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Summary

In this thesis a connection between nearrings and triply factorized groups is investigated. A
group G is called triply factorized by its subgroups A, B, and M , if G = AM = BM = AB,
where M is a normal subgroup of G and A ∩M = B ∩M = 1. Many problems in the theory
of factorized groups can be reduced to triply factorized groups (c.f. [2]).

Triply factorized groups are connected with radical rings in a natural way. A ring R is called
radical, if R forms a group R◦ under the “circle operation” a◦ b = ab+a+ b for every a, b ∈ R.
In a radical ring R◦ operates on the additive group R+ and it can be shown that the semidirect
product R◦nR+ is a group triply factorized by two subgroups A and B isomorphic to R◦ and a
normal subgroup M isomorphic to R+. Hence, in the triply factorized groups obtained in this
way, the normal subgroup M is always abelian. If, on the other hand, G = AM = BM = AB
is a triply factorized group with abelian subgroups A, B, and M and A ∩ B = 1, there exists
always a radical ring, from which G can be obtained as above (Sysak [20], see also [2]).

To construct triply factorized groups G = AM = BM = AB with non-abelian normal
subgroup M , a method using nearrings is described. Nearrings are a generalisation of rings
in the sense that the additive group of a nearring is not necessarily abelian and only one
distributive law holds. If R is a nearring with identity element 1 and U is a subgroup of the
additive group R+ such that U + 1 is a subgroup of the group of units of R, then U is called
a construction subgroup of R. For instance the Jacobson radical J (R) of any ring R is a
construction subgroup of R. It is shown that U + 1 operates on a construction subgroup U ,
such that the semidirect product (U + 1) n U is a group triply factorized by two subgroups A
and B isomorphic to U + 1 and a normal subgroup isomorphic to U . Conversely, it is proved
that every triply factorized group G = AM = BM = AB with A ∩B = 1 can be obtained by
a suitable nearring with this method. This generalises the above mentioned theorem of Sysak.

To know more about construction subgroups, the structure of nearrings is investigated in
detail. Here local nearrings, i.e. nearrings in which the set of all elements which are not right
invertible forms an additive group, play a special rôle. In these nearrings the group of non-
invertible elements forms a construction subgroup. Given an arbitrary p-group N of finite
exponent (p a prime), a technique to construct local nearrings with a construction subgroup
that contains a subgroup isomorphic to N is developed.

Moreover, all triply factorized groups that can be constructed using a local nearring R of
order p3 (p a prime) are described depending on the structure of the additive group of R.
These triply factorized groups have order p4. There exist two different triply factorized groups
of order p4 for every prime p. But it turns out that for p ≥ 5 there is only one triply factorized
group that can be constructed by a local nearring R of order p3, if the exponent of R+ is p2

and R+ is not abelian.
Finally, all local nearrings R with dihedral group of units are classified. It turns out that

these nearrings are finite and their order does not exceed 16. It is shown that if R is such a
local nearring, then its additive group is a p-group for p = 2 or p = 3. This is done by showing
that no group of order 32 can occur as the additive group of a local nearring with dihedral
group of units. Some of the calculations in this classification were made with the computer
algebra system GAP. The programs used here are described in detail in Appendix B.
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Introduction

A group G is called triply factorized if G = AM = BM = AB for two subgroups A and
B and a normal subgroup M of G where A ∩M = B ∩M = 1, i.e. G is a semidirect
product A n M = B n M of A with M and of B with M . Many problems in the
theory of factorized groups can be reduced to questions about triply factorized groups
(c.f. Amberg, Franciosi, de Giovanni [2]). Therefore it is desirable to obtain examples of
such groups.

A ring R is called radical, if R is a group R◦ under the “circle operation” a◦b = ab+a+b
for all a, b ∈ R, or equivalently, if R coincides with its Jacobson radical J (R). If R is a
radical ring, the group R◦ operates on the additive group R+, such that the semidirect
product R◦ n R+ is triply factorized. This observation was first described by Sysak [20]
(c.f. [2, Section 6.1]). If G = A n M = B n M = AB is a triply factorized group
constructed with this method, the normal subgroup M is isomorphic to the additive
group of R and hence always is abelian (c.f. Construction 1.2.2).

Conversely, Sysak proved that if G = AnM = BnM = AB is a triply factorized group
with abelian subgroups A, B, and M and A ∩ B = 1, there is always a commutative
radical ring R such that G can be obtained via the above construction using R (c.f.
Theorem 1.2.3 below).

For further investigations it is desirable to have also triply factorized groups G in
which the normal subgroup M is not necessarily abelian. In the following, nearrings will
be used to find such groups.

Nearrings are a generalisation of rings in the sense that addition in nearrings need not
be commutative and only one distributive law holds (c.f. Definition 2.1.1). In Chapter 2
some relevant facts about nearrings are collected, most of which are well-known and can
be found for example in Meldrum [17], Pilz [18], or Clay [7].

In Chapter 3 a construction of triply factorized groups using nearrings is developed.
For this, the notion of a construction subgroup is needed (c.f. Definition 3.1.1). This is
a subgroup of the additive group of a nearring, which is connected in a natural way with
some subgroup of the group of units of the given nearring. The following is proved.

Theorem (c.f. Construction 3.1.4)
If R is a nearring and U is a construction subgroup of R, then the set U + 1 =
{u + 1 | u ∈ U} is a subgroup of the group R× of units of R, which operates on U .
Then the semidirect product G = G(R,U) = (U + 1) n U is a triply factorized group

6
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G = A n M = B n M = AB, where M = U , A = U + 1, and B = {(u + 1, u) | u ∈ U}
is the “diagonal subgroup” of G(R,U).

Note that here the normal subgroup M need not be abelian. If R is a ring with
identity element, then J (R) is a construction subgroup of R and this construction is
identical to that described in Construction 1.2.2.

In Section 3.2 it is shown that the above mentioned Theorem 1.2.3 holds for triply
factorized groups in general. If M is a not necessarily abelian group, the set M(M) of
all mappings of M in M forms a nearring under pointwise addition and multiplication
by composition. The following generalises Sysak’s theorem.

Theorem 3.2.5.
If G = A n M = B n M = AB is any triply factorized group with A ∩ B = 1, then the
nearring M(M) contains a construction subgroup U with G ∼= G(R,U) = (U + 1) n U .
Thus every such triply factorized group can be obtained from a nearring.

For further investigations of construction subgroups, in Chapter 4 the structure of
nearrings is studied in more detail. It is well-known that the Jacobson radical for rings
can be described in several different ways, which lead to different radicals for nearrings. It
turns out that a construction subgroup of a nearring under certain finiteness conditions is
contained in one of these generalisations of the Jacobson radical (c.f. Proposition 4.4.1).

Much work has also been done to generalise quasiregularity from rings to nearrings.
Beidleman [6] describes a generalisation of quasiregularity, which is very similar to that
in ring theory. Meldrum [17] uses a more general definition, which includes Beidleman’s
concept. Both notions are described in Section 4.1.2, since some results only hold for
the more restrictive definition of Beidleman [6].

A short section of Chapter 4 deals with nearfields, since they are needed to describe
the structure of local nearrings in Chapter 5.

In Section 4.3, the prime ring of a nearring R is introduced. A prime ring is defined
to be the subnearring of R generated by its identity element. The structure of the prime
ring of a nearring R gives some information about the whole nearring R. For instance,
it is very easy to show that there exists up to isomorphism exactly one nearring with
identity element over a finite cyclic additive group. It is shown that prime rings are
always isomorphic to Z/nZ for some positive integer n or to a certain subring of Q (c.f.
Lemmas 4.3.3 and 4.3.4). In Theorem 4.3.7 the construction subgroups of a prime ring
are described.

A nearring R is called local, if the set LR of all elements of R, which are not right
invertible, forms a subgroup of the additive group R+. These nearrings are especially
useful for the construction of triply factorized groups, since in a local nearring R the set
LR is a construction subgroup. Local nearrings were first investigated by Maxson [16].
Their structure is described in Chapter 5.

It still seems to be unknown if the group LR is always an ideal of the local nearring R,
although this holds in many cases. It is shown that if a local nearring R exists, in which
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LR is not an ideal, then there also exists a simple local nearring, i.e. a local nearring
which does not have any ideals other than the trivial ones. Simple local nearrings are
studied in Section 5.1.5.

In Section 5.2.1 the prime rings of local nearrings are investigated. It turns out that
the prime ring of a local nearring is local as well. If LR is a normal subgroup of the
additive group of a local nearring R, the additive group LR +PR is also a local nearring,
where PR is the prime ring of R. For the construction of triply factorized groups this
nearring is sufficient, since it contains the construction subgroup LR and the identity
element of R.

The nearfield R/LR for a local nearring R is examined in Section 5.2.3. It is shown
that for every skewfield K there is a local nearring R which is not a ring, such that
R/LR is isomorphic to K. Moreover, in Example 5.2.12 a local nearring R is given, in
which the nearfield R/LR is not a skewfield. This example was constructed using a C++-
program which calculates the whole multiplication table of the nearring starting with
a few predefined products. This program also checks that the calculated multiplication
indeed leads to a local nearring. The program is explained in detail in Appendix A.

If R is a zero-symmetric local nearring satisfying certain finiteness conditions, the
subgroup LR is a nilpotent nearring. The structure of a local nearring R with nilpotent
LR is investigated in Section 5.3. These results are used in Chapter 8 for the classification
of local nearrings with dihedral groups of units. For these investigations the annihilator
series of a local nearring is introduced (c.f. Definition 5.3.1), which leads to the following
criterion for LR to be nilpotent.

Theorem 5.3.4.
If R is a local nearring, then the R-subgroup LR is nilpotent if and only if R possesses
an annihilator series.

It is well-known that the additive group of a finite local nearring is always a p-group
for a prime p (c.f. Maxson [16]). Therefore using finite local nearrings only triply fac-
torized p-groups can be constructed. In order to obtain more general triply factorized
groups, in Section 5.4 subdirect products of local nearrings are studied. It is shown in
Corollary 5.4.2 that a subdirect product of local nearrings is in fact a direct product of
suitable local nearrings under certain finiteness conditions. These direct products can be
used to obtain nearrings which are not local, but contain construction subgroups which
need not be p-groups.

The construction subgroups LR of most of the examples of local nearrings that can be
found in literature are abelian. To obtain also examples of local nearrings R, in which
the construction subgroup LR is not abelian, a method for constructing local nearrings
with non-abelian construction subgroup LR is described in Chapter 6. The following is
proved.

Theorem 6.1.5.
Given an arbitrary p-group N of finite exponent, where p is a prime number, there exists
always a local nearring R such that N is isomorphic to a subgroup of LR.
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In Section 6.2 the additive and the multiplicative structure of the nearring in The-
orem 6.1.5 is investigated. Also the operation of LR + 1 on LR is described, which is
important to know the structure of the resulting triply factorized groups.

All triply factorized groups constructible by using local nearrings of order p3 for a
prime number p are presented in Chapter 7. It is well-known that for every prime p there
exist exactly 5 non-isomorphic groups of order p3. These are treated separately, where
the case p = 2 requires a special consideration. It is clear that the triply factorized groups
that can be constructed by local nearrings of order p3 must have order p4. Moreover,
there are two different triply factorized groups of order p4 for every prime p. It is
surprising that if the additive group R+ is non-abelian of exponent p2 there is no local
nearring such that the triply factorized group obtained by R is a non-trivial semidirect
product of the elementary abelian group of order p2 with itself, if p ≥ 5, whereas for
p = 3 there is such a local nearring whose additive group is non-abelian of exponent 9
(c.f. Theorem 7.6.2).

In Chapter 8 all local nearrings with dihedral group of units are classified. It is shown
that the additive group of such a local nearring is always a finite p-group for p = 2 or
p = 3. Moreover, the order of R does not exceed 9, if R+ is a 3-group. The structure of
a local nearring with dihedral multiplicative group is rather restricted, as the following
result shows.

Theorem 8.3.11.
There is no local nearring with dihedral multiplicative group, whose order is larger than
16.

This is proved by considering the structure of all groups of order 32. It is shown that
none of these groups can occur as the additive group of a local nearring with dihedral
multiplicative group. Some of the calculations in the proof of Theorem 8.3.11 were done
using the computer algebra system GAP [9]. This system contains a large library of
“small” groups and their automorphism groups. The programs used in the proof of this
theorem are described in detail in Appendix B.
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Notation

General notation

Symbol Description

∅ The empty set

N Set of positive integers {1, 2, 3, . . .}

N0 Set of non-negative integers (N ∪ {0})

Z Ring of integers

Z/nZ Ring of integers modulo n

Q Field of rational numbers

Qp Ring of rationals whose denominator is not divisible by the prime p

Fq Field of order q (q a prime power)

(F )n Ring of n× n-matrices over the field F

Cn Cyclic group of order n

Epn Elementary abelian group of order pn for a prime p;
additive group of Fpn

Q2n (Generalized) quaternion group of order 2n

Dn Dihedral group of order n

GL(n, p) Group of automorphisms of Epn
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Notation

Symbol Description

H ≤ G H is a subgroup of the group G;
H is a subnearring of the nearring G

H < G H is a proper subgroup of the group G;
H is a proper subnearring of the nearring G

A �B A is a normal subgroup of the group B;
A is an ideal of the nearring B

A �B A is a proper normal subgroup of the group B;
A is a proper ideal of the nearring B

G ∼= H G and H are isomorphic

G ∼=R H G and H are isomorphic as R-modules

|M | Cardinality of the set M

|G : U | Index of the subgroup U in the group G

exp(G) Exponent of the group G

o(g) Order of the group element g

Z(G) Centre of the group G

CG(U) Centraliser of U in the group G

NG(U) Normalizer of U in the group G

StabG(Ω) Stabilizer of Ω in G

End(G) Semigroup of endomorphisms of G

Aut(G) Group of automorphisms of G

Inn(G) Group of inner automorphisms of G

〈Ai | i ∈ I〉 Group generated by the subsets Ai of a group, i ∈ I

〈ai | i ∈ I〉 Group generated by the elements ai of a group, i ∈ I

11



Notation

Symbol Description

[a, b] Commutator of the group elements a and b, i.e. −a − b + a + b for
additively written groups, a−1b−1ab for multiplicatively written groups

[A, B] 〈[a, b] | a ∈ A, b ∈ B〉

G′ Derived subgroup [G, G] of the group G

A×B Direct product of the groups A and B;
Cartesian product of the sets A and B

R⊕ S Direct sum of the nearrings R and S

A + B {a + b | a ∈ A, b ∈ B} for subsets A and B of an additively written
group

AB {ab | a ∈ A, b ∈ B} for subsets A and B of a semigroup

A n M ,
M o A

Semidirect product of the group A with the group M , where M is the
normal subgroup

α : A → B α is a mapping from A in B

α : a 7→ b aα = b

idM The identity mapping on the set M

α|U Restriction of the mapping α : M → N to the subset U of M

Ker(α) Kernel of the homomorphism α

Im(α) Image of the mapping α

Hom(G, H) Set of all homomorphisms from G in H

Xn Set of all products of n elements of the subset X of a nearring

J (R) The Jacobson radical of the ring R

12



Notation

Special notation

Symbol Description Definition Page

G(R) Triply factorized group constructed by the radical
ring R

1.2.2 16

R+ Additive group of the nearring R 2.1.1 18

M(G) Nearring of mappings from the group G in G 2.1.4 19

M0(G) Nearring of zero-symmetric mappings of the group
G

2.1.4 19

Mc(G) Nearring of constant mappings of the group G 2.1.4 19

R0 The zero-symmetric part of the nearring R 2.1.6.(a) 20

Rc The constant part of the nearring R 2.1.6.(b) 20

R× Group of units of the nearring R 2.1.6.(g) 20

o+(r) Additive order of the nearring element r 2.1.6.(h) 20

o×(r) Multiplicative order of the unit r of a nearring 2.1.6.(h) 20

AR(X) Annihilator of X in R 2.2.4 23

GR G is an R-module 2.2.5 23

RR The regular R-module R 2.2.8 24

I �` R I is a left ideal of the nearring R 2.3.1 24

I �r R I is a right ideal of the nearring R 2.3.1 24

U ≤R G U is a submodule of the R-module G 2.3.1 24

U �R G U is an R-ideal of the R-module G 2.3.1 24

B ≤` R B is a left R-subgroup of the nearring R 2.3.5 26

B ≤r R B is a right R-subgroup of the nearring R 2.3.5 26
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Notation

Symbol Description Definition Page

(X : Y ) {r ∈ R | ∀y ∈ Y : yr ∈ X} for a nearring R and
non-empty subsets X and Y of an R-module G

2.3.8 26

[X : Y ] {g ∈ G | ∀y ∈ Y : gy ∈ X} for a nearring R, a non-
empty subset X of an R-module G, and a non-
empty subset Y of R

2.3.8 26

CY (X) {y ∈ Y | Xy ⊆ Rc} for a nearring R and non-
empty subsets X and Y of R

2.3.11 27

G(R,U, N) Triply factorized group constructed by the con-
struction subgroup U of the nearring R and the
normal subgroup N of U

3.1.4 30

G(R,U) Triply factorized group constructed by the con-
struction subgroup U of the nearring R

3.1.4 30

Jν(R) Intersection of all annihilators of R-modules of
type ν for a nearring R; the ν-radical of R

4.1.5 37

PR The prime ring of the nearring R 4.3.1 41

14



Chapter 1.

Triply factorized groups

1.1. Factorized groups

In the theory of factorized groups, triply factorized groups play an important rôle. Many
problems concerning factorized groups can be reduced to triply factorized groups.

1.1.1 Definition (c.f. Amberg, de Giovanni, Franciosi [2])
A group G is called factorized (by A and B), if it can be written as a product G = AB
of two of its subgroups A and B.

If G = AB is a factorized group and N is a normal subgroup of G, then the factor
group G/N = (AN/N)(BN/N) is also factorized. On the other hand, a subgroup S of
G need not be factorized by a subgroup of A and a subgroup of B.

1.1.2 Example
Let G = D12 = 〈x, y | x2 = y6 = 1, yx = y−1〉 be the dihedral group of order 12. Then
G is factorized by A = 〈x〉 and B = 〈y2, xy3〉, but the subgroup S = 〈y3〉 of G cannot
be written as a product of a subgroup of A and a subgroup of B.

A subgroup S of a factorized group G = AB is called factorized, if S = (A∩S)(B∩S)
and A∩B ⊆ S (c.f. [2]). It can easily be shown that the intersection of arbitrarily many
factorized subgroups of G is factorized (c.f. [2, Lemma 1.1.2]). Thus, the intersection
X(S) of all factorized subgroups of G which contain the subgroup S of G is the smallest
factorized subgroup of G containing S. X(S) is called the factorizer of S. If N is a
normal subgroup of G, the factorizer X(N) has an interesting triple factorization.

1.1.3 Lemma (Amberg, de Giovanni, Franciosi [2, Lemma 1.1.4])
Let the group G = AB be factorized by A and B, and let N be a normal subgroup of
G. Then, X(N) = (A ∩BN)N = (B ∩ AN)N = (A ∩BN)(B ∩ AN).

1.1.4 Example
Let A, B, G, and S be as in Example 1.1.2. Then S �G, and X(S) = 〈x, y3〉. In this
case, A ∩BS = A and B ∩ AS = 〈xy3〉.
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1.2. A connection between triply factorized groups and radical rings

Since the factorizer of a normal subgroup N of a factorized group G always has a
triple factorization by Lemma 1.1.3, in order to obtain information on the structure of
N , in many cases one has to consider groups with a triple factorization. If G is a group
which has a triple factorization of the form G = AB = AM = BM with subgroups A
and B of G and an abelian normal subgroup M of G, then C = (A ∩M)(B ∩M) is a
normal subgroup of G. In this case,

G/C = (AC/C) n (MC/C) = (BC/C) n (MC/C) = (AC/C)(BC/C).

1.1.5 Definition
A factorized group G is called triply factorized (by A, B, and M), if G = A n M =
B n M = AB for two subgroups A and B and a normal subgroup M of G.

Note that in a triply factorized group G = A n M = B n M = AB the subgroups A
and B are complements of M and hence A ∼= B. But A and B can only be conjugate if
A = B = G.

1.2. A connection between triply factorized groups and
radical rings

If G = A n M = B n M = AB is a triply factorized group with an abelian normal sub-
group M , there is an interesting connection to radical rings in the sense of Jacobson [12].

1.2.1 Definition
Let R be an associative ring. R is called a radical ring, if R coincides with its Jacobson
radical J (R), i.e. if R forms a group under the circle operation a ◦ b = ab + a + b for all
a, b ∈ R. Obviously, a radical ring does not contain an identity element.

The following construction, due to Ya. Sysak, is for instance described in [2].

1.2.2 Construction (Sysak [20])
Let R be a radical ring, embedded in an arbitrary way into the ring R1 with identity
element. Then the group R◦ is isomorphic to the subgroup R + 1 of the group of units
of R1.

Let U be a left ideal of R and M = R/U as a left R-module. Then the group A = R+1
operates on M via

(l + U)(m+1) = (m + 1)−1l + U

for all l, m ∈ R. In the semidirect product G = G(R) = A n M ,

B =
{(

(l + 1)−1 , l + U
) ∣∣ l ∈ R

}
is a complement of M with the property

G = A n M = B n M = AB,

i.e. G is a triply factorized group.
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1.2. A connection between triply factorized groups and radical rings

This construction raises the question, if for a triply factorized group G = A n M =
B nM = AB there is always a radical ring R such that G can be constructed by R. The
next theorem shows that this is the case, if A, B, and M are abelian and if A ∩B = 1.

1.2.3 Theorem (Sysak, in [2, Proposition 6.1.4])
If G = A n M = B n M = AB is a triply factorized group with abelian subgroups A,
B, and M , and with A ∩ B = {1}, then there is a commutative radical ring R with
G ∼= G(R).

In [4, Example 2.4] it is also shown that Theorem 1.2.3 need not be true, if A and B are
nilpotent of class 2.

Since the group M in Construction 1.2.2 is the additive group of an R-module, it is
always abelian. To obtain triply factorized groups G = A n M = B n M = AB with a
possibly nonabelian group M , one can use nearrings instead of rings.
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Chapter 2.

Nearrings

2.1. Basics about nearrings

First some basic facts about nearrings are given. Most results in this chapter can be
found in Meldrum [17], Pilz [18], and Clay [7].

2.1.1 Definition (c.f. Meldrum [17])
A set R with two binary operations “+” and “·” is called a (left) nearring, if the following
conditions hold:

(N1) (R, +) is a (not necessarily abelian) group with neutral element 0; (R, +) often is
written as R+;

(N2) (R, ·) is a semigroup, i.e. the multiplication is associative;

(N3) the left distributive law holds, i.e. x · (y + z) = x · y + x · z for all x, y, z ∈ R.

As usual, for x · y one often only writes xy. If R contains an element 1 such that
x · 1 = 1 · x = x for all x ∈ R then R is called a nearring with identity. A nearring
with xy = 0 for all x, y ∈ R is called a zero nearring, and a nearring is called constant
nearring, if xy = y for all x, y ∈ R.

If instead of the axiom (N3) in R the axiom

(N3′) (x + y) · z = x · z + y · z for all x, y, z ∈ R.

holds, then R is called a right nearring. Right nearrings are used by some authors (e.g.
Pilz [18]), and all results about left nearrings always have an analogue for right nearrings
and vice versa.

2.1.2 Convention
Let R be a nearring, r ∈ R and n > 0 a positive integer. Then for r + · · ·+ r︸ ︷︷ ︸

n times

in the

sequel will always be written rn and never nr. Analogously, for negative integers m, rm
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2.1. Basics about nearrings

will mean −(r(−m)). The reason for this are nearrings with identity. If integral factors
are written on the right, they can be considered as multiples of the identity element.1

Conversely, nr will mean (1 + · · ·+ 1)r, which is in general different from rn.
Note that because of left distributivity in every nearring R the equation (xy)n = x(yn)

holds for all x, y ∈ R and all n ∈ Z, even if R does not have an identity element.

2.1.3 Remark
As for rings, it can be shown that a nearring with identity must be trivial if 1 = 0.
Hence, in the sequel “nearring with identity” will always imply 1 6= 0.

2.1.4 Examples
(a) Let G be a (not necessarily abelian) additively written group with neutral element

0. Then
M(G) = {α : G → G},

the set of all mappings from G in G, is a left nearring under pointwise addition (i.e.
g(α + β) = gα + gβ) and composition of mappings (g(αβ) = (gα)β)). (If one writes
the mapping on the left of the element it operates on, then M(G) becomes a right
nearring.)

(b) The following subsets of M(G) are also nearrings under these operations:

� M0(G) = {α : G → G | 0α = 0}
� Mc(G) = {α : G → G | α = const}
� M0

c (G) =
{
α : G → G

∣∣ α |G\{0}= const and 0α = 0
}

2.1.5 Remarks
As for rings, one can show that the following equalities hold in any nearring:

(a) r0 = 0 for every r ∈ R

(b) r(−s) = −(rs) for every r, s ∈ R.

Considering constant nearrings, it is easy to see that the following equations do not hold
in nearrings in general:

(a′) 0r = 0

(b′) (−r)s = −(rs).

The following definitions are very useful when dealing with nearrings. In particular,
part (e) is important, since the terms commutative and abelian in the theory of nearrings
have different meanings.

1In powers the exponent is also written on the right.
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2.1. Basics about nearrings

2.1.6 Definition
Let R be a nearring.

(a) R0 = {r ∈ R | 0r = 0} is called the zero-symmetric part of R.

(b) Rc = {r ∈ R | 0r = r} = {r ∈ R | ∀x ∈ R : xr = r} (c.f. Lemma 2.1.10) is called
the constant part of R.

(c) Rd = {d ∈ R | (r + s)d = rd + sd ∀r, s ∈ R}. An element d ∈ R is called a dis-
tributive element, if d ∈ Rd.

(d) The nearring R is called constant, zero-symmetric, or distributive if R = Rc, R = R0,
or R = Rd, respectively.

(e) R is called commutative, if (R, ·) is commutative; R is called abelian, if (R, +) is
abelian.

(f) R is called distributively generated (d.g.), if there is a subsemigroup S ≤ (Rd, ·),
such that the additive group R+ is generated by S. In this case, one often writes
R = (R,S).

(g) If R is a nearring with identity, the group of units of R is referred to by R×.

(h) If R is a nearring with identity and r ∈ R, o+(r) is the additive order of r in R+. If
r ∈ R×, o×(r) is the multiplicative order of r.

Weinert [23] deals with distributive nearrings. One important result of this article is
that a distributive nearring with identity always is a ring.

2.1.7 Lemma (Weinert [23])
If R = Rd is a distributive nearring, then

R2 =

{
n∑

i=1

xiyi

∣∣∣∣∣ n ∈ N0, xi, yi ∈ R

}

is a ring. In particular, a distributive nearring with identity element is a ring.

If one is familiar with rings, especially the constant part Rc appears unusual, since
rings are always zero-symmetric nearrings. The following theorem gives an important
description of the structure of the additive group of a nearring. Moreover, although
a constant element r of a nearring R has the property that sr = r for all s ∈ R,
Lemma 2.1.10 shows that it is enough to consider 0r, if one wants to check if r is
contained in Rc or not.
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2.1. Basics about nearrings

2.1.8 Theorem (Meldrum [17, Theorem 1.15])
Let R be a nearring. Then Rc is the unique maximal constant subnearring of R and R0

is the unique maximal zero-symmetric subnearring of R. Moreover, R+ = Rc
+ n R0

+.
In particular, if r ∈ R, then r − 0r ∈ R0 and 0r ∈ Rc.

2.1.9 Corollary
Let R be a nearring with identity 1. Then 1 ∈ R0 and hence 1 · z ∈ R0 for all z ∈ Z.

2.1.10 Lemma (Meldrum [17, Lemma 1.12])
Let R be a nearring and r ∈ R an element of the form r = 0x for some x ∈ R. Then
r ∈ Rc. On the other hand, all elements of Rc are of this form (since y = 0y for y ∈ Rc).

In nearrings with identity the structure of the group of units is of special interest.
In this context it is useful to know that the multiplicative inverse of a zero-symmetric
element is zero-symmetric as well. Moreover, the subsequent lemma shows that the
group of units of a nearring R is factorized by the group of units of the zero-symmetric
part of R and the group Rc + 1.

2.1.11 Proposition
Let R be a nearring with identity 1 and r ∈ R× ∩R0. Then r−1 ∈ R0.

Proof. Let r−1 = r0 + 0r−1 with r0 ∈ R0. Then, 1 = rr−1 = r(r0 + 0r−1) = rr0 +
0r−1, and hence −rr0 + 1 = 0r−1. Since sums, products, and additive inverses of zero-
symmetric elements are zero-symmetric, the left side of the last equation is contained in
R0, while the right side is contained in Rc by Lemma 2.1.10, and thus both must be 0.
Hence, 0r−1 = 0 and r−1 ∈ R0. 2

2.1.12 Lemma (c.f. [3, Lemma 2.5])
Let R be a nearring with identity 1. Then Rc + 1 is a subgroup of R× isomorphic to
Rc

+ and R× = R0
×(Rc + 1) with R0

× ∩ (Rc + 1) = {1}.

Proof. It is not difficult to see that the mapping σ : Rc
+ → (Rc + 1)×, x 7→ −x + 1, is

a group isomorphism. Moreover, if r ∈ R×, by Theorem 2.1.8 there are elements c ∈ Rc

and z ∈ R0 such that r = c + z = z(c + 1). Since R0 ∩ Rc = {0} and 1 ∈ R0, it is clear
that R0

× ∩ (Rc + 1) = {1}. 2

For the construction of triply factorized groups using nearrings, the operation of the
group of units on the additive group is important. For the investigation of the structure
of the constructed triply factorized groups the following result is useful.

2.1.13 Proposition
Let R be a nearring with identity element 1. Then R× is isomorphic to a subgroup of
Aut(R+), i.e. R× operates faithfully on R+.
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Proof. For r ∈ R× consider the mapping σr : R → R with x 7→ rx for all x ∈ R. Since
(x + y)σr = r(x + y) = rx + ry = xσr + yσr for all x, y ∈ R, σr is an endomorphism of
R+. Obviously, σr is bijective, hence σr ∈ Aut(R+). Since σrσs = σsr for all r, s ∈ R×,
the mapping σ : R× → Aut(R+) with r 7→ σr−1 for all r ∈ R× is a group homomorphism.
But if σr is the identity mapping, rx = x for all x ∈ R, in particular for x = 1, and
hence r = 1. This means that the kernel of σ is trivial and hence σ is a monomorphism.
It follows that R× is isomorphic to Im(σ). 2

Given a nearring R with identity element 1, the additive order of units always is equal
to the exponent of the additive group. In particular, a group which does not contain an
element whose order is equal to the exponent of the group cannot be the additive group
of a nearring with identity.

2.1.14 Theorem
Let R be a nearring, and let r ∈ R have finite additive order. Then o+(xr) | o+(r) for
all x ∈ R.

Proof. Let n = o+(r). Then, (xr) · n = x(r · n) = x0 = 0. Hence, o+(xr) | o+(r). 2

2.1.15 Corollary
Let R be a nearring with identity. Then, o+(r) = exp(R+) for all r ∈ R×.

Proof. First let exp(R+) < ∞ and r ∈ R×. Then o+(r) | exp(R+) = n. Now let s be
an arbitrary element of R. Then s · o+(r) = sr−1r · o+(r) = sr−1(r · o+(r)) = sr−10 = 0,
and hence o+(s) | o+(r); thus, o+(r) = n.

By the same argument, o+(r) must be infinite, if exp(R+) = ∞, since if o+(r) = n < ∞
for some r ∈ R×, for all s ∈ R would hold s · o+(r) = 0. 2

2.2. Homomorphisms and modules

2.2.1. Nearring homomorphisms

Homomorphisms are a well-known and useful tool for the investigation of any kind of
algebraic structures. As known from rings or groups, nearring homomorphisms can be
used to embed nearrings into other nearrings and in this way to achieve information
about the structure of the nearrings under consideration.

2.2.1 Definition
Let R and S be nearrings, α : R → S a group homomorphism from R+ to S+. The
mapping α is called nearring homomorphism, if for all r, r′ ∈ R the following equation
holds: (rr′)α = (rα)(r′α). The terms kernel, monomrophism, epimorphism, isomor-
phism, endomorphism, and automorphism are defined as usual.
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2.2. Homomorphisms and modules

2.2.2 Remark
Let R be a nearring and α : R → M(R+) the mapping with r(sα) = rs. It is eas-
ily checked, that α is a nearring homomorphism with Ker(α) = {r ∈ R | Rr = 0}. In
particular, every nearring with Ker(α) = {0} can be embedded into the nearring M(R+).

It is well-known that any ring R can be embedded into a ring R1 with identity element,
such that R is an ideal in R1. For nearrings, this is not always possible, but the following
theorem shows that it is at least possible to embed a given nearring into a nearring with
identity as a subnearring.

2.2.3 Theorem (Clay [7, Theorem 1.3.27])
Every nearring can be embedded into a nearring with identity.

2.2.2. Nearring modules

In ring theory, the concept of modules is very important. For nearrings, a similar
concept exists. Because of the lack of right distributivity, left and right modules lead to
essentially different theories. For the construction of triply factorized groups only right
modules are important, and thus in the following only right modules will be introduced.
Of course, authors using right nearrings also use left modules.

2.2.4 Definition (R-modules)
(a) Let (G, +) be a group and R a nearring. G is called a (right) R-module, if there is

a nearring homomorphism θ : (R, +, ·) → (M(G), +, ◦). Such a homomorphism is
called representation of R. A representation θ of R is called faithful, if Ker(θ) = {0}.

(b) Let R be a nearring and G an R-module. For Y ⊆ G, the set

AR(Y ) = {x ∈ R | Y x = 0}

is called the annihilator of Y . If θ is a representation of R, then θ is faithful, if and
only if AR(G) = Ker(θ) = {0}.

Note that some authors (e.g. Pilz [18]) use the term “R-group” instead of “R-module”.

2.2.5 Remark
Often one finds a definition of R-modules, which is equivalent to Definition 2.2.4: Let
(G, +) be a group with neutral element 0 and R a nearring. Let µ : G × R → G,
(g, r) 7→ gr. Then, (G, µ) is called R-module, if for all g ∈ G, r, s ∈ R:

(M1) g(r + s) = gr + gs, and

(M2) g(rs) = (gr)s.

If there is no danger of confusion, one often writes G instead of (G, µ). Some authors
also use the notation GR (or RG, if they are using right nearrings).
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The following definition is very useful if one deals with nearrings with identity.

2.2.6 Definition
Let R be a nearring with identity, G an R-module. If g1 = g for all g ∈ G, then G is
called unital.

Also for nearring modules homomorphisms are defined in the usual way.

2.2.7 Definition
Let R be a nearring, G and H R-modules. Let τ : G → H be a group homomorphism
from G+ to H+. Then τ is called R-module homomorphism or short R-homomorphism,
if (gr)τ = (gτ)r for all g ∈ G and all r ∈ R. The terms kernel, R-monomrophism,
R-epimorphism, R-isomorphism, R-endomorphism, and R-automorphism are defined as
usual.

2.2.8 Remarks
(a) Let R be a nearring. Then R is an R-module, which is called the regular R-module,

and is often denoted by RR.

(b) Let G be a group. Then G is an M(G)-module in the obvious way.

(c) The following statements are very easy to check:

(i) g0R = 0G for all g ∈ G.

(ii) g(−r) = −(gr) for all g ∈ G and all r ∈ R.

(iii) 0Gr = 0G for all r ∈ R0.

(iv) gr = 0Gr for all g ∈ G and r ∈ Rc.

2.3. Ideals and special subgroups

2.3.1. Nearring and module ideals

In ring theory ideals of rings play an important rôle. Note that ideals, as for rings, in the
theory of nearrings are defined as the kernels of homomorphisms, but the criterion for a
subgroup of the additive group of a nearring does not look as simple as in ring theory. In
particular, since the additive group of a nearring need not be abelian, ideals have to be
normal subgroups of the additive group. It is also a very important difference between
rings and nearrings that one has to distinguish between module ideals and submodules.
While module ideals are the kernels of module homomorphisms, submodules are subsets
of modules which are modules themselves under the module operations.

