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“What can be said at all can be said clearly; and whereof one cannot speak
thereof one must be silent.”
(Ludwig Wittgenstein)
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CHAPTER 1

Introduction

1.1. General Introduction

The idea that matter consists of smallest elements belongs to human culture since
the ancient Greeks. The physics of the last few decades has given deep insight into the
properties of these supposedly elementary particles. This illumination of the microcosmos
is a story of success for two scientific concepts: the scattering experiment and quantum
field theory.

Scattering experiments, from Rutherford’s scattering of α-particles off gold atoms in
1909 to the collision of highly accelerated protons at the Large Hadron Collider, expected
to begin in 2009, have provided crucial information on the building blocks of matter. The
success of a physical theory of elementary particles has to be judged by its capability to
predict the values of quantities which can be measured in scattering experiments. The
typical quantity to be measured in this kind of experiments is the so-called cross-section,
from which in turn characteristic properties of the particles involved and their interaction
can be deduced.

The evolution of physical theories, probed on these experimental data, led to a model
for the fundamental strong, electromagnetic and weak interactions of the known elemen-
tary particles. This so-called Standard Model is in good agreement with a wealth of
observed phenomena. Nevertheless, the model is expected to be extended, depending on
eagerly expected results from the Large Hadron Collider in the near future1.

The Standard Model is a highly successful quantum field theory whose application
to the precise evaluation of an observable is usually far from trivial. In order to apply
the model to the quantitative prediction of a cross-section one requires a perturbative
formulation. The basic idea of perturbation theory is the assumption, that the interaction
energies between the particles are relatively small compared to the energy of their free
motion. The strength of an interaction is scaled by a so-called coupling parameter, which
is assumed to be a relatively small quantity. An observable is then evaluated as a power
series in the coupling parameter. This infinite series is truncated at a certain order and
the precision of the result depends on the number of orders to be taken into account.

The evaluation of the coefficients of this power series is in general highly elaborate.
With increasing order of the perturbative expansion it becomes more and more difficult
and it is therefore for many cases possible only to consider the first one or two orders. At
higher orders the computational techniques of present days, involving the use of advanced
computer programs, always have reached the limits of computer capabilities very soon.
However, because of the increasing precision of the experiments and the nature of the
physical effects to be observed, the consideration of higher orders becomes relevant.

The topics of this dissertation are related to calculational problems which hinder
higher-order calculations. The complications to be considered here do not depend on
the underlying physical model. They hamper the evaluations in the Standard Model but

1By the time of writing, the first collisions at the Large Hadron Collider are expected for the fall of
2009. A possible discovery of the Higgs boson is expected to take place not before 2010.
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8 1. INTRODUCTION

they are also present in Quantum Electrodynamics and even in simple toy models like
the so-called φ4-theory.

The difficulties to be treated lie in the nature of Feynman integrals and therefore in
the nature of the common perturbative formulation of quantum field theories in general.
A good understanding of this particular kind of integrals is inevitable for the efficient
calculation of observables. An additional motivation to study the properties of these
integrals arose over the last ten years from pure mathematics, as it turned out that
Feynman integrals tend to evaluate to certain numbers which are significant in algebraic
geometry. The achievements of this dissertation are related to both aspects and motivated
from both points of view.

For this reason we want this dissertation to be readable for the physicist and the
mathematician. Feynman integrals will be considered as objects of mathematical interest
in their own right, without referring to a particular physical model or even a physical
process. Thanks to Richard Feynman one does not need to know quantum field theory in
order to obtain these integrals. They can be constructed from certain intuitive graphs, the
Feynman graphs, using a set of so-called Feynman rules which incorporate the properties
of the chosen physical model. One does not need to be a physicist to study Feynman
integrals. A physicist just has the strongest reason to do so.

1.2. Outline

In the following we apply (algebraic) graph theory, algebraic geometry and number
theory to Feynman integrals. Not all aspects to be discussed in the following are closely
related to each other. However, Ariadne’s thread through the dissertation may be seen
in the course of the calculation of a Feynman integral:

The above general introduction and the present outline form chapter 1.
Chapter 2: We begin with a brief introduction of Feynman integrals and Feynman

rules. The framework of dimensional regularization is explained and some further stan-
dard techniques are described, such that the problem of calculating an arbitrary Feynman
integral is reduced to the evaluation of regularized, scalar Feynman integrals in the con-
venient Feynman parametric representation.

Chapter 3: Not all Feynman integrals really need to be calculated separately. Most
of them can be expressed in terms of simpler integrals, so-called master integrals, by the
so-called IBP-identities (integration-by-parts identities). We briefly review this technique
and give a handy formulation of some of these identities in the Feynman parametric
representation.

Chapter 4: For many cases the Feynman parametric representation is a convenient
starting point for the actual evaluation of a master integral. In this representation the
integrand is expressed in terms of two certain polynomials, the Symanzik polynomials. We
dedicate chapter 4 to a graph theoretic study of these graph polynomials and derive a novel
relation for them. This is achieved by the use of a generalized theorem of the so-called
matrix-tree-type. We furthermore explain the correspondence between the Symanzik
polynomials and the multivariate Tutte polynomial.

Chapter 5: A method for the numerical evaluation of an arbitrary Feynman integral,
possibly a master integral, in a certain momentum region was given by the sector de-
composition algorithm of Binoth and Heinrich, which is briefly reviewed. We expose the
problem that this algorithm does not terminate in the general case and solve this problem
by mapping the combinatorics of the algorithm to the abstract polyhedra game of Hi-
ronaka. We extend the algorithm by use of so-called winning strategies of this game and
obtain a version which always terminates. We briefly report on an implementation of this
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improved algorithm. Furthermore we add an explanation in terms of algebraic geometry
on the relation between sector decomposition and the so-called resolution of singularities
by a sequence of blow-ups, formalized by Hironaka’s game. The work presented in this
chapter was previously published in joint work with Stefan Weinzierl [BW08].

Chapter 6: Having finally obtained a result for a Feynman integral, one may be
interested in the mathematical nature of the result. Chapter 6 is dedicated to the classifi-
cation of numbers and functions one obtains in the Laurent coefficients of a dimensionally
regularized Feynman integral. We briefly discuss zeta values, multiple zeta values, poly-
logarithms and elliptic integrals and their presence in loop calculations. Then we prove a
statement on the general nature of the Laurent coefficients: Under certain (rather weak)
assumptions, they evaluate to special numbers, called periods. Our proof of this state-
ment uses the improved sector decomposition algorithm. The mentioned theorem and its
proof are joint work with Stefan Weinzierl, previously published in the article [BW09].

Chapter 7 contains the conclusions of the dissertation. In appendix A we provide
a collection of auxiliary mathematical definitions. Appendix B consists of a detailed
discussion of a special example of a Feynman graph, the so-called two-loop equal mass
sunrise graph. In appendix C we discuss the arithmetic nature of certain prefactors of
Feynman integrals.

The ordering of the chapters could have been chosen in a different way. We believe
that a reader who is familiar to the preliminaries discussed in chapter 1 can continue with
any of the remaining chapters without losing necessary information for his understanding2.

Let us emphasize that chapters 4, 5 and 6 contain the main achievements of the
dissertation, which may be very briefly summarized as:

• A detailed study of graph theoretic properties of the Symanzik polynomials;
• A solution to the termination problem of sector decomposition;
• The proof of a theorem on the arithmetic nature of Feynman integrals.

A more general goal of our dissertation is to give a contribution to the dialogue between
mathematicians and physicists on the subject of Feynman integrals, as this turns out to
be a subject of interest for both communities. The aspects to be considered are related to
physically relevant, explicit calculations on the one hand and to topics of active branches
of research in pure mathematics on the other hand. We hope that our presentation is
accessible to physicists and mathematicians alike.

1.2.1. A Remark on Wittgenstein and Singularities. The heraldic motto of
our thesis, “What can be said at all can be said clearly; and whereof one cannot speak
thereof one must be silent” stems from the preamble of Ludwig Wittgenstein’s “Tractatus
logico philosophicus”, which is an important work of the Austrian philosopher. With this
sentence, which refers to the limits of language and thinking itself, Wittgenstein intended
to abstract the essence of his “Tractatus”. Of course, we slightly abuse the deep statement
by placing it in the more worldly context of this dissertation, and the same is true for
further quotations of Wittgenstein at the beginnings of our chapters. Let us at least give
a brief remark on the patron of our text.

Wittgenstein’s viewpoint on language has surely influenced the modern sciences3.
Wittgenstein himself was highly influenced by the English mathematician and philoso-
pher Bertrand Russel and in an important way by physics. As a young man he read

2An exception might be the proof of theorem 68 in chapter 6 which requires notions and concepts of
sector decomposition, described in chapter 5.

3For example, Alan Turing, a founding father of computer sciences, regularly attended Wittgenstein’s
lectures in Cambridge.
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a book on classical mechanics, “Die Prinzipien der Mechanik in neuem Zusammenhange
dargestellt” by Heinrich Hertz. Hertz felt uncomfortable with the concept of force in
Newton’s mechanics and he therefore suggested to reformulate mechanics without the
Newtonian force. In such a formulation, according to Hertz, questions around the nature
of forces would not be answered, they would instead not even arise4.

Wittgenstein tried to adopt this idea to philosophy. He believed that philosophical
puzzles which seemingly can not be answered are simply misconceptions, arising from the
use of an inappropriate language. As he believed, in an appropriate language without
logical defects, these questions could not even be asked in a meaningful way. To say it in
his words: “The riddle does not exist. If a question can be put at all, then it can also be
answered.”

The physicists of today are less puzzled by questions of classical mechanics than by
the problems of quantized theories. In the context presented in this dissertation we may
be disturbed by the presence of ill-defined integrals at an early stage of the calculation,
causing the necessity of regularization and renormalization procedures. The divergent
Feynman integral may be seen as one of the riddles of perturbative quantum field theory.

Wittgenstein (who died three years after Feynman developed the path integral for-
malism) might have suggested to drop such a theory in favour of a formulation, where no
divergent integrals arise. This dissertation obviously does not follow such an advice. We
already mentioned the reason. The mainstream framework in which our work is settled is
known to be successful. It yields significant finite numbers which agree with experimental
data.

Nevertheless, we want to keep Wittgenstein’s words in our text, as the contradiction
to his paradigm might not be too strong, because studying the divergent integrals should
make sense to both: To someone who speaks the well-developed language despite the
presence of the riddle, and to someone who tries to develop a language, where the riddle
is absent. Both of them need to know the riddle.

4This formulation did not become accepted in general; the Newtonian force remained a standard
concept in physics.



CHAPTER 2

Preliminaries on Feynman Integrals

“The aspects of things that are most important to us are hidden because
of their simplicity and familiarity.”
(Ludwig Wittgenstein)

We want to study Feynman integrals in their own right, but with this chapter we want
to give at least an indication on how they arise from quantum field theory. We begin
with a glance at their general role in perturbative calculations and their construction
from Feynman rules. As we will see, the integrals as obtained from these rules are often
divergent. We briefly introduce dimensional regularization, which is a standard approach
to handle these divergences. Furthermore we have to introduce a few standard techniques
by which we can reduce the problem of calculating a general Feynman integral to the
calculation of scalar integrals in a certain parameterization. These integrals then will be
the objects of interest for the remaining chapters.

The reader who is familiar to Feynman integrals and the reader who does not care why
certain integrals are of any interest is invited to jump to the next chapter. The reader who
is instead very interested in the topics of the present chapter finds much more detailed
introductions in physics textbooks [BDJ01, IZ06, PS95], lecture notes [Wei06] and in
a more mathematical language in the recent volumes [CM08, Zei06a, Zei09].

2.1. Theories, Graphs and Rules

2.1.1. What do Feynman integrals stand for? Let us for a moment think of the
typical situation in a scattering experiment as depicted in figure 2.1.1 (a). Some particles
A and B are produced, accelerated and then brought to collision. In the region of the
collision, the kinetic energy and the energy which is equivalent to the masses of A and B
is transferred to the production of new particles, say for example two particles C and D.
These new particles then leave the region of the collision and enter the detectors where
some of their properties are measured, usually by reactions with the detector material
in which the particles are destroyed or captured1. In the modern scattering experiments
(cf. figure 2.1.1 (b)) a huge number of such collisions is conducted and the resulting
particles can be very different from collision to collision.

We may consider three stages of the experiment:

• Before the collision, we have the particles A and B which are far away from
each other, such that their interaction can be neglected. We know which type of
particles they are, so we know characteristic properties like their mass and their

1Let us remark, that many particles do not reach the detector and therefore their properties have
to be deduced from the measurement of the other particles involved. For example the top quark lives
too short to reach the detectors. It decays after less than 10−24 seconds, a time which is even too short
to constitute a meson or baryon. The lighter quarks and the gluons form jets of hadrons after a very
short time, which are then measured by the detector. The neutrino instead can pass through the detector
material without being noticed.

11
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A B

D

C

(a) (b)

Figure 2.1.1. (a) A simplistic sketch of a scattering experiment. (b) An
image of one of the detectors at the Large Hadron Collider (see [E+08]):
The ATLAS Experiment at CERN (http://atlas.ch). The detector is 46
meters long and it weighs 7000 tons. For details we refer to reference
[A+08].

charge. We furthermore have information on their kinematical properties, like
their momentum. In a quantum theory we formalize this known information on
the physical state by vectors in a Hilbert space. Let us denote the vector of this
initial state before the collision by |α〉.

• After the collision we may assume again to have no interaction between the
new particles C and D and we obtain their properties, at least partly, from their
detection. We encode this known information by 〈β|, a vector in the dual Hilbert
space which describes the so-called final state.

• When the particles A and B collide and their interactions can not be neglected,
one does not know what happens exactly. In particular we may imagine, that
the collision of A and B at first leads to some intermediate particles which then
in turn produce C and D. These intermediate particles which are only assumed
to be present in the region of the collision for a short time and which are neither
produced nor detected by the experimentalist are called virtual particles. There
are infinitely many possibilities of how the particles C and D are obtained from A
and B via intermediate creation and destruction of virtual particles. A quantum
field theory includes a set of assumptions on these intermediate possibilities, as
we will see below.

Example 1. One of the most important experimental sites in particle physics was
the Large Electron-Positron Collider (LEP) at CERN in Geneva, operating in the years
from 1989 to 2000. The initial particles A and B in this experiment were electrons e−

and positrons e+. A typical result of this collision would be the production of a muon µ−

and an anti-muon µ+. A common way to denote this case is e− + e+ → µ− + µ+. It can
be successfully described by the theory of Quantum Electrodynamics (QED). This model
does not include the possibility of a direct production of µ− and µ+ from e− and e+.
Instead one assumes at least one virtual particle, which in this case must be a photon.
This possibility can be depicted by the intuitive diagram of figure 2.1.2 (a). We can read
this diagram from the left to the right2: after the collision of e− and e+ we assume the

2The arrows on the straight lines should not be confused with the direction of the momenta of the
particles. In a Feynman graph, by the usual convention, arrows such as in figure 2.1.2 show the direction
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e−

e+

µ−

µ+

γ
e−

e+

µ−

µ+

γ γ
e−

e+

(a) (b)

Figure 2.1.2. Two examples of Feynman graphs for the physical process
e− + e+ → µ− + µ+.

intermediate existence of a virtual photon γ and finally we have the creation of µ− and
µ+. QED allows for further possibilities, for example an intermediate existence of another
pair of e− and e+ as shown in figure 2.1.2 (b). The diagrams shown in these figures are
Feynman graphs. They depict possibilities in the collision region, allowed by the theory.

The transition from a given initial state |α〉 to a final state 〈β| is called a physical
process. The above e− + e+ → µ− + µ+ is an example for such a process. By conduction
of a large number of collisions one can measure the probability for a process to occur. The
quantity by which this probability is conveniently expressed is the so-called cross section.
The non-trivial part of its calculation involves a scalar product

〈β|Ω |α〉 ,
where Ω is a transition operator according to the applied quantum field theory. This
operator encodes all the possibilities in the collision region, which the theory allows for.
The theory is successful, if the calculated cross section agrees with the measured one.

In order to predict a cross section precisely, we would have to take all possibilities into
account which the given quantum field theory allows to occur in the region close to the
collision, where the virtual particles have to be assumed3. Assuming that the interaction
energies are small in comparison to the kinetic energies we expand the operator Ω as a
power series in the coupling constants which scale the interaction energies. As a result we
obtain the above scalar product and the cross section as a power series in these constants,
which is then truncated at a certain order. With this truncation we take into account
only a finite number of possibilities, corresponding to the lowest powers of the coupling
constants.

As we will see below in more detail, a vertex in a Feynman graph contributes a
certain power of a coupling constant to the operator Ω. For example in QED each vertex
is assigned the coupling constant g. Therefore the graph of figure 2.1.2 (a) contributes
a term with g2 and the graph of figure 2.1.2 (b) contributes a term with g4 to Ω. The
number of vertices and the power of the coupling constant is not equal, in general, for
example in Quantum Chromodynamics (QCD) we have vertices which are assigned the

of the so-called fermion number flow. The momentum of a particle will instead always be depicted by an
additional arrow parallel to the corresponding edge (see e. g. figure 2.1.3).

3This important feature of a quantized theory can already be found in the quantum mechanical
description of the famous double-slit experiment: It is not helpful to think that a particle has in fact
passed through either the left or the right slit. The interference pattern can only be explained by taking
both possibilities into account.



14 2. PRELIMINARIES ON FEYNMAN INTEGRALS

square of the coupling constant. Nevertheless, by truncating Ω at a finite power of the
coupling constants, we consider a finite number of Feynman graphs which depend on the
theory.

Now let us give a brief outline on how a quantum field theory determines the transition
operator Ω.

2.1.2. Quantum Field Theories in Minkowski Space. A quantum field theory
describes particles by field operators. These are operator-valued functions of space-time.
The common quantum field theories do not incorporate gravity. They are defined on
Minkowski space, which is the space-time of special relativity. In special relativity we
usually denote space-time points x and momenta p by four-component vectors

x =
(
x0, x1, x2, x3

)
, p =

(
p0, p1, p2, p3

)
.

The metric of Minkowski space is given by the metric tensor g of rank two, which we may
denote by the matrix

g =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






.(2.1.1)

The common notation distinguishes between a vector and its dual with respect to this
metric by use of upper and lower indices, in the sense that

xµ =

3∑

ν=0

gµνxν .(2.1.2)

Using Einstein’s sum convention we avoid to explicitely write the summation over an
index which appears twice. In this sense we write a scalar product as

3∑

µ=0

3∑

ν=0

pµg
µνqν ≡ pµqµ.(2.1.3)

We furthermore make use of the notation

∂µ ≡ ∂

∂xµ
.(2.1.4)

A quantum field theory is determined by the so-called Lagrange density L, which is a
functional of field operators. L determines the properties of the particles via the so-called
Euler-Lagrange equations which are obtained from a variational principle. The particles
are formalized by the solutions of these differential equations.

Let us give two examples for a quantum field theory:

Example 2. Quantum Electrodynamics is determined by the Lagrange density

LQED = −1

4
FµνFµν + ψ (iγµ∂µ −m)ψ − eAµψγµψ(2.1.5)

with

Fµν = ∂µAν − ∂νAµ,(2.1.6)

where the field operators are Aµ for the photon and ψ and ψ for the description of the
fermions, like for example the above mentioned particles e−, e+, µ− or µ+. Here it is
understood, that the field operators depend on the space-time, Aµ ≡ Aµ(x), ψ ≡ ψ(x),
ψ ≡ ψ(x). m is the mass and e the charge of the fermion under consideration. γµ

denote the so-called Dirac matrices. As Euler-Lagrange equations one obtains the famous
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Maxwell equations and the Dirac equation, which describe the properties of photons and
fermions and their interaction.

QED provides a description of certain physical processes and it is contained in the
more general Standard Model. The fermions and photons described by this theory are
particles with a certain degree of freedom, called spin. For the description of this property
the fields A as well as ψ and ψ each need to have more than one component.

If we instead assume to have only one kind of particle which has no spin, we can use
simpler quantum field theories, which may be considered as toy models. An example for
such a theory with a single one-component field φ is the so-called φ4-theory.

Example 3. The φ4-theory is determined by the Lagrange density

Lφ4 =
1

2
(∂µφ) (∂µφ) − m2

2
φ2 − g

4!
φ4(2.1.7)

where g is a coupling constant and m the mass of the only kind of particles, which is
described by the one-component field φ.

The cross section of a physical process is calculated by use of the Green’s function of
the Euler-Lagrange differential equations of the theory. For a process where the number of
incoming and outgoing particles is n one speaks of the n-point Green’s function. We will
refer to the incoming and outgoing particles, i. e. the particles which are produced and
detected by the experimentalist, as external particles. The product 〈β|Ω |α〉 provides the

truncated n-point Green’s function. Let G(n) be the n-point Green’s function, defined by
the differential operator of the Euler-Lagrange equations. The truncated n-point Green’s

function G
(n)
trunc is defined as the product of G(n) with the inverse 2-point functions of each

of the external edges:

(2.1.8) G
(n)
trunc (p1, ..., pn) =

n∏

i=1

(

G(2) (pi, −pi)
)−1

G(n) (p1, ..., pn) .

Here p1, ..., pn are the momenta of the n external particles. In the case of the above
mentioned process e− + e+ → µ− + µ+ we have four external particles and we therefore
would calculate the corresponding truncated 4-point Green’s function.

The transition operator Ω is determined by the so-called time evolution operator

ei
R

d4xLint[φ(x)]

where Lint is the part of the Lagrange density which formalizes the interaction of the
particles. For example for QED Lint is equal to −eAµψγµψ and for φ4-theory it is equal
to − g

4!φ
4. The above exponential function is series expanded and by use of a theorem

of Wick, one obtains each coefficient of the perturbative expansion of 〈β|Ω |α〉 as a sum
of Feynman integrals. We do not want to show this calculation here and refer to section
6-1-1 of [IZ06] instead, where Wick’s theorem is discussed in detail. One can see from
the calculation presented there, that all the terms in the sum can be obtained by drawing
all possible graphs of a certain type and then constructing a Feynman integral for each of
these graphs, according to certain rules. These graphs are the Feynman graphs and the
rules are Feynman rules.

2.1.3. Feynman Graphs and Rules. Let us discuss the set of Feynman graphs and
Feynman rules for the simple example of φ4-theory. Feynman graphs are very intuitive
pictures of the possibilities in the region of the collision. The free movement of particles
is depicted by edges, and the interactions, corresponding to destructions and creations
of particles, are depicted by vertices. As we have only one kind of particle and one kind
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of interaction in φ4-theory, we need only one type of edge and one type of vertex, which
sits at the end of four edges. Note, that the vertex has four incident edges because four
copies of the field φ appear in the interaction term − g

4!φ
4. (In the case of φ3-theory there

would be a vertex with three edges.)
From these edges and vertices we build up the Feynman graphs and construct the

terms of the Green’s function according to the Feynman rules as follows (cf. [IZ06]).
One example for a Feynman graph of φ4-theory is shown in figure 2.1.3. Up to a certain
power of the coupling constant, assigned to the vertices, (or alternatively up to a certain
loop-number, defined in chapter 4) we draw all graphs with n external edges, to each of
them assigned one of the momentum variables p1, ..., pn. We ignore the graphs with a line
which is connected to the same vertex at both ends (i. e. a self-loop, see 4). The internal
edges, corresponding to the virtual particles, are assigned momentum variables k1, ..., kI .
All the momenta are directed, which means that each of the momentum variables is
incoming with respect to one of the vertices connected to the edge, and outgoing with
respect to the other vertex. (The language of graphs will be more thoroughly introduced
in chapter 4). The Feynman integral corresponding to a graph like this is obtained from
the following Feynman rules in momentum space:

(1) To the jth external edge, we assign the factor

i

p2
j −m2 + iρ

.

(2) To the lth internal edge, we formally assign

dk0
l dk

1
l dk

2
l dk

3
l

(2π)4
i

k2
l −m2 + iρ

.

(3) To each vertex, we assign the distribution

−ig(2π)4δ4
(∑

pi +
∑

kj

)

where the sum in the argument runs through all incoming momenta of the vertex.
(4) We integrate over each of the real valued components of the variables k1, ..., kI

from −∞ to ∞ the product of all these contributions. We will use the notation
∫

d4kl ≡
∫ ∞

−∞
dk0

l ...

∫ ∞

−∞
dk3

l

where each of the integrations on the right-hand side is over the real axis.
(5) Depending on the graph we have to divide the integral by a certain integer, the

so-called symmetry factor (as defined e. g. in [IZ06]).

The Green’s function up to the desired order is obtained as a sum of all these terms. The

functions i/
(

p2
j −m2 + iρ

)

and i/
(
k2
l −m2 + iρ

)
are the propagators of the correspond-

ing particles. We have tacitly introduced a small, real valued parameter ρ which assures
that the propagators are well-defined at p2

j = m2 and k2
l = m2 respectively. In the end

one takes the limit ρ→ 0 and we will suppress the iρ-term for brevity.

Example 4. As an example let us consider the graph in figure 2.1.3. In this figure,
the assigned momenta fulfill the momentum conservation condition, which is imposed by
the δ-distributions of the above rule (3). According to the above Feynman rules we obtain
the Feynman integral

I
(
p2, m2, g

)
=



2.1. THEORIES, GRAPHS AND RULES 17

p −p

p− k1 − k2

k1

k2

Figure 2.1.3. A Feynman graph of φ4-theory: the two-loop sunrise graph.

(2.1.9)
(−ig)2

3!

(
i

p2 −m2

)2 ∫

d4k1d
4k2

i3

(
k2
1 −m2

) (
k2
2 −m2

)(

(p− k1 − k2)
2 −m2

)

where we suppressed the term iρ. 1/3! is the symmetry factor. I
(
p2, m2, g

)
is a term of

the sum in the 2-point Green’s function. We note that in the truncated Green’s function

the term
(

i
p2−m2

)2
cancels due to equation (2.1.8). In dimensional regularization (see

below) the first complete evaluation of the above Feynman integral was achieved by
Laporta and Remiddi [LR05]. A detailed discussion of the graph of figure 2.1.3 is given
in appendix B.

Let us intuitively observe that in the above way to obtain a Green’s function from
graphs and rules we take all possibilities of the interaction region into account, which are
allowed by the given theory. By the choice of the Lagrangian we choose the appearing
kinds of particles, each corresponding to a kind of edge and propagator. Furthermore the
interaction term Lint determines the allowed vertices which correspond to the way the
particles can interact. In this way the Lagrangian L determines the possible topologies
of the graphs. At each vertex we have momentum conservation which we impose by the
appropriate δ-distributions in rule (3). We have to take into account, that the momentum
k of a virtual particle, unlike an external momentum, may take values such that k2 6= m2

where m is the mass of the particle. In the case of a graph with loops, we have momenta of
virtual particles, which are not determined by external momenta via momentum conser-
vation. In order to take all possible configurations of momenta into account we therefore
have to integrate over the momenta of the virtual particles as demanded by the above
rule (4).

We remark that according to Heisenberg’s uncertainty principle we have to decide
whether we consider the space-time point of a particle or the momentum as we can not
determine both precisely. Throughout this dissertation we work in momentum-space as
this is the most common choice for practical calculations.

We have just discussed the Feynman rules of φ4-theory, which is a relatively simple
toy model. The Feynman rules of other quantum field theories, like QED or QCD, follow
the same pattern: propagators and powers of coupling constants are assigned to the edges
and vertices respectively and each Feynman integral is obtained as the integral over the
momenta of the virtual particles. For each kind of particle to be described one needs
to associate a different propagator. Accordingly, the coupling constants depend on the
different kinds of interaction to be described by different vertices. The Feynman rules for
the Standard Model can for example be found in the appendix of [BDJ01].
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(a) (b) (c)

Figure 2.1.4. The building blocks for the Feynman graphs of QED: (a)
the vertex of QED, (b) the photon line and (c) the fermion line.

Let us instead consider QED again. In this theory we have fermions and photons,
usually depicted by straight and wiggly edges respectively, and one kind of vertex. The
edges and the vertex of the Feynman graphs of QED are shown in figure 2.1.4. We
note that the vertex of QED is incident to three edges which are two fermion lines and
one photon line. This form of the vertex corresponds to the interaction term in the
Lagrange density of QED, eAµψγµψ (cf. equation (2.1.5)), which contains two factors for
the fermion field and one for the photon field. In this simple manner one can read off the
building blocks of the Feynman graphs directly from the Lagrange density of the theory.

Just like in the above rules of φ4-theory we have to draw all possible graphs of QED
with the elements of figure 2.1.4 to a certain order and assign certain components of which
the integrands will consist of. The main difference to the integrands of φ4-theory and other
scalar toy models is an additional tensor structure. This comes from the structure of the
propagators of particles with spin. These propagators are of the form

i
kµγ

µ +m

k2 −m2

for fermions and

−igµν
k2

for photons (after a convenient choice of a gauge parameter, according to the so-called
Feynman gauge). Obviously this structure is an additional complication, but we will see
in section 2.4 how to write a tensor-like Feynman integral in terms of scalar Feynman
integrals.

2.1.4. Wick Rotation and Spherical Coordinates. There is a more simple com-
plication which we would like to cure before: The scalar products of momenta like k2 or
p2 in the above propagators are defined with respect to the Minkowski metric of equation
(2.1.1). Let f be the integrand of a Feynman integral, containing propagators of the form

i

p2 −m2 + iρ
.

The small term iρ, which we usually suppress in our notation, shifts the poles of the
propagator away from the real axis. One can find a closed contour in the complex k0-
plane, which does not contain the poles. From the vanishing of an integral over such a
contour, one can deduce that

∫ ∞

−∞
dk0f

(
k0
)

= −
∫ i∞

−i∞
dk0f

(
k0
)
.

Therefore in a Feynman integral, the integration over the real k0-axis can be replaced by
the integration over the imaginary axis. This replacement is referred to as Wick rotation.
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A simple change of parameters

k0 = iK0,

kj = Kj for j = 1, 2, 3

leads to

k2 = −K2,

d4k = id4K

where K2 is an ordinary Euclidean scalar product and the K0-integration is over the real
axis. We obtain

∫

d4kf
(
−k2

)
= i

∫

d4Kf
(
K2
)
.

The right-hand side is an integral over Euclidean space. Following these steps, we can
write any Feynman integral as an integral over Euclidean space where all the scalar
products in the integrand are Euclidean.

We can apply Wick rotation as well for higher dimensional spaces with a Minkowski-
like metric. Therefore let us consider the more general case of n-dimensional vectors K in
Euclidean space, where n is some natural number. For an integral of a function f

(
K2
)

it
may be useful to change to spherical coordinates. The generalized spherical coordinates
are given by

K0 = K cos (θ1) ,

K1 = K sin (θ1) cos (θ2) ,

...

Kn−2 = K sin (θ1) ... sin (θn−2) cos (θn−1) ,

Kn−1 = K sin (θ1) ... sin (θn−2) sin (θn−1) ,

where K =
√
K2 and θn−1 is the azimuthal angle while all remaining θ’s are polar angles.

The integration over the angles gives

∫ π

0
dθ1 sinn−2 (θ1) ...

∫ π

0
dθn−2 sin (θn−2)

∫ 2π

0
dθn−1 =

2πn/2

Γ
(
n
2

)(2.1.10)

where

Γ(x) =

∫ ∞

0
dte−ttx−1

is Euler’s Gamma function, which is defined for Re(x) > 0. It is important to notice, that
the left hand side of equation (2.1.10) is obviously defined for n ∈ N while the right-hand
side is a function which could be evaluated for complex values of n.

For the integral of f
(
K2
)

we obtain

∫ ∞

−∞
dK0...

∫ ∞

−∞
dKn−1f

(
K2
)

=
2πn/2

Γ
(
n
2

)

∫ ∞

0
dKKn−1f

(
K2
)
.(2.1.11)

Here again, the function on the right-hand side is defined for complex n. In the following
we will see how this fact allows for the method of dimensional regularization.
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2.2. Dimensional Regularization

2.2.1. The Need for Regularization. It is very common, that a Feynman integral
is divergent. In the previous section, we have seen that Feynman integrals are constructed
from Feynman rules which are not sensitive to the question whether the resulting integral
converges or not. Of course the problem already lies in the definition of the Green’s
function to be considered. Despite this problem, it is for many theories4 possible to
obtain a finite cross section from these functions. In the standard approach, which we
want to consider, this is achieved after the application of two procedures, which can be
treated separately: regularization and renormalization.

By regularization we mean that instead of the ill-defined integral I, as we obtain
it from Feynman rules, we consider an integral I(ǫ) which depends on an additional
parameter ǫ, the regularization parameter, such that in some range of this parameter the
integral is well-defined and in the limit ǫ→ 0 the integral I(ǫ) coincides with the original
ill-defined integral I:

lim
ǫ→0

I(ǫ) = I.

Then I(ǫ) is called the regularized Feynman integral. We possibly evaluate the integral,
assuming ǫ to be in the region where it is well-defined, and then we can study the divergent
behaviour of the result, which we obtain as a function in ǫ. Then we can separate the
result into a divergent part and a finite part.

Renormalization usually is a re-definition of parameters, like the coupling constants
and particle masses, such that the divergences which we obtained from the previous step
are absorbed and the Green’s function of the new parameters is finite. These new defi-
nitions are equivalent to the consideration of a different Lagrange density, which differs
from the original one by so-called counter terms. Such re-definitions have to be made with
each order of the perturbation series which is included in the result. At this point we
find it necessary to emphasize, that renormalization is not a subject of this dissertation.
We discuss properties of regularized Feynman integrals and methods for their calculation,
knowing that their evaluation by subsequent renormalization procedures yield the renor-
malized Green’s function and, in the end, the finite cross section. However, we do not
discuss the step of renormalization any further.

Let us give a simple example for a divergent Feynman integral:

Example 5. The integral

I
(
p2, m2

)
=

∫
d4k

(2π)4
1

(k2 −m2)
(

(k − p)2 −m2
)

is the Feynman integral of the graph of figure 3.2.1, arising from φ3-theory. Here and in
the following we usually omit trivial prefactors like multiples of i, coupling constants and
symmetry factors, as they are irrelevant for issues of integration.

In the region where k2 is much larger than m2 and p2 the integrand behaves like 1
k4 .

Applying Wick rotation and spherical coordinates we may formally write

∫
d4k

(2π)4
1

k4
= i

∫
d4K

(2π)4
1

K4
= i2π2

∫ ∞

0
dKK−1,(2.2.1)

4These are so-called renormalizable theories, for example φ4-theory, QED and the Standard Model.
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p −p

k

k − p

Figure 2.2.1. One-loop selfenergy graph.

but now we see that the integral is ill-defined. From the region of large K we obtain a
logarithmic divergence because of

lim
B→∞

∫ B

A
dKK−1 = lim

B→∞
(ln (B) + const.) , A > 0.

Therefore we see, that I
(
p2, m2

)
has a logarithmic divergence from the large momentum

region.
Now let us in the sense of equation (2.1.11) rewrite equation (2.2.1) for a n-dimensional

integral:
∫

dnk

(2π)n
1

k4
= i

2πn/2

Γ
(
n
2

)

∫ ∞

0
dKKn−5.

For n < 4 we have

lim
B→∞

∫ B

A
dKKn−5 = lim

B→∞

(
Bn−4

n− 4
+ const.

)

= const.

and therefore we have no divergence from the large momentum region.

The example shows, that the divergent behaviour of a Feynman integral depends
on the fact that it is defined with respect to four dimensional Minkowski space. If we
instead consider the corresponding integral in an n-dimensional space, we may find an
n such that the integral converges. But such a consideration only makes sense, if we
obtain the physically relevant integral of the four dimensional space in a limit. To this
end, the integer n needs to be replaced by a continuous variable. This leads to the idea
of dimensional regularization, which was introduced to quantum field theory by t’Hooft
and Veltman [tV72]5, Bollini and Giambiagi [BG72], Cicuta and Montaldi [CM72],
Ashmore [Ash72] and in a more abstract setting by Speer and Westwater [SW71]. We
use the most common version of dimensional regularization which was formulated by
Collins [Col84].

2.2.2. Definition of Integrals over D Dimensions. We introduce the dimension
parameter D ∈ C, an integer λ ∈ Z and a parameter ǫ ∈ C, satisfying

D = 2λ− 2ǫ.

The parameter λ will be important in section 2.4, but for the moment let us fix λ = 2,
such that the limit D → 4 is equivalent to ǫ→ 0.

5In the year 1999, t’Hooft and Veltman received the Nobel Prize in Physics for their work on the
mathematical foundations of electroweak interactions, including reference [tV72].
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Now for an arbitrary Feynman integral we want to obtain the corresponding regular-
ized integral by the formal replacement

∫
d4k

(2π)4
→

∫
dDk

(2π)D
(2.2.2)

for all integration momenta k. Then, assuming the value of D (or equivalently of ǫ) to be
in a region such that the integral converges, we want to possibly evaluate the regularized
integral I(ǫ). Then we expand I(ǫ) as a Laurent series in ǫ. We may separate the principal
part of the series from the part which is finite in ǫ→ 0. This separation can subsequently
be used for renormalization procedures, for example so-called minimal subtraction (MS)
[t’H73, Wei73] or modified minimal subtraction (MS) [BBDM78].

An integral over a D-dimensional space where D can be any complex number is just a
formal notation at first. In order to make any sense of this notation and the replacement
given by equation (2.2.2), one needs to find a definition in terms of ordinary, integer-
dimensional integration, fulfilling the desired properties of an integral in D dimensions.
Let us refer to the definition of Collins [Col84]:

We consider a Euclidean space E and let f (k, p1, ..., pr) be a scalar function, only
depending on scalar products of the finitely many vectors k, p1, ..., pr in E. We want to
give a meaning to the object

∫

dDkf (k, p1, ..., pr) .

In order to do so, we assume E to be an infinite dimensional vector space and each of
the vectors k, p1, ..., pr to have an infinite sequence of components. As the number of
these vectors r is finite, this space has a n-dimensional subspace E‖, n ∈ N with n ≤ r,
containing the vectors p1, ..., pr. The orthogonal component of this subspace shall be
denoted E⊥, such that E = E‖ × E⊥. In this sense we decompose the vector k as

k = k‖ + k⊥

with k‖ ∈ E‖ and k⊥ ∈ E⊥. k‖ has n components, n being finite, and we therefore may
write

∫

dDkf (k, p1, ..., pr) =

∫

dnk‖

∫

dD−nk⊥f (k, p1, ..., pr)

where the integration
∫

dnk‖ ≡
∫ ∞

−∞
dk1...

∫ ∞

−∞
dkn

is well-defined. As the function f (k, p1, ..., pr) depends only on scalar products of the
vectors, it does not depend on the direction of k⊥. Therefore it makes sense to define

∫

dD−nk⊥f (k, p1, ..., pr) :=
2π(D−n)/2

Γ
(
D−n

2

)

∫ ∞

0
dk⊥k

D−n−1
⊥ f (k, p1, ..., pr) .(2.2.3)

On the right-hand side we have an ordinary integral, which we may think of as obtained
from formally introducing spherical coordinates in D − n dimensions, as we see by com-
parison with equation (2.1.11). We see from equation (2.1.11) that the given definition of
the symbol

∫
dDk contains the ordinary integration over integer-dimensional spaces as a

special case. Therefore it is a meaningful extension of ordinary integration.
In order to obtain a meaningful regularized integral for an arbitrary Feynman integral,

the definition given by equation (2.2.3) still needs to be extended to tensor-like functions.
Furthermore, for certain cases it is necessary to extend the definition to regions of D where
the real part of D is negative. Moreover one has to ask for uniqueness and certain special
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properties of the D-dimensional integrals in order to provide a useful regularization. For
a detailed discussion of all of these subjects we refer to Collins’ book [Col84]. In the
following subsection we summarize some of the most important properties which are
proven in the same book.

The above definition, using infinite dimensional spaces, is important to obtain all of
the mentioned properties in a consistent way, but we will not make any explicit use of
the definition in the following. In particular, we will not consider momenta in an infinite
dimensional space. Instead we follow the usual approach to just use the definition as
a justification for speaking of

∫
dDkf (k, p1, ..., pr) as an integral over a D-dimensional

space and thinking of the arguments k, p1, ..., pr as vectors in such a space.

2.2.3. Properties of Dimensionally Regularized Integrals. Let g (k) be any
given function of the D-dimensional vector k. Dimensionally regularized integrals, as
introduced above, satisfy the following three axioms of Wilson [Wil73]. For any a, b, s ∈
C and any D-dimensional vector q we have:

• Additivity and linearity:
∫

dDk (ag (k) + bg (k)) = a

∫

dDkg (k) + b

∫

dDkg (k) ,(2.2.4)

• Scaling:
∫

dDkg (sk) = s−D
∫

dDkg (k) ,(2.2.5)

• Translation invariance:
∫

dDkg (k + q) =

∫

dDkg (k) .(2.2.6)

Moreover one can verify the following useful properties:

• We can interchange the order of integrations as
∫

dDk

∫

dDqg (k, q) =

∫

dDq

∫

dDkg (k, q) ,(2.2.7)

where g is any function of two vectors k and q.
• We can interchange the order of integration and differentiation with respect to

different vectors as

∂

∂q

∫

dDkg (k, q) =

∫

dDk
∂

∂q
g (k, q) .(2.2.8)

• For D = 2λ− 2ǫ and any a, b ∈ Z and k-independent terms u and f we have
∫

dDk

iπD/2

(
−k2

)a

(−uk2 + f)b
=

Γ (λ+ a− ǫ) Γ (b− λ− a+ ǫ)

Γ (λ− ǫ) Γ (b)

u−λ−a+ǫ

f b−λ−a+ǫ
.(2.2.9)

Let us observe, that on the right-hand side of this equation each a appears
together with λ− ǫ = D/2. Hence raising a by 1 gives the same result as raising
λ by 1, i. e. D by 2, apart from a prefactor λ− ǫ .

• For differentiation with respect to the components of a vector we have
∫

dDk
∂

∂kµ
qµg (k) = 0.(2.2.10)

• If h is a function of k2 we have
∫

dDkkµh
(
k2
)

= 0.(2.2.11)
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• If we extend the metric tensor of Minkowski space to the D-dimensional case,
we obtain for its contraction

gµνgµν = D.(2.2.12)

There are further properties of dimensionally regularized Feynman integrals which give
good reasons to prefer dimensional regularization to other regularization methods. For
example so-called cut-off regularization, where the upper boundary of the integration
is limited, introduces a parameter which causes a non-trivial behaviour under Lorentz
transformation. This is not the case for dimensional regularization. Furthermore t’Hooft
and Veltman have shown in reference [tV72] that for certain theories6 the so-called Ward
identities, obtained from the invariance of a theory under so-called gauge transformations,
are fulfilled by dimensionally regularized Green’s functions. The method of dimensional
regularization is compatible with the behaviour of crucial objects of the theory under
Lorentz and gauge transformations.

For us there is in addition a far more obvious reason to work in dimensional regular-
ization: All the other techniques discussed in the present chapter like Wick rotation and
Feynman parameterization can be combined with dimensional regularization. Moreover
the tensor reduction to be discussed in section 2.4 is based on dimensionally regularized
integrals.

2.3. Feynman Parameters

The Feynman parameter technique is extensively discussed in the literature (see
e. g. [IZ06, Wei06, Nak71]) and we just want to highlight the basic steps of the cal-
culation and then concentrate on how to obtain the resulting form of the integral in a
convenient way, directly from the graph.

Let us consider a generic, dimensionally regularized Feynman integral, obtained from
the Feynman rules of a scalar theory, like for instance φ4-theory. As we have seen, the
propagators of such a scalar theory are of the form

1

k2
j −m2

j

or
1

p2
j −m2

j

,

where the momenta kj and pj are the momenta assigned to internal and external edges
respectively and the parameters mj are the masses. For convenience, let Λ denote the set

of all external momenta p and massesm. For each vertex we have a term δD (
∑
pi +

∑
kj)

(written in D dimensions). Let Nv denote the number of vertices. By integration over
Nv of the momenta, eliminating the δ-distributions, we obtain the Feynman integral

I (D, Λ) =

∫

dDk1...d
DkL

1
∏N
j=1 (−Pj)νj

(2.3.1)

where

(2.3.2) Pj = q2j −m2
j

where the momenta qj are linear combinations of k1, ..., kL and the external momenta
p1, ..., pNe . The exponents νj are positive integers, N is the number of internal edges and
Ne the number of external edges of the Feynman graph. L is the loop-number, given by

L = N −Nv + 1.(2.3.3)

6The Ward-identities do not hold in the D-dimensional case if the theory requires the consideration
of the so-called chirality operator γ5. Nevertheless, in such a case the identities can be obtained after a
finite renormalization.
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For the evaluation of further momentum integrations we would like to use equation
(2.2.9). To this end we need to write the Feynman integral in the form

(2.3.4)

∫
dDk

iπD/2

(
−k2

)a

(−uk2 + f)b

with k being one of the integration momenta. The terms u and f must be independent
of k. This form can be obtained by repeated application of the so-called Feynman trick
and by use of the translation invariance of D-dimensional integrals as in equation (2.2.6).

The Feynman trick in its simplest form is the formula

1

P1P2
=

∫ 1

0
dx

1

(xP1 + (1 − x)P2)
2 .

We simply rewrite a product in the denominator as a power of a sum at the cost of
introducing an integration. In its general form, the Feynman trick reads

n∏

i=1

1

(−Pi)νi
=

Γ (ν)
∏n
i=1 Γ (νi)

∫ 1

0

(
n∏

i=1

dxix
νi−1
i

)

δ (1 −∑n
i=1 xi)

(−∑n
i=1 xiPi)

(2.3.5)

with ν =
∑n

i=1 νi. The newly introduced integration variables xi are called Feynman
parameters.

Starting from equation (2.3.1) we apply Wick rotation and the Feynman parameteri-
zation of equation (2.3.5) to I (D, Λ) . Then, by subsequent use of translation invariance
and completion of squares, we can write the denominator in the form as in equation
(2.3.4) with respect to one of the integration momenta k. Then we use equation (2.2.9)
to evaluate the integration over k. We continue to apply these steps until all momentum
integrals are evaluated and we remain with an integral only over the Feynman parameters:

I (D, Λ) = iLπLD/2
Γ (ν − LD/2)
∏n
i=1 Γ (νi)

∫ 1

0
dNxδ

(

1 −
N∑

i=1

xi

)(
N∏

i=1

xνi−1
i

)

Uν−(L+1)D/2

F (Λ)ν−LD/2
,

(2.3.6)

where the functions U and F (Λ) are polynomials in the Feynman parameters and F
furthermore depends on the external momenta and the masses. We will refer to the right-
hand side of equation (2.3.1) as the momentum space representation and to the right-hand
side of equation (2.3.6) as the Feynman parametric representation of I (D, Λ).

