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Salvador Dali, Corpus Hypercubus, 1954

In algebraic geometry, it is always nice to print some pictures of the varietiesone is working
with. As you will see, the main geometric objects of our studies are Calabi-Yau varieties of
dimension three, and it is not possible to print pictures of these. The three-dimensional cube
in four-dimensional space is not a Calabi-Yau threefold, but at least, it issomegeometric
object of dimension three. Therefore, please see Dali’s wonderful picture above as a modest
approach to illustrate this thesis.
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Introduction

LetX be a projective variety defined over a finite fieldFq, whereq is a power of a primep.
For each finite algebraic extensionFqn of Fq, the number of points onX with coordinates in
Fqn , noted by#X(Fqn), is obviously finite. The numbers#X(Fqn) are of great importance
in studying arithmetical properties ofX. They are encoded in thezeta functionof X over
Fq, which is defined as the formal power series

Z(X/Fq, T ) := exp

( ∞
∑

n=1

#X(Fqn)
Tn

n

)

.

In 1949, Andre Weil [57] stated a series of conjectures concerning the zeta function of a
variety over a finite field, theWeil conjectures. As a power series, it has coefficients inZ,
and one of Weil’s conjectures is that it is an element ofQ(T ). This was proven by Dwork
[26] in 1960, using techniques ofp−adic analysis.
We are interested in the actual computation of the zeta function. Suppose nowthat we are
not dealing with a single variety, but with a one-parameter familyπ : X → P1 of varieties
over a finite fieldFq. For each parameter valuet0 ∈ P1(Fq), the fibreXt0 has a zeta func-
tionZ(Xt0/Fq, T ). The question that arises now is:How does the zeta function vary as the
parametert0 varies inP1(Fq)?
There exist several approaches to answer this question. One approach is the deformation al-
gorithm of A. Lauder [46]. This algorithm was inspired by Dwork’s proof of the functional
equation of the zeta function of a smooth hypersurface in [28] and [29]. Lauder’s algorithm
computes the zeta functions of the fibres of a one-parameter family of smooth projective
hypersurfaces that are deformations of a so-calleddiagonalhypersurface. To compute the
zeta function, one computes the characteristic polynomial of the Frobenius endomorphism
on theDwork cohomologyspaces. There is an explicit formula due to Dwork for the Frobe-
nius matrix in a monomial basis of a diagonal hypersurface on a Dwork cohomology space.
Dwork showed how the Picard-Fuchs equation of the family of hypersurfaces can be ap-
plied to compute the Frobenius matrix of a fibre of the family as a deformation of the
Frobenius matrix of the diagonal hypersurface. This is the crucial idea behind the deforma-
tion algorithm. To perform these steps, one has to compute a monomial basis of theDwork
cohomology spaces and needs the explicit equation defining the family for thenecessary
reduction steps modulo the Jacobian ideal.
The author of this thesis showed that Lauder’s algorithm can be extendedto families of
hypersurfaces in weighted projective space that are deformations of diagonal hypersurfaces
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in her diploma thesis, and implemented this algorithm in MAGMA, see [50].
In 2000, P. Candelas, X. de la Ossa and F. Rodriguez Villegas [14] derived an amazing for-
mula for the number of points on the fibres of the one-parameter family of quinticthreefolds
in P4 defined by

F (X,ψ) =
5
∑

i=1

X5
i − 5ψX1X2X3X4X5

in terms of a Frobenius basis of solutions to the Picard-Fuchs equation. Let

ν(ψ) = #{X ∈ F5
p, F (X,ψ) = 0},

and letλ = 1/(5ψ)5. Then,ν(ψ) can be expressed in terms of the truncated (up to degree

p− 1) power series partsf (p−1)
i in the Frobenius basis of solutions as

ν(ψ) ≡ f
(p−1)
0 (λp

4
) +

(

p

1 − p

)

f
′(p−1)
1 (λp

4
) + ... mod p5.

Thus, the number of points on a fibre modulop5 can be computed explicitly by the data
given by the Picard-Fuchs operator.
It was Dwork who in 1958 introduced a method to compute the complete zeta functions of
the fibers of the Legendre family of elliptic curves out of the data of a differential operator
(up to a signε), without any reference to the defining equation. Namely, he derived a
formula to compute the roots of the numerator of the zeta function of a smooth, ordinary
fibre from a period of the family, the holomorphic solutionΦ0(z) aroundz = 0 to the
Picard-Fuchs equation

z(1 − z)
d

dz

2

Φ + (1 − 2z)
d

dz
Φ − 1

4
Φ = 0.

The solutionΦ0(z) is given by the hypergeometric function2F1(1/2, 1/2, 1; z). Dwork
proved that the zeta function of a smooth ordinary fibreXt0 , t0 ∈ Fp of the Legendre
family is then given by

Z(Xt0/Fp, T ) =
(1 − rt0T )(1 − p/rt0T )

(1 − T )(1 − pT )
,

wherert0 is thep−adic unit given by

rt0 = (−1)(p−1)/2 Φ0(z)

Φ0(zp)
|z=t

for a Teichmüller liftingt ∈ Zp of t0. The only ingredient for the computation of the
zeta function which isnot determined by the differential operator is the constantε =
(−1)(p−1)/2, which has to be derived by geometric considerations. Thus, Dwork found
a method to compute the zeta function of a smooth ordinary fibre of the Legendre family up
to a twist by a character. The numerator of the zeta function is the characteristic polynomial
of the Frobenius endomorphism on the first cohomology group of anyWeil cohomologyof
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the fibre. Note that it is a crucial ingredient to Dwork’s method that the Picard-Fuchs oper-
ator of the Legendre family has a point of maximally unipotent monodromy atz = 0.
An elliptic curve is a special case of aCalabi-Yau manifold, namely a Calabi-Yau manifold
of dimension one. Now the question arises if one can perform similar calculations in higher
dimensions. What, for example, if we consider a one-parameter familyπ : X → S of
smooth Calabi-Yau threefolds defined overQ? This family has an integral model overZ,
and we assume that the reduction of the family toFq is again a family of smooth Calabi-Yau
threefoldsπ0 : X0 → S0. Let t0 ∈ S0 and letXt0 denote the fibre overt0. Is it possible to
compute the characteristic polynomial of the relative Frobenius endomorphism, which we
call theFrobenius polynomial, on the third crystalline cohomologyH3

cris(Xt0) out of the
data given by a Picard-Fuchs operator?
First of all, let us assume that the rank ofH3

DR(X/S) is four. Then, the Picard-Fuchs oper-
ator of the family is a linear differential operator of degree four. Assume that atz = 0, the
monodromy is maximally unipotent. Then the differential operator has special properties
which are summarized in the definition of aCY(4)-operator. In the literature, there exists
no definitive definition of CY-differential operators at the moment, but we will specify ex-
plicitly what we mean by a CY-differential operator.
If the rank ofH3

DR(X/S) is not four, assume that there exists a rank-four submoduleM
of H3

DR(X(S) which is stable under the Gauss-Manin connection. If the monodromy at
z = 0 is maximally unipotent, the Picard-Fuchs equation, satisfied by a holomorphic three-
form generatingM as a cyclic vector, is then also a CY(4)-operator.

This leads us to the main problem of this thesis, which is the following:For the fibresXt0

of a family of Calabi-Yau threefolds defined overFq, is it possible to give an algorithm to
compute the characteristic polynomial of the relative Frobenius endomorphism, the Frobe-
nius polynomial (maybe up to a signε), on (a rank four submoduleMt0 of)H3

cris(Xt0) out
of the data given by a CY(4)-differential operator?

Consider the situation from ap−adic point of view, and letπ : X → S be a family defined
over the ring of integers of a finite extensionK of Qp. Assume that the morphismπ is proper
and smooth, with geometrically connected fibres. If the relative de Rham cohomology
groups

H i
DR(X/S) := Riπ∗Ω

•
X/S

are locally freeOS−modules, then, by a result of Berthelot [9], for i ≥ 0,H i
DR(X/S) with

its Gauss-Manin connection is anF−crystalonS.
If the family π : X → S is the lifting of a familyπ0 : X0 → S0 defined over a finite field
extensionk of Fp with q := pr elements, then fort0 ∈ S0, the zeta function of the fibreXt0

can be expressed in terms of the characteristic polynomials of the absolute FrobeniusF as

Z(Xt0/k, T ) =

2 dimXt0
∏

i=0

det(1 − TF r|H i
DR(Xt)),

where fort0 ∈ S0, t denotes the Teichmüller liftingt ∈ S. For generict0, theF−crystal
H3
DR(Xt) is anordinary CY3-crystal. This implies that if the rank ofH3

DR(X/S) is four,
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the Frobenius polynomial onH3
DR(Xt) has one reciprocalp−adic root of valuation0, r, 2r

and3r, and is determined uniquely by the reciprocal rootsrt0 , st0 of valuation0 andr.
Since it is ap−adic unit,rt0 is called theunit root of the Frobenius polynomial. It was our
goal to derive formulas to computert0 andst0 out of the data given by the Picard-Fuchs
operator onH3

DR(X/S).
One problem that arises if one wants to compute the Frobenius polynomial of afibreXt0

explicitly is the problem ofp−adic analytic continuationto the boundary of thep−adic
unit disc. Namely, to compute the unit root, one has to evaluate a quotient of theform

f0(z)

f0(zp)

at a Teichmüller point, wheref0(z) is the holomorphic solution to the CY(4)-differential
equation. This quotient is analytic on the openp−adic unit disc. Dwork [27] constructed
an explicit analytic continuation for quotients of this type, provided that the coefficients of
f0 satisfy what we call theDwork congruences.

Now, a second important question arises, namely:Can we prove the Dwork congruences
for the coefficients of the power series solutions of CY(4)-differential operators?

For the coefficients of the power series solutions of the14 hypergeometric CY(4)-operators,
Dwork proved these congruences in [27]. But for the majority of the CY(4)-operators, no
proof of these congruences is known.
It turns out that many CY(4)-operators are Picard-Fuchs operatorsof families of Calabi-Yau
threefolds defined byLaurent-polynomials. The holomorphic solutionΦ0 aroundz = 0
to the CY(4)- differential equation can be expressed in terms of a Laurent-polynomialf ,
namely by

Φ0(z) =

∞
∑

n=0

[fn]0z
n,

where[fn]0 denotes the constant term infn. We used this fact to give a proof of a modified
version of the Dwork congruences for many examples.

This thesis is structured in the following way:
In Chapter 1 we give a short overview over the Weil conjectures and introduce some

cohomology theories which were developed to provide a proof of these conjectures, like
ℓ−adic cohomologyandcrystalline cohomology. We review the formulas to compute the
zeta function of a varietyX defined over a finite field in terms of the absolute Frobenius
endomorphism in crystalline andrigid cohomology.

In Chapter 2 we review the theory ofF−crystals. This theory provides the background
for our computations. We are especially interested in ordinary CY3-crystals and general
autodual crystals, since these objects appear as the relative crystalline cohomology groups
of families of Calabi-Yau varieties.

In Chapter 3 we give the definition of a Calabi-Yau differential operator. We review
the construction of the differential module defined by a Calabi-Yau differential operator,
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and quote some of the properties of this differential module. This chapter contains our first
result; we derive a formula for the Frobenius polynomial on an ordinary CY3-crystal with
connection defined by a CY(4)-differential operator.

In Chapter 4 we review the fact that the non-ordinary locus of anF−crystal, the set of
zeros of theHasse-invariant, can be expressed in terms of the holomorphic solution to the
Picard-Fuchs equation if the coefficients of this solution satisfy theDwork-congruences.

In Chapter 5 we review Dwork’s construction of an analytic continuation of a func-
tion of the typeΦ0(z)/Φ0(z

p) to the boundary of thep−adic unit disc, provided that the
coefficients of the power seriesΦ0 satisfy the Dwork congruences. Applying Dwork’s con-
struction, we derive explicit formulas to compute two reciprocal roots of theFrobenius
polynomial on an ordinary CY3-crystal of rank4, and hence to compute the whole Frobe-
nius polynomial. These formulas involve the holomorphic solution to the CY(4)-differential
equation defining the connection of the CY3-crystal, and the holomorphic solution to a
CY(5)-differential equation which is the second exterior product of theCY(4)-equation.
We give estimates of the requiredp−adic precision to recover the Frobenius polynomial
correctly out of the reciprocal roots. Furthermore, we present an algorithm to compute the
Frobenius polynomial out of only one of the two reciprocal roots considered above.

In Chapter 6 we introduce a special class of CY(4)-diffential operators which are so-
calledHadamard -products. We compute Frobenius polynomials for many of these opera-
tors; the results of our computations are documented in the appendix.

In Chapter 7 we review the basics of the theory ofmodular formsand describe why
the Frobenius polynomial is expected to factorize in a special way at the conifold points of
the CY(4)-operator. We confirm this expectation by computing the Frobenius polynomial in
rational conifold points of several CY(4)-operators. Some of these are Hadamard-products,
as described in the previous chapter, and some are not. In each of the cases, we could
identify modular forms of weight four. The results are listed in tables, part of the tables can
be found in the appendix.

In Chapter 8 we derive a weaker congruence property D3 from the Dwork conguence
D2. In case that the holomorphic solutionΦ0 to a Calabi-Yau differential operator is defined
by the constant terms of the powers of a Laurent-polynomial whose Newtonpolygon con-
tains the origin as unique interior lattice point, we prove that the coefficients ofΦ0 satisfy
the congruence D3.

In Chapter 9 we describe an experimental approach to compute the Frobenius poly-
nomial directly as the characteristic polynomial of some matrix, which may differ from
the Frobenius matrix by some parameters. This approach worked well in the case of hy-
pergeometric CY(4)-differential operators. We observed that the Frobenius polynomial is
independent of the parameters mentioned above, and also observed thatsome interesting
congruences involving the non-holomorphic solutions to the CY(4)-differential equation
hold.

In Chapter 10 we prove that the non-holomorphic solutions to the CY(4)-differential
equation, which contain logarithmic terms, can be used to compute the unit root of the
Frobenius polynomial, too.

In Chapter 11we describe an alternative appoach to construct an analytic continuation
of a function of the typeΦ(z)/Φ(zp) to the boundary of thep−adic unit disc due to Chris-
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tol. We prove that this approach can be applied if the coefficients of the power seriesΦ(z)
satisfy the Dwork congruences, and compare it to Dwork’s construction.

Now, we describe the main results of this thesis in some more detail.

Our first result, see chapter 3, is the developement of an algorithm to compute the Frobe-
nius polynomial for ordinary rank four CY3-crystalsM . Let π : X → S be a family of
smooth Calabi-Yau threefolds defined overQ with a flat model overZ such that the reduc-
tion π0 : X0 → S0 to Fp is again a family of smooth Calabi-Yau threefolds. Assume that
there exists a rank4 submoduleM of H3

DR(X/S) with Picard-Fuchs operator a CY(4)-
differential operatorP . Let α0 ∈ S0 and letα ∈ Zp be a Teichmüller lifting ofα0. If the
CY3-crystalMα0 ⊂ H3

cris(Xα0) is ordinary, the Frobenius polynomial onMα0 is given by

P := p6T 4 + aα0p
3T 3 + bα0pT

2 + aα0T + 1

and is uniquely determined by a reciprocal rootrα0 which is ap−adic unit and another
reciprocal rootpsα0 of p−adic valuation1, since the four reciprocalp−adic roots ofP are
given byrα0 , psα0 , p

2/sα0 andp3/rα0 . The rootsrα0 andpsα0 are both eigenvalues of the
Frobenius endomorphism. Thep−adic unitrα0 is the unit root of theF−crystalMα0 , and
we derive the formula

rα0 = ε
f0(z)

f0(zp)
|z=α,

whereε = ±1 andf0 is the holomorphic solution aroundz = 0 to the differential equation
Pf = 0. To derive a formula for thep−adic unitsα0 , we use the fact that the eigenvalues
of the Frobenius endomorphism on the second exterior product ofMα0 are products of the
eigenvalues of the Frobenius endomorphism onMα0 . Let Q denote the second exterior
product of the differential operatorP , and letg0 denote the holomorphic solution around
z = 0 to the differential equationQg = 0. Then, we prove thatsα0 is given byrα0/r

′
α0

,
wherer′α0

can be computed as

r′α0
=

g0(z)

g0(zp)
|z=α.

During the considerations in chapter 3, we see that the Frobenius matrixAφ(z) depends on
three parametersα, β, γ. But our formulas for the unit root and the root ofp−adic valuation
one prove indirectly that the Frobenius polynomial itself isindependentof these parameters.
We published this in [51].

If the fibreXα0 is not smooth but has an ordinary double point, the Frobenius polyno-
mial on the “limit module”Mα0 is expected to factorize in two factors of degree one and
one factor of degree2, which is given by(p3T 2 − apT + 1). The factor(p3T − apT + 1) is
expected to be the Frobenius polynomial onH3

cris(X̂α0), whereX̂α0 is a rigid Calabi-Yau
threefold. Ifp varies, by themodularity conjecturethe coefficientsap are the coefficients of
a weight four modular form. We could compute these coefficients for many CY(4)-operators
and identified the corresponding modular forms (see chapter 7).

Our next result is of a completely different character; for the proof, we only applied very
elementary methods. Letf be a Laurent polynomial such thatNewton polyhedronof f has0
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as unique interior lattice point. This is always the case if the Newton polyhedron is reflexive.
As described before, thefundamental periodof f is given byΦ0(t) =

∑∞
n=0[f

n]0t
n. It

can be realized as the period of a holomorphic differential form on the torichypersurface
{1 − tf(X) = 0}, and satisfies a Picard-Fuchs equation. There is a list of CY(4)-operators
that arise as Picard-Fuchs operators in this way, which we print in the appendix. We prove
that the coefficients ofΦ0(t) satisfy a congruence property which can be derived from the
Dwork congruences, but is slightly weaker (see chapter 8). Note that we published this
result in [52].

Part of our next result, which was inspired by communications with P. Candelas and X.
de la Ossa, is only a conjecture, but our numerous computations confirm usin believing that
this conjecture holds true. Furthermore, the observations we made are quiteastonishing. We
use an experimental approach to compute the Frobenius polynomial directly as the charac-
teristic polynomial of some matrix which might differ from the Frobenius matrix by some
parameters. Let thereforeP be a hypergeometric CY(4)-operator. Inspired by the theory of
Dwork [27], we know that a Frobenius matrixAφ(z) on the CY3-crystal with connection
defined byP can be described in the openp−adic unit disc by

p3Aφ(z)
−1 = B(zp)−1









p3 p2α pβ γ
0 p2 pα β
0 0 p α
0 0 0 1









B(z),

whereB(z) is afundamental solution matrixand the parametersα, β, γ lie in Zp, β = α2/2.
The results of chapter 3 show indirectly that the characteristic polynomial ofthe matrix
Aφ(z) is independent of the choice of the parametersα, β, γ. We try to give a direct ex-
planation of this fact by considering the coefficients of the three parameters. In the case of
CY(2)-operators, where the situation is similar, we prove directly that the Frobenius poly-
nomial is indeed independent of the occuring parameter. We describe an explicit method
to compute the Frobenius polynomial as the characteristic polynomial of the matrixAφ(z)
at a Teichmüller point (see chapter 9). Based on our computations, we madethe follow-
ing observation. Namely, that at a Teichmüller pointα, the unit root can be computed by
the non-holomorphic solutions toPf = 0 which contain logarithms, and not only by the
holomorphic solutionf0(z). If the power seriesf1(z), f2(z), f3(z) are thenon-logarithmic
parts of these solutions, it turns out that we have

fs+1
0 (α)

fs0 (α)
≡ p

fs+1
1 (α)

fs1 (α)
≡ p2 f

s+1
2 (α)

fs2 (α)
≡ p3 f

s+1
3 (α)

fs3 (α)
mod ps.

This last observation inspired us to work out that the unit root at a Teichmüller point can
be expressed in terms of the non-holomorphic solutions. Our method is straightforward; we
construct fixed points of the Frobenius map involving the power seriesf1, f2 ansf3, and
use these to derive our new formulas to compute the unit root in a Teichmüller point. The
crucial observation here is that some of the newly constructed functions are fixed points of
the same contraction mapping as functions already appearing in the proof oftheorem 2.3.1,
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which leads us to the canonical formula for the unit root which only involvesthe holomor-
phic solution toPf = 0.

Mainz, January 2010 Kira Verena Samol
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Chapter 1

The Weil conjectures and
p−adic cohomology

In this chapter, we give a short review of the Weil conjectures and of thecohomology
theories that were developed to give a proof of these conjectures. We give a very brief
sketch of the properties ofℓ−adic, crystalline and rigid cohomology.

1.1 The zeta function and the Weil conjectures

Let p be a prime and letk = Fq whereq = pa. Let X/k be a smooth, projective, geo-
metrically connected scheme. For each finite algebraic extensionkn of k of degreen, one
wants to know the number#X(kn) of kn−rational points ofX. The values of the numbers
#X(kn) are summarized in theZeta functionof X/k, which is given by

Z(X/k, T ) := exp

( ∞
∑

n=1

#X(kn)
Tn

n

)

.

For X/k a smooth projective curve of genusg, Weil [57] proved that the Zeta function
Z(X/k, T ) satisfies the following properties:

1. Z(X/k, T ) is a rational function inT with integral coefficients.

2. The functional equationZ(X/k, 1/qT ) = q1−gT 2−2gZ(X/k, T ) holds.

3. The only poles ofZ(X/k, T ) are1 and1/q; both with multiplicity1.

4. The complex roots ofZ(X/k, T ) satisfy|T | =
√
q.

This generalizes to the following statements for smooth projective varietiesX/k of dimen-
siond, called theWeil conjectures:

17



18 1. The Weil conjectures andp−adic cohomology

1. Rationality:Z(X/k, T ) is a rational function.

2. Functional equation:Z(X/k, 1/(qdT )) = ±qdE/2TEZ(X/k, T ), whereE is the
self-intersection number of the diagonal∆ of X ×X.

3. Riemann hypothesis:One can write

Z(X/k, T ) =
P1(T )...P2d−1(T )

P0(T )...P2d(T )
,

whereP0(T ) = 1− T, P2d(T ) = (1− qdT ) and for each1 ≤ i ≤ 2d− 1, Pi(T ) is a
polynomial with integer coefficients which can be written as

Pi(T ) =

bi
∏

j=1

(1 − aijT ), with |aij | = qi/2.

4. Betti numbers:If X is a reduction modulop of a non-singular varietyY defined over
a number field embedded inC, then the degree ofPi(T ) is theith Betti number of
the space of complex points ofY .

For an arbitrary smooth projective varietyX, Dwork [26] proved that the Zeta function
Z(X/k, T ) is a rational function inQ(T ) by applying "elementary” methods fromp−adic
analysis.

For a smooth projective varietyX/k, Weil already remarked in [57] that Z(X/k, T ) is a
rational function if one assumes that there exists a cohomology theory for varieties over a
finite field, taking values in finite dimensional vector spaces over a field of characteristic
zero, in which one has a Lefschetz fixed point formula.

The necessary conditions for such a cohomology theory were formalisedunder the name
Weil cohomology, see [44]. The construction of such a cohomology theory was one in-
centive for Grothendieck to develope the theory of schemes, and in particular to study
their étale topology. For each prime numberℓ 6= p, the ℓ−adic cohomology developed
by Grothendieck and his students is a Weil cohomology.

1.2 Weil conjectures andℓ- adic cohomology

Let k̄ be an algebraic closure ofk. For a smooth projective geometrically connected scheme
X/k of dimensiond, letFq denote the geometric Frobenius. IfX̄ = X×k k̄, for 0 ≤ i ≤ 2d,
one can define the polynomials

Pi := det(1 − FqT |H i
et(X̄,Qℓ)) ∈ Qℓ[T ]. (1.1)
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For example,P0(T ) = 1 − T andP2d(T ) = 1 − qdT . Grothendieck proved the Lefschetz
trace formula for étale cohomology in [35], which implies that

Z(X/k, T ) =
P1(T )...P2d−1(T )

P0(T )...P2d(T )
,

and thus the rationality of the Zeta function. Thefunctional equationis a consequence of
the Poincaré duality. Deligne [18] proved that the polynomialsPi(T ) are polynomials with
coefficients inZ, and thus independent ofℓ 6= p, theRiemann hypothesisand furthermore
that theaij areℓ−adic units forℓ 6= p.
In the ℓ−adic setting, the following natural question remains open:What are thep−adic
valuations of theaij?

1.3 Crystalline cohomology

The following idea is due to Grothendieck. Assume thatk is a finite field of characteristic
p > 0, and writeW = W (k) for the ring of Witt vectors ofk. Suppose thatX/k lifts to a
smooth proper schemeZ/W , which means that there exists a smooth proper schemeZ/W
such that

X = Z ×Spec(W ) Spec(k).

Now one can define the de Rham complex ofZ/W and take its hypercohomology:

H i
DR(Z/W ) := Hi(Z,Ω•Z/W ).

Grothendieck [34] conjectured that these cohomology groups are independent of the choice
of the liftingZ/W of X/k.

LetWn := W/pnW . Theith crystalline cohomology of a schemeX/k is defined to be the
inverse limit

H i
cris(X/W ) := lim

←
H i(X/Wn),

where
H i(X/Wn) := H i((X/Wn)cris,OX/Wn

)

is the cohomology of the crystalline site (see [9], [36]) of X/Wn with values in the sheaf of
ringsOX/Wn

.

If X/k is the reduction of a smooth schemeZ/Wn, then we have a canonical isomorphism

H i
cris(X/Wn) ∼= H i

DR(Z/Wn).

This is a corollary of Berthelot’s theorem [[9], chapter V, theorem 2.3.2.]. By passing to
the limit, one obtains for a schemeX/k, which is the reduction of a smooth proper scheme
Z/W , a canonical isomorphism

H i
cris(X/W ) ∼= H i

DR(Z/W ).
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1.4 Crystalline cohomology and Frobenius

Assume thatk = Fq whereq = pa for a primep, letW = W (k) andK be the field of frac-
tions ofW . LetX/k be smooth and proper, and letσ denote the Frobenius endomorphism
onk, lifting to an endomorphismσ onW .

The absolute FrobeniusendomorphismF : X → X (which is the identity on the topo-
logical space, and thepth power map on the structure sheafOX ) induces aσ−linear au-
tomorphism ofH∗cris(X/W ) ⊗W K, also denoted byF . The mapFq := F a is then an
automorphism ofH∗cris(X/W ) ⊗W K.
If X/k is furthermore of pure dimensiond, then theH i

cris(X/W ) ⊗W K are finite dimen-
sionalK−vector spaces and zero fori /∈ [0, 2d].

Furthermore,X 7→ H i
cris(X/W ) ⊗W K is a Weil cohomology with a Poincaré duality

betweenH i andH2d−i, a Künneth formula and a Lefschetz trace formula.

By means of crystalline cohomology, Berthelot proved that the Zeta functionZ(X/k, T ) is
a rational function given by the formula

Z(X/k, T ) =
2d
∏

i=0

det(1 − FqT |H i
cris(X/W ) ⊗W K)(−1)i+1

.

A priori, one hasPn(T ) = det(1 − FqT |Hn
cris(X/W ) ⊗W K) ∈ K[T ], but for X/k

smooth and projective, the results of Deligne [18] allowed Katz and Messing [42] to prove
thatPn(T ) is identical with the polynomial obtained byℓ−adic cohomology (ℓ 6= p).

In particular, the crystalline andℓ−adic Betti numbers coincide:

bi = dimQl H
i
et(X ⊗ k̄,Ql) = dimK H

i
cris(X/W ) ⊗W K.

1.5 Rigid cohomology

We refer the reader to [32] for a very short introduction to rigid cohomology. For a proper
introduction, see [10], [11].
Therigid cohomologydue to Berthelot provides a Weil cohomology theory with satisfactory
functorial properties for arbitrary varieties. Unlike in the case of crystalline cohomology,
the varieties may also be noncomplete or singular. Just as crystalline cohomology, in many
cases like smooth projective varieties, the rigid cohomology of a variety overk = Fq coin-
cides with the de Rham cohomology of a lift to characteristic zero.

Let q = pa and letK/Qp be a finite algebraic extension with residue fieldk = Fq. For a
varietyX/k of dimensiond, the rigid cohomology

H i
rig(X) for 0 ≤ i ≤ 2d
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is aK−vector space. IfX is smooth, thenH i
rig(X) is finite dimensional for alli.

Like for singular or étale cohomology, there is also a cohomology withcompact support,
denoted byH i

rig,c(X), which coincides withH i
rig(X) if X is proper.

The q−power Frobenius endomorphism onX induces aK−linear endomorphismF on
rigid cohomology. The Zeta function ofX is then given by

Z(X/k, T ) =
2d
∏

i=0

det(1 − TF |H i
rig,c(X))(−1)i+1

.

If X/k is smooth, letX denote a smoothOK−scheme with special fibreX. Then, the
generic fibreXK is a smoothK−variety. If there is an open immersionX →֒ Y of OK−
schemes such thatY is proper overOK and the complementY\X is a smooth relative divisor
with normal crossings, then

H i
rig(X) ∼= H i

DR(XK) for 1 ≤ i ≤ 2d.

Thus, as in the case of crystalline cohomology, in the smooth case rigid cohomology can be
computed in terms of the de Rham cohomology of a lift ofX.
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Chapter 2

F-crystals

Let π : X → S be a proper and smooth morphism with geometrically connected fibres
defined over the ring of integersW of a finite extensionK of Qp. If the relative de Rham
cohomology groupsH i

DR(X/S) are locally freeOS-modules, they have the structure of an
F−crystal. In this chapter, we provide the definitions and properties ofF−crystals that we
will need for our considerations. Most of the time, we follow the presentations of Katz [41]
and Stienstra [54]. The only statement which is not mentioned there is proposition 2.4.1,
we consider the second exterior product of anF−crystal. We will meet second exterior
products ofF−crystals when we derive formulas for the roots of the Frobenius polynomial
in chapter 3.

2.1 Introduction to F− Crystals

Let k be a perfect field of characteristicp > 0, letW := W (k) be the ring of Witt vectors
of k and letK be the field of fractions ofW . ThenW is a local ring with maximal ideal
pW and residue fieldk, andK has characteristic 0. W is complete and separated for the
p−adic topology,W = lim

←
W/pmW . Let σ denote the absolute Frobenius automorphism

onk, which lifts canonically to an automorphism ofW , also denoted byσ.
Following [59], we define

Definition 2.1.1 1. AnF−crystal(H,F ) overW is a freeW−moduleH of finite rank
with aσ−linear endomorphism

F : H → H

such thatF ⊗ Qp : H ⊗ Qp → H ⊗ Qp is an isomorphism. IfF itself is an
isomorphism, we callH a unit-rootF−crystal.

2. A HodgeF−crystal overW is anF−crystalH equipped with a filtration by free
W− submodules

H = Fil0H ⊃ Fil1H ⊃ ... ⊃ FilN−1H ⊃ FilNH = 0

(called the Hodge filtration onH) which satisfiesF (FiliH) ⊂ piH for all i.

23
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Now, we come to the variation ofF−crystals. Unlike [41] and [54], we restrict our con-
siderations to the case of one parameterz, which will be sufficient for our purpose. LetA
be the ringW [z][g(z)−1], whereg is a polynomial inW [z] not divisible byp, and letAn
be the ringA/pn+1A. By A∞ := lim

←
A/pn+1A, we denote thep−adic completion ofA.

On the characteristicp ringA0, the Frobenius endomorphism is given byσ(x) = xp for all
x ∈ A0.

Notation 2.1.1 If H is an A∞− module,B is a W−module andf : A∞ → B is a
W−morphism, we write

f∗H = Bf ⊗A∞
H,

whereBf is B viewed as anB − A∞−bimodule with left structure via the identity map
id : B → B and right structure viaf : A∞ → B.

This means that fora ∈ A∞ andh ∈ H, we have1 ⊗ ah = f(a) ⊗ h. The mapf∗ : H →
f∗H, given byf∗(h) = 1 ⊗ h is f−linear,

f∗(a1h1 + a2h2) = 1 ⊗ (a1h1 + a2h2) = 1 ⊗ a1h1 + 1 ⊗ a2h2

= f(a1) ⊗ h1 + f(a2) ⊗ h2 = f(a1)f
∗(h1) + f(a2)f

∗(h2).

Definition 2.1.2 LetH be a finitely generated freeA∞−module. A connection

∇ : H → ΩA∞/W ⊗A∞
H

is calledp−adically topologically nilpotent if

lim
m→∞

∇(
d

dz
)m = 0

in thep−adic topology onEndW (H).

Now letH be a finitely generatedA∞−module with ap−adically topologically nilpotent
connection, and letf andg be twoW−homomorphismsf, g : A∞ → B which are congru-
ent modulo a divided power ideal ofA∞ (for example the ideal(p)). Then the connection
provides an isomorphism (see [19] for a proof)

χ(f, g) : f∗H → g∗H,

given by

χ(f, g)f∗(h) =
∑

m≥0

(f(z) − g(z))m

m!
g∗(∇(

d

dz
)mh).

There are many different ring endomorphismsφ of A∞ that restrict toσ onW and reduce
to σ onA0 modulop. Letφ : A∞ → A∞ be such alift of Frobenius.

Definition 2.1.3 AnF−crystal(H,∇, F (φ)) overA∞ is a finitely generated freeA∞−module
H with an integrable andp−adically nilpotent connection

∇ : H → ΩA∞/W (k) ⊗A H
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such that for every liftφ : A∞ → A∞ of Frobenius, there exists a homomorphism ofA∞−
modules

F (φ) : φ∗H → H

such that the square

H
∇

//

F (φ)φ∗

��

Ω1
A∞/W (k) ⊗H

φ⊗F (φ)φ∗

��

H
∇

// Ω1
A∞/W (k) ⊗H

is commutative, and such that for every pairφ, ψ : A∞ → A∞ of lifts of Frobenius, we
have

F (ψ) ◦ χ(φ, ψ) = F (φ).

Moreover, we claim thatF (φ) ⊗ Qp : φ∗H ⊗ Qp → H ⊗ Qp is an isomorphism. IfF (φ)
itself is an isomorphism, we callH a unit-root crystal.

Often, especially in the next chapter, to simplify the notation, we setF := F (φ)φ∗. Let
S := Spec(A) andS0 = Spec(A0). By S∞, we denoteSpec(A∞), thep−adic completion
of S.

Let k′ be a perfect field extension ofk and lete0 : A0 → k′ be thek−morphism given by
e0(z) = α0, whereα0 ∈ k′. Thene0 defines ak′−valued point ofS0.

Let φ be a lift of Frobenius, and letαφ ∈ W (k′) be the Teichmüller lifting ofα0 corre-
sponding toφ. Then theW−homomorphismeφ : A∞ → W (k′) given byeφ(z) = αφ
defines aW (k′)−valued point ofS∞.

Definition 2.1.4 TheF−crystal onW (k′) induced byeφ is theF−crystal

(e∗φH, e
∗
φ(F (φ)φ∗)),

wheree∗φ(F (φ)φ∗) is theσ−linear map induced by the commutativity of the diagram below.

H
F (φ)φ∗

//

e∗φ
��

H

e∗φ
��

e∗φH
e∗φ(F (φ)φ∗)

// e∗φH

Let φ andψ be two lifts of Frobenius and lete0 : A0 → k′ be ak−morphism. Then the
F−crystals induced byeφ andeψ are explicitly isomorphic:

e∗φH
e∗φ(F (φ)φ∗)

//

∼= χ(eφ,eψ)

��

e∗φH

∼= χ(eφ,eψ)

��

e∗ψH
e∗ψ(F (ψ)ψ∗)

// e∗ψH

.
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Thus, for everyk′−valued point ofS0 given bye0, we obtain anF−crystal(e∗H, e∗F ) on
W (k′), which is independent of the chosen lift of Frobenius. We call thisF−crystal the
F−crystalinduced bye0.

2.2 F -crystals onW [[z − α]]

This section consists of two propositions concerningF−crystals overW [[z−α]]. The first
proposition 2.2.1 can be found in [41], but we added some details to the proof. We did not
find the second proposition 2.2.2 explicitly in the literature, but we needed it to understand
the proof of theorem 2.3.1.

Notation 2.2.1 By W << z − α >>, we denote the ring of convergent divided power
series overW , i.e. the ring of the formal expressions

∑

m≥0

am
zm

m!
,

where|am|p → 0 for m→ ∞.

The next proposition, which is due to Katz, relatesF−crystals overW [[z−α]] toF−crystals
overW << z − α >>.

Proposition 2.2.1 ([41], Proposition 3.1.) Let(H,∇, F ) be anF−crystal overW [[z−α]].

1. The moduleW << z − α >> ⊗H admits a basis of horizontal sections.

2. Every horizontal section ofW << z−α >> ⊗H fixed byF extends to a horizontal
section ofH (a section defined overW [[z − α]]).

Proof: 1. The twoW−homomorphismsf, g : W [[z−α]] →W << z−α >>, wheref is
the natural inclusion andg is the evaluatione atα, e(z−α) = 0, followed by the inclusion
ofW inW << z−α >>, are congruent modulo the ideal(z−α). Thus, sinceW << z−
α >> is p−adically complete,χ(f, g) is an isomorphism betweenW << z − α >> ⊗H
with the induced connection∇ and the moduleW << z−α >> ⊗W e

∗H with connection
d/d(z − α) ⊗ 1. Any basis{hi} of e∗H gives a horizontal (w.r.t.d/d(z − α) ⊗ 1) basis
{1 ⊗ hi} of W << z − α >> ⊗W e

∗H. The mapχ(f, g) maps these horizontal sections
to horizontal sections with regard to∇: For anyh ∈ H, we have

χ(g, f)(g∗(h)) =
∑

m≥0

(−1)m(z − α)m

m!
f∗(∇(d/d(z − α))mh)

=
∑

m≥0

(−1)m(z − α)m

m!
(∇(d/d(z − α))mh),
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where the last equality holds sincef was just the natural inclusion ofW [[z−α]] in W <<
z − α >>. We want to prove that∇(d/d(z − α))(χ(g, f)(g∗(h))) = 0 for anyh ∈ H.
Note that form ≥ 1,

∇(d/d(z − α))

(

(z − α)m

m!
∇(d/d(z − α))mh

)

=
(z − α)m−1

(m− 1)!
∇(d/d(z − α))mh+

(z − α)m

m!
∇(d/d(z − α))m+1h.

This implies that

∇(d/d(z − α))(χ(g, f)(g∗(h)))

= ∇(d/d(z − α))h

+
∑

m≥1

(−1)m
(

(z − α)m−1

(m− 1)!
∇(d/d(z − α))mh+

(z − α)m

m!
∇(d/d(z − α))m+1h

)

= 0,

since the sum in the middle is a telescoping sum. Thus, for any basis{hi} of H, the image
of the basis{g∗hi} = {1 ⊗ hi} underχ(g, f) is a horizontal basis off∗H = W <<
z − α >> ⊗H.

2. Choose a basis of the freeW [[z − α]]−moduleH, and letAφ denote the matrix of
F (φ) : φ∗H → H. Let y be a column vector with entries inW << z − α >> satisfying

Aφφ(y) = y.

Then, for any integerm ≥ 1, we have

Aφφ(Aφ)φ
2(Aφ)...φ

m−1(Aφ)φ
m(y) = y.

φm(y) is congruent toσm(y(α)) modulo(z−α)pm, and thus we get a(z−α)− adic limit
formula fory, namely

y = lim
m→∞

Aφφ(Aφ)φ
2(Aφ)...φ

m−1(Aφ)σ
m(y(α)),

which shows thaty has entries inW [[z − α]]. 2

Proposition 2.2.2 Let e : W [[z − α]] → W be theW−homomorphism given bye(z −
α) = 0. Let (H,∇, F ) be anF−crystal overW [[z − α]] and let e∗h ∈ e∗H satisfy
e∗F (e∗h) = e∗h (i.e. e∗h is a fixed point ofe∗F ). Let g : W → W << z − α >> and
f : W [[z − α]] → W << z − α >> be the natural inclusions ofW andW [[z − α]] in
W << z−α >>. Then the sectionχ(g◦e, f)(g∗e∗h) of theF−crystal(W << z−α >>
⊗H,∇, F ) is a fixed point of F:

F (χ(g ◦ e, f)(g∗e∗h)) = χ(g ◦ e, f)(g∗e∗h).
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Proof: By the same argument as in the proof above,χ(g ◦ e, f) is an isomorphism. Since
e∗F (e∗h) = e∗(F (h)), it follows that

χ(g ◦ e, f)(g∗e∗(F (h)) = χ(g ◦ e, f)(g∗e∗h)

Hence, it remains to prove that

χ(g ◦ e, f)(g∗e∗(F (h)) = F (χ(g ◦ e, f)(g∗e∗h)). (2.1)

Iterating the equality

∇(d/d(z − α)) ◦ F = p(z − α)p−1F ◦ ∇d/d(z − α)

leads to

∇(d/d(z−α))m◦F =
m
∑

k=1

m!

k!
(z−α)kp−m

∑

Am,k

(

p

a1

)

...

(

p

ak

)

F ◦∇(d/d(z−α))m, (2.2)

where
Am,k = {(a1, ..., ak), a1 + ...+ ak = m, p ≥ ai ≥ 1}.

But since

pm
∑

k=m

(−1)m
∑

Am,k

(

p

a1

)

...

