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Abstract

Poorly differentiated thyroid carcinoma (PDTC) is a rare malignancy with higher 

mortality than well-differentiated thyroid carcinoma. The histological diagnosis can be 

difficult as well as the therapy. Improved diagnosis and new targeted therapies require 

knowledge of DNA sequence changes in cancer-relevant genes. The TruSeq Amplicon 

Cancer Panel was used to screen cancer genomes from 25 PDTC patients for somatic 

single-nucleotide variants in 48 genes known to represent mutational hotspots. A total 

of 4490 variants were found in 23 tissue samples of PDTC. Ninety-eight percent (4392) 

of these variants did not meet the inclusion criteria, while 98 potentially pathogenic or 

pathogenic variants remained after filtering. These variants were distributed over 33 

genes and were all present in a heterozygous state. Five tissue samples harboured not 

a single variant. Predominantly, variants in P53 (43% of tissue samples) were identified, 

while less frequently, variants in APC, ERBB4, FLT3, KIT, SMAD4 and BRAF (each in 17% 

of tissue samples) as well as ATM, EGFR and FBXW7 (each in 13% of tissue samples) 

were observed. This study identified new potential genetic targets for further research 

in PDTC. Of particular interest are four observed ERBB4 (alias HER4) variants, which 

have not been connected to this type of thyroid carcinoma so far. In addition, APC and 

SMAD4 mutations have not been reported in this subtype of cancer either. In contrast to 

other reports, we did not find CTNNB1 variants.

Introduction

Poorly differentiated thyroid carcinoma (PDTC) represents 
an aggressive variant of thyroid cancer that predominantly 
arises from the differentiated variants of papillary and 
follicular thyroid carcinoma (PTC and FTC, respectively) 
but occasionally from normal follicular cells (1, 2). The 
incidence varies between 2–3% and 15%, depending on 
geographical location (3). The Turin consensus, which is 
based on histological growth pattern, nuclear features, 
mitosis, necrosis and convoluted nuclei, offered an 
algorithm to diagnose this entity (4). However, even 
with this consensus paper published in 2007, PDTC still 
represents a challenging diagnosis for pathologists and 

clinicians. Molecular changes in PDTC are heterogeneous. 
No exclusive mutation has been identified that could 
potentially facilitate the differentiation process (5, 6, 7). 
The advanced cancer stage and the impaired or complete 
lack of radioactive iodine uptake drive the search for 
effective therapeutic alternatives such as targeted 
therapies. Although Landa and coworkers (1) as well as 
Xu and Ghossein (8) reported an extensive investigation 
on PDTC, we still need to learn more about the driving 
molecular alterations.

Using a next-generation sequencing (NGS) approach, 
we screened 23 PDTC for variants in 48 cancer-relevant 
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genes. The main goal addressed in this exploratory study 
was to characterise novel genetic changes as potential 
targets for further research as well as establishing the NGS 
technique in our laboratory.

Materials and methods

Patients and tissue acquisition

Patients treated in the Department of General, Visceral 
und Transplantation Surgery at University Medical Centre, 
Mainz, Germany between 2007 and 2015 were included in 
the study. The study was approved by Ethics Committee 
of the medical association of Rheinland Pfalz. Consent 
has been obtained from each patient or subject after full 
explanation of the purpose and nature of all procedures 
used. Archival tissue from the patients was retrieved 
and reviewed using the Turin consensus algorithm, in 
the course of which necrosis, the number of mitotic 
cells per ten high-powered fields (mitotic index) and the 
extrathyroidal and vascular invasion were determined. 
The samples were also immunohistochemically stained 
for thyroglobulin, thyroid transcription factor-1 and 
Ki-67. We did not analyse matched pairs of individual 
tumour-normal tissue, but only PDTC itself. Each 
histological slide was diagnosed by an experienced 
pathologist. Questionable samples were not included in 
this study. Twenty-five of 32 reviewed patients fulfilled all 
criteria to diagnose a PDTC. Furthermore, we assessed if 
the samples also fulfilled the Memorial Sloan-Kettering 
Cancer Center (MSKCC) criteria for PDTC as proposed 
by Hiltzik and coworkers (9). These were defined by the 
presence of ≥5 mitotic cells per ten high-powered fields 
and/or fresh tumour necrosis. The fraction of malignant 
cells in tumour tissue was determined by visual estimation 
of the percentage of malignant cells (tumour cell to non-
tumour cell). An overview of the patient data is presented 
in Table 1. Routine Sanger sequencing was performed on 
the BRAF V600E and BRAF wild-type V600 gene locus.