The explicit derivation of the form of equation (2.3.6) from equation (2.3.1) can be
very laborious. However, there is a very useful shortcut. The functions U and F (Λ) can
be directly constructed from the topology of the graph as follows (cf. [Wei06]):

Let G be the Feynman graph corresponding to the integral I (D, Λ) . We say that a
connected graph is a tree, if it does not contain any loops. We believe that the terms
tree and loop are intuitively clear, but we nevertheless give a more precise definition of
these terms in chapter 4. To each internal edge ej we associate a directed momentum
qj, a mass mj and Feynman parameter xj . We remember that L is the loop-number as
defined above by equation (2.3.3). There are different possibilities of removing L edges
of G such that we obtain a tree. The set of all possible trees obtained from removing L
edges of G is denoted by T1. For each tree T ∈ T1, the chord C (T, G) is defined as the set
of edges ej , which belong to G but not to T . The function U is defined to be the sum of
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all monomials, which are products of all the Feynman parameters of edges not belonging
to a tree in T1:

U :=
∑

T∈T1

∏

ej∈C(T,G)

xj.(2.3.7)

The sum runs through all trees in T1.
Now we take a tree T ∈ T1 and remove one more line. The result is a set of two trees

(T1, T2), called a 2-forest. The set of all 2-forests obtained in this way is denoted by T2.
For each such 2-forest (T1, T2) the chord C ((T1, T2) , G) is the set of edges belonging to
G but not to (T1, T2) . We take the sum of all the momenta associated to the lines in this
set and then take the square of this sum:

s(T1, T2) =




∑

ej∈C((T1, T2), G)

qj





2

,

where the orientation of the momenta qj is chosen such that they are incoming at the
vertices of T1(cf. equation (4.1.10) below). Momentum conservation implies, that the sum
of all incoming momenta at each vertex is zero. By use of this rule, we can express each
s(T1, T2) as a square of a sum of only external momenta. These parameters s(T1, T2) are in

the following referred to as the kinematical invariants7. Let us define an auxiliary function
F0 to be the sum of monomials corresponding to the 2-forests (T1, T2), multiplied with
the kinematical invariants:

F0 :=
∑

(T1, T2)∈T2




∏

ej∈C((T1, T2), G)

xj




(
−s(T1, T2)

)
.(2.3.8)

The polynomial F is the sum of F0 and a product of U with a sum of a product of
the squared masses with the corresponding Feynman parameters:

F := F0 + U
N∑

j=1

xjm
2
j .(2.3.9)

We note that both functions U and F are homogeneous polynomials in the Feynman
parameters. U is linear in each of the Feynman parameters while F can be quadratic in
a single parameter if the corresponding mass is non-zero. F is linear in the m2

j and the
kinematical invariants.

Let us derive the functions U and F0 for two examples:

Example 6. (a) We consider the one-loop triangle graph of figure 2.3.1 (a) with the
incoming external momenta p1, p2, p3 and the Feynman parameters as assigned in the
figure. From equations (2.3.7) and (2.3.8) we obtain

U = x1 + x2 + x3,

F0 = x1x2

(
−p2

3

)
+ x2x3

(
−p2

1

)
+ x1x3

(
−p2

2

)
.

(b) For the two-loop graph of figure 2.3.1 (a) we have only one external momentum p and
five Feynman parameters as assigned in the figure. Equations (2.3.7) and (2.3.8) yield

U = (x1 + x2 + x3 + x4) x5 + (x1 + x4) (x2 + x3) ,

F0 = ((x1 + x4) x2x3 + (x2 + x3) x1x4 + (x1 + x2) (x3 + x4) x5)
(
−p2

)
.

7They are invariant under Lorentz transformations.
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p1p2

p3

x1 x2

x3

p −p
x1 x2

x3x4

x5

(a) (b)

Figure 2.3.1. (a) The one-loop triangle. (b) The two-loop bubble.

The consistency of equation (2.3.6) with the definitions given by equations (2.3.7)
and (2.3.8) is shown in detail in [IZ06, KRTW08, Nak71] and for the sake of brevity,
we do not want to repeat these derivations here. Let us just highlight a key point of the
calculation: With respect to the internal momenta qj of the graph let B⋆ be the matrix
defined by

B⋆
ij =







1 if the momentum qj is outgoing from the ith vertex,
−1 if the momentum qj is incoming to the ith vertex,

0 if the jth line is not connected to the ith vertex.
(2.3.10)

B⋆ is called the incidence matrix of the oriented graph. For each vertex vi we can write
the condition of momentum conservation by use of B⋆. Let Pvi

denote the sum of external
momenta which are incoming at vi. Then due to momentum conservation we obtain

Pvi
−

N∑

j=1

B⋆
ijqj = 0

for each vertex vi where the sum runs through theN internal edges of the graph. Therefore
the momentum space Feynman integral can be expressed by use of δ-distributions

δ



Pvi
−

N∑

j=1

B⋆
ijqj



 .

Then, after the introduction of Feynman parameters (or equivalently Schwinger param-
eters as in [IZ06]) the Feynman integral can still be expressed by use of B⋆. After the
evaluation of the momentum integrations, one can use relations between B⋆ and the
functions U and F in order to write the Feynman integral in terms of these polynomials.
In chapter 4 we will define the incidence matrix B of a graph which is not necessarily
oriented. (In contrast to B⋆ this matrix B will have only non-negative entries.) We will
discuss relations between a matrix closely related to B and the functions U and F .

In the above discussions we have used certain terms of graph theory. Terms like
for example loop, tree, forest and the orientation of edges can be understood intuitively.
The more precise definitions of these terms would be beyond the purpose of the present
chapter, which we intend to be a brief introduction. These precise definitions require
a rather detailed introduction of basic terms of graph theory and we want to provide
this introduction in chapter 4 in order to avoid possible misunderstandings. After having
introduced the mentioned terms properly, we will also formulate the construction of U and
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F once again. Furthermore, chapter 4 includes a detailed discussion of further properties
of U and F .

2.4. From Tensors to Scalars

We have seen in section 2.1 that Feynman integrals of a theory describing particles
with spin can have a tensor structure. We would like to express such tensor-like integrals
in terms of scalar integrals. Let us start with a trivial example:

Example 7. Let k be a momentum vector with components kµ in D-dimensional
space. Let f

(
k2
)

be a scalar valued function of k2. Using gµνg
µν = D one easily verifies

the identity
∫

dDk

iπD/2
kµkνf

(
k2
)

= − 1

D
gµν

∫
dDk

iπD/2
(
−k2

)
f
(
k2
)
.(2.4.1)

Let us note, that the integrand on the right-hand side in comparison to f
(
k2
)

has

an additional power of
(
−k2

)
. We have already seen in equation (2.2.9), how raising the

power of
(
−k2

)
by 1 corresponds to raising λ by 1, which is the same as raising D by 2.

Therefore we obtain
∫

dDk

iπD/2
kµkνf

(
k2
)

= −1

2
gµν

∫
dD+2k

iπ(D+2)/2
f
(
k2
)
≡ −1

2
gµνD+

∫
dDk

iπD/2
f
(
k2
)
,

defining D
+ as the operator which substitutes D by D + 2.

On the left-hand side of equation (2.4.1) we have a tensor-like integral where the
integrand is a tensor of rank 2 while on the right-hand side we have a k-independent
tensor times a scalar integral. In dimensional regularization it is always possible to write
an arbitrary tensor-like integral Iµ1µ2...µn of rank n ∈ N as a linear combination

Iµ1µ2...µn =
r∑

i=1

tµ1µ2...µn

i Ii(2.4.2)

where the tµ1µ2...µn

i are simple tensors consisting of external momenta and the metric
tensor. The integrals Ii on the right-hand side are scalar integrals.

For one-loop Feynman integrals, such a decomposition can be obtained from the
reduction method of Passarino and Veltman in reference [PV79]. A method to obtain
such a reduction for dimensionally regularized Feynman integrals with an arbitrary loop-
number was developed by Tarasov in [Tar96, ?]:

We consider a general tensor-like integral

Iµ1... σnN (D, Λ) =

∫

dDk1...d
DkL

1
∏N
j=1 P

νj

j

n1∏

r=1

qµr
r ...

nN∏

s=1

qσs
s

which differs from the scalar integral

Iscalar (D, Λ) =

∫

dDk1...d
DkL

1
∏N
j=1 P

νj

j

(cf. equation (2.3.1)) by the tensor
∏n1
r=1 q

µr
r ...

∏nN

s=1 q
σs
s . Using the same notations as

above qj denotes the momentum along the jth edge of the graph, being a linear combi-
nation of internal and external momenta, and we have Pj = q2j −m2

j . For the reduction
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of an integral Iµ1... σnN (D, Λ) to scalar integrals, Tarasov derives a relation which we can
symbolically write as

Iµ1... σnN (D, Λ) = T

(

{qi},
{

∂

∂m2
i

}

, D+

)

Iscalar (D, Λ)(2.4.3)

where T
(

{qi},
{

∂
∂m2

i

}

, D+
)

is an operator, acting on Iscalar (D, Λ). As we will not

make explicit use of a reduction as in equation (2.4.3), we refer to [Tar96] for the precise

definition of T
(

{qi},
{

∂
∂m2

i

}

, D+
)

. Detailed examples are given in [?].

However, we will need to know which kind of scalar integrals will be obtained on the

right-hand side of equation (2.4.3). T
(

{qi},
{

∂
∂m2

i

}

, D+
)

is a polynomial in the operator

D
+ which we introduced in example 7 and in the differential operators ∂

∂m2
i

where mi are

the masses associated to the internal edges. Let us observe that the derivative ∂
∂m2

i

acts

on the integrand of Iscalar (D, Λ) as

∂

∂m2
i

1
∏N
j=1 P

νj

j

=
1

∏N
j=1 P

νj+δij
j

,

with the Kronecker δ

δij =

{
1 for i = j,
0 for i 6= j.

The derivatives increase the powers νj of the propagators. Furthermore we see that the
operator D

+, as defined in the above example 7 raises the value of D by 2 or, equivalently,
of λ by 1.

From these considerations we see that all scalar integrals on the right-hand side of
Tarasov’s equation (2.4.3) can be expressed in the form of equation (2.3.6) with the ν’s
and the λ in

D = 2λ− 2ǫ

being arbitrary integers. Integrals of this type will therefore be the main objects of interest
in the remaining chapters of the dissertation. As we mentioned above, we will refer to
equation (2.3.1) as the momentum space representation and to equation (2.3.6) as the
Feynman parametric representation of I (D, Λ) in the following chapters.





CHAPTER 3

Integration-by-Parts for Feynman Integrals

“Calculation is not an experiment.”
(Ludwig Wittgenstein)

The number of Feynman integrals to be taken into account in the calculation of a cross
section increases rapidly with the desired order in the perturbation series. For example a
calculation at one-loop order requires just a few integrals while the two-loop or three-loop
precision already may require the consideration of several hundred Feynman integrals.
Usually the evaluation of a single two- or three-loop integral is already very difficult, so
the separate evaluation of hundreds or thousands of these integrals would practically be
impossible without automation.

Therefore it is necessary to use relations among the Feynman integrals in order to
reduce the number of integrals which actually need to be evaluated. The standard ap-
proach for such a reduction is the use of so-called IBP-identities1 (integration-by-parts)
[CT81, Tka81], which are obtained from the general property of dimensionally regular-
ized integrals, given by equation (2.2.10). These identities are used to express Feynman
integrals as a linear combination of simpler ones. By this procedure, a large number of
integrals can be expressed in terms of a considerably smaller number of usually simpler
integrals. If these can not be reduced any further they are called master integrals.

In section 3.1 we give a brief review on IBP-identities in the momentum space rep-
resentation, where they are usually derived. We discuss the Laporta algorithm, which
is the most common way to combine these equations to an efficient reduction algorithm.
In section 3.2 we demonstrate the translation of IBP-identities to the Feynman para-
metric representation. We derive a handy formula for the one-loop case in terms of the
polynomials U and F .

Our motivation to discuss IBP-identities in this dissertation is two-fold. Firstly, due to
the importance of these widely used identities for practical calculations, their systematic
combination to an efficient reduction algorithm is an active field of research. It seems that
the optimal way to obtain such a reduction algorithm is yet unknown. If the reduction
is not efficient, one is often confronted with a too large number of identities, hindering
the evaluation. A detailed knowledge of the properties of IBP-identities may help for
improvements of the efficiency of the reductions. Secondly, to our knowledge and surprise,
the important identities have not yet been of any explicit use in the approach to Feynman
integrals in terms of algebraic geometry, where the geometric properties of the zero-sets of
U and F are considered (see related remarks in the chapters 5 and 6). We will emphasize
in the subsequent chapters, that certain mathematical properties of a Feynman integral
can be deduced from the properties of the so-called master integrals, obtained from a

1The IBP-identities provide the most common approach for the reduction of Feynman integrals. We
want to mention, that there is a more general set of identities, considered by Tarasov in reference [Tar96],
which contains the IBP-identities as a subset. Furthermore, very recently, Tarasov presented a new kind
of functional relations in the article [Tar08].

31
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reduction by IBP-identities. Seen from this point of view, IBP-identities may be useful
in more mathematically oriented approaches.

3.1. The IBP-Approach

3.1.1. Trivial Algebraic Reduction. Before we start to discuss the essential part
of the approach, let us introduce a convenient notation and some preliminary manipula-
tions of the original Feynman integral.

We consider dimensionally regularized, scalar Feynman integrals in their momentum
space representation, which are slightly more general than the one in equation (2.3.1), as
we want to allow for scalar products of momenta in the numerator for the moment. Such
scalar products will occur from the reduction mechanism to be discussed. Therefore the
integrals to be considered have the form

IB,N (D, Λ) =

∫

dDk1...d
DkL

∏B
i=1 S

βi

i
∏N
j=1 P

αj

j

(3.1.1)

where for convenience the sign of the propagators is different from the one in equation
(2.3.1). We furthermore apply the following notations:

• L is the loop-number, defined by equation (2.3.3), and N is the number of
internal edges of the associated Feynman graph2.

• k1, ..., kL are the loop momenta. The sum of all incoming external momenta is
zero by momentum conservation, therefore we can write the integral as a function
of E external momenta p1, ..., pE , where the number E is the number of external
edges minus one.

• Each Si with i = 1, 2, ..., B is a scalar product of two of the above momentum
vectors, at least one of them being a loop momentum. B is the number of all
such products, which is given by

B = LE +
1

2
L(L+ 1).

• Pj = q2j −m2
j is the inverse of the propagator associated to the jth internal edge,

where mj is the mass and qj is the momentum associated to this edge. Each qj
is a linear combination of the above momentum vectors. (The masses mj may
be equal and they also may be zero.)

• The αj and βi are non-negative integers.

• We omitted the general prefactor (2π)L(2−D).

Example 8. As a very simple example let us consider the integral
∫

dDk
kp

(k2 −m2)
(

(k − p)2 −m2
) ,

associated to the topology of the one-loop self-energy graph. Note that this integral
differs from the one in example 5 by the scalar product kp in the numerator. We have

2As we described in chapter 2, a given quantum field theory determines the kind of vertices which
constitute the corresponding Feynman graphs. Therefore, for a Feynman graph constructed by the
Feynman rules of a given theory, the numbers L and N are not arbitrary. They fulfill certain relations.
Nevertheless, in the process of the reduction by IBP-identities, one furthermore needs to consider graphs,
which result from the original graph by the contraction of edges and which do not need to belong to the
set of graphs, which can be constructed from the Feynman rules of the given theory. For this reason we
want to avoid the use of any additional relations, which depend on the choice of a theory in the way as
just described.
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two momenta k, p and all the possible scalar products of these two vectors with at least
one loop-momentum are S1 = k2 and S2 = kp. The inverse propagators can trivially
be expressed by use of these products as P1 = k2 −m2 and P2 = k2 − 2kp + p2 −m2.
We notice that in the general case the inverse propagators are linearly independent over
the Si and that they are sums of a linear combination of the Si and terms which do not
depend on the loop momenta (like m2 and p2 in the present example).

In our example the scalar product kp appears in the numerator and in the denomi-
nator. By completing the square we obtain

∫

dDk
kp

P1P2
= −1

2

∫

dDk
1

P1
+

1

2

∫

dDk
1

P2
+
p2

2

∫

dDk
1

P1P2
.

In the integrands on the right-hand side, kp appears just in the denominator, namely in
P2. We have used simple algebraic relations between the Si and Pj in order to reduce
an integrand as a linear combination of integrands which do not contain loop-momentum
dependent scalar products in both, numerator and denominator.

Let us translate this simple step to the general case (cf. [Lap00]). We denote an

arbitrary inverse propagator by Pj =
∑B

h=1ChSh + f ({p}, {m}) with Ch being integer
coefficients and f ({p}, {m}) a function of external momenta and particle masses. If Pj
contains CiSi we have the identity

Si
Pj

=
1

Ci

(

1 − Pj −CiSi
Pj

)

(3.1.2)

where on the right-hand side, after the subtraction, the numerator does not contain Si.
By subsequent application of this relation for the fractions in the integrand we can express
any Feynman integral of equation (3.1.1) as a linear combination of Feynman integrals
depending on B −N different loop-momentum-dependent scalar products, which we can
not rewrite in terms of inverse propagators, and of course still depending on the N inverse
propagators. In the case of B ≤ N , as in our example above, all the scalar products are
rewritten.

Let us subsume this calculation by the term algebraic reduction and let us call the
remaining B − N scalar products S̃1, ..., S̃B−N algebraically irreducible. The inverse
propagators together with the irreducible scalar products form a set of B functions D1 =
S̃1, ..., DB−N = S̃B−N , DB−N+1 = P1, ..., DB = PN which are linearly independent over
the Si. Each Si which is contained in a propagator can be reduced, therefore, for a given
set of scalar products, the set of irreducible scalar products is uniquely determined by the
propagators. Furthermore any Si of the given momenta can be expressed in terms of the
Dj. Therefore the Dj form a complete basis.

After algebraic reduction we can, instead of equation (3.1.1), consider the algebraically
irreducible Feynman integrals

∫

dDk1...d
DkL

1
∏N
j=1 P

αj

j

for B ≤ N,(3.1.3)

∫

dDk1...d
DkL

∏B−N
i=1 S̃βi

i
∏N
j=1 P

αj

j

for B > N,(3.1.4)

or equivalently

(3.1.5)

∫

dDk1...d
DkL

1
∏B
i=1 Dνi

i

,

the νi for i = 1, ..., B now being both positive or negative integers.
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We want to remark, that the integrals with irreducible scalar products as in equation
(3.1.4) can be furthermore expressed by integrals where the numerator is one as in equa-
tion (3.1.3). This is achieved by the use of Tarasov’s method as described in [Tar96],
which we already used with equation (2.4.3) for the reduction of general tensor integrals.
The method yields integrals with a changed space time dimension. Hence, by use of
Tarasov’s method and allowing for shifts in the dimension, we can later on justify to
restrict our attention to integrals of the form of equation (3.1.3) with αj ≥ 0.

The identities being discussed in the following will relate different integrals of the kind
of equation (3.1.5) to each other. Apart from prefactors not depending on integration
parameters they will only differ by the tuple of integer exponents (ν1, ...., νB). Following
Lee’s point of view in [Lee08] we can consider this tuple to be a set of coordinates
representing the integral as a point in ZB. Obviously some regions in this space correspond
to families of integrals with different complexity. A point in a region of ZB where some
of the νi are zero represents an integral with less than B factors in the denominator.
Usually, such an integral is less difficult to calculate than the corresponding one with B
factors. In a reduction procedure, one always tries to express the integral with B factors
in the denominator by integrals of the regions with less than B factors. Let us introduce
the identities which provide such a reduction.

3.1.2. Integration-by-Parts Identities. The entire approach discussed in this chap-
ter is based on the well-known property of dimensionally regularized Feynman integrals,
which we have already seen in equation (2.2.10): Let v be any vector in D-dimensional
momentum space, k a loop momentum vector and f (k) a scalar valued function of k
and possibly depending on other momenta. Extending Gauss’ theorem to D-dimensional
integrals one obtains the identity

∫

dDk
∂

∂kµ
vµf (k) = 0.(3.1.6)

For v one can take any of the internal or external momenta of a given Feynman inte-
gral

∫
dDkf (k). Then evaluating the differentiation by the product rule leads to re-

lations among different Feynman integrals, the so-called IBP-identities (integration-by-
parts identities). They were stated and applied for the first time in [CT81, Tka81].

More explicitly, let us consider the algebraically irreducible Feynman integral

(3.1.7) I (ν1, ..., νB) =

∫

dDk1...d
DkL

1
∏B
j=1 D

νj

j

,

which we consider as a function of the exponents ν1, ..., νB . Of course it is still understood,
that they also depend on the external momenta and the masses, but for the moment let
us omit these dependencies in our notation. For each integral I (ν1, ..., νB) we can apply
equation (3.1.6) to obtain the set of identities

∫

dDk1...d
DkL

∂

∂kµi
qµh

1
∏B
j=1 D

νj

j

= 0(3.1.8)

where the qh is one of the momentum vectors k1, ..., kL, p1, ..., pE . We will refer to
these identities as the basic IBP-identities of I (ν1, ..., νB). The set consists of L(L+ E)
identities. Of course these basic identities can be combined to infinitely many linear
combinations, as v in equation (3.1.6) may be any linear combination of the vectors
k1, ..., kL, p1, ..., pE .
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Evaluating the differentiation in equation (3.1.8) and performing trivial algebraic
reduction we obtain a linear combination of integrals on the left-hand side:

n∑

i=1

ciI (νi1, ..., νiB) = 0

where the ci are rational functions of D, squared external momenta and particle masses
and depending on the integers νj. The integrals I (νi1, ..., νiB) are all of the form of
equation (3.1.7) where possibly exponents are decreased and increased by one. More
precisely, they fall into three types of integrals:

(1) All exponents remain the same: νij = νj for all j ∈ {1, ..., B}.
(2) Just one exponent is increased: νil = νl + 1, νij = νj for all j ∈ {1, ..., B}\l.
(3) One exponent is decreased and another one is increased: νil = νl + 1, νik =

νk − 1, νij = νj for all j ∈ {1, ..., B}\{k, l}.
Let us briefly explain, why we have these three cases. We consider a differentiation
like ∂

∂kj

1
Dνi

i

. If Di depends on kj the exponent νj is increased at first. In addition, the

differentiation yields a certain factor in the numerator, possibly depending on kj and other
momenta. By algebraic reduction as described above, this factor can lead to cancellations,
either with Di, such that the νj is lowered again, which yields an integral of case 1 in
the above enumeration, or with any other factor D in the denominator, leading to case
3. Moreover algebraic reduction may lead to a term with a constant in the numerator,
such that no factor D cancels. Such a term corresponds to case 2 above. Examples will
be shown in the next subsections.

Let us similarly to [Lee08] and [Smi06] define the operators Aα and Bα for α =
1, ..., B as follows

(AαI) (ν1, ..., νB) = ναI (ν1, ..., να + 1, ..., νB) ,

(BαI) (ν1, ..., νB) = I (ν1, ..., να − 1, ..., νB) .(3.1.9)

In the literature these operators are often denoted by the bold number of the exponent
to be decreased or increased. For example 3

− = B3, 5
+ = 1

ν5
A5. With the notation as in

equations (3.1.9), any IBP-identity is written (see [Lee08]) as




B∑

α=1





B∑

β=1

aαβAαBβ + bαAα



+ c



 I (ν1, ..., νB) = 0(3.1.10)

where the aαβ , bα, c are again rational functions of D and physical parameters. The
three kinds of terms in this sum, c, bαAα and aαβAαBβ , correspond to the three types of
integrals we just mentioned.

Obviously the IBP-identities can be used to express one I (νi1, ..., νiB) in terms of
other ones, which are possibly less hard to evaluate or which can again be expressed in
terms of other ones and so on. In the following subsections we discuss at first an intuitive
and then a more systematic approach for such a reduction.

3.1.3. A Two-Loop Example and the Triangle Rule. Before we focus on a more
systematic treatment let us discuss the reduction by IBP-identities for an instructive case.
(For this and many other examples see [Smi06].)

Example 9. We consider the generic scalar integral of the massless two-loop propa-
gator topology of figure (3.1.1), which is

I (ν1, ν2, ν3, ν4, ν5) =

∫ ∫

dDk1d
Dk2 j (ν1, ν2, ν3, ν4, ν5)
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Figure 3.1.1. A two-loop propagator topology.

with

j (ν1, ν2, ν3, ν4, ν5) =
1

Dν1
1 Dν2

2 Dν3
3 Dν4

4 Dν5
5

=
1

(
k2
1

)ν1
(

(p− k1)
2
)ν2 (

k2
2

)ν3
(

(p− k2)
2
)ν4 (

(k1 − k2)
2
)ν5 ,

I depends on D and p2 and the νi are positive integers. For this integral we obtain six
basic IBP-identities by setting qµ = k1µ, k2µ, pµ in equation (3.1.8). Let us show the
simple evaluation explicitly, at least for one of these identities. We consider the identity

∫ ∫

dDk1d
Dk2

∂

∂k1µ
k1µj (ν1, ν2, ν3, ν4, ν5) = 0.

We apply the product rule and algebraic reduction to the integrand:

∂

∂k1µ
k1µj (ν1, ν2, ν3, ν4, ν5) =

j (ν1, ν2, ν3, ν4, ν5)

(
∂

∂k1µ
k1µ +

(
k2
1

)ν1 k1µ
∂

∂k1µ

(
k2
1

)−ν1

+
(

(p− k1)
2
)ν2

k1µ
∂

∂k1µ

(

(p− k1)
2
)−ν2

+
(

(k1 − k2)
2
)ν5

k1µ
∂

∂k1µ

(

(k1 − k2)
2
)−ν5

)

=

j (ν1, ν2, ν3, ν4, ν5)

(

D − 2ν1 + ν2
2k1p− 2k2

1

(p− k1)
2 − ν5

2k2
1 − 2k1k2

(k1 − k2)
2

)

=

j (ν1, ν2, ν3, ν4, ν5)

(

D − 2ν1 − ν2

(

1 +
k2
1

(p− k1)
2 − p2

(p− k1)
2

)

−ν5

(

1 +
k2
1

(k1 − k2)
2 − k2

2

(k1 − k2)
2

))

=

D − 2ν1 − ν2 − ν5

Dν1
1 Dν2

2 Dν3
3 Dν4

4 Dν5
5

− ν2

Dν1−1
1 Dν2+1

2 Dν3
3 Dν4

4 Dν5
5

+
ν2p

2

Dν1
1 Dν2+1

2 Dν3
3 Dν4

4 Dν5
5

− ν5

Dν1−1
1 Dν2

2 Dν3
3 Dν4

4 Dν5+1
5

+
ν5

Dν1
1 Dν2

2 Dν3−1
3 Dν4

4 Dν5+1
5

.

Therefore we have
∂

∂k1µ
k1µI =

(
D − 2ν1 − ν2 − ν5 −A2

(
B1 − p2

)
−A5 (B1 −B3)

)
I = 0.

All three different cases, explained in the previous section, are present in this example.
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Figure 3.1.2. Two-loop graphs, resulting from the contraction of an edge
in figure 3.1.1.

By a similar calculation we obtain a second basic IBP-identity

k2µ
∂

∂k1µ
I =

(
ν5 − ν1 −A1 (B3 −B5) −A2

(
B1 +B4 −B5 − p2

)
−A5 (B1 −B3)

)
I

= 0

and we can derive the other four basic identities in the same way.
Let us see what we can achieve with these first two identities only. We consider the

difference of the two identities (cf. the first example in [CT81])
(

k2µ
∂

∂k1µ
− ∂

∂k1µ
k1µ

)

I =

(3.1.11) (ν1 + ν2 + 2ν5 −D −A1 (B3 −B5) −A2 (B4 −B5)) I = 0,

which we can write as

I =
A1B3I −A1B5I +A2B4I −A2B5I

ν1 + ν2 + 2ν5 −D
.

We see that in each integral on the right-hand side one of the exponents ν3, ν4, ν5 is
decreased by one and none of these exponents is increased. Hence repeated use of this
equation will enable us to express I in terms of integrals where one of the exponents
ν3, ν4, ν5 is zero. These are integrals corresponding to the graphs shown in figure 3.1.2.
They can be considered less complex than I, so for this example equation (3.1.11) is
sufficient for a reduction of I to simpler integrals. Only two of the initial six basic IBP-
identities have been used.

Of course, for most Feynman integrals, a useful reduction requires a lot of more effort
and the consideration of more than two IBP-identities. With the above example we have
considered a particularly easy case, where in a few steps we obtained the useful equation
(3.1.11) due to the fact that the underlying Feynman graph has a triangle as in figure
3.1.3 as a sub-graph and the propagators are massless. For general graphs with these
properties one can construct identities equivalent to equation (3.1.11). These so-called
triangle rules [vRS00] are derived as follows.

Consider a Feynman graph containing the triangle graph in figure 3.1.3 as a sub-
graph, such that the edges with the momenta q1 and q2 are internal edges. The Feynman
integral for the entire graph is

I (ν1, ν2, ν3, ...) =

∫

dDk
∏

dDk̃j (ν1, ν2, ν3, ...)

=

∫

dDk
∏

dDk̃
1

(

(k + q1)
2 −m2

1

)ν1 (

(k + q2)
2 −m2

2

)ν2
(k2)ν3

∏
P̃
,
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q1

q2

1

2
3

Figure 3.1.3. A triangle as a sub-graph.

where we have written the terms depending on the loop-momentum k of the triangle
explicitly and indicated the presence of further propagators and integrations by terms
with a tilde. While in example 9 all propagators were massless we consider a more general
case here. We have assigned arbitrary masses m1, m2 to the edges 1 and 2 respectively.
The propagator of edge 3 is massless. One of the basic IBP-identities for I is

∫

dDk
∂

∂kµ
kµj (ν1, ν2, ν3, ...) = 0

which evaluates to

I =
1

D − ν1 − ν2 − 2ν3

(

A1B3I −A1

∫

dDk
∏

dDk̃
(
q21 −m2

1

)
j (ν1, ν2, ν3, ...)

+A2B3I −A2

∫

dDk
∏

dDk̃
(
q22 −m2

2

)
j (ν1, ν2, ν3, ...)

)

.

If the edges labelled by q1 and q2 are assigned masses m1 and m2 respectively, then their
inverse propagators appear in

∏
P̃ as

(
q21 −m2

1

)ν4 (q22 −m2
2

)ν5 and we have a cancellation
with the corresponding terms in the above identity. Hence these terms can be expressed
by the lowering operators B4 and B5 respectively, so in this case we obtain

I =
A1B3I −A1B4I +A2B3I −A2B5I

D − ν1 − ν2 − 2ν3
.(3.1.12)

Equation (3.1.12) is a triangle rule. We see that on the right-hand side the powers
of the propagators of the edges 1 and 2 are raised and the powers of the edges 3, 4 and
5 are lowered, due to the presence of the operators B3, B4 and B5. The relation can be
used repeatedly until one of the exponents ν3, ν4, ν5 turns zero in a term on the right
hand side. Therefore repeated use of equation (3.1.12) always leads to a reduction of the
original integral I to integrals where at least one of the edges 3, 4 and 5 is contracted.
The latter integral can be considered easier as it has less propagators.

Let us repeat the properties of an initial Feynman graph G, which are necessary to
obtain equation (3.1.12). The graph G contains a triangle as in figure 3.1.3 as a sub-
graph, such that two edges are external to the triangle but internal edges of G. In figure
3.1.3 these are the two edges with the momenta q1 and q2. Furthermore, the mass m1 is
assigned to the edge 1 in the figure and to the edge of q1. Correspondingly, an arbitrary
mass m2 is assigned to edge 2 and to the edge of q2. This choice of masses is essential
to obtain the desired equation as it leads to the cancellation of the terms

(
q21 −m2

1

)

and
(
q21 −m2

2

)
. By these cancellations the powers of the corresponding propagators are

lowered, so we obtain the operators B4 and B5 in equation (3.1.12). We furthermore
assume that edge 3 is massless and obtain the operator B3.
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We see, that we need to make some assumptions in order to obtain a recurrence
relation as equation (3.1.12) in such an easy way. In the following we concentrate on
reduction methods for the general case, where such tricks possibly do not apply.

3.1.4. The Laporta Algorithm. The algorithm of Laporta [Lap00] generates a
system of finitely many basic IBP-identities and uses conventional Gauss-elimination to
successively express all integrals in the system in terms of a finite and small number of
integrals, which can not be reduced any further. The latter integrals are the so-called
master integrals. The Feynman integrals which belong to the set of master integrals are
determined by the system of identities.

Of course, in each step of this procedure, an integral shall possibly be expressed in
terms of simpler ones. A human being can decide from case to case, which of two given
Feynman integrals is, for whatever reasons, easier to handle than the other. However, for
a fully automated calculation one needs a universal ordering on all the Feynman integrals
under consideration. It is a key point of Laporta’s algorithm, that it incorporates such
an ordering, which we want to define now.

As in equation (3.1.4) we consider integrands of the form

j (n, u, α, β) =

∏B−n
i=1 S̃βi

i
∏n
j=1 P

αj
uj

(3.1.13)

where n is the number of propagators, B − n is the number of algebraically irreducible
scalar products. By α = (α1, ..., αn) and β = (β1, ..., βB−n) we denote the ordered
sets of the exponents and by u = (u1, ..., un) the ordered set of indices of the inverse
propagators. u is just a set of indices encoding which propagators are present in the
integrand. For a given integrand of this form let us define the numbers

Mp =

B−n∑

i=1

βi,

Md =

n∑

i=1

(αi − 1),

i. e. the sum of the exponents of the irreducible scalar products and the sum of the ex-
ponents of the inverse propagators minus their number respectively. We consider the set
of integrands of the form of equation (3.1.13) characterized by given values of n, Mp, Md

but differing by individual values of the αj and βi. We denote such a set by

[

n;
Mp

Md

]

.

We can sort the integrands by the use of lexicographical ordering, which is defined as
follows: A sequence of numbers (a1, ..., an) is larger than another sequence (b1, ..., bl),
which we denote

(a1, ..., an) ≻ (b1, ..., bl) ,

if either n > l or if n = l and if furthermore there exists an m between 0 and n such
that am > bm and ai = bi for all 0 < i < m. For example (4, 4, 4, 1) ≻ (4, 4, 2, 8) but
(4, 4, 2, 8) ≻ (4, 4, 4). With these notations we can now phrase Laporta’s ordering of the
integrands of equation (3.1.13): For two integrands j (N, u1, ..., un, α1, ..., αn β1, ..., βB−n)
and j′

(
N ′, u′1, ..., u′l, α′

1, ..., α
′
l β

′
1, ..., β

′
B−l
)

of the above type we say that j is larger
than j′, denoted

j ≻L j′,
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if

(N,u1, ..., un, α1, ..., αn, β1, ..., βB−n) ≻
(
N ′, u′1, ..., u

′
l, α

′
1, ..., α

′
l, β

′
1, ..., β

′
B−l
)
.

(3.1.14)

Now let us describe Laporta’s algorithm. We consider a given set of N inverse prop-
agators P1, ..., PN and B scalar products. The number of loop-momenta is L. A set
u = (u1, ..., un) with u1 < u2 < ... < un is chosen to be an ordered subset of (1, ..., N)

(see step 2 of the algorithm below). Such a subset fixes one of

(
N
n

)

possibilities to pick

n inverse propagators {Pu1 , ..., Pun} of the given ones. After this choice an integrand j
as in equation (3.1.13) is selected by the additional choice of exponents α and β (see line
6 below). Laporta’s reduction algorithm [Lap00] can be formulated as follows:

Algorithm 10. (Laporta)
1. Let S be a set of identities and J a set of integrands. S and J are empty sets

at the beginning. For each integer n from L to N do

2. For each of the

(
N
n

)

combinations u = (u1, ..., un) with u1 < ... < un do

3. Choose two non-negative integers au, bu.
4. For each Md from 0 to au do
5. For each Mp from 0 to bu do

6. Choose one j (n, u, α, β) ∈
[

n;
Mp

Md

]

and create the corresponding

basic IBP-identities (as in equation (3.1.8)).
7. For each of these new identities, which can not be obtained as a

linear combination of identities of S, do
8. Substitute the integrands of the new identity which belong to J

by use of the identities of S.
9. Extend the set J by the largest integrand of the new identity.
10. Extend the set S by the new identity.

The resulting set S is the desired system of IBP-identities for the reduction of the
given class of integrals.

In step 9 of the algorithm, large is meant in the sense of the above ordering. We
see that the algorithm uses the ordering in two ways. Firstly, as Laporta emphasizes in
reference [Lap00], the computation time depends strongly on the order, in which the
IBP-identities are considered. Therefore the above algorithm starts (in step 6) with the
basic IBP-identities of the smallest integrands in the sense of the above ordering and
proceeds to the identities of the larger integrands. Secondly, an IBP-identity is always
used to express the largest of its integrands by the smaller ones, as we see in the steps
8 and 9. If we use an ordering of the integrands which is different from the one defined
by equation (3.1.14) then the system of equations generated by the algorithm may be
different and one in general obtains a different set of master integrals.

Remark 11. Laporta’s algorithm is a widely used and very successful method. Nev-
ertheless its heuristic nature gives room to possible improvements. The main problem
is, that the number of identities considered by the algorithm increases rapidly with N ,
which makes the reduction very elaborate at high loop orders. An impressive example
for this problem can be found in Toedtli’s dissertation [Toe09], where in section 4.4 it is
estimated that Laporta’s algorithm would need to produce more than 180 000 identities
for the calculation of a certain Green’s function at three-loop order.
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The algorithm usually generates far more identities than necessary. Therefore one
may in addition use procedures to select the useful identities, as for example in Toedtli’s
dissertation. A very recent approach to such a selection was given by Lee [Lee08]. He
reveals an underlying group structure of the operators which determine the IBP-identities.
From this structure he deduces criteria for a selection of identities to be considered in the
reduction3.

Another problem may be seen in the mentioned fact that the information, which of the
Feynman integrals under consideration are master integrals, is usually not clear from the
beginning. In a different reduction approach initiated by Baikov [Bai96], this problem is
supposed to be absent. We also want to mention another approach by a decomposition
in terms of Gröbner bases, as introduced to Feynman integrals by Tarasov [Tar98], for
example using a generalized Buchberger algorithm [SS06]. The great advantage of the
Laporta algorithm in comparison to these alternatives is its applicability to the general
case, given by its simplicity.

3.2. Translation to Feynman Parameters

We have reviewed the approach of IBP-identities in the momentum space representa-
tion. In the present section we will discuss the same identities in the Feynman parametric
representation4. We will see that IBP-identities can be written in a convenient way by
the use of the Feynman graph polynomials U and F , defined in chapter 2 (and extensively
discussed in chapter 4).

3.2.1. IBP-Operators for Feynman Parametric Integrals. We have seen that
all IBP-identities in momentum space can be conveniently formulated by the use of the
operators Ai and Bi as defined in equation (3.1.9). In the following let us consider the
case where all scalar products in the problem are algebraically reducible (i. e. they can
be expressed in terms of the propagators), such that the operators Ai and Bj raise and
lower the exponents of inverse propagators (and not of scalar products). We mentioned
in subsection 3.1.1 that this is not a severe restriction, as integrals with algebraically
irreducible scalar products in the numerator of the integrand can be rewritten in terms of
integrals where the numerator is one and where the space-time dimension D is changed
(see the method of Tarasov in reference [Tar96]).

Each such scalar Feynman integral can be written in terms of Feynman parameters
as

IG =

∫

dDk1...d
DkL

1

iLπLD/2
1

∏N
j=1 (−Pj)νj

=

(3.2.1)

∫ 1

0
dNxjG (ν1, ..., νN )

with

jG (ν1, ..., νN ) =
Γ (ν − LD/2)
∏N
j=1 Γ (νj)





N∏

j=1

x
νj−1
j



 δ

(

1 −
N∑

i=1

xi

)

Uν−(L+1)D/2
G

Fν−LD/2
G

.

and ν =
∑N

j=1 νj, d
Nx =

∏N
k=1 dxk. Here we have assigned the index G to the integral,

the integrand and the two polynomials U and F . G denotes the underlying Feynman

3The implementation FIRE [Smi08] makes practical use of Lee’s ideas.
4Integration-by-parts was applied to Feynman parametric integrals e. g. in [BDK94]. Unlike the

method given there, we do not obtain identities from differentiation with respect to Feynman parameters
but instead just re-write the above IBP-identities, obtained from momentum space representation.



42 3. INTEGRATION-BY-PARTS FOR FEYNMAN INTEGRALS

graph, from which these functions are determined. We denote the jth edge of G by ej .
Each inverse propagator Pj and each Feynman parameter xj is assigned to an edge ej .

Let us observe how the operators Ai and Bi act on the Feynman parametric integrals.
Ai simply increases νi in the above equation by one if νi ≥ 1. (If νi = 0, the IBP-identities
obtained from this integral will not contain Ai.) The exponents of the graph polynomials
UG and FG are increased by Ai, but the polynomials themselves remain unchanged. Bi
decreases νi in the equation, if νi > 1. In the case of νi = 1 the operator Bi cancels
the inverse propagator Pi. This is equivalent to the contraction of the corresponding
edge in the graph. G/ei shall denote the graph which we obtain from the graph G by
contraction of the edge5 ei. The inverse propagator Pi and the Feynman parameter xi are
assigned to ei. In the Feynman parametric representation IG/ei

is obviously not obtained
from IG just by lowering an exponent. IG and IG/ei

differ furthermore by the number of
integration parameters and by their polynomials. Therefore we see that for a formulation
in the Feynman parametric representation we have to treat the case of νi = 1 separately.

We have

(AiIG) (ν1, ..., νN ) = νiIG (ν1, ..., νi + 1, ..., νN ) for νi > 0,

(BiIG) (ν1, ..., νN ) =

{
IG (ν1, ..., νi − 1, ..., νN ) for νi > 1,

IG/ei
(ν1, ..., νi−1, νi+1, ..., νN ) for νi = 1.

(3.2.2)

For the moment let us restrict to the case, where just exponents are raised or lowered,
i. e. where no Bj acts on an integral with νj = 1. For this case it makes sense to introduce

operators Ãi and B̃j acting on the integrand of IG as follows:

(AiIG) (ν1, ..., νN ) =

∫ 1

0
dNxÃijG (ν1, ..., νN ) for νi > 0,

(BiIG) (ν1, ..., νN ) =

∫ 1

0
dNxB̃ijG (ν1, ..., νN ) for νi > 1.

We have
ÃijG (ν1, ..., νN ) = jG (ν1, ..., νi + 1, ..., νN )

=
νiΓ (ν + 1 − LD/2)

(νi)!
∏N

j = 1
j 6= i

Γ (νj)
xi





N∏

j=1

x
νj−1
j



 δ

(

1 −
N∑

i=1

xi

)

Uν+1−(L+1)D/2
G

Fν+1−LD/2
G

(3.2.3) = xi (ν − LD/2)
UG
FG

jG (ν1, ..., νN )

and similarly

B̃ijG (ν1, ..., νN ) = jG (ν1, ..., νi − 1, ..., νN )

=
νi
xi

1

ν − LD/2

FG
UG

jG (ν1, ..., νN ) .(3.2.4)

According to equation (3.1.10) the lowering operators Bi in IBP-identities always appear
in combination with raising operators, as in AiBj. In this combination the obvious
cancellations lead to

ÃiB̃jjG (ν1, ..., νN ) = jG (ν1, ..., νi + 1, ..., νj − 1, ..., νN )

=
xiνj
xj

jG (ν1, ..., νN ) .(3.2.5)

5A contraction of ei is achieved by joining the vertices at the ends of ei and subsequently removing
ei. In chapter 4 we will discuss the contraction of edges in more detail.
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In the following we apply these equations to provide a form of the IBP-identities in terms
of Feynman parameters and U and F .

3.2.2. Generic Equations for One-Loop Sub-graphs. Let us return to an im-
portant aspect in the derivation of the triangle rule (equation (3.1.12)). We have seen,
that the rule is a recurrence relation for a graph which contains a triangle as in figure
3.1.3 as a sub-graph. For example let us consider the two-loop graph of figure (3.1.1). It
contains the triangle of figure (3.1.3) as a sub-graph. There are two edges (labelled with
q1 and q2) which are external edges of the triangle and internal edges of the two-loop
graph. The key point in the derivation of the triangle rule was a cancellation of the
inverse propagators of these two edges. The example of the triangle rule shows that it
can be useful to consider the basic IBP-identities corresponding to a one-loop sub-graph
(the triangle) in order to find a useful recurrence relation for the entire graph (the two-
loop graph). Therefore let us in the following give a formulation for the IBP-identities
corresponding to one-loop sub-graphs in terms of Feynman parameters6.

Let G be a Feynman graph with at least one loop. Let Gi be the sub-graph of G which
consists of the edges whose momenta depend on the loop-momentum ki, of all vertices at
the ends of these edges and of all further edges, which these vertices are incident to. The
latter edges are external with respect to Gi, but each of them may be either external or
internal with respect to G. We already mentioned an example: If G is the two-loop graph
of figure (3.1.1) a one-loop sub-graph Gi is the triangle of figure (3.1.3). An external edge
of Gi is either external or internal with respect to G.

Each basic IBP-identity (obtained from equation (3.1.8)) of the Feynman integral
of G is derived by differentiating with respect to just one loop momentum. Hence for
the derivation of a basic IBP-identity obtained from ∂

∂kµ
i

qµ it is useful to focus on the

sub-graph Gi. Let the external edges of Gi have assigned the momenta p1, p2, ... . The
squares of these momenta appear in the IBP-identities derived from ∂

∂kµ
i

qµ.

If one pi is external with respect to G we just keep it as a parameter. If it is internal
with respect to G, it can be expressed in terms of external momenta and of inverse
propagators of G. The latter propagators then yield raising and lowering operators on
edges which belong to another loop of G. For example in the triangle rule of equation
(3.1.12) the operators B4 and B5 lower powers of inverse propagators whose edges are
external with respect to the triangle but internal with respect to a different loop.

In the following we will separately consider the structure of IBP-identities of massless
one-loop graphs with external momenta p1, p2, ... Because of the arguments just men-
tioned, these identities then can be used to study the IBP-identities for a general L-loop
graph G which contains the considered one-loop graph as a sub-graph.

At first we discuss the examples of the massless one-loop graphs with two and three
edges and then we extend our observations to n edges.

Example 12. We consider the Feynman graph G on the left hand side of figure (3.2.1)
where the numbers inside the loop stand for the indices i of the edges ei, corresponding
to inverse propagators Pi and Feynman parameters xi. The exponents νi of the inverse
propagators are assumed to be larger than one. The Feynman integral for this graph
reads

IG =

∫
dDk1

iπD/2
1

(k2)ν1
(

(k − p)2
)ν2 =

∫ 1

0
dx1dx2jG (ν1, ν2)

6We want to mention, that the IBP-identities of one-loop integrals are of course studied in detail in
the literature. A systematic method for the reduction of possibly tensor-like one-loop integrals with an
arbitrary number of external edges was given in [GG04, GGZ04].



