π : QuotS×X/S(F, P−)→ S

is an isomorphism, where P− := PH(F ′′s ) (this is independent of s). Let
s ∈ S be a closed point and x be the unique point with s = π(x), which
corresponds to the exact sequence 5.4. By [HL97] theorem 2.2.7 the kernel
of the obstruction map o : TsS → Ext1(F ′s, F

′′
s ) is

ker o = Im Txπ = dimTsS ,

hence o is the zero map. As o is given by

o : TsS
κ−→ Ext1(Fs, Fs)

c−→ Ext1(F ′s, F
′′
s )
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and κ is surjective as explained above one has c = 0 as well. For the short
�ltration 0 ⊂ F ′s ⊂ Fs there is a long exact sequence

...→ Exti−(Fs, Fs)→ Exti(Fs, Fs)→ Exti(F ′s, F
′′
s )→ Exti+1

− (Fs, Fs)→ ... ,

which decomposes to the exact sequence

0→ Ext1(F ′s, F
′′
s )→ Ext2

−(Fs, Fs)→ Ext2(Fs, Fs)→ Ext2(F ′s, F
′′
s )→ 0

as c = 0. Thus

0 = −ext1(F ′s, F
′′
s ) + ext2

−(Fs, Fs)− ext2(Fs, Fs) + ext2(F ′s, F
′′
s )

(5.3), (5.6)
= χ(F ′s, F

′′
s ) + ext2

−(Fs, Fs)− 1 .

By [HL97] theorem 2.A.4 there is a spectral sequence

Extp+q− (Fs, Fs) ⇐ Epq
1 =

{
0 p < 0∏

i Extp+q(griFs, gri−pFs) p ≥ 0
.

Hence

ext2
−(Fs, Fs) ≤

∑
i≥j

ext2(griFs, grjFs)

=
∑
i≥j

hom(grjFs, griFs)

= end(F ′s) + end(F ′′s ) + hom(F ′s, F
′′
s )

(5.6)
= end(F ′s) + end(F ′′s ) (5.7)

Assume v0 = 2. Then F ′s and F
′′
s are line bundles and therefore (A,B)-stable

by corollary 4.2.17, hence simple by corollary 4.2.19. As Fs is (A,B)-stable,
one has

pA,B(F ′s) <0 pA,B(Fs) <0 pA,B(F ′′s ) (5.8)

and in particular,
0 = hom(F ′′s , F

′
s) = ext2(F ′s, F

′′
s )

by proposition 4.2.18. The sequence

0→ F ′s → Fs → F ′′s → 0

gives a nontrivial element in Ext1(F ′s, F
′′
s ), thus ext1(F ′s, F

′′
s ) ≥ 1. Altogether

one has

1 ≤ ext1(F ′s, F
′′
s ) = −χ(F ′s, F

′′
s ) = ext2

−(Fs, Fs)− 1
(5.7)

≤ 1 ,
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which gives us equality everywhere. In particular,

−2 = 2χ(F ′s, F
′′
s )

= −2〈v(F ′s), v(F ′′s )〉
= v(F ′s)

2 + v(F ′′s )2 − v2

(5.2)
= ∆(F ′s) + ∆(F ′′s )− 4− v2

l. 5.5.1
=

∆(Fs)

2
+

1

2
(c1(F

′
s)− c1(F

′′
s ))

2 − 4− v2

(5.2)
=

1

2
(c1(F

′
s)− c1(F

′′
s ))

2 − v2

2
.

By the inequalities 5.5 and 5.8 one has

µH(F ′s) ≥ µH(Fs) and

µA(F ′s) ≤ µA(Fs) ,

hence there is an ample Q-divisor H ′ ∈ [H,A] such that

µH′(F
′
s) = µH′(Fs) = µH′(F

′′
s ) ,

and the Hodge index theorem (see e.g. [HL97] theorem V.1.9.) yields

0 ≥ (c1(F
′
s)− c1(F

′′
s ))

2
= v2 − 4 .