2.3.1 Definition (Ideals and submodules)
Let R be a nearring and G an R-module.

24



2.3. Ideals and special subgroups

(a) A normal subgroup I of R+ is called ideal of R (denoted I �R), if

(i) RI ⊆ I

(ii) (r + i)s− rs ∈ I for all r, s ∈ R and all i ∈ I.

If I only has property (i), it is called left ideal (denoted I �` R); if I only has
property (ii), it is called right ideal (denoted I �r R).

(b) A normal subgroup N of G+ is called R-ideal of G (denoted N �R G), if the element
(g+n)r−nr is contained in N for all g ∈ G, all n ∈ N , and all r ∈ R. In particular,
the right ideals of R are the R-ideals of the regular R-module RR.

(c) A subgroup U ≤ G+ is called R-submodule of G (denoted U ≤R G), if UR ⊆ U .

Factor nearrings and factor modules are defined in the usual way. It is easy to check,
that ideals (R-ideals) are exactly the kernels of nearring homomorphisms (R-homomor-
phisms). Note that for an R-module M the factor module M/N is only defined for
R-ideals N , not for R-submodules N .

A nearring is called simple, if R and {0} are the only ideals in R. An R-module is
called simple, if it has no non-trivial R-ideals (c.f. Pilz [18]).

An ideal I �R is called maximal ideal, if I 6= R and I � J �R implies that J = I.
Maximal left ideals, right ideals, and R-ideals are defined analogously.

2.3.2 Example
Let R be a nearring. Then the zero-symmetric part R0 is a right ideal of R. By
Theorem 2.1.8, R0

+ �R+, thus it suffices to show that for all z ∈ R0 and all r, s ∈ R
the element (r + z)s − rs is zero-symmetric. But this is true since 0((r + z)s − rs) =
(0r + 0z)s− 0rs = 0rs− 0rs = 0.

As known for rings, the sum of two nearring ideals again is an ideal. The subsequent
theorem shows that the factor nearring R/I of a nearring R modulo an ideal I, as
expected, is zero-symmetric if the constant part Rc is contained in the ideal I.

2.3.3 Lemma (Meldrum [17, Theorem 1.30])
(a) The group-theoretical sum of two right ideals again is a right ideal.

(b) The group-theoretical sum of two left ideals again is a left ideal.

(c) The group-theoretical sum of two ideals again is an ideal.

2.3.4 Theorem
Let R be a nearring and I an ideal of R with Rc ⊆ I. Then R/I is a zero-symmetric
nearring.

Proof. Let r ∈ R. Then I(r + I) = (0 + I)(r + I) = 0r + I = I, since 0r ∈ Rc ⊆ I. 2
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2.3.2. R-subgroups

In ring theory, (left or right) ideals often are introduced as subgroups of the additive
group of a ring, which are invariant under left or right multiplication (or both) with
arbitrary ring elements. As stated above, for nearrings ideals are defined in a slightly
different way. But also for nearrings R the R-invariant subgroups are important.

2.3.5 Definition
Let R be a nearring and H ≤ R+ a subgroup of the additive group R+.

(a) H is called left R-subgroup of R (denoted H ≤` R), if RH ⊆ H.

(b) H is called right R-subgroup of R (denoted H ≤r R), if HR ⊆ H.

(c) If H is both a right and a left R-subgroup, it is called two-sided R-subgroup or
(R,R)-subgroup of R.

In the sequel, “R-subgroup” will always mean “right R-subgroup”. R-subgroups are
exactly the R-submodules of RR. Maximal (left, right, two-sided) R-subgroups are
defined in the usual way.

2.3.6 Example
Let R be a nearring. Then the constant part Rc is an (R,R)-subgroup of R, since for
r ∈ R and c ∈ Rc one has 0rc = c = rc and 0cr = cr. Thus, by Lemma 2.1.10,
rc, cr ∈ Rc.

If one considers only zero-symmetric nearrings, it is a useful fact that in this case right
ideals always are right R-subgroups. From this point of view, zero-symmetric nearrings
are a bit closer to rings than general nearrings.

2.3.7 Lemma (Meldrum [17, Lemma 1.35])
Let R be a nearring. If I is a right ideal of R then IR0 ⊆ I. In particular, if R = R0 is
a zero-symmetric nearring, every right ideal is a right R-subgroup, and every ideal is an
(R,R)-subgroup of R.

2.3.3. Generalised annihilators

Annihilators are an important concept in ring theory. For nearrings and nearring mod-
ules, annihilators are introduced in a more general context. Here it is not necessary that
certain products are zero, but only that they are contained in some given set.

2.3.8 Definition
Let R be a nearring and G an R-module. Let X and Y be non-empty subsets of G.
Then one defines

(X : Y ) = {r ∈ R | ∀y ∈ Y : yr ∈ X} .
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For ∅ 6= X ⊆ G and ∅ 6= Y ⊆ R one defines

[X : Y ] = {g ∈ G | ∀y ∈ Y : gy ∈ X} .

Note that (X : Y ) is a subset of R, while [X : Y ] is a subset of G. In most cases there is
no danger of confusion, but if G is a submodule of the regular module RR, it is important
to distinguish these two cases.

Since these sets are more general than annihilators, one cannot expect that they are
ideals in general. But depending on the special structure of the subsets X and Y of the
R-module G, also structural facts about the sets (X : Y ) can be stated.

2.3.9 Theorem (Meldrum [17, Theorem 2.31])
Let R be a nearring and G an R-module, X, Y ⊆ G. Then the following statements
hold.

(a) If X+ ≤ G+, then (X : Y )+ ≤ R+.

(b) If X+ �G+, then (X : Y )+ �R+.

(c) If X ≤R G, then (X : Y ) ≤r R.

(d) If X+ ≤ G+ and Y R ≤ Y , then (X : Y ) ≤` R.

(e) If X �R G, then (X : Y ) �r R.

From this it follows that the annihilators of arbitrary subsets of R-modules always are
right ideals of R, and the annihilators of submodules of an R-module are ideals of the
nearring R.

2.3.10 Corollary (Meldrum [17, Corollary 2.32])
Let R be a nearring and Y a subset of the R-module G. Then (0 : Y ) = AR(Y ) �r R
and AR(G) �R.

The following definition is useful for generalising results concerning nilpotency in zero-
symmetric nearrings to general nearrings (c.f. Theorem 4.1.13).

2.3.11 Definition
Let R be a nearring and ∅ 6= X, Y ⊆ R. Then define CY (X) = {y ∈ Y | Xy ⊆ Rc}.
Then CR(X) = (Rc : X) and by Theorem 2.3.9, CR(X) ≤r R.
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2.3.4. Properties of ideals and R-subgroups

As in ring theory, also nearrings with identity element always contain maximal ideals.
Since all rings are nearrings, it is clear that also in the case of nearrings it is essential
that the nearring under consideration contains an identity element.

2.3.12 Lemma
Let R be a nearring with identity element, I �R a proper ideal of R. Then there is a
maximal ideal M �R with I ⊆ M .

Proof. Let M = {K �R | K 6= R, I ⊆ K}. Since I ∈ M, M 6= ∅, and M is partially
ordered by inclusion. Now let k be a chain in M, and let J =

⋃
{K | K ∈ k}. Since R

has an identity element, which is contained in no K ∈ k because K 6= R for all K ∈ M,
one has J 6= R. Moreover, since k is a chain, it is easy to check that J �R. By Zorn’s
Lemma, M contains a maximal element M . 2

In a similar way one can show that a nearring R with identity always contains maximal
left and right ideals.
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Chapter 3.

Constructing triply factorized groups

3.1. Construction of triply factorized groups

It was shown Construction 1.2.2, how triply factorized groups can be constructed by
using radical rings. This construction will now be generalised using nearrings. For this
the following definition is needed.

3.1.1 Definition
Let R be a nearring with identity 1. Let U ≤ R+ such that (U + 1) ≤ R×. Then, U is
called a construction subgroup of R.

If U is a construction subgroup of the nearring R, then 1 6∈ U , since otherwise 0 ∈ U+1,
which is not invertible. For the construction of triply factorized groups it is not only
important that U + 1 is a multiplicative group if U is a construction subgroup, but also
that U is invariant under left multiplication with elements from U + 1. The following
result shows that this is always the case.

3.1.2 Proposition
Let R be a nearring with identity, U a construction subgroup of R. Then (U +1)U ⊆ U .

Proof. Let A = U + 1 ≤ R×. Since U is an additive group, for every a, b ∈ A one
has a − b = a − 1 + 1 − b = (a − 1) − (b − 1) ∈ U , since a − 1, b − 1 ∈ U . Now
let u, v ∈ U with u = a − 1 and v = b − 1 for suitable elements a, b ∈ A. Then
(u + 1)v = a(b− 1) = ab− a ∈ U , since ab, a ∈ A. 2

3.1.3 Examples
(a) Let R be a nearring with identity. Then the trivial subgroup {0} is a construction

subgroup.

(b) Let R be a nearring with identity 1. Then Rc is a construction subgroup of R, since
Rc + 1 ≤ R× by Lemma 2.1.12.

(c) Let p be a prime, n ≥ 1 a positive integer, and R = Z/pnZ. Then the subgroup pR
of R is a construction subgroup of R.
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3.1. Construction of triply factorized groups

(d) Let R be a ring with identity element. Then the Jacobson radical J (R) is a con-
struction subgroup of R.

(e) A large class of nearrings containing less trivial construction subgroups than these
examples are the local nearrings (c.f. Maxson [16]), which will be described in detail
in Chapter 5.

Using construction subgroups it is possible to construct triply factorized groups in
a very similar way as in Construction 1.2.2. In fact, it is not difficult to see that
Construction 1.2.2 is a special case of the following construction.

3.1.4 Construction
Let R be a nearring with identity element, U a construction subgroup of R, and N+ �U+

a normal subgroup of U+ with (U + 1) N ⊆ N . Let M = U+/N and A = (U + 1)×.
Then A operates on M via the rule

(u + N)(v+1) = (v + 1)−1 u + N

for all u+N ∈ M and all v+1 ∈ A. Next, form the semidirect product G = G(R, U,N) =
A n M = {(u + 1, v + N) | u, v ∈ U} and let

B =
{(

(u + 1)−1 , u + N
) ∣∣ u ∈ U

}
.

Then G = AnM = B nM = AB is a triply factorized group. In the following, G(R,U)
will be written instead of G(R,U, {0}).

Proof. It is clear, that A operates on M+ via the above rule.

(a) B is a group:

Let
(
(u + 1)−1 , u + N

)
,
(
(w + 1)−1 , w + N

)
∈ B. Then(

(u + 1)−1 , u + N
) (

(w + 1)−1 , w + N
)

=
(
(u + 1)−1 (w + 1)−1 , u(w+1)−1

+ w + N
)

=
(
((w + 1) (u + 1))−1 , (w + 1) u + w + N

)
=
(
((w + 1) u + w + 1)−1 , (w + 1) u + w + N

)
∈ B

and
(
(u + 1)−1 , u + N

)−1
=
(
u + 1, (u + 1)−1 − 1 + N

)
∈ B, because u + 1 =(

(u + 1)−1 − 1 + 1
)−1

and(
(u + 1)−1 , u + N

) (
u + 1, (u + 1)−1 − 1 + N

)
=
(
(u + 1)−1 (u + 1) , (u + 1)−1 u + (u + 1)−1 − 1 + N

)
=
(
1, (u + 1)−1 (u + 1)− 1 + N

)
= (1, N)
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3.2. Triply factorized groups constructible by nearrings

(b) G = B n M :

(i) B ∩M = {(1, N)}:
Let B 3

(
(u + 1)−1 , u + N

)
∈ M = {(1, u + N) | u ∈ U}. Then u + 1 = 1,

and thus u = 0.

(ii) G = BM :

Let g = (k + 1, l + N) ∈ G. Then one gets g = bm with the elements b =(
k + 1, (k + 1)−1 − 1 + N

)
∈ B and m =

(
1, 1 + (k + 1)−1 + l + N

)
∈ M .

(c) G = AB.

Let g = (k + 1, l + N) ∈ G. If one chooses a = ((k + 1) (l + 1) , N) ∈ A and
b =

(
(l + 1)−1 , l + N

)
∈ B, one gets ab = g.

Thus G = A n M = B n M = AB is triply factorized. 2

3.1.5 Proposition
Let R be a nearring and U a construction subgroup of R. If the operation of U + 1 on
U is trivial, i.e. if (u + 1)v = v for all u, v ∈ U , then U+ ∼= (U + 1)×.

Proof. Let α : U → U + 1 with uα = −u + 1 for all u ∈ U . Clearly, α is a bijection,
hence it suffices to show that α is a group homomorphism. Let u, v ∈ U . Then

(uα)(vα) = (−u + 1)(−v + 1)

= (−u + 1)(−v) + (−u + 1)

= −v − u + 1

= −(u + v) + 1

= (u + v)α. 2

3.2. Triply factorized groups constructible by nearrings

In Theorem 1.2.3 it was shown that a triply factorized group G = AnM = BnM = AB
with A∩B = 1 can always be constructed using a radical ring, if A, B, and M are abelian
groups. Within nearring theory, one can even show that every triply factorized group
with A ∩ B = 1 and an arbitrary subgroup M can be obtained from a construction
subgroup of M(M) (c.f. Example 2.1.4).

Let G = A n M = B n M = AB a triply factorized group with A ∩ B = 1. In the
following, the elements of G will be written as tuples (a, m) with a ∈ A and m ∈ M . For
A, B, and G the multiplicative notation will be used, while M will be written additively.
Furthermore, let π̃ : G → A, (a, m) 7→ a, be the canonical epimorphism from G onto A,
and let π = π̃|B. Finally, let µ̃ : G → M , (a, m) 7→ m and µ = µ̃|B. (Clearly, µ need not
be a homomorphism in general.)
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3.2. Triply factorized groups constructible by nearrings

3.2.1 Lemma
(a) µ is a bijection between B and M .

(b) π is an isomorphism from B onto A.

Proof. (a) Let bi = (ai, m) ∈ B, i = 1, 2, with b1µ = b2µ = m. Then

b1b2
−1 = (a1, m) (a2, m)−1

= (a1, m)
(
a2

−1,−ma2
−1
)

=
(
a1a2

−1, ma2
−1 −ma2

−1
)

=
(
a1a2

−1, 0
)
∈ A ∩B = {1}

Hence a1 = a2, i.e. b1 = b2, and thus µ is injective.

Now let m ∈ M . Since G = AB, there is an a ∈ A and a b ∈ B with m = ab, i.e.
(1, m) = (a, 0) (bπ, bµ) = (a (bπ) , bµ). Thus m = bµ and hence µ is also surjective.

(b) Let a ∈ A. Since G = B n M , there are elements b ∈ B and m ∈ M with a = bm.
Thus one has a = aπ̃ = (bm) π̃ = bπ̃mπ̃ = bπ̃ = bπ, since Ker(π̃) = M . Hence π is
surjective.

Now let bi = (a, mi) ∈ B, i = 1, 2, with b1π = b2π. Then

b1b2
−1 = (a, m1) (a, m2)

−1

= (a, m1)
(
a−1,−m2

a−1
)

=
(
aa−1, ma−1

1 −m2
a−1
)

=
(
1, (m1 −m2)

a−1
)
∈ B ∩M = 1.

Hence (m1 −m2)
a−1

= 0, i.e. m1 = m2 and thus b1 = b2. This means that π is
injective. 2

Now let δ : A → M , a 7→ aπ−1µ, which is a bijection by Lemma 3.2.1.

3.2.2 Lemma
Let a, b ∈ A. Then (ab) δ = (aδ)b + bδ. In particular, 1δ = 0 and (a−1) δ = − (aδ)a−1

.

Proof. Let a, b ∈ A with aπ−1 = (a, m) ∈ B, and bπ−1 = (b, n) ∈ B. Then aδ = m
and bδ = n. But ab = (a, m) (b, n) =

(
ab, mb + n

)
∈ B, and hence (ab) δ = (ab) π−1µ =

mb + n = (aδ)b + bδ.
Moreover, 1δ = (1 · 1) δ = (1δ)1 + 1δ = 1δ + 1δ, and thus 1δ = 0. Finally, 0 = 1δ =

(a · a−1) δ = (aδ)a−1

+ (a−1) δ. It follows that (a−1) δ = − (aδ)a−1

. 2
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3.2. Triply factorized groups constructible by nearrings

Next let γ : A → M (M), a 7→ γa with γa : M → M , x 7→ (a−1 (xδ−1)) δ.

3.2.3 Lemma
(a) γ1 = idM , where idM is the identity mapping on M .

(b) γaγb = γab for all a, b ∈ A.

(c) γa is bijective for all a ∈ A.

(d) γ is a group monomorphism from A in M(M)×. In particular, A ∼= Im(γ).

Proof. (a) Let x ∈ M . Then xγ1 = (1−1 · xδ−1) δ = x, and hence γ1 = idM .

(b) Let x ∈ M . Then

xγaγb =
(
a−1

(
xδ−1

))
δγb =

(
b−1
(
a−1

(
xδ−1

))
δδ−1

)
δ

=
(
b−1a−1

(
xδ−1

))
δ =

(
(ba)−1 (xδ−1

))
δ

= xγab.

Thus γaγb = γab.

(c) It follows immediately from (a) and (b) that γa−1 = γa
−1.

(d) That γ is a group homomorphism follows from (c) and (b). So let a ∈ Ker(γ), i.e.
γa = idM . Then 0 = 0γa = (a−1 (0δ−1)) δ = a−1δ. Hence a−1 = 0δ−1 = 1, that is
a = 1. 2

Since 0γa = a−1δ, γa is uniquely determined by 0γa, because of the bijectivity of γ. Let
V = Im(γ) and U = V − idM . Then the following lemma holds.

3.2.4 Lemma
(a) U is a group with respect to addition.

(b) The mapping ξ : M → U , m 7→ γ(mδ−1)−1 − idM , is a group isomorphism.

(c) U is a construction subgroup of M(M).

(d) γa
−1 (mξ) = (ma) ξ for all a ∈ A and all m ∈ M .
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3.2. Triply factorized groups constructible by nearrings

Proof. (a) Let νi = γai
− idM ∈ U , i = 1, 2. It suffices to show that ν1 − ν2 ∈ U ,

i.e. ν1 − ν2 + idM = γa1 − idM + idM − γa2 + idM = γa1 − γa2 + idM ∈ V . Let
c = ((a1

−1δ − a2
−1δ) δ−1)

−1
. Then, for all x ∈ M ,

x (γa1 − γa2 + idM) =
(
a1

−1
(
xδ−1

))
δ −

(
a2

−1
(
xδ−1

))
δ + x

=
(
a1

−1δ
)xδ−1

+ x− x−
(
a2

−1δ
)xδ−1

+ x

=
(
a1

−1δ
)xδ−1

−
(
a2

−1δ
)xδ−1

+ x

=
(
a1

−1δ − a2
−1δ
)xδ−1

+ x

=
(
c−1δ

)xδ−1

+ x

=
(
c−1
(
xδ−1

))
δ

= xγc

It follows that γa1 − γa2 + idM = γc ∈ V and hence U+ is a group.

(b) First 0 (mξ) = 0γ(mδ−1)−1 − idM = (mδ−1 (0δ−1)) δ = m for all m ∈ M , i.e. the
mapping mξ is uniquely determined by 0(mξ). Then 0(mξ + nξ) = m + n =
0((m + n)ξ), i.e. (m + n)ξ = mξ + nξ. Thus ξ is a group homomorphism. Since ξ is
bijective (the mapping γa − idM 7→ (a−1) δ is an inverse of ξ), ξ is an isomorphism
and hence M ∼= U+.

(c) By (a), U is an additive group. By construction of U , the set U +1 is a multiplicative
group. Hence U is a construction subgroup of M(M).

(d) Let a ∈ A and m ∈ M . Then

0
(
γa

−1 (mξ)
)

= 0 (γa−1 (mξ))

= (aδ) (mξ)

= (aδ)
(
γ(mδ−1)−1 − idM

)
=
(
mδ−1

(
aδδ−1

))
δ − aδ

=
(
mδ−1a

)
δ − aδ

=
(
mδ−1δ

)a
+ aδ − aδ

= ma = 0 (maξ) ,

and thus γa
−1 (mξ) = maξ. 2

By Construction 3.1.4, U leads to a triply factorized group V n U , which is isomorphic
to G via the group isomorphism α : G → V n U , (a, m) 7→ (γa, mξ).

34



3.2. Triply factorized groups constructible by nearrings

Proof. Let (a, m) , (b, n) ∈ G. Then

((a, m) (b, n)) α =
(
ab, mb + n

)
α

=
(
γab,

(
mb + n

)
ξ
)

=
(
γaγb,

(
mb
)
ξ + nξ

)
=
(
γaγb, γb

−1 (mξ) + nξ
)

= (γa, mξ) (γb, nξ)

= (a, m) α · (b, n) α.

Moreover, α is bijective, since γ and ξ are. 2

In summary it follows that the group G can be constructed from the construction sub-
group U ≤ M(M). Thus the following theorem is proved.

3.2.5 Theorem
If G = A n M = B n M = AB is a triply factorized group with A ∩ B = 1, then the
nearring M(M) contains a construction subgroup U with G ∼= G(R,U).
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Chapter 4.

More on nearrings

4.1. Radical theory

4.1.1. Monogenic R-modules and modules of type ν

In ring theory the Jacobson radical J (R) of a ring R plays an important rôle (c.f. e.g.
Jacobson [12]). There are several different characterisations of the Jacobson radical
in ring theory. Unfortunately, these characterisations lead to different concepts when
generalised to nearrings. In the following, a few useful generalisations of the Jacobson
radical for nearrings are introduced. These are closely connected to quasiregularity for
nearrings, as the usual quasiregularity is connected to the Jacobson radical in ring theory.
For these generalisations, first monogenic R-modules of type ν have to be defined.

4.1.1 Definition (Meldrum [17, Definition 3.1])
Let R be a nearring and let G be an R-module. G will be called monogenic, if there
exists a g ∈ G such that gR = G, i.e. G = {gr | r ∈ R}. An element g ∈ G such that
G = gR is called a generator of G.

4.1.2 Proposition
If G is a monogenic R-module and R a nearring with identity, then g1 = g for all g ∈ G,
i.e. G is a unital module.

Proof. Let h ∈ G be a generator of G, and let g ∈ G an arbitrary element. Then there
is an element r ∈ R with g = hr. It follows that g1 = (hr)1 = h(r1) = hr = g. 2

4.1.3 Definition (Meldrum [17, Definition 3.4])
Let G be a monogenic R-module. Then

� G is an R-module of type 0, if G is simple, i.e. it has no non-trivial proper R-ideals;

� G is an R-module of type 1, if G is simple and for all g ∈ G, either gR = G or
gR = {0};
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4.1. Radical theory

� G is an R-module of type 2, if G has no non-trivial proper R-submodules.

Note that R-modules of type 2 are also of type 1, and those of type 1 are also of type 0.

4.1.4 Lemma
If R is a nearring with identity and G is an R-module of type 2 then G = gR for all
g ∈ G \ {0}.

Proof. For every g ∈ G, the set gR is a submodule of G, since for r, s ∈ R always
gr + gs = g(r + s) ∈ gR and (gr)s = g(rs) ∈ gR. Since G is of type 2, gR = {0} or
gR = G. But g = g1 ∈ gR, and hence, if g 6= 0, then gR = G. 2

Using R-modules of type ν, it is now possible to define the radicals Jν(R) for a zero-
symmetric nearring R. Note that these three radicals coincide with the Jacobson radical
of R if R is a ring.

4.1.5 Definition (Meldrum [17, Definition 5.4])
Let R be a nearring. For ν ∈ {0, 1, 2} the ν-radical Jν(R) is

Jν(R) =
⋂
{AR(G) | G is an R-module of type ν}

If there are no R-modules of type ν, then put Jν(R) = R.

4.1.6 Remark
For zero-symmetric nearrings R, Beidleman [6] defines the radical J (R) as the intersec-
tion of all right ideals of R which are maximal as R-subgroups. Using Lemma 4.1.4 it is
easy to see that J (R) = J2(R).

4.1.2. Quasiregularity

The ring theoretical quasiregularity may also be generalised to nearrings. Because of the
lack of the right distributive law, the definition of quasiregularity seems to be somewhat
more complicated than in ring theory.

4.1.7 Definition (Meldrum [17, Definition 5.19])
(a) Let R be a nearring. The element z ∈ R is said to be right quasiregular, if z is

contained in the right ideal of R generated by {x− zx | x ∈ R}

(b) A subset X of R is called quasiregular if every element of X is right quasiregular.

4.1.8 Remark
If R is a zero-symmetric nearring with identity element 1, Beidleman [6] calls the element
z ∈ R right quasiregular, if there exists an element r ∈ R such that (1− z)r = 1. In this
case, z is also right quasiregular in the sense of Meldrum [17].
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Proof. Let z be right quasiregular in the sense of Beidleman [6], r ∈ R with (1−z)r = 1,
and let I be the right ideal of R generated by {x− zx | x ∈ R}. Then 1 − z ∈ I, and
since R is zero-symmetric, I is an R-subgroup of R by Lemma 2.3.7. Hence z = 1 · z =
(1− z)rz ∈ I. 2

Note that the definitions of Beidleman [6] and Meldrum [17] are not equivalent, even
for zero-symmetric nearrings with identity. An example for an element which is right
quasiregular in the sense of Meldrum [17], but not in the sense of Beidleman [6] is given
in a more general context below in Remark 4.4.4.

As for rings, one may define nil and nilpotent subsets for nearrings, as well as nilpo-
tent elements. Nilpotent construction subgroups will be of special interest when local
nearrings are investigated in Chapter 5.

4.1.9 Definition (Beidleman [6, Definition 6.1])
Let R be a nearring.

(a) An element x ∈ R is called nilpotent, if there is a positive integer n such that xn = 0.

(b) A subset X ⊆ R is called nil, if all elements of X are nilpotent.

(c) A subset X ⊆ R is called nilpotent, if there is a positive integer n such that

Xn = {r1 · . . . · rn | ri ∈ X} = {0},

i.e. each product of n elements of X is zero. Clearly, every nilpotent subset of R is
nil.

Although Meldrum [17] and Beidleman [6] only consider zero-symmetric nearrings,
most statements about nilpotent elements and nil subsets also hold in general nearrings,
since obviously nilpotent elements are always contained in the zero-symmetric part of a
nearring.

The following lemma and the subsequent theorem are well-known in ring theory, but
hold also for nearrings. Since Meldrum [17] only considers zero-symmetric nearrings,
here the proof for the general case is given.

4.1.10 Lemma (see Meldrum [17, Lemma 5.20 and Corollary 5.21])
A nilpotent element of a nearring R is right quasiregular. In paricular, a nil subset of R
is quasiregular.

Proof. Let z ∈ R be a nilpotent element. Then there is a positive integer n with
zn = 0. Let K be the right ideal of R generated by {x− zx | x ∈ R}. Then for all i ≥ 1
the element zi − zzi = zi − zi+1 ∈ K. In particular, z = z − zn =

∑n
i=1 (zi − zi+1) ∈ K.

Hence z is right quasiregular. 2

The following theorems taken from Meldrum [17] hold for zero-symmetric nearrings.
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4.1.11 Theorem (Meldrum [17, Theorem 5.23])
If B is a quasiregular R-subgroup of the zero-symmetric nearring R, then B ⊆ J2(R).

4.1.12 Theorem (Meldrum [17, Theorem 5.38])
Let R be a zero-symmetric nearring with descending chain condition for R-subgroups.
Then every quasiregular R-subgroup H of R is nilpotent.

This may be generalised as follows.

4.1.13 Theorem
Let R be a nearring with identity element which satisfies the descending chain condition
for R-subgroups. Let H be an R-subgroup of R with H + 1 ⊆ R×. Then there is a
positive integer n such that Hn = H ∩Rc.

Proof. For k ∈ N, let Hk be the R-subgroup of R generated by Hk. Then

H = H1 ⊇ H2 ⊇ · · · ⊇ Hk−1 ⊇ Hk ⊇ Hk+1 ⊇ . . .

is a descending chain of R-subgroups. By the chain condition, there is a least positive
integer n with Hn = Hn+1. First, it is clear that H ∩ Rc ⊆ Hk for all k, and hence
Hk ∩Rc = H ∩Rc. Let K = Hn and show that K = H ∩Rc – this is sufficient to show
the theorem.

Assume that K 6= H ∩Rc. If K2 is the R-subgroup generated by {k1k2 | k1, k2 ∈ K},
then K2 ≥ H2n = Hn = K. Hence K2 = K. Next consider the set

S = {L | L ≤r R, L ⊆ K, LK 6= H ∩Rc}

(note that H ∩ Rc is always contained in XK for X ⊆ R). Since K = K2 is the R-
subgroup generated by K2 and K 6= H ∩ Rc, K2 6= H ∩ Rc and thus K ∈ S. By the
descending chain condition, S contains a minimal element M . Since MK 6= H ∩ Rc,
there is an element m ∈ M with mK 6= H ∩ Rc. It follows that mK is an R-subgroup
of R contained in K. Now (mK)K = H ∩ Rc would mean that mK2 = H ∩ Rc. But
then K2 ⊆ CR(m) ≤r R, and hence CR(m) ⊇ K2 = K (c.f. Definition 2.3.11). This is a
contradiction since mK 6= H ∩Rc, and thus (mK)K 6= H ∩Rc and mK ∈ S. Moreover,
mK ⊆ M and by the minimality of M , it follows that mK = M .

Let x ∈ K with mx = m. Then mxr = mr and hence xr − r ∈ AR(m) for all r ∈ R.
Since H + 1 ⊆ R×, −x + 1 ∈ AR(m) ∩R×. It follows

m = m(−x + 1)︸ ︷︷ ︸
=0

(−x + 1)−1 = 0(−x + 1)−1 ∈ Rc.

But then mk ∈ Rc for all k ∈ K and thus mK = H ∩ Rc, a contradiction. Hence
K = H ∩Rc. 2
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4.2. Nearfields

Nearfields are an important class of nearrings. They first appear in Dickson [8]. For the
construction of triply factorized groups, nearfields do not play a very important rôle,
but they appear as factor nearrings of local nearrings, which will be described in detail
in Chapter 5. An overview about the theory of nearrings can be found in Wähling [22].

4.2.1 Definition
A nearring F is called nearfield, if F \ {0} is a multiplicative group. A nearfield which
is not a skew-field is called a proper nearfield.

4.2.2 Proposition (Pilz [18, Proposition 8.1])
If F is a nearfield then either F ∼= Mc(C2) or F is a zero-symmetric nearring with
identity.

4.2.3 Remark
Note that F = Mc(C2) is not a nearring with identity. Let ι be the neutral element of
the group F \ {0}. Then ι is not an identity element of F , since 0ι = ι 6= 0.

On the other hand, if F is a zero-symmetric nearring, then the neutral element 1 of
F \ {0} is an identity element. In the following only zero-symmetric nearfields will be
considered.

As the next lemma and the subsequent theorem show, nearfields are much closer to
rings than general nearrings.

4.2.4 Lemma (Wähling [22, Satz I.2.2])
Let F be a nearfield and x, y ∈ F . Then the following holds:

(a) xy = 0 if and only if x = 0 or y = 0.

(b) x2 = 1 if and only if x = 1 or x = −1.

(c) (−1)x = x(−1).

(d) (−x)y = −xy = x(−y).

4.2.5 Theorem (Wähling [22, Satz I.2.3])
The additive group F+ of a nearfield F is abelian.

4.3. Prime rings

The prime field of a field is the subfield generated by the identity element. For nearrings
with identity, this concept may be generalised. One cannot expect that the subnearring
generated by the identity element in general is a field, but it turns out that it is a
commutative ring. In the following the subnearring generated by the identity element is
less important than the nearring containing also the inverses of the invertible elements.
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4.3.1 Definition
Let R be a nearring with identity element 1. Then define ER = 〈1〉+. Furthermore, let
PR = {nm−1 | n ∈ ER, m ∈ ER ∩R×}.

4.3.2 Lemma
Let R be a nearring with identity element 1. Then ER and PR are commutative rings.

Proof. Let n, m ∈ E, i.e. there are integers ñ, m̃ with n = 1 · ñ and m = 1 · m̃. If
m̃ ≥ 0 then nm = n + · · ·+ n︸ ︷︷ ︸

m̃ summands

∈ ER and hence, if m̃ < 0, nm = −(n(−m)) ∈ ER. Since

nm = (1 · ñ) · m̃ = 1 · (ñm̃) = 1 · (m̃ñ) = mn, it is also clear that ER is a commutative
nearring with identity and hence a ring by Lemma 2.1.7.

It is clear that PR is closed under multiplication and that (PR, ·) is a commutative
semigroup. Thus it suffices to show that PR is closed under addition. Let n, x ∈ ER and
m, y ∈ ER ∩ R×. Then it is not difficult to see that nm−1 + xy−1 = (ny + mx)(my)−1.
Hence PR is a commutative nearring with identity and thus a ring by Lemma 2.1.7. 2

The following two lemmas describe the structure of ER and PR in detail. It turns out
that the structure of these rings is not very complicated.

4.3.3 Lemma
Let R be a nearring with identity 1 and o+(1) = n < ∞. Then ER = PR

∼= Z/nZ.

Proof. It is clear that ER
∼= Z/nZ. Since an element of Z/nZ which is not invertible

is a zero-divisor, it cannot be invertible in R. Hence the inverses of invertible elements
of ER are contained in ER and thus ER = PR. 2

4.3.4 Lemma
Let R be a nearring with identity 1 and o+(1) = ∞. Then ER

∼= Z. There is a set πR

of primes such that an element n ∈ ER is invertible in R if and only if no prime p ∈ πR

is a divisor of n. PR
∼= ZD−1, where D = Z \ (

⋃
p∈πR

pZ), i.e.

PR
∼=
{ n

m
∈ Q

∣∣∣ ∀p ∈ πR : p - m
}

.

Note that it is possible that πR contains all prime numbers. In this case PR is isomorphic
to Z.

Proof. If o+(1) = ∞, it is clear that ER
∼= Z. Now let n ∈ Z such that n is invertible

in R. Then for every prime p with p | n, also p must be invertible in R. On the other
hand, if n is not invertible, then there is a prime divisor p of n which is not invertible.
But if p is a prime which is not invertible in R, then for every z ∈ Z the element pz
is not invertible – hence pZ ∩ R× = ∅. Now let πR be the set of all primes which are
not invertible in R. Then all elements of

⋃
p∈πR

pZ are not invertible, while all elements

of D = Z \ (
⋃

p∈πR

pZ) are invertible. An easy calculation shows that PR
∼= ZD−1, where

ZD−1 is the ring of quotients over Z with set of denominators D. 2
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4.3.5 Definition
Let R be a nearring with identity 1. Then PR is called the prime ring of R. Note that
by Lemmas 4.3.3 and 4.3.4 PR is always contained in R0.

In the following, the construction subgroups of prime rings will be investigated. In
particular, prime rings always contain a unique maximal construction subgroup. The
following definition is needed for the description of construction subgroups of finite prime
rings.

4.3.6 Definition
Let n be a positive integer with n =

k∏
i=1

pαi
i , where pi are pairwise distinct primes, αi > 0,

and k ≥ 0. Then let κ(n) =
k∏

i=1

pi, the greatest square-free divisor of n. For negative

integers let κ(n) = κ(−n).

4.3.7 Theorem
Let R be a nearring with identity.

(a) If o+(1) = n < ∞ then U ≤ PR
+ is a construction subgroup of PR if and only if

U+ = 〈k〉+ with k | n and κ(k) = κ(n).

(b) If o+(1) = ∞ and πR is the set of all prime numbers in ER which are not invertible
in R, then U is a construction subgroup of PR if and only if there is an integer x
with p | x for all p ∈ πR and

U ∼= Qx =
{ n

m
∈ Q

∣∣∣ x | n, (x, m) = 1
}

.

In particular, if πR is finite and q =
∏

p∈πR

p, then K = Qq = qPR is the unique maxi-

mal construction subgroup of PR. If πR is infinite, there is no non-trivial construction
subgroup of PR.

Proof. (a) Let U be a construction subgroup of PR. By Lemma 4.3.3, PR
∼= Z/nZ

and hence U+ is generated by a divisor of n. First show that (lk + 1, n) = 1 for all
l ∈ Z if and only if κ(n) = κ(k).

