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Abstract

Given a reductive group G acting on an affine scheme X over C and a Hilbert function
h: Irr G — Np, we construct the moduli space My(X) of f-stable (G, h)—constellations
on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev
and Brion [AB05]| and the moduli space of #—stable G—constellations for finite groups G
introduced by Craw and Ishii [CI04]. Our construction of a morphism My(X) — X/ G
makes this moduli space a candidate for a resolution of singularities of the quotient X/G.
Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment
map of an action of Sl on (C?)®° as one of the first examples of invariant Hilbert schemes
with multiplicities. While doing this, we present a general procedure for the realisation
of such calculations. We also consider questions of smoothness and connectedness and
thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic

reduction of the action.

Zusammenfassung

Fiir eine reduktive Gruppe G, die auf einem affinen C-Schema X wirkt, und eine Hil-
bertfunktion h: Irr G — Ny konstruieren wir den Modulraum My(X) der §-stabilen
(G, h)—Konstellationen auf X, der eine gemeinsame Verallgemeinerung des invarianten
Hilbertschemas nach Alexeev und Brion [AB05] und des von Craw und Ishii [CI04] ein-
gefithrten Modulraumes von f—stabilen G—Konstellationen fiir endliche Gruppen G ist.
Unsere Konstruktion eines Morphismus Mp(X) — X //G macht diesen Modulraum zu
einem Kandidaten einer Auflosung der Singularititen des Quotienten X/G.

Auferdem bestimmen wir das invariante Hilbertschema der Nullfaser der Impulsabbil-
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dung einer Wirkung von Sly auf (C2)®6 als eines der ersten Beispiele von invarianten
Hilbertschemata mit Multiplizitaten. Dabei beschreiben wir eine allgemeine Vorgehens-
weise fiir derartige Berechnungen. Ferner zeigen wir, dass unser Hilbertschema glatt und
zusammenhéngend ist und daher eine Auflésung der Singularitdten der symplektischen
Reduktion der Wirkung darstellt.

Résume

Nous construisons ’espace de modules My(X) des (G, h)—constellations 6-stables sur X
pour un groupe réductif G qui agit sur un schéma affine X sur C et pour une fonction
de Hilbert h: Irr G — Ng. Cet espace de modules est une généralisation commune du
schéma de Hilbert invariant d’aprés Alexeev et Brion [AB05| et de 'espace de modules
des G—constellations f—stables pour un groupe fini G introduit par Craw et Ishii [CI04].
Notre construction d’un morphisme My(X) — X /G fait de cet espace de modules un
candidat pour une résolution des singularités du quotient X//G.

De plus, nous déterminons le schéma de Hilbert invariant de la fibre en zéro de l'ap-
plication moment d’'une action de Sly sur (C?)®6. C’est un des premiers exemples d'un
schéma de Hilbert invariant avec multiplicités. Ceci nous améne a décrire une fagon gé-
nérale de procéder pour effectuer de tels calculs. En outre, nous démontrons que notre
schéma de Hilbert invariant est lisse et connexe : Cet exemple est donc une résolution

des singularités de la réduction symplectique de l'action.
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Introduction

Hilbert schemes play an important role in the search for resolutions of singularities, in
particular for symplectic or, more generally, crepant ones: If X is a smooth surface, then
by Fogarty [Fog68, Theorem 2.4] the Hilbert scheme of points Hilb™(X) is a resolution
of the singularities of the symmetric product S™X for every n € N. In the case where X
carries a symplectic structure, this is even a symplectic resolution by Beauville [Bea83,
Proposition 5|. Further, if one considers the action of a finite group G on a variety X,
there is Ito and Nakamura’s G-Hilbert scheme G -Hilb(X) [IN96, IN99, Nak01|. In the
case where X is a non—singular quasiprojective variety and G C Aut(X) a finite group
such that the canonical bundle wx is a locally trivial G—sheaf, Bridgeland, King and
Reid [BKRO1] give a sufficient condition assuring that the irreducible component of the
G-Hilbert scheme containing the free G—orbits is a crepant resolution of the quotient
X/G. Moreover, they prove that up to dimension 3 this orbit component is the whole of
G -Hilb(X). Hence, if X is a variety of dimension at most 3, the G-Hilbert scheme itself
is a crepant resolution of X/G.

There exist two generalisations of the G—Hilbert scheme: To find a complete list of
resolutions for finite group quotients, Craw and Ishii introduce the moduli space of -
stable G—constellations [CI04]. They show that for finite abelian groups G C Si3(C),
every projective crepant resolution of C3/G can be obtained as such a moduli space. On
the other hand, to deal with quotients for reductive instead of finite groups Alexeev and
Brion provide the invariant Hilbert scheme [AB04, ABO5|. The main goal of this thesis
is to construct a common generalisation of these, the moduli space My(X) of f—stable
(G, h)—constellations for a reductive group G and a map h: Irr G — Ny, which replaces
the regular representation occurring in [C104|. The following paragraphs summarize more
precisely the approaches of Craw and Ishii and of Alexeev and Brion and our contribution
to the subject.

Given a finite group G C Gl,,(C) acting on C", the notion of G—constellation introduced

in [CI04] generalises the concept of G—clusters from G—invariant quotients of Ogn with

vii



Introduction

isotypic decomposition isomorphic to the regular representation R of G to G-equivariant
coherent Ocn—modules with this given isotypic decomposition. Such a G—constellation F
is f—stable for some 6 € Homz(R(G), Q) if 6(F) = 0 and if for every non—zero proper G—
equivariant coherent subsheaf 0 # F' C F one has 6(F’) > 0. In this situation, Craw and
Ishii construct the moduli space My of 8—stable G—constellations as the GIT-quotient
of the space of quiver representations associated to G by the group of G—equivariant
automorphisms of R as described by King in [Kin94]. For a special choice of 6 they
recover My = G -Hilb(C").

As a second generalisation of the G-Hilbert scheme, Alexeev and Brion fix a complex
reductive group G and a map h: IrrG — Ny on the set IrG = {p: G = GI(V,)} of
isomorphy classes of irreducible representations of G. Then for any affine G—scheme
X, in [AB04, AB05] the authors define the invariant Hilbert scheme Hilb$(X), whose
closed points parameterise all G-invariant subschemes of X whose coordinate rings have
isotypic decomposition isomorphic to € pElir G ChP) @ V,, or equivalently all quotients

Ox /I, where 7 is an ideal sheaf in Ox, with this prescribed isotypic decomposition.

Our contribution to these constructions of moduli spaces is to unify the ideas of [CI104]
and [AB04, ABO5|: For a complex reductive group G, an affine G—scheme X and a map
h: Irr G — Ny we define the notion of (G, h)-constellation, which is a G-equivariant
coherent Ox—module with isotypic decomposition given by h as above. Then we intro-
duce f-stability analogously to the case of G—constellations. This stability condition is
more delicate than the one of Craw and Ishii since it involves infinitely many parame-
ters. We locate finitely many of them which control the others. Then we construct the
moduli space of #—stable (G, h)—constellations by means of geometric invariant theory
and invariant Quot schemes in a parallel way to the construction of the moduli space of
stable vector bundles of Simpson [Sim94] as presented in [HL10| by Huybrechts and Lehn.
As a generalisation of the Hilbert—Chow morphism we moreover construct a morphism
Mp(X) — X//G. Further studies of My(X) have to be made in order to decide whether

this morphism gives a resolution of singularities.

The structure of this thesis is as follows:

Since very little is known about invariant Hilbert schemes and there is a lack of examples
in the symplectic setting up to now, in Chapter 1 we determine an example of an invariant
Hilbert scheme, namely of the zero fibre of the moment map of an action of Sls on (C?)®9.

It is one of the first examples of invariant Hilbert schemes with multiplicities. In addition
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to the examination of the example, we present a general procedure for the realisation of

such calculations in Section 1.3. We determine our Hilbert scheme to be
Sla-Hilb(p(0)) = {(A, W) € Oz 12) x Grass;so(2, C%) | im A* € W}

Additionally, we show that it is smooth and connected. Hence it is a resolution of
singularities of the symplectic reduction of the action. The contents of this chapter have
been published as an article on its own in Transformation Groups |[Becll].

In Chapter 2 we introduce the notions of (G, h)-constellation, 6-semistability and 6—
stability analogously to the case of G—constellations and we define the corresponding mod-
uli functors My(X) and My(X). Then we show that every f-stable (G, h)—constellation
is generated as an Ox—module by its components indexed by a certain finite subset
D_ C Irr G, so that each f—stable (G, h)—constellation is a quotient of a fixed coherent
sheaf H and hence an element of the invariant Quot scheme Quot®(H, h). With a slightly
more restrictive choice of @, the same holds for 6-semistability. At the end of this chapter
we show that if A is chosen such that the value on the trivial representation pg is 1 and
6,, is the only negative value of 6, then the moduli functor My(X) equals the Hilbert
functor Hilb§ (X).

In Chapter 3 we deal with the geometric invariant theory of the invariant Quot scheme
Quot(H, h) in order to construct a moduli space of (G, h)-constellations as its GIT-
quotient: The invariant Quot scheme is equipped with a certain ample line bundle &
coming from the embedding into a product of Grassmannians as established in Section
3.1. Considering the gauge group I', we examine GIT-stability and GIT-semistability
on Quot®(#,h) with respect to the induced linearisation on .# twisted by a certain
character x. Thus, on the set of GIT-semistable quotients QuotG(’H,h)SS we obtain
the categorical quotient QuotG(H, h)ss//fx I', which turns out to be a moduli space of
GIT-semistable (G, h)-constellations in Chapter 5.

In Chapter 4 we establish a correspondence of (G, h)—constellations and G-equivariant
quotients [q: H — F] € Quot®(H,h) and a correspondence of their respective subob-
jects. This allows us to introduce another (semi)stability condition 6 which is equivalent
to GIT-(semi)stability but resembles very much 6—(semi)stability. We show that if F
is f—stable, then it is also f-stable and hence any corresponding point [¢: H — F| in
Quot®(#, h) is GIT-stable. This allows us to realise the functor My(X) of flat families
of f-stable (G, h)-constellations as a subfunctor of the functor M, ,.(X) of flat families
of GIT-stable (G, h)—constellations.

X
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In Chapter 5 we consider properties of these functors. First, we show that M, .(X)
and M, .(X) are corepresented by QuotG(H,h)SS//‘zX T and Quot®(H,h)/T, respec-
tively. In the same way, Mg(X) is corepresented by its subset Quot®(H, h)3/T, where
Quot®(H, h)j is the set of 6-stable elements in Quot(#, h). We call

My(X) := Quot?(H, h)j/T

the moduli space of 6-stable (G,h)—constellations. TFurthermore, we prove that 6—
stability is open in flat families. From this fact we deduce that My(X) is an open
subscheme of Quot®(#H, h)*/T" and hence a quasiprojective scheme. We define the scheme
My(X) as its closure in Quot®(H, h)ss//fx I'. Finally, we construct a morphism from
My(X) to the quotient X//G corresponding to the Hilbert—-Chow morphism.

As an outlook, at the end of this thesis we discuss some further aspects of the moduli
spaces My(X) and My(X), which are worth being pursued in the future.

There are two appendices: In Appendix A we work out a G—equivariant version of frame
bundles, which we need in Section 5.1 to interpret the functors of (G, h)—constellations
with various stability conditions as quotients of the functors of (semi)stable quotients
modulo the choice of a particular quotient map. In Appendix B we construct the relative
invariant Quot scheme, which is a generalisation of the invariant Quot scheme constructed
by Jansou in [Jan06]. We need this relative version in order to show that f#—stability is an
open property in flat families of (G, h)—constellations in Section 5.2, so that eventually
the moduli space of #-stable (G, h)-constellations can be obtained as an open subscheme
of the geometric quotient Quot®(#, h)*/T.

Notation and conventions

In this thesis, G will always be a complex connected reductive algebraic group and X an
affine G—scheme over C, that is an affine scheme X = Spec R over C such that G acts
on X and on its coordinate ring C[X] = R.

We work over the category (Sch/C) of noetherian schemes over C. In the definition
of contravariant functors we denote by (Sch/C)°" its opposite category. For a scheme
Y € (Sch/C), there is the functor of points Y: (Sch/C)® — (Set) to the category
(Set) of sets, given by Y (S) = Hom(S,Y). For S € (Sch/C) let further (Sch/S) be the

category of noetherian schemes over S.



1. An example of an Sl,—Hilbert scheme

with multiplicities

Let G be a complex connected reductive algebraic group and X an affine G-scheme
over C. Denote by Irr(G) the set of isomorphism classes of irreducible representations
of G and let h: Irr(G) — Ny be a map, called Hilbert function in the following. In
this setting, Alexeev and Brion define in [AB05] the invariant Hilbert scheme Hilb¥ (X))
parameterising G—invariant subschemes of X whose modules of global sections all have
the same isotypic decomposition € pelr G CMP) Q¢ V, as G-modules. Their definition
relies on the work of Haiman and Sturmfels on multigraded Hilbert schemes [HS04| and
generalises the G—Hilbert scheme of Ito and Nakamura [IN96, IN99, Nak01].

In the case where the Hilbert function h is multiplicity—free, i.e. imh C {0, 1}, several
examples of invariant Hilbert schemes have been determined by Jansou [Jan07], Bravi and
Cupit-Foutou [BCF08| and Papadakis and van Steirteghem [PvS10|, which all turn out
to be affine spaces. Jansou and Ressayre [JR09] give some examples of invariant Hilbert
schemes with multiplicities, which are also affine spaces. There are some more involved
examples of invariant Hilbert schemes by Brion (unpublished) and Budmiger [Bud10].
Here we present a more substantial example, where X is a 9-dimensional singular variety,
whose quotient is additionally equipped with a symplectic structure. The group we

consider is Slz and the Hilbert function is the one of its regular representation
h:Nog— N, d—d+1. (1.1)

The knowledge of such examples where the Hilbert scheme is not an affine space is impor-
tant for understanding general properties of invariant Hilbert schemes: Which conditions
have to be fulfilled so that the invariant Hilbert scheme is connected or smooth? Is the
invariant Hilbert scheme a resolution of singularities of the quotient X //G? This is for
example the case for the G—Hilbert scheme where G is finite, X is quasiprojective and

non-singular and has dimension at most 3 [BKRO1].



1. An Sls—Hilbert scheme with multiplicities

Our example of an invariant Hilbert scheme for Sls will be smooth and connected and it
will even be a resolution of singularities, but it does not inherit the additional structure

of symplectic variety of the quotient.

Now we present the setting of our example. Consider the action of Sly on the vector
space (C?)®0 = Matyx(C) arising as symplectic double from the action of Sy on (C2)®3
via multiplication on the left.

The moment map u: (C2)® — sly, M +— MQM?'J defines the symplectic reduction
(C*)¥//Sly := p=1(0)/Sly, where J = (% §). In [Bec10] we obtained its description as
a nilpotent orbit closure p=1(0)//Sly = @[22712] in the orthogonal Lie algebra sog for the
quadratic form given by the matrix Q = (I(; Ié”) Writing (C?)®% = C? @¢ C° we see
that we have a symmetric situation with an action of SO = SO(Q) by multiplication
from the right. Moreover, p is invariant for this action, so that SOg acts on the zero fibre
p~1(0). As both actions commute, SOg also acts on the quotient by Slo. The quotient
map v: u~1(0) — p=1(0)/Sls is given by mapping M to M*JMQ. In fact, the quotient
map of the Sly—action is the moment map of the SOg—action and vice versa. The SOg—
action will play an important role while analysing p~*(0)//Sly and the corresponding
Hilbert scheme.

The symplectic variety @[22’12] has two well-known symplectic resolutions of singularities,
namely the cotangent bundle T*P3 = {(A,L) € Y x P? | im A® C L} and its dual
(T*P3)* =2 {(A,H) € Y x (P?)* | H C ker A'}. Here we identify sly = sog, so that
we have Y := {A € sly | tkA < 1} = Opp 12). We want to know if there is a natural
(symplectic) resolution. Since Hilbert schemes of points and G-Hilbert schemes are often
candidates for (symplectic) resolutions [Fog68, Bea83, BKRO01], we hope that this is also
true for invariant Hilbert schemes. Indeed, with the choice of the Hilbert function h in

(1.1), in our example we find

Theorem 1.1 The invariant Hilbert scheme Sl -Hilb(p=1(0)) ::Hilbfl2 (u=1(0)) of the

zero fibre of the moment map of the action of Sly on (C?)®% is the scheme
{(A, W) € Opg212) x Grassiso(2, C%) | im A ¢ W}, (1.2)

where Grass;so(2, C) is the Grassmannian of 2-dimensional isotropic subspaces of C°
with respect to the quadratic form given by Q. Moreover, Sly-Hilb(~1(0)) is smooth and

connected, and thus a resolution of singularities of the symplectic reduction p~'(0)//Sls.



Remark. Sls-Hilb(u~1(0)) is not a symplectic resolution of u=1(0)//Sly since it is not a

semismall resolution. However, making use of the isomorphism
Sl -Hilb(171(0)) = {(A,L,H) € Y x P? x (P*)* |imA® € L € H C ker A}

given by the assignments (A,L A H) «+ (A,L,H) and (A, W) — (A, Ly, Hy) with
={v e C*|dim(vAW) =0}, Hy := {v € C*| dim(v AW) < 1}, it dominates the

two symplectlc resolutions:

Sl -Hilb(1~(0)) (A, W)

i SN

T*P3 (T*P3)* (A, Hw)

. NS

H(0)/Sl
The Sly-Hilbert scheme Sy -Hilb(1~1(0)) consists of points of two different types:

Theorem 1.2 The subscheme Zaw C p (0) corresponding to the point (A, W) in
Sly -Hilb(p~1(0)) is

~ Sl27 ZfA S 0[22712]7
ML) |ad —be =0}, FA=o0.

This chapter is organised as follows: In Section 1.1 we introduce the invariant Hilbert
scheme as defined by Alexeev and Brion in [AB05|. First, we give their definition of the
invariant Hilbert functor, which is represented by the invariant Hilbert scheme. Then
we introduce the Hilbert—Chow morphism and analyse which conditions on the Hilbert
function have to be satisfied so that this morphism, or at least its restriction to a certain
component, is proper and birational. These are, besides smoothness of the scheme, the
important properties for being a resolution. With regard to this, we define the orbit
component Hilbg(X )orb which is the unique component mapping birationally to the set
of closed G—orbits. If the invariant Hilbert scheme is not irreducible, this component is
still a candidate for a resolution.

Afterwards, we turn to our example in Section 1.2, where we compute the general fi-
bre of the quotient in order to determine the right Hilbert function which guarantees

birationality.



1. An Sls—Hilbert scheme with multiplicities

Section 1.3 is the heart of this chapter. First, we develop a general method to find
generators of the sheaves of covariants occurring in the definition of the invariant Hilbert
functor. Then we construct an embedding of the invariant Hilbert scheme into a product
of Grassmannians following ideas by Brion and based on the embedding constructed in
[HS04]. Thus this chapter does not only give an involved example of an invariant Hilbert
scheme with multiplicities of a variety which is not an affine space, but it can also be
consulted as a guidance for the determination of further examples. While describing the
general process, we always switch to its application to the example at the end of each
step. As a result, we obtain the orbit component in our example as (1.2).

To conclude the proof of Theorem 1.1, i.e. to find out if the orbit component coincides
with the whole Hilbert scheme, in Section 1.4 we show that the latter is smooth by
considering the tangent space to the invariant Hilbert scheme and we prove that it is

connected.

1.1. The invariant Hilbert scheme after Alexeev and Brion

Before passing to the specific example of an invariant Hilbert scheme, we present the
general construction of the invariant Hilbert scheme introduced by Alexeev and Brion in
[AB04, AB05|. For further details on invariant Hilbert schemes consult Brion’s survey
[Brill].

Fix a complex reductive algebraic group G and an affine G—scheme X over C. We denote
by Irr G the set of isomorphism classes of irreducible representations p: G — GI(V),) of
G and by pg € Irr G the trivial representation.

As G is reductive, every G—module W decomposes as the sum of its isotypic components
W= ,ciea Wip) = Dperre Wo @ Vp, where W, = Home (V,, W).

We call the dimension of Homg(V,, W) the multiplicity of p in W. If each irreducible
representation occurs with finite multiplicity, i.e. hy (p) := dim Homg(V,, W) < oo for
all p € Irr G, then hy: Irr G — Ny is called the Hilbert function of W. It is said to
be multiplicity—free if hy (p) € {0,1} for all p € Irr G. In this thesis we will call any
map h: Irr G — Ny a Hilbert function. Unless stated otherwise, in this chapter we will
always assume that h(pg) = 1.

If F is a G—equivariant coherent Ox«s—module over some noetherian basis S where G
acts trivially and p: X x S — S is the projection then there is also an isotypic decom-

position p,JF = @pelrrG F, @c V,, where the sheaves of covariants F, = Homg(V,, F)



1.1. The invariant Hilbert scheme after Alexeev and Brion

are coherent Og—modules. They are locally free if and only if F is flat over S. In this
case denote by hr(p) := rk F, their rank.

Definition 1.1.1 [ABO05, Definition 1.5] For any function h: Irr G — Ny, the associated

functor

Hilb$ (X): (Sch/C)° — (Set)

Z CX xS Z a G-invariant closed subscheme,
S — Nl p flat, )
S ho, =h

(f:T—8)— (Zw (idx x f)*Z)
is called the invariant Hilbert functor.

Notation. We denote the sheaves of covariants in the isotypic decomposition of p,Oyz by
F, =Homag(V,,p«Oz). By the condition hp, = h in the definition, they are locally free
Ogs—modules of rank h(p).

