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Salvador Dali, Corpus Hypercubus, 1954

In algebraic geometry, it is always nice to print some pictures of the varmtiess working
with. As you will see, the main geometric objects of our studies are Calabi-&aeties of
dimension three, and it is not possible to print pictures of these. The dimesnsional cube
in four-dimensional space is not a Calabi-Yau threefold, but at leastsdansegeometric
object of dimension three. Therefore, please see Dali's wonderfuirpiabove as a modest
approach to illustrate this thesis.






Introduction

Let X be a projective variety defined over a finite fi&lgl whereg is a power of a prime.
For each finite algebraic extensiBp. of F,, the number of points oX with coordinates in
Fqn, noted by# X (F,» ), is obviously finite. The numbeg$ X (F,~ ) are of greatimportance
in studying arithmetical properties of. They are encoded in treeta functiorof X over
IF,, which is defined as the formal power series

n

Z(X/F,,T) := exp (Z #X(IE‘qn)Tn) .

n=1

In 1949, Andre Weil §7] stated a series of conjectures concerning the zeta function of a
variety over a finite field, th&Veil conjectures As a power series, it has coefficientszn
and one of Weil’s conjectures is that it is an elemen@¢f"). This was proven by Dwork
[26] in 1960, using techniques gf-adic analysis.

We are interested in the actual computation of the zeta function. Supposthatowe are
not dealing with a single variety, but with a one-parameter familyX — P! of varieties
over a finite fieldF,. For each parameter valug € P'(F,), the fibreX;, has a zeta func-
tion Z(X,,/F,, T). The question that arises now ldow does the zeta function vary as the
parametert, varies inP!(F,)?

There exist several approaches to answer this question. One elpjsdle deformation al-
gorithm of A. Lauder 46]. This algorithm was inspired by Dwork’s proof of the functional
equation of the zeta function of a smooth hypersurfac28hdnd [29]. Lauder’s algorithm
computes the zeta functions of the fibres of a one-parameter family of smoméctive
hypersurfaces that are deformations of a so-caliagonalhypersurface. To compute the
zeta function, one computes the characteristic polynomial of the Frobemdasm®rphism

on theDwork cohomologgpaces. There is an explicit formula due to Dwork for the Frobe-
nius matrix in a monomial basis of a diagonal hypersurface on a Dworkwology space.
Dwork showed how the Picard-Fuchs equation of the family of hypeasasf can be ap-
plied to compute the Frobenius matrix of a fibre of the family as a deformation of the
Frobenius matrix of the diagonal hypersurface. This is the crucial ideent the deforma-
tion algorithm. To perform these steps, one has to compute a monomial basifdnie
cohomology spaces and needs the explicit equation defining the family foettessary
reduction steps modulo the Jacobian ideal.

The author of this thesis showed that Lauder’s algorithm can be extdndadhilies of
hypersurfaces in weighted projective space that are deformatiofasgafrehl hypersurfaces
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in her diploma thesis, and implemented this algorithm in MAGMA, & [

In 2000, P. Candelas, X. de la Ossa and F. Rodriguez Villeslgrived an amazing for-
mula for the number of points on the fibres of the one-parameter family of gtlnéefolds
in P* defined by

5
F(X,9) =) XP — 5 X1 X2 X3 X4 X5
=1
in terms of a Frobenius basis of solutions to the Picard-Fuchs equation. Let

v(v) = #{X € F), F(X,¢) = 0},

and leth = 1/(5¢)°. Then,v(y) can be expressed in terms of the truncated (up to degree
p — 1) power series partﬁi(p_l) in the Frobenius basis of solutions as

v(y) = f(gpil)()\pél) + (1319) f{(pfl)()\pél) + ... mod p°.
Thus, the number of points on a fibre modpfocan be computed explicitly by the data
given by the Picard-Fuchs operator.

It was Dwork who in 1958 introduced a method to compute the complete zetioiusmof

the fibers of the Legendre family of elliptic curves out of the data of a difféal operator

(up to a signe), without any reference to the defining equation. Namely, he derived a
formula to compute the roots of the numerator of the zeta function of a smoadihaoy
fibre from a period of the family, the holomorphic solutidn(z) aroundz = 0 to the
Picard-Fuchs equation

d? d 1
The solution®(z) is given by the hypergeometric functied’ (1/2,1/2,1;z). Dwork
proved that the zeta function of a smooth ordinary fibfg, ¢, € I, of the Legendre
family is then given by

(1 =71, 7)1 = p/rt,T)
1-T)A-pT)

Z(Xto/FPa T) =
wherer,, is thep—adic unit given by

179 Po(2)
— (_1)p—1)/2 20\<)
Tty = ( 1) P q)[)(Zp) ‘z:t

for a Teichmdiller liftingt € Z, of ¢;. The only ingredient for the computation of the
zeta function which isnot determined by the differential operator is the constant
(—1)®=1D/2 which has to be derived by geometric considerations. Thus, Dwonkdfou
a method to compute the zeta function of a smooth ordinary fibre of the Legyfardily up
to a twist by a character. The numerator of the zeta function is the chastictpolynomial
of the Frobenius endomorphism on the first conomology group oy cohomologyf



the fibre. Note that it is a crucial ingredient to Dwork’s method that the Bi€aichs oper-
ator of the Legendre family has a point of maximally unipotent monodronay-ab.

An elliptic curve is a special case ofGalabi-Yau manifoldnamely a Calabi-Yau manifold
of dimension one. Now the question arises if one can perform similar calawatidigher
dimensions. What, for example, if we consider a one-parameter familyX — S of
smooth Calabi-Yau threefolds defined o@? This family has an integral model ové&r
and we assume that the reduction of the famil¥ jas again a family of smooth Calabi-Yau
threefoldsmy : Xo — Sp. Letty € Sp and letX,, denote the fibre ovey. Is it possible to
compute the characteristic polynomial of the relative Frobenius endomorphisich we
call theFrobenius polynomialon the third crystalline cohomolog? . (X;,) out of the
data given by a Picard-Fuchs operator?

First of all, let us assume that the rankf, ,(X/S) is four. Then, the Picard-Fuchs oper-
ator of the family is a linear differential operator of degree four. Assuragdtr = 0, the
monodromy is maximally unipotent. Then the differential operator has specipépies
which are summarized in the definition ofGY (4)-operator In the literature, there exists
no definitive definition of CY-differential operators at the moment, but wkspecify ex-
plicitly what we mean by a CY-differential operator.

If the rank of H},,(X/9) is not four, assume that there exists a rank-four submatitile
of H},,(X(S) which is stable under the Gauss-Manin connection. If the monodromy at
z = 0 is maximally unipotent, the Picard-Fuchs equation, satisfied by a holomorpéée thr
form generating\/ as a cyclic vector, is then also a CY(4)-operator.

This leads us to the main problem of this thesis, which is the followkag:the fibresX;,
of a family of Calabi-Yau threefolds defined oW is it possible to give an algorithm to
compute the characteristic polynomial of the relative Frobenius endonmary the Frobe-
nius polynomial (maybe up to a sigi, on (a rank four submodulg/;, of) H2 . (X,,) out
of the data given by a CY(4)-differential operator?

Consider the situation from—adic point of view, and let : X — S be a family defined
over the ring of integers of a finite extensifinof Q,,. Assume that the morphismis proper
and smooth, with geometrically connected fibres. If the relative de Rhamnuubgy
groups ' '

Hpp(X/S) = R'm.0% g

are locally fredd g—modules, then, by a result of Berthel®},[for i > 0, HER(X/S) with
its Gauss-Manin connection is &h-crystalon S.

If the family 7 : X — S is the lifting of a familymr, : Xg — Sy defined over a finite field
extensionk of F), with ¢ := p" elements, then fafy € .Sy, the zeta function of the fibr,,
can be expressed in terms of the characteristic polynomials of the absabtnkrsF as

QdithO
Z(Xyp/k,T) = [[ det(1 = TF"|Hpp(Xe)),
i=0
where forty € Sy, t denotes the Teichmdller lifting € S. For genericg, the F—crystal
H3} ,(X,) is anordinary CY3-crystal This implies that if the rank off?, ,(X/S) is four,



the Frobenius polynomial on_’Z)R(Xt) has one reciprocal—adic root of valuatior, r, 2r
and3r, and is determined uniquely by the reciprocal roats s;, of valuation0 andr.
Since it is gp—adic unit,r, is called theunit root of the Frobenius polynomial. It was our
goal to derive formulas to compuig, ands;, out of the data given by the Picard-Fuchs
operator onH 3, ,(X/9).

One problem that arises if one wants to compute the Frobenius polynomidibwéaX;,
explicitly is the problem ofp—adic analytic continuatiorto the boundary of the—adic
unit disc. Namely, to compute the unit root, one has to evaluate a quotientfofrthe

fo(2)
fo(2P)

at a Teichmdller point, wher¢)(z) is the holomorphic solution to the CY(4)-differential
equation. This quotient is analytic on the opgenadic unit disc. Dwork27] constructed
an explicit analytic continuation for quotients of this type, provided that tledfictents of
fo satisfy what we call th®work congruences

Now, a second important question arises, name€lgin we prove the Dwork congruences
for the coefficients of the power series solutions of CY (4)-differenteiadprs?

For the coefficients of the power series solutions ofithbypergeometric CY(4)-operators,
Dwork proved these congruences #7]. But for the majority of the CY(4)-operators, no
proof of these congruences is known.

It turns out that many CY (4)-operators are Picard-Fuchs operattéamilies of Calabi-Yau
threefolds defined by aurent-polynomials The holomorphic solutio®, aroundz = 0
to the CY(4)- differential equation can be expressed in terms of a Lapodynomial f,
namely by

oo
®o(z) = > _["oz",
n=0
where[ "], denotes the constant term ffi. We used this fact to give a proof of a modified
version of the Dwork congruences for many examples.

This thesis is structured in the following way:

In Chapter 1 we give a short overview over the Weil conjectures and introduce some
cohomology theories which were developed to provide a proof of thegeatares, like
{—adic cohomologynd crystalline cohomologyWe review the formulas to compute the
zeta function of a varietX' defined over a finite field in terms of the absolute Frobenius
endomorphism in crystalline angjid cohomology

In Chapter 2 we review the theory of'—crystals. This theory provides the background
for our computations. We are especially interested in ordinary CY3-dsyatal general
autodual crystals, since these objects appear as the relative crystalimaalogy groups
of families of Calabi-Yau varieties.

In Chapter 3 we give the definition of a Calabi-Yau differential operator. We review
the construction of the differential module defined by a Calabi-Yau difteakoperator,



and quote some of the properties of this differential module. This chapt¢atins our first
result; we derive a formula for the Frobenius polynomial on an ordin&$-€rystal with
connection defined by a CY(4)-differential operator.

In Chapter 4 we review the fact that the non-ordinary locus ofancrystal, the set of
zeros of theHasse-invariantcan be expressed in terms of the holomorphic solution to the
Picard-Fuchs equation if the coefficients of this solution satisfyDiverk-congruences

In Chapter 5 we review Dwork’s construction of an analytic continuation of a func-
tion of the type®((z)/®y(zP) to the boundary of the—adic unit disc, provided that the
coefficients of the power serids, satisfy the Dwork congruences. Applying Dwork’s con-
struction, we derive explicit formulas to compute two reciprocal roots ofRtabenius
polynomial on an ordinary CY3-crystal of radk and hence to compute the whole Frobe-
nius polynomial. These formulas involve the holomorphic solution to the CYiffrential
eqguation defining the connection of the CY3-crystal, and the holomorphitieoto a
CY(5)-differential equation which is the second exterior product of @Yg4)-equation.
We give estimates of the requirgd-adic precision to recover the Frobenius polynomial
correctly out of the reciprocal roots. Furthermore, we present amitiigh to compute the
Frobenius polynomial out of only one of the two reciprocal roots comsitiabove.

In Chapter 6 we introduce a special class of CY(4)-diffential operators which are s
calledHadamard -productsWe compute Frobenius polynomials for many of these opera-
tors; the results of our computations are documented in the appendix.

In Chapter 7 we review the basics of the theory ofodular formsand describe why
the Frobenius polynomial is expected to factorize in a special way at thi®lkbpoints of
the CY(4)-operator. We confirm this expectation by computing the Frobgmlynomial in
rational conifold points of several CY(4)-operators. Some of theséladamard-products,
as described in the previous chapter, and some are not. In each ofsé® wa could
identify modular forms of weight four. The results are listed in tables, gafteotables can
be found in the appendix.

In Chapter 8 we derive a weaker congruence property D3 from the Dwork camgpie
D2. In case that the holomorphic soluti®g to a Calabi-Yau differential operator is defined
by the constant terms of the powers of a Laurent-polynomial whose Newalygon con-
tains the origin as unique interior lattice point, we prove that the coefficienty shtisfy
the congruence D3.

In Chapter 9 we describe an experimental approach to compute the Frobenius poly-
nomial directly as the characteristic polynomial of some matrix, which may diften f
the Frobenius matrix by some parameters. This approach worked well iraslieeof hy-
pergeometric CY(4)-differential operators. We observed that thbdriaos polynomial is
independent of the parameters mentioned above, and also observedrtiginteresting
congruences involving the non-holomorphic solutions to the CY(4)-@iffeal equation
hold.

In Chapter 10 we prove that the non-holomorphic solutions to the CY(4)-differential
eqguation, which contain logarithmic terms, can be used to compute the unitfrdo o
Frobenius polynomial, too.

In Chapter 11we describe an alternative appoach to construct an analytic continuation
of a function of the typeb(z)/®(2P) to the boundary of the—adic unit disc due to Chris-
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tol. We prove that this approach can be applied if the coefficients of thempssviesd(z)
satisfy the Dwork congruences, and compare it to Dwork’s construction

Now, we describe the main results of this thesis in some more detail.

Our first result, see chapter 3, is the developement of an algorithm to ¢enmguFrobe-
nius polynomial for ordinary rank four CY3-crystald. Letn : X — S be a family of
smooth Calabi-Yau threefolds defined o@&kvith a flat model ovef such that the reduc-
tion m : Xo — Sp to IF,, is again a family of smooth Calabi-Yau threefolds. Assume that
there exists a rank submoduleM of H3, ,(X/S) with Picard-Fuchs operator a CY(4)-
differential operator”. Letag € Sy and leta € Z, be a Teichmdiller lifting ofv. If the
CY3-crystalM,, C H3 .. (Xq,) is ordinary, the Frobenius polynomial dd,, is given by

P = pST 4 Q0o D°T> + bagpT? + o, T + 1

and is uniquely determined by a reciprocal regf which is ap—adic unit and another
reciprocal roops,,, of p—adic valuationl, since the four reciprocal—adic roots of? are
given byra,, PSag, P°/Sa, @aNdp? /r,. The rootsr,, andps,, are both eigenvalues of the
Frobenius endomorphism. The-adic unitr,, is the unit root of thet’—crystalM,,,, and
we derive the formula

fo(z)

ay — e’;‘fo(zp) |z:0u

wheree = +1 and f; is the holomorphic solution around= 0 to the differential equation
Pf = 0. To derive a formula for the—adic units,,, we use the fact that the eigenvalues
of the Frobenius endomorphism on the second exterior produf,gfare products of the
eigenvalues of the Frobenius endomorphismidg,. Let () denote the second exterior
product of the differential operatd?, and letgy denote the holomorphic solution around
z = 0 to the differential equatio®g = 0. Then, we prove that,, is given byr, /7,
wherer,, can be computed as

r 90(2)
2 go(zP)
During the considerations in chapter 3, we see that the Frobenius ma{fi depends on
three parameteis, 3, ~v. But our formulas for the unit root and the rootef adic valuation
one prove indirectly that the Frobenius polynomial itselhdgependentf these parameters.
We published this ing1].

If the fibre X, is not smooth but has an ordinary double point, the Frobenius polyno-
mial on the “limit module”}/,, is expected to factorize in two factors of degree one and
one factor of degre®, which is given by(p3T? — a,T + 1). The factor(p3T — a,T + 1) is
expected to be the Frobenius polynomial B, (X, ), whereX,, is a rigid Calabi-Yau
threefold. Ifp varies, by thenodularity conjecture¢he coefficients:, are the coefficients of
a weight four modular form. We could compute these coefficients for mar{y¢)cdperators
and identified the corresponding modular forms (see chapter 7).

Our next result is of a completely different character; for the proefowly applied very
elementary methods. Létbe a Laurent polynomial such tHdewton polyhedroof f has0

|z:a-
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as unique interior lattice point. This is always the case if the Newton polyhesireflexive.
As described before, tiendamental periodof f is given by®o(t) = > [ f"]ot™. It
can be realized as the period of a holomorphic differential form on the hgpersurface
{1 —-tf(X) =0}, and satisfies a Picard-Fuchs equation. There is a list of CY(4)-tmpera
that arise as Picard-Fuchs operators in this way, which we print in trendpp We prove
that the coefficients ob(t) satisfy a congruence property which can be derived from the
Dwork congruences, but is slightly weaker (see chapter 8). Note tagiublished this
resultin p2].

Part of our next result, which was inspired by communications with P. Casidad X.
de la Ossa, is only a conjecture, but our numerous computations confimbeigeving that
this conjecture holds true. Furthermore, the observations we made arasjoiteshing. We
use an experimental approach to compute the Frobenius polynomial direttlg eharac-
teristic polynomial of some matrix which might differ from the Frobenius matrix cape
parameters. Let therefore be a hypergeometric CY(4)-operator. Inspired by the theory of
Dwork [27], we know that a Frobenius matrit,;(z) on the CY3-crystal with connection
defined byP can be described in the opgr-adic unit disc by

P’ p22a p3 v
_ _ 0 a [

3 1 _ py—1 p p
0 0 0 1

whereB(z) is afundamental solution matriand the parameters 3, liein Z,, 8 = a?/2.
The results of chapter 3 show indirectly that the characteristic polynomitdeofmatrix
Ay (z) is independent of the choice of the parameters, . We try to give a direct ex-
planation of this fact by considering the coefficients of the three parasiétethe case of
CY(2)-operators, where the situation is similar, we prove directly that thbdfius poly-
nomial is indeed independent of the occuring parameter. We describgbeitanethod
to compute the Frobenius polynomial as the characteristic polynomial of the g

at a Teichmiller point (see chapter 9). Based on our computations, we thraftallow-
ing observation. Namely, that at a Teichmuller paintthe unit root can be computed by
the non-holomorphic solutions t8f = 0 which contain logarithms, and not only by the
holomorphic solutioryy(z). If the power serieg; (z), f2(z), f3(z) are thenon-logarithmic
parts of these solutions, it turns out that we have

G N i N £ A () B i (<)

@ e TP @ TP W

This last observation inspired us to work out that the unit root at a Teittbnmidint can
be expressed in terms of the non-holomorphic solutions. Our method is $iwaigdrd; we
construct fixed points of the Frobenius map involving the power s¢iiefs ans f3, and
use these to derive our new formulas to compute the unit root in a Teichmdlrar @he
crucial observation here is that some of the newly constructed functierfixad points of
the same contraction mapping as functions already appearing in the ptbeboém 2.3.1,

mod p°.
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which leads us to the canonical formula for the unit root which only invotliesholomor-
phic solution toP f = 0.

Mainz, January 2010 Kira Verena Samol
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Chapter 1

The Well conjectures and
p—adic cohomology

In this chapter, we give a short review of the Weil conjectures and otti®mology
theories that were developed to give a proof of these conjectures. Wdea yery brief
sketch of the properties éf-adic, crystalline and rigid conomology.

1.1 The zeta function and the Welil conjectures

Let p be a prime and lek = F, whereq = p®. Let X/k be a smooth, projective, geo-
metrically connected scheme. For each finite algebraic extekgiof &£ of degreen, one
wants to know the numbe# X (k,,) of k,,—rational points ofX. The values of the numbers
#X (k,,) are summarized in théeta functiorof X /&, which is given by

Z(X/k,T) := exp <Z #X(kn)j;:> .
n=1

For X/k a smooth projective curve of genys Weil [57] proved that the Zeta function
Z(X/k,T) satisfies the following properties:

1. Z(X/k,T) is arational function irf” with integral coefficients.

2. The functional equatio# (X /k,1/qT) = ¢*~9T%729Z(X /k,T) holds.
3. The only poles ofZ (X /k,T') arel and1/q; both with multiplicity 1.

4. The complex roots of (X /k, T) satisfy|T'| = ,/q.

This generalizes to the following statements for smooth projective varigtiésof dimen-
siond, called theWeil conjectures:
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1. Rationality: Z(X/k,T) is a rational function.

2. Functional equation:Z (X /k,1/(¢%T)) = +£q**/?TFZ(X/k,T), whereE is the
self-intersection number of the diagoralof X x X.

3. Riemann hypothesi®©ne can write

Pi(T)...Pog_1(T)
Po(T)...Poa(T)

Z(X/k,T) =

wherePy(T) = 1 — T, Pyy(T) = (1 — ¢T) and foreach <i <2d—1, P,(T)isa
polynomial with integer coefficients which can be written as

b;
B(T) = [[(1 = ai;T), with |as;| = ¢"/*.
j=1

4. Betti numbersif X is a reduction modulp of a non-singular variety” defined over
a number field embedded {0, then the degree af;(7") is theith Betti number of
the space of complex points &f.

For an arbitrary smooth projective variefy, Dwork [26] proved that the Zeta function
Z(X/k,T) is arational function irQ(T") by applying "elementary” methods from-adic
analysis.

For a smooth projective variety(/k, Weil already remarked irb[/] that Z(X/k,T) is a

rational function if one assumes that there exists a cohomology theoraffi@ties over a
finite field, taking values in finite dimensional vector spaces over a field afacheristic
zero, in which one has a Lefschetz fixed point formula.

The necessary conditions for such a cohomology theory were formalisgel the name
Weil cohomologysee #4]. The construction of such a cohomology theory was one in-
centive for Grothendieck to develope the theory of schemes, and inwartio study
their étale topology. For each prime numigeet p, the /—adic cohomology developed
by Grothendieck and his students is a Weil cohomology.

1.2 Weil conjectures and/- adic cohomology

Let & be an algebraic closure &f For a smooth projective geometrically connected scheme
X/k of dimensiond, let F;, denote the geometric Frobenius Xf= X xk, for 0 <i < 2d,
one can define the polynomials

Py = det(1 — FyT|Hey (X, Qq)) € Q[T]. (1.1)
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For example Py (T) = 1 — T and Poy(T) = 1 — ¢T. Grothendieck proved the Lefschetz
trace formula for étale cohomology i8%], which implies that

Py(T)...Pog_1(T)

Z(X/k,T) = Po(T)...Py(T) '

and thus the rationality of the Zeta function. Thumctional equatioris a consequence of
the Poincaré duality. Delignd.§] proved that the polynomial®;(7) are polynomials with
coefficients inZ, and thus independent 6f# p, the Riemann hypothesend furthermore
that thea,; are/—adic units for/ # p.

In the /—adic setting, the following natural question remains opéfinat are thep—adic
valuations of theu;;?

1.3 Crystalline cohomology

The following idea is due to Grothendieck. Assume thé a finite field of characteristic
p > 0, and writelV = W (k) for the ring of Witt vectors ok. Suppose thak/k lifts to a
smooth proper schen&/W, which means that there exists a smooth proper schi&fhié
such that

X = Z X gpecw) Spec(k).

Now one can define the de Rham complexZg#V” and take its hypercohomology:
Hiyp(Z/W) = H (Z,9% ).

Grothendieck 34] conjectured that these cohomology groups are independent of tlemcho
of the lifting Z/W of X /k.

Let W,, := W/p"W. Theith crystalline cohomology of a schem& k is defined to be the
inverse limit _ '
H , (X/W):=1lim H(X/W,),

where . ‘
Hl(X/Wn) = HZ((X/Wn)crisv OX/Wn)

is the cohomology of the crystalline site (s& [36]) of X /W, with values in the sheaf of

rngs O x,w, -

If X/k is the reduction of a smooth sche@#giV,,, then we have a canonical isomorphism
He,io(X/ W) = Hpp(Z) W)

This is a corollary of Berthelot's theorem9]| chapter V, theorem 2.3.2.]. By passing to
the limit, one obtains for a schendé/k, which is the reduction of a smooth proper scheme
Z /W, a canonical isomorphism

Hi . (X/W) = HLo(Z/W).

cris
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1.4 Crystalline cohomology and Frobenius

Assume that = [F, whereq = p® for a primep, letWW = W (k) and K be the field of frac-
tions of W. Let X/k be smooth and proper, and tedenote the Frobenius endomorphism
onk, lifting to an endomorphismr on .

The absolute Frobeniugndomorphism¥ : X — X (which is the identity on the topo-
logical space, and thgth power map on the structure shéaf) induces ar—linear au-
tomorphism ofH}, (X/W) @w K, also denoted by". The mapF; := F* is then an
automorphism of{ , (X/W) @w K.

If X/k is furthermore of pure dimensiaf) then theH! . .(X/W) @w K are finite dimen-
sional K —vector spaces and zero fo# [0, 2d).

Furthermore X — H! ., (X/W) ®w K is a Weil cohomology with a Poincaré duality

betweenH*® and H2?—%, a Kiinneth formula and a Lefschetz trace formula.

By means of crystalline cohomology, Berthelot proved that the Zeta fungtiofy k, T') is
a rational function given by the formula

2d
Z(X/k,T) = Hdet(l — FqT‘Héris(X/W) QW K)(_I)H_l.
=0

A priori, one hasP,(T) = det(1 — F,T|H",(X/W) @w K) € K[T], but for X/k
smooth and projective, the results of Deligdé][allowed Katz and Messingig] to prove
that P, (7") is identical with the polynomial obtained lfy-adic cohomology{ # p).

In particular, the crystalline ang-adic Betti numbers coincide:

bi = dimg, H,(X ® k, Q) = dimg H.,.,((X/W) @w K.

1S (

1.5 Rigid cohomology

We refer the reader t8P] for a very short introduction to rigid cohomology. For a proper
introduction, seeld], [11].

Therigid cohomologydue to Berthelot provides a Weil conomology theory with satisfactory
functorial properties for arbitrary varieties. Unlike in the case of ctiyseacohomology,
the varieties may also be noncomplete or singular. Just as crystalline colygyrinlmany
cases like smooth projective varieties, the rigid cohomology of a varietyfowveif, coin-
cides with the de Rham cohomology of a lift to characteristic zero.

Let¢ = p® and letK'/Q, be a finite algebraic extension with residue figle= F,. For a
variety X /k of dimensiond, the rigid cohomology
Hi

rig

(X)foro<i<2d
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is a K —vector space. I is smooth, thed{jig(X) is finite dimensional for all.

Like for singular or étale cohomology, there is also a cohomology wgtnpact support
denoted byH, .(X), which coincides withH, (X) if X is proper.

The g—power Frobenius endomorphism dh induces ak —linear endomorphisn¥’ on
rigid conomology. The Zeta function of is then given by

2d
Z(X/k, T) = H det(1 — TF‘H;ilg,C(X))(_l)
i=0
If X/k is smooth, letX denote a smootk) x —scheme with special fibré&'. Then, the
generic fibreX g is a smooth/ —variety. If there is an open immersiéa — Y of O —
schemes such thHtis proper ove i and the complemerst\ X is a smooth relative divisor
with normal crossings, then

41

)
Hrig

(X) = Hhp(Xg) for 1 < i < 2d.

Thus, as in the case of crystalline cohomology, in the smooth case rigid ctsgpnoan be
computed in terms of the de Rham cohomology of a liftkaf
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Chapter 2

F-crystals

Letw : X — S be a proper and smooth morphism with geometrically connected fibres
defined over the ring of intege#¥” of a finite extensionk of Q,. If the relative de Rham
cohomology groupsi}, ,(X/S) are locally free9 s-modules, they have the structure of an
F—crystal. In this chapter, we provide the definitions and propertids-agrystals that we

will need for our considerations. Most of the time, we follow the presentatidiKatz 41]

and Stienstrag4]. The only statement which is not mentioned there is proposition 2.4.1,
we consider the second exterior product of ancrystal. We will meet second exterior
products off’—crystals when we derive formulas for the roots of the Frobenius polynomia
in chapter 3.

2.1 Introduction to F'— Crystals

Let k be a perfect field of characteristic> 0, let W := W (k) be the ring of Witt vectors

of k and letK be the field of fractions of¥’. ThenW is a local ring with maximal ideal
pW and residue field:, and K has characteristic 0. W is complete and separated for the
p—adic topology /W = lgn W/p"™W. Leto denote the absolute Frobenius automorphism

on k, which lifts canonically to an automorphism Bf, also denoted by
Following [59], we define

Definition 2.1.1 1. AnF—crystal(H, F') overW is a freelW —moduleH of finite rank
with a o —linear endomorphism

F:H—H

such thatF" ® Q, : H ® Q, — H ® Q, is an isomorphism. I itself is an
isomorphism, we call{ a unit-root F'—crystal.

2. A HodgeF' —crystal overWW is an F'—crystal H equipped with a filtration by free
W — submodules

H=Fil°H>FI'H> ... oFI" 'H>FIVH =0
(called the Hodge filtration oiff) which satisfies”(Fil' H) c p' H for all 4.
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Now, we come to the variation df'—crystals. Unlike #1] and [54], we restrict our con-
siderations to the case of one parametewrhich will be sufficient for our purpose. Let
be the ringW [z][g(z) '], whereg is a polynomial inW[z] not divisible byp, and let4,,
be the ring4/p"t1A. By A, := lim A/p" " A, we denote the—adic completion ofA.
On the characteristig ring Ay, the Frobenius endomorphism is givendfyr) = «? for all
x € Ap.

Notation 2.1.1 If H is an A,,— module,B is a W—module andf : A, — Bisa
W —morphism, we write

f*H = By ®a, H,
where By is B viewed as anB — A, —bimodule with left structure via the identity map
id : B — B and right structure vigf : A, — B.

This means that far € A, andh € H, we havel ® ah = f(a) ® h. The mapf* : H —
f*H,givenbyf*(h) =1® his f—linear,

ff(arhy + azhy) = 1® (a1hy + aghe) =1 ® a1hy + 1 ® azhs
= fla1) ® hi + f(a2) @ ha = f(a1) f*(h1) + f(a2) f*(ha).

Definition 2.1.2 Let H be a finitely generated freé,,—module. A connection
V: H—>QAOC/W®AOOH

is calledp—adically topologically nilpotent if

lim V(-Lym — o

m—oo dz
in the p—adic topology onEndyy (H).

Now let H be a finitely generated .,—module with ap—adically topologically nilpotent
connection, and lef andg be twolW —homomaorphismg, g : A, — B which are congru-
ent modulo a divided power ideal of., (for example the ide&lp)). Then the connection
provides an isomorphism (se&d] for a proof)

x(f,9): f"H — g"H,

given by
(f(z) —g9(z)" . o d

I g (V () h).

X(f ) f(h) =" P

m>0

There are many different ring endomorphisgef A, that restrict tar on W and reduce
to o on Ag modulop. Let¢ : A, — Ao be such dift of Frobenius

Definition 2.1.3 An F'—crystal(H, V, F(¢)) over A is afinitely generated fred.,—module
H with an integrable angh—adically nilpotent connection

V:HHQAOO/W(IC) ®AH
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such that for every lif : A, — A, of Frobenius, there exists a homomorphisnigf —
modules

such that the square

v
H Qpoywimy ©H

F(¢)¢* i¢®F(¢)¢*
H QL ywi @ H

is commutative, and such that for every pair) : A, — Ao Of lifts of Frobenius, we
have

F() o x(9,¢) = F(o).
Moreover, we claim that'(¢) ® Q, : ¢*H ® Q, — H ® Q, is an isomorphism. I'(¢)
itself is an isomorphism, we call a unit-root crystal.

Often, especially in the next chapter, to simplify the notation, weFset F(¢)¢*. Let
S := Spec(A) andSy = Spec(Ap). By S, we denoteéSpec( A ), thep—adic completion
of S.

Let &’ be a perfect field extension &fand letey : Ay — k' be thek—morphism given by
eo(z) = ap, whereag € k'. Theney defines a&’—valued point ofS.

Let ¢ be a lift of Frobenius, and let, € W (k') be the Teichmiiller lifting ofx corre-
sponding tog. Then theW—homomorphisme, : A, — W (k') given byey(z) = ay
defines dV (k")—valued point ofS..

Definition 2.1.4 The F'—crystal onW (k') induced bye,, is the F—crystal
(egH, e (F(9)¢")),
wheree;(F(ng)gb*) is thes —linear map induced by the commutativity of the diagram below.

F *
I (¢)¢ I

ie"; ie;
*(F *
e H @) e H

Let ¢ and be two lifts of Frobenius and lefy : Ay — k' be ak—morphism. Then the
F—crystals induced by, ande,, are explicitly isomorphic:

e’ (F *
o < (F(#)6) n
%lx(e(ﬁ,ew) %lx(%vew)
e* (F *
o < (F(6)6") o
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Thus, for evenk’—valued point ofS, given byeg, we obtain anF'—crystal(e*H, e*F') on
W (k'), which is independent of the chosen lift of Frobenius. We call fhiscrystal the
F—crystalinduced byey.

2.2 F-crystalsonW|[[z — «]

This section consists of two propositions concernfftgcrystals oveiV [[z — a]]. The first
proposition 2.2.1 can be found id]], but we added some details to the proof. We did not
find the second proposition 2.2.2 explicitly in the literature, but we needed itderstand
the proof of theorem 2.3.1.

Notation 2.2.1 By W << z — a >>, we denote the ring of convergent divided power
series oveilV, i.e. the ring of the formal expressions

m

z
E Gm K
m!

m>0
where|a,,|, — 0 for m — occ.

The next proposition, which is due to Katz, relatéscrystals oveiV [[z—«a]] to F'—crystals
overlW << z —a >>.

Proposition 2.2.1 (41], Proposition 3.1.) Let(H, V, F') be anF'—crystal oveiV [[z—a/].
1. The moduldV << 2z — a >> ®H admits a basis of horizontal sections.

2. Every horizontal section 61 << z — a >> ®H fixed byF extends to a horizontal
section ofH (a section defined ové¥/ [z — a]]).

Proof: 1. The twolW —homomorphismg, g : W[z —a]] = W << z—a >>, wheref is
the natural inclusion andis the evaluatior ata, e(z — ) = 0, followed by the inclusion
of WinW << z—a >>, are congruent modulo the idgal— o). Thus, sincéV << z—

a >> is p—adically completex(f, g) is an isomorphism betwedl << z —a >> ®QH
with the induced connectiow and the modulél << z —«a >> @ e* H with connection
d/d(z — a) ® 1. Any basis{h;} of e*H gives a horizontal (w.r.td/d(z — o) ® 1) basis
{1®h;} of W << 2z —a >> @we*H. The mapx(f,g) maps these horizontal sections
to horizontal sections with regard ¥: For anyh € H, we have

‘o N ) = Y EEZ pgagate -y

m>0

= 3 BV G age - oy,

m>0
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where the last equality holds singevas just the natural inclusion &F [[z — «]] in W <<
z —a >>. We want to prove thaV (d/d(z — «))(x(g, f)(¢*(h))) = 0 foranyh € H.
Note that form > 1,

V(d/d(z — a)) (WV(d/d(z - a))mh>
= mwd/d(z —a))™h + (Z_m?)mV(d/d(z — )™ .
This implies that
V(d/d(z = a))(x(g, f)(g"(h)))
= V(d/d(z— a))h
+ m§>:1(—1)m (%; f):;!l V(d/d(z — a))"h + (Z_m?)mV(d/d(z = a))m+1h>
_—

since the sum in the middle is a telescoping sum. Thus, for any pagiof H, the image
of the basis{g*h;} = {1 ® h;} underx(g, f) is a horizontal basis of*H = W <<
z—a>>QH.

2. Choose a basis of the fré€[[z — a|]—module H, and letA, denote the matrix of
F(¢): ¢*H — H. Lety be a column vector with entries I << z — o >> satisfying

Apop(y) =
Then, for any integem > 1, we have
Agp(Ag)d*(Ag)...0™ " (Ag)d™ (y) = .