44 3. INTEGRATION-BY-PARTS FOR FEYNMAN INTEGRALS
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Figure 3.2.1. One-loop selfenergy graph and triangle graph

with

jG (ν1, ν2) =
Γ (ν1 + ν2 −D/2)

ν1!ν2!
xν1−1

1 xν2−1
2 δ (1 − x1 − x2)

Uν1+ν2−DG

Fν1+ν2−D/2
G

,

UG = x1 + x2,

FG = x1x2

(
−p2

)
.

The operators for the derivation of the basic IBP-identities as in equation (3.1.8) are
∂
∂kµk

µ and pµ ∂
∂kµ . Instead of the latter operator let us consider ∂

∂kµ (kµ − pµ). From
∂
∂kµkµ we obtain

(D − 2ν1 − ν2) IG =
(
A2B1 +

(
−p2

)
A2

)
IG

and from ∂
∂kµ (kµ − pµ) we obtain

(D − ν1 − 2ν2) IG =
(
A1B2 +

(
−p2

)
A1

)
IG.

Due to the given assumption that the νi are larger than one, we can write these
equations in terms of operators Ãi, B̃j which act on the Feynman parametric integrand

j̃G (ν1, ν2) as in the equations (3.2.3) and (3.2.5). We obtain

(D − 2ν1 − ν2)

∫ 1

0
dxjG =

∫ 1

0
dNx

(

x2
ν1

x1
+
(
−p2

)
x2 (ν −D/2)

UG
FG

)

jG,

(D − ν1 − 2ν2)

∫ 1

0
dxjG =

∫ 1

0
dNx

(

x1
ν2

x2
+
(
−p2

)
x1 (ν −D/2)

UG
FG

)

jG.

We can write the terms in parentheses on the right-hand side as

x2
ν1

x1
+
(
−p2

)
x2 (ν −D/2)

UG
FG

= UG|x1=0

ν1

x1
+
∂FG
∂x1

(ν −D/2)
UG
FG

,

x1
ν2

x2
+
(
−p2

)
x1 (ν −D/2)

UG
FG

= UG|x2=0

ν2

x2
+
∂FG
∂x2

(ν −D/2)
UG
FG

.

We will observe that the IBP-identities for general massless one-loop graphs can be written
in a similar form. But first let us see yet one more example.

Example 13. We consider G to be the massless triangle graph on the right-hand
side of figure (3.2.1), again assuming ν1, ν2, ν3 to be greater than one. We apply the
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operators ∂
∂kµ v

µ
i with vµ1 = kµ, vµ2 = kµ − pµ1 − pµ2 , vµ3 = kµ − pµ2 and obtain in this order

the identities

(D − 2ν1 − ν2 − ν3) IG =
(
A3B1 +A2B1 +

(
−p2

2

)
A3 +

(
−p2

3

)
A2

)
IG,

(D − ν1 − 2ν2 − ν3) IG =
(
A1B2 +A3B2 +

(
−p2

3

)
A1 +

(
−p2

1

)
A3

)
IG,

(D − ν1 − ν2 − 2ν3) IG =
(
A1B3 +A2B3 +

(
−p2

2

)
A1 +

(
−p2

1

)
A2

)
IG.

The translation to Feynman parameters yields

(D − 2ν1 − ν2 − ν3) IG =

∫ 1

0
dNx

(

UG|x1=0

ν1

x1
+
∂FG
∂x1

(ν −D/2)
UG
FG

)

jG,

(D − ν1 − 2ν2 − ν3) IG =

∫ 1

0
dNx

(

UG|x2=0

ν2

x2
+
∂FG
∂x2

(ν −D/2)
UG
FG

)

jG,

(D − ν1 − ν2 − 2ν3) IG =

∫ 1

0
dNx

(

UG|x3=0

ν3

x3
+
∂FG
∂x3

(ν −D/2)
UG
FG

)

jG.

3.2.3. The Polynomial Structure of IBP-Identities. We see that in the case of
the two examples above a basic set of linearly independent IBP-identities can be obtained
by a very simple formula, which in Feynman parameters can be written in a compact way
by the use of U and F :

If IG is the Feynman integral of either example 12 or example 13, the basic IBP-
identities (as defined by equation (3.1.8)) can be written as

(D − ν − νi) IG =

∫ 1

0
dNx

(

UG|xi=0

νi
xi

+
∂FG
∂xi

(ν −D/2)
UG
FG

)

jG,(3.2.6)

where i runs through the indices of the internal edges. This notation always assumes all
νi > 1. In the case of some νi equal to 1 we would have to use a slightly more complicated
notation according to the last case in equation (3.2.2).

Now we want to show, that equation (3.2.6) remains true if IG is an arbitrary massless
one-loop graph, where the exponents of the inverse propagators are larger than 1:

Proposition 14. Let IG be a massless one-loop Feynman integral with

IG =

∫
dDk

iπD/2
1

(

(k − p1)
2
)ν1 (

(k − p1 − p2)
2
)ν2

... (k2)νN

=

∫

dNxjG

with arbitrary N , jG being the integrand in Feynman parametric representation and with
all the νi larger than one. Then IG satisfies the identities

(D − ν − νi) IG =

∫ 1

0
dNx

(

UG|xi=0

νi
xi

+
∂FG
∂xi

(ν −D/2)
UG
FG

)

jG.

Proof. G is a one-loop graph with N internal edges e1, e2, ..., eN . At each of the
N vertices we have an incoming external momentum7 pµi . The loop-momentum is kµ and
to each internal edge ei is assigned an internal momentum

V µ
i = kµ −

i∑

j=1

pµj

7The external momentum at one vertex may be the sum of the momenta which are assigned to more
than one external edge at this vertex.
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Figure 3.2.2. One-loop graph with N internal edges

as shown in figure (3.2.2). (Note that by momentum conservation we have V µ
N = kµ −

∑N
j=1 p

µ
j = kµ.) The inverse propagator of the edge ei is V µ

i Vi µ = V 2
i . We have the

Feynman integral

IG =

∫
dDk

iπD/2
j̃G

=

∫
dDk

iπD/2
1

(

(k − p1)
2
)ν1 (

(k − p1 − p2)
2
)ν2

... (k2)νN

=

∫
dDk

iπD/2
1

(
V 2

1

)ν1 (V 2
2

)ν2 ...
(
V 2
N

)νN
.

and we consider the N linearly independent IBP-identities from the operators ∂
∂kµV

µ
i for

i = 1, ..., N , acting on the integrand j̃G. Note that j̃G denotes the integrand in the
momentum space representation. We derive

∂

∂kµ
V µ
i jG = j̃G




∂

∂kµ
V µ
i +

N∑

j=1

(
V 2
j

)νj V µ
i

∂

∂kµ
(
V 2
j

)−νj





= j̃G



D +

N∑

j=1

νj
−2V µ

i Vj µ
V 2
j





= j̃G



D +
N∑

j=1

νj
(Vi − Vj)

2 − V 2
i − V 2

j

V 2
j





= j̃G










D −
N∑

j=1

νj

︸ ︷︷ ︸

=:ν

−νi +
N∑

j = 1
j 6= i

νj
(Vi − Vj)

2 − V 2
i

V 2
j










.
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The inverse propagators V 2
i and V 2

j can be considered as resulting from the action of
raising and lowering operators respectively, which leads to

(D − ν − νi) IG =
N∑

j = 1
j 6= i

(

− (Vi − Vj)
2Aj +AjBi

)

IG.(3.2.7)

These are IBP-identities of IG in the momentum space representation.
Now let jG be the integrand of the same integral in the Feynman parametric representa-
tion:

IG =

∫

dNxjG.

Then, due to the assumption νi > 1 for i = 1, 2, ..., N , equation (3.2.7) translates to

(D − ν − νi) IG =

(3.2.8)

∫

dNx

N∑

j = 1
j 6= i

(

− (Vi − Vj)
2 xj (ν −D/2)

UG
FG

+ νi
xj
xi

)

jG.

Vi−Vj is the incoming external momentum of a sub-graph of G, which is obtained as one

of the connected components after deleting ei and ej . Hence the term − (Vi − Vj)
2 is the

coefficient of xixj in the polynomial FG. For this reason and the fact that UG =
∑N

j=1 xj ,

we see that the equations (3.2.8) and (3.2.6) are the same. �

For the sake of brevity we have restricted the discussions of the present section mainly
to the case where all exponents νi are larger than one. The treatment of the case where
some of the exponents are equal to one would be more complicated. In equation (3.2.2)
we have seen, that the lowering of an exponent which is equal to one corresponds to
the contraction of an edge. Therefore the corresponding IBP-identities would contain the
polynomials U and F of the graph G and furthermore of graphs which are obtained from G
by the contraction of an edge. Such an IBP-identity would obviously take a less compact
form than equation (3.2.6) above and we dispense with a more detailed consideration of
this case.

3.2.4. A Concluding Remark on IBP-Identities. In this chapter we gave a
brief review on IBP-identities in the momentum space representation. We furthermore
formulated a simple translation to the Feynman parametric representation and derived
the convenient equation (3.2.6) for one-loop Feynman integrals IG with the powers νj of
the inverse propagators being larger than one. We explained, that the consideration of
such a one-loop graph can be helpful to study the IBP-identities of larger graphs, which
contain the one-loop graph as a sub-graph. An example was given by the well-known
triangle rule.

IBP-identities provide a powerful and widely used approach to write Feynman inte-
grals in terms of simpler ones. For an arbitrary Feynman integral the Laporta algorithm
combines IBP-identities to a reduction in terms of master integrals. Publicly available
implementations of the Laporta algorithm are the computer programs AIR [AL04] and
FIRE [Smi08]. We also mentioned alternative reduction mechanisms which are not ap-
plicable to the general case. Focusing on the Laporta algorithm we mentioned, that the
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algorithm generates far more identities than necessary for the reduction and that one usu-
ally does not know beforehand, which integrals will be the master integrals of a reduction.
A solution of these two problems, particularly of the first one, would be an important
step towards a more efficient evaluation of Feynman integrals. Recent developments to-
wards a diminishment of the number of identities have been made in the dissertation of
Toedtli [Toe09] and in a more abstract way in the work of Lee [Lee08]. Very recently, a
new, efficient implementation of the Laporta algorithm was used by Bonciani, Ferroglia,
Gehrmann and Studerus in [BFGS09]. The article refers to a future publication of this
new computer program by Studerus, which is currently in preparation.

Moreover, let us remark that IBP-identities are used in an approach by Remiddi and
collaborators [CCLR98, GR00, Rem97] (generalizing an idea of Kotikov [Kot91]) for
the evaluation of master integrals. In this approach Feynman integrals are considered
as solutions of certain differential equations, which are usually constructed by the use of
IBP-identities. To our understanding, as it lies in the nature of a master integral to have
relatively few propagators, the problem of handling a very large set of equations typically
appears in the earlier step of the reduction to master integrals, but not in the evaluation
of the master integral itself.

In the remainder of our dissertation we will not make explicit use of IBP-identities.
Nevertheless, for some of the following considerations it will be useful to keep in mind,
that by use of IBP-identities, sets of infinitely many Feynman graphs can be expressed by
finitely many master integrals. For example let M be a set of infinitely many Feynman
integrals where each integral can be reduced to a finite set of master integrals {I1, ..., In}.
Then if we evaluate the master integrals I1, ..., In, we can in principle use the IBP-
identities to evaluate any other integral of M . More generally, if the master integrals fulfill
a certain property, one might find, by the use of IBP-identities, that each integral of M
fulfills the same property. For example if all the master integrals are linear combinations
of a certain class of functions, say polylogarithms (see chapter 6), then the same must be
true for each integral in M .

The use of the polynomials U and F in equation (3.2.6) may furthermore give a reason
for the detailed study of these polynomials which we aim at in the following chapter.



CHAPTER 4

Feynman Graph Polynomials

“The limits of my language mean the limits of my world.”
(Ludwig Wittgenstein)

The main purpose of the present chapter is to demonstrate, how the language of algebraic
graph theory can be applied to describe the combinatorial structure of Feynman integrals.
Feynman integrals are most accessible to the terminology of graph theory in their Feynman
parametric representation (see equation (2.3.6)). The two so-called Symanzik polynomials
arising from this representation are our main objects of interest.

It appears to us that relevant new theorems and a more convenient notation have
been established in graph theory since Nakanishi’s comprehensive book on the subject
from 1971 [Nak71]. At the same time, in mathematical physics the interest in Symanzik
polynomials has grown, particularly within the past few years due to studies of the zero-
sets of these polynomials from the point of view of algebraic geometry1. Likewise, in the
evaluation of multi-loop integrals, Symanzik polynomials play a key role, as successful
calculational methods like sector decomposition (see chapter 5 and references given there)
start from parametric representations of Feynman integrals. However, there are powerful
techniques which do not rely on using the most characteristic properties of Symanzik
polynomials discussed in this chapter. On the other hand, very recently, a new kind of
algorithm using these properties to a large extent was presented by Brown [Bro09] and
serves for the evaluation of a special class of integrals where the results are expressed by
multiple zeta values. These recent developments on both, the graph theoretical and the
physical side, motivate the recapitulation of Symanzik polynomials which we attempt to
give with this chapter.

A second aim is motivated by our observation that in the literature very often only
one of the two Symanzik polynomials is discussed, due to its property of being a so-called
Kirchhoff polynomial (see section 4.1.3 below). This polynomial will be called the first
Symanzik polynomial and the other one will be called the second one (precise definitions
given below). In terms of Feynman graphs, ignoring the second Symanzik polynomial
corresponds to the restriction to vacuum graphs. A relation between the first and the
second Symanzik polynomial is well known, and therefore in some restricted approaches
of this kind the extension to the general case might be simple. Nevertheless we want to
bring the second Symanzik polynomial (and Feynman graphs with external legs) closer to
the combinatorial treatments. To this end we state a new relation involving both of the
Symanzik polynomials. Our proof of this relation uses the all-minors-matrix-tree-theorem
[Cha82, Che82, Moo94].

In the end of the chapter we point out the relation between Symanzik polynomials
and the multivariate Tutte polynomial. To our understanding the latter object receives a
lot of attention in today’s research on topics of abstract combinatorics and is related to

1See [Blo07, Mar09] for introductions and e. g. [And08, AM08a, AM08b, AM09b, AM09a,

BB03a, BEK06, Mar08, MR08] for further details.
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(a) (b)

Figure 4.1.1. (a) A graph. (b) Lines and dots, but not a graph.

a variety of subjects in mathematics and physics alike (see e. g. [KRTW08, Sok05]). A
deeper study of its possible use for the calculation of Feynman integrals might be fruitful
in the future.

4.1. Graphs, Feynman Graphs and Associated Matrices

4.1.1. Basic Notions of Graph Theory. Attempting to give a self-consistent in-
troduction, we start with the definition of some rudimentary objects of standard graph
theory. (For more detailed introductions, see e. g. [Bol98, Die05, Nak71]).

For a set H we denote the number of its elements by |H|. A set is called minimal
with respect to a certain property, if it fulfills the property, but any proper subset does
not.

A graph G consists of a set of edges EG = {e1, e2, ..., en}, a set of vertices VG =
{v1, v2, ..., vm} and a map φG from EG to pairs of vertices in VG. φG is called incidence
relation and the vertices vi, vj ∈ VG are said to be incident to the edge el ∈ EG, if

φG (el) = {vi, vj} .(4.1.1)

The pair of vertices on the right-hand side is not ordered and the case i = j is allowed.
vi, vj are then said to be end-points of el. In the typical pictorial representation of a
graph G = (EG, VG, φG), vertices (dots) are drawn at the ends of the edges (lines) to
which they are incident.

According to the definition, a graph may contain vertices, which are not incident to
an edge. On the other hand, an edge where one or two ends have no incident vertex is
not allowed. Two examples are depicted in figure (4.1.1), a graph in (a) and a collection
of lines and dots which does not represent a graph in (b). As a direct consequence of the
definition, if a graph has no vertices, it can not have any edges. We may call the unique
graph given by VG = ∅ the empty graph (but we will not make use of this notion in the
following).

For some purposes we may introduce an orientation on a graph by replacing φG by a
map from EG to ordered pairs of vertices,

φ̃G (el) = (vi, vj) ,(4.1.2)

with (vi, vj) now being an ordered set. Then G =
(

EG, VG, φ̃G

)

is said to be an oriented

graph. In equation (4.1.2) we call vi the head and vj the tail of el. In an oriented graph
a vertex is a root, if it is not a tail of any edge. An oriented graph can have more than
one root.

In addition to the notion of edges being incident to vertices it is also useful to have
a word expressing that two vertices are end-points of the same edge. Any two vertices of
VG which are incident to the same edge of EG are said to be adjacent. The information
which is encoded by the map φG can alternatively be expressed in terms of incidence
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K1 K2 K3 K4 K5 K6

Figure 4.1.2. The complete graphs Kn for n = 1, ..., 6.

or adjacency. We will see below how to use both concepts to encode the information in
terms of matrices.

A sub-graph G′ of a graph G is a graph with EG′ ⊆ EG, VG′ ⊆ VG and with φG′ being
the restriction of φG to EG′ . We can always obtain a sub-graph by deleting edges and
vertices in the original graph, with the condition that the remaining edges still must have
end-points at both of their ends. A sub-graph G′ of G is a spanning sub-graph of G, if G
and G′ have the same vertices.

For convenience, let us give names to some special kinds of graphs. If a vertex vi is
incident to itself, meaning that there is an edge el which satisfies φG (el) = {vi, vi}, we
call the graph consisting of vi and el a self-loop. If for two vertices vi, vj the relation
φG (el) = {vi, vj} is fulfilled by more than one edge, we call the graph consisting of vi, vj
and all those edges a multiple edge. If two edges fulfill the relation, we may speak of a
double edge. If a vertex is not an end-point of any edge we call it isolated. For example,
the graph in figure (4.1.1) (a) has a self-loop, a double edge and an isolated vertex as
sub-graphs.

Now let us consider a graph which has n vertices, no self-loops, no multiple edges
and where every vertex is adjacent to each of the other vertices. For each n there is one
unique graph with these properties, called the complete graph with n vertices, denoted
by Kn. As an example, the complete graphs with less than seven vertices are shown in
figure 4.1.2. Any graph G′ without self-loops and multiple edges and with |VG′ | ≤ n can
be obtained as a sub-graph of Kn.

The self-loop, the double edge and the complete graph with 3 vertices K3 are special
cases of so-called loops. Before we give a general definition of a loop it is useful to introduce
the degree of a vertex and the concept of connectedness. For a vertex vi let S[vi] denote
the set of edges incident to vi and L[vi] ⊂ S[vi] the set of edges which are incident to
vi at both of their ends. Then the degree of vi is defined by the sum of the numbers of
elements in these sets:

deg (vi) = |S[vi]| + |L[vi]| .(4.1.3)

In other words, vi sits at deg (vi) ends of edges. More generally, for a subset of edges
H ⊂ EG we define the relative degree of a vertex vi to be

deg (vi, H) = |S[vi] ∩H| + |L[vi] ∩H| .(4.1.4)

Example 15. As an example let us consider the graph G of figure 4.1.3, consisting of
the vertices VG = {v1, v2, v3, v4} and the edges EG = {e1, e2, e3, e4}. None of the edges
is incident to the same vertex at bot of its ends (i. e. we have no self-loops). Therefore
the sets L[vi] are empty and we have deg (vi) = |S[vi]| for all i = 1, ..., 4. v1 and
v2 are end-points of two edges, v3 is the end-point of three edges and v4 of one edge.
Therefore we obtain deg (v1) = 2, deg (v2) = 2, deg (v3) = 3 and deg (v4) = 1. Now let us
consider the sub-graph G′ of G, consisting of the vertices VG′ = {v1, v2, v3} and the edges
EG′ = {e1, e2, e3} . (This sub-graph is the complete graph K3, cf. figure 4.1.2). We may
be interested in the relative degree of the vertices with respect to the set EG′ . According



52 4. FEYNMAN GRAPH POLYNOMIALS
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Figure 4.1.3. A graph G, considered in example 15.

to equation (4.1.4) we obtain deg (v1, EG′) = 2, deg (v2, EG′) = 2, deg (v3, EG′) = 2 and
deg (v4, EG′) = 0.

Two vertices vi and vj are called connected, if there is a sequence of vertices vi =
u0, u1, ..., uk = vj such that uh and uh+1 are adjacent for h = 1, 2, ..., k−1. The relation
“is connected to” is an equivalence relation, decomposing the set VG into equivalence
classes. By definition, no edge is incident to two vertices which are not connected. Hence
also the edges are decomposed into corresponding equivalence classes by this relation. A
sub-graph of G consisting of an equivalence class of VG with respect to being connected
and the corresponding edges is called a connected component of G. A graph is called
connected, if all its vertices are connected. A connected graph has exactly one connected
component. Let us denote the number of connected components of a graph G by κG. For
example the graph in figure 4.1.1 (a) consists of three connected components.

This terminology allows for a convenient definition of loops:

Definition 16. A sub-graph G′ of a graph G is a loop if G′ is connected and
deg (vi, EG′) = 2 for each vi ∈ VG′ .

For instance the sub-graph G′ in the above example 15 is a loop. Every loop can be
depicted by drawing a circle and distributing n vertices on it. For example with n = 1, 2, 3
we obtain the self-loop, the double edge and K3 respectively. The above definition yields
exactly the graphs which are known as loops in the physics literature2.

On the other hand it is important to notice, that the number of loops in a graph is
in general not what physics literature means by the loop-number. For a connected graph
G we define the loop-number lG, in agreement with physics literature, to be

lG = |EG| − |VG| + κG,(4.1.5)

where κG is the number of connected components of G. We remark that in some references
the loop-number lG is also called the cyclomatic number.

To give an example, the graph in figure (4.1.4) has three sub-graphs which are loops,
but its loop-number is two. It is important to notice this difference. A corresponding
Feynman graph of this topology would be said to be a two-loop graph. In the context of
Feynman integrals the loop-number is the number of integration momenta L = lG, as for
example in equation (2.3.1). We remark that equation (4.1.5), defining lG, and equation
(2.3.3), defining L, are the same equations, if the considered graph is connected3. This is

2Graph theorists instead often use the word ’loop’ only for what we defined to be a self-loop, which
is in turn known as ’tadpole’ to physicists.

3Note that equation (2.3.3) was formulated in the description of Feynman graphs, where external
edges are half-edges and external vertices, as defined in the present chapter, do not exist.
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Figure 4.1.4. The two-loop bubble has three loops as sub-graphs and
loop-number lG = 2.

the case for Feynman graphs throughout this dissertation. A general graph instead may
have more than one connected component.

In the following we want to use the terms loop and loop-number as we just defined
them, in agreement with the terminology of the physics literature. We want to avoid a
possible confusion between the loop-number lG and the number of sub-graphs, which are
loops. Therefore we will explicitely use the symbol lG (or in the case of Feynman integrals
the letter L) whenever we refer to the loop-number.

As we mentioned, all edges of a graph are incident to vertices at both ends, as in figure
(4.1.4). We do not allow for loose ends. Nevertheless, we distinguish between external
and internal edges as follows: We define a vertex vi with deg (vi) ≤ 1 to be an external
vertex 4 and we call an edge incident to an external vertex an external edge. All other
vertices and edges are said to be internal. Let us write V ext

G , V int
G , Eext

G , Eint
G for the set

of external vertices, internal vertices, external edges and internal edges respectively. A
sub-graph G̃ of a graph G is called the core of G, if it is obtained from G by deleting all
external edges and vertices. In the above example 15, G has only one external vertex v4
and one external edge e4 and the sub-graph G′ is the core of G.

Note that in many descriptions of Feynman graphs, an additional type of edge is
introduced for the external edges. These are edges with a vertex at only one of the ends,
called half-edge or flag. We have used such half-edges for the external edges in the figures
of the previous chapters, but we do not want to use this concept here. It is sufficient
and convenient for the following treatment to use the standard edges of graphs as defined
above, with a vertex at both ends. Of course, the half-edges of the other notation can
be translated one-to-one to our external edges of the present chapter, because in both
descriptions of Feynman graphs there is nothing like an internal edge which is incident to
a vertex of degree one.

A graph which has no loop as a sub-graph is called a forest. If a forest has k connected
components we speak of a k-forest. A 1-forest is called a tree. A path is a tree with at
least one edge and whose vertices are all of degree not greater than 2. We will sometimes
consider forests and trees which are spanning sub-graphs of a considered graph and which
we will therefore call spanning forests and spanning trees respectively5.

For Feynman integrals it is sufficient to restrict to the consideration of connected
graphs, which do not fall into pieces after deletion of just one edge. We call an edge
ej ∈ EG a cut-edge of G if G′ has more connected components than G, where G′ is

4We note that according to this definition an isolated vertex is external. However, isolated vertices
are not important in our consideration of Feynman graphs below and we could as well have called them
internal.

5Note that in the literature very often ’forest of G’ (or ’tree of G’) already means a spanning sub-
graph of G. For us instead a forest of G (or a tree of G) is a sub-graph of G which is not necessarily
spanning G. We will explicitely write ’spanning’ where we mean it.
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obtained from G by deleting only ej . We call a graph one-edge-irreducible (or one-particle-
irreducible according to the physics literature) if it is connected and has no cut-edge.

The step from graphs to Feynman graphs will be done in the next subsection by
adding more properties to graphs and we will do so by attaching variables to the edges.
In general we say that a set H labels a set H ′ if |H| = |H ′| and if there is a one-to-
one correspondence between the elements of H and H ′. (For example, in chapter 2 we
labelled the internal edges with a set of Feynman parameters.) A graph with labelled
edges or vertices is called a labelled graph. Feynman graphs in the following sections will
be considered to be labelled graphs with some additional properties. The sets of labels
will comprise properties like particle momenta, their masses etc.

4.1.2. Scalar Feynman Graphs and Polynomials. In the physics literature,
Feynman graphs are usually introduced in the framework of quantum field theory, in-
stead of being defined in their own right. They have a unique purpose in physics, namely
the construction of the associated Feynman integral. Depending on the underlying phy-
sical theory, the Feynman graphs need to contain a certain amount of information which
is incorporated into the Feynman integrals in a defined way, given by the Feynman rules.

In order to build a bridge from pure graph theory to Feynman integrals, let us start
from the following definition:

Definition 17. An abstract Feynman graph GF is a connected, oriented graph, none
of whose vertices is of degree two and with a finite number of sets H1, H2, ..., Hn, each
of them labelling the edges.

The physical information, in particular momentum conservation, still needs to be
imposed in terms of properties of the sets of labels H1, H2, ..., Hn. In order to define such
sets explicitely let us restrict to a special class of Feynman integrals to be constructed
and let us accordingly impose properties on the sets of labels. As we have seen in chapter
2, every dimensionally regularized Feynman integral can be decomposed to a series of
tensors with scalar-valued integrals as coefficients [Tar96, ?]. These scalar integrals can
be interpreted as Feynman integrals as well, constructable from Feynman rules of scalar
toy-models. We call the corresponding kind of Feynman graph scalar.

The scalar integrals are of the form

(4.1.6) I (D, Λ) =

∫ L∏

i=1

dDki

iπD/2

N∏

j=1

1
(

−q2j +m2
j

)νj
,

with L, N being natural numbers, Λ the set of masses and external momenta and D a
complex number (cf. equations (2.3.1) and (3.2.1)). The terms 1

(−q2j +m2
j)

νj are scalar pro-

pagators, raised to integer powers νj . m1, ..., mN are real valued parameters representing
the particle masses. k1, ..., kL, q1, ..., qN are Lorentz-vectors, of which the q are linear
combinations of the ki and possibly a number of external vectors p1, ..., pJ , J ∈ N. These
linear combinations are due to momentum conservation, which is conveniently defined on
graphs.

Let us consider the class of Feynman graphs which is sufficient for the construction
of the integrals of equation (4.1.6). Let GF be an (abstract) Feynman graph, with N
internal and S external edges and loop-number lGF

= L. Let us for simplicity number the
edges such that e1, ..., eN are internal and eN+1, ..., eN+S are external. Furthermore, in
order to simplify the notation, we assign to each label the number of the corresponding
edge as an index, such that for example a mass mi is associated to the edge ei for each
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i = 1, ..., N + S. Let the edges of GF be labelled by the following three sets:

H1 =







m1, m2, ..., mN , 0, ..., 0
︸ ︷︷ ︸

labeling external edges







,

H2 =







ν1, ν2, ..., νN , 0, ..., 0
︸ ︷︷ ︸

labeling external edges







,

H3 = {q1 = k1, ..., qL = kL, qL+1, ..., qN ,

qN+1 = pN+1N+1
, ..., qN+S = pN+S

}
,(4.1.7)

where the labelling is chosen such that there are lGF
= L loops in the graph, each of which

has at least one edge labelled by one of the variables ki. (We remind ourselves, that lGF

is the loop-number, defined by equation (4.1.5), and that the number of sub-graphs of
GF which are loops might be larger than lGF

.)
To complete the construction, we have to impose momentum conservation. For a

sub-graph G′ of G and edges ei ∈ EG let us define the auxiliary function α by

α(G′, ei) =







0 if the endpoints of ei are both ∈ G′ or both /∈ G′,

1 if a v ∈ VG′ is the tail and a u /∈ VG′ is the head of ei,

−1 if a v ∈ VG′ is the head and a u /∈ VG′ is the tail of ei.

Momentum conservation requires that for each internal vertex vj ∈ VGF
the equation

∑

ei incident to vj

α(vj , ei)qi = 0(4.1.8)

must be fulfilled by the momenta qi. The orientation of the graph represents the directions
of the momenta qi and by equation (4.1.8) we impose the condition, that the sum of
incoming momenta at each internal vertex must be zero. This condition determines
qL+1, ..., qN as linear combinations of the momenta ki and pi. Imposing the property
of momentum conservation completes the construction of the scalar Feynman graph GF .
The labelled graph GF together with the imposed properties of the labels provides the
sufficient information for the construction of scalar Feynman integrals as in equation
(4.1.6).

A complication of the representation of Feynman integrals by equation (4.1.6) is the
presence of Lorentz-vectors. This can be avoided by the change to Feynman parameters
(cf. chapter 2). In the Feynman parametric representation, the scalar Feynman integrals
of equation (4.1.6) read

I (D, Λ) = fGF

∫ 1

0






∏

ei∈EG̃F

dxix
νi

i




 δ




1 −

∑

ei∈EG̃F

xi






(UGF
)

P

ei∈E
G̃F

νi−(L+1)D/2

(FGF
)

P

ei∈E
G̃F

νi−LD/2
,

(4.1.9)

with

fGF
=

Γ
(
∑

ei∈EG̃F

νi − LD/2
)

∏

ei∈EG̃F

Γ (νi)
.
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We have assigned the numbers of the edges to the corresponding variables as indices. G̃F
is the core of GF and L = lGF

is the loop-number.
The polynomial functions UGF

, FGF
are defined as follows (cf. chapter 2 and [Wei06]).

Let T1

(

G̃F

)

be the set of spanning trees and T2

(

G̃F

)

the set of spanning 2-forests of

G̃F . We write (Ti, Tj) ∈ T2

(

G̃F

)

, where Ti, Tj are the two connected components of

the 2-forest (Ti, Tj). For a sub-graph G′ of a graph G let C(G′, G) be the set of edges

of G not belonging to G′. For each two-forest (Tk, Tl) ∈ T2(G̃F ) there is a kinematical
invariant

s(Tk , Tl) =




∑

ej∈C((Tk , Tl), G̃F )

α(Tk, ej)qj





2

.(4.1.10)

By the use of momentum conservation, each s(Tk, Tl) can be expressed in terms of scalar
products of only the external momenta pi. Let us denote this set of scalar products by P .

The polynomials in equation (4.1.9) are defined as

(4.1.11) UGF
(x1, ..., xN ) =

∑

T∈T1(G̃F )

∏

ei∈C(T, G̃F )

xi,

(4.1.12) F0, GF
(x1, ..., xN , P ) =

∑

(Tk , Tl)∈T2(G̃F )




∏

ei∈C((Tk , Tl), G̃F )

xi



 (−1)s(Tk , Tl).

FGF
= F0, GF

+ UGF

∑

ei∈G̃F

xim
2
i .(4.1.13)

We have already given these definitions by equations (2.3.7), (2.3.8) and (2.3.9) in chapter
2. All integration variables and functions in equation (4.1.9) are scalar valued. Therefore
it should be possible to obtain the Feynman integral in equation (4.1.9) without explicit
reference to Lorentz vectors as variables. In fact, it is possible to define equation (4.1.9)
based on a set of formal scalar variables. This is done as follows. We introduce the
following simple changes on the labels of GF :

• The set of vectors H3 is replaced by a set of formal real valued scalar variables
q′i :

(4.1.14) H ′
3 =

{
q′1, ..., q

′
N , q

′
N+1 = p′N+1, ..., q

′
N+S = p′N+S

}
.

• The restriction due to momentum conservation can be imposed by the condition

(4.1.15)
∑

ei incident to vj

α(vj , ei)q
′
i = 0

for each internal vertex vj.
• We introduce an additional set of real valued labels

H4 =







x1, x2, ..., xN , 0, ..., 0
︸ ︷︷ ︸

labeling external edges







,

the Feynman parameters.
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Now let us define

s′(Tk, Tl)
=




∑

ej∈C((Tk , Tl), G̃F )

α(Tk, ej)q
′
j





2

,

where G̃F is the core of GF and let us use the equations (4.1.15) to express these functions
in terms of products of the scalar variables p′ ∈ H ′

3, which are the labels of external edges.
We obtain

(4.1.16) s′(Tk , Tl)
=






∑

p′i∈Eincident

GF
(Tk)

p′i











∑

p′j∈Eincident

GF
(Tl)

p′j






where Eincident
GF

(Tk) denotes the set of external edges of GF which are incident to Tk.

Let us denote the set of products of the variables p′i by P ′. There is an obvious one-
to-one correspondence between P ′ and P and we obtain the above functions s(Tk , Tl) by
the formal replacements

s(Tk, Tl) = s′(Tk, Tl)

∣
∣
∣
p′ip

′
j=pipj

for all p′i p
′
j ∈ P ′.(4.1.17)

Now we have all ingredients to obtain the above polynomials and the integral (4.1.9)
from the Feynman graph GF in the obvious way. In the following discussions we will use
real valued variables as in H ′

3 for the momenta and functions s′(Tk , Tl)
for the kinematical

invariants, omitting the primes of these objects in our notation, as we expect no confusion
to arise.

Let us briefly summarize what we have done in the present subsection. First we
have repeated the arguments allowing for the restriction to scalar integrals. We defined
Feynman graphs to be connected, oriented, labelled graphs without vertices of degree two.
A class of Feynman graphs GF was equipped with labels such that a scalar momentum-
space integral of equation (4.1.6) can be obtained from a graph of this class in the described
way. Then, by minor changes, we obtained the class of Feynman graphs which is suitable
for a direct construction of the Feynman parametric representation (4.1.9). The main
advantage of a restriction to scalar valued variables will be obvious in a later subsection,
where we consider these labels to be elements of certain matrices.

4.1.3. Symanzik and Kirchhoff Polynomials. Let G be an oriented, connected
graph labelled by the formal scalar variables introduced above. The number of internal
edges is N . In addition to the Feynman parameters x1, x2, ..., xN we label the internal
edges also by auxiliary parameters y1, y2, ..., yN , for a reason which will be obvious
immediately (i. e. in equations (4.1.18) and (4.1.19)). We remind ourselves that the core

of G is denoted by G̃.

Definition 18. The Symanzik polynomials of G are

UG (y1, ..., yN) =
∑

T∈T1(G̃)

∏

ei∈T
yi,

F0, G (y1, ..., yN , pN+1, ..., pN+S) =
∑

(Tk, Tl)∈T2(G̃)




∏

ei∈(Tk, Tl)

yi



 (−1)s(Tk , Tl).

We refer to UG as the first and to F0, G as the second Symanzik polynomial of G.
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The second Symanzik polynomial F0, G and its coefficients s(Tk, Tl) as functions of the
variables pi are defined via the variables q1, ..., qN+S fulfilling the momentum conservation
condition as in equation (4.1.15). Note that the orientation of the graph and momentum
conservation are not needed to define the first Symanzik polynomial. We can define
UG (y1, ..., yN ) in the above way for any connected, not necessarily oriented graph.

We have defined the Symanzik polynomials such that the terms of the sums are
monomials in the variables yi, whose edges belong to the corresponding forest. The
polynomials UG and F0, G instead were defined by the edges which do not belong in the
corresponding forest. We obtain the simple relations

UG (x1, ..., xN ) = UG (y1, ..., yN)|yi=
1
xi

∀ei∈EG̃
·
∏

ei∈EG̃

xi,(4.1.18)

F0, G (x1, ..., xN , P ) = F0, G (y1, ..., yN , P )|yi=
1
xi

∀ei∈EG̃
·
∏

ei∈EG̃

xi.(4.1.19)

We note, that in the literature sometimes UG and F0, G are referred to as Symanzik
polynomials. In the remainder of this chapter it will be convenient to consider UG and
F0, G instead, keeping in mind, that these polynomials are closely related to UG and F0, G

by the simple equations (4.1.18) and (4.1.19). Relations like (4.1.18) and (4.1.19) play a
central role in the context of dual graphs as discussed in subsection 4.1.6 below.

Definition 19. The Kirchhoff polynomial of G is

KG

(
y1, ..., y|EG|

)
=

∑

T∈T1(G)

∏

ei∈T
yi.

Note that in contrast to UG, the terms in the Kirchhoff polynomial contain also the
labels of external edges. The first Symanzik polynomial UG of a graph G is in fact the
Kirchhoff polynomial of the core of G:

UG = KG̃.

Remark 20. Apart from the well known appearance in the Feynman parametric
representation of Feynman integrals, the Kirchhoff polynomial is regarded a lot in the
literature. It appears in the context of electric networks [Che82, Kir47], of statistical
mechanics (Potts-model) [Sok05] and in a series of articles on a conjecture of Kontse-
vich about its zeroes [BB03a, Kon97, Sta98, Ste98]. The Kirchhoff polynomial and
its zero-set have recently become crucial links from perturbative quantum field theory
to certain topics of algebraic geometry, like the theory of motives (see e. g. [AM08b,
AM08a, AM09b, And08, BB03a, BEK06, Mar08]). A very important property of
the Kirchhoff polynomial, and hence also of UG, is its relation to determinants of certain
matrices, given by so-called matrix-tree-theorems which we review below. It is one pur-
pose of the present chapter to prove a relation between the polynomial F0,GF

and such
matrices.

Note that each of the external edges belongs to all the spanning trees of a graph. If
G has external edges, meaning that the number of edges |EG| is larger than the number
of internal edges N , then KG is different from UG, but we can easily use KG to obtain UG
by

UG (x1, ..., xN ) = KG

(
y1, ..., y|EG|

)∣
∣
yi=

1
xi

∀ei∈EG
·
∏

ei∈EG

xi.

In this equation all the labels yi from external edges are removed by multiplication with
the corresponding label xi. (Note the difference to equation (4.1.18) where the product
of the variables xi ran through ei ∈ EG̃.)
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v1

v2

v3

v4

v5 v6

e1 e2

e3e4

e5
e6 e7

Figure 4.1.5. A two-loop graph.

4.1.4. Associated Matrices. From here on we want to assume that all graphs
under consideration have no self-loops, unless we explicitely allow for them. We just
want to remark that in principle, many of the objects and results to be discussed in the
following could be extended to the case of graphs with self-loops (or would even remain
unchanged in this case). Nevertheless, for us it is more desirable to present the main ideas
in a rather simple, consistent notation, which would be disturbed by repeated distinction
between the cases with and without self-loops.

Let us consider a graph G with n vertices and m edges. We define the incidence
matrix BG = (Bij)n×m of G as the n×m-matrix with the components

(4.1.20) Bij :=







1 if vi ∈ ej,

0 otherwise.

Note that unlike the incidence matrix of an oriented graph, B⋆, defined in equation
(2.3.10), the matrix B does not contain information about a possible orientation of the
edges.

We define the adjacency matrix AG = (Aij)n×n of G as the n × n-matrix with the
components

(4.1.21) Aij :=
∑

{ek∈EG|ek incident to vi, vj}
1.

The matrix element Aij is equal to the number of edges in EG incident to both distinct
vertices vi and vj.

Let us furthermore define the matrix DG as the diagonal matrix (Dij)n×n with Dii

being the degree of vi ∈ VG and Dij = 0 for i 6= j:

Dij :=







deg (vi) if i = j,

0 otherwise.
(4.1.22)

Moreover, we have (cf. [Die05], Proposition 1.9.8)

BGB
T
G = DG +AG.

The matrix DG−AG is independent of the orientation of the graph G, it is symmetric,
positive semi-definite and it is called the Laplacian of G:

Definition 21. Let G be a graph. The Laplacian of G is defined to be

(4.1.23) LG = DG −AG.
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Example 22. For the graph G of figure (4.1.5), the matrices AG, DG and LG are 6×6-
matrices. The rows and columns from top to bottom and from left to right respectively
correspond to the vertices from v1 to v6. With this ordering we obtain

AG =











0 1 0 1 1 0
1 0 1 1 0 0
0 1 0 1 0 1
1 1 1 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0











, LG =











3 −1 0 −1 −1 0
−1 3 −1 −1 0 0
0 −1 3 −1 0 −1
−1 −1 −1 3 0 0
−1 0 0 0 1 0
0 0 −1 0 0 1











.

Let M be any symmetric matrix with rows and columns labelled by the set of vertices
VG and let S1 ⊆ VG and S2 ⊆ VG. Then we denote by M [(S1, S2)] the sub-matrix of
M obtained by deleting the rows with indices in S1 and columns with indices in S2. If
S1 = S2 we use the abbreviation M [S1] ≡M [(S1, S1)]. Choosing one arbitrary vertex vi
of G and deleting the corresponding row and column in LG we obtain an (n−1)×(n−1)-
matrix LG[vi], called reduced Laplacian of G. For a Laplacian LG, we can obviously
construct |VG| reduced Laplacians. All of these |VG| reduced Laplacians have the same
determinant, as we will see below.

For certain problems in graph theory it is useful to have a generalized version of the
Laplacian. In [GR01d] Godsil and Royle define a generalized Laplacian of a graph G
with n vertices to be a symmetric n×n-matrix M = (Mij) where Mij < 0 if vi and vj are
adjacent vertices of G and Mij = 0 if vi and vj are distinct (i. e. i 6= j) and not adjacent.
There are no constraints on the diagonal elements of the matrix. To give an example, the
matrix −AG is a generalized Laplacian of G.

Let us consider a labelled graph G with a set Y =
{
y1, ..., y|EG|

}
of formal scalar

variables labelling the edges. Using these variables we define a matrix, which for positive
values of the yi is a generalized Laplacian in the above sense of Godsil and Royle:

Definition 23. ([Sta98, Tut84]) The generic Laplacian (or Kirchhoff matrix) LG(Y ) =
(Lij(Y )) of G is the n× n-matrix defined by

Lij(Y ) =







∑

{ek∈EG|ek incident to vi, vj } (−yk) if i 6= j,

∑

{ek∈EG|ek incident to vi } yk if i = j,

for all vi, vj ∈ VG. A sum over the empty set shall be zero.

Example 24. Let G be the graph of figure (4.1.5). Then the generic Laplacian reads

LG(Y ) =











y1 + y4 + y6 −y1 0 −y4 −y6 0
−y1 y1 + y2 + y5 −y2 −y5 0 0
0 −y2 y2 + y3 + y7 −y3 0 −y7

−y4 −y5 −y3 y3 + y4 + y5 0 0
−y6 0 0 0 y6 0
0 0 −y7 0 0 y7











.
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We can formulate a relation for LG which is the analogue of equation (4.1.23) for LG.
To this end we define the generic adjacency matrix AG = (Aij)n×n of G by

Aij :=
∑

ek=vivj∈E
yk,

and furthermore the matrix (Dij)n×n with Dii =
∑

ek∈vi
yk and Dij = 0 for i 6= j. With

these definitions we obtain

LG = DG −AG,

where we suppressed the dependence on the set Y in our notation. Note that the three
matrices LG, DG, AG yield the classical matrices LG, DG, AG by setting all parameters
yk = 1.

The generic Laplacian where the row and column corresponding to some vertex vi
are removed is denoted LG(Y )[vi] and is sometimes called the reduced generic Laplacian.
Some authors refer to the generic Laplacian as the Kirchhoff matrix (cf. [Tut84]). The
matrix and the related matrix-tree-theorem which will be discussed below stems from
Kirchhoff’s work on electric networks (see [Kir47]). In this context, the labels yi would
be interpreted as conductivities. Before we come to Kirchhoff’s important theorem and
it’s extensions, let us first introduce two standard operations on a graph.

4.1.5. Deletion and Contraction. We define deletion and contraction of edges of a
graph G and describe their effect on the generic Laplacian. For a subset of edges E′

G ⊆ EG
we define G\E′

G to be the graph consisting of the same vertices as G (i. e. VG\E′
G

= VG)

and of the set of edges of G without the edges in E′
G (i. e. EG\E′

G
= EG\E′

G). The

incidence relation φG\E′
G

is the restriction of φG to EG\E′
G. We say G\E′

G is obtained

from G by deletion of E′
G. G\E′

G is always a sub-graph of G.
For a subset of vertices V ′

G ⊂ VG and one vertex vi ∈ V ′
G we define G/V ′

G to be
the graph where the vertices V ′

G are removed from VG, except for vi (i. e. VG/V ′
G

=

VG\ (V ′
G\vi)) and with the same edges as in G (EG/V ′

G
= EG). The incidence relation is

φG/V ′
G

(ek) = φG (ek)|vj=vi ∀vj∈V ′
G
. We say G/V ′

G is obtained from G by identification of

the vertices in V ′
G.

If we want to consider the deletion of only one edge ek ∈ EG we will write G\ek ≡
G\{ek}. Furthermore we define G/ek to be the graph obtained from G by identifying
the end-points of ek and subsequently deleting ek. We say G/ek is obtained from G
by contraction of ek. The deletion and the contraction of an edge are two important
operations in graph theory. In the following, we want to study the changes in the Laplacian
under these operations.

Let us assume a graph G with edges labelled by Y and an edge ek ∈ EG with φG (ek) =
(vi, vj) such that none of the graphs G, G\ek, G/ek has a self-adjacent vertex. Then we
consider the corresponding generic Laplacians and obtain the following relations. For the
deletion we obtain, rather obviously:

LG\ek
= LG|yk=0 .(4.1.24)

If we reduce LG\ek
by the column and line corresponding to the remaining vertex vi of

ek and if we define E(i, k) as the n× n-matrix with E(i, k)
ii = yk and all other entries zero,

then we can write for the reduced Laplacian

(4.1.25) LG\ek
[vi] = LG − E(i, k).

