Molekulare Mechanismen der Kontaktinhibition: Identifizierung neuer Tumorsuppressorgene

Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften"

am Fachbereich Pharmazie der Johannes Gutenberg-Universität Mainz

Monika Küppers geboren in Pforzheim

Mainz, 2007

Dekan:

- 1. Berichterstatter:
- 2. Berichterstatter:

Tag der mündlichen Prüfung: 13. Mai 2008

Inhaltsverzeichnis

Abkürzungsverzeichnis	6
Reagenzien und Chemikalien	9
Geräte und Materialien	12
1. Einleitung	14
Zellzyklus MAPK	16 19
2. Zielsetzung der Arbeit	21
3. Material und Methoden	22
3.1. Zellkultur	22
3.1.1. Verwendete Zelllinie	22
3.1.2. Medium	22
3.1.3. Kultivieren der Zellen	25
3.1.4. Zellzahlbestimmung	
3.1.5. Untersuchung auf Mykoplasmenkontamination	27
A) DAPI-Färbung	27
B) PCR	
3.1.6. Kryokonservierung	
3.2. Proteingewinnung	31
3.2.1. Gesamtextrakt	31
3.2.2. Chloroform-Methanol-Fällung	
3.2.3. Proteinquantifizierung mittels BCA-Test	
3.3. Gelelektrophorese	35
3.3.1. SDS-PAGE	
3.3.1.1. Gießen der Gele	
3.3.1.2. Proben vorbereiten	
3.3.1.3. Durchführen der Elektrophorese	39
3.3.2. Agarose-Gelelektrophorese	
3.3.2.1. Gießen der Gele	
3.3.2.2. Elektrophorese und Detektion	41
3.3.3. Standard-Marker für die Elektrophorese	41
A) Western Blot	
1 – Bluemarker (Prestained SDS-Molecular Weight Standard Mixture)	42
2 – ECL-Marker (Biotinylated Protein Ladder Detection Pack)	42
B) Agarosegele	43

3.4. Western Blot	43
3.4.1. Proteindetektion nach Transfer auf Blot-Membran	45
A) Unspezifische Detektion mittels Coomassie-Färbung	45
B) Spezifische Detektion mittels Antikörpern	
- Detektion mittels Chemilumineszenz	46
- Detektion mittels Alkalischer Phosphatase	50
3.4.2. Strippen der Blotmembran	51
3.5. PCR	52
3.5.1. RNA-Isolierung	52
A) RNA-Isolierung mittels RNAWiz	53
B) RNA-Isolierung mittels High Pure RNA Isolation Kit	54
3.5.2. Bestimmung der RNA-Konzentration	54
3.5.3. Qualitätskontrolle	55
A) Photometrisch	55
B) Agarosegel	55
3.5.4. cDNA-Synthese	56
3.5.5. PCR-Primer und Bedingungen	57
3.6. Microarrays	61
3.7. Durchflusszytometrie / FACS	64
3.8. Proliferationstest	65
3.9. Differential Display (DD)	67
3.9.1. Probengewinnung	68
3.9.2. DD-PCR	69
3.9.3. DD-Gelelektrophorese	70
3.9.3.1. Vorbereiten der Platten	70
3.9.3.2. Gießen der Gele	71
3.9.3.3. DD-Elektrophorese	72
3.9.3.4. Standardmarker für die DD-Elektrophorese	73
3.9.3.5. Detektion / Silberfärbung	74
3.9.4. Aufarbeiten differentiell exprimierter Banden	75
3.9.4.1. Isolieren differentiell exprimierter Banden aus dem Gel	75
3.9.4.2. Erneute Amplifikation der ausgeschnittenen Fragmente	77

4. Ergebnisse	
4.1. Optimieren der Versuchsbedingungen	
4.2. Differential Display	79
4.3. Microarray-Analysen	82
Zellzyklus	82
Tsc-22	94
Notch-Signalweg	95
4.4. Regulation der MAP Kinasen	96
Duale Phosphatasen	96
MAPK-Kinasen (MKKs)	97
MAP Kinase p38	
MAP Kinase ERK	
5. Diskussion	106
5.1. Microarrays	
Replikation	
Zellzyklus	
Tsc-22	
NCAM	
Marcks-like Protein	
5.2. Regulation der MAP Kinasen	
Duale Phosphatasen	
MAP Kinase p38	
MAPK-Kinasen (MKKs)	
MAP Kinase ERK	
6. Zusammenfassung	119
Literatur	120
Publikationen	129
Dankeschön	130
Lebenslauf	131
Versicherung	132
Anhang	133

Abkürzungsverzeichnis

AP	Alkalische Phosphatase
APS	Ammoniumpersulfat
AurkB	Aurora kinase B
BCA	Bicinchoninic acid
bp	Basenpaare
BSA	Rinderserumalbumin
Cdc	Cell division cycle homolog (S. cerevisiae)
Cdk	Cyclin-dependent kinase
cDNA	complementary DNA
СКІ	Cdk-inhibitory protein
cpm	Counts per minute
cRNA	complementary RNA
Dapi	4', 5-Diamidino-2-phenylindol-dihydrochlorid
DD	Differential Display
DD-PCR	Differential Display-PCR
DEPC	Diethylpyrocarbonat
DMEM	Dulbecco's Modified Eagle's Medium
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
dNTP	Desoxyribonukleosidtriphosphat
DTT	Dithiothreitol
Dusp	dual specificity phosphatase
ECL	enhanced chemolumineszenz
EDTA	Ethylendiamintetraacetat
EGF	Epidermal growth factor
Egr1	Early growth response 1
ERK	Extracellular signal-regulated kinase
FACS	Fluorescence associated cell sorting
FCS	Fetales Kälberserum
FGF	Fibroblast growth factor
Foxm1	Forkhead box M1
Gas1	Growth arrest specific 1
Grb2	Growth factor receptor bound protein 2
HDMA	High density microarray
HER2	Human epidermal growth factor receptor-2
Hey1	Hairy / E(spl)-related with YRPW motif 1
HGF	Hepatocyte-derived growth factor
HRP	Horseradish peroxidase

ltm2b	Integrale membrane protein 2b	
JNK	c-Jun NH ₂ -terminale Kinase	
kb	kilo Basen	
kDa	kilo Dalton	
MAPK	Mitogen-aktivierte Protein Kinase	
Marcks	Myristoylated alanine-rich C kinase substrate	
Mcm	Minichromosome maintainance	
MEF	Mouse embryonic fibroblast	
МКК	MAP-Kinase-Kinase	
МККК	MAP-Kinase-Kinase	
МКР	MAP-Kinase-Phosphatase	
Mlp	Marcks-like protein	
MMLV	Moloney murine leukemia virus	
MP	Milchpulver	
mRNA	messenger RNA	
NBT	Nitroblue-tetrazolium	
Ncam	Neural-cell adhesion molecule	
NGF	Nerve growth factor	
ORC	Origin recognition complex	
PAGE	Polyacrylamid-Gelelektrophorese	
PBS	Phosphate buffered saline	
PCR	Polymerase chain reaction	
PDGF	Platelet-derived growth factor	
РКС	Proteinkinase C	
Plk1	Polo-like Kinase 1 (Drosophila)	
PPARy	Peroxisome proliferator activated receptor γ	
pRb	Retinoblastoma protein	
PSA	Polysialic acid	
PVDF	Polyvinylidenfluorid	
Ras	Resistance to audigenic seizures	
RNA	Ribonukleinsäure	
RNAse	Ribonuklease	
RT	Raumtemperatur	
RTK	Rezeptor-Tyrosin-Kinase	
RT-PCR	Reverse Transkriptase-PCR	
SAPK	Stress-aktivierte Protein-Kinase	
SCF	Skp2-Cullin-F-Box	
SDS	Sodiumdodecylsulfat	
SEM	Standard error of the mean	
SHC	Src homology and collagen protein	

siRNA	silencing RNA
Skp2	S-phase kinase-associated protein 2 (p45)
Slc25a5	Solute carrier family 25, member 5
Suv39h1	Suppressor of variegation 3-9 homolog 1
TAE	Tris-Acetat-EDTA-Puffer
Таq	Thermus aquaticus
TBE	Tris-Borsäure-EDTA-Puffer
TBS	Tris buffered saline
Temed	N, N, N', N'-Tetramethylethylendiamin
TGF-β	Transforming growth factor-β
Tle	Transducin-like enhancer of split
Tris	Tris-(hydroxymethyl)-aminoethan
Tsc-22	TGF-β-stimulated clone 22
TTBS	0,1 % Tween 20 in Tris Buffered Saline
Tween 20	Polyethylensorbitanmonolaurat
upm	Umdrehungen pro Minute
WB	Western Blot
WF	Wachstumsfaktor
X-Phosphat	5-Brom-3-chlor-3-indolylphosphat

Reagenzien und Chemikalien

³ H-Thymidin	Hartmann Analytical
Aceton	Roth
Acrylamidlösung	Roth
Advantage cDNA-Kit	BD Clontech
Advantage RT-for-PCR Kit	BD Clontech
Agarose	GibcoBRL
Ammoniumacetat	Merck
Ammoniumsulfat	Sigma
Anisomycin	Sigma
Antibiotikalösung (Penicillin-Streptomycin)	PAA
APS	Applichem
BCA	Pierce
Bisacrylamidlösung	Roth
Bluemarker	Sigma
Borsäure	Serva
Bromphenolblau	Serva
BSA	Roth
Chloroform	Roth
Coomassie Brillant Blue-G	Sigma
Dapi	Boehringer Ingelheim
Delta Differential Display Kit	BD Clontech
DEPC	Roth
Dichlordimethylsilan	Sigma
Dinatriumtartrat	Merck
DMEM	PAA
DMF	Merck
DMSO	Applichem
dNTP-Mix	Roth
DTT	Applichem
ECL-Marker	Cell Signaling
EDTA	Merck
EGF	Boehringer Mannheim
Entwickler	Sigma
Essigsäure konz.	Roth
Ethanol	Roth
Ethidiumbromid-Stammlösung	Roth
FCS	PAA
FGF	Cell Signaling

Fixierer	Sigma
Formamid, deionisiert	Roth
Glycerol 87 %	Sigma
Glycin	Roth
Harnstoff, Ultra Qualität	Roth
High Pure RNA Isolation Kit	Roche
Isopropanol	Roth
Kaliumchlorid	Roth
Kaliumdihydrogenphosphat	Merck
Kupfersulfat-pentahydrat	Applichem
L-Glutamin	Sigma
Long Ranger Gellösung	Biozym
LumiGLO (ECL-Kit)	Cell Signaling
Magnesiumacetat	Sigma
Magnesiumchlorid	Merck
Magnesiumsulfat	Merck
Methanol	Roth
MgCl ₂ -Stammlösung	ABgene
Milchpulver	Heirler
MMLV Reverse Transkriptase	BD Clontech
Moviol	Clariant
Natriumacetat	Roth
Natriumcarbonat	Merck
Natriumchlorid	Roth
Natriumhydrogencarbonat	Merck
Natriumhydrogenphosphat	Merck
Natriumhydroxid	Roth
NBT	Sigma
PCR-Marker für Agarosegele	MBI Fermentas
PCR-Marker für Differential Display	Sigma
PDGF-B	Cell Signaling
Propidiumiodid	Applichem
QiAExII Gel Extraction Kit	Qiagen
Rapid Ag-Stain Kit	ICN
RNAse A	Sigma
RNAWiz	Ambion
RNeasy-Kit	Qiagen
Röntgenfilm	Sigma
Saccharose	Roth
SDS	Roth

Szintillator, Rotiszint eco	Roth
Taq-Polymerase	ABgene
Temed	Applichem
Tris	Roth
Triton X-100	Sigma
Trypanblau	Serva
Trypsin-Stammlösung	РАА
Tween-20	Sigma
Venor Gem-Kit	Minerva
X-Phosphat	Sigma
Xylencyanol	Sigma
β-Mercaptoethanol	Sigma
γ-Methacryloxypropyltrimethoxy-silan	Sigma

Geräte und Materialien

Autoklav	Systec
Blotkammer	Bio-Rad
DD-Apparatur	Biometra
Eagle Eye (UV-Licht)	Stratagene
Elektrophoresekammer	Pharmacia
Eppendorf Zentrifuge, kühlbar	Eppendorf
FACS-Calibur	Becton Dickinson
FACS-Röhrchen	Becton Dickinson
Filterpapier	Schleicher & Schuell
Fluoreszenzmikroskop	Nikon
Gel-Wippe	LKB
Gewebekulturschalen: 6, 10, 14,5 cm Durchmesser	Greiner
Glasfaserfilter	Whatman
Heizblock (Thermostat plus)	Eppendorf
Inkubator	Heraeus
Isolierband	3M
Kryoröhrchen	Nunc
Kryoschienen	Nunc
Kryotank	L' Air Liquide
Kunststoffküvette	Eppendorf
Kunststoffpipetten: 1, 5, 10, 25 ml	Greiner
Microarrays (Mouse Expression Set 430A)	Affymetrix
Mikrowelle	Moulinex
Multiwell-Platten: 6, 24, 96 wells	Greiner
Neubauer Zählkammer	Roth
PCR-Gerät	Hybaid
Phasenkontrastmikroskop	Zeiss
pH-Meter	Knick
Photometer	Eppendorf
PVDF-Membran (Immobilon)	Millipore
Röntgenfilm	Kodak
Schüttler	Heidolph
Schüttler, temperaturregulierbar (Certomat)	Braun
Sterilfilter	Nalgene
Szintillationsvials	Roth
Trockenschrank	Memmert
Ultraschallbad	Bandelin
Vakuumpumpe	Leybold-Heraeus

Vertical Laminar Flow Box	InterMed
Wasserbad	Gesellschaft für Labortechnik mbH
Wasserbad mit Umwälzpumpe	Julabo
Zellharvester	Scatron
Zentrifuge	Hettich
Zentrifugenröhrchen: 15, 50 ml	Greiner
β-Counter	Hewlett-Packard

1. Einleitung

Der menschliche Körper besteht aus etwa 30 Billionen Zellen, deren Organisation in Organe, Gewebe etc. und Zusammenspiel im Gesamtorganismus auf das Genaueste reguliert sein müssen, damit Form und Funktion gewährleistet sind. In den meisten Geweben findet eine kontinuierliche Proliferation und damit Erneuerung der Zellen statt. Die Teilungsfähigkeit einer Zelle hängt wesentlich von ihrem Differenzierungsgrad ab. Höchstdifferenzierte Zellen wie Nerven oder Skelettmuskelzellen haben ihre Fähigkeit zur Teilung vollständig verloren, während sich z. B. Stammzellen der Haut, des Blutes oder des Darmepithels fortwährend erneuern. Die meisten Zellen können sich bei Bedarf teilen, tun dies aber nur unter ganz bestimmten Bedingungen. Im gesunden Körper werden kontinuierlich Zellen erneuert, aber es besteht ein fein austariertes Gleichgewicht zwischen Proliferation und Differenzierung auf der einen und dem Abbau von Zellen auf der anderen Seite. D. h. die Zahl der Zellen des Organismus bleibt im adulten Organismus konstant.

Dabei sind die Zellen ständig wachstumsfördernden sowie wachstumshemmenden Signalen ausgesetzt, die sie interpretieren müssen. Die fehlerfreie Verarbeitung dieser Informationen ist im wahrsten Sinne des Wortes lebensnotwendig.

Wachstumsfördernde Signale sind z. B. Wachstumsfaktoren, Wachstumshormone etc. Diese Substanzen sowie ihre Rezeptoren und Signalwege sind relativ gut erforscht, dagegen ist über die proliferationshemmenden Signalwege vergleichsweise wenig bekannt.

Zu den wachstumshemmenden Faktoren zählen zum Beispiel lösliche Faktoren wie TGF-β und Zell-Zell-Kontakte. Den durch Zell-Zell-Kontakte vermittelten Wachstumsstopp bezeichnet man auch als Kontaktinhibition (Holley und Kiernan, 1968; Abercrombie, 1970). *In vitro* manifestiert sich die Kontaktinhibition nicht-transformierter Zellen in einem Wachstumsstopp, wenn sie in der Kulturschale ihre zelltypspezifische Sättigungsdichte erreicht haben. Die Zellen bilden dann einen einschichtigen Zellrasen und liegen geordnet nebeneinander vor. Obwohl die Sättigungsdichte auch vom Serumgehalt des Nährmediums beeinflusst wird, kann ein Wachstum über den Monolayer hinaus auch bei sehr hohen Serumkonzentrationen nicht mehr stattfinden (Holley, 1975). Dieses Phänomen kann auch *in vivo* beobachtet werden. Ein sehr anschauliches Beispiel dafür ist die Wundheilung, bei der die Zellen so lange proliferieren, bis die Wunde geschlossen ist, und ihr Wachstum dann wieder einstellen. Der Verlust der Kontaktinhibition geht einher mit unkontrolliertem Wachstum, Transformation der Zellen und Tumorbildung (Abercrombie, 1979; Fagotto und Gumbiner, 1996). *In vitro* zeigt sich der Verlust der Kontaktinhibition darin, dass die Zellen eine höhere Sättigungsdichte erreichen und mehrschichtige Zellhäufchen, die so genannten "foci", bilden können. Einige transformierte Zelllinien können sogar in Weich-Agar wachsen ohne Adhäsion an einer Kulturschale. Entartete Zellen unterliegen der physiologischen Wachstumskontrolle nur noch teilweise bzw. gar nicht mehr. Dabei gibt es zwei Möglichkeiten: Entweder ist die physiologische Wachstumshemmung defekt, oder die Proliferation verstärkt.

Tumorsuppressorgene kodieren für Proteine, welche die Zellteilung unterdrücken oder in inhibitorische Signalwege eingebunden sind. Viele Tumorsuppressorgene kodieren für Proteine, die im Zellzyklus am Übergang der G1- zur S-Phase beteiligt sind (s. u.). Sind sie durch Mutation inaktiv oder fehlen gänzlich, kann sich die Zelle exzessiv vermehren, weil eine Wachstumsbremse fehlt. Im Gegensatz dazu kodieren viele Proto-Onkogene für Proteine, welche die Zellteilung stimulieren. Durch Mutation können sie zu Onkogenen werden und durch überschießende Aktivität die Zelle zu übermäßigem, unkontrolliertem Wachstum veranlassen.

Gen	Funktion	Typische Neoplasie
Tumorsuppresso	rgene	
APC	Signaltransduktion	Kolon-, Schilddrüsen- und Magenkarzinom
АТМ	Serin- / Threoninkinase	Leukämien, Lymphome
BRCA1	DNA-Reparatur	Mamma- und Ovarialkarzinom
BRCA2	DNA-Reparatur	Mamma- und Ovarialkarzinom
CDKN2A (p21)	Cyclin-abhängiger Kinaseinhibitor	Melanom
NF1	GTPase-aktivierendes Protein	Neurale Tumoren
TP53	Transkriptionsfaktor	Karzinome, Sarkome, Leukämien
pRB	Transkriptions-Modifikator	Retinoblastom, Osteosarkom
WT1	Transkriptionsfaktor	Wilm's Tumor
Onkogene		
BCR-ABL	Tyrosinkinase	Chronisch-myeloische Leukämie
Cyclin D1	Zellzyklus-Regulator	Karzinome
HER2 (ERBB2)	Tyrosinkinase-Rezeptor	Mammakarzinom
HRAS	Intrinsische GTPase	Harnblasen-, Orale Plattenzellkarzinome
MET	Wachstumsfaktorenrezeptor	Papilläres Nierenzellkarzinom
MYC	Transkriptionsfaktor	Leukämien
RET	Tyrosinkinase-Rezeptor	Papilläres Schilddrüsenkarzinom

	1.	Dojoniolo für	Tumaraunnraaaraana und	Onkogono	(nach:	Doromho of ol	1000
rabelle		beispiele lui	Tumorsuopressorgene uno	Unkodene	пасп.	Poremoa er al	19991
	•••			•••••••••••••••••••••••••••••••••••••••	(

Die meisten Zellen im menschlichen Körper haben engen Kontakt zu ihren Nachbarzellen. Entarten einzelne Zellen und entziehen sich der Wachstumskontrolle durch die Kontaktinhibition, können sie sich unkontrolliert teilen und es entstehen gut- oder bösartige Tumoren. Einzelne Tumorzellen können sogar den Gewebeverband ver-lassen und Metastasen bilden.

Die Kontaktinhibition ist ein essentieller Kontrollmechanismus in den Zellen. Trotzdem ist über die molekularen Mechanismen, die ihr zugrunde liegen, nicht sehr viel bekannt. Da die Kontaktinhibition in Tumorzellen außer Kraft gesetzt ist, ist eine genauere Kenntnis der molekularen Ursachen wichtig, um neue Ansatzpunkte für die Krebstherapie zu finden, welche zur Entwicklung spezifischerer und nebenwirkungsärmerer Medikamente sowie zu einer verbesserten Diagnostik führen können. Wie wichtig es ist, die molekularen Mechanismen der Krebsentstehung zu erforschen, zeigt sich auch in der Entwicklung neuer Medikamente in den vergangenen Jahren: so zum Beispiel die Einführung des Tyrosinkinase-Inhibitors Imatinib, der die bei chronisch-myeloischer Leukämie veränderte Kinase BCR-ABL hemmt (Deininger et al., 2005). Oder der Antikörper Trastuzumab, der gegen den Rezeptor HER2 gerichtet ist, welcher aufgrund einer Genamplifikation in vielen Mammakarzinomen überexprimiert wird (Weiner, 1999; siehe auch Tabelle 1).

Zellzyklus

Die meisten Zellen im Organismus haben sich, wie bereits erwähnt, die Fähigkeit zur Teilung bewahrt, tun dies aber nur, wenn sie durch bestimmte Wachstumssignale dazu angeregt werden. Diese Zellen befinden sich in der so genannten G0-Phase, einer Ruhephase, aus welcher sie wieder in den Zellzyklus eintreten können. Der eigentliche Zellzyklus gliedert sich in vier Abschnitte: die G1-Phase (gap = Lücke), in der die Zelle wächst und sich durch Proteinsynthese auf die folgende S-Phase (Synthese) vorbereitet. In der S-Phase findet die eigentliche Verdoppelung der DNA statt. Daran schließt sich die G2-Phase an, in welcher die anschließende Zellteilung während der M-Phase (Mitose) vorbereitet wird. In der M-Phase schließlich teilt sich die Zelle in zwei Tochterzellen.

Der Zellzyklus ist ein hochkomplexer Vorgang, der fehlerfrei ablaufen muss, da er für die korrekte Weitergabe der DNA verantwortlich ist. Erreicht wird dies durch das fein abgestimmte Zusammenwirken verschiedener Regulatorproteine, die teilungsfördernd bzw. -hemmend wirken, und die zum Teil nur zu ganz bestimmten Zeitpunkten des Zellzyklus konzertierend aktiviert werden. Zu den Schlüsselproteinen des Zellzyklus gehören die Cyclin-abhängigen Kinasen (cdks = cyclin-dependent kinases), die zur Familie der Serin- / Threoninkinasen gehören und erst durch Assoziation mit ihren regulatorischen Untereinheiten, den Cyclinen, katalytisch aktiv werden (Norbury und Nurse, 1992; Pines, 1993; Sherr, 1993). Diese Cdk-Cyclin-Komplexe phosphorylieren weitere am Zellzyklus beteiligte Proteine, die damit ihrerseits aktiviert werden. Im Gegensatz zu den Cdks werden die Cycline, wie der Name bereits sagt, zyklisch exprimiert (Hunt, 1989; Sherr, 1993). Zusammen mit der Tatsache, dass bestimmte Cycline nur mit bestimmten Cdks assoziieren, wird dadurch sichergestellt, dass die Cdks zum richtigen Zeitpunkt innerhalb des Zellzyklus aktiv sind (Abb.1).

Abbildung 1:

Bildung der verschiedenen Cdk-Cyclin-Komplexe im Verlauf des Zellzyklus (aus Sherr, 1993).

Für die Feinregulierung des Zellzyklus und das differenzierte Ansprechen auf intrinsische und externe, vor allem wachstumshemmende Signale, besitzt die Zelle noch zahlreiche inhibitorische Proteine, die mit den Cdk-Cyclin-Komplexen interagieren und diese inaktivieren können. Diese Cdk-inhibitorischen Proteine (CKI) werden in zwei Familien eingeteilt. Zur "CIP-Familie" gehören p21, p27 und p57, welche unspezifisch cdk2, cdk4 und cdk6 hemmen können. Kontaktinhibierte Zellen zeigen eine Akkumulation von p27 (Polyak et al., 1994; Dietrich et al., 1997), wodurch sie in der G1-Phase arretiert werden. Zur zweiten Gruppe der CKIs, der so genannten "INK-Familie", gehören p15, p16, p18 und p19, die bevorzugt an cdk4 bzw. cdk6 binden und zur Abdissoziation der D-Cycline aus den Komplexen führen, wodurch diese inaktiviert werden, was ebenfalls zum G1-Arrest der Zellen beiträgt. Unsere Arbeitsgruppe konnte zeigen, dass p16 an der Signaltransduktion der Kontaktinhibition in humanen Fibroblasten beteiligt ist (Wieser et al., 1999). Des Weiteren ist bekannt, dass p16 in vielen Tumoren mutiert ist oder ganz fehlt, so z. B. beim Gliom, familiären Melanom und Pankreaskarzinom (Hall und Peters, 1996; Sherr und Roberts, 1995). Es erfüllt damit die Kriterien eines Tumorsuppressorgens. Auch p27 wird als Tumorsuppressor bezeichnet, wenngleich als untypischer, weil es in Tumoren nur selten mutiert oder verloren gegangen ist. Eine verminderte Expression von p27 korreliert aber zum Beispiel bei Brustkrebs mit einer schlechten Prognose (Catzavelos et al., 1997).

Erhält eine Zelle nun ein wachstumsförderndes Signal, bildet sie in der mittleren G1-Phase die D-Cycline, welche mit cdk4 und cdk6 assoziieren. Dadurch werden die Cdks aktiviert und können ihre Zielproteine phosphorylieren. Eines der wichtigsten Ziele ist das Retinoblastomprotein (pRb), das in seiner hypophosphorylierten Form an den Transkriptionsfaktor E2F gebunden vorliegt und diesen inaktiviert. Durch zunehmende Phosphorylierung im Verlauf der späten G1-Phase bis zum Erreichen des Restriktionspunktes wird pRb inaktiviert und dissoziiert von E2F ab, wodurch dieser aktiviert wird. Zuerst wird die Expression von Cyclin E induziert, welches im Komplex mit cdk2 die vollständige Phosphorylierung von pRb bewirkt, wodurch der Restriktionspunkt irreversibel überschritten und die Transkription S-Phasen spezifischer Gene möglich wird. Hat die Zelle den Restriktionspunkt überschritten, durchläuft sie den Zellzyklus unabhängig von weiterer mitogener Stimulation (Pardee, 1989; Sherr, 2000). D. h. die Zelle ist während der G1-Phase für proliferationsfördernde und -hemmende Signale empfänglich. Die meisten Tumorzellen zeigen Störungen in der Regulation der G1-Phase bzw. des G1 / S-Übergangs, wodurch der Zellzyklus autonom wird und unabhängig von proliferationsfördernden Signalen durchlaufen werden kann. In der Folge proliferieren die Zellen exzessiv.

MAPK

Durch Phosphorylierung und Dephosphorylierung kann die katalytische Aktivität von Enzymen reguliert werden. Zudem können durch Phosphorylierung Andockstellen geschaffen werden für weitere regulatorische Proteine (Adapter, Enzyme). Das Wechselspiel von Phosphorylierung und Dephosphorylierung bestimmter Aminosäure-reste von Proteinen ist ein fundamentaler Mechanismus der Signalweiterleitung in Zellen und auf allen Ebenen der Signalketten zu finden, von den Rezeptoren an der Zellmembran bis zu den Transkriptionsfaktoren im Zellkern.

Die Rezeptoren vieler Wachstums- und Differenzierungsfaktoren, zum Beispiel PDGF, EGF, FGF, HGF, NGF etc., gehören zur Familie der <u>R</u>ezeptor-<u>T</u>yrosin<u>k</u>inasen (RTK), die nach Ligandenbindung dimerisieren und sich gegenseitig phosphorylieren (Autound Transphosphorylierung). Dadurch werden sie aktiviert und können nun ihrerseits Substrate phosphorylieren (Schlessinger und Ullrich, 1992; Schlessinger, 2000). Die RTKs besitzen zwei Gruppen von Autophosphorylierungsstellen, von denen eine innerhalb der Kinase-Domäne liegt, welche die Aktivität der intrinsischen Aktivität kontrolliert. Die andere Autophosphorylierungsstelle befindet sich außerhalb der Kinase-Domäne und bietet im phosphorylierten Zustand eine Andockstelle für regulatorische Proteine (z. B. SHC, Grb2), die über ihre SH2-Domäne an die RTK binden können und mit dieser vorübergehend einen Signalkomplex bilden. Die spezifische Zusammensetzung dieser Signalkomplexe entscheidet mit darüber, welcher Signalweg in der Zelle angeschaltet wird. Zu den am besten untersuchten Signalwegen gehören die durch Wachstumsfaktoren induzierten Signalketten unter Beteiligung der so genannten <u>M</u>itogen-<u>a</u>ktivierten <u>P</u>rotein <u>K</u>inasen (MAPK).

Die MAP Kinasen werden durch duale Phosphorylierung an konservierten Threoninund Tyrosinresten aktiviert und phosphorylieren ihrerseits bestimmte Zielproteine. Die drei am besten untersuchten Familien der MAPK sind die ERK 1 und 2 (<u>e</u>xtracellular signal <u>r</u>egulated <u>k</u>inases), die vor allem durch Wachstumsfaktoren und -hormone stimuliert werden. Des Weiteren <u>Stress-aktivierte Protein K</u>inasen (SAPK), zu denen die Familien der JNK (c-Jun <u>N</u>H₂-terminal <u>k</u>inases) und der p38 gehören. Diese werden vor allem durch Zytokine und zellulären Stress (verursacht z. B. durch UV, osmotischen Stress) aktiviert, aber auch durch Wachstumsfaktoren. Darüber hinaus konnte unsere Arbeitsgruppe zeigen, dass die α -Isoform der p38 im Rahmen der Kontaktinhibition humaner Fibroblasten persistierend aktiviert wird (Faust et al., 2005). Die verschiedenen MAPK sind jeweils in einer MAPK-Kaskade organisiert, bei welcher die Signale durch sequentielle Phosphorylierung von einer MAPK-Kinase-Kinase (MKKK) auf eine MAPK-Kinase (MKK) und schließlich auf die MAPK übertragen werden.

Die Aktivität der MAPK wird durch ein fein abgestimmtes Zusammenspiel von Kinasen einerseits und Phosphatasen andererseits gesteuert. Die Kinasen gehören zur Gruppe der bereits erwähnten MKKs. Dabei werden die ERK vor allem durch die MKK1 / 2 (MEK1 / 2) aktiviert, die Stress-aktivierten MAPK dagegen durch MKKK3 / 6 und MKK4 (Enslen et al., 1998).

Die an den MAPK-Kaskaden beteiligten Phosphatasen gehören zum Großteil in die Familie der dualen (Threonin / Tyrosin) Phosphatasen (Dusp). Derzeit sind zehn Mitglieder dieser Familie bekannt, die sich in drei Gruppen einteilen lassen. Die erste Gruppe umfasst die im Zellkern lokalisierten induzierbaren Phosphatasen Dusp1 (MKP-1), Dusp2, Dusp4 (MKP-2) und Dusp5, welche MAPK aller drei Familien inaktivieren können. Die Mitglieder der beiden anderen Gruppen zeigen höhere Selektivität. Zur zweiten Gruppe gehören Dusp6 (MKP-3), Dusp7 (MKP-X) und Dusp9 (MKP-4), die im Zytoplasma lokalisiert sind und ERK1 und 2, aber auch SAPK dephosphorylieren, während die Mitglieder der dritten Gruppe, Dusp8, Dusp10 (MKP-5) und Dusp16 (MKP-7), eine höhere Affinität für die Stress-induzierten MAPK besitzen (Owens und Keyse, 2007).

2. Zielsetzung der Arbeit

Die Kontaktinhibition ist zwar weithin anerkannt als wichtiges negatives Wachstumssignal, das über den direkten Kontakt zwischen Zellen vermittelt wird. Die ihr zugrunde liegenden Mechanismen sind aber noch weitgehend unbekannt. Ziel dieser Arbeit sollte es sein, mehr über die molekularen Mechanismen der Kontaktinhibition zu lernen. Als Zellkulturmodell wurde die murine Fibroblastenzelllinie NIH3T3 ausgewählt.

Zum einen sollte die differentielle Genexpression kontaktinhibierter NIH3T3-Zellen untersucht werden. Dazu wurden zwei Methoden getestet, um herauszufinden, welche für unser Modellsystem besser geeignet ist: die Methode des Differential Display oder genomweite Microarrays. Zum anderen sollte die Regulation der Signalkaskaden der MAP Kinasen ERK und p38 im Rahmen der Kontaktinhibition untersucht werden.

3. Material und Methoden

3.1. Zellkultur

3.1.1. Verwendete Zelllinie

Die verwendeten NIH3T3-Zellen sind aneuploide embryonale Mausfibroblasten, welche, obwohl sie Immortalität besitzen, kontaktinhibiertes Wachstum zeigen. D. h. sie stellen ihr Wachstum sein, sobald sie ihre charakteristische Sättigungsdichte erreicht haben. In der Zellkultur bilden sie dabei einen konfluenten Monolayer.

3.1.2. Medium

Mit dem Zellkulturmedium sollen möglichst physiologische Bedingungen geschaffen werden, unter denen die Zellen optimal wachsen können. Für die NIH3T3-Zellen eignet sich Dulbecco's Modified Eagle's Medium (DMEM), ein synthetisches Flüssignährmedium. Es enthält anorganische Salze, essentielle Aminosäuren, wasserlösliche Vitamine und hochkonzentrierte Glucose als einzige Kohlenhydratquelle (genaue Zusammensetzung s. u.). Durch den zugesetzten pH-Indikator Phenolrot kann visuell kontrolliert werden, dass sich der pH-Wert im physiologischen Bereich (6,8-7,5) bewegt. Dem Medium werden noch fetales Kälberserum und die Aminosäure L-Glutamin zugesetzt sowie Antibiotika zur Vermeidung von Kontaminationen.

Routinemäßig wird dem Medium 10 % FCS zugesetzt. Für Versuche, bei denen durch Serumdepletion ein G1-Arrest der Zellen erreicht werden soll, wird Medium mit dem Zusatz von nur 0,2 % FCS verwendet.

Reagenzien / Chemikalien:

Dulbecco's Modified Eagle's	Dulbecco's Modified Eagle's Medium ohne Glutamin, DMEM (Lagerung: $4^{\circ}C$)					
Fetales Kälberserum, FCS (Fetales Kälberserum, FCS (Lagerung: -20°C)					
L-Glutamin	L-Glutamin					
Antibiotikastammlösung:	10.000 U / ml Penicillin					
	10 mg / ml Streptomycin					
	in 0,9 % iger NaCl-Lösung (Lagerung: -20°C)					
Lösungen:						
0,2 M Glutaminlösung:	4,35 g L-Glutamin					
	150 ml aqua bidest.					
	\rightarrow sterilfiltrieren (Lagerung: -20°C)					
Gebrauchsfertiges Medium:						
DMEM / 10 % FCS:	500 ml DMEM					
	50 ml FCS					
	10 ml 0,2 M Glutaminlösung					
	5 ml Antibiotikastammlösung (Lagerung: 4°C)					
DMEM / 0,2 % FCS:	500 ml DMEM					
	1 ml FCS					
	10 ml 0,2 M Glutaminlösung					
	5 ml Antibiotikastammlösung (Lagerung: 4°C)					

Zusammensetzung DMEM (Konzentrationen in mg / I):

Anorganische Salze:	
Kalziumchlorid, wasserfrei	200,0
Eisen(III)nitrat*9H ₂ O	0,10
Kaliumchlorid	400,0
Magnesiumsulfat, wasserfrei	97,7
Natriumchlorid	6400,0
Natriumdihydrogenphosphat*H ₂ O	125,0
Natriumhydrogencarbonat	3700,0
Aminosäuren:	
L-Arginin*HCI	84,0
L-Cystin	48,0
Glycin	30,0
L-Histidin*HCI*H ₂ O	42,0
L-Isoleucin	105,0
L-Leucin	105,0
L-Lysin*HCI	146,0
L-Methionin	30,0
L-Phenylalanin	66,0
L-Serin	42,0
L-Threonin	95,0
L-Tryptophan	16,0
L-Tyrosin	72,0
Vitamine:	
D-Kalzium-Pantothenat	4,0
Cholinchlorid	4,0
Folsäure	4,0
Myo-Inositol	7,2
Nicotinamid	4,0
Pyridoxal*HCl	4,0
Riboflavin	0,40
Thiamin*HCI	4,0
Weitere Zusätze:	
D-Glucose, wasserfrei	4500,0
PhenoIrot	15,0

3.1.3. Kultivieren der Zellen

Alle Schritte wurden unter sterilen Bedingungen in einer Laminar Flow Box durchgeführt, die vor Beginn der Arbeiten mit 70 % Ethanol gereinigt wurde. Beim Arbeiten mit Zellkulturen wurden Handschuhe getragen und zwischen den einzelnen Arbeitsgängen mit 70 % Ethanol desinfiziert, um Kontaminationen der Zellkulturen zu vermeiden.

Geräte:

Vertical Laminar Flow Box Inkubator Wasserbad Sterile Kunststoffpipetten: 1, 5, 10, 25 ml Gewebekulturschalen: 6, 10, 15 cm Durchmesser Multiwell-Platten: 6-, 24-, 96-well Zentrifugenröhrchen: 15 ml Zentrifuge Sterilfilter Phasenkontrastmikroskop Reagenzien / Chemikalien: Natriumchlorid Kaliumchlorid Kaliumdihydrogenphosphat Dinatriumhydrogenphosphat (wasserfrei) **EDTA** Trypsin-Stammlösung: 2,5 % Trypsin in PBS ohne Ca²⁺, Mg²⁺ (Lagerung: -20°C) Lösungen: Phosphate buffered Saline, PBS: 8 g Natriumchlorid 0,2 g Kaliumchlorid 0,2 g Kaliumdihydrogenphosphat 1,15 g Dinatriumhydrogenphosphat (wasserfrei) ad 1,0 I aqua dest. \rightarrow pH 6,8 einstellen \rightarrow autoklavieren (Lagerung: 4°C) PBS mit 0,02 % EDTA: 0,1 g EDTA 500 ml PBS (pH 6,8) \rightarrow autoklavieren (Lagerung: 4°C)

Trypsin-Gebrauchslösung: 5 ml Trypsin-Stammlösung (2,5 %) ad 500 ml PBS / 0,02 % EDTA (Lagerung: -20°C) DMEM / 10 % FCS (s. 3.1.2.)

Alle Lösungen wurden vor Gebrauch im Wasserbad auf 37°C vorgewärmt. Kulturbedingungen im Inkubator: 37°C, 5 % CO₂, 90 % Luftfeuchtigkeit.

Procedere:

- Das Medium wird abgesaugt und der Zellrasen 3 x mit PBS gewaschen.
- Nach Zugabe von 0,5 ml Trypsin pro Schale (10 cm) wird 1-2 min bei RT inkubiert, bis sich die Zellen abrunden und von der Platte lösen (mikroskopische Kontrolle).
- Nach Zugabe von 9,5 ml Medium pro Schale, werden die abtrypsinisierten Zellen gut darin suspendiert (Trypsin wird durch FCS inaktiviert), in ein 15 ml-Zentrifugenröhrchen gegeben und zentrifugiert (10 min, 800 upm).
- Der Überstand wird abgesaugt und das Zellpellet in 10 ml Medium resuspendiert.
- Anschließend wird die Zellsuspension auf neue Kulturschalen verteilt.

3.1.4. Zellzahlbestimmung

Die Zellzahlbestimmung erfolgt mit Hilfe einer Neubauer Zählkammer. Zur besseren Unterscheidung zwischen lebenden und toten Zellen wird die Zellsuspension mit dem Vitalfarbstoff Trypanblau gemischt, der nur von toten Zellen mit nicht mehr funktionstüchtiger Plasmamembran aufgenommen wird. Unter dem Mikroskop werden dann nur die hellen, lebenden Zellen gezählt.

Geräte:

Neubauer Zählkammer Phasenkontrastmikroskop Reagenzien / Chemikalien: Natriumchlorid Trypanblau Lösungen: 0,9 % ige Natriumchlorid-Lösung: 0,9 g Natriumchlorid 100 ml aqua dest.

in 0,9 % iger Natriumchlorid-Lösung

Procedere:

- 50 µl Zellsuspension werden mit 50 µl Trypanblaulösung gemischt und in die Zählkammer eingebracht.
- Unter dem Mikroskop werden die ungefärbten Zellen ausgezählt.
- Es werden jeweils Doppelbestimmungen durchgeführt. Der Mittelwert der Bestimmungen wird mit dem Kammerfaktor (= 2500), sowie der Verdünnungsstufe (= 2) multipliziert. Der so ermittelte Wert entspricht der Zellzahl / ml Suspension.

3.1.5. Untersuchung auf Mykoplasmenkontamination

Bei Mykoplasmen handelt es sich um 0,3-0,8 µm große Prokaryonten, die keine Zellwand besitzen und unter anderem auf den Schleimhäuten der Lunge sowie des Magen-Darm-Traktes vorkommen. Mykoplasmen können zum Beispiel über den Atem auf die Zellkultur übertragen werden. Da sie nicht nur sehr klein, sondern aufgrund der fehlenden Zellwand auch sehr flexibel sind, können sie selbst herkömmliche Sterilfilter (Porengröße: 0,2 µm) passieren. Im Gegensatz zu Hefen und Bakterien sind Mykoplasmen unter dem Lichtmikroskop nicht zu erkennen. Um eine Kontamination der Zellen mit Mykoplasmen gegebenenfalls zu erkennen, wurde die Stammkultur regelmäßig kontrolliert. Dazu kamen zwei verschiedene Methoden zur Anwendung.

A) DAPI-Färbung

Bei dieser Methode wird mittels eines Fluoreszenzfarbstoffes ganz spezifisch DNA angefärbt. Die Zellkerne der kultivierten Zellen fluoreszieren blau, und im Falle einer Kontamination mit Mykoplasmen erscheinen diese als kleine fluoreszierende Pünktchen außerhalb der Zellkerne.

Geräte:

Fluoreszenzmikroskop Reagenzien / Chemikalien: Methanol Essigsäure Dapi Tris Moviol Glycerol 87 % Lösungen:

Fixierlösung:		Methanol : Essigsäure 3 : 1 (V / V)		
Dapi-Stammlösung:		5 μg / ml Dapi in PBS (Lagerung: -20°C)		
Dapi-Gebrauchslösun	g:	0,2 ml Dapi-Stammlösung in 10 ml Methanol		
		ightarrow immer frisch ansetzen		
0,2 M Tris (pH 8,5): 0,49) g Tris		
	ad 20 i	ml aqua dest.		
	-	\rightarrow pH 8,5 einstellen		
Moviol-Lösung:	5 g	Moviol		
	6 g	Glycerol (87 %)		
	6 ml	aqua dest.		
	\rightarrow	1 h bei RT quellen lassen		
	12 ml	0,2 M Tris (pH 8,5)		
	\rightarrow	15 min kochen		
	\rightarrow	zentrifugieren: 3000 upm, 15 min (Lagerung: 4°C)		

Procedere:

- Deckgläschen werden in eine Zellkulturschale gegeben und mindestens 20 min mit absolutem Ethanol inkubiert.
- Das Ethanol wird abgesaugt und die Deckgläschen 3 x kurz und 3 x 5 min mit PBS gewaschen. Anschließend werden die Deckgläschen mit DMEM / 10 % FCS versetzt und bis zum Gebrauch in den Inkubator gestellt.
- Die Zellen werden gemäß 3.1.3. abtrypsinisiert, resuspendiert und die erhaltene Zellsuspension auf die Deckgläschen pipettiert.
- Dann werden die Zellen für mindestens 2 Tage auf den Deckgläschen wachsen gelassen.
- Der Überstand wird abgesaugt, der Zellrasen 2 x mit PBS gewaschen und 2 x 5 min mit Fixierlösung behandelt. Anschließend werden die Deckgläschen auf Filterpapier luftgetrocknet.
- Die Deckgläschen werden mit je 2 ml Gebrauchslösung versetzt und 10-15 min im Dunkeln gefärbt.
- Anschließend werden die Deckgläschen 1 x mit Methanol und 1 x mit PBS gewaschen und luftgetrocknet.
- Pro Deckgläschen wird ein Tropfen Moviollösung auf einen Objektträger gegeben. Die getrockneten Deckgläschen werden mit dem Zellrasen nach unten auf die Movioltropfen gelegt und überschüssiges Moviol durch gleichmäßigen Druck auf die Deckgläschen entfernt.
- Die fluoreszenzmikroskopische Auswertung erfolgt mit einem Ölimmersionsobjektiv bei 100-facher Vergrößerung unter Anregung mit Licht der Wellenlänge λ = 420 nm.

B) PCR

Bei dieser PCR-basierten Methode zum Nachweis einer Mykoplasmenkontamination wurde das VenorGeM-Kit entsprechend dem Protokoll des Herstellers eingesetzt. Diese Methode ist sehr spezifisch, apparativ und von der Durchführung her aber wesentlich aufwändiger als die DAPI-Färbung und wurde daher nicht routinemäßig angewandt, sondern nur nach dem Auftauen von Zellen.