¢™(y) is congruent ta"™ (y(«)) modulo(z — «)P™, and thus we get & — «)— adic limit
formula fory, namely

y = lim Asd(A5)0%(Ag). 0™ (Ag)o™ (y(c)),

which shows thay has entries itV [[z — «]]. O

Proposition 2.2.2 Lete : W{[z — a]] — W be theW —homomorphism given by(z —
a) = 0. Let(H,V,F) be an F'—crystal overiWW[[z — «]] and lete*h € e*H satisfy

F(e*h) = e*h (i.e. e*h is a fixed point o&*F). Letg : W — W << z — a >> and
f: W[z —a]] = W << z— a >> be the natural inclusions dV and W[[z — «]] in
W << z—a >>. Thenthe sectiog(goe, f)(g*e*h) of the F—crystal(WW << z—a >>
®H,V, F)is a fixed point of F:

F(x(goe, f)(g"e"h)) = x(goe, f)(g"e"h).
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Proof: By the same argument as in the proof abowg; o ¢, f) is an isomorphism. Since
e*F(e*h) = e*(F(h)), it follows that

x(goe f)(g e’ (F(h)) = x(goe, f)(g°e"h)
Hence, it remains to prove that
x(goe f)(g e"(F(h)) = F(x(goe, f)(g e h)). (2.1)
Iterating the equality

V(d/d(z —a))o F = p(z —a)’"'F o Vd/d(z — «)

leads to
= m! m .
V(d/d(z—a))oF = Zﬁ(z a3 5)...<5>FOV(d/d(z—a)) , (2.2)
k=1 " A g 1 k
where
A = {((11, 7ak)7a1 +...+a,=m,p>a; > 1}
But since

for the whole sum it follows that

Wgoe N e E®) = 30" E= D Gasac - a)mEm)

and the proposition follows3

2.3 Theorem 4.1. of Katz

In this section, we repeat the proof of Katz's theorem 4.14if.[ This theorem will be
the key ingredient for our following computations. Note that we added s@taiislto the
proof, especially, we applied proposition 2/2.2.
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Theorem 2.3.1([41], Theorem 4.1)

Let k be the algebraic closure @f, and letH be anF —crystal overA,.

Assume that there exists a locally free submodéilleof H such thatf /Fil! is free of rank
one and such thaF (Fil') c pH. If for everyk—morphismeq : Ag — k with eg(2) = g

and Teichmiller liftinge(z) = « ,a € W(k), e*H contains a direct factor of rank one,
transversal ta=*Fil!, which is fixed by the mag F, then:

1. There exists a unique unit-root F-subcrystalof rank one ofH such thatH =
U @ Fil' as Ao, modules.

Suppose that ovet ., U is generated by.. Write F'(u) = r(z)u for r(z) € A% . Then we
have

2. Leteg : Ag — k' be ak—morphism to a perfect field extensighof k with eg(z) =
ap. Leta be the Teichmiiller lifting oé and lete : A, — W(k’) be given by
e(z) = a. Then there exists an elemenptc W (k')[[z — a]] such that := g, - u €
W(K')[[z — a]] ®a., H is horizontal with regard tdv. Furthermore, there exists a

constante, € W (k) such thatc,v is fixed byF' and the quotient,g./¢(caga) iS
the power series expansion of the elemén) aroundc.

Proof: 1. Assume thaft{ is free of rankv. We choose a basis éf which is adapted to the
filtration Fil'. Let ¢ be the lifting of Frobenius such thatis the Teichmiiller lifting ofg
with regard tap. Then the matrix of"'(¢), A, with regard to this basis is of the shape

([ pA C
4= ( pB D )
withAe M,_1,-1(Ax), B € M ,-1(Ax), C € M,_11(Ax) andD € A. Since for
each Teichmuller point, e* H contains a unit-root subcrystal of rabhkD must be invertible

in As.. We have to find an elementin H such that « > is transversal t&il' and such
that< u > is stable unde¥f'(¢)¢*. Thus, we have to find a vectgre M, _;:(A) such

that
pA C ")\ _, ("
pB D 1 1
for somea € A.. But

pA C () \ _ ( pA9"(n) +C

pB D 1 pB¢*(n)+D )’
and it follows (by a comparison of the last entry) that pB¢*(n)+ D and thap A¢*(n)+
C = (pB¢*(n) + D)n. Hence it follows that

n = (pA¢*(n) + C)(1 + D~ 'pBe*(n)) ' D~

The map
0 (pA¢*(n) + C)(1 + D™'pBe*(n)) "' D~ (2.3)
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is a contraction in the—adic topology ofA.., and hence it has a unique fixed point. This
determines a unique generatorldkatisfying the required properties, namely the vector

_(n
=(1)
wheren is the unique fixed point of the contraction.

2. By assumption, the modut€ H contains a fixed point of* F'. By proposition 2.2.2, this
fixed point defines a unique horizontal fixed poinffoin W (k') << z—a >> ®H, which
extends to a horizontal fixed point IV (k')[[z — o]] ® H by proposition 2.2.1. This fixed
point spans a direct factor &F (k')[[z — a]] ® H, which is transversal t&"il* (W (k') [[z —
o] ® H). Assume that a horizontal section is given by the column vector

(o)

Ja

with S, € M,_11(W(K)[[z — «]]) andg, € W(K')[[z — «]]. Then, the horizontal fixed
point is a multiple of this column vector by a constant

(5)
Ca )
Ja

By transversalityy,, is invertible inW (k’)[[z — «]]. Then,

<pAoz Ca > ( Qb*(cozsa) > o ( CaSa >
pBa  Daq #(caga) -\ Cafa )’

pAs Cq (b*(Safojl) _ Cafa Sag;I
<pBa Da>< 1 >_¢(caga>< 1 ) @4

Write 7, = Sag, . Then,

which implies

Cafa

P(caga)

Cafa

¢<Caga),

PA.*(Na) + Ca = Na andpBa¢™ (1) + Do =

which implies that, satisfies

Na = (pPAad*(a) + Ca)(1 + D' pBad™ (na)) "Dt

Since the endomorphism dff,_ 1 (W (k')[[z — «]]) given by[2.3 is still a contraction
in the p—adic topology, it follows that,, is its unique fixed point and is hence a power
series expansion of the global fixed poipgroundz = a. SincepB,¢* (1) + Do €

W (K')[[z — «]] is the power series expansion@B¢*(n) + D aroundz = «, it follows
that co.ga/P(caga) is the power series expansion around= « of an element ind.

By equation|(2.4), now it follows that,g./®(ca94) is the power series expansion of the
element-(z). O
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2.4 Divisible Hodge-F-crystals

In this section, we define the notion of a divisible Hodgecrystal and show explicitly that
the second exterior product of a HodBe-crystal is again a Hodge' —crystal.

Definition 2.4.1 A divisible HodgeF —crystal H of level N is an F'—crystal H equipped
with a filtration by freeA,,—submodules

H=Fil°H>Fl'H> ..>FIN'H>FIYH > FilV T H =0
(called the Hodge filtration oril) which satisfies
1. VFil'H C ka/w(k) ®4., Fil'"t H (Griffiths transversality),
2. F(Fil'H) C p'H (Divisibility).

The following proposition will be of use for us later, when we have to carsaxkterior
products ofF’—crystals to derive formulas for the roots of the Frobenius polynomial.

Proposition 2.4.1 Let H be a divisible Hodge"—crystal whereH /Fill H is free of rank
one. Them?H is a divisible Hodge—crystal, with homomorphism of ., —modules

1
ZANF:AN’H — A’H
P

and with Hodge filtration given by

%
Fil' ' (A’H) = ) _Fil*H AFil' *H
k=0

for¢ > 1.

Proof: SinceH /Fil' H is of rank one, Fil A Fil® = Fil® A Fil',
Leta € Fil*H andb € Fil'"*H.Then,a A b € Fil'"}(A2H) and

1 1 1 , ,
“A2F(aAb)==-FanFbe ~p"HAp"™"H = p"~t A% H.
b p b

For: > 2,

V(aAb)=V(a) Ab+aAV(b) € Qa_ wr) ®as Fil' 2(A’H).

If (H,V,F)isaHodgeF—crystal, then so i$e*H, e*F).
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2.5 Ordinary CY3-crystals and general autodual crystals

Following Stienstra%4], we introduce the notion of ordinary CY3-crystals. Crystals of that
type appear as the third relative crystalline cohomology of families of orgliGatabi-Yau
threefolds. The generalization of an ordinary CY3-crystal is an orgiaatodual crystal.
For the rest of this section, assume that k is algebraically closed.

Definition 2.5.1 Let H be a HodgeF'—crystal and let
0=Fil_1H CFily)H C...CFilyH=H

be the finite (it can be shown that is the same as in definition 2.4.1) increasing filtration
on H defined by ‘
Fil;H = {z € H,p'z € Im(F(¢))}.

This filtration is called theeonjugate filtration

The conjugate filtration satisfies the Griffiths transversality condition

Definition 2.5.2 A divisible Hodgef'—crystal H of level N is calledordinaryif the graded
module with the conjugate filtratior, H, is a free A..—module and the conjugate and
the Hodge-filtration are opposite,

H = Fil;H & Fil"™ ' H.

Proposition 2.5.1 ([19], Prop. 1.3.2) LetH be an F'—crystal such thayyr,H is a free
A, ,—module. Ther is ordinary iff there exists a filtration by'— subcrystals

0=U_1CcUygcC..CcU;CUj C..

such that
Ui/Ui—1 = Vi(—1),

whereV; is a unit-root F'—crystal and(—i) is the Tate twist, meaning th&{(—:) is the
same module with connection &g but for every lift¢ of the Frobenius, the map'(¢)¢*
onV;(—i) isp'F(¢)¢* onV;.

Definition 2.5.3 An (ordinary) CY3-crystabver A, is a divisible (ordinary) Hodge<—
crystal H of level3 with a non-degenerate alternating bilinear form

<,>H x H — Ay
such that for allx, y € H and lifts of Frobeniusg, we have

<V(d/dz)x,y >+ < z,V(d/dz)y >=d/dz < z,y >,
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< F(9)9" (x), F(9)6"(y) >= p’(< 2,y >)
and the Riemann bilinear relations
(Fi*H)* = Fil'H, (FiI’H)* = Fil’H,
where_L is with regard to the bilinear formg, >.

If kg is a finite field withp” elements, then for a CY 3-crystal which is deduced by exten-
sion of scalars from ai’—crystal overiW (ky), ko a perfect subfield ok, the eigenvalues

of F" on the crystal oveWW (kg) are distributed symmetrically. This means that there are as
many eigenvalues with—adic valuatior) as eigenvalues with—adic valuatior3, and as
many eigenvalues with valuatidnas eigenvalues with valuati@(see f1], section 5).

For an ordinary CY3-crystal of rank, on the crystal oveiV (ko) it follows that there is
exactly one eigenvalue &" with p—adic valuatiorp, 1, 2 and3.

The generalization of an (ordinary) CY3-crystal is an (ordinary) éwib crystal of weight
N, see 1], section 5:

Definition 2.5.4 An (ordinary) autodual crystal of weighf¥ over A, is a divisible (ordi-
nary) Hodge#'— crystal 4 of level N with a non-degenerate alternating bilinear form

<,>Hx H— Ay
such that for allz, y € H and lifts of Frobenius), we have
<V(d/dz)x,y >+ < z,V(d/dz)y >=d/dz < z,y >,

< F(9)" (x), F(9)¢* (y) >=pNo(< 2,y >)
and the Riemann bilinear relations
(FIN = mL = Fil‘H,
where_L is with regard to the bilinear formg, >.

As in the case of CY3-crystals above, the eigenvalueg’obver W (k) are distributed
symmetrically in case of an autudoal crystal which is deduced fronk'akrystal over
W (ko) by extension of scalars.
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Chapter 3

CY3-crystals and unit
roots

In this chapter, we define the notion of a Calabi-Yau differential opemidrrelate these
operators to CY3-crystals and general autodual crystals. We goreaufa to determine the
Frobenius-polynomial on a CY3-crystal of rank four with connectiofindel by a CY(4)-
operatorP, given that the functiorfy(z)/ fo(2P) has an analytic continuation to the bound-
ary of thep—adic unit disc, wher¢ is a power series solution ¢t f = 0 aroundz = 0.

3.1 Picard-Fuchs operators of CY-type

Consider integrals of algebraically defined differential forms over tectaains in algebraic
varieties. If the differential forms and chains depend on parameterstiibdntegrals can
be considered as functions in these parameters, satisfying linear wiiif¢exjuations with
algebraic coefficients. These differential equations are c®lieard-Fuchs equationdt is
not known in general how to determine whether a linear differential equéia Picard-
Fuchs equation or not, although there exist several conjecturesiatsae p1]).

In this section, we review some facts about linear differential operatitiswaximal unipo-
tent monodromy at = 0 and define the notion of Calabi-Yau differential operators. Such
operators arise as Picard-Fuchs operators of families of Calabi-Yetiga. Our definition

of CY-operators will be purely algebraic; for a general Calabi-Yaerafor, we do not know
that it is of geometric origin.

Let
n n—1 d

P = diz —i—an_l(z)% +...4+ao(z) € @(2)[%]

be a linear differential operator of order and letf := zd—dz be the logarithmic derivative.
After left multiplication byz"™ and then by the least common multiple of the denominators
of z"an_1(2), ..., 2"ap(z), we can rewriteP in terms of¢ with polynomial coefficients and
obtain

(3.1)

P=A,(2)0" 4+ A, 1(2)0" 1 + ...+ A1(2)0 + Ap(2) € Q[£][6]. (3.2

35
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From now on, we assume thA&tis regular singular at = 0 and thatA4,,(0) # 0. We say
that P hasmaximal unipotent monodromy at= 0 if A4;(0) =0for0 <i<n — 1.

We say that a differential operatéras in (3.1) has maximal unipotent monodromy at 0
(P is MUM) if the operator transformed in shape (3.2) has maximal unipotenodromy.

Theorem 3.1.1 [7], Theorem 4.2.2) If P is MUM, then the subspace @[[z]] of solutions
of the linear differential equation
Pd(z) =0

has dimension. Moreover, every solution is defined uniquely by the vai(@).

Definition 3.1.1 Let P be a linear differential operator as in (3.1). Then tteemal adjoint
of P, P*, is given by

P*o(z) =) (-1) 7, (a(2)®(2)).

k=0

Definition 3.1.2 We call a linear differential operato’ of ordern as in (3.1) aCY(n)-
operatoiif

1. P has maximal unipotent monodromyafMUM).

2. P is self-dual in the sense that
2 . 2
P=(~1)" exp(~ > / an-1(2)d2) 0 P* o exp( / an1(2)d2),

where “o” means the composition of differential operators.

3. The power series solutiahy(z) to the differential equation
P®(z)=0
with ®((0) = 1 satisfiesb(z) € Z[[z]].

The first condition in definition 3.1.2 (MUM) implies that the operakdrs irreducible and
can (after writingP as in (3.2)) be written in the form

0" + 2P, (0) + 22Py(0) + ... + 29 Py(0),

for some positive integet, whereP;(0) € Q[0] is a polynomial ird of degree< n.
The second condition in definition 3.1.2 is equivalent to the condition that thsftnaned
operator

p- exp(% /an_1(z)dz) oPo exp(—% /an_l(z)dz)

satisfies

P=(-1)"P*
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which translates intd(n — 1) /2] differential-polynomial conditions on the coefficients
Forn = 4 one finds the condition of]:

1 1 3 1
al = §a2a3 — gag +ah — Zagag — 5@%. (3.3)

In [2] one finds a list with more thaB50 examples of such CY(4)-operators. Note that
these operators satisfy additional integrality properties, hamely that thes geno instan-
tion numbers are integral. Because of the MUM-condition, by Theorem|thé.4olution
®(x) from the third condition in definition 3.1.2 is unique and conversely determirges th
operatorP.

3.2 CY- differential equations and ordinary autodual crystals

In this section, we repeat some results by M. Bogri€} pnd J.-D. Yu BQ] concerning
differential modules defined by CY-differential operators.

Let p be a prime, ley = p® and letk be the field withy elements. Let := W (k) denote
the ring of Witt vectors of;, and letK be the fraction field oil/.

Let P be a CY(n)-differential operator, and |&fp be the differential module defined by
Mp := K(2)[0]/K(2)[0]P
with generatotw defined by

K(Z) — Mp

1 — w,

where the map is the natural projectiohlp is then a freei(z)—module of rankn with
cyclic vectorw and a basis given bfw, fw, 0%w, ..., 0" 1w}. We define a filtration o/,
by setting

Fil' Mp =< {ﬁjw}?:_ol_i >K(2)

the K (z)— module spanned b, ..., 0"~ 1~w}. Let
Y, = exp <2 /anldz/z> . (3.4)
n
Then Bogner12] (or Yu [60], Theorem 1.2.) prove the following

Theorem 3.2.11f Y,, € K(z), there exists a non-degenerate alternating bilinear form
<,>: Mp x Mp — K(z),
uniquely determined by settingw, " ~'w >= cY;, for some constant ¢ K, satisfying

<O(x),y >+ <z,0(y) >=0(<z,y>)forz,y € Mp (3.5)
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and ‘ '
< Fil"™"Mp,Fil'Mp >= 0. (3.6)

Following [60Q], we define

I'p = K[[2]][0]/ K[[=]][0] P,
which is aK [[2]]—lattice inMp @ k(7] K[[T]]. By Fil'T p, we denote the filtration induced
by the filtration Fil M, on Mp. Then, we have the following theorem:

Theorem 3.2.2 ([60], Theorem 1.4.) There exists a unique increasing filtration
0=U_1CcUpcC..CcU,-1=Tp
of K[z]][0]— submodules df p such that, for-1 < <n —1,
Tp=U,; +Fil™"'Tp
and theU; /U;_, are trivial K[[z]][#]—modules.

Now suppose that there exists a constam K * such thatcy,, € W{[z]]. We define a
connectionV onT'p by setting

V(0)(w) = 0(w).
To givel'p the structure of an ordinary autoduédcrystal(I'p, V, F') of weightn — 1 over
W{[z]], we assume that for every lifting of Frobenigiswe have a horizontal maf(¢)¢*
giving a conjugate Filtration Filas in definition 2.5.1 which, by the theorems 3.2.2 and
2.5.1, is opposite to the Hodge filtration,

I'p =Fil;T'p & Fil'T'T'p (3.7)
satisfying
F(¢)¢*Fil'Tp C p'T'p (3.8)
and
< F(¢)¢*(x), F($)¢" (y) >=p" ' dp(< x,y >) (3.9)

forall z,y € T'p. Thus, by theorem 3.2.1 it follows théf p, V, F') is an ordinary autodual
F—crystal overlV[[z]].

3.3 Horizontal sections for CY differential operators

In this section, we give a formula for horizontal sections in the differemtiatiulel p,
whereP is a CY(4)- or CY(5)- differential operator.
Let P be a CY(4)-operator. The differential equatiBif = 0 can be written in the form

FD +asf® +aof® + ar fY +apf =0,
where the coefficients; satisfy the following relation:
1 1

1 3
a1 = 50203 — éag +ahy — Zagag - iag. (3.10)
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Proposition 3.3.1 (see[59]) Let P be a CY(4) differential operator and |1€éf{, V) be a
K (z)/K differential module. Let € H such that

Viw + asV3w + aa V2w + a1 Vw + agw = 0

(whereV(w) := V(d/dz)(w)) and let f, € K[[z]] be a formal solution to the differential
equationPf = 0 aroundz = 0. If Y = exp (1/2 [a3) € K[[z]], then the following
elementy, € H @) K[[2]] is horizontal with regard tov :

ug = YalfoVi(w) = V(W) + iV (W) = fo'w] + (Yaas — Y])[foVP(w) = fow]
+  (Yaaz — (Yaaz)' +Y")[foV(w) — fowl. (3.11)

Proof: See p9]. The proof is by direct computation, using (3.10).

Now let @ be a CY(5)-operator. The differential equati@Qrf = 0 can be written in the
form

FO b4 f® 03P + 0o f® + b1 fO + o f = 0.

Proposition 3.3.2 The operator() satisfies the second condition for CY(5) of the introduc-
tion, if and only if the coefficients(z) satisfy the relations

3 4.4 3, 6

by = bsbs — 25192 + 5bg - gb4b§1 — bl (3.12)
and
by = %b’l — 1;—51)3193; + %blb4 - %bgbﬁ; + %bﬁ(’m + gbgbg + %bgbi (3.13)
+ %(bg)m - %bgm + %bﬁbﬁ( - f’—obgbg — %bibg - ibg’ + %bi

1 3
+ b = o babiba.

Proof: By direct calculation, for details we refer ttJ)].

Proposition 3.3.3 Let ) be a CY(5) differential operator and 1€#{, V) be a K(z)/K
differential module. Lety € H such that

Vo0 4+ by Vi 4+ bsV3n + 0o V2 + 01V + bonp = 0

(whereV(n) := V(d/dz)(n)) and letf, € K]|[z]] be a formal solution to the differential
equation@f = 0 aroundz = 0. If Y5 = exp (2/5 [bs) € K][[z]], then the following
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elementus € H @) K[[2]] is horizontal with regard tov:

us = Ys[foVi(n) = foV3 () + foVP () — f3'V () + fo'"n]
b (b = Y)foVPn) — S FoV20) — S 7V ) + )

3
by — (Vaba) + Y2 foV () + Sl + (5 (Vsbn) = ¥) = abs) 5 ()

1

(b = (050" = YN lfon + fo¥ ()

+ (Vb= 5(Yaba) = ((Y5ba) = V")) fon. @.14)

Proof: Applying the identities|(3.12) and (3.14), one directly verifies thatsatisfies
V(U5) = 0.

3.4 Calabi-Yau varieties

In this section, we give a very brief introduction to Calabi-Yau varietiepeEmlly, we are
interested in Calabi-Yau threefolds, since families of these correspond(®)-Cperators,
the main subjects of our studies.

Definition 3.4.1 A Calabi-Yau varietys a smooth complex projective variety of dimension
m satisfying

1. H(X,0x) = 0 for every0 < i < m and
2. The canonical bundl& x := Q% of X is trivial, Kx = Ox.

Let HZ(Q%,) be the(p, ¢)th Hodge cohomology grougf X with Hodge numbeh? (X ) :=
dime H9(Q%). By complex conjugation, we havB?(Q%,) = HP(Q%), and by Serre
duality, it follows thatH?(Q%. ) = H™ 1(Q'¢ 7).

This implies directly that there is a symmetry in the Hodge-numbers:

WP(X) = RTP(X) andhP(X) = B PM9(X).

The numben”(X) := dim¢ H*(X, C) is called thekth Betti numbeof X . By the Hodge
decomposition of7*(X, C),

HY(X,C) = P HI(K),
ptq=k

it follows that

k
PRX) = ) wraX) = RP(X).
=0

ptq=k
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The Calabi-Yau conditions assert thet’(X) = 0 for 0 < i < m andh%%(X) =
RO(X) = 1.

The Hodge numbers can be displayed iRl@dge diamond For a Calabi-Yau variety of
dimensionm = 3, the Hodge diamond looks as follows,

1
0 0
0 hbL(X) 0
1 hM2(X) hb2(X) 1
0 RbL(X) 0
0 0
1

sinceh!(X) = h?2(X) andh?!(X) = h'2(X). Now let X be a Calabi-Yau variety
defined over). Then, X has an integral model ové. Letk := [F, wherep is a prime.
The reductionXy of X overk is a Calabi-Yau variety ovek if it is a smooth variety.

3.5 CY-differential equations and families of Calabi-Yau vari-
eties

In this section, following Yu§0], we explain where CY(n)-operators arise in geometry as
Picard-Fuchs operators of families of Calabi-Yau varieties. For exar@Mé2)-operators
arise from families of elliptic curves, CY(3)-operators arise from familied@ surfaces
with Picard-numbet9 with a point of maximal degeneration (type Il in the terminology of
[31]) and CY(4)-operators arise from families of Calabi-Yau threefolds with= 1 that

are studied in mirror symmetry17].

In this section, we will talk about so-calldalgarithmic structuresThe basic definitions
and properties of logarithmic structures can be found3Bj.[Let 7 : X — P! be a flat
projective pencil whose generic fibre is smooth, and assume that eggcitesifibre ofr is
a union of reduced normal crossing divisors. We egXiipndP! with the natural smooth
logarithmic structures associated to the union of the singular fibrés and the critical
values inP!. By ' := wé(/IP’l’ we denote the sheaf of relative differentialforms with
logarithmic poles with respect to the logarithmic structureson

If the generic fibre ofr is an irreducible Calabi-Yau variety of dimension> 1, we call
a pencilr as above aice pencil of Calabi-Yau varieties of dimension Then the sheaf
mww™ is an invertible sheaf oR!.

Now suppose that there exists a locally direct fadtbof rankm + 1 of R™m,w® which is
stable under the Gauss-Manin connection and containg'.

Leta € P{ be aC—valued point and lefV denote the logarithm of the local monodromy
arounda. Then N acts on the stalkl/, and is nilpotent. If the monodromy is maxi-
mally unipotent, N = 0 on M, , thenM is the unique irreducible locally direct factor of
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R™m,w* containingr,.w™ which is stable under the Gauss-Manin connection. The follow-
ing theorem by Yu relates nice families of Calabi-Yau varieties to CY-diffiégieaoperators.

Theorem 3.5.1 (see[60], Corollary 2.2) Letr : X — P! be a nice pencil of Calabi-Yau
varieties of dimensiom: such that there exists a locally direct factdf with maximally
unipotent monodromy & Letn be a basis of local sections efw™ at 0 and letP be the
Picard-Fuchs operator ofi. ThenP is a CY(m+1)-operator.

Now, we consider the whole situation frompa-adic point of view. Let thereforg be a
prime, letg = p*, and assume that > m. Letk = F,, let W the ring of Witt vectors of
k and letK be the fraction field of/. Letr : X — P! be a nice pencil of Calabi-Yau
varieties of dimensiom: over K with totally degenerate fibre 8t We say thatr hasnice
reductionif 7 has a flat model oveli” such that the reduction : X — P! overk is also a
nice pencil of Calabi-Yau varieties of dimensior and the logarithmic structures sfand
7 are induced by a smooth logarithmic structure on the flat modelldver

Lemma 3.5.1 (see[60], Lemma 3.1) Suppose that the pencihas a nice reduction and
that the factorM with maximally unipotent monodromy @tsatisfies that\/, is stable
under the absolute Frobenius. Then the Frobenius actiofgms ordinary and there exists
a dense open subs§tin P! such that for the restrictionr : X — 5, the crystalM is an
ordinary CY3-crystal.

3.6 Dwork’s deformation from 2z =0

Now that we know a formula for the horizontal sectionsfin-crystals defined by CY(4)
and CY(5)- differential operators, we want to derive a formula fordieenent-(z) appear-
ing in theorem 2.3.1 for both cases.

For the rest of this chapter, we choose the lifting of Frobenius givea(by = zP. The
sectionu,, defined in equation (3.11) if = 4 and equation (3.14) ik = 5 and all con-
stant multiples of this section are horizontal with regardvto With regard to the basis
{w,V(w), V}(w),..., V" Y(w)} of Tp, whereV(w) := V(d/d(z — a))(w), horizontal
sections, written as column vectors, are constant multiples of

No
Y"( fo )

whereN; is a(n — 1) x 1—matrix with entries iff/[[z]]. Hence it follows by theorem 2.3.1
that there exists a constaftsuch that

1
coYn ( ]}f(? > = Canf0< Jo 1N0 >

is a fixed point off’, and the element

cofo(2)

c§ fo(2P)
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is the power series expansion(af,(z”)/Y,(z))r(z) aroundz = 0.

LetM(z) be the connection matrix representitigd/dz) with regard to our choice of basis,
which is given by

0 ... 0 =—qg
M(z) = 1 : —aq 7
0
0o ... 1 —Aan—1

Consider the matrix differential equation

L e() + M(2)e(2) = 0

dz
and letC(z) be the solution to this differential equation given by
No —Np ... (_Un—an_l )
C(z) =Y, e
(2) < vo —y1 ... (=" yu
whereyy(z), ..., yn—1(z) is a Frobenius basis of solutions to the differential equation
Py=0

aroundz = 0 such thatyy(z) = fo(z). Note that the highest power of a logarithm occuring
in y(2) is log(z)*. For example, a Frobenius basis of solutions to a CY/(4)-differential
equation is given by

v(2) = folz),
yi(z) = log(2)fo(2) + f1(2),

() = 308 folz) +log(2) i(2) + fa(2),
w() = 0B () folz) + 5 108%(2)fi(2) + log() fa(z) + fo(2),

wherefy(0) = 1 and f;(0) = 0 for 1 < i < 3. Let C(z) denote the non-logarithmic part
of C(z), i.e. in each entry o€(z), we formally set fog(z) = 0”. Thus, for example in the
case of a CY(4)-operator, the matriX z) is given by

_ No —Ni1 Nz —N3
C<Z)Y4<f0 —fi fo —f3)

for somen — 1 x 1 matricesV; containing no logarithmic terms.

Let N be the logarithm of the monodromy. Because of the MUM-conditiéris given by
0o 1 ... 0
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It is our goal to determine the constant= cy/cj. Let G denote the Gram matrix of the
pairing<, > onT'p, which is, by theorem 3.2.1, given by

G=Y,T

for a scalar matrix” satisfying
TN + N'T = 0. (3.15)

By equations/(3.7) and (3.8), there exists a constant mitrizatisfying
pA,N = N2, (3.16)
and furthermore, by equation 3.9,
P = A, T, (3.17)

such that as inq7], Lemma 6.2., the absolute Frobenius mattix of F'(¢) with regard to
our choice of basis is given by

Ay(2) = C(2)2A,0(2P)7! (3.18)

on the open dispW.
By conditions 3.16, 3.15 and 3.17 it follows that

g 1 ap—1

A, = 0 ,
" 0 0 pn—26 pn—2a1
0 0 0 ple

ande = +1.
By equation|(3.18), it follows that

Ag(2)C(27) = C(2)An,
which implies

fo(2) I Ng(22 Yo (2) fo(2) fo(2P) "1 Ng(2P
ey FOTNCN ) _ T (o) ) ),

This determines the constanasc = ¢ and leads to the following proposition:

Proposition 3.6.1 The formal power series

fo(2)
fo(zP)

is the power series expansion around= 0 of the elementY,,(z?)/Y,(z))r(z), where
e € {£1}.

g
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By the conditions 3.16, 3.15 and 3.17, for a CY(4)-oper&faris given by

e a [ %
0 pe pa pp
0 0 p’ pPa |’
0 0 0 p

wheres = o2 /2, and is thus determined up to two parameters € W. This indicates that
we can derive a formula for the absolute Frobenius matgpat a Teichmdller point up to
two parameters that remain undetermined. But although the Frobenius matfideisends
on these parameters, we will see in the end of this chapter that the Fropehmsmial
det(1 — TA;) at a Teichmdller point imdependenof these parameters.

Theorem 3.6.1 Let z be a Teichmiiller point satisfying?” = = and P a CY(4)-operator.
Then, if it can be evaluated in= z, the Frobenius polynomial corresponding Foat this
point,det(1 — T'Ay(2)*)|.=, is independent of the parametersd and-y.

Note that by the expressiatet(1 — T'A4(2)?)|.=-, Wwe mean that there exists analytic
continuation(see chapter 5) of the power seriks (1 — T'A,(2)*) € W[T][[z]] to a neigh-
borhood ofz, and that we evaluate this analytic continuation there.

3.7 Example: The Legendre family of elliptic curves

In the case of a CY(2)-operator and a family of elliptic curves, the formiwiengn propo-
sition[3.6.1 is almost enough to compute the Frobenius polynomial of a smootharyrdin
fibre of the family explicitly. We demonstrate this in the example of the Legendnédyfaf
elliptic curves.

For a primep > 2, let H be the polynomial

p—1 1) 2 '
h(z) :Z<(j?]> 2,

J=0

and letS be theZ,—schemeS := Spec(Z,[2][(2(1 — 2)h(z))1]). By X/Ss, we denote
the Legendre family of elliptic curves, whose affine equation is given by

Xy =z(z—1)(z - 2),
wherez # 0, 1 andh is its Hasse-invariant.

The relative de Rham cohomology := H}, (X /S.) of the family is free of rank 2, and
the Hodge filtration FiH is generated by the differential

_da
-

W
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Let V be the Gauss-Manin connection &h Letw’ := V(d/dz)(w). Thenw satisfies the
differential equation

1
2(1—2)W" + (1 —22)0" — = 0,
and the cup-product is given by
<w,w>=<W W >=0and < w,w >=— < w>=-2/(2(1 - 2)).

For anyag in Sy, the curveX,, is ordinary. Letey : Ay — k, ep(z) = ap, and lete
be a Teichmdiller lifting ofey. Then theF—crystale*H = H},,(X,/W) is an ordinary
Hodge{ —crystal, and thug/ satisfies the conditions of theorem 2.3.1.

The Zeta functiorZ (X, /Fp, T) is of the form

r(@)T)(1 = p/r(a)T)

_ (A=
Z(Xao/FWT) - (1 —T)(l —pT) )

and we have to find a formula to computey).

Let fy be the unique solution i/ [[z]] to the above differential equation with constant term
1. The horizontal sections arounad= 0 are constant multiples of

Y flw =Y foV(w),

whereY = z(1 — z2).

Then, by theorem 2.3.1, there exists a constastich thatw% is the power series
expansion of the elementz).

As in section 3.6, the constant= 5—(2) is equal tas = +1, and a power series expansion of
(Y(2P)/Y (z))r(z) around the origin is given by

fo(2)
fo(zP)’

It was proven by Dwork27] that there exists a functiof(z), analytic on

g€

wheree € {1, —1}.

D= {zx e W||H ()], = 1},

which coincides withfy(z)/ fo(2?) on the open unit dispi¥. Thus, a formula for(«) is
given by
_ Yo _
r(a) = sy(ap)F(oz) =cF(a),

where the last equality holds singga) = Y (a?). Hence, one has a formula for the unit
root of the Frobenius polynomial of a fibre of the Legendre family modulcctivestant:.
By a geometric argument, it turns out that (—1)»—1)/2. The geometrical origin of lies

in the geometry of the singular fibt¥, which has a node with tangent congé + 32 = 0,
that splits ovelf, precisely wherr = 1.
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3.8 Frobenius polynomials for CY3-crystals of rank four

At the moment, by proposition 3.6.1, we have a formula for the funatien from theorem
2.3.1 for ordinary CY3-crystals of rank four with Picard- Fuchs operafaCY (4)-type,
and for ordinary autodual crystals of rank five with Picard-Fuchgaipe of CY(5)-type.
Forag € k, wherek is a field withg = p* elements, the function(z), evaluated at the
Teichmuller lifting « of o, computes the unit root

Tag = r(a)r(ap)...r(apafl)

of the corresponding crystal. But it was our goal to compute the completeeRius poly-
nomial for a CY3-crystal of rank four, and not only its unit root. In thégtson, we will
derive a formula for the reciprocal root pfadic valuationl in terms of the unit root of the
ordinary CY3-crystal with connection specified by a CY(4)-oper&tpand the unit root of
the ordinary autodual—crystal with connection specified by a CY(5)-operafoe= A2 P.

Let k& be the finite field withy = p® elements, letV := W (k) be the ring of Witt vectors
and letK be the field of fractions of¥/. Let P be a CY(4)-operator, and le{z) € Z[z]
be the polynomial sucht that the singular pointsroére the roots 0f(z). Let (H,V, F)
be a corresponding'Y 3—crystal overA.,, whereA = W|z][(s(z)h(2))7!]. Let Sy =
Spec(Ap), Seo := Spec(As) and letag € Sp.

Let ¢ be a lifting of Frobenius and let: A,, — W (k), e(z) = « be the Teichmuller lifting
of eg : Ag — k, ep(z) = ap. We assume that for eachy € Sy, the CY3-crystak*H is
ordinary (this is a condition on the polynomia(z)).

For the Frobenius polynomialet(1 — T'e* F*|e* H), this means that there exigts-adic
unitsrq,, Sq, Such that

det(1 —Te"F*) = (1 —1a,T)(1 — qSa,T)(1 — qz/saoT)(l - q?’/raoT), (3.19)

under the further assumption tHB{7") := det(1 — T'e*F'*) suits the Weil conjecturinc-
tional equation
P(T) =T /¢"P(1/(¢°T)).
Then there existf-adic) integers.,, andb,,, € Z such thatP is symmetric in the following
way:
P(T) = 1+ oy T + bagqT + 0o T + ¢°T*.

Itis our goal to derive formulas to compute theadic unitsr,,, ands,,.

By assumption, the crystdl satisfies the conditions of theorem 2.3.1. Theadic unit
Taq IS just the element(a)r(a®)...r(a?"" "), so we have to derive a formula to evaluate the
element-(z) € A, at a Teichmuller point.

Now consider thegy—adic units,,. In general, iff : V' — V is a homomorphism of vector
spaces, then the eigenvalues\dff : A2V — A%V are given by productsb, wherea and
b are eigenvalues of corresponding to linearly independent eigenvectors.
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By proposition 2.4.1, the Frobenius endomorphism on each fibet of the crystaln2 H
is given by A% (¢*F).