(

p

ak

)

=

(

p
∑

l=1

(

p

l

)

(−1)l

)m

= (−1)m

for the whole sum it follows that

χ(g ◦ e, f)(g∗e∗(F (h))) =
∑

m≥0

(−1)m
(z − α)m

m!
∇(d/d(z − α))m(F (h))

=
∑

m≥0

(−1)m
(z − α)pm

m!
F (∇(d/d(z − α))m(h))

= F





∑

m≥0

(−1)m
(z − α)m

m!
∇(d/d(z − α))m(h)





= F (χ(g ◦ e, f)(g∗e∗h)),

and the proposition follows.2

2.3 Theorem 4.1. of Katz

In this section, we repeat the proof of Katz’s theorem 4.1 in [41]. This theorem will be
the key ingredient for our following computations. Note that we added some details to the
proof, especially, we applied proposition 2.2.2.
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Theorem 2.3.1 ([41], Theorem 4.1)
Let k̄ be the algebraic closure ofk, and letH be anF−crystal overA∞.
Assume that there exists a locally free submoduleFil1 ofH such thatH/Fil1 is free of rank
one and such thatF (Fil1) ⊂ pH. If for everyk−morphisme0 : A0 → k̄ with e0(z) = α0

and Teichmüller liftinge(z) = α ,α ∈ W (k̄), e∗H contains a direct factor of rank one,
transversal toe∗Fil1, which is fixed by the mape∗F , then:

1. There exists a unique unit-root F-subcrystalU of rank one ofH such thatH =
U ⊕ Fil1 asA∞ modules.

Suppose that overA∞, U is generated byu. WriteF (u) = r(z)u for r(z) ∈ A∗∞. Then we
have

2. Lete0 : A0 → k′ be ak−morphism to a perfect field extensionk′ of k with e0(z) =
α0. Let α be the Teichmüller lifting ofα0 and lete : A∞ → W (k′) be given by
e(z) = α. Then there exists an elementgα ∈ W (k′)[[z − α]] such thatv := gα · u ∈
W (k′)[[z − α]] ⊗A∞

H is horizontal with regard to∇. Furthermore, there exists a
constantcα ∈ W (k̄) such thatcαv is fixed byF and the quotientcαgα/φ(cαgα) is
the power series expansion of the elementr(z) aroundα.

Proof: 1. Assume thatH is free of rankν. We choose a basis ofH which is adapted to the
filtration Fil1. Letφ be the lifting of Frobenius such thatα is the Teichmüller lifting ofα0

with regard toφ. Then the matrix ofF (φ),Aφ, with regard to this basis is of the shape

Aφ =

(

pA C
pB D

)

with A ∈ Mν−1,ν−1(A∞), B ∈ M1,ν−1(A∞), C ∈ Mν−1,1(A∞) andD ∈ A∞. Since for
each Teichmüller pointe, e∗H contains a unit-root subcrystal of rank1,Dmust be invertible
in A∞. We have to find an elementu in H such that< u > is transversal toFil1 and such
that< u > is stable underF (φ)φ∗. Thus, we have to find a vectorη ∈ Mν−1,1(A∞) such
that

(

pA C
pB D

)(

φ∗(η)
1

)

= a

(

η
1

)

for somea ∈ A∞. But
(

pA C
pB D

)(

φ∗(η)
1

)

=

(

pAφ∗(η) + C
pBφ∗(η) +D

)

,

and it follows (by a comparison of the last entry) thata = pBφ∗(η)+D and thatpAφ∗(η)+
C = (pBφ∗(η) +D)η. Hence it follows that

η = (pAφ∗(η) + C)(1 +D−1pBφ∗(η))−1D−1.

The map
η 7→ (pAφ∗(η) + C)(1 +D−1pBφ∗(η))−1D−1 (2.3)
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is a contraction in thep−adic topology ofA∞, and hence it has a unique fixed point. This
determines a unique generator ofU satisfying the required properties, namely the vector

u =

(

η
1

)

,

whereη is the unique fixed point of the contraction.

2. By assumption, the modulee∗H contains a fixed point ofe∗F . By proposition 2.2.2, this
fixed point defines a unique horizontal fixed point ofF inW (k′) << z−α >> ⊗H, which
extends to a horizontal fixed point inW (k′)[[z − α]] ⊗H by proposition 2.2.1. This fixed
point spans a direct factor ofW (k′)[[z−α]]⊗H, which is transversal toFil1(W (k′)[[z−
α]] ⊗H). Assume that a horizontal section is given by the column vector

(

Sα
gα

)

with Sα ∈ Mν−1,1(W (k′)[[z − α]]) andgα ∈ W (k′)[[z − α]]. Then, the horizontal fixed
point is a multiple of this column vector by a constantcα,

cα

(

Sα
gα

)

.

By transversality,gα is invertible inW (k′)[[z − α]]. Then,
(

pAα Cα
pBα Dα

)(

φ∗(cαSα)
φ(cαgα)

)

=

(

cαSα
cαgα

)

,

which implies
(

pAα Cα
pBα Dα

)(

φ∗(Sαf
−1
α )

1

)

=
cαgα

φ(cαgα)

(

Sαg
−1
α

1

)

. (2.4)

Write ηα = Sαg
−1
α . Then,

pAαφ
∗(ηα) + Cα = ηα

cαgα
φ(cαgα)

andpBαφ
∗(ηα) +Dα =

cαgα
φ(cαgα)

,

which implies thatηα satisfies

ηα = (pAαφ
∗(ηα) + Cα)(1 +D−1

α pBαφ
∗(ηα))−1D−1

α .

Since the endomorphism ofMν−1,1(W (k′)[[z − α]]) given by 2.3 is still a contraction
in the p−adic topology, it follows thatηα is its unique fixed point and is hence a power
series expansion of the global fixed pointη aroundz = α. SincepBαφ∗(ηα) + Dα ∈
W (k′)[[z − α]] is the power series expansion ofpBφ∗(η) + D aroundz = α, it follows
that cαgα/φ(cαgα) is the power series expansion aroundz = α of an element inA∞.
By equation (2.4), now it follows thatcαgα/φ(cαgα) is the power series expansion of the
elementr(z). 2
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2.4 Divisible Hodge-F-crystals

In this section, we define the notion of a divisible HodgeF−crystal and show explicitly that
the second exterior product of a HodgeF−crystal is again a HodgeF−crystal.

Definition 2.4.1 A divisible HodgeF−crystalH of levelN is anF−crystalH equipped
with a filtration by freeA∞−submodules

H = Fil0H ⊃ Fil1H ⊃ ... ⊃ FilN−1H ⊃ FilNH ⊃ FilN+1H = 0

(called the Hodge filtration onH) which satisfies

1. ∇FiliH ⊂ Ω1
A∞/W (k) ⊗A∞

Fili−1H (Griffiths transversality),

2. F (FiliH) ⊂ piH (Divisibility).

The following proposition will be of use for us later, when we have to consider exterior
products ofF−crystals to derive formulas for the roots of the Frobenius polynomial.

Proposition 2.4.1 LetH be a divisible HodgeF−crystal whereH/Fil1H is free of rank
one. Then∧2H is a divisible HodgeF−crystal, with homomorphism ofA∞−modules

1

p
∧2 F : ∧2H → ∧2H

and with Hodge filtration given by

Fili−1(∧2H) =
i
∑

k=0

FilkH ∧ Fili−kH

for i ≥ 1.

Proof: SinceH/Fil1H is of rank one, Fil0 ∧ Fil0 = Fil0 ∧ Fil1.
Let a ∈ FilkH andb ∈ Fili−kH.Then,a ∧ b ∈ Fili−1(∧2H) and

1

p
∧2 F (a ∧ b) =

1

p
Fa ∧ Fb ∈ 1

p
pkH ∧ pi−kH = pi−1 ∧2 H.

For i ≥ 2,

∇(a ∧ b) = ∇(a) ∧ b+ a ∧∇(b) ∈ ΩA∞/W (k) ⊗A∞
Fili−2(∧2H).

2

If (H,∇, F ) is a Hodge-F−crystal, then so is(e∗H, e∗F ).
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2.5 Ordinary CY3-crystals and general autodual crystals

Following Stienstra [54], we introduce the notion of ordinary CY3-crystals. Crystals of that
type appear as the third relative crystalline cohomology of families of ordinary Calabi-Yau
threefolds. The generalization of an ordinary CY3-crystal is an ordinary autodual crystal.
For the rest of this section, assume thatk = k̄ is algebraically closed.

Definition 2.5.1 LetH be a Hodge-F−crystal and let

0 = Fil−1H ⊂ Fil0H ⊂ ... ⊂ FilNH = H

be the finite (it can be shown thatN is the same as in definition 2.4.1) increasing filtration
onH defined by

FiliH = {x ∈ H, pix ∈ Im(F (φ))}.
This filtration is called theconjugate filtration.

The conjugate filtration satisfies the Griffiths transversality condition

∇FiliH ⊂ ΩA∞/W ⊗ FiliH.

Definition 2.5.2 A divisible HodgeF−crystalH of levelN is calledordinaryif the graded
module with the conjugate filtration,gr•H, is a freeA∞−module and the conjugate and
the Hodge-filtration are opposite,

H = FiliH ⊕ Fili+1H.

Proposition 2.5.1 ([19], Prop. 1.3.2) LetH be anF−crystal such thatgr•H is a free
A∞−module. ThenH is ordinary iff there exists a filtration byF− subcrystals

0 = U−1 ⊂ U0 ⊂ ... ⊂ Ui ⊂ Ui+1 ⊂ ...

such that
Ui/Ui−1

∼= Vi(−i),
whereVi is a unit-rootF−crystal and(−i) is the Tate twist, meaning thatVi(−i) is the
same module with connection asVi, but for every liftφ of the Frobenius, the mapF (φ)φ∗

onVi(−i) is piF (φ)φ∗ onVi.

Definition 2.5.3 An (ordinary) CY3-crystaloverA∞ is a divisible (ordinary) Hodge-F−
crystalH of level3 with a non-degenerate alternating bilinear form

<,> H ×H → A∞

such that for allx, y ∈ H and lifts of Frobeniusφ, we have

< ∇(d/dz)x, y > + < x,∇(d/dz)y >= d/dz < x, y >,
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< F (φ)φ∗(x), F (φ)φ∗(y) >= p3φ(< x, y >)

and the Riemann bilinear relations

(Fil3H)⊥ = Fil1H, (Fil2H)⊥ = Fil2H,

where⊥ is with regard to the bilinear form<,>.

If k0 is a finite field withpr elements, then for a CY3-crystalH which is deduced by exten-
sion of scalars from anF−crystal overW (k0), k0 a perfect subfield ofk, the eigenvalues
of F r on the crystal overW (k0) are distributed symmetrically. This means that there are as
many eigenvalues withp−adic valuation0 as eigenvalues withp−adic valuation3, and as
many eigenvalues with valuation1 as eigenvalues with valuation2 (see [41], section 5).
For an ordinary CY3-crystal of rank4, on the crystal overW (k0) it follows that there is
exactly one eigenvalue ofF r with p−adic valuation0, 1, 2 and3.

The generalization of an (ordinary) CY3-crystal is an (ordinary) autodual crystal of weight
N , see [41], section 5:

Definition 2.5.4 An (ordinary) autodual crystal of weightN overA∞ is a divisible (ordi-
nary) Hodge-F− crystalH of levelN with a non-degenerate alternating bilinear form

<,> H ×H → A∞

such that for allx, y ∈ H and lifts of Frobeniusφ, we have

< ∇(d/dz)x, y > + < x,∇(d/dz)y >= d/dz < x, y >,

< F (φ)φ∗(x), F (φ)φ∗(y) >= pNφ(< x, y >)

and the Riemann bilinear relations

(FilN+1−iH)⊥ = FiliH,

where⊥ is with regard to the bilinear form<,>.

As in the case of CY3-crystals above, the eigenvalues ofF r overW (k0) are distributed
symmetrically in case of an autudoal crystal which is deduced from anF−crystal over
W (k0) by extension of scalars.
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Chapter 3

CY3-crystals and unit
roots

In this chapter, we define the notion of a Calabi-Yau differential operatorand relate these
operators to CY3-crystals and general autodual crystals. We give a formula to determine the
Frobenius-polynomial on a CY3-crystal of rank four with connection defined by a CY(4)-
operatorP , given that the functionf0(z)/f0(z

p) has an analytic continuation to the bound-
ary of thep−adic unit disc, wheref0 is a power series solution ofPf = 0 aroundz = 0.

3.1 Picard-Fuchs operators of CY-type

Consider integrals of algebraically defined differential forms over certain chains in algebraic
varieties. If the differential forms and chains depend on parameters, then the integrals can
be considered as functions in these parameters, satisfying linear differential equations with
algebraic coefficients. These differential equations are calledPicard-Fuchs equations. It is
not known in general how to determine whether a linear differential equation is a Picard-
Fuchs equation or not, although there exist several conjectures aboutit (see [61]).

In this section, we review some facts about linear differential operators with maximal unipo-
tent monodromy atz = 0 and define the notion of Calabi-Yau differential operators. Such
operators arise as Picard-Fuchs operators of families of Calabi-Yau varieties. Our definition
of CY-operators will be purely algebraic; for a general Calabi-Yau operator, we do not know
that it is of geometric origin.
Let

P =
d

dz

n

+ an−1(z)
d

dz

n−1

+ . . .+ a0(z) ∈ Q(z)[
d

dz
] (3.1)

be a linear differential operator of ordern, and letθ := z d
dz be the logarithmic derivative.

After left multiplication byzn and then by the least common multiple of the denominators
of znan−1(z), ..., z

na0(z), we can rewriteP in terms ofθ with polynomial coefficients and
obtain

P = An(z)θ
n +An−1(z)θ

n−1 + ...+A1(z)θ +A0(z) ∈ Q[z][θ]. (3.2)

35
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From now on, we assume thatP is regular singular atz = 0 and thatAn(0) 6= 0. We say
thatP hasmaximal unipotent monodromy atz = 0 if Ai(0) = 0 for 0 ≤ i ≤ n− 1.
We say that a differential operatorP as in (3.1) has maximal unipotent monodromy atz = 0
(P is MUM) if the operator transformed in shape (3.2) has maximal unipotent monodromy.

Theorem 3.1.1 ([7], Theorem 4.2.2) If P is MUM, then the subspace inQ[[z]] of solutions
of the linear differential equation

PΦ(z) = 0

has dimension1. Moreover, every solution is defined uniquely by the valueΦ(0).

Definition 3.1.1 LetP be a linear differential operator as in (3.1). Then theformal adjoint
of P , P ∗, is given by

P ∗Φ(z) =
n
∑

k=0

(−1)k
d

dz

k

(ak(z)Φ(z)).

Definition 3.1.2 We call a linear differential operatorP of ordern as in (3.1) aCY(n)-
operatorif

1. P has maximal unipotent monodromy at0 (MUM).

2. P is self-dual in the sense that

P = (−1)n exp(− 2

n

∫

an−1(z)dz) ◦ P ∗ ◦ exp(
2

n

∫

an−1(z)dz),

where “◦” means the composition of differential operators.

3. The power series solutionΦ0(z) to the differential equation

PΦ(z) = 0

with Φ0(0) = 1 satisfiesΦ0(z) ∈ Z[[z]].

The first condition in definition 3.1.2 (MUM) implies that the operatorP is irreducible and
can (after writingP as in (3.2)) be written in the form

θn + zP1(θ) + z2P2(θ) + . . .+ zdPd(θ),

for some positive integerd, wherePi(θ) ∈ Q[θ] is a polynomial inθ of degree≤ n.
The second condition in definition 3.1.2 is equivalent to the condition that the transformed
operator

P̃ = exp(
1

n

∫

an−1(z)dz) ◦ P ◦ exp(− 1

n

∫

an−1(z)dz)

satisfies
P̃ = (−1)nP̃ ∗
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which translates into⌊(n− 1)/2⌋ differential-polynomial conditions on the coefficientsai.
Forn = 4 one finds the condition of [4]:

a1 =
1

2
a2a3 −

1

8
a3

3 + a′2 −
3

4
a3a3 −

1

2
a′′3. (3.3)

In [2] one finds a list with more than350 examples of such CY(4)-operators. Note that
these operators satisfy additional integrality properties, namely that the genus zero instan-
tion numbers are integral. Because of the MUM-condition, by Theorem 3.1.1the solution
Φ0(x) from the third condition in definition 3.1.2 is unique and conversely determines the
operatorP .

3.2 CY- differential equations and ordinary autodual crystals

In this section, we repeat some results by M. Bogner [12] and J.-D. Yu [60] concerning
differential modules defined by CY-differential operators.
Let p be a prime, letq = pa and letk be the field withq elements. LetW := W (k) denote
the ring of Witt vectors ofk, and letK be the fraction field ofW .

Let P be a CY(n)-differential operator, and letMP be the differential module defined by

MP := K(z)[θ]/K(z)[θ]P

with generatorω defined by

K(z) → MP

1 7→ ω,

where the map is the natural projection.MP is then a freeK(z)−module of rankn with
cyclic vectorω and a basis given by{ω, θω, θ2ω, ..., θn−1ω}. We define a filtration onMp

by setting
FiliMP =< {θjω}n−1−i

j=0 >K(z),

theK(z)− module spanned by{ω, ..., θn−1−iω}. Let

Yn = exp

(

2

n

∫

an−1dz/z

)

. (3.4)

Then Bogner [12] (or Yu [60], Theorem 1.2.) prove the following

Theorem 3.2.1 If Yn ∈ K(z), there exists a non-degenerate alternating bilinear form

<,>: MP ×MP → K(z),

uniquely determined by setting< ω, θn−1ω >= cYn for some constantc ∈ K, satisfying

< θ(x), y > + < x, θ(y) >= θ(< x, y >) for x, y ∈MP (3.5)
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and
< Filn−iMP ,FiliMP >= 0. (3.6)

Following [60], we define
ΓP := K[[z]][θ]/K[[z]][θ]P,

which is aK[[z]]−lattice inMP ⊗K[T ] K[[T ]]. By FiliΓP , we denote the filtration induced
by the filtration FiliMp onMP . Then, we have the following theorem:

Theorem 3.2.2 ([60], Theorem 1.4.) There exists a unique increasing filtration

0 = U−1 ⊂ U0 ⊂ ... ⊂ Un−1 = ΓP

ofK[[z]][θ]− submodules ofΓP such that, for−1 ≤ i ≤ n− 1,

ΓP = Ui + Fili+1ΓP

and theUi/Ui−1 are trivial K[[z]][θ]−modules.

Now suppose that there exists a constantc ∈ K× such thatcYn ∈ W [[z]]. We define a
connection∇ onΓP by setting

∇(θ)(ω) = θ(ω).

To giveΓP the structure of an ordinary autodualF -crystal(ΓP ,∇, F ) of weightn− 1 over
W [[z]], we assume that for every lifting of Frobeniusφ, we have a horizontal mapF (φ)φ∗

giving a conjugate Filtration Fili as in definition 2.5.1 which, by the theorems 3.2.2 and
2.5.1, is opposite to the Hodge filtration,

ΓP = FiliΓP ⊕ Fili+1ΓP (3.7)

satisfying
F (φ)φ∗FiliΓP ⊂ piΓP (3.8)

and
< F (φ)φ∗(x), F (φ)φ∗(y) >= pn−1φ(< x, y >) (3.9)

for all x, y ∈ ΓP . Thus, by theorem 3.2.1 it follows that(ΓP ,∇, F ) is an ordinary autodual
F−crystal overW [[z]].

3.3 Horizontal sections for CY differential operators

In this section, we give a formula for horizontal sections in the differentialmoduleΓP ,
whereP is a CY(4)- or CY(5)- differential operator.
Let P be a CY(4)-operator. The differential equationPf = 0 can be written in the form

f (4) + a3f
(3) + a2f

(2) + a1f
(1) + a0f = 0,

where the coefficientsai satisfy the following relation:

a1 =
1

2
a2a3 −

1

8
a3

3 + a′2 −
3

4
a3a
′
3 −

1

2
a′′3. (3.10)
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Proposition 3.3.1 (see[59]) Let P be a CY(4) differential operator and let(H,∇) be a
K(z)/K differential module. Letω ∈ H such that

∇4ω + a3∇3ω + a2∇2ω + a1∇ω + a0ω = 0

(where∇(ω) := ∇(d/dz)(ω)) and letf0 ∈ K[[z]] be a formal solution to the differential
equationPf = 0 aroundz = 0. If Y4 = exp

(

1/2
∫

a3

)

∈ K[[z]], then the following
elementu4 ∈ H ⊗K[z] K[[z]] is horizontal with regard to∇ :

u4 = Y4[f0∇3(ω) − f ′0∇2(ω) + f ′′0∇(ω) − f ′′′0 ω] + (Y4a3 − Y ′4)[f0∇2(ω) − f ′′0 ω]

+ (Y4a2 − (Y4a3)
′ + Y ′′)[f0∇(ω) − f ′0ω]. (3.11)

Proof: See [59]. The proof is by direct computation, using (3.10).

Now letQ be a CY(5)-operator. The differential equationQf = 0 can be written in the
form

f (5) + b4f
(4) + b3f

(3) + b2f
(2) + b1f

(1) + b0f = 0.

Proposition 3.3.2 The operatorQ satisfies the second condition for CY(5) of the introduc-
tion, if and only if the coefficientsbi(z) satisfy the relations

b2 =
3

5
b3b4 −

4

25
b34 +

3

2
b′3 −

6

5
b4b
′
4 − b′′4 (3.12)

and

b0 =
1

2
b′1 −

2

125
b3b

3
4 +

1

5
b1b4 −

1

10
b3b
′′
4 +

2

5
b′′′4 b4 +

4

5
b′′4b
′
4 +

16

125
b′4b

3
4 (3.13)

+
12

25
(b′4)

2b4 −
3

10
b′′3b4 +

8

25
b24b
′′
4 −

3

10
b′3b
′
4 −

3

25
b24b
′
3 −

1

4
b′′′3 +

16

3125
b54

+
1

5
b′′′′4 − 3

25
b3b
′
4b4.

Proof: By direct calculation, for details we refer to [12].

Proposition 3.3.3 Let Q be a CY(5) differential operator and let(H,∇) be aK(z)/K
differential module. Letη ∈ H such that

∇5η + b4∇4η + b3∇3η + b2∇2η + b1∇η + b0η = 0

(where∇(η) := ∇(d/dz)(η)) and letfα ∈ K[[z]] be a formal solution to the differential
equationQf = 0 aroundz = 0. If Y5 = exp

(

2/5
∫

b4
)

∈ K[[z]], then the following
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elementu5 ∈ H ⊗K[z] K[[z]] is horizontal with regard to∇:

u5 = Y5[f0∇4(η) − f ′0∇3(η) + f ′′0∇2(η) − f ′′′0 ∇(η) + f ′′′′0 η]

+ (Y5b4 − Y ′5)[f0∇3(η) − 1

3
f ′0∇2(η) − 1

3
f ′′0∇(η) + f ′′′0 η]

+ (Y5b3 − (Y5b4)
′ + Y ′′5 )[f0∇2(η) + f ′′0 η] + (

4

3
((Y5b4)

′ − Y ′′5 ) − αb3)f
′
0∇(η)

+ (
1

2
((Y5b3)

′ − 4

3
((Y5b4)

′′ − Y ′′′5 )))[f ′0η + f0∇(η)]

+ (Y5b1 −
1

2
((Y5b3)

′ − 4

3
((Y5b4)

′ − Y ′′′′5 )))f0η, (3.14)

Proof: Applying the identities (3.12) and (3.14), one directly verifies thatu5 satisfies
∇(u5) = 0.

3.4 Calabi-Yau varieties

In this section, we give a very brief introduction to Calabi-Yau varieties. Especially, we are
interested in Calabi-Yau threefolds, since families of these correspond to CY(4)-operators,
the main subjects of our studies.

Definition 3.4.1 A Calabi-Yau varietyis a smooth complex projective variety of dimension
m satisfying

1. H i(X,OX) = 0 for every0 < i < m and

2. The canonical bundleKX := Ωn
X ofX is trivial, KX

∼= OX .

LetHq(Ωp
X) be the(p, q)th Hodge cohomology groupofX with Hodge numberhp,q(X) :=

dimCH
q(Ωp

X). By complex conjugation, we haveHq(Ωp
X) = Hp(Ωq

X), and by Serre
duality, it follows thatHq(Ωp

X) = Hm−q(Ωm−p
X ).

This implies directly that there is a symmetry in the Hodge-numbers:

hp,q(X) = hq,p(X) andhp,q(X) = hm−p,m−q(X).

The numberhk(X) := dimCH
k(X,C) is called thekth Betti numberof X. By the Hodge

decomposition ofHk(X,C),

Hk(X,C) ∼=
⊕

p+q=k

Hq(Ωp
X),

it follows that

hk(X) =
∑

p+q=k

hp,q(X) =
k
∑

i=0

hi,k−i(X).
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The Calabi-Yau conditions assert thathi,0(X) = 0 for 0 < i < m and h0,0(X) =
hm,0(X) = 1.

The Hodge numbers can be displayed in aHodge diamond. For a Calabi-Yau variety of
dimensionm = 3, the Hodge diamond looks as follows,

1
0 0

0 h1,1(X) 0
1 h1,2(X) h1,2(X) 1

0 h1,1(X) 0
0 0

1

sinceh1,1(X) = h2,2(X) andh2,1(X) = h1,2(X). Now letX be a Calabi-Yau variety
defined overQ. Then,X has an integral model overZ. Let k := Fp wherep is a prime.
The reductionX0 of X overk is a Calabi-Yau variety overk if it is a smooth variety.

3.5 CY-differential equations and families of Calabi-Yau vari-
eties

In this section, following Yu [60], we explain where CY(n)-operators arise in geometry as
Picard-Fuchs operators of families of Calabi-Yau varieties. For example,CY(2)-operators
arise from families of elliptic curves, CY(3)-operators arise from families of K3 surfaces
with Picard-number19 with a point of maximal degeneration (type III in the terminology of
[31]) and CY(4)-operators arise from families of Calabi-Yau threefolds withh12 = 1 that
are studied in mirror symmetry, [17].

In this section, we will talk about so-calledlogarithmic structures. The basic definitions
and properties of logarithmic structures can be found in [38]. Let π : X → P1 be a flat
projective pencil whose generic fibre is smooth, and assume that each singular fibre ofπ is
a union of reduced normal crossing divisors. We equipX andP1 with the natural smooth
logarithmic structures associated to the union of the singular fibres inX and the critical
values inP1. By ωi := ωiX/P1 , we denote the sheaf of relative differentiali−forms with
logarithmic poles with respect to the logarithmic structures onX.

If the generic fibre ofπ is an irreducible Calabi-Yau variety of dimensionm ≥ 1, we call
a pencilπ as above anice pencil of Calabi-Yau varieties of dimensionm. Then the sheaf
π∗ω

m is an invertible sheaf onP1.

Now suppose that there exists a locally direct factorM of rankm+ 1 of Rmπ∗ω• which is
stable under the Gauss-Manin connection and containsπ∗ω

m.
Let a ∈ P1

C be aC−valued point and letN denote the logarithm of the local monodromy
arounda. ThenN acts on the stalkMa and is nilpotent. If the monodromy is maxi-
mally unipotent,Nm 6= 0 onMa , thenM is the unique irreducible locally direct factor of
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Rmπ∗ω
• containingπ∗ωm which is stable under the Gauss-Manin connection. The follow-

ing theorem by Yu relates nice families of Calabi-Yau varieties to CY-differential operators.

Theorem 3.5.1 (see[60], Corollary 2.2) Letπ : X → P1 be a nice pencil of Calabi-Yau
varieties of dimensionm such that there exists a locally direct factorM with maximally
unipotent monodromy at0. Letη be a basis of local sections ofπ∗ωm at 0 and letP be the
Picard-Fuchs operator ofη. ThenP is a CY(m+1)-operator.

Now, we consider the whole situation from ap−adic point of view. Let thereforep be a
prime, letq = pa, and assume thatp > m. Let k = Fq, letW the ring of Witt vectors of
k and letK be the fraction field ofW . Let π : X → P1 be a nice pencil of Calabi-Yau
varieties of dimensionm overK with totally degenerate fibre at0. We say thatπ hasnice
reductionif π has a flat model overW such that the reduction̄π : X̄ → P1 overk is also a
nice pencil of Calabi-Yau varieties of dimensionm, and the logarithmic structures ofπ and
π̄ are induced by a smooth logarithmic structure on the flat model overW .

Lemma 3.5.1 (see[60], Lemma 3.1) Suppose that the pencilπ has a nice reduction and
that the factorM with maximally unipotent monodromy at0 satisfies thatM0 is stable
under the absolute Frobenius. Then the Frobenius action onM0 is ordinary and there exists
a dense open subsetS in P1 such that for the restrictionπ : X → S, the crystalM is an
ordinary CY3-crystal.

3.6 Dwork’s deformation from z = 0

Now that we know a formula for the horizontal sections inF−crystals defined by CY(4)
and CY(5)- differential operators, we want to derive a formula for theelementr(z) appear-
ing in theorem 2.3.1 for both cases.

For the rest of this chapter, we choose the lifting of Frobenius given byφ(z) = zp. The
sectionun defined in equation (3.11) ifn = 4 and equation (3.14) ifn = 5 and all con-
stant multiples of this section are horizontal with regard to∇. With regard to the basis
{ω,∇(ω),∇2(ω), ...,∇n−1(ω)} of ΓP , where∇(ω) := ∇(d/d(z − α))(ω), horizontal
sections, written as column vectors, are constant multiples of

Yn

(

N0

f0

)

,

whereN0 is a(n−1)×1−matrix with entries inW [[z]]. Hence it follows by theorem 2.3.1
that there exists a constantc0 such that

c0Yn

(

N0

f0

)

= c0Ynf0

(

f−1
0 N0

1

)

is a fixed point ofF , and the element

c0f0(z)

cσ0f0(zp)
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is the power series expansion of(Yn(z
p)/Yn(z))r(z) aroundz = 0.

LetM(z) be the connection matrix representing∇(d/dz) with regard to our choice of basis,
which is given by

M(z) :=













0 . . . 0 −a0

1
... −a1

...
. .. 0

...
0 . . . 1 −an−1













,

Consider the matrix differential equation

d

dz
C(z) + M(z)C(z) = 0

and letC(z) be the solution to this differential equation given by

C(z) = Yn

(

N0 −N1 . . . (−1)n−1Nn−1

y0 −y1 . . . (−1)n−1yn−1

)

,

wherey0(z), ..., yn−1(z) is a Frobenius basis of solutions to the differential equation

Pny = 0

aroundz = 0 such thaty0(z) = f0(z). Note that the highest power of a logarithm occuring
in yk(z) is log(z)k. For example, a Frobenius basis of solutions to a CY(4)-differential
equation is given by

y0(z) = f0(z),

y1(z) = log(z)f0(z) + f1(z),

y2(z) =
1

2
log2(z)f0(z) + log(z)f1(z) + f2(z),

y3(z) =
1

6
log3(z)f0(z) +

1

2
log2(z)f1(z) + log(z)f2(z) + f3(z),

wheref0(0) = 1 andfi(0) = 0 for 1 ≤ i ≤ 3. LetC(z) denote the non-logarithmic part
of C(z), i.e. in each entry ofC(z), we formally set “log(z) = 0”. Thus, for example in the
case of a CY(4)-operator, the matrixC(z) is given by

C(z) = Y4

(

N0 −N1 N2 −N3

f0 −f1 f2 −f3

)

for somen− 1 × 1 matricesNi containing no logarithmic terms.

LetN be the logarithm of the monodromy. Because of the MUM-condition,N is given by

N :=











0 1 . . . 0
...

. . .
...
1

0 . . . 0
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It is our goal to determine the constantc := c0/c
σ
0 . LetG denote the Gram matrix of the

pairing<,> onΓP , which is, by theorem 3.2.1, given by

G = YnT

for a scalar matrixT satisfying
TN +N tT = 0. (3.15)

By equations (3.7) and (3.8), there exists a constant matrixAn satisfying

pAnN = NAn, (3.16)

and furthermore, by equation 3.9,

pn−1T = AnTAn, (3.17)

such that as in [27], Lemma 6.2., the absolute Frobenius matrixAφ of F (φ) with regard to
our choice of basis is given by

Aφ(z) = C(z)AnC(zp)−1 (3.18)

on the open discpW .
By conditions 3.16, 3.15 and 3.17 it follows that

An =











ε α1 . . . αn−1

0
. ..

0 0 pn−2ε pn−2α1

0 0 0 pn−1ε











,

andε = ±1.
By equation (3.18), it follows that

Aφ(z)C(zp) = C(z)An,

which implies

Aφ(z)

(

f0(z)
−1N0(z

q)
1

)

= ε
Yn(z)f0(z)

Yn(zp)f0(zp)

(

f0(z
p)−1N0(z

p)
1

)

.

This determines the constantc asc = ε and leads to the following proposition:

Proposition 3.6.1 The formal power series

ε
f0(z)

f0(zp)

is the power series expansion aroundz = 0 of the element(Yn(zp)/Yn(z))r(z), where
ε ∈ {±1}.
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By the conditions 3.16, 3.15 and 3.17, for a CY(4)-operator,A4 is given by









ε α β γ
0 pε pα pβ
0 0 p2ε p2α
0 0 0 p3ε









,

whereβ = α2/2, and is thus determined up to two parametersα, γ ∈W . This indicates that
we can derive a formula for the absolute Frobenius matrixAφ at a Teichmüller point up to
two parameters that remain undetermined. But although the Frobenius matrix itself depends
on these parameters, we will see in the end of this chapter that the Frobeniuspolynomial
det(1 − TAaφ) at a Teichmüller point isindependentof these parameters.

Theorem 3.6.1 Let x be a Teichmüller point satisfyingxp
a

= x andP a CY(4)-operator.
Then, if it can be evaluated inz = x, the Frobenius polynomial corresponding toP at this
point,det(1 − TAφ(z)

a)|z=x, is independent of the parametersα, β andγ.

Note that by the expressiondet(1 − TAφ(z)
a)|z=x, we mean that there exists ananalytic

continuation(see chapter 5) of the power seriesdet(1− TAφ(z)
a) ∈W [T ][[z]] to a neigh-

borhood ofx, and that we evaluate this analytic continuation there.

3.7 Example: The Legendre family of elliptic curves

In the case of a CY(2)-operator and a family of elliptic curves, the formula given in propo-
sition 3.6.1 is almost enough to compute the Frobenius polynomial of a smooth ordinary
fibre of the family explicitly. We demonstrate this in the example of the Legendre family of
elliptic curves.

For a primep > 2, letH be the polynomial

h(z) :=

p−1
∑

j=0

((

1
2

)

j

j!

)2

zj ,

and letS be theZp−schemeS := Spec(Zp[z][(z(1 − z)h(z))−1]). By X/S∞, we denote
the Legendre family of elliptic curves, whose affine equation is given by

Xz : y2 = x(x− 1)(x− z),

wherez 6= 0, 1 andh is its Hasse-invariant.

The relative de Rham cohomologyH := H1
DR(X/S∞) of the family is free of rank 2, and

the Hodge filtration Fil1H is generated by the differential

ω :=
dx

y
.
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Let ∇ be the Gauss-Manin connection onH. Letω′ := ∇(d/dz)(ω). Thenω satisfies the
differential equation

z(1 − z)ω′′ + (1 − 2z)ω′ − 1

4
ω = 0,

and the cup-product is given by

< ω, ω >=< ω′, ω′ >= 0 and < ω, ω′ >= − < ω′, ω >= −2/(z(1 − z)).

For anyα0 in S0, the curveXα0 is ordinary. Lete0 : A0 7→ k, e0(z) = α0, and lete
be a Teichmüller lifting ofe0. Then theF−crystale∗H ∼= H1

DR(Xα/W ) is an ordinary
Hodge-F−crystal, and thusH satisfies the conditions of theorem 2.3.1.

The Zeta functionZ(Xα0/Fp, T ) is of the form

Z(Xα0/Fp, T ) =
(1 − r(α)T )(1 − p/r(α)T )

(1 − T )(1 − pT )
,

and we have to find a formula to computer(α).

Let f0 be the unique solution inW [[z]] to the above differential equation with constant term
1. The horizontal sections aroundz = 0 are constant multiples of

Y f ′0ω − Y f0∇(ω),

whereY = z(1 − z).
Then, by theorem 2.3.1, there exists a constantc0 such that c0Y (z)f0(zp)

cσ0Y (zp)f0(zp) is the power series

expansion of the elementr(z).
As in section 3.6, the constantc = c0

cσ0
is equal toε = ±1, and a power series expansion of

(Y (zp)/Y (z))r(z) around the origin is given by

ε
f0(z)

f0(zp)
, whereε ∈ {1,−1}.

It was proven by Dwork [27] that there exists a functionF (z), analytic on

D := {x ∈W ||H(x)|p = 1},

which coincides withf0(z)/f0(z
p) on the open unit discpW . Thus, a formula forr(α) is

given by

r(α) = ε
Y (α)

Y (αp)
F (α) = εF (α),

where the last equality holds sinceY (α) = Y (αp). Hence, one has a formula for the unit
root of the Frobenius polynomial of a fibre of the Legendre family modulo theconstantε.
By a geometric argument, it turns out thatε = (−1)(p−1)/2. The geometrical origin ofε lies
in the geometry of the singular fibreX0 which has a node with tangent conex2 + y2 = 0,
that splits overFp precisely whenε = 1.
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3.8 Frobenius polynomials for CY3-crystals of rank four

At the moment, by proposition 3.6.1, we have a formula for the functionr(z) from theorem
2.3.1 for ordinary CY3-crystals of rank four with Picard- Fuchs operator of CY(4)-type,
and for ordinary autodual crystals of rank five with Picard-Fuchs operator of CY(5)-type.
For α0 ∈ k, wherek is a field withq = pa elements, the functionr(z), evaluated at the
Teichmüller liftingα of α0, computes the unit root

rα0 = r(α)r(αp)...r(αp
a−1

)

of the corresponding crystal. But it was our goal to compute the complete Frobenius poly-
nomial for a CY3-crystal of rank four, and not only its unit root. In this section, we will
derive a formula for the reciprocal root ofp−adic valuation1 in terms of the unit root of the
ordinary CY3-crystal with connection specified by a CY(4)-operatorP , and the unit root of
the ordinary autodualF−crystal with connection specified by a CY(5)-operatorQ = ∧2P .

Let k be the finite field withq = pa elements, letW := W (k) be the ring of Witt vectors
and letK be the field of fractions ofW . Let P be a CY(4)-operator, and lets(z) ∈ Z[z]
be the polynomial sucht that the singular points ofP are the roots ofs(z). Let (H,∇, F )
be a correspondingCY 3−crystal overA∞, whereA = W [z][(s(z)h(z))−1]. Let S0 =
Spec(A0), S∞ := Spec(A∞) and letα0 ∈ S0.
Letφ be a lifting of Frobenius and lete : A∞ →W (k), e(z) = α be the Teichmüller lifting
of e0 : A0 → k, e0(z) = α0. We assume that for eachα0 ∈ S0, the CY3-crystale∗H is
ordinary (this is a condition on the polynomialh(z)).
For the Frobenius polynomialdet(1 − Te∗F a|e∗H), this means that there existsp−adic
unitsrα0 , sα0 such that

det(1 − Te∗F a) = (1 − rα0T )(1 − qsα0T )(1 − q2/sα0T )(1 − q3/rα0T ), (3.19)

under the further assumption thatP(T ) := det(1 − Te∗F a) suits the Weil conjecturefunc-
tional equation:

P(T ) = T 4/q6P(1/(q3T )).

Then there exist (p-adic) integersaα0 andbα0 ∈ Z such thatP is symmetric in the following
way:

P(T ) = 1 + aα0T + bα0qT + aα0q
3T 3 + q6T 4.

It is our goal to derive formulas to compute thep−adic unitsrα0 andsα0 .

By assumption, the crystalH satisfies the conditions of theorem 2.3.1. Thep−adic unit
rα0 is just the elementr(α)r(αp)...r(αp

a−1
), so we have to derive a formula to evaluate the

elementr(z) ∈ A∞ at a Teichmüller pointα.

Now consider thep−adic unitsα. In general, iff : V → V is a homomorphism of vector
spaces, then the eigenvalues of∧2f : ∧2V → ∧2V are given by productsab, wherea and
b are eigenvalues off corresponding to linearly independent eigenvectors.



48 3. CY3-crystals and unit roots

By proposition 2.4.1, the Frobenius endomorphism on each fiber∧2e∗H of the crystal∧2H
is given by1

p ∧2 (e∗F ).

The rank6 =
(

4
2

)

A∞− module∧2H is a direct sum of anA∞− moduleG of rank 5 and a
rank 1 module. The rank 1 module is generated by a section that corresponds to the pairing
< −,− > and is horizontal with respect to∇.
We construct a 5th order differential operatorQ on the submoduleG by choosingQ to
be the differential operator of minimal order such that for any two linearly independent
solutionsy1(z), y2(z) of the differential equationPy = 0,

w := z

∣

∣

∣

∣

y1 y2

y′1 y′2

∣

∣

∣

∣

is a solution ofQw = 0 .

Proposition 3.8.1 The operatorQ satisfies the first and the second condition of CY(5).

Proof: The statement thatQ satisfies the first condition of CY(5) is the content of [4],
Proposition 4. A direct computation shows that sinceP is a CY(4)-operator, the coefficients
of Q satisfy the equations (3.14) and (3.12), so the second condition of CY(5)holds.2

In all examples it was found that the operatorQ also has an integral power series solution,
and thus satisfies the third condition of CY(5). For the moment, however, we are unable to
prove this in general so we

Conjecture 3.8.1 The differential operatorQ, constructed from a CY(4)-operatorP as
above, satisfies the third condition of CY(5).

So if conjecture 3.8.1 holds true, the differential operatorQ is a CY(5)-operator.

