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Summary

This thesis studies molecular dynamics simulations on two levels of resolution: the de-
tailed level of atomistic simulations, where the motion of explicit atoms in a many-particle
system is considered, and the coarse-grained level, where the motion of “superatoms”
composed of up to 10 atoms is modeled. While atomistic modelsare capable of describ-
ing material specific effects on small scales, the time and length scales they can cover
are limited due to their computational costs. Polymer systems are typically characterized
by effects on a broad range of length and time scales. Therefore it is often impossible
to atomistically simulate processes, which determine macroscopic properties in polymer
systems. Coarse-grained (CG) simulations extend the rangeof accessible time and length
scales by three to four orders of magnitude. However, no standardized coarse-graining
procedure has been established yet.

Following the ideas of structure-based coarse-graining, acoarse-grained model for
polystyrene is presented. Structure-based methods parameterize CG models to repro-
duce static properties of atomistic melts such as radial distribution functions between
superatoms or other probability distributions for coarse-grained degrees of freedom. Two
enhancements of the coarse-graining methodology are suggested. Correlations between
local degrees of freedom are implicitly taken into account by additional potentials acting
between neighboring superatoms in the polymer chain. This improves the reproduction
of local chain conformations and allows the study of different tacticities of polystyrene.
It also gives better control of the chain stiffness, which agrees perfectly with the atomistic
model, and leads to a reproduction of experimental results for overall chain dimensions,
such as the characteristic ratioC∞, for all different tacticities. The second new aspect is
the computationally cheap development of nonbonded CG potentials based on the sam-
pling of pairs of oligomers in vacuum. Static properties of polymer melts are obtained as
predictions of the CG model in contrast to other structure-based CG models, which are
iteratively refined to reproduce reference melt structures.

The dynamics of simulations at the two levels of resolution are compared. The time
scales of dynamical processes in atomistic and coarse-grained simulations can be con-
nected by a time scaling factor, which depends on several specific system properties as
molecular weight, density, temperature, and other components in mixtures. In this the-
sis the influence of molecular weight in systems of oligomersand the situation in two-
component mixtures is studied. For a system of small additives in a melt of long polymer
chains the temperature dependence of the additive diffusion is predicted and compared to
experiments.
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Zusammenfassung

Die vorliegende Arbeit untersucht Molekulardynamik-Simulationen auf zwei Auflösungs-
ebenen: detaillierte atomistische Simulationen, in denendie Bewegung einzelner Atome
in einem Vielteilchensystem beleuchtet wird, und vergröberte Simulationen, in denen die
Bewegung von

”
Superatomen“, die aus bis zu zehn Atomen bestehen, betrachtet wird.

Während atomistische Modelle gut geeignet sind, materialspezifische Vorgänge auf klei-
nen Skalen zu beschreiben, sind Zeit- und Längenskalen, die sie abdecken können, be-
grenzt durch die hohe Rechenleistung, die sie erfordern. Polymersysteme sind typischer-
weise gekennzeichnet durch Effekte in einem weiten Bereich von Zeit- und Längenskalen.
Daher ist es in Polymersystemen oft unmöglich, Vorgänge atomistisch zu simulieren, die
relevant für makroskopische Eigenschaften sind. Vergröberte Modelle, auch als

”
Coarse-

graining“-Modelle bezeichnet, erweitern den Bereich der simulierbaren Zeit- und Längen-
skalen um drei bis vier Größenordnungen. Bis jetzt hat sichjedoch keine Standardmetho-
de des Coarse-graining durchgesetzt.

Ausgehend von der Methodik des strukturbasierten Coarse-graining wird ein vergröber-
tes Modell für Polystyrol vorgestellt. StrukturbasierteMethoden konstruieren Coarse-
graining-Modelle mit dem Ziel, statische Eigenschaften von atomistischen Schmelzen
nachzubilden, wie z.B. radiale Verteilungsfunktionen zwischen den Superatomen oder an-
dere Wahrscheinlichkeitsverteilungen für vergröberteFreiheitsgrade. Zwei Verbesserun-
gen der Coarse-graining-Methode werden vorgeschlagen. Durch zusätzliche Potentiale
zwischen benachbarten Superatomen in der Polymerkette werden Korrelationen zwischen
Freiheitsgraden miteinbezogen. Das verbessert die Nachbildung lokaler Konformationen
und ermöglicht die Untersuchung von Polystyrol verschiedener Taktizität. Darüberhinaus
lässt sich die Steifigkeit der Kette besser kontrollieren,die dadurch derjenigen im atomis-
tischen Modell entspricht. Dies führt schließlich dazu, dass das Coarse-graining-Modell
die Dimension gesamter Ketten in Polymerschmelzen, ausgedrückt durch das charakteris-
tische VerhältnisC∞, in Übereinstimmung mit experimentellen Daten für Polystyrol aller
Taktizitäten beschreibt. Der zweite neue Aspekt betrifft die Entwicklung nichtgebundener
Wechselwirkungspotentiale basierend auf dem Sampling eines Oligomerpaares im Vaku-
um. Statische Eigenschaften von Polymerschmelzen ergebensich damit als Vorhersagen
des Coarse-graining-Modells, im Gegensatz zu anderen strukturbasierten Methoden, die
iterative Optimierungen nutzen, um die Struktur einer Referenzschmelze nachzubilden.

Die Dynamik von Simulationen auf den zwei Auflösungsebenen wird verglichen. Die
Zeitskalen dynamischer Prozesse in atomistischen und vergröberten Simulationen können
durch einen Skalierungsfaktor in Beziehung gesetzt werden, der von mehreren Syste-
meigenschaften wie Molekulargewicht, Dichte, Temperaturund zusätzlichen Komponen-
ten in Mischungen abhängt. In dieser Arbeit wird der Einfluss von Molekulargewicht
und Zwei-Komponenten-Mischungen auf Oligomersysteme betrachtet. Für ein weiteres
System wird die Temperaturabhängigkeit der Diffusion von kleinen Molekülen in einer
Schmelze langer Polymerketten untersucht und mit Experimenten verglichen.
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Introduction

Polymers form a broad class of materials. They are found in nature or are produced
synthetically and appear all around us. In industrial plastic products like packaging foil,
insulation of buildings, clothing fibers, laundry detergents, coatings, car tires and diapers;
from food technology and high performance materials in medicine to many biological
systems, including even DNA that stores the genome of all living organisms. The possible
range of properties and applications of polymers is huge.

Polymers are organic chain molecules, which are characterized by the repetition of
chemically equal or similar units called monomers. These monomers are typically con-
nected by covalent chemical bonds to form polymers, in the simplest case linear chains of
one type of repeat unit. Melts of these homopolymers show an interesting macroscopic
behavior depending on the length of the chains. For short chain length they behave like
liquids, but if the chain length is increased they show properties of rubber. The response
to mechanical deformations may even depend on how fast the deformation is exerted and
released, i.e. they are viscoelastic. Whereas they respondelastically like solids at high
frequencies, they start to flow like viscous liquids under slow deformations.

This illustrates the wide range of time and length scales of phenomena occurring in
polymer systems. The viscous behavior on large time scales is more than just the result
of local molecular-scale processes. It reflects an important characteristic of polymers:
They cannot cross each other, since this would break chemical bonds. To gain a general
understanding of the properties of polymer systems, one hasto know about the universal
behavior of these chains and the topological constraints which evolve from their entan-
glements. To obtain properties of specific polymer systems,such universal behavior has
to be linked to chemical details.

Computer simulations on an atomistic level have brought newinsight into phenomena
on the molecular scale, not only for melts of linear polymer chains, but for soft condensed
matter and biomolecular systems as well. However, many processes in these complex
systems occur on length and time scales that are beyond the reach of current detailed
atomistic simulations.

One approach to overcome this limitation and to reach longertime and length scales
in simulations is coarse-graining (CG). Coarse-grained models cluster groups of atoms
together into CG “sites” or “superatoms”. The CG sites interact by effective interactions,
which are designed to contain the averaged influence of “detailed” degrees of freedom.
The reduced number of degrees of freedom is one reason why CG models are computa-
tionally faster than atomistic models. The second reason, in general, lies in the physically
“faster” dynamics of the CG systems, see below. As a result ofthese different influenc-
ing factors the accessible time and length scales can be increased by three to four orders
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Introduction

of magnitude. By this the mesoscopic scale can be reached, where important phenom-
ena emerge, e.g. self-assembly in biomolecular systems or diffusive chain motion in long
polymer melts.

When CG models are developed, the general aim is to reduce thenumber of explicitly
treated degrees of freedom in a way that keeps the accuracy ofthe global and long-time
behavior as close as possible to the detailed system. For melts of linear polymer chains,
the following properties should be reproduced by a CG model:The packing of the chains
on a local level and the overall dimension of individual chains, i.e. if they are extended or
coiled up. If the chains are more extended, they overlap morewith other chains and are
finally more entangled, which has a strong influence on macroscopic melt properties. The
chain dimension is closely related to the stiffness of the polymer chain.

The first CG models used generic “bead-spring” models, in which chains cannot cross
each other due to excluded volume and have a certain stiffness, imposed by angular poten-
tials. These models are already capable of describing the universal behavior of polymers
without any information about the specific chemical structure of the monomers. Since
then, CG models for chemically specific systems became of interest, which keep certain
specific properties linked to chemical details of the underlying polymer. This is also the
scope of this thesis.

Coarse-graining methods face several challenges at the moment. Two of these aspects
are closely linked to the studies presented in this thesis.

The first one is the degree of transferability of CG models between different systems
and between different thermodynamic conditions. Even though one cannot expect that
a CG model iscompletelytransferable, because it is a simplified picture of a complex
system and by reducing the number of degrees of freedom certain information has been
effectively averaged away, the conditions at which the model isdeveloped certainly in-
fluence the transferability. The question is how many specific properties of the atomistic
reference system used to parameterize a CG model enter into the CG model and thereby
cause deviations as soon as the CG model is simulated under varied conditions.

Among the CG methods which aim at close reproduction of the structure, CG interac-
tion potentials are typically developed by iterative methods using an atomisticmeltstate
as the reference system. The influence of the choice of the reference system can be il-
lustrated by considering a CG potential between small molecules, which is parameterized
on a liquid of these molecules as a reference system. If we assume that the molecules
in a liquid are packed in such a way that each molecule is surrounded by several shells
of neighbors (where the outer shells are more and more disordered), the effective CG
potential (obtained from the liquid state) between the small molecules might have sev-
eral minima, corresponding to the different shells of neighbors. Of course this CG model
would reproduce the structure of the liquid, but it would possibly fail to describe the sys-
tem under varied conditions. If for example a second component is added to the system
and one would expect a different packing of the molecules in a homogeneous mixture,
the previously considered CG potential might fail to describe this mixture. It might lead
to the formation of clusters of molecules of one type only because their structure (hav-
ing several shells of neighbors of the same type) would be more similar to the reference
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structure, for which the model was developed, than the structure of a homogeneous mix-
ture with different components. From these considerations the CG potentials in this work
were developed from atomistic simulations of chain sequences invacuum. Information
on properties of the melt state have not been used to parameterize the model, but served
rather as test cases to prove the predictions of the model.

The second important aspect of CG models is their time-dependent, dynamical be-
havior. CG dynamics are generally faster than the dynamics of the underlying atomistic
systems. The averaging over detailed, local degrees of freedom leads to a smoother po-
tential energy surface and consequently faster dynamics ofCG models. This is a desirable
feature of CG models, especially if statistical sampling istheir primary goal. If the goal
is to study the dynamics of CG models, the question is how is the intrinsic CG time scale
linked to the time scale of the underlying model. A common approach to link the two time
scales for a specific CG model is the comparison of a dynamicalquantity in both, the CG
and the atomistic system. This link allows quantitative predictions of the dynamics, e.g.
of polymer systems, from CG dynamics. The influence of the specific CG and atomistic
model used, molecular weight, density, temperature and of other components in mixed
systems still remain open questions. Better knowledge of the link between the time scales
and its dependence on varying conditions is also related to the aspect of transferability
and in the end to the predictive capability of CG modeling.

This thesis is organized as follows. Chapter 1 gives a reviewof the basics of molecular
dynamics simulations, which are relevant for the atomisticas well as for the CG simula-
tions in this work. The general method of structure-based coarse-graining and common
approaches to develop CG interaction potentials are discussed in chapter 2. The core of
this thesis is the CG methodology, applied to the exemplary case of polystyrene. The
development of the CG model and its new approaches are presented in chapter 3. In
chapter 4 the CG model is applied to simulate polymer melts. The static properties of
atactic, isotactic and syndiotactic polystyrene are compared to atomistic simulations and
experimental data. In chapter 5 the dynamical aspects of CG simulations are discussed
for several different systems.

3
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1 Molecular dynamics simulations

In molecular dynamics (MD) simulations we deal with systemsto which the laws of
classical mechanics are applied. The main part of the systemis the force field, which
delivers a description of the potential energy surface on which the equations of motion
are simulated. Given the positions of each atom in the system, the forces on each atom,
as well as the total energy can be computed from this force field. Electronic motions are
not considered.

The description of the force field takes into account the covalent structure of molecules.
Therefore classical methods are not sufficient to describe chemical reactions, in which
atoms change the environment which they are covalently bound to. In these cases quan-
tum-chemical methods could be used. Even though classical methods are much faster than
ab initio methods, of course the sizes of systems, which can be simulated are limited. The
boundaries of the system need to follow certain boundary conditions. The simplest and
most often applied conditions areperiodic boundary conditions. They are described in
the following section. Subsequently the typical form of force fields will be discussed,
followed by the methods to solve the equations of motions numerically and by methods
to control temperature and pressure of simulated systems.

1.1 Periodic boundary conditions

We are interested in studying bulk behavior of systems whosesurface-to-volume ratio is
sufficiently small to not significantly affect the observed properties. In simulations, the
systems that we can afford to simulate are far away from a size at which effects at the
surface could be possibly neglected. The way to overcome this problem is the use of
periodic boundary conditions, where the system is exactly replicated in three dimensions.
Therefore the simulated system is a unit cell of a periodic lattice. The unit cell can have
an arbitrary triclinic shape, defined by three basis vectorswith arbitrary angles.

For simulations of polymer melts usually a cubic box is employed. For other systems,
notably proteins in solvent, the optimal unit cell has a minimal volume under the condition
that there is a minimum distance between any atom of the protein and any atom of the
neighboring image. In this case the amount of solvent in the unit cell is minimized and
thus the computational time spent on the less interesting solvent. For spherical molecules
the rhombic dodecahedron is the best choice. [1]

In periodic boundary conditions each atom interacts not only with atoms in the same
unit cell, but also with the images of all the cells, including its own periodic images. While
periodic boundary conditions avoid the perturbing influence of artificial boundaries like a
vacuum or a reflective wall, they introduce the artefact of periodicity. They imply that the
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1 Molecular dynamics simulations

potential functions are also periodic. Concerning the long-ranged Coulombic interactions
this periodicity is taken into account by the use of lattice sums, which are described later.
The other way to handle the effects of periodicity are modified interaction potentials that
vanish for distances larger than half of the smallest lengthof the unit cell. In this way only
interactions between nearest images occur. This modification of potentials, in turn, can
cause its own artifacts. Jumps of the force appear at sudden cutoffs and cause additional
noise, while smooth cutoffs can strongly modify the interaction. Methods to correct the
influence of the cutoff are described later.

1.2 Force fields

The development of force fields can be based on different principles. Ideally, ab initio
quantum calculations should provide descriptions for the interactions between atoms and
molecules. Considering that the de Broglie wavelengthΛ = h/

√
2πmkBT for hydrogen

at room temperature is around 10−10 m and therefore of the same order as the interatomic
bond length, it is surprising that the classical treatment of these systems with molecu-
lar dynamics works. Quantum calculations on isolated molecules do often not suffice to
obtain reliable force fields, as they are not accurate enoughto produce overall accura-
cies better thankBT, which is required to yield accurate thermodynamic properties. In
practice most force fields contain also parameters which areempirically adjusted to fit
experimental data. This point is related to the degree oftransferability. In an ideal force
field the terms describing interactions between particles should be transferable between
different molecules and conditions of the environment. This is often not the case. If force
fields contain parameters adjusted to empirical observations, errors in one term may be
compensated by changes in other terms, which, in turn, are inaccurate when they are used
for other configurations and environments.

The aspect of transferability is not only important in the case of atomistic force fields,
but also for the development of coarse-grained force fields.Whenever interaction poten-
tials are developed under certain conditions, one has to check carefully to which extent
these potentials can be used under varied conditions. On theother side one can try to
find conditions for the development of interactions, which are as general as possible. This
route was followed in this work for the development of a coarse-grained force field. The
improvement of atomistic models was not the focus, but a given atomistic force field was
used as the starting point and the basis to develop a coarse-grained model, which repro-
duces certain properties of the atomistic model.

1.2.1 Atomistic force fields

Atoms are the mass points that move in the force field. In all-atom (AA) models every
atom is treated explicitly. Some atomistic models handle hydrogen atoms in a different
way by treating them as spherical groups together with theirheavier neighboring atoms,
e.g. CH2 or CH3 groups. These groups act as a single mass point. These modelsare called
united-atom (UA) models. [2] The incorporation of several atoms into one mass point can

6



1.2 Force fields

already be seen as a first step of coarse-graining, since the method of coarse-graining that
we are using in this work is the arrangement of several atoms in groups orsuperatoms
that move in a coarse-grained force field.

As an example for a molecular force field this section describes typical terms, which are
included in the atomistic model for polystyrene that was used for the simulations in this
work. It is an all-atom model adapted by Müller-Plathe to describe benzene-polystyrene
systems. [3, 4] The model contains previously developed parameters [5, 6] and an adapted
potential to describe torsional rotations properly. This force field was also used as a basis
for several CG polystyrene models. [7, 8, 9]

Atoms are the points on which the different terms of the force field are acting. This
means that the force field describes all contributions to theforces as functions of the po-
sitions of the atoms. In this atomistic representation two groups of interactions are used.
The first group are bonded interactions that act on pairs or groups of atoms, which are
chemically connected by up ton bonds (usuallyn = 3). The second group are nonbonded
interactions between atoms, based on their distance, whichmight change during the sim-
ulation. These pairs of atoms belong to different molecules or to the same molecule,
provided the atoms are separated by at leastn bonds (usuallyn = 2 or 3). [10] The differ-
ence between these two types also is a computational one: bonded interactions apply to
atoms, which can be read from a fixed list, whereas pairs of atoms involved in nonbonded
interactions change with time and have to be updated regularly.

In Figure 1.1 a schematic view of force field terms and an example for an atomistic
molecule is given. In this work polymer systems of long linear chain molecules are sim-
ulated. In the case of polystyrene (the repeat unit is C8H8) the atomistic representation is
branched due to side groups, whereas the coarse-grained model deals with a chain without
side groups. The scheme of bonded and nonbonded interactions is in principle the same
in both cases.

The bonded potentials can be distinguished by the number of neighboring atoms in-
volved in the interaction:1

1. Interactions between two atoms connected by a chemical bond can be described by
a harmonic potential of the form

Vb(r i j ) =
1
2

kb(r i j − b0)
2 (1.1)

where the force constantkb and the bond lengthb0 are parameters depending on
the bond type. The fast bond oscillations, especially of thelight hydrogen atoms,
are often neither of special interest nor of crucial importance for the properties of
the whole system, because the choice of a harmonic potentialleads to an average
bond length, which does not change with temperature, as it would be the case for an
anharmonic potential. Therefore simulations are often performed with fixed bond
lengths (see section 1.3.2). This allows for the use of longer timesteps.

1The potentials can also have different functional forms, depending on the specific system of interest.
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1 Molecular dynamics simulations

Figure 1.1: Schematic view of force field terms for a system of linear chain molecules
(right): bonded potentials act on groups of two (bonds), three (angles) or four (dihedrals)
neighbors connected by chemical bonds; nonbonded potentials act on particles, which are
close to each other in space, but not involved in a joint bonded interaction. This scheme
holds for coarse-grained force fields, which often consist of linear polymer chains, but also
for atomistic force fields, where the molecules are typically branched or incorporate aromatic
rings, see left side: an atomistic representation of a polystyrene dimer (left), where atoms are
shown as beads (blue carbon and white hydrogen atoms) and bonds are given by lines.

8



1.2 Force fields

2. Angular bending potentials describe interactions between three atoms which are
connected by two consecutive bonds. In this case also a harmonic potential is used:

Va(θi jk) =
1
2

kθ(θi jk − θ0)2 (1.2)

3. Proper dihedral angles are used to describe torsions around bonds. They involve
four atomsi, j, k, l, connected by three consecutive bonds, and are periodic:

Vd(φi jkl ) = kφ(1+ cos(nφ − φs)) (1.3)

The dihedral angleφ is the angle between thei jk plane and thejkl plane, see Fig-
ure 1.2. In addition to this explicit form of the potential a steric contribution to
the torsional barriers occurs in force fields, which includenonbonded interactions
between the first and last atom belonging to the dihedral. This is also the case in
the atomistic force field used in this work.

4. Improper dihedral angles are defined in the same wat as proper dihedrals and are
used to keep groups of atoms planar, see Figure 1.2, or to prevent molecules from
flipping over to mirror images:

Vid(ξi jkl ) =
1
2

kξ(ξi jkl − ξ0)2 (1.4)

Figure 1.2: Dihedral angles: The proper dihedral angleφ (left) is the angle between thei jk
plane and thejkl plane. According to the IUPAC/IUB convention zero corresponds to thecis
configuration (i andl on the same side). Improper dihedrals are defined in the same way. To
keep a ring planar improper dihedrals are applied to all groups of four subsequent atoms in
the ring with a reference angleξ0 = 0◦ between the planesi jk and jkl (right).

The nonbonded interactions are pairwise additive and a function of the distancer i j

between the two atoms of each pair. Pairs that are involved inbonded interactions are
usually excluded from the nonbonded interactions. Depending on the dihedral functions
used, 1-4 nonbonded interactions between atoms included ina bonded dihedral interaction
(separated byn = 3 bonds) can also have a (possibly modified) nonbonded interaction.
In the force field of this work the nonbonded interaction alsoacts on these 1-4 pairs.
Nonbonded interactions are usually taken into account for pairs of atoms within a certain
cutoff radius. In the case of periodic boundary conditions they canalso be computed as
full lattice sums over the periodic lattice. Two types of nonbonded interactions are used:

9



1 Molecular dynamics simulations

1. Short-ranged repulsion and longer-ranged dispersion between pairs of atoms be-
longing to different chains or to the same chain but separated by more thann bonds
(n = 2 in this work). They are described by Lennard-Jones interactions:

VLJ(r i j ) = 4ǫi j

[

(
σi j

r i j
)12 − (

σi j

r i j
)6

]

(1.5)

whereǫ andσ are specific parameters for each different type of atom. Or alterna-
tively:

VLJ(r i j ) =
C(12)

i j

r12
i j

−
C(6)

i j

r6
i j

(1.6)

Parameters between unlike atoms are determind by the Lorentz-Berthelot mixing
rules: [11]

σi j =
1
2

(σii + σ j j ), ǫi j = (ǫii ǫ j j )
1/2 (1.7)

The treatment of long-ranged contributions of the dispersion beyond the cutoff is
discussed below in section 1.2.2.

2. Longer-ranged Coulomb interactions between charges or partial charges on atoms:

VC(r i j ) =
1

4πε0

qiq j

r i j
(1.8)

The treatment of the long-ranged part is described below in section 1.2.3.

Virtual interaction sites

Virtual interaction sites are used by several force fields. Even though they are not part of
the original atomistic force field used in this work they can be used to represent coarse-
grained mapping points within an atomistic simulation and they allow for a convenient
reintroduction of atomistic details into coarse-grained systems (see section 2.1.4).

Virtual sites have no mass and their positionr s is a function of the positions of other
particlesr i : r s = f (r1, r2, . . . , rn). In the context of coarse-graining they can be used in
the backmapping procedure to restrain atomistic moleculesin positions, in which their
mapping points coincide with target positions given from CGsimulations. This is real-
ized in simulations by introducing a harmonic force acting between the virtual sites and
their respective target position in space. The force actingon the virtual site must be re-
distributed over the particles with mass in a consistent way. We can write the potential
energy as

V = V(r s, r1, r2, . . . , rn) = V∗(r1, r2, . . . , rn) (1.9)

The force on particlei is then

Fi = −
∂V∗

∂r i
= −∂V
∂r i
− ∂r s

∂r i

∂V
∂r s
= Fdirect

i + F′i (1.10)

10



1.2 Force fields

whereFdirect
i is the normal force acting on particlei due to the other particles andF′i is the

part of the force acting on the virtual site, which is distributed to particlei. [12] The type
of virtual site used in this work is the conceptually simple case of a linear combination

r s =

N
∑

i=1

wir i (1.11)

where the weightswi are given from the relative weightsai, which usually correspond to
the masses of the atoms involved in the virtual sites.

wi = ai

















N
∑

j=1

a j

















−1

(1.12)

The force is redistributed using the same weights:

F′i = wiFs (1.13)

1.2.2 Long-range dispersion interaction

Nonbonded potentials are usually used with a cutoff distance, since the inclusion of all
atom pairs in the system would scale withN2, which gets computationally very expensive
for large systems. The treatment of the interaction beyond the cutoff is done in a com-
putationally less demanding way, which can be applied for the dispersion potential. The
repulsive part is assumed to decrease fast enough to be neglected beyond the cutoff.

Using a simple cutoff for the potential induces an unphysical delta peak in the force at
the cutoff distance. Another possibility is to shift the potential to zero at the cutoff, which
leads just to a shift in the force at the cutoff distance. This jump can lead to artifacts
when particles diffuse in or out from the cutoff. The sudden force causes additional noise,
which leads to a heating of the system or to artifacts in the density distribution. Shifting
the force itself to zero at the cutoff can avoid these artifacts, but at the same time it leads to
a deviation of the potential. In practical simulations several kinds of switching functions
are used to switch off the force smoothly at the cutoff distance.

The error due to the neglect of dispersion interactions beyond the cutoff can be calcu-
lated and taken into account in the computation of energy andpressure of the system. For
the simple case of a truncated potential we have a dispersioninteractionVdisp = −C6r−6,
which we set to zero for distances beyond the cutoff rc. The average number density is
ρ and the radial distribution function isg(r). The correction of the potential energy and
therefore of the internal energyu per particle is

∆u =
1
2
ρ

∞
∫

rc

Vdisp(r)4πr2g(r)dr (1.14)

11



1 Molecular dynamics simulations

Assuming thatg(r) = 1 for r ≥ rc we get

∆u = −2π
3
ρC6r

−3
c (1.15)

and in a similar way for the pressure correction using a plaincutoff [11]

∆p = −4π
3
ρ2C6r

−3
c (1.16)

Similar expressions exist for shifted potentials or potentials with shifted force. [1]

1.2.3 Long-range Coulomb interaction

We saw that for dispersion forces the contribution of a truncated tail to the potential energy
can be estimated using eq. 1.14. This shows that the tail correction to the potential energy
diverges, unless the potential energy function∆V(r) decays faster thanr−3. This is why
truncation of the potential and tail correction does not work for Coulombic interactions.
On the other hand, even though Coulomb interactions are considerably longer-ranged than
dispersion interactions, they tend to cancel at large distances because of overall charge
neutrality.