To see this κ(k) = κ(n), l ∈ Z, and let 1 6= t be an arbitrary divisor of n. Then
κ(t) | lk and hence κ(t) - lk + 1. Thus t - lk − 1 and since this holds for any
divisor t of n, one has (lk + 1, n) = 1. An easy calculation shows that in this case
U + 1 ≤ PR

×.

On the other hand, if k | n with κ(k) 6= κ(n) then there is a prime p with p | n and
p - k. Hence (p, k) = 1. Then there are elements x, y ∈ Z with xp + yk = 1, i.e.
xp = (−y)k + 1. Thus p | (−y)k + 1 and (−y)k + 1 is not invertible in PR.
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4.3. Prime rings

(b) First let U be a construction subgroup of PR, and let a
b
∈ U with (a, b) = 1. Assume

that there is an element p ∈ πR with p - a. Then there exists an integer k with
ka ≡ −1 (mod p), and hence p | ka + 1. Thus ka + 1 6∈ PR

×. But this is a
contradiction, since a

b
∈ U and therefore a

b
· kb = ka ∈ U . Hence p | a for all p ∈ πR.

Thus, if πR is finite, U ≤ K, and if πR is infinite, a is divisible by an infinite number
of primes and hence a must be zero, such that the trivial subgroup of PR

+ is the
only construction subgroup of PR.

For the remainder of this proof let πR be a finite set and let q =
∏

p∈πR

p.

Now show that Qx is a construction subgroup of PR if q | x (which is equivalent to
the condition that p | x for all p ∈ πR). It is clear that Qx is a subgroup of PR

+. If
xa
b
, xr

s
∈ Qx with (xa, b) = (xr, s) = 1, then xa

b
+ 1 = xa+b

b
∈ PR

×, since p - xa + b
for all p ∈ πr. Furthermore,(xa

b
+ 1
)
·
(xr

s
+ 1
)−1

=
xa + b

b
· s

xr + s

=
xas + bs

xbr + bs
=

xas− xbr

xbr + bs
+ 1 ∈ Qx + 1,

since x | xas − xbr and (x, bs) = 1. Hence, Qx + 1 is a group under multiplication
and thus a construction subgroup of PR.

Next let U be a construction subgroup of PR. Then U + 1 is a multiplicative group.
In particular, for every x ∈ U also 1− (x+1)−1 and 1− (−x+1)−1 are contained in
U . It will be shown by induction, that for every n ∈ N0 the elements a

b±na
lie in U ,

if a
b
∈ U . For n = 0 this is clear. Now assume that a

b±(n−1)a
∈ U for some n ∈ N0.

Then

a

b + na
= 1−

(
1 +

a

b + (n− 1)a

)−1

∈ U

and
a

b− na
= 1−

(
− a

b− (n− 1)a
+ 1

)−1

∈ U.

Since if a
b
∈ U also a ∈ U , one has a

1+na
∈ U for all n ∈ Z. Now let ar

s
∈ Qa with

(ar, s) = 1. Then s + aZ ∈ (Z/aZ)×, such that there is an integer t with st ≡ 1
(mod a), or, in other words, st = 1 + na for a suitable n ∈ Z. By what was shown
above, a

st
= a

1+na
∈ U , and hence ar

s
= a

1+na
· rt ∈ U . Thus, Qa ≤ U .

Finally, let Num(U) =
{
a ∈ Z

∣∣ ∃b ∈ Z : (a, b) = 1 ∧ a
b
∈ U

}
be the set of all nu-

merators of the elements of U (clearly, Num(U) 6= ∅). As shown above, q | a and
Qa ≤ U for all a ∈ Num(U). Let q̃ be the greatest common divisor of the elements
of Num(U). (In the sequel, the greatest common divisor of the elements of the set
M ⊆ Z will be denoted as gcd M .) Then it has to be shown that U = Qq̃.
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Clearly, Num(U) ⊆ U , and there is a finite number of elements ai ∈ Num(U),
1 ≤ i ≤ n, with gcd {ai | 1 ≤ i ≤ n} = q̃. Hence, there are integers z1, . . . , zn with
q̃ =

∑n
i=1 aizi, such that q̃ ∈ U and thus Qq̃ ≤ U . If on the other hand a

b
∈ U with

(a, b) = 1, then a ∈ Num(U), and hence q̃ | a. Furthermore, (q̃, b) = 1, such that
a
b
∈ Qq̃. Hence U ≤ Qq̃ and thus U = Qq̃. 2

4.4. More on construction subgroups

In the following, the structure of construction subgroups is investigated. In particular,
for zero-symmetric nearrings some useful facts are given.

4.4.1 Proposition
Let R be a zero-symmetric nearring with identity. If U is a construction subgroup, then
U is quasiregular. If U is also an R-subgroup, U is contained in the radical J2(R).

Proof. Let U be a construction subgroup of the zero-symmetric nearring R, and let
x ∈ U . Let I be the right ideal of R generated by {r − xr | r ∈ R}. Then 1− x ∈ I and
since I+ �R+, also −x + 1 in I. But since R is zero-symmetric and U is a construction
subgroup, also 1 = (−x + 1)(−x + 1)−1 ∈ I by Lemma 2.3.7, and thus I = R. Hence
x ∈ I and so x is a right quasiregular element. The rest follows immediately from
Theorem 4.1.11. 2

The following theorem shows that every nearring with identity contains maximal con-
struction subgroups.

4.4.2 Theorem
Let R be a nearring with identity, U a construction subgroup of R. Then U is contained
in a maximal construction subgroup. In particular, R contains maximal construction
subgroups.

Proof. Let M be the set of all construction subgroups of R which contain U . Since
U ∈ M, M 6= ∅. M is partially ordered by inclusion. Let k be a chain in M and let
V =

⋃
{K | K ∈ k}. Then V is a construction subgroup of R, since for u, v ∈ V there

is a group K ∈ k with u, v ∈ K, and hence u − v ∈ K ⊆ V , u + 1, v + 1 ∈ R×, and
(u + 1)(v + 1)−1 ∈ K + 1 ⊆ V + 1. By Zorn’s Lemma, M contains a maximal element.2

4.4.3 Lemma
Let R be a zero-symmetric nearring with identity, K �r R a quasiregular right ideal of
R in the sense of Beidleman [6] (c.f. Remark 4.1.8). Then K is a construction subgroup.

Proof. Since R is zero-symmetric, K is an R-subgroup. Since K is quasiregular in the
sense of Beidleman [6], for every k ∈ K the element 1 − k is right invertible, and since
K is a right ideal, one has K +1 = 1+K and all elements of K +1 have a right inverse.
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Thus it suffices to show that these right inverses are contained in K + 1 and that K + 1
is closed under multiplication.

First let k ∈ K be an arbitrary element, r ∈ R the right quasi-inverse of −k, i.e.
(1+k)r = 1. Then 1− (1+k)r = 0. Moreover, since K is a right ideal, (1+k)r−r ∈ K.
This leads to 1−(1+k)r+(1+k)r−r = 1−r ∈ K ⇔ r−1 ∈ K, and hence r ∈ K+1. Now
let k, l ∈ K. Then (k +1)(l+1) = (k +1)l+k +1 = ((k + 1)l − l)+(l + k)+1 ∈ K +1,
and hence K + 1 is closed with respect to multiplication. 2

4.4.4 Remark
The following example shows that Lemma 4.4.3 is not true if K �r R is only quasiregular
in the sense of Meldrum [17] as defined in Definition 4.1.7. Let R+ = 〈1, a〉 ∼= E4 be
Klein’s Four Group and define a multiplication on R via the following multiplication
table.

· 0 1 a 1 + a
0 0 0 0 0
1 0 1 a 1 + a
a 0 a 0 a

1 + a 0 1 + a 0 1 + a

It is not difficult to see that this multiplication leads to a zero-symmetric nearring with
identity element. Now, consider the annihilator K = AR(a) = {0, a} which is a right
ideal of R by Corollary 2.3.10. But since (1+a)−a(1+a) = 1+a−a = 1, the right ideal
of R generated by the set {x− ax | x ∈ R} is equal to R and hence a is a quasiregular
element of R in the sense of Definition 4.1.7. But since xa = 0 for x 6= 1, the element 1
is the only invertible element in R. Hence R does not contain non-trivial construction
subgroups, in particular, K is not a construction subgroup of R.

Moreover, a is an example for a right quasiregular element of a zero-symmetric near-
ring, which is not right quasiregular in the sense of Beidleman [6] (c.f. Remark 4.1.8).

The following two lemmas describe the behaviour of construction subgroups under the
forming of factor nearrings and sums of subgroups.

4.4.5 Lemma
Let R be a nearring, U a construction subgroup of R, and I �R. Then (U + I)/I is a
construction subgroup of R/I.

Proof. It is clear that (U + I)/I is a subgroup of (R/I)+. Now, let u ∈ U . Then there
is an element v ∈ U with (u+1)(v+1) = 1, and hence ((u+I)+(1+I))((v+I)+(1+I)) =
(u + 1)(v + 1) + I = 1 + I. 2

4.4.6 Lemma
Let R be a nearring with identity, and let U and V be construction subgroups with the
additional property that U + V = V + U . If U and V are left R-subgroups, then U + V
is also a construction subgroup.
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4.4. More on construction subgroups

Proof. Let U and V be left R-subgroups. Since U + V = V + U , which it follows that
U + V is an additive group. Let u, u′ ∈ U and v, v′ ∈ V . Then

(u + v + 1)(u′ + v′ + 1) = (u + v + 1)u′︸ ︷︷ ︸
∈U

+ (u + v + 1)v′︸ ︷︷ ︸
∈V

+u + v

︸ ︷︷ ︸
∈U+V

+1.

Moreover, since RU ⊆ U and since U and V are construction subgroups, (v + 1)−1u + 1
is contained in U + 1 and therefore((

(v + 1)−1u + 1
)−1

(v + 1)−1
)

(u + v + 1)

=
(
(v + 1)−1u + 1

)−1 (
(v + 1)−1(u + v + 1)

)
=
(
(v + 1)−1u + 1

)−1 (
(v + 1)−1u + 1

)
= 1,

i.e. all elements of U + V + 1 are left invertible. But since ((v + 1)−1u + 1)
−1 ∈ U + 1

and (v + 1)−1 ∈ V + 1, it follows that ((v + 1)−1u + 1)
−1

(v + 1)−1 ∈ U + V + 1. This
means that U + V + 1 is closed under multiplication and every element of U + V + 1 is
left invertible in U + V + 1. Hence U + V + 1 is a group under multiplication and thus
U + V is a construction subgroup. 2

As one might expect, the ascending or descending chain condition for subgroups in
R× is related to the ascending or descending chain condition for construction subgroups.

4.4.7 Lemma
Let R be a nearring with identity, and let R× satisfy the ascending or descending chain
condition on subgroups. Then R fulfils the ascending or descending chain condition for
construction subgroups, respectively.

Proof. Let R× satisfy the ascending chain condition for subgroups. Furthermore, let
U0 ≤ U1 ≤ U2 ≤ . . . be an ascending chain of construction subgroups of R. Then
U0 + 1 ≤ U1 + 1 ≤ U2 + 1 ≤ . . . is an ascending chain of subgroups of R× and hence
there is an n ∈ N with Un + 1 = Um + 1 for all m ≥ n. Thus Un = Um for m ≥ n. The
proof is the similar for the descending chain condition. 2

If R is a nearring and U a construction subgroup of R, then U + 1 is a subgroup of
R× by the definition of construction subgroups. The following lemma shows that if U
is also an ideal of R, U + 1 is a normal subgroup of R×. In the subsequent remark it is
shown that the converse need not be true, i.e. if U + 1 is a normal subgroup of R×, U
need not be an ideal of R.

4.4.8 Lemma
Let R be a nearring with identity and U a construction subgroup of R which is an ideal
of R. Then U + 1 �R×.
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Proof. Since U is an ideal of R, the canonical epimorphism σ : R → R/U can be
restricted to the set R×. Since σ is a nearring homomorphism, σ |R× is a group homo-
morphism R× → (R/U)×. Clearly, U +1 is the kernel of σ |R× , and hence U +1 �R×.2

4.4.9 Remark
The converse of Lemma 4.4.8 is not true. Let C3 = {0, 1, 2} be the cyclic group of order
3, and R = M(C3). For σ ∈ R write (0σ, 1σ, 2σ), i.e. for example, if 0σ = 1σ = 1 and
2σ = 2, then σ = (1, 1, 2).

Now, let U = {(x, x, x) ∈ R | x ∈ C3}. Then, since R× ∼= S3,

V = U + 1 = {(0, 1, 2), (1, 2, 0), (2, 0, 1)}�R×.

Hence, U is a construction subgroup of R with U + 1 �R×. But U is not an ideal of R,
because for instance for r = (1, 1, 0), s = (1, 1, 2), and u = (1, 1, 1) ∈ U ,

(r + u)s− rs = ((1, 1, 0) + (1, 1, 1)) · (1, 1, 2)− (1, 1, 0) (1, 1, 2)

= (2, 2, 1) (1, 1, 2)− (1, 1, 1)

= (2, 2, 1)− (1, 1, 1)

= (1, 1, 0) 6∈ U.

4.5. Subdirect sums and products

Subdirect sums and products are well-known group and ring theoretical notions. For
nearrings, these concepts are defined in a similar way. Most of the results in this section
can be found in Pilz [18]. These results will be used in Section 5.4 below, where subdirect
products of local nearrings are investigated.

4.5.1 Definition (Pilz [18, Definition 1.54])
Let Ri, i ∈ I, be a family of nearrings.

(a) The set X
i∈I

Ri with component-wise defined operations “+” and “·” is called the

direct product
∏
i∈I

Ri of the nearrings Ri, i ∈ I.

(b) The subnearring of
∏
i∈I

Ri consisting of those elements where all but a finite number

of components are zero, is called the (external) direct sum
⊕
i∈I

Ri of the Ri, i ∈ I.

4.5.2 Definition (Pilz [18, Definition 1.55])
Let Ri, i ∈ I, be a family of nearrings, R a subnearring of

∏
i∈I

Ri. If all projection maps

πi : R → Ri, i ∈ I, are surjective, then R is called a subdirect product of the Ri, i ∈ I.
R is called subdirect sum, if R also is a subnearring of the direct sum of the Ri, i ∈ I.
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4.5.3 Remark (Pilz [18, Remark 1.58], c.f. Grätzer [11])
If R is a subdirect product of nearrings Ri, i ∈ I, then the Ri are homomorphic images
of R. If Ki = Ker(πi) for the projection mappings πi : R → Ri, then (Ki)i∈I is a family
of ideals of R with zero intersection.

Conversely, if a family of ideals (Ki)i∈I of some nearring R with
⋂

i∈I = {0} is given,
R is isomorphic to a subdirect product of the nearrings Ri = R/Ki.

4.5.4 Definition (Pilz [18, Definition 1.59])
A subdirect product R of nearrings Ri, i ∈ I is called trivial, if there is an index i ∈ I
for which πi is an isomorphism. A nearring R is called subdirectly irreducible, if R is not
isomorphic to a non-trivial subdirect product of nearrings.

4.5.5 Theorem (Pilz [18, Theorem 1.60], c.f. Grätzer [11])
The following conditions for a nearring R 6= {0} are equivalent:

(a) R is subdirectly irreducible;

(b) If (Ki)i∈I is a family of ideals of R with zero-intersection, then there is an index
i ∈ I with Ki = {0};

(c)
⋂

{0}6=I � R

I 6= {0};

(d) R contains a unique minimal ideal, contained in all other non-zero ideals.

4.5.6 Example
The ring Z/p`Z for a prime p and a positive integer ` is subdirectly irreducible.

4.5.7 Corollary (Pilz [18, Corollary 1.61])
Each simple nearring is subdirectly irreducible.

4.5.8 Theorem (Grätzer [11, page 124])
Each nearring is isomorphic to a subdirect product of subdirectly irreducible nearrings.
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Chapter 5.

Local nearrings

5.1. Definition and basic properties

Local nearrings form a large class of nearrings containing non-trivial construction sub-
groups and hence are useful for the construction of triply factorized groups. They were
first introduced by Maxson [16] as a generalisation of local rings. In the following, basic
properties of local nearrings are described. In particular, the structure of prime rings
and the groups of units of local nearrings are investigated. Later certain nilpotency con-
ditions for local nearrings are exhibited and at the end of this chapter subdirect products
of local nearrings are considered.

5.1.1. Definition of local nearrings

In the following, only nearrings R with identity 1 are considered, but in general they are
not zero-symmetric as in Maxson [16]. Therefore, some of the proofs have to be adapted.

5.1.1 Definition
Let R be a nearring. The set of elements of R, which do not have right inverses, will be
denoted as LR, i.e.

LR = {k ∈ R | kR 6= R} .

5.1.2 Definition (Maxson [16, Definition 2.1])
The nearring R is called a local nearring, if LR is an R-subgroup of R.

5.1.3 Theorem (Maxson [16, Theorem 2.2])
Since no element of a proper R-subgroup of R can have a right inverse, LR is the unique
maximal R-subgroup of R, if R is a local nearring,

The following theorem gives an important criterion for a nearring to be local.

5.1.4 Theorem (Maxson [16, Theorem 2.3])
The nearring R is local if and only if LR is a subgroup of R+.
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The next lemma shows that a local nearring R is the set theoretical union of the group
R× of units of R and the R-subgroup LR. This is a useful property of local nearrings,
since every element of R is either a unit or contained in LR.

5.1.5 Lemma (Maxson [16, Lemma 2.4])
Let R be a local nearring. Then the elements of LR do not have left inverses, and the
elements of R \ LR are units.

Proof. Assume, l ∈ LR has a left inverse r, i.e. rl = 1. Then lr ∈ LR and hence
1− lr 6∈ LR. Therefore there is an element t ∈ R with 1 = (1− lr)t. This implies that
r = r(1 − lr)t = 0t, and hence 1 = rl = 0tl ∈ Rc. Since 1 ∈ R0, this yields that 1 = 0
by Theorem 2.1.8, a contradiction. Thus, the elements of LR do not have left inverses.

Now let r ∈ R \ LR. Then there is an element s ∈ R with rs = 1. By the above,
s 6∈ LR, and hence there is an element t ∈ LR such that st = 1. But then r = r · 1 =
r(st) = (rs)t = t. Hence, r is a unit and so R× = R \ LR. 2

5.1.6 Corollary (Maxson [16, Corollary 2.6])
If R is a local nearring, then LR is an (R,R)-subgroup of R.

The following proposition shows that local nearrings can be used for the construction
of triply factorized groups.

5.1.7 Proposition
Let R be a local nearring. Then LR is a construction subgroup of R.

Proof. It is clear that LR + 1 ⊆ R×. Thus let k, l ∈ LR. Then

(k + 1)(l + 1) = (k + 1)l + k + 1 ∈ LR + 1.

Moreover, let l′ = (l+1)−1. Then 1 = l′(l+1) = l′l+ l′ and hence l′ = −l′l+1 ∈ LR +1.
Thus LR + 1 is a group with respect to multiplication. 2

5.1.2. Basic properties of local nearrings

Maxson [16] considers only zero-symmetric local nearrings. The following lemma shows
that there is no big difference, to allow local nearrings to have a non-trivial constant part,
since the constant part Rc of a nearring R is always contained in LR (c.f. Lemma 2.1.12).

5.1.8 Lemma
Let R be a nearring. Then Rc ⊆ LR.

Proof. Assume that x ∈ Rc is an invertible element. Then there is an element y ∈ R
with 1 = yx = x ∈ Rc. But by Corollary 2.1.9, 1 ∈ R0, and by Theorem 2.1.8,
R0 ∩Rc = {0}, a contradiction to 1 6= 0. 2
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5.1.9 Corollary
If LR is nil, then R is zero-symmetric, since no non-trivial constant element can be
nilpotent.

The following result shows that a local nearring always contains a zero-symmetric
local subnearring.

5.1.10 Proposition
Let R be a local nearring. Then R0 is also local. Moreover, LR0 = LR ∩R0.

Proof. It is clear that l ∈ LR ∩ R0 implies l ∈ LR0 . Now let l ∈ LR0 . Then l cannot
be a unit in R, since the inverses of zero-symmetric units are also zero-symmetric by
Proposition 2.1.11. Hence l ∈ LR, and thus LR0 = LR ∩ R0 is an additive group. By
Theorem 5.1.4, R0 is local. 2

5.1.11 Remark
By Lemma 5.1.8, Rc ⊆ LR. By Lemma 2.1.12, Rc + 1 ⊆ R×. In fact it is easy to check
that then (c + 1)−1 = −c + 1.

It is well-known that for local rings R the group LR always is an ideal of R which
coincides with the Jacobson radical J (R). A similar result can be stated for local
nearrings R, if R 6= J2(R), but it seems to be still unknown whether a local nearring R
with R = J2(R) exists or not.

5.1.12 Lemma (Maxson [16, Lemma 2.9])
If R is a zero-symmetric local nearring, then LR is a quasiregular R-subgroup of R and
LR ⊆ J2(R).

Proof. Since R is zero-symmetric, LR is a quasiregular R-subgroup by Remark 4.1.8
and hence is contained in J2(R) by Theorem 4.1.11. 2

5.1.13 Corollary
(a) If R is a zero-symmetric local nearring with descending chain condition for R-

subgroups, then LR is nilpotent by Theorem 4.1.12.

(b) If R is a local nearring with descending chain condition for R-subgroups, then by
Theorem 4.1.13 and Lemma 5.1.8 there is an n ∈ N0 with LR

n = Rc.

As for rings one can show that non-trivial factor nearrings of local nearrings are
likewise local.

5.1.14 Lemma
Let R be a local nearring and I �R a proper ideal of R. Then the factor nearring R/I
is local.
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Proof. Since I is a proper ideal, I ≤ LR. Thus, LR/I is an additive subgroup of
(R/I)+. For r ∈ R×, (r + I)(r−1 + I) = 1 + I, and hence r + I ∈ (R/I)×. Now, let
l ∈ LR and assume there is an element k + I ∈ R/I with (l + I)(k + I) = 1 + I. This
means that lk−1 ∈ I. But since I ≤ LR and lk−1 6∈ LR, this is a contradiction. Hence,
LR/I = LR/I and R/I is local. 2

The following theorem gives a criterion for LR to be an ideal of the local nearring
R. It seems that there is up to now neither a proof that a local nearring R always is
different from J2(R), nor an example for a local nearring R with R = J2(R). Because
of this, many authors (e.g. Gorodnik [10]) define local nearrings R to be different from
the radical J2(R).

5.1.15 Theorem (Maxson [16, Theorem 2.10])
If R is a zero-symmetric nearring with J2(R) 6= R, then R is local if and only if LR =
J2(R). LR is an ideal of R if and only if R 6= J2(R).

5.1.16 Corollary (c.f. Maxson [16, Corollaries 2.11 and 2.12])
Let R be a local nearring with LR �R.

(a) The factor nearring R/LR is a nearfield. In particular, R/LR is abelian.

(b) R is simple if and only if R is a nearfield.

5.1.3. Properties of the additive group R+

5.1.17 Definition (Maxson [16])
Let R be a local nearring. If there is a positive integer n, such that 1 · n ∈ LR, then R
is said to satisfy Property (P).

Now, let K = {n ∈ N | 1 · n ∈ LR}. Then K has a minimal element n0. If n0 is a
composite number, say n0 = n1n2 with 1 < ni < n0 for i ∈ {1, 2}, then 1 · ni ∈ R× =
R \LR for i ∈ {1, 2} and hence 1 ·n0 = 1 · (n1n2) = (1 ·n1)(1 ·n2) ∈ R×, a contradiction.
Thus n0 is a prime.

From this it follows that R fulfils Property (P) if and only if there is a prime p with
1 · p ∈ LR.

5.1.18 Proposition (Maxson [16])
Let R be a local nearring satisfying Property (P), and let n, m be positive integers with
1 · n, 1 ·m ∈ LR. If d is the greatest common divisor of n and m, then 1 · d ∈ LR. In
particular, the prime p with 1 · p ∈ LR is uniquely determined.

Proof. Since d is the greatest common divisor of n and m, there are integral numbers
x and y with d = nx + my. But then 1 · d = 1 · (nx + my) = (1 · n) · x + (1 ·m) · y ∈ LR.
It is clear now that p must be a divisor of all n ∈ N with 1 · n ∈ LR. 2
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The following lemma shows that if LR has finite exponent and is non-trivial, it follows
that R satisfies Property (P). If R is a nearfield, i.e. a local nearring with trivial R-
subgroup LR, one can not obtain much information about R from the structure of LR.

5.1.19 Lemma
Let R be a local nearring, and let LR

+ have finite exponent. Then R is a nearfield or R
satisfies Property (P).

Proof. Assume that R is not a nearfield, i.e. LR 6= {0}. Let n = exp(LR
+) and assume,

R does not satisfy Property (P). Then 1 ·n ∈ R×, i.e. there is an x ∈ R with (1 ·n)x = 1.
But then l = l(1 · n)x = (l · n)x = 0x for all l ∈ LR. By Corollary 2.1.9, 1 · n is zero-
symmetric, so that by Proposition 2.1.11 also x is zero-symmetric. Thus, l = 0x = 0 for
all l ∈ LR, a contradiction to LR 6= {0}. Hence 1 ·n ∈ LR and R satisfies Property (P).2

The next theorem and the subsequent corollary give some information about the
structure of the additive group of a local nearring with certain finiteness conditions.
In particular, it turns out that the additive group of a finite local nearring is always a
p-groups for some prime number p.

5.1.20 Theorem (Maxson [16, Theorem 7.4])
If R is a local nearring with descending chain condition for R-subgroups and Prop-
erty (P), then R+ is a p-group for the prime p with 1 · p ∈ LR.

Proof. The proof for the zero-symmetric case can be found in Maxson [16, Theo-
rem 7.4]. Here, the proof for the general case will be given.

Let p be the prime with 1 · p ∈ LR and consider the chain

LR ⊇ (1 · p)LR ⊇ (1 · p)2LR ⊇ · · · ⊇ (1 · p)k−1LR ⊇ (1 · p)kLR ⊇ · · · .

Since rLR is an R-subgroup of R for all r ∈ R, in the above chain, there exists some
k ∈ N with (1 · p)k−1LR = (1 · p)kLR. This means, that (1 · p)k = (1 · p)kl1 for a suitable
l1 ∈ LR, i.e. (1 · p)k(1 − l1) = 0. Since 1 − l1 ∈ R×, there is an element x = (1 − l1)

−1.
Then (1 · p)k = (1 · p)k(1 − l1)x = 0x, which is a constant element by Lemma 2.1.10.
By Corollary 2.1.9, (1 · p)k = 1 · pk ∈ R0, i.e. 0x = (1 · p)k ∈ Rc ∩ R0 = {0}. Hence
o+(1) | pk, and by Corollary 2.1.15 R+ is a p-group. 2

5.1.21 Corollary (Maxson [16, Corollary 7.6])
The additive group of a local nearring R, whose subgroup LR is finite and non-trivial,
is a p-group for a prime p. In particular, the additive group of a finite local nearring is
always a p-group (even if LR is trivial).

Proof. Since LR is the unique maximal R-subgroup of R, all proper R-subgroups of R
lie in LR. But since LR is finite, R has descending chain condition on R-subgroups. By
Lemma 5.1.19, R satisfies Property (P), and hence R+ is a p-group by Theorem 5.1.20.
If R is finite, R satisfies Property (P) as well as the descending chain condition for
R-subgroups, even if LR is trivial. 2
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5.1.22 Corollary
Let R be a local nearring. Then |R×| is odd, if and only if R is a finite nearfield of
characteristic 2.

Proof. If R is a finite nearfield of characteristc 2, it is clear that |R×| is odd.
Let |R×| be odd, in particular finite. Because of LR + 1 ⊆ R× and |LR + 1| = |LR|,

also LR and hence R is finite. By Corollary 5.1.21, |R| = pn and |LR| = pm for a prime
p and non-negative integers n and m with m < n. This means that |R×| = pn − pm =
pm(pn−m − 1) ≡ 1 (mod 2). Since the number pn−m − 1 is odd, it follows that p = 2.
But then pm is odd only for m = 0, i.e. |LR| = 1. Hence R is a nearfield. 2

In the investigation of zero-symmetric local nearrings, those local nearrings R with
nil or even nilpotent LR play an important rôle. The following result exhibits a useful
connection between the nilpotency of LR and the exponent of the additive group LR

+.

5.1.23 Proposition
Let R be a local nearring. If R+ is a p-group for a prime p and LR

n = 0 for some n ∈ N,
then exp(LR

+) ≤ pn−1.

Proof. Since o+(1) = pl for some l, one has 0 = 1 · pl ∈ LR and hence p ∈ LR. Let
l ∈ LR be an arbitrary element. Then l · pn−1 ∈ LR

n = 0 and hence l · pn−1 = 0. Thus
exp(LR

+) divides pn−1. 2

5.1.4. The structure of LR

It seems to be unknown whether there is a local nearring R with the property that LR

is not an ideal of R or not. It is even not known if LR has to be a normal subgroup
of the additive group R+. But it is in fact possible to determine some structural facts
about local nearrings R in which LR is not a normal subgroup of R+.

5.1.24 Lemma
Let R be a local nearring in which the additive group LR

+ is not normal in the additive
group R+. Then LR

+ coincides with its normalizer NR+(LR
+).

Proof. Since LR
+ is not normal in R+ there is an element r ∈ R× and a k ∈ LR

with −r + k + r 6∈ LR. This means that r−1(−r + k + r) = −1 + r−1k + 1 ∈ R×.
Hence, for arbitrary s ∈ R×, one gets −s + s(r−1k) + s 6∈ LR. But s(r−1k) ∈ LR, hence
R× ∩NR+(LR

+) = ∅, and thus LR
+ = NR+(LR

+). 2

5.1.25 Theorem (c.f. [3])
Let R be a local nearring with nil R-subgroup LR. Then LR �R.

Proof. Let l ∈ LR and r, s ∈ R and let n be the smallest integer with ln = 0.
Assume that the element t = (r + l)s − rs does not belong to LR. Then one has
ln−1t = ln−1(r + l)s − ln−1rs = (ln−1r + ln)s − ln−1rs = ln−1rs − ln−1rs = 0. But if
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t ∈ R×, one can multiply this with t−1 from the right and obtains ln−1 = 0, contradicting
the choice of n.

Thus, it suffices to show that LR
+ �R+. But since (r + l)s− rs ∈ LR for all r, s ∈ R

and all l ∈ LR, with r = −1 and s = 1 one sees that −1 + l + 1 ∈ LR for all l ∈ LR. By
Lemma 5.1.24 it follows that LR

+ �R+. 2

5.1.26 Corollary
Let R be a zero-symmetric local nearring with descending chain condition for R-sub-
groups. Then LR �R.

Proof. LR is quasiregular by Lemma 5.1.12 and hence nilpotent by Theorem 4.1.12.
Thus, LR �R by Theorem 5.1.25. 2

5.1.27 Lemma
Let R be an local nearring.

(a) If the group R+ is not perfect, then LR
+ �R+.

(b) If LR �R, then R+ is not perfect.

Proof. (a) If R+ is not perfect, (R+)′ is a proper subgroup of R+. Since r[s, t] = [rs, rt]
for all r, s, t ∈ R, (R+)′ is a left R-subgroup of R, and hence is contained in LR.
This means that LR

+ �R+.

(b) Now let LR �R. By Corollary 5.1.16, R/LR is a nearfield. Hence, R+/LR
+ is an

abelian group and thus (R+)′ ⊆ LR. This means that R+ is not perfect. 2

The following theorem shows that it is sufficient to investigate the zero-symmetric
part of a local nearring to check if LR is an ideal of R. In particular, to investigate local
nearring in which LR is not an ideal, one can restrict the investigations to zero-symmetric
nearrings. Moreover, it is shown in Corollary 5.1.30 that in a finite local nearring R the
R-subgroup LR is always an ideal.

5.1.28 Theorem (c.f. [3, Lemma 3.3])
Let R be a local nearring. Then LR �R if and only if LR0 �R0.

Proof. If LR �R it is clear that LR0 �R0. Consider the case LR0 �R0. As in the
proof of Theorem 5.1.25 it suffices to show that t = (r + l)s − rs ∈ LR for all r, s ∈ R
and all l ∈ LR. Since R+ = R0

+ o Rc
+, the elements r, s, and l can be uniquely written

as r = r0 + rc, s = s0 + sc, and l = l0 + lc with r0, s0, l0 ∈ R0 and rc, sc, lc ∈ Rc.
Thus t = (r + l)(s0 + sc) − r(s0 + sc) = (r + l)s0 + sc − sc − rs0 = (r + l)s0 − rs0.

Since LR is an (R, R)-subgroup of R by Corollary 5.1.6, the element t is contained in
LR if r ∈ LR or s ∈ LR. Hence it may be assumed that r, s ∈ R×. Then r−1t =
r−1(r + l)s0 − r−1rs0 = (1 + r−1)s0 − s0, and r−1t ∈ LR if and only if t ∈ LR. Thus it
suffices to show that t = (1 + l)s− s ∈ LR for all l ∈ LR and all s ∈ R0

×.
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Now, (1 + l0)
−1t = (1 + l0)

−1(1 + l0 + lc)s − (1 + l0)
−1s = (1 + lc)s − (1 + l0)

−1s =
(1 + lc)s − s + s − (1 + l0)

−1s. Since LR0 �R0, s − (1 + l0)
−1s ∈ LR0 ≤ LR, and

hence t ∈ LR if and only if (1 + lc)s − s ∈ LR. But if (1 + lc)s − s ∈ R×, there is an
element x ∈ R× with 1 = x((1 + lc)s − s) = (x + lc)s − xs. From this it follows that
0 = 0 · 1 = 0((x + lc)s − xs) = (0x + lc)s − 0xs and hence (0x + lc)s = 0xs. Since s is
invertible, 0x+ lc = 0x and hence lc = 0. But this contradicts (1+ lc)s− s ∈ R×. Hence
LR �R. 2

5.1.29 Corollary
Let R be a local nearring with descending chain condition for R-subgroups. Then
LR �R.

Proof. By Corollary 5.1.26, LR0 �R0. Hence by Theorem 5.1.28 LR �R. 2

5.1.30 Corollary
Let R be a finite local nearring. Then LR �R.

5.1.31 Remark
It seems to be unknown, if there is a local nearring with LR 6�R, and hence it is unknown,
if it can happen that LR

+ 6�R+. Corollary 5.1.30 shows, that such a local nearring must
be infinite, if it exists.

Moreover, if R is a local nearring with LR 6�R, then let I be a maximal ideal in
R (by Lemma 2.3.12, such an ideal exists). Then R/I is a simple local nearring, and
LR/I 6�R/I. Thus, if there is a local nearring with LR 6�R, then there also exists a simple
local nearring with this property. Simple local nearrings are investigated in Section 5.1.5.

If R is a distributively generated local nearring (c.f. Definition 2.1.6.(f)), it suffices to
show that LR is a normal subgroup of the additive group R+ to ensure that LR is an
ideal of R, as the next lemma shows.

5.1.32 Lemma
Let (R,S) be a distributively generated local nearring with LR

+ �R+. Then LR �R.

Proof. Let l ∈ LR and r, s ∈ R, where s =
∑n

i=1 si with si ∈ S or −si ∈ S. Then it
suffices to show that (l + r)s− rs ∈ LR.

First, let n = 1. Then

(l + r)s− rs = (l + r)s1 − rs1

=

{
ls1 + rs1 − rs1, s1 ∈ S

rs1 + ls1 − rs1, −s1 ∈ S

=

{
ls1, s1 ∈ S

(ls1)
−rs1 , −s1 ∈ S

∈ LR
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Here, xy means additive conjugation, i.e. xy = −y+x+y. Next assume that (l+r)s−rs ∈
LR for all s with n = k − 1. Then for n = k one has

(l + r) s− rs = (l + r)
k∑

i=1

si − r
k∑

i=1

si

=
k∑

i=1

(l + r) si −
k∑

i=1

rsi

=
k−1∑
i=1

(l + r) si + (l + r) sk − rsk −
k−1∑
i=1

rsi

=
k−1∑
i=1

(l + r) si +

{
lsk + rsk, (sk ∈ S)

rsk + lsk, (−sk ∈ S)

}
− rsk︸ ︷︷ ︸

∈LR

−
k−1∑
i=1

rsi

=
k−1∑
i=1

(l + r) si −
k−1∑
i=1

rsi︸ ︷︷ ︸
∈LR

+ ((l + r) sk − rsk)
(−

∑k−1
i=1 rsi)︸ ︷︷ ︸

∈LR

∈ LR.