Remark. In analogy to the case of finite G the coordinate ring of every fibre Z(s) of the
projection p: Z — S of a closed point s € S satisfies

C[Z(s)] = T(Z(s), 0z()) = (1:02)(5) = P TV &gV,
pElrr G

since the fibre F,(s) is a C-vector space of dimension h(p). This can be considered as

V@h(/’)

h(p) copies of V, for every p € Irr G, so we write @ A instead. In particular,

pElr G
the only invariants of C[Z(s)] are the elements of the isotypical component of the trivial

representation py, i.e. h(pg) copies of the constants.

Proposition 1.1.2 [HS04, AB04, AB05] There exists a quasiprojective scheme repre-
senting Hilb (X), the invariant Hilbert scheme Hilbf (X).

We are interested in the relation between the invariant Hilbert scheme and the quotient
X //G = Spec C[X]¢ parameterising the closed orbits of the action of G on X. There is

an analogue of the Hilbert—-Chow morphism, the quotient—scheme map

n: HilbY(X) — Hilb"™)(X /@), Z — Z//G,



1. An Sls—Hilbert scheme with multiplicities

described in [Brill, Section 3.4]. It is proper and even projective |Brill, Proposition
3.12]. As we assume h(pg) = 1, we have n: Hilb{(X) — Hilb!(X/G) = X/G.

For this morphism or at least its restriction to some component of Hilb{(X) to be
birational, one has to choose the Hilbert function hr of the general fibre F' of the quotient
map v: X — X//G:

[(F,0x) = @ Vp@hF(p)~
pElrr G

Lemma 1.1.3 Suppose X is irreducible. Then HilbgF (X)) has an irreducible component
HilbgF (X)°® such that the restriction of the Hilbert-Chow morphism to this component
n: Hilbf (X)°* — X//G is birational.

Proof. By an independent result of Brion [Brill, Proposition 3.15] and Budmiger [Bud10,
Theorem L.1.1], if v: X — X /G is flat, then X //G represents the Hilbert functor
’HilbgF (X), thus X/ G = Hilbe (X). In the non-flat case let U C X//G be a non—empty
open affine subset such that v=1(U) — U is flat. Since all fibres of v~1(U) — U have
the same Hilbert function hp as the general fibre of v, the invariant Hilbert scheme
HilbgF (v=YU)) = n71(U) is an open subscheme of Hilbe (X) and U is isomorphic to
n~1(U). Thus the restriction of 7 to its closure Hilbe (X)°rb .= n=1(U) is birational.

If X and hence X/ is irreducible, so are U and 1 (U) = U. Hence there is an irreducible
component C' C HilbgF(X) containing 7~ 1(U). The morphism 7nlc: C — X /G is
dominant and the fibres of an open subset of X /G are finite (indeed the preimage of

each element in U is a point). This means that dim C' = dim X//G, hence n~1(U) = C

is an irreducible component. O

Definition 1.1.4 The variety Hilbe (X)"® constructed in the Lemma is called the orbit

component or main component of Hilbgp (X).

Remark. 1. The orbit component corresponds to the coherent component for toric Hilbert

schemes. It is the principal component in the sense that it is birational to X/G.

2. The map 7)|Hﬂb§F (X)orb 18 dominant and proper and HﬂbgF (X))t ¢ Hﬂbi?p (X) is

closed, so 77|Hﬂb§ (X)orb is even surjective. Thus it is a natural candidate for a resolution
F

of singularities of X//G.

Remark 1.1.5 If the general fibre of v: X — X //G happens to be the group G it-
self then the Hilbert function is hg(p) = dim(V,) since we have I'(G,Og) = C[G] =
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D eV, @ V) and dim(V)) = dim(V},). In analogy to the case of finite groups, in

this situation we write

G-Hilb(X) := Hilbf, (X) and  G-Hilb(X)"" := Hilbf_(X)".

1.2. Determination of the Hilbert function

1.2.1. The quotient related to the Hilbert scheme

We consider the action of Sly on (C?)®% via multiplication from the left. There is a
symplectic structure on (C?)®® given by the matrix J = (_01 (1)), namely the bilinear
form (C?)%0 x (C?)% — ©, (M, N) + tr(M*JN). To obtain a quotient to which this
symplectic structure descends, one considers the moment map (cf. [MFK94, Chapter
8]) and the quotient of its zero fibre, called symplectic reduction or Marsden—Weinstein
reduction. As shown in [Bec10], in our case the moment map p: (C?)®6 — s, is given by
M s MQM"J, where Q = ( 2k ) The symplectic reduction (C2)®9//Sl, = 11 (0)/Sl

can be described as a nilpotent orbit closure
uil(O)//Slg = @[22712] = {A € 506 ’ A2 = 0, rk A < 2, Pf4(QA) = 0},

where Pf;(QA) denotes the Pfaffians of the 15 skew—symmetric 4 x 4-minors of QA.
Under the adjoint action of SOg this variety consists of two orbits of matrices of rank 2
and 0, respectively: @[22712] = O[p2,121 U {0}. The quotient map is v: p1(0) — @[22,12],
M s M'IMQ.

In coordinates M = (i1 722 213 724 215 216) we have

(—22,i%1,3+j + T1,1T2,3+5)ij (=215 + 21,i%2,5)i )

(—2,3+i%1 345 + T1,3+iT2,3+5)ij (—Z23+iT1; + T1,3+i%2,5)ij

_ ( (AS47)i5 (M) )
(A3+i,3+j)ij (Aj’3+i)z’j ’

where i and j always range from 1 to 3 and A®' = det(z(®, 2(®) is the 2 x 2-minor
of the s—th and t—th column in M. Thus the fibres of v consist of those M with fixed
2 x 2-minors. A further condition is M € p=1(0), i.e.

M'IMQ = (

3 3
2 ) T1T1 34 (21,T2,3+i + T1,31i%2,)
. t =1 =1
o=MQM'=| , ¢ i \
Yo (z122,345 + T1,34iT24) 23 ®2,;%2 34
i=1 =1
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1.2.2. The general fibre of the quotient

In order to determine the Hilbert function hr of the general fibre F' of the quotient map
v: p~10) — p=1(0)//Sls, so that Hilb;?i? (~1(0)) is birational to u=1(0)//Sls, we have

to compute F first. Therefore we need to know the locus where v is flat.

Proposition 1.2.1 The quotient map v restricted to the preimage of the open orbit of
the SOg—action 1/_1((’)[22,12]) — Opp2,12) 15 flal. Therefore, the fibres over all points in the

orbit Oz 12) are isomorphic.

Proof. u=1(0) is equipped with an action of SOg via multiplication on the right, which
induces the adjoint action on p=1(0)/Sly = 5[22712]. Since the map v: p~1(0) — 5[22712]
is SOg—equivariant, v is flat over the whole SOg-orbit O[p2 12 or over no point of this
orbit. By Grothendieck’s Lemma on generic flatness and since Opgz 12] \ Opz2 12 = {0},
the second case cannot occur. By equivariance, all fibres over this orbit are isomorphic.
]

As a consequence, for computing the general fibre it is enough to determine the fibre over
one point A in the flat locus Oz 12). We choose Ag = (ai;) with a15 = —ags = 1 and
aij = 0 otherwise. For M € v~1(Ay) this corresponds to A? =1 = —A%! and A% =0

otherwise. Thus

1,2 _
1= A"" = 2112092 — 712721, hence x11 # 0 # x93 or 12 # 0 # x21.

. . 1+ z19w91
Without loss of generality assume x1; # 0. Then x90 = —————.
z11
For j =3,...,6 we have
1j 15221
0=A" = T11%25 — L1221 = X5 = R
11
2.4 T1;%21 1+ x19221
0=A" = T12%25 — L1222 = 212 = T1j
11 11
T1j | T1T12%21
z11 11

= x1;,=0 forj=3,...,6,

;%21 .
= a9;=—2"=0 forj=3,...,6.
1

This implies T11T14 + 12215 + 13216 = 0,
T11%24 + T12%25 + T13T26 + T14T21 + T15T22 + T16T23 = 0,

T21T24 + T22T25 + T23w26 = 0,
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so M € p~1(0) is automatic. This shows that the general fibre is

F = V_I(Ao) = {(ﬂcu T12 8 8 8 8) S (@2)@6 ‘ 117922 — L1221 = 1} = Sl2. (1.3)

21 T22

This justifies the notation Slp -Hilb(u~1(0)) = Hilbﬁ;2 (1=1(0)) as introduced in Remark
1.1.5.

Remark. Analogous calculations over 0 show that the fibre »~1(0) has dimension 5, so v

is not flat over 0 and Op2 12 is the maximal flat locus.

1.2.3. The Hilbert function of the general fibre

The Hilbert function is determined by the isotypic decomposition of the general fibre.
The irreducible representations of Sl are parameterised by the natural numbers including
zero: Irr(Sla) = Ny, Vy <> d, where V; = C[x, y]4 consists of homogeneous polynomials of
degree d so that dim V; = d+ 1. By Remark 1.1.5 the coordinate ring of Sls decomposes
as
C[Sly] = @ Vd@dide _ @ Vd®(d+l)7
deNg deNg

so in this case the Hilbert function is given by the dimension hg,(d) = dimVy; = d + 1.
For the Hilbert scheme this means that the sheaves of covariants F4 have to be locally

free of rank d + 1.

1.3. Determination of the orbit component

Our idea to identify Sls-Hilb(1~1(0)) is to determine generators for the sheaves of covari-
ants F4 and to use them to embed the Sly-Hilbert scheme into the product of u=1(0)/Sly
and some Grassmannians. First, in Section 1.3.1 we describe the sheaves F, in general by
giving a space F), of generators as an OHﬂbg ( X)fmodule for each p € Irr G. We calculate
J7 in our example. In Section 1.3.2 we describe how to obtain a map 7, to the Grassman-
nian of quotients of F, of dimension h(p). We show that one can embed Hilb§(X) into
a product of finitely many of these Grassmannians. Afterwards, for Sly-Hilb(u=1(0))
we calculate the map 71 corresponding to the standard representation. We show that
this single representation is enough to give an embedding of the orbit component into
p=1(0)//Sly x Grass(F1,h(1)). Then we determine a strict subset of this which contains

the image. Finally, by writing the Grassmannian as a homogeneous space we prove in
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Section 1.3.3 that the embedding is even an isomorphism. This allows us to determine
explicitly the elements of Sly-Hilb(x~1(0)) as subschemes of z~1(0) in Section 1.3.4 and

thus prove Theorem 1.2.

1.3.1. The sheaves of covariants 7,

To describe the invariant Hilbert scheme or at least its orbit component, we have to
determine the locally free sheaves F,, of rank h(p) on Hilb§(X). For the trivial represen-
tation we have the following result by Brion [Brill, Proof of Proposition 3.15|, for which

we give a more detailed proof.

Lemma 1.3.1 If h(pg) = 1 then for any scheme S and every Z € Hilb$ (X)(S) we have

Foo = Og. In particular, for the universal subscheme this yields F,, = OHﬂbf(X)'

Proof. Taking invariants, the defining equation of the sheaves of covariants F, yields
the isomorphism p*C’)g & @pelrrG Fo ®c VpG. But the trivial representation is the only
irreducible representation admitting invariants, and all of its elements are invariants.
Thus D e1rr ¢ Fp O VpG = F,,. There is a morphism p#: Og = 0§ — p, 0§ = F,,
induced by p, which is injective since p is surjective. The Og—modules Og and F,, are
both locally free of rank one. Over each closed point s € S the fibres are Og(s) = C
and F,(s) = (p«O02)%(s) = (p«02)¢ @¢ k(s) = (p.Oz @¢ k(s))¢ = C[Z(s)], and
C[Z(s)]¢ = Vo = €. So by Nakayama’s Lemma, p is an isomorphism, hence Og = Foo-
O

For general p we additionally observe what happeuns if there is an action on X by an-
other complex connected reductive group H commuting with the G—action. By [Brill,
Proposition 3.10], such an action also induces an action on X//G and on Hilb$ (X), such
that the quotient map and the Hilbert—Chow morphism are H—equivariant.

Consider the isotypic decomposition C[X] = @ ¢y, ¢ C[X], ®c V), where H acts by the
induced action on C[X], = Homg(V,, C[X]) and trivially on V.

Proposition 1.3.2 For every p € Iir G, the C[X]%-module C[X], is finitely gener-
ated. Hence there is a finite dimensional H-module F), and an H—-equivariant surjection
C[X)%®¢ F, - C[X],. For any element Z € Hilb$ (X)(S) and any scheme S, the space
F, generates the sheaf of covariants F, = Hom(V,,p.Oz) as an Og-module, so that the
morphism of Og—H-modules Os ¢ F, — F, is surjective.

10
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Proof. The space C[X], = Homg(V,, C[X]) is finitely generated as an C[X]“~module,
see [Dol03, Corollary 5.1]. Thus we can choose finitely many generators and define
F, to be the H-module generated by them. This gives an H-equivariant surjection
CIX]C @ F, — C[X],.

To determine generators for F, we use the universal subscheme Univ$(X). Then we
obtain the result for an arbitrary scheme S and every element Z € Hilb§(X)(S) by
pulling it back. We have

Univ{(X) C X x Hilb§ (X) —— X

pr2 v
p
n

Hilb{ (X) X/G

The action of H on X, X,//G and Hilb{(X) induces an action of H on the fibred
product X X y/q Hilb§ (X) and on Univ$(X) such that all morphisms in the diagram
are H—equivariant. By [Brill, Proposition 3.15|, in this situation we have an embedding

Univy (X) = X x x/¢ Hilbf (X). This yields a surjective H-equivariant morphism
Ohing (x) @eopx)e CIX] = POy (x)-

By definition, we have p*OUniV}G(X) = @pehrG]:p ®¢ V, with an induced action of H
on each F, and the trivial action on V,. Furthermore, we can consider the isotypic
decomposition Oype(xy Ocxie CX] =D, cimc Ol (x) @e[x)e ClX], ®c V, as G-

modules. Together, we obtain H—equivariant surjections
Ot (x) Ocixje ClX], = F

for every p € Irr G. This shows that the OHilbg(X)fomodule F, is generated by C[X],,
which is in turn generated by F}, over C[X]“. This yields

Ot (x) O Fp = One (x) Ocpxje ClX]p = Fp. (1.4)
]

Remark 1.3.8 In place of the invariant Hilbert scheme one may more generally consider
the invariant Quot scheme QuotG(’H, h) for a fixed coherent sheaf H on X, constructed
by Jansou in [Jan06|. It parameterises quotients H — F with isotypic decomposition

of H°(F) isomorphic to € pelir GVpEBh(p ). The invariant Quot scheme generalises the

11
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invariant Hilbert scheme: Hilb{(X) = Quot®(Ox, h), where the quotients F are just
structure sheaves Oy of the subschemes Z of X.
A generalisation of Proposition 1.3.2 also holds for the invariant Quot scheme if one

considers the decomposition p,(7*H) = P a Hp ®c V, over any scheme S, where

pE€lrr
m: X xS = X and p: X x§ — S, and one replaces C[X], by H, and F), by suitably
chosen spaces H, which generate #H, as an C[X ]¥-module and F, as an Og—module.

We present a different construction of this in Proposition 3.1.2.

Application to F;

We already know that Fo = Ogy, mib(u-1(0)) 18 free of rank 1 by Lemma 1.3.1. We
continue with the standard representation V; = C? and determine Fy. It will turn out
in Proposition 1.3.5 that at least the orbit component Sly-Hilb(x~1(0))°™ is already
completely determined by this sheaf.

There is an action of SOg on p~'(0) via multiplication from the right and the induced
action on 6[22712} by conjugation. The induced action on Sls-Hilb(x~%(0)) is also by

multiplication from the right. Following Proposition 1.3.2 we obtain

Proposition 1.3.4 The siz projections pi|,-1(p): p0) — C2%, i =1,...,6 generate
Fi. Hence we may take Fy = C° to be the standard representation of SOg.

Proof. By the proof of Proposition 1.3.2, F; is generated by Homg, (C?, C[p=1(0)]),
which is isomorphic to Morg;, (1~1(0), ©C?) because of the self-duality of the standard
representation of Sly. The inclusion p=1(0) C (C?)®® induces a surjective morphism
Morg, ((C?)®6, C?) - Morgy, (171(0), C?) by shrinking morphisms to x~1(0). Accord-
ing to [How95], the space of Sly—equivariant morphisms Morg, ((C2)®6, C?) is a free
module of rank 6 over the ring of invariants C[(C?)®5]5!2, generated by the projections
pi: (C%)®5 — C2 to the i—th component.

The restrictions p;|,-1(g): p~1(0) — ©? still span a 6-dimensional space: Consider for
example the matrices M; where each column except the i—th one is 0. Then M;QM} =0
fori=1,...,6, 50 M; € p~1(0). In turn, the identity p;(M;) = &;; (::Z) shows that the
pil,—1(0) are linearly independent. Thus Morgy, (1~ *(0), C?) = Homg, ((C?)®%, €?) and
Fi={(p|li=1,...,6)=CS.

The SOg—equivariant identification C% =2 Homgy, ((C?)®%, C?), e; + p; induces the inner
product (p;,p;) = dit3; + dj+3; on (p1,...,ps). For this reason we can also write

(p,q) = p'Qq for all maps p,q € F} and we see that F} is the standard representation. [J

12
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1.3.2. Embedding the Hilbert scheme into a product of Grassmannians

As remarked in the proof of Proposition 1.3.2, every map S — Hilb{ (X) gives us a map
Os®@¢ F, = F, by pulling back the morphism (1.4). Since F,, is a locally free quotient of
Os ®@¢ F, of rank h(p), this in turn corresponds to a map S — Grass(F), h(p)) into the
Grassmannian of quotients of F,, of dimension h(p). In particular, taking S = Hilb§ (X),

we obtain a map of schemes
n,: Hilb{' (X) — Grass(F,, h(p)).

In the situation of Proposition 1.3.2 this map is again H-equivariant. Evaluating at a

closed point s € S yields

(S — Hilb§ (X))
(s — Zs)

(Os ®@¢ F, = Fp) — (S — Grass(F), h(p))), (1.5)

H
= (fost Fp— Fp(s) = (s Fpls)),

where the fibres F,(s) are vector spaces of dimension h(p). Hence we have

np: Hilb§ (X) — Grass(F),, h(p)), Z — F,(Z).

As C[X], = Homg(V,, C[X]) = Morg (X, V,), the elements of the generating space F)
are G-equivariant morphisms from X to V* and evaluating at an element Z € Hile(X )

means restricting Morg (X, V") — Morg(Z, V), so in (1.5) we have
fp,Z:Fp%]:p(Z)ap'_)p|Z- (16)

The map n,, does not yield any information since Grass(F),,h(po)) = Grass(C,1) is
only a point. The product of the Hilbert—Chow morphism and the 7, defines a map

Hilbf (X) — X//G x ][ Grass(F,, h(p)). (1.7)
pElrr G
p#0

This map is a closed immersion, even if we replace the right hand side by a product over
a suitably chosen finite subset of Irr G only: Indeed, let B = T'U be a Borel subgroup
of G, where T' is a maximal torus and U the unipotent radical. Assigning to V, its
highest weight gives a one-to—one correspondence between Irr G and the set of dominant
weights A1 in the weight lattice A of T. Extend h to A by 0. Let V be a finite—
dimensional T-module containing X//U. By [AB05, Theorem 1.7, Lemma 1.6], we have
closed embeddings Hilb§ (X) < Hilbl (X /U) < Hilbl (V) and each module C[V],, is

13
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generated by some C—vector space E, over C[V]T. The E, can be chosen as lifts of F),
so that we have £, - F, under C[V] — C[X]. As shown by [HS04, Theorem 2.2, 2.3,
the map
Hilb? (V) < H Grassy,r(Ey, h(p))
peD

is a closed immersion for a suitably chosen finite subset D C A. Since h vanishes outside
AT we even obtain D C Irr G in our case. Every quotient of F, of dimension h(p)
is also a quotient of E, of dimension h(p), so for any p € D we have an embedding
Grassx q(Fp, h(p)) < Grassyr(E,, h(p)). Further, every element in Hilb! (V) coming
from Hilbl (X//U) is already generated by F),. This means that the composite morphism
Hilb! (X /U) — [ ep Grassyr(E,, h(p)) factors through [ . Grassy,q(F), h(p)), so
that we obtain

[I Grassx)c(F),, h(p))—— ]I Grassy,r(Ep, h(p))
peED peED

—
-
-
—
—~

1
I
«” J
Hilb{ (X)) Hilb! (X /U)" Hilb! (V)

i ! i

X)) G ——=(X)U))/TC V)T

In fact, Hilb{ (X) embeds into X/G x [1,ep Grass(F), h(p)) because the relative Grass-
mannian Grass x,(F), h(p)) is isomorphic to the product X//G' x Grass(F), h(p)) and for
Z € Hilb¥(X), C[Z] = D, et ¢ Fr@c V), the elements [F), — F,| € Grassx,a(Fp, h(p)),
p € Irr G, all map to the same point Z/G in X//G.

This suggests the following procedure to determine the invariant Hilbert scheme: One

can start with any representation. Call it p1. If X 7),, is not a closed immersion, add
another representation pa. If 1 X 1, X 7,, is not a closed immersion, continue. There
will we a number s € N such that n xn,, x...x1n,, is a closed immersion. Then identify

the image of this immersion.

Remark. Replacing I}, by H, as in Remark 1.3.3, all steps except the last one also apply
to the invariant Quot scheme, so that for some finite subset D C Irr G we obtain a (not
necessarily closed) embedding
Quot®(H, h) — [ Grass(H,, h(p)).
peD

We construct this morphism in Section 3.1.

