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Abstract

This thesis describes experiments which investigate ultracold atom ensembles in an
optical lattice. Such quantum gases are powerful models for solid state physics. Sev-
eral novel methods are demonstrated that probe the special properties of strongly
correlated states in lattice potentials. Of these, quantum noise spectroscopy reveals
spatial correlations in such states, which are hidden when using the usual methods of
probing atomic gases. Another spectroscopic technique makes it possible to demon-
strate the existence of a shell structure of regions with constant densities. Such co-
existing phases separated by sharp boundaries had been theoretically predicted for
the Mott insulating state. The tunneling processes in the optical lattice in the strongly
correlated regime are probed by preparing the ensemble in an optical superlattice
potential. This allows the time-resolved observation of the tunneling dynamics, and
makes it possible to directly identify correlated tunneling processes.

Zusammenfassung

In dieser Arbeit werden Experimente vorgestellt, in denen die Eigenschaften eines
ultrakalten atomaren Gases in einem optischen Gitterpotential untersucht werden.
Solche Quantengase sind sehr vielseitige Modellsysteme für Phänomene der Festkör-
perphysik. Um die besonderen Eigenschaften stark korrelierter Zustände in optischen
Gittern zu untersuchen, werden neuartige Methoden realisiert, die in dieser Form
erstmalig zum Einsatz kommen. So erlaubt es die Spektroskopie des Quantenrau-
schens in atomaren Ensembles erstmals, die Korrelationen in der räumlichen Dichte
eines solchen Zustands sichtbar zu machen. Mittels einer anderen spektroskopischen
Technik gelingt es ausserdem, die Existenz getrennter Phasen konstanter Dichte, die
sogenannte Schalenstruktur des Mott Isolators, direkt nachzuweisen. Die komple-
xe Dynamik von Tunnelprozessen im optischen Gitter im stark korrelierten Regime
wird durch Einsatz eines optischen Übergitters untersucht. Dadurch ist es möglich,
die Tunneldynamik zeitaufgelöst zu erfassen und korrelierte Tunnelprozesse direkt
zu beobachten.
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1 Introduction

Ultracold quantum gases – already enjoying much attention due to the spectacular
experimental progress made in recent years – are now increasingly becoming a pop-
ular topic of condensed matter physics. One important contribution to this surge
in interest was the proposal [1] and subsequent realization [2] of the idea that such
gases can be used to almost perfectly implement the Hubbard model. This funda-
mental model was developed in condensed matter physics to describe the behavior
of interacting electrons [3] or bosonic particles (Bose-Hubbard model, [4]) in a crystal
lattice. In the cold atom implementation of the model, this is realized by subjecting
the ultracold atoms to a crystal potential created by laser light.

The strong interest in such systems does not just originate from the geometrical
resemblance of the configuration with real crystal lattices. More importantly, they
provide a an almost idealized realization of a system in a regime that is notoriously
hard to handle theoretically. This regime is characterized by the fact that interactions
within the ensemble lead to strong particle-particle correlations. In this respect, these
new experiments differ strongly from most earlier ultracold atom experiments in the
regime of weakly interacting gases, which focused on single-particle coherence ef-
fects. This new aspect poses new challenges for the way these ensembles are probed
and analyzed, and novel methods developed to address this are the focus of this the-
sis.

Regarding ultracold or degenerate quantum gases as model implementations for
other systems started already before the application to strongly correlated systems.
In fact, experiments with such gases were seen as analogs to the physics of quantum
systems from some very different fields almost since their first realization. One reason
for this is that the description of the particles can be reduced to a few key properties
at the ultra-low energy scales involved. These properties then completely define the
behavior of the entire system.

The initial experiments on degenerate bosonic ensembles focused on the macro-
scopic wave nature of the Bose-Einstein condensate (BEC) [5, 6]. In a BEC, many par-
ticles – up to several million – occupy the same quantum state if interactions between
them are sufficiently weak. Among these experiments are the atom optics equiva-
lents of optical wave phenomena such as double slit interference [7]. Similarly, atom
lasers [8–11] were realized with matter waves. In analogy to the macroscopic wave
functions present in superfluids and superconductors, quantized vortices and vortex
lattices [12–15] and Josephson junction physics [16, 17] were demonstrated.

Eventually, and as a major step forward for the role as a model system, the sin-
gle particle wave function paradigm was left toward the regime of strong particle-

1



1 Introduction

particle correlations in a wide range of implementations [18]. One way of achiev-
ing this is by increasing the interaction strength [19–21], until the weakly interact-
ing regime is left. For bosons, however, this approach is typically limited by strong
collisional losses. More recently, this method has enabled spectacular progress with
strongly interacting Fermi gases [22–26], which can then exhibit close analogies to the
interacting electron gases in metals and semiconductors.

The connection between solid state physics and ultracold atom phenomena was
started much earlier, almost as soon as light fields were used for cooling of atoms:
Band structure calculations for atoms in standing light waves explained unexpected
characteristics of laser cooling in these systems [27] and crystal-like ordering of the
atoms could be observed [28, 29]. The first dynamical phenomena with direct analogs
in solid state physics, Bloch oscillations and Wannier-Stark ladders, were observed
with cold atoms in optical potentials created by standing waves [30, 31].

Due to the narrow energy band structure arising in periodic optical potentials, the
kinetic energy scales are strongly reduced. At the same time, the interactions increase
due to the confinement provided. Therefore, optical lattices also provide a method of
reaching a regime in which interaction effects dominate the ensemble behavior. By
using a single one-dimensional lattice potential, such an increase of the interaction
strength was used to observe effects of particle number squeezing in lattice sites [32].
Finally, inside a three-dimensional, crystal-like optical lattice potential, the strength
of interactions in a degenerate gas can become much stronger than the kinetic ener-
gies. In this case the macroscopic occupation of the single particle ground state is
completely lifted, leading to the Mott insulating regime for bosons [2].

Since this first novel quantum state, an ever-increasing variety of phases with widely
varying properties and increasing complexity has been realized with atoms in pe-
riodic potentials. Among those are 1D and 2D Mott phases [33, 34], the Tonks-
Girardeau gas [35, 36], band insulators for fermions [37] as well as strongly paired
fermions in lattice potentials [38].

Most of these experiments used the same measurement schemes as introduced for
probing weakly interacting gases. The most important tool is the ballistic expansion
out of the trap followed by imaging the resulting density distribution. It was devel-
oped for probing the in-trap momentum distribution and the coherence properties
of the ensemble. In the strongly correlated regime, however, these typically contain
little information as there is usually no macroscopic single-particle phase relation and
all momentum states have identical populations. In fact, one popular indicator used
to identify the strongly correlated regime is actually the loss of coherence effects.

Other strategies were adapted from experimental solid-state physics such as the
probing of excitation spectra by applying static or modulated external fields [2, 33].
These methods need to be modified to be applicable to ultracold atom ensembles due
to the specifics of most of todays implementations. Coupling to reservoirs, for exam-
ple, is usually not possible with atom ensembles. Typical schemes from condensed
matter experiments such as steady-state transport measurements can therefore not be
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implemented in the same way as for traditional solid state systems.

Recently, new methods of probing strongly correlated quantum gases were pro-
posed and applied. They specifically address the special properties of these systems
as opposed to those of weakly interacting quantum gases. In addition, they take ad-
vantage of experimental possibilities that do not exist for condensed matter systems.
In this way, they can provide information about the many-body state which is not
readily available for typical condensed matter systems. The methods demonstrated
in this thesis, which will be outlined in the following, range from probing the macro-
scopic structure of the quantum gas within the trap – its overall density distribution –
to the determination of the microscopic properties: The statistics, tunneling dynamics
and the interaction properties of atoms inside the lattice potential.

Probing the Mott insulator shell structure The bosonic Mott insulator is still the
benchmark system for ultracold atoms in optical lattices. The defining thermody-
namical property of this quantum state is its lack of conductivity and compressibility
due to a gap in the excitation spectrum [4]. One important consequence of this was
already pointed out in the theoretical proposal which discussed its creation using
BEC in optical lattices [1]: Due to the incompressibility, a spatially extended Mott
phase has to be constant in density, regardless of the shape of any external potential.
It can only exist at densities corresponding to integer occupation numbers of the lat-
tice sites. In the inhomogeneous, parabolic confinement of the trap used to hold the
atoms, it was predicted that a shell structure would develop. It consists of concentric,
spherical shells with integer site occupation which are separated by thin spherical
layers in the superfluid phase. This very special structure of the local density, how-
ever, has eluded direct observation for a long time. Experiments on Mott insulators so
far have typically probed global properties such as excitation spectra or the average
single-particle coherence in close analogy to condensed matter and BEC experiments,
respectively.

Here, the detection of the shell structure is demonstrated by using the special in-
teraction properties of atoms in the lattice in combination with a non-optical imaging
technique similar to nuclear magnetic resonance imaging (NMRI). For this, the areas
of different occupation numbers are distinguished by using number-state selective
collisional interactions which change the internal spin of the atoms. This can be done
either globally, or the number-state distribution in different parts of the cloud can be
determined locally. With the local probing, the separation of the ensemble into the
individual shells becomes visible. As this shell structure is very sensitive to thermal
excitations, it is also possible to give upper limits on the temperature of the quantum
gas within the lattice. This important parameter is very hard to access experimentally
in the very low temperature regime.

3



1 Introduction

Atom-atom correlations for probing complex quantum states In the strongly
correlated regime of a 3D lattice, the underlying spatial structure – the fact that the
atoms are confined to the periodic pattern created by the lattice sites – is “invisible”
in the momentum distribution of the ensemble. Once the tunneling of atoms between
lattice sites is suppressed such as in the bosonic Mott insulating state, no phase coher-
ence exists between the lattice sites. In this case, all individual atoms independently
leave the trap during the ballistic expansion and no interference occurs. The observed
overall momentum distribution is merely determined by the wave function of a single
atom in a well, without any information about the spatial structure of the gas. Sim-
ilarly, in a fermionic band insulator all quasimomentum states are evenly occupied,
resulting in a structureless momentum distribution.

The quantum statistics of indistinguishable particles provides a remarkable way to
gain information about in-trap correlations even in this case. Due to these statistics,
even atoms emitted independently from separate sources can exhibit correlations on
detection, which was first described in the form of Hanbury Brown-Twiss correlations
for bosons [39]. Information about the spatial correlations of the gas inside the trap
can thus be extracted by analyzing statistical correlations between individual atoms
after their release and ballistic expansion.

This is demonstrated by extracting the spatial correlations of the fundamental lat-
tice structure from the quantum noise of the expanded distribution, in an approach
motivated by recent theoretical proposals [40]. In the same way, the detection of
states with density correlations which differ from those of the basic lattice structure is
shown. This demonstrates that the noise correlation analysis provides a tool for prob-
ing more complex many-body states such as for example Néel-ordered phases [41],
whose in-trap structure is not reflected at all in the averaged momentum distribution.

Dynamics and interactions in superlattices One new ability offered by optical
lattices as opposed to solid state crystals is the possibility to dynamically change the
lattice properties. The depth of the potential, for example, can usually be changed
very easily for optical lattices. By combining potentials with different periodicities,
even the implementation of lattices with dynamically variable structure and symme-
try is possible. This was used to efficiently control and prepare atoms in an array of
double well potentials in the strongly interacting regime. These double wells can be
seen as microscopic lattices with only two sites, for which it is possible – again by
exploiting the ability to dynamically change the lattice structure – to directly observe
the underlying microscopic tunneling and interaction processes which govern the full
many-body system.

For individual or weakly interacting atoms, the tunnel motion can be directly ob-
served. In the strongly correlated regime, which is characterized by the suppression
of tunneling of individual atoms, higher-order tunneling processes become the dom-
inant dynamical effects. The direct observation of these processes in the two-well
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“lattice” with high accuracy is demonstrated. Higher-order tunnel couplings are an
important aspect of strongly correlated systems in optical lattices, as they create ef-
fective interactions between lattice sites, which in turn define the spin ground state
of the ensemble.

Outline

This thesis is organized as follows: Chapter 2 gives a short overview of the descrip-
tion and properties of cold atoms in optical lattice potentials. Chapter 3 introduces
the experimental setup as well as basic experiments and methods employed through-
out this thesis. Chapter 4 is centered on the analysis of the global shell structure of
the Mott insulator, and on probing the quantum many-body state inside the lattice
using atom-atom correlations is described in chapter 5. In chapter 6, the control and
direct observation of tunnel processes in optical lattices with the help of a double well
potential is shown. Chapter 7 concludes the thesis and gives an outlook on possible
further experiments and applications of the techniques described in this work.
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2 Ultracold atoms in optical lattice potentials

The experiments described in this thesis focus on the properties of several specific
quantum phases of ultracold atom ensembles, and on methods to probe them exper-
imentally. These states are governed by three fundamental properties of the atoms.
They are indistinguishable, obey bosonic quantum statistics, and they interact only
via a repulsive contact interaction. As an additional requirement the temperature has
to be low compared to all other relevant energy scales.

The three most important quantum states for the experiments described are the
Bose-Einstein condensate (BEC) in the pure harmonic trap as well as in the deep lat-
tice potential (“superfluid state”), and the bosonic Mott insulator. They have in com-
mon that the temperature in each case has to be lower than the defining energy scales
of the state. Transitions between these regimes are induced by changing the shape of
the trapping potential, as this influences the mobility and the interaction strength of
the particles.

The first of these states, the Bose-Einstein condensate, is also the starting point for
all experiments shown. It occurs for three-dimensionally confined bosons when they
condense into the lowest quantum state of the trap below a critical temperature Tc.
The weak repulsive interactions between the atoms then govern the shape of this
quantum state within the trap, leading to the density distribution depicted in figure
2.1a.

In a typical periodic lattice potential, the atoms are no longer confined by a single
trapping potential, but the potential now has a substructure of many minima sepa-
rated by barriers as shown in figure 2.1b. These barriers are so high that atoms can
only travel between the wells by tunneling. If this tunnel mobility is high enough,
then this ensemble is still a BEC. All atoms are condensed into the lowest quantum
state of this configuration, which locally is given by the lowest energy bound state of
each well. Globally, the lowest single-particle state spreads over many of the wells
which are connected by tunneling. The density distribution of this superfluid phase
is again the result of the balance between the confining potential and the repulsive
interaction between the atoms.

The fact that the atoms are fully delocalized means that locally, only the expecta-
tion value of the atom number is defined for each site, around which the measured
value fluctuates. If the repulsive interaction is very large or the tunnel coupling very
small, the tunneling process of an individual atom to a neighboring site competes
with the repulsive interaction between the atoms on the sites. This interaction leads
to a suppression of the density fluctuations for the ensemble and a reduction of the
condensed fraction. Eventually the system evolves to a locally constant density dis-
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Figure 2.1: Three phases of interacting bosons at zero temperature in different potentials
(black lines in top graphs). In (a), the confinement is purely parabolic. The single atom ground
state is indicated in red. Interactions deform this wave function to the Thomas-Fermi (TF)
distribution (blue line and surface plot). In (b), a periodic modulation generates an array of
wells, with all well ground states connected by tunneling to one large wave function, into
which all atoms are condensed. The 3D plot shows the average density on each site for a 2D
array, which has the TF shape. For strong interactions (c), tunneling is suppressed, and the
atoms are localized to one well. Here, only discrete integer occupation numbers exist. This
leads to a density pattern consisting of concentric shells with constant density.

tribution with an integer number of atoms per site. At this point, the wave function
of each atom is localized to one of the lattice wells, and the ensemble no longer occu-
pies a single common quantum state. As the density is pinned to integer occupation
per site, the overall density increases in discrete steps even in a smooth confining po-
tential. In a spherical parabolic confinement, this leads to a structure of concentric
spherical density shells as shown in figure 2.1c.

To achieve these states in the experiment, a Bose-Einstein condensate (BEC) is first
prepared in a smooth parabolic potential. The trap is then converted into the periodic
lattice potential. By increasing the modulation depth, the system crosses the super-
fluid regime, and finally enters the Mott insulating regime for very low tunneling
rates. By doing the transformations of the potential slowly to reach adiabaticity, the
new trap configuration is obtained with an ensemble as close to the ground state as
possible.

In the following, an introduction to the physics of each of the regimes is given. This
will include the essentials of Bose-Einstein condensates of weakly interacting atomic
gases as well as the creation of optical lattice potentials and provide an introduction
to the quantum mechanics of particles in such potentials. The most relevant proper-
ties of the superfluid and the Mott insulating state will be introduced and the effect of
finite temperatures will be discussed. Much more detailed descriptions are available
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2.1 Bose-Einstein condensates with repulsive interactions

in the literature, and many publications exist which are dedicated to specific aspects
of these systems. For an overview, a number of monographs and review papers de-
scribe some of these aspects and provide detailed references [18, 42–48].

2.1 Bose-Einstein condensates with repulsive interactions

The Bose-Einstein condensation of atoms is based on the statistical properties of in-
distinguishable bosonic particles. It was predicted by A. Einstein in 1925 [49] for
noninteracting gases, expanding ideas by S. N. Bose on the statistical properties of
photons [50]. The first realization for a dilute gas of atoms succeeded in 1995 [5, 6].

The onset of this condensation when cooling a gas of bosonic atoms can be de-
scribed as taking place when the phase space density becomes so high that the wave
functions of the individual particles start to overlap [43]. For non-interacting particles
confined in space by an external potential, a consequence is the macroscopic occupa-
tion of the lowest quantum state of the system. At temperature T = 0, all particles
are in this state, representing a pure BEC.

As all atoms in the condensate are known to occupy the lowest quantum state, the
whole ensemble can be described in terms of a macroscopic wave function:

Ψ(x) =
√

NΨ0(x)

where Ψ0 is the single-particle ground state wave function. The macroscopic wave
function is therefore normalized to the number of atoms. It is sometimes described
as an order parameter determining the local density and phase of particles in the
condensed state [51].

The interactions present in typical Bose Einstein condensates are typically domi-
nated by direct elastic atom-atom scattering processes. In the most general case these
scattering properties are very complicated and highly dependent on the collisional
energy. Using quantum mechanical scattering theory, they can in principle be calcu-
lated from the interatomic interaction potentials. For realistic atoms, however, this
is usually not possible and also not necessarily useful due to the complexity of the
description.

Because only very low energies are present in ultracold quantum gases, luckily
the situation is considerably simplified: In most cases only the lowest energy s-wave
scattering channel has to be taken into account. When the collision energy approaches
zero, it can be shown that scattering is isotropic, energy-independent and character-
ized by a single parameter, the s-wave scattering length as. Therefore, the details of
the molecular potential can be neglected and the many-body description greatly sim-
plified by replacing the true interatomic potential by a much simpler model potential
with the same scattering length. Often these are then treated as a contact interaction
of the form

Vatom−atom(x) =
4πh̄2as

m
· δ(x) = g · δ(x).
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2 Ultracold atoms in optical lattice potentials

Here, m is the mass of the atoms, and x their relative position. The interaction is fully
characterized by the effective scattering length as, or, alternatively, the interaction
constant g [52, 53]. For 87Rb, as ≈ 100aB, with aB = 0.053 nm denoting the Bohr
radius.

In a gas of many atoms, this potential gives rise to an interaction energy term in the
hamiltonian. In the typical regime where the interaction between individual particles
is small compared to their kinetic energy, the δ-function interaction of the sum of
all atoms can be “averaged” in a mean-field approximation. This results in a local
interaction potential experienced by each individual atom. The mean-field energy is
given by the density of atoms g · |Ψ(x)|2 at a given location x (see e.g. [43]). The
energy density due to this interaction is

Vint(x) = g · |Ψ(x)|4.

Including this term into the Schrödinger equation for the macroscopic wave func-
tion Ψ yields the Gross-Pitaevskii equation (GPE)

ih̄
∂

∂t
Ψ(x, t) =

(
− h̄2

2m
∇2 + Vext(x) + g|Ψ(x, t)|2

)
Ψ(x, t). (2.1)

The atom-atom interaction has been introduced as a mean field giving rise to an ef-
fective potential in addition to any external potential Vext being present [54, 55]. This
equation is a non-linear Schrödinger equation for the macroscopic wave function de-
scribing the common state of N particles. In the weakly interacting regime, this de-
scription of the condensate is very successful and can be applied to a wide range of
phenomena such as vortices [13, 56] or solitons [57, 58].

The atoms therefore no longer condense into the quantum mechanical single par-
ticle ground state of the external potential, but into a modified state which has to be
found by self-consistently solving the stationary GPE [59]

µΨ(x, t) =

(
− h̄2

2m
∇2 + Vext(x) + g|Ψ(x, t)|2

)
Ψ(x, t). (2.2)

The chemical potential µ fixes the overall atom number N and is determined by the
condition ∫

|Ψ(x)|2dx = N.

For smooth potentials, the stationary GPE can be solved easily when neglecting the
kinetic term compared to the overall interaction term. The solutions are then simply
given by the the balance between the external potential and the interactions due to
the local density

n(x) = |Ψ(x)|2 =

{
0 if Vext(x) ≥ µ
µ−Vext(x)

g if Vext(x) < µ.
(2.3)
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2.1 Bose-Einstein condensates with repulsive interactions

For most realistic potentials, this approximation only fails at the very boundaries of
the atom cloud. The resulting density distribution, shown in figure 2.1a, is often
called Thomas-Fermi distribution [59], as the approximations made correspond to
the approximations for fermions in atomic potentials [60, 61].

Another consequence of interactions is that it modifies the structure of the ground
state such that there is a finite probability for an atom to be in excited states even
at T = 0. This correction reduces the energy of the quantum mechanical ground
state compared to a product state with all atoms occupying the same wave function.
The reduction in the ground state occupation is referred to as quantum depletion
[62], as opposed to the thermal depletion of the condensate population which occurs
with an increase of the temperature. In the case of typical macroscopic condensates
in parabolic trapping potentials, the quantum depleted fraction of the population is
usually on the order of 0.01 and does not play a role in experiments [42, 63].

When interactions are increased, the quantum depletion increases. The assump-
tions made for the mean field averaging eventually break down. For the averag-
ing to work, it was assumed that the interaction between two individual particles is
low compared to the complete kinetic energy of the same atoms. We can estimate
εint ≈ gn and εkin ≈ h̄2/2ml2, with l ∼ n−1/3 the typical interparticle distance. This
yields the ratio

ζ =
εint

εkin
=

g · n
h̄2/m · n2/3

≈ 4πn1/3as � 1 (2.4)

In the opposite case εint � εkin the population of the lowest momentum state van-
ishes as all states become populated. The ratio ζ can be increased by enhancing the
interaction strength, for example by increasing the density or the scattering length a0
close to atomic Feshbach resonances [21, 64]. Unfortunately, this approach is strongly
affected by intrinsic loss mechanisms, which are also enhanced with both density
and scattering length. The most important of these is the three-body recombination,
in which three atoms collide to form a bound molecule of two atoms, leaving the third
unbound. The energy released by forming the bound state is converted to kinetic en-
ergy of the molecule and the third atom, and is typically high enough to remove both
from the trap. The rate of such recombinations is Γ3B ∝ K3n2, with a rate constant K3
which in turn scales as a4

s [65]. As the interaction energy only increases as as · n, the
three-body recombination will typically prevent the formation of a stable, strongly
interacting ensemble. Note that this is not necessarily the case for a two-component
ensemble of interacting fermionic particles. In this case, three-body collisions are ef-
fectively suppressed. This can be understood as a result of the Pauli blocking as two
of the particles involved are necessarily identical. Strongly interacting Fermi gases
can therefore be extremely long-lived.

For the correlated Bose gases discussed in this thesis, the strongly interacting regime
is reached without changing the scattering length. Instead, the introduction of an op-
tical lattice potential drastically quenches the kinetic energy εkin by restricting the
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2 Ultracold atoms in optical lattice potentials

atomic motion to narrow energy bands, and also enhances the interaction by increas-
ing the local density within the potential minima. At the typical low average occu-
pation numbers per site (1 to 3), the probabilities for inelastic losses are nonetheless
suppressed, and three-body losses vanish completely in the insulating state for n < 3
[66]. The typical lifetime of the atoms in the lattice is on the order of several seconds
even for sites with three atoms, and is usually limited only by rest gas collisions and
spontaneous light scattering for lower occupation numbers.

2.2 Optical lattice potentials

The optical lattice potentials used throughout this thesis are three-dimensional peri-
odic potential landscapes. They are implemented using far detuned light fields which
produce conservative dipole potentials, allowing to create potentials with the desired
crystal-like structure [67].

2.2.1 Dipole potentials

Optical dipole potentials in general offer a powerful way of realizing trapping poten-
tials for atoms. One big advantage of this method is the fact that the trap geometry
is directly given by the spatial light pattern used, which allows for the generation
of almost arbitrary potential shapes. In addition, in many cases the resulting poten-
tial is independent of the atoms hyperfine state. This can allow for the simultaneous
trapping of multiple spin states in the same potential.

The optical potentials for atoms are caused by the light-induced electric dipole mo-
ment of the atom. It oscillates at a fixed phase to the light wave and experiences an
energy shift due to the interaction of the dipole with the electric field of the light.
The effect can be described both in terms of classical electromagnetic dipoles and as
quantized atom-photon interactions [68, 69].

The induced dipole d = α(ω) in the electric field E gives rise to an energy

Edip(t) = −d ·E = −Re(α(ω))E2(t) (2.5)

where α(ω) denotes the complex polarizability at the frequency ω. In the time-
average, the potential resulting from a light intensity I is

Vdip = −Re(α(ω))E2
0(t) = − 1

2ε0c
Re(α(ω))I. (2.6)

Due to the induced oscillating electric dipole, the atoms can also emit radiation.
The rate at which photons are scattered out of the light field is given by the imaginary
part of the polarizability in a similar way as the dipole potential itself:

Γscat(ω) = − 1
h̄ε0c

Im(α(ω))I (2.7)
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2.2 Optical lattice potentials

Assuming that only one optical transition of frequency ω0 of the atom has to be
taken into account, the polarizability for the two-level system can for example be
calculated assuming a classical dipole oscillator with damping rate Γ as

α(ω) =
6πε0c3

ω2
0
× Γ

ω2
0 −ω2 − i(ω3/ω2

0)Γ
, (2.8)

where Γ is the decay rate of the excited level [68]. Entering this into eqs. 2.6 and 2.7
and approximating for a large detuning ∆ = ω−ω0, we obtain

Vdip = 3πc2

2ω3
0
× Γ

∆ I (2.9)

Γscat = 3πc2

2h̄ω3
0
× Γ2

∆2 I (2.10)

The scattering of photons has to be avoided, as the energy transferred by scattering
a single photon is much larger than the average thermal energy. Therefore, the rate
must be low enough that each atom emits on average much less than one photon
during the experiment. As the scattering rate scales as ∆−2, whereas the potential
depth Vdip scales as ∆−1, this rate can be decreased for a given constant potential
depth by increasing both the detuning ∆ and the intensity I. The sign of the dipole

a b c

V V

Figure 2.2: Optical dipole potentials: Light which is red detuned to the resonance of the
atoms, creates an attractive potential V (a). Blue detuned light leads to a repulsive potential
(b). By retro reflecting the light beam, an optical standing wave is formed, which creates a
sinusoidal modulation of the potential along the axis of the beams (c).

potential Udip depends only on the sign of the detuning ∆. If the light field has a
negative detuning towards the resonance (red detuning), the potential is attractive
and proportional to the light intensity as depicted in figure 2.2a. For ∆ > 0, the light
creates a repulsive potential (Fig. 2.2b).

For all experiments discussed in this thesis the wavelength of the light is far de-
tuned (typically tens of nanometers) from all optical resonances of the 87Rb atom. As
a consequence, the spontaneous scattering of light can be neglected. The detuning
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2 Ultracold atoms in optical lattice potentials

is also large compared to the hyperfine splitting as well as the fine structure of the
atoms. Together with the fact that all light beams discussed are linearly polarized,
this results in potentials which can be treated as fully spin-insensitive.

2.2.2 Standing wave optical lattice

Periodic optical dipole potentials are often called optical lattices. The particular po-
tentials used in the context of this thesis are formed by retro-reflecting a beam of light
into itself. The resulting standing wave creates a potential which is sinusoidal with a
periodicity of alat = λlat/2, as depicted in figure 2.2c. For red detuned light, it forms
a series of potential minima with a flat “pancake” symmetry along the lattice beam.

Most lattice potentials discussed in the following have a simple cubic symmetry,
which means they are periodic along all coordinate axes of a cartesian reference
frame. For this, three independent standing waves are used to create three indepen-
dent and orthogonal periodic potentials along each of the main coordinate axes of the
trap. By choosing mutually orthogonal polarizations wherever possible and detun-
ing the lattice beams by at least 20 MHz from each other, cross-interference between
the beams vanishes in the time average. The resulting total potential is then simply
the sum of all three periodic potentials. Its geometry is such that the potential min-

x
z

y

ba

Figure 2.3: Optical lattices formed by orthogonal sinusoidal potentials. Counterpropagating
laser beams along the principal coordinate axes create standing waves, and overlapping two
(a) or three (b) of such potentials in a mutually orthogonal way creates a two-dimensional (a)
or three-dimensional (b) optical lattice. The resulting geometry of the potential minima is that
of a simple cubic crystal structure.

ima are aligned in a simple cubic lattice structure (figure 2.3). For most experiments,
the depth of the potential along each of these axes is chosen to be the same, result-
ing in a uniform tunnel coupling strength to neighboring sites. Tunneling between
sites which are not immediate neighbors along one of the lattice axes can usually be
neglected, as will be discussed shortly.
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2.3 Quantum mechanics of particles in periodic potentials

2.3 Quantum mechanics of particles in periodic potentials

The quantum mechanics of particles in periodic potentials has a number of remark-
able universal properties which are independent of the detailed shape of the poten-
tial. The most striking one is the energy spectrum of these systems, which typically
consists of energy bands separated by energy gaps. While this happens almost in-
dependently of the specific potential, the exact shape has to be taken into account in
order to determine the specific structure of these bands as well as the density of states
within them. These calculations are described in most condensed matter physics text-
books [70, 71], therefore in the following we will shortly discuss the results for the
specific band structure of 87Rb in a sinusoidal potential with cubic symmetry.

2.3.1 Band structure

Since the 3D potential consists of a sum of three independent sinusoidal standing
waves, the hamiltonian is separable into a sum of three independent one-dimensional
hamiltonians, which can be evaluated separately. The solutions for these potentials
with periodicity a are Bloch waves, which have the structure of a plane wave with
a quasimomentum |q| < π/a · h̄ multiplied with a function u which has the same
periodicity as the lattice potential (see e.g. [70, 71]):

φn
q (x) = eiqx/h̄ · un

q (x) (2.11)

For each quasimomentum q, many solutions are possible, which are identified by
their band index n.

The natural energy scale for phenomena in periodic potentials is proportional to
the kinetic energy of a particle with the maximum quasimomentum q = h̄π/a in free
space, for example after sudden removal of the potential. This energy is

Eqmax =
q2

max
2m

=
h2

2ma2 , (2.12)

where m is the mass of the atom. In the context of optical lattices, the commonly used
energy scale is the recoil energy, which corresponds to the kinetic energy an atom
acquires due to the recoil motion from emitting a single photon of light at rest. It is
given by

ER(λ) =
p2

phot

2m
=

h2

2mλ2 , (2.13)

with λ being the wavelength of the light. For an optical lattice produced by light
with wavelength λlat, the lattice constant a = λlat/2, yielding ER = 1

4 Eqmax . Unless
explicitly given, the ER energy scale used in conjunction with a specific optical lattice
with wavelength λlat is always ER(λlat).

The energy spectra for optical lattice potentials are shown in figure 2.4. Here, the
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Figure 2.4: Band structure of a one-dimensional sinusoidal lattice with increasing lattice
depth. The energy of each Bloch wave is plotted against the quasimomentum q, which can
take any value between−h̄k and h̄k = πh̄/a. The solutions corresponding to bands with even
band index are plotted in blue, those with odd band indices are plotted in red. For very deep
lattices, the lowest bands are flat and tunneling is suppressed. The lowest band energy then
corresponds to the lowest energy level of the on-site harmonic oscillator with frequency ωs.

energies of all Bloch waves are plotted against their quasimomentum q. The band
gaps first become visible between the lower bands. For deeper lattices, the bands
become flatter and converge toward energy levels which are independent of q and
separated by the band gaps. In the limit of very deep lattices, these correspond to
the harmonic oscillator levels spaced according to the oscillator frequency ωs as de-
termined from the quadratic approximation of the potential around each minimum.

Wannier functions

While the Bloch wave functions are the eigenfunctions of the periodic potential, they
are not a straightforward way to describe local phenomena which are restricted to
individual lattice sites. For this, a representation using wave functions localized to
the sites is preferable. All Bloch waves can be expanded in terms of Wannier func-
tions, which are the wave functions within a given energy band which are maximally
localized to one specific lattice site [70]. This makes them the natural choice for the
on-site representation.

The Wannier functions w(n)
j (x) = w(n)(x− xj) for band n and site j at position xj

18



2.3 Quantum mechanics of particles in periodic potentials

0.5 0.0 0.5

0

10

20

30

0.5 0.0 0.5

0

10

20

30

0

10

20

0

10

20

Position (λlat) Position (λlat)

a b

c d

La
tti

ce
 d

ep
th

 (E
R

), 
W

an
ni

er
 a

m
pl

itu
de

 (a
rb

. u
.)

La
tti

ce
 d

ep
th

 (E
R

), 
W

an
ni

er
 d

en
si

ty
 (a

rb
. u

.)

Figure 2.5: Wannier functions and the tight-binding limit: a and b show the Wannier function
amplitude and density, respectively, for a lattice depth of 8 ER. The blue curves correspond
the the lowest (first) band Wannier functions, the red curves to those of the second band. For
deeper lattices, as shown in the corresponding plots c and d for a lattice of 30 ER depth, the
Wannier functions are more strongly localized to the potential minima and the overlap with
neighboring sites is reduced. The lattice potential is shown in gray. The wave functions have
been offset for clarity.

are formally defined from the set of Bloch waves φn
q such that

φn
q(x) = ∑

j
w(n)

j (x− xj)ejqx, (2.14)

where q denotes the quasimomentum of the Bloch wave. The resulting functions for
lattice depths of 8 ER and 30 ER are shown in figure 2.5. They form an orthonormal
basis for the wave functions in a periodic potential, therefore the hamiltonian can be
expressed in terms of the these functions as an alternative to the Bloch functions in
order to obtain a description based on local properties.

Tight-binding limit

For shallow lattices, Wannier functions are not very localized and have significant
overlap with many of their neighbors. In this case the localized Wannier basis is of
little use, and it is usually easier to work in the Bloch basis. The situation is opposite
for deep lattices, where the Wannier functions are tightly localized and usually only
the coupling to the nearest neighbors is important. This is obtained by writing the
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2 Ultracold atoms in optical lattice potentials

hamiltonian in the Wannier basis as

H = − ∑
i,j,m,n

J(m,n)
i,j â(m)†

i â(n)
j (2.15)

Here, J(n,m)
ij denotes the exchange integrals

J(m,n)
ij =

∫
w∗m(x− xi)

(
−h̄2

2m
∇2 + Vlat(x)

)
wn(x− xj)dx (2.16)

and â(n)†
i is the operator creating a particle in the Wannier function localized at site i

for the band n.
We will assume from now on that the system is cold enough that only the lowest

band is significantly occupied, and therefore drop the band indices. By inserting
the Bloch eigenstate basis, the hamiltonian is diagonalized and one obtains that 2Jij
corresponds to the (i− j)th Fourier component of the dispersion relation ε(q) [18].