�

Theorem 5.6.2 Let X be a K3 surface, v = (v0, v1, v2) ∈ Λ(X) with v0 ≥ 2
and

v2 > 2

(
v3

0 − v2
0 − v0 − (v0 − 1)

⌊
v2

0

4

⌋−1
)

=: ϕ(v0) ,

H a not v-general ample divisor and A a v-general ample divisor in a chamber
touching H. Then there is an A-stable and H-semistable sheaf with Mukai
vector v.

Proof. One can easily verify that by the assumptions on v one has v2 ≥ 2,
and therefore M s

A(v) 6= ∅ by proposition 1.6.4. Set B = A and assume that
M s

A(v) contains no H-semistable sheaves. Then by proposition 5.6.1 there is
an [F ] ∈M s

A(v) with an exact sequence

0→ F ′ → F → F ′′ → 0
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such that

pH(F ′) > pH(F ) > pH(F ′′) , (5.9)

hom(F ′, F ′′) = 0 and (5.10)

1− χ(F ′, F ′′) = ext2
−(F, F ) ≤ end(F ′) + end(F ′′) . (5.11)

As F is in particular µA-semistable, it is also µH-semistable by proposition
1.4.7. Together with inequality 5.9 one has

µH(F ′) = µH(F ) = µH(F ′′) and (5.12)
χ(F ′)

rkF ′
>
χ(F )

rkF
>
χ(F ′′)

rkF ′′
, (5.13)

and F ′ and F ′′ are µH-semistable. Thus by [O'G96] lemma 1.7 one has

end(F ′) ≤ (rkF ′)2 and end(F ′′) ≤ (rkF ′′)2 . (5.14)

Moreover, the A-stability of F ensures

pA(F ′) < pA(F ) < pA(F ′′) ,

and because of inequality 5.13 even

µA(F ′) < µA(F ) < µA(F ′′) ,

and therefore

c1(F
′)

rkF ′
6= c1(F

′′)

rkF ′′
. (5.15)

Altogether one has

1
(5.11)

≤ χ(F ′, F ′′) + end(F ′) + end(F ′′)
l. 5.5.3, (5.14)

≤ −∆(F )

2v0

+ v2
0 −

v0 − 1

v0 rkF ′ rkF ′′

(5.2)

≤ − v2

2v0

+ v2
0 − v0 −

v0 − 1

v0 rkF ′ rkF ′′

≤ − v2

2v0

+ v2
0 − v0 −

v0 − 1

v0

⌊
v2

0

4

⌋−1

,

where the last inequality follows from rkF ′ rkF ′′ ≤
⌊
v20
4

⌋
. Thus

v2 ≤ 2

(
v3

0 − v2
0 − v0 − (v0 − 1)

⌊
v2

0

4

⌋−1
)

in contradiction to the assumption of the theorem. �
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Let us evaluate ϕ for small values:

n 2 3 4 5 6
ϕ(n) 2 28 86.5 188.7 346.9

Table 5.1: evaluation of ϕ

In particular, the only interesting exceptional case for rank two might occur
for v2 = 2. To realise this case one needs a K3 surface that holds a divisor
D with D2 = −2, D.H = 0, D.A < 0 and such that D + v1 is divisible by 2
in NS(X).

Lemma 5.6.3 Let X be a K3 surface, S a scheme of �nite type over C and
F ∈ Coh(S × X) an S-�at family on X. Then the Mukai vector v(Fs) is
locally constant as a function of s ∈ S.