Coulomb interactions can be cut off at a given distance, but this has to be done carefully.
If full charges instead of dipoles are cut off, this will produce severe artifacts. One method
to take into account effects beyond the cutoff is the introduction of a reaction field. [13]
This incorporates a dielectric response of the medium beyond the cutoff to a total dipole
moment of the charges within the cutoff radius. It is assumed that the medium outside the
cutoff rc has a relative dielectric constantεRF. Here we are considering a system without
explicit ions and a truncation on a neutral-group basis.2 In this system any chargeqi

interacts directly with all other chargesq j within the cutoff radiusrc. The interaction with
induced dipoles outside the cutoff is taken into account by the reaction field. The total
dipole momentM in the sphere centered aroundi is defined as

M =
∑

j;r i j≤rc

q j

(

r j − r i

)

(1.17)

The sum includes allj, whose distancer i j from i is within the radiusrc. The reaction field

2The truncation on a neutral-group basis means that groups ofcharges (which are spatially close and
have a neutral net charge) are included or excluded from the cutoff sphere together. Not the individual
distance between two chargesr i j is evaluated in comparison to the cutoff distancerc but the distanceRi j

between reporter positions of the neutral groups to whichi and j belong.
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1.2 Force fields

at positionr i is then given by

ERF(r i) =
1

4πε0r3
c

f (εRF)
∑

j;r i j≤rc

q j

(

r j − r i

)

, (1.18)

f (εRF) =
2(εRF − 1)
(2εRF + 1)

(1.19)

This contribution is taken into account in the calculation of the forces on particlei, given
by

Fi =
qi

4πε0





























∑

j;r i j≤rc
(i, j)<exclst

q j
r i j

r3
i j

−
∑

j;r i j≤rc

q j f (εRF)
r i j

r3
c





























(1.20)

wherer i j = r i − r j and the first term with the sum over the direct Coulombic interactions
does not take into account pairs that belong to an exclusion list exclst, because their
interactions are already accounted for in other bonded force field terms. The potential
energy function that generates these forces is obtained by integration

V(r ) =
1

4πε0

∑

i

qi





























∑

j>i;r i j≤rc
(i, j)<exclst

q j

(

r−1
i j − r−1

c

)

+
∑

j≥i;r i j≤rc

q j
f (εRF)
2r3

c

(

r2
i j − r2

c

)





























(1.21)

and is zero at the cutoff. [1]

To treat inhomogeneous systems or systems containing explicit ions, reaction field
methods are not satisfactory. One way to treat these systemsare methods which do not
use a simple cutoff, but sum over the lattice of all periodic images. The Ewald summation
method, first introduced to calculate long-range interactions of periodic images in crys-
tals, [14] treats a system of point charges by splitting it intwo sums: A first sum contains
the point-like charges which are superimposed by sphericalGaussian charge distributions
of opposite charge and thereby effectively neutralized for large distances. This sum is
solved in real space within a limited range. The second term sums over the charge distri-
butions that were superimposed in real space, now with the same charges as the original
point charges. The long-ranged potential of these Gaussians can be evaluated by solving
Poisson’s equation, which is done in reciprocal space usingFourier transforms.

The computational effort of Ewald summations is of the orderN2. For large systems
with a big number of chargesN this becomes prohibitively large. Alternatives are particle-
mesh methods that scale asN logN, e.g. the particle-mesh Ewald (PME) method. [15, 16]
Instead of summing wave vectors directly, the charges are assigned to a grid, which is then
Fourier transformed using fast Fourier transforms (FFT).
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1 Molecular dynamics simulations

1.3 Equations of motion

Having a force field as discussed before, which describes a potential V, we can now
consider a system of N particles interacting via this potential. The classical equations of
motion for this system can be written in various ways. [17] Inthe Lagrangian formulation
the trajectory is described by N second-order differential equations.

d
dt

(

∂L
∂q̇k

)

− ∂L
∂qk
= 0 (1.22)

whereL is the Lagrangian, defined in terms of kinetic energyT and potential energyV
as L = L(q, q̇) = T − V, andqk and q̇k are the generalized coordinates and their time
derivatives, respectively. The generalized momentapk are defined as

pk =
∂L
∂q̇k

(1.23)

With the alternative formulation using the Hamiltonian

H(q, p) =
∑

k

q̇kpk − L(q, q̇) (1.24)

we get 2N first-order equations

q̇k =
∂H
∂pk
, ṗk = −

∂H
∂qk

(1.25)

If the potentialV is independent of velocities and time, the Hamiltonian is the total energy
of the system:

H = T + V = E (1.26)

In cartesian coordinates the equations of motion then read as

r i =
pi

mi
, ṗi = −

∂V
∂r i
= Fi (1.27)

or
mi r̈ i = Fi (1.28)

whereFi is the force acting on particlei. If we assume thatT andV do not depend on time
explicitly then dH

dt = 0 and the total energy of the system is constant. Properly solving the
equations of motion for a system without time- or velocity-dependent forces will therefore
produce a microcanonical or NVE ensemble. In practical simulations there will be errors
that cause deviations from the ideal behavior: integrationerrors due to the use of a finite
timestep and also due to the finite numerical precision will not conserve the total energy
exactly and errors in the forces due to truncation can cause energy drifts. To obtain long,
stable trajectories in simulations there are always modifications of the pure equations of
motion needed.
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1.3 Equations of motion

Although no algorithm can provide an exact solution for longtimes and simulated
trajectories will exponentially diverge from the “true” trajectory compatible with the same
initial conditions, it turns out not to be a serious problem.In MD simulations we are not
interested in what exactly will happen to a system that has been prepared in a precisely
known initial state. We are interested in statistical predictions, in the average behavior of
a system that has been prepared in an initial state about which we know something (e.g.
the total energy). [18]

There are different methods to solve the equations of motion. The following criteria
influence the choice of the algorithm:

1. The algorithm should be reversible in time, since this is an inherent property of the
equations of motion. If we change the signs of all velocities, all particles will move
back along their previous trajectories. In practice also time-reversible algorithms
might deviate depending on the implementation and the numerical precision.

2. Generated trajectories should conserve volume in phase space, i.e. the algorithm
should be symplectic. [1]

3. To keep the computational effort as small as possible, it is preferable to use only
one force evaluation per timestep, because the calculationof the forces is the most
expensive part in each integration step.

In the following the simple and robust Verlet or leap-frog algorithm is presented.

1.3.1 Verlet methods

This family of algorithms is simple, robust, time-reversible and symplectic. These meth-
ods are widely used to integrate the classical equations of motion. The original Verlet
algorithm [19] can be derived from a Taylor expansion at timet + ∆t andt − ∆t [18]

r(t + ∆t) = r(t) + v(t)∆t +
F(t)
2m
∆t2 +

...
r (t)
6
∆t3 + O(∆t4)

and

r(t − ∆t) = r(t) − v(t)∆t +
F(t)
2m
∆t2 −

...
r (t)
6
∆t3 + O(∆t4)

Summing these two equations , we obtain

r(t + ∆t) + r(t − ∆t) = 2r(t) +
F(t)
m
∆t2 + O(∆t4)

or

r(t + ∆t) ≈ 2r(t) − r(t − ∆t) +
F(t)
m
∆t2 (1.29)
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1 Molecular dynamics simulations

The Verlet algorithm does not use the velocities to calculate the new positions. The ve-
locity is found in retrospect from

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
+ O(∆t2) (1.30)

Several algorithms are equivalent to the Verlet scheme. Oneis the leap-frog algorithm
[20, 21], which uses the velocities halfway between time steps and uses these velocities
to compute the the new positions

r(t + ∆t) = r(t) + v(t +
∆t
2

)∆t (1.31)

v(t +
∆t
2

) = v(t − ∆t
2

) +
F(t)
m
∆t (1.32)

In comparison to the Verlet algorithm, the leap-frog algorithm has the advantage that the
velocities explicitly appear in the integration scheme, which allows for a coupling of the
system to a thermal bath. This algorithm was used also for thesimulations presented in
this work. Another widely used algorithm is the velocity-Verlet algorithm [22], which
uses velocities and positions at the same time and is also equivalent to the original Verlet
scheme.

r(t + ∆t) = r(t) + v(t)∆t +
F(t)
2m
∆t2 (1.33)

v(t + ∆t) = v(t) +
F(t + ∆t) + F(t)

2m
∆t (1.34)

All the previously mentioned algorithms can be derived withthe Reference System Prop-
agator Algorithms (RESPA) method, which uses the Liouvilleformulation of classical
mechanics and simple operator algebra. [23, 24] It is also possible to derive multiple
time step versions, in which two different time steps are used for integrating the equations
of motion: a shorter time step for rapidly changing short-range forces and a longer time
step for slowly changing long-range forces.

Also higher-order algorithms have been used in MD simulations, in particular the
predictor-corrector algorithms. They predict positions and a number of derivatives based
on a Taylor expansion of previous values. Calculating the forces at the predicted positions,
the deviations from the predicted accelerations are evaluated and the predicted positions
and derivatives are corrected. These methods are quite accurate for small time steps but
unstable for longer time steps. They are neither time-reversible nor symplectic, require
more storage and have been pushed aside by the previously presented Verlet algorithms.

1.3.2 Constraints

As mentioned before, constraining the bond length of atomistic bonds can increase the
speed of simulations. The time step in the integration of theequations of motion is cho-
sen to be shorter than the shortest relevant time scale in a system. To describe these fastest
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1.3 Equations of motion

oscillations properly, one oscillation period should correspond to several time steps (typ-
ically of order 50 [10]). In typical atomistic simulations with a force field as described
before, the intramolecular vibrations represent the motion with the highest frequency. If
this high-frequency vibration of bonds is not of special interest, constraining these bonds
allows for the use of a longer time step and faster simulations.

Including constraints in a simulation changes the equations of motion. Fixing bond
length introduces holonomic constraints (they only dependon coordinates), which can be
described by constraint equationsσs(r) = 0 that should be satisfied at all times. We then
can write a new Lagrangian that contains all the constraints

L′ = L −
∑

s

λsσs(r) (1.35)

whereλs denotes a set of Lagrange multipliers. The new equations of motion are

mi r̈ i = Fi −
∑

s

λs
∂σs

∂r i
(1.36)

The second right term describes the constraint forces. To integrate these equations it is
necessary to find a proper set of Lagrange multipliersλs. Two common methods are
described in the following.

SHAKE

This method resets the coordinates after an unconstrained time step to satisfy the con-
straints within a given precision. First the new positionsr ′i disregarding the constraints
are computed

r ′ i = 2r i(t) − r i(t + ∆t) +
∆t2

mi
Fu

i (t) (1.37)

and then the positions are corrected with∆r such that

σs(r ′i + ∆r ) = 0, s= 1, . . . ,m (1.38)

where

∆r i =
∆t2

mi

∑

s

λs(t)
∂σs(r (t))
∂r i

(1.39)

This set ofm (generally non-linear) coupled equations for themλ’s is then solved sequen-
tially for the constraints and the procedure is iterated to convergence. [25]

LINCS

This method rewrites the equations of motion to include the constraints. Theλ’s are solved
from the fact that theσ’s are zero at all times and therefore also their time derivatives.
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First, we write eq. 1.36 in matrix notation as

Mr̈ = f + CT
λ (1.40)

wherer andf are 3N × 1 matrices containing coordinates and unconstraint forces, M is
the 3N × 3N diagonal matrix of masses, and the constraint matrixC that is defined by

Csi =
∂σs

∂r i
(1.41)

Because the constraint equations are zero, the first and second derivatives of the con-
straints are also zero and the following relation is found

Cr̈ = −Ċṙ (1.42)

By left-multiplying eq. 1.40 byCM−1 and using relation 1.42 we obtain

λ = −(CM−1CT)−1(CM−1f + Ċṙ ) (1.43)

The matrixCM−1CT is non-singular and can be inverted, if the constraints are indepen-
dent. [26] Substituting this expression forλ in eq. 1.40 we obtain the equations of motion

r̈ = (1− TC)M−1f − TĊṙ (1.44)

whereT is defined as
T = M−1CT(CM−1CT)−1 (1.45)

The matrix1− TC is a projection matrix that projects the accelerations due to the un-
constrained forces onto the constrained hypersurface. Thefirst term of eq. 1.44 contains
the constraint accelerations due to the systematic forces and the other term the constraint
accelerations due to centripetal forces. Details about theimplementation can be found in
ref. 27.

1.3.3 Controlling the system

Applying the equations of motion (eq. 1.27) in a simulation of a system without time- or
velocity-dependent forces will produce a microcanonical or NVE ensemble. As discussed
before, while integrating the equations in practical simulations we always introduce errors
due to the finite time step and due to numerical accuracy. The simulated Hamiltonian sys-
tems do ideally conserve their initial distribution in phase space, but there is no restoring
force inherent in the dynamics that would correct for deviations that might slowly develop
and accumulate.

Introducing an external influence that drives the system to agiven distribution, provides
this restoring force, which will be small, if the Hamiltonian dynamics of the system is
accurate. In that way it is possible to simulate at constant temperature and to generate
a canonical NVT ensemble or an isothermal-isobaric NpT ensemble. These ensembles
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1.3 Equations of motion

are often favorable in simulations since they describe conditions, which come closer to
experimental ones than the NVE ensemble.

There are several methods to control temperature and pressure in the system. Some of
them do not generate well-defined ensembles, but are still ofpractical use. The choice
of the method depends on the purpose of the simulation and if only average equilibrium
quantities, properties of fluctuations or dynamical quantities are of interest.

Stochastic methods

One method to control control the temperature and to obtain acanonical ensemble is the
stochastic dynamics (SD) Langevin thermostat. [28] In Langevin dynamics a frictional
force, which is proportional to the velocity, is added to theconservative force. This fric-
tion force removes kinetic energy from the system. At the same time a random force
adds kinetic energy to the system. To generate a canonical ensemble these two contribu-
tions have to obey the fluctuation-dissipation theorem. Theequations of motion have the
following form:

ṗi = Fi − ξi pi + Ri(t) (1.46)

whereRi(t) is a zero-average noise process with

〈Ri(0)Ri(t)〉 = 2miξikBTδ(t) (1.47)

When 1/ξi is large compared to the time scales present in the system, Langevin dynamics
can be seen as molecular dynamics with a stochastic thermostat. On the other hand, if
1/ξi is small, the dynamics of the system will be completely different from molecular
dynamics, but since the ensemble is canonical, the samplingis still correct.

An advantage of this thermostat is that it acts on a local scale. Particles which are too
“cold” gain more energy by the noise term, while too “hot” particles are slowed down by
the friction. This keeps numerical instabilities, which usually arise from inaccurate cal-
culation of a local collisionlike process, effectively under control and prevents them from
propagating. A disadvantage of this thermostat is that it isnot momentum conserving,
which is one of the conditions to treat hydrodynamics correctly.

This can be circumvented by using the method of dissipative particle dynamics (DPD)
as a thermostat. [29, 30] As the SD thermostat it also uses friction and noise on a local
scale, but those are applied to pairs of particles. The friction scales the relative velocities
between pairs of nearby particles and the noise acts on pairsof particles, such that New-
ton’s third law is strictly fulfilled and the momentum of the system is conserved. There-
fore this method reproduces hydrodynamic behavior on largelength and time scales. [31]

Weak-coupling methods

Weak-coupling methods can be used to control temperature and pressure. [32] They are
also known as Berendsen thermostat and barostat. To controltemperature the velocities
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1 Molecular dynamics simulations

are rescaled in each step. This is done by forcing the system to obey the rate equation

dT
dt
=

T0 − T
τ

(1.48)

which lets the temperatureT of the system decay exponentially to the desired temperature
T0 with a time constantτ. This is achieved by scaling the velocities in each step witha
scaling factorλ,

λ2 = 1+
∆t
τ

(T0

T
− 1

)

(1.49)

whereT is given by the kinetic energy after updating the velocitiesin a normal (unscaled)
time step.

This thermostat is not acting locally but on a global scale, since only the kinetic en-
ergy of the whole systems is monitored and all particle velocities are scaled by the same
factor. This can lead to severe artifacts, e.g. for systems of big proteins in water, where
the temperatures for the protein and the solvent can differ strongly while the “average”
temperature of the system is correct. In this case both groups can be controlled separately
by two independent thermostats.

The smallest possible value of the time constantτ = ∆t corresponds to the strong-
coupling Gauss isokinetic thermostat [33, 34], which produces a canonical ensemble. For
increasingτ the kinetic energy starts to fluctuate at the expense of fluctuations of the
potentials energy. Fluctuations become equal forτ around the intrinsic relaxation time
for the exchange between kinetic and potential energy. For much longerτ the scaling has
no effect and a microcanonical ensemble is obtained. The generated ensemble is therefore
between microcanonical and canonical for temperature scaling. [1]

In practice it seems safe to obtain ensemble averages with this method but not fluctu-
ations in order to determine thermodynamic quantities, butcaution is advised due to the
above described artifacts.

Pressure is controlled in a similar manner using

dp
dt
=

p0 − p
τp

(1.50)

Assuming a known isothermal compressibility,βT = − (1/V) ∂V/∂T, coordinates and
volume are scaled with

r ′ = χr , V′ = χ3V (1.51)

every time step with a scaling factorχ, given by

χ3 = 1− βT
∆t
τp

(p0 − p) (1.52)

As in the case of the temperature coupling the generated ensemble is not known exactly
and fluctuations cannot be used.
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Extended system dynamics

Nosé introduced the idea to extend the system with an extra degree of freedom that can
be used to control a variable in the system. [35] In a modified form by Hoover [36]
this scheme is known as the Nosé-Hoover thermostat. The extra degree of freedom is a
variableη, which is a scaling factor for the velocities. It has an associated “momentum”
pη = Qη̇ with a “mass”Q. The number of degrees of freedom isn = 3N−nc, for a system
with N particles andnc constraints. The new equations of motion are

q̇i =
pi

mi
(1.53)

ṗi = F(q) − pi
pη
Q

(1.54)

ṗη =
∑

i

p2
i

2mi
− nkBT (1.55)

In this scheme the temperature difference to the desired temperature acts on the time
derivative of the velocity scaling factor and not on the scaling factor itself, as in the
Berendsen thermostat. In contrast to the latter, the temperature is approaching equilib-
rium oscillatory and not in a smooth exponential decay. Since its distribution in phase
space is canonical, it is more reliable to use the Nosé-Hoover thermostat in already equi-
librated systems, but not for equilibration.

Canonical sampling through velocity rescaling

A thermostat that was recently proposed by Bussi et al. [37] uses velocity rescaling to
obtain a canonical ensemble. The velocity rescaling methodconsists in multiplying the
velocities of all particles by the same factorα, which forces the total kinetic energyK to
be equal to the average kinetic energy at the target temperature,K = 1/2nkBT, wheren is
the number of degrees of freedom. The rescaling factorα then is

α =

√

K
K

(1.56)

The proposed modification to calculate the scaling factor enforces a canonical distribu-
tion for the kinetic energy. Instead of forcing the kinetic energy to be exactly equal toK,
the target valueKt is selected using a stochastic procedure aimed at obtainingthe desired
ensemble. The velocities then are rescaled by the factor

α =

√

Kt

K
(1.57)

andKt is drawn from the canonical equilibrium distribution for the kinetic energy

P(Kt)dKt ∝ K(n/2−1)
t e−βKtdKt (1.58)

21



1 Molecular dynamics simulations

Between rescalings the system is evolved by a fixed or randomly varied number of time
steps. This is the simplest formulation of this method, which disturbs the velocities of
the particles considerably. In a smoother approach the rescaling procedure is distributed
among a number of time steps and the choice ofKt is based on the previous value of
K, but still the canonical ensemble is obtained. This thermostat was tested with respect
to dynamic properties of liquids, where it showed to be applicable and consistent with
diffusion coefficients extracted from microcanonical simulations.
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2 Coarse-graining methods

Soft matter systems show properties and a behavior that is determined by effects and
processes that span a wide range of time- and length scales. Interesting time scales and
system sizes are often beyond reach by detailed molecular dynamics simulations. To
answer questions related to long time scales and large systems sizes it is desirable to
have methods simplifying the system. These methods should reproduce the “interesting”
behavior in dynamical simulations in a more efficient way, while “uninteresting” details
might be neglected. The aim is to reduce the number of explicitly treated degrees of
freedom in a way that keeps the accuracy of global and long-time behavior as close as
possible to the detailed system. These types of approaches are often described with the
word “coarse-graining”, even though this term is often usedin a more specific sense for
models that cluster groups of atoms together into CG “sites”or “superatoms”. The CG
model which is presented in this work also belongs to the group of CG models that average
over local details.

The first choice for a CG model is to distinguish between the relevant degrees of free-
dom and the irrelevant degrees of freedom, for which a detailed knowledge of the behavior
is not required. This choice depends on the system, the properties of interest and the re-
quired accuracy and is also arbitrary to some extent. It is desirable to choose the CG
degrees of freedom in such a way, that the irrelevant degreesof freedom equilibrate much
faster than the relevant CG degrees of freedom, because on the time scale where these two
overlap, the predictions of dynamic details are inaccurate.

Long linear polymer chains are a good example for a system, where the distinction be-
tween relevant and irrelevant degrees of freedom offers advantages. The relevant degrees
of freedom are the centers of mass of a number of consecutive atoms along the chain.
This description is beneficial, because polymers show a universal behavior where macro-
scopic properties scale in a regular manner with the length of the chain (or the number of
repeat units) independent from the specific chemical structure of the chain. This behavior
is achieved already in simple coarse-grained models which include chain connectivity,
excluded volume and a few basic types of interactions. If theparameters are chosen in
way that prevents chains from cutting through each other, already static and dynamic scal-
ing properties of polymeric systems (as the change from Rouse to reptation dynamics for
entangled systems) can be investigated. [38]

By averaging over degrees of freedom we decrease the level ofresolution at which we
are looking at our systems. We proceed from the microscopic level of atomistic detail to
the mesoscopic scale, where we still look at particles. By decreasing the resolution further
we leave the particle-based models and describe more macroscopic properties. The de-
velopment of particle-based coarse-grained models connects different levels of resolution
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systematically. Therefore, simulations using CG models are often referred to as “multi-
scale” methods. The link between scales can be realized in different ways: In the simplest
case the simulations on different levels are performed sequentially and only information
about structures or energies is passed between the two levels. In other cases the different
resolutions are present simultaneously. They require models which are adjusted to be as
consistent as possible, since they require direct interactions between the different levels.
In dual-scale methods the representation of individual molecules stays unchanged during
the simulation, [39, 40, 41] whereas the molecules in adaptive methods can change their
representation on the fly, e.g. when they diffuse in or out of a region of special interest.
[42, 43]

The systematic link between the atomistic level and the coarse-grained level requires
the definition or choice of properties that are used as a measure, how consistent the models
are. Three common choices are thermodynamic properties, spatial structures or forces:

• Experimental thermodynamic properties such as free energies are used to parame-
terize CG models. These models are developed to reproduce e.g. partitioning free
energies and are used to describe a variety of biomolecules in the fluid phase. [44,
45] The structure of the system is not necessarily reproduced with these energy-
based approaches.

• Achieving a good agreement between coarse-grained and detailed atomistic struc-
ture can be also an aim of coarse-graining approaches. This agreement is especially
desirable in cases where atomistic details are reintroduced into the coarser sys-
tems. Therefore, structure-based coarse-graining methods represent another group
of approaches. [46, 47, 48] They often use radial distribution functions as target
functions, which they aim to reproduce in the CG simulations. In these cases it is
not immediately obvious to which extent thermodynamic properties of the system
are reproduced.

• Another method related to the structure-based ones is the force-matching method.
[49, 50] This method constructs the CG potential energy landscape in such a way
that the CG forces reproduce the atomistic forces in the underlying systems and has
been used in particular for biomolecular systems. [51]

2.1 General Coarse-Graining Procedure

In the following we describe the typical approach to developstructure-based coarse-
grained models for polymer chains. Typical examples are polycarbonates, [52, 53] for
which this procedure was used first, and polystyrene, [54, 55] which is the system that is
investigated more closely in this work.

The aim of structure-based coarse-graining is to reproducethe structure that a detailed
atomistic model exhibits. Coarse-grained models are constructed in such a way that they
reproduce distributions of conformational degrees of freedom (e.g. angles between three
neighboring CG beads) or of distances between groups of atoms.
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2.1 General Coarse-Graining Procedure

In many coarse-graining approaches the set of coarse-grained interactions is separated
in two parts. The underlying assumption is that the total potential energy,UCG, can be
separated in a bonded part,UCG

bonded, and in a nonbonded part,UCG
nonbonded.

UCG =
∑

UCG
bonded+

∑

UCG
nonbonded (2.1)

This distinction is similar to atomistic force fields. The CGintramolecular, bonded in-
teractions act on groups of neighboring beads in a chain, which are usually connected by
covalent bonds in the detailed atomistic representation. The CG intra- and intermolecular,
nonbonded interactions act between pairs of beads within a certain cutoff distance. The
beads can belong to different chains or to the same chain. Beads in the same chain are
excluded from the nonbonded interaction, if they are already taken into account by a CG
bonded interaction.

Following the ansatz of separating these two types of interactions, they can be devel-
oped independently. This is an important aspect in terms of transferability of CG models.
Separating the development of intramolecular bonded interactions from the nonbonded
interactions, the bonded interactions should be independent from the specific surround-
ings in a CG system. The development of bonded and nonbonded interaction potentials is
described in the following after a preceding discussion of CG mapping schemes.

2.1.1 Mapping scheme

The first step in developing a coarse-grained model is the choice of a mapping scheme.
It defines how atoms are grouped together and represented by “superatoms”, which are
also called CG “beads”. Even though the rules for the mappingare usually simple, the
question which mapping scheme is optimal is anything but trivial. Possible aspects that
influence the quality of a mapping scheme are the following:

• The number of beads that are used to describe one repeat unit of the polymer. This
is called the “degree of coarse-graining”. To model local conformations in more
detail, a higher number of beads is necessary. On the other hand, the speed-up
of the CG model increases, if the number of beads per volume (and therefore the
number of interacting pairs of particles within a given cutoff distance) is lower.

• Coarse-grained degrees of freedom could be correlated, i.e. certain values for one
degree of freedom could only occur in combination with another value for another
degree of freedom. Treating these correlations in multi-parameter potentials would
be computationally inefficient. A method to compare the correlations that are in-
troduced by different mapping schemes has been presented recently by Poma and
delle Site. [56]
Correlations typically disappear when the degree of coarse-graining is high and CG
beads are averaging over many detailed atoms. If local conformations are supposed
to be modeled correctly, correlations can be unavoidable. Amethod to deal with
those correlations is presented and discussed in this work (in section 3.4.2).
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• Stiff atomistic groups, e.g. benzene rings, can be often treated as one group.

• Atomistic torsions that lead to big conformational changesof the molecule, should
also be represented by CG degrees of freedom.

• The exact coordinates of the CG beads can be chosen in different ways, e.g. as the
center of mass or the geometrical center of the underlying atoms or they can coin-
cide with the coordinates of one selected atom (compare section 3.3). This choice
might change the distributions for the CG degrees of freedomand may provide
advantages for the re-introduction of atomistic details.

• Groups of atoms, which are symmetrical or have a spherical shape, seem to offer
advantages, since the nonbonded interactions are pair potentials, which do not de-
pend on the orientation of the CG beads but just on the distance of their centers. If
a group of atoms has more symmetries, the nonbonded interaction between two of
these groups is expected to be less dependent on the relativeorientation of the two
groups.

• The ratio of sizes and masses between different groups. Having big differences in
the masses requires a smaller integration time step (for thesmallest mass). Running
the system in these cases with the same masses for all beads, still offers the use
of a longer time step, but the dynamics of the system might be disturbed. In a
similar manner, the spatial size of different groups might require a smaller time
step, because the CG repulsive potential becomes softer forbigger groups. The
time step is then limited by the more repulsive potential of the smallest group.

2.1.2 Bonded potentials

CG bonded interaction potentials are obtained by sampling distributions for CG confor-
mational degrees of freedom based on a detailed atomistic simulation of a molecule in
vacuum. The conformational degrees of freedom are expressed in terms of CG bond
lengthsr between neighboring beads, bond anglesθ between three subsequent neighbors,
and torsions or dihedral anglesφ between four subsequent neighbors. The sampling of the
isolated chain can be done by using Monte Carlo simulations or molecular dynamics with
a stochastic thermostat (see Langevin thermostat, section1.3.3). Long-range nonbonded
intrachain interactions are excluded in the sampling of theatomistic isolated chain. Only
atoms belonging to CG beads that are involved in a common CG bonded interaction, are
interacting. For example, if CG torsion potentials are used, atoms interact with neighbors
separated by up to three CG bonds.

The sampled chains are random walks, because they have only local interactions, but
no excluded volume interactions for parts of the chain separated by several CG bonds.
These long-range interactions are lateron treated by the same nonbonded potentials that
are used for interchain interactions.

