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Abstract

Part 1: Known Constructions. About 40 pages of historical survey of the
classical subject of hypersurfaces with many singularities constitute the first part of
the present work. The maximum number p"(d) of singularities on a hypersurface
of degree d in P™(C) is known in very few cases only, e.g. in P?(C) for d < 6. Apart
from such exceptions, there only exist upper and lower bounds.

We hope that this overview will not only serve as an introductory text and a
guide to the literature, but that it will also give the reader some new ideas and
references to interesting articles which might serve as a starting point for further
research. To make this easier, we do in fact not only summarize known results, but
we also give some direct generalizations and concrete examples which have not been
considered so far.

Part 2: New Constructions and Algorithms. The main part of this thesis
is devoted to new constructions. First, we prove the existence of hypersurfaces of
any given degree d in IP" with many A;-singularities based on the theory of dessins
d’enfants (chapter B). This yields new asymptotic lower bounds for the maximum
number of such singularities in most cases. Our construction is a variant of the
well-known construction of Chmutov from 1992. In the real case, we are able to
prove an upper bound which shows that a real variant of Chmutov’s construction
is in some sense asymptotically the best possible one.

In low degree, it is usually possible to obtain better results than those given by
the general constructions and upper bounds. As described in the historical survey,
all known constructions use nice geometrical arguments and symmetry to reduce
the problem at hand to a solvable one. In this thesis, we give several algorithmic
approaches which do either work without such an intuition or use experiments over
prime fields which replace the intuition. Our method which uses the geometry of
prime field experiments allows us to construct a septic in P? with 99 real nodes
in chapter B which improves Chmutov’s record, 93. But this method still involves
human interaction.

We then describe an algorithm which reduces the construction of surfaces of
degree d < 7 with the greatest known number of nodes to a short computer algebra
computation. We can even apply it to higher degree: For d = 9, we obtain a surface
with 226 nodes which also improves Chmutov’s current record, 216. This algorithm
can certainly be applied to many other concrete problems in algebraic geometry.

Part 3: Visualization. Many interesting examples of the subject are defined
over the real numbers. Thus, we are quite often in a position that allows us to use
visualization of singular surfaces. For several years there already exists software
which produces nice images, e.g. Endraft’s SURF. Based on these existing programs
we developped some tools allowing a dynamical experience of algebraic curves and
surfaces: SPICY, SURFEX, and SURFEX.LIB. We demonstrate their usefulness in the
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last part of this work. Our example is the construction of nice equations for all 45
topological types of real cubic surfaces in projective three-space which is one of the
most classical subjects in algebraic geometry.
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A cone, a quadric surface with the simplest type of singularity: a node, also called

ordinary double point or A;-singularity. How many nodes can a surface of degree
d in P? have?



Introduction

The Problem

The Most General Question. A generic hypersurface of degree d € IN in
P™ := P"(C) is smooth. Thus, it is natural to ask:

QUESTION 0.1. Which combinations of singularities can occur on a hypersurface
in P™ of given degree d?

It is easy to answer this question for d = 1,2. It is obvious that a hyperplane
(d = 1) cannot have any singularity. It is also easy to classify quadrics (d = 2) w.r.t.
the singularities occurring on them. E.g., a quadric in P™ can contain at most one
isolated singularity. This can only be an ordinary double point.

In P™, n < 3, it is also possible to treat the cases d = 3,4: For the cubic
surfaces in P3 all possible combinations of singularities are known since Schlifli’s
work in 1863 (see section [LT on page[[d). All possible combinations of singularities
on quartic surfaces (d = 4) in P3 are also known; the last remaining open questions
have been answered in 1997 using computers (see section on page B3).

The Question on the Maximum Number. At the moment, the answer to
the previous question seems unreachable if d > 5 or n > 4. In the present work, we
thus consider the slightly simpler problem:

QUESTION 0.2. What is the mazimum number p™(d) of isolated singularities
on a hypersurface of degree d in P™?

We have already seen that this is easy if d = 1,2: p™(1) = 0 and that p"(2) =1
for all n. On the other hand, the maximum number p?(d) of isolated singularities
on a plane curve in P? is (), established by d general lines.

In higher dimensions, there is no such result known yet. In fact, a direct
analogue cannot exist in P, n > 3, because in this case a hypersurface with only
isolated singularities has to be irreducible. It is also well-known that an irreducible
plane curve of degree d with k nodes exists if and only if 0 < k < 3(d —1)(d — 2)
(see [Sev21l p. 329 for a classical exposition). However, in higher dimensions this
question turned out to be a hard one: Despite many efforts, 13(d) is only known for
d < 6 until now. If we ask for the maximum number of singularities of some given
type (different from nodes, e.g. cusps), the question is still open in general, even in
the case of plane curves we only know the answer for low degrees.

The aim of the present work is to improve the knowledge around the questions
above. Our focus is on the geometry and equations of the hypersurfaces and methods
for constructing interesting examples. Note that in principal, for each d there is an
algorithm which computes the surfaces of degree d with the maximum number of
nodes. But this involves very large systems of non-linear equations and can only
be performed in special cases. We work out such an example in chapter [ In more
complicated cases, we need other ideas. .



2 INTRODUCTION

Some Notation

Singularities. A point p € C" is called a singular point (or singularity) of the
hypersurface f € Clz1,22,...,2,] if f(p) =0 and g—i(p) =0forall:=1,2,...,n.
It is called isolated if there exists an open neighborhood of p which does not contain
any other singular point. This is equivalent to dim (Clz1, x2, ..., zn]/(f, Jf)) < 00,
where Jy := (5’—9{1, g—gg;, A %) denotes the Jacobian ideal.

Most of the time, we will only deal with a special kind of isolated singularities,
so-called double points: Let f € Clxy,x,...,2,]| define an isolated hypersurface
singularity (also called f) at the origin of C". If the tangent cone tc(f) — i.e. the
homogeneous part of f of the lowest degree — has degree two then the singularity
is called a double point.

An ordinary j-tuple point in C™ is an isolated singularity in C™ which is locally
a cone over a smooth hypersurface of degree j in C"~'. An ordinary double point is
also called (ordinary) node or A;-singularity. This is equivalent to the property that
the hessian — i.e. the determinant of the matrix of second order derivatives of f —
does not vanish at the singular point. It is also equivalent to the property that f can
be written in the form x? +22+- - -+22 in some local coordinates at the origin. More
generally, f is an A;-singularity if it can be written in the form 27 ™" + 22+ ... 422
in some local coordinates at the origin. We call an As-singularity an (ordinary)
cusp and an Ag-singularity a tacnode. See, e.g., [AGZV85al, [AGZV85b), [Dim87)|
for more information on singularities.

The Maximum Numbers of Singularities. The maximum number of iso-
lated singularities of some given type on hypersurfaces in some projective space
will appear throughout this work in different situations. To clarify which maximum
number we mean, we will use different notations for each of these: Let d € N, n € IN.
Let T be a type of an isolated hypersurface singularity in C" (e.g., T = Ay, A, Dy).
Then:

e 1"(d) denotes the maximum number of singularities a hypersurface of
degree d in P™ can have.

o //1(d) denotes the maximum possible number of singularities of type T' on
a hypersurface of degree d in P" which has only singularities of type T'.
E.g., 1%, (d) is the maximum number of nodes which a nodal surface in
P3 can have.

e Many results hold for hypersurfaces of degree d in P" with only rational
double points as singularities. We thus introduce the notation: ufp,,(d).

e We will need similar notations for other classes of singularities, e.g. u'; (d)
for the maximum possible number of A;-singularities.

e By u}’(d) we denote the maximum number of ordinary j-tuple points a
hypersurface of degree d in P™ can have. E.g., u3(d) is the maximum
number of ordinary 5-tuple points a surface in IP3 can have.

Our main object of study are hypersurfaces in P?, so we write u(d) := p(d),
pr(d) := p3(d), etc. for short. For a given hypersurface f in P™ which has only
isolated singularities we use similar notations. E.g., u(f) denotes the number of
singularities and 4, (f) the number of nodes of f.

As already mentioned, these maximal numbers are only known in very few cases.
Thus, upper and lower bounds for them will occur frequently in the main text. There
are some obvious inequalities for n,d € IN: p"(d) > p’i(d) > p’i, (d). But notice
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that it is not known if 4 (d) = p"(d). Le., it is not known if the maximum number
of singularities can be achieved with only ordinary double points.

Symmetry. Most of the examples which we will encounter are symmetric in
the following sense: If a group G acts on P"(C) then a hypersurface in P (C) which
is given by a homogeneous polynomial f € C[zo,...,z,] is called G-symmetric if
f is G-invariant, i.e. if f € C[zo,...,2,]°.

Notice that it is not known if the maximum number of singularities p™(d) on
a hypersurface of degree d in P" can always be realized by an example which is
G-symmetric, where G is not the trivial group. Nevertheless, for studying hyper-
surfaces with many singularities, we will often have to restrict ourselves to hyper-
surfaces which are G-symmetric for some non-trivial finite group G.

Main Results

Most of the results presented in this Ph.D. thesis have already appeared as
preprints on arXiv.org [Lab04), Lab05al, Lab05bl, BLvS|, some others are already
published or accepted for publication [LvS03l, [HLO0O5]|. The present work places
them in a bigger framework and gives some additional information and results.

The previously unpublished content includes in particular a large historical
survey on known constructions and a new algorithm. This algorithm is certainly
the most important result of this thesis: It reduces all known constructions of nodal
surfaces of degree d < 8 with the maximum known number of nodes to a computer
algebra calculation (see part2, chapter H), and also yields the new results u(7) > 99,
11(9) > 226.

Part 1: Known Constructions. The subject of hypersurfaces with many
singularities has a long and rich history which started with the classification of the
singular cubic surfaces by Schlifli in 1963. In our opinion, it is necessary to know
these developments if one really wants to understand the ideas behind our new
constructions which form the main part of our work.

We thus start with a historical overview of the subject. In fact, we go slightly
beyond this and give some obvious generalizations and detailed studies in cases in
which it seems appropriate to us. E.g., equation (Z3) which follows from Gallarati’s
generalization of B. Segre’s ideas shows that the maximum number p4,(6) of cusps
on a sextic is greater or equal to 36 which is a fact that has been overlooked for
some time. Another example is our concrete computation of Varchenko’s spectral
bound in the case of A;-singularities (section B). This leads to an interpretation
of this bound as so-called octahedral numbers in the case j > 2d — 1 (section ELT3)).

Part 2: New Constructions and Algorithms. Our main results are con-
tained in the second part of this thesis. Therein, we present some new constructions
of hypersurfaces with many singularities which lead to new lower bounds for the
maximum number pf:(d) of singularities of type T' on a hypersurface of degree d
in P™ in many cases. In our opinion, the methods used for these constructions are
of independent interest themselves because they can certainly be applied in many
other situations.

At first sight, our most important result is certainly the construction of a surface
in P? with 99 nodes (chapter B) which shows:

99 < 1u(7) < 104.
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This is the first construction of odd degree d > 5 which exceeds the general lower
bound given by Chmutov in 1992. After Chmutov’s discovery there appeared sur-
faces with more nodes for d = 6,8,10,12. These were found by taking a family
of surfaces which depends on some parameters and each of whose members was
invariant under some large symmetry group. The symmetry reduced the number
of free parameters drastically, and it was possible to determine these using other
geometrical arguments.

In large odd degree the only useful symmetry one can impose seems to be di-
hedral symmetry, i.e. the symmetry of the d-gon. But this kind of symmetry is
essentially two-dimensional and thus leaves us with many parameters. The best
way to solve this problem seems to guess some additional geometric properties of
the hopefully existing surface with many singularities — but how? Our idea is to
use experiments over prime fields to get these ideas. Based on these additional geo-
metrical properties, it is then not very difficult to use computer algebra to eliminate
all free parameters.

In some cases, it is even possible to solve the problem completely algorithmi-
cally. Either by directly working in characteristic zero and using elimination and
primary decomposition (chapter [), or by lifting the prime field parameters to char-
acteristic zero using the chinese remainder theorem together with a rational recovery
algorithm (chapter [). Indeed, we implemented the latter algorithm as a SINGULAR
library called SEARCHINFAMILIES.LIB. Using this, it is a triviality to reproduce the
constructions of all known records for 4, (d) for d < 7, even our own one for septics.
When applying it to the next interesting case which is d = 9 we obtain a nonic with
226 nodes which shows:

226 < p(9) < 246.

Our algorithm is very general so that it can certainly be applied to many other con-
crete problems in algebraic geometry. In our opinion, all this makes the development
of this algorithm the most important result of this thesis.

But we do not only describe algorithmic ways to construct some special ex-
amples. We also give a general construction of hypersurfaces in P with many
A,-singularities which does not use computers at all (chapter B). It is based on
Chmutov’s well-known construction of nodal hypersurfaces. Our proof uses the so-
called Dessins d’Enfants. The numbers of A;-singularities of our examples exceed
the known lower bounds in most cases. E.g. in IP3, we get:

- 3jt+2 5
,UAj(d) ~ 6j(j+1)d , J=>2.
In P™ n > 5, our examples even improve the lower bounds in the nodal case slightly.

We then make a short excursus to the world of real algebraic geometry (chapter
B). We use a relation to the theory of real line arrangements to show that the
numbers of nodes of Breske’s real variants of Chmutov’s surfaces are in some sense
asymptotically the largest possible ones. This confirms a conjecture of Chmutov in
the special case of real line arrangements.

Summarizing, we get table L1l on the facing page which gives the best known
lower and upper bounds for the maximum number ji4,(d) of Aj-singularities on a
surface of degree d for j = 1,2,3,4.

We mark those cases in bold in which our constructions improve (to our knowl-
edge) the previously known lower bounds. For j > 2 and d > 5, all best known
lower bounds are either attained by our examples from chapter B or by Gallarati’s
generalization of B. Segre’s idea which we work out in detail in section The
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TABLE 0.1. An overview of our main results. The bold numbers in-
dicate the cases in which the present work improves the previously
best known lower bounds.

constructions for the other surfaces reaching the best known lower bounds in the
nodal case (i.e., j = 1) are briefly described in our historical survey (part [).

Part 3: Visualization. If a surface with many singularities is defined over
the reals then it is sometimes nice to have a picture of it. But this is not the only
reason why one would like to have good visualizations of singular surfaces: In the
last part of this thesis we show how to use our visualization tools SPICY and SURFEX
to construct good equations for all 45 topological types of real cubic surfaces with
only rational double points. Furthermore, in many cases visualization is a very good
tool to understand the geometry of some constructions in an intuitive way. And
this can help to construct new intesting examples based on these known ones.

All pictures of algebraic surfaces in this thesis were produced using our SINGU-
LAR library SURFEX.LIB. This is a SINGULAR interface for our tool SURFEX which
also adds some features, e.g. the ability to draw one-dimensional real parts of sur-
faces which are not contained in the real two-dimensional component.









Figure on the preceding pages: Barth’s 345-nodal icosahedral-symmetric dectic

from 1996. Like his famous 65-nodal sextic, Barth constructed it by studying a

one-parameter family of symmetric surfaces. See [Lab03al for more images and
movies of algebraic surfaces.
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Introduction

In this historical overview, we present the work on the question on the maximum
number of singularities on a hypersurface of degree d in P" := P"(C) which has
been done before the appearance of the present work. We try to mention all major
results on the subject. It is clear that we cannot go into the details at many places.
In view of our main results contained in the other parts of this thesis, our focus will
be on the geometry and equations of the hypersurfaces.

Some very brief survey articles have already appeared on surfaces with many
singularities (e.g., [Tog50], [Gal84|, [End95]). Ours aims to be a bit more exhaus-
tive in two senses: First, we do not only mention very few important results; second,
we do not only summarize the ideas, but we also give some natural generalizations
and concrete examples. An example is our concrete computation of Varchenko’s
spectral bound in the case of Aj-singularities (section B). This leads to an in-
terpretation of this bound as so-called octahedral numbers in the case j > 2d — 1
(section ELT3).

Another aim of this survey is to give geometers who want to construct new
examples of hypersurfaces with many isolated singularities a kind of encyclopedia
at hand which one can use to get new ideas or to combine and improve old ones. At
the same time, it can serve as a guide to the literature which tries to be as complete
as possible. Beside this, we want to point out some of the interesting historical
developments by presenting this overview in (more or less) chronical order and by
indicating the relations between the constructions as often as possible.

Our summary is devided into four parts each of which starts with a short
introduction. This might be particularly helpful for an impatient reader who just
wants to get a very short overview. Finally, we want to mention that the large
number of papers on the subject in van Straten’s library and one of his unpublished
notes have proven to be quite useful as a starting point for our work.



A 16-nodal Kummer surface. In 1864, Kummer noticed that Fresnel’s wave surface
had 16 nodes and that this was indeed the maximum possible number of nodes on
a quartic surface in P3.



CHAPTER 1

The Important First Steps (until 1915)

After the trivial cases of degree d < 2, the first interesting case is the one of
surfaces of degree three, the so-called cubic surfaces. These were already classified
with respect to the singularities occuring on them in 1863 by Schléfli. Only one
year later, Kummer noticed that the maximum number of isolated singularities on
a quartic was 16.

In the following years, several interesting constructions and upper bounds ap-
peared including Rohn’s construction of surfaces of degree d with ~ %dg nodes and
Basset’s upper bound pp,(d) < %d?’ for the maximum number of double points on a
surface of degree d. Also, the first nodal hypersurfaces in higher dimensions showed
up, but mainly as a tool for understanding surfaces in P2 in a better way.

1.1. Cubic Surfaces

One of the first major achievements on algebraic surfaces was Cayley’s and
Salmon’s observation in 1849 that a smooth cubic surface contains lines exactly 27
lines [Cay49]. In fact, they also noticed [Sal49b| that there are still 27 lines when
certain singularities occur if the lines are counted with the correct multiplicity. The
automorphism group of the configuration of the 27 lines contains the simple group
of order 25920 as an index two normal subgroup. This configuration and the group
played an important role in the development of group theory until the end of the
19" century. See, e.g., Dickson’s book [DicO1l, chapter XIV, p. 292-298|.

1.1.1. Schlifli’s Classification. Shortly after this discovery, Schlifli pre-
sented the classification with respect to the singularities and the reality of the lines
[Sch63] (see also [Schb8| and [Cay69]). This very explicit article also contains
many (projective) equations, e.g. of the four-nodal cubic surface

1
(1.1) Cays:=—+—+—+—=0
0

which is nowadays often called Cayley Cubic (fig. [Tl on the next page). To our
knowledge, it is not clear who first discovered its existence, but Cayley was certainly
one of the first to know it. Any four-nodal cubic is projectively equivalent to this
one. Another nice equation of this cubic is the following (compare also ([CH)):

1
(1.2) Cay; : x%—i—m?—i—m%—i—mg—i—zxi’zo, xo+x1 + T2 + 23 + x4 = 0.

In chapter [[A on page M43 we give explicit affine equations and images for all real
topological types of cubic surfaces.

The class d*(f) of a surface f of degree d is the number of tangency points f
has with a generic pencil of hyperplanes (see e.g., [BWT9, section 3]). This number
is also the degree of the dual surface f* of f. A smooth surface of degree d has
class d(d — 1)2. In the times of Schlifli’s work mentioned above, it was well-known

13
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FIGURE 1.1. The four-nodal Cayley Cubic with the affine equation:
4(z® +32% = 3wy® + 3y? + 3) + 3(2? + ) (2 — 6) — 2(3+ 42 + 722).
It contains exactly three lines of multiplicity one and six lines of
multiplicity four.

(apparently due to Salmon [Sald7|, [Sal49al, using results of Poncelet [Pon29|
§93], see also [Sal80]) that each singularity of type A; of f diminishes the class by
j+1> 2 which gives: d*(f) < d(d—1)*>—2pa(f), where j4(f) denotes the number
of Aj-singularities of f. It was also well-known that for a surface of degree d > 3
we have d*(f) > 3. This yields:

1
(1.3) pa(d) < 5 (d(d - 1)? - 3).
d|{12|3|4]|5]|6 7 8 9 10 | 11 | 12 d
pa(d) < 0| 1]|4|16|38|73|124|194 | 286 | 403 | 548 | 724 %%dg

Together with the existence of the four-nodal cubic ([I]) we get:

(1.4) n(3) = pa(3) = pa, (3) = 4.

Knowing that a cusp (i.e., an As-singularity) reduces the class by 3, the preced-
ing bound can be used to show that the maximum number of cusps is 3. For higher
singularities this technique is not sufficient. E.g., it does not give any reason for
the non-existence of a cubic with an Ag-singularity. In [Sch63], Schléfli presents a
more detailed study of the geometry of A;-singularities to show that they only exist
on cubic surfaces for j < 5.

1.1.2. Further Results. There are several other important works on cubic
surfaces which also influenced the theory of hypersurfaces with many singularities.
E.g., Clebsch’s article [CIeZ1]| which contains the description of his famous Diagonal
Cubic Surface in P? with 27 real lines, see fig. on the next page. It is given by
cutting a Y5-symmetric hypercubic with a ¥5-symmetric hyperplane in P*:

(1.5) Cles : ngrz?Jrngrngrzi:O, To+ a1+ 20+ 23 +24 =0.

Although this surface is smooth it will appear again in subsequent sections.
Klein’s article [K1e73| was probably one of the first applications of deformation
theory to algebraic surfaces: Starting from a cubic surface with four nodes he
constructed the other topological types of cubic surfaces by deformations. For a
recent detailed classification of real cubic surfaces with singularities, see [KIM87].
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FI1GURE 1.2. The Clebsch Diagonal Cubic. We copied the equation
for this affine view from a SURF script of S. Endraf. In (A he
replaced the z; by the tetrahedral coordinates yo = 1 — o — /20,
y1=1—29+V220, yo=1+22+271, y3=1+22 —211.

1.1.3. Models of Surfaces. The algebraic geometers of the 19" century did
not only describe abstract properties of cubic surfaces. They were also interested
in the intuitive understanding of their geometry. Clebsch was probably the first
who suggested to construct a real world (plaster) model of a cubic surface. At his
suggestion, Wiener produced such a model of the Clebsch Diagonal Cubic in 1869.
Together with some other models, it was presented at several exhibitions in the
world. Other well-known series of models were produced by Klein and Rodenberg
(see [Rod04] and [Rod79]). For more recent works concerning real-world models,

see [Fis86), [Kae99| and chapter [Tl

1.2. Kummer Quartics

Only one year after Schléfli’s classification of the cubic surfaces, Kummer stud-
ied quartics with the maximum number of singularities systematically. In [Kum75al
he remarked in 1864 that Fresnel’s Wave Surface was an algebraic surface of degree
4 containing 16 nodes. This classical surface was discovered in 1819 during Fresnel’s
studies on crystal optics and his ideas of a wave theory of light (see [OR] for more
bibliographical information). The equation of Fresnel’s Wave Surface presented in
[Sal80] as an example of a quartic derived from an ellipsoid (see fig. on the
following page) is:

Fresqpc = ((2%(R2—b*)(R2 — ) + (y*(R2 — a®)(R2 — %))
+(2*(Ry — a®)(Ry — b%)) — (R2 — a®)(Ry — b%)(R2 — ¢°),
where Ry := 22 + y2 + 22 and the constants a, b, c € C can be chosen arbitrarily.
Kummer also noticed in [Kuum75al that 16 was the maximum possible number

of singularities on a quartic — using the reasoning ([3) based on the upper bound
for the class. This showed:

(16) 1(4) = pa(4) = pua, (4) = 16.

His systematic treatment of all 16-nodal quartics in [Kum75a] and [Kum75b] is
the reason why such surfaces are nowadays called Kummer Surfaces. We copied a
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slightly adapted version of Kummer’s equation given in [Kum75b| from a SINGU-
LAR script of S. Endraf, see fig. [[L3 for a picture:

2
an Ku, = (22+y2+2%2—p?)" — Ayov1y2¥s,
. 2
A= 33#7;213 ne Cv

where the y; are the tetrahedral coordinates already used for Clebsch’s Diagonal
Cubic in fig. on the preceding page. A very nice book on the Kummer quartic
was written by Hudson [Hud90] a few years later. Another famous monograph on
singular quartic surfaces is [Jes16].

FIGURE 1.3. Fresnel’s Wave Surface Fres; s 1 of 1819 has 16
nodes only four of which are real. Kummer’s tetrahedral-symmetric
Surface Ku; 3 of 1864, instead, has 16 real nodes.

1.3. Rohn’s Construction of Quartics with 8-16 Nodes

In [Roh86], Rohn studied quartics with 816 nodes in a systematic way by
examining the sextic plane curve obtained as the branch locus of the projection of
the quartic to a plane. The 16-nodal Kummer quartic corresponds to the case in
which the sextics factors into six straight lines.

One of his equations of the 12-nodal quartic is still one of the most important
methods for finding surfaces with many singularities as we will see later. Fig.[[4 on
the next page illustrates the idea for curves with As-singularities. Rohn’s case of
a quartic with 12 nodes involved four planes and a smooth quadric instead of lines
and circles, see fig. on the facing page.

I am indebted to Viat. Kharlamov who informed me of the fact that this idea
is contained in Rohn’s article (and is probably even older, compare e.g. Schliafli’s
article [Sch63]). All articles of the second half of the 20" century known to us
attribute this construction to B. Segre, see section A reason for this might be
that in his famous book on singular quartic surfaces [Jes16], Jessop attributes the
systematic treatment of quartics with many nodes to Rohn, but he neither gives a
reference to Rohn’s article [Roh86], nor explains this construction explicitly.

For the more general case of degree d, Rohn’s construction (he only discusses
the special case d = 4) can be described as follows: d general hyperplanes /; in 3
intersect in (}) lines which meet a general surface ¢ of degree [¢| in (%)[¢] ~ 14
points. Thus, the surfaces

d
(1.8) Rog : H li—¢>=0

i=1



1.4. BASSET’S UPPER BOUND FOR SURFACES 17

22=0, y>=0 22 —y?=0
(M
—J
22 =0, (z+7)> =0, (z - y) 0, (@ (@+y)? (z-v)?°)
(22 +y?—1)% = — (@ 4y -1)%*=0

FI1GURE 1.4. Globalizing the local equation of a singularity.

. 2
Ei234 = Ei934—Q

—y)+y)y—2)y+2), (@P+y>+22-1),

FIGURE 1.5. Rohn’s 12-nodal surface [Roh86), p. 33] constructed
by globalizing the local equation of a node.

1d3 — 142 d even
have (9)| 4] :{ 4 4 nodes.
Gl =1 ip_ 12114 dodd

1.4. Basset’s Upper Bound for Surfaces

Besides these constructions there also appeared new upper bounds. In 1906,
Basset [Bas06al, [Bas06b| improved the bound (3)) for the maximum number
of isolated double points on a surface f of degree d in P3. But the approximate
behaviour did not change: pp,(d) < $d°. Basset’s idea was to project a nodal
surface f of degree d and class d* in P3 from a general point. This yields a (d — 2)-
fold covering f — P? ramified along a plane curve C of degree d(d — 1) and class
d*. Applying the Pliicker Formulas to C yields:

(1.9) ppp(d) < %(d(d —1)2 =5 —+/d(d — 1)(3d — 14) + 25).

Many years later, Stagnaro remarked that Basset’s article was not rigorous enough
and gave a modern proof [S£a83]. Furthermore, his proof yielded a generalization
of Basset’s bound to ordinary ¢-fold points, see section
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The following table gives the knowledge on pp,(d) at this point. Although
Rohn used the method described above only for constructing quartics, we list the
number of nodes on surfaces of higher degree that one obtains in this way. The bold
numbers indicate the cases in which Basset’s upper or Rohn’s lower bound improve
the previously known bounds:

dl1|2(3[4 |5 |6 ]| 7 |8 |9 |10 11| 12| d
pop(d) <[ 0] 1]|4|16|34 |66 |114 | 181 | 270 | 383 | 524 | 696 | ~ +d°
pa,(d)>|0|1]4]16]|20 (45| 63 |112|144 | 225 | 275 | 396 | ~ 1d>

We only want to mention in passing that in the years after Basset’s discovery,
several other people tried to improve his bound. E.g., Lefschetz [Lef13] and Holl-
croft [Hol23|, [Hol28|, [Hol29| succeeded, but only under a certain assumption
which Lefschetz calls the “postulate of singularities”. As Lefschetz mentioned, for
plane curves this postulate is equivalent to the “almost obvious” admission that
when a curve can have ki cusps it can also have any number of cusps smaller
than x;. Nowadays, it is known that such properties can be shown by proving the
non-obstructedness of a certain deformation functor.

1.5. Some Hypersurfaces in Higher Dimensions

1.5.1. C. Segre’s 10-nodal Cubic in P*. Already at the end of the 19t
century, the first hypersurfaces in higher dimensions with many singularities were
constructed: In 1887, C. Segre described a 10-nodal cubic in P* [Seg87] (see also
[Seg88], [Cas88]) which is the maximum possible number by an argument similar
to (L3). It can be shown that there is in fact only one such cubic up to projective
equivalence, see e.g. [Kal86]|. When denoting by o, (zo,z1,...,25), j € N, the j-th
elementary symmetric polynomial in IP°, C. Segre’s cubic has the following nice
equation:

(1.10) Segs : 0‘1(.1‘0,.1‘1,...,$5):Ug(mo,wl,...,l‘5)=0.

The 10 nodes are the elements of the Yg-orbit of the point (1 :1:1:—1: —1:
—1). Another equally nice equation is (compare Clebsch’s Diagonal Cubic ([LH) in
section [l on page [[3 and Kalker’s cubics in section BT on page EI):

5 5
(1.11) Segy: Y wi=)» =0
1=0 1=0

C. Segre also noticed (see [Seg87] and also [Tog50|, p. 53]) that it is possible to
construct a Kummer quartic with the help of his 10-nodal Cubic in P* (in fact, this
seems to be his major motivation for constructing the cubic in P*). To understand
this construction of the Kummer quartic, let us start with a cubic hypersurface H
in P* and a general point P on it. We may assume that P has the coordinates
(1:0:0:0:0) s.t. H has the form

H = F3 + 2$0F2 + CL‘(QJFl,

where the F; € C[x1, x2, x3, x4) have degree i = 1,2,3. The projection of H from P
to P3 is a 2-fold ramified covering with branch locus

" Fg)

(1.12) D, ::det(F2 P
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In general, &4 has 1-2-3 = 6 singularities at the points in which all the F;, i = 1,2, 3,
vanish. But if H is the 10-nodal Segre cubic Seg; then one expects to get 10
additional nodes on ®4. Indeed, in this way we get the 16-nodal Kummer quartic.