Amplifiziert wird bei der PCR eine DNA-Sequenz, die bei verschiedenen Mykoplasmen hochkonserviert ist und auch in einigen Ureaplasma-Spezies vorkommt.

Geräte:

	PCR-Gerät					
	Heizblock					
	Zentrifuge					
Reage	nzien / Chemikalien:					
	VenorGEM-Kit					
	DMEM					
	FCS					
	DEPC					
Lösung	gen:					
	0,2 M Glutaminlösung (s. 3.1.2.)					
	DMEM ohne Antibioti	ika:	ka: DMEM ohne Glutamin			500 ml
			FCS			50 ml
	0,2 M Glutaminlösung				ösung	10 ml
	DEPC-Wasser (RNAse-freies Wasser): 0,1 % DEPC in aqua					n aqua bidest.
	\rightarrow autok			→ autokla	vieren	
	PCR-Master-Mix:	DEPC	- Wasser		107,4 µl	
		10 x R	eaktionspuff	fer	15,0 µl	
		Primer	-/ Nukleotid-	-Mix	15,0 µl	
		Kontro	II-DNA		6,0 µl	
		Taq-Po	olymerase		0,6 µl	

Procedere:

- Die Zellen werden in Antibiotika-freiem Medium ausgesät und mindestens 1 x darin passagiert.
- Wenn die Zellen 90-100 % konfluent gewachsen sind, werden 100 µl Kulturüberstand in ein steriles Reaktionsgefäß überführt, 5 min bei 95°C gekocht und anschließend abzentrifugiert (5 sec, 13.000 upm).

- Je 48 µl PCR-Master-Mix werden in drei 1,5 ml Reaktionsgefäße pipettiert und mit 2 µl DEPC-Wasser (Negativkontrolle), 2 µl Kulturüberstand (Probe) beziehungsweise 2 µl Positivkontrolle gemischt und zentrifugiert (5 sec, 13.000 upm).
- Die PCR wird unter folgenden Bedingungen durchgeführt:

1 Zyklus: $95^{\circ}C - 15 \text{ min}$ $55^{\circ}C - 2 \text{ min}$ $72^{\circ}C - 2 \text{ min}$ 34 Zyklen: $94^{\circ}C - 30 \text{ sec}$ $55^{\circ}C - 1 \text{ min}$ $72^{\circ}C - 1 \text{ min}$ 1 Zyklus: $72^{\circ}C - 4 \text{ min}$.

- Anschließend werden die Reaktionsgefäße abzentrifugiert (30 sec, 13.000 upm).
- Je 5 µl der 3 Ansätze werden mit 0,7 µl Laufpuffer versetzt und auf ein 1,5 % iges Agarosegel aufgetragen (s. 3.3.2.).
- Die Elektrophorese erfolgt bei 100 V über eine Laufstrecke von ca. 2 cm.
- Nach dem Färben des Gels erfolgt die Auswertung unter UV-Licht (s. 3.3.2.).

3.1.6. Kryokonservierung

Zellen können bei -196°C in flüssigem Stickstoff kryokonserviert und somit als Vorrat gehalten werden. Damit die Zellen beim Einfrieren nicht durch die Bildung von Eiskristallen verletzt werden, wird die Zellsuspension mit DMSO als Frostschutzmittel versetzt und stufenweise bis zur Endtemperatur abgekühlt.

Geräte:

Kryoröhrchen Kryoschienen Kryotank *Reagenzien / Chemikalien:* DMSO FCS

Procedere:

- Die Zellen werden wie unter 3.1.3. abtrypsinisiert und in DMEM / 10 % FCS resuspendiert.
- Nach dem Zentrifugieren wird das Zellpellet in 9 ml FCS aufgenommen und gut resuspendiert.
- Nach Zugabe von 1 ml DMSO wird die Zellsuspension kurz gemischt, in 1 ml-Portionen auf Kryoröhrchen verteilt und langsam eingefroren. Dazu werden die Röhrchen mit Zellstoff umwickelt in ein Styroporrack gestellt und bei -80°C eingefroren.
- Nach 24 h werden die Kryoröhrchen dann in Kryoschienen gesetzt und in flüssigen Stickstoff überführt.

Werden die Zellen wieder benötigt, werden sie rasch bei 37°C im Wasserbad aufgetaut und in eine mit DMEM / 10 % FCS gefüllte Kulturschale überführt. Nachdem sich die Zellen angeheftet haben, wird zum Entfernen des DMSO ein Mediumwechsel mit DMEM / 10 % FCS durchgeführt.

3.2. Proteingewinnung

3.2.1. Gesamtextrakt

Proteingesamtextrakte wurden nach der Methode von Laemmli (1970) gewonnen. Durch den Einsatz kochend heißen Probenpuffers und anschließendes Abkochen der Extrakte zur vollständigen Inaktivierung der beim Abschaben freigesetzten Proteasen kann auf die Zugabe von Proteaseinhibitoren verzichtet werden.

Geräte: Zellschaber Heizblock Eppendorfzentrifuge Reagenzien / Chemikalien: Tris SDS DTT Saccharose Bromphenolblau Lösungen: PBS (s. 3.1.3.) 20 mM Tris (pH 7,4): 1,21 g Tris ad 500 ml aqua dest. \rightarrow pH 7,4 einstellen (Lagerung: 4°C) 12,1 g Tris 1 M Tris (pH 6,8): ad 100 ml aqua dest. \rightarrow pH 6,8 einstellen 20 % SDS: 20 % SDS in aqua dest. 1 M DTT-Lösung: 1,54 g DTT 10 ml aqua dest. (Lagerung: -20°C)

Laemmli-Puffer (2 x): 6 ml 1 M Tris (pH 6,8) 25 ml 20 % SDS 10 g Saccharose ad 50 ml aqua dest. \rightarrow sterilfiltrieren q. s. Bromphenolblau Reduzierender Laemmli-Puffer (1 x): 5 Teile 2 x Laemmli-Puffer 4 Teile aqua dest. 1 Teil 1 M DTT-Lösung \rightarrow erst kurz vor Gebrauch ansetzen

Procedere:

- Der Zellrasen wird 2 x mit PBS und 1 x mit 20 mM Tris gewaschen.
- Nach Zugabe kochenden reduzierenden Laemmli-Puffers werden die Zellen mit einem Schaber von der Platte abgeschabt, in ein Reaktionsgefäß überführt und kurz gevortext.
- Anschließend wird der Extrakt 10 min bei 95°C gekocht und abzentrifugiert (1 min, 13.000 upm).
- Sofern sie nicht gleich weiterverarbeitet werden, werden die Extrakte bei -20°C eingefroren.

3.2.2. Chloroform-Methanol-Fällung

Im Gesamtextrakt befinden sich außer den löslichen Proteinen noch weitere Zellbestandteile, zum Beispiel Nukleinsäuren oder Kohlenhydrate, die von den Proteinen getrennt werden sollen. Für analytische Zwecke, bei denen nur kleine Proteinmengen benötigt werden, eignet sich die Chloroform-Methanol-Fällung. Dabei werden die Proteine durch Zugabe von Lösungsmitteln dehydratisiert und aus dem Extrakt gefällt, während die anderen Zellbestandteile in Lösung verbleiben.

Geräte:

Eppendorfzentrifuge *Reagenzien / Chemikalien*: Chloroform Methanol

Procedere:

- Die gewünschte Menge Extrakt wird in ein Reaktionsgefäß gegeben und mit aqua dest. zu 100 µl aufgefüllt.
- Nach Zugabe von 100 µl Chloroform, 400 µl Methanol und 300 µl aqua dest. werden die Proben gevortext und zentrifugiert (3 min, 14.000 upm).
- Die Proteine befinden sich jetzt an der Phasengrenze zwischen Methanol / Wasser (oben) und Chloroform (unten). Der Überstand wird vorsichtig bis fast zur Phasengrenze abgesaugt.
- Nach Zugabe von 300 µl Methanol wird die Probe vorsichtig gemischt und zentrifugiert (5 min, 14.000 upm).
- Der Überstand wird komplett abgesaugt und das Pellet luftgetrocknet.
- Für die Proteinquantifizierung mittels BCA-Test wird das Pellet in 50 µl 0,5 N Natronlauge aufgenommen; für die Elektrophorese in 20 µl reduzierendem Laemmli-Puffer.

3.2.3. Proteinquantifizierung mittels BCA-Test

Zur Bestimmung der Menge an Gesamtprotein in einer Lösung wurde die Farbreaktion mit Bicinchoninsäure (BCA) in Gegenwart von Kupfer-II-Ionen angewendet (Smith et al., 1985). Es handelt sich um eine Biuretreaktion, bei der reduktive Gruppen im Protein im alkalischen Milieu Cu²⁺-Ionen zu Cu⁺-Ionen reduzieren. Letztere ergeben einen intensiv gefärbten Komplex mit je zwei Molekülen BCA. Die Absorption der gefärbten Lösung wird bei λ = 562 nm photometrisch bestimmt. Als Eichprotein wird Rinderserumalbumin (BSA) eingesetzt.

Die BCA-Proteinbestimmungsmethode hat Vorteile gegenüber anderen Methoden (z. B. geringere Störanfälligkeit durch Detergenzien), liefert aber wie alle anderen Farbreaktionen auch nur Näherungswerte, da verschiedene Proteine unterschiedlich stark mit den Kupferionen reagieren.

Störende Reagenzien wie Reduktionsmittel oder aminhaltige Pufferkomponenten (Tris) müssen wegen Reduktion oder Komplexierung des Cu²⁺ vor der Bestimmung entfernt werden. In diesem Fall wurde nach 3.2.2. gefällt und das Pellet in 50 µl 0,1 N Natronlauge aufgenommen. Geräte:

Eppendorfzentrifuge

Wasserbad

Photometer

Reagenzien / Chemikalien:

- Natriumhydroxid
- Rinderserumalbumin, BSA
- Bicinchoninsäure, BCA
- Natriumcarbonat

Natriumhydrogencarbonat

Dinatriumtartrat

Kupfersulfat-pentahydrat

Lösungen:

0,1 N Natronlauge: 0,2 g Natriumhydroxid 50 ml aqua dest.

BSA-Stammlösung: 1 mg / ml BSA in aqua dest. (Lagerung: -20°C)

Lösung A für BCA-Test: 5 g BCA

2 g Natriumhydroxid

10 g Natriumcarbonat

4,75 g Natriumhydrogencarbonat

0,8 g Dinatriumtartrat

ad 500 ml aqua dest.

 \rightarrow pH 11,25 einstellen

Lösung B für BCA-Test:

Testlösung für BCA-Test:

100 Teile Lösung A 2 Teile Lösung B

 \rightarrow kurz vor Gebrauch mischen

4 % Kupfersulfat-pentahydrat in aqua dest.

Pipettierschema für die Standards:

	Aqua dest.	BSA [1 mg / ml]	Konzentration [mg / ml]
Leerwert	50 µl	-	-
S1	45 µl	5 µl	0,005
S2	40 µl	10 µl	0,01
S3	25 µl	25 µl	0,025
S4	-	50 µl	0,05

 \rightarrow Außer dem Leerwert werden alle Standards doppelt angesetzt.

Procedere:

- Leerwert und Standards werden gemäß obigem Schema angesetzt. Die zu bestimmenden Proben werden einer Chloroform-Methanol-Fällung nach 3.2.2. unterzogen und die Pellets in 50 µl 0,1 N Natronlauge aufgenommen. Es werden jeweils Doppelbestimmungen durchgeführt.
- Nach Zugabe von 1 ml Testlösung pro 50 µl Standard bzw. 50 µl Probe werden die Reaktionsgefäße für 30 min bei 37°C im Wasserbad inkubiert und anschließend auf Eis gesetzt, um die Reaktion zu beenden.
- Anschließend wird die Extinktion der Lösungen bei λ = 562 nm am Photometer gemessen.
- Die Proteinkonzentration der Proben errechnet sich wie folgt:

$$C = E \times F / V$$

C: Konzentration der Proteinlösung in mg / ml

- E: Mittelwert der beiden bei λ = 562 nm gemessenen Extinktionen
- F: Mittelwert der aus den einzelnen Standardwerten errechneten Faktoren (Fs)

$$F_s = C_s / E$$

- $C_s\!\!:$ Konzentration des entsprechenden Standards in mg / mI
- V: eingesetztes Volumen der Proteinlösung in ml

3.3. Gelelektrophorese

Die Elektrophorese stellt ein biochemisches Trennverfahren dar, bei dem die Wanderung von geladenen Molekülen in einem elektrischen Feld zu deren Trennung ausgenutzt wird. Die Trennung wird in einer Trägermatrix durchgeführt, meist in Form eines Gels (Polyacrylamid, Agarose). Durch variable Eigenschaften der Gele (wie Porengröße, Vernetzungsgrad) kommt noch ein so genannter Siebeffekt zum Tragen. D. h. die Moleküle werden nicht nur nach ihrer Ladung, sondern auch nach Größe und Gestalt getrennt.

Die elektrophoretische Beweglichkeit der geladenen Teilchen hängt ab von:

- der Gesamt-Nettoladung des Moleküls
- der Größe und Gestalt des Moleküls
- der Porengröße des Trägers
- pH-Wert, Temperatur und Ionenstärke des Puffers
- der elektrischen Feldstärke.

Proteine enthalten aufgrund ihrer Zusammensetzung aus einzelnen Aminosäuren sowohl saure als auch basische Gruppen, wodurch ihre Nettoladung von der pH-abhängigen Ionisierung von Amino- und Carboxygruppen bestimmt wird.

3.3.1. SDS-PAGE

Bei der SDS-PAGE (<u>Sodiumdodecyls</u>ulfate-<u>polya</u>crylamid <u>gel electrophoresis</u>) werden die Proteine in Gegenwart des Detergens SDS elektrophoretisch aufgetrennt. Die Proteine werden durch SDS denaturiert und entfaltet. Das negativ geladene SDS lagert sich dabei in konstantem Gewichtsverhältnis entlang der Aminosäurekette an. Die Anlagerung negativer Ladungen ist proportional zur Proteingröße und kompensiert die positiven Ladungen in einer Weise, dass die Proteine in Richtung der Anode wandern. Dadurch erfolgt die Auftrennung der Proteine im Gel ausschließlich entsprechend ihres Molekulargewichtes.

Bei dem hier verwendeten Laemmli-Gelsystem (1970) werden die Proben zunächst in einer großporigen Sammelschicht konzentriert, von wo aus sie in das eigentliche Trenngel hineinwandern.

Die Porengröße kann durch die Acrylamidkonzentration und den Vernetzungsgrad, der von der eingesetzten Menge des Bisacrylamids abhängig ist, variiert werden, wodurch optimale Trennbedingungen für unterschiedliche Molekulargewichtsbereiche geschaffen werden können.

3.3.1.1. Gießen der Gele

Geräte:

Glasplatten (8 x 13 cm) Spacer (0,5 x 13 x 0,2 cm) Kämme (0,2 cm dick) Isolierband Trockenschrank Gelgießkammer Saugflasche Wasserstrahlpumpe *Reagenzien / Chemikalien*: Acrylamidstammlösung: 30 % Acrylamidlösung (Lagerung: 4°C) Bisacrylamidstammlösung: 2 % Bisacrylamidlösung (Lagerung: 4°C) APS Temed Tris
SDS Ethanol 70 % (V / V) Ethanol abs. Lösungen: 1,5 M Tris (pH 8,8): 18,15 g Tris 80 ml aqua dest. \rightarrow pH 8,8 einstellen ad 100 ml aqua dest. \rightarrow autoklavieren 1 M Tris (pH 6,8): 12,1 g Tris 80 ml aqua dest. \rightarrow pH 6,8 einstellen ad 100 ml aqua dest. \rightarrow autoklavieren 10 % SDS: 10 % SDS in aqua dest. APS-Stammlösung: 10 % APS in aqua dest. (Lagerung: -20°C) Ethanol 50 % (V / V): Ethanol abs. : aqua dest. 1 : 1 (V / V)

Trenngel:

	7,5 %	10 %	15 %
Acrylamidstammlösung	24,3 ml	32,4 ml	48,6 ml
Bisacrylamidstammlösung	3,73 ml	13,5 ml	20,2 ml
1,5 M Tris (pH 8,8)	25 ml	25 ml	25 ml
10 % SDS	1 ml	1 ml	1 ml
Aqua dest.	40 ml	28 ml	5,1 ml
APS	750 µl	750 µl	750 µl
Temed	45 µl	45 µl	45 µl

Sammelgel:

	20 ml
Acrylamidstammlösung	3,30 ml
Bisacrylamidstammlösung	1,36 ml
1 M Tris (pH 6,8)	2,50 ml
10 % SDS	0,20 ml
Aqua dest.	12,64 ml
APS	200 µl
Temed	20 µl

- Die Glasplatten werden gründlich mit Ethanol 70 % gereinigt. Die Spacer werden an den Längsseiten der Platten eingelegt und mittels Isolierband fixiert. Zur Verbesserung der Klebekraft werden die zusammengefügten Platten für ca. 20 min bei 80-100°C im Trockenschrank erhitzt. Nach dem Abkühlen können sie in die Gelgießkammer einge-setzt werden.
- Die Komponenten des Trenngels werden bis auf APS und TEMED in einer Saugflasche gemischt und mit Hilfe einer Wasserstrahlpumpe ca. 5 min entgast.
- Nach Zugabe von APS und TEMED wird die Lösung vorsichtig gemischt und in die Gelgießkammer gegossen. Das Trenngel wird mit 50 % Ethanol überschichtet zur Glättung der Oberfläche.
- Nach 2-3 h Polymerisierungszeit wird das 50 % ige Ethanol abgesaugt und die Kämme eingesetzt.
- Das Sammelgel wird entsprechend der Anleitung für das Trenngel angesetzt und in die Gelgießkammer gegossen.
- Nach der vollständigen Polymerisierung über Nacht werden die Gele aus der Gelgießkammer entnommen und bis zum Gebrauch in feuchte Tücher und Alufolie verpackt bei 4°C gelagert.

3.3.1.2. Proben vorbereiten

Geräte:

Heizblock

Lösungen:

s. 3.2.2.

Reduzierender Laemmli-Puffer (s. 3.2.1.)

- Die Proben werden gefällt wie unter 3.3.2. beschrieben.
- Das Proteinpellet wird in 20 µl reduzierendem Laemmli-Puffer aufgenommen, gevortext und zur vollständigen Denaturierung der Proteine 10 min bei 95°C abgekocht. Vor dem Auftragen werden die Proben abzentrifugiert (1 min, 13.000 upm).

3.3.1.3. Durchführen der Elektrophorese

Geräte:

Elektrophoresekammer mit Umwälzpumpe Reagenzien / Chemikalien: Glycin Tris SDS Lösungen: Elektrophoresepuffer: 72 g Glycin 15 g Tris 6,25 g SDS 5,0 l aqua dest. (Lagerung: 4°C)

Procedere:

- Die Gele werden in die Elektrophoresekammer eingesetzt und die Taschen mit Puffer gespült. Vom unteren Anodenraum wird Puffer in den oberen Kathodenraum gepumpt.
- Vom Auftragen der Proben bis zum Einlaufen ins Sammelgel wird die Pumpe ausgeschaltet, um Aufwirbelungen zu vermeiden.
- Für das Einlaufen der Proben in das Sammelgel wird eine Stromstärke von 50 mA angelegt. Haben die Proben die Grenze zum Trenngel erreicht, wird die Stromstärke auf 50 mA pro Gel heraufgesetzt und die Pumpe zur Durchmischung des Puffers wieder angestellt.
- Die Elektrophorese ist beendet, sobald die Lauffront das untere Ende der Gele erreicht hat.

3.3.2. Agarose-Gelelektrophorese

Hierbei kann die Porengröße des Gels durch die Agarosekonzentration variiert werden.

3.3.2.1. Gießen der Gele

Geräte:

Mikrowelle

Elektrophoresekammer

Kamm

Spacer

Reagenzien / Chemikalien:

Agarose

EDTA

Tris

Eisessig

Lösungen:

0,5 M EDTA-Lösung: 18,6 g EDTA

10 ml aqua dest.

 \rightarrow pH 8,0 einstellen

50 x TAE-Puffer (Stammlösung):

242 g Tris 57,1 ml Eisessig

100 ml 0,5 M EDTA-Lösung (pH 8,0)

ad 1,0 I aqua dest.

0,5 x TAE-Puffer (Gebrauchslösung): 5 ml TAE-Stammlösung (50 x)

495 ml aqua dest.

Ansatz für die Agarosegele:

	1 %	1,5 %	2 %
Agarose	0,2 g	0,3 g	0,4 g
0,5 x TAE-Puffer	20 ml	20 ml	20 ml

- Die Agarose und der 0,5 x TAE-Puffer werden gemischt, in der Mikrowelle aufgekocht und die leicht abgekühlte Mischung in die vorbereitete Elektrophoresekammer gegossen.
- Nach dem Erstarren werden Kamm und Spacer gezogen. Das Gel wird mit 0,5 x TAE-Puffer überschichtet und bis zum Gebrauch im Kühlschrank aufbewahrt.

3.3.2.2. Elektrophorese und Detektion

Geräte:

Elektrophoresekammer mit Powersupply Eagle Eye (UV-Licht) Chemikalien / Reagenzien: Glycerol 87 % Bromphenolblau Standardmarker (s. 3.3.3.B) Ethidiumbromid-Stammlösung Lösungen: 0,5 x TAE-Puffer (s. 3.3.2.1.) 0,5 M EDTA-Lösung, pH 8,0 (s. 3.3.2.1.) Probenpuffer für Agarosegele: 0,2 ml 0,5 M EDTA-Lösung (pH 8,0) 5,75 ml Glycerol 87 % 4,05 ml aqua dest. q. s. Bromphenolblau Ethidiumbromid-Gebrauchslösung: 10 µl Ethidiumbromid-Stammlösung 100 ml 0,5 x TAE-Puffer

Procedere:

- Die vorbereiteten Proben und der Marker werden auf das Gel aufgetragen.
- Die Elektrophorese besteht aus einem Vorlauf bei 40 V, bis die Proben aus den Taschen gelaufen sind, und einem Hauptlauf bei 80 V, bis die Lauffront etwa ³/₄ des Gels durchlaufen hat.
- Anschließend wird das Agarosegel für 25-30 min in Ethidiumbromid-Färbelösung gelegt und danach unter UV-Licht ausgewertet.

3.3.3. Standard-Marker für die Elektrophorese

Je nach Art des Gels kommen dabei Protein- bzw. DNA-Marker zum Einsatz, die es in verschiedenen Zusammensetzungen gibt, um jeden benötigten Trennbereich abzudecken.

A) Western Blot

1 – Bluemarker (Prestained SDS-Molecular Weight Standard Mixture)

Die Proteine sind an einen blauen Farbstoff gekoppelt und daher sichtbar, wodurch sich der Verlauf der Elektrophorese auch visuell mitverfolgen lässt.

Der lyophilisierte Marker wird in 1 ml reduzierendem Laemmli-Puffer (s. 3.2.1.) aufgenommen, 10 min bei 95°C abgekocht und in Aliquots zu 8 µl bei -20°C eingefroren.

Molekulargewichte:	180,0 kDa	α_2 -Macroglobulin from Human Plasma
	116,0 kDa	β-Galactosidase from E. coli
	84,0 kDa	Fructose-6-Phosphate Kinase from Rabbit Muscle
	58,0 kDa	Pyruvate Kinase from Chicken Muscle
	48,5 kDa	Fumarase from Porcine Heart
	36,5 kDa	Lactic Dehydrogenase from Rabbit Muscle
	26,6 kDa	Triosephosphate Isomerase from Rabbit Muscle

2 – ECL-Marker (Biotinylated Protein Ladder Detection Pack)

Die Proteine dieses Markers sind nicht an einen farbigen Bestandteil gekoppelt, sondern an Biotin. Der ECL-Marker wird eingesetzt, wenn der Western Blot mit Chemilumineszenz detektiert werden soll. In diesem Fall wird dem sekundären Antikörper noch zusätzlich ein HRP-gekoppelter α -Biotin Antikörper beigemischt, mit dessen Hilfe der Marker bei der Detektion auf dem Röntgenfilm sichtbar gemacht wird. Der Marker wird in Aliquots zu 8 µl bei -20°C eingefroren.

Molekulargewichte:	200 kDa
	140 kDa
	100 kDa
	80 kDa
	60 kDa
	50 kDa
	40 kDa
	30 kDa
	20 kDa
	10 kDa

B) Agarosegele

PCR-Marker für Agarosegel (Lambda DNA / EcoRI+ +HindIII Marker, 3):

Für diesen Marker wurde die gesamte DNA des λ -Phagen unter Einsatz der Restriktionsenzyme *Eco*RI und *Hin*dIII verdaut, wobei 13 DNA-Fragmente bekannter Größe entstehen.

Der Marker wird vor Gebrauch in dem mitgelieferten 6 x Puffer verdünnt und bei -20°C eingefroren.

21226 bp
5148 bp
4973 bp
4268 bp
3530 bp
2027 bp
1904 bp
1584 bp
1375 bp
947 bp
831 bp
564 bp

3.4. Western Blot

Beim Western Blot werden Proteine, die mittels Gelektrophorese getrennt wurden, auf eine Membran transferiert und dort mit Hilfe spezifischer Antikörper nachgewiesen. Beim Blotten wird eine exakte Kopie des Gels produziert, dabei werden die Proteine auf der Membran immobilisiert. Die hier angewandte Methode erfolgt im Sandwichverfahren zwischen Filterpapieren und wird als Elektroblotting bezeichnet: Das Gel und die aufliegende Membran werden zwischen 2 Elektroden platziert, sodass die Elektrophorese vertikal zum Gel stattfindet. Trägermembran und Gel tauchen dabei vollständig in eine Pufferlösung ein (Tank-Blotting). Da die Proteine mit SDS markiert und dadurch negativ geladen sind, wandern sie von der Kathode zur Anode. Geräte und Materialien:

Polyvinylidenfluorid-Membran (PVDF)

Schüttler

Blotkammer mit Einsätzen

Netzgerät

Schaumstoffkissen

Filterpapier

Reagenzien / Chemikalien:

Methanol

Tris

Glycin

Lösungen:

Blotpuffer:

12,1 g Tris 57,6 g Glycin 800 ml Methanol ad 4 l agua dest. (Lagerung: 4°C)

- Die PVDF-Membran wird zur Aktivierung mindestens 15 sec in Methanol, anschließend für einige min in aqua dest. geschwenkt.
- Zwei Schaumstoffkissen und 6 Lagen Filterpapier werden in Blotpuffer eingeweicht. In einen geöffneten Bloteinsatz werden ein Schaumstoffkissen und 3 Lagen Filterpapier gelegt.
- Darauf werden das Gel und anschließend die PVDF-Membran gelegt. Jede neue Lage wird durch Darüberrollen mit einem Glasstab geglättet und eventuell vorhandene Luftblasen zwischen den Schichten entfernt.
- Zum Abschluss werden auf die Membran nochmals 3 Lagen Filterpapier und ein Schaumstoffkissen gelegt, eventuell vorhandene Luftblasen entfernt und der Bloteinsatz geschlossen.
- Das fertige "Sandwich" wird in die Blotkammer eingesetzt, wobei das Gel der Kathode, die Membran der Anode zugewandt sein muss.
- Das Blotten erfolgt über Nacht bei 100 mA.

3.4.1. Proteindetektion nach Transfer auf Blot-Membran

Nach dem Blotten können die auf der Membran immobilisierten Proteine unspezifisch als gefärbte Komplexe nach Reaktion mit einem Farbstoff oder spezifisch über die Bildung von Antigen-Antikörper-Komplexen nachgewiesen werden.

A) Unspezifische Detektion mittels Coomassie-Färbung

Die Coomassie-Färbung beruht auf der unspezifischen Adsorption des basischen Farbstoffes an Proteine. Der Nachweis ist nicht sehr empfindlich, wurde aber routinemäßig durchgeführt, um abzuschätzen, ob das Blotten geklappt hat und ob die Beladung (= Proteinmenge pro lane) in etwa gleich ist. Dazu wurde ein Stück der Membran vom unteren Gelende, das weit genug von der gesuchten Bande entfernt war, abgeschnitten und gefärbt.

Geräte:

	Färbeschalen	
	Schüttler	
Reage	nzien / Chemikalie	en:
	Isopropanol	
	Essigsäure konz.	
	Coomassie Brilla	nt Blue-G
Lösun	gen:	
	Entfärbelösung:	150 ml Isopropanol
		100 ml Essigsäure konz.
		750 ml aqua dest.
	Färbelösung:	q. s. Coomassie Brillant Blue-G in Entfärbelösung

Procedere:

• Die Membran wird für ca. 1 min in Färbelösung, dann bis zur gewünschten Bandenintensität in Entfärbelösung geschwenkt.

B) Spezifische Detektion mittels Antikörpern

Beim Transfer auf die Blotmembran bleibt die Immunreaktivität der Proteine erhalten, wodurch diese nach Behandlung mit den entsprechenden Antikörpern detektiert werden können. Dabei bildet der spezifische Erstantikörper mit dem gesuchten Protein einen Immunkomplex.

Die Visualisierung erfolgt über eine enzymkatalysierte Farbreaktion mit Hilfe eines enzymkonjugierten Zweitantikörpers, der gegen den ersten Antikörper gerichtet ist.

- Detektion mittels Chemilumineszenz

Von Chemilumineszenz spricht man, wenn eine chemische Reaktion zu einem angeregten Molekül führt, das selbst leuchtet, sobald die angeregten Elektronen in den Grundzustand zurückkehren. Im vorliegenden Fall beruht die chemische Reaktion auf der enzymatischen Umsetzung eines so genannten Luciferins durch die Meerrettichperoxidase (HRP = <u>h</u>orse <u>r</u>adish <u>p</u>eroxidase). Die HRP ist mit dem Zweitantikörper gekoppelt und setzt Luminol zu 3-Aminophtalat um, das daraufhin Licht der Wellen-länge λ = 425 nm emittiert, welches auf einen Röntgenfilm übertragen und dort sichtbar gemacht wird.

Geräte und Materialien: Schüttler Röntgenfilmkassette Röntgenfilm Färbeschalen Holzpinzetten Reagenzien / Chemikalien: Tris Natriumchlorid Tween 20 Magermilchpulver Rinderserumalbumin, BSA LumiGLO Kit Entwickler Fixierer Lösungen:

10 x TBS: 24 g Tris 80 g Natriumchlorid 800 ml aqua dest. \rightarrow pH 7,6 einstellen ad 1 l aqua dest (Lagerung: 4°C) Waschpuffer, TTBS: 100 ml 10 x TBS 900 ml aqua dest. 1 ml Tween 20 Blocklösung 1: 5 % Magermilchpulver in TTBS Blocklösung 2: 5 % BSA in TTBS ECL-Gebrauchslösung: 400 µl LumiGLO Reagens 400 µl LumiGLO Peroxid 8 ml aqua dest. → unmittelbar vor Gebrauch im Dunkeln ansetzen Entwicklerlösung: 50 ml Entwickler 200 ml aqua dest. (Lagerung: 4°C, lichtgeschützt) Fixierlösung: 50 ml Fixierer

200 ml aqua dest. (Lagerung: 4°C)

Verwendete Antikörper:

Erstantikörnor	Rozugeguelle	Spozios	Verdünnung	Gelsystem
Erstantikorper	Bezugsquelle	Spezies	Puffer	Proteinmenge
α-Cyclin A			1: 1000	10 %
(H-432)			5 % MP	50 µg
α-MKP-1			1: 500	10 %
(M-18)			5 % MP	50 µg
α-ERK2	Santa Cruz		1: 2000	10 %
(C-14)	Santa Oraz		5 % MP	50 µg
α-ΜΚΚ-3 / 6			1: 1000	10 %
(H-90)			5 % MP	50 µg
α-ΜΚΚ 4			1: 1000	10 %
(H-98)			5 % MP	50 µg
α-phospho-MKK 3 / 6		rabbit	1: 700	10 %
(Ser 189 / 207)		Ταυριι	5 % BSA	50 µg
α-phospho-MKK 4			1: 700	10 %
(Thr 261)			5 % BSA	50 µg
a-n38			1: 1000	10 %
u-poo	Cell Signaling		5 % MP	50 µg
a-phospho-p38			1: 1000	10 %
(Thr 180 / Tyr182)			5 % BSA	50 µg
α-phospho-ERK			1: 1000	10 %
(Thr 202 / Tyr204)			5 % BSA	50 µg
α-phospho-SHC			1: 400	10 %
(Tyr 239 / 240)			5 % BSA	50 µg
α-SHC			1: 1000	10 %
(PG-797)	Santa Cruz	mouse	5 % MP	50 µg
α-Cyclin D1			1: 1000	10 %
(HD-11)			5 % MP	50 µg
a-nBB	BDPharmingen		1: 1000	7,5 %
	BDFnammigen		5 % MP	20 µg
α-Tsc-22	Santa Cruz	ton	1: 500	15 %
(C-20)		yuar	5 % MP	50 µg

5 % MP = 5 % Magermilchpulver in TTBS; Inkubation für 1,5 h bei RT 5 % BSA = 5 % Rinderserumalbumin in TTBS; Inkubation über Nacht bei 4°C

Zweitantikörper, HPP konjugiert	Bezugeguelle	Verdünnung
	Dezugsqueile	Puffer
a Piotin		1: 1000
	Cell Signaling	5 % MP
α-rabbit		1: 2000
		5 % MP
		1: 1000
u-mouse	Santa Cruz	5 % MP
a apat		1: 1000
u-goai		5 % MP

- Die Membran wird gegebenenfalls zugeschnitten, um mehrere Proteine parallel zu detektieren und für 1 h in Blocklösung geschwenkt, um alle unbesetzten Bindungsstellen auf der Membran zu maskieren.
- Die Inkubation mit dem Erstantikörper erfolgt entsprechend den Angaben in der Tabelle f
 ür 1,5 h bei RT bzw.
 über Nacht bei 4°C.
- Anschließend wird die Membran 3 x kurz und 3 x 5 min in Waschpuffer geschwenkt und für 1 h bei RT mit dem entsprechenden Zweitantikörper inkubiert.
- Die Membran wird erneut 3 x kurz und 3 x 5 min in Waschpuffer geschwenkt.
- Das weitere Procedere erfolgt unter Rotlicht im Fotolabor:
- Die Membran wird f
 ür 1-2 min in der ECL-Gebrauchslösung geschwenkt, mit Frischhaltefolie bedeckt und in die R
 öntgenfilmkassette eingelegt. Die Expositionszeit des R
 öntgenfilms richtet sich nach der St
 ärke des Signals und der Qualit
 ät der Antik
 örper und betrug 1-30 min.
- Der Röntgenfilm wird bis zur gewünschten Bandenintensität in Entwicklerlösung, dann kurz in aqua dest. geschwenkt und anschließend ca. 10 min in Fixierlösung fixiert. Nach erneutem Schwenken in aqua dest. wird der Film an der Luft getrocknet.

- Detektion mittels Alkalischer Phosphatase

Die Detektion der Antigene beruht hier auf der Umsetzung von 5-Brom-4-Chlor-3- indolylphosphat (X-Phosphat) zu einem Indigofarbstoff durch die alkalische Phos-phatase. Die entstehenden Reduktionsäquivalente aus dem Indoxyl reduzieren das Tetrazoliumsalz NBT zum purpurfarbenen Diformazan. Sichtbar wird eine violette Mischfarbe aus beiden Farbstoffen.

Die Detektion erfolgt im Dunkeln, da die Farbreaktion sehr lichtempfindlich ist.

Geräte:

Schüttler	
Reagenzien / Chemikalien:	
Tris	
Natriumchlorid	
Tween 20	
Magermilchpulver	
Magnesiumchlorid	
5-Brom-4-Chlor-3-inc	lolylphosphat, X-Phosohat
4-Nitroblautetrazoliur	nchlorid, NBT
Dimethylformamid	
Lösungen:	
Waschpuffer, TTBS (s. o.)
Blocklösung 1 (s. o.)	
Entwicklungspuffer:	12,1 g Tris
	10,2 g Magnesiumchlorid
	5,8 g Natriumchlorid
	ad 1 I aqua dest.
	\rightarrow pH 9,5 einstellen (Lagerung: 4°C)
X-Phosphatlösung:	50 mg X-Phosphat
	1 ml DMF (Lagerung: -20°C)
NBT-Lösung:	75 mg NBT
	1 ml 70 % (V / V) DMF / aqua dest. (Lagerung: -20°C)
Entwicklungslösung:	37,5 μl X-Phosphatlösung
	50,0 μl NBT-Lösung
	10 ml Entwicklungspuffer
	\rightarrow unmittelbar vor Gebrauch ansetzen

Verwendete Antikörper:

Frotontikörnor	Dozugoguelle	Charles	Verdünnung	Gelsystem
Erstantikorper	Dezugsquelle	Spezies	Puffer	Proteinmenge
α-p27			1: 1000	
(C-19)	Santa Cruz	rabbit	5 % MP	10 %
α-ERK2		Tabbit	1: 2000	50 µg
(C-14)			5 % MP	

	Dominantella	Verdünnung
	Bezugsqueile	Puffer
a rabbit	Sigmo	1: 20.000
	Sigilia	5 % MP

Procedere:

- Die Membran wird für 1 h in Blocklösung geschwenkt, um alle unbesetzten Bindungsstellen auf der Membran zu markieren.
- Die Inkubation mit dem Erstantikörper erfolgt für 1,5 h bei RT.
- Anschließend wird die Membran 3 x kurz und 3 x 5 min in Waschpuffer geschwenkt und für 1 h bei RT mit dem Zweitantikörper inkubiert.
- Die Membran wird erneut 3 x kurz und 3 x 5 min in Waschpuffer geschwenkt.
- Die Membran wird in die Entwicklerlösung gegeben und im Dunkeln ca. 2-5 min inkubiert, bis die Banden schwach sichtbar werden.
- Dann wird die Membran gründlich mit aqua dest. gewaschen und an der Luft getrocknet.

3.4.2. Strippen der Blotmembran

Nach Detektion mittels Chemilumineszenz kann die Blotmembran für eine erneute Protein-Detektion genutzt werden. Dazu wird die Membran gestrippt, um alle auf der Membran haftenden Antikörper zu entfernen. Die Dissoziation der Antigen-Antikörper-Komplexe beruht dabei auf einem starken pH-Abfall. Geräte:SchüttlerReagenzien / Chemikalien:TrisGlycinTween 20Lösungen:Waschpuffer, TTBS (s. 3.4.1.B)0,1 M Glycin:3,75 g Glycin500 ml aqua dest. \rightarrow pH 2,8 einstellen (Lagerung: 4°C)

Procedere:

 Nach der ECL-Detektion wird die Membran 3 x kurz und 3 x 5 min in Waschpuffer, anschließend 2 x 10 min in Glycinlösung und dann wieder 3 x kurz und 3 x 5 min in Waschpuffer geschwenkt.

3.5. PCR

Die Polymerasekettenreaktion (PCR) ist eine enzymatische *in vitro* Methode, mit der DNA vervielfältigt werden kann. Man nutzt hierzu die Eigenschaften von DNA-Polymerasen aus, die einen DNA-Einzel- zum Doppelstrang aufpolymerisieren können, sofern ihnen ein kurzer, doppelsträngiger Bereich als Startpunkt zur Verfügung steht. Diesen doppelsträngigen Bereich erhält man durch Zugabe zweier synthetischer Oligonukleotide (Primer), die spezifisch an Sequenzen des zu vervielfältigenden Gens binden, zum Reaktionsansatz.

3.5.1. RNA-Isolierung

RNA wurde im Folgenden mit zwei verschieden Methoden aus den kultivierten NIH3T3-Zellen gewonnen: Zum einen durch Phenolextraktion (A) und zum anderen über die Adsorption der RNA an ein Glasfaservlies (B).

A) RNA-Isolierung mittels RNAWiz

Geräte:

Kühlbare Eppendorfzentrifuge

Abzug

Reagenzien / Chemikalien: Chloroform

Isopropanol, eiskalt

Ethanol 70 % (V / V), eiskalt

RNAWiz

Lösungen:

PBS (s. 3.1.3.) DEPC-Wasser (s. 3.1.5.B)

- Die Zellen werden wie unter 3.1.3. beschrieben abtrypsinisiert, anschließend in PBS resuspendiert und zentrifugiert (10 min, 800 upm).
- Der Überstand wird abgesaugt und das Pellet wiederum in PBS aufgenommen. Ein Aliquot wird zur Zellzahlbestimmung (s. 3.1.4.) entnommen, der Rest erneut zentrifugiert und anschließend wieder in PBS resuspendiert.
- Maximal 1 x 10⁷ Zellen werden erneut abzentrifugiert und der Überstand abgesaugt. Das Pellet wird in 1 ml RNAWiz kräftig resuspendiert, in ein 2 ml Reaktionsgefäß überführt und 5 min bei RT stehen gelassen.
- Nach Zugabe von 200 µl Chloroform wird das Reaktionsgefäß 2 min intensiv gevortext, dann 10 min bei RT stehen gelassen und anschließend zentrifugiert (15 min, 14.000 upm, 4°C).
- Die obere, farblose Phase wird vorsichtig in ein neues 2 ml Reaktionsgefäß überführt, wobei eine Kontamination mit der Trennschicht unbedingt vermieden werden muss. Nach Zugabe von 500 µl DEPC-Wasser wird die Probe gevortext, mit 1 ml eiskaltem Isopropanol versetzt und erneut gevortext. Nach 10 minütiger Inkubation bei RT wird die Probe zentrifugiert (15 min, 14.000 upm, 4°C).
- Der Überstand wird abgesaugt, das Pellet (= RNA) in 1 ml eiskaltem Ethanol 70 % resuspendiert, gevortext und erneut zentrifugiert (10 min, 14.000 upm, 4°C).
- Nachdem der Überstand abgesaugt ist, lässt man das Pellet ca. 10 min lufttrocknen, dabei darf es aber nicht ganz trocken werden.
- Anschließend wird das Pellet in DEPC-Wasser aufgenommen, wobei die Wassermenge von der gewünschten Endkonzentration abhängt. Sofern die RNA nicht sofort weiterverarbeitet wird, wird sie bei -80°C eingefroren.

B) RNA-Isolierung mittels High Pure RNA Isolation Kit

Geräte:

Kühlbare Eppendorfzentrifuge

Chemikalien / Reagenzien:

High Pure RNA Isolation Kit

Lösungen:

PBS (s. 3.1.3.)

Procedere:

- Die Zellen werden wie unter 3.5.1.A beschrieben vorbereitet, wobei f
 ür diesen Ansatz nur 1 x 10⁶ Zellen eingesetzt werden. Das Zellpellet wird in 200 µl PBS resuspendiert, mit 400 µl Lyse-/ Bindepuffer gemischt und in ein Filter Tube pipettiert, das in ein Auffanggef
 äß gesteckt wurde. Anschließend wird das Gef
 äß zentrifugiert (10.000 upm, 15 sec, 15°C).
- Das Eluat wird verworfen, das Filter Tube wieder ins Auffanggefäß gesteckt.
- 10 µl DNAse I werden mit 90 µl DNAse-Inkubationspuffer gemischt, auf das Glasfaservlies des Filter Tubes pipettiert und f
 ür 15 min bei RT stehen gelassen.
- Nach Zugabe von 500 µl Waschpuffer I und erneuter Zentrifugation (15 sec, 10.000 upm, 15°C) wird das Eluat verworfen, das Filter Tube wieder ins Auffanggefäß gesteckt.
- Nach Zugabe von 500 µl Waschpuffer II wird erneut zentrifugiert (15 sec, 10.000 upm, 15°C). Anschließend werden noch 200 µl Waschpuffer II zugegeben und wieder zentrifugiert (2 min, 14.000 upm, 15°C).
- Das Filter Tube wird in ein frisches, autoklaviertes 1,5 ml Reaktionsgefäß gesteckt und nach Zugabe von 50-100 µl Elutionspuffer zentrifugiert (1 min, 10.000 upm, 15°C).
- Sofern die RNA nicht sofort weiterverarbeitet wird, wird sie bei -80°C eingefroren.

3.5.2. Bestimmung der RNA-Konzentration

Routinemäßig wurde die RNA-Konzentration einer Probe unmittelbar im Anschluss an die Isolierung bestimmt.

Geräte und Materialien: Photometer Kunststoffküvetten

- In ein Reaktionsgefäß mit 998 μl aqua bidest. werden 2 μl der frisch isolierten RNA pipettiert, gevortext und am Photometer bei λ = 260 nm vermessen. Als Leerwert dient aqua bidest.
- Alle Proben werden doppelt vermessen. Die RNA-Konzentration errechnet sich wie folgt:

 $C = E_{260} \times 40$

- C: RNA-Konzentration in µg / ml
- E_{260} : Mittelwert der beiden Extinktionen bei λ = 260 nm

3.5.3. Qualitätskontrolle

Bevor die isolierte RNA für Versuche eingesetzt werden kann, wird ihre Qualität überprüft, um sicher zu gehen, dass sie intakt und nicht durch Lösungsmittelrückstände kontaminiert ist.

A) Photometrisch

Parallel zur Konzentrationsbestimmung unter 3.5.2. vermisst das Photometer noch weitere Extinktionen bei anderen Wellenlängen. Der Extinktionsquotient $E_{260 / 280}$ ist dabei ein Maß für die Reinheit der gemessen Probe. Der Wert hängt auch vom verwen-deten Lösungsmittel ab und lag bei unseren Proben, die in aqua bidest. gemessen wurden, zwischen 1,5 und 2,0.