Proof. By [HL97] proposition 2.1.2 the Hilbert polynomials PH(Fs) with
respect to any �xed ample divisor H are locally constant as a function of s ∈
S. Thus rkFs and χ(Fs) are locally constant, and for all ample divisorsH one
has that c1(Fs).H is locally constant. As X is a K3 surface, the intersection
pairing is nondegenerate, hence it is enough to show that c1(Fs).D is locally
constant for any divisor D. But the ample cone is open in NS(X)Q and
NS(X) is free, hence D is a linear combination of ample divisors. �

Proposition 5.6.4 Let X be a K3 surface, v ∈ Λ(X) and H, A and B three
ample divisors such that M s

A,B(v) is connected and contains no H-semistable
sheaves. Then there is an open subset U ⊂M s

A,B(v) and a morphism

f : U →
∏̀
i=1

MH(v(i))

for a suitable decomposition v =
∑`

i=1 v
(i) that is induced by the Harder-

Narasimhan �ltration with respect to H.
Let ` = 2 and V ⊂ f−1(

∏2
i=1M

s
H(v(i))) be the subset of all [E] with

Harder-Narasimhan �ltration 0 = E0 ⊂ E1 ⊂ E2 = E with respect to H such
that one has ext1(E1, E/E1) = 1. Then f |V is injective. If furthermore V
contains an open subset and v2 =

∑2
i=1(v

(i))2 + 2 then

dim f(V ) = dim
2∏
i=1

MH(v(i)) .

In particular, f(V ) is an irreducible component of
∏`

i=1MH(v(i)).
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Proof. Let π : Rs →M s
A,B(v) be the geometric quotient of the construction of

the moduli space MA,B(v) in section 5.2 and F ∈ Coh(Rs×X) the universal
quotient family of (A,B)-stable sheaves on X. By [HL97] theorem 2.3.2 there
is a relative Harder-Narasimhan �ltration F0 ⊂ ... ⊂ F` of F and an open
dense subscheme S ⊂ Rs such that the restriction of the �ltration to a �bre
over s ∈ S is a Harder-Narasimhan �ltration of Fs with respect to H, and the
restriction of the factors gri := Fi/Fi−1 to S are �at over S for all 1 ≤ i ≤ `.
S is connected because it is an open subset of Rs, which in turn is connected
as it is a pricipal bundle over the connected variety M s

A(v) with connected
structure group, hence by lemma 5.6.3 the Mukai vectors v(i) := v((gri)s) are
independent of s ∈ S for all 1 ≤ i ≤ `. S is an invariant open set, hence its
image U := π(S) is open. The families gri|S yield an invariant morphism

S →
∏̀
i=1

MH(v(i)) ,

which descends to a morphism

f : U →
∏̀
i=1

MH(v(i)) .

Let ` = 2, [E], [E ′] ∈ V with f([E]) = f([E ′]) and E• and E ′• their Harder-
Narasimhan �ltrations with respect to H. Then one has E1

∼= E1/E0
∼=

E ′1/E
′
0
∼= E ′1 and two exact sequences

0→ E1 → E → E/E1 → 0 and

0→ E1 → E ′ → E/E1 → 0 .

As E is (H,A)-semistable one has pA,B(E) <0 pA,B(E/E1) by corollary
4.2.16, and therefore E 6∼= E1 ⊕ E/E1. Hence the �rst sequence is nonsplit
and corresponds to a nontrivial element in Ext1(E/E1, E1). Analogously the
second sequence corresponds to a nontrivial element. As ext1(E/E1, E1) =
ext1(E1, E/E1) = 1 one has E ∼= E ′. If V contains an open subset then
dim f(V ) = dimV = v2 + 2. If furthermore v2 =

∑2
i=1(v

(i))2 + 2 then

dim f(V ) =
2∑
i=1

(v(i))2 + 4 = dim
2∏
i=1

MH(v(i)) .

M s
A,B(v) is nonsingular by proposition 5.2.1 and connected by assumption,

hence it is irreducible. Thus V , f(V ) and f(V ) are irreducible, and in par-
ticular, f(V ) is an irreducible component of

∏`
i=1MH(v(i)). �
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Corollary 5.6.5 Let X be a K3 surface, v = (2, v1,
v21−2

4
) ∈ Λ(X) and H, A

and B three ample divisors such that M s
A,B(v) is nonempty, connected and

contains no H-semistable sheaves. Then M s
A,B(v) is birational to MH(v′) ×

MH(v′′) with v′ = (1, v′1, v
′
2), v

′′ = (1, v′′1 , v
′′
2) and v′2 + v′′2 = 0 .