The operatorQ can be expressed in terms of∧2P (θ, z) as

Q(θ, z) = ∧2P (θ − 1, z).

For the differential operatorsP andQ, we use the same notation with coefficientsai andbi
as in section 3.3.

Proposition 3.8.2 LetQ be the CY(5)-operator constructed above, let∇ := ∇(d/dz) and
let ω ∈ H such that

∇4ω + a3∇3ω + a2∇2ω + a1∇ω + a0ω = 0.

Then, the elementη := zω ∧∇ω ∈ G satisfies

∇5η + b4∇4η + b3∇3η + b2∇2η + b1∇η + b0η = 0.
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Proof: The proposition follows by a straightforward calculation, applying the relations
between the coefficientsai of the CY(4)-operatorP and the coefficientsbi of the CY(5)-
operatorQ listed in [1].2

Just as for theF−crystal(H,∇, F ), we assume for theF−crystal(G,∇, 1/p ∧2 F ) that
for eachα0 ∈ S0, theF−crystale∗G is an autodual ordinaryF−crystal of weight4 (this
is a condition on the polynomialh(z), too).

The eigenvalues of the relative Frobenius on∧2e∗H are of the formuα0vα0/q, whereuα0

andvα0 are eigenvalues ofe∗F a one∗H.
Thus, ifrα0 is the unit root of theF−crystale∗H, andr′α0

is the unit root ofe∗G, then the
reciprocal roots of the Frobenius polynomialP(T ) one∗H are given by

rα0 , qr
′
α0
/rα0 , q

2rα0/r
′
α0
, q3/rα0 , (3.20)

and it follows that
sα0 = r′α0

/rα0 .

Since theF−crystalG satisfies the conditions of theorem 2.3.1, the elementr′α0
is just the

elementr(α)r(αp)...r(αp
a−1

) (this time w.r.t.G) evaluated atz = α.

3.9 Formulas for rα0
and r′α0

In this section, we put the results of the preceding sections together to give formulas for the
p−adic unitsrα0 andr′α0

.

Let f0(z) be the unique power series solution to the differential equationPf = 0 around
z = 0 satisfyingf0(0) = 1, and letg0 be the unique solution toQg = 0 aroundz = 0
satisfyingg0(0) = 1. Assume thatY4(z) andY5(z) are rational functions.

Theorem 3.9.1 Letα0 ∈ S0, and letα be a Teichmüller lifting ofα0. LetpW ⊂ D ⊂ W
be a domain containingα, and assume that there exist analytic elementsF (z) andG(z) of
supportD coinciding withf0(z)/f0(z

p) andg0(z)/g0(zp) onpW . Then

rα0 = εaF (α)...F (αp
a−1

) andr′α0
= G(α)...G(αp

a−1
),

whereε ∈ {±1}.

Proof: The first statement follows directly by proposition 3.6.1, sinceα = αp
a

and thus

Y4(α)

Y4(αp)

Y4(α)p

Y4(αp
2)
...
Y4(α

pa−1
)

Y4(αp
a)

=
Y4(α)

Y4(αp
a)

= 1

and, concerning the second statement,

Y5(α)

Y5(αp)

Y5(α)p

Y5(αp
2)
...
Y5(α

pa−1
)

Y5(αp
a)

=
Y5(α)

Y5(αp
a)

= 1.
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It only remains to be proven thatr′α0
= G(α) is independent ofε. On the rank four

F−crystalH, the matrixA4 has diagonal entriesε, ..., p3ε. Thus, the matrixA5 on the
rank5 F−crystalG ⊂ ∧2H has diagonal entries which are products of two distinct diago-
nal entries ofA4 divided byp (by construction of theF−crystal∧2H), and hence the diag-
onal entries are1, p, p2, p3, p4. The(5, 5)−th entry ofA5 is 1, and the statement follows.2

Proof of theorem 3.6.1:
The formulas for the two roots of the Frobenius polynomial given in theorem3.9.1 deter-
mine the Frobenius polynomial up to the constantε = ±1, given that there exists analytic
elementsF (z) andG(z) that can be evaluated in the Teichmüller point. Both formulas are
completely independent of the parametersα, β andγ. Thus, it follows that if the Frobenius
polynomial can be computed by the formulas in theorem 3.9.1, then it is independent of the
parameters.

Now the question of the construction of analytic elementsF (z) andG(z) still remains unan-
swered. We will consider this problem in the following chapters to derive explicit formulas
for the computation ofrα0 andr′α0

.



Chapter 4

The Hasse-invariant

One of the problems that remains to be solved is to determine the elementh(z) defininig
A := W [z][(s(z)h(z))−1]. The zero set ofh(z) should be the locus over which the
F−crystalH becomes non-ordinary. In the example of the Legendre family,h(z) is the
Hasse-invariant of the family. The roots of the Hasse-invariant are the points over which the
fibers become supersingular.
Following [39], we describe some properties of the Hasse-invariant and give an explicit
formula for the Hasse-invariant for families of hypergeometric Calabi-Yauthreefolds.

4.1 The Hasse-invariant and the Picard-Fuchs equation

Let A0 = Fp[z][s(z)−1], S0 = Spec(A0) and letf : X0 → S0 be a family of Calabi-
Yau threefolds. Assume that there exists a smooth liftingf : X → S∞ of the family to
characteristic0. Assume furthermore that the CY3-crystalH3

cris(X/S∞) contains a CY3-
subcrystalH of rank four where the Gauss-Manin connection∇ is specified by a CY(4)-
differential operatorP . We are interested in the locus over which theF−crystalH becomes
non-ordinary.

Let F denote the absolute Frobenius onS0; F is the identity map on the underlying topo-
logical space and thepth power map on the structure sheafOS0 .

By HW , we denote theHasse-Witt operation

HW : F ∗R3f∗(OX0) → R3f∗(OX0).

For a definition ofHW , see [39], section (2.3.). The following propositions relate the
Hasse-Witt operation to the non-ordinary locus of theF−crystalH.

Proposition 4.1.1 ([39], proposition (2.3.4.1.5) and its corollary)
In order to have a direct sum decomposition

H := Fil1H ⊕ Fil0H,

51
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the Hasse-Witt operation has to be an isomorphism.

SinceR3f∗(OX0) ⊂ H is a freeOS0-module of rank1, the Hasse-Witt operation can be
represented by a1 × 1−matrix overΓ(S0,OS0), i.e. by an elementh(z) ∈ Γ(S0,OS0). By
proposition 4.1.1, the zero set ofh(z) is the non-ordinary locus of the CY3-crystalH.

Proposition 4.1.2 (Igusa, Manin,[39], proposition (2.3.6.3)) The elementh(z) satisfies

Ph(z) = 0 mod p.

Thush(z) is a solution to the Picard-Fuchs equation modulop. This fact provides us with
the means to determineh(z) for a wide class of examples.
For many CY(4)-operatorsP , the coefficients of the integral solutionf0(z) to the dif-
ferential equationPf = 0 satisfy certain congruence properties, the so-calledDwork-
congruences(see definition 5.1.2). For these operators, the following proposition provides
us with the means to determine the Hasse-invariant.

Proposition 4.1.3 Letf0(z) be the unique power series solution to the differential equation
Pf = 0 aroundz = 0 satisfyingf0(0) = 1. Assume that the coefficients off0 satisfy the
Dwork congruences. Thenh(z) is a polynomial of degree at mostp− 1,

h(z) = f<p−1
0 (z) mod p,

wheref<p−1
0 denotes the truncation off0 up to degreep− 1.

Proof: See [60], corollary 3.7. and the preceding propositions.2

4.2 The Hasse-invariant for hypergeometric CY-threefolds

For the case of hypersurfaces, Katz [39] also gives a formula to compute the Hasse-invariant
which does not involve the differential equation and its holomorphic solution,but the defin-
ing equations of the family. This formula can be extended to all of the 14 families of hyper-
geometric CY-threefolds, which are either families of weighted projective hypersurfaces or
complete intersections in weighted projective spaces.

Let T = Spec(Fp[ψ][s(ψ)−1]), and let

f : X → T

be a family of Calabi-Yau threefolds with fibres in the weighted projective space

Pn(w1, ..., wn+1),

defined by a regular sequence of weighted homogeneous polynomialsF1, ..., Fr, deg(Fi) =
di in Γ(OT , T )[X1, ..., Xn+1], where weight(Xi) = wi, such thatd := d1+ ...+dr satisfies

d = w1 + ...+ wn+1.

Note that for allλ ∈ Fp with s(λ) = 0, the family would become singular.
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Proposition 4.2.1 Let f : X → T be defined as above. Then the Hasse-invariant ofX/T
is given by the coefficient of

(X1...Xn+1)
p−1

in (F1 · ... · Fr)p−1.

Proof: Similar to the arguments in [39], section 2.3.7., where the case of hypersurfaces is
worked out in detail.2

All 14 families of hypergeometric families satisfy the conditions above and are listed in
table 4.1. In each of these cases, the modulop Hasse-invariant can be expressed in terms of
theHasse polynomial

H(z) =

p−1
∑

n=0

a(n)zn,

where the coefficientsa(n) of these polynomials are listed in table 4.1.
Namely, in each case there exists an integerk such that

h(ψ) ≡ ψk(p−1)H(z) mod p.

We will demonstrate this in two examples.

Example 1.

We have (in the notation of table 4.1)

V6(z) : F := X6
1 +X6

2 +X6
3 +X6

4 +X3
5 − 6ψX1X2X3X4X5 = 0.

Let z = (1/6ψ)6 and leth(ψ) be the Hasse-invariant. Then

h(ψ) ≡ ψp−1H(z) mod p.

Sinceh(ψ) is the coefficient of(X1X2X3X4X5)
p−1 in F p−1, it follows that

h(ψ) =
∑

i≥0

(−6ψ)p−1−6i

(

p− 1

i

)(

p− 1 − i

i

)(

p− 1 − 2i

i

)(

p− 1 − 3i

i

)(

p− 1 − 4i

2i

)

= (−6ψ)p−1
∑

i≥0

(−6ψ)
(p− 1)!

i!4(2i)!(p− 1 − 6i)!

≡ ψp−1
p−1
∑

i=0

(6ψ)−6i (6i)!

i!4(2i)!
mod p

= ψp−1H(z).
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Example 2

We have (in the notation of table 4.1)

V3,3(z) : F1 := X3
1+X3

2+X3
3−3ψX4X5X6 = 0, F2 := X3

4+X3
5+X3

6−3ψX1X2X3 = 0,

and letz = (1/3ψ)6. Leth(ψ) be the Hasse-invariant. Then

h(ψ) ≡ ψ2(p−1)H(z) mod p.

Sinceh(ψ) is the coefficient of(X1x2X3X4X5X6)
p−1 in (F1F2)

p−1, it follows that

h(ψ) =
∑

i≥0

(−3ψ)2(p−1)−6i

((

p− 1

i

)(

p− 1 − i

i

)(

p− 1 − 2i

i

))

= (−3ψ)2(p−1)
∑

i≥0

(−3ψ)−6i

(

(p− 1)!

i!3(p− 1 − 3i)!

)2

≡ ψ2
p−1
∑

i=0

(3ψ)−6i

(

(3i)!

i!3

)2

mod p

= ψ2(p−1)H(z).

threefold ambient space a(n)

V5 P4 (5n)!
n!5

V6 P4(1, 1, 1, 1, 2) (6n)!
n!4(2n)!

V8 P4(1, 1, 1, 1, 4) (8n)!
n!4(4n)!

V10 P4(1, 1, 1, 2, 5) (10n)!
n!3(2n)!(5n)!

V3,3 P5
(

(3n)!
n!3

)2

V2,4 P5
(

2n
n

) (4n)!
n!4

V2,2,3 P6
(

2n
n

)2 (3n)!
n!3

V2,2,2,2 P7
(

2n
n

)4

V3,4 P5(1, 1, 1, 1, 1, 2)
(

3n
n

) (4n)!
n!4

V4,4 P5(1, 1, 1, 1, 2, 2)
(

(4n)!
n!4

)2

V2,6 P5(1, 1, 1, 1, 1, 3)
(

2n
n

) (6n)!
n!2(2n)!

V4,6 P5(1, 1, 1, 2, 2, 3)
(

4n
n

) (6n)!
n!2(2n)!2

V6,6 P5(1, 1, 2, 2, 3, 3)
(

(6n)!
n!(2n)!(3n)!

)2

V2,12 P5(1, 1, 1, 1, 4, 6)
(

2n
n

) (12n)!
n!2(4n)!(6n)!

(4.1)

By Vd1,...,dr , we denote the family whose fibres are complete intersections in weighted pro-
jective space defined by polynomial equationsF1, ..., Fr of weighted degreed1, ..., dr.



Chapter 5

Analytic continuation and
computations

In the previous chapters, we were faced with the problem of finding an analytic continuation
of a quotient of the form

f0(z)

f0(zp)

to the boundary of thep−adic unit disc, since such an analytic continuation would give us
the means to evaluate the functionr(z), which is necessary to compute unit roots.
In this chapter, we consider this question for an analytic continuation. We describe Dwork’s
[27] analytic continuation method for the case that the coefficientsa(n) of the power series

f0(z) =
∞
∑

n=0

a(n)zn

satisfy certain congruence properties and review a class of examples already considered by
Dwork.
Then, we give an explicit algorithm to compute the Frobenius polynomial corresponding to
a CY(4)-operator by computing thep−adic unitsrα andr′α up to a givenp−adic precision.
We investigate in thep−adic precision required to recover the coefficientsaα andbα of the
Frobenius polynomial correctly.

5.1 Dwork congruences and analytic continuation

In this section, we repeat a special case of Dwork’s theorem 2. from [27] and its proof
and the application of this theorem to the contruction of an analytic continuation of some
function defined on the openp− adic unit disc. First of all, we recall some definitions from
Krasner’s theory of uniform analytic functions (see [45]).

Definition 5.1.1 LetΩ be a complete field of characteristic zero with non-archimedian val-
uation having a countable value group and a countable residue class field.

55
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1. A setD ⊂ Ω ∪ {∞} is calledultra openaboutα ∈ Ω if for all ξ ∈ D, the set

{|x− α|;x ∈ Ω ∪ {∞} \ D, |x− α| < |ξ − α|}

is finite.D is calledquasi-connectedif D is ultra open about anyα ∈ D ∩ Ω.

2. A familyF of subsets ofΩ ∪ {∞} is calledchainedif for all U, V ∈ F there exists
elementsF1, ..., Fn ∈ F such thatU = F1, V = Fn andFi ∩ Fi+1 6= ∅ for 1 ≤ i ≤
n− 1.

3. LetD be quasi-connected. Ananalytic elementf of supportD is a mappingf :
D → Ω which lies in the closure under the topology of uniform convergence onD of
the set of rational functions with no poles inD.

4. Two analytic elementsf1, f2 are calledequivalentif there exists a sequenceg1, ..., gm
of analytic elements such thatf1 = g1, f2 = gm , the intersection of the supports of
gi andgi+1 is nonempty for1 ≤ i ≤ m− 1 and such thatgi andgi+1 conicide on the
intersection of their supports.

5. LetF be an equivalence class of analytic elements, and letD(F ) be the union of the
supports of the elements ofF . For all x ∈ D(F ), f(x) is independent off if f ranges
over all elements inF whose support containsx. Hence,F is a function onD(F ).
We callF a uniform analytic functionof supportD(F ).

Theorem 5.1.1 (Uniqueness Theorem[45]) If f1 andf2 are analytic elements with sup-
ports D1 and D2 such thatD1 ∩ D2 6= ∅, thenf1 and f2 coincide onD1 ∩ D2 if they
coincide on a subset having a limit point inD1 ∩ D2.

Definition 5.1.2 Let (a(n))n∈N0 be a sequence with values inZp with a(0) = 1. We say
that (a(n))n satisfies theDwork congruencesif for all s,m ∈ N0 and all n < ps+1, we
have

1.
a(n+mps+1)

a([n/p] +mps)
≡ a(n)

a([n/p])
mod ps+1

,

2. a(n)/a([n/p]) ∈ Zp.

Remark 5.1.1 If (a(n))n satisfies 1. of the Dwork congruences, then

a(n+mps+1)

a([n/p] +mps)
≡ a(n)

a([n/p])
mod ps+1

for arbitrary n ∈ N0.



5.1. Dwork congruences and analytic continuation 57

Proof: Let n = n0 + n1p
s+1. Then

a(n+mps+1)

a([n/p] +mps)
=

a(n0 + (n1 +m)ps+1)

a([n0/p] + (n1 +m)ps)
≡ a(n0)

a([n0/p])
mod ps+1

and
a(n)

a([n/p])
=

a(n0 + n1p
s+1)

a([n0/p] + n1ps)
≡ a(n0)

a([n0/p])
mod ps+1

and the statement follows directly by combining the two equations.2

The following theorem, due to B. Dwork, provides us with the main ingredient toconstruct
an explicit analytic continuation to thep−adic unit disc for a class of functions analytic
(in the sense of Krasner) in the openp−adic unit disc. Since this is a key theorem, we
also include a proof. This proof is essentially the same as in [27], we only changed some
notation.

Theorem 5.1.2 ([27],Theorem 2.) Let(a(n))n be aZp-valued sequence satisfying the Dwork
congruences. Let

Φ(z) =

∞
∑

n=0

a(n)zn.

Then for allm ≥ 0, s ≥ 0,

Φ(z)

(m+1)ps−1
∑

j=mps

a(j)zpj ≡ Φ(zp)

(m+1)ps+1−1
∑

j=mps+1

a(j)zj mod a(m)ps+1[[z]]. (5.1)

Proof: Let n = pN + r, where0 ≤ r ≤ p − 1. The coefficient ofzn on the lefthand side
of (5.1) is

(m+1)ps−1
∑

j=mps

a(r + p(N − j))a(j),

while the coefficient on the righthand side of (5.1) is

(m+1)ps−1
∑

j=mps

a(N − j)a(r + pj).

We prove the Theorem by proving that for allm, s,N ≥ 0,

(m+1)ps−1
∑

j=mps

a(r + p(N − j))a(j) − a(N − j)a(r + pj) ≡ 0 mod ps+1a(m) (5.2)

To prove (5.2) fors = 0, remark that by the mod p Dwork congruences

a(r + p(N −m))

a(N −m)
≡ a(r) ≡ a(r + pm)

a(m)
mod p,
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and thus

a(r + p(N −m))a(m) − a(N −m)a(r + pm) ≡ 0 mod a(m)a(N −m)p.

Now, we proceed by induction ons. Write the induction hypothesis

(α)s : (5.2) holds for allm ≥ 0, N ∈ N0 and for0, ..., s− 1.

To prove(α)s+1, we will first prove that for0 ≤ t ≤ s,

(β)s,t :

(m+1)ps−1
∑

j=mps

a(r + p(N +mps − j))a(j) − a(N +mps − j)a(r + pj)

≡
ps−t−1
∑

j=0

a(j +mps−t)

a(j)

(j+1)pt−1
∑

k=jpt

a(r + p(N − k))a(k) − a(N − k)a(r + pk)

mod ps+1a(m).

To prove(β)s,0 remark that for the lefthand side, we have

(m+1)ps−1
∑

j=mps

a(r + p(N +mps − j))a(j) − a(N +mps − j)a(r + pj)

=

ps−1
∑

j=0

a(r + p(N − j))a(j +mps) − a(N − j)a(r + pj +mps+1),

while the righthand side of(β)s,0 is

ps−1
∑

j=0

a(r + p(N − j))a(j +mps) − a(N − j)a(r + pj)a(j +mps)

a(j)
.

Apply part 1. of the Dwork congruences

a(r + pj)a(j +mps)

a(j)
≡ a(r + pj +mps+1) mod ps+1a(j +mps)

to each of the summands on the righthand side of(β)s,0 to obtain(β)s,0 “modulops+1a(j+
mps)”.
Sincej < ps, by part 2. of the Dwork congruencea(j + mps)/a(m) ∈ Zp, and thus any
congruence modulops+1a(j + mps) implies a congruence modulops+1a(m) and(β)s,0
follows.

To prove(β)s,t for arbitrary0 ≤ t ≤ s − 1, the next step is to prove that(β)s,t and(α)s
imply (β)s,t+1.
Therefore, writej := µ+ ip and write the righthand side of(β)s,t as the double sum

p−1
X

µ=0

ps−t−1
−1

X

i=0

a(µ + ip + mps−t)

a(µ + ip)

(µ+ip+1)pt
−1

X

k=(µ+ip)pt

a(r + p(N − k))a(k) − a(N − k)a(r + pk).
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By part 1. of the Dwork congruences, there exists anXi,µ ∈ Zpsuch that

a(µ+ ip+mps−t) =
a(µ+ ip)a(i+mps−t−1)

a(i)
+Xi,µp

s−ta(i+mps−t−1),

If we define

Yi,µ := Xi,µp
s−t a(i+mps−t)

a(µ+ ip)

(µ+ip+1)pt−1
∑

k=(µ+ip)pt

a(r + p(N − k))a(k) − a(N − k)a(r + pk),

then each summand in the double sum is of the form

a(i+mps−t−1)

a(i)

(µ+ip+1)pt−1
∑

k=(µ+ip)pt

a(r + p(N − k))a(k) − a(N − k)a(r + pk) + Yi,µ.

Sincet < s, we can apply(α)s to see that the sum appearing inYi,µ is congruent to
zero mod pt+1a(µ+ ip). But this implies thatYi,µ ≡ 0 mod ps+1a(i+mps−t−1), and
furthermore, sincei < ps−t−1, thatYi,µ ≡ 0 mod ps+1a(m) by part 2. of the Dwork
congruences.
Hence, we have(β)s,t+1:

(m+1)ps−1
∑

j=mps

a(r + p(N +mps − j))a(j) − a(N +mps − j)a(r + pj)

≡
p−1
∑

µ=0

ps−t−1−1
∑

i=0

a(i+mps−t−1)

a(i)

(µ+ip+1)pt−1
∑

k=(µ+ip)pt

a(r + p(N − k))a(k) − a(N − k)a(r + pk)

=

ps−t−1−1
∑

i=0

a(i+mps−t−1)

a(i)

(i+1)pt+1−1
∑

k=ipt+1

a(r + p(N − k))a(k) − a(N − k)a(r + pk),

where the congruence is modulops+1a(m) and the equality is obtained by writing the dou-
ble sum as a single sum.

Now letN be minimal such that

ps−1
∑

j=0

a(r + p(N − j))a(j) − a(N − j)a(r + jp) 6= 0 mod ps+1.

Then(β)s,s implies for arbitrarym ≥ 1 that modulops+1a(m),

(m+1)ps−1
∑

j=mps

a(r + p(N − j))a(j) − a(N − j)a(r + jp) ≡

a(m)

ps−1
∑

j=0

a(r + p(N −mps − j))a(j) − a(N −mps − j)a(r + pj),
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where the righthand side is congruent to0 modulops+1a(m) by the minimality ofN . Thus,
for m ≥ 0, we have

(m+1)ps−1
∑

j=mps

a(r + p(N − j))a(j) − a(N − j)a(r + jp) ≡ 0 mod ps+1a(m). (5.3)

ChooseT such thatTps > N , and observe that

Tps−1
∑

j=0

a(r + p(N − j))a(j) − a(N − j)a(r + pj)

is the coefficient ofzn in

Φ(z)

Tps−1
∑

j=0

a(j)zpj − Φ(zp)

ps+1−1
∑

j=0

a(j)zj

for n = r + pN which is zero sincen < ps+1T .
Since for1 ≤ m ≤ T − 1, equation (5.3) holds, it follows that

ps−1
∑

j=0

a(r + p(N − j))a(j) − a(N − j)a(r + jp) ≡ 0 mod ps+1,

a contradiction to the choice ofN . Thus, we have proven (5.3) for allm ≥ 0, and hence
(α)s+1 follows.2

With regard to the question of analytic continuation, it turns out that we only need the equal-
ity (5.1) form = 0. But for the prove of (5.1) form = 0 and arbitrarys, it seems to be
necessary to prove the statement for arbitrarym.

In the next theorem, an explicit analytic continuation of the functionΦ(z)/Φ(zp) (analytic
on the openp−adic unit disc) to a domain in the closedp−adic unit disc is constructed. It is
this explicit analytic continuation that we will apply in our computations of the unit root rα0 .

Let k be the finite field withq = pa elements, and letW := W (k) be the ring of Witt
vectors ofk.

Theorem 5.1.3 ([27], Theorem 3.) Let (a(n))n be aW−valued sequence satisfying the
Dwork congruences. Let

Φ(z) =
∞
∑

n=0

a(n)zn

and

Φs(z) =

ps−1
∑

n=0

a(n)zn.
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LetD be the region inW
D := {x ∈W, |Φ1(x)| = 1}.

ThenΦ(z)/Φ(zp), which is a uniform analytic function onpW , is the restriction topW of
an analytic elementf of supportD:

f(x) = lim
s→∞

Φs+1(x)/Φs(xp).

Proof: The functionΦ(z)/Φ(zp) converges onpW sinceΦ(z) andΦ(zp) converge there
and sinceΦ(zp) assumes only nonzero values there. Take an infinte sequence of open discs

Dn := {x ∈W, |x| ≤ 1 − 1/n}

which form a chained family and letΦn be the restriction ofΦ to Dn. Then{Φn}n≥2 lies
in an equivalence class of analytic elements, and thusΦ is a uniform analytic function of
supportpW . It follows thatΦ(z)/Φ(zp) is a uniform analytic function of supportpW .
By theorem 5.1.1, it follows that fors ≥ 0,

Φ(z)Φs(zp) ≡ Φ(zp)Φs+1(z) mod ps+1W [[z]].

Sincea(0) = 1, Φ(z) andΦs(z) are units inW [[z]], which implies

Φ(z)

Φ(zp)
≡ Φs+1(z)

Φs(zp)
mod ps+1W [[z]].

Now, we prove that|Φs(x)| = 1 for x ∈ D. Since equation (5.1) holds fors = 0 and
m = 0, we obtain

Φs+1(z)

Φs(zp)
≡ Φ1(z) mod pW [[z]],

and thus
Φs+1(z) ≡ Φs(zp)F 1(z) mod pW [[z]].

Since|Φ1(x)| = |Φ1(xp)| = 1 for all x ∈ D by definition ofD, it now follows by induction
ons that|Φs(x)| = 1 for all x ∈ D.
By equation (5.1), it also follows that

Φs+1(z)

Φs(zp)
≡ Φs(z)

Φs−1(zp)
mod psW [[z]],

and hence that
Φs+1(z)Φs−1(zp) ≡ Φs(z)Φs(zp) mod psW [z].

This equality can be specialized to anyx ∈W , and ifx ∈ D, then every factor is a unit and
we obtain

fs(x) ≡ fs−1(x) mod ps

for

fs(x) :=
Φs+1(x)

Φs(xp)
.
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But this shows that the sequence{fs}s≥0 converges uniformly onD, and

f(z) := lim
s→∞

F s+1(z)

F s(zp)

is an analytic function onD. A specialization of equation (5.1) tox ∈ pW shows that

fs(x) ≡
Φ(x)

Φ(xp)
mod ps+1,

and the theorem follows.2

5.2 Dwork congruences for hypergeometric CY(4)-operators

In [27], Dwork proves that these congruences hold for sequences of so-calledbinomial type
numbers. It turns out that the coefficients of the power series solutions of the 14 hypergeo-
metric CY(4)-operators are of binomial type, and hence that the Dwork congruences hold in
the 14 hypergeometric examples. This is the first class of examples for whichwe computed
the unit rootrα0 .

In [27], we find a stronger version of the following

Theorem 5.2.1 ([27], Corollary 2) Letθ1, ..., θr be positive integers. Forn ∈ Z+, let

A(n) =
r
∏

i=1

(θi)n
n!

, B(n) =
r
∏

i=1

(⌈θi/p⌉)n
n!

.

Then

1.
A(n)/B([n/p]) ∈ Zp,

2.
A(n+mps+1)

B([n/p] +mps)
≡ A(n)

B([n/p])
mod ps+1

for all primesp andm, s ∈ Z+.

A direct consequence of theorem 5.2.1 is the following

Corollary 5.2.1 Letθ1, ..., θr andk1, ..., kr be positive integers. Forn ∈ Z+, let

A(n) =
r
∏

i=1

(θi)kin
(kin)!

, B(n) =
r
∏

i=1

(⌈θi/p⌉)kin
(kin)!

.

Then 1. and 2. of the above theorem hold for all primesp andm, s ∈ Z+.
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For the coefficientsa(n) (listed in table 4.1) of the power series solutions of the 14 hyper-
geometric CY(4)-operators, it follows directly by theorem 5.2.1 that the Dwork congruences
hold. Namely, we can expressa(n) anda([n/p]) asA(n) andB(n) for certain integers
θ1, ..., θr in all 14 cases.
For example, we have

a(n) :=
(5n)!

n!5
=

(1)n
n!

(n+ 1)n
n!

(2n+ 1)n
n!

(3n+ 1)n
n!

(4n+ 1)n
n!

and thus
a(n) = A(n)

for θ1 = 1, θ2 = n+ 1, ..., θ5 = 4n+ 1 and

a([n/p]) :=
(5[n/p])!

([n/p])!5
=

(1)[n/p]

[n/p]!

(⌈(n+ 1)/p⌉)[n/p]
[n/p]!

(⌈(2n+ 1)/p⌉)[n/p]
[n/p]!

(⌈(3n+ 1)/p⌉)[n/p]
[n/p]!

(⌈(4n+ 1)/p⌉)[n/p]
[n/p]!

,

and thus
a([n/p]) = b([n/p]).

In the table below, we list the numbersθ1, ..., θr andk1, ..., kr for all of the 14 cases.

a(n) θ1, ..., θr k1, ..., kr
(5n)!
n!5

1, n+ 1, 2n+ 1, 3n+ 1, 4n+ 1 1, 1, 1, 1, 1
(6n)!

(2n)!n!4
1, 2n+ 1, 3n+ 1, 4n+ 1, 5n+ 1 2, 1, 1, 1, 1

(8n)!
(4n)!n!4

1, 4n+ 1, 5n+ 1, 6n+ 1, 7n+ 1 4, 1, 1, 1, 1
(10n)!

(5n)!(2n)!n!3
1, 5n+ 1, 7n+ 1, 8n+ 1, 9n+ 1 5, 2, 1, 1, 1

(

(3n)!
n!3

)2
1, n+ 1, 2n+ 1, 1, n+ 1, 2n+ 1 1, 1, 1, 1, 1, 1

(

2n
n

) (4n)!
n!4

1, n+ 1, 1, n+ 1, 2n+ 1, 3n+ 1 1, 1, 1, 1, 1, 1
(

2n
n

)2 (3n)!
n!3

1, n+ 1, 1, n+ 1, 1, n+ 1, 2n+ 1 1, 1, 1, 1, 1, 1, 1
(

2n
n

)4
1, n+ 1, 1, n+ 1, 1, n+ 1, 1, n+ 1 1, 1, 1, 1, 1, 1, 1, 1

(

3n
n

) (4n)!
n!4

1, 2n+ 1, 1, 2n+ 1, 3n+ 1 2, 1, 1, 1, 1, 1
(

(4n)!
n!4

)2
1, n+ 1, 2n+ 1, 3n+ 1, 1, n+ 1, 2n+ 1, 3n+ 1 1, 1, 1, 1, 1, 1, 1, 1

(

2n
n

) (6n)!
(2n)!2n!2

1, n+ 1, 1, 2n+ 1, 4n+ 1, 5n+ 1, 6n+ 1 1, 1, 2, 2, 1, 1, 1, 1
(

4n
n

) (6n)!
(2n)!2n!2

1, 3n+ 1, 1, 2n+ 1, 4n+ 1, 5n+ 1, 6n+ 1 3, 1, 2, 2, 1, 1, 1, 1
(

(6n)!
(3n)!(2n)!n!

)2
1, 3n+ 1, 5n+ 1, 1, 3n+ 1, 5n+ 1 3, 2, 1, 3, 2, 1

(

2n
n

) (12n)!
(6n)!(4n)!n!2

1, n+ 1, 1, 6n+ 1, 10n+ 1, 11n+ 1 1, 1, 6, 4, 1, 1

Hence it follows that the Dwork congruences hold for the coefficients ofthe power series
solutions to the14 hypergeomteric CY(4)-operators.
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5.3 Explicit formulas

In this section, we give explicitp−adic formulas to compute the unit rootrα0 and thep−adic
unit defining the reciprocal root ofp−adic valuation1, r′α0

, of the Frobenius polynomial out
of the data given by a CY(4)-operator. These formulas can be applied directly to compute
rα0 andr′α0

in practice.

Let p be a prime and letk be the field withq = pa elements. ByW := W (k), we denote
the ring of Witt vectors ofk.

Let P be a CY(4)-differential operator which is a Picard-Fuchs operator, let f0(z) be the
unique power series solution to the equation

Pf = 0

aroundz = 0 satisfyingf0(0) = 1. Assume that the coefficients off0 satisfy the Dwork
congruences.

According to proposition 4.1.3, the Hasse-invariant is given byh4(z) := f1
0 (z), and is thus

a polynomial of degree≤ p− 1.
LetQ be the corresponding CY(5)-operator and letg0(z) be the unique power series solu-
tion to

Qg = 0

aroundz = 0 satisfyingg0(0) = 1. As for f0, we assume that the coefficients ofg0 satisfy
the Dwork congruences. According to proposition 4.1.3, the Hasse invariant is given by
h5(z) = g1

0(z).

To ensure that our CY3-crystal is ordinary, i.e.

rank(Fil0/Fil1) = rank(Fil1/Fil2) = rank(Fil2/Fil3) = rank(Fil3) = 1

in case thatP is a Picard-Fuchs operator which becomes singular in the locus defined by
s(z) = 0, we seth(z) := h4(z)h5(z), A := W [z][(s(z)h(z))−1] and define(H,∇, F ) to
be the rank4 CY3-crystal overA∞ with connection specified by the operatorP .
Let α0 ∈ S0 = Spec(A0), and letα be a Teichmüller lifting ofα0. Let e : A∞ → W ,
e(z) = α. By theorem 5.1.3 combined with theorem 3.9.1, it follows that up to a constant
ε ∈ {±1}, the twop−adic unitsrα0 andr′α0

determining the Frobenius polynomial one∗H
can be computed withp−adic precisionps by the formulas

rα0 ≡
(

ε
fs0 (α)

fs−1
0 (αp)

)1+σ+...+σa−1

mod ps (5.4)

and

r′α0
≡
(

gs0(α)

gs−1
0 (αp)

)1+σ+...+σa−1

mod ps. (5.5)

These explicit formulas allow us to perform computations in practice.
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5.4 Requiredp−adic precision

In the previous section, we gave explicit formulas to compute thep−adic unitsrα0 and
r′α0

. Now, we give estimates for thep−adic accuracy with whichrα0 andr′α0
have to be

computed to recover the integral coefficientsaα0 andbα0 ∈ Z of the Frobenius polynomial

P = p6T 4 + p3aα0T
3 + pbα0T

2 + aα0T + 1

correctly.

Let therefore bek = Fp, the field withp elements. By the Weil conjectures (Riemann
hypothesis), the complex absolute value of the reciprocal complex roots ofP is p3/2. For
the integersaα0 andbα0 , this implies

|aα0 | ≤ 4 · p3/2 and|bα0 | ≤ 6 · p2,

where| · | denotes the complex absolute value. Since

4p3/2 <
p3

2

for all p ≥ 5 and

6p2 <
p3

2

for all p ≥ 13, it follows that for allp ≥ 13, rα0 andr′α0
have to be computed modulop3 to

recoveraα andbα. Forp ∈ {5, 7, 11}, we have to compute modulop4, and forp = 3, we
have to compute modulop5. Thus, thep−adic precision up to which we have to compute
rα0 andr′α0

is rather low, and in the general case (p ≥ 13), we only have to compute the
first p3 − 1 coefficients of the power seriesf0 andg0.

5.5 A bound for the number of possible Frobenius polynomials

Since the Frobenius polynomial at a smooth pointα0 satisfies the Weil conjectures, it is a
symmetric polynomial of the shape

P := p6T 4 + p3aT 3 + pbT 2 + aT + 1

for some integersa, b depending onα0. Note that apart from this section, we always write
aα0 andbα0 instead ofa andb. LetX := p3/2T . Then, as a polynomial inX, we have

P = X4 + αX3 + βX2 + αX + 1,

whereα := p−3/2a andβ := p−2b. Letu be a complex root ofP(X). Then, in general, all
four complex roots of the polynomialP(X) can be described in terms ofu as

u, ū, u−1, ū−1,
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where byū, we denote the complex conjugate ofu. Now, we want to find out which
inequalities have to be satisfied such that these four roots lie on the unit circle. In general,
the four roots are pairwise distinct.
Assume that the roots do lie on the unit circle. There are three “limit cases” that can occur
before two (or four) of the roots move away from the unit circle.

1. In the case that all four roots lie inC \ R and move out of the unit circle, we obtain
two pairs of complex rootsu, u−1 and ū, ū−1, such thatu andu−1 lie on the same
line through the origin and̄u and ū−1 lie on the same line through the origin. The
limit case is then the caseu = u−1 andū = ū−1.

2. In the case that two of the roots become positive real numbers and move out of the
unit circle, the limit case is that two of the roots are equal to1.

3. In the case that two of the roots become negative real numbers and moveout of the
unit circle, the limit case is that two of the roots are equal to−1.

This has the following consequences for the polynomialP. Let v := u + ū. In the limit
cases,P can be written as

1.

(X − u)2(X − ū)2 = (X2 − vX + 1)2

= X4 − 2vX3 + (2 + v2)X2 − 2vX + 1.

2.

(X − u)(X − ū)(X − 1)2 = (X2 − vX + 1)(X − 1)2

= X4 − (2 + v)X3 + (2 − 2v)X2 − (2 + v)X + 1.

3.

(X − u)(X − ū)(X + 1)2 = (X2 − vX + 1)(X + 1)2

= X4 − (v − 2)X3 + (2 − 2v)X2 − (v − 2)X + 1.

Thus, it follows that

1. α = −2v, β = 2 + v2,

2. α = −(2 + v), β = 2 − 2v,

3. α = −(v − 2), β = 2 − 2v.

This leads us to the following inequalities forα andβ:

β ≤ 2 +
1

4
α2,

β ≥ −2 + 2α,

β ≥ −2 − 2α.
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Hence, fora andb it follows that

b ≤ 2p2 +
a2

4p
,

b ≥ −2p2 + 2ap1/2,

b ≥ −2p2 − 2ap1/2.

These three inequalities enclose a domain inR2, as can be seen in the picture.

b=−2p^2

b=2p^2

b=6p^2

a=p^(3/2)

Forp >> 0, a reasonable approximation for the number of possible Frobenius polynomials
is given by the enlosed area, which can be determined by integration. Thus, we obtain the
asymptote32

3 p
7/2 for the number of possible Frobenius polynomials. The exact numbers

of possible Frobenius polynomials and the estimated numbers are listed for someprimes in
the table beyond. We also give the number of possible irreducible Frobenius polynomials.

p 2 3 5 7

exact number 129 511 3001 9703

estimate number120 498 2981 9679

irreducible 83 384 2631 8932

5.6 Example

Now, we describe the computational steps we performed in MAGMA for one specific ex-
ample. We consider the operator

P := θ4 − 4x (2 θ + 1)2
(

7 θ2 + 7 θ + 2
)

− 128x2 (2 θ + 1)2 (2 θ + 3)2 ,

which is nr. 45 from the list [2]. Note that in the notation of chapter 6, this operator is the
operatorA ∗ a.
We compute the Frobenius polynomial forp = 7 andα0 = 2 ∈ F7 with 4 digits of7−adic
precision, i.e. modulo74. Since2 6= − 1

16 and2 6= 1
128 in F7, α0 is not a singular point of

the differential equation.
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First of all, we computed the truncated power series solutionfs+1
0 (z) to the differential

equation
Pf = 0,

and obtained

f4
0 (z) = 1 + 8z + 360z2 + 22400z3 + 1695400z4 + 143011008z5 + ...

Thus,f1
0 (α0) = 1 ∈ F7 is nonzero. Letα(4) be the Teichmüller lifting ofα0 with 7−adic

accuracy of4 digits. Evaluatingf0 in this point, we obtain

f4
0 (α(4)) ≡ 1709 mod 74

and
f3
0 ((α(4))7) ≡ 1814 mod 74.

Thus, the unit root of the Frobenius polynomial is

rα0 ≡ f4
0 (α(4))

f3
0 ((α(4))7)

= 582 mod 74.

To compute the second root of the Frobenius polynomial, we compute the truncated power
series solutiong4

0(z) of the fifth order differential equation

Qg = 0,

whereQ is the second exterior power of the differential operatorP , given by

Q = θ5 − z(44 + 260θ + 628θ2 + 792θ3 + 560θ4 + 224θ5)

+ z2(−6512 + 400θ + 44160θ2 + 71040θ3 + 42240θ4 + 8448θ5)

+ z3(4177920 + 13180928θ + 16588800θ2 + 10567680θ3 + 3440640θ4

+ 458752θ5)

+ z4(100663296 + 285212672θ + 310378496θ2 + 163577856θ3 + 41943040θ4

+ 4194304θ5).

The solution is given by

g4
0 = 1 + 44z + 3652z2 + 337712z3 + 33909700z4 + 3567877424z5 + ...,

g1
0(α0) = 2 ∈ F7 is nonzero and we compute

g4
0(α

(4)) ≡ 51 mod 74

and
g3
0((α

(4))7) ≡ 1387 mod 74.