The ranké = (‘2‘) A..— moduleA?H is a direct sum of anl.,— moduleG of rank 5 and a
rank 1 module. The rank 1 module is generated by a section that corossfaoiine pairing
< —,— > and is horizontal with respect 3.

We construct a 5th order differential operatgron the submodulés by choosing@ to
be the differential operator of minimal order such that for any two lineartiejrendent
solutionsy; (z), y2(z) of the differential equatio®y = 0,

Yy Y2
/

Y1 yé

is a solution ofQw = 0.

Proposition 3.8.1 The operator() satisfies the first and the second condition of CY(5).

Proof: The statement tha® satisfies the first condition of CY(5) is the content df, [
Proposition 4. A direct computation shows that sifitis a CY (4)-operator, the coefficients
of Q satisfy the equations (3.14) and (3.12), so the second condition of Q@33

In all examples it was found that the operafprlso has an integral power series solution,
and thus satisfies the third condition of CY(5). For the moment, howeverrevenable to
prove this in general so we

Conjecture 3.8.1 The differential operatoi), constructed from a CY(4)-operatd? as
above, satisfies the third condition of CY(5).

So if conjecture 3.8.1 holds true, the differential oper&)as a CY(5)-operator.
The operatory can be expressed in terms®tP(0, z) as
Q0,2) = A’P(O —1,2).

For the differential operatorB and(), we use the same notation with coefficiemntandb;
as in section 3.3.

Proposition 3.8.2 Let @) be the CY(5)-operator constructed above Net= V(d/dz) and
letw € H such that

Vi + a3V3w + a2V2w + a1Vw + agw = 0.
Then, the element:= zw A Vw € G satisfies

Vo + bV + b3V + by V20 + b1 Vi + bon = 0.
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Proof: The proposition follows by a straightforward calculation, applying the reiatio
between the coefficients, of the CY(4)-operato” and the coefficients; of the CY(5)-
operatorQ listed in [1].0

Just as for the"—crystal(H, V, F'), we assume for thé'—crystal (G, V,1/p A? F) that
for eachag € Sy, the F—crystale*G is an autodual ordinary’—crystal of weight (this
is a condition on the polynomial(z), too).

The eigenvalues of the relative Frobenius/de* H are of the formu,,va, /g, Whereu,,
andv,,, are eigenvalues aef F* one*H.

Thus, ifr,, is the unit root of theF'—crystale* H, andrgO is the unit root ofe*G, then the
reciprocal roots of the Frobenius polynom4{7") one*H are given by

Ta(w qr/ao /TOl07 q2Ta() /T/a(ﬂ qg/rOé(p (320)
and it follows that
Sap = r'ao/rao.
Since theF"'—crystalG satisfies the conditions of theorem 2.3.1, the elemgnts just the
elementr(a)r(aP)...r(a?" ") (this time w.r.t.G) evaluated at = .

3.9 Formulas forr,, andr,

In this section, we put the results of the preceding sections together tcogiaalas for the
p—adic unitsr,, andry,, .

Let fo(z) be the unique power series solution to the differential equatign= 0 around
z = 0 satisfying fo(0) = 1, and letgy be the unique solution tQ¢ = 0 aroundz = 0
satisfyinggo(0) = 1. Assume that’;(z) andY;(z) are rational functions.

Theorem 3.9.1 Letay € Sy, and leta be a Teichmdller lifting ofy. LetpW c © ¢ W
be a domain containing, and assume that there exist analytic eleméfits) andG(z) of
support® coinciding withfo(z)/ fo(z?) andgo(2)/g0(2?) onpW. Then

Tag = E“F(a)...F(apail) andr;, = G(a)...G(apail),
wheree € {£1}.

Proof: The first statement follows directly by proposition 316.1, since o and thus

Vi) Yi(@)? Ya(@"™) _ Yi(a) _
Ya(o?) Ya(a?”) " Ya(ar) ~ Yi(ar")

and, concerning the second statement,

Ys(o) Ys(a)? Ys(a? ')  Yi(a)

Ya(a?) Vy(a?) " Va(a?) ~ Ya(a)
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It only remains to be proven thaf, = G(«) is independent of. On the rank four
F—crystal H, the matrix2, has diagonal entries, ..., p3c. Thus, the matrixl; on the
rank5 F—crystalG ¢ A?H has diagonal entries which are products of two distinct diago-
nal entries ofl, divided byp (by construction of thé”—crystalA? H), and hence the diag-
onal entries are, p, p?, p, p*. The(5, 5)—th entry of2l; is 1, and the statement follows!

Proof of theorem/3.6.1:

The formulas for the two roots of the Frobenius polynomial given in the@éhi deter-
mine the Frobenius polynomial up to the constart +1, given that there exists analytic
elementsF'(z) andG(z) that can be evaluated in the Teichmiller point. Both formulas are
completely independent of the parameterg and~. Thus, it follows that if the Frobenius
polynomial can be computed by the formulas in thearem 3.9.1, then it is indepenithe
parameters.

Now the question of the construction of analytic eleménts) andG(z) still remains unan-
swered. We will consider this problem in the following chapters to deriydigkformulas
for the computation of ., andr, .



Chapter 4

The Hasse-invariant

One of the problems that remains to be solved is to determine the elégrdefininig

A = W[][(s(2)h(z))"1]. The zero set ofi(z) should be the locus over which the
F—crystal H becomes non-ordinary. In the example of the Legendre farily) is the
Hasse-invariant of the family. The roots of the Hasse-invariant aredinéspover which the
fibers become supersingular.

Following [39], we describe some properties of the Hasse-invariant and give diciexp
formula for the Hasse-invariant for families of hypergeometric Calabitteaeefolds.

4.1 The Hasse-invariant and the Picard-Fuchs equation

Let Ag = F,[2][s(2)7Y], So = Spec(Ap) and letf : Xy — Sy be a family of Calabi-
Yau threefolds. Assume that there exists a smooth liffing X — S, of the family to
characteristi@®). Assume furthermore that the CY3-crysfaf ;. (X/S) contains a CY3-
subcrystalH of rank four where the Gauss-Manin connectidris specified by a CY(4)-
differential operatoiP. We are interested in the locus over which fiecrystalH becomes

non-ordinary.

Let F' denote the absolute Frobenius &g F' is the identity map on the underlying topo-
logical space and theth power map on the structure she&x§, .

By HW, we denote thélasse-Witt operation
HW : F*R*f,(0x,) — R®f.(0x,).

For a definition of HWW, see BY], section (2.3.). The following propositions relate the
Hasse-Witt operation to the non-ordinary locus of fhecrystalH.

Proposition 4.1.1 ([39], proposition (2.3.4.1.5) and its corollary)
In order to have a direct sum decomposition

H := Fil'H & Fil H,
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the Hasse-Witt operation has to be an isomorphism.

SinceR3f.(Ox,) C H is a freeOg,-module of rankl, the Hasse-Witt operation can be

represented by & x 1—matrix overI'(Sp, Og,), i.e. by an elemeni(z) € I'(Sp, Og,). By

proposition 4.1.1, the zero setbfz) is the non-ordinary locus of the CY3-crystl.

Proposition 4.1.2 (Igusa, Manin[39], proposition (2.3.6.3)) The eleméinfz) satisfies
Ph(z) =0 mod p.

Thush(z) is a solution to the Picard-Fuchs equation modul@his fact provides us with
the means to determirig =) for a wide class of examples.

For many CY(4)-operator®’, the coefficients of the integral solutiofy(z) to the dif-
ferential equationPf = 0 satisfy certain congruence properties, the so-calecbrk-
congruencesgsee definition 5.1.2). For these operators, the following propositiorigesv
us with the means to determine the Hasse-invariant.

Proposition 4.1.3 Let fy (=) be the unique power series solution to the differential equation
Pf = 0aroundz = 0 satisfyingfy(0) = 1. Assume that the coefficients faf satisfy the
Dwork congruences. Thér(z) is a polynomial of degree at most- 1,

hz) = f571(z) mod p,
Wherefo<7"_1 denotes the truncation gf up to degree» — 1.

Proof: See pQ], corollary 3.7. and the preceding propositions.

4.2 The Hasse-invariant for hypergeometric CY-threefolds

For the case of hypersurfaces, Ke@gJ[also gives a formula to compute the Hasse-invariant
which does not involve the differential equation and its holomorphic solubiairthe defin-
ing equations of the family. This formula can be extended to all of the 14 famfiliego®r-
geometric CY-threefolds, which are either families of weighted projectiyetsurfaces or
complete intersections in weighted projective spaces.

Let T = Spec(F,[¥][s(v)~1]), and let
f:X->T
be a family of Calabi-Yau threefolds with fibres in the weighted projectivespa

]P’”(wl, ceey wn+1),

defined by a regular sequence of weighted homogeneous polyndmjals F,., deg(F;) =
d; inT'(Op, T)[ X1, ..., Xn+1], where weightX;) = w;, such thatl := d; +... +d, satisfies

d= wq + ... +’Ll)n+1.

Note that for all\ € I, with s(\) = 0, the family would become singular.
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Proposition 4.2.1 Let f : X — T be defined as above. Then the Hasse-invariaot G6f°
is given by the coefficient of
(X1.. Xpe1)P !

in(Fy-...- F.)P~L,

Proof: Similar to the arguments irBp)], section 2.3.7., where the case of hypersurfaces is
worked out in detail D

All 14 families of hypergeometric families satisfy the conditions above and are listed in
table 4.1. In each of these cases, the mogutasse-invariant can be expressed in terms of
theHasse polynomial

where the coefficients(n) of these polynomials are listed in table 4.1.
Namely, in each case there exists an intdgsuch that

h() =" P~V H(2) mod p.

We will demonstrate this in two examples.

Example 1.

We have (in the notation of table 4.1)
Vo(2): Fi= X0+ X8+ X8+ X0+ X3 — 60 X1 X0 X3X, X5 = 0.
Let z = (1/6%)° and leth(v) be the Hasse-invariant. Then
h($) = P~ H(2) mod p.

Sinceh(v)) is the coefficient of X; X5 X3 X4 X5)P~1 in FP~1, it follows that

M) = ;(_w)p_l_m(p;l) <p—;—i> <p— 1i—2¢> <p— 1i—3¢> (p—;— 4¢)

B 1N, (»—1)!
= (=6v) 1%%( )@ — 160

L - (6i)!
77ZJI)—I §(6w)—61 2(2)2)'

- mod p
7!

— H(),
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Example 2

We have (in the notation of table 4.1)
Vas(2): Fy o= X34 X34+ X3 -3 X, X5X6 = 0, Fy := X3+ X2+ X330 X1 X2 X3 = 0,
and letz = (1/3%)5. Leth(z)) be the Hasse-invariant. Then

h(y) = *P"VH(z) mod p.

Sinceh () is the coefficient of X120 X5X, X5 Xg)P~ 1 in (Fy F»)P~1, it follows that

o = g (0

2
) <Z|3(]§p__112'32)u>

12>0
—1 .
= ¢2PZ<31/1>“<(§’Q!>2 mod p
= ¢2(;_(;)H(z).
threefold| ambient space a(n)
Vs P4 5n)
Ve P4(1,1,1,1,2) e
Ve | PY1,1,1,1,4) T
Vio | PY1L1,1,2,5) | moed
Vi3 Po ((273)!>2
Va4 P (2:) (iﬁ)!
Vazs P ()" G (4.1)
Vo222 P’ 2: ’
Vay |PO(1,1,1,1,1,2) ] (3)Unk
Vi |PP(LL11,2,9) | (4
Vas | PP(L1L,1L,1,1,8) | (%)t
Vie |P°(1,1,1,2,23) | ()5,
Ves |P°(1,1,2,2,3,3) (%)2
Voo [PP(1,1,1,1,4,6) [ (%) solioitr

By Va,.....d,, we denote the family whose fibres are complete intersections in weighted pro-
jective space defined by polynomial equatidfis..., F;. of weighted degreé, ..., d,.



Chapter 5

Analytic continuation and
computations

In the previous chapters, we were faced with the problem of finding algtamcontinuation
of a quotient of the form
fo(2)

Jo(zP)
to the boundary of the—adic unit disc, since such an analytic continuation would give us
the means to evaluate the functiofx), which is necessary to compute unit roots.
In this chapter, we consider this question for an analytic continuation. ¥éile Dwork’s
[27] analytic continuation method for the case that the coefficiefs$ of the power series

n=0
satisfy certain congruence properties and review a class of exammadytonsidered by
Dwork.
Then, we give an explicit algorithm to compute the Frobenius polynomia¢spanding to
a CY(4)-operator by computing the-adic unitsr,, andr’, up to a giverp—adic precision.
We investigate in the—adic precision required to recover the coefficiantsandb,, of the
Frobenius polynomial correctly.

5.1 Dwork congruences and analytic continuation

In this section, we repeat a special case of Dwork’s theorem 2. fBinghd its proof
and the application of this theorem to the contruction of an analytic continuatisonoe
function defined on the open- adic unit disc. First of all, we recall some definitions from
Krasner's theory of uniform analytic functions (s&&])).

Definition 5.1.1 Let(2 be a complete field of characteristic zero with non-archimedian val-
uation having a countable value group and a countable residue class field.

55
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5. Analytic continuation and computations

. Asetd C QU {oo} is calledultra openabouta € Q if for all £ € D, the set

{lz —aliz € QU{co} \ D, [z —af < | —al}

is finite. ® is calledquasi-connectei © is ultra open about any € ® N Q.

. A familyJF of subsets of2 U {oo} is calledchainedif for all U, V' € F there exists

elements, ..., F,, € Fsuchthaty = F|,V = F,andF; N F;.1 # (0 for1 <i <
n — 1.

. Let® be quasi-connected. Aamalytic elemenif of support® is a mappingf :

D — Q which lies in the closure under the topology of uniform convergenc® oh
the set of rational functions with no polesin

. Two analytic element§, f, are calledequivalenif there exists a sequengg, ..., g,

of analytic elements such th#t = ¢1, fo = ¢, , the intersection of the supports of
g; andg; 11 is nonempty foil < i < m — 1 and such thay; andg; ;1 conicide on the
intersection of their supports.

. LetF' be an equivalence class of analytic elements, an®[gt) be the union of the

supports of the elements Bf For all z € ©(F), f(z) isindependent of if f ranges
over all elements iF” whose support contains. Hence,F is a function or® (F').
We call F' a uniform analytic functiorof support® (F).

Theorem 5.1.1 (Uniqueness Theorerfd5]) If f; and f» are analytic elements with sup-
ports ®; and D, such that®,; N Dy # 0, then f; and f> coincide on®; N D if they
coincide on a subset having a limit point@y N 5.

Definition 5.1.2 Let (a(n)),en, be a sequence with values#), with a(0) = 1. We say
that (a(n)),, satisfies theDwork congruencesf for all s,m € Ny and alln < p**1, we

have

a(n + mp**t1) a(n)

mo s+1
o] +mp?) — a(mle) 0P

. a(n)/a([n/p]) € Zp.

Remark 5.1.1 If (a(n)),, satisfies 1. of the Dwork congruences, then

a(n + mp*t1t) a(n)
a([n/p] +mp*) — a([n/p])

mod pSJrl

for arbitrary n € Ny.
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Proof: Letn = ng + nip*+'. Then

a(n + mp*t) _ a(no+ (1 + m)p*t) _ a(no) mod p*+l
a([n/p]+mp*)  a(lno/p] + (n1 +m)p*) — a([no/p])
and
a(n) a(ng + nip¥t) _ a(ng) mod p*+l

a([n/pl)  a(lno/pl +n1p®) — allno/pl)
and the statement follows directly by combining the two equatians.

The following theorem, due to B. Dwork, provides us with the main ingrediecotstruct
an explicit analytic continuation to thee—adic unit disc for a class of functions analytic
(in the sense of Krasner) in the opgradic unit disc. Since this is a key theorem, we
also include a proof. This proof is essentially the same a27p jve only changed some
notation.

Theorem 5.1.2 [27],Theorem 2.) Let(a(n)), be aZ,-valued sequence satisfying the Dwork
congruences. Let

d(z) = Z a(n)z".

n=0
Then for allm > 0, s > 0,
(m+1)p°—1 ‘ (m+1)p -1 '
D(2) Z a(y)zP = o(2P) Z a(§)z’  mod a(m)p*T{[2]]. (5.1)
Jj=mp?® j=mpsti

Proof: Letn = pN + r, where0 < r < p — 1. The coefficient o™ on the lefthand side

of (5.1) is

(m+1)p°—1

> alr+p(N = j)a(y),

Jj=mp?
while the coefficient on the righthand side [of (5.1) is

(m+1)p*—1

> a(N = j)a(r + pj).

j=mp?
We prove the Theorem by proving that forall s, N > 0,

(m+1)p®—1
Y. alr+p(N—=j)a(j) —a(N = jla(r+pj) =0 mod p*la(m)  (5.2)

Jj=mp?
To prove (5.2) fors = 0, remark that by the mod p Dwork congruences

a(r + p(N —m))
a(N —m)

a(r +pm)
a(m)

= a(r)

mod p,
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and thus
a(r +p(N —m))a(m) — a(N —m)a(r +pm) =0 mod a(m)a(N — m)p.
Now, we proceed by induction an Write the induction hypothesis

(a)s : (5.2) holds for alln > 0, N € Ny and for0, ..., s — 1.

To prove(a)s+1, we will first prove that fol0 < ¢ < s,

(m+1)p°—1
B)sw: > alr+p(N+mp* = j))a(j) — a(N +mp® = ja(r + pj)
Jj=mp?
P <l + mptt) e !
T — Z a(r +p(N —k))a(k) — a(N — k)a(r + pk)
Jj=0 k=jpt
mod p*Tla(m).

To prove((3),0 remark that for the lefthand side, we have

(m+1)p°—1
> alr+p(N +mp® - j))alj) — a(N +mp® — j)a(r + pj)
j=mp*
p*—1
= Y a(r+p(N = j))a(j +mp*) — a(N = jla(r + pj + mp*™),
=0

while the righthand side af3)s o is

pS—1 . . . s
jgo a(r+p(N—j))a(j +mps) _ G(N—j)a(T;-(‘gj)a(] + mp )

Apply part 1. of the Dwork congruences

a(r + pj)a(j + mp®)
a(7)

=a(r +pj +mp*t) mod p*la(j + mp®)

to each of the summands on the righthand sidgdof o to obtain(3)s o “modulop*a(j+
mp®)”.

Sincej < p®, by part 2. of the Dwork congruene€; + mp®)/a(m) € Z,, and thus any
congruence modulp®™ta(j + mp®) implies a congruence modujg™ta(m) and (83)s0
follows.

To prove(3),+ for arbitrary0 < t < s — 1, the next step is to prove thaf), , and(«),

imply (8)s,t+1-
Therefore, writej := p + ip and write the righthand side ¢F), ; as the double sum

pi:lp a(p +ip +mp°")
= = a(p +ip)

s—t—1_q (utip+1)pt—1

a(r + p(N — k))a(k) — a(N — k)a(r + pk).
k=(p+ip)pt
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By part 1. of the Dwork congruences, there exists\an € Z,such that

a(p + ip)a(i +mp*—*1)

a(p+ip +mp*~") = o) + X0 ali 4+ mpt Y,
If we define
ali+mpt—t) IR
Yip = Xiup® ' ———————= a(r +p(N = k))a(k) — a(N — k)a(r + pk),
alp+ip) k=(p+ip)p?

then each summand in the double sum is of the form
1+ -
ali +mp*—t=1) (ptip+1)p*—1

a(i) a(r +p(N —k))a(k) — a(N — k)a(r + pk) + Y ..

k=(p+ip)p?

Sincet < s, we can apply(a), to see that the sum appearing ¥, is congruent to
zero mod p'*la(u + ip). But this implies that; , = 0 mod p**ta(i + mp*~t~1), and
furthermore, sincé < p*~*~!, thatY;, = 0 mod p*"'a(m) by part 2. of the Dwork
congruences.

Hence, we haves), 41:

(m+1)p*—1
> a(r+p(N +mp® = §))a(f) — a(N + mp® — j)a(r + pj)
Jj=mp?
p—1p° 7 1—1 ali + mps -1y (utip+1)p'—1
= Z ——————= > alr+p(N-k)a(k) — a(N — k)a(r + pk)
i= a(7) k=(p+ip)p?
pt -1 st_1y (GHDp -1
- )Y a0V — R)alh) = ol = By -+ pb),
i=0 k=ipt+1

where the congruence is moduyid™a(m) and the equality is obtained by writing the dou-
ble sum as a single sum.

Now let N be minimal such that

Z a(r 4+ p(N = j))a(j) — a(N — j)a(r + jp) #0 mod p*™*
§=0

Then(3)s.s implies for arbitrarym > 1 that modulop® ta(m),

(m+1)pS—1
'Z a(r +p(N — j))a(j) — a(N — j)a(r + jp) =

p°—1

a(m) Y a(r+p(N —mp® — j))a(j) — a(N — mp® — j)a(r +pj),
=0
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where the righthand side is congruenétmodulop®*!a(m) by the minimality of V. Thus,
for m > 0, we have

(m+1)ps—1
> alr+p(N —j)a(j) —a(N = ja(r+jp) =0 mod p**a(m). (5.3)

J=mp?*
Choose€l" such thatl'p® > N, and observe that

Tps—1

> alr+p(N = j)a(j) —a(N = j)a(r +pj)
§=0

is the coefficient o£™ in

TpS—1 p5+171
O(z) Y a(j) — B(2P) a(j)#’
j=0 7=0

for n = r 4+ pN which is zero since. < p*+!7T.
Since forl < m < T — 1, equation/(5.3) holds, it follows that

> alr +p(N = j))a(j) — a(N = j)a(r + jp) =0 mod p**",
7=0

a contradiction to the choice df. Thus, we have proven (5.3) for alt > 0, and hence
() s41 follows.O

With regard to the question of analytic continuation, it turns out that we ordy tiee equal-
ity (5.1) form = 0. But for the prove of|(5.1) forn = 0 and arbitrarys, it seems to be
necessary to prove the statement for arbitrary

In the next theorem, an explicit analytic continuation of the functidn)/®(z?) (analytic
on the opemp—adic unit disc) to a domain in the closgdadic unit disc is constructed. Itis
this explicit analytic continuation that we will apply in our computations of the uiitrg, .

Let k& be the finite field withg = p® elements, and lell” := W (k) be the ring of Witt
vectors ofk.

Theorem 5.1.3 [27], Theorem 3.) Let (a(n)), be aWW—valued sequence satisfying the
Dwork congruences. Let

and
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Let® be the region inV’
D= {z e W, |0 (2)| = 1}.

Then®(z)/®(2P), which is a uniform analytic function ogiV/, is the restriction tgI of
an analytic elemenf of support®:

Proof: The function®(z)/®(z?) converges opW since®(z) and®(z?) converge there
and sinced(zP) assumes only nonzero values there. Take an infinte sequence ofispen d

Dy ={xeW,|z|<1-1/n}

which form a chained family and |&t,, be the restriction o to ©,,. Then{®,,},>» lies
in an equivalence class of analytic elements, and @hissa uniform analytic function of
supportpW. It follows that®(z)/®(2?) is a uniform analytic function of suppopll’.

By theorem 5.1.[1, it follows that for > 0,

(2)%(2P) = ®(2P)®*T(2) mod p* W [2]].
Sincea(0) = 1, ®(z) and®?(z) are units inlW[[z]], which implies

D(z) :<I>5+1(z) mod oL T
S = ) mod p W]

Now, we prove that®®(z)| = 1 for x € ©. Since equation (5.1) holds fer= 0 and
m = 0, we obtain
(I)s+1 (Z)

B0 =) mod pW ()

and thus
P51 (2) = ®%(2P)F'(2) mod pW([z]].

Since|®!(x)| = |®!(zP)| = 1 for all z € D by definition of®, it now follows by induction
onsthat|®*(z)| = 1forallz € D.
By equation|(5.1), it also follows that

(I)s—H (z) (I)S(Z)

(I)s(zp) = (ps—l(zp) mod psw[[z]L

and hence that
5T (2)®5 7 (2P) = B%(2)P5(2F) mod p*W]z].

This equality can be specialized to any W, and ifz € ©, then every factor is a unit and
we obtain
fs(x) = fs—1(x) mod p°
for )
P57 (x
fs(x) = 5o (ap)




62 5. Analytic continuation and computations

But this shows that the sequengg }s>o converges uniformly o, and

— i Fs—‘rl(z)
f(Z) T sl—>oo FS(ZP>

is an analytic function o®. A specialization of equation (5.1) toc pWW shows that

mod p° T,

and the theorem followsJ

5.2 Dwork congruences for hypergeometric CY(4)-operators

In [27], Dwork proves that these congruences hold for sequencesaaleabinomial type
numbers It turns out that the coefficients of the power series solutions of theypdrgeo-
metric CY(4)-operators are of binomial type, and hence that the Dworfireences hold in
the 14 hypergeometric examples. This is the first class of examples for weicomputed
the unit rootr,,.

In [27], we find a stronger version of the following

Theorem 5.2.1 ([27], Corollary 2) Let#, ..., 6, be positive integers. Fot € Z, let

n! ’

! ! n!
i=1 i=1
Then
1.
A(n)/B([n/p]) € Zp,
2.
A tmp®) A

B([n/p] +mp*) — B([n/p])
for all primesp andm, s € Z,..

A direct consequence of theorem 5.2.1 is the following

Corollary 5.2.1 Let#,...,0, andk, ..., k. be positive integers. Fot € Z., let

a Qz 0 d 01 in
a0 =TT s 50 =TT 5

Then 1. and 2. of the above theorem hold for all primesdm, s € Z...
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For the coefficienta(n) (listed in table 4.1) of the power series solutions of the 14 hyper-
geometric CY(4)-operators, it follows directly by theorem 5.2.1 that thelRwongruences
hold. Namely, we can expreggn) anda([n/p]) as A(n) and B(n) for certain integers
01, ...,0, inall 14 cases.

For example, we have

Gn)! D)p(n+1), (2n+1), Bn+1), (dn+ 1),

a(n) = 5 pl n! n! n! n!
and thus
a(n) = A(n)
for0; =1,00=n+1,....,05 =4n+ 1 and
_ (B[n/pD!

A Y

(D T +1)/pDinspy T2+ 1) /DDy ([0 +1)/pDinyp) (140 + 1) /D))y

[n/p]! [n/p]! [n/p]! [n/p]! [n/p]! ’
and thus

a([n/p]) = b([n/pl).

In the table below, we list the numbets ..., 8, andkq, ..., k. for all of the 14 cases.

a(n) 0,...,0, ki,.... k,
o Ln+1,2n+1,3n+1,4n+ 1 L1111
e 1,20+ 1,30+ 1,4n + 1,50 + 1 211,11
o 1,4n+1,5n+1,6n+ 1, 7n + 1 4,1,1,1,1
T 1,5n+1,7n+ 1,80+ 1,90 + 1 5,2,1,1,1
(f;’,?!)z Ln+1,2n+1,1,n+1,2n+1 1,1,1,1,1,1
(3) Unl Ln+1,1,n+1,2n+1,3n+1 L1,1,1,1,1
(3 Cnt Ln+1,1,n+1,1,n+1,2n+1 1,1,1,1,1,1,1
(>")" Lo+, Ln+L1,n+1,1,n+1 1,1,1,1,1,1,1,1
(3m) Uk 1,2n+1,1,2n+1,3n + 1 2.1,1,1,1,1
Un) ’ Ln+1,2n+1,3n+1,1,n+1,2n+1,3n+11,1,1,1,1,1,1,1
(2,7)@,%% Ln+1,1,2n+1,4n+1,5n+1,6n+1 |1,1,2,2,1,1,1,1
(4;‘)(253% L3n+1,1,2n+1,4n+ 1,50+ 1,6n+1 [3,1,2,2,1,1,1,1
(%)2 1,3n+1,5n+1,1,3n 41,50+ 1 3,2.1,3,2,1
(%?)% 1,n+1,1,6n+1,10n+1,11n +1 1,1,6,4,1,1

Hence it follows that the Dwork congruences hold for the coefficienth®fpower series
solutions to the 4 hypergeomteric CY(4)-operators.
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5.3 Explicit formulas

In this section, we give explicii—adic formulas to compute the unit ragf, and thep—adic
unit defining the reciprocal root gf-adic valuatiori, r;, , of the Frobenius polynomial out

of the data given by a CY(4)-operator. These formulas can be apptiectlg to compute
To, @ndry,  in practice.

Let p be a prime and let be the field withg = p® elements. BW := W (k), we denote
the ring of Witt vectors ofk.

Let P be a CY(4)-differential operator which is a Picard-Fuchs operatorfyle) be the
unique power series solution to the equation

Pf=0

aroundz = 0 satisfying fo(0) = 1. Assume that the coefficients ¢f satisfy the Dwork
congruences.

According to proposition 4.113, the Hasse-invariant is givei k) := f;(z), and is thus
a polynomial of degree p — 1.
Let @ be the corresponding CY(5)-operator anddgtz) be the unique power series solu-
tion to

Qg=0
aroundz = 0 satisfyinggo(0) = 1. As for fy, we assume that the coefficientsgafsatisfy
the Dwork congruences. According to proposition 4.1.3, the Hasseiamtas given by
hs(2) = gy(2).

To ensure that our CY3-crystal is ordinary, i.e.
rank(Fil° /Fil*) = rank(Fil' /Fil?) = rank(Fil? /Fil®) = rank(Fil*) = 1

in case thatP is a Picard-Fuchs operator which becomes singular in the locus defined by
s(z) = 0, we seth(z) := hy(2)hs(2), A := W[2][(s(2)h(z)) '] and defing H, V, F) to

be the rankt CY3-crystal overd., with connection specified by the operafér

Let g € Sop = Spec(Ap), and leta be a Teichmdller lifting ofa. Lete : A, — W,

e(z) = a. By theorem 5.1.3 combined with theorem 3.9.1, it follows that up to a constant
e € {#1}, the twop—adic unitsr,, andr;, determining the Frobenius polynomial ehi/

can be computed with—adic precisiorp® by the formulas

s 1+o+...40%"1
Tag = <55f_01<(a)p)> mod p° (5.4)
0 (a
and . )
s +o+...4+0%"
go\& s
r/ao = (gs_ol((oz)l’)> mod p°. (5.5)
0

These explicit formulas allow us to perform computations in practice.
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5.4 Requiredp—adic precision

In the previous section, we gave explicit formulas to computepthadic unitsr,, and
T4o- NOW, we give estimates for the-adic accuracy with which,,, andr;, have to be
computed to recover the integral coefficieats andb,,, € Z of the Frobenius polynomial

P = pGT4 —|—pSaaoT3 + pbaoT2 + ano T +1
correctly.

Let therefore bek = F), the field withp elements. By the Weil conjectures (Riemann
hypothesis), the complex absolute value of the reciprocal complex ro6tssof/2. For
the integersi,, andb,,, this implies

|aay| < 4-p%/? and|bgy,| < 6 - p?,

where| - | denotes the complex absolute value. Since

3
ZJLID?’/2 < %

forallp > 5and
3

2 P

<2
for all p > 13, it follows that for allp > 13, rq, andr’aO have to be computed modutd to
recovera,, andb,. Forp € {5,7,11}, we have to compute modujgf, and forp = 3, we
have to compute modulg®. Thus, thep—adic precision up to which we have to compute
oo, @ndry,, is rather low, and in the general cageX 13), we only have to compute the
first p®> — 1 coefficients of the power serigfg andg.

6p

5.5 A bound for the number of possible Frobenius polynomials

Since the Frobenius polynomial at a smooth peintsatisfies the Weil conjectures, it is a
symmetric polynomial of the shape

P o= pST* + p3aT® + pbT? + aT + 1

for some integersa, b depending oryy. Note that apart from this section, we always write
(e @Ndby, instead ofu andb. Let X := p?/2T. Then, as a polynomial i, we have

P=X*"+aX3+8X%+aX +1,

wherea := p~3/2q andS := p~2b. Letw be a complex root dP(X). Then, in general, all
four complex roots of the polynomidl(X') can be described in terms ofas
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where byu, we denote the complex conjugate @f Now, we want to find out which
inequalities have to be satisfied such that these four roots lie on the unit ¢irdeneral,
the four roots are pairwise distinct.

Assume that the roots do lie on the unit circle. There are three “limit casetstahaccur
before two (or four) of the roots move away from the unit circle.

1. In the case that all four roots lie i \ R and move out of the unit circle, we obtain
two pairs of complex roots, v ~! andu, !, such that. andu~! lie on the same
line through the origin and and« ! lie on the same line through the origin. The
limit case is then the case= v~! anda = .

2. In the case that two of the roots become positive real numbers and mbweé the
unit circle, the limit case is that two of the roots are equal.to

3. In the case that two of the roots become negative real numbers andontovEthe
unit circle, the limit case is that two of the roots are equatto

This has the following consequences for the polynorfliaLet v := u + @. In the limit
casesP can be written as

1.
(X —u)}(X —a)? (X% —vX +1)>

= X' —20X3 4 (2+0%)X% - 20X +1.

(X —u)(X —a)(X —1)2 = (X?—0vX+1)(X —1)
= X' 2+0)X3+(2-20)X2 - 2+ v)X +1.

(X —u) (X —a)(X+1)2 = (XZ—uX+1)(X+1)2
= X'-(w-2)X*4+(2-20)X? - (v-2)X +1.
Thus, it follows that
1. a=—20,0=2+%
2.a=—(24+v),0=2-2v,
a=—(v—-2),=2-20.
This leads us to the following inequalities farandg3:

1
ﬁ < 2+ 1042’
ﬁ Z —2 + 20(,
6 > —-2-2a.
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Hence, forg andb it follows that

2

bo< 2P
4p

> —2p2—|—2ap1/2,

> —2p2 — 2ap1/2.

These three inequalities enclose a domaiRinas can be seen in the picture.

--b=6p"2

- -b=2p~2

D
v

- -b=-2p~Z
a=p”"(3/2)

Forp >> 0, a reasonable approximation for the number of possible Frobenius polylsomia
is given by the enlosed area, which can be determined by integration, Wwhwsbtain the
asymptote%zp”2 for the number of possible Frobenius polynomials. The exact numbers
of possible Frobenius polynomials and the estimated numbers are listed fopsamas in

the table beyond. We also give the number of possible irreducible Frabpaiynomials.

P 2 3 5 7
exact number | 129 | 511 | 3001 | 9703
estimate number 120 | 498 | 2981 | 9679
irreducible 83 | 384 | 2631 | 8932

5.6 Example

Now, we describe the computational steps we performed in MAGMA for peeic ex-
ample. We consider the operator

P:=0"—42(20+1)° (70> +70+2) — 12827 (20 + 1)* (20 + 3)*,

which is nr. 45 from the list]]. Note that in the notation of chapter 6, this operator is the
operatorA x a.

We compute the Frobenius polynomial for= 7 andag = 2 € F7 with 4 digits of 7—adic
precision, i.e. modul@*. Since2 # —% and2 # ﬁls in F7, oy is not a singular point of
the differential equation.
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First of all, we computed the truncated power series solufg)ﬂ(z) to the differential
equation
Pf=0,

and obtained
fo(2) = 14 82 4 3602 + 224002> + 16954002* + 14301100825 + ...

Thus, f} (ag) = 1 € F7 is nonzero. Let*) be the Teichmiiller lifting ofyy with 7—adic
accuracy oft digits. Evaluatingfy in this point, we obtain

fia™)=1709 mod 7*

and
(@™ = 1814 mod 7.

Thus, the unit root of the Frobenius polynomial is

400 )
= Jol@) eo ed 7

"0 T 13 ((a@)T)

To compute the second root of the Frobenius polynomial, we compute thatedgower
series solutioy (z) of the fifth order differential equation

Qg =0,
where( is the second exterior power of the differential operdtogiven by

Q

0° — (44 + 2600 + 6280% + 7920° + 5600* + 2246°)

22(—6512 + 4000 + 441606 + 710400 4 422400" + 84480°)

23(4177920 + 1318092860 + 1658880062 + 1056768063 + 34406400*
4587526°)

24(100663296 + 2852126726 + 31037849662 + 1635778566° + 419430406*
+  41943046°).

+ o+ 4+ +

The solution is given by
go = 1+ 44z + 36522% 4 3377122% 4 339097002* + 35678774242° + ...,
ga(ap) = 2 € Fr is nonzero and we compute
ga(@®) =51 mod 74

and
g3 ((a™7) = 1387 mod 7%

Thus,

(T*=1)( _(4)
v = (972_1) @) 1101 mod 7
g% ((@®)7)
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Since the Frobenius polynomial (with-adic accuracy 4) is given by
P(T) = (1 —r'T)(1 — 774 /r'T) (1 — 72 J#AT) (1 — 72 /rT),

we finally obtain
P(T) =707 — 73873 +7.27% — 8T + 1.