1.5.2. Burkhardt’s 45-nodal Quartic in P%. In 1891, Burkhardt constructed
a quartic in P4 with 45 nodes and showed this to be the maximum possible number
[Bur91]]. Its beautiful geometrical and combinatorial properties connected to the
group of the 27 lines of the cubic surfaces were worked out in [Bak46] and [Tod47].
The fact that the Burkhardt quartic is also unique up to projective equivalence is a
much more recent result [dJSBvdV90]|. Similar to C. Segre’s 10-nodal cubic, this
unique 45-nodal quartic can be given by elementary symmetric polynomials:

(]..].3) BU4: 0’1(,@0,,%1,...,.1‘5)20'4(.1‘0,.%'1,...,.1‘5):O.

Nowadays, we know that the Burkhardt quartic is unobstructed which shows the
existence of quartics with exactly 0 up to 45 nodes. Determinantal equations for
such quartics were given only recently [Pet98].

1.5.3. Some Cubics with Many Singularities. The first cubic in P° with
the maximum number of ordinary double points was Veneroni’s 15-nodal hypersur-
face [Ven14]. The description of the space of all such hypercubics was the main
subject of Kalker’s Ph.D. thesis 70 years later [Kal86).

Lefschetz considered higher-dimensional hypersurfaces with many higher singu-
larities. E.g., he constructed a cubic hypersurface in P* with 5 cusps which is the
maximum possible number, see [Lef12].



Barth’s Ds-symmetric Togliatti quintic from 1993. Togliatti already showed the
existence of 31-nodal quintics in 1940, but he did not give concrete equations.



CHAPTER 2

The Problem is Difficult (1915-1959)

After the first fruitful years the development of the area of hypersurfaces with
many singularities slowed down a bit. In fact, the first striking result after Basset’s
upper bound of 1906 was the construction of Togliatti’s 31-nodal quintic surface in
1940 (section ZTI). Tt seems that it was only after this discovery that the geometers
realized the difficulty and relevance of the problem (see e.g., [Tog50]).

In the following years, several papers appeared on the subject. The major re-
sults in this direction were probably B. Segre’s counterexamples to Severi’s claimed
upper bound (sectionZ2), and B. Segre’s observation that pull-back under a branched
covering is a good way to produce many singularities (section 7).

2.1. Togliatti’s Cubics in P® and Quintic in P3

More than 20 years after Veneroni, Togliatti also constructed 15-nodal cubics
in P° [Tog36] ([Tog37| contains a simplified version) and he also proved that this
was the maximum possible number of nodes on such a hypersurface. As Togliatti
remarked on the last page of [Tog37], his family contains Veneroni’s as a special
case. His three-parameter family of 15-nodal cubics is:

(2.1) Togs :  xgxaxs + x3A+ x4 B + x5C =0,
where A, B,C € C|xg, x1, x2| are defined as follows:

A= —al 4123 + %zg, B = %:c% — a2+ has, C:=kal+ %x% — 23,
and where the three parameters 0 # h, k, [ € C satisfy the condition hkl+1# 0. A
particularly nice equation of a 15-nodal cubic in IP° arises for h =k =1=1.
Togliatti’s cubics are much better known than Veneroni’s because Togliatti used
them to show the existence of a 31-nodal quintic surface Togg, in P? [Tog40| which
was the first new lower bound for the maximum number p(d) of singularities on a
surface of degree d in P? since 50 years:

(2.2) 114, (5) = 31.

Togliatti’s construction is a variant of C. Segre’s construction of the Kummer
quartic (CIA). Togliatti started with a smooth hypercubic H in P°. As there are
four conditions on a line to be contained in such a cubic and as the Grassmanian
of lines has dimension 8, we get a four-dimensional family of lines on a generic
hypercubic H. Assuming that the line [ is given by zo = 23 = 24 = x5 = 0, the
cubic can be written in the from

H=A+22,B+22,C + 23D + 2x01, E + 23 F,

where A, B,C,D,E, F € C[za,...,7s5]. When intersecting H C P* with the P? of
P?’s containing [ we get a cubic consisting of the line [ and a residual conic which

21
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will be a pair of lines if

A B C
(2.3) ds:=det{ B D E | =0.
C E F
®5 is a quintic surface in P3 with coordinates xs,...,x5. This surface has 16

singular points corresponding to the points in which all the 2 x 2 minors of the
matrix vanish. Now, if the hypercubic C' in P® has some nodes one expects the
quintic surface ® to have the same number of extra nodes. Using a 15-nodal cubic
we get the desired 16 + 15 = 31 nodes on ®5 which we denote by Togs; in that case.
Nowadays, all 31-nodal quintics in IP3 all called Togliatti quintics because Beauville
showed in [Bea79b| using a result of Catanese [Cat&81] that all 31-nodal quintics
in P? can actually be obtained with Togliatti’s construction.

Other more explicit constructions of 31-nodal quintics were given later: In 1983,
Stagnaro constructed a 31-nodal quintic in IP?, and a real dihedral-symmetric such
quintic was found by Barth in the 90’s. The latter was described in Endraf’s Ph.D.
thesis [End96] (see also section on page E7).

2.2. Severi’s Wrong Assumption and B. Segre’s First Construction

In 1946, Severi wrote an article [Sev46] on an upper bound of (“1?) —4 ~ 1d®
singularities which was shown to be wrong by B. Segre only shortly afterwards
[Segd7].

In fact, Severi considered the following property as being intuitively clear: pu
ordinary double points diminish the number of moduli of the surface at least by p.
As Lefschetz already noticed (see end of section [L4]), we have to be very careful
with such arguments. Burns and Wahl [BWT4] analyzed this problem in 1974:
They showed that the minimal resolution X — f of a p-nodal surface f of degree
d is unobstructed if and only if the set of nodes X is d-independent, i.e. for any
partition ¥ = ¥’ U X", one may find a hypersurface of degree d containing 3’ and
missing X”. To obtain an example of a surface of the lowest possible degree with
obstructed minimal resolution, they considered the variants

d
(2.4) BWd = Hli(xo,ml,l'g) - Qig =0

i=1

of Rohn’s construction () with (g) singularities of type A;—1 (the I; are general
linear forms in x, x1, z2). Indeed, for d = 5 this is a quintic with ten A4-singularities
which is an example of an obstructed minimal resolution of a surface of the lowest
degree.

Burns and Wahl [BWT4] also mentioned that B. Segre’s counterexamples
[Segd7] to Severi’s claim lead to unobstructed minimal resolutions. These can
be constructed as follows. Consider the form

fll fl’r
® :=det ;
frl frr

where f;; = f;; are forms of degree k in four variables. Such a surface ® of degree
r-k in IP® has in general nodes at the § := ("}")-k® points in which the (r—1)x (r—1)
minors of the matrix vanish.



2.4. B. SEGRE’S SECOND CONSTRUCTION 23

In section 9 of his article, B. Segre specialized the f;; and got surfaces of degree
r-k with exactly 01 := 6 + 5k*(k — 1) = ZE(r?k? + 2k2 — 3k) nodes. For r = 2, these
are surfaces of even degree d = 2k with exactly idB - idQ nodes which disproved
Severi’s claim.

As already mentioned in section on page [[8 Viat. Kharlamov informed me
of the fact that for r = 2, these surfaces had already been found by Rohn [Roh86]
60 years earlier in the case of quartics.

Togliatti [Togh0] gave an overview of the results on hypersurfaces with many
singularities known until 1950 and pointed out the difficulty of the subject. His
survey article turned out to have some influence on the development of the subject:
In fact, several authors cited this article as a motivation for working in this field in
the following years.

2.3. Gallarati’s General Constructions

In [Gal51b), Gallarati remarked that the special case of r = 2 of B. Segre’s
construction also worked for odd degree in order to show that Severi’s claim fails
for all d > 12. Again, this was basically a rediscovery of Rohn’s construction from
section on page M8

Gallarati [Gal51al also gave another construction of nodal surfaces of degree
d in P? with approximately ~ 1d® nodes. His construction improved the old
bound [C¥ on page M@ in the lower order terms:

134142 — g d even
2. d)y>< 4 4 ’
(2:5) Has )—{ 13—1d2 — 1441, dodd.

It is interesting to note that he also gave a construction of surfaces of odd degree
d with exactly one triple point and many additional nodes whose number of nodes
d(d) exceeded the previously mentioned ones:

1, 1, 99
(2.6) 8(d) = Jd*+7d* - Zd - .

The following table lists the bounds known up to this point. Again, the bold num-
bers indiciate the cases in which Gallarati’s construction improved the previously
known bounds. In the cases in which p4, (d) differs from p(d), we give both num-
bers:

d|s5|6| 7 |8 9 10 11 12
ppp(d) < |34/66| 114 [181] 270 [383] 524 |696 |~ 1d®
pa, (d) (u(d)) > |31|57|72(81)|136|160(181) | 265 | 300(337) | 456 | ~ 143

2.4. B. Segre’s Second Construction

In [Segb2], B. Segre introduced another nice construction of surfaces with many

singularities using pull-back under a branched covering. He considered the map
Q:P3 = P>, (1g:xy: a0 23) > (22 : 27 : 23 : 23).

This map has degree eight and the pull-back of a form f(xo,z1,z2,x3) of degree
d under this map is a form f(z3,2%,23,23) of degree 2d. A node of f outside
the coordinate tetrahedron corresponds to eight nodes of the transformed surface.
Taking f to be tangent to the tetrahedron, one gets additional nodes. In this way,
B. Segre constructed surfaces of degree 4,6,8 with 16,63, 153 nodes, respectively.
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E.g., for the Kummer quartic he took a tetrahedron each of whose four planes touch
a smooth quadric in generic points.

B. Segre explained that his construction can also be applied to any nodal surface
Fy of degree dy with ko nodes. The resulting surface has degree 2dy and 8k + 4
nodes. Applied successively to his 153-nodal octic and so on, this yields surfaces F;
of degree d = 2° - 8 with

(2.7) ay (d) > o d?

nodes. This was the first time that an asymptotic lower bound of more than idg’
singularities on a surface of degree d appeared. We get the following table (Basset’s
upper bound was still the best one which was valid without additional assumptions):
d|5]6 7 8 9 10 11 12 d
wpp(d) < 134|66| 114 |181 270 383 524 |696| ~ id®

pa, (d) (p(d)) > |31]63|80(81)|153|180(181)|265|336(337) 508 |~ 13343

In his paper, B. Segre also remarked that it might be possible to adapt his
construction of the 153-nodal octic to get a 160-nodal one. This would improve this
lower bound to ~ 1&d* = 2d>.

In the same paper, B. Segre also tried to improve the upper bounds for a surface
f with only isolated double points. He did not succeed in general, but under the
assumption that f does not possess an infinite number of tritangent planes (i.e.
planes which are tangent to the surface in three points) and that its parabolic curve
(the intersection of the surface with its hessian) and its flecnodal curve (the points
at which there is a line having at least 4-point contact with the surface) do not
contain any common component. E.g., he showed that — under these assumptions
— a quintic cannot have more than 31 singularities and a sextic cannot have more
than 63 ones. Of course, this did not prove that there were no surfaces with more
nodes, but it gave an idea where to search for such examples.

2.5. Gallarati’s Generalization of B. Segre’s Second Construction

Shortly after B. Segre’s discovery, Gallarati [Gal52al generalized the map Q to
higher dimensions and higher singularities:

(2.8) QF: P"—=P", (zo:21: ~~~:zn)»—>(zé:zj ceeenad).

As an example analogous to B. Segre’s construction of the Kummer quartic, Gal-
larati took a smooth quadric in P" touching the n + 1 hyperplanes of the coordi-
nate (n + 1)-hedron in generic points. Via 4 this gives a hyperquartic in P™ with
(n+1) - 2" ! nodes. E.g., Gallarati obtained a 40-nodal hyperquartic Vo in P%.

2.5.1. A Formula. Gallarati did not give a general formula for the number
and type of singularities one obtains in this way. But it is easy to derive a formula
for hypersurfaces with A;-singularities similar to B. Segre’s case of nodal surfaces
in P3: Let Fy be a hypersurface in P" of degree dy with ko singularities of type
A,;. Take n+1 general hyperplanes tangent to Fy as the coordinate (n + 1)-hedron.
The degree of the map 27| is (j+1)™ away from the coordinate hyperplanes. It is
(+1)""! on a general intersection point of two of the coordinate hyperplanes, and
(j+1)""% i =2,3,...,n, for even more special points on the coordinate hyperplanes.
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For our generic choice of coordinate hyperplanes tangent to Fy the pull-back under
Q% thus gives a hypersurface Iy in P" of degree d; := (j + 1)-do with

(2.9) pa;,(F1) = (G+1)"ko+ (n+1)-(G+1)""
singularities of type A4;. E.g., applied to a smooth quadric in P? this gives:

COROLLARY 2.1. Let j € IN. There exist surfaces in P3 of degree d = 2-(j + 1)
with 4-(j + 1)? singularities of type A;.

Specializing even further to n = 3, j = 2, we obtain:
(2.10) f14,(6) > 36.

Notice that this is quite interesting because we know nowadays from Miyaoka’s
bound (section BI0 on page H{) that pa,(6) < 37 holds.

Applying the preceding construction to Fi, we obtain a hypersurface F5 in P"
of degree dy := (j + 1)?-dy with

pa,(Fo) =G+ D)™((G+ D)™k + (n+1)-(j+ 1)) + (n+1)(j + 1)

singularities of type A;. Iterating this, we get a hypersurface F; of degree d; :=
(4 + 1)%-dp with

, 1 j+ 1))
(2.11) ay () = G+ 1) ko + '((J+ : 71)

j+1 G+ -1

singularities of type A;. Approximately, we thus have:

1 (n+1)-(+1)" ! .
2.12 (F) = —-| k dr £ 1 .
( ) pa; (i) dn < o+ Grir—1 . for i large

Notice that it is easy to compute how many singularities we need to improve
the best known lower bounds using the formula &I2). E.g., let us look at nodal
surfaces: To improve Chmutov’s lower bound ~ 1—52d3 for the maximum number of
nodes on a surface of degree d (section EZIl on page HH) it suffices to construct a
surface of degree dy with ko nodes, s.t. kg > %d% — %. Comparing this with the
best known upper bound (section BI0 on pageEl), we find, e.g., that a 13652-nodal
surface of degree 32 or a 109225-nodal surface of degree 64 would be sufficient.

We also want to mention that B. Segre’s idea was rediscovered and worked
out in detail in the case of plane curves with A;-singularities by Hirano in 1992
[Hir92]. E.g., he found the lower bound of ~ 3%d2 cusps on a plane curve of degree
d in the way described above by starting from a smooth conic. To our knowledge,
the currently best known lower bound for the maximum number of cusps on a
plane curve is Vik.S. Kulikov’s [Kul03|. He was able to choose at every other step
of the iteration one of the coordinate axes to be bitangent to the curve which gives
“1242 (d) £ %dQ when starting from a three-cuspidal quartic. D. Paccagnan (a
student of Stagnaro) announced in an abstract of a talk at the ICM 1998 a slightly
better lower bound, but this was never published. The currently best known upper
bound is: p?, (d) < 5d*> — 3d. This result is probably due to Ivinskis [[vi85], see
also: [Hir86], [Sak93]. To our knowledge, the maximum number of cusps on a
plane curve of degree d is still unknown for d > 12.
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2.5.2. Gallarati’s Applications of the Construction. In his article, Gal-
larati performed the computation presented in the previous section in the special
case of nodal surfaces in P3, i.e. j = 2 and n = 3. This gave a slight improvement to
B. Segre’s lower bound because B. Segre only considered one coordinate hyperplane
(instead of four) to be tangent to the surface. For the maximum number of nodes
on a surface of degree d = 2* - 8 Gallarati thus obtained:

> (153 1 )\ s
(213) i @2 (5o + 537 ) 4

But one cannot only obtain hypersurfaces with many A;-singularities using this
construction as Gallarati’s example of a surface of degree 9 in P? with 36 ordinary
triple points showed. This surface is nicely connected to cubic surfaces with Eckardt
points: He started with a smooth cubic surface with four Eckardt points, i.e. points
in which three of the 27 lines meet. Taking as the coordinate tetrahedron the four
planes tangent to these Eckardt points, Q3 yields a nonic with 4 - 32 = 36 triple
points (recently, Stagnaro used similar ideas to get 39 triple points [Sta04]).

Gallarati then used the 40-nodal quartic V4 in P* obtained above to construct
a sextic in P? in a way similar to the construction of the Kummer quartic (CI2)
and the Togliatti quintic Z3): Taking one of the nodes of Vo as the origin P :=
(1:0:---:0) of the coordinate system, Vo has the form:

(2.14) Vi := 25 Fy + 220 F3 + Fy = 0,

where F; € Clxy,x2,23,24) are of degree i, i = 2,3,4. The projection from P to
the P3 given by zg = 0 is a 2-fold ramified covering with branch locus

(2.15) Gags 1= det< 11::2 le:z ) .

Gags has 2-3-4 + (40 — 1) = 63 double points which is the same number of nodes
as B. Segre’s sextic. Gallarati also remarked that a similar construction could not
work if we started with a 45-nodal quartic in P because it would give a 68-nodal
sextic which is not possible because of Basset’s bound. But it is interesting to note
that van Straten’s suggestion to try to start with the 3-parameter family of 42-nodal
quartics yields a 3-parameter family of 65-nodal sextics as shown in [Pet98], see
also section L1 on page

2.6. Kreiss’s Construction

In 1955, Kreiss described a construction of some surfaces of even degree d = 2k
with many nodes [Kreb5|. Similar to a construction of Castelnuovo [Cas91], they
have the form

f = Q(f17f25f3)7

where Q(u, v, w) is a conic in P? and the f; are forms of degree k which are assumed
to define k3 simple points. A generic surface f has these k% points as nodes. We
now take hyperplanes E;;, i =1,2,3, j =1,2,...,n, and put f; := H§:1 Ei;.

The fibre of the rational map P? — P2, z — (fi(z) : fa(x) : f3(x)) over a
generic point of the form (0 : « : 3) will have k(g) singular points corresponding to
the intersection points of the (k) lines Ey; N Eq; with the surface 5f; —afs = 0. If

2
one chooses the conic Q to be tangent to u = 0,v = 0,w = 0 in P? one obtains a
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surface of degree d = 2k with
5 3
—d3 - gdz, d =2k, ke,

(2.16) pa, (d) > k> + 3k (’;) =16

singularities which are all nodes in general.

Then Kreiss assumed that in the net spanned by fi, f2, f3 there was a fourth
surface fy = af,+bfs+ cfs which decomposed as a product of k linear forms. Then
by making @ also tangent to the line au + bv+ cw = 0 in P? we would get a surface
with k° +4k (%) = 3%* — 2k? singular points. To show this, Kreiss argued as follows:
To have a syzygy of the form Zle Ey; -+ Ex; = 0 between four k-tuples of linear
forms we have 16k coefficients at our disposal which are subject to (k;r?’) algebraic

equations. As the inequality 16k < (k;rg) holds exactly for k < 7, Kreiss claimed to
have constructed surfaces of degree d = 2k,2 < k < 7, with

(2.17) 3k% — 2k? = gd3 — icﬂ, d=2k, 2<k<T,
nodes.

Van Straten remarked that such a construction is indeed possible for k = 2 if
one takes the three pairs of parallel planes of a cube, but that the problem with
Kreiss’s argument for other k is the fact that one has to remove degenerate solutions
of the above set of equations and that this might leave us with the empty set.

Nevertheless, Kreiss’s work is often cited, and it took a long time until con-
structions giving at least the number of nodes that Kreiss’s construction would
give. Because of this influence, we list the lower bounds that Kreiss claimed to have
found despite van Straten’s previously mentioned remark:

dl 46| 8 | 10| 12| 14
pa,(d)> |16 | 63 | 160 | 325 | 576 | 931

Taking into account Gallarati’s improvement (ZI3) of B. Segre’s lower bound based
on an existing nodal surface, we get with the 576-nodal dodectic the existence of
surfaces of degree d = 2" - 12 with

253
2.1 d) 2 —
(2.18) wd) 2 7ee
nodes.

d® ~ 0.3347d3

2.7. Gallarati’s 160-nodal Construction

Despite Kreiss’s 160-nodal octic in P3, Gallarati wrote an article on another
such surface because of its interesting construction [Gal57]. He started with the
form

VY = mimowsmans — y12y3YaYs
in P?. V is singular along the 100 P®’s obtained by equating two of the x; and two
of the y; to zero. So, a general linear section gives a family of 100-nodal quintics
in P%. Gallarati then argued that one could choose this section so that it acquired
a triple point P and that the lines joining P and the 100 nodes of the quintic were
not contained in the tangent cone at P. Thus the ramification locus of the form

— Fy Iy _
(219) Ga160 = det ( F4 F5 ) =0

has 3-4-5+4 100 = 160 nodes.
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Moreover, Gallarati remarked that it might be possible to specialize further and
to obtain an octic with more than 160 nodes in this way. To our knowledge, this is
still unknown.

Van Straten mentioned that it might be possible to go to still higher dimensions:
E.g., a general linear section of

V13 = T1X2X3T4T5T6L7 — Y1Y2Y3Y4YsYeYr

in P? has 225 nodes. Again, one might hope to be able to choose this section so
that it acquires a quadruple point which could then give a surface of degree 10 with
4-5-64 225 = 345 nodes. 'This would be the same number of nodes as Barth’s
dectic (see section ELJ on page Bl). Some questions arising from this observation
are the following: Does this construction work? If it does, is the surface different
from Barth’s (section EEH)? Can we go on?






Chmutov’s septic TChm?, constructed around 1982 using Tchebychev polynomials.
Variants of this basic idea are still the best ones for constructing hypersurfaces with
many nodes of high degree.



CHAPTER 3

Modern Methods (1960-1990)

From the 1960’s on, a systematic theory of singularities (see e.g. [Mil68],
[AGZV85al, [AGZV85b|) and their deformations was developped. These new
methods allowed significant improvements of the known bounds around 1980.

Highlights of the period between 1960 and 1990 were Beauville’s proof for
wa, (5) = 31 in 1979 (section B3) as well as Varchenko’s (1983, section B7) and
Miyaoka’s (1984, section BIM) upper bounds. These were the first upper bounds
for the maximum number of nodes on a surface of degree d which had a better
asymptotic behaviour than the 100 year-old upper bound pp,(d) < %dg based on
the class of the surface. In fact, Miyaoka’s bound up,(d) < %d?’ is still the best
known bound for surfaces and Varchenko’s spectral bound is still the best known
one for hypersurfaces in higher dimensions. The strength of Varchenko’s bound can
be illustrated by the fact that it is exact for cubic hypersurfaces in P™ as Kalker’s
examples from 1986 showed (section BIT). Another important contribution was
Chmutov’s idea to use Tchebychev polynomials for constructing hypersurfaces with
many singularities (section B.H).

3.1. Stagnaro’s Results on Surfaces with Many Singularities

3.1.1. Surfaces with a j-tuple Point. In [Sta68], Stagnaro considered sur-
faces in IP? of the form

(31) meJr]' : :C(Z)ij + 2I6nFm+j —+ F2m+j = 0’

where F; € K[z, 29, 23] are forms of degree i, i € {j,m + j,2m + j} and K is an
algebraicly closed field of a characteristic which is not a 2m(2m + 1) divisor. The
surfaces Fanm+; have a j-tuple point in (1:0:0:0).

For j =1 and m = 2g — 1 he then chose the F; in a special way s.t. Faop1; =
Faq—1 was a surface of degree 4g — 1 with 4¢(2g — 1) nodes and 12g — 9 singularities
of type Ay(,—1). His reasoning still contained an arbitrary form ©;,_2) of degree
2(q —2). For a particular example, this can be chosen in a particular way to obtain
even more singularities. E.g., this allowed him to show the existence of a septic
Fr with 72 nodes and 16 additional cusps. Notice that the previously best lower
bound for u(d), 81, was also given by a construction of surfaces with singularities
different from nodes, namely Gallarati’s surfaces with a triple point and additional

nodes ([Z6):
(3.2) w(7), wpp(7) > 88, although still, we have only: 4, (7) > 72.

With the help of the 28 bitangents to a quartic plane curve, Stagnaro then used
the above technique to show the existence of surfaces Fa,,+4 of degree 2m + 4 with
m(Qm;S) isolated double points and an ordinary quadruple point in (1:0:0: 0).
E.g., for m = 2 this is an octic with a quadruple point and 132 additional nodes.

31
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3.1.2. A Sextic with 64 Nodes and a Septic with 90 Singularities. 10
years later [Sta78]|, Stagnaro constructed a surface of degree 6 with 64 singularities
which showed:

(3-3) 114, (6) > 64.

Notice that until this point, three sextics with 63 nodes had been known (see sec-
tions 24 28 2H). According to B. Segre’s upper bound mentioned at the end of
section 4] a 64-nodal sextic cannot verify B. Segre’s assumptions. And indeed,
Stagnaro showed that his sextic Stg4 had an infinite number of tritangent planes.
Its construction is based on a very special configuration of lines and conics in the
plane. A

With an analogous method he constructed a surface of degree 7 with 72 nodes
and 18 additional cusps. These are two more cusps than those of the example of
the previous section. We have:

(3.4) wa(7) > 90, although still, we have only: pa,(7) > 72.

Under certain assumptions, Stagnaro also gave a slight improvement of Basset’s
upper bound which computes to 65 for the case of degree 6. Nowadays, we know
that 65 is the correct bound for sextics (see section ELH on page B0).

3.1.3. Stagnaro’s Upper Bound for Ordinary ¢-fold Points. In [Sta83],
Stagnaro gave a modern proof of Basset’s bound and generalized it to ordinary ¢-
fold points. Denoting by p4(d) the maximum number of g-fold points on a surface
of degree d, he showed:

4d(d —1)(d — 2)
(38) k() < D ag =)
and also:

pold) < —— - (2d(d—1)*(g—1) — 13+ 16
(3.6) 2q(g—1)®
—/Ad[d—1)(3d—11q+ 8)(q — 1) + (13¢ — 16)2).

The exactness of [BH) for d = 5 was already known [Gal52b]. An interesting
remark of Stagnaro was that this bound is exact in several other cases, too (although
B3) is better for d large). To prove this, he took the following generalization of
Castelnuovo’s construction [Cas91] (see also section Z8): He considered surfaces
As, Bs, Cs of degree s meeting in s3 distinct points. If F), is a generic form of degree
q then

(3.7 Stag, , :== F,(As, Bs, Cy)
is a surface of degree s-q in P3 with s® ordinary ¢-fold points. Playing this against

@3), he showed that s* was the maximum number of ¢-fold points on a surface of
degree s-q if

3.8) ¢> (3(333 452+ 3) + /9(35° — 452 + 3)2 — 16(5s° — 8s + 5)) .

ol —

This yielded an infinite number of cases in which the exact value of pq(d) was
known. E.g., for s = 2, [BR) is equivalent to ¢ > 8, so for a surface of degree 2-q,

Van Straten checked Stagnaro’s equation of Stgs4 using computer algebra and found it to
be wrong. Its construction consists of several pages of geometrical arguments, so maybe the
construction is basically correct, but only contains some typos. Because of the lengthy argument
we were not able to figure this out.
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q > 8, the maximum number of ¢-fold points is 23 = 8. So, ug(16) = 8, ug(18) = 8,
etc. In general, the criterion gives exactness only for cases in which the multiplicity
of the ordinary singularities are large compared to the degree.

Beside this, Stagnaro summarized the best known constructions until this point
in a table. There, he cited his septic from [Sta78] (section BETZ) with 72 nodes and
18 cusps as a surface with 90 ordinary double points which yielded some confusion
in the literature of the following years.

Only shortly afterwards, Stagnaro wrote a preprint [Sta84] (cited in [Gal84]
and [Wer87|) in which he claimed to construct a sextic with 66 nodes which would
be the maximum possible number of double points according to Basset’s upper
bound. But shortly afterwards, (in his own MathSciNet review of Gallarati’s his-
torical overview), Stagnaro noticed that his construction was false. Since [[JR97],
we know that such a sextic cannot exist (see also section ELH).

3.2. Teissier’s and Piene’s Formulas for the Class

The geometers of the 1970’s realized that the old formulas for the class of a
singular hypersurface (see for example the one preceding equation (C3))) were either
not general enough or not proven in a rigorous way. This (and generalizations of
such results) were the motivation for Teissier [Tei75| and Piene [Pie78, p. 266]
to show that if a hypersurface f of degree d in P™ has only isolated singularities
S1, ..., Sk then its class d* can be computed:

k
(3.9) A" =d(d—1)"" = e,
=1

where e, denotes the multiplicity of the Jacobian Ideal at a singular point s;. This
number e, can also be expressed as follows (see [Bru81l): es, = p(s;) + p1(si),
where p(s;) is the Milnor number of the singularity of f at s; and p;(x) is the
Milnor number of a generic hyperplane section of f through s,;. Since d* > 0 and
w(s;) + p1(si) > 2, this gives:

(3.10) p(d) < %d(d — 1)L

This was the first upper bound for the maximum number of singular points of a
hypersurface f with only isolated singularities which held in this generality. For
surfaces in P with only double points, this bound was of course not as good as
Basset’s bound (section [[4)), because it was a generalization of the bound which
had been known before the appearance of Basset’s results.

3.3. Beauville’s Proof of p4, (5) = 31 Using Coding Theory

The first major breakthrough after the results of the 19" century was Beauville’s
proof for

(3.11) 14, (5) = 31.

He called a set of isolated ordinary double points s;, i € I, on a quintic f
in P? even if the sum of their exceptional divisors E; on the blown up surface F
was divisible by two in Pic(F’) or equivalently that the sum of the F; was zero in
H?(F,7./2). Beauville showed that even sets of nodes containing 16 and 20 elements
were the only non-empty ones on a nodal quintic (these actually occur, see [Bea79al
and [Cat81]). Supposing that the quintic f had at least 32 nodes s,..., s32, he
associated to the E; a homomorphism ¢ : F3? — H?(F,Z/2). This ¢ has a kernel
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K of dimension dim(K) > 6. Looking at K C 32 as a code over the field with two
elements, its only weights are 16 and 20 according to the remark above. But this
contradicts the following fact from coding theory: If the weights of K are greater

or equal to 2 then m > 24m)~1in case of equality, K is isomorphic to a code

which has § dim(K) as its only weight.