For increasing lattice depths, the situation can be drastically simplified as the over-
lap integrals Jij drop very fast with the distance of the sites i and j, and the dispersion
relation ε(q) approaches a sinusoidal function. Neglecting an overall energy offset,
one now can assume that Ji,j = J if i and j denote neighboring sites, and Ji,j = 0 oth-
erwise. J is value of the corresponding exchange integrals (usually termed “tunnel
coupling”). In this tight binding approximation, the hamiltonian simplifies to

H = −∑
〈i,j〉

Jâ†
i âj, (2.17)

where 〈i, j〉 denotes pairs of nearest neighbors i, j. It has an energy spectrum of

ε(q) = −2J(1− cos(q · a)), (2.18)

so that the tunnel coupling J between neighboring sites in this approximation is di-
rectly related to the band width of the energy spectrum [72]

|J| ≈ ε(q)max − ε(q)min

4
.

2.3.2 Bose-Hubbard description for deep potentials

In the regime of deep lattices where the wave functions are strongly localized and the
dynamics is restricted to tunnel processes between neighboring wells, it is straight-
forward to describe the system completely in terms of local properties and processes,
including the interactions. This approach is followed in the Hubbard model [3], orig-
inally developed for electrons and therefore fermionic particles. Its bosonic variant,
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2.3 Quantum mechanics of particles in periodic potentials

the Bose-Hubbard model, uses the same approach but employs bosonic instead of
fermionic operators [4].

The Bose-Hubbard hamiltonian is written in terms of the annihilation and creation
operators âi and â†

i for particles in a lattice site i to describe the local on-site interaction
and nearest neighbor tunneling:

Ĥ = − ∑
<i,j>

Jâ†
i âj + ∑

i
Ein̂i − µn̂i +

1
2

U(n̂i(n̂i − 1)) (2.19)

Here, n̂i = â†
i âi is the number operator which determines the occupation of site i.

The meaning of the four terms can be described as follows:
The first term corresponds to the kinetic energy of the particles in the tight-binding

approximation as introduced in the previous section. It describes the dynamics in
terms of the tunneling matrix element J, the tunneling rate between neighboring
sites, neglecting direct tunneling over several sites. Usually only the lowest band
is included, but the model can in principle also be used with higher bands, and the
hamiltonian can be extended to a multi-band description. Values of J for typical ex-
perimental parameters are shown in figure 2.6. In the second term, the effect of an
external potential is taken into account, which creates an energy offset Ei at site i.
Usually, these offsets will be given by the external confining potential.

The next term introduces a chemical potential µ, creating a grand canonical de-
scription where the particle number is not fixed. For a given set of parameters, the
atom number is set by the chemical potential. Finally, the last term of the hamiltonian
describes the interaction between the particles. It includes only interactions between
particles on the same lattice site and neglects all others. However, non-local interac-
tions could be introduced by adding an additional interaction term. For atoms like
87Rb, where the collisional point-contact interaction is by far the dominating mecha-
nism, this is typically neglected.

The on-site interaction parameter U, also shown in figure 2.6, describes the energy
shift due to the collisional interaction between two atoms localized on the same site.
For a point-contact interaction and assuming a known on-site wave function w(x),
this energy is evaluated in the same way as the interaction integral in the mean field
case discussed in section 2.1:

U = g ·
∫
|w(x)|4dx (2.20)

This makes the assumption that the on-site wave function of each of the two atoms is
the same as that of a single atom. It neglects any changes to the wave function that
the interactions can induce. Taking the repulsive interaction into account leads to a
broadened wave function and modified particle-particle correlations. For low occu-
pation numbers n this effect is relatively small in the case of 87Rb, but can become
significant for n ≥ 4 [73]. Such modifications to the wave functions also affect the
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Figure 2.6: Tunnel coupling J and interaction energy U for different lattice depths. Increasing
the lattice modulation leads to an increase in U (dashed) and an exponential decrease in J
(solid, a). The ratio between the two varies over many orders of magnitude for typical ex-
perimental parameters (b). In both plots, the black line corresponds to the parameters for the
lowest band, red lines to the values relevant for the first excited band.

tunneling parameter J. Calculations which do take modifications of the wave func-
tions into account result in corrections to the parameters U and J on the order of 3-5%
for strongly localized 87Rb atom pairs in a lattice with typical parameters [74–76].

2.3.3 Superfluid to Mott insulator transition

In order to illustrate the properties of systems described by the Bose-Hubbard hamil-
tonian eq. 2.19, we will discuss the important limiting cases. We first assume a ho-
mogeneous system without any potential apart from the periodic lattice (i.e. Ei = 0).
Therefore, for a given mean atom number per site n̄, the ground state properties of
the hamiltonian are completely determined by the parameters J and U.

Superfluid state

In the weak interaction limit U ≈ 0, the system can be described as a Bose-Einstein
condensed state in an optical lattice potential — all atoms are in the lowest energy
single-particle state of this potential. This is the Bloch wave with zero momentum
in the lowest band. To analyze this in terms of the Bose-Hubbard hamiltonian, we
describe the wave function in terms of the states of the lattice sites.

The ground state wave function, given by the zero momentum Bloch wave, is the
sum of the Wannier wave functions (eq. 2.14) at each lattice site i with constant phase

|Ψ〉 = α ∑
i

â†
i |0〉,

with the normalization factor α. This yields the ground state for N particles on M
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Figure 2.7: The Bose-Hubbard model has two very distinct phases for T = 0 . The Mott
insulator state for low J has a well-defined occupation number on each site, but no global
phase coherence, so no interference can occur for the matter wave (a). The schematic phase
diagram (b) shows the phase boundaries as blue lines as well as the two states shown marked
in red. The color shading from blue to white in (b) indicates increasing on-site density. In the
superfluid state, the phase is well-defined for all sites, resulting in an interference pattern in
the matter wave created when releasing the atoms to free space (c). The on-site atom numbers
in this state are Poisson distributed.

lattice sites

|Ψ〉N ∝
1√
M

(
M

∑
i=1

â†
i

)N

|0〉.

In the limit of a large system size M, N → ∞ with constant average occupation
n̄ = N/M, this state becomes separable into a product of single site states. At each
site i, a superposition of Fock states |k〉i = (â†

i )
k |0〉 with all possible occupations

k is present. This is illustrated in figure 2.7c — while the average density is well
defined and constant over the lattice, the atom number determined by measuring
each individual site is randomly distributed.

In this situation the ground state is the state |Ψ〉 for a given average on-site particle
number n̄ which maximizes 〈Ψ|∑<i,j> â†

i âj|Ψ〉 for neighboring sites i and j. For a
state |Ψ〉 = ∏i|Ψ〉i consisting of a product of states |Ψ〉i for each site i this is the case
for |Ψ〉i which are eigenstates of the operators â†

i and âi. An appropriate basis for this
is given by the coherent states or Glauber states [4, 77]

|Ψ(n̄)〉i = e−|αi|2/2
∞

∑
n=0

αi
n

√
n!
|n〉i, (2.21)

where αi denotes the wave function phase and the expectation value of the atom
number n̄ = |αi|2 at site i. The ground state has constant phase and constant density
throughout the lattice:

|Ψ(n̄)〉 = ∏
i

e−|α|
2/2

∞

∑
n=0

αn
√

n!
(â†

i )
n|0〉 (2.22)
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2 Ultracold atoms in optical lattice potentials

This ground state of the system when the on-site interaction U is small compared
to the tunneling strength J is commonly named the superfluid state, as there is no
resistance to mass flow.

Mott insulator state

When increasing the interaction relative to the tunneling strength, the properties of
the system change drastically. With increasing U, the system reaches a quantum crit-
ical point which marks the transition from the superfluid to the Mott insulator. The
position of this point varies with the filling of the sites. For a filling of n = 1, mean-
field theory predicts it at U/J = 5.8 · z, where z is the number of nearest neighbors
of a given site [4, 78–80]. Newer calculations taking corrections to the mean-field ap-
proach into account report different values. Recently, a critical ratio of U/J = 4.89 · z
has been obtained by three-dimensional lattice Quantum Monte Carlo calculations
(see [81] and references therein). For large occupation numbers, the critical ratio ap-
proaches U/J = z · 4n [82]. At sufficiently low temperatures, the transition itself is a
quantum phase transition, which is not driven by thermal fluctuations [83].

Figure 2.7b schematically shows the phase diagram of the T = 0 Bose gas in the µ–J
plane. For large J the system is superfluid, whereas for low J there exist a number
of distinct areas (“Mott lobes”) in which the system is insulating [4]. The density in
each of these Mott lobes is an integer number of particles per site, determined by the
chemical potential. For J = 0, the Mott lobes are not separated by a superfluid phase,
and the density undergoes discrete steps when increasing the chemical potential.

This limiting case can be easily understood. Since the interaction energy for a given
site scales quadratically with site occupation, fluctuating site occupations increase the
total interaction energy, and the ground state of a system with an integer average
filling n is given by a product of identical Fock states

|Ψ〉 ∝ ∏
i
|n〉i,

where the atom number on each site i is exactly n (fig. 2.7a).
In homogeneous systems, the average filling n̄ could also be non-integer, in which

case the ground state is more complicated, but can be described as a Mott insulator
with an occupation bn̄c coexisting with a hard core gas of strongly interacting bosons
with an average density of n̄− bn̄c < 1. Here, bxc denotes the largest integer value y
such that y ≤ x.

With a fixed atom number on each site in the Mott insulator state, the conjugate
variable which is the phase of the wave function on each site has the maximum un-
certainty. It is completely undefined, so no interference can occur between the matter
waves released from these sites (fig. 2.7a). This is in strong contrast to the superfluid
case where the phase is well-defined throughout the whole ensemble.
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2.3 Quantum mechanics of particles in periodic potentials

While the global phase coherence is completely lost in the Mott insulator due to the
localization of the atoms, locally this is not entirely the case. Due to the fact that J is
small compared to U, but necessarily finite in order to obtain equilibrium, corrections
to the ground state beyond leading order create a small admixture of particle/hole
pairs. For weak tunneling these pairs are very localized such that the hole and par-
ticle admixtures are on neighboring sites. This local coherence can be detected by
analyzing the corresponding weak interference between atoms released from the lat-
tice (see section 3.2.1) which persists even in the Mott insulating regime. Deep in the
insulating regime, interference pattern is further suppressed proportionally to J/U
as J/U→0 [84, 85].

2.3.4 The influence of the confining potential

In the real lattice potential, the system is not homogeneous but has a finite size. It
is confined by the parabolic magnetic trap as well as the overall profile of the laser
beams which produce the lattice potential. This latter confinement is created by the
attractive potential of each red-detuned beam along the two axes orthogonal to its
propagation direction. As the size of the beams is typically much larger than the size
of the atom cloud, the potential can usually be described as a homogeneous periodic
lattice potential with an additional harmonic confinement. Locally, on each site the
chemical potential is therefore reduced by the potential energy shift of that specific
site. It consists of two parts, one being the external confining potentials such as from
the superimposed magnetic trap, and the other from the local zero point energy of the
lattice site (1/2h̄ωs). Close to the center of the trap, these can typically be combined to
a parabolic confinement. This results in a total potential energy Ei of site i at position
(xi, yi, zi) as

Ei =
1
2

m(Ω2
xx2

i + Ω2
yy2

i + Ω2
zz2

i ),

for a harmonic confinement with trap frequencies Ω{x,y,z} along the x, y and z axes.

Superfluid Case

In the weakly interacting case, the situation is comparable to the situation without the
periodic potential: Within the given band, the kinetic energy is reduced compared to
the case without the lattice, due to the reduced curvature of the dispersion relation1.
The external potential then reduces the local chemical potential in the same way as in
the Gross-Pitaevskii equation, and we arrive again at the Thomas-Fermi distribution
in the weakly interacting limit. The on-site wave function is described by the coher-
ent states which minimize the dominating tunneling term. The average occupation

1The very large kinetic energy component due to the zero-point on-site energy can be subtracted as
it is only a constant offset.
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2 Ultracold atoms in optical lattice potentials
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Figure 2.8: Geometry of the superfluid phase in the lattice with confinement (black line in
a). The atoms are delocalized over the lattice, with the local density of the wave function
shown in dark blue. Its global shape is given by the Thomas-Fermi distribution (red dashed
line). The ensemble occupies a range of points in the schematic phase diagram (red line), as
the chemical potential changes with the distance from the center of the trap (red circle). The
resulting density distribution in a 2D plane of the cloud is the Thomas-Fermi distribution (c).

number is determined by minimizing the local potential energy and chemical poten-
tial terms. For a given chemical potential µ, minimizing each site individually then
yields

n̄TF
i =

µ− Ei

U
(2.23)

for all sites with µ ≥ Ei. For sites with µ < Ei, n̄ = 0 to exclude negative densities.
For Ω{x,y,z} = Ω, this results in the Thomas-Fermi distribution

n̄TF
i = n0 max(0, 1− (x2 + y2 + z2)/R2

TF). (2.24)

Here RTF is the Thomas-Fermi radius such that the potential energy at this radius
equals the global chemical potential, and n0 = µ/U is the central density.

2.3.5 Mott insulator in confining potential: the shell structure

In the limit of U � J, the tunnel coupling can be neglected even for the determination
of the on-site states. Now the complete distribution is determined solely according
to the interactions and the potential energy terms. Like in the homogeneous case,
fluctuations of the on-site occupation are suppressed due to the quadratic term in
the interaction energy. In contrast to the homogeneous case with a fixed average
site occupation, however, the ensemble in the trap, where only the global chemical
potential is fixed, is not forced to non-integer occupation numbers. The hamiltonian
with neglected tunneling term

H = ∑
i

Ein̂i − µn̂i +
1
2

U(n̂i(n̂i − 1))
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2.4 Shell structure at non-zero temperatures
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Figure 2.9: Mott insulator in a confining potential. Each atom is confined to a single site of the
potential (a), with the energetically lowest lying sites occupied first. The chemical potential
changes with the distance from the trap center, and different parts of the ensemble can be in
different phases of the schematic phase diagram (b). The result is a shell structure of regions
with constant density phases (c).

is then minimized for a filling

ni =
⌊

µ− Ei

U
+ 1
⌋

,

for µ > Ei and ni = 0 otherwise. In the case of a parabolic and spherically symmetric
confinement, the density therefore decreases in discrete steps from the center to the
edge of the cloud. The outer edge of the distribution is defined by µ = Ei. For a
parabolic confinement with trap frequency Ωt, Ei = 1

2 mΩ2
t r2

i , where ri is the distance
of the site i from the trap center. The cloud therefore has an overall radius

R =
√

2µ/m/Ωt.

Outside the sphere of radius R, there are no atoms. Inside the sphere, all sites
are occupied by at least one atom. The condition for occupation of a site with more
than n atoms is µ > (n− 1)U − Ei. These regions are again spherical with an outer
radius Rn =

√
2(µ− n ·U)/m/Ωt. The density distribution is therefore a series of

concentric shells around the trap center, with an occupation n within the interval
Rn−1 to Rn.

The density as a function of the distance from the center of the parabolic trap and
within a two-dimensional plane through the center is shown in figure 2.9. Due to the
shape in the 2D plane, this distribution is often described as the “wedding cake struc-
ture”. For small but finite J, the Mott shells are separated by regions with superfluid
properties.

2.4 Shell structure at non-zero temperatures

The temperature of a quantum gas in the strongly correlated state is a very important
parameter for the correct description of the state of the ensemble. Unfortunately, for
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2 Ultracold atoms in optical lattice potentials

systems in interesting parameter ranges, it is notoriously hard to measure. For weakly
interacting quantum gases, the temperature is typically determined by measuring the
momentum distribution by a ballistic expansion. The temperature is derived from the
wings of the distribution, outside the Thomas-Fermi part of the cloud. For the very
low temperatures discussed here this is already hard, due to the very small fraction
of atoms in this “thermal part” of the distribution. It is not possible in the strongly
correlated regime in the optical lattice, since the momentum spectrum in the lowest
band is flat, and the interactions lead to a momentum spread over the full Brillouin
zone even at zero temperature.

The finite temperature state of the ensemble for very low temperatures can usually
described in terms of the ground state with a small fraction of excitations. In the
following we will analyze the thermodynamics of fully localized bosons in the deep
optical lattice, showing the effect of the dominant excitations in that regime [86]. In
reverse, this highlights a way to measure the temperature without relying on the
momentum distribution.

In the limit of negligible J, we can describe the ensemble of particles purely in terms
of the chemical potential µ, the interaction energy U and the external potential Ei at
position i. Particle exchange between the sites is allowed, but since we assume a
negligible energy scale for tunnel coupling, the thermodynamical partition function
of the ensemble can be separated into individual single site partition functions:

zi =
∞

∑
ni=0

exp (−β (U · ni(ni − 1)/2− (µ− Ei)ni)) (2.25)

Here, U · ni(ni − 1)/2 is the total interaction energy in the site i, β = 1/(kBT), and
the summation is over all occupation numbers ni on this site.

The probability of the number state |n〉i is then given by

Pi(ni) =
1
zi

exp (−β (U · ni(ni − 1)/2− (µ− Ei)ni)) (2.26)

And the average occupation is ∑ni
ni · Pi(ni).

The result of such a calculation for trap geometries analog to those in the experi-
ment is shown in figures 2.10 and 2.11 for atom numbers Ntot = 1.0 · 105and Ntot =
10 · 105, respectively. The four columns represent the results for four different tem-
peratures. The rows of graphs show some specific resulting observables which can
be measured experimentally. In the experiments presented in this thesis, only den-
sity distributions which are integrated along one or more coordinate axes can be ob-
tained. Therefore, the top row of graphs shows the 3D distribution, whereas in the
other rows, each distribution shown is derived from the previous one by integrating
along one of the remaining coordinate axes. In the last row only total populations
integrated of the full ensemble are given.
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2.4 Shell structure at non-zero temperatures

Radius (lattice sites)

Radius (lattice sites)

Radius (lattice sites)

Site occupation in central plane

In-trap column density pro�le

Integrated density pro�le

Overall number distribution

T=0.008 U/kB T=0.10 U/kB T=0.20 U/kB T=1.0 U/kB

0 20 40 60
 

0 20 40 60

 0 20 40 60

1 2 3 4 5

0 20 40 60

0 20 40 60

1 2 3 4 5

0 20 40 60
 

 

0 20 40 60
 

 

0 20 40 60

0 20 40 60

1 2 3 4 5

0

50

100

0 20 40 60
 

 

0

1

2

3

4

0 20 40 60

0

1

2

0 20 40 60

0
0.5

1

1 2 3 4 5

Total
n=1
n=2
n=3
n=4

A
to

m
s 

in
 p

la
ne

 (x
10

00
)

Co
lu

m
n 

de
ns

ity
 (a

to
m

s)
Si

te
 o

cc
up

at
io

n 
n 

(a
to

m
s)

Site occupation (atoms)

x z

n

Figure 2.10: Calculated Mott shell structure for different temperatures T and approximately
105 atoms in a trap corresponding to the one used in the experiment. The top two rows show
the on-site density both in the central plane and along one line through the center. The third
row shows the column densities obtained by integrating along the z-axis, and the fourth row
the number of atoms in each lattice plane, obtained by integrating along x and z. The lowest
row shows the total population of atoms in each fock state. The contributions by each of these
number states to the total profiles shown above are shown in color.
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2 Ultracold atoms in optical lattice potentials

Density (atoms per site)

At the top of the page, the density distribution in the central plane of the cloud is
shown for the full plane. The second row gives the same information along one line
from the center to the edge of the cloud. In addition, the contributions to this den-
sity from each of the number states are shown separately. For zero temperature, this
shows the well-known “wedding cake” structure of the Mott insulator shells, with up
to five layers or shells for large atom numbers (fig. 2.11). These shells do not overlap
and the density is constant within their volume. For the low atom numbers shown
in figure 2.10 the density in a core with a radius of 15 lattice sites is due to doubly
occupied sites (n = 2), whereas all sites outside of this radius and up to r = 28 are oc-
cupied by exactly one atom. Increasing the temperature “melts” this shell structure:
Already at kBT = 0.1 U, the steps are significantly washed out due to particle-hole
excitations close to the shell edges. At a temperature of kBT = 0.2 U, the shells start
to disappear completely and the local density is strongly smoothed.

At this temperature the system is still far from being described as a non-interacting
classical gas. For this, the temperature has to be larger than the interaction energies
present. For the low densities this transition happens around kBT = 1.0 U, which is
the point where the minimum in the center of the n = 1 site distribution completely
disappears.

For higher atom numbers (fig. 2.11), the low n distributions do not lose this mini-
mum even further into the fully thermal regime due to the Poisson on-site statistics
and the increased interaction energy scales. The outermost (n = 1) distribution even
has a minimum at kBT = 3 U, where the cloud is already reasonably well described
by a classical Boltzmann gas. The influence of the heating is strong for the innermost
shells, however, with the overlap between the n = 1 and n = 2 shells increasing first.
The shell structure itself melts at a similar temperature as for low densities and is
strongly smoothed by kBT = 0.15 U.

Integrated (column) density

The density of atoms at a given point in three-dimensional space is often not experi-
mentally accessible. Typically, methods for probing the density distribution integrate
over parts of the cloud. The standard method for recording the density distributions
is absorption imaging (see sec. 3.2) in the trap, which yields the column density of
the cloud integrated along the line of sight of the camera. The second row of figures
shows this column density integrated along the z-axis plotted against distance from
the center of the cloud along the y-axis. Similar to the first row, the density compo-
nents from each of the number states are also given, which can be probed if in-trap
absorption imaging is combined with a number-state selective process [73]. Due to
the integration, the constant density in the shells does not show directly anymore, but
the outer (n ≤ nmax) density components still have a ring shape in 2D. The column
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2.4 Shell structure at non-zero temperatures
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Figure 2.11: Predicted Mott shell structure for larger average filling due to a larger atom
number (1.0× 106) in a strongly confining trap. In this configuration, five concentric shells
exist for T = 0 The shell structure melts around kBT = 0.15 U and the system becomes fully
thermal for kBT ≥ 3 U.
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2 Ultracold atoms in optical lattice potentials

density of this component, however, is not constant within this ring shape and is low
but does not vanish in the interior of the ring. This ring-like shape with a minimum
of the column density disappears completely only at kBT ≈ U or even larger. The
exact shape of the rings for low temperatures with the two sharp edges is, however,
characteristic for the constant density outer shells.

1D density profile

By integrating over a whole plane which is displaced by a distance x from the center
of the trap, a linear density profile of the cloud is obtained. This type of profile corre-
sponds to the observable measured in the experiments presented in section 4.2 [87].
Here, all atoms in a horizontal plane are addressed and collectively counted, leading
to an integrated one-dimensional density profile. In this case, no minima are recorded
in the center of the trap, and the signature of the shell structure is visible in the total
profile as a sharp outer edge as well as a kink at every position corresponding to a
shell boundary. Between these, the shape is given by inverted parabola functions.

The profiles from each of the individual number state components in the T = 0
Mott insulator case are characterized by a sharp edge at the outer boundary of the
shell and a kink at the inner edge. The shape between the inner and outer radius
of the respective shell is given by an inverted parabola, which is “truncated” at the
inner shell boundary. This can be shown by integrating a constant density spherical
shell with the inner and outer radius ri and ro over a full plane. This profile can be
evaluated as the difference between the profile of a sphere with radius ro and that of
a sphere with radius ri:

ntot(y) =
∫

x

∫
z

n0
1
2

(
h(r2

o − x2 − y2 − z2)− h(r2
i − x2 − y2 − z2)

)
dx, dz

Where h(x) is the Heaviside function with h(x) = −1 for x < 0, h(0) = 0 and
h(x) = 1 for x > 0.

This leads to the truncated parabola profile

ntot(y) =


n0π(r2

o − r2
i ) y < ri

n0π(ro − y2) ri ≤ y ≤ ro

0 y > ro

(2.27)

This structure is lost when the temperature is increased: At a temperature of kBT =
0.1 U, the edges of the density distribution for low atom numbers start to be signif-
icantly washed out on the scale of a few lattice sites. For higher temperatures the
edges and then the flat top of the parabola shape are quickly lost completely, and at
kBT = 1.0 U, all profiles are closer to gaussian distributions than those obtained from
a Mott insulator. For larger atom numbers the change is not so obvious for the pro-
files corresponding to low n. While all edges are strongly smoothed at kBT = 0.15 U,
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2.4 Shell structure at non-zero temperatures

a flat top remains in those shells even for very high temperatures. Only the innermost
hollow shell (second largest n) does lose this flat top property almost simultaneously
with the breakdown of the Mott shell structure.

Identifying the Mott shell distribution therefore gives an effective upper estimate
on the temperature of the gas in the lattice with parameters corresponding to the ones
shown. If a succession of sharply separated shells is present, the temperature must
be smaller than kBT ≈ 0.2 U in such a lattice.

Overall number state populations

Finally, when integrating all number state components over the last remaining coor-
dinate axis, we obtain the global number state distributions of all sites in the trap. The
last row of plots shows the fraction of the overall atom population residing in sites
with a given occupation number. These observables correspond to the measurements
which will be described in section 4.1 of this thesis [88]. For most configurations,
the distribution is only changed when particle-hole pair excitations are created in the
bulk of the Mott shells. These excitations have an energy scale of U, therefore the
distribution as shown here is largely unaffected until kBT ≈ U, and it is only suitable
for measuring temperatures larger than the U/kB scale.

The distribution is, however, very sensitive to the changes of the tunnel coupling
J even in the regime of very low temperatures. Also, since larger populations are
counted when determining these fractions experimentally, the dependence of the rel-
ative populations can be measured efficiently for many different sizes of the ensem-
ble with a good signal to noise ratio. This allows for the direct observation of number
squeezing without spatial resolution, and of the critical atom numbers which mark
the boundary for the formation of additional shells. These important properties of
the transition from the superfluid to the Mott insulating regime will be investigated
experimentally in the following section.
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3 Experimental setup and techniques

The experimental setup used for the projects presented in this thesis was originally
developed in Munich [89, 90], and was taken apart and the parts transported to Mainz
with only the vacuum chamber kept assembled. Subsequently, the setup was rebuilt
in the course of the following year. While some parts were redesigned in the process
and many components were exchanged, the basic setup has stayed the same and as
such has been described in several publications [89–94]. In the following therefore
only a brief introduction of the operating principle and the key properties will be
given. The description will be detailed only in those aspects with special relevance for
the experiments discussed in the later chapters. Some very specific parts of the setup,
such as the additional laser setup for the superlattice potentials, will be introduced in
the chapter describing the corresponding experiments.

Typically, the experiments are conducted in cycles, each lasting approximately one
minute. Each cycle consists of a number of steps to prepare the quantum gas, conduct
the actual experiment and then measure the result. In the first step, a magneto-optical
trap (MOT) is used to collect atoms from a room temperature gas within 15 s. This
trap also cools the atoms, especially in the last phase which employs an optical mo-
lasses. In the next step the atoms are confined by a magnetic quadrupole trap and
then transported from the MOT chamber to a second chamber with very low back-
ground pressure. In the third step, the pure quadrupole trap is modified to a tightly
confining quadrupole-Ioffe configuration (QUIC), and the cloud is cooled further for
up to 30 s evaporative cooling until a BEC is formed. The QUIC trap current configu-
ration is then changed to achieve a spherical BEC in a weakly confining trap.

At this point, the optical lattice potential is introduced by adding mutually orthog-
onal standing waves which intersect at the BEC position. This starts the actual ex-
periment which typically involves manipulating the atoms in the lattice by laser po-
tentials, radiofrequency waves and magnetic fields. At the end of the cycle, the trap
is typically switched off quickly, and the atom ensemble ballistically expands in free
space. After a short time of free flight, the spatial distribution of the expanded cloud
is recorded by an imaging system. The image is then downloaded into a computer
for analysis, and the next experiment cycle is initialized.

3.1 Implementation of the experiment

All of the steps outlined above can only be realized in an ultra-high vacuum (UHV).
Characteristic for for vacuum setup used (shown in figure 3.1) is the spatial separa-
tion of the chamber used for the magneto-optical trap (MOT) from the main vacuum
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3 Experimental setup and techniques

chamber in which the Bose-Einstein condensation is achieved and the subsequent
experiments are conducted.

3.1.1 BEC preparation

Magneto-optical trap and magnetic transport

The MOT collects 87Rb atoms from the room-temperature vapor inside the chamber
and cools them to temperatures in the millikelvin range [69, 95]. Furthermore, the
cloud is compressed toward the center of a magnetic quadrupole field. The MOT is
followed by an additional optical molasses phase [96] for further cooling into the mi-
crokelvin range before loading the atoms into a magnetic trapping potential [97, 98].
The magnetic trap consists of a quadrupole field of the same geometry as the MOT
field, but with a much stronger gradient. Since the atoms are actively pumped into
the F = 1, mF = −1 hyperfine state after the molasses stage, they are low-field seekers
and are trapped by the field minimum in the center of the quadrupole. The two cham-
bers are connected by a series of additional quadrupole coils which can be switched
in sequence [90]. In this way, the atoms are “handed over” from one quadrupole field
center to the next, first along the x-axis and then the z-axis (yellow arrow in figure
3.1), over a total distance of ≈ 40 cm. One big advantage of this transport design
is the possibility to use a simple MOT implementation which directly loads from a
background vapor of 87Rbat a relatively high pressure (typically several 10−9 mbar)
without the need of an additional cold atom source such as a 2D-MOT or Zeeman
slower. The rubidium vapor is injected into the MOT chamber from a small oven
section which can be heated to increase the vapor pressure. The BEC chamber into
which the atoms are transported is a glass cell with a much lower pressure (below
10−10 mbar). Here, the rate of atom loss and heating through background gas colli-
sions is low enough to enable Bose-Einstein condensation. Another advantage of the
transport scheme is the good optical access to the BEC along all axes since no MOT
optics have to be placed around this chamber.

Magnetic trap and Bose-Einstein condensation

While a quadrupole field is a very simple and effective way to trap large amounts
of atoms in low-field seeking states, it is generally unsuitable for Bose-Einstein con-
densation. The reason for this is the field geometry in the trap potential minimum.
Here the field strength vanishes, and its direction changes rapidly around this point.
This means that for atoms passing the trap center at a close distance, the Larmor
precession frequency is low enough that their spin does not adiabatically follow the
rapidly changing field direction. This leads to spin-flips, and a subsequent loss of
these atoms from the trap, since in the F = 1 manifold only the mF = −1 state is low-
field seeking. These so-called Majorana losses become a problem when the density
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Figure 3.1: Image of the experimental setup before the addition of the optical components.
The experiment is separated into two sections, the MOT chamber and the BEC chamber. The
large yellow arrow indicates the transport between the two through the transport tube. The
red lines illustrate the orientation of the three lattice beams intersecting in the BEC position.

of the atoms close to the center of the trap increases. This occurs when approaching
quantum degeneracy, and prevents the onset of Bose condensation in such a magnetic
field geometry.

Numerous solutions exist to circumvent this problem by creating trapping poten-
tials in which the overall potential has a minimum with non-vanishing field strength.
For the experiment presented here, a static magnetic trapping field created by mag-
netic coils in the so-called Quadrupole-Ioffe Configuration (QUIC) is used [99]. After
the transport, the trap is therefore changed from the quadrupole to the QUIC geom-
etry by increasing the current in the Ioffe coil, an additional coil oriented perpendic-
ularly to the quadrupole pair (see figure 3.2). The resulting magnetic field configu-
ration has a minimum on the Ioffe coil axis in between the quadrupole field center
and the Ioffe coil. This leads to a displacement of the cloud by several mm toward
the QUIC coil. In the new trap minimum, the magnetic field has a strength of several
Gauss, which prevents the occurrence of Majorana losses. Close to the minimum,
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Figure 3.2: Schematic drawings of the magnetic trap components (a) and the optical lattice
setup (b). The primary trapping coils (blue) are operated in a quadrupole configuration.
The glass cell (not shown) is located between these coils. A third coil (green) allows the
transformation from a quadrupole to a quadrupole-Ioffe configuration (QUIC), displacing
the atom cloud (blue sphere) slightly to the right. To change the trap to a more spherical
geometry, two offset coils (red) close to Helmholtz configuration provide a 150 G offset field. b
A red-detuned (typical wavelength 840 nm) lattice beam is retroreflected by a dichroic mirror,
forming a standing wave potential. The atoms are located in the beam waist formed by two
lenses outside of the vacuum setup. A resonant imaging beam is superimposed onto the
same beam path. The retroreflector is transparent for this wavelength, allowing for imaging
directly along the lattice axis.

the trap can be approximated by a 3D parabolic potential with the trap frequencies
ωx = 2π × 15 Hz, ωy = 2π × 120 Hz and ωz = 2π × 120 Hz.

In this trap configuration, the temperature of the cloud is further reduced by ra-
diofrequency (RF) evaporation (see e.g. [43, 69]). This method exploits the fact that
only one mF-state in the F = 1 manifold is magnetically trapped. Transitions be-
tween the Zeeman sublevels can be driven by a radiofrequency field, the resonance
frequency of which strongly depends on the magnetic field present. The transition
frequency in the potential minimum is typically 2.5 MHz for the trap described above.
If an RF field with a higher frequency is present, atoms at certain distances from the
trap center are in resonance. Such fields are therefore a way to selectively change
the mF state of atoms in the outer regions of the cloud. Since these atoms are then
no longer trapped, they are efficiently removed from the ensemble. By selectively
removing only the outermost atoms of the cloud, which have the highest energy, the
average energy of the sample reduces and the cloud equilibrates at a lower temper-
ature. By slowly decreasing the RF frequency, the temperature is reduced by several
orders of magnitude until quantum degeneracy is reached at a critical temperature of
approximately 0.5 µK and a Bose-Einstein condensate is formed.
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3.1 Implementation of the experiment

Quasi-pure BECs, which show no significant residual thermal component with up
to 5× 105 atoms can be routinely produced with an evaporation time of 30 s.

High Offset Trap

The strong anisotropy of the magnetic trap – the trapping frequencies along the main
axes differ by almost an order of magnitude – is not optimal for transferring the atoms
into an optical lattice potential. The preferred aspect ratio of the optical trap is spher-
ical, so the shape of the cloud would have to change strongly during the transfer.
To make this transition more adiabatic, an additional transformation is executed to
transform the magnetic trap to a spherical shape. For this, an additional set of coils
close to Helmholtz configuration around the previously described setup creates a ho-
mogeneous offset field at the position of the atoms (red coils in figure 3.2). This field
is again oriented along the x-axis, in parallel with the field in the trap minimum, and
increased to approximately 150 G. The main effect of this is a reduction of all trap
frequencies, which now lie between 2π × 12 Hz and 2π × 18 Hz.

As the vertical confinement of the magnetic potential has been strongly reduced,
the gravitational force becomes very significant. In order to determine the resulting
total trapping potential, both the magnetic and the gravitational potential therefore
have to be taken into account. The minimum of this combined potential is approx-
imately 2 mm lower than the center of the original QUIC trap. This displacement
of the equilibrium position is called gravitational sag. The combined potential can
again be approximated by a 3D parabolic configuration with the same trap frequen-
cies around this new overall minimum, but with a magnetic field gradient present
at the position of the atoms to counteract gravity. This gradient will be used as an
experimental tool in chapter 4.

