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Abstract

The dominant process in hard proton-proton collisions is the production of hadronic jets.
These sprays of particles are produced by colored partons, which are struck out of their
confinement within the proton. Previous measurements of inclusive jet cross sections have
provided valuable information for the determination of parton density functions and allow
for stringent tests of perturbative QCD at the highest accessible energies.

This thesis will present a measurement of inclusive jet cross sections in proton-proton
collisions using the ATLAS detector at the LHC at a center-of-mass energy of 7 TeV. Jets
are identified using the anti-kt algorithm and jet radii of R = 0.6 and R = 0.4. They are
calibrated using a dedicated pT and η dependent jet calibration scheme. The cross sections
are measured for 40 GeV < pT . 1 TeV and |y| < 2.8 in four bins of absolute rapidity,
using data recorded in 2010 corresponding to an integrated luminosity of 3 pb−1. The data
is fully corrected for detector effects and compared to theoretical predictions calculated
at next-to-leading order including non-perturbative effects. The theoretical predictions
are found to agree with data within the experimental and theoretic uncertainties.

The ratio of cross sections for R = 0.4 and R = 0.6 is measured, exploiting the signif-
icant correlations of the systematic uncertainties, and is compared to recently developed
theoretical predictions. The underlying event can be characterized by the amount of trans-
verse momentum per unit rapidity and azimuth, called ρUE. Using analytical approaches
to the calculation of non-perturbative corrections to jets, ρUE at the LHC is estimated
using the ratio measurement. A feasibility study of a combined measurement of ρUE and
the average strong coupling in the non-perturbative regime α0 is presented and proposals
for future jet measurements at the LHC are made.
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Kurzfassung

Der dominierende Prozess in harten Proton-Proton-Kollisionen ist die Produktion von
hadronischen Jets. Diese Teilchenschauer werden durch farbgeladene Partonen erzeugt,
die aus Ihrem Einschluss im Proton gestreut werden. Bisherige Messungen des inklu-
siven Jet-Wirkungsquerschnitts haben wertvolle Informationen zur Bestimmung von Par-
tondichteverteilungen geliefert und erlauben präzise Tests pertubativer QCD bei
höchsten Energien.

Diese Dissertation dokumentiert eine Messung des inklusiven Jet-Wirkungsquerschnitts
in Proton-Proton-Kollisionen mit dem ATLAS Detektor am LHC, bei einer Schwerpunk-
tsenergie von 7 TeV. Jets werden mit dem anti-kt Algorithmus und den zwei Radien
R = 0.6 und R = 0.4 rekonstruiert. Die Kalibration erfolgt mittels einer dedizierten, pT -
und η-abhängigen Kalibration. Die Wirkungsquerschnittsmessung erfolgt in dem Bereich
40 GeV < pT . 1 TeV und |y| < 2.8 in vier Bins des Betrags der Rapidität. Die verwen-
deten Daten wurden im Sommer 2010 aufgenommen und entsprechen einer integrierten
Luminosität von 3 pb−1. Die Daten werden vollständig auf Detektoreffekte korrigiert und
werden mit theoretischen Vorhersagen nächst zu führender Ordnung einschliesslich nicht-
perturbativer Korrekturen verglichen. Die theoretischen Vorhersagen stimmen mit der
Messung innerhalb der experimentellen und theoretischen Unsicherheiten überein.

Das Verhältnis der Wirkungsquerschnitte für R = 0.6 und R = 0.4 wird ebenfalls
gemessen und mit kürzlich entwickelten, theoretischen Vorhersagen verglichen. Dieses
Verhältnis profitiert von den signifikanten Korrelationen der systematischen Unsicher-
heiten. Die Wechselwirkung von sekundären Partonen aus den Proton-Resten lässt sich
mit Hilfe des Transversalimpulses pro Rapidität und Azimuth, genannt ρUE, charakter-
isieren. Mit Hilfe von analytischen, nicht-perturbativen Korrekturen für Jets erlaubt das
Wirkungsquerschnitt-Verhältnis eine Bestimmung von ρUE am LHC. Eine Machbarkeits-
Studie einer kombinierten Messung von ρUE und der gemittelten starken Kopplung im
nicht-perturbativen Regime α0 wird gezeigt und weiterführende Jet-Messungen am LHC
werden vorgeschlagen.
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1 Introduction

By 400 B.C., the Greek philosopher Demokrit brought up the idea of a basic constituent
called Atom which makes up all matter and is itself indivisible. But only in the 20th

century, the idea of the Atom was revived and gained a modern and more precise interpre-
tation. The field of elementary particle physics continues to pursue Demokrit’s thoughts
about what matter is composed of and tries to describe nature’s laws at their smallest
distance scales.

The transition to the modern field of elementary particle physics can be considered
to have taken place 1897. At that time the British physicist J. J. Thomson discovered
the electron, while studying electrical currents. The electron, still today, is considered
an elementary particle. Today’s picture of what Atoms are, was founded with Ernest
Rutherford’s discovery of the proton as the atomic nucleus of hydrogen atoms by 1919. It
was completed by the discovery of the neutron by James Chadwick by 1932.

The picture of Atoms being formed of neutrons, protons and electrons lasted approx-
imately until the 1960s. By then, a multitude of experiments in the field of particles
physics had lead to the discovery of numerous new, apparently elementary particles. The
symmetries and characteristics of these particles were explained by the quark model, ac-
cording to which all these particles are composed of either a quark-antiquark pair or
three quarks. These discoveries were enabled by great achievements in the development
of particle detectors as well as accelerators. Particles accelerated to increasingly higher
energies allowed to probe the structure of the collision targets with increasingly better
resolution. At the same time, higher energies made it possible to directly produce new par-
ticles that cannot be observed naturally. Consequently, discoveries of new particles or new
phenomena often came along with newly built experiments operating at higher energies.
Prominent examples of such experiments were UA1 and UA2 placed at the Super-Proton-
Antiproton-Synchrotron at CERN, which, in 1983, discovered the W± bosons and the Z0

boson and the D/O and CDF experiment at the Tevatron, which discovered the top quark
only 16 years ago. These experiments reflect the latest achievements in the completion
of today’s so called Standard Model of particle physics, which is able to describe a vast
amount of experimental data to a very good precision.

Yet, one part of the theoretical picture of the Standard Model still awaits to be discov-
ered. This missing particle is the so called Higgs boson, the manifestation of a Higgs field
that is supposed to interact with all massive particles. The hunt for this missing piece
of the standard model is one of the main motivations for the construction of the Large
Hadron Collider (LHC), which is supposed to provide proton-proton collisions at unprece-
dented center-of-mass energies of 14 TeV, and currently runs at reduced center-of-mass
energies of 7 TeV. A further open question in current particle physics is the composition
of matter and energy within the known universe. According to astrophysical observa-
tions only 4% of the universe is made of the currently known forms of matter and energy,
whereas 23% consists of currently unknown forms of dark matter. Theoretical models of
physics beyond the Standard Model predict the existence of new particles, which may form
this dark matter. Physics at the LHC here will certainly provide important constraints
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1 Introduction

for these models.
Complementary to such searches is the exploration of the known Standard Model at

the new energy scales accessible at the LHC. Ordinary events at the LHC for instance
will be dominated by processes of the strong interaction, the interaction of quarks and
gluons. The understanding of these events is a prerequisite in order to be able to decide
whether observations at the LHC are compatible with the current Standard Model or not.
Events induced via the strong interaction are dominated by the production of so called
jets. These are sprays of particles which are produced by quarks and gluons which are
struck out of the proton. Unambiguous prescriptions how to recombine these particles to
a single physical object, are provided by so called jet algorithms.

The measurement of the production cross section of such jets provides a direct handle
to probe the theory of the strong interaction at the highest accessible energy scales. The
reach to very high momentum scales also allows to analyze the proton structure with
very high resolution. In analogy to optical microscopy this resolution increases with the
momentum of the incident particle. Jet physics at the LHC will hence give access to
unprecedented resolutions in probing the structure of protons.

This thesis reports on a measurement of inclusive jet cross sections at the LHC, using
the ATLAS detector. In the second chapter the theoretical foundations especially of the
strong interaction will be outlined and Chapter 3 will briefly review some of the latest,
related measurements by other experiments. In Chapter 4 the theoretical predictions for
the measurement will be made. After an introduction to the ATLAS detector in Chapter 5,
Chapter 6 will outline how jets in the ATLAS detector are reconstructed and calibrated.
Chapter 7 will subsequently present the important characteristics of jets measured in the
ATLAS detector and is devoted to the validation of the Monte Carlo simulations which
play an important role in the subsequent analysis. Important studies done by the ATLAS
collaboration that also impact the presented analysis are reviewed in Chapter 8. The
main challenge of the actual analysis is the correction of detector effects that is necessary
to provide a measurement that is directly comparable to theoretical predictions. This
procedure and the obtained results are described in Chapter 9. The results of the cross
section measurement using two variants of jet definitions are examined more closely by
measuring the ratio of the two observed cross sections. This analysis benefits from the
positive correlations of the experimental uncertainties and is presented in Chapter 10.
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2 Theoretical foundations

2.1 The Standard Model of particle physics

The so called Standard Model of Particle Physics describes the dynamics and interactions
of all currently known elementary particles. It postulates two sorts of particles: The first
of which, fermions, are the constituents of all non-elementary matter. The second class
of particles, bosons, mediates the forces between the fermions, effectively keeping their
bound states together.

Before the establishment of the Standard Model, the known elementary particles in-
cluded the electron, proton and neutron which form all sorts of atoms matter is made of.
After more and more observations of new, apparently elementary particles by the begin-
ning of the 1960’s a multitude of such particles was known. They were generally called
hadrons and classified into two sub-categories according to their masses: Baryons (barys,
greek for heavy), to which the heavier particles were assigned to and mesons (mesos, greek
for medium), particles with medium mass. In an attempt to explain the observed char-
acteristics and symmetries of these particles in a systematic way, Gell-Mann and Zweig
by 1964 postulated the so called quark-model. It claimed that all these particles were
bound states of a new class of particles, the so called quarks. They were assumed to come
in three different flavors, up (u), down (d) and strange (s) quarks and their respective
anti-particles. Additionally they were supposed to be carrying an electric charge of either
±1

3
e or ±2

3
e, where e is the electron charge. In this quark model, all mesons are composed

of a quark-antiquark-pair, while all baryons are bound states of three quarks. Protons
(neutrons) for instance, are composed of two up-quarks and one down-quark (two down-
quarks and one up-quark). This model was able to almost perfectly describe the spectrum
of known hadrons.

However, it also contained several flaws by the time of its postulation. For instance
no force was known, that should be holding three quarks together within a baryon, given
their partly equal electric charge. The crucial item that brought the need for a signifi-
cant extension of the quark model, was the existence of, e.g., the ∆++ baryon. Being a
spin-1/2 particle, quantum dynamics required that its wave function needed to be totally
antisymmetric. The fact that the ∆++ in the quark model was composed of three up-
quarks, whose only degree of freedom was their spin, was an apparent contradiction to
Pauli’s exclusion principle

The solution to this dilemma was the assignment of a new quantum number to quarks,
called color. This new kind of charge comes in three different types, which were arbitrarily
named after the three base colors, red (r), green (g) and blue (b). Accordingly, anti-
quarks carry anti-red (r̄), anti-green (ḡ) or anti-blue (b̄) color charge. This new degree of
freedom solved the contradiction with the Pauli principle. Along with this charge came
the hypothesis of the gluon, carrying a pair of color and anti-color, which was introduced
as the particle mediating the force between color-charged particles. To accommodate that
no free quarks or gluons had been observed, the quark model also postulated that bound
states only exist as color singlet states. This feature, together with the observations

3



2 Theoretical foundations

that quarks behave almost like free particles inside the proton, came to be known as
confinement.

To date, three more quarks were discovered: the bottom (b), charm (c) and top (t)
quark. Theses quarks, together with the leptons and the bosons form the elementary
particles of the Standard Model, seen in Fig. 2.1. Quarks and leptons come in three

!"

#$%&'&($(&)*+
,-(
#-,

./01

2$#&'&3$4&)*+
'#-(
#-,

567819*

#:#&)*+
'#-(
#-,

;<87=

#$,%&>*+
,-(
#-,

6/"

#%(&>*+
,-(
#-,

?/66/=

2$#@&>*+
'#-(
#-,

*A*;67/1

3##&)*+
'#
#-,

*A$&1*!67B1/

C&,&*+
:
#-,

=!/1&1*!67B1/

C&:$#@&)*+
:
#-,

=!/1

#:3&)*+
'#
#-,

68!

#$%4&>*+
'#
#-,

68!&1*!67B1/

C&#4$,&)*+
:
#-,

"</6/1

C&#:'#4&*+
:
#

9A!/1

:&*+
:
#

D

4:$2&>*+
E#
#

F

@#$#&>*+
:
#

!
"
#
$%

&
'
(
)
*+

,
&

-
+
&+

,
&

GB995

H&>*+
:
:

.
/0
0
&

>*1*786B/1
I II III

Figure 2.1: Particles of the Standard Model and their properties. For every fermion shown,
there exists the respective anti-fermion with opposite charge. Masses taken from Ref. [1] ([2] for
the top quark).

generations, each consisting of an up-type and a down-type quark along with the charged
lepton and its neutrino. The only distinction between the three generations are the
masses of the associated particles. Since the particles of the second and third generation
are increasingly massive, they all decay into first generation particles. As a consequence,
all known stable matter is made of quarks and leptons of the first generation.

2.2 The electroweak interaction

The electroweak theory is the unification of Quantum Electrodynamics (QED) and the
weak interaction, established by Glashow, Weinberg and Salam by 1961. The unification
postulates, that the weak interaction and electromagnetism are just two manifestations of
a single force. In terms of quantum field theory, the electroweak sector is described by the
SU(2) × U(1) symmetry group. The ad-hoc requirement of local gauge invariance under
these symmetry groups, introduces four new gauge fields to the theory. The physically
observable four gauge bosons of the electroweak interaction, the photon, the Z0 and the
W± are represented by mixed states of these fields.

At this state in the theory however, all four bosons are massless, which contradicts
the experimental observation of only the photon being massless. Hence, the implied
symmetries are not realized by nature, but have to be broken. In the current Standard
Model, this spontaneous symmetry breaking is caused by the existence of the scalar Higgs
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2.3 The strong interaction

field to which all massive particles couple. Through their coupling to the Higgs field, the
Z0 and the W± become massive. Additionally, also the fermions couple to the Higgs field.
The strength of this Yukawa coupling to the Higgs field determines a fermion’s mass: the
stronger the interaction with the Higgs field, the larger the mass of the particle.

A consequence of the existence of the Higgs field is the prediction of a massive Higgs
boson, which should be observable. This missing part of the Standard Model still awaits
its discovery and was one of the main motivations for building the Large Hadron Collider
and the associated experiments.

2.3 The strong interaction

According to the name color for the newly invented charge of gluons and quarks, the theory
of their interactions was named Quantum Chromodynamics (QCD). QCD is based on the
color symmetry group SU(3), motivated by the fact that quarks of different color were
observed to behave identically. As in the electroweak sector, the requirement of the theory
being invariant under local gauge transformations introduces the gauge fields to the theory.
The symmetry group being SU(3), implies that there are eight such gauge fields, which
represent the gluons. The most distinct feature of QCD is, that, in contrast to QED, the
SU(3) symmetry implies that the theory is non-Abelian. For the physics described by the
theory, this reflects the fact, that gluons carry color charge, unlike the photon in QED.
Consequently, they are also able to interact with themselves, unlike the photon. The full
dynamics of the strong interaction is described by the QCD Lagrangian:

L =
∑

f

ψ̄f,a(iγ
µ∂µδab −mfδab − gsγ

µtCabAC
µ )ψf,a −

1

4
FA

µνF
Aµν , (2.1)

where repeated indices are summed over and the γµ are the Dirac γ-matrices. Here the
ψf,a denote the quark fields of flavor f with mass mf and the color index a. The AC

µ with
C = 1, .., 8 represent the eight gluon fields. The tCab are the eight generators of the SU(3)
group and gs =

√
4παs is the QCD coupling constant. The field strength tensor FA

µν is
given as:

FA
µν = ∂µAA

ν + ∂νAA
µ − gsfABCAB

ν AC
ν

[

tA, tB
]

= ifABCt
C (2.2)

The first two of the three terms enclosed in brackets in Eq. 2.1 correspond to the Dirac-
Lagrangian of free fermions with masses mf , while the third one describes the interaction
of quark and gluon fields. The last, non-Abelian term in Eq. 2.2 is responsible for the
existence of the gluon self-interaction, which distinguishes QCD from QED. The capability
of gluons to interact with themselves leads to the so called asymptotic freedom [3, 4].
Asymptotic freedom manifests itself in the fact, that quarks and gluons behave as free
particles at short distances (high momentum scales), while they are confined at large
distances (low momentum). The origin of asymptotic freedom is the phenomenon of
vacuum polarization. In QED, vacuum polarization is induced by the production of
transient e+e− pairs in an electric field, originating from a sole, charged particle. These
pairs reduce the effective charge of the particle, the larger the distance to the particle
gets. This effect is known as screening and results in the fact that the electromagnetic
coupling constant decreases as the distance increases. Analogue to QED, transient qq̄
pairs, produced out of gluons, lead to a screening of color charge. Contrary to QED
however, gluons may not only produce qq̄ pairs, but also pairs of additional gluons. The
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impact of gluons, contrary to the quarks, is to increase the apparent color charge with
increasing distance. This effect overwhelms the screening nature of quarks and overall
leads to an anti-screening effect. Hence, in QCD the coupling increases with increasing
distance or decreasing momentum transfer. In consequence, for large momentum transfers,
the strong coupling, denoted by αs, becomes less strong and quarks inside protons tend
to behave as quasi-free particles.

This behaviour separates practical applications of QCD into two regimes: At high mo-
mentum transfer, where the coupling constant is sufficiently small (O (0.1)), calculations
can be treated perturbatively. At lower momentum scales, where the coupling increases,
perturbative calculations are not possible and QCD here is commonly described by suit-
able phenomenological models. Important aspects of both regimes of QCD will be outlined
in the following.

2.3.1 Aspects of perturbative QCD

The QCD Lagrangian describes three fundamental kinds of interactions in QCD: Quark-
antiquark annihilation, gluon-gluon fusion and an interaction of four gluons. These in-
teractions can be represented by three fundamental Feynman graphs, as illustrated in
Fig. 2.2. Every arbitrarily complex interaction in QCD can be represented by a Feynman

Figure 2.2: The three fundamental interactions in Quantum Chromodynamics. Solid lines
represent quarks and curly lines represent gluons.

diagram, composed of the three fundamental ones. By using Feynman diagrams a process
can not only be visualized, but also its cross section can be calculated using the so called
Feynman rules. These rules associate exact mathematical prescriptions to each funda-
mental interaction. These can be combined to calculate the cross section for a process
represented by one or multiple diagrams, composed of several fundamental interactions.
Each quark-antiquark annihilation or gluon-gluon fusion vertex for instance contributes
a factor αs to the cross section, while the four-gluon vertex comes with a factor α2

s .
In the framework of perturbative QCD (pQCD), such calculations are expanded in

powers of αs:

σpQCD =
∑

i

αi
sσi (2.3)

were the σi are contributions to σpQCD at the ith order of αs. These calculations pro-
vide partonic cross sections: cross sections for processes where the incoming and outgo-
ing particles are either quarks or gluons. For the example of inclusive jet production,
the leading order (LO) contributions are 2 → 2 parton scatterings which are of O (α2

s).
Next-to-leading order (NLO) contributions at O (α3

s) arise from 2 → 3 scatterings (real
contributions) and 2 → 2 scatterings with one loop (virtual contributions). Examples of
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a)

b)

c)

Figure 2.3: Examples for LO diagrams (a), virtual NLO contribution (b) and real NLO contri-
butions (c) with final state radiation (FSR) on the left and initial state radiation (ISR) on the
right.

LO and NLO diagrams for inclusive jet production are given in Fig. 2.3. The inclusion of
the NLO contributions brings considerable complications to the calculation of the matrix
elements. These are due to the fact that the probability for a quark to radiate a gluon,
diverges for Eg → 0 and θg → 0, with Eg and θg being the gluon’s energy and its angle
with respect to the quark respectively. Hence, both, real and virtual, contributions alone
are infrared divergent. The sources of both divergences have the same origins, but come
with a different sign and thus cancel each other. This however only holds in case the
observable is infrared and collinear safe. That is, the observable O must not be sensitive
to soft or collinear emissions, which can be formulated as in [1]:

On+1(p1, ..., ps, ..., pn) → On(p1, ..., pn) for ps → 0

On+1(p1, ..., pa, pb, ..., pn) → On(p1, ..., pa + pb, ..., pn) for pa ‖ pb, (2.4)

where the first equality implies infrared safety and the latter one collinear safety. Taking
into account the NLO contributions significantly reduces the unphysical scale dependency
of observables, due to improved convergence of the αs expansion.

Loop diagrams also introduce the issue of ultraviolet divergences. These are due to
the fact that mathematically, the momentum of e.g. a gluon within a loop can be infi-
nite. Integrals over the momentum of particles in loops hence diverge. These integrals
are renormalized by the introduction of a cut-off at the so called renormalization scale
µR. This cut-off is absorbed in a renormalized strong coupling constant, which, by this
absorption inherits a dependency on µR. The strong coupling’s world average is quoted
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at µR = MZ , the Z0 mass, to be [5]:

αs(MZ) = 0.1184 ± 0.0007.

Next-to-leading order calculations are the best means to predict additional hard radi-
ation off a 2 → 2 process, for instance producing a third jet. At the same time, they
do not include possible, numerous soft radiations, which may not produce additional jets,
but change the inner structure of jets. Such features are implemented as so called parton
showers, which are used along with LO calculations especially in Monte Carlo (MC) event
generators. Here the generation of a 2 → 2 process is followed by a probability based
further splitting of incoming and outgoing partons. The generation of these splittings is
based on the so called Sudakov form factor, ∆(Q0, Q1), which describes the probability,
that a given parton does not split into new partons between the scale Q0 and Q1. The
minimum scale Q0 serves as a lower cut-off for emissions, which mitigates the soft and
collinear divergences. At the same time Q0 defines the minimum scale of a physically
resolvable emission. The simulation of unresolvable soft or collinear emissions can be
considered superfluous. With a proper usage of ∆(Q0, Q1) and the generation of random
numbers, splittings are created ordered in Q as Qi < Qi−1 < ... < Q0. The choice of
the ordering variable Q herein is an in principle arbitrary one. It is however common to
generate the first splitting as the hardest one. Common choices for the ordering quantity
Q thus are the pT of the emitted parton or its angle with respect to the parent parton.
The definition of the Sudakov form factor is based on a collinear approximation. Hence,
contrary to the NLO calculations, parton showers manage to describe soft emissions rather
well, while hard emissions are described less precisely.

A combined usage of NLO calculations with subsequent parton showers is possible, but
very complex due to the need of a clear separation of the NLO emissions and the parton
shower generation.

2.3.2 Aspects of non-perturbative QCD

Due to the confinement, quarks or gluons cannot exist as free particles. Two colored
partons, departing from each other with sufficiently high momentum for this reason have
to finally form color-neutral hadrons. This formation of hadrons, commonly referred to
as hadronization or fragmentation, happens in the non-perturbative regime of QCD and
so far eluded calculations from first principle. Several models describing hadronization in
a phenomenological or probabilistic way exist. One prominent and intuitive approach is
used in the Lund string model, employed by the widely used Pythia6 MC generator [6],
which is illustrated in Fig. 2.4. In this string model, hadronization takes place by cascade-
like productions of qq̄ pairs out of an imagined color-string, spanning the distance between
two departing colored partons. As the two quarks depart from each other, the potential
energy stored in the color-string increases until the string breaks and produces a new pair
of quarks. Both new quarks are now connected via color-strings to the two initial quarks.
Depending on the momenta of the two initial quarks, numerous further breaks may occur.
This procedure stops, once only quark-antiquark pairs remain whose relative momentum
is low enough to form on-mass-shell hadrons.

In the so called cluster model, employed e.g. by the Herwig++ generator [7], quark-
antiquark pairs whose color allows them to form color-singlet states form so called clusters.
At the end of the hadronization procedure, for each cluster a new quark-antiquark pair is
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created out of the vacuum and these two quarks are used to form hadrons together with
the two original quarks of the cluster.

.....
......
......
..........
......
......
..........
......
..........

!

"#q

Figure 2.4: Illustration of the Lund string model for a quark anti-quark pair departing from
each other. The red line symbolizes the color string spanning the distance between the quark and
anti-quark and eventually breaks up to from a new pair of quarks. Figure taken from Ref. [8].

For the experiment the phenomenon of hadronization leads to the fact that partons can-
not be measured directly in a detector, as it is possible for stable particles. Rather, scat-
tered partons produce numerous stable particles, which become increasingly collimated
with increasing momentum of the parent parton. These collimated sprays of particles are
called jets. Important details of jet identification will be outlined in the last section of
this chapter.

2.4 Phenomenology of proton-proton-collisions

The above considerations where restricted to partons. However, since partons are con-
fined, parton collisions are experimentally realized by making e.g. protons collide. This
considerably complicates the calculation of physically observable cross sections. The first
complication arises from the fact that in the calculation of the partonic cross sections, the
momenta of the incoming partons have to be known. Experimentally though, neither the
parton’s momentum nor its type can be fully controlled. Instead, the colliding partons,
constituents of the two colliding protons, only carry a certain fraction of the proton’s
momentum, denoted by the Bjorken-x variable: pparton = xpproton. The probability to
find a parton with a certain value of x in a proton is provided by parton density functions
(PDFs). According to the factorization theorem [9], PDFs are considered to be universal
quantities, describing the composition of a proton. Hence, the probabilities to find a
parton with a given x inside a proton, are independent of the hard scatter, as indicated
in Fig. 2.5. The probability to observe a certain final state thus can be thought of as
the probability to first draw two partons with a certain momentum from the incoming
protons. The convolution of these probabilities with the probability that the scattering of
the two partons results in the final state of interest finally gives the probability to observe
the process in a proton-proton collision. Mathematically this can be written as:

σ(pp→ X) =
∑

a,b

∫ 1

0

dxa

∫ 1

0

dxb σ̂ab→X(xa, xb, s, µ
2
R, µ

2
F ) fa/p(xa, µ

2
F ) fb/p(xb, µ

2
F ) (2.5)

σ̂ab→X herein denotes the partonic cross section and it has to be summed over all parton
types a and b, with

√
s being the center-of-mass energy of the two protons. Here the
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Figure 2.5: A stylized hadron-hadron collision. The partons a and b enter the hard interactions,
whose cross section is denoted by σ̂. The probabilities to find partons a and b in the proton with
a certain momentum fraction is denoted by fa/p and fb/p respectively. Additionally a second pair
of softer partons (dashed lines) from the proton remnants may interact to form the underlying
event (UE).

fa/p(xa, µ
2
F ) represents the PDF: the probability to find the parton of species a with a

momentum fraction xa in the proton. The arbitrary factorization scale determines up to
which scale parton emissions are handled by the PDF, rather than considered as part of
σ̂ab→X . Usually the factorization scale is set equally to the renormalization scale µR.

The accommodation of PDFs hence enables the prediction of cross sections measur-
able in proton-proton-collisions. In a more complete picture of a proton-proton collision,
as sketched in Fig. 2.5, however, not only two partons interact. The proton’s remnants
may also interact, producing the so called underlying event (UE) via multiple parton in-
teractions (MPI). These secondary interactions are commonly regarded as 2 → 2 QCD
processes above a low pT threshold, denoted by pmin

T . For pmin
T → 0, the cross section for

these processes (σsoft) becomes larger than the total proton-proton cross section σpp. A
common interpretation of this fact is, that the average number of parton-parton interac-
tions, denoted by 〈Nint〉, is simply the ratio of these two cross sections: 〈Nint〉 = σsoft/σpp.
Within this interpretation however, 〈Nint〉 is a function of pmin

T and hence diverges for
pmin

T → 0. To solve also this issue, the wide variety of MC generators employ a range
of suppression techniques and further physical arguments to constrain 〈Nint〉 to a finite
value. The details of these models and suppression techniques introduces a significant
number of parameters, which have to be tuned such, that the MC simulation reproduces
real data. Examples for appropriate observables used to perform such tunings are given
in Chapter 3.

2.5 The structure of protons

Since the dynamics of PDFs lie within the non-perturbative regime of QCD they cannot
be calculated and therefore have to be measured. Today PDFs are determined by a
number of collaborations in fits to a wide variety of experimental results. The picture of
the proton’s composition is such, that its constituents are the three valence quarks (uud),
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held together by gluons. The inner dynamics of the proton is governed by splittings of
gluons into either quark pairs, forming the so called sea-quark content, or further gluons.
The probability for a parton b to undergo either an emission or splitting that yields the
parton a with a momentum fraction f = 1− z is given by the appropriate Altarelli-Parisi
splitting function Pab(z) [10]. For instance, the probability that a quark emits a gluon
and keeps a fraction z of its original momentum is given by:

Pqq(z) =
4

3

1 + z2

1− z
. (2.6)

The proton can thus be imagined as a compound of ever splitting and recombining partons,
leaving the proton as a whole unchanged.

Due to the divergences of the splitting functions in the soft limit (z → 1), increasingly
soft splittings are much more abundant. However, at a given momentum scale only
splittings down to a certain momentum scale can be resolved. Consequently, the visible
structure of a proton changes with the momentum scale at which it is probed. This can be
seen in analogy to optical microscopy, where the resolution is limited by the wavelength
of the light used to inspect a probe. In order to go beyond such a limit, the wavelength
has to be decreased, increasing the momentum scale.

The evolution of a certain parton density function fa/p(x,Q
2) as a function of this mo-

mentum scale Q is described by the DGLAP evolution equations (see e.g. [1]). Exemplary
parton density results are shown in Fig. 2.6 at two very different scales, demonstrating
the evolution of the proton structure. Though in the original quark model one would
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Figure 2.6: Proton PDFs at Q2 = 2 GeV2 (left) and Q2 = 10000 GeV2 (right), taken from
Ref. [11, 12]. Parton densities multiplied by x are shown: xg = x fg/p(x,Q2). S refers to
the summed PDFs of all sea-quarks, whereas g, uv and dv show the gluon density and the two
valence-quark densities respectively.

expect that the three valence quarks in total carry the full proton momentum, in fact
only ≈ 50 % is carried by the valence- and sea-quarks. The remaining momentum is car-
ried by the gluons. The most dramatic evolution in the PDF between the two different
scales shown in Fig. 2.6 can be observed for the low-x gluon and sea-quark PDFs, which
increase by more than one order of magnitude for x . 10−2. This is a result of the fact
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that with increasingly high momentum transfer more and more soft g → gg, g → qq̄ and
q → qg splittings can be resolved. The inner structure of protons hence depends on how
closely it is examined. Though the DGLAP equations are able to describe the evolution
of a certain PDF between two scales, they cannot be used to actually determine a PDF
without a starting scale.

This instead is done in PDF fits. Here DGLAP evolution is the essential component
to handle input data measured at widely different momentum scales. Mostly, parton
densities are described by a parametric Ansatz with a certain set of free parameters,
which is valid at a certain starting scale Q0 = O (1 GeV). In a single iteration of a fit
procedure, for each input data the PDF Ansatz is evolved to the appropriate momentum
scale and theoretical predictions are compared to the data. Considering the large spread
of momentum scales in data used in PDF fits, DGLAP evolution can be considered to be
extremely successful.

As illustrated by the colored bands in Fig. 2.6, the determination of PDFs is connected
with considerable uncertainties. These uncertainties arise from a number of different
sources, which are also taken into account in the uncertainty bands shown. Firstly, there
are of course experimental uncertainties on the PDFs, that are a direct consequence of
the limited precision of the input data, shown as red bands in Fig. 2.6. Secondly, most
PDFs rely on a parametrized form for each individual PDF, which constrains the results
to a certain degree. The resulting uncertainty from an altered parametrization on the
PDFs in Fig. 2.6 is shown as a green band. The model uncertainties shown refer to
uncertainties induced by the choice of e.g. the heavy quark masses. These uncertainties
to some degree of course impact all PDF determinations. However, the chosen approaches
for the estimation of PDF uncertainties differ among the various collaborations performing
PDF fits.

The choice of the αs(MZ) value is an additional parameter, whose treatment differs
among the PDF collaborations. It is either used as a fixed, external parameter or as an
additional free parameter, which is fitted along with the PDF itself. For both cases, the
uncertainty on the PDF is estimated by comparing PDFs extracted with varying values
of αs(Mz). In addition to the sources of uncertainty mentioned above, another issue is
the choice of the input data, that in general is different for various PDFs.

A consequence of these items is, that in general it cannot be expected that predictions
using different PDFs agree within their associated uncertainties. Hence, the more realistic
estimate of PDF induced uncertainties on any observable should include a variety of PDF
sets, to find the actual envelope of the predicted values for the observable.

2.6 Algorithms for jet identification

The identification of jets is only trivial in the very simple scenario of an event with only
two partons, as implied by the LO diagrams in Fig. 2.3a). Already at the parton level,
NLO scenarios as in Fig. 2.3c) pose the question, whether a gluon from FSR or ISR
belongs to one of the two outgoing quarks or not. Avoiding these ambiguities is the major
requirement for jet algorithms, which should provide a well defined and unambiguous set
of rules how to combine single particles into jets.