As expected, the complex roots Bfdo have complex absolute valig?®/2.

5.7 An algorithm to compute the Frobenius polynomial from
one root

With regard to the list of CY(4) operatorg][ it turns out that, as mentioned above, in most
cases, the coefficients of the power series solufipsatisfy the Dwork congruences. But
unfortunately, the same is not true for the coefficients of the power saslasons to the
differential equations of ordérgiven by the second exterior products. Thus, in many cases
we can compute the unit roe,, but not thep—adic unitry, .

To avoid a computation af/, , we give an algorithm which computes the Frobenius poly-

nomial out of the root-,, alone in case that the Frobenius polynomial is irreducible. For
this algorithm, the root,,, has to be computed with a higheradic accuracy.

Since the two integers,,, andb,,, defining
P = pST* + pan T3 + pboT? + aoT + 1

satisfy
|| < 4])3/2 and|bq, | < 6p°,

it follows that we may writei,, andb,,, in digits
Qo = Qo + a1p + agp?, bay = bo + bip + bap?,
where either
0<ag,a1 <p—1,0<ax<lorl —p<ap,a;,0,—-1<ay <0
and either
0<bp,b1 <p—1,0<ba<70rl—p<by,by <0,-6<02 <0,

depending on whether,, andb,, are positive or negative. Thus, there &rendetermi-
nates modulg and two signs (the sign af,, andb,,) to determine. This means that
to computea,, andb,, from the givenp—adic unitr,,, we needs linear equations in
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ag, a1, az, by, by, b2, which means that we have to determing modulop®.
Letuq, = 1/rq,. Then,u,, satisfies

p6ui0 +p3aa0ugo + pbaouio + GaglUa, +1=0. (5.6)

Letu,, mod p® be given by the—adic digits
ub, = ug + u1p + ugp® + usp® + ugp® + usp” + up® + uzp’. (5.7)

Combining equations (5.6) and (5.7),we obtain the following algorithm to determine
andb,,:
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Algorithm
Step 1: Solveag = 1/uyp mod p. Then,ap € {1/up mod p,p — (1/uy mod p)}.
Step 2: Find all admissibldag, a1, by) satisfying
hi(ag,a1,by) := plapur + ajug + boug) +apup+1=0 mod p°.
This requireg2p — 1)? comparisons.
Step 3: Find all admissibléayg, a1, as, by, b1) satisfying

hg(ao, ai, an, bo, bl) = pQ(ao'LLQ + ajuy + asuQ + 2b0UOU1 + blu%)
+ hl(ao,al,bo) =0 mod p3.

This requireg2p — 1) - 9 comparisons.
Step 4: Find all admissibldag, a1, as, by, b1, ba) satisfying

p3(a0u% + apuz + ajug + asuy + 2bpugug + bou% + 2bjuguy + bgu%)
+ h2(a07a1)a2,b03b1) =0 mod p4.

This requiresl2 comparisons.

Step 5: For all (ag, a1, az, by, b1, b2) determined byStep 4 check if for the corresponding

(@ag: bag),
p6(u20)4 +p3aa0 (u§0)3 +pba0 (Uio)2 + aaouio + 1 = 0 mOd ps‘ (58)
There exists exactly one tuple,,, b,,) satisfying equation (5.8).
To compute the unit root,, modulop® is extremely time-consuming, and becomes impos-
sible (at the moment) for all primes 5. Thus, to accelerate the algorithm, it is sensible
to find means to compute the Frobenius polynomial from the unitimgomodulo a power
p" < p8. Therefore, we check if the tuples determine®iep 4satisfy the following two
conditions:
Condition 1: The polynomialP,, := pST* + aa,p3 T3 + b, pT? + aa, T + 1 is irreducible inQ[T].

Condition 2: The absolute values of the reciprocal complex root® pfre equal t?/2.

Experimentally, it turns out that under these conditions, as expectechmeetermine the
correct tuple(aa, , ba,) fromr,, mod p°.
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5.8 Example

In the tables below, we list the results we computed for the opefataiich is no.101 from
the list [2] for several primes with the Algorithm described aboyzis given by

P

0% — 2(12460" 4 24263 + 18767 + 666 + 9)

22(12360% — 2460° — 7876% — 5540 — 124)

23(1230* + 7380% + 6896 + 2100 + 12)

— 2412460 + 2540% + 20560% 4 780 + 12) + 2°(0 + 1)

+ +

In the notation of chapter & is the operatob * b. For this example, the coefficients of
the solutiong to the5th order differential equation do not satisfy the Dwork congruences.
Hence, we could not compute the-adic unitr;,, as described in section 5.3.

In some cases, we were not able to deterning, b,,) uniquely out of lack of precision.

In these cases, we give the set of possible tufilgs, b,,). Note thatoy = 1 anday =

p — 1 are singular points of the differential equation, and the Frobenius paiiaids not
irreducible there.

The numbetr in the entry(aq,, ba, ), ¢ indicates the number of possible tuples,,, ba, )
without the two conditions applied. Fpr= 5, we computed the unit roet,, modulop®.

040:2 040:3
(4,6),3 | (4,6),3

The entry “-” means that for this parameter value, we could not computeniheoot .,

because over this point, tlié—crystal is not ordinary. Fgy = 7, we computed,,, modulo

p°.

a0:2 Ck[):?) Oé():4 a0:5
(25,40),16 |  — | (25,40),16| —

Forp = 11, we computed,, modulop?.

oy = 2 g = 3
(102,472),103 | {(61,226), (—38, 18), (—27,189)},105
ag =4 ag =5
seeqp = 3 (—34,89),106
ap = 6 ap = 7
(102,472),103 | {(8,61),(19,91), (63,211), (—14,1)},104
g = 8 oy = 9
seeag =7 —




5.8. Example 73

The entry "n.i." means that in this point, the Frobenius polynomial is not iribtiucFor
p = 13, we computed,, modulop?.

ap = 2 g = 3
(20, —115),104 | {(—55,180),(—29,109)}, 103
ag = 4 g = 5}
n.i. n.i.
oy — 6 ap = 7
(70,400), 108 seeqy = 2
ag = 8 Qg = 9
n.i. seeag = 3
ag =10 ag =11
n.i. seeqg = 6
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Chapter 6

Some special Picard-Fuchs
equations: Hadamard
products

In this chapter, we apply the method explained in the previous chapter to tefpbenius
polynomials for some special fourth order operators. These opetstnsg to the list2].
The first class of operators we consider are the hypergeometrictorgefio.1 — 14 in the
list). A typical example of the second class of operators is opedatérom that list:

0" — 42 (20+1)* (7602 +760+2) — 12822 (20 + 1) (26 + 3)°.

This operator is a so-callddadamard producof two second order operators.
We mention how to solve the problem of fixing the constart +1 occuring in equation
(5.4) for a Hadamard product.

6.1 Hadamard products

TheHadamard producof two power serieg(z) := ), a,z™ andg(x) = ), b,a™ is the
power-series defined by the coefficient-wise product:

[g(x):= Zanbnx”.

It is a classical theorem, due to Hurwitz, thaffiindg satisfy linear differential equations
P and@ resp., thery x g satisfies a linear differential equatiét+ Q). Only in very special
cases, the Hadamard product of two CY-operators will again be CY{ isu& general fact
that if f andg satisfy differential equations @feometrical originthen so doeg = g. For a
proof, we refer to}], chapter 2. Here we sketch the idea. The multiplication map

m:C* x C* — C*, (s,t) > s.t

can be compactified to a map

p:Plx Pl — P!



76 6. Some special Picard-Fuchs equations: Hadamard products

by blowing-up the two pointg0, co) and (oo, 0) of P* x PL. Given two familiesX — P!
andY — P! overP!, we define a new familyx + Y — P!, as follows. The cartesian
productX x Y maps toP! x P! and can be pulled back t&§ * Y overP! x P!. Via the
map . we obtain a family oveP!. If n resp.m is the fibre dimension ok — P! resp.

Y — P!, thenX Y — P! has fibre dimensiom 4+ m + 1. The critical points of
X xY — P! are, apart fron) andoo, the products of the critical values of the factors. In
down-to-earth terms, ik — P! andY — P! are defined by say Laurent polynomials
F(x) andG(y) resp., then the fibre of * Y — P! overu is defined by the equations

F(z)=s,G(y) =t,s.t = u.

If the period functions foiX — P! andY” — P! are represented as

f(s )/Res Zans
/Res Zb ",

then

/ wAnANdsAdt B / Za 1 tmds/\dt
T xTsxsixst (F(x) = 8)(G(y) —t)(st —u) S1x Sl T st —w

= Y anbau” = f(u) 5 g(u),

whereT, andT; are the Leray coboundariesofnds, is a period ofX * Y — PL.

For example, if we apply this construction to the rational elliptic surfakes= Y with
singular fibres of Kodaira typ#& over0 and; overoco and two further fibres of typé,,
we obtain a familyX * Y — P!, with generic fibre a Calabi-Yau 3-fold with'? = 1 and
x = —36.

6.2 Some special’Y (2)-operators

We will use Hadamard-products of some very special CY(2)-operapgsaring in4] from
which we also take the names. These operators are all associatébtoal rational elliptic
surfacesX — P! with non-constant j-function. Such a surface has three or four singula
fibres, B8]. The six cases with three singular fibres fall into four isogeny-classdseach

of these gives rise to a Picard-Fuchs operator of hypergeometricrigpeeA, B, C, D)

and one obtained by performing a Mobius transformation interchangingth the singular
point+£ 0 (namedk, h, i, 7).

Name| Operator an
A 62— 4220 +1) (2n)
B [6>—3:30+1)30+2) | C)
C | 0°—4x(40+1)(40+3) | ik
D | 6° —122(60 + 1)(60 + 5) | oo
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Name| Operator an
02 — x(3202 4 320 + 12) + 25622(0 + 1) 16" 3, (-1 (/A 1/2)2
ho | 62 — (5462 4 540 + 21) + 72922(0 + 1)2 27" S (— 1)’6( 25 (- 1/3)
i | 6% — x(1286% + 1280 + 52) + 4096220 + 1)> | 64" X2, (—1)F (I (- 1/4)
J | 0% — (86462 + 8646 + 372) + 1866422(0 + 1)? | 432" Zk(—l) (73/9) (- 1/6)?

The six cases with four singular fibres are the Beauville surfa@saihd also form four
isogeny classes and lead to the six Zagier-operators, dallédc, d, f, g).
These are also of the form

0% — 2(ab® + ad + b) — cz®(0 + 1),

but now the discriminant — az — cz? is not a square, so the operator has four singular
points.

Name| Operator an
a |22 +79+2)-820+1)2 |2, (%)°
— 2(106% + 100+ 3) + 922(0 + 1) | 3, (7)*(*)
62 — 2(176° + 170 + 6) + 722°(0 + 1) | 3, 8" (~1)i(") (1)

7

(
(
0% — 2(120% + 120+ 4) + 32220 + 12 | >y, (1) () (2= 20)
(
(

6% — (96 + 90 + 3) + 272*(0 + 1)° 2= )k3n sk (3k) (i@!

S| X o

62 — (1102 + 1160 + 3) — 22(6 + 1)? Dk (k) ("%)

n

The ten productsA * A, etc. form 10 of the 14 hypergeometric families frofj.[ The

16 productsA x e etc. are not hypergeometric, but also have three singular fibres. 4rhe 2
operatorsA x a etc. have, apart frorfi andoco two further singular fibres. The operators

a x a etc. have four singular fibres apart franandoo.

Concerning the Dwork congruences for the solutions of Calabi-Yaeréifitial equations
which are Hadamard-products as described above, we observeidinerfg:

1) The Dwork congruences hold for the operatar . . ., j. For the Apery-sequence (case
b) this was also conjectured iB9) (it follows from [27] that A, B, C, D satisfy the Dwork
congruences). It follows that the Dwork congruences hold for alttfoorder Hadamard
products within this group.

2) For the hypergeometric caséds: A etc, and the case$x a, etc. the Dwork congruences
also hold for the associated fifth order operator, although even foirtiptest examples like
the quintic threefold, this is not at all obvious. In the case of the quintic, dhenfrorphic
solution around = 0 to the fifth order differential equation is given by the forméld z) =
o2 o An2z", where

5k)! 5(n — k)!
Ay =) (k,,g,)(;_k),l(l + k(=5Hy + 5Hy— 1 + 5Hsp — 5Hy (1))
k=0 )
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andHj, is the harmonic numbeil;, = Zk 1 Thus, by the formula it is not even obvious

...
that the coefficientsl,, are integers. Y

3) In fact, the Dwork congruences hold faimost allfourth order operators from the list
[2]. Itis an interesting problem to try to prove these experimental facts. Wisidor the
operators from the list] that are related to Laurent polynomials whose Newton polygons
have0 as unique interior lattice point.

On the other hand, it is clear that they cannot hold in general for diffileoperators of
geometrical origin: if we multiplyfy with a rational function of: we obtain a (much more
complicated) CY-operator for which the congruences in general wilhotat.

6.3 A geometric exampled x b

In this section, we describe the geometry of the family of Calabi-Yai thregfmdespond-
ing to the Hadamard produ&t« b.
The CY(2)-differetial operatal corresponds to a semi-stable family of elliptic curves

7: X — Pl

i.e. X is a smooth surface and the singular fibres have fyp#;, I, I1, i.e. they are given
by a union of5 rational curves configured assa-gon (/5) or an irreducible nodal rational
curve (). X is obtained from the singular surfage c P? x P! given by the homogeneous
equation

X1(X1 — X3)(X2 — X3) = A X X3(X;1 — Xo),

where the fibratior : X — P! is given by the projection t&'. By resolvingX, we obtain
X. The singular fibres oK and the types of the singular fibres are given in the following
table:

5v5—11 —=5v5—11
Ao 0 55 V5
L I, 1 I,

In the picture, lety := /5.

A=(5y-11)/2  \=—(5y+11)/2

A=0
A=



6.4. The constant in equation|(5.4) 79

The productX * X c P2 x P2 x P! is given by the equations

X)\ . Xl(Xl —_ X3)(X2 - Xg) = AXQXg(Xl —_ XQ)

u
Xyn (Y1 = Y3)(Ya —V3) = XYQYS(YI —-Ya)
which can be written as
X1(X1 — X3)( X2 — X3)Y1 (Y7 — Y3) (Y2 — V3) = uXoX3(X1 — X9)YaY3(Y1 — Y2).

The fibrationzz : X *+ X — P! is given by projection t@®'. Now letu be fixed, and let
(X * X), denote the fibre:~!(u). Let

Ay :={\: X, is singula} = {0, 00, (5v/5 — 11)/2, (=5v/5 — 11)/2}
and
Ay :={\: X, is singula} = {0, 00, 2u/(5v/5 — 11),2u/(—5v5 — 11)}.
Let b} andb3 denote the number of components of the fibkgsand X, respectively. If
u ¢ {0,00,—1,1,123 — 55/2v/5,123 + 55/2v/5},

by [37], proposition 1.1 and proposition 1.2., the threef¢ « X), admits a projec-
tive small resolution(X = X),. We compute the Hodge numbet$!((X * X),) and
r*1((X * X),). By [37], section 1, the Hodge numbers are given by the formulas

P X X)) = S i -n+19-Y ok-n- Y @3-

AEA1UAS AEA; AEA2

and
h2((X * X),) =19 — Z (by + b2 —1).
AEAINAg

Thus, in our example, it follows that
KU (X # X)) = 51 andh*2((X « X)) = 1,

and hence the Euler characteristic is givemdsy —100.

6.4 The constant: in equation (5.4)

In this section, we repeat a result of Yo to determine the constantin equation (5.4)
for differential operators that are Hadamard products of CY (2)aipes.

Let X — P! andY — P! be two pencils of elliptic curves ovét, with totally degenerate
fibres Xy andYj at the origin. In thel4 hypergeometric examples liké « A and in the24
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examples corresponding to operators which are Hadamard product$ ke X, andYy
are simple normal crossing divisors.

If Xy is split multiplicative (the slopes of the tangent lines at the singularity lig,)nthen
ex = 1, while if X is non-split,ex = —1. The same holds fary. Let P and(@ be the
CY(2)-operators corresponding to the famili&sandY’, and lete be the constant in the
formula of the unit root corresponding to the CY(4)-operatox (). Then the following
Lemma holds.

Lemma 6.4.1 ([59], Lemma 4.1) The constanin given bye = ex - ey.

This puts us in a position to compute the Frobenius polynomials for CY (4)atgrerlike
A x a explicitly.

6.5 The constant: in the hypergeometric cases

In the 14 hypergeometric cases of CY(4)-operators, it is possible to prove thag éxe
ist families of Calabi-Yau threefolds for which the constargatisfiess = 1. Namely,
for each of thel4 hypergeometric CY(4)-operatoi3, there exists a family of complete
intersections in weighted projective space such fhas the Picard-Fuchs operator on a
rank-4-submodule of the relativé{l%R. With the help of the defining equations of these
families of Calabi-Yau threefolds, we prove that 1.

As in section 4.2, lefl’ = Spec(F,[¢][s(v)7!]), and letf : X — T be a family of
hypergeometric Calabi-Yau threefolds with defining polynomigl§X, 1), ..., F.(X, ).
Let z := (k12)~*2, wherek; andk, are positive integers depending on the family. By
z(a), we denoter () := (kya)~F2.

Proposition 6.5.1 Let H(z) be the polynomial ok, and leta € F),. If r,, is the unit root
of X,, then

re = H(z(a)) mod p.

Proof: Let N, be the number of points oi,, with coordinates ir¥,, and letN), = {z €
IFZ“,E(:::, a) = 0,1 <i < r}, whered is the dimension of the ambient spaceXf and
k is the number of the defining equations.

ThenN, = ]\;‘/1__11 andN, =1 — N/, mod p.

Let

Py(T) = det(1 — FT|H}, (X4 x, Fp, Q1))
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Then, by the Weil conjectures, the Zeta functié(X, /F,, T') is given by

P (T)P5(T)P5(T)
Po(T) Po(T) P4 (T) Ps(T)

P3(T)

(1-7)A —-pT)(A - p*T)(1 - p°T)
1 —aT + O(T?)

=)~ pT)(1 — 1)1~ °T)
1—aT
1-T
= 1+(1—a)T mod (T?p).

Z(Xo/Fp,T)

mod T?

= mod (T2, p)
Remark that,, = a mod p. On the other hand, by definitiod(X,,/F,, T') is given by

Z(X/F,,T) = exp(N.T +O(T?))
= 1+ N,T modT?

It follows thata = N/, mod p. Obviously, the following equality holds:

Ny= > (1= Fi(z,a)P )..(1 = Fp(z,0)").

xG]Fg'H

0 otherwise ’

z€lF),

Since

it follows that
Z (1— Fi(z,0)P 1)..(1 = Fr(z,0)P" 1) = Cp_y mod p,
$€Fg+l

whereC,_ is the coefficient of X;... X4, 1)P~ 1 in (Fi(z, a)...F.(x,a))P~L.
Thus,a = N, = C,—1 mod p, and it follows by section 42 that
Cp1 =P VH(2(a)) = H(2(e)) mod p

for somek € N, where the last equality holds sinaé! = 1.
Thus,
ra =a=Cp_1 = H(2(a)) mod p.

|

Now, we can apply proposition 6.5.1 to prove that the constamtequation((5.4) is equal
to 1 in the hypergeometric cases.

Proposition 6.5.2 In the 14 hypergeometric cases, we have- 1.

Proof: By equation((5.4), we have, = ¢f} (a) mod p. SinceH(z) = fi(z), the propo-
sition follows with proposition 6.5/13
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6.6 Computations

In the hypergeometric cases we reproduced the results obtaingd]inlfi the appendix,
the results of our calculations on tR¢ operators which are Hadamard products like a
etc. are collected. We computed coefficiefits, , b, ) of the Frobenius polynomial

P(T) =14 aayT + bagdT? + a0,p>T> + p°T*

for all primesp between3 and17 and for all possible values ef, € F,. To generate the
tables of coefficients in the appendix, we used the programming langua@gvWA We
computed with an overafi—adic accuracy of 500 digits. This was necessary, since in the
computation of the power series solutions to the differential equafiyhs- 0 andQg =
0, denominators divisible by large powers@bccured during the calculations (although
the solutions themselves have integral coefficients). The occuranceyefdanominators
reduces th@—adic accuracy in MAGMA, and thus we had to compute with such a high
overall accuracy to obtain correct results in the end. For the unit roetagélves, we
computed the ratio
f3(2) |
fir)

with p—adic accuracy modulp®. We checked our results for the tuplgs,,, b.,) deter-
mined the absolute values of the complex roots of the Frobenius polynomial) ithe
Weil conjectures should have absolute vatué/2. Needless to say, this was always ful-
filled.

mod p?



Chapter 7

Modular forms

If the fibre X, of a family 7 : X — P! of Calabi-Yau threefolds over ¢ P'(Q) acquires
an ordinary double point, then we expect the Frobenius polynomial torfasto

P(T) = (1—x(p)T)1 - px(P)T)(1 — a,T + p*T?)

for some charactey. The factor(1 — a, T + p*T?) is the Frobenius polynomial on the two
dimensional pure part aff®. This part can be identified with thé? of a small resolution
X, which then is a rigid Calabi-Yas+fold.

By the modularity conjecture, the numbers are Fourier coefficients of a weight four
modular form for some congruence subgrdyp.N ).

In this chapter, we describe the above phenomenon and identify the mdolutes for
several examples of CY(4)-operators.

7.1 Basic definitions

In this section, we give the basic definitions of modular forms and formulatedueilarity
conjecture for rigid Calabi-Yau threefolds. For a more detailed presentatithe subject,
see fi7].

The groupl” := SL(2,Z) is called thefull modular group For N € N, the subgroups

To(N) ::{(‘CL 2>er,czo modN}

of finite index inI" are calledHecke subgroupsf I'.

An unrestricted modular form of weight € Z andlevel N € N is an analytic function on
the upper half planél satisfying

f <Z7T_j__§> = (CT—I—d)kf(T) for all ( (cz Z > €Ty(N), T € H.

83
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Let g = e?™7. The functionf has ag—expansion

fla) = Z ng"-

n=—oo

It is called amodular formif ¢, = 0 for n < 0, and acusp formif ¢, = 0 for n < 0.
Let My (I'o(IV)) denote the set of modular forms of weightand levelN. It is a finite
dimensional vector space, and the set of cusp forms, denotsg(by(V)), is a subspace
of Mk(PO(N))

A cusp form is called an eigenform if it is the eigenvector of a so-cafledke operatarlf
rir2| N andf is an eigenform fof'o(N/r1r2), thenf(ri7) is an eigenform fof'o(N) and
is called aroldform The oldforms span a subspagg(I'y(V)), whose orthogonal com-
plement is denoted by “(I'o(N)). An eigenform inS;*(I'o(XV)) is called anewform

Let X be a Calabi-Yau threefold defined ov@rand letp be a prime ofjood reductiorfor
X, i.e. the reduction o modulop, X, is again a Calabi-Yau threefold. L&}, denote the
geometric Frobenius o . We define

ap(X) := tr(Fp| H3(X xq Q, Q).

A Calabi-Yau threefoldX is calledrigid if h%!1(X) = 0, and thush®(X) = 2. The
modularity conjecture49] for rigid Calabi-Yau threefolds states the following:

Conjecture 7.1.1 Let X be a rigid Calabi-Yau threefold defined ov@r ThenX is modu-
lar, i.e. there exists a newform

f(Q) = Z bmqm
k=1

of weight4 for I'y (V') such thata,(X) = b, for all primes of good reduction foX. The
level N is only divisible by primes of bad reduction far.

The modularity conjecture has been proven by Yui und Gouvea in fuktrgdity in [33],
based on the results of Dieulefait i8J and [24]. Recently, Dieulefait21] provided an-
other proof of the conjecture. By a result of Sei$&|[and Dieulefait P2], the exponent,,
of a primep dividing IV is bounded by, < 2forp > 3, e3 < 5andey < 8.

In the following, to identify weight four newforms fdry(V), we will use the notation of
[47]. By N/m, we denote thenth newform forl'g (V). A twistof a newform is a newform
which only differs from the original form by a character.

7.2 The Frobenius polynomial at an ordinary double point

Let X — P! be a family with generic fibre a CY-threefold, and tc P! be the set of
points where the fibres become singular. We$et P!\ X.

Assume that over the poirte ¥, the fibre X, aquires an ordinary double point. Assume
furthermore that for a smooth fibi&,, we haveh?(X;) = 1. H3(X,) is a pure Hodge
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structure of weighs.

Let 7" be the monodromy operator aroundnd letN := log T'/2xi. Sinces is an ordinary
double point,V is a nilpotent map of rank satisfyingN? = 0.

Let H be the limiting mixed Hodge structure. Since the map

N Gr?j_lH — Gry H

is an isomorphism for all > 0, it follows that the rank oGrg"H andGr}fVH is equal to
one. Thus, it follows thaGr}” H is a pure Hodge structure weightof rank2 = 1 + 1,
while GrY H andGr}” H are pure Hodge structures of weighand4.

1
1111 — 1 0 0 1
1
pure Hodge structure mixed Hodge structure
on the limit

Now consider the consequences of thisadically. Letp be a prime,k = I, and let
W := W (k) be the ring of Witt vectors. LeX — P! be a pencil of CY-varieties having a
flat model ovedV, such that the reduction ovér my : Xo — P!, is a pencil of Calabi-Yau
varieties. Assume that overc P!(k), the fibreX, aquires an ordinary double point. Then,
according to the limiting mixed Hodge structure, the Frobenius polynomia ,0bn the
“limit module” is expected to factor in the following way:

P(T) = (1 —x()T)1 - px(p)T)(1 — a,T + p*T?)

wherey is a character, the factof$ — x(p)T") and(1 — px(p)T") correspond to the rank-
modulesGry andGr}Y of weight2 and4 respectively, and the factét —a, T+ p37?) cor-
responds t@:r} . The pure Hodge structu@r)” has Hodge numbers’3 = 1, b2 = 0,
which are the Hodge numbers of the rigid Calabi-Yau threeféjdvhich is a small reso-
lution of the fibreX. We talk about the Frobenius polynomial on the “limit module” since
for the singular fibreX, neither crystalline cohomology nor rigid cohomology provide the
right framework, and our formula for the unit root of the Frobenius polyial is only valid

in smooth points. But still, it turns out that by evaluating the quotients

fo(2) go(2)
Efo(zp) and go(2P)

at a Teichmuiller lifting of a singular point, we could compute polynomials that fadtm
the way just described above.

7.3 Modular forms of weight four

In some cases, for primes 23, the p—adic accuracy modulg? for the computations
described in section 6.6 was too low, and we had to computeprhdthis happened in the



86 7. Modular forms

case where the parameteg < [, was a critical point of the differential equation. But it
is somewhat of a miracle that our calculation made sense at the critical poaiks/Asit an
ordinary double point, the Frobenius polynomial is expected to factor as

P(T)=(1—x(p)T)1 —px()T)(1 — a,T + p°T?)

for some charactey. Since the factot1 — a,T + p3T?) is the Frobenius polynomial on
the two dimensionaH? of a rigid Calabi-Yau3-fold, according to the Weil conjectures,
a, satisfiesla,| < 2p3/2, where| - | denotes the complex absolute value. For the integral
coefficientsa,,, andb,,, of the Frobenius polynomial

P = pST* + paoe T3 + pbog T? + a0y T + 1,
we derive the bounds
|| < p+p? + 20> and|ba, | < 20°% +p* + p°/).
Since
p4
p+p?+ 2P <
forallp > 3 and

4
P
20772 + " +0°%) < 5

for all p > 5, it follows that by computing the—adic unitsr,,, andry,, modulop?, we re-
cover the Frobenius polynomial correctly. Note that by the estimates aibals) follows
that for primes> 29, it is enough to compute modujg in the singular case, too.

According to the modularity conjecture for such Calabi-¥afolds, the coefficients,, are
Fourier coefficients of a weight four modular form for some congreesubgroud’o(N).

This is exactly the phenomenon that occurs at the singular points of oaradiffal equa-
tions. For the hypergeometric cases we refind the resul&ghfifor 16 of the24 operators
Axa etc, we have two rational critical values. In 31 of the cases we are abbajeoturally

identify the modular form. We say conjecturally, since we only computed thificieats

a, for p < 23.

We remark that the critical points of the operators are reciprocal integerthe level of the
corresponding modular form divides that integer. For the cases ingallv@operator one
usually has equality and so the modular form o ¢ presumably has leve888, which
was outside the range of our table. Remark that all levels appearing oolyérprimes2
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and3.
Case| Poaint Form | Twistof | Point Form | Twist of
Axal —1/16 | 8/1 - 1/128 | 64/5 8/1
Bxa | —1/27 | 27/2 | 27/1 | 1/126 | 54/2 —
Cxal —1/64 | 32/3 | 32/2 | 1/512 | 256/3 -
Dxa || —1/432 | 216/4 | 216/2 || 1/3456 | 1728/16 | 216/1
Axc| 1/144 | 48/1 | 24/1 1/16 16/1 8/1
Bxc | 1/243 | 243/1 - 1/27 | 27/1 -
Cxc| 1/576 | 576/3 | 94/4 1/64 64/3 32/2
Dxc| 1/3888 1944/5 || 1/432 | 432/9 | 216/2
Axd| 1/128 | 64/4 | 32/1 1/64 | 32/2 -
Bxd | 1/216 9/1 — 1/108 | 108/4 108/2
Cxd| 1/512 | 256/1 — 1/256 | 128/4 128/1
Dxd || 1/3456 | 576/8 | 288/1 || 1/1728 | 864/3 | 864/1
Axg | 1/144 | 24/1 — 1/128 | 64/1 8/1
Bxg| 1/243 | 243/2 | 243/1 | 1/216 | 54/4 54/2
Cxg | 1/576 |288/10| 96/4 1/512 | 256/4 | 256/3
Dxg | 1/3888 | 1944/6 | 1944/5 || 1/3456 | 1728/15 —

7.4 An Algorithm to compute coefficients of modular forms

In this section, we describe how to compute the fa¢téi™? — a, 7 + 1) of the Frobenius
polynomial in an ordinary double point if the unit roqt, is known modulg?®. Note that
itis not necessary to know the second root, and tfyysof the degree four Frobenius poly-
nomial for these computations.

Since the coefficient, determining the factoip372—a,T+1) of the Frobenius polynomial
in an ordinary double point satisfies

|ap| < 2p3/2
according to the Weil conjetcures, for all primes- 5, it follows that
lap| < P’
Thus, we can write
ap =ag +pai, 0 <ap,a1 <p—1orl—p<ap,a <0.

Let r,, be the unit root of the Frobenius polynomial, anddg} = 1/r,,. Then,u,, is a
root of the polynomiap®7? — a,T + 1. Assume that we have computeg, modulop?,

Uy = Up + pus + p?uz,0 < ug,ut,ug < p—10rl—p < ug,up,uz <0.
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Then, since
p3ui0 — Ay, +1=0 mod p?,

we can recovety anda; by the following formulas:

ap = 1/up mod p
1 —upa

a; = ﬁ—aoul/uo mod p
puo

and
p(ug + pur + p®usz) * (ap +pa1) =1 mod p®.

We applied these formulas to compute the coeffcientsut of the unit root for several
examples found in the following sections.

Modular forms for the operators «a * a etc.

In this section, we give the results of our computations for CY(4)-opes #tat are Hadamard
products of some CY(2)-operators with themselves.

We also computed the coefficients of the conjectured modular forms (corgdcince we
computed, only for p < 23) in singular points that are not rational. Note that in the case
b x b, we were not able to identify the modular forms in the singular pdids— 55/2v/5
and123 4 55/2+/5 since we could not compute the necessary amount of coefficignts
determine the modular forms in these points.

Case Point Form | Twist of Point Form | Twist of
axa 1 21/2 - 1/8 14/2 —
—~1/8 6/1 - 1/64 21/2 -
bxb 1 22/2 — —1 5/1 -
ckc 1 10/1 - 1/9 18/1 | 6/1
-1/9 180/5 | 60/1 1/81 10/1 —
d*d 1/16 12/1 - 1/32 16/1 | 8/1
—~1/32 48/3 | 6/1 1/64 12/1 —
fxf 1/27 9/1 - —1/27 54/4 | 54/2
1/54 — 1/54y/=3 | 27/1 — 1/54 —1/54/=3 | 27/1 —
g*g 1/64 17/1 - 1/72 18/1 | 6/1
1/81 17/1 — —1/72 306/8 | 102/3

Modular forms for operators that are no Hadamard products

In this section, we give our results of the computations of conjectured nmofiuras for
conifold points of CY(4)-operators that are, unlike the operatorsidered in the previous
sections, no Hadamard-products of operators of lower degree.
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An explicit descriprion of the differential operators we considerec:tiogr with the first co-
efficientsa,, (up top = 19) of the conjectured modular forms can be found in appendix A.2.

In this table, we list some operators with one conifold point. Note that the oimyegr
occuring in the factorizations of the levels of the modular form=ase5, 7.

Case|| Point | Form | Twist of
20 1/54 108/2 —

23 || 1/32 | 32/3 | 32/2
73 || 1/432 [ 432/13 [ 54/2
116 || 1/256 | 72/2 24/1
119 || 1/54 | 108/2 —
255 || 1/81 | 225/4 | 5/1
266 | 1/192 | 882/14 | 126/2
201 | 1/5121] 192/4 | 6/1
202 | 1/432] 2 392/2

In this table, we list some operators with two rational conifold points. The oniyigs
occuring in the factorizations of the levels of the modular formsase5, 7, 11.

Case|| Point Form | Twistof | Point | Form | Twist of

28 | 1/64 | 14/2 - 1 6/1 -
33 | 1/1024 | 28/1 - 1/16 | 28/1 | -
55 | —1/64 | 5/1 - 1/256 | 40/2 | —
182 || 1/27 | 33/2 - 1716 | 22/3 | ~—

183 | 1/64 | 16/1 | 8/1 148 [ 72/1 | ~—
205 | 1/32 | 32/3 | 32/2 || 1/27 | 15/2 | ~—
293 || 1/1296 | 720/5 | 5/1 1/16 | 80/4 | 5/1
296 | —1/27 | 99/1 | 33/1 | 1/512 | 44/1 —
297 || 1/512 | 80/4 | 5/1 | 1/432 | 180/5| 60/1
299 | —1/16 | 72/2 | 24/1 | 1/32 | 96/3 | 96/2
301 | 1/864 | 288/11| 96/4 || 1/64 | 16/1 | 8/1
303 || —1/432| 108/4 | 108/2 || 1/3456 | 432/8 | 108/1
305 | —1/64 | 56/2 — | 1/1728504/1 | 168/1

In this table, we list some operators with three rational conifold points. the primeuring
in the factorizations of the levels of the modular forms &, 5,7,11, 17, 19, 23.
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Case|| Point | Form | Twist of || Point | Form | Twist of | Point | Form | Twist of
21 —-1/4 | 8/1 — 1/32 [ 112/4 | 28/2 1/4 56/2 —
34 || 1/25 | 30/1 — /9 | 6/1 — 1 6/1 —

59 | 1/54 |684/5| 684/4 | 1/16 |228/2 — 1/4 | 12/1

268 || —1/27 | 15/2 - —1/36 | 324/2 | 324/1 [/ 1/108| 60/1 -
269 || —1/16 [ 176/1| 88/2 || —-1/27| 7 33/1 || 1/48 |432/11] 216/1

283 | 1/108 | ? 552/2 | 1/16 | 23/1 - 1/12 | 216/4 | 216/2

208 | —1/4 | 68/1 — —~1/36 | 12/1 - 1/64 | 34/2 -




Chapter 8

Dwork congruences for
reflexive polyhedra

In this chapter, we prove congruence properties of the coefficiergevwér series related
to Laurent polynomials. LeF'(X,t) = 1 — tf(X), wheref(X) = f(X1, X2, X3, X4) €
ZIXE ..., XEY is a Laurent polynomial. Assume that the zerosFifX, ) define an
affine Calabi-Yau threefold ift = (C*)*. It turns out that many CY (4)-operators arise as
Picard-Fuchs operators of families of smooth Calabi-Yau compactificatioaf§irme toric
Calabi-Yau threefolds as described above.