B) Agarosegel

Des Weiteren wird die Qualität der isolierten RNA auf einem Agarosegel kontrolliert.

Geräte:

s. 3.3.2. Chemikalien / Reagenzien: s. 3.3.2. Lösungen: s. 3.3.2.

 0,5 µg RNA werden mit aqua dest. zu 6 µl ergänzt (dazu ist eventuell ein Verdünnungsschritt nötig), mit 1,5 µl Laufpuffer versetzt und über ein 1 % iges Agarosegel aufgetrennt (s. 3.3.2.).

3.5.4. cDNA-Synthese

Da für die PCR DNA als Matrize benötigt wird, muss die RNA zunächst in DNA umgeschrieben werden. Dies erfolgt mit Hilfe des Enzyms <u>Reverse Transkriptase</u> (RT), das eine einzelsträngige, komplementäre Kopie der RNA, die cDNA (<u>complementary DNA</u>), erstellt.

Die am häufigsten dafür verwendete Methode ist die des so genannten Oligo(dT)-Priming. Hierbei entsteht durch die Reaktion eines oligo(dT)-Primers mit dem in mRNA-Molekülen vorhandenen poly(A)-Schwanz ein kurzer, doppelsträngiger Nukleinsäurebereich, der von der Reversen Transkriptase als Ausgangspunkt für die Synthese des cDNA-Strangs benötigt wird. Diese Vorgehensweise garantiert, dass die Synthese der cDNA in der Nähe des 3'-Endes der mRNA beginnt, wodurch möglichst vollständig kopierte Stränge erhalten werden sollen.

Geräte:

Thermostat plus		
Kühlbare Eppendorfzentrifuge		
Reagenzien / Chemikalien:		
Advantage RT-for-PCR Kit		
MMLV Reverse Transkriptase (200 units / µl)		
MgCl ₂ -Stammlösung (25 mM)		
Lösungen:		
DEPC-Wasser (s. 3.1.5.B)		
Master-Mix: 5 x first strand buffer 2,0 µ	l	

dNTP-Mix (5 mM each)	2,0 µl
MMLV reve	rse Transkriptase	1,0 µl
MgCl ₂ -Stan	nmlösung	1,2 µl

- 2 μg RNA werden mit DEPC-Wasser zum Endvolumen von 2,8 μl ergänzt, mit 1 μl oligo (dT)-Primer gemischt und zentrifugiert (30 sec, 13.000 upm, 4°C).
- Anschließend werden die Proben 3 min bei 70°C inkubiert, dann 2 min auf Eis gesetzt und wieder zentrifugiert (30 sec, 13.000 upm, 4°C).
- Pro Probe werden 6,2 µl Master-Mix zugegeben und durch Auf- und Abpipettieren mit dieser gemischt. Nach einem Zentrifugationsschritt (30 sec, 13.000 upm, 4°C) werden die Proben für 1 h bei 42°C umgeschrieben.
- Zur Beendigung der Reaktion wird die Temperatur für 10 min auf 75°C erhöht, und die Proben anschließend kurz auf Eis gestellt.
- Die Proben werden kurz zentrifugiert (30 sec, 13.00 upm, 4°C), mit 90 µl DEPC-Wasser verdünnt und bei -20°C eingefroren.

3.5.5. PCR-Primer und Bedingungen

Für jedes Gen, dessen Expression untersucht werden soll, muss ein Primerpaar eingesetzt werden, das einen möglichst spezifischen Abschnitt des gesuchten Gens erkennt. Die PCR-Bedingungen müssen dabei an das jeweilige Primerpaar und die Länge des vervielfältigten Fragments angepasst werden. Je höher die Annealing-Temperatur gewählt werden kann, desto größer ist die Spezifität der Bindung der Primer an ihre Zielsequenzen. Die optimale Annealing-Temperatur der Primer hängt mit von deren Länge ab, und sollte bei den beiden Primern eines Paares idealerweise nicht zu weit auseinander liegen. Je nach der erwarteten Länge des amplifizierten Fragments wird die Zeitspanne für die Extension der Fragmente unterschiedlich lang gewählt. Dabei gilt als Richtwert, dass die Taq-Polymerase ca. 1 kb pro Minute amplifizieren kann.

"Muster-PCR":

1 Zyklus: 95°C – 15 min (Aktivieren der Polymerase)

	95°C –	60 sec (Denaturieren der DNA in Einzelstränge)
x Zyklen:	T _{anneal} - 30 -	- 60 sec (Hybridisieren der Primer an die DNA)
	72°C – 30 -	 90 sec (Auffüllen der Einzelstränge durch die Polymerase)

1 Zyklus: 72°C – 10 min (Auffüllen eventuell noch nicht kompletter Doppelstränge)

Geräte:

Eppendorfzentrifuge PCR-Gerät PCR-Reaktionsgefäße

Chemikalien / Reagenzien:

Tris

Ammoniumsulfat

Kaliumchlorid

Magnesiumsulfat

Triton X-100

Rinderserumalbumin, BSA

dNTP-Mix (2 mM each)

MgCl₂-Stammlösung (25 mM)

Taq-Polymerase

Lösungen:

DEPC-Wasser (s. 3.1.5.B) BSA-Stammlösung: 10 mg / ml BSA in aqua bidest. (Lagerung: -20°C) 1 M Tris (pH 8,0): 12,1 g Tris ad 100 ml agua bidest. → pH 8,0 einstellen 1 M Ammoniumsulfatlösung: 13,2 g Ammoniumsulfat ad 100 ml aqua bidest. 3 M Kaliumchloridlösung: 22,3 g Kaliumchlorid ad 100 ml aqua bidest. 0,5 M Magnesiumsulfatlösung: 6,0 g Magnesiumsulfat ad 100 ml aqua bidest. 10 x PCR-Puffer: 2,5 ml 1 M Tris (pH 8,0) 1,1 ml 1 M Ammoniumsulfat 345 µl 3 M Kaliumchlorid 417 µl 0,5 M Magnesiumsulfat 100 µl Triton X-100 1 ml BSA-Stammlösung 4,54 ml aqua bidest. \rightarrow sterilfiltrieren (Lagerung: -20°C)

Eingesetzte Primer: s. Tabelle

 \rightarrow die Primer werden in Konzentration von jeweils 100 ng pro Ansatz eingesetzt.

		Annealing-Temp.	dNTP-Konz.		
	Frimersequenzen	Zyklenzahl	MgCl ₂ -Konz.	- rragment	Agarosegel
Aurora kinase B – sense	5'-TTGACAACTTTGAGATTGGG-3'	55°C	40 μM each	221 bp	2 %
Aurora kinase B – antisense	5'-GCTGGTCGTAGAAGTAGTTGT-3'	30	750 µM		
β- Aktin - sense	5'-TGCGTGACATCAAAGAGAGAG-3'	60°C	252 µM each	243 bp	2 %
β- Aktin - antisense	5'-CGGATGTCAACGTCACACTT-3'	23	750 µM		
Cdc25a – sense ¹	5'-CGGATGTCAACGTCACACTT-3'	52°C	40 µM each	480 bp	1,5 %
Cdc25a – antisense ¹	5'-GTTAAGAGTCATCCACGAGG- 3'	32	750 µM		
Cyclin A – sense	5'-GCCTGCCTTCACCATTCATGTG-3'	61°C	100 µM each	896 bp	1 %
Cyclin A – antisense	5'-GTCTGGTGAAGGTCCACAAGAC-3'	29	1,5 mM		
Cyclin D1 – sense ²	5'-CTGTGCGCCTCCGTATCTTA-3'	60°C	200 µM each	351 bp	2 %
Cyclin D1 – antisense ²	5'-GGCGGCCAGGTTCCACTTGAG-3'	27	1,25 mM		
Dusp 9 – sense	5'-CTCCATGAACGATACCTACG-3'	64°C	40 µM each	633 bp	1,5 %
Dusp 9 – antisense	5'-CAGCATCCCACTCTTTTG-3'	40	750 µM		
Foxm1 – sense	5'-TCCAAGAGAGCAGAGGTGAT-3'	53°C	80 µM each	641 bp	1,5 %
Foxm1 – antisense	5'-TCGTTTCTGCTGTGATTCCA-3'	35	750 µM		
Hey1 – sense ³	5'-GCCGACGAGCCGAATCAAT-3'	57°C	100 µМ еасh	314 bp	2 %
Hey1 – antisense ³	5'-GCTGGGATGCGTATGTGTTG-3'	40	750 µM		
ltm2b – sense ⁴	5'-GGAATTCAATGCCACAGCAT-3'	60°C	40 µM each	361 bp	2 %
ltm2b – antisense ⁴	5'-GGTCCCTTTAACATATGCGA-3'	30	750 µM		

		Annealing-Temp.	dNTP-Konz.		
	rimersequenzen	Zyklenzahl	MgCl ₂ -Konz.	rragment	Agarosegei
Ncam – sense ⁵	5'-CTCCCTGCCTCCAACCATCATC-3'	60°C	200 µM each	357 bp	2 %
Ncam – antisense ⁵	5'-TCTCTCATCTTCCTCCTCGTTCTC-3'	32	1 mM		
Plk1 – sense ⁶	5'-CTCCTGGAGCTGCACAAGAGGAGGAA-3'	60°C	200 µM each	454 bp	1,5 %
Plk1 – antisense ⁶	5'-TCTGTCTGAAGCATCTTCTGGATGAG-3'	31	1,5 mM		
pRB – sense ⁷	5'-CAACCCCCCCAAACCACTGA-3'	58°C	40 µM each	501 bp	1,5 %
pRB – antisense ⁷	5'-CCAGATGTAGGGGGGTCAGGA-3'	33	750 µM		
Skp2 – sense ⁸	5'-CAAGCATTCAAAACTCCTGAA-3'	52°C	40 µM each	491 bp	1,5 %
Skp2 – antisense ⁸	5'-CACAGTCACGTCTGGGTGCAGATT-3'	32	750 µM		
Suv39h1 – sense	5'-GATCCGTGAGCAGGAGTATTAC-3'	60°C	40 µM each	564 bp	1,5 %
Suv39h1 – antisense	5'-GATGCCTTTCTGGACTACAC-3'	30	750 µM		
Tle 2 – sense	5'-CGTGAGGAAGACAAGAGTGAC-3'	64°C	40 µM each	587 bp	1,5 %
Tle 2 – antisense	5'-CAGACACGTGGAAGGAGTAAG-3'	30	750 µM		
Tle 6 – sense	5'-CTGGAGGGAACAAGATGAG-3'	60°C	40 µM each	474 bp	1,5 %
Tle 6 – antisense	5'-CTAGAAGAGCTGAGGGAGAC-3'	32	750 µM		
Tsc-22 – sense ⁹	5'-CGATGGATCTAGGAGTTTACC-3'	57°C	252 µM each	509 bp	1,5 %
Tsc-22 – antisense	5'-GCAATGAAATGGGTGACTGTG-3'	32	750 µM		

Detektion der amplifizierten Fragmente:

→ Routinemäßig werden 8 µl PCR-Produkt mit 1,5 µl Laufpuffer gemischt und mittels Agarose-Gelelektrophorese (3.3.2.) untersucht.

Referenzen für Primersequenzen:

¹ Jiao et al. (2002)

- ² Klucky et al. (2004)
- ³ Zamurovic et al. (2004)
- ⁴ Choi et al. (2001)
- ⁵ Shen et al. (1998)
- ⁶ Anger et al. (2003)
- ⁷ Iwamori et al. (2002)
- ⁸ Nakayama et al. (2000)
- ⁹ Rae et al. (2000)

3.6. Microarrays

Unter Microarrays versteht man eine Untersuchungs-Methode, bei der Sonden auf ganz genau definierten Positionen auf einem Träger (z. B. Glas oder Nylonmembran) fixiert werden, und mit deren Hilfe eine Probe untersucht wird. Je nach Art der als Sonden eingesetzten Moleküle unterscheidet man z. B. DNA- und Protein-Arrays.

Die hier verwendeten Microarrays (Mouse Expression Set 430 A) enthalten als Sonden synthetisch hergestellte Oligonukleotide, die zum größten Teil DNA-Sequenzen bekannter Gene der Maus repräsentieren, aber auch Sequenzen von Genen, deren Funktion noch nicht bekannt ist. Trotzdem beschränkt sich die Anwendung von DNA- Arrays auf die Analyse bereits bekannter Sequenzen.

Der Vorteil der Arraytechnologie liegt eindeutig in der hohen Reproduzierbarkeit und der Möglichkeit, bei relativ geringem Bedarf an Probenmaterial in einem einzigen Ansatz tausende Gene parallel zu untersuchen.

Die zu untersuchende Probe wird markiert, in unserem Fall als Biotin-markierte cRNA, und mit den Arrays hybridisiert, wobei die cRNA-Fragmente an ihre komplementären Sequenzen auf dem Array binden. Nachdem die Arrays gefärbt und gescannt wurden, kann jeder erhaltene Messpunkt einer spezifischen DNA-Sequenz zugeordnet werden, da bekannt ist, welche Sonde sich an exakt welcher Stelle auf dem Array befindet. Die RNA wurde wie unter 3.5.1.A beschrieben isoliert, anschließend aber noch in einem weiteren Schritt aufgereinigt, weil es sich für das weitere Procedere als vorteilhaft erwiesen hat.

Alle weiteren Schritte wurden in der HDMA Core Facility der Universität Mainz durchgeführt.

Die statistische Auswertung der Ergebnisse wurde von Dr. Carina Ittrich (Abteilung für Biostatistik, DKFZ Heidelberg) durchgeführt.

Übersicht Microarray-Prozessierung:

RNA-Isolierung und -Aufreinigung ↓ Qualitätskontrolle: Agarosegel, Photometrie, Bioanalyzer Reverse Transkription → 1st strand cDNA Ţ 2nd strand cDNA T In vitro Transkription -> Biotin-markierte antisense cRNA Ţ Qualitätskontrolle: Agarosegel, Photometrie Ţ Fragmentierung der cRNA → Fragmentgröße ~ 100-200 bp Ţ Hybridisieren der cRNA mit den Arrays Ţ Messen und Auswerten

Geräte:

Kühlbare Eppendorfzentrifuge

Reagenzien / Chemikalien:

RNeasy-Kit

 $\beta\text{-}Mercaptoe than ol$

Ethanol abs.

Lösungen:

DEPC-Wasser (s. 3.1.5.B)

RLT-Puffer, gebrauchsfertig: 10 μl β-Mercaptoethanol

1 ml RLT-Puffer

 \rightarrow unmittelbar vor Gebrauch mischen

- Die Gesamt-RNA wird wie unter 3.5.1.A beschrieben isoliert und photometrisch untersucht. Sind Ausbeute und Qualität zufrieden stellend, wird die RNA mit DEPC- Wasser zu 100 µl ergänzt (maximal 100 µg RNA pro Säule).
- Nach Zugabe von 350 µl RLT-Puffer und 250 µl Ethanol wird die Probe gut gemischt, auf eine RNeasy-Säule pipettiert und abzentrifugiert (15 sec, 13.000 upm, 22°C).
- Anschließend wird die Säule in ein neues 2 ml Reaktionsgefäß überführt, mit 500 µl RPE-Puffer versetzt und erneut zentrifugiert (15 sec, 13.000 upm, 22°C).
- Das Eluat wird verworfen, die Säule erneut mit 500 μl RPE-Puffer versetzt und zentrifugiert (2 min, 13.000 upm, 22°C).
- Anschließend wird die Säule in ein 1,5 ml Reaktionsgefäß überführt. 30-50 µl DEPC-Wasser werden direkt auf die Membran der Säule pipettiert und abzentrifugiert (1 min, 13.000 upm, 22°C).
- Werden, je nach eingesetzter Menge, mehr als 30 µg RNA erwartet, wird die Säule nochmals mit 30-50 µl DEPC-Wasser eluiert.
- Direkt im Anschluss werden die RNA-Konzentration und -Qualität erneut photometrisch bestimmt und die Probe bei -80°C eingefroren, sofern sie nicht sofort weiterverwendet wird.

3.7. Durchflusszytometrie / FACS

Mittels Durchflusszytometrie / FACS (<u>F</u>luorescence <u>a</u>ctivated <u>c</u>ell <u>s</u>orting) können Zellen, die zuvor fluoreszenzmarkiert wurden, aufgrund unterschiedlicher Fluoreszenzintensitäten voneinander getrennt werden. In der vorliegenden Arbeit wurden die Zellen mit dem interkalierenden Reagens Propidiumiodid gefärbt, welches sich unspezifisch in doppelsträngige DNA einlagert.

Bei der Durchflusszytometrie passiert die Flüssigkeit, welche die zu messenden Zellen enthält, einen Laserlichtstrahl, der die mit Propidiumiodid behandelten Zellen zur Fluoreszenz anregt. Das Ausmaß der Fluoreszenz korreliert dabei mit dem DNA-Gehalt der Zellen, welche dadurch den verschiedenen Phasen des Zellzyklus zugeordnet werden können.

Geräte:

```
Kühlbare Zentrifuge
       FACS-Röhrchen
       Wasserbad
       FACS-Gerät, FACS-Calibur
Reagenzien / Chemikalien:
      EDTA
      Ethanol 70 % (V / V), eiskalt
      Tween 20
      FCS
      RNAse A (1,56 U / µl)
      Propidiumiodid
Lösungen:
      PBS (s. 3.1.3.)
      PBS / 0,02 % EDTA
      Trypsin-Gebrauchslösung (s. 3.1.3.)
      Propidiumiodid-Stammlösung: 10 mg / ml in PBS (Lagerung: 4°C)
      PBS / 2% FCS: 0,2 ml FCS
                       9.8 ml PBS
                         1 ml PBS / 2 % FCS
      Färbelösung:
                       7,2 µl RNAse A (= 11,25 U)
                       5,0 µl Propidiumiodid-Stammlösung
                          \rightarrow erst kurz vor Gebrauch mischen
```

- Die Zellen werden wie unter 3.1.3. beschrieben abtrypsinisiert, anschließend in PBS resuspendiert und zentrifugiert (10 min, 800 upm).
- Der Überstand wird abgesaugt und das Pellet wiederum in PBS aufgenommen. Ein Aliquot wird zur Zellzahlbestimmung (3.1.4.) entnommen, der Rest erneut zentrifugiert und anschließend wieder in PBS resuspendiert.
- 1-2 x 10⁶ Zellen werden in ein FACS-Röhrchen gegeben und abzentrifugiert (10 min, 800 upm). Der Überstand wird dekantiert und das Röhrchen auf Eis gesetzt.
- Die Zellen werden in 200 µl kaltem PBS resuspendiert und anschließend durch Zutropfen von 2 ml eiskaltem Ethanol unter ständigem Vortexen fixiert. Die fixierten Zellen werden mindestens 30 min, besser über Nacht bei 4°C stehengelassen.
- Nach einem Zentrifugationsschritt (7 min, 2.000 upm, 4°C) wird der Überstand dekantiert und die Zellen permeabilisiert. Dazu wird unter ständigem Vortexen 1 ml PBS / 0,2 % Tween auf die Zellen gegeben. Nach anschließender Inkubation für 15 min bei 37°C im Wasserbad werden die Zellen zentrifugiert (7 min, 2.000 upm, RT) und der Überstand dekantiert.
- Unter ständigem Vortexen wird die Färbelösung zugegeben und die Proben bei RT für 30 min im Dunkeln inkubiert.
- Anschließend wird erneut zentrifugiert (7 min, 2.000 upm) und der Überstand dekantiert.
- Die Zellen werden unter ständigem Vortexen in 800 µl PBS resuspendiert und bis zum Messen bei 4°C gelagert.
- Messung erfolgte an einem FACS-Calibur; die Auswertung mit dem Programm Modfit.

3.8. Proliferationstest

Um zu untersuchen, welchen Einfluss eine Behandlung oder Situation auf das Wachstum einer Zellkultur hat, kann man die Proliferationsrate bestimmen, indem man die Zellen mit Tritium-markiertem Thymidin (³H-Thymidin) inkubiert. Dieses wird von den Zellen als Nukleo-Base erkannt und während der Replikationsphase in die DNA eingebaut. Die Stärke der gemessenen Radioaktivität korreliert dabei mit dem Ausmaß der DNA-Syntheseaktivität der jeweiligen Zellen, folglich mit deren Wachstum.

Die Radioaktivität wird mit Hilfe eines Szintillationszählers bestimmt. Tritium strahlt β-Teilchen aus, die mit Lösungsmittelmolekülen kollidieren. Dabei wird eine gewisse Energiemenge auf das Lösungsmittelmolekül übertragen, welches diese Energie als Licht emittieren kann. Da die Strahlung eine sehr kurze Wellenlänge besitzt, die von den handelsüblichen Geräten nicht gemessen werden kann, wird dem Lösungsmittel eine fluoreszierende Verbindung (sog. Primärer Szintillator) zugesetzt. Dieser wandelt die Strahlung in Licht längerer Wellenlänge um, das vom Szintillationszähler über einen Photoverstärker verarbeitet und als Lichtimpulse pro Minute (cpm = <u>c</u>ounts <u>per minute</u>) gemessen werden kann.

Geräte und Materialien:

- Glasfaserfilter
- Zellharvester
- Trockenschrank
- Szintillationsvials

 β -Counter

Reagenzien / Chemikalien:

Trypsin-Stammlösung (2,5 %)

³H-Thymidin-Stammlösung: 740 GBq / mmol Methyl-³H-Thymidin

DMEM

Szintillator

Lösungen:

³H-Thymidin-Gebrauchslösung: 370 kBq / ml DMEM

- Die Zellen werden in 96-well-Platten ausgesät und entsprechend dem Versuchsprotokoll kultiviert und behandelt.
- Pro well werden 25 μl ³H-Thymidin-Gebrauchslösung zugegeben und für 4 h bei 37°C inkubiert.
- Nach Zugabe von 10 µl Trypsin-Stammlösung pro well wird die Platte für 3-7 min bei 37°C inkubiert, wobei immer wieder mikroskopisch kontrolliert wird, ob sich die Zellen von der Platte gelöst haben.
- Ist das der Fall, wird die Platte in Alufolie gewickelt und über Nacht bei -20°C gelagert. Dadurch werden die Zellen zerstört und die DNA liegt nach dem Auftauen frei vor.
- Die Platte wird 30-45 min bei 37°C in den Inkubator gestellt und der Auftauprozess mikroskopisch kontrolliert.
- Mit einem Zellharvester werden die Zellbruchstücke aus den wells auf einen Glasfaserfilter gespült und der Filter anschließend 15 min im Trockenschrank getrocknet.
- Die Filterstückchen werden in je ein Szintillationsvial gegeben, mit 4 ml Szintillator versetzt und kurz geschüttelt.
- Die Auswertung erfolgt mittels eines β -Counters.

3.9. Differential Display (DD)

Die Methode des <u>D</u>ifferential <u>D</u>isplay (DD) wurde zuerst von Liang und Pardee (1992) beschrieben und dient zur vergleichenden Analyse der Genexpression von Proben aus verschiedenen Zelltypen (z. B. Tumor- vs. gesunde / normale Zellen), Entwicklungsstufen (z. B. fetales vs. adultes Gewebe), Behandlungen (z. B. behandelte vs. unbehandelte Zellen) etc.

Die Methode wurde in den folgenden Jahren vielfach variiert und verbessert (Liang und Pardee, 1995; Diachenko et al., 1996). Für die vorliegende Arbeit kam eine nichtradioaktive Version des DD, modifiziert nach dem Protokoll von Sagemüller (2003), zum Einsatz.

Das Besondere der DD-PCR im Gegensatz zur unter 3.5.5. beschriebenen PCR ist die Tatsache, dass beim DD nicht eine einzige, bekannte cDNA-Sequenz amplifiziert werden soll, sondern eine ganze Reihe von Sequenzen. Daher werden verschiedene, weniger spezifische Primer eingesetzt und die Annealing-Temperatur niedriger gewählt, um auch unspezifische Bindungen zuzulassen. Die PCR-Bedingungen werden so gewählt, dass pro Primer-Kombination jeweils ca. 50-100 Banden generiert werden, da diese Anzahl noch gut über ein Sequenziergel aufgetrennt werden kann.

Erreicht wird dies durch die Kombination eines oligo(dT)-Primers (T-Primer) und eines Zufallsprimers (P-Primer). Die T-Primer binden am poly(A)-Schwanz der cDNA, wobei der Einsatz zweier "Ankerbasen" am 3'-Ende der Primer dazu führt, dass die Primer erstens dicht am 5'-Ende des poly(A)-Schwanzes binden und zweitens nur bestimmte Subpopulationen an cDNA herausgefischt werden, was die Spezifität erhöht. Die P-Primer bestehen aus einem konstanten und einem variablen Teil. Bei den ersten Zyklen der PCR wird eine niedrige Annealing-Temperatur gewählt, bei welcher die P-Primer mit ihrem variablen Teil am 3'-Ende unspezifisch an vielen Stellen der cDNA binden können. Idealerweise entstehen dabei 50-100 DNA-Fragmente pro Primerkombination, die während der folgenden Zyklen mit höherer Annealing-Temperatur spezifisch vervielfältigt werden. Die Annealing-Temperatur kann deshalb heraufgesetzt werden, weil die Schmelzpunkte der P-Primer durch deren konstanten Teil recht hoch liegen.

Das Ziel des DD ist es, den Transkriptionsstatus der Zelle zum Zeitpunkt der Probennahme abzubilden. Unter der Annahme, dass von den ca. 100.000 Genen, die in einer Säugetierzelle vorkommen, nur jeweils etwa 15 % exprimiert werden, und daher in Form von mRNA vorliegen, kann durch die Kombination einer ausreichenden Zahl von P- und T-Primern theoretisch die ganze Bandbreite exprimierter Gene abgedeckt und verglichen werden. Wird die Zyklenzahl bei der DD-PCR nicht zu groß gewählt, sodass sich die Amplifikation noch in der exponentiellen Phase befindet, spiegeln die Unterschiede in der Bandenintensität die Unterschiede der Ausgangsmenge der jeweiligen mRNA wider.

3.9.1. Probengewinnung

Geräte:

s. 3.5.1.A und 3.5.4. *Reagenzien / Chemikalien:* s. 3.5.1.A und 3.5.4.

Procedere:

- RNA-Isolierung: s. 3.5.1.A.
- cDNA-Synthese: s. 3.5.4.
- Abweichung: die Proben werden nach dem letzten Zentrifugationsschritt nicht mit 90 µl DEPC-Wasser verdünnt, sondern nach folgendem Schema:

"B"-Verdünnung: 2 µl cDNA + 78 µl DEPC-Wasser

- "A"-Verdünnung: 8 µl cDNA (= Rest) + 72 µl DEPC-Wasser.
- Die Proben werden gevortext, kurz zentrifugiert (30 sec, 13.00 upm, 4°C) und bei -20°C eingefroren.

3.9.2. DD-PCR

Geräte:

PCR-Gerät

Eppendorfzentrifuge

PCR-Reaktionsgefäße

Reagenzien / Chemikalien:

Delta Differential Display Kit

eingesetzte Primer:

A) Zufallsprimer, P-Primer (25- mere):

P1: 5'-ATTAACCCTCACTAAATGCTGGGGA-3'

- P10: 5'-ATTAACCCTCACTAAAGCACCGTCC-3'
- B) oligo(dT)-Primer, T-Primer (30- mere):

T1: 5'-CATTATGCTGAGTGATATCTTTTTTTAA-3'

T8: 5'-CATTATGCTGAGTGATATCTTTTTTTGC-3'

Advantage cDNA-Kit

Lösungen:

Master-Mix:	10 x KlenTaq PCR reaction buffer	2,0 µl
	Autoklaviertes aqua bidest.	14,4 µl
	dNTP-Mix (5 mM each)	0,2 µl
	50 x Advantage cDNA Polymerase Mix	0,4 µl

Procedere:

- Pro Ansatz werden 1 μl cDNA (= Probe), 1 μl RNA (= Negativkontrolle) oder 1 μl aqua bidest. (= Wasserkontrolle) mit je 1 μl P- und 1 μl T-Primer gemischt und auf Eis gestellt.
- Nach Zugabe von 17 μl Master-Mix werden die Reaktionsgefäße kurz abzentrifugiert (15 sec, 10.000 upm, 4°C) und in das PCR-Gerät überführt.

•	Bedingungen für die DD-PCR:	1 Zyklus:	94°C	5 min	
			40°C	5 min	
			68°C	5 min	
		2 Zyklen:	94°C	30 sec	
			40°C	30 sec	
			68°C	5 min	
		23 Zyklen:	94°C	20 sec	
			60°C	30 sec	
			68°C	2 min	
		anschließend:	68°C	7 min	

 Im Anschluss an die PCR werden die Reaktionsgefäße abzentrifugiert (15 sec, 10.000 upm, 4°C) und die Proben bis zur Verwendung bei -20°C gelagert.

3.9.3. DD-Gelelektrophorese

3.9.3.1. Vorbereiten der Platten

Geräte:

Gelbindeplatte = Glasplatte mit Aussparung (23,5 x 60 cm) Durchflussplatte = doppelwandige Glasplatte (24 x 60 cm) Kamm aus Teflon: 6 x 16,5 x 0,02 cm (36 Taschen) Spacer aus Teflon : 3 x 60 x 0,02 cm Fixierklammern *Reagenzien / Chemikalien:* Ethanol Aceton Isopropanol

Dichlordimethylsilan

γ-Methacryloxypropyltrimethoxy-silan

Eisessig

Lösungen:

Lösung A:	15 ml Isopropanol
	450 μl Dichlordimethylsilan
Lösung B:	12,5 ml Ethanol
	10 μl γ-Methacryloxypropyltrimethoxy-silan
	375 μl Essigsäure

- Beide Glasplatten werden gründlich mit Flüssigseife gereinigt, dann gespült, bis alle Seifenrückstände entfernt sind und mit einem fusselfreien Tuch trockengerieben.
- Die Glasplatten werden mit je 10 ml Ethanol abgerieben und abgetrocknet. Der Vorgang wird mit 10 ml Aceton pro Platte wiederholt.
- Lösung A wird gleichmäßig auf der Durchflussplatte verteilt, 10 min antrocknen gelassen und die Platte anschließend mit einem fusselfreien Tuch trockengerieben.
- Die Gelbindeplatte wird gleichmäßig mit Lösung B abgerieben und anschließend mit einem fusselfreien Tuch trockengerieben.
- Kamm und Spacer werden nacheinander mit Ethanol und Aceton behandelt und mit einem fusselfreien Tuch trockengerieben.
- Anschließend wird das Plattensandwich zusammengesetzt und mit Fixierklammern befestigt.

3.9.3.2. Gießen der Gele

Geräte:

	Magnetrührer	
	Ultraschallbad	
	Gelwippe	
Reage	nzien / Chemikalien:	
	Acrylamidfertiglösur	g (Long Ranger 50 %)
	Harnstoff, Ultra Qua	lität
	Tris	
	Borsäure	
	EDTA	
	APS	
	TEMED	
Lösung	gen:	
	10 x TBE-Puffer:	5,4 g Tris
		27,8 g Borsäure
		4,6 g EDTA
		ad 1,0 I aqua dest.
		\rightarrow pH 8,3 einstellen
		\rightarrow autoklavieren
	1 x TBE-Puffer:	100 ml 10 x TBE-Puffer
		900 ml aqua dest.
	APS-Stammlösung	(s. 3.3.1.1.)
	Gellösung:	14 ml Long Ranger 50 %
		39,2 g Harnstoff, Ultra Qualität
		56 ml aqua dest.
		11,7 ml 10 x TBE-Puffer

- Die Bestandteile der Gellösung werden in ein Becherglas gegeben und bei niedriger Geschwindigkeit 10-15 min auf dem Magnetrührer gemischt, bis der Harnstoff vollständig gelöst ist.
- Dann wird das Becherglas für 15 min in den Kühlschrank gestellt und anschließend 15 min im Ultraschallbad homogenisiert.
- Nach Zugabe von 800 µl APS-Stammlösung und 48 µl TEMED wird die Mischung 10-20 sec bei niedriger Umdrehung gemischt und dann rasch luftblasenfrei (!) in zwei 50 ml-Spritzen aufgezogen.
- Das vorbereitete Plattensandwich wird auf die Gelwippe gelegt. Bei ca. 10 % Neigung wird die Gellösung gleichmäßig, blasenfrei zwischen die Platten gespritzt.
- Sobald der Zwischenraum im Plattensandwich komplett gefüllt ist und die Gellösung am unteren Plattenende langsam, gleichmäßig abtropft, wird die Wippe in die Waagerechte gebracht und der Kamm eingelegt.
- Nach 20 min Polymerisierungszeit wird das Plattensandwich vorsichtig in feuchte, mit 1 x TBE-Puffer getränkte Tücher gewickelt und mit Alufolie bedeckt.
- Nach weiteren ca. 100 min wird der Kamm gezogen und die Taschen mit 1 x TBE-Puffer gespült.
- Vor Gebrauch wird das Gel noch mindestens 1 h, routinemäßig über Nacht ruhen gelassen.

3.9.3.3. DD-Elektrophorese

Geräte:

Differential Display Apparatur (DNA-Seq Gel System DS91) mit

Stromquelle

Wasserbad mit Umwälzpumpe

Eppendorfzentrifuge

Reagenzien / Chemikalien:

Tris

Borsäure

EDTA

Formamid, deionisiert

Bromphenolblau

Xylencyanol
Lösungen:

1 x TBE-Puffer (s. 3.9.3.2.)					
Laufpuffer:	EDTA	37,2 mg			
	Formamid, deionisier	t 10 ml			
	\rightarrow pH 8,0 einstellen				
	Bromphenolblau	20 mg			
	Xylencyanol	20 mg			

Procedere:

- Das Gelsandwich wird in die DD-Apparatur eingespannt und die Pufferwannen mit 1 x TBE-Puffer gefüllt. Die Durchflussplatte wird an das Wasserbad angeschlossen und mit 50°C warmem Wasser durchspült.
- Die Geltaschen werden mit je 1,5-2 µl Laufpuffer versehen und die Durchflussplatte mindestens 10 min temperiert.
- In der Zwischenzeit werden die Proben vorbereitet. Dazu werden jeweils 2 µl PCR- Produkt mit 1,0 µl Laufpuffer versetzt und abzentrifugiert (30 sec, 10.000 upm).
- Bevor die Proben auf das Gel aufgetragen werden wird ein Vorlauf durchgeführt (1,0 kV, 15 mA, 20 min), um die Gelqualität zu testen.
- Ist der aufgetragene Laufpuffer gleichmäßig eingelaufen werden die Proben aufgetragen und die Elektrophorese gestartet (0,5 kV, 8 mA, 15 min).
- Sind die Proben eingelaufen folgt der Hauptlauf, bis die Lauffront das Gelende erreicht hat (2,2 kV, 25 mA, ca. 4 h).

3.9.3.4. Standardmarker für die DD-Elektrophorese

PCR-Marker, 50-2.000 bp (Lagerung: -20°C):

Molekulargewicht:	2.000 bp
	1.500 bp
	1.000 bp
	750 bp
	500 bp
	300 bp
	150 bp
	50 bp

3.9.3.5. Detektion / Silberfärbung

Die Silberfärbung ist eine empfindliche Methode zum unspezifischen Nachweis von Proteinen in Acrylamidgelen. Proteine können Ag⁺-Ionen komplexieren, wobei es nach Schaffen eines alkalischen Milieus im Bereich der Proteinbanden zur Reduktion der Ag⁺-Ionen und damit zum Ausfall elementaren Silbers kommt, was als bräunlicher Niederschlag sichtbar wird.

Geräte:

Färbewannen (24,5 x 62 cm) Durchlichtplatte (37 x 55 cm)

Reagenzien / Chemikalien:

Rapid-Ag-Stain Kit

Methanol

Ethanol

Lösungen:

Waschlösung:	Methanol	240 ml
	Ethanol	60 ml
	Aqua bidest.	270 ml
	Rinsing solution	30 ml
Färbelösung:	Staining solution A	30 ml
	Staining solution B	30 ml
	Staining solution C	30 ml
	Aqua bidest.	510 ml
Entwicklerlösung:	Developer A	15 ml
	Developer B	15 ml
	Aqua bidest.	600 ml

Procedere:

- Nach der Elektrophorese wird das Gelsandwich vorsichtig auseinander genommen, wobei das Gel an der Gelbindeplatte haften bleibt.
- Das Gel wird zuerst 5 min in aqua bidest., dann 5 min in Waschlösung geschwenkt.
- Anschließend wird es je nach gewünschter Bandenintensität 7-10 min in Färbelösung geschwenkt, dann 3 x 2 min in aqua bidest. gewaschen.
- Danach wird das Gel 10 min in Entwicklerlösung geschwenkt und erneut für 2 min in aqua bidest. gewaschen.
- Nachdem das Gel luftgetrocknet ist, wird es auf der Durchlichtplatte ausgewertet.

3.9.4. Aufarbeiten differentiell exprimierter Banden

3.9.4.1. Isolieren differentiell exprimierter Banden aus dem Gel

Um mehr Ausgangsmaterial für die Aufarbeitung zu bekommen, werden Proben, die eine differentiell exprimierte Bande zeigen, vierfach nebeneinander auf ein neues Gel aufgetragen und die vier Banden gemeinsam aufgearbeitet.

Die dabei eingesetzte QIAExII-Suspension enthält eine flüssige Silicagelmatrix, an welche die PCR-Fragmente bei pH \leq 7,5 binden und so von den Gelbestandteilen getrennt werden können.

Geräte:

Thermostat plus Temperierbarer Schüttler Eppendorfzentrifuge Reagenzien / Chemikalien: **QIAExII Gel Extraction Kit** Natriumacetat Ammoniumacetat Magnesiumacetat EDTA SDS Lösungen: 3 M Natriumacetatlösung (pH 5,0): 2,46 g Natriumacetat ad 10 ml aqua dest. \rightarrow pH 5,0 einstellen Diffusionspuffer S: 0,5 M Ammoniumacetat 10 mM Magnesiumacetat 1 mM EDTA in aqua dest. → pH 8,0 einstellen \rightarrow autoklavieren 0.1 % SDS DEPC-Wasser (s. 3.1.5.B)

Procedere:

- Die vier gleichen Banden werden mit einer sterilen Kanüle vorsichtig von der Glasplatte gekratzt. Dabei müssen Kontaminationen mit benachbarten Banden vermieden werden.
- Die ausgeschnittenen Gelstückchen werden in ein steriles 0,5 ml Reaktionsgefäß überführt, mit 100 µl Diffusionspuffer versetzt und 30 min bei 50°C inkubiert.
- Anschließend wird die Probe 24 h bei 37°C und 60 upm geschüttelt.
- Nach kurzem Abzentrifugieren (1 min, 8.000 upm) wird der Überstand in ein 1,5 ml Reaktionsgefäß überführt und das Volumen abgeschätzt.
- Das 6-fache des Volumens an Puffer QX1 und 10 µl resuspendierte QIAExII-Suspension werden zugegeben. Dabei muss die Farbe der Suspension gelb sein (pH- Indikator), ansonsten werden 10 µl 3 M Ammoniumacetatlösung (pH 5,0) zugegeben. Die Probe wird gevortext und 10 min bei RT inkubiert, wobei alle 2 min gevortext wird, und anschließend abzentrifugiert (30 sec, 13.000 upm).
- Der Überstand wird verworfen, das Pellet 2 x mit 500 µl PE-Puffer gewaschen und abzentrifugiert (30 sec, 13.000 upm).
- Der Überstand wird verworfen und das Pellet 10-15 min luftgetrocknet, bis sich der Rand weiß färbt.
- Zur Elution der DNA-Fragmente wird das Pellet mit 20 µl DEPC-Wasser gevortext, 5 min bei RT inkubiert und abzentrifugiert (30 sec, 13.000 upm).
- Der Überstand wird in ein steriles 0,5 ml Reaktionsgefäß überführt und die Elution wiederholt.
- Die Überstände werden vereinigt und ihr Volumen abgeschätzt.
- Nach Zugabe des 5-fachen Volumens an PB-Puffer wird die Probe gevortext, auf eine QIAquick Säule pipettiert und zentrifugiert (1 min, 13.000 upm).
- Das Eluat wird verworfen, die Säule mit 750 µl PE-Puffer versetzt und erneut zentrifugiert (1 min, 13.000 upm).
- Das Eluat wird verworfen, die Säule zum Entfernen von Pufferrückständen nochmals zentrifugiert (1 min, 13.000 upm).
- Die Säule wird in ein frisches 1,5 ml Reaktionsgefäß gesteckt, mit 15 µl DEPC-Wasser versetzt und zentrifugiert (1 min, 13.000 upm).
- Das Eluat wird in ein steriles 0,5 ml Reaktionsgefäß überführt, die Elution wiederholt, die beiden Eluate vereinigt und bei -20°C eingefroren.

3.9.4.2. Erneute Amplifikation der ausgeschnittenen Fragmente

Die eluierten DNA-Fragmente werden erneut mittels PCR amplifiziert unter Einsatz derselben Primerkombination, mit der die Fragmente ursprünglich gewonnen wurden. Bei der PCR werden die beiden weniger stringenten Zyklen zu Beginn weggelassen und die Gesamtzyklenzahl auf 35 erhöht. Das bei der DD-PCR eingesetzte Wasser wird komplett durch das in 3.9.4.1. erhaltene Eluat ersetzt.

Nach der PCR wird auf einem 2 % igen Agarosegel (s. 3.3.2.) anhand der Banden des Standardmarkers kontrolliert, ob das richtige Fragment amplifiziert wurde – und wenn ja, ob noch weitere Banden auftreten, zum Beispiel Primerdimere oder Bruchstücke des gesuchten Fragments. Ist das der Fall, kann die Probe mehrfach nebeneinander auf ein neues Agarosegel aufgetragen und die gewünschten Banden erneut ausgeschnitten und aufgereinigt werden für eine nachfolgende Klonierung oder Sequenzierung.

Geräte:

s. 3.9.2.

Reagenzien / Chemikalien:

s. 3.9.2.

Lösungen:

s. 3.9.2.

Master-Mix:	10 x reaction buffer	2,0 µl
	dNTP-Mix (5 mM each)	0,2 µl
	50 x Polymerase Mix	0,4 µl

Procedere:

- 15,4 µl Eluat werden mit je 1 µl P- und 1 µl T-Primer gemischt und auf Eis gestellt.
- Nach Zugabe von 2,6 µl Master-Mix werden die Reaktionsgefäße kurz abzentrifugiert (15 sec, 10.000 upm, 4°C) und in das PCR-Gerät überführt.

•	Bedingungen für die PCR:	1 Zyklus:	94°C	3 min
			40°C	1 min
			68°C	2 min
		34 Zyklen:	94°C	1 min
			60°C	1 min
			68°C	2 min
		anschließend:	68°C	7 min

 Im Anschluss an die PCR werden die Reaktionsgefäße abzentrifugiert (15 sec, 10.000 upm, 4°C) und bis zur Verwendung bei -20°C gelagert.

4. Ergebnisse

4.1. Optimieren der Versuchsbedingungen

Zunächst sollten die optimalen Versuchsbedingungen ermittelt werden, unter denen die Kontaktinhibition maximal ausgeprägt ist. Dazu wurden NIH3T3-Zellen in verschiedener Dichte ausgesät und der resultierende G0 / G1-Arrest nach 24 h mittels FACS-Analyse untersucht. Der maximale Effekt wurde bei einer Zelldichte von 1,8 x 10^5 / cm² erreicht, welche daher bei den folgenden Versuchen eingesetzt wurde. Abbildung 2A zeigt, dass sich unter diesen Bedingungen fast 90 % der konfluenten Zellen in der G0 / G1- Phase befinden im Vergleich zu 48 % bei den proliferierenden Zellen.

Abbildung 2:

In der FACS-Analyse zeigen konfluente NIH3T3-Zellen einen G0 / G1 -Arrest. Die Zellen wurden in geringer ($2,4 \times 10^4$ / cm² = 60 % konfluent) bzw. hoher Dichte ($1,8 \times 10^5$ / cm² = 100 % konfluent) in DMEM / 10 % FCS ausgesät und nach 24 h geerntet. Die Zellen wurden mit Propidiumiodid gefärbt und mittels FACS-Analyse untersucht.

4.2. Differential Display

Für die Differential Display-Analyse wurden die Zellen wie unter Abbildung 2 beschrieben ausgesät und nach 24 h die Gesamt-RNA isoliert. Die RNA-Isolierung erfolgte durch zwei verschiedene Methoden, um herauszufinden, welche für das Differential Display am besten geeignet ist. Eine Methode basiert auf phenolischer Extraktion der RNA aus den Zellen, bei der zweiten Methode bindet die RNA an ein Glasfaservlies und wird so von den restlichen Zellbestandteilen getrennt.

Abbildung 3:

Einfluss der Methode zur RNA-Isolierung auf die Differential Display-Analyse.

Die Spuren 1-4 zeigen Proben, welche mittels Phenolextraktion, die Spuren 5, 7 und 8 Proben, welche mit Hilfe der Adsorption der RNA an ein Glasfaservlies gewonnen wurden. Die Pfeile markieren die jeweiligen Banden des Standard-markers in Spur 6. Alle Proben wurden mit derselben Kombination von P- und T-Primer generiert. Abbildung 3 zeigt beispielhaft den oberen Teil eines silbergefärbten Gels, auf dem gut zu erkennen ist, dass in den Spuren, für welche die RNA mit Hilfe der Phenolextraktion isoliert wurde (1-4), im Bereich zwischen 2000 und 1000 bp wesentlich mehr Banden generiert wurden als nach der RNA-Isolierung über ein Glasfaservlies. Das lässt darauf schließen, dass durch die erste Methode längere (intakte) RNA gewonnen wurde. Im Folgenden wurde die RNA daher nur noch durch Phenolextraktion isoliert.