An additional requirement for jet algorithms may be called resilience. This requirement
arises from several issues. The most prominent is that jet algorithms have to be applied
to a variety of different input data. Three types of input data are going to be used in the
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upcoming analysis. According to the different stages of event simulation, these are:

• Parton level jets: Jets at the parton level use simulated parton momenta, that
are either generated in (N)LO calculations or by MC event generators, without
executing the hadronization step.

• Particle level jets: Here, momenta of simulated, color-neutral particles are used.
These are simulated using MC event generators including the hadronization step.

• Reconstructed jets: For reconstructed jets experimental (either simulated or real)
inputs are used, which may be tracks of charged particles or calorimeter signals.

A good jet algorithm has to be made such that it provides stable results at all levels.
Two particularly subtle issues are infrared and collinear safety, as defined in Eq. 2.4.

In terms of calculations, unsafe algorithms may spoil the cancellation of real and virtual
divergences. Experimentally, infrared emissions can be mimicked for instance by electronic
noise as well as by soft particles, which may also originate from the underlying event.
Also collinear topologies may occur, e.g. due to energy depositions which are split among
neighboring calorimeter cells. Infrared and collinear safety hence are not only abstract
flaws, but may induce real and most importantly avoidable pathologies in jet events.

Since first measurements of jets in electron-positron collisions a variety of jet algorithms
has been established. It is possible to subdivide all the established algorithms into two
distinct classes: Firstly, there is the class of cone-algorithms. These algorithms identify
jets on a geometrical basis, by grouping together particles which lie within a cone (a circle
in the η-φ-plane) of certain radius R. Generally, cone algorithms can be summarized as
follows:

Step 1) Chose the highest pT particle in the event as a starting point, called seed.

Step 2) Place a cone at the seed’s position.

Step 3) Recombine∗ all particles within the cone and place a new cone along the direction
of the recombined momentum. Repeat this procedure until the position of the
new cone is stable with respect to the firstly placed cone. Call the recombined
object a proto-jet and remove it from the list.

Step 4) Repeat steps 1 to 3 until the list is empty.

Step 5) The split & merge procedure: Find all proto-jets sharing energy and merge
them if the shared energy exceeds a certain threshold. Else, associate all shared
particles to the closest proto-jet.

Due to the usage of seeds, which are only considered above a certain threshold, none of the
seed-based cone algorithms is infrared nor collinear safe. Exemplary topologies of infrared
and collinear unsafe behaviour of cone algorithms are illustrated in Fig. 2.7. In latest
analyses at the Tevatron, the so called Midpoint algorithm was used [13]. This algorithm
additionally uses all midpoints between two stable cones as seeds for new cones, before
entering the split & merge procedure. This feature aimed to provide a better infrared
behaviour, but only reduced the existing problems by one order (see e.g. [14]). Recently,

∗Different methods for recombination exist. Here, to recombine a set of particles, their four-momenta
are summed. Other recombination schemes exist (cf. [13]), but will not be used in this analysis.
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Figure 2.7: Examples of pathologies caused by infrared (a) and collinear (b) emissions. In a),
the additional soft (infrared) particle in between the two harder ones is an additional seed for a
cone that includes all three particles. In b) the collinear splitting of the hardest particle leads to
a different ordering of seeds. The first stable cone is found without including the dashed particle.

the SISCone algorithm [14] was developed, which, as the only cone based algorithm,
features perfect infrared and collinear safety.

The second class of algorithms employs methods to sequentially recombine pairs of
particles. Most algorithms of this kind can be described by a common algorithm, which has
its origin in the inclusive kt algorithm [15]. Algorithms of this class are generally defined by
an abstract distance measure between two particles. Particles which are closest in terms
of the defined distance measure are recombined first. Similar to the cone algorithms, also
these algorithms make use of a basic radius parameter R, which controls the size of the
jets. Introducing a second parameter t, all algorithms inheriting the general aspects of
the kt algorithm can be described as follows:

Step 1) For each pair of particles, define: dij = min(pt
T,i, p

t
T,j)

∆R2
ij

R2
, with ∆Rij being

the distance between the particle i and j in η-φ-space: ∆Rij =
√

∆η2 + ∆φ2.

Step 2) For each particle, define: diB = pt
T,i.

Step 3) Find the smallest of all dij and diB.

Step 4) If it is a dij, recombine particle i and j.

Step 5) If it is a diB, call it a jet and remove it from the list.

Step 6) Repeat from step no. 1, until no particle is left.

All algorithms of the kt family are infrared and collinear safe, which is due to the fact that
they do not need seeds. Inconveniently large computing times of kt algorithms, that were
still an issue for Tevatron analyses [13], have been solved by more recent implementations
[16, 17]. For t = 2, this algorithm reproduces the original kt algorithm. The motivation
behind this choice is, that the most soft and collinear radiations are subsequently undone.
The kt algorithm hence effectively tries to reverse QCD radiations. A purely geometrical
approach is chosen by the Cambridge/Aachen algorithm [18, 19], for which k = 0. More
recently the anti-kt algorithm [20], using t = −2 was developed, which clusters the hardest
particles in an event first. This choice produces very circular jets, as it is the intention of
cone algorithms, and at the same time it inherits all benefits of sequential recombination,
which will become apparent in the following. The anti-kt algorithm hence unifies the
advantages of cone-algorithms, namely their regular shape, and the infrared and collinear
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safety of the clustering algorithms. Due to these reasons, this analysis will in the following
use the anti-kt algorithm.
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3 Overview of recent QCD
measurements

In order to be able to put the upcoming analysis into perspective of current physics, it
is necessary to provide a brief overview of the most recent results in this field. For this
purpose, a few selected results that are closely connected to this analysis are presented in
the following.

Historically, measurements of jets had a very significant impact on the understanding
of QCD. First observations of two-jet events have been made in e+e− collisions at the
Stanford Linear Collider in 1975 [21]. These very first observations of the hadronization
phenomenon confirmed the theoretical picture of confinement. Not much later, the first
three-jet events observed in 1979 at PETRA [22] proved the existence of the hypothesized
gluon.

In the more recent past, with QCD being a well-established theory, measurements of
jet observables help to understand a variety of its aspects. Jet physics directly probes the
framework of pQCD up highest scales of transverse momentum, due to the large cross
sections. Besides, jet observables, such as inclusive cross sections, help to constrain the
proton structure in PDF fits and allow for a measurement of the strong coupling constant
at very high energy scales. In the following a small overview of results from the HERA
and the Tevatron experiments shall be given.

The underlying event, an inevitable component of jets in hadron-hadron collisions, has
significant impact on jet analyses. For this reason, also a recent measurement of the
underlying event at the Large Hadron Collider is also presented.

3.1 Results from HERA

At HERA electrons with an energy of 27.5 GeV were brought to collision with 920 GeV
protons. Here, in scatterings via charged and neutral currents, the quark content can
be probed very directly in the measurement of the proton’s structure functions. Being
the only electron/positron-proton collider, the results of HERA so far are unique. The
reconstruction of the electron’s momentum allows for a very precise reconstruction of the
kinematics of the underlying scattering. For instance, the measurable momentum-loss of
the electron allows to determine the x of the scattered parton in the proton very precisely.

The two HERA collider experiments, H1 and ZEUS, extensively measured the proton
structure functions. The measurements spanned a very wide range of x and Q2 [23]. The
kinematic range for the neutral current processes was 10−7 < x < 0.65 with 0.045 <
Q2 < 30000 GeV2. For the charged current processes the ranges were slightly smaller.
These measurements were able to stringently test the evolution of PDFs described by the
DGLAP evolution equations. The success of these equations is impressively demonstrated
by the excellent description of the data by next-to-leading order QCD calculations (see
e.g. [23]). Today, the large amount of data points from the HERA experiments builds
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Figure 3.1: Results of PDF fits without (left) and with (right) jet data. Figure taken from
Ref. [11].

the basis for the understanding of the proton structure. The inclusion of jet data here
results in a significantly more precise determination especially of the gluon PDF. This is
illustrated in Fig. 3.1, which shows two sets of PDFs determined with and without the
incorporation of HERA jet data. The uncertainty on the gluon PDF for instance at low
x after the incorporation of the jet data significantly decreases from approximately 20 %
to 10 %. This highlights the value of the jet cross sections for the determination of PDFs.

3.2 Results from the Tevatron

At the Tevatron protons and anti-protons are brought to collision at a center-of-mass
energy of 1.96 TeV. Compared to the analyses performed at HERA, measurements at
Tevatron are naturally much more similar to what can be expected at the Large Hadron
Collider (LHC). Inclusive jet cross sections at the Tevatron have been measured by the D /O
and CDF collaborations using the Midpoint cone algorithm with R = 0.7 as a function of
transverse momentum up to approximately 600 GeV. CDF uses a slightly larger dataset of
1.1 fb−1 [24], compared to D/O, which used only 0.7 fb−1 [25]. Both measurements, shown
in Fig. 3.2, are in very good agreement with NLO pQCD predictions. The experimental
uncertainties at the highest transverse momenta for both measurements are dominated by
the jet energy scale uncertainty. For the CDF measurement, the maximum experimental
uncertainties are approximately 35%, whereas the D /O measurement is somewhat more
precise and quotes an experimental uncertainty of approximately 20% in the central
rapidity bin. Both measurements meanwhile are incorporated in recent global PDF fits
and contribute to an improved uncertainty especially on the gluon PDF at high x.

Besides testing pQCD, inclusive cross section measurements may also hint at new
physics. Particularly models predicting quark substructure that may become visible at a
certain scale, would manifest themselves in significantly amplified jet cross sections. First
inclusive jet cross sections measured at the Tevatron in Run I [26] for instance, showed
such higher cross sections at largest transverse energies. However, the excess could also
be well explained by an enhanced gluon PDF in the high x region and led to a significant

18



3.2 Results from the Tevatron
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Figure 3.2: Inclusive jet cross section measurements by CDF (left, from Ref. [24]) and D /O
(right, from Ref. [25]).

change of subsequent PDFs. This illustrates the necessity of precisely known PDFs in the
view of searches for deviations from the known Standard Model.
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Besides cross section measurements, a variety of
other jet observables were measured at the Teva-
tron (see e.g. [28] for a recent review). Only two
examples are the measurements of jet shapes and
angular correlations in two-jet events.

The measurement of jet shapes [29] probes the
inner structure of jets, whose simulation is an
important test of hadronization models and MC
generator tunings. The angular correlation of
jets allows to test theoretical predictions at NLO.
The dominant contribution to jet production are
2 → 2 scatterings, which result in two-jet topolo-
gies in which both jets are back-to-back, namely
separated in azimuth by ∆φ = π. The additional
production of third and fourth jets leads to modifi-
cations of these topologies, bringing the two lead-
ing jets closer together. This was measured by the
D/O collaboration [27] and the results are shown in
Fig. 3.3. They are compared to LO (2 → 3) and
NLO calculations of three jet observables. As ex-
pected, the LO computation, which includes only
three jets in the final state, is only able to de-
scribe the data at intermediate values of ∆φ. The
NLO calculation is able to describe the observa-
tions very well across the full range of ∆φ.

19



3 Overview of recent QCD measurements

3.3 Measurements of underlying event characteristics

Measurements of the underlying event have become standard analyses at hadron colliders.
They provide unique information for the proper tuning of MC generators, which is a
crucial ingredient for all other kinds of analyses.

In a naive approach, the underlying event can be considered to be independent of
the hard scattering, which in general exhibits a back-to-back, two-jet structure. It can
hence be expected that the dynamics in the region perpendicular to the two-jet system,
is dominated by the underlying event. This assumption is the basis of the majority of
underlying event analyses, which measure the characteristics of particle production in
certain azimuthal regions with respect to the hard scattering. A common choice is, to

∆φ

60<|∆φ|<12060<|∆φ|<120
transverse transverse

away
|∆φ|>120

toward

o

o

o oo

|∆φ|<60o

leading particle

Figure 3.4: Illustration of the separation of the full azimuthal range into four distinct regions.
Figure taken from Ref. [30].

define the direction of the hard process by selecting the highest pT object in an event, as
illustrated in Fig. 3.4, and to define four distinct azimuthal regions as follows: The toward-
region, which is identified by the direction of the leading particle and the away-region,
which is oriented to the opposite direction. This defines the remaining two transverse
regions, which are oriented perpendicular to the hard scattering.

With this definition, it is expected that the observed particles in the transverse re-
gion mainly originate from the underlying event. Commonly used observables include
the number of particles observed and features of their transverse momentum distribution.
Figure 3.5 shows the measurement of such observables done by the ATLAS collaboration
at the LHC using data at a center-of-mass energy of 7 TeV [30]. The left panel shows the
scalar sum of the transverse momenta of all particles in the transverse region, normalized
to the area in η-φ-space as a function of the leading particle’s pT . This observable reveals
that the assumption of the underlying event being independent of the hard process is not
completely true. The activity in the transverse region evidently scales with the momen-
tum of the leading particle, especially at very low momenta. Only at higher plead

T the
distribution flattens and hence appears to be less correlated with the hard process. The
comparisons with various MC generator predictions reveal that they tend to simulate a
too soft behaviour of the underlying event.

The right-hand side of Fig. 3.5 shows the average number of particles observed versus
their angle with respect to the leading particle. Here, a W-like shape can be observed. Its
peaks at ∆φ = 0 and ∆φ = π to arise from the particles produced in the hard scattering.
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Figure 3.5: Left: The amount of transverse momentum per unit pseudorapidity and azimuth in
the transverse region, as function of the leading track’s momentum. Right: The average number
of particles observed versus their azimuthal angle with respect to the leading particle. Both figures
taken from Ref. [30].

On the contrary, a significant fraction of the particles produced around ∆φ ≈ π/2 is
assumed to originate from the underlying event. Similar measurements [31], restricted
to charged particles only, have already been used to establish new MC generator tunes,
specific for the environment at the LHC.
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4 Theoretical predictions

4.1 Theoretical predictions at parton level

The theoretical predictions for the inclusive jet cross section are calculated at next-
to-leading order (NLO) using the NLOJet++ [32, 33] program in combination with the
CTEQ6.6 PDF set [34]. NLOJet++ effectively performs a MC integration of the integral in
Eq. 2.5, including final states with up to four partons and one loop. For the MC integra-
tion NLOJet++ firstly generates a randomized event of initial and final state partons along
with the cross section calculated at tree level as an event weight. In subsequent iterations,
NLO corrections to the tree level event are generated along with their (positive or nega-
tive) weights. This results in changed kinematics for instance in the case of the generation
of initial state radiation (ISR) or final state radiation (FSR). Once all contributions to
a given tree level event have been calculated, a new event is generated. To obtain the
cross section of an arbitrary observable, this observable is calculated from the existing
parton momenta in each iteration. The total cross section is then given as the sum of
all per-event weights divided by the number of tree level events created. Depending on
the details of the observable, in particular the binning, very high numbers of iterations
(O (109)−O (1010)) have to be processed in order to achieve satisfactory cancelation be-
tween real and virtual NLO contributions. For the calculation of the inclusive jet cross
section, the tree level events contain two final state partons and a third one for the real
NLO contributions.

Jets are clustered using the anti-kt algorithm within the FastJet library [16, 17, 20]
with the two radii R = 0.6 and R = 0.4. For the calculation of the cross section in each
iteration the renormalization (µr) and factorization (µf) scales were chosen as the pT of
the jet with the highest transverse momentum in the event, denoted by plead

T . The double
differential, inclusive jet cross section is defined as:

d2σ(pT , y)

dpTdy
=

∑

iNjets,i(pT , y)wi

Ntree∆pT ∆y
, (4.1)

where Ntree is the number of tree-level events, the sum runs over all events i and Njets,i

and wi are the number of jets in a given bin found for the ith event with a weight wi.
Results of these calculations are shown in Fig. 4.1 for various bins of rapidity.

4.2 Theoretical uncertainties

In a general picture, the predictions of course are firstly limited by the fact that they
are only computable at NLO. Approximations of the NNLO contribution [35] reveal, that
the correction arising from contributions beyond NLO can be expected to be rather small
compared to the impact of the NLO contribution on the LO prediction. Uncertainties on
the NLO prediction arise from the choice of µr and µf , the value of the strong coupling
constant αs and the PDF uncertainty.
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Figure 4.1: Theoretical predictions for the inclusive jet cross sections at parton level. As
indicated, the histograms were multiplied by increasing powers of ten for illustrative reasons.

All three uncertainties are studied using the APPLGRID program [36]. The use of
APPLGRID allows to store the perturbative coefficients in three-dimensional histograms,
so called grids, in bins of x1, x2 and Q2. Here x1 and x2 are the two Bjorken-x variables
of the incoming partons and Q2 = (plead

T )2 is the squared momentum scale of the event.
For the concrete application, these perturbative coefficients are the weights, which, mul-
tiplied by the parton densities, give the cross section for a given event. The convolution
with the PDF, as well as the choice of αs and scaling of µr and µf by constant factors can
be done subsequently and independently of the program used to fill the grids.

In the following the uncertainties are derived using APPLGRID to calculate the cross
sections with a certain parameter altered. The deviations observed from the nominal cross
section will then be considered as the systematic uncertainty associated to the parameter
in question.

The scale uncertainties are estimated by increasing and decreasing both scales indepen-
dently by a factor of two. The ratios of the resulting cross sections to the nominal one
are displayed in Fig. 4.2. In each bin of pT the maximum deviation from the nominal
cross section is considered the relative uncertainty. This is done separately for deviations
to higher and lower cross sections, resulting in an asymmetric uncertainty. It amounts to
approximately 5% at low pT , increasing to ≈ 20% at 2 TeV. It is interesting to note that
the scale uncertainties turn out to differ quite significantly between the two jet algorithms.
This is in particular the case for the lowered renormalization scale, while the impact of
constant µr and varying µf is very similar. The radius dependency of the µr uncertainty
can be explained by the increased sensitivity of R = 0.4 jets to the NLO contributions.
This is due to the fact that for smaller jets more three-parton topologies will be clustered
to three jets, while they are clustered into two jets for R = 0.6.

Similarly the uncertainties due to the choice of αs were estimated. The nominal
CTEQ6.6 PDF uses αs(MZ) = 0.118. Alternative PDF sets are provided, which were
fitted using αs(MZ) = 0.116 and αs(MZ) = 0.120. These are recommended by the CTEQ
collaboration for an uncertainty estimate at 95% confidence level [37]. One should note
that a change between the given PDF sets not only changes αs, but also the PDF to a
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4.3 Corrections to particle level
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Figure 4.2: Relative deviations of the cross sections induced by scaling µr (µf ) by a factor
xr (xf ) as indicated. Separately for positive and negative deviations from unity, the maximum
deviation in each pT bin is taken as the systematic uncertainty.

certain degree. The variations found are shown in Fig. 4.3 a). The uncertainties, again
taken asymmetrically as the deviation from unity, are on the order of 3% to 5%. As
expected, these uncertainties are on the same order as the actual uncertainty on α2

s, being
approximately 3.4%, which is the order with which the dominant contribution to the jet
cross section comes.

The PDF uncertainties are evaluated according to the recommendations of the CTEQ
group [38] for the evaluation of asymmetric uncertainties. The provided PDF set includes
22 PDF eigenvectors with their positive and negative variation. The cross section predic-
tions are calculated for each of these 44 PDF variations. Positive and negative deviations
arising from each eigenvector are summed quadratically. The result of this procedure and
the relative cross sections using the single eigenvectors are shown in Fig. 4.3 b). The un-
certainty obtained ranges from ≈ 3% to 1+32 %

−22 % at very high tranverse momenta. Due to
the complex transformation of the PDF fit parameters to the eigenvectors, a physical in-
terpretation of a single eigenvector is unfortunately not possible. For a fixed factorization
scale, the gluon PDF uncertainty starts to increase significantly at lower x values than
the uncertainties of u and d quarks. One can thus expect the gluon PDF to contribute
significantly to the uncertainty at high transverse momenta.

Finally all three uncertainty components are combined in Fig. 4.4, by adding all con-
tributions quadratically. The resulting total uncertainty is dominated by the PDF un-
certainty for pT & 300 GeV and lies between 4% and 35%. Except for the observed
differences in the impact of the renormalization scale, the uncertainties for both jet sizes
are very similar.

4.3 Corrections to particle level

The predictions in Fig. 4.1 and the above described associated uncertainties apply to the
parton level. In particular they neither include hadronization effects nor the underlying
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Figure 4.3: a) Relative variations induced by the usage of PDFs extracted with the indicated
αs values. The deviations to higher and lower cross section are taken as the asymmetric αs

uncertainty. b) Cross section variation induced by PDF uncertainties. Only the four eigenvec-
tors (EVs) with the highest contributions are shown explicitly. Uncertainties from remaining
eigenvectors are summarized.

event (UE) inevitably present in hadron-hadron interactions. Both have to be included
in the theoretical prediction in order to allow for a meaningful comparison to data, which
will not be corrected for either of the two effects.

As both effects originate in the non-perturbative regime of QCD there is no equally
well founded basis for their computation as for the partonic cross sections∗. The method
commonly used to incorporate both effects is to apply a bin-by-bin correction factor to
the parton level prediction. With this non-perturbative correction factor, denoted by K,
the final theoretical prediction of the cross sections can be written as:

d2σ(pT , y)

dpTdy
=
d2σparton(pT , y)

dpTdy
×K(pT , y), (4.2)

where the partonic cross section σparton is taken from Fig. 4.1. These correction factors
are extracted from MC simulations, which allow for event generation with and without
the simulation of hadronization and underlying event. K is then derived as the ratio of
the cross section including UE or hadronization (or both) and the cross section at parton
level. Using HAD as a short hand for hadronization, this can symbolically be written as:

K(pT , y) =
σ′′(pT , y; with UE, with HAD)

σ′′(pT , y; no UE, no HAD)
(4.3)

KUE(pT , y) =
σ′′(pT , y; with UE, no HAD)

σ′′(pT , y; no UE, no HAD)

KHAD(pT , y) =
σ′′(pT , y; no UE, with HAD)

σ′′(pT , y; no UE, no HAD)
.

∗An exception from this statement could be the recently developed techniques in [39], which allow for
an analytical computation of hadronization effects using only few experimental input.
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Figure 4.4: Single contributions to the theoretical uncertainty on the partonic cross section and
the resulting total uncertainty for both jet sizes.

Here σ′′(pT , y) =
d2σ(pT , y)

dpTdy
is used for brevity. It should be noted that this procedure is

theoretically not perfectly well founded. A major caveat is that UE and hadronization in a
MC generator are introduced on top of an intermediate state, which would have to match
the parton final state within NLOJet++. This is however not the case, due to the fact that
the NLO contributions are not fully contained in common LO event generators. Instead
they are only modeled to a certain degree by the use of parton showers. These parton
showers also produce a rather large amount of partons in the final state, compared to up
to only three partons in NLOJet++. The ideal situation would be to interface the full NLO
calculation properly to an event generator handling the remaining steps. This possibility
is for example provided by the MC@NLO project [40] for various processes, however not
including inclusive jet production. Only very recently inclusive jet production has been
implemented in POWHEG [41].

Due to this situation the bin-by-bin correction is kept. To account for the caveats
mentioned above the correction is derived in a variety of MC generator tunes and two
different generators, in order to gain a realistic estimate of the associated uncertainty.
The MC generators used for this purpose are Herwig++ [7] using a recent tune to ATLAS
UE measurements available at [42] and Pythia6 using a selection of the so called Perugia
tunes [43] and the ATLAS tune MC09 [44].

In principle the simulation of K would be sufficient in order to correct the parton level
predictions to the particle level. It is however instructive to first study the impact of UE
and hadronization seperately. Subsequently K and its associated systematic uncertainty
will be derived.

The results for KUE and KHAD are collected in Fig. 4.5 for both jet sizes. In general
the hadronization’s effect is to move energy from inside the jet outside of its scope, thus
lowering the transverse momentum and the observed cross section at fixed pT . The size of
this effect thus decreases as the jet gets wider, which is confirmed by the results in Fig. 4.5.
The impact of the UE can basically be described by an average energy density added to
the event on top of the hard parton scattering. Depending on the jet size, portions of
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Figure 4.5: UE and hadronization corrections for various Pythia6 and Herwig++ tunes for
anti-kt6 (left) and anti-kt4 jets (right). The lower sections shows the hadronization corrections,
the upper ones contain the UE corrections. The MC predictions are fitted using Eq. 4.4.

this background are included in the jets of the hard scattering. One can thus conclude
that the impact of the UE on a single jet’s pT increases with its area. This corresponds
to an increase of the UE impact by a factor of 2.25 going from R = 0.4 to R = 0.6 jets,
taking into account that anti-kt jet areas are to a very good approximation circular [20].
The impact on the cross section and thus on the non-perturbative correction is however
amplified by the very steeply falling cross section. Consequently, in particular at low pT

KUE is multiple times larger for R = 0.6 jets than for the smaller jet radius.

The differences in the UE correction between the Pythia6 tunes and Herwig++ are
strikingly large. Yet at the same time both generators manage to describe ATLAS data
to a certain degree: For Herwig++ this is demonstrated at [42], while comparisons with
various Pythia6 tunes are included in [30]. The latter measurement however implies that
the Pythia6 tunes used can be considered to include too few UE activity in general, which
slightly favours the Herwig++ prediction. The spread in the hadronization corrections is
in turn much smaller. Nevertheless the Herwig++ result shows the largest hadronization
effect. In the physically more sensible scenario with UE and hadronization, the two rather
large Herwig++ corrections can be expected to cancel each other to a certain degree.

In order to take eventual correlations between the UE and hadronization properly into
account, K is evaluated by switching on UE and hadronization in parallel, as indicated in
Eq. 4.2. The corrections K obtained this way are displayed in Fig. 4.6. It can be noted
that K decreases the partonic cross section for small jets while it significantly enhances
the one for large jets. The major reason for this is the large impact of the UE. The large
spread between Pythia6 and Herwig++ in this final correction is only slightly smaller.
The inclusion of Herwig++ increases the uncertainty significantly with respect to the set
of corrections obtained with Pythia6. This is considered to provide a much more realistic
estimate of the uncertainty. In particular Herwig++ can be expected to cover uncertainties
which are not covered by the various Pythia6 tunes, such as eventual features due to the
different models used in both generators. An exemplary, common feature of all Pythia6
tunes is the asymptotical behaviour for very high transverse momenta, which differs only
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Figure 4.6: Non perturbative correction for various Pythia6 and Herwig++ tunes for anti-kt6
(left) and anti-kt4 jets (right). The MC predictions are fitted using Eq. 4.4.

very little among the various tunes. Here Herwig++ predicts a different behaviour, which
obviously is not within the scope of the Pythia6 tunes.

To finally obtain smooth non-perturbative corrections, each correction is fitted using a
logarithmic power law,

f(pT ) = A+B log (pT/ GeV)−C , (4.4)

with A, B and C being free parameters. This parametrization fits all observed corrections
well. The predictions obtained using the Pythia6 MC09 tune is used as the nominal
correction. The distance towards the maximum (minimum) fitted correction in each pT

bin is taken as the upper (lower) systematic uncertainty.

4.4 Theoretical predictions at particle level

The results of the two previous chapters complete the theoretical predictions and pro-
vide the baseline comparison to the results of the analyses presented later on. Figure 4.7
displays the calculated cross sections at particle level along with their systematic uncer-
tainties. The total uncertainty obtained is dominated by the uncertainty on the par-
ton level prediction over a large range of transverse momentum. Only at low pT the
non-perturbative correction poses a significant contribution, which is mainly due to the
Herwig++ results.
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Figure 4.7: Theoretical predictions for the inclusive jet cross section (left) and the associated
systematic uncertainties (right). The top row shows the results for R = 0.4 jets, the bottom row
the ones for R = 0.6 jets.
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The Large Hadron Collider (LHC) was built to gain access to unprecedented energies
and luminosities in hadron-hadron collisions. It was built in the tunnel that previously
housed the Large Electron Positron collider near Geneva/Switzerland on the grounds of
the European Organization for Nuclear Research (CERN). It was designed to primarily
provide proton-proton (pp) collisions at a maximum center of mass energy of 14TeV and
instantaneous luminosities of up to 1034 s−1cm−2. The instantaneous luminosity quantifies
how many proton-proton pairs per unit area and time pass through the interaction region.
It allows to determine the rate Rp at which of processes with a given cross section σp

occur:
R = L× σ (5.1)

The LHC was built as a synchrotron collider, using superconducting magnets. Due to
the synchrotron nature, the proton beams are not continuous but consist of bunches of
protons that are brought to collision in the interaction points of the experiments. Single
proton bunches contain O (1011) protons and have an approximate transverse spread of
O (10µm) and a longitudinal one of O (1 cm). In each bunch crossing one or more pairs of
protons from both bunches may collide, where the probability to observe a certain number
of pp-collisions follows a Poissonian distribution. These multiple pp-collisions are referred
to as pile-up and the mean of the Poissonian is generally denoted by µ. The value of µ is
mainly determined by the number of protons in the bunches and their collimation in the
interaction regions. For further technical details on the accelerator the reader is referred
to [45].

Experiments taking data at the LHC are ALICE [46], LHCb [47], LHCf [48] and
TOTEM [49], whose detectors are built for very specific physics purposes. Additionally,
there are two general purpose experiments: The CMS [50] and the ATLAS experiment
[51]. The ATLAS (A Toroidal LHC ApparatuS) detector is fully operational since Sum-
mer 2008 and taking collision data since November 2009. The declared aim of the ATLAS
experiment is the exploration of physics in the new energy regime accessible at the LHC.
The general design principle of the detector, shown in Fig. 5.1 thus was universality and
a as large coverage as possible. Due to the very universal physics goal, the detector
comprises a large variety of different subdetectors. Similarly to previously built particle
detectors at colliders, the detector consists of several layers. From the inside out, these
can be grouped into the inner detector, which is contained in a solenoidal magnetic field
and contains the tracking system. Surrounding the tracking system are the electromag-
netic and hadronic calorimeters, measuring the particle’s energies. The outer envelope
of the detector is formed by the muon system, which is immersed in a toroidal magnetic
field.

The design parameters of the specific detector sub-components followed the physics
expectations as well as the general environment at the LHC. The performance of the
calorimetry system was designed to ensure the best possible resolution in view of important
signatures, such as Higgs bosons decaying into two photons. The tracking system has to
be highly granular to be able to cope with the very high occupancy caused by numerous
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5 The ATLAS experiment at the LHC

Figure 5.1: View of the ATLAS detector.

proton-proton-collisions in one bunch crossing. The detector read-out and the trigger
system have to cope with the interaction rates of 40MHz. The very high interaction rates
also bring new challenges for the data acquisition, distribution and analysis.

In the following all the systems that participate in the data taking are outlined. The fo-
cus will be on subdetectors and features that will be especially important for the upcoming
measurement, such as the calorimetry and calorimeter trigger.

5.1 The ATLAS coordinate system

The coordinate system used within ATLAS is based upon a right-handed, Cartesian coor-
dinate system, whose z-direction is oriented counter-clockwise along the beam axis. The
positive x-axis points towards the center of the LHC ring and the y-axis points upwards.
The origin of the coordinate system is defined as the nominal interaction point. Further,
frequently used and occasionally more convenient coordinates are listed below:

• Radial distance to the beam axis: r =
√

x2 + y2.

• Azimuthal angle: φ = arctan(x/y).

• Polar angle: θ = arccot(z/r).

• Pseudorapidity: η = − ln(tan θ/2).

• Rapidity: y =
1

2
ln

[

E + pz

E − pz

]

.
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5.2 The inner detector

• Distance in the η-φ-plane: ∆R =
√

∆η2 + ∆φ2.

• Quantities in the transverse plane indicated by the T subscript, such as pT , ET etc.,
are the quantity’s projection onto the x-y-plane.

5.2 The inner detector

The inner part of the detector tracks particles bent within the solenoidal magnetic field
of 2T and thus can measure their momentum. The momentum resolution of the inner
detector was designed to be σpT /pT = 0.05 % pT/1 GeV ⊕ 1 %, within a coverage of up
to |η| < 2.5. This is done using a combination of pixel and silicon microstrip (SCT)
detectors, surrounded by the transition radiation tracker (TRT) as laid out in Fig. 5.2.
Closest to the beam-pipe, at a radial distance from the beam axis of approximately 45mm,

Figure 5.2: Sectional view of the ATLAS inner detector and its sub-components.

where the occupancy is highest, the tracking is done using silicon pixel detectors with a
minimum pixel size in rφ × z of 50×400 µm2. The measurement of hits in these pixels
is possible with a resolution of 10 µm in the r-φ plane and 115 µm in the z direction.
The pixel detectors are placed in three layers on concentric cylinders around the beam-
pipe and three disks perpendicular to the beam-pipe up- and downstream of the nominal
interaction point. Adjacent to the pixel detector are four SCT layers which span the
radial distance of up to 50 cm away from the beam axis. Each SCT layer consists of two
sub-layers in which the strips are arranged with a stereo angle of 40mrad to be able to
also measure the z-position. The last inner detector system for a particle to pass is the
TRT, which consists of straws arranged in 73 planes in the barrel (cf. Fig. 5.2), parallel
to the beam axis (160 in the end-cap in radial direction). The TRT only measures a hit’s
r-φ coordinate, with a precision of 130 µm.