After sampling a sufficiently large number of independent conformations of the ran-
dom walks at a given temperatureT, probability distribution functionsPCG(r, θ, φ,T) are
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2.1 General Coarse-Graining Procedure

obtained, which are, in general, unknown functions of the CGbond lengthr, bending
anglesθ and dihedral anglesφ. The standard way to proceed in order to calculate the CG
force field parameters, is to assume thatPCG(r, θ, φ,T) factorizes as

PCG(r, θ, φ,T) = PCG(r,T) PCG(θ,T) PCG(φ,T) (2.2)

This assumption is only valid if the internal CG degrees of freedom are uncorrelated.
In the next chapter (see section 3.4.2) we will discuss the case that we find correlations
between CG degrees of freedom. There we present a method, howby carefully choosing
beyond which distance to cut off local interactions along the backbone in the atomistic
sampling and choosing a suitable set of bonded interactions, the CG model can be able to
preserve correlations that the atomistic model shows. Thisenables us to proceed with the
methodology presented here.

Having the probability distribution functions, the CG bonded potentials are given from
the inverse Boltzmann relations

UCG(r,T) = −kBT ln
(

PCG(r,T)/r2
)

(2.3)

UCG(θ,T) = −kBT ln
(

PCG(θ,T)/ sinθ
)

(2.4)

UCG(φ,T) = −kBT ln PCG(φ,T) (2.5)

In the above expressions the probability distribution functions for bond length and bend-
ing angle are normalized by taking into account the corresponding volume elementsr2

and sinθ. These potentials are potentials of mean force and therefore free energies. Con-
sequently they are temperature dependent, not only due to the prefactor−kBT but also
due to the temperature dependent distribution functionsP. In practice, one has to test the
temperature range in which a CG model is applicable (usually± 10-20%) and where a
reparameterization is required.

It is also possible to develop the bonded potentials based onsimulations of atomistic
polymer melts, rather than of isolated chains. [46] In this case the clear separation be-
tween bonded and nonbonded interactions is not longer given, since bonded and non-
bonded interactions are developed simultaneously and are potentially interdependent. The
derivation of bonded potentials from a single molecule in vacuum, however, can be only
successful in two cases: If the conformations in vacuum and in the bulk (or in solution)
are not substantially different or, secondly, if the CG nonbonded interaction potentials
impose the same change on local conformations as the atomistic environment. This can
be difficult to obtain in biomolecular systems, where molecules aretypically solvated in
water. The presence of hydrogen bonds in these systems can change local conformations
strongly. In these cases it can be useful to sample moleculesin aqueous solution and to
include solvent effects implicitly in the CG bonded potentials. [57, 58]
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2 Coarse-graining methods

2.1.3 Nonbonded potentials

Nonbonded interactions can be developed in different ways. Following the general strat-
egy of structure-based coarse-graining, the aim is to find nonbonded interaction potentials
that reproduce the structure of the systems of interest. Themeasures, which are sensitive
to these potentials, are usually radial distribution functions (RDF). To avoid computa-
tionally expensive multi-body interactions, only pair potentials are used to describe non-
bonded interactions. It can be shown that a pair potential, which exactly reproduces a
given radial distribution function, is a unique solution upto a constant factor. [59] In
practical applications it turns out that several different potentials can reproduce a given
structure with very small errors.

Analytical potentials with adjusted parameters

For amorphous polymers with a melt density known from experiments or atomistic sim-
ulations it can be sufficient to introduce a purely repulsive excluded volume interaction.
This approach has used for the systems mentioned above. The functional form was either
a repulsive Lennard-Jones form [52, 54], in which only the radii σ of the CG beads are
adjusted,

UCG, LJ
nonbonded(r) =
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(
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, r ≤ 21/6σ

0, r > 21/6σ
(2.6)

or a repulsive Lennard-Jones type with modified exponents [55],

UCG, LJ-type
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which in addition to the bead size modifies the “softness” of the potential (values used
in ref. 55 are between 7-6 and 7-4). In this case the parameters are adjusted by compar-
ing RDFs of CG and atomistic melts of short chains. The softerpotentials, besides the
better agreement in the RDF, allows the use of a longer timestep in the integration of the
equations of motion.

Iterative Boltzmann inversion

Another approach to develop CG nonbonded interactions is the iterative Boltzmann in-
version method. [47, 60] It uses numerically generated tabulated potentials that are not
limited by the choice of a functional form and can reproduce agiven RDF precisely. The
method starts from an initial guess for the nonbonded potential UCG

nonbonded,0. Often the
Boltzmann inverse of the RDFgtarget(r) is used as an initial guess.

UCG
nonbonded,0= −kBT ln gtarget(r) (2.8)

This is not the potential which would reproduce the RDF in a real liquid system, but only
in the limit of infinitely dilute systems, because many-bodyinteractions are not taken
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2.1 General Coarse-Graining Procedure

directly into account. The first guessed potentialUCG
nonbonded,0is used in a CG simulation

of a liquid and yields a distributiong0(r), which is different from the targetgtarget(r). The
potential is then modified by a correction termkBT ln

(

gi (r)
gtarget(r)

)

:

UCG
nonbonded,i+1 = UCG

nonbonded,i + kBT ln

(

gi(r)
gtarget(r)

)

(2.9)

This corrected potential is again used in a CG simulation of aliquid and the resulting
distributiongi(r) is compared to the target. This process is iterated untilgtarget(r) is repro-
duced. To achieve a faster convergence one can modify the correction term by a (possibly
distance dependent) prefactor.

A very similar method is the Inverse Monte Carlo (IMC) method, [48, 61] which ob-
tains the corrections for the potential in a different way using rigorous thermodynamic
arguments.

It has been mentioned above that in practice a given RDF can bereproduced within
hardly noticeable errors by several different pair potentials. This property allows to im-
pose further constraints to the iterative Boltzmann inversion method in order to reproduce
thermodynamic quantities without disturbing the local structure severely, e.g. pressure or
compressibility. [62] The question to what extent structure-based CG models are able
to reproduce several thermodynamic properties is still open, as well as the question for
the optimal strategy to develop these models. Pursuing a high accuracy in one physical
property could lead to a less accurate rendering of others. Finding an optimal choice for
a CG potential may necessitate loosening some constraints in such a way that the correct
physics that one is attempting to study is properly included. [63]

If systems of complex molecules with increasing numbers of different CG bead types
are studied, it becomes difficult to develop the large number of different pair interactions
simultaneously. A possible strategy in these cases is to split the target molecules into frag-
ments to determine the interactions between different bead types based on the structure of
mixtures of these fragments using the methods described above. [58] Using fragments of
molecules can introduce an error, if in the liquid of fragments different conformations or
relative orientations between molecules contribute differently to the structure than in the
liquid of the complete target molecules. This is also a problem, if the potential of mean
force between two molecules is determined directly, e.g. bythe method of McCoy and
Curro, which is described in the following.

Methods sampling molecular pairs

The method of McCoy and Curro does not use the structure of a liquid but an atomistic
sampling of two fragments, whose mapping points are held at fixed distances. [64] They
consider two molecules in a configurationΓ, where the distance between the the centers
of mass of the molecules isR andUat

nb(Γ,R) is the sum of all nonbonded interactions.
The effective potential between the molecules is provided by the potential of mean force
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alongR,

UCG
nb (R,T) = −1

β
ln

〈

exp
[

−βUat
nb(Γ,R)

]〉

R
(2.10)

whereβ = 1
kBT and〈· · · 〉R denotes an average over all angular orientations of an isolated

pair of molecules separated byR.
For polymers, where the configurations for two beads at shortdistances are strongly

constrained by indirect interactions via the neighboring chain segments, a similar scheme
has been presented by Fukunaga, Takimoto and Doi. [65] They extend the McCoy-Curro
scheme with an additional potential for short distancesR.

UCG
nb (R,T) = −1

β
ln Pat

nb(R,T)Θ(R∗ − R) − 1
β

ln
〈

exp
[

−βUat
nb(Γ,R)

]〉

R
(2.11)

wherePat
nb(R,T) is the radial distribution function of the mapping points,Θ(R∗ − R) is

the Heaviside unit step function, andR∗ is an empirical cutoff that is adjusted in order
to reproduce the target RDF of the atomistic model. The additional term in this model
takes into account an entropic contribution that represents a strong repulsive interaction
for segments in close distance, while the second term represents the attractive interaction
at longer distances

A similar approach to develop nonbonded potentials based onpairs of molecules in-
stead of atomistic melts has been used in this work as well. The idea is to determine
potentials of mean force between two short oligomers in vacuum. By using oligomers
and not isolated beads, we obtain a sampling of relative orientations of the distance-
constrained groups that takes into account the most important indirect constraint for these
pairs of beads, namely being part of a polymer.

2.1.4 Backmapping

Backmapping or “inverse mapping” is the term used to describe the reintroduction of
atomistic detail into a given CG structure. There is no unique solution to the problem
of finding a set of atomistic coordinates, whose mapping points coincide with the CG
target structure, because each CG structure corresponds tomany underlying atomistic
configurations. Thus, the detailed structures should have the correct statistical weight of
those degrees of freedom that are not resolved in the CG description.

For polymer melts it is possible to obtain backmapped atomistic structures by fitting
rigid, atomistic fragments onto the coordinates of CG chainsegments. These atomistic
fragments can be taken from a pool of atomistically sampled structures that show the
correct statistical weights for the detailed degrees of freedom. [66, 67] If the detailed
degrees of freedom can be equilibrated already in a short equilibration run, it is sufficient
to construct the initial backmapped coordinates by simple geometrical rules. [54, 68] This
works especially for CG models with a low degree of coarse-graining, i.e. for CG models
that still include information about local torsional degrees of freedom or positions of side
groups, because these degrees of freedom do not equilibratefast enough during a short
equilibration run. In all the previously mentioned methodsthe nonbonded interactions
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between the different chains are switched on in an equilibration run, duringwhich the
chain segments can move without constraints to their initial CG mapping point. The
displacements of chains segments that occur during this procedure are very small on the
time scale that is necessary to equilibrate the local configurations.

If the CG polymer chains have very flexible units or if the CG structure includes small
molecules, the atomistic structures diffuse away from the CG target coordinates already
during short equilibration runs. The strategy in these cases is to constrain the atomistic co-
ordinates in a way that they always satisfy the CG mapping scheme. Not the single atoms
are constrained, but groups of atoms that define a CG mapping point together. [69, 70]
This method also allows to insert the flexible chain units at random initial atomistic posi-
tions. The resulting structures are relaxed, while they arerestrained to the CG mapping
points, and can be perfectly equilibrated.

Combining CG simulations with an efficient backmapping procedure is a powerful tool
to simulate soft matter processes on long time- and large length scales. For example, using
the backmapping procedure for several snapshots of a CG trajectory delivers a trajectory
in atomistic detail, which would be beyond reach with purelyatomistic simulations and
which reaches relevant timescales of NMR experiments. [67]The reintroduction of atom-
istic detail is also necessary to compare simulations to experimental results of neutron
scattering or X-ray diffraction measurements. [67, 54]

Another aspect is the use of backmapped structures in further atomistic simulations. In
these cases the coarse-grained simulations are used to deliver equilibrated melt structures.
The backmapped structures can be used to insert small molecules in order to get solubili-
ties or to study permeabilities. [71, 72, 73] In this work backmapped melts of polystyrene
chains were used to study the diffusion of ethylbenzene in this matrix of long chains, see
section 5.3.
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3 Coarse-grained model for
polystyrene

3.1 Basic ideas

This chapter presents a coarse-grained model for polystyrene (PS), which was developed
during the course of this work. [74] The chemical structure of PS is shown in Figure 3.1.
The development follows the method that was presented in theprevious chapter and ex-
tends it at certain points. After choosing a mapping scheme,bonded and nonbonded inter-
action potentials are derived separately. For bonded interactions the approach is based on
sampling distribution functions from atomistic simulations of isolated random walks, for
nonbonded interactions the approach is based on sampling potentials of mean force be-
tween two short oligomers in vacuum. The method is extended and varied at two aspects:
The concept of bonded interactions is not only used for bonds, angles and torsions within
a chain, but also for interactions between beads connected by four or more subsequent CG
bonds. This leads to an increased stiffness of the CG chains and to a better reproduction
of local chain conformations. The other new approach is employed for the development
of nonbonded interactions. No atomistic simulations of thecondensed, melt state are
used to develop the CG force field, but pairs of short oligomers are simulated in vacuum.
Hence this approach is conceptually different from CG methods that use condensed phase
structures as a prerequisite input for the parameterization of the model.

Figure 3.1: Chemical structure of styrene (left) and of polystyrene (right), which is obtained
by polymerization of styrene monomers. The brackets indicate that the monomer unit is
repeatedn times to form chains of polystyrene.

The detailed atomistic model, on which the development of the CG model is based,
is an all-atom (AA) model. The other option would be a united-atom (UA) model. The
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3 Coarse-grained model for polystyrene

reason for this choice depends on the aim and the systems thatthe CG model should
describe. In the case of this work, one aim of the CG model is tocompare dynamical
properties of atomistic and CG simulations. The dynamics ofCG models is in general
much faster than the dynamics of detailed atomistic models.But already the dynamics
of united-atom simulations is significantly increased compared to all-atom simulations.
This can be understood by the fact that a UA model already represents a first step from
detailed AA models towards more coarser models. Therefore the presented CG model
has been based on a detailed all-atom description. A coarse-grained model based on a
UA model for polystyrene already exists. [54, 55] The mapping scheme of the presented
CG model was chosen in an analogous way to this already existing model. This allows
a comparison of dynamical properties also between two CG models that are based on
different detailed models. Still, the development of the CG model in this work is not only
a repetition of a previously developed model, just using another detailed atomistic model,
but it introduces new concepts in the development and the final form of the CG model,
which reaches a higher agreement with the detailed atomistic model than previous CG
models for polystyrene.

Figure 3.2: Coarse-graining: Groups of atoms are represented by CG beads or superatoms,
according to a mapping scheme (top) that groups detailed atoms together and defines the
locations of CG beads (as a function of the positions of the detailed atoms). The CG (bonded)
degrees of freedom (bottom) are bond lengthsr, anglesθ between two neighboring bonds and
torsion anglesφ between three CG bonds (φ is the angle between the two planes defined by
the beadsi jk and jkl).

The idea of the CG model can be explained at Figure 3.2. The CG mapping scheme
assigns groups of detailed atoms to one CG bead (described insection 3.3). Neighboring
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CG beads interact along the CG bonds, expressed by potentials for bond lengthr, angles
θ between three subsequent beads and torsionsφ between four subsequent beads. The
potentials for these CG degrees of freedom are developed in such a way that the distri-
butions they generate in a CG simulation reproduce the corresponding distributions of an
atomistic chain. The method to sample these distributions and the development of the
CG potentials is investigated in section 3.4. In this work, the concept of bonded interac-
tions is extended to intrachain pairs of beads connected by four CG bonds, see Figure 3.3.
These interactions improve the quality of the CG model and a method to obtain them
is presented in section 3.4.4. Finally the CG model is completed with the development
of nonbonded interactions, which is done separately from the bonded potentials and is
described in section 3.5.

Figure 3.3: Schematic view of force field terms of the CG model for linear chain molecules:
bonded potentials act on groups of two (bonds), three (angles) or four (dihedrals) neighbors
connected by chemical bonds; in addition, bonded interactions between 1-5 neighbors (con-
nected by four CG bonds) are introduced, which can be even extended to pairs of 1-6 and 1-7
neighbors. Nonbonded potentials act on particles, which are close to each other in space, but
not involved in a joint bonded interaction.

3.2 Tacticity of polystyrene

One aim of the presented model is to reproduce distributionsfor the CG degrees of free-
dom as close as possible. To that end one has to distinguish between different local con-
figurations of the side groups of the chain (compare Figure 3.4). The phenyl rings in a
polystyrene chain are attached together with a hydrogen atom to a carbon atom, which
is located in the backbone of the chain. The backbone carbon atom is connected to four
atoms in a tetrahedral configuration (two carbon atoms in thebackbone, one carbon atom
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in the phenyl ring and one hydrogen atom). The phenyl group and the adjacent hydrogen
atom cannot swap their positions, neither in real systems nor in atomistic simulations,
due to steric hindrance. Because the local configuration of the phenyl groups does not
change, also the relative orientation of two neighboring rings remains unchanged. Pairs
of neighbors are called “diads” and one can distinguish two types, see Figure 3.4. In a
mesodiad both phenyl rings are pointing to the same side (assuming all-trans configura-
tion of the backbone, i.e. all torsion angles along the backbone are fixed at 180 degree).
A chain consisting only of meso diads isisotactic. In racemodiads the phenyl rings point
to opposite sides. A chain consisting only of racemo diads issyndiotactic, having the
phenyl rings along the chain pointing to alternating sides.In atactic chains the types of
diads are randomly distributed. The types of diads influencethe experimental properties
of polystyrene melts strongly. Therefore, to describe PS ofdifferent tacticities in a CG
model these two different types of diads have to be taken into account.

Figure 3.4: Diads in Polystyrene: In racemo diads (top) the phenyl ringspoint to different
sides, in meso diads (bottom) they point to the same side (assuming an all-trans conformation
of the backbone).

The distributions for local degrees of freedom as bonds, angles and torsions are mainly
affected by the type of diad, to which these degrees of freedom belong. For example,
an angle between three subsequent beads, consisting of two beads representing phenyl
groups and one bead representing the intermediate part of the backbone, shows very dif-
ferent distributions for racemo and meso diads (compare Figure 3.4 and 3.10). An as-
sumption in the following development of the CG model is thatonly the type of diad, to
which a CG degree of freedom belongs, is defining the type of potential, which is used
for this degree of freedom. The influence of neighboring diads can be neglected. This
assumption was tested and confirmed (see section 3.4.6). It allows a strategy to develop
bonded potentials for meso and racemo diads separately by using purely isotactic chains
(only consisting of meso diads) and purely syndiotactic chains (only consisting of racemo
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diads). Lateron these potentials are combined to describe chains of arbitrary tacticity.
Also in this case of atactic polystyrene the model keeps information about the type of
each diad in the chain and does not use any averaged potentials for “atactic diads”, which
do not exist in the detailed model as well.

3.3 Mapping scheme

The mapping scheme used in this work is a 2:1 mapping, i.e. each monomer is represented
by two CG superatoms. It was already used for a previous modelfor polystyrene. [55]
The monomers in the CG model consist of two coarse-grained, spherical beads of different
types, see Figure 3.5:

• Bead A contains carbon atoms in the backbone connecting two subsequent phenyl
rings and hydrogen atoms attached to these carbon atoms. TheCH-groups in the
backbone to which the phenyl rings are attached, belong to two neighboring A
beads. The center of bead A is the center of mass of the CH2-group and the two
CH-groups, that are taken with half of their masses.

• Bead Bcontains the atoms of the phenyl group. The center of bead B ismapped
onto the center of mass.

The beads are connected by CG bonds A-B between the alternating types of beads. This
leads to a chain without side groups. There are no bonds A-A orB-B between neigh-
boring beads of the same type. The degrees of freedom in a CG chain are shown in
Figure 3.2(bottom).

It is an important point that the CG model represents PS by a linear chain, while the
detailed AA model has side groups. The close connection between the A beads (see
Figure 3.5, bottom) due to the polymer backbone in the underlying atomistic model is not
reproduced directly by a CG bond A-A between these beads, butindirectly by the angular
potentialsθABA connecting these beads. These potentialsθABA are more narrow than the
potentialsθBAB, which rule indirectly the more variable distance between neighboring B
beads. In the following, the CG degrees of freedom are mostlyreferred to by directly
naming the involved bead types, e.g. as “ABA angle” forθABA or “ABAB dihedral angle”
for φABAB.

The fact that the presented CG model is supposed to describe different tacticities of
polystyrene is also reflected in the choice of the mapping scheme. Including the phenyl
rings as a separate bead makes it possible to observe changesin the local conformations,
depending on the tacticity, and to study aspects of local packing in more detail than a
coarser scheme would allow for.

As mentioned before, the choice of the mapping scheme is not unique and depends
on the questions and properties of interest. Comparing the mapping scheme used here
to other coarse-grained models for polystyrene shows a variety of different choices. One
model of Harmandaris et al. [55] uses the same scheme and has been compared to another
model, where the mapping scheme is similar, but the group representing the B bead is
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3 Coarse-grained model for polystyrene

Figure 3.5: Mapping scheme: Each monomer is mapped onto two coarse-grained beads.
Bead A is the center of mass of the CH2-group and the two CH-groups, weighted with half of
their masses. Bead B is the center of mass of the phenyl group.In the schematic picture (top),
the proportion of chemical bond lengths is not correctly represented. Correct proportions
are illustrated in the second picture (bottom), which is an actual snapshot of a short chain
segment, taken from an atomistic MD simulation. The lower Figure was created with VMD,
as well as the other simulation snapshots in this work. [75]

bigger, since it also includes the adjacent backbone carbongroup, whereas the A bead on
the backbone is reduced to only one CH2-group. This size- and mass difference between
the two beads causes some difficulties and the more balanced model has turned out to
perform better.

Several other models use a 1:1 mapping scheme, but different choices were taken, see
also Figure 3.6: Milano and Müller-Plathe [7] center the superatoms on methylene car-
bons and distinguish between two types of beads according tothe diad they belong to.
This model is able to keep information about the chain stereosequences, but torsional
potentials are averaged over all the possible combinationsof diads. Therefore the lo-
cal distributions of torsional angles in CG simulations will deviate from the distributions
in atomistic simulations.The model was refined by Spyriouniand coworkers. [76] The
model of Qian and coworkers [9] places the superatoms on the center of mass of the
monomers. Two different bead types represent the orientations of the side groups and
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3.4 Bonded interactions

Figure 3.6: Alternative 1:1 mapping schemes for polystyrene, used by other CG models: CG
beads are located on the methylene carbons by Milano and Müller-Plathe (top), CG beads are
located on the backbone carbon to which the phenyl rings are attached by Sun and Faller (mid-
dle), or CG beads are placed on the center of mass of the monomers by Qian and coworkers
(bottom). [7, 8, 9]

keep information about the chain stereosequences. As in theprevious model torsional
potentials are averaged. It has been also used to describe mixtures of PS and ethylben-
zene. It should be noted that this mapping scheme is not symmetric and could define an
artificial direction of the chain. Sun and Faller [8, 77] center the superatoms on the back-
bone carbons to which the phenyl rings are attached. They usea single type of bead and
therefore the model only describes atactic PS without detailed information about chain
stereosequences. This short overview already shows that the choice of suitable mapping
scheme is not trivial and clear criteria to find an optimal scheme are not available.

3.4 Bonded interactions

Bonded interactions act on pairs or groups of CG beads that are connected by one or a few
chemical bonds. They are developed separately from the nonbonded interactions that act
on pairs of CG beads, which are spatially close, but not directly connected by a bonded
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3 Coarse-grained model for polystyrene

interaction. Furthermore, the bonded potentials depend onthe tacticity of the chain and
are developed separately for isotactic and syndiotactic chains.

Potentials for bonded degrees of freedom of the CG model are obtained by direct
Boltzman-inversion (see eq. 2.3-2.5) of distributions obtained from all-atom simulations
of single chains in vacuum using stochastic dynamics, for details see appendix A.1.1. All
single chain sampling runs were performed with 25-mers at a temperature of 503 K using
the all-atom force field adapted by Müller-Plathe to describe benzene-polystyrene sys-
tems. [3, 4] The model contains previously developed parameters [5, 6] and an adapted
potential to describe torsional rotations properly. The functional form of the potentials
has been described in section 1.2.1; parameters of the modelcan be found in the ap-
pendix A.4. This force field was also used as a basis for several CG polystyrene models,
discussed in the previous section 3.3. [7, 8, 9]

The development follows the method described before (chapter 2) to factorize the dis-
tribution functions, but the influence of the “interaction range” during the sampling of
the atomistic chain is analyzed in detail and leads to changes of the method, as described
in the following. Since the distribution functions of the bonded degrees of freedom are
determined by interactions along the chain at a short range only, we exclude long-range
interactions and effectively sample random walks. The range of the atomistic potential
used in this sampling procedure critically determines the ability of the CG model to re-
produce “local conformations” at the level of a few neighboring repeat units.

3.4.1 Interaction range along the chain

In the previous CG model of Harmandaris et al. [55] bonded interactions up to torsions
(acting on 1-4 neighbors and the intermediate beads) were taken into account. All longer
ranged CG interactions starting from 1-5 upwards were modeled by repulsive nonbonded
interactions, which were chosen the same as those used to describe interchain nonbonded
interactions between CG beads in the melt. To develop the bonded potentials of the CG
model, an all-atom model of the chain was sampled in vacuum with an atomistic force
field that excludes all atom-atom nonbonded pair interactions along the chain falling out-
side the “1-4 range” of the CG chain description. This is shown in Fig. 3.7. We investi-
gated the influence of the “interaction range” applied in thesampling of the single chains
closer by repeating the sampling for all different interaction ranges between 1-2 and 1-8.

The influence of the interactions that we include in the sampling on the local distri-
butions is shown in Figure 3.8, 3.9, 3.10 and 3.11 for all distributions of bond lengths,
angles and dihedral angles in fully isotactic and syndiotactic chains. We see that in all
cases the form of the distribution changes for each added interaction in a range up to 1-5
and stays almost the same if we add atomistic interactions corresponding to the 1-6 CG
level or beyond. The interactions in the 1-6 range and beyonddo not change the peak
positions anymore; they do only change the peak heights slightly. By including the inter-
action range 1-5 we take into account the pentane effect between the backbone atoms in
the A beads and we avoid an overlap of the phenyl groups of the Bbeads in the 1-5 range.
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3.4 Bonded interactions

Figure 3.7: Definition of the interaction range: The atomistic polymer chain is sampled
in vacuum. The atoms in each group interact with all atoms within a range of neighboring
groups. In this example of the 1-4 interaction range the atoms in group 1 interact with the
atoms in group 2, 3 and 4, but not with groups at larger distances. The atoms in group 4
interact not only with the atoms in group 3, 2 and 1, but also with the symmetrically located
groups 5, 6 and 7. If groups along the backbone are involved (bead A), the CH groups that
contribute with half of their masses to the mapping are fullytaken into account.
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Figure 3.8: Distributions of AB bond lengths in fully isotactic (left) and fully syndiotactic
(right) single chains in vacuum; the interaction range in these all-atom (AA) simulations was
varied to correspond with CG interactions in a range from 1-2to 1-8; for 1-5 and above
the peak positions stay the same. All distributions in this figure as well as all following
distributions for CG degrees of freedom in this work are normalized.
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Figure 3.9: Distributions of ABA angles in fully isotactic (left) and fully syndiotactic (right)
single chains in vacuum; all-atom runs with varied interaction range from 1-2 to 1-8.
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Figure 3.10: Distributions of BAB angles in fully isotactic (left) and fully syndiotactic (right)
single chains in vacuum; all-atom runs with varied interaction range from 1-2 to 1-8.
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Figure 3.11: Distributions of ABAB dihedral angles in fully isotactic (left) and fully syndio-
tactic (right) single chains in vacuum; all-atom runs with varied interaction range from 1-2
to 1-8. For better visibility the dihedral values in the range from -180 to 0 are shifted to the
range from 180 to 360.
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Double counting

The reason for the use of a limited interaction range in the sampling of isolated chains lies
in the idea that bonded and nonbonded interactions should bedeveloped strictly separated.
In a final CG model that would follow the previously describedCG scheme (chapter 2),
the 1-5 neighbors in the chain have the same interaction as any other pair of nonbonded
beads. Therefore, including these 1-5 interactions in the interaction range of the sampling
(that delivers bonded potentials)and applying the CG nonbonded interaction between
these 1-5 pairs can be seen as “double counting” the influenceof these interactions onto
the final CG model.

But are these two influences the same? Does the use of CG nonbonded interactions
between 1-5 neighbors change the CG bonded distributions inthe same way as the exten-
sion of the interaction range from 1-4 to 1-5 in the atomisticsampling? The comparison
of these two effects on the distributions of BAB angles is shown in Figure 3.12. The
bonded potentials of the CG model are obtained by Boltzmann-inversion of the distri-
butions sampled with the 1-4 interaction range. The CG nonbonded interactions are the
ones described later in this work (see section 3.5). They acton the CG 1-5 neighbors (the
effect from neighbors beyond 1-5 is not significant here). One can see clearly that the
nonbonded potentials have a strong influence on the distributions,1 but they do not change
the distributions in a way corresponding to the extension ofthe interaction range.
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Figure 3.12: Distributions of BAB angles in fully isotactic (left) and fully syndiotactic (right)
single chains; comparison between all-atom runs with interaction ranges of 1-4 and 1-5 and a
CG run with bonded potentials (obtained from the sampling with 1-4 interaction range) and
nonbonded interactions.

