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Abstract

In this thesis we investigate several phenomenologically important properties of top-quark
pair production at hadron colliders. We calculate double differential cross sections in two
different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI)
kinematics. In pair invariant-mass kinematics we are able to present results for the double
differential cross section with respect to the invariant mass of the top-quark pair and the
top-quark scattering angle. Working in the threshold region, where the pair invariant mass
M is close to the partonic center-of-mass energy

√
ŝ, we are able to factorize the partonic

cross section into different energy regions. We use renormalization-group (RG) methods to
resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy.
On a technical level this is done using effective field theories, such as heavy-quark effective
theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied
when working in 1PI kinematics, leading to a calculation of the double differential cross
section with respect to transverse-momentum pT and the rapidity of the top quark. We
restrict the phase-space such that only soft emission of gluons is possible, and perform a
NNLL resummation of threshold logarithms.

The obtained analytical expressions enable us to precisely predict several observables,
and a substantial part of this thesis is devoted to their detailed phenomenological analysis.
Matching our results in the threshold regions to the exact ones at next-to-leading order
(NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL
order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed
order perturbation theory. We give numerical results for the invariant mass distribution
of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum.
We predict the total cross section, separately for both kinematics. Using these results, we
analyze subleading contributions to the total cross section in 1PI and PIM originating from
power corrections to the leading terms in the threshold expansions, and compare them to
previous approaches. We later combine our PIM and 1PI results for the total cross section,
this way eliminating uncertainties due to these corrections. The combined predictions for
the total cross section are presented as a function of the top-quark mass in the pole, the
minimal-subtraction (MS), and the 1S mass scheme. In addition, we calculate the forward-
backward (FB) asymmetry at the Tevatron in the laboratory, and in the tt̄ rest frames as
a function of the rapidity and the invariant mass of the top-quark pair at NLO+NNLL.
We also give binned results for the asymmetry as a function of the invariant mass and the
rapidity difference of the tt̄ pair, and compare those to recent measurements. As a last
application we calculate the charge asymmetry at the LHC as a function of a lower rapidity
cut-off for the top and anti-top quarks.
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Time flies like an arrow. Fruit flies like a banana.
Croucho Marx
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1. Preface

At the moment the probable most complicated machine ever build by mankind has been in
operation for about 2 years, the large hadron collider (LHC). Starting construction in 1995
it is also one of the biggest, most expensive scientific instruments ever made. This machine
represents the enormous effort to understand nature, explicitly particle physics, in more
detail. The fact that physicists have to go to such great length, may it be the at LHC or
at the Tevatron, to obtain new data, and observe unknown phenomena can be seen as a
sign of an already deep understanding of vast areas of nature. Concerning particle physics,
past generations of physicists have been astonishingly successful describing experimental
data better and better. After the big steps at the beginning of the 20th century, when
quantum physics and general relativity changed drastically our view of the world, came an
time were a refinement of the theoretical and experimental tools lead to a discovery of an
abundance of new particles. In the time until the late 70s of the last century the observed
forces, and the apparent zoo of particles were more and more understood. At present we
know about four forces, gravity, electromagnetism, the weak and the strong force. For the
main part of particle physics only the latter three are of importance. In the beginning of
the 1970s it became clear that the electromagnetic and weak force could be unified into
the so called electroweak force. The combination of theses two forces is build upon the
gauge group SU(2)L × U(1)Y , which is then broken down to U(1)em, and the weak force
which is mediate by the massive gauge bosons W± and Z. The concept of gauge theory
to describe interactions is one of the most fruitful realizations of theoretical physics in the
20th century. In combination with the Higgs mechanism to spontaneously break a given
gauge-symmetry, it is the base on which the standard model (SM) of particle physics is
founded. This standard model is a SU(3)C × SU(2)L × U(1)Y gauge group. The SU(3)C

is the non-abelian gauge group describing the strong interaction, the theory of which is
called quantum chromodynamics (QCD). The form of the QCD Lagrangian is

LQCD = −1

4
F (a)

µν F (a)µν + i
∑

q

Ψ̄i
qγ

µ(Dµ)ijΨ
j
q −

∑

q

mqΨ̄
i
qΨq i , (1.1)

where
F (a)

µν = ∂µA
a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν , (1.2)

and the covariant derivative is

(Dµ)ij = δij∂µ + igs

∑

a

taij
2
Aa

µ . (1.3)
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1. Preface

This Lagrangian describes the interaction of the gauge fields of QCD, the gluon fields Aa
µ,

with the Dirac spinor of a quark field Ψi
q with flavor q, and color i. A complication, due to

the non-abelian structure of QCD, is caused by the third term in (1.2), which represents
an interaction among the gauge bosons themselves. This interaction is governed by the
structure constant of the SU(3)C algebra fabc, which is connected to the color generators
ta through [ta, tb] = ifabc, and the QCD coupling constant gs. As the process we are
investigating is to a large extend governed by the interaction of quarks and gluons, we will
be mainly concerned with QCD.

In this thesis we want to calculate and present numerical results for several aspects
of the production process of top-quark pairs. The top-quark is the heaviest elementary
particle know today, with a current measured mass of about 173GeV [1]. This fact leads
to a number of consequences. Because of its large mass, the top quark has a very short
lifetime of the order of 10−25s, and it decays before any strong interaction can take place.
It is the only quark which does not hadronize before its decay, this makes it possible to
talk about a bare quark, which is otherwise not found in nature due to the concept of
confinement in QCD. On the other hand, the top-quark mass is close to the scale where
one assumes that the breaking of the electroweak symmetry takes place. Because of this,
the top-quark is expected to couple strongly to the fields responsible for the breaking. As
a consequence, the measurement of top-quark related properties at the Tevatron and LHC
are one of the main goals at these facilities. In different spectra, as the pT or invariant
mass distribution, signals of new physics are hoped to show up. In order to find these
new signals one has to have a precise understanding of already known phenomena. Thus,
calculating properties of top-quark pairs at hadron colliders is a crucial input to the search
for new physics. At the Tevatron, where the top-quark was first discovered, thousands of
top-events have been observed, and since some time the LHC is recording more and more
events. As experiments increase data and refine their techniques, theoretical predictions
have to be done with similar precision. This is the motivation of this thesis, in which
we calculate several important observables connected to top-quark pair production to the
highest available accuracy yet. The work presented here is based on our publications [2–6].

1.1. tt̄ Production: Theory Overview and Extensions

Presented in this Thesis

Increasing experimental precision asks for a matching accuracy from theoretical predictions.
In the following we give a short overview of the efforts made on the theory side and how
we extend this in the work presented here.

Theoretical calculations in QCD rely on the factorization formula for the differential
cross section, which is of the form [7]

dσ =
∑

Cij ⊗ fi/N1
⊗ fj/N2

, (1.4)

where ⊗ stands for a convolution. The hard-scattering kernel Cij can be calculated as a
series in αs and is related to the partonic cross section. The parton distribution functions

11



1. Preface

q

q̄

t

t̄

q q
tt

q̄ t̄ q̄ t̄

Figure 1.1.: The partonic quark-antiquark channel in tt̄ production. First line shows a
LO diagram. The lower line shows a subset of corresponding NLO diagrams,
virtual correction (left) and real emission (right).

(PDFs) fi/N1,2
, where i = q, q̄, g, contain the information about the parton i in an incoming

hadron N1,2
1 and are taken from experiment. A large amount of theoretical work is con-

cerned with the calculation of the partonic cross section Cij
2. Predictions for the total cross

section are based on NLO calculations [8–11] and have been known for over two decades.
Some time later also differential distributions [12–14] and the FB asymmetry [15,16] were
calculated to the same accuracy. The NLO computations suffer from theory uncertainties
larger than 10%, both for Tevatron and LHC center-of-mass energies. These uncertainties
are due to our imperfect knowledge of the parton distribution functions, and also to the
truncation of the perturbative series in the strong coupling constant, which introduces a
dependence on the unphysical renormalization and factorization scales into physical pre-
dictions. This theoretical uncertainty is typically reduced by including more terms in the
perturbative series, and for this reason the calculation of the differential partonic cross
section to NNLO has been an area of active research. Full NNLO predictions require the
calculation of two sets of corrections: i) virtual corrections, which can be split into genuine
two-loop diagrams [17–22] and one-loop interference terms [23–25]; ii) real radiation, which
involves one-loop diagrams with the emission of one extra parton in the final state, and
tree-level diagrams with two extra partons in the final state [26–29]. In spite of progress
made by several groups on different aspects of the NNLO calculations in the last few years,
especially in developing a new subtraction scheme and calculating the contributions from
double real radiation [30, 31], a significant amount of work is still required to assemble all
the elements.

Another way to improve on the fixed-order NLO calculation (and also the NNLO one,

1The N1,2 are in our case protons or anti-protons.
2In Fig. 1.1 we show a small subset of diagrams in tt̄ production up to NLO order.
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1. Preface

upon its completion) is to supplement it with threshold resummation [32, 33]3. More
precisely, one identifies a threshold parameter which vanishes in the limit where real
gluon emission is soft, expands the result to leading power in this parameter, and uses
renormalization-group methods to resum logarithmic corrections in this parameter to all
orders in the strong coupling constant. For the total cross section, one such approach is to
work in the threshold limit β → 0, where ŝ is the partonic center-of-mass energy squared,
and β is approximately the velocity of the top (or anti-top) quark. In this production
threshold limit the top quarks are produced nearly at rest and there are logarithmic terms
of the form αn

s lnm β (with m ≤ 2n), which can be resummed to all orders. This has
been done to leading-logarithmic (LL) order [34–39], next-to-leading-logarithmic (NLL)
order [40], and NNLL order [41–46]. Note that in this case not only logarithmic correc-
tions, but also Coulomb corrections involving inverse powers of β occur. An approach to
all-orders resummation of Coulomb terms can be found in [47].

A drawback of this method is that it performs resummation of terms that become impor-
tant in the region β → 0, which however gives a very small contribution to the total cross
section. We will see in Section 8.2 that, at the Tevatron and LHC, typical values of β are in
the range between 0.4 and 0.9. An alternative approach is to perform the threshold expan-
sion and resummation at the level of differential distributions, and to obtain the total cross
section by integrating the results. One such method works with the top-pair invariant mass
distribution dσ/dM , where M is the invariant mass of the tt̄ pair. The threshold limit for
this case of PIM kinematics is defined as z = M2/ŝ→ 1, and the corresponding threshold
logarithms are of the form αn

s [lnm(1 − z)/(1 − z)]+ (with m ≤ 2n− 1). In this limit only
soft gluons can be emitted, but β is a generic O(1) parameter, and the top-quark velocity
need not be small. Systematic resummation and fixed-order expansions of these logarithms
has been studied in Mellin moment space at NLL order [48–55]. Using techniques from
soft-collinear effective theory we extend this to NNLL order in momentum space in this
thesis. Furthermore we include formally subleading terms in the threshold limit which
have been known to be present in the analytical results of the fixed-order expanded hard
scattering kernels of other processes. We will call this scheme PIMSCET.

In general, it can be imagined that the approach based on differential distributions cap-
tures more contributions than the approach based on the small-β expansion, and therefore
gives more reliable predictions for the total cross section. Later in this thesis, we will argue
that this is indeed the case.

In addition to the invariant-mass distribution of the top-quark pair, the transverse-
momentum and rapidity distributions of the top quark (or anti-top quark) are also inter-
esting. In the case of distributions of the top quark, one collects the anti-top quark and
extra radiation into an inclusive hadronic state X[t̄] with total momentum pX , and defines
the threshold limit as p2

X → m2
t

4. In this limit of 1PI kinematics, only soft radiation is
allowed, but as in PIM kinematics the parameter β is an O(1) quantity. Soft gluon re-
summation for this case has been developed in Mellin moment space [56] and applied to

3We will elaborate on the concept of resummation in Section 2.3.
4mt represents the top-quark mass.
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1. Preface

the top-quark transverse-momentum distribution at NLL order [52] and recently also at
NNLL order [57], in the form of approximate NNLO predictions. Starting from these dis-
tributions, it is possible to obtain the total cross section by integrating over the kinematic
variables. This approach has been taken in [53–55,57]. In principle, in the threshold limit
PIM and 1PI kinematics encode the same soft gluon physics. Any differences between the
two cases are due to power-suppressed corrections. At realistic collider energies, however,
subleading terms are in general non-negligible, and one should study them carefully before
drawing any definite conclusions. We calculate the pT and rapidity distribution of the
top-quark to NNLL order in momentum space in this thesis and present NLO+NNLL pre-
dictions for the first time. As for PIM kinematics we include formally subleading terms in
the threshold limit. We will show that this “1PISCET” scheme is an improvement compared
to traditional approaches.

1.2. Chapter Outline

This work is splitted into four parts, Introduction, Theoretical setup, Phenomenology and
Conclusions. The first part deals with introductions to different areas in connection with
the topic of this thesis. This includes a short overview of the current status of top-physics
on the experimental in Sections 1.3. In addition to this several field theory concepts, such
as SCET and HQET, important for later parts of the thesis, are introduced in Chapter 2.
At the end of this chapter the idea of resummation is discussed.

In Part II, Theoretical setup, we present in detail the derivation of our analytical results.
We describe the factorization of the differential cross sections separately for the case of
PIM and 1PI kinematics. Working in PIM kinematics we present the factorization of the
double differential cross section with respect to the invariant mass of the tt̄ pair M and the
top-quark scattering angle θ in Chapter 4. We first define the kinematical setup and then
proceed to describe how we achieve to factorize the partonic cross section in the threshold
limit M2/ŝ → 1. Following this we give details about the important building blocks, the
hard and soft matrices, which are presented in Sections 4.2.3 and 4.2.4. We then derive
formulas for the resummed cross section in momentum space using RG methods. This, and
the the evaluation at NNLL order can be found in Section 4.2.5. In Chapter 5 we proceed
similar to the above for the case of 1PI kinematics. In this chapter we present results for
the factorized double differential cross section with respect to the transverse-momentum
and the rapidity of the top-quark. After the definition of the relevant kinematics, we
show how we apply our SCET formalism to the case of 1PI kinematics. We give the
relevant perturbative ingredients as the 1PI soft matrices in Section 5.2.1, and present our
resummed result for the cross section in Section 5.2.2. In Chapter 6 of the first part we
explain how approximate NNLO results can be obtained from our resummed formulas.
This again will be done separately for the case of PIM and 1PI kinematics. We finish this
chapter by comparing certain aspects of RG-improved perturbation theory (RG-improved
PT) to approximate NNLO.

Following the analytical calculations, in Part III we make use of our results to do detailed
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1. Preface

phenomenological studies. Working in PIM kinematics we give in Chapter 8 numerical re-
sults for the invariant mass distribution in Section 8.1, and for the total cross section in
Section 8.3. This is done at NLO+NNLL in RG-improved PT, and also at approximate
NNLO. At the end of this chapter, in Section 8.3.1, we compare our results to previous
calculations at the level of β =

√
1 − 4m2

t/ŝ distributions. In Chapter 9 we use our 1PI re-
sults to make phenomenological predictions for the rapidity and the transverse-momentum
distributions of the top-quark at the LHC and Tevatron. These predictions, again both at
NLO+NNLL and approximate NNLO order, can be found in Section 9.3. Integrating the
distributions, we present in Section 9.4 results for the total cross sections coming from 1PI
with the same accuracy. In Chapter 10 we use of our combined knowledge of PIM and 1PI
kinematics. In Section 10.1.1 the total cross section coming from the different kinematics
is analyzed. This is followed by giving combined numerical results for this observable as
a function of the top-quark mass, working in the pole mass (Section 10.1.2) or the MS
and 1S mass scheme (Section 10.1.3). The last part of this chapter, Section 10.2, deals
with the FB asymmetry at the Tevatron and the charge asymmetry at the LHC. We give
results for the FB asymmetry at the Tevatron in the laboratory frame as a function of
the rapidity of the top-quark. In the tt̄ rest frame the FB asymmetry is presented as a
function of the rapidity difference and the invariant mass of the top-quark pair. Following
this we compare our binned results to recent measurements. At the end of this section we
calculate the charge asymmetry at the LHC as a function of a lower rapidity cut-off for
the top and anti-top quarks.

We end with a summary of this work and an outlook on future extensions in Part IV.

1.3. Top-Quark Production: A Short Experimental

Overview

We now give a short overview about the experimental status of top-quark physics. Having
been postulated in 1973 by Kobayashi and Maskawa [58] the top-quark was first found at
the Tevatron in 1995 [59], where many of its properties have been studied.

The current world average given for the top mass is 172.9± 0.6± 0.9GeV5 [1]. The top
quark has a decay width of around 2GeV, which leads to a lifetime of roughly 5× 10−25s.
As already mentioned this time is too short for strong interactions to take place and no
hadronization occurs. Due to this fact one is able to analyze the properties of a bare quark.
There are two production modes, single-top and top-quark pair production. Single-top
production at the Tevatron is about half of the rate as for tt̄ pairs, and has been observed
by the two experiments CDF and D0 [60–62]. At the LHC this cross section has also been
measured [63, 64], and the value is again about half as much as for pair production. In
both cases the t-channel, as shown in Figure 1.2, is numerically dominant. An important
feature of single-top production is that the cross section is proportional to the absolute
square of the Vtb entry in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix.

5Given with statistical and systematic errors.
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1. Preface

Figure 1.2.: Four possible partonic production channels for single-top production. First
two: LO t-channel and s-channel process. Last two: LO diagrams for tW
production.

This makes single-top production an important process for the extraction of Vtb.
In this thesis we are concerned with the second production mode, tt̄ pair production,

therefore we will discuss this mode in more detail. The top quark decays nearly to 100%
into a W boson and a bottom quark. Other channels as t → W+ + d or t → W+ + s are
relatively small due to the suppression of off-diagonal entries in the CKM quark-mixing
matrix. TheW± itself decays roughly to 33% into a lepton and a neutrino and to about 67%
into quarks and antiquarks. This leads to the three tt̄ decay structures for tt̄ production
shown in Fig. 1.3, the dilepton channel, lepton + jets channel and the all-hadronic channel.
In the following we will give some information about recent measurements connected to tt̄
production relevant for this work.

Until recently all information about the top-quark and its properties did come from CDF
and D0 at the Tevatron, and still most of what we know about this particle comes from these
experiments. At the moment however two experiments at the LHC, CMS and ATLAS are
taking more and more data, and in the near future millions of top events will be recorded by
them. At the Tevatron there are several recent measurements dedicated to the total cross
section of tt̄ production, using the dilepton channel [65,66], the lepton + jets channel [67,68]
and the all-hadronic channel [69, 70]. The results of CDF of σtt̄ = 7.50 ± 0.48 pb [71] and
D0 σtt̄ = 7.56 +0.63

−0.56 pb [65]6 are compatible with each other and with the standard model
prediction for the total cross section.

The total cross section was very recently measured for the first time at the LHC by
the CMS [72] and the ATLAS collaboration [73], yielding 194 ± 72(stat.) ± 24(syst.) and
145 ± 31(stat.) +42

−27(syst.) respectively. The two published measurements were done with
3.1pb−1 and 2.9pb−1 of integrated luminosity. There are already preliminary results with up
to 0.7fb−1 from ATLAS [74], and CMS has many preliminary results with up to 1.09fb−1 as
for the total cross section [75,76]. At the time of this writing, LHC data is increasing rapidly
by the week, and results for more differential observables are expected to be published soon.

Besides the total cross section there are many other important properties of the top-
quark which are of interest. At the Tevatron, differential properties as the invariant mass
distribution of top-quark pairs [77] and the pT distribution of the top-quark [78] have been

6Both assuming mt = 175 GeV.
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1. Preface

Figure 1.3.: The three possible decay structures in tt̄ production. From the left: dilepton-
channel, lepton + jets channel and all-hadronic channel.

studied. The analysis of the different spectra of the top-quark have been used to give
results for the FB asymmetry at the Tevatron [79–82]. The measurements obtained by the
CDF collaboration [82] using 5.3fb−1 of data are App̄

FB = (15.0±5.5)% in the pp̄ frame, and
Att̄

FB = (15.8±7.5)% in the tt̄ frame. Those results agree with theoretical predictions within
about 1σ in the tt̄ frame, and within about 2σ in the pp̄ frame. In [82] a measurement of
the FB asymmetry in the tt̄ frame as a function of the invariant mass of the top-pair was
presented. The results were grouped in two bins, Mtt̄ < 450GeV and Mtt̄ ≥ 450GeV, and
they found for the latter bin Att̄

FB(Mtt̄ ≥ 450GeV) = (47.5 ± 11.4)%. This, much noticed,
result is more than 3σ higher than the standard model NLO prediction presented in the
same paper.

As the LHC has a symmetric initial condition there is no overall FB asymmetry but,
by applying cuts, one is able to measure a charge asymmetry which probes the same
structures also responsible for the FB asymmetry at the Tevatron. Preliminary results
for this observable have been published by ATLAS [83] and CMS [84]. In contrast to
the FB asymmetry at the Tevatron, the charge asymmetry at the LHC shows so far no
deviation from the standard model. It should be noted however, that this observable is
still dominated by statistical and systematical uncertainties, for instance the results of [83]
are AC = 0.024 ± 0.023(stat.) ± 0.016(syst.).

As already mentioned the top quark is especially interesting because its mass is close to
the scale where new physics is expected to occur. New resonances coming from Kaluza-
Klein-gluon decays [85], axigluons [86] or a new Z ′ boson [87] and many other beyond
standard model theories can lead to an excess in various channels connected to top samples.
Several searches for new phenomena have been undertaken by CDF (for example [88–90])
and by D0 (for example [91–93]). Except the FB asymmetry, which has a deviation from
the standard model, there has been no clear sign of new physics in top samples. At the
LHC only preliminary results for new physics searches are available at the moment. Several
searches for new resonances have been made. At ATLAS searches for a narrow Z ′ [94, 95]
and for FCNCs [96] have been done, and CMS presents preliminary results for heavy boson
searches [97]. Both experiments do not see new resonances at the moment.

The above shows that top-quark physics is an active area of research and is very impor-
tant for the search for new physics.
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2. Effective Field Theories

Without realizing it we are often using effective theories when analyzing physical problems.
For instance, atomic spectra can be described by a theory which does not know anything
about the internal structure of the nucleus, or orbitals can be calculated without taking
the earths structure into account. In both cases this can be done because there is a very
distinct separation of scales. In the case of the atomic spectrum there is the size of the
atom and the one of the nucleus, with a relative difference of the order of 105.

In nature we generally observe phenomena with distinct energies or lengths scales. When
explicitly applying scale separation in quantum field theories one talks of effective field
theories (EFTs), for a detailed introduction see for instance [98–100]. It should be noted
that the current view we have about the standard model of particle physics is that it is
itself an EFT.

In EFTs one makes use of the fact that large energy scales are suppressed by powers of
the ratio of the scales involved in the problem at hand. A prominent example in particle
physics is the Fermi coupling which is describing a four fermion interaction, leading to
an explanation of the beta decay of a neutron. Today on the other hand, we know that
the fermions are coupled through the exchange of a W boson. The large mass of the W
boson leads to the fact that the interaction is very good described by a contact force. In
general, when dealing with light degrees of freedom φ and some heavy fields Φ, one is
able to integrate out the heavy modes Φ to obtain an effective actions. This is done by
performing a path integral over the heavy states only 1

∫
DΦ ei

R

L(φ,Φ) = ei
R

Leff (φ) . (2.1)

As it turns out, the effective Lagrangian Leff can be expressed in terms of an expansion
in local operators

Leff = Ld≤4 +
∑

i

Oi

Λdim(Oi)−4
, (2.2)

where dim(Oi) stands for the dimension of the operator Oi. In (2.2) we broke the La-
grangian into two pieces, one containing the usual renormalizable terms with dimension
4 or less, and an infinite sum containing higher dimensional operators. Even though we
now have to deal with a infinite tower of operators these are suppressed due to increasing
powers of Λ. Here Λ characterizes the scale of short distance physics. By truncating the
series in (2.2) one is still able to make predictions with a certain accuracy at some lower

1In practices, integrating out the heavy degrees of freedom is performed using Feynman diagrams.
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2. Effective Field Theories

energy ω, as higher order operators are suppressed by powers of ω/Λ. This structure of
encoding low energy physics in Leff is referred to as decoupling, a concept which is based
on the work of K.Wilson [101]. In the following we will discuss two EFTs, soft-collinear
effective theory and heavy-quark effective theory, both will be used in the later part of this
thesis.

2.1. Soft-Collinear Effective Theory

Many processes in collider physics have very special kinematical conditions. For instance
in the case of tt̄ production the initial partons have a very high energy but nearly or no
invariant mass. To describe processes with such collinear partons and their interaction with
soft gluons, soft-collinear effective theory (SCET) [102–105] is an appropriate framework.
In the case of collider physics SCET has become one of the most successful frameworks
within factorization theorems can be established. SCET was first used in combination
with B̄ → Xsγ calculations. In recent years it has been applied to a wide range of
different processes. For example the concept of dynamical threshold enhancement found
in [106], improved predictions for Higgs production [107, 108], and event shapes in e+e−

annihilations [109]. Also using SCET in connection with parton showers was and is an
active area of research [110–112]. In the following we will give a brief introduction to
SCET.

We introducing two light-like reference vectors nν and n̄ν

nν = (1, 0, 0,−1) n̄ν = (1, 0, 0, 1) , (2.3)

with n · n̄ = 2 and n2 = n̄2 = 0. One can decompose any fourvector pν as

pν =
nν

2
n̄ · p+

n̄ν

2
n · p+ pν

⊥ ≡ (p−, p+, p⊥) , (2.4)

where p+ = n · p and p− = n̄ · p. If now the particle is collinear in the “+” direction the
momentum component in this direction will be big, the ’-’ component small. Using a small
expansion parameter λ the momentum can be assumed to scales as follows2

(p−, p+, p⊥) ∼ Q(λ2, 1, λ) , (2.5)

where Q is a large scale intrinsic to the process being studied. Furthermore we can identify
the general momentum regions

hard pν ∼ Q(1, 1, 1) (2.6)

collinear ’-’ pν ∼ Q(1, λ2, λ)

collinear ’+’ pν ∼ Q(λ2, 1, λ)

2In the literature one also finds a different expansion (p−, p+, p⊥) ∼ Q(λ, 1, λ1/2), which leads to the
same relative contributions.
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2. Effective Field Theories

soft pν ∼ Q(λ2, λ2, λ2)

By considering a collinear quark we are able to extract the SCET Lagrangian by expanding
the QCD Lagrangian in terms of λ. Let’s assume pν ∼ Q(1, λ2, λ), being the momentum
of an incoming quark at a collider for instance, and decompose

Ψµ(x) = Ψµ
c (x) + Ψµ

s (x) (2.7)

Aµ(x) = Aµ
c (x) + Aµ

s (x) .

In general, for a collinear (anti)particle u(v) in the n direction one can show that

un = 1/
√

2(u, σ3u) ,

vn = 1/
√

2(σ3v,v) , (2.8)

where u and v are the spinors of the particles. The particle un has the following properties

/nun = 0 ;
/n/̄n

4
un = un

3 (2.9)

We now split the collinear fermion field into Ψc(x) = ξ(x) + η(x) where

ξ = P+Ψc =
/n/̄n

4
Ψc , η = P−Ψc =

/̄n/n

4
Ψc .

4 (2.10)

In this way we have split the fields into a collinear part ξ and soft part η, which fulfill
/nξ = /̄nη = 0, By looking at the different propagators we can say something about the
scaling of the fields with respect to λ, we start with the fermion propagator

〈0|T [ξ(x)ξ̄(0)] |0〉 =
/n/̄n

4
〈0|T [Ψc(x)Ψ̄c(0)] |0〉 /̄n/n

4
(2.11)

=

∫
d4p

(2π)4

i

p2 + iǫ
e−ip·x /n/̄n

4
/p
/̄n/n

4
∼ λ4 1

λ2
,

where we used for instance that p2 = /̄n ·p /n ·p+p2
⊥ = λ0λ2 +λλ and d4p ∼ λ4. This implies

that ξ ∼ λ, and similar arguments show η ∼ λ2. For the soft quark field one obtains

Ψs(x)Ψ̄s(0) ∼ (λ2)4 1

λ4
λ2 ∼ λ6 (2.12)

which shows that Ψs(x) ∼ λ3.
Now we look at the gluon propagator

〈0|T [Aµ
c (x)Aν

c (0)] |0〉 =

∫
d4p

(2π)4

i

p2 + iǫ
e−ip·x[−gµν + τ

pµpν

p2
] . (2.13)

3 /n/̄n
4

= 1

2

(
1 σ3

σ3 1

)

4Note that P+ + P− = 1.
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2. Effective Field Theories

Here τ is a gauge parameter and we have

gµν
⊥ ∼ kµ

⊥k
ν
⊥

k2
∼ λ0 ,

g+− ∼ k+k−

k2
∼ λ0 ,

nµnν : g++ = 0 ;
(n · k)2

k2
∼ λ2 , (2.14)

thus Aµ
c ∼ pµ ∼ (1, λ2, λ).

Using the above power counting we now write down the collinear quark Lagrangian.

Lc = Ψ̄ci /DcΨc = (ξ̄ + η̄)[
/n

2
in̄ ·D +

/̄n

2
in ·D + i /D⊥](ξ + η) (2.15)

= ξ̄[
/n

2
in ·D]ξ + ξ̄[i /D⊥]η + η̄[i /D⊥]ξ + η̄[

/n

2
in̄ ·D]η .

With the help of the equations of motions we eliminate η to obtain

η = − 1

in̄ ·D
/̄n

2
[i /D⊥]ξ . (2.16)

With this one gets

Lc = ξ̄[
/̄n

2
in̄ ·D − i /D⊥

/̄n

2

1

in̄ ·Di /D⊥]ξ . (2.17)

The collinear gluon and the soft Lagrangian are just the normal QCD ones with Aµ,Ψ →
Aµ

s ,Ψs, thus

Ls = Ψ̄si /DsΨs −
1

4

(
F s a

µν

)2
, (2.18)

where iDµ
s = i∂µ + gAµ

s and igF s a
µν t

a = −[Dµ
s , D

ν
s ] . At this stage we have the form of

the collinear-collinear and soft-soft interactions, the only remaining piece of the leading
SCET Lagrangian is the soft-collinear interaction. To construct this Lagrangian we note
the following:

• Ψs is power suppressed (∼ λ3) compared to ξ(∼ λ2). so it does not appear at leading
power.

• n · As does appear, other components are power suppressed.
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• Starting from the collinear Lagrangian we obtain the soft-collinear one by making
the replacement Aµ

c → Aµ
c (x) + n · As(x−) n̄µ

2

We obtain the following leading-power SCET Lagrangian

LSCET = ξ̄
/̄n

2
[in ·D+ i /Dc⊥

1

in̄ ·Dc

i /Dc⊥]ξ− 1

4

(
F c a

µν

)2
+ Ψ̄si /DsΨs −

1

4

(
F s a

µν

)2
, (2.19)

where

iDµ
s = i∂µ + gAµ

s (x) (2.20)

iDµ
c = i∂µ + gAµ

c (x)

iDµ = i∂µ + gAµ
c (x) + gn · As(x−)

n̄µ

2

igF c a
µν t

a = −[Dµ, Dν] . (2.21)

In the replacement Aµ
c → Aµ

c (x) + n · As(x−) n̄µ

2
we have used the concept of “light-front

multipole expansion” [113]. In contrast to earlier approaches to SCET we are working with
the position space formulation of SCET, and we do not make use of momentum “label”
operators. In position space however, we have to Taylor-expand the fields in the directions
where they vary according to their counting in λ. For a generic soft field we write

φs(x) = exp[x+ · ∂− + x⊥ · ∂⊥] exp[x− · ∂+]φs(0)

= φs(x−) + [x⊥ · ∂⊥φs](x−) + 1/2x+ · [∂−φs](x−) + 1/2[xµ
⊥x

ν
⊥∂µ∂νφs](x−) + O(λ3φs) .

(2.22)

2.1.1. Gauge Transformation

Having reached the leading SCET Lagrangian by analyzing power counting we are also
forced to respect the scaling of the fields when doing gauge transformations. We are
interested in those transformations which do not alter the scaling of the transformed field.
We consider two gauge transformations

Vs(x) = exp[iαa
s(x)t

a] , Vc(x) = epx[iαa
c (x)t

a] . (2.23)

The field αs(x) fulfills ∂αs(x) ∼ λ2αs(x) whereas ∂αc(x) ∼ λ0αc(x), thus they have soft or
collinear scaling.

• Soft Gauge Transformation

Clearly soft fields can not transform under collinear gauge transformation, as this would
turn them into collinear fields. Otherwise, under soft gauge transformation soft fields
transform in the normal way

Ψs(x) → Vs(x)Ψs(x) and Aµ
s (x) → Vs(x)A

µ
s (x)V †

s (x) +
i

g
Vs(x)[∂

µ, V †
s ] . (2.24)
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Figure 2.1.: Attachments of soft gluons to a collinear quark field.

For collinear fields a soft gauge transformation does not alter the character. One has the
following transformation properties

ξ(x) → Vs(x−)ξ(x) and Aµ
c (x) → Vs(x−)Aµ

c (x)V †
s (x−) . (2.25)

• Collinear Gauge Transformation

In this case the soft fields are unchanged

Ψs(x) → Ψs(x) and Aµ
s (x) → Aµ

s (x) , (2.26)

whereas the collinear fields transform as

ξ(x) → Vc(x)ξ(x) and Aµ
c (x) → Vc(x)A

µ
c (x)V †

c (x)+
1

g
Vc(x)[i∂

µ+
n̄µ

2
n·As(x−), V †

c ] . (2.27)

2.1.2. Decoupling Transformation

Until now soft and collinear interactions are entangled. We now want to decouple those
two types of interactions by means of field redefinition and the use of Wilson lines. In
Figure 2.1 we show a collinear quark field in a soft gluon background. One can write the
sum of these emissions as

ξ = S ξ(0) , (2.28)

where

S = 1 +
∞∑

m=1

∑

perms

(−g)m

m!

n · Aa1
s . . . n · Aam

s

n · k1n · (k1 + k2) . . . n · (∑m
i=1 ki)

T am . . . T a1 . (2.29)

We can express (2.28) also with the help of the Fourier transform of a path ordered expo-
nential

Sn(x) = P exp[ ig

∫ 0

−∞
dsn · As(x+ s n)]5 . (2.30)

The path ordering P ensures that gauge fields closer (farther) to the point x are moved to
the left (right). A collinear gluon in a soft gluon background leads to the same structure as
in (2.30) but with As = Ac

s t
c
ab replaced by (−i)Ac

s f
abc. We will suppress the information

5Here we abbriviate As = Aa
sT a and similar for the adjoint representation.
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about fundamental or adjoint representation in this section and use the general expression
(2.30) for both.

With the above in mind we make the following field redefinitions

ξ(x) → Sn(x−)ξ(0)(x) , Aµ
c (x) → Sn(x−)A(0) µ

c S†
n(x−) . (2.31)

The new fields ξ(0) and A
(0) µ
c do not interact with soft gluons anymore. All those inter-

actions have been summed into the Sn(x−). The path ordered exponential of (2.30) is an
example of a Wilson line. An important property of this operator is that it can be used to
make products of fields at different points gauge invariant. Taking for example

P exp[ ig

∫ s

0

ds′n · A(x+ s′ n) ] ≡ [x+ s n, x] , (2.32)

one can make the object Ψ(x + s n)Ψ(x) gauge invariant by connecting it with (2.32).
Thus, Ψ(x + s n)Ψ(x) → Ψ(x + s n) [x + s n, x] Ψ(x) where the last expression is indeed
gauge invariant. We now insert the decoupling transformation (2.31) into the coupled part
of (2.19)

Lint = ξ̄
/̄n

2
in̄ ·Dξ (2.33)

→ ξ̄(0)S†
n(x−)

/̄n

2
[in̄ · ∂ + gSn(x−)n̄ ·A(0)

c S†
n(x−) + gn̄ · As(x−)]Sn(x−)ξ(0)

= ξ̄(0) /̄n

2
n̄ · A(0)

c ξ(0) + ξ̄(0)S†
n(x−)

/̄n

2
n ·DsSn(x−)ξ(0)

= ξ̄(0) /̄n

2
n̄ · A(0)

c ξ(0) + ξ̄(0) /̄n

2
n · ∂ ξ(0)

= ξ̄(0) /̄n

2
n ·Dcξ

(0)

As one can see from the end of (2.33) all sof-collinear interactions have decoupled through
the field redefinitions (2.31). It should be noted that this decoupling presented here is valid
at leading power in the SCET power counting, of course at subleading power soft-collinear
interactions still remain. To see a detailed analysis of the subleading Lagrangian see [105].

2.1.3. Matching Example

We now will discuss an example of matching a current onto a Wilson coefficient and an
effective operator in SCET. For this we choose the current Jµ = Ψ̄γµΨ (see for instance
[106]). At tree level, and at leading power in the SCET power counting, we exchange Ψ
with the collinear fields ξ such that

Ψ̄γµΨ (x) → ξ̄nγ
µξn̄ (x) . (2.34)

24



2. Effective Field Theories

With the help of Wilson lines, in a next step we make the above explicitly gauge invariant

ξ̄nγ
µξn̄ (x) → ξ̄nWnγ

µW †
n̄ξn̄ (x) ,

where Wn(x) = P exp[ig

∫ 0

−∞
dsn̄ · An̄(x+ sn̄)] . (2.35)

Furthermore we can absorb the soft eikonal interactions into a field redefinition as men-
tioned before

ξ̄nWnγ
µW †

n̄ξn̄ (x) →
(
ξ̄nWn

)(0)
S†

nγ
µSn̄

(
W †

n̄ξn̄

)(0)

(x) ≡ χ(0)
n S†

nγ
µSn̄χ

(0)
n̄ (x) ,

where Sn(x) = P exp[ig

∫ 0

−∞
dsn̄ · An̄(x+ sn̄)] . (2.36)

Again the superscript (0) means that the object does not interact with soft degrees of
freedom. The above matching has to be changed when radiative corrections are taken
into account. In that case the current can mix with analogous ones along the light cones
[114–116]

χ(0)
n S†

nγ
µSn̄χ

(0)
n̄ (x) →

∫
dsdt C̃(s, t, µ) χ(0)

n (x+ sn)
[
S†

n γ
µ Sn̄

]
(x) χ

(0)
n̄ (x+ tn̄) , (2.37)

here C̃ is the Wilson coefficient to ensure the right matching, factored out at the scale µ.
We can simplify the above expression to be

C(n · p1, n̄ · p2, µ)
[
χ(0)

n S†
n γ

µ Sn̄ χ
(0)
n̄

]
(x) , (2.38)

where

C(n · p1, n̄ · p2, µ) =

∫
dsdt e−i(sn·p1+tn̄·p2) C̃(s, t, µ) (2.39)

is the Fourier transform of the position-space Wilson coefficient.
The Wilson coefficient C has to be calculated order by order in perturbation theory. In
(2.38) we have explicitly factored different regions, a collinear and a soft one, both regions
do not communicate with each other anymore.

For our derivation of the differential cross section in Chapters 4 and 5 we will make use
of some of the techniques presented in the above sections.