Eine generelle Schwierigkeit bei der Differential Display-Methode ist das Auftreten falsch-positiver Banden. Um dieses Risiko zu reduzieren, wurden bei der cDNA- Synthese aus jeder Probe zwei unterschiedliche Verdünnungen angesetzt und parallel in der PCR eingesetzt. Banden wurden nur dann als differentiell exprimiert angesehen, wenn ihre Expression in beiden Verdünnungsstufen dasselbe Muster zeigte. Traten differentiell exprimierte Banden auf, wurden die Proben wiederum in beiden Verdünnungen auf einem neuen Gel vierfach nebeneinander aufgetragen (Abb. 4).

Abbildung 4:

Beispiel für ein DD-Gel, aus dem differentiell exprimierte Banden (Pfeil) isoliert und aufgearbeitet werden sollen. Die drei Banden sind in den konfluenten Zellen (sowohl A- als auch B-Verdünnung) deutlich stärker exprimiert als in den proliferierenden Zellen (nur die B-Verdünnung gezeigt).

Für die weitere Aufarbeitung und nachfolgende Identifizierung der differentiell exprimierten Banden wurden diese aus dem silbergefärbten DD-Gel isoliert und erneut mittels PCR amplifiziert, wobei dieselbe Primerkombination eingesetzt wurde wie bei der DD-PCR, durch welche die Banden ursprünglich generiert wurden. Anschließend wurde auf einem Agarosegel die Größe der amplifizierten Fragmente kontrolliert. Dieser Schritt ist wichtig, um sicherzustellen, dass die DNA beim Aufarbeiten nicht beschädigt wurde und die Probe nicht durch Kontamination mit einer benachbarten (evtl. überlappenden) Bande aus dem DD-Gel kontaminiert ist. In unserem Fall waren nach der PCR mehrere Fragmente zu sehen, welche meist kleiner waren als die ursprünglich ausgeschnittene Bande. Besonders deutlich war dies bei großen Fragmenten > 750 bp. Denkbar ist, dass die DNA bei der Silberfärbung beschädigt wurde und deshalb Bruchstücke des ursprünglichen DNA-Fragments erhalten wurden. Dieses Problem kann generell bei der Silberfärbung auftreten. Um diese Schwierigkeit zu umgehen, können andere Färbemethoden angewendet werden. So kann zum Beispiel mit radioaktiv-markierten Nukleotiden gearbeitet werden, was aber aufgrund der erforderlichen Sicherheitsmaßnahmen sehr aufwändig ist. Eine andere Möglichkeit wäre, die Gele mit Ethidiumbromid zu färben. Dabei ist aber zu berücksichtigen, dass das DD-Gel auf der Gelbindeplatte haftet. Die Glasplatte absorbiert viel UV-Licht, so dass eine sehr starke Lichtquelle nötig ist, welche uns aber nicht zur Verfügung stand. Da alle in Betracht kommenden Färbetechniken Vor- und Nachteile haben, hatten wir uns für die nichtradioaktive Methode nach Sagemüller (2003) entschieden.

Die Differential Display-Methode ist weiterhin sehr arbeits- und zeitintensiv, weil viele Primerkombinationen eingesetzt werden müssen, um das ganze Spektrum der in einer Zelle exprimierten Gene abzudecken. Aufgrund der schlechten Reproduzierbarkeit der Bandenmuster und da die Aufarbeitung der Banden aus dem silbergefärbten Gel mit vielen Unsicherheiten behaftet ist, wurde der Schwerpunkt der Arbeit im Folgenden ganz auf die Microarray-Experimente gelegt.

4.3. Microarray-Analysen

Zellzyklus

Parallel zu den Proben für die FACS-Analyse (Abb. 2) wurden Gesamtextrakte gewonnen und auf die Expression zellzyklusregulatorischer Proteine, welche als Marker für einen G0 / G1-Arrest dienen können, untersucht. Ein wichtiger Marker für den Zellzyklusarrest am G0 / G1-Übergang ist das Vorkommen des Retinoblastomproteins (pRb) in seiner hypophosphorylierten Form (107 kDa). In proliferierenden Zellen dagegen liegt das pRb hauptsächlich in der hyperphosphorylierte Form (116 kDa) vor (Mittnacht und Weinberg, 1991). Abbildung 5A zeigt, dass das pRb in den konfluenten NIH3T3-Zellen in seiner hypophosphorylierten, d. h. inhibierenden Form vorliegt. In der G1-Phase wird das pRb durch cdk4-Cyclin D1-Komplexe zunehmend phosphoryliert, bis es vom Transkriptionsfaktor E2F abdissoziiert. Dadurch wird E2F aktiviert und kann unter anderem die Synthese von Cyclin E induzieren. Im Komplex mit cdk2 bewirkt Cyclin E die vollständige Phosphorylierung des pRb. In der Folge wird der Restriktions-punkt überschritten und die Zelle tritt in die S-Phase ein, in welcher Cyclin A exprimiert wird (Sherr, 2000). Wie Abbildung 5B zeigt, ist die Proteinexpression von Cyclin D1 und dem für die S-Phase charakteristischen Cyclin A in konfluenten Zellen deutlich geringer als in proliferierenden. Die Aktivität der cdk-Cyclin-Komplexe kann weiterhin durch inhibitorische Proteine, wie zum Beispiel p27, gehemmt werden. P27 ist ein wichtiger Mediator der Kontaktinhibition (Polyak et al., 1994; Dietrich et al., 1997). Abbildung 5 zeigt die Akkumulation von p27 in den konfluenten NIH3T3-Zellen.

Parallel zu den Gesamtextrakten wurde aus den Proben RNA isoliert und durch RT-PCR auf die Expression der Cycline D1 und A untersucht. Wie in Abbildung 5C zu erkennen, ist die Expression der beiden Cycline in konfluenten Zellen auch auf RNA-Ebene deutlich vermindert.

Dadurch haben wir gezeigt, dass konfluente NIH3T3-Zellen unter den gewählten Versuchsbedingungen in der G0 / G1-Phase arretiert sind (Abb. 2 und 5).

Abbildung 5:

Expression zellzyklusregulatorischer Proteine in NIH3T3-Zellen.

Die Zellen wurden wie unter Abbildung 2 beschrieben ausgesät. (A) Im Western Blot sieht man Hypophosphorylierung des Rb-Proteins in konfluenten Zellen. (B) Die Proteinexpression der Cycline A und D1 ist in konfluenten Zellen verringert, das inhibitorische Protein p27 dagegen akkumuliert. P38 dient als Beladungskontrolle. (C) Die Downregulation der Cycline A und D1 ist auch auf RNA-Ebene zu finden. Die β -Aktin-Expression dient als Beladungskontrolle.

* = hyperphosphorylierte Form des pRb.

Im Folgenden wurde die RNA aufgereinigt und die Genexpression von zwei Probenpaaren proliferierender und konfluenter NIH3T3-Zellen mittels Microarray-Analyse miteinander verglichen. Verwendet wurden für diese Arbeit Mouse Expression Set 430A-Arrays (Affymetrix), die in mehr als 22.690 Probensets über 14.000 Gene der Maus repräsentieren sowie etliche cDNA-Sequenzen unbekannter Funktion. Die Aufarbeitung der RNA sowie das Prozessieren der Microarrays erfolgten bei der HDMA (<u>high</u> <u>density microarray</u>) Core Facility der Universität Mainz. Dort wurde zunächst die Qualität der isolierten RNA eingehend geprüft, da sie essentiell für den Erfolg der Experimente ist. Anschließend wurde die RNA in doppelsträngige cDNA und dann in Biotin-markierte cRNA umgeschrieben. Bevor die cRNA mit den Microarrays hybridisiert wurde, wurde sie fragmentiert, weil kürzere Bruchstücke besser an die Oligonukleotid-Sonden binden können. Zuletzt wurden die Arrays gewaschen, gefärbt und anschließend vermessen.

Die statistische Auswertung der Daten erfolgte in Kooperation mit Dr. Carina Ittrich von der Abteilung für Biostatistik am Deutschen Krebsforschungszentrum (DKFZ) in Heidelberg. Nach der Normalisierung der Messwerte unter Verwendung des gcrma-package (gene <u>corrected robust multi-array analysis</u>) der frei zugänglichen Bioconductor-Plattform (Wu et al., 2004; www.bioconductor.org) erfolgte die statistische Analyse mittels einer modifizierten t-Statistik (Smyth et al., 2003; Lönnsted und Speed, 2002).

Abbildung 6:

Vergleichende Analyse differentiell exprimierter Gene in proliferierenden und konfluenten NIH3T3-Zellen mittels Microarrays.

Volcano Plot: dazu wurden für alle 22.690 Proben auf den Arrays die log ratio- gegen die dazugehörigen p-Werte aufgetragen. Als signifikant differentiell exprimiert werden die Proben in dem grau unterlegten Bereich angesehen. Für sie gelten: |log ratio| \geq 1 (entsprechend foldchange \geq 2) und p-Wert \leq 0,002. In Abbildung 6 ist das Ergebnis der statistischen Auswertung als Volcano Plot dargestellt. Als signifikant differentiell wurden die Proben angesehen, deren Expression in beiden Experimenten um mindestens das Zweifache herauf- bzw. herunterreguliert war und die einen p-Wert ≤ 0,002 hatten. Diese Kriterien trafen auf 88 herauf- und 32 herunterregulierte Proben zu. In der Abbildung entsprechen sie den Messwerten im grau unterlegten Bereich. Nach Streichung redundanter Proben erhielten wir eine Liste mit 102 Genen und 9 cDNA-Sequenzen unbekannter Funktion, von denen in konfluenten Kulturen 79 herauf- und 32 herunterreguliert waren (vgl. Tabelle 4). Die Tatsache, dass mehr Gene herauf- als herunterreguliert sind, ist besonders interessant, weil sie die Vermutung nahe legt, dass die Kontaktinhibition kein passiver Zustand ist, in dem "lediglich" proliferationsfördernde Gene abgeschaltet sind, sondern ein aktiver Zustand, der aufrechterhalten werden muss.

Die Liste der signifikanten Proben enthielt auch einige Gene, deren differentielle Expression in konfluenten Fibroblasten bereits aus der Literatur bekannt war (Tab. 2). Diese Übereinstimmung zeigt die Validität unseres Testsystems.

Gen	GenBank	Zelllinie,	Microarraydaten		on
Gen	Accession	Referenz			en
			foldch	ange	p-Wert
Heraufreguliert:			Exp.1	Exp.2	
Gas1	NM_008086	NIH3T3, DelSal et al. (1992)	1,7	1,8	0,005
Egr1	NM_007913	C3H10T1/2, Gos et al. (2005)	1,6	7,7	0,086
Herunterreguliert:					
Slc25a5	NM_007451	NIH3T3, Barath et al. (1999)	-1,3	-1,8	0,053
Cdc25a	NM_007658	AG1518-Fibroblasten, Afrakthe et al. (1998)	-1,5	-2,5	0,030

Tabelle 2: Zusammenstellung von Genen, deren differentielle Expression in konfluenten Fibroblasten in der Literatur bereits beschrieben wurde.

Von besonderem Interesse war die Frage, ob wir die von uns gewählten Surrogatmarker für den G0 / G1-Arrest (Abb. 5) in den Arrayergebnissen wieder finden konnten. Tabelle 3 zeigt eine Gegenüberstellung der Werte für Cyclin A und D1. Die Unterschiede liegen bei den Microarray-Experimenten deutlich niedriger als nach RT-PCR. Trotzdem bestätigt sich die Downregulation von Cyclin A in konfluenten NIH3T3-Zellen. Für Cyclin D1 wird auf den Arrays zwar eine Minderexpression gefunden, die aber als nicht signifikant eingestuft wird. Es ist bekannt, dass die errechneten Unterschiede in der Genexpression in Microarray-Experimenten oft geringer ausfallen als wenn sie durch andere Methoden, z. B. Northern Blot oder RT-PCR gewonnen werden. Ursache dafür ist zumindest zum Teil die im Rahmen der statistischen Auswertungen vorgenommene Normalisierung der Messwerte.

Tabelle 3: Ausmaß der Downregulation von Cyclin A und D1 in konfluenten NIH3T3-Zellen, errechnet nach Microarray- bzw. RT-PCR-Analyse.

Gen		Microarrays		RT-PCR (s. Abb. 5C)
	Experiment 1	Experiment 2	p-Wert	
Cyclin A	-1,76	-1,64	0,005	-4,04
Cyclin D1	-1,13	-1,16	0,131	-3,75

Die als signifikant differentiell exprimiert eingestuften Proben wurden einer "Gene-Ontology"-Analyse (GO-mining tool, zugänglich über www.affymetrix.com) unterzogen. Diese ergab, dass ein Großteil der Gene in den Metabolismus, die Zellproliferation, Signaltransduktion, Regulation der Transkription, Zelladhäsion, Kommunikation etc. involviert ist (s. Abb. 7 undTab. 4).

Abbildung 7: "Gene-Ontology"-Analyse der signifikant differentiell exprimierten Gene.

	0	GenBank	foldcl	hange	14/
Gennanme	Ѕутрої	Accession	Exp.1	Exp.2	p-vven
Metabolismus					
Arachidonate 5-lipoxygenase activating protein	Alox5ap	NM_009663	4,9	4,2	0,0005
Cytoplasmic polyadenylation element binding protein 4	Cpeb4	NM_026252	3,4	3,2	0,0006
N-acetylglucosamine kinase	Nagk	NM_019542	3,0	3,0	0,0006
Sumo3 (suppressor of mif two, 3) homolog 1 (yeast)	Sumo3	NM_019929	3,2	3,7	0,0007
Enoyl coenzyme A hydratase 1, peroxisomal	Ech1	NM_016772	3,3	2,9	0,0009
Microsomal glutathione S-transferase 2	Mgst2	NM_174995	3,9	3,2	0,001
TSPY-like 4	Tspyl4	NM_030203	4,0	3,1	0,001
Paternally expressed 3	Peg3	NM_008817	2,2	2,2	0,001
Praja 2, RING-H2 motif containing	Pja2	NM_144859	2,6	2,3	0,002
Nuclear factor of activated T-cells 5	Nfat5	NM_018823	2,1	2,2	0,002
Dehydrogenase/reductase (SDR family) member 7	Dhrs7	NM_025522	2,0	2,0	0,002
Valyl-tRNA synthetase 2	Vars2	NM_011690	-2,7	-2,7	0,0008
Splicing factor 3a, subunit 2	Sf3a2	NM_013651	-2,7	-2,7	0,0009
Mannosidase 1, alpha	Man1a	NM_008548	-2,6	-2,5	0,001
Glutamate-cysteine ligase, modifier subunit	Gclm	NM_008129	-2,6	-2,9	0,001
Carbamoyl-phosphate synthetase 2	Cad	NM_023525	-2,7	-3,2	0,001
Thioredoxin reductase 1	Txnrd1	NM_015762	-3,1	-2,6	0,001
Tripartite motif protein 27	Trim27	NM_009054	-2,5	-2,7	0,001
GCN5 general control of amino acid synthesis-like 2	Gcn5l2	NM_020004	-2,2	-2,2	0,001
Deoxycytidine kinase	Dck	NM_007832	-2,4	-2,1	0,002
Zellproliferation					
Peripheral myelin protein 22	Pmp22	NM_008885	3,6	3,9	0,0005
Neural precursor cell expr., development. down-reg. 9	Nedd9	 NM_017464	3,0	3,6	0,0009
Sestrin 3	Sesn3	 NM_030261	4,1	3,3	0,001
Loh 11, chromosomal region 2, gene A homolog	Loh11cr	 NM_172767	4,4	3,2	0,002
SAC3 domain containing 1	Sac3d1	 NM_133678	-2,9	-2,6	0,0009
CTF18, chromosome transmission fidelity factor 18 om.	Chtf18	NM_145409	-2,5	-2,6	0,001
Aurora kinase B	Aurkb	NM_011496	-2,3	-2,5	0,002
Peroxisome proliferator activated receptor binding prot.	Pparbp	NM 013634	-2,1	-2,2	0,002
		_			
Signaltransduktion					
Platelet derived growth factor receptor, beta polypeptide	Pdgfrb	NM_008809	9,9	7,7	0,0003
Prostaglandin E receptor 4 (subtype EP4)	Ptger4	NM_008965	4,1	4,7	0,0004
Dimethylarginine dimethylaminohydrolase 2	Ddah2	NM_016765	3,9	4,4	0,0005
Tribbles homolog 2 (Drosophila)	Trib2	NM_144551	4,6	5,8	0,0006
Ras homolog gene family, member C	Rhoc	NM_007484	2,1	2,3	0,002
MARCKS-like protein	Mlp	NM_010807	2,8	2,4	0,002

Tabelle 4: Vollständige Liste der Gene, deren Expression sich in proliferierenden und konfluenten NIH3T3-Zellen signifikant unterscheidet (Kriterien: foldchange \geq 2, p-Wert \leq 0,002).

	GenBank foldchange				
Gennanme	Symbol	Accession	Exp.1	Exp.2	p-Wert
Dual specificity phosphatase 9	Dusp9	NM_029352	-4,1	-4,6	0,0004
Hepatoma-derived growth factor	Hdgf	NM_008231	-2,9	-2,7	0,0009
Tyrosine kinase, non-receptor, 2	Tnk2	NM_016788	-2,5	-2,6	0,001
G protein-coupled receptor kinase 6	Grk6	NM_011938	-2,6	-2,3	0,002
Regulation der Transkription					
Transducin-like enhancer of split 2	Tle2	NM_019725	7,6	5,7	0,0005
Transforming growth factor- β stimulated clone 22	Tsc-22	NM_009366	3,1	3,0	0,0006
Basic helix-loop-helix domain containing, class B2	Bhlhb2	NM_011498	3,2	3,9	0,0009
Regucalcin gene promotor region related protein	Rgpr	NM_033354	2,4	2,4	0,001
Transcription factor 4	Tcf4	NM_013685	2,3	2,3	0,001
cAMP responsive element modulator	Crem	NM_013498	2,2	2,3	0,002
Forkhead box M1	Foxm1	NM_008021	-2,7	-2,3	0,002
Suppressor of variegation 3-9 homolog 1	Suv39h1	NM_011514	-2,1	-2,3	0,002
Coactivator-associated arginine methyltransferase 1	Cam1	NM_021531	-2,1	-2,3	0,002
Zelladhäsion und Kommunikation					
Integrin, alpha 6	ltga6	NM_008397	3,0	3,3	0,0007
LIM domain containing preferred translocation partner in lipoma	Lpp	NM_178665	3,0	2,9	0,007
LIM domain and actin binding 1	Lima1	NM 023063	2,6	2,6	0,0009
Integral membrane protein 2B	ltm2b	 NM 008410	2,3	2,5	0,001
Neural cell adhesion molecule 1	Ncam1	 NM 010875	2,9	2,5	0,002
Integrin, beta-like 1	ltgbl1	 NM_145467	2,2	2,5	0,002
Tight junction protein 2	Tjp2	 NM 011597	-2,2	-2,3	0,002
Entwicklung		_		-	
Matrix gamma-carboxyglutamate (gla) protein	Mgp	NM_008597	4,7	4,0	0,0006
Calmodulin-like 4	Calml4	NM_138304	3,4	3,8	0,0006
Carnitine deficiency-associated gene expr. in ventricle 1	Cdv1	NM_009879	3,0	2,9	0,0007
Semaphorin 5a	Sema5a	NM_009154	3,1	3,9	0,001
Selenoprotein P, plasma, 1	Sepp1	NM_009155	3,3	4,3	0,001
Zinc finger and SCAN domain containing 21	Zscan21	NM_011757	2,2	2,2	0,002
Immunreaktion / inflammatorische Reaktion					
Lymphocyte antigen 6 complex, locus C 1	Ly6c1	NM_010741	4,0	4,3	0,0003
Chemokine (C-X3-C motif) ligand 1	Cx3cl1	NM_009142	5,5	6,9	0,0004
Tumor necrosis factor (ligand) superfamily, member 13	Tnfsf13	NM_023517	4,2	3,8	0,0004
Guanylate nucleotide binding protein 2	Gbp2	NM_010260	3,2	3,3	0,0005
Interleukin 18	ll18	NM_008360	2,8	2,9	0,0007
Tumor necrosis factor receptor superfamily, member 9	Tnfrsf9	NM_011612	2,5	2,9	0,001

	Or much al	GenBank	foldci	hange	
Gennanme	Ѕутрої	Accession	Exp.1	Exp.2	p-wen
Major histocompatibility complex, class I-related	Mr1	NM_008209	3,7	5,1	0,001
Fc receptor, IgG, alpha chain transporter	Fcgrt	NM_010189	2,7	3,2	0,001
Toll-like receptor 2	Tlr2	NM_011905	2,3	2,4	0,001
Toll-like receptor 1	Tlr1	NM_030682	2,2	2,3	0,002
Lymphocyte antigen 6 complex, locus A	Ly6a	NM_010738	2,2	2,3	0,002
Toll-interleukin 1 receptor dom. Contain. adaptor protein	Tirap	NM_054096	-2,3	-2,6	0,002
Zelltod					
BCL2-like 11 (apoptosis facilitator)	Bcl2l11	NM_009754	3,3	3,4	0,0005
Nuclear receptor subfamily 4, group A, member 1	Nr4a1	NM_010444	2,7	2,9	0,0009
Programmed cell death 4	Pdcd4	NM_011050	3,7	5,1	0,002
Tumor necrosis factor receptor superfamily, member 21	Tnfrsf21	NM_178589	-2,9	-3,3	0,0009
Protease, serine, 25	Prss25	NM_019752	-2,2	-2,3	0,001
Transport					
Ceruloplasmin	Ср	NM_007752	20,1	15,7	0,0001
Selenium binding protein 1	Selenbp1	NM_009150	10,3	6,8	0,0008
Elastin microfibril interfacer 1	Emilin1	NM_133918	3,4	2,9	0,001
Tumor necrosis factor, alpha-induced protein 1	Tnfaip1	NM_009395	-2,3	-2,2	0,001
Treacher Collins Franceschetti syndrome 1, homolog	Tcof1	NM_011552	-2,3	-2,7	0,002
Andere					
Transmembrane protein 119	Tmem11	NM_146162	8,7	6,0	0,0008
Zinc finger protein 292	Zfp292	NM_013889	2,7	3,1	0,001
Yippee-like 5 (Drosophila)	Ypel5	NM_027166	2,6	3,0	0,001
LUC7-like 2 (S. cerevisiae)	Luc7l2	NM_138680	2,4	2,6	0,001
Stomatin	Stom	NM_013515	2,3	2,4	0,001
Histidine triad nucleotide binding protein 3	Hint3	NM_025798	2,3	2,4	0,001
Autophagy 10-like (S. cerevisiae)	Apg10l	NM_025770	2,3	2,3	0,001
Mbt domain containing 1	Mbtd1	NM_134012	2,3	2,4	0,001
Down syndrome critical region homolog 5 (human)	Dscr5	NM_019543	2,3	2,2	0,001
Musculoskeletal, embryonic nuclear protein 1	Mustn1	NM_181390	2,5	3,0	0,002
Zinc finger protein 260	Zfp260	NM_011981	2,3	2,5	0,002
Biglycan	Bgn	NM_007542	2,2	2,2	0,002
G protein-coupled receptor 177	Gpr177	NM_026582	2,1	2,2	0,002
Transmembrane protein 106a	Tmem106	NM_144830	2,2	2,1	0,002
CD248 antigen, endosialin	Cd248	NM_054042	2,2	2,1	0,002
Yolk sac gene 2	Ysg2	NM_011734	2,1	2,0	0,002
Nurim (nuclear envelope membrane protein)	Nrm	NM_134122	-2,2	-2,4	0,002
Translin	Tsn	NM_011650	-2,2	-2,2	0,002
LSM2 homolog, U6 small nuclear RNA associated	Lsm2	NM_030597	-2,1	-2,1	0,002
Nicalin homolog (zebrafish)	NcIn	NM_134009	-2,1	-2,3	0,002

Connonmo	Symbol	GenBank	foldchange		n Wert
Germanne	Symbol	Accesion	Exp.1	Exp.2	p-wen
cDNA-Sequenzen unbekannter Funktion					
Riken cDNA 2310061J03 gene	2310061J03Rik	NM_133677	2,8	3,0	0,0009
Riken cDNA A930001N09 gene	A930001N09Rik	NM_029870	3,4	4,4	0,001
cDNA sequence BC010787	BC010787	NM_178577	2,9	2,5	0,001
Riken cDNA 1810021J13 gene	1810021J13Rik	NM_025464	2,4	2,3	0,001
Riken cDNA 2010315L10 gene	2010315L10Rik	NM_025917	2,3	2,4	0,001
Riken cDNA 1200015N20 gene	1200015N20Rik	NM_024244	3,9	3,0	0,002
Riken cDNA 2310005E10 gene	2310005E10Rik	NM_172398	2,1	2,1	0,002
cDNA sequence AY036118	AY036118	NM_133243	-2,4	-2,4	0,001
Riken cDNA 1700012G19 gene	1700012G19Rik	NM_025954	-2,2	-2,2	0,002

In einem folgenden Schritt erweiterten wir die Tabelle unter Einbeziehung aller Proben, deren Expression mindestens 1,5-fach verändert ist und die einen p-Wert \leq 0,05 besitzen. Diese Kriterien treffen auf 841 Gene und 86 cDNA-Sequenzen unbekannter Funktion zu, wovon 571 herauf- und 356 herunterreguliert sind (vollständige Tabelle s. Anhang).

Diese Liste wurde mittels des frei zugänglichen GenMAPP-Programms untersucht (Dahlquist et al., 2002; www.genmapp.org). In diesem Programm sind unter anderem bekannte Signal(transduktions)wege mit bekanntermaßen daran beteiligten Komponenten gespeichert. Durch Einlesen einer Liste von Genen kann geprüft werden, ob bzw. in welchen Signalwegen diese Gene involviert sind. Es zeigte sich, dass viele der differentiell exprimierten Gene in die Regulation der DNA-Synthese eingebunden sind, insbesondere einige Orc- und Mcm-Gene. Weiterhin differentiell exprimiert sind zahlreiche Gene, die am Zellzyklus beteiligt sind, wie Skp2, Cdc25a, pRb, Cyclin A und Plk1. Die Abbildungen 8A und B zeigen exemplarisch diese beiden Signalwege.

Abbildung 8:

Die Genexpression einiger Schlüsselenzyme der DNA-Synthese (A) und des Zellzyklus (B) ist in kontaktinhibierten NIH3T3-Zellen verändert.

Abbildungen modifiziert nach GenMAPP.

* Die verminderte Expression der Cyclin D1-RNA in konfluenten NIH3T3-Zellen ist zwar auf den Arrays nicht signifikant, wurde aber mittels RT-PCR gezeigt (Abb. 5D).

Die veränderte Expression der in Abbildung 8B dargestellten Zellzyklusproteine wurde mittels RT-PCR untersucht, wobei die Herunterregulation der Cycline A und D1 auf mRNA-Ebene bereits im Vorfeld gezeigt wurde (Abb. 5C). Die Heraufregulation von Skp2, Cdc25a und Plk1 konnte ebenso bestätigt werden wie die Herunterregulation von pRb (Abb. 9).

Zudem wurde die Expression einiger weiterer interessanter Gene, wie z. B. des potentiellen Tumorsuppressorgens Tsc-22, der dualen Phosphatase Dusp9, des Transkriptionsfaktors Foxm1 und des Zelladhäsionsmoleküls Ncam mittels semiquantitativer RT-PCR verifiziert (Abb. 9). Weder für Tsc-22, Foxm1, Skp2 oder Dusp9 war bisher eine Beteiligung an der Kontaktinhibition beschrieben.

Abbildung 9:

Die Expression einiger in konfluenten NIH3T3-Zellen herauf- (A) bzw. herunterregulierter (B) Gene wurde mittels RT-PCR verifiziert.

Die β -Aktin-Expression dient als Beladungskontrolle. Für die jeweiligen Primersequenzen und PCR-Bedingungen siehe Material und Methoden (3.5.5.).

Tsc-22

Tsc-22 war in der Literatur bislang als TGF-β-induzierbares Gen beschrieben, das die Kriterien eines Tumorsuppressors aufweist und dessen Expression in einigen Tumoren vermindert bzw. nicht mehr nachweisbar ist, z. B. in Hirn- und Prostatatumoren (Shostak et al., 2003; Rentsch et al., 2006). Der signifikante Anstieg der mRNA-Expression in konfluenten Zellen (Arraydaten und Abb. 9A) deutete auf eine mögliche Beteiligung von Tsc-22 an der Kontaktinhibition hin. Western Blot-Untersuchungen mit zwei verschiedenen Antikörpern zeigten jedoch keine Unterschiede zwischen proliferie-renden und konfluenten Zellen (Abb. 10). In der Immunfluoreszenz waren zwischen proliferierenden und konfluenten Zellen ebenfalls keine Unterschiede in Proteingehalt oder -verteilung zu erkennen (nicht gezeigt). Diese Ergebnisse sprechen gegen eine direkte Beteiligung von Tsc-22 an der Signalkaskade der Kontaktinhibition in NIH3T3-Zellen.

Abbildung 10:

Das Tsc-22 Protein ist auch in proliferierenden NIH3T3-Zellen vorhanden.

Die Gesamtextrakte wurden gewonnen wie unter Abbildung 5 beschrieben. ERK dient als Beladungskontrolle.

Notch-Signalweg

In der Literatur gibt es Hinweise darauf, dass der Notch-Signalweg in der Kontaktinhibition verschiedener Zelllinien eine Rolle spielt, bzw. dass die Kontaktinhibition durch konstitutive Aktivierung des Notch-Signalweges induziert werden kann (Noseda et al., 2004; Noseda et al., 2005). Diese Effekte sind aber zelltyp-spezifisch und konnten für die NIH3T3-Zellen unter unseren Versuchs-bedingungen nicht bestätigt werden. Zur Kontrolle wurde die Expression des typischen Notch-Zielgens hey1 (hrt1) mittels RT-PCR untersucht. Abbildung 11 zeigt, dass in den NIH3T3-Zellen auch nach 40 PCR-Zyklen kein Signal für hey1 erhalten wird. Als Positivkontrolle dient die humane Keratinozyten-Zelllinie HaCaT, bei der in konfluenten Zellen ein Signal erhalten wird, in proliferierenden dagegen nicht (nicht gezeigt). Dieses Ergebnis spricht dafür, dass der Notch-Signalweg nicht an der Kontaktinhibition in NIH3T3-Zellen beteiligt ist.

Abbildung 11:

Der Notch-Signalweg ist an der Kontaktinhibition von NIH3T3-Zellen nicht beteiligt. Für Primersequenzen und PCR-Bedingungen s. Material und Methoden (3.5.5.).

4.4. Regulation der MAP Kinasen

Duale Phosphatasen

In der Literatur gibt es mehrere Hinweise darauf, dass Tyrosin- bzw. duale Tyrosin / Threonin-Phosphatasen an der Kontaktinhibition beteiligt sind (Vinals und Pouyssegur, 1999; Suzuki et al., 2000; Wayne et al., 2006). Unsere Microarray-Analyse zeigt die differentielle Expression der dualen Phosphatase Dusp9 (MKP-4). Die signifikante Downregulation der Dusp9-mRNA in konfluenten Zellen konnte mittels RT-PCR verifiziert werden (Abb. 9B). Auch in humanen Keratinozyten der Zelllinie HaCaT ist die mRNA-Expression in konfluenten Kulturen geringer als in exponentiell wachsenden (nicht gezeigt).

In der vorliegenden Arbeit wurde die Expression einer weiteren dualen Phosphatase, der MKP-1 (Dusp1) untersucht. Die Ergebnisse der Microarray-Analyse zeigen zwar keine nennenswerten Unterschiede in der Expression der MKP-1 (Dusp1) auf mRNA-Ebene, Abbildung 12 zeigt aber, dass die MKP-1 (Dusp1) in konfluenten NIH3T3-Zellen auf Proteinebene herunterreguliert ist. Eine Abnahme der MKP-1 (Dusp1) in konfluenten Kulturen wurde mittels Western Blot auch in anderen Zelllinien wie humanen Fibroblasten (FH109), humanen Keratinozyten (HaCaT) und Rattenleber-epithelzellen (WB F344) gefunden (nicht gezeigt).

Abbildung 12:

Die duale Phosphatase MKP-1 (Dusp1) ist in konfluenten NIH3T3-Zellen auf der Proteinebene herunterreguliert.

Die Zellen wurden konfluent (1,8 x 10⁵ / cm²) in DMEM / 10 % FCS ausgesät. Nach dem Anheften der Zellen an die Kulturschale (= Zeitpunkt 0 h) wurden zu den angegebenen Zeitpunkten Gesamtextrakte gewonnen. ERK dient als Beladungskontrolle.

Die beiden untersuchten Phosphatasen, Dusp9 und MKP-1 (Dusp1), können ERK, p38 und JNK dephosphorylieren (Muda et al., 1997; Camps et al., 1998; Owens und Keyse, 2007). Unsere Arbeitsgruppe konnte bereits zeigen, dass die MAPK p38α in der Kontaktinhibition humaner Fibroblasten der Zelllinie FH109 eine Rolle spielt. Dabei wird die Kontaktinhibition über eine persistierende Phosphorylierung der p38α vermittelt (Faust et al., 2005).

Unsere Arbeitsgruppe konnte weiterhin zeigen, dass die p38 auch in der Kontaktinhibition anderer Zelllinien eine Rolle spielen könnte. So zeigen embryonale Fibroblasten (MEF) aus p38-knockout Mäusen eine erhöhte Sättigungsdichte, was auf eine Störung der Kontaktinhibition in diesen Zellen hinweist (Faust et al., 2005). Untersuchungen von Schmitt (2002) zeigen, dass die Kontaktinhibition in NIH3T3-Zellen durch Vorbehandlung mit SB203580, einem spezifischen Inhibitor der p38, teilweise aufgehoben werden kann. Dies spricht für eine Beteiligung der p38 an der Signaltransduktion der Kontaktinhibition auch in den NIH3T3-Zellen.

Noch ist nicht geklärt, wodurch die persistierende Phosphorylierung in den kontaktinhibierten FH109-Zellen zustande kommt. Denkbar sind sowohl eine verstärkte Aktivierung der p38 durch übergeordnete Kinasen als auch eine verringerte Dephosphorylierung durch nachgeschaltete Phosphatasen. Die gezeigte verringerte Expression der Phosphatasen Dusp9 und MKP-1 (Dusp1) könnte zu der persistierenden Aktivierung der p38 beitragen, es bedarf dazu aber noch weitergehender Untersuchungen.

MAPK-Kinasen (MKKs)

Die Expression und Aktivität der Upstream-Kinasen von p38, MKK3 / 6 und MKK4, sollte in einem nächsten Schritt mittels Western Blot-Analyse untersucht werden. Abbildung 13 zeigt, dass die phosphorylierte, d. h. die aktive Form der Kinasen in konfluenten Zellen deutlich verringert ist. Die Gesamtexpression der MKKs dagegen unterscheidet sich nicht in proliferierenden und konfluenten NIH3T3-Zellen. Anisomycin aktiviert MKK3 / 6 und MKK4 und damit die p38. Es gilt als einer der stärksten bekannten Aktivatoren der p38 (Hazzalin et al., 1998), weshalb es für die Positiv-kontrolle eingesetzt wurde. Vergleichbare Ergebnisse wurden auch in konfluenten Zellen der humanen Fibroblastenzelllinie FH109 und der Keratinozytenzelllinie HaCaT beobachtet (nicht gezeigt).

Abbildung 13:

Die Phosphorylierung der MAPK-Kinasen 3 / 6 und 4 ist in konfluenten NIH3T3-Zellen verringert.

Die Zellen wurden in geringer $(2,4 \times 10^4 / \text{ cm}^2 = 60 \% \text{ konfluent})$ bzw. hoher Dichte $(1,8 \times 10^5 / \text{ cm}^2 = 100 \% \text{ konfluent})$ in DMEM / 10 % FCS ausgesät und nach 24 h geerntet. Für die Positivkontrolle wurden 60 % konfluente Zellen vor dem Ernten für 20 min mit 10 µg / ml Anisomycin behandelt. ERK dient als Beladungskontrolle.

In Übereinstimmung mit unseren Ergebnissen zeigen Lallemand et al. (1998), dass die p38-Signalkaskade in konfluenten NIH3T3-Zellen bereits auf oder vor der Stufe der kleinen G-Proteine Cdc42 und Rac1 gehemmt ist, welche upstream der MKKs 3 / 6 und 4 liegen.

Die Beobachtung, dass Aktivität der MKK3 / 6 und 4 auch in konfluenten FH109-Zellen vermindert ist (nicht gezeigt), spricht dafür, dass die oben beschriebene persistierende Phosphorylierung der p38 in diesen Zellen nicht über eine verstärkte Aktivierung durch die MKK3 / 6 oder 4 zustande kommt. Entweder sind noch andere – nicht näher bekannte – aktivierende Kinasen oder eine verminderte Expression deaktivierender Phosphatasen, möglicherweise Dusp9 oder MKP-1 (Dusp1), beteiligt.

MAP Kinase p38

Um mehr über die mögliche Rolle der p38 in der Kontaktinhibition in NIH3T3-Zellen zu erfahren, wurden zunächst im Western Blot die Expression und Phosphorylierung der p38 untersucht. In Abbildung 14 ist zu erkennen, dass die Phosphorylierung der p38 in den konfluenten NIH3T3-Zellen deutlich verringert ist (10 % FCS = Standardbedingungen). Ob es sich hierbei um eine, wenn auch schwächere, so doch persisitierende Phosphorylierung handelt, wie für die humanen FH109-Zellen beschrieben, muss noch untersucht werden. Die Gesamtexpression der p38 unterscheidet sich unter diesen Bedingungen nicht in proliferierenden und konfluenten NIH3T3-Zellen. Werden die Zellen jedoch serumdepletiert (0,2 % FCS), wird die Expression der p38 herunterreguliert. Das spricht dafür, dass dem Wachstumsstopp durch Kontaktinhibition bzw. Serumdepletion unterschiedliche Mechanismen zugrunde liegen könnten, in Übereinstimmung mit bereits in der Literatur beschriebenen Beispielen (Dietrich et al., 1997).

Abbildung 14:

Einfluss von Zelldichte und Serumdepletion auf die Expression und Phosphorylierung der MAP Kinase p38 in NIH3T3-Zellen.

Es wurden 1,4 x 10^4 / cm² (= 60 % konfluent) bzw. 1,8 x 10^5 / cm² (= 100 % konfluent) NIH3T3-Zellen in DMEM / 10 % FCS ausgesät. Nach dem Anheften der Zellen wurde das Medium entweder durch DMEM / 0,2 % FCS ersetzt (0,2 % FCS) bzw. nicht gewechselt (10 % FCS) und die Zellen nach 24 h geerntet. ERK dient als Beladungskontrolle.

MAP Kinase ERK

In konfluenten NIH3T3-Zellen ist die phosphorylierte, d. h. aktive Form der ERK herunterreguliert. Ihre Gesamtexpression dagegen wird von der Zelldichte nicht beeinflusst (Abb. 15). Dieser Effekt wird in der Literatur für verschiedene Zelllinien beschrieben, wobei die zugrunde liegenden Mechanismen aber noch nicht vollständig bekannt sind (Vinals und Pouyssegur, 1999; Wayne et al., 2006).

Abbildung 15:

Die Phosphorylierung der MAP Kinase ERK ist in konfluenten NIH3T3-Zellen herunterreguliert.

Die Extrakte wurden gewonnen wie unter Abbildung 12 beschrieben.

Am besten untersucht ist die Rolle der ERK im Rahmen der Signaltransduktion nach Wachstumsfaktor-Stimulation, welche über eine Phosphorylierung / Aktivierung von ERK verläuft. Obwohl unter unseren Standardbedingungen (10 % FCS) Wachstumsfaktoren im Medium vorliegen, unterbleibt die Phosphorylierung der ERK in den konfluenten Zellen. Das spricht dafür, dass die ERK-Signalkaskade in NIH3T3-Zellen durch die Kontaktinhibition gehemmt wird. An welcher Stelle der Signalkaskade diese Hemmung erfolgt, sollte im Weiteren näher untersucht werden.

In der Literatur wird für einige Zelllinien beschrieben, dass <u>W</u>achstums<u>f</u>aktor- (WF-) Rezeptoren in konfluenten Zellen inaktiviert bzw. in ihrer Anzahl auf der Zellmembran reduziert werden können (Holley et al., 1977; Rizzino et al., 1988; Sörby und Ostmann, 1996). Interessant war deshalb die Frage, ob in den konfluenten NIH3T3-Zellen vielleicht keine funktionellen WF-Rezeptoren mehr vorliegen. Zunächst sollten die Zellen mit verschiedenen Mitogenen stimuliert werden, um zu testen, ob die entsprechenden WF-induzierten Signalkaskaden in den konfluenten Zellen aktivierbar sind. Für diese Versuche wurden die Zellen unter Serumdepletion subkonfluent und konfluent ausgesät und anschließend mit verschiedenen Wachstumsfaktoren stimuliert.

Die Serumdepletion bewirkt eine Synchronisation der Zellen in der G1-Phase, in welcher sie für externe Stimuli empfänglich sind. In Vorversuchen wurde mittels FACS-Analyse nachgewiesen, dass sich subkonfluente Zellen nach 24 h in DMEM / 0,2 % FCS zu ca. 90 % in der G0 / G1-Phase befinden (nicht gezeigt).

	FCS	FGF	PDGF	EGF
Endkonzentration der Mitogene	10 %	50 ng / ml	50 ng / ml	100 ng / ml

Als Erstes sollte mittels Proliferationsassay untersucht werden, ob sich die Proliferationsraten von subkonfluenten und konfluenten Zellen nach Stimulation mit den verschiedenen Mitogenen unterscheiden.

Abbildung 16A zeigt, dass in den konfluenten Zellen einzig durch EGF keine Proliferation mehr induziert werden kann, was auf eine verminderte Expression von EGF-Rezeptoren oder eine Störung der Signalweiterleitung in diesen Zellen hindeutet. Im Gegensatz dazu können konfluente serumdepletierte NIH3T3-Zellen noch durch FCS, FGF und PDGF stimuliert werden, was darauf schließen lässt, dass FGF- und PDGF-Rezeptoren auf der Zellmembran vorhanden und aktivierbar sind. Die Tatsache, dass EGF in subkonfluenten Kulturen die Proliferation zu stimulieren vermag, ist ein Zeichen dafür, dass der EGF-vermittelte Signalweg spezifisch durch die Kontakt-inhibition und nicht durch den Entzug von Serum gehemmt wird.

Als weiterer Marker für die erneute Proliferation der Zellen nach Mitogen-Stimulation wurde die Expression von Cyclin A untersucht (Abb. 16B). Dazu wurden parallel zu den Proben für den Proliferationsassay Gesamtextrakte gewonnen. Diese wurden auf die Expression von Cyclin A untersucht, dessen Anwesenheit als Zeichen dafür gewertet wurde, dass die Zellen den durch Serumdepletion erzwungenen G0 / G1-Arrest überwunden haben und in die S-Phase eingetreten sind. In Übereinstimmung mit dem Ergebnis des Proliferationsassays (Abb. 16A) wird in konfluenten NIH3T3-Zellen nach Stimulation mit EGF nur eine minimale Expression von Cyclin A detektiert.

Abbildung 16:

Einfluss verschiedener Wachstumsfaktoren auf die Proliferationsrate und die Cyclin A-Expression in serumdepletierten NIH3T3-Zellen unterschiedlicher Dichte.

A) Die Proliferationsrate wurde durch den Einbau Tritium-markierten Thymidins ermittelt. Die Zellen wurden in geringer (8 x 10^3 / 32 mm² = subkonfluent) bzw. hoher Dichte (5,8 x 10^4 / 32 mm² = konfluent) ausgesät. Dargestellt sind die Mittelwerte ± SEM aus 5 Messungen.

B) Western Blot: es wurden 1,4 x 10^4 / cm² (subkonfluent) bzw. 1,8 x 10^5 / cm² (konfluent) Zellen in DMEM / 10 % FCS ausgesät. Nach dem Anheften der Zellen wurde das Medium durch DMEM / 0,2 % FCS ersetzt und die Zellen nach 24 h mit den Wachstumsfaktoren in den oben genannten Konzentrationen behandelt. Nach weiteren 24 h wurden die Gesamtextrakte geerntet. Als Kontrolle wurden unbehandelte, serumdepletierte Zellen eingesetzt. ERK dient zur Beladungskontrolle.

Auf welcher Stufe der Signalkaskade die Proliferationshemmung erfolgt, sollte in einem weiteren Versuch getestet werden. Zunächst wurden die Wachstumsfaktor-behandelten Proben auf die Expression und Phosphorylierung der ERK untersucht (Abb. 17).

Abbildung 17:

Einfluss verschiedener Wachstumsfaktoren auf die ERK-Phosphorylierung in konfluenten serumdepletierten NIH3T3-Zellen.