Hence (l + r)s− rs ∈ LR and thus LR �R. 2

The next result gives some information about the centraliser of LR in a local nearring.
In particular, if the group LR

+ is not abelian, the centraliser CR(LR) is contained in
LR.

5.1.33 Lemma
Let R be a local nearring. If there is an r ∈ R× such that r ∈ CR+(LR

+), then
R× ⊆ CR+(LR

+) and LR
+ is abelian. Hence LR ≤ Z(R+).

Proof. Let r ∈ R× ∩ CR+(LR
+). Then −r + l + r = l for all l ∈ LR and hence

r−1l = r−1(−r + l + r) = −1 + r−1 + 1 for all l ∈ LR. Hence, 1 ∈ CR+(LR
+) and thus

R× ⊆ CR+(LR
+).

Now, l + k + 1 = l + (k + 1) = (k + 1) + l = k + (1 + l) = k + l + 1. Hence LR
+ is

abelian. 2

In Proposition 5.1.7 it was shown that in a local nearring R the group LR is always
a construction subgroup. The following lemma shows that in a local nearring R even
every proper left R-subgroup is a construction subgroup.

5.1.34 Lemma
Let R be a local nearring and U a proper left R-subgroup of R. Then U + 1 and 1 + U
are subgroups of R×.
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Proof. It is clear that U + 1 ⊆ R×, since U ⊆ LR. Let u, v ∈ U , ũ = (u + 1)−1 ∈ R×.
Then

(u + 1)(v + 1) = (u + 1)v + u︸ ︷︷ ︸
∈U

+1 ∈ U + 1

Moreover, 1 = ũ(u + 1) = ũu + ũ, i.e. ũ = −ũu + 1 ∈ U + 1. Similarly it follows that
1 + U ≤ R×. 2

5.1.35 Lemma
Let R be a local nearring, I �R a proper ideal of R. Then I + 1 �R×.

Proof. Since I �R, I is a proper left R-subgroup of R and hence by Lemma 5.1.34 a
construction subgroup of R. By Lemma 4.4.8, I + 1 is a normal subgroup of R×. 2

In Remark 4.4.9 it was shown that the converse of Lemma 4.4.8 does not hold in
general. The following theorem shows that for the construction subgroup LR of a lo-
cal nearring R the converse of this lemma indeed holds. Moreover, this gives another
criterion for LR to be an ideal of R.

5.1.36 Theorem
Let R be a local nearring. LR + 1 is a normal subgroup of R× if and only if LR �R.

Proof. If LR �R then LR + 1 �R× by Lemma 5.1.35.
On the other hand, if LR + 1 �R×, for every l ∈ LR and every r ∈ R× there is an

element kl,r ∈ LR with r−1(l + 1)r = kl,r + 1.

(1) Let l ∈ LR. Then

kl,−1 + 1 = (−1)(l + 1)(−1) = ((−1)l − 1)(−1) = 1− (−1)l

⇐⇒ (−1)l = −1− kl,−1 + 1

⇐⇒ l =(−1)(−1− kl,−1 + 1) = 1− (−1)kl,−1 − 1

⇐⇒ −1 + l + 1 = −(−1)kl,−1 ∈ LR.

Hence 1 ∈ NR+(LR
+). By Lemma 5.1.24, LR

+ �R+.

(2) Let l ∈ LR, r, s ∈ R. If r ∈ LR or s ∈ LR, then (l + r)s− rs ∈ LR. Thus it may be
assumed that r, s ∈ R×. Then

(l + r)s− rs = r(r−1l + 1)r−1rs− rs

= (kr−1l,r−1 + 1)rs− rs = rs(rs)−1(kr−1l,r−1 + 1)rs− rs

= rs(kkr−1l,r−1 ,rs + 1)− rs = rskkr−1l,r−1 ,rs + rs− rs

= rskkr−1l,r−1 ,rs ∈ LR. 2
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5.1.37 Corollary
Let R be a finite local nearring. Then LR + 1 ∈ Sylp(R

×) for some prime p. By
Theorem 5.1.30, LR �R, so that LR + 1 is normal in R×. This is the only Sylow-p-
subgroup of R×, and every p-element of R× must be an element of LR + 1.

Proof. If |R| < ∞, then |R| = pn and |LR| = pm for a prime p and some non-negative
integers n and m with m < n. Hence, |R×| = pn − pm = pm(pn−m − 1). Because
|LR + 1| = |LR| = pm, it follows that LR + 1 ∈ Sylp(R

×). 2

The following theorem shows that if R is a local nearring in which the group LR
+

is normal in R+, R contains a local subnearring N such that LN = LR and LN is an
ideal in N . Since this subnearring contains the whole construction subgroup LR, in this
situation one can restrict the consideration to N for the construction of triply factorized
groups.

5.1.38 Theorem ([3, Lemma 3.6])
Let R be a local nearring with LR

+ �R+. Then N = LR ∪ NR×(1 + LR) is a local
nearring with LN �N .

The next theorem shows that a local nearring with cyclic additive group is finite. In
Section 5.2.1 it will be shown that these local nearrings even coincide with their prime
rings and hence are completely classified in Section 4.3.

5.1.39 Theorem
Let R be a local nearring with cyclic additive group. Then R is finite.

Proof. Assume that R is infinite, i.e. R+ = Z+. Then there is a non-negative integer
k with LR = kZ.

Let 0 6= E be the identity element of R, which need not coincide with the generator 1 of
the additive group Z+. For every n ∈ R× there is an element x ∈ R× with E = xn ∈ nZ
(without loss of generality, n > 0 in Z). Now let q be a prime with q - k, if k 6= 0; if
k = 0, let q be an arbitrary prime. Then qm 6∈ LR for every m ∈ N. Hence, E ∈ qmZ,
which implies

E ∈
⋂

m∈N

qmZ = {0}.

This contradiction shows that |R| is finite. 2

5.1.5. Simple local nearrings

If R is a local nearring, it still seems to be unknown whether LR is always an ideal of R
or not. This section investigates the structure of a local nearring R, in which LR is not
an ideal of R.

Let R be such a local nearring. Since by Theorem 5.1.28 LR �R if and only if
LR0 �R0, in the following R will be assumed to be zero-symmetric. By Corollary 5.1.26,
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R cannot satisfy the descending chain condition. Clearly, every proper (right) ideal
of R is contained in LR. Since R has an identity, it contains maximal (right) ideals
by Lemma 2.3.12. Since the sum of two (right) ideals is likewise a (right) ideal by
Lemma 2.3.3 and the sum of two distinct maximal (right) ideals is the whole nearring,
R can contain only one maximal (right) ideal. Furthermore, factor nearrings of local
nearrings are local, so if I is the maximal ideal of R, the nearring R/I is a simple local
nearring which is not a nearfield. Obviously, LR/I is not an ideal of R/I.

5.1.40 Remark
Without loss of generality one may assume in the following that R is simple.

5.1.41 Theorem
R does not have non-trivial proper right ideals.

Proof. Let I �r R be a right ideal of R and assume that I 6= {0}. Then G = R/I is
an R-module with I ≤ AR(G) �R. Since I 6= {0} and since R is simple, AR(G) = R, a
contradiction to 1 ∈ R ((I + 1) · 1 = I + 1 6= I). 2

5.1.42 Theorem
R has no zero-divisors.

Proof. Assume kl = 0 for k, l ∈ R\{0}. Then AR(k) �r R and 0 6= l ∈ AR(k). By
Theorem 5.1.41, AR(k) = R, a contradiction to k · 1 = k 6= 0. 2

In the following let 0 6= l ∈ LR be fixed and let G = lR. Then G is a monogenic
R-module.

5.1.43 Theorem
G is isomorphic to the regular R-module RR.

Proof. The mapping α : R → G with rα = lr is an R-module isomorphism:

(1) α is a group homomorphism:

(r + s)α = l(r + s) = lr + ls = rα + sα

(2) α is an R-module homomorphism:

(rs)α = l(rs) = (lr)s = (rα)s

(3) α is a monomorphism:
rα = 0 ⇔ lr = 0 ⇔ r = 0

By the definition of G it is clear that α is surjective, so G ∼=R R. 2
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5.1.44 Corollary
G is a simple R-module.

Proof. By Theorem 5.1.43, G is isomorphic to RR. If G has a proper non-trivial R-
ideal, then so does RR. But R-ideals of R are exactly the right ideals of R, and these
do not exist in R by Theorem 5.1.41. 2

Thus G is an R-module of type 0. Since J1(R) = J2(R) = R, G cannot be of type 1
or type 2. Thus there is an element g ∈ G with 0 < gR < G. Theorem 5.1.43 and
Corollary 5.1.44 applied to gR, gives an infinite descending chain of R-submodules of G:

G = lR ⊃ l1R ⊃ l2R ⊃ l3R ⊃ . . .

The nearring R can be embedded into the nearring M0(G) via

α : R → M0(G)

r 7→ αr

(ls)αr = l(sr)

Then α is a nearring monomorphism. Let g ∈ G, r, s ∈ R.

� gαr+s = g(r + s) = gr + gs = gαr + gαs, hence αr+s = αr + αs.

� gαrs = g(rs) = (gr)s = gαrαs, hence αrs = αrαs.

� Let αr = αs. Then, for all t ∈ R, ltr = ltαr = ltαs = lts, it follows 0 = ltr− lts =
lt(r − s), i.e. r = s. Hence, α is injective.

5.1.45 Proposition
αr is surjective if and only if r ∈ R×.

Proof. Let αr be surjective. Then there is a g = ls ∈ G = lR with gαr = l, i.e. lsr = l.
Then 0 = lsr− l = l(sr−1) and by Theorem 5.1.42 sr = 1. Hence r ∈ R×. The converse
is trivial. 2

Since the elements of LRα are not surjective, they have nontrivial annihilators in
M0(G). Define βl via

gβl =

{
0, g ∈ Im(αl)

g, g 6∈ Im(αl)

Since αl is not surjective, βl 6= 0 and it is clear that αlβl = 0.
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5.2. The structure of local nearrings

5.2.1. Prime rings of local nearrings

In this section, the structure of the prime rings of local nearrings will be investigated. It
turns out that these prime rings are local and, as an extension of Theorem 5.1.20, that
the additive group R+ of a local nearring R is a p-group for a prime p, if R+ has finite
exponent.

5.2.1 Lemma
Let R be a local nearring.

(a) If o+(1) = m < ∞, then the prime ring PR is isomorphic to Z/pnZ for a prime p.

(b) If o+(1) = ∞, then PR
∼= Qp =

{
n
m
∈ Q

∣∣ p - m
}
, if there is a prime p with 1 ·p ∈ LR,

and PR
∼= Q, if there is no such prime.

In particular, the prime ring of a local nearring is local.

(c) If LPR
= {0}, then PR is a field, since then it is both a nearfield and a ring.

Proof. (a) By Lemma 4.3.3, PR
∼= Z/mZ. Since o+(1) < ∞, R has Property (P), so

that there is a prime p such that 1 · p ∈ LR ∩ PR, i.e. p | m. But LR ∩ PR is a group
with respect to addition, and all elements of PR which are not contained in LR are
invertible in PR by Lemma 4.3.3. Hence PR is local and thus m is a prime power.

(b) Consider the mapping σ : PR → Q with (1 · n)(1 ·m)−1 7→ n
m

. Again, it is easy to
check that σ is a ring monomorphism. If there is a prime p with 1 · p ∈ LR, then
1 ·m is invertible if and only if p - m, i.e. Im(σ) = Qp. If there is no such prime, σ
is an epimorphism.

Since it is well-known that Qp is a local ring, it follows that PR is always a local
ring.

(c) This is obvious. 2

Now Theorem 5.1.20 may be extended.

5.2.2 Corollary
If R+ has finite exponent, then R+ is a p-group for a prime p.

Proof. R+ has finite exponent if and only if o+(1) < ∞. Hence, PR is a finite local
nearring, and by Theorem 5.1.20 PR

+ is a p-group. Thus o+(1) is a power of p, and since
o+(1) = exp(R+), R+ is a p-group. 2

The converse of Corollary 5.2.2 is of course also true. If R+ is a p-group for some
prime p, then there is a positive integer n such that o+(1) = pn. But by Corollary 2.1.15
it follows that exp(R+) = pn < ∞.
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5.2.3 Remark
In Theorem 5.1.39 it was shown that a local nearring with a cyclic additive group must

be finite. Since by Corollary 2.1.15 the nearring R must coincide with 〈1〉+ in this case,
Lemma 5.2.1 implies that R = PR, and so there is a prime number p and a positive
integer ` such that R ∼= Z/p`Z. In particular, R is zero-symmetric.

Figure 5.1 describes the structure of a
local nearring with LR �R. Here PR is
the prime ring of R, and K is the prime
field of the nearfield R/LR.
Lemma 5.2.5 shows that for LR �R the
group PR + LR is a local nearring. This
raises the following question: Let F be
a nearfield with primefield K, and R a
local nearring with LR �R and R/LR

∼=
K. Is there a nearring R̃ with LR̃

∼= LR

and R̃/LR̃
∼= F?

However, the following example shows
that this is not always the case.

@
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@
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@
@

@
















0

LPR
= PR ∩ LR

LR

PR + LR

R

(PR + LR)/LR

LR/LR

∼= K

R/LR

PR

Figure 5.1.: Local nearring with LR �R

5.2.4 Example
Let R = Z/4Z be a local nearring and F = F4. Then there is no local nearring R̃ with

R ≤ R̃, LR = LR̃ and R̃/LR̃
∼= F .

Proof. Assume, R̃ is such a local nearring. Since |LR| = 2 and |R̃/LR̃| = 4, the group
R̃+ has order 8. Moreover, exp(R̃+) = 4, since R̃+ has a cyclic subgroup of order 4. But
this group cannot be cyclic itself, since it has a factor group isomorphic to Klein’s four
group. Since |LR| = 2, one has |R×| = 6, and thus R+ must have at least 6 elements of
order 4 by Corollary 2.1.15. Hence R̃+ ∼= Q8. But by Malone [14, Corollary 4] there is
no nearring with identity over Q8. 2

5.2.5 Lemma
Let R be a local nearring with LR

+ �R+. Then PR + LR is also a local nearring.

Proof. Let N = LR ∪ NR×(LR + 1). By Theorem 5.1.38, N is a subnearring of R
and LR �N . Furthermore, since 1 ∈ N , the prime ring PR is contained in N . Hence
PR + LR ⊆ N . Since LR �N and PR is a subnearring of N , by Lemma 2.3.3 PR + LR is
a subnearring of N with LR �PR + LR.

Let r = p + l ∈ (PR + LR) \ LR. Then r−1 ∈ R exists. Since r is invertible, p cannot
be an element of LR. Hence the inverse p−1 ∈ PR exists. Since LR �R, the element
rp−1−1 = (p+ l)p−1−pp−1 ∈ LR. Multiplying this with r−1 from the left, it follows that
p−1− r−1 ∈ LR. Thus, −r−1 = −p−1 + p−1− r−1 ∈ PR +LR, and so also r−1 ∈ PR +LR.
This means that PR + LR is local. 2
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If a (not necessarily local) nearring R is used for the construction of triply factorized
groups, only a construction subgroup U of R is needed. Hence it suffices to consider
the subnearring of R generated by U + 1. Thus, if LR

+ �R+ for a local nearring R, for
the construction of triply factorized groups using local nearrings, one may assume that
R = PR + LR.

5.2.2. The multiplicative group R×

In this section the structure of the group of units of a local nearring will be investigated.
It turns out that for a finite local nearring this group can be described as a semidirect
product of LR + 1 and the group of units of the nearfield R/LR. Moreover, it will turn
out that if the group of units of a local nearring R is a torsion group, also the additive
group of R is periodic and hence has finite exponent by Corollary 2.1.15.

5.2.6 Lemma
Let R be a local nearring with LR �R. Then (R/LR)× ∼= R×/(LR + 1)×.

Proof. Clearly, the mapping α : (R/LR)× → R×/(LR+1)× with (LR+r)α = (LR+1)r
is a group isomorphism. 2

5.2.7 Lemma
Let R be a finite local nearring. Then R× ∼= (LR + 1)× o (R/LR)×.

Proof. Let |R| = pn, p a prime, n ∈ N. Moreover, let |LR| = pm (0 < m < n). Then
|R×| = pn−pm = pm(pn−m−1). Since pm - pn−m−1, the group LR +1 has a complement
B in R× by the Schur-Zassenhaus Theorem (c.f. Robinson [19, Theorem 9.1.2]). But
since B ∼= R×/(LR + 1)× ∼= (R/LR)×, it follows that R× ∼= (LR + 1)× o (R/LR)×. 2

5.2.8 Lemma
Let R be a local nearring.

(a) If R+ is a torsion group, then exp(R+) < ∞.

(b) If R contains a non-trivial element of finite additive order, R has Property (P).

(c) If |R : LR| < ∞, R has Property (P).

(d) If R× is periodic, so is R+.

Proof. (a) By Corollary 2.1.15, exp(R+) = o+(1) < ∞.

(b) Let 0 6= r ∈ R with n = o+(r) < ∞. Then 0 = rn. This implies that n ∈ LR. Hence
R has Property (P).

(c) Consider the right cosets of LR. Since |R : LR| < ∞, there are positive integers
n < m with LR + n = LR + m. Hence n−m ∈ LR. Thus R has Property (P).
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(d) Let R× be periodic. Assume that exp(R+) = ∞. By Lemma 5.2.1, PR is isomor-
phic either to Q or to Qp for a prime p. Both rings Q and Qp have non-periodic
multiplicative groups, which contradicts PR

× ≤ R×. 2

The next theorem holds for general nearrings, although it is formulated only for finite
local nearrings in Maxson [16].

5.2.9 Theorem
If R is a local nearring which is not a nearfield, then |R| ≤ |LR|2 (c.f. Maxson [15,
Theorem 2.1]).

Proof. By Corollary 2.3.10, for every y ∈ R, the annihilator AR(y) is a right ideal of
R. Since 1 6∈ AR(y), this yields AR(y) ≤ LR. Now let 0 6= l ∈ LR. Define λl : R → lR
by xλl = lx for all x ∈ R. This is an R-endomorphism of the regular module RR with
Ker(λl) = AR(l). Hence, RR/AR(l) ∼=R Im(λl). Since Im(λl) ⊆ lR ⊆ LR, |R| = |RR| =
|Ker(λl)| · | Im(λl)| ≤ |LR| · |LR| = |LR|2. 2

5.2.10 Corollary
(a) Let R be a local nearring which is not a nearfield, with |LR| < ∞. Then R is finite.

(b) |R| = |LR| if and only if R is infinite.

Proof. (a) The proof of Theorem 5.2.9 shows that LR is a finite subgroup of finite
index of R+. Hence R is finite.

(b) If R is infinite, also LR is infinite by Theorem 5.2.9 . In this case, |R| ≤ |LR|2 = |LR|.
On the other hand, if R is finite, |LR| < |R| since 1 6∈ LR. 2

By Malone [14, Corollary 4] no generalised quaternion group can occur as the additive
groups of nearrings with identity. The next corollary shows that also non-commutative
dihedral groups cannot occur as additive groups of local nearrings. This result will be
used in Chapter 8, where local nearrings with dihedral groups of units are investigated.

5.2.11 Corollary
Let n ≥ 3 be an integer. Then there is no local nearring R with R+ ∼= D2n .

Proof. The dihedral group D2n has exponent 2n−1 > 2. Assume that R is a local
nearring with R+ ∼= D2n . Then by Corollary 2.1.15 all elements of additive order 2 must
be contained in LR. But D2n is generated by two elements of order 2, and hence LR = R,
contradicting 1 6∈ LR. 2
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5.2.3. The nearfield R/LR

In the following only local nearrings R with LR �R will be considered, since only in
this case R/LR has a meaning. In most examples of local nearrings that appear in
literature the nearfield R/LR is a field, in many cases even a prime field. The next two
examples show that every skewfield and even proper nearfields, i.e. nearfields which are
not skewfields, can occur as R/LR.

5.2.12 Examples
(a) Let K be a skewfield. Then there is an abelian local nearring R with R/LR

∼= K.
Let R+ = K+ ×K+ and define a multiplication on this group as follows:

(g1, f1) · (g2, f2) =

{
(g1f2, 0), f1 = 0

(g2 + g1f2, f1f2), f1 6= 0
.

Then (R, +, ·) is a local nearring with LR = {(g, 0) | g ∈ K} and identity element
(0, 1). To see this, only the associative and left distributive laws have to be checked.
In the case f1 6= 0 6= f2 only the associativity will be verified, since the other cases
are similar and even easier. Also the left distributivity is very easy and will be
skipped. Let gi, fi ∈ K for i ∈ {1, 2, 3}.(

(g1, f1)(g2, f2)
)
(g3, f3) = (g2 + g1f2, f1f2)

= (g3 + (g2 + g1f2)f3, f1f2f3)

= (g3 + g2f3 + g1f2f3, f1f2f3)

(g1, f1)
(
(g2, f2)(g3, f3)

)
= (g1, f1)(g3 + g2f3, f2f3)

= (gg + g2f3 + g1f2f3, f1f2f3)

Here it is necessary that K is a skewfield, since the right distributivity of K is used.

To show that LR = {(g, 0) | g ∈ K}, let g1, g2 ∈ K. Then (g1, 0)(g2, 0) = (0, 0),
and hence the elements of the given set cannot be invertible. On the other hand, if
(g, f) ∈ R with f 6= 0, consider the element (−gf−1, f−1). Then

(−gf−1, f−1)(g, f) = (0, 1),

and hence (g, f) is right invertible. Thus, the set claimed to be LR is indeed the set
of elements of R which are not right invertible.

Obviously, LR is an additive group, and hence R is a local nearring. An easy
calculation shows that LR is an ideal of R. Moreover, R is not right distributive in
general. If char K 6= 2, one gets(

(1, 1) + (1, 1)
)
(1, 1) = (2, 2)(1, 1)

= (3, 2)

(1, 1)(1, 1) + (1, 1)(1, 1) = (2, 1) + (2, 1)

= (4, 2)
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Finally, by the definition of the operations on R, it is clear that R/LR
∼= K.

(b) In the examples for local nearrings given so far, the nearfield R/LR always is a
skewfield. The next example shows that R/LR may be a proper nearfield.

Let R+ = 〈1, a | 9 = a · 9 = [1, a] = 0〉 ∼= C9 ×C9, and define a multiplication on R
by x · 1 = x for every x ∈ R. Furthermore, for all x ∈ R the product xa has to be
defined. If this is done, all products in R can be determined by the left distributive
law.

Define xa for all x ∈ L, where L = R · 3, by the following table.

x xa x xa x xa

0 0 3 a · 3 −3 −a · 3
a · 3 −3 3 + a · 3 3− a · 3 −3 + a · 3 3 + a · 3

−a · 3 3 3− a · 3 −3− a · 3 −3− a · 3 −3 + a · 3

Now let (a · 2)a = −2 and (1− a · 2)a = −2− a · 4. These definitions are sufficient
to calculate the whole multiplication. Let a ∈ R+ be an arbitrary element. Then
define nx and kx such that x = nx + akx. Then nx and kx are uniquely defined
modulo 9.

Let x and y be elements of R for which the products xa and ya are already known.
Then the product of x and y is xy = x(ny +aky) = xny +(xa)ky. Moreover, also the
product (xy)a can be determined in a similar way: (xy)a = x(ya) = xnya +(xa)kya.
Thus, all products xa for x ∈ R \ L can be calculated successively (actually, the
calculations were done by a C++-program, which is explained in Appendix A). These
calculations lead to the following table.

x xa x−1 x xa x−1

a −1 −a a · 2 −2 a · 4
a · 4 −4 a · 2 −a · 4 4 −a · 2

−a · 2 2 −a · 4 −a 1 a
1 a 1 2 a · 2 −4

1 + a 1− a −4− a · 4 2 + a 4− a · 2 −2− a
1 + a · 2 −4− a −4 + a 2 + a · 2 2− a · 2 −2− a · 2
1 + a · 3 3 + a · 4 1− a · 3 2 + a · 3 3− a · 4 −4− a · 3
1 + a · 4 4 + a · 2 −4− a 2 + a · 4 1− a · 2 −2− a · 4
1− a · 4 2− a −4− a · 2 2− a · 4 −4 + a −2 + a
1− a · 3 −3− a · 2 1 + a · 3 2− a · 3 −3− a −4 + a · 3
1− a · 2 −2− a · 4 −4 + a · 2 2− a · 2 −2− a · 2 −2 + a · 2

1− a −1− a −4 + a · 4 2− a −1 + a · 4 −2 + a · 4
3 + a 2− a · 3 −3− a · 4 3 + a · 2 1− a · 3 −3 + a
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x xa x−1 x xa x−1

3 + a · 4 −1− a · 3 −3− a 3− a · 4 −2− a · 3 −3 + a · 4
3− a · 2 −4− a · 3 −3 + a · 2 3− a 4− a · 3 −3− a · 2

4 a · 4 −2 −4 −a · 4 2
4 + a 1 + a · 2 −1− a · 4 −4 + a −2 + a · 4 1 + a · 2

4 + a · 2 −1− a · 4 −1 + a · 4 −4 + a · 2 2 + a 1− a · 2
4 + a · 3 3− a · 2 −2− a · 3 −4 + a · 3 3− a 2− a · 3
4 + a · 4 4− a · 4 −1− a −4 + a · 4 4 + a · 4 1− a
4− a · 4 −4− a · 4 −1 + a −4− a · 4 −4 + a · 4 1 + a
4− a · 3 −3 + a −2 + a · 3 −4− a · 3 −3 + a · 2 2 + a · 3
4− a · 2 −2− a −1 + a · 2 −4− a · 2 1 + a · 4 1− a · 4

4− a 2− a · 4 −1− a · 2 −4− a −1− a · 2 1 + a · 4
−3 + a −4 + a · 3 3 + a · 2 −3 + a · 2 4 + a · 3 3− a · 2

−3 + a · 4 2 + a · 3 3− a · 4 −3− a · 4 1 + a · 3 3 + a
−3− a · 2 −1 + a · 3 3− a −3− a −2 + a · 3 3 + a · 4

−2 −a · 2 4 −1 −a −1
−2 + a 1− a · 4 2− a · 4 −1 + a 1 + a 4− a · 4

−2 + a · 2 2 + a · 2 2− a · 2 −1 + a · 2 2 + a · 4 4− a · 2
−2 + a · 3 3 + a 4− a · 3 −1 + a · 3 3 + a · 2 −1− a · 3
−2 + a · 4 4− a 2− a −1 + a · 4 −2 + a 4 + a · 2
−2− a · 4 −1 + a · 2 2 + a · 4 −1− a · 4 −4− a · 2 4 + a
−2− a · 3 −3 + a · 4 4 + a · 3 −1− a · 3 −3− a · 4 −1 + a · 3
−2− a · 2 −2 + a · 2 2 + a · 2 −1− a · 2 4 + a 4− a
−2− a −4 + a · 2 2 + a −1− a −1 + a 4 + a · 4

The computer program described in Appendix A also checks the associative and left
distributive laws. Obviously the product of every two elements of L is zero, such
that these elements cannot be invertible, while the elements not contained in L are
units. Hence L = LR and R is a local nearring.

Now let x = a · 2 and y = 1 − a · 2. Then o×(x) = o×(y) = 12 and x6 = y6 = −1.
Moreover, one finds that 〈x〉× ∩ 〈y〉× = 〈−1〉× and yx = xy−1. But

|〈x〉 · 〈y〉| = |〈x〉| · |〈y〉|
|〈x〉 ∩ 〈y〉|

=
12 · 12

2
= 72 =

∣∣R×∣∣ ,
and hence R× = 〈x, y | x12 = 1, x6 = y6, yx = xy−1〉.
To verify that R/LR is a proper nearfield, consider the expression

(1 + a)a− (a + a2) = (1 + a)a− a2 − a = 1− a− (−1)− a = 2− a · 2 6∈ LR.

This means that(
(1 + LR) + (a + LR)

)
(a + LR) 6= (1 + LR)(a + LR) + (a + LR)(a + LR)
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and so R/LR is not distributive, i.e. R/LR is not a skewfield.

5.3. Local nearrings with nilpotent LR

In the following let R be a local nearring with the additional property LR
n = 0 but

LR
n−1 6= 0 for some non-negative integer n. In particular, R is zero-symmetric and

LR �R by Theorem 5.1.25. Local nearrings R with nilpotent R-subgroup LR are of
special interest, because e.g. finite zero-symmetric nearrings belong to this class by
Corollary 5.1.13. The main goal of this section is to define annihilator series, which are
used to investigate local nearrings with dihedral groups of units in Chapter 8.

5.3.1 Definition
(a) A series

0 = Ik � Ik−1 � · · ·� I1 = LR

of ideals of R is called an annihilator series, if Ij ⊆ (Ij+1 : LR) for 1 ≤ i ≤ k − 1.

(b) Let Ln be the ideal of R generated by (LR)i, the set of all products of i elements of
LR. Then Ln = {0}.

(c) Define recursively

A0 = A0(R) = {0}
Ai = Ai(R) = (Ai−1(R) : LR)

Since Lj is an ideal of R, so is (Lj : LR). Clearly, Lj ⊆ (Lj+1 : LR), so that
Lj ⊆ (Lj+1 : LR) for 1 ≤ j ≤ n− 1, and hence

0 = Ln �Ln−1 � · · ·�L1 = LR

is an annihilator series.

5.3.2 Lemma
Let 0 = Ik � Ik−1 � · · ·� I1 = LR be an annihilator series of R. Then Lj ⊆ Ij for all
1 ≤ j ≤ k.

Proof. The case j = 1 is clear, since L1 = I1 = LR. Now assume that Lj ⊆ Ij. Since
Ij ⊆ (Ij+1 : LR), li ∈ Ij+1 for all i ∈ Ij and for all l ∈ LR. But LR

j ⊆ Lj ⊆ Ij, and so
LR

j+1 ⊆ Ij+1. Since Ij+1 �R, Lj+1 ⊆ Ij+1. 2

The series 0 = Ln �Ln−1 � · · ·�L1 = LR is called the lower annihilator series.

5.3.3 Lemma
Let 0 = Ik � Ik−1 � · · ·� I1 = LR be an annihilator series of R. Then Ik−j ⊆ Aj for
0 ≤ j < k.

69



5.4. Subdirect products of local nearrings

Proof. For j = 0 this is true, because Ik = A0 = {0}. Assume that Ik−(j−1) ⊆ Aj−1.
Since Ik−j ⊆ (Ik−(j−1) : LR) =

{
r ∈ R

∣∣ ∀l ∈ LR : lr ∈ Ik−(j−1)

}
and Aj = (Aj−1 : LR)

one has
Ik−j ⊆ (Ik−(j−1) : LR) ⊆ (Aj−1 : LR) = Aj

and hence Ik−j ⊆ Aj. 2

Because of the last lemma, the series

0 = A0 �A1 � · · ·�An−1 = LR

is called the upper annihilator series of R.

XXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX

R

An−1 LR = L1 = I1

An−2

A2

A1 Ln−2

Ln−1

Ln = 0In = A0

I2

L2

In−1

In−2

Figure 5.2.: An annihilator series of R in the case k = n

From the above considerations one gets the following result.

5.3.4 Theorem
Let R be a local nearring. LR is nilpotent if and only if R has an annihilator series.

5.4. Subdirect products of local nearrings

Subdirect sums and products of nearrings were introduced in Section 4.5. In the fol-
lowing, subdirect products of local nearrings are investigated. It turns out that under
certain finiteness conditions subdirect products of local nearrings are in fact direct pro-
ducts of local nearrings. These direct products are needed for the construction of triply
factorized groups, since they have non-trivial construction subgroups with less structural
restrictions than the construction subgroups of local nearrings.
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5.4.1 Theorem
Let Ri, i ∈ I, be a family of local nearrings and R a subdirect product of the Ri, i.e. the
projection maps πi : R → Ri are surjective, or, in other words, for every ri ∈ Ri there is
an r ∈ R with rπi = ri. Furthermore, let R have an identity element 1R.

Let ∅ 6= J ⊆ I and j0 ∈ J with the following property:

If rπj0 ∈ LRj0
, then rπj ∈ LRj

for every j ∈ J . (5.1)

(a) 1Rπi = 1Ri
for all i ∈ I.

(b) For all j ∈ J , rπj ∈ LRj
implies that rπk ∈ LRk

for all k ∈ J .

(c) Let r ∈ R with rπj ∈ R×
j for some j ∈ J . Then rπk ∈ R×

k for all k ∈ J and if
|J | < ∞, there is an element s ∈ R with sπk = (rπk)

−1 for all k ∈ J .

(d) Let RJ = {(rπj | j ∈ J) | r ∈ R}. Then RJ is a subdirect product of the Rj, j ∈ J ,
and for a finite set J , the nearring RJ is local.

(e) If |J | < ∞, then R is isomorphic to a subdirect product of the local nearring RJ

and the Ri, i ∈ I \ J .

(f) If I is finite and (5.1) implies that |J | = 1, then R is the direct product of the Ri,
i ∈ I.

Proof. (a) For every ri ∈ Ri there is an r ∈ R with rπi = ri. Hence, ri = rπi =
(r1R)πi = (rπi)(1Rπi) = ri(1Rπi). Similarly, one sees that (1rπi)ri = ri for every
ri ∈ Ri. Thus, 1Rπi = 1Ri

.

(b) Let j ∈ J and r ∈ R with rπj ∈ LRj
. First it is shown that then rπj0 ∈ LRj0

.
Assume, this is not the case. Then there is an element s ∈ R with sπj0 = (rπj0)

−1.
Hence (rs)πj0 = 1 and (rs−1)πj0 = 0 ∈ LRj0

. For brevity let rj = rπj and sj = sπj.

Since rj ∈ LRj
, the element (rs− 1)πj = rjsj − 1 ∈ R×

j , which contradicts (5.1).

Thus rπj0 ∈ LRj0
, and (5.1) implies that rπk ∈ LRk

for all k ∈ J .

(c) By (b), rπk ∈ R×
k for all k ∈ J . Furthermore, there are elements s(k) ∈ R with

s(k)πk = (rπk)
−1 for all k ∈ J .

Now, let |J | = n < ∞. Without loss of generality let J = {1, . . . , n}. It is shown
by induction that the s(k) can be chosen such that s(1) = · · · = s(n). For n = 1 this
is clear. Next assume that s(1) = · · · = s(k−1) = t for k < n and a suitable t ∈ R,
i.e. tπl = (rπl)

−1, and hence (1− rt)πl = 0 for 1 ≤ l ≤ k − 1.

Let t′ = s(k)(1− rt) + t. Then for 1 ≤ l ≤ k − 1

t′πl =
(
s(k) (1− rt) + t

)
πl

= s(k)πl (1− rt) πl + tπl

= tπl = (rπl)
−1 ,
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5.4. Subdirect products of local nearrings

and furthermore

t′πk =
(
s(k) (1− rt) + t

)
πk

= s(k)πk (1− rt) πk + tπk

= (rπk)
−1 (1− (rπk) (tπk)) + tπk

= (rπk)
−1 − (tπk) + tπk

= (rπk)
−1 .

Hence the elements s(l) can be replaced by t′ for all 1 ≤ l ≤ k. Thus it may be
assumed by induction that s(k) = s for all k ∈ J . But then (rs)πj = 1 for all j ∈ J .

(d) It is clear that RJ is a subdirect product of the Rj, j ∈ J . Next, consider the set

L =
{
r ∈ RJ

∣∣ ∀j ∈ J : rπj ∈ LRj

}
.

By (5.1), r ∈ L if and only if rπj ∈ LRj
for some j ∈ J . Furthermore, L is an

additive group, and by (c), r ∈ RJ \ L is invertible with inverse in RJ , since all
components rπj are invertible. Hence, L = LRJ

and RJ is a local nearring.

(e) Let P = RJ ⊕
∏

i∈I\J
Ri, i.e.

P =
{(

(rπj | j ∈ J, r ∈ R) , (ri | ri ∈ Ri, i ∈ I \ J)
)}

.

For all i ∈ I, define the mappings

σi : P → Ri(
(rπj | j ∈ J, r ∈ R) , (ri | ri ∈ Ri, i ∈ I \ J)

)
7→

{
rπi, i ∈ J

ri, i ∈ I \ J

Let R̃ be the set of all r̃ ∈ P such that there is an element r̂ ∈ R with r̃σi = r̂πi for
all i ∈ I. It is clear that R̃ ∼= R, and since R is a subdirect product, so is R̃.