2.2. Heavy-Quark Effective Theory

In the derivation of the factorization theorem of tt̄ production we are using a second effective
approach common in the field of heavy quark physics, heavy-quark effective theory. This
theory uses the fact that the energy scale of the mass of the heavy quark, in our case
the top quark, is much bigger than the scale of soft interaction, for a detailed review see
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[117,118]. The starting point is easy to understand, the heavy quark mass mQ is in many
processes much larger than an occurring soft scale, mQ ≫ Λsoft. This soft scale depends
on the process at hand, in b-physics there is the hierarchy mb ≫ ΛQCD, whereas for tt̄
production in PIM kinematics we will have mt ≫ Mtt̄ (1 − z). In any case, this leads to
a natural separation of scales. The momentum of a softly interacting heavy quark can be
written as

pµ
Q = mQv

µ + kµ , (2.40)

where vµ (v2 = 1) is the velocity of the quark and kµ is the so called residual momentum
(k ∼ Λsoft). As the quark is only interacting softly kµ is a measure of its offshellness. In
the limit mQ → ∞ certain Feynman rules simplify. For instance the propagator

i(/p+mQ)

p2
Q −mQ + iǫ

=
i

v · k + iǫ

1 + /v

2
+ O(k/mQ) → i

v · k + iǫ
P+ , (2.41)

where we defined the projection operators P± = (1 ± /v)/2 which fulfill

P+ + P− = 1 , P 2
± = P± , P±P∓ = 0 . (2.42)

We now decompose the quark field with the help of the projection operators

Q(x) = P+ Q(x) + P− Q(x)

= e−imQv·x[hv(x) +Hv(x)] , (2.43)

where
hv(x) = eimQv·xP+ Q(x) and Hv(x) = eimQv·xP− Q(x) . (2.44)

The phase factor in front of Q(x) in (2.43) subtracts the large part of the heavy quark
momentum and only fluctuations of the order kµ are present in hv(x).
The fields in (2.44) clearly fulfill

P+hv(x) = /vhv(x) = hv(x) and P−Hv(x) = −/vHv(x) = Hv(x) . (2.45)

In addition to these properties it is possible to make the replacement γµ → vµ(−vµ)
between two hv (Hv), due to the fact that for each coupling igTaγ

µ two propagators as in
(2.41) appear. We now insert (2.43) into the Lagrangian for a heavy field and make use of
the relations mentioned above.

LQ = Q̄(i /D −mQ)Q (2.46)

= h̄vi /Dhv + H̄v(i /D − 2mQ)Hv + h̄vi /DHv + H̄vi /Dhv

= h̄viv ·Dhv − H̄v(iv ·D + 2mQ)Hv + h̄vi~/DHv + H̄vi~/Dhv ,

where iDµ = ~/D + ivµv · D, thus ~/D represents the spatial covariant derivative. We will
now integrate out the heavy field Hv by solving the equations of motion for this field. One
arrives at

Hv =
1

2mQ + iv ·Di /Dhv =
1

2mQ

∞∑

k=0

(−iv ·D)k

2mQ
i /Dhv , (2.47)
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and the leading term in this series is ∝ 1/mQ /Dhv. By looking at (2.46) we see that hv

describes a massless fermion and given that the residual momentum kµ is not large we get
Hv = O(Λsoft/mQ)hv. Because of this one sometimes refers to hv as the large and to Hv as
the small components of Q. We can now write down the leading order effective Lagrangian
as

LHQET = h̄viv ·Dhv + O(1/mQ) . (2.48)

As in SCET we will do a scaling analysis in order to assign the right scaling to the different
fields. The goal again is to decouple soft gluon interactions by means of field redefinition.
We already set the scaling of the residual momentum to kµ ∼ Λsoft and in (2.48) we applied
an expansion of the form Λsoft/mQ. In the following we will count the different scales in
relation to the hard scale mQ with the help of λ =

√
Λsoft/mQ

6. With this Λsoft ∼ λ2,
and derivatives on soft fields ∂µ ∼ λ2. Again we look at the fermion propagator in order
to get information about the scaling behavior of the heavy-quark field hv. We have

〈0|T [hv(x)h̄v(0)] |0〉 =

∫
d4p

(2π)4

i

v · k + iǫ
e−ip·x ∼ λ4 1

λ
, (2.49)

thus hv ∼ λ3/2. For the soft gluon propagator one obtains

〈0|T [Aµ
s (x)A

ν
s (0)] |0〉 =

∫
d4p

(2π)4

i

p2 + iǫ
e−ip·x ∼ λ4 1

λ2
[−gµν + τ

pµpν

p2
] , (2.50)

leading to Aµ
s ∼ λ.

Similar to chapter 2.1.1 we can now decouple soft interactions by means of field redefinition.

hv(x) = Sv(x)h
(0)
v (x) (2.51)

with

Sv(x) = P exp[ig

∫ 0

∞
dtv ·As(x+ tv)] . (2.52)

Where now h
(0)
v (x) does not interact with soft gluons anymore.

2.3. Factorization and Resummation

In the following we want to discuss two topics closely related to this thesis, the concept of
resummation and its connection to factorization.

In (2.38) we had factorized the current Jµ(x) into a Wilson coefficient and an effective
operator. In general one can write an amplitude as follows

A =
n∑

i=1

Ci(µ) 〈Qi(µ)〉 , (2.53)

6The counting above corresponds to the one in Section 2.1, but one often finds in the literature the
counting λ = Λsoft/mQ.
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where µ is the scale where one has renormalized the operator matrix element. Of course
the whole amplitude is independent of that scale, leading to

d

d lnµ

n∑

i=1

Ci(µ) 〈Qi(µ)〉 = 0

=⇒
n∑

i=1

[(
d

d lnµ
Ci(µ)

)
〈Qi(µ)〉 + Ci(µ)

(
d

d lnµ
〈Qi(µ)〉

)]
= 0 (2.54)

Assuming a complete set of linear independent operators Qi(µ) we are able to write

d

d lnµ
〈Qi(µ)〉 = −

n∑

j=1

γij(µ) 〈Qj(µ)〉 , (2.55)

with γij being the anomalous dimension, which is a measure of change under scale variation.
From the fact that we are dealing with linear independent operators now follows

d

d lnµ
Cj(µ) =

n∑

i=1

γijCi(µ) ⇒ d

d lnµ
~C(µ) = γ̂T (µ) ~C(µ) . (2.56)

The anomalous dimension matrix γ̂ of the Wilson coefficient is directly connected to the
remormalization matrix Z of the operators. This is due to the fact that the bare matrix
elements of the operators are scale independent:

〈
Qbare

i

〉
= Zij(µ)Qj(µ) ⇒ Z−1

ij (µ)
〈
Qbare

i

〉
= Qj(µ) (2.57)

From the above in combination with (2.55) one obtains

γij = (Z)ik

d

d lnµ
Zkj . (2.58)

Given an expansion of Z in terms of the coefficients of the different poles, Z =
∑∞

k=1 1/ǫk Z(k),
one finds [119]

γij = −2αs
d

dαs
Z

(1)
ij . (2.59)

Knowing how to calculate the anomalous dimension matrix we can now solve (2.58) which
leads to the formal expression

~C(µ) = U(µ, µ0) ~C(µ0)

=


P exp

µ∫

µ0

dµ′

µ′ γ̂
T (µ′)


 ~C(µ0) . (2.60)
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2. Effective Field Theories

In the above equation P is ordering the integrand such that the ones with larger values of
α stand to the left of those with smaller values. This ordering procedure is a remnant of
the fact that in general the different γ̂(µ) do not commute. The evolution matrix U runs
the Wilson coefficient from a scale µ0 to the scale µ. To see how (2.60) can help to resum

potentially large logs let us examine the form of ~C(µ). In general one encounters Wilson
coefficient of the following form7

C(µ) =
∞∑

n=0

cn

(αs

4π

)n

; cn =
2n∑

k=0

c(k)
n Lk

µ ; Lµ = ln(Q2
c/µ

2) , (2.61)

where Q2
c is a scale related to the kinematics occurring in C. Similar expansions hold

for 〈O(µ)〉. At the n-th order in αs one has terms of the structure αn
s L

m
µ , m = 0, ..., 2n

for a double logarithmic series. Assuming that Lµ ∼ 1/αs this structure would spoil the
perturbative expansion, which can be “cured” by setting µ = Qc. But by factorizing
the amplitude in (2.53) we have separated different energy scales. To understand this we
explicitly write

A = C(µ,Qc) 〈Q(µ,Qq)〉 , (2.62)

where we have made clear that the Wilson coefficient is associated to the scale Qc and the
operator matrix element to the scale Qq. In a situation were ln(Q2

c/Q
2
q) is a large number

no setting of µ in (2.53) will get rid of all large logs. Having solved the evolution equation
for C(µ) we are able to give an expression were all large logs have been resummed. Using
(2.60) we write

A = C(µ,Qc) 〈Q(µ,Qq)〉

= U(Qq, Qc)C(Qc, Qc) 〈Q(Qq, Qq)〉 , (2.63)

where the Wilson coefficient and the operator matrix element are free of large logs. We
will now show how U(Qq, Qc) resums the logs L = ln(Q2

c/Q
2
q).

In Higgs [107], Drell-Yan [106] and in tt̄ production one encounters Wilson coefficients
which have the following anomalous dimension structure

γ(µ) = Γcusp(αs) ln(Qc/µ) + γs(αs) . (2.64)

The above form of γ is an example of a double logarithmic series, and the double logs are
governed by the so called cusp anomalous dimension Γcusp. The general form of (2.60) now
is

U(Qq, Qc) = exp

[
2S(Qc, Qq) − aγs(Qc, Qq)

]
. (2.65)

7For the sake of simplicity we will work with a single Wilson coefficient and operator matrix element
from now on.
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RG-improved PT Log. approx. αn
sL

k C, 〈Q〉

— LL k = 2n tree-level

LO NLL 2n− 1 ≤ k ≤ 2n tree-level

NLO NNLL 2n− 3 ≤ k ≤ 2n 1-loop

NNLO NNNLL 2n− 5 ≤ k ≤ 2n 2-loop

Table 2.1.: Different orders in RG-improved PT., the matching logarithmic accuracy
needed and the terms αn

sL
k contained.

The RG exponents in the square brackets of the exponential factor are given by

S(Qc, Qq) = −
αs(Qq)∫

αs(Qc)

dα
Γcusp(α)

β(α)

α∫

αs(Qc)

dα′

β(α′)
, aγs(Qc, Qq) = −

αs(Qq)∫

αs(Qc)

dα
γs(α)

β(α)
. (2.66)

The above integrals can be calculated order by order in perturbation theory and can be
found in the Appendix, β(αs) = dαs(µ)/d lnµ is the QCD β-function. We are not interested
in the explicit forms right now but rather state the general structure of the result, which
can be written as8

U(Qq, Qc) = exp

[
La−1 (αsL)︸ ︷︷ ︸

LL

+a0 (αsL)

︸ ︷︷ ︸
NLL

+αsa1 (αsL)

︸ ︷︷ ︸
NNLL

+ · · ·
]
. (2.67)

In (2.67) the ai are coefficients depending on the various anomalous dimensions, here Γcusp,
γs and β. In the above we count L ∼ 1/αs and the exponent is a reorganization of the fixed
order9 series in which higher order terms are resummed. The term in the exponent which
we marked as leading-logarithmic order clearly reproduces terms to all orders of the form
αn

sL
2n. Similarly, by including the second term in the exponent marked as next-to-leading-

logarithmic order, we are able to get all terms αn
sL

k with 2n− 1 ≤ k ≤ 2n. As L ∼ 1/αs

all terms αn
sL

n are counted as O(1), similarly αn
sL

n−1 ∼ O(αs) and so on. Applying this
counting is referred to as renormalization-group improved perturbation theory. In Table
2.1 we show the different order in RG-improved PT, what logarithmic accuracy is needed
for each order and what terms of the form αn

sL
k are reproduced. It should be made clear

that these logarithmic terms would also occur in a fixed order calculation. The method
we just discussed enables one to calculate higher oder terms with a drastic reduction
of the calculational complexity. The terms produced in this way can but need not be

8We have already used L ∼ 1/αs and expanded r ≈ 1 + β0
αs

4π L.
9Standard calculations have an expansion in αs, thus each order has a fixed power in αs.
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2. Effective Field Theories

numerically important. Large logs, and thus numerically important ones, are connected to
the occurrence of largely separated scales in the process.

In the following we will use the above methods of renormalization group improved per-
turbation theory. We will specify what are the different scales in our process and analyze
if the logs connected to them are numerically important.
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Part II.

tt̄ Production: Theoretical Setup
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3. Introduction

In this part of the thesis we present details of our tt̄ production calculation. This part is
split up into three chapters. In the first chapter we show the derivation of the differential
cross section using PIM kinematics. In this kinematics we calculate the double differential
cross section with respect to the invariant mass M , and the scattering angle θ of the
top-quark. As a first step in this chapter we define the kinematical setup in Section 4.1,
where the partonic process and kinematical variables are explained. Furthermore we set
out the threshold in which we will work. In Section 4.2 we then use the methods explained
in the introduction part to establish a factorization theorem for the cross section. We
explain in detail how the matching is done, and how matrix elements of operators and
Wilson coefficients are calculated. In our calculation we use the so called color-space
formalism which is an effective method to organize color algebra, in Section 4.2.1 we give
an introduction to this formalism.

Having set up the different calculational inputs, we proceed in Section 4.2.2 to give
explicit expressions of the cross section in terms of Wilson coefficients and matrix elements.
The double differential cross section will be written as a product of a hard and a soft
function. In Sections 4.2.3 and 4.2.4 we give a a description of how we derive these two
functions. We present the RG equations and solve them for the hard and soft functions
in Section 4.2.5. The resummed expression for the hard scattering kernel at the end of
Section 4.2.5 is the main results of this chapter.

Chapter 5 is concerned with our calculation in 1PI kinematics, it proceeds along the
lines of the previous one. In this kinematics we calculate the double differential cross
section with respect to rapidity, and pT of the top-quark . Details of the kinematical setup
of 1PI is given in Section 5.1, where we define the kinematical variables used, and the
differential form of the cross section is given. As for PIM we first explain the threshold in
which we work before proceeding. In this chapter we do not again present details about the
factorization procedure, as most of the discussion can be carried over from PIM kinematics.
A major new input is the 1PI soft function which has been calculated by us to NLO order
for the first time. In Section 5.2.1 we give details about the derivation of this function. We
end this chapter by stating, and solving the RG equations for the partonic cross section
in 1PI kinematics in Section 5.2.2. Similar to the PIM chapter we present the resummed
expression of the hard scattering kernel at the end of this section.

In Chapter 6 we present details about the extraction of approximate NNLO results start-
ing from our resummed calculations. We do this separately for PIM and 1PI kinematics in
Sections 6.1 and 6.2 respectively. In Section 6.3 we compare certain aspects of resummation
to approximate NNLO.
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4. Pair Invariant-Mass Kinematics

In this chapter we focus on the pair invariant-mass kinematics. Working in PIM we are
able to derive results for the double differential cross section with respect to the invariant
mass of the tt̄ pair and the scattering angle θ of the top-quark. The following work will
be done in the threshold limit where (1− z) = 1−M2/ŝ→ 1, with M being the invariant
mass of the tt̄ pair. This approach will allow us to resum logarithms of ln(1 − z) to full
next-to-next-to-leading-logarithmic order. This is an extension of similar studies done in
NLL order [48–50] and approximate NNLL calculations [52–55].

The analytical results obtained in this chapter will enable us to make predictions for the
total cross section and the invariant mass distribution for tt̄ production. Furthermore it
allows us to give numerical results for the FB asymmetry at the Tevatron. As this chapter
is concerned with the analytical calculation, we refrain from a detailed numerical analysis
here.

4.1. Kinematics

We consider the process

N1(P1) +N2(P2) → t(p3) + t̄(p4) +X(pX) , (4.1)

where X is an inclusive hadronic final state and N1, N2 are the hadronic initial states,
which are either proton-proton (LHC) or proton-antiproton (Tevatron). We will treat the
top-quarks as on-shell partons and neglect their decay. The large mass of the top quark
results in a decay width of 0.3 GeV < Γt < 4.4 GeV [120]. Corrections to the above
treatment scale like Γt/mt ≪ 1 and are thus numerically subleading.
As shown in Figure 4.1, at Born level the production proceeds through the qq̄ annihilation
and gluon-fusion channels

q(p1) + q̄(p2) → t(p3) + t̄(p4) ,

q̄

q

t̄

t

g

g

t̄

t

g

g

t̄

t

g

g

t̄

t

Figure 4.1.: The Born level channels for tt̄ production: qq̄ inicial state and gg initial state.
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g(p1) + g(p2) → t(p3) + t̄(p4) , (4.2)

where p1 = x1P1 and p2 = x2P2. We define the kinematic invariants

s = (P1 + P2)
2 , ŝ = (p1 + p2)

2 , M2 = (p3 + p4)
2 ,

t̂1 = (p1 − p3)
2 −m2

t , û1 = (p2 − p3)
2 −m2

t , (4.3)

and momentum conservation at Born level implies ŝ + t̂1 + û1 = 0. As one can see ŝ is
the invariant mass of the partonic initial state whereas M2 the the invariant mass of the
partonic final state. In the following the ratio z = M2/ŝ will play a key role. It is clear
the at LO z = 1, due to momentum conservation, but at higher orders, real radiation can
lead to z < 1. We will analyze the above process in the following in the limit z → 1 which
we call partonic threshold. In this limit the phase space is restricted such that only soft
radiation is possible. Furthermore we are mainly interested in the doubly differential cross
section expressed in terms of the invariant mass M of the tt̄ pair and the scattering angle
θ between ~p1 and ~p3 in the partonic center-of-mass frame1. To describe this distribution
we need the variables

τ =
M2

s
, βt =

√
1 − 4m2

t

M2
and z =

M2

ŝ
=

τ

x1x2

. (4.4)

We already had defined z, τ is the equivalent of z on a hadronic scale. The limit τ → 1 is
often considered as the machine threshold.
The quantity βt gives the 3-velocity of the top quarks in the tt̄ rest frame. Another
common related variable is β =

√
1 − 4m2

t/ŝ, which coincides with βt in the limit z → 1.
To describe the total inclusive cross section, one often considers the limit β → 0 [40–46].
It should be noted that in our approach the numerical values for β and βt are supposed
to be close to each other. Working in the limit z → 1 leaves βt a generic O(1) parameter
and in that case the top quarks are not produced at rest, nor are they highly boosted, and
the emitted partons in the final state X are constrained to be soft. This threshold limit is
often referred to in the literature as the pair-invariant-mass kinematics, and the theoretical
framework to deal with this situation was developed in [48, 49, 121, 122]. According to the
QCD factorization theorem [7], the differential cross section in M and cos θ can be written
as

d2σ

dMd cos θ
=

8πβt

3sM

∑

i,j

∫
dx1

x1

dx2

x2

fi/N1
(x1, µf)fj/N2

(x2, µf)Cij(z,M,mt, cos θ, µf) . (4.5)

Equation (4.5) shows the general scheme of factorizing the cross section into the partonic
process, captured in the hard scattering kernel Cij , and the information about the hadronic
initial state shown as fi/Nj

, µf is the factorization scale. Again, the fi/N are universal non-
perturbative parton distribution functions, which are extracted from experimental data.

1The fully differential cross section depends on three kinematic variables.
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One can see from (4.4) that the integration region in (4.5) is restricted to x1x2 ≥ τ . From
this it is possible to write (4.5) as follows

d2σ

dMd cos θ
=

8πβt

3sM

∑

i,j

∫ 1

τ

dz

z
ffij(τ/z, µf)Cij(z,M,mt, cos θ, µf) , (4.6)

where the parton luminosity functions ffij are defined by

ffij(y, µf) =

∫ 1

y

dx

x
fi/N1

(x, µf ) fj/N2
(y/x, µf) . (4.7)

The hard-scattering kernels Cij are related to the partonic cross sections and can be cal-
culated as a power series in αs. We shall write their expansion as

Cij = α2
s

[
C

(0)
ij +

αs

4π
C

(1)
ij +

(αs

4π

)2

C
(2)
ij + . . .

]
. (4.8)

At leading order in αs, only Cqq̄ and Cgg are non-zero. They are proportional to δ(1 − z)
and read

C
(0)
qq̄ = δ(1 − z)

3

8N
CF

(
t̂21 + û2

1

M4
+

2m2
t

M2

)
,

C(0)
gg = δ(1 − z)

3

8(N2 − 1)

(
CF

M4

t̂1û1

− CA

)[
t̂21 + û2

1

M4
+

4m2
t

M2
− 4m4

t

t̂1û1

]
, (4.9)

where N = 3 is the number of colors in QCD, and t̂1 and û1 can be expressed in terms of
M and cos θ as

t̂1 = −M
2

2
(1 − βt cos θ) , û1 = −M

2

2
(1 + βt cos θ) . (4.10)

Note that for the doubly differential cross section the coefficient Cq̄q is also needed. It can
be obtained from the expression for Cqq̄ by replacing cos θ → − cos θ, which is a symmetry
at tree level but not beyond.
At higher orders in αs the hard-scattering kernels receive corrections from virtual loop
diagrams and real gluon emissions in the qq̄ and gg channels, as well as from other partonic
channels such as gq → tt̄q. The calculation of these corrections near threshold is greatly
simplified. For z → 1 there is no phase-space available for hard gluon emission, which
is thus suppressed by powers of (1 − z). Moreover, contributions from channels such as
gq → tt̄q, which involve external soft-quark fields, are also suppressed. The partonic
scattering process is thus dominated by virtual corrections and the real emission of soft
gluons. The phase-space for such processes is effectively that for a two-body final state, so
the hard-scattering kernels can be written in terms of the kinematic invariants from the
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C =

S

H

Figure 4.2.: Illustration of the contributions to the hard and soft function.

Born-level processes. Therefore, up to corrections of order (1− z), we can rewrite (4.6) in
the threshold region as

d2σ

dMd cos θ
=

8πβt

3sM

∫ 1

τ

dz

z

[
ffgg(τ/z, µf )Cgg(z,M,mt, cos θ, µf)

+ ffqq̄(τ/z, µf )Cqq̄(z,M,mt, cos θ, µf) + ffq̄q(τ/z, µf )Cqq̄(z,M,mt,− cos θ, µf)
]
,

(4.11)

where ffqq̄ is understood to be summed over all light quark flavors.
At partonic threshold the hard-scattering kernels Cij are governed by two distinct scales,

a hard scale related to the virtual corrections and a soft one related to soft-gluon emission.
We have illustrated the contributions to these functions schematically in Figure 4.2. In
what follows we will factorize Cij into these two different regions. In detail we will find
that

Cij(z,M,mt, cos θ, µf) = Tr
[
Hij(M,mt, cos θ, µf) Sij(

√
ŝ(1 − z), mt, cos θ, µf)

]
+ O(1 − z) .

(4.12)

The boldface indicates that the hard functions Hij and soft functions Sij are matrices
in color space, with respect to which the trace is taken. We will derive this formula in
the next section, using techniques from SCET. (A similar factorization formula in Mellin
moment space was derived in [49].)
As we already mentioned the hard functions are related to the virtual corrections, while the
soft functions are related to the real emission of soft gluons. These soft functions contain
singular distributions in (1 − z), terms proportional to δ(1 − z) and, in the n-th order
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corrections in αs, plus distributions of the form

[
lnm(1 − z)

1 − z

]

+

; m = 0, . . . , 2n− 1 . (4.13)

These so called plus-distributions are defined as

∫ 1

τ

dz

[
lnm(1 − z)

1 − z

]

+

g(z) =

∫ 1

τ

dz
lnm(1 − z)

1 − z
[g(z) − g(1)] − g(1)

∫ τ

0

dz
lnm(1 − z)

1 − z

(4.14)

for an arbitrary function g(z). These singular distributions make the perturbative series
badly convergent near threshold and must be resummed to all orders in perturbation
theory. In this thesis we perform such a resummation directly in momentum space [123],
up to NNLL order. To this end, we extend the procedure for deep-inelastic scattering
[124], Drell-Yan process [106], Higgs production [107, 108], and direct photon production
[125] to processes with four colored external particles. The formalism will be described in
Section 4.2.5.

4.2. Factorization in SCET and HQET

As mentioned above in this section we will derive the factorization formula (4.12) for
the hard-scattering kernels in the threshold region using SCET and HQET. Derivation
of similar factorizations have been achieved in [106, 124, 125]. Due to the fact that we
are dealing with colored final states, the derivation presented here is more involved. The
derivation of factorization in the effective theory relies on a two-step matching procedure.
In the first step, fluctuations at the hard scale from virtual corrections are integrated out
by matching QCD onto an effective-theory with collinear and soft degrees of freedom.
The Wilson coefficients from this matching step give the hard function when squaring the
amplitude. In the second step, the soft degrees of freedom are integrated out, giving rise to
a soft function, which is defined as the vacuum expectation value of a Wilson loop operator.

Fields

The scattering amplitude for tt̄ production involves several scales, which we assume to
satisfy

ŝ,M2, |t̂1|, |û1|, m2
t ≫ ŝ(1 − z)2 ≫ Λ2

QCD (4.15)

in the threshold region. The elements of the first set of scales are taken to be of the same
order and shall be collectively referred to as hard scales, whereas ŝ(1− z)2 defines the soft
scale. The small quantity λ = (1 − z) ≪ 1 then serves as the expansion parameter in the
effective theory. Note that we treat M and mt as of the same order, which means that the
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top quarks are not highly boosted2. However, given that even for M as large as 1.5TeV
the ratio 2mt/M ≈ 0.23 is still a reasonable O(1) parameter, we see no need to adopt
it for the present work. The topic of highly boosted tops is very interesting and we will
comment in the outlook on how this work might be extended to this kinematical region.

The formalism for SCET applied to a generic n-body scattering process involving both
heavy and light partons was set up in [110,126]. In our case, the effective theory contains
two sets of collinear fields to describe the degrees of freedom in the incoming hadrons, two
sets of HQET fields to describe the outgoing heavy quarks, and a single set of soft fields
describing the final state X and the soft interactions among particles. In classifying the
collinear fields we define two light-like vectors n and n̄ in the directions of the colliding
partons, which satisfy n · n̄ = 2. The collinear quark fields are related to the QCD fields
by

ξn(x) =
/n/̄n

4
ψ(x) , ξn̄(x) =

/̄n/n

4
ψ(x) . (4.16)

The collinear gluon fields in a single collinear sector are identical to those in QCD, with
their momenta restricted to be collinear to the given direction. As we have seen in Section
2.1 it is convenient to introduce manifestly gauge-invariant combinations of fields

χn(x) = W †
n(x) ξn(x) , Aµ

n⊥(x) = W †
n(x) [iDµ

⊥Wn(x)] , (4.17)

where the n-collinear Wilson line is

Wn(x) = P exp

(
ig

∫ 0

−∞
ds n̄ · An(x+ sn̄)

)
. (4.18)

The corresponding objects for the n̄-collinear fields are obtained by interchanging n and
n̄. Similar to section 2.2 we label the HQET fields hv3 and hv4 by the velocities of the top
quark and anti-quark, which are related to their momenta as

pµ
3 = mtv

µ
3 + kµ

3 , pµ
4 = mtv

µ
4 + kµ

4 . (4.19)

We remind ourselves that the residual momenta ki scale as soft momenta and are set to
zero for on-shell quarks. As shown in (2.44), in terms of the QCD top-quark fields, the
HQET fields are defined as

hvi
(x) =

1 + /v

2
e−imtvi·x t(x) . (4.20)

(4.21)

A crucial property of the leading-order SCET Lagrangian is that the interactions of soft

2To describe the invariant mass spectrum in the region where M ≫ 2mt, a more appropriate treatment
would require a different effective theory to separate these two scales, and two jet functions have to be
introduced for the top and anti-top quarks.
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χ
(0)
n

χ
(0)
n̄

h
(0)
v4

h
(0)
v3
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χn

χn̄

hv4

hv3

H

Figure 4.3.: Illustration of the field redefinition mentioned in (4.23). The fields χn,n̄(hv3,4)

have been “stripped” from soft interaction, and the remaining fields are χ
(0)
n,n̄

(h
(0)
v3,4).

gluon fields with collinear and heavy-quark fields are described by eikonal vertices. The
explicit form of the interaction terms for soft gluons with the fermion fields is

Lint = ξ̄n(x)
/̄n

2
g n · As(x) ξn(x) + ξ̄n̄(x)

/n

2
g n̄ · As(x) ξn̄(x)

+ h̄v3(x) g v3 · As(x) hv3(x) + h̄v4(x) g v4 · As(x) hv4(x) , (4.22)

and those between collinear and soft gluon fields can be deduced by making the substitution
An → An+n·As n̄/2 (and similarly for the n̄-collinear fields) in the Yang-Mills Lagrangian.
We now make use of the fact that these eikonal interactions can be absorbed into Wilson
lines via the field redefinitions [104, 127]

χa
n(x) →

[
Sn(x)

]ab
χb(0)

n (x) , Aa
nµ(x) →

[
Sadj

n (x)
]ab Ab(0)

nµ (x) , ha
v3

(x) →
[
Sv3(x)

]ab
hb(0)

v3
(x) ,

(4.23)

with

[
Sn(x)

]ab
= P exp

(
ig

∫ 0

−∞
dt n · Ac

s(x+ tn) tcab

)
,

[
Sadj

n (x)
]ab

= P exp

(
ig

∫ 0

−∞
dt n · Ac

s(x+ tn) (−if cab)

)
,

[
Sv3(x)

]ab
= P exp

(
−ig

∫ ∞

0

dt v3 · Ac
s(x+ tv3) t

c
ab

)
, (4.24)

and similarly for the n̄-collinear and hv4 fields. We have used the superscript “adj” to
indicate Wilson lines in the adjoint representation. The fields with the superscript (0) no
longer interact with soft gluon fields, we have illustrated this field redefinition in Figure
4.3.
One must supplement the effective Lagrangian with a set of operators describing the

41



4. Pair Invariant-Mass Kinematics

(qq̄, gg) → tt̄ scattering processes. Similar to the matching example in Section 2.1.3 these
operators appear in convolution with perturbative Wilson coefficients along light-like di-
rections. As there are two collinear fields we have to have a twofold integration in the case
of tt̄ production, we write the effective Hamiltonian as

Heff(x) =
∑

I,m

∫
dt1dt2 e

imt(v3+v4)·x
[
C̃qq̄

Im(t1, t2)O
qq̄
Im(x, t1, t2) + C̃gg

Im(t1, t2)O
gg
Im(x, t1, t2)

]
,

(4.25)

where I labels color structures and m labels Dirac structures. The operators can be written
as

Oqq̄
Im(x, t1, t2) =

∑

{a}

(
cqq̄
I

)
{a} χ̄

a2
n̄ (x+ t2n) Γ′

m χ
a1
n (x+ t1n̄) h̄a3

v3
(x) Γ′′

m h
a4
v4

(x) ,

Ogg
Im(x, t1, t2) =

∑

{a}

(
cgg
I

)
{a} A

a1
nµ⊥(x+ t1n̄)Aa2

n̄ν⊥(x+ t2n) h̄a3
v3

(x) Γµν
m ha4

v4
(x) , (4.26)

where Γµν
m , Γ′

m, and Γ′′
m are combinations of Dirac matrices and the external vectors n, n̄,

v3, and v4 (note that there can be contractions of Lorentz indices between Γ′
m and Γ′′

m).
The cqq̄

I and cgg
I are tensors in color space, whose indices {a} ≡ {a1, a2, a3, a4} can be in

either the fundamental or adjoint representation. For each channel, they are chosen to
be the independent color singlet (e.g. gauge-invariant) structures needed to describe the
scattering amplitude. We will choose the color structures to be in the singlet-octet bases

(
cqq̄
1

)
{a} = δa1a2δa3a4 ,

(
cqq̄
2

)
{a} = tca2a1

tca3a4
,

(
cgg
1

)
{a} = δa1a2δa3a4 ,

(
cgg
2

)
{a} = ifa1a2c tca3a4

,
(
cgg
3

)
{a} = da1a2c tca3a4

. (4.27)

When squaring the amplitude and summing over colors, one must evaluate products of the
color structures with their indices contracted. In the absence of soft gluon emissions, these
are of the form

(
cqq̄
I

)
a1a2a3a4

(
cqq̄
J

)∗
a1a2a3a4

(and similarly for the gluon fusion channel) and
are equal to an N -dependent factor multiplying δIJ . In this sense the color structures are
orthogonal, but not orthonormal.

Time-ordered products of the operators (4.26) with the SCET and HQET Lagrangians
describe the collinear and soft contributions to the (qq̄, gg) → tt̄X scattering amplitudes in
QCD, where the final state X contains any number of soft gluons from real emissions. In
the formulation used so far, the final stateX is built up through insertions of the interaction
Lagrangian (4.22) into the SCET operators. To account explicitly for soft gluon emission
to all orders in the strong coupling constant, it is convenient to use the decoupling relations
(4.23) and represent the soft gluon interactions by Wilson lines. Performing this decoupling
and dropping the superscripts on the new fields, the operators factorize into products of
collinear, heavy-quark, and soft-gluon operators in the form of Wilson loops. The resulting
operators in the qq̄ channel read

OIm(x, t1, t2) =
∑

{a},{b}

(
cI
)
{a}
[
Oh

m(x)
]b3b4 [

Oc
m(x, t1, t2)

]b1b2 [
Os(x)

]{a},{b}
, (4.28)
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where

[
Oh

m(x)
]b3b4

= h̄b3
v3

(x) Γ′′
m h

b4
v4

(x) ,
[
Oc

m(x, t1, t2)
]b1b2

= χ̄b2
n̄ (x+ t2n) Γ′

m χ
b1
n (x+ t1n̄) ,

[
Os(x)

]{a},{b}
=
[
S†

v3
(x)
]b3a3

[
Sv4(x)

]a4b4 [
S†

n̄(x)
]b2a2

[
Sn(x)

]a1b1
. (4.29)

Those in the gluon-fusion channel are obtained by making the obvious replacements in
Dirac structure and the collinear operators, and by changing the Wilson lines Sn and Sn̄

to the corresponding ones in the adjoint representation.
In the form shown above, the different sectors no longer interact with each other. After

squaring the amplitude, this property leads to the factorized form (4.11) for the hard-
scattering kernels. A complication is that the color indices on the Wilson lines representing
the soft-gluon interactions act on the color structures (4.27) and can mix them into each
other. Consider, for example, the calculation of an O(αs) correction due to soft gluon
exchange between partons 1 and 3 in the squared amplitude in the qq̄ channel. This could
either be from the product of diagrams involving the real emission of one soft gluon, or
from a virtual diagram with a soft loop (which would be scaleless for on-shell quarks, but
appears in the calculation of the anomalous-dimension matrix). After summing over colors
one must evaluate contractions of the form

(
cqq̄
I

)
{b1a2b3a4}t

c
b1a1

tca3b3

(
cqq̄
J

)∗
{a1a2a3a4} . (4.30)

In general, this contraction is not proportional to δIJ , and must be worked out case by
case. This mixing of the different color structures due to soft gluon exchange is responsible
for the non-trivial matrix structure of the hard and soft functions. To organize this color
algebra, it is convenient to use the color-space formalism [128, 129]. Before moving on to
the calculation of the differential cross section in Section 4.2.2, we briefly pause to review
this formalism.

4.2.1. Color-Space Formalism

Consider the on-shell scattering amplitudes for (qq̄, gg) → tt̄, for a given color configuration
of the external particles. We write this in the quark channel as

Mqq̄
{a} = 〈ta3(p3) t̄

a4(p4) | Heff(0) | qa1(p1) q̄
a2(p2)〉 , (4.31)

and also define the object Mgg
{a} in the obvious way. In what follows, we will drop the

superscript indicating the channel, and work with a single amplitude which can repre-
sent either Mqq̄ or Mgg. As in [128, 129], we introduce an orthonormal basis of vectors
{|a1, a2, a3, a4〉}, where the indices {a} refer to the colors of the external particles. The
amplitude can then be written as

M{a} = 〈a1, a2, a3, a4 |M〉 , (4.32)
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where the object |M〉 is an abstract vector in color space. Since we only consider color-
singlet amplitudes, we can decompose the QCD amplitude into the set of color structures
(4.27). In the color-space formalism, this is done by writing

|M〉 =
∑

I

MI

∑

{a}

(
cI
)
{a} |{a}〉 ≡ MI |cI〉 , (4.33)

where the coefficients MI are combinations of Dirac matrices, external vectors, spinors,
and polarization vectors. Note that with this definition the basis vectors |cI〉 are orthogonal
but not normalized, so to project out the MI one must use

MI =
1

〈cI | cI〉
〈cI |M〉 . (4.34)

The square of the amplitude summed over colors is then given by the inner product of
|M〉:
∑

colors

|M|2 = 〈M |M〉 =
∑

I

M∗
IMI 〈cI | cI〉 =

∑

I

∑

{a}
M∗

IMI

(
cI
)∗

a1a2a3a4

(
cI
)

a1a2a3a4
.

(4.35)

Following [128,129], we introduce color generators Ti to describe the color algebra asso-
ciated with the emission of a soft gluon from parton i = 1, 2, 3, 4. These matrices act on
the color indices of the i-th parton as

T c
i |. . . , ai, . . .〉 = (T c

i )biai
|. . . , bi, . . .〉 . (4.36)

If the i-th parton is a final-state quark or an initial-state anti-quark we set (T c
i )ba = tcba, for

a final-state anti-quark or an initial-state quark we have (T c
i )ba = −tcab, and for a gluon we

use (T c
i )ba = ifabc. We also use the notation Ti ·Tj ≡ T c

i T c
j , and T 2

i denotes the quadratic
Casimir operator in the representation of the i-th parton, with eigenvalues CF for quarks
and CA for gluons. Since we consider color-singlet amplitudes, color conservation implies
the relation

(T1 + T2 + T3 + T4) |M〉 = 0 . (4.37)

We will be particularly interested in products of color generators acting on the scattering
amplitudes, which appear in the calculation of perturbative corrections to the differential
cross section. We write such products as, for instance,

〈M |T2 · T4 |M〉 = M∗
a1b2a3b4(T

c
2 )b2a2(T

c
4 )b4a4Ma1a2a3a4 . (4.38)

Rather than evaluating such expressions for each amplitude M, it is more convenient to
work out how the products Ti · Tj act on the basis vectors |cI〉:

Ti · Tj |cJ〉 = [Ti · Tj ]IJ |cI〉 , (4.39)
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where the matrix elements are given by

[Ti · Tj ]IJ =
1

〈cI | cI〉
〈cI |Ti · Tj | cJ〉 . (4.40)

It is worth emphasizing that while the generators themselves act in the abstract color
space, on the left-hand side of the above equation they are just labels to identify a matrix
acting in the space of color-singlet structures. This matrix is thus a 2×2 matrix for the qq̄
channel, and a 3×3 matrix for the gg channel.

We now consider the SCET representation of the amplitude M{a}. For the qq̄ channel,
this is equal to

∑

I,m

∫
dt1dt2 C̃Im(t1, t2)

(
cI
)
{a}

×
〈
tb3(p3) t̄

b4(p4)
∣∣∣
[
Oh

m

]b3b4[Oc
m

]b1b2[Os
]{a},{b}

(0, t1, t2)
∣∣∣ qb1(p1) q̄

b2(p2)
〉
, (4.41)

where no summation over the set of indices {b} is performed. We have made clear that
for the amplitude to be non-zero, the colors of the heavy-quark and collinear fields must
coincide with those of the external partons. The reason is that after the decoupling of soft
gluons, the heavy-quark fields are effectively free fields, while collinear exchanges take place
only within Oc

m itself and are diagonal in color space. We can therefore suppress the color
indices on Oh

m and Oc
m as well as on the external states, and keep in mind that we shall

sum over the color indices of Os when we square the amplitude. Color correlations such as
(4.38) are mediated by the exchange of soft gluons, which are represented by the Wilson
lines in the soft operator Os. To describe these exchanges in the color-space formalism we
use the operator

Os(x) =
[
SnS

†
n̄S†

v3
Sv4

]
(x) , (4.42)

where the Wilson lines Si are defined as in (4.24), with the color generators promoted to
the abstract ones Ti according to the rules stated below in (4.36). The decoupling relations
(4.23) are of the same form for quarks and gluons when expressed in terms of the Si [130],
so this operator is used for both the qq̄ and gg channels. Its action on the basis vectors |cI〉
is then defined according to (4.38). We define the full SCET operator as Om = Oh

mO
c
mOs.