3.1.2 Optical lattice setup

The previously described coil configuration allows optical access through all magnet
coils (see figures 3.1 and 3.2). The three lattice axes are along the vertical (y-axis) di-
rection, through the QUIC coil along the x-axis, and along the second transport axis
(z-axis). Due to the absence of MOT optics around the main chamber of the appara-
tus, all of these paths are free for lattice and imaging beams. As outlined in section
2.2.2, the optical lattice is created by three independent optical standing waves, one
along each of the three main axes. The setup of the main optical components of each
of these is schematically shown in figure 3.2. Laser light from an optical fiber is col-
limated and then directed to the BEC through a focusing lens. The atoms are at the
focus of the beam, which has a waist of typically 140 µm. A resonant laser beam for
absorption imaging (described in the next section) is overlapped on the same path,
but is switched separately.
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3 Experimental setup and techniques

The optical lattices used for this study are ideally pure conservative potentials and
do not contribute to heating by photon scattering (see section 2.2.1). Therefore, they
have to be far detuned to any optical resonance of the 87Rb atoms. The main trapping
light source is a Coherent MBR 110E titanium-sapphire laser operated at a wave-
length of typically 844 nm and up to 4.5 W of output power. This light is split into
three separate beams, each of which first passes an acousto-optical modulator (AOM)
for controlling the beam intensity and is then coupled into a single mode, polarization
maintaining (PM) optical fiber. The fiber coupling is susceptible to thermal drifts and
mechanical vibrations, therefore the power output of the fiber is continuously moni-
tored by an amplified photodiode. A feedback circuit stabilizes this power by acting
on the AOM driver. The feedback circuits for the individual beams are controlled
by independent arbitrary waveform generators to dynamically change the potential
depths. Each of the intensity wave forms of the lattice axes can therefore be indepen-
dently chosen.

To avoid interference between the beams, the light forming the three lattice axes
is frequency shifted such as to be mutually detuned by at least 20 MHz. The light
polarizations are also chosen orthogonal to each other. In this way, cross-interference
between the beams can be completely neglected in the time averaged potentials.

3.2 Absorption imaging

Since the atoms absorb resonant light, they can quite literally be “photographed”.
This is the most common way to extract data from the atom ensemble in cold atom
experiments. In the following, this method and typical shapes of the resulting images
will be explained.

For the imaging conducted in this experiment, a resonant light beam with a large
cross section is illuminating the cloud and the shadow produced by the atoms on the
other side is recorded by a CCD array (camera) as shown in figure 3.3. While passing
through the cloud, the beam is attenuated due to the absorption from the atoms,
which at a given position is proportional to the 3D density of atoms. For a light beam
propagating along the z-axis of a coordinate system, the overall absorption along the
path of one light ray is thus given by the Lambert-Beer law as

I(x, y) = I0(x, y) · e−
∫

ρ(x,y,z)σdz = I0e−D(x,y),

where I0(x, y) is the initial intensity of the light and ρ(x, y, z) is the local density of
atoms at position (x, y, z) in space. The absorption cross section of one atom is given
by σ and D is the resulting integrated optical density of the light. This approach
assumes that the initial intensity of the light is small compared to the saturation in-
tensity of the atomic transition used for the imaging. In the image from the CCD
camera, the attenuation of the light recorded by an individual pixel therefore encodes
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3.2 Absorption imaging

Figure 3.3: Simplified view of the expansion and imaging sequence. The atoms are released
from the lattice trap created by intersecting laser beams (red). The cloud expands while
falling, and is eventually illuminated by a flash of laser light. The shadow cast by the atom
ensemble is projected to a CCD array and contains the 2D integrated density distribution in
the CCD plane.

the optical density of the atom cloud along the path of the light ray that illuminates
this particular pixel.

Since the illumination beam typically is not uniform, the optical density is usually
determined by a two-step procedure: First, one image is taken which contains the
shadow of the atom cloud. Then, the atoms are removed from the field of view, typi-
cally by waiting until they have dropped far enough to not be visible on the images.
Now, a reference image is taken which records the profile of the illuminating beam
and therefore yields I0(x, y) for each pixel.

To account for a constant offset of each pixel which is present even when no light
hits the camera, an additional image is taken without any illumination beam. This so-
called dark image is then subtracted from both the shadow image and the reference
image to cancel the bias. To reconstruct the integrated density, both images are then
divided and the logarithm is taken:

∫
ρ(x, y, z)dz = D(x, y)/σ =

1
σ

ln
(

I(x, y)− Idark(x, y)
I0(x, y)− Idark(x, y)

)
(3.1)

Here, the division of the optical density D by the absorption cross section σ yields the
column integrated atom density for each pixel.
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3 Experimental setup and techniques

3.2.1 Time of flight imaging of atoms from deep lattices

For the experiments presented in this thesis, the atom clouds being imaged are re-
leased from an optical lattice potential. In the following, the shape of the typical den-
sity distributions recorded in this way after ballistic expansion will be discussed. The
lattices are usually deep enough that the system is best described in the tight-binding
picture, using localized on-site wave functions. The shape of each of these wave func-
tions is mostly determined by the local shape of the potential at the lattice site, and
the phase is constant within the site. In most cases, the atoms are in the single-well
ground state, and the Wannier function can be approximated by a gaussian.

ba

Figure 3.4: Evolution of the density distribution after release from a deep lattice trap. Each
of the gaussian on-site wave functions expands independently (thin gray lines in a). For
localized atoms that have no defined phase relation, the expectation value for the total density
is the sum of the expectation values (blue lines in a). b In the case of a well-defined constant
phase, the wave functions interfere and a diffraction pattern develops.

The density distribution in space after the time of flight period texp can be written
as the expectation value of the density operator n,

〈n̂(x, texp)〉 = 〈â†(x, texp)â(x, texp)〉 =

〈
∑

j
â†

j (x, texp) ∑
k

âk(x, texp)

〉
, (3.2)

where â†(x, t) is the creation operator for an atom at position x at time t, which is
then expressed in terms of the operators â†

j (x, t) which describe the contributions to
the field (at time t) from atoms released at t = 0 from lattice site j. Assuming gaussian
initial (on-site) wave functions, the operator at time t can be derived from the on-site
operator by the evolution of the gaussian wave packet with initial width σ0 in free
space:

â†
j (x, texp) = W(x− xj, t)e

ih̄t
2m2σ2

0 σ(t)2 x2

â†
j (3.3)
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3.2 Absorption imaging

Here,

W(x, t) =
2π3/4√
σ0 + ih̄t

mσ0

e
− x2

2σ(t)2

is the gaussian envelope with

σ(t) =

√
σ2

0 +
h̄2t2

σ2
0 m2

the width of the expanding gaussian at time t. â†
j is the usual field operator for a

particle in the lattice site j. For situations where the on-site wave function is not well
approximated by a gaussian, such as in the case of atoms in higher-lying bands, this
expression has to be replaced by the appropriate momentum space Wannier function.

Using the wave function 3.3 to evaluate the density distribution from eq. 3.2, we
obtain

n(x, texp) = ∑
j,k

W∗(x− xj)W(x− xk)e
ih̄texp

2m2σ2
0 σ(texp)2 (2x(xj−xk)+x2

k−x2
j ) â†

j âk. (3.4)

We now assume that the time of flight texp is chosen so long that the expanded cloud
is much larger than the original distribution. This means that σ(texp) � xj for all j.
As W(x, texp) is a smooth gaussian with width σ(texp), this therefore leads to W(x +
xj, texp) ≈ W(x, texp) for all j. We make the same approximation for the phase term,
such that

2x(xj − xk) + x2
k − x2

j ≈ 2x(xj − xk). (3.5)

This is, however, not as strict as the previous assumption, as the phase term is not as
smooth as the envelope W, so it is generally not fully applicable for typical ballistic
expansion times. It breaks down for high spatial frequency components correspond-
ing to the largest values of xj − xk becoming comparable to scales in the coordinate
x. Structures on the scale of maximal xj − xk are therefore distorted first, which is
the size of the initial distribution (before release). As a consequence, outside of the
immediate near field, the minimum feature size is given by the initial distribution
size.

Furthermore, long expansion from strongly localized sites also implies σ0 � σ(texp)
and we can approximate

σ(texp) ≈
th̄

σ0m
.

With these approximations, the density distribution after expansion from an array of
lattice sites with strong confinement is

〈n̂(x, texp)〉 = |W(x)|2 ∑
j,k

e
imx

h̄texp
(xj−xk)

〈
â†

j âk

〉
. (3.6)
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Single wave function case

As derived in the previous chapter, in the superfluid case J � U, all atoms are fully
delocalized and occupy the same global wave function. The local wave functions are
coherent states which follow the relation

aj|Ψ〉 = αj|Ψ〉 = eiφj
√

nj|Ψ〉,

with αj the local wave function, φj the local phase and n the expectation value of the
occupation at lattice site j. In the superfluid ground state, the phase is constant and
can be chosen as φ = 0. In the time of flight expansion, we therefore get

〈n(x, texp)〉 = |W(x)|2
(

∑
j

e
imx

h̄texp
(xj)√nj ·∑

k
e
−imx
h̄texp

(xk)√nk

)
. (3.7)

In the simple cubic optical lattice, the site positions xj, xk form a regular lattice with
a spacing of a = λlat/2, and the components of the position vectors xj are integer
multiples of a. Apart from the Wannier function envelope, the expanded density
distribution is therefore the absolute square of a Fourier sum, the Fourier coefficients
being the wave function amplitude√nj. The periodicity of the Fourier sum is defined
by the characteristic length in the argument of the exponential,

l = 2πh̄texp/a/m = 4πh̄texp/λlat/m = 2h̄klattexp/m.

The periodic term is multiplied with the absolute square of the expanding on-site
gaussian function W(x, t). This formula directly corresponds to the pattern of a wave
which is diffracted by a grating: The gaussian corresponds to the single-slit trans-
mission envelope, and the Fourier sum is the interference term between the waves
emanating from each of the slits.

For a one-dimensional array of Ns sites spaced by a between −(N2 − 1)/2 · a and
(Ns − 1)/2 · a, the pattern evaluates as

n(x) = |W∗(x)|2
(Ns−1)/2

∑
k=(Ns−1)/2

ei2π x
l k

(Ns−1)/2

∑
j=(Ns−1)/2

e−i2π x
l j = |W∗(x)|2 sin(πNsx/l)2

sin(πx/l)2 .

This function has the approximate shape of the one shown in figure 3.4b for an array
of 4 sites. It represents a regular array of peaks spaced by the width of the Brillouin
zone l which is multiplied with a (gaussian) envelope from the expanded on-site Wan-
nier function. When increasing the number of sites Ns, the peaks become narrower
as 1/Ns according to the Fourier transform. Due to the approximations made, how-
ever, the calculation only holds as long as the peak width is larger than the cloud size
prior to expansion. The effect of the initial size of the cloud is a smoothing of the
distribution on this scale. In addition, each of the peaks corresponds to a packet of
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3.2 Absorption imaging

Figure 3.5: Momentum distribution of the atoms in the superfluid to Mott insulator transition.
The cloud is imaged after a time of free expansion from the trap. The first image shows
the expanded BEC without lattice. For the other images the lattice depth is progressively
increased (3.5, 7, 10, 14, 15, 17.4 and 22 ER, respectively) until the suppression of the superfluid
component results in the loss of interference.

atoms moving close together, which means that they interact during the expansion as
well as with the whole ensemble during the initial phase of the expansion. This can
be modeled as a mean-field repulsive interaction which further broadens the discrete
peaks, and for low lattice depths has to be taken into account when the absolute atom
density after expansion is analyzed quantitatively [100, 101].

Figure 3.5 shows the expansion images obtained for different lattice depths. The
first image shows the BEC emitted from a parabolic trap without any periodic po-
tential. It expands as a compact cloud, and the size after expansion is completely
dominated by the repulsive interaction of the atoms during the time of free flight.
For shallow lattices, the interference pattern is clearly visible along the two dimen-
sions shown. The number of occupied lattice sites along each direction is NS ≈ 25,
such that the width of the peaks is dominated by the initial size of the cloud.

Incoherent case

In the Mott insulating state, the ensemble properties are very different. Here, the
quantum state of each site j is a Fock state, which is not an eigenstate to the aj opera-
tors. Instead, for these states it holds that

〈Ψ|â†
j âk|Ψ〉 = δjknj,

with nj the occupation number of site j.
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With this relation, we get for the expanded density distribution:

〈n(x, texp)〉 = |W(x)|2 ∑
j,k

e
imx

h̄texp
(xj−xk)δnjnj

= |W(x)|2 ∑
j

nj

= Ntot|W(x)|2 (3.8)

In the Mott insulating case, the expanded density distribution is therefore simply
given by the gaussian envelope of the expanding on-site wave function, and no struc-
ture of the underlying lattice is visible. The transition from the superfluid to the Mott
insulating regime is shown in figure 3.5. When loading the atoms into the deep lat-
tice, the lattice depth is increased smoothly, leading to a larger and larger squeezing
of the on-site number distribution and a disappearance of the interference term by
the time the lattice depth reaches about V0 ≈ 15 ER.

It should be noted that, while the interference term due to the global coherence
of the superfluid phase vanishes completely, a weak sinusoidal interference pattern
with the same periodicity persists even in the Mott phase for systems with finite J.
This is visible in the images shown in figure 3.5 for the two deepest lattices. This
broad interference is caused by the previously mentioned local coherence created by
the admixture of particle-hole pairs in the ground state of a Mott insulator due to the
finite tunnel coupling J and is discussed in detail in [84, 85].

3.2.2 Brillouin zone mapping

A variant of the time-of-flight scheme is the Brillouin zone mapping technique. This
method is specific to optical lattices, and makes it possible to obtain the lattice quasi-
momentum distribution as opposed to the distribution of free-space momenta in the
trap [37, 102–104]. The difference to the normal ballistic expansion technique is that
the trap is not switched off instantaneously. Instead, the lattice beams which con-
stitute the trap are ramped down on a timescale which is fast only compared to the
“macroscopic” dynamics inside the trap – dynamics which requires tunneling pro-
cesses and takes place within individual bands of the band structure. At the same
time the ramp is slow compared to the on-site dynamics which is given by the band
gap scale as opposed to the band width. During this ramp, all atoms therefore adi-
abatically follow the band structure as illustrated in figure 3.6. In contrast to the
non-adiabatic switch-off, where the Bloch state basis of the lattice is projected onto
the plane wave basis of free space, this mapping technique adiabatically connects the
Bloch basis with the free-space plane wave basis. Each band of Bloch states is pro-
jected to a specific subset of free space momenta which is a combination of Brillouin
zones and is separate from the subsets corresponding to other bands. This method
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Figure 3.6: Schematic view of the Brillouin zone mapping process. During the ramp-down of
the lattice, the populations of each of the bands are mapped to specific regions in momentum
space. These are given by combinations of Brillouin zones and can be recorded after ballistic
expansion. For the absorption images shown, the ensemble has been specifically prepared in
the second (red shading) and the first (blue) Brillouin zones, respectively [105].

is therefore a very useful way of separately determining the atom populations in the
individual bands of the lattice band structure.

3.3 Controlled spin-changing collisions

Atoms in a deep optical lattices are confined very tightly on the one hand, leading to
strong mutual interactions between atoms on one site. On the other hand, individual
atoms are separated very effectively from the particles in other lattice sites. For typi-
cal parameters, many sites of the lattice are occupied with one or two atoms each. The
lattice potential wells therefore provide ideal “test tubes” for “reactions” between the
atoms they contain. Several different types of such reactions between two atoms in
one site have been studied in this way. These include controlled collisions between
two atoms resulting in a collisional phase shift [106] and the dependence of the cor-
responding collision properties on the magnetic field close to a Feshbach resonance
[107]. Also, two atoms can react to form a molecule in a very controlled way, driven
either by photoassociation [108, 109] or through magnetic Feshbach resonances [110–
113]. In all of these situations, the process can be extremely well controlled due to the
fact that the state of the atoms is perfectly defined – all internal and external degrees
of freedom are fixed by the preparation of the “samples” in the lattice.
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Figure 3.7: Spin changing collisions in the F = 1 hyperfine manifold. a Two atoms in the
mF = 0 state are converted to an mF = −1, mF = 1 pair during the collision. The initial and the
final two-particle state are detuned by an energy δtot, which contains contributions from the
quadratic Zeeman effect (δB) and the contact interaction (δint). b At very low magnetic fields,
the Zeeman effect for the two atoms in mF = ±1 cancels, and the detuning is dominated by
the difference in interaction energy between the two states.

Another reaction which can take place when two atoms meet is the so-called spin-
changing collision. This describes a process in which the collision products have
different spins from the initial configuration. As for the effects described before, this
process is especially well-defined for atoms in an optical lattice site, and as a result
can serve as a tool to control the internal states of the atoms. In the following, only
a brief introduction will be given to the subject, which has been studied in detail in
several publications [94, 114–116]. The description will then focus on the microwave
dressing method devised for actively controlling the spin-exchange process, which
makes such collisions a powerful and robust tool for quantum state engineering.

3.3.1 The spin exchange process

When two atoms are confined to the ground state of a lattice site, the only degrees of
freedom that can exhibit dynamics are the internal ones. As there is no coupling to
the outside world and all potentials are static, no angular momentum can be added
or removed. With static magnetic fields, the projection of the overall spin along the
magnetic field direction therefore has to be conserved. For two atoms prepared in the
| F = 1, mF = −1 〉 state, this means that no transition to any other configuration is
possible, as within the F = 1 hyperfine manifold of 87Rb, no other combination of
two states has a total projected angular momentum of mF(tot) = −2.

The total projected angular momentum mF(tot) = 0 however can be realized in two
ways: With the two atoms in | F = 1, mF = 0 〉, or one atom in | F = 1, mF = −1 〉 and
one in | F = 1, mF = 1 〉 as illustrated in figure 3.7. Therefore, transitions between
these two two-particle states are possible. Similarly, two identical atoms in the F = 2
hyperfine manifold can make transitions between different two-particle states unless
both atoms are in a stretched state and mF(tot) = ±4 (See [94, 114, 116]).
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3.3 Controlled spin-changing collisions

The rate of these transitions and the maximum transition efficiency depend on the
coupling strengths and the energy differences between these different two-particle
states. In the following, we will focus on the F = 1 hyperfine manifold, which is the
one that can be applied more easily for quantum state engineering as the atoms in
this state can not undergo hyperfine changing collisions. Such collisions change the
state of at least one atom from F = 2 to F = 1, thus releasing h× 6.8 GHz of energy,
which typically expels the atoms involved from the trap.

Spin-changing collisions can of course also occur in bulk ensembles without tight
confinement to a lattice. In spinor BECs of more than one spin component, they
provide a coupling between the spin states, which then show a complex dynamics
according to the initial magnetization and the relative chemical potentials of the spin
populations [117–119].

Low magnetic fields

In the following, we will use the state

| mF = 0, mF = 0 〉 = |mF = 0〉L|mF = 0〉R

to designate the two-particle state with both atoms in | F = −1, mF = 0 〉. The state

| mF = 1, mF = −1 〉 =
1√
2
(|mF = 1〉L|mF = −1〉R + |mF = −1〉L|mF = 1〉R)

is the configuration corresponding to a spin triplet with one atom in | F = 1, mF =
−1 〉 and the other in | F = 1, mF = 1 〉. These two two-particle states are not very
sensitive to magnetic fields, as the total linear Zeeman shift for both is 0. When all
magnetic field effects can be neglected and the external degrees of freedom are fixed
and constant, the only difference in energy results from the interaction part of the
hamiltonian.

For the two states described, a small difference between the scattering lengths of
the respective states leads to slightly different on-site interaction energies. Within the
F = 1 hyperfine manifold and for a total projected angular momentum of mF(tot) = 0,
the two interaction energies U+1,−1 and U0,0 differ by δint = h× 11.8 Hz.

The experimental sequence for the observation of spin-changing collisions is shown
in figure 3.8. It begins by preparing the ensemble in an optical lattice trap with a
depth V0 ≥ 40 ER chosen such that all atoms are strongly confined to a single site and
all tunneling is suppressed. For the rest of the experiment, the spatial distribution
across the lattice is thus frozen. The parabolic magnetic trapping field can therefore
be switched off, with a homogeneous bias field of 1.2 G remaining in order to preserve
the quantization axis. After a hold time of ≈ 50 ms to allow for the fields to stabilize,
two fast microwave π-pulses then transfer the atoms from the | F = 1, mF = −1 〉
state to the | F = 1, mF = 0 〉 state via | F = 2, mF = 0 〉. Immediately after this, the
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Figure 3.8: Experimental sequence for determining the fraction of doubly occupied sites in
the ensemble. After the lattice ramp and magnetic trap switch-off, all atoms are transferred
to mF = 0 and subsequently undergo spin dynamics for a time tSCC. Finally, the spin popula-
tions are separated by a gradient field and then recorded.

bias field is ramped to a small value, and the atoms are held in this condition for a
variable time tSCC, during which the spin-exchanging collisions can occur.

The cloud is then released from the trap and the spin components are separated
during the ballistic expansion by the application of a magnetic gradient field (“Stern-
Gerlach pulse”) for 3.5 ms. Two resulting images are shown in figure 3.9a. The central
cloud contains all atoms still in the mF = 0 state. The left and right clouds consist of
atoms in the mF = −1 and mF = +1 states, respectively, which become populated
by the collisional process. The data is then analyzed by either directly counting the
atoms through integrating rectangular regions as depicted in figure 3.9a or by fitting
gaussians to the peaks in the vertically integrated profile (fig. 3.9b).

The resulting evolution of the mF = 0 and the mF = ±1 populations during the
interaction time tSCC is shown in figure 3.10. For low magnetic fields (black symbols),
a clear sinusoidal evolution is visible, showing that a large fraction of the atoms oscil-
lates between the two states. The oscillatory behavior shows that the spin-changing
collision provides a coherent coupling between the two two-particle states. The oscil-
lations can therefore be described as Rabi oscillations between the two states which
are driven by the collisional coupling.

Influence of the magnetic field

Magnetic fields shift the energies of the Zeeman sublevels mF = −1, 0, 1 according to
their magnetic momenta. These shifts can influence the energies of the two-particle
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Figure 3.9: Absorption image after time of flight with Stern-Gerlach field for separating the
spin states (a). The two images show the cloud after being prepared in mF = 0, and before
and after undergoing spin-changing collisions. (b) Vertical integration of the second image
allows fitting three separate gaussians to determine the populations in the three mF-states.

states, and therefore affect the resonance condition of the process.
To first order, the Zeeman shift of the atoms in the |mF = 1, mF = −1 〉 state is zero,

and the effects on the two atoms of the | mF = 1, mF = −1 〉 cancel. However, the
second order contributions are all positive and not identical, leading to an additional
differential energy shift δB(B) between the two two-particle states. In the case of 87Rb
this contribution has the same sign as δint and therefore increases the total energy
difference δtot = δint + δB(B) between the two states with increasing magnetic field.

As can be seen in the earlier data, the coupling between the | mF = 0, mF = 0 〉
and the | mF = 1, mF = −1 〉 state is very weak, and the energy mismatch created
by the second order Zeeman effect can be easily large enough to bring the collisional
coupling between the levels out of resonance. This is shown in figure 3.10, where an
applied field of just 0.6 G (blue symbols) strongly reduces the oscillation amplitude.

The behavior can be most easily understood in terms of a two-level Rabi model,
where the coupling with strength Ω0 between the two levels is provided by the
spin-exchange collisions. The transitions are detuned from resonance by the energy
δtot = δint + δB(B). The contribution δB due to the second order Zeeman shift can be
calculated using the Breit-Rabi formula [120]:

δB(B) =
π2h̄2(gi − gJ)µ2

B
2EHFS

B2 ≈ h× 144 Hz/G2

Here, gi and gJ are the g-factors of the nucleus and the spin-orbit coupled electron,
respectively, EHFS is the hyperfine splitting and µB is the Bohr magneton. This de-
tuning increases the bare Rabi frequency Ω0 of the spin exchange coupling to the

effective Rabi frequency Ω′ according to Ω′(δtot) =
√

Ω2
0 + δ2

tot. At the same time, the

amplitude decreases as Ω2
0/Ω′(δtot)2.

From fitting this Rabi model to the data as shown in figure 3.10, the bare coupling
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Figure 3.10: Coherent spin exchange oscillations and the influence of the magnetic field. The
observed oscillations for 0.2 G (black) and 0.6 G (blue) are shown in (a). Solid points denote
population in | F = 1, mF = ±1 〉, hollow points that in | F = 1, mF = 0 〉. Gray lines are fits
with a damped sine function. The field dependence of the oscillation frequency is shown in
(b), with the red line showing a fit with the two-level Rabi model to determine Ω0 and δint
(see text). The error bars are plotted, but smaller than the symbols.

strength Ω0 and the interaction-induced detuning δint can be deduced. This is in fact
the method by which the value of δint = h× 11.8 Hz is determined. Both Ω0 and δint
only depend on the wave function overlap and the difference in the scattering lengths
which apply to the two two-particle states. For a known wave function overlap, this
scattering length difference is therefore the only fit parameter. This shows that the
spin-changing collisions are a very capable probe for the interaction properties of the
atoms. For more details on the scattering length analysis and the treatment of the
spin-changing collisions in the F = 2 hyperfine manifold see [94, 114, 116].

3.3.2 Microwave control of spin-changing collisions

The quadratic Zeeman effect can be used effectively to increase the detuning of the
coherent collisions and to bring them out of resonance. For very moderate magnetic
fields on the order of 1 G, the collisional process is energetically far detuned, and
therefore strongly suppressed. However, the detuning can not be reduced below δint
using B-fields alone, since for 87Rb the quadratic Zeeman shift and δint have the same
sign. The quadratic Zeeman effect can not be inverted by inverting the field, and the
detuning is therefore always increased in the presence of a field. In the following, a
way to introduce an additional level shift will be demonstrated, which allows to bring
the strongly detuned spin exchanging collisions back into resonance. The method is
based on the introduction of a detuned microwave field, which induces different level
shifts for the two two-particle states, allowing for a controlled relative shift.

52



3.3 Controlled spin-changing collisions

The optical dipole potentials introduced in chapter 2.2.1 create an effective potential
because the state of the atoms is energetically shifted due to the coupling to a second
level. The coupling in that case is introduced by the electromagnetic field of the light,
which is typically chosen far detuned from the resonance in order to avoid actual
transitions to that state. To derive the energy shifts applicable in that case, the detailed
level structure of the atom was not taken into account. This was possible since the
detuning of the coupling field in the case of typical optical potentials is much larger
than the energy splittings between the sublevels of the ground state and the excited
state. In that case, all ground states experience the same energy shift from linearly
polarized light, and the potential is therefore state-independent.

In this section, a microwave field with a frequency of ω ≈ 6.8 GHz is introduced,
which couples the states in the F = 1 hyperfine manifold to those with F = 2. As
the microwave field couples to the magnetic moment of the atoms as opposed to the
electric one, the level shift it produces is called AC Zeeman effect. The microwave
radiation used has a much smaller detuning from the resonances than the light fields
described earlier. Its detuning is comparable to the Zeeman splitting induced by the
magnetic fields present (see figure 3.11). Therefore, the detunings from the different
hyperfine resonances present for the individual Zeeman substates in the F = 1 hy-
perfine manifold can be very different. As a result, the strength of the coupling varies
for the substates, resulting in mF-state dependent energy shifts.

�

mF=-1 mF=1mF=0mF=-2 mF=2

Δ-1,-2

Δ+1,+2

σ-
σ+ω

mF=-1 mF=1mF=0

δ-1

δ-1 δ0

δtot/2

δ1

a b dc

δtot/2
=(δint+δB)/2

Figure 3.11: Microwave radiation can change the energy offset between the |mF = 0, mF = 0 〉
and the |mF = 1, mF = −1 〉 states. a The microwave fields used contain all three polarization
components, therefore nine different transitions have to be taken into account to evaluate the
F = 1 level shifts. The effect of the AC Zeeman shifts is shown in b-d, where the relative
energies of the states are plotted along in the vertical axis. Here, the linear Zeeman shift is
not included. In b, no AC field is present, and the detuning is due to interactions and the
second-order Zeeman shift. In c, an AC field reduces all single-atom energies by different
amounts δm, in this case bringing the combined | mF = 1, mF = −1 〉 two-particle energy (red
horizontal line) into resonance with | mF = 0, mF = 0 〉. In d, the total shift is so large that the
two two-particle states are off-resonant again, but with an inverted detuning δtot.
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3 Experimental setup and techniques

Figure 3.11a shows the structure of the hyperfine states involved. In the situation
shown, each possible transition between two hyperfine states | F = 1, mF = m1 〉 and
| F = 2, mF = m2 〉 is detuned by the amount ∆m1,m2 . Of these, ∆−1,−2 is the smallest in
the chosen configuration, and this transition generally dominates the overall effect by
reducing the energy of the | F = 1, mF = −1 〉 level. The energy of the | mF = 1, mF =
−1 〉 two-particle state will therefore be reduced with respect to the |mF = 0, mF = 0 〉
state, resulting in a negative energy shift δUW . Another way to create differential
shifts for the different sublevels is through the use of strong polarization in detuned
microwave or light fields [121–123].

The microwave frequency can be chosen far detuned from all single-particle reso-
nances, and the field is weak enough to allow for weak coupling approximations. The
total energy shift for the atomic state | F = 1, mF = m1 〉 can therefore be calculated
as the sum of the individual shifts resulting from each of the possible couplings to the
states in the F = 2 manifold:

δm1 =
3
4

2

∑
m2=−2

C{m1,m2}Ω
2
(m2−m1)

h
4∆m1,m2

Here, C{m1,m2} is the square modulus of the Clebsch-Gordan coefficient for the
dipole transition from | F = 1, mF = m1 〉 to | F = 2, mF = m2 〉. Ωp denotes the
strength of the microwave coupling for each of the three polarization components. It
corresponds to the σ− polarization for (p = −1), π for (p = 0) and σ+ for (p = +1),
and is 0 for all other p. These couplings are determined independently by measuring
the Rabi frequency of resonantly driven microwave transitions for each of the compo-
nents and normalizing with the Clebsch-Gordan coefficients. In this way, the relative
intensities of the three microwave polarization components were determined to be

Iσ− : Iπ : Iσ+ = Ω2
−1 : Ω2

0 : Ω2
+1 = 0.33 : 1.0 : 0.02.

These ratios are fixed by the magnetic field direction and the microwave setup, and
in the experiment only the total intensity is varied. At maximum intensity, coupling
strengths up to 82 kHz are reached on the π-transition.

The total change of the detuning between the two two-particle states is then calcu-
lated as

δUW = δ−1 + δ+1 − 2δ0.

This is illustrated schematically in figure 3.11b-d, for three situations without mi-
crowave field as well as with a coupling strength that shifts the spin collisions into
resonance and with a strong field present which completely reverses the detuning.

In figure 3.12a, the shift of the total two-particle detuning ∆ = δint + δB + δUW in
the presence of both a magnetic as well as a microwave field is shown in red for dif-
ferent microwave frequencies ω. The magnetic field is B = 0.42 G, and the microwave
coupling strength Ωπ = 2π × 23 kHz. When increasing the frequency ω, the single-
particle resonances cause a diverging shift whenever one of the detunings ∆m1,m2 is

54



3.3 Controlled spin-changing collisions

0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

in
 m

F
= 

±1

Evolution Time tSCC (ms)

S
pi

no
r d

et
un

ing
 δ

to
t/h

 (H
z)

Dressing Frequency ω-6.30 GHz (MHz)
533.0 533.5 534.0 534.5 535.0 535.5 536.0

400

200

0

200

400

600

800
ba

Figure 3.12: Controlling the spin changing collisions by using a microwave dressing field. a
Calculated detuning of the spin exchange for a fixed drive field strength Ωπ = 2π × 23 kHz
of varying frequency ω and a magnetic field of 0.42 G (red). The dashed line shows the detun-
ing without the microwave field. There are several resonances for the spin-exchange, where
δtot = 0, with the arrow marking the one that is chosen for the data in the right panel. b
Spin oscillations in a bias field of 0.42 G, with no dressing field (black) and with the dressing
field tuned to bring the spin exchange into resonance (red filled). The blue circles show the
spin oscillation when the detuning is overcompensated and the spin exchange is no longer in
resonance, corresponding to figure 3.11d.

zero such that two hyperfine levels are resonantly coupled by the microwave. The
spin-exchange resonances occur whenever the overall two-particle state detuning δtot
has a zero crossing. This is the case for several values of the microwave frequency
outside of the single-particle resonances. The most robust one of these is denoted
with an arrow. It is the one which is red-detuned to all of the single-particle reso-
nances, as all of these resonances are maximally detuned in this case. By this, the rate
of undesired microwave-driven transitions from the F = 1 to the F = 2 manifold is
minimized to below the detection limit.

The measurements in figure 3.12b show the effect of the AC Zeeman shift applied
during the full evolution period tSCC for the three cases sketched in figure 3.12b-d.
The microwave frequency corresponds to the value of 533.545 Mhz indicated in the
left panel, which leads to a resonance at a coupling strength of Ωπ = 2π × 23 kHz.
The spin oscillations without a control field are shown in black. With the microwave
field tuned to bring the spin oscillations into resonance, their amplitude is strongly
enhanced (red filled circles). By increasing the intensity even further, the spin oscil-
lations become off-resonant again and can be strongly suppressed (blue circles), with
the | mF = 0, mF = 0 〉 state now being higher in energy than | mF = 1, mF = −1 〉.

The maximum amplitude on resonance is smaller than one due to the fact that the
distribution in the trap does not only consist of doubly occupied sites. Atoms without
a collision partner can not change their hyperfine state and do not contribute to the
signal. Even for sites with an occupation number n > 2 the process is suppressed,
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Figure 3.13: Transfer efficiency from mF = 0 (black) to mF = ±1 (hollow circles). a Oscillation
amplitudes of the spin populations in a 1.2 G offset field plotted against increasing microwave
coupling strength. A sharp resonance occurs with a maximum fraction of 45% of the atoms
transferred to the mF = ±1 states. b time evolution of the populations on resonance. The
maximum transfer of 45% is reached after 15 ms.

as the presence of additional atoms results in a different value of δint, leading to a
significantly modified resonance condition in the case of 87Rb. This makes the col-
lision process a very useful probe for the occupation number inside the lattice sites,
which will be employed in the following chapters to probe the properties of the atom
ensemble in the lattice.

By increasing the quadratic Zeeman shift via a stronger magnetic field, the detun-
ing of the spin oscillations without the microwave field present is increased, and the
spin oscillation can be brought completely out of resonance. Figure 3.13 shows the
effect of the dressing field in this situation. Without the microwave, the spin oscilla-
tions are strongly suppressed, but can be made resonant using a dressing field, which
now has to provide a much larger coupling than in the B = 0.4 G case. For the data
shown, the magnetic field is B = 1.2 G. In this situation, the detuned microwave field
(ω = 2π · 6831.5 MHz) can be conveniently used as a switch to control the coher-
ent evolution between the two two-particle states, as the spin-exchange is completely
suppressed for this magnetic field. The coherent coupling can be activated for a very
precisely determined length of time. By choosing an evolution time τπ which cor-
responds to one half oscillation – a “π-pulse” of the Rabi-like system – a controlled
transfer of almost all pairs in the | F = 1, mF = 0 〉 to the | F = 1, mF = ±1 〉 states
can be achieved. For the experiments presented in the following chapters, this pro-
cess provides a very clean way to efficiently separate singly- from doubly occupied
lattice sites, as the spin states only change in doubly occupied sites.
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4 Number squeezing and the Mott shell structure

When the atom ensemble in the optical lattice is brought from the superfluid to the
Mott insulating regime, the distribution of the particles over the lattice sites changes
dramatically. This change of the distribution, discussed in chapter 2, is reflected both
in the local on-site distribution of states as well as in the global structure of the cloud.
Locally, the single site quantum state changes from a coherent state, corresponding to
a superposition of number states |j〉with different occupation numbers j, to a number
squeezed state |n〉 with a well-defined, integer atom number. Globally, the cloud
changes its structure from a smooth shape to a shell structure with spherical areas of
constant density separated by narrow boundary layers. In the following, these drastic
changes of the quantum state will be investigated experimentally.