(f) Let i ∈ I be fixed. Then for every j ∈ I \ {i} there is an element rj ∈ R with
rjπi ∈ LRi

and rjπj ∈ R×
j , since there is no J ⊆ I with Property (5.1) and |J | ≥ 2.

Hence there is an element sj ∈ R with (rjsj)πj = 1. Since (rjsj − 1)πi ∈ R×
i and

(rjsj−1)πj = 0, there exists an element sij ∈ R with sijπi = 1 and sijπj = 0 for each
i and j ∈ I with i 6= j (take an arbitrary element s′ ∈ R with s′πi = ((rjsj − 1)πi)

−1

– then let sij = s(rjsj − 1)). Hence for every i ∈ I the element

ei =
∏

j∈I\{i}

sij

satisfies the relation eiπj = 0 for i 6= j and eiπi = 1 (ei exists since |I| < ∞). Thus
for every i ∈ I and every ri ∈ Ri there is an element r ∈ R with rπi = ri and rπj = 0
for j 6= i. This means that R is the complete direct product of the Ri, i ∈ I. 2
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5.4.2 Corollary
Let R1, . . . , Rn, n ∈ N, be local nearrings, R a subdirect product of the Ri, 1 ≤ i ≤ n,
and let R have an identity element. Then R is a direct product of local nearrings. If the
set {1, . . . , n} has Property (5.1), then R itself is a local nearring by Theorem 5.4.1.(d).

Proof. If there exists a subset J ⊆ {1, . . . , n} which satisfies Property (5.1) and |J | ≥
2, the nearrings Rj, j ∈ J , can be replaced by RJ . Since there are only finitely many
Ri, the nearring R can be written as a subdirect product of a smaller number of local
nearrings. After finitely many steps, all J with Property (5.1) will be of cardinality 1.
Hence, R is a direct product of local nearrings by Theorem 5.4.1.(f). 2

5.4.3 Example
In Corollary 5.4.2 it is necessary that only finitely many local nearrings are used. Con-
sider the ring Z of integers and let p be an arbitrary prime. For n ∈ N let In be the
ideal pnZ of Z. Then

⋂
n∈N

In = {0}, and hence Z is isomorphic to a subdirect product of

the Z/In by Remark 4.5.3. But the Z/In are local nearrings, whereas Z is not a direct
sum of local nearrings.

Moreover, consider Rn = Z/pnZ for a prime p. The mapping

σ : Z →
∏
n∈N

Rn

z 7→ (1Rn · z | n ∈ N)

is an embedding of Z into the direct product of the Rn and all projection mappings are
surjective. Hence Zσ is a subdirect product of the Rn, and is indeed isomorphic to Z.
Since zσπi ∈ LRi

if and only if p divides z, the index set N satisfies (5.1). Thus, also in
the second statement of Theorem 5.4.1.(d) the finiteness of J is required, since Z is not
local.

In Example 5.4.3 it was shown that Z is isomorphic to a subdirect product of the local
nearrings Z/pnZ, n ∈ N, where p is a prime. Similarly it can be shown that the ring
pZ is isomorphic to a subdirect product of these rings. All of the rings Z/pnZ have an
identity element, but pZ does not. The following theorem shows that this cannot happen
for subdirect products of finitely many nearrings Ri with periodic groups of units.

5.4.4 Theorem
Let Ri, i ∈ I, be local nearrings. If |I| < ∞ and Ri

× is periodic for all i ∈ I, then every
subdirect product R of the Ri, i ∈ I, has an identity element.

Proof. Without loss of generality, let I = {1, . . . , n}, n ∈ N. Since R is a subdirect
product, there is an element r1 ∈ R with r1π1 = 1, where πi is the projection mapping
R → Ri. Now assume that rk−1 ∈ R with rk−1πj = 1 for 1 ≤ j ≤ k−1. If rk−1πk ∈ Rk

×,
put rk = rm

k−1, where m = o×(rk−1πk) is a positive integer. Then rkπj = 1 for 1 ≤ j ≤ k.
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5.4. Subdirect products of local nearrings

Next assume that rk−1πk ∈ LRk
. Then there is an element s ∈ R with sπk = 1.

Then (rk−1s − s)πj = 0 for 1 ≤ j ≤ k − 1, and (rk−1s − s)πk = rk−1πk − 1. Since
rk−1πk − 1 ∈ Rk

×, there is an element t ∈ R with tπk = 1 and tπj = 0 for 1 ≤ j ≤ k− 1.
But then (rk−1 + t)πj = 1 for 1 ≤ j ≤ k − 1, and (rk−1 + t)πk = rk−1πk + 1 ∈ Rk

×. As
above, this gives an element rk ∈ R with rkπj = 1 for 1 ≤ j ≤ k.

By induction, there is an element rn ∈ R with rnπi = 1 for all i ∈ I. This is an
identity element for R. 2

5.4.5 Theorem
Every local nearring is a subdirect sum of subdirectly irreducible local nearrings.

Proof. By Theorem 4.5.8 every nearring R is a subdirect sum of subdirectly irreducible
nearrings, which are isomorphic to epimorphic images of R. But non-trivial epimorphic
images of local nearrings are local by Lemma 5.1.14. 2
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Chapter 6.

An example for a local nearring

In this chapter a method to construct a local nearring R is described, such that the group
LR contains a subgroup isomorphic to a given p-group N of finite exponent, where p
is a prime. With this construction it is possible to obtain examples of local nearrings
with non-abelian construction subgroups LR, which lead to the construction of triply
factorized groups G = A n M = B n M = AB with a non-abelian group M .

6.1. Construction of a local nearring R

Let p be a prime, N+ an additively written, not necessarily abelian p-group of exponent
p`, ` ∈ N. Then N with zero the multiplication is a nearring. This nearring can be
embedded into a nearring with identity as follows.

Let G = N ⊕ Fp. Then N can be embedded into M0(G) by Theorem 2.2.3:

ϕ : N → M0(G)

n 7→ θn

Here, gθn =

{
n, g 6∈ N

0, g ∈ N
for all g ∈ G. Thus Nϕ is a subnearring of M0(G) isomorphic

to N , which will be identified with N in the sequel. Note that if g = n+f ∈ G = N⊕Fp

then g ∈ N ⇔ f = 0. Next let

R =

{
r∑

j=1

(
idGaj + θnj

) ∣∣∣∣∣ aj ∈ Z/p`Z, nj ∈ N, r ∈ N0

}
, (6.1)

where idG is the identity of M0(G). In the following it will be shown that R is a local
nearring, whose R-subgroup LR contains a subgroup isomorphic to N .

Beacuse of left distributivity, to determine the multiplication on R, it is sufficient to
know the product of an element of R with an element of Nϕ.
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6.1. Construction of a local nearring R

6.1.1 Lemma
Let x =

∑r
j=1

(
idGaj + θnj

)
∈ R and m ∈ N . Then

xθm =

{
θm,

∑r
j=1 aj 6≡ 0 (mod p)

0,
∑r

j=1 aj ≡ 0 (mod p)

Proof. Let g ∈ G. Then

g

(
r∑

j=1

(
idGaj + θnj

))
θm =

(
r∑

j=1

(
gaj + gθnj

))
θm

=


(∑r

j=1 (gaj + nj)
)

θm, g 6∈ N(∑r
j=1 gaj

)
θm, g ∈ N

=

{(∑r
j=1 (gaj + nj)

)
θm, g 6∈ N

0, g ∈ N
.

It is shown next that
∑r

j=1 (gaj + nj) ∈ N if and only if
∑r

j=1 aj ≡ 0 (mod p). Let
g = n + f with n ∈ N and f ∈ Fp. Then

r∑
j=1

(gaj + nj) =
r∑

j=1

((n + f)aj + nj)

=
r∑

j=1

(naj + nj) +
r∑

j=1

faj.

But this expression lies in N if and only if
∑r

j=1 ajf = 0, which is equivalent to
∑r

j=1 ≡ 0
(mod p). Since this condition is independent of the choice of g, the lemma is proved. 2

6.1.2 Theorem
R is a zero-symmetric nearring.

Proof. It is trivial that R is an additive group, since N has finite exponent. By
Lemma 6.1.1, R is closed under multiplication, since x(idGa) = xa and xθm ∈ R for
every x ∈ R, a ∈ Z, and m ∈ N . The nearring R is zero-symmetric, since R ⊆ M0(G).2

The next step is to determine the set LR of elements of R which are not right invertible.
This is done in the following lemma and the subsequent theorem. The last step then is
to show that LR is indeed a subgroup of R+.
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6.1. Construction of a local nearring R

6.1.3 Lemma
Let κ : G → G with (n + f)κ =

{
[na0, m0], f 6= 0

0, f = 0
, where m0 ∈ N , a0 ∈ Z/p`Z, and

[na0, m0] = −na0 − m0 + na0 + m0 is the additive commutator of na0 and m0. Then
κ ∈ R. In particular, all mappings of the form

n + f 7→

{∑s
k=1[nak, mk], f 6= 0

0, f = 0
(6.2)

are contained in R.

Proof. It is easy to see that κ = [a0idG, θm0 ] ∈ R. 2

6.1.4 Theorem
Let x =

∑r
j=1

(
idGaj + θnj

)
∈ R. Then x is right invertible if and only if

∑r
j=1 aj 6≡ 0

(mod p).

Proof. If
∑r

j=1 aj ≡ 0 (mod p), it is clear that x is not injective and hence has no right

inverse. Thus let a =
∑r

j=1 aj 6≡ 0 (mod p) and m =
∑r

j=1 nj. Then a ∈
(
Z/p`Z

)×
, i.e.

a−1 ∈ Z/p`Z exists. Let ỹ = idGa−1 + θ−ma−1 . Then

(n + f)xỹ =


(∑r

j=1 (naj + nj) +
∑r

j=1 faj

)
ỹ, f 6= 0(∑r

j=1 naj

)
ỹ, f = 0

=

{(∑r
j=1 (naj) +

∑r
j=1 nj + k̃(n) +

∑r
j=1 faj

)
ỹ, f 6= 0, k̃(n) ∈ N ′

naa−1, f = 0

=

{(
n
(∑r

j=1 aj

)
+
∑r

j=1 nj + k̃(n)
)

a−1 + f
(∑r

j=1 aj

)
a−1 −ma−1, f 6= 0

n, f = 0

=

{
naa−1 + ma−1 + k̂(n)−ma−1 + faa−1, f 6= 0, k̂(n) ∈ N ′

n, f = 0

=

{
n + f + k(n), f 6= 0, k(n) ∈ N ′

n, f = 0

Here the commutator expressions k̃(n), k̂(n) and k(n) appear since the order of the
summands which need not commute is changed. These expressions are as in (6.2). By

Lemma 6.1.3 the mapping κ : G → G with (n + f)κ =

{
k(n), f 6= 0

0, f = 0
lies in R, and

hence so does the right inverse y = ỹ − κ of x. 2

6.1.5 Theorem
The nearring R is local, where

LR =

{
s∑

k=1

(idGak + θnk
) ∈ R

∣∣∣∣∣
s∑

k=1

ak ≡ 0 (mod p)

}
(6.3)
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6.2. The examination of the structure of R

Proof. By Theorem 6.1.4, the set given in (6.3) is the set LR of all not right-invertible
elements of R. Thus it is sufficient to show that LR is a subgroup of R+, but this is
trivial, since N and hence R+ have finite exponent. 2

6.2. The examination of the structure of R

To examine the structure of R, the following definitions are needed.

6.2.1 Definition
(a) The mapping σ : R → Z/p`Z is defined by

∑r
j=1

(
idGaj + θnj

)
7→
∑r

j=1 aj. It is
clear that σ is a nearring homomorphism, since by Lemma 6.1.1 (xθn) σ = 0.

(b) The group homomorphism τ : R → N is given by
∑r

j=1

(
idGaj + θnj

)
7→
∑r

j=1 θnj
.

(c) Let x =
∑r

j=1

(
idGaj + θnj

)
∈ R. By changing the order of the summands one gets

x = idG

(
r∑

j=1

aj

)
+

r∑
j=1

θnj
+ κx

= idG(xσ) + xτ + κx,

where κx is an element of the commutator subgroup R′ of R+. Thus one can define
the mapping κ : R → R′ by xκ = κx = −xτ − idG(xσ) + x.

Since the representations of elements of R given in (6.1) are not unique, it has to
be checked that these mappings are well-defined. Since for g = 0 + 1 ∈ G one has
gx = 0 + xτ , τ is well-defined. Moreover, nx = n · (xσ) for all n ∈ N , thus also σ is
well-defined. This implies that κ is well-defined.

6.2.1. The additive group R+

For the investigation of the structure of R+, first consider the set

Ñ = {−idG + θn + idG | n ∈ N} .

It is clear that Ñ is a subgroup of R+ isomorphic to N .

6.2.2 Lemma
N ∩ Ñ = Z(N) = Z(Ñ).

Proof. Let x = −idG + θñ + idG ∈ N ∩ Ñ , i.e. there is an n ∈ N with x = θn. For
g = m + f ∈ G this means

gx =

{
−g + ñ + g, g 6∈ N

0, g ∈ N
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6.2. The examination of the structure of R

=

{
−f −m + ñ + m + f, g 6∈ N

0, g ∈ N

=

{
−m + ñ + m, g 6∈ N

0, g ∈ N
,

but also

gx =

{
n, g 6∈ N

0, g ∈ N
,

thus −m + ñ + m = n for all m ∈ N ; for m = 0 it follows that ñ = n, and hence
n ∈ Z(N). Thus N ∩ Ñ ⊆ Z(N) = Z(Ñ). The inclusion Z(N) ⊆ N ∩ Ñ is obvious. 2

The following lemma shows that in the local nearring R the R-subgroup LR is always
nilpotent. The smallest number n for which LR

n = 0 only depends on the exponent of
the group N , from which R was constructed.

6.2.3 Lemma
For 1 ≤ n ≤ `, the set LR

n ⊆ {x ∈ R | xσ ≡ 0 (mod pn)}. Moreover, LR
`+1 = {0}.

Proof. For n = 1 the lemma is trivial. So let y =
∑r

j=1

(
idGaj + θnj

)
with yσ ≡ 0

(mod pn−1) and x ∈ LR. Then xy =
∑r

j=1

(
xaj + xθnj

)
=
∑r

j=1 xaj = x(yσ), and
because of xσ ≡ 0 (mod p) one gets (xy)σ ≡ 0 (mod pn).

If yσ ≡ 0 (mod pn−1), i.e. yσ = 0, then xy = x(yσ) = 0. 2

6.2.4 Corollary
(a) R′ ⊆ Ker(σ).

(b) Let x, y ∈ R′. Then xy = 0.

Proof. The first statement follows directly from the definition of σ. The second follows
from the proof of Lemma 6.2.3. 2

Now the structure of LR
+ and of R+ may be described.

6.2.5 Theorem
Let M = LR ∩Ker(τ). Then LR

+ = N n M and R+ = N n Ker(τ).

Proof. It is clear that N ∩Ker(τ) = {0}. Now let x = xτ + (idG(xσ) + κ̃x) ∈ R. Then
idG(xσ) = κ̃x ∈ Ker(τ). It is also clear that idG(xσ) + κ̃x ∈ M for x ∈ LR. 2

Depending on the structure of N , the structure of the additive group R+ can be
quite complicated. For nilpotent N of nilpotency class 2, the calculations in R+ can be
simplified, as the following lemma shows. In this case it is also easier to describe the
groups R+ and LR

+.
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6.2.6 Lemma
If N is nilpotent of class 2, the following statements hold:

(a) Let n, m, k ∈ N , a, b ∈ Z/p`Z with a + b ∈ Z/p`Z×
. Then there are elements

r, s ∈ N with

θn + idGa + θm + idGb + θk = θr + idG(a + b) + θs,

where r = n + m + k − m̃(a + b)−1 and s = m̃(a + b)−1 with m̃ = ma + k(a + b).

(b) Let n, m, k ∈ N , a, t ∈ Z/p`Z. Then there are elements r and s ∈ N with

θn + idG(pt− a) + θm + idGa + θk = θr + idG(pt + 1) + θs − idG,

where r = n + m + k + ma and s = −ma.

Proof. Let n, m, k ∈ N .

(a) Put m̃ = ma + k(a + b). Then

θn + idGa + θm + idGb + θk

= θn+m + idG(a + b) + θk + [idGa, θm]

= θn+m+k + idG(a + b) + [idG, θm · a] + [idG(a + b), θk]

= θn+m+k − θs + θs + idG(a + b) +
[
idG, θma+k(a+b)

]
= θn+m+k−s + idG(a + b) + θs + [idG, θm̃] + [θs, idG(a + b)]

= θr + idG(a + b) + θs + [idG, θm̃] +
[
θs(a+b), idG

]
= θr + idG(a + b) + θs + [idG, θm̃] + [θm̃, idG]

= θr + idG(a + b) + θs.

(b) Let r = n + m + k + ma and s = −ma. Then

θn + idG(pt− a) + θm + idGa + θk

= θn + idGpt + [idGa, θ−m] + θm + θk

= θn+m+k + idGpt + [idG, θ−ma]

= θn+m+k + idGpt + [θ−ma,−idG]

= θn+m+k + idGpt + θma + idG + θ−ma − idG

= θn+m+k+ma + idGpt + idG + θs − idG

= θr + idG(pt + 1) + θs − idG. 2
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6.2. The examination of the structure of R

6.2.7 Corollary
In the situation of Lemma 6.2.6 one has

LR =
{
θn + idG(pt + 1) + θm − idG

∣∣ n, m ∈ N, t ∈ Z/p`Z
}

, (6.4)

and
R× =

{
θn + idGc + θm

∣∣∣ n, m ∈ N, c ∈ Z/p`Z×
}

. (6.5)

Proof. Both statements follow by successive application of Lemma 6.2.6. 2

6.2.2. The multiplicative group R×

For the investigation of the group of units of R it is convenient to consider the sets

N1 = {idG + θn | n ∈ N} and N2 = {θn + idG | n ∈ N} .

From Lemma 6.1.1 it follows that these are subgroups of R× isomorphic to N . First one
sees that N1N2 is the central product of N1 and N2.

6.2.8 Lemma
N1 ∩N2 = Z(N1) = Z(N2).

Proof. Let x = idG+θn = θm+idG ∈ N1∩N2. Then (k+1)x = (k+1)+n = m+(k+1)
for all k ∈ N , hence k + n = m + k. For k = 0 one can see that n = m, and this implies
that n ∈ Z(N), hence idG + θn ∈ Z(N1) and θn + idG ∈ Z(N2). Thus it follows
N1 ∩N2 ⊆ Z(N1) = Z(N2). The inclusion Z(N1) ⊆ N1 ∩N2 also follows immediately.2

6.2.9 Lemma
For all x ∈ N1 and all y ∈ N2 the equation xy = yx holds.

Proof. Let x = idG + θn and y = θm + idG. Then

(idG + θn)(θm + idG) = (idG + θn)θm + idG + θn

= θm + idG + θn

= θm + idG + (θm + idG)θn

= (θm + idG)(idG + θn). 2

6.2.10 Corollary
N1N2 = {θn + idG + θm | n, m ∈ N} is the central product of N1 and N2 (c.f. e.g. Robin-
son [19, Section 5.3]).

As the next two lemmas show, also the group of units R× can be written as a semidirect
product.
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6.2.11 Lemma
Let x, y ∈ R. Then

xy =

{
x(yσ), x ∈ LR

x(yσ) + yτ + xκy, x ∈ R× .

Proof. Since y = idG(yσ) + yτ + κy, this follows immediately from Lemma 6.1.1. 2

In Definition 6.2.1, the nearring homomorphism σ is defined. The restriction

σ∗ : R× → Z/p`Z×

with σ∗ = σ|R× is a group-epimorphism.

6.2.12 Lemma
(a) The multiplicative group S =

{
idGc

∣∣∣ c ∈ Z/p`Z×
}

is isomorphic to Z/p`Z×
.

(b) R× = S n K, where K = Ker(σ∗).

Proof. Statement (a) is clear. It is also clear that S ∩K = 1 and K �R. Let x ∈ R×.
Then x1 = idG (xσ∗)−1 · x ∈ K. Moreover, idG (xσ∗) ∈ S and x = idG (xσ∗) · x1. This
implies (b). 2

6.2.3. The operation of LR + 1 on LR

For the construction of triply factorized groups by local nearrings the operation of LR+1
on LR

+ is important, since LR is a construction subgroup as needed in Construction 3.1.4.
In particular, it is interesting under which circumstances this operation is trivial. It turns
out that this is the case if and only if N N is an elementary abelian group.

6.2.13 Lemma
The subgroup LR + 1 ≤ R× operates trivially on LR if and only if N is an elementary
abelian group.

Proof. First let exp(N) = p` with ` ≥ 2. Then 0 6= y = idGp ∈ LR. Now let
x = θn + idG ∈ LR +1 with np 6= 0. Then xy = (θn + idG)p, and thus for g = m+ f ∈ G
one gets

g(xy) =

{
(n + g)p, g 6∈ N

gp, g ∈ N

=

{
(n + m)p + fp, g 6∈ N

gp, g ∈ N

=

{
(n + m)p, g 6∈ N

gp, g ∈ N
.
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6.2. The examination of the structure of R

If m is chosen such that o+(m) 6= p = o+(n + m), then (θm + idG)y 6= 0, but also
(θm + idG)(xy) = 0. Hence xy 6= y and LR + 1 does not operate trivially on LR.

Now let N be such that for all x, y ∈ LR the equation (x + idG)y = y holds. By the
above considerations, exp(N) = p. Moreover,

−idG + θm + idG = (θn + idG)(−idG + θm + idG)

= −idG − θn + θm + θn + idG

= −idG + θ−n+m+n + idG

for all n, m ∈ N , and this implies that θ−n+m+n = θm, i.e. −n + m + n = m. Hence N
must be abelian.

On the other hand, if N is elementary abelian, it follows from (6.3) that LR = N , and
hence, by Lemma 6.1.1, LR + 1 operates trivially on LR. 2
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Chapter 7.

Triply factorized groups constructed by
local nearrings of order p3

7.1. Preliminary results

In the following, all groups G(R,LR) will be determined, where R is a local nearring of
order p3 for a prime p (c.f. Construction 3.1.4). Since |LR| ≥ |R : LR| by Theorem 5.2.9,
one has |LR| = p2 and hence |G(R,LR)| = p4. The following lemma shows that for p ≥ 3
the group G(R,LR) has the form Ep2 nEp2 , if LR

+ is elementary abelian. The case LR
+

cyclic will be described in Section 7.2.

7.1.1 Lemma
Let p ≥ 3, A = Cp2 , M = Ep2 , and G = A n M . Then M has no complement B in G
such that G = AB, i.e. G is not triply factorized by A, B, and M .

Proof. Let A = 〈a〉, and let α : M → M , m 7→ ma. Then α ∈ Aut(M). Since
Aut(M) = GL(2, p) does not contain elements of order p2, the order of α must be 1 or
p.

First consider the case α = idM , i.e. G = A×M , and let B be another complement of
M in G. Assume that G = AB. Then the intersection of A and B is be trivial, because
p4 = |G| = |AB| = |A|·|B|

|A∩B| = p2·p2

|A∩B| . But since G is abelian, this means that G = A× B.
This is impossible, since Cp2 × Cp2 and Cp2 × Ep2 are not isomorphic.

Let o(α) = p. Since Aut(M) ∼= GL(2, p), α may be considered as a 2× 2-matrix over
Fp, and since o(α) = p, the minimal polynomial of α is a divisor of xp − 1 = (x − 1)p,
and thus the characteristic polynomial of α is fα = (x − 1)2. Hence there is a basis of

M such that the matrix α is

(
1 x
0 1

)
for some 0 6= x ∈ Fp. This means that there are

elements m1, m2 ∈ M such that M = 〈m1, m2〉, m1α = m1, and m2α = m1
xm2.

Now assume that G is triply factorized by A, B, and M . Then B = 〈b〉 with b = aim
for some m ∈ M . Without loss of generality one may assume that i = 1, i.e. b = am.
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7.2. The case R+ cyclic

By induction one sees that bn = aimgn(α), where gn ∈ Fp[x] is the polynomial xn−1
x−1

=
xn−1 + xn−2 + · · ·+ x + 1. For n = 1, this is clear. Now let n > 1. Then

bn+1 = bnb = anmgn(α)am

= an+1 (mgn(α)) αm = an+1
(
mαn−1 mαn−2 · · ·mα m

)
αm

= an+1
(
mαn mαn−1 · · ·mα2 mα

)
m = an+1mgn+1(α).

But gp is the zero polynomial, and hence bp = ap. It follows that |A ∩ B| > 1, which
contradicts G = AB. 2

It is well-known that for every prime p there are exactly five groups of order p3, three of
which are abelian. In the following, these five cases for R+ will be considered separately.

7.2. The case R+ cyclic

First it will be shown that LR
+ is a cyclic group if and only if R+ is cyclic. To prove

this, the following lemma is needed.

7.2.1 Lemma
Let p be a prime and G a group of order p3 and exponent p2. If G contains exactly p3−p
elements of order p2, then p = 2 and G ∼= Q8.

Proof. First assume that G is abelian, i.e. G ∼= Cp2 × Cp. Write the elements of this

group as pairs of the form (x, y) with x ∈ Cp2 and y ∈ Cp. Since yp2
= yp = 1 for

all y ∈ Cp, the element (x, y) has order p2 in G if and only if x has order p2 in Cp2 .
Moreover, there are exactly p2−p elements of order p2 in Cp2 . Hence G contains exactly
p(p2 − p) elements of order p2. Now p(p2 − p) = p3 − p2 is always different from p3 − p.
Hence G cannot be abelian.

Assume that G is non-abelian and p ≥ 3. Since exp(G) = p2, one has

G =
〈
a, b

∣∣∣ ap2

= bp = 1, ab = ap+1
〉

.

Thus, (ap)b = ap2+p = ap. Hence, if g = aipbj ∈ G with 0 ≤ i, j ≤ p− 1, it follows that
gp = aip2

bjp = 1, i.e. g = 1 or o(g) = p. Thus G contains at most p3 − p2 elements of
order p2, but p3 − p2 < p3 − p. Hence also p ≥ 3 is impossible.

This means that G is non-abelian and p = 2. There are only two non-abelian groups
of order 23, both of which have exponent 22. But the dihedral group D8 contains only
two elements of order 4, whereas Q8 indeed contains 23 − 2 = 6 elements of order 4. 2

If LR
+ is a cyclic group, then exp(R+) ≥ p2 and for all r ∈ R× one has o+(r) =

exp(R+) by Lemma 2.1.15. Assume that exp(R+) = p2. Then R+ has exactly

p3 − p2︸ ︷︷ ︸
|R×|

+ p2 − p︸ ︷︷ ︸
∈LR

= p3 − p
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7.3. The case R+ elementary abelian

elements of order p2. By Lemma 7.2.1 it follows that p = 2 and R+ ∼= Q8. But by
Malone [14, Corollary 4] there exists no nearring with identity whose additive group is
isomorphic to Q8. Hence, if LR

+ is cyclic, also R+ must be cyclic.
If R is a local nearring additive group is cyclic, R ∼= Z/p3Z because of R = PR and

Theorem 5.1.39. In this case, LR = 〈p〉+, and LR + 1 is a cyclic group of order p2, if
p ≥ 3. If p = 2, it is isomorphic to E4. The operation of LR + 1 on LR is well-known:
for l = pn ∈ LR and k = pm + 1 ∈ LR + 1 one has kl = (pm + 1)pn = p2mn + pn. Thus,
in the case p = 2, G(R, LR) ∼= E4 n C4, and for p ≥ 3, one has G(R,LR) ∼= Cp2 n Cp2 .

7.3. The case R+ elementary abelian

First the structure of LR + 1 and how LR + 1 can operate on LR will be determined.
Let R+ = 〈1, a, b〉, where LR = 〈a, b〉. Then for every r ∈ R the mapping αr : R → R

with xαr = rx is an endomorphism of R+; if r ∈ R×, it is even an automorphism.
Moreover, if αr = αs for r, s ∈ R, then rx = sx for all x ∈ R. For x = 1 this yields
r = s. This means that α : R× → Aut(R+) ∼= GL(3, p), x 7→ αx is a monomorphism.
Now consider the group (LR + 1)× of order p2, which is isomorphic to a subgroup of
GL(3, p). If p ≥ 3, by Lemma 7.1.1 (LR + 1)× cannot be cyclic and hence must be
elementary abelian. If p = 2, (LR + 1)× may also be cyclic.

The next lemma is needed to describe all semidirect products Ep2 n Ep2 .

7.3.1 Lemma
For every prime p there are exactly two non-isomorphic semidirect products Ep2 n Ep2 ,
one of which is abelian.

Proof. Clearly the direct product Ep2 × Ep2 is abelian. Thus consider a non-trivial
semidirect product Ep2 nEp2 . In the following, Ep2 will be considered as a 2-dimensional
vector space over Fp, and identify the automorphism group of Ep2 with GL(2, p).

Let G and H be elementary abelian groups of order p2, and let α ∈ Hom(G, GL(2, p)),
so that Ker(α) 6= G. Since |GL(2, p)| = p(p+1)(p−1)2, the kernel of α cannot be trivial,
i.e. |Ker(α)| = p. Thus there is an element a ∈ G with aα 6= E, where E is the identity
of GL(2, p) (of course, o(aα) = p). Moreover, there is an element 1 6= b ∈ G with
bα = E.

Now let A = aα. Since Ap − E = 0, the minimal polynomial of A is a divisor of
xp− 1 = (x− q)p, and hence the characteristic polynomial of A is fa = (x− 1)2, so that
there is a basis (x, y) of H such that the matrix representation of A has triangular form.
Moreover, 1 is the only eigenvalue of A. Thus A can be represented by

A =

(
1 n
0 1

)
,

86



7.3. The case R+ elementary abelian

where 0 6= n ∈ Fp. Now let m = n−1 ∈ Fp (or, more precisely, let m ∈ N with nm ≡ 1
(mod p)). Then

Am = (am)α =

(
1 1
0 1

)
.

Replacing a by ã := am, one has G = 〈ã, b〉 and H = 〈x, y〉, and in GnH it follows that
xã = x, xb = x, yã = xy, and yb = y. Thus every two non-abelian semidirect products
Ep2 n Ep2 are isomorphic. 2

Subcase 1: p ≥ 3

In this case, (LR + 1)× is elementary abelian. Thus G(R,LR) ∼= Ep2 n Ep2 . Since
there is a large number of nearrings of order p3, not all local nearrings over Ep3 will be
determined. But for every possible semidirect product G = Ep2 n Ep2 a local nearring
R with R+ ∼= Ep3 and G(R,LR) ∼= G will be given.

Consider the matrix ring R over Fp generated by the elements

M1 =

1 1 0
0 1 0
0 0 1

 , M2 =

1 0 1
0 1 0
0 0 1

 .

Then o×(M1) = o×(M2) = p. Then it is not difficult to see that

R =


n x y

0 n 0
0 0 n

 ∣∣∣∣∣∣ n, x, y ∈ Fp

 ,

and hence it is clear that |R| = p3. Since R is a subring of the matrix ring (Fp)3, it
follows that R+ ∼= Ep3 . Moreover, LR = {M ∈ R | det(M) = 0}, i.e. all matrices in R
with zeroes in the main diagonal. Thus it is clear that R is local. Finally, the operation
of (LR + 1)× on LR is trivial, which means that G(R,LR) ∼= Ep2 × Ep2 .

Next, consider the matrix ring R over Fp generated by

M =

1 1 1
0 1 1
0 0 1

 .

Again, it is easy to check that

R =


n x y

0 n x
0 0 n

 ∣∣∣∣∣∣ n, x, y ∈ Fp


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7.3. The case R+ elementary abelian

is a local nearring with R+ ∼= Ep3 and LR = {M ∈ R | det(M) = 0}. Simple calculations
show that LR = 〈X, Y 〉+, where

X =

0 0 1
0 0 0
0 0 0

 , Y =

0 1 0
0 0 1
0 0 0

 ,

and LR + 1 = 〈A, B〉×, where

A =

1 1 0
0 1 1
0 0 1

 , B =

1 0 1
0 1 0
0 0 1

 .

Moreover, it is not difficult to verify that AX = X, AY = X + Y , BX = X, and
BY = Y , and hence, G(R,LR) is isomorphic to the non-abelian semidirect product
Ep2 n Ep2 by Lemma 7.3.1.

Subcase 2: p = 2

First consider the groups of the form E4 n E4. If R is the subnearring R of (F2)3

generated by

M1 =

1 0 1
0 1 0
0 0 1

 , M2 =

1 0 0
0 1 1
0 0 1

 ,

then one has

R =


n 0 x

0 n y
0 0 n

 ∣∣∣∣∣∣ n x, y ∈ F2

 .

Here LR + 1 operates trivially on LR, and it follows that G(R,LR) ∼= E4 × E4.
On the other hand, there is no local nearring R with R+ ∼= E8 and G(R,LR) = E4nE4

non-abelian, as the following lemma and its corollary show.

7.3.2 Lemma
The non-abelian group G = E4 n E4 does not have a normal subgroup M ∼= E4, which
has two complements A and B, such that G is triply factorized by A, B, and M .

Proof. By Lemma 7.3.1 the group G can be written as 〈a, b, x, y〉 with xa = x,
ya = xy, xb = x, and yb = y. Let M = 〈x, y〉�G, and let E = 〈a, b, x〉 ∼= E8.

Let U be a subgroup of G which is isomorphic to E4. If U contains one of the elements
x, y, or xy, then |U ∩M | ≥ 2, and hence U cannot be a complement of M . If U contains
one of the elements bx or bxy, then a cannot be contained in U , since U is abelian, but
bya = bxy and bxya = by. Now y, xy, by, and bxy are the only elements of order 2 of
G which are not contained in E. Thus, all complements of M are contained in E. But
then, if A and B are complements of M , one has AB ≤ E < G. This means that G
cannot be triply factorized by M and two of its complements. 2
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7.4. The case R+ abelian of exponent p2

7.3.3 Corollary
Let R be a local nearring with R ∼= E8 and LR

+ ∼= (LR + 1)× ∼= E4. Then (k + 1)l = l
for all k, l ∈ LR and hence G(R,LR) ∼= E4 × E4.

Proof. By Lemma 7.3.2 there is no nearring R which has a construction subgroup U
such that U+ ∼= (U + 1)× ∼= E4 and the operation of U + 1 on U is non-trivial. 2

In order to find local nearrings R with R+ ∼= E8 and a cyclic group (LR + 1)×, in the
following lemma all possible semidirect products C4 n E4 are determined.

7.3.4 Lemma
Up to isomorphism there are exactly two different semidirect products C4 n E4, one of
which is abelian.

Proof. Obviously, the direct product C4×E4 is abelian. Hence it suffices to show that
all non-trivial semidirect products C4 n E4 are isomorphic.

Let G = 〈a〉 ∼= C4, H ∼= E4, and let α : G → Aut(H) ∼= GL(2, 2) be a non-trivial
homomorphism, so that aα is not the identity mapping on H. Since |GL(2, 2)| = 6, one
has o(aα) = 2. Hence, as in the proof of Lemma 7.3.1, one can find elements x, y ∈ H
such that xa = x and ya = xy. Thus every two non-trivial semidirect products C4 n E4

are isomorphic. 2

If R is a local nearring with LR
+ ∼= E4 and (LR + 1)× ∼= C4, then LR + 1 cannot

operate trivially on LR
+ by Proposition 3.1.5. Moreover, it is easy to see that the group

C4 × E4 is not triply factorized. Thus only the group C4 n E4 can occur as G(R,LR).
Let

M =

1 1 1
0 1 1
0 0 1

 ∈ (F2)3.

Then o×(M) = 4 and the subring R of (F2)3 generated by M has order 8. More precisely,

R =


n x y

0 n x
0 0 n

 ∣∣∣∣∣∣ n, x, y ∈ F2

 ,

and it is easy to see that R is in fact a local nearring with LR
+ ∼= E4 and (LR+1)× ∼= C4.

Hence G(R,LR) ∼= C4 n E4 is a non-trivial semidirect product.