Proof. This follows from proposition 5.6.4 using proposition 5.6.1. Note that
MH(v′)×MH(v′′) is irreducible as the factors are irreducible by proposition
1.6.4. �

5.7 More results on MH,A(v)

We now can give partial answers to our questions 5.3.4 and 5.3.5.

Theorem 5.7.1 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive and m ∈ N with mv0 ≥ 2, H a not mv-general ample divisor on X
and A an mv-general ample divisor on X in a chamber touching H.

1. If (mv)2 > ϕ(mv0) with ϕ as in theorem 5.6.2 then M s
H,A(mv) is

nonempty.

2. Let m = 1 and assume v2 > ϕ(v0). Then MH,A(v) is an irreducible

symplectic manifold and deformation equivalent to Hilb
v2

2
+1(X).

3. Letm = 1 and v = (2, v1,
v21−2

4
). ThenMH,A(v) is birational to Hilb2(X)

or to X2 or it is empty. In the �rst case MH,A(v) is an irreducible sym-
plectic manifold and deformation equivalent to Hilb2(X), in the second
case it cannot be an irreducible symplectic manifold.

4. Let m = 2, v2 = 2 and v0 = 1. Then the symplectic varieties MH,A(2v)
and MB(2v) are birational for a suitable 2v-general ample divisor B
on X, hence also any symplectic resolutions M of MH,A(2v) and M ′ of
MB(2v).

If furthermore M or M ′ is an irreducible symplectic manifold then both
are irreducible symplectic and deformation equivalent.

5. Let M s
H,A(mv) be nonempty, m ≥ 2 and (mv)2 ≥ 16, and assume

v0 = 1 or v2 > ϕ(v0). Then MH,A(mv) is a singular locally factorial
(and therefore Q-factorial) projective symplectic variety with only ter-
minal singularities, and in particular, there is no projective symplectic
resolution.
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Proof.

1. This is theorem 5.6.2 together with lemma 5.1.2.

2. This is corollary 5.4.2 using theorem 5.6.2 and lemma 5.1.2.

3. As v is primitive one hasM s
H,A(v) = MH,A(v) by proposition 5.1.4. Let

MH,A(v) be nonempty. IfM s
H,A(v) contains a sheaf F that is stable with

respect to a v-general ample divisor B then corollary 5.4.2 yields the
claim. If such a sheaf does not exist and B is any v-general ample divi-
sor thenM s

H,A(v) is birational toMB(v′)×MB(v′′) with v′ = (1, v′1, v
′
2),

v′′ = (1, v′′1 , v
′′
2) and v′2 + v′′2 = 0 by corollary 5.6.5 as MH,A(v) is irre-

ducible by corollary 5.2.4. In particular, −2 ≤ v′2 = −v′′2 ≤ 2. Hence
MB(v′) ×MB(v′′) is either isomorphic to Hilb2(X) or to X ×X. The
additional statement follows by theorem 1.1.4.

4. The Mukai vector w := 2v satis�es 8 = w2 > ϕ(w0), hence by theorem
5.6.2 and lemma 5.1.2 there is an (H,A)-stable and B-stable sheaf with
Mukai vector w, and by corollary 5.4.2 MH,A(w) and MB(w) are bira-
tional. The statement on deformation equivalence follows by theorem
1.1.4 as usual.

5. If v0 ≥ 2 then by theorem 5.6.2 together with lemma 5.1.2 there is
an (H,A)-stable sheaf with Mukai vector v. If v0 = 1 then there is an
A-stable sheaf with Mukai vector v by proposition 1.6.4 which is (H,A)-
stable by corollary 4.2.17. In particular, M s

H,A(v) 6= ∅, so together with
lemma 3.2.1 the assumption of theorem 5.2.5 item 3 holds. �

The following question remains open:

Question 5.7.2 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
with v0 ≥ 2 and 2 ≤ v2 ≤ ϕ(v0) with ϕ as in theorem 5.6.2 , H a not v-
general ample divisor on X and A a v-general ample divisor on X. Assume
that v is primitive or that v2 = 8.