The read-out of the inner detector has to cope with information out of approximately
87 million electronic channels, of which 80 million are contributed by the pixels, 6 mil-
lion by the SCT and approximately 350000 by the TRT. The combination of precision
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5 The ATLAS experiment at the LHC

measurements by the semiconductor detectors and the TRT coordinates at rather large
radii results in a very robust pattern recognition and high precision. Besides the provision
of additional spacepoints to the track reconstruction the transition-radiation induced by
electrons in the TRT enhances the electron identification capabilities.

5.2.1 Reconstruction of charged particles and vertices

The details of the ATLAS track reconstruction are outlined in detail in [52]. Here only,
very briefly, the general scheme shall be described.

The very first step of the track reconstruction consists of converting the hit information
of the pixel and SCT detectors into three dimensional representations, the so called space-
points. Pairs of space-points of the pixel detectors are used to find track seeds. These
seeds already provide a crude estimate of the direction of the track. Hits on subsequent
detector layers in the proximity of this direction are successively added to the track fit.
The reconstruction of tracks within the silicon detectors is followed by the extension to
the TRT.

For the reconstruction of vertices, first all vertex candidates and their associated tracks
are found. In a second step the vertex is fitted using the uncertainty information of all
associated tracks. In this step, also all tracks are refitted, implementing the constraint
that they originate from the same interaction point.

The primary vertex is an event is defined as the one associated with the hardest scatter-
ing, while additional vertices in the event are considered as pile-up vertices. The identifi-
cation of the primary vertex in an event is based on the sum of squares of the transverse
momenta of all associated tracks. The vertex that maximizes this sum is considered the
primary vertex in the event.

5.3 The calorimeter system

The ATLAS calorimeters were designed to be able to cope with the large variety possi-
ble new physics might bring. The ATLAS calorimetry, shown in Fig. 5.3, consisting of
electromagnetic (em.) and hadronic calorimeters, comprises two basic detector concepts:
The em. calorimetry, using LAr-lead sampling calorimeters and the hadronic calorimeter,
which is realized as iron-scintillator detectors and LAr-copper sampling calorimeters. The
criteria that the calorimeters had to match, are as follows:

• Coverage up to very large pseudorapidities is needed to be able get an as complete
picture as possible of a pp-collision. This feature is especially important for the
resolution of the missing transverse energy, which is an important event feature in
many models of physics beyond the standard model. The ATLAS calorimeters reach
pseudorapidities of up to |η| ≈ 4.9, which corresponds to an angle with respect to
the beam axis of 14mrad.

• Energy resolution is a major benchmark of all calorimeters. The energy resolution
of the em. calorimeter is expected to allow for a measurement of the Higgs boson’s
mass with a resolution of 1%, e.g. in the decay into two photons. The required,
fractional energy resolution of the calorimeters for this purpose has to be better
than 10 %/

√

E/1 GeV ⊕ 1 %. For the hadronic calorimeters similar requirements
apply based on the prospects for measurements of the top quark mass or Higgs
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5.3 The calorimeter system

Figure 5.3: Left: Sectional view of the ATLAS calorimeters. Figure taken from Ref. [51].

decays which may include hadronically decaying bosons. The targeted resolutions
for jet energy reconstruction with the combination of em. and hadronic calorimeters
is 50 %/

√

E/1 GeV⊕ 3 %.

• Complementary to a very good energy resolution, the linearity of the absolute energy
scale for the em. calorimeters is expected to be below 0.5%, while for the jet
reconstruction a scale uncertainty of 2% is the minimum aim.

• Angular resolution poses a contribution to the resolution of invariant masses of
two (or more) particles. To keep this contribution small, a high resolution in the
measurement of angular positions requires highly granular segmentations along η
and φ.

The electromagnetic calorimeters are built as sampling calorimeters with liquid Argon
(LAr) as active medium and lead as the absorber. The hadronic calorimeters in the barrel
(|η| < 1.0) and extended barrel (|η| < 1.7), the tile calorimeters, consist of iron absorber
plates interleaved with plastic scintillator tiles. In the end-caps the hadronic calorimeters
are realized as LAr-copper sampling calorimeters.

5.3.1 Geometry of the electromagnetic calorimeters

The barrel LAr calorimeters cover pseudorapidities up to |η| < 1.475 and consist of two
half-barrels joined at η = 0. They are built in an accordion geometry as sketched in
Fig. 5.4, which has the benefit of enabling full azimuthal symmetry and a fast read-out
of the signal at the rear or at the front of the electrodes. Longitudinally the calorimeter
in the barrel is segmented threefold, with the middle layer (layer 2 ) generally absorbing
the majority of a particle’s energy. The first layer is very finely segmented in η, allowing
for very good spatial resolution.
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Figure 5.4: Schematic of the LAr accordion architecture in the barrel. Incident particles in
this view enter the calorimeter from the lower left corner. Figure taken from Ref. [51].

The end-cap calorimeters consist of two wheels, the outer of which covering 1.375 <
|η| < 2.5 and the inner extending the coverage up to 3.2. The accordion structure is
continued in the end-caps, were the waves are parallel to the radial direction and run
axially. Also the longitudinal segmentation from the barrel region is propagated, and
the granularity in the middle layer is 0.025 × 0.025 as in the barrel. As indicated in
Fig. 5.4 four times four of these highly granular calorimeter cells can be grouped into
so called trigger towers, which are projective sums of all cells in a certain η-φ direction.
These towers are used in the trigger system to allow for a very fast, but rather coarse
read-out of the calorimeters. The thickness of the em. calorimetry is approximately 23
radiation lengths (X0) in the barrel and well above 25X0 for |η| > 1.5, ensuring a proper
containment of em. showers up to highest energies.

Non-uniformities in φ direction thanks to the accordion geometry do not exist. As a
function of pseudorapidity the transition from the barrel to the end-cap around |η| ≈ 1.45
exhibits an unavoidable interrupt in the calorimeter’s uniformity. Within the barrel region,
much smaller non-uniformities exists around η = 0, where the two half-barrels are joined
and at |η| ≈ 0.8, where the absorber thickness within the calorimeter changes. The total
em. calorimetry comprises approximately 160000 calorimeter cells which are read out.

5.3.2 Geometry of the hadronic calorimeters

The tile calorimeters

The tile calorimeters cover pseudorapidities of up to |η| < 1.7, with a division at |η| ≈ 0.8
into the tile barrel calorimeter and the extended tile (|η| > 0.8). As the em. calorimetry,
it is longitudinally segmented into three parts, with the middle one being the thickest.
The geometry of one detector slice in φ is shown in Fig. 5.5. The scintillating tiles are
not projective in η, but lie within the r-φ plane. Particles at central rapidity thus travel
parallel to the tiles and with an increasing angle for increasing pseudorapidities. The read-
out happens through wavelength shifting fibers which run along the thin edges of the tiles,
guiding the scintillation light to photomultipliers and the read-out electronics at the outer
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Figure 5.5: Left: Schematic of the geometry of the tile calorimeter modules. Right: Schematic
of the calorimeter architecture in the hadronic end-cap. Figure taken from Ref. [51].

end. By properly grouping signals from individual tiles as input to one photomultiplier,
an approximately projective read-out is achieved.

Holes were drilled into each azimuthal segment, parallel to the beam axis. Along these
channels a 137Cs source may be injected into the system, whose signal can be used for
calibration purposes. The number of interaction lengths particles traverse until the end of
the tile calorimeters is approximately 10, except for the transition region around |η| ≈ 0.8.
In total, the tile calorimeters contribute approximately 10000 read-out channels to the
total calorimeter read-out.

The hadronic end-cap

In the hadronic end-cap (HEC) the calorimetry uses a completely different architecture
than in the barrel. Here the calorimeter uses copper as absorber and LAr as active
medium and thus is also contained within the LAr cryostat in which the em. end-cap is
placed. The full end-cap is constructed as two wheels, one behind the other, both covering
1.5 < |η| < 3.2.

The absorbers are arranged as flat plates in the r-φ plane, separated in z by four
honeycomb structures which are immersed in the liquid argon (cf. Fig. 5.5). The total
gap between two absorber plates is subdivided by three electrodes. Distinct calorimeter
cells are defined by pads, which are etched on the central electrode foil between two
absorbers. The geometry of these pads also makes it possible to define the read-out cells
to be projective. The number of interaction lengths up to the end of the hadronic end-
cap is approximately 12. Approximately 6000 electronic channels are used to read-out
the hadronic end-cap calorimeters.
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Instrumentation in the barrel to end-cap transition

The transition region between the barrel and end-cap calorimetry is occupied with service
structures and power supplies for the inner detector and the LAr calorimeters. To nev-
ertheless be able to detect energy depositions of particles traversing this region, special
detectors were inserted as depicted in Fig. 5.6. In the radially outermost of the detector

Figure 5.6: Schematic view in the r-z-plane of the calorimeters in the barrel to end-cap tran-
sition region. Figure taken from Ref. [51].

the tile plug-calorimeter, a tile calorimeter section reduced in size, provides additional
coverage. The so called gap scintillators were attached to the tile calorimeter surface,
covering the region of 1 < |η| < 1.2. The more forward region of 1.2 < |η| < 1.6 is
covered by the cryostat scintillators, which are attached to the tile calorimeters and read
out through their electronics.

The energy deposited in these scintillators allows to estimate the amount of energy lost
in the not instrumented regions in front of the scintillators.

5.3.3 Forward calorimetry

Calorimetry beyond |η| > 3.2 is provided by the forward calorimeter (FCAL), which is
also located in the cryostats of the end-cap calorimeters and covers the pseudorapidity of
3.1 < |η| < 4.9. The close vicinity to the beam-pipe exposes the FCAL to exceptionally
high radiation, which lead to a design with very small liquid-argon gaps. The FCAL
is longitudinally segmented into three parts, the first of which being optimized for em.
calorimetry. This first segment is made of stacked copper plates, in which holes were
drilled parallel to the beam axis. Copper rods with a slightly smaller diameter are centered
in these tubes, leaving a thin gap which is filled with LAr.

The two hadronic segments use the same architecture as the em. segment. But, in
order to achieve as many interactions lengths as possible, as much copper as possible was
replaced by tungsten: The copper rods where replaced by rods made of tungsten and
the hadronic segments are only held together by two copper end-plates which embrace a
matrix of tungsten slugs forming the necessary tubes.

38



5.3 The calorimeter system

5.3.4 Calorimeter signal reconstruction and calibration

The determination of a particle’s energy based on the calorimeter response is a non-trivial
task. For all LAr based calorimeters, the raw detector response is a current pulse, whose
integral is proportional to the energy the particle deposited in the calorimeter. This
analogue signal is shaped and digitized, resulting in a signal of ADC (analogue-to-digital
converter) counts. The full pulse time in the LAr is approximately 400 ns. To a avoid
a long integration time, this pulse is filtered to a bipolar shape. This allows for a faster
readout by sampling only five values of the pulse in intervals of one bunch crossing (25 ns).
The bipolar shaping is optimized to minimize the sum of electronic and pile-up noise
arising from signals from the following bunch crossings.

In the very first calibration step, the conversion from ADC counts to µA needs to be
obtained. This conversion is determined using charge injection systems mounted on the
calorimeter front-end electronics. These are capable of injecting a precisely known charge
into the system and thus allow to extract the conversion constant. The calibration from
µA to eV is obtained from test-beam measurements, where the detector is exposed to
particles of very well known energy.

The calibration of the tile calorimeter involves one more step, since the light yield
within a scintillator is converted by the photomultipliers to an analogue pulse. For the
calibration and monitoring of the photomultipliers a laser system, whose light is guided
via clear plastic fibers to the photo-cathodes is used. Additionally it is possible to inject
a 137Cs source through channels in the tile calorimeters, probing the full chain from light
collection via photomultipliers to the digitized current pulse.

To obtain the conversion from the digitized photomultiplier output in ADC counts to
pC a charge injection system is used, similarly to the procedure in the LAr systems. The
absolute calibration from pC to eV is obtained from test-beam measurements.

Results from electron and pion test-beams are shown in Fig. 5.7. In these test-beam
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Figure 5.7: Left: Linearity of the electron response, all points are normalized to the value at
Ebeam = 100 GeV. Right: Linearity of the measured pion beam energy for a combined LAr and
tile calorimeter segment. Figure taken from Ref. [51].

results the aims outlined in the beginning of this section are achieved to a satisfactory
degree. The linearity obtained for electrons is on the level of 1‰, which is well below the
aim of 0.5%. The response for pions in the combined LAr and tile calorimeter is constant
within 2%.

The fractional energy resolutions measured are 10 %/
√

E/1 GeV⊕ 0.4 % for electrons.
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For charged pions the resolution obtained amounts to 52 %/
√

E/1 GeV ⊕ 3 %. These
results meet the physical requirements well.

5.4 The muon system

Due to their mass, muons traverse the inner detector and calorimeter loosing only very few
energy. The outer envelope of the ATLAS detector thus is formed by the muon tracking
system. Once outside the calorimeters, muon’s are bent in the toroidal magnetic field of
0.5Tesla (1Tesla) in the barrel (endcap) region. While tracks in the inner detector are
bent in the r-φ-plane, the toroidal field leads to a bending in the r-z-plane.

The design of the muon system follows the performance goal of a momentum resolution
of approximately 10% for 1 TeV tracks.

The full muon system consists of two general detector types. Precision measurements
are provided by monitored drift tubes (MDTs) in the central region, while cathode strip
chambers (CSCs) are used in the end-cap region. The MDTs are approximately 3 cm thick
tubes filled with a Ar/CO2 mixture and work as classical drift tubes, in which ionized
electrons drift to the wire which goes along the center of the tube. The CSCs are multiwire
proportional chambers, which are arranged in wheels at each side of the interaction point.
Each wheel is composed of 16, slightly overlapping wedge shaped segments.

For triggering purposes different detector types are used. These allow for a faster read-
out at the cost of reduced precision.

The reader is referred to [51] for more details on the muon system.

5.5 The trigger system

Though the LHC may be able to provide bunch crossings at a rate of up to 40MHz, events
can only be recorded with a maximum rate of approximately 300Hz. This reduction in
rate has to be achieved with a very fast, but at the same time efficient pre-selection of
events. This pre-selection is done by the trigger system.

At ATLAS the trigger is realized in three stages: the Level-1 (L1) trigger, the Level-
2 (L2) trigger and the event filter (EF). The two latter are grouped into the High-Level
trigger (HLT). Each of the three stages is able to analyze events increasingly more detailed,
allowing for an increasingly precise selection using more sophisticated algorithms. The
largest reduction in the trigger rate has to be achieved by L1. For this purpose the
L1 system is built from custom hardware, enabling trigger decisions within 2.5µs. The
maximum L1 accept rate is 75 kHz. The output of L1 consists of information about
interesting regions in the detector, such as regions containing high-pT objects, which
are forwarded to L2. The L2 trigger is implemented as software algorithms running on
computer farms and can spend up to 40ms for making the trigger decision. At L2 the
event rate is reduced to approximately 3 kHz. Events passing L2 are forwarded to the EF,
at which the full event information can be used. Here, the trigger decision may take up
to four seconds per event.

If the rate reduction achieved with a certain trigger is insufficient but at the same
time the trigger requirement cannot be changed, so called prescale factors are used. The
introduction of a prescale factor p for a trigger means that only every pth event fulfilling
the trigger requirement, is recorded. This concept is especially important for triggers
selecting low pT events, whose cross section is too large to record all events fulfilling the
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trigger requirement. In these cases the prescales allow for a selection of only a fraction of
these events.

During the processing of an event within the various trigger stages, the detector data
with full granularity is stored in pipelines within the Data Acquisition (DAQ) path (cf.
Fig. 5.8). If the event is accepted by the trigger at all levels, this data is read out and
finally written to disk.

5.5.1 The Level-1 trigger

The time constraint of making trigger decisions within 2.5µs is the major design criterion
for the L1 trigger system. This requirement can only be met using coarser detector in-
formation than available. As a consequence the L1 trigger only incorporates calorimeter
signals and information from the muon trigger chambers, whereas no tracking information
can be used. The general logic flow of the system is illustrated in Fig. 5.8. The system

Calorimeter triggers
missEM

� Jet
ET�
ET

�

Muon trigger

Detector front-ends L2 trigger

Central trigger
processor

Timing, trigger and
control distribution

Calorimeters Muon detectors

DAQ

L1 trigger

Regions-
of-Interest

Figure 5.8: Diagram of the data flow in the Level-1 trigger system. Data from the calorimeters
and the muon trigger chambers is processed within the calorimeter and muon trigger. The
results from both sub-systems are sent to the central trigger processor, which makes the final
trigger decision for current event. In case of a positive trigger decision, the data of regions of
interest are sent to the L2 trigger. Figure taken from Ref. [51].

consists of two sub-systems: the calorimeter trigger and the muon trigger. Both systems
count the number of physical objects, such as jets and electrons, passing certain, pro-
grammable transverse energy thresholds. The calorimeter trigger additionally calculates
the global event features of summed transverse energy (ET,Sum) and missing transverse
energy (ET,Miss), which can be used in the CTP. As the muon trigger will not be used in
the analysis, the focus here will be on the calorimeter trigger.
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The calorimeter trigger

The calorimeter trigger is of exceptional importance for the upcoming analysis, since it
selects all the events used. To be able to make a trigger decision within 2.5µs, the trigger
cannot use the calorimeter information at full granularity. Instead, approximately 7000
trigger towers (cf. Fig. 5.4) are used, which come with a granularity of 0.1× 0.1 in η-φ in
most parts of the detector (|η| < 2.5). After the analogue read-out the trigger towers are
provided to the pre-processor. Here the analogue calorimeter signals are digitized, timed
in and calibrated. The pre-processor also builds the so called jet elements for later usage
by the jet/energy-sum processor (JEP), by summing up 2 × 2 trigger towers in η-φ. In
the JEP, previously separated em. and hadronic trigger towers are summed.

Jets at the L1 trigger are found by the JEP, using a sliding window algorithm. This
algorithm uses so called regions of interest (ROIs), which are formed by 2×2 jet elements.
To find jets at L1, those ROIs are identified that are a local maximum. The definition
of a local maximum is best described by the illustration in Fig. 5.9. The jet’s energy is
determined by summing up all jet elements within a certain window surrounding the ROI,
as depicted in Fig. 5.9. This window may be configured to encompass 2×2, 3×3 or 4×4
jet elements which are centered on the ROI, or chosen as to maximize the jet ET in the
case of the 3 × 3 window. Consequently, jets at L1 are square objects of size 0.4 × 0.4,
0.6 × 0.6 or 0.8 × 0.8 in η-φ. The latter and largest window size is the most commonly
used. The area of such a L1 jet thus approximately corresponds to that of anti-kt jets
with R = 0.45.
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Figure 5.9: Left: Requirements for a ROI to be a local ET maximum. Its transverse energy
has to compare to all neighboring ROIs as indicated. Right: Possible window configurations for
the determination of the jet ET at L1. The colored region is the ROI, which is in the center of
the smallest and largest window. For the middle window size the centering is not possible, but
four positions within the indicated, dashed grid exist. The position is chosen as the one that
maximizes ET .

Electron, photon and τ candidates are found by the cluster processor (CP). Here also
appropriate sliding window algorithms are used with finer granularity than for jets and
additional isolation criteria are applied. They are described in detail in [51].

The configuration of the calorimeter trigger consists of defining a set of ET thresholds,
to which the ROIs found are compared. Due to the time and hardware constraints, only
a limited amount of such thresholds can be configured. Eight thresholds can be defined
for central jets (|η| < 3.2) and four thresholds for η < −3.2 and for η > 3.2 forward jets
can be configured. Additionally twelve thresholds can be programmed in total for ET,Miss

and ET,Sum. For the cluster processor, in total 16 thresholds may be defined.
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5.5 The trigger system

The number of ROIs exceeding each threshold are provided to the central trigger pro-
cessor (CTP). Based on these multiplicities, the CTP makes the global L1 trigger decision,
according to the defined trigger signatures. The naming and definition of these signatures
happens according to multiplicity and threshold value. For instance a signature named
“L1 nJx” would correspond to a jet ROI threshold, requiring n jet ROIs with transverse
energies above x GeV in the event in order to pass the trigger. Up to 256 such signatures,
including combinations of jet, electron and muon multiplicities, can be defined, making
the system very flexible.

The minimum bias triggers

The L1 calorimeter and muon triggers are based on the selection of high pT objects.
For the selection of low pT objects, so called minimum bias triggers are used to also
select almost arbitrarily soft pp-collisions. One such trigger system is composed of the
minimum bias trigger scintillators (MBTS), which are mounted as disks in front of the
end-cap calorimeters, covering 2.09 < |η| < 3.84. In order to select hard scattering events,
the loosest requirement applicable using the MBTS is to require in total one hit in any of
the scintillators.

A different approach to the selection of pp-collisions are the Zero-Degree calorimeters
(ZDC) [53], which are mounted very close to the beam-pipe at z = ±140m, thus covering
pseudorapidities |η| > 8.3. Due to their coverage up to very high pseudorapidities, the
ZDC can be used to efficiently select collision events based on coincident hits in both ZDC
systems.

Level-1 trigger signatures

For completeness here the L1 trigger signatures are listed, which will be used in the
upcoming analysis. The calorimeter trigger signatures are the fundamental ones, selecting
the majority of QCD jet events. The MBTS triggers will be used as reference triggers in
the determination of trigger efficiencies and for the selection of the lowest pT events. The
ZDC trigger will serve as a reference trigger to cross-check the trigger efficiency of the
MBTS trigger. All items are summarized in Table 5.1.

Signature Requirement Window-Size
L1 ZDC Coincident hits -
L1 MBTS 1 One hit in total -
L1 J5 ET,ROI > 5 GeV 4× 4
L1 J15 ET,ROI > 15 GeV 8× 8
L1 J30 ET,ROI > 30 GeV 8× 8
L1 J55 ET,ROI > 55 GeV 8× 8

Table 5.1: Level-1 trigger signatures used in the analysis.

5.5.2 The High-Level trigger

Upon acceptance by the L1 trigger, only data within identified ROIs is transmitted to the
L2 trigger system. This data amounts to only 1% to 2% of the full event data. In contrast
to L1, here the data within the ROIs can be used at full granularity. Thus for instance

43



5 The ATLAS experiment at the LHC

jet finding can be done using the full calorimeter information and more sophisticated jet
algorithms and calibrations can be used.

At the event filter finally the full event data is available, thus algorithms very similar
to the ones used in the final reconstruction can be employed.

For the data selection of the upcoming analysis, the HLT was configured to not reject
events but only run in a passive mode. In this mode, all trigger algorithms are executed
and their decision is stored. But the event is accepted only based on the L1 decision,
irrespective of the L2 and EF algorithm’s results. For this reason the usage of HLT
information is not necessary and for further details of the HLT it is referred to [51].

5.6 Data acquisition and computing

Data taken is organized in luminosity blocks and runs. One run corresponds to the data
taken between the start and end of a certain recording period, which commonly coincides
pretty well with the injection of a new fill into the LHC and the dump of beam. Depending
on the beam lifetime, individual runs last between one and several hours. Each run is
subdivided into so called luminosity blocks, the smallest chunk of data for which an
integrated luminosity value is defined. Luminosity blocks last approximately 2 minutes.

Events accepted by the trigger are written to disk at the local computing infrastructure
at CERN. In order to guarantee the accessibility of the data for all ATLAS members, the
computing infrastructure is based upon pyramid-like data distribution system, arranged
in several “Tiers” [54]. Tier-0 is the data storage and computing system at CERN, where
all data taken is kept in its raw format. Here also the major reconstruction and processing
of the data is done.

From the Tier-0 more and more derived forms of the raw data are distributed to Tier-1’s,
which also keep a significant amount of raw data. Via the Tier-2’s and the Tier-3’s, the
data is increasingly more refined and the data volume is reduced. The increasing amount
of higher tiers allows to provide the recorded data to all physicists being a member of
ATLAS collaboration.

5.7 Physics and detector simulation

The simulation of physical processes and the response of the detector to a given event is
a crucial ingredient to most analyses of high energy particles physics. Specifically many
corrections that have to be applied to data are derived relying to a certain degree on the
simulation.

5.7.1 Physics simulation

These simulations can generally be viewed to consist of two parts. Firstly events have
to be generated, where the nomenclature event commonly refers to a collection of stable∗

particles and their four-momenta. These events can be simulated using one of numerous
existing MC event generators. For the simulations that will be used in this analysis, these
generators are Pythia6 and Herwig++. Both generators implement LO QCD matrix ele-
ments, but are complementary in the modeling of parton showers, hadronization and the

∗In the ATLAS simulation framework all particles with a lifetime τ > 10 ps are considered stable.
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underlying event. For the parton showering for instance Pythia6 uses a pT ordered shower,
while Herwig++ uses angular ordering. As briefly outlined Section 2.3, the hadronization
in Pythia6 uses the Lund string model, while Herwig++ models the hadronization using
a cluster model.

Since many aspects of the event simulation cannot be calculated from first principle,
they are handled by phenomenological models. These generally need a number of param-
eters to be adjusted properly, in order to provide a sensible description of real data. This
in particular holds for the parameters controlling parton showering, hadronization and
the underlying event. A certain, well defined set of such parameters is commonly called a
tune. For Pythia6, the default tune used, if not stated otherwise, is the MC09 tune, done
by the ATLAS collaboration [44] which uses the MRST LO* PDF [55]. Herwig++ is used
with a underlying tune to ATLAS measurements, done by the Herwig++ authors [42].

The most commonly used MC samples in the following will be the so called dijet MC
samples, generated using Pythia6. In these samples, all processes relevant for QCD
jet production, namely all 2 → 2 parton scatterings are simulated. In order to obtain
reasonable statistics also for jets at highest pT , various sub-samples are generated in bins
of p̂T , which denotes the transverse momentum transfer in the hard scattering†. For
analysis purposes these sub-samples are mixed, weighted by their corresponding cross
sections. The limits used for p̂T and the cross sections of the sub-samples are listed
in Table 5.2. For each Jx sample approximately 1.4million events are simulated and
processed through the full detector simulation.

Sub-sample p̂T,min [GeV] σ [nb]
J0 8 9.85×106

J1 17 6.78×105

J2 35 4.10×104

J3 70 2.20×103

J4 140 8.77×101

J5 280 2.35
J6 560 3.36×10−2

J7 1120 1.37×10−4

J8 2240 6.21×10−9

Table 5.2: Listing of the dijet sub-samples used and their corresponding cross sections. For a
given sample, the upper limit for p̂T is the lower limit of the next higher sub-sample. For J8, no
upper limit on p̂T is imposed.

5.7.2 Detector simulation

In the second step of the simulation generated events are placed in the simulated exper-
imental environment, namely the ATLAS detector. The GEANT framework [56, 57] is
used to simulate the interactions of the generated particles traversing the single detector
components. This includes the particle’s interactions with material and the response of
detector electronics to the simulated signal. Upon completion of the full simulation chain,
the available events and their data structure is identical to that of real data, allowing for
a reconstruction using the very same algorithms.

†More precisely, in terms of the mandelstam variables ŝ, t̂ and û of the partonic 2 → 2 process, it can
be written as: p̂T = t̂ û/ŝ
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As the complexity of the full simulation is beyond the scope of this thesis, only very
few details will be addressed here. More details can for instance be found in [58] for
the general simulation framework and in [59] for details on the simulation of calorimeter
showers.

The simulation of hadronic showers, due to the multitude of processes involved, is
less well understood than for instance the modeling of electromagnetic showers. In the
GEANT framework a variety of phenomenological and parametrized models exist. A
certain combination of models used is denoted a physics list and commonly consists of a
few different models, which handle the various types of interactions. The default physics
list was established using data from testbeam runs [60], where fully instrumented slices of
the final ATLAS calorimeters were exposed to protons and charged pions from the Super
Proton Synchrotron at CERN. In this context the calorimeter performance can be studied
in great detail since the energy and species of the incoming particle is known.

Most importantly it was possible to study the average response and the resolution, as
illustrated in Fig. 5.10. These results concluded that the best calorimeter simulation
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Figure 5.10: Mean measured energy (a) and resolution (b) in the reconstruction of charged
pions as a function of the incident pion momentum. Figure taken from Ref. [59].

is achieved with the QGSP BERT physics list, which uses a Quark-Gluon-String (QGS)
model for the description of high energy hadron-nucleon interactions and the Bertini
(BERT) cascade for hadron interactions below 10 GeV (for details see [59]).

46



6 Jet reconstruction and calibration

This chapter covers the technical aspects of jet reconstruction and calibration. It will
cover all details of how the basic quantities as provided by the calorimetric reconstruction
described in Section 5.3.4 are refined to finally end up being jet constituents.

The general calorimeter reconstruction provides the input to the jet reconstruction in
form of cell energies calibrated at the electromagnetic scale. An average event may contain
numerous cells with negative energy due to noise fluctuations. Care has to be taken of
these negative energy cells before they can be fed into a jet finding algorithm. This is
due to the fact that commonly used jet algorithms require physical four-vectors as input,
namely four-vectors with E ≥ 0. This is only one very technical reason why the ATLAS
jet reconstruction prefers so called topological clusters as the input to jet finding. Other,
physical advantages will come up in the following.

6.1 The formation of topological clusters

The topological clusters used in the jet reconstruction are intentionally designed to collect
cell energies in the calorimeter that belong to one incident particle that might have spread
its energy among several calorimeter cells. For this purpose the algorithm described in
the following clusters single calorimeter cells into three-dimensional blobs in the detector.
The algorithm follows the idea to grow clusters around so called seed cell by an iterative
attachment of the neighboring cells. The algorithm can be summarized as follows:

1. Finding seeds: The seed cells are required to have an energy significance above a
reasonably high seed threshold tseed. In this step all cells fulfilling this requirement,

|Ecell|
σcell

> tseed, (6.1)

are found. Here |Ecell| is the absolute value of the cell’s energy and σcell denotes its
expected noise. The noise includes electronic noise and the contribution expected
from pile-up. All seed cells identified in this way form preliminary clusters, so called
proto-clusters.

2. Adding neighbors: Sorted by descending energy significance, for each proto-
cluster the neighboring cells are identified. As long as neighboring cells whose energy
significance exceeds tneighbor are found, the proto-cluster is extended by these cells
and the procedure is repeated. Proto-clusters sharing at least one neighboring cell
are merged. This way clusters grow until all neighboring cells’ significance is below
tneighbor.

As neighboring cells all eight surrounding cells in the same calorimeter layer are
considered. In addition also cells in adjacent calorimeter layers or systems partly
overlapping in η and φ are regarded as neighbors.
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3. Adding surrounding cells: Sorted by descending energy significance, for each
proto-cluster all surrounding cells exceeding the cell threshold tcell are attached.
Surrounding cells adjacent to two proto-clusters are attached to the first proto-
cluster processed, thus the one providing the higher energy significance. Proto-
clusters in this step are thus not merged and are converted to final clusters.

4. Cluster splitting: The above algorithm may obviously merge showers of more than
one particle into only one cluster. Given a resolvable separation between the two the
cluster splitting can undo this using a search for local maxima in all clusters found
with the procedure above. Cells being local maxima have to fulfill three criteria:

• The cell’s energy has to exceed the one of all surrounding cells.

• The cell’s energy has to exceed 500 MeV.

• The cell must have at least four neighboring cells in the parent cluster.

For clusters containing more than one local maximum the clustering procedure is
repeated using the local maxima as seeds and considering only the cells within the
parent cluster. In contrast to the default clustering procedure this second pass does
not allow for merging. Shared neighboring cells are attached to the local maximum
providing the higher energy significance. This procedure results in exactly one
cluster per local maximum.

The full algorithm is explained in more technical detail in Ref. [61]. The parameters for
the three different thresholds regulating the clustering are summarized in Table 6.1. The

Threshold Value

tseed 4
tneighbor 2
tcell 0

Table 6.1: Threshold values for the topological clustering algorithm.

seed threshold of tseed = 4 is the main parameter for the suppression of clusters purely
formed by noise, as it determines the probability to find pure noise clusters. One can
estimate the expected number per event Nnoise of such clusters as

Nnoise = Ncells

√

2

π

∫ ∞

tseed

e−t2/2dt, (6.2)

where Ncells is the total number of calorimeter cells taken into account and the comple-
mentary error function describes the probability for each cell that its noise fluctuates
beyond four standard deviations. Considering the large amount of calorimeter cells in the
ATLAS detector of approximately 180000 this equation predicts approximately 12 noise
clusters per event.

Thanks to the low noise in the ATLAS calorimeters the contribution from pure noise
clusters to jets built later on can be expected to be small. The noise can be measured using
randomly triggered and consequently empty events. The results of such measurements
can be seen in Fig. 6.1. The expected and actually measured distribution of clusters in
collision events as a function of pseudorapidity is shown in Fig. 6.2 for events selected
with a minimum bias trigger. The observed differences can be attributed to an imperfect
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Figure 6.1: Electronic noise in randomly triggered events at the electromagnetic scale in indi-
vidual cells for each layer of the calorimeter as a function of |η|. Results are averaged over φ.
Figure taken from Ref. [62]).

modeling of the noise and the amount of dead material in front of the calorimeters. Here
the MC description shows an overall quite good agreement, with maximum deviations at
the level of 10%.

6.2 Jet identification

As input to a jet finding algorithm it is necessary to be able to provide the cluster collection
in a four-vector representation. For this purpose each cluster is assigned a massless four-
vector with energy equal to the clusters energy and its position being the energy centroid
of the cluster constituents:

Ecluster =
∑

i

Ei (6.3)

ηcluster =
1

Ecluster

∑

i

Eiηi

φcluster =
1

Ecluster

∑

i

Eiφi

Mcluster = 0.