(A) Western Blot: es wurden 1.8×10^5 / cm² Zellen in DMEM / 10 % FCS ausgesät. Nach dem Anheften der Zellen wurde das Medium durch DMEM / 0,2 % FCS ersetzt und die Zellen nach 24 h mit den Wachstumsfaktoren in den oben genannten Konzentrationen behandelt. Nach weiteren 24 h wurden die Gesamtextrakte geerntet. Als Kontrolle dienten unbehandelte, serumdepletierte Zellen.

(B) Quotient phospho-ERK / ERK; berechnet nach Quantifizieren der Western Blots in (A).

Auffällig ist, dass auch hier EGF in den konfluenten Zellen den schwächsten Effekt aller Mitogene hat. Der Quotient pERK / ERK als Maß für die Proliferation korreliert in etwa mit den Ergebnissen des Proliferationsassays (Abb. 16).

Zusammenfassend lässt sich feststellen, dass die EGF-vermittelte Signalkaskade in den konfluenten NIH3T3-Zellen gehemmt ist, nicht aber die durch FGF und PDGF induzierten Signalkaskaden. Das spiegelt sich sowohl in der minimalen Wachstumsrate im Proliferationstest (Abb. 17A), als auch in der Tatsache wider, dass nach EGF-Stimulation kein Cyclin A exprimiert wird (Abb. 17B).

Interessant ist, dass auch nach EGF-Stimulation ERK-Phosphorylierung zu sehen ist (Abb. 17), wenngleich in geringerem Maße als nach FCS-, FGF- und PDGF-Gabe. Dass die Phosphorylierung nach EGF-Gabe derjenigen in subkonfluenten NIH3T3-Zellen vergleichbar ist (nicht gezeigt), lässt darauf schließen, dass auch der EGF-Rezeptor in den konfluenten Zellen vorhanden und aktivierbar ist. Nicht bekannt ist, ob das Ausmaß der ERK-Phosphorylierung vielleicht nicht ausreicht, um einen Schwellenwert zu überschreiten, der nötig ist, um die weitere Signalkaskade auszulösen, oder ob die Störung im weiteren Verlauf der Signalkaskade vorliegt. Dazu sind noch weitere Untersuchungen nötig.

Der klassische von Wachstumsfaktoren ausgelöste Signalweg verläuft über eine Aktivierung und Dimerisierung der zugehörigen WF-Rezeptoren, welche ihrerseits das Adapterprotein SHC phosphorylieren können.

In einem weiteren Schritt wurde daher die Phosphorylierung von SHC untersucht. Abbildung 18 zeigt, dass die Phosphorylierung von SHC in konfluenten NIH3T3-Zellen vermindert ist. Die Dephosphorylierung von SHC erfolgt allerdings erst zu einem späteren Zeitpunkt als die von ERK (Abb. 15).

Abbildung 18:

Die Phosphorylierung des Adapterproteins SHC ist in konfluenten NIH3T3-Zellen verringert.

Die Gesamtextrakte wurden gewonnen wie unter Abbildung 12 beschrieben.

Dieses Ergebnis legt den Schluss nahe, dass die Abnahme der ERK-Phosphorylierung nicht initial über die Dephosphorylierung von SHC erfolgt. Möglicherweise ist SHC aber an der Aufrechterhaltung der Kontaktinhibition beteiligt.

Weiterhin könnte die beobachtete verringerte Phosphorylierung von ERK in kontaktinhibierten NIH3T3-Zellen auch auf eine verringerte Aktivierung durch die übergeordneten Kinasen MKK1 / 2 zurückzuführen sein, was noch untersucht werden muss. Auch die Rolle weiterer dualer Phosphatasen wie zum Beispiel der MKP-2 oder der ERK-spezifischen MKP-3 (Wayne et al., 2006; Owens und Keyse, 2007) in der Regulation der ERK-Signalkaskade muss noch weiter untersucht werden.

5. Diskussion

5.1. Microarrays

Die im Rahmen der vorliegenden Arbeit durchgeführte Genexpressionsanalyse mittels Microarrays hat Aufschluss gegeben über viele Gene, die bei der Signaltransduktion der Kontaktinhibition eine Rolle spielen könnten. Bei einigen wenigen dieser Gene, zum Beispiel Cyclin A, Gas1 und Cdc25a, war die Beteiligung an der Kontaktinhibition bereits bekannt. Diese Übereinstimmung bestätigt die Aussagekraft der Array-ergebnisse. Des Weiteren erhielten wir Hinweise auf die Beteiligung zahlreicher Gene, die bisher nicht im Zusammenhang mit der Kontaktinhibition beschrieben wurden, wie z. B. Foxm1, Skp2, Tsc-22 und Dusp9.

Replikation

Viele Gene, die in konfluenten NIH3T3-Zellen herunterreguliert sind, spielen in der DNA-Replikation eine wichtige Rolle (Abb. 7A). In der DNA-Sequenz von Eukaryoten gibt es besondere Strukturelemente, die so genannten Replikationsursprünge (origin of replication), an welchen die DNA-Synthese beginnen kann. Dazu bindet der ORC (origin recognition complex) an einen Replikationsursprung. Der ORC ist ein Komplex, der sich aus sechs Untereinheiten zusammensetzt, den ORC-Proteinen 1-6. An diesen Komplex bindet nachfolgend Cdc6 und bewirkt die Anlagerung des MCM (minichromosome maintainance)-Komplexes, der sich wiederum aus sechs Untereinheiten zusammensetzt (Mcm2-7). Der MCM-Komplex besitzt (zumindest in vitro) Helikase-Aktivität und bereitet die DNA für die Replikation vor (so genanntes licensing, s. Blow und Hodgson, 2002; Ishimi, 1996). Nach Phosphorylierung durch den Cyclin A-cdk2-Komplex zu Beginn der S-Phase dissoziiert Cdc6 vom Chromatin ab und wird durch Cdc45 ersetzt. Zusätzlich zu Cdc45 lagert sich an diese "lizenzierten" Replikationsursprünge Mcm10 an, worauf die DNA-Synthese beginnt (DePamphilis et al., 2005). Cdc6 transloziert vom Zellkern ins Zytoplasma, wo es für die restliche Dauer des Zellzyklus verbleibt. Dies ist nur einer von vielen Mechanismen, wodurch gewährleistet wird, dass die DNA im Verlauf eines Zellzyklus nur einmal abgelesen wird (Ritzi und Knippers, 2000; Semple und Duncker, 2004). Das so genannte "licensing" erfolgt in eukaryotischen Zellen nur während der G1-Phase, ist also charakteristisch für diesen Abschnitt des Zellzyklus. Daher können durch Analyse der Expression der MCM-

Proteine proliferierende von ausdifferenzierten, sich nicht mehr teilenden Zellen unterschieden werden (Stoeber et al., 2001). Da es für die formelle Unterscheidung, ob sich Zellen in der G0- oder G1-Phase des Zellzyklus befinden, bislang keine charakteristischen Merkmale gibt, schlagen Blow und Hodgson (2002) vor, die Abwesenheit lizenzierter Replikationsursprünge als Zeichen dafür zu werten, dass Zellen sich in der G0und nicht in der G1-Phase befinden.

Bislang war nicht klar, ob kontaktinhibierte Zellen in der G0- oder G1-Phase geblockt sind. Wenn wir dem Vorschlag von Blow und Hodgson (2002) folgen, weisen unsere Ergebnisse darauf hin, dass kontaktinhibierte NIH3T3-Zellen möglicherweise in der G0-Phase des Zellzyklus arretiert werden.

Zellzyklus

Als Marker für den G0 / G1-Arrest wurde die verringerte Expression von Cyclin D1 und A, sowie die Akkumulation von p27 in den konfluenten NIH3T3-Zellen angesehen (Abb. 5). Durch die Downregulation ihrer regulatorischen Untereinheit – Cyclin D1 – wird die Aktivität der cdk4 herabgesetzt. Zudem wird die Kinase-Aktivität der cdk2 auch durch die Assoziation von p27 an den Cyclin E-cdk2-Komplex gehemmt. In der Folge können beide cdks das Retinoblastomprotein nicht mehr phosphorylieren, welches in seiner hypophosphorylierten, inhibitorischen Form verbleibt. pRb liegt dabei an den Transkriptionsfaktor E2F gebunden vor und blockiert die Synthese u. a. von Cyclin A (Polyak et al., 1994; Dietrich et al., 1997).

Unsere Arbeitsgruppe konnte bereits zeigen, dass p27 in humanen Fibroblasten und embryonalen Mausfibroblasten ein Zielprotein der MAP Kinase p38 ist (Faust et al., 2005), wobei der Mechanismus der Regulation noch unbekannt ist. P38 $\alpha^{-/-}$ -MEFs zeichnen sich durch eine signifikant erhöhte Sättigungsdichte aus, wobei die Kontaktinhibition in diesen Zellen gehemmt, aber nicht ausgeschaltet ist. Des Weiteren zeigen die p38 $\alpha^{-/-}$ -MEFs eine verzögerte Akkumulation von p27. Die bereits erwähnte persistierende Aktivierung der p38 in kontaktinhibierten FH109-Zellen könnte also zur Akkumulation von p27 in diesen Zellen beitragen. Der Mechanismus muss aber noch aufgeklärt werden. Entsprechende Versuche zur Aktivität der p38 in NIH3T3-Zellen stehen noch aus.

Weiterhin ist bekannt, dass p27 negativ über Skp2 reguliert wird (Carrano et al., 1999; Pagano et al., 1995). Skp2 kann eine Komponente des <u>Skp2-Cullin1-F</u>-Box Protein (SCF)-Komplexes sein (Nakayama und Nakayama, 2005) und ist für die Erkennung und Phosphorylierung des Zielproteins p27 durch den SCF-Komplex in der G1-Phase nötig (Carrano et al., 1999; Pagano et al., 1995). In der Folge wird p27 ubiquitinyliert

und durch Proteasomen degradiert. Die Degradation von p27 bewirkt eine erhöhte Aktivität der Cdk2-Cyclin E- bzw. Cdk2-Cyclin A-Komplexe, so dass die Zellen in die S-Phase eintreten können.

Abgesehen von der Downregulation des cdk-Inhibitors p27 wird die Aktivität der Cdk2-Cyclin E-Komplexe auch durch die Phosphatase Cdc25a beeinflusst. Dabei aktiviert Cdc25a die Komplexe durch Dephosphorylierung inhibitorischer Aminosäurereste (Nilsson und Hoffmann, 2000).

Diese Beispiele zeigen anschaulich, wie Zellen die Funktion wichtiger Gene über das Zusammenspiel verschiedener Mechanismen engmaschig regulieren. Unsere Arbeitsgruppe konnte bereits in verschiedenen Zelllinien zeigen, dass die Aktivität der cdk2 in konfluenten Kulturen herunterreguliert ist (Dietrich et al., 1997; Dietrich et al., 2002). Die verringerte Aktivität der cdk2 wird dabei auf verschiedenen Wegen erreicht. So ist in konfluenten NIH3T3-Zellen zum einen die aktivierende Phosphatase Cdc25a herunterreguliert, zum anderen akkumuliert der Cdk-Inhibitor p27 (Abb. 9B und 5B). Zur Akkumulation von p27 wiederum trägt einerseits die Downregulation von Skp2 (Abb. 9B) bei, das die Degradation von p27 stimuliert. Andererseits konnte unsere Arbeitsgruppe zeigen, dass p27 ein Zielprotein der p38 ist (Faust et al., 2005). Abbildung 14 zeigt, dass die p38 in konfluenten NIH3T3-Zellen phosphoryliert, d. h. aktiv ist, wenngleich noch untersucht werden muss, ob diese Phosphorylierung persistierend wie in FH109-Zellen (Faust et al., 2005).

Sowohl Skp2 als auch Cdc25a können über Foxm1 reguliert werden (Wang et al., 2005). Die durch Microarray-Analyse gezeigte Downregulation von Foxm1 in konfluenten NIH3T3-Zellen konnte mittels RT-PCR verifiziert werden (Abb. 8B).

Foxm1 ist ein Transkriptionsfaktor aus der Forkhead-Familie (Korver et al., 1997). Um transkriptionell aktiv werden zu können, muss Foxm1 am Aminosäurerest Thr 596 phosphoryliert vorliegen. Dazu bindet Foxm1 je nach Phase des Zellzyklus an unterschiedliche Cdk-Cyclin-Komplexe (G1 / S: bevorzugt cdk2-Cyclin E; G2: bevorzugt cdk1-Cyclin B) und wird von der Kinase phosphoryliert. Die Bindung an den Cdk-Cyclin-Komplex ist dabei essentiell für eine effektive Phosphorylierung (Korver et al., 1997; Major et al., 2004).

Der Transkriptionsfaktor Foxm1 gilt als Marker proliferierender Zellen. Seine RNA wird in allen fetalen Geweben der Maus exprimiert. Bei adulten Tieren dagegen beschränkt sich die Expression auf einige wenige Organe, deren Zellen sich noch teilen, zum Beispiel Thymus, Testes und Darm. Des Weiteren ist eine Überexpression von Foxm1 in vielen verschiedenen Tumoren beschrieben worden (Korver et al., 1997; Laoukili et al., 2007). Im Gegensatz dazu findet man bei Progerie-Patienten (Syndrom der vorzeitigen Vergreisung) und älteren Menschen, bei welchen die Zellproliferation bekanntlich gerin-
ger ist, eine verminderte Expression von Foxm1. Diese wiederum geht einher mit erhöhter genomischer Instabilität (Laoukili et al., 2007).

Um mehr über die physiologische Rolle von Foxm1 zu erfahren, wurden von verschiedenen Arbeitsgruppen Knockout-Mäuse generiert (Korver et al., 1997; Laoukili et al., 2007). Dabei erscheinen die heterozygoten Tiere unbeeinträchtigt. Das Fehlen beider Kopien von Foxm1 dagegen bewirkt embryonale Letalität, wobei die meisten Tiere noch in utero sterben, die anderen sofort nach der Geburt. Gemeinsam sind den Knockout-Mäusen schwere Defekte bei der Organogenese, v. a. Herz- und Leber-schäden. Dabei zeigen sich auffällig viele polyploide Hepatozyten bzw. Cardio-myozyten, wie sie für Embryonen untypisch sind. Diese Ergebnisse stützen die Vermutung, dass Foxm1 für die korrekte DNA-Replikation und Mitose, also den Zellzyklus verantwortlich ist und dadurch auch die genomische Stabilität der Zellen gewährleistet (Korver et al., 1997; Laoukili et al., 2007). Die Tatsache, dass Foxm1 in den meisten soliden Tumoren überexprimiert wird, könnte mit zur genomischen Instabilität der Tumorzellen beitragen sowie ihren Zellzyklus beschleunigen.

Abbildung 19:

Foxm1 ist ein Schlüsselprotein in der Zellzyklus-Regulation und beeinflusst viele Proteine sowohl am G1 / S- als auch am G2 / M-Übergang (aus Wang et al., 2005).

In Übereinstimmung mit diesen Beobachtungen beschreiben Kalinichenko et al. (2004) eine Akkumulation des ckd-Inhibitors p27 in Foxm1^{-/-}-Hepatozyten. Dadurch werden diese Zellen sehr resistent gegenüber einer Behandlung mit Chemikalien, durch welche

normalerweise Lebertumoren induziert werden. Eine Akkumulation der inhibitorischen Proteine p21 und p27 in Foxm1-defizienten Zellen wird auch von anderen Autoren beschrieben. Zum Einsatz kamen dabei sowohl Foxm1^{-/-}-MEFs als auch Tumorzellen, welche mit siRNA gegen Foxm1 behandelt wurden. Beide Zellmodelle zeigen eine verlängerte G2-Phase. Diese geht einher mit einer verminderten Expression G2 / M-induzierender Gene (z. B. Cyclin B, Cdc25B, Aurora kinase) und der erwähnten Akkumulation von p21 und p27. Parallel dazu wird eine verminderte Expression von Skp2 beobachtet (Wang et al., 2005; Laoukili et al., 2007). Die in kontaktinhibierten Zellen beobachtete Zunahme von p27 kann also, neben der Regulation über die p38, zumindest zum Teil durch die Abnahme von Foxm1 und die dadurch bedingte Abnahme von Skp2 erklärt werden, was zur Folge hat, dass der Abbau von p27 verringert wird.

Foxm1 könnte also eine ganz zentrale Rolle bei der Kontaktinhibition spielen. Als weitergehende Versuche sind die Behandlung von NIH3T3-Zellen mit siRNA gegen Foxm1 bzw. eine ektopische Überexpression von Foxm1 geplant. Dabei soll geklärt werden, welche Gene (z. B. Skp2, Cdc25a, Plk1) direkt durch Foxm1 reguliert werden, um seine mögliche Rolle in der Kontaktinhibition weiter aufzuklären.

Tsc-22

Das potentielle Tumorsuppressorgen Tsc-22 (<u>T</u>ransforming growth factor-β1- <u>s</u>timulated <u>c</u>lone 22) wurde ursprünglich als Gen identifiziert, welches durch die Gabe von TGF-β oder PPARγ induziert werden kann und die Transkription hemmt (Kester et al., 1999; Kester et al., 2000; Gupta et al., 2003). Die Speicheldrüsenkrebs-Zelllinie TYS zum Beispiel kann durch Herunterregulation von Tsc-22 zur Proliferation angeregt werden (Nakashiro et al., 1998). Im Einklang mit dieser Beobachtung wurde in einigen Tumoren eine verminderte Expression von Tsc-22 beobachtet, z. B. in Hirn- und Prostatatumoren (Shostak et al., 2003; Rentsch et al., 2006) sowie bei der durch chemische Karzinogene induzierten Entstehung von Lebertumoren in Ratten (lida et al., 2005). Unbekannt ist, ob Tsc-22 auch im Rahmen der Kontaktinhibition eine Rolle spielen kann. Unsere Microarray-Daten zeigen eine Heraufregulation von Tsc-22 in konfluenten NIH3T3-Zellen, die mittels RT-PCR bestätigt werden konnte (Abb. 8A). Auf Proteinebene konnten wir aber keine Unterschiede feststellen zwischen subkonfluenten und konfluenten NIH3T3-Zellen (Abb. 9). Unsere Versuche sprechen daher gegen eine Beteiligung von Tsc-22 an der Kontaktinhibition von NIH3T3-Zellen.

NCAM

In der Literatur gibt es zahlreiche Hinweise auf eine Beteiligung von Membran-/ Adhäsionsmolekülen an der Kontaktinhibition verschiedener Zelllinien, zum Beispiel VE-Cadherin, E-Cadherin oder β-Catenin (Dietrich et al., 2002; Grazia Lampugniani et al., 2003; Perrais et al., 2007).

Unsere Microarray-Analysen zeigen, dass das Adhäsionsmolekül Ncam (<u>n</u>eural <u>c</u>ell <u>a</u>dhesion <u>m</u>olecule) in konfluenten NIH3T3-Zellen auf RNA-Ebene heraufreguliert ist, was mittels RT-PCR verifiziert werden konnte (Abb. 8A). Inwieweit diese Expression in die Signaltransduktion der Kontaktinhibition involviert ist oder "nur" dem festeren Zusammenhalt der konfluenten Zellen dient, muss in weiteren Versuchen näher untersucht werden.

Ncam ist ein Adhäsionsmolekül, das in drei Splicevarianten vorkommt, welche gemäß ihrer Größe als 120, 140 und 180 kDa-Isoformen bezeichnet werden. Ncam ist sowohl an der Zelladhäsion als auch an Signaltransduktionsprozessen beteiligt und spielt eine Rolle bei der Entwicklung, im zentralen Nervensystem und bei dem Fortschreiten bzw. der Metastasenbildung bei Tumoren.

Die Ncam-vermittelte Zell-Zell-Adhäsion wird nicht nur durch homophile Bindungen zwischen Ncam-Molekülen benachbarter Zellen beeinflusst. Der extrazelluläre Teil des Ncam kann posttranslational mit Ketten des Oligosaccharids PSA (<u>p</u>olysialic <u>a</u>cid) verknüpft werden, wobei ein geringer PSA-Gehalt eine festere Bindung ermöglicht. Dieser Effekt könnte dadurch entstehen, dass die voluminösen PSA-Ketten die Ncam- Ncam-Wechselwirkung sterisch behindern und dadurch die Zelladhäsion schwächen (Rutishauser et al., 1988). Im Einklang damit steht auch die Beobachtung, dass der PSA-Gehalt im Laufe der Entwicklung eines Organismus abnimmt. Parallel dazu nimmt die Plastizität der Membranen ab und ihre Stabilität zu (Povlsen et al., 2003).

Im Laufe der Entwicklung eines Organismus gibt es weiterhin eine Verschiebung im Expressionsmuster der verschiedenen Ncam-Splicevarianten, weg von den embryonalen Isoformen (180 bzw. 140 kDa) hin zur 120 kDa-Isoform, die im adulten Organismus hauptsächlich vorliegt (Christofori, 2003). Aoki et al. (1991) konnten in murinen Fibroblasten der Zelllinie m5S/1M zeigen, dass proliferierende Zellen zwar insgesamt eine geringere Gesamtmenge an Ncam enthalten, dabei aber alle drei Isoformen exprimieren. Im Gegensatz dazu liegt in konfluenten Zellen hauptsächlich die 140 kDa-Isoform vor. Zudem ist das Molekül in den konfluenten Kulturen bevorzugt an Stellen der Zell-Zell-Kontakte lokalisiert. Die Transformation von m5S/1M-Zellen mittels EGF bewirkt morphologische Veränderungen und einen Verlust der Kontaktinhibition bei gleichzeitiger Downregulation der 140 kDa-Isoform (Aoki et al., 1991). Bei den im Rahmen dieser Arbeit verwendeten NIH3T3-Zellen konnte auf RNA-Ebene ebenfalls eine Zunahme des Ncam-Gesamtgehaltes in konfluenten Kulturen gezeigt werden (Abb. 8A und Tab. 3). Genauere Untersuchungen zu den beteiligten Isoformen, ihrer subzellulären Verteilung etc. stehen aber noch aus. Die angestrebten Untersuchungen auf Proteinebene (Western Blot, Immunfluoreszenz) haben sich als sehr schwierig erwisen, da mit keinem der drei bislang getesteten Antikörper ein Signal erhalten wurde. Möglicherweise exprimieren die NIH3T3-Zellen auf der Zellmembran nur sehr geringe Mengen an Ncam-Protein, die mit den gewählten Methoden nicht erfasst werden, weshalb für weitergehende Untersuchungen auf andere Methoden ausgewichen werden muss.

In der Literatur wird für verschieden Krebsarten (z. B. Melanom, Wilm's Tumor, Kolonkarzinom) beschrieben, dass der Gesamtgehalt an Ncam in den Zellen verringert ist, wobei sich die Expression zusätzlich wieder zu den embryonalen Isoformen hin verlagert (Christofori, 2003). Interessanterweise konnten Cavallaro et al. (2001) zeigen, dass bei NCAM-defizienten Tumorzelllinien zwar die Adhäsion der Zellen an das Sub-strat gestört ist, nicht aber der Zusammenhalt der Zellen untereinander. Dieser Aspekt könnte Invasion und Metastasenbildung in Ncam-defizienten Tumoren begünstigen.

Marcks-like Protein

Unsere Arbeitsgruppe konnte bereits zeigen, dass die <u>P</u>rotein<u>k</u>inase <u>C</u> δ (PKC δ) an der Kontaktinhibition von NIH3T3-Zellen beteiligt ist und dass der PKC δ -Proteingehalt in konfluenten NIH3T3-Zellen deutlich höher ist als in proliferierenden (Heit et al., 2001). Die PKC δ ist ein (potentieller) Tumorsuppressor (Lu et al., 1997), dessen Überexpression in verschiedenen Zelllinien einen Wachstumsstopp induzieren kann. Die PKC ist an diversen biologischen Prozessen beteiligt, z. B. Tumorigenese, Wachstum, Wachstumsarrest, Embryogenese und Differenzierung. Ein Ziel der PKC δ ist dabei das Aktinzytoskelett.

Wichtige Zielgene der PKC sind Marcks (<u>Myristoylated alanine-rich C kinase substrate</u>) und Mlp (<u>Marcks-like protein</u>). Die im Rahmen der vorliegenden Arbeit gewonnenen Arraydaten zeigen eine Heraufregulation von Marcks (3,1- bzw. 1,7-fach; p-Wert: 0,023) und Mlp (2,8- bzw. 2,4-fach; p-Wert: 0,001) in konfluenten NIH3T3-Zellen.

Herget et al. (1993) haben in Mausfibroblasten (Swiss3T3 und MEFs) gezeigt, dass die Marcks-Expression auf RNA- und Proteinebene stark ansteigt, sobald die Zellen konfluent gewachsen sind. Werden die Zellen dann wieder in geringer Zellzahl in FCShaltigem Medium ausgesät, sinkt die Expression von Marcks rapide und bleibt niedrig, solange die Zellen aktiv proliferieren. Dieser Effekt wird auch dann beobachtet, wenn die PKC in den Zellen durch Behandlung mit Phorbolester abgeschaltet wurde. Das lässt darauf schließen, dass die Expression von Marcks in den arretierten Zellen PKCunabhängig erfolgt. Außerdem finden Herget et al. (1993) eine inverse Korrelation zwischen Marcks-Expression und Anzahl der Zellen in der S-Phase, dagegen aber eine positive Korrelation zwischen Marcks und der Anzahl der Zellen in der G0 / G1-Phase. Chemisch oder viral transformierte Zellen, die keine Kontaktinhibition mehr zeigen, exprimieren nur wenig Marcks. Das alles spricht für eine wachstumshemmende Funktion von Marcks, was im Einklang mit unserem Ergebnis steht, dass die mRNA-Expression von Marcks in konfluenten Zellen erhöht ist.

Marcks und Mlp haben eine zu 50 % identische Aminosäuresequenz, vor allem die Effektordomäne ist nahezu identisch. Diese ist das Ziel für die Phosphorylierung durch PKC und die dadurch bedingte Aktivierung. Die Domäne ist essentiell für die Bindung an Aktin und Calmodulin, die nach Phosphorylierung gelöst wird (Verghese et al., 1994; Zhao et al., 2007). Die in den NIH3T3-Zellen beobachtete Aktivierung der PKC bei gleichzeitiger Translokation in den Zellkern und nachfolgende Zerstörung der Aktin-Stressfilamente (Heit et al., 2001) könnte bewirkt werden durch eine Phosphorylierung von Marcks und Mlp und nachfolgende Dissoziation der Komplexe mit Aktin

Obwohl die Expressionsmuster von Marcks und Mlp in Mäusen sehr ähnlich sind, zeigen Knockout-Tiere verschiedene Phänotypen. Das deutet darauf hin, dass Marcks und Mlp trotz ihrer Ähnlichkeit verschiedene biologische Funktionen erfüllen (Zhao et al., 2007). Die genaue physiologische Rolle von Marcks und Mlp ist noch nicht bekannt. Auch ihre Beteiligung an der Kontaktinhibition muss noch weiter untersucht werden.

5.2. Regulation der MAP Kinasen

Duale Phosphatasen

Duale Phosphatasen (Dusps) dephosphorylieren MAP Kinasen, welche dadurch inaktiviert werden. Damit erfüllen die Dusps eine wichtige Funktion in der Regulation der MAPK-Signalkaskaden, welche im Organismus eine sehr große Rolle spielen. Die differentielle Expression der Dusp9, die sich in der Microarray-Analyse gezeigt hat, konnte mittels RT-PCR verifiziert werden. Diese Phosphatase ist in konfluenten NIH3T3-Zellen auf RNA-Ebene deutlich herunterreguliert (Abb. 8B). Neben der Dusp9 wurde im Rahmen der vorliegenden Arbeit noch eine zweite duale Phosphatase untersucht, die MKP-1 (Dusp1). Beide Phosphatasen können sowohl ERK als auch p38 dephosphorylieren und dadurch inaktivieren (Muda et al., 1997; Camps et al., 1999; Owens und Keyse, 2007).

Die unterschiedliche Selektivität verschiedener Dusps gegenüber den MAPK wird durch spezifische Bindungen der N-terminalen Domäne der Dusps mit Aminosäuregruppen der MAPK bedingt. Die Phosphatasen besitzen im N-Terminus zwei konservierte Bereiche mit Sequenzhomologie zur Phosphatase Cdc25. Der Rest der Sequenz entscheidet über die zum Teil hoch affinen Bindungen zu bestimmten MAPKs (Camps et al., 1999). Des Weiteren erhöht sich die Aktivität einiger Dusps signifikant, nachdem sie an spezifische MAP Kinasen gebunden haben. Die Aktivität der Dusp9 zum Beispiel erhöht sich nach Bindung an ERK2, JNK und p38 (Camps et al., 1998). MKP-1 (Dusp1) wird nach Bindung an ERK1 / 2, JNK2 und p38 ebenfalls aktiviert (Slack et al., 2001). Dabei ist die Aktivierung unabhängig davon, ob die MAPK ihrerseits aktiviert ist (Camps et al., 1999).

MAP Kinase p38

MAPK spielen in der mitogen-induzierten Signaltransduktion eine herausragende Rolle, wobei besonders die über Wachstumsfaktoren verlaufenden Signalkaskaden schon intensiv erforscht wurden.

Über die Rollen der MAPK im Rahmen der Kontaktinhibition, die ein wichtiges wachstumshemmendes Signal darstellt, ist dagegen weit weniger bekannt. In bisherigen Arbeiten konnte unsere Arbeitsgruppe zeigen, dass die MAPK p38 an der Kontaktinhibition der humanen Fibroblastenzelllinie FH109 und embryonalen Maus-fibroblasten beteiligt ist (Faust et al., 2005). Eine Beteiligung der p38 in der Kontaktinhibition der NIH3T3-Zellen ist noch nicht detailliert untersucht worden. Es gibt allerdings Hinweise darauf, dass die p38 auch in diesen Zellen an der Kontaktinhibition beteiligt ist. Den Effekt der Kontaktinhibition kann man simulieren, indem man proliferierenden Kulturen fixierte Zellen zusetzt, welche aus kontaktinhibierten Kulturen gewonnen wurden (Wieser et al., 1985). Kontaktinhibierte Zellen exprimieren auf ihrer Membran das aktive, glykosilierte Protein Contactinhibin, welches durch Glutaraldehyd fixiert werden kann. Bei der Fixierung bleiben die Eigenschaften der Kohlenhydrat-Ketten erhalten und das Contactinhibin kann nach Zugabe zu proliferierenden Zellen durch Interaktion mit seinem spezifischen Rezeptor die Kontaktinhibition imitieren (Gradl et al., 1995).

Nach Zugabe von fixierten zu exponentiell wachsenden NIH3T3-Zellen wird eine deutliche Proliferationshemmung beobachtet, d. h. die Zellen werden "kontaktinhibiert". Werden die exponentiell wachsenden Zellen dagegen mit SB203580 vorbehandelt, einem spezifischen Inhibitor der p38, fällt die Proliferationshemmung nach Zugabe fixierter Zellen deutlich geringer aus (Schmitt, 2002). Das spricht für eine Beteiligung der p38 an der Kontaktinhibition in NIH3T3-Zellen. Für p38^{-/-}-MEFs wurde eine höhere Sättigungsdichte gezeigt als in den Wildtyp-Kontrollen, wobei sich aber keine foci bilden. Das lässt darauf schließen, dass die Kontaktinhibition in den p38^{-/-}-MEFs gestört, aber nicht ganz aufgehoben ist. Weiterhin kann durch Zugabe fixierter Zellen zu den p38^{-/-}-MEFs die Proliferation nicht wesentlich gehemmt werden, was ebenfalls für eine Beteiligung der p38 an der Kontaktinhibition in diesen Zellen spricht (Faust et al., 2005). Ob und über welchen Mechanismus die p38 an der Kontaktinhibition der NIH3T3-Zellen beteiligt ist, muss aber noch geklärt werden.

MAPK-Kinasen (MKKs)

Im Falle der MAPK wird die Aktivität zum einen durch duale Phosphorylierung konservierter Threonin- und Tyrosinreste durch MKKs gesteuert, zum anderen über die Dephosphorylierung durch duale Phosphatasen (s. o.). Dabei weisen die in der Signalkaskade vorgeschalteten MKKs unterschiedliche Affinitäten zu den einzelnen MAPK auf. So werden ERK1 / 2 bevorzugt von MKK1 und 2 aktiviert; die p38 dagegen von MKK3 / 6 und MKK4 (Derijard et al., 1995; Raingeaud et al., 1996; Enslen et al., 1998; Brancho et al., 2003). Im Rahmen der vorliegenden Arbeit wurde die Expression der MKKs 3 / 6 und 4 untersucht, welche in die p38- Signalkaskade involviert sind.

Es konnte gezeigt werden, dass die Aktivität der vorgeschalteten Kinasen MKK3 / 6 und MKK4 in konfluenten NIH3T3- und FH109-Zellen verringert ist (Abb. 12, FH109 nicht gezeigt). Das macht eine verstärkte bzw. andauernde Aktivierung der p38 in konfluenten FH109-Zellen über diese MKKs unwahrscheinlich. Die im Rahmen dieser Arbeit gezeigte Downregulation der inhibitorischen Phosphatasen Dusp9 und MKP-1 (Dusp1) dagegen könnte zu der persistierenden Phosphorylierung beitragen (Abb. 8B und 10).

MAP Kinase ERK

Wir haben gezeigt, dass die phosphorylierte, d. h. aktive Form der ERK in konfluenten NIH3T3-Zellen herunterreguliert ist (Abb. 15), wobei die Ursache dafür noch nicht bekannt ist. Denkbar waren eine eingeschränkte Aktivierung der ERK, z. B. durch nichtaktivierbare WF-Rezeptoren, oder Inaktivierung durch eine verstärkte Phosphataseaktivität in den konfluenten NIH3T3-Zellen.

Wayne et al. (2006) zum Beispiel sehen in kontaktinhibierten humanen Fibroblasten (BJ) eine verminderte Phosphorylierung der ERK. Parallel dazu ist die Aktivität der MEK-1, der ERK übergeordneten Kinase, in konfluenten BJ-Zellen verringert. Im Gegensatz dazu ist die Expression der dualen Phosphatasen MKP-1, -2 und -3 in diesen Zellen heraufreguliert (Wayne et al., 2006). Das heißt, dass die verminderte ERK-Phosphorylierung in diesem Fall durch die Kombination aus verringerter Aktivierung und verstärkter Deaktivierung bedingt sein kann. Auch in konfluenten murinen Endothelzellen wird eine Herunterregulation der ERK-Phosphorylierung beschrieben (Vinals und Pouyssegur, 1999). Um zu testen, ob bzw. auf welcher Stufe die Mitogeninduzierte ERK-Signalkaskade in den konfluenten Zellen gehemmt ist, haben Vinals und Pouyssegur (1999) subkonfluente und konfluente Zellen serumdepletiert und anschließend mit FGF stimuliert. Dabei zeigt sich, dass die ERK-Phosphorylierung in konfluenten Zellen nach FGF-Gabe wesentlich schwächer ist als in subkonfluenten. Auch die Induktion der ERK-Zielgene MKP-1, MKP-2, c-fos und Cyclin D1 ist in den konfluenten Zellen gehemmt. Dagegen ist die Aktivität der upstream von ERK gelegenen Komponenten der Signalkaskade, Ras und MEK-1, von der Kontaktinhibition unbeeinträchtigt. Das lässt darauf schließen, dass der FGF-Rezeptor in den konfluenten Zellen aktivierbar ist. Werden die konfluenten Endothelzellen mit Natriumorthovanadat vorbehandelt, einem Inhibitor von Tyrosin- bzw. dualen Tyrosin-/ Threonin-Kinasen, fällt die ERK-Aktivierung durch FGF genauso stark aus wie in den subkonfluenten Zellen. Das spricht dafür, dass Phosphatasen in der Kontaktinhibition dieser Zellen eine Rolle spielen (Vinals und Pouyssegur, 1999).

Da die im Rahmen der vorliegenden Arbeit untersuchten dualen Phosphatasen, Dusp9 und MKP-1 (Dusp1), in konfluenten NIH3T3-Zellen herunterreguliert sind (Abb. 9 und 12), ist ihre Beteiligung an der Downregulation der ERK-Phosphorylierung unwahrscheinlich. Die Expression weiterer Dusps muss aber noch untersucht werden.

In der Literatur wird weiterhin beschrieben, dass die Anzahl bzw. Aktivierbarkeit der WF-Rezeptoren auf der Zellmembran in verschiedenen Zelllinien je nach Zelldichte und Gabe unterschiedlicher Wachstumsfaktoren verändert sein kann. So haben zum Beispiel Sörby und Ostman (1996) gezeigt, dass die Anzahl an EGF-Rezeptoren auf der Zellmembran proliferierender und konfluenter Mv1Lu-Zellen (Lungenepithelzellen aus dem Nerz) vergleichbar ist, die Phosphorylierung nach EGF-Stimulation dagegen ist in den konfluenten Zellen geringer. Als Grund konnte eine erhöhte Phosphataseaktivität in den konfluenten Mv1Lu-Zellen ausgemacht werden, wodurch deren EGF-Rezeptoren schneller inaktiviert werden als diejenigen in den pro-liferierenden Zellen. Im Gegensatz dazu ist auf der Membran konfluenter Endothelzellen (Aorta-Endothelzellen aus dem Schwein) die absolute Zahl der PDGF-Rezeptoren verringert. Werden die Endothelzellen mit dem PDGF-Rezeptor transfiziert, um eine gleiche Rezeptor-Anzahl in proliferierenden und konfluenten Zellen zu erreichen, fällt die Liganden-induzierte Phosphorylierung der Rezeptoren in den konfluenten Zellen trotzdem noch geringer aus als in den proliferierenden. Dieser Effekt kann durch Vorbehandlung mit einem Phosphataseinhibitor aufgehoben werden, was wiederum für eine erhöhte Phosphataseaktivität in den konfluenten Zellen spricht (Sörby und Ostman, 1996).

Einen Einfluss der Zelldichte auf die Anzahl bzw. die Aktivierbarkeit von Rezeptoren haben auch Rizzino et al. (1988) in verschiedenen Zelllinien beschrieben. Sie zeigen, dass konfluente Kulturen weniger Wachstumsfaktor binden als proliferierende Kulturen. Dabei zeigen sich unterschiedliche Mechanismen. Bei hoher Zelldichte weisen einige Zellen eine geringere Anzahl an bestimmten WF-Rezeptoren auf. Z. B. ist in BSC-1-Zellen die Zahl an EGF- und in NRK-49F-Zellen die Zahl der TGFβ-Rezeptoren ver-

mindert. In anderen Zelllinien, wie z. B. A431-R1, ist die Gesamtzahl an EGF-Rezeptoren in proliferierenden und konfluenten Zellen zwar gleich, aber in den konfluenten ist ein hoch affiner Rezeptor-Typ selektiv herunterreguliert, wodurch die EGF-Wirkung stark abgeschwächt wird.

Unsere Versuche sprechen dafür, dass die Rezeptoren der untersuchten Wachstumsfaktoren FGF, PDGF und EGF in konfluenten serumdepletierten NIH3T3-Zellen vorhanden und aktivierbar sind. So wird nach Stimulation mit jedem der Wachstumsfaktoren ERK-Phosphorylierung detektiert (Abb. 17). Im Proliferationsassay (Abb. 16) zeigt sich, dass EGF die Proliferation der NIH3T3-Zellen nicht zu stimulieren vermag. Im Gegensatz dazu können FCS, FGF und PDGF auch in kontaktinhibierten serumdepletierten NIH3T3-Zellen die Proliferation stimulieren (Abb. 16). Wenn wir davon ausgehen, dass der EGF-Rezeptor in den konfluenten NIH3T3-Zellen aktivierbar ist, stellt sich die Frage, auf welcher Stufe die Signalkaskade gehemmt ist.

Da die ERK-Phosphorylierung nach EGF-Gabe in konfluenten (Abb. 17) und subkonfluenten (nicht gezeigt) NIH3T3-Zellen vergleichbar ist, ist eine Hemmung downstream von ERK am wahrscheinlichsten. Auf welcher Stufe der weiteren Signalkaskade diese Hemmung erfolgt, muss noch genauer untersucht werden.

Eine Hemmung der PDGF-induzierten Proliferation auf einer sehr späten Stufe der Signalkaskade zeigen Afrakhte et al. (1998) in konfluenten Kulturen der humanen Fibroblastenzelllinie AG1518. In serumdepletierten AG1518-Zellen können durch Stimulation mit PDGF c-myc, c-jun und c-fos induziert werden. Eine Expression von Cdc25a und Cyclin A unterbleibt jedoch in konfluenten Zellen. Eine detaillierte Untersuchung zellzyklusregulatorischer Proteine zeigt, dass pRb in den konfluenten AG1518-Zellen in seiner hypophosphorylierten, d.h. inhibitorischen, in subkonfluenten Zellen aber in seiner hyperphosphorylierten Form vorliegt. Als Ursachen dafür konnten eine Akkumulation der CKIs p15, p16 und p21 und eine verminderte Aktivität der cdk2 in den konfluenten AG1518-Zellen gefunden werden. Infolgedessen unterbleibt die Hyperphosphorylierung von pRb und die konfluenten AG1518-Zellen bleiben nach PDGF-Gabe in der späten G1-Phase arretiert (Afrakhte et al., 1998).

Unsere Versuche zeigen, dass die EGF-induzierte Signalkaskade in konfluenten NIH3T3-Zellen gehemmt ist, nicht aber die durch FGF und PDGF ausgelösten Signalkaskaden. Des Weiteren konnten wir zeigen, dass diese Hemmung über eine Deregulation der ERK erfolgt. Auf welcher Stufe die Signalkaskade blockiert ist, muss aber noch weiter untersucht werden.

6. Zusammenfassung

Obwohl die Kontaktinhibition schon lange als wichtiges wachstumshemmendes Signal anerkannt ist, sind die ihr zugrunde liegenden Mechanismen noch nicht aufgeklärt. Die vorliegende Arbeit sollte durch Genexpressionsanalysen zum besseren Verständnis der molekularen Ursachen der Kontaktinhibition beitragen.

Durch den Einsatz von Microarray-Analysen konnte eine umfassende Untersuchung von an der Kontaktinhibition beteiligten Genen durchgeführt werden. Dabei wurde die Beteiligung einiger weniger bereits bekannter Signalmoleküle bestätigt und es wurden neue Komponenten gefunden. Es ist gelungen zu zeigen, dass viele (Schlüssel)-proteine des Zellzyklus eine Rolle spielen. So war zum Beispiel für Skp2 und Foxm1 bislang nicht bekannt, dass sie in die Kontaktinhibition involviert sind. Des Weiteren konnte gezeigt werden, dass kontaktinhibierte NIH3T3-Zellen ihre DNA-Synthese einstellen und möglicherweise in die G0-Phase eintreten.

Unsere Arbeitsgruppe hatte bereits gezeigt, dass die MAP Kinase p38 in kontaktinhibierten FH109-Zellen persistierend phosphoryliert ist. Als ein möglicher Mechanismus dafür konnte im Rahmen dieser Arbeit die Herunterregulation der dualen Phosphatasen Dusp9 und MKP-1 (Dusp1) in konfluenten Zellen gezeigt werden. Dass die persistierende Phosphorylierung der p38 über eine verstärkte Aktivierung durch übergeordnete Kinasen geregelt wird ist unwahrscheinlich, da gezeigt werden konnte, dass die aktiven Formen der MKK3 / 6 und MKK4 in konfluenten Zellen herunter-reguliert sind.

In NIH3T3-Zellen wird die EGF-induzierte Signaltransduktion durch Kontaktinhibition gehemmt. Im Gegensatz dazu sind die Signalwege für FCS, FGF und PDGF auch in kontaktinhibierten NIH3T3-Zellen funktionell.

Literatur

Abercrombie, M. (1970). Contact inhibition in tissue culture. In Vitro, 6: 128-142.

Abercrombie, M. (1979). Contact inhibition and malignancy. *Nature*, **281**: 259-262.

Afrakhte, M.; Heldin, N.E. and Westermark, B. (1998). Inhibition of G₁ Cyclin-dependent Kinase Activity in Cell Density-dependent Growth Arrest in Human Fibroblasts. *Cell Growth & Differentiation*, **9**: 983-988.

Anger, M.; Kues, W.A.; Klima, J.; Mielenz, M.; Kubelka, M.; Motlik, J.; Esner, M.; Dvorak, P.; Carnwath, J.W. and Niemann, H. (2003). Cell Cycle Dependent Expression of Plk1 in Synchronized Porcine Fetal Fibroblasts. *Molecular Reproduction and Development*, **65**: 245-253.

Aoki, J.; Umeda, M.; Takio, K.; Titani, K.; Utsumi, H.; Sasaki, M. and Inoue, K. (1991). Neural Cell Adhesion Molecule Mediates Contact-dependent Inhibition of Growth of Near-diploid Mouse Fibroblast Cell Line m5S/1M. *The Journal of Cell Biology*, **115**: 1751-1761.

Barath, P.; Luciakova, K.; Hodny, Z.; Li, R. and Nelson, B.D. (1999). The Growth-Dependent Expression of the Adenine Nucleotide Translocase-2 (ANT2) Gene Is Regulated at the Level of Transcription and Is a Marker of Cell Proliferation. *Experimental Cell Research*, **248**: 583-588.

Blow, J.J. and Hodgson, B. (2002). Replicaton licensing – defining the proliferative state?. *TRENDS in Cell Biology*, **12**: 72-78.

Brancho, D.; Tanaka, N.; Jaeschke, A.; Ventura, J.J.; Kelkar, N.; Tanaka, Y.; Kyuuma, M.; Takeshita, T.; Flavell, R.A. and Davis, R.J. (2003). Mechanism of *p38 MAP* kinase activation *in vivo*. *Genes and Development*, **17**: 1969-78.