Thus,

r′α0
≡ g

(74−1)
0 (α(4))

g
(73−1)
0 ((α(4))7)

= 1101 mod 74.
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Since the Frobenius polynomial (with7−adic accuracy 4) is given by

P(T ) = (1 − r4T )(1 − 7r̂4/r4T )(1 − 72r4/r̂4T )(1 − 73/r4T ),

we finally obtain
P(T ) = 76T 4 − 73 · 8T 3 + 7 · 2T 2 − 8T + 1.

As expected, the complex roots ofP do have complex absolute value7−3/2.

5.7 An algorithm to compute the Frobenius polynomial from
one root

With regard to the list of CY(4) operators [2], it turns out that, as mentioned above, in most
cases, the coefficients of the power series solutionf0 satisfy the Dwork congruences. But
unfortunately, the same is not true for the coefficients of the power seriessolutions to the
differential equations of order5 given by the second exterior products. Thus, in many cases
we can compute the unit rootrα0 , but not thep−adic unitr′α0

.

To avoid a computation ofr′α0
, we give an algorithm which computes the Frobenius poly-

nomial out of the rootrα0 alone in case that the Frobenius polynomial is irreducible. For
this algorithm, the rootrα0 has to be computed with a higherp−adic accuracy.

Since the two integersaα0 andbα0 defining

P := p6T 4 + p3aαT
3 + pbαT

2 + aαT + 1

satisfy
|aα0 | ≤ 4p3/2 and|bα0 | ≤ 6p2,

it follows that we may writeaα0 andbα0 in digits

aα0 = a0 + a1p+ a2p
2, bα0 = b0 + b1p+ b2p

2,

where either

0 ≤ a0, a1 ≤ p− 1, 0 ≤ a2 ≤ 1 or 1 − p ≤ a0, a1, 0,−1 ≤ a2 ≤ 0

and either

0 ≤ b0, b1 ≤ p− 1, 0 ≤ b2 ≤ 7 or 1 − p ≤ b0, b1 ≤ 0,−6 ≤ b2 ≤ 0,

depending on whetheraα0 andbα0 are positive or negative. Thus, there are6 indetermi-
nates modulop and two signs (the sign ofaα0 and bα0) to determine. This means that
to computeaα0 and bα0 from the givenp−adic unit rα0 , we need8 linear equations in
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a0, a1, a2, b0, b1, b2, which means that we have to determinerα0 modulop8.
Let uα0 = 1/rα0 . Then,uα0 satisfies

p6u4
α0

+ p3aα0u
3
α0

+ pbα0u
2
α0

+ aα0uα0 + 1 = 0. (5.6)

Let uα0 mod p8 be given by thep−adic digits

u8
α0

= u0 + u1p+ u2p
2 + u3p

3 + u4p
4 + u5p

5 + u6p
6 + u7p

7. (5.7)

Combining equations (5.6) and (5.7),we obtain the following algorithm to determineaα0

andbα0 :
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Algorithm

Step 1: Solvea0 ≡ 1/u0 mod p. Then,a0 ∈ {1/u0 mod p, p− (1/u0 mod p)}.

Step 2: Find all admissible(a0, a1, b0) satisfying

h1(a0, a1, b0) := p(a0u1 + a1u0 + b0u
2
0) + a0u0 + 1 ≡ 0 mod p2.

This requires(2p− 1)2 comparisons.

Step 3: Find all admissible(a0, a1, a2, b0, b1) satisfying

h2(a0, a1, a2, b0, b1) := p2(a0u2 + a1u1 + a2u0 + 2b0u0u1 + b1u
2
0)

+ h1(a0, a1, b0) ≡ 0 mod p3.

This requires(2p− 1) · 9 comparisons.

Step 4: Find all admissible(a0, a1, a2, b0, b1, b2) satisfying

p3(a0u
3
0 + a0u3 + a1u2 + a2u1 + 2b0u0u2 + b0u

2
1 + 2b1u0u1 + b2u

2
0)

+ h2(a0, a1, a2, b0, b1) ≡ 0 mod p4.

This requires12 comparisons.

Step 5: For all (a0, a1, a2, b0, b1, b2) determined byStep 4, check if for the corresponding
(aα0 , bα0),

p6(u8
α0

)4 + p3aα0(u
8
α0

)3 + pbα0(u
8
α0

)2 + aα0u
8
α0

+ 1 ≡ 0 mod p8. (5.8)

There exists exactly one tuple(aα0 , bα0) satisfying equation (5.8).

To compute the unit rootrα0 modulop8 is extremely time-consuming, and becomes impos-
sible (at the moment) for all primes≥ 5. Thus, to accelerate the algorithm, it is sensible
to find means to compute the Frobenius polynomial from the unit rootrα0 modulo a power
pn < p8. Therefore, we check if the tuples determined inStep 4satisfy the following two
conditions:

Condition 1: The polynomialPα := p6T 4 +aα0p
3T 3 + bα0pT

2 +aα0T +1 is irreducible inQ[T ].

Condition 2: The absolute values of the reciprocal complex roots ofPα are equal top3/2.

Experimentally, it turns out that under these conditions, as expected, we can determine the
correct tuple(aα0 , bα0) from rα0 mod p6.
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5.8 Example

In the tables below, we list the results we computed for the operatorP which is no.101 from
the list [2] for several primes with the Algorithm described above.P is given by

P := θ4 − z(124θ4 + 242θ3 + 187θ2 + 66θ + 9)

+ z2(123θ4 − 246θ3 − 787θ2 − 554θ − 124)

+ z3(123θ4 + 738θ3 + 689θ2 + 210θ + 12)

− z4(124θ4 + 254θ3 + 205θ2 + 78θ + 12) + z5(θ + 1)4.

In the notation of chapter 6,P is the operatorb ∗ b. For this example, the coefficients of
the solutiong0 to the5th order differential equation do not satisfy the Dwork congruences.
Hence, we could not compute thep−adic unitr′α0

as described in section 5.3.
In some cases, we were not able to determine(aα0 , bα0) uniquely out of lack of precision.
In these cases, we give the set of possible tuples(aα0 , bα0). Note thatα0 = 1 andα0 =
p − 1 are singular points of the differential equation, and the Frobenius polynomial is not
irreducible there.
The numberc in the entry(aα0 , bα0), c indicates the number of possible tuples(aα0 , bα0)
without the two conditions applied. Forp = 5, we computed the unit rootrα0 modulop6.

α0 = 2 α0 = 3
(4, 6), 3 (4, 6), 3

The entry “-” means that for this parameter value, we could not compute the unit root rα0 ,
because over this point, theF−crystal is not ordinary. Forp = 7, we computedrα0 modulo
p5.

α0 = 2 α0 = 3 α0 = 4 α0 = 5
(25, 40), 16 − (25, 40), 16 −

Forp = 11, we computedrα0 modulop4.

α0 = 2 α0 = 3
(102, 472), 103 {(61, 226), (−38, 18), (−27, 189)}, 105

α0 = 4 α0 = 5
seeα0 = 3 (−34, 89), 106

α0 = 6 α0 = 7
(102, 472), 103 {(8, 61), (19, 91), (63, 211), (−14, 1)}, 104

α0 = 8 α0 = 9
seeα0 = 7 −
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The entry "n.i." means that in this point, the Frobenius polynomial is not irreducible. For
p = 13, we computedrα0 modulop4.

α0 = 2 α0 = 3
(20,−115), 104 {(−55, 180), (−29, 109)}, 103

α0 = 4 α0 = 5
n.i. n.i.

α0 = 6 α0 = 7
(70, 400), 108 seeα0 = 2

α0 = 8 α0 = 9
n.i. seeα0 = 3

α0 = 10 α0 = 11
n.i. seeα0 = 6
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Chapter 6

Some special Picard-Fuchs
equations: Hadamard
products

In this chapter, we apply the method explained in the previous chapter to compute Frobenius
polynomials for some special fourth order operators. These operatorsbelong to the list [2].
The first class of operators we consider are the hypergeometric operators (No.1− 14 in the
list). A typical example of the second class of operators is operator45 from that list:

θ4 − 4x (2 θ + 1)2
(

7 θ2 + 7 θ + 2
)

− 128x2 (2 θ + 1)2 (2 θ + 3)2 .

This operator is a so-calledHadamard productof two second order operators.
We mention how to solve the problem of fixing the constantε = ±1 occuring in equation
(5.4) for a Hadamard product.

6.1 Hadamard products

TheHadamard productof two power seriesf(x) :=
∑

n anx
n andg(x) =

∑

n bnx
n is the

power-series defined by the coefficient-wise product:

f ∗ g(x) :=
∑

n

anbnx
n.

It is a classical theorem, due to Hurwitz, that iff andg satisfy linear differential equations
P andQ resp., thenf ∗ g satisfies a linear differential equationP ∗Q. Only in very special
cases, the Hadamard product of two CY-operators will again be CY, butit is a general fact
that if f andg satisfy differential equations ofgeometrical origin, then so doesf ∗ g. For a
proof, we refer to [5], chapter 2. Here we sketch the idea. The multiplication map

m : C∗ × C∗ −→ C∗, (s, t) 7→ s.t

can be compactified to a map

µ : P̃1 × P1 −→ P1

75
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by blowing-up the two points(0,∞) and(∞, 0) of P1 × P1. Given two familiesX −→ P1

andY −→ P1 overP1, we define a new familyX ∗ Y −→ P1, as follows. The cartesian

productX × Y maps toP1 × P1 and can be pulled back toX ∗ Y over P̃1 × P1. Via the
mapµ we obtain a family overP1. If n resp.m is the fibre dimension ofX −→ P1 resp.
Y −→ P1, thenX ∗ Y −→ P1 has fibre dimensionn + m + 1. The critical points of
X ∗ Y −→ P1 are, apart from0 and∞, the products of the critical values of the factors. In
down-to-earth terms, ifX −→ P1 andY −→ P1 are defined by say Laurent polynomials
F (x) andG(y) resp., then the fibre ofX ∗ Y −→ P1 overu is defined by the equations

F (x) = s,G(y) = t, s.t = u.

If the period functions forX −→ P1 andY −→ P1 are represented as

f(s) =

∫

γ
Res(

ω

F (x) − s
) =

∑

n

ans
n,

g(t) =

∫

δ
Res(

η

G(y) − t
) =

∑

m

bmt
m,

then
∫

Tγ×Tδ×S1×S1

ω ∧ η ∧ ds ∧ dt
(F (x) − s)(G(y) − t)(st− u)

=

∫

S1×S1

∑

ans
nbmt

mds ∧ dt
st− u

=
∑

anbnu
n = f(u) ∗ g(u),

whereTγ andTδ are the Leray coboundaries ofγ andδ, is a period ofX ∗ Y −→ P1.
For example, if we apply this construction to the rational elliptic surfacesX = Y with
singular fibres of Kodaira typeI9 over0 andI1 over∞ and two further fibres of typeI1,
we obtain a familyX ∗ Y −→ P1, with generic fibre a Calabi-Yau 3-fold withh12 = 1 and
χ = −36.

6.2 Some specialCY (2)-operators

We will use Hadamard-products of some very special CY(2)-operatorsappearing in [4] from
which we also take the names. These operators are all associated toextremal rational elliptic
surfacesX −→ P1 with non-constant j-function. Such a surface has three or four singular
fibres, [48]. The six cases with three singular fibres fall into four isogeny-classesand each
of these gives rise to a Picard-Fuchs operator of hypergeometric type (namedA,B,C,D)
and one obtained by performing a Möbius transformation interchanging∞ with the singular
point 6= 0 (namede, h, i, j).

Name Operator an

A θ2 − 4x(2θ + 1)2 (2n)!2

n!4

B θ2 − 3x(3θ + 1)(3θ + 2) (3n)!
n!3

C θ2 − 4x(4θ + 1)(4θ + 3) (4n)!
(2n)!n!2

D θ2 − 12x(6θ + 1)(6θ + 5) (6n)!
(3n)!(2n)!n!
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Name Operator an

e θ2 − x(32θ2 + 32θ + 12) + 256x2(θ + 1)2 16n
∑

k(−1)k
(−1/2

k

)(−1/2
n−k

)2

h θ2 − x(54θ2 + 54θ + 21) + 729x2(θ + 1)2 27n
∑

k(−1)k
(−2/3

k

)(−1/3
n−k

)2

i θ2 − x(128θ2 + 128θ + 52) + 4096x2(θ + 1)2 64n
∑

k(−1)k
(−3/4

k

)(−1/4
n−k

)2

j θ2 − x(864θ2 + 864θ + 372) + 18664x2(θ + 1)2 432n
∑

k(−1)k
(−5/6

k

)(−1/6
n−k

)2

The six cases with four singular fibres are the Beauville surfaces ([8]) and also form four
isogeny classes and lead to the six Zagier-operators, called(a, b, c, d, f, g).
These are also of the form

θ2 − x(aθ2 + aθ + b) − cx2(θ + 1)2,

but now the discriminant1 − ax − cx2 is not a square, so the operator has four singular
points.

Name Operator an

a θ2 − x(7θ2 + 7θ + 2) − 8x2(θ + 1)2
∑

k

(

n
k

)3

c θ2 − x(10θ2 + 10θ + 3) + 9x2(θ + 1)2
∑

k

(

n
k

)2(2k
k

)

g θ2 − x(17θ2 + 17θ + 6) + 72x2(θ + 1)2
∑

i,j 8n−i(−1)i
(

n
i

)(

i
j

)3

d θ2 − x(12θ2 + 12θ + 4) + 32x2(θ + 1)2
∑

k

(

n
k

)(

2k
k

)(

2n−2k
n−k

)

f θ2 − x(9θ2 + 9θ + 3) + 27x2(θ + 1)2
∑

k(−1)k3n−3k
(

n
3k

) (3k)!
k!3

b θ2 − x(11θ2 + 11θ + 3) − x2(θ + 1)2
∑

k

(

n
k

)2(n+k
n

)

The ten productsA ∗ A, etc. form 10 of the 14 hypergeometric families from [2]. The
16 productsA ∗ e etc. are not hypergeometric, but also have three singular fibres. The 24
operatorsA ∗ a etc. have, apart from0 and∞ two further singular fibres. The operators
a ∗ a etc. have four singular fibres apart from0 and∞.

Concerning the Dwork congruences for the solutions of Calabi-Yau differential equations
which are Hadamard-products as described above, we observed the following:
1) The Dwork congruences hold for the operatorsa, b, . . . , j. For the Apery-sequence (case
b) this was also conjectured in [59] (it follows from [27] thatA,B,C,D satisfy the Dwork
congruences). It follows that the Dwork congruences hold for all fourth order Hadamard
products within this group.
2) For the hypergeometric casesA ∗A etc, and the casesA ∗a, etc. the Dwork congruences
also hold for the associated fifth order operator, although even for the simplest examples like
the quintic threefold, this is not at all obvious. In the case of the quintic, the holomorphic
solution aroundz = 0 to the fifth order differential equation is given by the formulaF0(z) =
∑∞

n=0Anz
n, where

An :=
n
∑

k=0

(5k)!

k!5
5(n− k)!

(n− k)!5
(1 + k(−5Hk + 5Hn−k + 5H5k − 5H5(n−k)))



78 6. Some special Picard-Fuchs equations: Hadamard products

andHk is the harmonic numberHk =
∑k

j=1
1
j . Thus, by the formula it is not even obvious

that the coefficientsAn are integers.
3) In fact, the Dwork congruences hold foralmost all fourth order operators from the list
[2]. It is an interesting problem to try to prove these experimental facts. We dothis for the
operators from the list [2] that are related to Laurent polynomials whose Newton polygons
have0 as unique interior lattice point.
On the other hand, it is clear that they cannot hold in general for differential operators of
geometrical origin: if we multiplyf0 with a rational function ofx we obtain a (much more
complicated) CY-operator for which the congruences in general will nothold.

6.3 A geometric example:b ∗ b

In this section, we describe the geometry of the family of Calabi-Yai threefolds correspond-
ing to the Hadamard productb ∗ b.
The CY(2)-differetial operatorb corresponds to a semi-stable family of elliptic curves

π : X → P1,

i.e.X is a smooth surface and the singular fibres have typeI5, I5, I1, I1, i.e. they are given
by a union of5 rational curves configured as a5−gon (I5) or an irreducible nodal rational
curve (I1). X is obtained from the singular surfacēX ⊂ P2×P1 given by the homogeneous
equation

X1(X1 −X3)(X2 −X3) = λX2X3(X1 −X2),

where the fibration̄π : X̄ → P1 is given by the projection toP1. By resolvingX̄, we obtain
X. The singular fibres ofX and the types of the singular fibres are given in the following
table:

λ ∞ 0 5
√

5−11
2

−5
√

5−11
2

I5 I5 I1 I1

In the picture, letγ :=
√

5.
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λ=0
λ=(5γ−11)/2 λ=−(5γ+11)/2

λ= 8



6.4. The constantε in equation (5.4) 79

The productX̄ ∗ X̄ ⊂ P2 × P2 × P1 is given by the equations

X̄λ : X1(X1 −X3)(X2 −X3) = λX2X3(X1 −X2)

X̄u/λ : Y1(Y1 − Y3)(Y2 − Y3) =
u

λ
Y2Y3(Y1 − Y2)

which can be written as

X1(X1 −X3)(X2 −X3)Y1(Y1 − Y3)(Y2 − Y3) = uX2X3(X1 −X2)Y2Y3(Y1 − Y2).

The fibrationµ̄ : X̄ ∗ X̄ → P1 is given by projection toP1. Now let u be fixed, and let
(X ∗X)u denote the fibreµ−1(u). Let

A1 := {λ : Xλ is singular} = {0,∞, (5
√

5 − 11)/2, (−5
√

5 − 11)/2}

and

A2 := {λ : Xu/λ is singular} = {0,∞, 2u/(5
√

5 − 11), 2u/(−5
√

5 − 11)}.

Let b1λ andb2λ denote the number of components of the fibresXλ andXu/λ respectively. If

u /∈ {0,∞,−1, 1, 123 − 55/2
√

5, 123 + 55/2
√

5},

by [37], proposition 1.1 and proposition 1.2., the threefold(X ∗ X)u admits a projec-

tive small resolution ̂(X ∗X)u. We compute the Hodge numbersh1,1( ̂(X ∗X)u) and

h2,1( ̂(X ∗X)u). By [37], section 1, the Hodge numbers are given by the formulas

h1,1( ̂(X ∗X)u) =
∑

λ∈A1∪A2

(b1λb
2
λ − 1) + 19 −

∑

λ∈A1

(b1λ − 1) −
∑

λ∈A2

(b2λ − 1)

and
h1,2( ̂(X ∗X)u) = 19 −

∑

λ∈A1∩A2

(b1λ + b2λ − 1).

Thus, in our example, it follows that

h1,1( ̂(X ∗X)u) = 51 andh1,2( ̂(X ∗X)u) = 1,

and hence the Euler characteristic is given byχ = −100.

6.4 The constantε in equation (5.4)

In this section, we repeat a result of Yu [59] to determine the constantε in equation (5.4)
for differential operators that are Hadamard products of CY(2)-operators.

LetX → P1 andY → P1 be two pencils of elliptic curves overFp with totally degenerate
fibresX0 andY0 at the origin. In the14 hypergeometric examples likeA ∗ A and in the24
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examples corresponding to operators which are Hadamard products likeA ∗ a, X0 andY0

are simple normal crossing divisors.
If X0 is split multiplicative (the slopes of the tangent lines at the singularity lie inFp), then
εX = 1, while if X0 is non-split,εX = −1. The same holds forεY . Let P andQ be the
CY(2)-operators corresponding to the familiesX andY , and letε be the constant in the
formula of the unit root corresponding to the CY(4)-operatorP ∗ Q. Then the following
Lemma holds.

Lemma 6.4.1 ([59], Lemma 4.1) The constantε in given byε = εX · εY .

This puts us in a position to compute the Frobenius polynomials for CY(4)-operators like
A ∗ a explicitly.

6.5 The constantε in the hypergeometric cases

In the 14 hypergeometric cases of CY(4)-operators, it is possible to prove that there ex-
ist families of Calabi-Yau threefolds for which the constantε satisfiesε = 1. Namely,
for each of the14 hypergeometric CY(4)-operatorsP , there exists a family of complete
intersections in weighted projective space such thatP is the Picard-Fuchs operator on a
rank-4-submodule of the relativeH3

DR. With the help of the defining equations of these
families of Calabi-Yau threefolds, we prove thatε = 1.

As in section 4.2, letT = Spec(Fp[ψ][s(ψ)−1]), and letf : X → T be a family of
hypergeometric Calabi-Yau threefolds with defining polynomialsF1(X,ψ), ..., Fr(X,ψ).
Let z := (k1ψ)−k2 , wherek1 andk2 are positive integers depending on the family. By
z(α), we denotez(α) := (k1α)−k2 .

Proposition 6.5.1 LetH(z) be the polynomial ofX, and letα ∈ Fp. If rα0 is the unit root
ofXα, then

rα ≡ H(z(α)) mod p.

Proof: LetNα be the number of points onXα with coordinates inFp, and letN ′α = {x ∈
Fd+1
p , Fi(x, α) = 0, 1 ≤ i ≤ r}, whered is the dimension of the ambient space ofXα and
k is the number of the defining equations.
ThenNα = N ′

α−1
p−1 andNα ≡ 1 −N ′α mod p.

Let

Pi(T ) = det(1 − FT |H i
et(Xα ×Fp F̄p,Ql))
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Then, by the Weil conjectures, the Zeta functionZ(Xα/Fp, T ) is given by

Z(Xα/Fp, T ) =
P1(T )P3(T )P5(T )

P0(T )P2(T )P4(T )P6(T )

=
P3(T )

(1 − T )(1 − pT )(1 − p2T )(1 − p3T )

≡ 1 − aT +O(T 2)

(1 − T )(1 − pT )(1 − p2T )(1 − p3T )
mod T 2

≡ 1 − aT

1 − T
mod (T 2, p)

≡ 1 + (1 − a)T mod (T 2, p).

Remark thatrα0 ≡ a mod p. On the other hand, by definitionZ(Xα/Fp, T ) is given by

Z(X/Fp, T ) = exp(NαT +O(T 2))

≡ 1 +NαT mod T 2.

It follows thata ≡ N ′α mod p. Obviously, the following equality holds:

N ′α =
∑

x∈F
d+1
p

(1 − F1(x, α)p−1)...(1 − Fr(x, α)p−1).

Since
∑

x∈Fp

xk =

{

−1 if (p− 1)|k
0 otherwise

,

it follows that
∑

x∈F
d+1
p

(1 − F1(x, α)p−1)...(1 − Fr(x, α)p−1) ≡ Cp−1 mod p,

whereCp−1 is the coefficient of(X1...Xd+1)
p−1 in (F1(x, α)...Fr(x, α))p−1.

Thus,a ≡ N ′α ≡ Cp−1 mod p, and it follows by section 4.2 that

Cp−1 ≡ αk(p−1)H(z(α)) ≡ H(z(α)) mod p

for somek ∈ N, where the last equality holds sinceαq−1 = 1.
Thus,

rα ≡ a ≡ Cp−1 ≡ H(z(α)) mod p.

2

Now, we can apply proposition 6.5.1 to prove that the constantε in equation (5.4) is equal
to 1 in the hypergeometric cases.

Proposition 6.5.2 In the14 hypergeometric cases, we haveε = 1.

Proof: By equation (5.4), we haverα ≡ εf1
0 (α) mod p. SinceH(z) = f1

0 (z), the propo-
sition follows with proposition 6.5.1.2



82 6. Some special Picard-Fuchs equations: Hadamard products

6.6 Computations

In the hypergeometric cases we reproduced the results obtained in [56]. In the appendix,
the results of our calculations on the24 operators which are Hadamard products likeA ∗ a
etc. are collected. We computed coefficients(aα0 , bα0) of the Frobenius polynomial

P (T ) = 1 + aα0T + bα0pT
2 + aα0p

3T 3 + p6T 4

for all primesp between3 and17 and for all possible values ofα0 ∈ F∗p. To generate the
tables of coefficients in the appendix, we used the programming language MAGMA. We
computed with an overallp−adic accuracy of 500 digits. This was necessary, since in the
computation of the power series solutions to the differential equationsPf = 0 andQg =
0, denominators divisible by large powers ofp occured during the calculations (although
the solutions themselves have integral coefficients). The occurance of large denominators
reduces thep−adic accuracy in MAGMA, and thus we had to compute with such a high
overall accuracy to obtain correct results in the end. For the unit roots themselves, we
computed the ratio

f3
0 (z)

f2
0 (zp)

|z=α mod p3

with p−adic accuracy modulop3. We checked our results for the tuples(aα0 , bα0) deter-
mined the absolute values of the complex roots of the Frobenius polynomial, which by the
Weil conjectures should have absolute valuep−3/2. Needless to say, this was always ful-
filled.



Chapter 7

Modular forms

If the fibreXs of a familyπ : X −→ P1 of Calabi-Yau threefolds overs ∈ P1(Q) acquires
an ordinary double point, then we expect the Frobenius polynomial to factor as

P(T ) = (1 − χ(p)T )(1 − pχ(p)T )(1 − apT + p3T 2)

for some characterχ. The factor(1− apT + p3T 2) is the Frobenius polynomial on the two
dimensional pure part ofH3. This part can be identified with theH3 of a small resolution
X̂s, which then is a rigid Calabi-Yau3-fold.
By the modularity conjecture, the numbersap are Fourier coefficients of a weight four
modular form for some congruence subgroupΓ0(N).
In this chapter, we describe the above phenomenon and identify the modularforms for
several examples of CY(4)-operators.

7.1 Basic definitions

In this section, we give the basic definitions of modular forms and formulate themodularity
conjecture for rigid Calabi-Yau threefolds. For a more detailed presentation of the subject,
see [47].

The groupΓ := SL(2,Z) is called thefull modular group. ForN ∈ N, the subgroups

Γ0(N) :=

{(

a b
c d

)

∈ Γ, c ≡ 0 mod N

}

of finite index inΓ are calledHecke subgroupsof Γ.

An unrestricted modular form of weightk ∈ Z andlevelN ∈ N is an analytic function on
the upper half planeH satisfying

f

(

aτ + c

cτ + d

)

= (cτ + d)kf(τ) for all

(

a b
c d

)

∈ Γ0(N), τ ∈ H.

83
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Let q = e2πiτ . The functionf has aq−expansion

f(q) =
∞
∑

n=−∞
cnq

n.

It is called amodular formif cn = 0 for n < 0, and acusp formif cn = 0 for n ≤ 0.
Let Mk(Γ0(N)) denote the set of modular forms of weightk and levelN . It is a finite
dimensional vector space, and the set of cusp forms, denoted bySk(Γ0(N)), is a subspace
of Mk(Γ0(N)).
A cusp form is called an eigenform if it is the eigenvector of a so-calledHecke operator. If
r1r2|N andf is an eigenform forΓ0(N/r1r2), thenf(r1τ) is an eigenform forΓ0(N) and
is called anoldform. The oldforms span a subspaceSoldk (Γ0(N)), whose orthogonal com-
plement is denoted bySnewk (Γ0(N)). An eigenform inSnewk (Γ0(N)) is called anewform.

LetX be a Calabi-Yau threefold defined overQ, and letp be a prime ofgood reductionfor
X, i.e. the reduction ofX modulop, X̄, is again a Calabi-Yau threefold. LetFp denote the
geometric Frobenius on̄X. We define

ap(X) := tr(Fp|H3
et(X ×Q Q̄,Ql).

A Calabi-Yau threefoldX is called rigid if h2,1(X) = 0, and thush3(X) = 2. The
modularity conjecture [49] for rigid Calabi-Yau threefolds states the following:

Conjecture 7.1.1 LetX be a rigid Calabi-Yau threefold defined overQ. ThenX is modu-
lar, i.e. there exists a newform

f(q) =
∞
∑

k=1

bmq
m

of weight4 for Γ0(N) such thatap(X) = bp for all primes of good reduction forX. The
levelN is only divisible by primes of bad reduction forX.

The modularity conjecture has been proven by Yui und Gouvea in full generality in [33],
based on the results of Dieulefait in [23] and [24]. Recently, Dieulefait [21] provided an-
other proof of the conjecture. By a result of Serre [53] and Dieulefait [22], the exponentep
of a primep dividingN is bounded byep ≤ 2 for p > 3, e3 ≤ 5 ande2 ≤ 8.
In the following, to identify weight four newforms forΓ0(N), we will use the notation of
[47]. By N/m, we denote themth newform forΓ0(N). A twistof a newform is a newform
which only differs from the original form by a character.

7.2 The Frobenius polynomial at an ordinary double point

Let X → P1 be a family with generic fibre a CY-threefold, and letΣ ⊂ P1 be the set of
points where the fibres become singular. We setS := P1 \ Σ.
Assume that over the points ∈ Σ, the fibreXs aquires an ordinary double point. Assume
furthermore that for a smooth fibreXt, we haveh1,2(Xt) = 1. H3(Xt) is a pure Hodge



7.3. Modular forms of weight four 85

structure of weight3.
Let T be the monodromy operator arounds and letN := log T/2πi. Sinces is an ordinary
double point,N is a nilpotent map of rank1 satisfyingN2 = 0.
LetH be the limiting mixed Hodge structure. Since the map

N l : GrW3+lH → GrW3−lH

is an isomorphism for alll ≥ 0, it follows that the rank ofGrW2 H andGrW4 H is equal to
one. Thus, it follows thatGrW3 H is a pure Hodge structure weight3 of rank2 = 1 + 1,
whileGrW2 H andGrW4 H are pure Hodge structures of weight2 and4.

1 1 1 1 →
1

1 0 0 1
1

pure Hodge structure mixed Hodge structure
on the limit

Now consider the consequences of thisp−adically. Letp be a prime,k = Fp and let
W := W (k) be the ring of Witt vectors. LetX → P1 be a pencil of CY-varieties having a
flat model overW , such that the reduction overk, π0 : X0 → P1, is a pencil of Calabi-Yau
varieties. Assume that overs ∈ P1(k), the fibreXs aquires an ordinary double point. Then,
according to the limiting mixed Hodge structure, the Frobenius polynomial ofXs on the
“limit module” is expected to factor in the following way:

P(T ) = (1 − χ(p)T )(1 − pχ(p)T )(1 − apT + p3T 2)

whereχ is a character, the factors(1−χ(p)T ) and(1− pχ(p)T ) correspond to the rank-1-
modulesGrW2 andGrW4 of weight2 and4 respectively, and the factor(1−apT+p3T 2) cor-
responds toGrW3 . The pure Hodge structureGrW3 has Hodge numbersh0,3 = 1, h1,2 = 0,
which are the Hodge numbers of the rigid Calabi-Yau threefoldX̂s which is a small reso-
lution of the fibreXs. We talk about the Frobenius polynomial on the “limit module” since
for the singular fibreXs, neither crystalline cohomology nor rigid cohomology provide the
right framework, and our formula for the unit root of the Frobenius polynomial is only valid
in smooth points. But still, it turns out that by evaluating the quotients

ε
f0(z)

f0(zp)
and

g0(z)

g0(zp)

at a Teichmüller lifting of a singular point, we could compute polynomials that factored in
the way just described above.

7.3 Modular forms of weight four

In some cases, for primes≤ 23, the p−adic accuracy modulop3 for the computations
described in section 6.6 was too low, and we had to compute modp4. This happened in the
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case where the parameterα0 ∈ Fp was a critical point of the differential equation. But it
is somewhat of a miracle that our calculation made sense at the critical points atall. At an
ordinary double point, the Frobenius polynomial is expected to factor as

P(T ) = (1 − χ(p)T )(1 − pχ(p)T )(1 − apT + p3T 2)

for some characterχ. Since the factor(1 − apT + p3T 2) is the Frobenius polynomial on
the two dimensionalH3 of a rigid Calabi-Yau3-fold, according to the Weil conjectures,
ap satisfies|ap| ≤ 2p3/2, where| · | denotes the complex absolute value. For the integral
coefficientsaα0 andbα0 of the Frobenius polynomial

P = p6T 4 + p3aα0T
3 + pbα0T

2 + aα0T + 1,

we derive the bounds

|aα0 | ≤ p+ p2 + 2p3/2 and|bα0 | ≤ 2(p3/2 + p2 + p5/2).

Since

p+ p2 + 2p3/2 <
p4

2

for all p ≥ 3 and

2(p3/2 + p2 + p5/2) <
p4

2

for all p ≥ 5, it follows that by computing thep−adic unitsrα0 andr′α0
modulop4, we re-

cover the Frobenius polynomial correctly. Note that by the estimates above,it also follows
that for primes≥ 29, it is enough to compute modulop3 in the singular case, too.

According to the modularity conjecture for such Calabi-Yau3-folds, the coefficientsap are
Fourier coefficients of a weight four modular form for some congruence subgroupΓ0(N).

This is exactly the phenomenon that occurs at the singular points of our differential equa-
tions. For the hypergeometric cases we refind the results of [56]. For 16 of the24 operators
A∗a etc, we have two rational critical values. In 31 of the cases we are able to conjecturally
identify the modular form. We say conjecturally, since we only computed the coefficients
ap for p ≤ 23.

We remark that the critical points of the operators are reciprocal integersand the level of the
corresponding modular form divides that integer. For the cases involving the operatorc one
usually has equality and so the modular form forD ∗ c presumably has level3888, which
was outside the range of our table. Remark that all levels appearing only involve primes2
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and3.

Case Point Form Twist of Point Form Twist of
A ∗ a −1/16 8/1 − 1/128 64/5 8/1
B ∗ a −1/27 27/2 27/1 1/126 54/2 −
C ∗ a −1/64 32/3 32/2 1/512 256/3 −
D ∗ a −1/432 216/4 216/2 1/3456 1728/16 216/1

A ∗ c 1/144 48/1 24/1 1/16 16/1 8/1
B ∗ c 1/243 243/1 − 1/27 27/1 −
C ∗ c 1/576 576/3 94/4 1/64 64/3 32/2
D ∗ c 1/3888 1944/5 1/432 432/9 216/2

A ∗ d 1/128 64/4 32/1 1/64 32/2 −
B ∗ d 1/216 9/1 − 1/108 108/4 108/2
C ∗ d 1/512 256/1 − 1/256 128/4 128/1
D ∗ d 1/3456 576/8 288/1 1/1728 864/3 864/1

A ∗ g 1/144 24/1 − 1/128 64/1 8/1
B ∗ g 1/243 243/2 243/1 1/216 54/4 54/2
C ∗ g 1/576 288/10 96/4 1/512 256/4 256/3
D ∗ g 1/3888 1944/6 1944/5 1/3456 1728/15 −

7.4 An Algorithm to compute coefficients of modular forms

In this section, we describe how to compute the factor(p3T 2 − apT + 1) of the Frobenius
polynomial in an ordinary double point if the unit rootrα0 is known modulop3. Note that
it is not necessary to know the second root, and thusr′α0

, of the degree four Frobenius poly-
nomial for these computations.

Since the coefficientap determining the factor(p3T 2−apT+1) of the Frobenius polynomial
in an ordinary double point satisfies

|ap| ≤ 2p3/2

according to the Weil conjetcures, for all primesp ≥ 5, it follows that

|ap| < p2.

Thus, we can write

ap = a0 + pa1, 0 ≤ a0, a1 ≤ p− 1 or 1 − p ≤ a0, a1 ≤ 0.

Let rα0 be the unit root of the Frobenius polynomial, and letuα0 = 1/rα0 . Then,uα0 is a
root of the polynomialp3T 2 − apT + 1. Assume that we have computeduα0 modulop3,

uα0 = u0 + pu1 + p2u2, 0 ≤ u0, u1, u2 ≤ p− 1 or 1 − p ≤ u0, u1, u2 ≤ 0.
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Then, since
p3u2

α0
− apuα0 + 1 ≡ 0 mod p3,

we can recovera0 anda1 by the following formulas:

a0 ≡ 1/u0 mod p

a1 ≡ 1 − u0a0

pu0
− a0u1/u0 mod p

and
p(u0 + pu1 + p2u2) ∗ (a0 + pa1) ≡ 1 mod p3.

We applied these formulas to compute the coeffcientsap out of the unit root for several
examples found in the following sections.

Modular forms for the operators a ∗ a etc.

In this section, we give the results of our computations for CY(4)-operators that are Hadamard
products of some CY(2)-operators with themselves.

We also computed the coefficients of the conjectured modular forms (conjectured since we
computedap only for p ≤ 23) in singular points that are not rational. Note that in the case
b ∗ b, we were not able to identify the modular forms in the singular points123 − 55/2

√
5

and123 + 55/2
√

5 since we could not compute the necessary amount of coefficientsap to
determine the modular forms in these points.

Case Point Form Twist of Point Form Twist of
a ∗ a 1 21/2 − 1/8 14/2 −

−1/8 6/1 − 1/64 21/2 −
b ∗ b 1 22/2 − −1 5/1 −
c ∗ c 1 10/1 − 1/9 18/1 6/1

−1/9 180/5 60/1 1/81 10/1 −
d ∗ d 1/16 12/1 − 1/32 16/1 8/1

−1/32 48/3 6/1 1/64 12/1 −
f ∗ f 1/27 9/1 − −1/27 54/4 54/2

1/54 − 1/54
√
−3 27/1 − 1/54 − 1/54

√
−3 27/1 −

g ∗ g 1/64 17/1 − 1/72 18/1 6/1
1/81 17/1 − −1/72 306/8 102/3

Modular forms for operators that are no Hadamard products

In this section, we give our results of the computations of conjectured modular forms for
conifold points of CY(4)-operators that are, unlike the operators considered in the previous
sections, no Hadamard-products of operators of lower degree.
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An explicit descriprion of the differential operators we considered, together with the first co-
efficientsap (up top = 19) of the conjectured modular forms can be found in appendix A.2.

In this table, we list some operators with one conifold point. Note that the only primes
occuring in the factorizations of the levels of the modular forms are2, 3, 5, 7.

Case Point Form Twist of
20 1/54 108/2 −
23 1/32 32/3 32/2

73 1/432 432/13 54/2

116 1/256 72/2 24/1

119 1/54 108/2 −
255 1/81 225/4 5/1

266 1/192 882/14 126/2

291 1/512 192/4 6/1

292 1/432 ? 392/2

In this table, we list some operators with two rational conifold points. The only primes
occuring in the factorizations of the levels of the modular forms are2, 3, 5, 7, 11.

Case Point Form Twist of Point Form Twist of
28 1/64 14/2 − 1 6/1 −
33 1/1024 28/1 − 1/16 28/1 −
55 −1/64 5/1 − 1/256 40/2 −
182 1/27 33/2 − 1/16 22/3 −
183 1/64 16/1 8/1 1/48 72/1 −
205 1/32 32/3 32/2 1/27 15/2 −
293 1/1296 720/5 5/1 1/16 80/4 5/1

296 −1/27 99/1 33/1 1/512 44/1 −
297 1/512 80/4 5/1 1/432 180/5 60/1

299 −1/16 72/2 24/1 1/32 96/3 96/2

301 1/864 288/11 96/4 1/64 16/1 8/1

303 −1/432 108/4 108/2 1/3456 432/8 108/1

305 −1/64 56/2 − 1/1728 504/1 168/1

In this table, we list some operators with three rational conifold points. the primes occuring
in the factorizations of the levels of the modular forms are2, 3, 5, 7, 11, 17, 19, 23.
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Case Point Form Twist of Point Form Twist of Point Form Twist of
21 −1/4 8/1 − 1/32 112/4 28/2 1/4 56/2 −
34 1/25 30/1 − 1/9 6/1 − 1 6/1 −
59 1/54 684/5 684/4 1/16 228/2 − 1/4 12/1 −
268 −1/27 15/2 − −1/36 324/2 324/1 1/108 60/1 −
269 −1/16 176/1 88/2 −1/27 ? 33/1 1/48 432/11 216/1

283 1/108 ? 552/2 1/16 23/1 − 1/12 216/4 216/2

298 −1/4 68/1 − −1/36 12/1 − 1/64 34/2 −



Chapter 8

Dwork congruences for
reflexive polyhedra

In this chapter, we prove congruence properties of the coefficients ofpower series related
to Laurent polynomials. LetF (X, t) = 1 − tf(X), wheref(X) = f(X1, X2, X3, X4) ∈
Z[X±1

1 , ..., X±1
4 ] is a Laurent polynomial. Assume that the zeros ofF (X, t) define an

affine Calabi-Yau threefold inT ∼= (C∗)4. It turns out that many CY(4)-operators arise as
Picard-Fuchs operators of families of smooth Calabi-Yau compactifications of affine toric
Calabi-Yau threefolds as described above.
For example, take the Laurent polynomial

f(X1, X2, X3, X4) = X1 +X2 +X3 +X4 + 1/X1X2X3X4.

In this case, the zeros ofF (X, t) define the affine Calabi-Yau threefold inT whose smooth
Calabi-Yau compactification is mirror symmetric to the quintic threefold inP5 defined by
the equation

X5
1 +X5

2 +X5
3 +X5

4 +X5
5 − 5tX1X2X3X4X5 = 0.

Let z = t5. In our example, the Picard-Fuchs operator is then given by

θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4),

and the holomorphic solution is

Φ0(z) =
∞
∑

n=0

(5n)!

n!5
zn.

The holomorphic solutions of differential operators related to Laurent polynomials as de-
scribed above can be explicitly expressed in terms of the Laurent polynomial f(X). We
prove that the coefficients of these power series solutions satisfy a modified version of the
Dwork congruences. The methods we apply for the proof are completely elementary.

91



92 8. Dwork congruences for reflexive polyhedra

8.1 Laurent polynomials and the congruence D3

We prove a lemma about integral polyhedra with0 as unique interior lattice point and derive
a “weaker” congruence property D3 from the Dwork congruence D2. The lemma will be
the key ingredient for the proof of the congruence D3 for coefficientsof power series that
are related to integral polyhedra with only one interior point.