In this representation the collection of clusters can easily be interfaced to a jet algorithm.
Jets are found using the anti-kt algorithm with two different jet radii R = 0.4 and R = 0.6.
For this purpose the ATLAS reconstruction software uses the publicly available FastJet
[16] library that performs the jet finding and recombination. The result is a collection of
four-vectors representing the jet’s momentum.
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Figure 6.2: Distribution of cluster pseudorapidity in data and MC. Both histograms are nor-
malized to unity. Figure taken from Ref. [30].

6.3 Jet energy calibration

Jets as the direct output of the jet finding algorithm are at the calibration level that the
calorimeter reconstruction provides, namely the electromagnetic (em.) scale. The fact
that jets not only consist of em. interacting particles makes a dedicated calibration for
jets necessary.

6.3.1 Jet energy reconstruction

The global aim of the jet calibration is to calibrate jets such that the average reconstructed
jet pT is the true incident jet transverse momentum. The reason why this achievement is
non-trivial lies within the fact that jets are a mixture of hadronically and electromagnet-
ically interacting particles. Electromagnetic showers can well be modeled by cascades of
π0’s going to photons which themselves deposit energy by electron-positron production.
The complete shower energy thus is visible to an ionization medium in a calorimeter. Due
to these fortunate features of em. showers the need for a dedicated jet calibration is mainly
due to the properties of hadronic showers, which are outlined in the following.

The key feature of hadronic cascades is that significant energy fractions are lost in
a non-ionizing manner, such as binding energy losses from nuclear spallations and recoil.
Depending on the realization of a given calorimeter, these energy losses are not detectable
and such calorimeters are called non-compensating. Due to π0 production in secondary
collisions with sufficient energy, a fraction fπ0 of the energy is transferred to an electro-
magnetic sector within the shower [63]. This transfer is irreversible because of the short
π0 lifetime. fπ0 thus gains a subtle energy dependence because the higher the energy, the
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more secondary collisions occur that transfer energy to the em. sector. As shown in [63]
this can be described by a power law of the form fπ0(E) = 1 − (E/E0)

m−1. Simulations
for fπ0 are shown in Fig. 6.3. Using the energy dependence of fπ0 the response e.g. of a

Figure 6.3: Energy dependence of fπ0 and its standard deviation. Figure taken from Refs. [64,
65].

charged pion relative to that of an electron can be formulated as [64]:

π/e = 1− a Em−1. (6.4)

The generalization from a single charged pion to a jet is done in [64] and is found to ap-
proximately obey the same functional form. This idealization deliberately ignores eventual
effects from magnetic fields or jet finding issues such as out of cone losses. Nevertheless
Eq. 6.4 predicts the general features of the jet calibration: The correction can be expected
to be smooth, following a power law. The response will asymptotically approach unity
for infinite jet energies and the largest correction will be necessary at low pT .

6.3.2 pT- and η-dependent jet calibration

Of course the calibration used in the experiment can only access the measured signals
in the calorimeter. For this reason the most straight forward jet calibration uses the
information that the jet reconstruction at this stage can provide, namely the four-vector
of the jet calibrated at the em. scale. The calibration scheme that will be introduced,
consists of a set of parametrizations that determine a scalar factor for each jet, by which
the four-momentum of the jet is multiplied [66]. The parametrizations make use of the
jets’ positions in the detector, since it can be expected that different subdetectors will
need different calibrations. And of the jets’ transverse momenta, which will be necessary
since - as outlined above - the response can be expected to show a significant energy
dependence.
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Mathematically the calibration procedure can thus be formulated as

pcalib
jet = pjet × fcalib(pT , η), (6.5)

where pjet refers to the four-vector representation of the jet. The calibration factors are
derived from MC. To extract the response from MC a mapping between the generated
particle jets and the reconstructed jets has to be established. This is achieved by a
matching procedure, in which each particle jet is assigned the reconstructed jet that is
closest in η-φ-space. The distance in this space is defined as

∆r =
√

(∆φ)2 + (∆η)2, (6.6)

where ∆φ and ∆η denote the separation of the two jets in φ and η respectively. Then the
response at the per-jet level is defined as the ratio between the particle jet’s energy E true

and the reconstructed jet’s energy Ereco. We define its most probable value which will be
extracted using Gaussian fits as the response:

〈R〉 =

〈

Ereco

Etrue

〉

, (6.7)

where the typographical R is used to distinguish the response quantity from the jet radius
parameter. Being able to extract the response in this way, it is straight forward to define
the calibration factor used in Eq. 6.5, which is the inverse of the response:

fcalib(pT , η) = 〈R〉−1 (pT , η). (6.8)

So far there was no distinction between particle and reconstructed jets e.g. in the
dependency of fcalib. However, in order to be able to apply the calibration to data where
particle jets are not available, there is no choice but to use preco

T and ηreco. This leaves one
subtlety to be taken care of: the specification of the procedure to find the most probable
response value. The easiest way to go would be to derive the response as 〈R〉reco (preco

T , ηreco),
where 〈...〉reco specifies that the most probable value is found in bins of measured transverse
momentum and pseudorapidity. This however has one disadvantage: While a Gaussian
distribution of R for a fixed range of Etrue can be expected, the distribution is distorted
once this quantity is binned in Ereco.

This can easily be illustrated in a toy MC, where Etrue is randomized according to
a steeply falling probability (∝ E−4 and ∝ E−2) and Ereco according to an arbitrary
resolution and a mean of one. The resulting distributions of R, either in a fixed range
of Etrue or Ereco, are displayed in Fig. 6.4. The distortion observed is due to jets whose
response is either very high or very low, such that they migrate out of or into the E reco

range looked at. The result is a shift in the mean of the distribution as well a distortion
of the shape, which becomes slightly asymmetric. This leads to the fact that though the
input energy scale used is one, the Gaussian mean of the Rreco distribution is significantly
shifted upwards by approximately 3%. In particular this effect gets more pronounced the
steeper the input spectrum is, because low pT jets with high response will simply be much
more abundant than high pT jets with low response. In the above example the difference
in the observed mean doubles when going from the E−2 spectrum to E−4. In the context
of jet calibration this is of exceptional importance, since it has to cope with the very
steeply falling jet pT spectrum.

To bypass this effect the calibration is done using bins of ptrue
T in a two-step procedure:
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Figure 6.4: Response distribution for two choices of binning: Binning in E reco (red) and Etrue

(black). The solid histograms refer the to toy study done with an input spectrum proportional to
E−4, while for the dashed versions E−2 was used. The legend also displays the mean for all four
distributions.

1. In a first round the response is extracted in bins of ptrue
T , which is denoted by

〈R〉true (ptrue
T , ηreco).

2. The second step essentially is a transformation of the x-axis, in order to be able to
use the extracted response as a function of preco

T : Each true jet’s ptrue
T is replaced by

pest
T being the best estimate of the reconstructed transverse momentum for this true

jet. Using the response extracted in step no. 1 this is:

pest
T = ptrue

T × 〈R〉true (ptrue
T , ηreco). (6.9)

So now the response, which remains R = Ereco/Etrue, is extracted in bins of pest
T . The

distortion effect observed thus does not exist and the Gaussian response and proper
mean value are preserved. The result now is 〈R〉est (pest

T , ηreco). The application of
the calibration can now simply follow Eq. 6.5 with the calibration function

fcalib(pT , η) =
1

〈R〉est (preco
T , ηreco)

,

since the pest
T was constructed to be the most probable value of preco

T .

6.3.3 Technical realization

Following the above described general scheme the derivation of this calibration in the
experiment is described in the following.

The calibration that will be used throughout the remaining analysis was extracted using
the Pythia6 dijet MC samples. The detector description and simulation herein include
all knowledge about the detector status at that time. As the calibration was designed to
be applied using an already existing framework within the ATLAS software, the technical
details closely followed previous implementations:
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6 Jet reconstruction and calibration

• The dependency of fcalib on η is accounted for by introducing 45 bins in |η|: 44 of
these bins are 0.1 units of pseudorapidity wide, covering |η| < 4.4, while the 45th

bin includes all remaining jets.

• For each bin of absolute pseudorapidity, numbered by ieta, the dependency of fcalib

on pT is accounted for by a polynomial of the form:

f ieta
calib(pT ) = 1 +

4
∑

i=1

pieta
i

log (pT/GeV)i . (6.10)

The choice of inverse logarithms is based on the fact that the function in this way
can safely be extrapolated to high pT . It also reflects the expectation of an response
of 1 for pT going to infinity. The set of pieta

i ’s are free parameters in these functions
which are going to be fitted to the response extracted from MC.

The response in the MC is extracted as the most probable value of R in a given
(ptrue

T , ηreco) bin. For this purpose the R distribution in each of these bins is fitted twice
with a Gaussian, yielding 〈R〉true (ptrue

T , ηreco) as illustrated in Fig. 6.5. The first fit encom-
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Figure 6.5: Exemplary Gaussian fits for anti-kt, R = 0.6 jets in different ptrue
T bins done to

determine the most probable response value. The solid black curve shows the first fit using the
full range on the x-axis, while the second one (red, dashed curve) is used to find the Gaussian
mean.

passes the full range of R. Using the Gaussian µ and σ from this first fit a second one is
performed within µ ± 2σ in order to find the peak position. The fit result for µ in this
second fit is considered the response in this certain bin and is plotted as a function of
ptrue

T and pest
T in the first and second calibration step respectively.

Several technical items have to be taken care of during this procedure:

• Jet matching: In order to only map sensible pairs of particle and reconstructed
jets to each other an upper limit on their distance is set: ∆r < 0.3.

• Jet reconstruction threshold: Due to file size constraints the jet reconstruction
was configured to only keep jets with pT > 4 GeV. This fact limits the possibility to
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6.3 Jet energy calibration

gain information on the response of very low ptrue
T jets as some of the reconstructed

jets might fall below this threshold. For the example of a ptrue
T bin starting at 10 GeV

this implies that response values below 0.4 will be missed, because jets having such
a low response will be filtered out. For this reason the Gaussian fits were only
performed in a region where this cut does not influence the response.

• Calibration of low pT jets: In consequence of the reconstruction threshold there
is a lower limit for ptrue

T (and thus pest
T ) at which a solid value for the response can

be extracted. This directly raises the question of how to treat jets below this limit
during the calibration process. Due to the nature of the parametrization in Eq. 6.10
the fits to the response tend to become unstable very quickly below the lowest pT

used in the fit. As a result, a naive evaluation of the parametrization below this
threshold might return non-physical values for the response. For this reason the
lowest pT used to evaluate the function is set to 10 GeV. Consequently all jets
below 10 GeV are calibrated with the same calibration factor:

fcalib(pT < 10 GeV, η) = fcalib(10 GeV, η).

• Jet isolation: As the aim of the calibration is the correction of the calorimeter non-
compensation and out-of-cone losses, only pairs of jets are used which are isolated
with respect to other jets in the event. This requirement is aimed to reject cases
where one particle jet is split into two reconstructed jets or – the other way round –
two particle jets are merged into one reconstructed jet. These topologies will have
either very high or very low response, since the energy in the second jet (on either
particle or reconstructed level) will be lost in the comparison of the jets’ energies.
For this purpose only jets are considered whose next-to-nearest jet with pT > 7 GeV
is more than 2.5 times the jet radius away: ∆r2 > 2.5R.

Results of this procedure can be seen in Fig. 6.6, where the left plot shows the response
extracted in the first calibration step and the right one is the result of the second step.
The effect of the x-axis transformation is most clearly visible in the low pT region, where
the response is lowest. Apart from that, the general shape of course does not change
significantly due to the very smooth response. As indicated by the χ2/ndof on these
figures, the parametrizations do not fit perfectly but certainly to sufficient degree. Besides
the fits using Eq. 6.10 a fit using the Groom function introduced in Eq. 6.4 is shown as
well. It is interesting to see that the general shape of the MC response is modeled pretty
well by this function, while it cannot follow the generally stronger curvature. This does
not surprise since the assumptions made to derive this formula were, as stated earlier,
very idealized. Thus the fit using the less well motivated but more flexible polynomial is
preferred.

In order to get a better overview of all the fits involved for the full set of 45 parametriza-
tions, Fig. 6.7 shows the deviations between MC response and the fits, averaged over the
according η bins. These histograms give confidence in the good impression gained from
Fig. 6.6 and thus promise a good result. The scatter around zero is on the level of
2‰ and the oscillating structure implies that this is not an issue of the parametrization.
These oscillations can be blamed on the fact that the Pythia dijet sub-samples here are
used unweighted, due to complications in the Gaussian fits that would come along with
a weighted usage. The associated drawback of the unweighted usage however is, that the
mixture of jets originating from different dijet sub-samples is unphysical in the transition
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Figure 6.6: Blue open circles shows the response extracted in bins of ptrue
T in two pseudorapidity

regions. The red line represents the fit result of fcalib whereas the green, dashed line shows a fit
using Eq. 6.4.

regions from one to another sub-sample. This leads to the periodic drops in the response.
As this effect is only on a level of less than 2‰ and since the polynomial does a good
job in averaging out these oscillations the procedure is left unchanged. The resulting
two-dimensional calibration factors are displayed in Fig. 6.8. As expected the calibration
factors for both jet sizes show the same structures in general, like a decreased response
in transition regions between certain detectors, such as around |η| ≈ 1.4 and |η| ≈ 3.2.
Besides, certain features are more pronounced for smaller jets, like the increase of the
calibration factors at low pT around |η| ≈ 3.2.

As a closure test the calibration derived from the fits in Fig. 6.6 is applied on the
identical MC sample than it was derived on. The resulting, calibrated jets are then fed
through the very same calibration algorithm once again. The result is shown in Fig. 6.9.
Linearity above 30 GeV is achieved within approximately ±1% for both jet sizes and for
most regions of pseudorapidity. While the results are in fact fully satisfactory, they are not
perfect. In particular the response for R = 0.4 jets shows a very clear trend to too high
response at low ptrue

T . This effect can be blamed on a subtlety of the isolation requirement:
During the derivation of the calibration jets whose next-to-nearest jet is too close and
has puncalib

T > 7 GeV are rejected. In the closure test pcalib
T > 7 GeV is applied in the

isolation check. Considering the fact that pcalib
T > puncalib

T , this means that the isolation
criteria itself becomes stricter. The stricter isolation of course leads to a slightly higher
response, since in general less energy is lost outside of the jets. As this can be considered
a constant effect, the impact on the observed jet response quickly falls with 1/pT . It is
also remarkable that the same effect is already very much reduced going from R = 0.4 to
R = 0.6 jets, because split or merged jet topologies occur less often.

6.3.4 Validation of the jet calibration

As a final validation of the calibration derived above, the jet response is finally cross
checked after the calibration has been included in the default reconstruction software.

56



6.4 Jet energy resolution

 / GeV)
T,Inv

(p
e

log
3 4 5 6 7 8

<
 d

at
a 

- 
fit

 >

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

 [GeV]est
T

p
10 20 210 210×2 310 310×2

| < 0.8η|
anti-kt, R=0.6

 / GeV)
T,Inv

(p
e

log
3 4 5 6 7 8

<
 d

at
a 

- 
fit

 >

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

 [GeV]est
T

p
10 20 210 210×2 310 310×2

| < 2.1η1.4 < |
anti-kt, R=0.6

Figure 6.7: Averaged deviations of the fits from the response as predicted by the MC. The solid
red line represents a fit of the deviations to a constant function.
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Figure 6.8: Jet calibration factors as functions of pT and η for both jet sizes.

This was done in Fig. 6.10, that shows the linearity in an significantly larger MC sample
than was used for the derivation. Also in this final crosscheck the calibration gives very
good results which are close to the performance seen in the closure test. One should
however be aware of the fact that though the technical performance of the jet calibration
can get close to the ideal response to within 1-2%, this is by far no guarantee that the jet
energy scale in data is known with the same precision. The calibration fully relies on a
realistic MC simulation. As will be outlined in more detail in Chapter 8 the precision to
which it can be claimed that the MC fulfills this prerequisite will be significantly larger
than the remaining imperfections seen in the closure test.

6.4 Jet energy resolution

Besides the response considerations made above, the second main benchmark of energy
reconstruction in general is the resolution, which will be a key ingredient of the upcoming
analysis. In the energy measurement of jets the resolution is the sum of many effects.
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Figure 6.9: Response after the calibration derived in Fig. 6.6.

The dominating one can be expected to be the large fluctuations of the em. component
in the jet and the resulting shower in the calorimeter. Two distinct effects lead to the
fluctuations of this component: Firstly, there is the fluctuation of fπ0 , the size of which
is illustrated in Fig. 6.3. It shows the standard deviation of fπ0 , which is found to be
very large, up to a fractional width of almost 50% at low energies. Secondly the particle
spectrum produced in the fragmentation of the jet varies significantly on a jet-by-jet
basis. Minor, but not negligible contributions to the resolution may arise from out of
cone losses, energy lost in not instrumented detector regions including leakage and the
intrinsic calorimeter resolution.

Here the jet pT resolution is studied in the MC. During the extraction of the linearity
in bins of pT as illustrated in Fig. 6.10, Gaussian fits were used to find the most probable
value of the response. At the same time these fits yield the width of the Gaussian. This
width σ divided by the mean µ is quoted as the relative pT resolution∗. In Fig. 6.11 the
pT resolutions are plotted as a function of pT . For later usage the fractional pT resolutions
are fitted using:

σ

pT

(pT ) =
a
√
pT

⊕ b

pT

⊕ c. (6.11)

In this parametrization a accounts for the statistical fluctuations within a calorimeter
shower, which decreases proportional to 1/

√
E. Energy independent contributions like

the electronic detector noise are included in b. Fractionally constant contributions due to
detector imperfections, such as leakage and albedo losses, are included in c. Dealing with
jets, all parameters also absorb the contributions due to out-of-cone losses, which can
however be expected to roughly scale as 1/E, since jets with increasing energy become
more narrow. Though originally this form of parametrization is used as a function of
energy, it is also able to describe the jet pT resolution as function of pT .

The results of these fits are summarized in Table 6.2. The resolution improves going

∗The division by µ partly corrects for an eventually wrong response, which could fake changes in the
resolution: In a scenario where each jet’s energy is scaled by 1

2
, the width of the response distribution

would shrink to 50% as well, though in fact there is no real improvement in resolution.
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Figure 6.10: Calibrated jet energy response as derived from the MC simulation.

to the more forward rapidity regions, which can be attributed to the fact that the reso-
lution intrinsically is a function of energy, rather than transverse momentum. As the jet
energy increases while going to the more forward bins, the resolution improves. It is also
worthwhile mentioning that the resolution for larger jets is slightly superior to the one
using a smaller jet radius. This can be attributed to the fact that especially at low pT

out of cone losses are more important for R = 0.4 jets. The fit results confirm this, as
they differ most in the pT dependent terms, while the constant term c is very similar for
both jet radii and ranges between 5.6% in the central η region, decreasing to 4.5% in the
most forward regions looked at.It should be noted that the calibration scheme introduced
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Figure 6.11: Relative jet pT resolutions as extracted from the MC in various bins of pseudora-
pidity. Lines indicate the fits done using Eq. 6.11.

cannot improve the resolution despite a small benefit that arises from the equalization
of the response across different detector regions. Besides, using only pT as input to the
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anti-kt, R = 0.6

η-region a [GeV−1/2] b [GeV] c [%] χ2/ndof

|ηjet| < 0.3 0.774± 0.005 0.435± 0.416 5.64± 0.02 38.3 / 24 I
0.3 < |ηjet| < 0.8 0.758± 0.004 0.885± 0.155 5.61± 0.02 43.7 / 24 I
0.8 < |ηjet| < 1.2 0.748± 0.005 0.427± 0.359 5.64± 0.02 28.4 / 24 I
1.2 < |ηjet| < 2.1 0.624± 0.004 1.884± 0.051 5.22± 0.02 79.5 / 24 I
2.1 < |ηjet| < 2.8 0.495± 0.007 1.207± 0.089 4.54± 0.05 38.7 / 21 I

anti-kt, R = 0.4

η-region a [GeV−1/2] b [GeV] c [%] χ2/ndof

|ηjet| < 0.3 0.775± 0.005 1.648± 0.097 5.74± 0.02 35.7 / 24 I
0.3 < |ηjet| < 0.8 0.771± 0.004 1.534± 0.079 5.63± 0.02 47.9 / 24 I
0.8 < |ηjet| < 1.2 0.745± 0.005 1.769± 0.080 5.73± 0.02 27.6 / 24 I
1.2 < |ηjet| < 2.1 0.632± 0.004 2.447± 0.038 5.23± 0.02 113.9 / 24 I
2.1 < |ηjet| < 2.8 0.561± 0.007 1.406± 0.084 4.53± 0.05 27.0 / 21 I

Table 6.2: Resolution fit parameters extracted from Fig. 6.11

calibration does not provide sufficient information for a real improvement in jet energy
resolution.

In order to achieve better resolutions in general quantities that make it possible to
estimate whether a jet will have either a low or high response on a jet-by-jet level have
to be found. Various calibration schemes using such information exist (see e.g. [67]) and
have been shown to be able to improve the constant term c by approximately 30% down
to 4% [68].
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Before proceeding to the actual analysis, this chapter will provide an overview of the
performance of jet reconstruction in data and the MC simulation. After a brief outline
of the necessary event selection steps, the criteria to reject jets that are for instance due
to noise are discussed. With a proper selection, the subsequent studies will turn to basic
features of jet reconstruction such as kinematic distributions and the inner structure of
jets.

7.1 Data and event selection

The data used for this analysis was collected in summer 2010 and includes a total of 75
runs. Runs taken under similar accelerator conditions are grouped into so called data
periods A to F, where each refers to a well defined list of runs.

In order to analyze only events taken under stable and good conditions, the ATLAS
collaboration maintains a data quality monitoring system. This ensures control of the
detector conditions at every time of data taking.

7.1.1 Data quality requirements

Data quality within ATLAS can be understood as a set of flags for various subdetectors
that indicate to which degree it was working properly at the time of data taking. To
reflect the eventual development of such states within a given run, this information can
be changed on the basis of a luminosity block. For each category or subdetector the data
quality flags are defined as green, yellow or red:

• Green: This flag is set if there is nothing to object about the state of the sub-
detector. Data taken under green conditions can be used right away for physics
analyses.

• Yellow: Yellow conditions are set if the existing problems can still be recovered,
such as non-nominal high voltage at the calorimeters, which can be accounted for
in the calibration. Data taken under these circumstances generally is still valuable
for physics analyses.

• Red: Red detector conditions usually indicate that the affected detector was not
running at all or under unrecoverable circumstances. These defects occur mainly due
to tripped power supplies which leave the affected system switched off completely.
This data is usually lost for any analyis making use of affected detector systems.

In order to provide this information for all necessary parts of an analysis, the data quality
is monitored online and offline. The online monitoring concentrates on hardware related
detector issues, while the offline monitoring includes regular sanity checks of e.g. kinematic
distributions of basic objects like leptons and jets.
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7 Jets in the ATLAS detector

This information is provided in form of so called good runs lists (GRL), built such that
all detector parts participating in the reconstruction of event features used in this analysis
are required to be functioning well at the time of data taking. For this analysis, starting
from general items to more specific ones, the following list of data quality categories were
required to be green:

• Stable beams: The proton beams are required to be under stable conditions. Though
collisions may also occur under non-stable conditions, several detector parts are as
a safety measure only running during stable conditions.

• Level-1 trigger system: Since all triggers depend on a functioning Level-1 trigger
system, it is crucial that this part of the data taking machinery is functioning
properly.

• Inner detector: As a prerequisite for a proper vertex reconstruction all inner detector
parts are required to be under green conditions.

• Combined performance jet flags: This item is closely related to the final analysis.
The combined performance flags determine whether the calorimeter system was
operating well. In addition to the proper functioning of the calorimeter hardware,
this would also include eventual problems in the jet reconstruction software, such as
bad calibration constants. For this purpose a multitude of histograms are monitored
during data taking, such as kinematic distributions e.g. of leptons and jets and
associated quantities.

7.1.2 Trigger selection

All events have to satisfy at least one of the inclusive jet triggers L1 J5, L1 J15, L1 J30,
L1 J55 or the L1 MBTS 1 trigger as described in Section 5.5. In order to select an event
sample that is not biased by the trigger used, for each trigger the pT region in which
its efficiency is sufficiently close to 100% is determined. These minimum pT values are
increasingly far beyond the actual threshold value applied at Level-1 and can be read off
Table 7.1. In the following, for jets with a given pT , the event is always required to have
passed the highest inclusive jet trigger for which pT,min < pT . This requirement and the
actual values for pT,min also drive the choice of the bin-edges for observables binned in pT .

The determination and validation of these trigger plateau regions will be done in Sec-
tion 7.5. Following the rather technical data selection made so far, the event selection

Trigger pT,min [GeV] L [nb−1] Avg. prescale

L1 MBTS 1 < 20 0.62 5000
L1 J5 60 32.0 97.5
L1 J15 110 553 5.64
L1 J30 160 2000 1.56
L1 J55 260 3120 1

Table 7.1: List of triggers used and the extracted minimum pT for 100% efficiency. Also shown
is the integrated luminosity per trigger and its luminosity-weighted average precsale.

described in the following starts looking at physical objects in the reconstructed events
in order to reject non-collision backgrounds.
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7.1.3 Primary vertex selection

The primary vertex per event is chosen as the vertex with the maximum p2
T,Sum, defined

as the quadratic sum of the transverse momenta of tracks associated to the vertex:

p2
T,Sum =

nTracks
∑

i=0

p2
T,i (7.1)

A very loose, but sufficient requirement is a minimum number of associated tracks of
NTracks

PV ≥ 5. This excludes possible vertices built from one track left by a cosmic par-
ticle traversing the detector close to the nominal interaction point. Since the vertexing
algorithm expects tracks to originate from the nominal interaction point, such a track
could accidentally be split in two tracks, which might form a fake vertex. A second source
for non-collision backgrounds are interactions of a proton with residual particles in the
beam pipe. Studies with looser selection criteria than the one presented, showed that the
fraction of such background contributions is below 10−4 and thus negligible (see [69]).

7.1.4 Missing ET significance

The primary vertex selection may only reject events that solely consist of non-collision
background. Non-collision backgrounds however may also contaminate an otherwise good
event. Here the fact that QCD events do not contain real ∗ missing transverse energy
(ET,Miss) can provide a handle to identify events significantly contaminated by non-
collision backgrounds. The ET,Miss quantity measures the transverse imbalance of an
event as defined by

ET,Miss =
√

E2
Miss,X + E2

Miss,Y , (7.2)

where EMiss,X and EMiss,Y are the vectorial sums of the x- and y-components of all energy
depositions in the calorimeter. Thus in an idealized detector both quantities vanish due to
transverse momentum conservation, whereas in reality neutrinos and muons are invisible
to the calorimetry. Energy depositions from non-collision backgrounds in general spoil
this momentum conservation and so those events will show high ET,Miss. For this reason
it is suitable to apply an upper limit on ET,Miss in a QCD analysis. It is however not
sufficient to specify a global limit on ET,Miss, since the ET,Miss resolution increases with the
total amount of energy deposited in the calorimeter (ET,Sum), which also causes a higher
average ET,Miss. The ET,Miss resolution generally behaves approximately proportional to

1/
√

ET,Sum. Thus, instead of ET,Miss, it is convenient to use ESig
T,Miss, defined as:

ESig
T,Miss =

ET,Miss
√

ET,Sum

. (7.3)

The remaining energy dependence is accounted for by parameterizing the ESig
T,Miss threshold

as a function of the leading jet’s pT . The maximum allowed ESig
T,Miss is extracted from

MC as the value where the selection’s inefficiency becomes negligible, namely below 1‰.
Two exemplary histograms used to derive these values are displayed in Fig. 7.1. The
agreement between data and QCD MC is excellent in the bulk of the distributions, which

∗Real ET,Miss is referred to as the energy invisible to the calorimetry. Namely this is energy carried by
neutrinos or muons.
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Figure 7.1: ESig
T,Miss distributions for two exemplary leading jet pT slices. To account for

contributions from events with real ET,Miss W → eν̄e MC is overlayed with an increased cross
section in order to mimic the expected contribution by W → µν̄µ and W → τ ν̄τ . The red line

indicates the maximum allowed ESig
T,Miss value.

makes the use of MC legitimate. Only at the very high ESig
T,Miss values data starts to differ

significantly from MC. The peak structure at ESig
T,Miss ≈ 3.4 is due to single MC events

with a high weight. Not the full difference between data and MC in these histograms can
be accounted to contaminations by non-collision backgrounds: At this point the QCD
MC (filled histograms in Fig. 7.1) does not contain the contribution from events with real
ET,Miss like events containing W → lν̄l decays, whose ESig

T,Miss distribution is overlayed
as well. The result of the complete procedure is shown in Fig. 7.2, which overlays the
cut-value as a function of leading jet pT on top of the ESig

T,Miss distribution seen in data.
The cut applied in the analysis ranges from ≈ 2.5 to ≈ 15, for the events containing the
highest pT jets. The upwards rising tail in this figure can be accounted to events from, or
contaminated by cosmic or beam-halo particles in the calorimeter. Two exemplary events
being rejected due to a too high ESig

T,Miss are shown in Appendix A.3.
It should be made clear that the major purpose of this selection is to reject cosmic events

producing very energetic jets. In a very unfortunate scenario these could significantly
contribute to the highest pT bins in the analysis, where only very few jets will be counted.
Nevertheless it does not harm to construct the selection in a consistent manner also for
the low pT events, where the fraction of rejected events can be expected to be negligible.

7.2 Jet selection

The event selection is followed by a selection of jets, which have to satisfy a set of quality
criteria as well. They all aim at a rejection of jets that are heavily affected or purely
originating from calorimeter defects, mainly such like sporadic noise bursts in certain
detector regions. The quantities used to identify such jets are the following:

• Jet time tjet: The jet time quantity is computed as the absolute value of the energy
weighted mean of the constituent cell’s time information, which is measured relative
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Figure 7.2: Distribution of the observed ESig
T,Miss values as a function of the leading jet pT and

the maximum allowed value (red line).

to the nominal event time. This quantity allows an identification of cosmic jets,
since their impact time is uncorrelated to the bunch crossing time.

• N90: This is the minimum number of cells containing 90% of the jet’s energy. Very
small values of N90 hint to jets made up of few, noisy or hot calorimeter cells since
the shower of a proper jet can be expected to spread its energy over a large amount
of jets.

• fHEC, fEM, fTileGap3: These are the fractions of the jet’s energy deposited in the
hadronic end cap, the electromagnetic calorimeters and the tile gap scintillators
(the cryostat scintillators shown in Fig. 5.6) respectively. All three quantities are
based on the mapping of the constituent cells to the various subdetectors. For
fEM, values too close to zero hint to jets made up of noise in the nearby hadronic
calorimeters. Values close to 1 for fHEC or fTileGap3 point to problematic jets which
deposited only very few energy outside these two regions.

• Jet quality Qjet: The jet quality is the fraction of energy contributed to the jet
by cells whose pulse shape was found to differ significantly from the predicted one.
Pulse shapes seen in hot or noisy calorimeter cells are unphysical, thus this fraction
becomes significant for jets heavily affected by such cells. Besides these effects, the
pulse shapes also depend on the energy deposited in a cell, thus also high energy
jets tend to have Qjet 6= 0. This energy dependence is not yet modeled in the MC,
as can be seen in Fig. 7.3. For this reason the cuts on this quantity will be chosen
in a purely data-driven manner to avoid a rejection of high pT jets.

65



7 Jets in the ATLAS detector

These quantities are used to form cuts to reject mainly jets that are heavily affected or
purely made from noise. These cuts were derived by the ATLAS jet performance working
group [70] and are outlined here for completeness.

The jet time offers the first possibility to further reject jets from non-collision back-
grounds since their time will not correlate with the bunch crossing time. Figure 7.3 a)
shows the absolute value of the jet time in data compared to MC. The timing cut applied
was chosen very loosely to t < 50 ns which is the time between two bunch crossings. The
MC simulates the timing resolution in the calorimeter reconstruction while signals that
are in fact delayed with respect to the nominal collision time are not simulated.
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Figure 7.3: The two distributions compare the jet timing and jet quality variable compared in
data and MC. The modeling of the jet quality in the MC does not take increasing deviations
from the nominal pulse shapes into account.

Numerous noise jets were found to occur due to coherent noise in the electromagnetic
calorimeter. Looking at Fig. 7.4 these jets show fEM ≈ 1. Since they are faked by noise in
the em. calorimeter there is no associated energy deposition in the hadronic calorimeter.
Since especially low pT jets also tend to be absorbed completely in the em. calorimeter
the cut designed to reject such jets also uses Qjet as illustrated in the figure. Though the
MC does not describe the Qjet variable at all, as demonstrated in Fig. 7.3, the inefficiency
due to is considered negligible due to the placement of the cut close to the boundary of
the distribution.

Besides the electromagnetic calorimeter mainly the hadronic endcap is the source of
noise jets which occur due to noise bursts. A first possibility to indentify these jets in the
hadronic endcap is N90. Since the cells in the hadronic endcap are comparably large and
the noise frequently appears only in isolated cells, jets faked by this problem frequently
are built of only a single cell, as can be seen in Fig. 7.5. The distributions show a wide
distribution along fHEC and a peak at fHEC ≈ 0 which is due to jets that are outside the
fiducial region of the hadronic endcap. The simulation in this case predicts only a very
tiny number of real jets removed by this cut.