Camps, M.; Nichols, A. and Arkinstall, S. (1999). Dual specificity phosphatases: a gene family for control of MAP kinase function. *The FASEB Journal*, **14**: 6-16.

Camps, M.; Nichols, A.; Gillieron, C.; Antonsson, B.; Muda, M.; Chabert, C.; Boschert, U. and Arkinstall, S. (1998). Catalytic Activation of the Phosphatase MKP-3 by ERK2 Mitogen-Activated Protein Kinase. *Science*, **280**: 1262-1265.

Carrano; A.C.; Eytan, E.; Hershko, A. and Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. *Nature Cell Biology*, **1**: 193-199.

Catzavelos, C.; Bhattacharya, N.; Ung, Y.C.; Wilson, J.A.; Roncari, L.; Sandhu, C.; Shaw, P.; Yeger, H.; Morava-Protzner, I.; Kapusta, L.; Franssen, E.; Pritchard, K.I. and Slingerland, J.M. (1997). Decreased levels of the cell-cycle inhibitior p27Kip1 protein: Prognostic implications in primary breast cancer. *Nature Medicine*, **3**: 227-230.

Cavallaro, U.; Niedermeyer, J.; Fuxa, M. and Christofori, G. (2001). N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. *Nature Cell Biology*, **3**: 650-657.

Choi, S.C.; Kim, J.; Kim, T.H.; Cho, S.Y.; Park, S.S.; Kim, K.D. and Lee, S.H. (2001). Cloning and Characterization of a Type II Integral Transmembrane Protein Gene, Itm2c, That Is Highly Expressed in the Mouse Brain. *Molecules and Cells*, **12**: 391-397.

Christofori, G. (2003). Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression. *The EMBO Journal*, **22**: 2318-2323.

Dahlquist, K.D.; Salomonis, N.; Vranizan, K.; Lawlor, S.C. and Conklin, B.R. (2002). GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. *Nature Genetics*, **31**: 19-20.

Deininger, M.; Buchdunger, E. and Druker, B.J. (2005). The development of imatinib as a therapeutic agent for chronic myeloid leukemia. *Blood*, **105**: 2640-2653.

Del Sal, G.; Ruaro, M.E.; Philipson, L. and Schneider, C. (1992). The Growth Arrest-Specific Gene, gas1, Is Involved in Growth Suppression. *Cell*, **70**: 595-607.

DePamphilis, M.L. (2005). Cell Cycle Dependent Regulation of the Origin Recognition Complex. *Cell Cycle*, **4**: 70-79.

Derijard, B.; Raingeaud, J.; Barrett, T.; Wu, I.H.; Han, J.; Ulevitch, R.J. and Davis, R.J. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. *Science*, **267**: 682-685.

Diachenko, L.B.; Ledesma, J.; Chenchik, A.A. and Siebert, P.D. (1996). Combining the Technique of RNA Fingerprinting and Differential Display to Obtain Differentially Expressed mRNA. *Biochemical and Biophysical Research Communications*, **219**: 824-828.

Dietrich, C., Faust, D.; Budt, S.; Moskwa, M.; Kunz, A.; Bock, K.-W. and Oesch, F. (2002). 2,3,7,8-Tetrachlorodibenzo-*p*-dioxin-Dependent Release from Contact Inhibition in WB-F344 Cells: Involvement of Cyclin A. *Toxicology and Applied Pharmacology*, **183**: 117-126.

Dietrich, C.; Wallenfang, K.; Oesch, F. and Wieser, R. (1997). Differences in the mechanisms of growth control in contact-inhibited and serum-deprived human fibroblasts. *Oncogene*, **15**: 2743-2747.

Enslen, H.; Raingeaud, J. and Davis, R.J. (1998). Selective Activation of p38 Mitogenactivated Protein (MAP) Kinase Isoforms by the MAP Kinase Kinases MKK3 and MKK6. *The Journal of Biological Chemistry*, **273**: 1741-1748. Fagotto, F. and Gumbiner, B.M. (1996). Cell Contact-Dependent Signaling. *Developmental Biology*, **180**: 445-454.

Faust, D.; Dolado, I.; Cuadrado, A.; Oesch, F.; Weiss, C.; Nebreda, A.R. and Dietrich, C. (2005). P38α MAPK is required for contact inhibition. *Oncogene*, **24**: 7941-7945.

Gos, M.; Miloszewska, J.; Swoboda, P.; Trembacz, H.; Skierski, J. and Janik, P. (2005). Cellular quiescence induced by contact inhibition or serum withdrawal in C3H10T1/2 cells. *Cell Proliferation*, **38**: 107-116.

Gradl, G.; Faust, D.; Oesch, F. and Wieser, R.J. (1995). Density-dependent regulation of cell growth by contactinhibin and the contactinhibin receptor. *Current Opinion in Biology*, **5**: 526-535.

Grazia Lampugnani, M.; Zanetti, A.; Corada, M.; Takahashi, T.; Balconi, G.; Breviario, F.; Orsenigo, F.; Cattelino, A.; Kemler, R.; Daniel, T.O. and Dejana, E. (2003). Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β -catenin, and the phosphatase DEP-1 / CD148. *The Journal of Cell Biology*, 161: 793-804.

Gupta, R.A.; Sarraf, P.; Brockmann, J.A.; Shappell, S.B.; Raftery, L.A.; Willson, T.M. and DuBois R.N. (2003). Peroxisome Proliferator-activated Receptor γ and Transforming Growth Factor- β Pathways Inhibit Intestinal Epithelial Cell Growth by Regulating Levels of TSC-22. *The Journal of Biological Chemistry*, **278**: 7431-7438.

Hall, M. and Peters, G. (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. *Advances in Cancer Research*, **68**: 67-108.

Hazzalin, C.A.; Le Panse, R.; Cano, E. and Mahadevan, L.C. (1998). Anisomycin Selectively Desentisizes Signalling Components Involved in Stress Kinase Activation and *fos* and *jun* Induction. *Molecular and Cellular Biology*, **18**: 1844-1854.

Heit, I.; Wieser, R.J.; Herget, T.; Faust, D.; Borchert-Stuhlträger, M.; Oesch, F. and Dietrich, C. (2001). Involvement of protein kinase $C\delta$ in contact-dependent inhibition of growth in human and murine fibroblasts. *Oncogene*, **20**: 5143-5154.

Herget, T.; Brooks, S.F.; Broad, S. and Rozengurt, E. (1993). Expression of the major protein kinase C substrate, the acidic 80-kilodalton myristoylated alanine-rich C kinase substrate, increases sharply when Swiss 3T3 cells move out of cycle and enter G_0 . *Proceedings of the National Academy of Sciences, USA*, **90**: 2945-2949.

Holley, R.W. (1975). Control of growth of mammalian cells in cell culture. *Nature*, **258**: 487-490.

Holley, R.W. and Kiernan, J.A. (1968). "Contact inhibition" of Cell Division in 3T3 Cells. *Proceedings of the National Academy of Sciences*, **60**: 300-304.

Holley, R.W.; Armour, R.; Baldwin, J.H.; Brown, K.D. and Yeh, Y.C. (1977). Densitydependent regulation of growth of BSC-1 cells in cell culture: Control of growth by serum factors. *Proceedings of the National Academy of Science*, USA, **74**: 5046-5050.

Hunt, T. (1989). Maturation promoting factor, cyclin and the control of M-phase. *Current Opinion in Cell Biology*, **1**: 268-274.

lida, M.; Anna, C.H.; Holliday, W.M.; Collins, J.B.; Cunningham, M.L.; Sills, R.C. and Devereux, T.R. (2005). Unique patterns of gene expression changes in liver after treatment of mice for 2 weeks with different known carcinogens and non-carcinogens. *Carcinogenesis*, **26**: 689-699.

Ishimi, Y. (1997). A DNA helicase activity is associated with an MCM4, -6, -7 protein complex. *The Journal of Biological Chemistry*, **272**: 24508-24513.

Iwamori, N.; Naito, K.; Sugiura, K. and Tojo, H. (2002). Preimplantation-embryo-specific cell cycle regulation is attributed to the low expression level of retinoblastoma protein. *FEBS Letters*, **526**: 119-123.

Jiao, X.; Trifillis, P. and Kiledjian, M. (2002). Identification of Target Messenger RNA Substrates for the Murine Deleted in Azoospermia-Like RNA-Binding Protein. *Biology of Reproduction*, **66**: 475-485.

Kalinichenko, V.V.; Major, M.L.; Wang, X.; Petrovic, V.; Kuechle, J.; Yoder, H.M.; Dennewitz, M.B.; Shin, B.; Datta, A.; Raychaudhuri, P. and Costa, R.H. (2004). Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19^{ARF} tumor suppressor. *Genes & Development*, **18**: 830-850.

Kester, H.A.; Blanchetot, C.; den Hertog, J.; van der Saag, P.T. and van der Burg, B. (1999). Transforming Growth Factor-β-stimulated Clone-22 Is a Member of a Family of Leucine Zipper Proteins That Can Homo- and Heterodimerize and Has Transcriptional Repressor Activity. *The Journal of Biological Chemistry*, **274**: 27439-27447.

Kester, H.A.; Ward-van Oostward, TH.M.J.; Goumans, M.J.; van Rooijen, M.A.; van der Saag, P.T.; van der Burg, B. and Mummery, C.L. (2000). Expression of TGF- β Stimulated Clone-22 (TSC-22) in Mouse Development and TGF- β Signalling. *Developmental Dynamics*, **218**: 563-572.

Klucky, B.; Koch, B.; Radolf, M.; Steinlein, P. and Wintersberger, E. (2004). Polyomavirus tumorantigens have a profound effect on gene expression in mouse fibroblasts. *Oncogene*, **23**: 4707-4721.

Korver, W.; Roose, J. and Clevers, H. (1997). The winged-helix transcription factor Trident is expressed in cycling cells. *Nucleic Acids Research*, **25**: 1715-1719.

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, **227**: 680-685.

Lallemand, D.; Ham, J.; Garbay, S.; Bakiri, L.; Traincard, F.; Jeannequin, O.; Pfarr, C.M. and Yaniv, M. (1998). Stress-activated protein kinases are negatively regulated by cell density. *The EMBO Journal*, 17: 5615-5626.

Laoukili, J.; Stahl, M. and Medema, R.H. (2007). FoxM1: At the crossroads of ageing and cancer. *Biochimica et Biophysica Acta*, **1775**: 92-102.

Liang, P. and Pardee, A.B. (1992). Differential Display of Eucaryotic Messenger RNA by Means of the Polymerase Chain Reaction. *Science*, **257**: 967-971.

Liang, P. and Pardee, A.B. (1995). Recent advances in differential display. *Current Opinion in Immunology*, **7**: 274-280.

Lönnstedt, I. and Speed, T.P. (2002). Replicated microarray data. *Statistica Sinica*, **12**: 31-46.

Lu, Z.; Hornia, A.; Jiang, Y.W.; Zang, Q.; Ohno, S. and Foster, D.A. (1997). Tumor promotion by depleting cells of protein kinase C delta. *Molecular and Cellular Biology*, **17**: 3418-3428.

Major, M.L.; Lepe, R. and Costa, R.H. (2004). Forkhead Box M1B Transcriptional Activity Requires Binding of Cdk-Cyclin Complexes for Phosphorylation-Dependent Recruitment of p300/ CBP Coactivators. *Molecular and Cellular Biology*, **24**: 2649-2661.

Mittnacht, S. and Weinberg, R.A. (1991). G1 / S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. *Cell*, **65**: 381-393.

Muda, M.; Boschert, U.; Smith, A.; Antonsson, B.; Gillieron, C.; Chabert, C.; Camps, M.; Martinou, I.; Ashworth, A. and Arkinstall, S. (1997). Molecular Cloning and Functional Characterization of a Novel Mitogen-activated Protein Kinase Phosphatase, MKP-4. *The Journal of Biological Chemistry*, **272**: 5141-5151.

Nakashiro, K.; Kawamata, H.; Hino, S.; Uchida, D.; Miwa, Y.; Hamano, H.; Omotehara, F.; Yoshida, H. and Sato, M. (1998). Down-regulation of TSC-22 (Transforming Growth Factor β -stimulated Clone 22) Markedly Enhances the Growth of a Human Salivary Gland Cancer Cell Line *in Vitro* and *in Vivo*. *Cancer Research*, **58**: 549-555.

Nakayama, K.; Nagahama, H.; Minamishima, Y.A.; Matsumoto, M.; Nakamichi, I.; Kitagawa, K.; Shirane, M.; Tsunematsu, R.; Tsukiyama, I.; Ishida, N.; Kitagawa, M.; Nakayama, K. and Hatakeyama, S. (2000). Targeted disruption of Skp2 results in accumulation of cyclin E and p27^{Kip1}, polyploidy and centrosome overduplication. *The EMBO Journal*, **19**: 2069-2081.

Nakayama, K.I. and Nakayama, K. (2005). Regulation of the cell cycle by SCF-type ubiquitin ligases. *Seminars in Cell & Developmental Biology*, **16**: 323-333.

Nilsson, I. and Hoffmann, I. (2000). Cell cycle regulation by the Cdc25 phosphatase family. *Progress in Cell Cycle Research*, **4**: 107-114.

Norbury, C. and Nurse, P. (1992). Animal cell cycles and their control. *Annual Review of Biochemistry*, **61**: 441-470.

Noseda, M.; Chang, L.; McLean, G.; Grim, J.E.; Clurman, B.E.; Smith, L.L. and Karsan, A. (2004). Notch Activation Induces Endothelial Cell Cycle Arrest and Participates in Contact Inhibition: Role of p21^{Cip1} Repression. *Molecular and Cellular Biology*, **24**: 8813-8822.

Noseda, M.; Niessen, K.; McLean, G.; Chang, L. and Karsan, A. (2005). Notch-Dependent Cell Cycle Arrest Is Associated With Downregulation of Minichromosome Maintainance Proteins. *Circulation Research*, **97**: 102-104.

Owens, D.M. and Keyse, S.M. (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. *Oncogene*, **26**: 3203-3213.

Pagano, M.; Tam, S.W.; Theodoras, A.M.; Beer-Romero, P., Del Sal, G; Chau, V.; Yew, P.R.; Draetta, G.F. and Rolfe, M. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. *Science*, **269**: 682-685.

Pardee, A.B. (1989). G1 events and regulation of cell proliferation. *Science*, **246**: 603-608.

Perrais, M.; Chen, X.; Perez-Moreno, M. and Gumbiner, B.M. (2007). E-cadherin Homophilic Ligation Inhibits Cell Growth and Epidermal Growth Factor Receptor Signaling Independently of Other Cell Interactions. Molecular Biology of the Cell, 18: 2013-2025.

Pines, J. (1993). Cyclins and cyclin-dependent kinases: take your partners. *TRENDS in Biochemical Sciences*, **18**: 195-197.

Polyak, K.; Kato, J.; Solomon, M.J.; Sherr, C.J.; Massague, J.; Roberts, J.M. and Koff, A. (1994). p27 ^{Kip1}, a cyclin-Cdk inhibitor, links transforming growth factor- β and contact inhibition to cell cycle arrest. *Genes & Development*, **8**: 9-22.

Poremba, C.; Simon, R.; Boecker, W. and Dockhorn-Dworniczak, B. (1999). Molekulare Ursachen der Tumorentstehung. *Der Onkologe*, **5**: 847-854.

Povlsen, G.K.; Kornerup Ditlevsen, D.; Berezin, V. and Bock, E. (2003). Intracellular Signaling by the Neural Cell Adhesion Molecule. *Neurochemical Research*, **28**: 127-141.

Rae, F.K.; Stephenson, S.A.; Nicol, D.L. and Clements, J.A. (2000). Novel Association Of A Diverse Range Of Genes With Renal Cell Carcinoma As Identified By Differential Display. *International Journal of Cancer*, **88**: 726-732.

Raingeaud, J.; Whitmarsh, A.J.; Barrett, T.; Derijard, B. and Davis, R.J. (1996). MKK3and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. *Molecular and Cellular Biology*, **16**: 1247-1255.

Rentsch, C.A.; Cecchini, M.G.; Schwaninger, R.; Germann, M.; Markwalder, R.; Heller, M.; van der Pluijm, G.; Thalmann, G.N. and Wetterwald, A. (2006). Differential expression of TGFβ-stimulated clone 22 in normal prostate and prostate cancer. *International Journal of Cancer*, **118**: 899-906.

Ritzi, M. and Knippers, R. (2000). Initiation of genome replication: assembly and disassembly of replication-competent chromatin. *Gene*, **245**: 13-20.

Rizzino, A.; Kazakoff, P.; Ruff, E.; Kuszynski, C. and Nebelsick, J. (1988). Regulatory Effects of Cell Density on the Binding of Transforming Growth Factor β , Epidermal Growth Factor, Platelet-derived Growth Factor, and Fibroblast Growth Factor. *Cancer Research*, **48**: 4266-4271.

Rutishauser, U.; Acheson, A.; Hall, A.K.; Mann, D.M. and Sunshine, J. (1988). The Neural Cell Adhesion Molecule (NCAM) as a Regulator of Cell-Cell-Interactions. *Science*, **240**: 53-57.

Sagemüller, J. (2003). Identifikation für die Prognose relevanter Gene bei Ovarialkarzinomen und Endometriumkarzinomen. Dissertation Johannes Gutenberg-Universität Mainz.

Schlessinger, J. (2000). Cell Signaling by Receptor Tyrosine Kinases. *Cell*, **103**: 211-225.

Schlessinger, J. and Ullrich, A. (1992). Growth Factor Signaling by Receptor Tyrosine Kinases. *Neuron*, **9**: 383-391.

Schmitt, C. (2002). Die duale Rolle der p38^{MAP}-Kinase in embryonalen Mausfibroblasten (NIH3T3). Dissertation Johannes Gutenberg-Universität Mainz.

Semple, J.W. and Duncker, B.P. (2004). ORC-associated replication factors as biomarkers for cancer. *Biotechnology Advances*, **22**: 621-631.

Shen, S.I.; Gao, C. and Singer-Sam, J. (1998). Use of a Reverse Transcriptase-Polymerase Chain reaction Assay to Analyze Allele-Specific Expression in Individual Hippocampal Neurons. *Molecular Genetics And Metabolism*, **63**: 96-102.

Sherr, C.J. (1993). Mammalian G₁ Cyclins. Cell, 73: 1059-1065.

Sherr, C.J. (2000). The Pezcoller Lecture: Cancer Cell Cycles Revisited. *Cancer Research*, **60**: 3689-3695.

Sherr, C.J. and Roberts, J.M. (1995). Inhibitors of mammalian G₁ cyclin-dependent kinases. *Genes & Development*, **9**: 1149-1163.

Shostak, K.O.; Dmitrenko, V.V.; Garifulin, O.M.; Rozumenko, V.D.; Khomenko, O.V.; Zozulya, Y.A.; Zehetner, G. and Kavsan, V.M. (2003). Downregulation of putative tumor suppressor gene TSC-22 in human brain tumors. *Journal of Surgical Oncology*, **82**: 57-64.

Slack, D.N.; Seternes, O.M.; Gabrielsen, M. and Keyse, S.M. (2001). Distinct binding determinants for ERK2 / p38alpha and JNK map kinases mediate catalytic activation and substrate specificity of map kinase phosphatase-1. *The Journal of Biological Chemistry*, **276**: 16491-16500.

Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J. and Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. *Analytical Biochemistry*, **150**: 76-85.

Smyth, G.K.; Yang, Y.H. and Speed, T. (2003). Statistical Issues in cDNA Microarray Data Analysis. *Methods in Molecular Biology*, **224**: 111.136.

Sörby, M. and Östman, A. (1996). Protein-tyrosine Phosphatase-mediated Decrease of Epidermal Growth Factor and Platelet-derived Growth Factor Receptor Tyrosine Phosphorylation in High Cell Density Cultures. *The Journal of Biological Chemistry*, **271**: 10963-10966.

Stoeber, K.; Tlsty, T.D.; Happerfield, L.; Thomas, G.A.; Romanov, S.; Bobrow, L.; Williams, E.D. and Williams, G.H. (2001). DNA replication licensing and human cell proliferation. *Journal of Cell Science*, **114**: 2027-2041.

Suzuki, E.; Nagata, D.; Yoshizumi, M.; Kakoki, M.; Goto, A.; Omata, M. and Hirata, Y. (2000). Reentry into the Cell Cycle of Contact-inhibited Vascular Endothelial Cells by a Phosphatase Inhibitor. *The Journal of Biological Chemistry*, **275**: 3637-3644.

Verghese, G.M.; Johnson, J.D.; Vasulka, C.; Haupt, D.M.; Stumpo, D.J. and Blackshear, P.J. (1994). Protein kinase C-mediated phosphorylation and calmodulin binding of recombinant myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKSrelated protein. *The Journal of Biological Chemistry*, **269**: 9361-9367.

Vinals, F. and Pouyssegur, J. (1999). Confluence of Vascular Endothelial Cells Induces Cell Cycle Exit by Inhibiting p42 / p44 Mitogen-Activated Protein Kinase Activity. *Molecular and Cellular Biology*, **19**: 2763-2772.

Wang, I.C.; Chen, Y.J.; Hughes, D.; Petrovic, V.; Major, M.L.; Park, H.J.; Tan, Y.; Ackerson, T. and Costa, R.H. (2005). Forkhead Box M1 Regulates the Transcriptional Network of Genes Essential for Mitotic Progression and Genes Encoding the SCF (Skp2-Cks1) Ubiquitin Ligase. *Molecular and Cellular Biology*, **25**: 10875-10894.

Wayne, J.; Sielski, J.; Rizvi, A.; Georges, K. and Hutter, D. (2006). ERK regulation upon contact inhibition in fibroblasts. *Molecular and Cellular Biochemistry*, **286**: 181-189.

Weiner, L. (1999). An overview of monoclonal antibody therapy of cancer. *Seminars in oncology*, **26**: 41-50.

Wieser, R.J.; Faust, D.; Dietrich, C. and Oesch, F. (1999). P16^{INK4} mediates contactinhibition of growth. *Oncogene*, **18**: 277-281.

Wieser, R.J.; Heck, R. and Oesch, F. (1985). Involvement of plasma membrane glycoproteins in the contact-dependent inhibition of growth of human fibroblasts. *Experimental Cell Research*, **158**: 493-499.

Wu, Z.; Irizarry, R.A.; Gentleman, R.; Martinez-Murillo, F. and Spencer, F. (2004). A Model Based Background Adjustment for Oligonucleotide Expression Arrays. *Journal of the American Statistical Association*, **99**: 909-917.

Zamurovic, N.; Cappellen, D.; Rohner, D. and Susa,M. (2004). Coordinated Activation of Notch, Wnt, and Transforming Growth Factor-β Signaling Pathways in Bone Morphogenic Protein 2-induced Osteogenesis. *The Journal of Biological Chemistry*, **279**: 37704-15.

Zhao, J.; Izumi, T.; Nunomura, K.; Satoh, S. and Watanabe, S. (2007). MARCKS-like protein, a membrane protein identified for its expression in developing neural retina, plays a role in regulating retinal cell proliferation. *Biochemical Journal*, Epub ahead of print

Publikationen

Küppers, M.; Ittrich, C. and Dietrich, C. The transcriptional programme of contactinhibition. Manuskript in Vorbereitung.

Posterpräsentationen

Monika Küppers, Carina Ittrich, Cornelia Dietrich (2004). Genetic analysis of pathways involved in contact-inhibition. 8th Joint Meeting of the Signal Transduction Society (STS), 04.-06.11.2004, Weimar.

Monika Küppers, Carina Ittrich, Cornelia Dietrich (2005). Expression profiling of contactinhibition. Naunyn Schmiedeberg's Arch. Pharmacol., 371 (suppl.), R115.

Dankeschön

Lebenslauf

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Mainz, im November 2007

Anhang

Vollständige Tabelle aller Proben, deren Expression auf den Microarrays um mindestens das 1,5-Fache verändert ist, und die einen p-Wert \leq 0,05 besitzen.

Genname	ymbol	Gen Bank Accesion	Exp. 1	Exp. 2	p-Wert
ceruloplasmin	a	NM_007752	20.1	15.7	0.0001
platelet derived growth factor receptor, beta polypeptide	dgfrb	NM_008809	6'6	7.7	0.0003
lymphocyte antigen 6 complex, locus C 1	y6c1	NM_010741	4.0	4.3	0.0003
prostag landin E receptor 4 (subtype EP4)	lger4	NM_008965	4.1	4.7	0.0004
chemokine (C-X3-C motif) ligand 1	x3cl1	NM_009142	5'2	6.9	0.0004
dual specificity phosphatase 9	8dsn	NM_029352	-4.6	4.1	0.0004
tumor necrosis factor (ligand) superfamily, member 13	nfsf13	NM_023517	4.2	3.8	0.0004
arachidonate 5-lipoxygenase activating protein	lox5ap	NM_009663	5.0	4.2	0.0004
peripheral myelin protein	mp22	NM_008885	3.6	3.9	0.0005
dimethylarginine dimethylaminohydrolase 2	dah2	NM_016765	3.6	4.4	0.0005
BCL2-like 11 (apoptosis facilitator)	ci2111	NM_009754	3.3	3.4	0.0005
guanylate nucleotide binding protein 2	bp2	NM_010260	3.2	3.3	0.0005
matrix gamma-carboxyglutamate (gla) protein	gp	NM_008597	4.7	4.0	0.0006
transducin-like enhancer of split 2, homolog of Drosophila E(spl)	le2	NM_019725	7.6	5.7	0.0006
cytoplasmic polyadenylation element binding protein 4	peb4	NM_026252	3.4	3.2	0.0006
TGF-β- stimulated clone 22	so-22	NM_009366	3.1	3.0	0.0006
tribbles homolog 2 (Drosophila)	rlb2	NM_144551	4.6	5.8	0.0006
calmodulin-like 4	alml4	NM_138304	3.4	3.8	0.0006
N-acetylglucosamine kinase	agk	NM_019542	3.0	3.0	0.0006
integrin alpha 6	ga6	NM_008397	3.0	3.3	0.0007
carnitine deficiency-associated gene expressed in ventricle 1	dv1	NM_009879	3.0	2.9	0.0007
LIM domain containing preferred translocation partner in lipoma	dd	NM_178665	3.0	2.9	0.0007
interleukin 18	18	NM_008360	2.8	3 2.9	0.0008
Sumo3 (supressor of mif two, 3) homolog 1 (yeast)	umo3	NM_019929	3.2	3.7	0.0008
transmembrane protein 119	mem119	NM_146162	8.7	6.0	0.0008
valyl-tRNA synthetase 2	ars2	NM_011690	-2.7	-2.7	0.0008
selenium binding prote in 1	elenbp1	NM_009150	10.3	6.8	0.0008
enoyl coenzyme A hydratase 1, peroxisomal	ch1	NM_016772	3.3	2.9	0.0008
splicing factor 3a, subunit 2	f3a2	NM_013651	-2.7	-2.8	0.0009
nuclear receptor subfamily 4, group A, member 1	r4a1	NM_010444	2.7	2.9	0.0009
RIKEN cDNA 2310061J03 gene	310061J03Rlk	NM_133677	2.8	3.1	0.0009
LIM domain and actin binding 1	ma1	NM_023063	2.6	2.6	0.0009
neural precursor cell expressed, developmentally down-regulated gene 9	edd9	NM_017464	3.1	3.6	0.0009
hepatoma-derived growth factor	dgf	NM_008231	-2.7	-2.9	0.0009
tumor necrosis factor receptor su perfamily, member 21	nfrsf21	NM_178589	-2.9	-3.3	0,0009

SAC3 domain containing 1 Sac3d1 Null Dasis blex-loop-heir domain containing, class B2 Dasis blex-loop-heir domain containing, class B2 Null Dasis blex-loop-heir domain containing, class B2 Dasis blex-loop-heir domain containing, class B2 Null Datamate-syster figues, mon-recopilor, 2 Datamate-syster figues, mon-recopilor, 2 Null Jultamate-syster figues, modifer subunt Man1a Null Null mannositiase 1, alpha Sensitian Null Null sestin Man1a Null Null Null sestin Man1a Null Null Null Null sestin Man1a Null Null Null Null Null sestin Man1a Null	NM_011678 NM_011498 NM_016788 NM_008129 NM_008129 NM_008548 NM_030261 NM_030261 NM_174995 NM_174995 NM_01389 NM_01389 NM_013854 NM_003354 NM_009154 NM_009154	2.6 2.6 2.9 2.6 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.5 2.1 2.5 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	·2.9 0 3.39 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.5 0 2.4 0 2.3 0 2.3 0	.0010 .0010 .0010 .0010 .0010 .0011 .0011 .0011 .0012 .0012 .0012
Desic helic/clop-helic dormain containing, class E2 Nm	NM_0116788 NM_016788 NM_008129 NM_008548 NM_008548 NM_030261 NM_030261 NM_174995 NM_174995 NM_01389 NM_01389 NM_01389 NM_013854 NM_013525 NM_009154 NM_011612	3.2 -2.6 -2.5 -2.5 -2.5 -2.4 -2.6 -2.4 -2.5 -2.4 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5	3.9 0 -2.5 0 -2.6 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.5 0 -2.5 0 -2.5 0 -3.1 0	.0010 .0010 .0010 .0010 .0011 .0011 .0011 .0012 .0012 .0012
bytosine kina se, non-neceptor, 2 Imd2 Imd2 guarmate-cysteine ligase, modifier suburit Ge/m Nm_0 mannes/stase 1, alpha Sesna Nm_0 sestina Sesna Sesna Nm_0 rannos/stase 1, alpha Sesna Sesna Nm_0 rannos/stase 1, alpha Sesna Sesna Nm_0 restin micro torif interfacer 1 Chrif 8, chromosome transmission fidelity factor 18 homolog (S, cerevisiae) Emilin1 Nm_1 microsomal guathione S-transferase 2 Timerscomal guathione S-transferase 2 Mm_1 Nm_1 microsomal guathione S-transferase 2 Chrif 8 Nm_1 Nm_1 Nm_1 microsomal guathione S-transferase 2 Chrif 8 Nm_1 Nm_1 Nm_1 microsomal guathione S-transferase 2 Chrif 8 Nm_1 Nm_1 Nm_1 microsomal guathione S-transferase 2 Chrif 8 Nm_1 Nm_2 NM_2 microsomal gradiene 22 Chrif 8 Nm_1 Nm_2 NM_2 NM_2 finiter control region related protein Canta dity droorclase Canta modi-regra	NM_016788 NM_008129 NM_008548 NM_030261 NM_145409 NM_174995 NM_174995 NM_013889 NM_013889 NM_013889 NM_013854 NM_013354 NM_009154 NM_009154	-2.6 -2.5 -2.5 -2.5 -2.5 -2.6 -2.4 -2.6 -2.4 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5	-2.5 0 -2.6 0 -2.6 0 -2.6 0 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.1 0 -3.1 0 -3.1 0	0010 0010 0010 0011 0011 0011 0011 001
Bultamate cycteine ligase , modifier submit Bultamate cycteine , modifier submit Bultamate cyctein	NM_008129 NM_008548 NM_008548 NM_145409 NM_174995 NM_029870 NM_013889 NM_013889 NM_013889 NM_013854 NM_003354 NM_009154 NM_011612	-2.9 -2.5 -2.5 -2.5 -2.4 -2.4 -3.2 -3.2 -3.2 -3.2 -3.2 -3.2 -3.2 -3.2	-2.6 0 -2.6 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.5 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.1 0 -2.3 0	.0010 .0010 .0010 .0011 .0011 .0011 .0012 .0012 .0012
mannocidase 1, alpha Man1a Man1a Man1a sestin 3 Sestin 3 Sestin 3 Sestin 3 Sestin 3 sestin 3 Sestin 3 Sestin 3 Sestin 3 Sestin 3 sestin 3 Chrift 8, chromosome transmission fidefity factor 18 homolog (S, cerevisiae) Enfinit NM_1 eTF1 8, chromosome transmission fidefity factor 18 homolog (S, cerevisiae) MM_1 MM_1 eTF1 8, chromosome transmission fidefity factor 18 homolog (S, cerevisiae) MM_1 MM_1 eTF1 8, chromosome transmission fidefity factor 18 homolog (S, cerevisiae) MM_1 MM_1 requerce AY036115 MM_2 AY036118 MM_1 Zhox sequence AY036116 MM_1 MM_1 MM_1 Zhox sequence AY036116 MM_1 MM_1 MM_1 Zhox sequence AY036116 MM_1 MM_1 MM_1 Zhox sequence AY036116 Semathonin Set Zhox Set MM_1 Zhox sequence AY036116 Semathonin Set Zhox Set MM_2 Zhox sequence AY036116 Set Set MM_2 Zhox sequence AY036116 Set	NM_008548 NM_030261 NM_145409 NM_174995 NM_174995 NM_013889 NM_013889 NM_013889 NM_033354 NM_0033554 NM_009154 NM_009154	2.5 4.1 2.6 3.4 2.4 2.4 2.6 3.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	-2.6 0 3.3 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0	.0010 .0010 .0011 .0011 .0011 .0012 .0012 .0013
Sestin 3	NM_030261 NM_145409 NM_133918 NM_174995 NM_029870 NM_013889 NM_013889 NM_03354 NM_03354 NM_009154 NM_009154	4.1 -2.6 3.4 4.0 2.4 2.4 -2.4 -3.2 -3.2 -3.2 -2.6 -2.5 -2.6	3.3 0 -2.5 0 2.9 0 3.1 0 3.1 0 3.1 0 3.1 0 3.1 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.3 0	.0010 .0011 .0011 .0011 .0011 .0012 .0012 .0013
CTF18, chromosome transmission fidelity factor 18 homolog (S. cerevisiae) Chrift 8 Chromosome transmission fidelity factor 18 homolog (S. cerevisiae) Chrift 8 Chromosome transmission fidelity factor 18 homolog (S. cerevisiae) Null Emilini 1 Null Emilini 1 Null Null <td>NM_145409 NM_133918 NM_174995 NM_029870 NM_013889 NM_013889 NM_013354 NM_03354 NM_009154 NM_011612</td> <td>2.6 3.4 2.4 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.5 2.5 5.5 5</td> <td>-2.5 0 2.9 0 2.9 0 3.2 0 3.1 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.3 0 2.3 0</td> <td>.0010 .0011 .0011 .0012 .0012 .0012 .0013</td>	NM_145409 NM_133918 NM_174995 NM_029870 NM_013889 NM_013889 NM_013354 NM_03354 NM_009154 NM_011612	2.6 3.4 2.4 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.5 2.5 5.5 5	-2.5 0 2.9 0 2.9 0 3.2 0 3.1 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.3 0 2.3 0	.0010 .0011 .0011 .0012 .0012 .0012 .0013
Beastin microfibril interfacer 1 Emilini 1 Num_10 microsonnal glutathione S-transferase 2 Num_10 Mgsi2 Num_10 RKEN cDNA A930001N09 gene 2A330001N09 Figi Mgsi2 Num_10 RKEN cDNA A930001N09 gene 2A30001N09 Figi Num_10 2A2300118 Num_10 Zinn finger protein 292 Zinn finger protein 292 Zin292 Num_10 Zinn finger protein 292 Zinn finger protein 292 Zin292 Num_10 Zinn finger protein 292 Zinn finger protein 292 Zin292 Num_10 Zinn finger protein 292 Zinn finger zinn Zin292 Num_10 Zinn finger protein 292 Zinn yuron Zin292 Num_10 Zinn finger protein 292 Zinn yuron Zin292 Num_10 Zinn finger protein 201 Sinn finger 2, aspartate transcarbarnylase, and dinydroorotase Cad Num_10 Zinn finder 2015 Sinn finder 2015 Num_10 Num_10 Num_10 Zinn finder 2015 Sinn finder 2015 Sinn finder 2015 Num_10 Num_10 Zinn finder 2015 Sinn finder 2015 S	NM_133918 NM_174995 NM_029870 NM_013889 NM_013889 NM_013854 NM_023525 NM_009154 NM_011612	3.4 4.0 2.7 2.4 2.4 3.1 3.1 2.5 2.5	2.9 0 3.2 0 3.4 0 3.1 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.3 0 2.4 0 2.3 0 2.4 0 2.3 0	.0011 .0011 .0011 .0012 .0012 .0013
Immunos Main	NM_174995 NM_029870 NM_013889 NM_133243 NM_013354 NM_033525 NM_009154 NM_011612	4.0 3.4 2.7 2.4 3.1 3.1 2.5 2.5 2.5	3.2 0 4.4 0 3.1 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.4 0 2.5 0 2.3 1 0 2.4 0 2.4 0 2.4 0 2.4 2.3 1 2.3 1	.0011 .0011 .0012 .0012 .0012
RIKEN CDNA A93000 1N09 gene A930001N09 gene A9036118 NML01 Zinc finger protein 292 CDNA sequence AY036118 AY036118 AY036118 NML01 Zip292 NML01 CoDNA sequence AY036118 Convolor region related protein Rgpr NML01 Rgpr NML01 Convolor region related protein Convolor region related protein Sema6a NML01 ML01 Convolor region related protein Convolor region related protein NML01 ML01 ML01 Convolor region related protein Franct Sema6a NML01 ML01 Convolor region related protein Franct Sema6a NML01 ML01 Inforedoxin reductase 1 Trinfort Trinfort Trinfort ML01 ML01 Inforedoxin reductase 1 RKEN cDNA 201051.10 gene LUC7-like 2 (S. cerevisia) LUC7-like 2 (S. cerevisia) LUC7/Lice 2 (S. cerevisia) LUC7/Lice 2 (S. cerevisia) LUC7/Lice 2 (S. cerevisia) LUC7/Lice 2 (S.	NM_029870 NM_013889 NM_133243 NM_033354 NM_033354 NM_009154 NM_011612	3.4 2.7 2.4 3.2 3.1 2.5 2.5	4,4 0 3,1 0 -2,4 0 -2,4 0 -2,1 0 -2,1 0 -2,3 0 -2,3 0 -2,3 0 -3,1 0	.0011 .0012 .0012 .0012 .0013
zinc finger protein 292 Zinc finger 201	NM_013889 NM_133243 NM_033354 NM_033555 NM_009154 NM_011612	2.7 -2.4 -3.2 -3.2 -3.1 -2.6	3.1 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 -2.4 0 2.3 0 2.3 0	.0011 .0012 .0012 .0013
CDNA sequence AY036118 AY036118 AY036118 NM_11 regucation gene promotor region related protein Rgpr NM_00 Cad NM_00 Cad <t< td=""><td>NM_133243 NM_033354 NM_023525 NM_009154 NM_011612</td><td>-2.4 -3.2 -3.1 2.5 -2.6</td><td>-2.4 0 2.4 0 2.4 0 2.4 0 2.9 0 2.9 0 2.3 0</td><td>.0012 .0012 .0013</td></t<>	NM_133243 NM_033354 NM_023525 NM_009154 NM_011612	-2.4 -3.2 -3.1 2.5 -2.6	-2.4 0 2.4 0 2.4 0 2.4 0 2.9 0 2.9 0 2.3 0	.0012 .0012 .0013
regucation gene promotor region related protein Rgpr NM_0 carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase Cad NM_0 semaphorin 5A Cad NM_0 tumor necrosis factor receptor superfamily, member 9 Tmfrsf9 NM_0 thmore necrosis factor receptor superfamily, member 9 Tmfrsf9 NM_0 thron necrosis factor receptor superfamily, member 9 Tmfrsf9 NM_0 thron necrosis factor receptor superfamily, member 9 Tmfrsf9 NM_0 thron 1007-like 2 (S. cerevisiae) Luc712 NM_0 tripantite motif protein 27 Trim27 NM_0 tripantite motif protein 27 RKEN cDNA 2010315L10 gene 2010315L10Feik NM_0 stomatin Integral membrane protein 28 Intm27 NM_0 stomatin Integral membrane protein 28 Intm26 Intm27 NM_0 stomatin Integral membrane protein 28 Intm26 Intm20 Intm27 NM_0 stomatin Integral membrane protein 28 Intm26 Intm26 Intm26 Intm20 stomatin Allone	NM_03354 NM_023525 NM_009154 NM_011612	2.4 -3.2 3.1 2.5 -2.6	2.4 0 -2.7 0 4.0 0 2.9 0 2.3 0 2.3 0	.0012
Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase Cad NM_0 Semaphoin 5A Eama5a NM_0 Sema5a NM_0 semaphoin 5A Infrist9 NM_0 Infrist9 NM_0 tumor necrosis factor receptor superfamily, member 9 Twird1 NM_0 Infrist9 NM_0 thioredoxin reductase 1 Trifrist9 NM_0 Infrist9 NM_0 Infrist9 NM_0 thioredoxin reductase 1 Trifrist9 NM_0 Infrist9 NM_0 Infrist0 Infrist0 <td>NM_023525 NM_009154 NM_011612</td> <td>-3.2 3.1 2.5 -2.6</td> <td>-2.7 0 4.0 0 2.9 0 -3.1 0</td> <td>.0012</td>	NM_023525 NM_009154 NM_011612	-3.2 3.1 2.5 -2.6	-2.7 0 4.0 0 2.9 0 -3.1 0	.0012
Semaphorin 5A Sema5a NM_0 tumor necrosis factor receptor superfamily, member 9 Trinfrsf9 NM_0 tumor necrosis factor receptor superfamily, member 9 Trinfrsf9 NM_0 thioredoxin reductase 1 Txard1 NM_0 RKEN cDNA 1810021J13 gene LUC72 NM_0 LUC7-like 2 (S. cerevisiae) LuC72 NM_10 LUC7-like 2 (S. cerevisiae) LuC72 NM_00 RIKEN cDNA 2010315L10 gene Z010315L10 gene NM_00 Stomatin Luc72 Z010315L10 gene Stom Integrat membrane protein 2B Luc72 Luc72 NM_00 Integrat membrane protein 2B Luc72 Luc72 Luc72 Lucedariae Luc72 <	NM_009154 NM_011612	3.1 2.5 -2.6	4.0 0 2.9 0 -3.1 0 2.3 0	.0013
tumor necrosis factor receptor superfamily, member 9 Tmfrsf9 NM_0 thioredoxin reductase 1 Txmrd1 NM_0 thioredoxin reductase 1 NM_0 1810021J13Rik NM_0 RIKEN cDNA 1810021J13 gene Luc712 NM_0 1810021J13Rik NM_0 UUC7-like 2 (S. cerevisiae) Luc712 NM_0 1810021J13Rik NM_0 UUC7-like 2 (S. cerevisiae) Zorol 135L10 gene NM_0 2010315L10 gene NM_0 tripartite motif protein 27 Zorol 2010315L10 gene Zorol 2010315L10 Rik NM_0 2010315L10 Rik NM_0 RIKEN cDNA 2010315L10 gene Zorol 2010315L10 Rik NM_0 2010315L10 Rik NM_0 Riken cDNA 2010315L10 gene Zorol 2010315L10 Rik NM_0 2010315L10 Rik NM_0 Riken cDNA 2010315L10 gene Zorol 2010315L10 Rik Zorol 2010315L10 Rik NM_0 2010315L10 Rik NM_0 Integral membrane protein 2B Trimezan Zorol 2010315L10 Rik Zorol 2010315L10 Rik NM_0 Integral membrane protein 2 Trimezan Zorol 2010315L10 Rik Zorol 2010315L10 Rik Zorol 2010315L10 Rik <td>NM_011612</td> <td>2.5 -2.6</td> <td>2.9 0 -3.1 0 2.3 0</td> <td></td>	NM_011612	2.5 -2.6	2.9 0 -3.1 0 2.3 0	
Inductod in reductase 1 Txind 1 Ixind 1		-2.6	-3.1 0	.0013
RIKEN cDNA 1810021J13 gene 1810021J13 Kene NM_01 LUC7-like 2 (S. cerevisiae) Luc7l2 NM_01 LUC7-like 2 (S. cerevisiae) NM_01 NM_01 LUC7-like 2 (S. cerevisiae) NM_01 NM_01 Iripartite motif protein 27 NM_01 NM_01 RIKEN cDNA 2010315L10 gene 2010315L10Rik NM_01 RIKEN cDNA 2010315L10 gene Stom NM_01 Integraf membrane protein 2B Stom NM_01 Selenoprotein P, plasma, 1 Itm2b NM_01 Histichne triad nucleotide binding protein 3 Hint3 NM_01 Antophagy 10-like (S. cerevisiae) Apg101 NM_01 Iranscription factor 4 NM_01 MM_01	NM_015762		2.3 0	.0013
Luc7-like 2 (S. cerevisiae) Luc72 NM_13 tripartite motif protein 27 NM_03 NM_03 tripartite motif protein 27 NM_03 NM_03 RIKEN cDNA 2010315L10 gene 2010315L10Rik NM_03 Stomatin 2010315L10Rik NM_03 Integral membrane protein 2B Stom NM_03 integral membrane protein 2B Stom NM_03 integral membrane protein 2B Stom NM_03 selenoprotein P, plasma, 1 NM_03 Stom NM_03 utophagy 10-like (S. cerevisiae) 34pg101 NM_03 Interscription factor 4 NM_03	NM_025464	2.4		.0013
tripartite motif protein 27 Imm.27 Imm.07 RIKEN cDNA 2010315L10 gene 2010315L10Rik IMm.07 Stormatin 2010315L10Rik IMm.07 Stormatin 2010315L10Rik IMm.07 Integral membrane protein 2B Imm.1 Imm.07 Selenoprotein P, plasma, 1 Imm.2 Imm.07 Histidine triad nucleotide binding protein 3 Imm.07 Imm.07 Autophagy 10-like (S. cerevisiae) Apg101 Imm.07 transcription factor 4 Torfa Imm.07	NM_138580	2.4	2.6 0	.0013
RIKEN cDNA 2010315L10 gene 2010315L10Rik NM_0. Stomatin Stom NM_0. Integral membrane protein 2B Itm2b NM_0. Selenoprotein P, plasma, 1 Epp1 NM_0. Histidine triad nucleotide binding protein 3 Hint3 NM_0. Apg101 Apg101 NM_0. Irranscription factor 4 Tcrf4 NM_0.	NM_009054	-2.8	-2.5 0	.0013
Stomatin Stom NM_0 integral membrane protein 2B Itm2b NM_0 selenoprotein P, plasma, 1 Eepp1 NM_0 Histicine triad nucleotide binding protein 3 NM_0 NM_0 autophagy 10-like (S. cerevisiae) Apg101 NM_0 transcription factor 4 Tcrf4 NM_0	NM_025917	2.3	2.4 0	.0013
integral membrane protein 2B Itm2b NM_0 selenoprotein P, plasma, 1 Sepp1 NM_0 Histidine triad nucleotide binding protein 3 Hint3 NM_0 autophagy 10-like (S. cerevisiae) Apg101 NM_0 transcription factor 4 Tcf4 NM_0	NM_013515	2.3	2.4 0	.0013
selenoprotein P, plasma, 1 NM_00 Histidine triad nucleotide binding protein 3 NM_02 autophagy 10-like (S. cere visiae) Apg101 Itranscription factor 4 NM_02	NM_008410	2.3	2.5 0	.0013
Histidine triad nucleotide binding protein 3 Hint3 NM_03 autophagy 10-like (S. cere visiae) Apg101 NM_03 Irranscription factor 4 Tcf4 NM_03	NM_009155	3.3	4.3 0	.0014
autophagy 10-like (S. cerevisiae) Apg10I NM_0: Itranscription factor 4 Tcf4 NM 0:	NM_025798	2.3	2.4 0	.0014
Itranscription factor 4 Tcrf4 NM 0	NM_025770	2.3	2.3 0	.0014
	NM_013685	2.3	2.3 0	.0014
mbt domain containing 1 Mbtd 1 MM_11	NM_134012	2.3	2.4 0	.0014
Yippee-like 5 Vippee-like 5	NM_027166	2.6	3.0 0	.0014
Fc receptor, tgG, alpha chain transporter NM_0	NM_010189	2.7	3.2 0	.0014
cDNA sequence BC010787 BC010787 NM_1	NM_178577	2.9	2.5 0	.0014
TSPY-like 4 TSPY-like 4	NM_030203	4.0	3.1 0	.0014
major histocompatibility complex, class I-related NM_0	NM_008209	3.7	5.1 0	.0014
toll-like receptor 2 Tri2 NM_0	NM_011905	2.3	2.4 0	.0015
Down syndrome critical region homolog 5 (human) Dscr5 NM_0	NM_019543	2.3	2.2 0	.0015