4.1 Detection of number squeezing

To detect the change of the local atom distribution between the superfluid and the
Mott insulator state, it is necessary to distinguish between the number squeezed
states of the Mott insulator and the Poisson distribution of the superfluid. There-
fore, a method is needed which can separate the different site occupation states. For
this, the controlled spin-changing collisions introduced in section 3.3 are used. These
collisions change the internal state of all atoms in doubly occupied sites from mF = 0
to mF = ±1, but do not affect sites with other occupation numbers. The populations
in these different levels are then separated upon release from the trap by a magnetic
gradient “Stern-Gerlach” field.

4.1.1 Experiment sequence

The experimental sequence is outlined in figure 4.1 for a Mott insulator with two
shells. The magnetic field ramps and microwave pulse sequence used are equivalent
to the ones used in section 3.3.2. After the BEC is prepared in the high-offset mag-
netic trap, the lattice is ramped up in 160 ms to the desired value V0. After the final
configuration has been reached, the lattice depth is increased very quickly (0.5 ms) in
order to stop any tunneling, effectively freezing the occupation state of each site.

The magnetic trap is then switched off, and only a bias field of 1.2 G remains, which
is sufficiently high to suppress any spin-changing collisions in the F = 1 manifold.
After a hold time to allow the magnetic fields to settle, the atoms are transferred from
the | F = 1, mF = −1 〉 to the | F = 1, mF = 0 〉 state via the | F = 2, mF = 0 〉 state
using two microwave π-pulses as discussed in section 3.3. The microwave dressing
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spin changing collison

Figure 4.1: Experimental procedure to measure the number squeezing effect in the Mott insu-
lator. A controlled spin changing collision is used to modify the hyperfine state of all atoms
in the n = 2 shell. These are then separated from the rest of the cloud by a Stern-Gerlach
gradient pulse during the ballistic expansion.

field at 531.5 MHz then enables the coherent collisions for tSCC = 15 ms. This pulse
length corresponds to a collision-driven π-pulse. After this, the | mF = 0, mF = 0 〉
atom pairs have been transferred to | mF = 1, mF = −1 〉, while all atoms on singly
occupied sites are still in | F = 1, mF = 0 〉. The atoms are then released from the
trap, and a magnetic gradient field applied during the ballistic expansion separates
the spin components. The three clouds corresponding to the three spin components
are imaged with standard absorption imaging (see sec. 3.2).

By integrating over the three clouds on the image, the atom numbers in each spin
component NmF=−1, NmF=0 and NmF=+1 are determined. These directly correspond
to the numbers of atoms in singly and doubly occupied sites in the trap:

N1 = NmF=0 (4.1)
N2 = NmF=−1 + NmF=+1 (4.2)

Small corrections (typically on the order of a few percent) are applied to these num-
bers since the transfer processes is not perfect, and a small fraction of atoms is trans-
ferred from | F = 1, mF = 0 〉 to the | F = 1, mF = ±1 〉 states when switching off the
high offset magnetic trap. The necessary corrections are calibrated using sequences
without dressing pulse as well as sequences without microwave transfer pulses (See
section 4.6.1).

4.1.2 Pair fraction results

The experiment is repeated for many different atom numbers. To see the effects of
number squeezing, the resulting fraction of doubly occupied sites N2/(N1 + N2) is
plotted against the total atom number N1 + N2.
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Figure 4.2: Fraction of atoms in doubly occupied sites in the Mott insulating state. For low
atom numbers, no pairs exist in the cloud. For populations larger than a critical atom number,
a doubly occupied shell occurs, leading to a sudden rise of the number of sites with two
atoms. As a shell with three atoms per site forms, the fraction of doubly occupied sites starts
to decrease. The red solid line is a fit function to capture the position of the onset of pair
formation. The gray and black dashed lines correspond to the theoretically expected signal
for T = 0 and J = 0, where the dashed graph contains the correction due to spin exchanges
in the triply occupied sites.

Number squeezing in the Mott insulator

Figure 4.2 shows the results for a system deep in the Mott insulating regime (V0 =
40 ER). Here, we expect the atom cloud to distribute according to a shell structure as
discussed in section 2.3.5. The number of shells increases for increasing atom number.
Below a critical atom number the chemical potential µ in the center of the trap is lower
than the interaction energy U. In this situation there is only one single spherical shell,
which has a density of exactly one atom per site. At this atom number and below
therefore no atom pairs are expected to exist, demonstrating that the on-site density
is squeezed to single occupation. This can be seen in results shown figure 4.2, where
the measured pair fraction is 0 up to a total population of ≈ 5.7 · 104, just below the
expected threshold of 6.8 · 104. The uncertainty of ≈ 1 · 104 is dominated by the 15%
uncertainty of the atom number calibration applied.

The region of doubly occupied sites which forms in the center of the trap above
this threshold increases in size for rising atom number, resulting in an increase of the
fraction of atoms in that shell. This holds until the next shell starts to form in the
center of the trap, where each site is occupied by three atoms. As the spin exchange
process is only resonant for pairs, atoms from triply occupied sites are included in N1.
This shell now grows rapidly with increasing atom number, resulting in a decrease of
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4 Number squeezing and the Mott shell structure

the pair fraction as soon as the n = 3 shell forms.
The red line in the graph is an empirically determined fit function used as a guide

to the eye and to determine the position of the kink at the critical atom number for
n = 2 shell formation. The gray line shows the theoretically predicted n = 2 fraction,
without taking trap anharmonicity, finite temperature effects or the small rate of spin
exchanging collisions in n = 3 sites into account. The correction according to the ex-
pected 3% of triply occupied states undergoing spin exchange is shown as the dashed
black line.

Transition from the superfluid to the Mott insulating regime

A very different behavior of the pair fraction is predicted in the superfluid regime,
where each site is occupied by a superposition of many number states (see section
2.3.3). These are distributed according to Poisson statistics, therefore each site has a
finite probability to be occupied by a pair of atoms even for very low overall densities.

Figure 4.3 shows the evolution of the number statistics when increasing the lattice
depth from the superfluid to the Mott insulating regime. For low lattice depths, the
distribution is smooth and there is always a finite fraction of doubly occupied sites,
until a critical atom number for pair formation appears at the crossover to the Mott
insulator.

Theoretically predicting the on-site number distribution in the transition regime is
much harder than for the Mott insulator case. In the case of a perfect superfluid with
U almost zero, the probability to find an atom pair in a given site is determined by
the Poisson statistics according to the chemical potential at that location. However,
even for weak lattices we are not deep enough in the superfluid regime to be able to
make this assumption, so a partial squeezing still has to be taken into account. More
importantly, the ramp-up of the lattice for freezing the on-site distribution can not be
conducted arbitrarily fast. It must be slow enough to avoid the creation of vibrational
excitations. In the superfluid regime the tunneling times are not negligible compared
to this ramp time, and tunneling distorts the number distribution during the lattice
depth increase.

The number distributions obtained from a mean field calculation through the tran-
sition regime [78, 80] are shown in grey, where the dashed lines again include the
corrections due to the partially colliding atom triplets. This approach separates the
ensemble into a superfluid and insulating fraction. In makes a very rough prediction
for the expected pair fraction curves for our parameters in the superfluid to Mott in-
sulator transition, with typically a somewhat lower number squeezing than observed.

The prediction of the correct number statistics including all correlations is a non-
trivial calculation, especially when taking finite temperatures into account, and vari-
ous analytical approximations as well as numerical approaches have been developed
by theorists to this end [124–129].
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Figure 4.3: Fraction of doubly occupied sites in the transition from the superfluid to the Mott
insulating regime (Gray filled circles). The red lines show a fit with an empirically determined
function as a means to determine the critical atom number. The gray line shows the pair
fraction expected from mean field calculations, where the dashed curve shows the signal
expected with the corrections from triply occupied sites included.
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4 Number squeezing and the Mott shell structure

4.2 Probing the density distribution in the trap

The perfect Mott insulator (for zero temperature and J � U) is incompressible and
therefore forced to a locally constant density as outlined in chapter 2.3.5. This leads
to the formation of a shell structure of concentric spherical layers with sharp bound-
aries. Since the thickness of these layers is expected to be on the order of only 5 µm
for typical parameters, a very high spatial resolution in the 1µm range is required to
identify the structure. For direct optical imaging into the vacuum cell this is usually
achieved with dedicated high-resolution optics. This is unfortunately not available in
current 3D optical lattice experiments, as these were typically not explicitly designed
for high resolution imaging. To circumvent this problem, an indirect imaging tech-
nique was used. It bears some analogy to the nuclear magnetic resonance imaging
(NMRI) technique widely used for medical imaging. The scheme applied here cre-
ates one-dimensional integrated profiles of the density distribution in the trap. The
resolution is only limited by the shot-to-shot reproducibility of the atom cloud and
the time available for accumulating data to achieve a reasonable signal to noise ratio.

The method can be outlined as follows: The atom distribution of interest is placed
in a magnetic gradient field. As a result, the resonance frequency for field-sensitive
microwave transitions is position-dependent over the cloud. For a homogeneous gra-
dient field, it increases or decreases along the direction of the gradient. By choosing
the appropriate microwave pulse frequency and shape, it is therefore possible to se-
lectively transfer atoms in a narrow slice (“counting region”) of the cloud to another
internal state (“counting state”), as illustrated in figure 4.4. This method was pre-
viously discussed for spatially addressing atoms in an ensemble, for example in the
context of quantum information [130, 131] or to probe the spatial structure of har-
monic oscillator states in a 1D lattice [132].

After this transfer, the atoms in the original and final internal states can be sepa-
rately counted, effectively determining the density of atoms in the counting region.
By repeating the experiment many times with different frequencies, different loca-
tions along the gradient direction are probed and a one-dimensional integrated den-
sity profile is obtained. The spatial resolution using this method is no longer deter-
mined by the optical resolution of the imaging system, but instead by the width of the
counting region. For a given strength of the field gradient, this width is the frequency
range in which the microwave pulse transfers atoms to the counting state. Due to the
long lifetime of the counting state, the microwave pulses used can be very long and
use low coupling strengths. This translates directly to arbitrarily narrow counting
regions. The resolution of the method is therefore only limited by the shot-to-shot re-
peatability of the experiment and the ability to detect the low number of atoms from
the counting region reliably (see also section 4.4.1).
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Figure 4.4: Sketch of the slicing technique: Atoms in a region of width d within cloud are
transferred from the | F = 1, mF = −1 〉 to the | F = 2, mF = 0 〉 state. The microwave pulse
of frequency f used for this transfer is resonant only in this particular region of the cloud. The
cloud is then released and the two states spatially separated by a magnetic gradient during
expansion.

4.3 Experimental sequence

After the preparation of the BEC in the high offset QUIC trap (see section 3.1.1), the
atoms are shifted from the field minimum of the magnetic trap by the gravitational
sag distance of approximately 2 mm. This equilibrium position is given by the condi-
tion that the potential due to the field gradient exactly compensates for gravity:

mRb · g = µM
dB
dy

The magnetic dipole moment µM for 87Rb in an offset field of ≈ 153 G can be calcu-
lated with the Breit-Rabi formula [120], yielding am equilibrium gradient of ∂B/∂z =
3.4 G/mm which provides the spatial selectivity of the microwave pulse. Translated
into a frequency gradient for the | F = 1, mF = −1 〉 → | F = 2, mF = 0 〉microwave
transition this corresponds to a spatial selectivity of 0.54 µm/kHz. The lateral con-
finement of the trap means that the surfaces of equal field strength are curved up-
ward at the position of the atoms. Due to the large sag distance, this curvature is not
significant for the shape of the integrated density profiles within our measurement
accuracy.

The lattice beams are superimposed with the equilibrium position of the atoms and
are subsequently ramped on to an arbitrary final value V0 within typically 160 ms
[133]. After reaching the desired configuration of the system, the lattice depth is
rapidly increased to 40 Er within 100 µs in order to freeze out the density distribu-
tion. For the slice transfer, typically two independent pulses to two different states
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4 Number squeezing and the Mott shell structure

at separate positions of the cloud are employed. This serves to reduce the number
of repetitions required for a full profile. The two transitions used are | F = 1, mF =
−1 〉 → | F = 2, mF = −1 〉 and | F = 1, mF = −1 〉 → | F = 2, mF = 0 〉. The
obvious third one-photon transition | F = 1, mF = −1 〉 → | F = 2, mF = −2 〉 is
not used because the coupling strength of the σ−-transition in the high offset field is
too low due to a weak σ− polarization component of the microwave and a frequency
cutoff in the amplifier setup.

4.4 Data analysis

To generate a full density profile, many data points are taken independently for differ-
ent sampling positions. The recorded images which represent the density distribution
after the Stern-Gerlach separation are saved and post-selected by removing all mea-
surements with a total number of atoms outside the target range from the subsequent
analysis.

The probing frequencies are then translated to magnetic field strengths using the
Breit-Rabi formula. The field strength values are converted to positions using the
known gradient. By integrating over the regions of the three separated clouds, or
alternatively by fitting a gaussian to each cloud and determining the volume, the
atom numbers in all mF states are determined. These numbers are then corrected
for the background which originates from unwanted hyperfine transfers during the
magnetic field switching. The fraction in the two slices probed is then calculated and
all measurements for the same position are binned together and averaged. The error
bars of this average are computed by first determining the average scatter of the data
points around the average for their respective position. This value is then used to
compute the uncertainty of the mean value from the individual measurements for
each position.

4.4.1 Spatial resolution

The resolution which can be achieved by the method used is in principle given by
the thickness of the slices which are transferred to the counting state. For simplicity,
we use rectangular pulses with a length τP and the coupling strength Ω chosen such
that the atoms on resonance experience a π-pulse. For this situation, the transfer
probability PSF(∆) for atoms detuned by ∆ from the resonance frequency of the two-
level system can be calculated as

PSF(∆) =
Ω2

2|Ω2 + ∆2|

(
1− cos(

√
Ω2 + ∆2τp)

)
, (4.3)

with Ω = π/τp (see e.g. [69]). The shape of this distribution corresponds to the
point spread function (PSF) of the one-dimensional imaging process. It is similar to
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4.4 Data analysis

the sinc-function (sin(x)2/x2) which describes the spectral density of the pulse. The
borders (first zero crossings) of the central peak are at ∆ = ±

√
3Ω = ±

√
3π/τP.

Therefore, the width of this peak in frequency space is 2π
√

3/τP. It can be made
arbitrarily small by increasing the time τP of the pulse and correspondingly adjusting
the coupling strength Ω.

The width of the pulse in frequency space is directly related to the width in real
space by the magnetic field gradient and the field sensitivity of the transition used.
When two transitions are probed in a single iteration of the experiment, the lengths
of the pulses are chosen such that the slice thicknesses in real space are identical. For
the σ+ and the π transition, typical pulse lengths are 521 µs and 225 µs, which yields a
total pulse width of 3.3 kHz for the σ+-transition. This corresponds to a spatial width
of 1.8 µm and full width half maximum (FWHM) of 0.834 µm of the central peak of
the PSF.

If the slicing areas can be made arbitrarily thin, then what is the resolution limit
of the method? One obvious limit is the reproducibility of the density distribution
which is being examined and of the magnetic gradient field which determines the
position which is probed. As one consequence, the position of the cloud has to be
very reproducible between experimental cycles. The confining potential is dominated
by the gaussian profile of the lattice laser beams. The pointing stability of each of the
lattice beams therefore has to be on the micrometer scale for the duration of the profile
scan.

The resonance position along the gradient for a given microwave frequency is given
by the magnetic field offset and gradient. The dominating contribution to the field at
the position of the atoms is from the homogeneous offset field, with a strength of
approximately 150 G. A deviation of 2 µm corresponds to a magnetic field stability of
60 mG or a relative stability of up to 4× 10−7. The power supply driving the 72 A cur-
rent used for this offset field1 has a specified relative stability of 1× 10−7. The current
ramp for this field, which also controls the 2 mm movement of the BEC from close
to the center of the magnetic trap to the sagged position, is optimized for minimized
oscillations at the final position. The residual position fluctuations are always small
compared to the effective pixel size of the optical imaging system (4.0 µm).

Originally, the simultaneous sampling of several positions in the distribution was
introduced in order to be able to compensate for shot-to-shot fluctuations in cloud
position and magnetic field offset. One way to achieve this is to keep one of the sam-
pled slice positions stationary in a part of the profile with a known density gradient.
Deviations of each individually measured density value from the average can then
be used to correct the slice position of all other samples taken in the same cycle. In
this way drifts occurring on a timescale longer than the combined sampling time (ap-
proximately 1 ms) can be canceled. For the measurements presented here, however,
this drift compensation was usually not employed. Improvements on the experiment

1Danfysik, 150 A maximum current

65



4 Number squeezing and the Mott shell structure

eventually resulted in a reproducibility which was no longer limiting compared to
the counting resolution discussed below. Therefore, the simultaneous sampling was
utilized only to increase the rate of data taking.

4.4.2 Counting limit

One obvious consequence of increasing the profiling resolution by decreasing the
slice thickness is the reduction of the number of atoms per slice. This number can
only be reduced to a point where it is still feasible to count the atoms in a reliable
way. This counting takes place by integrating the optical density in the part of the
absorption images which correspond to the appropriate hyperfine state. One inher-
ent limit is therefore due to the shot noise in the number of photons which can be
registered in that area. In practice, however, small shot-to-shot fluctuations in the
inhomogeneity of the image background limit our sensitivity to approximately 50
atoms. The counted atom number per slice should be much larger than this limit.
This can be achieved in two ways: Either by choosing an appropriately large slice
thickness, which includes a sufficiently large amount of atoms or by summing the
counted signal for several independent images with the same parameters. With the
latter method, the counting fluctuations also add up, therefore the relative sensitivity
improves with the square root of the number of images only.

The uncertainty in the atom number in a given slice limits the resolution of the
method in practice, since only those features in the density distribution can be identi-
fied which lead to a change in atom number in adjacent slices which is large enough
to be identified against the noise. Under good conditions, this is on the order of only
a few lattice spacings.

4.5 Experimental results

4.5.1 Density profile of a Mott insulator

The density profiles obtained with this method for a Mott insulator in the optical lat-
tice trap at a lattice depth of 40 ER, are shown in figure 4.5. The data is taken with
a resolution of about 0.8 µm FWHM (521 µs pulse length for the σ+ transition). It
allows for a direct determination of the sizes of the clouds inside the trap, and the
profiles have sharp outer edges. The gray curves shows the results of a fitting the
data with a model which assumes a perfect insulator state consisting of two or three
Mott shells with constant integer site occupation. Apart from a 1 µm drift toward
higher frequencies that occurred for the highest atom number scan2 and had to be
included, the data is very consistent with this model. However, the expected shape

2Most likely caused by an increase of the rubidium oven temperature before the last measurement in
order to increase the maximum atom number
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for a superfluid cloud with the same width and the same atom number, shown as
the dashed curve in b, is so similar that the two can not be distinguished very well
(However, with data taken at this high resolution, the difference in fit residuals is sig-
nificant in the low atom number regime). In addition to this, a best fit with a gaussian
shape, corresponding to a fully thermal distribution without effects of interactions is
plotted for reference.
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Figure 4.5: Density profiles of the Mott insulator distribution for different atom numbers (left
panel). The density is plotted against the σ+ probe frequency (top scale) as well as against
position along the y-axis (bottom scale). The curves are offset along the vertical for clarity, and
correspond to atom numbers of 1.1, 2.5, 3.6 and 7.1× 105 atoms (bottom to top). Gray lines
denote fits to the curves with a shell structure profile. The curves in the right panel, which
correspond to 2.5× 105 atoms, show the shapes of the profiles expected for the Mott insulator
(gray) with the distinctive sharp edges and a kink around ±8 µm. In addition, the profiles of
a superfluid (black dashed) and a thermal cloud (red dashed) of the same atom number are
plotted.

4.5.2 Spatially selective manipulation of atoms

While the slicing method described here is mostly employed as a scheme to measure
density distributions, it inherently involves spatially manipulating the cloud of atoms
by manipulating the internal state of the atoms locally. This can be shown directly
by modifying the cloud in a defined way and recording the resulting change. It is
demonstrated in figure 4.6, where the central slice of the distribution was transferred
by a first microwave pulse (“manipulation pulse”) to the | F = 2, mF = −1 〉 state.
A second pulse on the | F = 1, mF = −1 〉 → | F = 2, mF = 0 〉 transition with
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4 Number squeezing and the Mott shell structure

the same spatial width is used as a probing pulse to obtain the resulting distribution.
Since the second pulse does not couple to the | F = 2, mF = −1 〉 state, the atoms are
effectively removed from the density profile optained by the probing. In principle it
is even possible to physically remove the atoms addressed by the first pulse using
light resonant to | F = 2, mF = −1 〉 state which could push those atoms out of the
trap.
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Figure 4.6: Resolution of the slicing technique: Atoms in the center of the cloud are removed
by transferring one slice from | F = 1, mF = −1 〉 to the | F = 2, mF = −1 〉 state. The cloud
is then probed by a second pulse with the same spatial width which transfers atoms to the
| F = 2, mF = 0 〉 state. The dashed line denotes a combined fit of the Mott shell structure
to the unmodified cloud from which a gaussian peak was subtracted. The parameters of the
gaussian were fitted to the data shown, resulting in a FWHM of 2.3 kHz. The solid red curve
denotes the expected profile calculated directly from the known pulse parameters.

The obtained mF = −1 density profile after removing the central slice is shown in
figure 4.6. The pulse widths used are 225 µs on the | F = 1, mF = −1 〉 → | F =
2, mF = −1 〉 and 521 µs on the | F = 1, mF = −1 〉 → | F = 2, mF = 0 〉 transitions,
respectively. This results in an identical spatial transfer profile or point spread func-
tion for both pulses. The shape of the dip in the measured density profile therefore
corresponds to the PSF of eq. 4.3 convolved with itself. The full width, half maxi-
mum size (FWHM) size of the feature as obtained by fitting a gaussian to the data
is 2.3 kHz. This corresponds to a spatial FWHM of 1.3µm for the measured dip and
a 0.9 µm FWHM of the assumed gaussian PSF. The measured curve also agrees well
with the shape calculated directly from the pulse parameters shown in red, which
corresponds to a 0.83 µm FWHM of the point spread function.
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4.5.3 The influence of the external confinement on the Mott insulator

As discussed in section 2.3.5, the shell structure of the Mott insulator in a trap is a
result of its incompressibility and the confining potential of the trap. Due to the in-
compressibility, the density can only increase in steps which correspond to the edges
of the shells. The distance between two steps and therefore the size and geometry
of the shells depend on the gap energy and the gradient in the local chemical po-
tential µ(r). Decreasing the strength of the confinement with otherwise unchanged
parameters results in a slower variation on µ, which in turn causes larger shell sizes.
It is important to note, however, that the density inside the shells does not change
upon such decompression. The density in the center of the trap would change dur-
ing compression and decompression for a classical gas or for a superfluid state. In
the insulating state it can only change by introducing or removing additional shells
with internally constant density in the center. Therefore, an important difference be-
tween these states arises when the confinement is such that only one MI shell exists:
In this case, the density of the MI state can not be lowered, and the cloud does not
expand, even if the confinement (and therefore the equivalent to the thermodynamic
pressure) is reduced. The volume of the Mott insulating state thus increases upon de-
confinement, until the cloud consists of only one shell. At this point its volume stays
constant, even on further deconfinement.

In the optical lattice trap, the confinement strength is determined by the sum of
the magnetic and the optical potentials. It is characterized by the trap frequencies for
the harmonic oscillator, since the atoms are close to the minimum of the potential,
where it can typically be well described by a parabolic shape. The attractive optical
lattice potential strongly dominates the overall confinement even below the SF to
MI transition. However, the confining force of the lattice potential created by red-
detuned light can not be changed without modifying the lattice depth. An additional
degree of freedom is therefore required to do this, which can be added in the form
of an additional optical potential. To this end, a blue detuned (wavelength 765 nm)
beam with the same beam geometry as the lattice beam on the x-axis is used. It is not
retro-reflected and therefore provides a pure repulsive potential which counteracts
the confinement in the radial directions due to the red beams.

The effect of such a deconfining potential is shown in figure 4.7. By varying the
blue beam power, the confinement of the atom cloud can be within ≈ 55 − 70 Hz
while maintaining otherwise identical lattice parameters. This changes the trap fre-
quencies from ≈ 2π × 73 Hz to ≈ 2π × 57 Hz along the y- and z-axis, leading to an
increase of the cloud diameter from 28± 0.4 µm to 33.1± 0.5 µm. This is a change of
by 18.2± 2.4%, consistent with the expectation for a multi-shell Mott insulator which
will be derived in the following. It should be noted that, instead of creating the com-
pressed Mott insulator first and then applying the deconfinement, the system was
brought into the final state directly from the superfluid. In this way, it is much easier
to fulfill the adiabaticity condition during the lattice changes, and the order of the
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Figure 4.7: Mott insulator density profiles for different external confinement strengths, but
otherwise similar trapping and probing parameters. Black data points correspond to a com-
bined magnetic and optical trap potential of 2π× (73± 3) Hz along the y- and z-axis. Red and
blue circles denote trap frequencies of 2π × (63± 4) Hz and 2π × (57± 4) Hz, respectively.
Along the x-axis, the trap potential is not reduced. Lines show the results of fits with a Mott
shell structure distribution.

sequence has no effect on the final distribution expected by theory. The lattice ramps
used have been optimized numerically to achieve very good adiabaticity in the lattice
manipulations and are relatively long (320 ms for the full sequence).

The blue detuned beam does not influence the confinement along its longitudinal
directions, resulting in a non-isotropic decompression. Let us first consider the case
of an incompressible cloud such as the single-shell Mott insulator. It can change its
shape when it is subjected to a change of the confining potential as long as the over-
all volume is constant. In three dimensions, the gas will deform in such a way that
it expands in the directions in which deconfinement is applied, and contracts along
those directions with constant confining potential in order to keep the volume con-
stant. This is why an expansion along the y-direction would be expected even in the
case of a fully incompressible ensemble. The radii along the three dimensions can be
easily calculated from the volume V of the single shell due to the condition that the
chemical potential µ at the borders of the cloud has to be 0. The volume is given as

V =
4
3

πr̄3 = N · a3
lat

where alat is the lattice spacing, and r̄ = (rxryrz)1/3 the average of the three cloud
radii.

70



4.5 Experimental results

The on-site chemical potential

µ(x, y, z) = µ0 −
1
2

mRb(ω2
xx2 + ω2

yy2 + ω2
z z2)

vanishes at the outer edge of the cloud. This yields

rx,y,z =
√

2
µ0

mRbω2
x,y,z

and µ0 =
mRbω̄2

2
a2

lat
3

√
3N
4π

2

,

with ω̄ = 3
√

ωxωyωz
The slicing method determines the cloud size along the y-axis. Originally the con-

finement is approximately isotropic: ωx = ωy = ωz. Applying the deconfining po-
tential reduces ω′y = ω′z simultaneously by a factor α while keeping ω′x constant. This
leads to a scaling of the radius ry as

ry ∝
ω̄

ωy
= 3

√
ωxωz

ω2
y

= α−1/3

In contrast, the total atom number in the superfluid (as well as the Mott insula-
tor in the limit of high average occupation number and therefore a large number of
shells), is determined by integrating the Thomas-Fermi distribution eq. 2.24 in the
anisotropic harmonic confinement, which yields

N =
4

15
πmRb

Ua3
lat

ω̄2r̄5,

with r̄ = 3
√rxryrz the geometric average of the Thomas-Fermi radii. The chemical

potential in the center is

µ0 =
1
2

mω2
j r2

j

with j = {x, y, z}. Under the same scaling of the trap frequencies as before, these
relations lead to a scaling of

ry ∝ α−3/5.

Therefore, the formation of a single-shell Mott insulator can be identified by detect-
ing the change in the vertical deconfinement response. Using the deconfining beam
to reduce the radial trap frequencies by a 67% for example results in doubling the
vertical size of a superfluid, whereas the single shell Mott insulator expands by only
45%. However, for the experimental configuration used, due to technical limitations
arising with the blue beam setup such a large deconfinement could not be achieved
with the required stability within reasonable effort. The combination of the two po-
tentials along the same axis is very suceptible to fluctuations for large deconfinements
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as one beam almost completely compensates the confinement from the other. Due to
the stability limits, in the regime of low atom numbers and strong deconfinement
the fluctuations of the confinement and position were large and made a reliable de-
termination of the position of the shell boundaries difficult. Determining the shell
geometry by probing the site occupation numbers directly proved to be more practi-
cal.

4.6 Site occupation number-dependent probing

The identification of constant density Mott shells depends on the identification of the
shell boundaries. When using only density profiles, this in turn requires the identifi-
cation of the kinks which appear in the density profile. These can be very weak even
for ideal Mott states, making a clear identification difficult. A much better way to
analyse the in-trap configuration is therefore to independently map the distributions
of lattice sites with a specific occupation number. In this way, it can be directly deter-
mined whether the areas with different on-site occupations are separated or overlap.

This capability can be added to the slicing method by combining it with a number-
state selective process. The approach pursued here is to transfer the slected slice into
the | F = 1, mF = 0 〉 state and to subsequently enable all atom pairs to undergo
spin-changing collisions. The parameters are chosen as in section 4.1 such that the
pairs among the transferred atoms change their state from | mF = 0, mF = 0 〉 to
| mF = 1, mF = −1 〉. The otherwise unoccupied state | F = 1, mF = 1 〉 therefore
now directly reflects the amount of pairs in the selected slice.

imaging

mF=-1 mF=0

release

gradient
pulse

mF=+1slice selection spin changing collisions
for pairs

Figure 4.8: Illustration of the number state selective profiling technique. First one slice is
transferred from mF = −1 (blue) to mF = 0 (red). Pairs in mF = 0 then undergo a resonant
collision into the m f = −1 and mF = +1 states (green). These three mF-states are separated
by a magnetic gradient on release, and imaged as separate clouds.
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The typical parameters used for this extended process are slightly different from
the usual ones, as the further subdivision of the transferred slice population and the
additional experimental steps required reduce the signal-to-noise ratio. This will be
discussed in more detail in section 4.6.1. Also, parallel probing of different locations
in the cloud is no longer possible, leaving less points available for averaging. Taking
this into account, the slicing π-pulse length is chosen as 150 µs. The pulse transfers
the atoms from |F = 1, mF = −1〉 to |F = 2, mF = 0〉. A second π-pulse, which is res-
onant at the same position, is then applied to bring all atoms from |F = 2, mF = 0〉
to |F = 1, mF = 0〉 within 5.6 µs. This second pulse is applied with much higher cou-
pling strength, leading to the short pulse time and a correspondingly large transfer
profile in space. In addition to that, the | F = 2, mF = 0 〉 to | F = 1, mF = 0 〉 transi-
tion is much less magnetic field dependent than the slicing transition. Together, this
ensures that all atoms which were addressed by the slicing pulse are also transferred
back to the F = 1 hyperfine manifold by the second pulse.

The magnetic gradient field is then switched off completely, and a homogeneous
offset field of 1.2 G remains. We then use the microwave dressing technique out-
lined in section 3.3.2 to switch on the coherent collisional coupling for 15 ms, which
corresponds to one half oscillation. By this, pairs of atoms are transferred from the
| mF = 0, mF = 0 〉 to the | mF = 1, mF = −1 〉 state. After this, the lattice is
switched off, and the same ballistic expansion and imaging sequence with a 3.5 ms
Stern-Gerlach pulse as in section 4.3 is used.

The population numbers NmF=−1, NmF=0 and NmF=+1 for the three mF-states now
encode the slice information in a different way than before. The reconstruction of the
density distribution will be discussed in more detail in section 4.6.1. An approxima-
tion is the following: NmF=+1 contains one atom from each pair in the probed region,
the other atom of each pair is counted by NmF=−1 together with all atoms outside of
the slice. No spin-changing collision occur in sites with only one single atom trans-
ferred to the mF = 0, and these are therefore counted in NmF=0.

4.6.1 Reconstruction and resolution of number-state distributions

By reconstruction from the above numbers the overall atom number Ntot as well as the
total number of atoms in the slice region Nslice and the population in doubly occupied
sites inside the slice N2 are obtained. In order to discuss the resolution and detection
limit of the number-state selective slicing method, the reconstruction process has to
be looked at in more detail.

The counting technique yields the Zeeman state populations NmF=−1, NmF=0 and
NmF=+1. After the slicing and the transfer pulse, the situation is still fairly simple:
all the atoms of the slice are in the mF = 0 state, whereas all other atoms are still in
mF = −1. However, the sequence which follows and allows for the number-state
selective spin-changing collisions considerably complicates the situation.

73



4 Number squeezing and the Mott shell structure

Background calibration

One immediate effect, which is not number-state dependent is the following: Dur-
ing the switch-off of the magnetic trap, there is a finite probability for each atom to
make a transition between two mF states which differ by one quantum of angular
momentum. This cannot be avoided for our setup, and is independently measured
by calibration experiments, where combinations of the mF = −1 and the mF = 0
state are occupied and no spin-changing collisions take place. The transfer proba-
bilites obtained from these calibrations are then used to compensate the effect in the
measurements.

Resolution and slice transfer profile

The shape of the point spread function for single atoms was already discussed in
section 4.5.2. For atom pairs, this shape changes due to the fact that a pair is only
detected if both its members are transferred to the | F = 1, mF = 0 〉 state, where they
can undergo spin-changing collisions. The spin-dependent collisions are sensitive to
transferred pairs only, not to doubly-occupied sites in general. Therefore, the prob-
ability distribution of detecting an atom pair is actually the squared single-particle
distribution. This distribution is narrower in frequency space which means that, for
pairs, a higher resolution is achieved with the same transfer pulse length. The FWHM
of the central peak is narrower by almost 30%. When choosing the step size for the
profiling scan, this is taken into account, which results in significant oversampling of
the single atom signal profile.

As a consequence of the more narrow detection region for atom pairs, the detected
atom numbers for the same over density are different for the two cases of pairs and
single atoms. In order to be able to combine both numbers, this reduction is compen-
sated. The ratio of the integrals of both point spread functions is 0.61. The measured
number of pairs is therefore divided by this number in order to allow direct compar-
ison to the overall number of atoms in the slice.

The pair detection could be improved if the PSF were made rectangular in such a
way that it contains only the values 0 and 1. In that case, the probability of transfer-
ring only one atom out of a pair would be very small, and the point spread functions
for both single atoms and pairs would have the same shape. The transfer pulse could
be optimized in this regard by either using shaped pulses or multi-pulse sequences.
These techniques are very common in classical nuclear magnetic resonance measure-
ments to increase either spectral sensitivity or spatial resolution.

Another obvious way of removing this particular effect would involve initiating the
spin-changing collisions before the slicing sequence. In this case the PSF for the two
number states would be the same, and less corrections would be required. However,
this would require switching the magnetic gradient fields off completely for the spin-
changing collisions, and on again later as the gradient for the slicing pulse. The long
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settling times however as well as the introduction of much more background due to
the repeated magnetic field switching events make this approach less appealing.

Offset correction and data reconstruction

Due to the processes explained above, the three populations obtained from counting
the atoms in the three final hyperfine states do not correspond directly to the quan-
tities of interest. The relevant numbers are the atom numbers in the selected slices,
separated for singly and doubly occupied sites.

The relation is still quite simple for the mF = 1 state, which can only be populated
by atoms undergoing a spin-changing collision from mF = 0 to mF = 1. However,
only one atom of the pair ends up in this state, whereas the other is transferred back to
mF = −1. In addition to that, the pair transfer efficiency is 0.61 for the pulse shapes
used compared to the single atom transfer. Therefore, the population in mF = 1 is
only 31% of the quantity of interest, the population of pairs inside the selected slice.

In contrast to this, NmF=−1 contains all atoms which were outside the selected slice,
as well as an additional fraction of the atoms which were on the inside. This latter
fraction contains two parts: One is due to atoms which were transferred back from
the mF = 0 to the mF = −1 state during spin-changing collisions and the other due to
atoms from doubly occupied sites in which only one atom of the pair was transferred
to mF = 0 by the slicing sequence. NmF=0 consists of the atoms in the slice from sites
with single occupation as well as those of doubly occupied sites in the slice where the
pair was not fully transferred.