14
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Determination of 7,
The knowledge of F; gives us an SOg—equivariant map
m : Sly-Hilb(u~1(0)) — Grass(Fy,dim Vi) = Grass(C5,2), Z — Fi(Z).

The fibre F1(Z) of the sheaf Fj is generated by the restrictions of the projections
pi: p1(0) — €2 to the subscheme Z C pu~1(0).

Proposition 1.3.5 1. The map n X n1 1s given by

Sly -Hilb(1~(0)) — p~1(0)/Sly x Grass(2,C°®), Z — (Z//Sly, ker(f1.2)").

2. The image of n x n1 restricted to the orbit component Sly-Hilb(u=1(0))°" is con-
tained in'Y := {(A,U) € @[22’12] x Grass;so(2, C%) | im A C U}.

Proof. 1. To describe the morphism 7y : Slp-Hilb(u71(0)) — Grass(C®,2) explicitly,
we analyse the map fi z: F1 — Fi(Z) defined in (1.6). As it is surjective, we have
Fi(Z) = Fi/ker(f1,z). Now we can identify the Grassmannian of quotients with the
Grassmannian of subspaces via the canonical isomorphism Grass(C°,2) — Grass(2, C°),
F1/ker(f1,z) ~ ker(f1z)*. Thus n; is the morphism Sis -Hilb(u~1(0)) — Grass(2, C%),
Z v ker(f1.2)*.

2. Over Ojy2 12, the morphism 7 x 7y : 77*1((9[22’12]) — Oz 12) X Grass(2, ") is given by
Za v (A ker(f1,z,)F). For analysing the image, we choose the special point Ay € Op2,12)
again. Description (1.6) combined with (1.3) shows that ker(f1,z, ) = (ps, pa, p5, ps) with
orthogonal complement ker(f; z AO)J— = (p4, p5) by definition of the inner product above.
Since p}Qps = p}Qps = pLQps = 0, this space is isotropic. Thus for every point A in the
open orbit, ker(fi z A)l is isotropic. As being isotropic is a closed condition, n X 77 maps
the closure of the preimage of Opp2 12 under 7, the orbit component, to the isotropic

Grassmannian:

n X 77_1((9[22712]) = Sl -Hilb(p~1(0))® — @[227121 x Grassso(2, C%).

again. We

010

0 —-100

For the additional condition we only need to examine Ag = 000
0

can consider Aj and its transpose A, as maps

Ao: Fr = F1, pa— —p2, p5s = p1, pi—~ 0fori=1,2,3,6,
Ag: Fy — Fi, p1 — ps, po — —p4, p; — 0 for i = 3,4,5,6.

15
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Thus we have im(A}) = (ps,ps) = ker(fl,ZAO)L. Since 1 x n; is SOg—equivariant, the
equality im(A?) = ker(f1 z,)* holds for every A in the orbit Olp2,12] and we obtain

n X 771(17_1(0[22712])) cY' :={(4,U)¢€ Opp212) X Grass;so(2, @6) |im A" = U}.

If A€ Op2q2)\ Op2 12, its rank is smaller than 2 (indeed A = 0), and so is dim(im A").
Hence the closure of Y’ in @[22712] x Grass;s(2,C%) is Y. O

We will see in the further examination that 1 xn; actually is an isomorphism (Proposition

1.3.7), even on the whole invariant Hilbert scheme (Proposition 1.4.4).

1.3.3. The Grassmannian as a homogeneous space

For a further analysis of the image, we consider the isotropic Grassmannian as a homo-
geneous space Grass;so(2, C%) = SOg/P, where P = (SOg)w, is the isotropy group of an
arbitrary point Wy € Grass;s(2, C%). We choose Wy = (p1,p2). If 9y € SOg is chosen
such that W = g,,, Wy, the isomorphism is

GrassiSO(Q,(D6) — SO¢/P, W — g, P = [g,,], gWo < [g].

The projection f: Y 225 Grass;so(2, C%) = SO/ P, (A,U) = U ~ [g,,] makes Y a fibre
bundle with typical fibre E := f~([Ig]) = pry ' (Wp). It can be witten as an associated
SOg-bundle, i.e. Y = SOg x'’ E := SOg x E/~ with relation (g, A) ~ (gp~ ', pAp~1).

Lemma 1.3.6 The fibre E = {A € O 12) | im A" C Wy} is one-~dimensional.
Proof. Let A' = (a;j), i.e. A'p; =" ajipj. We have

e im A" C Wy = (p1,p2), thus a;; =0 if i = 3,4,5,6,

e by duality, Wg- = (p1, pa, p3, ps) C ker A?, which implies a;; = 0 if j = 1,2,3,6.
There only remain ay4, ag4, a15 and ags. But

o Al € s0¢ implies ajq4 = ass = 0 and agy = —ays.

Thus E is isomorphic to Al,. O

16
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Connecting this to the Hilbert scheme, we have

p=(0)/Sl

Sty -Hilb(u =1 (0))or® 7 Y 2 806 xP E

f'=fo(nxn1 /

SOg/P

The existence of f' means that Sly-Hilb(171(0))°"® can be written as an associated
SOg-bundle with fibre F := f'~1([Ig]) and combining the two SOg-bundles we obtain

~

SO xPF — Slo —Hﬂb(u_l((]))orb
(nxm)’i f lnXm
SO¢ xP' E = Y
\\\ //
SOg/P

As 1 x my is birational and proper, restricting (n X 71)" to the fibre over any point of
S0Og yields a birational and proper morphism 1: F' — E. Since F is isomorphic to the
affine line, 1) must be an isomorphism. As a consequence, we get an explicit description
of Sly-Hilb(u~1(0))°r®:

Proposition 1.3.7 The orbit component of the Slo—Hilbert scheme is isomorphic to Y :

Sly-Hilb(1~(0))°" = {(A,U) € Opz12) x Grassiso(2, C°) | im A" € W}

1.3.4. The points of Hilb{(X)"® as subschemes of X

To identify the points of Hilbf(X )orb as subschemes of X, we assume there is an embed-
ding
Hilbf (X)) < X/G x | Grass(Fp, h(p)), Z — (Z//G,(Fp(2))pemr)
pEM
where M C Irr G is a suitable finite subset and F,(Z) = F,/ ker(f,, z) with the restriction
map fpz: F, = F,(Z). This embedding gives us the invariant part and the p-parts of
the ideal Iy of Z as

17



1. An Sls—Hilbert scheme with multiplicities

Thus Iz O In := (Iya, ker(fp.z) | p € M). If Iy already has Hilbert function A, then

Iz has no further generators and we obtain Iz = Ij;.

The points of Si,-Hilb(x~1(0))°* as subschemes of ;171(0)

We are now ready to prove Theorem 1.2 for the points of the orbit component. With

regard to Proposition 1.4.4, the following proposition is in fact Theorem 1.2:

Proposition 1.3.8 The subscheme Zaw C p=1(0) corresponding to (A, W) €Y is

7 ~ SlQ, ZfA S 0[22712],
ML A(e ) |ad—be =0}, FA=o0.

Proof. Considering 1 x 11, which embeds the orbit component Sl -Hilb(x~1(0))?"" into
1 1(0)//Sly x Grass(2,CY) via Z +— (Z//Sla, ker(f1,2)*), we have to compute Z4w =
(n x m)L(A, W) or its ideal I4yy. The action of SOg on the Hilbert scheme and on Y
reduces this to the calculation of one Z4 w for every orbit of Y: Since n x 1y is SOg—
equivariant, all points in the preimage of one orbit are isomorphic. Y decomposes into
two SOg-orbits {(A,im A") | A € Op2 121} = Opz 12) and {0} x Grassis(2, C°), because
the action on Grass;s,(2, C°) is transitive.

First we consider A € Oy 12). Since 7 is an isomorphism of schemes over the flat locus
Oja2,12), we already know that Z, w = n 1 (A) = v1(A) = Sl by Section 1.2.2.

Now let A € Ojp2 121\ Opz2 12) = {0}. Then Zg w;/Sly = 0, so all 2 x 2-minors of elements
in Zow vanish, i.e. (Iow)%2 = (A |4,j=1,...,6).

We calculate the subscheme Zjyw explicitly for W = Wy = (p1,p2). Consider the
map fLZO,WO By — F(Zow,), ¢ — q|ZO’W0. We know that W, = ker(fLZO’WO)J-.
Ifqg =39 api € ker(f1,7, w, ), we have 0 = g(M) = SO a;i(31) for every M e
Zo,w,- Thus, the component of Ipw, corresponding to the standard representation
is (Towy)1 = (20, @iy, S0 aiwe; | ¢ € Wg) and for the induced subscheme
Z yw, = Spec(Clu=(0)]/((Tow,)*" + (To,wy)1)) D Zo,w, we have

MQM! =0,A" =0V 1i,j,
Z?:l Q;T1; = 0= Z?:l a; T Y q € Wd‘ '

In our case, VVOL = (p1,Dp2,P3,P6), thus letting ¢ be each of these generators yields the

equations z1; = 0 = x9; if i = 1,2,3,6. This means that in Z(/),Wo we have M =
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1.4. Properties of the invariant Hilbert scheme

000 50 4 . . .
(0 00;;‘ ;;; 0) and 0 = A% = z4295 — 215224. Then the equation MQM! = 0 is

automatically fulfilled. So we obtain

000 0 X
Z(/) We = 14 T15 c ((D2>€B6
’ 0 0 0 To4 T25 0

T14%T25 — T15T24 = 0} .

Since this is a flat deformation of Sls, the corresponding ideal has the correct Hilbert
function, which means that we obtain I w, = ((I()M/())Sl2 + (Lo,wy 1) and Zopw, = Z(),WO'
O

1.4. Properties of the invariant Hilbert scheme

Up to now we have characterised the orbit component of the Slo—Hilbert scheme only.
To complete the description of the Sly—Hilbert scheme, we analyse some of its proper-
ties. We prove that Sly-Hilb(x~1(0)) is smooth at every point of Sl -Hilb(x~1(0))°"®
in Section 1.4.1, so that the orbit component is a smooth connected component of
Sly-Hilb(~1(0)). By showing that Sly-Hilb(u~1(0)) is connected and hence coincides
with the orbit component, Section 1.4.2 concludes the proof of Theorem 1.1, namely
Sly-Hilb(p1(0)) = {(A, W) € Oppz 12 X Grassiso(2,CO) [ im A* € W}

1.4.1. Smoothness

One way to examine smoothness of the Hilbert scheme is to calculate its tangent space.
If the dimension of the tangent space equals the dimension of the Hilbert scheme at every
point of the orbit component, the latter is smooth and one concludes that there is no
additional component of the invariant Hilbert scheme intersecting it, so Hilb$' (X)) is

a connected component of the invariant Hilbert scheme.

Let Z € HilbY(X), R := I'(X, Ox) and T be the ideal of Z in Ox with space of global
sections Iy. Here is a formula to compute the tangent space of the invariant Hilbert

scheme at the point Z:

Proposition 1.4.1 [AB05, Proposition 1.13] The tangent space of the invariant Hilbert

scheme is given by

Ty Hilb§ (X) = Hompg(Iz, R/17) = Hompg,1,(I7/13, R/12)
= H(Homo,(T7/T%,02))C.
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1. An Sls—Hilbert scheme with multiplicities

Remark 1.4.2 Consider the regular part Z,.4 of Z. If Z is reduced, restricting morphisms

to Zyey yields injections

Homo, (I7/1%,0z) < Homo,,  (Zz,..,/1%,.,,Oz.,) and

HomOZ (IZ/I%’ OZ)G — HomOZTeg (IZ'reg /I%T-e‘gﬂ OZ'reg )G
Taking global sections we obtain

HomR/IZ (IZ/I%’ R/IZ)G — HO(ZT€Q7 HomOZr,-eg (IZreg /1%7«597 OZreg))G'

All these maps are isomorphisms if Z is normal. In this case one can determine the global
\ -
/I2Teg) = Homozmg (Zz7,., /I%mg, 0z,.,) in order to

obtain a description of the tangent space.

sections of the normal sheaf (Zz

reg

The tangent space of Si,-Hilb(u71(0))

In the case of Sly, we use the previous description of the tangent space of the invariant
Hilbert scheme in order to show that the orbit component of Sls-Hilb(~1(0)) is smooth

and connected:

Proposition 1.4.3 For every point Z € Sly-Hilb(u=1(0))°™ the dimension of the tan-

gent space 18
dim T Sls -Hilb(11(0)) = 6 = dim Sy -Hilb(;~(0))°™.

Therefore, the orbit component is a smooth connected component of the invariant Hilbert

scheme.

Proof. As before, we only have to consider one point of each SOg—orbit because the
dimension of the tangent space is stable in every orbit of the SOg—action. Over the open
orbit there is nothing to show, because we know that 7’]71(0[22’12]) = Ojpz,12] is smooth.

Over the origin we consider
0 0 O 14 T15 0

Z = ZO,WU:
0 0 0 mzog 95 O

()

T14T25 — T15T24 = 0}

1

x,ye@,[/\:u]elPl}.
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1.4. Properties of the invariant Hilbert scheme

Our strategy for computing the dimension of the tangent space at this point is the
following: First, we give an explicit description of the ideal Z of Z and of the vector
space C[p~1(0)]/Z and of the dual of the normal sheaf Z/Z?. The scheme Z is normal
since it is a complete intersection and the codimension of Z \ Z,., = {0} in Z is greater
than 2, namely 3. Hence using Remark 1.4.2 we reduce the computation of the tangent
space to the examintation of Z,.,. We give an explicit description of the structure
sheaf and the normal sheaf of this non—affine scheme on an open covering. In order to
simplify this, we further reduce from the consideration of Sla-linearised sheaves on Z.4
to B-linearised sheaves on C?\ {0} for a Borel subgroup B of Sly. After describing the
B-linearised sheaves corresponding to the structure sheaf and the normal sheaf of Z.4
on an open covering of C?\ {0}, we compute their global sections. Finally, the number

of B—invariants of these global sections is the dimension of the tangent space.

Explicit description of the structure sheaf and the dual of the normal sheaf
of Z

We have Z C p=1(0)sing: If M € Z then all of its 2 x 2-minors vanish. This shows
that M € V(X!'JX) = p=1(0)sing, where X = (11 312 713 714 215 216 ) describes the
coordinates in C[z11, ..., zs].

From now on we also write a := x14, b := 15, ¢ := 294 and d := x95. Let Z be the ideal
of Zin R:= C[p~(0)] = Clz11, ..., 7]/ (XQX?). Setting 2 := x14795 — 215724 We have

T = (11, T12, £13, T16, T21, 22, £23, £26, 2),

R/Z = Cla,b,c,d)/(ad — bc).
Then I/I2 = R<{E11, T12,213,L16,L21,L22,X23, L26, z) with relations XQXt =0:

_ 2
0 =z11214 + L1215 + T13%16 = T11a + 12D mod Z
0 = x11724 + T12T25 + T13T26 + T14T21 + T15T22 + T16T23

= x11C¢+ T12d + 2910 + T99b mod Z?

0 = 291294 + T29T95 + T93T96 = T21C + Tood mod Z2.

Reduction to Z,,
We analyse the tangent space TzSls-Hilb(1~1(0)) of the invariant Hilbert scheme by

reducing to

7 i= Zpeg = Z\ {0} = {(0v, o) | v € C*\ {0}, [\ : p] € P'}.
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1. An Sls—Hilbert scheme with multiplicities

Let 7 be the ideal sheaf of Z. As Z is normal, by Remark 1.4.2 we have
TSIy -Hilb(u~1(0)) = HY(Z, Homo,,(T/T?, 0 7))
>~ HO(Z, Homo (Z/1%,0,))°".

Consider the covering of Z by the open affine sets Z, = Spec Ra, Z = Spec Ry, Z. =
Spec R, and Zy= Spec Ry, where

(Cla, b, ¢,d]/(ad — bc))a = Cla,a™ ', b, ¢,d]/(ad — bc) = Cla,a™ ', b, d,
Ry = (Cla, b, ¢, d)/(ad — bc))y = Cla, b, b, d],

(Cla, b, ¢, d)/(ad — be)). = Cla,c,c L, d],

(Cla, b, ¢, d]/(ad — bc))g = Cb, ¢, d, d™1].

In order to describe the sheaf f/fQ, we compute it on each set of this covering. As
7= 7|, and Z coincide on an open subset, T/7? is generated by z11, 212, 213, 16, Ta1,

To9, T93, Tog, Zz With relations

0=x11a + 2120
0 = z11¢+ z12d + 2210 + T22b

0 = xo1c + x22d.

Since a is invertible in R,, the first relation yields x1; = —%$12. The second relation

becomes 0 = —g$120 + 3512@ 4+ 91a + Toob = x91a + Toob, thus x91 = —35622. Then

the third equation 0 = —éxggc + 3322@ is automatically fulfilled and gives no more

information. Denoting 7, = I\Z-a, this shows that

o
To/I; = Ro(w12, 213, T16, T22, T23, T26, 2)

is free of rank 7. This means that i/iQ is locally free of rank 7, since we obtain analo-

gously
Ty/IE = Ry{x11, 13, T16, T21, T23, T26, 2),
I./TI? = R(x12, 713, T16, T22, T23, T26, 2),
T4/I7 = Ra(z11, 13, T16, T21, T23, T26, 2).
Let Zab = Spec R,,. We obtain
Ra, = Cla,a™,b,b71 ¢,d]/(ad — be) = Cla,a™t,b,b7 L, ] = Cla, a1, 6,071, d],
Tap/T% = Cla,a™1,b,b7 L, ¢|(x12, 713, T16, T2, To3, T26, 2)

1, -1
= Cla,a™",b,b" ", d|{x11, 213, T16, T21, T23, T26, 2)
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1.4. Properties of the invariant Hilbert scheme

with d = gc and base change 11 = —%xlz and z91 = —§$22.

Reduction of Sl,—linearised sheaves to sheaves linearised with respect to a
Borel subgroup

To compute HO(Z,Hom(f/iQ,OZ))SZ2, we reduce the Sly-linearised sheaf Z7/Z% on Z
to a B-linearised sheaf on €2 \ {0}, where B = {({ " )’ t € C*,u € C} is the Borel

subgroup of upper triangular matrices of Sls.

Claim Z is an associated Slo—bundle:
Z = Sly xB E, where E={(\e1,per) | [\:p] € P1} = C?\ {0} and e; = ((1))
Proof. There is a natural map
0: Z —PLx P (O, ) = ([v], [\ p)).

Since g - (Av, pv) = (Agv, pgv) for every g € Sly, the map ¢ is equivariant for the action
g- (W], [N p]) = ([gv], [A : p]) on P x PL. This yields an equivariant projection

m: Z — P (Ow, ) — [u].

Further, there is an isomorphism Sly/B — P!, (91 952) - B [g11 = g21]-
We have E = 7 '([e1]). The action of B on E induced by the action of Sly on Z is
b-(Nep, per) = (e, tuer). Thus on C2\ {0} we have b- (A, 1) = (t)\, tu), i.e. the action
of B on ©?\ {0} coincides with the action of C*. This proves the claim.

Now an Slp-linearised sheaf F on Z corresponds to a B-linearised sheaf G on €2\ {0}
as well as their duals correspond to each other. If j: ©2\ {0} < Z denotes the inclusion
and e = I- B € Sly/B = P! we obtain G as the fibre F(e) = j*F. In the other direction
we have F = Sl xB G.

The invariant global sections of corresponding sheaves coincide:
H(Z, Homo , (F,0,))%2 = HO(C?\ {0}, Homo (G, Ogay o)) B,
) P Yo ) 2\ (o} 72 Y C\{0}

We take F = Z/Z? and are interested in determining the dual of j*F.
As Ogz = C[\, p) and C?\ {0} = C%\ {0}, U ©?\ {0},, the structure sheaf is given by

O\ (03 (C*\ {0})) = AN ],
O\ (03 (C*\ {0},) = CIA, p, 1Y
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1. An Sls—Hilbert scheme with multiplicities

In our case the inclusion is j: ©2\ {0} = Z, (A, u) — (2#), so on the level of rings we

00
have a — \, b — 1, ¢ — 0 and d — 0. This means that j*(Z/Z?) is given by
FZ/TH (T \ {0}2) = CIN AL (w12, 213, 216, T22, T3, T26, 2),
F(Z/TH(C?\ {0},) = C, p, w211, 213, T16, Ta1, T23, T26, 2),
F(Z/TH(C*\ {0}x,) = CIN AT, (w12, 213, 216, T22, T3, T26, 2)
= @P\ AT 17M H 1]<3711,$137$16,9€21,$23,$267Z>
with base change x11 = —§x12 and 291 = —§x0s.

To compute the dual j*(Z/72)" = Homo,, o, (I/i’Q,O@z\{O}), denote by (y;j, w) the
basis dual to (zi5,2), i.e. yij(Tr) = d(ijyk)» ¥ij(2) = 0, w(wi;) = 0, w(z) = 1. Then we

have
FHT)T2) (€2 \{0}n) = CIN A, 1] (W12, v13, Y16, Y22, Y23, Y26, W),
j*(f/jQ)v(®2 \ {O}u) = @[)\ Ly ]<y117y13,yl67921a Y23, Y26, W >>
7 (Z/T3) (0% {0}a0) = CIATY w7 (W2, Y13, Y165 Y22, Y23, Y26, W)
= CIANATY 1 w1, 13, Yies v21, Y23, Y26, W)
with base change Y11 = —%ylg and Y21 = —%ygg.