Genname	vmbol	Gen Bank Accesion	Exp. 1	Exp. 2	p-Wert
protease, serine, 25	'rss25	NM_019752	-2.2	-2.3	0.0015
tumor necrosis factor, alpha-induced protein 1 (endothelial)	mfaip1	NM_009395	-2.3	-2.2	0.0015
toll-like receptor 1	'n	NM_030682	2.2	2.3	0.0015
neural cell adhesion molecule 1	Icam1	NM_010875	2.9	2.5	0.0015
programmed cell death 4	dod4	NM_011050	3.7	5.1	0.0015
zinc finger protein 260	th260	NM_011981	2.3	2.5	0.0015
patemally expressed 3	eg3	NM_008817	2.2	2.2	0.0015
G protein-coupled receptor kinase 6	ŝrk6	NM_011938	-2.3	-2.6	0.0016
GCN5 general control of amino acid synthesis-like 2 (yeast)	3cn512	NM_020004	-2.2	-2.2	0.0016
lymphocyte antigen 6 complex, locus A	y6a	NM_010738	2.2	2.3	0.0016
RIKEN cDNA 1200015N20 gene	200015N20Rik	NM_024244	3.6	3.0	0.0016
MARCKS-like protein	Aarcksl1	NM_010807	2.8	2.4	0.0016
translin	sn	NM_011650	-2.3	-2.2	0.0016
biglycan	ugu	NM_007542	2.2	2.2	0.0016
aurora kinase B	vurkb	NM_011496	-2.5	-2.2	0.0017
tight junction protein 2	jp2	NM_011597	-2.3	-2.2	0.0017
RIKEN cDNA 1700012G19 gene	700012G19Rik	NM_025954	-2.2	-2.2	0.0017
toll-interleukin 1 receptor (TIR) domain-containing adaptor protein	liap	NM_054096	-2.3	-2.6	0.0017
zinc finger and SCAN domain containing 21	scan21	NM_011757	2.2	2.2	0.0017
musculoskeletal, embryonic nuclear protein 1	Austn1	NM_181390	2.5	3.0	0.0017
G protein-coupled receptor 177	3pr1 77	NM_026582	2.2	2.2	0.0017
suppressor of variegation 3-9 homolog 1 (Drosophila)	suv39h1	NM_011514	-2.3	-2.2	0.0017
cAMP responsive element modulator	Crem	NM_013498	2.2	2.3	0.0017
CD248 antigen, endosialin	5d248	NM_054042	2.1	2.2	0.0018
Treacher Collins Franceschetti syndrome 1, homolog	cof1	NM_011552	-2.3	-2.7	0.0018
LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae)	sm2	NM_030597	-2.1	-2.1	0.0018
nuclear factor of activated T-cells 5	litet5	NM_018823	2.1	2.2	0.0019
deoxycytidine kinase) ck	NM_007832	-2.2	-2.4	0.0019
nurim (nuclear envelope membrane protein)	m	NM_134122	-2.2	-2.4	0.0019
peroxisome proliferator activated receptor binding protein	parbp	NM_013634	-2.2	-2.1	0.0019
RIKEN cDNA 2310005E10 gene	310005E10Rik	NM_172398	2.1	2.1	0.0019
Transmembrane protein 106a	mem106a	NM_144630	2.1	2.1	0.0019
coactivator-associated arginine methyltransferase 1	carm1	NM_021531	-2.3	-2.1	0.0019
praja 2, RING-H2 motif containing	ja2	NM 144859	2.6	2.3	0.0019
forkhead box M1	oxm1	NM_008021	-2.3	-2.7	0.0019

Genname	sumbol	Gen Bank Acreeion	Evn 1	Evn 2	n-Wert
Nicalin homolog	doln	NM 134009	-2.1	-2.3	0.0019
Loss of heterozygosity, 11, chromosomal region 2, gene A homolog	oh11cr2a	NM_172767	3.2	4.4	0.0020
integrin, beta-like 1	(gbl1	NM_145467	2.2	2.5	0.0020
yolk sac gene 2	'sg2	NM_011734	2.2	2.1	0.0020
dehydrogenase/reductase (SDR family) member 7	Dhrs7	NM_025522	2.1	2.1	0.0020
ras homolog gene family, member C	thoc	NM_007484	2.1	2.3	0.0020
SET domain containing (lysine methyltransferase) 8	setd8	BB7 87289	-2.8	-3.7	0.0020
DnaJ (hsp 40) homolog, subfamily C, member 18	Dnajc18	AI606403	2.2	2.1	0.0020
RIKEN cDNA 4931406C07 gene	931406C07Rik	AI461712	2.1	2.0	0.0020
RIKEN cDNA 0610007C21 gene	610007C21Rik	AK0 02276	2.7	2.3	0.0020
cytotoxic granule-associated RNA binding protein 1	'ia1	BG518542	2.3	2.7	0.0020
PDZ and LIM domain 2	odlim2	BC024556	2.2	2.0	0.0020
coiled-coil domain containing 101	Codc101	BC026784	-2.2	-2.6	0.0021
RIKEN cDNA 1110032A03 gene	110032A03Rik	NM_023483	2.1	2.0	0.0021
gene rich cluster, C10 gene	Srcc10	NM_013535	5.9	3.9	0.0021
purinergic receptor P2X, ligand-gated ion channel 4	2rx4	AJ251462	2.1	2.2	0.0021
RIKEN cDNA 2010003002 gene	010003O02Rik	AK0 08077	2.4	3.0	0.0021
thymosin, beta 4, X chromosome	msb4x	NM_021278	2.0	2.1	0.0021
karyopherin (importin) beta 1	(pnb1	NM_008379	-2.1	-2.2	0.0021
phosphodiesterase 4B, cAMP specific	de4b	BM246564	2.1	2.2	0.0021
coatomer protein complex, subunit zeta 2	Copz 2	NM_019877	2.2	2.1	0.0021
Protein-L-isoaspartate-(D-aspartate) o-methyl-transferase domain containing 2	ocmtd2	BM117243	2.7	3.5	0.0021
procollagen, type III, alpha 1	Col3a1	AW550625	2.1	2.0	0.0022
tubulin, gamma 1	ubg1	NM_134024	-2.0	-2.1	0.0022
alpha-N-acetylglucosaminidase (Sanfilippo disease IIIB)	Jaglu	NM_013792	2.3	2.8	0.0022
myeloblastosis oncogene-like 2	Aybi2	NM_008652	-2.2	-2.5	0.0022
myosin IC	Ayo1c	NM_008659	-2.0	-2.0	0.0022
Adiponectin receptor 1	Vdipor1	BC014875	-2.3	-2.1	0.0022
fibulin 5	bin5	NM_011812	2.0	2.0	0.0022
complement component 3	33	K0 2782	10.5	5.8	0.0022
nicolin 1	Vicn1	AV031928	2.1	2.4	0.0023
microfibrillar-associated protein 1	Afap 1	BB436326	2.0	2.0	0.0023
single-stranded DNA binding protein 2	Ssbp2	NM_024186	2.0	2.1	0.0023
baculoviral IAP repeat-containing 1e	3irc1e	NM_010870	4.4	3.1	0.0023
carbonyl reductase 2	Cbr2	BC010758	2.7	3.6	0.0023

Genname	Symbol	Gen Bank Accesion	Exp. 1	Exp. 2 p	- Wert
enolase phosphatase 1	Enoph 1	BB251327	-2.1	-2.5	0.0023
Ras related protein 2a	Rap2a	BC025198	2.0	2.1	0.0023
ornithine decarboxylase, structural	odo	S64539	-2.0	-2.1	0.0023
isocitrate dehydrogenase 1 (NADP+), soluble	dh1	NM_010497	2.1	2.3	0.0023
ATPase, H+ transporting, V1 subunit G isoform 1	Atp6v1g1	BI 154058	2.1	2.0	0.0024
signal-induced proliferation-associated 1 like 2	Sipa112	AV228782	2.0	2.1	0.0024
methythrioadenosine phosphorylase	Mtap	BG075139	2.0	2.1	0.0024
unc-119 homolog (C. elegans)	Jnc119	BC001990	2.6	2.2	0.0024
cytoskeleton-associated protein 4	Ckap4	BB8 18012	-2.0	-2.0	0.0024
jumonji, AT rich interactive domain 1B (Rbp2 like)	Jarid1b	BC019446	5.5	10.1	0.0025
Cell division cycle associated 5	Cdca5	NM_026410	-2.0	-2.1	0.0025
Regulator of chromosome condensation 2	3002	AV1 22997	-2.0	-1.9	0.0025
Ankyrin repe at domain 44	Ankrd44	AV256780	2.1	2.0	0.0025
lymphoid nuclear protein related to AF4-like	_af41	BM230280	2.0	1.9	0.0025
p21 (CDKN1A)-activated kinase 3	pak3	BQ174935	1.9	2.1	0.0025
Slit-like 2 (Drosophila)	Slitt2	BB530515	2.5	2.1	0.0025
cytochrome P450, family 2, subfamily d, polypeptide 22	Cyp2d22	BF683039	2.8	3.9	0.0025
cAMP responsive element binding protein-like 1	Crebit	BC013534	-2.0	-2.1	0.0026
signal transducer and activator of transcription 5A	Stat5a	U36502	2.0	2.3	0.0026
Armadillo repeat containing 6	Armc6	BB4 02275	-2.0	-1.9	0.0026
latexin	-xn	NM_016753	2.4	3.0	0.0026
thymic stromal-derived lymphopoietin, receptor	Tslpr	NM_016715	2.3	2.0	0.0026
integral membrane protein 2C	tm2c	NM_022417	2.4	2.1	0.0026
oncostatin M receptor	Osmr	AB0 15978	13.5	6.6	0.0026
cysteine sulfinic acid decarboxylase	Csad	AY033912	2.4	2.0	0.0027
RIKEN cDNA C730025P13 gene	C730025P13Rik	BC022606	2.0	1.9	0.0027
MYB binding protein (P160) 1a	Mybbp1a	AW228043	-2.0	-2.3	0.0027
transducin-like enhancer of split 6, homolog of Drosophila E(spl)	Tie6	NM_053254	4.1	2.9	0.0027
B-cell receptor-associated protein 37	3cap37	AV2 12294	-1.9	-1.9	0.0027
inner centromere protein	ncenp	BI410774	-2.1	-2.4	0.0027
platelet derived growth factor, alpha	⁵ dgfa	BB371842	-2.4	-2.1	0.0027
growth hormone receptor	Ghr	NM_010284	2.5	2.1	0.0027
elastase 1, pancreatic	Ela 1	BC011218	2.2	2.7	0.0027
armadillo repeat containing, X-linked 3	Armcx3	AK0 04598	2.2	2.7	0.0028
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta polypeptide	Ywhab	AV021552	-1.9	-2.0	0.0028

Genname	Symbol	Gen Bank Accesion	Exp. 1	Exp. 2	o-Wert
Zinc finger CCCH type containing 11A	Zc3h11a	AK0 03350	1.9	1.9	0.0028
myosin regulatory light chain interacting protein	Mylip	BC010206	2.4	3.2	0.0028
AE binding protein 1	Aebp1	NM_009636	1.9	1.9	0.0028
Acyl-Coenzyme A dehydrogenase family, member 11	Acad11	BQ031255	2.4	2.0	0.0028
transmembrane protein 4	Tmem4	NM_019953	1.9	1.9	0.0028
peroxiredoxin 6	Prdx6	BB7 96358	-2.0	-1.9	0.0028
prolyl endopeptidase	deuc	NM_011156	-1.9	-2.1	0.0028
Kazal-type serine peptidase inhibitor domain 1	Kazald1	AI842353	2.5	3.4	0.0028
aldehyde dehydrogenase family 6, subfamily A1	Aldh6a1	NM_134042	2.7	3.7	0.0028
complement component 1, q subcomponent binding protein	C1qbp	NM_007573	-2.0	-1.9	0.0028
regulator of G-protein signaling 3	Rgs3	AF350047	2.1	1.9	0.0028
Jumonji domain containing 1C	Jmjd1c	AV2 93 164	1.9	2.0	0.0029
Adult refina cDNA, RIKEN full-length enriched library, clone:A930010B21 product:unknown EST		AA682050	1.9	1.9	0.0029
ras homolog gene family, member Q	Rhog	BI081723	1.9	2.1	0.0029
Lon-peptidase 2; peroxisomal	duo	NM_025827	1.9	1.9	0.0029
natural killer tumor recognition sequence	Nktr	BB317504	2.3	2.0	0.0029
amino-terminal enhancer of split	Aes	NM_010347	1.9	1.9	0.0029
protein phosphatase 1, regulatory (inhibitor) subunit 14B	Ppp1r14b	BE986849	-1.9	-1.9	0.0029
fibroblast growth factor receptor 1	=gfr1	M65053	1.9	1.9	0.0029
putative phosphatase	sde	BB5 30223	1.9	1.9	0.0030
nebulin-related anchoring protein	Vrap	BC002020	2.1	1.9	0.0030
cDNA sequence BC022687	BC022687	BC022687	1.9	2.1	0.0030
matrilin 2	Math 2	BC005429	2.3	2.0	0.0030
platelet-activating factor acetylhydrolase, isoform 1b, alpha1 subunit	Pafah1b3	NM_008776	1.9	2.0	0.0030
diacylglycerol kinase zeta	Dgkz	BC014860	-2.2	-2.8	0.0030
cyclin-dependent kinase inhibitor 1A (P21)	Cdkn1a	007669 NM_007669	-1.9	-1.9	0.0030
RIKEN cDNA 1810015C04 gene	1810015C04Rik	BC019494	2.4	2.1	0.0030
high mobility group box transcription factor 1	Hbp1	AW536702	1.9	1.9	0.0031
metallothionein 1	Mt1	NM_013602	2.6	2.1	0.0031
solute carrier organic anion transporter family, member 2a1	SIco2a1	NM_033314	-2.2	-1.9	0.0031
proteasome (prosome, macropain) 28 subunit, alpha	Psme1	NM_011189	1.9	2.1	0.0031
mitochondrial ribosomal protein S30	Mrps 30	AV095945	-2.0	-1.8	0.0032
acylphosphatase 1, enythrocyte (common) type	Acyp 1	NM_025421	2.1	1.9	0.0032
methylenetetrahydrofolate dehydrogenase (NADP+ dep.), methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthas	Mthfd1	NM_138745	-1.8	-1.9	0.0032
Required for meiotic nuclear division 5 homolog B	Rmnd5b	BC016075	1.9	1.8	0.0032

Genname	sumbol	Gen Bank Acresion	Evn 1	Evn 2	n. Wort
Coiled-coil domain containing 95	Code95	BG065288	L C-	-3.8	0 0032
oonoo oonaannaan oonaannag oo eidun 3 (eilant matina tura informatina ravulatina 3 kamalaa) 3 /5 caravietaa)	Chico	DD807606	a F	10	0.0020
ublautiti-conjugating enzyme E2B. RAD6 homology (S. cerevisiae)	Jbe2b	AK0 10432	2.2	1.9	0.0032
Ribonuclease H2, subunit C	Rnase h2c	AV259141	-2.1	-1.9	0.0033
dystrobrevin alpha	Otna	BM117918	2.6	3.7	0.0033
expressed sequence C76566	C76566	BB547181	4.8	3.1	0.0033
sarcoglycan, beta (dystrophin-associated glycoprotein)	Sgcb	AK0 14381	1.8	1.9	0.0033
baculoviral IAP repeat-containing 1b	Birc1b	NM_010872	1.9	2.2	0.0033
acy I-Coenzyme A dehydrogenase, short/branched chain	Acadsb	BF228057	1.8	1.8	0.0033
methylmalonyl CoA epimerase	Moee	AA960125	1.8	1.8	0.0033
endothelial differentiation, hysophosphatidic acid G-protein-coupled receptor, 2	Edg2	U70622	1.8	1.8	0.0033
heat shock factor 1	Hsf1	BC013716	-1.8	-1.8	0.0033
phenylalanin e-tRNA synthetase-like, alpha subunit	arsla	BC013533	-1.8	-1.9	0.0034
tetratricopeptide repeat domain 3	rtc3	BB8 33716	2.3	3.0	0.0034
platelet derived growth factor receptor, alpha polypeptide	adgfra	AW537708	3.2	5.1	0.0034
REV3-like, catalytic subunit of DNA polymerase zeta RAD54 like (S. cerevisiae)	Rev3I	AB031049	1.8	1.8	0.0034
ATPase, H+ transporting, V1 subunit A, isoform 1	Atp6v1a1	NM_007508	2.0	1.8	0.0034
RIKEN cDNA B430108F07 gene	3430108F07Rik	BC027370	1.9	2.3	0.0034
reticulocal bin 3, EF-hand calcium binding domain	Rcn3	BC025602	3.7	2.6	0.0034
leucine rich repeat (in FLII) interacting protein 1	.mfip1	NM_008515	2.0	2.3	0.0034
cold shock domain protein A	Csda	AV2 16648	-2.2	-1.9	0.0034
microtubule-associated protein, RP/EB family, member 2	Mapre2	BC027056	11.3	32.4	0.0034
delta steep inducing peptide, immunoreactor	Osip1	NM_010286	1.9	1.8	0.0034
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 6 (B14)	Vdufa6	NM_025987	2.0	1.8	0.0034
serine hydroxymethyl transferase 2 (mitochondrial)	Shmt2	BB758291	-2.2	-2.7	0.0035
zinc finger protein 95	Zfp95	U62907	1.9	2.1	0.0035
protocadherin beta 17	odhb17	NM_053142	3.5	2.5	0.0035
SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2	Smarca2	AK0 11935	2.4	2.0	0.0035
clusterin	Clu	AV152288	2.3	3.0	0.0035
pleckstrin homology, Sec7 and coiled-coil domains 3	sod 3	NM_011182	1.9	2.2	0.0035
LYR motif containing 2	-yrm2	AA250510	1.9	2.2	0.0036
casein kinase II, alpha 2, polypeptide	Csnk2a2	BG070990	-2.0	-1.8	0.0036
matrix metalloproteinase 14 (membrane-inserted)	Amp 14	NM_008608	1.8	1.9	0.0036
vesicle-associated membrane protein 8	/amp8	NM_016794	2.1	1.8	0.0036
FBJ osteosarcoma oncogene B	-osb	BG076079	1.8	1.9	0.0036

Parameter -	Comball	Can Dark Associat		6 m L	Most .
	ioninio 0-11-0		LAP. 1	CAP. 4	11244-0
procollagen, type IV, alpha 6	C014a6	BB/ 94645	2.2	2.9	0.0036
sphingosine kinase 1	Sphk1	AF068749	1.9	2.2	0.0037
coproporphyrinogen oxidase	Cpox	BG 06 7254	-2.1	-1.8	0.0037
insulin-like growth factor 2 receptor	lgf2r	BG 09 2290	2.3	3.0	0.0037
WD repeat domain 45	Wdr45	BC011479	1.8	1.9	0.0037
EGF-like repeats and discordin I-like domains 3	Edil3	AF031524	1.8	1.8	0.0037
secretory leukocyte protease inhibitor	Slpi	NM_011414	4.4	2.9	0.0037
metallothionein 2	Mt2	AA796766	3.5	2.5	0.0038
solute carrier family 6 (neurotransmitter transporter), member 15	Slc6a15	BB129409	-1.9	-1.8	0.0038
RIKEN cDNA 2810485105 gene	2810485I05Rik	AV337692	1.9	1.8	0.0038
t-complex-associated-testis-expressed 1-like	Tcte11	NM_025975	1.9	1.8	0.0038
phosphotriesterase related	Pter	NM_008961	1.8	2.0	0.0038
serine/threonine kinase 6	Stk6	U80932	-2.2	-1.9	0.0038
PAX interacting (with transcription-activation domain) protein 1	Paxip1	AW742928	-1.8	-1.8	0.0038
Zinc finger with KRAB and SCAN domains 1	Zkscan1	NM_133906	2.0	2.4	0.0038
p300/CBP-associated factor	Pcaf	AV0 94898	1.8	2.1	0.0039
plasminogen activator, tissue	Plat	NM_008872	2.5	3.6	0.0039
tumor differentially expressed 1	Tde1	NM_012032	1.9	1.8	0.0039
centromere protein E	Cenpe	BG068387	-2.6	-3.7	0.0039
elaC homolog 2 (E. coli)	Elac2	NM_023479	-1.8	-1.8	0.0040
Friedreich ataxia	Frda	AV007132	-1.8	-1.9	0.0040
Niemann Pick type C2	Npc2	BC007190	1.8	1.7	0.0040
Similar to chromosome 14 open reading frame 18 isoform a; enhancer of invasion 10 (LOC239083)	1	BG066504	-5.4	-11.6	0.0040
cDNA sequence BC003331	BC003331	BC00331	1.9	1.8	0.0040
Transformation related protein 53 inducible nuclear protein 2	Trp53inp2	AK0 03956	4.0	7.4	0.0040
carbonyl reductase 3	Cbr3	AK0 03232	-3.4	-5.9	0.0040
Poly (ADP-ribose) polymerase family, member 8	Parp8	BC022679	1.8	2.1	0.0040
X-ray repair complementing defective repair in Chinese hamster cells 5	Xrcc5	AF166486	1.9	1.7	0.0041
NAD(P)H dehydrogenase, quinone 1	Nqo1	AV158882	-3.3	-2.3	0.0041
Transmembrane protein 176a	Tmem176a	BC010831	10.2	4'8	0.0041
annexin A6	Anxa6	AK0 13026	2.0	2.4	0.0041
Smg-5 homolog, nonsense mediated mRNA decay factor (C.elegans)	Smg5	BI106637	-1.8	-1.7	0.0041
prostaglandin E synthase	Ptges	NM_022415	1.8	1.7	0.0041
Filamin C, gamma	Finc	NM_026839	-1.8	-2.0	0.0042
famesyl diphosphate farnesyl transferase 1	Fdff1	BB028312	1.7	1.7	0.0042

Genname	symbol	Gen Bank Accesion	Exp. 1	Exp. 2	p-Wert
proteasome (prosome, macropain) 26S subunit, non-ATPase, 3	⁵ smd3	NM_009439	-1.9	-1.7	0.0042
zinc fingers and homeoboxes protein 1	2 hx1	NM_009572	3.2	2.3	0.0042
polyhomeotic-like 2 (Drosophila)	Phc2	NM_018774	-1.7	-1.7	0.0042
homeodomain interacting protein kinase 2	Hipk2	AK0 16742	-2.1	-2.8	0.0042
esterase 10	Es10	NM_016903	-1,8	-2.0	0.0042
sterol carrier protein 2, liver	Scp2	C76618	2.7	2.1	0.0043
RAB GTPase activating protein 1	Rabgap1	BC026862	1.7	1.9	0.0043
transformation related protein 53	rp53	AJ297973	-1.8	-1.7	0.0043
UDP-glucuronosyltransferase 1 family, member 2	Jgt1a2	BC019434	1.7	1.9	0.0043
phosphatidylinositol 3-kinase, catalytic, alpha polypeptide	Pik 3ca	AI528567	1.9	1.7	0.0043
procollagen C-proteinase enhancer protein	Pcolce	BB2 50811	1.8	2.0	0.0043
retinol binding protein 1, cellular	3bp1	NM_011254	2.2	1.9	0.0043
interleukin 11 receptor, alpha chain 1	11 1 ra1	BC004619	5.0	3.0	0.0044
pantothenate kinase 3	Pank3	BB7 95106	1.9	1.7	0.0044
telomerase binding protein, p23	rebp	BC003708	-1.7	-1.8	0.0044
small nuclear ribonucleoprotein B	Snrpb	NM_009225	-1.7	-1.8	0.0044
Interferon alpha-inducible protein 27	627	AY0 90098	2.6	3.9	0.0044
bystin-like	3ysl	BG079188	-1.7	-1.9	0.0044
bisphosphate 3'-nucleo tidase 1	3pnt1	BB4 12311	-1.9	-1.7	0.0045
splicing factor proline/glutamine rich (polypyrimidine tract binding protein associated)	stpq	AY034062	-1.7	-1.8	0.0045
tissue factor pathway inhibitor	Tipi	AF004833	-1.7	-1.8	0.0045
carboxypeptidase E	Cpe	BC010197	1.7	1.9	0.0045
RNA binding motif protein 19	Rbm19	BC025619	-2.0	-2.6	0.0045
LIM domain containing 2	-imd2	AV0 10467	2.0	2.5	0.0045
Glutamate-cysteine ligase, catalytic subunit	3clc	AW825835	-1.7	-1.7	0.0046
DNA2 DNA replication helicase 2-like (yeast)	DNA21	BB546985	-1.8	-2.1	0.0046
Nodal modulator 1	Vomo1	BC024503	-2.0	-2.7	0.0046
Ribonucleoprotein, PTB-binding 1	Raveri	BG145492	-2.7	-2.0	0.0046
growth arrest specific 1	Gas1	BB5 50400	1.7	1.8	0.0046
lamin B2	.mnb2	NM_010722	-2.5	-3.7	0.0047
stromal cell derived factor 2	Sdf2	NM_009143	1.9	1.7	0.0047
early growth response 2	Egr2	X06746	3.1	5.2	0.0047
polymerase (DNA-directed), delta 3, accessory subunit	Pold3	AK0 10805	-1.9	-2.3	0.0047
RIKEN cDNA 2900042B11 gene	2900042B11Rik	AK0 13636	2.2	3.0	0.0047
O-linked N-acetylglucosamine (GlcNAc) transferase	Ogt	BG065325	1.8	2.1	0.0047

Genname	Symbol	Gen Bank Accesion	Exp. 1	Exp. 2	o-Wert
ADP-ribosyltransferase (NAD+, poly (ADP-ribose) polymerase) 1	Adpit1	BB767586	-1.9	-2.3	0.0047
MRNA similar to hypothetical protein BC013035 (cDNA clone MGC:57021 IMAGE:6466443)		AW228053	1.7	1.9	0.0047
Leucine rich repeat containing 59	_mc59	AW476171	-1.7	-1.7	0.0047
phosphodiesterase 7A	ode7a	BG070255	1.7	1.9	0.0047
DnaJ (Hsp40) homolog, subfamily C, member 13	Dnajc13	BQ 17 4089	1.7	1.9	0.0048
zinc finger, DHHC domain containing 3	Zdhhc3	BB815190	-1.7	-1.8	0.0048
lectin, galactose binding, soluble 8	-gals8	AI987967	1.8	1.7	0.0048
S-ade nosylhomocysteine hydrolase-like 1	Ahcyl1	BB831090	-1.7	-1.7	0.0049
adenylate kinase 4	QK4	NM_009647	1.7	1.9	0.0049
branched chain ketoacid dehydrogenase E1, alpha polypeptide	3ckd ha	NM_007533	1.7	1.7	0.0049
RAN GTPase activating protein 1	Rangap1	AV258722	-1.9	-2.3	0.0049
carbonic anhydrase 11	Carl 1	BC019393	1.7	1.7	0.0049
hypoxia up-regulated 1	Hyou1	BM231738	-2.0	-2.5	0.0050
adhesion regulating molecule 1	Adrm1	NM_019822	-1.7	-1.7	0.0050
dipeptidylpeptidase 7	7qqC	BB746075	1.7	1.8	0.0050
xanthine dehydrogenase	Adh	BM225255	1.7	1.8	0.0050
sorting nexin 14	Snx14	BB4 04318	1.7	1.7	0.0050
glucosidase 1	3cs1	NM_020619	-1.9	-2.5	0.0050
EH domain binding prote in 1	Ehbp1	AF424697	1.7	2.0	0.0051
CD24a antigen	Cd24a	NM_009846	1.7	1.9	0.0051
phosphorylase kinase beta	Phkb	BM233125	1.8	1.7	0.0051
sema domain, immunoglobulin domain (tg), short basic domain, secreted, (semaphorin) 3B	Sema3b	NM_009153	1.7	1.7	0.0051
RIKEN cDNA 1300001101 gene	1300001101Rik	AK0 04841	-2.0	-2.6	0.0052
WD repeat domain 77	Ndr77	NM_027432	-1.8	-1.7	0.0052
Nedd4 family interacting protein 1	Vdfip1	BC026372	1.8	1.7	0.0052
growth arrest and DNA-damage-inducible, gamma interacting protein 1	Sadd45gip1	BE368753	-1.7	-1.9	0.0052
complement component 1, s subcomponent	C15	BC022123	11.2	4.9	0.0052
WD repeat domain 61	Mdr61	NM_023191	1.9	1.7	0.0052
abhydrolase domain containing 4	Abhd4	NM_134076	1.8	2.1	0.0052
zinc finger/RING finger 2	Znrf2	AV226579	-1.6	-1.7	0.0053
opioid receptor, sigma 1	Opris 1	NM_011014	-1.8	-1.6	0.0053
zinc finger protein 71, related sequence 1	Zfp71-rs1	BC016248	1.7	1.6	0.0053
spermidine/spermine N1-acetyl transferase 1	Sat1	NM_009121	1.7	1.8	0.0053
N-glycanase 1	Vgly1	NM_021504	2.2	1.8	0.0053
RIKEN cDNA 1110003E01 gene	1110003E01Rik	NM_133697	1.9	2.4	0.0053

					Ī
Genname	Symbol	Gen Bank Accesion	Exp. 1	Exp. 2 F	o-Wert
ATPase, H+ transporting, V1 subunit F	Atp6v1f	BC016553	1.7	1.6	0.0053
nucleoplasmin 3	Npm3	BB811478	-1.7	-2.0	0.0053
zinc finger protein 91	Zfp91	AI430439	-1.9	-1.7	0.0053
translocase of inner mitochondrial membrane 9 homolog (yeast)	Timm9	BF021416	-1.8	-2.1	0.0054
RIKEN cDNA 4732435N03 gene	4732435N03Rik	AV371987	1.8	2.1	0.0054
Integrator complex subunit 5	ints5	AV0 14698	-1.7	-1.6	0.0054
vesicle docking protein	dby	BC016069	1.7	1.6	0.0054
calcium/calmodulin-dependent protein kinase I	Camk1	NM_133926	1.6	1.7	0.0054
N-myc (and STAT) interactor	Nmi	BC002019	3.1	2.2	0.0054
eukaryotic translation initiation factor 4, gamma 1	Eif4g1	BB531220	-2.4	-3,5	0.0055
transforming growth factor beta regulated gene 4	Tbrg4	NM_134011	-1.9	-2.5	0.0055
RIKEN cDNA 2610301B20 gene	2610301B20Rik	AK011950	1.6	1.7	0.0055
suppressor of cytokine signaling 5	Socs5	AA510713	2.0	1.7	0.0055
pyrophosphatase	Pyp	NM_026438	-2.2	-3.2	0.0055
Rho GTPase activating protein 24	Arhgap24	BC025502	1.7	2.0	0.0055
5'-nucleotidase domain containing 2	Nt5 dc2	BC011230	-1.8	-2.3	0.0056
RIKEN cDNA 5730528L13 gene	5730528L13Rik	AK017795	-1.6	-1.8	0.0056
Non-SMC condensin I complex, subunit D2	Ncapd2	BC025460	-1.8	-1.6	0.0056
hypoxia induced gene 1	Hig1	NM_019814	1.6	1.7	0.0056
PHD finger protein 1	Phf1	NM_009343	1.6	1.8	0.0056
autophagy 12-like (S. cere visiae)	Apg121	AK0 16474	2.1	2.9	0.0056
Carbonyl reductase 4	Cbr4	BC009118	1.9	2.5	0.0056
solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2	Slc11a2	BG065264	-1.6	-1.8	0.0057
RAB13, member RAS oncogene family	Rab13	BC027214	1.7	1.6	0.0057
ubiquitin-like 1 (sentrin) activating enzyme E1A	Ubleta	AK011772	-1.6	-1.7	0.0057
minichromosome maintenance deficient 7 (S. cerevisiae)	Mcm7	BB464359	-1.7	-2.0	0.0057
EH-domain containing 1	Ehd1	NM_010119	-2.3	-1.9	0.0057
sperm associated antigen 5	Spag5	BM208112	-1.8	-1.6	0.0057
RPEL repeat containing 1	Rpel1	AV259240	1.6	1.7	0.0057
Similar to INSULIN RECEPTOR SUBSTRATE-2 (IRS-2) (4PS) (LOC384783), mRNA		BE1 99054	-1.7	-1.6	0.0057
selenophosphate synthetase 2	Sephs2	NM_009266	-2.3	-1.8	0.0057
Scavenger receptor class B, member 2	Scarb2	BI 106458	1.6	1.7	0.0057
Myosin, light polypepetide kinase	Mylk	BF451748	1.9	2.5	0.0057
expressed sequence AV5 49877	AW549877	BG073457	2.4	1.9	0.0058
Ras and Rab interactor 2	Rin2	AK0 14548	5.0	2.9	0.0058
					I
---	---------------------	-------------------	--------	--------	--------
Genname	symbol	Gen Bank Accesion	Exp. 1	Exp. 2	o-Wert
NIMA (never in mitosis gene a)-related expressed kinase 2	Jek2	NM_010892	-1.6	-1.7	0.0058
immediate early response 5	er5	BF147705	-1.7	-1.6	0.0058
plectin 1	Plec1	BI525140	3.4	2.3	0.0058
general transcription factor IIIC, polypeptide 4	Stf3c4	AV221508	1.6	1.7	0.0058
beta-2 microglobulin	32m	AI099111	1.7	1.6	0.0058
Taurine upregulated gene 1	ug1	D50523	1.8	1.6	0.0058
fibronectin 1	int	BM234360	4.7	10.8	0.0059
F-box only protein 23	^t bxo 23	AI844703	2.7	4.6	0.0059
trans-golgi network protein 2	goin2	AI 314055	1.6	1.7	0.0059
bone morphogenetic protein 1	3mp1	L24755	1.6	1.7	0.0060
RIKEN cDNA 5730470L24 gene	730470L24Rik	BC004090	1.7	1.6	0.0060
CNDP dipeptidase 2 (metallopeptidase M20 family)	Cindp2	NM_023149	-1.7	-2.0	0.0060
KH domain containing, RNA binding, signal transduction associated 1	Chdrbs1	NM_011317	-1.7	-1.6	0.0060
golgi autoantigen, golgin subfamily a, 4	3olga4	NM_018748	1.9	1.7	0.0060
Zinc finger, AN14type domain 6	Cfand6	NM_022985	1.7	1.6	0.0060
epoxide hydrolase 1, microsomal	Ephx1	NM_010145	1.7	1.6	0.0060
WD repeat domain 79	Wdr79	BC021790	-1.7	-1.6	0.0061
calpain 6	Capn6	AI747133	4.1	2.5	0.0061
D site albumin promoter binding protein	Obp	BB550183	2.1	3.0	0.0061
cellular repressor of E1A-stimulated genes	Creg	BC027426	1.6	1.7	0.0061
dermatopontin	Dpt	NM_019759	4.9	2.8	0.0061
Max dimerization protein 4	Axd4	BG 86 8949	2.0	2.7	0.0061
RIKEN cDNA 0610010K06 gene	610010K06Rik	BG 07 2846	1.8	2.3	0.0061
gamma-aminobutyric acid receptor associated protein	Sabarap	BC024621	1.6	1.6	0.0061
Negative regulator of ubiquitin-like protein 1	1 dub1	BG 06 62 20	1.6	1.7	0.0061
DnaJ (Hsp40) homolog, subfamily B, member 4	Dnajb4	BC017161	1.6	1.8	0.0062
RIKEN cDNA 1600012H05 gene	600012H06Rik	AK017276	1.8	2.3	0.0062
GTP binding protein 3	stpbp3	BM207274	-1.7	-2.0	0.0062
CREBBP/EP300 inhibitory protein 1	2n1	BC010712	1.6	1.7	0.0062
ecotropic viral integration site 2a	Evi2a	NM_010161	1.6	1.6	0.0062
cell division cycle 20 homolog (S. cerevisiae)	2dc20	BB041150	-1.7	-1.6	0.0062
small EDRK-rich factor 2	Serf2	BB119541	1.7	1.6	0.0062
cathepsin B	Ctsb	M14222	1.9	2.6	0.0063
paired related homeobox 1	Pirxt	L06502	1.6	1.8	0.0063
survival motor neuron	smn	BB821035	-1.6	-1.8	0.0063

Genname	symbol	Gen Bank Accesion	Exp. 1	Exp. 2 F	- Wert
salvador homolog 1 (Drosophila)	Sav1	NM_022028	-1.9	-1.6	0.0063
Centrosomal protein 55	Cep65	AK0 04655	-2.1	-3.0	0.0063
brain abundant, membrane attached signal protein 1	Jasp1	AK0 11545	-1.6	-1.7	0.0064
ocular development associated gene	Ddag	BC019449	-1.7	-1.6	0.0064
peroxisome biogenesis factor 7	Pex7	NM_008822	1.6	1.8	0.0064
insulin-like growth factor binding protein 4	gfbp4	BB7 87243	2.2	3.3	0.0064
Ras and a-factor-converting enzyme 1 homolog (S. cerevisiae)	Ce1	BC004060	-1.6	-1.7	0.0064
limb-bud and heart	hđ	BC026827	2.6	4.5	0.0065
MYST histone acetyltransferase monocytic le ukemia 4	Ayst4	BB527816	1.6	1.6	0.0065
WD repeat domain 9	Vdr9	BQ031260	1.9	1.7	0.0065
methyl-CpG binding domain protein 3	Abd3	NM_013595	-2.1	-2.9	0.0065
cell division cycle 34 homolog (S. cerevisiae)	Odc34	BI 794243	-1.6	-1.8	0.0065
lipocalin 7	.cn7	BC005738	-1.6	-1.6	0.0065
lanosterol synthase	SS	AK0 14742	1.9	2.5	0.0065
minichromosome maintenance deficient 2 mitotin (S. cerevisiae)	Acm2	NM_008564	-2.1	-3.1	0.0065
sorting nexin 2	Snx2	BC006960	1.7	1.6	0.0065
WD repeat domain 6	Mdr6	BB4 53609	1.8	2.3	0.0065
RIKEN cDNA 6030443007 gene	030443O07Rik	AV343569	1.6	1.8	0.0065
solute carrier famity 30 (zinc transporter), member 9	Slc30a9	BB117951	1.7	1.9	0.0065
protocadherin 10	odh10	AF334801	2.3	1.8	0.0065
Nucleolar complex associated 2 homolog	Voc21	BC020013	-2.1	-3.0	0.0066
polyamine-modulated factor 1	mf1	AV307393	-2.0	-2.9	0.0066
flap structure specific endonuclease 1	en1	BB3 93998	-1.6	-1.8	0.0066
v-maf musculoaponeurotic fibro sarcoma oncogene family, protein B (avian)	Aafb	L36434	-1.9	-1.7	0.0066
procollagen, type N, alpha 5	2014.85	BM250666	1.7	1.6	0.0066
eukaryotic translation initiation factor 4E binding protein 2	Elf4ebp2	NM_010124	-2.0	-2.9	0.0066
LYR motif containing 5	.yrm5	BC021522	3.2	2.2	0.0067
RIKEN cDNA 3110001A13 gene	110001A13Rik	BC021353	-1.6	-1.7	0.0067
Ubiquitin-conjugating enzyme E2O	Jbe2o	BB3 04622	-1.6	-1.6	0.0067
vacuolar protein sorting 41 (yeast)	/ps41	BM240052	1.6	1.6	0.0067
A kinase (PRKA) anchor protein 8-like	kap8l	NM_017476	1.6	1.7	0.0067
CDNA clone IMAGE:5028242, partial ods		AV013785	1.6	1.6	0.0067
selenoprotein M	Sepm	AY043488	3.6	2.3	0.0068
protein-tyrosine sulfotransferase 2	pst2	NM_009419	-1.8	-2.4	0.0069
RIKEN cDNA 1300007C21 gene	300007C21Rik	BG 29 7038	-2.9	-2.0	0.0069

					Ī
Genname	symbol	Gen Bank Accesion	Exp. 1	Exp. 2 F	- Wert
zinc finger protein 36, C3H type-like 1	2fp36l1	M58566	1.6	1.8	0.0069
RIKEN cDNA 4833442J19 gene	833442J19Rik	AV0 02340	2.1	3.2	0.0069
Suppressor of variegation 4-20 homolog 1 (Drosophila)	Suv420h1	BG 79 3501	1.6	1.8	0.0069
THO complex 3	'hoc3	BE3 35845	-1.6	-1.6	0.0069
phosphofructokinase, platelet	dyle	NM_019703	1.9	2.5	0.0070
RIKEN cDNA 1110058L19 gene	110058L19Rik	NM_026503	1.6	1.6	0.0070
Lysophosphatidylglycerol acyttransferase 1	.pgat1	BE987427	-1.6	-1.6	0.0070
propion yl Co enzyme A carboxylase, beta polypeptide	ocb	BB787147	1.7	1.6	0.0070
chromodomain helicase DNA binding protein 1-like	Chdtl	NM_026539	-1.9	-1.6	0.0070
transcription factor 12	cf12	NM_011544	1.7	1.6	0.0070
myocyte enhancer factor 2C	Aefc2	BB280300	1.6	1.9	0.0071
target of myb1 homolog (chicken)	"om1	BI247687	1.7	2.0	0.0071
TAR (HIV) RNA binding protein 2	arbp2	BE373492	-1.8	-2.4	0.0071
calcium homeostasis endoplasmic reticulum protein	Cherp	BC020488	-2.3	-1.8	0.0071
cyclin-dependent kinase-like 2 (CDC2-related kinase)	2dkt2	NM_016912	1.7	1.6	0.0071
component of oligomeric golgi complex 4	2094	AU022131	1.6	1.6	0.0071
RIKEN cDNA 4933407N01 gene	1933407N01Rik	BC018468	1.6	1.6	0.0071
G two S phase expressed protein 1	Stse1	NM_013882	-2.6	-1.9	0.0072
protein kinase, cAMP dependent regulatory, type II alpha	Prkar2a	AV112640	-2.5	-4.3	0.0072
retroviral in tegration site 2	čis2	AF477481	-1.6	-1.6	0.0072
peroxisomal delta3, delta2-enoyl-Coenzyme A isomerase	Peci	AK0 09478	1.6	1.7	0.0072
exportin 5	(po5	AF343581	-1.7	-2.0	0.0072
achalasia, adrenocortical insufficiency, alacrimia	vaas	BC025501	-1.7	-2.1	0.0072
S100P binding protein	3100pbp	BI452674	1.6	1.6	0.0072
thimet oligopeptidase 1	Thop1	NM_022653	-2.1	-3.0	0.0072
microtubule-associated protein 1 B	Atap 1b	BB7 31480	-2.0	-2.9	0.0072
General transcription factor IIIC, polypeptide 2, beta	3tf3c2	AV297256	-1.6	-1.6	0.0073
Nucleolar complex associated 4 homolog (S.cerevisiae)	4oc41	BC024616	-1.6	-1.6	0.0073
RIKEN cDNA 2610507B11 gene	0510507B11Rik	BI437883	-1.7	-2.1	0.0073
RIKEN cDNA 2310004124 gene	310004I24Rik	BG144005	1.6	1.6	0.0073
oxysterol binding protein-like 2	Dstp12	BC026804	1.6	1.6	0.0073
BCL2/a denovirus E1B 19kDa-interacting protein 3-like	3nip3l	AK0 18668	1.6	2.0	0.0073
block of proliferation 1	3op1	BM213936	-1.6	-2.0	0.0073
interleukin 1 receptor accessory protein	1 rap	BE285634	2.8	2.0	0.0073
EF hand domain containing 2	Efhd2	AK0 07560	-1.6	-1.7	0.0074