In order to obtain the in-trap occupation numbers, these known transformation
effects have to be taken into account. In addition, the effects of all unintended popu-
lation transfers, generated mostly during the trap field switching, have to be reverted.
This is done quite literally by combining them in a transformation matrix M which
predicts the outcome of the “distorted” measurement from the original set of popu-
lations in the Zeeman states. N′mF=1

N′mF=0
N′mF=−1

 =

 1 P0,1 P−1,1
0 1− P0,1 P−1,0
0 0 1− P−1,0 − P−1,1

 ·
 NmF=1

NmF=0
NmF=−1

 (4.4)

Here, Pm1,m2 denotes the probability of transferring an atom from | F = 1, mF = m1 〉
to | F = 1, mF = m2 〉, with typical values of P−1,0 ≈ 0.03, P0,+1 ≈ 0.03 and P−1,+1 ≈
0.003. These values are determined with an independent calibration measurement.

This matrix is then inverted and the resulting calibration matrix used to calculate
the actual populations in the Zeeman states as produced by the slicing and exchange
processes without distortions. From these populations, the populations (Ntot, Nslice, N2)
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4 Number squeezing and the Mott shell structure

are then determined:

Ntot = NmF=−1 + NmF=0 + NmF=1

Nslice = NmF=0 + 2NmF=1

N2 = 2NmF=1/0.31

Averaging and Statistics

The averaging procedure is similar to the one described in section 4.4. After removing
those images for which the atom number lies outside the targeted range, typically 2
to 5 images can be averaged per slicing frequency. If at the end of the data-taking run
less than two valid data points in the chosen atom number range were recorded for
any given slicing frequency, those slices are measured again until enough valid data
is taken.

The error bars are determined independently for each curve in the same way as
presented in section 4.4. It is worthwhile to note that due to the transformations re-
quired to calculate the slice atom fractions from the mF state populations, the error
bars for the derived numbers differ significantly from each other. Since only about
one third of the atoms from doubly occupied sites in the slice is detected, this quan-
tity has the highest fluctuations due to counting errors and consequently the largest
error bars. Somewhat counter intuitively, the difference signal Ntot − N2 typically
has the smallest error bars. This is due to the fact that this quantity almost directly
corresponds to the mF = 0 population, which requires only a small correction and
therefore does not accumulate errors from more than one source. Clearly, the signal
to noise ratio for this measurements is lowest for the N2 signal. The slice width and
sampling step size is therefore optimized for this quantity, resulting in significantly
wider slices and accordingly shorter pulses than for the experiment without number
state selectivity.

4.6.2 Results

To display the resulting profiles, the averaged data is plotted against position as in
the single-particle case. In order to visualize the different number state distributions,
the density of singly occupied sites is of interest, as it is expected to display the char-
acteristic plateau of the truncated parabola as soon as a central doubly-occupied core
forms. For the typical atom numbers and trap parameters, only an n = 1 and an
n = 2 shell is expected. In that case the n = 1 density can be displayed by subtract-
ing the n = 2 atom density from the total atom density. Atoms on triply occupied
sites undergo only weak spin exchange for the parameters chosen, and these atoms
therefore appear mostly together with the single atoms.

In figure 4.9, the resulting number-state selective density profiles are shown. The
measured curves are fitted with a model assuming three shells with a perfect shell
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Figure 4.9: Number state resolved density profiles of the atom cloud for different total atom
numbers: Grey points are the total density distribution and red points the distribution of
doubly occupied sites. Blue points are the fraction of atoms from sites with occupations other
than n = 2. The lines are fits with density profiles calculated using a perfect Mott shell
structure. The atom pair signal is offset for clarity. The central core of doubly occupied sites
is visible as a separate distribution of sites with n = 2 which is smaller than the overall
radius. The density of singly occupied sites vanishes in this shell, resulting in a plateau in the
integrated density profile for n = 1. For large atom numbers, a third shell with n = 3 appears
in the center of the n = 2 shell, leading to a plateau structure of the n = 2 profile as well.
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Figure 4.10: Fitted radii of the Mott shells for different atom numbers and a lattice depth of
22 Er. The solid, gray and hollow data points denote the radii of the shells with single, double
and triple occupation, respectively. The solid, dashed and dashed dotted lines are calculations
of these first three Mott shell radii for zero temperature and zero tunnelling.

structure (T = 0 equivalent) and the shell radii as independent fit parameters. For
very low atom numbers, only a very weak central n = 2 shell is visible, most of the
cloud consists of singly occupied sites. For increasing atom number, the inner shell
radius, and with it the size of the plateau in the single-atom signal, increases much
faster than the outer shell radius. Above the threshold for the formation of a third,
triply occupied shell in the center, the n = 2 shell profile develops a plateau structure
and the additional structure on top of the n = 1-plateau indicates the presence of the
new shell.

The signatures of the Mott shells in the trap are the parabola shapes of the n = 1 and
n = 2 profiles with sharp edges and the flat top structure characteristic for a hollow
shell. With increasing temperature T > 0.2U, these edges wash out, as shown in
section 2.4. The fitted radii of the shells are plotted in figure 4.10 against atom number.
They are compared with the calculated values for the T = 0, J = 0 idealized case
without any free parameters. Qualitatively, the data agrees well with the predicted
shape. The measured radii are generally somewhat smaller than expected. It appears
therefore that the trap confinement along the vertical axis was larger than expected,
reducing all measured radii and shifting the n = 2-shell formation threshold toward
smaller atom numbers.

The density profiling process always takes place in a deep lattice, since tunnel-
ing has to be suppressed on the timescale required for the transfer pulses and the
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4.6 Site occupation number-dependent probing

spin-changing collisions. It is therefore not possible to obtain number-state selective
density profiles in a lattice with strong tunnel coupling being present. However, the
density profiles in this regime can be obtained if the tunneling is suppressed quickly
by ramping up the lattice to a large barrier depth faster than atom redistribution can
occur. In this way, the density profiles for the superfluid regime can be probed. Fig-
ure 4.11 shows several profiles in between the fully superfluid and the fully Mott
insulating regime.
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Figure 4.11: Number state selective density profiles of the atom cloud for different lattice
depths V0 and approximately 1.0× 105 atoms. In the superfluid regime at low lattice depths,
the data is well described by the Thomas-Fermi distribution. For the density chosen, doubly
occupied sites are less likely then singly occupied ones, but can appear in all parts of the
cloud. For high lattice depths, the cloud is separated into two shells and no doubly occupied
sites occur in the outer region.

The first profile was taken at a lattice depth of 3 Er, where J/U ≈ 0.8. Correspond-
ingly, the total density distribution is expected to be a Thomas-Fermi profile. The data
shows a smooth density profile both for the n = 1 and the n = 2 component in this
limit. It can be well described with the profiles expected from a Thomas-Fermi dis-
tribution (see section 2.3.4). With increasing lattice depth and therefore increasingly
dominating interactions, the curves change toward the profiles that are expected for
a Mott insulator with two shells. For the parameters chosen, the global density redis-
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tribution occurs relatively early, already significantly below the Mott-insulator tran-
sition expected at ≈ 13 ER. Above a lattice depth of approximately 10 ER, the most
pronounced changes of the profiles are at the edges of the shells. As far as the abso-
lute width of the distribution in space is concerned, this is easy to understand. The
ramping up of the lattice beams also increases the confinement of the cloud due to
the attractive potential created by the gaussian beams. The trap frequency for our pa-
rameters changes from approximately 15 Hz to 80 Hz from the configuration without
lattice to the full lattice potential with a depth of 40 ER. Since the increase in pres-
sure in the gas due to the increasing interaction is not large enough to counter this
completely, the overall size of the cloud decreases. The above mentioned behavior,
however, is also visible when this is accounted for.

In order to describe the transition in a more quantitative way, we define a quantity
which describes the redistribution as the system undergoes the transition. An obvi-
ous feature which distinguishes the Thomas-Fermi distribution from the Mott insu-
lator structure is the occurrence of doubly occupied sites everywhere in the cloud, all
the way up to its outer edge. In the insulating case, atom pairs can only occur within
the inner shell, which has a significantly smaller radius than the overall cloud. A
straightforward parameter for the distributions shown therefore is the relative size of
the two distributions obtained for singly- and doubly occupied sites.

In general, this choice is not as straightforward - it has the inherent problem, that
the radius of the distributions for a given occupation number n always decreases
with n, even for a thermal or superfluid ensemble. This is due to the fact that the site
occupations are governed by Poisson statistics, for which the probability of a given
site occupation is nonlinear in the density. In the outer regions of the cloud where the
density is low, the occurrence of multiply occupied sites might always be possible,
but can be very unlikely, yielding effectively smaller radii than the overall size. In the
special case of average per-site densities only slightly larger than one, however, the
method is feasible, as in this limit the sizes of the distributions for n = 2 is expected
to be almost identical to the overall cloud size unless number squeezing occurs. It
is therefore possible to use the ratio of the radii for distributions of both analyzed
number states to characterize the transition from the superfluid to the Mott insulator,
by choosing a low average occupation number. The resulting low atom numbers
finally are the reason why the high resolution and signal to noise ratio is required.

In order to determine the radii, the integrated Thomas-Fermi profile is used as a
fitting function. This choice is somewhat arbitrary, since no simple fit function mod-
els the profiles in both limiting regimes as well as the transition region. A model-
independent approach such as using the root mean square (RMS) radius of the dis-
tribution was attempted first, but was abandoned as it was too unstable against the
fluctuations of the signal around the baseline in the outer parts of each scan.

The evolution of the relative shell sizes is shown in figure 4.12. During the transi-
tion from the SF to the deep Mott insulating phase, a pronounced drop from ≈ 0.9
to ≈ 0.65 occurs. The theory estimates for the two limiting cases yield an expected
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Figure 4.12: Evolution of the ratio Rn=2/Rn=1 through the superfluid to Mott-insulator tran-
sition for Ntotal = (1.0± 0.1)× 105 atoms. The drop in the ratio os due to the formation of a
distinct inner shell with doubly occupied lattice sites. The dashed line marks the lattice depth
at which the SF to MI transition is expected for an average site occupation of 1.

ratio of 0.99 for the superfluid in the 3 ER lattice depth configuration and 0.45 for a
Mott insulator with that particular atom number, negligible tunneling and zero tem-
perature. The deviation for the Mott insulating case is significantly larger than the
error bars, which are derived from the fit uncertainties. However, the predicted value
in this case depends strongly on the atom number and the strength of the external
confinement. An increase of either of them would increase the ratio of sizes. Very
high temperatures would have the same effect, but the shape of the profiles rules out
a large enough temperature to explain the measured ratio. In fact, provided the inter-
action energy constant is known well enough, the determination of the atom number
and the total confinement by measuring the shell radii is probably a more direct and
more precise measurement of both parameters than the usual calibrations.
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5 Characterizing quantum states using quantum
noise correlation analysis

The workhorse among the detection methods used in the field of cold atoms today
is the optical imaging technique [44], usually by absorption of resonant light. When
applied in the time-of-flight (TOF) method described in chapter 3.2, imaging corre-
sponds to measuring phase correlations (first-order correlations) between lattice sites,
and one effectively measures the free-space momentum distribution of the ensemble.
Properties which are related to phase correlations appear as spatial structures after
the TOF period and can usually be measured very well with this kind of imaging
technique. For example, the global phase coherence of a BEC in a lattice can be eas-
ily identified by the interference pattern. When the phase is constant throughout the
cloud, the momentum distribution is given by the Fourier transform of the original
density distribution (See section 3.2.1).

In the strongly correlated regime however, where particles are fully localized, there
is no first-order correlation (phase relation) between different lattice sites. In this
case, all interference terms vanish on average, apart from small contributions due to
weak short range correlations [84, 85]. The time-of-flight distribution is then given
only by the on-site properties of the atoms in the lattice, as all atoms from each site
are released fully independently of all other sites. But even despite the independent
release, the Hanbury Brown-Twiss effect (for bosons) [39, 134] causes spatial corre-
lations of the atoms after a time-of-flight period [40, 135–137]. These second-order
correlations arise due to the quantum statistics of the particles and build up when the
system transitions to the strongly correlated regime, while the first-order correlations
vanish. They reflect the spatial distribution of the atoms inside the lattice and can be
detected in the atom shot noise of the 2D density distribution measured by absorption
imaging.

As discussed in section 3.2.1, the overall shape of the expanded wave functions
during ballistic time of flight is given by the expanded Wannier function of the low-
est Bloch band, which is the on-site wave function for almost all experiments with
strongly correlated systems in lattices (see section 2.3.1). Figure 5.1 shows an atom
cloud after time-of-flight expansion from the Mott insulating state. The shape is given
by the Wannier function in momentum space, an almost perfect gaussian without sig-
nificant visible features. The only significant deviations are the statistical fluctuations
of the data around the expected fitted curve.

For suitable parameters, the noise on images of the atom clouds is dominated by
the atom shot noise, the deviation of the measured column density at a given pixel
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Figure 5.1: Atoms released from a Mott insulator (lattice depth 55 ER) show a featureless
gaussian distribution in momentum space. The noise seen on top of this shape is dominated
by the atom shot noise in this image. A total of 5× 105 atoms are in the cloud, which corre-
sponds to a central density of 32 atoms per pixel. Taking a profile through the center of the
cloud clearly shows these fluctuations around the gaussian curve fitted through the averaged
profile. For perfect optical illumination and imaging these fluctuations would have an RMS
width of

√
32 = 5.6.

from the expectation value due to the discreteness of the atoms. The noise itself is
Poisson-distributed, and is, for an individual pixel, completely random. The point-to-
point correlations in the shot noise however encode two-body quantum correlations
between the atoms, which are influenced by the structure of the cloud before the re-
lease. It was therefore proposed to use the shot noise correlations for the analysis
of otherwise inaccessible in-trap properties of strongly correlated cold atom systems
[40]. In this chapter, the origin of these shot noise quantum correlations and the ap-
plication of the method will be shown.

5.1 Spatial correlations in two-particle measurements

The detection probability of a single particle in a given point in space in quantum
mechanics is given by the absolute square of the spatial wave function of the atom
at this point. This appears especially obvious if the particles in the experiment do
not interact and are introduced individually - which requires that the full quantum
mechanical state of all particles involved is separable into a product of single-particle
states. In this case, the time evolution for all particles is independent, and, for indis-
tinguishable particles, the detection probability of a particle at a given location is the
sum of the detection probabilities of all particles.

84



5.1 Spatial correlations in two-particle measurements

Even in this very simple situation, surprising consequences arise when simultane-
ous detection of particles is possible, for example by using two separate detectors. Of
course the above argument still holds for the measurements of each of the detectors
when analyzed independently. However, it does not automatically imply that the
outcomes of those measurements have to be completely independent. Instead corre-
lations can and do occur between two separate but simultaneous measurements. In
quantum mechanical terms this combined measurement not only probes the single-
particle wave functions, but also the multi-particle states. Therefore, the full many-
body state has to be taken into account in order to predict the outcome of the overall
experiment including both detectors.

One well known example of such a correlation is the so-called Hong-Ou-Mandel
effect [138]. This refers to the vanishing probability that two independent photons,
which arrive simultaneously on the two input ports of a four-way beam splitter, will
leave the splitter separately via separate output ports. The reason for this is the de-
structive interference between two possible two-photon paths, which occurs if the
two photons – and therefore the two paths – are indistinguishable.

A more general effect of this type is the Hanbury Brown-Twiss effect [39, 134]. Orig-
inally formulated for classical electromagnetic fields, it states that for bosonic parti-
cles emanating from independent sources and arriving at two detectors, the probabil-
ity of simultaneous detection of both atoms is not just the product of the single atom
detection probabilities at the two positions. Instead, it also depends on the relative
position of the two detectors.

This can be illustrated in a simple Gedankenexperiment. We assume that two
bosonic particles are released by two completely independent sources, denoted S1
and S2 in figure 5.2. Two detectors A and B at two independent locations in space
are used to probe the presence of an atom after some time of propagation. In the
following, we analyze the case where one particle was detected at each detector loca-
tion. In order to predict the probability of this event, the probability amplitudes of all
possibly two-particle trajectories have to be summed. For two sources and two atoms,
two combinations of single-particle trajectories are available: S1 → A, S2 → B and
S1 → B, S2 → A. The simultaneous detection probability for distinguishable parti-
cles would be the sum of the probabilities of both two-particle trajectories. As in the
indistinguishable case the quantum mechanical probability amplitudes are summed
as opposed to the individual probabilities, they can interfere constructively or de-
structively, depending on the relative phase. This phase typically depends on the
relative path lengths of the two possible two-particle trajectories, therefore the com-
bined detection probability can be reduced or enhanced for different relative positions
of the two detectors. The result is the sinusoidal modulation shown in figure 5.2b.
For distinguishable particles, the probabilities of both paths are summed, therefore
the relative phase does not enter. In contrast to this, for indistinguishable fermionic
particles an additional phase factor of −1 is introduced between the two possible
path combinations. This is due to the antisymmetric fermionic wave function, since
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Figure 5.2: Origin of Hanbury Brown-Twiss correlations in atoms released from an optical
lattice. a) Two lattice sites act as sources for one atom each. These atoms are detected si-
multaneously by two independent detectors after a time-of-flight period. For this outcome
of the experiment, two different paths of the atom pair are possible. b) The interference of
these paths leads to a joint detection probability which is modulated with the detector dis-
tance d (black curve). For distinguishable particles, the probabilities for both paths have to
be added, leading to no interference (grey curve). Both curves are normalized by the squared
probability P1 of each detector for the detection of any of the two atoms released.

the two paths are related by a two-particle exchange. The probability amplitudes are
therefore effectively subtracted, leading to a correlation function which is inverted
compared to the bosonic case.

5.1.1 Correlated detection of bosons released from an optical lattice

When releasing atoms from an optical lattice in the deep Mott insulating regime, the
individual sites can be viewed as independent sources. In this regime the occupation
number on each site is fixed, there is no coherence and therefore no defined relative
phase exists between particles on different lattice sites.

The degree of correlation between the measurements at two positions x1 and x2 in
terms of the atom density operator n̂(x) is given by the quantity

G(x1, x2) =
〈n̂(x1)n̂(x2)〉
〈n̂(x1)〉〈n̂(x2)〉

. (5.1)

For very low densities 〈n̂(x1)〉 � 1, this is the probability of joint detection of
atoms at both locations normalized by the probability of simultaneous detection in
the uncorrelated case. The latter is given by the product of the overall probabilities of
detecting an atom at the two detector positions. If G is larger than one, the probability
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of simultaneous detection at the two detector locations is enhanced over the classical
case. If it is smaller than one, this probability is reduced, the measurements at the
two locations are anticorrelated.

In the following we will calculate the correlation factor for two detectors for in-
dependent atoms released simultaneously from separate sites of an optical lattice.
Between release and detection, a time of flight period of length t is assumed.

The density operator for the detected number of atoms

n̂(x, t) = 〈Ψ(t)|â†(x)â(x)|Ψ(t)〉

at position x for the system at time t after release was calculated in section 3.2.1 (eq.
3.4):

n̂(x, t) = ∑
j,k

W∗(x− xj)W(x− xk)e
ih̄texp

2mσ2
0 σ(texp)2 (2x(xj−xk)+x2

k−x2
j ) â†

j âk (5.2)

With W(x, t) being the Wannier envelope of the wave function of an atom released
from a deep lattice site. As the Mott insulator is always released from a very deep
lattice, it can be well approximated by a gaussian. It has the initial width σ0 in the
trap and the expanded width σ(t) at time t.

The correlated density operator, which correlates positions x1 and x2 is therefore

n̂(x1, t)n̂(x2, t) = ∑
j,k,l,m

W∗(x1 − xj)W(x1 − xk)W∗(x2 − xl)W(x2 − xm) · (5.3)

e
ih̄texp

2mσ2
0 σ(texp)2 (2x1(xj−xk)+x2

k−x2
j )+(2x2(xl−xm)+x2

m−x2
l ) â†

j âk â†
l âm

For simplicity, we make some of the same approximations as in section 3.2.1: We
assume that texp is long enough such the expanded wave function size σ(t) is much
larger than both the on-site wave function size σ0 (typically by a factor of 103) and the
overall size of the in-trap distribution, and thus all |xj|. As W(x, t) is smooth on the
scale of σ(t), we can substitute W(x + xj, t) with W(x, t) in the envelope part of the
function. Furthermore, σ(x, t) can then be replaced by th̄/(σ0m). This yields

n̂(x1, t)n̂(x2, t) =

∑
j,k,l,m

|W(x1)|2|W(x2)|2e
im
2h̄t (2x1(xj−xk)+x2

k−x2
j )+(2x2(xl−xm)+x2

m−x2
l ) â†

j âk â†
l âm. (5.4)

It should be noted that the third approximation made for the calculation of the
interference pattern in section 3.2.1 is not necessary, the xj-terms are not neglected
here. This means that, in contrast to the density distribution calculated earlier, the
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results of this calculation will be correct even on scales smaller than the size of the
initial density distribution1.

The properties of the in-trap quantum state are probed by the term

â†
j âk â†

l âm

which in normal ordering yields

â†
j (â†

l âk + δlk)âm (5.5)

The delta term will lead to a peak at the x = 0-position of the correlation function.
For now it will be neglected, as we are interested in the other terms which contain
the spatial ordering information. In principle the central peak contains useful infor-
mation about the point spread function of the imaging system and about the overall
noise of the system.

For a Mott insulator of filling nj at site j, we have â†
j âk = δjknj, and the expression

evaluates as

â†
j â†

l âk âm = δjkδlmnjnl + δjmδlknjnl + δjkδjlδjm(nj(nj − 1)− 2n2
j ) (5.6)

The third term of this sum will also be neglected, as the triple-δ inserted in eq. 5.4
creates only a small constant offset of order 1/ ∑j nj to the overall signal and does not
contain spatial information.

The contribution from the first term to the correlation operator eq. 5.3 is

∑
j,l
|W(x1)|2|W(x2)|2e

im
2h̄t (2x1(xj−xj)+x2

j−x2
j )+(2x2(xl−xl)+x2

l−x2
l )njnl =

∑
j
|W(x1)|2nj ·∑

l
|W(x2)|2nl =

|W(x1)|2|W(x2)|2N2
tot. (5.7)

This function has a smooth gaussian shape and is identical to the product of two
expanded density distributions 〈n̂(x1, t)〉〈n̂(x2, t)〉 as derived for the Mott insulator
in section 3.2.1. It is therefore also identical with the denominator of eq. 5.1.

It is the second term which contains the structure information. It contributes to the

1In fact, none of the approximations made here are necessary; the end result is the same apart from
minimal rescaling and adjusting of the global envelope. With the approximations, however, the
calculation is much more compact.
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correlation operator as

∑
j,l
|W(x1)|2|W(x2)|2 · e

im
2h̄t (2x1(xj−xl)+x2

l−x2
j )+(2x2(xl−xj)+x2

j−x2
l )njnl =

∑
j,l
|W(x1)|2|W(x2)|2 · e

im
h̄t (x2−x1)(xl−xj)njnl =

∑
j,l
|W(x̄− d/2)|2|W(x̄ + d/2)|2 · e

im
h̄t (xl−xj)·dnjnl. (5.8)

This structure term only depends on the distance d = x2−x1, and not on the center
coordinate x̄ = (x2 + x1)/2 of the pair. Also, in the actual application described in
this chapter, x1 and x2 are two- or three-dimensional vectors. G(x1, x2) is then a
four- or six-dimensional function. We will therefore define a new observable which
is projected to the relevant subspace of d by integrating over x̄. This subspace then
conveniently has the same dimensionality as the data.

Correlation Observable

From the above conclusions, we define as a practical observable for the correlations
the quantity

C(d) =
∫
〈n̂(x̄− d/2)n̂(x̄ + d/2)〉dx̄∫
〈n̂(x̄− d/2)〉〈n̂(x̄ + d/2)〉dx̄

− 1. (5.9)

It is obtained by applying the same transformation and integration to the numerator
and denominator of the original normalized correlation operator eq. 5.1 separately.
This observable then has a simple structure: It is determined by computing the aver-
aged autocorrelation function of the density distribution and normalizing it with the
autocorrelation function of the average density distribution.

Inserting the two contributions to the numerator, eq. 5.7 and eq. 5.8 as well as the
denominator, which is also given by eq. 5.7, we obtain for the Mott insulator

C(d) =

∫
|W(x̄− d/2)|2|W(x̄ + d/2)|2(N2

tot + ∑j,l e
im
h̄t (xl−xj)·dnjnl)dx̄∫

|W(x̄− d/2)|2|W(x̄ + d/2)|2N2
totdx̄

− 1

=
1

N2
tot

∑
j,l

e
im
h̄t (xl−xj)·dnjnl. (5.10)

For the optical lattice, the positions of the sites xj are spaced in a regular array.
Assuming that the lattice axes are mutually orthogonal and the spacing of the sites is
given by alat in all three directions, the expression is easily recognized as the absolute
square of a Fourier sum:

C(d) =
1

N2
tot

∑
l

e
im
h̄t xldnl ·∑

j
e−

im
h̄t xjdnj =

1
N2

tot

∣∣∣∣∣ ∑
q1,q2,q3

e−
imalat

h̄t (q1d1+q2d2+q3d3)nq1,q2,q3

∣∣∣∣∣
2
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5 Characterizing quantum states using quantum noise correlation analysis

Here, di are the components of the vector d, and nq1,q2,q3 is the occupation of the lattice
site at the position x = (x1, x2, x3) = alat · (q1, q2, q3) The Fourier coefficients are the
site occupation numbers nq1,q2,q3 .

The periodicity l of the Fourier sum in each of the axes can be evaluated from the
prefactor in the exponent

l = 2π · h̄t
malat

=
2h̄klat

m
t. (5.11)

In the limit of long expansion times, which is often assumed, the measured density
distribution in x is equivalent to the momentum distribution in p = x/t ·m. In that
case, the length l corresponds to the momentum 2h̄klat. Here klat is the wave vector
of the lattice light. The periodicity of the function therefore has the same structure as
the reciprocal lattice of the trapping potential.

The correlation pattern is very closely related to the one obtained for the momen-
tum distribution (the first order correlation function) of the superfluid phase, derived
in section 3.2.1. In that case, we obtained the modulus of the Fourier transform of the
global wave function in the lattice. Here, the second order correlation function in the
Mott insulator case yields the modulus of the Fourier sum of the density distribution
(here equivalent to the square of the wave function). For homogeneous densities,
there are only two significant differences: Due to the normalization in the definition
of C, the correlation pattern is not multiplied by an envelope function. Instead, the
visibility of the signal is limited for increasing coordinates |d| by the increase of the
noise level. Also, the resolution of the correlation pattern is not limited by the initial
size of the distribution. The features observed in the correlations after time of flight
expansion can therefore be much smaller than the size of the distribution before the
expansion.

A well-known property of the Fourier sum is that the integral over one full period
of its absolute square can be evaluated as the sum of squared Fourier coefficients
multiplied by the volume of the Fourier interval. For three dimensions, we therefore
have as the integrated signal

S =
∫

C(d)dd =
l3

N2
tot
·∑

j
n2

j . (5.12)

For a constant occupation n in each of the Ns occupied sites, the integrated signal
therefore is

S = l3 n
Ntot

= l3 1
Ns

. (5.13)

It scales as 1/Ns if additional sites, and therefore atoms, are added to the distribution.
Similarly, for a fixed total atom number Ntot which is homogeneously spread out over
Ns sites, the signal is decreased as n̄ = Ntot/Ns when the number of sites is increased.
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5.1 Spatial correlations in two-particle measurements

However, care must be taken with this interpretation, as the derivation of the signal
assumes integer site occupations.

Another straightforward property of C(d) is the fact that C(0) is always 1 (In the
fermionic case, it is −1). Since the function is periodic, this also applies to all other
nodes of the reciprocal lattice. Therefore, as the averaged amplitude S/l3 is usually
smaller than 1, there will be a peak of height 1 at each site of the reciprocal lattice. Due
to this fixed height of the peaks the previously discussed decrease in the integrated
signal with increasing Ns is therefore due to a reduction of the peak width.

Homogeneous density distribution

To illustrate the characteristic properties of this function, let us analyze the very sim-
plified case for a 1D chain of Ns sites occupied by one atom each. These sites are
spaced by the distance a, and are located between x = a and x = Ns · a:

C1D(d) =
Ns

∑
k=1

Ns

∑
j=1

ei m
h̄t dkae−i m

h̄t dja =
sin(πNsd/l)2

sin(πd/l)2 .

The shape of this function is shown in figure 5.3 for Ns = 2 and Ns = 6. For two
atoms, a sinusoidal function emerges. For increasing Ns, it converges to a train of
delta functions at each of the maxima of the fundamental sinusoidal function. These
are located at the positions where the denominator vanishes, at integer values of d/l.
This corresponds to the reciprocal lattice sites of the assumed lattice potential. To off-
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Figure 5.3: a) Contributions to the correlation signal from atom pairs separated by one, three
and five lattice spacings (blue, gray and red). The amplitudes reflect the number of pairs with
a given distance within a string of six atoms. b) Expected total correlation signal for a chain
of two (blue) and six (green) filled sites in a 1D lattice.

set the curves against each other in figure 5.3b (as well as in figure 5.2), the triple-δ
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5 Characterizing quantum states using quantum noise correlation analysis

term of eq. 5.6 was included in in the calculation. This leads to a downward shift
by 1/Ns of the joint detection probability compared of the product of two indepen-
dent single-particle detection probabilities at both locations. This can be understood
from the overall reduction of the probability for detecting a second atom during joint
measurement with a low total number of atoms. As one atom was already detected
at another position, the number of particles which can hit the second detector is re-
duced.

The integral of the signal (without the offset) is∫ l

0

sin(πNsd/l)2

sin(πd/l)2 dd = l/Ns,

as expected. As the peak height quickly converges to 1, this means that the peak
width scales as l/Ns. This behavior is characteristic for the Fourier transform which
relates the correlation signal to the initial distribution. It therefore also holds in more
than one dimension, where the peak widths along each of the axes scale with the size
of the initial distribution along those directions.

Atom-atom correlations from the released superfluid ensemble

A superfluid state which is fully coherent exhibits a completely different signal than
the Mott insulator. As far as the original HBT experiment for photons is concerned,
this corresponds to using a coherent as opposed to a classical light source2. The sig-
nificance was not immediately realized, but the issue was eventually resolved in that
one of the decisive properties of coherent radiation is the absence of second order cor-
relations between the photons [139]. This also applies to the correlations between
atoms. The second-order correlations are suppressed with the occurrence of first-
order coherence when the ensemble undergoes the transition from a thermal gas to a
Bose-Einstein condensate, which can be detected by measuring collision rates [140] or
by directly detecting particle-particle correlations with an appropriate single-particle
sensitive detector array [141, 142].

A similar suppression can be expected when examining the noise correlations aris-
ing from a superfluid released from the lattice in the same way as the Mott insulator

discussed before. In this case, we have âj|Ψ〉 = αj|Ψ〉 with |αj| =
√
〈nj〉 and a phase

factor which can be assumed to be 1 in the ground state. Instead of eq. 5.6, we there-
fore have

〈â†
j (â†

l âk)âm〉 =
√

njnlnknm = 〈â†
j âk〉〈â†

l âm〉 (5.14)

The sum can then be factorized into two parts for x1 and x2 and we have

〈n̂(x1)n̂(x2)〉 = 〈n̂(x1)〉〈n̂(x2)〉. (5.15)
2In the original publications on noise correlations in the optical domain [39, 134] Hanbury Brown

and Twiss demonstrate the effect for “coherent beams of light”. This however refers to the spatial
coherence, not the phase coherence of the radiation.
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5.1 Spatial correlations in two-particle measurements

Therefore, any spatial pattern is removed by the normalization in the operator 5.1
and the correlation function is flat in the superfluid case.

However, in the type of experiment presented here it is difficult to observe this flat
correlation function. The reason is that the cancellation due to the normalization does
not always work perfectly, due to fluctuations between the individual images. For
example, the peaks of the superfluid pattern can vary in position slightly between
images, due to very small distortions of the overall phase. The analysis algorithm,
which will be discussed in the following, would pick up these deviations as a cor-
relation signal. Since the interference patterns of the superfluid have such a similar
structure to the expected correlation pattern, this could in theory even result in spu-
rious correlation peaks.

To rule out fluctuations of a very small superfluid fraction as the source of the ob-
served correlation patterns in the Mott regime, a modified analysis was conducted
which excluded those regions of each image in which the superfluid peaks are ex-
pected. This resulted in no significant change of the signal, indicating that no signif-
icant residual peaks are present. Also, it since became possible to observe the cor-
relations with polarized fermions in a lattice, where no phase coherence can occur
[143].

Recently, the exclusion method has been taken even further to make it possible
to observe noise correlations in the explicit presence of a superfluid fraction [144].
This allows to analyze the noise correlations even within the crossover from the Mott
insulator to the superfluid.

5.1.2 Prediction of the detected signal

In order to make a quantitative prediction for the absolute signal including the spher-
ical shell structure of the Mott insulator, the Fourier sum is evaluated numerically.
The algorithm takes an arbitrary 3D atom distribution in the lattice and calculates the
corresponding normalized 3D correlation function C(d), eq. 5.9. Using fast Fourier
transformations, this can be done efficiently for any density distribution in the trap
even for large atom numbers. It should however be kept in mind that this still as-
sumes Fock states as the source of atoms before release – all atoms have to be fully
localized. In-trap first order correlations such as those of atoms which are delocalized
over lattice sites can not be calculated in this fashion, as equation 5.6 does not hold in
that case.

The discussion so far was assuming point-like and perfect detectors with full 3D
resolution. In the experiment, however, this is not the case. The detection does not
yield the exact 3D position of all atoms in the cloud. Instead, integrated column
densities are recorded by the CCD camera.

The effective geometry of the “detectors” represented by each pixel is illustrated
in figure 5.4. It is characterized by a point spread function (PSF) with an effective
length L given by the overall extent of the cloud and a radius R which characterizes
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R

L

Figure 5.4: Schematic of the effective detectors geometry when using CCD images. Each pixel
corresponds to one detector. The correlations are formed between two of these pixels, which
sample different parts of the cloud. The detection volume of each of these extends along all
light rays of the illumination beam which end on this pixel. Close to the imaging plane, the
detector can therefore be effectively approximated as a volume which encompasses the full
size of the atom cloud L in the z-direction. In the transverse direction it is given by the inverse
point spread function of this pixel in the object plane, characterized in size by a radius R.

the resolution of the imaging system3. The volume given by R and L is much more
coarse than the extension of the correlation features in G(x1, x2) for typical cloud
parameters. This results in a smoothing effect, which greatly reduces the amplitude
of the peaks observed, which would otherwise be 1.

To correctly take a finite detection volume into account, the density operator has
to be convolved with the effective detector response function. In the case discussed
here this means convolving the 3D density distribution of the expanded cloud n(x)
(eq. 5.2) with the 3D point spread function (PSF) of the imaging system:

nCCD(x) =
∫

PSF(x′ − x)n(x′)dx′

Inserting this into the normalized autocorrelation observable eq. 5.1 yields

C′(d) =
∫ ∫ ∫

〈PSF(x′ − x̄ + d/2)n(x′)PSF(x′′ − x̄− d)n(x′′)〉dx′x′′dx̄∫ ∫
〈PSF(x′ − x̄ + d/2)n(x′)dx′〉

∫
〈PSF(x′′ − x̄− d)n(x′′)〉dx′′dx̄

− 1

≈
∫ ∫

PSF(x′′ − x′)PSF(x′ − d)C(x′′)dx′′dx′

= PSF⊗ PSF⊗ C(d)

with the convolution operator⊗. The main assumption made in the derivation of the
second line is that the point spread function in the lateral directions is much smaller

3For an optical imaging resolution better than the CCD pixel size, the detector cross section would be
given by the shape of the CCD pixel, and would be quadratic
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5.1 Spatial correlations in two-particle measurements

than the extent of the Wannier function after expansion. This is always true for an
imaging system with enough resolution to take meaningful images of the expanded
atom cloud. Furthermore, it is assumed that the width of the Wannier function after
expansion is equal or larger than l, which is the case for the experiments presented.