Computation of the global sections
The global sections HO(C2 \ {0}, 5*(Z/Z%)") are the kernel of the map

HO(C\0}y, (Z/7%) ) @ HO(CA{0},, 5*(Z/1%)") 5 HO(CA{0}r 5*(Z/T)),
(p, @) = Ple2\(oy,, — dle2\{0)s,-

Let

P = P1y12 + Pavis + P3yie + payez + psyes + peyas + prw, pi € CIA AT ],
q = QY11 + QY13 + q3Y16 + Qay21 + g5y23 + Gey2e + qrw, ¢ € CI\ p,p Y]

N N
Denote p; = ?D and ¢; = Z% with pl¥, ¢V € C[\, p], pP € C[)\] and ¢ € Cly], pV, pP

relatively prime, as well as ¢¥, ¢”. In C[A\,A\7%, u, u~1] we have

A A
q= —;quu + QY13 + q3Y16 — ;qwm + q5Y23 + q6Y26 + qrw.

Thus if i € {2,3,5,6,7}, for p and ¢ to be equal in C[\, A\™1, i1, u~1] we must have p; = ¢;,

i.e. pZN . qiD = pZD . qZN. As pZN and piD have no common factor, piD must divide qiD. But
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1.4. Properties of the invariant Hilbert scheme

pZD is a polynomial in A while qiD is a polynomial in u. This forces pZD to be constant,
without loss of generality plD = 1. This immediately implies qiD = 1 since qlN and qiD are

coprime. We obtain p¥ = p; = ¢; = ¢)¥ € C[\, p].

Ifi=1or 4, we see p; = —%qi, or up; = —Ag;- Thus pY¥ = A\p¥, ¢V = —pupl¥ with some
PN € C[\, p) and pP =1 = ¢ as before. This yields

H'(C?\ {0}, Homo,, o, (1" (Z/1%), Oce o)) = ket
= {(Ap1y12 + p2vy13 + P3yi6 + APay22 + Psy23 + Dey2e + Drw,

— Up1y11 + P2yi13 + P3Yie — MPaY21 + P5y23 + Pey2s + prw) | pi € C[A, pl}
= C[\, p1]{Ay12, Y13, Y16, AY22, Y23, Y26, W),

which is a free module of rank 7.

Computation of invariants

Let us now consider the actions of Sls and B on these modules. Let g = (%31 732). Then

g T = g11%1; + 912224, g X2 = g21%1; + 92272,
g-a = gia-+ gia¢, g - c= g210+ g22€,
g-b=gnb+ gi12d, g-d = go1b+ good,

gz =g(x14225 — T15224)
= (911214 + g12724) (921215 + g2225) — (911215 + g12225) (921714 + g22224)

= (911922 — 912921)(T14%25 — T15T24) = 2.

The action on the dual is determined by

Q
<
5
—~
8
L
~
<
=
S
—~
Q

$1z’) = yu(922561i - 912902z') = 922,
g- ylz‘($2i) = yli(g_ll‘%) = ylz‘(—gzlﬂfu + 911962z‘) = —g21
*Y1i = g22Y1i — 921Y2i,

_1$1i) = yQi(922561i - 912902z') = —g12,

2i(9_196‘2z') = ym‘(—gzlﬂ?u + 911962z‘) = J11
= g Y2 = —9g12Y1i + 911928,

g -w(z)=w(g 'z) = w(z) = g -w=uw.
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1. An Sls—Hilbert scheme with multiplicities

Correspondingly, over €2 \ {0}, the action of g = (| %) is

g-\=1t\, g - Ty = txy; + uxy, g -y =t yu,
g-p=1tu, g - Toj = t_lmi, g Yy2i = —uyi; + Y2,
g'Z:’Zﬂ g'w:w

Considering the decomposition B = TU with torus T' = {(6 t91 )} and unipotent radical

U={({%)}, we can compute the B-invariants stepwise:

(D[)\v M] <)\y12, Y135 Y165 AY22, Y23, Y26, ’w>B: ((DP\, M] <>\y12, Y135 Y165 AY22, Y23, Y26, w>U)T-

Let u=(§%). We have

u- A=A\, u- Ay12 = A\y12,

u-p=p, U Y13 = Y13, invariants

u-w=uw, U - Y16 = Y16,

u - Ay22 = A(—uyi2 + y22) = —udy12 + \ya2, )
cannot be combined

U - Y23 = —UY13 + Y23, ) )
to form invariants.

U - Y26 = —UY16 T Y26

So we gain

C\, ul(Ay12, y13, Y16, AY22, Y23, Y26, w) Y = CA, pl(A\y12, y13, Y16, w).

To compute the T—invariants, let t = (t t(_)l ) We obtain

0
degree 1: invariants: degree —1:
L-A=1tA, t-w=w, t-yz =t s,
t-p=tp, - A1z = tA ty1a = Ayio, t-yi6 =t yi6.

This yields the invariants w, Ayi2, Ay13, puy13, Ayie and pyi1g. So we have computed

H(Z,Hom(Z/1%,04))%" = H*(C?\ {0}, Hom(Z/Z?, Ogs2\(0}))”

= C(Ay12, A\y13, 1y13, AY16, (Y16, W).

This means that Tz Sls -Hilb(~1(0)) is 6-dimensional and therefore the orbit component

of the invariant Hilbert scheme is a smooth connected component. O
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1.4. Properties of the invariant Hilbert scheme

1.4.2. Connectedness

To examine connectedness we look at C*—actions:

If there is a C*—action on X which commutes with the G—action, it descends to a C*-
action on X//G so that the quotient map X — X//G is C*—equivariant. In this case, one
way to investigate whether the invariant Hilbert scheme is connected is to compute the
induced C*-action on Hilb{ (X) and to determine all fixed points of C* in X//G. The
Hilbert—Chow morphism is proper and C*—equivariant, therefore for every fixed point x

in the image there is at least one fixed point in every connected component of the fibre
n~! (@)

Remark. Let (X//G). denote the flat locus of the quotient map. Since 1, -1((x/q),) is an
isomorphism, every irreducible component of the invariant Hilbert scheme different from
Hilby (X)?* = n=1((X/G),) only contains points of the fibres over X /G \ (X//G).. If
one can show that all connected components of these fibres meet the orbit component,
and additionally one knows the orbit component to be smooth, then there cannot be any
further component. In this case Hilb{ (X) = Hilb{’ (X)) is connected.

Connectedness of SI,-Hilb(u~1(0))

The next proposition shows that Sls-Hilb(1~1(0)) is connected. This is the remaining
step to conclude the proof of Theorem 1.1 because we have already shown that the

orb

connected component Sls -Hilb(x~1(0))°"? is smooth.

Proposition 1.4.4 The invariant Hilbert scheme Sy -Hilb(u=1(0)) s connected, hence

it coincides with its orbit component and we have

Sly-Hilb(p~1(0)) = Sly -Hilb(~*(0))°™
= {(A, W) € Opz 12) x Grass;so(2, C%) | im A € W}.

Proof. We consider the action of C* on x~!(0) by scalar multiplication and the induced
action on p~1(0)/Sly = Oppz12). For t € C and M € p~'(0) we have (tM)'J(tM)Q =
t2(M'JMQ), thus the action on the quotient is multiplication with #?. Then the only
C*-invariant element A € Opp212] is A = 0, so all fixed points of Sly-Hilb(u~'(0)) map
to 0.

The induced action on Sly-Hilb(;~1(0)) maps Z to tZ. If Z is an Sly-invariant sub-

scheme of M*I(O), then tZ is also Slo—invariant because the action of Sl commutes
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1. An Sls—Hilbert scheme with multiplicities

with scalar multiplication. Secondly, the global sections of Z and tZ and their isotypic
decompositions coincide, so indeed tZ € Sly-Hilb(u~1(0)).

The following Lemma shows that the set of C*-fixed points in Sly-Hilb(p~1(0)) is
Grass;so(2, C%), the fibre of Sly-Hilb(1~1(0))°™ over zero. Consequently, n~1(0) has
no further components, and the same is true for Sy -Hilb(u~1(0)). O

Lemma 1.4.5 The set of fized points in Sl -Hilb((C?)®%) under the C*-action is iso-
morphic to the Grassmannian Grass(2, C%) of 2-dimensional subspaces of C°. Its subset
of C*—fized points in Sly-Hilb(u=1(0)) is given by Grass;so(2, CO).

Proof. Let Z C (C?)®6 be a C*fixed point in Sl -Hilb((C?)®%) for the first assertion
and in Sl -Hilb(x~1(0)) for the second one. Equivalently, its corresponding ideal Z is
homogeneous. Then the Hilbert—Chow morphism maps Z to 0, so all 2 x 2-minors of
each element in Z vanish. Hence 7 contains all the 15 minors A%,

Now let us analyse the homogeneous invariant ideals Z in R = Clz1, ..., x2], contain-
ing all A%/, with isotypic decomposition R/Z = Daen, Vd®(d+1), where Vy; = Clz,ylq.
Afterwards we will restrict to ideals containing X@QX?, which are the fixed points of
Sl -Hilb(p~1(0)).

The representation (C2?)®% = Hom(C%, C?) consists of 6 copies of Vi, so that its coor-
dinate ring R is isomorphic to P, cn, S™(V,#9). Since R = Ben, 5" (Hom(CO, C?)*)
is graded and 7 is homogeneous, R/Z is still a graded object. The invariance of Z guar-
antees that Z; is a subrepresentation of Hom(C®, C?)*, i.e. there is a subspace V C C5
such that Z; = Hom(V,C?)*. The isotypic decompostion of R/Z requires exactly two
copies of Vi, and they must already come from R;/Z;, since no such copy can be con-
tributed or killed by generators of higher degree. If the dimension of V' were 5 or 6
then R;/Z; would consist of one or zero copies of Vi, respectively, hence it would be
too small. If dim V' < 3 then R;/Z; would be too big because it would contain at least
three copies of V. Thus we know that dim V' = 4, so that after a transformation of
coordinates we can write Z O J = (3, Y3, T4, Y4, T5, Y5, T6, Y6, T1Y2 — Y1&2), since the
other 2 x 2-minors x;y; — y;z; do not contribute to the generation of the ideal. Then
R/J = Clx1, 1,22, y2]/(x1y2 — y122) is the coordinate ring of a flat deformation of Si,

Vd®(d+1) as desired. Hence we need no further

and has isotypic decomposition o,
generators and 7 = J.
So the fixed points in Siy-Hilb((C?)®%) under the C*-action correspond to the choice

of a 4-dimensional subspace of €% Hence it is parameterised by the Grassmannian
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1.4. Properties of the invariant Hilbert scheme

Grass(4, ©%), which is isomorphic to Grass(C?,2) and Grass(2, C°).

For Z to be contained in ~1(0) we have to pick only those ideals which contain X QX?,
so that we have MQM?" = 0 for every M € Z. We interpret M € (C?)®5 as a map
C% — €2 The fact M € Z = Spec(R/Z) means that M vanishes on V, so we can
interpret it as a map C%/V — ©2. As the inner product on (C?)®6 is induced by the
inner product on €O, the condition MQM! = 0 for every M € Z is equivalent to the
vanishing of v!Qu for all v € ©%/V. This shows that Z O (XQX?") if and only if C/V

is an isotropic subspace of CS. O

Remark. Since p~'(0) c (€C?)%5, the invariant Hilbert scheme Sily-Hilb(x~1(0)) is a
subscheme of Sly-Hilb((C?)¥5). The calculation of the fixed points suggests that the
fibre over 0 of Sly-Hilb((C?)%%) contains the whole Grassmannian. Indeed one has
Sl -Hilb((C?)%%) = {(C€?)®6//Sly x Grass(2,C®) | im A* C W} as a forthcoming work

by Terpereau will show.
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2. (G, h)—constellations

In this chapter, we generalise the notion of G—constellation, originally introduced by Craw
and Ishii in [CI04] for finite groups, to the case of reductive groups. In our definition, we
replace the isotypic decomposition of the regular representation by an isotypic decom-
position given by a prescribed Hilbert function h. Further, we adapt Craw and Ishii’s
notion of #—stability and f—semistability and we introduce the moduli functors Mpy(X)
and My(X) of §-stable and f—semistable (G, h)—constellations, respectively. Then in
Section 2.2 we show that f-semistable (G, h)-constellations satisfy a certain finiteness
condition. Afterwards, we examine flat families of (G, h)—constellations and reduce the
verification of the 6—(semi)stability condition to finitely many subsheaves only. The
aim is to constuct a moduli space of 6-stable (G, h)-constellations representing My (X),
which, for a special choice of 0, recovers the invariant Hilbert scheme. Indeed, in Section
2.3 we show that if h(po) = 1 and 6 is chosen appropriately, then My(X) coincides with

the invariant Hilbert functor.

2.1. Definitions

As in the previous chapter, let G be a reductive group, X an affine G—scheme and
h: Irr G — Ny a Hilbert function, where Irr G denotes the set of isomorphy classes of

irreducible representations p: G — GI(V,).

Definition 2.1.1

1. Let R, :== P
A (G, h)—constellation on X is a G—equivariant coherent Ox—module F such that

petr ©"P @@ V, be the G-module with multiplicities given by h.

HO(F) is isomorphic to Ry, as a representation of G.

2. Given a scheme S, a family of (G,h)—constellations over S is a coherent sheaf
Z on a family of affine G—schemes X over S in the sense of [AB05, Definition

1.1], i.e. on a scheme X equipped with an action of G and an affine G—-invariant
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2. (G, h)—constellations

morphism X — S of finite type, such that the restrictions F(s) = F |y are
(G, h)—constellations on the fibres X'(s) := X xg Spec(k(s)).

We would like to represent the functor that assigns to a scheme S the set of families of
(G, h)—constellations on a scheme X. In general, the set of (G, h)-constellations on X
is too large to be parameterised by a scheme. Hence, to construct a moduli space of
these objects, we restrict ourselves to (G, h)-constellations satisfying a certain stability
condition # € Hom(Irr G, Q) = Q" . To define such a stability condition, we first need
to associate to ¢ a function on the representation ring R(G) = @ ey, Z - p and on the

category Coh®(X) of G-equivariant coherent Ox-modules:

Definition 2.1.2 If § € Q"¢ we define a function §: R(G) — QU {oo} by

O(W) = (0,hw) == Y 6, -dimW,
pElrr G
where W = @pehrG W, ®@¢ V, is the isotypic decomposition of W.

In order to consider # as a function §: Coh®(X) — Q U {oo} we set

0(F) :=0(H(F))= > 6,-dimF,
p€lr G
with HO(F) = D, et Fr ®c Voo In particular, if F is a (G, h)-constellation, then
H(F) - ZpGIrrG gph(p)-

We are now in the position to define the stability condition we need on (G, h)-constel-

lations:

Definition 2.1.3 A (G, h)—constellation F is called 8—-semistable if 6(F) = 0 and if for
all G—equivariant coherent subsheaves /' C F we have 6(F’) > 0. Moreover, F is called
O—stable if O(F) = 0 and if for all non—zero proper G—equivariant coherent subsheaves
0# F' C F we have 6(F') > 0.

For convenience, we replace the similar conditions for stability and semistability by set-
ting everything concerning semistability in parentheses and we introduce the symbol
“2" A (G, h)—constellation F is called §—(semi)stable if 6(F) = 0 and if for all non-zero
proper G-equivariant coherent subsheaves 7' C F we have 6(F') > 0. In the same way,
“<7 stands for “<” in the case of semistability and “<” in the case of stability.
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2.2. Finiteness

Remark 2.1.} Every G-equivariant subsheaf F’ of F induces a G-equivariant quotient
F" := FJF" of F. Conversely, every G—equivariant quotient o: F — F” induces a G-
equivariant subsheaf 7’ := ker @ of F. In both cases the corresponding Hilbert functions
satisfy hz + hgr = h, so that 6(F) = 6(F') + 0(F"). Thus a (G, h)-constellation F
is f—semistable if and only if §(F) = 0 and if for all non—zero proper G-equivariant
quotients F — F” we have O(F") < 0, and F is f-stable if and only if §(F) = 0 and if
for all G-equivariant quotients F — F” we have 0(F") < 0.

Now we define the moduli functors that we will consider in the following:
Definition 2.1.5 The moduli functor of 8-semistable (G, h)-constellations on X is
My(X): (Sch/C)° — (Set)
S — {F an S—flat family of f—semistable (G, h)—constellations on X x S}/,
(f: 8" = 8) = (Mp(X)(S) = My(X)(S"), F > (idx xf)*F).

The moduli functor of f-stable (G, h)—constellations on X is

My(X): (Sch/C)°? — (Set)
S+ {F an S-flat family of #-stable (G, h)-constellations on X x S}/~,
(f: "= 8) = (Mp(X)(S) = Mg(X)(S"), F — (idx xf)*F).

2.2. Finiteness

Our strategy to construct the moduli space My(X) of 6—stable (G, h)—constellations is
to show that all 6—(semi)stable (G, h)-constellations are quotients of a certain coherent
Ox—module H and to obtain our moduli space by considering the invariant Quot scheme
Quot®(#H, h) and its GIT-quotient.

In order to do that fix # € Q"¢ such that 0, < 0 for only finitely many p € Irr G. This

induces a decomposition

>07 p€D+7
IrrG=DyUDyUD_ such that 0,¢ =0, pé€ Dy,
<0, peD_.

By the assumption on 6, the set D_ is finite. Since 0(F) is supposed to be 0 for any 6—
semistable (G, h)—constellation F, the values of 6 have to be chosen such that (6, h) = 0.

In particular, the series > 8,h(p) is convergent.

plrr G
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2. (G, h)—constellations

Remark 2.2.1 If 6 = 0 or at least 6, = 0 whenever h(p) # 0, then every (G,h)-
constellation is #-semistable, but there are no 6-stable (G, h)-constellations. This case
is not of any interest. To avoid this, in the following we will always assume that there is
an irreducible representation p such that 6, # 0 and h(p) # 0. In particular, D_Nsupp h

and D, Nsupph are assumed to be non—empty.

Let F be a 6—(semi)stable (G, h)—constellation and F' a G—equivariant coherent subsheaf
of F. Let HY(F') = D c1r ¢ Fp @V, be the isotypic decomposition of its global sections.
Then we have h'(p) := dim F, < h(p) for every p € IrrG. Since D_ is finite, 6(F") is

also a convergent series and we have
O(F') = 0,1 (p) = 0, h'(p)+ 0, W(p) > O.
(F)= D 6l ()= 0, Ko+ > 6, Wlp) 2

pElrr G peED_ 20 >0 peED S0 >0

|

<0 >0

As a philosophy, if F is to be 6—(semi)stable, the values h'(p) should be as large as
possible in D, and as small as possible in D_. This means that all subsheaves of F
should be similar to F in positive parts and they should nearly vanish in negative parts.
In other words, the most destabilising subsheaf of F is the subsheaf of F generated by
its summands in D_.

We have the following finiteness result:

Theorem 2.2.2 If F is a O-stable (G, h)—constellation on X, then il is generated by
@,)ep, Fo @c V), as an Ox—module.

Proof. Consider the Ox-submodule 7’ of F generated by @ ,cp Fp ®c V). Then we

have:
W(p) =h(p) for pe D_,
/

=h
K(p) < h(p) for pe€ Dy U Dy.
This implies
6F) = 3 00 () + 3 k() < S () + S B,h(p) = 6(F) = 0.
pED_ pED peED_ pED 4
Since F is f—stable this means that 7/ = F, because otherwise F’ would destabilise F.
This shows that every f—stable sheaf F is generated by € peD_ Fo Qg V). O

Definition 2.2.3 If a (G, h)-constellation F on X is generated by P cp Fp ®c V) as

an Ox—module, we say F s generated in D_.
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2.2. Finiteness

Remark 2.2.4 If we even have § € (Q \ {0})"™ ¢ then the theorem also holds for 6-
semistable (G, h)—constellations F. For then in the proof §—semistability yields 6(F") = 0

and hence h'(p) = h(p) for every p € Dy. Since Dy = () in this case, this already gives
F'=F.

This finiteness result causes us to define the following free O x—module of finite rank:

h(p)dimV,

pED_

(2.1)

Then by Theorem 2.2.2 it follows that every 6—(semi)stable (G, h)-constellation can be
obtained as a quotient of H (if # € (Q \ 0)'¢). We will establish this in more detail in
Section 4.1. Consequently, we may consider QuotG(H, h) to construct the moduli space

of f-stable (G, h)—constellations.

Another consequence of the consideration of D_ is that 6—(semi)stability can be proven
by checking finitely many subsheaves only, as the following sequence of propositions and

lemmas shows.

Proposition 2.2.5 A (G, h)-constellation F is 0—(semi)stable if 0(F) = 0 and for all
non—zero proper G—-equivariant subsheaves FCF generated in D_ we have 9(.%) & 0.

Proof. Assume that 9(% ) 2, 0 for every proper G—equivariant subsheaf FCF generated
in D_ and let 7’ be a G-equivariant subsheaf of F. Consider the subsheaf F* of F’
generated by the F,, p € D_, so that we have h*(p) := dim F; = h'(p) for p € D_ and
h*(p) < h'(p) for p € Irr G\ D_. Since F* is generated in D_, we have

OF )= 0 0p) + > 6, Wp)

peD_ pelrr G\D_ 2v0

> D 00 () + Y Gph*(p) = 6(F) 2 0.

pED_ pElrr G\D_

Lemma 2.2.6 The family of pairs

{(fvf’)

is bounded, i.e. there is a noetherian scheme Z, a coherent sheaf of Ox xz—modules F

and a G-equivariant coherent subsheaf F' of F such that the family (2.2) is contained

F a (G, h)—constellation generated in D_, (2.9)
F' C F a G-equivariant coherent subsheaf generated in D_ .

in the set {(F|x xspec(k(z)),Z |xxSpec(k(z))) | # @ closed point in Z}.
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2. (G, h)—constellations

Proof. The set of (G, h)—constellations F generated in D_ is parameterised by a subset
of the noetherian scheme Quot®(#,h). For a fixed F the subsheaves ' C F generated
in D_ are determined by the choice of subspaces .7-'{’) C F, for p € D_. Hence they
are parameterised by a subset of [[,cp ZS& Grass(k, ©™P)). Thus the set (2.2) is
parameterised by a subset of Quot®(H,h) x [en HZ(:pg Crass(k, C"P). This is a
noetherian scheme, so the family (2.2) is bounded by the universal family of its functor

of points. O

Remark. Our notion of boundedness differs from [HL10, Definition 1.7.5] in the require-

ment on Z not to be of finite type but noetherian only. This is enough for later use.