Jets built from noise that spreads over several cells and real, soft jets overlayed on
noisy cells will however make it past the N90 cut. These remaining, often high pT jets
can be identified using the Qjet − fHEC plane where they appear in the region of Qjet >
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Figure 7.4: The cuts indicated by the red boxes reject jets that are faked by coherent noise in
the electromagnetic calorimeter. The simulated distribution does not model the Qjet variable, so
no jets are rejected by this cut in the MC.

0.2 & fHEC > 0.5 as shown in Fig. 7.6. The cut designed to remove these jets follows the
boundary of the distribution along fHEC = 1− Qjet.

Using all the cuts described as above it is believed that jets from noise are sufficiently
well rejected from the analysis since the bulk of the remaining jets follows the simulation
well.

Two last jet selection cuts are not designed to remove fake jets but rather jets that
are known to be badly measured: For dead cells in the calorimeter the reconstruction
software employs an algorithm that estimates the dead cell’s energy using the information
in neighboring cells. While this algorithm cannot harm in general, there are pathological
cases where this correction amounts to a very significant fraction of the jet’s energy due
to unphysical extrapolations from small neighboring cells. Jets where this correction,
denoted by fCorr, contributes more than half of the jet’s energy are rejected.

Finally jets that deposited more than half of their transverse momentum in the cryostat
scintillators are excluded from the analysis. The calibration of these very small scintilla-
tors is not completely understood and thus these jets are rejected from the analysis as a
safety measure.

The fraction of jets removed by these last two cuts is negligible as can be estimated
from Fig. 7.7. To summarize, there are three cuts removing the major source of fake jets,
being noisy jets originating in the electromagnetic calorimeter and the hadronic endcap.
The timing cut is used to reject remaining jets from non-collision backgrounds. The two
lastly mentioned cuts remove not well understood jets. All five cuts and their purpose
are documented in Table 7.2.

In conclusion Table 7.3 summarizes the number of events and the number of jets in all
subperiods analyzed after the various event cuts mentioned in this section. An important
detail on the observed number of R = 0.4 and R = 0.6 jets in Table 7.3 is, that the
ratio of the two numbers is not constant. This is due to the fact that this ratio is pT

dependent and in later periods the low pT component has a less stronger impact, since
the low threshold triggers were becoming increasingly heavy prescaled. This changes the
raw pT spectrum and hence also the ratio of the two numbers.
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Figure 7.5: Distribution of the jet’s hadronc endcap energy fraction and N90. Jets faked by
noise bursts in the hadronic endcap can be removed by rejecting jets in the indicated regions of
fHEC and N90.

Figure Cut Designed to remove:

7.3 tjet > 50 ns Non-collision backgrounds.

7.4 Qjet > 0.8 & fEM > 0.95 Jets built from coherent noise.

7.5 fHEC > 0.8 & N90 ≤ 5
Jets faked by noise in the hadronic endcap.

7.6 fHEC > 1−Qjet

7.7 fTileGap3 > 0.5 mmmmm
fCorr > 0.5

Badly measured jets.

Table 7.2: Summary of the cleaning cuts applied to reject jets faked by either calorimeter noise
or non-collision backgrounds.
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jets that are inherently not well measured. As implied by the distributions shown, these cuts
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7.3 Comparisons of data to Monte Carlo simulations

7.3 Comparisons of data to Monte Carlo simulations

The aim to measure the inclusive jet cross section will involve making corrections to the
data that are derived purely from MC. This is only a valid approach if the simulation
models the data sufficiently well. Whether this is the case shall be examined in this section,
where uncorrected jet distributions in data are compared to MC. For this purpose only
events and jets are used which pass the selections described in the previous section.

7.3.1 Topological clusters

As outlined earlier the input needed for the jet reconstruction are the topological calorime-
ter clusters formed prior to the jet finding. Properties of these inputs are thus the first
characteristics that can be compared in the simulation and in data. Figure 7.8 a) shows
the pseudorapidity distribution of clusters with pcl

T > 5 GeV, contained in jets. This dis-
tribution shows the characteristic shape for quantities with a requirement of a minimum
transverse momentum: These usually show a rather flat shape in the center of the detector
(|η| . 1) where the |pT | to |p| conversion is still moderate. For higher |η| the production
of objects above a pT threshold is increasingly strong suppressed. High transverse mo-
menta of 40 GeV e.g. correspond to total momenta of more than 1 TeV at |η| ≈ 4. The
distribution is reasonably well modeled by the simulation, with small differences around
|η| ≈ 2. The pT distribution of clusters in jets is displayed in Fig. 7.8 b), summed over all
jets within |η| < 2.8 and shows an excellent agreement with the simulation over six orders
of magnitude, up to the highest cluster energies of 200 GeV seen in data. Sensitivity
to the internal structure of jets is already provided by examining the number of cluster
constituents N cl in jets. This is done in Fig. 7.9 which counts the number of clusters with
pcl

T > 1 GeV in jets with pT > 40 GeV. On average these jets in data have approximately
6.2 clusters, while the MC shows a slightly lower average of approximately 6.0 clusters per
jet. But nevertheless the simulation describes data reasonably well, including the long
tail to higher N cl. This points to a good simulation of the fragmentation as well as a
realistic description of calorimeter noise which could contribute noise clusters to jets.

7.3.2 Jet kinematics and internal structure

Having a solid understanding of the input quantities to the jet finding process, the MC
description of the observables needed for the targeted measurement can be validated.

Figure 7.10 compares the angular distributions of observed jets to the MC prediction.
For φ clearly a flat distribution due to the φ symmetry of the experimental setup is
expected. Here Fig. 7.10 a) reveals that this is not perfectly true in data and also not in
the MC simulation. Randomly distributed hardware defects such as defective read-out
modules of the calorimeter may introduce inefficiencies in certain φ regions. Such defects
are however also included in the simulation, so nevertheless a good agreement in these
quantities can be expected. The φ distributions in data and MC show that these effects
(e.g. around φ ≈ −2) are simulated quite well.

Less good agreement can be observed in the pseudorapidity distribution shown in
Fig. 7.10 b). Most jets above a given pT threshold are produced centrally, due to the
same reasons mentioned for Fig. 7.8. Besides the general shape one remarkable feature
in Fig. 7.10 b) is the slight excess of jets in data at |η| ≈ 2.0. This excess, which would
also be noticeable without a direct comparison to MC, can be attributed to an underesti-
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Figure 7.8: Distributions of transverse momentum (b)) and pseudorapidity (a)) of topological
clusters in jets.

mated energy scale in this region in the MC. This assumption is backed up by so called
intercalibration studies exercised by the ATLAS collaboration. These studies exploit the
balancing in pT in two-jet events, by using jets in a fixed detector region as a reference
compared to the balancing jet in the detector region of interest. This way the relative
energy scale between two calorimeter systems can be determined. Figure 7.11, taken from
Ref. [71], shows a result of this study which reveals an underestimate of around 4 to 5%
in energy scale. Taking into account the very steeply falling pT spectrum of QCD jet pro-
duction, this lifts a large amount of jets above the pT limit of 40 GeV used in Fig. 7.10 b).
An approximation for the increase in the number of jets above a given threshold can be
made using the knowledge that the jet pT distribution roughly falls according to a power
law. The change due to a shift in pT can than be estimated using the derivative:

dNjets

dpT
∝ p−A

T (7.4)

→ dNjets

d2p2
T

∝ −A× p−A−1
T (7.5)

With A ranging from 5 to 6 in the observed jet pT spectrum the difference in energy scale
of approximately 5% can be expected to have an impact of roughly 25% to 30%, which
agrees with the actual excess seen in Fig. 7.10 b).

To be able to identify eventually remaining hot or dead regions in the calorimeter, it is
very helpful to look at the two-dimensional distribution of jets in η-φ-space. This is done
in Fig. 7.12. Here the detector simulation shows a very good agreement in the modeling
of the few dead calorimeter regions. Only three small regions were not yet included in the
simulation since these regions were functioning well at the start of data taking. Besides,
the map for data also reveals the features that could be observed in Fig. 7.11 like the dip
around φ ≈ −2.

Finally, Fig. 7.13 compares jet pT distributions seen in data and MC. For this purpose
jets not selected by the highest inclusive jet trigger have to be scaled according to the
corresponding trigger, which can be read off Table 7.1. The number of jets quoted this
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Figure 7.9: Distributions of the number of constituents per jet. The inlay shows the same
distribution on a logarithmic scale.

way represents the expected number of jets in a given pT bin, assuming the trigger would
not have been prescaled. In order to quantify the agreement in shape, the MC distribution
is normalized to the integrated number of jets seen in data. The ratio between data and
MC reveals that data produces up to 50 % more jets at a pT close to 1 TeV. Rather than
to a problem of detector simulation this points to a difference in physics simulated in the
MC. These are due to the leading order simulation done by Pythia and is also strongly
affected by the choice of the PDF, which is CTEQ6L1 for the Pythia6 simulation with
the MC09 tune.

Another interesting quantity to check is the width of jets, defined as:

〈Rc〉 =

∑

Ec ∆R(~j,~c)
∑

Ec

, (7.6)

where the sums run over all jet constituents with energy Ec and distance ∆R in η-φ-
space to the jet axis. For a jet built with a radius of R = 0.6 the naively expected
maximum width would thus amount to 〈Rc〉 = R/2 for an imaginary jet made of only
two constituents separated by ∆R = 0.6. This quantity provides a hint to the inner
structure of jets, which probes the agreement of jet fragmentation in data and MC. A
reasonable description of the jet substructure to a certain degreee also gives confidence in
a similarly good simulation of jet energy response and resolution. This is due to the fact
that resolution and energy scale can be expected to differ between narrow and wider jets,
since the energy of wider jets is distributed among more particles. Figure 7.14 shows this
quantity for jets with R = 0.4 and R = 0.6. The width for R = 0.6 is larger than for the
more narrow jets, which is of course the expected behaviour. It is also interesting to note
that while the jet resolution parameter used is 0.6 and 0.4 respectively the width is in
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Figure 7.10: Distributions of jet azimuth and pseudorapidities. The orange, filled area reflects
the statistical uncertainty on the MC simulation.

general significantly below 50% of the resolution parameter, which reflects that the radial
distribution of energy within a jet is centered at its axis and drops off towards larger radii.
Both jet figures reveal that jets in data are broader than the simulation predicts. This
can be taken as feature of the specific MC tune, whose fragmentation can probably be
improved in the future. While 〈Rc〉 itself does only provide information about the average,
energy weighted distance of jet constituents, a slightly more sophisticated observable is
the differential radial shape, which provides a more direct probe of the jet substructure.
Differential jet shapes have already been measured by the ATLAS collaboration [72]. Its
results, consistently with the ones presented here, are, that jets in data are slightly wider
than predicted by the default MC tune.

7.4 Estimation of the impact of pile-up

As mentioned earlier the full dataset analyzed consists of runs taken over a period of
roughly four months. During these four months the detector and much more the accel-
erator conditions changed over time. The most extreme development took place in the
instantaneous luminosity provided by the LHC. The integrated luminosity as a function of
the average number of pp-collision per crossing µ is displayed in Fig. 7.15. This shows that
the dominant fraction of data was taken with µ relatively flatly ranging from 0.7 to 1.6
interactions per bunch crossing. A large fraction of luminosity increase is due to a higher
number of protons in a single bunch and more importantly better collimation the bunches.
Both effects result in an increase of the probability for more than one pp-collision taking
place in one bunch crossing.

Along with the increase in µ, the probability that jets from any secondary collision
coincide with a jet from the primary interaction is increased. Such coincidences add
energy into a jet and thus on average increase the cross section at a given pT . For each
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Figure 7.11: Results of the η intercalibration studies [71]. Measured is the relative response
with respect to two reference regions in the central detector.

additional pp-collision, the energy brought into a jet EPU from pile-up events is estimated
as the average energy density in the calorimeter times the jet’s area:

〈

EPU
〉

= ρ(η,Npp)× 〈Ajet〉 , (7.7)

where 〈Ajet〉 is a measure of the jets area. This takes into account that the energy density
ρ can be expected to change as function of pseudorapitidy. The relative impact of this
effect can thus be expected to decrease for high pT , since it will scale as 1/pT . It should be
noted that this effect can in principle be corrected for, making use of a slightly modified
version of Eq. 7.7, as described in [73]. During the early stage of data taking this extra
calibration was not fully validated yet and for that reason is not used. The impact can
nevertheless already be estimated to be very small, since the data used in this analysis
was taken under moderate pile-up conditions with µ . 2, as can be seen in Fig. 7.15.
As reported in [73] this corresponds to EPU

T of less than 1 GeV, which - for jets with
pT > 40 GeV- corresponds to less than 2.5% of their total transverse energy. This small
but nevertheless existing contribution instead will be taken care of by an appropriate
treatment within the systematic uncertainties.

7.4.1 Impact on jet rates

To assess the impact of this effect in a purely data driven way,

Njets(µ) =

∑

N jets
lb (µ)

∑

Llb(µ)/1 nb
(7.8)

is computed as the number of jets normalized by luminosity. Here N jets
lb (µ) is the number

of jets accumulated in a given luminosity block lb in a certain µ bin and Llb(µ) is its
integrated luminosity. The sums range over all luminosity blocks analyzed. One would
expect that with increasing pileup the number of jets above a given pT threshold increases
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Figure 7.12: η, φ distributions of jets in data (left) and simulated jets (right). Arbitrary units
are used for the z-axes.

with µ, since higher EPU
T will carry more jets above the pT threshold. To which degree this

is the case is presented in Fig. 7.16 for a low and high pT bin. The statistical uncertainties
displayed are the uncorrelated components arising from

∑

N jets
lb (µ) only. The uncertainty

assigned to Llb(µ) is zero, accounting for the fact that the luminosity uncertainties are
fully correlated. Consequently all data points share a common normalization uncertainty
which is not of interest for stability considerations. The error bars shown thus reflect only
the uncorrelated, purely statistical uncertainty on the number of jets counted. The result
reveals that an actual increase of the jet rate in fact cannot be observed.

7.4.2 Jet width dependency on pile-up

Similar to the jet rate studies performed above, an impact of pile-up on the jet width
can be expected too. Contributions from secondary pp-interactions can be expected to
increase the average width of jets. Since the distribution of energy from minimum bias
is uncorrelated with the primary scattering, the energy will be randomly distributed
with respect to the jets in the event. Thus these contributions will increase the jet
width, putting the approximately Gaussian energy profile onto an increasing background.
Figure 7.17 displays this dependencies for small and large jets. Also shown is a straight
line fit to the average width in every µ bin, which reveals that there is indeed a small slope
towards increasing widths. The straight line fit also reveals, that the effect is significantly
smaller for small jets, which can be expected due to the fact that a smaller jet area will
of course collect less energy from secondary pp-interactions.

7.5 Determination of trigger efficiencies

In this section the efficiencies of the several triggers used in the analysis are derived. These
efficiencies are the basis for the determination of the pT,min thresholds (cf. Table 7.1),
which were already used in the previous sections.

To extract trigger efficiencies from data, the so called bootstrapping method is employed.
Here the efficiency of a trigger B is determined using a second trigger A as a baseline,
assuming that trigger A provides an unbiased sample of events. The trigger efficiency can
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Figure 7.13: Distributions of transverse jet momenta. The dashed histogram represents
dNraw/dpT , with Nraw being the number of jets before correction of the average prescale of
the corresponding trigger. The solid histogram represents the expectation without prescale.

then be defined as

ε =
NA &B

NA
, (7.9)

where NA is the total number of events delivered from trigger A and NA &B is the number
of events (among NA) requiring the trigger B. Once the efficiency for trigger B is known
it can be used as the baseline trigger for a next trigger of interest. In this section the
efficiencies for the triggers listed in Table 7.1 are determined. The efficiencies are extracted
as a per-event efficiency in bins of the leading jets’ pT and η.

For the lowest threshold trigger used in the analysis, L1 MBTS 1, the L1 ZDC trigger
is used to select the sample of events on which the efficiency is calculated. The results in
Fig. 7.18 show that this trigger is fully efficiency already at a jet pT of 20 GeV across all
rapidity regions. This qualifies this trigger as the safest possibilty to trigger low pT jets
and also makes it the best choice for a baseline trigger in the subsequent determination
of the jet trigger efficiencies. A little benefit can be gained by using L1 MBTS 2 for the
determination of the trigger efficiencies, as it provides a slightly larger event sample.

Due to the heavy prescales applied to the minimum bias triggers (≈ 5000) they can
however only be used up to L1 J30 since the number of jets in the interesting pT region
for higher threshold triggers becomes very little. As a consequence L1 J15 is used as
the baseline trigger for L1 J55. The efficiencies for all jet triggers are shown in Fig. 7.19
and Fig. 7.20. The results show relatively broad turn-on curves. Out of Fig. 7.19 the
pT,min thresholds can be extracted. They determine the pT value at which the trigger gets
sufficiently close to 100% efficiency: L1 J5 reliably selects jets only above 60 GeV, which
leaves the minimum bias triggers as the only possibility to select lower pT jets in a fully
efficient way. For the subsequent thresholds 110 GeV, 160 GeV and 260 GeV are chosen
as the pT,min.
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Figure 7.14: Jet width as seen in data compared to the simulation.
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Figure 7.15: The integrated luminosity in the dataset analyzed, as a function of average number
of interactions per bunch crossing µ.

The in general relatively large gap between the threshold value applied at the L1 trigger
and pT,min can be attributed to the many limitations of the sliding window algorithm
employed at L1 compared to the offline jet reconstruction. For instance the calibration
of signals is only done at the calorimeter tower level. Thus it is not possible to use a
dedicated jet calibration. In addition the area of R = 0.6 jets is approximately two (or
seven, for L1 J5) times larger than the according window size at Level-1, which means
that very significant amounts of energy are lost outside the Level-1 ROI window.

The comparison with MC in the above studies is done for completeness, though agree-
ment is not a prerequisite for the analysis. One can observe that the plateau region in
MC in general is reached a little earlier than in data. Table 7.4 summarizes the results of
this section in form of the extracted pT,min thresholds.

The above results are also fully valid for the smaller jet sizes. The efficiences for
R = 0.4 jets, which for brevity were not shown, are consistently higher than or equal to
the efficiencies of the R = 0.6 jets. This is due to the different area of the jets, while the
window size at the trigger level remains fixed. For a R = 0.6 jet the amount of energy
deposited outside the ROI window is significantly higher than for the smaller jets. This
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Figure 7.16: Stability of the number of jets counted per µb−1 in two bins of pT as a function
of mean number of interactions per collision.

Trigger pT,min [GeV] Baseline trigger

L1 MBTS 1 < 20 L1 ZDC
L1 J5 60 L1 MBTS 2
L1 J15 110 L1 MBTS 2
L1 J30 160 L1 MBTS 2
L1 J55 260 L1 J15

Table 7.4: List of triggers used and the extracted minimum pT for 100% efficiency. Also shown
is the baseline trigger used to extract the efficiency.

in turn results in a lower efficiency. As a consequence, the pT,min tresholds from Table 7.4
applied to small jets can be considered even more conservative.

7.5.1 Systematic uncertainties

As observed above, the determination and modeling of trigger efficiencies is not straight
forward. The only question important for the upcoming analysis is, to which degree the
assumption of negligible inefficiency above the pT,min thresholds is valid. This issue is
addressed by a calculation of the trigger efficiencies in an alternative manner. Instead
of a per-event efficiency the tag & probe method estimates the efficiency to trigger on
a single jet within an event. For this purpose in each event the Level-1 ROI with the
highest transverse energy is considered the ROI responsible for triggering the event and
is called ROImax. Subsequently, for all jets in the event the closest Level-1 ROI is found.
If the ROI is sufficiently close to the jet (∆R(jet, ROI) < 0.4) and if the ROI is not the
ROImax, it is checked whether this ROI passed the trigger threshold of interest. If the
closest ROI is the leading ROI, the jet is skipped and not counted in the number of total
jets N jets

total. The per-jet efficiency is then calculated as:

εjet(pT ) =
N jets

ROIpassed(pT )

N jets
total(pT )

(7.10)
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Figure 7.17: Jet width as a function µ for large (left) and small (right) jets with
160 < pT < 210 GeV. Colors represent the abundance of jets, black dots show the mean along
the y-axis for each µ bin. The means are fitted with a straight line of the form f(x) = p0 + xp1.

In Fig. 7.21 this efficiency is compared in the region above pT,min for the various calorime-
ter triggers used. The observed differences are well below 0.2% in all but one rapidity
region and for all calorimeter triggers used. The larger discrepancies appearing in the re-
gion of 1.2 < y < 2.1 arise from a temporary trigger configuration subtlety: In this region
the trigger system was configured differently during the subperiods E1 to E4. During
these periods in a narrow pseudorapidity window only a small part of the calorimeter was
connected to the trigger system, thus lowering the trigger efficiency. This effect naturally
is much more visible in the per-jet efficiencies. This is because the average QCD event can
be expected to contain at least two jets of similar pT , which could be triggered on. Thus
inefficiencies in certain detector regions are partly compensated for by additional jets in
the event, when per-event efficiencies are studied. The event efficiency can in principle be
written as a function of the per jet efficiencies of all jets in an event:

εevent = 1−
∏

i

(1− εjet,i). (7.11)

As a consequence, the tag & probe per-jet efficiency by construction is smaller than (or
equal to) the per-event efficiency calculated with the bootstrapping method. For an
examplary event containing only two jets with εjet,i = 98%, the efficiency to trigger the
whole event would thus be 99.96%.

It should be emphasized that the trigger requirements in the analyses presented are
done on a per-event basis. Per-jet efficiencies thus are an pessimistic estimate of the
actual efficiency entering the analyses.

To summarize, these results back up the assumption of negligible inefficiency above the
pT,min thresholds introduced. The inefficiency in the barrel to endcap transition region
is accounted for by an 1% systematic uncertainty. This is considered a very conservative
estimate given the excellent agreement of both methods in the remaining rapidity regions.

The minimum bias trigger used for the lowest pT bin is considered to be fully efficient.

80



7.5 Determination of trigger efficiencies

 [GeV]
T

p
50 100 150 200 250 300 350 400

E
ffi

ci
en

cy

0.5

0.6

0.7

0.8

0.9

1

 L1_MBTS_1
Data
Pythia

, R=0.6tanti-k

PSfrag replacements

|y| < 2.8

|ηleading jet |
0 0.5 1 1.5 2 2.5

E
ffi

ci
en

cy

0.5

0.6

0.7

0.8

0.9

1

 L1_MBTS_1
Data
Pythia

 < 25 GeV
T

20 < p

, R=0.6tanti-k

PSfrag replacements

|y| < 2.8

Figure 7.18: Trigger efficiencies for the L1 MBTS 1 trigger, versus the transverse momentum
of the leading jet in an event. As the ZDC trigger was not included in the simulation of the MC,
this method cannot be applied to the MC.
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Figure 7.19: Trigger efficiencies of the inclusive jet triggers versus the transverse momentum
of the leading jet in an event.
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Figure 7.20: Trigger efficiency of the inclusive jet triggers versus the leading jet’s pseudora-
pidity.
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Figure 7.21: Comparison of jet trigger efficiencies using the tag & probe method and the
per-event efficiencies using the bootstrapping method, shown in Fig. 7.20.
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8 Jet energy scale and resolution
uncertainty

This chapter will briefly outline the results of extensive studies carried out by the ATLAS
collaboration to assess the systematic uncertainties of jet energy scale and jet energy
resolution.

8.1 Jet energy scale uncertainty

The jet energy scale (JES) uncertainty is estimated using a mixture of MC studies and
data driven methods where possible. To gain an estimate of the JES uncertainty, generally
the jet response (e.g. as shown in Fig. 6.10) is studied for instance in MC simulations in
which parts of the simulation affecting the jet energy scale are changed. The deviations
∆JES from the nominal response Rnom(pT , η), defined as

∆JES(pT , η) = |1− Rvar(pT , η)

Rnom(pT , η)
|, (8.1)

[74], with Rvar being the response in these varied scenarios, are taken as the systematic
uncertainty.

The studies that will be referred to, are presented in [75]. One can divide the sources of
uncertainty into two categories: Firstly, uncertainties related to the simulation of jets and
their environment at generator level. And secondly, uncertainties related to the detector
description and, most importantly, the models describing the interaction of particles with
the calorimeter. The major contributions to both categories are examined in the following.

8.1.1 Uncertainties at generator level

The impact of various generator models and tunings is estimated studying the JES in
accordingly varied MC samples. These include Pythia6 MC with tunings that specifically
vary the jet fragmentation and the underlying event contributions. Both aspects change
the jet composition and shape, which can have an impact on the JES. The observed
difference in Fig. 8.1 turns out to be small and does not exceed 1%. The impact of an
entirely different MC generator was also studied using MC samples generated using the
combination of Alpgen, Herwig and Jimmy [76–78]. Compared to Pythia6, these samples
employ different techniques and models in every step of the event generation: Starting
from Alpgen’s multi-parton matrix element calculation to the parton shower done by
Herwig and the underlying event simulated by Jimmy. The impact on the JES is slightly
more significant than the Pythia6 tunes implied, namely ≈ 2% below 60 GeV but below
1% for jets beyond 100 GeV.
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Figure 8.1: Jet response in the nominal (left) and in various different MC samples (right)
(figure taken from Ref. [74]). The differences observed between nominal and alternative MC are
taken as the systematic uncertainty.

8.1.2 Uncertainties in the detector simulation

The dominant source of uncertainty lies within the modeling of hadronic showers in the
calorimeter (cf. Section 5.7). In [74] the differences in response using alternative physics
lists were studied in the MC and with ≈ 6% were found to be the dominant contribution
to the total JES uncertainty.

The accumulation of more data in 2010 allowed for a significant decrease in the JES
uncertainty with respect to first studies [74] by using data driven methods to assess these
uncertainties. Instead of purely relying on MC, the JES uncertainty was updated in
[75] using measurements of the response of charged hadrons [79]. This analysis attempts
to mimic the testbeam situation by finding single, isolated charged hadrons using the
tracking system. The tracks of these particles are extrapolated to the calorimeter and the
energy E measured there can be probed against the momentum measurement p from the
inner detector.

Measuring the average ratio of these two quantities, 〈E/p〉, in data and MC, one can
quantify how well the calorimeter response is simulated. Exemplary results of these studies
are shown in Fig. 8.2, revealing a very good agreement of data and MC on the level of
approximately 3%.
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Figure 8.2: Singe particle response as measured in data and MC. Figures taken from Ref. [79].

The propagation from single particle response uncertainty to the JES uncertainty uses
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8.2 Jet energy resolution uncertainty

pseudo-experiments [79]: The ATLAS simulation allows to map every energy deposit in
the calorimeter to the truth particle that induced it. Making use of this functionality the
total energy of a jet can be decomposed into the contribution from each particle. Each
particle’s energy deposit is then varied within the uncertainties appropriate to the particle
species. The deviation of the response due to these variations is taken as the systematic
uncertainty.

8.1.3 Final jet energy scale uncertainty

The above mentioned, major contributions to the JES uncertainty are summed appro-
priately including few additional, not mentioned contributions which are described in
[75]. This results in the JES uncertainty displayed in Fig. 8.3 which shows that in the
central detector region the JES uncertainty is around 4%. The uncertainty in the more
forward region uses additional information from intercalibration studies which increases
the uncertainty by approximately 1% for jets beyond 60 GeV.
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Figure 8.3: Contributions of various sources (markers) to the total (filled histogram) JES
uncertainty. Figure taken from Ref. [75].

8.2 Jet energy resolution uncertainty

To which degree the jet energy resolution is well described in the simulation is evaluated
in a direct comparison to the resolution measured in data. The studies summarized below
are outlined in much more detail in [68].

The measurement of the jet energy resolution in data is exercised using two methods,
each exploiting the pT balance in clean two-jet events.

8.2.1 Resolution measurement using the two-jet asymmetry

The first method [80] makes use of the transverse momentum asymmetry in two-jet events,
defined as

A =
pT,1 − pT,2

1
2
(pT,1 + pT,2)

, (8.2)

where pT,1 and pT,2 are the randomly ordered transverse momenta of the two leading jets.
Under the assumption that both jets were produced with equal transverse momenta and
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8 Jet energy scale and resolution uncertainty

that they thus are subject to equal resolutions, one can write down the variance in A as:

σ2
A =

σ2
jet

2p2
T

or :
σjet

p̄T
=
√

2σA. (8.3)

Hence, the relative jet energy resolution can easily be derived measuring the asymmetry
distribution. Exemplary distributions are shown in Fig. 8.4, illustrating a good agreement
between data and MC.
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Figure 8.4: Asymmetry distribution for two bins of the average pT bins. Figure taken from
Ref. [68].

The imbalance introduced by additional jets in the event is corrected for by measuring
σA using a varying veto against such jets: Events where there is an additional jet with
pT > pcut

T,3 are rejected and pcut
T,3 is varied between 5 GeV and 20 GeV. Finally each σA as a

function of pcut
T,3 is extrapolated to pcut

T,3 → 0 using a straight line fit as displayed in Fig. 8.5.

 (GeV)
T,3
cutp

2 4 6 8 10 12 14 16 18 20

  
T

)/
p

T
(pσ

0.1

0.2

0.3

0.4

0.5 Monte Carlo (PYTHIA)

 = 7 TeVSData 2010   

Dijet Balance Method
<30 GeV

T
p20 GeV <

|y|<2.8
 R = 0.6 cluster jetsTAnti-k

EM+JES calibration
ATLAS Preliminary

Data/MC

 (GeV)
T,3
cutp

2 4 6 8 10 12 14 16 18 20D
at

a/
M

C

0.9
0.95

1
1.05

1.1

Figure 8.5: Relative pT resolution versus pCut
T,3 . Figure taken from Ref. [68].
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8.2 Jet energy resolution uncertainty

8.2.2 Resolution Measurement using the bisector method

The second method [81] employs a slightly different strategy, which nevertheless also starts
from the basic assumption of pT balance between the two jets in a clean two-jet event.
The sum of the transverse momenta of the two leading jets is split up in two distinct
components: pT,Ψ, along the bisector of the two jets (see illustration in Fig. 8.6) and pT,η

orthogonal to it and thus approximately parallel to the jet axis. The idea behind this

Figure 8.6: Sketch of the construction of pT,η and pT,Ψ. The η axis defines the azimuthal
bisector between the two jets, which leaves the orthogonal Ψ axis approximately parallel to the
two-jet-system. Figure taken from Ref. [68].

splitting in two contributions is that fluctuations of the pT balance at particle level will
occur to equal parts in pT,η and pT,Ψ. Imbalances due to mismeasurement of either of the
two leading jets however will mainly increase the variance of pT,η. It can be shown, that
the difference between the widths of both quantities σΨ and ση provides a handle to the
actual jet pT resolution:

σjet

p̄T
=

√

σ2
Ψ − σ2

η
√

2p̄T

√

| cos ∆φ12|
(8.4)

The benefit of this procedure being that no explicit correction of soft radiation effects is
necessary.

8.2.3 Combined results

The results of both methods are displayed in Fig. 8.7 and compared to MC. The inter-
pretation of the results is limited by significant statistical uncertainties, but it can be
concluded that differences between data and MC are on the order of 10%. Meanwhile,
the ATLAS collaboration has updated these studies using the full dataset of 2010, which
amounts an integrated luminosity of approximately 33 pb−1. The reach in pT in this study
is much larger and the statistical precision has improve accordingly.
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9 The cross section measurement

This chapter covers the details of the measurement of the jet cross section. After briefly
reviewing the general concept and aim of the analysis, the largest fraction of this chapter is
devoted to the derivation and validation of the necessary corrections to data. Subsequently
the results are compared to the theoretical predictions established in Chapter 4.

9.1 Measurement principle

The aim of this analysis is the measurement of the inclusive, double differential jet cross
section, as defined by:

dσ

dpTdy
=

1

L

Njets(pT , y)

∆pT ∆y
(9.1)

Here Njets is the number of jets counted in a given bin of rapidity and transverse momen-
tum, with bin widths ∆y and ∆pT respectively and L is the integrated luminosity of the
analyzed dataset.

As outlined earlier in Section 5.5 especially low threshold triggers are running in a
prescaled mode. This running mode is especially necessary for the inclusive jet triggers,
since the large cross section would otherwise produce too high rates for many triggers.

As a result, the totally accessible pT range has to be split up into distinct regions for
this measurement, where each is assigned to a certain trigger. Each jet with a given pT is
only taken into account if the event fullfilled the trigger assigned to the specific range of
pT . These intervals per trigger have already been introduced in the previous chapter and
are summarized in Table 7.1. For the cross section measurement this results in the use of
various values for the integrated luminosities, as these differ for the differently prescaled
triggers. As a result of this, Eq. 9.1 has to be slightly modified to account for this fact
and may be written as

dσ

dpTdy
=

1

L(pT )

Njets(pT , y)

∆pT ∆y
, (9.2)

where L(pT ) is the luminosity for the trigger assigned to the specific pT range and as a
consequence contains an implicit pT dependence. In practice this results in the measure-
ment being split up into five separate ones, each using data selected by only one trigger
and being restricted to a certain range of pT . Figure 9.1 shows the uncorrected number
of jets in bins of pT for each of these five triggers. The large differences of jet yields at
fixed pT but for different triggers observed in this distribution illustrate the necessity of
splitting into different triggers: relying on fewer triggers would either require substantial
corrections of trigger inefficiencies or reduce the available statistics substantially. Espe-
cially in the high pT region were the statistical uncertainty starts to become significant
there is no alternative to the usage of the highest non-prescaled trigger. The minimum
bias trigger is the only trigger whose efficiency was measured to be 100% in the lowest
pT bin just above 40 GeV. This is why this trigger is used for the lowest pT bin despite
its comparably low statistics. Nevertheless the statistical uncertainty can be expected to
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Figure 9.1: Jet yield as a function of pT per trigger for small and large anti-kt jets. Shown
are the raw, integer numbers of jets collected in each pT bin, not normalized to the bin width.
The dashed lines indicate the pT tresholds from which on a certain trigger is used up to the next
higher one.

be negligible in view of the systematic uncertainties. The same argument holds against
a lowering of the pT,min thresholds extracted in Section 7.5. Though it would in fact
be possible to increase the statistics in certain bins significantly by lowering the pT,min

thresholds, the anticipated advantage on the final result is negligible.