DNA extraction and sample quality control

Genomic DNA was extracted from the formalin-fixed 
and paraffin-embedded tumour material. To reduce 
contamination, microscope slides of the tumour stained 
with haematoxylin–eosin were used to select areas for 
macrodissection. The selected material was scratched off 
from 2 μm thick unstained slides. It was deparaffinised 

with xylene and ethanol and digested by proteinase 
K in lysis buffer overnight at 56°C. The samples were 
purified with MPC Protein Precipitation Solution (Biozym 
Scientific GmbH, Oldendorf, Germany) and precipitated 
with isopropanol. The DNA was quantified using a 
spectrophotometer to measure the absorbance at 260 nm. 
The DNA quality was tested with the FFPE QC Kit for the 
TruSeqAmplicon Cancer Panel (Illumina, San Diego, CA, 
USA) using the manufacturer’s instructions. Table 2 for a 
full list of covered genes. Two samples failed the quality 
control criteria, resulting in 23 analysed PDTCs.

Library preparation and MiSeq sequencing

Sequencing libraries were prepared using the TruSeq 
Amplicon Cancer Panel (Illumina) with the MiSeq Reagent 
Kit, v2 according to the manufacturer’s instructions. The 
MiSeq System (Illumina) was used to launch the massively 
parallel sequencing process to capture the exons of 48 
genes with 212 amplicons.

Data analysis

Using the TruSeq Amplicon Workflow on the MiSeq 
Reporter, the data were demultiplexed and aligned to 
the human reference genome hg19. The output was 
generated in the variant caller format. BaseSpace Variant 
Studio, v2.2.4 (Illumina) was used for post processing. 
This programme could integrate information about called 
variants from the Cosmic (v65) and ClinVar (v05.09.2013) 
scientific databases. The application uses the Variant 
Effect Predictor (VEP) tool for Annotation and Analysis of 
coding sequence changes. VEP also harnesses algorithms 
such as Polymorphism Phenotyping 2 (PolyPhen-2) and 
Sorting Intolerant From Tolerant (SIFT).

To eliminate false positive called variants we used 
a specific algorithm. First, all variants needed at least a 
coverage above 20, a sequencing depth of at least 100 and 
a mutation frequency of 10%, resulting in a threshold of 
10 counts for a variant. Second, all variants needed to be 
nonsynonymous and to have a genotype quality of at least 
30. Third, all variants needed to be marked as potentially 
deleterious in SIFT, as potentially damaging in PolyPhen, as 
potentially pathogenic or pathogenic in ClinVar or listed 
in Cosmic. Genes were named in accordance with the 
guidelines for human gene nomenclature (Supplementary 
Table 1, see section on supplementary data given at the 
end of this article; (10)).
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Results

Eighteen tissue samples of PDTCs showed a total number of 
98 variants as presented in Fig. 1. All variants were present 
in a heterozygous state. Ninety-eight genetic changes 
were single-nucleotide variants (90 missense variants, two 
nonsense variants, and 6 splice site variants), while one 
was a deletion leading to a frameshift. The sequencing 
depth ranged between 101 and 10258 (median 161). The 
mutation frequency had a median of 13.2. The coverage 
varied between 21 and 280 with a median of 102. Eighty-
seven variants were identified with a genotype quality of 
100. For detailed information on genetic alterations see 
Supplementary Table 1.