To evaluate the partonic matrix elements of the collinear fields we use
〈
0
∣∣ (χn

)a
α
(tn̄)

∣∣ pi; ai, si

〉
= δaai

e−itn̄·p uα(pi, si) ,

〈
0
∣∣ (An⊥

)a
α
(tn̄)

∣∣ pi; ai, si

〉
= δaai

e−itn̄·p ǫα(pi, si) . (4.43)

The heavy-quark fields are always taken to be on-shell, so their partonic matrix elements
are equal to HQET spinors multiplied by Kronecker delta symbols in the spin and color
indices. Upon taking the partonic matrix elements, the integrals over t1 and t2 produce
the Fourier-transformed Wilson coefficients

CIm(M,mt, cos θ, µ) =

∫
dt1dt2 e

−it1n̄·p1−it2n·p2 C̃Im(t1, t2) , (4.44)
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where we have made the full dependence of the momentum space Wilson coefficients on
the kinematic variables explicit. Defining a vector of Wilson coefficients as

|Cm〉 ≡
∑

I

CIm |cI〉 , (4.45)

and introducing the symbol 〈〈. . .〉〉 for partonic matrix elements as in [131], i.e.,

〈〈Om〉〉 = 〈t(p3) t̄(p4) |Om(0, 0, 0) | q(p1) q̄(p2)〉 , (4.46)

we can write the color-space representation of the SCET scattering amplitude as

|M〉 =
∑

m

〈〈Om〉〉 |Cm〉 . (4.47)

4.2.2. Factorization of the Differential Cross Section

We now return to the derivation of the factorization formula (4.11) by calculating the
partonic cross sections. The hadronic cross section is then obtained by convoluting these
results with the PDFs. Below we will discuss the qq̄ case in detail; the gg channel can be
analyzed in an analogous way.

The differential cross section is given by the phase-space integral of the squared amplitude

dσ̂ =
1

2ŝ

d3~p3

(2π)32E3

d3~p4

(2π)32E4

∑

Xs

(2π)4δ(4)(ps + p3 + p4 − p1 − p2)

× 1

4d2
R

∣∣∣∣
∑

m

〈t(p3) t̄(p4)Xs(ps) |Om(0) | q(p1) q̄(p2)〉 |Cm〉
∣∣∣∣
2

, (4.48)

where Om(x) ≡ Om(x, 0, 0), and we have used translational invariance to write the result in
terms of the Fourier-transformed coefficients Cm from (4.44). The cross section is implicitly
summed over the external colors and spins, and the factor dR = N for quarks and dR =
N2 − 1 for gluons arises from averaging over the colors of the initial-state partons. The
factor 1/4 accounts for the averaging over the polarizations of the initial-state partons.
Since the different types of effective-theory fields do not interact with each other, we can
factorize the matrix element into soft, heavy-quark, and collinear pieces. The partonic
matrix elements of the heavy-quark and collinear pieces just give the usual products of
spinors, which we combine into the tree-level matrix element

〈〈Om〉〉tree ≡ 〈〈Oh
m(0)Oc

m(0)〉〉tree =
〈
t(p3) t̄(p4)

∣∣Oh
m(0)Oc

m(0)
∣∣ q(p1) q̄(p2)

〉
tree

. (4.49)

Summed over spins, these give rise to the usual Dirac traces. The matrix element of the soft
operator is taken using the vacuum as the initial state and is of the form | 〈Xs(ps) |Os(0) | 0〉 |2.
This can be evaluated directly, but we prefer instead to sum over the final states Xs and
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convert it into a forward matrix element using the formalism explained in Appendix C
of [106]. Written in this form, the differential cross section reads

dσ̂ =
1

2ŝ

d3~p3

(2π)32E3

d3~p4

(2π)32E4

∫
d4x ei(p1+p2−p3−p4)·x

× 1

4d2
R

∑

m,m′

[
〈〈Om〉〉†tree 〈〈Om′〉〉tree × 〈Cm|

〈
0
∣∣ T̄[Os†(x)]T[Os(0)]

∣∣ 0
〉
|Cm′〉

]
, (4.50)

where T and T̄ represent time and anti-time ordering [106]. Since we treat the soft scale
as perturbative, the soft fields can be integrated out by evaluating the vacuum matrix
element. We now define a hard matrix and a position-space soft function as

H(M,mt, cos θ, µ) =
3

8

1

(4π)2

1

4dR

∑

m,m′

〈〈Om′〉〉tree |Cm′〉 〈Cm| 〈〈Om〉〉†tree ,

W (x, µ) =
1

dR

〈
0
∣∣ T̄[Os†(x)]T[Os(0)]

∣∣ 0
〉
, (4.51)

where we have chosen the prefactors to match the overall normalization of (4.11). The
elements of these matrices in the chosen color basis are defined as

HIJ ≡ 1

〈cI |cI〉 〈cJ |cJ〉
〈cI |H | cJ〉 , WIJ ≡ 〈cI |W | cJ〉 , (4.52)

so that the term in square brackets in the second line of (5.14) is proportional to

Tr
[
H W

]
=
∑

I,J

HIJWJI . (4.53)

In order to compute the invariant mass spectrum for the tt̄ pair, we define q = p3 + p4

and insert

1 =

∫
d4q dM δ(4)(q − p3 − p4) 2M δ(M2 − q2) (4.54)

into (5.14). After performing the ~p4 integral using the first δ-function, the q0 integration
using the second, and carrying out the trivial angular integration in the ~p3 integral, we
arrive at

d2σ̂

dMd cos θ
=

16M

3ŝ

1

(2π)3

∫
d3~q

2q0

∫
dE3|~p3| δ(M2 − 2q · p3)

×
∫
d4x ei(p1+p2−q)·x Tr

[
H(M,mt, cos θ, µf) W (x, µf)

]
, (4.55)

where |~p3| =
√
E2

3 −m2
t and q0 =

√
M2 + ~q2. In the partonic center-of-mass frame, we

have |~q| = O(
√
ŝ(1 − z)), so we can set q0 = M and drop ~q in the δ-function. Then the
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integral over ~q produces a factor δ3(~x) from the exponential, and after a few manipulations
we find

d2σ̂

dMd cos θ
=

8πβt

3ŝM
Tr
[
H(M,mt, cos θ, µf) S(

√
ŝ(1 − z),M,mt, cos θ, µf)

]
, (4.56)

where the momentum-space soft function is defined by [106]

S(
√
ŝ(1 − z),M,mt, cos θ, µ) =

√
ŝ

∫
dx0

4π
ei

√
ŝ(1−z)x0/2 W (x0, ~x = 0, µ) . (4.57)

The hadronic cross section (4.5) is now obtained by convoluting the partonic cross sec-
tions in (4.55) with the parton luminosities. Comparing with (4.11), we finally arrive at
the factorized form of the hard-scattering kernel

C(z,M,mt, cos θ, µf) = Tr
[
H(M,mt, cos θ, µf) S(

√
ŝ(1 − z),M,mt, cos θ, µf)

]
, (4.58)

where we have set ŝ = M2 everywhere except in the first argument of the soft function.

PIMSCET scheme

It should be noted that at leading power in (1− z) the argument of the soft function could
have been simplified as

√
ŝ(1 − z) = M(1 − z)/

√
z ≈ M(1 − z). However, in the case of

Drell-Yan [106] and Higgs production [107,108] near threshold it was found that by keeping
the exact dependence ω = 2Eg in the SCET soft functions as in (4.57), one can reproduce a
set of logarithmic power corrections involving ln[z/(1−z)], which are indeed present in the
analytic results for the fixed-order expansions of the hard-scattering kernels. Keeping such
terms improved agreement of the threshold-expanded hard-scattering kernels with the exact
results in QCD. Results in this “PIMSCET” scheme include the same type of logarithmic
corrections found in Drell-Yan and Higgs production. Later in the phenomenological part
in Section 10.1.1, we will find that the numerical results for the threshold expansion at
NLO in this scheme are indeed significantly improved compared to the traditional PIM
approach, which does not include such corrections.

4.2.3. The Hard Functions

The hard functions are related to products of Wilson coefficients, as shown in (4.51). To
obtain the Wilson coefficients CIm, one matches renormalized Green’s functions in QCD
with those in SCET. The matching can be done with any choice of external states and
infrared (IR) regulators. It is by far simplest to use on-shell partonic states for (qq̄, gg) → tt̄
scattering and dimensional regularization in d = 4 − 2ǫ dimensions to regularize both the
ultraviolet (UV) and IR divergences. With this choice, the loop graphs in SCET are
scaleless and vanish, so the effective-theory matrix elements are equal to their tree-level
expressions multiplied by a UV renormalization matrix Z. The matrix elements in QCD, on
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the other hand, are just the virtual corrections to the (qq̄, gg) → tt̄ scattering amplitudes.
The matching condition then reads [126, 130,131]

lim
ǫ→0

Z−1(ǫ,M,mt, cos θ, µ) |M(ǫ,M,mt, cos θ)〉 =
∑

m

〈〈Om〉〉tree |Cm(M,mt, cos θ, µ)〉 ,

(4.59)

where M is the UV-renormalized virtual QCD amplitude expressed in terms of αs with
nl = 5 active flavors. We have moved the SCET renormalization matrix Z to act on the
QCD amplitude, so that both sides of the equation are finite in the limit ǫ → 0. The
explicit results for the matrix elements ZIJ in our color basis for the qq̄ and gg channels
can be found in [131].

In practice, we are not interested in the Wilson coefficients themselves, but rather the
hard matrix HIJ . To calculate this, we first define

|Mren〉 ≡ lim
ǫ→0

Z−1(ǫ) |M(ǫ)〉 = 4παs

[∣∣M(0)
ren

〉
+
αs

4π

∣∣M(1)
ren

〉
+ . . .

]
, (4.60)

and expand the hard function as

H = α2
s

3

8dR

(
H(0) +

αs

4π
H(1) + . . .

)
. (4.61)

Using (4.59) and (4.60) to express the SCET matrix element in terms of the finite, IR-
subtracted QCD amplitudes in the definition of the hard function (4.51), the matrix ele-
ments (4.52) can be written as

H
(0)
IJ =

1

4

1

〈cI |cI〉 〈cJ |cJ〉
〈
cI
∣∣M(0)

ren

〉 〈
M(0)

ren

∣∣ cJ
〉
,

H
(1)
IJ =

1

4

1

〈cI |cI〉 〈cJ |cJ〉

[ 〈
cI
∣∣M(0)

ren

〉 〈
M(1)

ren

∣∣ cJ
〉

+
〈
cI
∣∣M(1)

ren

〉 〈
M(0)

ren

∣∣ cJ
〉 ]

. (4.62)

The leading-order result for the qq̄ channel follows from a simple calculation and reads

H
(0)
qq̄ =

(
0 0

0 2

)[
t̂21 + û2

1

M4
+

2m2
t

M2

]
, (4.63)

while that for the gg channel is

H(0)
gg =




1
N2

1
N

t̂1−û1

M2
1
N

1
N

t̂1−û1

M2

(t̂1−û1)2

M4
t̂1−û1

M2

1
N

t̂1−û1

M2 1




M4

2t̂1û1

[
t̂21 + û2

1

M4
+

4m2
t

M2
− 4m4

t

t̂1û1

]
. (4.64)

To calculate the NLO hard function requires the one-loop virtual corrections to the
partonic scattering amplitudes, decomposed into the singlet-octet basis. Although results
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for the NLO virtual corrections interfered with the Born-level amplitudes exist in the
literature [8–10], results for the one-loop amplitude decomposed into our color basis are
not available and must be calculated from scratch. For this purpose in-house routines
written in the computer algebraic system FORM [132] were used in our group3.

We have been able to perform several checks on our results. First, we have verified that
applying the renormalization factor Z to the tree-level amplitude indeed absorbs the IR
poles in the UV-renormalized QCD amplitudes at one-loop order. Second, we have checked
that inserting the results for the products of one-loop hard functions and tree-level soft
functions, given in (4.67) below, into the formula for the differential cross section, we
reproduce the results of [8–10], as required. Finally, using the one-loop hard functions, we
were able to calculate the IR singularities of the two-loop amplitudes in [131], which agree
with all the available results in the literature [17–19].

4.2.4. The Soft Functions

The soft functions are given by the vacuum expectation values of the soft Wilson-loop
operators, as defined in (4.51). In what follows we will calculate the one-loop corrections
to these objects directly in position space. When performing the resummation in the next
section, it will be more convenient to work with the Laplace-transformed functions. They
are defined as

s̃(L,M,mt, cos θ, µ) =
1√
ŝ

∫ ∞

0

dω exp

(
− ω

eγEµeL/2

)
S(ω,M,mt, cos θ, µ)

= W

(
x0 =

−2i

eγEµeL/2
, µ

)
, (4.65)

where the second equality was shown in [106] and follows from the functional form of
position-space Wilson loops [133].

We expand the soft functions in power of αs as

s̃ = s̃(0) +
αs

4π
s̃(1) +

(αs

4π

)2

s̃(2) + . . . . (4.66)

At leading order, the Wilson loop is just the unit matrix, so s̃
(0)
IJ = 〈cI | cJ〉 /dR, and it is

easy to show that

s̃
(0)
qq̄ =

(
N 0

0 CF

2

)
, s̃(0)

gg =



N 0 0

0 N
2

0

0 0 N2−4
2N


 . (4.67)

At NLO, the soft functions receive contributions from the diagrams depicted in Figure
4.4. The calculation is similar to that in [133]. To evaluate the diagrams we associate an

3The calculation of the hard function was not part of this thesis, explicit results provided by our co-authors
could be used.
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I12 I13 I14

I23 I24 I33

I34 I44

Figure 4.4.: Diagrams contributing to the soft functions at NLO. The thick lines represent
Wilson lines in the time-like directions v3 and v4, the thin lines Wilson lines
in the light-like directions n and n̄, and the cut curly lines represent the cut
gluon propagator (4.68).

eikonal factor vµ
i /k · vi multiplied by a color generator Ti for each attachment of a gluon

to a particle with velocity vi (we define v1 = n and v2 = n̄), and contract with the cut
gluon propagator in position space, which in Feynman gauge reads

Dµν
+ (x) = −gµν

∫
ddk

(2π)d
e−ik·x (2π) δ(k2) θ(k0) . (4.68)

We can then write the bare soft function in position space as

W
(1)
bare(ǫ, x0, µ) =

∑

i,j

wij Iij(ǫ, x0, µ) , (4.69)

where the matrices wij are related to products of color generators and will be given in
(4.74) and (4.75) below. The integrals Iij are defined as

Iij(ǫ, x0, µ) = −(4πµ2)ǫ

π2−ǫ
vi · vj

∫
ddk

e−ik0x0

vi · k vj · k
(2π) δ(k2) θ(k0) , (4.70)
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a1

a2

b1

a3

a4

a3

b3

a4

a1

a2

(cI){b1,a2,a3,a4}
(cJ)∗{a1,a2,b3,a4}

Figure 4.5.: Example of the calculation of wij . The diagram represents the structure for
w13.

which are obviously symmetric in the indices i and j. In Section .2 of the appendix we
give details about the calculation of these integrals. The integrals I11 = I22 = 0, and the
non-vanishing integrals are

I12 = −
(

2

ǫ2
+

2

ǫ
L0 + L2

0 +
π2

6

)
,

I33 = I44 =
2

ǫ
+ 2L0 −

2

βt

ln xs ,

I34 = −1 + x2
s

1 − x2
s

[(
2

ǫ
+ 2L0

)
ln xs − ln2 xs + 4 ln xs ln(1 − xs) + 4Li2(xs) −

2π2

3

]
,

I13 = I24 = −
[

1

2

(
L0 − ln

(1 + yt)
2xs

(1 + xs)2

)2

+
π2

12
+ 2Li2

(
1 − xsyt

1 + xs

)
+ 2Li2

(
xs − yt

1 + xs

)]
,

I14 = I23 = I13(yt → zu) , (4.71)

where xs = (1 − βt)/(1 + βt), yt = −t̂1/m2
t − 1, zu = −û1/m

2
t − 1, and

L0 = ln

(
− µ2x2

0e
2γE

4

)
. (4.72)

The renormalized soft functions W (1) can then be obtained by subtracting the divergent
part from W

(1)
bare. Later on we will need the Laplace-transformed function s̃, which accord-

ing to (4.65) is obtained by replacing L0 → −L. To finish the calculation, we must also
determine the matrix elements of

(
wij

)
IJ

=
1

dR

〈cI |Ti · Tj | cJ〉 . (4.73)
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In Figure 4.5 we show as an example the diagram leading to w13. For the qq̄ channel, the
results are

w
qq̄
12 = w

qq̄
34 = −CF

4N

(
4N2 0

0 −1

)
,

w
qq̄
33 = w

qq̄
44 =

CF

2

(
2N 0

0 CF

)
,

w
qq̄
13 = w

qq̄
24 = −CF

2

(
0 1

1 2CF − N
2

)
,

w
qq̄
14 = w

qq̄
23 = −CF

2N

(
0 −N

−N 1

)
, (4.74)

while for the gg channel we obtain

w
gg
12 = −1

4




4N2 0 0

0 N2 0

0 0 N2 − 4


 ,

w
gg
34 = −



CFN 0 0

0 −1
4

0

0 0 −N2−4
4N2


 ,

w
gg
33 = w

gg
44 =

CF

2N




2N2 0 0

0 N2 0

0 0 N2 − 4


 ,

w
gg
13 = w

gg
24 = −1

8




0 4N 0

4N N2 N2 − 4

0 N2 − 4 N2 − 4


 ,

w
gg
14 = w

gg
23 = −1

8




0 −4N 0

−4N N2 −(N2 − 4)

0 −(N2 − 4) N2 − 4


 . (4.75)

The NLO contributions to the cross section from real emissions in the soft limit have
been known for some time [13]. Transforming our results to momentum space, we have
checked that the integrals (4.70) are consistent with those given in Appendix A of that
paper (after taking into account some misprints in [13] later corrected in [134]). As another
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check, we have used our results along with the one-loop hard functions from the previous
section to calculate the total partonic cross sections at NLO in the limit β → 0 (see Section
8.3.1 ), reproducing the analytic expressions from [11]. Finally, using the RG invariance of
the cross section we will derive the RG equation for s̃ in the next section. We have checked
that our one-loop result satisfies this equation, which also justifies our procedure of simply
subtracting the 1/ǫ poles in the bare function to get the renormalized results.

4.2.5. Threshold Resummation

In the region where the cross section is dominated by the threshold terms, one needs to
resum the leading singular terms in (1 − z) to all orders in perturbation theory. This is
accomplished by deriving and solving RG equations for the hard and soft functions in the
effective theory, which will be described in what follows. Since these equations contain
information on the logarithmic structure of the hard-scattering kernels at higher-orders in
perturbation theory, they can also be used to derive an approximate NNLO formula for the
differential cross section in the threshold region. We will discuss this further in Section 6.1.

RG evolution and resummation at NNLL

The hard function satisfies the evolution equation

d

d lnµ
H(M,mt, cos θ, µ) = ΓH(M,mt, cos θ, µ) H(M,mt, cos θ, µ)

+ H(M,mt, cos θ, µ)Γ
†
H(M,mt, cos θ, µ) . (4.76)

Using (4.52), we can write the above equation in a matrix form, where the matrix elements
of ΓH are defined according to (4.40), and can be obtained from the matrices Γqq̄ or Γgg

in [131]. The form of the evolution equation follows from (4.60) and (4.62), along with the
defining relation

Z−1 d

d lnµ
Z = −ΓH (4.77)

for the anomalous dimension. The explicit results to two-loop order are

Γqq̄ =

[
CF γcusp(αs)

(
ln
M2

µ2
− iπ

)
+ CF γcusp(β34, αs) + 2γq(αs) + 2γQ(αs)

]
1

+
N

2

[
γcusp(αs)

(
ln

t̂21
M2m2

t

+ iπ

)
− γcusp(β34, αs)

](
0 0

0 1

)

+ γcusp(αs) ln
t̂21
û2

1

[(
0 CF

2N

1 − 1
N

)
+
αs

4π
g(β34)

(
0 CF

2

−N 0

)]
, (4.78)
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and

Γgg =

[
N γcusp(αs)

(
ln
M2

µ2
− iπ

)
+ CF γcusp(β34, αs) + 2γg(αs) + 2γQ(αs)

]
1

+
N

2

[
γcusp(αs)

(
ln

t̂21
M2m2

t

+ iπ

)
− γcusp(β34, αs)

]



0 0 0

0 1 0

0 0 1




+ γcusp(αs) ln
t̂21
û2

1







0 1
2

0

1 −N
4

N2−4
4N

0 N
4

−N
4


 +

αs

4π
g(β34)




0 N
2

0

−N 0 0

0 0 0





 , (4.79)

where the various anomalous-dimension functions can be found in the Appendix, and the
cusp angle β34 = iπ − ln(1 + βt)/(1 − βt). The solution to the evolution equation can be
written as

H(M,mt, cos θ, µ) = U(M,mt, cos θ, µh, µ) H(M,mt, cos θ, µh) U †(M,mt, cos θ, µh, µ) ,
(4.80)

where the unitary matrix U satisfies the equation

d

d lnµ
U(M,mt, cos θ, µh, µ) = ΓH(M,mt, cos θ, µ) U(M,mt, cos θ, µh, µ) . (4.81)

The matching scale µh must be chosen of order a typical hard scale, so that the matching
condition for the hard function is free of large logarithms. With the help of the evolution
matrix U , the hard function can then be evolved to an arbitrary scale µ. The formal
solution to this equation is

U(M,mt, cos θ, µh, µ) = P exp

µ∫

µh

dµ′

µ′ ΓH(M,mt, cos θ, µ′) , (4.82)

where the path-ordering is necessary because ΓH is a matrix. To evaluate the path-ordered
exponential, it is convenient to separate the explicit logarithmic dependence on the scale µ,
which is related to Sudakov double logarithms, from the remaining piece, which is related
to single logarithmic evolution. We thus write the anomalous dimension as

ΓH(M,mt, cos θ, µ) = Γcusp(αs)

(
ln
M2

µ2
− iπ

)
1 + γh(M,mt, cos θ, αs) , (4.83)

where Γcusp is equal to CF γcusp for qq̄ and N γcusp for gg, and the matrices γh are defined
through a comparison with (4.78) and (4.79). Since the term proportional to Γcusp mul-
tiplies the unit matrix, we can factor this piece out of the path-ordering and evaluate it

55



4. Pair Invariant-Mass Kinematics

using standard techniques. The result for the evolution matrix is then

U(M,mt, cos θ, µh, µ) = exp

[
2S(µh, µ) − aΓ(µh, µ)

(
ln
M2

µ2
h

− iπ

)]
u(M,mt, cos θ, µh, µ) .

(4.84)

The RG exponents in the square brackets of the exponential factor are, as already men-
tioned in Section 2.3,

S(µh, µ) = −
αs(µ)∫

αs(µh)

dα
Γcusp(α)

β(α)

α∫

αs(µh)

dα′

β(α′)
, aΓ(µh, µ) = −

αs(µ)∫

αs(µh)

dα
Γcusp(α)

β(α)
. (4.85)

The quantity u contains the non-trivial matrix evolution due to γh and reads

u(M,mt, cos θ, µh, µ) = P exp

αs(µ)∫

αs(µh)

dα

β(α)
γh(M,mt, cos θ, α) . (4.86)

The perturbative solutions to the above equations are reviewed in the Appendix.
We now turn to the evolution of the soft function. We derive its evolution equation by

using the RG invariance of the cross section,

d

d lnµ
Tr [HS] ⊗ ff = 0 , (4.87)

along with the evolution equations for the hard function and parton luminosities. The evo-
lution equation for the hard function was given above, and the parton luminosity functions
satisfy the DGLAP equations [135–137]. While the full DGLAP equations involve flavor
mixing, what we need here is the x→ 1 limit of them, which is flavor-diagonal and can be
written as

d

d lnµ
ff(y, µ) = 2

∫ 1

y

dx

x
P (x) ff(y/x, µ) , (4.88)

where P (x) is given by

P (x) =
2Γcusp(αs)

(1 − x)+
+ 2γφ(αs) δ(1 − x) . (4.89)

The evolution for the momentum-space soft function is then

d

d lnµ
S(ω,M,mt, cos θ, µ) = −

[
2Γcusp(αs) ln

ω

µ
+ γs†(M,mt, cos θ, αs)

]
S(ω,M,mt, cos θ, µ)

− S(ω,M,mt, cos θ, µ)

[
2Γcusp(αs) ln

ω

µ
+ γs(M,mt, cos θ, αs)

]
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− 4Γcusp(αs)

∫ ω

0

dω′ S(ω′,M,mt, cos θ, µ) − S(ω,M,mt, cos θ, µ)

ω − ω′ ,

(4.90)

where we have defined

γs(M,mt, cos θ, αs) = γh(M,mt, cos θ, αs) + 2γφ(αs) 1 . (4.91)

As in [106], the non-local evolution equation for the soft function can be turned into a
local one by the Laplace transformation (4.65). The evolution equation for the Laplace-
transformed function reads

d

d lnµ
s̃

(
ln
M2

µ2
,M,mt, cos θ, µ

)
=

−
[
Γcusp(αs) ln

M2

µ2
+ γs†(M,mt, cos θ, αs)

]
s̃

(
ln
M2

µ2
,M,mt, cos θ, µ

)

− s̃

(
ln
M2

µ2
,M,mt, cos θ, µ

)[
Γcusp(αs) ln

M2

µ2
+ γs(M,mt, cos θ, αs)

]
. (4.92)

This can be solved using the same methods as for the hard function. Transforming the
results back to momentum space, we find

S(ω,M,mt, cos θ, µf) =
√
ŝ exp

[
−4S(µs, µf) + 4aγφ(µs, µf)

]

× u†(M,mt, cos θ, µf , µs) s̃(∂η,M,mt, cos θ, µs) u(M,mt, cos θ, µf , µs)
1

ω

(
ω

µs

)2η
e−2γEη

Γ(2η)
,

(4.93)

where η = 2aΓ(µs, µf). The soft scale µs should be chosen such that the contribution from
the soft function to the cross section is perturbatively well-behaved, and will be discussed
in detail in Section 8.1.2.

Combining the results for the hard and soft functions, our final resummed expression for
the hard-scattering kernel is

C(z,M,mt, cos θ, µf) = exp
[
4aγφ(µs, µf)

]

× Tr

[
U(M,mt, cos θ, µh, µs) H(M,mt, cos θ, µh) U †(M,mt, cos θ, µh, µs)

× s̃

(
ln
M2

µ2
s

+ ∂η,M,mt, cos θ, µs

)]
e−2γEη

Γ(2η)

z−η

(1 − z)1−2η
. (4.94)

For values µs < µf the parameter η < 0, and one must use a subtraction at z = 1 and
analytic continuation to express integrals over z in terms of star (or plus) distributions [138].
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Formula (4.94) can be evaluated order-by-order in RG-improved perturbation theory, using
the standard counting lnµh/µs ∼ ln(1− z) ∼ 1/αs. The perturbative solutions for the RG
factors needed to evaluate the evolution matrix U to NLO in this counting scheme are given
in (A.2), (A.3), and (A.5) of the Appendix. The correspondence between this counting
and the standard counting of logarithms (e.g. NLL, NNLL), along with the accuracy of the
anomalous dimensions and matching functions needed at a given order, can be summarized
as follows:

RG-improved PT log accuracy Γcusp γh, γφ H , s̃

LO NLL 2-loop 1-loop tree-level

NLO NNLL 3-loop 2-loop 1-loop

In the remainder of the paper we will use the logarithmic counting (e.g. NNLL) when
referring to the resummed results obtained in this section. These results are valid for
the leading-order term in the threshold expansion in (1 − z), whereas the full result at
NLO in fixed-order perturbation theory also contains information on subleading terms. In
phenomenological applications we can match the resummed results with the NLO fixed-
order results to achieve an NLO+NNLL precision. The method for doing this is described
in Section 8.
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In the following we calculate the double differential cross section with respect to the trans-
verse momentum pT and the rapidity y of the top-quark using 1PI kinematics. We work in
the threshold limit p2

X → m2
t , where pX is the momentum of the inclusive hadronic state

X[t̄] which contains also the anti-top quark. This limit forces the real radiation to be soft.
The derivation of the analytical results is close to the one presented for the case of PIM
kinematics, and not all details described there will be repeated here. Important ingredi-
ents, for instance the hard function, can be taken over from PIM. The 1PI soft function
was previously unknown, and had to be calculated from scratch. We present results for this
matching function at NLO in perturbation theory. The analytical results obtained here
will enable us to make predictions for pT and y distributions, the FB asymmetry at the
Tevatron and the charge-asymmetry at the LHC at NLO+NNLL. As for the case of PIM
kinematics we refrain from a numerical analysis here. Detailed phenomenological studies
will be presented in Chapter 9.

5.1. Kinematics

As in Section 4 we consider the scattering process

N1(P1) +N2(P2) → t(p3) + t̄(p4) +X , (5.1)

where N1 and N2 indicate the incoming protons (LHC) or proton and anti-proton (Teva-
tron), while X represents an inclusive hadronic final state.

The partonic processes which we will analyze in detail are thus

q(p1) + q̄(p2) → t(p3) + t̄(p4) + X̂(k) ,

g(p1) + g(p2) → t(p3) + t̄(p4) + X̂(k) . (5.2)

Note that the hadronic state X̂ in the above equations is different than the state X in
(5.1): X̂ contains only the products of the hard-scattering, while X contains also the
beam remnants from the initial hadrons. The relations between the hadronic and partonic
momenta are the same as in Section 4, p1 = x1P1 and p2 = x2P2 and we define the same
hadronic variables

s = (P1 + P2)
2 , t1 = (P1 − p3)

2 −m2
t , u1 = (P2 − p3)

2 −m2
t , (5.3)
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while the corresponding quantities at the partonic level are given by

ŝ = x1x2s , t̂1 = x1t1 , û1 = x2u1 , M2 = (p3 + p4)
2 . (5.4)

Besides the above variables which are the same as in PIM kinematics we define

s4 = ŝ+ t̂1 + û1 = (p4 + k)2 −m2
t . (5.5)

Momentum conservation implies that at Born level (for k = 0) we have ŝ = M2 and
s4 = 0. In Section 4 we had considered the threshold ŝ → M2. In the case of 1PI
observables such as the transverse-momentum or rapidity distribution of a single top quark,
it is natural to define the threshold region as s4 → 0. This threshold limit was first studied
in [56]. It should be stressed again that as in PIM, the top and anti-top quarks are not
forced to be nearly at rest.

Similar to PIM the double-differential cross section in the transverse momentum pT and
the rapidity y can be written in the factorized form

dσ

dpTdy
=

16πpT

3s

∑

i,j

∫ 1

xmin
1

dx1

x1

∫ 1

xmin
2

dx2

x2

fi/N1
(x1, µf) fj/N2

(x2, µf)Cij(s4, ŝ, t̂1, û1, mt, µf) .

(5.6)

The hadronic Mandelstam variables are related to pT and y in the laboratory frame via

t1 = −
√
sm⊥ e

−y , u1 = −
√
sm⊥e

y , (5.7)

where m⊥ =
√
p2

T +m2
t . Together with (5.4) and (5.5), the kinematic variables entering

Cij can be expressed as functions of pT , y, x1 and x2. The lower limits of integrations in
(5.6) are

xmin
1 =

−u1

s + t1
, xmin

2 =
−x1t1
x1s+ u1

.

Finally, the total cross section can be calculated by integrating the double-differential
distribution over the ranges

0 ≤ |y| ≤ 1

2
ln

1 +
√

1 − 4m2
⊥/s

1 −
√

1 − 4m2
⊥/s

, 0 ≤ pT ≤
√
s

4
−m2

t . (5.8)

In this chapter we will mainly discuss the distributions of the top quark, but our results
can also be applied to the transverse momentum p̄T and rapidity ȳ distributions of the anti-
top quark after appropriate replacements1. At the Tevatron, charge-conjugation invariance
of the strong interactions implies that within QCD we have the simple relation

dσ

dp̄Tdȳ
=

dσ

dpTdy

∣∣∣
pT→p̄T , y=→−ȳ

, (5.9)

1We will make use of this fact later in Section 10.2.4.
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which we will use in Section 10.2 in interpreting the charge asymmetry in terms of a
forward-backward asymmetry.

As for z → 1, the limit s4 → 0 greatly simplifies the calculation, since one effectively
deals with a two-body final state. The hard-scattering kernels can be factorized into a hard
function Hij and a soft function Sij as

Cij(s4, ŝ, t̂1, û1, mt, µf) = Tr
[
Hij(ŝ

′, t̂′1, û
′
1, mt, µf) Sij(s4, ŝ

′, t̂′1, û
′
1, mt, µf)

]
+ O(s4) .

(5.10)

The notation above is meant to emphasize that there are ambiguities in the choice of ŝ′,
t̂′1 and û′1, which can in general differ from the exact Mandelstam variables ŝ, t̂1 and û1 by
power corrections that vanish at s4 = 0. For instance, given an explicit result for the hard
and soft functions, one can always rewrite it using ŝ′ + t̂′1 + û′1 = 0 or ŝ′ + t̂′1 + û′1 = s4.
Although the difference is suppressed by positive powers of s4, the two choices give different
numerical results upon integration. In Section 9.1, we will explain in detail our method
for dealing with this ambiguity.

As in Section 4, the use of boldface in (5.10) indicates that the hard and soft functions
are matrices in color space. The hard function originates from virtual corrections and is
the same as that in the PIM case once the variables ŝ′, t̂′1, û

′
1 are expressed in terms of

M and cos θ. Analog to PIM, the soft function captures contributions arising from the
emission of soft real radiation. It depends on the details of the phase-space integrals and is
different in 1PI and PIM kinematics. The 1PI soft function contains singular distributions
in s4, which are of the form

Pn(s4) ≡
[

1

s4

lnn s4

m2
t

]

+

, (5.11)

where the plus-distributions are defined by

∫ m2
t

0

ds4

[
1

s4

lnn s4

m2
t

]

+

g(s4) =

∫ m2
t

0

ds4
1

s4

lnn

(
s4

m2
t

)
[g(s4) − g(0)] . (5.12)

With this definition

∫ smax
4

0

[
1

s4

lnn s4

m2
t

]

+

g(s4) =

∫ smax
4

0

ds4
1

s4

lnn

(
s4

m2
t

)
[g(s4) − g(0)] +

g(0)

n + 1
lnn+1

(
smax
4

m2
t

)
.

(5.13)

Near threshold, these singular distributions lead to a bad convergence of the perturbation
series. More generally, they give rise to the dominant higher-order corrections to the
hadronic cross section if the product of PDFs in (5.6) falls off very quickly away from
values of x1, x2 where s4 → 0. In either case, resumming such terms to all orders can lead
to improved theoretical predictions. This is the topic of the next section.
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5.2. Factorization in SCET and HQET

Most of the discussion about factorization and resummation can be carried from PIM
over directly to the case of 1PI kinematics. In fact, the differences between 1PI and PIM
kinematics arise solely from the structure of real emission in the two cases and therefore
affect only the soft function, which must be modified in two essential ways. First, the phase-
space integrals for real emission in the soft limit change, so the fixed-order expansion of the
soft function is different from its PIM counterpart and must be calculated from scratch.
Second, the RG equation for the soft function, derived using the RG invariance of the
cross section along with the evolution equations of the hard function and PDFs, also
differs slightly from its expression in PIM kinematics. In what follows we focus on how to
deal with these two differences with respect to PIM kinematics and otherwise just quote
results from Chapter 4 for the pieces which remain unchanged. In particular, we derive
the explicit one-loop soft function and the RG equation needed for NNLL resummation
in 1PI kinematics. We also discuss the structure of power corrections to the leading-order
term in the threshold expansion and explain how a certain set of subleading corrections in
s4 appears naturally within the SCET formalism. Later, in Section 6.2 we present results
for approximate NNLO formulas in fixed-order perturbation theory.

5.2.1. The Soft Functions in 1PI

In general, the soft function is related to the vacuum expectation value of a soft Wilson-
loop operator. To calculate it explicitly, we first generalize the derivation of the differential
cross section at partonic threshold given for PIM kinematics in 4.2.4 to the 1PI case.

In the limit where extra gluon radiation is soft, the differential cross section can be
factorized as2

dσ̂ =
1

2ŝ

d3~p3

(2π)32E3

∫
d3~p4

(2π)32E4

∫
d4x ei(p1+p2−p3−p4)·x

× 128π2

3
Tr
[
H(ŝ′, t̂′1, û

′
1, mt, µf) W (x, ŝ′, t̂′1, û

′
1, mt, µf)

]
, (5.14)

where W is the expectation value of the Wilson-loop operator in position space. Since
the integrand depends on ~p4 only through E4 =

√
|~p4|2 +m2

t and in the exponent, its

calculation is simplified by going to the rest frame of the inclusive final state t̄ + X̂ in
(5.2), which consists of the anti-top-quark plus additional soft radiation. In this frame
|~p4| = O(s4/mt), and we can drop the dependence on it in E4 ∼ mt. The integral over ~p4

then produces a factor of (2π)3δ(3)(~x), and the exponent depends only on Es ≡ (p1 + p2 −
p3 − p4)

0 = s4/(2
√
s4 +m2

t ), which is the energy of the soft radiation in this particular
frame. Using the δ-function to perform the integral over d3~x, and converting the result to

2The functions H and W are summed over the channel indices ij. In order to keep the notation as
simple as possible, in the remainder of this section we suppress the sum and indices.
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a differential cross section in t̂1 and û1, we obtain

dσ̂

dt̂1dû1

=
8π

3ŝ2

1

mt

∫
dx0

4π
exp

(
ix0s4

2
√
s4 +m2

t

)

× Tr
[
H(ŝ′, t̂′1, û

′
1, mt, µf) W

(
(x0, ~x = 0), ŝ′, t̂′1, û

′
1, mt, µf

) ]
. (5.15)

We now introduce the momentum-space soft function according to

Ŵ (ω, ŝ′, t̂′1, û
′
1, mt, µ) =

∫
dx0

4π
exp

(
iωx0

2

)
W
(
(x0, ~x = 0), ŝ′, t̂′1, û

′
1, mt, µ

)
. (5.16)

The soft function entering the factorization formula is then given by

S(s4, ŝ
′, t̂′1, û

′
1, mt, µ) =

1

mt
Ŵ

(
s4√

s4 +m2
t

, ŝ′, t̂′1, û
′
1, mt, µ

)
. (5.17)

Using the results above, one recovers the factorization formula (5.10) for the hard-scattering
kernels by noting that

Cij(s4, ŝ, t̂1, û1, mt, µf) =
3ŝ2

8π

dσ̂ij

dt̂1dû1

. (5.18)

1PISCET scheme

It is instructive to compare this derivation with that given in 4.2.4 for PIM kinematics. In
both cases, the calculations are simplified by working in a frame where the soft function
depends only on the time component x0, or in momentum space, on the energy of the extra
soft radiation (although of course the final results are Lorentz invariant and do not depend
on the frame). In PIM kinematics this is the partonic center-of-mass frame, while in 1PI
kinematics it is the center-of-mass frame of the unobserved partonic final state, consisting
of the anti-top-quark plus additional soft radiation. The difference between these two cases
comes from which combinations of the momenta are counted as “small”: in PIM kinematics
it is (p3 + p4) · k against (p3 + p4)

2 = M2, while in 1PI kinematics it is p4 · k against
p2

4 = m2
t . This difference has important implications for the structure of power corrections

in the two types of kinematics. Such power corrections come both from time-ordered
products involving the subleading SCET Lagrangian and operators, which before phase-
space integrations are the same in both cases, and from the approximations in the phase-
space integrals, e.g. E4 =

√
|~p4|2 +m2

t ∼ mt in 1PI and E3 +E4 =
√
|~p3 + ~p4|2 +M2 ∼M

in PIM kinematics. The corrections from the latter source can be quite different: for 1PI
kinematics they involve the expansion parameter |~p4|/mt = s4/(2mt

√
m2

t + s4), while for

PIM kinematics they involve the expansion parameter |~p3 + ~p4|/M =
√
ŝ(1 − z)/(2M) =

(1 − z)/(2
√
z).