9.2 Analysis cuts and efficiencies

As described in detail in the previous chapter several steps of event and jet selection take
place until the final event and jet sample is obtained:

1. Trigger selection: Each event is required to fullfill at least one of the triggers
introduced in Table 7.1.

2. Vertex selection: The primary vertex in the event is required to have at least five
tracks associated: NTracks

PV ≥ 5.

3. Missing ET significance: The ESig
T,Miss quantity has to be below a threshold which

is parameterized as a function of the leading jet’s transverse momentum, as displayed
in Fig. 7.2.

4. Jet selection: All jets have to fullfill the quality criteria listed in Table 7.2.

Each of these steps may also reject proper events or jets and thus introduce an inefficiency
that needs to be corrected for. These effects are studied in the following:

• Trigger efficiencies: As outlined in Chapter 7 the momentum regions for each
trigger were specifically selected as the region where the trigger can be assumed to
be 100% efficient. For this reason no correction for trigger inefficiency is applied.
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9.2 Analysis cuts and efficiencies

• Vertex selection efficiency: The vertex selection, requiring a minimum number of
five tracks being associated to the primary vertex, neither does introduce significant
inefficiencies that would need to be corrected. This can be concluded from Fig. 9.2,
that shows the efficiencies of the various selection cuts as a function of pT as they
are extracted from the MC. For this reason no nominal correction for the jet vertex
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Figure 9.2: Effiencies of event and jet selection cuts. The efficiency at pT ≈ 100 GeV can be
attributed to a single MC event with a high weight, that is rejected.

selection is performed.

• Missing ET significance selection: This selection was designed to have no signifi-
cant inefficiency. The inefficiency in the derivation of the cut values was constructed
to be 1‰ and is also confirmed in Fig. 9.2. The 1‰ inefficiency is considered neg-
ligible.

• Jet selection efficiencies: The inefficiency of the jet selection cuts is estimated
using the MC simulation. This is justified by the good modeling of all associated
jet cleaning variables in the MC. The only exception from this statement is the jet
quality variable Qjet as demonstrated in Section 7.2. The impact of this flaw in the
MC is believed to have a negligible impact on the jet selection efficiency for the
following reasons:

1. Both jet cleaning cuts using the Qjet were exactly for this reason placed at the
boundaries of the distributions in data as illustrated in Fig. 7.4 and Fig. 7.6.
For both cleaning cuts Qjet is also combined with another jet quantity that is
well modeled in the MC.

2. Several events containing jets classified as bad were scanned by eye and the
jets were found to be indeed bad.

As a result of the very loose selection cuts there is no need for a correction of event or jet
selection inefficiencies. However, although the nominal inefficiencies are small, there are
sources of systematic uncertainties on each cut which are investigated in the following.
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9 The cross section measurement

9.2.1 Systematic uncertainties

Trigger efficiency

The systematic uncertainty on the trigger efficiencies was derived in Section 7.5 and
amounts to 1%.

Vertex selection

The ineffciency on the vertex selection is extracted from the NTracks
PV distribution of the

events analyzed, as it is shown in Fig. 9.3. To estimate the number of events lost due to
the NTracks

PV ≥ 5 cut, the low NTracks
PV region is extrapolated towards zero, using a fit with

a Landau function. This is illustrated in Fig. 9.3 where part of the NTracks
PV distribution

for events passing the L1 J5 trigger is shown. Under the pessimistic assumption that all
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Figure 9.3: The distribution of the number of tracks per vertex in events triggered by L1 J5 and

a fit extrapolating to NTracks
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those events are signal events, an upper limit on the inefficiency ε̄vtx of this cut can be
extracted as:

ε̄vtx =
Nrej

Nrej +Nsel
(9.3)

with :

Nrej =

∫ 5

0

f(NTracks
PV ) dNTracks

PV

Nsel =

∫ ∞

5

dNEvents

dNTracks
PV

dNTracks
PV ,

where Nrej is the integral of the fit function andNsel the number of events in the histogram.
This value turns out to be below 1‰. This inefficiency is taken as a conservative estimate
of the uncertainty.

ESig

T,Miss selection

The ESig
T,Miss selection was designed to reject only very few good events, so an obvious check

in data is to verify this expectation. A first impression on how many events are rejected
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9.2 Analysis cuts and efficiencies

can be gained from Fig. 7.2, which shows that only few events are above the cut at high
pT . To quantify this impression, the fraction of jets in events which are accepted by the
ESig

T,Miss cut is measured. In analogy to the estimation of the vertex selection efficiency,
this quantity will serve as a lower limit of the actual efficiency εmet

∗:

εmet ≥ εall
met =

Njets(Good ESig
T,Miss)

Njets(All)
(9.4)

Figure 9.4 shows 1−εall
met in bins of pT and y and confirms the expectation of a low number

of events being rejected. In the high pT regions the cut does indeed reject a significant
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Figure 9.4: Fraction of jets in events rejected by the ESig
T,Miss requirement. The dashed, red line

indicates pT = 500 GeV.

fraction of jets. It would however be overly conservative to assign for instance εall
met = 0.5

as an systematic uncertainty, without taking a look at the rejected events. Fortunately
only eight events are rejected for pT > 500 GeV, which allows an inspection of these events
in event displays. Seven of this eight events can unambiguously be identified as cosmic
events overlayed on a very soft pp-collision and only a single jet in an event that is only
just above the ESig

T,Miss cut could be assumed be a proper jet lost for the analysis. The
eighth event contributes a single jet to the 500 < pT < 600 GeV bin, at central rapidity.
In this bin 58 jets are counted, thus one additional jet would correspond to an increase of
the cross section by 1.7%. In view of the statistical uncertainty of 13% in this bin, the
very small increase in the cross section, that would result from incrementing the number
of jets by one is considered negligible. Thus for the high pT region it can be concluded
that the inefficiency of the ESig

T,Miss cut is negligible. Identical checks have been made for
the jets rejected in the 400 < pT < 500 GeV bin, finding only a single proper jet being
rejected, in view of approximately 400 jets counted in total.

Concentrating on the lower pT region (pT < 400 GeV), where the number of jets is of
course significantly higher, an inefficiency below 0.5% can be observed. This number also
represents an upper limit on the inefficiency for this selection and is used as a conservative
estimate of the uncertainty associated with the ESig

T,Miss selection.

∗The limit would be the true efficiency under the assumption that all rejected events were signal events.
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9 The cross section measurement

Jet selection

The jet selection inefficiency taken from the MC is trusted to a large degree. Uncertainties
however can be assumed to be associated with the cuts involving the Qjet variable whose
significant energy dependence is not at all modeled in the MC. For this purpose the Qjet

distributions are examined in bins of pT , of which two are shown in Fig. 9.5. The majority
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Figure 9.5: Jet quality distributions for two bins of pT . The red line shows a fit of the form

f(x) = ae−(x−0.2)/A) + be−(x−0.2)/B , which results in the inefficiency ε1. The blue histogram is
identical to the black data points, but continues as a constant beyond 0.8. It yields the inefficiency
ε2.

of jets has a jet quality Qjet ≡ 0, due to the fact that none of the constituent cells has a
quality value above the critical threshold. Besides, there is an approximately exponentially
decreasing population for Qjet > 0 down to a minimum around the cut value of Qjet ≈ 0.8.
In order to estimate the inefficiency of the cut, the distribution below 0.8 is extrapolated
up to 1 using an exponential parameterization. The integral of the function from 0.8 to 1
is considered the number of proper jets that are lost. A more pessimistic variation of this
principle is illustrated by the blue histograms drawn in Fig. 9.5, which extrapolates into
the cut region with a constant, set to the bin content just below 0.8. The inefficiencies
estimated in both ways are also shown and are well below 0.5% for pT < 500 GeV.

For higher pT values both methods become unstable due to the lack of statistics of inter-
mediate Qjet values. But at the same time this results in two well separated populations
of good and bad jets. As there is no reason to suspect a significant fraction of good jets
in the high Qjet population, a fully efficient selection of jets in these pT regions can be
assumed.

As a result of these considerations a flat uncertainty of 0.5% is assumed for the jet
cleaning inefficiency.

9.3 Resolution unsmearing

In contrast to the negligible selection inefficiencies, the impact of the finite detector res-
olution needs to be corrected in this measurement. The calorimeter’s energy resolution
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that translates into a resolution in our observable pT blurs the quantity that is in fact the
aim of the measurement. Let Ntrue and Nreco denote the number of jets produced and
reconstructed within a certain bin of pT and y. In general these two quantities are not
necessarily equal, since the reconstructed quantities may end up in different bins of pT

and y.
For the case of the jet cross section this has a very subtle effect that is due to the very

steeply falling spectrum: For a fixed pT bin the falling cross section always leads to more
jets migrating into the bin from the left than jets migrating out of this bin to the left. For
any analysis, that applies a lower pT cut, the net effect of this bin-to-bin migration for
a steeply falling spectrum is an increase in the measured number of jets. Transferred to
the cross section observable defined in Eq. 9.1 this can mathematically be described by a
convolution as:

dσ(preco
T , yreco)

dpreco
T dyreco

=

∫ ∞

−∞

∫ ∞

−∞

dσ(ptrue
T , ytrue)

dptrue
T dytrue

× g(ptrue
T , ytrue, preco

T , yreco) dptrue
T dytrue. (9.5)

In this formulation g(ptrue
T , ytrue, preco

T , yreco) is the probability that a jet with true transverse
momentum of ptrue

T and rapidity y is reconstructed with preco
T and yreco. The transfer

function alone for pT under the assumption of a Gaussian resolution can be formulated
as follows:

g(ptrue
T , preco

T ) =
1

σ(ptrue
T )

√
2π

exp

[

−
(

ptrue
T − preco

T /R(ptrue
T )

2 σ(ptrue
T )

)2
]

, (9.6)

where σ(ptrue
T ) is the absolute resolution in pT depending on ptrue

T and R(ptrue
T ) is the

response as defined in Chapter 6. Similarly the rapidity transfer function can be composed
of a rapidity response, which can be assumed to be one, and the rapidity resolution. It
will be shown later, that the rapidity mismeasurement has an almost negligible impact
on the cross section measurement compared to the pT resolution effects. For this reason
the discussion will focus on the latter.

In view of a binned measurement, g(ptrue
T , preco

T ) can also be written as a matrix gij,
containing the probability that a jet from a given ptrue

T bin i migrates to the jth preco
T

bin. These probabilities can be extracted from the MC and are displayed in Fig. 9.6.
According to the probability definition every row of fixed ptrue

T sums up to unity. As
expected the matrix shows that the most probable, reconstructed bin is the original ptrue

T

bin, which is indicated by the fact that the diagonal matrix elements are the maximum
ones for each ptrue

T bin. One can also notice that due to the steeply falling spectrum the
migrations to the neighboring low pT bin are stronger than to the high pT neighbor. This
can be attributed to the fact that within the relatively wide bin the pT distribution will
be strongly peaked at the lower bin edge.

Extending the view beyond the neighboring bins, it is also remarkable that the fluc-
tuation to too high reconstructed preco

T values is constrained to the next-to-neighboring
bin, whereas the low response tails regularly span more than four bins. This is at least
partly an artifact of the increasing bin-size. A jet with fixed ptrue

T will be reconstructed
with preco

T = ptrue
T +pT,Random, where pT,Random denotes the random mismeasurement by the

calorimeter and fluctuates equally to positive and negative values. Due to the increasing
bin-sizes however, the fluctation in units of bins will be asymmetric and larger towards
lower pT bins in this analysis. The residual tails towards extremely low response can be
attributed to properties of the energy measurement in a calorimeter where several effects
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Figure 9.6: Response matrices for rapidity and transverse momentum as extracted from the
MC simulation.

can lead to decrease in measured energy while the probability for too high reconstructed
energies in general is lower. It is worth mentioning that this is in fact very fortunate:
Migrations from high pT to much too low pT can hardly have a significant impact, since
the cross section at low pT is much higher. In that sense systematic migrations across
several bins to too high pT would have a very strong impact.

The rapidity response matrix reveals that, compared to the bin-widths of the analysis,
the resolution for the rapidity measurement, is significantly better than for the pT mea-
surement. At ytrue ≈ 1.4 the increased migrations to yreco < ytrue arise from the fact this
regions corresponds to the transition between the barrel and the endcap calorimeters. The
distribution of inactive material in this regions leads to slight bias in the reconstruction
of a jet’s rapidity. Similar features can also be observed at the boundary of the analysis
region at ytrue ≈ 2.8.

9.3.1 Bin-by-bin unfolding

The aim of the unfolding procedure will be to extract the true quantities from the measured
one. For this purpose a bin-by-bin correction factor is extracted from the MC, that will
be applied to the measured cross section σreco(pT , y). These unfolding factors are defined
as follows:

C (preco
T , yreco) =

σtrue(pT , y)

σreco(pT , y)
(9.7)

=
Ntrue(pT , y)

Nreco(pT , y)
, (9.8)

where the rewriting from cross sections to the raw number of jets makes use of the fact
that the luminosity cancels out in the ratio. Taking this correction into account Eq. 9.2
becomes

dσ

dpTdy
=

1

L(pT )

Njets(pT , y)× C (pT , y)

∆pT ∆y
, (9.9)
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and will be the final formula for the calculation of the cross section. Before extracting
these correction factors from the MC it is crucial to be confident in the MC description
of the data. There are two major items that affect the resulting unfolding factors:

1. Jet response: The jet energy scale and resolution are the crucial items that define
the transfer matrix shown in Fig. 9.6. The nominal unfolding corrections will be
derived under the assumption that these items are properly modeled in the MC.
The precision to which this statement can be made was investigated in Chapter 8
and will be accounted for in the assessment of the systematic uncertainties.

2. Simulated cross section: Besides the transfer function, Eq. 9.5 contains the
simulated, true cross section that is smeared by the detector effects which are defined
by the transfer function. In order to get correct unfolding factors it is necessary
that the MC does describe the cross section shape in data well, since more or less
steep shapes will change the net effect of the migrations induced by a fixed transfer
function.

In Chapter 7 it became obvious that the nominal MC used does not satisfy the latter
requirement (see Fig. 7.13). A derivation of the unfolding factors using the unchanged
MC would thus result in unfolding corrections which would not be the best estimate.

Reweighting of the MC simulation

One possible solution for this problem is to reweight the MC in order to improve the
agreement in shape. The starting point for this procedure is the data to MC ratio in
Fig. 7.13 which is fitted using a smooth function given by:

w(x) =







1 + a log (x) + b log (x)2 for log (x) > −a
2b

1− a2

4b
else.

(9.10)

This piecewise definition takes care of a smooth extrapolation to pT below the fit range:
From the point where the derivative of the function vanishes it is continued as a constant.
The fit is performed using the data to MC ratio for R = 0.6 jets in the inclusive rapidity
bin as illustrated in Fig. 9.7. The reweighting function found is able to reproduce the
observed ratio between data and MC to a very good degree.

In contrast to the derivation of the weight, the weight is not applied as a function of
pT to the MC. Instead the weight is used as a per-event-weight by which the existing
pythia Jx weight (as introduced in Chapter 4) per event is multiplied. For this purpose
the w(x) function is evaluated as a function of p̂T , which is the transverse momentum
of the simulated 2 → 2 hard parton scattering. This method is considered to be safer
with respect to a reweighting based on jet quantities, which might not only change the
general shape in pT but could also be sensitive to event topologies. Doing the reweighting
as described is more similar to commonly used PDF reweighting procedures.

The result of this procedure using the parameters extracted in Fig. 9.7 is displayed in
Fig. 9.8. While the agreement is not perfect, it is significantly improved especially for the
inclusive rapidity bin which was used for the extraction of the reweighting function. The
difference between data and the reweighted MC is below 10% for all rapidity bins except
for the most forward one and below 5% for the inclusive rapidity bin. These remaining
differences and their impact on the unfolding factors will be included in the estimation
of the systematic uncertainties. The MC used in the following will always refer to the
reweighted MC if not stated otherwise.
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Figure 9.7: Fit of the reweighting function defined in Eq. 9.10 to the data to MC ratio.

Extraction of unfolding factors

The extraction of the correction factors C (preco
T , y) from the (reweighted) MC is now

straight forward. The resulting unfolding factors are displayed in Fig. 9.9. There are
some interesting observations to make on the shape of the correction factors versus pT :
Firstly, the expectation of Nreco > Ntrue is confirmed. Secondly there is a characteristic
pT dependence than can be attributed to the pT evolution of the relative jet energy
resolution described in Eq. 6.11 and the slope of the jet cross section. At low pT , where
the fractional pT resolution is worse, also the absolute value of the slope is maximized.
Both effects themselves lead to an amplification of the migration effect and thus the
difference between Nreco and Ntrue is maximized in this region. At high values of pT close
to 1 TeV the cross section slope flattens and at the same time the fractional resolution
approaches the minimum defined by the constant term. Accordingly the net effect of the
migrations are minimized.

One subtle detail in the calculation of the unfolding factors is the associated statistical
uncertainty. For a proper calculation, in principle the correlation between Ntrue and Nreco

would have to be known. Of course this correlation cannot assumed to be zero, but
unfortunately it is also not straight forward to get a solid numerical value for it.

A workaround for this can be constructed using information provided by the response
matrix. For this purpose, the efficiency εtrue and the purity preco are defined. Both
quantities are based upon the number of jets generated and reconstructed in the same pT

bin (Nep) and are defined in Fig. 9.9. The efficiency denotes the probability that a jet
with ptrue

T is reconstructed with preco
T being in the same bin. Similarly the purity is the

fraction of reconstructed jets in a given bin, whose corresponding true jet pT lies in the
same bin. One can then define the numbers of jets that do not have their corresponding
true or reconstructed jet in the same pT bin:

Nep = εtrueNtrue = precoNreco (9.11)

Nē = Ntrue (1− εtrue) (9.12)

Np̄ = Nreco (1− preco), (9.13)
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Figure 9.8: Ratios of the jet pT distributions in data and MC after the above described MC
reweighting procedure for large and small jets.

where the existing pT dependence of all included quantities is omitted for brevity. With
the help of these two quantities Section 9.3.1 can be rewritten as follows:

C =
Ntrue

Nreco
=
Nē +Nep

Np̄ +Nep
(9.14)

In the latter formulation the three N ’s are now considered uncorrelated and the error
propagation is straight forward. The values for purity and efficiency can be read off the
response matrix in Fig. 9.6 and range between 60% and 70%. This method is already
employed in the calculation of the uncertainties in Fig. 9.9.

Systematic uncertainties

As outlined earlier, the bin-by-bin unfolding is sensitive to eventually not well modeled
features in the simulation, namely the jet response in energy and angle and the simulated
true cross section. The uncertainties of these items result in an uncertainty on the derived
unfolding factors. To assess these uncertainties, the general procedure is as follows:

Depending on the source of uncertainty the MC used to extract the unfolding factors will
be changed at the analysis level, meaning that the actual MC generation is not changed.
This will result in sets of correction factors that can in general be expected to differ from
the ones obtained from the nominal MC. To assess the impact of these changes on the
resulting cross section, in principle the reconstructed cross section in the nominal MC
would have to be unfolded using unfolding factors from an altered MC. The difference
between the cross sections obtained this way and the nominal ones can than be taken as
the associated uncertainty. Fortunately this procedure can be cut short by comparing the
unfolding factors directly and propagating their relative difference onto the cross section
measurement. This procedure is numerically equivalent since the unfolding solely consists
of a scalar multiplication.

Dependency on the simulated cross section The unfolding method to a certain
degree depends on the cross section in the simulation. By construction, in the limit where
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Figure 9.9: Unfolding corrections versus the reconstructed jet pT for large and small jet reso-
lution paramter for the inclusive rapidity bin.

the reconstructed pT distribution coincides with the one predicted by the MC the result of
the unfolding procedure will be the simulated cross section shape. This effect however can
be controlled and the eventual bias it might introduce will be estimated using a variety of
reweighting functions to alter the simulated cross section. The major item of discussion in
this procedure is how large the variations have to be chosen in order to cover the possible
variations.

The best hint at the real shape of the true cross section is given by the shape of the
measured pT spectrum in data. This can be understood by taking into account that the
actual change in shape going from true to reconstructed jets is given by the unfolding
factors shown in Fig. 9.9. The deviations from unity in the unfolding factors are in
fact much smaller than the ones observed between unweighted simulation and data (see
Fig. 9.7). For this reason it is sensible to do the variations in shape on the same order of
magnitude observed in the comparisons of data to simulation.

The reweighting scenarios used are displayed in Fig. 9.10. The shapes are varied such
that the relative cross section between 40 GeV and 1 TeV is approximately increased or
decreased by a factor of 2, which conservatively covers the data to MC comparisons. The
functional form used is

w(x) = 1 +

(

log (x/20 GeV)

log (50)

)P

, (9.15)

whose only physical motivation is that changes in shape are expected to be smooth and
logarithmic as a function of pT . The parameter P is used to vary the slope of the weighting
function. The parameters besides P were chosen such that the function value is 1 at
20 GeV and reaches 2 at 1 TeV, thus spanning the kinematic region of the measurement.
The resulting weight parameterizations for a set of P ’s are drawn in Fig. 9.10. As in the
reweighting introduced for the nominal MC this weight is multiplied onto the existing
event weight as a function of p̂T .

The differences with respect to the nominal unfolding factors are shown in Fig. 9.11,
which reveals that the variation of the true cross section shape has only very limited
impact. The deviations are below 2% throughout the full pT range. The pT dependence
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Figure 9.10: Scenarios used to reweight the MC truth cross section overlayed on the data to
MC comparison from Fig. 9.8. The colors refer to different values of P in Eq. 9.15, namely 1
(red), 2 (green) and 6 (blue). For each parameter the existing event weight was either multiplied
or divided by the w(x)

of the uncertainty is obviously an artificial one, because it is determined by the choice of
P : the uncertainty will turn out to be maximal where the derivative of w(x) is largest,
which is either at the low or high pT end of the momentum range studied. For this reason
the systematic uncertainty assigned will be constant and taken as the largest deviation
found in Fig. 9.11. Qualitatively Fig. 9.11 does not change for the single rapidity bins.

Jet energy resolution As can be read off from Eq. 9.5 the second ingredient to the
convolution is the jet energy transfer function defined in Eq. 9.6. For the systematic
uncertainties the crucial item within the latter definition is σ(ptrue

T ), the resolution as a
function of ptrue

T . The results presented in Chapter 8 showed that the resolution in MC
agrees with data within 10%. In order to estimate the influence of a wrongly simulated
jet energy resolution in the MC, the resolution in MC is artificially worsened.

The procedure to increase the resolution by a factor fres is as follows:

1. Take a jet with transverse momentum pT and rapidity y.

2. Look up the nominal, fractional resolution σrel(pT , y) for this jet using Table 6.2.

3. The smeared resolution has to fullfill: σsmear = fres σrel. This can be achieved
by multiplication of pT with a factor r, that is randomized according to a normal
distribution centered around 1 and with the width σrndm being:

σr = σrel

√

f 2
res − 1, (9.16)

such that:

σsmear =
√

σ2
rel + σ2

r =
√

σ2
rel + (f 2

res − 1)σ2
rel = fres σrel. (9.17)

So, in the final step, randomize r with a with σr and change pT according to:

pT → r × pT (9.18)
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Figure 9.11: Difference in unfolding corrections induced by a shape reweighting. The reweight-
ing uses Eq. 9.15 with the indicated value (positive and negative) for P .

This was done for three values of fres in order to worsen the nominal resolution by 5%, 10%,
15% and 20%. In order to minimize statistical fluctuations of the varied correction factors
with respect to the nominal ones, the above procedure can be repeated multiple times
per jet. This way the varied sample inherits the statistical fluctuations of the nominal
one, but the deviations due to the change in resolution can be estimated with improved
precision. The extracted variation in the unfolding factors are shown in Fig. 9.12. It is
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Figure 9.12: Difference in unfolding corrections from resolution smearing.

worthwhile mentioning that in contrast to Fig. 9.11 the general behaviour as a function
of pT in this case can be considered a real effect. This is due to the fact that, while the
size of the resolution smearing is constant, this has a different impact at low and high pT .
The reason for this is the same, that is driving the shape of the nominal unfolding factors,
namely the running of the relative energy resolution and the variation in the cross section
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9.3 Resolution unsmearing

shape.

It is also striking that for fixed pT the variation in the unfolding factors is to a very
good approximation linear. While with the method described above it is not possible
to improve the resolution in MC, this linearity allows for a symmetric assignment of the
systematic uncertainty extracted from Fig. 9.9. This feature also allows to estimate the
systematic uncertainty associated with an arbitrary resolution uncertainty.

Compared to the uncertainties found in Fig. 9.11 the uncertainties are slightly larger,
ranging between 1% and 3% for an uncertainty on the resolution of 10%.

Rapidity resolution The mismeasurement of the jet rapidity can, in a way analogous
to the energy mismeasurement, also affect the measured cross section σ(pT , y): Jets with
mismeasured rapidity may end up in a different rapidity bin and thus change measured
the cross section in both bins. However there are two aspects that make this effect almost
negligible with respect to the pT migrations investigated so far:

1. Spatial resolution: The precision of the measurement of rapidity is dominated
by the measurement of θ. The resolution compared to the bin width here is much
better than for the energy measurement and ranges between approximately 40 mrad
in the central detector and 10 mrad in the most forward bin.

2. Cross section dependency: The cross section dependency for fixed pT and vary-
ing y compared to the pT dependence is much less steep. While the cross section
varies over more than seven orders of magnitude as a function of pT it does much
less as a function of y.

The impact of a mismodeled θ resolution is estimated by increasing it by 5%. The
procedure is identical to the one employed for the increase in pT resolution. The results in
Fig. 9.13 reveal that the additional smearing of θ obviously does not change the resulting
correction factors in a significant manner. It should be noted that also for this excercise
each jet was used with a smeared θ 100 times. The only tendency that can be observed is
that the smearing of θ seems to decrease the visible cross section to a very slight degree.
Due to this situation the systematic uncertainty associated is obtained by fitting the
deviations with a constant value.

Results

Putting all three sources of systematic uncertainties together, the final unfolding factors
are displayed in Fig. 9.14. As shown before, the corresponding uncertainties for R = 0.4
jets are almost identical and thus are not shown for brevity. The single contributions to
the systematic uncertainties are illustrated too, amplified by a factor of ten for optical
reasons. It should be noted that the relative uncertainty on the unfolding factors turn out
to be small. For pT > 100 GeV the sum of the uncertainties is around 2% in all rapidity
bins except for the most forward bin, where the θ resolution studies increase this value
to approximately 3%. One can also observe that the systematic uncertainty due to the
pT resolution uncertainty is the dominant contribution in all rapidity bins. As found out
in the studies above this uncertainty will benefit directly from any improvement in this
direction due to the linear dependence of resolution and unfolding factor uncertainty.
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Figure 9.13: Difference in unfolding corrections from η-smearing.

9.4 Systematic uncertainties

For completeness here all ingredients to Eq. 9.9 are listed once more:

• C (pT , y): The uncertainties on the unfolding factors have been evaluated in the
previous section.

• L(pT ): the uncertainty on the luminosity is taken from the corresponding luminos-
ity measurement done by the ATLAS collaboration, which is documented in [82].
The measurement is performed using so called van der Meer scans, in which the
transverse profile of the proton beams is measured. In combination with a measure-
ment of the beam currents, this allows to extract a visible cross section that can be
used to convert event rates measured in other runs to instantaneous luminosities.
The uncertainty amounts to 3.4%, which is dominated by the uncertainty on the
measurement of the beam currents and is hence fully correlated among all triggers
and runs.

• Njets(pT , y): The number of jets in a given pT and y bin is the quantity to which
several sources of systematic uncertainty contribute. These will be evaluated in the
following.

The uncertainties on Njets(pT , y) in principle inherit all the uncertainties associated
to the single event and jet selection steps introduced in Chapter 7. As outlined in Sec-
tion 9.2 the nominal inefficiency on all selection cuts is assumed to be negligible. To
which precision this statement can be made for all involved cuts will be examined in the
following.

9.4.1 Jet energy scale uncertainty

At first sight the above mentioned uncertainties could be considered complete. Variations
in the efficiencies mentioned above would directly lead to an increase or decrease in the
number of jets counted. The major source of uncertainty however arises from the fact
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Figure 9.14: Unfolding corrections versus jet pT including systematic uncertainties.

that the average, measured pT could be off. The degree to which the average, measured
pT is trusted is quantified by the jet energy scale uncertainty introduced in Chapter 8. To
assess the impact of this uncertainty, the cross section is extracted from MC varying each
jet’s pT by the jet energy scale uncertainty taken from Fig. 8.3. The resulting change in
the cross section is taken as the systematic uncertainty, asymmetrically for the increase
and decrease of the jet energy scale. The relative JES uncertainties are approximately
4%, and lead to relative uncertainties on the cross section that are a factor of four to
five larger, depending on the slope of the cross section. This results in uncertainties on
the measured cross section which range between 20% and 30%. Figure 9.15 shows these
uncertainties together with the remaining ones.

9.4.2 Total systematic uncertainties

Table 9.1 summarizes all systematic uncertainties. Among the constant uncertainties, the
luminosity uncertainty of 3.4% is the dominating one, while the remaining ones are on
the order of 1%. In the end however, all constant contributions are significantly exceeded
by that of the jet energy scale. This is also illustrated in Fig. 9.15, which shows all
uncertainty components and the resulting total systematic uncertainty as a function of
pT .

9.5 Results

Having established the unfolding procedure and its associated uncertainty, all ingredients
to the determination of the actual cross sections in data are ready. The measured cross sec-

107



9 The cross section measurement

Source Size
Luminosity 3.4%
Trigger efficiency 1%
Vertex selection 1‰

ESig
T,Miss 0.5%

Jet cleaning 0.5%

Total (constant) 3.6%
Unfolding 2% - 3%
Jet energy scale 20% - 30%

Table 9.1: Table of systematic uncertainties.
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Figure 9.15: Summary of systematic uncertainties.

tions can hence finally be compared with the theoretical predictions outlined in Chapter 4.
For the inclusive rapidity bin, |y| < 2.8, this is done in Fig. 9.16 for both jet radii. The
measured cross sections at low pT are of the order of 20 nb, steeply falling down to below
1 fb at pT ≈ 1 TeV. For both jet sizes there is good agreement with the NLO prediction,
over eight orders of magnitude, within the systematic uncertainties. The measurement is
systematically limited up to approximately 800 GeV where the statistical uncertainties
become increasingly important. While of course in general the cross sections are very
similar for both jet radii, it can be observed that especially at low pT the R = 0.6 cross
section is significantly enhanced. Taking a closer look at the direct comparison in the data
to theory ratio reveals, that, for R = 0.6, the measured cross section is approximately 5%
above the predicted cross section in most regions of transverse momentum. For R = 0.4
the behaviour is the other way round. Here the measured cross sections are consistently
below the prediction, by approximately 3%- 5%. Considering that all systematic uncer-
tainties can be assumed to be largely correlated, this is quite surprising. Possible reasons
and more detailed studies of the correlations will follow in the next chapter.