Proposition 2.2.7 There is a finite set of Hilbert functions {hi,...,hy} such that for
any O-stable (G, h)-constellation F and any G-equivariant coherent subsheaf F' of F
generated in D_, the Hilbert function h' of F' is one of the hy,... hy.

Proof. Since any f-stable (G, h)—constellation is generated in D_ by Theorem 2.2.2,
Lemima 2.2.6 says that the family of pairs (F, F’) with F a 6-stable (G, h)—constellation
and F' a G-equivariant coherent subsheaf of F generated in D_ is parameterised by a
noetherian basis Z and bounded by a pair of coherent sheaves (%, #’) on X x Z. The
family (#,.%") is not necessarily flat on Z, but we can use [Gro61, Lemme 3.4] to obtain
a flattening stratification of Z, that is a finite decomposition Z = [[;"; Z; of Z into a
disjoint union of locally closed subschemes Z; C Z such that (F|z,, #'|z,) is a flat family
on Z;. Then for all z € Z; the fibres % (z) have the same Hilbert function h;.

Lemme 3.4 in [Gro61] is only formulated in the case where Oxxz and (#,.%’) are
graded over Ng, Oxxz is generated by (Oxxz)1 and h is a polynomial. We reduce
our situation to this setting as follows: Define a map a: Irr G = }N(r)kG — Ny via p =
> piclie G TiPi = > peler G Tis where all but finitely many n; vanish. Then Ox« 7 is graded
over No with (Oxxz)n = @a(p):n(oXxZ)p- The same holds for .# and .%#’. The function
p: No = No, p(n) = 3_4(,)=, h(p) describes the rank of the .7, and analogously we have
p’ for .Z7’. Further, there is a degree d such that the ring Og((i)xz = @nelNo (Oxxz)nd is
generated by (Og?)xz)l = (Oxxz)qg- Fori=1,...,d—1set F':= @n@NO Fitnd, S0 that
F =7 ... @ %1 Then all the .F' are (’)g?)x ,—modules and each corresponding
function p’ with p’(n) = rk.Z}

n

is a polynomial. By [Gro61, Lemme 3.4] we find a
flattening stratification for each .#*. In the same way we obtain a flattening stratification

for the (#')!. Their common refinement yields a flattening stratification for (%, .%'). O
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2.3. The invariant Hilbert scheme as a moduli space of (G, h)—constellations

Corollary 2.2.8 With the notation of Proposition 2.2.7, a (G, h)—constellation F is 0—
(semi)stable if O(F) = 0 and for all i = 1,..,n with h; actually occurring as a Hilbert

function of some non—zero proper G-equivariant subsheaf of F generated in D_, we have

(6, hi) 2, 0.

2.3. The invariant Hilbert scheme as a moduli space of

(G, h)—constellations

For recovering the invariant Hilbert functor (cf. Definition 1.1.1) and the invariant Hilbert

scheme, one has to choose 6 such that D_ consists of the trivial representation only:

Proposition 2.3.1 If h(pg) = 1 and 0 is chosen such that D_ = {pg}, then the moduli

functor of O—stable (G, h)—constellations coincides with the invariant Hilbert functor:
Mog(X) = Hilb§ (X).

Proof. Let S be a noetherian scheme over C, s € S a point and F = .% (s) a fibre of a flat
family .Z of (G, h)—constellations on X x S generated in D_. The condition D_ = {po}

means 6,,h(po) = — >. 6, h(p) <0. For any G-equivariant subsheaf ' C F we have
ST
>

O(F)= Y. 6,k (p). Taking into account that h(pg) = 1 there are two cases for h’(po):
pelr G Z\h?';
p

e 1/(pg) =1 =h(po): In this case

OF ) =0p -1+ > ()= D 0, (W(p)—hip)) <0,
pelrr G pE€lrr ~0 20
PFPO p#po  ~

so for stable F this case cannot occur.

e Hence for stable F we have h/(pg) = 0, so that no proper subsheaf of F contains
Vpo- Thus the Ox—module generated by V), is F, i.e. F is cyclic. Hence it is
isomorphic to a quotient of Ox and we have F = Oy, for some Zg € Hﬂbf(X ).
This means that F = Oz for Z = {(Zs, s) | s € S} € Hilb§ (X)(9).

Conversely, consider an element Z € HilbY (X)(S). Every fibre Oz(s) of its structure
sheaf is generated by the image of 1 € Oy, which is an invariant. Therefore, every proper
G—equivariant subsheaf F’ of Oy satisfies h/(pg) = 0 and hence 8(F') > 0. So Oz(s) is
O—stable for every s € S, which means Oz € My(X)(S5). O
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2. (G, h)—constellations

Corollary 2.3.2 If h(py) = 1 and 0 is chosen such that D_ = {pg}, then My(X) is rep-
resentable and the moduli space of 0—stable (G, h)—constellations is My(X) = Hilb{ (X).
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3. Geometric Invariant Theory of the

invariant Quot scheme

In the last chapter we have shown that every 6-(semi)stable (G, h)-constellation is a
quotient of H := @peD_ CMP) @¢ V, ®c Ox. Now we consider the invariant Quot
scheme Quot®(#, h) parameterising all G-equivariant quotient maps [q: H — F], where
F is a G—equivariant coherent Oxy-module whose module of global sections is isomor-
phic to Ry, = @pelrrG Vp@h(p). In Section 3.1 we construct an embedding of the in-
variant Quot scheme into a product of Grassmannians generalising the embedding (1.7).
This equips Quo‘cG(?'-[7 h) with an ample line bundle .Z. Thereafter we discuss the geo-
metric invariant theory (GIT) of Quot®(#, k) in order to obtain a categorical quotient
QuotG(H,h)SS//jX I’ of GIT-semistable quotients and its subset of stable objects, the
geometric quotient QuotG(H,h)s//gx I = QuotG(H,h)s/F. Its subset which contains
the #-stable (G, h)—constellations will be our candidate for the moduli space of #-stable
(G, h)—constellations. Here, I' denotes the gauge group of H and .Z, is the ample line
bundle .Z with linearisation depending on the choice of a character x of I'. We describe
these parameters in Section 3.2. Afterwards, in Section 3.3 we examine 1-parameter sub-
groups of I' and establish their description via filtrations of the vector space €5 pED_ Chle)
in order to obtain Mumford’s numerical criterion for GIT—(semi)stability in Section 3.4.
Out of this we eventually establish a condition for GIT-(semi)stability by considering
subspaces of P pED_ CMP) instead of filtrations. This condition will be used to compare
GIT-(semi)stability to 6—(semi)stability in Chapter 4.

3.1. Embeddings of the invariant Quot scheme

Let H be any coherent G—equivariant O x-module with isotypic decomposition H(H) =
@D, e Ho ®c Vp and h: Irr G — Ny a Hilbert function satisfying h(po) = 1. Then we

consider the invariant Quot scheme Quot®(#H,h) as constructed in [Jan06]. Before we
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3. GIT of the invariant Quot scheme

address ourselves to the geometric invariant theory of the invariant Quot scheme, we first
construct an embedding of Quot(H, h) into a finite product [1,cp Grass(Hy, h(o)) of

Grassmannians generalising the closed immersion (1.7).

First, we construct an embedding of the invariant Quot scheme into a finite product of

ordinary Quot schemes:

Proposition 3.1.1 There is a finite subset D C Irr G such that

Quot®(H, n) — [ Quot(Hy, h(p)), lq: H — Fl — (al,: Hp — Fp) (3.1)
peD

15 injective.

Proof. Let [u: H W Oquor630) — Ul € Quot®(H, h)(Quot®(H, h)) be the universal
quotient. Denote by K := keru its kernel. If p: X x Quot?(H,h) — Quot®(H,h)
is the projection onto the second factor, then we consider the isotypic decomposition
PIC = @pehrG K,®¢V,. Let D be a finite set such that K is generated by the K, ®¢ V),
p €D as an C’)XXQuotc(%h)fmodule.

First we show that the universal quotient can be reconstructed from the OQuotG(H,h)*
module homomorphisms 7,: H, X (’)Quotc(%h) — U, for p € D.

Since G is reductive, we have K, = ker(H, B Oq,006 (3 ) = Up) for every p € IrG.
Thus, if we are given 7, for p € D we also have K, for p € D. Hence we obtain K, since it
is generated by the K, @ V), p € D. Therefore we can reconstruct U := coker(IC — H).
Now if S is an arbitrary noetherian scheme and [¢: HXOg — F] € Quot®(H, h)(S) then
there exists a unique morphism a: S — Quot®(#,h) such that [q] is the pull-back of
the universal quotient: a*u = q: HX Og — o*U = F. Since U is flat over QuotG(H, h),

the functor a* is exact. Hence we have an exact sequence of Ox«s—modules
0— 'K —HNROs -5 a*U — 0.

Therefore, ker ¢ = a*K is generated in the degrees in D, so that it can be reconstructed
if ker g, for p € D is given.

This shows that the map of functors Quot®(H,h) — [[ Quot(H,, h(p)) is a monomor-
peED
phism. Then this also holds for the morphism of schemes (3.1). O

The next step is to embed each Quot scheme Quot(#,, h(p)) into a certain Grassmannian:

40



3.1. Embeddings of the invariant QQuot scheme

Proposition 3.1.2 For each p € Irr G there is a finite dimensional vector space H, and

a surjection C[X//G] @¢c H, - H, which induces an embedding
Quot(H,, h(p)) — Grass(H,, h(p)). (3.2)

Proof. Denote Q, := Quot(H,, h(p)). Let [u,: HXR Oq, — U,] € Quot(H,, h(p))(Q,)
be the universal quotient. By the definition of the Quot scheme, the Og, —module U, is
locally free of rank h(p). Hence there is a finite dimensional C-vector space U, C H,
such that the restriction up|©r/p®@cg,) : U, ®c Oq, — U, is surjective. Taking the fibres

at every point of Quot(#,, h(p)), this yields a morphism
Quot(H,y, h(p)) —s Grass(U,, h(p)).

This morphism need not be injective. In order to obtain an embedding, we possibly have
to enlarge U,. Therefore we use the following finiteness results:

1. Tt is a well-known fact that the module of covariants H, = Hom(V,,H) is finitely
generated as a C[X//G]-module, see [Dol03, Corollary 5.1]. Let W, be a C—vector space
generated by such generators. Then there is a surjective map C[X//G] @¢c W, — H,.

2. The kernel K, := keru, of the universal quotient is a coherent C[X//G] ®¢ Oq,~
module. Hence there is a finite-dimensional C-vector space K, C K, which generates
K, as a C[X//G] ®@c Og,~module. For every k € K, we write k = ) fi ® m;, with
finitely many elements f; € Og, and m;, € H,. Let M, be the C—vector space spanned
by all the my;y.

Define H, := (W, +U,) @ M,. We claim that the morphism

Ure QUOt(Hpv h(p)) — Grass(Hp, h(p)),
lq: Hy — Fpl — [(dlw,1v,,4lm,): Hy = Fp]

constructed this way is injective. In order to prove this we have to reconstruct u, if we
are given a morphism f,: H, ®c Oq, — U, in the image of 1,. Let A, := ker f,. Since
fp € imn,, we have A, D (1 ®¢ K,) ®c Og,. This means that A, generates K, as a
C[X//G]-module and we obtain u as the cokernel of I, — H, X Oq,.

As in the proof of Proposition 3.1.1, the injectivity for an arbitrary scheme S and an
element [H,XO0g — F,] € Quot(H,, h(p))(S) can be shown by pulling back the universal
quotient. Then the result also holds pointwise. O

Together, these embeddings yield an embedding of the invariant Quot scheme into a

product of finitely many Grassmannians:
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3. GIT of the invariant Quot scheme

Corollary 3.1.3 The composition of the embedding (3.1) with the embeddings (3.2) for
p € D yields an embedding

n: Quot®(H,h) — H Grass(Hp, h(p)). (3.3)
peD

3.2. The parameters needed for GIT

Now let H be as defined in (2.1). In this section we introduce a group action on the
invariant Quot scheme of H, for which we want to obtain the GIT—quotient. In order to
determine this quotient, we need to find an ample line bundle on QuotG(’H, h), which can
be linearised with respect to the group action. The linearisation depends on a character
of the group.

In the definition of H, we write A, := Che) qe H = GapeD, A, ®¢ V, ®c Ox. For
every [q: H — F] € Quot®(H, h), the sheaf F = q(H) is generated by the finitely many
components ¢(4, ¢ V, ®c Ox), p € D_, as an Ox-module.

Certainly, these components are in general not identical with the isotypic components
Fo) = Fp@c Vy = q(H(p)), since following Steinberg’s formula [Hum72, Section 24.4]
the isotypic component H,) may contain components of the form A, ®¢ ClX]yr@cV, in
addition to 4, ®¢ C[X] Q¢ Vp, namely if V, occurs as a summand in the decomposition

me

@
— o'p
Vp’ oy V,vD” - @O’EII‘I‘G VU :

3.2.1. The line bundle . and the weights x

In the last section we showed that there is a finite subset D C Irr G and an embedding
of Quot®(#H, h) into a product of Grassmannians [], ., Grass(H,, h(0)), where H, is a
C—vector space with generators as in the proof of Proposition 3.1.2. Composing i with

the Pliicker embedding 7, for every occurring Grassmannian we have

QuotC(#H, h) s T Grass(Hy, h(e)) =5 T P(AM 1), (3.4)
oceD oceD

For any set containing D we also obtain an embedding. For example, adding further
representations if necessary, we may assume D_ C D. Since Grass(H,, h(c)) is a point
if h(o) = 0 and hence it does not contribute to the embedding, we will always suppose
DcD_UDy,.
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3.2. The parameters needed for GIT

In the following discussion of the geometric invariant theory, different choices of D lead
to different notions of GIT-(semi)stability. We will take advantage of the variation of D
and the corresponding stability condition in Chapter 4.3.

For every choice of x € NJ, the ample line bundles O, (1) on P(AM?) H,) give a line
bundle @, cp(150,(1))" = Q,ep(det Ws)" on the product of the Grassmannians,
where W, denotes the universal family of Grass(H,,h(c)). It is ample if k, > 1 for

every o € D. This in turn induces an ample line bundle

L =1 R (m:0,(1))" = ) (det Uy )" (3.5)
oeD oceD
on Quot®(H, h), where pU = DocircUs ®c Vi is the isotypic decomposition of the
universal quotient [7*H — U] on X x Quot®(H,h). Here, : X x Quot®(H,h) — X
and p: X x Quot®(H, h) — Quot®(H, h) denote the projections.

Remark. In Chapter 4.3 we will also consider .Z with weights k, € Q>¢. To give this
a meaning, let k be the common denominator of all the k,, ¢ € D. Then we have

kk, € N for all ¢ € D and .Z* is an ample line bundle on Quot®(#, h), which defines

an embedding as above.

3.2.2. The gauge group I' and the character x

For giving concrete surjections H — F rather than only coherent Ox—modules F which
are quotients of H, we have to choose a map A, — F, for every p € D_. In order to obtain
a moduli space parameterising sheaves F independent of this choice, we need to divide
Gl(A))
on H by multiplication from the left on the constituent components. Since the scalar

matrices act trivially, we actually consider the action of I' := (HpeD, Gl(A,))/C*. This

it out and therefore consider the natural action of the gauge group IV :=[] peD_

action induces a natural action on Quot®(H, h) from the right: Let v = (v,),ep_ and
lq: H — F] € Quot®(H, h). Then [q] - v is the map

la] vt H—>F, ap®0,® f = q(vpa, ®v,® f).

Further, this action induces a natural linearisation on some power .Z* of % (compare
to the remark after Lemma 4.3.2 in [HL10]). Replacing s, by kk, for every o € D,
we can assume that .Z itself carries a I'-linearisation. Additionally, we can twist this

linearisation with respect to a charater x, where x(v) = [[,cp_det(v,)X» and x € 7P~
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3. GIT of the invariant Quot scheme

such that ZpeD, Xph(p) = 0. We write .2, for the line bundle .Z equipped with the

linearisation twisted by the character y.

3.3. One—parameter subgroups and filtrations

To construct the GI'T—quotient, we examine 1-parameter subgroups of I' in order to apply
Mumford’s numerical criterion and hence deduce a condition for GIT—(semi)stability. Let
[q: H — F] € QuotY(H, h) and X\: C* — T be a 1-parameter subgroup. Then X induces

a grading and a descending filtration on A := €@ A, so that for every p € D_ we

peED_
have
_ n >n __ m
Aﬂ_@AP’ A3 _@AP’
neZ m>n

where A7 = {a € A, | A(t) - a =t"a} is the subspace of A, on which A acts with weight

n. This induces a grading

HZ@'H”, where H" = @ Az KR Vp®@ Ox,
nez peD_

and the corresponding filtration is

HE" = @Hm = @ A,?" ®¢ V, @¢ Ox.

m>n pED_

This in turn induces a filtration of F by

and we define graded pieces

Finl o= FznjFantl,

Remark 3.5.1 Clearly, only finitely many A7 are non-zero for every p € D_, so the same
holds for %" and F!"). Further, only finitely many H=" and F=" are different from 0 or
H and F, respectively.

The graded object corresponding to the filtration of F is

F = @.7:["] = @f‘zn/]:Zn-H.

neZ neZ
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3.3. One—parameter subgroups and filtrations

[n]

For the sheaves of covariants of 7 we have Fo = @, Fs" for every o € Irr G. Since

G is reductive, the sequences
0— Fzntl 5 F2n o FlFl 50

are exact for every o € Irr G and every n € Z, so that dim ]-*(L"] = dim FZ" — dim FZ"+1.
Let M, N € Z such that dim .7-"[[,"] =0 for every n > M, n < —N. Then FZ=% = F, and
FZM+1 = 0 and we have

M

dimF, = dimFM = Y (dim FZ" — dim FZ" )
nez n=—N

= dim FZ7Y — dim FZM*! = dim F,.

Therefore F has the same Hilbert function as F, so that the sum of the graded pieces
[gn: H" — FIM] yields a point [§ = ®ngn: H — F] € Quot®(#H, k). It has the property
that it is the limit of the action of A(¢) on [¢] when ¢ tends to infinity:

Lemma 3.3.2 [g] = lim_0[q] - M(#) ™! = limy_,00[q] - A(2).

Proof. We proceed analogously to [HL10, Lemma 4.4.3]. We will construct a quotient
[Q: H®c C[T] - .F) € Quot®(H,h)(A') over A' = Spec C[T] with fibres [Q(0)] = [q]
and [Q(t)] = [q] - A(#)~! for every t # 0. As Q(0) is the limit of the Q(t) this gives the
assertion. Define
F =@ F"ecT " CFecCT,T].
nez

As FZ" = 0 for n > 0, only finitely many summands with negative exponent of T' are
non-zero. So let M be a positive integer such that F=" = 0 and H=" = 0 for all n > M.
Thus # = @,y F-"@c T C F ¢ T~MCI[T]. Analogously, we define

H = @ HZ"@Rc T C Hoe T MC[T)
nez
and ¢ induces a surjection [¢': # — %] of Al-flat coherent sheaves on A! x X.
Let Ay = @p@l A, ®c V,. There is a map v: Ay @¢ C[T] — @,.¢4 A‘Z/n Qe T
defined by 1/|A;/n®®1 = idap ®cT ™™, ie. for v € A} we have v(v ® TF) = v @ Tk,

>—(k—m) _ A‘Z/(m_k)

Then we have indeed v € Ay, . The map v is an isomorphism because

every element v ® T—" with v € A} and m > n has a unique preimage v ®@ T ".
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3. GIT of the invariant Quot scheme

The surjection @ = ¢’ o (v ® 1) makes the following diagram commutative:

Ay ®@¢ Ox ®¢ CIT] % H —— HocT MC[T)

T e

By FZ@c T =——= F —— FocT MC[T]

On the special fibre {0} x X we have

F0)=7/T-7)=(PFrer™)/(PFrreT )

nez, ned,
= (EB]—“E" ® T*”)/(@]:Enﬂ ®T*”>
nez, ned.
= @]:Zn/}—znﬂ _ @]—*["} _F
nez. ned.

and in the same way J(0) = @,,c, H" = H, so Q(0) = ©ngn = . Restricting to the
open complement A!\ {0} corresponds to inverting the variable T, so that all horizontal

arrows in the diagram above become isomorphisms:

rv®1

H@¢c C[T, T H@¢ C[T, T
B’ o
F @ci O[T, T~ = F ®¢ C[T,T7]
For fixed t € ©, v(t)[ap is just multiplication with )\(t)_l\Ar‘;» =t~ on every weight

space AT?. Hence Q(2) is just [g] - A(t) ™1 O

The description of [g] as a limit of [¢] - A(¢) yields that it is a fixed point of the action of

M. Hence there is an action of A on the fibre

2([@) = Q) det(Fo)" = Q) det (P FI)™ = K) X) det(Fi)re.

oc€eD o€eD neZ c€D neZ
We examine this action in the following in order to gain some criteria for the GIT—

(semi)stability of [g].