For example, take the Laurent polynomial

f(Xl, X9, X3, X4) =X1+Xo+Xs+ X4+ 1/X1X2X3X4.
In this case, the zeros &f( X, t) define the affine Calabi-Yau threefoldThwhose smooth

Calabi-Yau compactification is mirror symmetric to the quintic threefol@irdefined by
the equation

XD 4 X5+ X5+ X5 + X2 — 5t X1 Xo X3 X, X5 = 0.

Let z = t°. In our example, the Picard-Fuchs operator is then given by
0* — 52(50 4 1)(50 + 2)(50 + 3)(50 + 4),

and the holomorphic solution is

s !
Dy(2) = Z (75175)2”
n=0
The holomorphic solutions of differential operators related to Laurelynpmials as de-
scribed above can be explicitly expressed in terms of the Laurent polyhgiiig. We
prove that the coefficients of these power series solutions satisfy a naodifision of the
Dwork congruences. The methods we apply for the proof are compléezheatary.

91
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8.1 Laurent polynomials and the congruence D3

We prove a lemma about integral polyhedra viiths unique interior lattice point and derive
a “weaker” congruence property D3 from the Dwork congruence Ti#&e lemma will be
the key ingredient for the proof of the congruence D3 for coefficieh{zower series that
are related to integral polyhedra with only one interior point.

Let (a(n)), be a sequence satisfying the Dwork congruences D1 and D2. By & cros
multiplication, the congruence D2 becomes

D3 a(n+mp**a([n/p]) = a([n/p] + mp*)a(n) mod p**.

So if we write
n = ng+nip+ nop® + ... + ngp®

and setngy1 := m, whereny, ...,ns satisfy0 < n;, < p — 1 andnsy; is an arbitrary
non-negative integer, then D3 is equivalent to

a(ng + ... + ng1p* ™ Ha(ng + ... + np®™ 1)
= a(ng+ ... + ngp®la(ng + ... + ngp1p®) mod pTl.

In the following sections, we will prove this congruence for sequeneswhich are given
implicitly by Laurent polynomials whose Newton polyhedra contaias unique interior
lattice point.

We will use the familiar multi-index notation for monomials and exponents

X2 = X?lXSQ .. .Xg", a—= (al,ag, R ,an) ez
to write a general Laurent-polynomial as

n )

f= anXa €ZIX, X Xo, Xoh o X, X!
a

Thesupportof f is the set of exponentsoccuring inf, i.e.

suppf) := {a € Z" | ca # 0}

TheNewton polyhedrod\(f) C R™ of f is defined as the convex hull of its support

A(f) := conveXsupff)).

When the support of consists ofim monomials, we can put the information of the poly-
hedronA := A(f) in ann x m matrix A € Mat(m x n,Z), whose columns;,
j=1,2,...,m are the exponents gf,

ailr air2 ... Gim
A:(alaa%"'vam):

Gp,1 @12 ... Qnm
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so that we can write

m

f= iCanj = ch ﬁXai’j
=1 i=1

j=1
The polyhedrom is the image of the standard simpléx,, under the map

RrR™ A R7

Lemma 8.1.1 The interior points (i.e. the points that do not lie on the boundary) of a
polytopeA with 0 as interior lattice point are combinations

ala] + ... + anpan,

of the columns oft with 3 | a; < 1.

Proof:
Assume that there exigtv, ..., az, ) With 377, a; = e < 1 such that

P:=oma; +...+anan

lies on the boundary ah. ThenQ := %(alal + ... + amay,) also lies on the boundary of
the polytope (sincé Z;?;l a; = 1), and lies on the same line through the origj P as
the pointP.

But sinceP andQ both lie on0Q and on the boundary, the boundary contains a line through
the origin. This is a contradiction sin@ds an interior point ofA. O

The following lemma will play a key role in the sequel.

Lemma 8.1.2 Let A be an integral polyhedron with as unique interior point. Then for all
non-negative integral vecto(g, ¢o, . .., ¢,,) € Z™ such that

Z ai,jﬁj 7& 0
i=1

for somel < ¢ < n, one has
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Proof: Assume that there exists a non-negative integral vecter(/y, ..., ¢,,) € Z™ such
that) ;" a;;¢; # 0 for somel < i < nand

m

m
g:= glcd (Z CLLjfj) > ij
i=lon 3

----- ; j=1

We have
61 ZTzl angj
aly + ...+ anply, = A : = :
U 2 j=1 il

The components of the vector at the right hand side are all divisibjesbythat after division
by g we obtain a non-zero lattice point

/ 14
vi= —lal—l—...—l——mam ez’
g g

of A with

Shcn
; g
By lemma 8.1.1, the interior points df (i.e. the points that do not lie on the boundary)
consist of the combinations

ar1al + ... + apa,

of the columns ofd with 3%, a; < 1. As 0 was assumed to be the only interior lattice
point of A we arrive at a contradictior]

We remark that the above statement applies in particuleaflexive polyhedrawhich have
0 as unique interior lattice point.

8.2 The fundamental period

Every Laurent polynomial defines implicitly the power series whose coaffie are the
constant terms in the powers of the Laurent polynomial. It turns out thapdwer series
can be seen aseriod on the toric hypersurface defined by the Laurent polynomial. By
a period, we mean an integral of an algebraically defined differential fwer a chain in
some algebraic variety.

In this section, we state the theorem that the coefficients of this period ghisfgodified
Dwork congruence D3. This theorem is the main result of this chaptenvdide proven
step by step in the following sections.

Notation 8.2.1 For a Laurent-polynomial we denote ly], the constant termthat is, the
coefficient of the monomia(®.
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Definition 8.2.1 Thefundamental periodf f is the series

o(t) =Y a(k)t*, a(k) = [f*o.

k=0

Note that the functior(¢) can be interpreted as the period of a holomorphic differential
form on the hypersurfac®, := {t.f = 1} C (C*)", as one has

e(t) = Yplolfflot"
200 e Jr £
- W[Tziozofkth

1 1
- @2m)n fT WQ

= e Wt.

Hereq := &1 4% 4% T isthe cycle given byX;| = ¢; and homologous to the Leray
coboundary ofy, € H,,_1(X;) and

1
Wt = RGSXt (WQ)

In particular,®(t) is a solution of a Picard-Fuchs equation; the coefficielfty satisfy a

linear recursion relation. This is the point where the CY (4)-operatqgrsamagain; for many
Laurent-polynomialsf (X) in four variables, the perio@(t) is the solution to a CY(4)-
differential equation. Examples for this can be found in the list in the append

Theorem 8.2.1Let f € Z[ X, Xfl, ..., Xn, X71]. Assume that the Newton polyhedron
A(f) has0 as its unique interior lattice point.

Then the coefficientsgn) = [f"]o of the fundamental period satisfy for each prime number
p ands € N the congruence

a(ng + ... + ngp®a(ny + ... + ns—lps_Q) =

a(no + ... + ng_1p°* Ha(ng + ... + ngp* ') mod p*, (8.1)
where0 < n; <p—-1for0<i<s—1.

We remark that already for the simplest cases where the Newton polyheaintains more
than one interior lattice point, likg = X2+ X !, the coefficients(n) do not satisfy such
simple congruences.

8.3 Proof for the congruence mod p

The most simple part of theorem 8.2.1 to prove is the congruence mpdBlat part of the
crucial ideas behind the proof of the congruence modulo arbigrary > 1, already apply
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in this simple case, without complicated technical details.

To prove D3 fors = 1 we have to show that for ally < p — 1,
a(ng + n1p) = a(np)a(ni) mod p.

The proof we will give is completely elementary; the key ingredient is lemma 8vhizh
states that for all non-negative integfak (¢4, ..., ¢,;,) one has

ged (D aiity) <> 4.
=1 j=1

i=1,...,
Proposition 8.3.1 Let f be a Laurent polynomial as above angl < p. Then

[ f Py = [ [f"g - mod p.

Proof: As f has integral coefficients, we hayé&'?(X) = f™(X?) mod p. So the con-
gruence is implied by the equality

[0S (X = [ (X))o [ (X]o

which means: the product of a monomial frgfi¥f (X)) and a monomial fronf™! (X?) can
never be constant, unless the two monomials are constant themselves. Iisistisent
that we will prove now.
For the product of a non-constant monomial frgit? (X) and a non-constant monomial
from f™(XP) to be constant, the monomial coming froff* (X) has to be a monomial in
XP ..., Xk, since all monomials if™ (X?) are monomials iiX?, ..., X%.
A monomial "
M = xhairt+blast. . +lmam _ H Xflngijgn,ij
j=1

appearing inf" (X)) corresponds to a partition

ng=401+..+4n
of ng in non-negative integers. If A/ were a monomial iX?, ..., X%, then we would have
the divisibility

m
p | Zaingj for1 <i<n,
J=1

and hence

m
pl ged O aijly).
1=1,....,n j=1

On the other hand, by lemma 8.1.2 we have

m m
' glcd (Z C%jfj) < Zﬁj =ng <Dp.
=10 55 =1
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So we conclude tha} ", a;;¢; = 0 for 1 < j < n and that the monomial/ is the
constant monomiak®. Hence it follows that

(X" (XP)]o = [F* (Xl [F (XP)]g

and since
[fm (Xp)}o = [fm (X)}o )

the proposition followsO

8.4 Strategy for highers
The idea for the higher congruences is basicallyséume as fos = 1, but is combinatori-

ally more involved. Surprisingly, one does not need any statements stithage8.1.2. To
prove the congruence (8.1), we have to show that

s s—1 s—1 s
[H fnkpk] [H fnkpkll — [H fnkp’“] [H fnkpkll mod p°. (8.2)
k=0 0 0 k=0 0 0

k=1 k=1

To do this, we will use the following expansion " (X):

Proposition 8.4.1 We can write
° k
FX) =) P (X,
k=0

whereg,, j. is a polynomial of degreep” in the monomials of , independent of, defined
inductively byg, o(X) = f*(X) and

k—1
Prgni(X) = FX)"" =3 plga (X7, (8.3)
j=0
Proof: We have to prove that the right-hand side of equation (8.3) is divisiblé* by his
is proved by induction ok and an application of the congruence
FX)P™ = F(XPP" mod p™. (8.4)
For k = 1, the divisibility follows directly by((8.4). Assume that the statement is true for

m < k-1 Wiite f(X)""" = S8 5 pig, (X7 ). Then, Y025 pgn; (X7 =
J‘"(Xp)”pkf1 = f(X)”pk mod p", and thu#(X)”pk—Zf;é pjgn,j(kaﬂ) =0 mod p".0
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The congruences involve constant term expressions of the form

b b k
[H fnkpk] B {H > P g (X
0

k=a k=a j=0 0
- Z ZPZk “ [H gnk,lk - % ] : (85)
ola  ip<b 0

Thus, equation (8!2) translates into

s s—1
Y.L Y pZimo ik RC] [H gnk,ik(XI)kik)] lH _— (kaljk)]
0 0

10<0  i5<s5j1<0  js—1<s-2 k=0 k=1

s—1 s
Z Z Z Z pZZ;é e+ n_q1 Jk lH G i (ka—ik )‘| [H G (ka—l—jk )]
0 0

i0<0  is_1<s—151<0 ji<s—1 k=0 k=1
mod p° (8.6)

Since this congruence is supposed to hold mogtijamn the left-hand side, only the sum-
mands wnth i + Zz;ll I, < s — 1 contribute, and on the right-hand side, only those
with Y7~ ik + Zk:l I, <s—1playarole.

Now, we proceed by comparing these summands on both sides of equafipnVi@ will
prove that each summand on the right-hand side is equal to exactly one sdroméme
left-hand side and vice versa.

8.5 Splitting positions

So we are led to study far < b expressions of the type

a b I [H gnk,zk k Zk ]

where thed < n; < p — 1 are fixed fora < k < band! := (i4, ..., ip) IS @ Sequence with
0<ip <k.

0

Definition 8.5.1 We say thati(a, b; I) splits at/ if
G(a,b;I)=G(a,l —1;1)G,b; I).

The number of entries of is determined implicitly bya andb so that byG(a, ¢ — 1;1)
we mean the expression corresponding to the sequgngce., i), while by G(¢,b; 1)
we mean the expression correspondindito..., ;). Note that! = a represents a trivial
splitting, but splitting at = b is a non-trivial property.
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Proposition 8.5.1 If k£ — i, > ¢ for all k£ > ¢, thenG(a, b; I) splits at/.
Proof: A monomialH;”:l(XPk*i’“)ajﬂjvk occuring ingy, i, (XP*7™) corresponds to a par-
tition ' ' '
Bik + ot Bmp = pny < ptl — ph
of the numbep™n,, in non-negative integers; x, ..., Bm k. SO we have

PR (B A+ oo+ B < PFT = pE

k—%)

It follows from the assumptions that the proddet/, b; 1) = Hizg G i (XP is a
Laurent-polynomial inX”. As a consequence, the product of a monomiél(n, (—1; 1) =
Hﬁ;la Gng i (XP]H’“) and a monomial o7 (¢, b; I) can be constant only if the sum

m

m
,_ —ia —1—ig_
mi =Y p B+ YT T a8 e

J=1 J=1

is divisible byp’ for 1 < i < n.
Set A '
Vi =P B+ A P T B0

so that
m
Z a; 7Y = M.
j=1

It follows that
D= P Bty P T T B < ptT —p 4 p T = -t <
j=1 j=1 j=1
Hence, it follows that

m m

Pl oged OO aigy) < v <
i=1,...n ._

7=1 7j=1
where the first inequality follows from Theorem 8/1.2. This imp@?:1 a; jv; = 0 for
1 < i < n. But this means that the monomialifi_} g,,, ., (X*"*) is itself constantD

Now that we know that we can split up expressioi(s, b; I) satisfying the condition given
in proposition 8.5.11, we proceed by proving that all the summands on bothafidguation
8.6 that do not have a coefficient divisible pysatisfy this splitting condition.

8.6 Three combinatorial lemmas

In this section, we prove three simple combinatorial lemmas which will be appligglito s
up expression&/(0, s; I)G(1,s — 1; J + 1) that occur in the congruence (8.2).
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Definition 8.6.1 Leta < band! = (ig,iq+1,---,%) @ Sequence with < i, < k for all &
witha < k < b. We say that is asplitting index for! if ¢ > a and fork > ¢ one has

i < k— L.
Remark that for a splitting indekone can apply proposition 8.5.1 and that= 0.

Lemma 8.6.1 Let I as above and assume that

b
jg:ik < b—a—1.
k=a

Then there exists at least one splitting index for

Proof: LetN := {k i, = 0} be the set of all indices such that the correspondirig is
zero. Since the sum has— a + 1 summands,, the setN has at least two elements. So
there exists at least one index~ a such that, = 0.

We will show by contradiction that one of these zero-indices is a splitting index

We say that > k is aviolating indexwith respect tdk € N if i, > v — k. Assume now
that allk € N possess a violating index.

It follows directly that for each violating index, i,, > 2. Furthermore, ifv is a violating
index form different zero-indice$; < ... < k,,, it follows thati, > m + 1.

Now assume that we hayedifferent violating indices/, ..., v, and thatv; is a violating
index for allj € N;, where we partitiorN into disjoint subsets

N =Nj; UNy U...U:Nﬁ.
Thend i iy, > 30 (#N; + 1) = #N + p, and

b B
D ik =#N0+D iy +(b—a—(#N+p) l=b-—a>b—a—1,
k=a+1 7j=1

a contradictioril
We can sharpen lemma 8.6.1 to:

Lemma 8.6.2 Let I be as above and assume that

b
Zik:b—a—m.
k=a

Then there exist at least different splitting indices for.

Proof: We proceed by induction om. The casen = 1 is just lemma 8.6.1. Assume that
for all n < m, we have proven the statement.

Now assumgz:a ir =b—a— (m+1). Sincem + 1 > 1, there exists a splitting index
v. We can split up the set of indicés,, ..., i, } = {ia, ..., iv—1} U {iy, ..., 7} in positionv
such thagz;i i = Ny andzzzy iy = b—a—m—1— N,. Depending onV,,, we have
to distinguish between the following cases:
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1. N, > (v—1)—a—1. Itfollows thatb—a—m—1—-N, < b—a—m—((r—1)—a—1) =
b—m—(v—1),and thuszzzy i <b— v —m. By induction, there exist at least
m splitting indices in(i,, ..., i), and thus for the wholg&,, ..., i), there exist at least
m + 1 such indices.

2. The caseV, < (v — 1) — a — 1 splits up into two cases:

(@ N, < (v —1) — a—m. By induction, (i, ...,i,—1) has at leastn splitting
indices, and the wholg,, ..., i) has at leastn + 1 such indices.

(b) N, = (v—1)—a—n, wherel <n <m. Sincedr_}i, = (v—1)—a—n, by
induction for (i, ..., i,—1) €xist at least splitting indices. Sinc@izy i =
b—v — (m—n),for (i,,..,i), there exist at leasts — n splitting indices.
Thus, for the whol€i,, ..., i) exist at least + (m —n) + 1 = m + 1 splitting
indices.

|

Lemma8.6.3 1. Letl = (ig,...,is) andJ = (ji, ..., js—1) With

s s—1
S ik + Y jp<s—1.
k=0 k=1
Let S; be the set of splitting indices dfand .S; be the set of splitting indices of.

Then
Srn(S;yu{l,s}) # 0.

2. Let!l = {igp,...,is—1} andJ = (j1, ..., js) With

s—1 S
Zik—i—ij <s-—1.
k=0 k=1
Let S; be the set of splitting indices dfand S; be the set of splitting indices of.

Then
(Sru{s}) n(S;u{1}) #0.

Proof:

1. Note thatsinc&;US;U{l,s} C {1,2,...,; s}, itfollows that#(S;US;U{l,s}) <
s. Note thatyi_ix > s — #Sr by lemma 8.6.2. This implies thaf;_! j). <
s —2—(s— (#Sr+1)), and hence tha#S; > s — (#Sr + 1) by lemma 8.6.2.
But #£S; + #S;5+2 = #Sr+s— (#Sr+1)+2 = s+ 1 > s, which implies
#(Srn (S;U{l,s})) > 1, and thus the statement follows.

2. Note that sincéS;U{s})U(S;U{1}) C {1,..., s}, itfollows that#(S;U{s})U(S,U
{1}) < 5. Now S 571 iy > s—1—#S;, whichimpliesy )5 _, j, < s—1—(s—#S;—
1), and#S; > s—#Sr—1. But#Sr+1+#S;+1 > #S1+1+s—#S; = s+1 > s,
which implies that#((S; U {s}) N (S; U {1})) > 1, and the statement follows.
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8.7 Proof for higher s

We will use the combinatorical lemmas on splitting indices from the last section W@ pro
the congruence (8.2) modué.
For a sequencé = (i, ..., i), We write

pI = pZZ:a ik .

For a sequencé = (jq, ..., jp), we defineJ + 1 := (j, + 1, ..., 5 + 1).
Note that ifk — j, > 0 for a < k < b, then we have

G(a,b; J +1) =G(a,b; J), (8.7)

since the constant term of a Laurent-polynon)iéK) is the same as the constant term of
the Laurent-polynomiaf (X?).
Let

p G0, 1)G(1,5s —1;.J +1)

be a summand on the left-hand side of (8.6) defined by the (Upl&) with >~y _ i +
22;11 Jr < s—1,andletl < v < sbe such that(0, s; I) splits in positions and either
G(1,s — 1;J + 1) splits in positionv or v € {1,s}. Such av exists by lemma (8.6.3).
Definel’ = (i, ...,i,_;) andJ’ = (ji, ..., 5.) by

i o= ipfork<v-—1,
i, = jrfork>u,
Jr = grfork<v-—1,
Jr = g fork>w.

To show thap!t7'G(0,s — 1; I')G(1, s; J' + 1) is in fact a summand on the right-hand
side of (8.6), we have to explain whi < k andj; < k — 1. Note thatj, < k — 1 for
1<k<s—1andi, <kfor0 <k <s. Furthermore, we havig < k—1for k > v since
i, = 0andG(0, s; I) splits in positionv, which means that — i, > v > 1 for k > v.

By definition of j; andi), it now follows thatj; < k£ —1for1 < k < s, andij, < k for
0<k<s—1.

Now that we know thap’ +7'G(0,s — 1; I')G(1, s; J' + 1) is in fact a summand on the
right-hand side of congruence (8.6), we prove the following propositiemark that we
obviously havey! t/ = p!'+/".

Proposition 8.7.1 Let I, J, I’ and J’ be defined as above. Then,
G(0,5,1)G(1,5s— 1;J +1) = G(0,s — 1;I')G(1,s; J +1).

Thus, we can identify each summand on the left-hand side of (8.6) with aasuhan the
right-hand side.
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Proof: By a direct computation:

G(O,S,I) (1,5~ 1;J +1)
= G0,v—1;)G(v,s; )G(1,v —1;J +1)G(v,s — 1; J + 1) by lemma 8.6.3
= G(0,v—1;1)G(v,s; I+ 1)G(1l,v—1;J+1)G(v,s — 1;J) by (8.7)
= GO,v—1;1)G(v,s — )G(l, v—1;J+1)G(v,s; I + 1) (commutation)
= G(0,v—1; I’)G( v,s—1;I"NG(1,v—1;J + 1)G(v,s; J' + 1) by definition ofI’, J’
= G(0,s—1;I"G(1,s; J’ +1) by lemma 8.6.3

the statement follows. Note that the last equality follows since by definitiafi ahd .J’,
i, =J, =0,k—i, >vandk—j. >wvfork > v. Thus,G(0,s—1;I') andG(1,s; J'+1)
both split atv.O

Since by P proposition 8.7.1, we can identify every summand on the left-idmdfequa-
tion (8.6) satisfyingl + J < s — 1 with a summand on the right-hand side, both sides are
equal modulg?® and the proof of theorem 8.2.1 is complete.

Remark: The above arguments to prove the congrueb8ecan be slightly simplified, as
was shown to us by A. Mellit.

8.8 Examples
In this section, we give some examples for which we could apply theorem 8.2.1

No. 24 from the list of Batyrev and Kreuzer

Let f be the Laurent-polynomial No. 24 in the list of Batyrev and Kreusgryhich is
given by

i = 1/Xu+Xo+1/ X1 Xy +1/X1 X3 X4+ 1/ X1 X0 X3X, +1/X3+ X1 /X3
+ XQ/X3X4+X1/X3X4+X1X2/X3X4+X2/X4+1/X2X4+1/X1X2X4
+ 1/ X1 Xo+1/X1+1/XoX3 X+ Xu+ 1/ X0+ X7 + X0/ Xa +1/X3Xy
+ X3+ 1/X2X5.

The first 9 coefficienta(n) := [f"]o in this example are:

a(0) = 1,a(1l) = 0,a(2) = 18,a(3) = 168,a(4) = 2430,a(5) = 37200,a(6) =
605340, a(7) = 10342080, a(8) = 182788830.

The Newton polyhedron( f) is reflexive (seef]), and hence by theorem 8.2.1, the coef-
ficientsa(n) satisfy the congruence (8.1) moduildfor arbitrarys.

Note that the power serids(t) = >~ a(n)t" is a solution to a fourth order linear differ-
ential equationP F' = 0, where the differential operatd? is a CY(4)-operator and is given
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by

P = 885010546 + £(9123826(—291 — 13000 — 201862 + 17276%) + ...
4+ 3461674786667136t (0 + 1)(0 + 2)(6 + 3)(6 + 4),

wheref := t0/0t.

No. 41 from the list of Batyrev and Kreuzer

Let f be the Laurent-polynomial No. 41 in the list of Batyrev and Kreu&grjhich is
given by

Foim Xad Xo 4+ XaXa+1/X1 X3 Xa +1/XaX5 + 1/X1 X0 X + 1/X1 X5
+ /X1 + X3 Xu+1/X1 X0+ 1/ X1 X0 X3 Xy + 1/ X1 X2 X3
+ X1 XoX3 Xy +XoX3 Xy +1/X1 Xy + XoX3+1/Xo+1/X3+1/Xy
+ XiXaXy+ X+ 1/X3 Xy + Xo+1/X0 Xy +1/X0X3Xy

The first 9 coefficientsi(n) := [f"]o in this example aren(0) = 1,a(1l) = 0,a(2) =
20,a(3) = 186, a(4) = 2940, a(5) = 46680, a(6) = 803990, a(7) = 14453460, a(8) =
269264380.

As in the example before, the Newton polyheded(f) is reflexive, and hence the coef-
ficientsa(n) satisfy congruence (8.1) for arbitrasy Note that also in this casé(t) is a
solution to a fourth order Calabi-Yau differential equation, where thed-gperatorP is
given by

P = 82810* 4 91t0(—273 — 121060 — 18746 + 78263) + ....
— 21292817700t (0 +1)(6 + 2)(6 + 3)(6 + 4).

No. 39 from the list of Batyrev and Kreuzer

Let f be the Laurent-polynomial No. 39 in the list of Batyrev and Kreuggryhich is
given by

X1/ Xo X3+ 1/ X1 X0 X3 Xy + X3 Xy + Xy +1/X1 X0 +1/X1 X3
1/ X1 X0 Xy + Xo + X1 X/ X3 Xy + X1/ X3+ Xo/ X4 + X3
1/Xa+ X1+ X1/ X0+ 1/ X0 X3 Xy + X1/ X3X4
Xo/Xs3Xg+1/X1+1/Xo+1/X1X3Xy + 1Xo Xy + 1/ X5.

f

+ + +

The first 9 coefficienta(n) := [f™]o in this example areu(0) = 1,a(1) = 0,a(2) =
20,a(3) = 168, a(4) = 2652, a(5) = 40080, a(6) = 666920, a(7) = 11536560, a(8) =
207013660.

As in the examples before, the Newton polyhedi®fy) is reflexive, and hence the coef-
ficientsa(n) satisfy congruence (8.1) for arbitrasy Note that also in this casé(t) is
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solution to a fourth order Calabi-Yau differential equation, where thedg-gperatorP is
given by
P = 160* — 4t0(12 + 530 + 8267 + 20%)...
621920t (0 +1)(6 4 2)(0 + 3)(0 + 4).

No. 62 from the list of Batyrev and Kreuzer

Let f be the Laurent-polynomial No. 62 in the list of Batyrev and Kreusgryhich is
given by
1 1 1 1

= X1+ Xo+ X3+ X .
fr=XtXo+Xs o+ X XN XX XXX X

Then the coefficients(n) are given bya(n) = 0if n # 0 mod 3 and

a3m) = Bt s ;) 2 (")

k=0

The Newton polyhedron( f) is reflexive (seef]), and hence by theorem 8.2.1, the coef-
ficientsa(n) satisfy the congruence (8.1) moduidfor arbitrarys.

The power serie®(t) = > 7 ,a(3n)t" is solution to a fourth order linear differential
equationPF = 0, where the differential operatd? is of Calabi-Yau type and is given by

P = 0" —3t(30 +2)(30 + 1)(116% + 1160 + 3)
9t2(30 4 5)(30 + 2)(30 + 4)(30 + 1).

Since in this example (as in many others), only the coefficie(ts with n = 3k are
nonzero, it would be good to prove the following congruence for thisngtex:

a(3(ng +nip + ... +ngp®))a(3(ny 4 ... + ns_1p*" %))
= a(3(ng + ... + ns_1p* ))a(3(ny + ... + nep*™)) mod pt.

8.9 Behaviour under covering

The last example raises the question after a congruence amotkg-folel coefficients if
a(n) # 0 impliesk|n. Let f be a Laurent-polynomial corresponding to a reflexive poly-
hedron, letA be the exponent matrix correspondingftpand consider the vectors with
integral entries in the Kernel of. If there exists a positive integérsuch that

b
0= : € ker(A) = k|(l1 + ... + ),
1o

then it follows that
a(n) == [f"]o # 0 = kln,
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since forl € N,

l -7 I =0y — oo — b
l — 01 LI 1 1 m—2
Flo= 2 e <el>< 2 )( b >

where

Apr o= {1, b)) ENGLO + o Ly =1, a0 =0for1 <i<n}
j=1
= {1, b)) ENT UL+ oA Ly =LA (L1, . 0)T =0}
= ker(A)N{(l1,....0m) E NG, b1 + ... + L, = 1.}

We are interested in the congruences

a(k(ng + ... + ngp®))a(k(ny + ... + ne_1p° %)) =
a(k(ng + ... + ne_1p° " ))a(k(ny + ... + ngp®™ 1)) mod p®, (8.8)

which we will prove in general fos = 1, and which we will prove for the example No. 62
from the list of Batyrev and Kreuzer by proving that the following condifi®satisfied in
this example:

Condition 8.9.1 For a tuple (¢4, ..., ,,,) with
O+t b =k < k(p—1),
it follows that
| gcd(z a1y, ..., Zaj,nﬁj) = Zai,lﬁj =..= Zaj,nﬁj =0.
j=1 j=1 j=1 j=1
First of all, we give a general proof of (8.8) fer= 1.
Proposition 8.9.1 Leta(n),n € N be an integral sequence satisfying
a(ng +nip + ... + nsp®) = a(no)a(ny)...a(ns) mod p
for0 < n; <p—1anda(n) # 0iff k|n. Then

a(k(ng + nip+ ... + ngp®)) = a(kng)a(kny)...a(kns) mod p.

Proof: If kn; < pfor1 < i < s, then the proposition follows directly. Hence assume that
there exists am; such thatn; = n; + n/p > p — 1. We may assume that; < p for all
j <. Then

a(k(ng +nip + ... + nep®)) = alkno+ ...+ kn;_1p" ' +nlp’ + ...)
= a(kng)...a(kn;—1)a(n})... mod p.
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Sincen; < p andkn; = n} + np > p, it follows thatk jn; anda(n;) = 0 by assumption.
Hence it follows that

a(k(no +nip+ ... + ngp®)) =0 mod p.

On the other handy(kni) = a(n) + nfp) = a(n))a(nf) mod p wherea(n}) = 0, and
thusa(kn;) =0 mod p and

a(kng)...a(kns) =0 mod p
and the proposition follows1
Corollary 8.9.1 Let f(X) be a Laurent polynomial such that the corresponding polytope
P; is reflexive and such that™]y # 0 = k|n. Then

[fk(no+n1p+“.+nsps)]0 = [f*0]o...[fF]p  mod p.

No. 62 from the list of Batyrev and Kreuzer again

In this example, the exponent matrix is

1 000 -1 -1 -1 -2
s 0100 -1 0 0 -1
o o010 0 -1 0 -1
o001 0 0 -1 -1
A basis ofker(A) is given by

1 1 1 2

1 0 0 1

0 1 0 1

0 0 1 1
{ 1 ’ 0 ’ 0 ’ 0 }’

0 1 0 0

0 0 1 0

0 0 0 1

and thus it follows thaff™]o # 0 = 3|n andk = 3. We prove that condition 8.9.1 is
satisfied in this example. Assume tha¥ 3 and that

8 8
p’ ng(Z a1l ... Z(MJ@‘) forty +...+40g =3u<3(p—1).
P =1

This means that there exist, xs, 3, v4 € Z such that

by = U5+ Llg+ b7+ 203 + x1p,
ly = U5+ g3+ xap,
ls = L+l + x3p,
by = U7+ 1l3+ xy4p,
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which implies
3(ls + g+ b7 +20g) + (1 +x2 + 23+ 24)p =3 < 3(p—1).
Thus, it follows that(z; + ... + 24) = 3z for somez € Z and that
bs+lg+ U7 +20+2p=p<p—1.

Since/s, ..., fg are non-negative integers, it follows directly that 0. Now, consider the
following cases:

1. z=0:Then
bs+lg+ 07 +203 <p—1 (8.9)

Assume thatr; < 0, i.e. z; < —1 for somel < i < 4. Since/y,...,¢4 are non-
negative integers, it follows that eith&y+ (¢ + ¢7 +2¢3 > p or¢; + {3 > p for some
5 < 7 < 7, a contradiction td (8/9). Thus, sineg + z5 + 23 + x4 = 0, it follows
thatzy = 29 = 23 = x4 = 0 and that

8 8
E al’jfj = ... = E a4,j€j =0
Jj=1 Jj=1

in this example.

2. z < 0: Assume thats + {5 + (7 + 205 < (—z + 1)p. Sincel; > 0, it follows that
x1 > z — 1, and sincer; is integral, we have; > z. Sincexr; + z2 + 3+ x4 = 3z,
it follows thatxs + z3 + 24 < 2z. Now assume that; > z for 2 < ¢ < 4. Then
ro+x3-+x4 > 32, @acontradiction. Hence there exists an indexch that; < z, and
hencer; < z—1. Sincel; > 0, it follows that?; o + /s > (—z+1)p, a contradiction
sincel;io + ls < U5 + g + (7 + 203 < (—z + 1)p by assumption. Thus, we have
U5+ lg+ U7+ 20g > (—z+ 1)p, which impliesp < 05+ lg + 07 + 20g + zp < p—1,
a contradiction.

Thus, it follows that the only possible casezis= 0, andx; = xo = 23 = x4 = 0, which
proves that condition 8.9.1 is satisfied in this example.

Database no CY(4)-184

In this second example, the Laurent polynonyias given by

111 XpX; 1
=Xt Xet Kot Xat 5o+ -+ -+ = T 5550

and the exponent matrix is

1000 -1 0 0 -1 0
q_]0oroo0o o0 -1 0o 1 -1
“loo10 0 0 -1 1 -1

0001 0 0 0 0 -1
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A basis ofker(A) is given by

—~

OO OO, OO O

S OO OO OO

SO OO0 OoO KOO

_ 0O OOk OO

_ OO0 OO RFEO
—

and thus it follows thaff"|o # 0 = 2|n andk = 2. For this example, no formula for
a(2n) is known. We prove that condition 8.9.1 is satisfied in this example.
Assume thap # 2 and that

9

9
Pl gcd(z Elog, ..., Z Elrog) for g + ... + g = 21 < 2(p — 1).
i=1 i=1

This means that there exis{, zs, 3, x4 € Z such that

o) = as+ag+x1p,

ay = ag —ag+ ag+ Tap,
a3 = a7 —ag+ag+ 3p,
a4 = 09+ T4p,

which implies
2(as + o + a7 +2a9) + (1 + 22+ 23+ 24)p =20 < 2(p — 1).
Thus, it follows that(z + z2 + 3 + x4) = 2z for somez € Z and that
as +ag+ar+2a9+2p=p<p-—1

Sinceas, ..., ag are non-negative integers, it follows directly thatl 0. Now, consider the
following two possible cases:

1. 2=0:Then
as + ag + ar + 2a9 < p — 1. (8.10)

Assume that:; < 0, i.e. z; < —1 for some2 < ¢ < 4. Sinceay, ..., a4 andag are
non-negative integers, it follows that eithes + a9 > p, a7 +ag > porag > p, a
contradiction to/(8.10).

Assume that; < 0,i.e.z1 < —1. Thenas+ag > —zip andthusvg > —z1p—as.
But sinceas and a3 are non-negative, this implies; + ag + ag > (2 + z1)p
andas + a7 + a9 > (x3 + x1)p. If 2o + 21 < 0, i.e. 2 + 21 < —1, then
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as + ag + ag > p, a contradiction to (8.10). The same holds fgr+ z; and
as + ar + ag. Thus,zo > —x1 andzs > —z1, which implieszy < z7 < —1 since
x1 + 19 + 23 + x4 = 0 and thusng > p, a contradiction ta (8.10). Hence, the only
possible case i81 = 22 = 23 = x4 = 0, which implies

8

8
k:-lai =..= k4ai =0
DK P
i=1

=1
in this example.

2. 2 < 0: Then
a5+ ag+ a7+ 2a9 + zp < p— 1. (8.11)

Assume thatvs +ag+ a7 —ag+2a9 < (—z+1)p. Then, sincey;, az andas are non-
negative integers, it follows that + x2 +x3 > 2. Sincexy + x4+ 3+ x4 = 22, this
inducesry < z and thusag > —2zp, sinceay is non-negative. ThuRag > —2zp,
which implies—zp < 2a9 + zp < a5 + ag + a7 + 2a9 + zp, a contradiction to
(8.11). Thusp < as + ag +ar — ag +2a9 + 2p < as + ag + a7 + 2a9 + zp, Which
is also a contradiction to (8.11). Thus, it follows that the case0 can not occur.

In the whole, it follows that: = 0 andxzy = x2 = x3 = x4 = 0, which proves that
condition 8.9.1 is satisfied in this example.