Let (a(n))n be a sequence satisfying the Dwork congruences D1 and D2. By a cross-
multiplication, the congruence D2 becomes

D3 : a(n+mps+1)a([n/p]) ≡ a([n/p] +mps)a(n) mod ps+1.

So if we write
n = n0 + n1p+ n2p

2 + ...+ nsp
s

and setns+1 := m, wheren0, ..., ns satisfy0 ≤ ni ≤ p − 1 andns+1 is an arbitrary
non-negative integer, then D3 is equivalent to

a(n0 + ...+ ns+1p
s+1)a(n1 + ...+ nsp

s−1)

≡ a(n0 + ...+ nsp
s)a(n1 + ...+ ns+1p

s) mod ps+1.

In the following sections, we will prove this congruence for sequencesa(n) which are given
implicitly by Laurent polynomials whose Newton polyhedra contain0 as unique interior
lattice point.
We will use the familiar multi-index notation for monomials and exponents

Xa = Xa1
1 Xa2

2 . . . Xan
n , a = (a1, a2, . . . , an) ∈ Zn

to write a general Laurent-polynomial as

f =
∑

a

caX
a ∈ Z[X1, X

−1
1 , X2, X

−1
2 , . . . , Xn, X

−1
n ].

Thesupportof f is the set of exponentsa occuring inf , i.e.

supp(f) := {a ∈ Zn | ca 6= 0}

TheNewton polyhedron∆(f) ⊂ Rn of f is defined as the convex hull of its support

∆(f) := convex(supp(f)).

When the support off consists ofm monomials, we can put the information of the poly-
hedron∆ := ∆(f) in an n × m matrix A ∈ Mat(m × n,Z), whose columnsaj ,
j = 1, 2, . . . ,m are the exponents off ;

A = (a1,a2, . . . ,am) =







a1,1 a1,2 . . . a1,m
...

...
an,1 a1,2 . . . an,m
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so that we can write

f =
m
∑

j=1

cjX
aj =

m
∑

j=1

cj

n
∏

i=1

Xai,j

The polyhedron∆ is the image of the standard simplex∆m under the map

Rm A−→ Rn.

Lemma 8.1.1 The interior points (i.e. the points that do not lie on the boundary) of a
polytope∆ with 0 as interior lattice point are combinations

α1a1 + ...+ αmam

of the columns ofA with
∑m

j=1 αj < 1.

Proof:
Assume that there exist(α1, ..., αm) with

∑m
j=1 αj = ε < 1 such that

P := α1a1 + ...+ αmam

lies on the boundary of∆. ThenQ := 1
ε (α1a1 + ...+ αmam) also lies on the boundary of

the polytope (since1ε
∑m

j=1 αj = 1), and lies on the same line through the origin0, 0P as
the pointP .

But sinceP andQ both lie on0Q and on the boundary, the boundary contains a line through
the origin. This is a contradiction since0 is an interior point of∆. 2

The following lemma will play a key role in the sequel.

Lemma 8.1.2 Let∆ be an integral polyhedron with0 as unique interior point. Then for all
non-negative integral vectors(ℓ1, ℓ2, . . . , ℓm) ∈ Zm such that

m
∑

i=1

ai,jℓj 6= 0

for some1 ≤ i ≤ n, one has

gcd
i=1,...,n

(
m
∑

j=1

ai,jℓj) ≤
m
∑

j=1

ℓj .
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Proof: Assume that there exists a non-negative integral vectorℓ = (ℓ1, ..., ℓm) ∈ Zm such
that

∑m
i=1 ai,jℓj 6= 0 for some1 ≤ i ≤ n and

g := gcd
i=1,...,n

(
m
∑

j=1

ai,jℓj) >
m
∑

j=1

ℓj .

We have

a1ℓ1 + ...+ amℓm = A







ℓ1
...
ℓm






=







∑m
j=1 a1,jℓj

...
∑m

j=1 an,jℓj






.

The components of the vector at the right hand side are all divisible byg so that after division
by g we obtain a non-zero lattice point

v :=
ℓ1
g

a1 + ...+
ℓm
g

am ∈ Zn

of ∆ with
∑

j

ℓj
g
< 1.

By lemma 8.1.1, the interior points of∆ (i.e. the points that do not lie on the boundary)
consist of the combinations

α1a1 + ...+ αmam

of the columns ofA with
∑m

j=1 αj < 1. As 0 was assumed to be the only interior lattice
point of∆ we arrive at a contradiction.2

We remark that the above statement applies in particular toreflexive polyhedra, which have
0 as unique interior lattice point.

8.2 The fundamental period

Every Laurent polynomial defines implicitly the power series whose coefficients are the
constant terms in the powers of the Laurent polynomial. It turns out that thispower series
can be seen as aperiod on the toric hypersurface defined by the Laurent polynomial. By
a period, we mean an integral of an algebraically defined differential form over a chain in
some algebraic variety.
In this section, we state the theorem that the coefficients of this period satisfythe modified
Dwork congruence D3. This theorem is the main result of this chapter, andwill be proven
step by step in the following sections.

Notation 8.2.1 For a Laurent-polynomial we denote by[f ]0 theconstant term, that is, the
coefficient of the monomialX0.
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Definition 8.2.1 Thefundamental periodof f is the series

Φ(t) :=
∞
∑

k=0

a(k)tk, a(k) := [fk]0.

Note that the functionΦ(t) can be interpreted as the period of a holomorphic differential
form on the hypersurfaceXt := {t.f = 1} ⊂ (C∗)n, as one has

Φ(t) =
∑∞

k=0[f
k]0t

k

=
∑∞

k=0
1

(2πi)n

∫

T f
ktkΩ

= 1
(2πi)n

∫

T

∑∞
k=0 f

ktkΩ

= 1
(2πi)n

∫

T
1

1−tfΩ

=
∫

γt
ωt.

HereΩ := dX1
X1

dX2
X2

. . . dXnXn
, T is the cycle given by|Xi| = ǫi and homologous to the Leray

coboundary ofγt ∈ Hn−1(Xt) and

ωt = ResXt(
1

1 − tf
Ω).

In particular,Φ(t) is a solution of a Picard-Fuchs equation; the coefficientsa(k) satisfy a
linear recursion relation. This is the point where the CY(4)-operators appear again; for many
Laurent-polynomialsf(X) in four variables, the periodΦ(t) is the solution to a CY(4)-
differential equation. Examples for this can be found in the list in the appendix.

Theorem 8.2.1 Let f ∈ Z[X1, X
−1
1 , . . . , Xn, X

−1
n ]. Assume that the Newton polyhedron

∆(f) has0 as its unique interior lattice point.
Then the coefficientsa(n) = [fn]0 of the fundamental period satisfy for each prime number
p ands ∈ N the congruence

a(n0 + ...+ nsp
s)a(n1 + ...+ ns−1p

s−2) ≡

a(n0 + ...+ ns−1p
s−1)a(n1 + ...+ nsp

s−1) mod ps, (8.1)

where0 ≤ ni ≤ p− 1 for 0 ≤ i ≤ s− 1.

We remark that already for the simplest cases where the Newton polyhedron contains more
than one interior lattice point, likef = X2 +X−1, the coefficientsa(n) do not satisfy such
simple congruences.

8.3 Proof for the congruence mod p

The most simple part of theorem 8.2.1 to prove is the congruence modulop. But part of the
crucial ideas behind the proof of the congruence modulo arbitraryps, s ≥ 1, already apply
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in this simple case, without complicated technical details.

To prove D3 fors = 1 we have to show that for alln0 ≤ p− 1,

a(n0 + n1p) ≡ a(n0)a(n1) mod p.

The proof we will give is completely elementary; the key ingredient is lemma 8.1.2,which
states that for all non-negative integralℓ = (ℓ1, ..., ℓm) one has

gcd
i=1,...,n

(
m
∑

j=1

ai,jℓj) ≤
m
∑

j=1

ℓj .

Proposition 8.3.1 Letf be a Laurent polynomial as above andn0 < p. Then

[fn0fn1p]0 ≡ [fn0 ]0 [fn1 ]0 mod p.

Proof: As f has integral coefficients, we havefn1p(X) ≡ fn1(Xp) mod p. So the con-
gruence is implied by the equality

[fn0(X)fn1(Xp)]0 = [fn0(X)]0 [fn1(X)]0 ,

which means: the product of a monomial fromfn0(X) and a monomial fromfn1(Xp) can
never be constant, unless the two monomials are constant themselves. It is thisstatement
that we will prove now.
For the product of a non-constant monomial fromfn0(X) and a non-constant monomial
from fn1(Xp) to be constant, the monomial coming fromfn0(X) has to be a monomial in
Xp

1 , ..., X
p
n, since all monomials infn1(Xp) are monomials inXp

1 , ..., X
p
n.

A monomial

M := Xℓ1a1+ℓ2a2+...+ℓmam =
m
∏

j=1

X
a1,jℓj
1 ...X

an,jℓj
n

appearing infn0(X) corresponds to a partition

n0 = ℓ1 + ...+ ℓm

of n0 in non-negative integersℓi. If M were a monomial inXp
1 , ..., X

p
n, then we would have

the divisibility

p |
m
∑

j=1

ai,jℓj for 1 ≤ i ≤ n,

and hence

p | gcd
i=1,...,n

(
m
∑

j=1

ai,jℓj).

On the other hand, by lemma 8.1.2 we have

gcd
i=1,...,n

(

m
∑

j=1

ai,jℓj) ≤
m
∑

j=1

ℓj = n0 < p.



8.4. Strategy for highers 97

So we conclude that
∑m

i=1 ai,jℓj = 0 for 1 ≤ j ≤ n and that the monomialM is the
constant monomialX0. Hence it follows that

[fn0(X)fn1(Xp)]0 = [fn0(X)]0 [fn1(Xp)]0 ,

and since

[fn1(Xp)]0 = [fn1(X)]0 ,

the proposition follows.2

8.4 Strategy for highers

The idea for the higher congruences is basically thesame as fors = 1, but is combinatori-
ally more involved. Surprisingly, one does not need any statements stronger than 8.1.2. To
prove the congruence (8.1), we have to show that

[

s
∏

k=0

fnkp
k

]

0

[

s−1
∏

k=1

fnkp
k−1

]

0

≡
[

s−1
∏

k=0

fnkp
k

]

0

[

s
∏

k=1

fnkp
k−1

]

0

mod ps. (8.2)

To do this, we will use the following expansion offnp
s
(X):

Proposition 8.4.1 We can write

fnp
s

(X) =
s
∑

k=0

pkgn,k(X
ps−k),

wheregn,k is a polynomial of degreenpk in the monomials off , independent ofs, defined
inductively bygn,0(X) = fn(X) and

pkgn,k(X) := f(X)np
k −

k−1
∑

j=0

pjgn,j(X
pk−1−j

). (8.3)

Proof: We have to prove that the right-hand side of equation (8.3) is divisible bypk. This
is proved by induction onk and an application of the congruence

f(X)p
m ≡ f(Xp)p

m−1
mod pm. (8.4)

For k = 1, the divisibility follows directly by (8.4). Assume that the statement is true for
m ≤ k − 1. Write f(X)np

k−1
=
∑k−1

j=0 p
jgn,j(X

pk−1−j
). Then,

∑k−1
j=0 p

jgn,j(X
pk−j ) =

f(Xp)np
k−1 ≡ f(X)np

k
mod pn, and thusf(X)np

k−∑k−1
j=0 p

jgn,j(X
pk−j ) ≡ 0 mod pn.2



98 8. Dwork congruences for reflexive polyhedra

The congruences involve constant term expressions of the form

[

b
∏

k=a

fnkp
k

]

0

=





b
∏

k=a

k
∑

j=0

pjgnk,j(X
pk−j )





0

=
∑

ia≤a
...
∑

ib≤b
p

Pb
k=a ik

[

b
∏

k=a

gnk,ik(X
pk−ik )

]

0

. (8.5)

Thus, equation (8.2) translates into

∑

i0≤0

...
∑

is≤s

∑

j1≤0

...
∑

js−1≤s−2

p
Ps

k=0
ik+

Ps−1

k=1
jk

[

s
∏

k=0

gnk,ik
(Xpk−ik

)

]

0

[

s−1
∏

k=1

gnk,jk
(Xpk−1−jk

)

]

0

≡
∑

i0≤0

...
∑

is−1≤s−1

∑

j1≤0

...
∑

js≤s−1

p
Ps−1

k=0
ik+

Ps
k=1

jk

[

s−1
∏

k=0

gnk,ik
(Xpk−ik

)

]

0

[

s
∏

k=1

gnk,jk
(Xpk−1−jk

)

]

0

mod ps (8.6)

Since this congruence is supposed to hold modulops, on the left-hand side, only the sum-
mands with

∑s
k=0 ik +

∑s−1
k=1 lk ≤ s− 1 contribute, and on the right-hand side, only those

with
∑s−1

k=0 ik +
∑s

k=1 lk ≤ s− 1 play a role.
Now, we proceed by comparing these summands on both sides of equation (8.2). We will
prove that each summand on the right-hand side is equal to exactly one summand on the
left-hand side and vice versa.

8.5 Splitting positions

So we are led to study fora ≤ b expressions of the type

G(a, b; I) :=

[

b
∏

k=a

gnk,ik(X
pk−ik )

]

0

where the0 ≤ nk ≤ p − 1 are fixed fora ≤ k ≤ b andI := (ia, ..., ib) is a sequence with
0 ≤ ik ≤ k.

Definition 8.5.1 We say thatG(a, b; I) splits atℓ if

G(a, b; I) = G(a, ℓ− 1; I)G(ℓ, b; I).

The number of entries ofI is determined implicitly bya andb so that byG(a, ℓ − 1; I)
we mean the expression corresponding to the sequence(ia, ..., iℓ−1), while byG(ℓ, b; I)
we mean the expression corresponding to(iℓ, ..., ib). Note thatℓ = a represents a trivial
splitting, but splitting atℓ = b is a non-trivial property.
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Proposition 8.5.1 If k − ik ≥ ℓ for all k ≥ ℓ, thenG(a, b; I) splits atℓ.

Proof: A monomial
∏m
j=1(X

pk−ik )ajβj,k occuring ingnk,ik(X
pk−ik ) corresponds to a par-

tition
β1,k + ...+ βm,k = piknk ≤ pik+1 − pik

of the numberpiknk in non-negative integersβ1,k, ..., βm,k. So we have

pk−ik(β1,k + ...+ βm,k ≤ pk+1 − pk.

It follows from the assumptions that the productG(ℓ, b; I) =
∏b
k=ℓ gnk,ik(X

pk−ik ) is a
Laurent-polynomial inXp. As a consequence, the product of a monomial inG(a, ℓ−1; I) =
∏ℓ−1
k=a gnk,ik(X

pk−ik ) and a monomial ofG(ℓ, b; I) can be constant only if the sum

mi :=

m
∑

j=1

pa−iaai,jβj,a + ...+

m
∑

j=1

pℓ−1−iℓ−1ai,jβj,ℓ−1

is divisible bypℓ for 1 ≤ i ≤ n.
Set

γj := pa−iaβj,a + ...+ pℓ−1−iℓ−1βj,ℓ−1

so that
m
∑

j=1

ai,jγj = mi.

It follows that
m
∑

j=1

γj =
m
∑

j=1

pa−iaβj,a + ...+
m
∑

j=1

pℓ−1−iℓ−1βj,ℓ−1 ≤ pa+1 − pa + ...+ pℓ − pℓ−1 = pℓ − pa < pℓ.

Hence, it follows that

pℓ | gcd
i=1,...,n

(
m
∑

j=1

ai,jγj) ≤
m
∑

j=1

γj < pℓ,

where the first inequality follows from Theorem 8.1.2. This implies
∑m

j=1 ai,jγj = 0 for

1 ≤ i ≤ n. But this means that the monomial in
∏s−1
k=t gnk,ik(X

pk−ik ) is itself constant.2

Now that we know that we can split up expressionsG(a, b; I) satisfying the condition given
in proposition 8.5.1, we proceed by proving that all the summands on both sides of equation
8.6 that do not have a coefficient divisible byps satisfy this splitting condition.

8.6 Three combinatorial lemmas

In this section, we prove three simple combinatorial lemmas which will be applied to split
up expressionsG(0, s; I)G(1, s− 1; J + 1) that occur in the congruence (8.2).
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Definition 8.6.1 Leta ≤ b andI = (ia, ia+1, . . . , ib) a sequence with0 ≤ ik ≤ k for all k
with a ≤ k ≤ b. We say thatℓ is asplitting index forI if ℓ > a and fork ≥ ℓ one has

ik ≤ k − ℓ.

Remark that for a splitting indexℓ one can apply proposition 8.5.1 and thatiℓ = 0.

Lemma 8.6.1 Let I as above and assume that
b
∑

k=a

ik ≤ b− a− 1.

Then there exists at least one splitting index forI.

Proof: Let N := {k |ik = 0} be the set of all indicesk such that the correspondingik is
zero. Since the sum hasb − a + 1 summandsik, the setN has at least two elements. So
there exists at least one indexk 6= a such thatik = 0.
We will show by contradiction that one of these zero-indices is a splitting index.
We say thatν > k is aviolating indexwith respect tok ∈ N if iν > ν − k. Assume now
that allk ∈ N possess a violating index.
It follows directly that for each violating indexν, iν ≥ 2. Furthermore, ifν is a violating
index form different zero-indicesk1 < ... < km, it follows thatiν ≥ m+ 1.
Now assume that we haveµ different violating indicesν1, ..., νµ and thatνj is a violating
index for allj ∈ Nj , where we partitionN into disjoint subsets

N = N1 ∪ N2 ∪ ... ∪ Nµ.

Then
∑µ

j=1 iνj ≥
∑µ

j=1(#Nj + 1) = #N + µ, and

b
∑

k=a+1

ik ≥ #N · 0 +

µ
∑

j=1

iνj + (b− a− (#N + µ)) · 1 = b− a > b− a− 1,

a contradiction.2

We can sharpen lemma 8.6.1 to:

Lemma 8.6.2 Let I be as above and assume that
b
∑

k=a

ik = b− a−m.

Then there exist at leastm different splitting indices forI.

Proof: We proceed by induction onm. The casem = 1 is just lemma 8.6.1. Assume that
for all n ≤ m, we have proven the statement.
Now assume

∑b
k=a ik = b− a− (m+ 1). Sincem+ 1 > 1, there exists a splitting index

ν. We can split up the set of indices{ia, ..., ib} = {ia, ..., iν−1} ∪ {iν , ..., ib} in positionν
such that

∑ν−1
k=a ik = Nν and

∑b
k=ν ik = b− a−m− 1−Nν . Depending onNν , we have

to distinguish between the following cases:



8.6. Three combinatorial lemmas 101

1. Nν > (ν−1)−a−1. It follows thatb−a−m−1−Nν < b−a−m−((ν−1)−a−1) =
b −m− (ν − 1), and thus

∑b
k=ν ik ≤ b − ν −m. By induction, there exist at least

m splitting indices in(iν , ..., ib), and thus for the whole(ia, ..., ib), there exist at least
m+ 1 such indices.

2. The caseNν ≤ (ν − 1) − a− 1 splits up into two cases:

(a) Nν ≤ (ν − 1) − a − m. By induction,(ia, ..., iν−1) has at leastm splitting
indices, and the whole(ia, ..., ib) has at leastm+ 1 such indices.

(b) Nν = (ν−1)−a−n, where1 ≤ n ≤ m. Since
∑ν−1

k=a ik = (ν−1)−a−n, by
induction for(ia, ..., iν−1) exist at leastn splitting indices. Since

∑b
k=ν ik =

b − ν − (m − n), for (iν , ..., ib), there exist at leastm − n splitting indices.
Thus, for the whole(ia, ..., ib) exist at leastn+ (m− n) + 1 = m+ 1 splitting
indices.

2

Lemma 8.6.3 1. LetI = (i0, ..., is) andJ = (j1, ..., js−1) with

s
∑

k=0

ik +
s−1
∑

k=1

jk ≤ s− 1.

LetSI be the set of splitting indices ofI andSJ be the set of splitting indices ofJ .
Then

SI ∩ (SJ ∪ {1, s}) 6= ∅.
2. LetI = {i0, ..., is−1} andJ = (j1, ..., js) with

s−1
∑

k=0

ik +
s
∑

k=1

jk ≤ s− 1.

LetSI be the set of splitting indices ofI andSJ be the set of splitting indices ofJ .
Then

(SI ∪ {s}) ∩ (SJ ∪ {1}) 6= ∅.
Proof:

1. Note that sinceSI ∪SJ ∪{1, s} ⊂ {1, 2, ..., s}, it follows that#(SI ∪SJ ∪{1, s}) ≤
s. Note that

∑s
k=0 ik ≥ s − #SI by lemma 8.6.2. This implies that

∑s−1
k=1 jk ≤

s − 2 − (s − (#SI + 1)), and hence that#SJ ≥ s − (#SI + 1) by lemma 8.6.2.
But #SI + #SJ + 2 = #SI + s − (#SI + 1) + 2 = s + 1 > s, which implies
#(SI ∩ (SJ ∪ {1, s})) ≥ 1, and thus the statement follows.

2. Note that since(SI∪{s})∪(SJ∪{1}) ⊂ {1, ..., s}, it follows that#(SI∪{s})∪(SJ∪
{1}) ≤ s. Now

∑s−1
k=0 ik ≥ s−1−#SI , which implies

∑s
k=1 jk ≤ s−1−(s−#SI−

1), and#SJ ≥ s−#SI−1. But#SI+1+#SJ+1 ≥ #SI+1+s−#SI = s+1 > s,
which implies that#((SI ∪ {s}) ∩ (SJ ∪ {1})) ≥ 1, and the statement follows.

2
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8.7 Proof for higher s

We will use the combinatorical lemmas on splitting indices from the last section to prove
the congruence (8.2) modulops.
For a sequenceI = (ia, ..., ib), we write

pI := p
Pb
k=a ik .

For a sequenceJ = (ja, ..., jb), we defineJ + 1 := (ja + 1, ..., jb + 1).
Note that ifk − jk > 0 for a ≤ k ≤ b, then we have

G(a, b; J + 1) = G(a, b; J), (8.7)

since the constant term of a Laurent-polynomialf(X) is the same as the constant term of
the Laurent-polynomialf(Xp).
Let

pI+JG(0, s; I)G(1, s− 1; J + 1)

be a summand on the left-hand side of (8.6) defined by the tuple(I, J) with
∑s

k=0 ik +
∑s−1

k=1 jk ≤ s − 1, and let1 ≤ ν ≤ s be such thatG(0, s; I) splits in positionν and either
G(1, s − 1; J + 1) splits in positionν or ν ∈ {1, s}. Such aν exists by lemma (8.6.3).
DefineI ′ = (i′0, ..., i

′
s−1) andJ ′ = (j′1, ..., j

′
s) by

i′k = ik for k ≤ ν − 1,

i′k = jk for k ≥ ν,

j′k = jk for k ≤ ν − 1,

j′k = ik for k ≥ ν.

To show thatpI
′+J ′

G(0, s − 1; I ′)G(1, s; J ′ + 1) is in fact a summand on the right-hand
side of (8.6), we have to explain whyi′k ≤ k andj′k ≤ k − 1. Note thatjk ≤ k − 1 for
1 ≤ k ≤ s− 1 andik ≤ k for 0 ≤ k ≤ s. Furthermore, we haveik ≤ k− 1 for k ≥ ν since
iν = 0 andG(0, s; I) splits in positionν, which means thatk − ik ≥ ν ≥ 1 for k ≥ ν.
By definition ofj′k andi′k, it now follows thatj′k ≤ k − 1 for 1 ≤ k ≤ s, andi′k ≤ k for
0 ≤ k ≤ s− 1.
Now that we know thatpI

′+J ′

G(0, s − 1; I ′)G(1, s; J ′ + 1) is in fact a summand on the
right-hand side of congruence (8.6), we prove the following proposition. Remark that we
obviously havepI+J = pI

′+J ′

.

Proposition 8.7.1 Let I, J, I ′ andJ ′ be defined as above. Then,

G(0, s, I)G(1, s− 1; J + 1) = G(0, s− 1; I ′)G(1, s; J ′ + 1).

Thus, we can identify each summand on the left-hand side of (8.6) with a summand on the
right-hand side.
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Proof: By a direct computation:

G(0, s; I)G(1, s− 1; J + 1)

= G(0, ν − 1; I)G(ν, s; I)G(1, ν − 1; J + 1)G(ν, s− 1; J + 1) by lemma 8.6.3

= G(0, ν − 1; I)G(ν, s; I + 1)G(1, ν − 1; J + 1)G(ν, s− 1; J) by (8.7)

= G(0, ν − 1; I)G(ν, s− 1; J)G(1, ν − 1; J + 1)G(ν, s; I + 1) (commutation)

= G(0, ν − 1; I ′)G(ν, s− 1; I ′)G(1, ν − 1; J ′ + 1)G(ν, s; J ′ + 1) by definition ofI ′, J ′

= G(0, s− 1; I ′)G(1, s; J ′ + 1) by lemma 8.6.3,

the statement follows. Note that the last equality follows since by definition ofI ′ andJ ′,
i′ν = j′ν = 0, k− i′k ≥ ν andk−j′k ≥ ν for k > ν. Thus,G(0, s−1; I ′) andG(1, s; J ′+1)
both split atν.2

Since by P proposition 8.7.1, we can identify every summand on the left-hand side of equa-
tion (8.6) satisfyingI + J ≤ s − 1 with a summand on the right-hand side, both sides are
equal modulops and the proof of theorem 8.2.1 is complete.

Remark:The above arguments to prove the congruenceD3 can be slightly simplified, as
was shown to us by A. Mellit.

8.8 Examples

In this section, we give some examples for which we could apply theorem 8.2.1.

No. 24 from the list of Batyrev and Kreuzer

Let f be the Laurent-polynomial No. 24 in the list of Batyrev and Kreuzer [6], which is
given by

f : = 1/X4 +X2 + 1/X1X4 + 1/X1X3X4 + 1/X1X2X3X4 + 1/X3 +X1/X3

+ X2/X3X4 +X1/X3X4 +X1X2/X3X4 +X2/X4 + 1/X2X4 + 1/X1X2X4

+ 1/X1X2 + 1/X1 + 1/X2X3X4 +X4 + 1/X2 +X1 +X1/X4 + 1/X3X4

+ X3 + 1/X2X3.

The first 9 coefficientsa(n) := [fn]0 in this example are:
a(0) = 1, a(1) = 0, a(2) = 18, a(3) = 168, a(4) = 2430, a(5) = 37200, a(6) =

605340, a(7) = 10342080, a(8) = 182788830.

The Newton polyhedron∆(f) is reflexive (see [6]), and hence by theorem 8.2.1, the coef-
ficientsa(n) satisfy the congruence (8.1) modulops for arbitrarys.
Note that the power seriesΦ(t) =

∑∞
n=0 a(n)tn is a solution to a fourth order linear differ-

ential equationPF = 0, where the differential operatorP is a CY(4)-operator and is given
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by

P := 88501054θ4 + t(912382θ(−291 − 1300θ − 2018θ2 + 1727θ3) + ...

+ 3461674786667136t11(θ + 1)(θ + 2)(θ + 3)(θ + 4),

whereθ := t∂/∂t.

No. 41 from the list of Batyrev and Kreuzer

Let f be the Laurent-polynomial No. 41 in the list of Batyrev and Kreuzer [6], which is
given by

f := X4 +X1 +X1X4 + 1/X1X3X4 + 1/X2X3 + 1/X1X2X4 + 1/X1X3

+ 1/X1 +X3X4 + 1/X1X2 + 1/X1X2X3X4 + 1/X1X2X3

+ X1X2X3X4 +X2X3X4 + 1/X1X4 +X2X3 + 1/X2 + 1/X3 + 1/X4

+ X1X3X4 +X3 + 1/X3X4 +X2 + 1/X2X4 + 1/X2X3X4

The first 9 coefficientsa(n) := [fn]0 in this example are:a(0) = 1, a(1) = 0, a(2) =
20, a(3) = 186, a(4) = 2940, a(5) = 46680, a(6) = 803990, a(7) = 14453460, a(8) =
269264380.
As in the example before, the Newton polyhedron∆(f) is reflexive, and hence the coef-
ficientsa(n) satisfy congruence (8.1) for arbitrarys. Note that also in this case,Φ(t) is a
solution to a fourth order Calabi-Yau differential equation, where the CY(4)-operatorP is
given by

P := 8281θ4 + 91tθ(−273 − 1210θ − 1874θ2 + 782θ3) + ....

− 21292817700t11(θ + 1)(θ + 2)(θ + 3)(θ + 4).

No. 39 from the list of Batyrev and Kreuzer

Let f be the Laurent-polynomial No. 39 in the list of Batyrev and Kreuzer [6], which is
given by

f := X1/X2X3 + 1/X1X2X3X4 +X3X4 +X4 + 1/X1X2 + 1/X1X3

+ 1/X1X2X4 +X2 +X1X2/X3X4 +X1/X3 +X2/X4 +X3

+ 1/X4 +X1 +X1/X2 + 1/X2X3X4 +X1/X3X4

+ X2/X3X4 + 1/X1 + 1/X2 + 1/X1X3X4 + 1X2X4 + 1/X3.

The first 9 coefficientsa(n) := [fn]0 in this example are:a(0) = 1, a(1) = 0, a(2) =
20, a(3) = 168, a(4) = 2652, a(5) = 40080, a(6) = 666920, a(7) = 11536560, a(8) =
207013660.
As in the examples before, the Newton polyhedron∆(f) is reflexive, and hence the coef-
ficientsa(n) satisfy congruence (8.1) for arbitrarys. Note that also in this case,Φ(t) is
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solution to a fourth order Calabi-Yau differential equation, where the CY(4)-operatorP is
given by

P := 16θ4 − 4tθ(12 + 53θ + 82θ2 + 2θ3)...

− 621920t11(θ + 1)(θ + 2)(θ + 3)(θ + 4).

No. 62 from the list of Batyrev and Kreuzer

Let f be the Laurent-polynomial No. 62 in the list of Batyrev and Kreuzer [6], which is
given by

f := X1 +X2 +X3 +X4 +
1

X1X2
+

1

X1X3
+

1

X1X4
+

1

X2
1X2X3X4

.

Then the coefficientsa(n) are given bya(n) = 0 if n 6= 0 mod 3 and

a(3n) =
(3n)!

n!3

n
∑

k=0

(

n

k

)2(n+ k

k

)

.

The Newton polyhedron∆(f) is reflexive (see [6]), and hence by theorem 8.2.1, the coef-
ficientsa(n) satisfy the congruence (8.1) modulops for arbitrarys.
The power seriesΦ(t) =

∑∞
n=0 a(3n)tn is solution to a fourth order linear differential

equationPF = 0, where the differential operatorP is of Calabi-Yau type and is given by

P := θ4 − 3t(3θ + 2)(3θ + 1)(11θ2 + 11θ + 3)

− 9t2(3θ + 5)(3θ + 2)(3θ + 4)(3θ + 1).

Since in this example (as in many others), only the coefficientsa(n) with n = 3k are
nonzero, it would be good to prove the following congruence for this example:

a(3(n0 + n1p+ ...+ nsp
s))a(3(n1 + ...+ ns−1p

s−2))

≡ a(3(n0 + ...+ ns−1p
s−1))a(3(n1 + ...+ nsp

s−1)) mod ps.

8.9 Behaviour under covering

The last example raises the question after a congruence among thek−fold coefficients if
a(n) 6= 0 impliesk|n. Let f be a Laurent-polynomial corresponding to a reflexive poly-
hedron, letA be the exponent matrix corresponding tof , and consider the vectors with
integral entries in the Kernel ofA. If there exists a positive integerk such that

ℓ :=







ℓ1
...
ℓm






∈ ker(A) ⇒ k|(ℓ1 + ...+ ℓm),

then it follows that
a(n) := [fn]0 6= 0 ⇒ k|n,
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since forl ∈ N,

[f l]0 =
∑

(ℓ1,...,ℓm)∈Af,l

cℓ1
a1
...cℓm

am

(

l

ℓ1

)(

l − ℓ1
ℓ2

)

...

(

l − ℓ1 − ....− ℓm−2

ℓm−1

)

,

where

Af,l := {(ℓ1, ..., ℓm) ∈ Nm
0 , ℓ1 + ...+ ℓm = l,

m
∑

j=1

ai,jℓj = 0 for 1 ≤ i ≤ n}

= {(ℓ1, ..., ℓm) ∈ Nm
0 , ℓ1 + ...+ ℓm = l,A · (ℓ1, ..., ℓm)T = 0}

= ker(A) ∩ {(ℓ1, ..., ℓm) ∈ Nm
0 , ℓ1 + ...+ ℓm = l.}.

We are interested in the congruences

a(k(n0 + ...+ nsp
s))a(k(n1 + ...+ ns−1p

s−2)) ≡
a(k(n0 + ...+ ns−1p

s−1))a(k(n1 + ...+ nsp
s−1)) mod ps, (8.8)

which we will prove in general fors = 1, and which we will prove for the example No. 62
from the list of Batyrev and Kreuzer by proving that the following conditionis satisfied in
this example:

Condition 8.9.1 For a tuple(ℓ1, ..., ℓm) with

ℓ1 + ...+ ℓm = kµ ≤ k(p− 1),

it follows that

p| gcd(

m
∑

j=1

ai,1ℓ1, ...,

m
∑

j=1

aj,nℓj) ⇒
m
∑

j=1

ai,1ℓj = ... =

m
∑

j=1

aj,nℓj = 0.

First of all, we give a general proof of (8.8) fors = 1.

Proposition 8.9.1 Leta(n), n ∈ N be an integral sequence satisfying

a(n0 + n1p+ ...+ nsp
s) ≡ a(n0)a(n1)...a(ns) mod p

for 0 ≤ ni ≤ p− 1 anda(n) 6= 0 iff k|n. Then

a(k(n0 + n1p+ ...+ nsp
s)) ≡ a(kn0)a(kn1)...a(kns) mod p.

Proof: If kni < p for 1 ≤ i ≤ s, then the proposition follows directly. Hence assume that
there exists anni such thatkni = n′i + n′′i p > p− 1. We may assume thatknj < p for all
j < i. Then

a(k(n0 + n1p+ ...+ nsp
s)) = a(kn0 + ...+ kni−1p

i−1 + n′ip
i + ...)

≡ a(kn0)...a(kni−1)a(n
′
i)... mod p.
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Sinceni < p andkni = n′i + n′′i p ≥ p, it follows thatk 6 |n′i anda(n′i) = 0 by assumption.
Hence it follows that

a(k(n0 + n1p+ ...+ nap
s)) ≡ 0 mod p.

On the other hand,a(kn1) = a(n′1 + n′′1p) ≡ a(n′1)a(n
′′
1) mod p wherea(n′i) = 0, and

thusa(kni) ≡ 0 mod p and

a(kn0)...a(kns) ≡ 0 mod p

and the proposition follows.2

Corollary 8.9.1 Let f(X) be a Laurent polynomial such that the corresponding polytope
Pf is reflexive and such that[fn]0 6= 0 ⇒ k|n. Then

[fk(n0+n1p+...+nsps)]0 ≡ [fkn0 ]0...[f
kns ]0 mod p.

No. 62 from the list of Batyrev and Kreuzer again

In this example, the exponent matrix is

A :=









1 0 0 0 −1 −1 −1 −2
0 1 0 0 −1 0 0 −1
0 0 1 0 0 −1 0 −1
0 0 0 1 0 0 −1 −1









.

A basis ofker(A) is given by

{

























1
1
0
0
1
0
0
0

























,

























1
0
1
0
0
1
0
0

























,

























1
0
0
1
0
0
1
0

























,

























2
1
1
1
0
0
0
1

























},

and thus it follows that[fn]0 6= 0 ⇒ 3|n andk = 3. We prove that condition 8.9.1 is
satisfied in this example. Assume thatp 6= 3 and that

p| gcd(
8
∑

j=1

a1,jℓj , ...,
8
∑

j=1

a4,jℓj) for ℓ1 + ...+ ℓ8 = 3µ ≤ 3(p− 1).

This means that there existx1, x2, x3, x4 ∈ Z such that

ℓ1 = ℓ5 + ℓ6 + ℓ7 + 2ℓ8 + x1p,

ℓ2 = ℓ5 + ℓ8 + x2p,

ℓ3 = ℓ6 + ℓ8 + x3p,

ℓ4 = ℓ7 + ℓ8 + x4p,
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which implies

3(ℓ5 + ℓ6 + ℓ7 + 2ℓ8) + (x1 + x2 + x3 + x4)p = 3µ ≤ 3(p− 1).

Thus, it follows that(x1 + ...+ x4) = 3z for somez ∈ Z and that

ℓ5 + ℓ6 + ℓ7 + 2ℓ8 + zp = µ ≤ p− 1.

Sinceℓ5, ..., ℓ8 are non-negative integers, it follows directly thatz ≤ 0. Now, consider the
following cases:

1. z = 0: Then
ℓ5 + ℓ6 + ℓ7 + 2ℓ8 ≤ p− 1 (8.9)

Assume thatxi < 0, i.e. xi ≤ −1 for some1 ≤ i ≤ 4. Sinceℓ1, ..., ℓ4 are non-
negative integers, it follows that eitherℓ5 + ℓ6 + ℓ7 +2ℓ8 ≥ p or ℓj + ℓ8 ≥ p for some
5 ≤ j ≤ 7, a contradiction to (8.9). Thus, sincex1 + x2 + x3 + x4 = 0, it follows
thatx1 = x2 = x3 = x4 = 0 and that

8
∑

j=1

a1,jℓj = ... =
8
∑

j=1

a4,jℓj = 0

in this example.

2. z < 0: Assume thatℓ5 + ℓ6 + ℓ7 + 2ℓ8 < (−z + 1)p. Sinceℓ1 ≥ 0, it follows that
x1 > z− 1, and sincex1 is integral, we havex1 ≥ z. Sincex1 +x2 +x3 +x4 = 3z,
it follows thatx2 + x3 + x4 ≤ 2z. Now assume thatxi ≥ z for 2 ≤ i ≤ 4. Then
x2+x3+x4 ≥ 3z, a contradiction. Hence there exists an indexi such thatxi < z, and
hencexi ≤ z−1. Sinceℓi ≥ 0, it follows thatℓi+2 +ℓ8 ≥ (−z+1)p, a contradiction
sinceℓi+2 + ℓ8 ≤ ℓ5 + ℓ6 + ℓ7 + 2ℓ8 < (−z + 1)p by assumption. Thus, we have
ℓ5 + ℓ6 + ℓ7 +2ℓ8 ≥ (−z+1)p, which impliesp ≤ ℓ5 + ℓ6 + ℓ7 +2ℓ8 + zp ≤ p− 1,
a contradiction.

Thus, it follows that the only possible case isz = 0, andx1 = x2 = x3 = x4 = 0, which
proves that condition 8.9.1 is satisfied in this example.

Database no CY(4)-184

In this second example, the Laurent polynomialf is given by

f := X1 +X2 +X3 +X4 +
1

X1
+

1

X2
+

1

X3
+
X2X3

X1
+

1

X2X3X4
,

and the exponent matrix is

A :=









1 0 0 0 −1 0 0 −1 0
0 1 0 0 0 −1 0 1 −1
0 0 1 0 0 0 −1 1 −1
0 0 0 1 0 0 0 0 −1









.



8.9. Behaviour under covering 109

A basis ofker(A) is given by

{





























1
0
0
0
1
0
0
0
0





























,





























0
1
0
0
0
1
0
0
0





























,





























0
0
1
0
0
0
1
0
0





























,





























1
0
0
1
0
0
0
1
1





























,





























0
1
1
1
0
0
0
0
1





























},

and thus it follows that[fn]0 6= 0 ⇒ 2|n andk = 2. For this example, no formula for
a(2n) is known. We prove that condition 8.9.1 is satisfied in this example.
Assume thatp 6= 2 and that

p| gcd(
9
∑

i=1

k1
i α1, ...,

9
∑

i=1

k4
i αi) for α1 + ...+ α9 = 2µ ≤ 2(p− 1).

This means that there existx1, x2, x3, x4 ∈ Z such that

α1 = α5 + α8 + x1p,

α2 = α6 − α8 + α9 + x2p,

α3 = α7 − α8 + α9 + x3p,

α4 = α9 + x4p,

which implies

2(α5 + α6 + α7 + 2α9) + (x1 + x2 + x3 + x4)p = 2µ ≤ 2(p− 1).

Thus, it follows that(x1 + x2 + x3 + x4) = 2z for somez ∈ Z and that

α5 + α6 + α7 + 2α9 + zp = µ ≤ p− 1.

Sinceα5, ..., α9 are non-negative integers, it follows directly thatz ≤ 0. Now, consider the
following two possible cases:

1. z = 0 : Then
α5 + α6 + α7 + 2α9 ≤ p− 1. (8.10)

Assume thatxi < 0, i.e. xi ≤ −1 for some2 ≤ i ≤ 4. Sinceα1, ..., α4 andα8 are
non-negative integers, it follows that eitherα6 + α9 ≥ p, α7 + α9 ≥ p or α9 ≥ p, a
contradiction to (8.10).
Assume thatx1 < 0, i.e.x1 ≤ −1. Thenα5+α8 ≥ −x1p and thusα8 ≥ −x1p−α5.
But sinceα2 andα3 are non-negative, this impliesα5 + α6 + α9 ≥ (x2 + x1)p
andα5 + α7 + α9 ≥ (x3 + x1)p. If x2 + x1 < 0, i.e. x2 + x1 ≤ −1, then
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α5 + α6 + α9 ≥ p, a contradiction to (8.10). The same holds forx3 + x1 and
α5 + α7 + α9. Thus,x2 ≥ −x1 andx3 ≥ −x1, which impliesx4 ≤ x1 ≤ −1 since
x1 + x2 + x3 + x4 = 0 and thusα9 ≥ p, a contradiction to (8.10). Hence, the only
possible case isx1 = x2 = x3 = x4 = 0, which implies

8
∑

i=1

k1
i αi = ... =

8
∑

i=1

k4
i αi = 0

in this example.