The most commonly altered gene was TP53, affected 
in 10 of 23 samples (43%). All TP53 variants occurred 

at different base positions. The FLT3, SMAD4 and BRAF 
variants were detected in each of four samples. Four 
variants were observed in the each of the APC, BRAF, 
ERBB4, FLT3, KIT and SMAD4 gene loci. In three of the 
four samples with BRAF variants, we found the p.V600E 
variant and in one, the p.G469V variant. Changes in the 
ATM, EGFR and FBXW7 genes were identified in each of 
the three samples (13%).

One-hundred percent concordance in BRAF 
variant status was observed between NGS and routine 
conventional Sanger sequencing. Each tumour sample of 
PDTC diagnosed with the Turin consensus criteria was also 
classified as PDTC by the MSKCC-criteria that indicated 
more aggressive PDTC.

Discussion

Two main questions drive the search for new molecular 
alterations of PDTC. First, what targeted therapies could 
add a promising approach to the treatment? Second, 
which mutational markers could improve the accuracy 
of diagnosis for advanced thyroid carcinomas? This study 
aims to contribute to this growing area of research by 
exploring 48 genes of interest. It is beyond the scope of 
this explorative study to prove causality or to address the 
progression from well-differentiated thyroid carcinoma 
(WDTC) to PDTC.

Table 2  Truseq amplicon cancer panel gene list.

Illumina TSCAP

ABL1 ERBB4 JAK2 PIK3CA
AKT1 FBXW7 JAK3 PTEN
ALK FGFR1 KDR PTPN11
APC FGFR2 KIT RB1
ATM FGFR3 KRAS RET
BRAF FLT3 MET SMAD4
CDH1 GNA11 MLH1 SMARCB1
CDKN2A GNAQ MPL SMO
CSF1R GNAS NOTCH1 SRC
CTNNB1 HNF1A NPM1 STK11
EGFR HRAS NRAS TP53
ERBB2 IDH1 PDGFRA VHL

Figure 1 The columns show the analysed genes sorted by the molecular pathway affected. Oncogenes are displayed bold while tumor suppressor genes 
are displayed normal. (A) RAS, (B) PIK3, (C) Wnt, (D) DNA damage control, (E) STAT, (F) RAS + PIK3, (G) RAS + PIK3 + STAT, (H) others. The rows show the 23 
PDTC specimens. The variant effect is shown by the colour of the mutation. On the right side of the figure is indicated the mutational burden. (1) PDTC 
with coexisting PTC. (2) PDTC with coexisting follicular tumour components. (3) PDTC only.
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BRAF, TP53, RAS

While tumour-initiating somatic mutations leading to 
papillary thyroid carcinoma have been researched to a 
great extent, it remains uncertain whether and to what 
extent particular genetic alterations participate in the 
tumour progression to PDTC. The Cancer Genome Atlas 
Research Network study has identified many oncogenic 
mutations for PTC. It is generally agreed today that PDTC 
can originate from WDTC (11).

Landa and coworkers has shown that the changes to 
the BRAF to RAS relationship are still preserved in PDTC 
(1). For these reasons, one could assume that certain driver 
mutations are conserved during the dedifferentiation 
process. In our study, we found three RAS variants (one 
each of N-, K- and HRAS) and three BRAF p.V600E variants. 
However, it is not the same as a BRAF/RAS-score based on 
mRNA data (11). In accordance with the aforementioned 
studies, there have been no RAS and BRAF p.V600E 
variants in the same tissue sample.

Mutations in BRAF, EIF1AX, TP53 and TERT 
are associated with aggressive behaviour of thyroid 
malignancies (2, 8, 12). BRAF and TP53 are associated 
with the dedifferentiation progress to anaplastic thyroid 
carcinomas (ATCs) (13). In our study, there were 10/23 
cases of PDTC harbouring a p53 variant. There was 
no significant difference regarding the clinical course, 
extrathyroidal extension or vascular invasion between 
TP53-positive tumours and the other tumours. One 
possible reason may be the preselection of an already 
aggressive subtype of cancer. Some previously published 
works have assessed TP53 mutations in PDTC. They 
observed lower rates (8, 27 and 38%) of this variant than 
in our series (1, 14, 15). The variety might be related to 
the generally low number of patients in our study (23 
tissue samples) as well as in compared series (84, 22 and 
46 patients). The TERT and EIF1AX gene locations were 
not included in the applied cancer panel.