8.10 The statement D1

For the proof of congruence (8.1), the coefficient®f
FX) =) caX®

did not play a role. This is different if one is interested in the proof of parbf the Dwork
congruences. Let € N, and writen = ng + pn1, whereny < p— 1. Then to prove D1 for
the sequence(n) := [f"]o means that one has to prove that

[fn0+n117]

=0 . 8.12
[F™]o =t (842

Sticking to the notation of the previous sections, we write
frotmP(X) = fr(X) 1 (XP) + pf™(X)gn-11(X). (8.13)

Assume thap”|[f"1]o. To prove [(8.12), one has to prove thét[fmo*+"17],. By (8.13),

this is equivalent to proving that*=t([f"g,, 1(X)]o. Thus, the proof of part D1 of the
Dwork congruences requires an investigation ingheadic orders of the constant terms of
f™ andg,, 1 for arbitraryn;, and methods that are completely different from the methods
we applied to prove the congruence (8.1).



Chapter 9

An experimental
approach: matrix
computations

In this chapter, we describe an approach we tried to compute the Frolpatyaemial for
hypergeometric Calabi-Yau differential operators. The idea was to cienipe character-
istic polynomial of the Frobenius matrix with a given precision by computing tlaeash
teristic polynomial of a matrix which might be different from the Frobenius malt has
the same characteristic polynomial.

This method worked out well in practice for hypergeometric CY (4)-diffdial operators,
and we obtained the same results as by computing the unit root and the rpetdic
valuation1 of the Frobenius polynomial. If the differential operators were not qfeny
geometric type, the analytic continuation method which we applied experimentalhotid
work, and thus in these cases, we could not perform any computations.

9.1 Matrix computations for CY(4)-operators

First, we describe the crucial idea behind the method. AssumePtimt hypergeometric
CY(4)-differential operator. LeP be given by

P = Ay(2)0" + A3(2)0% + ... + Ag(2)
with A4(0) # 0. Let

Yo(z) = fo(2),
yi(z) = log(2)fo(2) + fi(2),

p(s) = 1o ()fol) +log()fi(2) + o),
p(z) = Sl0g()fo(2) + 5 og2()fi(2) + log(2)fa(2) + fa(),

111
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wheref,(0) = 1 be a Frobenius basis of solutions to a CY(4)-differential equation

Py = 0. (9.1)
Let B(z) be the matrix
ys O(y3) 0°(y3) 6°(y3)
B(z) = y2 0(y2) 0°(y2) 6°(y2)
yi 0(y1) 0*(y1) 0%(y1)
Yo 0(yo) (yo) 93(y0)

Let M(z) be the connection matrix with regard to the basis V(w), V2(w), V3(w)} for
V :=V(0), wheref := zd/dz is the logarithmic derivative. The(z) is a solution to the

differential equation

Z%B(Z) — B(2)M(z) =0,

which is the “dual” to the differential equation

d
zg(i'(z) +M(2)C(2) =0
occuring in section 3.6.
As in section 3.6, le®(, denote the matrix

a [ v

ep pa  pfB

0 €p2 p204 )
0o 0 ep?

Ay =

S OO M

wheres = a?/2.
We introduce the following notation:

0' (V) == 0" (i) [1og(z)=0 FOr 0 <1 < 3,0 < k < 3,

i.e. 0'(Y)(z) is the non-logarithmic part of’(y;)(z), such that, for exampléey; (z) =
fl (Z)

Using this notation we define the matiXz) as

Ys 0(Ys) 6°(Ys) 0°3(Y3)

By | Y2 0) £() 6(V)
T v () ()
Yo 0(Yo) 6*(Yo) 6°(Yo)

f3 0(f3) + f2 92(f3)+29(f3)+f1 03(f3) + 30%(f2) + 30(f1) + fo
B(z) = fo 0(f2) + fr 0°(f2) +20(f1) + fo  6°(f2) +36°(f1) + 30(fo)

fi 0(f)+ fo 62(f1) +20(fo) 0% (f1) + 36*(fo)

fo 0(fo) 0%(fo) 0% (fo)
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SinceB(z) is a solution to the “dual” differential equation, it follows for the Frobenius
matrix A,(z) that
PPAg(2) = B(2") AT B()

on pZ,. Since, by the Weil conjectures, the characteristic polynomiaPef,(z)~* co-
incides with the characteristic polynomial df,(z) at a Teichmdiller point, we want to
compute the characteristic ponnomiasz§fA¢(z)—1 explicitly. For simplicity, define

A(z) == pPAy(2) L.

We assume that the constant 41 occuring in2l4 is 1 in this case, sinc® is a hyperge-
ometric differential operator and for these operators, there exist faroili€¥-threefolds
such that = 1.

Thus, we have the means to compute the Frobenius matrpZgrup to two parameters
a,~y. By previous results, see section|5.7, we know that the Frobenius poisthis indeed
independent ofr and~. In this section, we try to provide another explanation of this fact.
To compute the characteristic polynomial of the Frobenius matrix in a Teichmidliet, p
we have a problems to solve:

Find an analytic continuation of the matri z) to the Teichmuller points on the boundary
of the p—adic unit disc.

During the computations we will describe in the following, we "guessed” a ndetfiana-
lytic continuation that worked out well in the hypergeometric examples.

We could compute the Frobenius polynomials in Teichmdller points for hypergkic
CY(4)-operators, and the results we obtained coincided with the result®mputed by
the unit-root-method.

To compute the Frobenius polynomial in a Teichmuller paintve want to evaluate the
matrix
A(z) = B(z")"'p*; ' B(2)

in the pointz = z.

Our approach to do this was to translate Dworks’ analytic continuation methanhtpude
the unit root to the case of matrices in the most obvious way:

Let B*(z) be the matrixB(z) truncated up to degrg€ — 1, i.e. the entries oB*(z) are the
power series entries @ (z) truncated after degree — 1, which are polynomials of degree
p® — 1.

Let
d®(z) := det(B*(2)).

We define
D := {x € Zy, |fy(x)| = |d" (x)| = 1}

The translation of the analytic continuation method of Dwork to the case of nainnggies
the following
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Conjecture 9.1.1 Letz € D be a Teichmduller point. Then
det(I — TA(z2))|,=p = det(I — TA%(x)) mod p°

where
AS(:L') — Bs(x)_1p39lleS+1(:E).

Our computations with hypergeometric CY(4)-operators confirm this cmgc First of

all, we computed with the parameter values= § = v = 0 and the result coincided
with the result of the unit root method. Then we tried different parameteesabut, as
expected, the result stayed the same. This obervation suggested thénigpllow

Conjecture 9.1.2Let z € D be a Teichmiller point. If the characteristic polynomial
det(I — T'A%(x)) of the matrix

As(x) = BS(m)71p3§2[ZlBs+1(x)

convergegp—adically to a polynomial irZ, [T, it is independent of the choice of the pa-
rameterso, 5 and~.

Instead of direct a proof, we can only give some arguments, différemt the arguments
in section 5.7 that might explain why this conjecture holds true. Therefaestate some
congruences that might help to explain conjecture 9.1.2.

During our computations, we observed the following congruences. ¢, since the

elementd**+1(z)/d*(z) is the coefficient op®T* in det(I — T A*(x)), we conjecture that

Conjecture 9.1.3 For a Teichmdiller point: € D,

dti(z)

=1 d pstt.
@) mod p

Conjecture 9.1.4For0 < k£ < 1,0 < n,m < 3 and a Teichmdller point € D, we have
the congruences
0" (Vi) (x) _ 0"(Ya)*(x)

(V) ()~ o) O

It was the following conjecture that led us to the investigations we made in clEptedt
seems as though these congruences are true in all exapmles whereficeenteof f,
satisfy the Dwork congruences.

Conjecture 9.1.5 For a Teichmdiller point: € D, the following congruences hold:

s+1 1 1 1
@) _ BT o) s

fe@r) ~Vps@r) TP @) TP )
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Explanation of conjecture/9.1.2:The coefficients ofy, 3, in det(I — T'A%(x)) are of the
form

(0O (V) ()67 D (V)" (&) — 070 (v3)* ()6 (V) ()

(0 ()1 (@)0°® (V) (2) — 0°C)(¥;)° H (2)0°2) (Vi) (1),

whereo is a permutation 040, 1,2,3},0 <i < 2and0 < j,k < 3,7 # j # k # 1. Since
this looks rather complicated, take for example

dix) - (02(Y0) T (2)0(Y0)* () — 60°(Y0)* (x)0(Yo)* T ()

(V7 (@)0° (Y2)* () — 07 (Y1)*+ (2) Y5 (2)),

which can be written as

2

p S S
i PO @R

0(Yo)*(z) 9(Yo)5+1($)>
02(Yo)*(z)  0*(Yo)*H ()

(Y (2)0° (Ya)* (2) — 0°(V1)* ! (2) Y5 ().
Now if conjecture 9.1.4 holds true, it follows thiait
P20%(Y0)* (2)0% (Yo)* ™ () (Y (2)0° (Y2)* (2) — 0°(V1)* ! (2) Y5 (2)) /d° ()

is a p—adic unit, then the whole term is congruentdanodulop®. A similar argument
applies for all coefficients of, 8 and~. At the moment, we have not yet proven that the
elements in question are in fagt-adic units, and thus we are not in a position to prove
conjecture 9.1.2 now with this approach.

9.2 Matrix computations for CY(2)-operators

In this section, we describe the matrix approach for CY(2)-operatoithig case, which is
much simpler that the case of CY(4)- operators, we were able to proviaéhettaracteristic
polynomial of the Frobenius matrix at a Teichmiller point is indeed indeperufethe
choice of the parametet occuring in the matriX2, directly, by application of certain
congruences. Note that the fact that the Frobenius polynomial is indepeafa follows
directly from the general theory, since it is completely determined by the awiit which
does not depend amin any way.

Let P be a CY(2)-operator. A Frobenius basis of solutions to the differentjahigon
Py = 0is then given by

yo = fo
y1 = fi+ folog(z),

wheref; € Q[[z]].
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In the case of a CY(2)-operator, the matBXz) is given by

_ (i 0(f1)+ fo
B) "<fo 0(fo) )

Let
d®(z) := det(B*(2)).

_( P @
Ql2_<0 1>7

and thus only depending on one parameter
We define

The matrix2ls is of the shape

D= {z € L, |f5 (2)| = |d'(z)| = 1}.

As in the case of CY(4)- operators, our computations implied that the tramstti@works
analytic continuation method works out well to compute the Frobenius polynanial
Teichmdller pointz. Let A(z) := pAy(2) L.

Conjecture 9.2.1 Letz € D be a Teichmdller point. Then
det(I — TA(z2))|,= = det(I — TA%(x)) mod p°

where
A%(z) = B*(z) ' pRAy 1 B ().

Unlike in the CY(4)-case, in the CY(2)-case we can actually prove thegmtdence of the
Frobenius polynomial at a Teichmiiller poinbf the parametett.

Proposition 9.2.1 Letz € D be a Teichmiiller point. If the the characteristic polynomial
det(I — T A%(x)) of the matrix

A%(z) = B (2P) " py B ()
convergegp—adically to a polynomial ir, [T,
det(I — TA%(z)) = det(I — TA*"(z)) mod p*,
it is independent of the choice of the parameter
Proof: The coefficient ofl in det(I — T A*(x)) is given by
pd**(z) /d* (aP),

and is thus independent of the choicenofFurthermore, since

d*(z) _ d**(z) s
) - d@) el
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it follows that|d*(z)| = 1 for all s.
The coefficient ofl" is given by

(=pfi T (@)0(fo)* (@)= f7 (@)0(fo) () +p(0(f1)* T (2)+f5 7 (@) f5 (@) +(0(f1)* () +
F§ @) fg™ (@) = pafg ™ (@)0(fo)*(x) + paf§(2)0(fo)* ™ () /d* ().

Thus, it is independent of the choice of the paramet#f

s s s+1 T S(x
P (@) () (ABE D) — ()

d*(x)

=0 mod p*,

Since|d®(x)| = | f5(x)| = 1 by assumption, this is equivalent to

0(fo)* ! (x) _ 0(fo)*(x)
5 (@) fi(z)

But this is true by 27], Lemma 3.4.(ii), and the proposition follows.

mod p°.

Note that our computations suggested the following

Conjecture 9.2.2 Letz € D be a Teichmidiller point. Then
d*t(z)/d*(xP) =1 mod p*tL.

Furthermore, during our numerous computations we observed that

Conjecture 9.2.3 Letz € D be a Teichmdiller point. Then

s+1 s+1
1 (fU)E 0 () mod p°.

Pri@r) = 5

This conjecture seems to be true for all CY(2)-operators and led us tovistigpations we
performed in chapter 10.
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Chapter 10

Some new formulas to
compute the unit root

During the explicit calculations described in the last chapter, we discbwetgerimen-
tally that for a Frobenius basis of solutions to a CY(4)-differential eqnatioe following
congruences hold in a Teichuller poirt

@) _ i) et P

fo(x) fi(x) f3(x) f2(x)

This led us to the questions it possible to compute the unit root in terms of the other
solutions of the CY-differential equationifa this chapter, we prove by very down-to-earth
methods that in general the answeyés In a Teichmuller point, the analytic elemerit)
from theorem 2.3.1 coincides with an analytic function that can be exgtasserms of the
power seriegi(z), f2(z) and f3(z) occuring in the logarithmic solutions.

10.1 Fixed points involving the other solutions

As in the previous chapter, ldt be a CY(4)-differential operator. Remember that around
z = 0, the differential equatioPy = 0 has a Frobenius basis of solutions with at most
logarithmic singularities. In this section, we derive formulas for fixed poihts® Frobe-
nius matrixA4, in terms of the power serig§(2), f2(2), f3(z) that occur in the logarithmic
solutionsy, y2 andys.

As in section 3.2, let

1
Y, = exp <2 /a;;f) . (10.1)

We assume thaty(z) has a power series expansiorp|[z]]. As in the previous chapter,
we choose the basisv, V(w), VZ(w), V3(w)} whereV := V() and letM(z) denote the
connection matrix with regard to this basis. As in section 3.6(let) denote the non-

119
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logarithmic part of the matri(z) satisfying
22 e() + M(2)e(2) = 0
dz N

and
Nog —Ni Ny —N3>

G(Z):Y4(Z)< Yo —Yi1 Y2 Y3

for some3 x 1— matricesN;. This special shape @f(z) implies thatC'(z) satisfies

c<z>=n<z>(*’j§ o ‘_*’]Yj)

for some3 x 1 matricesN; with power series entries, which can be seen as a starting
condition for the differential equation above. L&t (z) denote the Frobenius matrix with
regard to the chosen basis, and write

Ay C
Ad)(z):(ng D(;).

As in section 3.6, on the open-adic unit disc, we have the equality

e a [ ~»
0 ep « _

M) =C@) | T f}ﬁ; o), (10.2)
0 0 0 ep3

A direct application of equatian 10.2 leads us to the following formulas fdi@esthat are
mapped to constant multiples of themselves by the Frobenius mapping:

Proposition 10.1.1 Let

e el + eax;
Iy = €ro = ——% 1 —
p?—1

and
ey +efry +eaxs

p?—1

Then, forl < ¢ < 3, we have

A=) <( s > o ( e > Tt < o >>
= @ (70 )+ (5nd ) e (50)

Proof: The proof is by a direct calculation, applying equation (10.2) and theringptiie
equations forq, 22 andxs. O
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10.2 New formulas for the unit root in Teichmuller points

In chapter 3 we derived that the analytic elemeft), which, evaluated at a Teichmdller
point, is the unit root in this point, coincides with the analytic function

e fo(z)
fo(zP)

on the operp—adic unit disc. In this section, we use the formulas for the sections that
are mapped to constant multiples of themselves derived in propasition 110.lohgtruct
analytic element$ (2), FZ(z), Fj(z) on the opemp—adic unit disc whose analytic contin-
uations to the boundary of the-adic unit disc coincide with(z) at the Teichmdller points
and involve the power serief, f1, f2, fs.

By proposition 10.1.1, it follows that far < i < 3,

pAg Cy i(2P) + 21 N;i—1(2P) + ... + 2;No(2P)
<pBo Dg >Y4(Z ) < fi(2P) + 21 fi-1(2P) + ... + 2 fo(2P) >

Ni(z) + x1N;—1(2) + ... + ;No(2)

= piesYZ;(Z) ( fl(z) + xlfz (Z) 4+ 4+ 'TifO(Z) ) . (103)
If we define
Z(Z) - NZ(Z) + xlNifl(z) + ...+ IL‘zNo(Z)
o ' fz(Z) + 331fi71(z) + ...+ :L‘ifo(z)
and

FZ(Z) — pie(fi(z) + xlfi,l(z) + ...+ :Ezfo(z))
O fi(#) + 21 fic1 (2P) + o+ wifo(zP)

then equation (10.3) leads to

< ﬁéﬁ g?) > ( né(fp) > = Yi(2)/Ya(<") ( ”3%02{;0@ ) : (10.4)

But this implies that

pAoo(") + Co = mo(2)Ya(2)/Ya(F) Fy(2) (10.5)
pBomy() + Do = Ya(2)/Ya(")Fy(2), (10.6)

and sinceD is invertible, it follows thaty] (z) satisfies

: _1 pAoh(2P) + Co
no(z) = Dy’ — ; .
1+ pDy " Bong(2P)

(10.7)

Proposition 10.2.1Let0 < i < 3. If we write f; = >3, a2, then|al |, < ps= V) if
k < p®.
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Proof: Sincefy(z) € Z,[[#]], the statement is true fgf. For: > 0, we have

}@(zp)(pBo(Ni(zp) + $1Ni_1(2’p) + ...+ :UiNo(Zp))
+ Do(fi(2") + 21 fi1(2P) + ... + 2 fo(2P)))
= p'eYi(2)(fi(2) + 21fic1(2) + .. + zifo)-, (10.8)

whereY,(z) has a power series expansior#gl[z]]. Now assume that the statement holds
for all j < 7. By induction ons, we will prove that the statement holds for the coefficients
of f;. Sincea)) = 0, we havelaj)| < p~!, and thuda}| < p~' forall k < p° = 1.

Assume that the statement holds fox p*~!, and letp*~! < k < p®. Since the entries of
the matrixV; are sums of derivatives of and thef; for j < i, equation((10.8) translates
into an equality of power series that leads to the following equalityzzor

pia§C = Z cap + U;«
I<[k/p]

wherec; € Z, and|u}| < pli—Ds7%. Since by assumptioju;| < p'*~V for I < [k/p] <
psfl, it follows that‘ai:‘ < pis.D

Proposition 10.2.21f z; # 0, the formal power series entries of the matrixz) have
radius of convergence = 1. If z; = 0, the Laurent series entries @f(z) converge in
the open annulus with inner radius of convergenge= 0 and outer radius of convergence
ro = 1.

Proof: Assume first that;; # 0. The coefficients of the power series entrﬂéﬁ(z) =
20 Pk 1< < 4 of Ny(z) satisfy|ci7], < pis=D for k < p* by proposition
10.2.1, and thus the radius of convergencefgS(z) isr = 1. The same holds for the power
seriesf;(z). Sincef;(0) +x1 fi—1(0) +...+x; fo(0) = z; # 0, the quotient)(z) converges
in an open disc of radius > r > 0 around0.

By equation [(10.7), it follows that if)}(z?) converges in the open disc of radiusthen
ns(z) converges in the open disc of radius

Conversely, ifp(z) converges in the open disc of raditsthenni(z?) converges in the
open disc of radiug'/?. Iterating these two arguments, we obtain that for every N,
nb(2) converges in the open disc of radit$?” . Sincelim,, ... /7" = 1, the proposition
follows.

If z; = 0, then the quotient (=) is a matrix whose entries are Laurent series that converge
in an annulus with inner radiug = 0 and outer radius, > 0. Similar to the case; # 0,
one proves by iteration that = 1. O

Now, as in the previous sections, letz) := f;(2), let s(z) be the polynomial whose zero
set are the singular points of the differential operdtpand defined := Z,[z][(s(z)h(z)) 1]
As before, letSy = Spec(Ay) andS,, = Spec(Ax).
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Proposition 10.2.3 Letzy € S«. Then the mapping

pA(.r())CC + C(:Co)
1 +pD—1(xo)B(x0)x

@+ D™ (zo)

is a contraction mapping if,.

Proof: Letz,y € Q,. Then

D~ (x0) pA(wo)z + Clwo) D () pA(zo)y + Cl(x0)

14 pD~1(20) B(xo)x L+ pD~ (o) B(xo)y
(pC(20)B(z0) — pA(z0)D(20)) (2 — y)
p?B(zo)*zy + pB(20) D(w0)(z + y) + D(20)?
(C(wo)B(w0) — A(wo)D(20))
p?B(x0)?xy + pB(z0) D(0)(z + y) + D(x0)?

_ |z — y|p

s =yl =—7

p

= [D™!(xo)

p

= |D(zp) Ip(z —y)lp

p

sinceD(x) is a unitinZ,. O

Proposition 10.2.4 Letn’ be an analytic element of suppdtt, coinciding withn on pZ,
(or pZ, \ {0}). Then onS.,, we have

_1 PA(R) (") + C(2)
1+ pD(2)~1B(2)n'(2F)

n'(2) = D(z)

: - 1AM (N HC() - -
Proof: The functionD(z) ! 1pr(z’)7_1B(z)ni(zp) is an analytic function 08 (or Ss,\{0})

coinciding withnj(z) on the open subsetZ, (or pZ, \ {0}). Sincen’(z) is an analytic
function onSy (or S \ {0}) coinciding withn{(z) on pZ, (or pZ, \ {0}), the statement
follows by the uniqueness theorem 5.111.

Theorem 10.2.1Letl1 < i < n — 1, and letzg € Sy, be a Teichmiller point satisfying
zh = x0, and letn’ be an analytic element of suppdit, (or S« \ {0}) conciding withn)
onpZ, (or pZ, \ {0}). Letn? be an analytic element of suppdit, coinciding withn on
PZLy. Themy'(zo) = n°(zo).

Proof: Sincezy = b, it follows thatn’(z) = n’(zh). By proposition 10.2.4, it follows
thatn’(xo) satisfies

pA(zo)n' (o) + C (o)

i - p-! T ) )
n (wo) =D ( 0)1 +pD_1($O)B(x0)nl(x0)

Thus,n'(x) is a fixed point of the contraction described in proposition 10.2.3. Since by
the proof of theorem 2.3.1;0(x0) is a fixed point of this contraction, too, it follows that

n'(x0) = n°(z0). O
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Since the elemenf”(z) appearing beyond is nothing butz) by chapter 3, the following
corollary now proves the identity of z) with several analytic functions involving the power
seriesf, fa, f3 in Teichmuller points.

Corollary 10.2.1 Let F°(z) be an analytic function 0., coinciding withFy(z) on pZ,,.
Then for eachry € S (Or Sx \ {0}) satisfyingzh = x(, we haveF(zg) = F°(z),
whereF?(z) is an analytic function o1, (or S \ {0}) coinciding withF{(z) onpZ, (or

PZLy \ {O}).

Proof: We have
F%z0) = pB(2o)n° (z0) + D(z0)

and
Fi(xz0) = pB(xo)n' (x0) + D(x0)-

Sincen’(zg) = n°(xo) by theorem 10.2, the statement follovis.

10.3 An explicit construction of the analytic continuation ofy;(2)
and F;(z)

In this section, we consider the question for an explieitdic analytic continuation for the
elementsF;(z) to the boundary of the—adic unit disc. These functions are analytic on
openp—adic unit disc. For the rest of this section, foxK i < 3 we assume that

fiz) =Y ap2* € 2Q[[]]
k=1

satisfies|al|, = 1. We derive a condition on the coefficients of the power sefie®
construct an explicip—adic analytic continuatiof™ of the power series}; to the boundary
of thep— adic unit disc. In the end, we prove ttiithere exists an analytic continuatiéi
of F¢, then at a Teichmdller pointy, we have the equality

) fstl
F’(mo)zeplif’ (o) mod p°,

I3 (@o)
which explains the observations we made during our computations.
Definition 10.3.1 For 1 < i < 3, let®; be the region
D; = pLy U{x € Ly, |f} ()l = 1, | f7 ()|, = p'},

and let®? be the regior®; \ {0}.
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Proposition 10.3.1Forall s > 2,1 > 1 and1 < i < 3, we have

i £7HEPP) _ flz0)P) s—
P fi(2p) =g P (2p') mod p* ' Z,[[2]]. (10.9)
Proof: We will prove the proposition by comparing the coefficientg®fon both sides of
equation((10.9).
Forn < p® — 1, the coefficients o£™ on both sides are equal #,. Letn > p*, p!~! <
n < p' for somet > s + 1. Write n = ng + pn1. The coefficient ot™ on the lefthand side

of equation/(10.9) is

l(n—p)+t A %
p'y E , An—pj@js
=0

while the coefficient on the righthand side is

S

p°—1

I(n—p)—+i Z i i
P anl_jano+pj.
=0

We will prove that both coefficients are congruentotanodulo p*~! and start with the
coefficient on the lefthand side.
Since|al, _,,;|, < p'*~Y and|a}|, < p'*~"), we have to prove that

In—p)+i—i(t—1)—i(s—1)>s—1forall s > 2.
But
In—p)+i—it—1)>1p"" —p)+i—it—1)> G+ 1)(t—2) > (i+1)(s— 1)

for all t > 2, and thus the coefficient on the lefthand side is congruedimodulops—!.
Considering the coefficient on the righthand side, we haye ;|, < p"*~? and|a}, ,,:|p <
p*. This leads to the same inequality as on the righthand side.

Corollary 10.3.1 For all z € pZ, \ {0}, we have

pplfz(x(]) _ ppifis(xo)

Lo Py — L0 =1 p

fi(xg) /i (7g)

Proof: Write 7y = plu, wherew is a unit inZ,. Since the radius of convergence of the

formal power serieg;(z) is r = 1, we may evaluateg; in 2o = up' and the proposition
implies

mod ps_lZp.

£ (') _ fil(up')?)

; l i [ -1
pzfi(up ) plp plp plfis (up ) mod p° Zp.

s—1
Since’ ((l,ffpl)p) and fi((ﬁff)p) are units inZ,, we may divide by them, multiply both sides
by the unitu?, and the statement follows

Now, we will consider the question about the analytic continuation of thetifumer{ ().
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Proposition 10.3.2If v; :=ord,(z;) < pl — 1, then fors > 2 andl > 1,

s—1 Zl §—1 l : s—1 l
pi(fi(zp’)+m1pf¢_1(zpl)+...+a:ifo(zpl))fi (Gr)f) + oiptiy ((;Z e rdy ()

((zp)P x1 fi1 ((zph)P O 2ph)P) .
Sllep ) il ;;3 )+t Eifol(ap) )pl(ff(zp’)+a:1fffl(zpl)+...+a:¢f§(zpl))

mod p* 1 Z,[[2]].

Otherwise,
‘ S=L((zph)p =LY 4 .+ 2 1571 ((2ph)P
Pz(fi(zpl)+;v1fi,1(zpl)+...+xl-f0(zpl))fl ((=zp)?) + 21 /i ((Z;;l) )+t xfy ((20')F)

((2pYP) + 21 fis1((2pH)P) + .o + 2 fo((2pHP)
PP 2 o) e 2P g pf i 4 (o B )

mod pslep[[z]].

Proof: Literally the same as for proposition 10.3.1. In the case: pl — 1, we may only
divide byp*: (and not byp”') sincef;(zp') +z1 fi_1(2p") + ... + z; fo(zp') has the constant
termzx; of p—adic valuationy;. O

Corollary 10.3.2 For g € pZ,, we have

xppi(fi(x()) + 21 fi-1(20) + ... + ipfo(20))
O filah) + @1 fici(xo) + ..o + @ fo(ah)

zP P((f} (o) + 21f7 1 (o) + ... + @i f§ (0)) od p*!
Off*l(:rﬁ) + z1 f:f(xé’) + ...+ xifgil(‘rg) ‘

By F*(z), we denote the quotient

_ PFG) o fia() + o+ aifi(2)
f;il(zp) + $1fi5_1(zp) +o+ fcifé(zp)'

Fp(2)
In the following, we will always assume that the next condition is satisfied.

Condition 10.3.1 For 1 < ¢ < 3, we have

PPN ) 7 (F) = pH T ) N (EP) mod pUZ ).
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Proposition 10.3.3 Let1 < ¢ < 3. If condition 10.3.1 is satisfied for a$l > 2 then

PP S() + i (2) 4 o @ f§ () (L) + 2 fy (3P) + o+ 3 (2P)
PP ETIT 2) bw fI ()b [T ) TP Fa ST (P A ()
mod p*~'7Z,[z].
Proof: Since forl < i < 3andj < i we havep'*~Vf#(z) € pli=)(=DZ,[2], the

statement follows directly since condition 10.3.1 halds.

Proposition 10.3.4 Letxq € Z, such that

|fHxo)lp =1, [fE(z0)lp = 1"
If condition/ 10.3.1 is satisfied for afl > 2, then

|/ (o)l = p"7 .

Proof: First of all, we prove thatff(xo)|p = p'>=1 implies that|f;(x’5)\p = pils—1),
Let | £7(20)], = p*~V. Thenp'=D £(29) # 0 mod p. Sincep’®*~) f5(2P) € Z,[2],
P 5 () = pPls— 1)fs(:co) mod p, and the statement follows.

Now we proceed by induction on Assume thatf: ' (zo)|, = p'*=2 and|f?(zo)|,

p'¢=1)_ Since

p2i(371)+ifi5( )fs(xo) le(S 1)+Zfs+1( O)fz.s_l(xg) mod p°

and since the lefthand side of the equationraadic order, it follows that £ () must
havep— adic order—is such that both sides of the equation have the garnaéic order.0

Proposition 10.3.5 Assume that for alk > 2, condition 10.3.1 is satisfied. Let € D;,
|zo|p = 1. Then
F ™ (w0) = Ff(x9) mod p* ',

Proof: Applying proposition 10.3.3 and specializing4e= z leads to the equation

PHETITI(f (o) + w1 fiy (0) + oo+ 2 fi (20)) (fF (2]) + 21 fEy () + o + @i £ ()

p2i(s_1)+i(fis+1($O)+$1fis_+11(1'0)+--~+1'zfs+1( ))(fs 1(130)+:L‘1 o 1 ($0)+ ‘HL'zf fl(x

mod p°.

By proposition 10.3/4p =) f5(2h) and pi*=2) f571(2}) are p—adic units, and it fol-
lows directly that the same holds fpﬂs D(fe(@B) + z1f2(xB) 4+ ... + 2 f5(«h)) and

0))



128 10. Some new formulas to compute the unit root

P @B) a2 (@) + o A 2 £ (28)). Thus, division by these two elements
leads to ' ,
p’Ff“(aco) =p'F’(x9) mod p°,

and the statement follows]

Proposition 10.3.6 Let the assumptions be as in proposition 10.3.5. Then

Fi(xo) = P Ji\To) 1; (o) mod p*~ L.

fis_1($0)
Proof: This follows directly by a cross-multiplication, since
PV (20) =0 mod p*!

for all j < i by proposition 10.3.40
The preceding propositions and corollarys lead to the following theorem:
Theorem 10.3.1 Assume that for a > 2, condition 10.3.1 is satisfied. Théj(z), which

is an analytic function opZ,, (or pZ,\{0} if z; = 0), is the restriction tgZ, (or pZ,\{0})
of an analytic element of suppd@t; (or D¢):

i) — fm PR RS et niffe)
S ) () ot g )

Proof: By corollary 10.3.2 and proposition 10.3.5, the sequejice’(z)} converges uni-
formly on®; and coincides witf{i(z) onpZ, (or pZ, \ {0}). O

Now, our observations concerning the computation of the unit root by dhespseries
f1, fo and f5 can be explained by the following corollary, which is a direct consecgiehc
theorem 10.3.1 and proposition 10/3.6.

Corollary 10.3.3 Let the assumptions be as in the theorem above, ang let®; (or DY)
be a Teichmuller point. Then the unit root can be computed with the powies ¢ for
1<i<3hy

F'(xo) = P filwo) mod p*~t.



Chapter 11

An alternative Method for
analytic continuation

In this chapter, we describe a method due to G. Christol (&gt evaluate a fraction of
the form
f(z)

f(zP)

at a Teichmdller point, where

n=0
is a power series which is a so-called algebriicelement, i.e. an element in thie-algebra
D(A). The key ingredient of the method is to construct, for a given Teichmuliet poan
analytic continuation of the functiong z) and f(z*) themselveto the open neighborhood
B(z,1), whereB(x, 1) denotes the open neighborhood of radiwf .
If f € D(A)is continuable, in15] and [16], Christol only gives a proof of the existence of
an explicit analytic continuation, but no estimates forjhedic precision. We analyse the
special case that the coefficients fofire integral and satisfy the Dwork congruences, and
compare the continuation method of Christol to the continuation method of Dwork.
Unfortunately, if the Dwork congruences are not satisfied, we weralrle to apply Chris-
tols method in practice, since we could not derive any estimates ferthdic precision in
this case.

11.1 TheA—algebra D(A) and the Dwork congruences

Let A be the ring of integers of a finite algebraic exentsior{Jgfand letC, denote the
completion of the algebraic closure ©f,.

An A—function fis an analytic function on the open di&0, 1) whose power series ex-
pansion

f(z) =2 a(n)z"

n=0

129
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aroundz = 0 has coefficienta(n) € A.
An A—function f is calledalgebraicif there exists a nonzero polynomialin C, [z, y] such
that

G(z, f(z)) =0forall z € B(0,1).

Definition 11.1.1 By D(A), we denote the closure of the set of algebrdiefunctions
under the topology of uniform convergence on the openBi$c1).

In [16], the following criterion for a function to be an elementdf A) is proven:

Theorem 11.1.1 [15], Theorem 2) An A—functionf is an element oD (A) if and only if
for all kK > 1, the number of functions

fnh Zan—i—mp O§n<ph

modulop” is finite.

We prove that any whose coefficienta(n) satisfy the Dwork congruences lies In(A)
by proving the following theorem and then applying theorem 11.1.1:

Theorem 11.1.2Let

n=0

be a power series with coefficientén) € Z satisfying the Dwork congruences. Then, for
eachk > 1, the number of functions

Fap(2) = Y aln+mp")2",0 <n < ph

Nk

0

3
]

modulop” is finite.

Proof: Since the sequence(n)),, satisfies the Dwork congruences, for/alk> k, we have

a(n + mp") _a(n+ mp"~FpF) a(n) mod
a([n/p] +mp"=t)  a(n +mph=Fp=1) " a([n/p]) ’
and thus
a(n -+ mp") = alfn/p] + mp ) =2 mod .

a([n/pl)

Applying the Dwork congruencds — k times in this way, we obtain that

a(n +mp") = a(jn/p" %) + mpk)m mod pF. (11.1)
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But this means that

o0

oo
Jon(z) = aln+mph)m = ——— n/p Z a([n/p" % 4+ mp*)z™  mod p*,
m:0

m=0

where[n/p"*] < p*.
For eachn andk < h, the fractiona(n)/a([n/p"~*]) lies inZ,, and thus

a(n)
a([n/p"~*])

sinceZ, /p*7Z, containg* elements. Sincg/p"~*] < p*, it follows that

#{ mod p*;n < p k < h} < p¥,

#{Z (In/p" ¥+ mp*)z"} < ph.

Thus modulg*, f,, () takes at most** different values ifc < h.
Forh < k, we haven < p < p*, and thus

#{fun(2),0<h < k,0<n<p"} < kp.

This completes the proof of the theorem.

Now, we consider the power seri¢géz?) and prove that if the coefficients ¢f =) satisfy
the Dwork congruenceg;,(z?) belongs taD(A), too. As a power series in, f(zP) can be
written as

o0

9(z) = (") =) _an)" = b(n)z
n=0 n=0

where

0 otherwise

b(n) = { a(n/p) if pln

Corollary 11.1.1 Let f(z) be a power series with coefficients Zhsatisfying the Dwork
congruences. Then, for eagh> 1, the number of functiong, ,(z), n < ph moduIOp"f is
finite.

Proof: If p does not divider, g,, ,(z) = 0 for arbitraryh. Otherwise,

o
Gn,n(2 Z b(n + mp") Z a(n/p+mphm = Jn/ph—15
m=0

and we can apply Theorem 11.1[2.

Theorem 11.1.2 and corollary 11.1.1 combined with theaorem 11.1.1 now firavé¢(z)
andf(z?) are elements of thd —algebraD(A).
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11.2 Explicit construction of an analytic continuation

For the so-called continuable elementdifA), in [15], an explicit formula for an analytic
continuation in a neighborhood of a fixed poinbn the boundary of thge—adic unit disc
is given.

We define a new notion of continuability and prove thatfalt D(A) whose coefficients
satisfy the Dwork congruences are continuable in the new way. Furtiherme prove that
Christol’s analytic continuation method also applies to functions that are cabtaan the
new sense.