7.4. The case R+ abelian of exponent p2

If exp(R+) = p2 and R+ is abelian, then

R+ =
〈
1, a

∣∣ 1 · p2 = a · p = [1, a] = 0
〉
. (7.1)
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7.4. The case R+ abelian of exponent p2

In this case, LR = 〈p, a〉, i.e. LR
+ ∼= Ep2 . By Lemma 7.1.1 (LR + 1)× is elementary

abelian if p ≥ 3.
The first lemma in this section gives a criterion for a ring over the additive group

given in (7.1) to be local.

7.4.1 Lemma
Let R be a ring over the group given in (7.1), where the multiplication is given by
1 · x = x · 1 = x for all x ∈ R and the product a · a (note that a ring over an abelian
group is determined uniquely if the products of the generators of the group are known).
If a · a ∈ 〈p〉+, R is local with LR = 〈a, 1 · p〉+.

Proof. Let a · a ∈ 〈p〉+, so that a · a = pt for some t ∈ Z. Since the elements of 〈p〉+
cannot be invertible because of p2 = 0, it suffices to show that every x ∈ R \ 〈a, p〉+ has
a multiplicative inverse. Let x ∈ R \ 〈a, p〉+, so that x = n+ am for some n, m ∈ Z and
p - n. Then

xk = nk + σ(k)ptm2nk−2 + akmnk−1

for k ≥ 2, where σ(k) = k(k−1)
2

, i.e. σ(1) = 0 and σ(k + 1) = k + σ(k). This can be seen
by induction as follows. First,

x2 = (n + am)2 = n2 + a · 2nm + a2m2

= n2 + ptm2 + a · 2mn = n2 + σ(2)ptmn0 + a · 2mn2.

Now, let k ≥ 2. Then

xk+1 = x · xk

= (n + am)
(
nk + σ(k)ptm2nk−2 + akmnk−1

)
= nk+1 + σ(k)ptm2nk−1 + akmnk

+ amnk + apσ(k)tm3nk−2︸ ︷︷ ︸
=0

+ a2km2nk−1︸ ︷︷ ︸
=ptkm2nk−1

= nk+1 + ptm2nk−1(σ(k) + k) + a(k + 1)mnk

= nk+1 + σ(k + 1)ptm2nk−1 + a(k + 1)mnk.

Since |R \ 〈a, p〉+ | = p3 − p2 = p2(p− 1), it follows that

xp2(p−1) = np2(p−1) + σ(p2(p− 1))ptm2np2(p−1)−2 + ap2(p− 1)mnp2(p−1)−1︸ ︷︷ ︸
=0

= np2(p−1) +
p2(p− 1)(p2(p− 1)− 1)

2
· ptm2np2(p−1)−2

= np2(p−1) +
p(p− 1)

2
· p2(p2(p− 1)− 1)tm2np2(p−1)−2︸ ︷︷ ︸

=0

= np2(p−1).
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7.4. The case R+ abelian of exponent p2

But since PR
∼= Z/p2Z and so |PR

×| = p2 − p = p(p − 1), one has np2(p−1) = 1 because
of n ∈ PR

×, i.e. xp2(p−1) = 1. This means that x is invertible, and hence LR = 〈a, p〉+.
Thus it follows that R is a local ring. 2

By Lemma 7.1.1 LR + 1 is elementary abelian, if p ≥ 3. If p = 2 and LR + 1 is
elementary abelian, by Lemma 7.3.2 the operation of LR + 1 on LR must be trivial. For
every prime p, a nearring R with G(R,LR) ∼= Ep2 ×Ep2 is for instance given by the ring
with multiplication defined by 1 · 1 = 1, 1 · a = a · 1 = a, and a · a = 0, where 1 and a
are the generators of R+ given in (7.1) (this ring is local by Lemma 7.4.1).

If p ≥ 3, the operation of LR + 1 on LR need not be trivial. Consider for example the
ring given by the multiplication defined via a2 = p, which is again local by Lemma 7.4.1.
In this case, a3 = 0, and hence l3 = 0 for all l ∈ LR, since

(an + pm)3 = a3n3 + a2n2pm · 3 + anp2m2 · 3 + p3m3 = 0

for 0 ≤ n, m < p. Moreover, (an + pm)2 = a2n2 + anpm · 2 + p2m2 = a2n2 = n2 · p.
Now

(a + 1)n =
n∑

i=0

ai

(
n

i

)
= a2

(
n

2

)
+ a

(
n

1

)
+

(
n

0

)
=

n(n− 1)

2
· p + an + 1

for n ≥ 2, and

(a + p + 1)n =
n∑

i=0

(a + p)i

(
n

i

)
= (a + p)2

(
n

2

)
+ (a + p)

(
n

1

)
+

(
n

0

)
=

n(n− 1)

2
· p + an + pn + 1 =

n(n + 1)

2
· p + an + 1.

Thus, if (a + 1)n = (a + p + 1)m for n, m ∈ Z, one has

n(n− 1)

2
· p + an + 1 =

m(m + 1)

2
· p + am + 1

⇐⇒
(

n(n− 1)

2
− m(m + 1)

2

)
· p = a(m− n) ∈ 〈p〉 ∩ 〈a〉 .

Since 〈p〉 ∩ 〈a〉 = {0}, it follows that a(n −m) = 0 and hence n ≡ m (mod p). Thus
〈a + 1〉× ∩ 〈a + p + 1〉× = {1} and so LR + 1 = 〈a + 1, a + p + 1〉. But

(a + 1)a = a2 + a = p + a 6= a,

which means that LR + 1 operates non-trivially on LR. Thus G(R,LR) = Ep2 × Ep2 .
If p = 2, LR + 1 may also be cyclic. Again consider the ring defined by a2 = 2. Then

LR + 1 is cyclic, since (a + 1)2 = a2 + a · 2 + 1 = 2 + 1 = 3 6= 1.
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7.5. The case R+ non-abelian of exponent p

7.5. The case R+ non-abelian of exponent p

In this case p ≥ 3, since groups of exponent 2 are always abelian. As there is (up to
isomorphism) exactly one non-abelian group of order p3 and exponent p for every odd
prime p, in this case R+ =

〈
a, b

∣∣ a · p = b · p = 0, [a, b]a = [a, b]b = [a, b]
〉
. Now (R+)′

is always a left R-subgroup of the nearring R. Therefore in a local nearring the group
(R+)′ must be contained in LR unless R+ is a perfect group by Lemma 5.1.27.(a). Since
finite p-groups are not perfect, in a finite local nearring R one must have 1 6∈ (R+)′.
This means that without loss of generality

R+ =
〈
1, a

∣∣ 1 · p = a · p = 0, [1, a]1 = [1, a]a = [1, a]
〉
, (7.2)

so that LR = 〈a, [1, a]〉+. Since x · 1 = x for every x ∈ R and because of the left
distributivity of R, the multiplication of R is determined uniquely, whenever x · a is
known for all x ∈ R. Moreover, PR ∩ 〈a, [1, a]〉+ = {0}. Thus for all x ∈ R there is an
n ∈ PR and an l ∈ LR such that x = n + l.

Since R+ is a nilpotent group of class 2, the following rules hold for all x, y, z ∈ R
and all n ∈ PR:

[x + y, z] = [x, z] + [y, z], [x, y + z] = [x, y] + [x, z],

[xn, y] = [x, y]n = [x, yn], [x, y] ∈ Z(R+).

In the following these relations are used without further reference.
By Lemma 7.1.1 the group (LR + 1)× must be elementary abelian. Hence in this case

G(R,LR) can only be a semidirect product of the form Ep2 n Ep2 .

7.5.1 Theorem
Let R be a nearring whose additive group is as in (7.2) and whose multiplication is

given by 1 · x = x · 1 = x for all x ∈ R and (n + l)a = an for all n ∈ PR = 〈1〉+ and
all l ∈ 〈a, [1, a]〉+. Then R is a local nearring with LR = 〈a, [1, a]〉+, and G(R,LR) ∼=
Ep2 × Ep2 .

Proof. By the definition of the multiplication one has na = an for all n ∈ PR. More-
over, for all x, y, z ∈ R the identity x[y, z] = [xy, xz] holds in every nearring R.

By the left distributive law this multiplication can be extended to the whole group
R+. Now has only to be checked that the associative law holds. This is now done in
several steps. Since p ≥ 3, one has 2 ∈ PR

×. Let z = 2−1 ∈ PR, and let L = 〈a, [1, a]〉+.
Note that L is an abelian group.

(1) (n + k)[1, a] = [1, a]n2 for all n ∈ PR and l ∈ L:

(n + k)[1, a] = [n + k, (n + k)a] = [n + k, an] = [n, an] + [k, an]

= [n, an] = [n, a]n = [1, a]n2.

92



7.5. The case R+ non-abelian of exponent p

(2) (n + k)[1, a] = n[1, a] for all n ∈ PR and k ∈ L:

(n + k)[1, a] = [n + k, an] = [n, na] + [k, na] = n[1, a].

(3) (n + k)l = nl for all n ∈ PR and l ∈ L:

Let l = ax + [1, a]y ∈ L with x, y ∈ PR. Then

(n + k)l = (n + k)(ax + [1, a]y) = (n + k)(ax) + (n + k)([1, a]y)

(2)
= nax + n[1, a]y = n(ax + [1, a]y)

= nl.

(4) (n + k)m = nm + km + [k, n]zm(m− 1) for all n, m ∈ PR and k ∈ L:

Since m ∈ PR, there is a positive integer m̃ with m = 1 · m̃. Apply induction on m̃.
For m̃ = 1 one has m = 1 and hence nm+km+[k, n]zm(m−1) = n+k+0 = n+k.
Now let m̃ ≥ 1. Then m + 1 = 1 · (m̃ + 1) and one has

(n + k)(m + 1) = (n + k)m + n + k

= nm + km + [k, n]zm(m− 1) + n + k

= nm + km + n + k + [k, n]zm(m− 1)

= nm + n + km + k + [km, n] + [k, n]zm(m− 1)

= n(m + 1) + k(m + 1) + [k, n]m + [k, n]zm(m− 1)

= n(m + 1) + k(m + 1) + [k, n](m + zm(m− 1))

= n(m + 1) + k(m + 1) + [k, n](2zm + zm(m− 1))

= n(m + 1) + k(m + 1) + [k, n]zm(2 + m− 1)

= n(m + 1) + k(m + 1) + [k, n]zm(m + 1)

= n(m + 1) + k(m + 1) + [k, n]z(m + 1)m

(5) (n+ k)(m+ l) = nm+ km+nl + [k, n]zm(m− 1) for all n, m ∈ PR and all k, l ∈ L:

(n + k)(m + l) = (n + k)m + (n + k)l = nm + km + [k, n]zm(m − 1) + nl =
nm + km + nl + [k, n]zm(m− 1) by (3) and (4).

(6)
(
(n + k)(m + l)

)
h = nmh for all n, m ∈ PR and all k, l, h ∈ L:

This follows immediately from (5) and (3).

(7) For every n, m, r ∈ PR and every k, l ∈ L the following holds:(
(n + k)(m + l)

)
r

= nmr + kmr + nlr +
[
k
(
zr(m− 1) + mzr(r − 1)

)
+ nlzr(r − 1), nm

]
:
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By (4) and (5) one has(
(n + k)(m + l)

)
r

(5)
=
(
nm + km + nl +

[
k, n
]
zm(m− 1)

)
r

(4)
= nmr + kmr + nlr +

[
k, n
]
zmr(m− 1) +

[
km + nl, nm

]
zr(r − 1)

= nmr + kmr + nlr +
[
k, nm

]
zr(m− 1) +

[
(km + nl)zr(r − 1), nm

]
= nmr + kmr + nlr +

[
kzr(m− 1), nm

]
+
[
kmzr(r − 1) + nlzr(r − 1), nm

]
= nmr + kmr + nlr +

[
kzr(m− 1) + kmzr(r − 1) + nlzr(r − 1), nm

]
= nmr + kmr + nlr +

[
k
(
zr(m− 1) + mzr(r − 1)

)
+ nlzr(r − 1), nm

]
(8) For every n, m, r ∈ PR and every k, l, h ∈ L the following holds:(

(n + k)(m + l)
)
(r + h)

= nmr + kmr + nlr + nmh +
[
k
(
zr(m− 1) + zmr(r − 1)

)
+ nlzr(r − 1), nm

]
This follows immediately from (6) and (7).

(9) For every n, m, r ∈ PR and every k, l, h ∈ L the following holds:

(n + k)
(
(m + l)(r + h)

)
= nmr + kmr + nlr + nmh +

[
nlzr(r − 1) + kzr(mr − 1), nm

]
Using (5) one obtains

(n + k)
(
(m + l)(r + h)

)
= (n + k)

(
mr + lr + mh +

[
l,m

]
zr(r − 1)

)
= nmr + kmr + n

(
lr + mh +

[
l,m

]
zr(r − 1)

)
+
[
k, n
]
zmr(mr − 1)

= nmr + kmr + nlr + nmh +
[
nl, nm

]
zr(r − 1) +

[
k, nm

]
zr(mr − 1)

= nmr + kmr + nlr + nmh +
[
nlzr(r − 1) + kzr(mr − 1), nm

]
(10) Since zr(m− 1) + zmr(r − 1) = zr(mr − 1), the multiplication on R is associative

by (8) and (9).

By the definition of the multiplication it is clear that kl = 0 for all k, l ∈ L. Hence the
elements of L cannot be right invertible. Thus it suffices to show that R× = R \ L in
order to see that R is local with LR = L.
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Let x ∈ R \ L. Then there are elements n ∈ PR
× and l ∈ L such that x = n + l.

Moreover, there exists an m ∈ PR
× with nm = 1. Then

(n + k)
(
m−mkm−

[
mk, 1

]
zm(m− 1)

)
(5)
= nm + km− nmkm−

[
nmk, n

]
zm(m− 1) +

[
k, n
]
zm(m− 1)

= 1 + km− km−
[
k, 1
]
z(m− 1) +

[
k, 1
]
z(m− 1)

= 1

Hence x is right invertible, and this means that R is a local nearring with LR = L.
Moreover, for every k, l ∈ L by the definition of the multiplication it follows

(k + 1)l = (1 + k + [k, 1])l = l,

i.e. LR + 1 operates trivially on LR. Thus G(R,LR) ∼= Ep2 × Ep2 . 2

7.5.2 Theorem
Let R be a nearring with R+ as in (7.2) and multiplication given by 1 · x = x · 1 = x for
all x ∈ R and (an + cm + k)a = ak2 + ckn, where c = [1, a], and n, m, k ∈ N. Then R
is a local nearring with LR = 〈a, [1, a]〉+, and G(R,LR) is isomorphic to the non-trivial
semidirect product Ep2 n Ep2 .

Proof. It is clear that every x ∈ R can be written as an + cm + 1 · k = an + cm + k,
where c = [1, a] and n, m, k ∈ N are unique modulo p, and that the given rules lead to
a well-defined multiplication which is left distributive. It has only to be checked that
the multiplication is associative. This is done in several steps.

(1) (an + cm + k)c = ck3:

(an + cm + k)c = (an + cm + k)[1, a] = [an + cm + k, (an + cm + k)a]

= [an + k, ak2 + ckn] = [an + k, ak2]

= [an, ak2] + [k, ak2] = [k, ak2]

= [1, a]k3 = ck3.

(2) (an + cm + k)r = anr + c
(
mr + kn r(r−1)

2

)
+ kr for all r ∈ N0:

Apply induction on r. For r = 0 this is clear. Thus let r > 0. Then

(an + cm + k)r = (an + cm + k)(r − 1 + 1)

= an(r − 1) + c

(
m(r − 1) + kn

(r − 1)(r − 2)

2

)
+ k(r − 1)

+ an + cm + k
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= an(r − 1) + c

(
mr + kn

(r − 1)(r − 2)

2

)
+ an

+ k(r − 1) + [k(r − 1), an] + k

= anr + c

(
mr + kn

(r − 1)(r − 2)

2

)
+ [1, a]k(r − 1)n + kr

= anr + c

(
mr + kn

(
(r − 1)(r − 2)

2
+ r − 1

))
+ kr

= anr + c

(
mr + kn

r(r − 1)

2

)
+ kr

(3) (an + cm + k)(ar + cs + t) = a (k2r + nt) + c
(
knr + k3s + mt + kn t(t−1)

2

)
+ kt:

(an + cm + k)(ar + cs + t)

= (an + cm + k)ar + (an + cm + k)cs + (an + cm + k)t

=
(
ak2 + ckn

)
r + ck3s + ant + c

(
mt + kn

t(t− 1)

2

)
+ kt

= ak2r + cknr + ck3s + ant + c

(
mt + kn

t(t− 1)

2

)
+ kt

= a
(
k2r + nt

)
+ c

(
knr + k3s + mt + kn

t(t− 1)

2

)
+ kt

(4) The multiplication is associative:

Let an + cm + k, ar + cs + t, ax + cy + z ∈ R. Then, on one hand,

((an + cm + k)(ar + cs + t)) (ax + cy + z)

=

(
a
(
k2r + nt

)
+ c

(
knr + k3s + mt + kn

t(t− 1)

2

)
+ kt

)
(ax + cy + z)

= a
(
k2t2x + k2rz + ntz

)
+ c

(
kt
(
k2r + nt

)
x + k3t3y +

(
knr + k3s + mt + kn

t(t− 1)

2

)
z

+ kt
(
k2r + nt

) z(z − 1)

2

)
+ ktz
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= a
(
k2t2x + k2rz + ntz

)
+ c

(
k3rtx + nkt2x + k3t3y + nkrz + k3sz + mtz + nktz

t− 1

2

+ k3rtz
z − 1

2
+ nkt2z

z − 1

2

)
+ ktz

= a
(
k2t2x + k2rz + ntz

)
+ c

(
k3rtx + nkt2x + k3t3y + nkrz + k3sz + mtz

+ k3rtz
z − 1

2
+ nktz

(
t− 1

2
+

t(z − 1)

2

))
+ ktz

= a
(
k2t2x + k2rz + ntz

)
+ c

(
k3rtx + nkt2x + k3t3y + nkrz + k3sz + mtz

+ k3rtz
z − 1

2
+ nktz

tz − 1

2

)
+ ktz,

and on the other hand,

(an + cm + k) ((ar + cs + t)(ax + cy + z))

= (an + cm + k)

(
a
(
t2x + rz

)
+ c

(
trx + t3y + sz + tr

z(z − 1)

2

)
+ tz

)
= a

(
k2t2x + k2rz + ntz

)
+ c

(
kn
(
t2x + rz

)
+ k3

(
trx + t3y + sz + tr

z(z − 1)

2

)
+ mtz + kn

tz(tz − 1)

2

)
+ ktz

= a
(
k2t2x + k2rz + ntz

)
+ c

(
nkt2x + nkrz + k3rtx + k3t3y + k3sz + k3rtz

z − 1

2

+ mtz + nktz
tz − 1

2

)
+ ktz
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It is easy to see that these two expressions are equal. Thus R is a left nearring under
the given multiplication.

Furthermore LR = 〈a, c〉, since for k 6≡ 0 (mod p) the inverse of an+cm+k is ar+cs+t,

where t ∈ N with kt ≡ 1 (mod p), r ≡ −nt3 (mod p), and s ≡ −t2nr −mt4 − n t3(t−1)
2

(mod p). For k = 0 the element an + cm + k cannot be right invertible. Hence the
nearring R is local.

It is clear that |LR + 1| = p2. From Lemma 7.1.1 it follows that (LR + 1)× ∼= Ep2 .
Moreover, it is easy to see that (a+1)a = a+ c. Hence the semidirect product G(R,LR)
is non-trivial. 2

7.6. The case R+ non-abelian of exponent p2

If R+ is non-abelian of exponent p2, the case p = 2 is impossible, since there are no local
nearrings over Q8 (c.f. Malone [14, Corollary 4]) or D8 (c.f. Corollary 5.2.11).

Hence p ≥ 3 and R+ =
〈
a, b

∣∣ a · p2 = b · p = 0, ab = a · (p + 1)
〉
. Since o+(1) =

exp(R+) in every nearring by Corollary 2.1.15, one has without loss of generality

R+ =
〈
1, b

∣∣ p2 = b · p = 0, −b + 1 + b = p + 1
〉
. (7.3)

In this case, [1, b] = p. If R is a local nearring over the additive group given in (7.3), it
is clear that b ∈ LR; moreover, one has LR = 〈b, p〉. Furthermore, LR + 1 is elementary
abelian by Lemma 7.1.1. Since (p + 1)n = pn + 1 for all n ∈ N (this holds since
PR

∼= Z/p2Z), one has (LR + 1)× = 〈b + 1, p + 1〉. As in Section 7.5, R+ is a nilpotent
group of class 2, such that the following rules hold for all x, y, z ∈ R and all n ∈ PR

and will be used without further reference:

[x + y, z] = [x, z] + [y, z], [x, y + z] = [x, y] + [x, z],

[xn, y] = [x, y]n = [x, yn], [x, y] ∈ Z(R+).

For the understanding of the structure of local nearrings over R+ as in (7.3), the following
calculation rules are useful.

7.6.1 Lemma
Let R be a local nearring over the additive group given in (7.3). Then the following
holds:

(a) For all n, k, r ∈ N0 one has

(bn + k)r = bnr + k

(
r + pn

r (r − 1)

2

)
(7.4)

Note that every element of R+ can be written as bn + k for suitable n and k.
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(b) (b + 1)p = p

(c) (p + 1)p = p

(d) (p + 1)b = b

(e) There is an element x ∈ Fp such that

(b + 1)b = b + px. (7.5)

This x will be fixed until the end of this section.

(f) (b + 1)kb = b + pkx for all k ∈ N0.

(g) (b + 1)n = bn + pxn(n−1)
2

+ 1 for all n ∈ N0.

(h) (b + 1)k(p + 1)l = bk + p
(
l + xk(k−1)

2

)
.

Proof. (a) For r = 0 this is trivial. Now let r ≥ 1. Then

(bn + k)r = (bn + k)(1 + r − 1)

= bn + k + (bn + k)(r − 1)

= bn + k + bn(r − 1) + k

(
r − 1 + pn

(r − 1)(r − 2)

2

)
= bn + bn(r − 1) + k + [k, bn(r − 1)] + k

(
r − 1 + pn

(r − 1)(r − 2)

2

)
= bnr + k + [1, b]︸︷︷︸

=p

kn(r − 1) + k

(
r − 1 + pn

(r − 1)(r − 2)

2

)

= bnr + k

(
1 + pn(r − 1) + r − 1 + pn

(r − 1)(r − 2)

2

)
= bnr + k

(
r + pn

(
(r − 1)(r − 2)

2
+ r − 1

))
= bnr + k

(
r + pn

(r − 1)(r − 2) + 2(r − 1)

2

)
= bnr + k

(
r + pn

r(r − 1)

2

)
.

(b) This follows immediately from (a).

(c) Since PR is a ring one has (p + 1)p = p2 + p = p.
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(d) Since (LR + 1)× ∼= Ep2 is an abelian group, one obtains

(p + 1)(b + 1) = (b + 1)(p + 1)

⇐⇒ (p + 1)b + p + 1 = (b + 1)p + b + 1

⇐⇒ (p + 1)b + p + 1 = p + b + 1

⇐⇒ (p + 1)b = p

(e) Since b ∈ LR, it is clear that there are elements x1, x ∈ Fp such that (b + 1)b =
bx1 + px ∈ LR. Using (b) it follows

p = (b + 1)p = (b + 1)[1, b] = [b + 1, (b + 1)b]

= [b + 1, bx1 + px] = [b + 1, bx1] = [b, bx1] + [1, bx1]

= [1, b]x1 = px1

Thus x1 = 1.

(f) This follows by induction immediately from (e).

(g) For n = 0 this is clear. So let n ≥ 1. Then

(b + 1)n = (b + 1)(b + 1)n−1

= (b + 1)

(
b(n− 1) + px

(n− 1)(n− 2)

2
+ 1

)
= (b + 1)b(n− 1) + (b + 1)px

(n− 1)(n− 2)

2
+ b + 1

(e)
= (b + px) (n− 1) + px

(n− 1)(n− 2)

2
+ b + 1

= b(n− 1) + px

(
n− 1 +

(n− 1)(n− 2)

2

)
+ b + 1

= bn + px
n(n− 1)

2
+ 1

(h) Using the previous rules, one obtains

(b + 1)k(p + 1)l = (b + 1)k(pl + 1)

= (b + 1)kpl + (b + 1)k

= pl + bk + px
k(k − 1)

2
+ 1

= bk + p

(
l + x

k(k − 1)

2

)
+ 1. 2
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It is well-known that (Z/p2Z)× ∼= Cp(p−1). Hence there is an element z ∈ PR
× with

o×(z) = p− 1. Since zb ∈ LR, there are elements y1, y ∈ Fp with zb = by1 + py. But

pz = zp = z[1, b] = [z, zb] = [z, by1 + py]

= [z, by1] + [z, py] = [z, by1] = [1, b]zy1 = pzy1,

and hence y1 = 1. This means that

zb = b + py, (7.6)

which leads to the following.

z−1(b + 1)z =
(
z−1b + z−1

)
z

=
(
b− pyz−1 + z−1

)
z

= bz +
(
z−1 − pyz−1

)(
z + p

z(z − 1)

2

)
= bz − py + p

z − 1

2
+ 1

On the other hand, by Lemma 7.6.1 (h)

(b + 1)z(p + 1)(1−xz) z−1
2

−y = (b + 1)z

(
p

(
(1− xz)

z − 1

2
− y

)
+ 1

)
= p

(
(1− xz)

z − 1

2
− y

)
+ (b + 1)z

= p

(
(1− xz)

z − 1

2
− y

)
+ bz + px

z(z − 1)

2
+ 1

= bz + p

(
z − 1

2
− x

z(z − 1)

2
− y + x

z(z − 1)

2

)
+ 1

= bz + p

(
z − 1

2
− y

)
+ 1

= bz − py + p
z − 1

2
+ 1.

Hence
z−1(b + 1)z = (b + 1)z(p + 1)(1−xz) z−1

2
−y. (7.7)

7.6.2 Theorem
(a) For every prime p ≥ 3 there is a local nearring R over R+ given in (7.3) such that

G(R,LR) = Ep2 × Ep2 , i.e. LR + 1 operates trivially on LR.

(b) For p = 3 there is a local nearring R over R+ such that LR +1 operates non-trivially
on LR. For p ≥ 5 there is no local nearring over R+ with a non-trivial operation of
LR + 1 on LR.
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Proof. (a) Defining rb = b for all r ∈ R, the left distributive law yields

(bn + l)(br + k) = (bn + l)br + (bn + l)k

(7.4)
= br + bnk + l

(
k + pn

k(k − 1)

2

)
= b(r + nk) + pnl

k(k − 1)

2
+ lk.

The associativity of this multiplication has to be checked. For A, B, C, D, E, F ∈ N
one has on one hand

((bA + B)(bC + D))(bE + F )

=

(
b (C + AD) + pAB

D (D − 1)

2
+ BD

)
(bE + F )

= b (E + CF + ADF )

+ p (C + AD)

(
pAB

D (D − 1)

2
+ BD

)
F (F − 1)

2

+

(
pAB

D (D − 1)

2
+ BD

)
F

= b (E + CF + ADF )

+ p (C + AD) BD
F (F − 1)

2
+ pABF

D (D − 1)

2
+ BDF

= b (E + CF + ADF )

+ p

(
BCD

F (F − 1)

2
+ ABD2F (F − 1)

2
+ ABF

D (D − 1)

2

)
+ BDF

= b (E + CF + ADF )

+ p

(
BCD

F (F − 1)

2
+ ABDF

(
DF −D

2
+

D − 1

2

))
+ BDF

= b (E + CF + ADF ) + p

(
BCD

F (F − 1)

2
+ ABDF

DF − 1

2

)
+ BDF,

and on the other hand

(bA + B)((bC + D)(bE + F ))

= (bA + B)

(
b (E + CF ) + pCD

F (F − 1)

2
+ DF

)
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= b

(
E + CF + A

(
pCD

F (F − 1)

2
+ DF

))

+ pAB

(
pCDF (F−1)

2
+ DF

)(
pCDF (F−1)

2
+ DF − 1

)
2

+ B

(
pCD

F (F − 1)

2
+ DF

)
= b (E + CF + ADF )

+ pAB
DF (DF − 1)

2
+ pBCD

F (F − 1)

2
+ BDF

= b (E + CF + ADF ) + p

(
BCD

F (F − 1)

2
+ ABDF

DF − 1

2

)
+ BDF.

Thus the multiplication is associative. Moreover, since (p + 1)p = p, (p + 1)b = b,

(b + 1)b = b, and (b + 1)p = bp + p + pp(p−1)
2

= p by (7.4), the operation of LR + 1
on LR is trivial.

(b) By (7.6), one has z−1b = b−pyz−1. Thus, on one hand, using Lemma 7.6.1 one gets

z−1(b + 1)2 = z−1 (b2 + px + 1)

= z−1b2 + z−1px + z−1

=
(
b− pyz−1

)
· 2 + pxz−1 + z−1

= b2− p2yz−1 + pxz−1 + z−1

= b2 + p
(
xz−1 − 2yz−1

)
+ z−1,

but also

z−1(b + 1)2 = z−1(b + 1)zz−1(b + 1)

= (b + 1)z(p + 1)(1−xz) z−1
2

−y
(
z−1b + z−1

)
= (b + 1)z(p + 1)(1−xz) z−1

2
−y
(
b− pyz−1 + z−1

)
= (b + 1)z

(
b− pyz−1 + (p + 1)(1−xz) z−1

2
−yz−1

)
= (b + 1)z

(
b− pyz−1 +

(
p

(
(1− xz)

z − 1

2
− y

)
+ 1

)
z−1

)
= (b + 1)z

(
b + p

(
(z−1 − x)

z − 1

2
− 2yz−1

)
+ z−1

)
= (b + 1)zb + p

(
(z−1 − x)

z − 1

2
− 2yz−1

)
+ (b + 1)zz−1

= b + pxz + p

(
(z−1 − x)

z − 1

2
− 2yz−1

)
+ (b + 1)zz−1
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= b + p

(
xz + (z−1 − x)

z − 1

2
− 2yz−1

)
+ (b + 1)zz−1

= b + p

(
xz + (z−1 − x)

z − 1

2
− 2yz−1

)
+

(
bz + px

z(z − 1)

2
+ 1

)
z−1

= b + p

(
xz + (z−1 − x)

z − 1

2
− 2yz−1

)
+ bzz−1 +

(
px

z(z − 1)

2
+ 1

)(
z−1 + pz

z−1(z−1 − 1)

2

)
= b2 + p

(
xz + (z−1 − x)

z − 1

2
− 2yz−1

)
+

(
px

z(z − 1)

2
+ 1

)
︸ ︷︷ ︸

=(p+1)x
z(z−1)

2

(
z−1 + p

z−1 − 1

2

)

= b2 + p

(
xz + (z−1 − x)

z − 1

2
− 2yz−1

)
+

(
px

z(z − 1)

2
+ 1

)
z−1 + p

z−1 − 1

2

= b2 + p

(
xz + z−1 z − 1

2
− x

z − 1

2
− 2yz−1

)
+ pxz−1 z(z − 1)

2
+ z−1 + p

z−1 − 1

2

= b2 + p

(
xz +

1− z−1

2
− 2yz−1

)
− px

z − 1

2

+ px
z − 1

2
+ p

z−1 − 1

2
+ z−1

= b2 + p

(
xz − z−1 − 1

2
− 2yz−1 +

z−1 − 1

2

)
+ z−1

= b2 + p
(
xz − 2yz−1

)
+ z−1.

Hence xz−1 − 2yz−1 = xz − 2yz−1, i.e. xz−1 = xz or x = xz2. This means that
either x = 0 or z2 ≡ 1 (mod p). The first case leads to a trivial operation of
LR + 1 on LR, and this means that in the case of a non-trivial operation of LR + 1
on LR one has x 6= 0. Hence, z2 ≡ 1 (mod p), which means that z2p = 1, since
(pn+1)p ≡ 1 (mod p2) for all n ∈ N. But o×(z) = p−1, and hence zp−1 = 1. Thus,
1 = z2pz−2(p−1) = z2p−2(p−1) = z2. It follows that o×(z) = p− 1 | 2. Since z 6= 1 this
means that p = 3.

104



7.6. The case R+ non-abelian of exponent p2

If p = 3, one can choose x = 1 to obtain a local nearring in which LR + 1 operates
non-trivially on LR. 2
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Chapter 8.

Local nearrings with dihedral
multiplicative group

8.1. General results

In this section local nearrings with dihedral multiplicative group are investigated. Most
of these results can also be found in [3]. The first lemma on the structure of dihedral
groups is well-known and will not be proved here.

8.1.1 Lemma
Let D be a dihedral group and N �D. Then one of the following holds:

(1) |D : N | = 2 and N is a dihedral group.

(2) D = N .

(3) N is a cyclic group.

The next two lemmas and the subsequent theorem can also be found in detail in [3].

8.1.2 Lemma ([3, Lemma 4.1])
If R is a nearfield with (non-trivial)1 dihedral multiplicative group, then |R| = 3 and
hence R ∼= F3.

Proof. By Lemma 4.2.4 (b) the equation x2 = 1 has only the two solutions x = 1 and
x = −1 in R. Hence |R×| < 4, which means that |R×| = 2. Thus |R| = 3, and so
R ∼= F3. 2

8.1.3 Lemma ([3, Lemma 4.2])
Let R be a local nearring. If LR + 1 is a cyclic group, then LR is finite.

8.1.4 Theorem ([3, Theorem 4.3])
Let R be a local nearring whose multiplicative group R× is dihedral. Then R is finite.

1The trivial group is not really a dihedral group, but sometimes it is useful to consider it as a dihedral
group. The cyclic group of order 2 and Klein’s Four Group both are dihedral groups throughout
this section.
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8.2. Nearrings of odd order

8.2. Nearrings of odd order

First local nearrings of odd order are considered. It turns out that the order of a local
nearring of odd order with dihedral multiplicative group cannot be larger than 9. In
the following, all these nearrings will be determined. In Lemma 8.1.2 it was shown,
that there is exactly one local nearring of order 3 with dihedral multiplicative group.
It will be shown in Theorem 8.2.2 that there are up to isomorphism exactly two local
nearrings of order 9 with dihedral multiplicative group. Since Z/9Z is the only nearring
with identity element over the additive group C9, and since (Z/9Z)× is not dihedral, it
is clear that the additive group of these two local nearrings is elementary abelian.

8.2.1 Theorem ([3, Theorem 4.4])
Let R be a finite local nearring of odd order. If R× is dihedral, then either R ∼= F3 or
R+ is an elementary abelian group of order 9.

Proof. By Corollary 5.1.30, LR �R. Since R/LR is a nearfield whose multiplicative
group is isomorphic to R×/(LR + 1), this group is dihedral and so R/LR

∼= F3 by
Lemma 8.1.2. Therefore, 3 ∈ LR and hence R+ is a 3-group by [3, Lemma 3.9]. Thus
LR + 1 is a normal 3-subgroup of R× and so a cyclic group whose elements are inverted
by −1. In particular, since 4 ∈ LR + 1, it follows that 4 = (−1) · 4 · (−1) = 4−1, so that
16 = 1 and hence 3 = 0. Therefore exp(R+) = 3. Next (LR + 1) n LR is a product of
two cyclic 3-groups by Construction 3.1.4, so that LR is cyclic by [21, Lemma 6]. Hence
|LR| = 3 and so R+ ∼= E9. 2

8.2.2 Theorem
There are exactly two local nearrings over E9 whose multiplicative groups are dihedral,
one of which is zero-symmetric.

Proof. Let R be a local nearring over E9 with dihedral multiplicative group, and let
0 6= a ∈ LR. Then R+ = 〈1, a〉. To determine the multiplication in R it suffices to
consider the products ra for all r ∈ R.

Since |LR| = 3, also (LR + 1)× ∼= C3. Hence o×(a + 1) = 3 and (a + 1)2 = a · 2 + 1. It
follows that (a + 1)a = (a · 2 + 1)a = a. Since −1 6∈ LR + 1, one has R× = 〈−1, a + 1〉
and (−1)(a + 1)(−1) = (a + 1)−1 = a · 2 + 1. But on the other hand,

(−1)(a + 1)(−1) = ((−1)a + 1)(−1) = −1− (−1)a.

This yields −(−1)a = −1 + a · 2 + 1 = a · 2, and so (−1)a = a. Thus ra = a for all
r ∈ R×.