3.4. Bruce’s Upper Bounds

In [Bru81], Bruce improved the general upper bound (B3) for the number of
singular points on a hypersurface of degree d in P™ with only isolated singularities.
For surfaces in IP3 of odd degree d, his bound is also better than Basset’s bound, al-
though it still stayed ~ 1d°. For the maximum number y(d) of isolated singularities
on a hypersurface of degree d in P", he showed:

wd) < LH((d-1)"(d+1)+(d—1)), neven,
(3.12) p(d) < Ld-1)n n 0dd, d odd,
p(d) < H((d-1)"(d+1)+1), n odd, d even.

His proof was based on a deformation theoretical result of Siersma [Sie74] and the
computation of the rank of the intersection matrix of ¢ + x4+ - - 2 for n even and
of z{ +2d + -+ 22 + 22, for n odd using [Mil68]. For the maximum number of
singularities on a surface in IP3, the following bounds were known up to this point:

d| 5 6 7 8 9 10 11
n(d)(pa, (d)) < |32 (31)|73 (66)| 108 |193 (181)| 256 |401(383)| 500 |~ 3d°
pa, (d)(u(d) > 31 64 (72 (90)| 160  |160(181)| 325 |300(337) |~ 3d?

Notice that Bruce’s list [Bru81), p. 50] does not show Gallarati’s surfaces of degree
d = 9,11 with a triple point and 180 and 336 additional nodes, respectively (see
section 23 on page 23)).

3.5. Catanese’s and Ceresa’s Sextics with up to 64 Nodes

Clemens’s work on double covers of P3 [Cle83] (see also section BETJ) and
his notion of defect raised new interest on the problem of the existence and the
construction of surfaces f of degree d in IP? having a given number s of nodes as
its only singularites.

Such questions were motivations for Catanese and Ceresa to construct sextics
in P3 with any given number o = 1,2, ...,64 of nodes [CC82]. They applied B.
Segre’s idea to use pull-back under a branched covering, see section Z4] on page B3
B. Segre had only obtained a 63-nodal sextic in this way. For the construction of a
64-nodal one the authors thus had to use different specializations of the coordinate
tetrahedron.

Catanese and Ceresa also claimed to have shown that 64 is the maximum num-
ber of nodes possible on a sextic constructed in this way. Barth’s 65-nodal sextic
[Bar96]| disproved this, see section EEH on page

3.6. Givental’s Upper Bound

Only a few years after Beauville’s proof that the maximum number of nodes
on a quintic in P? was exactly 31, Givental established a general upper bound for
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the maximum number of isolated singularities on a hypersurface of degree d in P™
which computes to 31 in the case of quintic surfaces.

It is worth noting that the proof of his bound is much simpler than the one
of Varchenko’s spectral bound (see section B7). There is a drawback to this: The
approximate behaviour of Givental’s bound is still (d) < 1d™. But for low degree
it is much better than the previously known bounds:

d| 5| 6 7 |8 9 0 11 |12] 4
11(d)(upp(d)) < [31]68 (66)| 104 |180| 247 |376| 484 |680|~ id?
pa, (d)(u(d)) > |31] 64 |72 (90)| 160 |160(181) | 325 |300(337) | 576 |~ Ld?

Givental’s bound can be computed as follows: Let I be the set of multiindices m,
lying strictly inside the n-dimensional cube with side d:

(3.13) I:={meZ"|0<m;<d}.

We give names to the number of elements in the following subsets of I:

Moo= #{m|= (3 +2K)d},
K = #{m|= (5 +2k-1)d},
R = #{lm|—(2+2k—-1)d=+lor £3},
where |m| := mq + --- + m,, as usual and k € Z. With these notations, Given-

tal’s upper bound on the maximum number p"(d) of isolated singularities on a
hypersurface of degree d in PP" is:

1
(3.14) pt(d) < 3 (d=1)"+M—-K—-R).

As the major motivation for the research on the subject, Givental mentioned
the following conjecture on the number of singular points on a hypersurface. It was
formulated by Arnold in 1981 in a discussion of Bruce’s article [Bru81] as Varchenko
said in the introduction of [Var83|: Arnold suggested the bound p™(d) < A, (d),
where

(3.15) An(d) = # {(kl,...,k:n) el %(n—Q)d—&— 1< ki < %nd}.

Ap(d) is thus a certain number of integer points within an n-dimensional cube.
Givental’s bound is slightly greater than A, (d) for most degrees. Nowadays, the
numbers A,,(d) are called Arnold numbers. The correctness of Arnold’s conjecture
was shown only shortly afterwards by Varchenko (see next section).

3.7. Varchenko’s Spectral Bound

Not long after Givental’s new upper bound, Varchenko was able to prove the
conjecture of Arnold (see equation (BIH)) by showing a theorem on the spectrum
of a singularity [Var83|. Basically, the spectrum consists of the eigenvalues of the
monodromy operator of the singularity, see e.g. [Kul98|, [AGZVS&5b| ch. 14] for
details on the spectrum. Varchenko’s nowadays called Spectral Bound was the first
upper bound for the maximum number of singularities on a surface of degree d
which had an approximative behaviour of less than %d?’. In fact, he showed:

(3.16) p"(d) < An(d),
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where A,,(d) is the Arnold number defined in I5). For surfaces in 3, this com-
putes to:

2803 _ 9242 4 59, d=0 mod 2,
(3.17) ud) < { Sy B £ 48 d=1 mod2
48 16 18 16 = :
This leads to the following table:
d|b 6 7 8 9 10 11 12 d

p(d)(pa(d)) < |31]68 (66)| 104 [180| 246 |375| 480 |676|~ 2343
pa, (d)(u(d)) > 31| 64 |72 (90)|160|160(181) | 325 |300(337)|576 | ~ +d?

Arnold and Givental computed the approximate behaviour of A, (d):

(3.18) A (d) = ,/id" +O(d" 1) for large n.
™

As already mentioned, Varchenko’s previous bound is based on a property of
the spectrum of a singularity, more precisely the so-called semicontinuity of the
spectrum (see [Var83] and also [Kul98|, [AGZVS85b, ch. 14]). It cannot only
be applied to ordinary double points, but to any type of isolated singularity in n-
dimensional space for which it is possible to compute the spectrum. For many cases,
this computation has already been performed. The spectrum can even be calculated
using Endraft’s SINGULAR library spectrum.1ib or Schulze’s library gaussman.1ib.
These libraries also contain procedures for computing the bound for the maximum
number of singularities of a given type on a hypersurface of degree d in IP" based
on the semicontinuity property:

LIB "gaussman.lib"; LIB "spectrum.lib";

proc varchenko_bound_general(int n, int d, poly sing) {
poly p = 0;
for(int i=1; i<=n; i=i+1) { p = p + var(i)~d; }
list s = spectrumnd(p);
list ss = spectrumnd(sing);
return(spsemicont(s,list(ss),1)[1]); }

E.g., with this procedure the SINGULAR code

ring r = 0, (x,y,2),ds;
varchenko_bound_general (3, 7, x~2+y~2+z"2);

gives 104 which is the Varchenko’s bound for the maximum number of nodes
on a septic surface in IP3.

To explain how to compute formulas for the bound in more general cases, let us
look at Aj-singularities on surfaces of degree d in P3. It is known that Varchenko’s
spectral bound can be described by a polynomial of degree 3 in d, but we could
not find explicit statements for j > 1 in the literature. In the following we explain
briefly how to proceed in order to compute these polynomials.

For even degree d > 4 the spectrum sp(d) of the singularity 2 + y¢ + 2% = 0

in C? consists of the spectral numbers sq(i) = “42,i = 1,2,...,3(d — 1) — 2, with
multiplicities mg(i), where

o my(l) =1,

e my(i+1)=mg(i)+1+14¢, i<d-—1,

o mg(i+1) =ma(i) + 2(imig — ) + 1, d—1< i <idpiq:= 2 -2,

e my(3(d—1)—1—4) =mq(i), 1<i<imiq (Ssymmetry of the spectrum).
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The spectrum of an A;-singularity is also well-known (see e.g. [AGZVS85b, p. 389]).
Its spectral numbers are ;%, ;%?, ceey %, all with multiplicity 1.

EXAMPLE 3.1. The spectrum sp(6) of the singularity x5 + y5 + 25 is:

i 123 4 5 6 7 8 9 10 11 12 13

3 4 5 6 7 8 9 10 11 12 13 14 15

spectral number S; 5§ 66 6 6 6 6 6 6 6 B 6 &
multiplicity m; 1 3 6 10 15 18 19 18 15 10 6 3 1

The spectral numbers of the As-singularity are: %, %, both with multiplicity 1. O

To compute Varchenko’s bound we have to choose an open interval of length 1,
say [ = (%’l, %), of the spectrum sp(d) which contains all spectral numbers
of the Aj-singularity and such that the sum of the multiplicities of the spectral
numbers in the interval is minimal. Then we have to sum up all the multiplicities
in this interval and divide by j.

Let us write d = k-(j + 1) 4+ {. Then we may choose I := (%, 42) where

iri=k(27+ 1)+ V(jJTT)J — 1. We introduce some notations: n; := i,,;q — (d— 1),
Ny 1= Gy — dia — 1, nyg = d — 1 —ng — Npy Manig = Zf;lli + (£ —1)%. Using

these we can compute Varchenko’s bound Var 4, (d) for the maximum number of
Aj-singularities on a surface of degree d in P? for the case d,j € IN with d > 4:

Var 4, (d) = ]l (%'(Z?:_fi + Z?:_f iP? - 2?2—11—71” i = 2?2—11—71” i?)

(3.19) . n—1 .
(e +nu)  Mimia — 2oy 12— Dot Z2) o

EXAMPLE 3.2. Let us look at the case d = 6,5 = 2 as in example [Tl In this
case, the constants used above have the following values: k = 2,1 =0, i, = 9,
fmid = 1, Ny = 2, ny = 1, nyg = 2, Mg = 19. We can now easily compute the
bound Var 4,(d) in (Z19) for d = 6 (compare the table in example [Z1):

1 15+55—-6—-14
Vara, (6) = —.(f

: +3~19—1—1):40. O
————
=10+15

=18419+18

Using some summation formulas we find the following bounds for d > 4:

2313 972, 5 _
22d° — 2d° + 2d d=0 mod 2
d) <V d) = 48 8 6 ’
* pnld) < Vara, (d) { BP By BI 5 d=1 mod 2.
Sedd — 2d* + 1d, d=0 mod 3,
o pa,(d) < Varg,(d)=¢ 2d® -8 +1Ld— 1 d=1 mod 3,
31 j3 _ 7.2 4 3 5 _
2=d’ —id°+2d— = d =2 mod 3.
108 9 1 27>
E2Ed3 — Pd® + 3d, d=0 mod 4,
d) <V (d) 1213552d3 - g%idQ + 1718552d_ %’ d=1 mod 4,
® HA S varg = 235 37 173 3 _
3 8 —1152d3*ad2+@dfﬁ, d:2 HlOd 47
235 ;3 _ 209 2 | 569 35 —

The formulas are not correct for d = 3 for some j because the spectrum of the
23 + 93 + 23 = 0 singularity does not have enough spectral numbers to fit into the
description above.
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3.8. Tchebychev Polynomials and Hypersurfaces with Many Nodes

Chmutov suggested (see [AGZVS85b| p. 419] or Varchenko’s overview article
[Var84, p. 2782|) to consider the hypersurface TChm; of degree d in P™ with affine
equation:

n—1
n |0, n even,
(3.20) TChm? : ZTd(xj) { C1 modd,
where
1£) i , .
(3.21) Ta(z) = (-1)’ <22) 221 = 22)

i=0
denotes the Tchebychev polynomial of degree d having two critical values +1 (see
[Riv74]). T, can be recursively defined as follows:

(3.22) To(z) =1, Ti(2):=2, Tu(z):=22T4-1(z) — Ty—2(2).

These polynomials have many other nice properties. We only mention two more of
them. First, the Ty(z) satisfy the equation:

(3.23) Ty(cos(a)) = cos(dar), « € [0, 7],

and its derivative 7)j(z) vanishes at ay, := cos (£7) |1 < k < d — 1 which gives rise
to a maximum (resp. minimum) if & is even (resp. odd). Second, the plane curves
C1 == Ty(z) + Ta(y) (resp. Co := Ty(x) — Tu(y)) factor into & irreducible conics
(resp u irreducible conics and two lines) if d is even and they both factor into

a1 1rreducib1e conics and a line if d is odd (see [Wer87, p. 34]).

L

y=Tr(z TChm? = 0 TChm? = 52 TChm? = 0

FiGURE 3.1. The Geometry of Chmutov’s Hypersurfaces.

It is easy to see that the hypersurfaces TChm]; are singular exactly at the points
(Qkys--yan,), 1 < ki <n—1, where [ 3] of the indices k; are odd and the other
are even (see fig. Bl for an illustration of the case n = 2). All singularities are
nodes and their number is

w(TChm?) = ¢,d™ + O(d" ™),
where ¢3 = 2 and more precisely u(TChm3) = 3d*(d—2) if d is even and u(TChm3) =
3(d—1)3 if d is odd. This showed:

(3.24) pay(d) 2 S

®| w
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which was the best approximate behaviour for n = 3 known up to this point. It

is easy to compute the exact number also in higher dimensions, e.g. for d odd

and n even we get y(TChm}) = (%)"(;}2) nodes. A computation of Givental

concerning the approximate behaviour with respect to n showed: ¢, =~ ,/% for

large n, see [Var84), p. 2782] (compare ([BI8)). When assuming the correctness of
Kreiss’s construction, it improves the bounds for low degree d only in a few cases:

d| 5] 6 7 | 8|9 l10]11]12] 4
4

p(d)(pa(d)) < |31]68 (66)| 104 [174|246 [360 | 480 [645 | ~ 243

pa (d)(p(d)) > |31] 64 |81 (90)|160|192 325|375 |576|~ 2d3

3.9. Givental’s Cubics in P"
Givental (see [AGZVS85H, p. 419], [Var84, p. 2782|) used Chmutov’s idea to

construct cubics in P” with a number of nodes that almost reached Varchenko’s
spectral bound. Instead of Tchebychev Polynomials which are polynomials with
few critical values in one variable, he used a polynomial with few critical values in
two variables: To understand the construction, let us start with a regular triangle
Rs3(z,y) whose non-zero critical point has critical value +1, see fig.

-
L

y = T3( Rs(z,y)

Z*Rg(l',y) =0

FIGURE 3.2. The Tchebychev Polynomial T5(z) of degree three
and a regular triangle, once seen in the plane, once in space.

Then the number of singular points (all are nodes) of the cubic hypersurface in
P™ with affine equation

21
(3.25) Givy : Z (—1)7 AFrmod 2) Ro (9 29j41) = —(n mod 2)
=0

Tg(l‘n,1) — 1
) ’

is gn ~ 2"/ 3 /8- for n large. Givental also noticed that A, (3) ~ 2”1/ for n large

which showed: (3) \/; ~ 0.8165. In fact, Varchenko’s spectral bound is exact
for cubics in P" as Kalker showed only shortly afterwards, see section BTl

In both cited texts [AGZVS85b, p. 419|, [Var84, p. 2782], the equations for
Givy are only given for n =0 mod 4, but they list the numbers of nodes that can
be obtained using Givental’s construction. These numbers can be realized using the
equations given above:
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4151617819 n
p"(3) = p4, (3) = [1]3]4|10|15| 35|56 | 126 | 210 (’f;fj)
p"(3) > {1]3|4]10{15(33|54|118|189 |~ 2™,/ 5

S
—_
w

3.10. Miyaoka’s Bound for Surfaces with Rational Double Points

Parallel to Varchenko’s spectral bound, there appeared another very important
upper bound due to Miyaoka. In [Miy84], Miyaoka proved an inequality that he
could apply to a normal surface f; of degree d in P? with only rational double
points as singularities to prove:

d(d-1)=2

Ol =

(3.26) 1pp(d) <

This is still the best known upper bound for the maximum number of rational double
points on a surface in P? for large degree. Only for odd low degree, Varchenko’s
bound is better in some cases. The following table gives the bounds known up to
this point:

S8

d|5| 6 7 [ 8910|1112

11(d)(upp(d)) < [31[68 (66)| 104 |174|246|360 (480|645 |~ 2d®
~ 1

pa, (d)(p(d)) > [31] 64 [81(90)|160|192]325|375| 576 | ~ L1d?

Miyaoka’s bound can also be applied to compute the maximum number of
some particular type of rational double points: Let X, be the germ of a quotient
singularity (C/Gp)o, where Gy, is a finite subgroup of GL(2, C) having the origin
as its unique fixed point. Let Xg be the minimal resolution of X, and E the
exceptional divisor. The Euler numbers ¢(Xp) and e(E) coincide. Put v(p) :=
e(E) — |G_1p\ The non-negative rational number v(p) is an analytic invariant of
the quotient singularity X, which is not difficult to compute in the cases we are
interested in:

v(p) =0 if X,, is smooth,
(3.27) v(ip) =2— % B if X, is an ordinary j-tuple point,

vip) =j+1- jﬁ = j(j:f) if X, is an Aj-singularity.
Miyaoka showed: If X is a projective surface with only rational double points
p1,...,pr and whose dualizing line bundle Ox (K,) is numerically effective, then

k
>y 1 2 1 2 2

(3.28) Y w(pi)+e(D) < e2(X) =2 (Kx+D)* = 12x(Ox) — 5 (4K% +2Kx D+ D?)

i=1

for any effective normal crossing divisor D away from the singularity. Now, let
fa C P3 be a normal surface of degree d with only rational double points py, ..., pg.

Then B28) implies:

(3-29) > vlpi) < Sd(d - 1)
i=1
E.g., as v(p) > 2 for singular points, we get (B26). For any fixed j € IN, (B27)
yields for the maximum number f4,(d) of Aj-singularities on a surface of degree d

Wl



3.11. KALKER’S CUBICS IN P" 41

in P3:

2 j+1
3.30 (d) <Miy, (d) = -+
( ) ,LLAJ( )— YA]( ) 3J(.]+2)
There also exists a generalization of Miyaoka’s result to more general singularities

by J. Wahl, see section EEI0 and [Wah94].

3.11. Kalker’s Cubics in P

In his Ph.D. thesis [Kal86|, Kalker gave examples of cubics in P" that showed
that Varchenko’s spectral bound for the maximum number p"(3) of singularities on
cubic hypersurfaces in P™ was sharp for all n € IN:

(331) ) =4 = (1)

d(d —1)2.

2
He defined cubics Kaly as generalizations of the equations of the four-nodal Cayley
cubic in P3 (C2) and C. Segre’s cubic in P* (CTI) (we chose a slightly different
notation for Kalker’s equations for odd n in order to underline the similarity to the
Cayley cubic):

Sl =o, Sl e =0, for n even,
(3.32) Kall :

Sreat+tad =0, Y ai=0, fornodd.
The singularities of these cubics in P™ are exactly the points in which the two
hypersurfaces in P"™! are tangent to each other (fig. B3).

Kalj C P! Kal; C P2

FIGURE 3.3. The Geometry of Kalker’s Hypersurfaces. Kal} C P!
consists of two points, one doubled: In the projective view one can
see the (black) fermat cubic z§ + 2% + 23 touching the hyperplane
2o + 1 + 2 ~ P! in one point and meeting it transversally in
another one. To illustrate the construction of the Kalker cubic
Kalj C P? which takes place in P3, we take the affine chart z3 = 1.
Here one sees the three points in which the hyperplane xg + =1 +
2 + 1 =~ P? touches the cubic z} 4 23 + 23 + 13. Kal3 consists of
three lines.

The following table lists the numbers of nodes on Kalker’s hypercubics. This is
one of the very rare cases in which we know the maximum number of singularities:

n|0{1(2(3|4|5[6|7]| 8|9 |10 n

p"(3) =p4, (3) =10{1(3]4|10|15|35|56|126|210|462 (‘E;le)
2
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Of course, this construction can also be generalized to higher degrees, although
Kalker did not mention it because he was only interested in cubics. Moreover, this
construction does not seem to be very good for d > 3.

3.12. Two Nodal Quintics in P*

Since the end of the 19*" century, the maximum numbers of nodes on a three-
fold in P* of degree < 4 are known, see on page We have just seen that
Varchenko’s bound is exact for cubics in any dimension. In 1985 and 1986, Hirze-
bruch [Hir87| and Schoen [Sch86] constructed the first examples that came close to
Varchenko’s upper bound (section B on page BH) for quintics in P*4: p*(5) < 135.

Schoen’s quintic

4 4
(3.33) Schi: > o} —5]Jai=0
1=0 1=0

has exactly 125 nodes (see also [Wer87, p. 84]).
He was only interested in threefolds, but it is obvious how his construction can

——d—1
be generalized to higher dimensions. But the variants Sch;, in P?~! given by

——d—1
Schy : S0, ¢ —dT]¢Z, xi = 0 have only d*~2 = d"~! nodes.

Hirzebruch’s quintic can also be generalized to higher dimensions and other de-
grees. In fact, the construction is exactly Givental’s (B22H), but instead of a triangle
Rs(z,y), he took a five-gon Rj(z,y) (see fig. BA) and Hirzebruch only applied it
in four-dimensional space because he was only interested in quintic threefolds. The
(d —1)? = 16 distinct critical points of R5(z,y) lie on three different critical levels:
(5) = 10 have critical value 0 (the intersections of the five lines), 5 with critical

2
value vy (within each triangle) and 1 with critical value vy # 1 (the center).

>

R5(x,y):0 ZﬁRf)(zay):O
FI1GURE 3.4. The regular five-gon, once seen in the plane, once in space.

It is now clear that the quintic in P* given by
(3.34) Hirzg : Rs(xo, 1) — Rs(x2,23) =0
has exactly 126 ordinary nodes, 100 coming from the intersection of two lines, and
25 4 1 others. Thus:
(3.35) 1, (5) > 126.

In view of Givental’s idea (B2ZH), this construction can also be generalized to
higher dimensions and degrees. Although we could not find this generalization in
the literature, its basic idea was certainly known to those working on the subject
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at that time. We denote by Rs5(x,y) the regular five-gon normalized s.t. the critical
value over the origin is +1. Notice that then the other non-zero critical point is —1.
We can translate Givental’s equations (82H) for cubics word by word:
21
(3.36) GHE : Y (—1)7(H(med 2D R 49541) = —(n mod 2)
§=0

Ts(xp-1)—1
2

For low n, we get the following numbers of nodes on quintics in P":
n|l1{2(3| 4| 5 6 7 8 9

w™(5) < [2/10(31| 135 | 456 | 1918 | 6728 | 27876 | 100110

:“21(5) >12]10(31]{126({420(1620|5750(23126| 78300

If we replace in GHE the polynomial R5(x,y) by another polynomial of degree
d which has exactly three critical values of the form 0,1, —1 then the formula can
be used verbatim. Instead, if it is not possible to bring the critical values of a
polynomial into this form then another formula is better, see e.g. EE1l on page

3.13. The Defect and the Existence of Certain Nodal Hypersurfaces

In [CIe83|, Clemens introduced the notion of defect §(X) := b4(X) — b2(X) of
a nodal hypersurface X in P™, where b; denotes the it" Betti number. If X deforms,
but maintains its number of nodes, the defect remains constant.

Based on this article, Borcea [Bor90] considered the special case of nodal three-
folds with trivial dualizing sheaf and was able to interpret the defect as follows: Let
X be a quintic threefold with 1(X) nodes and defect §(X). Then there exist quintics
with 0 < k < (X)) nodes with at most 6(X) exceptions. The same holds for double
solids ramified over a nodal octic surface. This result can be seen as a generaliza-
tion of a result of Greuel/Karras in [GK89] which states that hypersurfaces with
all lower numbers of nodes exist if X is unobstructed, i.e. if a certain cohomology
group vanishes. Using the defect, their condition can be written as §(X) = 0.

Several people computed the defect in some special cases. E.g., Werner [Wer87|
treated the case of several variants of Chmutov’s octics which are of the form pre-
sented in section B8 modulo sign changes. Among these, there is a 108-nodal
example with defect § = 0. Using Borcea’s previous result this shows the existence
of octics with 0,1,...,108 nodes. Another of the octics has 144 nodes and defect
0 = 9. Thus between 108 and 144 at most nine gaps may appear. Schoen’s quintic
in P* (section on the facing page) has 125 nodes and defect 6 = 24. Thus,
up to 125 at most 24 gaps may exist, but most of them have to occur for large
numbers of nodes because Borcea gives an 100-nodal example with defect 6 = 3. To
our knowledge it has not been checked yet which numbers of nodes actually occur
on octic surfaces or quintic threefolds. It might be possible to apply our methods
presented in part B of this thesis for this purpose because most of the examples can
certainly be found in some obvious families.



Endraf’s 168-nodal octic from 1996. He located it within a five-parameter family
of Dg X Zio-symmetric 112-nodal surfaces of degree eight.



CHAPTER 4

Recent Results (1991 until now)

Since Miyaoka’s and Varchenko’s upper bounds for the maximum possible num-
ber of nodes from the early 1980’s there has not yet appeared any essentially new
idea for producing new upper bounds. But since the early 1990’s several new lower
bounds have been found.

First of all, Chmutov improved his own general construction in the case of nodal
surfaces and threefolds. Both families are still the best known ones for general
degree.

Apart from that, several special cases have been improved. E.g., van Straten
constructed a quintic in P* with 130 nodes, and Barth constructed his famous sextic
in P? with 65 nodes. Using methods similar to Beauville’s proof of p4,(5) = 31,
Jaffe and Ruberman were then able to show that 114, (6) = 65. So, pa, (d) is known
for d < 6.

In the cases of degree 8,10,12 there also appeared constructions exceeding
Chmutov’s general lower bound. But for odd degree d > 5 no such surface was
found.

Parallely, people started to consider also other singularities of small degree.
E.g., Barth constructed a quartic with the maximum number of 8 cusps and a
quintic with 15 cusps. Based on results of Nikulin and Urabe on K3 lattice theory,
Yang completed the enumeration of all combinations of singularities on quartics in
P3 using computers.

4.1. Chmutov’s Hypersurfaces using Folding Polynomials

When trying to generalize Givental’s cubics from section B9 on pageBY in the
case of surfaces to higher degree d one realizes the following. For the number of nodes
on the resulting surfaces only the critical points with two different critical values
on a plane curve are relevant. This immediately leads to the question what the
maximum number of critical points on two critical levels of a plane curve of degree
d is. Of course, a trivial upper bound is 2- (‘21) ~ d?. Chmutov succeeded in proving
a stronger result [Chm84| similar to Varchenko’s spectral bound. In [Chm95| he
mentioned the special case of non-degenerate critical points for which this leads to
an upper bound of ~ ng critical points on two levels. As he remarked in [Chm92],
this bound immediately implies a bound for the maximum number 13, (d) of nodes
on a surface of degree d of the form of Givental’s cubics p(z,y) 4+ ¢(z) = 0 (he called
them surfaces in separated variables):

7
3 3
This is less than Miyaoka’s upper bound: zd® = 23.d% < Ld® = 3d°. Thus, it is

not possible to reach Miyaoka’s upper bound with surfaces in separated variables.

45
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In view of this upper bound, it is natural to ask how close one can get. We
are thus looking for plane curves with very few different critical values (in fact, the
minimum is three for plane curves of degree d > 4). The first remark is that regular
d-gons have exactly (g) critical values with critical value 0 and only d critical values
on the other critical levels.

Chmutov [Chm92]| realized that the so-called folding polynomials F;‘Q (x,y)
associated to the root system A, (see [Wit88| and also [HWS8S|, [EL82]) are very
well-suited for this purpose. In fact, they give ~ %d2 critical points on two levels. In
[Chm95|, Chmutov even conjectured that this is the maximum number of critical
points on two critical levels. The folding polynomials Ff2 (x,y) can be defined as
follows:

2 1 0 cee e 0 y 1l 0 -oreenens 0
2y x 2z y
. _ 3y . 4 3 x
(4.2) F;2(z,y) :=2+det 01 +det 01
S 0 S 0
: IR | . R |
0------ 0 1 Yy x 0------ 0 1 =z Y

These polynomials are generalizations of the Tchebychev polynomials in many
senses (see [Wit88, [HWR&S, [EL.82]). The property which is important for Chmutov
is the fact that they have very few (in fact, three) different critical values. He showed
that such a polynomial F;‘Z had (‘21) critical points with critical value 0 and

%d(d -3) ifd=0 mod 3,
3(d(d —3)+2) otherwise
critical points with critical value —1. The other critical points have critical value

8. As one might guess from the number (g) of critical points on the level 0, the

(4.3)

polynomial F f 2 consists in fact of d lines.
The number of nodes of Chmutov’s surfaces defined by the affine equation

1
(44) Chmg : Fé% ($0,$1) + §(Td(1'2) + 1) =0

can easily be computed using [E3):
& (5d3 — 13d* + 12d) if d=0 mod 6,
L (5d® —13d* + 16d — 8) if d=2,4 mod 6,

(4.5) e , ,
5 (5d® —14d*> +13d —4) ifd=1,5 mod 6,
= (5d3 — 14d* + 9d) if d=3 mod 6.
Thus:
5
(4.6) pa(d) & 15d°

For low even degree, Kreiss’s construction (if correct) is at least as good as Chmu-
tov’s: p(Chmj3) = 321 < 325 and for x(Chm?,) = 576.

d{s5| 6 | 7|8|9|10]11]12
11(d) (1pp(d)) < | 31|68 (66)|104|174| 246 |360| 480 |645
pa, (d)(u(d)) > |31| 64 |93 |160|216|325|425|576 |~
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Of course, the folding polynomials F;‘Z (z,y) can also be used in higher di-
mensions (compare Hirzebruch’s quintic (B34)) and Givental’s cubics (BZH)). In
[Chm92] Chmutov only mentioned the case P* in which Chmj} := F3'*(xq, ;) —
Ff2 (22, x3) gives threefolds with approximately %d‘l nodes. With Varchenko’s
spectral bound, we get:

d| 3|45 ]| 6 7 8 9 10 11 12
pt(d) < [10|45|135] 320|651 | 1190 | 2010 | 3195 | 4840 | 7051
ujl(d) > 110(45|126 2775661029 1720|2745 (4150|6013

In view of the equations of Givental’s cubics in IP", we can easily write down
equations for hypersurfaces with many nodes in P™ using the folding polynomials.
As we could not find them in the literature, we give them here explictly:

[5]-1 1
(4.7)  ChmJ : (fnnfnuﬁxﬁﬂy:mnmdmaauﬂkn+1y

w3
i

<.
[}

In some cases, we get more nodes if we replace the sign (—1)7 by 1, e.g. if n = 5.
Furthermore, for small degree, it is easy to find out which are the best plane curves
for this purpose. E.g., in degree 4, there is a better choice than Ff2: The union
of four lines, s.t. two of non-singular critical points have critical value —1 and the
remaining one has critical value +1. Of course, Chmutov’s upper bound for surfaces
in separated variables also generalizes to higher dimensions.