1. Is there an (H,A)-stable sheaf with Mukai vector v?

2. Is there such a sheaf that is additionally B-stable for some v-general
ample divisor B?

A positive answer for both items would exclude new examples of projective
irreducible symplectic manifolds as we have seen.
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5.8 Results on M s
H(v)

We return to the moduli space of H-semistable torsion free sheaves on a K3
surface and include the more explicit results.

Theorem 5.8.1 Let X be a projective K3 surface, v = (v0, v1, v2) ∈ Λ(X)
primitive with v0 > 0, m ∈ N and H an ample divisor on X. Furthermore,
assume that M s

H(mv) is nonempty. Then one has v2 ≥ −2, and in the case
of equality one has m = 1 and MH(v) consists of a reduced point. Let now
v2 ≥ 0.

1. Let m = 1 or (mv)2 ≤ 14. Then there is a projective symplectic reso-
lution M → M s

H(mv). If H is not mv-general then M can be chosen
to be a symplectic resolution of MH,A(mv), where A is an mv-general
ample divisor.

Moreover, if M can be chosen to be irreducible symplectic then it is
unique up to deformation.

2. Let m ≥ 2 and (mv)2 ≥ 16. If H is mv-general or v0 = 1 or
v2 > ϕ(v0) with ϕ as in theorem 5.6.2 then there is a singular locally
factorial (and therefore Q-factorial) projective symplectic terminalisa-
tion of M s

H(mv) , and in particular, there is no projective symplectic
resolution of M s

H(mv).

Proof. If H is mv-general then this holds by proposition 1.6.4 using lemma
3.2.1 for the case di�erentiation. Assume that H is not mv-general. The �rst
part is proposition 1.3.7, and for v2 ≥ 0 the other statements are given by
theorems 5.2.5 and 5.7.1 together with proposition 5.3.2. �

Let us conclude the discussion with a look at small ranks.

Proposition 5.8.2 2 Let X be a projective K3 surface, v = (v0, v1, v2) ∈
Λ(X) with 1 ≤ v0 ≤ 3, H an ample divisor on X, M ⊂MH(v) an irreducible
component, M̃ a projective irreducible symplectic manifold and M̃ → M a
projective birational morphism. Then M̃ is deformation equivalent to some
resolution of some MB(w) with w ∈ Λ(X) and B some w-general ample
divisor or one has v0 = 3, M contains stable sheaves and M̃ is deformation
equivalent to some resolution of MH,A(v) for some v-general A, 2 ≤ v2 ≤
ϕ(v0) and there is no (H,A)-stable sheaf with Mukai vector v that is µB-
semistable for any v-general B.

2This result depends on theorem 2.2.4.
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Proof. Use proposition 5.8.1 together with theorem 5.7.1, corollary 5.4.2,
lemma 5.1.3 and corollary 5.3.3. �

In particular, no new examples of a projective irreducible symplectic manifold
arise from moduli spaces of semistable rank two sheaves.
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Chapter 6

The relation to twisted stability

6.1 Twisted stability

LetX be a nonsingular projective variety of dimension d over an algebraically
closed �eld k, F a coherent sheaf on X, H an ample line bundle on X and
D ∈ NS(X)Q := NS(X)⊗Q. In our notation we might occasionally omit the
map c1 : Pic(X)→ NS(X) when applied to a line bundle.

De�nition 6.1.1 1. The D-twisted Euler characteristic of F is

χD(F ) :=

∫
X

ch(F ). exp(D).td(X) ,

2. the D-twisted Hilbert polynomial of F is

PD
H (F )(n) := χD(F (nH)) = χD+nH(F )

3. and the reduced D-twisted Hilbert polynomial of F is

pDH(F ) :=
PD
H (F )

αHdimF (F )
,

where αHdimF (F ) is the multiplicity of F , see section 4.2.

4. F is D-twisted H-(semi)stable if F is pure and for all nontrivial satu-
rated proper subsheaves E ⊂ F one has pDH(E) (≤) pDH(F ).