In Chapter 4, we followed the procedure, using the exact form ω = 2Eg = M(1− z)/
√
z

instead of ω = M(1 − z) in the first argument of the soft function in PIM kinematics. In
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1PI kinematics, the equivalent procedure is to use ω = 2Eg = s4/
√
m2

t + s4, as we have
already indicated explicitly in (5.17). We will refer to numerical results obtained with this
choice as being calculated in the “1PISCET” scheme. Since the factorization formula (5.15)
is derived in the limit s4 ≪ m2

t , it would be equally valid to use ω = s4/mt in the first argu-
ment of the soft function (5.17). This is in fact the choice that has been made in previous
calculations in 1PI kinematics [56], and later on we will refer to this as the “1PI” scheme.
When expanded in fixed-order perturbation theory, the two schemes differ through terms
involving ln(1 + s4/m

2
t )/s4, which are power suppressed in the limit s4 → 0. However, in

our analysis in Sections 9.2.1 and 9.3 we will see that these power-suppressed effects can be
numerically important, and that the agreement with the exact numerical results at NLO
is improved in the 1PISCET scheme. Furthermore, although in this case we do not have
explicit analytic results to compare with, we note that the logarithms of ln(1 + s4/m

2
t )

appear naturally in the fixed-order NLO calculations of hard gluon corrections through
terms of the form ln(2Eg/µ), see for instance Eqs. (4.16) and (4.17) of [9].

We now present the calculation of the soft function in 1PI kinematics at one-loop order.
The results can be written as

W
(1)
bare(ǫ, x

0, µ) =
∑

i,j

wij I ′
ij(ǫ, x

0, µ) , (5.19)

where the matrices wij are related to products of color generators and can be found in
Section 4.2.4. The integrals I ′

ij are again defined as

I ′
ij(ǫ, x

0, µ) = −(4πµ2)ǫ

π2−ǫ
vi · vj

∫
ddk

e−ik0x0

vi · k vj · k
(2π) δ(k2) θ(k0) . (5.20)

Again, in Section .2 of the appendix we give details about the calculation of these integrals.
As results for these objects in the rest frame of the heavy anti-top quark, we find for the
non-vanishing integrals

I ′
12 = −

[
2

ǫ2
+

2

ǫ

(
L0 − ln

ŝ′m2
t

t̂′1û
′
1

)
+

(
L0 − ln

ŝ′m2
t

t̂′1û
′
1

)2

+
π2

6
+ 2Li2

(
1 − ŝ′m2

t

t̂′1û
′
1

)]
,

I ′
33 =

2

ǫ
+ 2L0 −

2(1 + β2
t )

βt
lnxs ,

I ′
44 =

2

ǫ
+ 2L0 + 4 ,

I ′
14 = I ′

24 = − 1

ǫ2
− 1

ǫ
L0 −

1

2
L2

0 −
π2

12
, (5.21)

I ′
13 = −

[
1

ǫ2
+

1

ǫ

(
L0 − 2 ln

t̂′1
û′1

)
+

1

2

(
L0 − 2 ln

t̂′1
û′1

)2

+
π2

12
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+ 2Li2

(
1 − t̂′1

û′1xs

)
+ 2Li2

(
1 − t̂′1xs

û′1

)]
,

I ′
23 = I ′

13 (t̂′1 ↔ û′1) ,

I ′
34 =

1 + β2
t

2βt

[
−2

ǫ
ln xs − 2L0 ln xs + 2 ln2 xs − 4 lnxs ln(1 − x2

s) − 2Li2(x
2
s) +

π2

3

]
,

where βt =
√

1 − 4m2
t/ŝ

′, xs = (1 − βt)/(1 + βt) and

L0 = ln

(
− µ2(x0)2e2γE

4

)
. (5.22)

The renormalized function is obtained by subtracting the 1/ǫn poles in the bare function.
When performing resummation it is more convenient to introduce the Laplace transform
of this object, which is defined as

s̃(L, ŝ′, t̂′1, û
′
1, mt, µ) =

∫ ∞

0

dω exp

(
− ω

eγEµeL/2

)
Ŵ (ω, ŝ′, t̂′1, û

′
1, mt, µ) ,

= W

((
x0 = − 2i

eγEµeL/2
, ~x = 0

)
, ŝ′, t̂′1, û

′
1, mt, µ

)
. (5.23)

From the second line it is clear that the Laplace-transformed function s̃ is determined
directly from the position-space soft function through the replacement L0 → −L [106].

The above expression for the one-loop soft function is new, but we have been able to
perform two important checks. First, we have verified that our results are consistent with
the results for real emission in the soft limit given in [9] for the gg channel and in [10] for
the qq̄ channel. Second, we have made sure that the divergence structure of the one-loop
soft function is consistent with the RG equation derived in the following section.

5.2.2. Threshold Resummation

The physical cross section should be independent of the factorization scale, which implies

0 =

∫ 1

xmin
1

dx1

x1

∫ 1

xmin
2

dx2

x2

{[
d

d lnµf

[
fi/N1(x1, µf) fj/N2(x2, µf)

]]
Cij(s4, ŝ, t̂1, û1, mt, µf)

+ fi/N1
(x1, µf) fj/N2

(x2, µf)
d

d lnµf
Cij(s4, ŝ, t̂1, û1, mt, µf)

}
.

(5.24)

Compared to the PIM case, the terms arising from the derivatives acting on the PDFs are
slightly different. To understand their structure, first consider the term where the derivative
acts on fj/N2(x2, µf). Analog to (4.88) and (4.89), under the dynamical assumption of
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steeply falling PDFs, the DGLAP evolution equations can be simplified by keeping only
the leading terms for x → 1 in the Altarelli-Parisi splitting functions, in which case the
evolution becomes diagonal and reads

d

d lnµ
fj/N2(y, µ) =

∫ 1

y

dx

x
Pjj(x) fj/N2(y/x, µ) , (5.25)

with Pjj(x) given by

Pjj(x) =
2Γj

cusp(αs)

(1 − x)+
+ 2γφ

j (αs) δ(1 − x) . (5.26)

We then obtain (up to power-suppressed terms)

∫ 1

xmin
1

dx1

x1
fi/N1(x1, µf)

[∫ 1

xmin
2

dx2

x2

∫ 1

x2

dξ

ξ
fj/N2(x2/ξ, µf)Pjj(ξ)Cij(s4, ŝ, t̂1, û1, mt, µf)

]
.

(5.27)

To derive the evolution equation for the soft function, we arrange the integrations such
that the Altarelli-Parisi kernel acts on the Cij rather than on the PDF. After some manip-
ulations, the term in the square brackets above can be written as

∫ 1

xmin
2

dx2

x2

fj/N2
(x2, µf)

∫ 1

xmin
2 /x2

dξ

ξ
Pjj(ξ)Cij(s

′
4, ξŝ, t̂1, ξû1, mt, µf) (5.28)

with s′4 = t̂1 + ξ(ŝ + û1). Changing the integration variable from ξ to s′4, taking the
threshold limit s4 → 0, and using the identity

∫ s4

0

ds′4
f(s′4)

(−t̂1)[(s4 − s′4)/(−t̂1)]+
=

∫ s4

0

ds′4
f(s′4) − f(s4)

s4 − s′4
+ f(s4) ln

s4

−t̂1
, (5.29)

we can convert this term into a form from which the RG equation for the soft function
is more easily derived. The analogous procedure is then used for the term where the
derivative acts on the other PDF. Finally, we use the RG equation for the hard function

d

d lnµ
H(ŝ′, t̂′1, û

′
1, mt, µ) = ΓH(ŝ′, t̂′1, û

′
1, µ) H(ŝ′, t̂′1, û

′
1, mt, µ)

+ H(ŝ′, t̂′1, û
′
1, mt, µ)Γ

†
H(ŝ′, t̂′1, û

′
1, mt, µ) , (5.30)

with

ΓH(ŝ′, t̂′1, û
′
1, mt, µ) = Γcusp(αs)

(
ln
ŝ′

µ2
− iπ

)
1 + γh(ŝ′, t̂′1, û

′
1, mt, αs) , (5.31)
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Assembling the different pieces and enforcing (5.24), the evolution equation for the
momentum-space soft function reads

d

d lnµ
S(s4, ŝ

′, t̂′1, û
′
1, mt, µ) = −

[
2Γcusp(αs) ln

s4

mtµ
+ γs†(ŝ′, t̂′1, û

′
1, mt, αs)

]
S(s4, ŝ

′, t̂′1, û
′
1, mt, µ)

− S(s4, ŝ
′, t̂′1, û

′
1, mt, µ)

[
2Γcusp(αs) ln

s4

mtµ
+ γs(ŝ′, t̂′1, û

′
1, mt, αs)

]

− 4Γcusp(αs)

∫ s4

0

ds′4
S(s′4, ŝ

′, t̂′1, û
′
1, mt, µ) − S(s4, ŝ

′, t̂′1, û
′
1, mt, µ)

s4 − s′4
,

(5.32)

where we have defined

γs(ŝ′, t̂′1, û
′
1, mt, αs) = γh(ŝ′, t̂′1, û

′
1, mt, αs) +

(
2γφ(αs) + Γcusp(αs) ln

ŝ′m2
t

t̂′1û
′
1

)
1 . (5.33)

This evolution equation is of the same form as for the PIM case, but the soft anomalous
dimension is modified by the logarithmic term in (5.33), which can be traced back to the
different form of the collinear evolution terms after arranging the integrations as appropri-
ate for 1PI kinematics (this extra term vanishes in the production threshold limit β → 0,
where PIM and 1PI kinematics agree). Therefore, we can use the expression for the re-
summed soft function derived for PIM kinematics, taking into account the changes in the
anomalous dimension and soft matching function, and the fact that now ω = s4/

√
s4 +m2

t

sets the mass scale in the soft logarithms. The resummed soft function is then given by

S(s4, ŝ
′, t̂′1, û

′
1, mt, µf) = exp

[
−4S(µs, µf) + 2aΓ(µs, µf) ln

ŝ′m2
t

t̂′1û
′
1

+ 4aγφ(µs, µf)

]

× u†(ŝ′, t̂′1, û
′
1, mt, µf , µs) s̃(∂η, ŝ

′, t̂′1, û
′
1, mt, µs) u(ŝ′, t̂′1, û

′
1, mt, µf , µs)

× 1

s4

(
s4√

m2
t + s4µs

)2η
e−2γEη

Γ(2η)

∣∣∣∣∣
η=2aΓ(µs ,µf )

, (5.34)

and combining this with the solution for the hard function, the final result for the resummed
hard-scattering kernels in 1PI is

C(s4, ŝ
′, t̂′1, û

′
1, mt, µf) = exp

[
2aΓ(µs, µf) ln

m2
tµ

2
s

t̂′1û
′
1

+ 4aγφ(µs, µf)

]

× Tr

[
U(ŝ′, t̂′1, û

′
1, mt, µh, µs) H(ŝ′, t̂′1, û

′
1, mt, µh) U †(ŝ′, t̂′1, û

′
1, mt, µh, µs)

× s̃(∂η, ŝ
′, t̂′1, û

′
1, mt, µs)

]
1

s4

(
s4√

m2
t + s4µs

)2η
e−2γEη

Γ(2η)

∣∣∣∣∣
η=2aΓ(µs,µf )

.

(5.35)
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The result (5.35) is the same as in Chapter 4, and the the RG exponents aΓ and aγφ as
the evolution factors U and u can again be found in the Appendix. The notation is such
that one must first take the derivatives with respect to η appearing in the first argument
of the Laplace-transformed soft function s̃, defined in (5.23), and then set η = 2aΓ(µs, µf).
Again, for values of the scale where η < 0, one must use analytic continuation to interpret
the formula in terms of plus-distributions.

Our result for the resummed hard-scattering kernels is equivalent to the Mellin-space
resummation formula from [56] when expanded to any fixed order in αs, if we approximate√
m2

t + s4 ∼ mt. However, the scale choices used in Mellin-space resummation are typically
such that the one encounters a Landau-pole ambiguity in the evaluation of the all-orders
formula, upon inverting the Mellin transform and integrating over s4. One way of dealing
with this, as done in [53–55,57], is to instead use the resummation formula only to construct
approximate fixed-order expansions at NNLO. Another way is to instead view µs as a
function of the observables pT and y, and choose it in such a way that the perturbative
expansion of the soft function at µs is well behaved. With such a choice of µs, one can
still evaluate the all-orders resummation formula, but without encountering Landau-pole
ambiguities. We will describe how to construct the fixed-order expansion to NNLO in
Section 6.2, and then compare the two methods in more detail in Section 6.3.
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The goal of this Section is to present a subset of the NNLO corrections to the hard-
scattering kernels for the tt̄ invariant mass, and the rapidity and pT distribution of the
top-quark at hadron colliders. The leading-order terms in the threshold expansions z → 1
(in the PIM case) or s4 → 0 (in the 1PI case) for the differential cross section are equivalent
to the virtual-soft approximation, and are written in terms of singular plus distributions
and delta functions in the variable (1−z) and s4 respectively. Those have been shown at the
end of Sections 4.1 and 5.1. Our results determine the coefficients of all plus distributions of
the form [lnn(1−z)/(1−z)]+ (PIM) and [1/s4 lnn(s4/m

2
t )]+ (1PI), as well as all µ-dependent

pieces multiplying the δ(1 − z) term and the δ(s4) term respectively. Remaining pieces
of the delta-function coefficients are left undetermined. The basis for our calculations are
the factorization formulas for the hard-scattering kernels in the partonic threshold regions
given in Section 4.2.5 and Section 5.2.2. As we have shown, the hard and soft functions
contained in the hard-scattering kernels satisfy certain renormalization-group equations,
which determine their dependence on the scale µ. By knowing the hard and soft functions
at one-loop order, and using results for the two-loop anomalous dimensions also mentioned
in Sections 4.2.5 and 5.2.2, the µ-dependent logarithms in the hard and soft functions
can be determined exactly to NNLO using the renormalization group. The logarithms in
the soft functions are of the form ln[ŝ(1 − z)2/µ2] (PIM) and ln[s4/(

√
s4 +m2

t µ)] (1PI),
and they uniquely determine the coefficients of the different plus-distributions mentioned
above.

Concerning the case of PIM kinematics this is similar in spirit to the calculations of [54]
for the soft corrections to the NNLO differential cross section using threshold resummation
techniques in Mellin space, but goes beyond those results by completely determining the
coefficient of the [1/(1 − z)]+ distribution, which is sensitive to process-dependent two-
loop anomalous dimensions. In the case of 1PI kinematics, the analytic expressions for Di

(i = 1, 2, 3) were first derived in [54] starting from resummed formulas in Mellin moment
space. We have compared with those results and found agreement. In a recent paper the
coefficient D0 was also determined [57], but its explicit form was not reported there.

6.1. Approximate NNLO: PIM

In the Chapter 4 we derived a formula for the resummed differential cross section, which
is valid up to NNLL order. Starting from (4.94), we will now obtain expressions for the
differential cross section which are valid in fixed-order perturbation theory. As mentioned
in the introduction, our results allow one to obtain analytic expression for all of the co-
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efficients multiplying singular plus distributions in the variable (1 − z) appearing in the
hard-scattering kernels up to NNLO. With the same method, which is outlined below, it
is also possible to determine analytically, up to O(α4

s), the scale-dependent parts of the
coefficient multiplying δ(1 − z).

In order to derive fixed-order formulas from (4.94), we first set µh = µs = µf = µ. In
that case the evolution matrix U is equal to unity, and η = 2aΓ(µf , µs) → 0. The formula
for the hard-scattering kernels then becomes

C(z,M,mt, cos θ, µ) = c̃(∂η,M,mt, cos θ, µ)

(
M

µ

)2η
e−2γEη

Γ(2η)

z−η

(1 − z)1−2η

∣∣∣∣∣
η=0

, (6.1)

where

c̃(∂η,M,mt, cos θ, µ) = Tr
[
H(M,mt, cos θ, µ) s̃(∂η,M,mt, cos θ, µ)

]
. (6.2)

From the above, we conclude that it is sufficient to focus on the calculation of c̃ at NNLO.
Using the perturbative expansion of the hard (4.62) and soft function (4.66), the result at
NNLO reads

c̃(2)(∂η,M,mt, cos θ, µ) = Tr
[
H(2) s̃(0)

]
+ Tr

[
H(0) s̃(2)

]
+ Tr

[
H(1) s̃(1)

]

=

4∑

j=0

c
(2)
j (M,mt, cos θ, µ) ∂j

η .
(6.3)

By using (4.76) and (4.92) in combination with the analytic expressions for the hard and
soft functions at NLO, it is possible to determine all terms proportional to lnµ in the
two-loop hard function H(2)(M,mt, cos θ, µ), as well as all terms proportional to L in
the two-loop soft function s̃(2)(L,M,mt, cos θ, µ). This information allows us to derive
an approximate expression for c̃ at NNLO. By inserting that formula for c̃ into (6.1), we
obtain the corresponding NNLO expression for the hard-scattering kernel C. The results
are conventionally written in terms of the plus distributions

Pn(z) =

[
lnn(1 − z)

1 − z

]

+

. (6.4)

However, the right-hand side of (6.1) is more conveniently expressed in terms of the distri-
butions

P ′
n(z) =

[
1

1 − z
lnn

(
M2(1 − z)2

µ2z

)]

+

. (6.5)

It is possible to show that taking the derivatives with respect to η and the limit η → 0 in
(6.1) is equivalent to making the following set of replacements in c̃(L,M,mt, cos θ, µ):

1 → δ(1 − z) ,
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L→ 2P ′
0(z) + δ(1 − z) ln

(
M2

µ2

)
,

L2 → 4P ′
1(z) + δ(1 − z) ln2

(
M2

µ2

)
,

L3 → 6P ′
2(z) − 4π2P ′

0(z) + δ(1 − z)

[
ln3

(
M2

µ2

)
+ 4ζ3

]
,

L4 → 8P ′
3(z) − 16π2P ′

1(z) + 128ζ3P
′
0(z) + δ(1 − z)

[
ln4

(
M2

µ2

)
+ 16ζ3 ln

(
M2

µ2

)]
. (6.6)

In order to translate the P ′
n into the conventional Pn distributions, we employ the general

relation

P ′
n(z) =

n∑

k=0

(
n

k

)
lnn−k

(
M2

µ2

)[
2kPk(z) (6.7)

+

k−1∑

j=0

(
k

j

)
2j(−1)k−j

(
lnj(1 − z) lnk−j z

1 − z
− δ(1 − z)

∫ 1

0

dx
lnj(1 − x) lnk−j x

1 − x

)]
.

The final result for the hard-scattering kernels at NNLO can be written as

C(2)(z,M,mt, cos θ, µ) = D3

[
ln3(1 − z)

1 − z

]

+

+D2

[
ln2(1 − z)

1 − z

]

+

+D1

[
ln(1 − z)

1 − z

]

+

+D0

[
1

1 − z

]

+

+ C0 δ(1 − z) +R(z) . (6.8)

The coefficients D0, . . . , D3 and C0 are functions of the variables M,mt, cos θ, and µ. The
analytic expression for Di (i = 1, 2, 3) were first derived in [54] starting from resummed for-
mulas in Mellin moment space. Here we determine the coefficients D0, . . . , D3 completely.
D0 can be calculated in this way because the process-dependent anomalous-dimension ma-
trices in (4.78) and (4.79) are now known up to NNLO. With the same method, it is
possible to calculate the scale dependence of δ-function coefficient C0. The function R(z)
is finite for z → 1, dropping it recovers the traditional PIM scheme. The computation of
the scale-independent part of C0 requires the knowledge of the hard and soft functions at
two-loop order. As long as these are missing, there is an ambiguity in C0. We will comment
on this in more detail after the derivation of the approximate NNLO formulas in 1PI.

The coefficients cAn and cBn (n = 1, 2, 3) are known, while cA0 and cB0 are unknown. In
our publication [4], the explicit expressions for the coefficients D0, . . . , D3 and C0 were
collected in a Mathematica file, which can be downloaded from the arXiv version of that
work.
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6.2. Approximate NNLO: 1PI

We now proceed to obtain approximate NNLO expressions for the case of 1PI kinematics.
We derive those analog to the previous section, this time starting from 5.35. Setting all
scales equal we arrive at

C(s4, ŝ
′, t̂′1, û

′
1, mt, µ) = c̃(∂η, ŝ

′, t̂′1, û
′
1, mt, µ)

e−2γEη

Γ(2η)

1

s4

(
s4√

m2
t + s4µs

)2η
∣∣∣∣∣
η=0

, (6.9)

where now

c̃(∂η, ŝ
′, t̂′1, û

′
1, mt, µ) = Tr

[
H(ŝ′, t̂′1, û

′
1, mt, µ) s̃(∂η, ŝ

′, t̂′1, û
′
1, mt, µ)

]
. (6.10)

Using the same methods as in the last section, we determine at NNLO the coefficients of
all powers of L in c̃ and again the µ-dependent part of the constant piece. We convert
the derivatives with respect to the auxiliary parameter η into distributions in s4 defined in
(5.11), which can be easily done by using the following replacement rules:

1 −→ δ(s4) ,

L −→ 2P0(s4) − δ(s4)Lm ,

L2 −→ 8P1(s4) − 4LmP0(s4) + δ(s4)

(
L2

m − 2π2

3

)
− 4L4

s4
,

L3 −→ 24P2(s4) − 24LmP1(s4) +
(
6L2

m − 4π2
)
P0(s4) + δ(s4)

(
−L3

m + 2π2Lm + 16ζ3
)

− 6L4

s4

[
−L4 + 2 ln

s2
4

m2
tµ

2

]
,

L4 −→ 64P3(s4) − 96LmP2(s4) +
(
48L2

m − 32π2
)
P1(s4)

+
(
−8L3

m + 16π2Lm + 128ζ3
)
P0(s4) + δ(s4)

(
L4

m − 4π2L2
m − 64ζ3Lm +

4π4

15

)

− 8L4

s4

[
L2

4 − 3L4 ln
s2
4

m2
tµ

2
+ 3 ln2 s2

4

m2
tµ

2
− 2π2

]
, (6.11)

where Lm = ln(µ2/m2
t ) and L4 = ln(1 + s4/m

2
t ).

The final result for the hard-scattering kernels at NNLO can be written as

C(2)(s4, ŝ
′, t̂′1, û

′
1, mt, µ) =D3 P3(s4) +D2 P2(s4) +D1 P1(s4) +D0 P0(s4)

+ C0 δ(s4) +R(s4) , (6.12)

where the coefficients D0, . . . , D3 and C0 are functions of the variables ŝ′, t̂′1, û
′
1, mt and µ.

The explicit results are quite lengthy and are contained in a computer program which can
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be downloaded together with the arXiv version of our paper [3]. The regular piece R(s4)

collects terms involving L4, which arise from choosing ω = s4/
√
m2

t + s4 in the argument
of the soft function. As noted in Section 5.2.1, dropping R(s4) recovers the 1PI scheme
used in earlier work, for instance [57].

6.2.1. C0 Term

In both kinematics, the C0 term is ambiguous since only its scale-dependent part is exactly
determined. We want to specify which terms are contributing. One contribution to C0

comes from the conversions of powers of L in c̃(2) according to (6.11) or (6.6) respectively,
which are determined exactly, therefore the ambiguity comes from the constant term of
c̃(2), which is

c̃(2)(0) = Tr
[
H(1) s̃(1)(0) + H(0) s̃(2)(0) + H(2) s̃(0)(0)

]
, (6.13)

where we have suppressed the dependence on different variables for convenience. In the
three terms above, the first term is known exactly, while the constant term of the two-loop
soft function in the second term is unknown. As for the two-loop hard function in the third
term, one can determine its scale-dependent part and include it in the formula.

For the case of PIM kinematics we chose the following:
We include the two-loop hard function, associated with this fact is the possibility to nor-
malize the scale-dependent logarithms in an arbitrary way, i.e.

ln

(
µ2

0

µ2

)
= ln

(
µ2

1

µ2

)
+ ln

(
µ2

0

µ2
1

)
. (6.14)

Scale-independent terms proportional to the second logarithm on the right-hand side can
be absorbed into the unknown µ-independent part of the coefficient function C0. Therefore,
the numerical results for C0 depend on the choice of the second mass scale, which appears
in the scale-dependent logarithms; we indicate this second scale by µ0. In Chapter 8 we
shall consider two different choices for µ0: µ0 = M (scheme A), and µ0 = mt (scheme B).
The situation is summarized in the following formula:

C0 =





4∑

i=0

cAn lnn M
2

µ2
(scheme A)

4∑

i=0

cBn lnn m
2
t

µ2
(scheme B)

(6.15)

For the case of 1PI kinematics we focus on the terms exactly known, and instead drop the
contributions of the two-loop hard function. Later, in Section 10.1 when we combine the
numerical results for the total cross section derived using PIM and 1PI kinematics, the
PIM numbers will also be computed in the equivalent way, i.e., by dropping the two-loop
hard function completely.
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6.3. Resummation vs. NNLO Expansion

In our numerical studies later on we will typically give results from both resummed per-
turbation theory and the approximate NNLO formulas. Although the perturbative infor-
mation used in these formulas is the same – the NLO matching functions and the NNLO
anomalous dimensions – the implementation and philosophy is different.

In resummed perturbation theory, one views the soft function as depending on the dis-
tributions

P ′
n(z) =

[
1

1 − z
lnn

(
M2(1 − z)2

µ2
sz

)]

+

, P ′
n(s4) =

[
1

s4
lnn

(
s4√

s4 +m2
tµs

)]

+

, (6.16)

as well as δ(1 − z) and δ(s4) respectively. The logarithmic corrections are in general
considered large compared to the δ-function term (and of course subleading terms in z or
s4), but it is assumed that with a proper choice of µs they can be treated on the same
footing, so that the soft function at this scale can be reliably calculated in fixed-order
perturbation theory. Considering the case of 1PI kinematics as an example, here it would
obviously be the case if we chose µs = s4/

√
s4 +m2

t , since then the logarithmic corrections
would vanish, but in that case the running coupling in the soft corrections would, for some
value of s4, be evaluated at the Landau pole, which would spoil the clear separation between
perturbative and non-perturbative physics accomplished by using the effective field-theory
formalism. Therefore, as usually done in momentum-space resummation [106–108,123,124],
we will view the soft scale as a function of the observables pT and y, and choose it based
on the convergence of the physical cross section. A similar procedure will be applied to the
case of PIM kinematics where instead the µs is a function of the invariant mass distribution.
In both kinematics, we study corrections from the soft function to the cross section as a
function of µs, and choose the numerical value of the scale as the point where the correction
is minimized. The formulas then sum logarithms of the numerical ratio µs/µf , where µs is
the dynamically generated soft scale. The same reasoning applies to the choice of the hard
and factorization scales, and an advantage of the resummation formalism is that the three
scales can be varied independently as a way of estimating perturbative uncertainties.

This approach should be contrasted with that based on approximate NNLO formulas.
In using such an approximation, one assumes that the logarithmic corrections from the P ′

n

distributions account for the bulk of the NNLO corrections in fixed order at an arbitrary
factorization scale µf , and at the same time that the corrections at NNNLO and beyond,
evaluated at that scale, are small enough that the perturbative series is well behaved.
From this point of view, the resummation formalism is just a useful tool for constructing
the approximate fixed-order expansion, and no physical significance is given to the soft
scale µs, on which the final answer does not depend.

It is worth emphasizing that the fixed-order expansion of the NLO+NNLL formulas to
NNLO in αs is not exactly equivalent to the approximate NNLO formulas from the previous
sections. The direct expansion of the NLO+NNLL formulas to NNLO contains explicit
dependence on the scale µs and also a different pattern of plus-distributions compared to
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6. Approximate NNLO

the approximate NNLO formulas. For instance, the approximate NNLO formula contains
P3 distributions, but the expansion of the NLO+NNLL formula to NNLO in fixed order
contains at most P2 distributions, as required by the Altarelli-Parisi equations. This aspect
of the calculation is discussed in greater detail in the Section .3 of the appendix.

Dynamical Threshold Enhancement

The optimal method for including the higher-order perturbative effects is not entirely
clear without further information. The reason is that it is not possible to tell whether
the logarithmic corrections from the partonic threshold region can be considered large,
or how to minimize them with a proper choice of µs, until after the integration over z
or s4 respectively. After that integration, they give large perturbative corrections to the
differential cross section if the PDFs fall off very quickly away from the region where z → 1
(PIM) or s4 → 0 (1PI), an effect referred to as “dynamical threshold enhancement ” [106]
. Since the PDFs are not known analytically, it is only possible to assess the extent to
which the corrections in the partonic threshold region are dynamically enhanced through
a numerical study. We will do so for the case of PIM in Section 8.1.1, and for 1PI in
Section 9.2.1.
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Part III.

tt̄ Production: Phenomenology
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7. Introduction

In this part we use our theoretical results to make phenomenological predictions for various
observables at the LHC and the Tevatron at NLO+NNLL and at approximate NNLO order.
The analysis is split into three chapters, Studies in PIM, Studies in 1PI and Combined
studies.

The first chapter starts by studying the importance of threshold terms in PIM kinematics
in Section 8.1.1. We then define our scale setting scheme in PIM in Section 8.1.2, which
is followed by a detailed analysis of the invariant mass distribution in Section 8.2. Using
these results, we make predictions for the total cross section in Section 8.3. By studying
the differential cross section with respect to β =

√
1 − 4m2

t/ŝ, we do a comparison with
previous calculations in Section 8.3.1. Throughout this first chapter we apply the PIMSCET

scheme, and specify it specifically when necessary.
In Studies in 1PI we begin by making our numerical implementation concrete in Sec-

tion 9.1. This is then followed by an examination of the threshold terms in 1PI kinematics,
Section 9.2.1. Similar to PIM we first have to choose a scale setting scheme before giv-
ing resummed results, this is done in Section 9.2.2. Phenomenological predictions for the
rapidity and transverse-momentum distributions are then presented in Section 9.3. We
finish again by using our differential results to make detailed predictions for the total cross
section in Section 9.4.

Both types of kinematics, PIM and 1PI, can be used to calculate the total cross section at
the LHC and Tevatron, and they both yield results for the FB asymmetry at the Tevatron.
In the sections mentioned above we make predictions for the total cross section separately,
for PIM and 1PI kinematics. As the numerical difference between the two predictions can
be seen as a theoretical uncertainty we make a joined analysis in Chapter 10. We start
by comparing the different approaches on the level of the β spectrum in Section 10.1.1,
where we also investigate subleading contributions to the different threshold terms. In
Section 10.1.2 we give combined results for the total cross section as a function of the
top-quark mass using the pole mass scheme. Finally we end the discussion about the total
cross section by making combined prediction for this quantity using the MS and 1S mass
scheme in Section 10.1.3.

We give results for the FB asymmetry in the laboratory frame using our 1PI results and
in the tt̄ frame using the PIM ones. In the laboratory frame we give numbers for the total
asymmetry in Section 10.2.2 and we present the differential asymmetry with respect to
the rapidity of the top quark yt in the same section. Predictions for the total asymmetry
in the tt̄ frame can be found in Section 10.2.3. The differential asymmetry with respect
to the invariant mass is also presented in Section 10.2.3, where we use our binned results
to make a comparison to recent measurements. Using PIM kinematics we calculate the
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∆y = yt − yt̄ dependent asymmetry, results for this quantity can be found at the end of
Section 10.2.3. We again use binned results of the ∆y dependent asymmetry to compare
to experimental measurements.

The LHC has a symmetric initial condition which leads to the fact that there one does
not observe an inclusive asymmetry, a charge asymmetry on the other hand is observable
at the LHC. We will investigate such an asymmetry in Section 10.2.4 by imposing lower
cuts on the top and anti-top rapidities.

In the following we specify some of the inputs we use for our calculation in PIM and
1PI kinematics. Those will be applied in the upcoming sections if not specified otherwise.

Our results obtained in resummed perturbation theory would require PDF sets extracted
from data using resummed predictions for the relevant cross sections; however, such PDF
sets do not exist at present. Since our resummed expressions include the bulk of the
perturbative corrections appearing one order higher in αs, we use NLO parton densities for
the NLO and NLL approximations, and NNLO parton densities for the approximate NNLO
and matched NLO+NNLL approximations, as summarized in Table 7.1. The associated
running couplings αs(µ) are taken in the MS scheme with five active flavors, using one-loop
running at LO, two-loop running at NLO, and three-loop running at NNLO. As can be
seen we use MSTW2008 PDF sets [139] for our numerical calculations . It will be specified
when we differ from the above.
For some of our analysis we are using a fixed set of MSTW2008NNLO PDFs. The reason

Order PDF set αs(MZ)

LO MSTW2008LO 0.139

NLO, NLL MSTW2008NLO 0.120

NNLO approx, NLO+NNLL MSTW2008NNLO 0.117

Table 7.1.: Order of the PDFs [139] and the corresponding values of the strong coupling
used for the different perturbative approximations.

is that it helps to elucidate more clearly the behavior of the perturbative expansion of the
hard-scattering kernels in higher orders of perturbation theory.
In general we employ the value mt = 173.1GeV for the top-quark mass defined in the pole
scheme. It will be made clear in the relevant sections when we differ from that, due to
making mass dependent predictions or changing the mass scheme.

We do not consider the theoretical uncertainty induced by the error on αs(MZ) in general.
In Section 10.1 however we give results for the total cross section with αs and combined
PDF+αs errors. From this we conclude that the additional αs theoretical uncertainty can
be as big as 4% for the total top-quark pair production cross section at the LHC and the
Tevatron. Such an uncertainty is therefore not negligible in comparison to the residual
scale uncertainty in NNLO and NNLL calculations, and it will need to be considered when
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comparing data and theoretical predictions.
To not repeat ourself we specify our standard scale uncertainty estimation scheme

(SUES) when giving RG-improved numbers. In SUES we vary each of the three scales
µf , µh and µs separately by a factor of two about their individually defined default values,
and add the uncertainties in quadrature. Thus, for a default setting µf = mt, µf would be
varied in the range mt/2 ≤ µf ≤ 2mt whilst holding the other scales fixed at their default
values.

The higher-order corrections computed in this thesis are limited to leading order in the
threshold expansions, whereas the exact NLO results in fixed order also contain subleading
terms in (1−z) or s4 respectively. To make optimal use of our results, we match them onto
the NLO fixed-order expressions in such a way that these subleading corrections are fully
taken into account. For the resummed results, NLO+NNLL accuracy can be achieved by
evaluating differential cross sections according to1

dσNLO+NNLL ≡ dσNNLL
∣∣∣
µh,µs,µf

+ dσNLO, subleading
∣∣∣
µf

≡ dσNNLL
∣∣∣
µh,µs,µf

+

(
dσNLO

∣∣∣
µf

− dσNLO, leading
∣∣∣
µf

)
, (7.1)

where dσNLO is the exact result in fixed order, and dσNLO,leading|µf
≡ dσNNLL|µh=µs=µf

captures the leading singular terms in the threshold limits z → 1 (PIM) or s4 → 0 (1PI)
at NLO. The term dσNLO, subleading is of subleading order in the equivalent threshold, and
ensures that the total result reduces to the exact fixed-order result when all the scales are
set equal. It also makes the result invariant under variations of the factorization scale, up
to terms at NNLO in the perturbative expansion, even at subleading order in (1 − z) or
s4 respectively. To obtain approximate NNLO results in fixed order, we simply add the
NNLO correction onto the exact NLO results, i.e.,

dσNNLO, approx = dσNLO + dσ(2), approx , (7.2)

where dσ(2), approx is the NNLO correction to the differential cross section obtained using
the coefficient function (6.8) respectively (6.12).

For convenience we present in Table 7.2 a list of the different calculation schemes and
their definitions which will be used in the following sections. The table is meant as a
quick overview and reminder, the information containing it has been explained in previous
sections.

1This matching procedure is general valid for results in PIM and in 1PI kinematics.
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scheme ω differences observables

P
IM

PIM M(1 − z)

ln(z)/(1 − z)

Invariant mass distribution

Total cross section

PIMSCET M(1 − z)/
√
z

FB asymmetry dependent on M and ∆y

1P
I

1PI s4/mt

ln(1 + s4/m
2
t )/s4

Rapidity and pT distributions

Total cross section

1PISCET s4/
√
m2

t + s4

FB asymmetry dependent on yt

Charge asymmetry at the LHC

Table 7.2.: Listing of the different calculation schemes. Here ω is the argument of the soft-
functions. The column differences refers to the difference in subleading terms
between the two schemes on the left. Column observables shows the different
observables which are calculable in the relevant kinematics.
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8.1. Systematic Studies

8.1.1. Threshold Enhancement

It is important to examine the relative size of the leading and subleading terms in (7.1).
If the subleading terms were comparable in size to the leading ones, it would make little
sense to resum the logarithms in (1 − z), which we have discussed so far, or to construct
approximate fixed-order formulas at NNLO which capture only the effects of the singular
terms. The naive expectation would be that the singular terms are dominant only when
τ = M2/s → 1, since then the integrand in (4.6) is needed only in the z → 1 limit and
the less singular terms are clearly subleading. However, the most interesting region for
phenomenology ranges from M ∼ 2mt to around 1TeV at the Tevatron and up to several
TeV at the LHC, which corresponds to τ < 0.3 (at most). For the leading-order singular
terms to be dominant, it is necessary that the parton luminosity functions ffij(τ/z, µ) fall off
sufficiently fast for τ/z → 1 that only the largest values of z give significant contributions to
the integrand, an effect we already referred to as dynamical threshold enhancement. This
is illustrated in Figure 8.1, which shows the invariant mass distributions at the Tevatron
and LHC predicted using different approximations in fixed-order perturbation theory. The
difference between the boundaries of the dark NLO bands and the dashed lines is due to the
small contributions from the subleading terms dσNLO,subleading in (7.1). The fact that, even
at these relatively low values of M , the leading terms provide a very good approximation
to the full NLO result provides a strong motivation to study within our formalism higher-
order corrections to integrated quantities such as the total cross section and FB asymmetry,
which receive their dominant contributions from low values of the invariant mass.

We will always do the matching onto fixed-order results as in (7.1) and (7.2), when
the goal is to provide quantitative phenomenological predictions. Such a matching is
straightforward for integrated quantities such as the total cross section and FB asymmetry,
since the NLO results in fixed order are available in analytic form. For the invariant mass
distribution, on the other hand, the fixed-order NLO results are available in the form of
Monte Carlo programs such as MCFM [140]. This makes it difficult to get accurate values of
the top-quark pair invariant mass spectrum at high M , where the differential cross section
is small, and makes it impractical to calculate the spectrum with the scale choice µf = M
used in the next section, since doing so would require to run the program separately at
each point in µf . (Monte Carlo programs generate the invariant mass spectrum by first
producing a set of events for a given µf , and then grouping them into bins in M). When we
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Figure 8.1.: Fixed-order predictions for the invariant mass spectrum at LO (light bands)
and NLO (dark bands) for the Tevatron (left) and LHC (right). We use
MSTW2008NLO PDFs [139] with αs(MZ) = 0.120. The width of the bands
reflects the uncertainty of the spectrum under variations of the matching and
factorization scales. The dashed lines refer to the leading terms in the thresh-
old expansion.

study certain aspects of the invariant mass distribution in the next sections, we will take
the NLO correction in the threshold approximation, so that (7.1) and (7.2) are evaluated
with dσNLO → dσNLO, leading. This is still a good approximation to the full NLO result, and
allows us to study the qualitative behavior of the invariant mass spectrum with µf = M
over a large range of M , as well as PDF uncertainties, in a simple way. For this purpose,
we also define an NNLO approximation which includes only the singular terms at threshold
in the NLO correction:

dσNNLO, leading = dσNLO, leading + dσ(2), approx . (8.1)

8.1.2. Scale Setting

The invariant mass distribution is obtained by integrating the doubly differential rate over
the range −1 < cos θ < 1. The resummed results (4.94) depend on the three scales µs, µh,
and µf , and to give a numerical result we must first specify how to choose them. In
the similar cases of Drell-Yan [106] and Higgs production [107, 108] at threshold, the soft
and hard scales were chosen by examining the contributions of the one-loop soft and hard
matching coefficients as functions of the scales µs and µh, and then choosing default values
of the scales in such a way as to minimize these corrections. We shall use this approach
here, a small complication being the extra dependence on the kinematic variable cos θ
in (4.94). For the analysis in this section we use the default set of MSTW2008NNLO
PDFs [139] and take αs(Mz) = 0.117 with three-loop running.
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Figure 8.2.: Top left: Ratio of the one-loop correction from the soft function over the
leading-order result for top pair production at the Tevatron, as a function of
µs/M , for M = 400GeV (dark), M = 700GeV (medium), and M = 1000GeV
(light). Top right: The scale µs/M determined by the point where the one-loop
correction from the soft function is minimal, as a function of the invariant mass
M . Bottom: Analogous plots for the LHC, but with M = 400GeV (dark),
M = 1000GeV (medium), and M = 2000GeV (light).