But notice that Chmutov’s older construction (section B:§on page BY) is asymp-
totically better than his new construction for any fixed n > 5 and large d. Intu-
itively, the reason for this is that the two non-zero critical values of the polynomials
Tu(x) 4 Ta(y) also sum up to zero; this is not the case for F'2. In P%, we get the
following table for low degree:

dl3| 4|56 | 7|38 9
pB(d) < | 15| 126 |456| 1506 | 3431 | 7872 | 14412
1%, (d) > | 15/104|420| 1080 | 2583 | 5760 | 10368

4.2. Barth’s 31-nodal Quintic in P?

Although Barth only published his construction of a 31-nodal quintic in P3
as a preprint, it is quite interesting and we thus describe it here shortly (a longer
exposition can be found in [End96]).

As a starting point, Barth took a family of quintics H?:o P;(x,y)—az-Q? coming
from Rohn’s construction [[3 on page M8 In order to be able to reduce the problem
in three-space to a planar one, he took planes P; and a quadric @) which admit the
symmetry Dj of a five-gon: F, 4 := P — az-Q?, where

P = Tl (cos(F)z +sin(F)y - w)
(48) = %6 (x5 — 5xtw — 1023y? — 1022y w + 202%w?
+5zy? — 5ytw + 2032w — 16w5),
Q = 224+y?+b22+ 2w+ dw?,

and where a,b,d € C are still to be determined.
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FI1GURE 4.1. Barth’s Togliatti quintic with 31 nodes and its re-
striction to the plane y = 0. Notice that this plane quintic consists
of a line and an irreducible quartic. This latter has three nodes
two of which are solitary (also called A]") points.

A generic member of this family has 20 nodes. Because of the symmetry, four
of these are in each of the symmetry planes

E; = {sin(%j)x = cos(%j)y} ,7=0,1,...,4.

In fact, the symmetry allowed Barth to restrict his attention to one of these planes,
say Ey. Every node N of the plane curve Cy 4 g := Ep N F, 4.4 induces an orbit of
length five if N does not lie on the axes x = y = 0. In order to get 31 ordinary double
points, we thus have to find parameters a, b, d, s.t. the plane quintic Bars; := Cq .4
has one additional node on the axes z = y = 0 and two additional nodes away from
this axes.

But an irreducible quintic can have at most six nodes, s.t. our curve C, 3 4 has
to be reducible in order to have the seven nodes that we need. In fact, a lengthy
analysis shows that the curve is a union of a line and a three-nodal quartic with the
parameters

5  5-45

75 "T a0 o

The only node on the axes z = y = 0 comes from the intersection of the line with

the quartic. The surface F, ;4 corresponding to these parameters has therefore
20+ 2 -5+ 1 = 31 nodes, see fig. BTl

d=—(1+5).

4.3. Van Straten’s 130-nodal Quintic in P*

As we have seen in section [LH on page [[], C. Segre’s 10-nodal cubic and the
45-nodal Burkhardt Quartic in P* have nice Yg-symmetric equations. In [vS93],
van Straten analyzed all singular examples in the space of all Xg-symmetric quintics
in the P* given by cutting the P> by the hyperplane o (2o, . . ., z5) = 0. It is spanned
by o5(xo, ..., z5) and oo(xo, ..., x5)03(20, .. ., z5). Besides several other interesting
quintics, this pencil

(4.9) VS(a:8) := -o5(T0, . . ., x5) + B-02(x0, ..., 25)-03(T0, ..., T5)
contains the 130-nodal example vS(;.) showing (compare section B.12):

(4.10) (i, (d) > 130.
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The nodes of this quintic form three orbits under the operation of the g on the
coordinates:

(1:1:1:-1:-1:-1) 10 nodes,
(4.11) (1:1:-1:-1:y/-3:+y/-3) 90 nodes,
(1:1:1:1:4/-3-2:+/-3—2) 30 nodes.

As one might expect, this 130-nodal quintic has some nice properties similar to
those of C. Segre’s cubic and the Burkhardt quartic. But in contrast to these two
varieties in P4, it is not invariant under the simple group of order 25920.

4.4. Goryunov’s Symmetric Quartics in P"

Inspired by the construction of the 130-nodal van Straten quintic, Goryunov
[Gor94] looked at all nodal quartics and cubics in P™ which are invariant under
the reflection groups A, or B,.

Of course, in the case of cubics in P, his examples could not give more nodes
than Kalker’s examples (section BT on page HIl) because those already reached
Varchenko’s upper bound. In fact, Goryunov found isomorphic cubics using his
method.

But his B,,-symmetric quartics gave rise to new lower bounds. His construction
is based on his observation that one can reformulate the condition that a hyper-
surface in IP™ has a singularity in the case of hypersurfaces symmetric under the
considered reflection groups: It turned out to be equivalent to the condition that
the corresponding hypersurface in the orbit space is nontransversal to the discrim-
inant of the group. He thus constructed his examples with many nodes by finding
a hypersurface in the orbit space that is nontransversal to the strata of very long
orbits.

Using this method he showed that the B,,i-symmetric hypersurface

(4.12) Goryy(a): 2-(a+1)- ( Z xfx?) - ao( Z z?)Z =0

0<i<j<n 0<j<n

has exactly 2¢ ("1}

which both yield:

(413) 2 2% (),
3

) nodes. This number is maximal for a = |2 and a = | 2% |

His A, 11-symmetric quartics exceed this number only for n = 4 (this gives the
45-nodal Burkhardt Quartic) and n = 7. We obtain the following table (with
Varchenko’s upper bound):

n|2(3[4] 5 6 7 8 9 10 n
u™(4) < |6/16|45] 126 | 357 [ 1016 | 2907 | 8350 | 24068 |~ 33—

p™(4) > |6/16]45|120|336| 938 [2688|7680(21120| ~ 3

In table [Gor94l p. 148], Goryunov listed Chmutov’s old hypersurfaces (sec-
tion B8 on page BY) as the previously known best lower bounds although the gen-
eralization of Chmutov’s new construction (section EXllon page B leads to greater
numbers of nodes for small n. But also in comparison to these, Goryunov’s examples
are better for all n.
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4.5. Barth’s Icosahedral-Symmetric Surfaces and 4, (6) = 65

Similar to his construction of the 31-nodal quintic in P3, Barth also used the
idea to analyze a pencil of symmetric surfaces to treat the case of degree six and
ten [Bar96|. The main advantage of these two cases is the fact that one can use
an even larger symmetry group than in the case of the five-gon-symmetry for the
quintic: Barth’s surfaces of degree 6 and 10 are invariant under the symmetry group
of the icosahedron in euclidean three-space R? which contains the dihedral group
Ds as a subgroup.

Let 7 := (1 ++/5). The six planes through the origin which are orthogonal
to the six diagonals of the regular icosahedron are given by the affine equation
P = (1222 — y?)(r%y? — 2%)(722?% — 2?). Consider the family

F,:=P—aQ?,

where Q := 22 + y2 + 22 — 1 is a sphere and a € C is a parameter still to be
determined (compare Rohn’s construction in section on page [[H).

For generic values of « # 0, the surface F, has 45 singularities. 30 of these come
from the intersection of P and @ as in Rohn’s construction, 15 are at infinity. Barth
then enforced a third orbit of 20 singularities on the ten lines joining two opposit
centers of faces of the icosahedron. Because of the symmetry he could restrict the
computations to one of these lines which led to a = (27 + 1). Altogether, he
obtained a surface

Bar65 = F%(QT-"-I)
with 30 + 15 + 20 = 65 nodes (see fig. E2).

A similar construction gave a surface Barsys of degree 10 with 345 nodes (see
also fig. £2). Its equation is as follows:

8(,{62 _ T4y2)(y2 o 7_422)(22 _ T4£E2)(.CE4 + y4 + 24 o 2($2y2 + y222 + ZQ,CE2)
(4.14) )
FB+57) (@ +y’ + 22 — 1)2(:p2 b2t (2 T)) =0.
Taking into account both surfaces we have the new lower bounds:

(4.15) 14, (6) > 65, 4, (10) > 345.

3\ o,

FI1GURE 4.2. Barth’s 65-nodal sextic and 345-nodal dectic.

As already mentioned in section on page B4 the existence of the 65-nodal
sextic was even more astonishing in view of Catanese’s and Ceresa’s claimed upper
bound for surfaces constructed using B. Segre’s 8-fold covering method. In fact,
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as one can see from the equations, Barth’s sextic is of this type, but exceeds this
bound. And indeed, by analyzing his construction carefully, Barth was able to trace
down the error in Catanese’s and Ceresa’s reasoning.

An interesting fact was computed by van Straten using deformation theory
and computer algebra (see next section): The Barth sextic is contained in a three-
parameter family of 65-nodal sextics. Furthermore, van Straten suggested to try
to construct this family explicitly using Gallarati’s construction (section EZH on
page 24). This was done by Pettersen in his Ph.D. thesis [Pet98].

Only very shortly after Barth’s discovery of the 65-nodal sextic, Jaffe and
Ruberman [JR97| were able to show p4,(6) < 65 using arguments similar to
Beauville’s (section B3 on page B3)) which finally showed:

(4.16) 114, (6) = 65.

After the appearance of this result in degree six, Endraff considered even sets of
nodes and their codes related to it in more generalality, see [End98, [End99]. But
this did not allow him to deduce new upper bounds for higher degrees.

4.6. Deformations of Nodal Hypersurfaces

Van Straten’s computation of the fact that Barth’s 65-nodal sextic varies in a
three-parameter family is an application of his deformation theory for nodal hyper-
surfaces in P" which he developped in a still unfinished paper [¥S94]. His theory is
based on the deformation theory for non-isolated singularities which he developped
in [dJIvS90] together with de Jong.

Van Straten considered the affine cone over the singular locus ¥ := ¥(X) of
the nodal hypersurface X which is given by a homogenous polynomial X € P :=
Clzg,...,x,] of degree d. This allowed him to apply the above deformation the-
ory of non-isolated singularities. The deformation functor Def(X,Y) consists of
deformations of the projective hypersurface X which induce analytically trivial de-
formations of the multigerm of X around . T'(X,Y) is the space of infinitesimal
deformations and 72(X,Y) the obstruction space.

We get for the infinitesimal embedded deformations 7! (X) = (P/J)a, where
J = Jac(X) := (g—ii, ce %) denotes the jacobian ideal of X. For the infinitesimal
deformations of the multigerm (X, ), we have: T'(O(x 5)) = @zesT (Ox z). As
3} is reduced in our case, van Straten could apply some vanishing results which make
a long exact sequence from [d.JvS90] collaps to:

0—TYX,%) = THX) = T"(Oxx)) — T*(X,X) — 0.

We denote the saturation of J w.r.t. m := (zo,...,2,) by I := J : m*. Van Straten
argued that the above sequence is isomorphic to the degree d part of the sequence
of graded P-modules:

0— H2(P/J)— P/J— P/I — H.(P/J)— 0.
This immediately yields:

dim TY(X, %) — dim T*(X, ) = dim(P/J)a — Y _ 7(X, x)

reEX

(4.17)
- (n 21_ d) — (n 4 1)* — #(nodes(X)).
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As HQ(P/J) =1/J, we get from the above exact sequences:
(4.18) T(X,%) = (I/J)a.

We can thus compute dim 7 (X, Y) using computer algebra and — via @I7) —
also dim 7%(X, ¥) which represents the number of independent conditions imposed
on a polynomial of degree d to pass through the nodes X.

As an example, let us consider the case of nodal sextics fg. It is known that
#(nodes(fs)) < 65 as we have seen in the previous section. As dim T?(fs,¥) > 0,
we obtain: dim 7T (fs,%) > 68 — 65 = 3. Indeed, using SINGULAR we can compute
via @IR) that dim 7' (Bargs,X) = 3 and thus dim 7?(Bargs,>) = 0 for Barth’s
65-nodal sextic Bargs (section on page Bl).

Let us mention some other immediate consequences of the linear relation (E17)
between dim 7 (X, ¥) and dim 7%(X, X):

COROLLARY 4.1. With the notations above, we have:
(1) If there exists a rigid nodal septic f; in P (i.e. dim T (f7,3(f7)) = 0)
then it has exactly 104 nodes and diim T?(f7,3(f7)) =
(2) If we have dim T?(f4,2(f4)) < ¢ for some nodal hypersurface f; of degree
d in P™ for some c € Ny then

#(nodes(fq)) < dim(P/J)qg + ¢ = <n Jdr d) —(n+1)?+c

(3) In particular, the number of nodes of an unobstructed nodal hypersurface
fa of degree d in P™ is bounded by:

#(nodes(f)) < (n ZlL d> —(n+1)2

In chapter [[0 on page MZT], we list dim T (fq, X(f4)) and dim T2(fq, ¥(fa)) for
many nodal hypersurfaces f; of degree d in P"”. From these computations, we
can observe many interesting things. E.g., the 168-nodal octic presented in the
following section is the only known rigid octic although the restriction from the
corollary allows the existence of 149-nodal rigid octics. Why?

If dim 7?(X, X) = 0 for some nodal hypersurface X then any local deformation
can be globalized to X. Thus, the existence of a nodal hypersurface X implies the
existence of hypersurfaces with any non-negative number < #(nodes(X)) of nodes.

4.7. Endrafy’s 168-nodal Octics

Barth’s construction of the 65-nodal sextic and the 345-nodal dectic showed that
Rohn’s and B. Segre’s constructions were even more powerful than the geometers
had thought before. So, Barth’s Ph.D. student Endrafl considered surfaces of degree
8 which arise in the same way. The main result of his thesis [End97, [End96| was
the construction of on octic with 168 nodes.

He started with a Dg-invariant 9-parameter family F' := P — @ of surfaces of
degree 8, where

P = (cos(%)qusm( )y w)
(4.19) - i(xQ w)(y? — w?) ((z +y)? — 20?) ((z - y)? - 20?),
Q = a(@®+y*? + (22 + y?) (b2 + czw + dw?)
+ezt + 23w + g22w? + haw® + w?.
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FIGURE 4.3. One of the two 168-nodal Endrafl Octics.

For a generic choice of the parameters a,b,...,i € C, this has (}) -4 = 112 nodes
(compare Rohn’s construction, section [[3)). For the analysis of the family, Endraff
could restrict to two planes because of the symmetry of the construction. After
a careful analysis of the curves in these planes, he finally found the parameters
a = 41 +V2),b=82+V2),c=0,d=22+7V2), e=—16, f = 0,
g=28(1—-2v2),h=0,i=—(1412/2) which lead to on octic Endr;es with 168
nodes:

(4.20) [, (8) > 168.

In fact, by replacing every v/2 by —v/2 Endraf got another 168-nodal octic Endr] g
which is not projectively isomorphic to the first one.

Van Straten computed, again using deformation theory (section ELH]), that this
octic is rigid. In fact, this is still the only rigid nodal octic and also the rigid nodal
surface of the smallest degree known up to now. Van Straten also found an octic
with many nodes within the above family; his example has 165 nodes.

4.8. Yang’s List of Rational Double Points on Quartics

The classification of all cubic surfaces with respect to the singularities occur-
ring on them was already found in the 19" century (see section [CTlon page [CJ and
[BWT9] for a modern treatment). Although the greatest number of singularities on
a quartic surface was also already determined at that time by Kummer, the classifi-
cation of all quartic surfaces with respect to their singularities was only completed
in 1997 by Yang [Yan97|.

In a series of papers in the 1980’s, Urabe had started to try to classify all
quartic surfaces in P3. He had succeeded in the case of non-normal quartic surfaces
[Ura86al. Urabe had also performed the major steps for quartic surfaces with at
least one singularity which is not a rational double point, see [Ura85), [Ura86b),
Deg90]. For the only remaining case of quartics with only rational double points,
Urabe had managed to reduce the problem to a purely lattice-theoretic problem
[Ura87, [Ura90].

Using Urabe’s results together with some K3 lattice theory due to Nikulin
[Nik80], Yang was finally able to determine all possible combinations of rational
double points on a quartic surfaces mainly by applying Nikulin’s method system-
atically using a computer [Yan97|. This completed the classification of all quartic
surfaces with respect to the singularities occurring on them more than one-hundred
years after the same had been done for cubic surfaces.
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To give some examples, the result shows that x5 (4) = 8, i.e. the maximum
number of cusps on a quartic is eight. x% (4) < 8 already follows from Varchenko’s
bound, but to our knowledge, the other inequality H,S42 (4) > 8 had not been known
previously. Shortly afterwards, Barth obtained the same result by another method
[Bar00b| — he also gave explicit equations for 8-cuspidal quartics in P3.

Another interesting extremal case is the highest A;-singularity that can occur
on a quartic. Either from Varchenko’s spectral bound or via Nikulin’s K3 lattice
theory it follows that there cannot be such a singularity for j > 19. From Nikulin’s
results, one can show in an abstract way that a quartic with an A9 exists (e.g., by
looking at Yang’s list). But it is even possible to write down an explicit formula.
This was already done in 1982 by Kato and Naruki [KIN82], basically using explicit
methods similar to those which had allowed Schléfli to construct a cubic surface
with an As-singularity which we mentioned at the end of section [LT] together
with results of [BWT79]:

(4.21)  16(z> +9°) + 3222° — 16y° + 162" — 32y2° 4 8(22° — 2zy + 5y°)2°
+8(22% — 52y — 6xy® — Ty®)z 4 202 + 4423y + 652°y* + 402y” + 41y* = 0.

4.9. Sarti’s 600-nodal Dodectic

The main result of Sarti’s thesis (she is another Ph.D. student of Barth) was
the construction of a surface of degree 12 with 600 nodes, see [Sar01]. This surface
is also invariant under a large symmetry group, namely the reflection group of the
regular four-dimensional 600-cell. In fact, Goryunov had already announced the
existence of a 600-nodal surface invariant under this group in 1996. But he had not
been able to give explicit equations because the equations of the invariant Sis of
degree 12 had not been known at that time.

This and the other invariants of the group of the 600-cell were found by Sarti
in her Ph.D. thesis. We refer to [Sar01l, p. 438] for the very lengthy equation of
S12. Given this, she studied the pencil

Saia(N) @ Sia(z,y, z,w) + Mx? +y? + 22 + w?)°

and found the parameters A € C, s.t. Saj2(\) admits singularities. It turned out
that Saj2(A) has orbits of nodes of lengths 300, 600, 360, 60 for A = —25, — 2%,
f%, 0, respectively and no other singularities. Thus, Sa;»(—2%) is a surface in P?

243
with 600 nodes, see fig. 4] on the next page:
(4.22) 14, (12) > 600.

In an unpublished preprint, Stagnaro [Sta01] constructed a surface of degree

12 with 584 nodes only very shortly before the publication of Sarti’s 600-nodal

example. Stagnaro’s construction was therefore never published.
Until this point, the following was known on u(d):

d| b 6 71819 101112

w(d)(pa, (d)) < 31|68 (65)|104|174|246|360|480|645| ~

<
pa,(d) > 131 65 93 |168|216|345|425|600 |~
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FIGURE 4.4. The 600-nodal Sarti Dodectic.

4.10. Surfaces in P? with Triple Points

We already mentioned in section B3 on page B2 that the maximum number
of ordinary triple points on a quintic in IP? was already shown to be 5 by Gallarati
[Gal52b]. But for higher degree not much was known until 2000. In particular, for
the next smallest degree, six, it was unknown if there existed a sextic with 11 triple
points.

Recall that we denote by us(d) the maximum number of ordinary triple points
on a surface of degree d in P?. 13(6) < 11 can easily be computed using Varchenko’s
bound. The authors of [EPS03| also found another bound, the so-called polar
bound which is bad for high degree d, but for d = 6 it gives p3(6) < 10. This
polar bound is based on the fact that the position of the triple points of a surface
in P? cannot be too special. In fact, the authors of [EPS03| showed that if F}; is
a surface of degree d with many triple points and V; is another surface of degree
0 then Vy cannot contain more than %6d(d — 1) of the triple points of F,, counted
with multiplicities. As they were also able to show the existence of a sextic with
10 triple points, they could conclude that the maximum number of triple points on
such a surface was known:

p3(6) = 10.
The authors were not able to classify all sextics with 10 triple points; this classifi-
cation was completed by one of them in [Ste03].

For degree d > 8, the best known upper bound for p3(d) is Wahl’s generaliza-
tion [Wah94] of Miyaoka’s bound (section B0 on page EQl) which the authors of
[EPS03] also computed:

2
ps(d) < ﬁd(d —1)2, d>T.

For d = 7, Varchenko’s bound is still better and computes to 17. The authors were
not able to reach this bound, but they gave a one-parameter family of septics with
16 triple points, see fig. on the following page.

In a recent article [Sta04], Stagnaro used again a variant of B. Segre’s second
construction (section L)) to get a surface of degree 9 with 39 triple points (upper
bound: 42).

4.11. Barth’s Surfaces with many Cusps

After having studied surfaces with many nodes in the early 1990’s, Barth started
to look at surfaces with many cusps (i.e. Ag-singularities) in the late 1990’s. His
aim was not only to find lower bounds for the maximum number of cusps, but also
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FIGURE 4.5. A Septic with 16 ordinary triple points.

to describe the codes connected to them: Similar to the code over IF5 associated to
an even set of nodes, one can construct a code over F3 to a three-divisible set of
cusps.

Barth showed in [Bar00b] that a quartic in P? cannot contain more than 8
cusps and he also gave explicit examples which proved the existence . As already
mentioned, this also follows in an abstract way from Yang’s computations, see
section on page Barth’s 8-cuspidal quartics were constructed as projections
of 9-cuspidal sextic surfaces in P* from one of their nine cusps. The one-parameter
family Bary(k), k # +1, of quartics with 8 cusps is given by:

(14 k) zda? + 2k(1 — kD) xoz1xoxs — (1 — k)32323

(4.23) +(1— k%) (zo + 21 + 2 + 3) ((1 — k)zozs(xo +x1) — (1 + k)xozi(x2 + 963))

One of these quartics is shown in fig. EL6l

FIGURE 4.6. Barth’s quartic with eight cusps for k£ = 2.

In [Bar00al, Barth constructed another surface with many cusps: a quintic
which is nicely connected to the Clebsch Diagonal Cubic (equation (LH)). Similar to
this surface, it is X5-symmetric and given by a hyperplane section of a hypersurface
in P*:

(4.24) Baris:  5s9s3 —12s5 =0, s1 =0,

where s, := Z?:o xf Barjs has As-singularities at the 15 points in the Y5-orbit
of (1:1:—1:—1:0) which shows: p4,(5) > 15. But this surface has many other
interesting geometrical properties. E.g., its intersection with the Clebsch Diagonal
Surface Cles consists exactly of 15 lines joining the 15 singularities in pairs, see
fig. B on the next page.
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FIGURE 4.7. Barth’s quintic with 15 cusps and the same surface
together with the Clebsch Diagonal Cubic.

For further work on cuspidal surfaces of low degree and their codes, we refer to

[Bar98, Tan03, BROT, [BR04] . For a short overview on the results on curves,

see section on page

4.12. Patchworking Singular Varieties

A topic that we did not touch so far for d > 5 is the general question which
combinations of possibly different types of singularities can occur on a hypersurface
of degree d in PP".

One of the first results in this direction is contained in Greuel’s, Lossen’s and
Shustin’s joint article [GLS98|. They prove the existence of an a > 0, s.t. a
plane curve with prescribed singularities of topological types Si,...,Sk exists if
w(S1) + -+ + u(Sk) < ad®. The coefficient o which occurred in this sufficient
criterion was later improved by one of the authors [.os99).

Most known results on the existence of hypersurfaces in higher dimensions
with possibly different prescribed topological types are mainly based on patch-
working theorems by Shustin [Shu98, [Shu00|. Some works using these methods
are [Wes03, SW04]. Notice that these results are the best known ones in this
generality, but when restricting to hypersurfaces with only one particular type of
singularity then the other constructions presented in this survey give more singu-
larities.

4.13. Hypersurfaces with high A;-Singularities (j > d)

Most constructions for hypersurfaces with many higher singularities only work
for degree d large enough. Most asymptotic behaviours considered in the previous
sections were of the type: fix a type of singularity and ask how many of them can
occur on hypersurfaces of degree d for d — oo. It is also natural to ask the other
question: Which singularities can occur on a hypersurface in P" of a fixed degree
d? As already mentioned, this has been answered completely for d = 3 (section [LTI)
and d = 4 (section EEY). To our knowledge, not much is known for degree d > 5.

In this section we want to give those few constructions known to us which give
singularities f with high Milnor numbers u(f), i.e., u(f) > d. As we could not find
any reference in the literature to the corresponding upper bounds we also compute
them here.

One Single Isolated Singularity. Consider the polynomials
(4.25) fea(zy, . ooyx) = (2 — 2D+ 4 (2 — 2 ) 4 sal?
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dlals5]6] 7] 8 9101112\
jVara, (d), j > 2d—1 |19 | 44 | 85 | 146 | 231 | 344 | 489 | 670 891‘

TABLE 4.1. Varchenko’s upper bound for the maximum number
of Aj-singularities on a surface in P? of degree d as a function of
j for fixed d, 7 > 2d — 1. They are all of the form Odjfl, where

04 = $d(2d* + 1) are the so-called octahedral numbers.

of degree l-k with s € C generic. Then it is easy to show that the hypersurface f 2
in P has an Ag;»_1-singularity at the origin. This is a well-known trick variants
of which also exist for D;-singularities (see e.g., [Wes03, p. 350]).

We already remarked that a quartic in P? with an A;g-singularity exists, and
that this is the highest possible Aj-singularity according to Varchenko’s upper
bound (see section EL8 on Yang’s list). Varchenko’s bound is also exact for d = 3:
the highest Aj-singularity is an As-singularity in this case. So we may ask: Is
Varchenko’s bound exact for the maximum index j s.t. there exists an A;-singularity
on a surface of fixed degree d?

Globalizing the Equation. It is easy to globalize the local trick from the
preceding section to to get surfaces with few Aj-singularities (i.e., j > d) in P3. Of
course, there are natural generalizations to higher dimensions and several variants
which produce other numbers and types of singularities:

Let k,1 € IN, k > [. The surfaces

(4.26) G = ((yl —1)— (Q?k _ 1))2 + (z — (yl _ 1)('_%J))2 + 2%k

of degree d = 2k have k-l singularities of type A#—r

Interpretation of Varchenko’s Bound Var,,(d) as Octahedral Num-
bers if j > 2d — 1. In the case j > d Varchenko’s bound (section B) is usually
better than Miyaoka’s (section BI0). For fixed d, these upper bounds cannot be
described by a polynomial, but by a rational function. We could not find a refer-
ence of Varchenko’s bound for the number of A;-singularities for fixed degree in the
literature. So, let us compute it here using the concrete expression ([BI9) which we
gave on page B It turns out that equation (BI9) simplifies drastically if we reduce
to the case j > 2d — 1. Indeed, if we write d = k(j + 1) + 1) as on page B1 then
k=0 and d = [. In this way, (BI9) reduces after some easy computations to:

2d

1
(4:27) Vara, (d) = 5= (2-4a)C+ (a-1)C? - C*) + (@ 1), if > 2d -1,
J J

i+ J+1
previous formula thus collapses to:

where C' = B%J But C = {MJ - {2 —LdJ —92d—1 ifj>2d— 1. The

1
(4.28) Var 4, (d) = 3—j~((d —1)(2(d-1)%+1)), ifj>2d—1.
The first values of this bound are listed in table EE11 When entering the numbers
j-Var,(d) in the Sloane’s on-line encyclopedia of integer sequences [SIo03, id:
A005900] we learn that these are the so-called loctahedral numbers. These numbers


http://www.research.att.com/projects/OEIS?Anum=A005900
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are a three-dimensional variant of square numbers sq; := i* (see fig. ER): just fill
up the octahedron by layers of squares (see fig. LH). This computes to:

d d—1
1 2
(4.29) odzzgggsqi#fgggsqi::gd(2d +1).
XXX
XX XXX
(X3 XX XXX
® (X3 XX XXX

[N~}

sq1 =1 sqa = 2 sq3 = 3° 5q1 =4

FIGURE 4.8. The square numbers sq; = i°.

-3
@ 3 -
01 =1 0o=14+4+1=6 03=14+44+94+4+4+1=19

FIGURE 4.9. The octahedral numbers o4 = Zzzl k* + ZZ;} k2.

Do surfaces of degree d > 5 with an A,, ,-singularity exist?









Figure on the preceding pages: A 99-nodal septic, located within a four-parameter
family of 63-nodal surfaces using the geometry of prime field experiments. See
[Lab03al for more images and movies of algebraic surfaces.
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New Constructions and Algorithms
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Introduction

We give new results related to two types of constructions: Chmutov’s con-
struction of nodal surfaces given by polynomials in separated variables (see sec-
tion BTl on page EH) and dihedral-symmetric constructions based on Rohn’s idea
(see section [ on page [[H).

On Variants of Chmutov’s Constructions. Our first new result (chap-

ter @ on page B7) is a variant of Chmutov’s construction which gives many A;-

singularities instead of nodes. Our proof of the existence of the hypersurfaces with

many Aj-singularities is based on the theory of dessins d’enfants. In most cases,
our construction leads to new lower bounds:

S T

Important ingredients of this construction are certain line arrangements in the

plane which have many critical points with the same non-zero critical value. Using a

relation to the theory of two-colorings of real line arrangements we are able to show

that these arrangements are asymptotically the best possible ones (chapter B on

page [[9).

Using Computers to Study Special Cases. For special cases of low degree,
it is usually possible to improve general results such as those presented in the two
chapters mentioned in the previous section. The most recent new lower bounds
for the maximum number of nodes on surfaces of a given degree were produced by
starting with some k-parameter family of such surfaces and then using geometrical
arguments to determine the parameters such that a new record was found.

But guessing such geometrical arguments requires a large amount of geometric
intuition. And it turned out that the cases of odd degree d = 7,9,11,... are quite
difficult to treat in that way. So, our idea was to find algorithms to locate inter-
esting examples within the families. We present two essentially different methods:
elimination and primary decomposition in characteristic zero (chapter [), or exper-
iments over prime fields and then lifting to characteristic zero (chapters B and [).
The latter allows us to construct a surface of degree 7 in P? with 99 nodes (chapter
B) which is the first case of odd degree greater than five which exceeds Chmutov’s
general lower bound:

i>2.