The construction of LG/ek
is just a little less simple. For convenience we label the

vertices such that vj = vn, i.e. the last line and column of LG corresponds to vn. Let



62 4. FEYNMAN GRAPH POLYNOMIALS

us, in addition, assume that no other edge than ek is incident to both vi and vn, which
means that the contraction of this edge does not lead to a self-loop. In the graph G/ek,
the edges which were incident to vn in G will be additional incident edges to vi, except for
ek itself. Hence starting from LG we have to add the column j to the column i and delete
column n and then do the same with the rows. Note that the yk-term will cancel out in
the diagonal term

(
LG/ek

)

ii
because of the different signs in the diagonal and off-diagonal

terms of LG. Therefore the (n− 1) × (n − 1)-matrix LG/ek
is obtained as

(
LG/ek

)

ab
=







(LG)ab if a, b /∈ {i, n},

(LG)nb + (LG)ib if a = i and b 6= i,

(LG)an + (LG)ai if b = i and a 6= i,

(LG)ii + (LG)ni + (LG)in + (LG)nn if a = b = i.

(4.1.26)

The only difference to LG lies in the columns and lines numbered by i and n, the
latter ones not existing anymore in LG/ek

. Hence, if we reduce LG/ek
by the columns and

lines i, we obtain a sub-matrix of LG (cf. [GR01d]):

(4.1.27) LG/ek
[vi] = LG[{vi, vn}].

For the classical Laplacians LG, LG/ek
, LG\ek

we obtain relations similar to the equa-
tions (4.1.24), (4.1.25), (4.1.26), (4.1.27) by just setting all parameters yk = 1.

Now, as we have discussed deletion and contraction, let us mention that the Kirchhoff
polynomial fulfills a remarkable property with respect to these operations. Let ei be an
edge of G which is neither a cut-edge nor a self-loop. Then we have (see e.g. [KRTW08])

KG = yiKG/ei
+ KG\ei

.(4.1.28)

This property is sometimes referred to as deletion/contraction relation (or algorithm), as
one can use it to express the Kirchhoff polynomial of any graph as linear combinations of
Kirchhoff polynomials of graphs G′ which consist only of cut-edges and self-loops. The
Kirchhoff polynomial of such a graph is in fact a monomial, namely

KG′ (Y ) =
∏

ei cut-edge of G′

yi.

In section 4.3 of this chapter, we will mention a deletion/contraction relation similar to
equation (4.1.28) for a different, more general polynomial, the so-called Tutte polynomial.

4.1.6. Duality. In this subsection let us consider connected graphs which are allowed
to have self-loops. We remember, that we defined the first Symanzik polynomial UG such
that it is the Kirchhoff polynomial of the core of G. The polynomial UG, which appears
in the Feynman integral, is related to UG, as we mentioned, by

UGF
(x1, ..., xN ) = UGF

(y1, ..., yN)|yi=
1
xi

∀ei∈EG̃F

·
∏

ei∈EG̃F

xi.(4.1.29)

Now we may ask, whether UG (x1, ..., xN ) is as well a Kirchhoff polynomial of a graph.
In the following we want to give an answer to this question for the case where G is a so-
called planar graph. In this case, as we will see, we can associate a dual graph to G and
then the polynomial UG is the Kirchhoff polynomial of this dual graph6.

6Instead, for graphs G which are not planar, we are not aware of a method to decide whether UG is
a Kirchhoff polynomial or not.
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K5 K3, 3

Figure 4.1.6. The ’smallest’ non-planar graphs.

(a) (b) (c)

Figure 4.1.7. (a) A graph G. (b) The dual graph G⋆ of G. (c) The
construction of G⋆ from G (or vice versa).

A graph is called planar if it can be embedded in a plane without crossings of edges.
This is the case for all graphs we have discussed up to now in this dissertation, but for
example for the graphs in figure (4.1.6) it is not the case. The graphs in figure (4.1.6),
called K5 (the complete 5-vertex graph) and K3, 3, can not be drawn on a piece of paper
without crossings of edges. For complicated graphs it might be hard to find out, if such
an embedding in the plane exists. For these cases the following theorem of Wagner7 is
useful:

Theorem 25. (Wagner [Wag37], cf. [Die05]) A graph G is planar if and only if
none of the graphs obtained from G by a (possibly empty) sequence of contractions of
edges contains K5 or K3, 3 as a sub-graph.

In other words, for any non-planar graph G we either find K5 or K3, 3 (or both) as
a sub-graph, or we can obtain a graph G′ from G by contractions of edges, such that
G′ contains K5 or K3, 3 (or both) as a sub-graph. As a direct consequence, all proper
sub-graphs of K5 and K3, 3 and all graphs obtained from them by contractions must be
planar. In this sense, K5 and K3, 3 are the ’smallest’ of all non-planar graphs.

Each planar graph G has a dual graph G⋆ which can be obtained as follows (for an
example see figure (4.1.7)):

• Draw the graph G in a plane, such that no edges intersect. In this way, the
graph divides the plane into open subsets, called faces.

• Draw a vertex inside each face. These are the vertices of G⋆.
• For each edge ei of EG draw a new edge between the two vertices of the faces,

which are separated by ei. The new edges are the edges of G⋆.

7Wagner’s result is an analogue of an earlier theorem by Kuratowski [Kur30].
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The Kirchhoff polynomial fulfills the identity

KG⋆ (x1, ..., xN ) = KG (y1, ..., yN )|yi=
1
xi

∀ei∈EG
·
∏

ei∈EG

xi,(4.1.30)

where N is the number of edges in G, which is as well the number of edges in G⋆.
We note from the construction of the dual graph, that for each external edge in G

there is a self-loop in G⋆ and of course for each self-loop in G there is an external edge in
G⋆. An external edge is contained in every spanning tree and a self-loop in no spanning
tree. Therefore, if ei is an external edge in G, we see that its label yi is contained in each
term of KG. The corresponding xi labels a self-loop in G⋆ and is contained in no term of
KG⋆ . If instead ei is a self-loop in G, then no term in KG contains yi but and each term
in KG⋆ contains xi. For these reasons, a comparison of equations (4.1.29) and (4.1.30)
yields

UG (x1, ..., xN ) = KG⋆ (x1, ..., xN )

for planar graphs G. UG is the Kirchhoff polynomial of the dual graph of the planar graph
G.

Remark 26. It is important to note that the above construction of the dual graph
G⋆ depends on the way, how G is drawn in the plane and therefore, the same graph G
can have different dual graphs (for an example we refer to [AM08b]). These dual graphs
have the same Kirchhoff polynomial. The fact that different graphs can have the same
Kirchhoff polynomial is related to a theorem of Whitney on matroids of graphs [Whi33]
(also see [Oxl86]).8

The results of Brown’s algorithm [Bro09] for a certain class of Feynman graphs
suggest, that planarity, or more precisely the crossing number, plays an important role
for the arithmetic properties of the integrals. We refer to the theorems in [Bro09] for the
detailed statements. Furthermore we refer to recent work of Aluffi and Marcolli [AM08b],
where properties of certain associated motives are deduced by the detailed consideration
of the dual graphs of certain Feynman graphs.

4.2. Symanzik Polynomials and Theorems of the Matrix-Tree-Type

In the present section, if not stated otherwise, we consider connected graphs, such
that the corresponding Kirchhoff polynomials are well-defined.

4.2.1. Theorems of the Matrix-Tree-Type. The Laplacian plays a role in an
important result on counting the spanning trees of a graph, which goes back to Kirchhoff
[Kir47]:

Theorem 27. (classical matrix-tree-theorem) Let G be a graph with Laplacian matrix
LG and let vi be an arbitrary vertex of G. Then the determinant of the reduced classical
Laplacian, det (LG[vi]), is equal to the number of spanning trees of G.

A first generalization of this theorem concerns the generic Laplacian:

8A matroid is a very general mathematical structure which can be used to encode the linear depen-
dence of elements, for example of vectors, in a given set. The information encoded in a graph can be
formulated in terms of matroids. We refer to [Oxl03, Oxl06] for detailed introductions to matroids.
Whitney’s theorem classifies graphs, such that the associated matroids of each class are isomorphic. The
multivariate Tutte polynomial, to be discussed below, encodes the entire information of a corresponding
matroid and on the other hand, it yields the Kirchhoff polynomial in a certain limit, as we will see.
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Theorem 28. (generic matrix-tree-theorem) (Tutte [Tut84], theorem VI.29) Let G
be a graph with N edges, all of them labelled by the set Y = {y1, ..., yN} and let vi be
an arbitrary vertex of G. Let LG(Y ) be the generic Laplacian and KG(Y ) the Kirchhoff
polynomial. Then we have

KG(Y ) = det (LG(Y )[vi]) .

The Kirchhoff polynomial evaluated at yi = 1 for all i, KG(Y )|yi=1∀i=1, ...,N , is equal
to the number of spanning trees of G. In this sense, we can consider the Kirchhoff
polynomial as a generalization of the number of spanning trees.

Using the above result we can express the first Symanzik polynomial UG(Y ) by the
determinant of the reduced generic Laplacian, namely

UG(Y ) = det
(
LG̃(Y )[vi]

)
(4.2.1)

where G̃ is the core of G and where it is understood, that UG depends just on the labels
of the internal edges.

By use of a further generalization, which we want to discuss in the following, we can
relate both Symanzik polynomials to a generic Laplacian in one formula. The general-
ization is called the all-minors-matrix-tree-theorem and was stated in the compact form
which we will refer to by Moon [Moo94]. It relies on previous developments by Chen
[Che82] and Chaiken [Cha82].

Before we can state the theorem, we need to introduce some auxiliary objects. Let us
consider a graph G with n vertices V = {v1, v2, ..., vn}. It will be convenient to use an
ordered set of integers Sn = (1, 2, ..., n) to represent the vertices. Let A = (a1, ..., am)
and B = (b1, ..., bm) be non-empty ordered subsets of Sn. A and B shall have the same
number of elements m = |A| = |B|, m ≤ n, and the ordering of the elements in A and
B shall be the same as in Sn. For example we might have Sn = (1, 2, 3, 4), A = (2, 3),
B = (2, 4). Let VA be the subset of V with vi ∈ VA if i ∈ A. VB is defined the same way.
For our example this means VA = {v2, v3}, VB = {v2, v4}.

Now for given n, A and B, let FG,A,B be the set of all possible forests F with the
following properties:

• F is a spanning sub-graph of G.
• F consists of m trees T1, T2, ..., Tm.
• Each tree of F has exactly one external vertex in VA and exactly one vertex

(internal or external) in VB. (The vertex in VA and the vertex in VB may be the
same.)

Each forest F of this type shall correspond to a term in a sum, as defined below. The
sign of the term will depend on which of the vertices of VA and VB belong to the same
tree in F . This dependence is encoded in the following way. For each forest F ∈ FG,A,B
we define a permutation map

σF : Sn 7→ SF

where the set of integers SF = (s1, ..., sn) is a permutation of the set Sn, such that

sj = i

if ai ∈ VA and bj ∈ VB belong to the same tree in F . The number of transpositions in the
permutation map σF is denoted by NF . In this way, the forest F determines the number
NF .

In addition, let us define the auxiliary function

ǫA,B = (−1)
P

i∈A i+
P

j∈B j.
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For an n× n matrix L we denote by L[A, B] the sub-matrix, which is obtained from
L by deleting the ith rows and the jth columns for all i ∈ A, j ∈ B.

With these notations we state the all-minors-matrix-tree-theorem as follows:

Theorem 29. (all-minors-matrix-tree-theorem) (cf. [Moo94], Theorem 3.1) Let G
be a graph and let LG(Y ) be its generic Laplacian. Then

det (LG(Y )[A, B]) = ǫ(A, B)
∑

F∈FG, A, B

(−1)NF

∏

ei∈EF

yi.(4.2.2)

This formulation is obtained from Moon ([Moo94], Theorem 3.1) by some minor
changes, which are mainly notational. In his version, Moon states the theorem for a
matrix which does not necessarily need to be defined by a graph, but it is identical to
the generic Laplacian LKn(Y ) of the complete graph with n vertices. We obtain Moons
formulation, if we set G = Kn in the above theorem. Let us convince ourselves, that
we are allowed to state the theorem for a general graph G with n vertices (still without
self-loops), as we just did. Assume that equation (4.2.2) is true for G = Kn, as it was
proven by Moon. Let G′ be a graph obtained from Kn by deletion of an edge ei ∈ EKn .
Then the forests FG′, A, B are obtained from FKn, A,B by removing all forests containing
ei. On the right-hand side of equation (4.2.2) this has the same effect as setting yi = 0.
On the left hand side setting yi = 0 in LKn gives LG′ . Hence the equation remains true
for G′.

Now let G′′ be the graph obtained from Kn by adding an edge ẽ to the graph such
that it is incident to the same vertices as ei ∈ EKn . G′′ then contains a double-edge. For
each forest in FKn, A,B which contains ei we have to add the same forest with ei replaced
by ẽ. (Obviously there is no forest containing both of these edges.) In this way we obtain
FG′′, A,B . This replacement on the right-hand side of equation (4.2.2) corresponds to the
replacement of yi by yi+ ỹ on the right-hand side of equation (4.2.2), where ỹ is the label
of ẽ. On the left hand side the same replacement in LKn gives LG′′ and we see, that the
equation remains true.

All other graphs with n vertices can be obtained by repeated use of these two opera-
tions. Therefore the proof of the above theorem is given by the proof in [Moo94], which
we do not repeat here9.

In the following subsection we will only need a particular case of the theorem, namely
the case where A = B. For this case the above defined permutation σF is always the
identical map and therefore we have NF = 0 and (−1)NF = 1 for every F . Furthermore
we have ǫ(A, A) = 1 and therefore equation (4.2.2) simplifies to

det (LG(Y )[A, A]) =
∑

F∈FG, A, A

∏

ei∈EF

yi.(4.2.3)

4.2.2. Relations between the Symanzik Polynomials. In the beginning of the
chapter we have introduced Feynman graphs as graphs with certain labels and properties.
Then we have derived the Symanzik polynomials from these labels and we have further-
more used the labels for the definition of the generic Laplacian. The generic-matrix-tree-
theorem relates the generic Laplacian to the first Symanzik polynomial, as we have seen
in equation (4.2.1). In the following we want to use the all-minors-matrix-tree-theorem
to establish a relation between a generic Laplacian and both Symanzik polynomials.

9This would require to introduce more terminology, which will not be of help for the remainder of
the chapter.
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In the following let us consider a Feynman graph GF with non-empty sets of internal
and external edges. N 6= 0 is the number of internal and S 6= 0 the number of external
edges. It will be convenient to use the sets of labels

Z = {z1, ..., zN+S} ,
= Z int ∪ Zext

Z int = {y1, ..., yN} ,
Zext = {pN+1, ..., pN+S} ,

where Z int labels the internal and Zext the external edges of GF .
From the generic matrix-tree-theorem we know (cf. equation (4.2.1))

UGF

(
Z int

)
= det

(

LG̃F

(
Z int

)
[vi]
)

where LG̃F

(
Z int

)
[vi] is the matrix obtained from the generic Laplacian of the core G̃ by

removing the row and the column corresponding to the vertex vi, which can be arbitrarily
chosen.

Now let us consider the matrix LGF
(Z)

[

V ext
GF

]

, which is obtained from the generic

Laplacian of GF by removing the rows and columns corresponding to all the external
vertices of GF . This matrix has as many rows and columns as GF has internal vertices.
Let n be the number of internal vertices. The elements of Zext appear only in the diagonal
entries of the n× n-matrix. More precisely, the matrix can be written as

LGF
(Z)

[
V ext
GF

]
= LG̃F

(
Z int

)
+ QGF

(
Zext

)

where QGF
is defined to be the diagonal n× n-matrix with the entries

Qij

(
Qext

)
=







∑

{ek∈Eext

GF
|ek incident to vi} pk for i = j,

0 for i 6= j,

with sums over empty sets being zero. To say it again in words, the matrix LGF
(Z)

[

V ext
GF

]

is obtained from the generic Laplacian of the core of GF by adding, for each external edge,
the label to the diagonal entry corresponding to the vertex, which the edge is incident to.

Now we will see, that this matrix is the reduced Laplacian of a related graph. We
consider the graph GF /V

ext
GF

, which is defined to be the graph obtained from GF by
identification of all the external vertices to one vertex, which we denote v⋆ here. In
the generic Laplacian LGF /V

ext

GF

of this graph, the elements of Zext appear in the diagonal

entries in the same way as in the corresponding entries of LGF
(Z)

[

V ext
GF

]

and furthermore

in the one row and the column, which is associated to the vertex v⋆. If this row and this

column is removed, we obviously obtain LGF
(Z)

[

V ext
GF

]

. Hence we have the relation

LGF
(Z)

[
V ext
GF

]
= LGF /V

ext

GF

[v⋆] .(4.2.4)

Therefore, as the graph GF /V
ext
GF

is identical with its own core, we have the following

direct consequence of equation (4.2.4):

Lemma 30. We have

det
(
LGF

(Z)
[
V ext

GF

])
= KGF /V

ext

GF

(Z)

= UGF /V
ext

GF

(Z) .
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p1 p2

p3

y1

y2

y3

p1 p2p3

y1

y2

y3

v⋆

(a) (b)

Figure 4.2.1. The triangle and the wheel with three spokes, considered
in example 31.

Example 31. As an example let us consider the triangle graph GF in figure 4.2.1
(a). Then the graph where all external vertices of GF are identified, i. e. GF /V

ext
GF

, is the

so-called wheel with three spokes, shown in figure 4.2.1 (b). The generic Laplacian of the
triangle GF is the matrix

LGF
(Z) =











y1 + y2 + p2 −y2 −y1 −p1 0 0
−y2 y2 + y3 + p2 −y3 0 −p2 0
−y1 −y3 y1 + y3 + p3 0 0 −p3

−p1 0 0 p1 0 0
0 −p2 0 0 p2 0
0 0 −p3 0 0 p3











.

The generic Laplacian of the wheel with three spokes GF /V
ext
GF

is

LGF /V
ext

GF

(Z) =







y1 + y2 + p2 −y2 −y1 −p1

−y2 y2 + y3 + p2 −y3 −p2

−y1 −y3 y1 + y3 + p3 −p3

−p1 −p2 −p3 p1 + p2 + p3






.

The matrix LGF
(Z)

[

V ext
GF

]

is obtained from LGF
(Z) by cancellation of the last three rows

and columns. The matrix LGF /V
ext

GF

[v⋆] is obtained from LGF /V
ext

GF

(Z) by cancellation of

the last row and column. Obviously the matrices LGF
(Z)

[

V ext
GF

]

and LGF /V
ext

GF

[v⋆] are

the same, as stated in equation (4.2.4).

Now let us state the main theorem of the present chapter.

Theorem 32. We have

UGF /V ext

GF

(Z) = UGF

(
Z int

) ∑

pi∈Zext

pi + F0,GF

(
Z int, Zext

)
+ O

(
p3
)

where O
(
p3
)

is the sum of all terms in UGF /V
ext

GF

(Z) with more than two factors in Zext.

Proof. According to lemma 30 we have

(4.2.5) UGF /V
ext

GF

(Z) = det
(
LGF

(Z)
[
V ext
GF

])
.
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Furthermore according to equation (4.2.3), which we obtained as a special case of the
all-minors-matrix-tree-theorem, we can write the right-hand side of equation (4.2.5) as

det
(
LGF

(Z)
[
V ext
GF

])
=

∑

F∈F
GF , V ext

GF

∏

ei∈EF

zi,

where FGF , V ext

GF

is the set of all forests F such that F is a spanning sub-graph of GF ,

F consists of
∣
∣
∣V ext
GF

∣
∣
∣ trees T1, T2, ..., T˛

˛

˛

V ext

GF

˛

˛

˛

and each tree of F has exactly one external

vertex in V ext
GF

. (In our formulation of the all-minors-matrix-tree-theorem above (theorem

29), the corresponding class of forests was denoted FG,A,B.)
Now let us sort the terms of this polynomial as

∑

F∈F
GF , V ext

GF

∏

ei∈EF

zi = u0 + u1 + u2 + u>2,

where u0 consists of all the terms which contain no element of Zext as a factor, u1 the
terms with exactly one element of Zext, and accordingly u2 and u>2 the terms with exactly
two and more than two elements of Zext respectively. In order to prove the theorem we
have to show that u0 = 0, u1 = UGF

(
Z int

)∑

pei
∈Zext pi and u2 = F0,GF

(
Z int, Zext

)
.

Each tree in each forest F ∈ FGF , V
ext

GF

contains exactly one vertex in V ext
GF

. Therefore

the trees fall into two types of trees: Firstly the type we want to call t0, which is the type
of trees with no edges at all (i.e. isolated vertices of V ext

GF
). Secondly the type we call t1,

being the type of trees with exactly one of the external edges of GF . Note that the above
sum can be written as

∑

F∈F
GF , V ext

GF

∏

T∈F

∏

ei∈T
zi,

where T is a tree of the type t1. Trees of the type t0 do not contain edges and therefore
they do not contribute to the above sum.

For T being a tree of type t1 in a forest F ∈ FGF , V
ext

GF

the product
∏

ei∈T zi contains

exactly one element of Zext. The set FGF , V
ext

GF

contains only one forest, where all the

trees of the forest are of type t0. The corresponding term in the sum is zero. Therefore
u0 = 0.

For the consideration of u1 and u2 let us remember, that the forests in FGF , V
ext

GF

are

spanning forests of GF . Each of these forests consists, as we just said, of trees of type t1
and of isolated vertices (trees of type t0) which are external in GF . Hence if in such a
forest F we remove from each t1-tree the vertex and the edge, which are external in GF
and furthermore remove the t0-trees, then we obtain a forest, which is a spanning forest
of the core G̃F . A forest obtained from F in this way shall be denoted by F̃ . For a t1-tree
T in F , the tree which is obtained by deleting the vertex and the edge external in GF
shall be denoted T̃ .

The terms in u1 correspond to the forests, which contain one tree of type t1 and

S ≡
∣
∣
∣V ext
GF

∣
∣
∣ trees of type t0. In such a forest the t1-tree T must contain all vertices which

are internal in GF . Therefore T̃ is a spanning tree of GF . Obviously there are S forests
contributing to u1, which contain the same T̃ . Hence we have S products

∏

T∈F
∏

ei∈T zi
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in u1, which differ just by an element of Zext. Therefore we have

u1 =
∑

T̃ spanning tree of G̃F




∏

ej∈T̃

zj




∑

pi∈Zext

pi







 = UGF

(
Z int

) ∑

pi∈Zext

pi.

Similar arguments apply for u2. We can write u2 as a sum of spanning 2-forests(

T̃k, T̃l

)

of G̃F . Then each term of this sum contains firstly a sum over the elements of

Zext whose edges are incident to T̃k, and secondly a similar term for T̃l. Let us denote

the set of external edges of GF which are incident to T̃k by Eincident
GF

(

T̃k

)

. Then we have

u2 =
∑

(T̃k, T̃l)∈T2(G̃F )






∏

ej∈(T̃k, T̃l)

zj






∑

pi∈Eincident

GF
(T̃k)

pi











∑

pj∈Eincident

GF
(T̃l)

pj









 .

Now we see that according to equation (4.1.16) the product





∑

pi∈Eincident

GF
(T̃k)

pi











∑

pj∈Eincident

GF
(T̃l)

pj






is the kinematical invariant associated to the spanning 2-forest
(

T̃k, T̃l

)

.

Let us state this argument in more detail by following the lines of subsection 4.1.2.
We introduce an auxiliary set

H = {q1, ..., qN , qN+1 = pN+1, ..., qN+S = pN+S}

of scalar labels on the edges of GF , where the last S elements on the right are exactly
the elements of Zext. Then we assume that H satisfies

∑

ei incident to vj

α(vj , ei)qi = 0

at each internal vertex and we obtain

s(Tk, Tl) =






∑

pi∈Eincident

GF
(Tk)

pi











∑

pj∈Eincident

GF
(Tl)

pj




 .

Therefore we have

u2 = F0,GF

(
Z int, Zext

)
.

This proves the theorem. �

The theorem provides a relation between the Symanzik polynomials of GF and of
GF /V

ext
GF

. It can furthermore be used as a simple construction rule for F0,GF
. Let us give

an example:

Example 33. As in example 31 we again want to consider the triangle GF in figure
4.2.1 (a) and the corresponding graph GF /V

ext
GF

which is the wheel with three spokes
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in figure 4.2.1 (b). With the labels as assigned in figure 4.2.1 (b) we obtain the first
Symanzik polynomial of the wheel with three spokes:

UGF /V
ext

GF

(Z) = det
(

LGF /V
ext

GF

[v⋆]
)

= det
(
LGF

(Z)
[
V ext
GF

])

= (y1y2 + y1y3 + y2y3) (p1 + p2 + p3)

+y1p2 (p1 + p3) + y2p3 (p1 + p2) + y3p1 (p2 + p3) .

We convince ourselves, that the first term of the sum contains the first Symanzik
polynomial of GF :

UGF

(
Z int

)
= y1y2 + y1y3 + y2y3.

If we impose momentum conservation in the remaining terms of the sum, then we obtain
the second Symanzik polynomial of GF :

F0,GF

(
Z int, Zext

)
= y1p2 (p1 + p3) + y2p3 (p1 + p2) + y3p1 (p2 + p3)

= y1

(
−p2

2

)
+ y2

(
−p2

3

)
+ y3

(
−p2

1

)
.

We see, that theorem 32 allows us to obtain the Symanzik polynomials UGF
and F0,GF

just from the determinant of a matrix and without the explicit construction of spanning
trees or 2-forest. This can be useful for the automatic evaluation of Symanzik polynomials
of more complicated graphs. Matrices are obviously standard objects in today’s computer-
algebra-systems (CAS). On the contrary, graphs and procedures like the construction of
all sub-graphs with certain properties are usually not implemented in a standard CAS.
Instead of constructing spanning trees and 2-forests by hand, or, in more complicated
cases, by the use of specific computer programs, we may simply construct the Laplacian
LGF

(Z), cancel the rows and columns of the external vertices and use a (standard) CAS
or even pocket-calculator to evaluate the determinant. Then we can directly read the
Symanzik polynomials off the determinant, as shown above.10

Let us, for completeness, add a relation between the Symanzik polynomials, which
again goes back to Kirchhoff’s work [Kir47]. This relation identifies terms in the second
Symanzik polynomial to the first Symanzik polynomials of another graph. Let GF be a
Feynman graph and let v1 and v2 be distinct internal vertices in GF . Then GF (v1, v2)
shall denote the graph, which is obtained from GF by adding a new edge ẽ incident to v1
and v2 and then contracting this edge. GF (v1, v2) therefore has as many edges as GF ,
but one vertex less. Let pvi

be the element of Zext labelling the external edge, which
is incident to vi. If no external edge is incident to vi then pvi

is zero. This notation is
convenient to state the relation:

Proposition 34. For a Feynman graph GF we have

F0,GF

(
Z int, Zext

)
= −1

2

∑

v1 6= v2
v1, v2 internal

pv1pv2UGF (v1, v2)

(
Z int

)
.

The factor 1
2 has to appear, because the sum contains each pair of internal vertices

twice. The relation is stated and proven in [KRTW08].
Whenever v1 and v2 are adjacent in GF the graph GF (v1, v2) contains a self-loop.

We did not allow for self-loops in the previous subsections. For the relation studied here

10A CAS might fail to provide the determinant of a very large matrix in reasonable computation
time, but for example the evaluation of the determinant of a 10×10-matrix, corresponding to a graph
with 10 internal vertices, still takes only a few seconds by the use of Maple 9.5 on a standard PC.
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it is sufficient to be aware that a self-loop belongs to any spanning tree of a graph and
therefore does not contribute to the first Symanzik polynomial UGF (v1, v2). Therefore, the
relation is not affected by possible self-loops in GF (v1, v2).

4.2.3. A Remark on Characteristic Polynomials. Because of the special form

of the matrix LGF

(

Ỹ
) [

V ext
GF

]

we did not need to exploit the full power of the all-minors-

matrix-tree-theorem (29) for our proof. Hence it might be interesting to relate our state-
ment to predecessors of this theorem. We want to point out a link to an identity obtained
by Kelmans and Chelnokov which can be seen as an intermediate step towards the above
used all-minors-matrix-tree-theorem 11.

Kelmans and Chelnokov [KC74, Kel67] consider the characteristic polynomial of the
Laplacian LG of a graph G. For G being a graph with n vertices this is the polynomial

Ψ(λ, G) =
1

λ
det(λ1n×n − LG)

=

n−1∏

i=1

(λ− λi(G))

= λn−1 − b1(G)λn−2 + · · · + (−1)ibi(G)λn−1−i + · · · + (−1)n−1bn−1(G),

where λi are the eigenvalues of LG and the coefficients bi(G) are non-negative integers.
Let G′ be a sub-graph of G and let G/G′ be the graph obtained from G by identifying
all vertices of G′ and subsequently removing the loops created by this identification. In
other words, the sub-graph G′ is contracted to one vertex v⋆ ∈ VG. Let τ(G) denote the
number of spanning trees of G. Kelmans and Chelnokov derive the identity

bi(G) =
∑

G′⊆G, |VG′ |=n−i
τ(G/G′), i = 0, 1, ..., n− 1,(4.2.6)

stating that the bi count all the spanning trees of all possible sub-graphs of G resulting
from identification of k = n− i vertices.

Let us assume, that the graph G is the core G̃F = G of a Feynman graph GF . Then
let us compare the matrix λ1n×n − LG̃F

with

LGF
(Z)

[
V ext
GF

]
= LG̃F

(
Z int

)
+ QGF

(
Zext

)

from above. The generic Laplacian LG̃F

(
Z int

)
is a generalization of LG̃F

. In the same

sense we can consider the matrix QGF

(
Zext

)
to be a generalization of λ1n×n. Here the

set
{
0, Zext

}
replaces the set {λ}. Hence we can interpret the matrix LGF

(Z)
[

V ext
GF

]

as a possible generalization of λ1n×n − LG. Furthermore the polynomial UGF /V
ext

GF

(Z) =

det
(

LGF
(Z)

[

V ext
GF

])

is a generalization of the polynomial Ψ(λ, G) · λ. In this sense

equation (4.2.6) is related to the all-minors-matrix-tree-theorem and to our theorem (30).
From this point of view a closer study of the characteristic polynomials and eigenvalues
of Laplacians might be useful. For an introduction to the latter topic we refer to chapter
13 of [GR01d] and the survey [Moh91].

11Further predecessors of the theorem are for instance the matrix-tree-theorem itself (28) and a
theorem on rooted forests by Fiedler and Sedláček in [FS58].
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4.2.4. Dodgson’s Rule on Determinants. The above mentioned theorems of the
matrix-tree-type allow us to use properties of determinants in calculations concerning
graph polynomials. Apart from the obvious properties, determinants of arbitrary n× n-
matrices fulfill an identity discovered by Reverend Charles Lutwidge Dodgson12 under the
name of “condensation of determinants” in [Dod66].

Let n ∈ N and I and J be subsets of {1, 2, ..., n}. For sets with one element we write
the element itself. Let A be an n × n matrix and let A [(I, J)] again denote the matrix
obtained from A by removing the ith rows and the jth columns for all i ∈ I and j ∈ J .
Again we write A[(I, I)] = A[I] for convenience. Dodgson’s rule is

det (A) det (A [{1, n}]) = det (A [n]) det (A [1]) − det (A [(n, 1)]) det (A [(1, n)]) .

A proof was given by Zeilberger in [Zei97].
The equation can be used to find relations among Kirchhoff polynomials of different

graphs. As an example we quote the following result by Stembridge, which was proven
using Dodgson’s identity.

Theorem 35. (Stembridge [Ste98]) Let G be a connected graph with edges labelled
by Y and let e, e′ ∈ EG be distinct edges. Let ∆G, e, e′ be defined as

∆G, e, e′ = K(G/e)\e′K(G/e′)\e −K(G/e)/e′K(G\e)\e′ ,

the dependence on Y being understood.
(a) If u and v are the endpoints of e and u′ and v the endpoints of e′, then

∆G, e, e′ =
(
det
(
LG
[(
{u, v} ,

{
u′, v

})]))2
.

(b) If u and v are the endpoints of e, u′ and v′ the endpoints of e′ and all four vertices
are distinct, then

∆G, e, e′ =
(
det
(
LG
[(
{u, v} ,

{
u′, v

})])
− (−1)r det

(
LG
[(
{u, v} ,

{
v′, v

})]))2
,

where r denotes the distance between the rows u′ and v′ in LG [(v, v)].

In the context of Feynman integrals, Dodgson’s rule was applied to the Kirchhoff
polynomial first in [BEK06]. In [Bro09] Brown uses the identity (as in part (a) of
Stembridge’s theorem) at a crucial point of his method for the evaluation of a special
class of Feynman integrals to multiple zeta values.

4.3. The Multivariate Tutte Polynomial

Now that we have discussed Symanzik polynomials and their relations, we give a brief
outlook on the so-called multivariate Tutte polynomial. The multivariate Tutte polyno-
mial generalizes the standard Tutte polynomial (defined below), which was introduced by
W. T. Tutte [Tut47, Tut54, Tut67] and is known to be a useful generalization of many
graph invariants. It is closely related to the so-called chromatic polynomial, the flow poly-
nomial, the reliability polynomial and many others. For a detailed review of the standard
Tutte polynomial and its interrelations we refer to the reviews by Ellis-Monaghan and
Merino [EMM08a, EMM08b].

In a sense the multivariate generalization of the Tutte polynomial which we want to
discuss in the following contains the Symanzik polynomials and is related to a variety of
problems in graph theory and physics alike. Most of the material given in this section is
based on Sokal’s comprehensive introduction [Sok05].

12Dodgson’s even more famous literary work contains for example the novel “Alice in wonderland”
which he wrote using the pseudonym Lewis Carroll. This novel has inspired Dominik Zeillinger’s presen-
tation of his winning strategy for Hironaka’s polyhedra game in [Zei05]. The latter strategy is a topic
of chapter 5 of this dissertation.
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4.3.1. Basic Definition. Let us consider a graph G with the edges labelled by
Y =

{
y1, y1, ..., y|EG|

}
. We will also need one further formal variable q. For convenience

let us introduce the symbol ⊑, such that G′ ⊑ G expresses, that G′ is a spanning sub-
graph of G. Note that the spanning sub-graphs we considered before were usually trees
and 2-forests, but in general, spanning sub-graphs of course may contain loops and they
may consist of more than one (or two) connected components. We remind ourselves, that
we denote the number of connected components of G by κG, the loop-number by lG and
that we have the relation

lG = |EG| − |VG| + κG.(4.3.1)

Definition 36. (Sokal, [Sok05]) The multivariate Tutte polynomial of G is defined
as

ZG
(
q, y1, ..., y|EG|

)
=

∑

G′⊑G
qκG′

∏

ei∈EG′

yi.(4.3.2)

We see, that the sum runs through all spanning sub-graphs of G, possibly having loops
and possibly being disconnected. Each term of the sum corresponds to one spanning sub-
graph G′ and is a product of qκG′ and all the edge-labels of G′.

The fact that the graphs G′ are spanning graphs of G and therefore |VG′ | = |VG| and
equation (4.3.1) can be used to write the multivariate Tutte polynomial as

ZG
(
q, y1, ..., y|EG|

)
= q|VG| ∑

G′⊑G
qlG′

∏

ei∈EG′

yi
q
.(4.3.3)

The standard Tutte polynomial [Tut47, Tut54, Tut67] is defined as

TG(u, v) =
∑

G′⊑G
(u− 1)κG′−κG (v − 1)lG′ .(4.3.4)

The multivariate Tutte polynomial as a function ZG (q, y) of q and a one-element set
Y = {y} is related to TG(u, v) by the identity

TG(u, v) = (u− 1)−κ(G) (v − 1)−|VG| ZG ((u− 1) (v − 1) , v − 1) .(4.3.5)

4.3.2. q −→ 0 Limits. In contrast to the above definition of the multivariate Tutte
polynomial we have defined the Symanzik polynomials without the use of the variable q.
Furthermore, in the case of UG the sum runs through the spanning trees of the core and
in the case of F0, G the sum runs through a certain subset of the spanning 2-forests. The
multivariate Tutte polynomial instead considers all spanning sub-graphs and therefore it
contains in general considerably more terms than the Symanzik polynomials.

If we write down the multivariate Tutte polynomial explicitly for a given graph, we
can of course select the terms corresponding to certain sub-graphs by hand (and possibly
recombine them to Symanzik polynomials). More systematically, we can select terms
corresponding to certain sub-graphs by taking the limit q −→ 0 in an appropriate way.
The general strategy is to take a limit limq−→0 q

aZG, such that the terms in ZG which
shall be selected have the form q−a

∏

ei∈EG′
yi. By cancellation of the q-prefactors, the

corresponding
∏

ei∈EG′
yi do not vanish in the limit. On the other hand all terms with a

factor q−b
∏

ei∈EG′
yi with b < a turn to zero.

We consider three possibilities:

(1) We select the sub-graphs with a minimal number of connected components. This
is done by taking the limit q −→ 0 of q−κGZG (q, Y ) while keeping all yi fixed:

lim
q−→0

q−κGZG
(
q, y1, ..., y|EG|

)
= CG

(
y1, ..., y|EG|

)
.
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The result is the generating polynomial of maximally spanning sub-graphs, de-
fined as

CG
(
y1, ..., y|EG|

)
=

∑

G′ ⊑ G
κG′ = κG

∏

ei∈EG′

yi.

Note that the sum runs through sub-graphs which are allowed to have loops but
not more connected components than G itself. To convince ourselves that this is
the result, we can see in equation (4.3.2) that the q-dependent factors in q−κGZG
are qκG′−κG , which tend to one for q −→ 0 only for G′ with κG′ = κG.

(2) We select the sub-graphs which are forests by taking the limit q −→ 0 of

q−|VG|ZG
(

q, qy′1, ..., qy
′
|EG|

)

while keeping all y′i fixed:

lim
q−→0

q−|VG|ZG
(

q, qy′1, ..., qy
′
|EG|

)

= FoG

(

y′1, ..., y
′
|EG|

)

where the polynomial

FoG

(

y′1, ..., y
′
|EG|

)

=
∑

G′ ⊑ G
lG′ = 0

∏

ei∈EG′

y′i

is called the generating polynomial of spanning forests. It can be seen from
equation (4.3.3) that keeping all

yei

q fixed, the q-dependent factor qlG′ goes to

one for G′ with lG′ = 0 and to zero for the other sub-graphs.
(3) Now let us define the generating polynomial of maximal spanning forests to be

KG

(
y1, ..., y|EG|

)
=

∑

G′ ⊑ G
κG′ = κG
lG′ = 0

∏

ei∈G′

yi.

Note that the sum runs through a set of graphs which is the intersection of the
sets where the sums in CG and in FoG run through. It is the set of spanning
forests with the minimal number of connected components. If G is a connected
graph, these forests are spanning trees and we obtain exactly the Kirchhoff poly-
nomial of G.
To obtain KG from CG we have to select the sub-graphs without loops, which
in the sum in CG are the sub-graphs with |VG| − κG′ edges. We impose this
selection by replacing all variables yi by λyi and taking the following limit:

lim
λ−→0

λκG−|VG|CG
(
λy1, ..., λy|EG|

)
= KG

(
y1, ..., y|EG|

)
.

Alternatively we can obtain KG from FoG by replacing all variables y′i by λy′i
and taking the limit λ −→ ∞:

lim
λ−→∞

λκG−|VG|FoG
(

λy′1, ..., λy
′
|EG|

)

= KG

(

y′1, ..., y
′
|EG|

)

.

As a third possibility we can directly obtain KG from the multivariate Tutte
polynomial in one step. By the substitutions ti = yi

qα with 0 < α < 1 in equation
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(4.3.2) we obtain

ZG
(
q, qαt1, ..., q

αt|EG|
)

= qα|VG| ∑

G′⊑G
qαlG′+(1−α)κG′

∏

ei∈EG′

ti.

The graphs for which αlG′ +(1−α)κG′ takes the smallest possible value (1−α)κG
are the desired spanning forests with κG′ = κG. Hence for these graphs, the limit

lim
q−→0

q(1−α)κGqαlG′+(1−α)κG′

is one and for all other graphs zero. So we obtain KG taking the limit

lim
q−→0

q−α|VG|+(1−α)κGZG
(
q, qαt1, ..., q

αt|EG|
)

= KG

(
t1, ..., t|EG|

)
.

It is clear that the latter limit relates the multivariate Tutte polynomial to the Symanzik
polynomials via the relations between the Kirchhoff and the Symanzik polynomials, which
we discussed in the previous section.

The fact that multivariate Tutte polynomials and Symanzik polynomials are closely re-
lated has been emphasized by Krajewski, Rivasseau, Tanasa and Wang in [KRTW08]13.

4.3.3. Further Properties. (Multivariate) Tutte polynomials are objects with some
very particular and well-studied properties, of which some might eventually be useful in
the context of Feynman integrals. We want to end this chapter by quoting just some of
the most striking properties, all of them (and many more) being discussed in more detail
in Sokal’s review [Sok05].

• If e ∈ EG and G\e is the graph obtained from G by deleting e and G/e is the
graph obtained from G by contracting e, we have

ZG (q, Y ) = ZG\e (q, Y \e) + yeZG/e (q, Y \e) .(4.3.6)

This kind of identity is referred to as deletion/contraction relation. We had such
a property for the Kirchhoff polynomial with equation (4.1.28).

• If G consists of two connected components G1 and G2, we have

ZG (q, Y ) = ZG1 (q, Y )ZG2 (q, Y ) .

• If G consists of sub-graphs G1 and G2 which have exactly one vertex and no
edge in common (i.e. VG1 ∪ VG2 = VG, EG1 ∪ EG2 = EG, |VG1 ∩ VG2 | = 1,
|EG1 ∩ EG2| = 0) then we have

ZG (q, Y ) =
ZG1 (q, Y )ZG2 (q, Y )

q
.

• If G is a planar graph and G⋆ is the corresponding dual graph we have

ZG⋆

(
q, y1, ..., y|EG|

)
= q1−|VG|




∏

ei∈EG

yi



ZG
(
q, q/y1, ..., q/y|EG|

)
.

• If we restrict q to be a positive integer, one can write the multivariate Tutte
polynomial as

ZG (q ∈ N, Y ) =
∑

σ: VG→{1, 2, ..., q}

∏

ei∈EG

(
1 + yiδ

(
σv1(ei), σv2(ei)

))

13In this work the authors furthermore introduce a new kind of Symanzik polynomials, suitable
for quantum field theories on non-commutative spacetime, and they show that these are related to the
so-called Bollobas-Riordan polynomial, which is a generalization of the multivariate Tutte polynomial.
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where δ is the Kronecker delta, v1(ei) and v2(ei) are the vertices at the ends of
the edge e and the sum runs over all possible maps σ from the vertices of G to
the integers {1, 2, ..., q}. By replacing the variables yi in an appropriate manner
by Boltzmann weights, this polynomial gives the partition function of the q-state
Potts model (see e.g. [Wu83]) of statistical physics.

• The multivariate Tutte polynomial can be defined on a matroid14 (instead of a
graph) and it then contains all the information about the matroid.

We mentioned the recent work of Krajewski et al. [KRTW08] where to our knowledge
the relation between the multivariate Tutte polynomial and Symanzik polynomials was
mentioned for the first time in the context of Feynman integrals. We believe that because
of this relation and the special properties we just mentioned, Tutte polynomials might be
a helpful tool for the investigation of the combinatorial properties of Feynman integrals
in the future. To our knowledge, a first explicit application of a property of the (classical)
Tutte polynomial to so-called motives which are associated to Feynman graphs was given
in a very recent work by Aluffi and Marcolli [AM09a]. In this article the authors prove
a deletion/contraction relation for a certain polynomial which is closely related to the
associated motives.

Many methods for the evaluation of Feynman integrals usually do not yet make use
of most of the combinatorial properties of Symanzik polynomials which we discussed in
the present chapter. In the following chapter, we will give a detailed discussion of one
particular technique where Symanzik polynomials are present in the calculation. We will
see in detail, how the zero-sets of the Symanzik polynomials determine the singularities of
the Feynman integral. The consideration of these zero-sets as geometrical objects provides
the link to a technique of algebraic geometry, which will be used in the following.

14See [Oxl03, Oxl86, Oxl06] for an introduction to matroids and their relation to graphs.





CHAPTER 5

Sector Decomposition and Resolution of Singularities

“Logic takes care of itself; all we have to do is to look and see how it
does it.”
(Ludwig Wittgenstein)

In the present chapter we introduce an improvement of the widely used sector decom-
position algorithm of Binoth and Heinrich [BH00, BH04, Hei08]. Sections 5.1 and 5.2
follow the lines of the joint work with Stefan Weinzierl [BW08], where the improvement
was presented for the first time. The latter publication includes the first publicly availa-
ble implementation of the sector decomposition algorithm1. In section 5.3 we give a more
abstract geometrical point of view.

Sector decomposition is a method for the systematic disentanglement of the singulari-
ties of Feynman integrals by dispartment and transformation of integration domains. The
mentioned algorithm of Binoth and Heinrich iterates these steps systematically. It serves
for the numerical evaluation of multi-loop integrals in the Euclidean momentum region
for Feynman graphs with an arbitrary loop-number and arbitrary topology. In section 5.1
we give a brief review on the algorithm and expose a problem of the original version of the
algorithm described in [BH00, BH04, Hei08]. There are possible cases for which the al-
gorithm does not terminate. We give an example leading to infinite recursion. By mapping
the iterative step of the algorithm to a purely combinatorial problem, known as Hironaka’s
polyhedra game [Hir67], we find an extension of the algorithm, such that termination is
guaranteed. Hironaka’s game and its solutions [EH02, Spi83, Zei05, Zei06b] are dis-
cussed in section 5.2. Our extended version of the algorithm includes these solutions and
therefore terminates. Hironaka’s polyhedra game was originally given as the formulation
of a combinatorial problem of algebraic geometry, which is the choice of so-called blow-
ups for a resolution of singularities [Hir64]. In section 5.3 we explain how this important
problem of mathematics is connected to the sector decomposition of Feynman integrals.