Determination of the Matching and Factorization Scales

We begin by examining the corrections from the NLO soft matching coefficient as a function
of µs. We isolate this contribution by picking out the piece of the NNLL approximation to
(4.94) proportional to s̃(1), evaluating the differential cross section using only this piece,
and dividing the result by that at NLL, for the choice µf = µh = M . The results are
shown in the left-hand plots of Figure 8.2 for the Tevatron and the LHC with

√
s = 7TeV,

for several different values of M . We note that the corrections are larger at the LHC than
at the Tevatron, especially at high values of M . This behavior appears to be a property
of the gluon channel, which gives the dominant contribution at the LHC. The correction
is generally at its minimum between M/4 and M/10, and moves to lower values of µs at
higher values of M . The exact position of the minimum as a function of M is shown in
the right-hand plots of Figure 8.2. To a good approximation, the numerical results for µs
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Figure 8.3.: Left: Ratio of the one-loop correction the from hard function over the leading-
order result at the Tevatron, as a function of µh/M , at M = 400GeV (dark),
M = 700GeV (medium), and M = 1000GeV (light). Right: Analogous
plot for the LHC, with M = 400GeV (dark), M = 1000GeV (medium), and
M = 2000GeV (light).

can be fitted by the function

µdef
s =

M(1 − τ)

(a + b τ 1/4)c
(8.2)

with a = −33, b = 150, and c = 0.46 for the Tevatron, and a = −1.3, b = 23, and c = 0.98
for the LHC at

√
s = 7TeV. Finally for the LHC with

√
s = 10, 14TeV, we use a = 0.95,

b = 6.7, and c = 1.6.
The most appropriate choice of the hard scale µh is not immediately apparent, since the

invariant mass spectrum depends on the two hard scales mt and M . As a guide to an
appropriate choice we look at the size of the correction from the hard matching function
for different choices of µh. We show in Figure 8.3 the correction obtained by isolating
the contribution of H(1) to the differential cross section at NNLL, and dividing it by the
NLL result, for the choice µf = M and µs determined according to (8.2). We see that at
lower values of µh closer to mt the correction typically gets smaller and can even become
negative. In this lower range of µh, however, the correction depends very strongly on the
scale. The results are more stable in the range M/2 < µh < 2M , where the correction is
generally below 30% at the Tevatron and between 20−40% at the LHC. In what follows we
shall choose µh = M by default, in order to avoid the instability at lower µh. In the case
of Higgs production, a negative hard scale squared µ2

h ∼ −m2
H − iǫ was chosen to minimize

the logarithms arising from time-like kinematics [107, 108]. In the tt̄ case, however, there
are both time-like and space-like momentum invariants, and it is not straightforward to
tell which point in the complex plane should be chosen to minimize the logarithms. We
have thus investigated the choice µ2

h = M2eiφh with φh varied between −π and π. The
results show that at the LHC, the correction is smallest for φh ∼ −π, and is about 10%
compared to 20% at φh ∼ 0. At the Tevatron, however, the minimal correction is obtained
for values close to φh ∼ 0. In view of this, and since the corrections are in any case not
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Figure 8.4.: Dependence of dσ/dM at the Tevatron (left) and LHC (right) on the scale
µf in fixed-order perturbation theory. The dashed-dotted lines show dσLO,
the dashed lines dσNLO, leading, and the dark (light) solid lines the approximate
threshold expansion (8.1) at NNLO in scheme A (scheme B).

very large, we will not go into this complication in our numerical analyses below.
Finally, we must choose a default value for the factorization scale µf in both the re-

summed and fixed-order results. To do so, we study the behavior of the cross sections
as a function of this scale. For the fixed-order results, the invariant mass spectrum as a
function of µf at M = 400GeV and M = 1TeV is shown in Figure 8.4. For the moment
we do not match the results onto fixed-order perturbation theory at NLO, using instead
the threshold expansion dσNLO, leading and dσNNLO, leading. As a result, our predictions are
not strictly independent of the scale µf , but a slight scale dependence enters via subleading
terms in (1−z). At M = 400GeV the approximate NNLO formulas differ from each other
less at µf ∼ 400GeV than at µf ∼ mt. The same is true at M = 1TeV, but in this case
the results become very unstable at µf ∼ mt. It therefore seems more appropriate to make
the choice µf ∼M when studying the invariant mass spectrum. The resummed results at
M = 400GeV and M = 1TeV as a function of µf , with µh = M and µs as in (8.2), are
shown in the upper two plots of Figure 8.5, for the case of the Tevatron (plots for the LHC
would look very similar). Again, the results at µf ∼ M are more stable than at µf ∼ mt,
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Figure 8.5.: Dependence of dσ/dM at the Tevatron on the scales µh, µs, and µf in re-
summed perturbation theory. The default choices are µh = µf = M , and µs

according to (8.2). The dashed-dotted lines refer to NLL, the dashed to NNLL.

although compared to the fixed-order results the difference is less pronounced. We will
thus make the choice µf = M by default in the resummed result.

Having chosen default values for the scales, we now discuss in more detail the behavior
of the fixed-order and resummed predictions for the invariant mass distribution. We have
already seen how the results depend on the scale µf . In the lower two plots of Figure 8.5,
we show the dependence of the resummed results at M = 400GeV on the scales µh and µs.
The results as a function of these two scales are significantly more stable at NNLL than
at NLL.

Convergence of the Perturbation Series

An interesting difference between the fixed-order and resummed results is that the pertur-
bative uncertainties and the size of the higher-order corrections in the resummed results
depend much less on the value of M . This is seen in Figure 8.6, where we show the K
factors and uncertainties in the invariant mass spectrum as a function of M , comparing
fixed-order results with the resummed ones. The bands in fixed order reflect the uncer-
tainty associated with varying the factorization scale around its default value µf = M by
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Figure 8.6.: K factors (dσ/dM)/(dσLO,def/dM) in fixed-order perturbation theory (left)
and (dσ/dM)/(dσNLL,def/dM) in resummed perturbation theory (right), for
the Tevatron (top) and LHC (bottom). The light bands in the fixed-order
(resummed) results show LO (NLL) results, the medium bands show NLO
leading (NNLL) results, and the dark bands in the fixed-order results refer to
the approximate threshold expansion (8.1) at NNLO in scheme A. The width
of the bands reflects the uncertainties associated with variations of the scales,
as described in the text.

a factor of two. Here and in the following figures, for the approximate NNLO formulas we
show results only in scheme A; those in scheme B look very similar. We apply SUES to
make the bands in resummed perturbation theory at each point in M . At the Tevatron, the
K factors in resummed perturbation theory have smaller uncertainties and depend only
weakly on M , compared to fixed order. The same is true at the LHC, although at small
M the approximate NNLO results and the resummed ones have comparable uncertainties.

To illustrate more precisely the quantitative differences between the various perturbative
approximations to the invariant mass spectrum, we show in Table 8.1 the exact numerical
values of the spectrum at the points M = 400GeV and M = 1000GeV. We have assigned
uncertainties associated with variations of the various scales by factors of two up and
down from their default values. To obtain a total scale uncertainty for the resummed
results, we have added the uncertainties associated with variations of µh, µs, and µf in
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Tevatron M = 400GeV [fb/GeV] M = 1TeV [fb/GeV]

NLL 34.1+2.4
−2.4

+1.7
−1.2 (22.4+2.5

−1.6
+1.7
−1.3) · 10−3

NLO, leading 36.5+5.1
−5.0

+1.9
−1.4 (23.2+4.2

−4.0
+1.9
−1.4) · 10−3

NNLL 41.3+1.3
−1.2

+1.9
−1.4 (29.6+1.0

−1.1
+2.2
−1.6) · 10−3

NNLO, leading (scheme A) 40.1+3.5
−3.6

+1.9
−1.4 (27.1+2.2

−2.7
+2.1
−1.6) · 10−3

NNLO, leading (scheme B) 39.3+3.0
−3.3

+1.9
−1.4 (27.9+2.7

−3.0
+2.2
−1.6) · 10−3

LHC (
√
s = 7TeV) M = 400GeV [fb/GeV] M = 1TeV [fb/GeV]

NLL 558+78
−68

+20
−21 7.43+1.61

−1.07
+0.69
−0.70

NLO, leading 656+72
−76

+26
−27 7.17+1.19

−1.10
+0.69
−0.69

NNLL 775+39
−47

+30
−31 10.83+0.84

−0.87
+1.01
−1.03

NNLO, leading (scheme A) 750+38
−47

+29
−30 9.38+0.82

−0.87
+0.90
−0.90

NNLO, leading (scheme B) 717+20
−36

+28
−29 9.11+0.63

−0.78
+0.86
−0.86

Table 8.1.: Values for dσ/dM for M = 400GeV and M = 1TeV at the Tevatron and the
LHC at

√
s = 7TeV. The first error refers to perturbative scale uncertainties,

the second to PDF uncertainties, see text for a detailed explanation.

quadrature. We have also included uncertainties associated with the PDFs, by using the
set of MSTW2008NNLO PDFs from at 90% confidence level (CL). The perturbative scale
uncertainties are smaller or comparable than those from the PDFs only once the NNLL or
approximate NNLO corrections are taken into account. For the practical reasons explained
earlier, we have not matched the higher-order results with the fixed-order NLO results.
However, the threshold approximation works rather well. For reference, at the Tevatron
the exact NLO results are (38.6+5.1

−5.2) fb/GeV for M = 400GeV and (24.8+4.5
−4.8) ·10−3 fb/GeV

for M = 1000GeV, while at the LHC they are (654+98
−89) fb/GeV for M = 400GeV and

(6.84+1.40
−1.11) fb/GeV for M = 1000GeV. The deviations from the leading NLO terms shown

in the second line in both parts of the table are smaller than 7% for the Tevatron and 5%
for the LHC.

8.2. Invariant Mass Distributions

After these systematic studies, we now present our final results for the tt̄ invariant mass
distributions at the Tevatron and LHC. Here and below, we will use different sets of PDFs,
as appropriate for the order of the perturbative approximation employed as advertised in
Table 7.1.

We begin by studying in more detail the invariant mass spectrum at relatively low values
of M , where it is the largest, in fixed-order and resummed perturbation theory. Contrary
to the previous section, we now match the results in resummed perturbation theory with
the exact fixed-order results at NLO using the MCFM program, according to (7.1). In
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Figure 8.7.: Left: Fixed-order predictions for the invariant mass spectrum at LO (light),
NLO (darker), and approximate NNLO (dark bands) for the Tevatron (top)
and LHC (bottom). Right: Corresponding predictions at NLL (light) and
NLO+NNLL (darker bands) in resummed perturbation theory. The width
of the bands reflects the uncertainty of the spectrum under variations of the
matching and factorization scales, as explained in the text.

this way we obtain state-of-the-art predictions, which include everything known about the
perturbative series for the spectrum. Our results are shown in Figure 8.7. The bands
reflect uncertainties in scale variations according to the same procedure explained in the
previous paragraph, but in this case with µf = 400GeV by default. For the range of M
in the plot, this choice is very close to our preferred scheme µf = M , but allows for a
simple matching with the fixed-order results from MCFM. One sees that the perturbative
uncertainty estimated by scale variations is by far the smallest at NLO+NNLL order.

We now consider the region of higher invariant masses, for which the dominance of the
threshold terms is even more pronounced, as indicated by the convergence of the dark
bands and dashed lines in Figure 8.1 toward higher M values. Figure 8.8 shows our results
for the Tevatron, both in fixed-order and resummed perturbation theory. Figure 8.9 shows
the corresponding results for the LHC. It is impractical to match onto fixed-order results
obtained using the MCFM program in this case; however, the differences compared with
the shown curves are so small that they would hardly be visible on the scales of the plots.
The upper two plots show K factors, which are defined as the ratio of the cross section
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Figure 8.8.: Left: Fixed-order predictions for the K factor and invariant mass spectrum
at LO (light), NLO (darker), and approximate NNLO (dark bands) for the
Tevatron. Right: Corresponding predictions at NLL (light) and NLO+NNLL
(darker bands) in resummed perturbation theory. The width of the bands
reflects the uncertainty of the spectrum under variations of the matching and
factorization scales, as explained in the text.

to the default lowest-order prediction dσLO,def/dM . Contrary to Figure 8.6, we now use
the same normalization in both fixed-order and resummed perturbation theory, so that
the two spectra can more readily be compared to each other. The lower plots show the
corresponding spectra directly. We observe similar behavior as in the low-mass region.
The bands obtained in fixed-order perturbation theory become narrower in higher orders
and overlap. The bands obtained in resummed perturbation theory are narrower than the
corresponding ones at fixed order. The leading-order resummed prediction is already close
to the final result.

The information contained in Figures 8.7–8.9 can be represented differently in terms
of the very useful distribution dσ/dβt, with βt defined as in (4.4). A simple change of
variables yields

dσ

dβt

=
2mtβt

(1 − β2
t )

3
2

dσ

dM
. (8.3)

The resulting spectra for the Tevatron and LHC, obtained using RG-improved perturbation
theory, are shown in Figure 8.10. As before, the distributions are normalized such that
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Figure 8.9.: Left: Fixed-order predictions for the K factor and invariant mass spectrum at
LO (light), NLO (darker), and approximate NNLO (dark bands) for the LHC.
Right: Corresponding predictions at NLL (light) and NLO+NNLL (darker
bands) in resummed perturbation theory. The width of the bands reflects the
uncertainty of the spectrum under variations of the matching and factorization
scales, as explained in the text.

the area under the curves corresponds to the total cross section. Recall that the physical
meaning of the variable βt is that of the 3-velocity of the top quarks in the tt̄ rest frame.
The distributions show that the dominant contributions to the cross section arise from the
region of relativistic top quarks, with velocities of order 0.4–0.8 at the Tevatron and 0.5–0.9
at the LHC. We will come back to the significance of this observation in the Section 8.3.1.

In Figure 8.11, we compare our RG-improved prediction for the invariant mass spectrum
to a measurement of the CDF collaboration obtained using the “lepton + jets” decay mode
of the top quark [77]. We observe an overall good agreement between our prediction and
the measurement, especially for higher values of M . Apparently, there is no evidence of
non-standard resonances in the spectrum. The only small deviation from our prediction
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Figure 8.10.: Distributions dσ/dβt at the Tevatron (left) and LHC (right).
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Figure 8.11.: Comparison of the RG-improved predictions for the invariant mass spectrum
with CDF data [77]. The value mt = 173.1GeV has been used. No fit to the
data has been performed.
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concerns the peak region of the distribution, shown in more details in the right plot. This
deviation has also been observed in [77], where a Monte Carlo study of the SM expectation
has been performed.

8.3. Total Cross Section

The total cross section is obtained in our approach by integrating numerically the doubly
differential cross section in the ranges −1 < cos θ < 1 and 2mt < M <

√
s. In this case

it is a simple matter to match onto NLO in fixed-order perturbation theory, using the
analytic results of [11]. To do this, however, we can no longer correlate the factorization
scale µf with M , as we did when studying the invariant mass spectrum. Instead, we
should resort to representative average values of M , which characterize the spectrum in
the region yielding sizable contributions to the total cross section. One possibility is to
take the location of the peak in the dσ/dM distributions, which is Mpeak ≈ 375GeV for
the Tevatron and Mpeak ≈ 388GeV for the LHC (see Figure 8.7). Another possibility is
to take the average value 〈M〉 of the distributions, for which we find 〈M〉 ≈ 445GeV for
the Tevatron and 〈M〉 ≈ 496GeV for the LHC. As previously, we take the fixed value
µf = 400GeV as our default choice. On the other hand, we are still free to choose the hard
and soft scales as we have done so far and match with the fixed-order result as shown in
(7.1). We display in Table 8.2 the central values and scale uncertainties for the total cross
section obtained using this procedure. The results in resummed perturbation theory use
µh = M and µs chosen according to (8.2) by default, and the uncertainties are obtained
through SUES. The perturbative uncertainties in the fixed-order results are obtained by
varying the factorization scale up and down by a factor of two from its default value. In
addition to the perturbative uncertainties, we also list the PDF uncertainties obtained by
evaluating the cross section with the appropriate set of MSTW2008 PDFs at 90% CL.
Again we use PDFs according to Table 7.1. In the following tables, these different classes
of predictions are separated by horizontal lines.

A few comments are in order concerning the results shown in the table. At NLO the
cross sections σNLO, leading evaluated using only the leading singular terms from the threshold
expansion reproduce between 95% (for the Tevatron) to almost 100% (for the LHC) of the
exact fixed-order result at the default values of the factorization scale. The subleading
terms in (1 − z), obtained by integrating dσNLO, subleading, contribute the remaining few
percent. In other words, the singular terms capture about 85% of the NLO correction at
the Tevatron and practically 100% of it at the LHC. We cannot say whether the threshold
expansion works so well also at higher orders in perturbation theory, although this does
not seem unreasonable. Our best prediction is obtained by matching the fixed-order result
with the resummed result at NLO+NNLL accuracy and is highlight in gray. The effect
of resummation is roughly a 10–15% enhancement over the fixed-order NLO result. A
more important effect is that the resummation stabilizes the scale dependence significantly.
Concerning the approximate NNLO schemes, the results from scheme A are noticeably
higher than those from scheme B, but these differences are well inside the quoted errors.
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Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 4.49+1.71
−1.15

+0.24
−0.19 84+29

−20
+4
−5 217+70

−49
+10
−11 495+148

−107
+19
−24

σNLL 5.07+0.37
−0.36

+0.28
−0.18 112+18

−14
+5
−5 276+47

−37
+10
−11 598+108

−94
+19
−19

σNLO, leading 5.49+0.78
−0.78

+0.31
−0.20 134+16

−17
+7
−7 341+34

−38
+14
−14 761+64

−75
+25
−26

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 341+50

−46
+14
−15 761+105

−101
+26
−27

σNLO+NNLL 6.30+0.19
−0.19

+0.31
−0.23 149+7

−7
+8
−8 373+17

−15
+16
−16 821+40

−42
+24
−31

σNNLO, approx (scheme A) 6.14+0.49
−0.53

+0.31
−0.23 146+13

−12
+8
−8 369+34

−30
+16
−16 821+71

−65
+27
−29

σNNLO, approx (scheme B) 6.05+0.43
−0.50

+0.31
−0.23 139+9

−9
+7
−7 349+23

−23
+15
−15 773+47

−50
+25
−27

Table 8.2.: Results for the total cross section in pb, using the default choice µf = 400GeV.
The first set of errors refers to perturbative uncertainties associated with scale
variations, the second to PDF uncertainties. The most advanced prediction is
the NLO+NNLL expansion highlighted in gray.

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 6.66+2.95
−1.87

+0.34
−0.27 122+49

−32
+6
−7 305+112

−76
+14
−16 681+228

−159
+26
−34

σNLL 5.20+0.40
−0.36

+0.29
−0.19 103+17

−14
+5
−5 253+44

−36
+10
−10 543+101

−88
+18
−19

σNLO, leading 6.42+0.42
−0.76

+0.35
−0.23 152+7

−15
+8
−8 381+12

−32
+16
−17 835+18

−60
+29
−30

σNLO 6.72+0.36
−0.76

+0.37
−0.24 159+20

−21
+8
−9 402+49

−51
+17
−18 889+107

−106
+31
−32

σNLO+NNLL 6.48+0.17
−0.21

+0.32
−0.25 146+7

−7
+8
−8 368+20

−14
+19
−15 813+50

−36
+30
−35

σNNLO, approx (scheme A) 6.72+0.45
−0.47

+0.33
−0.24 162+19

−14
+9
−9 411+49

−35
+17
−20 911+111

−77
+35
−32

σNNLO, approx (scheme B) 6.55+0.32
−0.41

+0.33
−0.24 149+10

−9
+8
−8 377+28

−23
+16
−18 832+65

−50
+31
−29

Table 8.3.: Same as Table 9.1, but with the “educated” scale choice µf = mt.

Since the two schemes differ only by terms proportional to δ(1−z), this gives an indication
of the size of the unknown constant terms.

To some extent, the enhancement effect resulting from the resummation of the leading
threshold terms can be mimicked using fixed-order results evaluated at a significantly lower
factorization and renormalization scale µf . Such an “educated” scale choice, which is often
adopted in the literature on fixed-order calculations, is µf = mt. Table 8.3 shows the cross-
section predictions obtained in this case. The fixed-order results are indeed significantly
enhanced with this scale choice. The resummed predictions, on the other hand, do not
change much compared to those shown in Table 8.2.
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M2

z → 1

ŝ = M2

β → 0

4m2
t ŝ s

Figure 8.12.: Phase space in the (ŝ,M2) plane. In the blue region along the diagonal thresh-
old singularities arise, and the cross sections receives its main contributions.
In the small green region near the origin Coulomb singularities appear and
the small-β expansion applies.

8.3.1. Comparison with Previous Calculations

Small-β expansion

The approach pursued here offers an alternative to the direct threshold expansion of the
total partonic cross section in the limit β → 0, corresponding to ŝ → 4m2

t . In this case
not only the phase-space for real gluon emissions shrinks to zero, but in addition the
top and anti-top quarks are produced at rest in the partonic center-of-mass frame, which
implies that in addition to soft-gluon singularities one encounters Coulomb singularities.
The leading terms in the β → 0 limit were first calculated at NNLO in [41, 43], and later
corrected in [46].

It is important to emphasize that the leading singular contributions to the total cross
section arising from the β → 0 limit do not coincide with those arising from the limit z → 1,
even after integrating over all kinematic variables. The reason is that after convolution
with the PDFs there are no truly small scale ratios left in the process (the total center-
of-mass energy

√
s at the Tevatron or LHC are so large that they can be taken to infinity

compared with the scale mt). The large perturbative corrections to the cross section arise
dynamically, because of the relatively strong fall-off of the parton luminosities combined
with the fact that the partonic cross sections receive their dominant contributions from the
region near Born-level kinematics [106,107]. One would then expect that the most accurate
account of enhanced perturbative corrections should be the one that captures enhanced
contributions in all relevant regions of phase space.

In terms of the variables ŝ and M2, the phase space is given by the triangular region
4m2

t ≤ M2 ≤ ŝ ≤ s, as illustrated in Figure 8.12. The large threshold terms considered
in this thesis are located along the diagonal, where the partonic cross sections are largest.
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The large corrections arising in the β → 0 limit are located near the origin of the diagram,
where both ŝ and M2 approach 4m2

t . The parton luminosities are largest for small values
of ŝ. It is obvious from the figure, and also by considering the invariant mass distributions
shown in Figure 8.7, that the region near the origin gives only a very small contribution to
the total cross section. This fact is most clearly demonstrated by the distributions in the
variable βt shown in Figure 8.10, which peak at βt ≈ 0.6 (Tevatron) and βt ≈ 0.7 (LHC).
The region of small velocity, say below βt = 0.2, obviously yields very small contributions
to the total cross sections. Since the variable β is always larger than βt, this conclusion
is even more true for the small-β region. On the contrary, the approach pursued in the
present work accounts for enhanced perturbative contributions in all regions of phase space
giving rise to large contributions to the total cross section. It is completely analogous to
threshold (or soft-gluon) resummation for Drell-Yan or Higgs production at fixed value of
the lepton pair or Higgs boson mass. Even though one can never be sure how accurately
the full NNLO correction to a cross sections is approximated by a subset of calculable
terms, we strongly believe that our treatment provides an approximation that captures
more physics than that based on the β → 0 limit.

Having just argued that the β → 0 limit is not of much relevance for the total cross
section, it is nevertheless interesting to study how well our predictions fare in this region.
Since in our case the top quarks are generically not at rest in their center-of-mass frame, we
are not dealing with Coulomb singularities, and hence our approximate prediction for the
NNLO corrections to the cross section misses a subset of terms involving potential-gluon
exchange. We will now study in more detail which of the singular terms in the β → 0 limit
can be recovered in our approach. To this end, we write the total cross section in the form

σ(s,m2
t ) =

α2
s

m2
t

∑

ij

∫ s

4m2
t

dŝ

s
ffij

(
ŝ

s
, µ

)
fij

(
4m2

t

ŝ
, µ

)
. (8.4)

We can obtain an expression for the perturbative functions fij by integrating (4.6) over all
of phase-space, in which case we find

α2
s fij

(
4m2

t

ŝ
, µ

)
=

8πm2
t

3ŝ

∫ √
ŝ

2mt

dM

M

∫ 1

−1

d cos θ

√
1 − 4m2

t

M2
Cij

(
M2

ŝ
,M,mt, cos θ, µ

)
. (8.5)

We can now evaluate the above formula in the limit ŝ → 4m2
t . Defining expansion coeffi-

cients for the functions fij as

fij = f
(0)
ij + 4παsf

(1)
ij + (4παs)

2

[
f

(2,0)
ij + f

(2,1)
ij ln

(
µ2

f

m2
t

)
+ f

(2,2)
ij ln2

(
µ2

f

m2
t

)]
+ . . . , (8.6)

the answer for the scale-independent pieces with nh = 1, nl = 5, and N = 3 can be written
as

f
(2,0)
qq̄ =

1

(16π2)2

πβ

9

[
910.22 ln4 β − 1315.5 ln3 β + 592.29 ln2 β + 452.52 lnβ
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− 1

β

(
140.37 ln2 β + 18.339 lnβ − 72.225

)
+ fpotential

qq̄

]
+ . . . ,

f (2,0)
gg =

1

(16π2)2

7πβ

192

[
4608.0 ln4 β − 1894.9 ln3 β − 912.35 ln2 β + 2747.5 lnβ

+
1

β

(
496.30 ln2 β + 400.41 lnβ − 236.22

)
+ fpotential

gg

]
+ . . . , (8.7)

where the dots refer to O(β ln0β) terms, which are yet unknown. We have split the answer
into the piece recovered from the expansion of our results, which we have written explicitly,
and a piece related to NNLO effects from potential gluons, which would be recovered from
the small-β expansion of the as yet unknown µ-independent part of the NNLO coefficient
C0 in (6.12). Such potential-gluon contributions were obtained in [46] by using the two-loop
calculations of [141–143], and lead to the additional terms

fpotential
qq̄ =

3.6077

β2
+

1

β
(50.445 lnβ − 68.274) + 76.033 lnβ ,

fpotential
gg =

68.547

β2
+

1

β
(−79.270 lnβ + 227.59) − 290.76 lnβ . (8.8)

The coefficients f
(2,1)
ij and f

(2,2)
ij (with ij = qq̄, gg) in (8.6) are also recovered from the

expansion of our results, up to terms of O(β2). We have checked that they agree with the
results given in [43] when expanded to that order.

It is worth noting that after obtaining the small-β expansion as in (8.7), one can replace
the approximated Born prefactors, πβ/9 in the qq̄ case and 7πβ/192 in the gg case, with
the exact Born-level results. This procedure has been adopted in the recent literature on
the small-β expansion [41, 43, 46]. Therefore, we will differentiate the two versions of the
small-β expansion: version 1 refers to the version where a complete expansion is carried
out as in (8.7), while version 2 refers to the version with the exact Born-level results as
prefactors.

We are now ready to compare our results to those obtained using the small-β expansion.
We focus first on a comparison at NLO, where the exact answers are known. In the upper
portion of Table 8.4, we show the results of the different approximations as well as the exact
NLO cross sections. As we have mentioned in the last section, our NLO leading singular
terms are always a good approximation to the exact NLO results, at both the Tevatron and
the LHC. On the other hand, the small-β expansion version 1 tends to overestimate the
cross section at the Tevatron by more than 2 pb. By incorporating the exact Born prefactors
(version 2) the small-β expansion works better, but still it overestimates the exact results
by about 1 pb. At the LHC, the small-β expansion happens to give results closer to the
exact answers. However, as we will now explain, this is a coincidence. In Figure 8.13
we plot the NLO corrections to the cross sections, including the parton luminosities, as
functions of β. The black solid curves show the exact results, the red solid curves our
PIMSCET leading singular terms, the dotted curves the results obtained using version 2 of
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Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 341+50

−46
+14
−15 761+105

−101
+26
−27

σNLO, leading 5.49+0.78
−0.78

+0.31
−0.20 134+16

−17
+7
−7 341+34

−38
+14
−14 761+64

−75
+25
−26

σNLO, β-exp. v1 8.22+0.54
−0.88

+0.49
−0.33 157+12

−16
+8
−8 395+24

−36
+14
−15 877+49

−73
+29
−30

σNLO, β-exp. v2 6.59+0.96
−0.95

+0.38
−0.25 151+15

−18
+8
−8 386+30

−39
+15
−16 863+49

−73
+29
−30

σNLO+NNLL 6.30+0.19
−0.19

+0.31
−0.23 149+7

−7
+8
−8 373+17

−15
+16
−16 821+40

−42
+24
−31

σNNLO, β-exp. v1 7.37+0.01
−0.20

+0.39
−0.29 156+2

−5
+8
−8 392+4

−11
+16
−17 865+5

−17
+29
−30

σNNLO, β-exp.+potential v1 7.30+0.01
−0.18

+0.39
−0.28 158+3

−6
+8
−8 398+7

−13
+16
−17 880+12

−22
+29
−31

σNNLO, β-exp. v2 6.98+0.17
−0.40

+0.37
−0.27 156+2

−6
+8
−8 394+2

−10
+16
−17 871+0

−14
+29
−31

σNNLO, β-exp.+potential v2 6.95+0.16
−0.39

+0.36
−0.26 159+3

−7
+8
−8 401+6

−12
+17
−17 888+7

−19
+30
−32

Table 8.4.: Results for the total cross section in pb, using the default choice µf = 400GeV.
Some numbers from Table 8.2 are compared with results obtained from different
implementations of the small-β expansion (see text for explanation). The errors
have the same meaning as before.

the small-β expansion, and the dashed line refers to the conventional PIM approach. In
the small-β region, all the approximations work rather well as expected. With increasing
β, the different approximations start to deviate from one another. We observe that, at
both the Tevatron and the LHC, our approximations always reproduce the shapes of the
exact results quite well, which is not at all achieved by the small-β expansion. The fact
that the small-β expansion overestimates the cross section at the Tevatron, where the qq̄
channel dominates, is evident from the left plots in Figure 8.13. At the LHC, where the
gg channel dominates, the small-β expansion does not reproduce the shapes of the exact
results, even though it happens that the integrated cross sections are close to the exact
ones due to a coincidental cancellation. However, it is unlikely that a similar cancellation
will happen at NNLO.

We next compare our best prediction, NLO+NNLL, to the best prediction obtained us-
ing the small-β expansion at NNLO, which is obtained by adding the approximate NNLO
corrections derived using the small-β expansion to the exact NLO cross sections. Without
knowing the exact expression for the NNLO corrections, it is hard to tell which one is closer
to the true answer, but we can study the validity of small-β expansion by investigating the
effects of the subleading terms in β that are contained in our results. We have included
in Table 8.4 the numerical results for the cross section obtained by evaluating the small-β
expansion (8.7) of our approximate NNLO formula, without including the extra potential
terms (labeled “β-exp.” in the table), and that obtained using this expansion plus the
potential terms in (8.8) (labeled “β-exp.+potential”). We notice that the NLO+NNLL
resummed results and the small-β expansion differ by about 10–15% at the Tevatron and
about 6% at the LHC. On the other hand, the effect of adding the potential-gluon contri-
butions to the small-β expansion, which cannot be reproduced in our approach, is always
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Figure 8.13.: The αs corrections to dσ/dβ for the different approximations mentioned in
the text at the Tevatron and LHC, with µf = mt. The plots on the left side
show the qq̄ channel, those on the right the gg channel.

smaller than 2%. We conclude that the bulk of the terms that become singular in the
β → 0 limit are accounted for in our approach. The reverse statement is not true. A
resummation based on the β → 0 expansion does not account for the bulk of the terms
that become singular in the z → 1 limit, and our analysis suggests that subleading terms
in β are by no means generically small.
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9.1. Numerical Implementation

We now describe the numerical implementation of our results from Chapter 5.
As pointed out in Section 5.1, there are power-suppressed ambiguities in the choice of the

variables ŝ′, t̂′1 and û′1 of the hard and soft functions. Apart from when it appears in the δ-
function or plus-distributions, in the perturbative calculation of the hard and soft functions
one can set s4 = 0 everywhere and use ŝ′ + t̂′1 + û′1 = 0 to rewrite the hard-scattering
kernels in many different forms. While these are all formally equivalent in the threshold
limit s4 → 0, they change the functional dependence of the hard-scattering kernels on x1

and x2, so the integration in (5.6) gives different results for the pieces multiplying plus-
distributions in s4. Moreover, since one typically trades either x1 or x2 in favor of s4 as an
integration variable, another obvious choice is to use ŝ′ + t̂′1 + û′1 = s4 before integration,
again leading to numerically different answers which are nonetheless equivalent in the
threshold limit s4 → 0.

Our method of fixing this ambiguity is as follows. First, we enforce ŝ′ + t̂′1 + û′1 = 0
in the hard-scattering kernels, and use this to eliminate either t̂′1 or û′1 as an independent
variable. We then define the two cross sections

dσt

dpTdy
=

16πpT

3s

∑

i,j

∫ 1

−u1/(s+t1)

dx1

x1

∫ x1(s+t1)+u1

0

ds4

s4 − x1t1

× fi/N1(x1, µf) fj/N2(x2(s4), µf)Cij(s4, ŝ
′, t̂′1,−ŝ′ − t̂′1, mt, µf) , (9.1)

dσu

dpTdy
=

16πpT

3s

∑

i,j

∫ 1

−t1/(s+u1)

dx2

x2

∫ x2(s+u1)+t1

0

ds4

s4 − x2u1

× fi/N1
(x1(s4), µf) fj/N2

(x2, µf)Cij(s4, ŝ
′,−ŝ′ − û′1, û

′
1, mt, µf) . (9.2)

We have changed variables from x2 or x1 to s4 in the two equations, respectively, so that

x1(s4) =
s4 − x2u1

x2s + t1
, x2(s4) =

s4 − x1t1
x1s+ u1

. (9.3)

Finally, we drop all dependence on s4 in the hard-scattering kernels by using

t̂′1 = t̂1 = x1t1 , ŝ′ = x1x2(0)s (9.4)
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in (9.1), and

û′1 = û1 = x2u1 , ŝ′ = x1(0)x2s (9.5)

in (9.2). It is easy to see that with this choice σt and σu are not necessarily the same,
although the difference is power suppressed. We shall take the average of the two as the
final result for the differential cross section:

dσ

dpTdy
=

1

2

[
dσt

dpTdy
+

dσu

dpTdy

]
. (9.6)

In this way, the rapidity distribution in the gluon channel is invariant under y → −y, as it
should be, and the relation (5.9) is preserved. The scheme above specifies our procedure
for the numerical evaluation of the threshold formulas for the differential distribution in
pT and y.

Having specified our procedure for evaluating the formulas in the threshold region, we
next clarify how to match the results with fixed-order perturbation theory at NLO. The
exact results contain the perturbative corrections to our formula which vanish in the limit
s4 → 0, and to obtain solid phenomenological results it is important to include them. In
resummed perturbation theory, we achieve NLO+NNLL accuracy by evaluating differential
cross sections according to (7.1). Also, as in Section 8, we evaluate the approximate NNLO
results as given by (7.2).

Similar to the case of PIM kinematics in Section 8 we have to examine the size of the
power corrections contained in parentheses in the second term of (7.1). The power cor-
rections are expected to be small when ŝ → 4m2

⊥, since in that case s4 → 0. However,
experiments do not typically reconstruct ŝ as an observable. For more interesting dif-
ferential distributions the limit s4 → 0 can be enforced via a restriction to the machine
threshold, for instance by requiring that m⊥ → √

s/2 for the pT spectrum, but in this case
the differential cross section would be extremely small. Away from such special kinematic
regions we have to study if a dynamical enhancement occurs, because the product of PDFs
appearing in the cross section falls off sharply away from the region where s4 → 0. We
address the issue of threshold enhancement and power corrections to the threshold expan-
sion in some detail in the next section.
We again will use input variables as specified in Section 7 and Table 7.1.

9.2. Systematic Studies

9.2.1. Threshold Enhancement

We now proceed to study threshold enhancement and the numerical importance of power
corrections to the factorization formula (5.10). The goal is to examine under which condi-
tions the higher-order corrections dominating in the limit s4 → 0 can be expected to give
a good approximation to the full result. Given its importance, we approach this question
from several different angles. In the following we compare the leading terms in the 1PI and
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1PISCET threshold expansions for the pT and rapidity distributions with the exact results
at NLO in QCD.

Transverse-momentum and rapidity distributions at NLO

Our first test of the threshold expansion in 1PI kinematics is to compare its predictions for
the transverse-momentum and rapidity distributions with the exact ones at NLO in QCD.
In other words, we study whether the leading singular pieces in the 1PI or 1PISCET thresh-
old expansions provide a good approximation to the exact NLO hard-scattering kernels,
so that the power corrections contained in the parentheses of the second term in (7.1) are
small. The results of this comparison can be found in Figure 9.1, where the transverse-
momentum and rapidity distributions at the Tevatron and the LHC with

√
s = 7 and

14 TeV are displayed, for the choice µf = 2mt. To compute the exact QCD corrections
we again rely on the Monte Carlo programs MCFM [140] and an internal NLO version of
MadGraph/MadEvent1 [144,145], whereas to implement the leading pieces of the threshold
expansion in 1PISCET and 1PI we have used the procedure described in Section 9.1. It is
obvious from the figures that the 1PISCET approximation does better than the 1PI approx-
imation in reproducing the exact QCD results. Since the three curves differ only through
the NLO corrections to the hard-scattering kernels, we can compare them much better if
we isolate these pieces. We have done so for the pT distribution in Figure 9.2, in this case
for two different values of µf . We then see that at the Tevatron the 1PISCET approximation
works remarkably well over the full range of µf . At the LHC, the 1PISCET approximation
reasonably reproduces the correction at µf = mt, but does relatively poorly in reproducing
the correct µf dependence. The 1PI approximation significantly overestimates the true
result at all three values of µf , both at the Tevatron and at the LHC.

Given that the numerical differences between the 1PISCET, 1PI, and exact results are
due solely to subleading terms as s4 → 0, we conclude that power corrections to the pure
threshold expansion can be sizable at NLO. At the Tevatron, where the qq̄ channel gives
the largest contributions, the extra terms related to L4 included in 1PISCET account for the
dominant power corrections. They are also important at the LHC, where the gg channel
dominates, but so are other corrections, which cannot be obtained in our formalism.

We have focused on the region of pT where the differential cross section is largest. In
principle, our results can also be used to predict the high-pT tail of the distribution. In
the limit m⊥ → √

s/2, for instance, s4 → 0, so threshold expansion is bound to work
well when compared to the exact NLO result. However, in such kinematic regions the
differential cross section is so small that it is essentially unobservable, and the top-quark is
so highly boosted that mt ≪

√
ŝ, so the power counting in the effective theory would need

to be modified. A more interesting region would be up to around 400 GeV at the Tevatron,
and up to around a TeV at the LHC. We will include the higher-pT region for the Tevatron
in the phenomenological studies. For the LHC, however, s4 can be on average rather large
at such values of pT , so power corrections to the gg and qq channels can become significant,

1We are grateful to Rikkert Frederix for providing the code.
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Figure 9.1.: The transverse-momentum and rapidity distributions at NLO at the Tevatron
with

√
s = 1.96 TeV and at the LHC with

√
s = 7 and 14 TeV.
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Figure 9.2.: The NLO corrections to dσ/dpT .
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and the qg channel can also give non-negligible contributions. Given these problems, we
will not study the high-pT distributions at the LHC.

This simple NLO study is instructive, but in the end the real issue is how well the
threshold approximation is expected to work at NNLO. On the one hand, at NNLO one
encounters plus-distributions enhanced by up to three powers of logarithms, so it is not
unreasonable to expect that the power corrections are of less relative importance than at
NLO. On the other hand, at NLO the coefficients multiplying both the Pn distributions
and δ-function terms are known exactly, while at NNLO only those multiplying the Pn

distributions are available. It is therefore difficult to anticipate the behavior of the threshold
expansion at NNLO based only on its behavior at NLO. We will turn to this issue later in
a Section 10.1.1.