Genname	Symbol	Gen Bank Accesion	Exp. 1	Exp. 2	o-Wert
Phosphatidylg lycerophosp hate synthase 1	Pgs1	AK0 16901	-1.6	-1.6	0.0074
RIKEN CDNA 9130005N14 gene	9130005N14Rik	NM_026667	2.0	1,6	0.0074
retinoblastoma 1	Rb1	NM_009029	1.6	1.9	0.0074
Tripartite motif-containing 59	Trim59	NM_025863	-2.0	-1.6	0.0074
Transmembrane protein 16k	Tmem16k	BB327301	1.6	1.6	0.0074
MIC2 (monoclonal Imperial Cancer Research Fund 2)-like 1	Mic211	BB0 38546	1.6	1.6	0.0074
deoxyuridine triphosphatase	Dutp	AF091101	-2.1	-3.0	0.0074
activating transcription factor 2	Atf2	BM119623	2.0	1.6	0.0074
RIKEN cDNA 1810007M14 gene	1810007M14Rik	BM932567	1.6	1.6	0.0075
DEAD (Asp-Glu-Ala-Asp) box polypeptide 18	Ddx18	NM_025860	-1.7	-2.1	0.0075
armadillo repeat containing, X-linked 2	Armcx2	BB3 92869	1.8	2.3	0.0075
spastic paraplegia 21 homolog (human)	Spg21	BB0 95517	1.6	1.5	0.0075
uridine monophosphate synthetase	Umps	BC003887	-1.6	-1.7	0.0075
neuropilin	Nrp	AK0 11144	1.8	1.6	0.0075
pyridoxal (pyridoxine, vitamin B6) kinase	Pdxk	BG063905	-1.7	-1.5	0.0076
dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex)	Dlat	AV3 36908	-1.6	-2.0	0.0076
RIKEN cDNA 1110007C09 gene	1110007C09Rik	AK0 03526	1.6	1.8	0.0076
DEAD (Asp-Glu-Ala-Asp) box polypeptide 54	Ddx54	AK0 10484	-1.5	-1.6	0.0076
chemokine (C-X-C motif) ligand 5	Cxcl5	NM_009141	-2.4	4.1	0.0076
zinc finger protein 64	Zfp64	BF020964	-1.7	-2.2	0.0077
pyrroline-5-carboxylate synthetase (glutamate gamma-semialdehyde synthetase)	Pycs	BF148128	-1.6	-1.6	0.0077
immediate early response 2	ler2	NM_010499	1.8	1.6	0.0077
GPI anchor attachment protein 1	Gpaa1	NM_010331	-1.6	-1.5	0.0077
serine hydrolase-like	Serhl	C80355	1.6	1.9	0.0077
tripartite motif protein 24	Trim24	BB6 11004	1.9	2.6	0.0077
cyclin D-type binding-protein 1	C cndbp1	NM_010761	1.8	2.3	0.0078
protein kinase, interferon inducible double stranded RNA dependent activator	Prikra	NM_011871	1.7	2.1	0.0078
tripartite motif-containing 41	Trim41	BC020156	1.8	2.4	0.0078
prefoldin 5	Pfdn5	NM_020031	1.7	1.5	0.0078
RIKEN cDNA 6720435121 gene	6720435I21Rik	BE196832	1.5	1.6	0.0078
SET and MYND domain containing 2	Smyd2	BC023119	-1.6	-1.8	0.0078
Patatin-like phospholipase domain containing 8	Pnpla8	BC019364	1.8	1.6	0.0078
RIKEN CDNA 5730494N05 gene	5730494N06Rik	AK017729	1.5	1.6	0.0078
transforming, acidic coiled-coil containing protein 3	Tacc3	NM_011524	-1.5	-1.7	0.0079
BC048355	BC048355	BE949497	-1.6	-1.8	0.0079

synaptojanin 2 binding protein Synj2bp Solute carrier family 44: member 1					
solute carrier family 44; member 1 Sic44a1	nj2bp	NM_025292	1.6	1.5	0.0079
	344a1	BM207133	1.6	1.5	0.0079
Ppt1 Ppt1	t1	AF326558	1.5	1.6	0.0079
serine/arginine-rich protein specific kinase 2 Spk2	pk2	NM_009274	1.5	1.6	0.0079
high mobility group AT-hook 1 Hmga1	nga1	NM_016660	-1.8	-1.6	0.0080
6-pyruvoyl-tetrahydropterin synthase	3	NM_011220	1.6	1.8	0.0080
Trip13 Trip13	p13	AK010336	-1.7	-2.2	0.0080
Tpi Tpi		AA1 53477	1.6	1.5	0.0080
Tial1 cytotoxic granule-associated RNA binding protein-like 1	li	NM_009383	-1.7	-2.1	0.0080
calponin 3, acidic	in3	BB8 33102	1.6	1.5	0.0081
Meethylcrotono yl-Coenzyme A carboxylase 2 (beta)	2002	BI 155184	1.6	1.5	0.0081
Ngfl-A binding protein 2	152	NM_008668	6.6	3.2	0.0081
ubiquitin-conjugating enzyme E2C Ube2c	162 C	AV162459	-1.5	-1.6	0.0081
protein phospatase 3, regulatory subunit B, alpha isoform (calcineurin B, type f)	p3r1	NM_024459	-1.5	-1.5	0.0081
Colled-coil domain containing 56 Codc56	dc56	BC026206	-1.6	-1.5	0.0081
serine (or cysteine) proteinase inhibitor, clade B, member 1a	rpinb1a	AF426024	1.6	1.5	0.0081
CD 81 antigen	181	NM_133655	1.6	1.5	0.0082
triple functional domain (PTPRF interacting)	0	BB080177	2.5	4.3	0.0082
DNA segment, Chr 13, ERATO Doi 332, expressed	3Ertd332e	AA1 90297	-1.6	-2.0	0.0082
LMBR1 domain containing 1	1brd1	BM206793	1.6	2.0	0.0082
scotin gene	otin	BC010238	1.5	1.6	0.0082
Zinc finger protein 281 Zip281	0281	AV071650	1.8	2.5	0.0082
stress-induced phosphoprotein 1 Stip1	p1	NM_016737	-1.6	-1.5	0.0083
protein tyrosine phosphatase, mitochondrial 1 Ptpmt 1	prmt 1	BI247018	-1.5	-1.7	0.0083
Poliovirus receptor	r	BB049138	1.7	2.1	0.0083
src family associated phosphoprotein 2 Scap2	ap2	NM_018773	1.5	1.5	0.0083
ER degradation enhancer, mannosidase alpha-like 3 Edem3	em3	BC022925	1.5	1.6	0.0083
Thbs2 Thbs2	bs2	NM_011581	1.5	1.6	0.0083
mitogen activated protein kinase kinase 3 Map2k3	ap2k3	AI481780	-1.5	-1.6	0.0083
RNA binding motif 39 Rbm39	nm39	C79248	1.7	1.5	0.0083
CDK5 regulatory subunit associated protein 3 Cdk5rai	lk5rap3	AV056485	1.6	1.5	0.0083
Man2a1 Man2a1	in2a1	NM_008549	1.5	1.6	0.0084
Williams Beuren syndrome chromosome region 22 Wbscr2	bscr22	BB7 35151	-1.5	-1.7	0.0084
Trinucleotide repeat containing 6b	ro6b	BG067897	1.6	1.5	0.0084
GLE1 RNA export mediator-like (yeast Gle11	e11	AK0 16671	-1.5	-1.5	0.0085

					Ī
Genname	symbol	Gen Bank Accesion	Exp. 1	Exp. 2	o-Wert
nuclear factor I/C	Afic	NM_008688	-1.5	-1.6	0.0085
Protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 1	ocmtd1	BB549335	2.4	1.8	0.0085
TBC1 domain family, member 23	lbc1 d23	AV2 09678	1.6	1.5	0.0085
nucleoporin 133	Vup133	BB314153	-1.5	-1.7	0.0086
Transcriptional adaptor 1 like	Tada 11	BC027337	1.6	1.5	0.0086
RAD9 homolog (S. pombe)	Rad9	NM_011237	-1.5	-1.6	0.0086
myocyte enhancer factor 2A	Aet2a	AV2 55689	1.6	2.0	0.0086
RIKEN cDNA 2210419D22 gene	2210419D22Rik	AK0 08985	1.7	1.5	0.0086
signal transducer and activator of transcription 1	Stat1	AW214029	1.5	1.6	0.0086
neighbor of Cox4	Voc4	NM_010926	-1.5	-1.7	0.0086
RIKEN cDNA 2510006D16 gene	2510006D16Rik	BE853401	-1.8	-1.5	0.0086
solute carrier family 20, member 2	SIC20a2	BB765719	-1.5	-1.6	0.0087
ubiquitin specific protease 47	Jsp47	BG069271	1.6	1.5	0.0087
superoxide dismutase 3, e xtracellular	Sod3	NM_011435	1.5	1.8	0.0087
nucleoporin 50	Vup50	NM_016714	-1.7	-2.1	0.0087
T-cell lymphoma invasion and metastasis 2	Tiam2	BM228957	1.9	1.6	0.0088
RIKEN cDNA 1200002N14 gene	200002N14Rik	BC021433	2.1	1.7	0.0088
RAN binding protein 3	Ranbp3	BF467250	-1.5	-1.7	0.0088
oxysterol binding protein-like 1A	Ostpl1a	NM_020573	1.5	1.7	0.0088
acyl-Coenzyme A oxidase 2, branched chain	Acox2	NM_053115	4.2	2.4	0.0088
ubiquitin-like, containing PHD and RING finger domains, 1	Jhrf1	BB7 02754	-2.6	4.7	0.0088
SNF2 histone linker PHD RING helicase	Shprh	BC006883	1.5	1.6	0.0088
Matrix remodelling associated 8	Mixra 8	BB765827	2.7	5.1	0.0088
ribonucleotide reductase M2	Rm2	NM_009104	-1.9	-2.8	0.0089
activating transcription factor 6	Att6	AV270913	1.5	1.7	0.0089
annexin A4	Anxa4	BE628614	1.5	1.7	0.0090
cytochrome c oxidase su bunit VIIa polypeptide 2-like	Cox7a2I	AK0 09614	1.5	1.5	0.0090
von Hippel-Lindau syndrome homolog	/hlh	NM_009507	1.6	2.1	0.0090
poly(A) binding protein, nu clear 1	abpn1	AV028400	-1.5	-1.6	0.0090
testis expressed gene 264	Tex2.64	BC002248	1.5	1.7	0.0090
microfibrillar associated protein 5	Mfap 5	NM_015776	2.4	1.8	0.0091
dihydroorotate dehydrogenase	Dhodh	NM_020046	-1.6	-2.0	0.0091
leucine-rich repeats and immunoglobulin-like domains 1	.rig1	NM_008377	1.5	1.5	0.0091
Son cell proliferation protein	son	BG 06 7046	1.5	1.5	0.0091
tripartite motif protein 47	Trim47	AV077293	-1.7	-2.3	0.0091

Genname	sumbol	Gen Rank Acreeion	Evn 1	Evn 2	n-Wort
alcohol dehvdronenase 7 (class IV). mu or sigma polyneotide	Adh7	NM 009626	1-1-	1	0.005
Methyltransferase 11 domain containing 1	Mett 11d1	AK0 09576	1.7	-	0.008
cDNA sequence BC053440	3C053440	BM502329	-1.5	-1-	0.005
barrier to autointegration factor 1	Banf1	NM_011793	-1.5		0.005
RuvB-like protein 2	Ruvbi2	NM_011304	-1.7	-2.	0.006
prostate tumor over expressed gene 1	Ptov1	BG073526	1.6	1.1	300.0
cystatin B	Cstb	NM_007793	1.5	1.1	300.0
cytochrome c oxidase, subunit Va	Cox5a	NM_007747	-1.5	-1.	300.0
cysteine and histidine rich 1	Cyhrl	BC025112	1.6	2.6	300.0
adrenergic receptor kinase, beta 1	Adrbk 1	AF333028	-1.8	-1.	0.006
Chromatin modifying protein 1B	Chmp1b	BG073376	1.6	1.(300.0
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide	Ywhaz	BG 968903	1.6	2.0	300.0
RIKEN cDNA 8430406107 gene	3430406107Rik	BB040330	-1.7	-2.1	0.008
serum response factor	Sif	BI662291	-1.5	-1.	300.0
2-Hydroxyacyl-CoA lyase 1	Had1	NM_019975	1.8	2.	\$00.0
puromycin-sensitive aminopeptidase	Sa	AK0 10446	-1.5	-1.	300'0 2
dehydrogenase/reductase (SDR family) member 8	Ohrs8	NM_053262	1.5	1.1	300.0
solute carrier family 4, sod ium bicarbonate cotransporter, member 7	Slc4a7	AW555750	1.8	1.1	300.0
RNA binding motif protein 14	Rbm14	NM_019869	-2.0	-1.(300.0
heat shock factor binding protein 1	Hsbp1	AK0 10939	1.5	1.1	0.005
suppressor of cytokine signaling 3	Socs3	BB831725	-2.7	-1.5	900.0 E
RecQ protein-like 4	Reod/4	NM_058214	-2.6	4	300.0
inhibitor of kappaB kinase gamma	kbkg	BB147462	1.6	1.5	300 ^{.0}
cas pase 12	Casp12	NM_009808	2.8	1.1	300'0 6
cytidine 5'-triphosphale synthase 2	Ctps2	NM_018737	2.5	1.1	300.0
GLI pathogenesis-related 1 (glioma)	3lipr1	BC025083	1.8	1.1	0.005
Transmembrane protein 53	Tmem53	BC019937	3.1	2.(300'0 0
ligase I, DNA, ATP-dependent	-191	NM_010715	-1.7	-2.	300.0
Pyruvate dehydrogenase kinase, isoenzyme 1	PDK1	BC027196	2.8	5.	300'0 2
eukaryotic translation initiation factor 3, subunit 9 (eta)	Eif3s9	BG 92 3834	-1.7	-2.	300'0
abhydrolase domain containing 2	Abhd2	NM_018811	-1.5	-1.1	0.00
minichromosome maintenance deficient 5, cell division cycle 46 (S. cerevisiae)	Mcm5	NM_008566	-2.4	4	0.005
N-acetyl galactosaminidase, alpha	Vaga	BC021631	2.1	3.	0.010
proliferation-associated 2G4	² a2g4	BM232515	-3.1	φ	0.010
fos-like antigen 1	=osl1	U34245	-1.5	-1.	0.010

Genname	symbol	Gen Bank Accesion B	Exp. 1	Exp. 2	p-Wert
StAR-related lipid transfer (START) domain containing 5	stard5	BI076697	1.9	1.6	0.0103
Ras-GTPase-activating protein SH3-domain binding protein	33bp	BC021156	-1.5	-1.8	0.0104
SH3-domain GRB2-like B1 (endophilin)	sh3glb1	AV0 05520	1.5	1.7	0.0104
SNAP-associated protein	Snapap	BB667523	1.5	1.9	0.0104
CDC42 effector protein (Rho GTPase binding) 5	3do42 ep5	NM_021454	2.1	3.5	0.0104
TEA do main family member 4	ead4	D87965	-1.6	-2.0	0.0105
Hydroxysteroid dehydrogenase like 2	4sdi2	BM200015	2.0	1.6	0.0105
zinc finger homeodomain 4	Cfh4	NM_030708	2.6	1.8	0.0105
protein tyrosine phosphatase, non-receptor type 12	tpn12	X63440	1.6	1.9	0.0105
phosphoglucomutase 2	gm2	BC008527	1.6	2.1	0.0105
Cell cycle progression 1	Copg1	BC006717	3.5	2.1	0.0105
TAP binding protein	apbp	AF043943	1.8	2.6	0.0105
osteoglycin	Dgn	BB542051	9'8	3.8	0.0105
insulin-like growth factor 2, binding protein 1	gf2bp1	BB4 99476	-2.7	-1.8	0.0106
malic enzyme 2, NAD(+)-dependent, mitochondrial	Ae2	BM235734	-1.5	-1.8	0.0106
Transmembrane protein 66	mem66	BC022616	1.8	1.5	0.0106
olfactomedin-like 3	Olfml3	NM_133859	2.0	1.6	0.0106
Rearranged L-myc fusion sequence	RF	BF020283	1.5	1.9	0.0106
dicarbonyl L-xylulose reductase	Dexr	BC012247	1.7	2.2	0.0106
sorting nexin 6	Snx6	BC025911	-1.5	-1.9	0.0107
2,4-dienoyl CoA reductase 1, mitochondrial	Decri	NM_026172	1.5	1.8	0.0107
acetyl-Coenzyme A acytransferase 1	vcaa1	NM_130864	2.3	4.0	0.0107
Proline, glutamic acid and leucine rich prote in 1	Pelp1	BC016444	-1.9	-1.5	0.0108
coiled-coil domain containing 90B	Codc90b	AK0 09370	1.8	1.5	0.0108
cystinosis, nephropathic	Chrs	NM_031251	1.5	1.9	0.0108
JTV1 gene	tv1	BC026972	-1.5	-1.8	0.0109
guanine nu cleotide binding protein, beta 5	Snb5	BC016135	1.7	2.4	0.0109
interferon-related developmental regulator 2	frd2	BB540964	-2.4	4.6	0.0110
CDC42 effector protein (Rho GTPase binding) 3	Cdc42ep3	BB012489	-1.5	-1.9	0.0110
kit ligand	Citl	BB8 15530	-1.7	-2.4	0.0111
sy nap tophysin-like protein	Sypl	BE3 33485	-1.6	-2.1	0.0111
minichromosome maintenance deficient 10 (S. cerevisiae)	Acm10	AK0 10648	-1.5	-1.9	0.0112
Intraflagellar transport 80 homolog (Chlamydomonas)	ft80	AK0 19542	1.8	1.5	0.0112
acetyl-Coenzyme A synthetase 2 (ADP forming)	vcas2	NM_019811	1.5	1.8	0.0112
expressed sequence C78339	078339	BG075168	1.5	1.8	0.0112

				-	
Genname	ymbol	Gen Bank Accesion	Exp. 1	EXP. Z	D- Wert
phospholipase D3	d3	NM_011116	1.6	2.0	0.0112
motile sperm domain containing 1	Nospd1	BC018329	2.2	1.7	0.0114
polymerase (DNA directed), delta 2, regulatory subunit	*old2	NM_008894	-2.0	-3.1	0.0115
nuclear factor, erythroid derived 2, like 2	1fe.212	NM_010902	1.6	2.0	0.0115
armadillo repeat containing, X-linked 1	rmcx1	BC021410	1.8	2.8	0.0117
cyclin A2	cona2	X75483	-1.8	-2.7	0.0119
protocadherin 18	odh18	BM218630	1.9	1.5	0.0119
ecotropic viral integration site 5	WI5	AI255184	1.5	1.9	0.0119
Centromere protein M	cenpm	NM_025639	-1.5	-1.9	0.0120
glutamate receptor, ionotropic, N-methyl D-asparate-associated protein 1 (glutamate binding)	ŝrina	AW212189	1.6	2.3	0.0120
RIKEN cDNA 2610024G14 gene	610024G14Rik	NM_019836	-2.5	-1.7	0.0121
ATPase, Cu++ transporting, alpha polypeptide	tp7a	U03434	2.8	1.8	0.0121
glutathione S-transferase, alpha 4	ista4	NM_010357	2.6	1.7	0.0123
S-phase kinase-associated protein 2 (p45)	kp2	BB7 84099	-2.0	-3.2	0.0124
Rab acceptor 1 (prenylated)	tabac1	L40934	1.6	2.2	0.0124
RIKEN cDNA 1110007A13 gene	110007A13Rik	BC025641	-1.6	-2.1	0.0125
cDNA sequence BC057552	IC057552	BG069746	-1.5	-1.9	0.0126
histidine triad nucleotide binding protein 2	lint2	AF356874	1.8	2.7	0.0126
RIKEN cDNA 1810042K04 gene	810042K04Rik	BC027410	-1.6	-2.0	0.0127
neural precursor cell expressed, developmentally down-regulted gene 4	ledd4	NM_010890	1.6	2.2	0.0127
Zinc finger CCCH type, antiviral 1	c3hav1	BQ180736	1.7	2.4	0.0127
RIKEN cDNA 6330406115 gene	330406115Rik	AK0 18128	2.3	1.7	0.0128
ankyrin repeat domain 5	mkrd5	BB017776	1.5	1.9	0.0128
prickle like 1 (Drosophila)	hickle1	BC022643	3.0	7.3	0.0128
cytosolic ovarian carcinoma antigen 1	cova1	BC026450	2.1	1.6	0.0129
transformation related protein 53 inducible nuclear protein 1	mp53inp1	AW495711	2.4	4.7	0.0129
ASF1 anti-silencing function 1 homolog B (S. cerevisiae)	sf1b	BC003428	-1.7	-2.4	0.0131
RIKEN cDNA 2810433K01 gene	810433K01Rik	NM_025581	-1.6	-2.0	0.0133
cAMP responsive element binding protein 3	creb3	BG070002	1.9	1.5	0.0133
calcium/calmodulin-dependent protein kinase II, detta	amk2d	NM_023813	1.5	1.9	0.0133
BCL2/adenovirus E1B 19kDa-Interacting protein 1, NIP3	inip3	NM_009760	3.0	7.6	0.0133
surfeit gene 5	surf5	NM_011513	-1.7	-2.4	0.0134
homeo box A4	loxa4	AV135424	-1.9	-1.5	0.0135
RIKEN cDNA 2310051E17 gene	310051E17Rik	AW488885	1.7	2.6	0.0135
thymidine kinase 1	'k1	NM_009387	-1.9	-3.2	0.0136

			-		Contraction of the local distribution of the
Genname	ymbol	Gen Bank Accesion	Exp. 1	Exp. 2 p	- Wert
ribosomal protein L22	tpl22	NM_009079	2.4	1.7	0.0136
Transmembrane protein 176b	mem176b	NM_023056	10.1	3.5	0.0137
polo-like kinase 1 (Drosophila)	lk1	NM_011121	-2.1	-1.6	0.0139
fatty acid binding protein 5, epidermal	abp5	BC002008	-2.1	-3.7	0.0142
protein kinase C, nu	rikon	BF160591	1.5	2.0	0.0142
melanoma antigen, family D, 2	laged2	AF319976	6.1	2.7	0.0142
RIKEN cDNA 3110001120 gene	110001I20Rik	NM_133725	2.1	3.9	0.0142
survivor of motor neuron protein interacting protein 1	ip1	AK013414	-1.5	-2.0	0.0143
X-box binding protein 1	bp1	NM_013842	1.5	1.9	0.0143
cytochrome P450, family 39, su bfamily a, polypeptide 1	yp39a1	NM_018887	5.0	2.4	0.0143
DNA segment, Chr 14, ERATO Doi 500, expressed	14Ertd500e	BC011095	-1.5	-1.9	0.0145
glucosidase, beta, acid	sba	NM_008094	1.6	2.3	0.0145
connective tissue growth factor	igf	NM_010217	-2.1	-3.7	0.0146
fasciculation and elongation protein zeta 2 (zygin II)	622	BM206792	-1.5	-2.0	0.0146
Zinc finger protein 703	fp703	BI558298	2.1	3.9	0.0146
protocadherin beta 21	odhb21	NM_053146	2.6	1.7	0.0147
glutathione S-transferase, mu 2	istm2	NM_008183	3.3	1.9	0.0147
synaptopodin	ynpo	BB4 26294	5.3	2.5	0.0148
ed2 oncogene	ct2	007900 MN	-1.6	-2.1	0.0149
RNA binding motif protein, Y chromosome, family 1, member A1	tbmY1a1	NM_011253	2.0	1.5	0.0149
Trafficking protein particle complex 6A	rappo6a	NM_025960	1.6	2.1	0.0149
thyroid hormone receptor alpha	hra	BI076689	1.6	2.2	0.0149
gap junction membrane channel protein beta 3	jb3	NM_008126	-2.6	-6.1	0.0150
pyrroline-5-carboxylate reductase family, member 2	yor2	NM_133705	-1.7	-2.5	0.0150
max binding protein	Int	NM_010813	2.0	3.7	0.0150
kinesin family member 11	JF1 1	BB827235	-1.8	-2.8	0.0151
SH3-domain kinase binding protein 1	h3kbp1	BB3 26929	1.5	2.0	0.0151
F-box only protein 25	bxo 25	NM_025785	1.8	2.8	0.0151
solute carrier family 25 (mitochondrial carrier, dicarboxylate transporter), member 10	lc25a10	BC003222	-2.0	-1.5	0.0152
chromosome condensation 1	thc1	NM_133878	-2.0	-3.7	0.0153
Notchless homolog 1	lle1	BC018399	-1.5	-2.0	0.0153
RIKEN cDNA 1110014J01 gene	110014J01Rik	NM_029101	-1.5	-2.0	0.0154
sarcoma amplified sequence	as	AK0 12853	1.6	2.3	0.0154
major vault protein	Np	NM_080638	1.7	2.6	0.0155
8-oxoguanine DNA-glycosylase 1	991	NM_010957	-1.5	-2.0	0.0156

Gannama	Sumbol	Gen Bank Accesion	Evo 4	6 u 2	Mart
Designments neighbor of Brca1 gene 1	Nbri	AF227188	1.6	2.3	0.0156
Deoxyribonu clease 1-like 1	Dnase 111	AK0 09174	1.7	2.7	0.0156
thymoma viral proto-oncogene 1	Akt1	M94335	-2.5	-1.7	0.0157
ankyrin repeat and FYVE domain containing 1	Ankfy1	NM_009671	1.5	2.0	0.0157
WD repeat domain 5	Mdr5	AV095579	-1.7	-2.5	0.0158
nucleobindin 2	Nucb2	NM_016773	2.1	1.5	0.0158
24-dehydrocholesterol reductase	Dhcr24	BG 29 5389	-3.5	-11.1	0.0159
polymerase (DNA directed), alpha 2	Pola2	NM_008893	-1.7	-2.7	0.0159
mutS homolog 6 (E. coli)	Msh6	U42190	-1.6	-2.4	0.0159
Sjogren's syndrome/scleroderma autoantigen 1 homolog (human)	Sssca1	BC021593	-1.5	-2.0	0.0159
runt related transcription factor 1	Runx1	NM_009821	1.7	2.7	0.0159
eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)	Eefid	BB2 92776	-2.4	-1.6	0.0162
Harvey rat sarcoma oncogene, subgroup R	Rias	NM_009101	2.1	4.3	0.0163
transducin (beta)-like 3	Tbl3	BC019504	-1.7	-2.6	0.0164
heterogeneous nuclear ribonucleoprotein A/B	Hnrpab	AK0 13709	-1.7	-2.5	0.0164
proteasome (prosome, macropain) 28 subunit, beta	Psme2	NM_011190	2.7	1.7	0.0164
minichromosome maintenance deficient 3 (S. cerevisiae)	Mcm3	BI658327	-2.1	4.1	0.0165
CD47 antigen (Rh-related antigen, integrin-associated signal transducer)	Cd47	AK0 18679	2.4	1.6	0.0166
Folliculin	Flon	AV269574	1.6	2.3	0.0166
solute carrier family 19 (sodium/hydrogen exchanger), member 1	Slc19a1	AI 323572	-1.7	-2.8	0.0168
tripartite motif protein 37	Trim37	BM119247	-2.1	4.2	0.0170
cellutar retinoic acid binding protein I	Crabp1	NM_013496	1.6	2.4	0.0170
Topoisome rase DNA II beta binding protein	Topbp1	BC007170	-1.5	-2.2	0.0173
LIM and senescent cell antigen-like domains 1	Lims1	BC005621	-1.8	-3.0	0.0174
imprinted and ancient	mpact	NM_008378	2.2	1.6	0.0174
cultin 7	Cul7	NM_025611	1.7	2.5	0.0174
HLA-B associated transcript 2	Bat2	AK0 19427	-2.5	-1.6	0.0175
germ cell-specific gene 2	Gsg2	BE457839	-2.7	-7.0	0.0178
X-ray repair complementing defective repair in Chinese hamster cells 2	Krcc2	AV3 38138	-1.6	-2.3	0.0179
sine oculis-related homeobox 1 homolog (Drosophila)	Six1	BB1 37929	2.7	1.7	0.0179
histocompatibility 2, M region locus 3	H2-M3	NM_013819	3.2	1.8	0.0179
AHA1, activator of heat shock 90kDa protein ATPase homolog 1 (yeast)	Ahsa1	BC025552	-1.9	-3.5	0.0180
Dip3 beta	Dip3b	BC002232	1.8	3.2	0.0180
erythroid differentiation regulator 1	Erdr1	AJ007909	-2.4	-1.6	0.0181
Ubiquiin 4	UbqIn4	BB764994	-1.8	-3.1	0.0182

					de acaserer e
Genname	Symbol	Gen Bank Accesion	Exp. 1	Exp. 2	p-Wert
spectrin beta 2	Spnb2	BQ174069	1.5	2.1	0.0182
ets variant gene 1	Etv1	NM_007960	1.6	2.5	0.0183
histocompatibility 2, T region locus 10	H2-T10	NM_010395	4.9	2.2	0.0186
procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide	o4ha1	AI 314028	1.6	2.6	0.0186
DEAD (Asp-Glu-Ala-Asp) box polypeptide 27	Ddx27	BC011321	-1.6	-2.3	0.0188
DNA segment, Chr 10, ERATO Doi 610, expressed	D10Ertd610e	AU014694	1.8	3.1	0.0189
ADP-ribosylation factor 5	Arf 5	NM_007480	1.5	2.1	0.0190
G prote in-coupled receptor associated sorting protein 1	Gprasp1	BC027187	1.6	2.4	0.0190
T-box18	l bx18	NM_023814	1.7	2.8	0.0191
replication protein A1	Rpa1	BM244983	-1.6	-2.4	0.0192
chaperonin subunit 3 (gamma)	Cot3	AL 024092	-1.5	-2.2	0.0192
timeless homolog (Drosophila)	l'ime less	BM230269	-3.2	-10.5	0.0193
LPS-induced TN factor	_itaf	AV360881	1.6	2.5	0.0197
Rho GTPase activating protein 18	Arh gap 18	BB667215	2.3	1.5	0.0198
RAD54 like (S. cerevisiae)	Rad541	AV3 10220	-2.1	4.3	0.0200
serine hydroxymethyl transferase 1 (soluble)	Shmt1	NM_009171	-1.9	-3.5	0.0200
heat shock protein 1 (chaperonin)	Hspd1	AI648003	-1.5	-2.2	0.0201
placenta-specific 8	Plac8	AF263458	1.6	2.5	0.0201
fibroblast growth factor 7		NM_008008	2.6	1.6	0.0202
tetratricopeptide repeat domain 30B	Ttc30b	BC026507	1.5	2.2	0.0206
Solute carrier family 44, member 1	Slc44a1	BC025941	1.9	3.6	0.0207
cold inducible RNA binding protein	Cirbp	NM_007705	1.7	2.9	0.0211
interferon induced transmembrane protein 3	fitm3	BC010291	1.5	2.2	0.0212
glutaredoxin 1 (thiottransferase)	3lrx1	AF276917	1.6	2.4	0.0214
Transmembrane protein 48	Tmem48	BC021337	-1.8	-3.4	0.0217
pyrroline-5-carboxylate reductase-like	ayorl	NM_025412	-1.7	-3.1	0.0217
chordin	Chrd	NM_009893	2.9	1.7	0.0217
PFTAIRE protein kinase 1	Pftk1	AI 327038	1.9	3.6	0.0217
signal recognition particle receptor, B subunit	Srprb	NM_009275	-1.5	-2.2	0.0218
carbonic anhydrase 9	Car9	AJ245857	2.1	4.9	0.0222
splicing factor, arginine/serine-rich 1 (ASF/SF2)	Sfrs1	X66091	-1.5	-2.4	0.0223
histone 1, H2bc	Hist1h2bc	NM_023422	4.2	2.0	0.0229
procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha II polypeptide	o4ha2	NM_011031	1.6	2.7	0.0229
adaptor-related protein complex 3, sigma 1 subunit	Ap3s1	NM_009681	1.6	2.5	0.0230
caspase 6	Casp6	NM_009811	1.7	2.9	0.0233

Genname	sumbol	Gen Bank Accesion	Exn 1	Exn 2	n-Wert
RIKEN cDNA 5730420B22 gene	5730420B22Rik	BC027108	4.1	1.9	0.0235
ras homolog gene family, member E	Shoe	BC009002	5.1	2.1	0.0235
laminin B1 subunit 1	.amb1-1	BG 97 0109	1.5	2.2	0.0235
dedicator of cytokinesis 7	Dock7	NM_026082	2.0	4.1	0.0235
cyclin G2	Cong2	U95826	4.0	20.9	0.0236
zinc finger protein 36	Zfp36	X14678	1.5	2.3	0.0237
solute carrier family 35 (UDP-glucuronic acid/UDP-N-acetylgalactosamine dual transporter), member D1	Slc35d1	BB4 09668	-2.3	-1.5	0.0238
myristoylated alanine rich protein kinase C substrate	Marcks	AW546141	3.1	1.7	0.0238
Bardet-Biedl syndrome 2 homolog (human)	3bs2	AF342737	2.1	4.9	0.0239
ZW10 interactor	Zwint	BC013559	-1.6	-2.8	0.0242
heat shock protein, A	Hspa9a	AA543265	-1.6	-2.8	0.0245
translocase of outer mitochondrial membrane 40 homolog (yeast)	romm40	AF109918	-1.6	-2.7	0.0245
zuotin related factor 2	2:12	BG067003	-1.5	-2.3	0.0247
host cell factor C1 regulator 1 (XPO1-dependent)	Hofo1r1	BF580567	2.0	4.8	0.0247
chemokine-like factor super family 3	Ckifs B	NM_024217	1.7	3.1	0.0249
low density lipoprotein receptor-related protein 8, apolipoprotein e receptor	.m8	NM_053073	-1.6	-2.8	0.0251
Transmembrane protein 109	[mem109	AW494906	-1.7	-3.1	0.0252
diptheria to xin resistance protein required for diphthamide biosynthesis (Saccharomyces)-like 2	Oph212	AK011199	-1.6	-2.7	0.0252
RIKEN cDNA D930010J01 gene	0930010J01Rik	NM_134147	1.9	3.8	0.0252
Yipt domain family, member 2	/ipf2	AV166218	1.9	3.9	0.0255
Fas (TNF receptor superfamily member)	se -	BG976607	-2.4	-6.9	0.0256
nucleosome assembly protein 1-like 1	Vap111	BG 06 4031	-1.7	-3.2	0.0256
PDGFA associated protein 1	dap1	BG 06 5186	-1.6	-2.6	0.0257
lamin B1	-mnb1	AA270173	-1.6	-2.5	0.0257
insulin receptor substrate 1	rs1	BB345784	1.6	2.7	0.0257
RIKEN cDNA 2610016C23 gene	2610016C23Rik	AK016786	-1.7	-3.2	0.0258
DEAD (Asp-Glu-Ala-Asp) box polypeptide 56	Ddx56	BC018291	-1.7	-2.9	0.0258
mannan-binding lectin serine protease 1	Masp1	AB049755	3.7	1.8	0.0258
ubiquitin carboxyl-terminal esterase L5	Jchl5	AV313813	-1.7	-3.2	0.0261
calcyclin binding protein	Cacybp	AK0 13924	-1.7	-3.1	0.0267
pericentrin 2	Pont2	NM_008787	-1.7	-3.2	0.0268
tumor necrosis factor (ligand) superfamily, member 12	Enfsf12	BI 730298	1.5	2.5	0.0268
ATP-binding cassette, sub-family F (GCN20), member 2	Abcf2	BC003300	-1.5	-2.4	0.0272
makonin, ring finger protein, 1	Akm 1	BQ176661	1.5	2.5	0.0273
DNA segment, Chr 4, Wayne State University 53, expressed	04Wsu53e	BE447520	1.6	2.6	0.0273

Genname	oympol	Gen Bank Accesion	EXP. 1	EXP. 4	heven
nucleolar and colled-body phosphoprotein 1	Nolc1	NM_053086	-1.6	-2.9	0.0274
nudix (nucleoside diphosphate linked moiety X)-type motif 13	Nudt13	NM_026341	1.5	2.5	0.0278
solute carrier family 7 (cationic amino acid transporter, y+ system), member 5	SIc7a5	BC026131	-2.4	5.7-	0.0279
cDNA sequence BC025462	BC025462	BC025462	-1.8	-3.5	0.0279
CCAAT/enhancer binding protein (C/EBP), delta	Cebpd	BB831146	2.2	6.4	0.0279
RIKEN cDNA 2600005C20 gene	2600005C20Rik	AV228374	-1.6	-2.7	0.0280
Gram domain containing 1A	Gramd1a	NM_027898	1.6	2.9	0.0282
proteaseome (prosome, macropain) 28 subunit, 3	Psme3	U60330	-1.7	-3.2	0.0283
DnaJ (Hsp40) homolog, subfamily C, member 9	Dnajc9	BM942465	-1.7	-3.4	0.0284
progressive ankylosis	ank	NM_020332	1.8	3.6	0.0288
reversion-inducing-cysteine-rich protein with kazal motifs	Reck	NM_016678	1.5	2.5	0.0289
nuclear receptor coactivator 1	Ncoa1	NM_010881	1.6	2.9	0.0293
Kelch-like 24	KIhl24	BC021407	2.3	6.8	0.0294
cell division cycle 25 homolog A (S. cerevisiae)	Cdc25a	C76119	-1.5	-2.5	0.0295
synovial sarcoma, X member B, breakpoint 1	Ssxb1	NM_026492	1.7	3.3	0.0296
ceroid-lipotuscinosis, neuronal 2	CIn2	NM_009906	1.5	2.5	0.0299
Adult male testis cDNA, RIKEN full-length enriched library, clone:4921508F21		BQ175154	1.8	3.7	0.0299
zinc finger homeobox 1a	Zfhx1a	NM_011546	1.6	3.0	0.0303
protein kinase, DNA activated, catalytic polypeptide	Prkdc	D87521	2.5	1.5	0.0305
replication factor C (activator 1) 5	Rfc5	AK0 11489	-1.7	-3.7	0.0316
pleckstrin homology domain containing, family F (with FYVE domain) member 1	Plekhf1	BC002120	3.5	1.7	0.0319
fibronectin type III domain containing 3	Fndc3	BC022140	1.9	5.0	0.0325
Uridine-cytidine kinase 2	Uck2	NM_030724	-1.5	-2.6	0.0328
vitamin D receptor	Vdr	AV2 90079	1.6	3.1	0.0330
histone 1, H2ae	Hist1h2ae	W91024	-1.6	-3.0	0.0335
transcription factor 19	Tcf19	BC004617	-1.5	-2.7	0.0336
adenylate kinase 2	Ak2	NM_016895	-1.5	-2.7	0.0339
neurobeachin	Nbea	AA986379	1.8	4.3	0.0342
signal transducer and activator of transcription 3	Stat3	AK0 04083	1.8	4.5	0.0343
RIKEN cDNA 6230416J20 gene	6230416J20Rik	BB827546	-1.7	-3.7	0.0344
Jun-B oncogene	dunb	NM_008416	2.7	1.5	0.0348
coagulation factor III	F3	BC024886	3.3	1.6	0.0349
chromatin assembly factor 1, subunit B (p60)	Chaf1b	BC013532	-1.6	-3.4	0.0351
SRY-box containing gene 4	Sox4	BG083485	1.9	4.7	0.0352
peptidy/prolyl isomerase D (cyclophilin D)	Ppid	BC011499	-1.7	-3.7	0.0356

Genname	Symbol	Gen Bank Accesion	Exp. 1	Exp. 2 p	- Wert
Translocase of inner mitochondrial membrane 50 homolog (yeast)	Timm50	BI408935	-1.6	-3.4	0.0356
on-SMC condensin I complex, subunit G	Ncapg	BB7 02347	-1.6	-3.3	0.0362
expressed sequence AI506816	AI506816	BI438039	-1.8	4.3	0.0367
asporin	Aspn	NM_025711	4.7	1.8	0.0367
RIKEN cDNA 2310039E09 gene	2310039E09Rik	NM_026509	3.0	1.6	0.0369
tripartite motif protein 30	Trim30	AF220015	6.7	2.1	0.0372
WD repeat domain 4	Wdr4	BE854862	-1.7	-3.6	0.0375
citrate lyase beta like	Clybl	BC023398	3.0	1.6	0.0376
spermidine synthase	Sm	NM_009272	-1.7	4.0	0.0379
Solute carrier family 25, member 35	SIc25a35	BC019996	1.6	3.4	0.0379
microtubule-actin crosslinking factor 1	Macf1	BM248206	1.5	2.9	0.0380
DNA-dama ge-inducible transcript 4	Ddit4	AK0 17926	1.5	3.0	0.0380
basic leucine zipper and W2 domains 2	Bzw2	BM932775	-1.5	-3.0	0.0383
WD repeat and FYVE domain containing 1	Wdfy1	BM233251	1.8	4.8	0.0383
c6.1a protein	C6.1A	AI462244	-1.5	-3.0	0.0385
peptidylprolyl isomerase (cyclophilin) like 5	Ppil5	BG067404	-1.5	-3.0	0.0386
BTB and CNC homology 1	Bach1	AV324314	1.7	4.1	0.0389
Ropporin 1-like	Ropn11	AF305427	1.7	4.3	0.0393
Amyloid beta (A4) precursor protein-binding, family B, member 2	Apbb2	AW542721	1.6	3.5	0.0394
Meteorin, glia cell differentiation regulator	Metrn	BE947704	-1.5	-3.0	0.0397
RIKEN cDNA 2010012C16 gene	2010012C16Rik	AK0 06303	-1.7	4.0	0.0398
pyruvate dehydrogenase kinase, isoenzyme 4	Pdk4	NM_013743	2.1	7.5	0.0409
bromodomain, testis-specific	Brdt	NM_054054	1.5	3.1	0.0412
A kinase (PRKA) anchor protein 2	Akap2	BC003735	-1.5	-3.0	0.0413
GINS complex subunit 1 (Psf1 homolog)	Gins1	AK013116	-1.6	-3.5	0.0415
DNA segment, Chr 13, Wayne State University 177, expressed	D13Msu177e	AK0 13251	-1.6	-3.7	0.0416
RIKEN cDNA 5830416A07 gene	5830416A07Rik	NM_024268	-1.6	-3.3	0.0418
glutamate-rich WD repeat containing 1	Grwd1	BB251524	-1.5	-2.9	0.0418
a disintegrin and metalloproteinase domain 19 (meltrin beta)	Adam19	NM_009616	3.2	1.6	0.0425
Hus1 homolog (S. pombe)	Hus1	AF076845	-1.5	-3.0	0.0426
thioredoxin interacting protein	Txnip	AF173681	2.5	12.8	0.0432
leukocyte specific transcript 1	Lst1	U72644	1.6	3.6	0.0433
F-box only protein 6b	Fbxo 6b	NM_015797	1.6	3.6	0.0434
hypothetical protein D030056L22	D030056L22	BB256746	-1.5	-3.0	0.0436
N-myc downstream regulated gene 4	Ndrg4	AV0 06122	1.8	4.8	0.0436

Genname	Symbol	Gen Bank Accesion	Exp. 1	Exp. 2	p-Wert
Yippee-like 3 (Drosophila)	Ypel3	BI660196	1.7	4.2	0.0443
phosphofructokinase, liver, B-type	Pfkl	NM_008826	1.5	3.1	0.0448
RAD51 associated protein 1	Rad51ap1	BC003738	-1.5	-3.1	0.0450
RIKEN cDNA 2210010N04 gene	2210010N04Rik	BC025567	1.6	3.5	0.0453
glycoprotein (transmembrane) nmb	Gpnmb	NM_053110	1.6	3.6	0.0453
complement component 1, r subcomponent	C1r	NM_023143	3.1	1.5	0.0456
origin recognition complex, subunit 1-like (S.cereviaiae)	Orc11	BC015073	-1.8	-5.7	0.0457
neoplastic progression 1	Npn1	BB542096	5.6	1.8	0.0462
glutamate-cysteine ligase, catalytic subunit	Gclc	BC019374	-1.5	-3.4	0.0486
chemokine (C-X-C motif) ligand 1	Cxcl1	NM_008176	-1.7	-4.4	0.0491
RAD51 homolog (S. cerevisiae)	Rad51	NM_011234	-1.7	-4.5	0.0496
gap junction membrane channel protein alpha 1	Gja 1	M63801	-1.5	-3.5	0.0498
regulatory factor X, 5 (influences HLA class II expression)	Rfx5	BB3 92 192	1.9	7.0	0.0500