In contrast to previous studies, we found less 
RAS variants (13%) than described in the literature  
(20–55%) (16, 17, 18, 19, 20). These numbers are slightly 
lower than the value we expected. It seems plausible 
that a number of limitations could have influenced the 
obtained results. On the one hand, we used tissue that 
was formalin fixed and paraffin embedded for several 
years, which leads to the necessity of a very conservative 
filtering process to avoid false-positive findings from 
artefacts. This implies that there could be true-positive 
variants that have been lost in the background of 
artefacts. On the other hand, it is obvious that the 

overall small number of PDTC cases impairs conclusions 
based on the comparison of percentages.

APC, ATM, CTNNB1, EGFR and ERBB4

PDTC are a genetically heterogeneous entity. In this study, 
we identified new potential genetic targets for further 
investigation. Two of these are EGFR (ERBB1) and ERBB4, 
which have not been previously reported to play a role 
in thyroid carcinogenesis. ERBB1 is known to be mutated 
in cancers like gliomas or small-cell lung cancer and 
associated with the epithelial–mesenchymal transition 
as well as tumour invasion (21). In colon cancer, the 
mutation of ERBB4 resulted in a loss of differentiation 
and an activation of the phosphoinositide 3-kinase (PI3K) 
signalling pathway (22).

Another valuable target is APC. Recent studies on 
PTC identified APC as well as ATM as potential driver 
mutations (11). PDTC may harbour mutations that are 
present in PTC as they may derive from WDTC (23). 
Furthermore, APC mutations have been observed in ATC 
(24). Considering these arguments, it seems possible that 
this mutation plays a role in PDTC carcinogenesis as well.

Somatic mutations of CTNNB1 were discussed being 
associated PDTC and ATC (25). However, we detected no 
variants of this gene in the PDTC examined. The absence 
of CTNNB1 mutations supports the hypothesis of Rocha 
and coworkers (26) that loss of E-cadherin expression 
rather than β-catenin (CTNNB1) gene mutations induces 
the process of tumour dedifferentiation.

SMAD4 and KIT

SMAD4 encodes a mediator protein in the transforming 
growth factor β (TGF-β) signalling pathway. This can lead 
to a loss of TGF-β-mediated growth inhibition (27). In 
our study, five variants affected four patients (17%). The 
observed mutations were scattered along the sequence 
of the SMAD4 gene locus, suggesting that there is no 
mutational hotspot present. This locus is known to be 
altered in WDTC, oesophageal adenocarcinoma, pancreatic 
cancer and colorectal cancer (27, 28, 29). A SMAD4 
immunohistochemistry expression study has shown a 
correlation with poor survival in colon cancer (30). An 
in-depth examination of SMAD4 status demonstrated 
that abnormalities in this locus occur in benign as well as 
in malignant thyroid tumours (15/56, 27%), which was 
interpreted by the authors as indicative of an early event in 
thyroid tumorigenesis (28). All this leads to the assumption 
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that the presence of SMAD4 mutations cannot differentiate 
between well-differentiated thyroid cancer and PDTC.

KIT encodes for a tyrosine kinase receptor and 
mediates growth regulation. Mutations in this gene are 
associated with haematologic diseases and gastrointestinal 
stromal tumours (31). KIT expression is reduced in PTC 
compared to benign nodules (32). Its assessment can 
improve the diagnosis in fine-needle aspiration (33, 34). 
There are, however, little data available for KIT mutational 
status in PDTC, although it is known that alterations in 
KIT transcripts increase with tumour progression from 
WDTC to PDTC (35, 36). In a study with 118 ATCs, none 
showed a KIT mutation (37). In our study, we detected 
four KIT variants. This discrepancy may indicate a slowing 
effect on cancer growth that is lost during tumour 
dedifferentiation to anaplastic thyroid cancer, which may 
be lost in favour of a more deleterious mutation in the 
downstream signalling pathways.