9.2.2. Scale Setting

As for the PIM case we have to find appropriate settings for the scales µf , µh and µs.
We begin with determining an appropriate choice of the soft scale µs. From theoretical
arguments, we expect that the perturbative expansion of the soft function should be well-
behaved at a scale characteristic of the energy of the real soft radiation, which is generally
smaller than the hard scales mt and

√
ŝ. As explained in Section 6.3, a general analysis

would determine the soft scale by requiring that the corrections from the soft function
to the double-differential spectrum are well behaved, after integration over the partonic
variables. We have performed such an analysis for the pT distribution and found reasonable
results at the Tevatron. This is also the case for the LHC at lower values of pT , where
the differential cross section is large. As long as we study a relatively modest range in
pT , an equally valid procedure for determining the soft scale is to study the corrections
to the total cross section as a function of µs. This automatically samples the regions of
phase-space where the double-differential cross section is largest. We show the results of
such an analysis in Figure 9.3. To isolate the αs correction from the soft function shown
there, we pick out the piece of the NNLL approximation to the hard scattering kernels
arising from s̃(1), evaluate the total cross section using only this piece, and divide the
result by that at NLL, working in the 1PISCET scheme. We furthermore make the scale
choice µf = µh = µs, which amounts to looking at the correction at NLO in fixed-order. As
seen from the figure, a well-defined minimum in the soft correction appears for µs ∼ 60 GeV
at the Tevatron, µs ∼ 80 GeV at the LHC with

√
s = 7 GeV, and µs ∼ 90 GeV at the

LHC with
√
s = 14 GeV. We will use these as the default choices of µs in the rest of this

section, both for the total cross section and for differential distributions.
One can apply this same procedure to determine an appropriate choice of the hard scale.

Since the hard function is the same in PIM and 1PI kinematics, we recall that in the PIM
case, we found that µh = M is a reasonable default value. Translated to 1PI kinematics,
this would imply the choice µh =

√
ŝ. The actual result for the αs correction to the total

cross section arising from the hard function as a function of µh is shown in the right panel
of Figure 9.3. We isolate this correction as we did for the soft function, except for this time
we pick out the piece of the NNLL cross section proportional to H(1), and examine the
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Figure 9.3.: The one-loop correction from the soft function (left) and the hard function
(right) to the total cross section, divided by the leading-order result. The
solid black line is for the Tevatron, the dashed red line for LHC7, and the
dotted blue line for LHC14.

result as a function of µh. As for the analysis with the soft function, we make the choice
µf = µh = µs. At lower values of µh the correction becomes negative and depends strongly
on the scale. To avoid sensitivity to that region, we will choose µh = 400 GeV by default,
which is close to the average value of

√
ŝ for the total cross section, and in any case will

be varied by a factor of two in the error analysis.
For the factorization scale, we will consider the two different choices µf = mt and

µf = 400 GeV which we also used in PIM kinematics. For the differential distributions
in the following subsection, on the other hand, we use µf = 2mt as the central value. A
more refined analysis could use other choices, such as µf = m⊥ for the pT distribution, but
since we do not study tails of the distributions we prefer to stick to a single value which is
roughly intermediate between the two values used for the total cross section.

Another method often used to argue for a particular scale choice is to look for areas
where the scale dependence of the observable is flat. As part of our analysis below, we
show in Figure 9.4 the dependence of the total cross section on the scales µs, µh, and µf ,
at NLO+NNLL and approximate NNLO. We note that the scale-dependence of the cross
section at NLO+NNLL order is indeed flat close to our default values of µs and µh, and
also close to µf = mt. The approximate NNLO results, on the other hand, do not seem to
favor a particular choice of µf based on this criteria.
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9.3. Rapidity and Transverse-Momentum Distributions

We now present results for the top-quark rapidity and transverse-momentum distributions.
We begin by studying rapidity distributions in Figure 9.5, where we compare results from
fixed-order and resummed calculations in the 1PISCET scheme at the Tevatron and the
LHC with

√
s = 7 and 14 TeV. The results within a given perturbative approximation are

represented as bands indicating the theoretical uncertainties from scale variations. To make
the bands in fixed-order perturbation theory at a given point in y, we vary the value of the
factorization scale up and down from its default value at µf = 2mt by a factor of two, and
pick out the highest and lowest numbers at that point, in resummed perturbation we apply
SUES. The results in the figure clearly show that the higher-order corrections contained in
the approximate NNLO and NLO+NNLL formulas tend to reduce the uncertainties due
to scale dependence, and slightly raise the central values at a given rapidity to the upper
part of the fixed-order NLO band. The error bands for the NLO+NNLL and approximate
NNLO results are of similar size at the Tevatron, but at the LHC the approximate NNLO
bands are noticeably smaller, a result which we will quantify in more detail when we study
the total cross section.

Next, we consider the top-quark transverse-momentum distribution. In this case, we
focus our analysis on the Tevatron, where experimental measurements are available. In
Figure 9.6 we show our predictions for this distribution within the different perturbative
approximations, comparing the fixed-order and resummed results. As with the rapidity
distributions, the higher-order perturbative corrections serve to decrease the scale depen-
dence, and also to slightly raise the central values of the results at a given pT . We compare
the NLO+NNLL results for the pT distribution with a recent measurement at the Tevatron
performed by the D0 collaboration using the lepton+jets channel [78] in Figure 9.7, show-
ing also the NLO calculation for illustration. Since the D0 analysis uses mt = 170 GeV,
for the purposes of this study we deviate from our default choice and also adopt this value.
We observe that the slight increase in the the differential cross section due to resummation
leads to a better agreement with the data compared to the NLO predictions. In general,
the measured spectrum and the NLO+NNLL theory prediction agree within the errors,
both in the shape and the normalization. This is true even at higher values of pT , although
one should keep in mind that our scale-setting procedure was designed to work in areas
where the differential cross section is large.
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Figure 9.5.: Left: Fixed-order predictions for the rapidity distribution at LO (light),
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9.4. Total Cross Section

Our main new results concerning the total cross section are the NLO+NNLL and approx-
imate NNLO expressions in the 1PISCET scheme. Our results for the total cross section
within different approximations are summarized in Tables 9.1 and 9.2. We have also shown
the scale dependence of the 1PISCET results at NLO+NNLL and approximate NNLO in
more detail in Figure 9.4. The main phenomenological results are the NLO+NNLL and
approximate NNLO numbers in the bottom half of the tables, but for comparison we also
give the NLO predictions obtained within the different approximations. In that case, we
also present the sum of the qq̄ and gg channels alone, without the extra piece from the gq
and gq̄ channels; this allows for a more direct comparison with the leading-singular results
in the 1PISCET scheme at NLO, which does not include those pieces. In the fixed-order
results, the scale uncertainties are obtained by varying the factorization scale up and down
by a factor of two. Again, in the resummed results, we apply SUES to obtain the pertur-
bative uncertainties shown in the tables. We have included PDF uncertainties obtained by
evaluating the cross section with the set of MSTW2008 PDFs at 90% CL.

Tevatron LHC (7TeV) LHC (8TeV) LHC (14TeV)

σNLO leading 5.92+0.74
−0.80

+0.33
−0.22 149+13

−16
+8
−8 214+16

−22
+10
−10 853+35

−65
+29
−30

σNLO, qq̄ + gg 5.89+0.77
−0.81 142+14

−17 203+21
−23 801+67

−77

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 192+30

−27
+9
−9 761+105

−96
+26
−27

σNLO+NNLL 6.53+0.14
−0.17

+0.32
−0.23 157+7

−11
+8
−8 223+9

−15
+10
−11 845+27

−67
+27
−29

σNNLO approx 6.30+0.30
−0.39

+0.32
−0.23 153+2

−3
+8
−8 219+2

−3
+10
−11 847+6

−0
+28
−30

Table 9.1.: Results for the total cross section in pb, using the default choice µf = 400GeV.
The first set of errors refers to perturbative uncertainties associated with scale
variations, and the second to PDF uncertainties.

Tevatron LHC (7TeV) LHC (8TeV) LHC (14TeV)

σNLO leading 6.79+0.20
−0.70

+0.38
−0.24 163+0

−11
+9
−9 232+0

−14
+11
−12 887+0

−66
+30
−32

σNLO, qq̄ + gg 6.80+0.27
−0.73 160+5

−15 228+6
−20 879+21

−62

σNLO 6.72+0.36
−0.76

+0.37
−0.24 159+20

−21
+8
−9 227+28

−30
+11
−12 889+107

−106
+31
−32

σNLO+NNLL 6.55+0.16
−0.14

+0.32
−0.24 150+7

−7
+8
−8 214+10

−10
+10
−11 824+41

−44
+28
−30

σNNLO approx 6.63+0.00
−0.27

+0.33
−0.24 155+3

−2
+8
−9 222+5

−3
+11
−11 851+25

−5
+29
−31

Table 9.2.: Same as Table 9.1, but with the scale choice µf = mt.

At NLO, the central value of the exact result is always lower than the leading singular
pieces whereas, for smaller collider energies, the µf dependence is well accounted by them.
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For µf = 400, going to higher collider energies the difference between exact NLO and
leading singular terms becomes bigger. This is not the case for the default choice µf = mt,
where the relative difference stay roughly the same. The NLO+NNLL and approximate
NNLO formulas include the NLO corrections from the qg and q̄g channels through the
matching, and the fact that these higher-order approximations have a rather small scale
dependence even without the NNLO corrections from the qg channel can be taken as an
indication that such corrections are small, but this is a point which should nonetheless be
kept in mind when applying approximate formulas to the LHC with

√
s = 14 TeV.

Another noticeable pattern has to do with the difference between the NLO+NNLL and
approximate NNLO results: the NLO+NNLL results are higher for µf = 400 GeV, but
lower for µf = mt. We can learn more about the scale variations in the NLO+NNLL and
approximate NNLO results in the 1PISCET scheme by examining Figure 9.4. Compared
to the NLO+NNLL approximations, the approximate NNLO results in 1PISCET have very
small scale uncertainties around a given µf , particularly at the LHC. When µf is considered
in the entire range mt/2 < µf < 800 GeV, on the other hand, the approximate NNLO
results are in good agreement with the resummed results in that same range. This is not
an unreasonable means of comparison, since at a given µf the resummed results probe
scales ranging from µdef

s ∼ 75 GeV to µh ∼ 400 GeV, so in estimating errors in fixed-order
one should arguably focus on a similar range instead of just using mt/2 < µf < 2mt, as is
often done in the literature.

As emphasized in Section 6.3, due to our method for determining the soft scale µs,
the NLO+NNLL predictions contain slightly different information than the approximate
NNLO formulas. In particular, the NNLO expansion of the resummed formulas differ in
the structure of the Pn distributions. For instance, the approximate NNLO results contain
P3 distributions, but the equivalent terms in the direct NNLO expansion of the resummed
formula are of the form P2 ln(µs/µf). These contribute at the same order in the counting of
RG-improved perturbation theory, but there are obviously numerical differences between
the two forms of the expansion. This issue is discussed in more detail in Section .3 of
the Appendix. Since the analysis in Figure 9.3 was done at NLO and at that order one
encounters at most P1 distributions, it is worthwhile to ask whether the choice of scale
of µs deduced there is really appropriate to account for the mismatch between the two
approximations. If this were not the case, our NLO+NNLL predictions would become
unstable upon the inclusion of the higher-order matching corrections and it would make
more sense to use the approximate fixed-order NNLO results. To address this issue, we
have also calculated the cross section where we add the NNLO matching coefficients on top
of the NLO+NNLL resummation. More precisely, we include the pieces of the matching
functions specified in (6.13), but still including the NLL evolution matrices in the trace, as
in (5.35). In the case where µf = µh = µs, this approximation reduces to the approximate
NNLO result (compared to the NLO+NNLL result, which reduces to the NLO result in this
limit). We have checked that the numerical results in this “NNLO+NNLL” approximation
are within the uncertainties estimated by the NLO+NNLL calculation. This provides
evidence that our scale-setting procedure is indeed appropriate for effectively including the
higher-order corrections.
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10.1. Total Cross Section

In this section we combine our knowledge about PIM and 1PI kinematics to analyze various
aspects of the total cross section.

The different distributions, which we are able to calculate using PIM or 1PI should all
lead to the same total cross section after integration over them. In the next section we will
compare the total cross section using PIM or 1PI kinematics starting from a distribution
in β. In Section 8.3.1 we did a detailed comparison between results in the β → 0 limit
coming from our PIM calculation and previous approaches in this limit. There we were
interested in the accuracy of the β → 0 limit, and found that subleading terms in β are
not generically small. By analyzing results on the level of the β distribution coming from
PIM and 1PI kinematics we are able to directly compare the threshold expansion and
power corrections in these two kinematical approaches. The results must agree in the limit
β → 0, since in that case gluon emission is soft, but beyond that they receive a different
set of power corrections, so the agreement of the two approximations with each other is
one way of testing whether these power corrections are under control. Furthermore we are
able to test if our improved PIMSCET and 1PISCET schemes decrease the impact of power
corrections in comparison to the standard approaches.

Having analyzed the different power corrections, we combine 1PI and PIM results in
Section 10.1.2 to make predictions for the total cross section as a function of the top-
quark mass in the pole scheme. Following this we also give results for the top-quark mass
dependent cross section using the MS and 1S mass scheme.

10.1.1. The β Distribution in PIM and 1PI Kinematics

As for the case of PIM in Section 8.3.1, we can obtain the total cross section starting from
a distribution in β using our results in 1PI kinematics. We calculate the distribution in β
through an exact change of variables and integration orders in (9.6). With this, the total
cross section in 1PI kinematics takes the form

σ(s,m2
t ) =

∫ s

4m2
t

4πβ

3sm2
t

∑

i,j

ffij

(
ŝ

s
, µf

)

× 1

2

[ ∫ −ŝ(1−β)/2

−ŝ(1+β)/2

dt̂1

∫ ŝ+t̂1+ŝm2
t /t̂1

0

ds4Cij(s4, ŝ
′
t, t̂

′
1,−ŝ′t − t̂′1, mt, µf)
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+

∫ −ŝ(1−β)/2

−ŝ(1+β)/2

dû1

∫ ŝ+û1+ŝm2
t /û1

0

ds4Cij(s4, ŝ
′
u,−ŝ′u − û′1, û

′
1, mt, µf)

]
, (10.1)

where ŝ = 4m2
t/(1 − β2), and

ŝ′t = ŝ
−t̂1

s4 − t̂1
, t̂′1 = t̂1 (10.2)

in the first term in the bracket, while

ŝ′u = ŝ
−û1

s4 − û1
, û′1 = û1 (10.3)

in the second. Comparing this with (8.4) gives the coefficients fij in 1PI kinematics.1

We now begin with a study of the NLO corrections, similar to that performed in Sec-
tion 8.3.1. In Figure 10.1 we compare results for the αs correction to (8.4) obtained within
the different expansions. As in Figure 8.13, we compare the quark and gluon channels sep-
arately and look at the corrections in a kinematic range from the production threshold at
β = 0 to the machine threshold at βmax =

√
1 − 4m2

t/s. As anticipated from the results of
Section 9.3, the 1PISCET approximation works quite well in the qq̄ channel, but somewhat
worse in the gg channel, especially at the LHC. The 1PI results overestimate the exact
corrections in all cases. As for the results in PIM kinematics, they are lower than the exact
results in all cases, but the power-suppressed terms included in PIMSCET bring the leading
terms in the threshold expansion closer to the full result. The PIMSCET approximation is
slightly worse than 1PISCET in the qq̄ channel, and slightly better in the gg channel, but
the differences are not major.

As mentioned in the introduction to this section, all of the approximations have the same
leading-order expansion in the limit β → 0. The power-suppressed effects accounting for
the differences between the curves start to become noticeable at β ∼ 0.2. After that point,
there is more phase space for hard gluon emission and the size of the power corrections
increases. Evidently, the subleading terms included in the 1PISCET and PIMSCET approxi-
mations account for these power-suppressed terms in part, although not completely. This
is especially noticeable in 1PI kinematics, where the power corrections are generically more
important than in PIM kinematics, a point we will return to below. The power corrections
become progressively more important at higher values of the collider energy, since then the
luminosities are larger at high β and the differences in the partonic cross sections in that
region are magnified. This is most easily seen by comparing the LHC results at the two
different collider energies, where one observes larger gaps between the approximations at
14 TeV than at 7 TeV. A careful examination of the results at the LHC with

√
s = 14 GeV

also shows a feature not obvious in the other cases: at very high values of β close to the
endpoint, the exact correction in the gg channel remains a positive number. In fact, the
exact NLO correction to the partonic cross section in the gg channel tends to a positive

1It should be noted that, since the change of variables in (10.1) is carried out exactly, (9.6) and (10.1)
give the same result for the total cross section.
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constant at very high ŝ [8], while that for the qq̄ channel, and also the threshold approxi-
mations to the corrections in PIM and 1PI kinematics in both channels, approach zero at
high ŝ. This feature is only visible at the highest collider energy, because otherwise the
high-β cross section is completely damped by the luminosities. For the same reason, the
qg channel, for which the partonic cross section also tends to a positive constant at high ŝ,
can become important at high β. We show the αs correction from this channel at the LHC
in Figure 10.2, for three different values of µf (at the Tevatron, the contribution from this
channel is still very small.) For higher values of β, and especially at lower values of µf , it
can be as important as the gg channel, even though it is suppressed in the limit s4 → 0.

We can also perform some comparisons of results at NNLO. Those we can get coming
from PIM or 1PI kinematics, and the agreement of these results with each other gives some
information about the size of power-suppressed terms. In addition, as already mentioned,
the NNLO corrections proportional to the scale-dependent logarithmic terms in (8.4) are
known exactly [43]. This gives us an opportunity to also compare both types of kinematics
with an exact result beyond NLO.

The NNLO corrections proportional to the scale-dependent logarithmic terms within the
different approximations are shown in Figure 10.3. The results are obtained by dropping the
scale-independent coefficient f (2,0) from (8.6). Since these contributions would vanish for
µf = mt, we have chosen in this case µf = 2mt instead. We have evaluated the exact results
in QCD using the formulas from [43], and the PIMSCET and PIM results using those in
Section 8.3.1. To obtain the threshold expansions for this comparison, in both kinematics,
we have included the µ-dependent pieces of the two-loop hard function, and wrote all
µ-dependent logarithms in the form ln(m2

t/µ
2)2. Concerning the agreement between the

1PI approximations and the exact results, one sees the same qualitative behavior as at
NLO. The 1PISCET results are consistently a better approximation than the 1PI results,
especially at the LHC, where the power corrections are large at higher values of β. As for
the PIM results, the PIMSCET approximation fares slightly better than the PIM results in
the gluon channel, but slightly worse in the quark channel. In any case, the differences
between the PIMSCET and PIM results are much smaller than those between the 1PISCET

and 1PI results, which can be taken as an indication that the power corrections are smaller
in PIM than in 1PI kinematics. However, once the extra corrections unique to the 1PISCET

scheme are taken into account, the results in these two types of kinematics are very much
compatible with one another and provide a good approximation to the exact results.

The NNLO corrections from the scale-independent pieces f (2,0) to (8.4) within the dif-
ferent PIM and 1PI approximations are shown in Figure 10.4, for the choice µf = mt. For
these pieces it is not possible to make a comparison with an exact result, but we can make
a couple of comments based on the agreement of the different approximations with each
other. As before, the difference between the two PIM schemes is small compared to that
between the two 1PI schemes, indicating that the power corrections in PIM kinematics
are smaller, and the difference between the 1PISCET and PIMSCET results are much re-
duced compared to the difference between the 1PI and PIM results. In general, the NNLO

2In the case of PIM we called this scheme B in Section 6.1.
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Figure 10.1.: The αs corrections to dσ/dβ for the different approximations mentioned in
the text, with µf = mt.
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Figure 10.2.: The αs corrections to dσ/dβ from the gq channel, for µf = mt (solid), µf =
mt/2 (dashed) and µf = 2mt (dotted).

corrections in the 1PI approximation are much larger than any of the others.
The explicit results from these studies all point to the fact that 1PI kinematics is more

susceptible to power-suppressed effects than PIM kinematics. We can gain more insight
into this observation through a very simple analysis. As discussed in Section 5.2, the
leading power corrections in 1PI kinematics are related to the partonic expansion parameter
λ = Es/mt, where 2Es ∼ s4/

√
m2

t + s4 is the energy of extra soft radiation in the partonic
scattering process. For the case of PIM kinematics, as mentioned in Section 4.2, the
equivalent parameter is λ = EPIM

s /M , where 2EPIM
s = M(1 − z)/

√
z. We can quantify in

part the relative size of these parameters as a function of β by evaluating the mean value

〈λ〉1PI =

∫ tmax
1

tmin
1

dt̂1

∫ smax
4

0

ds4

(
s4

2mt

√
m2

t + s4

)/∫ tmax
1

tmin
1

dt̂1

∫ smax
4

0

ds4 (10.4)

in 1PI kinematics, where the appropriate integration range can be read off from (10.1),
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Figure 10.3.: The α2
s corrections to dσ/dβ obtained by dropping the scale-independent piece

f (2,0) in (8.6), for µf = 2mt. The exact result is the black line, the dashed
red line 1PISCET, the dotted red line 1PI, the dashed blue line PIMSCET, and
the dotted blue line PIM.
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Figure 10.4.: The α2
s corrections to dσ/dβ arising from the scale-independent piece, for

µf = mt.
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and the analogous expression

〈λ〉PIM =

∫ 1

4m2
t /ŝ

dz

(
1 − z

2
√
z

)/∫ 1

4m2
t /ŝ

dz (10.5)

in PIM kinematics. The results are shown in Figure 10.5. In the 1PI scheme, there is
a sharp growth in the average value of the “small” parameter λ with increasing β. The
expansion parameter in the PIM scheme also increases as a function of β, but not as
quickly. Note that this behavior of the partonic expansion parameter λ does not translate
directly into correspondingly large corrections to the threshold expansion for the physical
cross sections. The singular distributions in s4 or (1 − z) still enhance the region where λ
is small, even if the integration range covers regions where it is not, and the regions of β
closer to the endpoint are damped by the parton luminosities. However, given the results
of the figure, it is not surprising that the power corrections are generally larger in 1PI than
in PIM kinematics, and that they are especially important at the LHC, where the parton
luminosities are larger at higher values of β.

So far, we have focused on the agreement of the corrections in 1PI or PIM kinematics
with the exact QCD results or with each other. We can gain more information by looking at
the contributions of the individual terms in the decomposition (6.12) in the 1PI scheme and
also at the analogous contributions in the PIM scheme (6.8). The assumption of dynamical
threshold enhancement is that contributions from regions of phase space where the partonic
expansion parameter λ is large, as shown for example in Figure 10.5, are suppressed due to
the properties of the PDFs, so one can expect to see a hierarchy between the different terms
in the expansion. In particular, one would expect that the plus-distributions contribute
more than the δ-function and of course the power-suppressed contributions contained in
R.
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P3 P2 P1 P0 δ R sum
T
ev

at
ro

n 1P
I S

C
E

T

δσ
(1)
qq̄ 1.1 0.30 −0.06 −0.38 0.94

δσ
(2)
qq̄ 0.57 0.39 −0.09 −0.19 −0.37 −0.31 0.01

δσ
(1)
gg 0.32 0.08 −0.11 −0.06 0.45

δσ
(2)
gg 0.39 0.18 −0.07 −0.14 −0.12 −0.12 0.14

P
IM

S
C

E
T δσ

(1)
qq̄ 1.2 −0.67 −0.11 0.20 0.64

δσ
(2)
qq̄ 0.64 −0.24 −0.26 −0.16 −0.08 0.11 0.02

δσ
(1)
gg 0.48 −0.24 0.12 0.03 0.38

δσ
(2)
gg 0.60 −0.31 −0.11 −0.11 −0.08 0.04 0.10

L
H

C
14

1P
I S

C
E

T

δσ
(1)
qq̄ 18 1 −2 −9 7

δσ
(2)
qq̄ 8.1 2.9 −1.6 −0.6 −5.4 −4.6 −1.1

δσ
(1)
gg 280 14 124 −125 292

δσ
(2)
gg 296 83 −20 −35 −160 −149 16

P
IM

S
C

E
T δσ

(1)
qq̄ 11 −9 −1 5 6

δσ
(2)
qq̄ 5.5 −2.8 −1.7 −1.0 −1.3 1.1 −0.1

δσ
(1)
gg 250 −189 120 60 240

δσ
(2)
gg 287 −194 −41 −60 −10 37 19

Table 10.1.: Corrections in pb from the different types of distributions at NLO and NNLO,
for µf = mt.

The exact structure of contributions to the total cross section from the different terms are
shown in Table 10.1, for the choice µf = mt. Generally speaking, the Pi distributions are
indeed enhanced compared to the other terms. In fact, the NNLO contributions from P3 can
be as large as the NLO contributions from P1. However, in both 1PI and PIM kinematics,
there are large cancellations between the different terms, so that the total NNLO correction
turns out to be small. In PIM kinematics, this happens at the level of the distributions,
and to a lesser extent between the δ-function and R terms, which seem to be generically
smaller than the other terms. In 1PI kinematics, the δ-function terms and especially the
power-suppressed terms in R are relatively larger than in PIM. We emphasize that the
results for the coefficients of the Pi distributions are exact, so a full NNLO calculation will
change only the δ-function and R pieces, moreover in such a way that the cross section
from both types of kinematics agrees exactly. The numbers above suggest that these terms
are relatively small in PIM kinematics, because of threshold enhancement, so in order to
preserve the good agreement between the two types of kinematics they would also need to
be small in 1PI kinematics. In that case the terms already included in our calculation are
the dominant ones at NNLO, although this can only be confirmed through the full NNLO
results.
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10.1.2. Combined Cross Sections in the Pole Scheme

In this section we give results for the total cross section coming from a combination of
our PIM and 1PI calculations. This will merge the present state of the art knowledge
about higher-order QCD corrections to the production cross section. When combining
1PI and PIM results, the numerical difference between NLO+NNLL and approximate
NNLO is rather small. We will focus on the approximate NNLO results in this section for
concreteness.

Until now all equations were written for the case where the factorization and renor-
malization scales are set equal, µf = µr. Later on we will consider the case where the
running coupling is instead evaluated at an arbitrary renormalization scale µr. To derive
such expressions we use

αs(µf) = αs(µr)

[
1 +

αs(µr)

π

23

12
Lrf +

(
αs(µr)

π

)2(
529

144
L2

rf +
29

12
Lrf

)]
, (10.6)

with Lrf = ln(µ2
r/µ

2
f), and re-expand the formulas to NNLO in powers of αs(µr).

To estimate the uncertainties associated with scale variations, we view the cross section
as a function of the renormalization and factorization scales, which by default are chosen
as µf = µr = mt. We then consider two methods of scale variations: correlated variations
with µf = µr varied up and down by a factor of two from the default value, and independent
variations of µf and µr by factors of two, with the uncertainties added in quadrature. We
use as our final answer the larger uncertainty from these two methods.

To combine the results from PIM and 1PI kinematics, we first compute the cross sections
and scale uncertainties in the PIMSCET and 1PISCET schemes separately, and obtain six
quantities σPIM, ∆σ+

PIM, ∆σ−
PIM, σ1PI, ∆σ+

1PI, ∆σ−
1PI. The central value and perturbative

uncertainties for the combined results are then determined by

σ =
1

2
(σPIM + σ1PI) ,

∆σ+ = max
(
σPIM + ∆σ+

PIM, σ1PI + ∆σ+
1PI

)
− σ , (10.7)

∆σ− = min
(
σPIM + ∆σ−

PIM, σ1PI + ∆σ−
1PI

)
− σ .

In this way, the central value is the average of the two, and the perturbative uncertainties
reflect both the variation of the scales and the difference between the two types of kine-
matics. The PDF uncertainties are estimated as usual by evaluating the average of the
1PI and PIM results using the PDF error sets at a particular confidence level.

We quote in Table 10.2 the approximate NNLO predictions obtained with the above pro-
cedure at mt = 173.1 GeV, using the sets of the MSTW2008 NNLO PDFs. To investigate
the convergence of the perturbative series, we also list the LO and NLO results, obtained
using MSTW2008 LO and NLO PDFs, respectively. In the pole scheme, the scale uncer-
tainties are generally determined by the correlated scale variations with µr = µf . The
one exception is the upper error at the Tevatron, which is instead determined by the
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LO

MSTW CTEQ

T
ev

.

6.66
+2.95+(0.34)
−1.87−(0.27) 5.45

+2.16+0.33(0.29)
−1.42−0.27(0.24)

L
H

C
7

122
+49+(6)
−32−(7) 100

+35+9(7)
−24−8(7)

L
H

C
14

681
+228+(26)
−159−(34) 552

+157+25(18)
−115−25(19)

NLO

MSTW CTEQ

T
ev

.

6.72
+0.41+0.47(0.37)
−0.76−0.45(0.24) 6.77

+0.40+0.50(0.43)
−0.74−0.40(0.34)

L
H

C
7

159
+20+14(8)
−21−13(9) 148

+18+13(11)
−19−12(10)

L
H

C
14

889
+107+66(31)
−106−58(32) 829

+97+41(27)
−96−40(28)

NNLO approx.

MSTW CTEQ

T
ev

.

6.63
+0.07+0.63(0.33)
−0.41−0.48(0.25) 6.91

+0.09+0.53(0.46)
−0.44−0.43(0.36)

L
H

C
7

155
+8+14(8)
−9−14(9) 153

+8+13(11)
−8−12(10)

L
H

C
14

855
+52+60(30)
−38−59(31) 842

+51+40(26)
−37−40(28)

Table 10.2.: Total cross sections in pb for mt = 173.1 GeV with MSTW2008 and CTEQ6.6
PDFs. The first error results from the perturbative uncertainty from both scale
variations and the difference between PIM and 1PI kinematics, the second one
accounts for the combined PDFs+αs uncertainty. The numbers in parenthesis
show the PDF uncertainty only.

independent variations of µr and µf added in quadrature. Even though the perturbative
uncertainty in the approximate NNLO result includes both scale variations and an estimate
of power corrections to the soft limit through the difference of 1PI and PIM kinematics, it
is still reduced compared to that in the NLO calculation, which by definition is due only
to scale variations. We note that the central value and uncertainties of the approximate
NNLO results are well contained within the uncertainty range predicted by the NLO re-
sults, so that the perturbative series to this order is well behaved in the pole scheme. The
NNLO results are also within the uncertainties of the LO calculation, although the NLO
results are slightly higher than the LO ones in the case of the LHC.

For comparison, we also include the results using CTEQ6.6 PDFs [147] in Table 10.2.
Since the CTEQ PDFs are based on a NLO fit, the same set is used at LO, NLO and
approximate NNLO. The statements based on the analysis with MSTW PDFs above,
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including those concerning the moderate size of the NNLO corrections, are also true for
the analysis with CTEQ PDFs. In this case, however, the LO results at the LHC are
significantly lower than the NLO and NNLO results. To a certain extent, this shows the
potential benefit of switching PDFs as appropriate to the order of perturbation theory. On
the other hand, LO calculations are usually considered unreliable, so the more important
observation for the perturbative convergence is the modest size of the NNLO correction.

The perturbative uncertainties in the approximate NNLO predictions are about the same
size at both the Tevatron and the LHC. An additional source of uncertainty is related to
the experimental value of αs(MZ) (where MZ denotes the Z-boson mass), which is an input
parameter for the running of the strong coupling constant. We estimate this uncertainty in
combination with the PDF one by employing the method proposed in [139,148]. Table 10.2
shows that the uncertainty on αs(MZ) adds an error of ±(3 – 4)% to the pair-production
cross section when the calculation is carried out with MSTW2008 PDFs. The error is
somewhat smaller, ±(1 – 2)%, when CTEQ6.6 PDFs are used. The reason is that CTEQ6.6
assigns a 90% CL error of ±0.002 to αs(MZ), while for MSTW2008 it is ±0.003. One can
conclude that the αs(MZ) induced uncertainty is of the same order of magnitude as the
perturbative and PDF uncertainties, and should not be neglected.

For an extraction of the top-quark mass through a comparison with the experimental
cross section, we also provide our results as a function of mt. We parametrize the mass
dependence of the approximate NNLO cross section using the simple polynomial fit

σ(mt) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 , (10.8)

where x = mt/GeV − 173, and ci are fit coefficients which depend on the collider and
the PDF set. The results for the fit coefficients including upper and lower errors due to
perturbative uncertainties are shown in Table 10.3, again using MSTW2008 NNLO PDFs.
A Mathematica implementation of the fit coefficients can be found with the electronic ver-
sion of our publication [5], where the combined PDF and αs uncertainties as well as the fit
coefficients using CTEQ6.6 PDFs are also included. These fits reproduce the approximate
NNLO calculations to 1 permille or better in the range mt ∈ [150, 180] GeV. For simplicity
the uncertainties on fit coefficients are not displayed in Table 10.3. When these uncertain-
ties are measured in percent of the central value of the cross section, they appear to be
roughly independent of mt in the range mt ∈ [150, 180] GeV, differing by no more than a
percent from those at mt = 173.1 GeV shown in Table 10.2.

10.1.3. Combined Cross Sections in the MS and 1S Schemes

The pole mass of a quark cannot be defined unambiguously in QCD due to confinement.
The perturbatively defined pole mass is sensitive to long-distance physics and suffers from
renormalon ambiguities of order ΛQCD. This is an example of infrared renormalons. In
general these are connected to the fact that an observable O(αs) is approximated by a
divergent sum O(αs) ∼

∑
n cnα

n
s

3, see [149] for details.

3In the case of the pole mass the coefficients cn are proportional to n!, leading to a divergent sum.

125



10. Combined Studies

c0 [pb] c1 [pb] c2 [pb] c3 [pb] c4 [pb]

T
ev

at
ro

n σ 6.647 × 100 −2.072 × 10−1 3.617 × 10−3 −4.304 × 10−5 8.943 × 10−7

σ+ 6.722 × 100 −2.091 × 10−1 3.629 × 10−3 −5.009 × 10−5 6.994 × 10−7

σ− 6.233 × 100 −1.945 × 10−1 3.401 × 10−3 −4.034 × 10−5 8.176 × 10−7

L
H

C
7 σ 1.555 × 102 −4.665 × 100 8.076 × 10−2 −9.931 × 10−4 1.753 × 10−5

σ+ 1.633 × 102 −4.924 × 100 8.504 × 10−2 −1.136 × 10−3 1.668 × 10−5

σ− 1.468 × 102 −4.402 × 100 7.517 × 10−2 −1.033 × 10−3 1.481 × 10−5

L
H

C
14 σ 8.576 × 102 −2.299 × 101 3.653 × 10−1 −4.027 × 10−3 7.415 × 10−5

σ+ 9.088 × 102 −2.446 × 101 3.895 × 10−1 −4.482 × 10−3 8.142 × 10−5

σ− 8.195 × 102 −2.203 × 101 3.543 × 10−1 −3.819 × 10−3 6.252 × 10−5

Table 10.3.: Fit coefficients in (10.8) for the total cross sections with perturbative uncer-
tainties at approximate NNLO, using MSTW2008 NNLO PDFs.

In perturbative calculations, the renormalon ambiguity is associated with large higher-
order corrections to the pole mass, and thus to any observable calculated in this scheme.
Therefore, it is worth investigating short-distance mass definitions which are free from these
shortcomings. In this section, we analyze the cross section as a function of the running
top-quark mass defined in the MS scheme, and of the threshold top-quark mass defined in
the 1S scheme [150].

It is possible to calculate the cross section using the MS mass from the beginning, by
performing mass renormalization in that scheme. However, since we already have the cross
section in the pole scheme from the last section, it is simpler to convert from one scheme to
another using the perturbative relation between the pole mass and MS mass. This relation
is currently known to three-loop order [151]. To perform the conversion to the MS scheme,
we take that result for QCD with five active flavors and write it in the form

mt = m(µ̄)

[
1 +

αs(µr)

π
d(1) +

α2
s(µr)

π2
d(2) + O(α3

s)

]
, (10.9)

where

d(1) =
4

3
+ Lm , d(2) = 8.23656 +

379

72
Lm +

37

24
L2

m +
23

12
d(1)Lr , (10.10)

with Lm = ln(µ̄2/m2(µ̄)) and Lr = ln(µ2
r/µ̄

2). We then decompose the NNLO cross section
in the pole scheme as

σNNLO(mt) =

[
αs(µr)

π

]2

σ(0)(mt, µr) +

[
αs(µr)

π

]3

σ(1)(mt, µr) +

[
αs(µr)

π

]4

σ(2)(mt, µr) ,

(10.11)
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eliminate mt through the relation (10.9), and re-expand the result in powers of αs(µr).
The resulting cross section in the MS scheme can be written as

σ̄NNLO(m) =

[
αs(µr)

π

]2

σ̄(0)(m(µ̄), µ̄, µr) +

[
αs(µr)

π

]3

σ̄(1)(m(µ̄), µ̄, µr) (10.12)

+

[
αs(µr)

π

]4

σ̄(2)(m(µ̄), µ̄, µr) ,

where

σ̄(0)(m(µ̄), µ̄, µr) = σ(0)(m(µ̄), µr) ,

σ̄(1)(m(µ̄), µ̄, µr) = σ(1)(m(µ̄), µr) +m(µ̄) d(1)

[
dσ(0)(mt, µr)

dmt

]

mt=m(µ̄)

, (10.13)

σ̄(2)(m(µ̄), µ̄, µr) = σ(2)(m(µ̄), µr) +m(µ̄)

[
d(1)dσ

(1)(mt, µr)

dmt

+ d(2)dσ
(0)(mt, µr)

dmt

+

(
d(1)
)2
m(µ̄)

2

d2σ(0)(mt, µr)

dm2
t

]

mt=m(µ̄)

.

The derivatives can be taken either at the level of the hadronic cross section, using fits
such as the one in (10.8), or at the level of the differential cross section before carrying out
the phase-space integrations. We have checked our calculations by verifying the agreement
between the two methods. We note that our method of converting results from the pole
scheme to the MS scheme is similar to that used in [43, 152]. Indeed, our approximate
NNLO results in the MS scheme for the choice µ̄ = m agree with those in the HATHOR
program [152], apart from the piece related to the NNLO correction σ(2), which is of course
different since we are not working in the ŝ→ 4m2

t limit of the partonic cross section.
Our procedure for combining the results from 1PI and PIM kinematics in the MS scheme

is analogous to that for the pole scheme described above. In the present case, we use by
default µf = µr = m(m). We must also specify the scale in the running top-quark mass,
for which we use µ̄ = m.4 We provide results for the cross sections as a function of m(m)
using the fit

σ(m) = c̄0 + c̄1x̄+ c̄2x̄
2 + c̄3x̄

3 + c̄4x̄
4 , (10.14)

where x̄ = m/GeV−164. The fit coefficients for the different colliders using the MSTW2008
NNLO PDFs can be found in Table 10.4; those including combined PDF and αs uncer-
tainties also with CTEQ6.6 PDFs are included in the Mathematica notebook mentioned
above.

4Variations of µ̄ around values close to m, which would correspond to sampling over different mass
definitions, could potentially be used as an additional means of estimating systematic uncertainties.
However, a numerical analysis shows that our approximate NNLO results are very stable for variations
of µ̄ around the default value.
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c̄0 [pb] c̄1 [pb] c̄2 [pb] c̄3 [pb] c̄4 [pb]

T
ev

at
ro

n σ 6.667 × 100 −2.178 × 10−1 3.959 × 10−3 −5.144 × 10−5 1.099 × 10−6

σ+ 6.777 × 100 −2.211 × 10−1 4.047 × 10−3 −5.094 × 10−5 1.116 × 10−6

σ− 6.262 × 100 −2.052 × 10−1 3.811 × 10−3 −3.887 × 10−5 1.285 × 10−6

L
H

C
7 σ 1.574 × 102 −4.941 × 100 9.009 × 10−2 −9.385 × 10−4 2.977 × 10−5

σ+ 1.664 × 102 −5.200 × 100 9.482 × 10−2 −1.045 × 10−3 2.813 × 10−5

σ− 1.483 × 102 −4.627 × 100 8.266 × 10−2 −1.063 × 10−3 2.220 × 10−5

L
H

C
14 σ 8.645 × 102 −2.423 × 101 3.980 × 10−1 −4.899 × 10−3 8.447 × 10−5

σ+ 9.207 × 102 −2.598 × 101 4.342 × 10−1 −5.006 × 10−3 1.029 × 10−4

σ− 8.0350 × 102 −2.214 × 101 3.608 × 10−1 −4.199 × 10−3 7.849 × 10−5

Table 10.4.: Fit coefficients (10.14) for the cross section with perturbative uncertainties at
approximate NNLO in the MS scheme, using MSTW2008 NNLO PDFs.