This example suggests to extend the interaction range in thesampling of the isolated
atomistic chains. The argument of double counting is not applying directly here, because
two different effects are counted. Nevertheless, the extension of the interaction range does
not answer the question, if the nonbonded interaction should be used for 1-5 neighbors

1If the CG model would be used without the nonbonded interactions, it would exactly reproduce the
atomistic distribution of the 1-4 interaction range, basedon which it has been developed.
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3 Coarse-grained model for polystyrene

or if a modified bonded 1-5 interaction is a better choice. This question is studied in the
following after a discussion of the changes with increasinginteraction range.

3.4.2 Correlations in single chains

The reason why the distributions of CG angles and dihedral angles do not change their
general form when the interaction range is extended beyond 1-5 becomes clear, if com-
binations of two neighboring dihedral angles in Figure 3.13and 3.14 are studied. These
plots show the combinations of two subsequent CG dihedral angles, obtained by sampling
a single atomistic chain in vacuum and analyzing it in the CG description. In both figures
the interaction range is varied from 1-3 to 1-6, in Figure 3.13 for an isotactic chain and in
Figure 3.14 a syndiotactic chain.

The longer we choose the range of interactions to include, the more combinations of
dihedral angles are suppressed in the sampling of the local distributions. But as soon as
the 1-5 interactions are included, we sample always the samecombinations, even if we
include additional longer ranged interactions. This meansthat the interactions up to 1-
5 determine correlations between local degrees of freedom in single chains and thereby
also local conformations, as seen before. Interactions between 1-6 neighbors and above
might slightly influence the peak heights but not the peak positions. Beyond 1-5 the
additional interactions mainly contribute to excluded volume effects. These excluded
volume interactions are described separately by nonbondedpotentials (see section 3.5).

Based on the previous investigation of the interaction range and its influence on distri-
butions of CG degrees of freedom and their correlations it seems reasonable to include
interactions at least up to 1-5 in the sampling of the single chains from which the CG
bonded potentials are obtained. By that we extend the path that was followed before
[54, 55] to include only interactions up to 1-4 in the atomistic single-chain sampling.

A detail that can be noted here is the different axis of symmetry for the dihedral com-
binations in isotactic and syndiotactic chains. This givesa hint that the dihedral angles
can have different orientations, i.e. the dihedral potentials in the CG model (which are
periodic and range from -180 to 180) have to be mirrored (around 0 degree) in certain
situations, depending on the tacticity of the chains.2 Details on how the orientation of the
dihedrals is taken into account in the implementation of theCG model can be found in
the appendix A.3.

2If the direction along the chain, in which the dihedrals are evaluated, is changed, the orientation of meso
diads is mirrored, whereas the one of racemo diads stays the same. This can be visualized in Figure 3.4:
while a rotation of 180 degrees around the z-axis (pointing upwards) of the diads leads to an identical
situation for the racemo diad, the meso diad is mirrored in this case.
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3.4 Bonded interactions

Figure 3.13: Combinations of two subsequent CG dihedral angles, obtained from the sam-
pling of a single, isotactic chain in an atomistic simulation. The two dihedrals share three
beads that form an angle BAB and include as fourth bead the A beads next to this BAB angle.
Shown are the combinations of dihedral angles from four different atomistic simulations with
varied range of interactions along the chain. The range of interactions is inceased from 1-3
interactions (upper panel, left), 1-4 interactions (upperpanel, right), 1-5 interactions (lower
panel, left) up to 1-6 interactions (lower panel, right). Byincluding the interactions 1-4 and
1-5 several combinations are suppressed. For better visibility the dihedral values in the range
from -180 to 0 are shifted to the range from 180 to 360.
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3 Coarse-grained model for polystyrene

Figure 3.14: Combinations of two subsequent CG dihedral angles, obtained from the sam-
pling of a single, syndiotactic chain in an atomistic simulation. The two dihedrals share three
beads that form an angle BAB and include as fourth bead the A beads next to this BAB angle.
Shown are the combinations of dihedral angles from four different atomistic simulations with
varied range of interactions along the chain. The range of interactions is inceased from 1-3
interactions (upper panel, left), 1-4 interactions (upperpanel, right), 1-5 interactions (lower
panel, left) up to 1-6 interactions (lower panel, right). Byincluding the interactions 1-4 and
1-5 several combinations are suppressed. For better visibility the dihedral values in the range
from -180 to 0 are shifted to the range from 180 to 360.

46



3.4 Bonded interactions

3.4.3 Interactions for bonds, angles and dihedrals

Previously we discussed the influence of the interaction range on local conformations and
correlations. We showed before that a sampling of atomisticchains with a short inter-
action range leads to an incomplete consideration of correlations between local degrees
of freedom and to deviating distributions. These deviations can be only to a small ex-
tent corrected by the nonbonded interactions in the CG model. It is therefore favorable
to take into account all local correlations in the atomisticsampling (based on which the
CG bonded potentials are obtained) by choosing the interaction range sufficiently large.
Following this path the distributions for the CG bonded degrees of freedom agree with
the corresponding distributions in atomistic chains and also with distributions in atom-
istic melt simulations, which should be reproduced by the final CG model. Even though
distributions in atomistic single chains and melts are not necessarily the same, due to the
influence of other surrounding chains, the intrachain correlations are always present in the
melt and in the presented case of polystyrene they are dominating the shape of the dis-
tributions (the peak positions). Nonbonded interactions with surrounding chains mostly
influence the relative height of the peaks in atomistic meltsand this effect can be captured
in CG simulations as well.

We performed the atomistic sampling of single chains in vacuum with all interactions
included up the the 1-6 CG level in the derivation of the CG bond, angle and torsion
potentials. These potentials are shown in Figure 3.15 and 3.16.

The question of how to incorporate CG intrachain interactions that correspond to the
extension of the interaction range (in our case the 1-5 and 1-6 interactions) into a CG
model is not yet answered. Two options are possible:

• Using the regular nonbonded interactions between these 1-5and 1-6 neighbors:
In this case it is unclear, if we double count these interactions, because they in-
fluence the bonded distributions during the atomistic sampling and during the CG
simulation. This effect, however, is not necessarily strong and a CG model using
this method can be already superior to a CG model obtained from an atomistic
sampling with a shorter interaction range that ignores certain correlations. On the
other hand the atomistic sampling with an extended interaction range includes in-
formation about the 1-5 and 1-6 distributions, which can be used to reproduce these
distributions.

• Using special interactions for intrachain 1-5 or 1-6 neighbors: Since the atomistic
sampling delivers distributions for the distances betweenthese neighbors, they can
be used as a target that the CG model should reproduce. This approach was used
in this work and the development of the intrachain interactions is described in the
following section 3.4.4.
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Figure 3.15: CG potentials for AB bond length (left) and ABA angles (right) for the different
diads to which the involved CG beads belong to (kBT = 4.2 kJ/mol at 503 K). For ABA angles
two subsequent diads define the type of potentials and therefore three different combinations
can occur. The case of one meso and one racemo diad does not occur in purely isotactic or
syndiotactic chains; this potential was obtained by a chainusing an alternating sequence of
meso and racemo diads, referred to as “block tacticity” in this work, see section 3.4.6.
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diads to which the involved CG beads belong to.
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3.4.4 Intrachain interactions between 1-5 neighbors

By extending the interaction range in the sampling of the atomistic chains we get infor-
mation about distances between 1-5 and 1-6 neighbors. Here we present a method to
obtain CG bonded potentials in a range beyond 1-4 that reproduces distance distributions
between 1-5 neighbors very well without disturbing other bonded degrees of freedom
strongly.

These bonded potentials are distance dependentpair potentials, contrary to angular
and torsional potentials, which act on groups of three or four CG beads. The difference
between the 1-5 interactions and the shorter bonded interactions is that by construction
they are not completely decoupled, which was one of the basicassumptions before. Given
a certain set of values for intermediate bonds, angles and dihedral angles, the distance
between two 1-5 neighbors in the chain is completely determined. On the other hand,
a certain 1-5 distance can be realized with several combinations of intermediate bonds,
angles and dihedrals.

The fact that 1-5 distances and shorter bonded interactionsare not decoupled can be
seen as well, if we look at a single CG chain in vacuum, which has only bonded potentials
for CG bonds, angles and dihedral angles and no bonded or nonbonded interactions with
a longer range. If for one degree of freedom, say an angle, we switch off the potential,
the sampling of the CG chain will show a uniform distributionfor this degree of freedom
(after normalizing with sinθ). The sampled distribution of 1-5 distances, however, will
not be uniform, although there is no direct interaction present between the two beads. This
influence of the intermediate interactions up to 1-4 has to betaken into account, when we
develop the 1-5 CG potentials.

Isotactic chains

In Figure 3.17 these distributions are shown for A-A and B-B 1-5 distances in an iso-
tactic CG chain, having only bonded interactions up to 1-4 (dashed-dotted line), denoted
by P1-5,A-A

correcting(r,T) for the A-A case. If we only Boltzmann-invert the 1-5 distributions
(dashed lines) from the sampling of an atomistic chain including the 1-5 range, denoted
by P1-5,A-A

target (r,T), we would double count the contribution of the CG bonded interactions
up to 1-4 (dashed-dotted line). Therefore we Boltzmann-invert the 1-5 distance distri-
bution from a single all-atom chain, which is our target distribution, and subtract the
Boltzmann-inverted 1-5 distribution of a CG chain having only bonded interactions up to
1-4:

UCG(r,T) = −kBT
[

ln P1-5,A-A
target (r,T) − ln P1-5,A-A

correcting(r,T)
]

(3.1)

The CG bonded 1-5 potentials obtained in this way are shown inFigure 3.17 for the iso-
tactic case. This plot shows also the CG nonbonded interactions that would be used for the
interaction between these neighbors otherwise. The difference between the two potentials
is large, hence the introduction of CG bonded potentials beyond 1-4 improves the model
and will probably lead to a better reproduction of local conformations. This difference can
be expected, since neighboring beads belonging to the same chain will have a different
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average orientation towards each other than two close beadsbelonging to different chains,
which is the situation in which the CG nonbonded potentials are developed.

With these CG bonded potentials we can sample 1-5 distributions in CG chains, which
are in very good agreement with the distributions of the all-atom chain (continuous line
in Figure 3.17, top panel). The effect of the 1-5 bonded interactions on the intermediate
bonded distributions of angles and dihedral angles is shownin Figure 3.18. We can see
that the distributions do not deviate strongly.
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Figure 3.17: Distributions of 1-5 distances in isotactic chains for A-A and B-B beads (top):
The target distribution from an all-atom single chain (dashed), the correcting distribution from
a CG chain with bonded interactions up to 1-4 (dashed-dotted) and the final CG distribution
of a CG chain with the additional bonded 1-5 potentials (continuous). The CG potentials for
1-5 distances in isotactic chains (bottom) for A-A (left) and B-B (right) beads: Bonded 1-5
(continuous) and nonbonded (dashed) potentials in comparison (kBT = 4.2 kJ/mol at 503 K).
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Figure 3.18: Distributions for angles (left) and dihedral angles (right) in isotactic chains in
comparison for all-atom single chains (dashed) and CG chains with bonded 1-5 interactions
(continuous).

Syndiotactic chains

Since we have to types of 1-5 interactions, A-A and B-B, they also may influence each
other. For the isotactic case, presented before, this is a minor effect. For the syndiotactic
case the correcting potentialP1-5,B-B

correcting(r,T) has to be sampled from a CG chain including
bonded potentials up to 1-4 and the 1-5 A-A potential and viceversa. This process of
correcting the potentials can be done iteratively. For the syndiotactic case it is sufficient
to do three steps:

• get the first A-A 1-5 potential by correcting with the distribution from a CG chain
including only bonded interactions up to 1-4

• get the B-B 1-5 potential by correcting with the distribution from a CG chain with
bonded interactions up to 1-4 and A-A 1-5 (from previous step)

• get a second corrected A-A 1-5 potential by correcting with the distribution from a
CG chain with bonded interactions up to 1-4 and B-B 1-5

The corrected potentials and the distributions that we obtain by using these corrected
potentials are shown in Figure 3.19. The influence on angles and dihedrals is shown in
3.20. We see that the distributions are not disturbed strongly in the syndiotactic case as
well.
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Figure 3.19: Distributions of 1-5 distances in syndiotactic chains for A-A and B-B beads
(top): The target distribution from an all-atom single chain (dashed), the correcting dis-
tribution from a CG chain with bonded interactions up to 1-4 (dashed-dotted) and the fi-
nal CG distribution of a CG chain with the additional bonded 1-5 potentials (continuous).
The CG potentials for 1-5 distances in syndiotactic chains (bottom) for A-A (left) and B-B
(right) beads: Bonded 1-5 (continuous) and nonbonded (dashed) potentials in comparison
(kBT = 4.2 kJ/mol at 503 K).
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Figure 3.20: Distributions for angles (left) and dihedral angles (right) in syndiotactic chains
for all-atom single chains (dashed) and CG chains with bonded 1-5 interactions (continuous).
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3.4.5 Chain stiffness and the range of bonded interactions

Extending the previously discussed scheme to 1-6 interactions or above is straightforward.
The Boltzmann-inverted distribution for the 1-6 distance from a single all-atom chain
is corrected by the Boltzmann-inverted distribution of a CGchain, which includes only
interactions up to 1-5, and so on. For atactic chains it is sufficient to use bonded 1-5
potentials. For fully isotactic and syndiotactic chains weuse bonded interactions up to
1-7. Choosing such a range of bonded interactions the CG model reproduces the chain
stiffness of atomistic systems.

To get information about the chain stiffness we extract the characteristic ratio, also re-
ferred to as “internal distances”, from simulations of isolated chains. The characteristic
ratio Cn = 〈R2(n)〉/(nl2), where〈R2(n)〉 is the mean square distance between two repeat
units, separated byn carbon-carbon bonds (two per monomer) of lengthl along the back-
bone. For CG systems we have as well two CG bonds per repeat unit and use the atomistic
bond lengthl = 0.153 nm. For atomistic systems we apply the mapping scheme and eval-
uate the internal distances between the mapping points. Therefore we can compare the
internal distances for atomistic and CG systems directly.

For long polymer chains in melts the characteristic ratio reaches a plateau value ofC∞.
The plateau is reached for a certain number of CG bonds along the chain. If two CG
bonds are separated by this number of bonds, the vectors indicating their direction (or,
in a coarser picture, the vectors along the chain contour) are uncorrelated. If two bonds
are connected by a smaller number of bonds along the chain, they are correlated. This
correlations are closely linked to the chain stiffness.

The question how many neighboring beads should be treated with a CG bonded inter-
action can be difficult and requires a closer look at local properties of the chain. Since
the alternative to a bonded interaction is a regular nonbonded interaction, it is reasonable
to compare chains that include these nonbonded interactions and do not have any long
ranged exclusions. The situation of simulating such an isolated chain in vacuum is of
course different from a chain in a polymer melt, because the chain will coil up. The inter-
nal distances for largen (distances between beads separated byn bonds) of these chains
will be smaller than in a melt, but the slope for lown (between 6-12 for isotactic chains)
still gives a measure for the chain stiffness.

In Figure 3.21 internal distances for isotactic chains are shown. In this case the use
of 1-6 and 1-7 A-A bonded potentials increases the slope for low n and therefore the
chain stiffness directly and leads to a good agreement with the atomistic reference system.
In parallel the improvement is visible in the distance distributions for the 1-6 and 1-7
neighbors (see Figure 3.22, left side). It can be noted that the 1-7 B-B distribution is
improved as well, even though the 1-7 B-B neighbors still interact with the CG nonbonded
potential.

For syndiotactic chains the situation is slightly different. The slope of the internal dis-
tances for lown is not necessarily increasing with additional bonded interactions but can
be also reduced. The reason for this is probably the fact thatsyndiotactic polystyrene
prefers the all-trans conformation of the backbone and thisis already provided by the 1-5
bonded interactions. Therefore, the addition of further bonded interactions is more of a
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Figure 3.21: Internal distances in isolated atomistic (dashed) and CG (continuous and
dashed-dotted) chains in vacuum. All nonbonded interactions are included in the sampling.
The range of bonded interactions in CG chains is varied from 1-5 to 1-6 and to 1-7 A-A (for
1-7 B-B the nonbonded potential is used).

fine-tuning here and not a compensation of a lack of stiffness as in the case of isotactic
polystyrene. Nevertheless, improving the agreement for 1-6 and 1-7 distributions can be
used as an indicator for the quality of the model as well. Thiscan be seen as a general
criterion, because an agreement in the distributions between all pairs of neighbors, sepa-
rated by up ton bonds, means an agreement of internal distances up ton, hence also an
agreement in the slope of internal distances and finally an agreement in chain stiffness.
The improvement of the distributions for syndiotactic chains due to the use of bonded 1-6
and 1-7 interactions can be seen in Figure 3.22 (left side).

Based on these considerations bonded interactions in the range up to 1-7 have been used
in the final CG model for stereoregular chains. In the case of isotactic chains only 1-7 A-A
bonded potentials are used, while the interaction between 1-7 B-B neighbors is modeled
by the standard nonbonded interaction. This choice reproduces the chain stiffness very
well. In the case of syndiotactic chains bonded potentials are used for 1-7 A-A and 1-7
B-B neighbors, since this reproduces the distributions up to the 1-7 distances very well.
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Figure 3.22: Distributions of A-B 1-6 distances (upper row), A-A 1-7 distances (middle)
and B-B 1-7 distances (lower) in isotactic (left) and syndiotactic (right) chains: Comparison
between atomistic chains including all nonbonded interactions (dashed) and CG chains with
nonbonded interactions for 1-6 distances and above. The range of CG bonded potentials is
varied from only 1-5 (dash-dotted) to 1-7 (continuous); in the isotactic case only bonded A-A
1-7 interactions are used, in the syndiotactic case also bonded B-B 1-7 interactions.
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3.4.6 Combining different potentials: Atactic polystyrene

To simulateatacticchains, in which the two types of diads are randomly distributed, we
have to check how the two sets of bonded potentials for purelyiso- and syndiotactic chains
can be combined to simulate chains that include meso diads and racemo diads. We there-
fore test, whether the local distributions for bonds, angles and dihedrals only depend on
the type of diad that is involved in these sequences of two, three or four CG beads, or if the
neighboring diads have a strong influence, too. To this end wesampled a chain consisting
of a sequence of diads of alternating meso and racemo type. Inthis chain the phenyl rings
are pointing pairwise to alternating sides. Each diad has two neighboring diads of the
opposite type, which is the environment differing the most from the stereoregular chains.
This tacticity is referred to as “block tacticity” in the following.

It turned out that the influence of neighboring diads on localdistributions of CG bonded
degrees of freedom is small. The comparison of these distributions is shown in Fig-
ure 3.23. Even though some deviations appear, they are much smaller than the differences
between the two different diads and the type of diads can be clearly recognized bythe
distributions. Furthermore, if the CG model, whose potentials are developed based on
stereoregular chains, is simulated with block tacticity, the CG distributions tend to devi-
ate in the same direction as the distributions in AA chains with block tacticity.

Based on this test it is assumed in the following that bonded potentials can be used
independently of the tacticity of the neighboring diads in the chain. This opens the way to
describe atactic polystyrene with the CG model by using the CG potentials that have been
developed from stereoregular (isotactic and syndiotactic) chains and combining them in
atactic chains.

Bonded 1-5 interactions

Concerning the transfer of 1-5 potentials to the case of alternating diads in a chain we
have to distinguish between A-A and B-B 1-5 interactions. For the case of the A-A 1-5
interaction we can still use the potentials which were used for stereoregular chains, since
the two B beads between the connected A beads can just form a meso or racemo diad.
For the B-B 1-5 interaction, however, two subsequent diads are involved, formed by the
three B beads. Therefore we have three different types of B-B 1-5 potentials: Meso-meso,
racemo-racemo and the symmetric cases of meso-racemo and racemo-meso. Meso-meso
and racemo-racemo correspond to the cases of iso- and syndiotactic chains, as discussed
above. The case of meso-racemo or racemo-meso has to be considered separately in the
following.

In order to get the B-B 1-5 potential for a meso-racemo triad,we use the B-B 1-5 distri-
bution of the atomistic single chain in vacuum with block tacticity. As discussed before,
the bonded distributions up to 1-4 and A-A 1-5 depend mainly on their own tacticity but
not on the environment. For this reason we developed the B-B 1-5 potential by using the
corrected A-A 1-5 potentials from the iso- and syndiotacticchains to correct the B-B 1-5
potential. The Boltzmann-inverted B-B 1-5 distribution ofthe atomistic chain with block
tacticity was corrected by the Boltzmann-inverted B-B 1-5 distribution of a CG chain,
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Figure 3.23: Distributions of BAB angles (top), ABAB dihedrals (middle)and A-A 1-5 dis-
tances (bottom) for meso (right) and racemo (left) diads: comparison between stereoregular
all-atom single chains (dashed), all-atom chains with block tacticity (dash-dotted) and CG
chains with block tacticity (continuous) with bonded interactions up to 1-5. It can be seen
that the influence of neighboring diads (the difference between the two AA distributions for
each degree of freedom) is negligible in comparison to the influence of the type of diad (the
difference between left and right side in each row).
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having only bonded potentials up to 1-4 and the two A-A 1-5 potentials. The distributions
of B-B 1-5 distances with block tacticity are given in Figure3.24.
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Figure 3.24: Distributions of B-B 1-5 distances in chains with block tacticity: The target
distribution from an all-atom single chain (dashed), the correcting distribution from a CG
chain with bonded interactions up to 1-4 and A-A 1-5 interactions from iso- and syndiotactic
chains (dashed-dotted) and final CG distribution of a CG chain with the additional corrected
1-5 potential (continuous).

At this point we can simulate CG chains with block tacticity and compare their distri-
butions to atomistic simulations. This comparison has already been shown in Figure 3.23
for BAB angles, dihedral angles and for A-A 1-5 distances. Wesee a good agreement
between the CG and atomistic distributions. The CG distributions stay similar to the dis-
tributions in the stereoregular cases, on which they have been parameterized, but the de-
viations tend to the same directions as the distributions inatomistic block tacticity chains.
This gives a hint that the careful treatment of local conformations and correlations in the
development of the model has been successful and it confirms the assumption that it is
possible to combine separately developed bonded potentials in the way described before.

The question of the maximum range for the bonded interactions also has to be answered
for the block tacticity or, more general, for random atacticchains. In our final CG model
we limit the range of bonded interactions in atactic chains to 1-5 neighbors (contrary to the
stereoregular chains that have bonded interactions in a range up to 1-7 neighbors) and use
the standard nonbonded interactions for 1-6 neighbors and beyond. This is reasonable,
because the stiffness of the block chains (reflected by the internal distances) is already
reproduced well with bonded 1-5 interactions. The other reason to not extend the range of
bonded interactions is the rapidly increasing number of combinations of diads in atactic
chains. 1-6 and 1-7 interactions include chain segments of two or three diads, where the
diads appear in a random sequence, and therefore three or sixdifferent combinations of
these interactions are possible. Bonded interactions would have to be developed for each
combination and might be interdependent (as the 1-5 interactions in syndiotactic chains
in section 3.4.4).
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3.4.7 Correlations in coarse-grained chains

After finishing the development of bonded interaction potentials we have a look again
at correlations between CG degrees of freedom, which we haveinvestigated before for
atomistic chains (in section 3.4.2). Now we can compare CG simulations and their corre-
lations.

We simulated isolated, stereoregular chains of 25 monomersin vacuum with the all-
atom model and the CG model (details can be found in the Appendix A.2.1). In these
runs the nonbonded interactions were not excluded, as in thecases before, where the in-
teraction range was varied. The CG runs also used all the bonded potentials up to 1-7, as
presented before, and CG nonbonded interactions from 1-6 upwards, whose development
will be presented in the following section. Even though the concept of not excluding any
nonbonded interactions in a chain in vacuum does not result in chain dimensions compa-
rable to chains in melts, the local conformations and correlations are not disturbed. This
can be seen if the atomistic dihedral-dihedral plots in Figure 3.25 and 3.26 are compared
to the ones in Figure 3.13 and 3.14. It is also a hint that the chain conformations are not
changed strongly in melt simulations, because they are dominated by neighboring beads
in a range up to 1-5.

The agreement between atomistic and CG chains is very good for both tacticities, es-
pecially for the combinations of two subsequent dihedral angles. In the isotactic case
in Figure 3.25, for example, all dihedral-dihedral combinations sampled by the atom-
istic chain are reproduced by the CG chain, except for the region around (160, 200) that
deviates slightly. More important, however, the CG chain does not sample the region
(270, 90), indicating that the final CG model reproduces the local correlations between
adjacent torsional degrees of freedom in polystyrene.

The syndiotactic case in Figure 3.26 shows that angle-dihedral combinations favor cer-
tain ranges in the atomistic chain of (100, 250) and (140, 150) that are less correlated in
the CG chain, i.e. also the corresponding combinations of (100, 150) and (140, 250) ap-
pear. But also in this case the angle-dihedral combinationsaround (90, 0) (and equally
around (90, 360), since the dihedral angle is periodic) are not sampled in CG and atom-
istic simulations. The correlations are pronounced for thesyndiotactic dihedral-dihedral
combinations, which are the more relevant ones for the overall chain structure. The com-
parison between AA and CG picture is not only confirming that local conformations and
correlations are reproduced, but it also depicts a difference between the models concern-
ing the dynamics of the two. In the AA picture it seems that combinations of (120, 200)
and (200, 120) are only accessed via the neighboring combination (225, 225) but not from
(120, 120). The latter combination is only reached, if one ofthe two dihedrals rotates
by 360 degree (and the other by 80 degree). The CG model, in contrast, samples the
same combinations but the direct transition from (120, 200)or (200, 120) to (120, 120) is
possible by rotating only one dihedral by 80 degree, withoutrequiring the other move at
all. This suggests that the CG model will show faster dynamics than the atomistic model
due to lowered barriers in the energy landscape, which allowfor shorter connecting paths
between local minima.
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3 Coarse-grained model for polystyrene

Figure 3.25: Combinations of CG angles and dihedrals (top) and of two subsequent CG
dihedrals (bottom) in single isotactic chains: comparisonbetween atomistic simulations with
all interactions (left) and CG simulations with bonded potentials up to 1-7 A-A and non-
bonded interactions (right). For better visibility the dihedral values in the range from -180 to
0 are shifted to the range from 180 to 360.
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Figure 3.26: Combinations of CG angles and dihedrals (top) and of two subsequent CG
dihedrals (bottom) in single syndiotactic chains: comparison between atomistic simulations
with all interactions (left) and CG simulations with bondedpotentials up to 1-7 and non-
bonded interactions (right). For better visibility the dihedral values in the range from -180 to
0 are shifted to the range from 180 to 360.
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3.5 Nonbonded interactions

One aim of the CG model presented in this work is its applicability in simulations under
ambient pressure conditions. For this reason we develop nonbonded interactions includ-
ing an attractive tail as opposed to the purely repulsive potentials that were used for a
previous CG model of PS that used the same mapping scheme. [55] The approach we
chose for the development is based on the sampling of pairs ofshort oligomers (com-
pare section 2.1.3). It is different from most other structure-based CG methods, which
use structures of equilibrated atomistic melts as target structures and fit the nonbonded
potentials in order to reproduce these target structures.

Figure 3.27: To develop nonbonded interaction potentials for the CG beads, pairs of oligo-
mers are sampled in atomistic simulations with fixed distances between the two groups of
atoms representing the CG beads of interest. In this picturethe distance between an A bead
(red) and a B bead (blue-gray) is fixed. Repeating these simulations at different distances and
integrating the resulting constraint forces delivers a potential of mean force.