For the reader of the previous chapters the application of a technique from algebraic
geometry to the calculation of Feynman integrals might not come as a great surprise.
In chapter 4 we have extensively discussed the Symanzik polynomials, arising from the
parametric representation of a Feynman integral. The zero-sets of these polynomials give
rise to the possible singularities of the integral. As soon as we consider the zero-sets
as geometrical objects, we are automatically in touch with algebraic geometry. As we
already mentioned, we observe that a lot of present day’s efforts in mathematical physics
is invested into a better understanding of the correspondence between Feynman integrals
and concepts of algebraic geometry. The common goal of these efforts appears to be
an improvement of the highly conjectural theory of so-called motives. In this field of
research a purely mathematical problem is addressed with the use of a tool developed in
physics. It seems that algebraic geometry in a sense profits from quantum field theory,
which provides useful examples for objects of mathematical interest.

1In the meantime also the program FIESTA by Smirnov and Tentyukov [ST09] (using Mathematica
and C) has become available. Ueda and Fujimoto report on a further program [UF09] (using FORM).
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Gustavsburg

Mainz

1

2

railroad

barbeque

Rhein

Main

Figure 5.1.1. A barbeque at the river mouth.

Therefore a natural question should arise: Can the physicist profit from the correspon-
dence as well and can he or she address his or her own problems by use of the knowledge
of algebraic geometers? How can well developed tools of algebraic geometry help in the
calculation of Feynman integrals? We believe, that the present chapter contributes one
possible answer to this question. A very specific problem, originating from the calculation
of multi-loop integrals, is solved with tools of algebraic geometry.

Moreover we believe, that the following treatment should convince the reader, that
we did not intentionally try to attach algebraic geometry to sector decomposition just
in order to present a particularly fancy approach. Instead of that, Hironaka’s polyhedra
game and its solutions appear to be the natural way to solve the termination problem of
sector decomposition. This example may give rise to the hope, that algebraic geometry
will contribute further improvements for the evaluation of Feynman integrals in the future.

5.1. Sector Decomposition

5.1.1. The Basic Idea of Sector Decomposition. Figure 5.1.1 shows a rough
sketch of the town Gustavsburg (grey area) from bird’s eye view. Let us assume that we
have friends in Gustavsburg and we want to invite them to a barbeque at the place which
we marked with a black spot. We may tell our friends: “Walk to the area, where the rivers
Rhein and Main meet”. With respect to the rivers, this information has two pieces: They
have to go as close as they can to the Rhein and as close as they can to the Main. Our
friends need to keep both pieces of information in mind, if they want to find us.

But if we know Gustavsburg, we know that there is a railway track right across the
town, dividing it into two regions (the dotted line in figure 5.1.1). Let us assume, that our
friends would never get the idea of walking across this railway track on their way. Then
we can just tell the friends living in region 1 to come as close as possible to the Rhein.
Without crossing the railway track, this can only mean to walk to the place where the
barbeque is. Accordingly we tell our friends in region 2 to come as close as possible to the
Main. Both groups of friends will find the barbeque. We have separated the two pieces
of information, such that each of our friends needs to remember only one river. For our
forgetful friends, this simplifies the problem of finding us.
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(a) (b)

Figure 5.1.2. Barbeques at the riverbanks.

x

y

x′

y′

x′

y′

x = x′, y = x′y′x = x′y′, y = y′

Figure 5.1.3. A simple sector decomposition.

Our friends in region 1 know, that they will find the barbeque, if only they approach
the river Rhein. So for them it is as easy to find it, as if there was no railway track and
the barbeque was everywhere along the river Rhein (see figure 5.1.2 (a)). Correspondingly,
for our friends in region 2 it is the same situation as living in a town without railways
and the barbeque being all along the river Main (see figure 5.1.2 (b)). This simplification
is what sector decomposition and resolution of singularities is about2.

Let us speak slightly more scientific again and instead of barbeques and outskirts of
Mainz care about singularities and domains of integrals.

Example 37. Let us consider the integral

I =

∫ 1

0
dx

∫ 1

0
dy

1

P (x, y)
xa+bǫyc+dǫ(5.1.1)

where a, b, c, d are some fixed integers, ǫ ∈ C is a regularization parameter and P is the
polynomial

P (x, y) = x+ xy + y.

2We may say, that what we have just seen is a sector decomposition of Gustavsburg, or equivalently,
a resolution of a barbeque.
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Singularities of the integral can arise from terms in the integrand, which are not bounded
in the integration domain. For example there are values of ǫ where for a < 0 the factor
xa+bǫ goes to infinity as x approaches zero. Accordingly for c < 0 the factor yc+dǫ goes
to infinity if y approaches zero. These possible singularities are independent in the sense
that the first case affects only the x-integration and the second one only the y-integration.
If these were the only possible singularities, we could care at first about the x-integration
without worrying about the factor yc+dǫ and then, in a second step, care about the y-
integration.

The term 1
P (x, y) instead goes to infinity if both variables go to zero. In this case we

speak of an overlapping singularity. Such singularities obviously make the treatment of
the integral more difficult. Therefore we want to disentangle the overlapping singularity
by the following decomposition of the integration domain. We write

I = I1 + I2(5.1.2)

with

I1 =

∫ 1

0
dx

∫ 1

0
dy

1

P (x, y)
xa+bǫyc+dǫθ(x ≥ y),(5.1.3)

I2 =

∫ 1

0
dx

∫ 1

0
dy

1

P (x, y)
xa+bǫyc+dǫθ(y ≥ x)(5.1.4)

where θ denotes the Heaviside-function. The supports of the integrands of I1 and I2 are
shown in figure (5.1.3). Both regions have the shape of a triangle. We deform them into
quadratic regions by the following transformations. For I1 we substitute

x = x′,

y = x′y′

and write I1 in terms of the new parameters x′, y′. We obtain

I1 =

∫ 1

0
dx′
∫ 1

0
dy′

1

P ′
1(x

′, y′)
x′a+c+1+(b+d)ǫ

y′c+dǫ.

We have used that θ(x′ ≥ x′y′) = 1 everywhere in the integration domain. The polynomial
is

P ′
1(x

′, y′) = x′ + x′2y′ + x′y′

= x′
(
1 + x′y′ + y′

)
.

Since x′ is factored out, we obtain

I1 =

∫ 1

0
dx′
∫ 1

0
dy′

1

1 + x′y′ + y′
x′a+c+(b+d)ǫ

y′c+dǫ.

We see, that the fraction 1
1+x′y′+y′ does not go to infinity anywhere in the integration

domain and therefore it does not yield a singularity of the integral. The only possible

singularities of I1 are disentangled ones, arising from the monomial x′a+c+(b+d)ǫy′c+dǫ.
Geometrically speaking, the zero-set of the polynomial 1+x′y′ + y′ does not intersect

with the integration domain. This is the desired case. The much simpler zero-set of the
monomial still intersects the integration domain and this is what the singularity structure
of I1 still depends on. These singularities are not overlapping.

A similar treatment is applied to I2. Here we substitute

x = x′y′,

y = y′
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and obtain

I2 =

∫ 1

0
dx′
∫ 1

0
dy′

1

x′ + x′y′ + 1
x′a+bǫy′a+c+(b+d)ǫ

.

Here we have factored out y′. The zero-set of the polynomial x′+x′y′+1 does not intersect
the integration domain and therefore we have no overlapping singularities.

Let us consider the decomposition I = I1 + I2 and observe, what has happened
to the critical point x = 0, y = 0 in the new coordinates. In the domain of I1, by the
given substitutions, the point is transformed into the line where x′ = 0. Accordingly in the
domain of I2 the critical point has become the line y′ = 0. In figure (5.1.3) we have marked
these regions by thick black lines. Comparing the figures (5.1.2) and (5.1.3) we see the
similarity to our barbeque example from above. In both examples a problematic region,
here a point, is associated to regions of higher dimension. Then in order to approach the
latter regions, one needs to consider one coordinate less than in the original problem.
The dependence on the coordinates has been disentangled, or as we may say, resolved.
We will come back to the present example in section 5.3 in order to reconsider it from a
geometrical point of view.

Example 38. As a slightly more difficult example let us consider the integral I of
equation (5.1.1), where this time the polynomial is

P (x, y) = x+ xy + y2.

Similar to the previous example, we decompose I = I1 + I2. In the first sector, after the
substitutions x = x′ and y = x′y′, we obtain

P ′
1(x

′, y′) = x′
(

1 + x′y′ + x′y′2
)

.

The polynomial in the bracket has the desired property of being non-zero in the domain
of integration, so the possible singularities of I1 are disentangled.

However, in the second sector we have a different situation this time. After the sub-
stitutions x = x′y′ and y = y′ we obtain

P ′
2(x

′, y′) = y′
(
x′ + x′y′ + y′

)
.

Therefore we have

I2 =

∫ 1

0
dx′
∫ 1

0
dy′

1

x′ + x′y′ + y′
x′a+bǫy′a+c+(b+d)ǫ

.

The zero-set of the polynomial x′ +x′y′+y′ intersects with the domain of integration. We
see, that the latter polynomial already appeared in the starting point of example 37. So
we can furthermore decompose I2 = I2,1 +I2,2, according to the steps of example 37. As a
result, the singularities in I2,1 and I2,2 are disentangled. So we obtain the decomposition
I = I1 + I2,1 + I2,2 where none of the integrals on the right-hand side has overlapping
singularities.

For the above concept to be useful for the calculation of more general integrals we need
to allow for more integration variables and for an arbitrary number of decompositions.
This is provided by the widely used sector decomposition algorithm of Binoth and Heinrich
[BH00, BH04, Hei08], which we review below.

A sector decomposition was already used by Hepp [Hep66] to disentangle overlapping
ultraviolet singularities in his famous proof of the Bogoliubov-Parasiuk-theorem [BP57]
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on renormalization3. Later, in a practical calculation of Feynman integrals, the concept
was used for the extraction of singularities of certain one-loop-integrals by Denner and
Roth [DR96].

The algorithm by Binoth and Heinrich was the first algorithm which systematically
iterates the decomposition of integration domains in order to provide (numerical) results
for Feynman integrals with an arbitrary loop-number. In practical applications, there are
of course restrictions given by the realizations on the computer, but the algorithm itself
can be applied to integrals of arbitrarily complicated Feynman graphs. An overview of
the wide range of applications of the algorithm can be found in [Hei08].

We want to indicate what the main problem of the following treatment will be. With
equation (5.1.2) we decomposed the original integration domain of the above example
into two regions, such that in one region we have x ≥ y and in the other one we have
y ≥ x. In the following we want to decompose higher dimensional domains such that in
each resulting piece one of the variables is greater or equal to some of the other variables,
possibly not all of them. This leaves a certain freedom of choice. We want to formalize
this choice as follows:

Consider an integral of the form

I =

∫ 1

0
dx1

∫ 1

0
dx2...

∫ 1

0
dxnf (x1, ..., xn)

with some function f . The domain of integration is an n-dimensional cube. We choose a
subset of the numbers from 1 to n,

S = {α1, ..., αk} ⊆ {1, ..., n} ,
containing k elements where 2 ≤ k ≤ n. Then the domain is decomposed into k regions,
such that in the lth region xαl

is greater or equal the other xαi
with αi ∈ S.

Example 39. Let the original domain be the unitary cube in R3. Then we have four
possible choices for S, namely {1, 2}, {2, 3}, {1, 3} and {1, 2, 3} (see figure 5.1.4). In the
case of S = {1, 2} we have two regions, namely one where x1 ≥ x2 and one where x2 ≥ x1.
Choosing {2, 3} or {1, 3} we obtain two regions as well. The choice S = {1, 2, 3} splits
the domain into three regions: one where x1 ≥ x2 and x1 ≥ x3, one where x2 ≥ x1 and
x2 ≥ x3 and a third one where x3 ≥ x1 and x3 ≥ x2.

The difficulty will be, that not all possible choices of S are equally helpful for the
disentanglement of the singularities. In fact, some ways of choosing S can even lead to a
never ending iteration, as we will see.

5.1.2. The Algorithm of Binoth and Heinrich. We consider polynomials P in
real valued variables x1, x2, ..., xn. Let X denote the set {x1, x2, ..., xn}. Writing P (X)
we mean, that P depends on some of the elements of X, not necessarily on all of them.
Rn

+ shall denote the subset of Rn, where xj ≥ 0 for all the xj. Rn
+\0 denotes the subset

where xj > 0 for all the xj.
We can write each polynomial as

P (X) =

p
∑

j=1

kj

n∏

i=1

x
mij

i

3The theorem and Hepp’s proof are, together with Zimmermann’s work [Zim69], the fundaments of
the well-known BPHZ-renormalization. A first proof was already provided by Bogoliubov and Parasiuk,
but according to Hepp it was “hard to find two theoreticians whose understanding of the essential steps
of the proof is isomorphic”.
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{1, 2} {2, 3} {1, 3} {1, 2, 3}

x1

x2

x3

Figure 5.1.4. Four ways of cutting a cube into pieces.

where the mij are integers and the kj are nonzero coefficients with real values. Then
obviously P (X) is nonzero in Rn

+\0 if we have kj > 0 for all j = 1, 2, ..., p. In the

following algorithm, we will allow only for such polynomials.
A polynomial is nonzero in Rn

+, if all the coefficients are positive and furthermore in
one of the terms all the exponents mij are zero, such that this term consists only of the
nonzero coefficient. An example is P1(x1, x2) = k1x1x2 +k2x

2
2 +k3 with k1, k2, k3 greater

than zero.
Now let us call a polynomial P (X) monomialized, if we can write it as

P (X) = P̃ (X)
n∏

i=1

xmi

i(5.1.5)

such that in P̃ (X) one term of the sum consists of a nonzero coefficient. An example

is P2(x1, x2) = k1x
3
1x

2
2 + k2x

2
1x

3
2 + k3x

2
1x2 = P̃ (x1, x2)x

2
1x2 with the above P1 as P̃ .

In different words, a polynomial is called monomialized, if one of its monomials can be
factored out. We see that if P is monomialized and all its coefficients are positive then
P̃ (X) is nonzero in Rn

+.

Starting point: The algorithm is applied to an integral

I =

∫

xj≥0
dnxδ

(

1 −
n∑

i=1

xi

)(
n∏

i=1

xai+ǫbi
i

)
r∏

j=1

(Pj (X))cj+ǫdj(5.1.6)

where the integration domain is understood to be Rn
+. All the parameters ai, bi, ci and di

are integers and ǫ ∈ C is the regularization parameter. For the algorithm to be applicable,
the polynomials in the integrand need to have the important property of being nonzero in
Rn

+\0, but not necessarily nonzero in Rn
+. In other words, they are not allowed to vanish

inside the integration domain, but they may vanish on the boundary.
Note that a general scalar Feynman integral (cf. equation (2.3.6))

IG =

∫

xj≥0
dNxδ

(

1 −
N∑

i=1

xi

)(
N∏

i=1

xνi−1
i

)

UGν−(L+1)D/2

FGν−LD/2
,(5.1.7)
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(where we omitted a trivial prefactor) is obtained as a special case of the above integral
I by setting n = N, r = 2, ai = νi − 1, bi = 0, P1 = UG, P2 = FG, c1 = ν − 2(L + 1),
d1 = L + 1, c2 = ν − 2L, d2 = L. N is the number of internal edges and L is the
loop-number of the Feynman graph. For every Feynman graph G the polynomial UG is
nonzero in Rn

+\0 as all coefficients are equal to 1. Whether the condition is fulfilled for FG
depends on the external momenta and the masses. In the Euclidean momentum region
where all masses are positive or zero and all kinematical invariants are negative or zero,
FG is nonzero in Rn

+\0. For this region of masses and external momenta, the algorithm

can be applied to the Feynman integral IG.
It is understood that the integrals I and IG in the above equations (5.1.6) and (5.1.7)

are functions of the regularization parameter and possibly of variable coefficients of the
terms in the polynomials, considered in the region of positive values, such that each
polynomial Pj is nonzero in Rn

+\0. In particular the Feynman integral IG depends on

squared masses and kinematical invariants (cf. the definition of FG in equation (2.3.9)).
Here, for the sake of brevity, we avoid to always denote these dependences explicitely.

Step 0: Homogenization. Due to the presence of δ (1 −∑n
i=1 xi) we can multiply

terms in the integrand with
∑n

i=1 xi without changing the integral. In this way we can
obtain homogeneous polynomials. For each polynomial Pj in the integrand we determine
its highest degree hj in all the variables xi and multiply all its terms of a lower degree with
an appropriate power of

∑n
i=1 xi, such that the resulting polynomial is homogeneous.

We give an example for an integral over two parameters x1 and x2 with δ (1 − x1 − x2).
For P = x3

1 + x2 in the integrand the highest degree is 3 and the present step of the
algorithm yields a substitution of P by the homogeneous polynomial P ′ = x3

1 + (x1 +
x2)

2x2 = x3
1 + x2

1x2 + 2x1x
2
2 + x3

2.
Note that for Feynman integrals nothing needs to be done here, as the polynomials

UG and FG are homogeneous already.
From here on let hj denote the degree of the polynomial Pj.

Step 1: Primary decomposition. Now let I denote the integrand of I. We de-
compose I into n terms, the so-called primary sectors, as

I =

∫

xj≥0
dnxI =

n∑

l=1

∫

xj≥0
dnx

∏

i=1, i6=l
θ(xl ≥ xi)I.

Then we make a substitution for each term of this sum: In the l-th term we substitute

xj = x′lx
′
j for j 6= l,

xl = x′l.

The set of the new parameters x′1, ..., x′n is denoted by X ′ and the substitutions yield

I =
n∑

l=1

∫

x′j≥0

∫

xl≥0
dn−1x′dx′lδ



1 − x′l − x′l

n∑

i=1, i6=l
x′i




∏

i=1, i6=l
θ(x′l ≥ x′lx

′
i)

·x′−cl





n∏

i=1, i6=l
x′ai+ǫbi
i





r∏

j=1

(
P ′

j

(
X ′))cj+ǫdj

with

−c = n− 1 +

n∑

i=1

(ai + ǫbi) −
r∑

j=1

hj(cj + ǫdj)
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and where we have factored out powers of xl as

Pj (X) = x′
Pr

j=1 hj(cj+ǫdj)

l P ′
j

(
X ′) .

Note that the new polynomials P ′
j (X ′) are independent of x′l, because of the homogeneity

of the Pj . Therefore it is now easy to evaluate the x′l-integration as

∫

x′l≥0
dx′lδ



1 − x′l − x′l

n∑

i=1, i6=l
x′i




∏

i=1, i6=l
θ(x′l ≥ x′lx

′
i)x

′−c
l =

∏

i=1, i6=l
θ(1 ≥ x′i)



1 +
n∑

i=1, i6=l
x′i





c

.

In the remaining integrals over x′i the product of θ-functions restricts the support of the
integrand to the n− 1-dimensional unit-cube. We therefore obtain

I =
n∑

l=1

∫ 1

0
dn−1x′





n∏

i=1, i6=l
x′ai+ǫbi
i







1 +
n∑

i=1, i6=l
x′i





c
r∏

j=1

(
P ′

j

(
X ′))cj+ǫdj .

Omitting the primes and considering
(

1 +
∑n

i=1, i6=l x
′
i

)c
as just one more polynomial in

the integrand, we see that the terms we obtain in the sum are integrals of the form4

(5.1.8)

∫ 1

0
dnx

(
n∏

i=1

xai+ǫbi
i

)
r∏

j=1

(Pj (X))cj+ǫdj .

At this stage, all polynomials Pj (X) are non-negative in Rn
+ and not necessarily homo-

geneous.

Step 2: Iterative decomposition. The following step is crucial for the disentangle-
ment of the singularities. At first let us consider one primary sector and one polynomial
P (X) of its integrand, assuming that P (X) is not monomialized. (If all the polynomials
are monomialized, there is nothing to do and one proceeds with step 3.) The algorithm
determines a set S = {α1, ..., αk} ⊆ {1, ..., n}, containing at least two elements. The
choice depends on the polynomial P (X). A set of rules which defines how to obtain S
from P (X) shall be called a strategy. Let us for the moment assume, that we have a
given strategy at hand. We will give a detailed discussion on various possible strategies
below.

According to the chosen set S we decompose the integral of the sector under consid-
eration as:

∫ 1

0
dnx =

k∑

l=1

∫ 1

0
dnx

k∏

i=1, i6=l
θ (xαl

≥ xαi
) .(5.1.9)

Here the sum and the product run through the indices 1, ..., k of the elements in S. The
terms of the sum are called sub-sectors. (Such decompositions were considered in the
examples 37, 38 and 39.)

4In order to avoid a possible source of confusion we remark, that, as one integration was carried out,

the integrals are of the form
R 1

0
dn−1x..., but as the integrand in the l-th primary sector does not depend

on xl we may also write
R 1

0
dnx... because

R 1

0
dxl = 1. Anyway it will not be important for the following,

whether we have n − 1 or n integrations.
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In each sub-sector we make different substitutions: In the l-th sub-sector we substitute

xi =







x′αl
for i = αl,

x′ix′αl
for i 6= αl and i ∈ S,
x′i for i 6= S.

(5.1.10)

Let us denote the resulting polynomial in the l-th sub-sector by P ′
l (X ′). An appropriate

choice of S will lead to a factorization in P ′
l (X ′), such that we can factor out x′l to a

certain power:

P ′
l

(
X ′) = x′mαl

P̃ ′
l

(
X ′) .

The substitution furthermore yields a Jacobian factor xk−1
αl

in the l-th sector.

Now we iterate this step in the following sense: For each newly obtained P̃l which is
not monomialized we choose a new set Sl according to the strategy and decompose the
l-th sub-sector in the above sense into further sub-sectors and perform the corresponding
substitutions. The iteration stops if all the polynomials which are generated in this way
are monomialized.

We continue with this iterative decomposition for each non-monomialized polynomial
in all the sectors. As a result we obtain a decomposition for I, where each term in the
sum is an integral of the type of equation (5.1.8) such that all the polynomials in all the
integrands are monomialized.

We want to illustrate this crucial step of the algorithm by one more example:

Example 40. Let us assume P (x1, x2, x3) = x2
1 + x1x2 + x2

2x3 is a polynomial in
the integrand of a primary sector. Obviously it is not monomialized. Let us furthermore
assume the strategy tells us to choose S = {1, 2} for this polynomial. Then there are two
sub-sectors.

For the first sub-sector the substitutions are x1 = x′1, x2 = x′1x′2 and x3 = x′3.

We obtain P ′
1(x

′
1, x

′
2, x

′
3) = x′21

(

1 + x′2 + x′22x
′
3

)

. This polynomial is monomialized.

If in the same integral there are no more polynomials which are not monomialized, this
sub-sector is not decomposed any further.

In the second sub-sector the substitutions are x1 = x′1x′2, x2 = x′2 and x3 = x′3. We

obtain P ′
2(x

′
1, x

′
2, x

′
3) = x′22

(

x′21 + x′1 + x′3
)

=: x′22P̃
′
2. This polynomial is not mono-

mialized. The zero-set of the term P̃ ′
2 intersects with the integration domain. Therefore

the iteration must continue. The next set S2 is chosen with respect to the polynomial P̃ ′
2

and the sub-sector is further decomposed.

Step 3: Pole separation. At the end of step 2, the integral I is decomposed into a
sum, where each term corresponds to a sub-sector and where all the appearing integrals
are still of the form

∫ 1

0
dnx

(
n∏

i=1

xai+ǫbi
i

)
r∏

j=1

(Pj (X))cj+ǫdj ,

but now all the polynomials are non-zero in the integration domain. Therefore it depends
exclusively on the monomial

∏n
i=1 x

ai+ǫbi
i whether the integral diverges or not. A singu-

larity may arise from the integration over any xj which appears with a negative power
aj < 0 in the monomial.
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Let us for the moment consider the integral in only one such variable xj. The integrand
is denoted I (xj, ǫ). We Taylor-expand I (xj , ǫ) around xj = 0:

∫ 1

0
dxjx

aj+bjǫ
j I (xj, ǫ) =

∫ 1

0
dxjx

aj+bjǫ
j





|aj |−1
∑

p=0

xpj
p!

I(p)(ǫ) + I(R) (xj , ǫ)



(5.1.11)

where I(p)(ǫ) denotes the p-th derivative in xj and I(R) (xj, ǫ) the remainder of the
expansion:

I(p)(ǫ) =
∂

∂xpj
I (xj, ǫ)|xj=0 ,

I(R) (xj , ǫ) = I (xj, ǫ) −
|aj |−1
∑

p=0

xpj
p!

I(p)(ǫ).

The xj-integral over I(R) (xj, ǫ) does not lead to any ǫ-poles. Therefore, equation
(5.1.11) separates the pole-part, which is the integral over the sum of derivatives. The
xj-integration in this part can now be evaluated analytically:

∫ 1

0
dxjx

aj+bjǫ
j

xpj
p!

I(p)(ǫ) =
1

aj + bjǫ+ p+ 1

I(p)(ǫ)

p!
.(5.1.12)

For all the variables xj with aj < 0 the separations and analytical integrations are carried
out in this way.

We want to emphasize, that these simple analytical evaluations of the integrations
which yield the pole terms are possible due to the disentanglement of the singularities,
achieved by the monomialization of the polynomials in the previous step 2. If there still
were overlapping singularities, arising from the intersections of zero-sets of polynomials
(appearing to negative powers) with the integration domain, the present step 3 would not
be possible.

Step 4: Series expansion. After the previous steps, all remaining integrals in the
decomposition of I are finite. The coefficients of these integrals are ǫ-dependent rational
functions, as we see from equation (5.1.12). Now we can expand I as a Laurent series in
ǫ

I =
B∑

i=A

Ciǫ
i + O

(
ǫB
)

with A, B ∈ Z and truncate the series to a desired order.

Step 5: Numerical integration. All the previous steps are done analytically and
the functions Ci in terms of the remaining, finite integrals are obtained exactly. However,
the analytical evaluation of these integrals is in general unknown. For this reason, the
parameters for the masses and the kinematical invariants have to be fixed at some point
and the remaining integrals are computed numerically, for example by use of Monte Carlo
methods.

Example 41. Let us consider the so-called massless planar on-shell double box, which
is the graph of figure 5.1.5 where we set p2

i = 0 for i = 1, 2, 3, 4 and all masses equal to
zero. The corresponding Feynman integral is

IG(ǫ, s, t) = g(ǫ)

∫

d7xδ

(

1 −
7∑

i=1

xi

)

U1+3ǫF−3−2ǫ(5.1.13)
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p1

p2 p3

p4

Figure 5.1.5. The planar double box.

with the prefactor

g(ǫ) = (−1)7Γ(3 + 2ǫ)

and the polynomials

(5.1.14) U = (x1 + x2 + x3) (x5 + x6 + x7) + x4 (x1 + x2 + x3 + x5 + x6 + x7) ,

F = (x2x3 (x4 + x5 + x6 + x7) + x5x6 (x1 + x2 + x3 + x4)

(5.1.15) +x2x4x6 + x3x4x5) (−s) + x1x4x7(−t).
The polynomial F depends on the kinematical invariants s := (p1 + p2)

2 and t :=

(p2 + p3)
2 .

The above algorithm can be straightforwardly applied for negative values of s and t.
By use of the original strategy which is defined in subsection 5.1.3, the algorithm produces
293 sectors. For s = −1 and t = −1 Binoth and Heinrich [BH00] obtain

IG(ǫ, −1, −1) ≈ g(ǫ)

(

−2.0000

ǫ4
+

6.0000

ǫ3
+

4.9188

ǫ2
− 11.495

ǫ
− 13.811 + O(ǫ)

)

.

These and other results from reference [BH00] were important checks for the analytical
evaluations of double box integrals by Smirnov [Smi99], Tausk [Tau99] and Gehrmann
and Remiddi [GR01c, GR01b]. We also used these numbers for cross-checks with our
implementation [BW08]. The precision of the numerical result depends exclusively on
the method which is chosen for the numerical integrations in step 5. One can in principle
always improve the precision at the cost of calculation time.

5.1.3. The termination problem. In the above description of the algorithm we
consciously left a gap in the crucial step 2. The choice of a set

S = {α1, ..., αk} ⊆ {1, ..., n}
according to a given non-monomialized polynomial P (X) determines, how the corre-
sponding integration domain is decomposed. As we already agreed, we want to call a set
of rules to determine S a strategy. Now let us introduce the original strategy by Binoth
and Heinrich:

Strategy X. (Binoth and Heinrich [BH00]) Choose S = {α1, ..., αk} of step 2 to
be a minimal set, such that everywhere in the region given by xα = 0 for all α ∈ S the
polynomial is zero.

Here minimal means that there is no proper subset S′ ⊂ S such that the polynomial
is zero in the entire region given by xα = 0 for all α ∈ S′.

As a first observation we notice, that Strategy X still leaves a freedom of choice in
many cases. For example the polynomial P (x1, x2, x3) = x1x2 + x2x3 + x1 according to
Strategy X allows for the choices {1, 2} and {1, 3}. ({1, 2, 3} is not allowed, as it is not
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minimal with respect to the mentioned property.) Of course a freedom of choice is not a
problem for an algorithm. On the contrary, it may allow for a certain flexibility.

More important is the following observation:

Example 42. We consider the polynomial P (x1, x2, x3) = x1x
2
3 + x2

2 + x2x3. An
allowed choice according to Strategy X is S = {1, 2}, because P (0, 0, x3) = 0 and S is
minimal in the above sense. In the first sector created by this choice, the substitutions
are x1 = x′1, x2 = x′1x′2, x3 = x′3 such that we obtain

P (x1, x2, x3) = x′1x
′2
3 + x′21x

′2
2 + x′1x

′
2x

′
3 = x′1

(

x′23 + x′1x
′2
2 + x′2x

′
3

)

= x′1P̃1

(
x′1, x

′
2, x

′
3

)
.

As the polynomial P̃1 (x′1, x′2, x′3) = x′23 + x′1x′
2
2 + x′2x′3 is not monomialized, we need

to continue with the iterative decomposition and choose a new set S1 corresponding to
this polynomial. But we see that the new polynomial is in fact the old one:

P̃1

(
x′1, x

′
2, x

′
3

)
= P

(
x′1, x

′
3, x

′
2

)
.

The decomposition has in this sense not changed the situation and Strategy X again
allows for a similar choice of Sl, such that again the same polynomial is obtained after
the next decomposition, and so on ad infinitum. We have an infinite recursion.

This example shows, that the above algorithm with the use of Strategy X does not
terminate in every case. Let us emphasize, that the example is not a pathological one.
The chosen polynomial is very simple and there is no reason why such a polynomial should
not appear at some stage of the decomposition of a multi-loop integral.

We formulate the following task:

Problem 43. Determine a strategy for the choice of S, such that the algorithm is
guaranteed to terminate for all possible cases.

In the remainder of the present chapter we discuss solutions to this problem. We will
explain three different strategies, suitable to replace Strategy X in order to guarantee for
the termination of the algorithm. These strategies have been found in the context of the
combinatorial problem known as Hironaka’s polyhedra game. We will demonstrate, that
the combinatorics of step 2 in the algorithm of Binoth and Heinrich can be mapped to
this problem.

Remark 44. Despite the observed defect, Strategy X turned out to be very useful in
practical calculations. For the Feynman integrals mentioned in subsection (5.2.7) below
and many other examples, Strategy X did not lead to an infinite recursion. Moreover
in these cases it turns out to be more efficient than other strategies discussed below, in
the sense that it produces a smaller number of sub-sectors (see subsection 5.2.7). Our
implementation [BW08] works with Strategy X as default strategy and allows the user
to replace Strategy X by one of three further strategies discussed below.

Given the efficiency of Strategy X, the following two improvements, avoiding its re-
placement, were proposed by Heinrich in [Hei08]:

(1) The infinite recursion in example 42 is due to the presence of quadratic terms in
the polynomial. At the very beginning of the sector decomposition of a Feynman
integral, nonlinear terms can only occur in the polynomial F due to the presence
of massive propagators, as we see from the equation F = F0+U∑N

j=1 xjm
2
j . The

polynomial U is linear in the x’s, therefore the term U∑N
j=1 xjm

2
j is quadratic
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in individual parameters xj if mj 6= 0. Therefore an infinite recursion at this
early stage of the decomposition can be excluded by imposing an additional
rule: The set S of the first decomposition of step 2 is chosen to be the indices
of the Feynman parameters belonging to the edges of the massive propagarors.
In other words, one chooses S such that α ∈ S if and only if mα 6= 0. Then,
as a consequence of factorization, at least one of the quadratic powers does not
appear in the new polynomial. Therefore the new polynomial does not resemble
its predecessor, so an infinite recursion can not appear at this stage. Nevertheless,
quadratic and higher order terms can of course occur again at later stages of the
decomposition.

(2) In order to avoid infinite recursions in certain cases at later stages, S can be
chosen to be the maximal set of variables occurring with the same power in the
polynomial.

Both extensions are heuristic in nature and have shown to be useful in many applications
[Hei08]. They are not known to guarantee for the termination in the general case.

5.1.4. The combinatorics of sector decomposition. In order to solve problem
43 let us formalize the combinatorics of step 2 of the algorithm.

At first we observe, that a polynomial which is monomialized can not lose this property
in further decompositions. Therefore the algorithm can monomialize the polynomials in
sequence. If one polynomial is monomialized in every sub-sector, the algorithm can
proceed with the next polynomial, and so on. Therefore, if the algorithm is known to
terminate for an integral I which has only one polynomial in the integrand, we can also
be sure that it terminates for integrals with a product of many polynomials. For this
reason, it is sufficient to study the combinatorics of the algorithm for the case of only one
polynomial.

Let us consider a polynomial depending on n parameters x1, ..., xn and consisting of
p terms, denoted

P (X) =

p
∑

i=1

kix
m

(i)
1

1 x
m

(i)
2

2 ...xm
(i)
n

n .

The exponents m
(i)
j are non-negative integers and the coefficients ki are positive. We

remember that one step in the iterative decomposition consists of:

• The choice of the set S = {α1, ..., αk} ⊆ {1, ..., n} according to P (X) by a
strategy.

• The substitution

(5.1.16) xj =







x′αl
for j = αl,

x′jx′αl
for j 6= αl and j ∈ S,
x′j for j 6= S.

in the l-th term of the sum of equation (5.1.9).

Let us consider the l-th term of this sum, i. e. the l-th sector, and let u
(i)
j denote the

exponents of the new parameters x′j, defined by

P (X) =

p
∑

i=1

kix
m

(i)
1

1 x
m

(i)
2

2 ...xm
(i)
n

n .

=

p
∑

i=1

kix
′u

(i)
1

1 x′
u
(i)
2

2 ...x′u
(i)
n

n = P ′
l

(
X ′) .(5.1.17)
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Of course in the integral the substitution additionally creates a Jacobian prefactor, but
this does not affect the termination.

It is easy to observe, that the substitution of equation (5.1.16) can equivalently be
described by the equations

u
(i)
j =

{ ∑

α∈Sm
(i)
α if j = αl,

m
(i)
j if j 6= αl

(5.1.18)

for all terms of the polynomial, i = 1, 2, ..., p.
In the desirable case, P ′

l (X ′) factorizes in x′αl
to some power c:

P ′
l

(
X ′) = x′cαl

P̃l
(
X ′) .(5.1.19)

If we denote the exponents in P̃l by v
(i)
j such that

P̃l
(
X ′) =

p
∑

i=1

kix
′v

(i)
1

1 x′
v
(i)
2

2 ...x′v
(i)
n

n ,

we can equivalently denote the substitution of equation (5.1.16) as

v
(i)
j =

{ ∑

α∈Sm
(i)
α − c if j = αl,

m
(i)
j if j 6= αl

(5.1.20)

with the same number c ∈ N for all i = 1, 2, ..., p. We emphasize, that P̃l (X
′) is obviously

monomialized if and only if P ′
l (X ′) is monomialized. So the condition for the algorithm

to terminate can be formulated with both polynomials equivalently.

Which condition must be fulfilled by the u
(i)
j such that P ′

l (X
′) is monomialized?

P ′
l (X

′) is monomialized if its sum contains a term whose monomial x′
u
(q)
1

1 x′
u
(q)
2

2 ...x′u
(q)
n
n

can be factored out from P ′
l (X

′), such that

P ′
l

(
X ′) = x′

u
(q)
1

1 x′
u
(q)
2

2 ...x′u
(q)
n

n



kq +

p
∑

i=1, i6=q
kix

′u
(i)
1 −u(q)

1
1 x′

u
(i)
2 −u(q)

2
2 ...x′u

(i)
n −u(q)

n

n





and all powers u
(i)
j −u(q)

j are non-negative. kq can take any positive value. In other words,

there must be an integer q in the set {1, 2, ..., p} such that

u
(q)
j ≤ u

(i)
j(5.1.21)

for all i = 1, 2, ..., p and all j = 1, 2, ..., n.
Now let us translate the substitution and the condition of being monomialized into

a geometric formulation. Again we consider the region Rn
+ of the n-dimensional real

space, where all coordinates are non-negative, but now let the points in this space not
be given by the xj-parameters, but by their exponents. Let the exponent vector m(i) =
(

m
(i)
1 , m

(i)
2 , ..., m

(i)
n

)

of each term in P (X) define a point in Rn
+. Then the polynomial

P (X) with p terms determines a set M =
{
m(1), m(2), ..., m(p)

}
of p points. m

(i)
j denotes

the j-th coordinate of the i-th point. Remember that all the m
(i)
j are non-negative

integers.
Now we may compare the points in M given by P (X) to the points in a set Uαl

=
{
u(1), u(2), ..., u(p)

}
, which is the set of exponent vectors of P ′

l (X
′), such that u

(i)
j as in

equation (5.1.17) is the j-th coordinate of the i-th point in Uαl
. We see from equation

(5.1.18), that the points in Uαl
differ from the points in M only in the αl-th coordinate.
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1 2 3 4 5 6

1

2

3

4

m1

m2

Figure 5.1.6. A set of points, shifted according to a decomposition step.

A point u(i) is the result of shifting m(i) along the αl-th coordinate-axis. Moreover if we
additionally consider the set of points Vαl

=
{
v(1), v(2), ..., v(p)

}
, obtained in the same

manner from P̃l (X
′), we see that Vαl

is obtained from Uαl
, by shifting each point by c

along the αl-th axis.

Example 45. We consider the polynomial

P (x1, x2) = x1x
4
2 + x2

1x
2
2 + x3

1x2 + x3
1x

3
2 + x5

1.

The corresponding set M consists of the five points (1, 4), (2, 2), (3, 1), (3, 3) and (5, 0).
We assume S = {1, 2} and consider the first sector, where we substitute x1 = x′1 and
x2 = x′1x′2. We obtain

P ′
1(x

′
1, x

′
2) = x′51x

′4
2 + x′41x

′2
2 + x′41x2 + x′61x

′3
2 + x′51.

The corresponding set of points U contains (5, 4), (4, 2), (4, 1), (6, 3) and (5, 0). Figure
(5.1.6) shows the sets M (full points) and U (empty points).

It will be useful to consider an auxiliary object, called the positive convex hull of a
set of points.

Definition 46. A region in Rn is said to be convex, if every pair of two points in this
region can be joined by a straight line segment, all of whose points belong to the region.
The convex hull of a set of points M is the minimal convex set containing M . The positive
convex hull ∆M of the set M is defined to be the convex hull of the set ∪m∈M

(
m+ Rn

+

)
.

It is much simpler to introduce ∆M by pictorial examples, as given by the grey areas
in figure 5.1.7 (a) and (b). ∆M is sometimes called the Newton polyhedron of M . A point
m ∈ M is called a generator of the positive convex hull ∆M , if ∆M is different from
∆M\m where M\m denotes the set of points in M without the point m. In other words,
the generators are the corner points of the Newton polyhedron, and if we leave one of
them away, the polyhedron looks different. For example in figure 5.1.7 (a) the point m(1)

is a generator of ∆M , while the point m(2) is not.
If only one point m is a generator of ∆M then we have ∆M =

(
m+ Rn

+

)
. An

example is shown in figure 5.1.7 (b). This situation resembles the case of a monomialized
polynomial:

Lemma 47. The polynomial P (X) is monomialized, if and only if the positive convex
hull ∆M of the corresponding set of points M is generated by only one point.
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m(2)

m(1)

∆M ∆M

(a) (b)

Figure 5.1.7. The positive convex hull ∆M , generated by three points
in (a) and generated by one point in (b).

Proof. If P (X) is monomialized there must be a q in {1, 2, ..., p} such that m
(q)
j ≤

m
(i)
j for all i = 1, 2, ..., p and all j = 1, 2, ..., n. Then ∆M is the positive convex hull

of
(
m(q) + Rn

+

)
and therefore it is generated only by m(q). This proves one part of the

statement. If ∆M is generated by only one point, meaning that there is one point m in
Rn

+ such that ∆M is the convex hull of
(
m+ Rn

+

)
, then m must by the definition of ∆M

be a point in M . As m is the only point in M generating ∆M , we have mj ≤ m
(i)
j for all

i = 1, 2, ..., p and all j = 1, 2, ..., n, which is the condition for P (X) to be monomialized.
This proves the second part of the statement. �

Now we have described a decomposition step and the condition for the termination
of the decomposition in terms of sets of points. Let us summarize the entire step 2 of the
algorithm of Binoth and Heinrich in this formulation:

• We start with a given polynomial P (X), which corresponds to a given set of
points M in Rn

+. The coordinates are natural numbers.
• The choice of the set S according to a given strategy corresponds to a choice of

coordinate directions in Rn
+.

• For each element αl in S a new set of points Uαl
is created. It is obtained from

M by shifts depending on the element αl under consideration (i. e. the sector)
and on the entire set S. These shifts are given by equation (5.1.18).

• We iterate the procedure in the sense that P ′
l (X

′) (or P̃l (X
′)) is the newly

given polynomial and correspondingly Uαl
(or Vαl

) the given set of points.
• The iteration stops, if the polynomial is monomialized, that is, if the positive

convex hull of the corresponding set of points is generated by only one point.
• The algorithm terminates, if the latter condition is fulfilled in all the created

sectors after a finite number of iterations. Problem 43 is the task to find a
strategy, such that this is always the case.

What we just described here is in fact the problem of Hironaka’s polyhedra game. This
was for the first time noticed by Müller-Stach and Weinzierl and then elaborated in
our work with Weinzierl [BW08]. In the following we will discuss this game and three
winning strategies, which will be suitable strategies to guarantee for the termination of
the algorithm.
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1 2 3 4 m1 1 2 3 4 m1 1 2 3 4 m1

1

2

3

4

5

m2

1

2

3

4

5

m2

1

2

3

4

5

m2

(a) (b) (c)

Figure 5.2.1. A run of the polyhedra game: Player A always chooses
{1, 2}. Player B chooses 1 in the first move and 2 in the second move.
Player A wins after two moves.

5.2. Hironaka’s Polyhedra Game

5.2.1. The Game. Hironaka’s polyhedra game [Hir67] is a simple combinatorial
game for two players. Let us call5 them player A and player B. To play the game they just
need the notion of a set of points M =

{
m(1), m(2), ..., m(p)

}
in Nn and the corresponding

positive convex hull ∆M ⊂ Rn
+. We remember, that ∆M is defined to be the convex hull

of the set ∪m∈M
(
m+ Rn

+

)
. ∆M is said to be generated by only one point, if it is the

convex hull of the set
(
m+ Rn

+

)
where m is just one point in Rn

+.
The game is the following:
Player A and player B are given an initial set of points M =

{
m(1), m(2), ..., m(p)

}

in Nn. One move of the game is:

• Player A chooses a non-empty subset S ⊆ {1, ..., n}.
• Player B chooses one element αl out of this subset.

Then, according to the choices of the players, all the points m(i) =
(

m
(i)
1 , ..., m

(i)
n

)

∈M

with i = 1, ..., p, are replaced by new points m′(i) =
(

m′(i)
1 , ..., m′(i)

n

)

given by

m′(i)
j =

{ ∑

α∈Sm
(i)
α − c if j = αl,

m
(i)
j if j 6= αl

where c ∈ N ∪ {0} is fixed and small enough, such that the new coordinates are non-

negative. This defines the new set of points M ′ =
{

m′(1), m′(2), ..., m′(p)
}

. If the positive

convex hull ∆M ′ of M ′ is generated by only one point, then the game ends and player A
wins. Otherwise one sets M = M ′ to be the initial set of points and goes on with the
next move. If this game goes on forever, player B wins.

Let us give a simple example for one run of the game:

5A reader to whom ’player A’ and ’player B’ are too anonymous concepts finds two more prominent
players in Zeillingers dissertation [Zei05] on pages 19 to 21. Having Lewis Carroll’s novel in mind,
Zeillinger pictures the game in Alice’s wonderland to be the adjusting of the hand of the rabbit’s (player
A’s) watch, done by the capricious hatter (player B).
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Example 48. Let us fix c = 1 and let the initial points be (1, 2), (1, 3), (2, 2),
(3, 1), shown in figure 5.2.1 (a). For such a two dimensional setup, player A has not
much of a choice. Choices of S with only one element never improve A’s situation. So
we let him choose S = {1, 2}. Player B decides to choose αl = 1. Then the points are

moved according to m′(i)
1 = m

(i)
1 + m

(i)
2 − 1 and m′(i)

2 = m
(i)
2 . The resulting points are

(2, 2), (3, 3), (3, 2), (3, 1), shown in figure 5.2.1 (b). The positive convex hull of this set
is generated by more than one point, so the game goes on. In the second move player
A chooses again {1, 2} and player B this time chooses 2. Now the points are moved
accordingly along the second axis. The resulting set of points, given in figure 5.2.1 (c),
has a positive convex hull which is generated by only one point and player A therefore
wins the game.

The game is rather simple in the two-dimensional case. If player A always chooses
{1, 2} he wins the game after finitely many moves, no matter how B decides. But how
does player A have to choose his set S in the higher-dimensional case?

Problem 49. Determine a strategy for the choice of S, such that player A wins the
game after a finite number of moves, for any initial set M and no matter which choices
player B takes.

Such a strategy is called a winning strategy of the game. Despite the simplicity of the
game, finding a winning strategy turned out to be a non-trivial but solvable problem.

Comparing the above game with our discussion in subsection 5.1.4 it is now obvious,
that Hironaka’s polyhedra game encodes the combinatorics of iterative sector decompo-
sition. Hence the problems 43 and 49 are the same. A winning strategy of Hironaka’s
polyhedra game is suitable to replace Strategy X in the above algorithm and to guarantee
for the termination.

We want to remark that in the literature sometimes a version of the game is considered
where the number c is fixed at a certain value. Zeillinger, in his work to be discussed
below, fixes c = 0 while Spivakovsky for his strategy sets c = 1. We have seen in subsection
5.1.4 that this difference is irrelevant for our termination problem, because of the simple
fact that either both of the polynomials in equation (5.1.19) are monomialized, or none
of them. We can observe the same fact by looking at the positive convex hull ∆M . A
change of c just leads to a translation of ∆M , but the shape of ∆M does not depend on
c. Therefore we can map our problem to versions of the game with any c ∈ N ∪ {0}.