Coexistent follicular or papillary tumours

Surprisingly, we found many tumours with coexistent 
follicular or papillary carcinoma components 
(Figs 1 and 2). Eight PDTCs showed follicular coexistent 
components while five showed proportions with 
papillary carcinomas. Given the higher incidence of 
PTC than FTC, this could indicate a more frequent 
progression of FTC to PDTC. This is in accordance 
with the findings of Soares and coworkers (38) who 
emphasised that PDTC are more closely related to FTC 
than to PTC. The authors established their assumption 
on the absence of BRAF variants in 19 PDTC. In contrast 
to their results, we found three BRAF V600E variants. 
Two of the three p.V600E BRAF variants were in PDTC 
with PTC proportions. The discrepancy is most likely 
related to the fact that Soares and coworkers excluded 
PDTC with PTC components in their series.

Figure 2
Macrodissection of a tumour with two different 
entities. Complete slide of the specimen before 
(A) and after (B) dissection of the PDTC. 
(C) A solid growing PDTC is demonstrated on the 
upper left next to a coexisting follicular thyroid 
tumour. Magnified clipping of a as indicated. 
(A, B and C: hematoxylin-eosin stain; A and B: 5× 
magnification; C: 200× magnification).
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Methodological considerations

Five PDTCs did not show any genetic alteration at 
all, which implies that yet unknown driving genetic 
alterations exist or that the applied methods failed to 
detect them. According to Bozic and coworkers (39), the 
actual selective growth advantage of a cancer by typical 
mutations is much smaller than commonly assumed. The 
majority of genes leading to a carcinoma (or supporting 
its dedifferentiation consecutively) have a low mutation 
frequency (40). Thus, it is possible that either these PDTCs 
had genetic variants not covered by the NGS panel or they 
had a mutation frequency less than 10% and were not 
distinguishable from artefacts.

The results of the present study demonstrate that there 
are many noteworthy genes that could be responsible for 
the dedifferentiation of thyroid carcinoma, but a number 
of restrictions of our study should be mentioned. One 
should note that we did not analyse blood or normal 
tissue to discriminate between true mutations or SNP. In 
a detailed examination of germline mutations in tumour 
tissue 3% of all samples showed germline mutations (41). 
We can assume similar results. Given the exploratory 
nature of this study, the variants presented here can only 
serve as an indicator for more targeted studies that should 
consider pathogenic germline alterations.

Furthermore, it is important to emphasise that the data 
have not been completely validated by Sanger sequencing. 
Acknowledging the limitations of validation of NGS-
derived variants using Sanger sequencing, we can surmise 
that the validation rate is precise enough for an exploratory 
study (42). Admittedly, contrary to the aforementioned 
study, we used paraffin-embedded formalin-fixed tissue. 
This pre-treated tissue could potentially be the source 
of sequencing artefacts. Following recommendations to 
reduce this effect, we macrodissected tumour-rich tissue, 
measured the quantity of DNA and excluded insufficient 
tissue samples (43). Given the nature of the TruSeq 
Amplicon Cancer Panel, we only sequenced exonic DNA 
with a limitation on certain genes. Due to this limitation, 
it was not possible to detect rearrangements of oncogenes 
like RET and NTRK1 or mutations of TERT. The latter are 
suspected to be connected to the disease progression of 
WDTC and to distinguish PDTCs from ATCs (1). However, 
rearrangements are rarely described in PDTC possibly 
because WDTC expressing RET/PTC hybrid oncogenes 
will usually not dedifferentiate further (44).

Even with the recent progress in the knowledge of 
molecular changes in PDTC, we think that our study reveals 
some novel variants, possibly influencing future research.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
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