99 < u(7) < 104.

We then describe an algorithm which can be performed automatically by a
computer (chapter @). Our implementation as a SINGULAR library called SEARCH-
INFAMILIES.LIB reduces the construction of a 99-nodal septic to a 10-minute-long
computer algebra computation. Similarly, all records for smaller degrees d < 6 can
be reproduced. When applying the algorithm to the case d = 9 we obtain a nonic
with 226 nodes which is also a new lower bound:

226 < 11(9) < 246.

Our algorithm is very general so that it can certainly be applied to many other
concrete problems in algebraic geometry.



A quintic with 15 cusps which shows the idea of how to construct surfaces with
many Aj-singularities using Dessins d’Enfants.



CHAPTER 5

Dessins d’Enfants and Surfaces with Many
Aj-Singularities

The best known lower bounds for surfaces of large degree d with A;-singularities
are given by Chmutov’s construction (section ELT)). For higher Aj-singularities
the best known constructions are still given by a direct generalization of Rohn’s
construction (section [C3), pa,(d) > $d(d — 1)[%] For many degrees, one can
also use Gallarati’s already mentioned generalization of B. Segre’s construction
(section EZH) which is usually better than Rohn’s if it can be applied.

For singularities different from nodes, there exist only very few special con-
structions which exceed these general ones. The best known lower bounds in
particular cases of low degree are given by Barth, see section EETTF p4,(4) = 8,
15 < pa,(5) < 20. In this chapter (see also [Lab05b]) we describe a variant of
Chmutov’s construction which leads to the lower bound (corollary B4 on page [73)):

> 3it2 5
(5.1) pa;(d) 2 65G+ 1)
To our knowledge, this gives asymptotically the best known bounds for any j > 2.
The construction reaches more than ~ 75% of the theoretical upper bound (see
section BI0 on page E0) in all cases. For quintics in P3, we also get an example
with 15 cusps, so the gap of 5 more possible cusps remains.

Table BTl on the following page gives an overview of our results for low j, see
also corollaries b7 and We describe a generalization of our construction to
higher dimensions in section .8l on page [[Al This leads to new lower bounds even
in the case of nodal hypersurfaces.

5.1. Chmutov’s Idea

We start with some notation: A point zg € C is a critical point of multiplicity
j € IN of a polynomial g € Cl[z] in one variable if the first j derivatives of g vanish at
200 M (20) = --- = g¥)(29) = 0. The number g(z) is called the critical value of z.
A critical point of multiplicity j,j > 1, is called a degenerate critical point. Recall
from section on page that Chmutov used the following idea to construct
surfaces in P? with many nodes:

o Let Py(z,y) € C[z,y] be a polynomial of degree d with few different critical
values, all of which are non-degenerate. By a coordinate change, we may
assume that the two critical values which occur most often are 0 and —1.
We assume that they occur v(0) and v(—1) times, and that v(0) > v(—1).

o Let Ty(z) € R|z] be the Tchebychev polynomial of degree d with critical

values —1 and +1, where —1 occurs | 4] times and +1 occurs | 45| times.

67
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TABLE 5.1. Known upper and lower bounds for the maximum
number 114, (d) of singularities of type A;, j = 1,2,3,4, on a sur-
face of degree d in P3. For j > 2 and d > 5, the lower bounds
are attained by our examples or by Gallarati’s generalization of
B. Segre’s idea (section on page 24)).

e It is easy to see that the projective surface given by the affine equation
1
(5.2) Py(z,y) + g(Td(Z) +1)=0

has v(0) - 4] +v(-1) - |41] nodes.
Chmutov uses for Py(z,y) the folding polynomials Ff2 associated to the root system
A defined in (2. In the case of degree 5 the best polynomial for this purpose is a
regular fivegon R5(x,y) € Rz, y] with the critical value 1 at the origin and with the
critical value —1 at the other non-singular critical points. The construction above
then gives 30 nodes, see fig. Bl

Rs(z,y) T5(2) Rs(z,y) + 3(T5(2) + 1)

FIGURE 5.1. A variant of Givental’s and Chmutov’s construction:
A regular 5-gon Rs(z, y), the Tchebychev polynomial T5(z) and the
surface Rs(z,y) + 3(T5(z) + 1) with 10-2 4 5 - 2 = 30 nodes.

5.2. Adaption to Higher Singularities

To adapt Chmutov’s construction (B2) to higher singularities of type A;, we
replace the polynomials T,(z) by polynomials with degenerate critical points.

For the construction of a quintic surface with many cusps, we thus take again
the regular 5-gon Rs(z,y) € R[z,y] together with a polynomial T2(z) € R][z] of
degree 5 with the maximum number of critical points of multiplicity two. As the
derivative of such a polynomial has degree 4, the maximum number of such critical
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+1

> 7

FIGURE 5.2. The construction of a quintic with 15 cusps.

points is % = 2, see fig. The critical values of these two critical points have to be
different because a horizontal line through both critical points would intersect the
curve in six points counted with multiplicities. Similar to the situation for nodes in
(B2 the surface Rs(z,y) + 3(T2(z) + 1) has 10-1 4+ 5:1 = 15 singularities of type
As.

We take surfaces in separated variables defined by polynomials of the form:

(5.3) Chm(GY) := F}” + &Y,

where Fi'?(z,y) € Rlz,y] is the folding polynomial defined in (@Z) and where
G’(z) € C[#] is a polynomial of degree d with many critical points of multiplicity j
with critical values —1 and +1. E.g., for j = 1, the ordinary Tchebychev polyno-
mials G}(z) := Ty(z) yield Chmutov’s surfaces with many nodes. In the following
sections, we discuss two generalizations of the ordinary Tchebychev polynomials to
polynomials with critical points of higher multiplicity which give surfaces of degree
d with many Aj-singularities, j < d.

5.3. j-Belyi Polynomials via Dessins d’Enfants

The existence of polynomials in one variable with only two different critical
values with prescribed multiplicities of the critical points can be established using
ideas of Hurwitz [Hur91] based on Riemann’s Existence Theorem. The interest in
this subject was renewed by Grothendieck’s Esquisse d’un programme (see [SL97al,
SL.97b]). Nowadays, it is commonly known under the name of Dessins d’Enfants.
We will use the following proposition / definition which is basically taken from
[AZ98]:

PROPOSITION/DEFINITION 5.1.

(1) A tree (i.e. a graph without cycles) with a prescribed cyclic order of the
edges adjacent to each vertex is called a plane tree. A plane tree has a
natural bicoloring of the vertices (black/white). If we fiz the color of one
vertex, then this bicoloring is unique.

(2) A polynomial in one variable with not more than two different critical
values is called o Belyi polynomial.

(3) For a given Belyi polynomial p : C — C with critical values ¢c1 and ca, we
define the plane tree PT(p) associated to p to be the inverse image
p~1([c1,ca]) of the interval [c1,ca], where p~1(c1) are the black vertices,
and p~1(c2) are the white vertices of the tree (see fig. on the following
page).
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p(z)

TRAA

FIGURE 5.3. The ordinary Tchebychev polynomial 75 with two
critical points with critical value —1 and two with critical value
+1. The right picture shows its plane tree PT(T5). A vertex with
two adjacent edges corresponds to a critical point with multiplicity
1, a vertex with one adjacent edge corresponds to a non-critical
point.

(4) For any plane tree, there exists a Belyi polynomial whose critical points
have the multiplicities given by the number of edges adjacent to the vertices
minus one and vice verca.

We will need the following two trivial bounds concerning critical points:

LEMMA 5.2. Let d,j € IN. Let g € C[z] be a polynomial of degree d in one
variable with only isolated critical points. Then:

(1) The total number of different critical points of g of multiplicity j does not
exceed L%J
(2) The number of different critical points of g of multiplicity j with the same

critical value does not exceed L]%J O

We give a special name to polynomials reaching the first of these bounds:

DEFINITION 5.1. Let d,j € IN and let p be a Belyi polynomial of degree d. We
call p a j-Belyi polynomial if p has the mazimum possible number L%J of
critical points of multiplicity j.

EXAMPLE 5.1. The ordinary Tchebychev polynomials Tj(z) := Tu(z) are 1-
Belyi polynomials. TZ(z) in fig. LA on the page before is a 2-Belyi Polynomial.
O

A special type of j-Belyi polynomials are those of degree j + 1. We will join
several plane trees corresponding to such j-Belyi polynomials of degree j+1 to form
larger plane trees in the following sections:

DEFINITION 5.2. We call the plane tree corresponding to a j-Belyi polynomial
of degree j+ 1 a j-star. If the center of this tree is a black (resp. white) vertex we
call it a e- (Tesp. o-) centered j-star (see fig. on the facing page).

5.4. The Polynomials Tg (2)

A natural generalization of the ordinary Tchebychev polynomials to polynomi-
als G’(z) with degenerate critical points that can be used in the construction of
equation (B3)) on page B comes from the following intuitive idea: Take polynomi-
als which look similar to the ordinary Tchebychev polynomials (fig. E3), but which
have higher vanishing derivatives such that they are j-Belyi polynomials.
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+1

-1

T!, (2) =271 =1 for j=6.

FIGURE 5.4. The polynomial Tjj 1(2) with exactly one critical
point zy = 0 of multiplicity j and critical value —1 together with
the corresponding e-centered j-star.

EXAMPLE 5.2. A 3-Belyi polynomial of degree 13 has | 231 | = 4 critical points

of multiplicity 3. The polynomial Ty, has two critical points with critical value
—1 and two with critical value +1. The plane tree showing the existence of such a
polynomial consists of four connected 3-stars. To show the similarity to the ordinary
Tchebychev polynomials we draw them in fig. [3 as four bouquets of 1-stars attached
to the plane tree in fig. 3 on the preceding page. A straightforward SINGULAR
[GPS01]| script to compute the equation of TP5(2) can be found on the website
[Lab03al. m]

7—1 vertices

+1
- 1 4 7 10 13
7
TV

k bouquets

FIGURE 5.5. The bicolored plane tree PT(T7)) for the polynomial
Tg(z) for j =3,d =13, k := % = 4. Tt consists of k connected
j-stars. Here, we line them up to show the similarity to the or-
dinary Tchebychev polynomials in fig. on the facing page. See
[Lab03al for a SINGULAR [[GPS01] script to compute the equation
of T (2).

THEOREM/DEFINITION 5.3. Let d,j € IN with d > j. There exists a polynomial
T (z) of degree d with [} L%ﬂ critical points of multiplicity j with critical value

~1 and |3 L%JJ such critical points with critical value +1.

PROOF. The corresponding plane tree PT(TC{ ) can be defined as follows (com-
pare fig. BHl). For d = k- (j + 1), k € IN, we take k connected j-stars. Fixing
the center of the first j-star to be white, the plane tree has a unique bicoloring. If
d=1+k-(j+1) for some 1 <! < j, we attach another [-star to get a polynomial
of degree d. O

Although there is an explicit recursive construction of ordinary Tchebychev
polynomials and their generalizations to higher dimensions (the folding polynomials,
see [Wit88|), we do not know a similar explicit construction of the polynomials
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Tj(z) for j > 2. To our knowledge, they can only be computed for low degree d
until now, e.g. using Groebner Basis. When plugged into the construction (B3) on
page Bd the existence of the polynomials 77 immediately implies:

COROLLARY 5.4. Let d,j € IN with d > j. There exist surfaces
Chm(TJ) := Fi** + %(Tj +1)
of degree d with the following number of singularities of type A;:
(d—1)-[3[42]] + Ld(d — 3)-[ 1|42 ] ifd=0 mod3,
-1

(d—1)-[% L%H + 2(d(d—3)+2)-|3|%42]], otherwise. 0

id
3d ;

5.5. The Polynomials Mg(z)

The j-Belyi polynomials Tg (z) described in the previous section reach the first
bound of lemma on page [ The j-Belyi polynomials M (z) whose existence
will be shown in this section also achieve the second bound of this lemma. We start
with two examples:

EXAMPLE 5.3. The 2-Belyi polynomial T3 (z) is the ezample of the smallest
degree from the previous section that does not reach the second bound of lemmaliZ
The plane tree PT(MZ(2)) in fig. LA shows the existence of a 2-Belyi polynomial
of degree 9 that achieves this bound.

As in the case of the polynomials T7)(z), it is possible to compute the polynomials
Mg(z) explicitly for low j and d. For our case j = 2,d = 9 we denote by u the
unique critical point with critical value +1 and by bg, b1, bo the three critical points
with critical value —1. When requiring by = 0 (i.e., M2(0) = —1), M3(z) has the
derivative

oOM¢?
829 (2) = (2 —bo)? - (z = b1)? - 22 - (2 — u)?.
Using SINGULAR [GPS01], we find: u® = 18 and by and by are the two distinct
roots of 2> — 3uz + 3u? = 0. Notice that by,b; ¢ R even if we take u € R. a
(a) PT(M3) (b) PT(M§) (c) PT(Mf;)

FIGURE 5.6. To obtain PT(MZ) from the 2-star PT(M3) =
PT(T3), we attach two e-centered 2-stars to one of the o-vertices
(marked by the grey background). The corresponding polynomial
M§(2) has thus 3 critical points of multiplicity 2 with critical value
—1 (the 3 e-centered 2-stars) and 1 such point with critical value
+1 (the only o-centered 2-star). M7 has five and two, respectively.
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EXAMPLE 5.4. Ifd # k- (j+1) for some k € IN, the construction of a plane tree
corresponding to a polynomial reaching both bounds of lemma [EA is a little more
delicate than in the previous example. The cases PT (M%) and PT (M%) in fig. 27
illustrate this. |

(a) PT(Mp) (b) PT(M?,)

FIGURE 5.7. M3, and M%, have the same number of critical points
of multiplicity j. M%, has five ones with critical value —1 and only
one critical point with critical value +1. M7 has three critical
points with critical value —1 and two with critical value +1.

THEOREM/DEFINITION 5.5. Letd,j € IN with d > j. There exists a polynomial
Mfi(z) of degree d with J%J critical points of multiplicity j with critical value

—1 and Q%J — L%D such critical points with critical value +1.

ProoF. The existence of a corresponding plane tree PT' (M é) can be shown as
follows (compare fig. B8l on the preceding page). For d = j + 1 we define PT'(M le)
as a e-centered j-star. Ford = (j+1)+k-j-(j+ 1), k € N, we attach successively
sets of j e-centered j-stars as illustrated in figure B8l If d # (j+ 1)+ k- j-(j + 1)
for some k € IN the existence of plane trees PT (M, é) can be shown similarly (see

fig. B.1). O
The existence of the polynomials M gl(z) has two immediate consequences:
COROLLARY 5.6. The bounds in lemma 52 on page 70 are sharp. |

It is clear that the polynomials M g cannot have only real coefficients and only
real critical points for d large enough. So, the same holds for the singularities of
the surfaces of the following corollary:

COROLLARY 5.7. Let d,j € N with d > j. There exist surfaces
Chm(M3) := Fi** + M}

of degree d with the following number of singularities of type A;:

). {%JjL%d(d_g).Q%J _ L%J) if d=0 mod 3,
)- L%J + 1(d(d - 3) +2)- Q%J — L%D , otherwise. 0

d(d -1
d(d -1

N[= N

(d
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To get an idea of the quality of our best lower bounds given by our examples
Chm(M}) from corollary B on the preceding page we compare them with the
best known upper bounds: Varchenko’s spectral bound (section B on page BH)
and Miyaoka’s bound (section BI0 on page HO). It is well-known that the latter is
better for large d. Together with the previous corollary we get:

COROLLARY 5.8. Let j € IN. For large degree d, the quotient of the num-

ber of Aj-singularities on our surfaces Chm(Mg) and the best known upper bound
Miy 4, (d) is:
4, (Chm(M7))  (j+2)(3j +2)
Miy . () 1G + 12

This quotient is greater than % for all j > 1, the limit for j — oo is also %. a

5.6. Generalization to Higher Dimensions

It is possible to generalize the construction of surfaces with many A;-singularities
described in the previous sections to P, n > 4. It turns out that for n > 5, the
folding polynomials Fj‘z (z,y) are no longer the best choice: Even for nodal hyper-
surfaces, the folding polynomials Ff 2(z,y) lead to better lower bounds.

5.6.1. Nodal Hypersurfaces in P", n > 4. In section 1l on page B3 we
explained how Chmutov idea to use the folding polynomials Ffz (x,y) associated
to the root system A, can be generalized to obtain nodal hypersurfaces in higher
dimensions. We can improve the asymptotic behaviour of the lower bound slightly
by using a folding polynomial associated to another root system. Such polynomials
were described in [Wit88], and their critical points were studied in [Bre05| anal-
ogous to the case of Ay treated by Chmutov in [Chm92] (see also section EI]). It
turns out that the folding polynomials Ffz (x,y) associated to the root system Bs
are best suited for our purposes. They can be defined recursively as follows:

1 1 1
F? =1 FP2 = = FPr=? - —(a®—2y—4)—1
0 ) 1 4y7 2 49 2(1' Yy ) )
1 3 3
FBro— 3 — Zya? —2y—4)— =
3 Y yE -2y -4 -y,
(54)  EP =y (B ER) - (24007 -2y ) B - F2

These polynomials have exactly three different critical values: —1, 0, +1. The
numbers of critical points of FJ* are: (g) with critical value 0, L(dgl)J [4] with
critical value —1. The use of these polynomials improves the asymptotic behaviour
(for d large) of the best known lower bound for the maximum number of nodes only
slightly. This is given by Chmutov’s surfaces TChm} which are defined as a sum
of Tchebychev polynomials (see section on page BR). In fact, the coefficient of
the highest order term of the polynomial describing its number of nodes does not

change (see table on the next page). Nevertheless, we want to mention:

PROPOSITION 5.9. Let n >2, d > 3. Then: u(Chm"(F?)) > pu(TChm}).

It is not true that the folding polynomials Fj‘z and Ff * are the best possible
choices in all cases. Indeed, for d = 5, a regular five-gon leads to more nodes. For
d = 3,4 there are better constructions for nodal hypersurfaces in P known. In
fact, Kalker (section BTT]) already noticed that Varchenko’s upper bound is exact
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nl3lalsle6|l 7] 8] 910

1 A ~ 5 7 7 19 35 49 79 25

7 u(Chm"™(F2))~ | 15 | 75 | 21 | 72 | 141 | 216 | 132 | T

- u(Chm™(F2)) ~ -u(TChmf) ~ | & | & | 2 |35 | 22 | 22| 8 | &

TABLE 5.2. The asymptotic behaviour of the number of nodes
on variants of Chmutov’s hypersurfaces in P™. As Chmutov al-
ready realized in [Chm92], the Chm™(F;"*) are only better for
n = 3,4. For n > 5, the best lower bounds are given by our variant
Chm"(F*) which improves Chmutov’s oldest examples TChm/}
slightly.

for d = 3. Goryunov rediscovered the same cubics by another method and also
found quartics with many nodes in P™ (see section E4).

5.6.2. Hypersurfaces in P" with A;-Singularities, j > 2,n > 4. Similar
to the case of surfaces which we discussed in the preceding sections, we can adapt
the equations for the nodal hypersurfaces to get hypersurfaces ChmJ’"(F;9 2) (or
Chm?"(F3*?), TChm’") with many A;-singularities:

n—3
=] j
; Ta(xp—2) + M (x,-1), neven
5.5)  Chm?"(FBP2):N" FB2(gy woiq) = 40" d\Tn-1),
(68) O (ER) 1 (e ren) =\ e, )5 1), nodd

This leads to the asymptotic behaviour given in table

n 3 4 5 6 7 8

Lo, @z ] 2 » o oL o

s Az 5 o 506 i

LDz & P % 0 6 i
don(Omt () ~ | s | iy | i | e | A | e
- (Chm? " () = | 2855 | G855 | 550 | ™G50 | 1050 | e0eD

TABLE 5.3. The asymptotic behaviour of the number of Aj-
singularities on a hypersurface of degree d in P™. ChmJ’"(Ffz)
is better than Chmj’"(FfQ) for n > 6.

Notice that we usually get fewer singularities if we add a sign (—1)? in the sum
in contrast to equation (7)) where the alternating sign is often better because the
folding polynomial F;b has other critical values than FdB 2.

Of course, for small d,n, j, it is often easy to write down better lower bounds.
E.g., if nis even and d is small, it is often better to replace Ty(zy—2)+ M7 (xn—1) by
a plane curve with the maximum known number of cusps. For some specific values
of d, j > 2, n > 4 there are even better lower bounds known. E.g., we already
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mentioned in section that Lefschetz constructed a cubic hypersurface in P*
with 5 cusps which is the maximum possible number.

For n = 2, our construction presented in subsection B.6.2 on the page before only
leads to plane curves of degree d with = i~d2 cusps whereas the generalization
of B. Segre’s construction (equation ([ZI2) gives ~ 3%~d2 such singularities when
starting with a smooth conic.






Breske’s 216-nodal real variant of Chmutov’s nonic.



CHAPTER 6

Real Line Arrangements and Surfaces with Many
Real Nodes

We make a short excursus to the world of real algebraic geometry (see also
[BLvS]). More precisely, we consider the relationship between the maximum possi-
ble number p 4, (d) of nodes on a surface of degree d and the maximum possible num-
ber p% (d) of real nodes on a real surface in P3(R). Obviously, 1% (d) < pa, (d),
but do we even have %} (d) = 14, (d)? In other words: Can the maximum number
of nodes be achieved with real surfaces with real singularities?

The previous question arises naturally because all results in low degree d < 12
suggest that it could be true (see chapter Bl on page HH and table [E1]). In contrast
to this, until very recently, the best known asymptotic lower bound, p14, (d) £ 1—52d3,
was only reached by Chmutov’s construction (section Bl on page BAl) which yields
singularities with non-real coordinates. But during the writing of Breske’s diploma
thesis [Bre05] under the direction of van Straten it turned out that the folding
polynomials used by Chmutov can be adapted to have real critical points. Of
course, these give rise to variants of Chmutov’s surfaces with only real nodes. In
this chapter, we briefly explain how this can be done. See table 51l on the following
page for the lower bounds for w4, (d) resulting from this. In the real case we can
distinguish between two types of A;-singularities, conical nodes (z* + y?> — 22 = 0)
and solitary points (z% + y? + 22 = 0): Breske’s construction produces only conical
nodes.

Notice that in general there are no better real upper bounds for ul}}l (d) known
than the well-known complex ones of Miyaoka (section B-I0) and Varchenko (section
B7). But for solitary points there exist better bounds via the relation to the zerot!
Betti number (see e.g., [Kha96]). E.g., Rohn showed in 1913 that a real quartic
surface in P3(RR) cannot have more than 10 solitary points although it can have 16
conical nodes. We show a real upper bound of ~ %dQ for the maximum number of
critical points on two levels of real simple line arrangements consisting of d lines. In
[Chm95], Chmutov conjectured this to be the maximum number for all complex
plane curves of degree d. He also noticed [Chm92] that such a bound directly
implies an upper bound for the number of real nodes of certain surfaces. Our upper
bound shows that Breske’s folding polynomials are asymptotically the best possible
real line arrangements for this purpose.

6.1. Variants of Chmutov’s Surfaces with Many Real Nodes

In this section, we briefly describe how Breske adapted Chmutov’s construction
to get surfaces with many real nodes. Recall that the Ffz (x,y) have critical points
with only three different critical values: 0, —1, and 8 (see section on page HH).
Thus, the surface Chmflxz (x,y,2) is singular exactly at those points at which the

79
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d{1]2|3|4|5|6] 78| 9 |10|11]12]13 d
B (d) < |0|1[4]16]31(65(104|174| 246 |360 | 480 | 645|832 | 2d(d — 1)?
pB (d)>]0|1[4|16|31|65| 99 | 168|216 |345|425|600|732| ~ Zd*

TABLE 6.1. Except for d = 9, the currently known bounds for the
maximum number jia, (d) (resp. % (d)) of nodes on a surface of
degree d in P?(C) (resp. P3(R)) are equal. The bold numbers indi-
cate in which cases Breske’s variants of Chmutov’s surfaces improve
the previously known lower bound for p/% (d).

critical values of F;*?(z,y) and 1(T4(2) + 1) sum up to zero (i.e., either both are 0
or the first is —1 and the second is +1).

Notice that the plane curve defined by Fj‘z (z,y) consists in fact of d lines. But
these are not real lines and the critical points of this folding polynomial also have
non-real coordinates. It is natural to ask whether there is a real line arrangement
which leads to the same number of critical points. In her Diploma thesis, Breske
computed the critical points of the other folding polynomials. Among these, there
are the following examples which are the real line arrangements we have been looking
for (see [Bre05, p. 87-89)):

We define the real folding polynomial Fﬁzd(:z:, y) € R|x,y] associated to the root

system Aj as F]lfzd(:z:, y) = Ffz (x + iy, x — iy), where i is the imaginary number.
It is easy to see that the Fﬁfi(z, y) have indeed real coefficients. The numbers of

critical points are the same as those of Ffz (x,y); but now they have real coordinates
as the following lemma shows:

LEMMA 6.1 (see [Bre05]). The real folding polynomial F]fji(x,y) associated to

the root system As has (g) real critical points with critical value 0 and

1 1 2
(6.1) §d2 —d, ifd=0 mod 3, §d2 —d+ 3 otherwise

real critical points with critical value —1. The other critical points also have real
coordinates and have critical value 8.

PrOOF. We proceed similar to the case discussed by Chmutov, see [Bre05, p.
87-95] for details. To calculate the critical points of the real folding polynomial
F]f{‘fi, we use the map h': R? — R?, defined by
(u,v) — (cos(2m(u-+v))+cos(2mu)+cos(2mv), sin(2m(u+v))—sin(2ru)—sin(27v)).
This is in fact just the real and imaginary part of the first component of the gener-
alized cosine h considered by Withers [Wit88] and Chmutov [Chm92]. Tt is easy

to see that h! is a coordinate change if u —v > 0, u +2v > 0, and 2u +v < 1. Tt
transforms the polynomial F]in into the function G4? : R? — R?, defined by

G2 (u,v) == Fg%(h' (u,v)) = 2cos(2mdu) + 2 cos(2mdv) + 2 cos(2md(u + v)) + 2.

The calculation of the critical points of Gﬁz is exactly the same as the one performed
in [Chm92]. As the function G2 has (d — 1)? distinct real critical points in the
region defined by u — v > 0, u+ 2v > 0, and 2u + v < 1, the images of these points
under the map h! are all the critical points of the real folding polynomial Fﬂ’izd of
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degree d. In contrast to Chmutov, we here get real critical points because h' is a
map from R? into itself. O

None of the other root systems yield more critical points on two levels. But
as mentioned in section .6l on page [[4] the real folding polynomials associated to
the root system Bj give hypersurfaces in P", n > 5, which improve the previously
known lower bounds for the maximum number of nodes in higher dimensions slightly
(|Bred5] gives a detailed discussion of all these folding polynomials and their critical
points).

FIGURE 6.1. For degree d = 9 we show the Tchebychev polynomial
Ty(z), the real folding polynomial Fﬁ% (z,y) associated to the root

system As, and the surface Chmﬁfg(ac, y,z). The bounded regions
in which Fﬁg(:n, y) takes negative values are marked in black.

The lemma immediately gives the following variant of Chmutov’s surfaces:
THEOREM 6.2 (see [Bre05]). Let d € IN. The real projective surface of degree

d defined by

(6.2) Chm]’éfd(ac,y,z) = Fﬁi(m,y) + %(Td(z) +1) € Rlz,y, 2]

has the following number of real nodes:

=+ (5d3 — 13d* + 12d), if d=0 mod 6,

5 (5d® —13d®> +16d—8), ifd=2,4 mod 6,

- (5d® — 14d*> +13d —4), ifd=1,5 mod 6,

L (5d% — 14d*> + 9d) , if d=3 mod 6.

(6.3)

These numbers are the same as the numbers of complex nodes of Chmutov’s
surfaces Chm??(z,y, z). To our knowledge, the result gives new lower bounds for
the maximum number zi} (d) of real singularities on a surface of degree d in P3(R)
for d = 9,11 and d > 13, see table Bl on the preceding page. Notice that all best
known lower bounds for ,u]ljl (d) are attained by surfaces with only conical nodes
which is not astonishing in view of the upper bounds for solitary points mentioned
in the introduction.

6.2. On Two-Colorings of Real Simple Line Arrangements

The real folding polynomials F]féil(x, y) used in the previous section are in fact

real simple (straight) line arrangements in R?, i.e., lines no three of which meet in
a point. Such arrangements can be 2-colored in a natural way (see fig. E1l): We
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label in black those connected components (cells) of R? \ {F]fifi(z, y) = 0} in which

F]fgfd(x, y) takes negative values, the others in white. The bounded black regions in
fig. contain exactly one critical point with critical value —1 each.

Harborth has shown in [Har81] that the maximum number M (d) of black cells
in such real simple line arrangements of d lines satisfies:

1 1
Ld? +1d, dodd,

192 1
3d° + 5d, deven.

(6.4) My(d) < {

d of these cells are unbounded. This is a purely combinatorial result which is
strongly related to the problem of determining the maximum number of triangles
in such arrangements which has a long and rich history (see [GOO04|). Notice
that this bound is better than the one obtained by Kharlamov using Hodge theory
[Kha05]. It is known that the bound (63) is exact for infinitely many values of d.
The real folding polynomials F]éfd(x, y) almost achieve this bound. Moreover, these
arrangements have the very special property that all critical points with a negative
(resp. positive) critical value have the same critical value —1 (resp. +8).

To translate the upper bound on the number of black cells into an upper bound
on critical points we use the following lemma:

LEMMA 6.3 (see Lemme 10, 11 in [ORO03]). Let f be a real simple line arrange-
ment consisting of d > 3 lines. f has ezactly (dgl) bounded open cells each of which
contains eractly one critical point. All the critical points of f are non-degenerate.

It is easy to prove the lemma, e.g. by counting the number of bounded cells
and by observing that each such cell contains at least one critical point. Comparing
this with the number (d — 1)2 — () = (“,') of all non-zero critical points gives the
result. Now we can show that our real line arrangements are asymptotically the

best possible ones for constructing surfaces with many singularities:

THEOREM 6.4. The mazimum number of critical points with the same non-zero
critical value 0 £ v € R of a real simple line arrangement is bounded by M (d) — d,
where d is the number of lines.  In particular, the mazimum number of critical
points on two levels of such an arrangement does not exceed (g) + My(d)—d = %dQ.