Since a2 ∈ LR, there are the following three possibilities for a2:

(1) a2 = 0:

In this case a 6∈ Rc. But Rc
+ ≤ LR

+ by Lemma 5.1.8, and hence Rc = {0}. Thus
LR is nilpotent by Corollary 5.1.13, which means that also (a + a)a = 0.
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8.3. Nearrings of even order

(2) a2 = a:

In this case, a ∈ Rc, because otherwise R would be zero-symmetric as in (1) and
hence LR is nilpotent. Thus Rc = LR and ra = a for all a ∈ R. But this implies
that a2 = 0, a contradiction.

(3) a2 = a + a:

In (1) was shown that LR is nilpotent and hence a2 = 0, if a 6∈ Rc. This means that
a ∈ Rc and hence a2 = a. But then a2 = a + a is impossible since a + a 6= a.

Thus there are at most two local nearrings with dihedral multiplicative group over E9,
one of which is zero-symmetric. Indeed, both possibilities for the multiplication lead to
local nearrings. Only the associativity of the operations has to be checked. Thus let
b ∈ E9 and consider the mappings α1 and α2 with

α1 : E9 → E9

x 7→

{
0, x ∈ 〈b〉
b, x 6∈ 〈b〉

,

α2 : E9 → E9

x 7→ b.

Let Ri be the subnearring of M(E9) generated by the identity mapping of E9 and αi

for i ∈ {1, 2}. Then it is not difficult to see that Ri
× ∼= D6, where Ri is local, R1 is

zero-symmetric, but R2 is not. 2

Thus all local nearrings with dihedral multiplicative groups of odd order are classified.

8.3. Nearrings of even order

Now local nearrings of even order will be studied. In [3] it was shown that a local nearring
of even order has order at most 32, if its group of units is dihedral. An investigation of
all possible additive groups of order 32 shows that there is no local nearring of order 32
whose multiplicative group is dihedral. Thus Theorem 8.3.11 improves the main result
of [3]. Moreover, in this section several cases for the structure of local nearrings of even
order with dihedral groups of units are treated and illustrated by examples.

8.3.1 Lemma ([3, Lemma 5.1])
Let R be a local nearring of order 2n+1 with dihedral multiplicative group. Then
|R : LR| = 2, in particular R× = LR + 1 is a dihedral group of order 2n. Furthermore,
exp(R+) ≤ 8.
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8.3. Nearrings of even order

Proof. Since R/LR is a nearfield of even order, it cannot be isomorphic to F3. Thus,
by Lemma 8.1.2, (R/LR)× cannot be dihedral and hence must be trivial. That means
that R/LR

∼= F2 and so |R : LR| = 2.
Let 2l be the exponent of R+. Then PR

∼= Z/2lZ by Lemma 4.3.3. Hence PR
× ∼=

C2×C2l−2 is an abelian subgroup of R×. This means that |PR
×| ≤ 4, which is equivalent

to |PR| ≤ 8. Thus exp(R+) ≤ 8. 2

8.3.2 Lemma ([3, Lemma 5.4])
Let R be a local nearring of even order with dihedral multiplicative group such that R×

operates faithfully on LR
+. Then the following two statements hold:

(1) LR is either a group of order 4 or a non-cyclic abelian group of order 8.

(2) R+ is either a cyclic group of order 8 or a group with exponent at most 4.

In particular, |R| ≤ 16.

8.3.3 Corollary
Let R be a local nearring of even order with dihedral multiplicative group such that R×

operates faithfully on LR
+. Then exp(R+) ≤ 4.

Proof. By Lemma 8.3.2 R+ is either a cyclic group of order 8 or a group of exponent
at most 4. But if R+ is isomorphic to C8, then R ∼= Z/8Z by Lemma 4.3.3. This is
impossible since in this local nearring the operation of LR + 1 on LR is not faithful (it
is not difficult to see that StabR×(LR) = 〈−3〉× in this case). 2

8.3.4 Theorem ([3, Theorem 5.7])
Let R be a local nearring of order 2n with n ≥ 1, and let R× be dihedral. Then 2 ≤ n ≤ 5
and LR

+ is either an abelian group or a group of order 16 whose derived subgroup has
order 2. In particular, LR has an abelian subgroup of index 2.

In the following let R be a local nearring of order 2n+1 with dihedral mutliplicative
group. Then, by Lemma 8.3.1, R× = LR + 1 ∼= D2n and |R : LR| = 2. Let LR + 1 =
〈k + 1, l + 1〉× for suitable k, l ∈ LR, and let

K = StabR×(LR) =
{
r ∈ R× ∣∣ ∀l ∈ LR : rl = l

}
. (8.1)

Of course, K �R×, so that by Lemma 8.1.1 there are the following three cases. Other
than in [3], the nearrings under consideration will now be investigated depending on
these three cases.

(1) K = R×;

(2) |R× : K| = 2 and K is not cyclic;

(3) K is cyclic.
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Case (1): K = R×

In this case, LR + 1 operates trivially on LR, and hence LR
+ is a dihedral group of

order 2n. Because of the trivial operation and since −1 ∈ LR + 1 and 2 ∈ LR, one has
−2 = (−1)2 = 2, i.e. 4 = 0, and so exp(R+) ≤ 4. This means that |LR| ≤ 8 and thus
|R| ≤ 16.

The following lemma is needed to investigate the structure of the additive group R+.
With this result it will be possible to show that a nearring with K = R× has at most 8
elements.

8.3.5 Lemma
Let G be a group of order 16 and exponent 4, D = 〈a, c | a2 = c4 = 1, ca = c−1〉 a
subgroup of G isomorphic to D8. Then there is an element h ∈ G \D with o(h) = 2.

Proof. Let d ∈ G \ D with o(d) = 4 (if there is no such element, there is nothing to
prove). Since D is a normal subgroup of G of index 2, the element d2 is contained in D.
Then G = 〈a, c, d〉. Since C = 〈c〉 is characteristic in D, it follows C �G. Hence cd ∈ C,
i.e. cd ∈ {c, c−1}. This means that d2 commutes with c, and since d2 ∈ D, it follows that
d2 ∈ C. Moreover, since o(d2) = 2, d2 = c2. Next, ad ∈ D, but ad 6∈ C, since cad

= c−1.
Now consider two cases:

(i) cd = c:

In this case (dc)2 = d2c2 = c4 = 1, i.e. o(dc) = 2. But dc ∈ G \D, and so one can
let h = dc.

(ii) cd = c−1:

Here [c, da] = 1, and hence (dac)2 = (da)2c2. Since (da)2 ∈ D and [c, (da)2] = 1,
(da)2 ∈ C. Without loss of generality one may assume that o(da) = 4 (otherwise
put h = da) and hence (da)2 = c2. It follows that o(dac) = 2. Since dac ∈ G \D,
one can put h = dac.

Thus in every case there is an element h ∈ G \D with o(h) = 2. 2

Now suppose that |R| = 16. Then R+ is a group of order 16 with exp(R+) = 4 and LR
+

is a subgroup of R+ isomorphic to D8. But then R \ LR = R× contains an element h
with o+(h) = 2, contradicting Corollary 2.1.15. Hence |R| ≤ 8.

8.3.6 Examples
(a) If |R| = 4, there are two possibilities for R+. If R+ is cyclic, then R ∼= Z/4Z,

and indeed in this local nearring the operation of LR + 1 on LR is trivial. If R+

is elementary abelian, i.e. R+ = 〈1, b〉 with LR = 〈b〉, then 1 · b = (b + 1)b = b.
Since b2 ∈ LR, there are exactly two possibilities for b2, both of which lead to a local
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nearring. Since R in this case is very small, the possible multiplications can be given
by the following tables:

b2 = 0

· 0 b 1 b + 1
0 0 0 0 0
b 0 0 b b
1 0 b 1 b + 1

b + 1 0 b b + 1 1

b2 = b

· 0 b 1 b + 1
0 0 b 0 b
b 0 b b 0
1 0 b 1 b + 1

b + 1 0 b b + 1 1

(b) If |R| = 8, then R+ is abelian since it is not possible to define a local nearring on
D8 by Corollary 5.2.11 or on Q8 by Malone [14, Corollary 4]. First, if R+ is cyclic,
then R ∼= Z/8Z and R× is isomorphic to the dihedral group of order 4. But in Z/8Z
the operation of LR + 1 on LR is not trivial since (−1) · 2 = −2 6= 2. Thus there are
only the following two possibilities in this case:

(1) R+ = 〈1, b〉 ∼= C4 × C2:

Here LR = {0, b, 2, b + 2}. Since LR + 1 operates trivially on LR, the equation
rb = b holds for every r ∈ R×. If R is not zero-symmetric, Rc = 〈b〉, since
2 6∈ Rc. This means that rb = b for every r ∈ R. By left distributivity, this
multiplication may be extended to a multiplication on the whole of R. It can
easily be checked that this multiplication is associative (indeed this nearring is
isomorphic to the subnearring of M(R+) generated by the identity mapping and
the constant mapping which maps all elements to b).

Now let R be zero-symmetric. Then LR is nilpotent by Corollary 5.1.13, and
there are the two cases LR

2 = 0 and LR
2 6= 0. In both cases LR

3 = 0 by
Lemma 5.3.3 since |LR| = 4. If LR

2 = 0, the multiplication is completely

defined by rb =

{
0, r ∈ LR

b, r ∈ R× . It is not difficult to check that this nearring is a

ring.

If LR
2 6= 0 = LR

3, one has 1 < |AR(LR)| < 4, and since 2 ∈ AR(LR), it
follows that AR(LR) = {0, 2}. Since the ideal L2 generated by LR

2 (c.f. Defini-
tion 5.3.1), is a subset of AR(LR) by Lemma 5.3.3, the elements b2 and (b+1)b are
contained in AR(LR). Furthermore, L2 = AR(LR) since otherwise L2 = 0 and
so LR

2 = 0. Thus 2 · b ∈ L3 = 0 and hence 2 · b = 0. If b2 = 0, then (b + 2)b = 2,
since otherwise LR

2 = 0. But then (b + 2)((b + 1)b) = (b + 2)b = 2, whereas on
the other hand ((b+1)(b+1))b = ((b+1)b+b+1)b = (2+b+2)b = b2 = 0. This
contradicts the associativity of the multiplication. Hence b2 = 2. Considering
the associativity of b(b + 1)b on sees that (b + 2)b = 0 is also impossible. Thus
(b + 2)b = 2. Again using the mapping β : x 7→ xb it is easy to see that the
above multiplication is associative and the nearring generated by the identity
mapping on R+ and β generate a local nearring as described above.
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8.3. Nearrings of even order

(2) R+ = 〈1, a, b〉 ∼= E8:

Here a and b can be chosen such that LR = 〈a, b〉. Since r · 1 = r for all
r ∈ R, only the products ra and rb must be defined for every r ∈ R. If R
is zero-symmetric, then LR is nilpotent, and hence there are the following two
possibilities.

(i) LR
2 = 0:

In this case, la = lb = 0 for all l ∈ LR. Consider the mappings

α : R+ → R+ β : R+ → R+

x 7→

{
0, x ∈ 〈a, b〉
a, otherwise

x 7→

{
0, x ∈ 〈a, b〉
b, otherwise

and let idR be the identity mapping on R+. Then the subnearring R̃ of
M(R+) generated by idR, α, and β is a local nearring of order 8, whose
group of units is isomorphic to D4 and LR̃ + 1 operates trivially on LR̃.
Moreover, LR̃

2 = 0.

(ii) LR
2 6= 0 = LR

3:
In this case AR(LR) is a subgroup of order 2 of LR, so that without loss
of generality AR(LR) = 〈a〉+. Now b2, (a + b)b ∈ AR(LR). If b2 = 0, then
(a + b)b 6= 0 since b 6∈ AR(LR). Hence in this case (a + b)b = a. But this
means that (a + b)((b + 1)b) = (a + b)b = a, whereas ((a + b)(b + 1))b =
(a + a + b)b = b2 = 0, a contradiction to the associativity. Similarly one
shows that (a + b)b 6= 0. Hence b2 = (a + b)b = a, and thus for all r ∈ R
the products ra and rb are defined. This multiplication can be extended
to a multiplication on the whole of R. It is not difficult to check that
this indeed leads to an associative multiplication and a local nearring with
dihedral group of units.

If R is not zero-symmetric, Rc ≤ LR and hence |Rc| ∈ {2, 4}. If |Rc| = 4, the
products ra and rb are defined for all r ∈ R, and it is not difficult to check
that the resulting multiplication is indeed associative. Finally consider the case
|Rc| = 2. Without loss of generality Rc = 〈a〉+. But then R0 is a local nearring
by Proposition 5.1.10. Since R0

× ≤ R× and |R0| = 4, the case |LR0| = 1 is
impossible and hence |LR0| = 2. Thus LR0 contains a non-trivial element of
LR, and without loss of generality this element is b. By Corollary 5.1.13 LR0 is
nilpotent and hence b2 = 0. Now a((a+1)b) = ab since LR +1 operates trivially
on LR. But by associativity and since b ∈ R0 one has

a((a + 1)b) = (a(a + 1))b = (a2 + a)b = (a + a)b

= 0b = 0,
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hence ab = 0. Similarly,

(a + b)b = (a + b)((a + 1)b) = ((a + b)(a + 1))b = ((a + b)a + a + b)b

= (a + a + b)b = b2 = 0.

Thus all products rb for r ∈ R are defined. As above one can check that the
multiplication on R given by this and left distributivity is indeed associative.

Thus all local nearrings of even order with dihedral multiplicative group and a trivial
operation of LR + 1 on LR are described.

Case (2): |R× : K| = 2 and K not cyclic

R+

C̃ ∼= Z2n−2

K̃ ∼= D2n−1

LR
+

0

2

2

2

2n−2

In this case K is isomorphic to the dihedral group D2n−1 . Since
(k + 1)l = l for every k + 1 ∈ K and every l ∈ LR, the set K̃ =
{k ∈ LR | k + 1 ∈ K} is a subgroup of LR

+, which is isomorphic
to K. Thus R+ is a group of order 2n+1 which has a subgroup
LR

+ of index 2 and a dihedral subgroup K̃ of index 4, such that
o+(r) = exp(R+) for all r ∈ R \ LR. Since R+ is not cyclic,
exp(R+) ≤ 2n. The following lemma shows that in this case
|R| ≤ 32.

By Theorem 8.3.4, |R| ≤ 32 in general. In the case under consideration, the following
lemma gives another proof for this result.

8.3.7 Lemma
Let G be a group, U �G, and D �U with |G : U | = |U : D| = 2 and D ∼= D2n−1 . If
o(g) = exp(G) for every g ∈ G \ U , then n ≤ 4, i.e. |G| = 2n+1 ≤ 25 = 32.

Proof. Let G be such a group with o(g) = exp(G) for each g ∈ G \ U . The exponent
of G is 2n−k, where k ∈ {0, 1, 2}, since |G| = 2n−1, G is not cyclic and exp(D) = 2n−2.

Without loss of generality let n ≥ 4 (otherwise there is nothing to show). Let T be
the cyclic subgroup of order 2n−2 of D. If for every g ∈ G \U the order of T ∩ 〈g〉 would
be at least 4, then the subgroup of order 4 of T would be in the centre of G, which is
not possible. Thus there exists an element h ∈ G \ U with |T ∩ 〈h〉 | ≤ 2. This means
that

|T 〈h〉 | ≥ 2n−2 · 2n−k

2
= 22n−3−k.

Since |G| = 2n+1, one has 2n− 3− k ≤ n + 1, so that n ≤ 4 + k. But k ≤ 2, and hence
n ≤ 4 + k ≤ 6. Thus the order of G is at most 27.

n = 6: This is only possible if k = 2, i.e. exp(G) = 2n−2. In this case, G = T 〈h〉, and
hence D = T 〈h4〉. But since h ∈ G \ U , o(h) = 24, and so o(h4) = 22 = 4. This is
a contradiction, since all elements of D which of 4 are contained in T .
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n = 5: If in this case exp(G) = 2n−1, then one gets the same contradiction as above.
Thus only the case exp(G) = 2n−2 has to be considered. Let G be a group of order
64 and exponent 8, and let D ≤ U ≤ G with |G : U | = |U : D| = 2 and D ∼= D16.
Let D = 〈a, c | a2 = c8 = cac = 1〉, U = 〈a, c, u〉, and G = 〈a, c, u, x〉. Moreover,
let C = 〈c〉. Without loss of generality, one may assume that o(x) = 8, because
otherwise there is nothing to show. Then there is an element h ∈ G \ U with
o(h) < 8, i.e. h4 = 1. To show this, the following two cases have to be considered.

(1) D �G:

In this case, C �G, since C is a characteristic subgroup of D. Thus cx ∈
{c±1, c±3} and hence cx2

= c, i.e. [c, x2] = 1. Since x4 ∈ D, o(x4) = 2, and
[c, x4] = 1, it follows that x4 = c4. Similarly way one sees that [c, (xa)2] = 1
and (xa)4 = c4, if o(xa) = 8 (otherwise there is nothing to prove). Now
consider the four cases for cx.

(a) cx = c:
Here [c, x] = 1 and hence (xc)4 = x4c4 = c4c4 = 1.

(b) cx = c−1:
In this case, [c, xa] = c−1ax−1cxa = c−1ac−1a = c−1c = 1, and hence
(xac)4 = (xa)4c4 = c4c4 = 1.

(c) cx = c3:
Because a 6∈ C, also ax 6∈ C, say ax = acn. Then (xa)2 = xaxa =
x2axa = x2acna = x2c−n. It follows that (xa)3 = (xa)2xa = x2c−nxa =
x3c−3na = x3ac3n, and hence (xa)4 = (xa)3xa = x3ac3nxa = x3axcna =
x4acnac−n = c4c−2n = c4−2n. But (xa)4 = c4, and thus c4 = c4−2n.
It follows that c2n = 1. Since cxa = (c3)a = c−3, from this one gets
(xac)2 = (xa)c(xa)c = (xa)2cxac = (xa)2c−2 = x2c−2−n, and this leads to
(xac)4 = (x2c−2−n)

2
= x4c−4−2n = c4c−4 = 1.

(d) cx = c−3:
Here (xc)2 = x2cxc = x2c−2, and thus (xc)4 = x4c−4 = c4c−4 = 1.

(2) D 6�G:

In this case U = NG(D) since D �U . If g ∈ G \ U with g2 ∈ U \D, there is
an element d ∈ D with dg = ue for some e ∈ D, because g 6∈ NG(D). Thus
there is an element g ∈ G \ U with g2 ∈ D. Hence (gd)2 = g2dgd = g2ue.
But g2, u ∈ U \D, and so g2u ∈ D. Therefore (gd)2 ∈ D and without loss of
generality one may assume that x2 ∈ D. Moreover, in the following o(xa) = 8
will be assumed, since otherwise the claim is proved.

Now x2 ∈ D and o(x2) = 4, and thus x2 = c±2. If x2 = c−2, replace x by x−1,
so that in any case x2 = c2.

First assume cx 6∈ D. If ax 6∈ D, then (ac)x ∈ D and one can replace a by ac.
Thus let ax ∈ D, so that ax = ajcl for some j, l ∈ N. If j = 0, one has l = 4
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since o(a) = o(ax) = 2, i.e. ax = c4. But then (xa)2 = x2axa = c2c4a = ac2

and hence (xa)4 = 1, a contradiction to o(xa) = 8. Thus ax 6∈ C, and so
ax = acl. Hence (xa)2 = x2axa = c2acla = c2−l. Since o(xa) = 8, (xa)2 = c±2

and hence l = 0 or l = 4. But if l = 0, one has ac4 = ac2 = ax2
= a, a

contradiction. On the other hand, l = 4 leads to ac4 = ac2 = ax2
= (ac4)x =

ax(c4)x = ac4(c4)x and hence (c4)x = 1, which is contradiction. This means
that cx ∈ D and hence ax 6∈ D.

Since o(cx) = 8, cx ∈ {c±1, c±3}. But then cxc ∈ 〈c2〉. If o(xc) = 8, o((xc)2) =
4. But (xc)2 = x2cxc = c2cxc ∈ 〈c2〉, and hence (xc)2 = c±2. If (xc)2 = c2,
one has c2cxc = (xc)2 = c2 and hence cx = c−1. But this leads to c2 = x2 =
(x2)x = (c2)x = c−2, a contradiction to o(c) = 8. Thus (xc)2 = c−2, and hence
cx = c3. As above, this leads to the contradiction c2 = x2 = (x2)x = (c2)x =
c6 = c−2.

In summary it is shown that in every case there is an element g ∈ G \ U with
o(g) < 8.

It follows that n ≤ 4 and hence |G| ≤ 32. 2

The following lemma will be used in Example 8.3.9.(d) to show that also in the case
under consideration there is no local nearring R with |R| = 32.

8.3.8 Lemma
Let G be a group of order 32 which has a subgroup D isomorphic to D8. For every
g ∈ G let Sg = {(dg)2 | d ∈ D}, the set of squares of the elements of the right coset Dg.
Then |Sg| ≥ 2 for every g ∈ G.

Proof. Let D = 〈a, c | a2 = c4 = cac = 1〉 and assume that there is an element g ∈ G
such that |Sg| = 1. Let s be the unique element of Sg. Then (dg)2 = s for all d ∈ D.
But this means that s = (dg)2 = dgdg = ddg−1

g2 = ddg−1
s and hence ddg−1

= 1 for all
d ∈ D, or in other words dg−1

= d−1 for every d ∈ D. In particular, ac−1 = a−1c−1 =
ag−1

cg−1
= (ac)g−1

= (ac)−1 = ac and hence c = c−1, a contradiction. Hence |Sg| ≥ 2. 2

8.3.9 Examples
(a) If |R| = 4, LR is cyclic of order 2. Thus there is an element b ∈ LR with LR

+ = 〈b〉+.
But since rb 6= 0 for all r ∈ R×, the operation of LR + 1 on LR must be trivial.
Hence in Case (2) there are no local nearrings of order 4.

(b) Next consider the case |R| = 8. If R+ is cyclic, i.e. R ∼= Z/8Z, it is not difficult to see
that K = 〈−3〉. This means that Z/8Z belongs to Case (2). As mentioned above,
the additive group of a local nearring of order 8 must be abelian. Consider the non-
cyclic abelian groups of order 8. If R+ is not cyclic, both R× and LR

+ are elementary
abelian of order 4. But then for every l ∈ LR one has 1 = (l+1)2 = (l+1)l+l+1 and
so (l+1)l = −l = l for each l ∈ LR. Now consider k, l ∈ LR with k 6= 0 6= l and k 6= l.
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Then (k+1)(l+1) 6∈ {1, k+1, l+1} and hence l+k+1 = (k+1)(l+1) = (k+1)l+k+1.
It follows that (k + 1)l = l for all k, l ∈ LR and hence LR + 1 operates trivially on
LR. Thus in Case (2) there is only one local nearring of order 8.

(c) Using GAP[9] with SONATA[1] one can check that there are 185 local nearrings of
order 16 with dihedral group of units such that |LR + 1 : K| = 2. These nearrings
will not all be described here. Only two examples will be given here.

(1) Let R+ = 〈1, a | 8 = a · 2 = [1, a] = 0〉 ∼= C8×C2. Clearly, then LR = 〈2, a〉+ ∼=
C4×C2. If one defines (−1)a = (a− 1)a = a + 4, one gets (a− 1)2 = (a− 1)a−
(a−1) = a+4+1−a = 5 = −3. This leads to o×(a−1) = 4 and (a−1)−1 = a+3.
Moreover, (−1)(a− 1)(−1) = (−1)(1− a) = −1− (a + 4) = a + 3 = (a− 1)−1.
Hence R× ∼= D8. It is also clear that R× 6= K, and since −3 = (a−1)2 ∈ K and
(−1)(a − 1) = a − 3 ∈ K, one has |K| = 4. Of course, K is not cyclic. If one
defines la = 0 for every l ∈ LR, the products ra are defined for every r ∈ R. To
see that this leads to an associative multiplication on R it suffices to check the
subnearring of M(R+) generated by idR+ and the mapping α : R+ → R+ with
x 7→ xa where xa is as defined above.

(2) Consider the non-abelian group

R+ = 〈1, a1, a2 | 4 = a1 · 2 = a2 · 2 = [1, a2] = [a1, a2] = 0,

− 1 + a1 + 1 = a1 + a2〉 .

Then it can be checked that |R+| = 16 and exp(R+) = 4 (R+ is the non-abelian
semidirect product C4 nE4 as described in Lemma 7.3.4). Now a multiplication
on R+ has to be introduced such that R becomes a local nearring. Then LR =
〈2, a1, a2〉+ ∼= E8. Now define kl = 0 for all k, l ∈ LR and ra1 = a1 and ra2 = a2

for all r ∈ R \LR. To check the associativity of this multiplication consider the
following mappings:

α1 : R+ → R+ α2 : R+ → R+

x 7→

{
0, x ∈ LR

a1, otherwise
x 7→

{
0, x ∈ LR

a2, otherwise

It can easily be checked that the subnearring of M(R+) generated by idR+ , α1,
and α2 has order 16 and the multiplication is as described above.

Now (a1 − 1)2 = (a1 − 1)a1 − (a1 − 1) = a1 + 1 − a1 = a1 + a2 + 1 and hence
(a1 − 1)4 = (a1 + a2 + 1)2 = (a1 + a2 + 1)a1 + (a1 + a2 + 1)a2 + a1 + a2 + 1 =
a1 +a2 +a1 +a2 +1 = 1. Moreover, (−1)(a1−1)(−1) = a1 +a2−1 = (a1−1)−1.
Hence R× ∼= D8. Since rai = ai for i = 1, 2 and all r ∈ R×, one has r ∈ K if
and only if r · 2 = r. Thus a1 − 1 6∈ K, i.e. |K| ≤ 4. But since −1 ∈ K and
a2 +1 ∈ K, |K| ≥ 4. Because of (−1)2 = (a2 +1)2 = 2, K cannot be cyclic, and
this means that R belongs to Case (2).
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(d) Assume that |R| = 32. Then |LR| = 16 and K ∼= D8. Moreover, D = K − 1 is a
subgroup of LR

+ which is also isomorphic to D8. Now consider the homomorphism
σ : R× → Aut(LR

+) with r 7→ σr, where lσr = rl for all l ∈ LR. Then of course
K = Ker(σ). Hence | Im(σ)| = 2 and there is an automorphism α ∈ Aut(LR

+) with
o(α) = 2 and rσ = α for all r ∈ R× \K. Clearly 2 ∈ LR and so

r + r = r · 2 = 2α (8.2)

for each r ∈ R× \ K. But since |R : D| = 4, the group D has four right cosets
in R, two of which are contained in LR and one coinciding with K. This means
that R× \K is a right coset of D. Thus there is an element s ∈ R× \K such that
R× \ K = D + s. By (8.2) there is an element z = 2α with (d + s) · 2 = z for all
d ∈ D. But this is a contradiction to Lemma 8.3.8, since R+ satisfies the hypothesis
of that lemma. Hence there are no local nearrings of order 32 in Case (2).

Case (3): K is cyclic

First some examples will be given. It turns out that for |R| ∈ {4, 8} there are no
additional nearrings not covered by the previous cases. For |R| = 16 one example is
given to demonstrate that there are local nearrings of order 16 which do not belong to
Case (1) or Case (2). In Theorem 8.3.11 all groups of order 32 are considered to show
that there are no local nearrings of order 32 with dihedral group of units.

8.3.10 Examples
(a) If |R| = 4, R× is cyclic and hence so is K. But as mentioned above, LR +1 operates

trivially on LR and so this case is identical to Case (1).

(b) If |R| = 8, then R× ∼= D4. If K 6= 1 is cyclic, then K ∼= C2 = D2; this case is treated
as Case (2). Thus only the case K = 1 remains. But this case is not possible, since
K is the kernel of a homomorphism R× → Aut(LR

+) and Aut(LR
+) ∼= S3 does not

contain a subgroup isomorphic to E4.

(c) Let R+ = 〈1, a, b | 4 = a · 2 = b · 2 = [1, a] = [1, b] = [a, b] = 0〉 ∼= C4 ×E4. Define a
multiplication on R by r · 1 = r for all r ∈ R and the following rules:

ra =



0, r ∈ 〈2〉+

2, r ∈ LR \ 〈2〉+

a, r ∈ 〈2 + a〉+ + 1

2 + a, r ∈ 〈a〉+ + b− 1

2 + a + b, r ∈ 〈a + b〉+ + 1 + a

a + b, r ∈ 〈2 + a + b〉+ − 1

rb =


0, r ∈ LR

b, r ∈ 〈2, b〉+ + 1

2 + b, otherwise

.

Considering the mappings α : R → R, r 7→ ra and β : R → R, r 7→ rb as defined
above, one can see that the subnearring of M(R+) generated by α, β, and the
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identity mapping on R+ is a local nearring of order 16 over R+ with R× ∼= D8 and
|K| = 1.

In the following theorem all groups of order 32 are considered to show that they
cannot be the additive group of a local nearring with a dihedral group of units. There
are 51 groups of order 32, but not all have to be considered separately. Most of the
groups of order 32 cannot occur as R+, since for example their exponent is larger than
8. Altogether there are seven groups of order 32 left, which will be treated separately.

8.3.11 Theorem
There is no local nearring of order 32 whose multiplicative group is dihedral.

Proof. Assume there exists a local nearring R of order 32, whose multiplicative group
R× is isomorphic to D16. Then, R belongs to Case (3), i.e. the group K as defined
in (8.1) is cyclic. Let C = {k − 1 | k ∈ K}. Then C is a cyclic subgroup of LR

+

isomorphic to K. Since exp(R+) ≤ 8 by Lemma 8.3.1, also |K| is not larger than 8. By
Lemma 8.3.2, |K| ≥ 1. Proposition 2.1.13 implies that Aut(R+) contains a subgroup
isomorphic to D16; in particular, R+ is a group of order 32 with an automorphism of
order 8. By Baginski, Malinowska [5], there are 23 groups of order 32, which have an
automorphism of order 8. Using GAP[9] (but also by simple calculation) one can see that
16 of these groups have exponent not larger than 8 and an automorphism group which
has a subgroup isomorphic to D16. The GAP-programs used to obtain these informations
are described in detail in Appendix B.

Moreover, LR
+ is a subgroup of index 2 of R+, such that o+(r) = exp(R+) for every

r ∈ R \ LR. Among the 16 groups under consideration, seven have such a subgroup of
index 2. These are the following:

G1 = E32

G2 = C4 × E8

G3 = 〈a, b, c | a · 4 = c · 4 = [b, c] = 0, a · 2 = b · 2, ba = −b, ca = −c〉

G4 = 〈a, b, c, d | a · 4 = c · 2 = d · 2 = [a, c] = [a, d] = [b, c] = 0,

[b, d] = [c, d] = 0, a · 2 = b · 2, ba = −b〉

G5 = 〈a, b, c | a · 8 = b · 2 = c · 2 = [b, c] = 0, [a, b] = c, ac = −a · 3〉

G6 = 〈a, b, c | a · 8 = b · 4 = c · 2 = [b, c] = 0, a · 4 = b · 2,
[a, b] = c, [a, c] = a · 4〉

G7 = 〈a, b | a · 8 = b · 8 = 0, a · 4 = b · 4, ba = b · 3〉

Here, the groups G2, G3, and G4 have exponent 4, whereas the groups G5, G6, and G7

have exponent 8.
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Now consider the mapping

τ : R× → Aut(R+) (8.3)

r 7→ τr,

where xτr = rx, and let D = Im(τ). By Proposition 2.1.13, τ is a monomorphism and
D ∼= D16. Let r ∈ R× and α1, α2 ∈ D with rα1 = rα2. Then there are elements
s1, s2 ∈ R× with αi = siτ and rαi = sir for i ∈ {1, 2}. Hence s1r = s2r, and right
multiplication with r−1 leads to s1 = s2. Thus α1 = α2. This means that for all r ∈ R×

the following holds ∣∣{rδ | δ ∈ D}
∣∣ = 16. (8.4)

First assume that R+ is elementary abelian. Let S ∈ Syl2(Aut(R+)) and D =
{D ≤ S | D ∼= D16}. Then |S| = 1024 and |D| = 16. It can be checked that for ev-
ery r ∈ R and every D ∈ D there is an αr,D ∈ D, such that αr,D 6= idR and rαr,D = r.
Hence

∣∣{rδ | δ ∈ D}
∣∣ < 16. Now let r ∈ R× and let D1 be an arbitrary subgroup of

Aut(R+) isomorphic to D16. Then there is a β ∈ Aut(G) such that D1 ≤ Sβ, such
that D1 = D0

β for some D0 ∈ D. Let s = rβ−1 and γ = αs,D0 . Then γβ ∈ D1 and
rγβ = rβ−1γβ = sγβ = sβ = r. Hence for every r ∈ R and every D ≤ Aut(R+) with
D ∼= D16 one obtains

∣∣{rδ | δ ∈ D}
∣∣ < 16, a contradiction to (8.4). Thus R+ cannot be

elementary abelian, and there are only six groups left to be checked.
In the following, let L(G) =

{
U ≤ G

∣∣ |G : U | = 2 ∧ ∀g ∈ G \ U : o(g) = exp(G)
}
,

and D(G) = {D ≤ Aut(G) | D ∼= D16}. Then L(G) is the set of all subgroups of G
which are candidates for LR in a local nearring R with R+ ∼= G. Moreover, for U ∈ L(G)
let DU(G) = {D ∈ D(G) | U is D-invariant}. All the calculations in the following have
been done using GAP[9], but of course they could also be done by direct calculation.
The groups of order 32 are described in detail in [13].

(1) R+ = G2 = 〈a〉 × 〈b, c, d〉 ∼= C4 × E8:

In this case, |L(R+)| = 1 and hence there is only one possibility for LR. It turns
out that L = 〈a · 2, b, c, d〉 is the only group in L(R+). Moreover, one can check
that |D(R+)| = 336. But an elementary calculation shows that

∣∣{rδ | δ ∈ D}
∣∣ = 8

for every r ∈ R \ L and every D ∈ D(R+), a contradiction to (8.4). Thus there is
no local nearring R with dihedral group of units over G2.

(2) R+ = G3 = 〈a, b, c | a · 4 = c · 4 = [b, c] = 0, a · 2 = b · 2, ba = −b, ca = −c〉:
In this case |L(R+)| = 7 and |D(R+)| = 16. But the only group L ∈ L(R+) for
which there is a D ∈ D(R+) such that L is D-invariant is L = 〈a · 2, b, c〉; for this
group DL(R+) = D(R+). But again it turns out that

∣∣{rδ | δ ∈ D}
∣∣ = 8 for each

r ∈ R \ L and each D ∈ D(R+). This contradiction to (8.4) shows that there is no
local nearring R with dihedral group of units over G3.
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(3) R+ = G4:

Here, |L(R+)| = 3 and |D(R+)| = 144. Also in this case it turns out that for every
L ∈ L(R+), every r ∈ R+ \ L and every D ∈ DL(R+) one gets

∣∣{rδ | δ ∈ D}
∣∣ = 8.

Thus by (8.4) there is no local nearring with the desired properties over G4.

(4) R+ = G5 = 〈a, b, c | a · 8 = b · 2 = c · 2 = [b, c] = 0, [a, b] = c, ac = −a · 3〉 = 〈a, b〉:
In this case |D(R+)| = 4, |L(R+)| = 1, and LR = 〈a · 2, b, c〉 ∈ L(R+). Clearly,
LR is a characteristic subgroup of R+. Since for every r ∈ R \ LR the relation
r[r,b] = −r · 3 holds, without loss of generality a is the identity element 1 of R.

Since the group PR = 〈1〉+ is not normal in R+, the group R0
+ must be a normal

subgroup of R+ which properly contains PR. Assume that R is not a zero-symmetric
nearring. Then R0

+ = NR+(PR), since it is the only proper normal subgroup of R+

containing PR. But then |Rc| = 2 and there is an x ∈ Rc, x 6= 0, with rx = x for all
r ∈ R. In particular, if r ∈ R×, one gets x = rx = x(rτ), where τ is the mapping
defined in (8.3). This means that there exists a group D ∈ D(R+) such that xδ = x
for all δ ∈ D. But there is no D ∈ D(R+) such that xδ = x for all δ ∈ D and some
x 6∈ NR+(PR) with o+(x) = 2. Thus the nearring R must be zero-symmetric. In
particular, LR is nilpotent by Corollary 5.1.13.