As in the case of the bonded potentials before we develop effective pair interactions
between CG beads through a potential of mean force (PMF), which is the free energy
along one degree of freedom. Unlike the PMF for the bonded potential, where a dis-
tribution for one degree of freedom is Boltzmann-inverted,the PMF for the nonbonded
interaction is obtained from constraint dynamics runs withthe all-atom model of two tri-
mers (or fourmers) in vacuum, see Figure 3.27. In these runs the two groups of atoms,
which represent the CG beads for which we calculate the PMF, are held at fixed distances
r (not at fixed cartesian coordinates). The average constraint force fc, required to satisfy
the constraint, is the negative of the mean force. Repeatingthe constraint dynamics runs
stepwise at different distances, allows integrating the constraint force to arrive at a PMF
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(more accurately, it is the free energy difference between the integration limits):

V(r2) − V(r1) =
∫ r2

r1

〈 fc〉rdr (3.2)

Using this method, two noninteracting masses experience anentropic force that pulls them
apart, because larger volume elements in phase space are sampled at larger constraint
lengthsr. This entropic force is given by

− d
dr

[

−kBT log(4πr2)
]

=
2kBT

r
(3.3)

wherekB is the Boltzmann constant andT the temperature. The PMF between the two
beads is obtained by adding the entropic term to the constraint force and integrating back-
wards from infinity. In practice, simulations are limited tofinite distances and the inte-
gration is performed backwards from the maximum distancerm, adding an integration
constantC. [78]

VPMF(r) =
∫ r

rm

[

〈 fc〉s+
2kBT

s

]

ds+C (3.4)

For two small molecules, where each molecule is representedby one single CG bead,
this PMF would be already the effective interaction potential for the corresponding CG
beads. We are using trimers or fourmers in the constraint dynamics runs, i.e. the mole-
cules, whose conformations we are sampling, are larger thanthe groups of atoms, whose
interactions we want to develop. The idea for this choice is the following: By using oligo-
mers that represent several CG beads instead of small molecules that correspond to only
one CG bead, we take into account the important effect that the CG beads are part of
a chain and their relative orientations are strongly influenced by neighboring chain seg-
ments. This influence of the chain neighbors, which is a multibody effect, is incorporated
in the development of the CG nonbonded interactions by sampling pairs of oligomers.
In addition to the desired modification of the sampling of thetwo constrained groups of
atoms, which represent the two CG beads for which the CG potential is developed, the
PMF also includes contributions from interactions betweenall atoms in the two oligomers
that enter into the constraint force. To get the effective interaction between two individual
CG beads, this influence of the surroundings has to be taken out.

The PMF obtained by eq. 3.4 is denotedVA-A
PMF(r) (for the case we constrain the A-A

distance). To obtain an effective A-A interaction potentialVA-A
eff (r), we calculate a sec-

ond PMF along the same coordinater but exclude all direct A-A atomistic interactions3

while maintaining all other interactions with and between neighboring parts of the oligo-
mers. This PMF we denoteVexcl,A-A

PMF . Then the effective, nonbonded bead-bead interaction
potential is obtained from

VA-A
eff (r) = VA-A

PMF(r) − Vexcl,A-A
PMF (r) (3.5)

3Direct A-A interactions are all atomistic interactions between pairs of atoms, where one of the atoms is
located in the central A group of oligomer 1 and the other in the central A group of oligomer 2.
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The so-obtained potentialVA-A
eff (r) may be viewed as the free energy of introducing

intermolecular interactions between the two groups of atoms representing the A beads at
distancer. Because bead A is part of an oligomer (trimer, fourmer), steric effects due to
chain connectivity limit the set of relative orientations in which these beads can approach,
which is realistically captured byVeff. AlthoughVeff is a pair potential obtained from PMF
calculations between PS fragments in vacuum, its use in simulations of the condensed
melt state can be justified. Multibody contributions to the effective potential applicable in
the melt are to a large extent similar to those present in vacuum and are determined by the
relative orientations that chain segments can sample relative to each other.

The two beads, whose relative distance is fixed, are located in the middle of the oligo-
mers. The size of the oligomers is chosen in such a way that these beads are located
in a symmetrical configuration; A beads are located in fourmers and B beads in trimers,
see Figure 3.28. In this work we used a maximum constraint distancerm of 1.2 nm and
performed constrained runs at distancesr between 0.2 and 1.2 nm in steps of 0.02 nm.
Details can be found in Appendix A.1.2.

Figure 3.28: Molecules used in the sampling at constraint distances: fourmers (left) are used
for A beads and trimers (right) are used for B beads, because they provide a symmetrical con-
figuration for the respective beads. The distance constraint between two of these oligomers
is applied between the centers of mass of the central groups of atoms (A-A, A-B or B-B).

Figure 3.29 shows the two potentials of mean force,VB-B
PMF andVexcl,B-B

PMF , and the result-
ing effective potentialVB-B

eff for the interaction between two B beads (phenyl rings). As a
technical note we point out that the PMFs with the exclusionsof direct interactions, e.g.
Vexcl,A-A

PMF (r), were obtained by using the simulation trajectories of theruns without these
exclusions (used to determine e.g.VA-A

PMF) and recalculating the forces for the given con-
formations but excluding the direct interactions between the two beads at fixed distances.
Thus, strictly speaking,Vexcl,A-A

PMF is not a PMF since the sampling was not done with the
Hamiltonian for which the forces were evaluated. However, in our tests the difference to
a PMF with a repeated sampling was within the error bars for distances beyond the first
minimum of the potential. The advantage of reusing the trajectory is a saving of half of
the CPU time.

In principle the above procedure can be iterated to reproduce the all-atom A-A, A-
B and B-B PMFs of trimers (or fourmers) in vacuum with the effective A-A, A-B and
B-B potentials. Such an approach has been used before by McCoy and Curro [64] to
derive united-atom models for small molecules and resembles the IBI approach (see sec-
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3.5 Nonbonded interactions

0.2 0.4 0.6 0.8 1 1.2
r (nm)

-5

0

5

10

15

20

V
 (

kJ
/m

ol
)

V
PMF

B-B

V
PMF

excl,B-B

V
eff

B-B

Figure 3.29: Coarse-grained B-B nonbonded interaction: The two potentials of mean force
for runs with all interactionsVB-B

PMF(r) (dashed) and for reruns with exclusions between all
atoms of the central B beadsVexcl,B-B

PMF (r) (dashed-dotted) as well as the effective potential
VB-B

eff (r), obtained by taking the difference (eq. 3.5) of the two potentials of mean force (con-
tinuous). The error estimates of the constraint forces thatare integrated are obtained from
block averaging. [79] (kBT = 4.2 kJ/mol at 503 K)
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3 Coarse-grained model for polystyrene

tion 2.1.3), which is often used in the melt, in the sense thatit employs iteratively refined
CG potentials. A similar approach has been used to develop CGnonbonded interactions
for polyethylene by Fukunaga et al. (see section 2.1.3). [65] A potential, obtained follow-
ing their method, is shown in Figure 3.30 and compared to our effective potential from
the sampling of two trimers and to a PMF between two benzene molecules. Their method
uses a PMF between two isolated beads, which is a PMF between two benzene molecules
in the case considered here (adding one hydrogen atom to the isolated B bead gives a ben-
zene molecule). As expected, the benzene PMF coincides withour effective potential for
longer distances (above 0.7 nm) and deviates for short distances, where the relative orien-
tations of the two beads are influenced by the chain neighborsand different orientations
are sampled. In order to take into account the constraints imposed by the chain neighbors,
the method of Fukunaga et al. adds the Boltzmann-inverse of the radial distribution func-
tion (RDF) to the benzene-benzene PMF for short distances (shorter than the first peak
in the RDF). This leads to a larger repulsive radius of their CG potential compared to
the benzene-benzene PMF. Our effective potential deviates in the same direction and its
repulsion radius is between the two.
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Figure 3.30: Coarse-grained B-B nonbonded interaction: The effective potentialVB-B
eff (r)

used in this work (continuous) is compared to a PMF between two benzene molecules
(dashed-dotted) and to a potential developed with the method of Fukunaga et al. (dashed)
that modifies the benzene PMF by adding the repulsive part of the Boltzmann-inverted radial
distribution function (dotted).

We note that the effective potential may change, if instead of the distance between
the exact mapping points, the distance between the centers of mass of the two beads
(neglecting that the CH-groups are only weighted with half of their mass) is used as
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3.5 Nonbonded interactions

distance coordinate. For our model this is of course only an issue if the center of mass of
the A bead is used, calculated with the full masses of the two CH-groups instead of their
half masses. Test calculations showed that this difference is indeed significant, leading to
very different effective A-A and A-B nonbonded interaction potentials.
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Figure 3.31: Coarse-grained A-A nonbonded interaction: The potentialsof mean force for
runs with all interactions (dashed) and for reruns with exclusions for the two cases of exclud-
ing all atoms in the A bead (dashed) or excluding only the CH2-groups (dashed-dotted). The
two resulting effective potentials are shown as well as their linear average,which is the A-A
potential used in the final CG model.

Another important question is which all-atom interactionsneed to be excluded in the
calculation ofVexcl,A-A

PMF andVexcl,A-B
PMF . Because each of the two CH-groups in a bead of type

A is shared with another A bead, we have two choices (see mapping scheme in Figure 3.5).
We can exclude the all-atom interactions involving only theCH2 group, or exclude the
all-atom interactions involving the CH2 and the CH groups. If we consider the A-A CG
interaction, the first choice leads to an effective potential in which the contributions of the
CH groups are not accounted for, the second choice leads to aneffective A-A potential in
which the contributions of the CH groups are counted twice. We calculated the effective
potentials with both choices for treating the CH groups and took their linear average as
the effective potential in further simulations, see Figure 3.31. In our simulations of CG PS
melts we get the best agreement with detailed atomistic structures of the melt (A-A, A-B
and B-B radial distribution functions), if we take the linear average of the two effective
potentials.

The potentials obtained by this method combine a short rangerepulsive and a longer
ranged attractive part and are used for CG simulations of polystyrene melts, which are
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3 Coarse-grained model for polystyrene

presented in the next chapter 4. The B-B nonbonded potentialwas obtained from PMF
calculations of two trimers in which the coordinater was chosen between the central B
beads. The A-A nonbonded potential was calculated from PMF calculations of two four-
mers in which the coordinater was chosen between the central A beads. To determine the
A-A nonbonded interaction potential, trimers are too smalland exhibit a non-symmetric
environment around the central A bead (see Figure 3.28). TheA-B nonbonded potential
was obtained based on PMF calculations with a fourmer (A bead) and a trimer (B bead).
In all calculations the stereoregular sequence was isotactic. The potentials were also
calculated with syndiotactic sequences, which yielded nonbonded potentials that were
identical within the error bars. In Figure 3.32 the effective potentials are plotted for the
three interaction pairs A-A, A-B and B-B in isotactic oligomers. The short range repulsion
for the B-B interaction is “softer” than for the A-A interaction, because the level of coarse-
graining of the B bead (11 atoms) is larger than the one of the Abead (5 atoms).
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Figure 3.32: Comparison of the nonbonded potentials used in this work,VA-A
eff (r) (continu-

ous),VA-B
eff (r) (dotted) andVB-B

eff (r) (dashed). (kBT = 4.2 kJ/mol at 503 K)
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4 Melt simulations

The previously developed CG model (chapter 3) is validated by simulating polymer melts
and comparing them to atomistic melt simulations. [74] The CG model is parameterized
only on static properties of atomistic chains, which can be compared directly. The dy-
namics of CG and AA simulations are different. Their relationship is investigated in the
following chapter 5.

In this chapter static properties of CG and AA polymer melts are compared for melts
of short chains, which are still feasible to be simulated at atomistic resolution. The first
comparison is aimed at intrachain conformations. At the most local level these are the
distributions for the CG degrees of freedom, at the level viewing the whole chain these are
internal distances. The internal distances are also investigated for CG melts of long chains
and compared to experimental data on chain dimensions. Besides the conformations of
single chains the collective packing of chains in a melt is animportant static property. It is
typically expressed by pair- or radial distribution functions (RDF). Further assessment of
the quality of the CG model can be obtained by checking densities or pressure in atomistic
and CG systems. These points are discussed in the following.

Polymer melts of different tacticities of 10-mers (56 chains) have been simulated at
ambient pressure (1 atm) and a temperature of 503 K, which is also the temperature at
which the CG model was developed. The MD simulations were performed using an
atomistic model (for details see Appendix A.1.3) and the CG model that was presented
in the previous chapter (for details see Appendix A.2.2). The CG model for the atactic
melt uses bonded interactions for 1-5 neighbors, the modelsfor the stereoregular use
bonded interactions in a range up to 1-7 neighbors (in isotactic chains up to 1-7 A-A; in
syndiotactic chains up to 1-7 A-A and 1-7 B-B). In all CG systems nonbonded interactions
are employed for neighbors in the range of 1-6 and beyond, as well as for interchain
interactions.

4.1 Conformations in melts

4.1.1 Local distributions

Distributions of coarse-grained degrees of freedom in isolated atomistic chains have been
used to develop the CG bonded potentials and have been shown to reproduce these distri-
butions very well in CG simulations of isolated chains. If wecheck these distributions in
melt simulations, we can distinguish two questions: Are thedistributions in atomistic sim-
ulations different, if a chain is not surrounded by vacuum anymore, but by other chains?
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4 Melt simulations

And, secondly, in case there are changes, does the CG model display the same behavior
in melt simulations?

The first question can be answered, if we compare the distributions in Figure 4.1 for
melts and isolated chains (the distributions for isolated chains in vacuum are repeated
here, they have been shown before in Figure 3.23). The distributions for angles, dihedrals
and 1-5 A-A distances in the atomistic systems are hardly dependent on the surround-
ings, i.e. the distributions are almost the same in atomistic melts and in isolated chains
(where they are furthermore independent from the types of neighboring diads).The 1-5 B-
B distances in Figure 4.2 are the only cases, in which the distributions in atomistic melts
deviate slightly from the distributions in isolated chains, but the deviations are still small
compared to the differences between the different tacticities.

In CG melts the influence of the surroundings is small and the distributions in CG
melts stay close to the distributions in single chains. Since this influence is also small in
atomistic simulations and the CG model reproduces the distributions in isolated chains
correctly, the agreement between CG and atomistic melts is very good. Slight deviations
between the CG and atomistic distributions only appear for the degrees of freedom that
connect B beads, i.e. for angles and 1-5 distances that act onthree or five subsequent CG
beads, where the end beads of these groups are B beads. In these cases the relative height
of the peaks can deviate moderately, while their general shape is still obtained correctly,
e.g. for the BAB angles (Figure 4.1, top) and for the 1-5 B-B distances that consist of
two diads of the same type (Figure 4.2, top). A possible explanation why the B beads are
slightly more influenced by surrounding chains in the melt, is the position of the B beads
(representing the phenyl rings), which stick out from the chain to the side (even though
they are not treated as side groups in the CG mapping), where they are more exposed to
interchain influences of neighboring beads than the A beads,which are located closer to
the backbone of the polymer.

The disturbing influence of the slight deviations, mentioned before, on overall chain
dimensions is decreased further for two reasons. As discussed before, the 1-5 B-B dis-
tance connects two B beads, which are located in two neighboring diads. Therefore, three
different combinations of diads can appear: two meso diads, two racemo diads and the
combined case of one meso and one racemo diad. In an atactic melt, where diads are ran-
domly distributed, half of all 1-5 B-B distances include onemeso and one racemo diad,
the other half contains two diads of the same type. The 1-5 B-Bdistance distribution
for the most common, mixed case (see Figure 4.2, middle left,which contains also the
distributions in isolated chains shown before in Figure 3.24) is exactly reproduced in CG
simulations. The second reason is the very good reproduction of the dihedral distribu-
tions and the 1-5 A-A distances. These distributions governthe positions of the A beads,
which are mapped onto the backbone of the polymer. The B beadscan move more freely
around the backbone and therefore, the slight deviations oftheir distributions hardly dis-
turb the A beads that are mainly responsible for the dimensions of the polymer chain. The
dihedral distributions offer an additional advantage that reduces the effect of even small
deviations: Because the dihedrals along the chain have two possible orientations that are
oriented against each other (see Appendix A.3.2) their deviations tend to cancel.
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4.1 Conformations in melts
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Figure 4.1: Distributions of BAB angles (top), ABAB dihedrals (middle)and A-A 1-5 dis-
tances (bottom) for meso (left) and racemo (right) diads: comparison between atactic melts
of 10-mers in all-atom (dashed) and CG simulations (continuous), and corresponding distri-
butions in isolated chains simulated in vacuum; these distributions are obtained by all-atom
simulations of chains of stereoregular (dotted) or block (dashed-dotted) tacticity in vacuum
or by CG simulations of stereoregular chains (dashed-double-dotted). A-B 1-2 bonds and
ABA angles are not shown here, but their agreement is very good as well.
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Figure 4.2: Distributions of B-B 1-5 distances (top panel and middle left; since two diads
are involved in this pair, three different combinations can occur), A-B 1-6 distances (middle
right), A-A 1-7 distances (bottom left; different combinations of diads are all included here)
and B-B 1-7 distances (bottom right; also all combinations of diads): comparison between
atactic all-atom melts of 10-mers (dashed) and atactic CG melt simulations (continuous) with
bonded interactions up to 1-5.
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4.1 Conformations in melts

The very good agreement between the distributions obtainedfrom CG and atomistic
melt simulations confirms that the development of CG potentials by sampling isolated
chains in vacuum and the distinction between tacticities isa successful approach for the
CG simulation of atactic and stereoregular melts. The correct reproduction of local distri-
butions in the CG model leads to a consistency between the atomistic and the CG model
for the overall chain dimensions and for the chain stiffness. These aspects are discussed
in the following section.

4.1.2 Internal distances

To compare overall chain conformations in CG and atomistic melts we look at the in-
ternal distances within the chains. They are described by the characteristic ratioCn =

〈R2(n)〉/(nl2), where〈R2(n)〉 is the mean square distance between two repeat units, sepa-
rated byn carbon-carbon bonds (two per monomer) of lengthl along the backbone. For
CG systems we use the atomistic bond lengthl = 0.153 nm and have as well two CG bonds
per repeat unit, therefore we can compare the internal distances for atomistic and CG sys-
tems directly and with experimental values forC∞, which is the limit of the characteristic
ratio for largen. For atomistic systems we apply the mapping scheme and evaluate the
internal distances between the mapping points. By evaluating internal distances between
CG beads (i.e. mapping points) instead of distances betweenwhole monomers, we see
more structure in the internal distances for small values ofn, which reflect the local con-
formations for different tacticities. The internal distances for largern, however, do not
depend on the choice of evaluating them between CG beads or monomers.
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Figure 4.3: Distributions of A-B 1-8 distances (left) and B-B 1-9 distances (right; different
combinations of diads are not distinguished): comparison between atactic all-atom melts of
10-mers (dashed) and CG melt simulations (continuous) withbonded interactions up to 1-5.

The internal distances are related to the distributions that were previously discussed.
Contrary to the distributions, the internal distances givejust anaveragevalue for pairs of
beads separated by a certain nuber of bonds, but they allow a quick evaluation of these
distances over the whole range of the polymer chain. If localdistributions are reproduced
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4 Melt simulations

correctly in CG simulations, then the corresponding internal distance is reproduced cor-
rectly as well. Therefore, if the agreement in local distributions has been found to be
good (as it is the case for the CG model presented here), then the internal distances pro-
vide sufficient information about chain conformations beyond the local range of a few
neighboring beads. The agreement in the distributions between 1-6 and 1-9 is very good
(see Figures 4.2 and 4.3). This is reflected in Figure 4.4 for theCn in the corresponding
range ofn between 5 and 8, as well.
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Figure 4.4: Simulations of 10-mer melts: Internal distances for atactic (top left), isotactic
(top right) and syndiotactic (bottom left) PS melts comparing CG (continuous) and all-atom
simulations (dashed) and comparison between the CG systemswith different tacticities (bot-
tom right). Plotted are the averages of the squared distances between beads, separated by n
bonds, divided by the number of CG bonds and the squared bond lengthl2. Since the number
of CG bonds is equal to the number of carbon-carbon bonds in the backbone of the atomistic
model, the CG distances are also normalized with the atomistic carbon-carbon bond lengthl
of 0.153 nm and the CG and the atomistic model can be compared directly.

In Figure 4.4 the internal distances in atactic, iso- and syndiotactic melts of 10-mers
are shown. Each melt consists of 56 chains with a length of 10 monomers simulated
at 503 K.We see that the CG model reproduces the internal distances for the melts of
different tacticities. The agreement already in the short internal distances indicates that
the local conformations in the CG systems are correct. The increase of the distances along
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4.1 Conformations in melts

the chain, especially the differences for different tacticities, suggests that the stiffness of
the atactic, iso- and syndiotactic chains is modeled properly. This is important for melts of
longer chains, where the characteristic ratio reaches a limit of C∞, which can be compared
to experimental results. This is done in the following.

Figure 4.5 shows internal distances of CG melts of chains of 192 monomers. The
influence of the different tacticities can be seen clearly. The internal distances of these
long chains agree well with the internal distances of the 10-mer melts presented above
(which cover a range up ton = 19). They reach a plateau for about half the number
of monomers in the chain already, i.e. if two CG bonds are separated by this number
of bonds along the chain, the vectors indicating their direction are uncorrelated. If two
bonds are connected by a smaller number of bonds along the chain, they are correlated.
We can compare the plateau value of the internal distances with experimental results for
the characteristic ratioC∞. We get 7.8 forC∞ of atactic PS, 8.9 for isotactic PS and 12.3
for syndiotactic PS. Experimental values are around 9.1± 0.4 for atactic PS [80], 9.3 for
isotactic PS [81] and 14.4± 2.8 for syndiotactic PS. [82]1
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Figure 4.5: Internal distances for CG melts of chains of 192 monomers (20kDa) with dif-
ferent tacticities: atactic (continuous), isotactic (dotted) and syndiotactic (dash-dotted).

The agreement forC∞ between CG simulations and experimental values indicates two
points: The atomistic model is capable to describe the stiffness of chains in melts cor-
rectly and the CG model reproduces the stiffness of the underlying atomistic model and

1Ref. 82 gives an experimental value of 10.6 for theC∞ of syndiotactic PS. This value, however, is calcu-
lated with a monomer lengthlm of 2.52 Å. Taking into account carbon-carbon bonds along thebackbone
(two per monomer) and their bond lengthl of 1.53 Å gives a value of 14.4± 2.8 for theC∞. This way
of definingC∞ is used in this work as well as in ref. 83.
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is efficient enough to simulate polymer systems, whose chain lengths are big enough to
reach the plateau for the internal distances.

The simulatedC∞ for syndiotactic PS is higher than the value of 9 reported by Milano
and Müller-Plathe in ref. 7. Their model is developed from stereoregular sequences in
an atactic polymer, which might explain the difference in the syndiotactic case, whereas
their atactic value of 8 is in agreement with our model. The relative differences between
the characteristic ratios of the different tacticities agree also with the rotational isomeric
state (RIS) model, which predicts values of 9 for atactic PS,12 for isotactic PS and 18
for syndiotactic PS. [83] Even though our simulations, as well as experiments, show
lower values forC∞ than the RIS model for the stereoregular cases, we also observe that
the atacticC∞ is lower than the stereoregular cases and we find almost the same ratio
between theC∞ for isotactic and syndiotactic PS.

The previously discussed dimensions of chains in polymer melts can be finally com-
pared to the dimensions of isolated chains in vacuum, especially to the case of isotactic
chains. For these isolated chains the internal distances have been used as a criterion for
the chain stiffness (see section 3.4.5), based on which the range of bonded interactions in
the CG model has been chosen. As expected, the chains in the melt are more extended: in
isotactic CG melts the characteristic ratioC19 = 6.3 (in both, the 10-mer and the 192-mer
melt) is larger than in isolated chains withC19 = 5.6. The reason for this is that non-
bonded interactions in vacuum lead to chain conformations,which are more coiled than
in melts, where long-ranged nonbonded intrachain interactions are screened by the other
chains.

4.2 Packing and density in melts

The local packing of the chains is examined by calculating radial distribution functions
(RDF), which describe how the particle density varies as a function of the distance from
one particular particle. In Figure 4.6 RDFs between A-A, A-Band B-B pairs for an atactic
and an isotactic 10-mer melt at 503 K are shown. In these RDFs only intermolecular pairs
of beads were included; pairs of beads in the same chain are left out, since the intrachain
distributions are already reflected by the internal distances discussed before. We see a
very good agreement between all-atomistic and CG RDFs for distances below 0.5 nm. For
larger distances the agreement is still good with some deviations. The strongest deviation
appears for the B-B RDF, where the position and height of the first peak and the following
minimum differ from the atomistic RDF. The reason for this might be the representation
of the atomistic phenyl group by a spherical CG bead. This hasbeen also observed by
Harmandaris et al. with their previous CG PS model. [55] The RDFs for isotactic and
syndiotactic melts show a very good agreement as well. It canbe noted that the CG
simulations reproduce the small differences in the RDFs that atomistic simulations exhibit
for different tacticities.

The density of the atomistic melt of atactic 10-mers (959 kg/m−3 at 503 K) is signifi-
cantly above the reported experimental density of 895 kg/m−3 for short polystyrene chains
(Mw = 910,Mw/Mn = 1.16). [84] There are two differences between the simulated sys-
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Figure 4.6: Radial distribution functions in atactic (left) and isotactic (right) melts in com-
parison between CG (continuous lines) and all-atom simulation (dashed lines).

77
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tems and the experimental samples: The chain length of around 9 monomers in the exper-
imental samples is slightly shorter than the chain lenth of 10 monomers that we simulate
in the melt. Secondly, due to theMw distribution a significant amount of shorter chains is
included in the samples. These two factors lead to a lower density in experiments. Never-
theless, these effects may be not sufficient to explain the higher density predicted by the
simulations. This is not a problem of the CG model, but an inaccuracy of the underlying
atomistic force field. To be more close to experimental results one may have to adjust
the density of the simulated systems. Especially the dynamics of atomistic systems re-
act sensitive to density changes. [85] This will be also an issue lateron in this work for
the study of additive diffusion in polymer melts (see section 5.3), where overestimated
densities slow down diffusion processes significantly.

4.3 Temperature dependence and transferability

Coarse-grained models usually have state dependent potentials because left-out degrees of
freedom are weighted differently at different temperatures. Following a strict procedure,
all potentials have to be redeveloped at every temperature that is used in CG simulations.
In practice it turned out that CG models can be used within a certain temperature range
around the exact temperature, at which they have been developed, as long as they do not
undergo a glass transition or another phase transition.

To test the temperature transferability of the CG model a series of runs over a range
of temperatures from 403 K up to 523 K was performed. The potentials of the CG model
were developed at 503 K and should therefore reproduce the distributions at this temper-
ature in CG simulations at 503 K. All CG runs use these potentials, only the temperatures
are varied by using a thermostat.

The densities predicted by the atomistic and CG model are shown in Figure 4.7. As
discussed above, the densities predicted by both, the atomistic and the CG model, are
higher than the experimental densities. [84] The thermal expansion of the simulated sys-
tems is similar to the experimental data, but seems to underestimate the expansion co-
efficient slightly. The CG model shows the same thermal expansion coefficient as the
atomistic model, while the density is slightly overestimated compared to the prediction of
the atomistic model. The agreement is strikingly good. A recent investigation by Qian and
coworkers on the temperature transferability of another CGpolystyrene model, developed
based on the iterative Boltzmann inversion method, showed asimilar good agreement be-
tween the thermal expansion coefficients of atomistic and coarse-grained melts. [9] There
the authors show that with another location of the CG mappingpoint (on the methylene
unit rather than on the bead center of mass) the temperature transferability is significantly
worse. [86]

The thermal expansion of the CG system in comparison to the atomistic system is not
the only criterion to judge the transferability of a CG model, but it gives a hint that the
temperature dependence of the CG potentials must be quite weak. To confirm the tem-
perature range of the CG model it was reparameterized at 423 K. If the potential has no
temperature dependence, the distributions would be still temperature dependent. Con-
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Figure 4.7: Densities of melts of 10-mers obtained from atomistic (dashed line) and CG
simulations (continuous line) at constant pressure (1 atm)in a temperature range from 403 K
to 523 K and experimental data (squares). [84]

sidering the case of an harmonic potential between two masses, the width of the bond
length distribution would be more narrow for lower temperatures. The potential which
is obtained by Boltzmann-inversion of the distribution, however, is the same for all tem-
peratures due to the factor ofkBT in equation 2.3. Therefore, to compare CG models at
different temperatures, we have to compare the potentials directly, but not the distribu-
tions.