For D = 0 the twisted notions coincide with the usual notions of Euler
characteristic, (reduced) Hilbert polynomial and (semi)stability, and for a
line bundle L one has χL(F ) = χ(F ⊗ L) by Riemann-Roch. Hence using
lemma 1.4.11 one has the following lemma.

75
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Lemma 6.1.2 Let L be a line bundle. Then F is L-twisted H-(semi)stable
if and only if F ⊗ L is H-(semi)stable.

In order to get more explicit formulae let X be a nonsingular projective
surface over k, KX its canonical divisor, and E and F two two-dimensional
sheaves. By Riemann-Roch one has

χD(E) =
rkE

2
D2 +

(
c1(E)− rkE

2
KX

)
.D + χ(E)

and therefore

χD(E)

rkE
=

1

2
D2 + µD(E)− 1

2
KX .D +

χ(E)

rkE

and
χD(F )

rkF
− χD(E)

rkE
= µD(F )− µD(E) +

χ(F )

rkF
− χ(E)

rkE
.

The reduced D-twisted Hilbert polynomial is

pDH(E) =
χD+nH(E)

H2rkE
,

so one has

H2
(
pDH(F )− pDH(E)

)
= (µH(F )− µH(E))n+ µD(F )− µD(E) +

χ(F )

rkF
− χ(E)

rkE
. (6.1)

6.2 Two-dimensional sheaves on a K3 surface

We restrict further to X being a projective K3 surface. Let v = (v0, v1, v2) ∈
Λ(X) with v0 ≥ 2, H an ample divisor lying on exactly one v-wall W and A
a v-general ample divisor lying in one of the chambers touching H.

De�nition 6.2.1 For a nontrivial saturated subsheaf E ⊂ F of a µH-semistable
sheaf F with v(F ) = v, µH(E) = µH(F ), and

c1(E)

rkE
6= c1(F )

rkF
,

we de�ne the hyperplane{
z ∈ NS(X)Q

∣∣χz(E)

rkE
=
χz(F )

rkF

}
,

and call it a v-miniwall. The connected components of the complement of
all v-miniwalls are called v-minichambers. Both notions are inspired by
Ellingsrud and Göttsche.
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In the following we omit the v-pre�x as it is �xed for the whole section.

Proposition 6.2.2 The number of miniwalls is �nite and the miniwalls are
parallel to W . Let D,D′ ∈ NS(X)Q. Then the set of D-twisted H-semistable
sheaves is the same as the set of D′-twisted H-semistable sheaves if and only
if D and D′ belong to the same v-minichamber or v-miniwall.

Proof. [MW97] proposition 3.5. �

Lemma 6.2.3 Let D be in a minichamber and F a D-twisted H-semistable
sheaf with v(F ) = v. Then for every nontrivial saturated subsheaf E ⊂ F
with pDH(E) = pDH(F ) one has

v(E)

rkE
=
v(F )

rkF
.

Proof. Let E ⊂ F be a nontrivial saturated subsheaf with pDH(E) = pDH(F ).
In particular, one has µH(E) = µH(F ) and

χD(E)

rkE
=
χD(F )

rkF
.

As D is not contained in a miniwall, one has

c1(E)

rkE
=

c1(F )

rkF

and thus also
χ(E)

rkE
=
χ(F )

rkF
.

�

Lemma 6.2.4 Let L be in a minichamber C, L′ ∈ C̄, and F a coherent
sheaf on X with v(F ) = v.

1. If F is L-twisted H-semistable then it is also L′-twisted H-semistable.

2. If F is L′-twisted H-stable then it is also L-twisted H-stable.

Proof. Let E ⊂ F be a nontrivial saturated proper subsheaf. If µH(E) <
µH(F ) then clearly pDH(E) < pDH(F ) for any D ∈ NS(X)Q . So let µH(E) =
µH(F ). We de�ne the map

f : C → Q, D 7→
(

c1(E)

rkE
− c1(F )

rkF

)
.D +

χ(E)

rkE
− χ(F )

rkF
.