Let us emphasize, that the winning strategy must work for all possible choices player
B can take. The choice of player B, selecting an element αl ∈ S, corresponds to the
consideration of one of the created sectors in sector decomposition. The algorithm will
only terminate, if in all the created sectors the polynomial is monomialized after finitely
many steps. In this sense, sector decomposition considers all the possible choices of player
B.

Finding a winning strategy for Hironaka’s polyhedra game is an important problem
of mathematics, as the game encodes the combinatorics for a certain type of resolution of
singularities. We want to give a brief insight into resolution of singularities in the context
of sector decomposition in section 5.3.

The problem remained unsolved for more than 15 years until a first winning strategy
was found by Spivakovsky [Spi83]. We will discuss this one and two other winning
strategies in the following. Implementations of these three strategies are contained in
our computer program [BW08]. In addition we will review another strategy given by
Smirnov and Tentyukov which is implemented in their program FIESTA [ST09].
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5.2.2. Winning Strategies. How do we know, whether a strategy is a winning
strategy? We may at first distinguish between two cases in which player A would lose
the game. In the first case a set of points M appears again after a number of moves, such
that the same moves can be repeated infinitely many times. This resembles the situation
of example 42, by which we have shown that Strategy X is not a winning strategy. To be
sure that this first case can not occur, it would be sufficient to prove, that the strategy
under consideration in some sense ’improves’ the set of points with every move. As a
second case we may imagine, that player A’s strategy fulfills this condition, and the set
of points is changed with each move in a way, such that a set can not appear repeatedly,
but nevertheless the winning condition is never reached. To exclude this case we have to
be sure, that it is not possible to have infinitely many ’improvements’.

In order to formalize the concept of an ’improvement’ we use the notion of lexico-
graphical ordering of ordered sets of numbers. We already used lexicographical ordering
in chapter 3. Let us remind ourselves that with respect to lexicographical ordering a
sequence of numbers (a1, ..., an) is larger than another sequence (b1, ..., bl), denoted as

(a1, ..., an) ≻ (b1, ..., bl) ,

if either n > l or if n = l and there exists an m between 0 and n such that am > bm and
ai = bi for all 0 < i < m. Correspondingly, with respect to lexicographical ordering, we
use the symbols �, � for greater or equal and smaller or equal, respectively.

For a given set of points M let us denote the set after n moves of the game by Mn.
Assume that we can find a map τ from a set of points M to an ordered set of numbers

τ(M) = aM =
(
aM1 , ..., a

M
k

)
.

Then if two such sets of numbers aM and aM
′

are different, the sets of points M and M ′

must be different. Hence, if we find a τ , such that at each stage of the game we have

τ(Mn) ≻ τ(Mn+1),(5.2.1)

then we know that the same set of points can not appear repeatedly. If this equation is
true for all n and all possible choices player B can take, then we say that the sequence of
numbers decreases. In this case, the same sequence of numbers can not appear more than
once in the game and neither can the corresponding set of points. Now it just remains to
make sure, that the sequence of numbers can only decrease in finitely many steps and the
lexicographically smallest possible sequence resembles the winning condition for player
A. For example we may have a map τ such that all the numbers aMj are non-negative

integers and if ∆M is generated by only one point, all numbers in τ(M) are zero. Then,
if equation (5.2.1) is always true, there are always finitely many moves.

As a consequence, we have a proof that a strategy is a winning strategy, if we find
a map τ , such that the sequence decreases lexicographically with every move and it can
not decrease infinitely often. This concept is used to prove, that the following three
strategies are winning strategies. For each of these strategies there is a τ , fulfilling the
above conditions. We start with the discussion of Zeillinger’s winning strategy, which is
simpler than the other ones, because each chosen S contains only two numbers. Its proof
is simpler as well, because the sequence given by his τ consists just of three non-negative
integers.

5.2.3. Zeillinger’s Strategy. In the following let DS,αl
denote the map of one move

of the game, determined by the choice of S and αl:

DS,αl
: Nn → Nn,

m(i) 7→ m′(i),
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given by

m′(i)
j =

{ ∑

α∈Sm
(i)
α − c if j = αl,

m
(i)
j if j 6= αl

where c ∈ N∪{0} is fixed. DS,αl
is simply the shift of the points in one move. We denote

the set of points before the move by M and after the move by M ′.
Now let MC denote the set of generators of ∆M . We remember, that these are the

corner points of ∆M . Let us consider a point m(q) ∈ M which is not a corner point of
∆M , i. e. m(q) lies somewhere in the interior of ∆M . What can we say about its shift

m′(q) = DS,αl

(
m(q)

)
? Can the new point m′(q) ∈ M ′, obtained from m(q), be a corner

point of the new Newton polyhedron ∆M ′? Intuitively one may already see (cf. figure
5.1.6) that this can not be the case. Indeed, the generators M ′

C of the new ∆M ′ are shifts
of generators of ∆M , but not of points from the interior of ∆M . Therefore, the number
of corner points can either decrease or remain the same after one move:

Lemma 50. Let M and M ′ be non-empty sets of points with M ′ = DS,αl
(M) and

let MC and M ′
C be the sets of generators of ∆M and ∆M ′ respectively. Then for any

non-empty S ⊆ {1, ..., n}, αl ∈ S, c ∈ N we have

M ′
C ⊆ DS,αl

(MC),
∣
∣M ′

C

∣
∣ ≤ |MC | .

|M ′
C | and |M ′

C | denote the number of elements in M ′
C and M ′

C respectively. A
proof of lemma 50 is given in [Zei05].

We remember, that the set of points after p moves is denoted by Mp. Player A
wins the game if there is a finite p such that

∣
∣Mp

C

∣
∣ = 1. As a direct consequence of

the above lemma we see that all points in Mp
C for any p are images of points in MC .

Hence, the termination of the game depends just on MC and its images. This fact is
used in Zeillinger’s proof of his winning strategy, as we will see. Now let us prepare the
formulation of Zeillinger’s strategy.

For a given MC ⊆ M we define WMC
to be the set of vectors connecting the corner

points:

WMC
=

{

w = m(i) −m(j) | m(i), m(j) ∈MC

}

,

where m(i) and m(j) may be the same point. All components wi of these vectors are
integers, possibly positive, negative or zero. If all the components of a vector w are
non-negative we write w ∈ Nn

0 , and if all the components of w are non-positive we write
w ∈ −Nn

0 . The vector all of whose components are zero is in Nn
0 and as well in −Nn

0 .
We observe, that if there is a vector w ∈ WMC

which has as well positive and negative
components, the Newton polyhedron ∆M is generated by more than one point and player
A has not won yet. If after p moves the images of all the vectors of WMC

are either in
Nn

0 or in −Nn
0 , then the Newton polyhedron of the new set of points is generated by only

one point and player A wins.
For each vector let us define two functions L(w) and N(w). We define L(w) of the

vector w ∈W by

L(w) = max
1≤i≤n

wi − min
1≤i≤n

wi.

This is the difference between the largest and the smallest component of w. For example
for the vector w = (4, 7, −2) the function evaluates to L(w) = 9.
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We define the function N(w) of w ∈W by

N(w) =

∣
∣
∣
∣

{

j

∣
∣
∣
∣
1 ≤ j ≤ n, wj = min

1≤i≤n
wi or wj = max

1≤i≤n
wi

}∣
∣
∣
∣
,

which is the number of components of w which are either equal to the minimal or to the
maximal number in w. For example for w = (1, 5, 3, 5, 5, −8, 2, −8) we have N(w) =
|{j |1 ≤ j ≤ n, wj = −8 or wj = 5}| = 2 + 3 = 5. Note that the possible values of the
functions L(w) and N(w) are non-negative integers.

Now we can formulate Zeillinger’s winning strategy:

Theorem 51. (Zeillinger [Zei05, Zei06b]) The following is a winning strategy for
Hironaka’s polyhedra game:

For the given set of points M in Nn
0 let w̃ be a vector in WMC

, for which the sequence
(L (w̃) , N (w̃)) is minimal with respect to lexicographical ordering, meaning that

(L (w̃) , N (w̃)) � (L (w) , N (w)) , ∀w ∈WMC
.

Player A chooses S = {k, l}, where k and l are defined by

w̃k = min
1≤i≤n

w̃i and w̃l = max
1≤i≤n

w̃i.

Proof. In his dissertation [Zei05], Zeillinger presents the following proof. As we
have explained in subsection 5.2.2, a strategy is proven to be a winning strategy for
Hironaka’s polyhedra game, if there is a map τ from the sets of points M, M ′, ..., Mp

to sequences of numbers, which decrease lexicographically with the ongoing game, but
which can not decrease infinitely often.

For Zeillinger’s strategy there is a map τZ, defined by

τZ (M) =

{
(0, 0, 0) if ∆M is generated by only one point,

(|MC | , L (w̃) , N (w̃)) otherwise.

One just needs to prove that for any M we have

τZ
(
M ′) ≺ τZ (M)(5.2.2)

where M ′ = DS,αl
(M) with S choosen according to the strategy and αl any element

of S. As |MC | , L (w̃) , N (w̃) are non-negative integers, it is immediately clear, that the
sequence can not decrease infinitely often.

According to lemma 50 we always have |M ′
C | ≤ |MC |. If |M ′

C | < |MC |, equation
(5.2.2) is obviously fulfilled.

Let us assume that |M ′
C | = |MC |. Let w̃ be the vector in the set of vectors before

the move, i. e. in WMC
, for which the sequence (L (w̃) , N (w̃)) is minimal in WMC

,
i. e. (L (w̃) , N (w̃)) � (L (w) , N (w)) , ∀w ∈ WMC

. Furthermore let ṽ be the vector in
the set of vectors after the move, i. e. in WM ′

C
, for which the sequence (L (ṽ) , N (ṽ))

is minimal in WM ′
C
, i. e. (L (ṽ) , N (ṽ)) � (L (w′) , N (w′)) , ∀w′ ∈ WM ′

C
. We have to

compare just these two vectors w̃ and ṽ. It remains to be proven that

(L (ṽ) , N (ṽ)) ≺ (L (w̃) , N (w̃)) .(5.2.3)

From |M ′
C | = |MC | it follows, that for each vector w = m(i) −m(j) ∈ WMC

there is a

vector w′ = DS,αl

(
m(i)

)
− DS,αl

(
m(j)

)
= m′(i) − m′(j) ∈ WM ′

C
. Let w̃′ be the vector

obtained from w̃. If we can show that (L (w̃′) , N (w̃′)) ≺ (L (w̃) , N (w̃)) then we have
automatically (L (ṽ) , N (ṽ)) ≺ (L (w̃) , N (w̃)) by the definition of ṽ.
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Without loss of generality we can say that the first component of w̃ is a minimal
one and the second is a maximal one: w̃1 = min1≤i≤n w̃i and w̃2 = max1≤i≤n w̃i. By
definition, w̃1 and w̃2 can not both be non-negative or non-positive and therefore

w̃1 < w̃1 + w̃2 < w̃2.

The choice of player A is S = {1, 2} according to the strategy. Let player B choose αl = 1.
Then we obtain w̃′ = (w̃1 + w̃2, w̃2, ...). If w̃1 is the only component of w̃ with the value
min1≤i≤n w̃i, then we have min1≤i≤n w̃i < min1≤j≤n w̃′

j and therefore L (w̃′) < L (w̃).

Then equation (5.2.3) is fulfilled. Otherwise, if there are other components in w̃ with the
minimal value, then L (w̃′) = L (w̃), but the number of components with the minimal
value is smaller in w̃′ and therefore we have N (w̃′) < N (w̃), which leads to equation
(5.2.3). Similar arguments apply to the case where player B chooses αl = 2.

Therefore, we have either |M ′
C | < |MC | or we have |M ′

C | = |MC | and for the latter
case we have shown, that equation (5.2.3) is always true. Hence equation (5.2.2) is always
true and this proves the theorem. �

With the above winning strategy Zeillinger has succeeded in finding a solution which
is very easy to apply and which can be proven in a few steps. But for our purpose the
strategy also has a drawback. When we use it for sector decomposition, we are likely to
generate a large number of sectors, much larger than in the case of Strategy X, as we
observe for example in the case of the integrals mentioned in subsection 5.2.7 below. An
implementation in a computer program will therefore be slow. Therefore we consider two
further winning strategies in the following, which are more complicated than Zeillinger’s
strategy, but more efficient.

5.2.4. Spivakovsky’s Strategy. Before we can formulate Spivakovsky’s winning
strategy, we need to introduce a number of auxiliary objects. All of them are determined
from a given set ∆ ⊂ Rn

+, which is defined to be the positive convex hull of a set of
points whose coordinates are non-negative rational numbers. (By allowing for rational
numbers we obtain ∆ as a generalization of the above ∆M .) Points in ∆ shall be denoted
by ν = (ν1, ..., νn).

• We define ω (∆) to be the vector whose n components ωi are the minima of the
individual coordinates of elements in ∆:

ωi = min {νi | ν ∈ ∆} , i = 1, ..., n.

Obviously all ωi are coordinates of the generators of ∆.
• Let ν̃ = (ν̃1, ..., ν̃n) be the point obtained from ν by subtracting ω (∆), i. e.

ν̃i = νi − ωi, i = 1, ..., n.

Then let ∆̃ denote the set of all the ν̃ obtained from all ν ∈ ∆. We write

∆̃ = ∆ − ω (∆) .

• For a subset Γ ⊆ {1, ..., n} we define

dΓ (∆) = min







∑

j∈Γ

νj | ν ∈ ∆






and d (∆) = d{1, ..., n} (∆) .

In other words, for some points in ∆ the value of the sum
∑

j∈Γ νj is minimal

and then it defines dΓ (∆). Note that the points for which
∑

j∈Γ νj is minimal
belong to the boundary of ∆ and there is at least one generator of ∆ among
them.
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• We define the sequence of sets

(I0, ∆0, I1, ∆1, ..., Ir, ∆r) , r ∈ N(5.2.4)

with

I0 = {1, ..., n} , ∆0 = ∆

and where the remaining sets in the sequence are defined recursively from I0 and
∆0 as follows.

• For each ∆k we define a set Hk by

Hk =






j ∈ Ik | ∃ν ∈ ∆k such that

∑

i∈Ik
νi = d (∆k) and ν̃j 6= 0






.

Then we define

Ik+1 = Ik\Hk.

According to this definition Hk and Ik+1 are two complementary subsets of Ik.

• We define R
Ik
+ to be the |Ik|-dimensional subspace of Rn

+, spanned by all the j-th
coordinate axes with j ∈ Ik. For each Ik and its complementary subsets Hk and
Ik+1 we define

MHk
=






ν ∈ R

Ik
+ |

∑

j∈Hk

νj < 1






.

Furthermore for a point ν ∈ R
Ik
+ let α denote the vector of its i-th coordinates

with i ∈ Ik+1 and β the vector of its j-th coordinates with j ∈ Hk. Using these
notations we define the projection

PHk
: MHK

→ R
Ik+1
+ ,

PHk
(α, β) =

α

1 − |β| , α ∈ R
Ik+1
+ , β ∈ R

Hk
+ , |β| =

∑

j∈Hk

βj .

Then ∆k+1 is defined by

∆k+1 = PHk



MHk
∩




∆̃

d
(

∆̃k

) ∪ ∆k







 .

Here ∆̃
d(∆̃k)

is defined to be the set of points which is obtained from ∆̃ by multi-

plying each coordinate of each point with the number 1
d(∆̃k)

. All sets ∆k+1 are

positively convex.

• The recursion stops when either ∆r = ∅ or d
(

∆̃r

)

= 0. By convention we set

∅̃ = ∅ and d(∅) = ∞.

At this point we are well advised to give an example.

Example 52. Let us consider the case of figure (5.2.2) where ∆ ⊂ R2
+ is generated by

the two points ν(1) = (1, 2) and ν(2) = (4, 0). We have ω (∆) = (1, 0), d (∆) = 3, ν̃(1) =

(0, 2), ν̃(2) = (3, 0). The sequence (I0, ∆0, I1, ∆1, ..., Ir, ∆r) begins with I0 = {1, 2}
and ∆0 = ∆. We obtain H0 = {2}, because there is the point ν(1) with

∑

i∈I0 ν
(1)
i =

1 + 2 = 3 = d (∆) and ν̃
(1)
2 6= 0. Therefore we directly obtain I1 = I0\H0 = {1}. The set

MH0 is the set of all points in R2
+ where the second component is smaller than one. The
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∆

∆′

1 2 3 4 5

1

2

RI1
+

RH0
+

Figure 5.2.2. A two-dimensional example for Spivakovsky’s auxiliary objects.

set ∆′ := MH0 ∩
(

∆̃
d(∆̃0)

∪ ∆0

)

with d
(

∆̃0

)

= 2 is the dark grey region in figure (5.2.2)

and ∆1 is its projection from (1, 1) to RI1
+ , drawn as a thick line on the axis.

Now we formulate Spivakovsky’s winning strategy:

Theorem 53. (Spivakovsky [Spi83]) The following is a winning strategy for Hiron-
aka’s polyhedra game:

For the given set of points M in Nn
0 we consider the sequence

(I0, ∆0, I1, ∆1, ..., Ir, ∆r)

obtained from ∆0 = ∆M .
If ∆r = ∅, player A chooses S = {1, ..., n} \Ir.
If ∆r 6= ∅, player A first chooses a minimal subset Γr ⊆ Ir, such that

∑

j∈Γr
νj ≥ 1 for

all ν ∈ ∆r and then he sets S = ({1, ..., n} \Ir) ∪ Γr.

The proof is given in reference [Spi83]. The lexicographically decreasing sequence of
numbers found by Spivakovsky is

τS (M) =
{

d
(

∆̃0

)

, |I1| , d
(

∆̃1

)

, ..., |Ir| , d
(

∆̃r

)

, d (∆r)
}

with ∆0 = ∆M . Spivakovsky proves that

τS
(
M ′) ≺ τS (M)

is true at any stage of the game, and that the sequence can not decrease infinitely often.

5.2.5. A Strategy due to Encinas and Hauser. Let us give one more winning
strategy for the game. It is based on recent work by Encinas and Hauser [EH02] and is
a variant of Spivakovsky’s strategy. We can use the notation of the previous subsection
and define just a few additional objects. Instead of the sequence of equation (5.2.4) we
need to construct the sequence

(c−1, I0, ∆0, c0, I1, ∆1, ..., cr−1, Ir, ∆r) , r ∈ N

starting from
c−1 = 0, I0 = {1, ..., n}, ∆0 = ∆.

Again the set Hk is defined as

Hk =






j ∈ Ik | ∃ν ∈ ∆k such that

∑

i∈Ik
νi = d (∆k) and ν̃j 6= 0






.
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However, ∆k and Ik are obtained in a different way this time. At first we define

ck = d
(

∆̃k

)

.

Then for each ∆̃k we obtain a companion set ∆̃C
k by

∆̃C
k =

{

∆̃k ∪
(

ck
ck−1−ckω (∆k) + R

Ik
+

)

if 0 < ck < ck−1,

∆̃k otherwise.

Now let Tk ⊆ Hk be a subset of Hk which is chosen according to a rule R: Tk = R(Hk).
The rule R can be freely chosen by player A with the only obstruction, that it is a
deterministic rule, meaning that if Tk = R(Hk) and T ′ = R(H ′

k) and Hk = H ′
k, then

Tk = T ′
k. This additional freedom is a difference to Spivakovsky’s strategy. Using the

chosen set Tk we now define

∆Tk
= ckPTk

(

MTk
∩ ∆̃C

k

ck

)

,

P being the projection as defined above. Then we set

Ik+1 = Ik\Tk,
∆k+1 = ∆Tk

.

Again we stop the iterative construction of the sequence as soon as d
(

∆̃k

)

= 0 or ∆r = ∅.
With these notations we formulate the winning strategy:

Theorem 54. The following is a winning strategy for Hironaka’s polyhedra game:
For the given set of points M in Nn

0 we consider the sequence

(c−1, I0, ∆0, c0, I1, ∆1, ..., cr−1, Ir, ∆r)

obtained from ∆0 = ∆M .
If ∆r = ∅, player A chooses S = {1, ..., n} \Ir.
If ∆r 6= ∅, player A first chooses a minimal subset Γr ⊆ Ir, such that

∑

j∈Γr
νj ≥ cr−1

for all ν ∈ ∆r and then he sets S = ({1, ..., n} \Ir) ∪ Γr.

A compact formulation of a proof is provided in [BW08]. It arises from the proof
by Encinas and Hauser [EH02] for Hironaka’s theorem on the resolution of singularities
(see theorem 58 below). The decreasing sequence for the strategy reads

τEH (M) =
{

d
(

∆̃0

)

, |I0| − |H0| , d
(

∆̃1

)

, ..., |Ir−1| − |Hr−1| , d
(

∆̃r

)

, d (∆r)
}

.

5.2.6. Strategy S in FIESTA: An Extension by Smirnov and Tentyukov.
In [ST09] Smirnov and Tentyukov present the program FIESTA, which is their imple-
mentation of the sector decomposition. It differs from our implementation by a new
strategy, Strategy S, for the choice of the set S, coming with slight changes in step 2 of
the sector decomposition algorithm. Strategy S tells player A at first to choose a vector
v = (v1, ..., vn) such that it is a normal vector to a facet of ∆M , meaning that it is
orthogonal to some of the vectors connecting the corner points of ∆M (as considered in
Zeillinger’s strategy). Then S is chosen to be the set of indices αi where the corresponding
component vαi

is non-zero:

S = {αi | vαi
6= 0} .



5.2. HIRONAKA’S POLYHEDRA GAME 105

Then step 2 is changed in the following way: Instead of decomposing the integration
domain exclusively along planar subspaces as in equation (5.1.9), FIESTA decomposes
the domain as

∫ 1

0
dnx =

k∑

l=1

∫ 1

0
dnx

k∏

i=1, i6=l
θ
(

x
aαl
αl

≥ x
aαi
αi

)

where the exponents aαi
are defined by










aα1

aα2

aα3

...
aαk










=










0 1 1 ... 1
1 0 1 ... 1
1 1 0 ... 1
...

...
...

...
1 1 1 ... 0










−1








vα1

vα2

vα3

...
vαk










and where αi ∈ S for i = 1, ..., k. Then, instead of the replacements given by equations
(5.3.1), FIESTA substitutes

xi =







x′
vαl
αl for i = αl,

x′ix′
vαl
αl

for i 6= αl and i ∈ S,
x′i for i 6= S.

According to Smirnov and Tentyukov this yields cubic integration domains again.
In order to guarantee for the termination of FIESTA, Strategy S is combined with

Zeillinger’s strategy. Whenever Zeillinger’s sequence τZ (M) is not decreased by the choice
of Strategy S, this choice is replaced by the choice due to Zeillinger’s strategy. Smirnov
and Tentyukov observe empirically, that this is the case for less than five percent of the
decompositions. In [SS08] A. V. Smirnov and V. A. Smirnov furthermore observe, that
for many cases Strategy S produces the same number of sectors as a decomposition to
so-called Speer sectors6.

5.2.7. Implementation and Efficiency. Our implementation of the sector decom-
position algorithm is joint work with Stefan Weinzierl, published in reference [BW08].
The computer program can be freely obtained from the webpage
http://wwwthep.physik.uni-mainz.de/̃ stefanw/software.html.
The implementation is a library, written in C++ and GiNaC [BFK02], and uses the
package VEGAS [Lep78, Lep80] for the numerical Monte Carlo integration. The ana-
lytical and the numerical part of the evaluation are combined in one single program. It
was the first publicly available implementation of sector decomposition.

Details on the installation and the use of the library are provided in reference [BW08]
and we do not want to repeat these technical instructions here. Let us just very briefly
summarize the main properties of the implementation. A possible user will write a C++
program, incorporating the function do_sector_decomposition which is the main rou-
tine of the library. The arguments of the function are arranged in the three structures
integration_data, integrand, monte_carlo_parameters and an optional parameter,
which determines the amount of information to be printed by the program during the
run. The argument integration_data contains the variables which are used as Feynman
parameters, the regularization parameter ǫ and it determines which term of the Laurent

6Like the mentioned sectors used by Hepp [Hep66] (so-called Hepp sectors), Speer sectors [Spe68,

Spe77] were successfully used in proofs of theorems on renormalization. Speer sectors are obtained from
a particular choice, which directly depends on the topology of the Feynman graph.
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series is computed. The structure integrand encodes all the information of the integrand
(cf. equation (5.1.6))

(
n∏

i=1

xai+ǫbi
i

)
r∏

j=1

(Pj (X))cj+ǫdj

as a list of the exponents ai + ǫbi, a list of the polynomials Pj (X) and a list of the
exponents of the polynomials cj + ǫdj . The structure monte_carlo_parameters contains
the input parameters for the numerical Monte Carlo integration with VEGAS. The latter
parameters determine the desired precision of the result.

The user is free to choose between four strategies for the iterative step 2 of the
sector decomposition algorithm. A strategy is chosen by simply setting a global va-
riable CHOICE_STRATEGY equal to either STRATEGY_A for Zeillinger’s winning strategy,
STRATEGY_B for Spivakovsky’s winning strategy, STRATEGY_C for the winning strategy due
to Encinas and Hauser or STRATEGY_X for Strategy X of Binoth and Heinrich.

The computation time first of all depends strongly on the considered Feynman inte-
gral and the chosen precision of the numerical integration, determined by the number of
function evaluations. Furthermore, as we already mentioned, the running time depends
on the chosen strategy. An indication of this dependence is the number of sectors being
produced.

Let us as an example once again consider the massless planar double box, shown
in figure 5.1.5 and considered in example 41 above. The input data in the structure
integrand is given by the corresponding Feynman integral

(5.2.5)

∫

d7xδ

(

1 −
7∑

i=1

xi

)

U1+3ǫF−3−2ǫ

where we suppressed a trivial prefactor (cf. equation (5.1.13)) and where U and F are
given by equations (5.1.14) and (5.1.15). Using Strategy X we let our program compute
the integral at the values s = −1 and t = −1 for the kinematical invariants in F . After an
appropriate choice of Monte Carlo parameters (for details see [BW08]), the calculation
takes about 40 minutes on a standard PC and produces the output:

Order eps^(-4): 2.00001 +/- 9.25208e-05

Order eps^(-3): -5.99992 +/- 0.000359897

Order eps^(-2): -4.91623 +/- 0.00157598

Order eps^(-1): 11.4958 +/- 0.00681643

Order 1: 13.8236 +/- 0.0207286

In the column after the +/- sign, the estimated error of the numerical integration is
displayed. By a change of the Monte Carlo parameters one could easily achieve a more
precise result at the cost of a longer calculation time. We see that the above output
agrees with the results of Binoth and Heinrich in reference [BH00], quoted in example
41 above, and with the analytical result by Smirnov [Smi99].

The use of Strategy X led to 293 sub-sectors for the above integral. In table 1 we show
the numbers of generated sub-sectors for further integrals and all four different strategies.
In this table Bubble stands for the Feynman integral of the massless selfenergy graph of
figure 3.2.1, Triangle is the massless triangle graph as e. g. in figure 2.3.1 (a), Tbubble is
the massless two-loop graph of figure 2.3.1 (b) as evaluated in [BW03], Planar double-
box is the integral we just discussed and Non-planar double box refers to the two-loop
integral evaluated analytically by Tausk in [Tau99].
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Integral Zeillinger Spivakovsky Encinas/Hauser Strategy X

Bubble 2 2 2 2

Triangle 3 3 3 3

Tbubble 58 48 48 48

Planar double-box 755 586 586 293

Non-planar double-box 1138 698 698 395

Table 1. The number of generated sub-sectors for different Feynman in-

tegrals by use of different strategies.

For the numbers given here and in all examples known to us, Zeillinger’s strategy
leads to the highest number of sectors. It is followed by the strategies of Spivakovsky
and Encinas/Hauser, which both lead to the same second largest number of sectors (de-
spite the mentioned differences). The most efficient choice in our examples is Strategy X.
Further examples, including Strategy S of FIESTA can be obtained from the references
[ST09, SS08]. We furthermore want to mention a new, efficient method of decomposi-
tion, presented very recently by Kaneko and Ueda in reference [KU09].

One may be interested in the development of an optimally efficient strategy, which
produces as few sectors as possible. At the moment one does not have a method to
determine the minimal number of sectors that have to be produced for a given Feynman
integral. The development of such a method or an optimally efficient strategy would
presumably be helpful for the understanding of sector decomposition and the underlying
combinatorics. Nevertheless, in the practical calculations it would probably not diminish
the calculation time significantly, as with Strategy X and Strategy S one already has
relatively efficient strategies at hand, as the examples given here and in [ST09, SS08]
show.

5.3. Resolution of Singularities

In the previous sections we have seen, that the singular behaviour of a Feynman
integral is essentially determined by the polynomials in the integrand. In the following
we want to take the point of view of algebraic geometry by considering the zero-sets of
these polynomials as geometrical objects.

We have already seen that sector decomposition, by monomialization and factoriza-
tion, yields polynomials whose zero-sets do not intersect the integration domain of the
Feynman integral. By the monomialization of a polynomial, the possible singularities of
the integral were disentangled. Now let us for a moment forget about integrals and con-
sider just the zero-set X of a polynomial P . For example let us imagine that X is a
two-dimensional surface in a three-dimensional space. Let us assume, that X is not eve-
rywhere smooth. It may have edges and cusps. These are the singular points of X. (A
more precise definition of singular points is given below.)

One may whish to find a hypersurface Y , possibly of higher dimension than X, which
is everywhere smooth, and a map σ (with certain properties), such that X is the image
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of Y :

σ : Y → X.

Such a map will be called a resolution (to be defined below). Usually it is difficult to find
such a map and one needs to construct Y and σ stepwise. One tries to find a sequence
X, X ′, X ′′, ..., Y , such that X ′ possibly has a less complicated singular behaviour than
X, X ′′ has simpler singularities than X ′ and so on. The single steps in this procedure are
so-called blow-ups.

It turns out, that sector decomposition and the resolution of singularities are closely
related. We have seen, that the combinatorics of the algorithm by Binoth and Heinrich
is encoded in Hironaka’s polyhedra game. This game was originally defined in order to
study the combinatorics of the resolution of singularities. In the present section we want
to give an indication on the following correspondences:

• A single step in iterative sector decomposition corresponds to a blow-up.
• The sector decomposition of a Feynman integral corresponds to the resolution

of singularities by a sequence of blow-ups.

A reader speaking the language of algebraic geometry may have already recognized blow-
ups and resolutions in the above treatment. We now attempt to give an explanation
of these terms to the reader to whom this branch of mathematics is less familiar. We
want to introduce the precise definition of blow-ups and resolutions of singularities and
to this end we need to introduce some basic terminology of algebraic geometry. In order
not to speak much more abstract than necessary, we try to restrict ourselves as much as
possible to the particular part of the mathematical theory which is sufficient to show the
mentioned correspondences explicitely.

Before we start with the technicalities it might be instructive to have some illustrations
in mind:

• We may think of an entangled ball of wool. If we want to disentangle the ball in
order to obtain a single, smooth string, we need to loosen the knot by carefully
pulling here and there. We need to pull the string apart at the points where it
interlaces. This careful, stepwise process has a lot in common with the resolution
of singularities (cf. [Hau03]).

• The use of the term ’blow-up’ indicates descriptively what is done in a single step
of this process. A balloon which is not inflated has a crumpled surface and we
can make it smooth by pulling apart the surface or by blowing up the balloon.
However, it may be more precise to think of a blow-up as a smooth object, whose
shadow, i. e. whose projection, looks crumpled or entangled. For example we may
imagine a smooth piece of wire, held in the light in such a way that its shadow is
a curve which has kinks or which intersects with itself, i. e. a curve with singular
points.
We have just introduced a resolution as a map σ from the smooth object Y to
the singular object X, and not vice versa from X to Y as one might think. As a
reason we can imagine that the map from the smooth to the singular object is
a well-defined projection, or a sequence of projections, while a map in the other
direction is more complicated to be defined properly, as we will see.

• In the sense of projections we can again think of the example of the barbeque
from the beginning of the present chapter. The point-like barbeque at the river-
mouth has in a sense been pulled apart and we have obtained lines along the
rivers. The black spot in figure 5.1.1 can be seen as the projection of the thick
black lines in figure 5.1.2.
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5.3.1. Varieties and Rational Maps. The following introduction of basic termi-
nology of algebraic geometry is to a large extent geared to the book of Harris [Har95].
The basic objects of algebraic geometry are usually defined with respect to a field K
which is not further specified7. We may think of the field of complex numbers C. We
will consider the n-dimensional Euclidean vector space Kn with respect to the field K.
Furthermore we will consider the affine space An

K which is understood to be the space

Kn but without a distinguished point, which serves as the origin8. For convenience we
write An

K ≡ An. For example if our field is C we can think of An as the Euclidean space
Cn, where we do not care, which point is the origin. K [x1, ..., xn] denotes the set of
polynomials9 (forming a ring) of the variables xi with values in K.

The basic geometrical object we want to consider is the common zero-set of polyno-
mials. Such a set of points is called a variety in algebraic geometry10. More precisely, an
affine variety V (P ) ⊂ An is the common zero-set of a set of polynomials P = {P1, ..., Pr}
with Pi ∈ K [x1, ..., xn] for i = 1, ..., r. For the moment, r may be any natural number.
Later on we only need the simpler case, where the variety is the zero-set of only one poly-
nomial. For simplicity let us denote such a variety by V (P ), where P ∈ K [x1, ..., xn]. A
subset of a variety is called sub-variety, if it is as well the common zero-set of polynomials.
(Each affine variety V (P ) ⊂ An is a sub-variety of An.)

The projective space over K denoted by Pn is defined to be the set of one-dimensional
sub-spaces of Kn+1. A point in the space Pn is a straight line in Kn+1 through the origin.
We denote a point in the projective space Pn by [x0, x1, ..., xn], where the entries xi are
the components of the vector (x0, x1, ..., xn), which spans the corresponding line through

the origin in Kn+1. A projective variety Ṽ (P ) ⊂ Pn is the common zero-set of a set of
homogeneous polynomials P = {P1, ..., Pr} with Pi ∈ K [x0, x1, ..., xn] for i = 1, ..., r.
We see that the use of the term ’projective’ makes sense for the zero-set of homogeneous
polynomials, as each line through the origin of Kn+1 obviously contains the origin, and
the zero-set of an arbitrary homogeneous polynomial contains the origin as well. If P is
the only element of P we write Ṽ (P ).

A variety can be made a topological space by defining, which subsets of the variety
are said to be open and which are said to be closed. By defining the sub-varieties of a
variety to be its closed sets and their complements to be the open sets we introduce the
so-called Zariski topology on the variety. In the following the adjective open (or closed)
shall refer to this topology. A topological space is called reducible, if it is the union of
two proper closed subsets. Otherwise it is called irreducible. As the closed subsets of a
variety are the sub-varieties according to Zariski topology, a variety is irreducible, if it is
not the union of two proper sub-varieties. For many purposes it makes sense to restrict
ones attention to the irreducible varieties.

As an example we consider an affine variety V (P ) given by one polynomial P . Assume
that P is a product P = P1P2 of two polynomials P1 and P2. Obviously P is zero at
each point where P1 is zero and in addition at each point where P2 is zero. Hence the
variety V (P ) is the union of the corresponding sub-varieties: V (P ) = V (P1) ∪ V (P2).
Therefore it is reducible.

7For the definition of a field see appendix A.
8A more detailed definition of the affine space is given in appendix A for completeness.
9For the purpose of this section we could fix the field K = C and we might even think about

polynomials with only real-valued variables. But it appears more instructive to us to keep K not specified
in order to obtain a formulation which is close to the standard textbooks on algebraic geometry.

10We prefer the rather straightforward point of view on varieties given here (cf. [Har95]) to more
abstract definitions as for example given in [Dan94].
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For the definition of blow-ups we still require the notion of certain functions and maps.
Let U ⊂ V be an open subset of an affine variety and p ∈ U a point. Then a function f
on U is regular at p if in some neighborhood of p it can be written as a fraction P1

P2
with

polynomials P1, P2 ∈ K [x1, ..., xn] and with P2(p) 6= 0. f is regular on U , if it is regular
at every p ∈ U . More generally, a map

φ : V → An,

p 7→ (f1(p), ..., fn(p)) for p ∈ V

from an affine variety V to An is a regular map, if the components fi for i = 1, ..., n
are regular functions on V . A regular map from an affine variety V1 to another affine
variety V2 is simply a regular map where the image is contained in V2. The graph Γφ of
the regular map φ is the closed subset of the Cartesian product V ×W , given by

Γφ = {(p, φ (p)) | p ∈ V } .
Γφ is closed with respect to Zariski topology. The regular functions on V form a ring

A(V ), which is called the coordinate ring11.
A little less fundamental and more subtle is the definition of rational maps. We will

think of a rational map ψ as given by a tuple (f1(p), ..., fn(p)) where the components fi

for i = 1, ..., n are fractions
g
(1)
i

g
(2)
i

of regular functions g
(1)
i , g

(2)
i . Since some of the g

(2)
i can

be zero in some p, the fi are not necessarily well-defined. These points p are not excluded
here, as they were in the definition of regular maps. Therefore, the tuple (f1(p), ..., fn(p))
is not a proper definition of a map at all the points p which we want to consider. In fact,
a proper definition as in [Har95], given in appendix A, refers to a rational map not as
a map but as an equivalence class of maps. For the purpose of the following it will be
sufficient to speak less abstract and instead think of a rational map as (f1(p), ..., fn(p)),
keeping in mind, that it is not regular everywhere. In order to distinguish rational maps
from regular maps we adopt the convention of using a dashed arrow. For a rational map
ψ from a variety V to a variety W we write

ψ : V 99K W.

The graph Γψ of the rational map ψ : V 99K W, is defined by use of a subset U ⊂ V ,
where ψ|U is a regular map. At first, the graph Γψ|U ⊂ U ×W is the graph of a regular
map, given by the definition of the graph of a regular map above. Then the graph Γψ of
the rational map ψ is defined to be the closure of Γψ|U in V ×W with respect to Zariski
topology. Γψ is independent of the choice of U . Blow-ups are such graphs of rational maps
together with a projection. We will give a basic example in the following subsection.

5.3.2. Blow-ups. We want to compare a simple example of a blow-up to a simple
example of sector decomposition. Let us at first recall our initial example 37 from the
beginning of the chapter: We have an integral

I =

∫ 1

0
dx

∫ 1

0
dyj(x, y)

where the integrand j(x, y) gives rise to an overlapping singularity. The polynomial in
the integrand is monomialized by decomposing the two-dimensional integration domain
D, consisting of the points (x, y) ∈ R2 with x ≤ 1, 0 ≤ y ≤ 1, into two triangle-shaped
regions, such that in one region Dx≥y we have x ≥ y and in the other we have y ≥ x.

11Given I(V ) := {f ∈ K [x1, ..., xn] | f(p) = 0∀p ∈ V } to be the ideal of polynomials vanishing on
V , the coordinate ring is defined to be the quotient A(X) = K [x1, ..., xn] /I(V ).



5.3. RESOLUTION OF SINGULARITIES 111

R2

Γψ ⊂ R2 × P

π
V (P ) ⊂ R2

V ′(P ) ⊂ Γψ

π

(a) (b)

Figure 5.3.1. Blow-up of R2 at (0, 0) as in example 55.

Then the integral over the first region I1 =
∫

Dx≥y
dxdyj(x, y) is expressed in terms of

new parameters x′ and y′ according to

x = x′ and y = x′y′.(5.3.1)

With respect to the new parameters we obtain I1 =
∫

D1
dxdyj′(x′, y′) with the square-

shaped domain consisting of (x′, y′) ∈ R2 with 0 ≤ x′ ≤ 1, 0 ≤ y′ ≤ 1. Here the line
{
(x′, y′) ∈ R2 | x′ = 0, 0 ≤ y ≤ 1

}
⊂ D1 corresponds to the point (0, 0) ∈ D, where the

overlapping divergence arose. Figure (5.1.3) shows this essential correspondence. Similar
steps apply to the second sector.

Now, in comparison, let us give an example from algebraic geometry (cf. [Har95]) for
a rational map which is not regular everywhere:

Example 55. We consider the rational map ψ given by

ψ : A2
99K P1,

(x, y) 7→ [x, y] for (x, y) 6= (0, 0).

All the points (x, y) ∈ A2 which lie on a common line through (0, 0) are mapped to the
same point in P1, denoted [x, y]. Therefore it is clear, that ψ is not a regular map on
(0, 0), as this point alone can not define a line.

How does the graph Γψ look like? Figure 5.3.1 (a) shows a sketch, where the vertical
direction resembles P1, perpendicular to the x-y-plane A2. The points of Γψ with the
same coordinate in P1 are the ones whose orthographic projection down to A2 lie on the
same line through (0, 0). Therefore, the graph Γψ looks like a twisted plane, or if we
draw just some of the lines, like a twisted staircase as in our drawing.

This is a simple example of a blow-up. The pair of the graph Γψ together with the
projection map

π : Γψ → A2

is called the blow-up of A2 at the point (0, 0). As we mentioned, π projects the horizontal
lines in Γψ to the lines through (0, 0) in A2. The only vertical line in Γψ is projected
to the point (0, 0). It is important to note, that this is the only region, where π is not
an isomorphism. In the language of algebraic geometry, (0, 0) is called the center of the
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blow-up and the vertical line in Γψ is called the exceptional locus. It is the only region in
Γψ, where we can not parameterize Γψ by x and y.

What is the correspondence to the sector decomposition example? Let us consider
a set of points Ux 6=0 which is defined as the space R2 without the x-axis, i. e. Ux 6=0 =
{
(x, y) ∈ R2 | x 6= 0

}
. The restriction of ψ to this set gives a graph which we want to

denote by
Γψ,x 6=0 = {(x, y, ψ (x, y)) | (x, y) ∈ Ux 6=0} .

The blow-up Γψ is the closure of this graph.
A parameterization of Γψ,x 6=0 in R3 can be given by the points (x, y, z) ∈ R3 with

z = y
x , which is well-defined because we have x 6= 0 everywhere in Ux 6=0 by definition. In

this way the two-dimensional set Γψ,x 6=0 is parameterized by x and y. But we alternatively
may consider the set to be parametrized by two new parameters x′ ≡ x and y′ ≡ z. This
yields

x = x′ and y = x′y′

on the graph. These are exactly the equations (5.3.1), defining the substitutions in the
sector of I1 in the above example for sector decomposition. The y′-axis is not contained in
Γψ,x 6=0. The blow-up Γψ is obtained from Γψ,x 6=0 by simply including the y′-axis. As we
said, Γψ is the closure of Γψ,x 6=0. The projection of the y′-axis is the point (0, 0). This is

the analogue of the correspondence between the line
{
(x′, y′) ∈ R2 | x′ = 0, 0 ≤ y ≤ 1

}
⊂

D1 and (0, 0) in the above example.
The geometrical description for the second sector I2 is analogous and is obtained from

the above by exchanging x and y.
Our comparison of the examples shows, that in the language of algebraic geometry the

single decompositions in the algorithm of Binoth and Heinrich are blow-ups of integration
domains along certain centers. As centers we choose common zero-sets of monomials. For
example the center of the above example, the point (0, 0), is the zero-set of the monomial
x and the monomial y (x = x1, y = x2). In other words, the centers which we choose in
sector decomposition are intersections of the coordinate hypersurfaces (which in the case
of the above example are the x- and y-axis). Such centers are determined by the choice
of the set S. In the above example the center (0, 0) corresponds to the choice S = {1, 2}.
Accordingly in n variables the choice S = {α1, ..., αk} ⊂ {1, ..., n} determines the center
of the blow-up to be the subset where xα1 = 0, ..., xαk

= 0.
For completeness let us give a more general definition of blow-ups according to Harris

[Har95]:

Definition 56. Let V ∈ An be an affine variety with its ring of regular functions
A(V ). Furthermore let f0, ..., fk ∈ A(X) generate the ideal defining a sub-variety W ⊂ V .
We consider the rational map

ψ : V 99K Pn

given by ψ(p) = [f0, ..., fn]. Then the graph Γψ together with the projection Γψ → V is
called the blow-up of V along W .

Without going into further detail on the determination of varieties by ideals, we note
that the choice of the generators f0, ..., fk which determines the center W corresponds
to the choice of the set S in sector decomposition, which was discussed in detail in the
previous sections. As we have seen, the right way to choose S in order to obtain a
terminating sector decomposition is given by winning strategies of Hironaka’s polyhedra
game. In the geometrical language, the winning strategies give the choice of centers W
for sequences of blow-ups which resolve certain singularities. Now let us see what that
means.
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5.3.3. Resolution of Singularities. For simplicity let us assume to have only one
polynomial P in the parameters x1, ..., xn with its affine variety V (P ) ⊂ An, being its
zero-set. A point on V (P ) where all the partial derivatives ∂P

∂xi
, i = 1, ..., n, are zero is

a singular point of V (P ). The singular points form the kinks in one-dimensional curves,
edges in two-dimensional subspaces and so on. A variety without singular points is called
smooth.

Let us consider a blow-up of the space An along some variety W and let the graph
of the corresponding rational map ψ again be denoted by Γψ. Then An is a projection
of Γψ and each point in V (P ) ⊂ An is the projection of some subset of Γψ. A singular

point in V (P ) may be the projection of a smooth subset12 of Γψ. If this is the case, we
can say, that the singular behaviour of V (P ) has been improved under the blow-up.

Example 57. Let us consider the polynomial P = x2 − y3. The variety V (P ) is the
so-called cusp in A2, shown in lower part of figure 5.3.1 (b). It contains the point (0, 0)
as a singular point. If we choose this point to be the center of a blow-up we obtain the
above example 55, which was the blow-up of A2 along the point (0, 0), shown in figure
5.3.1 (a). The improvement under this blow-up for the curve can be observed in figure
5.3.1 (b). The vertical line in the graph Γψ is the exceptional locus, whose projection
is the singular point. There is a sub-variety V ′ (P ) in Γψ whose projection is V (P ) . In
contrast to the original V (P ) its blow-up V ′ (P ) is smooth everywhere. It is tangential
to the vertical line.

In simple cases it is easy to find a blow-up, such that the according subset of Γψ
is smooth. For the general case the task is harder and one usually needs a sequence of
blow-ups to obtain all singular points as projections of smooth regions. If this is achieved,
then the sequence of blow-ups gives a resolution of the singularities. Hironaka’s famous
theorem states the existence of such resolutions for a very general case:

Theorem 58. (Hironaka [Hir64], cf. [Har95]) Let X be any variety over a field
of characteristic 0. Then there exists a smooth variety Y and a regular birational map
σ : Y → X.

The latter map is called a resolution of singularities of X.
The characteristic of a ring is defined as follows: If 1R is the identity element (’the

one’) and 0R is the additive identity element (’the zero’) of a ring R and if we can write
0R as a sum of terms 1R then the characteristic of R is the smallest natural number n
such that

1R + ...+ 1R
︸ ︷︷ ︸

n terms

= 0R.