2. z < 0: Then
α5 + α6 + α7 + 2α9 + zp ≤ p− 1. (8.11)

Assume thatα5+α6+α7−α8+2α9 < (−z+1)p. Then, sinceα1, α2 andα3 are non-
negative integers, it follows thatx1+x2+x3 ≥ z. Sincex1+x2+x3+x4 = 2z, this
inducesx4 ≤ z and thusα9 ≥ −zp, sinceα4 is non-negative. Thus,2α9 ≥ −2zp,
which implies−zp ≤ 2α9 + zp ≤ α5 + α6 + α7 + 2α9 + zp, a contradiction to
(8.11). Thus,p ≤ α5 +α6 +α7 −α8 +2α9 + zp ≤ α5 +α6 +α7 +2α9 + zp, which
is also a contradiction to (8.11). Thus, it follows that the casez < 0 can not occur.

In the whole, it follows thatz = 0 andx1 = x2 = x3 = x4 = 0, which proves that
condition 8.9.1 is satisfied in this example.

8.10 The statement D1

For the proof of congruence (8.1), the coefficientsca of

f(X) =
∑

a

caX
a

did not play a role. This is different if one is interested in the proof of partD1 of the Dwork
congruences. Letn ∈ N, and writen = n0 + pn1, wheren0 ≤ p− 1. Then to prove D1 for
the sequencea(n) := [fn]0 means that one has to prove that

[fn0+n1p]0
[fn1 ]0

∈ Zp. (8.12)

Sticking to the notation of the previous sections, we write

fn0+n1p(X) = fn0(X)fn1(Xp) + pfn0(X)gn−1,1(X). (8.13)

Assume thatpk|[fn1 ]0. To prove (8.12), one has to prove thatpk|[fn0+n1p]0. By (8.13),
this is equivalent to proving thatpk−1|[fn0gn1,1(X)]0. Thus, the proof of part D1 of the
Dwork congruences requires an investigation in thep−adic orders of the constant terms of
fn1 andgn1,1 for arbitraryn1, and methods that are completely different from the methods
we applied to prove the congruence (8.1).



Chapter 9

An experimental
approach: matrix
computations

In this chapter, we describe an approach we tried to compute the Frobeniuspolynomial for
hypergeometric Calabi-Yau differential operators. The idea was to compute the character-
istic polynomial of the Frobenius matrix with a given precision by computing the charac-
teristic polynomial of a matrix which might be different from the Frobenius matrix, but has
the same characteristic polynomial.
This method worked out well in practice for hypergeometric CY(4)-differential operators,
and we obtained the same results as by computing the unit root and the root ofp−adic
valuation1 of the Frobenius polynomial. If the differential operators were not of hyper-
geometric type, the analytic continuation method which we applied experimentally didnot
work, and thus in these cases, we could not perform any computations.

9.1 Matrix computations for CY(4)-operators

First, we describe the crucial idea behind the method. Assume thatP is a hypergeometric
CY(4)-differential operator. LetP be given by

P = A4(z)θ
4 +A3(z)θ

3 + ...+A0(z)

with A4(0) 6= 0. Let

y0(z) = f0(z),

y1(z) = log(z)f0(z) + f1(z),

y2(z) =
1

2
log2(z)f0(z) + log(z)f1(z) + f2(z),

y3(z) =
1

6
log3(z)f0(z) +

1

2
log2(z)f1(z) + log(z)f2(z) + f3(z),

111
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wheref0(0) = 1 be a Frobenius basis of solutions to a CY(4)-differential equation

Py = 0. (9.1)

Let B(z) be the matrix

B(z) =









y3 θ(y3) θ2(y3) θ3(y3)
y2 θ(y2) θ2(y2) θ3(y2)
y1 θ(y1) θ2(y1) θ3(y1)
y0 θ(y0) θ2(y0) θ3(y0)









.

Let M(z) be the connection matrix with regard to the basis{ω,∇(ω),∇2(ω),∇3(ω)} for
∇ := ∇(θ), whereθ := zd/dz is the logarithmic derivative. Then,B(z) is a solution to the
differential equation

z
d

dz
B(z) − B(z)M(z) = 0,

which is the “dual” to the differential equation

z
d

dz
C(z) + M(z)C(z) = 0

occuring in section 3.6.
As in section 3.6, letA4 denote the matrix

A4 =









ε α β γ
0 εp pα pβ
0 0 εp2 p2α
0 0 0 εp3









,

whereβ = α2/2.
We introduce the following notation:

θl(Yk) := θl(yk)|log(z)=0 for 0 ≤ l ≤ 3, 0 ≤ k ≤ 3,

i.e. θl(Yk)(z) is the non-logarithmic part ofθl(yk)(z), such that, for example,Y1(z) =
f1(z).
Using this notation we define the matrixB(z) as

B(z) :=









Y3 θ(Y3) θ2(Y3) θ3(Y3)
Y2 θ(Y2) θ2(Y2) θ3(Y2)
Y1 θ(Y1) θ2(Y1) θ3(Y1)
Y0 θ(Y0) θ2(Y0) θ3(Y0)









.

In terms of the power seriesf0, f1, f2, f3,B can be written as

B(z) =









f3 θ(f3) + f2 θ2(f3) + 2θ(f3) + f1 θ3(f3) + 3θ2(f2) + 3θ(f1) + f0

f2 θ(f2) + f1 θ2(f2) + 2θ(f1) + f0 θ3(f2) + 3θ2(f1) + 3θ(f0)
f1 θ(f1) + f0 θ2(f1) + 2θ(f0) θ3(f1) + 3θ2(f0)
f0 θ(f0) θ2(f0) θ3(f0)









.
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SinceB(z) is a solution to the “dual” differential equation, it follows for the Frobenius
matrixAφ(z) that

p3Aφ(z)
−1 = B(zp)−1p3

A
−1
4 B(z)

on pZp. Since, by the Weil conjectures, the characteristic polynomial ofp3Aφ(z)
−1 co-

incides with the characteristic polynomial ofAφ(z) at a Teichmüller point, we want to
compute the characteristic polynomial ofp3Aφ(z)

−1 explicitly. For simplicity, define

A(z) := p3Aφ(z)
−1.

We assume that the constantε = ±1 occuring inA4 is 1 in this case, sinceP is a hyperge-
ometric differential operator and for these operators, there exist familiesof CY-threefolds
such thatε = 1.
Thus, we have the means to compute the Frobenius matrix onpZp up to two parameters
α, γ. By previous results, see section 5.7, we know that the Frobenius polynomial is indeed
independent ofα andγ. In this section, we try to provide another explanation of this fact.
To compute the characteristic polynomial of the Frobenius matrix in a Teichmüller point,
we have a problems to solve:
Find an analytic continuation of the matrixA(z) to the Teichmüller points on the boundary
of thep−adic unit disc.

During the computations we will describe in the following, we "guessed” a method of ana-
lytic continuation that worked out well in the hypergeometric examples.
We could compute the Frobenius polynomials in Teichmüller points for hypergeometric
CY(4)-operators, and the results we obtained coincided with the results wecomputed by
the unit-root-method.

To compute the Frobenius polynomial in a Teichmüller pointx, we want to evaluate the
matrix

A(z) = B(zp)−1p3
A
−1
4 B(z)

in the pointz = x.

Our approach to do this was to translate Dworks’ analytic continuation method to compute
the unit root to the case of matrices in the most obvious way:
LetBs(z) be the matrixB(z) truncated up to degreeps−1, i.e. the entries ofBs(z) are the
power series entries ofB(z) truncated after degreeps− 1, which are polynomials of degree
ps − 1.

Let
ds(z) := det(Bs(z)).

We define
D := {x ∈ Zp, |f1

0 (x)| = |d1(x)| = 1}.
The translation of the analytic continuation method of Dwork to the case of matrices implies
the following



114 9. An experimental approach: matrix computations

Conjecture 9.1.1 Letx ∈ D be a Teichmüller point. Then

det(I − TA(z))|z=x ≡ det(I − TAs(x)) mod ps

where

As(x) = Bs(x)−1p3
A
−1
4 Bs+1(x).

Our computations with hypergeometric CY(4)-operators confirm this conjecture. First of
all, we computed with the parameter valuesα = β = γ = 0 and the result coincided
with the result of the unit root method. Then we tried different parameter values, but, as
expected, the result stayed the same. This obervation suggested the following

Conjecture 9.1.2 Let x ∈ D be a Teichmüller point. If the characteristic polynomial
det(I − TAs(x)) of the matrix

As(x) := Bs(x)−1p3
A
−1
4 Bs+1(x)

convergesp−adically to a polynomial inZp[T ], it is independent of the choice of the pa-
rametersα, β andγ.

Instead of direct a proof, we can only give some arguments, differentfrom the arguments
in section 5.7 that might explain why this conjecture holds true. Therefore, we state some
congruences that might help to explain conjecture 9.1.2.
During our computations, we observed the following congruences. Firstof all, since the
elementds+1(x)/ds(x) is the coefficient ofp6T 4 in det(I − TAs(x)), we conjecture that

Conjecture 9.1.3 For a Teichmüller pointx ∈ D,

ds+1(x)

ds(x)
≡ 1 mod ps+1.

Conjecture 9.1.4 For 0 ≤ k ≤ 1, 0 ≤ n,m ≤ 3 and a Teichmüller pointx ∈ D, we have
the congruences

θn(Yk)
s+1(x)

θm(Yk)s+1(x)
≡ θn(Yk)

s(x)

θm(Yk)s(x)
mod ps.

It was the following conjecture that led us to the investigations we made in chapter 10. It
seems as though these congruences are true in all exapmles where the coefficients of f0

satisfy the Dwork congruences.

Conjecture 9.1.5 For a Teichmüller pointx ∈ D, the following congruences hold:

fs+1
0 (x)

fs0 (xp)
≡ p

fs+1
1 (x)

fs1 (xp)
≡ p2 f

s+1
2 (x)

fs2 (xp)
≡ p3 f

s+1
3 (x)

fs3 (xp)
mod ps.
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Explanation of conjecture 9.1.2:The coefficients ofα, β, γ in det(I−TAs(x)) are of the
form

p2+i

ds(x)
· (θσ(0)(Yi)

s+1(x)θσ(1)(Yi)
s(x) − θσ(0)(Yi)

s(x)θσ(1)(Yi)
s+1(x))

· (θσ(2)(Yj)
s+1(x)θσ(3)(Yk)

s(x) − θσ(3)(Yj)
s+1(x)θσ(2)(Yk)

s(x)),

whereσ is a permutation on{0, 1, 2, 3}, 0 ≤ i ≤ 2 and0 ≤ j, k ≤ 3, i 6= j 6= k 6= i. Since
this looks rather complicated, take for example

p2

ds(x)
· (θ2(Y0)

s+1(x)θ(Y0)
s(x) − θ2(Y0)

s(x)θ(Y0)
s+1(x))

· (Y s+1
1 (x)θ3(Y2)

s(x) − θ3(Y1)
s+1(x)Y s

2 (x)),

which can be written as

p2

ds(x)
· θ2(Y0)

s(x)θ2(Y0)
s+1(x)

(

θ(Y0)
s(x)

θ2(Y0)s(x)
− θ(Y0)

s+1(x)

θ2(Y0)s+1(x)

)

· (Y s+1
1 (x)θ3(Y2)

s(x) − θ3(Y1)
s+1(x)Y s

2 (x)).

Now if conjecture 9.1.4 holds true, it follows thatif

p2θ2(Y0)
s(x)θ2(Y0)

s+1(x)(Y s+1
1 (x)θ3(Y2)

s(x) − θ3(Y1)
s+1(x)Y s

2 (x))/ds(x)

is a p−adic unit, then the whole term is congruent to0 modulops. A similar argument
applies for all coefficients ofα, β andγ. At the moment, we have not yet proven that the
elements in question are in factp−adic units, and thus we are not in a position to prove
conjecture 9.1.2 now with this approach.

9.2 Matrix computations for CY(2)-operators

In this section, we describe the matrix approach for CY(2)-operators. In this case, which is
much simpler that the case of CY(4)- operators, we were able to prove thatthe characteristic
polynomial of the Frobenius matrix at a Teichmüller point is indeed independent of the
choice of the parameterα occuring in the matrixA2 directly, by application of certain
congruences. Note that the fact that the Frobenius polynomial is independent ofα follows
directly from the general theory, since it is completely determined by the unit root, which
does not depend onα in any way.
Let P be a CY(2)-operator. A Frobenius basis of solutions to the differential equation
Py = 0 is then given by

y0 = f0

y1 = f1 + f0 log(z),

wherefi ∈ Q[[z]].



116 9. An experimental approach: matrix computations

In the case of a CY(2)-operator, the matrixB(z) is given by

B(z) :=

(

f1 θ(f1) + f0

f0 θ(f0)

)

.

Let
ds(z) := det(Bs(z)).

The matrixA2 is of the shape

A2 =

(

p α
0 1

)

,

and thus only depending on one parameterα.
We define

D := {x ∈ Zp, |f1
0 (x)| = |d1(x)| = 1}.

As in the case of CY(4)- operators, our computations implied that the translation of Dworks
analytic continuation method works out well to compute the Frobenius polynomialat a
Teichmüller pointx. LetA(z) := pAφ(z)

−1.

Conjecture 9.2.1 Letx ∈ D be a Teichmüller point. Then

det(I − TA(z))|z=x ≡ det(I − TAs(x)) mod ps

where
As(x) = Bs(x)−1pA−1

2 Bs+1(x).

Unlike in the CY(4)-case, in the CY(2)-case we can actually prove the independence of the
Frobenius polynomial at a Teichmüller pointx of the parameterα.

Proposition 9.2.1 Let x ∈ D be a Teichmüller point. If the the characteristic polynomial
det(I − TAs(x)) of the matrix

As(x) := Bs(xp)−1pA−1
2 Bs+1(x)

convergesp−adically to a polynomial inZp[T ],

det(I − TAs(x)) ≡ det(I − TAs+1(x)) mod ps,

it is independent of the choice of the parameterα.

Proof: The coefficient ofT 2 in det(I − TAs(x)) is given by

pds+1(x)/ds(xp),

and is thus independent of the choice ofα. Furthermore, since

ds(x)

ds−1(x)
≡ ds+1(x)

ds(x)
mod ps,
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it follows that|ds(x)| = 1 for all s.
The coefficient ofT is given by

(−pfs+1
1 (x)θ(f0)

s(x)−fs1 (x)θ(f0)
s+1(x)+p(θ(f1)

s+1(x)+fs+1
0 (x))fs0 (x)+(θ(f1)

s(x)+
fs0 (x))fs+1

0 (x) − pαfs+1
0 (x)θ(f0)

s(x) + pαfs0 (x)θ(f0)
s+1(x))/ds(x).

Thus, it is independent of the choice of the parameterα iff

pfs+1
0 (x)fs0 (x)

(

θ(f0)s+1(x)

fs+1
0 (x)

− θ(f0)s(x)
fs0 (x)

)

ds(x)
≡ 0 mod ps+1.

Since|ds(x)| = |fs0 (x)| = 1 by assumption, this is equivalent to

θ(f0)
s+1(x)

fs+1
0 (x)

≡ θ(f0)
s(x)

fs0 (x)
mod ps.

But this is true by [27], Lemma 3.4.(ii), and the proposition follows.2

Note that our computations suggested the following

Conjecture 9.2.2 Letx ∈ D be a Teichmüller point. Then

ds+1(x)/ds(xp) ≡ 1 mod ps+1.

Furthermore, during our numerous computations we observed that

Conjecture 9.2.3 Letx ∈ D be a Teichmüller point. Then

p
fs+1
1 (x)

fs1 (xp)
≡ fs+1

0 (x)

fs0 (xp)
mod ps.

This conjecture seems to be true for all CY(2)-operators and led us to the investigations we
performed in chapter 10.
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Chapter 10

Some new formulas to
compute the unit root

During the explicit calculations described in the last chapter, we discovered experimen-
tally that for a Frobenius basis of solutions to a CY(4)-differential equation, the following
congruences hold in a Teichüller pointx:

fs+1
0 (x)

f0(x)
≡ pfs+1

1 (x)

fs1 (x)
≡ psfs+1

2 (x)

fs2 (x)
≡ p3fs+1

3 (x)

fs(x)
mod ps.

This led us to the question:Is it possible to compute the unit root in terms of the other
solutions of the CY-differential equation?In this chapter, we prove by very down-to-earth
methods that in general the answer isyes. In a Teichmüller point, the analytic elementr(z)
from theorem 2.3.1 coincides with an analytic function that can be expressed in terms of the
power seriesf1(z), f2(z) andf3(z) occuring in the logarithmic solutions.

10.1 Fixed points involving the other solutions

As in the previous chapter, letP be a CY(4)-differential operator. Remember that around
z = 0, the differential equationPy = 0 has a Frobenius basis of solutions with at most
logarithmic singularities. In this section, we derive formulas for fixed points of the Frobe-
nius matrixAφ in terms of the power seriesf1(z), f2(z), f3(z) that occur in the logarithmic
solutionsy1, y2 andy3.

As in section 3.2, let

Y4 = exp

(

1

2

∫

a3
dz

z

)

. (10.1)

We assume thatY4(z) has a power series expansion inZp[[z]]. As in the previous chapter,
we choose the basis{ω,∇(ω),∇2(ω),∇3(ω)} where∇ := ∇(θ) and letM(z) denote the
connection matrix with regard to this basis. As in section 3.6, letC(z) denote the non-
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logarithmic part of the matrixC(z) satisfying

z
d

dz
C(z) + M(z)C(z) = 0

and

C(z) = Y4(z)

(

N0 −N1 N2 −N3

y0 −y1 y2 −y3

)

for some3 × 1− matricesNi. This special shape ofC(z) implies thatC(z) satisfies

C(z) = Y4(z)

(

N0 −N1 N2 −N3

f0 −f1 f2 −f3

)

for some3 × 1 matricesNi with power series entries, which can be seen as a starting
condition for the differential equation above. LetAφ(z) denote the Frobenius matrix with
regard to the chosen basis, and write

Aφ(z) =

(

pA0 C0

pB0 D0

)

.

As in section 3.6, on the openp−adic unit disc, we have the equality

Aφ(z) = C(z)









ε α β γ
0 εp αp βp
0 0 εp2 αp2

0 0 0 εp3









C(zp)−1. (10.2)

A direct application of equation 10.2 leads us to the following formulas for sections that are
mapped to constant multiples of themselves by the Frobenius mapping:

Proposition 10.1.1 Let

x1 :=
εα

p− 1
, x2 :=

εβ + εαx1

p2 − 1

and

x3 :=
εγ + εβx1 + εαx2

p3 − 1
.

Then, for1 ≤ i ≤ 3, we have

Aφ(z)Y4(z
p)

((

Ni(z
p)

fi(z
p)

)

+ x1

(

Ni−1(z
p)

fi−1(z
p)

)

+ ...+ xi

(

N0(z
p)

f0(z
p)

))

= εpiY4(z)

((

Ni(z)
fi(z)

)

+ x1

(

Ni−1(z)
fi−1(z)

)

+ ...+ xi

(

N0(z)
f0(z)

))

.

Proof: The proof is by a direct calculation, applying equation (10.2) and then solving the
equations forx1, x2 andx3. 2
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10.2 New formulas for the unit root in Teichmüller points

In chapter 3 we derived that the analytic elementr(z), which, evaluated at a Teichmüller
point, is the unit root in this point, coincides with the analytic function

εf0(z)

f0(zp)

on the openp−adic unit disc. In this section, we use the formulas for the sections that
are mapped to constant multiples of themselves derived in proposition 10.1.1 to construct
analytic elementsF 1

0 (z), F 2
0 (z), F 3

0 (z) on the openp−adic unit disc whose analytic contin-
uations to the boundary of thep−adic unit disc coincide withr(z) at the Teichmüller points
and involve the power seriesf0, f1, f2, f3.

By proposition 10.1.1, it follows that for0 ≤ i ≤ 3,

(

pA0 C0

pB0 D0

)

Y4(z
p)

(

Ni(z
p) + x1Ni−1(z

p) + ...+ xiN0(z
p)

fi(z
p) + x1fi−1(z

p) + ...+ xif0(z
p)

)

= piεY4(z)

(

Ni(z) + x1Ni−1(z) + ...+ xiN0(z)
fi(z) + x1fi−1(z) + ...+ xif0(z)

)

. (10.3)

If we define

ηi0(z) :=
Ni(z) + x1Ni−1(z) + ...+ xiN0(z)

fi(z) + x1fi−1(z) + ...+ xif0(z)

and

F i0(z) :=
piε(fi(z) + x1fi−1(z) + ...+ xif0(z))

fi(zp) + x1fi−1(zp) + ...+ xif0(zp)
,

then equation (10.3) leads to

(

pA0 C0

pB0 D0

)(

ηi0(z
p)

1

)

= Y4(z)/Y4(z
p)

(

ηi0(z)F
i
0(z)

F i0(z)

)

. (10.4)

But this implies that

pA0η
i
0(z

p) + C0 = ηi0(z)Y4(z)/Y4(z
p)F i0(z) (10.5)

pB0η
i
0(z

p) +D0 = Y4(z)/Y4(z
p)F i0(z), (10.6)

and sinceD0 is invertible, it follows thatηi0(z) satisfies

ηi0(z) = D−1
0

pA0η
i
0(z

p) + C0

1 + pD−1
0 B0ηi0(z

p)
. (10.7)

Proposition 10.2.1 Let 0 ≤ i ≤ 3. If we writefi =
∑∞

k=1 a
i
kz
k, then|aik|p ≤ pi(s−1) if

k < ps.
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Proof: Sincef0(z) ∈ Zp[[z]], the statement is true forf0. For i > 0, we have

Y4(z
p)(pB0(Ni(z

p) + x1Ni−1(z
p) + ...+ xiN0(z

p))

+ D0(fi(z
p) + x1fi−1(z

p) + ...+ xif0(z
p)))

= piεY4(z)(fi(z) + x1fi−1(z) + ...+ xif0)., (10.8)

whereY4(z) has a power series expansion inZp[[z]]. Now assume that the statement holds
for all j < i. By induction ons, we will prove that the statement holds for the coefficients
of fi. Sinceai0 = 0, we have|ai0| ≤ p−1, and thus|aik| ≤ p−1 for all k < p0 = 1.
Assume that the statement holds fork < ps−1, and letps−1 ≤ k < ps. Since the entries of
the matrixNi are sums of derivatives offi and thefj for j < i, equation (10.8) translates
into an equality of power series that leads to the following equality foraik:

piaik =
∑

l≤[k/p]

clal + uik,

wherecl ∈ Zp and|uik| < p(i−1)s−i. Since by assumption|ail| < pi(s−1) for l ≤ [k/p] <
ps−1, it follows that|aik| < pis.2

Proposition 10.2.2 If xi 6= 0, the formal power series entries of the matrixηi0(z) have
radius of convergencer = 1. If xi = 0, the Laurent series entries ofηi0(z) converge in
the open annulus with inner radius of convergencer1 = 0 and outer radius of convergence
r2 = 1.

Proof: Assume first thatxi 6= 0. The coefficients of the power series entriesN j
i (z) =

∑∞
k=0 c

(i,j)
k zk, 1 ≤ j ≤ 4 of Ni(z) satisfy |ci,jk |p ≤ pi(s−1) for k < ps by proposition

10.2.1, and thus the radius of convergence ofN j
i (z) is r = 1. The same holds for the power

seriesfi(z). Sincefi(0)+x1fi−1(0)+ ...+xif0(0) = xi 6= 0, the quotientηi0(z) converges
in an open disc of radius1 ≥ r > 0 around0.
By equation (10.7), it follows that ifηi0(z

p) converges in the open disc of radiusr, then
ηi0(z) converges in the open disc of radiusr.
Conversely, ifηi0(z) converges in the open disc of radiusr, thenηi0(z

p) converges in the
open disc of radiusr1/p. Iterating these two arguments, we obtain that for everyn ∈ N,
ηi0(z) converges in the open disc of radiusr1/p

n
. Sincelimn→∞ r

1/pn = 1, the proposition
follows.
If xi = 0, then the quotientηi0(z) is a matrix whose entries are Laurent series that converge
in an annulus with inner radiusr1 = 0 and outer radiusr2 > 0. Similar to the casexi 6= 0,
one proves by iteration thatr2 = 1. 2

Now, as in the previous sections, leth(z) := f1
0 (z), let s(z) be the polynomial whose zero

set are the singular points of the differential operatorPn and defineA := Zp[z][(s(z)h(z))−1].
As before, letS0 = Spec(A0) andS∞ = Spec(A∞).
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Proposition 10.2.3 Letx0 ∈ S∞. Then the mapping

x 7→ D−1(x0)
pA(x0)x+ C(x0)

1 + pD−1(x0)B(x0)x

is a contraction mapping inQp.

Proof: Let x, y ∈ Qp. Then
∣

∣

∣

∣

D−1(x0)
pA(x0)x+ C(x0)

1 + pD−1(x0)B(x0)x
−D−1(x0)

pA(x0)y + C(x0)

1 + pD−1(x0)B(x0)y

∣

∣

∣

∣

p

=

∣

∣

∣

∣

D−1(x0)
(pC(x0)B(x0) − pA(x0)D(x0))(x− y)

p2B(x0)2xy + pB(x0)D(x0)(x+ y) +D(x0)2

∣

∣

∣

∣

p

=

∣

∣

∣

∣

D−1(x0)
(C(x0)B(x0) −A(x0)D(x0))

p2B(x0)2xy + pB(x0)D(x0)(x+ y) +D(x0)2

∣

∣

∣

∣

p

|p(x− y)|p

≤ |p(x− y)|p =
|x− y|p

p
,

sinceD(x0) is a unit inZp. 2

Proposition 10.2.4 Letηi be an analytic element of supportS∞ coinciding withηi0 onpZp
(or pZp \ {0}). Then onS∞, we have

ηi(z) = D(z)−1 pA(z)ηi(zp) + C(z)

1 + pD(z)−1B(z)ηi(zp)
.

Proof: The functionD(z)−1 pA(z)ηi(zp)+C(z)
1+pD(z)−1B(z)ηi(zp)

is an analytic function onS∞ (orS∞\{0})

coinciding withηi0(z) on the open subsetpZp (or pZp \ {0}). Sinceηi(z) is an analytic
function onS∞ (or S∞ \ {0}) coinciding withηi0(z) on pZp (or pZp \ {0}), the statement
follows by the uniqueness theorem 5.1.1.2

Theorem 10.2.1Let 1 ≤ i ≤ n − 1, and letx0 ∈ S∞ be a Teichmüller point satisfying
xp0 = x0, and letηi be an analytic element of supportS∞ (or S∞ \ {0}) conciding withηi0
onpZp (or pZp \ {0}). Letη0 be an analytic element of supportS∞ coinciding withη0

0 on
pZp. Thenηi(x0) = η0(x0).

Proof: Sincex0 = xp0, it follows thatηi(x0) = ηi(xp0). By proposition 10.2.4, it follows
thatηi(x0) satisfies

ηi(x0) = D−1(x0)
pA(x0)η

i(x0) + C(x0)

1 + pD−1(x0)B(x0)ηi(x0)
.

Thus,ηi(x0) is a fixed point of the contraction described in proposition 10.2.3. Since by
the proof of theorem 2.3.1,η0(x0) is a fixed point of this contraction, too, it follows that
ηi(x0) = η0(x0). 2
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Since the elementF 0(z) appearing beyond is nothing butr(z) by chapter 3, the following
corollary now proves the identity ofr(z) with several analytic functions involving the power
seriesf1, f2, f3 in Teichmüller points.

Corollary 10.2.1 LetF 0(z) be an analytic function onS∞, coinciding withF 0
0 (z) onpZp.

Then for eachx0 ∈ S∞ (or S∞ \ {0}) satisfyingxp0 = x0, we haveF i(x0) = F 0(x0),
whereF i(z) is an analytic function onS∞ (or S∞ \ {0}) coinciding withF i0(z) onpZp (or
pZp \ {0}).

Proof: We have
F 0(x0) = pB(x0)η

0(x0) +D(x0)

and
F i(x0) = pB(x0)η

i(x0) +D(x0).

Sinceηi(x0) = η0(x0) by theorem 10.2, the statement follows.2

10.3 An explicit construction of the analytic continuation ofµi(z)
and Fi(z)

In this section, we consider the question for an explicitp−adic analytic continuation for the
elementsF i0(z) to the boundary of thep−adic unit disc. These functions are analytic on
openp−adic unit disc. For the rest of this section, for1 ≤ i ≤ 3 we assume that

fi(z) =
∞
∑

k=1

aikz
k ∈ zQ[[z]]

satisfies|ai1|p = 1. We derive a condition on the coefficients of the power seriesfi to
construct an explicitp−adic analytic continuationF i of the power seriesF i0 to the boundary
of thep− adic unit disc. In the end, we prove thatif there exists an analytic continuationF i

of F i0, then at a Teichmüller pointx0, we have the equality

F i(x0) ≡ εpi
fs+1
i (x0)

fsi (x0)
mod ps,

which explains the observations we made during our computations.

Definition 10.3.1 For 1 ≤ i ≤ 3, let Di be the region

Di := pZp ∪ {x ∈ Zp, |f1
i (x)|p = 1, |f2

i (x)|p = pi},

and letDo
i be the regionDi \ {0}.
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Proposition 10.3.1 For all s ≥ 2, l ≥ 1 and1 ≤ i ≤ 3, we have

pifi(zp
l)
fs−1
i ((zpl)p)

plp
≡ fi((zp

l)p)

plp
pifsi (zp

l) mod ps−1Zp[[z]]. (10.9)

Proof: We will prove the proposition by comparing the coefficients ofzn on both sides of
equation (10.9).
Forn ≤ ps − 1, the coefficients ofzn on both sides are equal inZp. Let n ≥ ps, pt−1 ≤
n ≤ pt for somet ≥ s+ 1. Writen = n0 + pn1. The coefficient ofzn on the lefthand side
of equation (10.9) is

pl(n−p)+i
ps−1
∑

j=0

ain−pja
i
j ,

while the coefficient on the righthand side is

pl(n−p)+i
ps−1
∑

j=0

ain1−ja
i
n0+pj .

We will prove that both coefficients are congruent to0 modulo ps−1 and start with the
coefficient on the lefthand side.
Since|ain−pj |p ≤ pi(t−1) and|aij |p ≤ pi(s−1), we have to prove that

l(n− p) + i− i(t− 1) − i(s− 1) ≥ s− 1 for all s ≥ 2.

But

l(n− p) + i− i(t− 1) ≥ l(pt−1 − p) + i− i(t− 1) ≥ (i+ 1)(t− 2) ≥ (i+ 1)(s− 1)

for all t ≥ 2, and thus the coefficient on the lefthand side is congruent to0 modulops−1.
Considering the coefficient on the righthand side, we have|ain1−j |p ≤ pi(t−2) and|ain0+pj

|p ≤
pis. This leads to the same inequality as on the righthand side.2

Corollary 10.3.1 For all x0 ∈ pZp \ {0}, we have

xp0
pifi(x0)

fi(x
p
0)

≡ xp0
pifsi (x0)

fs−1
i (xp0)

mod ps−1Zp.

Proof: Write x0 = plu, whereu is a unit inZp. Since the radius of convergence of the
formal power seriesfi(z) is r = 1, we may evaluatefi in x0 = upl and the proposition
implies

pifi(up
l)
fs−1
i ((upl)p)

plp
≡ fi((up

l)p)

plp
pifsi (up

l) mod ps−1Zp.

Sincef
s−1
i ((upl)p)

plp
and fi((up

l)p)
plp

are units inZp, we may divide by them, multiply both sides
by the unitup, and the statement follows.2

Now, we will consider the question about the analytic continuation of the functionsF i0(z).



126 10. Some new formulas to compute the unit root

Proposition 10.3.2 If νi :=ordp(xi) < pl − 1, then fors ≥ 2 andl ≥ 1,

pi(fi(zp
l)+x1pfi−1(zp

l)+...+xif0(zp
l))
fs−1
i ((zpl)p) + x1pf

s−1
i−1 ((zpl)p) + ...+ xif

s−1
0 ((zpl)p)

pνi

≡
fi((zp

l)p) + x1fi−1((zp
l)p) + ...+ xif0((zp

l)p)

pνi
pi(fsi (zp

l)+x1f
s
i−1(zp

l)+...+xif
s
0 (zpl))

mod ps−1Zp[[z]].

Otherwise,

pi(fi(zp
l)+x1fi−1(zp

l)+...+xif0(zp
l))
fs−1
i ((zpl)p) + x1f

s−1
i−1 ((zpl)p) + ...+ xif

s−1
0 ((zpl)p)

ppl

≡
fi((zp

l)p) + x1fi−1((zp
l)p) + ...+ xif0((zp

l)p)

ppl
pi(fsi (zp

l)+x1f
s
i−1(zp

l)+...+xif
s
0 (zpl))

mod ps−1Zp[[z]].

Proof: Literally the same as for proposition 10.3.1. In the caseνi < pl − 1, we may only
divide bypνi (and not byppl) sincefi(zpl)+x1fi−1(zp

l)+ ...+xif0(zp
l) has the constant

termxi of p−adic valuationνi. 2

Corollary 10.3.2 For x0 ∈ pZp, we have

xp0
pi(fi(x0) + x1fi−1(x0) + ...+ xipf0(x0))

fi(x
p
0) + x1fi−1(x0) + ...+ xif0(x

p
0)

≡

xp0
pi((fsi (x0) + x1f

s
i−1(x0) + ...+ xif

s
0 (x0))

fs−1
i (xp0) + x1f

s−1
i−1 (xp0) + ...+ xif

s−1
0 (xp0)

mod ps−1.

By F i,s(z), we denote the quotient

F si (z) =
pi(fsi (z) + x1f

s
i−1(z) + ...+ xif

s
0 (z))

fs−1
i (zp) + x1fsi−1(z

p) + ...+ xifs0 (zp)
.

In the following, we will always assume that the next condition is satisfied.

Condition 10.3.1 For 1 ≤ i ≤ 3, we have

p2i(s−1)+ifsi (z)f
s
i (z

p) ≡ p2i(s−1)+ifs+1
i (z)fs−1

i (zp) mod psZp[z].
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Proposition 10.3.3 Let1 ≤ i ≤ 3. If condition 10.3.1 is satisfied for alls ≥ 2 then

p2i(s−1)+i(fsi (z) + x1f
s
i−1(z) + ...+ xif

s
0 (z))(fsi (z

p) + x1f
s
i−1(z

p) + ...+ xif
s
0 (zp))

≡
p2i(s−1)+i(fs+1

i (z)+x1f
s+1
i−1 (z)+...+xif

s+1
0 (z))(fs−1

i (zp)+x1f
s−1
i−1 (zp)+...+xif

s−1
0 (zp))

mod ps−1Zp[z].

Proof: Since for1 ≤ i ≤ 3 and j < i we havepi(s−1)fsj (z) ∈ p(i−j)(s−1)Zp[z], the
statement follows directly since condition 10.3.1 holds.2

Proposition 10.3.4 Letx0 ∈ Zp such that

|f1
i (x0)|p = 1, |f2

i (x0)|p = pi.

If condition 10.3.1 is satisfied for alls ≥ 2, then

|fsi (x0)|p = pi(s−1).

Proof: First of all, we prove that|fsi (x0)|p = pi(s−1) implies that|fsi (xp0)|p = pi(s−1).
Let |fsi (x0)|p = pi(s−1). Thenpi(s−1)fsi (x0) 6= 0 mod p. Sincepi(s−1)fsi (z

p) ∈ Zp[z],
pi(s−1)fsi (x0) ≡ pi(s−1)fsi (x

p
0) mod p, and the statement follows.

Now, we proceed by induction ons. Assume that|fs−1
i (x0)|p = pi(s−2) and|fsi (x0)|p =

pi(s−1). Since

p2i(s−1)+ifsi (x0)f
s
i (x

p
0) ≡ p2i(s−1)+ifs+1

i (x0)f
s−1
i (xp0) mod ps

and since the lefthand side of the equation hasp−adic orderi, it follows thatfs+1
i (x0) must

havep− adic order−is such that both sides of the equation have the samep- adic order.2

Proposition 10.3.5 Assume that for alls ≥ 2, condition 10.3.1 is satisfied. Letx0 ∈ Di,
|x0|p = 1. Then

F s+1
i (x0) ≡ F si (x0) mod ps−1.

Proof: Applying proposition 10.3.3 and specializing toz = x0 leads to the equation

p2i(s−1)+i(fsi (x0) + x1f
s
i−1(x0) + ...+ xif

s
0 (x0))(f

s
i (x

p
0) + x1f

s
i−1(x

p
0) + ...+ xif

s
0 (xp0))

≡
p2i(s−1)+i(fs+1

i (x0)+x1f
s+1
i−1 (x0)+...+xif

s+1
0 (x0))(f

s−1
i (xp0)+x1f

s−1
i−1 (xp0)+...+xif

s−1
0 (xp0))

mod ps.

By proposition 10.3.4,pi(s−1)fsi (x
p
0) and pi(s−2)fs−1

i (xp0) are p−adic units, and it fol-
lows directly that the same holds forpi(s−1)(fsi (x

p
0) + x1f

s
i−1(x

p
0) + ... + xif

s
0 (xp0)) and
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pi(s−2)(fs−1
i (xp0) + x1f

s−1
i−1 (xp0) + ...+ xif

s−1
0 (xp0)). Thus, division by these two elements

leads to
piF s+1

i (x0) ≡ piF si (x0) mod ps,

and the statement follows.2

Proposition 10.3.6 Let the assumptions be as in proposition 10.3.5. Then

F si (x0) ≡
pifsi (x0)

fs−1
i (x0)

mod ps−1.

Proof: This follows directly by a cross-multiplication, since

pi(s−1)fsj (x0) ≡ 0 mod ps−1

for all j < i by proposition 10.3.4.2

The preceding propositions and corollarys lead to the following theorem:

Theorem 10.3.1Assume that for alls ≥ 2, condition 10.3.1 is satisfied. ThenF i0(z), which
is an analytic function onpZp (or pZp\{0} if xi = 0), is the restriction topZp (or pZp\{0})
of an analytic element of supportDi (or D

o
i ):

F i(z) = lim
s→∞

pi(fsi (z) + x1f
s
i−1(z) + ...+ xif

s
0 (z))

fs−1
i (zp) + x1f

s−1
i−1 (zp) + ...+ xif

s−1
0 (zp)

.

Proof: By corollary 10.3.2 and proposition 10.3.5, the sequence{F i,s(z)} converges uni-
formly onDi and coincides withF i0(z) onpZp (or pZp \ {0}). 2

Now, our observations concerning the computation of the unit root by the power series
f1, f2 andf3 can be explained by the following corollary, which is a direct consequence of
theorem 10.3.1 and proposition 10.3.6.

Corollary 10.3.3 Let the assumptions be as in the theorem above, and letx0 ∈ Di (or D
o
i )

be a Teichmüller point. Then the unit root can be computed with the power series fi for
1 ≤ i ≤ 3 by

F i(x0) ≡
pifsi (x0)

fs−1
i (x0)

mod ps−1.



Chapter 11

An alternative Method for
analytic continuation

In this chapter, we describe a method due to G. Christol (see [15]) to evaluate a fraction of
the form

f(z)

f(zp)

at a Teichmüller pointx, where

f(z) =
∞
∑

n=0

a(n)zn

is a power series which is a so-called algebraicA−element, i.e. an element in theA−algebra
D(A). The key ingredient of the method is to construct, for a given Teichmüller point x, an
analytic continuation of the functionsf(z) andf(zp) themselvesto the open neighborhood
B(x, 1), whereB(x, 1) denotes the open neighborhood of radius1 of x.
If f ∈ D(A) is continuable, in [15] and [16], Christol only gives a proof of the existence of
an explicit analytic continuation, but no estimates for thep−adic precision. We analyse the
special case that the coefficients off are integral and satisfy the Dwork congruences, and
compare the continuation method of Christol to the continuation method of Dwork.
Unfortunately, if the Dwork congruences are not satisfied, we were not able to apply Chris-
tols method in practice, since we could not derive any estimates for thep−adic precision in
this case.

11.1 TheA−algebraD(A) and the Dwork congruences

Let A be the ring of integers of a finite algebraic exentsion ofQp and letCp denote the
completion of the algebraic closure ofQp.
An A−function f is an analytic function on the open discB(0, 1) whose power series ex-
pansion

f(z) =

∞
∑

n=0

a(n)zn

129
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aroundz = 0 has coefficientsa(n) ∈ A.
AnA−functionf is calledalgebraicif there exists a nonzero polynomialG in Cp[z, y] such
that

G(z, f(z)) = 0 for all z ∈ B(0, 1).

Definition 11.1.1 By D(A), we denote the closure of the set of algebraicA−functions
under the topology of uniform convergence on the open discB(0, 1).

In [16], the following criterion for a function to be an element ofD(A) is proven:

Theorem 11.1.1 ([15], Theorem 2) AnA−functionf is an element ofD(A) if and only if
for all k ≥ 1, the number of functions

fn,h(z) =
∞
∑

m=0

a(n+mph)zm, 0 ≤ n < ph

modulopk is finite.