The results for m(m) = 164.1 GeV, which corresponds to mt = 173.1 GeV when using
the two-loop conversion between the pole and MS masses, are shown in Table 10.5 for
MSTW2008 and CTEQ6.6 PDFs. As in the pole scheme, we switch the order of the MSTW
PDFs according to the order of perturbation theory at which we are working, while the
CTEQ PDFs are the same in both cases. In the MS scheme, the uncertainties from scale
variations are dominated by the scheme where µf and µr are varied independently, rather
than the scheme with correlated µr = µf variations, as was the case in the pole scheme.

We observe that the results obtained from the approximate NNLO formulas are quite
close to those in the pole scheme shown in Table 10.2, both in the central values and in the
errors. Given this good agreement, which is roughly independent of the exact value of the
top-quark mass as shown by the fits, it makes little practical difference whether one extracts
the pole mass using the approximate NNLO results, and then determines the MS mass using
the perturbative conversion (10.9), or whether one determines the MS mass directly, using
the experimental results along with the fits at approximate NNLO. This statement would
not be true at very high orders in perturbation theory, since the renormalon ambiguity
inherent to the pole mass would lead to large corrections not present in a short-distance
scheme such as the MS scheme. But given the present accuracy of perturbative calculations
and experimental measurements, this does not yet appear to be an issue.

It is of course still interesting to study whether even at low orders the perturbative
expansion is better behaved in the MS scheme than in the pole scheme. We observe that
the perturbative uncertainties at NLO are generally smaller in the MS scheme than in the
pole scheme, and that the central values are relatively higher compared to the approximate
NNLO calculation. For this reason, the overlap between the NLO and approximate NNLO
results is actually better in the pole scheme than in the MS scheme.5 These results differ

5The overlap between LO and NLO is worse at the Tevatron and improved at the LHC compared to the
pole scheme, but as mentioned earlier we consider the more important issue the overlap between the

128



10. Combined Studies

LO

MSTW CTEQ

T
ev

.

8.82
+3.91+(0.44)
−2.48−(0.35) 7.24

+2.86+0.46(0.40)
−1.89−0.38(0.32)

L
H

C
7

160
+64+(8)
−42−(9) 131

+45+11(9)
−31−10(8)

L
H

C
14

875
+291+(32)
−204−(43) 705

+199+30(21)
−145−30(23)

NLO

MSTW CTEQ

T
ev

.

7.33
+0.11+0.50(0.40)
−0.49−0.47(0.25) 7.39

+0.10+0.57(0.50)
−0.48−0.45(0.39)

L
H

C
7

179
+11+15(10)
−19−14(10) 167

+10+15(12)
−17−13(11)

L
H

C
14

991
+79+71(35)
−96−62(36) 925

+71+44(29)
−87−43(31)

NNLO approx.

MSTW CTEQ

T
ev

.

6.64
+0.11+0.58(0.33)
−0.40−0.43(0.23) 6.92

+0.12+0.52(0.46)
−0.43−0.42(0.37)

L
H

C
7

157
+9+13(8)
−9−13(9) 154

+9+13(11)
−9−12(10)

L
H

C
14

862
+56+54(30)
−61−53(32) 848

+56+37(26)
−61−38(28)

Table 10.5.: Total cross sections in pb in the MS scheme, for m(m) = 164.1 GeV. The first
error results from the perturbative uncertainty from both scale variations and
the difference between PIM and 1PI kinematics, the second one accounts for
the combined PDFs+αs uncertainty. The numbers in parenthesis show the
PDF uncertainty only.

from those obtained in the ŝ → 4m2
t limit, where the approximated NNLO corrections

and the perturbative uncertainties at that order are significantly smaller in the MS scheme
than in the pole scheme [43].

To elaborate further on these results, we note that the re-organization of the perturbative
expansion in the MS scheme compared to the pole scheme is accomplished by the terms
in square brackets in (10.13). To understand whether these terms are expected to cancel
against unphysically large corrections in the pole scheme, we note that the main source of
mass dependence in the Born level cross section is due to phase-space factors: the lower
limit of integration in (8.4), and an overall factor of

√
1 − 4m2

t/ŝ in the partonic cross sec-
tion related to two-body phase space and multiplying the Born-level matrix element. The

NLO and approximate NNLO results.
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derivatives contained in the terms in square brackets are mainly sensitive to those sources
of mt dependence. However, the phase space of the pair production is more indicative of
the pole mass than of an MS mass. Indeed, we are calculating the cross section for on-
shell quarks according to the narrow width approximation. If the cross section is instead
calculated in the MS scheme, the terms in the square brackets of the NLO and NNLO
pieces of (10.13) give sizable negative corrections, which are accounted in the pole scheme
by using a numerically higher value of the mass in the LO and NLO cross sections. Since
the most appropriate mass scheme for a given process is the one where the higher-order
corrections are expected to be smallest on physical grounds, it does not seem to us that
the MS scheme is the optimal choice for this case.

LO

MSTW CTEQ

T
ev

.

6.83
+3.02+(0.35)
−1.92−(0.28) 5.59

+2.21+0.34(0.30)
−1.46−0.28(0.24)

L
H

C
7

124
+50+(6)
−33−(7) 103

+35+9(7)
−24−8(7)

L
H

C
14

696
+223+(26)
−163−(34) 564

+160+25(18)
−117−25(19)

NLO

MSTW CTEQ

T
ev

.
6.82

+0.39+0.48(0.38)
−0.75−0.46(0.24) 6.87

+0.38+0.51(0.44)
−0.73−0.41(0.34)

L
H

C
7

162
+19+14(9)
−21−13(9) 150

+17+14(11)
−19−12(10)

L
H

C
14

902
+106+66(32)
−106−59(33) 841

+96+41(27)
−96−40(29)

NNLO approx.

MSTW CTEQ

T
ev

.

6.65
+0.06+0.63(0.32)
−0.38−0.47(0.24) 6.93

+0.08+0.54(0.47)
−0.40−0.42(0.36)

L
H

C
7

156
+7+14(9)
−8−14(8) 154

+7+13(11)
−8−12(10)

L
H

C
14

859
+47+59(30)
−35−58(32) 846

+46+39(25)
−35−40(29)

Table 10.6.: Total cross sections in pb in the 1S scheme, for m1S
t = 172.3 GeV. The first

error results from the perturbative uncertainty from both scale variations and
the difference between PIM and 1PI kinematics, the second one accounts for
the combined PDFs+αs uncertainty. The numbers in parenthesis show the
PDF uncertainty only.

As an alternative to the MS mass, we consider the group of short-distance masses known
as threshold masses [153]. At lower orders in perturbation theory, these are closer numeri-
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cally to the pole mass, but they do not suffer from renormalon ambiguities at higher orders.
The cross section in these schemes can be easily calculated from the pole-scheme results,
using an analogous procedure to the MS scheme calculation. It is evident that at approx-
imate NNLO the numerical difference between these results and the MS and pole-scheme
results will be quite small once the numerical value of the mass is adjusted appropriately,
but we nonetheless illustrate this with a specific example. In particular, we consider the
cross section as a function of the 1S mass introduced in [150]. The 1S mass is defined
through the perturbative contribution to the mass of a hypothetical n = 1, 3S1 toponium
bound state. To perform the conversion to this scheme, we write its relation with the pole
mass in the form [150]

mt = m1S
t

{
1 +

αs(µr)

π

2

9
παs(µr)

+

(
αs(µr)

π

)2 [
2

9
παs(µr)

(
23

3
ln

3µr

4αs(µr)m1S
t

+
181

18
+

2

9
παs(µr)

)]
+ O

(
α3

s

π3

)}

(10.15)

and follow the same procedure as for the MS scheme calculation with the appropriate
replacements, cf. (10.9). Note that in the above relation παs is counted as O(1) and is
not expanded. The results are listed in Table 10.6 for the value m1S

t = 172.3 GeV, which
corresponds to a pole mass of mt = 173.1 GeV using the two-loop conversion above. The
approximate NNLO results in this scheme are very similar to those in the pole and MS
schemes, but the moderate size of the NNLO correction is more indicative of the pole
scheme than of the MS scheme. This leads us to conclude once again that although at yet
higher orders in perturbation theory the pole mass would be disfavored, at approximate
NNLO accuracy this is not yet a problem.

10.1.4. Comparing to Measurements

In Figure 10.6 we show our combined results for the total cross section as a function
of the top-quark mass mt defined in the pole scheme, using MSTW2008 NNLO PDFs.
The bands reflect the uncertainties coming from scale variation alone, and from scale
variation in addition with PDF+αs uncertainties. On the left side we compare these with
the dependence of a D0 measurement on mt at the Tevatron [146]. On the right side
we present our predictions for the mt-dependent cross section in combination with new
measurements done by the CMS [72] and ATLAS [73] collaborations. Both analyses use a
top-quark mass of 172.5 GeV, but we have set them aside in Figure 10.6 for clarity. Both
for the Tevatron and LHC there is good agreement between theoretical predictions and
measurements.
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Figure 10.6.: Left: Dependence of the total cross section on the top-quark mass defined in
the pole scheme. The bands reflect the uncertainties coming from scale vari-
ation alone, and from scale variation in addition with PDF+αs uncertainties.
The blue band shows the dependence of a D0 measurement of the total cross
section on mt [146]. Right: The same for the LHC but with a comparison to
recent CMS [72] and ATLAS [73] measurements.

10.2. Forward-Backward Asymmetry

10.2.1. Introduction

The forward-backward asymmetry in top-quark pair production in proton-antiproton col-
lisions is an observable which originates from the difference in the production rates for top
quarks in the forward and backward hemispheres [15, 16]. As already mentioned in Sec-
tion 1.3, the total FB asymmetry was measured by the CDF and D0 collaborations at the
Tevatron [79–82]. The measurement can be carried out in the laboratory frame (pp̄ frame)
as well as in the center-of-mass frame of the top-quark pair (tt̄ frame). The asymmetries
in the two frames are defined as

Ai
FB =

N(yi
t > 0) −N(yi

t < 0)

N(yi
t > 0) +N(yi

t < 0)
, (10.16)

where N is the number of events, i = pp̄ (tt̄) indicates the laboratory frame (tt̄ frame),
and yi

t is the top-quark rapidity in frame i. The measurements obtained by the CDF
collaboration using 5.3 fb−1 of data are [82]

App̄
FB = (15.0 ± 5.5)% (pp̄ frame) ,

Att̄
FB = (15.8 ± 7.5)% (tt̄ frame) . (10.17)

The quoted uncertainties are derived from a combination of statistical and systematic
errors.

At the Tevatron, the charge conjugation invariance of the strong interaction implies that
the difference in the production of top quarks in the forward and backward hemispheres
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Figure 10.7.: Examples of interferences contributing to the charge-asymmetric cross sec-
tion. The two-particle cut corresponds to the interference of a one-loop box
with the tree-level diagram, while the three-particle cut corresponds to the
interference of tree-level diagrams with a tt̄g final state.

is equivalent to the difference in the production of top and antitop quarks in the forward
hemisphere. Therefore, in QCD the FB asymmetry is equivalent to the charge asymmetry.

At leading order in QCD (O(α2
s)), the charge-asymmetric cross section vanishes. This

quantity receives non-zero contributions starting at O(α3
s). These arise if, in the interfer-

ence of one-loop and tree-level diagrams, the top-quark fermionic line and the light-quark
fermionic line are connected by three gluons. The same observation applies also to the
interference of two tree-level diagrams with three particles in the final state. In Figure 10.7
we show the interference of the planar box with the tree-level diagram and the correspond-
ing interference of real emission diagrams. The other contribution to the asymmetry at
O(α3

s) in the quark-annihilation channel originates from the interference of the crossed
box and tree-level diagram (or from the corresponding real emission case). This can be
visualized by imagining to cross the two gluons on the left side of the heavy-quark triangle
in Figure 10.7. The color factors multiplying the structure in Figure 10.7 or its crossed
counterpart are respectively

Cplanar =
1

16N2

(
f 2

abc + d2
abc

)
, Ccrossed =

1

16N2

(
d2

abc − f 2
abc

)
, (10.18)

where f 2
abc = (N2 − 1)N and d2

abc = (N2 − 1)(N2 − 4)/N . When the color factors are
stripped off, the interference in Figure 10.7 and its crossed counterpart satisfy the relation

dσpp̄→tt̄X
planar = −dσpp̄→t̄tX

crossed . (10.19)

This relation holds both for the three-particle and the two-particle cuts. Therefore, the
charge-asymmetric cross section is proportional to d2

abc. The interference of the one-loop
box diagrams with the tree-level diagram gives a positive contribution to the asymmetry,
which is partially canceled by the asymmetry originating from the interference of initial-
and final-state radiation diagrams. An additional small contribution to the asymmetry
at O(α3

s) originates from the flavor excitation channel gq(q̄) → tt̄X at tree level. The
gluon-fusion channel does not contribute to the charge-asymmetric cross section, due to
the fact that the gluon distribution is the same for protons and antiprotons. The study of

133



10. Combined Studies

the charge-asymmetric cross section at O(α3
s) shows that top quarks (anti-top quarks) are

preferably emitted of the direction of the incoming quark (anti-quark); consequently, in pp̄
collisions top quarks are preferably emitted in the direction of the incoming proton [15,16].

The total FB asymmetry predicted by QCD at the first non-vanishing order (which,
for reasons discussed later, we will indicate as next-to-leading order (NLO)) is lower than
the one measured at the Tevatron. Applying the formulas of [16], we obtain the following
values using MSTW2008 NLO PDFs,

App̄, NLO
FB = (4.8+0.5

−0.4)% (pp̄ frame) ,

Att̄, NLO
FB = (7.4+0.7

−0.6)% (tt̄ frame) . (10.20)

The central values quoted in (10.20) refer to the choice µf = mt, and againmt = 173.1 GeV.
The errors originate from the standard scale variation. These choices will also be adopted
in the rest of the section. Electroweak corrections enhance the prediction for the asymme-
try by less than 10% of the central value [16, 154], and to separate uncertainties coming
from electroweak calculations we do not include these corrections in our numerical results.
As one can see, the discrepancy between the theory prediction and the experimental mea-
surement in the pp̄ frame is less than two standard deviations (2σ), while in the tt̄ frame the
two values agree within ∼ 1σ, although the central value of the experimental measurement
is a bit higher.

In [82], the CDF collaboration measured the FB asymmetry in the tt̄ frame as a function
of the top-pair invariant mass Mtt̄. After grouping the events in two bins corresponding to
Mtt̄ ≤ 450 GeV and Mtt̄ ≥ 450 GeV, they found the asymmetry in the latter bin to be

Att̄
FB (Mtt̄ ≥ 450 GeV) = (47.5 ± 11.4)% , (10.21)

which is more than 3σ higher than the stated theoretical NLO prediction in [82] of
(8.8 ± 1.3)% obtained using the MCFM program [155]. A measurement of the FB asym-
metry in two bins of the rapidity difference yt − yt̄ was also performed and again in that
case the higher bin shows a tension with the NLO QCD prediction, although with larger
experimental errors. Many attempts to explain these results in terms of new physics sce-
narios have been made, see e.g. [156–166]. The task is complicated by the fact that the
new physics contributions should not spoil the good agreement between theory and mea-
surements for the total pair-production cross section and the differential distribution in
the pair invariant mass.

In the previous chapters we had calculated the top-pair invariant-mass distribution and
the top-quark rapidity and transverse-momentum distributions in RG improved pertur-
bation theory. By integrating the differential distributions it is then straightforward to
calculate the top-quark FB asymmetry both in the laboratory frame and in the tt̄ frame.
Starting from the double differential cross section in the pair invariant mass and scattering
angle, we can also compute the Mtt̄ and rapidity-dependent asymmetries, which can be
compared to experimental measurements. The main goal of this section is to present the
result of these calculations of the total and differential FB asymmetries in a systematic
way.
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At the Large Hadron Collider (LHC), the symmetry of the pp initial state dictates
that the rapidity distributions of the top and antitop quarks are symmetric and that the
FB asymmetry vanishes. However, it was observed in [16] that at the LHC top quarks
are preferably produced at larger rapidities than antitop quarks in the laboratory frame.
Like the FB asymmetry at the Tevatron, this rapidity-dependent charge asymmetry is
generated at order α3

s in the squared amplitude, mainly through the asymmetric part of
the quark-antiquark annihilation channel. Therefore, potential new physics contributions
would effect these two quantities in a correlated way, and the higher collider energy at the
LHC gives it better access to distortions at higher rapidities. As a final application of our
formalism, we evaluate at NLO+NNLL order the partially integrated charge asymmetry
at the LHC, giving results as a function of a lower cut-off on the top and antitop rapidities
in the laboratory frame.

10.2.2. FB Asymmetry in the Laboratory Frame

Total Asymmetry

Using our results from Chapter 5, the FB asymmetry in the laboratory frame can be
calculated starting from the top-pair production cross section differential with respect to
the top-quark transverse momentum pT and rapidity yt. To do so, it is convenient to first
define a total and differential asymmetric cross section via

∆σpp̄
FB ≡

∫ y+
t

0

dyt



∫ pmax

T

0

dpT
d2σpp̄→tXt̄

dpTdyt
−
∫ pmax

T

0

dpT
d2σpp̄→tXt̄

dpTdȳt

∣∣∣∣∣
ȳt=−yt




≡
∫ y+

t

0

dyt

[(
dσ

dyt

)

F

−
(
dσ

dyt

)

B

]
≡
∫ y+

t

0

dyt
d∆σpp̄

FB

dyt
. (10.22)

Here

y+
t =

1

2
ln

1 +
√

1 − 4m2
t/s

1 −
√

1 − 4m2
t/s

and pmax
T =

√
s

2

√
1

cosh2 yt

− 4m2
t

s
, (10.23)

where s is again the square of the hadronic center-of-mass energy. To obtain the FB
asymmetry in the laboratory frame one needs to calculate the ratio of the asymmetric
cross section in (10.22) to the total cross section:

App̄
FB =

∆σpp̄
FB

σ
. (10.24)

In our phenomenological analysis we will consider two levels of perturbative precision
for the asymmetric cross section and FB asymmetry. The first involves the differential
cross section at NLO in fixed-order perturbation theory, the second the NLO calculation
supplemented with soft-gluon resummation to NNLL order. In the laboratory frame, the
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resummed calculations are carried out using the 1PISCET scheme. While in the fixed-
order counting the asymmetric cross section first arises from the NLO calculation of the
differential cross section, in the resummed counting it first appears at NLL order. The
NLO+NNLL calculation is thus a refinement on the leading term, and will be considered
our best prediction.

Before illustrating our results for the FB asymmetry, we need to clarify an important
point concerning our convention for counting orders in the perturbative expansion. We
calculate AFB itself as a perturbative expansion in αs, using a fixed-order or logarithmic
counting as appropriate. For example, the first non-vanishing contribution to the asymme-
try in fixed-order perturbation theory is obtained by calculating the numerator in (10.24)
to order α3

s and the denominator to order α2
s. The resulting asymmetry is of order αs,

which we will refer to as NLO, with reference to the order at which the differential distri-
butions in (10.22) are calculated relative to α2

s. Similarly, in RG-improved perturbation
theory, the first non-vanishing contribution to AFB is obtained by calculating both the
numerator and the denominator at next-to-leading-logarithmic (NLL) order; the resulting
asymmetry is then counted as NLL. There are two counting schemes in the literature (in
fixed-order perturbation theory) which are different from ours. The first one also treats
AFB itself as a perturbative expansion, but counts the order αs contribution as LO, and so
on, as in [15, 16]. The second one treats the numerator and the denominator as separate
perturbative series and does not further expand the ratio, as adopted in the quoted MCFM
results in [82]. We note that while the first scheme differs from ours only by name, the
second scheme leads to different numerical results. In general we find that the NLO+NNLL
results are considerably more stable with respect to the choice of scheme than the NLO
results.

MSTW2008 CTEQ6.6 NNPDF2.1

∆σpp̄
FB [pb] App̄

FB [%] ∆σpp̄
FB [pb] App̄

FB [%] ∆σpp̄
FB [pb] App̄

FB [%]

NLO 0.260+0.141+0.020
−0.084−0.014 4.81+0.45+0.13

−0.39−0.13 0.256+0.135
−0.082 4.69+0.44

−0.38 0.269+0.144
−0.086 4.82+0.47

−0.38

Res. 0.312+0.027+0.023
−0.035−0.019 4.88+0.20+0.17

−0.23−0.18 0.319+0.026
−0.037 4.79+0.17

−0.25 0.335+0.029
−0.039 4.93+0.22

−0.24

Table 10.7.: The asymmetric cross section and FB asymmetry in the pp̄ frame, at NLO
order and at NLO+NNLL (Res.). The first error refers to perturbative uncer-
tainties estimated through scale variations as explained in the text, and the
second error in the MSTW2008 case is the PDF uncertainty.

Our results for the total FB asymmetry in the lab frame are shown in Table 10.7. As
explained above, to calculate each entry in the table the numerator and the denominator in
(10.24) are evaluated at the order indicated in the leftmost column, and then the ratio itself
is expanded in powers of αs up to the appropriate order. The central values are obtained
by fixing the factorization scale at µf = mt, and the scale uncertainties are estimated
by varying µf between mt/2 and 2mt.

6 In the resummed calculations also the hard and

6Although we use mt = 173.1 GeV throughout the analysis, the asymmetry is rather stable under the
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soft scales are varied according to SUES with default values for µh and µs as given in
Section 9.2.2. The effect of these variations is included in the scale uncertainty shown in
the tables. In the first column of the table we use MSTW2008 PDFs and estimate the
PDF uncertainties again by iterating through the 90% confidence level sets. Again we use
PDFs as given by Table 7.1. The PDF uncertainties for the asymmetry, expressed as a
percentage of the central values, are about half as large as those for the asymmetric cross
section. This is due to cancellations in the ratio. In addition to results with MSTW2008
PDFs, we also show those obtained using CTEQ6.6 and NNPDF2.1 [167] PDFs. In those
cases the PDFs are based on a NLO fit so that the same set is used in both the NLO
and the NLO+NNLL calculations. We note that the results for the asymmetry obtained
with the different PDF sets are well within the PDF uncertainties estimated through the
MSTW2008 results.

Adding soft-gluon resummation at NNLL accuracy produces results for the asymmetric
cross section which are numerically consistent with the NLO results for µf = mt, while
the scale uncertainty is reduced by more than a factor of 2. The central value for the
FB asymmetry does not change significantly with respect to the NLO predictions, and
also in this case the scale uncertainties are reduced. We can therefore conclude that
the discrepancy between theory and experiment cannot be explained with the effect of
higher-order QCD corrections on the theory side, at least not those related to soft-gluon
resummation.
The NLO+NNLL calculation represents the most accurate determination of the QCD
contribution to the asymmetry that can be obtained at present. However, it is important
to keep in mind the uncertainties related to yet higher-order corrections and how they
could be reduced. The arguments based on the dynamical enhancement of the threshold
region and the confirmation of this mechanism through the numerical results at NLO,
imply that power corrections to the soft limit are small, so we expect the more important
effect to be the calculation of the soft plus virtual corrections. We estimate uncertainties
related to both types of corrections through the standard method of scale variations and the
numerical results indicate that these higher-order effects are moderate. Again however, this
statement can of course never be certain without the actual calculation of the higher-order
pieces. Similar comments apply to all other quantities obtained in this section.

Rapidity-Dependent Asymmetry

As experimental measurements become more precise, differential quantities such as the
rapidity-dependent asymmetry can be compared with theoretical predictions. Using quan-

exact choice of mt. For instance, at mt = 160 GeV the default value for the asymmetric cross section
at NLO with MSTW2008 PDFs changes to ∆σpp̄

FB
= 0.384 pb, but the asymmetry itself changes only

by a small amount to App̄
FB

= 4.67%.
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Figure 10.8.: Left: The asymmetric differential cross section d∆σpp̄
FB/dyt. Right: The asym-

metry App̄
FB(yt). The bands show the uncertainties related to scale variation

as explained in the text.

tities defined in (10.22), we can write this differential asymmetry as

App̄
FB(yt) =

(
dσ

dyt

)

F

−
(
dσ

dyt

)

B(
dσ

dyt

)

F

+

(
dσ

dyt

)

B

=

d∆σpp̄
FB

dyt(
dσ

dyt

)

F

+

(
dσ

dyt

)

B

. (10.25)

In Figure 10.8 we show results for the differential asymmetric cross section and the FB
asymmetry as functions of the rapidity at NLO and NLO+NNLL order, using MSTW2008
PDFs. Here and below, the differential cross sections at NLO are obtained by the pri-
vate NLO version of MadGraph. The bands refer to uncertainties associated with scale
variations. One observes that the NLO+NNLL band for the asymmetric differential cross
section displayed in the left-hand panel is contained within the NLO band over the entire
range of yt values shown in the figure, and that the scale uncertainty of the NLO+NNLL
asymmetric cross section is smaller than the scale uncertainty obtained in the NLO cal-
culation. On the other hand, the differences between the error bands in the NLO and
NLO+NNLL results for the FB asymmetry shown in the right-hand panel are much smaller
due to cancellations in the ratio which make the NLO FB asymmetry considerably more
stable than the corresponding asymmetric cross section. We will encounter this feature
repeatedly in the tt̄-frame calculations which follow. One observes that the form of the
rapidity-dependent asymmetry, which is an increasing function with respect to yt, is very
stable under higher-order corrections.
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10.2.3. FB Asymmetry in the tt̄ Frame

Total Asymmetry

For the studies of the FB asymmetry in the tt̄ rest frame we use our results from Chapter 4.
Thus, the fundamental quantity is the top-pair production cross section differential with
respect to the pair invariant mass and the top-quark scattering angle in that frame. We
define an asymmetric cross section as

∆σtt̄
FB ≡

∫ √
s

2mt

dMtt̄

[∫ 1

0

d cos θ
d2σpp̄→tt̄X

dMtt̄d cos θ
−
∫ 0

−1

d cos θ
d2σpp̄→tt̄X

dMtt̄d cos θ

]

≡
∫ √

s

2mt

dMtt̄

[(
dσ

dMtt̄

)

F

−
(

dσ

dMtt̄

)

B

]
≡
∫ √

s

2mt

dMtt̄

d∆σtt̄
FB

dMtt̄

, (10.26)

and the total FB asymmetry in the tt̄ frame is then given by

Att̄
FB =

∆σtt̄
FB

σ
. (10.27)

As in the previous section, we will study the FB asymmetry at both NLO and NLO+NNLL
accuracy. In the tt̄ frame, the resummed calculations are carried out using the PIMSCET

scheme. The difference between the calculation of the asymmetry in the tt̄ frame and
the partonic center-of-mass frame is numerical negligible. The results in these two frames
coincide in the threshold limit z → 1, and differ by only about 1% at NLO, due to very
small corrections from hard gluon emission.

MSTW2008 CTEQ6.6 NNPDF2.1

∆σtt̄
FB [pb] Att̄

FB [%] ∆σtt̄
FB [pb] Att̄

FB [%] ∆σtt̄
FB [pb] Att̄

FB [%]

NLO 0.395+0.213+0.028
−0.128−0.021 7.32+0.69+0.18

−0.59−0.19 0.389+0.205
−0.123 7.14+0.67

−0.54 0.411+0.218
−0.131 7.36+0.70

−0.58

Res. 0.448+0.080+0.030
−0.071−0.026 7.24+1.04+0.20

−0.67−0.27 0.461+0.083
−0.073 7.16+1.05

−0.68 0.486+0.088
−0.078 7.39+1.08

−0.69

Table 10.8.: The asymmetric cross section and FB asymmetry in the tt̄ rest frame, at
NLO order and at NLO+NNLL (Res.). The first error refers to perturbative
uncertainties estimated through scale variations, and the second error in the
MSTW2008 case is the PDF uncertainty.

Our numerical results for the total asymmetric cross section and FB asymmetry are
summarized in Table 10.8. As was the case in the laboratory frame, the scale uncertainties
in the asymmetric cross section are roughly halved at NLO+NNLL order compared to
NLO. The scale uncertainties in the FB asymmetry, on the other hand, actually increase
slightly after adding the resummation, while the central values are nearly unchanged. We
note however that the resummed results are more stable with respect to the scheme for
expanding the ratio defining the FB asymmetry, and in that sense are more reliable than the
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Figure 10.9.: Left: The asymmetric cross section d∆σtt̄
FB/dMtt̄ as a function of the invariant

mass at NLO and NLO+NNLL order. Right: The asymmetry Att̄
FB(Mtt̄). The

bands show the uncertainties related to scale variation as explained in the
text.

NLO predictions. Moreover, the resummed results for both the asymmetric and total cross
sections are more stable under scale variations than their fixed-order counterparts. One
should therefore be cautious of the rather small scale uncertainties in the NLO calculation
of the FB asymmetry, which result from large cancellations in the ratio not observed in the
resummed result. We again show the PDF uncertainties using the MSTW2008 PDFs at
90% CL, and the central values and scale uncertainties from the CTEQ6.6 and NNPDF2.1
sets. All comments from the previous section concerning the reduction of PDF errors in
the FB asymmetry compared to the asymmetric cross section, and the good agreement
between the different PDF sets, are also true in this case.

Invariant-Mass Dependent Asymmetry

As mentioned in the introduction, the recent measurement of the asymmetry at high values
of the pair invariant mass shows a large deviation from the value predicted by QCD at
NLO. In order to examine the effects of soft-gluon resummation on this observable, we first
extract from (10.26) the invariant-mass dependent asymmetry as

Att̄
FB(Mtt̄) =

(
dσ

dMtt̄

)

F

−
(

dσ

dMtt̄

)

B(
dσ

dMtt̄

)

F

+

(
dσ

dMtt̄

)

B

=

d∆σtt̄
FB

dMtt̄

dσ

dMtt̄

. (10.28)

Results for Att̄
FB(Mtt̄) and d∆σtt̄

FB/dMtt̄ at NLO and NLO+NNLL order are shown in Fig-
ure 10.9, where the bands reflect uncertainties originating from scale variations. The figure
shows that the asymmetry increases with the invariant mass and can reach nearly 40% at
Mtt̄ = 1200 GeV. These results are obtained with the default MSTW2008 PDFs and do not
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include PDF uncertainties. An analysis shows that the relative PDF error for d∆σtt̄
FB/dMtt̄

increases slightly with increasing Mtt̄, from 7% (400 GeV) to 9% (1200 GeV). In contrast,
the relative PDF error for Att̄

FB(Mtt̄) is rather small and even decreases with Mtt̄, from
around 2% (400 GeV) to 1% (1200 GeV).

It is a well-known fact that electroweak corrections start to become more important for
the differential cross section at high pair invariant mass, due to the presence of Sudakov
logarithms. For instance, at Mtt̄ ∼ 1 TeV, the electroweak corrections to the differential
distribution at the Tevatron are roughly at the -5% level [168, 169], even though for the
total cross section they are negligible. On the other hand, the electroweak corrections
to the asymmetric cross section given in [16] do not contain Sudakov logarithms, and an
estimate shows that their distortion of the QCD contribution is roughly independent of
the invariant mass. We therefore do not expect the electroweak corrections to significantly
alter our results for the FB asymmetry even at high values of pair invariant mass.

NLO+NNLL

NLO

CDF data

450

-0.2

0.0

0.2

0.4

0.6

A
tt̄ F
B

Mtt̄ [GeV]

Figure 10.10.: The asymmetry in the high and low invariant-mass region as measured in
[82], compared to our predictions at NLO+NNLL order. The bands in the
NLO+NNLL results are related to uncertainties from scale variation, while
the NLO result in the higher bin is evaluated at µf = mt.

We hope that better statistics can eventually lead to a detailed comparison of experimen-
tal results with the asymmetry curve in Figure 10.9. At present this is not possible, but the
CDF collaboration has measured the invariant-mass dependent asymmetry by separating
the events into a high invariant-mass bin (Mtt̄ ≥ 450 GeV) and a low invariant-mass bin
(Mtt̄ ≤ 450 GeV) [82]. From Figure 10.9, one can see that this choice roughly divides
the total asymmetric cross section equally between the two bins, although most of the
asymmetric cross section in the high invariant-mass bin originates from the region close to
450 GeV. More precisely, the region 450 − 600 (700) GeV captures more than 75 (90)% of
the total asymmetric cross section in the high invariant-mass bin. To compare with the
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Mtt̄ ≤ 450 GeV

∆σtt̄
FB [pb] Att̄

FB[%]

CDF −11.6+15.3
−15.3

MSTW CTEQ NNPDF MSTW CTEQ NNPDF

NLO 0.17+0.10
−0.05 0.18+0.09

−0.05 0.19+0.09
−0.06 5.2+0.6

−0.2 5.3+0.4
−0.4 5.4+0.3

−0.4

NLO+NNLL 0.21+0.04
−0.03 0.22+0.04

−0.04 0.23+0.04
−0.04 5.2+0.9

−0.6 5.2+0.8
−0.6 5.4+0.7

−0.6

Mtt̄ > 450 GeV

∆σtt̄
FB [pb] Att̄

FB[%]

CDF 47.5+11.2
−11.2

MSTW CTEQ NNPDF MSTW CTEQ NNPDF

NLO 0.22+0.13
−0.07 0.22+0.12

−0.07 0.23+0.12
−0.07 10.8+1.0

−0.8 10.4+1.0
−0.6 10.9+0.7

−0.6

NLO+NNLL 0.24+0.04
−0.04 0.25+0.05

−0.04 0.26+0.04
−0.04 11.1+1.7

−0.9 10.8+1.7
−0.9 11.4+1.3

−1.0

Table 10.9.: Comparison of the low- and high-mass asymmetry Att̄
FB with CDF data [82],

along with results for the asymmetric cross section. The errors in the QCD
predictions refer to perturbative uncertainties related to scale variation.

CDF results, we evaluate the binned asymmetry

Att̄
FB(m1, m2) =

∫ m2

m1

dMtt̄

(
d∆σtt̄

FB/dMtt̄

)

∫ m2

m1

dMtt̄ (dσ/dMtt̄)

, (10.29)

for Mtt̄ ≤ 450 GeV and for Mtt̄ ≥ 450 GeV. Our findings are given in Table 10.9, along
with their visual representation in Figure 10.10, which shows the NLO+NNLL calcula-
tion with an error band from scale variations along with the default NLO number in the
high invariant-mass bin. In both bins, the NLO+NNLL predictions for the asymmetric
cross sections have considerably smaller scale uncertainties than the NLO ones, but the
results for the FB asymmetries are essentially unchanged. As with all other results ob-
tained in the tt̄ frame, the scale uncertainties in the FB asymmetries are larger in the
NLO+NNLL calculation that at NLO. However, if we had not expanded the ratio, the
predicted FB asymmetry in the high invariant-mass bin would be 9.0% at NLO and 10.6%
at NLO+NNLL order7, showing the stability of the resummed results under this change of
systematics.

We now turn to a discussion of the PDF uncertainties in the binned results, in this
case deviating slightly from our usual procedure. The reason is that to compute the PDF
uncertainties for the binned asymmetry at NLO+NNLL order, we need to run the Monte

7Using MSTW2008 PDFs as an example.
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Figure 10.11.: Left: The asymmetric differential cross section d∆σtt̄
FB/d∆y. Right: The

asymmetry Att̄
FB(∆y). The bands show the errors related to scale variation

as explained in the text.

Carlo program MadGraph at NLO for each of the PDFs in the error set, which is rather
time consuming. As a compromise, we have estimated the PDF uncertainties using only
the pieces of the NLO calculation which are leading in the threshold limit M2

tt̄/ŝ→ 1. Since
these leading pieces alone account for the bulk of the NLO FB asymmetry, the relative
PDF uncertainties obtained from these terms should provide a good approximation to
those in the full NLO and NLO+NNLL results. For the MSTW2008 set, we find a relative
PDF uncertainty of about 7% for the asymmetric cross section and about 2% for the FB
asymmetry at 90% CL, in both the low and high invariant-mass bins.

Our calculations show that neither higher-order corrections from soft-gluon resumma-
tion nor the inclusion of a systematic uncertainty coming from PDF usage reduces in any
significant way the current discrepancy between theory and experiment for the FB asym-
metry in the high invariant-mass bin, which remains above the 3σ level when using our
NLO+NNLL calculations.

Rapidity-Dependent Asymmetry

A further observable of interest is the rapidity dependence of the FB asymmetry in the tt̄
frame. In practice, experiments measure the asymmetry as a function of the pair rapidity
difference ∆y = yt − yt̄ [82]. We can calculate the differential cross section in this variable
from the results in PIM kinematics by using that, up to power corrections which vanish in
the soft limit,

∆y = ln

(
1 + cos θ

√
1 − 4m2

t/M
2
tt̄

1 − cos θ
√

1 − 4m2
t/M

2
tt̄

)
. (10.30)
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∆y < 1 ∆y ≥ 1

∆σtt̄
FB [pb] Att̄

FB [%] ∆σtt̄
FB [pb] Att̄

FB [%]

CDF 2.6+11.8
−11.8 61.1+25.6

−25.6

NLO 0.204+0.105
−0.064 4.86+0.42

−0.35 0.172+0.094
−0.057 15.29+1.26

−1.11

NLO+NNLL 0.230+0.040
−0.035 4.77+0.39

−0.35 0.196+0.035
−0.031 14.59+2.16

−1.30

Table 10.10.: Comparison of Att̄
FB for ∆y < 1 and ∆y ≥ 1 with CDF data [82], along with

the asymmetric cross section. The errors in the QCD predictions refer to the
uncertainties related to scale variation.

After changing variables from the scattering angle to the pair rapidity difference, we express
the asymmetric cross section as

∆σtt̄
FB =

∫ ∆y+

0

d∆y




∫ √

s

Mmin
tt̄

dMtt̄

d2σpp̄→tt̄X

dMtt̄d∆y
−
∫ √

s

Mmin
tt̄

dMtt̄

d2σpp̄→tt̄X

dMtt̄d∆ȳ

∣∣∣∣∣
∆ȳ=−∆y





≡
∫ ∆y+

0

d∆y

[(
dσ

d∆y

)

F

−
(
dσ

d∆y

)

B

]
≡
∫ ∆y+

0

d∆y
d∆σtt̄

FB

d∆y
, (10.31)

where

∆y+ = ln

(
1 +

√
1 − 4m2

t/s

1 −
√

1 − 4m2
t/s

)
and Mmin

tt̄ = 2mt cosh (∆y/2) . (10.32)

Using these definitions, we can also introduce the ∆y-dependent asymmetry

Att̄
FB(∆y) =

d∆σtt̄
FB

d∆y(
dσ

d∆y

)

F

+

(
dσ

d∆y

)

B

, (10.33)

and binned asymmetries analogous to (10.29), where the numerator and denominator of
the above expression are integrated over a range in ∆y. Note that the integration region
above implies that higher values of ∆y correspond to higher values of Mtt̄. For example,
the restriction ∆y > 1 used in the binned analysis below corresponds to events with
Mtt̄ > 390 GeV.