In order to determine the expected signal that is obtained with the real imaging
system as the detector array, the signal obtained thus far is therefore integrated along
the z axis and convolved twice with the lateral point spread function of the imaging
system. This reduces the signal in the correlation peaks by the ratio in volume be-
tween the 3D PSF and the 3D volume of the peaks, resulting in typical values of 10−4

to 10−3.

5.1.3 Extracting the noise correlations from CCD images

The data from the CCD camera4 is first processed in the normal way described in
section 3.2: The dark image is subtracted and each image of the atom cloud is divided
by the reference image. The logarithm is taken to obtain optical densities, and the
resulting images stored as an individual file.

For the analysis, a large set (typically 50-100) of such processed images is taken
under identical conditions. For each of these images the 2D correlation function is
calculated before the results for all images are averaged. Finally this average is nor-
malized with the autocorrelation of the mean density. In the following all steps of the
analysis are described in detail.

Postselection of Images

Before quantitative analysis, the images are typically selected according to specific
parameters. This serves to ensure that their differences are only caused by the shot
noise fluctuations, and not by other distortions. The main criterion for the selection
apart from image distortions is typically the atom number, which fluctuates from shot
to shot. For this, the atom number on each image is determined by integrating over
the distribution. All images with an atom population outside a specified interval (for
example ±5% around the target value) are removed from further analysis.

In the next step, all images are typically screened for obvious imaging problems.
One common defect is the appearance of significant interference fringes not canceled
by the image normalization. This is usually due to laser frequency fluctuations dur-
ing the imaging sequence. The other relevant screening criterion is the visibility of
readout noise produced by the electronics of the AP1E camera, which is sometimes
strong enough to be visible even without further processing. These effects will be
discussed in more detail in section 5.1.4.

4Apogee AP1E, with Kodak KAF-401E CCD chip, unless specified otherwise
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Normalizing

The first step in the analysis of the remaining image files is the removal of any residual
offset. The offset is determined by averaging a rectangular region without atoms,
normally the region adjacent to the left of the region of interest which contains all
atoms. For the following calculations, only this region of interest is used in order to
speed up the calculations.

Usually, the image is then normalized to a fixed atom number by integrating over
the region of interest and dividing each pixel by the value obtained. By this, a con-
stant offset to the correlation function due to the fluctuating atom number is avoided
(discussed in detail in section 5.1.4).

Calculating the autocorrelation function

To determine the numerator of the correlation observable eq. 5.9, the autocorrelation
function of each image img is evaluated as

ac(d) =
∫

img(x− d/2) · img(x + d/2)dx.

With the convolution operator ⊗, this can be written as

ac(d) = img(x)⊗d img(−x).

Fourier transforming both sides

F(ac) = F(img) · F(img)∗

leads to
ac = F−1(|F(img)|2),

where F is the Fourier transformation operator and the asterisk denotes the complex
conjugate. The autocorrelation function can therefore be expressed and evaluated
with two Fourier transformations (a consequence of the Wiener-Khinchin Theorem,
see e.g. [145]). This offers a large gain in speed over the direct calculation of the
autocorrelation integral.

The Fourier transform itself is calculated using a fast Fourier Transfor (FFT) algo-
rithm5 on the image, and the modulus square of each Fourier coefficient is calculated.
After this, an inverse Fourier transform is applied to obtain the single image auto-
correlation function. All single image autocorrelation functions are then averaged to
obtain the numerator of the correlation function (eq. 5.9).

5using the FFTW3 library for C++, http://www.fftw.org
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5.1 Spatial correlations in two-particle measurements

Normalization of the correlation signal

All normalized images are also averaged, and the autocorrelation function of this
average is computed to normalize the correlation pattern. This corresponds to deter-
mining the denominator in equation 5.9. It represents an approximation to the noise
correlation signal of fully uncorrelated measurements for example from two separate
runs of the experiment. Dividing the averaged autocorrelation functions by this and
subtracting 1 yields the normalized 2D autocorrelation function Cexp(d).

Resulting noise correlation data of the 3D Mott insulator

Figure 5.5 shows the normalized 2D correlation image resulting from this analysis
sequence. For this experiment, 43 images were taken, one of which is shown in figure
5.1 (page 84). The atom number in the trap was 5.1± 0.8× 105, and the lattice was
ramped to 50 and 55 ER along the x and y direction, respectively. In the z direction
(integration direction), the lattice depth was 40 ER, and the time of flight used was
22 ms. The 2D correlation spectrum shows the expected regular array of peaks with
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Figure 5.5: Normalized Spatial noise correlation signal. The left panel shows the 2D distri-
bution of the correlations in th x-y-plane. The white bar denotes the 2h̄klat lattice momentum
scale for the 840 nm lattice. In the right panel, a profile along the direction of the horizontal
lattice beam is shown. It is aligned with the (clipped) central peak and shows the regular
array of sharp maxima with an amplitude of 5× 10−4.

an amplitude of 5× 10−4 on a noise floor which is smaller than 5× 10−5. The only
filtering which has been applied is a weak smoothing by convolution with a horizon-
tal binomial filter. The background is dominated by a vertical stripe pattern caused
by weak, fluctuating interference fringes within the illumination beam and a smooth
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5 Characterizing quantum states using quantum noise correlation analysis

offset modulation. The latter is the result of fluctuations of the cloud width, and both
effects and the filtering will be discussed in more detail in the following section.

The width of the correlation peaks is dominated by the imaging system resolution
and the application of the smoothing filter, resulting in a measured resolution smaller
than 9 µm RMS in both axes. This is significantly smaller than the initial size of the
cloud, which in the configuration described has a radius of ≈ 15 µm. The central
peak, which is determined by the autocorrelation signal of all noise sources - both
quantum and technical - is prominently visible. The photon shot noise component
and the thermal noise of the readout electronics are all contained in the central pixel,
whereas the component which is created by the overall atom shot noise is convolved
by the point spread function of the imaging system in the same manner as the cor-
relations from quantum statistics. The aberrations of the relatively simple imaging
system used are therefore readily visible in the shape of this peak, which, apart from
the central pixel, is theoretically only given by the point spread function convoluted
with itself. All other peaks have the same shape, but as their amplitude is much
lower, no significant details are visible. For the quantitative analysis discussed later
in this chapter, the detailed shape is ignored and approximated as gaussian.

5.1.4 Image artifacts and filtering

The noise correlation interferometry method relies on the analysis of deviations of a
single measurement from its quantum mechanical expectation value. Many sources
can lead to such fluctuations. The deviations which contain the signal are the shot
noise fluctuations of the atom numbers counted on each pixel. Other deviations of
similar or larger strength therefore have to be either avoided or rejected in the analy-
sis process, unless their contributions to the autocorrelation function average to zero.
The latter applies for example to the photon shot noise, which only contributes to
the central pixel and otherwise averages out. In the implementation used here, the
average of many measurements is used instead of the real quantum mechanical ex-
pectation value. This has the advantage that deviations from the expectation value
which are the same for all images are not detected in the correlation analysis. This is
for example the case with strong inhomogeneities in the illumination beam.

Only distortions which change between images can create undesired contributions
to the signal. Still, several significant sources of such fluctuations are present and
have to be addressed independently.

Trap and Cloud size Fluctuations

Another source of spatially correlated fluctuations between images arise from changes
of the overall gaussian shape of the cloud. These can be introduced by shot to shot
variations of the experimental parameters. A fluctuating cloud position along the
horizontal axis, for example, causes variations which are anticorrelated between the
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left and the right part of the cloud: A cloud shifted to the right always leads to an
increase in the density on the right and a decrease on the left simultaneously. This
results in a negative correlation on all length scales equal or larger than the cloud
size. On distances smaller than the smallest feature size of the image (in this case the
cloud size), the correlations have to be positive, yielding a broad maximum around
the zero.

Similarly, a fluctuating cloud radius creates a positive correlation at small radii, and
negative values, corresponding to the correlation between the center and the outer
parts of the cloud, at a scale given by the cloud radius. At larger scales, contributions
from correlations between opposite fringes of the cloud are dominant, leading to a
positive contribution. Cloud radius fluctuations can be caused by variations in the
lattice depth and strongly fluctuating atom numbers. In the latter case, the radius of
the cloud can be influenced by the atom-number dependent mean-field interaction
within the cloud during the initial stage of the expansion.
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Figure 5.6: Signature of the fluctuations of cloud size and position on the noise correlation
signal. The red curve shows the effect of a 0.5% fluctuation in the cloud width; the blue
curve that of a ±2.2 µm fluctuation in the cloud position. Both of these have been determined
from computer-generated randomized datasets. The grey curve is the experimental data from
figure 5.5 plotted for comparison. The discrete steps in the synthetic data curves are due to
the quantization of the image files (16 bit, corresponding to 10−5), which is not well averaged
for small displacements.

In figure 5.6, the signal from a real measurement including the background is com-
pared to the expected backgrounds for a fluctuating cloud size and fluctuating cloud
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position. The expected background signals have been calculated using computer-
generated sets of test images containing a perfectly gaussian shaped cloud without
any noise. Each set contained 100 images, with the parameters chosen for the gaus-
sian analog to those obtained from the real measurements. For the first set (red line),
the width of the cloud was randomly varied by ±0.5% (RMS), corresponding to a 1%
trap depth fluctuation or drift. For the second set (blue dashed line), the cloud po-
sition was varied by ±2 µm (RMS). The gray curve shows a measurement result for
comparison, using the same data as in figure 5.5.

According to this comparison, the dominating contribution to the background seems
to be the cloud size fluctuation. At the same time, it shows that the shot-to-shot repro-
ducibility of the cloud position in the 3D Mott insulating case is significantly better
than ±2 µm, an important prerequisite for the high spatial resolution analysis tech-
nique described in chapter 4.

Another strong effect of macroscopic fluctuations is due to the shot to shot varia-
tion of the atom number of typically ±5%. This leads to uniformly positive density
correlations between all parts of the cloud, and therefore to an overall positive offset.
The effect is reduced by strong selection of images according to their atom number,
and can be further compensated by normalizing all images prior to analysis. For this,
the overall atom number is determined from the image by integration. The measured
column density at each position is then divided by the total number of atoms. Analyz-
ing a set of images normalized in this way typically results in a complete suppression
of the offset.

Camera readout noise

One type of noise created in the imaging system is a very high frequency spatial
modulation of the images. Often it is strong enough to be seen on single images.
Even if this is not the case the pattern still appears in the averaged autocorrelation
function. The modulation is always oriented along the horizontal direction, and the
wavelength is two pixels. The phase of this pattern sometimes jumps by 180 degrees.
Due to the structure it appears very clear that it is a result of electronic interference
or crosstalk within the CCD camera, in the analog-to-digital converter card or, most
likely, in the cable connecting the two. It is also observed that a much stronger pattern
of very similar structure appears on the images if the cables from two cameras are
close together and both devices are read out simultaneously.

Due to its simple structure, this kind of noise can be efficiently filtered by smooth-
ing with a horizontal binomial filter with a width of 3 pixels. For this, the image is
convolved with the smoothing mask 1/4[1 2 1]. This filter is used on all correlation
images obtained with the Apogee AP1E camera system as well as before any quanti-
tative analysis of images.
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Optical Interference fringes

The second main source of technical noise in the imaging system also creates a fluc-
tuating horizontal modulation, but with a much longer wavelength. It appears to be
created by interference of the imaging light within the camera due to reflections be-
tween the chip and the camera entrance window. This is consistent with the pattern’s
dependence on the angle in which the camera is positioned.

Since the camera tilt is such that the pattern is almost exactly vertical, it can be fil-
tered without too much impact to the signal by applying a vertical high pass. This sec-
ond filtering stage removes all Fourier components of the image with a wavelength
longer than 20% of the height of the image. It applies a gaussian function centered at
the vertical spatial frequency ky = 0 and with an RMS width of 5, implemented by
multiplying the fourier-transformed image with 1− exp(1/2 · k2

y/52).

5.1.5 Fitting

For a quantitative comparison of the signal with the prediction, one-dimensional pro-
files are extracted through the nine central peaks of each correlation image. The pro-
files are taken along the directions of the lattice momentum vectors and intersect
at the positions denoted by multiples 2h̄k{x,y} of either lattice axis (see figure 5.7).
These positions were calibrated by fitting the positions of the correlation peaks for
the largest available expansion times (22 msec).

The pixel values of the profiled points are then used to fit gaussian functions to
the peaks. This is done with four of the nine most central peaks. These are located
at -45◦, 0◦, +45◦ and +90◦ from the vertical. The other four are redundant because
the autocorrelation function is invariant under inversion. Before fitting these peaks,
a smooth background (approximated by two gaussians of large width) is fitted to the
areas of the curve outside of the regions which contain the peaks and then subtracted
from the profile. This is required to remove the effects of cloud parameter fluctuations
discussed above. The high-pass filter removes most of this curvature, so the residual
curvature fitted by this background function is usually small.

The procedure yields the pixel coordinate of the peak position along the profile
direction, the peak height and the peak width. The high pass filter in the second fil-
tering stage does produce typical high-pass artifacts. This means that sharp features
such as the observed peaks produce an undershoot at the edges and all offsets are re-
moved. Since the very non-isotropic high pass filter is effectively applied along each
column of the y-axis independently, each column is offset to an average value of 0.
This shows up as vertical “grooves” – columns with a negative offset aligned with the
positive peaks. Because of this, the absolute peak height is reduced by a very small
amount, on the order of 1/Ns of the total peak height.

Due to the constant offset over the column, this does not affect the peak heights
relative to the background as determined by fitting cloud profiles along the y-axis.
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Figure 5.7: Geometry of the profiles extracted from the correlation images for fitting the peak
parameters. The white bar shows the 2h̄klat × t/m lattice momentum scale for the 840 nm
lattice. Due to symmetry, only the peaks at the -45◦, 0◦, +45◦ and +90◦ positions from the
vertical are independent. The central peak is dominated by technical noise and is therefore
not included in the quantitative analysis. Due to the default high-pass filtering, the horizontal
profile of the 0◦ peak is also affected by the central peak and therefore ignored.

For all x-axis profiles but the ones at x = 0, the reduction is typically 1%, which is
below the error of the measurement.

For the central column (x=0), the effect is significantly larger, because the central
autocorrelation peak is much higher due to the contributions from the atomic shot
noise and the imaging noise. Therefore, the offset imparted to these rows of the image
is much bigger. This effect is strongly visible in the images shown in section 5.3 (page
107). For the vertical profile, this does not matter, as the offset is subtracted as a
constant. But for the horizontal profile through the 180 degree peak, the offset can
not be compensated and therefore the peak is significantly reduced. For this reason
this horizontal profile is not included in the analysis, as shown in 5.7.

As the imaging resolution is no fundamental property of the physics involved and
can even change6, the correlation amplitude obtained by the fit is not used directly
as the correlation signal. Instead, it is multiplied by the area of the peak as given
by the product of the two widths of the gaussians along the x and y imaging axes.
This quantity therefore has the unit µm2. The final correlation signal (or correlation
strength) plotted in the subsequent graphs is the average of the signals obtained for
each of the available peaks in the 2D correlation function.

6Specifically, the resolution can vary for different expansion times, since the camera setup has to be
modified and realigned to achieve some of the long expansion times used
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5.2 Experimental results and comparison with theory

5.2 Experimental results and comparison with theory

Correlation signal dependence on effective detector size

As outlined in the derivation of the signal, the amplitude of the correlation signal
is expected to be 1 for a perfect, point-like detector. It is due to the non-negligible
size of the detector volume that the actual amplitude observed is reduced to the 10−4

level. This ratio is given by the relative size of the detector volume vs. the volume
defined by the width of the correlation peaks, as long as this width is smaller than the
detector resolution. In momentum space, the volume is given as a constant fraction
of the Brillouin zone volume in 3D (see eq. 5.12). The Brillouin zone in real space
expands as l increases with increasing expansion time. On the other hand, the detec-
tor area in the x-y-plane is fixed by the camera resolution and does not depend on
the Brillouin zone size. In contrast, the z-direction of the cloud is always integrated
completely, resulting in an effective detector extent given by the expanded cloud size,
which increases linearly with the expansion time.
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Figure 5.8: Height of the detected peaks vs. the expansion time. The momentum resolution
for increasing ballistic expansion times improves, therefore the reduction of the peak height
due to the finite resolution is reduced. Grey dashed line is a parabola fitted to the data points.

This means that during ballistic expansion, when the volume of the Brillouin zone
increases as t3

exp in the expansion time, the detector volume only scales as texp. The
result is an increase of the signal as t2

exp. This is shown in figure 5.8. For the large atom
numbers used in this measurement (≈ 4× 105), the width of the correlation peaks is
on the order of 2% of the Brillouin zone size, and therefore significantly smaller than
the optical resolution even for the longest expansion times of texp = 22 ms. Both
the signal and the correlation amplitude itself therefore scale quadratically with the
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5 Characterizing quantum states using quantum noise correlation analysis

expansion time.
Due to this quadratic increase of the signal, long expansion times are desired for

the noise correlation measurements as long as the atom density does not become
excessively low compared to other noise sources. Most of the data with large atom
numbers was therefore taken with texp = 22 ms. This is the longest expansion time
that could be achieved without major changes to the camera setup used.

Correlation strength dependence on atom number and shell structure

A similar mechanism determines the strength of the signal with respect to the overall
atom number in the Mott insulator prior to release. As discussed in section 5.1.1,
the width of the correlation peaks scales as 1/Ns, where Ns is the number of sites
occupied along this direction. Therefore, when assuming constant density, the 3D
volume of each peak should scale proportional to 1/N3

s ∝ 1/Ntot, where Ntot is the
total atom number.

Figure 5.9 shows the atom number dependency of the measured correlation ampli-
tude. Here, the atom number was varied strongly, by changing both the MOT load-
ing times and the radiofrequency evaporation sequence. The expansion time used is
16 ms for all measurements.
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Figure 5.9: Strength of correlation signal vs. Atom number. The red line is a power law fit
to the data. Dashed line and crosses indicate the theoretically predicted signal strength for
various atom numbers calculated without free parameters, assuming constant density n = 1
(dashed line) and including the actual shell structure (crosses), respectively.

One striking feature of this graph is the fact that the slope in the log-log-plot does
not correspond to the N−1

tot behavior derived above for constant density (plotted as
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5.3 Detection of density wave structures in the lattice

dashed line for n = 1). This is due to the fact that for most atom numbers shown
in the graph, the density in the cloud is actually not constant but consists of several
Mott shells as explained in section 2.3.5. This leads to an increase in average site
occupation with increasing atom number. The cloud size Ns therefore does not scale
as N1/3

tot , but with an even lower power.
The expected signal including the shell structure is shown as black crosses. It is

calculated from first principles as outlined in section 5.1.2 for a Mott insulator struc-
ture modeled with negligible temperature and tunneling. These values deviate from
the n = 1 line for atom numbers where more than one shell is expected. The succes-
sive formation of the Mott shells furthermore leads to a less smooth increase of the
average density than for compressible gases. We also observe that the measured data
is consistently reduced by ≈ 40% from the expected values, but otherwise shows a
very similar slope in the doubly logarithmic plot. Fitting a power law behaviour to
the measured data shown results in an exponent of −0.78± 0.15, whereas the analog
fit to the expected values yields a slope of N−0.64. The shape of the signal is therefore
reasonably consistent with the expectations apart from the overall reduction. The
reason for this deviation is not known. It is too large to be fully explained by the
uncertainty of the atom number calibration, the largest systematic uncertainty in this
measurement. Some additional effects must therefore be present, especially since the
measurements reported in [144] show a similar ratio between expected and observed
signal. Deviations from the perfectly number-squeezed in-trap atom distribution due
to thermal excitations, residual tunneling and distortions due to a not perfectly adi-
abatic lattice loading sequence could contribute. Another neglected effect is caused
by atom-atom collisions in the cloud during the ballistic expansion. Any such col-
lision can remove the correlation of the two participating atoms with the rest of the
population. This would then reduce the detected amount of correlations caused by
the Mott insulator structure. This seems to be supported by the measurements us-
ing fermionic 40K in an otherwise comparable configuration [143]. For spin-polarized
fermions, no collisions occur during the expansion, and the data obtained in that case
is in agreement with the full expected signal (although a reduction can not be fully
excluded).

5.3 Detection of density wave structures in the lattice

The noise correlation method determines the Fourier-transformed autocorrelation
function of the atom distribution in the lattice potential. In the experiments shown
so far, the structure of this distribution was simply given by the structure of the un-
derlying potential. Apart from an overall large-scale density distribution, each site of
the lattice is occupied by the same number of atoms, and the periodicity of the atom
distribution is just the periodicity of the potential itself. For more complex quantum
states, this is not necessarily the case. Many of those states are characterized by the
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a b
1.

2.

3.

1.

2.

3.

Figure 5.10: Illustration of the patterned loading sequence along the x-axis. a Only every
second site is populated with atoms by applying an energy bias during the splitting (2.) of
the initial superlattice (1.). b The lattice is filled homogeneously if no bias is applied. The final
lattice configuration (3.) of for both cases is identical, a deep 765 nm lattice which suppresses
all tunneling.

appearance of additional correlations between neighboring lattice sites which create
a superstructure with a periodicity which is larger than that of the underlying lattice.
A prominent example is the antiferromagnetic (or Néel) order for spin-1/2 systems,
in which the spin state of the particles alternates between adjacent lattice sites. An-
other example is the density wave, which is characterized by a periodic modulation
of the on-site occupation with a longer wavelength than the lattice spacings.

For bosons with strongly repulsive nearest-neighbor interactions, such a density
wave structure would actually be present in the ground state of the many-body sys-
tem. In that case, it is energetically favorable for the atoms to be separated from their
nearest neighbors by an empty site, leading to a checkerboard-type pattern (see e.g.
[146, 147]).

To demonstrate the signature of such a structure in the noise correlations, it is artifi-
cially created in the following with the help of the superlattice potential described in
chapter 6. A superstructure can be created in this way even though nearest-neighbor
interactions are negligibly small for the atomic species used. The loading procedure
is very similar to the one used to prepare the initial state of the pair tunneling ex-
periment used in section 6.6.3 and the patterned loading experiments described in
[148]. It is illustrated in figure 5.10a. The atoms are first loaded into a potential with
long periodicity (“long lattice”), and then transferred into a configuration in which
the spacing between the lattice sites is half the periodicity of the initial lattice (“short
lattice”). The phase between the two potentials is chosen such that all atoms from one
superlattice site are transferred to one minimum of the short lattice potential, leaving
every second site of that lattice empty. For comparison, a slightly modified transfer
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Figure 5.11: Detection of density wave structures in the atom distribution. In a, every second
site of the lattice is empty, creating a density wave–type superstructure with a wavelength of
2 lattice sites. This structure appears in the correlation signal in the form of additional peaks
along the x-axis spaced by lx/2. In b, the lattice has been loaded with a uniform density,
showing the normal peak pattern with spacing lx. The lattice potential configuration in the
final state is identical in a and b. White bars denote the characteristic lattice momentum scale
of the final state x-axis lattice lx = 2h̄klat,x.

sequence is used, which creates the same global density distribution, but with the
atoms evenly distributed over all short lattice sites (figure 5.10b).

The final configuration of the lattice potential is the same in both cases: The y- and
z-axis are 420 nm-periodic, whereas the x-axis has a periodicity of 382.5 nm. With
evenly distributed atoms, correlation peaks are therefore expected at positions cor-
responding to multiples of the doubled recoil momenta scales lx,y = 2h̄kx,y/m× t of
the 840 nm light along the y-axis and 765 nm along the x-axis, respectively. This is the
case in figure 5.11b. The signature of a density wave, a periodic modulation of the
density with a wave vector kDW , is the appearance of additional correlation peaks at
multiples of h̄kDW as well as the sums and differences of these and the fundamental
lattice vectors. The periodicity of the artificially prepared density wave in this exper-
iment is twice that of the lattice potential and oriented along the x axis. Therefore
the additional peaks in figure 5.11a have a spacing of lx/2 from and appear between
the original peaks along the x direction. The periodicity along the other direction is
unchanged. For this experiment 86 images were analyzed, which were taken by an
Andor Ixon DV 885 camera.

In principle, this experiment can be conducted with any superlattice-type potential:
The factor of two in periodicity between the underlying lattice and the superlattice is
not required, any other periodic potential can be used. All of these will create a mod-
ulated density distribution of the lattice which will generate correlation peaks at the
corresponding lattice momenta and all combinations thereof. The noise correlation
spectrum will then show the 2D Fourier spectrum of the autocorrelation function of

107



5 Characterizing quantum states using quantum noise correlation analysis

the density distribution. This of course also holds for non-periodic density distribu-
tions. Their signal is, however, not characterized by periodic structure of sharp peaks,
and could therefore be much harder to observe against the noise background. For the
large family of strongly correlated quantum states with periodic superstructure in
the lattice, however, the noise correlation method appears as a powerful detection
method.
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6 Observation of tunneling processes in two-well
potentials

6.1 The double well system

This chapter focuses on the tunneling processes in the strongly interacting regime.
These are studied with experiments conducted in a conceptually very simple setup: A
trap with only two minima, coupled by a tunnel junction, and filled with a maximum
of two atoms which influence each other by repulsive interaction as shown in figure
6.1. It is the most simple system which contains all of the ingredients of the standard
Bose-Hubbard model – an interaction energy U and a tunnel coupling J, and possibly
a potential gradient, given by an energy bias ∆ between the two sites.

J

{U ∆

Figure 6.1: A double well potential for atoms is characterized by three parameters in close
analogy to the Hubbard model. The two sides are coupled by an interaction matrix element J,
and adding an atom to an occupied site raises the energy of the state by the interaction energy
U. An external potential gradient is defined by the bias energy ∆.

This model system can be seen as the a maximal simplification of two very differ-
ent physical systems. For one, it can be viewed as the minimal fraction of a lattice
potential, containing only two of the lattice wells of the macroscopic system.

Alternatively, it can be viewed as the ultimate miniaturization of a superconduct-
ing Josephson junction, where the two conductors coupled by the junction are so
small that the repulsive interaction of the particles within them is comparable to the
strength of the tunnel coupling. At that point, the system can no longer be described
in terms of two coherent fields and a quantized model has to be used.

In this chapter, both aspects are explored experimentally with respect to the dy-
namics of the particles in such systems. Due to the overall simplicity of the two
atom– and two well–configuration, it is possible to directly study complex tunneling
phenomena, which can otherwise only be observed indirectly.
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6 Observation of tunneling processes in two-well potentials

6.1.1 The double well potential as a miniaturized Josephson junction

A system of two sites connected by a tunnel junction was first studied extensively in
the context of superconductors, after Brian D. Josephson first predicted its properties
using a description with two macroscopic quantum fields[149]. In a Josephson Junc-
tion two superconductors are coupled by an insulator which is thin enough to allow
for the Cooper-paired electrons to tunnel. The system is then described in terms of
the voltage resulting from the population difference of Cooper pairs on either side of
the junction and the phase relation between these two superconductors [150]. Here,
the quantized nature of the fields does not play a role.

For high atom numbers and weak atom-atom interactions a double well system can
be described in the same way as a superconducting Josephson junction. The macro-
scopic matter wave field then has the same description as the macroscopic wave func-
tion in a superconductor, and, correspondingly, the same phenomena such as Joseph-
son oscillations and self-trapping can be observed [16].

Tunneling processes for very small conductors with low numbers of charge carri-
ers which interact strongly can not be described in terms of continuous Fermi seas
or, for Cooper pairs, in terms of Josephson-type coherent fields. Instead, a quantized
Josephson description has to be used. Such systems have first been studied for solid
state quantum dot devices in the context of electronic transport through a junction
[151, 152]. Since in the presence of strong interactions this transport is strongly non-
linear, they are described as transistors. Devices which are based on the tunneling of
individual electrons were named single electron transistors (SET)[153, 154], whereas
configurations in which individual Cooper pairs tunnel are named Bloch transistors
[155–158].

The concept of these devices is very similar to a microscopic field effect transistor
(FET). In such a device, electrons pass through a region with a variable potential,
which can be modified by an external gate voltage. If a FET would be scaled down
indefinitely, eventually the interaction of a single charge in the gate electrode with
the individual electrons passing through the transistor can significantly influence the
conductivity. A typical configuration is shown in figure 6.2.

To reach this regime, a very small isolated conductor or quantum dot forms a
“charge island” which is connected to two or more electrodes via tunnel junctions.
These two electrodes are the equivalent of the source and drain gates of a FET, and
can add and remove electrons from the island. The voltage of the island can be ex-
ternally biased with respect to the voltages on the two electrodes. The capacity C
of the island to the electrodes is small enough that the presence of a single electron
increases its voltage by Vt = e/C which is larger than the thermal energy kBT and
the kinetic energy J given by the tunnel coupling. Therefore, if the voltage drop Vs
over the source junction is smaller than Vt, no other charge can tunnel to the island
while it is “occupied” by an electron. Below this threshold voltage Vt, the conduc-
tivity of the device therefore breaks down due to the interaction of two individual
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Figure 6.2: Quantum dot cotunneling: A single atom transistor consists of an island I con-
nected to two electrodes S and D (source and drain) via tunnel junctions. The electric potential
of the island can be biased by an additional gate capacitor G. If the island is occupied by an
electron, its Fermi level is raised by Vt, the charging energy of the island with one elementary
charge. This blocks tunneling of a second electron (black arrow) if Vs < Vt. The second-
order process (red arrows), which consists of two simultaneous electron tunnel events, is still
possible.

electrons. This effect is called “Coulomb blockade”. Since Vs can be controlled exter-
nally by charging and capacitive biasing of the island, this device effectively forms a
transistor [153, 159].

However, current can still flow through the device in the Coulomb blockade regime.
This requires a two-step tunneling process called “macroscopic quantum tunneling”
or “cotunneling”, via a virtual intermediate state. This cotunneling motion was first
observed for systems of coupled quantum dots by spectroscopy (see e.g. [160, 161]).

Another important second-order tunnel effect, where particles with different spin
are exchanged via a tunnel junction, can be directly observed in double quantum dots
on pairs of electrons [162, 163].

6.1.2 The double well potential as a minimized optical lattice

Since a two well system as illustrated in figure 6.1 is the most simple configuration
described by the same hamiltonian as a lattice, it can be seen as a prototype system
for an extended lattice. This holds both for weakly interacting systems with large
atom numbers and for strongly correlated systems.

In the limit of large atom numbers, where the double well is a direct analog to the
Josephson junction, bosons in optical lattices can also be described by an array of
Josephson junctions [4, 164–166]. For low occupation numbers such as those found
in 3D optical lattice experiments in the strongly correlated regime, the matter wave
fields are intrinsically quantized, and the natural way to describe these systems is the
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6 Observation of tunneling processes in two-well potentials

quantized Hubbard or Bose-Hubbard hamiltonian. For the analysis of the underly-
ing basic processes which govern the properties of the ensemble of atoms, it can be
desirable to reduce the system to the most simple configuration which includes all
important parameters. For investigating dynamical phenomena and complex tunnel
couplings in a lattice potential this configuration is a double well occupied by two
atoms. Here, the many-body aspect is removed from the model, since the system can
only occupy a very limited number of states. In this way, the influence of the interac-
tion on the tunneling process itself can be studied by directly observing the tunneling
process, rather than analyzing the effect of interaction and tunneling on the ground
state of a many-body system of atoms. This will be demonstrated in this chapter for
two different tunnel processes.

In the typical strongly correlated regimes, first order tunneling is completely sup-
pressed by the interactions. This can for example lead to atom pairs in the lattice
which are bound, even though they interact repulsively and unoccupied neighboring
lattice sites are available [167]. In this situation higher-order tunneling effects such
as cotunneling, where two particles tunnel in a correlated way, are the dominant dy-
namical processes in the system and can define its properties.

An important aspect of higher-order tunneling arises with particles that have a spin
degree of freedom. In that case, second-order tunneling between neighboring sites
can lead to a spin exchange even though there is no significant wave function overlap
of the atoms. Such superexchange type processes are a mechanism for effective spin-
dependent next neighbor interactions which can give rise to magnetic phases in real
materials and are a possible source for quantum magnetism with atoms in lattice
potentials [41, 168–170].

6.1.3 Double well potentials for atoms

Double-well potentials for neutral atoms can be created by very different means. The
experiments initially focused on the Josephson regime, studying systems of two co-
herent fields. The first one certainly is the landmark experiment demonstrating the
interference pattern of two independently created condensates [7]. Here, the repul-
sive potential from a blue-detuned light sheet was used in order to split a magnetic
trap to create a potential with two minima which supported one condensate each. In
this case, the barrier was very wide, and there was negligible tunnel coupling.

Another method of “splitting” a magnetic trapping potential was demonstrated re-
cently, which exploits the strong curvature of the field lines in magnetic microtraps.
This curvature results in a strongly inhomogeneous coupling to the different polar-
ization components of a radiofrequency field. For the typical microtrap geometry, an
elongated potential along the trapping wire can be split by a central barrier along the
long axis. This barrier is produced by the shift of the atomic levels due to the strong
and localized coupling to the radiofrequency field [171, 172]. These barriers are also
wide in the sense that the single particle matrix element J is negligible for all reason-
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able trap configurations. However, due to bosonic enhancement tunnel coupling can
be possible for large well occupations. Very recently, evidence for tunneling-induced
effects such as number squeezing and the coupling of the phases between the wells
have been reported [173, 174].

A two-well potential with a thinner barrier and thus stronger tunnel coupling can
be realized if the well is produced by an antinode of a standing-wave potential. This
was realized in [16], where a standing wave was combined with a very narrow dipole
trap, which contained only two periods of the standing wave. In this way, only two
minima of the standing wave are global minima, and they are coupled by tunneling
through the central barrier.

Coherent oscillations of individual atoms between two potential wells were first
observed by Haycock et al. using a spin dependent lattice [175]. Here, the two peri-
odic potentials for the two spin states are displaced to each other, and coupling be-
tween the potential minima is mediated by microwave transitions between the spin
states. By measuring the overall magnetization, the relative population of the two
sides can be determined, allowing for the observation of coherent population oscilla-
tions.

In a purely spin-independent double well potential, tunneling of individual atoms
was realized with a cold argon 40 beam which traversed a double well standing wave.
Here, coherent tunneling shows in the oscillation of the relative phases between the
wave functions in the two sites of the double wells [176].

For the experiments described in section 6.6, both a strong tunnel coupling and
a very strong on-site interaction between the atoms is required. The coupling pa-
rameter J and the interaction energy U should be the two dominant energy scales
present in the experiment. Their characteristic time scales h/J and h/U should be
much shorter than a typical experiment duration. For given and fixed collisional
properties of the atoms, a large interaction energy requires strong confinement of the
atoms to the trap sites. This can be achieved by an additional strong confinement
also along the axes which are perpendicular to the double well axis. This is realized
by adding additional deep standing waves on these axes, which effectively create a
two-dimensional array of one-dimensional superlattice potentials. If tunneling be-
tween the double wells of the superlattice is suppressed, a three-dimensional lattice
of double-wells is formed, where only the two sites of each individual double well
are coupled exactly as illustrated earlier in figure 6.1.