We prove that anyf whose coefficientsa(n) satisfy the Dwork congruences lies inD(A)
by proving the following theorem and then applying theorem 11.1.1:

Theorem 11.1.2Let

f(z) =
∞
∑

n=0

a(n)zn

be a power series with coefficientsa(n) ∈ Z satisfying the Dwork congruences. Then, for
eachk ≥ 1, the number of functions

fn,h(z) =
∞
∑

m=0

a(n+mph)zm, 0 ≤ n < ph

modulopk is finite.

Proof: Since the sequence(a(n))n satisfies the Dwork congruences, for allh ≥ k, we have

a(n+mph)

a([n/p] +mph−1)
=

a(n+mph−kpk)

a(n+mph−kpk−1)
≡ a(n)

a([n/p])
mod pk,

and thus

a(n+mph) ≡ a([n/p] +mph−1)
a(n)

a([n/p])
mod pk.

Applying the Dwork congruencesh− k times in this way, we obtain that

a(n+mph) ≡ a([n/ph−k] +mpk)
a(n)

a([n/ph−k])
mod pk. (11.1)
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But this means that

fn,h(z) =
∞
∑

m=0

a(n+mph)zm ≡ a(n)

a([n/ph−k])

∞
∑

m=0

a([n/ph−k +mpk])zm mod pk,

where[n/ph−k] < pk.
For eachn andk ≤ h, the fractiona(n)/a([n/ph−k]) lies inZp, and thus

#{ a(n)

a([n/ph−k])
mod pk;n < ph, k ≤ h} ≤ pk,

sinceZp/pkZp containspk elements. Since[n/ph−k] < pk, it follows that

#{
∞
∑

m=0

a([n/ph−k] +mpk)zm} ≤ pk.

Thus modulopk, fn,h(z) takes at mostp2k different values ifk ≤ h.
Forh < k, we haven < ph < pk, and thus

#{fn,h(z), 0 ≤ h < k, 0 ≤ n < ph} < kpk.

This completes the proof of the theorem.2

Now, we consider the power seriesf(zp) and prove that if the coefficients off(z) satisfy
the Dwork congruences,f(zp) belongs toD(A), too. As a power series inz, f(zp) can be
written as

g(z) := f(zp) =
∞
∑

n=0

a(n)zpn =
∞
∑

n=0

b(n)zn,

where

b(n) :=

{

a(n/p) if p|n
0 otherwise.

Corollary 11.1.1 Let f(z) be a power series with coefficients inZ satisfying the Dwork
congruences. Then, for eachk ≥ 1, the number of functionsgn,h(z), n < ph modulopk is
finite.

Proof: If p does not dividen, gn,h(z) = 0 for arbitraryh. Otherwise,

gn,h(z) =

∞
∑

m=0

b(n+mph)zm =

∞
∑

m=0

a(n/p+mph−1)zm = fn/p,h−1,

and we can apply Theorem 11.1.2.2

Theorem 11.1.2 and corollary 11.1.1 combined with theorem 11.1.1 now provethat f(z)
andf(zp) are elements of theA−algebraD(A).
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11.2 Explicit construction of an analytic continuation

For the so-called continuable elements inD(A), in [15], an explicit formula for an analytic
continuation in a neighborhood of a fixed pointx on the boundary of thep−adic unit disc
is given.
We define a new notion of continuability and prove that allf ∈ D(A) whose coefficients
satisfy the Dwork congruences are continuable in the new way. Furthermore, we prove that
Christol’s analytic continuation method also applies to functions that are continauble in the
new sense.
In [15], section 5, Christol defines the notion of continuability of an elementf ∈ D(A) as
follows:

Definition 11.2.1 f is continuable in a pointx with |x|p = 1 if

lim
h→∞

ph−1
∑

k=1

a(n+ kph)xn+kph = 0

for all n ∈ Z.

In the following, we will say that a function which is continuable as defined in definition
(11.2.1) iscontinuable in the sense of Christol. We found out that for the construction of an
analytic continuation, it isnot always necessary that a function is continuable in the sense
of Christol. For our purposes, we modify the definition in the following way:

Definition 11.2.2 f is continuable if for allh ≥ 1 andk ≥ 1,

a(kph − 1) ≡ 0 mod ph.

We will say that a function which is continuable as defined in definition 11.2.2 iscontinu-
able in the weak sense of Christol.

Proposition 11.2.1 Let (a(n))n satisfy the Dwork congruences anda(p− 1) ≡ 0 mod p.
Then,f is continuable in the weak sense of Christol.

Proof: First of all, we prove thata(ph − 1) ≡ 0 mod ph by induction onh.
By the Dwork congruences, we have

a(p2 − 1)

a(p− 1)
≡ a(p− 1) mod p,

and thusa(p
2−1)

a(p−1) ≡ 0 mod p anda(p2 − 1) ≡ 0 mod p2. Now leth > 2. Then

a(ph − 1)

a(ph−1 − 1)
≡ a(ph−1 − 1)

a(ph−2 − 1)
mod ph
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by the Dwork congruences. By induction hypothesis,a(ph−1−1)
a(ph−2−1)

≡ 0 mod p, and thus it
follows that

a(ph − 1)

a(ph−1 − 1)
≡ 0 mod p. (11.2)

Sincea(ph−1 − 1) ≡ 0 mod ph−1, it follows thata(ph − 1) ≡ 0 mod ph.
Now, considera(kph − 1) for k ≥ 2. Sincea(kp− 1) = a((k − 1)p+ p− 1), we have

a(kp− 1)

a(k − 1)
≡ a(p− 1) mod p

by the Dwork congruences, and thusa(kp− 1) ≡ 0 mod p for anyk ≥ 2. Sincea(kph −
1) = a((k − 1)ph + ph − 1), it follows by the Dwork congruences that

a(kph − 1)

a(kph−1 − 1)
≡ a(ph − 1)

a(ph−1 − 1)
mod ph.

By equation (11.2), it follows that a(kp
h−1)

a(kph−1−1)
≡ 0 mod p. Sincea(kph−1 − 1) ≡ 0

mod ph−1 by induction, we obtaina(kph − 1) ≡ 0 mod ph and the proposition follows.
2

Definition 11.2.3 For f ∈ D(A), we define

P (f, h) :=

ph−1
∑

k=1

kph−1
∑

n=0

a(n).

For a Teichmüller pointx, remark that

P (f(xz), h) =

ph−1
∑

k=1

kph−1
∑

n=0

a(n)xn.

Definition 11.2.4 A sequenceh(n) tends multiplicatively to infinity iflimn→∞ h(n) = ∞
andh(n)|h(n+ 1) for all n ≥ 1.

In [15] and [16], Christol proves the following key lemma for the construction of the analytic
continuation:

Lemma 11.2.1 For f ∈ D(A) andx a Teichmüller point, the sequenceP (f(xz), h) con-
verges ifh tends multiplicatively to infinity.

We setP (f(xz)) := limh→∞ P (f(xz), h). Note that in the statement of the lemma, noth-
ing is said about the speed of convergence of the sequenceP (f(xz), h). Unfortunately,
from the proof of the lemma, we were not able to deduce any formula of the form

P (f(xz), h) ≡ P (f(xz)) mod pF (h) (11.3)
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for some functionF . Thus, we can make no statement about thep−adic precision of the
truncationP (f(xz), h).
In [15], section 5, Christol proves the following proposition:

Proposition 11.2.2 For f ∈ D(A) and a Teichmüller pointx, |x| = 1, the function iny,
defined byf(x + y) := P (f(x + y)z) for |y| < 1 is an analytic function fory in the open
discB(0, 1).

We callf(x+ y) the continuation off to the open discB(x, 1) of radius1 centered atx.
If f is continuable in the weak sense of Christol, the continuation off satisfies the following
properties:

Theorem 11.2.1 (similar to[15], Theorem 7) If f is continuable in the weak sense of Chris-
tol in a Teichmüller pointx, then for ally in the open discB(0, 1), we have

(zf)(x+ y) = (x+ y)f(x+ y)

and

(
∂f

∂z
)(x+ y) =

∂f(x+ y)

∂y
.

Proof: Since

P ((zf)((x+ y)z), h) = (x+ y)P (f((x+ y)z), h) −
ph−1
∑

k=1

(x+ y)kp
h

a(kph − 1),

andf is continuable in the weak sense of Christol, we have

P ((zf)((x+ y)z), h) ≡ (x+ y)P (f((x+ y)z), h) mod ph,

and thus for the limit we obtain

(zf)(x+ y) = (x+ y)f(x+ y).

Concerning the second statement, since

P ((
∂f

∂z
)((x+ y)z), h) =

∂

∂y
P (f(x+ y)z, h) +

ph−1
∑

k=1

kph(x+ y)kp
h−1a(kph),

it follows directly that

P ((
∂f

∂z
)((x+ y)z), h) ≡ ∂

∂y
P (f(x+ y)z, h) mod ph

and thus for the limit we obtain

(
∂f

∂z
)(x+ y) =

∂f(x+ y)

∂y

and the theorem follows.2



11.2. Explicit construction of an analytic continuation 135

Corollary 11.2.1 Let f ∈ D(A) be continuable in the weak sense of Christol. Iff is the
solution of a linear differential equation

P(z, ∂/∂z)f(z) = 0,

then the continuationf(x+y) around a pointx with |x| = 1 is a solution of the differential
equation

P(x+ y, ∂/∂y)f(x+ y) = 0.

By the (modified) results of Christol, we know by the corollary that iff ∈ D(A) is continu-
able in the sense of Christol or in the weak sense of Christol, the limitP (f(xz)) computes
an analytic continuation off in the pointx with |x| = 1. But since we are lacking a for-
mula of the type of formula 11.3, we can not apply this analytic continuation in practice to
actually computef(z)|z=x for a Teichmüller pointx.
Now, for the rest of this section, we analyse the whole quotient

P (f(xz), h)

P (f(xpzp), h)

and its convergence properties depending onh in case that the coefficients of the power
seriesf satisfy the Dwork congruences. Note that forg(z) := f(zp), we have

P (f(xpzp), h) =

ph−1
∑

k=1

kph−1−1
∑

n=0

a(n)xpn =

p2h−1−ph−1−1
∑

n=0

(ph − 1 − [n/ph−1])a(n)xpn.

As in chapter 5, letfsk(z) denote the truncation

fsk(z) :=

(k+1)ps−1
∑

n=kps

a(n)zn.

Furthermore, let̂fsk(z) denote the truncation

f̂sk(z) =

kps−1
∑

n=0

a(n)zn =
k−1
∑

n=0

fsn(z). (11.4)

It follows by a direct computation that

P (f(xz), h) =

ph−1
∑

k=1

f̂hk (x) =

ph−1
∑

k=1

k−1
∑

n=0

fhn (x) (11.5)

and

P (f(xpzp), h) =

ph−1
∑

k=1

f̂h−1
k (xp) =

ph−1
∑

k=1

k−1
∑

n=0

fh−1
n (xp). (11.6)
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LetX denote a variable. By Theorem 5.1,we have

f(X)fh−1
n (Xp) ≡ f(Xp)fhn (X) mod phZp[[X]],

and applying the formulas (11.5) and (11.6), we obtain by a direct computation that

f(X)P (f(Xpzp), h) ≡ f(Xp)P (f(Xz), h) mod phZp[[X]]. (11.7)

Thus in the same way as theorem 5.1.3 follows from theorem 5.1, the following theorem
follows from equation (11.7):

Theorem 11.2.2Let f ∈ D(A) such that the sequence(a(n))n satisfies the Dwork con-
gruences. Let

D := {x ∈ Zp, |P (f(xz), 1)| = |P (f(xpzp), 1)| = 1}.

Thenf(z)/f(zp), which is a uniform analytic function onpZp, is the restriction topZp of
an analytic elementF of supportD:

F (x) = lim
h→∞

P (f(xz), h)

P (f(xpzp), h)
.

Proof: Just like the proof of theorem 5.1.3.2

This leads us to the following formula for explicit computations:

f(z)

f(zp)
|z=x ≡ P (f(xz), h)

P (f(xpzp), h)
mod ph. (11.8)

Thus, to compute the quotientf(z)
f(zp) |z=x moduloph, one has to computep2h−ph−1 of the

coefficientsa(n) of f , whereas for the formula given by Dwork, one only has to compute
ph − 1 of the coefficients, which makes the formula we derived from Christols considera-
tions rather useless in practice.

As a final remark, note that by way of computation we found out that, for generalf satisfy-
ing the Dwork congruences andx such that|P (f(xz), 1)| = 1, it is not true that

P (f(x, z), h) ≡ P (f(xz), h+ 1) mod ph.

Hence, even in case that the Dwork congruences are satisfied, we arenot in a position to
evaluatef(z) at a pointx up to a given precision by the method proposed by Christol.



Chapter A

Appendix

A.1 Hadamard products

In this appendix we collect the results of our calculations on the24 operators which are
Hadamard productsA∗a, etc. We computed coefficients(a, b) of the Frobenius polynomial

P (T ) = 1 + aT + bpT 2 + ap3T 3 + p6T 4

for all primesp between3 and17 and for all possible values ofz ∈ F∗p. If there occurs
a “-” in the table instead of the tuple(a, b), then the correspondingz ∈ Fp is either a
zero off1

0 (z) or of g1
0 or of both, wheref0 is the power series solution of the fourth order

differential equation andg0 is the solution of the fifth order equation. The appearance of
(a, b)′ means that the polynomial isreducible. The appearance of(a, b)∗ means that the
correspondingz is a singular point of the differential equation.

The CaseA ∗ a

This is operator nr. 45 from the list [2]:

θ4 − 4x (2 θ + 1)2
(

7 θ2 + 7 θ + 2
)

− 128x2 (2 θ + 1)2 (2 θ + 3)2

p = 3 p = 5:

z 1 2
− −

z 1 2 3 4
(6,−6)′ (28, 38)∗ − (32, 62)∗

p = 7:

z 1 2 3 4 5 6
(2,-46) (-8,2) (32,-94)* (80,290)* (10,50)’ -

p = 11:

z 1 2 3 4 5 6 7 8
(56,290)’ - (-16,2)’ (6,26) (16,98) (12,114)’ (26,106) -

z 9 10
(-8,2) (-36,210)’

p = 13:

137



138 Appendix A. Appendix

z 1 2 3 4 5 6 7 8
(-8,270)’ (20,-106) (-4,86) (-204,646)* (22,-30) (-160,30)* (-34,50) (-16,302)

z 9 10 11 12
(58,146) (18,34) (84,406) (56,206)’

p = 17:

z 1 2 3 4 5 6 7 8
(256,-322)* (256,-322)* (-24,542) (44,166) (210,1218) (24,-178)’ (-100,278) (22,50)

z 9 10 11 12 13 14 15 16
(-4,70) (52,470) (-84,342)’ - (22,-334)’ (18,258) (184,974) (-56,302)’

The CaseB ∗ a
This is operator nr. 15 from the list [2]:

θ4 − 3x (3 θ + 1) (3 θ + 2)
(

7 θ2 + 7 θ + 2
)

− 72x2 (3 θ + 1) (3 θ + 2) (3 θ + 4) (3 θ + 5)

p = 3: p = 5:

z 1 2
(2, 4) (8, 13)

z 1 2 3 4
(−18,−22) − (3,−22) (6, 41)

p = 7:

z 1 2 3 4 5 6
(-31,-102) (-13,60) - (20,12) - -

p = 11:

z 1 2 3 4 5 6 7 8
(36,170) (-147,422) (-15,152) (21,170) (45,224) (-24,71) (-3,-28) (-72,-478)

z 9 10
(51,170) (-12,8)

p = 13:

z 1 2 3 4 5 6 7 8
(23,60) (20,192) (-13,72) (23,330) (-103,-768) - (50,285) (14,-138)

z 9 10 11 12
(17,144) (56,228) - (-202,618)

p = 17:

z 1 2 3 4 5 6 7 8
(-12,128) (105,488) (93,254) (21,-250) (-234,-718) (-60,-25) (-39,38) -

z 9 10 11 12 13 14 15 16
(-132,668) (-414,2522) (108,362) (117,524) (-39,-142) (-21,488) - (15,-196)

The CaseC ∗ a
This is operator nr. 68 from the list [2]:

θ4−4x (4 θ + 1) (4 θ + 3)
(

7 θ2 + 7 θ + 2
)

−128x2 (4 θ + 1) (4 θ + 3) (4 θ + 5) (4 θ + 7)

p = 3: p = 5:

z 1 2
(2,−2) −

z 1 2 3 4
− (6, 6) (−18,−22)∗ (8, 38)

p = 7:
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z 1 2 3 4 5 6
(24,-158)* - (4,2)’ (22,50) (-2,66)’ (72,226)*

p = 11:

z 1 2 3 4 5 6 7 8
(10,158) (124,146)* - (-10,-38) - (92,-238)* (28,34) (-32,122)

z 9 10
- (14,50)

p = 13:

z 1 2 3 4 5 6 7 8
(232,1038)* (-4,150) (-32,62)’ (-46,146)’ (46,126) (-2,210) (58,290) (162,58)*

z 9 10 11 12
(12,-50) (64,206) (-6,86) (24,262)

p = 17:

z 1 2 3 4 5 6 7 8
(-60,246) (-30,162) (52,226) - (8,134) - (178,962) -

z 9 10 11 12 13 14 15 16
(404,2342)* - - (-32,-190) (336,1118)* (24,-142) (-24,254) (66,506)

The CaseD ∗ a
This is operator nr. 62 from the list [2]:

θ4−12x (6 θ + 1) (6 θ + 5)
(

7 θ2 + 7 θ + 2
)

−1152x2 (6 θ + 1) (6 θ + 5) (6 θ + 7) (6 θ + 11)

p = 3: p = 5:

z 1 2
(2, 4) (8, 13)

z 1 2 3 4
(34, 74)∗ (29, 44)∗ − −

p = 7:

z 1 2 3 4 5 6
(5,-4) (4,-40) (59,122)* (65,170)* (22,92) -

p = 11:

z 1 2 3 4 5 6 7 8
- (12,96) (-9,-46) (25,14) (59,296) (-160,578)* (-115,38)* (29,184)

z 9 10
(8,-142) (-24,15)

p = 13:

z 1 2 3 4 5 6 7 8
(67,276) (56,374) (5,-100)’ (-138,-278)* (4,-12) (-193,492)* (38,350) (47,188)

z 9 10 11 12
(-23,8)’ (-3,322)’ (-36,199) (8,-160)

p = 17:

z 1 2 3 4 5 6 7 8
(67,284) (18,-79) (-131,728) (45,218) (19,-388)’ (80,490) (262,-214)* (72,164)

z 9 10 11 12 13 14 15 16
(-150,822) (55,-70)’ (160,863) (250,-430)* (-15,150) (11,-278) (141,768) (-16,56)
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The CaseA ∗ b
This is operator nr. 25 from the list [2]:

θ4 − 4x (2 θ + 1)2
(

11 θ2 + 11 θ + 3
)

− 16x2 (2 θ + 1)2 (2 θ + 3)2

p = 3: p = 5:

z 1 2
− (5, 14)

z 1 2 3 4
(13, 16) − (2, 26)′ (−3, 16)

p = 7:

z 1 2 3 4 5 6
(10,50)’ (25,74) - (-10,82) (10,-30) (-15,26)

p = 11:

z 1 2 3 4 5 6 7 8
(39,262) (112,2)* (2,58)’ (-26,42) (15,166) (10,-134) (39,142) (47,78)

z 9 10
(152,482)* (-26,122)

p = 13:

z 1 2 3 4 5 6 7 8
(-60,166)’ - - - - (-30,90) (20,214) (35,120)

z 9 10 11 12
(50,98) (60,246) (35,-40) (15,12)

p = 17:

z 1 2 3 4 5 6 7 8
- (115,744) (20,86)’ (-10,50) (-15,368) (-25,60) (140,790)’ (35,-56)

z 9 10 11 12 13 14 15 16
- (-15,208) (20,-394) (-20,-330) - (55,540) (75,632) (60,134)

The CaseB ∗ b
This is operator nr. 24 from the list [2]:

θ4−3x (3 θ + 1) (3 θ + 2)
(

11 θ2 + 11 θ + 3
)

−9x2 (3 θ + 1) (3 θ + 2) (3 θ + 4) (3 θ + 5)

p = 3: p = 5:

z 1 2
(5, 7) (5, 19)

z 1 2 3 4
− (8,−4) − (7,−4)

p = 7:

z 1 2 3 4 5 6
- (25,113) (25,86) - (-15,-11) (15,25)

p = 11:

z 1 2 3 4 5 6 7 8
- (105,-82) (-29,152) (10,-127) (-3,62) (37,197) (15,188) (36,107)

z 9 10
(150,458) -

p = 13:

z 1 2 3 4 5 6 7 8
(90,319) (15,112) - (-35,-4) - (45,142) - (-5,-151)
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z 9 10 11 12
(20,210) (35,252) (-85,447) (-45,49)

p = 17:

z 1 2 3 4 5 6 7 8
(50,-115) (-30,524) (10,362) (-10,83) (65,470) (165,947) (30,362) (10,362)

z 9 10 11 12 13 14 15 16
(80,407) (45,83) - (110,461) (-120,569) (-25,-196) (-40,38) (-50,56)

The CaseC ∗ b
This is operator nr. 51 from the list [2]:

θ4−4x (4 θ + 1) (4 θ + 3)
(

11 θ2 + 11 θ + 3
)

−16x2 (4 θ + 1) (4 θ + 3) (4 θ + 5) (4 θ + 7)

p = 3: p = 5:

z 1 2
(5, 14) (5, 2)

z 1 2 3 4
(3,−4)′ (12, 46) − −

p = 7:

z 1 2 3 4 5 6
(40,122) (-10,18) - (-5,90) (15,26) -

p = 11:

z 1 2 3 4 5 6 7 8
(24,130) (39,162)’ - (-5,-74) (-64,-574)* (-144,386)* (30,206) (-4,162)

z 9 10
(-26,122) (19,130)

p = 13:

z 1 2 3 4 5 6 7 8
(80,430) (75,282) (-15,96) (45,228) (-30,-38) (-5,-190) (30,166) (-80,282)

z 9 10 11 12
(30,202) (10,202) (30,122) -

p = 17:

z 1 2 3 4 5 6 7 8
(10,522) (35,292) (70,626) (90,554) (-70,382) (50,-110)’ (90,326) (-25,188)

z 9 10 11 12 13 14 15 16
- (65,514) (15,-150)’ (65,450) (-50,162) (115,410)’ (15,124) (-100,326)

The CaseD ∗ b
This is operator nr. 63 from the list [2]:

θ4−12x (6 θ + 1) (6 θ + 5)
(

11 θ2 + 11 θ + 3
)

−144x2 (6 θ + 1) (6 θ + 5) (6 θ + 7) (6 θ + 11)

p = 3: p = 5:

z 1 2
(5, 7) (5, 19)

z 1 2 3 4
− (24, 76) (4, 1) (−1,−4)

p = 7:

z 1 2 3 4 5 6
(15,47) - (5,31) - (-5,62) (25,95)

p = 11:
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z 1 2 3 4 5 6 7 8
(39,142) (13,137) (-2,87) (104,-94)* (23,4) (8,129) (169,686)* -

z 9 10
- (-41,157)

p = 13:

z 1 2 3 4 5 6 7 8
(15,139) (85,410)’ (40,86) (75,275) (-5,-268) - (-55,355) (-25,189)

z 9 10 11 12
(20,293) (15,-120) (-40,305) (-15,-180)

p = 17:

z 1 2 3 4 5 6 7 8
(30,88) (-10,206) (15,236) (20,111) (90,239) (140,749) - (10,-231)

z 9 10 11 12 13 14 15 16
- (-30,410) (5,-41) (105,698) - (-10,542) (-140,684) (50,-137)

The CaseA ∗ c
This is operator nr.58 from the list [2]:

θ4 − 4x (2 θ + 1)2
(

10 θ2 + 10 θ + 3
)

+ 144x2 (2 θ + 1)2 (2 θ + 3)2

p = 3: p = 5:

z 1 2
(8, 2)∗ −

z 1 2 3 4
(−28, 38)∗ − (−2,−14) (16,−34)∗

p = 7:

z 1 2 3 4 5 6
(12,2) (32,-94)* (26,50) (80,290)* - (12,82)

p = 11:

z 1 2 3 4 5 6 7 8
(-160,578)* (-60,290) (-12,-78) (4,-14) (20,178) (14,122)’ (-46,170) (-4,-14)

z 9 10
- (36,98)

p = 13:

z 1 2 3 4 5 6 7 8
(-108,-698)* (-14,-70) (16,126) (32,158) (8,62) (42,202)’ (16,62) (42,10)

z 9 10 11 12
(-204,646)* (16,126) (2,314) (-16,254)’

p = 17:

z 1 2 3 4 5 6 7 8
(-76,278) (-8,-178) (-134,562)’ (8,302) (-24,-178)’ (-142,706) (-32,110) (168,942)

z 9 10 11 12 13 14 15 16
- (76,278) (66,2) (-38,178) (-12,-234) - (224,-898)* (-356,1478)*

The CaseB ∗ c
This is operator nr.70 from the list [2]:

θ4−3x (3 θ + 1) (3 θ + 2)
(

10 θ2 + 10 θ + 3
)

+81x2 (3 θ + 1) (3 θ + 2) (3 θ + 4) (3 θ + 5)
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p = 3: p = 5:

z 1 2
(5, 10)′ (−4,−2)′

z 1 2 3 4
(−9,−4) (−27, 32)∗ (11,−16)′ (−3, 32)

p = 7:

z 1 2 3 4 5 6
(17,54)’ (2,30) (-46,18)* - (11,-24) (-31,-102)*

p = 11:

z 1 2 3 4 5 6 7 8
(-144,386)* (18,89)’ (3,-100) - - (-6,26) - (-72,350)

z 9 10
(147,422)* (27,62)’

p = 13:

z 1 2 3 4 5 6 7 8
(-202,618)* (62,198) (-190,450)* (-34,147) (5,150)’ - (20,30) -

z 9 10 11 12
(20,30) (-31,203) - (41,240)

p = 17:

z 1 2 3 4 5 6 7 8
- (174,947)’ (-33,20) (39,326) (-16,57) (6,362) (-180,-1690)* (-18,2)

z 9 10 11 12 13 14 15 16
(-18,-358) (-63,200) - (234,-718)* (-39,-214) (-81,92) (-135,776)’ (-144,866)

The CaseC ∗ c
This is operator nr. 69 from the list [2]:

θ4−4x (4 θ + 1) (4 θ + 3)
(

10 θ2 + 10 θ + 3
)

+144x2 (4 θ + 1) (4 θ + 3) (4 θ + 5) (4 θ + 7)

p = 3: p = 5:

z 1 2
(−4,−14)∗ (−4, 10)

z 1 2 3 4
(−32, 62)∗ (−8, 2)′ (−4, 26) −

p = 7:

z 1 2 3 4 5 6
(40,-30)* - (-4,-54) (44,2)* (36,118) -

p = 11:

z 1 2 3 4 5 6 7 8
(32,130) (16,2)’ (72,-478)* (-20,-46) (-172,722)* (12,54) (-40,218) (-20,182)

z 9 10
(28,82) (-28,50)

p = 13:

z 1 2 3 4 5 6 7 8
(-20,-138) (4,218) - (40,206)’ (40,2) (72,290) - -

z 9 10 11 12
(-12,70) (140,-250)* (60,334) (132,-362)*

p = 17:

z 1 2 3 4 5 6 7 8
(-24,-82) (-72,110) (-12,26) (-276,38)* (-76,122) (148,734) (88,218) (316,758)*
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z 9 10 11 12 13 14 15 16
(-28,-58) (-176,962) (-112,386)’ (-28,470) (-120,462) (24,210)’ (-4,-266) (64,382)’

The CaseD ∗ c
This is operator nr. 64 from the list [2]:

θ4−12x (6 θ + 1) (6 θ + 5)
(

10 θ2 + 10 θ + 3
)

+1296x2 (6 θ + 1) (6 θ + 5) (6 θ + 7) (6 θ + 11)

p = 3: p = 5:

z 1 2
(5, 10)′ (−4,−2)′

z 1 2 3 4
− (19,−16)∗ (−31, 56)∗ −

p = 7:

z 1 2 3 4 5 6
(-6,-50) (31,128)’ (47,26)* - (86,338)* -

p = 11:

z 1 2 3 4 5 6 7 8
(-49,238) (-75,350) (31,76) (115,38)* (-21,60) (8,-98) (-18,-7) -

z 9 10
(-136,290)* (14,122)’

p = 13:

z 1 2 3 4 5 6 7 8
(-198,562)* - (-44,222) (-31,8) - (75,310) (25,140) (45,160)

z 9 10 11 12
(-138,-278)* (22,75) (44,254) (-7,-4)

p = 17:

z 1 2 3 4 5 6 7 8
(16,-94) (121,520) (-111,444) - (-362,1586)* - (79,488) (-2,250)

z 9 10 11 12 13 14 15 16
- (236,-682)* (-6,-342) (95,392) (63,254) - (-162,851) (-83,368)

The CaseA ∗ d
This is operator nr. 36 from the list [2]:

θ4 − 16x (2 θ + 1)2
(

3 θ2 + 3 θ + 1
)

+ 512x2 (2 θ + 1)2 (2 θ + 3)2

p = 3: p = 5:

z 1 2
(4,−14) −

z 1 2 3 4
(8, 46) (−8,−82) − −

p = 7:

z 1 2 3 4 5 6
(40,-30) (-8,-30) (-12,34) - - -

p = 11:

z 1 2 3 4 5 6 7 8
(-80,322) (-8,162) (-28,146) (-20,82) (172,722) - (16,-30) -

z 9 10
(24,-62) (-4,-142)
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p = 13:

z 1 2 3 4 5 6 7 8
(-36,86) (28,118) (56,270) (36,230) (-48,254) (-200,590) (72,398) -

z 9 10 11 12
- (-18,8) (60,214) (-132,-362)

p = 17:

z 1 2 3 4 5 6 7 8
(44,-90) (-212,-1114) (-76,598) (-276,38) - (28,326) - (-84,422)

z 9 10 11 12 13 14 15 16
(-4,6) (112,606) (-16,-162) (-8,-50) (-44,598) (44,-42) (20,470) (124,774)

The CaseB ∗ d
This is operator nr. 48 from the list [2]:

θ4−12x (3 θ + 1) (3 θ + 2)
(

3 θ2 + 3 θ + 1
)

+288x2 (3 θ + 1) (3 θ + 2) (3 θ + 4) (3 θ + 5)

p = 3: p = 5:

z 1 2
(−1,−8) (−7, 16)

z 1 2 3 4
− (21,−4)∗ − −

p = 7:

z 1 2 3 4 5 6
(-5,32) (-11,32) (-5,38) (-8,62) (-55,90)* (36,-62)*

p = 11:

z 1 2 3 4 5 6 7 8
- (-29,152) (37,80) (-89,386) (69,-514)* (8,-145) (50,98)’ -

z 9 10
(-40,170) (-1,98)

p = 13:

z 1 2 3 4 5 6 7 8
(36,49) (21,-44) (18,322)’ - (-112,-642)* (58,98) - (-21,334)

z 9 10 11 12
(27,-56) (-154,-54)* (33,166) (-24,106)

p = 17:

z 1 2 3 4 5 6 7 8
(88,614) (-32,326) (234,-718)* (-11,128) (-14,-286) (109,362)’ (-35,146) (105,308)

z 9 10 11 12 13 14 15 16
(15,20) - - (18,155) (88,569) (-5,506) (-71,452) (-20,-250)

The CaseC ∗ d
This is operator nr. 38 from the list [2]:

θ4−16x (4 θ + 1) (4 θ + 3)
(

3 θ2 + 3 θ + 1
)

+512x2 (4 θ + 1) (4 θ + 3) (4 θ + 5) (4 θ + 7)

p = 3: p = 5:

z 1 2
(−10, 10) (2,−22)

z 1 2 3 4
(36, 86) − − −
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p = 7:

z 1 2 3 4 5 6
- (36,-62) (-12,-2) (-4,66) (-10,10) (-2,26)

p = 11:

z 1 2 3 4 5 6 7 8
(10,122) (150,458) (12,-78) (-118,74) (-64,306) (20,146) (-42,122) -

z 9 10
(-98,434) (-4,-30)

p = 13:

z 1 2 3 4 5 6 7 8
(-16,126) (32,158) (236,1094) - - (-16,158) - -

z 9 10 11 12
(-14,-86) (12,54) (2,42) (62,346)

p = 17:

z 1 2 3 4 5 6 7 8
(-240,-610) (96,382) (62,314) (-24,14) (8,78) (-24,402) (94,354) (20,294)

z 9 10 11 12 13 14 15 16
(-396,2198) (44,438) (-58,162) (-4,354) (76,230) (6,-158) (40,590) (12,22)

The CaseD ∗ d
This is operator nr. 65 from the list [2]:

θ4−48x (6 θ + 1) (6 θ + 5)
(

3 θ2 + 3 θ + 1
)

+4608x2 (6 θ + 1) (6 θ + 5) (6 θ + 7) (6 θ + 11)

p = 3: p = 5:

z 1 2
(−1,−8) (−7, 16)

z 1 2 3 4
(−26, 26)∗ (−11,−64)∗ (−1,−2) (14, 23)

p = 7:

z 1 2 3 4 5 6
(-3,-4) (-12,54) - (-9,40) (-11,66) (43,-6)*

p = 11:

z 1 2 3 4 5 6 7 8
(67,-538)* (-19,-58) (-17,-62) (-48,106) (-13,104)’ - (79,324) (-62,282)

z 9 10
(-5,-128) (30,173)

p = 13:

z 1 2 3 4 5 6 7 8
- (22,178) - (24,-70) (87,428) (-164,86)* - (-35,142)

z 9 10 11 12
(-58,179) (47,276) (33,-86) (-126,-446)*

p = 17:

z 1 2 3 4 5 6 7 8
(16,30) (-31,364) (-23,94) (40,281) (22,99) (59,-24) (-410,2450)* (43,592)

z 9 10 11 12 13 14 15 16
(109,472) (-25,158) (15,230) (110,690) (5,552) (-198,-1366)* (-40,342) (20,-50)
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The CaseA ∗ f
This is operator nr. 133 from the list [2]:

θ4 − 12x (2 θ + 1)2
(

3 θ2 + 3 θ + 1
)

+ 432x2 (2 θ + 1)2 (2 θ + 3)2

p = 3: p = 5:

z 1 2
(2, 10)′ (−1,−2)

z 1 2 3 4
(3, 44) (−6,−6)′ (−3, 28) (−18, 42)′

p = 7:

z 1 2 3 4 5 6
(48,34)* (9,26) (1,26) (17,26) (64,162)* (9,26)

p = 11:

z 1 2 3 4 5 6 7 8
(-48,210) - - (3,158) (-36,18) (-36,82) (27,70) (54,266)

z 9 10
(21,-58) (-54,122)

p = 13:

z 1 2 3 4 5 6 7 8
- (38,146) (-47,48) (-18,-38) (-192,478)* (133,660) (-11,84) (-34,146)

z 9 10 11 12
(-18,-166) (58,242) (-192,478)* (50,98)

p = 17:

z 1 2 3 4 5 6 7 8
(48,350) - - (-48,286) (-9,-260) - (72,494) (-111,524)

z 9 10 11 12 13 14 15 16
(72,622) (-81,268) (6,42) (-48,334) (42,-54) (-18,-54) (-126,570) -

The CaseB ∗ f
This is operator nr. 134 from the list [2]:

θ4−9x (3 θ + 1) (3 θ + 2)
(

3 θ2 + 3 θ + 1
)

+243x2 (3 θ + 1) (3 θ + 2) (3 θ + 4) (3 θ + 5)

p = 3: p = 5:

z 1 2
(−4, 13) (5, 4)

z 1 2 3 4
(−24, 71) (3, 17) − (−3,−31)

p = 7:

z 1 2 3 4 5 6
(11,75) - (5,-12) (-34,-78)* (-34,-78)* (5,60)’

p = 11:

z 1 2 3 4 5 6 7 8
(15,218) (-78,296) (-12,2) (-36,194) (-3,-79) (69,263) (-36,113) -

z 9 10
(-24,107) (-9,131)

p = 13:

z 1 2 3 4 5 6 7 8
(-1,-171) (-133,-348)* (23,114) (41,159) (-25,165) (-109,450) (-133,-348)* (32,-48)
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z 9 10 11 12
(98,495) (-55,99) (50,33) (44,306)’

p = 17:

z 1 2 3 4 5 6 7 8
(-12,-322) (-135,695) (-105,506) (-63,227) (30,434) (-24,-286) (45,254) (-156,857)

z 9 10 11 12 13 14 15 16
(42,92) (15,-25) (30,-142) (12,362) (-6,236) (108,641) (15,461) (-84,587)

The CaseC ∗ f
This is operator nr. 135 from the list [2]:

θ4−12x (4 θ + 1) (4 θ + 3)
(

3 θ2 + 3 θ + 1
)

+432x2 (4 θ + 1) (4 θ + 3) (4 θ + 5) (4 θ + 7)

p = 3: p = 5:

z 1 2
(−4,−2)′ (5, 10)′

z 1 2 3 4
(−12, 22) (−3, 34) (6, 26) −

p = 7:

z 1 2 3 4 5 6
(5,-46) (60,130)* (52,66)* (9,58) (1,62) -

p = 11:

z 1 2 3 4 5 6 7 8
- (-24,146) (-18,38) (-48,146) (51,202) (15,50) (-24,26) -

z 9 10
(-78,322) (-27,-30)

p = 13:

z 1 2 3 4 5 6 7 8
(14,2) (-54,142) (44,230) (11,-124) (5,-190) (210,730)* (-22,-118) -

z 9 10 11 12
(44,198)’ (99,436) (154,-54) -

p = 17:

z 1 2 3 4 5 6 7 8
- (-111,688) (90,494) (-39,44) (6,-358) (42,322) (-138,810) -

z 9 10 11 12 13 14 15 16
(-105,412) (135,698) - (6,534) (-72,622) (-39,74) (12,262) (-36,582)’

The CaseD ∗ f
This is operator nr. 136 from the list [2]:

θ4−36x (6 θ + 1) (6 θ + 5)
(

3 θ2 + 3 θ + 1
)

+3888x2 (6 θ + 1) (6 θ + 5) (6 θ + 7) (6 θ + 11)

p = 3: p = 5:

z 1 2
(−4, 13) (5, 4)

z 1 2 3 4
− − (−6,−7) (−21, 67)

p = 7:

z 1 2 3 4 5 6
(15,-1) (52,66)* (5,80)’ - (9,44) (60,130)*

p = 11:
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z 1 2 3 4 5 6 7 8
(-27,123) (-9,137) (-24,62) (-6,-163) (-54,246) (-36,254) (48,208) -

z 9 10
(51,126) (-63,289)

p = 13:

z 1 2 3 4 5 6 7 8
(35,162) (35,86) (64,243) (-60,310) (-207,688)* - - (20,5)

z 9 10 11 12
(93,383) - (-207,688)* (5,-259)

p = 17:

z 1 2 3 4 5 6 7 8
(-90,265) (-99,653) (6,375) (-132,580) (48,230) (36,394) (87,335) (-156,760)

z 9 10 11 12 13 14 15 16
(72,415) (-45,342) (-48,74) (12,-94) (33,-201) (15,478) (9,-225) (-36,74)

The CaseA ∗ g
This is operator nr. 137 from the list [2]:

θ4 − 4x
(

17 θ2 + 17 θ + 6
)

(2 θ + 1)2 + 1152x2 (2 θ + 1)2 (2 θ + 3)2

p = 3: p = 5:

z 1 2
− (8, 2)∗

z 1 2 3 4
− (−32, 62)∗ (−6, 42)′ (16,−34)∗

p = 7:

z 1 2 3 4 5 6
(6,50) (80,290)* (8,2) (32,-94)* (16,2) (6,34)

p = 11:

z 1 2 3 4 5 6 7 8
(-104,-94)* (-8,98)’ (2,170) (-64,194) (-32,2) (8,2) - -

z 9 10
(12,114)’ -

p = 13:

z 1 2 3 4 5 6 7 8
(-108,-698)* (14,146) - (-56,174)’ - (-160,30)* (36,278) (36,118)

z 9 10 11 12
(66,322) (-36,22) (16,-114) (24,206)

p = 17:

z 1 2 3 4 5 6 7 8
(-88,494)’ (-356,1478)* (-40,14) (92,326)’ (4,-154) (88,350) (10,-430)’ (6,-174)

z 9 10 11 12 13 14 15 16
(6,210) (-148,854)’ - (56,206) (-92,566) (-182,1010) (224,-898)* (64,62)

The CaseB ∗ g
This is operator nr. 138 from the list [2]:

θ4−3x (3 θ + 1) (3 θ + 2)
(

17 θ2 + 17 θ + 6
)

+648x2 (3 θ + 1) (3 θ + 2) (3 θ + 4) (3 θ + 5)
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p = 3: p = 5:

z 1 2
(−4,−2)′ (5, 10)′

z 1 2 3 4
(18,−22)∗ (−33, 68)∗ (−9, 14) −

p = 7:

z 1 2 3 4 5 6
(5,-66) (32,96) (-46,18)* (23,96) (-13,-12) -

p = 11:

z 1 2 3 4 5 6 7 8
(-120,98)* (6,-37) (-24,89) (60,206)’ - - - (72,-478)*

z 9 10
(-9,-10) (-39,134)

p = 13:

z 1 2 3 4 5 6 7 8
(-31,6)’ - (-190,450)* (86,321) (-103,-768)* (-4,222) (-1,288)’ (-16,66)’

z 9 10 11 12
(-16,210) - (14,33) (41,294)’

p = 17:

z 1 2 3 4 5 6 7 8
(-18,506) (45,344) (63,146) (36,83) (-171,902) - (-432,2846)* (-150,812)

z 9 10 11 12 13 14 15 16
(-66,164) (414,2522)* (-15,-160) (-57,146) (-36,-241) (3,524) - (-6,182)

The CaseC ∗ g
This is operator nr. 139 from the list [2]:

θ4−4x (4 θ + 1) (4 θ + 3)
(

17 θ2 + 17 θ + 6
)

+1152x2 (4 θ + 1) (4 θ + 3) (4 θ + 5) (4 θ + 7)

p = 3: p = 5:

z 1 2
(−4, 10) (−4,−14)∗

z 1 2 3 4
(−28, 38)∗ − (18,−22)∗ (−4, 14)

p = 7:

z 1 2 3 4 5 6
(88,354)* (2,-46) - (68,194)* (-18,22) (-6,58)’

p = 11:

z 1 2 3 4 5 6 7 8
(-14,194) (-140,338)* (72,-478)* (50,290) (-8,130) (-58,202) (10,-70) (-24,-6)

z 9 10
(16,106) (-24,2)

p = 13:

z 1 2 3 4 5 6 7 8
(-20,294) (2,-126) - - - (32,134) (38,174) (202,618)*

z 9 10 11 12
(30,-62) (224,926)* (-22,38) (20,270)

p = 17:

z 1 2 3 4 5 6 7 8
- (-22,338) (-128,746) (-44,86) (-50,74) (-44,74) (-52,14) (316,758)*
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z 9 10 11 12 13 14 15 16
(-208,1186)* (40,110) (-22,-94) (164,818) (8,-370) (-52,218) (-182,1010) (-64,302)

The CaseD ∗ g

This is operator nr. 140 from the list [2]:

θ4−12x (6 θ + 1) (6 θ + 5)
(

17 θ2 + 17 θ + 6
)

+10368x2 (6 θ + 1) (6 θ + 5) (6 θ + 7) (6 θ + 11)

p = 3: p = 5:

z 1 2
(−4,−2)′ (5, 10)′

z 1 2 3 4
(−26, 26)∗ (19,−16)∗ − −

p = 7:

z 1 2 3 4 5 6
(24,64) - (53,74)* (29,86) (26,-142)* (9,-4)

p = 11:

z 1 2 3 4 5 6 7 8
(13,50) (-17,2) (8,-58) - (14,83) (160,578)* (-68,257) (-32,172)

z 9 10
(-128,194)* (-37,38)

p = 13:

z 1 2 3 4 5 6 7 8
(-198,562)* (-4,-202) (-4,218) (49,294) - (-193,492)* (84,386) (24,163)

z 9 10 11 12
(-9,214) (24,211) (19,-36) (54,170)

p = 17:

z 1 2 3 4 5 6 7 8
(-10,-394) (71,368)’ (157,908)’ (112,431) (-47,122) (3,-144) (-350,1370)* (-154,716)

z 9 10 11 12 13 14 15 16
(-38,-76) (236,-682)* (-63,-24) - - (5,-394) (49,320) (-38,338)

A.2 Modular forms

In this section, we list the CY(4)-differential operators for which we computed the coeffi-
cients of modular forms in conifold points. For each conifold point, we list the coefficients
ap of the conjectured modular form up top = 19. Note that we can only conjecture the
identity of the modular form since we only computed the first few coefficients.
The numbers of the Calabi-Yau operators are the numbers used in the paper [2]. AESZ 20
denotes operator number 20 from the list in [2]. If these numbers differ from the numbers
in the CY-database [3], we also mention the number in the database in brackets ().
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A.2.1 Operators with one rational conifold point

AESZ 20

The differential operator is given by

θ4 − −3z(48θ4 + 60θ3 + 53θ2 + 23θ + 4) + 32z2(873θ4 + 1980θ3 + 2319θ2 + 1344θ + 304)

− 2 · 34z3(1269θ4 + 3888θ3 + 5250θ2 + 3348θ + 800)

+ 2236z4(891θ4 + 3240θ3 + 4653θ2 + 2952θ + 688)

− 23311z5(θ + 1)2(3θ + 2)(3θ + 4).