3.4. GIT—(semi)stability

For understanding the (semi)stability condition in the GIT—sense as defined in [MFK94,

Definition 1.7], we consider the weight of the action of 1-parameter subgroups on .Z,.
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3.4. GIT—(semi)stability

Since this weight plays an important role in the following, we adopt Mumford’s definition
[MFK94, Definition 2.2] to our situation:

Definition 3.4.1 For [q: H — F] € Quot®(H, h) and every 1-parameter subgroup \
we define 1, (¢, \) as the weight of A on .Z,([q]).

Thus, in our situation, Mumford’s numerical criterion [MFK94, Theorem 2.1] can be

formulated as follows:

Proposition 3.4.2 (Mumford’s numerical criterion)
The point [q: H — F| € Quot®(H, h) is GIT-(semi)stable with respect to the twisted line

bundle £, if and only if for every non—trivial 1-parameter subgroup X\: C* — I' we have

A) 2 0

Remark. In the case of vector bundles, GIT—(semi)stability is equivalent to the condition

A) & 0 [HL10, Theorem 4.2.11] when 4 is defined via the weight of A on the fibre
of .Z at the limit at zero. As we consider the limit at infinity, or equivalently the limit
of the inverse 1-parameter subgroup at zero, we have GIT—(semi)stability exactly when

the negative weight is <0, i.e. pg (¢, ) 2 0.

Now we establish some expressions for j.¢ (¢, A) in terms of x and :

Lemma 3.4.3 The weight of the action of C* via A on Z,[q] is

h @ =3 (z»ea e () + 3 - dime(4) )

neEL oeD pED_

=Y n(k(F) + x(4m).

neZ

Proof. The weight p«, (q,\) is the exponent in the identity

Al 2@ = A g & det(Fyne = e (@)

oceDneZ

“id.g, () -

This number splits into a sum pg, (7, A) = m + m,, where m is the weight on the fibre
of the original line bundle .Z([g]) and m,, comes from the twist with the character x.

Since the weight of A on F i n, for its weight on the determinant det(]-}[,n])"‘a we
obtain n - dim(}"([,n]) - ko. The weights on the factors of the tensor products over D and

7 translate to a sum of the weights, so we obtain m =3 > -7 n- Ky - dim ]-"(E-n}.
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3. GIT of the invariant Quot scheme

The A(t), are diagonal matrices of size (dim A,) x (dim A,) with entries ¢" according to
the decomposition A, = €P,,c5 A). The twist by the character x is given by taking the

product of the determinants of the A(t), to the x,’s power. Thus we have

Fmx — H det(A(t),)Xr = H H gredim(A7)xp
peED_ pED_ n€eZ
and m, = ZpE[L Y onez ™ Xp - dim(A7).
Together, this yields

pe, (G, A) = Zn(Z Ko - dim]-“‘gn] + Z Xp - dimAZ).
nEL oeD pED_

g

Generalising the calculation before Proposition 3.1 in |[Kin94|, we obtain another formula

for Hne, (gv )‘)

Proposition 3.4.4 In terms of the filtration corresponding to a 1-parameter subgroup

A, we have
M

pe @A) = > (K(F) +x(47") = N - K(F),
n=—N-+1

where —N s the minimal and M the mazimal occurring weight.

Proof. By the assumption on N and M we have F=" = 0, AZ" = 0 for n > M and
FZn = F, AZ" = A for n < —N, so we can use Lemma 3.4.5 twice, setting B = F,
p =~k and B = A, ¢ =y, respectively. This yields

M
ST n(e(F) 4 (AM) ST ((FE) + (A7) = N - (5(F) + x(4))
nez n=—N+1 \;’0-/
M
= Y (K(F") +x(47") = N - &(F).
n=—N-+1

O
In the proof we used the next lemma, which gives an explicit connection between the
values of a function applied on a filtered object and the values of the same function

applied on the graded pieces of this object:

Lemma 3.4.5 Let B = @,,c;, P, B} be a graded object such that for some integers N,
M we have B" := @_B} = 0 for every n < —N, n > M. Denote the corresponding
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3.4. GIT—(semi)stability

filtered objects by B=" = D,>m D, BT, so that BZM+1 — 0 gnd BZ=N = B. To
every collection of rational numbers ¢ = (p;) we can assign the rational number p(B) =

> . prdim(Br). In this situation, we have

M
SnpBY= Y e(B) - N-¢(B) (36)
nez n=—N+1

Proof. Since B® = BZ"/Bz"*! for every 7 and since the dimension is additive on

quotients, we obtain

M
Zns&(B”) — Z n.z(pTdim(B?n/BTzn+1)

nez n=—N+1 T
M
= 2 me e (dim(BLT) — dim(B7 )
n=—N T
M M+1
= Z n'@(BZn) — Z (n_ 1) . Lp(BZ”)
n=-N n=—N+1
M
= > @B+ (-N)- w(@) C (M 41— 1) p(BZMHY
n=—N+1 —B %/—/:0
M
= Z @(B=") — N - ¢(B).
n=—N+1

For later use we prove that GIT—(semi)stability is invariant under the action of I':

Proposition 3.4.6 If [¢] € Quot®(H, h) is GIT—(semi)stable, then so is [q] -~y for every
vyel.

v € I'. If Ais a l-parameter subgroup, then so is

Proof. Let [q] € Quot®(H,h
X ="y, For limy_,o0[q] - A(

);
t) = [g] we have limy_,oo([q] - 7) - v 'A(t)y = [@] - 7. The
grading on the A, induced by A is A} = y/leZ, so that

(g-7)( @ ﬁf” ®c V, ®c Ox) = (g-7)( @ v, AT @¢ V, @¢ Ox)

peED_ peD_
=q¢( P v, A" @c V, ®c Ox)
peED_
=q(P A" @V, @c Ox) = F=".
peED_
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3. GIT of the invariant Quot scheme

This shows that 1o, (g - Y,y INy) = pe, (g, A). Hence we have g (q,\) > 0 for every
I-parameter subgroup A if and only if pg (q-7,A) > 0 for every 1-parameter subgroup
A O

3.4.1. 1-step filtrations

Next we analyse the stability condition for 1-step filtrations in order to simplify the
condition for GIT—(semi)stability:

Let A D A" D 0 be a 1-step filtration and A” a complement of A" in A. Then for any
1-parameter subgroup of I' acting with some weight n’ on A” and n” on A”, the weights
have to fulfill n’-dim A’ +n”-dim A” = 0. Therefore, up to a multiple in m%
we have n’ = dim A” = dim A — dim A" and n” = —dim A’. We denote the 1-parameter

subgroup associated to A’ in this way by \. We have
Adim A—dim A" _ A
AfdimA’ — A A/A/

FdimA—dimA/ — q( @ A;) R Vp R OX) —. .F/,
peED_

Foimd = o(P (4,8 A)) @¢ V, @ Ox) /FlimA-dmA = 7/ 7
peD_

This yields

1z, (4, \) = (dim A — dim A") - (F&(.F/) + X(A/)) —dim A’ - (Fd(]:/./—“/) + X(A/A/))
= (dim A — dim A") - (k(F') + x(A"))

—dim A’ - (k(F) — K(F) + x(A4) —x(4"))
hn

=dimA- (k(F) + x(4")) —dim A" - k(F).

Thus we obtain the following criterion for pg (q, X') to be positive:

e, (q,N) 20 p(A") :==dim A - (k(F') + x(A4")) — dim A" - &(F) 20

— dimA- (k(F) + x(4)) 2, dim Ak (F) (3.7)
(k(F) +x(A)) _ K(F)
dim A’ ) dim A’

Here we have dim A # 0 since D_ # () by Remark 2.2.1 and dim A’ # 0 by the assumption
A #0.
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3.4. GIT—(semi)stability

The next lemma shows that it is enough to consider 1-step filtrations to examine GI'T—

(semi)stability:

Lemma 3.4.7 A point [q: H — F] € Quot®(H, h) is GIT-(semi)stable <= for every
L-step filtration A 2 A" 2 0 we have u(A’) 2 0.

Proof. “=": Considering the 1-parameter subgroup corresponding to the filtration, this
follows from Mumford’s numerical criterion.

“<": Let A be any non—trivial 1-parameter subgroup. By Mumford’s numerical criterion
we have to show that 114 (¢,A) 2 0. Let —N denote the minimal and M the maximal
occurring weight. Then for every n € {—N +1,..., M} the sequence A D A" D 0 is a
1-step filtration. Thus we have x(F=") 4 x(AZ") 2 did‘?n‘ﬁn -k(F) by (3.7). This yields

M
pe (@A) = D (K(FZ") +x(A7") = N - &(F)
n=—N+1
M
: >n ’{(‘F)
2 n:ZNH dim A=" - Tm A N - k(F)
— N -dimA- (;Eﬁ — N -k(F) =0,

since by Lemma 3.4.5 with B = A, ¢ =1 we have

M
Z dim A=" = Zn .dim A" + N -dim A = N - dim A.
n=—N-+1 nez

=0
This shows that [g] is GIT—(semi)stable. O

Thus we have established the following criterion for GIT—(semi)stability:

Corollary 3.4.8 An element [q: H — F| € Quot®(H,h) is GIT—(semi)stable if and
only if for every graded subspace 0 # A’ C A and F' := q( D,cp A, @V, ®c Ox) the
inequality p(A') ;== dim A - (k(F') + x(4)) — dim A’ - (F) 2 0 holds.
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conditions

As we want to construct the moduli space of #-stable (G, h)-constellations on an affine
G-scheme X as an open subset of the GIT-quotient QuotG(’H, h)ss//fx T, first of all we
determine the elements in Quot®(H, h) originating from (G, h)-constellations in Section
4.1. It turns out that every GIT-semistable quotient can indeed be obtained from a
(G, h)—constellation in a particular way, so that we can define a functor M, .(X) of
flat families of GIT-stable (G, h)-constellations. We compare M, ,.(X) with the functor
Mpy(X) of flat families of 6—stable (G, h)—constellations. Therefore, in Section 4.2 we
establish a correspondence of the G—equivariant coherent subsheaves generated in D_ of
a (G, h)—constellation F and the graded subspaces of A = P .
of H. This leads us to the definition of a new stability condition 0 on (G, h)-constellations
which coincides with GIT-stability for (G, h)—constellations generated in D_. This re-

A, defining subsheaves

duces our examination of the stability conditions to a comparison of 6 and 5, which look
very similar for a certain choice of the GIT—parameters y and . Indeed, in Section
4.3 we show that 0 is a limit of the 5, when the finite subset D C Irr G in the defini-
tion of 6 varies. Furthermore, we find out that f—stability implies 5fstability and hence
GIT-stability, so that the functor of §-stable (G, h)-constellations is a subfunctor of the
functor of GIT-stable (G, h)-constellations.

4.1. Quotients originating from (G, h)—constellations

To determine the points in the invariant Quot scheme which originate from f—semistable
(G, h)—constellations, we analyse the quotient map for these elements first.
From Section 2.2 we deduce that all §-semistable (G, h)-constellations F are quotients

of

"= P A, ®cV,®c Ox,
peED_
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4. The connection between the stability conditions

where A, = CMP) and D_ is the finite subset of Irr G where 6 takes negative values:

Since F, = Homq(V,, F) we have natural evaluation maps
evy: Fp®@e V,®c Ox =+ F, a®@v® f—=a() - f

and F is generated as an Ox-module by the images of ev,, p € D_ by Theorem 2.2.2.
Choosing a basis of each F,, i.e. fixing an isomorphism v,: A, — F,, and composing it

with the evaluation map, we obtain
90 Ay RcV,®c Ox = F, a®@v® fr1yy(a)(v)- f (4.1)
and the g, add up to the whole of F:

q:= D qp:H: @AP®@VP®@0)(—>.F.
peD- peD_

This gives us a point [¢: H — F] € Quot®(H, h) with the property that the map
0p: Ay = Fp =Homa(V,, F), a— (v— qla®v® 1)), (4.2)
is just the isomorphism 1, since for a € A, and v € V,, we have

pp(a)(v) = qla@v @ 1) = Py(a)(v) - 1 = Py(a)(v).

The point [¢: H — F] € Quot®(H, h) constructed this way depends on the choice of
the isomorphisms 1),. Any other choice differs from ¢, by an element in GI(A4,), so
that a (G, h)-constellation can be seen as an element in the quotient of Quot®(#, h) by
I':= (HpeD_ Gl(A,))/C*. We will make this more precise in Chapter 5.

Conversely, for any element [¢: X — F| € Quot®(#,h), the quotient F is a G-
equivariant coherent Ox—module with isotypic decomposition isomorphic to Ry, so it
is a (G, h)—constellation. However, the induced maps ¢, need not be isomorphisms so
that [g] need not originate from a (G, h)—constellation as above even if F is f—stable.
Since we want to determine a moduli space My(X) of -stable (G, h)-constellations as
a subscheme of Quot®(#, h)ss//jx I', we are interested in exploring which quotient maps
g do indeed arise from a (G, h)—constellation.

The next lemma shows that for a general point [g] € Quot®(#,h) the maps ¢, are

isomorphisms if [¢] is GIT-semistable.

Lemma 4.1.1 Let [q: H — F| € Quot®(H,h) be GIT-semistable. If x, < % for

some p € D_, then ¢,: A, — F, is an isomorphism.
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4.1. Quotients originating from (G, h)—constellations

Proof. Fix p € D_ and let K, := kery,. If ¢, is not injective, then A D K, 2 0
is a 1-step filtration. For the induced sheaf we obtain ' = ¢(K, ®¢ V, ®¢c Ox) =
0p(Kp) - Ox =0, so that
w(K,) =dim A - (k(0) + x(K,)) — dim K, - £(F)
=dimA - x,dim K, — dim K, - k(F)
=dimK, - (dimA - x, — &(F)) <0
by the assumption on Y.

This is a contradiction to semistability, so ker ¢, has to be 0. As A, and F, have the

same dimension h(p), this implies that ¢, is an isomorphism. O

This means that for every GIT-semistable quotient [q: H — F] € Quot®(H,h) the g,
are of the form (4.1) for p € D_. In this sense, [¢] arises from a (G, h)—constellation.

If for a (G, h)-constellation F and a choice of isomorphisms (¢,),ep_ the correspon-
ding point is GIT—(semi)stable, then the same is true for any other choice of isomor-
phisms by Proposition 3.4.6. Thus it makes sense to deal with GIT—(semi)stable (G, h)-

constellations:

Definition 4.1.2 A (G, h)—constellation F is GIT-(semi)stable, if for some and hence
any choice of isomorphisms (¢,),ep_ the corresponding point as defined in (4.1) is GIT—
(semi)stable. Let

M, . (X): (Sch/C)° — (Set)
S +— {.Z an S-flat family of GIT-semistable (G, h)—constellations on X x S}/~
(f: 8= 8) = (Myx(X)(S) = My o (X)(S), .7 — (idx x f)"F),

and

M, . (X): (Sch/C)P — (Set)
S +— {.Z an S—flat family of GIT-stable (G, h)—constellations on X x S}/~
(f: 8= 8) = (Myx(X)(S) = My o (X)(S),.Z — (idx x f)"F)
be the moduli functors of GIT-semistable and GIT-stable (G, h)-constellations on X

generated in D_, respectively.

From the discussion above we expect that QuotG(H,h)ss/zX I' and Quot®(H,h)*/T

corepresent these functors. We will see this in Section 5.1.
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4. The connection between the stability conditions

4.2. Correspondence between graded subspaces of A and

(G—equivariant subsheaves of F

If the map A, — F, is injective and hence an isomorphism, we may establish a corre-
spondence between subsheaves of the (G, h)-constellation F and graded subspaces of A.
By Lemma 4.1.1 this correspondence applies to GIT—semistable elements. First we begin
with some graded subspace A’ C A, i.e. we have subspaces A’p C A, for every p € D_.
Let

Fe= (@ 4 0c V@0 0x) = (D) ¢i(4) - O (43
peED_ peD_

be the sub-Ox—module of F generated by the gap(A;), p € D_. Since cpp\A/p is injective
we have dim A}, < dim ), for every p € D_.

Further, we define

A —1 / A . A7
Al = o Y(F)), A= @ A
peED_
Then we have

e dim ﬁ;} = dim F, =: h/(p) since ¢, is an isomorphism,

o 4, =0, ((Boep_ vo(4) - Ox],) 2 0, (9s(4)) = 4,

. q(@peD_ ﬁ/p Rc V, ®¢ OX) = (®p€D_ gop(g;)) -Ox = F', since gop(ZlfD) = .7-";, if
p € D_ and F' is generated in D_.

For this reason, A’ is called the saturation of A’.

Conversely, if we start with some subsheaf ' C F, we can proceed in the same way to
obtain the saturation F’ of F’: Let

Al = go;l(]:;), A= EB Al
peED_

F ;:q(@ g;®®vp®@OX) = (@ (pp(;{/p)) Ox = (@ ]?;) -Ox;,

peD_ peD_ pED_

. oY . -~ _1 -~ Y
As before we have dim A), < dim F, and ¢, (F,) D A}, for every p € D_ as well as

q(@peD_ wgl(f;’,) ®c V, @c (’)X) = (®p€D_ gop(wgl(fl')))) -Ox = F'. Moreover, F' is
the Ox—module generated by the ]-“;, p € D_, so we have

/T
F,=F, foreverype D_,
! !
Fy, D F, forevery pelirG\ D_.
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4.2. Correspondence between A’ C A and F' C F
Thus if 7' is generated in D_ then F/ = F' and dim g;, = dim F, = h'(p).

Inspired by this correspondence we define a new function, which describes GIT—(semi)sta-
bility in terms of the F’ instead of the A’

Definition 4.2.1 Let F be any (G, h)—constellation, 7/ C F a G—equivariant coherent
subsheaf, h(p) := dim F,. Let 6: Coh%(X) — @ be the function

5(-7:/) = Z <f£p+Xp— (;gj)q)h'(p) + Z kol (o).

peD_ ceD\D_

In the above setting if F’ is generated in D_ we have h/(p) = dim g;, Comparing this

definition to the expression (3.7) we find
dim A - 0(F') = p(A"). (4.4)

Remark. Since the notion of GIT-stability on Quot®(#,h) depends on the embedding
into a product of Grassmannians, the definition of ] depends on the choice of the finite

subset D C Irr G. If there is any ambiguity about D we write 0, p instead of 0.

The next theorem reduces the examination of the relation between #—(semi)stability and

GIT—(semi)stability to the comparison of 6 and 6 for sheaves generated in D_.

Theorem 4.2.2 Let x, < (;gﬁ. Then [q: H — F] € Quot®(H, h) is GIT—(semi)stable
if and only if F is a 0—(semi)stable (G, h)—constellation.

Proof. “=": Let F' be a G—equivariant subsheaf of F. Consider the subsheaf F” of F’
generated by the F,, p € D_, so that we have h"(p) := dim F}] = h/(p) for p € D_ and
W'(p) < I'(p) for p € Ir G\ D_. We define A" = D,en_ @, ' (F)) as above. As F” is

generated in D_, we have 0(F") = ’éi(élg 2, 0 by GIT—(semi)stability. For 7' this yields

07 =Y (5ot o 2k W) + X e Hl0)

peD_ —n(p)  TEP\D- >0 >pi(s)
H(Jr) " " _nr!
> Y (ko txe— g ) M)+ D ol (o) =0(F) 2 0.
peED_ oceD\D_
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4. The connection between the stability conditions

“<” Let A’ C A be a graded subspace. As in (4.3) we construct 7' and A’ > A’. By
f—(semi)stability we have u(A') = dim A - 6(F) 2 0. Further, we obtain

X(A') = x(A) = x(A/A) = > x, - dim(A'/4)),

peED_
K(F) ST K(F) T
< . pr— .
< Z Ton A dim(A'/A"), T A Z dim(A'/A"),
peD_ pED_
_ w(F)-dim(A’/A")  dim A’ — dim A’ )
N dim A N dim A -

Separating A’ and A’ and multiplying by dim A this yields

dim A - y(A") — dim A’ - k(F) < dim A - x(A') — dim A’ - 5(F),
so that

p(A) =dim A - (k(F') + x(4")) — dim A" - k(F)

> dim A - (k(F') + x(A)) — dim A - k(F) = (A 2

0.

O
If we could show that

0(F) 20 < OF)z0 (4.5)

for every G—equivariant subsheaf F’ of a (G, h)—constellation F, then in consideration
of the theorem and Proposition 2.2.5, we would also have that a (G, h)-constellation is
6—(semi)stable if and only if it is GIT—(semi)stable. Therefore it would even be enough
to show (4.5) for F and F’ generated in D_ by Proposition 2.2.5 and the proof of the
above theorem. The equivalence (4.5) might be asking too much for, but in the following
section we show at least that f—stability implies GIT—stability (Corollary 4.3.6). As the
Theorem suggests, we therefore compare 6 and 6 and we show that f—stability implies
5fstability.

4.3. Comparison of 6 and 0

We have defined two functions on Coh®(X):

OF) =D 0, + > Ohe) + Y, 6:K(r),

peD_ c€D\D_ T€lrr G\D

~ Kk(F

0(F) = Z ("fp + Xp — diinil)h/(p) + Z koh! (o).
pED- o€D\D_
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4.3. Comparison of 0 and ]

The main difference is that 8 is defined as the sum over infinitely many elements while

the number of summands in 6 is finite. We define the part outside D of 6 by

Sp = Z 0:h(T).