In [15], section 5, Christol defines the notion of continuability of an elenfeat D(A) as
follows:

Definition 11.2.1 f is continuable in a point with |z|, = 1 if

ph_l
lim Z a(n + kp™)z" " =0

h—o00
k=1

forall n € Z.

In the following, we will say that a function which is continuable as defined findion
(11.2.1) iscontinuable in the sense of ChristaWVe found out that for the construction of an
analytic continuation, it isot always necessary that a function is continuable in the sense
of Christol. For our purposes, we modify the definition in the following way:

Definition 11.2.2 f is continuable if for allh > 1 andk > 1,
a(kp —1) =0 mod p".

We will say that a function which is continuable as defined in definition 11.2cBriginu-
able in the weak sense of Christol

Proposition 11.2.1 Let (a(n)),, satisfy the Dwork congruences aah — 1) =0 mod p.
Then,f is continuable in the weak sense of Christol.

Proof: First of all, we prove that(p" — 1) = 0 mod p" by induction onh.
By the Dwork congruences, we have

a(p® — 1)
—— 2 =a(p—1) mod p,
a(p —1) -1
and thus‘% =0 mod panda(p? — 1) =0 mod p?. Now leth > 2. Then
a(p" —1) _a@"' -1

= d p"
a1 a7 -1 TP
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by the Dwork congruences. By induction hypothe%%% = 0 mod p, and thus it
follows that

a(p" —1)
a(p"~t - 1)
Sincea(p"~! —1) =0 mod p"~, it follows thata(p" — 1) =0 mod p".
Now, considew(kp" — 1) for k > 2. Sincea(kp — 1) = a((k — 1)p + p — 1), we have

a;(k]f__ll)) =a(p—1) modp

=0 mod p. (11.2)

by the Dwork congruences, and thu&p — 1) = 0 mod p for anyk > 2. Sincea(kp" —
1) = a((k — 1)p" + p" — 1), it follows by the Dwork congruences that

a(kp" — 1) a(p" — 1)

= d p".
alkpT=1) " a1y P
By equation[(11.2), it follows that?2" =1 —  10d p. Sincea(kp"t —1) =0

a(kph=1-1)
mod p"~! by induction, we obtaim(kp" — 1) = 0 mod p" and the proposition follows.
|

Definition 11.2.3 For f € D(A), we define

ph—1kph—1
P(f,h) = Z Z a(n).
k=1 n=0
For a Teichmdiller poing, remark that
ph—1kph—1
P(f(xz),h) = Z Z a(n)z".
k=1 n=0

Definition 11.2.4 A sequencé(n) tends multiplicatively to infinity ifim,, .~ h(n) = oo
andh(n)|h(n+ 1) forall n > 1.

In[15] and [16], Christol proves the following key lemma for the construction of the analytic
continuation:

Lemma 11.2.1For f € D(A) andz a Teichmdller point, the sequené¥ f(xz), h) con-
verges ifh tends multiplicatively to infinity.

We setP(f(zz)) := limy_ P(f(xz),h). Note that in the statement of the lemma, noth-
ing is said about the speed of convergence of the sequBfiférz), h). Unfortunately,
from the proof of the lemma, we were not able to deduce any formula of the fo

P(f(zz),h) = P(f(zz)) mod pf'™ (11.3)
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for some functionF'. Thus, we can make no statement aboutith@dic precision of the
truncationP(f(xz), h).
In [15], section 5, Christol proves the following proposition:

Proposition 11.2.2 For f € D(A) and a Teichmuller point, |z| = 1, the function iny,
defined byf(z + y) := P(f(x + y)z) for |y| < 1 is an analytic function foy in the open
discB(0,1).

We call f(x + y) the continuation off to the open dis@(z, 1) of radiusl centered at.
If fis continuable in the weak sense of Christol, the continuatighsattisfies the following
properties:

Theorem 11.2.1 (similar to[15], Theorem 7) If f is continuable in the weak sense of Chris-
tol in a Teichmuller pointz, then for ally in the open dis@3(0, 1), we have

(zf)(z+y) = (x+y)f(x+y)

and of of(z+y)
_ rTy
(@)(w +y) = oy
Proof: Since
ph—1
P((zf)((x +1)2), k) = (x + y) P(f((x +y)2), k) = > (x+ )" a(kph - 1),
k=1

and f is continuable in the weak sense of Christol, we have
P((zf)((z +y)2),h) = (z +y)P(f((z + y)2),h) mod p",
and thus for the limit we obtain

(zf)(x+y)=(z+y)flz+y).

Concerning the second statement, since

0 9 - n
P((Go) (e +0)2)0) = P +0)20) + 3 ko)™~ alhyh),
k=1
it follows directly that
PUZL (@ + 9)2), 1) = L P(f(x +y)5 k) mod
02 Yy)z), _819 Yy)z, p
and thus for the limit we obtain
15) of(x
G+ =LY

and the theorem followsa
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Corollary 11.2.1 Let f € D(A) be continuable in the weak sense of Christolf it the
solution of a linear differential equation

P(z,0/02)f(z) =0,

then the continuatiorf (z + y) around a pointe with |z| = 1 is a solution of the differential
equation
Pz +y,0/0y)f(xz+y) =0.

By the (modified) results of Christol, we know by the corollary that if D(A) is continu-
able in the sense of Christol or in the weak sense of Christol, the Rfjfifxz)) computes
an analytic continuation of in the pointz with |z| = 1. But since we are lacking a for-
mula of the type of formula 11.3, we can not apply this analytic continuation ictipeato
actually computef(z)|.—, for a Teichmiller pointz.

Now, for the rest of this section, we analyse the whole quotient

P(f(x2), h)
P(f(axPzP), h)

and its convergence properties dependinghan case that the coefficients of the power
seriesf satisfy the Dwork congruences. Note that §or) := f(2?), we have

1 k}ph 1 1 p2h71_ph71_1
P(f(zP2?), Z Z n)xP" = Z (p" — 1 — [n/p" " )a(n)zP.
n= n=0
As in chapter 5, lef?(z) denote the truncation
(k+1)p°—1
fi(z) = Z a(n)z".
n=kp*

Furthermore, Ief,j(z) denote the truncation

. kps—1 k—1
fiz)= Y am)z" =Y fi2). (11.4)
n=0 n=0
It follows by a direct computation that
ph—1 pt—1k—1
P(f(xz),h) = > fl@) =YY fix) (11.5)
k=1 k=1 n=0
and
ph—1 ph—1k—1

P(f(aPzP), Z f Z Zfﬁ_l(xp). (11.6)

k=1 n=0
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Let X denote a variable. By Theorem 5.1,we have
FXOfTHXP) = F(XP)f (X)) mod p"Z,[[X]],
and applying the formulas (11.5) and (11.6), we obtain by a direct computhtd
FX)P(f(XP2P), h) = f(XP)P(f(Xz),h) mod p"Zy[[X]]. (11.7)

Thus in the same way as theorem 5.1.3 follows from theorem 5.1, the followéngein
follows from equation(11.7):

Theorem 11.2.2Let f € D(A) such that the sequende(n)),, satisfies the Dwork con-
gruences. Let

D :={z € Zy, |P(f(22),1)| = [P(f(2P2"),1)| = 1}.

Thenf(z)/f(2*), which is a uniform analytic function opiZ,, is the restriction tgZ,, of
an analytic elemenk’ of support®:

_ o P(f(x2),h)
Fz) = hlinc}o P(f(zPzP),h)’
Proof: Just like the proof of theorem 5.1C38.

This leads us to the following formula for explicit computations:

fz), _ P(f(x2),

)
)= = P arar). )

mod p". (11.8)

Thus, to compute the quotiegf%\zzx modulop”, one has to compute” — p* — 1 of the

coefficientsa(n) of f, whereas for the formula given by Dwork, one only has to compute
p — 1 of the coefficients, which makes the formula we derived from Christolsidera-
tions rather useless in practice.

As a final remark, note that by way of computation we found out that, foege f satisfy-
ing the Dwork congruences andsuch that P(f(xz),1)| = 1, itis not true that

P(f(x,2),h) = P(f(zz),h+1) mod p".

Hence, even in case that the Dwork congruences are satisfied, wetédrea position to
evaluatef(z) at a pointr up to a given precision by the method proposed by Christol.
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Appendix

A.1 Hadamard products

In this appendix we collect the results of our calculations on2th@perators which are
Hadamard productd x a, etc. We computed coefficients, b) of the Frobenius polynomial

P(T) =1+ aT + bpT? + ap3T3 + pT*

for all primesp between3 and 17 and for all possible values of € ;. If there occurs

a "-” in the table instead of the tuple:,b), then the corresponding € F, is either a
zero of f} () or of g} or of both, wheref, is the power series solution of the fourth order
differential equation angdy is the solution of the fifth order equation. The appearance of
(a,b)’ means that the polynomial ieducible The appearance dfi, b)* means that the
corresponding is a singular point of the differential equation.

The CaseA * a

This is operator nr. 45 from the lis2]:

0" — 42 (20+1)* (76 + 760 +2) — 12822 (20 +1)* (20 + 3)°

p=3 p=35
z| 12 z 1 2 3 4
— | = (6,—6)" | (28,38)* | — | (32,62)*
p="T
z 1 2 3 4 5 6
(2,-46) | (-8,2) | (32,-94)* | (80,290)* | (10,50)" | -
p=11:
z 1 2 3 4 5 6 7 8
(56,290) | - | (-16,2) | (6,26) | (16,98) | (12,114) | (26,106) | -
z 9 10
(-8,2) | (-36,210)
p=13:

137



138 Appendix A. Appendix

z 1 2 3 4 5 6 7 8
(-8,270)' | (20,-106) | (-4,86) | (-204,646)* | (22,-30) | (-160,30)* | (-34,50) | (-16,302)

z 9 10 11 12
(58,146) | (18,34) | (84,406) | (56,206)

p=1T:

z 1 2 3 4 5 6 7 8
(256,-322)* | (256,-322)* | (-24,542) | (44,166) | (210,1218)| (24,-178)' | (-100,278)| (22,50)

z 9 10 11 12 13 14 15 16
(-4,70) | (52,470) | (-84,342)' | - | (22,-334)' | (18,258) | (184,974)| (-56,302)

The CaseB * a

This is operator nr. 15 from the lis2];

0 —32(30+1)(30+2) (70> +70+2)—722%(30+1)(30+2)(30+4)(360+5)

p=3: p=>5:
z 1 2 z 1 2 3 4
2,4) | (8,13) (—18,-22) | — | (3,—22) | (6,41)
p="7
z 1 2 3 4 5|6
(-31,-102) | (-13,60) | - | (20,12) | - | -
p=11:
z 1 2 3 4 5 6 7 8
(36,170) | (-147,422)| (-15,152) | (21,170) | (45,224) | (-24,71) | (-3,-28) | (-72,-478)
z 9 10
(51,170) | (-12,8)
p=13:
z 1 2 3 4 5 6 7 8
(23,60) | (20,192) | (-13,72) | (23,330) | (-103,-768) | - | (50,285) | (14,-138)
z 9 10 11 12
(17,144) | (56,228) | - (-202,618)
p=1T:
z 1 2 3 4 5 6 7 8
(-12,128) | (105,488) | (93,254) | (21,-250) | (-234,-718) | (-60,-25) | (-39,38) | -
z 9 10 11 12 13 14 15 16
(-132,668) | (-414,2522)| (108,362) | (117,524) | (-39,-142) | (-21,488) | - (15,-196)
The CaseC * a

This is operator nr. 68 from the lis2]:

042 (40 +1) (40 +3) (76 + 70 +2)—1282% (40 +1) (40 +3) (40 +5) (40 +7)

(2,-2) | — — | (6,6) | (—18,—22)x | (8,38)




A.1. Hadamard products 139

P 1 2 3 4 5 6
(24,-158)* | - | (4,2) | (22,50) | (-2,66) | (72,226)*
p=11:
z 1 2 3 4 5 6 7 8
(10,158) | (124,146)* | - | (-10,-38) | - | (92,-238)* | (28,34) | (-32,122)
z ]9 10
- | (14,50)
p=13:
z 1 2 3 4 5 6 7 8
(232,1038)* | (-4,150) | (-32,62) | (-46,146) | (46,126) | (-2,210) | (58,290) | (162,58)
z 9 10 11 12
(12,-50) | (64,206) | (-6,86) | (24,262)
p=1T:
z 1 2 3 4 5 6 7 8
(-60,246) | (-30,162) | (52,226) | - | (8,134) | - | (178,962)| -
z 9 10 | 11 12 13 14 15 16
(404,2342)* | - | - | (-32,-190) | (336,1118)* | (24,-142) | (-24,254) | (66,506)
The CaseD * a

This is operator nr. 62 from the lis2]:

0*~122 (60 +1) (60 +5) (70> + 760 +2)—115222 (60 + 1) (60 + 5) (66 +7) (66 + 11)

p=3: p=>5
z 1 2 z 1 2 3|4
(2,4) | (8,13) (34,74)x | (29,44)% | — | —
p="T
z 1 2 3 4 5 6
(5,-4) | (4,-40) | (59,122)* | (65,170)* | (22,92) | -
p=11:
z |1 2 3 4 5 6 7 8
- | (12,96) | (-9,-46) | (25,14) | (59,296) | (-160,578)* | (-115,38)* | (29,184)
z 9 10
(8,-142) | (-24,15)
p=13:
z 1 2 3 4 5 6 7 8
(67,276) | (56,374) | (5,-100)' | (-138,-278)* | (4,-12) | (-193,492)* | (38,350) | (47,188)
z 9 10 11 12
(-23,8)" | (-3,322)" | (-36,199) | (8,-160)
p=1T:
z 1 2 3 4 5 6 7 8
(67,284) | (18,-79) | (-131,728) | (45,218) | (19,-388)" | (80,490) | (262,-214)* | (72,164)
z 9 10 11 12 13 14 15 16
(-150,822) | (55,-70)' | (160,863)| (250,-430)* | (-15,150) | (11,-278) | (141,768)| (-16,56)
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The CaseA x b

This is operator nr. 25 from the lis2];

0" — 42 (20+1)* (1162 + 116 +3) — 1622 (20 +1)> (26 + 3)°

p=3: p=>5
z |1 2 z 1 2 3 4
— (5,14 (13,16) | — | (2,26) | (=3, 16)
p="7
z 1 2 3 4 5 6
(10,50)" | (25,74) | - | (-10,82) | (10,-30) | (-15,26)
p=11:
z 1 2 3 4 5 6 7 8
(39,262) | (112,2)* | (2,58)' | (-26,42) | (15,166) | (10,-134) | (39,142) | (47,78)
z 9 10
(152,482)* | (-26,122)
p=13:
z 1 2134|565 6 7 8
(-60,166)" | - | - | - | - | (-30,90) | (20,214) | (35,120)
z 9 10 11 12
(50,98) | (60,246) | (35,-40) | (15,12)
p=1T:
z |1 2 3 4 5 6 7 8
- | (115,744)| (20,86)' | (-10,50) | (-15,368) | (-25,60) | (140,790)' | (35,-56)
z |9 10 11 12 13 14 15 16
- | (-15,208) | (20,-394) | (-20,-330) | - (55,540) | (75,632) | (60,134)
The CaseB x b

This is operator nr. 24 from the lis2];

0'—32(30+1)(30+2) (116 +110+3)—92% (30 +1) (30 +2) (30 +4) (360 +5)

p=3 p=>5
z 1 2 z |1 2 3 4
(57 7) (57 19) — (87 _4) — (77 _4)
p=7
z |1 2 3 4 5 6
- | (25,113)| (25,86) | - | (-15,-11) | (15,25)
p=11:
z |1 2 3 4 5 6 7 8
- | (105,-82) | (-29,152) | (10,-127) | (-3,62) | (37,197) | (15,188) | (36,107)
z 9 10
(150,458) | -
p=13:
z 1 2 3 4 5 6 7 8
(90,319) | (15,112) | - | (-35,-4) | - | (45,142)| - | (-5,-151)
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z 9 10 11 12
(20,210) | (35,252) | (-85,447) | (-45,49)
p=1T7:
z 1 2 3 4 5 6 7 8
(50,-115) | (-30,524) | (10,362) | (-10,83) | (65,470) | (165,947)| (30,362) | (10,362)
z 9 10 11 12 13 14 15 16
(80,407) | (45,83) | - | (110,461)| (-120,569) | (-25,-196) | (-40,38) | (-50,56)

The CaseC x b

This is operator nr. 51 from the lis2];

0'—4x (40 +1)(40+3) (116 + 1160 +3)—162> (40 + 1) (40 + 3) (40 +5) (40 +7)

p=3: p=>5:
z 1 2 z 1 2 3| 4
G.10) | (5,2 G, -4y | (12,46) | — | —
p="7
z 1 2 3 4 5 6
(40,122) | (-10,18) | - | (-5,90) | (15,26) | -
p=11:
z 1 2 3 4 5 6 7 8
(24,130) | (39,162) | - | (-5,-74) | (-64,-574)* | (-144,386)* | (30,206) | (-4,162)
z 9 10
(-26,122) | (19,130)
p=13:
z 1 2 3 4 5 6 7 8
(80,430) | (75,282) | (-15,96) | (45,228) | (-30,-38) | (-5,-190) | (30,166) (—80,282)‘
z 9 10 11 12
(30,202) | (10,202) | (30,122) | -
p=1T:
z 1 2 3 4 5 6 7 8
(10,522) | (35,292) | (70,626) | (90,554) | (-70,382) | (50,-110)' | (90,326) | (-25,188)
z |9 10 11 12 13 14 15 16
- | (65,514) | (15,-150)’ | (65,450) | (-50,162) | (115,410)' | (15,124) | (-100,326)
The CaseD x b

This is operator nr. 63 from the lis2];

0*'~122 (60 +1) (660 +5) (116> + 110 + 3)—1442” (60 + 1) (60 +5) (60 + 7) (66 + 11)

p=23: p=2>5:
z 1 2 z |1 2 3 4
5.7 | (5,19) — @476 | @D | (L,
p=7
z 1 2 3 4 5 6
(15,47) (5,31) | - | (-5,62) | (25,95)
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P 1 2 3 4 5 6 7 8
(39,142) | (13,137) | (-2,87) | (104,-94)* | (23,4) | (8,129) | (169,686)* | -
z ]9 10
- | (41,157)
p=13:
z 1 2 3 4 5 6 7 8
(15,139) | (85,410) | (40,86) | (75,275) | (-5,-268) | - | (-55,355) | (-25,189)
z 9 10 11 12
(20,293) | (15,-120) | (-40,305) | (-15,-180)
p=1T:
z 1 2 3 4 5 6 7 8
(30,88) | (-10,206) | (15,236) | (20,111) | (90,239) | (140,749)| - | (10,-231)
Z ]9 10 11 12 13 14 15 16
- | (-30,410) | (5,-41) | (105,698)| - | (-10,542) | (-140,684)| (50,-137)
The CaseA * ¢

This is operator nr.58 from the lis2];

0* — 42 (20+1)* (1062 + 1060 + 3) + 14422 (20 + 1)* (26 + 3)°

p=3 p=>5
z 1 z 1 2 3 4
(8,2)% | — (—28,38)% | — | (—2,—14) | (16, —34)=
p="7
z 1 2 3 4 5 6
(12,2) | (32,-94)* | (26,50) | (80,290)* | - | (12,82)
p=11:
z 1 2 3 4 5 6 7 8
(-160,578)* | (-60,290) | (-12,-78) | (4,-14) | (20,178) | (14,122) | (-46,170) | (-4,-14)
z |9 10
- | (36,98)
p=13:
z 1 2 3 4 5 6 7 8
(-108,-698)* | (-14,-70) | (16,126) | (32,158) | (8,62) | (42,202) | (16,62) | (42,10)
z 9 10 11 12
(-204,646)* | (16,126) | (2,314) | (-16,254)
p=1T:
z 1 2 3 4 5 6 7 8
(-76,278) | (-8,-178) | (-134,562)' | (8,302) | (-24,-178)' | (-142,706) | (-32,110) | (168,942)
z |9 10 11 12 13 14 15 16
- [ (76,278) | (66,2) | (-38,178) | (-12,-234) | - | (224,-898) | (-356,1478)*

The CaseB * ¢

This is operator nr.70 from the lisR];

0* 32 (304+1)(30+2) (106> +100 +3)+8122 (30 +1) (30 +2) (30 +4) (30 +5)
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p=3: p=>5:
z 1 2 z 1 2 3 4
(5,10)" | (—4,-2)’ (—9,—4) | (—27,32)* | (11,—16)" | (—3,32)
p=7
z 1 2 3 4 5 6
(17,54)" | (2,30) | (-46,18)* | - | (11,-24) | (-31,-102)*
p=11:
z 1 2 3 415 6 7 8
(-144,386)* | (18,89)' | (3,-100) | - | - | (-6,26) | - | (-72,350)
z 9 10
(147,422)* | (27,62)
p=13:
z 1 2 3 4 5 6 7 8
(-202,618)* | (62,198) | (-190,450)* | (-34,147) | (5,150)' | - | (20,30) | -
z 9 10 11 12
(20,30) | (-31,203) | - (41,240)
p=1T:
z |1 2 3 4 5 6 7 8
- | (174,947) | (-33,20) | (39,326) | (-16,57) | (6,362) | (-180,-1690)* | (-18,2)
z 9 10 11 12 13 14 15 16
(-18,-358) | (-63,200) | - (234,-718)* | (-39,-214) | (-81,92) | (-135,776)" | (-144,866)
The CaseC * ¢

This is operator nr. 69 from the lis2]:

0'—42 (40 +1) (40 +3) (106° + 100+ 3)+144 2> (40 + 1) (40 + 3) (40 +5) (40 + 7)

p=3: p=>5
z 1 2 z 1 2 3 4
(—4,—14)% | (—4,10) (—32,62)« | (—8,2)" | (—4,26)
p="7
z 1 2 3 4 5 6
(40,-30)* | - | (-4,-54) | (44,2)* | (36,118) | -
p=11:
z 1 2 3 4 5 6 7 8
(32,130) | (16,2)' | (72,-478)* | (-20,-46) | (-172,722)* | (12,54) | (-40,218) | (-20,182)
z 9 10
(28,82) | (-28,50)
p=13:
z 1 2 3 4 5 6 718
(-20,-138) | (4,218) | - | (40,206) | (40,2) | (72,290) | - | -
z 9 10 11 12
(-12,70) | (140,-250)* | (60,334) | (132,-362)*
p=1T:
z 1 2 3 4 5 6 7 8

(24,-82) | (-72,110) | (-12,26) | (-276,38)* | (-76,122) | (148,734)| (88,218) | (316,758)
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z 9 10 11 12 13 14 15 16
(-28,-58) | (-176,962) | (-112,386) | (-28,470) | (-120,462) | (24,210) | (-4,-266) | (64,382)

The CaseD * ¢

This is operator nr. 64 from the lis2]:

0'—122 (660 +1) (660 +5) (106% +100 + 3)+1296 2° (60 + 1) (66 + 5) (66 + 7) (66 + 11)

p=3: p=5
z 1 2 z ] 1 2 3 4
(5,10)" | (—4,—-2) — | (19,—16)* | (—=31,56)* | —
p=7
z 1 2 3 4 5 6
(-6,-50) | (31,128) | (47,26)* | - | (86,338)* | -
p=11:
z 1 2 3 4 5 6 7 8
(-49,238) | (-75,350) | (31,76) | (115,38)* | (-21,60) | (8,-98) | (-18,-7) | -
z 9 10
(-136,290)* | (14,122)
p=13:
z 1 2 3 4 5 6 7 8
(-198,562)* | - | (-44,222) | (-31,8) | - | (75,310) | (25,140) | (45,160)
z 9 10 11 12
(-138,-278)* | (22,75) | (44,254) | (-7,-4)
p=1T7:
z 1 2 3 4 5 6 7 8
(16,-94) | (121,520) | (-111,444)| - | (-362,1586)* | - | (79,488)| (-2,250)
z |9 10 11 12 13 14 15 16
- | (236,-682)* | (-6,-342) | (95,392) | (63,254) | - | (-162,851)| (-83,368)
The CaseA x d

This is operator nr. 36 from the lisE]:

0* — 162 (20 +1)* (362 +360 +1) + 51222 (20 + 1)> (260 + 3)°

p=3 p=>5
z 1 z 1 2 31| 4
(4,-14) | — (8,46) | (—8,—82) | —
p="7
z 1 2 3 4|15]|6
(40,-30) | (-8,-30) | (-12,34)
p=11
z 1 2 3 4 5 6 7 8
(-80,322) | (-8,162) | (-28,146) | (-20,82) | (172,722)| - | (16,-30) | -
z 9 10

(24,-62) | (-4,-142)
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p=13:
z 1 2 3 4 5 6 7 8
(-36,86) | (28,118) | (56,270) | (36,230) | (-48,254) | (-200,590) | (72,398) | -
z |9 10 11 12
- | (-18,8) | (60,214) | (-132,-362)
p=1T:
z 1 2 3 4 5 6 7 8
(44,-90) | (-212,-1114)| (-76,598) | (-276,38) | - | (28,326) | - | (-84,422)
z 9 10 11 12 13 14 15 16
(-4,6) | (112,606) | (-16,-162) | (-8,-50) | (-44,598) | (44,-42) | (20,470) | (124,774)

The CaseB * d

This is operator nr. 48 from the lis2];

0*'~122(30+1) (30 +2) (30> +360+1)+2882> (30 +1)(30+2)(30+4)(30+5)

p=3: p=>5
z 1 z |1 2 3|4
(-1,-8) | (—7,16) — | (21, —-4)*
p="T
z 1 2 3 4 5 6
(-5,32) | (-11,32) | (-5,38) | (-8,62) | (-55,90)* | (36,-62)*
p=11
z |1 2 3 4 5 6 7 8
- | (-29,152) | (37,80) | (-89,386) | (69,-514)* | (8,-145) | (50,98)" | -
z 9 10
(-40,170) | (-1,98)
p=13:
z 1 2 3 4 5 6 7 8
(36,49) | (21,-44) | (18,322)' | - | (-112,-642)* | (58,98) | - | (-21,334)
z 9 10 11 12
(27,-56) | (-154,-54)* | (33,166) | (-24,106)
p=1T:
z 1 2 3 4 5 6 7 8
(88,614) | (-32,326) | (234,-718)* | (-11,128) | (-14,-286) | (109,362)' | (-35,146) | (105,308)
z 9 10 | 11 12 13 14 15 16
(15,20) | - - (18,155) | (88,569) | (-5,506) | (-71,452) | (-20,-250)
The CaseC x d

This is operator nr. 38 from the lis2];

0'~162 (40 +1) (40 +3) (36> +360 +1)+5122> (40 + 1) (40 + 3) (40 +5) (40 +7)

p=3: p=>5:

z 1 2 z ) 234
(=10, 10) | (2, —22) (36,86) | — | — | —
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p="T.
z |1 2 3 4 5 6
- | (36,-62) | (-12,-2) | (-4,66) | (-10,10) | (-2,26)
p=11:
z 1 2 3 4 5 6 7 8
(10,122) | (150,458) | (12,-78) | (-118,74)| (-64,306) | (20,146) | (-42,122) | -
z 9 10
(-98,434) | (-4,-30)
p=13:
z 1 2 3 4|5 6 718
(-16,126) | (32,158) | (236,1094)| - | - | (-16,158) | - | -
z 9 10 11 12
(-14,-86) | (12,54) | (2,42) | (62,346)
p=1T7:
z 1 2 3 4 5 6 7 8
(-240,-610) | (96,382) | (62,314) | (-24,14) | (8,78) | (-24,402) | (94,354) | (20,294)
z 9 10 11 12 13 14 15 16
(-396,2198) | (44,438) | (-58,162) | (-4,354) | (76,230) | (6,-158) | (40,590) | (12,22)
The CaseD * d

This is operator nr. 65 from the lis2]:

0*—482 (60 +1) (660 +5) (3% +360 +1)+46082> (66 + 1) (66 +5) (60 + 7) (66 + 11)

p=3 p=5
z 1 2 z 1 2 3 4
(-1,-8) | (—7,16) (—26,26) | (—11,—64)* | (—1,—2) | (14,23)
p="T.
z 1 2 3 4 5 6
(-3,-4) | (-12,54) | - | (-9,40) | (-11,66) | (43,-6)*
p=11:
z 1 2 3 4 5 6 7 8
(67,-538)* | (-19,-58) | (-17,-62) | (-48,106) | (-13,104)' | - | (79,324)| (-62,282)
z 9 10
(-5,-128) | (30,173)
p=13:
z |1 2 3 4 5 6 7 8
- | (22,278) | - | (24,-70) | (87,428) | (-164,86)* | - | (-35,142)
z 9 10 11 12
(-58,179) | (47,276) | (33,-86) | (-126,-446)*
p=1T:
z 1 2 3 4 5 6 7 8
(16,30) | (-31,364) | (-23,94) | (40,281) | (22,99) | (59,-24) | (-410,2450)* | (43,592)
z 9 10 11 12 13 14 15 16

(109,472) | (-25,158) | (15,230) | (110,690) | (5,552) | (-198,-1366) | (-40,342) | (20,-50)
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The CaseA « f
This is operator nr. 133 from the lis2]f

0' — 122 (20 +1)* (362 +360 +1) + 43222 (20 +1)* (260 + 3)°

p=3: p=>5
z 1 2 z 1 2 3 4
2,107 [ (-1,-2) (3,49) [ (=6,—6) | (—3,28) | (—18,42)
p="T.
z 1 2 3 4 5 6
(48,34)* | (9,26) | (1,26) | (17,26) | (64,162)* | (9,26)
p=11:
z 1 2|3 4 5 6 7 8
(-48,210) | - | - | (3,158) | (-36,18) | (-36,82) | (27,70) | (54,266)
z 9 10
(21,-58) | (-54,122)
p=13:
z |1 2 3 4 5 6 7 8
- | (38,146) | (-47,48) | (-18,-38) | (-192,478)* | (133,660) | (-11,84) | (-34,146)
z 9 10 11 12
(-18,-166) | (58,242) | (-192,478)* | (50,98)
p=1T:
z 1 213 4 5 6 7 8
(48,350) | - | - | (-48,286) | (-9,-260) | - | (72,494) | (-111,524)
z 9 10 11 12 13 14 15 16
(72,622) | (-81,268) | (6,42) | (-48,334) | (42,-54) | (-18,-54) | (-126,570)| -

The CaseB * f
This is operator nr. 134 from the lis2]f

0'—92(30+1)(30+2) (360 +30+1)+2432%(30+1) (30 +2) (30 +4)(30+5)

p=3: p=>5
z 1 2 z 1 2 3 4
(—4,13) | (5,4) (—24,71) | (3,17) | — | (—3,-31)
p="7
z 1 2 3 4 5 6
(12,75) | - | (5,-12) | (-34,-78)* | (-34,-78)* | (5,60)
p=11:
z 1 2 3 4 5 6 7 8
(15,218) | (-78,296) | (-12,2) | (-36,194) | (-3,-79) | (69,263) | (-36,113) | -
z 9 10
(-24,107) | (-9,131)
p=13:
z 1 2 3 4 5 6 7 8
(-1,-171) | (-133,-348)* | (23,114) | (41,159) | (-25,165) | (-109,450) | (-133,-348)* | (32,-48)
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z 9 10 11 12
(98,495) | (-55,99) | (50,33) | (44,306)
p=1T7:
2 1 2 3 4 5 6 7 8
(-12,-322) | (-135,695) | (-105,506) | (-63,227) | (30,434) | (-24,-286) | (45,254) | (-156,857)
z 9 10 11 12 13 14 15 16
(42,92) | (15,-25) | (30,-142) | (12,362) | (-6,236) | (108,641)| (15,461) | (-84,587)
The CaseC « f

This is operator nr. 135 from the lis2]f

0'—122 (40 +1) (40 +3) (3602 +360 +1)+4322> (40 + 1) (460 + 3) (40 +5) (40 +7)

p=3: p=>5:
z 1 2 z 1 2 3 4
(—4,-2)" | (5,10)’ (—12,22) | (—3,34) | (6,26)
p="7
z 1 2 3 4 5 6
(5,-46) | (60,130)* | (52,66)* | (9,58) | (1,62) | -
p=11:
z |1 2 3 4 5 6 7 8
- | (-24,146) | (-18,38) | (-48,146) | (51,202) | (15,50) | (-24,26) | -
z 9 10
(-78,322) | (-27,-30)
p=13:
z 1 2 3 4 5 6 7 8
(14,2) | (-54,142) | (44,230) | (11,-124)| (5,-190) | (210,730)* | (-22,-118) | -
z 9 10 11 12
(44,198)' | (99,436) | (154,-54) | -
p=1T:
z |1 2 3 4 5 6 7 8
- | (-111,688) | (90,494) | (-39,44) | (6,-358) | (42,322) | (-138,810) | -
z 9 10 11 12 13 14 15 16
(-105,412) | (135,698) | - (6,534) | (-72,622) | (-39,74) | (12,262) | (-36,582)’
The CaseD x f

This is operator nr. 136 from the lis2]f

0*—362 (60 +1) (660 +5) (360 +360+1)+38882 (660 + 1) (660 +5) (60 +7) (66 + 11)

p=3: p=>5
z 1 z |1 2 3 4
(=4,13) | (5,4) — | = [ (=6,-7) | (=21,67)
p="T
z 1 2 3 4 5 6
(15,-1) | (52,66)* | (5,80) | - | (9,44) | (60,130)*
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z 1 2 3 4 5 6 7 8
(-27,123) | (-9,137) | (-24,62) | (-6,-163) | (-54,246) | (-36,254) | (48,208) | -
z 9 10
(51,126) | (-63,289)
p=13:
z 1 2 3 4 5 67| 8
(35,162) | (35,86) | (64,243) | (-60,310) | (-207,688)* | - | - | (20,5)
z 9 10 11 12
(93383)| - | (-207,688)* | (5,-259)
p=1T7:
z 1 2 3 4 5 6 7 8
(-90,265) | (-99,653) | (6,375) | (-132,580) | (48,230) | (36,394) | (87,335) | (-156,760)
z 9 10 11 12 13 14 15 16
(72,415) | (-45,342) | (-48,74) | (12,-94) | (33,-201) | (15,478)| (9,-225) | (-36,74)
The Cased x g

This is operator nr. 137 from the lis2]f

0" — 42 (170> +170+6) (20 + 1) + 11522 (20 +1)* (20 + 3)°

p=3: p=>5
z |1 2 z |1 2 3 4
— 1 (8,2)x — | (—32,62)* | (—6,42)" | (16,—34)x
p="7
z 1 2 3 4 5 6
(6,50) | (80,290)* | (8,2) | (32,-94)* | (16,2) | (6,34)
p=11:
z 1 2 3 4 5 6 718
(-104,-94)* | (-8,98)' | (2,170) | (-64,194) | (-32,2) | (8,2)
z 9 10
(12,114) | -
p=13:
z 1 2 3 4 5 6 7 8
(-108,-698)* | (14,146) | - | (-56,174)' | - | (-160,30)* | (36,278) | (36,118)
z 9 10 11 12
(66,322) | (-36,22) | (16,-114) | (24,206)
p=1T:
z 1 2 3 4 5 6 7 8
(-88,494)" | (-356,1478)* | (-40,14) | (92,326)' | (4,-154) | (88,350) | (10,-430)' | (6,-174)
z 9 10 11 12 13 14 15 16
(6,210) | (-148,854)' | - (56,206) | (-92,566) | (-182,1010)| (224,-898)* | (64,62)

The CaseB * g
This is operator nr. 138 from the lis]f

0*~32(30+1)(30+2) (1760 + 1760+ 6)+64827 (360 +1) (30 +2) (30 +4) (30 +5)
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p=3 p=>5
z 1 2 z 1 2 3 4
(=4, —2) | (5, 10) (18, —22)« | (—33,68)x | (-9, 14)
p="7
z 1 2 3 4 5 6
(5,-66) | (32,96) | (-46,18)* | (23,96) | (-13,-12) | -
p=11:
z 1 2 3 4 5|16 |7 8
(-120,98)* | (6,-37) | (-24,89) | (60,206) | - | - | - | (72,-478)*
z 9 10
(-9,-10) | (-39,134)
p=13:
z 1 2 3 4 5 6 7 8
(-31,6) | - | (-190,450)* | (86,321) | (-103,-768)* | (-4,222) | (-1,288)' | (-16,66)’
z 9 10 11 12
(-16,210) | - (14,33) | (41,294)
p=1T:
z 1 2 3 4 5 6 7 8
(-18,506) | (45,344)| (63,146) | (36,83) | (-171,902)| - | (-432,2846)* | (-150,812)
z 9 10 11 12 13 14 15 16
(-66,164) | (414,2522)* | (-15,-160) | (-57,146) | (-36,-241) | (3,524) | - (-6,182)
The CaseC x g

This is operator nr. 139 from the lis]f

0' 42 (40 +1) (40 +3) (176° + 170+ 6)+115227 (40 + 1) (460 +3) (40 +5) (40 +7)

p=3: p=>5
z 1 2 z 1 2 3 4
(—4,10) | (—4,—14)* (—28,38)x | — | (18,—22)* | (—4,14)
p="7
z 1 2 3 4 5 6
(88,354)* | (2,-46) | - | (68,194)* | (-18,22) | (-6,58)
p=11:
z 1 2 3 4 5 6 7 8
(-14,194) | (-140,338)* | (72,-478)* | (50,290) | (-8,130) | (-58,202) | (10,-70) | (-24,-6)
z 9 10
(16,106) | (-24,2)
p=13:
z 1 2 3|14|5 6 7 8
(-20,294) | (2,-126) | - | - | - | (32,134)| (38,174) | (202,618)*
z 9 10 11 12
(30,-62) | (224,926)* | (-22,38) | (20,270)
p=1T:

z | 1 2 3 1 5 6 7 8
= | (-22,338) | (-128,746) | (-44,86) | (-50,74) | (-44,74) | (-52,14) | (316,758)
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z 9 10 11 12 13 14 15 16
(-208,1186)* | (40,110) | (-22,-94) | (164,818)| (8,-370) | (-52,218) | (-182,1010)| (-64,302)

The CaseD x g

This is operator nr. 140 from the lis2]f

0*~122 (60 +1) (660 +5) (176> + 170 + 6)+10368 2% (60 + 1) (660 + 5) (66 + 7) (66 + 11)

p=3: p=>5:
z 1 2 z 1 2 3|4
(—4,-2)" | (5,10) (—26,26) | (19,—16)* | — | —
p="7
z 1 2 3 4 5 6
(24,64) | - | (53,74)* | (29,86) | (26,-142)* | (9,-4)
p=11:
z 1 2 3 4 5 6 7 8
(13,50) | (-17,2) | (8,-58) | - | (14,83) | (160,578)* | (-68,257) | (-32,172)
z 9 10
(-128,194)* | (-37,38)
p=13:
z 1 2 3 4 5 6 7 8
(-198,562)* | (-4,-202) | (-4,218) | (49,294) | - | (-193,492)* | (84,386) | (24,163)
z 9 10 11 12
(-9,214) | (24,211) | (19,-36) | (54,170)
p=1T:
z 1 2 3 4 5 6 7 8
(-10,-394) | (71,368)' | (157,908)" | (112,431)| (-47,122) | (3,-144) | (-350,1370)* | (-154,716)
z 9 10 11 12 | 13 14 15 16

(-38,-76) | (236,-682) | (63,-24) | - | - | (5.-394) | (49,320) | (-38,338)

A.2 Modular forms

In this section, we list the CY(4)-differential operators for which we catef the coeffi-
cients of modular forms in conifold points. For each conifold point, we list thefficients
a,, of the conjectured modular form up o= 19. Note that we can only conjecture the
identity of the modular form since we only computed the first few coefficients.