The measurements in different rapidity regions are displayed and compared to the
theoretical prediction in Fig. 9.17 (R = 0.6) and Fig. 9.18 (R = 0.4). The slopes of
the cross sections generally decrease going to the more forward rapidity regions. This
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9.5 Results

effect becomes most pronounced going from the second-last rapidity bin to the last one,
leading to a smaller reach in transverse momentum of up to only approximately 450 GeV.
Taking a closer look at the ratios, the results obtained in the inclusive rapidity region
are reproduced, with the exception being the amplified statistical fluctuations at highest
pT . These show a slightly alternating behaviour, going from one rapidity bin to another,
which is however considered to be a purely statistical effect. Also here, the theoretical
prediction for R = 0.6 slightly undershoots the measurement, while for R = 0.4 it lies
above the measured cross section.
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9.5 Results

The choice of the PDF is the major ingredient to the above comparisons to NLO
theory. Hence, a comparison of the measured cross sections to the predictions using various
different PDFs is interesting. For this purpose theoretical predictions were calculated with
a small sample of alternative PDFs, using APPLGRID. The CT10 [83] PDF provided by
the CTEQ collaboration is an updated version of the CTEQ6.6 PDF, which for instance
includes the latest Tevatron inclusive jet cross section measurements that were not used in
the derivation of the CTEQ6.6 PDF. The MSTW2008 PDF [84] are constructed similarly
to the ones by the CTEQ collaboration, but for instance include the strong coupling
constant as a free parameter, rather than as a fixed, external parameter. The neural
network PDF NNPDF2.1 [85, 86] is quite different from the other PDFs, since it uses a very
large number of free parameters (O (200)) and thus is much more flexible in adapting to the
input data. The authors also claim that this flexibility results in a more realistic estimate
of the PDF uncertainties. The theoretical uncertainties (at 90% CL) on each PDF set
have been evaluated using the recommendend prescription of each collaboration, which
are summarized in [87]. In Fig. 9.19 the predictions of the different PDFs, normalized
to the CTEQ6.6 prediction are shown. Leaving the data out of the considerations at
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Figure 9.19: Ratios of theoretical predictions using various PDFs for anti-kt, R = 0.6 jets (left)
and R = 0.4 (right). The measured cross sections and the theoretical predictions are divided by
the theoretical prediction using the CTEQ6.6 PDF. The systematic uncertainties on data are not
shown. Systematic uncertainties on the theoretical predictions were calculated at a confidence
level of 90%.

first, the predictions of the various PDFs all agree within their systematic uncertainties.
Only around transverse momenta of 1 TeV they start to deviate from each other, with
NNPDF and the MSTW prediction showing a stronger decrease at highest pT . The MSTW
predictions agree best with data for R = 0.6, while for R = 0.4 all theoretical predictions
overshoot the data. The data, being statistically powerful only up to approximately
600 GeV is not able yet, to clearly favour one PDF set over another. Comparisons to
the various PDFs in the single rapidity regions are omitted here for brevity and instead
moved into Appendix A.2.
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10 Measurement of the cross section
ratio

The inclusive cross sections are probing perturbative QCD and will, with increased pre-
cision, be useful for global PDF fits. In Section 9.5 it was already observed, that, while
each measured cross section is within the uncertainties of the theoretical predictions, the
comparison of data to theory is different for small and large jets. These observations are
already motivation enough for a measurement of the ratio of jet cross sections with differ-
ent radii, including a proper treatment of the correlations of experimental and theoretical
uncertainties. Such an analysis can be expected to be able to tell, whether the observed
differences are indeed compatible with the theoretical predictions or not.

The difference can be expected to arise from the underlying event and hadronization
effects, which were shown to have a significant jet radius dependency. The ratio will
provide a better handle to both effects than the single cross section measurements. This
is due to the fact that uncertainties strongly affecting the overall normalization, e.g. the
JES uncertainty and luminosity, are correlated to a large degree and thus will be decreased
in the ratio. As will be seen in the following, this statement almost equally holds for the
theoretical uncertainties. A proper treatment of the correlations is the main subject of
the analysis described in this chapter.

Starting from the results obtained in Chapter 4, the theoretical predictions for the cross
section ratio will be investigated first. Subsequently a thorough study of the correlations
of the experimental uncertainties precedes the measurement of the ratio in data.

10.1 Theoretical predictions

The transition from single cross sections to the ratio, using the results from Chapter 4
is straightforward. At parton level the ratio can simply be calculated using the partonic
cross sections already calculated and shown in Fig. 4.1:

Rparton(pT , y; 0.6, 0.4) =
d2σparton(pT , y; 0.6)

dpTdy

/

d2σparton(pT , y; 0.4)

dpTdy
. (10.1)

This ratio is shown in Fig. 10.1 and ranges between 1.15 at low pT and 1.1 at higher pT .
Since the ratio does only show a very little rapidity dependency, the analysis will in the
following concentrate on the inclusive rapidity bin |y| < 2.8, in order to exploit the full
statistics available. The ratio in this inclusive bin in the following is denoted as

Rparton(pT ; 0.6, 0.4) =
dσparton(pT ; 0.6)

dpT

/

dσparton(pT ; 0.4)

dpT

≡ σparton(pT ; 0.6)

σparton(pT ; 0.4)
. (10.2)

Figure 10.1 b shows the theoretical uncertainties on the ratio. As expected, the PDF and
αs uncertainties almost vanish, due to the correlation between the two jet algorithms. The
scale uncertainties are not significantly reduced. This is due to the fact that in particular
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Figure 10.1: Results for the cross section ratio at parton level (left), obtained from the results
shown in Fig. 4.1 and the associated systematic uncertainties (right). The predictions for the
ratio at high pT in the most forward rapidity bin slightly suffers from non-optimal convergence
of the MC integration performed by NLOJet++.

the uncertainties arising from the change of the renormalization scale are significantly
larger for R = 0.4 jets (cf. Fig. 4.2).

It is worthwhile noting that the computation of the cross section ratio in this way is not
anymore at NLO, as it is the case for each single cross section. This is due to the fact that
the LO contributions to the cross sections (the 2 → 2 parton processes) are independent
of the jet radius. Thus the ratio is trivially one at this order. The first, non-trivial ratio
arises from 2 → 3 parton configurations, which thus is the leading order. For the next
higher order, the O (α4

s) contributions, particularly those with three or four partons in
the final state, would have to be included. A computation at this order using Eq. 10.2
would thus require each single cross section to be known at NNLO.

The two-loop O (αs)
4 contributions to the single cross section, which prevent their

calculation at NNLO, do not contribute to the cross section ratio, as there are only two
partons in the final state. Thus it is possible to calculate the ratio at NLO, including the
zero- and one-loop O (α4

s) contributions. For this purpose, the perturbative expansion has
to be done explicitly for the cross section ratio. This was done in [88] and is only briefly
summarized below. The first step consists of going back to the general, perturbative
expansion of the cross section with a jet radius R, that can be written as:

σpQCD(pT ;R) =

4
∑

n=2

αn
s

n−2
∑

p=0

σ(n,p)(pT ;R) +O
(

α5
s

)

, (10.3)

where σ(pT ;R) is used as a shorthand for dσ(pT ;R)/dpT . Here σ(n,p) denotes theO (αn
s ) con-

tribution with p loops. In the second step, the ratio of two cross sections,

RpQCD(pT ;R1, R2) = σpQCD(pT ;R1) / σpQCD(pT ;R2),

is itself expanded explicitly in powers of αs. Exploiting the important feature, that con-
tributions with only two partons in the final state are independent of the jet radius, this
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10.1 Theoretical predictions

becomes:

RpQCD(pT ;R1, R2) = 1 + αs
∆σ(3,0)(pT ;R1, R2)

σ(2)(pT )
(10.4)

− α2
s

σ(3)(pT ;R2)∆σ
(3,0)(pT ;R1, R2)

[σ(2)(pT )]2
,

+ α2
s

∆σ(4,0)(pT ;R1, R2) + ∆σ(4,1)(pT ;R1, R2)

σ(2)(pT )
,

with ∆σ(n,p)(pT ;R1, R2) = σ(n,p)(pT ;R1)− σ(n,p)(pT ;R2) and
σ(n)(pT ;R) =

∑n−2
p=0 σ

(n,p)(pT ;R). Most importantly, using this expansion, there is no

two-loop contribution left, since ∆σ(4,2)(pT ;R1, R2) ≡ 0. This makes the calculation of
RpQCD(pT ;R1, R2) possible, for instance with NLOJet++, allowing to make predictions at
next-to-leading order. Numerical results of such calculations presented in the following,
are taken from Ref. [89]. The benefit of this procedure is, that Eq. 10.4 includes all O (α2

s)
contributions, while the ones in the last line of Eq. 10.4 are missing in the calculation of
the direct ratio (using Eq. 10.2).

10.1.1 Non-perturbative corrections

The necessary non-perturbative corrections to Rparton(pT ;R1, R2) also can be derived
using the results from Chapter 4. The final prediction for the ratio at particle level can
be written as:

R(pT ; 0.6, 0.4) = K(0.6/0.4)(pT )
σparton(pT ; 0.6)

σparton(pT ; 0.4)
,

with K(0.6/0.4)(pT ) =
K(0.6)(pT )

K(0.4)(pT )
. (10.5)

With K(0.6) and K(0.4) being the non-perturbative corrections for the larger and smaller jet
size respectively, taken from Fig. 4.5. The importance of the non-perturbative corrections
for the ratio arises from the distinct jet radius dependency of the UE and hadronization
effects: In a simplified picture the UE adds an isotropic amount of energy to the event.
The amount of UE contribution to a jet thus increases with the jet’s area.

In contrast, the hadronization correction arises from out-of-cone losses and consequently
will decrease with increasing jet radius. In [39] it was established, that this correction is
proportional to the inverse of the jet radius.

For the alternative Ansatz followed in [88], the UE and hadronization corrections are
calculated in an analytical manner. Starting from a jet at parton level, UE and hadroniza-
tion lead to a radius dependent, average shift of a jet’s transverse momentum denoted by
〈δpT (R)〉. The correction to the cross section, arising from such a pT shift, then can be
derived as:

K(R)(pT ) =
σLO(pT + 〈δpT (R)〉)

σLO(pT )
, (10.6)

and the resulting correction for the cross section ratio thus is

K(0.6/0.4)(pT ) =
σLO(pT + 〈δpT (0.6)〉)
σLO(pT + 〈δpT (0.4)〉) , (10.7)
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10 Measurement of the cross section ratio

where σLO(pT ) is again calculated using NLOJet++. The usage of the leading order cross
section here is motivated (as in [88]), by the usage of the LO cross section for the derivation
of the hadronization correction in [39].

The hadronization corrections were derived as described in [88]. The shift in pT is
derived in [39] and found to be:

〈δpT (R)〉HAD =
−2CR

R

2M

π
A(α0, pT ). (10.8)

Here CR is the Casimir factor, which is CF = 4/3 for quarks and CA = 3 for gluon
jets, resulting in larger hadronization corrections for gluon jets, than for light jets. M is
the so called Milan factor [90], which, for anti-kt jets, is 1.49. A(α0, pT ) includes all the
non-perturbative behaviour:

A(α0, pT ) =
µI

π

[

α0(µI)− αs(pT )− β0

2π

(

log

(

pT

µI

)

+
K

β0
+ 1

)

α2
s(pT )

]

, (10.9)

with β0 = (11CA − 2nf)/3 and K = CA

(

67
16
− π2

6

)

− 5
9
nf . It is a function of the average

strong coupling α0(µI) below a certain scale µI. This average, non-perturbative coupling
is the only, external parameter which has to be taken from experiment in order to calculate
the hadronization corrections. For the upcoming results, taken from Ref. [89], α0(µI) was
taken from event shape studies [91].

For the UE, 〈δpT (R)〉
UE

can be approximated by the average energy density ρUE of the
UE multiplied by the jet area. For anti-kt jets, this area is simply that of a circle of radius
R [39], leading to:

〈δpT (R)〉UE = πR2ρUE, (10.10)

A value for ρUE can be extracted from recent analyses of the UE by the ATLAS collabora-
tion [30], already shown in Fig. 3.5. These studies only range up to transverse momenta of
14 GeV for the leading particle in the event. Based on these results, the provided results
[89] estimated ρUE = (1.8± 0.5) GeV. However, due to the limited momentum range one
can expect a further, a priori unknown increase up to the momentum range analyzed in
this study. This is reflected by a rather conservative uncertainty associated to ρUE.

Figure 10.2 shows the UE and hadronization corrections, using the analytical Ansatz
described above and the various MC simulations already used in Chapter 4. The analytical
results show a very good agreement with the results obtained from the much more complex
MC simulations. This demonstrates that such corrections can in fact be computed in an
analytical manner, requiring only two experimentally measured parameters. Additionally,
only ρUE depends on the experimental environment, while α0 is a universal parameter.

Looking at the MC results, it can be observed that there is no significant cancellation in
the uncertainty of the non-perturbative corrections. The spread at lowest pT , for the total
correction, is on the order of 10%, with Herwig++ predicting the largest ratio between
K(0.6) and K(0.4).

To summarize the results of this Section, RpQCD(pT ;R1, R2) at LO (up to O (αs)) and
NLO (up to O (α2

s)) is shown in Fig. 10.3 compared to the direct ratio. As expected the
direct ratio lies between RpQCD(pT ;R1, R2) at LO and NLO. The reason being that the
O (α2

s) contributions with three partons and two partons plus one loop are included in the
direct ratio. Nevertheless it can be observed that the full NLO computation significantly
increases the ratio by approximately 8% at low pT and by approximately 4% at the high

118



10.2 Experimental uncertainties and correlations

 [GeV]
T

p
50 210 210×2 310

(0
.4

)
/K

(0
.6

)
co

rr
ec

tio
n 

K

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.9

1

1.1

1

1.1

1.2

1.3

1.4

1.5

1.6
, R = 0.6 / R = 0.4tanti-k

|y| < 2.8
MC09
Perugia0
PerugiaHard
PerugiaSoft
AMBT1
Herwig++ UE7.1
Analytical (G.Soyez)

Had. Correction

UE Correction

 [GeV]
T

p
50 210 210×2 310

(0
.4

)
/K

(0
.6

)
co

rr
ec

tio
n 

K

0.8

0.9

1

1.1

1.2

1.3

1.4
, R = 0.6 / R = 0.4tanti-k

|y| < 2.8
MC09
Perugia0
PerugiaHard
PerugiaSoft
AMBT1
Herwig++ UE7.1
Analytical (G.Soyez)

Combined UE & Had. Correction

Figure 10.2: Left: UE and hadronization corrections to the cross section ratio. Right: Com-
bined corrections from various MC generators and tunes. The envelope of all predictions is taken
as the systematic uncertainty. Analytical results from [89].

pT end. This can hence be concluded to arise from the ∆σ4,0 and ∆σ4,1 contributions in
Eq. 10.4.

It is also striking that the theoretical uncertainty on the direct ratio, predominantly
arising from the scale uncertainty, is multiple times larger than quoted for the LO and
NLO calculations. This is expected to be due to the additional O (α2

s) contributions in
Eq. 10.4, which improve the convergence of the perturbative series.

Figure 10.3 also confirms that the non-perturbative corrections have a significant impact
on the jet cross section ratio. Their inclusion leads to a ratio of approximately 1.5 at lowest
pT and of 1.1 at highest pT .

10.2 Experimental uncertainties and correlations

As mentioned in the beginning of this chapter the main challenge in the measurement
of the ratio is a proper treatment of the systematic uncertainties and their correlations.
The starting point for these studies is the experimental definition of the ratio, which is,
in analogy to Eq. 10.2:

R(pT ; 0.6, 0.4) =
dσ(pT ; 0.6)

dpT

/

dσ(pT ; 0.4)

dpT

≡ σ(pT ; 0.6)

σ(pT ; 0.4)
. (10.11)

Looking back at the existing systematic uncertainties in Fig. 9.15, there are three
non-trivial components whose correlations have to be treated: the JES, the unfolding
correction and the event and jet selection efficiencies. The luminosity uncertainty can be
excluded from the very start, since it is fully correlated and identical for the two cross
sections.

The remaining uncertainties are studied in more detail in the following.
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10.2.1 Event and jet selection efficiency uncertainties

The uncertainty on the event selection efficiency, which was shown to be very small, is
taken as fully correlated between both cross sections and thus vanishes for the cross section
ratio. This is a justified assumption since the single cross sections are both measured in
the very same event sample. Additionally, the event selection cuts do not make use of
jet quantities which could bias the event selection for either of the two cross section
measurements. For the only exception, the ESig

T,Miss selection, it was checked that the
event sample selected using the leading R = 0.4 jet differs in a negligible amount from
the default selection using the leading jet with R = 0.6.

Similarly the uncertainty of the jet selection efficiency is also taken to be fully correlated
between the two cross section measurements. The only source for this uncertainty, the
absent modeling of the jet quality in the MC, can be expected to not differ significantly
between the two jet sizes.

10.2.2 Unfolding uncertainties

As the already unfolded cross sections are used to construct the ratio, this implicitly
includes the application of unfolding factors to the ratio. These are simply the ratio of
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10.2 Experimental uncertainties and correlations

the two single cross section unfolding corrections:

C0.6/0.4(pT , y) =
C0.6(pT , y)

C0.4(pT , y)
. (10.12)

Having already exercised the variations of MC truth shape, jet energy resolution and jet
rapidity resolution in Section 9.3.1, the same procedure is employed here to assess the
impact of these variations on the cross section ratio. First of all it is instructive to see what
the unfolding correction for the ratio, C0.6/0.4(pT , y), actually look like (Fig. 10.4). The
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Figure 10.4: Ratios of the unfolding factors presented in Fig. 9.9.

impression of pretty similar unfolding corrections that can be gained from Fig. 9.9 here is
confirmed quantitatively. The ratio of the two corrections is within ±1% over most of the
pT range. This is not surprising since, as stated in Section 9.3.1, the unfolding correction
is determined by the interplay between jet energy response (including resolution) and the
simulated, true cross section shape. Both ingredients are very similar for large and small
jets. For the truth cross section this can easily be understood, considering the fact that
its shape is determined by pQCD and the proton PDFs. The jet algorithm only plays a
very minor role. Concerning the resolution, it was already observed in Table 6.2 that large
jets only have a very slightly better resolution. This is a result of the energy profile inside
jets, which is strongly peaked at the jet’s axis. The only effect by which the resolution
of smaller jets may be degraded with respect to larger jets, is the increase of out-of-cone
losses, which are of course more important, the smaller the jet’s radius is.

The variations in C0.6/0.4(pT , y) induced by changes of the truth cross section shape and
jet energy resolution are shown in Fig. 10.5. The variations in shape have an impact well
below 0.5%. It should be mentioned that this only holds for a correlated change in the
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Figure 10.5: Difference in unfolding corrections from shape reweighting (left) and from wors-
ening the jet energy resolution (right). Details of both procedures are outlined in Section 9.3.1.

truth cross section shapes for both jet sizes. However, following the considerations above,
there is no sensible effect that could be expected to change the cross section for one jet
definition in a significantly different way than for another.

Concerning the resolution uncertainty, the fact that the predominant energy fraction
is deposited within the core of the jet, leads to the conclusion that the correlation can
be expected to be very close to 100%. However, the more conservative approach chosen
here, is to vary the resolutions of both jet sizes independently to a certain degree. As
the overall jet energy resolution uncertainty was estimated to be 10%, using a difference
in the variations of ±5% can be considered a conservative choice, as it would imply a
correlation of only 50%. The increase of the jet energy resolution for the jet algorithm
with size R is denoted as fR. As in Section 9.3.1,

{f4} = {f6} = {0 %, 5 %, 10 %, 15 %}

is used and all combinations satisfying |f4 − f6| ≤ 5 % are examined. The resulting
variations of the unfolding correction are shown in Fig. 10.5, which splits the total of nine
combinations into three categories, where f4 is either equal, larger or smaller than f6. The
differences between all three categories are on the 1% level. The variations within each
category are found to be negligible, except for the very first bin which shows variations
on the order of 0.5%.

Considering these results, a constant 1% uncertainty is assigned on the unfolding for
the ratio measurement.

10.2.3 Uncertainties due to pile-up

Pile-up may have an impact on the observed cross section ratio, since it can be expected
to affect large jets stronger than smaller ones. Consequently, for a given pile-up scenario,
the number of large jets can be expected to increase more than the number of small
jets. Whether this effect is significant, is cross-checked in analogy to the already exercised
stability studies in Fig. 7.16. Figure 10.6 shows the observed ratio of the number of large
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10.2 Experimental uncertainties and correlations

and small jets, as a function of the average number of interactions per bunch crossing. No
significant slope of the ratio as a function of µ can be observed. Hence it can be concluded,
that there is no significant impact of pile-up on the measured cross section ratio.
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Figure 10.6: Stability of the observed ratio of the number of large and small jets, for two
different bins of transverse momentum. The indicated χ2/NDF values are the result of fitting
a constant to the observations.

10.2.4 Jet energy scale uncertainties

The for sure existing, but a priori unclear correlation between the JES uncertainties
for large and small jets is the most important ingredient to the measurement of the cross
section ratio. As observed in the previous chapter, the JES uncertainty is the predominant
contribution to the overall uncertainty for each jet cross section.

Dealing with a systematic uncertainty, there is unfortunately no direct statistical method
to get a handle on the correlation. Instead the correlation will be estimated using the
two approaches described in the following. The observed agreement of both results will
allow for an estimate of the inherent uncertainties and advantages of one method over the
other.

Decomposition of JES uncertainty components

The first approach uses a decomposition of the total JES uncertainty on the cross section
measurement into its various components. Each contribution, as provided by [75], will
either be taken as fully correlated or fully uncorrelated, based upon physical reasoning.
The overall correlation, ρJES can then be determined as:

ρJES =

∑

i ρiσ
i
0.4σ

i
0.6

σ0.4σ0.6
with σR =

√

∑

i

(σi
R)2, (10.13)

where σi
R denotes the uncertainty arising from the ith contribution on the cross section

measurement with radius R, σR is the total JES uncertainty on the cross section and ρi±1
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10 Measurement of the cross section ratio

or ρi = 0. Below and in Table 10.1 the single uncertainties and their assumed correlations
are listed.

• Detector Modeling: JES uncertainties due to effects of detector simulation are
taken as fully correlated, since jets with both radii are measured within the identical
detector. This in particular applies to the dominant calorimeter uncertainty, but
also to the uncertainties due to a varying beamspot or alternative noise thresholds.

• Underlying Event & Pile-up: The inclusion of the Perugia tune is meant to
estimate the impact of a different UE modeling. This modeling is independent of
the jet algorithm used for this analysis. The same considerations apply to the pile-up
uncertainty∗. Thus these uncertainties are taken as fully correlated.

• Fragmentation: The Professor tune is expected to reflect the change in response
due to varying fragmentation. The fragmentation effectively controls the width
of jets and thus e.g. the out of cone losses. A given fragmentation model might
describe these effects well for large jets, but not for smaller ones. For this reason
these uncertainties are assumed to be uncorrelated.

• Alpgen-MC: Since the Alpgen MC employs different models at all levels of the
event generation, the correlation of the induced JES uncertainty cannot be quanti-
fied. For this reason the conservative choice of ρ = 0 was made.

• Intercalibration Results: The intercalibration results are different from the re-
maining uncertainties. They cannot be assumed to probe only a distinct aspect of
jet energy response, since they are using real data. For this reason they do not
fit into the decomposition scheme exercised with MC and are excluded from these
studies.

Though the η intercalibration results are not considered in the estimate of the correla-
tion, they are included in the determination of the actual uncertainty.

Source Correlation ρi [%] Uncertainty [%]

Calorimeter 100 20 - 30
Noise thresholds 100 0
Beamspot 100 2
Perugia tune (UE) 100 3
Pile-up 100 <4
Professor tune (Fragmentation) 0 2
Alpgen MC 0 2 - 10
η-intercalibration Not included -
MC-intercalibration Not included -

Table 10.1: Contributions to the total JES uncertainty on a single cross section measurement.

The overall correlation calculated this way, ranges between 85% at the lowest pT and
approximately 100% towards the high pT limit, as displayed in Fig. 10.7. The correlation
for the most central bin is strikingly low compared to the remaining rapidity regions.
This is due to the fact that the JES uncertainty arising from the Alpgen-MC in this

∗In addition, pile-up has a negligible effect on the measured ratio, as displayed in Fig. 10.6.
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Figure 10.7: Correlation of the jet energy scale uncertainties between large and small jets, with
the assumed correlations in Table 10.1.

region happens to be larger. As this effect does not exist in any other rapidity bin this is
considered a fluctuation in the estimate of the JES uncertainty.

Except for this effect, the picture is as expected from general considerations: In an
idealized picture a large jet (R = R1) can be imagined as the sum of a small jet (R = R2)
plus an annulus of width R1 − R2. The source of any uncorrelated energy response thus
can only arise from the energy deposited in this annulus. As the energy profile of jets
becomes more narrow with increasing momentum, this fraction of energy decreases, thus
increasing the correlation.

Jet response correlation

An alternative, statistically driven method starts from the definition of the jet energy scale
uncertainty itself. Based upon Eq. 8.1, ∆4

JES and ∆6
JES denote the JES uncertainties of

R = 0.4 and R = 0.6 jets respectively. The correlation between the two can be written
as:

corr
(

∆
(0.4)
JES,∆

(0.6)
JES

)

= corr

(

1− R
(0.4)
var

R
(0.4)
nom

, 1− R
(0.6)
var

R
(0.6)
nom

)

. (10.14)

Here the nominal response, e.g. R
(0.4)
nom , is considered to be fixed and the varied responses

R
(0.4)
var and R

(0.6)
var are treated as the random variables. For correlations of random variables

X and Y however the following equation holds:

corr (a1 + b1X, a2 + b2Y ) = corr (X, Y ) . (10.15)
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10 Measurement of the cross section ratio

Thus Eq. 10.14 can be simplified to

corr
(

∆
(0.4)
JES,∆

(0.6)
JES

)

= corr
(

R(0.4)
var , R

(0.6)
var

)

. (10.16)

Standard estimators of correlation coefficients cannot deal with single random variables,
therefore the mean values used here are substituted by the distribution of single jet mea-

surements from which they are derived: R
(0.4)
var = 1/Njets

∑

jets R
(0.4)
jet =

〈

R
(0.4)
jet

〉

and for

R = 0.6 jets respectively. Taking this into account the correlation becomes:

corr
(

∆
(0.4)
JES,∆

(0.6)
JES

)

= corr
(〈

R
(0.4)
jet

〉

,
〈

R
(0.6)
jet

〉)

= corr
(

R
(0.4)
jet , R

(0.6)
jet

)

≡ ρJES. (10.17)

Here, due to the linearity of covariances, the correlation of averages can be replaced by the
correlation of the elements averaged over. Thus the correlation of the average response is
identical to the correlation between R

(0.4)
jet and R

(0.6)
jet on a jet-by-jet basis, denoted by ρJES .

Since these correlations might depend on the MC used to extract them, they will be
studied in a variety of simulations.

This is done in analogy to the jet calibration described in Chapter 6, starting with the
nominal Pythia6 MC09 MC sample. In each event large and small jets at particle and
reconstructed level are matched to each other, thus yielding four versions of a jet and the
two response values:

R
(0.4)
jet = E(0.4)

reco /E
(0.4)
true and R

(0.6)
jet = E(0.6)

reco /E
(0.6)
true . (10.18)

Only isolated topologies are considered (as introduced in Section 6.3.3), since the different
split and merge behaviour for large and small jets would compromise the comparison
between the two. Distributions of R

(0.4)
jet versus R

(0.6)
jet are shown in Fig. 10.8, revealing
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(0.6)
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an increasingly high correlation for increasing transverse momentum regions. While at
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10.2 Experimental uncertainties and correlations

low pT there is a very significant spread around R
(0.6)
jet = R

(0.4)
jet , this vanishes very rapidly,

leaving an almost perfect straight line with negligible spread above transverse moment of
approximately 500 GeV.

As already mentioned it is necessary to ascertain that these correlations are equal in
various MC samples. Thus the above studies are also exercised using different MC samples,
including the ones used to assess the JES uncertainty. Figure 10.9 summarizes the results
from all MC samples and confirms that the correlations within varying MC samples are
very similar. The spread in the MC predictions at low pT is on the order of 1%. The
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Figure 10.9: Correlation ρJES as a function of transverse momentum as predicted by various
MC simulations. The error on the minimum displayed in each bin was chosen as the standard
deviation of the MC predictions.

Pythia6 Perugia2010 tune systematically predicts higher correlations than all other MC
predictions. The correlation at lowest pT values is found to be around 90%, quickly rising
towards almost 100% for higher momenta. The minimum correlation found in each pT

bin is used as the result from this procedure.

Comparison of correlations

Finally, the correlations extracted with both methods are compared in Fig. 10.10. It is
striking that the correlation found using the jet response is consistently and significantly
higher than the estimate using the JES uncertainty decomposition. Especially at high
pT this can be explained by the limited precision to which the single JES uncertainty
components reflect the true uncertainties arising from certain sources. This precision is
firstly limited by the statistical uncertainties that enter the comparison between nominal
and varied JES in the determination of the JES uncertainty [74]. Additionally, the JES
uncertainties are simply taken to be the absolute difference in the JES, without an attempt
to smooth out statistical fluctuations. Thus a determination of such uncertainties on
the sub-percent level cannot be expected. It would however be necessary in order to
resolve correlations to a similar precision. This becomes even more important as the JES
uncertainties from Fig. 8.3 are amplified by a factor of approximately five when they are
propagated to the jet cross section. An example for this is the underlying event uncertainty
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Figure 10.10: Comparison of correlations extracted with the two indicated methods. The error
bars on the jet response correlation points indicate the spread of the various MC samples studied.

which is estimated using the Perugia0 tune. One can expect that the underlying event
in fact plays an negligible role for jets in the TeV range. Nevertheless the uncertainty
propagated from Fig. 8.3 is rather constant at approximately 2%. To conclude, these
uncertainties should rather be interpreted as upper limits.

In the low pT region the significant JES difference in the Alpgen MC sample was taken
as fully uncorrelated. This was an intentionally conservative choice, giving rise to a
significant contribution with no correlation.

These considerations render the correlation extracted with the JES uncertainty decom-
position an approximate lower limit. For this reason the response correlations obtained
with the second method are used in the following.

10.2.5 Total systematic uncertainties

Using the correlations as estimated above, the systematic uncertainty on the ratio is
propagated from the single cross section uncertainties via standard error propagation,
starting from Eq. 10.11.

[

δRsys(pT , 0.6, 0.4)

R(pT , 0.6, 0.4)

]2

=
(

δ
(0.6)
JES(pT )

)2

+
(

δ
(0.4)
JES(pT )

)2

(10.19)

− −2ρJES(pT ) δ
(0.4)
JES(pT ) δ

(0.6)
JES(pT ) + δ2

Unfolding.

Here δ
(0.6)
JES and δ

(0.4)
JES denote the relative JES uncertainty on the jet cross sections (see

Fig. 9.15) and the relative unfolding uncertainty, δ2
Unfolding, derived in Section 10.2.2

is added in quadrature. The resulting, total systematic uncertainties for the jet cross
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Figure 10.11: Systematic uncertainties on the jet cross section ratio. For completeness the
JES uncertainties using the correlations from Fig. 10.9 are shown as well (solid, orange line).

section ratio is shown in Fig. 10.11. Compared to Fig. 9.15, there is a significant decrease
in the uncertainties compared to the measurement of a single cross section. The total
uncertainty is approximately 10% at lowest pT values, decreasing down to 2% at 1 TeV.
The uncertainty resulting from the usage of the more conservative choice for the correlation
is significantly larger, namely between 15% at lowest pT and approximately 4% at high
pT .

10.2.6 Statistical correlation

From Fig. 10.11 it can be concluded that the systematic uncertainties will dominate in the
low pT ranges. Looking back at the results in Fig. 9.19, significant statistic uncertainties
start to occur at transverse momenta above 400 GeV. In analogy to Section 10.2.5, the
statistical uncertainty on the ratio is given by:

[

δRstat(pT , 0.6, 0.4)

R(pT , 0.6, 0.4)

]2

=
(

δ
(0.6)
stat (pT )

)2

+
(

δ
(0.4)
stat (pT )

)2

(10.20)

− −2ρstat(pT ) δ
(0.4)
stat (pT ) δ

(0.6)
stat (pT ).

It is thus necessary to also study the statistical correlation ρstat between the two jet
algorithms. This correlation boils down to the correlation of the number of R = 0.6
and R = 0.4 jets in a given (pT , y) bin: corr

(

N (0.6), N (0.4)
)

. It can be estimated with
a series of pseudo-experiments, exploiting the quite good statistics of the nominal MC
sample. For this purpose the full MC sample is split into 100 sub-samples. Denoting the
number of large (small) jets in the ith sub-sample by N

(0.6)
i (N

(0.4)
i ), this yields a series of
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10 Measurement of the cross section ratio

pairs {N (0.6)
i , N

(0.4)
i }. Using these 100 pairs of numbers the correlation between the two

quantities can easily be calculated.
Unfortunately the uncertainty on the correlation using only 100 pseudo-experiments is

relatively large. To gain an impression of the fluctuations in the correlation the above
procedure is repeated 20 times. The randomized composition of the 100 sub-samples is
altered each time. Each repetition j then yields an estimate ρj for the correlation:

ρj = corr
(

{N (0.6)
i }j, {N (0.4)

i }j

)

. (10.21)

The result of this procedure is displayed in Fig. 10.12, which shows the 20 correlation
values extracted from each set of pseudo-experiments. In each bin the mean of the cor-
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relations is shown as well, its uncertainty assigned being the standard deviation of the
observed correlations. The expected, relatively large spread in the correlations ρj is con-
firmed: the standard deviations are of the order of 4% at low pT , decreasing towards a
few percent at high pT . A fit using a polynomial of inverse logarithms is used to smooth
out remaining statistical fluctuations. This procedure yields minimum and maximum
correlations of approximately 70% and 90% respectively in all pseudorapidity bins and
across the observed pT region.

One can also observe that the correlation in general is higher in the inclusive rapidity
bin than in each single rapidity bin. This can be considered a real effect: Every energy
deposition in the calorimeter above a certain threshold will for sure end up being a jet
constituent, irrespective of the jet algorithm. As a consequence, starting from a R = 0.4
jet, there will always be a corresponding a R = 0.6 jet sharing at least one constituent
with the smaller jet. It is then a matter of how much constituents the two jets share,
whether the corresponding larger jet ends up in the same (pT , y) bin and thus contributes
to a higher correlation. As the probability for ending up in the same bin increases with
the bin-width, the correlation increases as well. On a smaller scale this feature can also be
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10.3 Results

observed for the bin-width in pT . Due to the larger statistical uncertainties, it is however
considered reasonable to smooth out these fluctuations using the fit as described above.