We show results related to the rapidity dependence of the FB asymmetry in Figures 10.11
and 10.12, and in Table 10.10. In all cases we use MSTW2008 PDFs. The more detailed
results in the Figure 10.11 show the differential asymmetric cross section along with the
pair-rapidity dependent FB asymmetry, in the form of bands related to uncertainties from
scale variations. While resummation stabilizes the asymmetric cross section compared to
NLO, there is little effect on the FB asymmetry. The results for the binned asymmetry are
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Figure 10.12.: The asymmetry for ∆y < 1 and ∆y ≥ 1 as measured in [82], compared to our
predictions at NLO+NNLL order. The bands in the NLO+NNLL results
are related to uncertainties from scale variation, while the NLO result in the
higher bin is evaluated at µf = mt.

given in Table 10.10, along with their visual representation in Figure 10.12, which shows the
NLO+NNLL result with an error band from scale variations along with the default NLO
number in the higher bin. For events where ∆y ≤ 1, the QCD prediction is in agreement
with the CDF measurement [82]. In the bin where ∆y ≥ 1, the predicted asymmetry
is lower than the measured one by ∼ 1.5σ. Again in this case, soft-gluon resummation
changes the NLO predictions only slightly.

10.2.4. Charge Asymmetry at the LHC

The Tevatron results for the FB asymmetry at high pair invariant mass and rapidity hint
at a discrepancy with the Standard Model. It would of course be desirable to study the
physics responsible for this effect through measurements at the LHC.

The total and differential FB asymmetries at the LHC vanish, because of the symmetric
initial state. However, while charge conjugation invariance of the strong interaction implies
that the rate for the forward production of top-quarks is equal to the rate for backward
production of antitop quarks at the Tevatron, this is not the case at the LHC. At a proton-
proton collider the total rate for top and antitop production in the forward or backward
hemisphere is equal, but at a given rapidity the rates differ. In fact, at large (small) rapidi-
ties the rate for top-quark production is noticeably larger (smaller) than that for antitop
production [16], so although there is no FB asymmetry at the LHC there is a differential
charge asymmetry. Like the FB asymmetry at the Tevatron, this charge asymmetry at
the LHC is related to the asymmetric part of the qq̄ partonic cross section, implying a
direct correlation between potential new physics contributions to the two measurements.
The charge asymmetry at the LHC is generally smaller than the FB asymmetry at the
Tevatron due to large contributions from the gg channel to the charge-symmetric part of
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Figure 10.13.: Left: The partially integrated charge-asymmetric cross section ∆σpp
C (ycut).

Right: The partially integrated charge asymmetry App
C (ycut). The bands

show the uncertainties related to scale variation.

the differential cross section, but the rapidity reach at the LHC is larger and the charge
asymmetry thus provides complementary information.

In this section we study the simplest realization of a charge asymmetry at the LHC,
namely the rapidity-dependent quantity in the laboratory (pp) frame. In particular, we
focus on the partially integrated charge asymmetry and charge-asymmetric cross section,
where we impose the restriction y > ycut on the differential cross section. We define these
through

App
C (ycut) =

∫ y+
t

ycut

dyt



dσ
pp→tXt̄

dyt

− dσpp→t̄Xt

dyt̄

∣∣∣∣∣
yt̄=yt





∫ y+
t

ycut

dyt


dσ

pp→tXt̄

dyt
+
dσpp→t̄Xt

dyt̄

∣∣∣∣∣
yt̄=yt




≡ ∆σpp
C (ycut)

∫ y+
t

ycut

dyt



dσ
pp→tXt̄

dyt
+
dσpp→t̄Xt

dyt̄

∣∣∣∣∣
yt̄=yt




, (10.34)

with y+
t as in (10.23).

We can study the partially integrated charge asymmetry and asymmetric cross section
(10.34) at NLO and NLO+NNLL order using the results for the differential cross section in
1PI kinematics. The results generated with MSTW2008 PDFs are shown in Figure 10.13,
where the bands reflect uncertainties related to scale variations carried out with the same
procedure as at the Tevatron. For the charge-asymmetric cross section shown in the left-
hand panel of the figure, the main effect of the resummation is to decrease the scale de-
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pendence of the result to a relatively small region of the NLO error band. For the partially
integrated asymmetry shown in the right-hand panel of the figure, the resummation is a
mild effect up to ycut ∼ 1.5, but substantially reduces the asymmetry at higher values of
the cut. However, due to large K factors in the gluon channel at the LHC, the uncertainty
band for the NLO curve is very sensitive to whether one consistently expands the asymme-
try ratio in (10.34). If we had deviated from our normal procedure and had not expanded
the ratio, instead evaluating the denominator at NLO order, the NLO band would actually
overlap quite well with the NLO+NNLL results shown in figure. The NLO+NNLL result
is largely insensitive to this change of systematics–the result where both the numerator
and denominator are evaluated at NLO+NNLL order is within the error band shown in
the figure.

The partially integrated charge asymmetry vanishes for ycut = 0, and becomes progres-
sively larger at higher values of the cut. However, the charge asymmetric cross section
shown in the left-hand side of the figure is very small at higher rapidity values and the ex-
perimental measurement is difficult. A reasonable way to compare theory and experiment
in this case would be to perform a measurement in a high-rapidity bin with y > ycut ∼ 1-1.5.
In such a bin the Standard Model charge asymmetry is predicted to be only slightly differ-
ent from zero, less than 2% depending on the exact choice of the cut, so any appreciable
charge asymmetry in an experimental measurement would be a clear sign of a new physics
contribution to the high-rapidity region of the distribution, which is already hinted at by
the Tevatron measurements.
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11. Summary and Outlook

Summary

Top-quark physics is a very important area for the search for new physics at the Tevatron
and the LHC. Detailed theoretical knowledge about tt̄ production is a crucial input for
searches for new physics at these facilities. Not only the total cross section is of interest
but also differential properties such as the invariant mass, the rapidity and the transverse-
momentum distributions. It is thus not surprising that a lot of effort from the theoretical
side has been made to describe these observables.

In this thesis we have added to this effort by extending existing results to full NNLL
order. Using techniques from effective field theories such as SCET and HQET, we were
able to give a factorized formula for the double differential cross section with respect to the
invariant mass M , and the top-quark scattering angle θ for the case of pair-invariant mass
kinematics. Those results are valid in the threshold M2/ŝ → 1, where

√
ŝ is the partonic

center-of-mass energy. By using renormalization group equations, we were able to resum
large logarithms of the form ln(1 − z) to NNLL accuracy. As this was done directly in
momentum-space, we were able to match these resummed results to the exact ones at NLO
in fixed-order perturbation theory in a straightforward way. Similarly, working in single-
particle inclusive kinematics, we were able to give a factorized formula for the double
differential cross section with respect to the rapidity y and the transverse-momentum
pT of the top-quark. In addition we achieved resummation of large logs, this time in
the threshold s4 → 0, to full NNLL order. In both kinematics we differed to existing
resummation schemes by including formally subleading terms, we called our approaches
PIMSCET and 1PISCET respectively. Those terms have been known to be present in the
fixed-order expansion of the hard-scattering kernel in other processes. Later, we showed
on the level of the β distribution that the PIMSCET and 1PISCET schemes indeed better
approximates exact results compared to traditional approaches. Using the ingredients of
our NNLL resummation formulas we showed in detail how to obtain approximate NNLO
results for the case of PIM, and for the case of 1PI kinematics. Concerning PIM we went
beyond the current accuracy by completely determining the coefficient of the [1/(1 − z)]+
distribution. Our analytical expressions for approximate NNLO in 1PI kinematics give
explicit results for the [1/s4]+ coefficient for the first time.

We used our analytical results to make detailed phenomenological studies. We presented
the invariant mass distribution at NLO+NNLL order for the first time. The advantages of
resummation were clearly seen through the reduction of scale dependence and the better
convergence of the perturbative series as can be seen from Figure 8.7. Furthermore we
made predictions for the rapidity and transverse-momentum distributions at NLO+NNLL
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accuracy. Again, the inclusion of higher order terms lead to a stability of the results with
respect to scale variation, as can bee seen from Figure 9.5 and Figure 9.6.

Using the different distributions we made detailed predictions for the total cross section.
For both kinematics the resummed results showed a decrease of the scale uncertainties by a
factor of two compared to the fixed-order NLO predictions. This can be seen from Table 8.3
for the PIM case, and from Table 9.2 for the 1PI case. The total cross section coming from
PIM or 1PI differs solely due to subleading terms in the threshold limits z → 1, and s4 → 0
respectively. We compared the size of these subleading contributions to the total cross
section coming from the two kinematics in Section 10.1.1. In general we observed that the
SCET approaches PIMSCET and 1PISCET are closer to the exact answer than the traditional
ones, which can be seen from Figures 10.1 and 10.3. In addition to this we observed
that subleading contributions in 1PI are generally larger than in PIM. Furthermore, we
compared previous calculations working in the β → 0 limit to our PIMSCET results. We
found that our predictions give a much better description of the exact answer (as can be
seen from Figure 8.13), leading to the fact that subleading terms in β are not generally
small.

Having studied the total cross section separately in the two kinematics, we than merged
our PIM and 1PI results into a combined prediction. In this way we consolidated the
current knowledge about higher order QCD corrections to tt̄ production. We gave detailed
predictions for the total cross section as a function of the top-quark mass at the LHC and
Tevatron at NNLO order. As the pole mass has a renormalon ambiguity we also gave
results using the MS and 1S mass scheme. Here, despite earlier claims, we did not find a
poor convergence of the perturbative series up to NNLO in the pole scheme compared to
the MS scheme.

In Section 10.2 we made predictions for the forward-backward asymmetry in the labora-
tory and the tt̄ frame, and compared these results to recent measurements. This was done
at NLO+NNLL accuracy, representing the most accurate determination of QCD contribu-
tion to the asymmetry to date. In both frames we gave results for the total asymmetry and
the asymmetric cross section. From Table 10.7 and Table 10.8 one can see that the impact
of higher order corrections to the asymmetry is very modest. From that we concluded
that higher order QCD corrections do not account for the current discrepancy between
experiment and theory.

In the laboratory frame we also made predictions for the FB asymmetry as a function of
the the top-quark rapidity, as shown in Figure 10.8. Here we observed a stark reduction of
the scale dependence of the asymmetric cross section compared to the fixed-order NLO pre-
diction, but not so for the asymmetry itself. This feature, coming from large cancellations
in the ratio not observed in the resummed result, was also present in tt̄-frame calculations.
Working in the tt̄-frame we made predictions for the invariant-mass dependent asymme-
try. We compared our binned results for this quantity to recent measurements, which can
be seen in Figure 10.10. We pointed out that neither the inclusion of higher order QCD
corrections nor of systematic PDF uncertainties account for the difference between theory
and experiment in the high-mass bin, which remains above 3σ. Again in the tt̄-frame
we compared our predictions for the asymmetry as a function of the rapidity difference
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∆y = yt − yt̄ to measurement. From Figure 10.12 one can see that also in this case, soft
gluon-resummation does change the NLO prediction only slightly. This leaves the discrep-
ancy between experiment and theory in the ∆y ≥ 1 bin at the ∼ 1.5σ level. As a last
phenomenological application of our results we made predictions for a charge asymmetry
at the LHC coming from a lower cut-off on the top and antitop rapidities in the laboratory
frame, see Figure 10.13.

In conclusion, we obtained NLO+NNLL predictions for the invariant mass, the rapid-
ity and the transverse-momentum distribution. This was done using our PIMSCET and
1PISCET schemes. We made detailed comparisons between our and previous approaches,
which showed that the SCET-based approach provides the more reliable prediction. By
integrating the differential results we made predictions for the total cross section as a
function of the top-quark mass at approximate NNLO order. This was done applying the
pole, the MS, and the 1S mass scheme. Concerning the forward-backward asymmetry
at the Tevatron we gave NLO+NNLL predictions for the first time. Numerical results
were presented for the total, the invariant-mass, the rapidity, and the rapidity-difference
dependent asymmetry. In all cases, when compared to recent measurements, the inclusion
of higher order QCD corrections did not account for any discrepancy between experiment
and theory, which leaves the experimental results as a possible sign for new physics. As
a last application of our analytical expressions, we made predictions for a certain kind of
charge asymmetry at the LHC.

The results presented in this work represent the most accurate predictions of higher
order QCD corrections to tt̄ production so far.

Outlook

Regarding the work presented in this thesis, there are two classes of future extensions. The
first is related to an improvement of the methods and results obtained in this work, while
the second class deals with using the general methods described here and applying them
to other processes.

Connected to the first class is the already mentioned validity of our assumed scale hier-
archy in PIM. There, the factorization process was based on the following setup

ŝ,M2, | t̂1 |, | û1 |, m2
t ≫ ŝ(1 − z) ≫ Λ2

QCD . (11.1)

In the case of very high invariant mass the situation is changed, and one has to consider

ŝ,M2, | t̂1 |, | û1 |≫ m2
t , ŝ(1 − z) ≫ Λ2

QCD . (11.2)

In this case our approach is not reliable anymore, and one should also resum logs of the
ratio M2/m2

t . A scale hierarchy as in (11.2) was considered in [178], and in principle we
can extend the methods in that paper to the case of hadron-hadron collisions. From a
phenomenological point of view this would enable us to investigate the interesting area of
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boosted tops. Similarly, our factorization in 1PI depended on the assumption m2
t ≫ s4,

which breaks down for high pT . With the method mentioned above one should be able to
extend our 1PI results to the high pT area.

There are several examples regarding the second class of extensions. For instance, the
stop-antistop production can be calculated along the lines of this work. The overall fac-
torization and resummation techniques are not changed. In addition to that, many input
parameters as the soft-function and most of the anomalous dimensions, could be reused.
A second example would be gluino-pair production which also can be addressed with the
same approach presented here. In both cases the calculation of the one-loop hard function
might be the biggest challenge as many massive objects have to be considered in the loop
diagrams.
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A. Appendix

.1. RG-Evolution Factors and Anomalous Dimensions

Here we collect the expressions of the perturbative solutions to NNLL order for the RG
factors S, aγ as in (4.85), and u as in (4.86) and (5.34), which appear in the solution of
the evolution matrix U in the final resummed results (4.94) (PIM) and (5.35) (1PI) . We
also collect the expansion coefficients of the anomalous dimensions and QCD β-function
needed at this order.

We first define expansion coefficients of the anomalous dimensions and QCD β-function
as

Γcusp(αs) = Γ0
αs

4π
+ Γ1

(αs

4π

)2

+ Γ2

(αs

4π

)3

+ . . . ,

β(αs) = −2αs

[
β0
αs

4π
+ β1

(αs

4π

)2

+ β2

(αs

4π

)3

+ . . .

]
, (A.1)

and similarly for the other anomalous dimensions (recall that Γcusp = CFγcusp for the qq̄
channel, and Γcusp = CAγcusp for the gg channel). In terms of these quantities, the function
aΓ is given by [124,170]

aΓ(ν, µ) =
Γ0

2β0

{
ln
αs(µ)

αs(ν)
+

(
Γ1

Γ0
− β1

β0

)
αs(µ) − αs(ν)

4π

}
, (A.2)

and the result for the Sudakov factor S reads

S(ν, µ) =
Γ0

4β2
0

{
4π

αs(ν)

(
1 − 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1 − r + ln r) +

β1

2β0
ln2 r

+
αs(ν)

4π

[(
β1Γ1

β0Γ0

− β2

β0

)
(1 − r + r ln r) +

(
β2

1

β2
0

− β2

β0

)
(1 − r) ln r

−
(
β2

1

β2
0

− β2

β0
− β1Γ1

β0Γ0
+

Γ2

Γ0

)
(1 − r)2

2

]}
, (A.3)

where r = αs(µ)/αs(ν).
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The matrix equation for u can be evaluated using the techniques described in [171,172].
To this end, we first define the matrix V which diagonalizes γh(0) as

γ
h(0)
D = V −1γh(0)V . (A.4)

We also define the vector ~γh(0) consisting of the diagonal elements of γ
h(0)
D . Then the

solution at NNLL reads

u(M,mt, cos θ, µh, µ) = V

(
1 +

αs(µ)

4π
K

)([
αs(µh)

αs(µ)

]~γh(0)

2β0

)

D

(
1 − αs(µh)

4π
K

)
V −1,

(A.5)

where the matrix elements of K are

KIJ = δIJ~γ
h(0)
I

β1

2β2
0

−
[
V −1γh(1)V

]
IJ

2β0 + ~γ
h(0)
I − ~γ

h(0)
J

. (A.6)

Finally, we collect the expansion coefficients of the anomalous dimensions and QCD
β-function needed in this work. The cusp anomalous dimension to three-loop order is [173]

γcusp
0 = 4 ,

γcusp
1 =

(
268

9
− 4π2

3

)
CA − 80

9
TFnf ,

γcusp
2 = C2

A

(
490

3
− 536π2

27
+

44π4

45
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3
ζ3

)
+ CATFnf

(
−1672
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+

160π2

27
− 224

3
ζ3

)

+ CFTFnf

(
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3
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)
− 64

27
T 2

Fn
2
f . (A.7)

For the anomalous dimensions entering γh, we have [126,130]

γq
0 = −3CF ,

γq
1 = C2

F

(
−3

2
+ 2π2 − 24ζ3

)
+ CFCA

(
−961

54
− 11π2
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)
+ CFTFnf

(
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27
+
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3

)
,

γg
0 = −11

3
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4

3
TFnf ,

γg
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A

(
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)
+ CATFnf

(
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− 2π2

9

)
+ 4CFTFnf ,

γQ
0 = −2CF ,
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γQ
1 = CFCA

(
−98

9
+

2π2

3
− 4ζ3

)
+

40

9
CFTFnf , (A.8)

as well as [126, 131,174–177]

γcusp
0 (β) = γcusp

0 β coth β ,

γcusp
1 (β) = γcusp

1 β coth β + 8CA
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. (A.9)

The anomalous dimensions of the PDFs are given by

γ
φq
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and for the QCD β-function to three-loop order we have
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(A.11)
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.2. Integrals for the Soft Functions

Here we give some detail about the calculation of the soft functions appearing in the
calculation of the factorization formulas. In Sections 4.2.4 and 5.2.1 we found that the
relevant integrals for the PIM and 1PI soft functions are of the general form

I(vi, vj) = −(4πµ2)ǫ

π2−ǫ
vi · vj

∫
ddk

e−ik0x0

vi · k vj · k
(2π) δ(k2) θ(k0) . (A.12)

In both kinematics vi,j can either be a light-like vector n or a space-like vector v. Thus,
there are several combinations of vi with vj to consider, and we will do this in the following.
The outcome of the integrals are general valid for PIM and 1PI kinematics, and we specify
when we give results for a special case.

We can write (A.12) as

I(vi, vj) =
(4π)ǫe−ǫγE

πǫ
Γ(1 − ǫ)e−ǫγE(i/2µx0e

γE)2ǫ

vi × vj ×
{
I(1,1)(a, b, A,B, C) ; vi 6= vj

I(2,0)(a, b) ; vi = vj

, (A.13)

where we take vi = (a, 0, 0,−b) and vj = (A, 0,−C,−B). The integrals I(k,l) are defined
by1

I(k,l)(a, b, A,B, C) =

∫ π

0

sind−3 θ1dθ1

∫ π

0

sind−4 θ2dθ2

× (a+ b cos θ1)
−k(A+B cos θ1 + C sin θ1 cos θ2)

−l . (A.14)

In the following we will normalize light-like vectors as n · n̄ = 2, and normalize time-like
vectors as v2 = 1.

1: vi = n1 , vj = n2

We consider now vi and vj being two different light-like vectors n1 and n2 which we
parametrize as

n1 = (1, 0, 0, 1) , n2 = (1, 0, sin θ, cos θ) , n1 · n2 = 1 − cos θ . (A.15)

Using a special case of the integral I(k,l)

I(k,l)(1,−1,1,− cos θ,− sin θ)

1This form of integrals was already used in [9].
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= 21−k−lπ
Γ(1 − 2ǫ)Γ(1 − ǫ− k)Γ(1 − ǫ− l)

Γ2(1 − ǫ)Γ(2 − 2ǫ− k − l)
2F1

(
k, l, 1 − ǫ, cos2 θ

2

)
. (A.16)

One obtains

I(k,l)(1,−1, 1,− cos θ,− sin θ) = −π
ǫ

2F1
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1, 1, 1 − ǫ, cos2 π

2

)

= −π
ǫ
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]
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(A.17)

With this we one gets

I(n1, n2) = −(4π)ǫe−ǫγE [
2
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) ]
. (A.18)

• Special case n2 = n̄1 so that n1 · n2 = 2:

I(n, n̄) = −(4π)ǫe−ǫγE

[
2

ǫ2
+

2

ǫ
L0 + L2

0 +
π2

6

]
. (A.19)

• Special case n1 · n2 = 2ŝm2
t/(t̂1û1):

I(n1, n2) = −(4π)ǫe−ǫγE
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ŝm2
t

t̂1û1
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t

t̂1û1
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. (A.20)

2: vi = vj = v

We now set vi and vj to be the same time-like vector v = (a, 0, 0, b) with v2 = 1. With this
one obtains

I(v, v) = −2(4π)ǫµ2ǫ

Γ(1 − ǫ)
(1 − β2)

∫ ∞

0

dk0

∫ k0

−k0
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)2ǫ
1 − β2

1 − 2ǫ
2F1

(
1,

3

2
,
3

2
− ǫ, β2

)
. (A.21)
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Expanding in ǫ, we obtain

I(v, v) =
2(4π)ǫe−ǫγE

ǫ

(
i

2
µx0e

γE

)2ǫ [
1 +

ǫ

β
ln

1 + β

1 − β

]

= (4π)ǫe−ǫγE

[
2

ǫ
+ 2L0 +

2

β
ln

1 + β

1 − β

]

= (4π)ǫe−ǫγE

[
2

ǫ
+ 2L0 −

2

β
ln x

]
, (A.22)

where x = (1 − β)/(1 + β).

• Special case β → 0:

I0(v, v) = (4π)ǫe−ǫγE

[
2

ǫ
+ 2L0 + 4

]
. (A.23)

3: vi = v , vj = v̄

Next we consider vi = v = (a, 0, 0, b) and vj = v̄ = (a, 0, 0,−b) with v · v̄ = (1+β2)/(1−β2),
where β = b/a.

I(v, v̄) = −2(4π)ǫµ2ǫ

Γ(1 − ǫ)
(1 + β2)

∫ ∞

0

dk0

∫ k0

−k0

dk3 e−ik0x0

(k0 − βk3)(k0 + βk3)

(
(k0)2 − (k3)2

)−ǫ

=
2(4π)ǫe−ǫγE

ǫ

(
i

2
µx0e

γE

)2ǫ
1 + β2

1 − β2 2F1

(
1/2, 1, 3/2− ǫ, β2

)

= −(4π)ǫe−ǫγE
1 + x2

1 − x2

[(2

ǫ
+ 2L0

)
ln(x)

+ 4Li2(x) + 4 ln(x) ln(1 − x) − ln2(x) − 2π2/3
]

(A.24)

• Special case β → 0:

I0(v, v̄) = −2(4π)ǫe−ǫγE

ǫ

(
i

2
µx0e

γE

)2ǫ

(1 + 2ǫ)

= −(4π)ǫe−ǫγE

[
2

ǫ
+ 2L0 + 4

]
. (A.25)
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4: vi = n , vj = n

We now consider we set vi = n = (1, 0, 0, 1) and vj = v = (A, 0, C, B), again v2 = 1.
Defining β =

√
B2 + C2/A and using

I(1,1)(1,−1,A,−B,−C) =
π

A− B

{
− 1

ǫ
+ ln

(A− B)2

A2 −B2 − C2

− ǫ
[
ln2 A−

√
B2 + C2

A− B
− 1

2
ln2 A+

√
B2 + C2

A−
√
B2 + C2

+ 2Li2

(
−−B +

√
B2 + C2

A−
√
B2 + C2

)
− 2Li2

(
−−B −

√
B2 + C2

A−B

)]}
(A.26)

Using this in combination with (A.13) one finally arrives at

I(n, v) = −(4π)ǫe−ǫγE

[ 1

ǫ2
+

1

ǫ
[L0 − 2 ln(v · n)] +

1

2
[L0 − 2 ln(v · n)]2

+
π2

12
+ 2Li2

(
1 − v · n

x1/2

)
+ 2Li2(1 − v · nx1/2)

]
. (A.27)

In top quark pair production we will need, for example,

n · v =
−t̂1√
ŝm

=
−t̂1
ŝ

1 + x√
x

or (t̂1 ↔ û1). (A.28)

• Special case β → 0:

I0(n, v) = −(4π)ǫe−ǫγE

ǫ2
Γ(1 − ǫ)e−ǫγE

(
i

2
µx0e

γE

)2ǫ

= −(4π)ǫe−ǫγE

[
1

ǫ2
+

1

ǫ
L0 +

1

2
L2

0 +
π2

12

]
. (A.29)

5: vi = v1; vj = v2

This integral has only to be considered in 1PI kinematics as PIM works in the partonic
center-mass-frame. Consider v1 = (1, 0, 0, 0), v2 = (a, 0, 0,−b) with v2

2 = 1. Defining
β̄ = b/a and x̄ = (1 − β̄)/(1 + β̄). We have

I(v1, v2) = − 2(4π)ǫµ2ǫ

Γ(1 − ǫ)

∫ ∞

0

dk0

∫ k0

−k0

dk3 e−ik0x0

k0(k0 + β̄k3)

(
(k0)2 − (k3)2

)−ǫ

= −2(4π)ǫµ2ǫ

Γ(1 − ǫ)

(ix0)2ǫΓ(1 − 2ǫ)

−2ǫ

π1/2Γ(1 − ǫ)

Γ(3/2 − ǫ)
2F1

(
1

2
, 1,

3

2
− ǫ, β̄2

)
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=
2(4π)ǫe−ǫγE

ǫ

(
i

2
µx0e

γE

)2ǫ
1

1 − 2ǫ
2F1

(
1

2
, 1,

3

2
− ǫ, β̄2

)
. (A.30)

Expanding in ǫ, we have

I(v1, v2) = −(4π)ǫe−ǫγE
1

2β̄

[(
2

ǫ
+ 2L0

)
ln x̄

− ln2 x̄+ 4 ln x̄ ln(1 − x̄) + 4Li2(x̄) −
2π2

3

]
. (A.31)

Writing β̄ = 2β/(1 + β2) and defining x = (1 − β)/(1 + β), we find x̄ = x2, and

I(v1, v2) = −(4π)ǫe−ǫγE
1 + β2

2β

[(
2

ǫ
+ 2L0

)
ln x

− 2 ln2 x+ 4 ln x ln(1 − x2) + 2Li2(x
2) − π2

3

]
. (A.32)

.3. Comparing NNLL vs. NNLO

In our numerical analysis we considered two different ways of including higher-order per-
turbative corrections to the hard-scattering kernels: constructing approximate expansions
to NNLO in fixed order, and all-orders resummation to NNLL accuracy. We emphasized
that for a fixed numerical value of µs, the truncation of the NNLL series to NNLO in αs

contains a different structure of corrections than the approximate NNLO formula. Here we
explain this statement in more detail, and show explicitly what types of higher-order cor-
rections the master formulas (4.94) and (5.35) resum. The following discussion is equally
valid for resummation in PIM and in 1PI but also applies to other processes than those
described in this thesis.

To start, let us note that it is sufficient to ignore the matrix structure of the RG equations,
and just consider hard and soft functions which are simple functions of their arguments.
Then the treatment of the hard function is straightforward, and the complication for the
soft function is its non-locality. To explain the issue, it is simplest to start with the hard
function. Ignoring its matrix structure and dependence on kinematic invariants, its RG
equation is of the form

µ
d

dµ
H(Lh, αs(µ)) =

(
2Γcusp ln

M2

µ2
+ 2γh

)
H(Lh, αs(µ)) , (A.33)

where Lh ≡ ln(M2/µ2). The parameter M is to be understood as a generic hard scale; in
the specific case of 1PI and PIM kinematics, it would be M =

√
ŝ. The RG equation can
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be used to generate higher-order terms in the perturbative expansion of H . For instance,
we can solve the equation as a fixed-order series in αs using the ansatz

H(Lh, αs(µ)) = α2
s(µ)

[
h(0,0) +

αs(µ)

4π

2∑

n=0

h(1,n)Ln
h + . . .

]
. (A.34)

In terms of the lowest-order coefficient and the anomalous dimensions and β-function,
whose expansions we define as

Γcusp(αs) = Γ0
αs

4π
+ Γ1

(αs

4π

)2

+ Γ2

(αs

4π

)3

+ . . . ,

β(αs) = −2αs

[
β0
αs

4π
+ β1

(αs

4π

)2

+ β2

(αs

4π

)3

+ . . .

]
, (A.35)

and similarly for γh, the expansion coefficients at NLO can be constructed as

H(Lh, αs(µ)) = α2
s(µ)

{
h(0,0) +

αs(µ)

4π

[
−h(0,0)

(
Γ0

2
L2

h + (γh
0 + 2β0)Lh

)
+ h(1,0)

]
+ . . .

}
.

(A.36)
One can obviously generalize this to any order in αs and calculate the coefficients of the
logarithms at a given order in terms of the anomalous dimensions and lower-order matching
coefficients. This is the method used in constructing approximate fixed-order expansions.

In the effective-theory analysis, one assumes the presence of a second, widely separated
scale µs ≪M and uses the counting of RG-improved perturbation theory, i.e. ln(µs/M) ∼
1/αs. Then the higher-order corrections contain large logarithms, which can be resummed
to all-orders by using the exact solution to the RG equation. This solution reads [179]

H(Lh, αs(µ)) = e4S(µh,µ)−2a
γh (µh,µ)H

(
ln
M2

µ2
h

, αs(µh)

)(
M

µh

)−2ηh

, (A.37)

where ηh = 2aΓ(µh, µ). The Sudakov exponent and normal anomalous exponent are the
same as in (4.85)

S(µh, µ) = −
αs(µ)∫

αs(µh)

dα
Γcusp(α)

β(α)

α∫

αs(µh)

dα′

β(α′)
, aΓ(µh, µ) = −

αs(µ)∫

αs(µh)

dα
Γcusp(α)

β(α)
, (A.38)

and similarly for aγh .
The all-orders solution does not actually depend on µh, as indicated by the notation. The

same is true if the matching coefficient and the exponentials are consistently re-expanded as
a series in αs(µ) in fixed order, in which case one just gets back the approximate formulas
above. In practice, however, one must truncate the result at a given level of accuracy
(e.g. NNLL), and beyond that level a residual dependence on µh remains. To avoid large
logarithms in the matching coefficients, one chooses µh ∼ M and runs to the scale µf
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using the all-orders solution. Then the exponential factors resum logarithms which count
as ln(M2/µ2

f) and are large for µf ∼ µs. To see this explicitly, we get rid of αs(µh)
everywhere by using (with a(µf) ≡ αs(µf)/4π)

a(µh) =
a(µf)

X
− a(µf)

2

X2

β1

β0
lnX + . . . ; X = 1 + β0 a(µf) ln

µ2
h

µ2
f

, (A.39)

and re-expand the solution in (A.37) as a series in a(µf). For reference, the expansion of
the Sudakov factor and anomalous exponent to NNLO read

S(µh, µf) = −a(µf)
Γ0

8
L2

hf + a(µf )
2

(
β0Γ0

24
L3

hf −
Γ1

8
L2

hf

)
+ . . . , (A.40)

aΓ(µh, µf) = a(µf)
Γ0

2
Lhf + a(µf)

2

(
−β0Γ0

4
L2

hf +
Γ1

2
Lhf

)
+ . . . , (A.41)

where Lhf ≡ ln(µ2
h/µ

2
f). The expansion of aγ is identical to the one in (A.41), with the

replacements Γi → γi.
Using the above equations to expand (A.37) to NLO, one recovers the NLO solution

(A.36). All the dependence on µh drops out to that order, as long as we keep the one-loop
matching correction. However, this is not the case if we expand our NLL approximation
of the resummed hard function to NLO. In that case, the NLO matching coefficient is of
higher-order in the counting and not included in the formula, so after expansion to NLO
dependence on the scale µh remains. The direct expansion of our NLL formula at NLO in
fixed order reads

α2
s(µf) a(µf)

{
−h(0,0) ln

µ2
h

µ2
f

[
Γ0

2
ln
µ2

h

µ2
f

+ Γ0 ln
M2

µ2
h

+ (γh
0 + 2β0)

]}
. (A.42)

This is necessarily different than the “approximate NLO” formula one would deduce by
dropping the coefficient h(1,0) from (A.36), because it depends on µh, but if we set µh = M
it is the same, and it is for this reason that one can still say the NLL solution “resums
logarithms of the form ln(M/µf) to all orders”, although a more accurate statement would
be that it “resums logarithms of the form ln(µh/µf) to all orders”, which includes the
possibility of other choices such as µh = mt. Given this fact, it makes little sense to
construct an approximate formula for a quantity such as the hard function: if there are
large logarithms, it is just as easy to sum them to all orders as it is to construct the fixed-
order expansion, and if the logarithms are not large, there is no reason to include that
subset of the higher-order corrections without the full answer.

We can repeat the analysis above to compare the structure of approximate fixed-order
expansions and resummed formulas for the soft function. In this case the RG equation
is non-local, and to solve for the momentum-space soft function we used the technique of
Laplace transforms [123]. The solution for the resummed momentum-space soft function
is

S(ω, µf) = e−4S(µs,µf )+2aγs (µs,µf ) s̃ (∂η, µs)
1

ω

(
ω

µs

)2η
e−2γEη

Γ(2η)
, (A.43)
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where η = 2aΓ(µs, µf), and s̃ is the Laplace-transformed function, which satisfies the local
RG equation

d

d lnµ
s̃

(
ln
M2

µ2
, αs(µ)

)
= −

(
2Γcusp ln

M2

µ2
+ 2γs

)
s̃

(
ln
M2

µ2
, αs(µ)

)
. (A.44)

In this case, approximate formulas in fixed order are obtained by first constructing the
solution to s̃ using the local RG equation. To NNLO, we use the ansatz

s̃(L, αs(µ)) = 1 +
αs(µ)

4π

2∑

n=0

s(1,n)Ln +

(
αs(µ)

4π

)2 4∑

n=0

s(2,n)Ln + . . . , (A.45)

where we set s(0,0) = 1 for simplicity. The explicit solution to NNLO reads

s̃(L, αs(µ)) = 1 +
αs(µ)

4π

[
Γ0

2
L2 + Lγs

0 + s(1,0)

]

+

(
αs(µ)

4π

)2 [
Γ2

0

8
L4 +

(
−β0Γ0

6
+

Γ0γ
s
0

2

)
L3 +

1

2

(
Γ1 − β0γ

s
0 + (γs

0)
2 + Γ0s

(1,0)
)
L2

+ (γs
1 − β0s

(1,0) + γs
0s

(1,0))L+ s(2,0)

]
. (A.46)

To turn this into an approximate NNLO formula for the momentum-space soft function
S(ω, µf), one must take the limit µs = µf and derive replacement rules analogous to (10.9).
This is readily done using the expansion

1

ω

(
ω

µs

)2η

=
1

2η
δ(ω) +

∞∑

n=0

2n

n!
Dn(ω) ηn , (A.47)

where the Dn here are defined as

Dn(ω) =

[
1

ω
lnn ω

µf

]

+

. (A.48)

As was the case with the hard function, the all-orders solution for the resummed soft
function does not actually depend on the scale µs, but its truncation to a given logarithmic
order (e.g. NNLL) introduces residual scale dependence. As explained earlier in this thesis,
our method is to choose µs to be close to the numerical value where the corrections from the
soft function to the (differential) cross section are minimal. We then adopt the parametric
counting µs ∼ ω and apply RG-improved perturbation theory with lnµs/µf ∼ 1/αs, and
the exponential factors resum logarithms of the form lnµs/µf to all orders. Since the scale
µs is dynamically generated through the numerical analysis, it does not appear in the fixed-
order calculation, so the resummation formula deals with different types of corrections than
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the approximate fixed-order formulas.2 For this reason, the structure of Dn distributions
appearing at a given order is not the same in the two approaches.

We now show this in more detail, working first to NLO. In this case, the “approximate
NLO” formula derived from the solution (A.46) reads

S(ω, µf) ≈ 1 + a(µf)

[
4Γ0D1(ω) + 2γs

0D0(ω) − π2

3
Γ0 δ(ω)

]
. (A.49)

This should be compared with the expansion of the NLL formula to NLO in fixed order,
for which the NLO correction reads (with Ls ≡ lnµ2

s/µ
2
f)

a(µf )

[
2Γ0LsD0(ω) +

(
1

2
Γ0L

2
s + γs

0Ls

)
δ(ω)

]
+ . . . . (A.50)

The “approximate NLO” formula has D1 distributions, while the NLO expansion of our
NLL formula has only D0 distributions. In the counting of RG-improved perturbation
theory, however, D0 ln(µs/µf) ∼ D1, so the tower of logarithms produced by the expansion
of the NLL formulas is of course correct. The analogous formula at NNLO is rather lengthy,
but to illustrate its structure, we focus on the leading correction in the logarithmic power
counting, which reads

a(µf)
2Γ2

0

[
12LsD2(ω) − 6L2

sD1(ω) + L3
sD0 −

1

8
L4

s δ(ω)

]
, (A.51)

while the leading term of the “approximate NNLO” formula is

a(µf)
2 8Γ2

0D3(ω) . (A.52)

Again, for ω ∼ µs the terms in the two equations are of the same parametric order but
contain different types of distributions: the resummed formulas generate at most D2 dis-
tributions, while the approximate NNLO formulas generate D3 distributions.

From the discussion above it should be obvious that our formula does not literally resum
the highest tower of Dn distributions to all orders, but rather terms which count that way
in RG-improved perturbation theory, when the dynamically generated soft scale satisfies
µs ∼ ω. In the case of the hard function, we noted that the fixed-order corrections produced
by expanding the resummed formula were equal to those in the approximate formula for the
special choice µh = M . For the soft function, there is no numerical value of µs for which this
would be true, but the two are equal if we replace Ls → ∂η and take the derivatives before
re-expanding η in αs(µf). This procedure can be generalized to all orders by evaluating
the formula

S(ω, µf) =

{
[
e−4S(µs,µf )+2aγs (µs,µf )s̃ (0, αs(µs))

] ∣∣∣∣
ln(µ2

s/µ2
f
)→∂η

}
1

ω

(
ω

µf

)2η
e−2γEη

Γ(2η)

∣∣∣∣
η→0

,

(A.53)

2In [106] it was shown that the soft scale decreases as the PDFs fall off more quickly away from values
of x where ω ∼ 0, so the formulas effectively resum logarithms of the slopes of the PDFs.
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where the factor in the curly brackets is understood to be expanded to all orders as a
series in αs(µf) and so is a function only of ln(µ2

s/µ
2
f). In this way, we exponentiate the

derivatives with respect to η, which are what generate the highest-order distributions, and
the expansion of the above formula to any given accuracy in fixed-order reproduces the
approximate formulas. For instance, if we include the exact one-loop matching (which
is just s(1,0)) and the two-loop anomalous dimensions, the expansion of the above object
gives back our approximate NNLO formula for the soft function, plus higher-order terms
that resum all the higher-order Dn distributions at NNLL order, after converting the
derivatives with respect to η with replacement rules. While this procedure generalizes
choosing µh = M in the hard function, it is by no means the same conceptually. The
exact hard function is independent of µh, so varying it around values µh ∼ M gives a
way of estimating the higher-order terms. However, it would make no sense to replace,
for instance, ln(µ2

s/µ
2
f) → c0∂η in (A.53), with c0 6= 1, since the derivatives generate both

µ-independent and µ-dependent terms.
The conclusion of this discussion is that results based on approximate NNLO formu-

las contain different information than those based on NLO+NNLL resummation. This
is not just due to a truncation of the NNLL series to NNLO, but also to the fact that
the resummation formula exponentiates logarithms depending on the ratio lnµs/µf in
combination with higher-order logarithmic plus-distributions, with µs a dynamically gen-
erated numerical soft scale. Such logarithms do not appear in the fixed-order calculation,
which is independent of µs. Therefore, the choice between using approximate NNLO and
NLO+NNLL amounts to whether one takes seriously the improved convergence of the soft
function at a numerically small soft scale. If so, one should use the resummed formulas,
if not, one should use the approximate fixed-order calculations. In practice, this question
can only be answered after a numerical analysis.
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