PRrOOF. In view of the upper bound (64 for the maximum number M;(d) of
black cells of a real simple line arrangement we only have to verify that any bounded
cell contains only one critical point. But this follows from the preceding lemma. O

Chmutov showed a much more general result ([Chm84], see [Chm95| for the
case of non-degenerate critical points): For a plane curve of degree d the maximum
number of critical points on two levels does not exceed ~ %dQ. In [Chm95|, he
conjectured ~ %dQ to be the actual maximum which is attained by the complex
line arrangements Ff2 (x,y) he used for his construction (and also by the real line
arrangements F]ﬁfi(z, y)). Thus, our theorem [64] is the verification of Chmutov’s
conjecture in the particular case of real simple line arrangements. As Chmutov
remarked in [Chm92]|, such an upper bound immediately implies an upper bound
on the maximum number of nodes on a surface in separated variables:

COROLLARY 6.5. A surface of the form p(x,y) + q(z) = 0 cannot have more
than ~ 3d*-3d + $d*3d = 5d® nodes if p(x,y) is a real simple line arrangement.
This number is attained by the surfaces Chmlﬁfd(x,y, z) defined in theorem [E4
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Comparing this number with the upper bound ~ d* on the zero'™™ Betti
number (see e.g., [Kha96l, p. 533]) one is tempted to ask if it is possible to deform
our singular surfaces to get examples with many real connected components. But
our surfaces Chm]‘gfd(x,y, z) only contain A] singularities which locally look like
a cone (12 + y? — 22 = 0). When removing the singularities from the zero-set of
the surface every connected component contains at least three of the singularities.

Thus, the zero" Betti number of a small deformation of our surfaces are not
larger than ~ z5>d? which is far below the number ~ 12d® resulting from Bihan’s
construction [Bih03] which is based on Viro’s patchworking method.

Conversely, we may ask if it is always possible to move the lines of a simple real
line arrangement in such a way that all critical points which have a critical value
of the same sign can be chosen to have the same critical value. If this were true
then it would be possible to improve our lower bound for the maximum number
u]%l (d) of real nodes on a real surface of degree d slightly because it is known that
the upper bounds for the maximum number M;(d) of black cells are in fact exact
for infinitely many d. E.g., in the already cited article [Har81], Harborth gave an
explicit arrangement of 13 straight lines which has %-132 + %-13 — 13 = 47 bounded
black regions. When regarding this arrangement as a polynomial of degree d = 13 it
has exactly one critical point with a negative critical value within each of the black
regions. Such a polynomial would lead to a surface with (%) [15-1] +47. [ 1321 | =
750 > 732 nodes. Similarly, such a surface of degree 9 would have 228 > 216 nodes.
In the case of degree 7 the construction would only yield 96 nodes which is less than
the number 99 found in [Lab04].

6.3. Concluding Remarks

Notice that it is not clear that line arrangements are the best plane curves for
our purpose, and we may ask: Is it possible to exceed the number of critical points
on two levels of the line arrangements Fﬁil(x, y) using irreducible curves of higher
degrees? Either in the real or in the complex case? This is not true for the real
folding polynomials. E.g., those associated to the root system By consist of many
ellipses and yield surfaces with fewer singularities (see [Bre05]).

We can also ask for the maximum number p(d) of real A;-singularities. It is
clear that constructions similar to those in chapter Hon pagelfd cannot give the same
number of real nodes because of the intermediate value theorem (Zwischenwertsatz).
It would be nice to use real dessins d’enfants (see e.g., [Bru04]) to check which
numbers are actually possible to obtain.



A sextic with 30 real cusps and 10 real nodes at infinity, constructed using an
algorithm in characteristic zero.



CHAPTER 7

An Algorithm in Characteristic Zero

We give an algorithm (see also [Lab05al) that can be used to find hypersurfaces
with many singularities within families of hypersurfaces. As we will see, it is based
on very recent features of the computer algebra system SINGULAR. The idea to
such an algorithm is not so new. In fact, our main observation was to notice that
we can use features of the most recent versions of this computer algebra system to
perform the algorithm on a computer in our particular case.

We describe this algorithm using the example of the construction of a sextic
surface in P? with 35 cusps. From this, it is easy to figure out how to proceed in
general. When we uploaded the preprint [Lab05a] to arXiv.org we believed that
this 35-cuspidal example was the one with the maximum known number of cusps.
Only recently we realized that Gallarati’s variant of B. Segre’s construction (see
section 21 on page 24l leads to a sextic with 36 cusps. We present the algorithm
here because it can certainly be applied in many similar situations.

In the works mentioned in part [ the authors used geometric arguments to
reduce a problem depending on several parameters to polynomials each depending
only on one parameter. The roots of these polynomials could then easily be found
by hand or by computer algebra. But what can we do when there are no geometric
arguments available to reduce the problem to equations in one variable each? In this
case, we can still use a similar approach by replacing root-finding of a polynomial
in one variable by primary decomposition.

7.1. The Family of 30-cuspidal Sextics

As our starting point, we take the 4-parameter family f; ;... C P2 with dihedral
symmetry D5 defined by:

p = Z'H?:O [cos (@)qusin (@)yfz]
= & [:c (z* — 2:5-2%y? + 5-y?)
(7.1) 52 (22 +y2)° + 4525 (22 +y?) — 16~z5},
Gt = s(22+y?) +t22 + uzw + vw?,
fs,t,u,v = p—- qg,t,u,v'

p is the product of z and 5 planes in P?(C) meeting in the point (0:0:0: 1)
with the symmetry Ds of the 5-gon with rotation axes {x =y = 0}. ¢s,¢,u,0 is also
Ds-symmetric, because x and y only appear as x2 + y2.

The generic surface fs ., has 15-2 = 30 singularities of type As at the inter-
sections of the tripled quadric gs ¢ ., With the (g) pairwise intersection lines of the
6 planes p. 2-5 = 10 of the singularities lie in the {z = 0} plane, the other 4-5 = 20
not. The coordinates of the latter 20 can be obtained from the 4 singularities in
the {y = 0} plane using the symmetry of the family. To see that the {y = 0} plane
contains 4 cusps, note that p|,—o = z- (2 — ) - (#? — 2x2 — 42%)?: For generic values

85
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of the parameters, this doubled quadric factor meets the tripled quadric gs; 4, in
2 - 2 points.

Note that
(72) fs,t,u,v(xy Y, z, )\’LU) = fs,t,)\u,)\zv(‘ra Y, =z, ’LU) V)‘ € C*a

s.t. we can choose v := 1 (it is easy to see that v = 0 corresponds to a degenerate
case). Therefore, we write:

fs,t,u = fs,t,u,l and qs,t,u = Q4s,t,u,l-

7.2. The Sextics with 35 Cusps

To find surfaces in this 3-parameter family with more singularities, we compute
the discriminant Discy, , , € C[s,t,u] of the family f, ., by first dividing out the
base locus (the intersections of the double lines of p with the quadric ¢) from the
singular locus (we use saturation, because we have to divide out the base locus six

times):

I of of of of
s Ox’ Oy’ 0z’ Ow )’
wo— (220000 O
© \ 0z’ 9y’ 0z’ Aw?
I := sl : bl*™.

Then we eliminate the variables x,y, z from this quotient. In fact, because of
the symmetry we restrict our attention to the {y = 0} plane, which speeds up the
computations: Every singularity in the plane {y = 0} which is not on the rotation
axes {x =y = 0} generates an orbit of length 5 of singularities of the same type.

A short SINGULAR computation then gives the discriminant Discy, , , € Q[s, t,ul,
which factorizes into Discy, , , = Dy 1- Dy - Dy 3, where:

Dj, = 2%.3%. 5-(24-52+22-3-st+t2)-(s+t)2

+ (-2 36) s7 - (2:11-5% + 19-st + 2:t) - (s +t)-u?
+210.35. 6% (41-% + 2:3-T-st + 2:3t%) - u
( 214 33) 83
- (2:3%7-5%u8 4 22.3%. 5700 + 205267 — 25.5%. 5% — 52.61-st> — 5°-°)

u

+212.3% . 5% (3% 5700 — 2°.5%.5° —2-52-61-st—3~53-t2) cu?

4210.33.52 . 53 (61s+35t)

+ (—205%) - (2°-3%-5°u® 4 20.5:23-5% 4 2°.3-5.5% + 2%.3-5% st + 5°-t7)

+2%.3.5% . (2957 + 2%.5-st + 5:¢%) - u?

+(-22:35%) - (2%s+1t) - ut

+5° -+ (ut —22u® +2%) - (u? 4 27),
Dyy = (=29 +2%-t- (u®+2) + (2u— (u* +2%) - (2u+ (v +2%)),
Dz = 22-t+(2—u)-(2+u).

We hope that some singularities of the discriminant correspond to examples
of surfaces f, ., with more As-singularities. Note that only D, depends on the
parameter s. Using computer algebra, it is easy to verify that the intersections of



7.2. THE SEXTICS WITH 35 CUSPS 87

two of the 3 components Dy 1, Dy, Dy 3 of Discy, , , do not yield to surfaces with
many additional singularities.

So, we use Singular againto compute the primary decomposition of the singular
locus of Dy over Q: sl(Dy1) =sls1 NslyoNslysnslys , where

slpa = (22 (22— 0) 4P, 2085 5)
slpy = ( — 92 (2235 4+ 5:8) + 5u?, 203252 + 22355 + 52)
sl = (215-33-156 — 9130452 4 91130540yt — 26.33.5.43. (2546 — 11-31)

2434542 (2346 — 11-31) -u? — 22.3%¢- (240 — 5-11-31) -u*
+ (2333412 — 33.5.11-31-u8 4 26.5%.19%) |
911,32 .44 _ 911,32 43 2 4 98.33 42 4
—22. (2°-3%tu’ — 22.5:7-19-211-5 — 5:73:193-1)
u? - (253508 - 5.73:193) )
sy = (22~3~s — 5, —d(t+1)+ u2).

All these prime ideals define smooth curves in the 3-dimensional parameter
space. When projecting the curve Cs defined by sl; 3 to the s,t- or the s, u-plane,
we get in both cases six straight lines defined by the equation
(7.3) 215.33.56 —26.33.5.4% + 52 = 0.

This shows that C3 consists in fact of the union of six plane curves. Over the
algebraic extension Q(s), it is easy to compute the equation of these:
(7.4) O3, = 5u? — 2254 —211.32.61 —24.5.5 € Q(s)[t, u).

To show that there is a surface with 35 As-singularities, we take the most simple
point of this curve, the one with u = 0:

THEOREM 7.1 (35-cuspidal Sextic). Let so € C be one of the siz roots of (Z3).
Let (to,0) be the point on Cs s, with u = 0. Then the sextic Ss5 := fs,.to.0 C P3
has exactly 35 singularities of type As and no other singularities.

PrOOF. We use computer algebra. The SINGULAR script and its output can
be downloaded from the webpage [Lab03al. Here, we give the basic ideas. With

u=0in Cs,, we find: tg = —4-s9 (27532 83+ 1) . For the corresponding surface

(75) 855 1= s (5 2) 0

we first check that the total milnor number is 70. Then we verify that the surface
has 35 singularities of type As: For each orbit of singularities, we compute the ideal
of one of the singularities and check explicitly that it is a cusp. To show this it
suffices to verify that its milnor number is exactly two. E.g., for the orbit of the
five non-generic singularities, we take the cusp Sy, that lies in the {y = 0} plane:

27.32
Syw< : sg’+8:0;1;0).

O

Note that the coefficients of the surface S35 are not real. In fact, the ideal sl; 3
does not contain any real point, because equation (Z3]) does not have any real root.
In particular, it is not possible to use the software surf [End03| to draw an image
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of this sextic. This also holds for the more general family f; ; ., , because of equation
[Z2). The curves defined by the ideals sly 2 and slf4 lead to only one additional
higher singularity, and we are not interested in such examples.

But in the case of the prime ideal sl;;, we get surfaces with 30 real As-
singularities and 10 real A;-singularities (see also fig. [[1). Again, we choose a
point in the parameter-space with u = 0:

THEOREM 7.2. The sextic fs, o0 C P3, where sq := 3%\3/5_) ER, tg=2%sg €
R, has exactly 30 singularities of type Az, 10 singularities of type A1, and no other
singularities. Furthermore, all the singularities are real.

PRrROOF. Similar to the preceding one. O

FI1GURE 7.1. A sextic with 30 cusps and 10 nodes at infinity. Some
movies illustrating this are available from [Lab03al.

7.3. Concluding Remarks

In our application, we could restrict our attention to a plane because of the
symmetry of the family, so that the number of variables decreased. This speeded up
the computations. But the case of septics with many nodes was too time-consuming
to be treated in this way: Our construction of a 99-nodal surface of degree 7 (see
next chapter) involves computations in positive characteristics and then liftings to
characteristic zero using the geometry of the examples.

In other applications, it might be easy to divide out the base locus and to
compute the discriminant, e.g. by using the geometry of the family. Then it only
remaines to study the discriminant for finding examples which have more singular-
ities than the generic member of the family.
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7.4. The SINGULAR Code

............ H

"A Sextic with $35$ Cusps";

"(0liver Labs)";

llll;

"This Singular script computes the parameters s,t,u,v,";

"s.t. the surface f_{s,t,u,v} of the article has $35$ cusps.";

nn.,
B

"This script also contains the proof that this surface has ";

"$35$ such singularities and no other singularities.";

LIB "primdec.lib";
LIB "sing.lib";

LIB "classify.lib";
LIB "zeroset.lib";

proc mycodim(ideal stdi)
n

ASSUME: stdi is already in standard bases form!
"

{

return(nvars (basering) -dim(stdi));

proc std_primdecGTZ(ideal I)
n
RETURN: A list, similar to the one returned by primdecGTZ, but with
some extra information.
Calls primdecGTZ and then calls std() for each of the prime ideals
replace the prime ideals by their standard-basis.
The third sub-item of each item of the list is
the dimension of the prime ideal,
the fourth sub-item is its multiplicity.
n
{
list pd = primdecGTZ(I);
list pd_neu;
int i;
list coords;
ideal stdtmp;
for(i=1; i<=size(pd); i++) {
stdtmp = std(pd[i][2]);
pd_neu[i] = 1list(pd[i][1], stdtmp, dim(stdtmp), mult(stdtmp));
}

return(pd_neu) ;

117177771717711777777777777777
int pr = 0;

89
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//71111111711717
// The ring in which the algebraic number t is defined:
//

ring r = pr, (x,y,z,w,s,t,u,v), dp;

// The 6 planes p:

poly p = z*(16%x~5-160*x"3*y~2+80*x*y~4
-80%x"4*z-160%x" 2%y~ 2%Zz+320%x"2%2"3
-80%*y~4%z+320%y~2+z~3-256*z"5) /256 ;

// The quadric q:
poly q = (s*(x~2+y~2) +t*z~2 +ukwkz +viw~2);

// The family of sextics with 30 cusps:
poly £ = p - q73;

ideal jf = diff(f,w), diff(f,y), diff(f,z), diff(f,x);
ideal jfy = substitute(jf, y,0);

ideal bl = diff(p,x), diff(p,z), diff(p,w), diff(p,y), q;
ideal bly = substitute(bl, y,0);

HH;H";Hsl:H;HH;

jfy;

"H;"U;Hbl:";"";

bly;

"y Compute I and eliminate x and z:";"";
poly discr;

"";“Sat...";

ideal I = sat(jfy,bly)[1];
"";"Std...";

I = std(I);

"iveliminate x and z...";
ideal el = eliminate(I,xz);
el;

discr = el[1];
nm.enn "From now on we choose v=1.";"";

//map mp = r, x,y,z,w,s,t,1,v;
map mp = ¥, X,¥,Z,W,S,t,u,1;
discr = mp(discr);
"H;“";"Factorize Disc_f:";"“;

factorize(discr) ;
nu,
3

poly mpf = mp(f);
//"discr for u=1:";discr;

// the conditions on the parameters that yield
// additional singularities on the x=y=0 axes
// (precomputed)
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poly conduv(1l), conduv(2);

conduv(l) = 4*xvx(t+1)-u~2;

conduv(2) = (u™2-4tv)~2 + 4xv*(u~2+4*v*x(1-t));

// for the discriminant, we do not want the

// conditions conduv(i) that describe the cases

// that give a singularity on the x=y=0 axes:

"yt tNotice that the largest component is exactly the one that describes";
"the cases that do not give a singularity on the x=y=0 axes:";"";
discr = quotient(discr,mp(conduv(1)))[1];

discr = quotient(discr,mp(conduv(2))) [1];

discr;

nonn vpPrimary decomposition of s1(D_{f,1}) (takes a few seconds):";"";
if (0==1) {

// The following takes a few seconds.

// So, by default, we do not execute this part of the script.

// Change 0==1 to 1==1 in the preceding if-statement

// if you want this part to be executed.

list s1_f = std_primdecGTZ(slocus(discr));

sl_f;
} else {

"skipped (precomputed).";

ideal sl_f3 = u4-68su2-8tu2+1216s2+272st+16t2,
48s2u2-2496s3-192s2t+5,
18432s4-5u2+80s+20t;

poly els = eliminate(sl_£3, tu)[1];
"";"The six values for s (equation (3)):";"";
els;

Moo "iuonGyitch to the extension Q(s):";"";
string els_str = string(els);

"els:",els_str;

ring rs = (0,s), (t,u,x,y,z,w),dp;
execute("minpoly = "+els_str+";");

ideal s1_f3 = imap(r,sl_f3);

s1_f3 = std(sl_£3);

nooan "equation (4):nymn;

sl_£3;

ngnn nThe value t_0(s) in the proof the $35$-cuspidal sextic theorem:";"";
poly p_t = subst(sl_f3[1], u, 0);

number n_t = leadcoef(- ((p_t / leadcoef(p_t)) - t));

n_t;

mun "The equation of S_{35}:";"";
poly f = imap(r,mpf);
f = substitute(f, u,0, t,n_t);

R ;" . "The total milnor number:";"";
ideal jf = diff(f,x), diff(f,y), diff(f,z), diff(f,w);
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jf = std(jf);
"codim:", mycodim(jf), ", milnor:", mult(jf);

".nn."The total milnor number on w=1:";"";

poly fw = substitute(f, w,1);

ideal jfw = fw, diff(fw,x), diff(fw,y), diff(fw,z);
jfw = std(jfw);

"codim:", mycodim(jfw), ", milnor:", mult(jfw);

"y "The total milnor number on y=0, w=0, z=1:";"";
poly fyw = substitute(f, y,0, w,0, z,1);

ideal jfyw = fyw, diff(fyw,x), diff(fyw,z);

// first throw away the non-existent point (0:0:0:0):
jfyw = sat(jfyw,xyzw) [1];

// then compute the total milnor number:

jfyw = std(jfyw);

"codim:", mycodim(jfyw), ", milnor:", mult(jfyw);

"";"Check that this is exactly one point by computing the radical:";"";
ideal radjfyw = radical (jfyw);

radjfyw = std(radjfyw);

"codim:", mycodim(radjfyw), ", milnor:", mult(radjfyw);

"M:"This shows that S_{yw} is an A_2 singularity.";"";

i nn "The ideal describing the point S_{yw} in the affine z=1 chart:";"";
list 1Syw = primdecGTZ(jfyw) ;

ideal ptSyw = y,w,subst(1Syw[1][2],z,1);

ptSyw;

————— ";"";"Check that all the 30 other singularities are non-nodes:";"";

fw = substitute(f, w,1);

jfw = fw, diff(fw,x), diff(fw,y), diff(fw,z);

// then compute the total milnor number:

jfw = std(jfw);

"codim:", mycodim(jfw), ", milnor:", mult(jfw);

ideal nonnodes = fw, jfw, det(jacob(jacob(fw)));

nonnodes = std(nonnodes) ;

"codim(nonnodes) :", mycodim(nonnodes), ", milnor(nonnodes):", mult(nonnodes);

W ;" ;"Check that there is no singularity on y=0, z=0 and w=1:";"";
ideal jfyz = fw, diff(fw,x), diff(fw,y), diff(fw,z);

jfyz = substitute(jfyz, y,0, z,0);

jfyz = std(jfyz);

"dim:",dim(jfyz), ", milnor:", mult(jfyz);

R ";"";"Check that all the 10 singularities on z=0, w=1 are A_2s:";"";
"Compute the total milnor number:";

ideal jfz = subst(jfw,z,0);

jfz = std(jfz);

"codim:", mycodim(jfz), ", milnor:", mult(jfz);

"";"Check that there are exactly 10 singularities on z=0:";

"radical...";

ideal radjfz = radical(jfz);

"std...";
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radjfz = std(radjfz);

"codim:", mycodim(radjfz), ", milnor:", mult(radjfz);

"";"As all the 10 are non-nodes, they all have milnor number 2";
"and are thus A_2-singularities.";

e ";"";"Check that all the 4 singularities on y=0, w=1 are A_2s:";"";
"Compute the total milnor number:";

ideal jfy = subst(jfw,y,0);

jfy = std(jfy);

ity

"codim:", mycodim(jfy), ", milnor:", mult(jfy);

"";"Check that there are exactly 4 singularities on y=0:";

"Compute the primary decomposition of jfy...";
list 1jfy = std_primdecGTZ(jfy,1);
Ljfys

"The 3rd and 4th entry are dimension and multiplicity";

"of the prime component:";

"codim:", 1jfy[11[3], ", milnor:", 1jfy[1]([4];

"";"As all the 4 are non-nodes, they all have milnor number 2";
"and are thus A_2-singularities.";

"From the symmetry of the construction we thus know that";

"all the 20=4#%5 singularities";

"which are in the D_5-orbits of these four singularities";

"are A_2-singularities.";

R ";"";"Thus the surface S_{35} of degree 6 has exactly 35 cusps";
"and no other singularities.";
"";"This completes the proof the theorem.";"";

$;

93



A septic with 99 nodes, constructed using the geometry over prime fields.



CHAPTER 8

Using the Geometry over Prime Fields

We have already seen that the restrictions on the maximum number 4, (d) of
nodes on a nodal surface of degree d known so far are as follows:

| degree 23] 45|67 | 8|9 fw|[1]12] a ]
pa,(d)> [ 1] 4 16]31]65] 93 | 168 ] 216345 [ 425 | 600 | S |
pa(d) < | 1] 4]16]31 | 65| 104] 174 | 246 | 360 | 480 | 645 [ 4o |

In this chapter we show (see also [Lab04]):

(8.1) pa, (7) >y, (7) > 99.

The upper bound u(7) < 104 is given by Varchenko’s spectrum bound (section
B). Notice that for d = 7 Miyaoka’s bound (section BIM) is 112, but Givental’s
bound (section Bf]) also computes to 104.

The previously known septic with the greatest number of nodes was the example

of Chmutov with 93 nodes (see section Bl on page EH). For d < 5 and the
even degrees d = 6, 8,10, 12 there are examples exceeding Chmutov’s lower bound:
sections EA B £ These had been obtained by using some beautiful geometric
arguments based on Rohn’s (section [[3)) and B. Segre’s idea (section ).

Here, we explain how to use the geometry of computer algebra experiments over
prime fields to treat the case d = 7 and to find the first surface of odd degree greater
than 5 that exceeds Chmutov’s general lower bound. Given an explicit equation of a
family of hypersurfaces, there are some other approaches for finding those examples
with the greatest number of nodes. We were not able to apply the techniques which
do not involve computer algebra and which were used for degree d = 6,8,10,12
because for these one needs a priori some good idea on the geometry of the surface.
We neither succeeded using the computer algebra techniques from chapter [din the
present case because of computer performance restrictions.

Instead, we choose a more geometric and experimental approach to study the
family. The idea to use experiments over prime fields was already used by other
people, e.g. Schreyer and Tonoli [ST02]. But in their case they were able to use
deformation theoretical arguments to show that their examples lift to some spe-
cial Calabi-Yau threefolds in characteristic zero. In our case, we lift the modular
examples explicitly to characteristic zero using their geometry.

8.1. The Family

Inspired by many authors (see in particular sections [[3 B2 EER ET), we look
for septics with many nodes in P3(C) within a 7-parameter family of surfaces

Sal,ag,...,tn =P - Ual,ag,...,a7

95
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of degree 7 admitting the dihedral symmetry D7 of a 7-gon:

213 21y
P = 20.T09_, |:COS (%) x + sin (%) Y- Z}

= [ac6 — 372ty + 5. 72%yt — 7-y6}
+7-z~[(ac2 i y2)3 — 2822 (a2 + y2)2 i 24-2:4-(902 n yQ)} 96,7,

2
Uay ...t = (z4asw) (a123 + ag2?w + azzw?® + agw® + (agz + arw)(z? + y2))

.....

P is the product of 7 planes in P3(C) meeting in the point (0: 0:0: 1) and
admitting D7-symmetry with rotation axes {x = y = 0}: In fact, P is invariant
under the map y — —y and P N {z = 2} is a regular 7-gon for zy # 0. U is also
D7-symmetric, because x and y only appear as z2 + 2.

As we have already seen in section [[3] on Rohn’s construction of nodal quar-
tics, such a surface S has generically nodes at the 3 - 21 = 63 intersections of the
(;) = 21 doubled lines of P with the doubled cubic of U. We look for parameters
ai,as,...,ar, s.t. the corresponding surface has 99 nodes.

AS Sa; a0, a0 (Y, 2, AW0) = Say nas.\2a5.\3a4, Nas.ag. ar (T, Ys 2, W) YA € C*, we
choose a7 := 1. Moreover, experiments over prime fields suggest that the maximum
number of nodes on such surfaces is 99 and that such examples exist for ag = 1. As
we are mainly interested in finding an example with 99 nodes, we restrict ourselves
to the sub-family:

S = Sa11a21a37!147!157111 =P = Uaqy,as,a5,a4,a5,1,1-

Some other cases, e.g. ag = 0, also lead to 99-nodal septics (see e.g. chapter ).

8.2. Reduction to the Case of Plane Curves

To simplify the problem of locating examples with 99 nodes within our family
S, we restrict our attention to the {y = 0} -plane and search for plane curves S|,—¢
(we write S, for short) with many nodes. This is motivated by the symmetry of
the construction:

LEMMA 8.1 (see [End96]). A member S = Sq, as,45,a4,a5,1,1 0f our family of
surfaces has only ordinary double points as singularities, if (1 :i:0:0) ¢ S and
the surface does only contain ordinary double points as singularities in the plane
{y = 0}. If the plane septic S, has exactly n nodes and if exactly ny, of these nodes
are on the axes {x =y = 0} then the surface S has exactly nyy +7-(n—ngy) nodes
and no other singularities. Each singularity of S, which is not on {x =y = 0}
gives an orbit of 7 singularities of S under the action of the dihedral group D-.

PROOF. Because of the D7-symmetry of the construction, we only have to show
that there are no other singularities than the claimed ones. It is easy to prove (see
[End96, p. 18, cor. 2.3.10] for details) that any isolated singularity of S which is
not contained in one of the orbits of the nodes of S, would yield a non-isolated
singularity which intersects the plane {y = 0}. But this contradicts the assumption
that the surface S does only contain ordinary double points on {y = 0}. O

So, we first look for septic plane curves of the form S, with many nodes, then we
verify that these singularities are indeed also nodes of the surface. Via the lemma,
we are then able to conclude that the surface has only ordinary double points. In
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order to understand the geometry of the plane septic S, better we look at the
singularities that occur for generic values of the parameters. First, we compute:

Ply—mo = 2" +7-2% —7-2%. 223 4 7.2%.22° - 26. 7
= U (b () (24 P+ a9)2)” (204 (0 20+ 8):)"
=L =L, =L
Uly=o = (z+asw)((z+w)z” + a12”° + axz’w + azzw® + agw® )2,
=C
where p satisfies:
(8.2) PP+ 2% —2%p — 23 = 0.

The three points Gj;; of intersection of C' with the line L; are ordinary double
points of the plane septic S, = P|,=o — U|y=0 for generic values of the parameters,
s.t. we have 3 - 3 = 9 generic singularities (see fig. RI).

L3

Ly

Sy71

FIGURE 8.1. The three doubled lines L; and the doubled cubic C
intersect in 3-3 = 9 points G;;. These are the generic singularities
of the plane septic 5.

8.3. Finding Solutions over some Prime Fields

In the early times of computer algebra, the software was only able to work
over finite prime fields. It is well-known that the reduction modulo a prime p of a
hypersurface has the same number and type of singularities for almost all p. So, the
common practice in the early 1990’s was to compute this for a hopefully sufficient
number of different primes.

We take the other direction. By running over all possible parameter combina-
tions over some small prime fields I, using the computer algebra system SINGULAR
[GPS01], we find some 99-nodal surfaces over these fields: For a given set of pa-
rameters ai,as,...,a5, we can easily check the actual number of nodes on the
corresponding surface using computer algebra (see [GP02, appendix A, p. 487]).
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As indicated in the previous section, we work in the plane {y = 0} for faster
computations. It turns out that the greatest number of nodes on S, is 15 over the
small prime fields IF,, 11 < p < 53: See table Bl on the facing page. The prime
fields IF,, 2 < p < 7, are not listed because they are special cases: These primes
appear as coefficients or exponents in the equation of our family. In each of the cases
we checked, one of the 15 singular points lies on the axes {x = 0}, such that the
corresponding surface has exactly 14 -7+ 1 = 99 nodes and no other singularities.

8.4. The Geometry of the 15-nodal septic Plane Curve

To find parameters aj,as,...,as in characteristic 0 we want to use geometric
properties of the 15-nodal septic plane curve S,. But as we do not know any such
property yet, we use our prime field examples to get some good ideas:

OBSERVATION 8.2. In all our prime field ezamples of 15-nodal plane septics Sy,
we have:

(1) S, splits into a line Sy1 and a sextic Sy¢: Sy = Sy1-Sye- The plane
curve Sy ¢ of degree 6 has 15 — 6 = 9 singularities. Note that this prop-
erty is similar to the one of the 31-nodal Ds-symmetric quintic in P3(C)
constructed by W. Barth (section[{.9 on page [[7).