10.3 Results

After the discussion of the theoretical predictions and the uncertainties on data, the
results can be examined. In Fig. 10.13 the results obtained in data are compared with
the theoretical predictions. The direct ratio predicts a consistently smaller ratio than
observed in data across all pT bins. The significant uncertainties on this calculation cover
these differences, especially in combination with the experimental uncertainties. Here, it
should also be taken into account that the experimental and theoretical uncertainties are
to a large degree correlated among the pT bins. RpQCD(pT ; 0.6, 0.4) is in slightly better
agreement with the data and at the same time its theoretical uncertainty is much smaller
as well. This favours the calculations suggested in [88] over the naive approach of taking
the direct ratio. In turn, this confirms the necessity of taking into account the NLO
contributions to the ratio.

These issues also highlight that the inclusion of these contributions would in very princi-
ple be necessary in order to achieve a coherent description of jet cross sections of variable
jet radii.

The measurement is limited by the experimental uncertainties up to approximately
500 GeV, where statistic uncertainties become significant.

Besides the comparison to theoretical predictions it is also interesting to compare the
measurement to the predictions of various MC generators as shown in Fig. 10.14. These in-
clude the generators and tunes that have already been used to derive the non-perturbative
corrections. The comparison to data here might help to disqualify certain tunes and thus
decrease the uncertainty on the non-perturbative corrections. A first observation to make
is, that the Pythia6 PerugiaSoft tune does not describe the data across a wide range in
pT . The deviations become especially pronounced at high transverse momenta where the
experimental uncertainties shrink. Better descriptions are achieved using the Perugia0
and PerugiaHard tunes. The best agreement within the Pythia6 tunes can be observed
for the AMBT1 tune. This is expected since this tune was obtained from early ATLAS
minimum bias data. Nevertheless all these tunes are consistently below data.

The overall best description is provided by the Herwig++ UE tune, which also included
ATLAS UE data. It almost perfectly fits the data across the whole range of pT .

10.4 Prospects for a measurement of ρUE and α0

The theoretical predictions at NLO described in Section 10.1 make use of two parameters,
which are provided by experiments. The first one is ρUE, the transverse momentum density
of the UE which enters the according correction (Eq. 10.10). Secondly, there is α0, the
average coupling in the non-perturbative regime, which is part of A(α0, pT ) in Eq. 10.8.
The qualitatively very good agreement of the theoretical predictions with data suggest,
that the measurement can be used to measure both parameters entering the predictions.
Since the NLO parton-level prediction is fixed, such an analysis would essentially measure
the non-perturbative corrections on top of the parton level model. Subsequently, α0 and
ρUE can be determined by finding the non-perturbative corrections resulting in the best
agreement with data.
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Before exercising such a fit using the available data, the dependencies and correlations
of both parameters are outlined in the following. A good starting point is Eq. 10.7. As a
first step, the cross section at a shifted pT value is approximated as:

σLO(pT +〈δpT (R1)〉) = σLO(pT )+σ′LO(pT )×〈δpT (R1)〉 with: σ′LO =
dσLO(pT )

dpT

. (10.22)

Hence, Eq. 10.7 becomes:

K(R1/R2)(pT ) =
σLO(pT ) + σ′LO(pT )× 〈δpT (R1)〉
σLO(pT ) + σ′LO(pT )× 〈δpT (R2)〉

, (10.23)

where only 〈δpT (R)〉 is a function of the jet radius. To first order this can be expanded
to:

K(R1/R2)(pT ) ≈ 1 +
σ′LO(pT )× 〈δpT (R1)〉

σLO(pT )
− σ′LO(pT )× 〈δpT (R2)〉

σLO(pT )

= 1 +
σ′LO(pT )

σLO(pT )
[〈δpT (R1)〉 − 〈δpT (R2)〉] , (10.24)
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In order to stress the interesting dependencies on α0 and ρUE, 〈δpT (R)〉 can be written
as:

〈δpT (R)〉 = 〈δpT (R)〉HAD + 〈δpT (R)〉UE

=
FHAD(α0)

R
+ FUE(ρUE)R2, (10.25)

where FHAD and FUE include all constant factors from Eq. 10.8 and Eq. 10.10 respectively.
With these notations Eq. 10.23 becomes:

K(R1/R2)(pT , α0, ρUE) = 1 +
σ′LO(pT )

σLO(pT )

[

FHAD(α0)(R2 − R1)

R2R1
+ FUE(ρUE)(R2

1 −R2
2)

]

.

(10.26)
For a first study using the measured cross section ratio, this equation holds valuable
information. Namely, that a simultaneous measurement of ρUE and α0 is not possible. This
is due to fact that for a fixed combination of R1 and R2, data can only constrain the linear
combination of FHAD(α0) and FUE(ρUE). For an actual measurement of both parameters
it will thus be necessary to include at least one additional cross section measurement with
a different jet radius. In this case the different R-dependence of 〈δpT 〉HAD and 〈δpT 〉UE

will allow to constrain ρUE and α0 separately.
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10 Measurement of the cross section ratio

To see the radius dependencies more clearly, for a fixed non-perturbative correction
K(R1/R2)(pT , α0, ρUE) = K(R1/R2)(pT ), Eq. 10.26 can be reordered. It then becomes obvious
that the dependency between FHAD(α0) and FUE(ρUE) in this case follows a straight line:

FUE(ρUE) =
σ′LO(pT )

σLO(pT )

K(R1/R2)(pT )− 1

(R2
1 − R2

2)
+

FHAD(α0)

R1R2(R1 +R2)
. (10.27)

Inserting the constants included in FHAD(α0) and FUE(ρUE), ρUE can be written as a
function of α0:

ρUE(α0) = ρ0
UE −m(R1, R2) α0 (10.28)

with : m(R1, R2) = − 4CRMµI

π3 R1R2(R1 +R2)
.

where all contributions independent of α0, R1 and R2 are absorbed in ρ0
UE . For an

arbitrary choice of α0, Eq. 10.27 determines the ρUE resulting in any chosen value for the
total, non-perturbative correction. This result states that, for a scenario of fixed R1 the
slope m(R1, R2) decreases approximately quadratically for increasing R2.

This is cross-checked by calculating K (0.6/0.4)(pT , α0, ρUE) on a grid of ρUE and α0 using
NLOJet++, following Eq. 10.7. For this purpose, the non-perturbative corrections are
factorized into the UE and the hadronization correction:

K(0.6/0.4)(pT , α0, ρUE) = K
(0.6/0.4)
HAD (pT , α0) ×K

(0.6/0.4)
UE (pT , ρUE)

=
σLO(pT + 〈δpT (0.6)〉HAD)

σLO(pT + 〈δpT (0.4)〉HAD)
× σLO(pT + 〈δpT (0.6)〉UE)

σLO(pT + 〈δpT (0.4)〉UE)
. (10.29)

Subsequently, for a fixed pT , the lines of constant non-perturbative corrections,

K(0.6/0.4)(pT , α0, ρUE) = K(0.6/0.4)(pT , 0.5, 2.3 GeV), (10.30)

are found, where ρUE = 2.3 GeV and α0 = 0.5 were chosen arbitrarily. For this purpose
all jets were assumed to be gluon initiated jets. This substantially simplifies the analytical
calculations. These contours are displayed in Fig. 10.15 together with the expectation from
Eq. 10.27. The agreement found is good, except for small deviations in the absolute slope,
which can be expected to arise from the various approximations made in the derivation of
Eq. 10.27. The slope’s evolution as a function of R2 is almost perfectly described. Highest
sensitivities to ρUE and α0 are to be expected in configurations where the crossing angle
between the straight lines in Fig. 10.15 is maximized. This encourages the usage of a wide
variety of jet radii.

10.4.1 Determination of ρUE with fixed α0

The data analyzed does not allow to measure α0 and ρUE, due their linear connection.
However, it allows to measure for instance ρUE, using α0 as external input. For the follow-
ing studies α0(µI = 2 GeV) = 0.50+0.07

−0.04 as measured at JADE [91] is used. To quantify
the agreement between data and the theoretical prediction, for every K (R1/R2)(pT , α0, ρUE)
the χ2 quantity with respect to data is calculated as follows:

χ2(ρUE, α0) =
∑

i

(

yi − fi(ρUE, α0)

σi

)2

(10.31)

with : fi(ρUE, α0) = RpQCD(p
(i)
T , 0.6, 0.4) K(0.6/0.4)(p

(i)
T , α0, ρUE),

134



10.4 Prospects for a measurement of ρUE and α0

0α
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [G
eV

]
U

E
ρ

0

1

2

3

4

5

6

0.6 / 0.4

0.8 / 0.4

1.0 / 0.4

1.0 / 0.6
1.0 / 0.8

 = 0.500α = 2.3 GeV, 
UE

ρ
Lines of constant non. pert. correction

Analytic

MC result

1R
0.5 0.6 0.7 0.8 0.9 1 1.1

m
 [G

eV
]

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

 = 0.42R

Analytic

 = 0.6
1

MC result @ R
Scaled to

Figure 10.15: Left: Lines of constant non-perturbative corrections to the cross section ratio,
for various combinations of jet radii. Dashed lines represent the results from Eq. 10.27, which
was used to calculate the slope. The intercept on the ordinate was set such that the line passes
through (α0 = 0.5, ρUE = 2.3 GeV). Right: The slopes for three choices of R1, with fixed R2 = 0.4
(dots) and the expectation according to Eq. 10.27 (black line). The red line was fixed to reproduce
the MC result for m(0.6, 0.4), keeping the R2 dependence from Eq. 10.27.

where i enumerates the bins of transverse momentum. This χ2 definition does not take
into account experimental systematic uncertainties nor uncertainties on the theoretical
predictions. These will be treated in subsequent steps. The statistical uncertainties σi

on the measurement are considered uncorrelated. For the hadronization correction, a
physical mixture of quark and gluon jets is achieved by extracting the fraction of gluon
jets from MC simulations using Pythia6, without the simulation of ISR, FSR, UE and
hadronization. For the calculation of the correction using NLOJet++, the decision whether
a jet is assumed to be gluon or quark-initiated, is then randomized according to this
fraction.†

The result of this procedure is the two-dimensional χ2(α0, ρUE) distribution shown in
Fig. 10.16. As expected from the previous considerations, this distribution does not exhibit
a real minimum. Rather it shows a valley of minimum χ2 following a straight line. In order
to determine ρUE for fixed α0, the value of ρUE is found that minimizes χ2(ρUE, 0.5). The
value found amounts to (2.97 GeV±0.02) GeV, where the uncertainty quoted corresponds
to the shift in ρUE, resulting in an increase of χ2 by one. It thus reflects the purely
statistical uncertainty on ρUE. The minimum value of χ2 found is approximately 31, for
13 fitted data points, corresponding to a probability of 3‰. Reasons for the χ2 value
being rather large can be expected to arise from the neglected theoretical uncertainties,
which are to a certain degree statistically limited. Furthermore, a perfect description of
the data within the very small statistical uncertainties cannot necessarily be expected,
given the various assumptions that go into the analytical, non-perturbative corrections.
It is also not guaranteed that variations of the data within its systematic uncertainties
still yield a result, that perfectly fits to a theoretical prediction.

†Due to the implementation of NLOJet++, this workaround is necessary, since the species of partons in
a generated event are not defined.
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Figure 10.16: Left: Distribution of χ2 as a function of ρUE and α0. The green line indicates
the fixed α0 value used. Right: Projection of the two-dimensional distribution along the green
line. The dashed lines indicate the locations of the best estimate for ρUE.

The systematic uncertainties are taken into account using pseudo-experiments: In each
pseudo-experiment, randomized shifts to data are applied according to the systematic
uncertainties. For this purpose they are assumed to be Gaussian and are symmetrized, by
averaging the upper and lower uncertainty. These randomized shifts also account for the
correlation between the single pT bins. In principle, these correlations can be extracted by
constructing the full covariance matrix for the cross section ratio (see Appendix A.1 for
details). Unfortunately not all the necessary information to do so is available. The missing
information is the correlation of the JES uncertainty between large and small jets, across
different pT bins. The estimation of the JES uncertainty correlation in this chapter only
allowed to estimate this correlation for identical pT bins and cannot be generalized further.
Instead, the JES uncertainty correlations between single pT bins of the calorimeter JES
uncertainty are used, which were derived in single particle studies when estimating the
JES uncertainty (cf. Chapter 8 and [92]). These correlations are very similar for both
jet sizes, differing within less than 1% in the kinematic region accessible in this analysis.
For this reason, they are considered as the currently best estimate of the JES uncertainty
correlation between pT bins in the ratio measurement. These correlations are almost
100% for adjacent pT bins, decreasing to approximately 30% between the lowest pT bin
and 1 TeV.

Each pseudo-experiment yields a result for ρUE and the distribution of these results
is displayed in Fig. 10.17. The results are approximately Gaussian distributed, which is
a direct consequence of the assumption that the systematic uncertainties are Gaussian
as well. The non-Gaussian behaviour for low and negative values of ρUE arises from
pseudo-experiments in which the data fluctuates downward. Since the fixed value of α0

already results in a certain non-perturbative correction larger than one, the fluctuations
of data often lie beneath the theoretical prediction, even without the underlying event
correction. This also explains the large amount of unphysical results of ρUE < 0. The
core of the distribution is used to extract the systematic uncertainty for ρUE, as the width
of a Gaussian fit. This yields an uncertainty of 1.3 GeV, which amounts to a relative
uncertainty of approximately 43%.
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Figure 10.17: Distribution of the ρUE values in each pseudo-experiment. The width of the
distribution is taken as the systematic uncertainty.

In order to assess the uncertainty induced by the uncertainty on the external value
of α0, it is varied by the uncertainties quoted in [91]. The resulting variation in ρUE of
1+0.2
−0.3 GeV is taken as the corresponding systematic uncertainty. The uncertainty in the

parton level prediction of RpQCD(pT ;R1, R2) is propagated to ρUE by varying it within
the scale uncertainties and repeating the fit. The variation induced in the result for ρUE

amounts to ±0.4 GeV.
One simplification that was made in the calculation of the analytic non-perturbative

corrections is, that there is no dispersion in 〈δpT 〉HAD and 〈δpT 〉UE . The impact of this
assumption is estimated by randomizing the pT shifts according to a Gaussian with a frac-
tional width of 80%. Hence, the average non-perturbative correction remains unchanged.
The width of the Gaussian was chosen according to UE analyses of the standard deviation
of the transverse momentum density in the transverse plane [93]. As there are no theo-
retical predictions for the dispersion of the hadronization correction, the same procedure
is applied there as well. The variation found for ρUE amounts to 0.2 GeV and is taken as
an additional uncertainty.

The systematic uncertainties on the ρUE determination are summarized in Table 10.2.
The dominant uncertainty is the one induced by the experimental uncertainty.

Source Uncertainty [GeV]
Experimental 1.3
α0 = 0.50+0.07

−0.04 1+0.2
−0.3

µr, µf scales 0.4
Dispersion 0.2

Table 10.2: Systematic uncertainties in the determination of ρUE.

For α0(µI = 2 GeV) = 0.50+0.07
−0.04, the underlying event density measured this way

amounts to:

ρUE =
[

3.05± 0.02 (stat.)± 1.27 (exp.)1+0.49
−0.54 (model)

]

GeV, (10.32)

where all but the experimental, systematic uncertainties are grouped into the model uncer-
tainty. This result hence prefers a larger underlying event density, than one can conclude
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10 Measurement of the cross section ratio

from studies done at ATLAS so far (see Fig. 3.5), from which ρUE = (1.8 ± 0.5) GeV
was extracted for the analytic underlying event corrections. Still, this value is compatible
within the significant systematic uncertainties with the presented measurement. Addi-
tionally, it should be noted that UE studies so far have only been carried out at lower
transverse momentum scales, which makes extrapolations necessary to estimate the UE
at larger transverse momenta. Furthermore, analyses of the underlying event, in practice,
have so far only been carried out in the region transverse to the hard two-jet system in an
event. The completely different Ansatz followed here instead attempts a model-dependent
measurement of the UE right within the products of the hard scattering. Taking into ac-
count, that the UE is in fact not completely independent of the hard scattering, it can
be concluded that previous measurements and the presented one are not measuring the
very same quantity. Hence, a perfect agreement between the two results should not be ex-
pected. Rather, this measurement should be taken as a complementary approach, probing
slightly different features of the underlying event.

For future measurements of ρUE with fixed α0 there is still room for improvement.
The presented methods in this chapter are considered to provide a reasonable and still
conservative estimate of the JES uncertainty correlation. Nevertheless, it seems desirable
to establish a JES uncertainty, whose ingredients more directly aim at physical properties
of jets, thus making a more precise estimate of the correlations possible.

Improved results may also be gained by not treating the systematic uncertainties as
Gaussian distributed. The Gaussian assumption for instance results in pseudo-experiments
exhibiting a increasing, rather than decreasing, cross section ratio at low transverse mo-
menta. An improved fitting procedure should aim to restrict the measured values of ρUE

and α0 to physically sensible values above zero.
For the dispersion of the underlying event correction the Gaussian assumption made

to assess the systematic uncertainty is a very idealized one. Measurements of e.g. the
differential distributions of the transverse momentum density in the transverse plane,
might provide a more realistic Ansatz.

Since there are no theoretical predictions for the size of the dispersion of the hadroniza-
tion correction, it was treated using an dispersion identical to that used for the underlying
event correction. Tough the impact of the assumed dispersion is small compared to the ex-
perimental uncertainties, future measurements would benefit from theoretical predictions
for this issue.

10.4.2 Feasibility study for a combined measurement of ρUE and α0

As outlined in the beginning of this chapter, a measurement of ρUE and α0 needs at least
one more cross section measurement with a different jet radius as input. In this section
the feasibility of a such a combined fit is examined using the results above, together with
theoretical considerations. This is done by simulating additional ratio measurements as
follows: It is assumed that Eq. 10.27 is able to properly describe the slopes of the minimum
in the χ2 planes. This was demonstrated in Fig. 10.15 to a satisfactory degree. Hence,
χ2 planes for different combinations of R1 and R2 than the ones used, could be simulated
by rotating the measured χ2 plane in Fig. 10.16 to another slope, according to R1 and
R2. Denoting the slope of the χ2 valley in Fig. 10.16 as mdata, the slope m(R1, R2) of an
alternative ratio can generally be written as:

m(R1, R2) = mdata
0.6× 0.4× (0.6 + 0.4)

R1R2(R1 +R2)
. (10.33)
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10.4 Prospects for a measurement of ρUE and α0

Accordingly, the modified intercept on the ordinate is constructed as

b(R1, R2) = ρtrue
UE −m(R1, R2)α

true
0 . (10.34)

For this purpose ρtrue
UE = 2.97 GeV (according to Fig. 10.16) and αtrue

0 = 0.5 are taken as
the true values, which are used as input to the following pseudo-experiment. They define
the center of the rotation applied to the χ2 planes. These values hence should also be
the result of the pseudo-experiment, in order to validate the assumption, that a combined
measurement of both parameters is indeed feasible. In the following example R2 = 0.4 was
kept as the fixed, smaller radius, while R1 = 0.9 and R1 = 1.2 were chosen as additional
radii. Instead of a rotation of the χ2 plane, a slightly simpler technique is employed: The
χ2 distribution in each α0 bin is shifted such that the resulting slope and intercept on the
ordinate obey Eq. 10.33 and Eq. 10.34 respectively. Taking into account the very large
number of bins necessary for this study, this was found to be a computationally easier,
yet satisfactory procedure.

The two distributions accordingly transformed are shown in Fig. 10.18 along with the
original distribution. Making the further assumption, that all three fits are uncorrelated,
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Figure 10.18: From left to right: The observed χ2 distribution for (R1, R2) = (0.4, 0.6) and
simulated distributions for (R1, R2) = (0.4, 0.9) and (R1, R2) = (0.4, 1.2). The open circle marks
the input values used for the pseudo-experiments of ρtrue

UE = 2.97 GeV and αtrue
0 = 0.5.

the χ2 values calculated for each ratio can simply be added:

χ2
combined(ρUE, α0) =

∑

R1∈{1.2,0.9,0.6}

χ2(ρUE, α0;R1, 0.4). (10.35)

Though this is an unrealistic assumption, it is legitimate for the purpose of this pseudo-
experiment. While correlations can be expected to change the actual minimum χ2 values,
they cannot be expected to have an impact on the bare existence of such a minimum. The
distribution of the χ2 sum is shown in Fig. 10.19. As expected, in this combination the
different slopes add up to a well localized χ2 minimum. The fit results for both parameters
are extracted as the values where χ2

combined has its global minimum. The uncertainties are
obtained from the one-dimensional χ2

combined distributions, which scan χ2
combined as function

of one parameter, keeping the other one fixed, as illustrated in Fig. 10.20. This yields the
result of this pseudo-experiment:

ρUE = 2.975± 0.012 and α0 = 0.498± 0.005.
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Figure 10.19: Distribution of the combined χ2, using the single distributions from Fig. 10.18.
Dashed lines correspond to the slopes found for the single distributions.

These results are in very good agreement with the input parameters used. Due to the ne-
glected correlations and the simplicity of the toy study, the extracted uncertainties cannot
be taken as a serious estimate of the statistical uncertainties in an actual measurement.
For a future combined measurement, additionally to the possible improvements mentioned
at the end of the previous subsection, two important issues have to be addressed:

• Fits to alternative ratios: Before exercising the fit to various ratios at the same
time, the theoretical predictions firstly will have to be able to describe each single
ratio properly. This is a major assumption for the combination of the χ2-planes in
Fig. 10.18, but cannot be taken for granted.

• Correlations of systematic uncertainties: As the results in this subsection were
meant as a first feasibility study, the systematic uncertainties were ignored.

To incorporate the systematic uncertainties properly, more detailed analyses of the
correlations between the JES uncertainty of various jet radii will be needed. The
methods established in this chapter for instance cannot be generalized to assess the
correlations between different jet radii and different bins of transverse momentum.
For the JES uncertainty correlation determination using pseudo-experiments based
on single-particle studies, the extension to a correlation matrix between various jet
sizes and across different pT bins can be considered to be straight forward. For the
correlations of other effects, such as the fragmentation and the underlying event new
methods will have to be developed.

Finally, the introduction of additional cross sections will add yet another dimension
of correlation, which will have to be taken care of.

With a proper treatment of these items, it seems reasonable to consider a measurement of
α0 possible. The measurement of ρUE in this new fashion may provide a new access to the
UE, complementary to common measurements of the UE at low transverse momenta.
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Inclusive jet cross sections are one of the most direct probes of pQCD at the highest
accessible momentum scales. Due to the large production cross section, they are a natural
observable at new experiments which extend the kinematic reach with respect to previous
ones. They additionally allow to probe the proton’s structure at highest Q2 and hence at
highest resolution.

This thesis presented an inclusive jet cross section measurement in proton-proton colli-
sions at

√
s = 7 TeV with the ATLAS detector. Jets were identified using the anti-kt jet

algorithm with two different jet sizes. The measurement was performed double differen-
tially in bins of the jet transverse momentum and bins of absolute rapidity. Kinematically,
the measurement was constrained to jets with pT > 40 GeV and |y| < 2.8. The amount
of data corresponds to 3 pb−1, recorded in Summer 2010.

Jets with transverse momenta of up to 1 TeV were observed, going beyond the kine-
matic reach of earlier analyses at the Tevatron accelerator. The measured data has been
fully corrected for detector effects, allowing for meaningful comparisons to theoretical
predictions. The experimental systematic uncertainty ranges between 20% and 30% and
is the dominant uncertainty up to transverse momenta of approximately 700 GeV. The
systematic uncertainty itself is dominated by the limited knowledge of the absolute jet
energy scale calibration. Data was compared to theoretical predictions, calculated at next-
to-leading order using the CTEQ6.6 PDF set. The predictions were found to agree within
the experimental and theoretic uncertainties. Comparisons to different PDF sets showed
that due to the experimental precision, data cannot favour one PDF set over another yet.

Significant differences in the predictions by various PDF sets start to appear beyond
transverse momenta of 1 TeV. Continuous running of the LHC at increasingly higher
instantaneous luminosities will quickly increase the kinematic reach and improve the sta-
tistical precision in this region. By the beginning of June 2011, ATLAS already recorded
data corresponding to more than 1 fb−1. Decreasing the systematic uncertainties will be
the most important task for future jet cross section measurements. The estimate of the
absolute jet energy scale calibration in the full 2010 dataset was already improved with
respect to the one used in the analysis presented. To increase the value of the results
for the purpose of global PDF fits, the evaluation and inclusion of the correlations of
systematic uncertainties is a further aim. Several steps into these directions are already
undertaken by the ATLAS collaboration. This already lead to updated preliminary re-
sults of the jet cross section measurements using the full 2010 dataset, which uses a factor
of ten more data than the analysis presented. Complementary to the accumulation of
more data, recent studies also significantly extend the coverage in pseudorapidity up to
|y| < 4.4. This significantly enhances the sensitivity in probing the proton’s structure at
low values of the Bjorken-x.

Current LHC plans foresee a further increase of the center-of-mass energy up to the
originally designed value of 14 TeV by 2014. This drastic increase will come along with a
large increase of the kinematic range for jet cross section measurements. Cross sections
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in the currently accessible region at the same time will be increased by up to two orders
of magnitude, as is illustrated in Fig. 11.1.
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Figure 11.1: Expected inclusive jet cross sections at parton level as in this analysis and for
center-of-mass energies of 10 TeV and 14 TeV. The extrapolation to higher center-of-mass
energies was performed using APPLGRID.

The measurement of inclusive jet cross sections has been carried out using two different
jet radii, in an otherwise identical analysis. For the first time, a measurement of the ratio of
two cross sections has also been performed, properly taking into account the correlations
of the experimental uncertainties. The correlations found are above 85% and lead to
a significant decrease in the relative, systematic uncertainty for the ratio measurement,
down to a maximum of 10%. It was observed, that inclusive cross section predictions
at next-to-leading order do not describe this ratio well and suffer from significant scale
uncertainties. Newer approaches were found to provide a more realistic description of the
data including significantly smaller uncertainties. The cross section ratio also confirmed
recent theoretical work on the analytical treatment of non-perturbative corrections to be
working well.

Inspired by theoretical work, analytical non-perturbative corrections have been used to
measure ρUE. The result is higher than current estimates from ATLAS underlying event
studies, but is compatible within the significant systematic uncertainties. A feasibility
study has been performed to assess the possibility of a concurrent measurement of ρUE

and the non-perturbative strong coupling α0. Such a measurement has been found to be
possible, but it requires the inclusion of a least third cross section measurement using a
different jet radius.

An extended analysis using multiple jet cross section ratios will require further work.
Calibrations of jets with different radii have to be derived. A framework for the calibra-
tion of jets of various radii was developed within the ATLAS collaboration, as a direct
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extension of the calibration method presented in this analysis. Most importantly how-
ever, the correlations between jet energy scale uncertainties for various jet sizes have to
be understood. Methods to assess these correlations have been developed in this thesis
and are able to be significantly extended to the usage with updated jet energy scale uncer-
tainties. The increasingly better performance of data driven methods for JES uncertainty
estimates will certainly allow a new, more precise assessment of the correlations. The
increased amount of data available for future analyses will result in improved statistical
uncertainties and will allow for a precise measurement of the ratio up to 1 TeV. In view
of the small systematic uncertainties, it may hence provide an interesting access to the
underlying event and non-perturbative effects at new energy scales.

A possible extension of the analysis presented might be to measure cross section ratios,
in certain bins of transverse momentum, versus the jet’s radius, using an arbitrary jet
radius as reference. Contrary to the thesis presented, this analysis does not require a
complete study of the inclusive cross sections. As observed in Chapter 10, particularly
the unfolding procedure, an essential ingredient to the single cross section measurement,
could be omitted, allowing for an easier construction of the cross section ratio at particle
level. The measurement of the ratio versus pT would allow to directly probe the theoretical
predictions for the size of non-perturbative corrections as a function of the jet radius. The
already significant spread observed among the various predictions from MC generators can
be expected to grow with the spread of the jet radii used. Future ratio measurements
may hence also be provided as input for generator tuning efforts. In this context, ratios of
inclusive jet cross sections can be considered a new, complementary approach to features
of the underlying event and a direct measurement of non-perturbative effects.
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List of acronyms

ADC Analogue to Digital Converter

ALICE A Large Ion Collider Experiment

ATLAS A Toroidal LHC Apparatus

CDF Collider Detector at Fermilab

CMS Compact Muon Spectrometer

CTP Central Trigger Processor

EF Event Filter

FCAL Forward CALorimeter

FSR Final State Radiation

HLT High-Level Trigger

ISR Initial State Radiation

JES Jet Energy Scale

L1 Level-1 Trigger

LHC Large Hadron Collider

LO Leading Order

MBTS Minimum Bias Trigger Scintillators

MC Monte Carlo

NDF Number of Degrees of Freedom

NLO Next-to-Leading Order

NNLO Next-to-Next-to-Leading Order

NNPDF Neural Net Parton Density Function

PDF Parton Density Function

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

ROI Region of Interest

147



11 Conclusions and outlook

SCT Semiconductor Tracker

TRT Transition Radiation Tracker

UE Underlying Event

ZDC Zero-Degree Calorimeter
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A Appendix

A.1 Construction of the full covariance matrix for the
cross section ratio

The construction of the full covariance matrix is possible by strictly following standard
error propagation (see e.g. [94]). The covariance of a series of functions {fi} of variables
{xi} is given by:

cov(fk, fl) =
∑

i

∑

j

(

∂fk

∂xi

)(

∂fl

∂xj

)

cov(xi, xj) (A.1)

For the application to the jet cross section ratio, the function fi is the ratio of cross sections
in the ith momentum-bin and the variables {xi} are the two measured cross sections in
each bin.

{fj} = {Ri}
{xj} = {y6

i , y
4
i }

Ri =
y4

i

y6
i

(A.2)

Here, y4
i and y6

i are the measured cross sections in the ith momentum-bin for R = 0.4
and R = 0.6 respectively. Thus, for n bins of transverse momentum there are n functions
fj and 2n variables xj. Due to the definition of the ratio, the derivatives in Eq. A.1 are
mostly zero:

for all k 6= i :
∂fk

∂y4
i

=
∂fk

∂y6
i

= 0 (A.3)

Thus only three different contributions arise from the sums in Eq. A.1. Namely these are
two quadratic ones for (xi, xj) = (y6

k, y
6
l ) or (xi, xj) = (y4

k, y
4
l ). And in addition, there

is the mixed contribution for (xi, xj) = (y6
k, y

4
l ) or (xi, xj) = (y4

k, y
6
l ), which are equal.

Accordingly for the concrete application Eq. A.1 can be written as:

cov(Rk, Rl) =

(

∂Rk

∂y6
k

)(

∂Rl

∂y6
l

)

cov(y6
k, y

6
l ) +

(

∂Rk

∂y4
k

)(

∂Rl

∂y4
l

)

cov(y4
k, y

4
l )

+ 2

(

∂Rk

∂y6
k

)(

∂Rl

∂y4
l

)

cov(y6
k, y

4
l ) (A.4)

This can be further simplified, by switching to relative uncertainties, which is easily achiev-
able by division by 1/(RkRl) and the insertion of the derivatives:

cov(Rk, Rl)

RkRl
=

cov(y6
k, y

6
l )

y6
ky

6
l

+
cov(y4

k, y
4
l )

y4
ky

4
l

− 2
cov(y6

k, y
4
l )

y6
ky

4
l

(A.5)

Denoting the measurement uncertainties on yR
i as σR

i , this can explicitly be written as:

cov(Rk, Rl)

RkRl
= ρ6

kl

σ6
kσ

6
l

y6
ky

6
l

+ ρ4
kl

σ4
kσ

4
l

y4
ky

4
l

− 2ρ64
kl

σ6
kσ

4
l

y6
ky

4
l

(A.6)
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A Appendix

This prescription formally treats all possible correlations in the correct way. For k = l
Eq. A.6 results in the equations 10.19 and 10.20 using the appropriate uncertainties and
correlations. For k 6= l in the case of the systematic uncertainties, the lack of knowledge
about ρ64

kl leads to problems described in Section 10.4.1.

A.2 Inclusive cross section PDF comparisons in
different rapidity regions

Here, in addition to Fig. 9.19, comparisons of the measured cross sections to various PDF
sets are shown.
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Figure A.1: Ratios of theoretical predictions using various PDFs for anti-kt, R = 0.6 jets. The
measured cross sections and the theoretical predictions are divided by the theoretical prediction
using the CTEQ6.6 PDF. The systematic uncertainties on data are not shown. Systematic
uncertainties on the theoretical predictions were calculated at a confidence level of 90 %.
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Figure A.2: Ratios of theoretical predictions using various PDFs for anti-kt, R = 0.4 jets. The
measured cross sections and the theoretical predictions are divided by the theoretical prediction
using the CTEQ6.6 PDF. The systematic uncertainties on data are not shown. Systematic
uncertainties on the theoretical predictions were calculated at a confidence level of 90 %.
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A Appendix

A.3 Displays of events with high ESig
T,Miss

Here, two exemplary events that are rejected by the ESig
T,Miss selection are shown. The first

of which, shown in Fig. A.3, is a very unambiguous example of a very soft collision event
that is overlayed with energy depositions by cosmic particles.

In these event displays, the red area symbolizes the Tile calorimeter, while the inner,
green area represent the em. calorimeters. The calorimeter’s segmentation is shown
is well. Yellow areas within the calorimeters indicate deposited energy, where the area
is proportional to the energy. Histogram structures surrounding the two calorimeter
systems symbolize these energy depositions as well. These are shown in green for the em.
calorimeter and red for the hadronic calorimeters.
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