T€lrr G\D

To compare 6 and 0 we make the following approach for choosing the character x and

the weights x in the definition of our ample line bundle .#:

K(F
szep—/ip—kdifnll forpe D_,
kp >0  arbitrary forpe D_, (4.6)
Sp
o ="0s f D D,,
K + (o) oro € D\

where d := #(D\ D_) is the number of summands in the second sum in the definition of
f. Since D C D_ U D, we have 0, > 0 for all o € D\ D_. Furthermore, the inequality
Sp > 0 holds, so that we always have k, > 0.

Remark. Since 0, < 0 and s, > 0 for every p € D_, we automatically have
K(F) _ ()
dimA = dimA’

so the prerequisites of Lemma 4.1.1 and Theorem 4.2.2 are always satisfied with the

Xp =0p —Kp+

choice (4.6) of x and .

The following two lemmas substantiate why the choice (4.6) for x and & is natural:

Lemma 4.3.1 Let F be a (G, h)—constellation. With Ansatz (4.6) of x and k for any

G—-equivariant coherent subsheaf F' of F we have

0F) =3 0l (p) + > (o) + %D > Z(U)

pED_ ceD\D_ oc€D\D_

in particular 0(F) = 6(F).

Proof. We have

0F) =3 (ro+x- C’Eiﬁ)h’(p) + Y kol(o)

peD_ ceD\D_
_ / SD /
=S 00 + Y <90—+d'h(0)>h(0)
peD_ ceD\D_

Sp K (o)
=2 () + > 6K + T D
peD_ o€D\D_ o€D\D_
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4. The connection between the stability conditions

SO

=Y 0,h(p) + > Osh(o) + FD ; Z;

pED_ oceD\D_

= > 0h(p) + > k(o) + Sp
pED_ ceD\D_

= 0(F).

O

Remark. If the support D_ U D of 8 is finite, then one may take D = D_U D_. In this
case the summand Sp vanishes and the lemma yields
= > 0, (p) =0(F).
pEsupp 0
In particular, if G is a finite group, 6—(semi)stability and GIT—(semi)stability coincide as
in the construction of Craw and Ishii [CI04]. But for a reductive group G, the support of
0 will be infinite in general for otherwise the (G, h)-constellations which are 6-semistable

but not 6—stable might not be quotients of H by Remark 2.2.4.

Lemma 4.3.2 If x and k are defined as in (4.6), x is an admissible character if and
only if O(F) =

Proof. A character x of HpeD
it 3= cp_ Xph(p) = 0. We have

> xohlp) = > (9,0 —Fpt (ﬁiﬁ)h(p)

Gl(Ap) is a character of [] ., GI(A,)/C* if and only

peED_ peD
5(F)
= D Oph(p) = Y mphlp) + o0 Y hlp)
peED_ peED_ peED_
N e’
=dim A

= D Ohlp) = D mohlp) + K(F)

peD- peD- :ZpED kph(p)
= Y 6h(p) + D rh(p)
peD peD\D_
S
= 2 0h0) + 3 (ot g ) h)
peD_ pED\D_ P
=Y 0h(p) + D 0h(p) + Sp = O(F).
peED_ peD\D_
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4.3. Comparison of 0 and ]

O

For comparing 6 to 9~, we consider § = §D when the finite subset D C Irr G varies. We

obtain the following error term:

Proposition 4.3.3 If D_U D, D D> D, then for any G-equivariant subsheaf F' of a
(G, h)—constellation F we have

o= 5 (o) (-4 & ).

reD\D

where d := #(D \ D_), and

T€lrr G\D

Proof. By Lemma 4.3.1, we have

Op(F)= > 0,h(p) + > 0,0 (0) + %D > ,((Z)) and
pED_ ceD\D_ ceD\D_
05(F) =" 0,1'(p) + D 0:h(0) + 5;? > Z((g)).
peD— ceD\D_ oceD\D_
So the difference is
- ~ S~ o (o
IF) ~0o(F) = X bah(o) + 2 Y L - 22y B
oceD\D oceD\D_ o€D\D_
/ S W (o) Sy Sp '(0)
= Zegh(a)+—9 + (22 =22
oeD\D oeD\D h(o) ( d d )UED\D W)
© SPVI) 15~ (550§ O
‘E\D@h( +2)5 dgw( z )>UGD\Dh<U>
S R(r) 1 B (o)
= > (Oh(r)+ 22 ( - )
=, ) W) d, 2= o)

61



4. The connection between the stability conditions

since for (x) we calculate
Ss S 1
D D _
7 - 7 = = Z B HTh(T)
T€lrr G\D

- ()

> 6:h(r)

> 0:h(r)

Te€lrr G\D

- Zeh

relrr G\D TGD\D
d— dg
TRCE d 2 0k
reD\D
1
= - > > 0:h(r)
reD\D reD\D
1 S5
= T4 2 <g+97h(7)>.
T7€D\D
The calculation of the second error term is the following:
~ Sp B (o)
"N AN / ©D
O(F) — Op(F') > 01 (r) > o)
T€lrr G\D ceED\D_
(o)
o /
= > 0K - S b)) D> o)
T€lrr G\D T€lrr G\D oceD\D_
_ / 1 (o)
= > (MO -g D ha)
T€lrr G\D oceD\D_
R(r) 1 (0)
= 2 RO\ Gt 2
T€lrr G\D €D\D

O
The set D={D C IrrG | D_U Dy D D D D_} of all subsets of D_ U D, containing
D_ is directed with respect to inclusion. In this sense, we can take the limit over these

sets. This allows us to reveal the relation between 6 and :

Corollary 4.3.4 The function 0 is the pointwise limit of the functions 0p as D converges

to the whole support of 0:

NERT n / /
O(F") —lljlgll)GD(}') VF CF.
Proof. Since 6(F) =
to 0 when D becomes larger. Further, for every 7 € D_ U Dy we have 0 < ((T)) <1, so

W(r)
h(T)

> remrc O-h(7) is convergent, the sum ;. c\p 0-h(T) converges

— 3% 0en\D_ h( g <1 O
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4.3. Comparison of 0 and ]

In general, equality will only hold in the limit, but not for finite D. We use this corollary
to show that every f—stable (G, h)—constellation is also 6—stable.

Proposition 4.3.5 There is a finite subset D C D_UD such that the following holds: If
F is a O—stable (G, h)—constellation and F' a G—-equivariant subsheaf of F, both generated
i D_, then for every finite set D containing D we have 55(.7:') > 0.

Proof. By Proposition 2.2.7, the set
{0(F") | F' C F a G-equivariant subsheaf generated in D_}

is finite. Let 6y be its minimum. In particular, 6(F") > 6.

If we fix e > 0, by Corollary 4.3.4 there is a subset D = D(e, F') C D_ U Dy such that
|6(F") —55(]:’)| < ¢ for every D D D. Since by Proposition 2.2.7 the functions 6(F’) and
55 (F') take only finitely many values when F’ varies, D can be chosen simultaneously
for all the F'. Now if we choose € < 6, we obtain D = D(¢) such that for every D D D

we have

05(F) > |0(F) —e| > 0g—e > 0.

Now we summarise:

Corollary 4.3.6 Let§ € Q€ be a stability condition on the set of (G, h)—constellations
on X with (6,h) = 0. ForH:=B,cp CMP @ V,2c0x we consider the invariant Quot
scheme Quot®(H,h) and the ample line bundle L = @, p(detUy)" on Quot®(H, h)
with D C Irr G large enough in the sense of Proposition 4.3.5, k, > 0 arbitrary for
peD_={pehrG|l, <0} and ko = b, + %f’g) for o € D\ D_. Let the natural

peD_ Gl(@h(”)))/@* on £ be twisted by the character x: Irr G — 7Z,

K(F w(F
Xp = bp—Hp+ dignil' We set 0(F") =3 pcp_ (Kot xp— dignll)h/(p) +20en\n_ Fiol'(0)-
With these choices of D, k, x and 0, every 0—stable (G, h)—constellation is O—stable and
hence GIT-stable.

linearisation of ([]

Proof. This is a direct consequence of Proposition 4.3.5 and Theorem 4.2.2, if the set D
in the embedding (3.4) and the definition of the line bundle (3.5) is chosen large enough

in the sense of the proof above. O

On the level of functors, we obtain the following:
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4. The connection between the stability conditions

Corollary 4.3.7 With the same notation and choices as in Corollary 4.3.6, the moduli
functor My(X) of 6-stable (G,h)—constellations on X is a subfunctor of the moduli
functor M, .(X) of GIT-stable (G, h)-constellations on X.
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5. The moduli space of #—stable

(G, h)—constellations

In this chapter, we use the notation and assumptions of Corollary 4.3.6. The preceding

chapters leave us with the following situation: We have
Quot®(H, h)**

Quot®(H, h)*
Quot® (H, h)j

{[g: H — F] € Quot®(H,h) | [q] is GIT-semistable}
{lg: H — F] € Quot®(H, h) | [¢] is GIT-stable}
{lg: H — F] € Quot®(#,h) | F is f-stable}

and inclusions

Quot®(H, k)5 € Quot(H, h)* C Quot®(H,h)*.

Forgetting the choice of the particular quotient map, this yields inclusions
f—stable c GIT—stable c GIT—semistable
(G, h)—constellations (G, h)—constellations (G, h)-constellations | -
On the level of functors this translates into a sequence

My(X) C My ,1(X) C M,y .(X).

In Section 5.1 we show that M, .(X), My .(X) and My(X) are corepresented by the
categorical quotient Quot® (H, h)ss//fx T, the geometric quotient Quot®(#, h)*/T" and its
subscheme Mp(X) := Quot®(#, h)j/T, respectively. Thus, we obtain

Quot®(H,h); C  QuotY(H,h)® C Quot®(H, h)**

| | |

My(X) C  Quot(H,h)*/T  C  Quot“(H,h)*/y, T.

Mp(X) is the moduli space of f—stable (G, h)—constellations. It generalises the invariant

Hilbert scheme as we have shown in Section 2.3.
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5. The moduli space of §—stable (G, h)-constellations

In Section 5.2 we show that My(X) is an open subscheme of Quot®(#,k)*/T" and is
therefore quasiprojective.

To conclude the construction of Myp(X) as a moduli space over the quotient X /G, in
Section 5.3 we construct the desired morphism My(X) — X /G generalising the Hilbert—

Chow morphism.

5.1. Corepresentability

Let R := Quot®(H,R)*, R® := Quot®(H, h)* and R§ := Quot®(#, h); be the subsets of
QuotG(”)'-[7 h) of GIT-semistable, GIT-stable and f—stable quotients of H, respectively.
For elements [q: H — F] € Quot®(H, h) the sheaf F = q(H) = 4D ep_ Ap®cV,) Ox
is automatically generated in D_. Moreover, for [¢: H — F] € R the maps ¢,: A, = F,
a+— (v gla®v®1)) are isomorphisms for every p € D_ by Lemma 4.1.1 and since
the inequality x, < ;gz holds. As presented in Subsection 3.2.2, the choice of these
pep_ GU(Ap), which acts on

QuotG(’H, h) from the right by left multiplication on the components of H. The subsets

isomorphisms is described by the action of the group IV :=[]

R and R*® are invariant under this action by Proposition 3.4.6. The same holds for Ry
since the action of an element in I does not change F.
To deal with the ambiguity of the choice of the ¢,, we have the following relation between

the moduli problem and quotients of this group action:

Proposition 5.1.1 A morphism R — M 1is a categorical quotient of the action of
I’ = HpGDf GIl(A,) on R if and only if M corepresents M, .(X). In the same way,
a morphism R® — M? is a categorical quotient of the I'—action on R® if and only if
M? corepresents My (X)), and a morphism Ry — M is a categorical quotient of the

I —action on R} if and only if M§ corepresents Mg(X).

Proof. We proceed analogously to [HL10, Lemma 4.3.1].

Let S be a noetherian scheme over C and .# a flat family of (G, h)-constellations gen-
erated in D_ which is parameterised by S, so that for every s € S the fibre Z(s) is
a (G, h)—constellation on X. Let p: X x S — S denote the projection. We look at the
isotypic decomposition

P*ﬁg @ yp (2p) Vjo
peED_

The conditions that G is reductive, p is affine and .# is flat over S yield that the .7, are
locally free Og-modules of rank h(p) and that we have (.#,)(s) = #(s),. We define the

66



5.1. Corepresentability

Og—submodule

Vg = @ (p*y)(p) = @ Fp Qe V, Cpu?. (5.1)
peED_ pED_

The pullback of the inclusion i: V; < p,.# composed with the natural surjection
a: p*p.F — F corresponding to the identity under the adjunction Hom(p*p..#, %) =
Hom(p..7, p«.#) yields a morphism

oz =aop'i:p'Vy = .F.

Fibrewise, ¢ 7(s): (p*V;)(s) ®c Ox — F(s) is surjective since each % (s) is generated
in D_ as an Ox—module. So ¢ is also surjective.

With the notation Ay := P ,cp
m: I(F) := Isomg(Ay ®¢ Os,V ;) — S associated to V as described in Appendix A.

A, ®c V, we consider the G—equivariant frame bundle

It parameterises G—equivariant isomorphisms Ay ®¢ Os — V. and gives us a canonical
morphism a: Ay @¢ Oyz) = 7V 5.

Now we consider x := idx x7: X x [(#) — X x S and the universal trivialisation
a®¢idyx: Ay @c Oxxy(z) = H®c Oy gy — (pomx)*Vz on X xT(F). Thus we obtain

a canonically defined quotient
[Txpz o (idx ®ca): H Q¢ Oz — PV = mxF| € QuotG(H, h)(L(F#)),
which in turn yields a classifying morphism
07 L(F) — Quot®(H, h), ¢ = [ay: H — (tx F)(¥) = F (n(y))]-

As discussed in Appendix A, the gauge group I' acts on I(%#) from the right and
m: [(#) — S is a principal I"-bundle. By construction, ¢z is I"—equivariant and
we have ¢}1(R) = 77 1(S5%%), where S% = {s € S | F(s) GIT-semistable}. If S pa-
rameterises GIT-semistable sheaves, we even have ¢'(R) = 7~ 1(S) = I(%), hence
¢7(L(F)) = ¢7(¢5 (R)) C R. This means that in fact we have ¢z: I(#) — R. This
morphism induces a transformation of functors

1(F)/I’ = R/T.

Since 7: I(%#) — S is a principal I"-bundle, S is a categorical quotient of I(.%#), so
that we obtain an element in (R/I')(S). Thus we have constructed a transformation
M, (X)) = R/I".
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5. The moduli space of §—stable (G, h)-constellations

Denoting pr: X x R — R, the universal family [¢: pj,X — U] on R yields an inverse
by mapping (R/I’)(S) to My .(X)(S) = (idx x&)*U, where £: S — R is the unique
classifying morphism.

Altogether this means that a scheme M corepresents M, ,(X) if and only if it corepre-
sents R/I”, hence if and only if it is a categorical quotient of R by I".

The same proof literally goes through replacing GIT-semistability by GIT-stability and
R, M and M, ,(X) by R®, M* and M, .(X), respectively, as well as replacing GIT—
semistability by 6-stability and R, M and M, .(X) by R, M; and My(X). O

Corollary 5.1.2 The categorical quotient QuotG(’H, h)ss//jx I' corepresents the functor
My (X)), the geometric quotient Quot®(H, h)* /T corepresents My .(X) and its sub-
scheme Quot®(H, h)3/T corepresents Mg(X).

Proof. The quotients by I and T coincide since multiples of the identity act trivially.
For I'" and M, ,(X) and M, .(X) the assertion is an immediate consequence of the
proposition. Since Quot”(#,h)*/T is even a geometric quotient and Quot®(#, h)3 is a
G-invariant subset of Quot®(#, h)*, Quot®(#,h);/T is also a geometric quotient and

the assertion follows immediately from Proposition 5.1.1. U

Definition 5.1.3 The scheme My(X) := Quot®(H, h)3/T is called the moduli space of
0-stable (G, h)-constellations.

Remark. In Section 2.3 we have already seen (Corollary 2.3.2) that if h(pg) = 1 and if 0

is chosen such that D_ = {pg}, we recover the invariant Hilbert scheme:

My(X) = Hilb§ (X).

5.2. Openness of f—stability

In order to show that the moduli space My(X) is an open subscheme of Quot®(#, h)*/T,
we prove that the properties of being 6—stable and #—semistable are open in flat families

of (G, h)—constellations:

Proposition 5.2.1 Being 0-stable and 0—semistable is an open property in flat families
of (G, h)—constellations.
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5.2. Openness of O—stability

Proof. We proceed analogously to [HL10, Proposition 2.3.1]. Let f: X — S be a family
of affine G-schemes and .# a flat family of (G, h)-constellations on X'. Let

H = {h" o Hilbert function Js € S and a surjection a(s): F(s) — F” } ’

with ker a(s) generated in D_ and hgr = h”
H*:={h" € H|{,h") >0},
H® :={n" € H|(0,1h") > 0}.
By Proposition 2.2.7 and Remark 2.1.4, H is finite. For each Hilbert function h” in H
we consider the relative invariant Quot scheme 7y : Quotg /3(5Z ,h) — S with fibres
QuotY(.Z (s), h") over s € S. Since the multiplicities of the .% (s) are finite, the map 7,
is projective by Proposition B.5. Thus its image is a closed subset of S. Remark 2.1.4
says that .#(s) is 0—semistable if and only if the Hilbert function h” of every quotient of
F (s) satisfies (6, h") < 0 and 6-stable if (8, h”) < 0. Accordingly, .7 (s) is 6—(semi)stable

if and only if s is not contained in the finite, hence closed, union ¢ ges)s im(mpr). O

The openness of the property of being f-stable transfers to the scheme My(X):

Proposition 5.2.2 The moduli space of —stable (G, h)—constellations My(X) is an open
subscheme of Quot®(H, h)*/T.

Proof. To show this, we consider the inclusion Quot®(H,h)s C Quot®(#,h)*. The
scheme Quot®(#H, h)® represents the functor Quot®(H, h)*. Let

F € Quot®(H, h)*(Quot®(#, h)*)

be the universal family in Quot®(#,h)®, so that the fibre .Z(F) equals F. Since by
Proposition 5.2.1 the property of being #—stable is open in flat families, the set

Quot®(H,h)5 = {[q: H — F] € Quot®(H,h)*/T | Z(F) is 6-stable}

is open in Quot%(H, h)®.
Moreover, the quotient map v: Quot®(#,h)* — Quot®(H,h)*/T is open. Thus, its
image My(X) = v(Quot®(#, h)3) is open in Quot®(H, h)*/T. O

Since My(X) is an open subscheme of Quot®(#, h)s“”//zx I, it is a quasiprojective scheme.

We additionally consider its closure:

Definition 5.2.3 The closure of My(X) in Quot®(H, h)ss//gx I is denoted by My(X).
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5. The moduli space of §—stable (G, h)-constellations

5.3. The map into the quotient X//G

For the invariant Quot scheme, Jansou [Jan06, Page 13] constructed an analogue of the

Hilbert—Chow morphism
vt Quot®(H, h) — Quot(H®, h(po)), la: H — F|— [alye: HE — FC).

In the case where h(pg) = 1, we extend the restriction 'Y’QuotG(H pyss t0 @ morphism to
X/G:

Theorem 5.3.1 If h(pg) = 1, there is a morphism Quot®(H, h)* — X//G, which yields
a morphism
n: Myg(X) = X/G, F supp FC.

Proof. Let S be a noetherian scheme over C and [q: 7*H — #] € Quot?(H, h)*(S),
where m: X x S — X. Then we have v5(q): Os @¢ HE — F Y. Since every fibre ¢(s)
is GIT-semistable, the morphism ¢,,: A,, — F(s) defined in (4.2) is an isomorphism
for every s € S. Hence v5(q) restricted to the subset Og ®¢ OF = Og R Apy Rc (’)g’;

of Og ®¢ HE maps surjectively to .#C. Consider the composite morphism
¥ Og ld;@% Os Q¢ 09( - FC.
The image of s ® 1 € Og @¢ O is a function f(s). If it were 0 for some s € S, the map
Os ®@¢ (’)g’é — Z% would not be surjective on the fibre .Z%(s), so this cannot happen.
Thus ¢ is nowhere 0. The Og-modules Og and .Z& are both locally free of rank 1, so
v is an isomorphism. This shows that .#¢ corresponds to a subscheme Z C S x X//G.
With the notation
7t 9x X6 X )G
\ i
S

we obtain a morphism

praociop i S — X/G.

This construction is compatible with base change. Indeed, let g: T'— S be a morphism
of noetherian schemes over €. Denoting by mr: X x T — X the projection to X, we get
[(idx x g)*q: mH — (idx x g)*F] € Quot®(H, h)**(T). The invariants satisfy

((idx x g)*F)¢ = g*FC = ¢g*Og = Or.
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5.3. The map into the quotient X//G

Hence, the subscheme corresponding to ((idx x ¢)*#)% is Zr = Z xg T and we have
Zr e T X X)JG——= S x X)/G—= X //G
~ \___’_,_,/
pT i pr2o(gxidx/ )
T
The above construction yields a morphism
(proo (g xidxq)) oj op;lz T — X/G.

We have the following commuting diagram:

Tx X)G<l0zp o
igXidX//G l lg
SxX)G<toz7-Lsg

1

In particular, we have iop™ o g = (g X idxy/g) ojo p;l, so that the morphism for T is

the composition of the morphism for .S with g:

(prao(gxidx/q))ojopr!