Some examples for the potentials at 423 and 503 K are shown in Figure 4.8. We see that
the shape of the bonded potentials remains unchanged and that the barriers and potential
differences between minima show slight deviations of around 1 kJ/mol (kBT = 3.5 kJ/mol
at 423 K). The errors in the distributions would be of the order of the actual deviations
that we obtain between atomistic and CG simulations. The nonbonded potentials show
even smaller deviations of 0.3 kJ/mol, which explains the good agreement of the thermal
expansion behavior. The potentials not shown in Figure 4.8 for other degrees of freedom
and for different types of diads do not have larger deviations. Based on these tests we
used the CG model in the wide temperature range of 503± 100 K.

79



4 Melt simulations

0.32 0.34 0.36 0.38 0.4
r (nm)

0

5

10

15

20

25

V
 (

kJ
/m

ol
)

423 K
503 K

AB bond potential, meso diad

60 80 100 120 140 160
angle (degree)

0

5

10

15

20

V
 (

kJ
/m

ol
)

423 K
503 K

BAB angle potential, meso diad

-135 -90 -45 0 45 90 135
angle (degree)

0

5

10

15

20

25

30

V
 (

kJ
/m

ol
)

423 K
503 K

ABAB dihedral potential, meso diad

0.4 0.6 0.8 1
r (nm)

-5

0

5

10

15

20

V
 (

kJ
/m

ol
)

423 K
503 K

B-B potential, nonbonded

Figure 4.8: Comparison of potentials obtained at 503 K (dashed) and 423 K(continuous).
Shown are the exemplary cases for CG bonds (top left), BAB angles (top right) and dihedrals
(bottom left) in meso diads and the nonbonded B-B potential (bottom right).

80



5 Dynamics of multiscale polymer
simulations

5.1 Time scales in atomistic and coarse-grained
simulations

CG force fields are often developed to reproduce structures of the underlying detailed
model. These static properties are typically chain conformations or packing of chains
in melts, expressed by distributions for CG degrees of freedom or by radial distribution
functions, respectively. Dynamical processes in CG systems are faster than corresponding
processes in atomistic systems. The faster dynamics of CG systems can be discussed in
terms of local friction coefficients. In the Rouse and in the reptation model, the local
motion of monomers is governed by a scalar friction coefficient ζ. It is proportional to
the melt viscosity,η ∝ ζ, and inversely proportional to the chains diffusion constant,
D ∝ ζ−1. The friction coefficient depends on the specific model that is used to simulate a
polymer melt. Because the effective CG potentials are softer, the friction coefficient of the
CG system,ζCG, is reduced compared to the friction coefficient of the atomistic system,
ζAA. The atomistic friction coefficient is closer to the experimental situation and thus the
dynamical predictions of the atomistic system are closer toexperimental results. [87]

To obtainquantitativepredictions of polymer dynamics from CG simulations, the time
scale of the CG data has to be scaled in suitable way to fit atomistic simulation data or
experimental results. This procedure has been discussed and used in the literature before.
[44, 52, 54, 55, 66, 67, 85, 87, 88, 89, 90]

Following the above picture of friction coefficients, the time scaling factors = ζAA

ζCG

provides the quantitative agreement between dynamics in atomistic and CG simulations.
Calculating the mean square displacement from CG data, MSD(tCG), and shifting it along
the time axis, MSD(stCG), results in an agreement with atomistic data, MSD(tAA), for
times longer thantc (see below).

Analytical predictions how timescales in CG and atomistic systems are related are usu-
ally not available. The time scaling factors is, in principle, dependent on the specific CG
and atomistic model used, molecular weight, density, temperature and on other compo-
nents in mixed systems.

A way to estimate the size of the time scaling factors for a simple polymer system was
proposed by Depa and Maranas. [89] They attribute the speed-up of CG systems not to
the generally softer potentials between CG beads [91], but to a reduction of the nearest-
neighbor attraction. They interpret the surroundings of nearest neighbors as a “cage”,
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from which the CG atoms can escape easier, because their nonbonded potential is less at-
tractive than the atomistic one in the range of the typical nearest-neighbor distance. They
consider the transition of a particle from one local cage to another as an event, to which
they apply an argument from the hyperdynamics method. [92, 93] The hyperdynamics
method accelerates MD simulations to study transitions between minima of the potential
energy surfaceV(rn), which happen rarely and are difficult to study with pure MD simu-
lations. The simulations are accelerated by modifyingV(rn) with a bias potential∆V(rn),
wherern is the N-particle configuration. Provided that both potentials comply with certain
requirements, the method gives a speed-up through a time-averaged “boost factor”

thyper

tMD
=

〈

exp

(

∆V(rn)
kBT

)〉

∆t

(5.1)

Adapting this method to the case of CG simulations, they interpret the difference between
the atomistic and the CG potential (in the range of the first neighbor shell) as an ensemble-
averaged bias potential per particle,〈∆V 〉,

〈∆V 〉 =
∫ ∞

0
〈NCG(r )〉 UCG(r ) dr −

∫ ∞

0
〈NAT(r )〉 UAT(r ) dr (5.2)

where the CG and atomistic potentials,UXX , are weighted with the ensemble-averaged
number density of neighbors for each bead,〈NXX (r )〉 (XX stands for CG or AT)

〈NXX (r )〉 = 〈PXX (r )〉
nXX

(5.3)

nXX is the number of particles and〈PXX (r )〉 is the averaged number density of intermolec-
ular Lennard-Jones pairs. The speed-up of the CG system can be estimated using

s=
tCG

tAT
= exp

(

〈∆V 〉
kBT

)

(5.4)

The predictions of the time scaling factor agree within 7% with simulation results for
polyethylene. [89] The CG polyethylene system studied in their work offers certain ad-
vantages, which facilitate the application of this method.In the CG model, as well as in
the atomistic model (united-atom), the polymer is modeled by only one type of bead or
atom, i.e. on both simulation levels only one type of nonbonded interaction potential has
to be considered. The application to systems with different atom and bead types, as the
systems studied in this work, would be cumbersome. Furthermore, it is not investigated
if the method can be used for polymers with extended side groups, as for polystyrene,
where the packing becomes more complicated.

In the following, aspects of the behavior of the time scalingfactor s are discussed for
melts or liquids of short oligomers. For these short chains the dependence on molecular
weight and tacticity is investigated, followed by a study ofmixed systems, which contain
two components of different molecular weight. For homopolymer melts it has been found
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5.1 Time scales in atomistic and coarse-grained simulations

that the scaling factor reaches a constant value for high molecular weights. [85, 87, 90]
For CG polystyrene this plateau value fors is reached approximately for the same molec-
ular weight, at which the melt density becomes constant. [85, 87]

5.1.1 Time mapping by matching mean square displacements

The time mapping between time scales in atomistic and coarse-grained systems is ex-
pressed by the time scaling factors. It is obtained by comparing corresponding dynamical
quantities in atomistic and CG simulations. Various dynamical quantities can be used. In
the systems studied in this work, two related quantities were chosen: diffusion coefficients
as scalar dynamical quantities and mean square displacements (MSD) that span a certain
range of time.

The self-diffusion coefficientD in a system of identical particles is calculated from the
linear part of the mean square displacement of the center of mass,〈(Rcm(t )−Rcm(0))2〉, as
a function of time using the Einstein relation:

D = lim
t→∞

〈

(Rcm(t ) − Rcm(0))2
〉

6t
(5.5)

Time scaling factors based on diffusion coefficients compare only the asymptotic long
time regime and require long atomistic trajectories that reach the diffusive regime. Using
this quantity the CG time scale can also be mapped to experimental data.
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Figure 5.1: Mean square displacement (MSD) of the molecules center of mass in a melt of
isotactic 10-mers in CG and AA simulations (left) and self-diffusion coefficient vs. inverse
time (right). The unscaled CG data are taken directly from CGsimulations, the scaled CG
data are obtained by shifting the unscaled CG MSD along the time axis to match the MSD
of the atomistic system. Typical error bars, obtained by block analysis over segments of the
whole trajectory, are shown for each curve.

If data from atomistic MD runs are used, the time scaling factor s can be also obtained
by matching the MSD of CG and AA simulations. This method was used in the following
study and an example is shown in Figure 5.1, where the MSD fromthe CG run is shifted
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5 Dynamics of multiscale polymer simulations

by multiplying the time by a factors of 160. The shifted MSD agrees with the atomistic
MSD for long times, but also at times, where the diffusive regime is not yet reached
completely. This can be seen more clearly in the right side ofFigure 5.1, where the
diffusion coefficient (obtained using eq. 5.5) is plotted vs. inverse time. For long timesD
approaches asymptotically to a constant value. The agreement between CG and atomistic
D or MSD is reached for timestc before the constant value forD is reached, in the example
in Figure 5.1 for times aroundtc = 103 ps. This provides a direct insight into the time-
and length scales for which the particular CG model can be used.

5.1.2 Time mapping for oligomer systems

In this work the time scaling between CG and atomistic simulations was investigated for
melts of low molecular weight. Systems up to 10-mers (represented by 20 CG beads)
were simulated at a temperature of 503 K. For these small oligomers it is still feasible to
reach the diffusive regime of the mean-square displacement in all-atom simulations and to
obtain time scaling factors by directly comparing mean-square displacements of atomistic
and CG simulations.

In a first series of simulations the influence of the tacticityon the time scaling factor was
investigated. Systems of isotactic and syndiotactic polystyrene oligomers with varying
molecular weight between 314 and 1044 g/mol (corresponding to a number of monomers
N between 3 and 10) were studied. The systems were simulated atconstant volume, using
densities from atomistic constant pressure runs at ambientpressure. The densities range
from 905 kg/m3 for 3-mers to 959 kg/m3 for 10-mers. Details about the simulations can
be found in the Appendices A.1.4 and A.2.3. The time scaling factorss are determined
by matching the MSD of atomistic and CG simulations.

Self-diffusion coefficients and scaling factors of iso- and syndiotactic oligomer systems
are shown in Figure 5.2. The differences between iso- and syndiotactic systems are very
small. Not only the differences between time scaling factorss of the two tacticities are
within error bars, but also the differences between the self-diffusion coefficients. The
time scaling factors, however, show a strong increase with increasing molecular weight.
But in these systems not only the molecular weight is increasing, but also the density.
To separate the influences of varying density and varying molecular weight, time scaling
factors were investigated in a second series of runs, all performed at the same density. The
density, which was chosen for these runs, was the density of the isotactic 10-mer system
obtained by an atomistic NpT run at ambient pressure (955 kg/m3). Since the differences
between iso- and syndiotactic systems in their dynamics were very small (see Figure 5.2),
the following studies were limited to one of the two tacticities, where the isotactic systems
were chosen.

Self-diffusion coefficients and scaling factors of isotactic oligomer systems atconstant
density are shown in Figure 5.3. The increase ins with increasing molecular weight is
still observed, but the slope is smaller compared to the previous Figure 5.2. As mentioned
before, the systems withN < 10 are simulated at increased density (taken from the system
with N = 10). Compressing the systems in such a way, slows down the diffusion processes
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Figure 5.2: Self-diffusion coefficients (top) and time scaling factors (bottom) for oligomer
melts of different molecular weight (number of monomersN) and different tacticity (isotactic
and syndiotactic), obtained from all-atom (AA) and coarse-grained (CG) NVT simulations.
The densities of the systems were obtained by atomistic NpT runs and are varying between
905 and 959 kg/m3.
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Figure 5.3: Self-diffusion coefficients (top) and time scaling factors (bottom) for isotactic
oligomer melts of different molecular weight (number of monomersN), obtained from all-
atom (AA) and coarse-grained (CG) NVT simulations. The densities of all systems were set
to the density of the 10-mer system from an atomistic NpT run (955 kg/m3).
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in both, AA and CG simulations. But the smaller slope ofs vs.N indicates that diffusion
in the AA system is slowed down more than in the CG system, which can be also seen by
directly comparing the self-diffusion coefficients in Figure 5.2 and 5.3.

The method to estimate the time scaling factors for a melt of long polymer chains by
performing the time mapping for a system of short chains, butat the higher density of the
longer chains [85], cannot be applied for the very short oligomers studied here, i.e. the
scaling factor for the 10-mer system is not the same as the scaling factor for the 2-mer
system simulated at the higher density of the 10-mer system.The difference between the
two systems is the strong influence of chain ends in the oligomer systems. Chain ends
(the first and last few beads in a polymer chain) have a higher mobility than central beads,
because they are only attached to neighboring monomers on one side, whereas beads in
the middle of a polymer are attached to neighbors on both sides. Of course, the fraction
of chain ends is increasing with decreasing the molecular weight of a polymeric system.

The CG force field in this work does not contain optimized potentials to treat chain
end beads differently than central beads. The same nonbonded potentials are used for all
monomers. Those potentials are developed for A and B beads separately, but the sampling
of configurations is always done under the condition, that the beads are connected to two
neighboring monomers on both sides, see section 3.5. To obtain special nonbonded poten-
tials for chain ends, the sampled interacting beads should be connected to other monomers
on only one side. This release of constraints would open additional possibilities how the
two interacting beads can be oriented towards each other. These additional options would
possibly result in a smaller beads size or in a stronger attraction, which would lead to an
increased density of CG systems containing high amounts of chain ends. This consid-
eration is consistent with the behavior of the density in CG NpT simulations1 (without
special end group potentials): While the density of 10-mer systems is in agreement with
AA simulations, the density becomes more underestimated for shorter oligomers. For
trimers the density predicted by the CG model is 12% below thedensity of the AA simu-
lation. The opposite effect is observed for long chain melts, where the CG model predicts
densities around 6% higher than the AA model.

1CG NpT simulations of oligomer systems were only performed during the setup of the CG systems. The
CG oligomer systems that were used to study the time scaling were all simulated under NVT conditions
at the same density as the corresponding atomistic systems.
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5.1.3 Time mapping for mixtures of two components

Up to now the time scaling in one-component systems has been discussed. The time
scaling in mixed systems has not been studied systematically before. The following direct
comparison of scaling factors by simulating AA and CG systems is limited to mixtures of
relatively short chains, in order to reach the diffusive regime of the MSD for the atomistic
systems. Two series of mixtures are studied, which contain isotactic oligomers of two
different molecular weights in varying weight fractions (wM = 0.25, 0.5, 0.75 is the weight
fraction of the smaller component):

• mixtures of 2-mers and 6-mers, with corresponding molar fractionswmol = 50, 75,
90 of 2-mers

• mixtures of 3-mers and 10-mers, with corresponding molar fractionswmol = 53, 77,
91 of 3-mers

All mixtures were simulated at the same density that was already used before for the
one-component systems and that was obtained by an atomisticNpT run of the isotactic
10-mer system at ambient pressure. Details about the simulations can be found in the
Appendices A.1.5 and A.2.4.

Diffusion coefficients of the two components and their time scaling factorssare shown
in Figure 5.4 and 5.5. The mixed systems show the expected behavior for the diffusion
coefficients: If the fraction of the smaller component is increased, the diffusion of both
components becomes faster. This is observed in both, AA and CG systems. The scaling
factorss for the two components, however, show an interesting behavior: They vary with
the concentration of the two components and they are different for the two components
by a factor, which is almost constant for the various molar fractionswmol. Plotting logs
vs.wmol the dependence is almost linear for both components.

The difference in the scaling factors, both obtained from the same AAand CG simula-
tion, gives a hint to possible problems, when different dynamical processes are involved
in CG simulations. On the other hand, it has been shown beforethat the scaling factor
s becomes independent of the molecular weight in CG melts of long polymer chains.
Furthermore, it has been shown that in these systems a time mapping based on the mean-
square displacement also describes other dynamical modes correctly, namely the mobility
of polymer segments, expressed by the time dependent dynamic structure factorS(q, t ),
which can be measured by neutron spin echo (NSE) spectroscopy. [94] Also orientational
dynamical modes, as the end-to-end vector autocorrelationfunction, follow the same time
mapping. [85, 87, 90]
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Figure 5.4: Diffusion coefficients for 2-mers and 6-mers in mixtures of those components
with varying concentration (top) and time scaling factor for these systems (bottom). All
simulations were performed at the same density of 955 kg/m3.
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simulations were performed at the same density of 955 kg/m3.
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5.1.4 Mean square displacements in pure and mixed systems

In the following the MSD, based on which the time scaling factors are determined, is
studied in more detail for small molecules in very different surroundings: dimers diffusing
in a pure dimer system are compared to ethylbenzene (one monomer) diffusing in a melt
of long polymer chains (EB weight fractionwM = 0.1). For the latter system, also the
time mapping of the long chains can be determined and it will show a similar behavior as
the previously presented mixtures of short oligomers.
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Figure 5.6: MSD of dimers (center of mass) in a pure dimer liquid, AA (circles) and CG.
The CG MSD is shown with (dashed) and without (continuous) scaled times. The scaling
factor s = 8.4 is obtained by matching the long-time, diffusive regime of atomistic and CG
MSD. Drawn are also the slopes of 2 for the ballistic regime and of 1 for the diffusive regime.

In Figure 5.6 the MSD in dimer liquids is compared for AA and CGsimulations. The
MSD for shorter times has been obtained by shorter MD simulations with a more frequent
output of the systems coordinates; the lowest value for the AA system shows the mean
square displacement during one single integration time step of 1 fs.

For very short times below 0.1 ps the MSD increases with a slope of 2. This is the
ballistic regime, in which the particles move freely and do not collide with their neighbors
yet. Since the CG particles are also simulated with their real masses, AA and CG MSD
are in perfect agreement. It is in the intermediate regime between 0.1 and 100 ps that
the difference between atomistic and CG MSD evolves. In this intermediate regime the
individual particles start to collide with each other and explore by that their interaction
potential as well as the packing and the conformations of thesurrounding molecules.
Because the interaction potentials as well as the surrounding molecules are different, the
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mobility of atomistic molecules is slowed down more than themobility of CG molecules.
The AA MSD shows a clear subdiffusive regime (characterized by a slope< 1) be-

fore the diffusive regime (slope 1) is reached for times longer than 100 ps. This can be
understood by the picture of molecules being trapped in a cage, which is formed by the
neighboring molecules due to their attractive interaction. The time that is necessary to
escape the cage is on average much longer than the time between two collisions, i.e. mol-
ecules wiggle around in the cage and collide frequently withtheir neighbors, before they
eventually find a spot through which they escape from the cage. It is notable that the CG
MSD does not exhibit any subdiffusive behavior but a smooth transition from the ballistic
to the diffusive regime around a time of 1 ps. Due to the reduced number of“superatoms”
(4 CG beads vs. 34 atoms per dimer) and their weaker attraction the picture of escaping a
cage does not hold true here, because the “escape time” is comparable to the time between
two collisions. The MSD of around 0.1 nm2, where the diffusive regime in the CG system
starts, corresponds to half of the bead size and is only slightly higher for the AA system.
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Figure 5.7: MSD of ethylbenzene (EB) in a matrix of long PS chains (96 monomers), AA
(circles) and CG. The CG MSD is shown with (dashed) and without (continuous) scaled
times. The scaling factor for EB iss = 29. Drawn are also the slopes of 2 for the ballistic
regime and of 1 for the diffusive regime.

In comparison to the previous discussion of a liquid of shortoligomers a different sys-
tem is studied in Figure 5.7. It shows the MSD of ethylbenzene(EB) molecules in a matrix
of long polystyrene (PS) chains (96 monomers). The weight fraction of EB iswM = 0.1.
EB is similar to the monomers of PS, the only difference are two extra hydrogen atoms
in the AA representation. In the CG model it is represented bythe same two beads as the
monomers, which are part of a longer PS chain (see section 5.3).
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5.1 Time scales in atomistic and coarse-grained simulations

As for the dimer system, in the short-time, ballistic regimethe MSD of AA and CG
molecules is in agreement, before a difference evolves in the intermediate regime between
0.1 and 1000 ps. In this intermediate regime also the CG system shows subdiffusive be-
havior, even though the EB molecule is smaller than the dimer, whose CG liquid did
not show subdiffusive behavior. Another important difference to the dimer system is the
length scale of the MSD of around 1 nm2, on which the diffusive regime is reached. This
MSD corresponds to more than the size of a CG bead (as opposed to half the bead size
for the dimers liquid) and can have two explanations in the cage picture mentioned above:
the size of the cage could be bigger due to the stiffness of the long polymer chains, which
does not allow them to pack as closely as the smaller oligomers. In this case a cage or
cavity could be even large enough to host more than one EB molecule. Another explana-
tion is the mobility of the monomers in the long chains, whichform the cage, which could
lead to a motion of the whole cavity without releasing the EB molecule inside. The MSD
of the beads in the polymer matrix can be found in Figure 5.8. It turns out that also the
beads in the polymer matrix move around half of a CG bead size (the beads have a radius
of around 0.4 nm) before the EB molecules reach the diffusive regime. In the CG simu-
lation they move around 0.5 nm, whereas in the AA simulation they move around half of
this distance. In both cases this is a significant displacement compared to the size of the
EB molecule. This confirms that the dynamics of the long chainmatrix is important for
the diffusion of small penetrant molecules and the matrix cannot be seenonly as a static
arrangement of cavities, between which the small penetrantis hopping.

Looking at the time scaling factors of the mixed system of EB molecules in long PS
chains, a similar situation as for the mixtures of short oligomers is observed. By mapping
the MSD of EB from atomistic and CG simulations a time scalingfactor s = 29± 6 is
obtained. This is higher than the scaling factor that would be obtained from an EB liquid
at the same density (see Figure 5.3, which gives scaling factors for oligomer liquids at
a density of 955 kg/m3, whereas the the EB/PS mixture is simulated at constant pressure
conditions, resulting in densities of 953±2 kg/m3 for the AA simulation and 946±2 kg/m3

for the CG simulation.). The time scaling factor for the matrix of the long PS chains is
determind based on the MSD of individual beads and of the center of mass of the PS
chains. It is clear that these two MSDs must have the same timescaling factor, because
in the long-time limit the displacement of the whole chain becomes the same as the dis-
placement of its constituent parts. They only differ on length scales, which are smaller
than the chain dimension. Therefore, the time scaling factor for the motion of the polymer
matrix can be determind by mapping these two MSDs simultaneously. They are shown in
Figure 5.8.

A first observation is the perfect agreement in the ballisticregime (below 1 ps) of the
MSD of the center of mass of the whole chain. The MSD of the individual beads, however,
shows a small deviation in the ballistic regime. A possible reason for this small deviation
might be found in the mapping of the CG model (see section 3.3), in which certain atoms
in the backbone are involved in the definition oftwo CG mapping points. It has been
shown that this can introduce a deviation between atomisticand CG simulation in the
velocity distributions. [95]
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The time scaling factor for the long polymer chains iss = 300± 50; the scaling factor
of the EB component, in comparison, is onlys = 29± 6. As in the case of the oligomer
mixtures it is the smaller (and lighter) component, which has a lowers. The components
of the small oligomer mixtures have a molecular weight ratioof around 3 (6-mers/2-mers
and 10-mers/3-mers) and the time scaling factor for the heavier component is higher by a
factor of roughly 1.5; the EB/PS system has a molecular weight ratio of 96 and the time
scaling factor is higher by a factor of 10.

These similarities lead to the question, if the time scalingfactor for the long polymer
chains is independent from the concentration of added EB (atleast in a range of low EB
concentration before a dilute solution is formed), as it is independent of molecular weight
for pure melts of long chains, or if it varies with the concentration, which is the case for
the small oligomer mixtures (compare Figure 5.4 and 5.5).

The MSD for a pure melt of polystyrene chains (96 monomers, which is the same chain
length as in the mixed EB/PS system) is shown in Figure 5.9. It delivers a time scaling
factor s = 700± 200, which is higher than the corresponding factor in the mixed system
2. It is not surprising that the behavior of the time scaling factor s is qualitatively the
same for mixtures of short oligomers and for a mixture of a small penetrant in a matrix
of long chains, since both systems contain short molecules,for which the chain ends play
an important role. Even though the chain end effect of the long polymer can probably be
neglected, its time scaling depends on the concentration ofEB, which contributes to the
surroundings of the long chains.

2The comparison of the scaling factors has to take into account that the systems including the long polymer
chains have been simulated at constant pressure. In the AA aswell as in the CG simulation the refer-
ence pressure was set to ambient pressure. This choice leadsto different densities of the four systems,
which influence the values of the two time scaling factors. The densities for the atomistic systems are
953 kg/m3 for the EB/PS system and 968 kg/m3 for the pure PS system. The CG densities are 946 kg/m3

and 1032 kg/m3, respectively. Therefore, one has to check, if the scaling factors would be still different,
when all systems would be simulated at the same density. Correcting the density of the CG systems,
would increase the difference even further, because the system with the highershas the higher density;
decreasing this density, the diffusion coefficient DCG of the system would be increased and by that also
s = DCG/DAA. On the other hand, the density of the AA systems has the opposite influence and has
to be checked carefully. To this end, simulation data of a second atomistic EB/PS system, simulated at
a density of 924 kg/m3, have been analyzed. Using the same CG system as before, a scaling factor of
s = 90± 20 is obtained. Extrapolating linearly from the two available densities to the density of the
pure system a timescaling factor of arounds = 500 is expected. This value reaches the error bar of the
value for the pure system (s = 700± 200), but taking into account that all influences of correcting the
CG densities would increase the difference again, it is safe to state that the two time scaling factors are
different and that the pure system has the higher one.
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Figure 5.8: MSD of the matrix of long PS chains (96 monomers, 10 kDa) in a system mixed
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5 Dynamics of multiscale polymer simulations

5.2 Dynamics of coarse-grained polystyrene melts

The CG model for polystyrene, which has been presented in this work, is very well suited
to study polymer melts. It is efficient enough simulate systems of chains, which are long
enough to form entanglements. These entanglements betweenpolymer chains influence
the dynamics, especially in longer time regimes, which are not accessible by atomistic
simulations. In CG simulations, however, it is possible to observe these effects as well.
On the basis of previous works done on the dynamics of polymermelts [38, 85, 87], at
this point only a few aspects shall be presented, which demonstrate the applicability of
the CG polystyrene model to study dynamics in polymer melts.The strength of the model
is the consideration of all different tacticities of polystyrene. The influence of the tacticity
on dynamical quantities of entangled systems has not been studied before and is possible
to be studied with the presented CG model.

In Figure 5.10 the mean square displacement of the chain center of mass,g3(t ), is
presented for three polymer melts of different molecular weight (simulation details in
Appendices A.2.2, A.2.5 and A.2.6). The systems show a subdiffusive behavior, related
to the correlation hole effect, with a time dependence ofg3 ∝ t 0.8 [10, 96, 85] in a short-
time regime, which is shorter than the longest relaxation time. In the longer time regime
the standard linear Fickian regime is observed. Another dynamical quantity is shown
in Figure 5.11, where the mean square displacement of inner beads,g1(t ), (the 30 most
inner A beads of chains of 192 monomers) is presented for polymer melts of the same
molecular weight (20000 g/mol, 20 kDa) but of different tacticity (simulation details in
Appendix A.2.6).

In polymer melts the MSD of beads or chain segments,g1(t ), is a property, whose
behavior depends on how entangled the chains are. For unentangled systems the Rouse
model [97] predicts a scaling ast1/2 at short times and a scaling ast in the diffusive regime
for longer times. In entangled systems the situation is morecomplicated. There, for times
smaller than the disentanglement time,τd, the chains are confined to move in a tube,
which is formed by the entanglements with other chains. Thisleads to a regime where
g1(t ) scales ast1/4 as an combined effect of Rouse-like diffusion and the constraints of
the tube. The motion of the chain along the contour of the tubeis called reptation and the
reptation theory explains four different regimes forg1(t ) [97]:

g1(t ) ∝































t1/2, t ≤ τe
t1/4, τe ≤ t ≤ τR
t1/2, τR ≤ t ≤ τd
t, τd ≤ t

(5.6)

τe is the entanglement time. This is the time at which the displacement of the segments
reaches the tube diameter and the chain “realizes” that it isconfined to a tube. In the
long-time regime the chain has left its initial tube and a linear diffusive regime is reached.