The numbers of the Calabi-Yau operators are the numbers used in thgPlageeSZ 20
denotes operator number 20 from the list2j [If these numbers differ from the numbers
in the CY-databaseg], we also mention the number in the database in brackets ().
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A.2.1 Operators with one rational conifold point

AESZ 20

The differential operator is given by

0 —  —32(480" + 600° 4 5367 + 230 + 4) + 3222(8730" + 19806° + 231962 + 13446 + 304)

— 2-3%23(12690" 4 388863 + 52500 4 33486 + 800)
+ 223524(8910" + 32400° + 465362 + 29526 + 688)
— 25311250+ 1)%(30 + 2)(30 + 4).

The first coefficients of the modular form in the singular pdifi4 are

Point

Form

az | az

as

ar

ail

a3

ayr

a9

1/54

108/2

00

-9

—63

—28

—72

98

AESZ 23

The differential operator is given by

326*
_|_

+

The first coefficients of the modular form in the singular pdif32 are

2232(646" + 800° + 736% 4 3360 + 6)
272%(1946* + 4400% + 5276% + 3150 + 75)
21223(940* + 2886° + 3976% + 2616 + 66)
21724(220" 4-800% + 1176% 4 770 + 19) — 232°(0 + 1)*.

Point

Form

a2

as

as

az

ail

ai3

ary

aig

1/32

32/3

0

-8

—10

—16

40

—50

—-30

—40

AESZ 73

The differential operator is given by

0 — 2.322(420" + 600% 4 4502 + 150 + 2) + 2%3°2%(1800" + 43203 + 4536 + 2220 + 40)

213923(20 4 1)2(1362 + 296 + 20) + 263122420 + 1)%(260 + 3)2

The first coefficients of the modular form in the singular pdift32 are

Point

Form

as | as

as

ar

ail

ai3

ayr

aig

1/432

432/13

010

12

7

—60

-79

—108

—11
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AESZ 116

The differential operator is given by
0 —  252(100* 4+ 260° 4 2007 + 70 + 1) + 282%(520" + 472607 + 83267 + 4926 4 103)
+ 21623(140% 4 120% — 9602 — 1050 — 29) — 2'82%(20 + 1)(566° + 46802 + 64660 + 249)
22425(20 4 1)(460 + 3)(40 + 5)(20 + 3).
The first coefficients of the modular form in the singular pdif56 are

Point | Form| as | a3 | as a7 |ai | 13 | a7 | aig
1/256 | 72/2 | 0 | 0 | —14 | —24 | 28 | =74 | —82 | 92

AESZ 119

The differential operator is given by
0% —  32(480* +600° + 5307 + 230 + 4) + 3222 (8730 + 19800° + 231962 + 13446 + 304)
2-3123(12690 + 388860° + 5259602 + 33486 + 800)
+ 223524(8910" 4 324060° + 465302 + 29526 + 688) — 2331125(0 4 1)2(36 + 2)(30 + 4).
The first coefficients of the modular form in the singular pdifi4 are

Point| Form |as | a3 | a5 | a7 | a11 | a13 | a17 | aig
1/541108/2| 0 | 0 | -9 |—1|—-63|—28|—72| 98

AESZ 194 (DB 255)

The differential operator is given by
1726%  —  172(14650* + 276863 + 22000> + 8166 + 119)
4+ 22%(620150" + 13158260% + 1250176% + 659266 + 15300)
2 - 3323(43250" + 109146° 4 1280362 + 74460 + 1700)
+ 3%2%(2650* 4 8360° + 11186 + 7000 + 168) — 3'°2°(6 + 1)*.
The first coefficients of the modular form in the singular pdif#1 are

Point| Form as | as | as | ay ail | a1z | ai7 | ailog
1/811225/4| -4 0| 0| —6|—-32| 38|26 |100

AESZ 214 (DB 266)

The differential operator is given by

0 —  22(900* + 1886° + 1416% + 470 + 6) — 2222(5640* + 15200° + 170562 + 9346 + 192)
2423(260 + 1)(2866° + 8130% + 8516 + 294) — 20324(260 + 1)(46 + 3)(460 + 5)(260 + 3).

The first coefficients of the modular form in the singular pdift92 are

Point | Form | a2 | a3 |as | a7 | a11 | a13 | a17 | aig
1/192 1882/14 | -2 0 | 6 | 0 | =30 | —2 | 66 | 52
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AESZ 220 (DB 291)

The differential operator is given by

0 — 2%2(200% + 566° 4 3867 + 100 + 1) — 21022(846* + 24060° + 2616 + 1346 + 25)
21623(260 + 1)2(236% + 550 + 39) — 2%32%(20 + 1)%(26 + 3)2.

The first coefficients of the modular form in the singular pdif12 are

Point | Form | ay | a3 | as [0%4 ail a3 a7 aig
1/5121192/41 0 | 3 | -6 | —16 | —12 | =38 | —126 | —20

AESZ 221 (DB 292)

The differential operator is given by

520 —  2252(4040" 4 109662 + 7736 + 2256 + 25)
— 2%22(668960" + 1374080% 4 10109662 + 528000 + 11625)
—  2%152°(20 + 1)(567260° + 95000% + 84226 + 2689)
— 2193221260 + 1)(12086° + 28926% + 28426 + 969)
— 220335(20 + 1)(60 + 5)(60 + 7)(260 + 3).

The first coefficients of the modular form in the singular pdift32 are

Point | Form|as | a3 | a5 | a7 | a1 | a13 | a17 | aig
1/432 ? 0|0 |—-12|—-|12|-76| -8 | —100

A.2.2 Operators with two rational conifold points
AESZ 28

The differential operator is given by
0 — 2(650* + 1300° + 105602 + 400 + 6) + 222%(40 + 3)(0 + 1)*(40 + 5).

The first coefficients of the modular forms in the singular poin4, 1 are

Point| Form| as | a3 | as ary |ain |ai3 | aiy | aig
1/64 | 14/2 | 2 | -2 | —-12| 7 48 | 56 | —114 | 2
1 6/1 | —2|-3| 6 |—16] 12 | 38 | =126 | 20

AESZ 33

The differential operator is given by

0 —  222(32460" + 45660° + 32107 4 9360 + 10) + 2°2%(5840* + 5846 4- 46> — 710 — 13)
216,3(32460" + 19260 + 12307 4 480 + 7) + 22424 (20 + 1)™.
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The first coefficients of the modular forms in the singular points)24, 1/16 are

Point | Form as as as | ary all ais a1y | a19
1/1024 [ 28/1 | 0 | —10| -8 | —7| —40 | —12 | —58 | 26
1/16 | 28/1] 0 | —10| —8| —7 | —40| —12| —58 | 26

AESZ 55

The differential operator is given by

3207 —  2232(2086* + 2240° + 1636 4 510 + 6)
4+ 292%(3260% — 9280° — 16066* — 8370 — 141)
4+ 2%623(14460 + 57663 + 46767 + 14460 + 15) — 22121(20 4+ 1)L

The first coefficients of the modular forms in the singular pointg64, 1,/256 are

Point | Form| as | a3 | a5 | a7 |ai1 | a1z | a17 | aig
—1/64 | 5/1 | —4| 2 | =5] 6 32 | =38 | 26 | 100
1/256 | 40/2 | 0 | —6|—5|—34| 16 | 58 | =70 | 4

AESZ 182

The differential operator is given by
0 — 2(430* 4 866> + 7702 + 340 + 6) + 2%322(0 + 1)%(660 + 5)(60 + 7).

The first coefficients of the modular forms in the singular poin'ts7, 1/16 are

Point| Form| as | a3 as (074 a1 ais | ai7 | aig
1/27 | 33/2 | —5| 3 | —14 | —32 | —11| —38 | -2 | 72
1/16 | 22/3 | 2 | 1| =3 | —10| 11 | —16| 42 | 116

AESZ 183

The differential operator is given by
01 — 222(20 + 1)2(70% + 70 + 3) + 2132%(20 + 1)(46 + 3) (46 + 5)(20 + 3).

The first coefficients of the modular forms in the singular poin4, 1/48 are

Point| Form| as | a3 | a5 | ar | a1 | a1z | a17 | aig
1/64 16/1 0|4 |—-2|—-24|44 |22 | 50 | —44
1/48 | 72/1 1 0 | 0| 16 | —12| 64 | 58 | 32 | —136
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AESZ 205

The differential operator is given by
0 — 2(590* + 1186° + 1056 + 460 + 8) + 2°322(0 + 1)*(30 + 2)(30 + 4).

The first coefficients of the modular forms in the singular points2, 1/27 are

Point| Form| as | a3 | a5 ar | a1 | a13 | a17 | aig
1/32132/3| 0| —-8|—-10| —16| 40 | =50 | —30 | —40
1/27 15/2 1 3 5 —24 | 52 22 | =14 | =20

AESZ 229 (DB 293)

The differential operator is given by

0 — 222(2560" + 72863 + 5060% + 1426 + 15)
213222(23360" 4 23360° — 17680% — 11766 — 189)
293123(5120% — 4320% — 4046 — 1080 — 9) + 212382%(20 + 1)*.

The first coefficients of the modular forms in the singular points296, 1/16 are

Point Form |as | a3 | a5 | a7 a1 a3 aly aig
1/1296 | 720/5| 0 | O 5 | —61] 32 | =38 | —26 | —100
1/16 80/4 | 0 | -2 |—-5|—6|—-32|—-38| 26 |—100

AESZ 232 (DB 296)

The differential operator is given by

5207 —  52(26176% + 4658602 + 33796% 4 10500 + 120)
2632%(6730" — 48716° — 102820% — 54100 — 860)
2103223(9550* + 43200° + 34776% 4 10206 + 100)
— 217332430 + 1)(20 4 1)%(36 + 2).

+ +

The first coefficients of the modular forms in the singular pointg27, 1/512 are

Point | Form|as | a3 | a5 | a7 | a11 | a13 | a17 | a9
—1/27[99/1 [ 1] 0 | 4 | —26|—11| —32| —74| —60
1/512 | 44/1 | 0 | =5 | =7 | =26 | =11 | 52 46 | —96

AESZ 233 (DB 297)

The differential operator is given by

0 — 2%2(830% 4+ 9467 + 7167 + 240 + 3) + 2'1322(1016* + 19163 + 17467 + 710 + 10)
2163222(2030* 4 43260 4 3330% + 1020 + 11) + 2233324(30 + 1)(20 + 1)%(36 + 2).
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The first coefficients of the modular forms in the singular pointsi2, 1/432 are

Point | Form as | as | as (024 ail a3 aly a9
1/512 | 80/4 | 0 | -2 | —=5| —6 | =32 | =38 | 26 | —100
1/4321180/5| 0 | 0 5 | =28 24 | =70 | —102| 20

AESZ 235 (DB 299)
The differential operator is given by

720 —  14260(460° + 520% + 330 4+ 7)
—  222%(73320" 4 288480 4 426336% 4 266700 + 6272)
— 2%23(28600" + 447600° + 120483602 + 1112796 + 35098)
2924(22300" + 59200° — 7416% — 65090 — 3049)
2125 (1740" + 13200° + 19716% + 10956 + 190)
— 21962201 1 24603 — 90% — 216 — 7) — 225276 + 1)1

_|_
_|_

The first coefficients of the modular forms in the singular pointg16, 1/32 are

Point | Form| as | a3 | as ay | a1 | a13 | a17 | aig
—1/16 72/2 010 |—-14|-24| 288 | —74| —-82]| 92
1/32 [ 96/3 |0 |3 |—14|-36|—-36| 54 | —22| 36

AESZ 237 (DB 301)
The differential operator is given by

0 — 212(460 + 1280° + 910% + 2760 + 3) — 29322(746* — 1660° — 2316% — 12760 — 20)
+ 2M32:3(140% + 2160° + 17560 + 510 + 5) + 219332 (30 + 1)(20 + 1)%(30 + 2).

The first coefficients of the modular forms in the singular points64, 1/64 are

Point | Form |as |as | a5 | a7 | a11 | a1z | ai7 | aig
1/864 288/11 0|l0]|—-2| 12 | —-60| —42| —-10]| 132
1/64 16/1 04 ]|-2|-24| 44 22 50 | —44

AESZ 239 (DB 303)
The differential operator is given by

0 + 2%32(90* —1980% — 13162 — 320 — 3) — 2113222(4860* + 121560° + 816% — 270 — 5)
21635,3(8910* + 9720° + 6750% + 2160 + 25) — 223382440 + 1)%(30 + 2)2.

The first coefficients of the modular forms in the singular poiatg432, 1/3456 are

Point Form | as ag | as | ar | a1l | a13 | a7 | a9
—1/4321108/4| 0| 0|9 |—-1|63|—28| 72| 98
1/3456 | 432/8 | 0 |0 | 0 | 37| 0 |—19| O | 163
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AESZ 241 (DB 305)

The differential operator is given by

0r — 22(1520% 4 16003 + 1100% + 300 + 3) + 21932%(4280" + 1766° — 2996? — 1700 — 25)
2173223(13660* — 2166° — 1800% — 516 — 5) — 2243324(30 4+ 1)(20 + 1)%(30 + 2).

The first coefficients of the modular forms in the singular poiatg64, 1/1728 are

Point Form | as | a3 as ay ail a3 | a7 | aig
“1/64 | 56/2 | 0 | —2|—16] —7| 24 | —68 | 54 | —46
1/1728 | 504/1 1 0 | O 2 7 | =12 | —66 | 70 | —92

A.2.3 Operators with three rational conifold points
AESZ 21

The differential operator is given by

520 —  2252(360" + 8463 + 7207 + 300 + 5) — 212%(1810* + 2686 4 716% — 700 — 35)
4+ 2823(0 4 1)(376% 4 24807 + 3750 + 165)
4+ 21024(390* 4- 1980% + 33162 + 2320 + 59) + 2'°25(0 4 1)*.

The first coefficients of the modular forms in the singular poitg4, 1/32,1/4 are

Point| Form | as | a3 as a7 | aiq a3 a7 aig
“1/4| 8/1 |0 | —4| —2 |24 | —44]| 22 | 50 | 44
1/32 | 112/4| 0 | —4| 6 |—7] 12 | —82| 30| —68
1/4 | 56/2 | 0 | =2 | =16 | =7 | 24 | —68 | 54 | —46

AESZ 34

The differential operator is given by
0 —2(350" +-700°+-630%4-280+-5)+2%(0+1)2(2596% +5180+285) — 15223 (0+1)2 (0 +2)>.

The first coefficients of the modular forms in the singular poin5, 1/9, 1 are

Point| Form as | as | as ay all a3 aly aig

1/25 130/1 | —2| 3 | 5| 32 | —60|—34| 42 |-76

179 | 6/1 |—2|—3] 6 | —16] 12 | 38 | —126] 20
1 6/1 | -2 -3|6 |—16| 12 38 | =126 | 20
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AESZ 59

The differential operator is given by

720*

142(2576* + 5200° + 4350% + 1750 + 28)

222%(134976" + 5553600° + 812220% + 503376 + 11396)
2323(172010* 4 1149966 + 2484666% + 2026290 + 55412)
2424(57620* 4 296680° + 4815007 + 317416 + 7412)

2% 32°(460 + 5)(30 + 2)(30 + 4) (46 + 3).

The first coefficients of the modular forms in the singular points4, 1/16, 1/4 are

Point| Form | as | a3 | as a7 | a11 | a13 | aiy aig

1/54 1684/5| 0| 0 | —18 | =32 | —46 | —72| 8 19

1/16 [ 228/2| 0 | -3 | =7 | 21 | =37| 26 | —33| —19

1/4 | 12/1 |0 | 3 | —18]| 8 36 | 10| 18 | =100
AESZ 216 (DB 268)

The differential operator is given by

0 — 320(276° + 186 + 110 + 2) — 2 - 332%(720" + 4146° + 6036 + 3300 + 64)

+ o+

223523(930" — 7200% — 7080 — 184)
2%372%(20 + 1)(546° + 40562 + 5446 + 200)

— 2431025(20 +1)(30 4 2)(30 + 4) (26 + 3).

The first coefficients of the modular forms in the singular poitg27, —1/36, 1/108 are

Point | Form |as | a3 | a5 | a7 | a11 | a13 | a17 | aig

—1/27| 15/2 | 1 | 3 5 | =24 | 52 22 | —14 | =20

—1/36(324/2| 0| 0 | —3| —4 | 24 |—-25| 21 | =52

1/108 | 60/1 | O | =3 | =5 | =28 | =24 | =70 | 102 | 20
AESZ 217 (DB 269)

The differential operator is given by

720 +

720(130° — 1186% — 730 — 14)

2332%(33780" 4 1344660° 4 188690% + 111586 4 2352)
2*3%2%(36280* + 179200° + 3166867 + 225966 + 5383)
283324(20 + 1)(5726° + 23706 + 28966 + 1095)
2103425(260 + 1) (660 + 5)(60 + 7)(20 + 3).
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The first coefficients of the modular forms in the singular poinatg'16, —1/27, 1/48 are

Point Form | as | a3 | as [0%4 ail a3 aly aig
“1/16| 176/1 | 0 | 1| —7] 6 | 11 | —40| —78 | —36
—1/27 ? 0]0| 4 |-26 — |—-32|-74|—-60

1/48 [432/1110 | 0 | 4 | =3 | =28 | —11| 44 | —29

AESZ 226 (DB 283)

The differential operator is given by

520 —  102(3280* + 6920° + 55162 + 2056 + 30)
4+ 2%32%(53520" 4 2541660° + 383876 + 230200 + 4860)
— 213323(3520" 4 45200° + 1210862 + 102056 + 2630)
— 293324(20 + 1)(5866° + 30390% + 39476 + 1527)
— 283%25(20 + 1)(660 4 5)(60 + 7)(20 + 3).

The first coefficients of the modular forms in the singular points08, 1/16, 1/12 are

Point | Form | as as | as | a7 | ail ails aiy aig
1/108 ? 0 0| 14| 2 |-58|—-50| 76 60
1/16 | 23/1 | =2 | =5 | —6|—8| 34 | =57 | =80 | —70
1/12 [216/4] 0 | 0 | 0 | —9|—17|—44| 56 | —94

AESZ 234 (DB 298)

The differential operator is given by

720 —  14260(1920° 4 600* + 370 + 7)
— 2222(176080* + 11514467 + 1667156 4 945560 + 18816)
4+ 2%3223(202880" + 572880% 4 275246% — 745560 — 5026)
— 29352%(20 + 1)(45860° — 6576% — 17990 — 846)
— 212382520 + 1)(0 4+ 1)%(260 + 3).

The first coefficients of the modular forms in the singular pointg4, —1/36, 1/64 are

Point | Form as | as as a7 ail a3 aly ailg
—1/4 [68/1] 0 |—2| -8 [—12|—10| —38|—17| 4
—-1/36 | 12/1 | 0 3 | —18] 8 36 | —10| 18 | —100
1/64 | 34/2 [ —2| -2 —18|—10| —6 | 74 | 17 | —88
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A.3 Laurent polynomials

In the tables below, we list Laurent polynomials whose fundamental pesaiddsy Calabi-
Yau differential equations of order. These polynomials were found by D. van Straten
and G. Almkvist in the list of Batyrev and KreuzeB]{ The Newton polyhedra of all of
these Laurent polynomials contain the origin as unique interior lattice pointhaisdhey
provide examples for the Laurent polynomials considered in chaptereSnifimbers of the
CY(4)-operators are the numbers used in the lis2n [f these numbers differ from the
number in the databas8][ or if the operators do not appear in the lig},[we also give the
number of the operator in the database.

AESZ 3

The differential operator is given by

0* — 25612 (0 + 1)*,

and a Laurent ponnomial is

X+ 3+ R A3+ X I+ 5ttt X+ttt oyt vor
The coefﬁuenh( ) of t" of the solutlon to the differential equatlon is then giveruloy ) =

[f2n}0.

AESZ 4

The differential operator is given by

g* — 72913 (0 + 1) (0 + 2)°

and a Laurent ponnom|aI is

X4 T X X2 YT 2T Y 2y X2

The coefﬁuenh( ) of t™ of the solutlon to the differential equation is then giverulfy) =

[f?m}o-

AESZ5

The differential operator is given by
0* — 1083 (0 +2) (0 +1) (260 + 3)*
and Laurent ponnomiaIs are ,
TY ZYT | ZT X

X'+ e+ + ¥+ E+ 85+ L+ £+ A
or

- T _ Y Y | ZT X2
X1+X+_YJF7+T+ZY+ + Zvr- _ o _
The coefficienti(n) of ¢ of the solutlon to the differential equation is then giverdoy ) =

[f?m}o-

AESZ 6

The differential operator is given by
0* —10241* (0 + 1) (6 +2)* (0 + 3)
and Laurent polynomials are
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1 1
or
-1, T, X _ 2Tz, Y2 Y2 vy? Y2
X +x+tyt X txtxrtxtxztxm o _
The coefficient(n) of ¢ of the solution to the differential equation is then giverulfy) =

U‘4n]0.

AESZ 8

The differential operator is given by

0* — 691210 (6 +5) (6 + 1) (6 + 3)*

and a Laurent polynomial is

172z ., TZ | X | TZ? Y2 y?2 y?2

v txy Tyt Xy Txrtxzrtxz _ o _

The coefficient(n) of " of the solution to the differential equation is then giverupy) =

[f6n]0-

AESZ 10

The differential operator is given by

0* — 4096 t* (6 + 3) (0 4 1)*

and a Laurent polynomial is

XT X | Z Y2 - T |, XZ , XY

YAyt txor X +x+ ¥ o1 _ o _

The coefficienti(n) of ¢ of the solution to the differential equation is then giverpy ) =

[f4n]0.

AESZ 11

The differential operator is given by

0 —192t* (30 +8) (30 +4) (0 +3)(0+1)

and a Laurent polynomial is ,

T -1, XZ X XT | Z Y

S aiiuals st s A dear LN

The coefficient(n) of ¢ of the solution to the differential equation is then giverulfy) =

[F*"o.

AESZ 12

The differential operator is given by
6% — 69125 (0 +5) (20 +3) (20 +9) (0 + 1)
and the Laurent polynomial is
1
xrvzr v £ 1Y 474X . - .
The coefficienti(n) of ¢ of the solution to the differential equation is then giverpy ) =

[f6n]0.
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AESZ 14

The differential operator is given by
0* — 691210 (6 +5) (6 + 1) (6 + 3)?
and a Laurent polynomial is
1 1
xiyp F 2V AKX AL sy . . |
The coefficienti(n) of ¢ of the solution to the differential equation is then givergy ) =

[£5"]o.

AESZ 24

The differential operator is given by
0 — 273 (0 +2) (0 +1) (116> 4+ 3360 +27) —729¢5 (0 +5) (6 +4) (0 +2) (6 + 1)
and Laurent polynomials are
1 1 1
vyt Z+T+xy+xz+Y +X
or
1 1 1 1
RrfZa YA X AT e
The coefficienti(n) of ¢ of the solution to the differential equation is then giverugy ) =

[f?m]o-

AESZ 25

The differential operator is given by
0* — 162 (1102 +220 +12) (0 +1)* — 256 t* (0 + 3)* (0 + 1)*
and a Laurent polynomial is

-1, T YT .,'Y  YZ_ YZT 2T Z , X . X X |, X X , X
XT3+ X tx+ X+ x T txtyrtytaort 72ty v
The coefficienti(n) of ¢ of the solution to the differential equation is then giverpy ) =

[f2n]0.

AESZ 26

The differential operator is given by
0* —2t(20+1)° (13602 + 1360 +4) — 122 (20 +1) (30 +2) (30 +4) (20 + 3)
and Laurent polynomials are
Yr zY Y X X -1 zZT Z T X X
F+4&+ 3ttt X 1+ S+ S+ 5 +5+ 7
or
-1 z -1, T -1 Y -1
T '+ X+ 2+ 55 +Y '+ 5+ X '+ T+Y + 55+ 2
or
YZT T TZ X X -1 Z 1 T X X
X txt Xtz r XY XAty txy iz Ty
The coefficienti(n) of ¢ of the solution to the differential equation is then giverpy ) =

[f2n]0.
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AESZ 29

The differential operator is given by
0' —2t(20+ 1) (1702 + 170 +5) +4¢2 (20 + 1) (0 + 1)* (20 + 3)
and Laurent polynomials are
-1 X T Y YT X X TZY zY TZ X Z X
Xty txtxtxtriawtyrtx t5x+tXtytxtiz
or
Yr YZ Y X X X Z TZ T -1 X X
The coefficient(n) of ¢ of the solution to the differential equation is then giverulfy) =

[f2n]0.

AESZ 51

The differential operator is given by
0* —64t* (0 +3) (0 +1) (116> + 4460 + 48) — 40963 (0 +5) (0 +3) (0 +7) (0 + 1)
and a Laurent polynomial is
1
X2T+Z_+_Y+X+T+XéZ+X%_Y+X4;ZT' ) o )
The coefficient(n) of ¢ of the solution to the differential equation is then giverulfy) =

[£*"o.

AESZ 185

The differential operator is given by
04 — 2412 (362 +60+4) (0 +1)> — 43211 (0 + 1) (0 +2)* (0 + 3)
and Laurent polynomials are
1 _ - - zy
vt Y '+ T+ 27+ X+ X+ Y + 2+ 45
or
At T+ X+ Z7 4 Y+ Z+ Y+ o+ i + X
TXZ XY TY X
or
T+ X' 4724 Y gt px Ty HY + 2+ X
The coefficienti(n) of ¢ of the solution to the differential equation is then giveripy ) =

[an]O-

AESZ 214 (DB 266)

The differential operator is given by

0+t (—12— 946 — 28262 — 3766° — 1806*) +
t2 (—768 — 3736 60 — 6820 6% — 6080 6% — 2256 6*)
— 1617 (260 + 1) (2866 + 8136 + 85160 + 294)
— 1924 (20 +1) (40 +3) (40 +5) (20 + 3)

and a Laurent polynomial is

-\, T  TY | Y  YZ _ TYZ  TZ _Z , X X X _ X | X _ X
X —|'-.y+7+Y‘FT“FT"FT‘F.Y‘FW"F?"F'T".FW-FZ—FW.
The coefficienti(n) of ¢ of the solution to the differential equation is then giverpy ) =

[f2n]0.
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AESZ 218 (DB 270)

The differential operator is given by
490* + ¢ (—588 — 44100 — 12726 6% — 16632 6> — 8064 6*) +
t2 (29232 + 145824 6 + 2451726 + 140832 63 + 14256 61) +
3 (—111888 — 4135326 — 373140 62 + 54432 6% + 57456 6*)
—1296¢* (260 + 1) (36 6% + 306 6% + 421 6 + 156)
— 51845 (20 +1)(30+2) (30 +4) (20 +3)
and a Laurent polynomial is
XY+Y)7;Z+%+T7+Z+XY+ +XY+YTZ+ +T+TZ+X
The coefficient(n) of ¢ of the solution to the differential equation is then giverulfy) =

[f2n]0.

AESZ 209 (DB 290)

The differential operator is given by

28960* + t (—4046 — 317900 — 94826 6% — 126072 6° — 64668 6*) +

t% (—22644 — 96424 0 — 40116 62 + 274304 6° + 249632 6*) +

3 (19176 — 71196 6 — 83140 6% — 132192 6% — 264720 6*) +

128t (20 + 1) (196 63 + 498 0% + 48760 + 169) — 4096 > (26 + 1) (0 +1)* (20 + 3)
and a Laurent polynomial is

X+ L+ 0 2+ 24 X2 20 2 4 X X X+ X+ S+ 5+ v
The coefficienti(n) of ¢ of the solution to the differential equation is then giverpy ) =

[f2n]0.

DB 287A

The differential operator is given by
441 6* + t (—4410 — 33516 6 — 97545 6% — 128058 6% — 69069 *) +
t2 (—272580 — 1348200 0 — 2137700 6% — 923360 63 + 154240 6) +
t3 (97440 + 1861776 6 + 6723376 6 + 7894656 6° + 1706176 6*)
—1280¢4 (260 + 1) (1916 0% + 2622 0% + 10770 + 91) —102400° (260 + 1) (6 + 1)* (20 + 3)
and Laurent polynomials are
TZY TZ 1 T X X
or
X1t+&+%5+4 +7;?+YTZ+ +Y§Z+YT S oD R e
The coefﬂmenta( ) of ¢ of the solutlon to the differential equation is then given by

a(n) = [f*"]o.

DB 309 A

The differential operator is given by
810* + ¢ (—972 — 74520 — 21933 6 — 28962 6° — 17937 6*) +
t% (9504 + 89280 6 + 391648 6% + 805888 63 + 559552 6) +
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3 (~539136 — 3186432 0 — 7399680 6% — 8902656 > — 6046720 0*) +
327681* (260 + 1) (3406° + 61862 + 45560 + 129)
— 419430415 (260 +1) (0 +1)* (20 + 3)
and Laurent polynomials are
Yr Yr XZ — X X T X
T X+ + %+ X+ S+ 5+ + 57+
or

— T Yr Y YZ TZY TZ Z X X X X X X
X+ + X +x+ 5+ +xtxtyrty+trtztyztor
The coefficienti(n) of ¢ of the solution to the differential equation is then giverulpy ) =

[f2n]0.

XZ
T

|~

+xz+5E+

Sl
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Summary

Letw : X — S be a one-parameter family of smooth Calabi-Yau threefolds defined over
Z, and assume that there exists a submodiile H3,,(X/S) of rank four which is stable
under the Gauss-Manin connection, such that the Picard-FuchsapBran M is what

we call aCalabi-Yauoperator of orded.

Let k& be a finite field of characterstie For the ordinary fibres(,,, to € Sy of the
reductionm : Xy — Sy overk, we derive an explicit formula to compute the characteristic
polynomial of the Frobenius endomorphism, #rebenius polynomialon the correspond-
ing submodulel/,.,;s of the third crystalline cohomologi? . .(X;,) by computing two of
its roots.

Let fo(z) be the holomorphic solution to the differential equatiBrif = 0 around
z = 0. Since the unit root of the Frobenius polynomial at a Teichmiller poistgiven
by fo(2)/fo(2P)|.=t, a crucial step of the computation of the Frobenius polynomial is the
construction of g—adic analytic continuation of the quotiefit(z)/ fo(z?) to the bound-
ary of thep—adic unit disc. In case thgh(z) can be expressed in terms of the constant
terms in the powers of a Laurent polynomial whose Newton polyhedrotaicsnthe ori-
gin as unique interior lattice point, we prove that the coefficientg,0f) satisfy certain
congruence properties that are crucial to construct the analytic catitnu

If the fibre X, aquires an ordinary double point, we expect that the limit Frobenius
polynomial factors in a specific way, and that there exists one factorgreddwo which
is determined by one coefficient,. As p varies, we expect that there exists a modular
form of weight four with coefficients,, by the modularity theorem. We could confirm this
expectation by our numerous computations.

Furthermore, we derive formulas to compute the Frobenius polynomial in terthe
non-holomorphic solutions to the differential equatByi = 0 aroundz = 0.

171



172 Bibliography




Zusammenfassung

Seir : X — S eine UberZ definierte Familie von Calabi-Yau Varietaten der Dimension
drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invariaeemaadulM C

H?% .(X/S) von Rang vier, sodass der Picard-Fuchs Oper&tauf M ein sogenannter
Calabi-Yau Operator von Ordnung vier ist.

Sei k ein endlicher Kdorper der Charaktetrisgilk und seiry : Xo — Sg die Reduk-
tion von 7 Uber k. Fur die gewodhnlichen (ordinary) Faseiy, der Familie leiten wir
eine explizite Formel zur Berechnung des charakteristischen Polynafsageniusendo-
morphismus, de&robeniuspolynomsauf dem korrespondierenden Untermodi,.;s C
ngis(Xto) her.

Sei nunfy(z) die Potenzreihenldsung der Differentialgleichutg = 0 in einer Umge-
bung der Null. Da eine reziproke Nullstelle des Frobeniuspolynoms in eiméchmdller-
Punkt¢ durch fy(z)/ fo(2P)|.=+ gegeben ist, ist ein entscheidender Schritt in der Berech-
nung des Frobeniuspolynoms die Konstruktion epeadischen analytischen Fortsetzung
des Quotienteryy(z)/fo(zF) auf den Rand deg—adischen Einheitskreises. Kann man
die Koeffizienten vonf, mithilfe der konstanten Terme in den Potenzen eines Laurent-
Polynoms, dessen Newton-Polyeder den Ursprung als einzigen in@éterpunkt enthalt,
ausdriicken, so beweisen wir gewisse Kongruenz-Eigenschaterdem Koeffizienten von
fo. Diese sind entscheidend bei der Konstruktion der analytischen Faortgetz

Enthalt die FasekX,, einen gewohnlichen Doppelpunkt, so erwarten wir im Grenzuber-
gang, dass das Frobeniuspolynom in zwei Faktoren von Grad einsined Faktor von
Grad zwei zerfallt. Der Faktor von Grad zwei ist dabei durch eineeffkdentena, ein-
deutig bestimmt. Durchlauft numdie Menge aller Primzahlen, so erwarten wir aufgrund
des Modularitatssatzes, dass es eine Modulform von Gewicht vier giet #@effizienten
durch die Koeffizientem,, gegeben sind. Diese Erwartung hat sich durch unsere umfang-
reichen Berechnungen bestéatigt.

Dartberhinaus leiten wir weitere Formeln zur Bestimmung des Frobeniuspo$/ner,
in welchen auch die nicht-holomorphen Ldsungen der Differentialgleizhfeii = 0 in
einer Umgebung der Null eine Rolle spielen.
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