The line and the sextic have some interesting geometric properties (see fig. 81l on
the preceding page and fig. B3 on page [[I2A):
(2) Sy1 N Sye={R,G1j,,G2j,,Gsj,,01,02}, where R is a point on the azes
{z = 0} and the G;;, are three of the 9 generic singularities G;; of Sy,
one on each line L;, and O1,O2 are some other points that neither lie on
{z = 0}, nor on one of the L,.
(3) The sextic Sy has the siz generic singularities G,j, (i,7) € {1,2,3}% \
{(1,71),(2,72), (3,73)}, and three exceptional singularities: E1, Es, Es.
In many prime field experiments, we have furthermore:

(4) In the projective x, z, w-plane, the point R has the coordinates (0: —1: 1),
s.t. the line Sy 1 has the form Sy1: z+t -+ w =0 for some parameter
t (see also table Bl on the facing page).

The other cases (R = (0:c:1),c # —1) lead to more complicated equations and
will not be discussed here.

Using this observation as a guess for our septic in characteristic 0, we obtain
several polynomial conditions on the parameters. Using SINGULAR to eliminate
variables, we find the following relation between the parameters a4, and :

(8.3) t-(aat®+t)  +t—1=0,
—_———
which can be parametrized by a: t = — 7=, a4 = (a(1+a?) —1)(1+a?)?. Further
eliminations allow us to express all the other parameters in terms of a:
a; =a’ +70° —a* + 703 — 20 — Ta — 1,
az = (a? +1)(3a® + 140 — 302 + Ta — 3),
e a3 = (a® +1)%(3a® + Ta — 3),
[ ] a5 = 2

o
14+a? "
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|Field|a1 |a2 |a3 |a4|a5 | Sy.1 | a |
Fiq| 2 3 5 2 -5 Z2=x—w a=-3

Fio| -7 | -2 7 1 8 z=8xr—w a=17
Fig| 2 0 1 9 7 z=9x —w a=—4
Fio| 5 -9 7 -3 | -1 z2=2r—w a=—

Fos | -5 | 11 | 10 | 1 7 | z=—92r—w | a=-2

Fi, |-156|-13| -5 | 13 |-10| z=—-2x—w |a=—13
Fs; | 1 | -2 14| -9|11]| z=1z—w |a=-11
Fs; | 14 |-10|-13|-14 |-11 | 2=-13z—w | a=—T

Fuys|-11| 15| 0 |-13| 6 | 2= —6x—w a=17
Fuy |20 16| -1 |-14] 10 |z2=—-122—w | a=14
Fges| -9 3| -3 |-11] 5 z=18r—w |a=-21
Fss | -8 | 20| 14 | 18 | 11 | z=25z—w a=4
Fsz | -2 |-10|-14|-26| 16 | z2=-92—w | a=24
Fsz | 10 | 26| 4 | 22 | 25 |z=—16x—w | a=25

TABLE 8.1. A few examples of parameters giving 15-nodal sep-
tic plane curves (and 99-nodal surfaces) over prime fields (see
[Lab03al for more exhaustive tables).

8.5. The l-parameter Family of Plane Sextics

Once more we use our explicit examples of 15-nodal septic plane curves over
prime fields to finally be able to write down a condition for « in characteristic 0.

First, note that we can now easily obtain the equation of Sy ¢ by dividing the
equation of our septic curve Sy by the equation of the line Sy = 2+t +w =
z— ﬁx +w. Sy is a sextic which has 6 nodes for generic «, but should have 9
double points for some special values of . One idea to determine these particular
values is to find a geometric relation between the 6 generic singular points and the
3 exceptional ones.

8.5.1. Three Conics. Looking at the equations describing the singular points
of our examples of 9-nodal sextics Sy ¢ over the prime fields, we see the following:

OBSERVATION 8.3. For all our 9-nodal examples of plane sextics over prime
fields, there are three conics through six of these points each (see fig. [BA on the next
page):

(1) one conic Cy through the 6 generic singularities,

(2) one conic Cy through the 3 exceptional singularities and 3 of the generic
ones,

(3) one conic Cs through the 3 exceptional singularities and the other 3 generic
ones.

Moreover, the three conics have the following properties over the prime fields:
(4) C1 has the form:

(8.4) Cy: 2+ k2 + (k+4)2w =0,
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FIGURE 8.2. Three conics relating the 9 double points of the sextic
Sy E1,Es, and E3 (black) are the exceptional singularities (i.e.
they do not lie on one of the lines L;, see fig. on page [@7).
The white points are the generic singularities, coming from the
intersection of the doubled cubic C' with the three doubled lines
L;.

where k is a still unknown parameter. In particular, Cy is symmetric with
respect to x — —x and contains the point (0:0:1).
(5) Cy intersects the other two conics on the {x = 0} -azes (see fig. [8A):

(85) X1 = Ooﬁclﬂ{l':()}, X2 = OoﬁCQﬂ{.T:O}.

To determine the new parameter k in equation &), we will use (BH). We
compute the two points of Cy on the {z = 0} -axes explicitly using SINGULAR:
First, the ideal T gji describing the six generic singularities of .S, ¢ can be computed

from the ideal I gz" := (C, L1LyL3) describing the 9 generic singularities of S, by
calculating the following ideal quotient: I gz’z =1 gj" : Sy.1. Now, the equation of
Cp can be obtained by taking the degree-2-part of the ideal I gzns:

ar? + (a® +5a — Doz + (o + a — 1)zw

(8.6) Co: (a®+6a®—a?+a—1)22+ (2a° +8a® —2a% + 6a — 2)zw
+(@® +2a3 —a? + a— w? = 0.

_ —2(a®+3a—1)(14+a®)+6(x
Thus, {PT, P~} :=Con{z =0} = {(O : (2(0;%0(3)7(&20‘)75( ) 1) } , where
(8.7)
B(a)? = (a®+3a—1)%(1+ a?)?
—4(a®+60a® —a?+a—-1)(1+a?)(a® +a—1)
= (1+a?)(a®—4a" +3a5 — 22a° — 5at + 1603 + 602 + 2a — 3).
C; intersects the {x = 0} -axes in exactly two points: (0 : 0 : 1) and X;.

Hence, we can determine the two possibilities for the parameter k € Q(a, 5()) in
equation (&) for C;: Together with the z and w-coordinates of the points P*,
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CyN{x =0} = {k2% + kzw + 42w = 0} leads to the following two possibilities:
—4PF

8.8 Cy: 24—z
( ) 1 x+PZi(PZi+1)

z(z + w) + 4zw = 0.

8.5.2. The Condition on a. The equations of the conics Cy and C; will
allow us to compute the condition on «, s.t. the sextic Sy ¢ has 9 singularities, using
the following (see observation B3 and fig. B2):

e () intersects the three doubled lines L; exactly in the six generic singu-
larities.

e (U intersects the three doubled lines L; exactly in three of these six generic
singularities and the origin (which counts three times).

Thus, the set of z-coordinates of the three points (C; N LiLaLs) \ {(0:0:1)}
has to be contained in the set of z-coordinates of the six points Cy N L1LsL3. This
means that the remainder ¢ of the following division (res, denotes the resultant
with respect to x)

23

(89) TGSI(C(), L1L2L3) = p(Z) . (i . TeSz(Cl, L1L2L3)) + q(Z)

should vanish: ¢ = 0.

As the degree of the remainder is deg(q) = 2, this gives 3 conditions on « and
B(a), coming from the fact that all the 3 coefficients of ¢(z) have to vanish. It turns
out that it suffices to take one of these, the coefficient of 22, which can be written
in the form c¢(«a) + B(a)d(«), where c(a) and d(«) are polynomials in Q[a]. As a
condition on « only we can take:

cond(a) := (c(a) + B(a)d(a)) - (c(e) — Bla)d(a)) € Qlo],

which is of degree 150.

This condition cond(«) vanishes for those « for which the corresponding surface
has 99 nodes and for several other a.. To obtain a condition which exactly describes
those « we are looking for, we factorize cond(«) = f1-f2 - - fi (e.g., using SINGULAR
again). Substituting in each of these factors our solutions over the prime fields, we
see that the only factor that vanishes is: 7a® 4+ 7a 4+ 1 = 0.

8.6. The Equation of the 99-nodal Septic

Up to this point, it is still only a guess — verified over some prime fields — that
the values « satisfying the condition above give 99-nodal septics in characteristic 0.
But it turns out that we have indeed:

THEOREM 8.4 (99-nodal Septic). Let o € C satisfy:
(8.10) 703 +Ta+1=0.

Then the surface S, in P3(C) of degree 7 with equation Sgg := S, := P — U, has
ezxactly 99 ordinary double points and no other singularities, where

P = =z [506 - 372ty + 5727yt — 7'96}
+702o[(z2 4 y2)3 B 23~22~(z2 I y2)2 4 24.24.(:02 i yQ)} _ 96,7,

2
Uo = (24asw) ((z +w)(@” +4°) + a12” + asz’w + agzw® + agw®),
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Es

Syﬁ

FIGURE 8.3. The 15-nodal plane septic S, =Sy, -Sye, (see
(B1) on pageM); the singularities of the sextic Sy.6,,, are marked
by large circles: The three exceptional singularities F1, Fo, E3 are
marked in black, the generic singularities in white. The five left-
most nodes are real isolated ones. Only five of the six intersections
of the line Sy, and the sextic Sy ¢, are visible because we just
show a small part of the whole (z, z)-plane.

= 12,2 _ 38 _ 8 = 32,2424
a; = —Za«a 0 — =, az == —=a” + o 4
0,32:74&24*%0474, a4::f§o¢2+4%047§,

as = 4902 — Ta + 50.
There is ezxactly one real solution ag € R to the condition (810),
(8.11) ag ~ —0.14010685,

and all the singularities of S.y are also real.

PrOOF. The straightforward SINGULAR computation to show that the surface
has 99 nodes and no other singularities takes too long on our computer. So, instead,
we use computer algebra to verify the assumptions of lemma on page The
point (1:7:0:0) ¢ S,, and the surface S, contains exactly 15 nodes on {y = 0}
one of which lies on the axes {x = y = 0}. Our SINGULAR code for checking this
is listed in the appendix and can also be obtained from [Lab03al. In this way, we
are able to conlude that S, has exactly 14-7 + 1 = 99 nodes as singularities.

Using the fact that 3(a)? = (%)2 together with the geometric description
of the singularities of the plane septic given in the previous sections, it is also
straightforward to verify the reality assertion. O

8.7. Further Remarks

The existence of the real ag allows us to use our tool SURFEX [HLMO5] to
compute an image of the 99-nodal septic S,y (fig. B4l on the next page). When
denoting the maximum number of real singularities a septic in P3(R) can have by
uB(7), we get, with the remarks mentioned in the introduction:
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FIGURE 8.4. A part of the affine chart w = 1 of the real septic
with 99 nodes, see [Lab03al for more images and movies.

COROLLARY 8.5.
99 < p®(7) < u(7) < 104,

Note that the previously known lower bound, 93, was reached by S. V. Chmu-
tov’s surface (section E)). It can be computed using deformation theory and SIN-
GULAR (see section EEB on page BI)) that the space of obstructions for globalizing all
local deformations is zero. We thus obtain:

COROLLARY 8.6. There exist surfaces of degree 7 in P3(R) with exactly k real
nodes and no other singularities for k =0,1,2,...,99.

Recently, there has been some interest in surfaces that do exist over some finite
fields, but which are not liftable to characteristic 0. The reduction of our 99-nodal
septic S, modulo 5 (note: 1 € Fj satisfies @I0): 7-1°> + 7-1 + 1 = 0 modulo 5)
neither gives a 99-nodal surface nor a highly degenerated one as one might expect
because the exponent 5 appears several times in the defining equation. Instead, we
can easily verify the following using computer algebra:

COROLLARY 8.7. For a5 := 1 € F5 the surface S., C P3(F5) defined as in the
above theorem has 100 nodes and no other singularities.

Of course, not all the coordinates of its singularities are in 5, but in some
algebraic extension. The septic has similar geometric properties as our 99-nodal
surface; in addition it has one node at the intersection of the {z = y = 0} axes and
{w = 0}. Until now, we were not able to determine if this 100-nodal septic defined
over IF5 can be lifted to characteristic zero.

8.8. A Conjecture

We hope to be able to apply our technique for finding surfaces with many
nodes within families of surfaces to similar problems. E.g., it should be possible to
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construct surfaces with dihedral symmetry of degree 9 and 11 with many ordinary
double points. In fact, our experiments over prime fields suggest the following
conjecture which is already established for d = 3,5, 7 (see figure BH which illustrates
the geometry of the plane curve S,):

CONJECTURE 8.8. For any odd d > 3, there exists a surface S of degree d with
2+ (3d® — 4d? — 7d + 8) nodes with the following geometric properties:

(1) S has dihedral symmetry Dy and is constructed based on Rohn’s idea (sec-
tion[3): S =P — (2 + apw) - (S%)Q, where P is a product of d planes

27y 21y
P = H?;& [cos <%) T + sin <%> yz]

. d—1
and S a1 is @ surface of degree 5.

(2) The plane curve S, := SN{y = 0} factors into a line and a curve of degree
d—1: S, =5y1"Syd-1-

(3) Sy has 4 + (%)2 + 2421 (421 — 1) nodes.

(4) FEzactly one of the nodes of Sy, say R, lies on the rotation azes {x =y = 0}
of the dihedral operation. In fact, R is the intersection of the line Sy 1 with
the rotation azes {x =y = 0}.

(5) The generic surface from Rohn’s construction has nodes at the intersection
of the (g) =d- (%) intersection lines of the d planes defined by P with
the surface S% of degree %. Because of the dihedral symmetry of the

construction % -d- (%)2 of the nodes of the plane septic S, come from

this general construction.

1 node
d—1)2
2
orbits of d nodes
1 de1 . T-axes
5 5 (G-1)
orbits of d nodes
-1 _ 4
z-axes orbits of d nodes.
Sy,l

FIGURE 8.5. The geometry of the conjectured plane curve .S,.

For d < 11, the number of nodes conjectured above exceeds Chmutov’s lower
bound for the maximum number of nodes on a surface of degree d (section EIl). But
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for d > 13, Chmutov’s examples have more nodes. Thus, if the conjecture cannot
be improved then it does only yield very few new lower bounds: 14, (9) > 226 and
[, (11) > 430.

8.9. Appendix: The SINGULAR Code

8.9.1. The SINGULAR Library manySings.lib.
LIB "sing.lib";
LIB "primdec.lib";
LIB "primitiv.lib";

proc mapPtToO(ideal pt) {
def oring=basering; poly allvars=1; list 11=1list(); poly ptmp;
for(int i=1; i<=nvars(oring); i++) { allvars = allvars * var(i); }
for(i=1; i<=nvars(oring); i++) { ptmp=eliminate(pt, allvars/var(i))[1];
11[i]=1/1leadcoef (ptmp) *var (i) - ((ptmp/leadcoef (ptmp) ) -var(i)) ;}
return(list(11)); } // end proc mapPtToO(ideal pt)

proc checkOnlyNodes(list 1, string strf, int p) {
def oring=basering; ideal itmp; string imp; string strmp;

for(int i=1; i<=size(l); i++) { "";"—---- UL L UL
execute ("itmp="+1[i]+";"); mult(std(itmp)),"point(s)";
"eliminate..."; imp=string(minpoly)+","+string(eliminate(itmp,x));

ring rel(i)=(p,gamma),(al,z) ,dp; execute("ideal mp="+imp+";");
strmp=string(subst(cleardenom(primitive (mp) [1]),z,gamma)) ;

ring rga(i)=(p,gamma), (x,y,z), dp; execute("minpoly="+ strmp+";");
list lal=primdecGTZ(7*x~3 + 7#x + 1); number al;
if (mult (std(1all[2][2]))==1) {
al=-leadcoef (1lal[2] [2] [1]/1leadcoef (1al[2] [2]1[1])-x);
} else { al=-leadcoef(lal[1][2][1]/leadcoef(1lal[1]1[2]1[1])-x); }
execute("ideal jf=y,"+1[i]1+";"); "primdec..."; list 1f=primdecGTZ(jf);
list ml=mapPtToO0(1f[1][2]); map m=rga(i),ml[1] [1],m1[1][2],m1[1][3];
execute("poly Saff="+strf+";"); poly lSaff=m(Saff);

ring rloc(i)=(p,gamma), (x,y,z), ds; execute("minpoly="+ strmp+";");
poly 1lSaff=imap(rga(i),lSaff);
"milnor..."; isTrue(milnor(1Saff)==1);
setring oring; } } // end proc checkOnlyNodes(list 1, string strf, int p)

8.9.2. The SINGULAR Code to Prove Theorem

// The execution of the whole program takes a few minutes.
LIB "manySings.lib"; // also available from www.AlgebraicSurface.net
proc isTrue(int c¢) { if(c==0) { return("FALSE"); } else { return("TRUE");}}

int p=0; ring r=(p,al), (x,y,z,w), dp; minpoly=7#al~3 + 7*al + 1;
number a(1)=-12/7%al~2-384/49%al-8/7; number a(2)=-32/7*al~2+24/49%al-4;
number a(3)=-4%al~2+24/49%al-4; number a(4)=-8/7*al~2+8/49%al-8/7;
number a(5)=49%al~2-7*al+50;
poly P=x#*(x"6-3*%7*x~4*y~2+5*7*x"~2%y~4-T*y"6)

+7xz% ((x72+y72) “3-273%z"2% (x~2+y~2) ~2+274*z"4* (x~2+y~2) ) -2"6%z2"7;
poly U=(z+a(5)*w)*(a(1)*z~3+a(2) *z~2*w+a(3) *z*w~2+a (4) ¥w~3+ (z+w) * (x~2+y~2) ) ~2;
poly S=P-U; // the 99-nodal surface

poly Si=substitute(S, x,1 ,z,0 ,w,0); ideal yi=y~2+1; yi=std(yi);
"tuCheck that (1:i:0:0) is not on S:", isTrue(reduce(Si,yi)!=0);
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ideal jSxy=x,y,jacob(8); jSxy=std(jSxy);

" :"There is only one node on x=y=0:",isTrue(mult (jSxy)==1&&dim(jSxy)==1);
ideal jSwy=w,y,jacob(S); jSwy=std(jSwy);

"";"There is no singularity at infinity:",isTrue(dim(jSwy)==0);

poly Saff=subst(S, w,1); string strSaff=string(Saff);

poly Syaff=substitute(S, y,0, w,1);

poly Syl=subst(z-1/(1+al~2)*x+w,w,1); poly Sy6=Syaff/Syl;

"";"Check the factorization Sy=Sy1*Sy6:", isTrue(Syl1#Sy6 - Syaff == 0);

ideal j16=Sy1,Sy6; list 116=primdecSY(j16); j16=std(j16);

"Syl & Sy6 meet in 6 pts (with mult.):",isTrue(dim(j16)==2&&mult(j16)==6);

ideal j6=Sy6,diff (Sy6,x),diff(Sy6,z); j6=std(j6);

"Sy6 has 9 singularities (with mult.):",isTrue(dim(j6)==2&&mult (j6)==9);

ideal iSy16=Sy1l, j6;

"None of these 9 singularities lies on Syl:",isTrue(dim(std(iSy16))==-1);

poly L1L2L3=x"3+4*x"2*z-4*x*z"~2-8%z"3;

poly CO=(al)*x~2+(al~3+5*al-1)*x*z+(al~5+6*al~3-al~2+al-1)*z"2
+(al~3+al-1)*x+(2*al~5+8*al~3-2%al~2+6*al-2) *z+(al~5+2*al~3-al~2+al-1);

ideal jG6=L1L2L3, subst(CO,w,1);

"The 6 generic sing. of Sy6..."; list 1G6=primdecSY(jG6);

"The 3 special sing. of Sy6..."; list 1S6=primdecSY(quotient(j6,jG6));

// The prime ideals defining the 15 singularities on {y=0}:

list 1sings=list(string(116[1][2]),string(116[2][2]),string(116[3][2]),
string(1G6[1][2]),string(1G6[2]1 [2]),string(1S6[1]1[2]));

"n."Verify that these 15 singularities on {y=0} are nodes of the surface";

"by mapping each point to zero and checking locally:";

checkOnlyNodes(1sings,strSaff,p);$;
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The {y = 0} plane section of the affine chart w = 1 of a 226-nodal nonic over Fg;.
It can be found and lifted to characteristic zero using an algorithm for locating
interesting examples within families of algebraic varieties.



CHAPTER 9

Locating Interesting Examples within Families

Suppose we have a k-parameter family of algebraic varieties Vg, q,,....q, defined
over some algebraic extension K := Q(«) of Q in which we hope to exist a particu-
larly interesting example.

Suppose furthermore that there exists an algorithm which allows us to detect
using computer algebra if a variety Vg, q4,,.. .q, is interesting for given values of the
parameters aj, as, . . ., ai. Then the algorithm which we describe in this chapter and
which we implemented as the SINGULAR [GPS01] library SEARCHINFAMILIES.LIB
allows us to locate these examples in many cases.

As we have seen in the preceding chapters, all surfaces of degree d < 8 with
the greatest known number of nodes can be constructed by locating them within
families with dihedral symmetry. Furthermore, we have already seen that for a given
surface it is easy to compute its number of nodes using computer algebra. Thus,
the problem of finding surfaces with many nodes is exactly of the type described in
the previous paragraph.

And indeed, we will see in the following sections that the construction of all
known surfaces of degree d < 7 which lead to the best known lower bounds for the
maximum number 14, (d) of nodes can be reduced to a computer algebra calculation.
Moreover, we apply the method to the case of degree d = 9 which leads to a new
lower bound:

(9-1) pa, (9) > 226.

Recall that we have seen in the first part of this Ph.D. thesis and in chapter B that
the restrictions on p4, (d) known before the present chapter are as follows:

| degree |23 45|67 | 8|9 fw|[1n]12] d]
pay(d)>|1|4|16|31|65| 99 | 168 | 216 | 345 | 425 | 600 | 2 d°
pa(d)< | 1]4[16|31(65 104|174 | 246 | 360 | 480 | 645 | 4d?

Thus, in degree d = 9 there remains a gap of 20 nodes between our construction
which leads to 226 nodes and the best known upper bound 246.

9.1. Some Introductory Examples

In the previous chapter, we used the geometry of the prime field examples to
obtain a conjecture for some restrictions on the parameters. We could then verify
them by simply computing the number of nodes of the resulting surface.

The process of figuring out the needed geometric properties of the prime field
examples involved creative human interaction. Here, we use a purely arithmetic way
to lift the prime field examples which can be performed automatically. Nevertheless,
geometric insight can speed up the algorithm significantly.

109
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[ field | 8 [ u(vS1) ]

Fs| —| —
Fs| — | —
Fs| 1 205
Fs| 1| 205
Fr| 1 130
Fii | 1 130
Fis| 1 130
Fir | 1 130

TABLE 9.1. Examples of vS(;.3) over some prime fields which have
at least 130 ordinary double points.

The examples which we present in this section illustrate the basic ideas behind
our method.

9.1.1. Van Straten’s 130-nodal Quintic in P*. Let us look for examples
with many isolated singularities within van Straten’s two-parameter family (see
section on page HY)

VS(a:g) = Oé'0'5(.1‘0, co,T5) F ﬁ'O‘g(mQ, .. ,.1‘5)-0’3($Q, .. ,$5)

of hypersurfaces of degree 5 in the P* cut out by x5 = — (21 + 29 + -+ + 24). It is
clear that the corresponding hypersurface has a non-isolated singularity if o = 0,
so let us normalize to « := 1. This leaves us with a one-parameter family vS(;.s).

Running through all possible parameters (3 over the prime fields o, IF'g, ..., F1g,
we find the examples with at least 130 ordinary double points listed in table @11
The whole computation takes approximately two minutes on our computer.

From this table, it is easy to guess that vS(;.;) is indeed a 130-nodal quintic
in P* in characteristic zero. This guess can now be verified, again using computer
algebra. Notice that the reduction modulo five gives a 205-nodal quintic in P* which
cannot exist in characteristic zero because of Varchenko’s upper bound which is 135
nodes (see section B).

9.1.2. Barth’s 65-nodal Sextic in P3. Let us compute the parameters for
which Barth’s one-parameter family of 45-nodal sextics F, = P — a-Q? has ex-
actly 65 nodes (see section EEH on page Blll). The SINGULAR script which computes
table on the facing page only runs for a few seconds.

It is easy to guess from the table that « has to satisfy some quadratic condition.
For each prime for which there exist exactly two solutions we compute the monic
quadratic polynomial with the two values of « as roots. These monic quadratic
polynomials over the prime fields are not difficult to lift by lifting each coefficient to
some rational number. This can be done using Wang’s rational recovery algorithm
or one of its variants (see e.g., [CE95]):

ALGORITHM 1 (Wang’s algorithm).
Input: A modulus M € Z and o residue U € Z/(M).
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field a | polynomial | u(Fy,) field a polynomial | u(F,)
¥y — — Fio| 3,-2 | a®2—a—6] 65
I3 — — — IFy3 — — —
EFs -2 oa+2 65 Fo | 5,4 a?—a+9 65
I, — — I3y -1,2 a2—a—2 65
Fi; |5, -4|a?—a+2 65 Fs3, — — —
Fps — — Fu | —13,14 | a® —a— 18| 65

_ _ Fus _ _ _

TABLE 9.2. Examples of F, over some prime fields which have at
least 65 ordinary double points.

Output: A pair (A, B) of integers s.t. A= BU mod M and |A|, B < M
with B > 0 if such a pair exists. Otherwise, return NIL.

1 (Al,Ag) = (]\47 U), (Vl,‘/g) = (O, 1),

1
2

2 loop

3 if |[Va| > \/%>M then return NIL;

4 if Ay < \/%>M then return (sign(Va2)As, |Va|);
5 Q:= L%J; (A1, V1) := (A1, V1) — Q(A2,V2);
6 swap(Ay, A2);  swap(V1, Vz2);

Of course, Wang’s algorithm only works fine if the modulus M is big enough.
Thus, in our situation we first have to use the chinese remainder theorem on all
our prime field examples to be able to apply the rational recovery algorithm. This

immediately yields:
1
2
—a——=0.
T

Again, it is easy to verify using computer algebra that this is indeed the correct
parameter.

9.1.3. A Reducible Case. To illustrate a problem which may occur because
of different algebraic numbers we consider the ideal I = ((2? —2)-(2%2 —3), y—1) C
Q[z,y]. Table on the next page lists all IF-rational points of I (i.e. points of I
with coordinates in IF},) over some small prime fields IF,,. Of course, the existence
of such points is related to the existence of square roots of two and three in these
fields.

It may happen that the prime field experiments take too much time, so that
we do not have enough primes p for which the maximum number of IF,-rational
points exists. E.g., in our example we found only one prime, namely 23, for which
all four points are IF,-rational. Such a problem does not exist in the case in which
we are in the comfortable position to be able to produce as many examples as we
wish. These cases are easy to solve, in particular if we already know in advance
which primes have good reduction and which not (see e.g., [ABKRO0] ): just take
a reduced Groebner basis of the ideal defining the points and lift the coefficients
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P \/LE \/ig z ideal #
11| — — | 2,-2 | -3 y+3, 2y +3x+2y—5, 22 —4 2
13 — — | 3,-3 | 2 y—2, 1y — 22+ 3y — 6, 22 + 4 2
17| 3, -3 —_— 5 y—5, 1y —5r+3y+2, 22 +8 2
19| — — | —— |8 1 0
231 9, -9 | —10,10 | 10 | y — 10, zy — 10z — 10y + 8, z* + 322 +4 | 4
29| — — | — — | -4 1 0
31| 4,4 —_— 9 y—9,zy — 9z +4y —5, 22+ 15 2
37| — — | =55 | 16 y—16, zy — 162 — 5y + 6, 2 + 12 2
4112, -12| — — | 6 y—6, xy — 62 — 12y — 10, 2% + 20 2
430 — — | — — | -6 1 0

TABLE 9.3. For some prime fields IF}, we show all IF,-rational points
of the ideal I = ((z* — 1)-(#* — %), y — 1). The column “#” lists
the number of these points and the column “ideal” shows a reduced

Groebner basis of the ideal describing them.

using Wang’s rational recovery algorithm. But in our applications, the bottle neck
of the algorithm are the experiments and we usually cannot produce many more
prime field examples in short time.

To solve the problem we simply choose only subsets of all primes which lead
to the second most number of IF)-rational points. In our example, the maximum
number of IF,,-rational points is 4 and the second most is 2. As § = 2, at least half
of the cases in which there are exactly two IF,-rational points has to come from the
same factor ((2? — 3) or (2% — §)) of the reducible polynomial of I.

There are six primes, 11,13,17,31, 37,41, with exactly two IF,-rational points.
Thus, for all (6?2) = (§) = 20 combinations of three of these primes we try to lift
their ideals in the same way as for the 65-nodal sextic. E.g., for the set of primes
1

{11,13, 37} Wang’s rational recovery algorithm already produces the guess 2% — 3
- % This guess can then be verified over the rational numbers using computer

algebra.

9.2. The Algorithm

We now describe the algorithm in the general situation. All main ideas are
already contained in the examples presented in the previous section. The purpose
of the algorithm can be formulated as follows:
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ALGORITHM 2.

Input: - An ideal F C Klaq,...,ak, o, 21,...,2T,], where the a; are con-
sidered as parameters. For each choice @; of the a;, this yields an ideal
Faras,...an € Klzo, z1,. .., 24

- A procedure checkInterest (ideal I) which checks if a given ideal
I := Fa—17a_27---,ﬁ 18 interesting.
Output: An ideal in Klay,...,ar] defining parameters ai,az,...,a; s.t.
Fai a3,...an is interesting in the sense defined by the specified procedure.

In our cases, each ideal I = Fy; g5, ar € Kl[zo,21,...,2,] is just one polyno-
mial describing a hypersurface in P™ for which checkInterest(ideal I) verifies
that its number of nodes is high. The algorithm consists of several steps:

Step 1: Prime Field Experiments. We run through all possible parameter
combinations over some small prime fields I, , I, ..., I, and use the procedure
checkInterest to pick the interesting parameter vectors. These possible combina-
tions may be restricted by giving a list of conditions.

If the original equation of the surface is defined over some algebraic extension
K := Q(a) of Q then we simply add « to the list of parameters and add its minimal
polynomial to the list of conditions on the parameters.

ExaMPLE 9.1. In our application, the prodeduce checkInterest will simply
compute the number of singularities of the given surface and return true if it is the
number we have been looking for or false if not.

Step 2: The Ideals over the Prime Fields. Foreach primep € {p1,...,pm}
we view the interesting parameter vectors as points in the parameter space and
compute the ideal I, describing all points by intersecting the point ideals. We
then compute a reduced Groebner basis of the I, to make the occurring monomials
unique.