If such a relation does not hold for any natural number n, the characteristic of the
ring is zero. The fields R and C are examples of fields of characteristic zero, because
∑n

i=1 1 6= 0 for any n ∈ N. For a field of non-zero characteristic, the problem of resolution
of singularities is more difficult and the above discussed version of Hironaka’s polyhedra
game is not sufficient to describe the combinatorial situation anymore.

For his work on the resolution of singularities including the original proof [Hir64] of
the above theorem (formulated on more than 200 pages) Hironaka was awarded the Fields
Medal in 1970. In addition to the existence of a resolution for general varieties he showed
for the zero-set of a single polynomial that a winning strategy to his polyhedra game

12We already mentioned a simple (Gedanken)experiment: A piece of wire held underneath our desk
lamp can be bended in a way such that it remains smooth but its shadow on our desk is a curve with a
kink.
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determines the right choice of centers of blow-ups, such that a resolution is obtained. As
we mentioned, the first winning strategy [Spi83] was then found by Spivakovsky in 1982.
An instructive approach to the problem of the resolution of singularities and Hironaka’s
theorem is given by Hauser in [Hau03]. This introduction reviews a recent proof by
Encinas and Hauser [EH02], which is much shorter than the original one by Hironaka.
This work of Encinas and Hauser contains a constructive method for the resolution of the
singularities of a variety, possibly given by the zero-set of more than one polynomial. For
the case of only one polynomial, the method provides the strategy described in subsection
5.2.5 above.

We want to remark, that Hironaka’s theorem states the existence of a resolution
for a case which is more general than the one considered in our treatment of sector
decomposition. It is more general in the following three ways:

• The algorithm works only for polynomials whose zero-set does not intersect with
the interior of Rn

+. We remind ourselves, that in the case of Feynman integrals
this condition was fulfilled by each polynomial U and by the polynomial F in the
Euclidean momentum space. Hironaka’s theorem does not assume the mentioned
property of the polynomials.

• In section 5.1 about sector decomposition we argued, that we only need to con-
sider one polynomial at a time. The variety in Hironaka’s theorem may be the
common zero-set of many polynomials.

• The theorem allows for a field of characteristic zero, which is not necessarily R.

These differences might indicate possible extensions of the sector decomposition algo-
rithm, possibly without the need of changing the combinatorics of step 2, given by the
polyhedra game. Maybe the extension to the non-Euclidean momentum space would be
the most desirable one13. In order to construct such an extension it could be helpful to
study in more detail which of the technical constraints of the algorithm are not neces-
sary in the geometrical description and therefore might be discarded. For example the
fact that the integration domains are n-dimensional cubes at each stage of the algorithm
is very convenient for the iteration, but it is not necessary for the disentanglement of
singularities.

Let us think of other alternatives for the procedure of the disentanglement of singu-
larities of Feynman integrals. We have seen in the section about Hironaka’s polyhedra
game, that there is more than one winning strategy for the game and we have observed in
examples, that their application usually leads to different numbers of sectors. In general,
the way to obtain a resolution of singularities is not unique. We can obtain a resolution
by different sequences of blow-ups. Moreover, for certain cases, these sequences do not
necessarily need to be constructed by the use of a winning strategy of Hironaka’s game,
as we already know from the successful applications of Strategy X. The winning strategies
are useful to find a resolution for the general case, but for certain cases of integrals we
may find different strategies, which yield a resolution. In this context we want to mention
a sequence of blow-ups which was used to disentangle the singularities of certain Feynman
integrals in [BEK06], created by the use of a rule for the selection of the centers, which
is not deduced from Hironaka’s game.

Moreover, one may not only consider different ways to construct a sequence of blow-
ups, but also different kinds of blow-ups. Let us just very briefly mention the alternative

13For special cases one can address the non-Euclidean region by a simple substitution before the
decomposition starts. The trick is described in appendix C of reference [ST09].
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approach of the so-called Nash blow-up14 (see e. g. chapter 17 of [Har95]). A Nash blow-
up is the graph of a map which replaces the variables of the given polynomial by partial
derivatives of the polynomial. In a sense the Nash blow-up associates to each non-singular
point of the variety its tangent space at this point. The singularities of arbitrary curves
can always be resolved by a sequence of Nash blow-ups, but for arbitrary varieties, a proof
of the corresponding statement is not known. Nevertheless it may be interesting to find
an application of Nash blow-ups for Feynman integrals. An advantage to the approach
discussed above might be that there is no center which would have to be chosen and
therefore one might possibly obtain each resolution by a unique sequence of blow-ups.

In the beginning of the chapter we mentioned, that the idea of disentangling singular-
ities of Feynman integrals by a decomposition of the integration domain at first arose in
Hepp’s proof [Hep66] of the Bogoliubov-Parasiuk-theorem, which led to BPHZ renormal-
ization. Let us conclude the chapter with the remark, that the theory of renormalization
might as well profit from the application of tools from the theory of the resolution of
singularities. Very recent progress in this field is made by the application of blow-up se-
quences in the context of Epstein-Glaser renormalization in position space [BBK09]. For
a different approach to renormalization with many sophisticated applications of algebraic
geometry we refer to recent work of Marcolli [Mar08].

14The Nash blow-up, sometimes referred to as Nash modification or Nash transform, was proposed
to Hironaka by John Forbes Nash for the resolution of singularities. Nash was awarded the Nobel Prize in
Economics for his work in game theory and he is known to a large non-scientific audience as the subject
of the Hollywood movie “A beautiful mind”, which is based on his biography.





CHAPTER 6

Periods

“One often makes a remark and only later sees how true it is.”
(Ludwig Wittgenstein)

In the above chapters we have discussed topics of relevance for different stages of the
evaluation of a Feynman integral. Before we continue with a discussion of the arithmetic
nature of the results, the final stage, let us give a brief summary on what we have seen up
to this point. We started in chapter 2 with the dimensional regularization (introducing
the parameter D = 2λ−2ǫ) of an arbitrary Feynman integral and its expansion in terms of
scalar Feynman integrals. In chapter 3 we have seen how IBP relations are used to express
a Feynman integral as a linear combination of possibly simpler ones, the master integrals.
Having reduced the problem so far and considering some scalar (master) integral IG, one
needs to decide for an appropriate method for the evaluation of IG as a Laurent series in
ǫ. IG is possibly a function of particle masses and external momenta. Let us denote the
set of these external parameters by ΛG.

The focus of our dissertation lies on the method of sector decomposition, which starts
from the Feynman parametric representation. Chapter 4 contains a detailed treatment of
the polynomials of this representation of the integral. The sector decomposition method,
discussed in chapter 5, yields the Laurent series

IG (ΛG, ǫ) =
∞∑

j=−2L

Cj (ΛG) ǫj

(L being the loop-number) where the coefficients Cj (ΛG) are linear combinations of finite
integrals. As the analytical evaluation of these integrals is unknown in the general case
one often has to fix the values of the external variables and integrate numerically. This
is a drawback of the method compared to purely analytical approaches.

On the other hand, sector decomposition has a great advantage. In contrast to many
other approaches, the method can be applied to arbitrary Feynman integrals. Therefore
it can be used to study general properties of Feynman integrals. The present chapter
exhibits such a general property, stated below by the main theorem of the dissertation.
Our theorem says, that the Laurent coefficients Cj (ΛG) of an arbitrary scalar Feynman
integral evaluate to so-called periods at algebraic values of the external parameters in the
Euclidean momentum region. This is the region where all masses are non-negative and
all kinematical invariants are non-positive. We will give a constructive proof by use of
the improved sector decomposition algorithm.

The set of periods as defined by Kontsevich and Zagier (see below) is a special set of
numbers. It is a subset of the complex numbers and contains the whole set of algebraic
numbers but also transcendental numbers. Periods play a central role in modern algebraic
geometry and related fields of mathematics. Kontsevich and Zagier give a survey of
correspondences which are far beyond the scope of this dissertation. We just want to give
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a glance at some of these topics and refer to further instructive literature in an outlook
at the end of the chapter.

The more straightforward point of view we want to take in this chapter is the follow-
ing: Interesting functions and numbers are known to be present in Laurent coefficients
of many Feynman integrals. In particular, polylogarithms and multiple zeta values are
omnipresent in today’s multi-loop calculations. Giving a brief introduction to these func-
tions and numbers in section 6.1 we will easily see that multiple zeta values and values of
polylogarithms at algebraic arguments belong to the set of periods. On the other hand
the presence of these functions and numbers in the results is not known to follow a general
pattern. Furthermore very recent results include elliptic integrals, which are not known
to have a representation in terms of polylogarithms.

This motivates our focus on the more general objects: the periods. We state and
prove our theorem in section 6.2, closely following the joint work with Stefan Weinzierl
[BW09], where this work was presented for the first time. The theorem is a very general
statement on the result one has to expect in a multi-loop calculation. It tells us, that
no matter which Feynman integral we consider, what we obtain in the end will not be
beyond a set of functions, whose evaluations in the mentioned region will belong to this
particular set of numbers.

6.1. Periods, Nested Sums and Iterated Integrals

6.1.1. Periods: Definition and Basic Properties. Kontsevich and Zagier give
the following definition of periods:

Definition 59. (Kontsevich and Zagier [KZ]) A period is a complex number whose
real and imaginary parts are values of absolutely convergent integrals of rational func-
tions with rational coefficients, over domains in Rn given by polynomial inequalities with
rational coefficients.

We denote the set of periods by P. Kontsevich and Zagier state that one obtains the
same set of numbers if one replaces the word “rational” by “algebraic” in the definition1.

Let us remind ourselves of the meaning of the terms in the definition. The set of
rational numbers is denoted by Q. The algebraic numbers over Q are defined to be
solutions x of polynomial equations with rational coefficients:

xn + an−1x
n−1 + ...+ a1x+ a0 = 0 with all aj ∈ Q.

The set of algebraic numbers over Q is denoted Q. The set Q obviously contains Q.
Numbers which are not algebraic are called transcendental. As we mentioned, the set of
periods is a proper subset of the complex numbers C and contains the algebraic numbers
Q as a proper subset:

N ⊂ Z ⊂ Q ⊂ Q

∩
∩ P

∩
R ⊂ C

We remind ourselves, that f(x) is a rational function if it can be written as a fraction
of polynomials in x. Algebraic functions are solutions of equations of the form

p0(x) + p1(x)f(x) + ...+ pr(x) (f(x))r = 0

1Further definitions are discussed in [Fri05].
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with p0, ..., pr being polynomials in x. A domain in Rn given by polynomial inequalities
with algebraic coefficients shall in the following be called a semi-algebraic set.

We furthermore remember, that for a complex valued function f(x) and a domain of
integration A the integral

∫

A dxf(x) is said to be absolutely convergent if the integral of
the absolute value of the integrand, i. e.

∫

A dx |f(x)|, is convergent.

Example 60. The numbers

√
2 =

∫

2x2≤1
dx, π =

∫ ∫

x2+y2≤1
dxdy and ln(2) =

∫ 2

1

dx

x

are examples for periods. As we see, they can be written as absolutely convergent integrals
over semi-algebraic sets and the integrands are algebraic functions. Note that the domain
of integration of

ln(q) =

∫ q

1

dx

x

is a semi-algebraic set as long as q is algebraic.
√

2 is an algebraic number while ln(2) and π are examples for periods which are
transcendental. It is much more difficult to find a complex number which is not a period.
We can see from the definition that the set P is countable, while we know that C is
not countable, so there must be an uncountable set of complex numbers which are not
periods. It is conjectured in [KZ], that the number 1/π and two prominent constants of
Euler, e = limn→∞

(
1 + 1

n

)n
and γE = limn→∞

(
1 + 1

2 + ...+ 1
n − ln(n)

)
, do not belong

to P. Very recently Yoshinaga constructed the first real number which is known to be
not a period [Yos08].

The set of periods forms an algebra over Q (see [Fri05, KZ]). In particular, sums
and products of periods are again periods. This can be observed as follows: Let a and b
be periods, given by

a =

∫

G1

dnxf(x), b =

∫

G2

dmyg(y)

where f and g are rational functions and G1 ⊂ Rn and G2 ⊂ Rm are semi-algebraic sets.
Then their product is the period

a · b =

∫

G1×G2

dnxdmyf(x)g(y).(6.1.1)

Their sum can be written

a+ b =

∫

G
dnxdmy ((1 − t) f(x) + tg(y))(6.1.2)

with

G = G1 × {0} × [0, 1]m ∪ [0, 1]n × {1} ×G2 ⊂ Rn × R × Rm,(6.1.3)

where t is the variable of the middle factor in this Cartesian product, taking only the
discrete values 0 and 1. Note that t is used to define G, but nevertheless, G is a set of
dimension n+m. The set G, the disjoint union of semi-algebraic sets, is a semi-algebraic
set itself and therefore a+ b is a period. (The subsets [0, 1]m and [0, 1]n can be replaced
by any other semi-algebraic subsets of Rm and Rn respectively, without changing the
integral.)

In the proof of our theorem below, we will consider integrals with sums of products
of logarithms in the integrand, and we will have to decide, whether they are periods. At
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first let us observe, that if G ∈ Rn is a semi-algebraic set and f(x) and g(x) are rational
functions in x ∈ G with rational coefficients such that

I =

∫

G
dnxf(x) ln (g(x))(6.1.4)

is absolutely convergent, then I is a period. We see this writing

∫

G
dnxf(x) ln (g(x)) =

∫

G
dnxf(x)

∫ 1

0
dt

g(x) − 1

(g(x) − 1) t+ 1
=

∫

G′

dnxdt
f(x) (g(x) − 1)

(g(x) − 1) t+ 1

with G′ being the set in Rn+1 consisting of the points (x1, ..., xn, t) with (x1, ..., xn) ∈ G
and t ∈ [0, 1]. G′ is a semi-algebraic set and the integrand is a rational function.

In the same way we can rewrite integrands with sums and products of logarithms.
For a sum we have

∫

G
dnx (f1(x) ln (g1(x)) + f2(x) ln (g2(x))) =

∫

G′′

dnxdt1dt2

(
f1(x) (g1(x) − 1)

(g1(x) − 1) t1 + 1
+
f2(x) (g2(x) − 1)

(g2(x) − 1) t2 + 1

)

and for a product we have
∫

G
dnxf(x) ln (g1(x)) ln (g2(x)) =

∫

G′′

dnxdt1dt2f(x)
g1(x) − 1

(g1(x) − 1) t+ 1

g2(x) − 1

(g2(x) − 1) t+ 1

where f1, f2, g1, g2 are rational functions and G′′ is the set of points (x1, ..., xn, t1, t2) ∈
Rn+2 with (x1, ..., xn) ∈ G and t1, t2 ∈ [0, 1].

We can apply these steps in combination to construct the more general integral

J =

∫

G
dnx

r∑

i=1

fi(x)

s∏

j=1

(ln (gj(x)))
mj(6.1.5)

where G ∈ Rn is a semi-algebraic set, all the f ’s and g’s are rational functions, r and s
are natural numbers and all the exponents mj are integers. The above equations prove
the following:

Lemma 61. An absolutely convergent integral of the form J (of equation (6.1.5)) is a
period.

The following motivational introduction to our theorem follows a general paradigm:
Principle: (Kontsevich and Zagier [KZ]). Whenever you meet a new number, and

have decided (or convinced yourself) that it is transcendental, try to figure out whether it
is a period.

Starting from the rather general notions of nested sums and iterated integrals we
briefly introduce zeta values, multiple zeta values, classical polylogarithms and harmonic
polylogarithms and we give indications on their presence in loop calculations. They will
be easily recognized to be periods, or functions whose values at algebraic arguments are
periods.

6.1.2. Nested Sums. The numbers and functions to be introduced in the following
will be defined in terms of sums. At first let us introduce the most general type of a sum
we will need. For integers k, n, m1, ..., mk and complex numbers z1, ..., zk we define
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Z-sums [MUW02] by

Z(n) =

{
1, n ≥ 0,
0, n < 0,

,

Z(n; m1, ..., mk; z1, ..., zk) =
n∑

i=1

zi1
im1

Z(i− 1; m2, ..., mk; z2, ..., zk).

Equivalently we can write

Z(n; m1, ..., mk; z1, ..., zk) =
∑

n≥i1>i2>...>ik>0

zi11
im1
1

· · · z
ik
k

imk

k

.(6.1.6)

We will allow for sums with infinitely many terms (i. e. n→ ∞), denoted by Z(∞; ...).
As an alternative to Z-sums it might be convenient to consider S-sums, defined by

S(n) =

{
1, n > 0,
0, n ≤ 0,

S(n; m1, ..., mk; z1, ..., zk) =

n∑

i=1

zi1
im1

S(i; m2, ..., mk; z2, ..., zk),

equivalently written as

S(n; m1, ..., mk; z1, ..., zk) =
∑

n≥i1≥i2≥...≥ik≥1

zi11
im1
1

· · · z
ik
k

imk

k

.(6.1.7)

As both types of sums are closely related, they can be converted into each other using
relations given in the article [MUW02]. The authors of reference [MUW02] furthermore
point out, that Z-sums and S-sums are direct generalizations of two prominent sets of
sums over finitely many terms: Euler-Zagier sums [Zag94] and harmonic sums. One can
define Euler-Zagier sums as Z-sums with all variables zi equal to one:

ZEZ(n; m1, ..., mk) = Z(n; m1, ..., mk; 1, ..., 1),(6.1.8)

and harmonic sums as S-sums where the variables zi take fixed values in {−1, 1}:
SH(n; m1, ..., mk; ±1, ..., ±1) = S(n; m1, ..., mk; ±1, ..., ±1).(6.1.9)

6.1.3. Iterated Integrals. As we will discuss below, multiple zeta values and poly-
logarithms can be written as sums and as well as integrals. These integrals are called
iterated integrals or Chen iterated integrals [Che77] (also see [Kas95]) of complex valued
differential 1-forms. They are defined as follows:

Let fi(t) for i = 1, ..., n and t ∈ R be complex valued functions and ωi = fi(t)dt
define complex valued differential 1-forms on a real interval [a, b] with a, b ∈ R. Then

the iterated integral denoted by
∫ b
a ω1...ωn is inductively defined by

∫ b

a
ω1 =

∫ b

a
f1(t)dt,(6.1.10)

∫ b

a
ω1...ωn =

∫ b

a
f1(t)

(∫ t

a
ω2...ωn

)

dt.(6.1.11)

To give an example, this definition allows us to write
∫ b

a

1

t

(∫ t

a

1

1 − t′
dt′
)

dt ≡
∫ b

a

dt

t

dt

1 − t
.(6.1.12)
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We can alternatively write the general iterated integral as
∫ b

a
ω1...ωn =

∫

b≥t1≥...≥tn−1≥tn≥a
f1 (t1) f2 (t2) ...fn (tn) dtn...dt2dt1.(6.1.13)

If such an integral is absolutely convergent, a and b are rational numbers and the product
f1 (t1) f2 (t2) ...fn (tn) is a rational function with rational coefficients, then we see that
the value of the integral is a period. Therefore we will see that multiple zeta values and
values of polylogarithms at algebraic arguments are periods.

Let us introduce the most general type of iterated integrals we will need to represent
multiple zeta values and polylogarithms:

Iterated integrals with all differential 1-forms of the form

ωi =
dt

t− zi

are called hyperlogarithms. They were investigated by Lappo-Danilevsky [LD11] and
reconsidered by Goncharov in the article [Gon01] where they are defined2 as

MP (z0, z1, ..., zr) =

∫ z0

0

dt

z1 − t

dt

z2 − t
...

dt

zr − t
.(6.1.14)

Kummer, Poincaré and Lappo-Danilevsky treated them as analytic functions of just
one variable z0. Goncharov considers these functions where some of the arguments may
become zero and writes them as functions of all non-zero variables zi as:

MPs1, ..., sr(z0, z1, ..., zr) =

(6.1.15)

∫ z0

0

dt

t
...
dt

t

dt

z1 − t
︸ ︷︷ ︸

s1 times

dt

t
...
dt

t

dt

z2 − t
︸ ︷︷ ︸

s2 times

...
dt

t
...
dt

t

dt

zr − t
︸ ︷︷ ︸

sr times

.

He calls these functions multiple polylogarithms. We will give their representation as sums
below.

6.1.4. (Multiple) Zeta Values. The numbers to be discussed in the following are
(generalizations of) values of the famous Riemann zeta function. For a variable s ∈ C with
a real part larger than one, the Riemann zeta function ζ (s) is defined by the absolutely
convergent sum3

ζ (s) =

∞∑

n=1

1

ns
.(6.1.16)

In order to give an indication on the importance of this function4 we want to mention
two famous statements around the mysterious distribution of prime numbers in the natural
numbers:

2Note that Goncharov defines the iterated integrals in a reversed ordering, such that his function I
is I (zr, , ..., z1, z0) = (−1)rMP (z0, z1, ..., zr).

3We learned a mnemonic for Riemann’s zeta function from Herbert Gangl: It is a sum, which counts.
But it does not count 1+2+3+... or 1 + 1

2
+ 1

3
+ ... because these sums diverge. In order not to diverge,

it uses a number s for counting 1 + 1
2s

+ 1
3s

+ ... . One may speculate if it is a coincidence, that this
function is denoted ’zeta’ while the German word for counting (to count: zählen) begins with the letter
’z’.

4For an introduction to this function and its relations to physics we refer to chapter 6 of Zeidler’s
book [Zei06a].
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• Euler’s prime number theorem: For each real number s > 1 one has

ζ (s) =
∏

all primes p

(

1 − 1

ps

)−1

(6.1.17)

where the product runs through all the existing prime numbers. The proof was
given by Euler in 1737.

• Riemann showed in 1859, that ζ (s) can be extended to the whole complex plane
as the solution of the functional equation

2s−1πs

Γ(s)
ζ(1 − s) = ζ(s) cos

(πs

2

)

.(6.1.18)

The extension is meromorphic in C with only one pole at s = 1. Furthermore
Riemann has proven a formula relating the solutions of ζ(s) = 0 with s ∈ C,
i. e. the zeros of ζ, to the number of prime numbers between 1 and a chosen
number [Rie60]. ζ is known to be zero at s = −2, −4, −6, ..., the so-called
trivial zeros. Riemann conjectured, that the real part of all the other zeros in C

is equal to 1
2 . This conjecture is known as Riemann hypothesis, assumed to be one

of the most important open problems in mathematics5. A detailed introduction
to the problem is given by Bombieri in [Bom].

We are interested in values of ζ (s) at integer values of s, where s is larger than one. We
will refer to these values as zeta values.

Some of these zeta values are well studied, for example Euler evaluated

ζ (2) =
π2

6
and ζ (4) =

π4

90

and one furthermore knows, that

ζ (2m) =
π2m(−1)m−122m−1B2m

(2m)!

for m = 1, 2, 3, ... and Bi being the Bernoulli numbers. The values ζ (2m+ 1) are more
difficult. For example one does not know whether these numbers are transcendental or
not, even though zeta values are often referred to as ’transcendentals’ in the literature.
In fact they are not even known to be irrational, except for ζ (3) whose irrationality was
proven by Apéry [Ape79].

An important generalization of zeta values are multiple zeta values (MZVs) defined
by Zagier in the article [Zag94] as6

ζ (s1, ..., sr) =
∑

n1>...>nr>0

1

ns11 ...n
sr
r

for integers s1 ≥ 2, si ≥ 1, i = 2, ..., r.(6.1.19)

For the special case of only one argument we obviously obtain the above zeta values.
Using the notation of Z-sums we can write

ζ (s1, ..., sr) = Z(∞; s1, ..., sr; 1, ..., 1).(6.1.20)

By comparison with equation (6.1.8) MZVs are generalizations of Euler-Zagier sums to
sums with infinitely many terms.

5It is one of the seven millennium problems of the Clay Mathematics Institute. Its solution is
supposed to be awarded one million dollars.

6Note that in our notation the ordering of the arguments is reversed in comparison to Zagier’s
definition. We adopt our notation from the more recent physics literature.
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The same article by Zagier presents the integral representation of MZVs as found by
Kontsevich:

ζ (s1, ..., sr) =

∫ 1

0

dt

t
...
dt

t

dt

1 − t
︸ ︷︷ ︸

s1 times

dt

t
...
dt

t

dt

1 − t
︸ ︷︷ ︸

s2 times

...
dt

t
...
dt

t

dt

1 − t
︸ ︷︷ ︸

sr times

.(6.1.21)

By comparison with equation (6.1.15) we see that they are special values of multiple
polylogarithms, where all the arguments zi are fixed to be either 0 or 1 and where the
upper integration limit is 1. Such integrals are also known as Drinfel’d integrals. From
the above integral representation we see that MZVs are periods.

Concerning their presence in Feynman integral calculations we want to refer to two
famous examples, which we already met in previous chapters.

Example 62. Our first example (cf. [Bie05]) is the dimensionally regularized scalar
Feynman integral of the one-loop selfenergy graph of figure 3.2.1 in chapter 2. We name
the external momentum q and we set the masses equal to zero. The exponents of the
inverse propagators are positive integers ν1 and ν2. Up to a trivial prefactor we obtain
the integral

I
(
D, ν1, ν2, q

2
)

=

∫
dDk

iπD/2
1

(k1)
ν1
(

(q − k2)
2
)ν2 .

Its evaluation (see e. g. appendix C of [Bie05]) yields

I
(
D, ν1, ν2, q

2
)

=

(6.1.22)
(
q2
)m−ǫ−ν1−ν2 Γ (ν1 + ν2 − λ+ ǫ)

Γ (ν1) Γ (ν2)

Γ (λ− ǫ− ν1) Γ (λ− ǫ− ν2)

Γ (2λ− 2ǫ− ν1 − ν2)

with D = 2λ− 2ǫ. Euler’s gamma function can be expanded in ǫ as

Γ (1 − ǫ) = exp (γEǫ) exp

( ∞∑

n=2

ζ (n)

n
ǫn

)

for |ǫ| < 1.(6.1.23)

Furthermore we can expand
(
q2
)x

= exp
(
ln
((
q2
)x))

= 1 + x ln
(
q2
)

+ O
(
x2
)
.

From these equations we see, that the Laurent coefficients of I in ǫ apart from γE , rational
numbers and powers of ln

(
q2
)

only contain zeta values ζ (n).

A similar result with respect to MZVs is known for the following much more involved
example.

Example 63. We consider the integral of the two-loop graph of figure 2.3.1 (b) of
chapter 2 (which we referred to as Tbubble in chapter 5). The external momentum is
denoted p and all masses equal to zero. We obtain

I
(
D, ν1, ν2, ν3, ν4, ν5, p

2
)

=

(
−p2

)P5
i=1 νi−2m+2ǫ

∫
dDk1

iπD/2

∫
dDk2

iπD/2
1

(
−k2

1

)ν1 (−k2
2

)ν2 (−k2
3

)ν3 (−k2
4

)ν4 (−k2
5

)ν5 .

In [BW03] Bierenbaum and Weinzierl present a way to expand the function to all orders
in ǫ. This method proves their following theorem:
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Theorem 64. (Bierenbaum and Weinzierl [BW03]) Multiple zeta values are suffi-
cient for the integral I

(
λ− ǫ, ν1, ν2, ν3, ν4, ν5, p

2
)
, if all powers of the propagators are

of the form νj = nj + ajǫ, where nj are positive integers and aj are non-negative real
numbers.

Motivated by these results, one may ask for the following:

Problem 65. Determine the maximal set FMZV of Feynman integrals, whose Lau-
rent coefficients in dimensional regularization can be expressed as linear combinations of
multiple zeta values with rational coefficients (up to powers of γE).

To our knowledge, this problem is far from being solved7. Nevertheless, from the
IBP-identities as discussed in chapter 3 we see that one knows a whole class of integrals
to belong to FMZV if they can be reduced to master integrals which lie in FMZV. Therefore
the above results have implications for a whole family of integrals.

Very recent progress towards an answer to problem 65 was made in Brown’s article
[Bro09]. We also refer to early work of Broadhurst and Kreimer [BK95, BK97], who
used knot-theory to predict the right multiple zeta values in results of certain vacuum-
graph integrals and then checked their predictions by precise numerical computations.
Both approaches were capable to evaluate certain families of integrals to MZVs and both
seem to fail for integrals with a large loop-number8.

Remark 66. We just want to add a very brief remark on algebraic relations between
MZVs, which is an important field of mathematical research. Due to the representations
as nested sums and iterated integrals, a product of two MZVs always yields two linear
combinations of MZVs. From the representation by sums, one obtains a linear combination

ζ (s) ζ (k) =
∑

l∈∆(s, k)

ζ(l)

where s = (s1, ..., sn) and k = (k1, ..., km) are the tuples of arguments on the left hand
side and the sum on the right-hand side runs through a set of tuples ∆(s, k), which is
obtained from the so-called quasi shuffle product of s and k. On the other hand, from the
representation of the MZVs by iterated integrals one obtains a similar relation, where the
sum on the right-hand side instead runs through a set of tuples, which is obtained from
the so-called shuffle product. For the sake of brevity we only want to refer to [Hof00] for
the definition of these products.

Nevertheless, let us give an example, taken from [BBBL01]: The product ζ (2, 1) ζ (2)
can be evaluated in two ways. Using the representation by sums one obtains

ζ (2, 1) ζ (2) = 2ζ (2, 2, 1) + ζ (4, 1) + ζ (2, 3) + ζ (2, 1, 2)

and from the representation by integrals one obtains

ζ (2, 1) ζ (2) = 6ζ (3, 1, 1) + 3ζ (2, 2, 1) + ζ (2, 1, 2) .

7A closely related open problem was formulated by Marcolli in conjecture 1.1 in the article [Mar09].
In this conjecture, formulated as a question, Marcolli asks whether all Feynman integrals of scalar field
theories provide periods of so-called mixed Tate motives in their finite part, no matter which procedure
is used for regularization and renormalization. According to a conjecture of Tate, periods of mixed Tate
motives are always multiple zeta values (see e. g. the introduction [And08]). We add a brief remark on
motives at the end of this chapter.

8A vacuum integral where these approaches fail might simply not belong to FMZV. We believe to
understand from [And08] and [Bro09] that such an integral would be interesting for the theory of
motives as it might be associated to an object beyond the particular class of mixed Tate motives.
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As a result, we obtain that the right-hand side of the first equation is equal to the right
hand side of the second one.

As we see in this example, combining shuffle and quasi shuffle relations yields new
relations between MZVs, which can otherwise not be obtained. A detailed introduction to
such relations can be found in [Hof00, Sou08]. We want to mention, that in the article
[MUW02] quasi shuffle relations are used in algorithms for the systematic evaluation of
Feynman integrals in terms of Z-sums. Very recently, a large compendium of relations
between MZVs was provided in reference [BBV09].

The so-called main Diophantine conjecture implies, that shuffle and quasi shuffle
relations should in a certain sense be sufficient to generate all algebraic relations between
MZVs. It is furthermore believed, that there are no algebraic relations between the zeta
values of odd arguments, ζ (2m+ 1), m = 1, 2, .... A precise formulation of both of these
conjectures is given in reference [Wal00].9

6.1.5. Classical and Harmonic Polylogarithms. Similarly, as MZVs are the gen-
eralizations of zeta values, there are generalizations of the logarithm, called polyloga-
rithms. By a Taylor expansion of ln(z) around 1 we can write the logarithm as the
sum

− ln (1 − z) =

∞∑

n=1

zn

n
for |z| < 1.(6.1.24)

Substituting n by n2 in the denominator, we obtain the dilogarithm, which was first
considered by Euler [Eul68] (also see Zagier’s lectures [Zag88]):

Li2(z) =

∞∑

n=1

zn

n2
for |z| < 1.(6.1.25)

By generalizing the denominator to ns we obtain the classical polylogarithms
(see e. g. [Lew81])

Lis(z) =
∞∑

n=1

zn

ns
for |z| < 1, s = 1, 2, ... .(6.1.26)

In a further generalization we allow for more than one complex argument and obtain the
already mentioned multiple polylogarithms of Goncharov [Gon01]:

Lis1, s2, .., sr (z1, z2, ..., zr) =

∞∑

n1>n2>...>nr

zn1
1 zn2

2 ...znr
r

ns11 n
s2
2 ...n

sr
r

for |zi| < 1, si = 1, 2, ....

We easily can identify these sums as Z-sums for |zi| < 1:

− ln (1 − z) = Z (∞; 1; z) ,(6.1.27)

Li2(z) = Z (∞; 2; z) ,(6.1.28)

Lis(z) = Z (∞; s; z) ,(6.1.29)

Lis1, s2, .., sr (z1, z2, ..., zr) = Z (∞; s1, s2, ..., sr; z1, z2, ..., zr) .(6.1.30)

9For a wealth of further references on MZVs we may refer the reader to a regularly updated literature
list on Michael Hoffman’s webpage [Hof].



6.1. PERIODS, NESTED SUMS AND ITERATED INTEGRALS 127

All of these functions have a representation in terms of iterated integrals:

− ln (1 − z) =

∫ z

0

dt

1 − t
,(6.1.31)

Li2(z) = −
∫ z

0

ln (1 − t)

t
dt =

∫ z

0

dt

t

dt

1 − t
,(6.1.32)

Lis(z) = −
∫ z

0

Lis−1(t)

t
dt =

∫ z

0

dt

t
...
dt

t

dt

1 − t
︸ ︷︷ ︸

s times

for s > 2,(6.1.33)

Lis1, s2, .., sr (z1, z2, ..., zr) =

∫ 1

0

dt

t
...
dt

t

dt

(z1)
−1 − t

︸ ︷︷ ︸

s1 times

...
dt

t
...
dt

t

dt

(z1z2...zr)
−1 − t

︸ ︷︷ ︸

sr times

≡ MPs1, ..., sr

(

1, (z1)
−1 , (z1z2)

−1 , ..., (z1z2...zr)
−1
)

.(6.1.34)

Equation (6.1.34) was obtained by Goncharov in [Gon01]. From this result we see,
that all mentioned polylogarithms evaluate to periods at algebraic values of the zi. The
integral representations given in the equations (6.1.31) to (6.1.34) are well-defined beyond
arguments |zi| < 1, i. e. in a larger domain than the Z-sums of the equations (6.1.27) to
(6.1.30). For example, Li2(z) is defined everywhere in the complex plane except for a cut
starting at z = 1 (see e. g. [Zag88]).

Classical polylogarithms occur in Laurent coefficients of Feynman integrals. The
arguments of these functions are usually algebraic functions of the external parameters.
The logarithm and the dilogarithm appeared already in the general analytic result of the
scalar one-loop integrals as evaluated by t’Hooft and Veltman in [tV79]10. Among the
examples for the presence of higher polylogarithms we may refer to the analytic result
for the massless double box by Smirnov [Smi99]. The compact formula given there
contains classical polylogarithms ln, Li2, Li3, Li4, evaluated at fractions of the kinematical
invariants. Of course, this is just one of many possible examples.

A successful method for the evaluation of Feynman integrals to polylogarithms is
outlined in Weinzierl’s talk [Wei07]: By using the Mellin transform of the Feynman
integral, one obtains hypergeometric functions. Subsequently, these are expanded in terms
of Z-sums and these can be expressed in terms of polylogarithms. (We have already seen
a very simple variant of such a calculation in example 62.) Powerful algorithms for the
expansion of hypergeometric functions in terms of Z-sums have been developed by Moch,
Uwer and Weinzierl in [MUW02].

Another family of polylogarithms has turned out to be particularly useful for loop-
calculations. In reference [RV00] Remiddi and Vermaseren introduced harmonic poly-
logarithms (HPLs) H(nw, ..., n1; z) in terms of iterated integrals. They are functions of
a complex argument z and arguments n1, ..., nw which take values in {−1, 0, 1}. The
number w is called the weight of the function. HPLs are defined recursively using the
rational functions f(ni; x):

f(0; t) =
1

t
, f(1; t) =

1

1 − t
, f(−1; t) =

1

1 + t
.

10A simplified result for the box-graph was given by Denner, Nierste and Scharf in [DNS91] (also
see section 4 of the review [Den93]).
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For w = 1 Remiddi and Vermaseren define

H(0; z) =

∫ z

1

dt

t
= ln(z),(6.1.35)

H(1; z) =

∫ z

0

dt

1 − t
= − ln(1 − z),(6.1.36)

H(−1; z) =

∫ z

0

dt

1 + t
= ln(1 + z).(6.1.37)

For w > 1 they recursively define

H(0, ..., 0 ; z) =
1

w!
lnw(z),

H(nw, ..., n1; z) =

∫ z

0
dz′f(nw; z′)H(nw−1, ..., n1; z

′),(6.1.38)

where in the last equation at least one ni is not equal to zero.
In some cases harmonic polylogarithms can be expressed by classical polylogarithms

and so-called Nielsen polylogarithms [Nie09] which are generalizations of the dilogarithm.
Remiddi and Vermaseren point out that such expressions can not be found for all HPLs.

A difference between HPLs and all the iterated integrals we mentioned before arises
from equation (6.1.35) where the lower integration limit is 1. By recursion this is the case
for all the HPLs with nw = 0. Such HPLs are said to have a trailing zero. Let us denote
HPLs with nw 6= 0 by H⋆. For this subset of HPLs Remiddi and Vermaseren introduce a
notation11 by lower indices si. This notation is similar to the above Li-notation, except
that the indices si may be negative. In Remiddi and Vermaseren’s notation the HPLs
without trailing zeroes are defined by:

H⋆
m1, ...,mk

(z) =

(6.1.39)

∫ z

0
f(sign(m1); t)dt

dt

t
...
dt

t
f(sign(m2); t)dt

︸ ︷︷ ︸

|m2| times

...
dt

t
...
dt

t
f(sign(mk); t)dt

︸ ︷︷ ︸

|mk | times

where the parameters mi can be positive or negative integers and where sign(mi) = 1
for positive and sign(mi) = −1 for negative mi. Using shuffle identities and integration
by parts, Remiddi and Vermaseren show how to express an arbitrary harmonic polyloga-
rithm in terms of harmonic polylogarithms without trailing zeroes (up to the exceptions
H(0; z) = ln(z), H(0, 0; z), H(0, 0, 0; z) and so on).

A first generalization12 of HPLs was given in [GR02] by Gehrmann and Remiddi,
who extended the set of allowed rational functions in the integrand to

g(0; t) =
1

t
, g(1; t) =

1

t− 1
, g(1 − u; t) =

1

t+ u− 1
, g(−u; t) =

1

t+ u
,

where u is an additional independent variable. By a recursive definition similar to equation
(6.1.38) one obtains the two-dimensional harmonic polylogarithms (2dHPLs). This set of
functions obviously contains the HPLs (up to possible signs arising from the different
conventions). Gehrmann and Remiddi note, that the 2dHPLs without trailing zeroes
(defined as in the case of HPLs) are contained in the set of multiple polylogarithms.
Therefore they evaluate to periods at algebraic arguments.

11For consistency with our above notation we have a reversed order of indices compared to [RV00].
12We want to mention that further extensions were given by Aglietti and Bonciani in the article

[AB04] and by Birthwright, Glover and Marquard in reference [BGM04].
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Let us add the remark that an automated evaluation of the ubiquitous multiple zeta
values, classical polylogarithms, harmonic polylogarithms and multiple polylogarithms
has become important for practical multi-loop calculations. The numerical evaluation of
HPLs and 2dHPLs was provided by Gehrmann and Remiddi in [GR01a, GR02] and an
implementation for all the functions just mentioned, including multiple polylogarithms,
was developed by Vollinga and Weinzierl in reference [VW05]. The latter implementation
is integrated in the computer algebra package GiNaC [BFK02] from version 1.3 onwards.

In a thorough introduction to polylogarithms, less focused on periods and Feynman
integrals, there would be much more to say about these functions. For a much more
detailed introduction we may refer the reader to reference [Wal00], the survey [GZ00]
and to the wealth of references given in the talk [Wei07].

6.1.6. Elliptic Integrals. We already mentioned that it is not known in general
which Feynman integrals have only Laurent coefficients which are linear combinations
of MZVs with rational coefficients (see problem 65), and the same is true for classical
and harmonic polylogarithms. Many known analytical results, but remarkably not all of
them, can be expressed in terms of MZVs and polylogarithms at present.

As an example let us consider the analytical result for the so called equal mass two-
loop sunrise graph by Laporta and Remiddi [LR05]. This graph was our first example
for a graph of φ4-theory in chapter 2 (see figure 2.1.3) and we will discuss it in more
detail in appendix B. In the result by Remiddi and Laporta, the Laurent coefficients of
the dimensionally regularized Feynman integral are expressed in terms of the complete
elliptic integral of the first kind which is defined as

K(λ) =

∫ 1

0

dy
√

(1 − y2) (1 − λy2)
.

This function was already applied in the consideration of the same Feynman graph by
configuration space techniques in [GP00] (also see [Alm67]). An expression of this
function in terms of polylogarithms is not known. Nevertheless, we can easily observe,
that the function evaluates to periods. The domain of integration is a semi-algebraic set
and the integrand is an algebraic function and therefore, we obtain a period for algebraic
values of λ.

The result of Laporta and Remiddi seems to indicate an arithmetic property of Feyn-
man integrals. The requirement of elliptic integrals suggests that the set of MZVs and
the set of polylogarithms might not provide all the functions which are necessary to rep-
resent the Laurent coefficients of dimensionally regularized Feynman integrals. On the
other hand, the example shows that the set of periods is not excluded by the presence
of such elliptic integrals. Therefore it makes sense to consider the set of functions which
evaluate to periods at algebraic arguments. In the following section we prove that this
set of functions, at least in the Euclidean momentum region, is sufficient to express the
Laurent coefficients of any Feynman integral.

We want to mention that the result for the two-loop sunrise graph with equal masses
is not the only example where elliptic integrals are required. Further elliptic integrals,
more complicated than the elliptic integral of the first kind, are used in analytic results by
Laporta in [Lap08] for the three-loop and four-loop sunrise topology. The latter results
were partially obtained by numerical fits. Laporta emphasizes that for the integrals used
there as well expressions in terms of polylogarithms are not known.
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6.2. Periods and Feynman Integrals

The theorems to be discussed in the following state that the Laurent coefficients of
Feynman integrals under weak assumptions to be specified below evaluate to periods.
The statements are trivial for convergent and non-trivial for divergent Feynman inte-
grals. Let us consider a general Feynman integral in Feynman parametric representation
(cf. equation (2.3.6))

IG (D) =

∫

xj≥0
dnxδ

(

1 −
n∑

i=1

xi

)(
n∏

i=1

xνi−1
i

)

UGν−(L+1)D/2

FGν−LD/2
,(6.2.1)

where a prefactor is suppressed and the dependence on masses and kinematical invariants
is not explicitly denoted. If the integral converges for D → 4, then it follows directly from
the definition of periods that IG is a period in this limit if the masses and kinematical
invariants take algebraic values. The following non-trivial results apply to Feynman
integrals which are possibly divergent.

6.2.1. A Theorem of Belkale and Brosnan. In [BB03b] Belkale and Brosnan
prove a theorem on the Laurent coefficients of so-called Igusa local zeta functions. Let
∆n ⊂ Rn be the so-called standard n-simplex, defined as the set

∆n =

{

(x1, ..., xn) ∈ Rn |
n∑

i=1

xi ≤ 1

}

(6.2.2)

and let f be a polynomial function f ∈ R [x1, ..., xn], which is non-negative on ∆n. Then
we consider the function

I(α) =

∫

∆n

fαdnx(6.2.3)

where α ∈ C is understood to be an exponent. The function I(α) is called Igusa local
zeta function. It is meromorphic in C (see [Ati70, BG69]). Belkale and Brosnan prove
the following:

Theorem 67. (Belkale and Brosnan [BB03b]) Suppose that f ∈ Q [x1, ..., xn] is a
polynomial with rational coefficients and let α0 be an integer. Let

I(α) =

∞∑

i=A

Ci(α− α0)
i(6.2.4)

be the Laurent series expansion of I(α) at α0 with A ∈ Z. Then all Ci are periods.

The result is related to Feynman integrals as follows. Note that the above function
I(α) is an integral with one polynomial to an arbitrary complex power in the integrand.
A Feynman integral of this type is

IG(D) =

∫

R
n+1
+

dn+1xδ

(

1 −
n+1∑

i=1

xi

)

U−D/2,(6.2.5)

which we obtain for the case of a graph without external lines or all kinematical invariants
zero, all masses equal to the mass-unit µ and all propagators occurring to power 1.
Evaluating one integration by elimination of the δ-distribution yields

IG(D) =

∫

∆n

dnx U ′−D/2,(6.2.6)
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with U ′ (x1, ..., xn) = U (x1, ..., xn, xn+1 = 1 −∑n
i=1 xi). We know from the properties

of the polynomial U that U ′ is positive everywhere in the domain ∆n and all of its
coefficients are rational, namely 1 or −1. Therefore theorem 67 applies to the Feynman
integral IG of equation (6.2.5) and implies that its Laurent coefficients are periods.

Note that the integral IG(D) in equation (6.2.5) is a very special type of a Feynman
integral. In reference [BB03b] Belkale and Brosnan expressed their belief, that it should
be possible to extend their theorem to general Feynman integrals. Our main theorem
to be stated in the following is such an extension to a class of integrals which is even
more general and which contains general Feynman integrals as a special case. We want
to emphasize, that the polynomial f in their theorem is assumed to be non-negative in
the integration domain and to have rational coefficients. We will not use the theorem of
Belkale and Brosnan in our proof, but we will have to adopt the same assumption with
respect to all polynomials appearing. The assumption of non-negative polynomials will
allow for the use of the sector decomposition in our proof. The decomposition will yield
functions whose arguments consist of the coefficients of the polynomials. If we evaluate
these functions at algebraic arguments, we will obtain periods.

6.2.2. The Main Theorem. Adopting our notation from chapter 5 we consider
polynomials P in real valued variables x1, x2, ..., xn. X denotes the set {x1, x2, ..., xn}.
The notation P (X) means, that P depends on some of the elements of X, not necessarily
on all of them. Let us consider the integral

J(ǫ) =

∫

xj≥0
dnxδ

(

1 −
n∑

i=1

xi

)(
n∏

i=1

xai+ǫbi
i

)
r∏

j=1

(Pj (X))cj+ǫdj(6.2.7)

where the integration domain is understood to be Rn
+ and all the variables ai, bi, ci and

di are integers. We assume that the coefficients of the polynomials are algebraic numbers
and that the polynomials are nonzero in the region Rn

+\0, but not necessarily nonzero

in the domain of integration Rn
+. For simplicity let us assume that all polynomials are

positive inside the integration region, which is of course not a restriction, as a general
sign in front of the integral is irrelevant for our treatment.

The integral J(ǫ) has a Laurent expansion

J(ǫ) =
∞∑

j=A

Cjǫ
j, A ∈ Z.(6.2.8)

Our main theorem, as worked out with Stefan Weinzierl in reference [BW09], is the
following:

Theorem 68. The coefficients Cj of the Laurent expansion of the integral J(ǫ) are
periods.