The first coefficients of the modular form in the singular point1/54 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/54 108/2 0 0 −9 −1 −63 −28 −72 98

AESZ 23

The differential operator is given by

32θ4 − 223z(64θ4 + 80θ3 + 73θ2 + 33θ + 6)

+ 27z2(194θ4 + 440θ3 + 527θ2 + 315θ + 75)

− 212z3(94θ4 + 288θ3 + 397θ2 + 261θ + 66)

+ 217z4(22θ4 + 80θ3 + 117θ2 + 77θ + 19) − 223z5(θ + 1)4.

The first coefficients of the modular form in the singular point1/32 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/32 32/3 0 −8 −10 −16 40 −50 −30 −40

AESZ 73

The differential operator is given by

θ4 − 2 · 32z(42θ4 + 60θ3 + 45θ2 + 15θ + 2) + 2235z2(180θ4 + 432θ3 + 453θ2 + 222θ + 40)

− 2439z3(2θ + 1)2(13θ2 + 29θ + 20) + 26312z4(2θ + 1)2(2θ + 3)2.

The first coefficients of the modular form in the singular point1/432 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/432 432/13 0 0 12 7 −60 −79 −108 −11
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AESZ 116

The differential operator is given by

θ4 − 25z(10θ4 + 26θ3 + 20θ2 + 7θ + 1) + 28z2(52θ4 + 472θ3 + 832θ2 + 492θ + 103)

+ 216z3(14θ4 + 12θ3 − 96θ2 − 105θ − 29) − 218z4(2θ + 1)(56θ3 + 468θ2 + 646θ + 249)

− 224z5(2θ + 1)(4θ + 3)(4θ + 5)(2θ + 3).

The first coefficients of the modular form in the singular point1/256 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/256 72/2 0 0 −14 −24 28 −74 −82 92

AESZ 119

The differential operator is given by

θ4 − 3z(48θ4 + 60θ3 + 53θ2 + 23θ + 4) + 32z2(873θ4 + 1980θ3 + 2319θ2 + 1344θ + 304)

− 2 · 34z3(1269θ4 + 3888θ3 + 5259θ2 + 3348θ + 800)

+ 2236z4(891θ4 + 3240θ3 + 4653θ2 + 2952θ + 688) − 23311z5(θ + 1)2(3θ + 2)(3θ + 4).

The first coefficients of the modular form in the singular point1/54 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/54 108/2 0 0 −9 −1 −63 −28 −72 98

AESZ 194 (DB 255)

The differential operator is given by

172θ4 − 17z(1465θ4 + 2768θ3 + 2200θ2 + 816θ + 119)

+ 2z2(62015θ4 + 131582θ3 + 125017θ2 + 65926θ + 15300)

− 2 · 33z3(4325θ4 + 10914θ3 + 12803θ2 + 7446θ + 1700)

+ 36z4(265θ4 + 836θ3 + 1118θ2 + 700θ + 168) − 310z5(θ + 1)4.

The first coefficients of the modular form in the singular point1/81 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/81 225/4 −4 0 0 −6 −32 38 26 100

AESZ 214 (DB 266)

The differential operator is given by

θ4 − 2z(90θ4 + 188θ3 + 141θ2 + 47θ + 6) − 22z2(564θ4 + 1520θ3 + 1705θ2 + 934θ + 192)

− 24z3(2θ + 1)(286θ3 + 813θ2 + 851θ + 294) − 263z4(2θ + 1)(4θ + 3)(4θ + 5)(2θ + 3).

The first coefficients of the modular form in the singular point1/192 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/192 882/14 −2 0 6 0 −30 −2 66 52
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AESZ 220 (DB 291)

The differential operator is given by

θ4 − 24z(20θ4 + 56θ3 + 38θ2 + 10θ + 1) − 210z2(84θ4 + 240θ3 + 261θ2 + 134θ + 25)

− 216z3(2θ + 1)2(23θ2 + 55θ + 39) − 223z4(2θ + 1)2(2θ + 3)2.

The first coefficients of the modular form in the singular point1/512 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/512 192/4 0 3 −6 −16 −12 −38 −126 −20

AESZ 221 (DB 292)

The differential operator is given by

52θ4 − 225z(404θ4 + 1096θ3 + 773θ2 + 225θ + 25)

− 24z2(66896θ4 + 137408θ3 + 101096θ2 + 52800θ + 11625)

− 2815z3(2θ + 1)(5672θ3 + 9500θ2 + 8422θ + 2689)

− 21532z4(2θ + 1)(1208θ3 + 2892θ2 + 2842θ + 969)

− 22033z5(2θ + 1)(6θ + 5)(6θ + 7)(2θ + 3).

The first coefficients of the modular form in the singular point1/432 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/432 ? 0 0 −12 − 12 −76 −8 −100

A.2.2 Operators with two rational conifold points

AESZ 28

The differential operator is given by

θ4 − z(65θ4 + 130θ3 + 105θ2 + 40θ + 6) + 22z2(4θ + 3)(θ + 1)2(4θ + 5).

The first coefficients of the modular forms in the singular points1/64, 1 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/64 14/2 2 −2 −12 7 48 56 −114 2

1 6/1 −2 −3 6 −16 12 38 −126 20

AESZ 33

The differential operator is given by

θ4 − 22z(324θ4 + 456θ3 + 321θ2 + 93θ + 10) + 29z2(584θ4 + 584θ3 + 4θ2 − 71θ − 13)

− 216z3(324θ4 + 192θ3 + 123θ2 + 48θ + 7) + 224z4(2θ + 1)4.
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The first coefficients of the modular forms in the singular points1/1024, 1/16 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/1024 28/1 0 −10 −8 −7 −40 −12 −58 26

1/16 28/1 0 −10 −8 −7 −40 −12 −58 26

AESZ 55

The differential operator is given by

32θ4 − 223z(208θ4 + 224θ3 + 163θ2 + 51θ + 6)

+ 29z2(32θ4 − 928θ3 − 1606θ2 − 837θ − 141)

+ 216z3(144θ4 + 576θ3 + 467θ2 + 144θ + 15) − 224z4(2θ + 1)4.

The first coefficients of the modular forms in the singular points−1/64, 1/256 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/64 5/1 −4 2 −5 6 32 −38 26 100

1/256 40/2 0 −6 −5 −34 16 58 −70 4

AESZ 182

The differential operator is given by

θ4 − z(43θ4 + 86θ3 + 77θ2 + 34θ + 6) + 223z2(θ + 1)2(6θ + 5)(6θ + 7).

The first coefficients of the modular forms in the singular points1/27, 1/16 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/27 33/2 −5 3 −14 −32 −11 −38 −2 72

1/16 22/3 2 1 −3 −10 11 −16 42 116

AESZ 183

The differential operator is given by

θ4 − 22z(2θ + 1)2(7θ2 + 7θ + 3) + 243z2(2θ + 1)(4θ + 3)(4θ + 5)(2θ + 3).

The first coefficients of the modular forms in the singular points1/64, 1/48 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/64 16/1 0 4 −2 −24 44 22 50 −44

1/48 72/1 0 0 16 −12 64 58 32 −136
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AESZ 205

The differential operator is given by

θ4 − z(59θ4 + 118θ3 + 105θ2 + 46θ + 8) + 253z2(θ + 1)2(3θ + 2)(3θ + 4).

The first coefficients of the modular forms in the singular points1/32, 1/27 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/32 32/3 0 −8 −10 −16 40 −50 −30 −40

1/27 15/2 1 3 5 −24 52 22 −14 −20

AESZ 229 (DB 293)

The differential operator is given by

θ4 − 22z(256θ4 + 728θ3 + 506θ2 + 142θ + 15)

− 2432z2(2336θ4 + 2336θ3 − 1768θ2 − 1176θ − 189)

− 2934z3(512θ4 − 432θ3 − 404θ2 − 108θ − 9) + 21238z4(2θ + 1)4.

The first coefficients of the modular forms in the singular points1/1296, 1/16 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/1296 720/5 0 0 5 −6 32 −38 −26 −100

1/16 80/4 0 −2 −5 −6 −32 −38 26 −100

AESZ 232 (DB 296)

The differential operator is given by

52θ4 − 5z(2617θ4 + 4658θ3 + 3379θ2 + 1050θ + 120)

+ 263z2(673θ4 − 4871θ3 − 10282θ2 − 5410θ − 860)

+ 21032z3(955θ4 + 4320θ3 + 3477θ2 + 1020θ + 100)

− 21733z4(3θ + 1)(2θ + 1)2(3θ + 2).

The first coefficients of the modular forms in the singular points−1/27, 1/512 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/27 99/1 1 0 4 −26 −11 −32 −74 −60

1/512 44/1 0 −5 −7 −26 −11 52 46 −96

AESZ 233 (DB 297)

The differential operator is given by

θ4 − 24z(83θ4 + 94θ3 + 71θ2 + 24θ + 3) + 2113z2(101θ4 + 191θ3 + 174θ2 + 71θ + 10)

− 21632z2(203θ4 + 432θ3 + 333θ2 + 102θ + 11) + 22333z4(3θ + 1)(2θ + 1)2(3θ + 2).
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The first coefficients of the modular forms in the singular points1/512, 1/432 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/512 80/4 0 −2 −5 −6 −32 −38 26 −100

1/432 180/5 0 0 5 −28 24 −70 −102 20

AESZ 235 (DB 299)

The differential operator is given by

72θ4 − 14zθ(46θ3 + 52θ2 + 33θ + 7)

− 22z2(7332θ4 + 28848θ3 + 42633θ2 + 26670θ + 6272)

− 24z3(2860θ4 + 44760θ3 + 120483θ2 + 111279θ + 35098)

+ 29z4(2230θ4 + 5920θ3 − 741θ2 − 6509θ − 3049)

+ 214z5(174θ4 + 1320θ3 + 1971θ2 + 1095θ + 190)

− 219z6(22θ4 + 24θ3 − 9θ2 − 21θ − 7) − 225z7(θ + 1)4.

The first coefficients of the modular forms in the singular points−1/16, 1/32 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/16 72/2 0 0 −14 −24 28 −74 −82 92

1/32 96/3 0 3 −14 −36 −36 54 −22 36

AESZ 237 (DB 301)

The differential operator is given by

θ4 − 24z(46θ4 + 128θ3 + 91θ2 + 27θ + 3) − 293z2(74θ4 − 16θ3 − 231θ2 − 127θ − 20)

+ 21432z3(14θ4 + 216θ3 + 175θ2 + 51θ + 5) + 21933z4(3θ + 1)(2θ + 1)2(3θ + 2).

The first coefficients of the modular forms in the singular points1/864, 1/64 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/864 288/11 0 0 −2 12 −60 −42 −10 132

1/64 16/1 0 4 −2 −24 44 22 50 −44

AESZ 239 (DB 303)

The differential operator is given by

θ4 + 243z(9θ4 − 198θ3 − 131θ2 − 32θ − 3) − 21132z2(486θ4 + 1215θ3 + 81θ2 − 27θ − 5)

− 21635z3(891θ4 + 972θ3 + 675θ2 + 216θ + 25) − 22338z4(4θ + 1)2(3θ + 2)2.

The first coefficients of the modular forms in the singular points−1/432, 1/3456 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/432 108/4 0 0 9 −1 63 −28 72 98

1/3456 432/8 0 0 0 37 0 −19 0 163
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AESZ 241 (DB 305)

The differential operator is given by

θ4 − 24z(152θ4 + 160θ3 + 110θ2 + 30θ + 3) + 2103z2(428θ4 + 176θ3 − 299θ2 − 170θ − 25)

− 21732z3(136θ4 − 216θ3 − 180θ2 − 51θ − 5) − 22433z4(3θ + 1)(2θ + 1)2(3θ + 2).

The first coefficients of the modular forms in the singular points−1/64, 1/1728 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/64 56/2 0 −2 −16 −7 24 −68 54 −46

1/1728 504/1 0 0 2 7 −12 −66 70 −92

A.2.3 Operators with three rational conifold points

AESZ 21

The differential operator is given by

52θ4 − 225z(36θ4 + 84θ3 + 72θ2 + 30θ + 5) − 24z2(181θ4 + 268θ3 + 71θ2 − 70θ − 35)

+ 28z3(θ + 1)(37θ3 + 248θ2 + 375θ + 165)

+ 210z4(39θ4 + 198θ3 + 331θ2 + 232θ + 59) + 215z5(θ + 1)4.

The first coefficients of the modular forms in the singular points−1/4, 1/32, 1/4 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/4 8/1 0 −4 −2 24 −44 22 50 44

1/32 112/4 0 −4 6 −7 12 −82 −30 −68

1/4 56/2 0 −2 −16 −7 24 −68 54 −46

AESZ 34

The differential operator is given by

θ4−z(35θ4+70θ3+63θ2+28θ+5)+z2(θ+1)2(259θ2+518θ+285)−152z3(θ+1)2(θ+2)2.

The first coefficients of the modular forms in the singular points1/25, 1/9, 1 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/25 30/1 −2 3 5 32 −60 −34 42 −76

1/9 6/1 −2 −3 6 −16 12 38 −126 20

1 6/1 −2 −3 6 −16 12 38 −126 20
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AESZ 59

The differential operator is given by

72θ4 − 14z(257θ4 + 520θ3 + 435θ2 + 175θ + 28)

+ 22z2(13497θ4 + 555360θ3 + 81222θ2 + 50337θ + 11396)

− 23z3(17201θ4 + 114996θ3 + 248466θ2 + 202629θ + 55412)

− 24z4(5762θ4 + 29668θ3 + 48150θ2 + 31741θ + 7412)

− 25 · 3z5(4θ + 5)(3θ + 2)(3θ + 4)(4θ + 3).

The first coefficients of the modular forms in the singular points1/54, 1/16, 1/4 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/54 684/5 0 0 −18 −32 −46 −72 8 19

1/16 228/2 0 −3 −7 21 −37 26 −33 −19

1/4 12/1 0 3 −18 8 36 −10 18 −100

AESZ 216 (DB 268)

The differential operator is given by

θ4 − 3zθ(27θ3 + 18θ2 + 11θ + 2) − 2 · 33z2(72θ4 + 414θ3 + 603θ2 + 330θ + 64)

+ 2235z3(93θ4 − 720θ2 − 708θ − 184)

+ 2337z4(2θ + 1)(54θ3 + 405θ2 + 544θ + 200)

− 24310z5(2θ + 1)(3θ + 2)(3θ + 4)(2θ + 3).

The first coefficients of the modular forms in the singular points−1/27, −1/36, 1/108 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/27 15/2 1 3 5 −24 52 22 −14 −20

−1/36 324/2 0 0 −3 −4 24 −25 21 −52

1/108 60/1 0 −3 −5 −28 −24 −70 102 20

AESZ 217 (DB 269)

The differential operator is given by

72θ4 + 7zθ(13θ3 − 118θ2 − 73θ − 14)

− 233z2(3378θ4 + 13446θ3 + 18869θ2 + 11158θ + 2352)

− 2433z3(3628θ4 + 17920θ3 + 31668θ2 + 22596θ + 5383)

− 2833z4(2θ + 1)(572θ3 + 2370θ2 + 2896θ + 1095)

− 21034z5(2θ + 1)(6θ + 5)(6θ + 7)(2θ + 3).
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The first coefficients of the modular forms in the singular points−1/16, −1/27, 1/48 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/16 176/1 0 1 −7 6 11 −40 −78 −36

−1/27 ? 0 0 4 −26 − −32 −74 −60

1/48 432/11 0 0 4 −3 −28 −11 44 −29

AESZ 226 (DB 283)

The differential operator is given by

52θ4 − 10z(328θ4 + 692θ3 + 551θ2 + 205θ + 30)

+ 223z2(5352θ4 + 25416θ3 + 38387θ2 + 23020θ + 4860)

− 2433z3(352θ4 + 4520θ3 + 12108θ2 + 10205θ + 2630)

− 2633z4(2θ + 1)(586θ3 + 3039θ2 + 3947θ + 1527)

− 2834z5(2θ + 1)(6θ + 5)(6θ + 7)(2θ + 3).

The first coefficients of the modular forms in the singular points1/108, 1/16, 1/12 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

1/108 ? 0 0 14 2 −58 −50 76 60

1/16 23/1 −2 −5 −6 −8 34 −57 −80 −70

1/12 216/4 0 0 0 −9 −17 −44 56 −94

AESZ 234 (DB 298)

The differential operator is given by

72θ4 − 14zθ(192θ3 + 60θ2 + 37θ + 7)

− 22z2(17608θ4 + 115144θ3 + 166715θ2 + 94556θ + 18816)

+ 2432z3(20288θ4 + 57288θ3 + 27524θ2 − 7455θ − 5026)

− 2635z4(2θ + 1)(458θ3 − 657θ2 − 1799θ − 846)

− 21238z5(2θ + 1)(θ + 1)2(2θ + 3).

The first coefficients of the modular forms in the singular points−1/4, −1/36, 1/64 are

Point Form a2 a3 a5 a7 a11 a13 a17 a19

−1/4 68/1 0 −2 −8 −12 −10 −38 −17 4

−1/36 12/1 0 3 −18 8 36 −10 18 −100

1/64 34/2 −2 −2 −18 −10 −6 74 17 −88
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A.3 Laurent polynomials

In the tables below, we list Laurent polynomials whose fundamental periodssatisfy Calabi-
Yau differential equations of order4. These polynomials were found by D. van Straten
and G. Almkvist in the list of Batyrev and Kreuzer, [6]. The Newton polyhedra of all of
these Laurent polynomials contain the origin as unique interior lattice point, andthus they
provide examples for the Laurent polynomials considered in chapter 8. The numbers of the
CY(4)-operators are the numbers used in the list in [2]. If these numbers differ from the
number in the database [3], or if the operators do not appear in the list [2], we also give the
number of the operator in the database.

AESZ 3

The differential operator is given by
θ4 − 256 t2 (θ + 1)4 ,
and a Laurent polynomial is
X−1 + T

X + TY
X + Y

X + ZY
X + Y ZT

X + ZT
X + Z

X + X
TY + X

Y +X+ X
T + X

ZT + X
Z + X

ZY + X
Y ZT .

The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.

AESZ 4

The differential operator is given by
θ4 − 729 t3 (θ + 1)2 (θ + 2)2

and a Laurent polynomial is
X−1 + T

X + X2

Y T + X2

ZT + Y T
X + ZT

X + Y
X + Z

X + X2

Y ZT .
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f3n]0.

AESZ 5

The differential operator is given by
θ4 − 108 t3 (θ + 2) (θ + 1) (2 θ + 3)2

and Laurent polynomials are
X−1 + T

X + TY
X + Y

X + ZY
X + ZY T

X + ZT
X + Z

X + X2

ZY T
or
X−1 + T

X + Y
X + ZY

X + ZT
X + X2

ZY + Z
X + X2

ZY T .
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f3n]0.

AESZ 6

The differential operator is given by
θ4 − 1024 t4 (θ + 1) (θ + 2)2 (θ + 3)
and Laurent polynomials are
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1
XY T + Z + Y +X + T + 1

XY Z
or
X−1 + T

X + X
Y + ZT

X + Z
X + Y 2

XT + Y 2

X + Y 2

XZ + Y 2

XZT .
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f4n]0.

AESZ 8

The differential operator is given by
θ4 − 6912 t6 (θ + 5) (θ + 1) (θ + 3)2

and a Laurent polynomial is
T 2Z
XY + TZ

XY + X
Y + TZ2

XY + Y 2

XT + Y 2

XZT + Y 2

XZ .
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f6n]0.

AESZ 10

The differential operator is given by
θ4 − 4096 t4 (θ + 3)2 (θ + 1)2

and a Laurent polynomial is
XT
Y + X

Y + Z
X + Y 2

XZT +X−1 + T
X + XZ

Y + XY
ZT .

The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f4n]0.

AESZ 11

The differential operator is given by
θ4 − 192 t4 (3 θ + 8) (3 θ + 4) (θ + 3) (θ + 1)
and a Laurent polynomial is
T
X +X−1 + XZ

Y + X
Y + XT

Y + Z
X + Y 2

XZT .
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f4n]0.

AESZ 12

The differential operator is given by
θ4 − 6912 t6 (θ + 5) (2 θ + 3) (2 θ + 9) (θ + 1)
and the Laurent polynomial is

1
X2Y ZT

+ 1
XY 2ZT

+ T + Y + Z +X.
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f6n]0.
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AESZ 14

The differential operator is given by
θ4 − 6912 t6 (θ + 5) (θ + 1) (θ + 3)2

and a Laurent polynomial is
1

X3Y T
+ Z + Y +X + T + 1

X3Y Z
.

The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f6n]0.

AESZ 24

The differential operator is given by
θ4 − 27 t3 (θ + 2) (θ + 1)

(

11 θ2 + 33 θ + 27
)

− 729 t6 (θ + 5) (θ + 4) (θ + 2) (θ + 1)
and Laurent polynomials are
1
Y T + Z + T + 1

XY + 1
XZ + Y +X

or
1
XT + Z + Y +X + T + 1

ZX + 1
Y X + 1

X2Y ZT
.

The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f3n]0.

AESZ 25

The differential operator is given by
θ4 − 16 t2

(

11 θ2 + 22 θ + 12
)

(θ + 1)2 − 256 t4 (θ + 3)2 (θ + 1)2

and a Laurent polynomial is
X−1 + T

X + Y T
X + Y

X + Y Z
X + Y ZT

X + ZT
X + Z

X + X
Y T + X

Y + X
ZT + X

Z + X
Y Z + X

Y ZT .
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.

AESZ 26

The differential operator is given by
θ4 − 2 t (2 θ + 1)2

(

13 θ2 + 13 θ + 4
)

− 12 t2 (2 θ + 1) (3 θ + 2) (3 θ + 4) (2 θ + 3)
and Laurent polynomials are
Y T
X + ZY

X + Y
X + X

Y T + X
ZY +X−1 + ZT

X + Z
X + T

X + X
Z + X

T
or
T−1 +X + Z + Z

XT + Y −1 + T
ZY +X−1 + T + Y + Y

XT + Z−1

or
Y ZT
X + T

X + TZ
X + X

Z + X
T +XY +X−1 + Z

XY + 1
XY + T

XY + X
TZ + X

Y ZT .
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.
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AESZ 29

The differential operator is given by
θ4 − 2 t (2 θ + 1)2

(

17 θ2 + 17 θ + 5
)

+ 4 t2 (2 θ + 1) (θ + 1)2 (2 θ + 3)
and Laurent polynomials are
X−1 + X

ZY + T
X + Y

X + Y T
X + X

TZY + X
Y T + TZY

X + ZY
X + TZ

X + X
Y + Z

X + X
TZ

or
Y T
X + Y Z

X + Y
X + X

Y T + X
Y Z + X

Y + Z
X + TZ

X + T
X +X−1 + X

Z + X
T .

The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.

AESZ 51

The differential operator is given by
θ4 − 64 t4 (θ + 3) (θ + 1)

(

11 θ2 + 44 θ + 48
)

− 4096 t8 (θ + 5) (θ + 3) (θ + 7) (θ + 1)
and a Laurent polynomial is

1
X2T

+ Z + Y +X + T + 1
X2Z

+ 1
X2Y

+ 1
X4Y ZT

.
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f4n]0.

AESZ 185

The differential operator is given by
θ4 − 24 t2

(

3 θ2 + 6 θ + 4
)

(θ + 1)2 − 432 t4 (θ + 1) (θ + 2)2 (θ + 3)
and Laurent polynomials are

1
Y ZT + Y −1 + T + Z−1 +X−1 +X + Y + Z + ZY

X
or

1
TXZ + T +X−1 + Z−1 + Y + Z + Y −1 + Z

XY + 1
TY X +X

or
T +X−1 + Z−1 + Y −1 + 1

TXZ + 1
TY X + 1

TZY + Y + Z +X.
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.

AESZ 214 (DB 266)

The differential operator is given by
θ4 + t

(

−12 − 94 θ − 282 θ2 − 376 θ3 − 180 θ4
)

+
t2
(

−768 − 3736 θ − 6820 θ2 − 6080 θ3 − 2256 θ4
)

− 16 t3 (2 θ + 1)
(

286 θ3 + 813 θ2 + 851 θ + 294
)

− 192 t4 (2 θ + 1) (4 θ + 3) (4 θ + 5) (2 θ + 3)
and a Laurent polynomial is

X−1 + T
X + TY

X + Y
X + Y Z

X + TY Z
X + TZ

X + Z
X + X

TY + X
Y + X

T + X
TZ + X

Z + X
Y Z .

The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.
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AESZ 218 (DB 270)

The differential operator is given by
49 θ4 + t

(

−588 − 4410 θ − 12726 θ2 − 16632 θ3 − 8064 θ4
)

+
t2
(

29232 + 145824 θ + 245172 θ2 + 140832 θ3 + 14256 θ4
)

+
t3
(

−111888 − 413532 θ − 373140 θ2 + 54432 θ3 + 57456 θ4
)

− 1296 t4 (2 θ + 1)
(

36 θ3 + 306 θ2 + 421 θ + 156
)

− 5184 t5 (2 θ + 1) (3 θ + 2) (3 θ + 4) (2 θ + 3)
and a Laurent polynomial is

1
XY + Y TZ

X + X
Z + TZ

X + XY
Z + T

XY + T
X + Z

XY + X
Y TZ + X

T + XY
T + X

TZ + Z
X .

The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.

AESZ 209 (DB 290)

The differential operator is given by
289 θ4 + t

(

−4046 − 31790 θ − 94826 θ2 − 126072 θ3 − 64668 θ4
)

+
t2
(

−22644 − 96424 θ − 40116 θ2 + 274304 θ3 + 249632 θ4
)

+
t3
(

−19176 − 71196 θ − 83140 θ2 − 132192 θ3 − 264720 θ4
)

+

128 t4 (2 θ + 1)
(

196 θ3 + 498 θ2 + 487 θ + 169
)

− 4096 t5 (2 θ + 1) (θ + 1)2 (2 θ + 3)
and a Laurent polynomial is
X−1 + T

X + Y T
X + Y

X + Y Z
X + Y ZT

X + ZT
X + Z

X + X
Y T + X

Y + X
T + X

ZT + X
Z + X

Y Z + X
Y ZT .

The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.

DB 287A

The differential operator is given by
441 θ4 + t

(

−4410 − 33516 θ − 97545 θ2 − 128058 θ3 − 69069 θ4
)

+
t2
(

−272580 − 1348200 θ − 2137700 θ2 − 923360 θ3 + 154240 θ4
)

+
t3
(

97440 + 1861776 θ + 6723376 θ2 + 7894656 θ3 + 1706176 θ4
)

−1280 t4 (2 θ + 1)
(

1916 θ3 + 2622 θ2 + 1077 θ + 91
)

−102400 t5 (2 θ + 1) (θ + 1)2 (2 θ + 3)
and Laurent polynomials are
Z
X + TZY

X + T
X + TZ

X + X
Z + X

T +XY +X−1 + Z
XY + 1

XY + T
XY + X

TZ + X
TZY

or
X−1 + X

Y Z + T
X + Z

X + TZ
X + X

Y TZ + X
T + Y TZ

X + Y Z
X + Y T

X + X
Z + Y

X + X
Y T .

The coefficienta(n) of tn of the solution to the differential equation is then given by
a(n) = [f2n]0.

DB 309 A

The differential operator is given by
81 θ4 + t

(

−972 − 7452 θ − 21933 θ2 − 28962 θ3 − 17937 θ4
)

+
t2
(

9504 + 89280 θ + 391648 θ2 + 805888 θ3 + 559552 θ4
)

+
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t3
(

−539136 − 3186432 θ − 7399680 θ2 − 8902656 θ3 − 6046720 θ4
)

+
32768 t4 (2 θ + 1)

(

340 θ3 + 618 θ2 + 455 θ + 129
)

− 4194304 t5 (2 θ + 1) (θ + 1)2 (2 θ + 3)
and Laurent polynomials are
Y T
X +X + Y T

XZ + XZ
Y T +X−1 + X

Y + X
Y T + T

XZ + X
Y Z + T

X + 1
XZ + Y Z

X + Y
X + XZ

T
or
X−1 + T

X + Y T
X + Y

X + Y Z
X + TZY

X + TZ
X + Z

X + X
Y T + X

Y + X
T + X

Z + X
Y Z + X

TZY .
The coefficienta(n) of tn of the solution to the differential equation is then given bya(n) =
[f2n]0.
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Summary

Let π : X → S be a one-parameter family of smooth Calabi-Yau threefolds defined over
Z, and assume that there exists a submoduleM ⊂ H3

DR(X/S) of rank four which is stable
under the Gauss-Manin connection, such that the Picard-Fuchs operator P onM is what
we call aCalabi-Yauoperator of order4.

Let k be a finite field of charactersticp. For the ordinary fibresXt0 , t0 ∈ S0 of the
reductionπ0 : X0 → S0 overk, we derive an explicit formula to compute the characteristic
polynomial of the Frobenius endomorphism, theFrobenius polynomial, on the correspond-
ing submoduleMcris of the third crystalline cohomologyH3

cris(Xt0) by computing two of
its roots.

Let f0(z) be the holomorphic solution to the differential equationPf = 0 around
z = 0. Since the unit root of the Frobenius polynomial at a Teichmüller pointt is given
by f0(z)/f0(z

p)|z=t, a crucial step of the computation of the Frobenius polynomial is the
construction of ap−adic analytic continuation of the quotientf0(z)/f0(z

p) to the bound-
ary of thep−adic unit disc. In case thatf0(z) can be expressed in terms of the constant
terms in the powers of a Laurent polynomial whose Newton polyhedron contains the ori-
gin as unique interior lattice point, we prove that the coefficients off0(z) satisfy certain
congruence properties that are crucial to construct the analytic continuation.

If the fibreXt0 aquires an ordinary double point, we expect that the limit Frobenius
polynomial factors in a specific way, and that there exists one factor of degree two which
is determined by one coefficientap. As p varies, we expect that there exists a modular
form of weight four with coefficientsap by the modularity theorem. We could confirm this
expectation by our numerous computations.

Furthermore, we derive formulas to compute the Frobenius polynomial in termsof the
non-holomorphic solutions to the differential equationPf = 0 aroundz = 0.
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Zusammenfassung

Seiπ : X → S eine überZ definierte Familie von Calabi-Yau Varietäten der Dimension
drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invarianter UntermodulM ⊂
H3
DR(X/S) von Rang vier, sodass der Picard-Fuchs OperatorP auf M ein sogenannter

Calabi-Yau Operator von Ordnung vier ist.
Sei k ein endlicher Körper der Charaktetristikp, und seiπ0 : X0 → S0 die Reduk-

tion von π über k. Für die gewöhnlichen (ordinary) FasernXt0 der Familie leiten wir
eine explizite Formel zur Berechnung des charakteristischen Polynoms des Frobeniusendo-
morphismus, desFrobeniuspolynoms, auf dem korrespondierenden UntermodulMcris ⊂
H3
cris(Xt0) her.

Sei nunf0(z) die Potenzreihenlösung der DifferentialgleichungPf = 0 in einer Umge-
bung der Null. Da eine reziproke Nullstelle des Frobeniuspolynoms in einem Teichmüller-
Punktt durchf0(z)/f0(z

p)|z=t gegeben ist, ist ein entscheidender Schritt in der Berech-
nung des Frobeniuspolynoms die Konstruktion einerp−adischen analytischen Fortsetzung
des Quotientenf0(z)/f0(z

p) auf den Rand desp−adischen Einheitskreises. Kann man
die Koeffizienten vonf0 mithilfe der konstanten Terme in den Potenzen eines Laurent-
Polynoms, dessen Newton-Polyeder den Ursprung als einzigen innerenGitterpunkt enthält,
ausdrücken, so beweisen wir gewisse Kongruenz-Eigenschaften unter den Koeffizienten von
f0. Diese sind entscheidend bei der Konstruktion der analytischen Fortsetzung.

Enthält die FaserXt0 einen gewöhnlichen Doppelpunkt, so erwarten wir im Grenzüber-
gang, dass das Frobeniuspolynom in zwei Faktoren von Grad eins undeinen Faktor von
Grad zwei zerfällt. Der Faktor von Grad zwei ist dabei durch einen Koeffizientenap ein-
deutig bestimmt. Durchläuft nunp die Menge aller Primzahlen, so erwarten wir aufgrund
des Modularitätssatzes, dass es eine Modulform von Gewicht vier gibt, deren Koeffizienten
durch die Koeffizientenap gegeben sind. Diese Erwartung hat sich durch unsere umfang-
reichen Berechnungen bestätigt.

Darüberhinaus leiten wir weitere Formeln zur Bestimmung des Frobeniuspolynoms her,
in welchen auch die nicht-holomorphen Lösungen der Differentialgleichung Pf = 0 in
einer Umgebung der Null eine Rolle spielen.

173



174 Bibliography



Lebenslauf

Kira Samol

Staatsangehörigkeit: deutsch

Ich wurde am 20.04.1982 in Bochum geboren. Von 1988 bis 1992 besuchte ich die Grund-
schule in Koblenz-Lay. Darauf folgend besuchte ich von 1992 bis 2001das Bischöfliche
Cusanus-Gymnasium in Koblenz.

Nach dem Abitur 2001 (Notesehr gut, 1.0) begann ich im Oktober 2001 mein Mathe-
matikstudium in Mainz. Im Nebenfach studierte ich bis zum Vordiplom Informatikund
Betriebswirtschaftlehre, nach dem Vordiplom dann Betriebswirtschaftslehre. Von 2003
bis 2006 war ich am Fachbereich Mathematik als wissenschaftliche Hilfskraft beschäftigt.
Während des gleichen Zeitraums war ich Stipendiatin der Studienstiftung des Deutschen
Volkes. 2006 schloss ich mein Studium im Oktober mit der Notemit Auszeichnungab.
Der Titel meiner Diplomarbeit lautetDie Deformationsmethode von Lauder und Dwork für
gewichtet projektive Hyperflächen, die Arbeit wurde von Prof. Dr. D. van Straten betreut.

Von November 2006 bis Dezember 2009 war ich wissenschaftliche Mitarbeiterin an der
Johannes Gutenberg-Universität Mainz. Seit Juli 2007 wurde ich dabei im Rahmen des
Sonderforschungsbereiches SFB Transregio 45 der DFG beschäftigt und hatte das Amt der
Doktorandensprecherin des SFB inne.

Im September 2007 war ich für einen Monat zu Gast im Max Planck-Institut für Mathematik
in Bonn, als 1. Preis für die Diplomarbeit, erhalten auf der Studierendenkonferenz der DMV
in Berlin im März 2007. Im Dezember 2008 und im Januar 2009 besuchte ichjeweils für
eine Woche die Universität Oxford.

175


	Introduction
	Chapter The Weil conjectures and p-adic cohomology
	The zeta function and the Weil conjectures
	 Weil conjectures and - adic cohomology
	Crystalline cohomology
	Crystalline cohomology and Frobenius
	Rigid cohomology

	Chapter F-crystals
	Introduction to F- Crystals
	F-crystals on W[[z-]]
	Theorem 4.1. of Katz
	Divisible Hodge-F-crystals
	Ordinary CY3-crystals and general autodual crystals

	Chapter CY3-crystals and unit roots
	Picard-Fuchs operators of CY-type
	CY- differential equations and ordinary autodual crystals
	Horizontal sections for CY differential operators 
	Calabi-Yau varieties
	CY-differential equations and families of Calabi-Yau varieties
	Dwork's deformation from z=0
	Example: The Legendre family of elliptic curves
	Frobenius polynomials for CY3-crystals of rank four
	Formulas for r0 and r'0

	Chapter The Hasse-invariant
	The Hasse-invariant and the Picard-Fuchs equation
	The Hasse-invariant for hypergeometric CY-threefolds

	Chapter Analytic continuation and computations
	Dwork congruences and analytic continuation
	Dwork congruences for hypergeometric CY(4)-operators
	Explicit formulas
	Required p-adic precision
	A bound for the number of possible Frobenius polynomials
	Example
	An algorithm to compute the Frobenius polynomial from one root
	Example

	Chapter Some special Picard-Fuchs equations: Hadamard products
	Hadamard products
	Some special CY(2)-operators
	A geometric example: b*b
	The constant  in equation (5.4)
	The constant  in the hypergeometric cases
	Computations

	Chapter Modular forms
	Basic definitions
	The Frobenius polynomial at an ordinary double point
	Modular forms of weight four
	An Algorithm to compute coefficients of modular forms

	Chapter Dwork congruences for reflexive polyhedra
	Laurent polynomials and the congruence D3
	The fundamental period
	Proof for the congruence 12mumodp 
	Strategy for higher s
	Splitting positions
	Three combinatorial lemmas
	Proof for higher s
	Examples
	Behaviour under covering
	The statement D1

	Chapter An experimental approach: matrix computations
	Matrix computations for CY(4)-operators
	Matrix computations for CY(2)-operators

	Chapter Some new formulas to compute the unit root
	Fixed points involving the other solutions
	New formulas for the unit root in Teichmüller points
	An explicit construction of the analytic continuation of i(z) and Fi(z)

	Chapter An alternative Method for analytic continuation
	The A-algebra D(A) and the Dwork congruences
	Explicit construction of an analytic continuation

	Chapter Appendix
	Hadamard products
	Modular forms
	Operators with one rational conifold point
	Operators with two rational conifold points
	Operators with three rational conifold points

	Laurent polynomials

	Summary
	Zusammenfassung
	Lebenslauf