Such a configuration is possible by using cross-interferences between two optical
standing waves in one plane. If the polarizations of the two beams are chosen such
that two orthogonal beams can interfere, a pattern with a two times larger periodicity
can be created [177]. In such a potential both a strong tunnel coupling and a strong
on-site interaction can be achieved [178, 179]. In addition, it can be strongly spin-
sensitive, enabling individual addressing of the two wells [180, 181].
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6 Observation of tunneling processes in two-well potentials

6.2 Realization of the double well lattice

The double wells for the experiments described here are created by a two-color stand-
ing wave using two independent laser beams. This type of setup was chosen for its
robustness in terms of the stability of the resulting potential. The two standing wave
potentials differ in periodicity by exactly a factor of two. The longer wavelength one
(“long” or “red” potential) is created by light at 1530 nm, the other (“short” or “blue”
potential) by a 765 nm standing wave. Therefore, by choosing the potential maxima
of the long standing wave to coincide with maxima of the blue potential, a symmetric
double well configuration arises as shown in figure 6.3. Here, each minimum of the
red fundamental lattice – which is typically deep enough to suppress any significant
tunneling between its wells – is split by the blue potential to form two wells sepa-
rated by a potential barrier created by the short standing wave. Therefore, the 765 nm
laser is also referred to as barrier laser, and the 1530 nm potential as the fundamental
lattice in the following.
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Figure 6.3: Creation of a periodic double well potential from two independent sinusoidal
potentials: A long (red curves) and a short (blue curves) standing wave potential are super-
imposed with a controllable phase Θ. This phase can change the potential from a symmetric
double well (a,b) to an antisymmetric single well configuration (c,d). For small phase angles
(e,f), a double well potential with an energy offset between the two minima is produced.

The setup is capable of producing two fully independent standing waves, as long
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as the red wavelength is almost exactly twice that of the blue laser. Both potential
depths can be chosen independently and can be varied dynamically. Also, the relative
phase of the two sinusoidal potentials can be freely controlled during the experiment.
Therefore, any potential which can be constructed of two such standing waves can
be created, and dynamically changed into any other potential configuration. Three
typical configurations with both standing waves active are shown in figure 6.3. They
are characterized by the relative phase Θ of the two potentials. The standard is the
symmetric configuration with Θ = 0 – a double well where both localized states have
the same energy, the energy offset ∆ is 0.

In the antisymmetric configuration with Θ = π, one well is very deep, while the
other is elevated. This leads to maximal confinement in the bottom well, resulting
in very high collision rates. Due to the symmetry of the configuration, the tunnel
coupling is actually homogeneous in this case. The tunneling rate is the same between
all neighboring sites, which only differ by an energy offset. Technically, it is therefore
not a double-well potential.

If a detuning of the two ground states of the wells is desired, a finite phase Θ is
chosen, leading to a tilted double well potential. Here, the right well is biased by an
energy offset ∆ with respect to the left well.

Controlling the relative phase

� - phase
superlattice

0 - phase
superlattice

distance ≈25cm

+

atom cloud mirror

Figure 6.4: Setting the phase of the superlattice at the atom position by applying a detuning
to the red laser. Both standing waves have a node in the mirror plane. This results in an
antisymmetric double well configuration with Θ = π. By applying a small relative detuning
to the standing wave, a total phase slip of π can be realized between the mirror position and
the atoms (≈ 25 cm) to create a symmetric potential.
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The two standing waves are produced by two independent laser sources with a
765 nm and 1530 nm wavelength, respectively, which are superimposed on a bichro-
matic mirror and reflected by the same retroreflector. Using a common retroreflector
sets the relative phase of the sinusoidal potentials created, as the mirror fixes the node
position of both standing waves. This enforces a potential maximum from the red,
and a potential minimum from the blue detuned beam in the mirror plane, resulting
in a Θ = π antisymmetric potential configuration.

By slightly detuning the red wavelength λred from the reference 2 · λblue, however,
the relative phase between the two sinusoidal potentials changes along the standing
wave axis as the distance from the mirror increases. This is illustrated in figure 6.4.
The phase slip per short lattice period (765 nm/2) along this axis is 2π δ

fblue
, where δ is

the detuning of the red light from the reference frequency, which is given by 1/2 the
blue laser frequency fblue.

The phase slips of all standing wave periods between the mirror and the atom
position add up, leading to a total phase slip of

Θ = 2π
δ

fblue
· L

λblue/2
= 4π · δL

c
(6.1)

with L the distance between mirror and the atom position and c the speed of light.
Therefore, the tuning range of Θ depends on the tuning range of the laser and the

optical path length between the atoms and the retroreflector. In order to be able to
compensate for drifts of approximately ±π in either direction and still have a phase
tuning range of 2π available, an overall tuning range of approximately 4π is desired.
Since the tuning range of the laser was determined to be larger than 0.5 GHz, L ≈
25 cm was chosen.

Controlling frequency and amplitude of the lattice light

The two laser beams required for the double well potential are created by two inde-
pendent laser sources. The 1530 nm light is produced by an erbium fiber laser which
can be frequency tuned by a fiber-stretching piezo attached to the fiber cavity. The
765 nm light for the blue lattice is created by a titanium-sapphire (Ti:Sapph) laser run-
ning at 765 nm, which is frequency stabilized by locking it to a temperature-controlled
reference cavity.

The setup for generating the superlattice light is shown in figure 6.5. Two inde-
pendent fibers are used to guide the two lattice beams to the experiment. They are
superimposed on a dichroic mirror shortly before the glass cell of the apparatus. The
powers of the beams are controlled using AOMs with variable radiofrequency power
before the fiber couplings. The intensity of each beam is independently stabilized
by feeding back the signal from a photodiode behind the fiber to the radiofrequency
generator. In order to set the detuning δ, the 1530 nm laser is frequency-locked to the
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Figure 6.5: Laser setup for generating the two light frequencies used to create the double well
lattice. The long wavelength lattice is produced by a 1530 nm fiber laser, the short wavelength
lattice by a stabilized Titanium-Sapphire laser at 765 nm. A part of the long wavelength light
is frequency doubled in order to obtain a beat signal with the 765 nm light.

765 nm light. For this, a small amount of the light from the laser is frequency-doubled
in a periodically poled lithium niobate (PPLN) crystal. The doubled light is then su-
perimposed on a fast photodiode together with a reference beam from the Ti:Sapph
laser. The beat signal recorded from this photodiode due to the interference of the
two beams is 2 · fred − fblue = 2 · δ. The radiofrequency signal from the photodiode is
then electronically mixed with a reference signal from a voltage-controlled oscillator
(VCO) which generates a variable frequency fVCO. The lower sideband of the result-
ing signal then has the frequency 2 · δ − fVCO. This frequency is actively stabilized
to a fixed value of approximately 160 MHz using a delay line-based frequency offset
locking scheme [182]. For the feedback, the error signal is used to control the fiber-
stretching cavity piezo of the 1530 nm fiber laser with a bandwidth of approximately
3 kHz and 0 V to 40 V range.

The desired offset frequency δ is chosen by varying the frequency of the VCO,
which is computer controlled and can be programmed for arbitrary phase ramps dur-
ing the experiment cycle. The VCO used (Mini Circuits POS2120W) has a frequency
range of 1060 MHz to 2120 MHz, leading to frequency offsets δ of the red light in a
range between 580 MHz and 1180 GHz. When locked, the residual frequency fluctu-
ations of the laser are smaller than 100 kHz. In typical operation, the energy offset ∆
between two wells in the symmetric configuration in the center of the trap can be kept
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6 Observation of tunneling processes in two-well potentials

below h·200 Hz in this way. More locking bandwidth and faster response to phase
changes could in principle be obtained by using the frequency shifting capabilities of
an AOM in one of the beams.

6.3 Superlattice band structure

The superlattice band structure can be calculated in the same way as the one of the
underlying sinusoidal red lattice by taking the additional Fourier components of the
barrier lattice potential into account [70, 71]. This leads to deformations and shifts
compared to the fundamental lattice band structure. In the following, we will discuss
the symmetric case, as this is the regime where most of the dynamical effects inves-
tigated in the experiments take place. It is important to note that the natural unit of
energy for band structure calculations is the recoil energy ER corresponding to the
underlying periodicity – therefore the natural unit of energy in the following is the
recoil energy of scattering a 1530 nm photon,

ER(red) = h2/(2mλ2
red) ≈ h · 980 Hz,

which is used as ER unless otherwise noted. The more intuitive scale for experiments
confined to a single double well structure, however, is the recoil energy of the barrier
lattice light. This corresponds to interpreting the double well as an optical lattice
with only two sites formed by 765 nm light. In this way, the double well experiments
are directly comparable to the bulk lattice experiments described, especially since the
bulk laser wavelengths used (typically 840 nm) are similar to that of the blue laser.
Therefore, in some cases energies will be given explicitly in units of the blue light
recoil energy ER(blue) = ER(765 nm) ≈ h× 3919 Hz.

Low superlattice depth

Figure 6.6 shows the band structures for different fundamental and barrier lattice
depths. As discussed in section 2.3.1, the width of each band, defined by the maximal
energy difference within that band, determines the tunnel coupling between lattice
sites, as given by the overall periodicity. This means that in the context of a superlattice,
the bandwidth gives the tunneling strength from one double well to the next. Cor-
respondingly, the Wannier functions associated with each band are functions which
are localized to one double well structure, not necessarily to an individual well in-
side it. In this case, the tunneling barrier is the potential maximum separating two
neighboring double well structures. As for the sinusoidal lattice (see section 2.3.1),
the tunnel matrix element to the next superlattice site Jext is connected to the band
width Emax − Emin = 4Jext.

In comparison with the simple sinusoidal red lattice, the introduction of the blue
lattice in the symmetric configuration leads to a reduction of the bandwidth and to a
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Figure 6.6: Band structure of shallow superlattices. The band structure (first column) of the
fundamental lattice (a) is modified by the addition of the blue potential (b-d). Pairs of bands
separated by a reduced gap G form, representing a symmetric (blue) and an antisymmetric
(red) wave Wannier function. The wave functions are shown in the second column, and their
probability densities in the third. For increasing depths, they converge to a symmetric and an
antisymmetric superposition of a localized peak in each of the wells.
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6 Observation of tunneling processes in two-well potentials

pairing of bands, where each pair consists of a lower energy symmetric band and a
higher energy antisymmetric band.

Deep superlattice

The experiments described in this chapter are conducted mostly in the regime where
the atoms in the lowest Bloch band are localized both to one specific double well
structure and to the two single wells inside this structure. For this, the bands occupied
have to be lower in energy than both the inter-double well barriers and the tunneling
barrier separating the two wells inside. For symmetric double well configurations
the corresponding Wannier functions are, just like in an ordinary lattice, alternatingly
symmetric and antisymmetric in structure with respect to the center of the double
well.

Increasing the strength of the red lattice to achieve confinement to the double well
results in flatter bands as shown in figure 6.7, indicating a lower tunneling strength
between neighboring double wells. In most experiments, the tunneling between
neighboring double well structures is suppressed on all relevant timescales, the band-
width can be neglected and the bands can be treated as levels. After making this ap-
proximation, the levels can be treated as two states in the local potential created by
a single double well structure. Increasing the depth of the blue lattice potential and
thus raising the barrier separating the two wells leads to a reduction of the separation
of the levels of each pair. In the limit of very deep potentials, where the energy gap
between the two can be neglected and the two wells can approximated by parabolic
potentials, these two levels correspond to the symmetric and antisymmetric superpo-
sitions |+〉 and |−〉 of a particle fully delocalized over both wells. We can therefore
reconstruct the two wave functions localized in the left and in the right well as

|L〉 =
1√
2
(|+〉 − |−〉)

|R〉 =
1√
2
(|+〉+ |−〉). (6.2)

This construction can be used with any band pair. Using it with the nth band pair
constructs the nth harmonic oscillator levels of the left and right well, respectively,
within the harmonic oscillator approximation for very deep potentials.

The energies of the two states |+〉 and |−〉 differ by the band gap Gn of the nth band
pair. Preparing the state |L〉 = 1√

2
(|+〉 − |−〉) therefore leads to a coherent evolution:

Ψ(t) =
1√
2

(
|+〉 − ei(Gn)/h̄t|−〉

)
(6.3)

It corresponds to a tunneling oscillation between the two wells as will be outlined in
section 6.5.1. The ad hoc construction of the two states |L〉 and |R〉 is also a meaning-
ful operation when the potentials are not assumed to be very deep. It corresponds
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Figure 6.7: On-site wave functions and band structure in the double well lattice for a deep
(V0(red) = 37.2 ER) fundamental lattice and increasing barrier height. In the limit of strongly
localized on-site wave functions, the energy bands become paired. The width of each band
(the difference between highest and lowest energy in quasimomentum space) determines the
tunneling rate between double wells. The tunnel coupling between the two sites of an indi-
vidual double well is given by the gap G between the two bands of a pair. The wave functions
shown on the right correspond to the lowest band pair. Their plots are shifted upwards by
the average of the two band energies in order to visualize the relation between these ground
state energies and the height of the tunnel barrier.
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6 Observation of tunneling processes in two-well potentials

to the construction of the Wannier function equivalent for the individual sites within
each superlattice cell when combining the two bands of each pair. In analogy to real
Wannier functions, we define these site Wannier functions as maximally localized to
one particular well and construct them in the same way as the Wannier functions of
a periodic lattice:

wwell: l,n,m(x) = ∑
j

eiπ j·mwfund:l,2·n+j−1

Here, j can have the values 0 and 1 for the two bands of each pair. wwell,l,n,m is the
wave function corresponding to the nth band pair localized at the lth double well on
side m. A value of m = 0 corresponds to the right site, m = 1 to the left site. It is
constructed from the superlattice Wannier functions wfund: l,b in band b localized on
double well l. The experiments in this chapter can usually be described in terms of a
single double well and therefore l ≡ 1. The two relevant single-site wave functions
for the configurations used are wL(x) = wwell: 1,1,1(x) with the atom localized on the
left, and wR(x) = wwell: 1,1,0(x) which is maximally localized in the right well.

Figure 6.7 shows this construction and the resulting wave functions in a deep su-
perlattice. In the lowest bands of the lattice potential, tunneling is almost completely
suppressed and the bands can be approximated as levels. Also, the wave functions
are localized to a single well very strongly, even for significant gaps between the two
bands of the pair.

6.4 BEC in the superlattice

In analogy to the experiments with a BEC in a normal 3D optical lattice, we load a
Bose-Einstein condensate with approximately 1 · 105 atoms into a weak superlattice
potential. For this, all lattice axis are ramped up within 160 ms without leaving the
3D superfluid regime. This means that all lattice potentials are weaker than 3 Er, al-
lowing for strong tunneling along all lattice directions. In this situation, all atoms are
fully delocalized, and the phase of the matter wave is constant over the cloud. The
density distribution is given by the Thomas-Fermi distribution for a constant chem-
ical potential µ, as illustrated in 6.8. The lattice is then switched off instantaneously
and the atom distribution undergoes a free expansion. The images shown in figure
6.8 are taken after a time of flight period texp = 15 ms, and reflect the in-trap mo-
mentum distribution. Due to the constant phase of the matter wave in the trap, this
approximately corresponds to the Fourier transform of the density distribution (see
section 3.2.1).

In the case of a symmetric double well (fig. 6.8c), the wells have equal atom pop-
ulation. Also, the distance between the two wells separated by the internal barrier is
almost the same as the one between wells separated by the higher inter-double well
barrier. Therefore, the density distribution is an almost exactly periodic peak struc-
ture with the same periodicity as the blue lattice. The resulting momentum distribu-
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6.4 BEC in the superlattice
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Figure 6.8: Superfluid in a 3D lattice formed by a superlattice along the horizontal axis and
simple sinusoidal lattices along the two other directions. All lattice depths are very low (<
4 ER) such that tunneling through all barriers is possible and all atoms are fully delocalized.
In this regime the atoms distribute according to the Thomas-Fermi distribution and the phase
is constant over the entire cloud (left column). Therefore, the density distribution measured
after 15 ms time-of-flight expansion (right column) corresponds approximately to the Fourier
transform of the density distribution in the trap (filled areas in left column). The length of the
white bar l = 2h̄kblue/m · texp = 184 µm shows the blue lattice momentum scale.
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6 Observation of tunneling processes in two-well potentials

tion visible in the time-of-flight image therefore is a peak structure with a periodicity
according to lblue = 2h̄kblue · texp/m. The extent of the pattern is limited by the ex-
tent of the gaussian momentum space Wannier function on each site, therefore the
periodic pattern is bounded by a gaussian envelope.

This periodicity is not conserved when the double wells are configured in an asym-
metric way by changing the superlattice phase Θ via the frequency offset δ of the red
laser (figs. 6.8b,d). The periodicity of the density distribution is now given by the pe-
riodicity of the fundamental lattice. This results in the appearance of additional com-
ponents in the momentum distribution and the resulting pattern consists of peaks at
positions n · lred ≈ n · lblue/2. The relative heights of the peaks depend on the relative
occupation of the left and the right wells inside each double well.

When the asymmetry is large enough such that all atoms are contained on the same
side of their respective double well (figs. 6.8a,e), the density again has a periodic
structure made up of identical density peaks, where the spacing is now that of the
red lattice. Further increase of the asymmetry does not change the momentum space
distribution, as the structure of the resulting density distribution is not significantly
modified.

6.5 Bose-Hubbard model for the double well

In the regime of tight confinement, the two-well system can be described using the
Bose-Hubbard formalism in the same way as for atoms in a regular optical lattice.
Since effectively only two spatial modes are involved when the tunneling coupling
through the long standing wave is suppressed, we refer to the Hamiltonian as the
two-mode Bose-Hubbard hamiltonian.

The alternative point of view, interpreting the two wells as the two sides of a
Josephson junction, leads to the same description. The original Josephson junction
model assumes wave functions with well-defined phase on either side of the well
and therefore requires a description in coherent states [149]. For systems with low oc-
cupation numbers of the wells and no coupling to particle reservoirs, the quantized
nature of the wave functions has to be taken into account. Such quantized Josephson
junctions follow the same description as the Bose-Hubbard model reduced to two
sites:

The corresponding hamiltonian can be written as

H = −J
(

â†
L âR + â†

R âL

)
− 1

2
∆(n̂L − n̂R) +

1
2

U(n̂L(n̂L − 1) + n̂R(n̂R − 1)) (6.4)

which is the usual Bose-Hubbard hamiltonian (equation 2.19) adapted for the spe-
cial case of two sites L and R coupled by one junction with the tunneling matrix
element J. The interaction energy between two atoms is again denoted by U and the
external potential term is expressed in terms of the energy bias ∆. This denotes the
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6.5 Bose-Hubbard model for the double well

offset from the lowest energy state of the left site L to the right site R. It is alterna-
tively called “tilt”, as it is analogous to an external potential energy gradient such as
the one arising from tilting the overall trap geometry with respect to gravitation.

The operators â†
i , âi and n̂i denote the usual creation, annihilation and number

operators applied to site i. Equation 6.4 therefore describes a two-well system with
arbitrary occupation on each side of the barrier. Since in the following we will be only
interested in the cases involving one or two atoms in total, it can be easily written
explicitly in matrix form.

6.5.1 Single particle hamiltonian

J
L R

Figure 6.9: A single atom in a symmetric double well corresponds to a symmetric two-level
system. When initially prepared on either side, an atom will undergo a resonant tunneling
oscillation between the two wells.

Let us first consider the single-atom case. Using the lowest energy states |L〉 and
|R〉 localized on each side of the well as eigenstates, the hamiltonian can be written
in matrix form:

H1 =
(
−1

2 ∆ −J
−J 1

2 ∆

)
(6.5)

This hamiltonian can be easily solved for ∆ = 0 and has the eigenstates

|+〉 =
1√
2
(|R〉+ |L〉) (6.6)

|−〉 =
1√
2
(|R〉 − |L〉)

with the corresponding eigenvalues E+ = −J and E− = J.
Preparing the atom on the left site corresponds to preparing the state |L〉 = 1√

2
(|+〉−

|−〉), with a subsequent time evolution of

|Ψ(t)〉 =
1√
2

(
|+〉 − ei(E+−E−)/h̄|−〉

)
. (6.7)
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6 Observation of tunneling processes in two-well potentials

The resulting expectation values for the occupation of the left and the right side are

〈n̂L(t)〉 = 〈Ψ(t)|n̂L|Ψ(t)〉 = cos2(Jt/h̄) =
1
2

+
1
2

cos(2Jt/h̄) (6.8)

〈n̂R(t)〉 = 〈Ψ(t)|n̂R|Ψ(t)〉 = sin2(Jt/h̄) =
1
2
− 1

2
cos(2Jt/h̄).

This describes the tunnel coupling-induced coherent oscillation of the initially lo-
calized atom between the left and the right well with a frequency of 2J/h shown in
figure 6.9. By comparing equations 6.7 and 6.3 we can therefore conclude that the tun-
nel coupling between the ground states of the two wells is given by J = 1

2 G1, where
G1 is the band gap of the lowest band pair.

6.5.2 Two particle hamiltonian

In the general case, the system with two particles is obtained by squaring the Hilbert
space for a single particle, resulting in four states |LL〉, |LR〉, |RL〉 and |RR〉. How-
ever, for indistinguishable bosons, all states have to be symmetrized. Symmetrizing
|LR〉 and |RL〉 yields the state |SS〉 = 1√

2
(|LR〉 + |RL〉) and its orthogonal |AA〉 =

1√
2
(|LR〉 − |RL〉). Since |AA〉 is antisymmetric, it can not exist for indistinguishable

bosons and we are left with three states. Writing the hamiltonian in matrix form for
these three states |LL〉, |SS〉 and |RR〉 yields:

H2 =

 U − ∆ −
√

2J 0
−
√

2J 0 −
√

2J
0 −

√
2J U + ∆

 (6.9)

Solving the matrix yields the three eigenvalues

E1 = U (6.10)

E2 =
1
2

U(1−
√

1 + 16J2/U2)

E3 =
1
2

U(1 +
√

1 + 16J2/U2)

corresponding to the (not normalized) eigenvectors

|1〉 = (1, 0,−1) (6.11)

|2〉 = (
√

2J
E3

, 1,

√
2J

E3
)

|3〉 = (
√

2J
E2

, 1,

√
2J

E2
).
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6.5 Bose-Hubbard model for the double well

In the strongly interacting limit J � U, the eigensystem splits into two subsystems.
Two of the states, |1〉 and |3〉 have eigenenergies E1 = U and

E3
J/U→0−−−−→ U + 4

J2

U
,

converging to U for J/U � 1.
The two eigenstates in this limit converge to

|1〉 ≡ |−−〉 =
1√
2
(|LL〉 − |RR〉) (6.12)

|3〉 J/U→0−−−−→ |++〉 =
1√
2
(|LL〉+ |RR〉)

for which the probability to find an unpaired atom in a well is always 0 in the limit of
J = 0. The eigenenergy E2, however, converges to 0 as

E2
J/U→0−−−−→ −4

J2

U
.

The corresponding eigenstate |2〉 converges to the state |SS〉 in this regime. In this
state, one atom is localized on each side of the barrier.

Since |S〉 has a coupling strength J to all other states in the hamiltonian H2 (eqn.
6.9), it is intuitively clear that coupling between these two subspaces will be sup-
pressed as J becomes much smaller than the energy gap U between the two. This
means that the first order tunneling process of a single atom out of a pair as illus-
trated in figure 6.10 does not occur. Therefore, an atom pair will never separate, and
the system will always stay in the subspace of states with paired atoms. The suppres-
sion of the separation of these “repulsively bound pairs” can be detected by probing
the pair fraction, as well as their specific single-particle momentum distribution in
that situation [167].

Within this subspace of atom pairs the structure of the two eigenstate limits |++〉
and |−−〉 as defined in eqn 6.12 is the same as the structure of the two single-particle
eigenstates and |+〉 and |−〉 (eqn. 6.6). In this limit, the two atoms will thus behave
like one particle and tunnel as a pair between the two wells. The tunnel frequency
is therefore given by ω = ∆E/h̄, with ∆E the energy difference between the two
respective eigenvalues, in the same ways as for single atoms. For the two states |++〉
and |−−〉 this energy difference is 4 · J2/U. In the limit of small J/U, therefore, the
atom pairs tunnel like one particle with an effective coupling strength of J(2) = 2J2/U.
This pair tunnel process is a second order process from |LL〉 to |RR〉 via a virtual
(detuned) intermediate level |SS〉 as shown in figure 6.10.
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{U

{U

energy not
conserved

(virtual)
LL RRLR

LRLL

Figure 6.10: In the strongly interacting regime (J � U), two atoms localized in the left well
can not separate. The first-order tunnel process with coupling strength J is energy detuned
by the interaction energy U, and is therefore suppressed. The only other resonant level is
|RR〉, with both atoms localized on the right side. It can only be reached in a second-order
tunnel process via virtual occupation of |LR〉. This combined process has an effective tunnel
coupling 2J2/U

6.6 Experimental sequence

For the observation of pair tunneling, the desired initial state of the atom ensemble
in the lattice is such that each double well is occupied by two atoms, which are both
fully localized on the same side of the barrier. This state is prepared using a very high
barrier, such that the tunneling process can later be initiated by lowering the barrier in
a controlled way. After an evolution period with constant parameters (“hold time”),
the final state is read out. The experiment is repeated with different hold time times
in order to record the dynamical evolution.

6.6.1 Lattice loading

The lattice potential is filled with atoms in a way which is very similar to the se-
quence used for the creation of a Mott insulator described in the previous chapters:
After preparation of a BEC with the desired number of atoms (typically 8 · 104), the
lattice potential is slowly ramped up to load the BEC into the optical lattice. For the
experiment described in this section, the four standing waves which create the super-
lattice are ramped up simultaneously with an s-shaped ramp of 160 ms length. In the
final configuration of this ramp the 765 nm lattice potential is 10 ER deep, whereas the
other three standing waves are set to a depth of 40 ER(where ERis the recoil energy
corresponding to the respective wavelength). This suppresses tunneling in the two
transverse directions and between the double-wells, but not between the two sites of
each individual double-well.

The ground state (T = 0) configuration for an atom cloud in this potential com-
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bined with the harmonic trap would consist of an inner core of doubly occupied
double-wells surrounded by a shell of double-well potentials occupied by only one
atom each. However, due to the cloud geometry and the smaller energy gaps during
the ramp as compared to the “simple” 3D lattice used for Mott insulator experiments,
we do not expect to reach such a shell structure. Nonetheless, the potential does still
favor the n = 2 occupation of the double well over n = 1. Typically more than 60%
of all atoms are in doubly occupied DW sites and less than 40% occupy their double
well alone. The doubly occupied state is depicted as the initial state in figure 6.11.
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Figure 6.11: Sequence for the preparation of atom pairs on the left side of the double well
potential. The graphs show the evolution of the red and blue lattice depths as well as the
red lattice phase during the preparation. After the ramp-up into the initial configuration, the
most probable state is the one with a single atom in each well (1). By adiabatically ramping
the barrier height to zero, both atoms are brought together in a single site (2). The superlattice
phase is shifted by π and the barrier is ramped up in the antisymmetric configuration. This
puts both atoms into one common minimum of the blue lattice, which is then shifted to the
left relative to the red lattice (3). After this shift, the potential is again a symmetric superlattice
configuration with both atoms localized in the left well (4). By reducing the barrier height,
the tunneling process is initiated (5). To achieve an ensemble without atom pairs, a filtering
sequence can be inserted (see text).
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6 Observation of tunneling processes in two-well potentials

6.6.2 Filtering

It is possible to significantly reduce the fraction of singly occupied sites further by us-
ing ramps which are better optimized toward achieving n = 2 occupation of double
wells. Creating atom pairs out of a Mott insulator with constant n = 1 by combining
two neighboring but initially completely independent lattice sites in a similar way
as the “constructed pair” technique discussed in [179], for example, yields an im-
proved pair fraction. However, this does still not reduce the single-particle fraction
far enough that its contribution to the measured signal can be neglected. Therefore,
a filtering approach was taken in order to separate the contributions from the singly-
and doubly-occupied fractions. In the approach taken, first the total signal contain-
ing both components is taken for a given data point. The experiment is then repeated
with a “filtering sequence” inserted after the initial loading. This sequence is de-
signed to remove both atoms of each atom pair from the trap. This measurement
then yields the single atom signal, and by subtracting it from the total signal, the
contribution from the doubly occupied sites can be deduced.

The filtering sequence is applied after the two wells of each double well site are
merged into a single site by ramping the barrier laser to zero, combining the pair in
one well (state (2) in figure 6.11). The superlattice phase is then turned by 180 degrees
to align the minima of the red and the blue potential. Subsequently the blue lattice
is ramped up to a high power of ≈ 40 ERto achieve a strong confinement of the pair
and therefore a high rate of collisions. A 10 ms microwave adiabatic rapid passage
then transfers the atoms from the | F = 1, mF = −1 〉 state to | F = 2, mF = 0 〉. In this
state, spin relaxation collisions are strongly enhanced[114, 117, 183]. These collisions
release an energy of h · 6.8 GHz per pair, which removes both atoms very efficiently
from the trap. After a 40 ms hold time in this state, a second adiabatic rapid passage
transfers the remaining atoms back to the original hyperfine state.

When the filtering sequence is not activated, the lattice potential manipulations are
still being applied, but the microwave pulse driving the state transfer to F = 2 is not
activated. At the end of this sequence therefore both atom pairs and single atoms are
tightly confined by the 765 nm lattice in the single well configuration.

6.6.3 Initial state preparation: patterned loading

To achieve the desired double-well setup, the 1530 nm standing wave is shifted back
to the right by 180 degrees without reducing either of the potentials before the shift.
Since the confinement of the short standing wave is much stronger than that of the
1530 nm potential, the barrier moves the atoms to the left relative to the long wave-
length potential (depicted in inset 3 of figure 6.11). The result is a double-well poten-
tial with high barrier and with all atoms within the double well loaded in the left node
of the 765 nm standing wave (inset 4). Now the tunneling dynamics can be initiated
by rapidly reducing the height of the central barrier (inset 5 of figure 6.11), which is
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6.6 Experimental sequence

achieved by reducing the blue lattice potential in a 200 µs exponential ramp.

6.6.4 Final state readout

After an arbitrary evolution time, the resulting state in the double well has to be ana-
lyzed. Considering as one example the case of a single atom, the complete quantum
state is characterized by the occupation probability of either site (since this defines
the occupation probability of the other site) and the phase relation between the wave
functions on the left and on the right site:

|Ψ(t)〉 =
√

nL|L〉+ eiϕ
√

1− nL|R〉

Since they are conjugate variables, they cannot be measured at the same time (al-
though in principle it would be possible to measure the phase in one part of the
lattice and the occupation numbers in another), therefore two separate methods are
employed.

Phase and visibility measurement

In order to measure the phase relation between the left an the right mode, the atoms
from both sides of the barrier have to be brought to interference. This fortunately is
very easy and can be achieved by simply releasing the atoms from the trap. The wave
functions, which are strongly localized initially in their respective well, will expand
quickly and overlap. This is the matter wave analog to the well known double-slit
experiment for light, with the slit separation corresponding to the distance d of the
two potential well minima. After expansion, the resulting density distribution is a
double-slit interference pattern with a gaussian envelope as shown in figure 6.12.
Since there is no fixed phase relation between separate double wells, the only inter-
ference is between the atoms from the two sites of each individual double well, and
the density distribution is modulated with a sinusoidal pattern. The shape and size of
the envelope is given by the expansion of the wave function from a single site in the
same way as discussed in section 3.2.1. For the double well potential, the single-site
Wannier function is again close to a gaussian, especially in the strong barrier limit.

The images of the double slit pattern are integrated perpendicularly to the double
well axis. The resulting profile is then fitted with the function

DS(x) = A · (1 + V · cos(k · x + θ)) e−(x2−x2
0)/W2

. (6.13)

The amplitude A, the center x0 and the width W define the gaussian envelope, whereas
the periodicity k, the visibility V and the phase θ characterize the interference pattern.
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6 Observation of tunneling processes in two-well potentials

Localized left Delocalized, �/2 phase

Figure 6.12: Observation of the double slit interference pattern of the cloud after release from
the double well trap and ballistic expansion yields the phase relation between the two wells.
As the two wave functions emanating from the two wells overlap, an interference pattern
arises if there is a defined phase between the wells. The visibility of the pattern yields the de-
gree of localization of the atoms, the phase of the pattern yields the phase difference between
the wave functions in the two wells.

Atom Position Measurement

The other accessible observable is the occupation of the left and right wells, respec-
tively. Since in the experiment always a large ensemble is measured, this is expressed
in terms of the expectation values as the overall imbalance x = (〈n̂R〉− 〈n̂L〉)/(〈n̂R〉+
〈n̂L〉) of the ensemble.

Brillouin zone mapping

L R L

Figure 6.13: Measurement of the occupation of the left and the right well. By dynamically
tilting to the right with strong tunnel coupling, the population in the lowest vibrational level
of the left well is transferred to an excited level on the right. After removing the blue potential
completely, the populations of the left and right well have been mapped to two different
bands in the remaining lattice. Using Brillouin zone mapping and time of flight expansion,
they can be separated and then counted independently.

In order to measure the average occupation on either side of the barrier, a band
mapping method is employed which was named “dumping” in ref [179]. It is il-
lustrated in figure 6.13, and is applied after all tunneling dynamics is frozen out by
raising the barrier to Vblue > 40 ER in 200 µs. After this, the double well is strongly
biased, and tunneling is enabled again by ramping down the barrier laser in to 0
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in 400 µs. During this ramp, the bias results in crossings of the lowest vibrational
state in the left well with the excited vibrational states on the right side of the barrier.
Since those levels are coupled by tunneling, this results in an adiabatic rapid passage
which transfers all atoms from the left side to the excited states of the right well. Af-
ter the barrier laser has been ramped down completely, the remaining potential is the
sinusoidal fundamental lattice. A subsequent band mapping ramp (exponentially re-
ducing the power of the long lattice to 0 in 1 ms) maps the different excited levels
(or bands) into separate Brillouin zones of the free space momenta [102, 103]. After
a time of flight expansion, these Brillouin zones are well separated. This allows for a
separate determination of NR, the number of atoms in the lowest band, which were
originally on the right, and the number of atoms in the excited bands NL, which orig-
inated from the left side of their respective double wells (see fig. 6.13). From these,
the population imbalance

x =
NR − NL

NR + NL
(6.14)

is computed. On the scale of a single double well, this quantity can be viewed as
the center of mass position of the atoms with respect to the center of the double well
potential, given in units of half the double well separation d. Here, x = −1 and x =
+1 denote that all atoms are localized in the left well and the right well, respectively,
whereas for x = 0 both sides have the same average occupation.

Efficiency and calibration of position measurement

In addition to the two bands used by the dumping technique, a small but visible
population of atoms in other bands is observed. Especially in the cases where the
occupation is larger than one and all atoms are on the side which is dumped to the
higher-lying band, some atoms are detected in different excited bands than the one
that was addressed, or in bands which are excited perpendicularly to the double well
axis. We also expect other effects such as collisions during the TOF expansion period
to limit the overall efficiency of the dumping process. We observe a 80% to 90%
fraction when preparing all atoms on the left or on the right side and directly applying
the dumping sequence without a tunnel coupling period.

By direct band-mapping without dumping we verify that no excited bands are pop-
ulated during the state preparation sequence. It is therefore concluded that the dom-
inating effect of the deviations from 100% occupation which we measure originates
from the dumping and band mapping procedure itself rather than the state prepa-
ration method which seems to be robust. We therefore use a calibration method in
order to take this into account.