T
g
l %
S

Thus, we have constructed a morphism of functors

X//G

Quot®(H, h)** — Mor(-, X/Q).
Plugging in QuotG(H, h)*®*, this gives a morphism of schemes
n: Quot®(H,h)* — X//G.
By construction, the subscheme of X //G corresponding to F¢ = O /Ir for a point
[q: H — F] € Quot®(H, h)** is just its support
supp F¥ = {p € O | p D Ir} = {\/I}‘}-
It only consists of one point since dim F¢ = h(pg) = 1.
Since F& does not depend on the choice of a basis of 7, the morphism 7 is I-invariant.
Hence it descends to Quot® (H, h)*//g T'. Restricting it to My(X) we eventually obtain
a morphism

n: Mo(X) — X//G, F — supp F¢
and the same for Quot®(H, h)*/T" and My(X). O
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5. The moduli space of §—stable (G, h)-constellations

Thus we have constucted an analogue of the Hilbert-Chow morphism for My(X) and
Mg(X), which relates these moduli spaces to the quotient X/G.

Remark. In Proposition 3.1.1 we constructed morphisms
Vi Quot®(H, h) — Quot(Hp, h(p)), [a: H — F) — lala,: Ho — Fpl,

where v,, is the Hilbert-Chow morphism 7. Therefore one may adopt the proof of

Theorem 5.3.1 to this more general situation and obtain morphisms
np: Mo(X) — S"P)(X//G), F — supp F,

for an arbitrary Hilbert function h and for every p € Irr G.
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6. Outlook

In this thesis we constructed the moduli space Myp(X) of #-stable (G, h)-constellations
and a morphism n: My(X) — X//G. Further, we determined an involved example of an
invariant Hilbert scheme for the group Sl acting on a symplectic variety X, which is a
special case of a moduli space My(X). The determination of further examples would be
interesting in order to get an idea of the properties of these moduli spaces, e.g. concerning
smoothness, connectedness and, for symplectic varieties X /G, symplecticity of My(X).
In particular, we would like to find out how our example is related to the moduli space
of the same Slo—action on X for different parameters of 6. In general, the variation of 4
is also a noteworthy topic. Moreover, some questions concerning the closure of My(X)
and the properties of 7 still have to be investigated.

Here we discuss some ideas which are worth being pursued in the future.

6.1. The geometric meaning of points in My(X)

We defined the moduli space My(X) as the closure of My(X) in QuotG(’H,h)SS//gX r

without explicitly describing its elements geometrically. A natural question is

Question 6.1.1 Does the scheme Mg(X) corepresent the moduli functor Mg(X) of 0

semistable (G, h)-constellations?

First of all, one has to face the question if every f#-semistable (G, h)—constellation is
also GIT-semistable. Secondly, it would be interesting to determine the values of 4 for
which the notions of 6—stability and f—semistability coincide. In this case we obtain
Mg(X) = My(X). For example this is true for the invariant Hilbert scheme. Since
h(po) = 1, any subsheaf F’ of a (G, h)—constellation F has a Hilbert function A’ with
R'(po) = 0 or K'(po) = 1. In the first case, §(F’) is strictly positive and in the second
case, F' = F by Section 2.3. Hence there are no f—semistable (G, h)—constellations which

are not f-stable.
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6. Outlook

In the construction of Craw and Ishii [C104] and King [Kin94| 6 only consists of finitely
many components. In their case, f—semistability and GIT-semistability are even equiv-
alent, as well as f—stability and GIT-stability. It would be interesting to know if this
also holds in our case. With regard to Theorem 4.2.2 this is equivalent to the following

question:

Question 6.1.2 Let F be a (G, h)—constellation generated in D_ and F' a G—-equivariant
coherent subsheaf of F which is also generated in D_. Choose 0 € Q"¢ with 0(F) =0
and 0 as in Definition 4.2.1 with values (4.6) of x and k. In this setting, do we have

OF) 20 <= OF)z0 ?

If not, are there additional assumptions on 0 under which this equivalence holds?

6.2. Theory of Hilbert functions

Regarding the error estimate in Proposition 4.3.3, Question 6.1.2 is equivalent to

Question 6.2.1 Let F be a (G, h)—constellation generated in D_ and let ' be one of the
finitely many possible Hilbert functions of its G—equivariant coherent subsheaves generated
i D_ as established in Lemma 2.2.7. Fiz e > 0. Does there exist a finite subset D C Irr G
such that for every finite set D S D one has

W(r)
> 0-h(r) e

r€lrr G\D

1 K (o)

R ?
Ly Mo
oceD\D_

To answer this question one has to study the properties of Hilbert functions extensively.

In particular, one has to answer the following questions:

Question 6.2.2 Let h: Irr G — Ng be the Hilbert function of some G-module such that
h is determined by the values h(p) for p in some finite subset D_ C Irr G.

1. Which kinds of functions are possible for h?

2. Let h': TrrG — Ny be a function determined by the values h'(p) for p in D_
and h'(p) < h(p) for every p € Ier G. If W' occurs as a Hilbert function of a G-

equivariant coherent subsheaf of a (G, h)—constellation, what are the possible values
of h'?
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6.3. Resolution of singularities

6.3. Resolution of singularities

The original purpose of our construction of My(X) was the search for resolutions of sin-
gularities, especially in the symplectic setting. Therefore, one would have to investigate

the following:

Question 6.3.1 Is My(X) or My(X) smooth or does there exist a smooth connected

component?
Question 6.3.2 Is n: My(X) — X//G projective?
Further, we want to know:

Question 6.3.3 Is the map n: My(X) — X//G or its restriction to a smooth connected
component a resolution of singulaties? If this is the case and if X//G is a symplectic

variety, is 1 even a symplectic resolution?
Conversely, inspired by the situation for finite G examined in [CI04], we can ask:

Question 6.3.4

1. Is every crepant resolution of singularities of X//G a component of some moduli

space of O—stable (G, h)—constellations My(X) for an appropriate choice of 0%

2. What is the relation between the spaces My(X) for different choices of 07 For
exzample, is there a chamber structure in the space Q™ such that for 0 in any
chamber and 0" in an adjacent wall there is a map Mg (X) — My(X) and for every

wall-crossing the involved moduli spaces are related by a flop?

3. Is there a distinguished choice of 0 so that My(X) dominates any other My (X)?

Are there minimal choices which give symplectic resolutions?

In particular, in the situation of our example

Sly -Hilb(p=1(0))

e

T*IPS (T*]Pg)*

\/

p=H(0)/Sly
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6. Outlook

in Chapter 1, we know that Sly-Hilb(u=1(0)) = Mg(X) for € Q"¢ such that 6,, is

the only negative value.

Question 6.3.5 Are the symplectic resolutions T*P? and (T*P3)* also of the form
My(X) and if so, which is the correct choice for 07

76



A. G—equivariant frame bundles

We carry over the construction of frame bundles in [HL10, Example 4.2.3] to the G-
equivariant setting.

Let S be a scheme over C with trivial G—action and £ a G—equivariant Og—module with
isotypic decomposition

£ = @ E@cV,
peEE

for some finite subset £ C Irr G, where the £, are locally free Og—modules of rank r,,.
Let r := 3> cprp. We write A, := C™ and Ay := @, cp A4y @c V,. For p € E we

consider the geometric vector bundles

pel

7yt Hom(A4, ®¢ Og,E&,) := Spec(S* Hom(A, @¢ Os, Sp)v) — S

as defined in [Har77, Exercise I11.5.18|. They parameterise Og—module homomorphisms
foi Ap ®c Os — &,. The construction of these bundles yields canonical morphisms
mHom(A, @c Os,€p)" — Olom(A,000s.¢,)- Let further

H(E) := Homg(Ay ®¢ Og, £) := Spec(S* @’Hom(Ap R Os,gp)v)
pEE

= H Hom(A, ®c Os, &),
peEE

where the product is taken over the base scheme S.

Since @ e p Hom(A, @c Os, &) = Homa(D e Ap ®c V, @ Os, B e Ep @ Vy), the
geometric vector bundle 7: H(E) — S parameterises G-equivariant Og-module homo-
morphisms f: Ay @ Og — €. Over any point s € S its elements are k(s)-linear maps
f(s): Ay ®¢ k(s) — E(s). Here, the canonical morphism is

a: T Homg(Ay ®¢ Og, 5)v = On(e)-

Dualising it, we obtain a morphism o’ One) — mHoma(Ay @¢ Og, E). Tt is deter-

mined by the image of 1 € Opg), so that giving a is equivalent to giving a G—equivariant
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A. G—equivariant frame bundles

homomorphism o': 7*(Ay ®¢ Og) = Ay @¢ Opye) — 7*E or a collection of homomor-
phisms (a),: A, ®¢ Ong) = 7°Ep)per. For every homomorphism f € H(E) we have
o (f): Av ®@c k(f) = 7 E(f) = E(s) ®p(s) k(f)-

The canonical morphism « has the universal property that for any pair of morphisms
(u: T — S, a: w*Homag(Ay Q¢ (’)S,E)V — Or) there exists a classifying morphism
Uy o T — H(E) satistying ¥, o o™ = u and

Va0 = a2 ¥y o Home(Ay @c Os, g)v = u"Homg(Ay ®c¢ O, 5)v — Or.

Equivalently, for a G-equivariant Op-module homomorphism a': Ay ¢ Or — u*E, the

morphism W, , satisfies ¥y ;o' = a': Ay @¢ Or — ¥}, ,7°E = u*E.
The open subscheme
Tsomg := Isomg(Av ®¢ Os, €) = {f € H(E) | det o’ (f) # 0}

of G—equivariant isomorphisms Ay ®¢ Og — £ is called the G-equivariant frame bundle
associated to €. Here, the canonical map o': Ay ®¢ Olsome — 7€ is a G-equivariant
isomorphism. For any morphism of schemes u: T" — S together with an isomorphism
a: Ay ®@c¢ Or — u*E, there exists a unique morphism ¥, ,: 7" — Isomg such that

Uygom=uand ¥ o =d: Ay @c Or — ¥} ,7*E = u*E.

There is an action of I := [] ,c p Gl;, on () from the right by left multiplication on the
components A,: For closed points s € S(C) and g = (g9,) € I''(C) and f = & f, consisting
of homomorphisms f,: A,®ck(s) = A, = E,(s) we have (f-g),(a) = f,(gpa). If fisan
isomorphism then so is f - g, hence Isom¢ is invariant under this action and Isomg — S
is even a Zariski-locally trivial principal I"-bundle. In particular, the geometric quotient
Tsomg /T exists. Its elements are G—equivariant Og—modules isomorphic to Ay @¢ Og

without a particular choice of an isomorphism.
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B. Relative invariant Quot schemes

In the proof of Proposition 5.2.1 we need a relative version of the invariant Quot scheme.
The absolute case has been studied by Jansou [Jan06] building upon the multigraded
Quot scheme of Haiman and Sturmfels [HS04|. The passage from the absolute to the
relative situation is standard.

Let S € (Sch/C) and X a family of affine G—schemes over S. Denote p: X — S.

Definition B.1 For any G-equivariant coherent Oy—module H, the relative invariant

Quot functor is the functor

Quot (M, h): (Sch/S)P — (Set)

q a G—equivariant morphism,
(g: T — 8S)— < q: (idx x g)"H - F| Z is T-lat,

hs =h
T - T G G /
\ J{g Quoty, (M, h)(T) —  Quoty (M, h)(T") '
g ! qg — (idx xT1)*q

As in the absolute case, the invariant Quot functor is represented by a quasiprojective

scheme over S:

Proposition B.2 There is a scheme Q over S representing Quotgi/s(?—[,h), 1.e. there
exists a morphism of schemes f: QQ — S and a universal quotient u € Quot)G(/S(”H, h)(Q)
such that for every morphism g: T — S together with a quotient q € Quotg/s(’H, h)(T)
there is a unique morphism a: T — @Q of schemes over S satisfying foa = g and

(idx X a)*u =q.

Proof. We proceed in several steps each beginning with a claim written in italic letters

followed by its proof.
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B. Relative invariant Quot schemes

1. The construction is local in the basis: Let S = |JS; with open affine schemes S;. For
every i, suppose Quot%s'/s_(?ﬂgi,h) is represented by a scheme f;: Q; — S; over S;

with universal quotient
[ (idx xf)*(Hls,) = F) € QUOt?{\Si/Si(%Bmh)(Qi)-

Let S;; := S;NS;. Then for every ¢ and j we have

S
Qij = Qi Xy, Sij —— Q;

lfij ifi
s

Sij Y S;

Then Q;; represents the functor Quot%szj /Si; (Hls;;, h) with universal quotient given
by wij == (idx x ¢;;)*u;: (idx x fij)*(H|s;;) — F. Indeed, let g;;: T — Sij be a
scheme over S;; and ¢;; € QUOtg;flsij/Sij (Hls;;, h)(T). Then T is also a scheme over
S; and we have Quot%sij/sﬁ (Hls,,;, h)(T) = QUOt%Si/Si(H’Swh)(T)' Now since Q;
represents Quot%si/si (H|s,, h) there is a map a;;: T'— @; such that f; o a;; = 5 0 gij
and (idx X aij)*u; = ¢;j. Then by the universal property of the fibred product there is

amap b;;: T — Qjj satisfying fij o bjj = gij and 1j; 0 byj = aj;:

Qij —— Qi
7 ij
e if’ij fi
s .b”
Gij Lij

Thus we also have

(idX X bij)*uij = (idX X bij)*(idx X L;j)*ui = ((ZdX X L;j) o] (idX X bw))*uz
= (idX X (L;j o b”))*ul = (’idX X (a”))*ul = Qij-

Hence Q);; represents Quot%sﬁ /Sis (H|s;;,h). The same holds for Q;;. Therefore, there
exists a unique isomorphism ¢;;: Q;; — @j;- By its uniqueness the cocycle condi-
tion is satisfied, so that the @); can be glued to a scheme @ over S, which represents
Quotg/S(H, h).

2. We can assume X = X x S is a product: By step 1 we can assume that S is affine.
Consider the isotypic decomposition p, Oy = @pema}'p(@@ V,, wherep: X — 5. Aspis

a morphism of finite type, p,Oy is finitely generated as an Og—algebra. Hence there are
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finitely many JF, ®¢ V), such that S (@pGDX Fp ®c Vp) — p.Oy is a G—equivariant
surjection. Since S is affine and each F, is coherent, there is even a free module of

generators

Shs (€D V, 0c 057) = 0s @e S* (D V) - p.Ox.
pEDx pED X

Geometrically, this corresponds to an embedding i: X — S x X over S, where X =
Spec S* (D e p, Vpk(p)) o AXpeny KOV Am(Ve) o e replacing H by i, H, we can reduce
to the product case.

3. We can assume that there is a G—equivariant coherent sheaf H' on X and a map
v: mH — H, where m: X x S — X is the projection: We consider the isotypic decom-
position p,H = @pelrrGHP ®@¢ V,. The H, are locally free and by Step 1 we can even
assume the H, to be free. Since H is a coherent Oxys—module, there is a finite subset
D3 C Irr G and for each p € Dy there is an Og—submodule U, C H,, of finite rank such
that H is generated by the p*U, ®c¢ V), p € Dy. Hence for every p € Dy we find a
surjection Ogb(p) — U, with m(p) € N. On X x S we obtain

* m(p) m
™ (@pGDH OX(p Qc Vp) = @pEDH OX(xpg‘ Qa Vp

|

@pEDH P U, ¢ V) —H

pEDy, O;};(p) ®c V).
4. Quot(GXXs)/S(H, h) is a subfunctor of Quot®(H', h) x S: For a scheme T over S, we

have the following commuting diagram

Thus every quotient of H is also a quotient of 7*H’ with H' := P

T
idX Xg

XxT—>Xx8——>X

lpT g l”

T S

If [¢: (idx x g)*H — F]| € Quot(G}(Xs)/S(ﬂ*H’,h)(T) then the Ox xr—module % is also
a quotient of (idx x g)*m*H' = wjH'. Therefore, we define a natural transformation
Quotfy , g/5(H,h) = Quot®(H', h) x S via

Quot(y , g)/s(H, h)(T) — Quot®(H', h)(T) x S(T),
[q: (idx x g)*H — F|— ([voq: miH — F|,[g: T — S)).
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B. Relative invariant Quot schemes

5. Quot((’;(xs)/s(’H,h) is represented by a closed subscheme of Quot®(H',h) x S: By
[Jan06], the scheme Quot®(H’, h) represents the invariant Quot functor Quot®(H', h).
Thus, Quot®(H', h) x S is represented by Quot®(#’,h) x S, which is an S—scheme via
the projection Quot®(H/,h) x S = S. So Quot(GXXS)/S(H, h) is represented by a closed
subscheme over S if the natural transformation given in Step 3 is a closed embedding for
every S—scheme T'.

To show this, let [q: m#H — F]| € Quot®(H',h)(T) for some S-scheme T. Denoting
K :=Xker(v: m*H" — H), we have the following diagram:

(idx xg)*v
_—

(idX X g)*IC HW;H’ (idX X g)H

where ¢ exists if and only if o := g|(ay xg)=x = 0. Analogously to Step 2 we can find
peDx O}(p) ®c V, and n(p) € Ir G
for p in some finite set Dx C Irr G. Let o/ := a o vk. Since vk is surjective, we have

a =0 if and only if o/ = 0. This is the case if and only if ((pr)«a’),: O;L((p) = ((p1)+F)p

a surjection v : 5K — (idx x ¢)*K with K' = @

vanishes for every p € Dx. By the following lemma, the vanishing of ((pr)«a’), gives
us a unique closed subscheme T, C T for each p. Thus we obtain a closed subscheme
To =) peDy Ip C T describing the vanishing of (pr)«’. Applying this construction to
T = QuotG(H’ ,h) x S and ¢ the universal quotient on this scheme, we obtain a closed
subscheme @@ C QuotG(’H’ ,h) x S over S such that every morphism 7' — T factors
through Q if and only if every quotient in (Quot®(#H’, k) x S)(T") comes from an element
in Quotly . g)5(H, h)(T). This shows that Q represents Quotfy, ¢ /s(H, h). O

Lemma B.3 Let T be a scheme and B: € — F an Or—module homomorphism with F

locally free. Then there exists a unique closed subscheme Ty C T such that any morphism
f: T — T factors through Ty if and only if f*3 = 0.

Proof. We include the proof of this well-known lemma for the convenience of the reader.
Since F is locally free, 8 corresponds to a morphism J’: F' ®c & = Op. Denote the
image of B, which is an ideal in Op, by Z. Then f*3 =0« f*' =0« f~17 =0 and
Ty := V(Z) has the required property. O

Definition B.4 The scheme Quotg;(/s(%, h) := @ over S is called the relative invariant

Quot scheme.
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Proposition B.5 If the Og-G-module p,H has finite multiplicities, then the relative

imwariant Quot scheme Quotg’é/s(H, h) is projective over S.

Proof. We proceed analogously to [Jan06, Proposition 1.12]. As a closed subscheme of
the quasiprojective scheme QuotG(H', h) x S over S, the relative invariant Quot scheme
is quasiprojective over S. Thus, in order to show that the morphism Quotg’;/s(?-[, h) — S
is projective, it suffices to show that it is proper. Therefore we use the valuative criterion
of properness [Har77, Theorem 11.4.7].

Let D be a discrete valuation ring over S and K its field of fractions. We denote by
pr: X XgSpec K — Spec K and pp: X xgSpec D — Spec D the projections to the base

schemes. We have to show that whenever there is a commutative diagram

Spec K Quotg/s(H, h)

SpeJ/c D\ i

then there exists a unique extension 5: SpecD — Quotg/S(H,h) such that the dia-

gramm commutes.

Such a morphism ¢ corresponds to an element in Quotg’;/s(’}-[, h)(K), i.e. to a surjective
morphism [¢: H ®oy, K — Fk] of Ox ®o, K—modules such that in the decomposition
Pis«FK = @pemG(}'K)p ®¢ V, the sheaves of covariants (Fg ), are K—vector spaces of

dimension h(p). Thus we have an exact sequence
0= Bg > H®oy K = Fg — 0.

The inclusion H®p4 K D H®o, D allows us to define a subsheaf B’ := Bx N(H ®p4 D)
of H®p4 D, which yields a quotient 7/ = (H®o4 D)/B’ of H®p, D. Since G is reductive
we have

F, = (Hy ®0s D)/B, = (H, ®0s D)/((Bk), N (H, @05 D). (B.1)
Now let (Fp), := F,/(torsion). The kernel (Bp), = (H,®04 D)/(Fp), is the saturation

of B;. We have exact sequences

0 B//J H, ®oy D .7:; 0

| i

0— (Bp)p —=H, ®o5 D —(Fp), —=0,
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B. Relative invariant Quot schemes

which become equal after tensoring with K. The (Fp), are torsion—free and hence they
are flat D-modules. Since H, has finite multiplicities, each (Fp), is finitely generated
and locally free of rank h(p).

The direct sum Bp = pj)( @pelrrG(BD)p Rr Vp) is a submodule of H ®py D. Indeed,
by the construction, B’ is a submodule. Let f € Ox be a function mapping B), to By.
We have to show that it maps (Bp), to (Bp),. We have the following diagramm:

¥

B;) C (BD)p—>’Hp R0g D

TN
B, C (Bp)o —Ho®03 D ——(Fp)s
¢

Since (Bp)s = ker(Ho ®0g D — (Fp)s), the morphism ¢ is the zero map, and the same
holds for the composition ¢ o f. Hence v factors through (Bp),/Bj,. This module is
torsion since (Bp), is the saturation of Bj. In contrast to this, (Fp), is torsion—free by
its definition. Hence the image of ¢ is 0. This shows that « exists and multiplication
with f maps (Bp), to (Bp)s-
Thus, the quotient Fp = (H,®0,D)/Bp of H®o4 D is an element in Quotg*;/s(}[, h)(D),
which corresponds to a morphism 5: Spec D — Quot&xs)/S(H, h). Because of (B.1)

we obtain
0—=Bpep K —H®0s D@p K — Fp®p K ——=0
Hence the restriction of 5 to Spec K is ¢. 0
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