Proof. We give a constructive proof based on the sector decomposition algorithm of
Binoth and Heinrich as described in chapter 5. As a strategy for the choice of the set S we
take one of the winning strategies of Hironaka’s polyhedra game. Therefore the algorithm
terminates and gives the coefficients Cj of the Laurent expansion of J(ǫ). We follow the
steps of the algorithm, referring to our above description, and we show, that the integrals
Cj obtained after step 4 of the algorithm are periods. Step 5, the numerical evaluation
of these integrals, is irrelevant for the proof. Let us proceed through the relevant steps of
the algorithm:
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Step 1 is the decomposition to primary sectors which expresses J as a sum of finitely
many integrals of the form

(6.2.9)

∫ 1

0
dnx

(
n∏

i=1

xai+ǫbi
i

)
r∏

j=1

(Pj (X))cj+ǫdj .

The polynomials Pj (X) are not necessarily monomialized yet. We note that from now
on each integral at the end of a step is over a n-dimensional cubic domain of integration,
which is clearly a semi-algebraic set.

Step 2 is the iterative sector decomposition. At the end of this step, J is expressed
as a sum of finitely many integrals which are still of the form of equation (6.2.9), but
now, after monomialization and factorization, all of the polynomials are non-zero in the
entire domain of integration.

Step 3 uses the fact that the singular behaviour of the integrals at this stage depends
just on the terms

∏n
i=1 x

ai+ǫbi
i . Considering each of the integrals, we remind ourselves

that for a parameter xj which appears to a negative power aj < 0 in the monomial, we
have to Taylor-expand the integrand around xj = 0:

∫ 1

0
dxjx

aj+bjǫ
j I (xj, ǫ) =

∫ 1

0
dxjx

aj+bjǫ
j





|aj |−1
∑

p=0

xpj
p!

I(p)(ǫ) + I(R) (xj , ǫ)



(6.2.10)

with

I(p)(ǫ) =
∂

∂xpj
I (xj, ǫ)|xj=0 ,(6.2.11)

I(R) (xj , ǫ) = I (xj, ǫ) −
|aj |−1
∑

p=0

xpj
p!

I(p)(ǫ).(6.2.12)

Here it is understood, that in general the functions I (xj, ǫ) , I(p)(ǫ), I(R) (xj , ǫ) are
integrals over further variables. The integral

(6.2.13)

∫ 1

0
dxjx

aj+bjǫ
j I(R) (xj , ǫ)

does not contribute to ǫ poles by the xj-integration, but possibly by integrations over
other variables xi. For the pole-part of the xj-integration, we evaluate

∫ 1

0
dxjx

aj+bjǫ
j

xpj
p!

I(p)(ǫ) =
1

aj + bjǫ+ p+ 1

I(p)(ǫ)

p!
.(6.2.14)

One continues for all other variables xi with ai < 0, as we already described in chapter 5.
At the end of this procedure we obtain J as a sum of finitely many integrals of the

form

K(ǫ) =
1

g(ǫ)

∫ 1

0
dnxF (X, ǫ)(6.2.15)
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with

F (X, ǫ) =

N∑

j=1

fj(X, ǫ),(6.2.16)

fj(X, ǫ) = gj(ǫ)
n∏

i=1

x
aj

i +ǫbi
i

r∏

k=1

(

P jk (X)
)cj

k
+ǫdk

(6.2.17)

(with j everywhere understood to be an index, not an exponent). The numbers aji , bi,

cjk, dk are integers for all i = 1, ..., n and j = 1, ..., N . The functions g(ǫ) and gj(ǫ) are
polynomials in ǫ with integer coefficients. The functions 1/g(ǫ) are the products of the
prefactors 1/(aj+bjǫ+p+1) from the right-hand side of equation (6.2.14). The functions

P jk (X) are polynomials with rational coefficients and they are non-zero in the domain of

integration. In each single variable the integrals
∫ 1
0 d

nxF (X, ǫ) are of the form

(6.2.18)

∫ 1

0
dxxǫbR(x, ǫ).

Such integrals are absolutely convergent for all ǫ with |ǫ| < |1/b| if the function R(x, ǫ) is
non-singular and therefore bounded in the domain of integration. Therefore we see that
there is a neighborhood around ǫ = 0 where the integrands fj(X, ǫ) of equation (6.2.16)

are bounded. Hence the integrals
∫ 1
0 d

nxF (X, ǫ) of equation (6.2.15) are absolutely con-
vergent in a neighborhood around ǫ = 0.

In Step 4 we expand J(ǫ) as a Laurent series in ǫ = 0. We expand the functions 1/g(ǫ)
and F (X, ǫ) of equation (6.2.15) as follows:

(6.2.19)
1

g(ǫ)
=

∞∑

r=A

grǫ
r, F (X, ǫ) =

∞∑

r=0

Fr (X) ǫr.

As a result we obtain the expansion of the integral of equation (6.2.15) as

K(ǫ) =
∞∑

r=A

Krǫ
r(6.2.20)

with

Kr =
r∑

s=A

gs

∫ 1

0
dnxFr−s (X) .(6.2.21)

The prefactors gs are rational numbers. The integrands Fr−s (X), as we observe from
equation (6.2.17), consist of the coefficients of the expansions

xa+ǫb = xa
∞∑

k=0

bk

k!
(ln (x))k ǫk,(6.2.22)

(P (X))c+ǫd = (P (X))c
∞∑

k=0

dk

k!
(ln (P (X)))k ǫk.(6.2.23)

Now we are ready to observe that the Laurent coefficients Cj of J(ǫ) are periods, due to
the following arguments: The coefficients Cj are sums of finitely many terms of the form
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Kr. As the sum of finitely many periods is again a period and as the prefactors gs are
just rational numbers, it remains to show, that the integrals

(6.2.24)

∫ 1

0
dnxFr−s (X)

are periods. The domain of integration is clearly a semi-algebraic set. Furthermore we
see that the integrals are absolutely convergent: In each variable we have integrals of the
form

∫ 1

0
dx (ln (x))kR (x) , k ∈ N ∪ {0},(6.2.25)

where the function R (x) contains the terms (ln (P (X)))k of equation (6.2.23). In the
domain of integration, the polynomials P (X) are non-zero and therefore the logarithms
ln (P (X)) do not diverge. Hence the functions R (x) are bounded in the domain of
integration and the integrals of the equations (6.2.25) and (6.2.24) are absolutely conver-
gent13.

Now that we obtained absolutely convergent integrals over semi-algebraic domains, it
remains to check whether the integrands Fr−s (X) fulfill the remaining conditions for the
Kr to be periods. We see from equation (6.2.22) and (6.2.23) that these integrands are
sums of products of rational functions with logarithms of rational functions, all of their
coefficients being algebraic numbers. We note, that the latter numbers are algebraic,
because we assumed the coefficients of the polynomials Pj (X) to be algebraic numbers.

Therefore the integrals of equation (6.2.24) are of the type of equation (6.1.5), satis-
fying the conditions of lemma 61 from the beginning of the present chapter. Hence, as a
consequence of lemma 61, these integrals are periods. This completes the proof. �

Now let us show how theorem 68 applies to Feynman integrals. We consider the
general scalar multi-loop integral as in equation (6.2.1)

IG =
(
µ2
)ν−LD/2

∫

xj≥0
dnxδ

(

1 −
N∑

i=1

xi

)(
N∏

i=1

xνi−1
i

)

UGν−(L+1)D/2

FGν−LD/2
(6.2.26)

where we remember, that µ is the mass scale. Note that IG and FG may be functions in
kinematical invariants si and masses mi. Let λ be an integer and set D = 2λ− 2ǫ. Then
this integral has a Laurent series expansion in ǫ

IG =

∞∑

j=−2L

Cjǫ
j .

With respect to this expansion we obtain:

Corollary 69. If all kinematical invariants si are non-positive algebraic numbers
and all masses mi and µ are non-negative algebraic numbers, the coefficients Cj of the
Laurent expansion of the integral IG are periods.

The statement is a direct consequence of theorem 68 as the integral IG is a special
case of the integral J . As we have already seen in chapter 5 we obtain IG by setting
n = N, r = 2, ai = νi − 1, bi = 0, P1 = UG, P2 = FG, c1 = ν − 2(L + 1), d1 = L + 1,
c2 = ν − 2L, d2 = L in J .

13The power of ln (x) does not cause singularities at the lower boundary as we have

lima→0

R 1

a
dx ln (x) = lima→0 (−1 − a ln (a) + a) = −1.
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In the literature, very often Feynman integrals are considered, which differ from the
integral IG as used here by a general prefactor. In appendix C we observe, that the Laurent
coefficients of these prefactors are periods as well, up to the presence of powers of 1/π.

Theorem 68 and corollary 69 provide a general statement on the arithmetic nature
of Feynman integrals. In the present chapter we have seen that multiple zeta values and
polylogarithms are present in multi-loop calculations, but it is not known whether all
Feynman integrals can be expressed in terms of these objects. The set of periods instead
turns out to be a set of numbers which includes all Laurent coefficients of all Feynman
integrals under the mentioned assumptions of masses and kinematical invariants taking
algebraic values in the Euclidean momentum region. We mentioned that the restriction
to the Euclidean region is required by the sector decomposition algorithm which is used
in the proof of our theorem.

Periods, as we mentioned in the beginning of the chapter, play a central role in
algebraic geometry and particularly in the theory of so-called motives. In the following
outlook we want to add some partly speculative remarks on the correspondence between
periods and Feynman integrals in this geometric context.

6.3. Outlook on Periods and Feynman Integrals

6.3.1. Motives and the Classification of Feynman Integrals. At several places
in this dissertation we have mentioned a connection from Feynman integrals to the theory
of so-called motives, without explaining what motives are. In fact motives are highly
abstract objects considered in algebraic geometry and a precise introduction to their
theory would be beyond the scope of this dissertation. Nevertheless, there are certain
statements related to motives which can partly be understood from the background of
the previous treatments and which might have applications for the practical calculation
of Feynman integrals. In this outlook we want to refer to these statements on motives
and speculate on possible applications.

In chapter 5 we have considered the zero-sets of polynomials in the integrand of
a Feynman integral and we have introduced the notion of a variety for such zero-sets,
which is a notion from algebraic geometry. In algebraic geometry one can study proper-
ties of varieties by considering the cohomology of the variety. There are different kinds of
cohomologies which may be considered, i. e. so-called de Rham cohomology, Betti coho-
mology etc. and these different cohomologies of a given variety have common properties.
Motives are objects which should ’motivate’ these common properties. More precisely,
the theory of motives is an attempt to unify the different cohomologies to one ’universal’
cohomology theory. Therefore a motive which is associated to a variety shall incorporate
certain properties of the corresponding cohomologies.

There are different approaches of associating motives to Feynman integrals14 and
without referring to details we just want to focus on the following important point:

According to a conjecture of Grothendieck, a motive is determined by certain as-
sociated periods (see e. g. [And08]). Furthermore, certain periods which are given by
Feynman integrals can be interpreted as such periods of motives, as it was shown for the
first time in detail in the work of Bloch, Esnault and Kreimer [BEK06] (also see [Blo07]).
For an introduction to periods of motives and the connection to Feynman integrals we
refer to [And08] and [Mar09].

Moreover there is a special class of motives which are better understood than motives
in the general case: the class of so-called mixed Tate motives. According to a conjecture

14We refer to [AM08b, AM08a, AM09b, AM09a, And08, BB03a, BEK06, CM08, Mar08,

Mar09].
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of Tate, these are exactly the motives whose periods are multiple zeta values (MZVs)
[And08] (also see [Gon01, Ter02]). To our knowledge, all motives which have been
associated to Feynman integrals up to now belong to the class of mixed Tate motives.
In problem 65 of the present chapter, we have asked for the set FMZV of Feynman
integrals, whose Laurent coefficients are linear combinations of MZVs. Possibly these
Laurent coefficients could be related to mixed Tate motives. We may summarize the
correspondences just mentioned in the following simplistic diagram:

motives ↔ periods ↔ Feynman integrals
∪ ∪ ∪

mixed Tate motives ↔ MZVs ↔ FMZV

However we have to mention that for a general divergent Feynman integral, the situa-
tion seems to be more difficult than we just suggested, as to our knowledge up to now only
finite integrals have been interpreted as periods of mixed Tate motives, but not the Lau-
rent coefficients of divergent integrals. Nevertheless, the possibility of such an association
to Laurent coefficients of a divergent integral is indicated in a remark in [AM09b].

From the point of view given here we may hope, that the theory of motives can provide
a classification of Feynman integrals, which would be useful for practical calculations. In
particular we may hope that, by use of the conjecture of Tate, we may find a way to
determine the set FMZV of Feynman integrals which evaluate to MZVs. Let us try to
give this hope a more explicit formulation in the following.

Let A ⊂ P be a subset of the set of periods and let FA be the set of Feynman integrals
whose Laurent coefficients are linear combinations of elements of A. For example A may
be the set of MZVs (and then FA = FMZV) or the set of certain values of polylogarithms.
Let I be a given Feynman integral. Then we may hope that we can construct an object
which is associated to the Feynman integral I and from which we can directly read off
whether I belongs to FA or not. In the case of MZVs, the conjecture of Tate may be
helpful for such a construction. We may call such an object an indicator for I to belong
to FA. For example a function

µA(I) =







1 if I ∈ FA,

0 if I /∈ FA

would be such a desired indicator. To our knowledge, such an indicator does not ex-
ist for general Feynman integrals and any significant set A, such as MZVs or values of
polylogarithms.

In this context let us mention the approach of Kreimer to predict the presence and the
weight of MZVs in Feynman integrals of special classes via a correspondence to knot theory
(see [Kre00] and references given there). The articles [BK97, BK95] of Broadhurst and
Kreimer show that this way of indication is successful up to a certain loop-number. Such
a method of indication would be highly desirable for a more general class of integrals, and
it is our hope that the theory of motives may be the key to such a method.

Asking for even more, we may hope that for a subset of periods A one day an algo-
rithm, say ALGA, can be developed, which can be used to evaluate any Feynman integral
in FA analytically. If we would have such an algorithm and an indicator µA at hand, we
could systematically use the indicator µA to select the integrals which can be evaluated
by the algorithm ALGA. Such a procedure would be particularly useful if the evaluation
of the indicator takes less computation time than a usual run of the algorithm, or, for
example, if the algorithm in the case of I /∈ FA would lead to an infinite recursion. We
remember that for each finite set of integrals we could evaluate with ALGA, we would
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obtain an infinite set of integrals which can be calculated in terms of these results by use
of the IBP-identities as discussed in chapter 3.

Our wish-list, consisting of a useful indicator µA and a powerful algorithm ALGA,
might seem to be utopian for the near future. However, there is recent research in the
field between Feynman integrals and motives which in our opinion might be useful for
the development of such indicators and algorithms. In the case of the development of
the indicator we would be interested in objects which contain valuable information about
a Feynman integral and whose explicit calculation is easier than the calculation of the
integral itself. For example in reference [AM08b] Aluffi and Marcolli explicitly compute
certain class invariants for a family of Feynman graphs (i. e. massless n-loop sunrise
graphs) which encode information on their singularity structure and on the corresponding
motives. Furthermore we can interpret Brown’s work in reference [Bro09] as a valuable
step towards the development of a desired algorithm ALGMZV, i. e. an algorithm for the
evaluation of any I ∈ FMZV. We may speculate, that a successful development of such an
algorithm ALGMZV could then in turn give rise to the right ideas for an extension to the
set of Feynman integrals which evaluate to polylogarithms. Such a technique would be a
great improvement for the efficient evaluation of physical cross-sections to high precision.

6.3.2. Differential Equations of Geometric Origin. In the present chapter we
have discussed many different functions which have a common property: they evaluate
to periods if their arguments take algebraic values. In corollary 69 we have seen, that
also the Laurent coefficients of a general Feynman integral IG of equation (6.2.26) are
functions with the same property, at least in the Euclidean momentum region.

In reference [KZ] Kontsevich and Zagier point out, that functions of this type, in-
tegrals which depend on parameters and which evaluate to periods, satisfy linear differ-
ential equations of a very special type. The property was first observed by Fuchs and
the differential equations are known as Picard-Fuchs differential equations or members
of Gauss-Manin systems. Other authors refer to these equations simply as differential
equations of geometric origin. (For introductions see [And89, Kat68].)

Like the theory of motives, the theory of Picard-Fuchs equations lies beyond what we
can present in this dissertation. Let us just imagine a variety, given as the zero set of
some polynomials whose coefficients are fixed numbers. We furthermore may imagine an
integral over a closed path on this variety. If instead of polynomials with fixed coefficients
we consider polynomials which depend on additional variables (just like the polynomial
F depends on masses and kinematical invariants) then the variety depends on these
parameters as well, or in other words, we consider in fact a continuum of varieties. With
the variation of the additional parameters, the variety changes and accordingly the integral
defined by the closed path on the variety changes as well. In such a sense we can imagine
that the integral fulfills a differential equation with respect to such a parameter which
reflects a variation of a geometrical object.

Given this point of view let us come back to Feynman integrals. From the physics
literature, Feynman integrals are well known to satisfy certain differential equations. The
so-called differential equations approach originating in the works of Remiddi and collab-
orators [CCLR98, GR00, Rem97], generalizing an idea of Kotikov [Kot91], considers
Feynman integrals as solutions of linear differential equations in the particle masses or
kinematical invariants. Therefore also the Laurent coefficients are known to be solutions
of certain differential equations. The approach provides a method for the construction of
these differential equations, partially using IBP-identities. We may ask for the geometric
origin of these equations in order to provide a further bridge to algebraic geometry and
possibly improve the differential equations approach by use of such a connection.
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Let us again formulate our hope more explicitly. From the given point of view it may
be desirable to try to decide whether the differential equations given by the method of
Remiddi et al. are Picard-Fuchs equations and accordingly can be interpreted as originat-
ing from a geometrical object. There is a complication which stands in the way of such an
approach. As Kontsevich and Zagier mention in reference [KZ], it is not known in general
how to determine, whether a given differential equation is a Picard-Fuchs equation. Never-
theless, there are certain conjectural criteria and Kontsevich and Zagier summarize three
conjectures stating conditions under which a differential equation is of the Picard-Fuchs
type. To my opinion it would be interesting and possible to check whether differential
equations for Feynman integrals due to Remiddi et al. fulfill the criteria of at least one of
these conjectures.



CHAPTER 7

Conclusions

In this dissertation we studied combinatorial and arithmetic properties of general
scalar Feynman integrals in dimensional regularization. The starting point of most of
our considerations was the Feynman parametric representation of these integrals. Let us
summarize the main achievements of the dissertation, which we aimed for in the chapters
4, 5 and 6.

In chapter 4 we provided a detailed graph theoretic discussion of the two Symanzik
polynomials which arise in the Feynman parametric representation. We focused on the
construction of these polynomials by the generic Laplacian matrix of a graph. While
the first of the Symanzik polynomials is known to be obtained from the determinant
of a minor of this matrix due to the matrix-tree-theorem, we used the more general
all-minors-matrix-tree-theorem to prove a novel relation which also includes the second
Symanzik polynomial. We ended the chapter explaining the relationship of the Symanzik
polynomials with the multivariate Tutte polynomial, which we expect to be useful in
future considerations of combinatorial properties of Feynman integrals.

In chapter 5, following joint work with Stefan Weinzierl, we considered the sector
decomposition algorithm of Binoth and Heinrich for the numerical evaluation of arbi-
trary scalar Feynman integrals in the Euclidean momentum region. By giving a counter-
example, we exhibited the fact that this powerful algorithm in its original version does
not terminate for every possible situation. We showed that the iterative step of the algo-
rithm can be mapped to the abstract polyhedra game of Hironaka. By use of the existing
winning strategies of this combinatorial game we extended the sector decomposition al-
gorithm such that the resulting version is known to terminate for the general case. We
implemented this new version, combining the analytical and the numerical part of the
calculation into one program, which is the first publicly available implementation of sector
decomposition. Hironaka’s game was originally applied in the context of the resolution
of singularities of varieties in algebraic geometry and we ended chapter 5 by a geometric
explanation of the analogies between sector decomposition and such resolutions.

The correspondence between Feynman integrals and topics in algebraic geometry fur-
thermore gave a motivation for the consideration of the set of periods in chapter 6. We
provided a brief review on periods and further sets of numbers and functions which are
periods or which evaluate to periods at algebraic arguments respectively. We emphasized
the importance of these objects in today’s multi-loop calculations and we pointed out
that up to now no subset of periods is known to be sufficient to express the Laurent co-
efficients of general dimensionally regularized Feynman integrals. This discussion served
as a motivational introduction to the main theorem of this dissertation, obtained in joint
work with Stefan Weinzierl. Our theorem implies, that all the Laurent coefficients of
an arbitrary dimensionally regularized Feynman integral are periods if the masses and
kinematical invariants take algebraic values in the Euclidean momentum region. The the-
orem is in fact formulated for a more general class of integrals, allowing for an arbitrary
number of polynomials in the integrand. Our constructive proof relies on the improved
sector decomposition algorithm.
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The work we just summarized provides the main body of this dissertation while chap-
ters 2 and 3 are of a more supplementary character. In chapter 2 we introduced the
standard techniques and representations which were required for the understanding of all
subsequent discussions. We particularly tried to give an introduction which is compre-
hensible also for a reader who is not familiar with the use of Feynman integrals in per-
turbative quantum field theory. In chapter 3 we reviewed the technique of IBP-identities
for expressing Feynman integrals in terms of simpler ones. We focused on the systematic
reduction given by the Laporta algorithm and we furthermore considered IBP-identities
in the Feynman parametric representation and derived a convenient formula for the one-
loop case. We pointed out the importance of combining IBP-identities in order to obtain
an efficient reduction for practical calculations, and the fact that the optimal way to do
so is still to be found.

A central point of this dissertation is the use of Hironaka’s polyhedra game in the
algorithm of Binoth and Heinrich, by which the close relationship between the methods
of sector decomposition and resolution of singularities in algebraic geometry becomes
visible. This connection may be seen as a very explicit example for the usefulness of
the field of research which started to evolve in between Feynman integrals and algebraic
geometry over the last ten years. In outlooks and remarks at the end of some of the
previous chapters we expressed our hope and belief, that this field of research will not
only be a valuable source of examples for the theory of motives but moreover yield further
improvements for the understanding and the efficient calculation of Feynman integrals.

To this end it seems to be inevitable for physicists and mathematicians to explain
techniques for the evaluation of Feynman integrals and sophisticated tools of algebraic
geometry to each other. To no surprise, the language of the phenomenologist and the
language of the algebraic geometer are so different that they might not even realise when
they speak about the same subject. The future success of the mentioned field of research
may to a large extent rely on the ability of both communities to find a common language.

It was Ludwig Wittgenstein who knew a useful rule of thumb, which we seem to forget
sometimes:

“Telling someone something he does not understand is pointless,
even if you add that he will not be able to understand it.”

Let us try to communicate in a language which we both understand. Let us say clearly
what we can say, and whereof we cannot speak, thereof let us be silent.



Appendix A: Auxiliary Definitions

In chapter 5 we have introduced several notions of algebraic geometry. Let us supple-
ment the explanations given there, by the following additional definitions.

Definition 70. (Ring, cf. [Lan05]) A ring A is a set, together with two laws of
composition called multiplication and addition respectively, satisfying the following con-
ditions:

(a) With respect to addition, A is a commutative group.
(b) The multiplication is associative, and has a unit element.
(c) For all x, y, z ∈ A we have distributivity: (x+y)z = xz+yz and z(x+y) = zx+zy.

A is called commutative ring, if it is commutative with respect to the multiplication.

Definition 71. (Field, cf. [Lan05]) A field K is a commutative ring such that the
unit element of the multiplication, the one, is not equal to the neutral element of the
addition, the zero, i. e. 1 6= 0, and such that each non-zero x ∈ K has a multiplicative
inverse in K.

Definition 72. (Affine space, cf. [DS01]) Let K be a field. Let furthermore A be
a set and let there be a map from A × A to a vector space L over K. The image of an

element (a, b) ∈ A×A is denoted
−→
ab and is called the vector with beginning in a and end

in b. Let the map have the following properties:
(a) For any fixed element a ∈ A the map x→ −→ax, x ∈ A is a bijection of A on L.

(b) For any elements a, b, c ∈ A we have
−→
ab +

−→
bc + −→ca =

−→
0 , where

−→
0 is the zero

vector in L.
Then A is called affine space over K, its elements are called points and its dimension

is defined to be the dimension of L.

In chapter 5 we considered rational maps as given by tuples of fractions of regular
functions. A more abstract but precise definition of a rational map is the following:

Definition 73. (Rational map, [Har95]) For an irreducible variety V and any variety
W a rational map

ψ : V 99K W

is defined to be an equivalence class of pairs (U, φ) with U ⊂ V a dense open subset and
φ : U → W a regular map, where two such pairs (U1, φ1) and (U2, φ2) are equivalent, if
the regular maps coincide on the intersection of the subsets: φ1|U1∩U2

= φ2|U1∩U2
. This

defines the use of the dashed arrow “99K”.
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Appendix B: The Two-Loop Equal Mass Sunrise Graph

In chapter 6 we mentioned the example of the two-loop sunrise graph, shown in figure
7.0.1, where all masses are set equal and non-zero. We already considered the graph in
chapter 2 as an example for a graph of φ4-theory. Despite the simple form of the graph
it turns out that the corresponding Feynman integral is difficult to evaluate. The first
complete analytical result was derived by Laporta and Remiddi in the article [LR05]. As
we mentioned above, this result remarkably contains a kind of integrals, elliptic integrals
of the first kind, which are not known to be expressible in terms of polylogarithms. For
this reason we want to give a brief review on the result of Laporta and Remiddi in this
appendix.

We consider the two-loop Feynman graph G of figure 7.0.1, where the external momen-
tum is denoted p, the momenta assigned to the internal edges are k1, k2 and p− k1 − k2,
according to momentum conservation, and where furthermore the same mass variable m
is assigned to all three internal edges. If we allow for arbitrary integer powers ν1, ν2, ν3

of the inverse propagators, we obtain an infinite set of Feynman integrals for this graph.
By the use of IBP-identities derived by Tarasov in reference [Tar97], all integrals of this
family can be expressed in terms of only two of these integrals, namely

Ii
(
D, p2, m2

)
= Ω(D)

∫
dDk1d

Dk2
(
k2
1 +m2

)i (
k2
2 +m2

) (

(p− k1 − k2)
2 +m2

)

with the power i = 1, 2 and

Ω(D) = (Γ (3 −D/2))−2 16−1π−D,

where for the prefactor Ω(D) we adopt the convention of reference [LR05]. Further-
more Laporta and Remiddi find that I2 can be expressed as a linear combination of
I1
(
D, p2, m2

)
and d

d(p2)
I1
(
D, p2, m2

)
. Therefore the consideration of I1 is sufficient in

order to provide a result for the entire family of integrals given by the graph G with equal,
non-zero masses.

p −p

p− k1 − k2

k1

k2

Figure 7.0.1. The two-loop sunrise graph.
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In the following the mass m is set equal to one, which means that the result will be
obtained in units of the arbitrary mass m, so this is not a restriction of the generality.
For simplicity let us furthermore denote p2 = z and in order to adopt the notation of
reference [LR05] we will write

S (D, z) = I1 (D, z, 1) .

In order to avoid possible confusion we furthermore adopt the convention of Laporta and
Remiddi to consider the Laurent expansion in a parameter σ = D − 4 = 2ǫ:

S (D, z) =

∞∑

n=−2

S(n) (4, z) σn =

∞∑

n=−2

2nS(n) (4, z) ǫn.

The authors furthermore define η = D − 2 and consider the series

S (D, z) =

∞∑

n=0

S(n) (2, z) ηn.

For the coefficients at n = −2, 1, 0 they obtain the relations:

S(−2) (4, z) = −3

8
,(7.0.1)

S(−1) (4, z) =
1

32
(z + 18) ,(7.0.2)

S(0) (4, z) =
1

12
(z + 1)(z + 9)

(

1 + (z − 3)
d

dz

)

S(0) (2, z)

− 1

128
(72 + 13z)(7.0.3)

and a fourth relation which expresses S(1) (4, z) in terms of S(0) (2, z) , S(1) (2, z) and
d
dzS

(0) (2, z) . The latter three functions are analytically evaluated in the main body of
the article [LR05].

For the sake of brevity let us restrict our review to S(0) (2, z) which determines

S(0) (4, z) by equation (7.0.3). From our main theorem 68 it follows that S(0) (4, z)

and S(0) (2, z) are periods at negative algebraic values of z. Let us try to re-derive this

fact from the explicit result of Laporta and Remiddi, under which conditions S(0) (2, z)
is a period.

Laporta and Remiddi find that S(0) (2, z) fulfills the following differential equation:
(
d2

dz2
+

(
1

z
+

1

z + 1
+

1

z + 9

)
d

dz
+

(
1

3z
− 1

4(z + 1)
− 1

12(z + 9)

))

S(0) (2, z)

=
3

8z(z + 1)(z + 9)
.

By the method of variation of constants they give the solution

S(0) (2, z) = Ψ1(z)

(

Ψ
(0)
1 − 1

24

∫ z

0
dwΨ1(w)

)

+Ψ2(z)

(

Ψ
(0)
2 +

1

24

∫ z

0
dwΨ2(w)

)

(7.0.4)
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where Ψ
(0)
1 and Ψ

(0)
2 are integration constants and the functions Ψ1(z) and Ψ2(z) are two

independent solutions of the homogeneous differential equation

(7.0.5)

(
d2

dz2
+

(
1

z
+

1

z + 1
+

1

z + 9

)
d

dz
+

(
1

3z
− 1

4(z + 1)
− 1

12(z + 9)

))

Ψ(z) = 0.

We see that the coefficients of equation (7.0.5) become singular at z = 0, −1, −9 and
∞. Laporta and Remiddi give solutions Ψ1(z) and Ψ2(z) in the neighborhoods of these
singular points. The radius of convergence is 1 for the solutions around z = 0 and z = −1
and it is 8 for the solution around z = 9. Then, in order to provide an analytical solution
in the whole range −∞ < z < ∞, they give interpolating solutions, which are valid in
the open intervals (0 > z > −1), (−1 > z > −9) and (−9 > z > −∞).

The solutions Ψ1(z) and Ψ2(z) in each of these regions are obtained as linear combi-
nations of elliptic integrals of the form

(7.0.6) J+
a, b(u) =

∫ b(u)

a(u)

dx
√

R4(u, x)
or J−

a, b(u) =

∫ b(u)

a(u)

dx
√

−R4(u, x)

with u = −z, with the polynomial

R4(u, x) = x(x− 4)
(
x− (

√
u− 1)2

) (
x− (

√
u+ 1)2

)

and where the boundaries a(u) and b(u) are contained in the set {0, 4, (
√
u− 1)2, (

√
u+

1)2}. It is easy to see, that the values of any integral of the form of J+
a, b(u) or J−

a, b(u)
are periods if the integrals are absolutely convergent and if the argument u is algebraic.
Therefore we know from the result of Laporta and Remiddi, that the factors Ψ1(z) and
Ψ2(z) in equation (7.0.4) evaluate to periods at algebraic z in the regions (0 > z > −1),
(−1 > z > −9) and (−9 > z > −∞).

The integrals of equation (7.0.6) are related to the complete elliptic integral of the
first kind

K(λ) =

∫ 1

0

dy
√

(1 − y2) (1 − λy2)
.

The relation to this integral is given as follows. Consider

I+ (a, b) =

∫ b

a

dx
√

R4(x)
or I− (a, b) =

∫ b

a

dx
√

−R4(x)

with

R4(x) = (x− x1) (x− x2) (x− x3) (x− x4) ,

x1 < x2 < x3 < x4 and a b ∈ {x1, x2, x3, x4}. By appropriate changes of variables one
obtains

I− (x1, x2) = I− (x3, x4) =
2

√

(x4 − x2) (x3 − x1)
K(λ),

I+ (x2, x3) =
2

√

(x4 − x2) (x3 − x1)
K(1 − λ),

with

λ =
(x2 − x1) (x4 − x3)

(x4 − x2) (x3 − x1)
.

Let us discuss the remaining terms in equation (7.0.4). Laporta and Remiddi obtain

Ψ
(0)
1 =

√
3

12

∫ 1

0
du

∫ (
√
u−1)2

0

dx
√

−R4(u, x)
and Ψ

(0)
2 = 0.
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They furthermore obtain the identity

(7.0.7)

∫ 1

0
du

∫ (
√
u−1)2

0

dx
√

−R4(u, x)
= −1

2

∫ 1

0

dx
√

x(4 − x)
lnx.

The integral of equation (7.0.7) is clearly a period as on the left-hand side the integrand

is an algebraic function and the domain of integration is a semi-algebraic set. Hence Ψ
(0)
1

is a period.
The above solution for S(0) (2, z) furthermore contains integrals

∫ z
0 dwΨi(w), i = 1, 2,

which take the form
∫ z

0
du

∫ b(u)

a(u)

dx
√

R4(u, x)
or

∫ z

0
du

∫ b(u)

a(u)

dx
√

−R4(u, x)
.

We can of course write
∫ z

0
du

∫ b(u)

a(u)

dx
√

±R4(u, x)
=

∫

G
du dx

1
√

±R4(u, x)

with G = {(u, x) | a(u) ≤ x ≤ b(u); 0 ≤ u ≤ z}. As Laporta and Remiddi consider each of
the solutions in its region of absolute convergence and as a(u) and b(u) are either algebraic
constants of algebraic functions of u, the integrals are periods if they are evaluated at
algebraic z. So we can conclude, that S(0) (2, z) is a period for algebraic values of z in
the whole range −∞ < z <∞.

The elliptic integral of the first kind was as well applied to two-loop sunrise graphs
by Groote and Pivovarov in reference [GP00]. Furthermore, as we mentioned above, for
the three-loop and four-loop case Laporta presents analytical results in terms of further
elliptic integrals in reference [Lap08]. Aluffi and Marcolli consider sunrise graphs in
reference [AM08b] in the context of motives.



Appendix C: Periods and Prefactors of Feynman Integrals

With corollary 69 of chapter 6, we have applied our main theorem 68 to the general
Feynman integral IG of equation (6.2.26). This integral differs from what the literature
very often considers as a Feynman integral by a general prefactor. Let us see whether this
factor affects the statement of corollary 69.

In the momentum representation the integral IG of equation (6.2.26) reads

IG =

∏N
j=1 Γ (νj)

Γ (ν − LD/2)

(
µ2
)ν−LD/2

∫ L∏

r=1

dDk

iπD/2

N∏

j=1

1
(

−q2j +m2
j

)νj

where the dependence on D, masses and kinematical invariants is understood and where
the kj are loop-momenta and the qj are linear combinations of loop-momenta and external
momenta. We may take this form as the definition of a generic Feynman integral, but
the more common form in practical applications is

ĨG = g2L

(
eγE

4π

)Lǫ
(
µ2
)ν−LD/2

∫ L∏

r=1

dDk

(2π)D

N∏

j=1

1
(

q2j +m2
j

)νj
.

We included a physical coupling factor g2 and a factor eγE/4π which is conveniently used
in calculations in the so-called MS-renormalization-scheme1 [BBDM78]. Both factors

appear to the power L which is the loop-number. By the comparison of IGand ĨG,

ĨG = KGIG,

we obtain the relative prefactor

KG = g2L(−1)νin+L(4π)−LD/2
(
eγE

4π

)Lǫ Γ (ν − LD/2)
∏N
j=1 Γ (νj)

.

Corollary 69 applies to ĨG, if the Laurent coefficients of KG are periods. Let us briefly
observe whether this is the case, keeping in mind that according to conjectures mentioned
above, the numbers 1/π and γE do not belong to the set of periods.

With D = 2m− 2ǫ with some m ∈ Z let us write

KG = KG1KG2KG3

with

KG1 =
(−1)νin+L

∏N
j=1 Γ (νj)

,

KG2 = eLγEǫΓ (ν − Lm+ Lǫ) ,

KG3 =

(
g2

(4π)m

)L

1MS stands for modified minimal subtraction.
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and let us discuss the three factors separately.
Because of νj ∈ N for all j = 1, ..., N we have Γ (νj) = (νj − 1)! and therefore KG1

is a complex number whose real and imaginary part are rational numbers. Hence KG1 is
clearly a period.

KG2 can be trivially rewritten as

KG2 = eLγEǫΓ (1 + Lǫ)
Γ (ν − Lm+ Lǫ)

Γ (1 + Lǫ)

and we observe by use of the functional equation Γ (x+ 1) = xΓ (x) that the term

Γ (ν − Lm+ Lǫ)

Γ (1 + Lǫ)

is a rational function in ǫ with rational coefficients and therefore its Laurent-coefficients
are periods. We furthermore use the expansion

Γ (1 + ǫ) = exp

(

−γEǫ+
∞∑

n=2

(−1)n

n
ζ(n)ǫn

)

to obtain

eLγEǫΓ (1 + Lǫ) = exp

( ∞∑

n=2

(−L)n

n
ζ(n)ǫn

)

.

Note that the γE-terms exactly cancel each other. By Taylor-expansion of the exponential
function on the right-hand side we obtain powers of zeta-values with rational prefactors
as coefficients of ǫn. These terms are periods, as we know from our above treatment, so
the Laurent coefficients of KG2 are periods.

The remaining term KG3 =
(
g2/ (4π)m

)L
is just a simple constant. We want to briefly

comment on the presence 1/π, which is assumed not to be a period:

• In the physics literature it is common practice to consider results of perturbative

calculations as series expanded in g2

(4π)m . For D = 4− 2ǫ and α = g2

(4π)a quantity

σ to be calculated is often expressed as

σ = σ0

(

1 +
α

4π
c1 +

( α

4π

)2
c2 + ...

)

such that the powers of g2

(4π)2
are explicitely factored out. Then powers of 1/π

are not contained in the coefficients c1, c2, ... Therefore, under the assumptions
of corollary 69, the contributions of Laurent coefficients of the integral ĨG to
these c1, c2, ... are periods.

• Kontsevich and Zagier point out in that it makes sense for many purposes to
consider the extended period ring P̂ = P [π] which is the set of polynomials in
1/π with coefficients in P. The extension is convenient in geometrical contexts
(see chapter 4 of [KZ]). We see that under the assumptions of corollary 69 (and
for g2 assumed to be an algebraic number) the Laurent coefficients of the integral

ĨG are members of the extended period ring P̂ .



Bibliography

[A+08] G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 S08003

(2008).
[AB04] U. Aglietti and R. Bonciani, Master integrals with 2 and 3 massive propagators for the 2-loop

electroweak form factor - planar case, Nucl. Phys. B698 (2004), 277–318.
[AL04] C. Anastasiou and A. Lazopoulos, Automatic Integral Reduction for Higher Order Perturba-

tive Calculations, JHEP 0407:046 (2004).
[Alm67] B. Almgren, Arkiv för Fysik 38 (1967), 161.
[AM08a] P. Aluffi and M. Marcolli, Algebro-geometric Feynman rules, hep-th/0811.2514.
[AM08b] , Feynman motives of banana graphs, hep-th/0807.1690.
[AM09a] , Feynman Motives and Deletion-Contraction Relations, math-ph/0907.3225.
[AM09b] , Parametric Feynman integrals and determinant hypersurfaces, math-AG/0901.2107.
[And89] Y. André, G-Functions and Geometry, Aspects of Mathematics, no. 13, Vieweg, Braun-

schweig, 1989.
[And08] , An introduction to motivic zeta functions of motives, math.AG/0812.3920.
[Ape79] R. Apery, Irrationalité de ζ(2) et ζ(3), Astérisque 61 (1979), 11–13.
[Ash72] J. F. Ashmore, A Method of Gauge Invariant Regularization, Nuovo Cimento Lett. 4 (1972),

289–290.
[Ati70] M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure

Appl. Math. 23 (1970), 145–150.
[Bai96] P. A. Baikov, Explicit solutions of the 3-loop vacuum integral recurrence relations, Phys. Lett.

B385 (1996), hep-ph/9603267.
[BB03a] P. Belkale and P. Brosnan, Matroids, motives and a conjecture of Kontsevich, Duke

Math. Journal 116 (2003), 147–188.
[BB03b] , Periods and Igusa local zeta functions, International Mathematics Research Notices

2003 (2003), no. 49, 2655–2670.
[BBBL01] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisonek, Special values of Multidi-

mensional Polylogarithms, Trans. Amer. Math. Soc. 353 (2001), no. 3, 907–941.
[BBDM78] W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Deep-inelastic scattering beyond

leading order in asymptotically free gauge theories, Phys. Rev. D18 (1978), 3998.
[BBK09] C. Bergbauer, R. Brunetti, and D. Kreimer, Renormalization and Resolution of Singularities,

hep-th/0908.0633.
[BBV09] J. Blümlein, D. J. Broadhurst, and J. A. M. Vermaseren, The Multiple Zeta Value Data Mine,

math-ph/0907.2557.
[BDJ01] M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and Electroweak Interaction,

Teubner, 2001.
[BDK94] Z. Bern, L. Dixon, and D. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.

B412 (1994), 751.
[BEK06] S. Bloch, E. Esnault, and D. Kreimer, On motives associated to graph polynomials, Com-

mun. Math. Phys. 267 (2006), 181–225.
[BFGS09] R. Bonciani, A. Ferroglia, T. Gehrmann, and C. Studerus, Two-Loop Planar Corrections to

Heavy-Quark Pair Production in the quark-antiquark channel, hep-ph/0906.3671.
[BFK02] C. Bauer, A. Frink, and R. Kreckel, Introduction to the GiNaC Framework for Symbolic

Computation within the C++ Programming Language, J. Symbolic Computation 33 (2002),
1, cs.sc/0004015.

[BG69] I. N. Bernstein and S. I. Gelfand, Meromorphy of the function pλ, Funkcional Anal. i Prilov
zen 3 (1969), no. 1, 84–85.

[BG72] C. G. Bollini and J. J. Giambiagi, Lowest order divergent graphs in ν-dimensional space,
Phys. Lett. B40 (1972), 566–568.

149



150 BIBLIOGRAPHY

[BGM04] T. G. Birthwright, E. W. N. Glover, and P. Marquard, Master Integrals For Master Two-Loop
Vertex Diagrams With Three Offshell Legs, JHEP 0409:042 (2004).

[BH00] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop
integrals, Nucl. Phys. B585 (2000), 741, hep-ph/0004013.

[BH04] , Numerical evaluation of multi-loop integrals by sector decomposition, Nucl. Phys.
B680 (2004), 375, hep-ph/0305234.

[Bie05] I. Bierenbaum, The Massless Two-loop Two-point Function and Zeta Functions in Countert-
erms of Feynman Diagrams, Ph.D. thesis, Johannes-Gutenberg Universität Mainz, 2005.

[BK95] D. Broadhurst and D. Kreimer, Knots and Numbers in φ4-Theory to 7 Loops and Beyond,
Int. J. Mod. Phys. C6 (1995), 519–524.

[BK97] , Association of multiple zeta values with positive knots via Feynman integrals up to
9 loops, Phys. Lett. B 393 (1997), 403–412.

[Blo07] S. Bloch, Motives associated to graphs, Japan. J. Math. 2 (2007), 165–196.
[Bol98] B. Bollobás, Modern Graph Theory, Springer, 1998.
[Bom] E. Bombieri, The Riemann Hypothesis,

http://www.claymath.org/millennium/Riemann_Hypothesis/.
[BP57] N. N. Bogoliubov and O. S. Parasiuk, On the multiplication of the causal function in the

quantum theory of fields, Acta Math. 97 (1957), 227–266.
[Bro09] F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287 (2009),

925–958, math.AG/0804.1660.
[BW03] I. Bierenbaum and S. Weinzierl, The massless two-loop two-point function, Eur. Phys. J. C32

(2003), 67, hep-ph/0308311.
[BW08] C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals, Com-

put. Phys. Commun. 178 (2008), 596, hep-ph/0709.4092.
[BW09] , Periods and Feynman integrals, J. Math. Phys. 50 (2009), 042302, hep-th/0711.4863.
[CCLR98] M. Caffo, H. Czyz, S. Laporta, and E. Remiddi, The Master Differential Equations for the

2-loop Sunrise Selfmass Amplitudes, Nuovo Cim. A111 (1998), 365.
[Cha82] S. Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM

J. Alg. Disc. Meth. 3 (1982), 319–329.
[Che77] T. K. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831.
[Che82] W. K. Chen, Applied graph theory, graphs and electrical networks, North Holland, 1982.
[CM72] G. M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension,

Nuovo Cimento Lett. 4 (1972), 329–332.
[CM08] A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives, Col-

loquium Publications, vol. 55, American Mathematical Society, 2008.
[Col84] J. Collins, Renormalization, Cambridge University Press, 1984.
[CT81] K. G. Chetyrkin and F. T. Tkatchov, Integration by parts: The algorithm to calculate β-

functions in 4 loops, Nucl. Phys. B192 (1981), 159.
[Dan94] V. I. Danilov, Algebraic Varieties and Schemes, Encyclopedia of Mathematical Sciences,

vol. 23, Springer, 1994.
[Den93] A. Denner, Techniques for the Calculation of Electroweak Radiative Corrections at the One-

Loop Level and Results for W-physics at LEP 200, Fortschr. Phys. 41 (1993), no. 4, 307–420.
[Die05] R. Diestel, Graph Theory, Springer, 2005.
[DNS91] A. Denner, U. Nierste, and R. Scharf, A compact expression for the scalar one-loop four-point

function, Nucl. Phys. B367 (1991), 637.
[Dod66] C. L. Dodgson, Condensation of Determinants, Proc. Roy. Soc. London 15 (1866), 150–155.
[DR96] A. Denner and M. Roth, High-energy approximation of one-loop Feynman integrals,

Nucl. Phys. B 479 (1996), 495–514.
[DS01] I. V. Dolgachev and A. P. Shirokov, Affine Space, Kluwer Academic Publishers, 2001.
[E+08] L. Evans et al., LHC Machine, JINST 3 S08001 (2008).
[EH02] S. Encinas and H. Hauser, Strong resolution of singularities in characteristic zero, Com-

ment. Math. Helv. 77 (2002), 821–845.
[EMM08a] J. Ellis-Monaghan and C. Merino, Graph polynomials and their applications I: The Tutte

polynomial, math.CO/0803.3079.
[EMM08b] , Graph polynomials and their applications II: Interrelations and interpretations,

math.CO/0806.4699.
[Eul68] L. Euler, Institutiones Calculi Integralis, 1768.



BIBLIOGRAPHY 151

[Fri05] B. Friedrich, Periods and Algebraic deRham Cohomology, Diploma Thesis, Universität Leipzig
(2005).
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