It is not difficult to see that LR
′ = 〈4〉+. In particular, l[k,m] = 0 for all k, l, m ∈

LR, since exp(LR
+) = 4. Moreover, if l ∈ LR, then l · 2 ∈ 〈4〉+, i.e. l · 2 = 4n′ for

some n′ ∈ N. By Theorem 2.1.14, o+(lb) | o+(b) = 2. The elements of R+ whose
orders divide 2 are 0, c, b, b + c, 2 + b, 2 + b + c, 4, 4 + c, 4 + b, 4 + b + c, −2 + b,
and −2 + b + c. Then lb ∈ {0, c, 4, 4 + c} for all l ∈ LR, since all other possibilities
lead to a contradiction to the nilpotency of LR:

1. lb = b: This would mean l2b = b, and so lnb = b 6= 0 for all n ∈ N.

2. lb = b + c: This would lead to l2b = l(b + c) = lb + lc = b + c + [l, lb] 6= 0, and
hence l3b = l(b + c + [l, lb]) = l(b + c) = l2b. Thus lnb = l2b 6= 0 for all n ≥ 2.

3. lb = 2 + b: This would mean l2b = l(2 + b) = l · 2 + lb = 4n′ + 2 + b 6= 0, hence
l3b = l(4n′ + 2 + b) = l(2 + b) = l2b 6= 0 and thus lnb = l2b 6= 0 for all n ≥ 2.

4. lb = 2 + b + c: This would mean l2b = l(2 + b + c) = l · 2 + lb + lc = 4n′ + 2 + b +
c + [l, lb] 6= 0, hence l3b = l(4n′ + 2 + b + c + [l, lb]) = l(2 + b + c) = l2b and thus
lnb = l2b 6= 0 for all n ≥ 2.

5. lb = 4 + b: This would mean l2b = l(4 + b) = lb 6= 0, hence lnb = lb 6= 0 for all
n ∈ N.

6. lb = 4+ b+ c: This would mean l2b = l(4+ b+ c) = lb+ lc = 4+ b+ c+[l, lb] 6= 0,
hence l3b = l(4 + b + c + [l, lb]) = l(4 + b + c) = l2b and thus lnb = l2b 6= 0 for all
n ≥ 2.

7. lb = −2 + b: This would mean l2b = l(−2 + b) = 2l · 2 + lb = 4n′ − 2 + b 6= 0,
hence l3b = l(4n′ − 2 + b) = l(−2 + b) = l2b and thus lnb = l2b 6= 0 for all n ≥ 2.
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8. lb = −2 + b + c: This would mean l2b = l(−2 + b + c) = −l · 2 + lb + lc =
4n′−2+b+c+[l, lb] 6= 0, hence l3b = l(4n′−2+b+c+[l, lb]) = l(−2+b+c) = l2b
and thus lnb = l2b 6= 0 for all n ≥ 2.

Since all eight cases lead to contradictions to the nilpotency of LR, only the four
possibilities given above remain. Since c = [1, b], one gets lc = [l, lb] for every l ∈ LR.
But since all possibilities for lb are contained in the centre of LR

+, it follows that
lc = 0 in every case. Now let k, l ∈ LR with l = 2x + by + cz and k · 2 = 4w. Then
kl = k(2x + by + cz) = 4wx + kby + kcz = 4wx + kby ∈ 〈4, c〉+. Hence klm = 0 for
all k, l, m ∈ LR and thus LR

3 = 0.

Therefore 〈4, c〉+ ≤ AR(LR). Since exp(LR
+) = 4, it is also clear that 2 6∈ AR(LR).

There are three normal subgroups of R+ which contain 4 and c and do not contain
2. These are the candidates for A = AR(LR)+.

(A) A = 〈4, c〉+ (|A | = 4):

In this case is (R/A)+ ∼= C4×C2. As shown above, there are two zero-symmetric
local nearrings over this group whose multiplicative groups are dihedral. In both
cases the operation of (R/A)× on LR/ A is trivial, such that rb ∈ b+A for every
r ∈ R×. But there is no D ∈ D(R+) such that bα ∈ b + A for each α ∈ D.
Thus this case is impossible.

(B) A = 〈4, b, c〉+ (|A | = 8):

In this case (R/A)+ is cyclic of order 4. There is only one nearring with one
over this group, and this is isomorphic to Z/4Z. This is a local nearring with
dihedral group of units, and the operation of (R/A)× on LR/ A is trivial. But
again, there is no D ∈ D(R+) such that bα ∈ b + A for all α ∈ D. Therefore
also this case is impossible.

(C) A = 〈4, 6 + b, c〉+ (|A | = 8):

As in the last case, (R/A)+ is cyclic of order 4, and there is no D ∈ D(R+)
such that bα ∈ b + A for all α ∈ D. Thus also this case is impossible.

Therefore no local nearring with dihedral group of units exists over G5.

(5) R+ = G6 = 〈a, b〉:
In this case |L(R+)| = 1 and |D(R+)| = 4. If such a local nearring exists, then
LR = 〈a · 2, b, c〉. Since R+ = 〈a, b〉 and the relations between a and b are satisfied
by every r ∈ R×, without loss of generality 1 = a.

Assume that R is not zero-symmetric. The group PR
+ is not normal in R+, but it is

contained in the zero-symmetric part R0. Hence R0
+ = NR+(PR

+), since this is the
only proper normal subgroup of R+ containing PR, because |R : PR| = 4. But this
normalizer does not have a complement in R+, a contradiction to Theorem 2.1.8.
Hence R must be zero-symmetric.
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Since LR
′ = 〈4〉+ and exp(LR

+) = 4, it follows that k[l,m] = 0 for every k, l, m ∈
LR. Moreover, l · 2 ∈ 〈4〉+ for every l ∈ LR. From 4 = b · 2 it follows that
(lb) · 2 = l(b · 2) = l · 4 = 0 for every l ∈ LR. Hence lb ∈ 〈4, c〉+, because o+(l) = 4
for all l ∈ LR\〈4, c〉+. But since 〈4, c〉+ = Z(LR

+), this yields lc = l[1, b] = [l, lb] = 0
for every l ∈ LR. Thus 〈4, c〉+ ≤ AR(LR) �R. Since 2 6∈ AR(LR), there are the
following possibilities for A = AR(LR):

(A) A = 〈4, c〉, (|A | = 4):

In this case, (R/A)+ ∼= C4×C2. As shown above, the operation of (R/A)× on
LR/ A must be trivial, i.e. there must be a D ∈ D(R+) with bα + A = b + A for
every α ∈ D. It is easy to check that this is not the case, and hence this case
is impossible.

(B) A = 〈b, c〉, (|A | = 8):

Since here (R/A)+ ∼= C4, also in this case the operation of (R/A)× on LR/ A

must be trivial. Again, there is no D ∈ D(R+) such that bα + A = b + A for
every α ∈ D. Hence also this case is impossible.

(C) A = 〈2− b, c〉, (|A | = 8):

Again, (R/A)+ ∼= C4. But as in the last case it turns out that this group A

cannot be the annihilator of LR in R.

As none of the possible normal subgroups of R+ can be the annihilator of LR in R+,
this local nearring cannot exist.

(6) R+ = G7 = 〈a, b | a · 8 = b · 8 = 0, a · 4 = b · 4, ba = b · 3〉:
For this group one obtains |L(R+)| = 3 and |D(R+)| = 8. The groups L1 = 〈a, b · 2〉
and L2 = 〈a + b · 3, b · 2〉 are both contained in L(R+), but one can check that
DLi

(R+) = ∅ for i ∈ {1, 2}. Thus, if a local nearring with dihedral group of units
exists over this group, LR = 〈a · 2, b〉. Since then for every r ∈ R× the relations
r · 4 = b · 4 and br = b · 3 hold, without loss of generality 1 = a. Again, the group
PR

+ = 〈1〉+ is not normal in R+ and the normalizer NR+(PR
+) has no complement

in R+, such that R must be a zero-symmetric nearring. By Corollary 5.1.13, LR

must be nilpotent.

Since exp(LR
+) = 8, the element 4 cannot be contained in the annihilator AR(LR).

Let n ∈ N such that LR
n−1 6= 0 = LR

n. Then n ≥ 4 by Proposition 5.1.23. As in
Definition 5.3.1, Ln−1 is the ideal of R generated by LR

n−1. This is contained in
A1 = AR(LR) by Lemma 5.3.3. The group R+ contains exactly three elements of
order 2; namely 4, 2 + b · 2, and 2 − b · 2. Since it is already known that 4 6∈ A1,
let x ∈ {2± b · 2} and let Nx be the normal closure of 〈x〉+. Since A1 must contain
at least one element x of order 2 and since A1

+ �R+, this group must also contain
the normal closure Nx. But for both possible choices for x it turns out that 4 ∈ Nx.
Thus the desired nearring also does not exist in this case.
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8.3. Nearrings of even order

Since a local nearring with dihedral group of units cannot exist over any group of order
32, the theorem is proved. 2

8.3.12 Corollary
If R is a local nearring with dihedral group of units of even order, then |R| ≤ 16.
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Appendix A.

C++-Program used in Example 5.2.12

In Example 5.2.12 a nearring over a group isomorphic to C9 × C9 was defined. In this
example R+ = 〈1, a | 9 = a · 9 = [1, a] = 0〉, and a multiplication on this group is given
such that R becomes a local nearring with LR = R · 3. By the left distributive law
it is clear that only the products x · 1 and x · a have to be defined for all x ∈ R. In
order that 1 becomes the identity element of R, it is clear that x · 1 = x for all x ∈ R.
Then, the products l · a are defined for all l ∈ LR. Furthermore let (a · 2)a = −2 and
(1− a · 2)a = −2− a · 4. Then it has to be checked that these products define the whole
multiplication on R and that this multiplication is well-defined and an associative left
distributive nearring multiplication. This check has been done by a C++-program, which
is described here.

First a class for the elements of R is defined (the line numbers given here are the
numbers of the code lines in the source code file, which is as a whole given at the end of
this appendix).

class Nearring_Element

This class contains two member variables in the range from 0 to 8, which describe the
element. Thus the element constructed by the constructor

// Constructor:
// The element constructed is the tuple (E,A) in the additive group
// C9 x C9.

25 Nearring_Element( int E,
int A) :

e(E%9),
a(A%9)

{
30 if (e < 0)

e += 9;
if (a < 0)

a += 9;
}

is the element e · 1 + a · a in the group. The function body of this constructor ensures
that the member variables are in fact in the desired range.
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Moreover, the elements of the group can be numbered from 0 to 80. This is necessary
to define the multiplication later. The constructor

// Constructor:
// The additive group has order 81. The elements are numbered from
// 0 to 80, and the element constructed is the element with the
// number i.

40 Nearring_Element( int i) :
e((i/9)%9),
a(i%9)

{
if (e < 0)

45 e += 9;
if (a < 0)

a += 9;
}

constructs the element with the number i , while the member function

// This function returns the number of a nearring element.
int

80 num() const
{

return e*9+a;
}

returns the number of an element of R.
Also an addition for the elements is needed, as well as the possibility to multiply an

element with an integer. This is done by the following two member functions.

50 // Addition of two nearring elements
Nearring_Element
operator +( const Nearring_Element &f) const
{

return Nearring_Element(e+f.e, a+f.a);
55 }

// Multiplication of a nearring element with an integer
Nearring_Element
operator *( int i) const

60 {
return Nearring_Element(e*i, a*i);

}

Multiplication is defined outside this class, because a global array is needed for this.
As described above, only the products x ·a have to be defined. Thus, an array is created
in the program, in which the numbers of the elements xa are given, indexed by the
number of x. As long as these products are not yet defined, the value −1 is put into
the array to indicate that the products are unknown. Here the member functions n()
and k() are used. These functions return the values of the two member variables of
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the class, i.e. if x = Nearring Element(u,v) one has x.n() = u and x.k() = v .
This means that x.n() = nx and x.k() = kx as defined in Example 5.2.12.(b) on page 67.

////////////////////////////////////////////////////////////////////////
//
// Multiplication table
//

115 // In this table the product x*a for all nearring elements is stored.
// If this product is still unknown, -1 is stored. The element
// mtab[i] is the number of the nearring element
// Nearring_Element(i)*a.
//

120 ////////////////////////////////////////////////////////////////////////
static int mtab[81] = {

-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,

125 -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,

130 -1, -1, -1, -1, -1, -1, -1, -1, -1
};

// Multiplication operator for two nearring elements.
Nearring_Element

135 operator *( const Nearring_Element &x,
const Nearring_Element &y)

{
return x*y.n() + Nearring_Element(mtab[x.num()])*y.k();

}

In the main() function, first the products already defined are put into the multipli-
cation table.

// First put the already known products for the non-invertible
// elements into the table.

255 mtab[Nearring_Element(0,0).num()] // 0a = 0
= Nearring_Element(0,0).num();

mtab[Nearring_Element(0,3).num()] // (a3)a = -3
= Nearring_Element(-3,0).num();

mtab[Nearring_Element(0,-3).num()] // (-a3)a = 3
260 = Nearring_Element(3,0).num();

mtab[Nearring_Element(3,0).num()] // 3a = a3
= Nearring_Element(0,3).num();

mtab[Nearring_Element(3,3).num()] // (3+a3)a = 3-a3
= Nearring_Element(3,-3).num();

265 mtab[Nearring_Element(3,-3).num()] // (3+a-3)a = -3-a3
= Nearring_Element(-3,-3).num();

mtab[Nearring_Element(-3,0).num()] // -3a = -a3
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= Nearring_Element(0,-3).num();
mtab[Nearring_Element(-3,3).num()] // (-3+a3)a = 3+a3

270 = Nearring_Element(3,3).num();
mtab[Nearring_Element(-3,-3).num()] // (-3-a3)a = -3+a3

= Nearring_Element(-3,3).num();

// Next also put the two known products for the invertible elements
275 // into the table

mtab[Nearring_Element(0,2).num()] // (a2)a = -2
= Nearring_Element(-2,0).num();

mtab[Nearring_Element(1,-2).num()] // (1-a2)a = -2-a4
= Nearring_Element(-2,-4).num();

After this initialisation the remaining products are determined. This is done in a loop
which runs until all products are known. As described in Example 5.2.12, if the products
xa and ya are known, the product xya can be determined. Whenever two elements x
and y are found for which the products xa and ya are already known, the value of xya
is determined and stored in the multiplication table. If also the product xya is already
known, it is checked if there is a contradiction to previously determined products. It is
also verified that the multiplication table can be filled completely.

// The remaining products are determined successively using the
// already known products. This is done as long as not all products
// are known.
while (number_of_non_defined_products() > 0) {

285 // Count the unknown products
int before = number_of_non_defined_products();

// Loop over all nearring elements x for which the product xa is
// already known

290 for ( int xnum = 0; xnum < 81; ++xnum) {
if (mtab[xnum] == -1)

continue ;
Nearring_Element x(xnum);
Nearring_Element xa(mtab[xnum]);

295

// Loop over all nearring elements y for which the product ya is
// already known
for ( int ynum = 0; ynum < 81; ++ynum) {

if (mtab[ynum] == -1)
300 continue ;

Nearring_Element y(ynum);
Nearring_Element ya(mtab[ynum]);

// Determine xy and xya
305 Nearring_Element xy = x*y.n() + xa*y.k();

Nearring_Element xya = x*ya.n() + xa*ya.k();

// Check if this product leads to a contradiction
if (mtab[xy.num()] != -1) {
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310 if (mtab[xy.num()] != xya.num()) {
// If yes, tell about the contradiction
std::cerr << "Contradiction:"

<< " x = " << x
<< " xa = " << xa

315 << " y = " << y
<< " ya = " << ya
<< " xy = " << xy
<< " xya = " << xya
<< " In the table: "

320 << Nearring_Element(mtab[xy.num()])
<< std::endl;

}
}
else {

325 // If there is no contradiction and the product xya is not
// known up to now, put the newly determined product into
// the table.
mtab[xy.num()] = xya.num();

}
330 }

}

// Report an error if there were no new products determined. This
// means that the nearring multiplication is not completely

335 // defined by the products defined initially. In this case the
// program has to be aborted.
if (before == number_of_non_defined_products()) {

std::cerr << "Did not find new products\n";
std::abort();

340 }
}

To ensure that the determined multiplication is indeed a nearring multiplication, a
check for associativity and left distributivity is done next.

// Last the associativity and the left distributivity of the
// nearring multiplication is checked.

345 bool ass = true ;
bool dis = true ;
for ( int i = 0; i < 81 && ass && dis; ++i) {

Nearring_Element x(i);
for ( int j = 0; j < 81 && ass && dis; ++j) {

350 Nearring_Element y(j);
for ( int k = 0; k < 81 && ass && dis; ++k) {

Nearring_Element z(k);
Nearring_Element D1 = x*(y+z);
Nearring_Element D2 = (x*y)+(x*z);

355 Nearring_Element A1 = (x*y)*z;
Nearring_Element A2 = x*(y*z);
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// Check distributivity
if (D1 != D2) {

360 // Report any detected error
std::cout << "Dis: " << x << " * (" << y << " + " << z

<< ") = " << D1 << std::endl
<< " " << x << " * " << y << " + " << x
<< " * " << z << " = " << D2 << std::endl;

365 dis = false ;
}

// Check associativity
if (A1 != A2) {

370 // Report any detected error
std::cout << "Ass: (" << x << " * " << y << ") * " << z

<< " = " << A1 << std::endl
<< " " << x << " * (" << y << " * " << z
<< ") = " << A2 << std::endl;

375 std::cout << " " << x << " * " << y << " = " << x*y
<< std::endl << " " << y << " * " << z
<< " = " << y*z << std::endl;

ass = false ;
}

380 }
}

}

if (!dis) {
385 std::cerr << "Distributivity error\n";

}
if (!ass) {

std::cerr << "Associativity error\n";
}

390 if (!(ass && dis)) {
std::abort();

}

If the determined multiplication has passed all tests, a list of all products xa for all
x ∈ R is written to the standard output channel in LATEX format, which can be used
directly in the tables given on page 67. Also the inverses of the invertible elements of R
are included in the table.

In the following the whole source code of the program is listed.
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////////////////////////////////////////////////////////////////////////
//
// This program determines the multiplication of a nearring, if only a
// few products are defined.

5 //
////////////////////////////////////////////////////////////////////////

#include <iostream>
#include <string>

10 #include <sstream>
#include <cassert>
#include <cstdlib>

////////////////////////////////////////////////////////////////////////
15 //

// This class describes an element of the nearring.
//
////////////////////////////////////////////////////////////////////////
class Nearring_Element

20 {
public :

// Constructor:
// The element constructed is the tuple (E,A) in the additive group
// C9 x C9.

25 Nearring_Element( int E,
int A) :

e(E%9),
a(A%9)

{
30 if (e < 0)

e += 9;
if (a < 0)

a += 9;
}

35

// Constructor:
// The additive group has order 81. The elements are numbered from
// 0 to 80, and the element constructed is the element with the
// number i.

40 Nearring_Element( int i) :
e((i/9)%9),
a(i%9)

{
if (e < 0)

45 e += 9;
if (a < 0)

a += 9;
}

50 // Addition of two nearring elements
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Nearring_Element
operator +( const Nearring_Element &f) const
{

return Nearring_Element(e+f.e, a+f.a);
55 }

// Multiplication of a nearring element with an integer
Nearring_Element
operator *( int i) const

60 {
return Nearring_Element(e*i, a*i);

}

// Compare two nearring elements
65 bool

operator ==( const Nearring_Element &f) const
{

return e == f.e && a == f.a;
}

70

// The opposite of operator==
bool
operator !=( const Nearring_Element &f) const
{

75 return e != f.e || a != f.a;
}

// This function returns the number of a nearring element.
int

80 num() const
{

return e*9+a;
}

85 // This function checks if an element is contained in the subgroup L
// of R
bool
lr() const
{

90 return e % 3 == 0 && a % 3 == 0;
}

// This function returns n for the nearring element n+ak
int

95 n() const
{

return e;
}

100 // This function returns k for the nearring element n+ak
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int
k() const
{

return a;
105 }

private :
int e, a;

};
110

////////////////////////////////////////////////////////////////////////
//
// Multiplication table
//

115 // In this table the product x*a for all nearring elements is stored.
// If this product is still unknown, -1 is stored. The element
// mtab[i] is the number of the nearring element
// Nearring_Element(i)*a.
//

120 ////////////////////////////////////////////////////////////////////////
static int mtab[81] = {

-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,

125 -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,

130 -1, -1, -1, -1, -1, -1, -1, -1, -1
};

// Multiplication operator for two nearring elements.
Nearring_Element

135 operator *( const Nearring_Element &x,
const Nearring_Element &y)

{
return x*y.n() + Nearring_Element(mtab[x.num()])*y.k();

}
140

// Returns the multiplicative inverse of a nearring element, if it
// exists. If the element is not invertible, the zero element is
// returned.
Nearring_Element

145 inverse( const Nearring_Element &f)
{

// Check if the element is invertible
if (f.lr())

return Nearring_Element(0);
150
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// Search the inverse and return it.
for ( int i = 0; i < 81; ++i) {

Nearring_Element x(i);
if (f*x == Nearring_Element(1,0)) {

155 return x;
}

}

// This should never happen, because the inverse must have been
160 // found previously.

assert( false );
}

// Output operator
165 std::ostream &

operator <<(std::ostream &os, const Nearring_Element &f)
{

return os << ’(’ << f.n() << ’,’ << f.k() << ’)’;
}

170

// This function returns LaTeX-code representing a nearring element.
std::string
latex( const Nearring_Element &f)
{

175 // Get the data of the element
int n = f.n();
int k = f.k();

// Special treatment for zero
180 if (n == 0 && k == 0)

return std::string("$0$");

// Ensure that the absolute values of n and k are minimal
if (n > 4)

185 n -= 9;
if (k > 4)

k -= 9;

// Build the LaTeX-Code
190 std::ostringstream oss;

oss << ’$’;
if (n == 0) {

if (k < 0) {
if (k == -1) {

195 oss << "-a";
}
else {

oss << "-a \\cdot " << -k;
}

200 }
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else {
if (k == 1) {

oss << "a";
}

205 else {
oss << "a \\cdot " << k;

}
}

}
210 else {

oss << n;
if (k != 0) {

if (k < 0) {
if (k == -1) {

215 oss << "-a";
}
else {

oss << "-a \\cdot " << -k;
}

220 }
else {

if (k == 1) {
oss << "+a";

}
225 else {

oss << "+a \\cdot " << k;
}

}
}

230 }
oss << ’$’;

// Return the generated LaTeX-Code
return oss.str();

235 }

// This function counts how many products still are unknown
inline
int

240 number_of_non_defined_products()
{

int res = 0;
for ( int i = 0; i < 81; ++i) {

if (mtab[i] == -1)
245 ++res;

}
return res;

}

250 // Main function
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int main()
{

// First put the already known products for the non-invertible
// elements into the table.

255 mtab[Nearring_Element(0,0).num()] // 0a = 0
= Nearring_Element(0,0).num();

mtab[Nearring_Element(0,3).num()] // (a3)a = -3
= Nearring_Element(-3,0).num();

mtab[Nearring_Element(0,-3).num()] // (-a3)a = 3
260 = Nearring_Element(3,0).num();

mtab[Nearring_Element(3,0).num()] // 3a = a3
= Nearring_Element(0,3).num();

mtab[Nearring_Element(3,3).num()] // (3+a3)a = 3-a3
= Nearring_Element(3,-3).num();

265 mtab[Nearring_Element(3,-3).num()] // (3+a-3)a = -3-a3
= Nearring_Element(-3,-3).num();

mtab[Nearring_Element(-3,0).num()] // -3a = -a3
= Nearring_Element(0,-3).num();

mtab[Nearring_Element(-3,3).num()] // (-3+a3)a = 3+a3
270 = Nearring_Element(3,3).num();

mtab[Nearring_Element(-3,-3).num()] // (-3-a3)a = -3+a3
= Nearring_Element(-3,3).num();

// Next also put the two known products for the invertible elements
275 // into the table

mtab[Nearring_Element(0,2).num()] // (a2)a = -2
= Nearring_Element(-2,0).num();

mtab[Nearring_Element(1,-2).num()] // (1-a2)a = -2-a4
= Nearring_Element(-2,-4).num();

280

// The remaining products are determined successively using the
// already known products. This is done as long as not all products
// are known.
while (number_of_non_defined_products() > 0) {

285 // Count the unknown products
int before = number_of_non_defined_products();

// Loop over all nearring elements x for which the product xa is
// already known

290 for ( int xnum = 0; xnum < 81; ++xnum) {
if (mtab[xnum] == -1)

continue ;
Nearring_Element x(xnum);
Nearring_Element xa(mtab[xnum]);

295

// Loop over all nearring elements y for which the product ya is
// already known
for ( int ynum = 0; ynum < 81; ++ynum) {

if (mtab[ynum] == -1)
300 continue ;
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Nearring_Element y(ynum);
Nearring_Element ya(mtab[ynum]);

// Determine xy and xya
305 Nearring_Element xy = x*y.n() + xa*y.k();

Nearring_Element xya = x*ya.n() + xa*ya.k();

// Check if this product leads to a contradiction
if (mtab[xy.num()] != -1) {

310 if (mtab[xy.num()] != xya.num()) {
// If yes, tell about the contradiction
std::cerr << "Contradiction:"

<< " x = " << x
<< " xa = " << xa

315 << " y = " << y
<< " ya = " << ya
<< " xy = " << xy
<< " xya = " << xya
<< " In the table: "

320 << Nearring_Element(mtab[xy.num()])
<< std::endl;

}
}
else {

325 // If there is no contradiction and the product xya is not
// known up to now, put the newly determined product into
// the table.
mtab[xy.num()] = xya.num();

}
330 }

}

// Report an error if there were no new products determined. This
// means that the nearring multiplication is not completely

335 // defined by the products defined initially. In this case the
// program has to be aborted.
if (before == number_of_non_defined_products()) {

std::cerr << "Did not find new products\n";
std::abort();

340 }
}

// Last the associativity and the left distributivity of the
// nearring multiplication is checked.

345 bool ass = true ;
bool dis = true ;
for ( int i = 0; i < 81 && ass && dis; ++i) {

Nearring_Element x(i);
for ( int j = 0; j < 81 && ass && dis; ++j) {

350 Nearring_Element y(j);
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for ( int k = 0; k < 81 && ass && dis; ++k) {
Nearring_Element z(k);
Nearring_Element D1 = x*(y+z);
Nearring_Element D2 = (x*y)+(x*z);

355 Nearring_Element A1 = (x*y)*z;
Nearring_Element A2 = x*(y*z);

// Check distributivity
if (D1 != D2) {

360 // Report any detected error
std::cout << "Dis: " << x << " * (" << y << " + " << z

<< ") = " << D1 << std::endl
<< " " << x << " * " << y << " + " << x
<< " * " << z << " = " << D2 << std::endl;

365 dis = false ;
}

// Check associativity
if (A1 != A2) {

370 // Report any detected error
std::cout << "Ass: (" << x << " * " << y << ") * " << z

<< " = " << A1 << std::endl
<< " " << x << " * (" << y << " * " << z
<< ") = " << A2 << std::endl;

375 std::cout << " " << x << " * " << y << " = " << x*y
<< std::endl << " " << y << " * " << z
<< " = " << y*z << std::endl;

ass = false ;
}

380 }
}

}

if (!dis) {
385 std::cerr << "Distributivity error\n";

}
if (!ass) {

std::cerr << "Associativity error\n";
}

390 if (!(ass && dis)) {
std::abort();

}

// Finally the multiplication table is written to standard output as
395 // a table in LaTeX format.

int column = 0;
for ( int e = 0; e < 9; e += 3) {

for ( int a = 0; a < 9; ++a) {
Nearring_Element x(e,a);

400 if (x.lr())
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continue ;
Nearring_Element xa(mtab[x.num()]);
Nearring_Element x1 = inverse(x);
std::cout << latex(x) << " & " << latex(xa)

405 << " & " << latex(x1);
++column;
if (column == 2) {

std::cout << " \\\\\n\\hline\n";
column = 0;

410 }
else {

std::cout << " & ";
}

}
415

for ( int a = 0; a < 9; ++a) {
Nearring_Element x(e+1,a), y(e+2,a);
Nearring_Element xa(mtab[x.num()]), ya(mtab[y.num()]);
Nearring_Element x1 = inverse(x), y1 = inverse(y);

420 std::cout << latex(x) << " & " << latex(xa) << " & "
<< latex(x1) << " & "
<< latex(y) << " & " << latex(ya) << " & "
<< latex(y1) << " \\\\\n\\hline\n";

}
425 }

// Terminate program successfully
return 0;

}
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GAP-programs used in the proof of
Theorem 8.3.11

In the proof of Theorem 8.3.11 some calculations are used, which also could be done by
hand, but they can be achieved much faster using a computer system. In this appendix
the programs used to get the desired information are described.

The first problem is to determine all groups G of order 32 with exp(G) ≤ 8, such that
Aut(G) contains a subgroup isomorphic to D16. Since the automorphism group of E32 is
very large (|GL(5, 2)| = 210 ·32 ·5 ·7 ·31 = 9999360), this group is treated separately – it
is well-known that GL(5, 2) contains a subgroup isomorphic to D16. To check this using
GAP, one does not have to check the whole group GL(5, 2), but only a Sylow-2-group.
A subgroup of GL(5, 2) isomorphic to D16 is for example generated by the matrices

A =


1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 and B =


1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 .

The following GAP-program determines all groups of order 32 with the desired properties.

########################################################################
#
# Determine all groups of order 32 with exponent not larger than 8
#
########################################################################

Groups_List := Filtered(AllSmallGroups(32), G -> Exponent(G) <= 8);

########################################################################
#
# The following function checks if the group of automorphisms of the
# group G contains a dihedral subgroup of order 16. Since it is known
# that GL(5,2) contains a dihedral subgroup of order 16, the case that
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# G is elementary abelian is treated separately.
#
########################################################################

Aut_has_subgroup_D_16 := function(G)

# Local variables

local AutG, # For the group of automorphisms
Ord2; # For the automorphisms of order 2

# Check if G is elementary abelian

if IsElementaryAbelian(G) then
return true;

fi;

# Determine all automorphisms of order 2

AutG := AutomorphismGroup(G);
Ord2 := Filtered(AutG, a -> Order(a) = 2);

# Return true if and only if there are two automorphisms a and b
# of order 2, such that a*b has order 8.

return ForAny(Combinations(Ord2, 2),
pair -> Order(Product(pair)) = 8);

end;

########################################################################
#
# Determine all groups G contained in Groups_List, such that the
# automorphism group of G has a dihedral subgroup of order 16.
#
########################################################################

Groups_List := Filtered(Groups_List, Aut_has_subgroup_D_16);

Now, Groups List contains 16 groups. The next step is to check that the groups G
considered in the proof of Theorem 8.3.11 must have a subgroup L of index 2, such that
o(g) = exp(G) for each g ∈ G\L. Since these subgroups are investigated in more detail,
a function which returns all these candidates for L is defined. All groups for which this
function returns the empty list are filtered out.
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########################################################################
#
# The following function returns a list of all subgroups L of G, such
# that the index of L in G is 2 and all elements of G not contained in
# L have order exp(G). The fact is used that L has to be normal in G.
#
########################################################################

Get_L_Candidates := function(G)

# Local Variables

local NormalSg; # For the normal subgroups of G

# Determine all normal subgroups in G, which have index 2

NormalSg := Filtered(NormalSubgroups(G), N -> Index(G, N) = 2);

# Return all normal subgroups of G which have the desired
# property.

return Filtered(NormalSg,
N -> ForAll(G,

g -> g in N or Order(g) = Exponent(G)));
end;

########################################################################
#
# Determine all groups in Groups_List for which Get_L_Candidates
# returns a non-empty list.
#
########################################################################

Groups_List := Filtered(Groups_List, G -> Get_L_Candidates(G) <> []);

Next, Groups List contains the seven groups which are investigated in detail in the
proof of Theorem 8.3.11. Note that the sequence of groups in Groups List differs from
the sequence given in the proof on page 118; the groups in Groups List are as follows:
G5, G6, G7, G3, G2, G4, G1. If one wants to check if a given group G, which is stored in
the GAP-variable G, is contained in Groups List , one can use the GAP-expression

IdGroup(G) in List(Groups_List, IdGroup);

inside GAP. For example, to verify that the group G3 is contained in Groups List ,
the following GAP-code can be used. Note that groups in GAPare always written mul-
tiplicatively.
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########################################################################
#
# Check that G_3 is contained in Groups_List.
#
########################################################################

# First construct the free group on three generators and assign the
# generators to the variables a, b, and c.

F := FreeGroup(["a", "b", "c"]);
a := F.1;
b := F.2;
c := F.3;

# Now define the relations of the group G_3 and construct the group
# G_3 using these relators.

Rel := [ aˆ4, cˆ4, Comm(b,c), aˆ2/bˆ2, bˆa*b, cˆa*c ];
G_3 := F/Rel;

# Check if G_3 is contained in Groups_List.

group_in_list := IdGroup(G_3) in List(Groups_List, IdGroup);
if group_in_list then

Print("The group is contained in Groups_List.\n");
else

Print("The group is not contained in Groups_List.\n");
fi;

After determining L(G) for a given group G using Get L Candidates the set D(G)
has to be calculated. This is done by the following function.

########################################################################
#
# The following function returns a list of all subgroups of the
# automorphism group of G which are isomorphic to D_16.
#
########################################################################

Get_D16_Automorphism_Groups := function(G)

# Local variables

local AutG, # The automorphism group of G
Ord2, # The automorphisms of order 2
Pairs; # Pairs of automorphisms of order 2

# Determine all automorphisms of G of order 2

AutG := AutomorphismGroup(G);
Ord2 := Filtered(AutG, a -> Order(a) = 2);
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# Determine all pairs of automorphisms of order 2 of G which
# generate a dihedral group of order 16.

Pairs := Combinations(Ord2, 2);
Pairs := Filtered(Pairs, p -> Order(Product(p)) = 8);

# Return the set of groups generated by the pairs of automorphisms
# determined in the last step. To avoid dublicates the function
# Set is used instead of List.

return Set(Pairs, Group);
end;

The first group to be checked by GAP is G2. Since |L(G2)| = 1, there is only one
possibility for LR. The check of all 336 dihedral groups contained in D(G2) is done by
the following GAP-code.

# First select the group and determine L(G) and D(G). L and Rx, the
# set of elements if G not contained in L, are also assigned.

G := Groups_List[5];
Ls := Get_L_Candidates(G);
L := Ls[1];
Rx := Filtered(G, g -> not g in L);
D_16_List := Get_D16_Automorphism_Groups(G);

# Print some information

Print("Number of candidates for L: ", Length(Ls), "\n");
Print("Number of dihedral automorphism groups of order 16: ",

Length(D_16_List), "\n");

# For each D in D_16_List and each r in Rx determine the size of the
# set { rˆdelta | delta in D }.

res := Set(D_16_List,
D -> Set(Rx, r -> Length(Set(D, delta -> rˆdelta))));

Print("Result: ", res, "\n");

The groups G3 and G4 are treated in a similar way.
Finally the verification of the argument that a certain normal subgroup A of G cannot

be the annihilator of LR is explained. This applies for instance to G5, for which it will
be described here. The code for G6 is nearly the same.
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# First select G_5 and determine L and the generators of G

G := Groups_List[1];
Ls := Get_L_Candidates(G);
L := Ls[1];
Gens := [ G.1, G.2, G.3 ];
a := Gens[1];
b := Gens[2];
c := Gens[3];

# Determine D(G)

D16s := Get_D16_Automorphism_Groups(G);

# Determine the candidates for the annihilator of L

Anul_Cands := Filtered(NormalSubgroups(G),
N -> aˆ4 in N and c in N and not aˆ2 in N);

# Check if for one of the possible annihilators Anul there is a
# subgroup D of Aut(G) isomorphic to D_16, such that
# bˆdelta + Anul = b + Anul
# for every delta in D.
# Note again that groups in GAP are written multiplicatively.

found := false;
for Anul in Anul_Cands do

found := ForAny(D16s, D -> ForAll(D, delta -> bˆdelta/b in Anul));
if found then

Print("Found a candidate for the annihilator.\n");
break;

fi;
od;
if not found then

Print("No candidate for the annihilator found.\n");
fi;

The GAP-calculations used to investigate G1 and G7 are elementary and need no further
explanations.
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