The syndiotactic system shows a regime, where the slope is smaller than 0.5. This can
be seen more clearly in Figure 5.12, where the MSD of the innerbeads is normalized by
t1/2. This effect is a sign of entanglements and reptation behavior. It is less pronounced for
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5.2 Dynamics of coarse-grained polystyrene melts

the other tacticities. In fact, the molecular weight of the chains (20000 g/mol) is similar
to the entanglement molecular weightMe (18100 g/mol for atactic PS [81]), for which
the polymer chains only start to be entangled. In comparisonto the inner beads, the
outer beads at the chain ends do not reflect signs of entanglements, because they are not
confined in a tube. This can be seen in Figure 5.13, which showsthe MSD of the 5 outer
A beads at each chain end normalized byt1/2.

To explain the behavior of syndiotactic PS in this case, we remember the characteristic
ratio C∞, which has been presented before (see section 4.1.2). We found that the CG
model reproduces the different characteristic ratios of 7.8 for atactic PS, 8.9 for isotactic
PS and 12.3 for syndiotactic PS in good agreement with experimental results. The higher
C∞ of syndiotactic PS corresponds directly to a higher mean square end-to-end distance
〈R2〉, sinceC∞ ∝ 〈R2〉. The packing length describes the characteristic length scale,
at which polymers start to interpenetrate, and is related tothe mean square end-to-end
distance,p = ( ρchain〈R2〉)−1, whereρchain is the number density of chains. Finally, the
packing length is related to the entanglement molecular weight,Me ∝ p3. [81, 98, 99, 100]
Following these relations, theMe for syndiotactic PS is smaller than the one for atactic
PS by a factor of around 4, due to the higherC∞ of syndiotactic PS by a factor of 1.5.
The molecular weight of the syndiotactic system studied here is around 4Me, whereas it is
only aroundMe for the isotactic and atactic system. Therefore, it is not surprising that the
syndiotactic system shows stronger signs of entanglements. Future work can extend the
scope of this study to polymer melts of higher molecular weight and study the influence
of tacticity on entanglements in more detail.
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5 Dynamics of multiscale polymer simulations

5.3 Additive diffusion in polymer melts

In the following a study of the diffusion of ethylbenzene (EB) in a matrix of PS chains
is presented. [101] This system has already been discussed in a previous section (5.1.4)
under the aspect of time mapping in mixtures. There it becameclear that for the motion
of the small penetrant molecule, the motion of the polymer matrix cannot be neglected.

In this section the time scaling factors is again of interest, in particular its depen-
dence on temperature. The weight fraction of the additive isnot varied, neither the
molecular weight of any of the two components. The systems that are studied consist
of 24 atactic PS chains with a length of 96 monomers (192 CG beads, molecular weight
MW = 9984 g/mol) and of 256 EB molecules, which corresponds to a weight fraction
wEB = 0.1. EB is similar to the monomers of PS, the only difference are two extra hy-
drogen atoms in the AA representation. In the CG model it is represented in the same
way as the monomers in PS. All beads in the CG model interact with the same nonbonded
potentials (see section 3.5). No special interactions wereused for the beads at chain ends
or in EB. All systems were simulated under NpT conditions, using a reference pressure of
1 atm (ambient pressure). Simulation details can be found inAppendices A.1.7 and A.2.7.

As discussed previously in section 5.1.1, the self-diffusion coefficientDi of component
i (i = 1,2) in the binary polymer/penetrant system is calculated from the linear part of
the mean square displacement (MSD) of the center of mass of componenti, 〈(Ri

cm(t) −
Ri

cm(0))2〉, as a function of time using the Einstein relation:

Di = lim
t→∞

〈(Ri
cm(t) − Ri

cm(0))2〉
6t

(5.7)

To reach the linear part of the MSD long trajectories are needed. For all-atom systems
these simulations are computationally very expensive at the temperatures (up to 473 K) at
which experimental data are available. [88] The strategy inthis study is to link diffusion
coefficients from atomistic and CG simulations at higher temperatures (between 503 and
593 K) by determining time scaling factors. By extrapolating these time scaling factors to
lower temperatures, the CG diffusion coefficients can be quantitatively compared to ex-
perimental data. The time scaling factors(T) is the ratio between the diffusion coefficients
from CG and atomistic simulations (see above):

s(T) = DCG(T)/DAA (T) (5.8)

In a first step the diffusion coefficients that are obtained from CG simulations in a
temperature range between 398 and 593 K (The CG model was developed at 503 K) are
analyzed. It is known that CG simulations for polymer dynamics can reproduce the char-
acteristic Vogel-Fulcher behavior of diffusivity and bead friction exhibited by glass form-
ing polymers. [66] A Vogel-Fulcher functional form,DCG(T) = cexp(−A/k(T − TVF)),
can be fitted to the CG data very well and delivers aTVF = 185± 30 K (see Figure 5.14).
Even though the diffusion of additives and not the one of the long polymer chains is stud-
ied here, the observed Vogel-Fulcher behavior reflects thatthe mobility of additives is
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Figure 5.14: Fits of an Arrhenius and a Vogel-Fulcher form to the CG diffusion coefficients
of 10% EB in PS. The diffusion coefficients for these CG systems are not scaled to match
with diffusion coefficients of atomistic systems.

linked to the structural relaxation of the polymer melt, which includes the formation and
destruction of larger cavities. This process happens on much larger time scales than the
local spatial fluctuations of EB in these rather rugged cavities. [102]

If one assumes that in the atomistic simulations the connection between penetrant dif-
fusivity and structural relaxations of the melt is the same as in the case of CG simulations
(in section 5.1.4 it was shown that on the time scale, where the MSD of the EB molecules
reaches a diffusive regime, the MSD of the PS beads exhibits a displacementof the order
of at least half a bead size in both, AA and CG simulations, butthe displacement for CG
systems was higher by a factor of 2) and if one assumes the sameVogel-Fulcher temper-
atureTVF for the atomistic case, where the data are not sufficient to fit it directly, then the
temperature dependence of the time scaling factors(T) also follows the Vogel-Fulcher
equation:

sVF(T) = cVF exp

(

AVF

k(T − TVF)

)

(5.9)

This assumption is compared with another empirical way to describe the temperature
dependence ofs(T), which is the Arrhenius equation:

sArrh(T) = cArrh exp
(AArrh

kT

)

(5.10)

These functional forms are used to fitsat high temperatures (above 500 K). In Figure 5.15
the fits for the Vogel-Fulcher form (cVF = 0.062± 0.008; AVF/k = 1952± 50 K; TVF =
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185 K is set fixed) and for the Arrhenius form (cArrh = 0.0032± 0.001;AArrh/k = 4580±
180 K) are shown.

Applying the two relations for the time scaling factor from eq. 5.9 and 5.10 to the CG
diffusion coefficients, they can be extrapolated to predict diffusion coefficients of the all-
atom modelDAA in the range of experimental temperatures. These diffusion coefficients
are shown in Figure 5.16. The scaled CG diffusion coefficients agree with the atomistic
ones for the four temperatures above 503 K, to which the time scaling factor was fitted.

The comparison of the CG simulations to experimental diffusion coefficients [88] shows
a clear vertical shift. The scaled diffusivitiesDCG are too low by a factor of 7 (at all tem-
peratures) for the Vogel-Fulcher scaling and by a factor between 7 (at high temperature)
and 3 (at low temperature) for the Arrhenius scaling. It is remarkable that the Vogel-
Fulcher scaling predicts a temperature dependence which isin perfect agreement with
the experimental data, whereas the Arrhenius scaling predicts higher diffusivities for low
temperatures. This is a clear indication that the CG model takes into account the structural
aspects of the polymer matrix, which are responsible for thenon-Arrhenius behavior of
the dynamics, but the non-Arrhenius behavior also has to be taken into account for the
time scaling factors(T).

To judge the quality of the simulation results, two characteristic differences to an ex-
perimental setup have to be considered, due to which simulated diffusion coefficients are
expected to be lower compared to experimental ones. First, the experimental sample is
polydisperse (MW/Mn = 1.07). [88] The presence of shorter chains in the experimen-
tal system contributes to faster dynamics, the extent of which can be large but probably
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Figure 5.16: Diffusion coefficients from experiments, [88] all-atom simulations and CG
simulations. CG data are scaled, using an Arrhenius and a Vogel-Fulcher (VF) form for the
temperature dependence of the scaling factor.

not sufficient to explain the downward shift observed in Figure 5.16.The CG simulation
with a polydisperse PS matrix requires a careful study of thetime scaling behavior of
these systems concerning the different time scaling factors for components with different
molecular weight (as presented for two-component mixturesin sections 5.1.3 and 5.1.4).
The second cause explaining the lower diffusion coefficients obtained from simulations is
the density of the system, which is predicted 2-4% larger in comparison with experiment
by the all-atom force field used in this work.3 This is not only an effect of the all-atom
force field but also a consequence of the presence of short chains in experimental samples.
A slight overestimation of the density has a strong effect on the system dynamics and eas-
ily explains a factor of 7. We note that in a recent work based on the same all-atom model,
all systems were simulated at constant volume corresponding to the experimental density.
[85] There, a perfect agreement was obtained between the simulated and experimental
polymer diffusion coefficients.

This strategy can also be applied in this case: In a first step,the temperature depen-
dence of the diffusion coefficients, and by that also of the scaling factors(T), is simulated
in NpT simulations, which describe the thermal expansion ofthe systems correctly. In a
second step, the atomistic system at a single temperature issimulated in a constant vol-
ume simulation at a density corresponding to the experimental one. The difference of the

3Experimental density data for the EB/PS mixture are not available. But the density of the PS system
without EB can be compared (at 503 K): The experimental density for PS (MW = 9000 g/mol) isρexp =

934 kg/m3 [84], the density from atomistic NpT simulations isρAA = 970 kg/m3 for pure PS (MW =

9984 g/mol) andρEB/PS
AA = 952 kg/m3 for the EB/PS system.
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Figure 5.17: Diffusion coefficients from experiments, [88] NpT all-atom simulations and
from CG simulations scaled with a Vogel-Fulcher (VF) form for the temperature dependence
of the scaling factor. In addition, a diffusion coefficient from an NVT all-atom simulation at
a density of 910 kg/m3 (estimated density of the experimental sample) and 503 K is given,
which defines a shift of the CG data.

atomistic diffusion coefficients between the NVT and the NpT simulation yields a factor,
by which the extrapolated diffusion coefficients atall temperatures can be shifted. Fol-
lowing this method, the changes in density, and by that the whole temperature dependence
of D(T) ands(T), are still obtained as predictions of the atomistic model,but the absolute
value ofD(T) is “tuned” to fit closer to experimental conditions.

Simulating the PS/EB mixture under NVT conditions at a temperature of 503 K and
a density of 910 kg/m3, which is chosen based on the experimental density of the pure
polymer (and taking into account a solvent swelling contribution obtained from the sim-
ulations) reduces the discrepancy between simulated and experimental diffusion data to a
factor of 2, see Figure 5.17.

As mentioned above, using a polydisperse PS melt to host the EB molecules could
be done in future work and would increase the simulated diffusion coefficients further.
Moreover, this would extend the previously discussed aspects of time scaling in two-
component mixtures (sections 5.1.3 and 5.1.4) to many-component systems.

Taking into account these two aspects of density and polydispersity the agreement be-
tween simulated and experimental diffusion coefficients is excellent. Hence, the hierar-
chical simulation approach outlined here to quantitatively obtaining penetrant diffusion
data from CG simulations follows a sequence of well-defined procedures that may find
potential future application in modeling diffusion in complex fluids.
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Conclusion

A coarse-graining methodology for melts of linear polymer chains has been presented
and applied to the case of polystyrene. Two new concepts werepursued in the CG model
development, which turned out to improve the agreement of static properties of poly-
mer melts with the underlying atomistic model. New components of the CG model are
the introduction of longer-ranged intrachain potentials and the development of interchain
potentials without atomistic melt systems as reference.

The longer-ranged intrachain potentials lead to a better control of the chain stiffness
and to a description of local chain conformations in agreement with the detailed atomistic
model. Local conformations depend strongly on the tacticity of the chain, i.e. on the
stereochemical orientation of neighboring monomers, where side groups can be oriented
randomly or in an ordered fashion. The correct description of local chain conformations
allows the CG model to capture effects that are related to the local packing of chain
segments. Due to the reproduction of the chain stiffness overall chain dimensions are
described in agreement with the detailed atomistic model. Furthermore, they agree as
well with experimental results for the characteristic ratio C∞ for polystyrene of different
tacticities.

The method to obtain longer-ranged intrachain potentials is especially useful for coarse-
grained models, which use a mapping scheme that is close to the chemical structure (as
in the presented case). In these systems the basic assumption of completely uncorrelated
coarse-grained degrees of freedom is often not valid. However, the general method of
structure-based coarse-graining can still be used, if the CG model is constructed in a way
that takes into account these correlations and reproduces them also in the CG simulations.

The development of the CG interchain interaction potentials is based on the sampling
of pairs of oligomers in vacuum. The presented method does not use atomistic melt struc-
tures as a reference system. Structure properties of melts are obtained as predictions of the
CG model in contrast to other structure-based CG models, which are iteratively refined
to reproduce the melt structure. Furthermore, the development of the CG potentials is
computationally cheap, because no expensive atomistic melt simulations are needed. The
presented CG model for polystyrene describes the melt packing and reproduces the den-
sity at ambient pressure between 400 K and 520 K in good agreement with the atomistic
model.

The development of CG potentials from chain segments under vacuum conditions in-
stead of melt conditions (which are, however, correctly reproduced) suggests a higher
transferability of this CG method. Its application to further problems, such as two- or
multi-component systems (blends, polymer/solvent mixtures) or polymer surfaces, ap-
pears promising.
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Conclusion

The dynamics of CG systems have to be linked with the dynamicson the atomistic
scale to obtain quantitative results. The connection of theCG and the atomistic time scale
can be described by a time scaling factor, which depends on several specific system prop-
erties as molecular weight, density, temperature and othercomponents in mixtures. The
influence of selected aspects has been investigated in this thesis. In short oligomer melts
the time scaling factor depends strongly on the molecular weight. In mixtures of two
components the scaling factors can be different for each component, but it is still possi-
ble to obtain quantitative results: In mixtures of long polymer chains and small additive
molecules the additive diffusion has been shown to obey a Vogel-Fulcher temperature de-
pendency, which is also found experimentally, reflecting the importance of the motion of
the chains for the motion of the additive.

CG simulations of polystyrene melts with different tacticities have been presented to
demonstrate the applicability of the CG model to study dynamics in polymer melts. The
influence of the tacticity on the dynamics of entangled systems has not been studied be-
fore. With the presented CG model it is possible to study thisquestion and to gain more
understanding how local, chemically specific conformations influence universal proper-
ties of polymer melts.
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A Appendix

A.1 Simulation details of atomistic systems

For all atomistic simulations presented in this thesis an all-atom model has been used,
which was adapted by Müller-Plathe to describe benzene-polystyrene systems. [3, 4] The
model contains previously developed parameters [5, 6] and an adapted potential to de-
scribe torsional rotations properly. A description of the typical term of this force field has
been given in section 1.2.1, the parameters of the force fieldare listed in the Appendix A.4.

Every PS monomer is described by 16 atoms. Atomistic bond lengths are constrained
in all systems using the LINCS method (see section 1.3.2). Cutoff corrections were ap-
plied to energy and pressure using standard analytical expressions that assume a uniform
density beyond the cutoff (see section 1.2.2), except for the simulations of isolatedchains
or pairs of oligomers in vacuum.

The tacticity of PS in the atomistic simulations depends on the initial configuration of
the chains and does not change in the course of a simulation due to a high steric barrier. If
a certain tacticity for a chain is needed, i.e. a defined sequence of meso and racemo diads,
it can be imposed on the chain by applying improper dihedral potentials, which control
the orientation of the phenyl rings. This is used for exampleduring the backmapping
procedure, where the atomistic chain, which is introduced in place of the CG chain, should
have exactly the same tacticity.

All simulations reported in this thesis were performed using the molecular dynamics
package GROMACS. [103]

A.1.1 Sampling of isolated chains

The sampling of atomistic chains in vacuum is done with atomistic PS chains of 25
monomers with different tacticities (isotactic, syndiotactic, block tacticity of alternating
meso and racemo diads). The chain is simulated without periodic boundary conditions.
For the sampling the stochastic dynamics (SD) method (see section 1.3.3) is used, which
adds a friction and a noise term to the equations of motion. The reference temperature was
set to 503 K and the inverse friction constant to 1/ξi = 0.1 ps. For all nonbonded interac-
tions a cutoff distance of 1 nm was used, without consideration of Coulombic interactions
beyond the cutoff. At the cutoff charge groups were used to avoid artifacts caused by
dipoles, which have one charge within the cutoff and the opposite charge outside. These
dipoles were always considered to be in or out of the cutoff together. Since only one chain
in vacuum was simulated, angular motion of the system was removed every few ps. The
integration time step was 1 fs. The systems were simulated for 100 ns.
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A.1.2 Sampling of isolated oligomer pairs

The sampling of atomistic pairs of oligomers in vacuum is done with atomistic PS chain
segments of three or four monomers with isotactic tacticity. The systems are simulated
without periodic boundary conditions. For the sampling thestochastic dynamics (SD)
method (see section 1.3.3) is used, which adds a friction anda noise term to the equations
of motion. The reference temperature was set to 503 K and the inverse friction constant
to 1/ξi = 0.5 ps. For all nonbonded interactions a cutoff distance of 1.8 nm was used,
without consideration of Coulombic interactions beyond the cutoff. Since only one pair
of oligomers in vacuum is simulated, angular motion of the system is removed every few
ps. The distance between the centers of mass of the two groupsof atoms, corresponding to
the CG beads of interest, was constrained in a range of distances between 0.2 and 1.2 nm.
Simulation runs were performed for all distances in steps of0.02 nm. The integration time
step was 1 fs. The systems were simulated for 12 ns at each distance.

A.1.3 10-mer melts

In the following paragraph technical details of the AA simulations presented in chapter 4
are given.

The simulated AA systems contain 56 chains of 10 monomers. Melts of atactic, iso-
tactic and syndiotactic PS were simulated. For atactic systems five different random se-
quences of meso and racemo diads were used, the number of bothtypes of diads is ap-
proximately the same. The initial configurations for the iso- and syndiotactic systems
have been obtained by randomly placing 56 single chains in a box and slowly switching
on the nonbonded interactions. For the atactic system an existing configuration, kindly
provided by Milano and Müller-Plathe, was used. In principle, it is also possible to obtain
atomistic configurations by backmapping CG configurations.

For nonbonded interactions a cutoff distance of 1 nm was used. Coulombic interactions
beyond the cutoff were treated by reaction-field correction with a dielectricconstantǫRF

of 2.5. The melts were simulated under isothermal-isobaric(NpT) conditions at various
temperatures and 1 atm using the Berendsen thermostat (coupling time 0.2 ps) and barostat
(coupling time 2.0 ps). The integration time step was 1 fs.

After the first equilibration of the systems production runsof 400 ns were performed
for the systems at 503 K. To check the density dependence on temperature, shorter runs
of 10 ns were performed. All systems are listed in table A.1.
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tacticity T (K) CN ρ (kg m−3)

atactic 503 6.09 959
isotactic 503 6.12 956
syndiotactic 503 7.70 959
atactic 403 1004± 2
atactic 423 1000± 3
atactic 443 989± 5
atactic 463 980± 5
atactic 483 969± 5
atactic 503 960± 5
atactic 523 947± 5

Table A.1: Atomistic PS 10-mer systems: Shown are the tacticity of the chains, the temper-
ature T as well as the resulting characteristic ratio between the two end beads of the chainCN

(whereN = 2NMonomers− 1, N = 19 in this case) and the densityρ.

A.1.4 Oligomer melts

In this paragraph technical details of the AA simulations presented in section 5.1.2 and
5.1.4 are given.

Each AA system contains the same number of 480 monomers (distributed onto 480/N
oligomers ofN monomers each), which was chosen as a common multiple of allN’s
studied. Therefore, at a given density each cubic simulation box has exactly the same
volume. Initial coordinates for the atomistic systems wereobtained by inverse mapping
of atomistic details into equilibrated CG systems, which are described in section A.2.3.

In a first series of runs systems of isotactic and syndiotactic PS oligomers were sim-
ulated under NVT conditions at a temperature of 503 K and at a density, which was ob-
tained by a NpT simulation for each system (Berendsen thermostat at 1 atm, coupling time
5 ps). The box sizes are betweenL = 4.43 and 4.52 nm. The velocity rescaling thermostat
(coupling time 0.2 ps) was used. For nonbonded interactionsa cutoff distance of 1 nm
was used. Coulombic interactions beyond the cutoff were treated by the particle-mesh
Ewald (PME) method with a direct-space cutoff of 1 nm and a grid spacing of 0.12 nm.
The integration time step was 1 fs.

For the isotactic systems a second series of simulations wasperformed under the above
described conditions, but the density of all systems was setto the same value of 955 kg/m3

(the value of the isotactic 10-mer systems from the previousNpT simulation).
All atomistic (one component) oligomer systems are listed in table A.2.
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NMonomers Nchains tacticity sim. time (ns) DAA (10−5cm2s−1) ρ (kg m−3)

3 160 isotactic 10 0.61± 0.04 906
4 120 isotactic 20 0.23± 0.01 925
5 96 isotactic 25 0.095± 0.005 935
6 80 isotactic 25 0.051± 0.005 943
8 60 isotactic 25 0.012± 0.005 954
10 48 isotactic 25 0.006± 0.002 955
3 160 syndiotactic 10 0.59± 0.04 905
4 120 syndiotactic 20 0.23± 0.01 925
5 96 syndiotactic 25 0.10± 0.01 936
6 80 syndiotactic 25 0.046± 0.005 943
8 60 syndiotactic 25 0.012± 0.002 952
10 48 syndiotactic 25 0.004± 0.001 959
2 240 isotactic 40 0.65± 0.05 955
3 160 isotactic 60 0.26± 0.02 955
4 120 isotactic 60 0.11± 0.01 955
5 96 isotactic 80 0.053± 0.002 955
6 80 isotactic 100 0.030± 0.002 955
8 60 isotactic 110 0.012± 0.002 955
10 48 isotactic 200 0.004± 0.001 955

Table A.2: Simulated atomistic one-component oligomer systems: Shown are the number
of repeat units per chainNMonomers, the number of chains in the simulation boxNchains, the
tacticity of the chains, the simulation time, the diffusion coefficientsDAA and the densityρ.

A.1.5 Oligomer mixtures

In this paragraph technical details of the AA simulations ofsystems of two oligomer
components, presented in section 5.1.3, are given.

As for the one-component oligomer systems each AA system contains the same number
of 480 monomers, distributed onto isotactic oligomers of two different molecular weights
(Dimer and 6-mer mixtures or Trimer and 10-mer mixtures).

Initial coordinates for the atomistic systems were obtained by inverse mapping of atom-
istic details into equilibrated CG systems, which are described in section A.2.4.

All systems of isotactic PS oligomer mixtures were simulated under NVT conditions
at a temperature of 503 K and at the fixed density of 955 kg/m3, which was used before
for one-component oligomers. The velocity rescaling thermostat (coupling time 0.2 ps)
was used. For nonbonded interactions a cutoff distance of 1 nm was used. Coulombic
interactions beyond the cutoff were treated by the particle-mesh Ewald (PME) method
with a direct-space cutoff of 1 nm and a grid spacing of 0.12 nm. The integration time
step was 1 fs. The production runs were performed for 75 ns forthe 2-mer/6-mer systems
and between 170 and 200 ns for the 3-mer/10-mer systems.

The two-component oligomer systems are listed in table A.3 and A.4.
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N2-mer N6-mer wM, 2-mer wmol, 2-mer DAA
2-mer (10−5cm2s−1) DAA

6-mer (10−5cm2s−1)

60 60 0.25 0.5 0.29± 0.04 0.073± 0.006
120 40 0.50 0.75 0.43± 0.02 0.14± 0.01
180 20 0.75 0.9 0.57± 0.03 0.18± 0.01

Table A.3: Simulated atomistic two-component oligomer mixtures of Dimers and 6-mers:
Shown are the numbers of oligomers of the two componentsN2-mer andN6-mer, the fraction
of the smaller component expressed by the weight fractionwM, 2-mer and the molar fraction
wmol, 2-mer, and the diffusion coefficients of both componentsDAA

2-mer andDAA
6-mer.

N3-mer N10-mer wM, 3-mer wmol, 3-mer DAA
3-mer (10−5cm2s−1) DAA

10-mer (10−5cm2s−1)

40 36 0.25 0.53 0.072± 0.008 0.018± 0.002
80 24 0.50 0.77 0.13± 0.02 0.037± 0.003
120 12 0.75 0.91 0.19± 0.05 0.055± 0.006

Table A.4: Simulated atomistic two-component oligomer mixtures of Trimers and 10-mers:
Shown are the numbers of oligomers of the two componentsN3-mer andN10-mer, the fraction
of the smaller component expressed by the weight fractionwM, 3-mer and the molar fraction
wmol, 3-mer, and the diffusion coefficients of both componentsDAA

3-mer andDAA
10-mer.

A.1.6 PS melt, 10kDa

In this paragraph technical details of the AA simulation of aPS melt with molecular
weightMW =9984 g/mol (96 monomers) presented in section 5.1.4 are given.

The PS melt consists of 24 atactic PS chains with a length of 96repeat units. Initial co-
ordinates for the atomistic systems were obtained by inverse mapping of atomistic details
into an equilibrated CG system, which is described in section A.2.5.

The system was simulated under NpT conditions at a temperature of 503 K and a pres-
sure of 1 atm using the Berendsen thermostat (coupling time 1.0 ps) and barostat (cou-
pling time 5.0 ps), resulting in an average density ofρ = 968± 3 kg/m3 and a cubic
boxsizeL3 with L = 7.43 nm. For nonbonded interactions a cutoff distance of 1 nm was
used. Coulombic interactions beyond the cutoff were treated by the particle-mesh Ewald
(PME) method with a direct-space cutoff of 1 nm and a grid spacing of 0.12 nm. The
integration time step was 1 fs. The production run was performed for 16 ns.

A.1.7 EB/PS systems

In the following paragraph technical details of the AA simulations presented in sec-
tion 5.1.4 and 5.3 are given.

The mixed systems of ethylbenzene (EB) and polystyrene (PS)consist of 24 atactic
PS chains with a length of 96 repeat units (MW = 9984 g/mol) and of 256 EB molecules
(MW = 106 g/mol). This corresponds to an EB weight fractionwEB of 10%.

Initial coordinates for the atomistic systems were obtained by inverse mapping of atom-
istic details into equilibrated CG systems, which are described in section A.2.7.
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The mixed EB/PS systems were simulated under isothermal-isobaric (NpT)conditions
at temperatures between 503 K and 593 K. The velocity rescaling thermostat (coupling
time 0.2 ps) was used independently for PS and EB. The Berendsen barostat (coupling
time 5.0 ps) was used, resulting in cubic boxsizesL3 with L = 7.75 nm up toL = 7.91 for
the different temperatures. For nonbonded interactions a cutoff distance of 1 nm was used.
Coulombic interactions beyond the cutoffwere treated by the particle-mesh Ewald (PME)
method with a direct-space cutoff of 1 nm and a grid spacing of 0.12 nm. The integration
time step was 1 fs.

One additional simulation was performed at constant volume(NVT) with a density of
910 kg/m3. The simulated systems are listed in table A.5.

T (K) simulation time (ns) DAA
EB (10−5cm2s−1) ρ (kg m−3)

503 28 0.16± 0.03 953± 2
523 10 0.26± 0.03 942± 3
553 10 0.55± 0.03 922± 3
593 8 1.02± 0.05 897± 4
503 4 0.6± 0.1 910 (NVT)

Table A.5: Simulated atomistic systems of PS/EB: For different temperatures the simulation
times, the EB diffusion coefficientsDAA

EB and the densitiesρ are given.

A.2 Simulation details of coarse-grained systems

The coarse-grained MD simulations in this work are performed with the CG model that
has been presented in this thesis. For the CG simulations theMD package GROMACS
has been used. [103] All interaction potentials were used ina tabulated form.