For this, one dumping sequence is measured for each of the four possible combina-
tions of preparation methods: Atoms on the left vs. atoms prepared in the right well,
and filtering sequence activated vs. filtering sequence not activated.
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6 Observation of tunneling processes in two-well potentials

The atoms in each of the bands are then counted with fairly tight counting regions,
which means that some atoms close to the boundary of their Brillouin zone are dis-
carded. In turn, this excludes most of the atoms in bands populated from collisions.
Normalizing each count by the total atom number NT yields four pairs {N̄L, N̄R},
where each number is between 0 and 1. The two pairs with the filtering sequence
activated together form the matrix

TS =
(

N̄L
L N̄L

R
N̄R

L N̄R
R

)
which gives the linear transformation which connects the occupation numbers {N ·
〈nL〉, N · 〈nR〉} inside the trap to the measured quantities NL and NR. In the ideal case
for perfect dumping and mapping, this would be an identity matrix. By inverting
the actual matrix and applying the inverse to the measurement results, the in-trap
occupation numbers are reconstructed.

This procedure is applied to the single-atom signal and the total atom signal indi-
vidually. While it is not a rigid calibration scheme in the case of strong corrections, it
is nonetheless very accurate as long as the efficiencies of the raw measurements are
not far lower than 100%.

6.6.5 Time evolution in weakly interacting regime

The time evolution of the double well system in a weakly interacting case is shown
in figure 6.14. Here, the measurements are shown as dots, whereas the lines are fits
to the theory as described in section 6.7 and 6.8. The measurements start at the end
of the 200 µs barrier reduction ramp. As tunneling starts already during this ramp,
there is an effective time offset of ≈ 70 µs, which is determined by a fit.

For single atoms, the position measurements show a clear sinusoidal tunneling
motion between the two wells. After a tunneling time of ≈ 75 µs the atom is fully
delocalized between the two wells, which is shown by a maximum of the interfer-
ence fringe visibility. The phase (black dots) is alternating between the values ±π/2,
abruptly reversing its sign whenever the direction of the tunneling process reverses.

The population imbalance signal for two atoms initially in the left well is shown
as red dots in the second panel. Here, both first order and second order tunneling
is possible and the resulting “beat” signal in the position measurement has several
frequency components. In this configuration, the two processes are of similar strength
and can not be distinguished.

6.6.6 Time evolution in the strongly interacting regime

When the system is brought into the strongly interacting regime by increasing the
barrier height and reducing the tunnel coupling such that J � U, the behavior is
markedly changed compared to the weakly interacting case. In this regime, the first
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Figure 6.14: Signature for tunneling of single atoms and atom pairs in the weakly interacting
regime (J/U=1.5). The black dots denote the single atom position, phase and visibility data.
The red dots show the position signal from doubly occupied potentials, blue hollow dots
the coherence information (phase / visibility) for the total population. Particles are initially
localized on the left (position -1). Individual atoms coherently oscillate between the left and
the right well. The relative phase between the two sites is constant during the tunneling
process, but jumps between the two possible values ±π/2 whenever the particle reverses
direction. The single particle signal shows a single tunneling component whereas for two
atoms several frequency components are present in the dynamical evolution. The solid lines
are fits to the datasets as described in section 6.8.
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6 Observation of tunneling processes in two-well potentials

and second-order tunnel processes are very different and can be distinguished. Fig-
ure 6.15 shows data taken for a ratio of J/U ≈ 0.2.
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Figure 6.15: Pair tunneling in the strongly correlated regime using the same symbols and
fit functions as fig. 6.14. Here, first-order tunneling is suppressed and shifted to a detuned
frequency of U/h ≈ 2.5 kHz . The dominant dynamical process is now second-order or pair
tunneling. It is visible as the dominant slow oscillation in the second panel with frequency
4J2/hU ≈ 550 Hz.

The single atom signal still shows a perfect sinusoidal signal, since the atom-atom
interaction does not have an effect. The only difference is the slower oscillation fre-
quency due to the reduction of the tunnel coupling parameter J. For atom pairs,
however, the first-order process is now strongly detuned, resulting in a strong sup-
pression and an increase in frequency. In contrast, the second-order process is still
resonant: Therefore, the average position signal for pairs (red dots in figure 6.15) now
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6.7 Modeling of overall system

shows two distinct components: The dominating process is a slow oscillation with a
period of 1.8 ms due to the still resonant second-order tunneling. A fast oscillation
with a small amplitude and a period of 400 µs shows the residual first-order process.

Despite the second-order process being in resonance for ∆ = 0, in our experimental
setup the average oscillation amplitude does not reach 1, since ∆ ≈ 0 is only realized
in the center of the trap, even in configurations with an average ∆ of 0. This will be
explained in more detail in the following section. The visibility signal for the pairs is
strongly reduced as well, since the TOF double slit pattern measures the average sin-
gle particle phase. A delocalized pair (|LL〉+ |RR〉) itself however does not contribute
to this observable, as it would only show a double slit interference pattern if the dis-
tribution of center of mass positions of each pair could be probed after expansion.
The only sources of single-particle interference in the two-particle case are therefore
from superpositions of the states |LL〉 and |LR〉 as well as from superpositions of
|LR〉 and |RR〉. Since for small J/U the population of the state |LR〉 is suppressed,
the interference visibility of the pair fraction is reduced and the total visibility shown
as blue hollow dots is caused to a large degree by the single-particle sites.

6.7 Modeling of overall system

The time evolution for single atoms and atom pairs in one single double well can
be easily computed using the hamiltonians 6.5 and 6.9 and their respective solutions
described in section 6.5. The actual measurement, however, is done with a large en-
semble of on the order of 105 individual double well potentials. Even with all of those
initialized in the same way and the tunneling being initiated at the same time, their
time evolutions are not completely identical. First of all, some atoms are in double
wells with occupancy of n = 2 (typically 60%) while others are in singly occupied
sites, as outlined in section 6.6.1. Furthermore, the overall system is not completely
homogeneous, especially due to the confining potential and the gaussian intensity
profile of the lattice laser beams. Therefore, the parameters which govern the dynam-
ical behavior are not the same for each double well. In the following, we will discuss
the main deviations and how they are taken into account in order to calculate the
observed averaged dynamical evolution of the overall ensemble.

The interaction energy U depends on the confinement of the atoms at their respec-
tive site of the double well. As such, it is reduced when the lattice laser intensities are
reduced. Due to the gaussian shape of the lattice beams, this reduces the interaction
energy for double wells far away from the center of the trap. For deep lattices, how-
ever, U depends only weakly on each of the standing wave intensities. For a typical
cloud radius of 30 µm and typical beam waists of 130 µm, the change of U on the edge
of the cloud as compared to the trap center is in the percent range. Compared to the
other inhomogeneities this has only weak consequences for the shape of the observed
signal and is therefore neglected.
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6 Observation of tunneling processes in two-well potentials

A more significant effect is the inhomogeneity of the tunneling parameter J, which
can have a larger relative change over the cloud as it typically depends exponentially
on the depth of the barrier, and also strongly on the long lattice potential. This effect
leads to a dephasing of the tunneling for sites situated at different distances perpen-
dicularly to the double well axis, where both the long lattice and the short lattice fall
off due to their gaussian envelope. A reduction of the barrier lattice depth obviously
leads to an increased tunnel coupling between the wells. A reduction of the long lat-
tice strength, however, reduces the confinement within the overall double well along
the superlattice direction. Because of this, the two potential minima and therefore
the atoms move further apart, leading to a decrease in the tunneling rate. For the
parameters used in the experiment, this effect significantly reduces the impact of the
blue lattice depth reduction. As a result, there is only in a weak increase of the tunnel
coupling for sites far away from the center of the superlattice beams. The effect of the
inhomogeneity of J on the overall signal was determined by a calculation which also
includes the inhomogeneity of ∆ which will be discussed next. The J-inhomogeneity
leads to a slow dephasing of the individual sites and therefore a dampening of the
total signal. Compared to the dephasing from the inhomogeneous ∆ it is only signif-
icant for certain parameters in the weak barrier limit.

The atom ensemble is confined by the magnetic trap as well as the global con-
finement produced by the gaussian shapes of the lattice laser beams. Approximated
as a parabolic potential close to the center of the trap, it has a total trap frequency
of ωtrap ≈ 2π · 80 Hz. Therefore, there is a potential gradient present for all atoms
which are located away from the trap center along the double well axis, as illustrated
in figure 6.16. Adding this gradient to the double well potential results in an effective

j=0j=-1j=-2 j=1 j=2

∆1
∆2

∆-1
∆-2

x

d
λred/2

Figure 6.16: Detuning of double wells which are not in the center of the trap. The harmonic
confinement along the x-axis leads to a local bias ∆j at site j, which increases with the distance
from the trap center.

bias ∆ 6= 0 for these sites. This bias is the same for all sites within one x-y-plane of
the lattice which is perpendicular to the double well axis. With the two sites of the
jth double well located at the positions xj,L and xj,R separated by the distance d, the
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energy difference ∆j between them can be calculated as

∆j =
1
2

mω2
trap

(
x2

j,R − x2
j,L

)
=

1
2

mω2
trap

(
(j · λred/2 + d/2)2 − (j · λred/2− d/2)2

)
=

1
2

mω2
trap (j · λred/2 · d) . (6.15)

For typical values such as j = 25 and d = 765 nm/2, ∆j can be up to h · 400 Hz at the
edge of the cloud. This is a very significant effect especially in the strongly correlated
limit where the tunnel coupling J is low and the second-order tunnel rate even lower.
It therefore has to be included in order to predict the overall signal of the ensemble.

In addition to the parameter inhomogeneities discussed, the aforementioned sep-
aration of the atom population into the two sub-ensembles occupying sites with n = 2
or n = 1 has to be taken into account. Therefore, for the modeling, a three-dimensional
distribution of atoms in the trap is assumed, which consists of an inner core of double
wells with occupation n = 2 and a radius R2 along the x-axis surrounded by an outer
shell of singly occupied double wells and outer radius R1 along x. This corresponds
to assuming T = 0 after the initial ramp up of the lattice. Such an assumption is not
very realistic for our chosen ramp speeds and lattice parameters, but it is observed
that the result does not depend strongly on details of the density distribution such
as sharp shell boundaries. Assuming a thermal Bose gas with a temperature T ≈ U
yields very similar results.

From this, the number of singly and doubly occupied double wells is determined
separately for each layer of the lattice along the superlattice direction. Furthermore,
the local ∆ within the layer is calculated. The time evolution for each of these two
ensembles and for each of the layers is calculated independently. The measurement
results of all layers are then averaged in order to yield the overall expectation values
for the single atom signal, the atom pair signal, and the total signal which includes
both.

The time evolution for each layer is calculated using the solutions of the Hamilto-
nians eq. 6.5 and eq. 6.9 with the bias parameter ∆ set according to the position of the
layer. Additionally, it is necessary to use a modified tunnel coupling J′ for the two
atom case which differs from the bare J by up to 10%. This difference results from
higher-order couplings which are neglected in the simple Bose Hubbard model, but
can be approximated by number-state dependent corrections to the tunneling and
interaction strength. These effects will be discussed in more detail in section 6.9.

6.8 Fitting the model to the data

While in principle all parameters of the system are known or can be determined by
independent reference measurements, it turns out that the observation of the tunnel-
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6 Observation of tunneling processes in two-well potentials

ing dynamics allows for a more precise derivation of most of the system parameters
than the calibration measurements. For example, the particular measurement used
for calibrating the lattice depth1, as employed here had an absolute accuracy of about
2%. At the highest short lattice depths used, this leads to an uncertainty of 15% in the
bare tunneling rate J. In contrast, J can be determined from the data to better than 5%
for long measurement series.

As a consequence, it was decided to use the ensemble model as a fit function to
the data. The algorithm uses both the imbalance data from a given run and the
phase/visibility dataset to compute a total fit error value which is then minimized
with respect to seven fit parameters:

• J, the bare tunnel matrix element

• U, the interaction energy

• J′, the modified tunneling rate for atom pairs in a double well

• ∆0, the bias energy in the center of the trap

• ωx, the overall confinement frequency along the double well axis

• R2, the inner shell radius

• Vmax, the maximum two-slit interference fringe visibility

• t0, the time offset due to the barrier ramp-down

The parameter Vmax is necessary because the observed visibility for the phase and
visibility measurement is always lower than one. Partly this is due to the fact that
the visibility is fitted with a two-slit pattern which assumes a gaussian envelope. The
correct Wannier function for finite tunneling has a momentum distribution which
differs slightly from a gaussian, resulting in a lower measured contrast. Other factors
such as the small angle mismatch between the vertical axis of the camera and the
vertical lattice beam can also reduce the fringe contrast due to the integration. For the
sequence presented here, we typically observe a maximum visibility which is slightly
lower than 80%.

Within the described model, which assumes a harmonic confinement, a spherical
shell structure and neglects inhomogeneities other than those in ∆, the description in
terms of two shell radii and the harmonic confinement frequency is redundant. This
is due to the fact that effectively only the ratio of the two populations enters. As long
as the radii are much larger than the lattice spacing (and therefore the distribution is

1The lattice depth was calibrated by determining the resonance frequency for parametric excitation.
For this, the lattice depth is modulated with a small amplitude at a frequency corresponding to the
energy difference between the first and the third band. The 2% limit results from the particular
parameters chosen for the resonance scan.
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well approximated by an integral), the change to the distribution due to an increase
in the trap frequency, for example, can also be obtained by increasing both shell radii
by the same relative amount. It was therefore chosen to keep the outer radius R1 of
the assumed shell structure constant at a value of 30 sites, which corresponds to the
expected radius for the atom number chosen. Only R2 and ωtrap are then determined
by the fit.

Since several dephasing processes are neglected which all lead to a faster loss of the
total signal, the damping rate is always underestimated. Within the model used for
fitting, the confining force acts as the only source of dephasing between the individ-
ual double-wells, and is therefore the only source of damping of the overall signal.
When fitting this simplified model to the data, the fit tends to accommodate the non-
included sources of damping by assuming a larger confinement than the one that is
actually present in the experiment. This overestimation can be as large as 200%. The
predicted damping constant of the simplified model has an especially large deviation
for low barrier depths. This is expected due to the increased importance of higher
bands for the Wannier functions due to the reduced band separation, adding an ad-
ditional dephasing mechanism. Also, the inhomgeneity of J over the ensemble due
to the gaussian beam shape has the strongest effect in this parameter regime. The
effect is most pronounced for the position measurement, and we therefore include an
empirically determined additional damping term into the model, for wich we find
a time constant of 3.5 ms . This modification is not used for the phase and visibility
datasets.

To initiate the tunneling, the barrier height is reduced as quickly as possible. It can
not be switched instantaneously to the desired value, as this would be non-adiabatic
with respect to the trap frequencies and induce band excitations. Experimentally a
time of 200 µs was found to be slow enough to reliably avoid band excitations when
ramping to the desired value with an s-shape function. A consequence of this is that
the tunneling process starts even before the end of the ramp-down. Therefore, the fit
function contains a time offset t0 to account for this difference. This offset is typically
t0 = 70 µs, which corresponds to the expected value obtained from numerically inte-
grating the time evolution during this barrier ramp within the Bose-Hubbard hamil-
tonian with dynamically changing parameters. This time offset enters twice in the
position measurements, as the tunneling can continue in the beginning of the ramp-
up for the suppression of the tunneling at the end of the experiment. This ramp is the
inverse of the one used for initiation of the tunnel process.

Although the fit algorithm can use an error function which takes both the position
and the coherence signal into account, typically only the coherence data is taken, as it
yields more information (phase and visibility as opposed to position only) per single
run of the experiment. For the typical parameters of the experiment, the resulting
datasets contain enough information to obtain all fit parameters of the model.

In figure 6.17, the main fit parameters for the data taken are shown and compared
to the theoretical predictions of the standard two-site Bose-Hubbard model. The val-
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Figure 6.17: Bose-Hubbard parameters extracted from measured data by fitting the theory for
the ensemble. Energies are plotted in kHz against the short lattice depth Vblue. The frequencies
which correspond to the coupling matrix elements for single atoms, J and J′ are plotted as
black dots and circles and the interaction energy U as green filled circles. The second-order
tunneling frequency determined from these values is shown as red dots, and the frequency of
the detuned first-order process for pairs is plotted as blue dots, which approaches U (green
filled circles) for J/U→0. Shaded regions denote the theoretical predictions for each of these
values.

ues for J and U are determined from band structure calculation. The width of the
bars denotes the systematic uncertainty due to the 2% uncertainty of the lattice depth
calibration. There is an overall good agreement between the measured values and
those calculated from band structure. The measured single particle tunnel coupling
is typically 5% lower than the predicted one, which is slightly larger than explained
by deviations due to the lattice calibration.

However, there is a bias toward measuring lower tunnel couplings due to the same
simplifications in the model which were already discussed with respect to the damp-
ing processes: The only damping mechanism which the model does include origi-
nates from the detuning of the tunneling between the two wells (inhomogeneous ∆)
and the resulting inhomogeneous increase in tunneling frequency which leads to a
dephasing of the oscillations. This mechanism therefore always increases the aver-
age tunneling frequency compared to the trap center. As some of the real damping
mechanisms are not necessarily associated with an average increase in frequency, the
oscillations calculated by the model are incorrectly accelerated by several percent. In
order to fit this oscillation frequency to the measured data, the fit procedure for the
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model therefore yields a correspondingly lower tunnel matrix. This leads to a small
expected negative offset in J compared to the band structure results.

6.9 Deviations from the standard Bose-Hubbard model

When fitting the model both for ensembles of singly- and doubly occupied double-
wells, it is observed that the Bose-Hubbard model parameters obtained for these two
cases differ slightly. For the two particle case, the tunnel coupling has to be replaced
by an effective tunnel coupling J′, which deviates from J by 3-10%. This deviation
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Figure 6.18: Comparison of the coupling matrix elements J and J′ for single atoms and atom
pairs, respectively. The data shows a significant difference between the two parameters. The
red line corresponds to the prediction of an extended Bose-Hubbard model which takes some
higher-order coupling terms into account.

originates from two approximations which are made in the determination of the pa-
rameters for the Bose Hubbard model. Firstly, modifications to the single particle
wave functions due to the interaction with a second atom are neglected. For higher
occupation numbers, these effects are stronger and interaction-induced modifications
of the wave function have to be taken into account even in deep lattices [184]. The
shift in interaction energy for larger site occupation numbers can also be measured
spectroscopically [73]. For most experiments with low occupation numbers in 3D
optical lattices, the unperturbed single-particle wave functions are a good approxi-
mation. Interactions do however create corrections to the relevant overlap integrals
on the percent level [74], especially for strong orthogonal confinement at low super-
lattice depths. These have to be taken into account by including contributions from
higher bands.

The on-site interactions effect the observed tunneling rates, as the modified wave
functions also have a modified overlap with the neighboring sites, thus changing the
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6 Observation of tunneling processes in two-well potentials

tunnel matrix element. An order-of-magnitude estimate was made by slightly vary-
ing the parameters which define the shape of the double well Wannier functions in
order to minimize the overall energy for two interacting atoms. Due to the some-
what arbitrary parametrization of the wave functions this was not expected to give a
very precise result, but the ansatz did yield an up to 5% change in the tunnel matrix
element.

The second approximation is made by the Bose Hubbard hamiltonian [4] as used
here (Eq. 6.4). This simplified model does not contain all possible higher-order cou-
pling terms between the two modes. All contributions from first order operators are
included – the symmetrized coupling term â†

L âR + â†
R âL and the bias energy term

n̂ = â†
j âj with (j = L,R). In contrast, only one of the possible second-order terms

is considered: The on-site interaction term n̂j(n̂j − 1), for j = L,R. All other terms
are small compared to this one and are neglected in the standard Bose-Hubbard
model. They can, however, be detected due to the possibility of directly compar-
ing two tunneling frequencies measured with high precision in the measurements
described above.

The most prominent of the neglected second-order terms is the direct nearest neigh-
bor interaction [3]. It is sometimes included into the model, usually by assuming
some direct long-range interaction mechanism such as dipole-dipole interactions. For
the two well system it has the form

Vn̂Ln̂R = U2 â†
LaLa†

RaR,

where U2 is the nearest neighbor interaction strength. Without considering additional
long-range interaction mechanisms, it is determined by the overlap of the density
distributions of the two wells:

U2 =
4πh̄2as

m

∫
w∗L(~x)wL(~x)w∗R(~x)wR(~x)d~x

Other neglected contributions are â†
LaLa†

LaR, which describes a combination of tun-
neling and interaction (“interaction-driven tunneling”) and â†

LaRa†
LaR, the direct second-

order tunneling term.
For specific initial conditions such as the ones in this experiment, these contri-

butions can be included as an extension to the two-site Bose-Hubbard hamiltonian
6.4 in the form of corrections to the tunneling and interaction parameters U and J
[185, 186]. In the limit of large barrier heights, these corrections are the dominant
deviation from the unmodified two well Bose-Hubbard model. Specifically, it is the
interaction-driven tunneling which provides the main contribution U3, resulting in a
correction to the pair tunneling dynamics as

J′(2) =
2(J + U3)2

U
.
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This correction can be absorbed into the tunnel coupling J, resulting in the modified
coupling J′ in the case of an atom pair being prepared. For the second-order tunnel-
ing process which leads to superexchange [185] of two neighboring atoms, it is the
nearest neighbor wave function overlap U2 which provides the dominant correction.
It should be emphasized that the corrections are determined from the first band pair
alone without any contribution from higher bands. Of course, all of these models ap-
proximate the time-dependent Schrödinger equation, which, if used directly, allows
one to obtain the exact dynamics.

Figure 6.18 shows the ratio of the bare single-particle tunnel matrix element J to
the effective single-particle tunnel coupling J′ for the case of the double well being
occupied by two atoms. The red line denotes the expected ratio for the extended
Bose-Hubbard model obtained by taking the corrections due to higher-order cou-
pling terms into account, without any contributions due to higher bands. With these
modifications, the measurement is consistent with the model to within the error bars.

6.10 Conditional tunneling

The suppression of the first order tunneling for a double well with occupation n =
2 is due to the energy mismatch between the initial state and the final state of the
process. For the symmetric configuration with both atoms initially in the left well, this
mismatch is equal to the interaction energy U. However, by biasing the double well in
such a way that the potential energy of atoms is reduced in the left well and increased
in the right well, the mismatch can be reduced below the coupling strength J, and
even completely canceled for ∆ = U, bringing the first order process into resonance.
Figure 6.19 shows the tunneling dynamics for two different values of the bias energy
∆ and otherwise identical preparation (Vred = 10 ER(red), Vblue = 12 ER(blue)). In both
cases the position signal for single atoms and atom pairs is shown. For the symmetric
double-well, tunneling of single atoms is resonant, and atom pairs predominantly
tunnel in second order as a pair. As described before, the first-order process is seen as
a strongly suppressed oscillation. The single atom tunneling period is approximately
1.1 ms for a single atom.

If the bias energy is adjusted to coincide with the interaction energy U, however,
tunneling is strongly suppressed for single atoms, since this process now is detuned
by ∆ ≡ U = 0.73 ER(blue). The second order tunnel process is fully suppressed, as it
is detuned by 2 · ∆. In contrast, the first order pair-breaking tunnel process is now
in resonance. It can be visualized as one atom of the pair staying in the original well
with the other undergoing a periodic tunneling motion. It should therefore show a
center-of-mass oscillation amplitude half as large as that of the single atom resonance
in the symmetric potential. At the same time, the tunneling rate is enhanced due to
the bosonic statistics in the presence of the second atom, which should reduce the
periodicity by a factor of

√
2. Indeed, this process is observed as an oscillation with
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Figure 6.19: Effect of an energy bias ∆ 6= 0 on the tunneling of single atoms (black dots) and
atom pairs (red dots). In both cases, atoms are prepared on the left side of the double well
in the strongly interacting regime (Vred = 10 E(R(red), Vblue = 12 ER(blue)). In a, the energy bias
∆ = 0, leading to resonant second order tunneling for pairs and single atoms, but suppressed
first order tunneling for a single atom out of a pair. In b, a bias of ∆ = U = 0.73 ER(blue) offsets
the effect of the interaction energy, enabling resonant tunneling of a single atom from the pair,
with all other tunneling processes being suppressed.

an amplitude of 0.32 and a period of 0.7 ms.
The resonances can be mapped by taking the tunneling signals for the same initial

state with different bias configurations. To extract the tunnel oscillation periodicities
and amplitudes, the obtained traces are fitted with a fit function consisting of two
independently damped sinusoidal functions:

x(t) = A0 + ∑
j={1,2}

Aj · e
−t2/T2

j · cos(ω1(x− tj)) (6.16)

Figure 6.20 shows the amplitudes and the tunneling periods of the individual pro-
cesses against the bias energy. The error bars shown are derived from the fit uncer-
tainty. As the fit function only delivers the parameters for each frequency component
regardless of the underlying process, they have to be assigned to the first-order and
second-order type manually in the atom pair case.

The resulting curves allow the identification of a single resonance for n = 1 oc-
cupation, and two clearly distinct peaks for the n = 2 case. Here, the second-order
tunneling resonance can be found for ∆ = 0, whereas the second frequency compo-
nent shows a peak around a value of 0.78(2) ER(blue), corresponding to the interaction
energy U for this lattice configuration. At this bias energy, the tunneling therefore
depends on the presence of a second atom in the initial well. This second atom ef-
fectively switches the tunneling of the first in a very similar way as the electrons
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Figure 6.20: Amplitudes (a) and periods (b) of the different tunneling processes plotted
against bias energy. The insets schematically show the respective tunneling processes. Black
data points denote the tunneling of solitary atoms, whereas red symbols correspond to the
tunneling of a single atom out of a pair. The simultaneous tunneling of the pair is shown as
blue hollow circles. Tunneling of pairs and of a solitary atom is resonant for the unbiased
configuration. The pair breaking tunnel process of a single atom is resonant when the bias ∆
compensates the pair interaction energy U.

influence each other in single electron transistors using semiconductor quantum dots
or metallic islands.

Due to the conditional behavior this process can therefore be used as a two-particle
operator to create entanglement - for example if applied between two adjacent dou-
ble wells. In that case, tunneling would only take place if the right site of the left
double well and the left site of the right one are occupied simultaneously. Processes
of this kind can therefore create entanglement along a chain of double wells, yielding
entanglement between many sites simultaneously.
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7 Outlook

In this thesis several new methods for manipulating and probing correlated quantum
states of atoms in optical lattices were described. The motivation for these develop-
ments is to facilitate or enable novel experiments with such states. This final chapter
will summarize the main results and give an outlook on some of the possible appli-
cations and extensions.

7.1 Probing the density distribution and number statistics of Mott
shells

A method to determine the overall density distribution and to demonstrate the exis-
tence of the Mott insulator Shell structure was presented in chapter 4. For this, the
spin state of atoms in a very localized region of space is selectively modified, and the
number of atoms in that region determined. This allows for an integrated density
profile with a better linear resolution than achieved so far by direct optical imaging
of the atoms in the lattice potential. Using this method, it is possible to show the
existence of the Mott shell structure with sharp boundaries separating the shells. As
one consequence, this yields some insight into the temperature of the system in the
lattice, in a regime of very low temperatures kBT � U where temperature measure-
ments are notoriously difficult. As the Mott shell structure is strongly affected by
thermal excitations, analyzing it allows us to give a upper bound of kBTmax ≈ 0.2 U
for the temperature of the ensemble inside the lattice potential.

Another obvious application of the slicing technique would be the combination
with a high resolution imaging system in order to generate two-dimensional images
of the individual slices. In this way, it would be possible to directly determine the
3D distribution in the trap, without having to resort to reconstruction techniques.
By selectively imaging specific number states, the number state distribution could
thus be determined with 3D resolution. Together with the spatially varying chemical
potential, a whole line of the Bose-Hubbard phase diagram could be measured at the
same time in the trap.

Addressing atoms with high resolution at specific positions along one of the lattice
axes has of course more applications than imaging alone. It can also be used for
manipulating the quantum gas in the trap, while simultaneously providing a spin-
sensitive readout with the same spatial resolution along the same axis. This method
has been proposed as an addressing technique for quantum information purposes.
For this, a chain of atoms or molecules is placed in a magnetic (or electric in the case
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of dipolar molecules) field gradient. A large enough spacing and a strong enough
gradient provided, the internal state of each atom can then be addressed individually,
providing an important prerequisite for quantum computing [130, 131]. In the optical
lattice, this method could be used to address atoms in 1D chains of sites to create
arbitrary initial states.

Combining tunneling along the detection axis and a spin degree of freedom also
creates an interesting system for studying dynamical effects in Luttinger liquids such
as spin-charge separation [187–189]. For this, the equilibrium state could be locally
perturbed by microwave addressing. The propagation of the the perturbation along
the tunneling axis could then be observed by repeatedly measuring the density pro-
files in each of the spin states [190].

7.2 Noise correlation interferometry

In chapter 5, using the Hanbury Brown-Twiss effect as a probe for a strongly corre-
lated quantum gas is demonstrated. By analyzing the correlations in the quantum
noise of the expanded atom cloud, it is possible to determine the spatial correlations
of the cloud inside the lattice. This is possible even though the average density distri-
bution, without noise, does not yield any information other than on the on-site wave
function on each lattice site.

By observing an artificially prepared charge density wave, it is shown that the
method is able to pick up non-trivial order in the optical lattice. This capability is
a crucial requirement in the current quest for the realization of quantum states with
complex order in optical lattices.

Another important step for the application of the noise correlation analysis was
the recent demonstration of anticorrelations for spin-polarized fermions in the lattice
[143] and for a bulk gas [191]. In the lattice, the fermionic band insulator state has the
same spatial structure as the bosonic Mott insulator. However, in this case the Fermi
statistics leads to peaks of reduced correlations (anticorrelations) as opposed to the
increased correlations of bosons.

With the recent experimental progress in cooling fermions far below the degener-
acy temperature and loading them into lattice potentials [37, 38], the demonstration
of antiferromagnetic ordering of fermionic atoms in a lattice also seems within reach.
This state would not have any signature in the momentum distribution of the atoms,
but could be identified by quantum noise interferometry due to the doubling of the
lattice unit cell.

Ground states with the same Néel-type order could also be created with bosons
through non-local interactions such as those in the recently demonstrated dipolar
quantum gases [147, 192–196] or by using specially tailored spin-exchange interac-
tions in spin-dependent lattices [197] or superlattices [198].
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7.3 Optical superlattices

7.3 Optical superlattices

In chapter 6 the creation of a lattice of double well potentials was demonstrated. In
this array of double wells, it is possible to observe tunneling of single atoms and to
show the crossover from independent tunneling to correlated tunneling of interacting
atom pairs. In the strongly correlated regime, atom pairs can not be broken up by
single atom tunneling events, even though the interaction is repulsive, and it was
shown that the pair then tunnels as a whole in a second order process. Furthermore,
it was demonstrated that first-order tunneling of one atom of a pair can be resonantly
controlled in an “atom transitor”–type setup.

These experiments show the capabilities of the double well lattice potential, which
is the starting point for a whole range of possible experiments.

Demonstration of spin-exchange interactions in the double well

The obvious next step from the experiments with higher order tunnel processes pre-
sented here is the introduction of the spin degree of freedom, since second order tun-
nel coupling between neighboring sites is an important process for mediating spin-
dependent next-neighbor interactions, which could lead to quantum magnetism in
the lattice [41].

With two different spins, the underlying exchange process of the two spins can
be directly observed by preparing a defined spin configuration and letting it evolve
under the corresponding two species Hubbard hamiltonian. This is possible by first
using the controlled spin-changing collisions discussed in section 3.3 to create a “spin-
triplet” state in a single well. An ordered spin state can be engineered in each double
well by adiabatically separating the two spins to the left and the right well in a con-
trolled way. First-order tunneling in this case is suppressed due to the on-site interac-
tion, as both sites are occupied with one atom. “Simultaneous” tunneling, leading to
an exchange of the spins in a second order tunnel process, is however possible. Since
the two-color double well potential is completely spin-independent, the two possi-
ble spin-ordered states are fully degenerate. This makes it possible to observe spin
superexchange interactions between the two sites even at the very low second order
coupling strengths. In this way, the spin-exchange interaction between neighboring
lattice sites could already be observed directly [185]. In addition, the sign of this cou-
pling can be inverted by using a strong double well bias [185, 198]. This realizes an
effective antiferromagnetic coupling for bosons.

Entanglement and spin chain preparation

The single-site triplet state can also be transformed to a delocalized triplet by splitting
the site into a two-well potential. External field gradients then allow for the coupling
between this triplet and the corresponding spin singlet, the dynamics of which can
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be observed directly. These states are otherwise very robust to decoherence, making
the system an interesting resource for quantum information [199] or precision mea-
surements [200].

In the quantum information context, the spin superexchange process between neigh-
boring sites of a spin chain can be used as a quantum gate. It implements a

√
swap-

gate between neighboring qubits in a chain. This was originally proposed by [162]
for quantum computers implemented as chains of quantum dots. Another possibil-
ity to implement such a gate is the controlled on-site exchange process which can be
achieved by dynamically combining two neighboring wells [181, 201].

Using similar operations with appropriately tuned interactions it should also be
possible to entangle neighboring spins in an array of atoms, thereby creating entan-
gled spin chains similar to cluster states [202], or the resonating valence bond states
of condensed matter physics [203, 204]. Such cluster states in chains of spins are an-
other approach for implementing quantum information processing in the so-called
one-way quantum computer [205, 206].

Quantum ladders and coupled 1D gases

In the experiments presented in this thesis, the superlattice is used to create two sepa-
rated wells which each hold one spatial mode, without any additional spatial degree
of freedom. All tunneling perpendicular to the double well axis is fully suppressed.
If, in contrast to this, tunnel coupling along one of these axes is enabled, a quantum
ladder system emerges. Here, two strings of lattice sites run in parallel and are cou-
pled at each site by a lateral tunnel junction. Even though such systems still have a 1D
structure, they can have very different properties [207, 208]. One prominent example
is the gapped ground state with properties analog to a superconductor if fermions are
loaded into the ladder potential [207, 209].

2D superlattices

A fascinating regime can also be reached by creating a 2D superlattice, where two
lattice axes have superlattice periodicity. This produces a 2D array of weakly cou-
pled quadratic “plaquettes” of four lattice sites each. These four sites are connected
by strong tunneling links in a closed square. Such plaquettes would also enable the
preparation of resonating valence bond (RVB) states known from solid state physics
as well as allow the existence and observation of novel, higher order tunneling modes
[210]. In a plaquette filled with four atoms, a ring-exchange process is possible,
where the whole quantum state is rotated by 90 degrees. This tunneling process
has been studied previously in the context of superfluidity and quantum hall effects
in fermionic systems [211, 212] while also giving rise to novel quantum phases for
bosons [213]. In the strongly correlated regime with strong interactions, where the
first-order tunneling is suppressed, this process could be observable if it is possible
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to also selectively suppress the second order tunnel coupling without influencing the
ring exchange. For an initial geometry with alternating up and down spins around
the ring, this could be achieved by applying a magnetic field gradient along one diag-
onal of the square. This would lift the spin exchange degeneracy, but not detune the
ring exchange from resonance, which could then be the dominant tunneling process.

7.4 Conclusion

With the current progress on the experimental cold atom physics, ideas and con-
cepts waiting to be realized with ultracold atoms in optical lattices are created at an
even higher pace. Their number is rising with every new method or quantum phase
which is discovered. In the span of only a few years, ultracold quantum gases have
evolved from a spectacularly clean system capable of implementing fundamental ef-
fects of quantum mechanics, to an extremely flexible model system for fundamental
condensed matter physics. With the new methods and implementations which are
becoming available now, cold atoms in optical potentials are starting to be applied
to the investigation of current topics in condensed matter physics. In addition, con-
densed matter systems could be realized with ultracold atoms which have no current
equivalent in “real” solid state physics yet. But apart from the demonstration as-
pect for systems which are considered understood, it now also seems realistic that
ultracold atoms can soon help in solving significant challenges in fields such as su-
perconductivity or magnetism, thus making real contributions to condensed matter
physics.
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