If c1(E)
rkE

= c1(F )
rkF

then f is independent of D. So let c1(E)
rkE
6= c1(F )

rkF
. Then f 6= 0

on the whole minichamber C. We distinguish the two cases from above.
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1. Let F be L-twisted H-semistable. Then f < 0 on C, hence f ≤ 0.

2. Let F be L′-twisted H-stable. Then f(L′) < 0, hence f < 0 on an open
subset containing L′, which in turn yields f < 0 on C. �

Proposition 6.2.5 Let L be in a minichamber C, L′ ∈ ∂C, and F a coher-
ent sheaf on X with v(F ) = v. The vector space generated by the wall W
divides NS(X)Q into two open half spaces, one of them containing L − L′.
Choose A in the neighbouring chamber of W contained in the other half
space. Then F is L-twisted H-(semi)stable if and only if it is L′-twisted
H-semistable and for all nontrivial saturated proper subsheaves E ⊂ F with
pL
′

H (E) = pL
′

H (F ) one has µA(E) (≥) µA(F ).

Proof. Let E ⊂ F be a nontrivial saturated proper subsheaf. If one has
µH(E) < µH(F ) then clearly pDH(E) < pDH(F ) for any D ∈ NS(X)Q . So let
µH(E) = µH(F ). Thus

pLH(E)− pLH(F )− (pL
′

H (E)− pL′H (F )) =

(
c1(E)

rkE
− c1(F )

rkF

)
.(L− L′) 1

H2
(6.2)

by equation (6.1). If c1(E)
rkE

= c1(F )
rkF

then

pLH(E)− pLH(F ) = pL
′

H (E)− pL′H (F )

and µA(E) = µA(F ), so we assume

c1(E)

rkE
− c1(F )

rkF
6= 0 ,

which thus de�nes the wall W . In particular, the sign of(
c1(E)

rkE
− c1(F )

rkF

)
.(L− L′) 6= 0

is opposite to the sign of µA(E)− µA(F ).

1. Assume that F is L-twisted H-semistable and thus also L′-twisted H-
semistable by lemma 6.2.4. If furthermore pL

′
H (E) = pL

′
H (F ) then equa-

tion (6.2) yields

pLH(E)− pLH(F ) =

(
c1(E)

rkE
− c1(F )

rkF

)
.(L− L′) 2

H2
,

which is negative, hence µA(E) > µA(F ).
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2. Assume that F is L′-twisted H-semistable, i.e. pL
′

H (E) ≤ pL
′

H (F ). If one
has strict inequality then by the same argument as in lemma 6.2.4 one
has pLH(E) < pLH(F ). So let's assume equality. Then µA(E) ≥ µA(F )
and thus

pLH(E)− pLH(F ) =

(
c1(E)

rkE
− c1(F )

rkF

)
.(L− L′) 2

H2
< 0 .

�

The following statement, at least the part on semistability, is already
known to Matsuki and Wentworth, as it can be found in [MW97] theorem
4.1, part i.

Corollary 6.2.6 Let A be an ample divisor in a chamber touching H and
L ∈ Pic(X) lying on a miniwall. The vector space generated by the wall W
divides NS(X)Q into two open half spaces, one of them containing A. Choose
D in one of the minichambers touching L such that D−L is in the other half
space. Then a coherent sheaf F with v(F ) = v is D-twisted H-(semi)stable
if and only if F ⊗ L is (H,A)-(semi)stable.

Proof. This follows from proposition 6.2.5, lemma 6.1.2, the characterisation
in proposition 4.2.15 and the explicit (semi)stability inequalitites in lemma
5.1.1. �

If in the situation of the corollary D can be chosen to be the �rst Chern
class of a line bundle L′ then one has an isomorphism

MH,A(v. exp(L)) ∼= MH(v. exp(L′)) .

In general MH,A(v. exp(L)) can be seen as a moduli space for D-twisted H-
semistable sheaves with Mukai vector v. For more details on this see [MW97].
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