All times and dynamical properties, e.g. mean square displacements or diffusion coef-
ficients, are given in real CG times, i.e. they have to be scaled in order to be compared
directly to atomistic times or dynamical quantities.

The tacticity of the CG chains is implemented in the topologyof the CG chains. For
details see section A.3.

A.2.1 Sampling of isolated chains

The sampling of CG chains in vacuum is done with PS chains of 25monomers with
different tacticities (isotactic, syndiotactic, block tacticity of alternating meso and racemo
diads). The chain is simulated without periodic boundary conditions. For the sampling
the stochastic dynamics (SD) method (see section 1.3.3) is used, which adds a friction and
a noise term to the equations of motion. The reference temperature was set to 503 K and
the inverse friction constant to 1/ξi = 0.1 ps. For nonbonded interactions a cutoff distance
of 1 nm was used. Since only one chain in vacuum is simulated, angular motion of the
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system is removed every few ps. The integration time step was2 fs. The systems were
simulated for 200 ns.

A.2.2 10-mer melts

In the following paragraph technical details of the CG simulations presented in chapter 4
and section 5.2 are given.

The simulated CG systems contain 56 chains of 10 monomers. Melts of atactic, isotac-
tic and syndiotactic PS were simulated. For atactic systemsthe same five different random
sequences of meso and racemo diads as for the AA systems were used. The setup of the
starting configurations for the CG melts of these relativelyshort chains is not critical,
because the chains move their own size during a first equilibration run of a few ns.

CG melts were simulated under isothermal-isobaric (NpT) conditions at 503 K and
1 atm using the Berendsen thermostat (coupling time 0.4 ps) and barostat (coupling time
4.0 ps). A second series of runs was performed at varying temperatures between 403 and
523 K. For nonbonded interactions a cutoff distance of 1 nm was used. The integration
time step was 3 fs.

CG melts at 503 K with isotactic, syndiotactic and atactic tacticity were simulated for
15 ns. The CG 10-mer systems are presented in table A.6.

tacticity T (K) CN ρ (kg m−3)

atactic 503 6.21 964± 3
isotactic 503 6.30 968± 4
syndiotactic 503 7.59 962± 3
atactic 403 6.97 1010± 3
atactic 423 6.73 1001± 3
atactic 443 6.55 992± 3
atactic 463 6.48 983± 4
atactic 483 6.25 973± 4
atactic 503 6.23 964± 3
atactic 523 6.06 954± 3

Table A.6: Coarse grained PS 10-mer systems: Shown are the tacticity ofthe chains, the
temperature T as well as the resulting characteristic ratiobetween the two end beads of the
chainCN (whereN = 2NMonomers− 1, N = 19 in this case) and the densityρ.

A.2.3 Oligomer melts

In this paragraph technical details of the CG simulations presented in section 5.1.2 and
5.1.4 are given.

Each CG system contains the same number of 480 monomers (distributed onto 480/N
oligomers ofN monomers each), which was chosen as a common multiple of allN’s stud-
ied. Initial coordinates were obtained by randomly placingthe oligomers in the simulation
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box. During an initial equilibration run the molecules already move distances comparable
to their own size.

In a first series of runs systems of isotactic and syndiotactic PS oligomers were simu-
lated under NVT conditions at a temperature of 503 K and at thedensities of the corre-
sponding AA systems. The velocity rescaling thermostat (coupling time 0.2 ps) was used.
For nonbonded interactions a cutoff distance of 1 nm was used. The integration time step
was 3 fs.

For the isotactic systems a second series of simulations wasperformed under the above
described conditions, but the density of all systems was setto the same value of 955 kg/m3

(the value of the isotactic AA 10-mer systems from the previous NpT simulation). Fur-
thermore, the system size was increased by replicating the system twice in each direction,
thereby increasing the number of molecules by a factor of 8. The simulation box then has
sides ofL = 8.87 nm.

All (one component) oligomer systems are listed in table A.7.

NMonomers Nchains tacticity sim. time (ns) DCG (10−5cm2s−1) ρ (kg m−3)

3 160 isotactic 60 4.0± 0.2 906
4 120 isotactic 60 2.7± 0.1 925
5 96 isotactic 60 1.9± 0.1 935
6 80 isotactic 60 1.35± 0.1 943
8 60 isotactic 60 0.85± 0.1 954
10 48 isotactic 60 0.6± 0.1 955
3 160 syndiotactic 60 4.0± 0.2 905
4 120 syndiotactic 60 2.9± 0.3 925
5 96 syndiotactic 60 2.1± 0.1 936
6 80 syndiotactic 60 1.5± 0.1 943
8 60 syndiotactic 60 0.98± 0.05 952
10 48 syndiotactic 60 0.66± 0.04 959
2 1920 isotactic 72 5.4± 0.1 955
3 1280 isotactic 72 3.65± 0.05 955
4 960 isotactic 72 2.63± 0.05 955
5 768 isotactic 72 1.95± 0.1 955
6 640 isotactic 72 1.5± 0.05 955
8 480 isotactic 72 1.0± 0.05 955
10 384 isotactic 72 0.71± 0.03 955

Table A.7: Simulated CG one-componentoligomer systems: Shown are thenumber of repeat
units per chainNMonomers, the number of chains in the simulation boxNchains, the tacticity of
the chains, the simulation time, the diffusion coefficientsDCG and the densityρ.
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A.2.4 Oligomer mixtures

In this paragraph technical details of the CG simulations ofsystems of two oligomer
components presented in section 5.1.3 are given.

To obtain configurations for the inverse mapping, each CG system was set up with
the same number of 480 monomers, distributed onto isotacticoligomers of two different
molecular weights (Dimer and 6-mer mixtures or Trimer and 10-mer mixtures). Initial
coordinates were obtained by randomly placing the oligomers in the cubic simulation box
of volumeL3 with L = 4.43 nm. During an initial equilibration run the molecules already
move distances comparable to their own size. For the CG production runs the system
sizes was increased by replicating the system twice in each direction, thereby increasing
the number of molecules by a factor of 8 and the boxsize toL = 8.87 nm.

All CG systems of isotactic PS oligomer mixtures were simulated under NVT condi-
tions at a temperature of 503 K and at the fixed density of 955 kg/m3, which was used
before for one-component oligomers. The velocity rescaling thermostat (coupling time
0.2 ps) was used for each of the two components independently. For nonbonded inter-
actions a cutoff distance of 1 nm was used. The integration time step was 3 fs. The
production runs were performed for 72 ns for all mixed systems.

The CG two-component oligomer systems are listed in table A.8 and A.9.

N2-mer N6-mer wM, 2-mer wmol, 2-mer DCG
2-mer (10−5cm2s−1) DCG

6-mer (10−5cm2s−1)

480 480 0.25 0.5 4.2± 0.3 1.85± 0.05
960 320 0.50 0.75 4.7± 0.2 2.1± 0.1
1440 160 0.75 0.9 5.1± 0.1 2.4± 0.2

Table A.8: Simulated CG two-component oligomer mixtures of Dimers and6-mers: Shown
are the numbers of oligomers of the two componentsN2-mer and N6-mer, the fraction of
the smaller component expressed by the weight fractionwM, 2-mer and the molar fraction
wmol, 2-mer, and the diffusion coefficients of both componentsDCG

2-mer andDCG
6-mer. The diffu-

sion coefficientsDCG for these CG systems are not scaled.

N3-mer N10-mer wM, 3-mer wmol, 3-mer DCG
3-mer (10−5cm2s−1) DCG

10-mer (10−5cm2s−1)

320 288 0.25 0.53 2.45± 0.05 0.95± 0.05
640 192 0.50 0.77 2.9± 0.05 1.15± 0.05
960 96 0.75 0.91 3.3± 0.1 1.4± 0.05

Table A.9: Simulated CG two-component oligomer mixtures of Trimers and 10-mers:
Shown are the numbers of oligomers of the two componentsN3-mer andN10-mer, the fraction
of the smaller component expressed by the weight fractionwM, 3-mer and the molar fraction
wmol, 3-mer, and the diffusion coefficients of both componentsDCG

3-merandDCG
10-mer. The diffusion

coefficientsDCG for these CG systems are not scaled.

115



A Appendix

A.2.5 PS melt, 10kDa

In this paragraph technical details of the CG simulation of aPS melt with molecular
weightMW = 10 kDa presented in section 5.1.4 and 5.2 are given.

The PS melt consists of 24 atactic PS chains with a length of 96repeat units (192 CG
beads, 96 monomers,MW =9984 g/mol = 10 kDa). Four different random sequences of
meso and racemo diads were used, the number of both types of diads is approximately the
same. The initial configuration was obtained by randomly placing 24 chains with inde-
pendent conformations in a simulation box at a density, which was about 20% below the
final density. After a short steepest descent run, which removes strong overlaps between
the molecules, the system reaches the final density in a NpT run of 2.5 ns. Afterwards
the system is simulated for around 100 ns. During this simulation the internal distances
are monitored and are found to agree with the previously simulated value ofC∞, indicat-
ing that the chain conformations are equilibrated. This procedure has been repeated at
temperatures of 423, 463 and 503 K.

The CG system was simulated under NpT conditions at 503 K and 1atm using the
Berendsen thermostat (coupling time 0.5 ps) and barostat (coupling time 5.0 ps), resulting
in a density of 1032± 2 kg/m3 and a cubic boxsizeL3 with L = 7.28 nm. For nonbonded
interactions a cutoff distance of 1 nm was used. The integration time step was 3 fs. The
simulation time of the production run was 1080 ns.

A.2.6 PS melt, 20kDa

In the following paragraph technical details of the CG simulations presented in chapter 4
and section 5.2 are given.

The systems consist of 50 chains of polystyrene (384 CG beads, 192 monomers,MW =

20000 g/mol= 20 kDa) with three different tacticities (atactic, isotactic and syndiotactic).
As an initial configuration for the melts of long chains an atactic system was used, which
was equilibrated with a previous CG model for PS, using the setup as described there.
[55, 104]

The three systems were simulated under NpT conditions at 503K and 1 atm using the
Berendsen thermostat (coupling time 0.4 ps) and barostat (coupling time 4.0 ps) for 300 ns
and then simulated under NVT conditions at the average density of these first 300 ns. The
size of the cubic simulation boxL3 was L = 11.71 nm. For nonbonded interactions a
cutoff distance of 1 nm was used. The integration time step was 3 fs. The simulation
times of the production runs were between 1500 and 2000 ns. The simulated systems are
listed in table A.10.
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NMonomers Nchains tacticity T (K) CN ρ (kg m−3)

192 50 atactic 503 7.80± 0.38 1035
192 50 isotactic 503 8.91± 0.30 1040
192 50 syndiotactic 503 12.27± 0.30 1031

Table A.10: Coarse grained PS systems (20kDa) studied in this work: Reported are the num-
ber of repeat units per chainNMonomers, the number of chains in the simulation boxNchains, the
tacticity of the chains, the temperature T as well as the resulting characteristic ratio between
the two end beads of the chainCN (whereN = 2NMonomers− 1) and the densityρ.

A.2.7 EB/PS systems

In the following paragraph technical details of the CG simulations presented in sec-
tion 5.1.4 and 5.3 are given.

The mixed systems of ethylbenzene (EB) and polystyrene (PS)consist of 24 atactic PS
chains with a length of 96 repeat units (192 CG beads,MW = 9984 g/mol) and of 256 EB
molecules (2 CG beads,MW=106 g/mol). This corresponds to an EB weight fractionwEB

of 10%. Initial coordinates for the CG system were obtained by randomly placing the EB
molecules in the equilibrated PS matrices (described in section A.2.5), followed by a short
steepest descend run. This procedure has been repeated at temperatures of 423, 463 and
503 K. Afterwards the systems at all temperatures between 398 and 593 K were simulated
in NpT runs of 32 ns, where the starting configuration at each temperature was taken from
the nearest temperature, for which the system setup had beendone before (423, 463 and
503 K).

Production runs of 96 ns were performed under isothermal-isobaric (NpT) conditions
at 1 atm and at various temperatures between 398 and 593 K using the velocity rescal-
ing thermostat (coupling time 0.5 ps) and the Berendsen barostat (coupling time 5.0 ps),
resulting in cubic boxsizesL3 with L = 7.62 nm up toL = 7.92 for the different temper-
atures. For nonbonded interactions a cutoff distance of 1 nm was used. The integration
time step was 4 fs. For the bonded and nonbonded interactionsof EB the same potentials
were used as for PS. The simulated systems are listed in tableA.11.
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T (K) DCG
EB (10−5cm2s−1) ρ (kg m−3)

398 1.4± 0.1 999± 2
423 2.0± 0.1 987± 2
433 2.4± 0.1 981± 2
448 2.8± 0.2 974± 2
463 3.3± 0.1 967± 2
473 3.6± 0.1 961± 2
503 4.6± 0.2 946± 2
523 5.3± 0.3 935± 3
553 6.6± 0.4 917± 3
593 7.9± 0.2 892± 3

Table A.11: Simulated CG systems of PS/EB: For different temperatures the EB diffusion
coefficientsDCG

EB and the densitiesρ are given. The diffusion coefficientsDCG
EB for these CG

systems are not scaled.

A.3 Implementation of the coarse-grained topology

A.3.1 Chain direction

The torsions in the CG model can have two different orientations. The dihedral potentials
describing these torsions exist in two versions, which are mirrored in their orientation
around 0 degree (they range from -180 to 180 degree). To use correct orientations for the
torsions, the beads in the CG model are not only distinguished by A and B beads. They
also have to contain also information about their orientation (B beads) and the type of
diad they are involved in (A beads). To this end, first a direction is assigned to the chains
by numbering the beads with the following scheme: A1, B1, A2, B2, A1, B1, A2, B2, . . . .
This direction is only used to define the orientation of the phenyl groups, but does not
have a physical meaning.

The orientation of the phenyl rings is defined in the following way, see also Figure A.1:
One imagines an atomistic chain with the backbone extended along a straight line (all-
trans orientation of the backbone), the phenyl rings pointing upwards and the chain direc-
tion oriented from left to right. Looking from the top at thischain, the phenyl rings point
upwards or downwards, see Figure A.1 (middle). This orientation of the phenyl rings
(which are the B beads in the CG resolution) is used in the CG model to define tacticity.
The B beads can have two types: Bup or Bdown.

Two subsequent B beads define a diad. If both B beads are of the same type (Bup-Bup

or Bdown-Bdown) it is a meso diad, if they are of different types (Bup-Bdown or Bdown-Bup) it
is a racemo diad. The type of the A beads is already determinedby the types of the two
neighboring B beads.

For the nonbonded interactions only A and B beads are distinguished. Their specific
type, which describes their orientation and the tacticity,does not influence the nonbonded
interactions.
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Figure A.1: Definition of different bead types to describe the tacticity in the CG model: The
atomistic chain in all-trans conformation is viewed from the top (middle), with the phenyl
rings pointing upwards, see also side view (upper picture).The two types of B beads are Bup

or Bdown, corresponding to the phenyl rings pointing up or down in thetop view (bottom).
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A.3.2 Dihedral orientation

With the previously defined chain direction and the orientations of the B beads, which
keep the information about the chain tacticity, it is possible to distinguish two orientations
of dihedral potentials. As before, isotactic and syndiotactic chains are treated separately,
i.e. the final CG model has four different dihedral potentials.

Figure A.2: Orientations of dihedral potentials in isotactic chains: The two orientations of
meso diads (top) are identified with all congruent combinations of four subsequent beads in
isotactic chains (middle and bottom).

The orientations for meso diads are shown in Figure A.2: in the upper row, the two
orientations are shown, in the middle and below the two possible types of isotactic chains
are given. Every sequence of four subsequent beads in the chain is congruent with either
of the two orientations. Orientation “iso 1” applies to the following meso diads:

• A1 - Bup
1 - A2 - Bup

2

• A2 - Bup
2 - A1 - Bup

1
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• A1 - Bdown
2 - A2 - Bdown

1

• A2 - Bdown
1 - A1 - Bdown

2

The mirrored orientation “iso 2” is used for the other combinations:

• A1 - Bup
2 - A2 - Bup

1

• A2 - Bup
1 - A1 - Bup

2

• A1 - Bdown
1 - A2 - Bdown

2

• A2 - Bdown
2 - A1 - Bdown

1

An analogous scheme is used for orientations of racemo diads, presented in Figure A.3.
Orientation “syndio 1” applies to:

• A1 - Bup
1 - A2 - Bdown

2

• A2 - Bup
2 - A1 - Bdown

1

• A1 - Bdown
2 - A2 - Bup

1

• A2 - Bdown
1 - A1 - Bup

2

And finally the mirrored orientation “syndio 2” is congruentwith:

• A1 - Bup
2 - A2 - Bdown

1

• A2 - Bup
1 - A1 - Bdown

2

• A1 - Bdown
1 - A2 - Bup

2

• A2 - Bdown
2 - A1 - Bup

1

These four orientations cover all possible combinations ofbead types and allow the
description of all tacticities: In isotactic chains only the potentials for meso diads with
the orientations “iso 1” and “iso 2” are used, in syndiotactic chains only the potentials for
racemo diads with the orientations “syndio 1” and “syndio 2”are used. In atactic chains,
both types of diads appear in random sequences and all four orientations of the dihedral
potentials are employed.
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Figure A.3: Orientations of dihedral potentials in syndiotactic chains: The two orientations
of racemo diads (top) are identified with all congruent combinations of four subsequent beads
in syndiotactic chains (middle and bottom).
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A.3.3 Bonded 1-5 interactions

An example for the different types of bonded 1-5 interactions is given in Figure A.4.
There are two types of A-A 1-5 interactions, which depend on the type of diad (meso
or racemo) formed by the two intermediate B beads. For the B-B1-5 interactions three
different types of interactions exist, since the three involvedB beads form two subsequent
diads. The three combinations are: iso (meso-meso), syndio(racemo-racemo) and block
(meso-racemo or racemo-meso).

Figure A.4: Types of 1-5 intrachain potentials in the CG model: Depending on the bead
types and the diads they form, two different potentials are used for A-A 1-5 interactions (top)
and three different potentials for B-B 1-5 interactions (bottom). The bead types in the chain
segment presented here are the ones from the example in Figure A.1.
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A.4 Parameters of the atomistic force field

The components of the atomistic force field are described in section 1.2.1. The parameters
for the nonbonded interactions are given in table A.12, the parameters for the bonded
interactions in table A.13.

nonbonded interactionsa ǫ (kJ mol−1) σ (nm) q (e)

Cali 0.3519 0.3207 0
Hali 0.318 0.2318 0
Caro 0.294 0.355 -0.115b

Haro 0.126 0.242 +0.115

Table A.12: Potential energy function parameters of the all-atom forcefield for nonbonded
potentials. [3] The subscripts ali and aro denote aliphaticand aromatic atoms, respectively.
aNonbonded interactions are excluded between first and second neighbors and, in addition,
between all atoms of a given phenyl group.bThe charge on the aromatic carbon of the phenyl
group, which is connected to the aliphatic carbon of the backbone is 0.
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bond distance (nm)

Cali-Cali 0.153
Cali-Hali 0.110
Caro-Caro 0.139
Caro-Haro 0.108
Cali-Caro 0.151

bond angles θ0 (deg) kθ (kJ mol−1 rad−2)

H-Cali-H 109.45 306.4
Cali-Cali-H 109.45 366.9
Cali-Cali-Cali 109.45 482.3
Caro-Cali-H 109.45 366.9
Cali-Cali-Caro 109.45 482.3
Cali-Caro-Caro 120.00 376.6
Caro-Caro-Caro 120.00 376.6
Caro-Caro-H 120.00 418.8

proper dihedral angles φs (deg) kφ (kJ mol−1) n

Cali-Cali-Cali-Cali 0 6.0 3
Cali-Cali-Cali-H (terminal methyl) 0 6.0 3

improper dihedral angles ξ0 (deg) kξ (kJ mol−1 rad−2)

Caro-Caro-Caro-Caro 0 176.4
C2aro-C3aro-C1aro-H[on C2] 0 176.4
C2aro-C3aro-C1aro-Cali[on C2] 0 176.4

Table A.13: Potential energy function parameters of the all-atom forcefield for bondod
potentials. [3] The subscripts ali and aro denote aliphaticand aromatic atoms, respectively.
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[47] Reith, D.; Pütz, M.; Müller-Plathe, F.J. Comput. Chem., 2003, 24, 1624–1636.

[48] Lyubartsev, A. P.; Laaksonen, A.Phys. Rev. E, 1995, 52(4), 3730–3737.

[49] Izvekov, S.; Voth, G. A.J. Phys. Chem. B, 2005, 109(7), 2469–2473.

[50] Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Voth, G. A.J. Phys. Chem. B, 2007, 111(16),
4116–4127.

[51] Ayton, G. S.; Noid, W. G.; Voth, G. A.Curr. Opin. Struct. Biol., 2007, 17(2), 192
– 198.

[52] Tschoep, W.; Kremer, K.; Batoulis, J.; Bürger, T.; Hahn, O. Acta Polym., 1998, 49,
61–74.

[53] Abrams, C. F.; Kremer, K.Macromolecules, 2003, 36(1), 260–267.

[54] Harmandaris, V. A.; Adhikari, N. P.; van der Vegt, N. F. A.; Kremer, K. Macro-
molecules, 2006, 39, 6708–6719.

[55] Harmandaris, V. A.; Reith, D.; van der Vegt, N. F. A.; Kremer, K. Macromol.
Chem. Phys., 2007, 208, 2109–2120.

[56] Poma, A. B.; Delle Site, L.Phys. Rev. E, 2008, 78(5), 056703.

[57] Villa, A.; Peter, C.; van der Vegt, N. F. A.Phys. Chem. Chem. Phys., 2009, 11,
2077–2086.

131



Bibliography

[58] Villa, A.; van der Vegt, N. F. A.; Peter, C.Phys. Chem. Chem. Phys., 2009, 11,
2068–2076.

[59] Henderson, R. L.Phys. Lett. A, 1974, 49(3), 197–198.

[60] Rühle, V.; Junghans, C.; Lukyanov, A.; Kremer, K.; Andrienko, D. J. Chem.
Theory Comput., 2009, 5(12), 3211–3223.

[61] Soper, A. K.Chem. Phys., 2000, 258, 121–137.

[62] Wang, H.; Junghans, C.; Kremer, K.Eur. Phys. J. E, 2009, 28(2), 221–229.

[63] Johnson, M. E.; Head-Gordon, T.; Louis, A. A.J. Chem. Phys., 2007, 126(14),
144509.

[64] McCoy, J. D.; Curro, J. C.Macromolecules, 1998, 31, 9362–9368.

[65] Fukunaga, H.; Takimoto, J.; Doi, M.J. Chem. Phys., 2002, 116, 8183–8190.

[66] Tschoep, W.; Kremer, K.; Hahn, O.; Batoulis, J.; Bürger, T. Acta Polym., 1998, 49,
75–79.

[67] Hess, B.; Leon, S.; van der Vegt, N. F. A.; Kremer, K.Soft Matter, 2006, 2, 409–
414.

[68] Santangelo, G.; Di Matteo, A.; Müller-Plathe, F.; Milano, G. J. Phys. Chem. B,
2007, 111(11), 2765–2773.

[69] Peter, C.; Delle Site, L.; Kremer, K.Soft Matter, 2008, 4, 859–869.

[70] Chen, X.; Carbone, P.; Santangelo, G.; Di Matteo, A.; Milano, G.; Müller-Plathe,
F. Phys. Chem. Chem. Phys., 2009, 11, 1977–1988.

[71] Hess, B.; Peter, C.; Ozal, T.; van der Vegt, N. F. A.Macromolecules, 2008, 41(6),
2283–2289.

[72] Ozal, T. A.; Peter, C.; Hess, B.; van der Vegt, N. F. A.Macromolecules, 2008,
41(13), 5055–5061.

[73] Hess, B.; van der Vegt, N. F. A.Macromolecules, 2008, 41(20), 7281–7283.

[74] Fritz, D.; Harmandaris, V. A.; Kremer, K.; van der Vegt,N. F. A. Macromolecules,
2009, 42(19), 7579–7588.

[75] Humphrey, W.; Dalke, A.; Schulten, K.Journal of Molecular Graphics, 1996, 14,
33–38.

[76] Spyriouni, T.; Tzoumanekas, C.; Theodorou, D. N.; Müller-Plathe, F.; Milano, G.
Macromolecules, 2007, 40, 3876–3885.

132



Bibliography

[77] Sun, Q.; Faller, R.Macromolecules, 2006, 39, 812–820.

[78] Hess, B.; Holm, C.; van der Vegt, N.J. Chem. Phys., 2006, 124(16), 164509.

[79] Hess, B.J. Chem. Phys., 2002, 116(1), 209–217.

[80] Boothroyd, A. T.; Rennie, A. R.; Wignall, G. D.J. Chem. Phys., 1993, 99, 9135–
9144.

[81] Fetters, L. J.; Lohse, D. J.; Graessley, W. W.J Polym Sci Part B: Polym Phys, 1999,
37, 1023–1033.

[82] Stölken, S.; Ewen, B.; Kobayashi, M.; Nakaoki, T.J Polym Sci Part B: Polym
Phys, 1994, 32(5), 881–885.

[83] Yoon, D. Y.; Flory, P. J.Macromolecules, 1976, 9(2), 294–299.

[84] Zoller, P.; Walsh, D. J.Standard Pressure-Volume-Temperature Data for Polymers.
Technomic, Lancaster, 1995.

[85] Harmandaris, V. A.; Kremer, K.Macromolecules, 2009, 42, 791–802.

[86] Carbone, P.; Varzaneh, H. A. K.; Chen, X.; Müller-Plathe, F.J. Chem. Phys., 2008,
128, 064904.

[87] Harmandaris, V. A.; Kremer, K.Soft Matter, 2009, 5(20), 3920–3926.

[88] Harmandaris, V. A.; Adhikari, N. P.; van der Vegt, N. F. A.; Kremer, K.; Mann,
B. A.; Voelkl, R.; Weiss, H.; Liew, C. C.Macromolecules, 2007, 40, 7026–7035.

[89] Depa, P. K.; Maranas, J. K.J. Chem. Phys., 2005, 123(9), 094901.

[90] Depa, P. K.; Maranas, J. K.J. Chem. Phys., 2007, 126(5), 054903.

[91] Nielsen, S. O.; Lopez, C. F.; Srinivas, G.; Klein, M. L.J. Chem. Phys., 2003,
119(14), 7043–7049.

[92] Voter, A. F. Phys. Rev. Lett., 1997, 78(20), 3908–3911.

[93] Voter, A. F. J. Chem. Phys., 1997, 106(11), 4665–4677.

[94] Richter, D.; Monkenbusch, M.; Arbe, A.; Colmenero, J.Adv. Polym. Sci., 2005,
174, 1–221.

[95] Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.; Voth, G. A.; Das,
A.; Andersen, H. C.J. Chem. Phys., 2008, 128(24), 244114.

[96] Paul, W.; Binder, K.; Heermann, D. W.; Kremer, K.J. Chem. Phys., 1991, 95(10),
7726–7740.

133



Bibliography

[97] Doi, M.; Edwards, S. F.The theory of polymer dynamics. Clarendon Press, Oxford,
1986.

[98] Everaers, R.; Sukumaran, S. K.; Grest, G. S.; Svaneborg, C.; Sivasubramanian, A.;
Kremer, K.Science, 2004, 303(5659), 823–826.

[99] Sukumaran, S. K.; Grest, G. S.; Kremer, K.; Everaers, R.J. Polym. Sci. Part B:
Polym. Phys., 2005, 43(8), 917–933.

[100] Kremer, K.; Sukumaran, S. K.; Everaers, R.; Grest, G. S. Comp. Phys. Comm.,
2005, 169, 75–81.

[101] Fritz, D.; Herbers, C. R.; Kremer, K.; van der Vegt, N. F. A. Soft Matter, 2009, 5,
4556–4563.

[102] Hahn, O.; Mooney, D. A.; Müller-Plathe, F.; Kremer, K. J. Chem. Phys., 1999,
111, 6061–6068.

[103] Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E.J. Chem. Theory Comput.,
2008, 4, 435–447.

[104] Auhl, R.; Everaers, R.; Grest, G. S.; Kremer, K.; Plimpton, S. J.J. Chem. Phys.,
2003, 119, 12718–12728.

134