In order to be able to lift the ideals to characteristic zero we first have to figure
out which of the modular ideals come from the same ideal in characteristic zero. To
do this, we sort the ideals I,,; first w.r.t. the number of interesting parameter points
they define and second w.r.t. the monomials which occur in the ideal. We pick the
set St with the greatest number of prime field ideals with the same monomials.

Step 3: Lifting the Ideal. Then we lift each coefficient occurring in the
reduced Groebner basis of the ideals in St using Wang’s rational recovery algorithm.
As indicated in the example of section on page [Tl this might lead to some
problems and require some more computations if different algebraic numbers are
involved. Such a situation can only occur if the variety in the parameter space is
reducible.

If all the coefficients occurring in the ideal can be lifted to characteristic zero
then we proceed with the next step.

If not then we go back to the first step and perform some new experiments. If
we have already obtained partial results then we may use these in order to speed
up the computations.

Step 4: Checking the Guess. Using the procedure checkInterest again
we now verify the guess which the lifting process has produced. If it is not yet the
correct one then we go back to the first step and perform some more experiments.
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9.3. Dihedral-symmetric Surfaces of Degree d < 6 with Many Nodes

As indicated in the introduction to this chapter, the algorithm described in the
previous sections reduces the construction of surfaces of degree d < 6 in P? which
have the maximum possible number of nodes to a triviality once we had the idea to
look for dihedral-symmetric examples:

Implementing a procedure checkInterest(ideal I) which checks if the sur-
face given by I has the correct number of nodes is easy. Then it only remains to
write down the Dg-symmetric (resp. Dy—1-symmetric) families of surfaces based on
Rohn’s construction (see section [[3J)).

For the concrete results we do not use any further geometric intuition, although
this might lead to much nicer results: In this section, we are only interested in a
proof of concept, i.e. in showing that our algorithm produces the correct results
even if we apply it in a very naive way. The computations were performed on a 1
MHz Mobile Centrino Laptop with 512 MB memory. In all examples, almost all the
time was used for the experiments. Although the equations are easy to compute,
we copied most of them together with the projectivities from [End96].

9.3.1. A Ds-symmetric 4-nodal Cubic. In degree d = 3, the family of
dihedral-symmetric surfaces based on Rohn’s construction is

3!,117!12 =p— q‘“’aZ,
where
p = a® —3xy® + 322w + 3yPw — 4w,
g = ar(z— agw))'z?

As we are only interested in projectively different surfaces, we may choose as := 1
3 ag
because f3* (z,y, Az, w) = ;1)‘ A (z,y,z,w) VX € C* (see [End96, p. 22]).
This leaves us with a one-parameter family fé“’l of three-nodal cubics.
It suffices to perform the experiments for all primes p € {5,7,11,...,29}. The

whole algorithm runs two seconds, including experiments, lifting and verification of
27
the result in characteristic zero. It finds the 4-nodal cubic f;* !

9.3.2. A Ds-symmetric 16-nodal Kummer Quartic. In degree d = 4, the
family is

fal,az,ag,tu a1,a2,as3,a4
4 )

=p—q
where

p = . (z3 — 3zy? + 32%w + 3y*w — 4w3) ,

a1,a2,a3,a4

1
_.Z
4

q (a1($2 + %) + ag2® 4 azzw + a4w2)2 .

Again, we are only interested in projectively different surfaces. Thus, because of

a—l,ksa Aasz, L
forereeti(p oy N2 w) = N2fPT TN (2, y,2,w) VA € CF we may choose

a1 = 1. In order to obtain only finitely many solutions we choose furthermore
a4 := 1. This leaves us with a two-parameter family f,;"*>“*' of 12-nodal quartics.
It suffices to perform the experiments for all primes p € {5,7,11,...,29}. The
whole algorithm runs nine seconds, including experiments, lifting and verification
1,(2)%, 521

of the result in characteristic zero. It finds the 16-nodal quartic f, (3)"= .
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9.3.3. A Ds-symmetric 31-nodal Togliatti Quintic. In degree d =5, the
family is

fa1,1121113,114,115 =p— qa1,a21a31a4,0«5,
where
p = 2° =5t +yHw — 102%y*(x + w) + 20(2? + y*)w? + Syt — 16w°,
2
g% = arz (a(2® 4 ) + az2® + aszw + azw?)
Again, we may choose ay := 1, a4 := 1. This leaves us with a three-parameter
family foth* "% of 20-nodal quintics.

It suffices to perform the experiments for all primes p € {11,13,17,...,31}. The
whole algorithm runs six minutes, including experiments, lifting and verification of
the result in characteristic zero. It finds the 31-nodal quintic f&*"*"% where the

a; are given by the ideal (2a; + 5, 20a3 + as + 6, a? + 2a5 — 4).

9.3.4. A Ds-symmetric 65-nodal Sextic. In degree d = 6, we take the
Ds-symmetric family

fa1,a2,113,114,115,116 =p— qa11a21a31a41‘157a6
where
p = w- (zs —5(z* + yMw — 10222 (z + w) + 20(x? + y?)w? + 5y — 16w5) ,
qal,...ﬂﬁ = ay ((Z _ agw)'(ag(x2 + y2) + a4z2 T+ aszw + a6w2))2
In order to obtain only finitely many solutions and as we are only interested in
projectively equivalent surfaces we may choose as := 1, aq := —1, a5 = 0. This
leaves us with a three-parameter family f5***"~ "% of 45-nodal sextics.

It suffices to perform the experiments for all primes p € {7,11,13,...,39}. The

whole algorithm runs 22 minutes, including experiments, lifting and verification of

the result in characteristic zero. It finds the 65-nodal sextic fg_ﬁ Lm0

9.4. Another D;-symmetric Septic with 99 Nodes

Without using any creative ideas, but just by following our algorithm, we wish
to recover the result p4, (7) > 99 which we found in chapter Blon page @3 We start
again with the 7-parameter family of all D7-symmetric septics

where

= - [2° =372y +572%y" — T4
Tz {(:CQ i y2)3 — 2822 (a2 + y2)2 I 24.24.(502 T yQ)} _ 96,7,
¢“ v = (24 asw) (a12® + axzw + azzw® + aaw® + (agz + arw)(2® + y2))2 .

Although we may choose a7 := 1, these are too many parameters to perform
a prime field search over the whole family in short time. So, we have to impose
some additional conditions. Either by looking at the examples in smaller degree or
by checking the geometry of some experiments over very small prime fields, it is
natural to expect that there should exist a 99-nodal septic S s.t. the plane curve
Sly=o factors into a line S, ; and a sextic S, ¢ with the property that S, 1 passes
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through three of the generic singularities of the construction (see section on
page [@7).

From some prime experiments we see immediately that there is in fact a one-
parameter family of such 99-nodal surfaces. Thus we may speed up our search by
requiring the line Sy ; to be a special one: S, 1 = = + ¢. This suffices to produce a
99-nodal septic surface using our algorithm as we will see below.

9.4.1. Computing the conditions. It is easy to translate the restrictions
above into algebra (in the following, we use the affine chart w = 1):

(1) The plane curve S|y—o € Q[z, 2] is zero on the whole line S, 1 = = + ¢,
ie. (S|y=0)|lz=—c =0. As (S|y=0)|z=—c is a polynomial of degree 7 in one
variable z this gives 7+ 1 conditions on the parameters aq, ..., a7 because
each of the coefficients has to vanish.

(2) The generic singularities are given by the intersection of the doubled cubic
Cly=o and the three lines L1 Ly L3|,=¢ (i.e., this is also a cubic plane curve).
The fact that the line Sy 1 = 2 + ¢ passes through three of these generic
singularities can be translated by simply substituting by —c in the two
cubics. When dividing each of the two cubic polynomials (C|y=o)|z=—c €
Q[z] and (L1LoL3|y=0)|e=—c € Q[z] by its leading coeflicient we get two
polynomials in one variable which should be equal. Thus, we get three
conditions on the parameters a,...,ar.

By taking all these conditions in one ideal I.,,q4s We see that we are left with
essentially two unknown parameters because the dimension of I..,,4s can easily
be computed to be two. It turns out that we can ideed express all parameters as
functions of two of them, namely ¢ and ag, by computing a lexicographical Groebner
basis of I.onds:

2 _ 1 C gl — Lt
a] = —64, ag = aic, as = —agC ayc’,
2 2
ay = —§a103 — 02, as = ¢, a7 = 1.

9.4.2. Experimental Result. When performing our algorithm on this two-

parameter family we find after 10 minutes:

2
1
02:—(?) , ag=0.

This simplifies the expressions for the other parameters:

7 7’ 7
We denote the ideal defining these parameters by 5.

4 4c 2\°
ay =56¢c, ax=—-, a3=— as=\=), as=c¢, ag=0, ar=1

9.4.3. Verification.

THEOREM 9.1. The surface Sq, ... q, of degree 7 has ezactly 99 nodes and no
other singularities if the a;, € Q(c) are as specified by the ideal Iso; in section[J1-3

PRroOOF. By computer algebra. In order not to have to compute in an extension
of Q (which is usually quite time-consuming), we first notice that I,; defines exactly
two points in the parameter space. Thus, dividing the multiplicity of the singular
locus of the surface S := Sg,,. 4, by two gives its total milnor number. The
following sequence of SINGULAR commands computes this:
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ideal sl = d4iff(S,x),diff(S,y),diff(S,z),diff(S,w);
I_sol = groebner(I_sol);

sl = reduce(sl, I_sol);

"milnor:", (mult(std(sl)) div mult(I_sol));

In a similar way, we can verify that these 99 singularities are indeed isolated points
and moreover have multiplicity one, i.e. they are all nodes. O

9.5. A Dy-symmetric Nonic with 226 Nodes

In exactly the same way as we constructed the 99-nodal septic in section B4 on
page[[TH, we can proceed to find a nonic with many nodes. We start with the family

gg ..... ag =p— qao,---7a9’ where

2mj 2mj
p:=2°-1I5_, [cos (%) x + sin (%) Y- Z}

= 2% — 3627y% + 12625y* — 84a3yS + 9xy® — 922 — 3625y22 — Hdatytz
— 3622952 — 9y82 + 1202523 + 36021y 23 + 3602y 2% + 120y°23
— 4322125 — 864x2y% 2% — 432925 4 5762227 + 576y%2" — 25622,

qao,...7a9 = (Z +a0w) . (a124 +a223w +a322w2 + G/4Z’LU3 + 0/511]4

+(a62* + arzw + agw?) (2* + y?) + ag(z? + 92)2)2

We may choose a5 := 1. After the use of the same geometrical assumptions
as in the case of the 99-nodal septic in the preceding section, we are left with a
four-parameter family. For this family the experiments take quite a lot of time,
S0 we try to guess another parameter. It turns out that the maximum number of
nodes which we find in ;3 using our algorithm is 226. From these experiments we
guess that there are 226-nodal nonics for as = 0 (similar to the result ag = 0 for
the 99-nodal septic). This reduces our problem to a search over a three-parameter
family. Nevertheless, the experiments take several hours. Finally, we get:

ag

THEOREM 9.2. The eight surfaces Sass := fo° " of degree 9 with

9aq ai aic
2 2 4
— 256 -1 -1 - -

ay ) as ]’ c 198’ ao c az 9

3aq 1 aic 1 21aq
= 0 = —— —_ — = — —_ —

as ) ag 1 M= az 1 + @3 16
and ag = % have exactly 226 nodes and no other singularities.

PRrROOF. By computer algebra. See proof of theorem O

The previously known maximum number of nodes on a nonic was 216, attained
by the surface of degree 9 from Chmutov’s series (section Ex1l on page HH). We now
have:

COROLLARY 9.3.
pa, (9) > 226.

Of course, in view of the fact that the 99 nodes even exist over the real numbers
it is natural to ask for the existence of a nonic with 226 real nodes. In analogy to
chapter B on page @8 we can write down a promissing family, but it has one more
parameter and we did not have enough time to perform the computation yet.



118 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIES

Notice that our 226-nodal nonic has one additional node on the rotation axes
{x = y = 0} in 9. This is similar to the case of septics where there exists one
additional node on the rotation axes in IF5.

9.6. Discussion

Unfortunately, we cannot predict a priori how long the algorithm will run for a
given family, but it is clear that it has to terminate some time if we neglect hardware
and software restrictions. It neither gives a proof of the non-existence of examples
which had not been found. Nevertheless, our algorithm has several advantages:

e The algorithm is highly parallelizable. Indeed, the bottle neck of the
method are the prime field experiments, and it is easy to distribute these
experiments over several machines.

e It produces partial results which can be used as guesses to speed up the
computations significantly.

Our method has certainly many applications in other areas of algebraic geom-
etry. We only mention a few cases connected to singularities in which it might be
useful:

e Dihedral-symmetric surfaces of degree d = 11,13,... with many nodes.

e Dihedral-symmetric surfaces with non-maximal numbers of nodes; e.g., it
is not clear which numbers of nodes may occur on octics (see section B3 on
page E3 on the defect).

e (Real) line arrangements of degree 9,11, ... with many critical points on
two levels (see chapter Bl on page [[9).

e Surfaces with many cusps, in particular quintics because the gap between
the maximum known 15 and the best known upper bound 20 is very large
(see section LT and chapter H).






Barth’s icosahedral-symmetric 65-nodal sextic. Shortly after its discovery in 1996,
Jaffe and Ruberman showed that 65 is indeed the maximum possible number of
nodes on a sextic surface in P3.



CHAPTER 10

Tables Showing the Current State of Knowledge

This chapter gives a tabular overview on the current state of knowledge on
the subject of hypersurfaces with many singularities. In all tables, bold numbers
indicate the cases in which the present thesis improves the previously best known
bounds.

At some places, there appear question marks. These are sometimes caused by
running time restrictions because the computation of the dimension of the tangent
space of the deformation functor of the nodal hypersurfaces can take a lot of time.

Another reason might be that we have simply not yet implemented the equation
of the hypersurface in SINGULAR. Sometimes, this task is not trivial or at least a
huge amount of work because some constructions are only given by vague or lengthy
arguments. In some cases (e.g. Kreiss’s construction, section EZH on page 26), it is
even not clear if the construction really works.

Once we have computed more numbers, we will place updated tables on our
webpage [Lab03al.

10.1. Nodal Hypersurfaces

In P? and P4, the best known constructions for large degree d are still given
by Chmutov’s construction from 1992, see section ELIl For n > 5 and large d, the
best known construction is our variant of Chmutov’s construction based on Breske’s
folding polynomials associated to the root system Bs, see section b6l

In the following tables, we give an overview on the currently best known bounds
for the maximum number of nodes for small n or d. The tables do not only show the
names of the persons who discovered the hypersurfaces. We also give the references
to the sections of this Ph.D. thesis in which we introduced the hypersurface and the
year in which it was discovered.

Furthermore, we give the dimensions of the space of infinitesimal deformations
and the obstruction space of van Straten’s deformation functor Def(X, ) (see sec-
tion EEB on page BI)). For shortness, we write t* for dim7T*(X,X(X)), i = 1,2,
throughout.

10.1.1. Nodal Surfaces in P3. We start with the most important table:
Nodal hypersurfaces in P?, table [T on the next page. As explained in the histor-
ical part of this work, this subject has a very long and rich history. The two bold
numbers, 99 and 226, indicate the cases in which the present thesis improves the
previously known bounds.
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d 13 (d) < # name, section, and year th | 2
3 4, Schlafli: 3 Chmutov: s. BTl 1992 1 0
s. [CIT, 1863 4 Schlifli: s. [CIT, 1863 0] 0
4 16, Kummer: 14 Chmutov: s. BTl 1992 5|0
s.[C2 1864 16 Fresnel, Kummer: s.[[2 1819/64 | 3 | 0
5 31, Beauville: 28 Chmutov: s. BTl 1992 12| 0
s. B3 1979 31 Togliatti: s. 211 1940 9 0
6 | 65, Jaffe/Ruberman: 57 Chmutov: s. BTl 1992 1] 0
s. L3 1997 63 Gallarati: s. 225 1952 5|0
64 Stagnaro: s. BT 1978 7007
64 Catanese-Ceresa: s. B3 1982 4| 0
65 Barth: s. 3 1996 3 0
7 104, Varchenko: 81 Chmutov: s. B8 1982 23| 0
s. B 1983 93 Chmutov: s. BT, 1992 11| 0
99 L.: s. Kf 2004 5| 0
8 174, Miyaoka: 128 Endraf: s. BT, 1996 28| 7
s. B.10, 1984 153 B. Segre: s. 4, 1952 707
154 Chmutov: s. BTl 1992 5 | 10
160 Gallarati: s. 25 1952 6 | 17
160 Kreiss: s. 26 1955 ? ?
165 van Straten: unpublished, 1997 | 1 | 17
168 Endraf: s. B, 1996 0| 19
9 246, Varchenko: 192 Chmutov: s. B8 1982 23 | 11
5. B 1983 216 Chmutov: s. BT}, 1992 7|19
226 L.: s. B3, 2005 7| 2
10 360, Miyaoka: 321 Chmutov: s. BTl 1992 2 | 53
s. B10, 1984 325 Kreiss: s. 28], 1955 707
345 Barth: s. L3 1996 01| 75
11 480, Varchenko: 425 Chmutov: s. BTl 1992 3|80
s.B7 1983 430 ? L.(conjecture): s. &Y 2004 707
12 645, Miyaoka: 576 Kreiss: s. 26, 1955 ? ?
s. 1T, 1984 576 Chmutov: s. BT, 1992 2 | 139
600 Sarti: s. 9, 2001 0 |161
13 829, Varchenko: 729 ? L.(conjecture): s. B8 2004 707
s. B 1983 732 Chmutov: s. BTl 1992 7 07?
14 1051, Miyaoka: 931 Kreiss: s. 28, 1955 ?
s. 10, 1984 949 Chmutov: s. T}, 1992 ?
d | ~4/9d%, Miyaoka: |~ 2d® Chmutov: s. Bl 1992 20 ?
s. B10 1984

TABLE 10.1. Nodal Hypersurfaces in P3
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10.1.2. Surfaces in P3 with Many Real Nodes. Except for d = 9, the
currently known bounds for the maximum number ji4, (d) (resp. 1% (d)) of nodes
on a surface of degree d in P3(C) (resp. P3(R)) are equal. The upper bounds are
the same as the complex ones listed in the previous table: Varchenko’s (section B.1)
and Miyaoka’s (section BI0).

d|1|2|3]4|5|6| 7|8 |9 |10|11]12]13 d
B (d) < |0|1]4]16|31|65|104|174|246| 360|480 | 645|832 | 2d(d — 1)?
B (d) > |0]1]4]16]31]65| 99 |168(216|345425|600|732| ~ Zd?

TABLE 10.2. The currently best known bounds on the maximum
number of real nodes.

10.1.3. Nodal Hypersurfaces in P*. Not many people have worked on
nodal hypersurfaces in P of large degree. To our knowledge, the general construc-
tions described in the historical part of this thesis are the only available results for
d > 6. Therefore, table is quite short.

For d = 6, 7,8, it would certainly be possible to apply constructions similar to
the one of van Straten’s 130-nodal quintic, e.g. by using our algorithm from chapter

2

d | ph (d)<| # name, ref., and year th| ¢2
3] 10 10 | Segre:s.[C5I, 1887 | 0| 0
45 41 Chmutov: s. 11 1992 | 4 | 0

45 | Burkardt: s.[C32 1891 | 0 | O

45 Goryunov: s. =4 1994 | 0 | O

5 135 120 | Chmutov: s. KT, 1992 | 1 | 20
125 Schon: s. B12, 1986 0|24

126 | Hirzebruch: s. BT 1987 | 0 | 25

130 | van Straten: s. 3, 1993 | 0 | 29

6 320 277 Chmutov: s. BTl 1992 0192
7 651 566 Chmutov: s. BT, 1992 | ? | ?
8 1190 1029 | Chmutov: s. BT, 1992 | ? | ?
9 2010 1720 | Chmutov: s. BT, 1992 | ? | ?
10 3195 2745 | Chmutov: s. BT, 1992 | ? | ?
d ? £d*| Chmutov: s. BT, 1992 | ? | ?

TABLE 10.3. Nodal Hypersurfaces in P*. The upper bounds are
given by Varchenko’s spectral bound (section B7).
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10.1.4. Nodal Hypersurfaces in P°. For nodal hypersurfaces in P° the
situation is similar to the one in P%: there are very few (or even no) results for
d > 6. But as our variants of Chmutov’s construction lead to new lower bounds,

table [ shows three of these variants.

Note that although our construction leads to a new lower bound it does not
improve the highest order term %dE’ of the polynomial describing the number of
nodes. Thus, this number in the bottom row of the table is not marked in bold.
But as one can see from the table, our construction improves the previously known

lower bounds quite a bit in small degree.

d |y, (d) < # name, ref., and year th| t2
3 15 15 Veneroni: s.[[53 1914 5] 0
15 Togliatti: s. 21l 1936 510

4 126 40 Chmutov: s. B8 50| 0
80 Chmutov: s. B8 20| 10

104 Chmutov/L.: s. Bl 2005 | ? | ?

120 Goryunov: s. B4l 1994 0| 30
5 456 320 Chmutov: s. B§ 15 | 119
392 L.: s. BB 2005 7| 2

420 | Hirzebruch/L.: s. B12 2005 | ? | ?
6 1506 810 Chmutov: s. 25 | 409
1035 Chmutov/L.: s. BTl 2005 ? ?

1179 L.: s. R, 2005 2| 2

7 3431 2430 Chmutov: s. ? ?
2583 Chmutov/L.: s. BTl 2005 ?

2781 L.: s. BB 2005 ?

8 7872 4320 Chmutov: s. B8 707
5488 Chmutov/L.: s. BT, 2005 | 7 | ?

6016 L.: s. BBl 2005 ?

9 14412 10240 Chmutov: s. ? ?
10368 | Chmutov/L.: s. BT, 2005 | ? | ?

11328 L.: s. B6T 2005 70 0?

10| 27237 | 12500 Chmutov: s. BR ?
16000 Chmutov: s. BX ?

20525 L.: s. GBI, 2005 ?

d ? Zd° L.: s. BETl, 2005 7007

TABLE 10.4. Nodal Hypersurfaces in P5. The upper bounds are
given by Varchenko’s spectral bound (section B7).
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10.1.5. Nodal Cubic Hypersurfaces in P". The nodal cubic hypersurfaces
are one of the very rare cases in which 4} (d) (and even " (d)) is known.

The first who showed this was Kalker in his Ph.D. thesis in 1986. As explained
in section BT on page HIl he simply wrote down equations which realize the upper
bound provided by Varchenko’s spectral bound (section B). Later, Goryunov
obtained the same number of nodes on cubics by a different method (section E4).

n wh (3) < # name, section, and year | t! | ¢2
3 4 4 Schlafli: s. [CTT], 1863 | 0 | O
4 10 10 Segre: s. [[A.], 1887 0] 0
5 15 15 Veneroni: s. L33 1914 | 5 | 0
15 Togliatti: s.[Z11, 1936 | 5 | 0
6 35 33 Givental: s. B9 ~ 1982 | 2 | 0
35 Kalker: s. B11, 1986 | 0| 0
35 Goryunov: s. B4 1994 [ 0 | O
7 56 54 Givental: s. B9, ~ 1982 | 2 | 0
56 Kalker: s. B11, 1986 | 0| 0
56 Goryunov: s. 4, 1994 | 0 | O
8 126 118 Givental: s. B9 ~ 1982 | 0 | 34
126 Kalker: s. BT11 1986 | 0 | 42
126 Goryunov: s. 4, 1994 | 0 | 42
9 210 189 Givental: s. B9 ~ 1982 | 3 | 72
210 Kalker: s. BTl 1986 | 0 | 90
210 Goryunov: s.EE4L 1994 | 0 | 90
10 462 414 Givental: s. B9, ~ 1982 | 0 | 249
462 Kalker: s. BTl 1986 | 0 | 297
462 Goryunov: s.EE4L 1994 | 0 | 297
n+1 n+1 .
n odd ([(n_;)/Q]) ([(n_;)/Q]) Kalker: s. BTl 1986 717
n+1 n+1 .
n even ([nJ/FQ]) ([Jz]) Kalker: s. (11, 1986 | ? | ?

TABLE 10.5. Cubics in P". The upper bounds are given by
Varchenko’s spectral bound, see section B on page Bl
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10.1.6. Nodal Quartic Hypersurfaces in P". Although Goryunov (section
E4) used the same method for constructing his quartics as for his cubics, the quartics
do not reach Varchenko’s upper bound (section BT).

Is Goryunov’s construction already the best possible or is it possible to produce
more nodes? It would be interesting to try to answer to this question, at least
for small n. As table [[LA shows, already for n = 5 there is a gap of 6 between
Goryunov’s lower bound and Varchenko’s upper bound.

d| ph (4)< # name, section, and year th] 2
16 16 Fresnel, Kummer: s. [[2 1819/64 0
45 24 Chmutov: s. B8 1982 0
45 Burkardt: s. [[A2, 1891 0
5 126 40 Chmutov: s. B8 1982 50 0
80 Chmutov: s. B8 1982 20| 10
104 L.: s. ERI, 2005 7| 2
120 Goryunov: s. 4, 1994 0| 30
6 357 160 Chmutov: s. B8 1982 36| 35
300 L.: s. B6&1l 2005 ? ?
336 Goryunov: s. 4, 1994 0| 175
7 1016 280 Chmutov: s. B8 1982 63| 77
560 Chmutov: s. B8 1982 28 | 322
804 L.: s. BE&T1 2005 ? ?
896 Goryunov: s. 4, 1994 0 | 630
938 Goryunov: s. 4 1994 ? ?
8 2907 1120 Chmutov: s. B8 1982 36 | 742
2337 L.: s. BE6T1 2005 ? ?
2688 Goryunov: s. B4 1994 0 | 2274
nl @ . 3\/”% 92n/3 ([2:/2]1“) Goryunov: s. 4] 1994 ? ?

TABLE 10.6. Quartics in P".

The upper bounds are given by
Varchenko’s spectral bound, see section B.7 on page
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10.2. Higher Singularities

Not much is known on the maximum number of higher singularities on hyper-
surfaces of degree d in P". Even in P?, there are only few results such as Barth’s
surfaces with many cusps (section EETT on page BH).

Our general constructions from chapter Bl on page &dimprove most known lower
bounds for the maximum number of A;-singularities on a hypersurface of degree d
in P", n > 3, significantly.

To our knowledge, there are almost no results for other singularities except
very general ones like those based on Viro’s patchworking method (section EETZ on
page B7).

10.2.1. Hypersurfaces with A;-Singularities in P3. The projective three-
space is still the field of most active research in the subject of hypersurfaces with
many singularities. Our results from chapter Bl on page [ improve most previously
known bounds as table [[{7 shows.

Note that even the cases of j > 2, d > 5 which are not marked in bold have been
overlooked for some time. These lower bounds come from Gallarati’s generalization
of B. Segre’s construction which we have been working out in section 23 on page

N3456789101112d

1 44 164 314 % 99104 16844 2% 345/360 4%0 600645 ~ 5/12/4/9'd3
ATt T T
3 A K55 TS P P P T 2 e
4 1/14/410415/20% % % 1%12110/152132/201 %7/60/5/36'd3

TABLE 10.7. Known upper and lower bounds for the maximum
number f14, (d) of singularities of type A;, j = 1,2,3,4, on a surface
of degree d in IP3.
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in higher dimensions.

10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE

10.2.2. Hypersurfaces in P" with A;-Singularities, j > 2,n > 4. Our
results from chapter Bl on page also improve most previously known bounds

In the lower two rows, table [MLA shows the asymptotic

behaviour of our two variants of the construction with many A;-singularities: One
uses Breske’s folding polynomials associated to the root system Bs, the other uses
those associated to the root system Ay which Chmutov already used in the nodal
case. Notice that for high degree d, Chm’"(F?) is better than Chm’"(F;**) for

n>5if j > 2.
n 3 4 5 6 7 8
Ao (> | 2 13 1 13 55 15
a7, (d) 2 9 72 6 26 384 128
Lon (@ z| 1 1 1 3 25 125
an Ha\0) = 72 8 96 32 256 1536
Lm(d) 2 7 23 7 23 19 1
an Ha\d) & 60 240 80 320 256 16
1 JonpAsyy | 3j+2 5j+3 7i43 7i44 195416 355419
dam M(Chm (Fd )) ~ 1 6j(G+1) 12j(j+1) | 185(j+1) | 245(j+1) 725(5+1) 1445(5+1)
1 jongmBayy o | 2441 3542 3j+2 5j+3 20j+15 35j420
dan M(Chm (Fd )) | 4G+ 85(j+1) 8j(j+1) 16j(j+1) | 64j(j+1) | 128j(j+1)

TABLE 10.8. The asymptotic behaviour of the number of Aj-
singularities on a hypersurface of degree d in P". Chm/"(F?)

is better than Chmj’”(Ffz) for n > 6.













Figure on the preceding pages: A cubic surface (dark) with one As-singularity and
two nodes. The brighter surface is its covariant of degree 9 which cuts out its
lines. See [LvS00] for more images and movies of cubic surfaces.
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Visualization
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Introduction

If a surface with many singularities is defined over the reals then it is sometimes
nice to have an image of it. But this is not the only reason why one would like to
have good visualizations of singular surfaces.

In chapter [ we show how to use our visualization tools SPICY and SURFEX to
construct good equations for all 45 topological types of real cubic surfaces with only
rational double points. Furthermore, in many cases visualization is a very good tool
to understand the geometry of some constructions in an intuitive way. And this can
help to construct new intesting examples based on these known ones.

Before that, we give a short overview of different methods for visualizing alge-
braic geometry ranging from classical approaches to modern interactive computer
software.



The swallowtail. Our SINGULAR library SURFEX.LIB is able to visualize this famous
surface correctly. It contains a real curve which is not contained in the real two-
dimensional part of the surface.



CHAPTER 11

Methods for Visualizing Algebraic Geometry

11.1. Classical Approaches

Since the early days of algebraic geometry, mathematicians visualize their ob-
jects of study. Drawings by hand are easy for curves and surfaces of degree d < 2. It
is even not difficult to draw curves of higher degree when computing many points and
other important data like the coordinates of their singularities and inflexion points.
Drawing images of cubic surfaces is already much more involved. Nevertheless, the
literature of the 19" century contains some very good visualizations. Some people
(e.g., Clebsch, Wiener, Rodenberg, and Klein) even produced real-world models of
algebraic surfaces of low degree as we already mentioned in section [LT.3 on page
These were mostly made out of plaster or wood. Of course, the production of in-
teresting surfaces of higher degree (d > 5) was almost impossible because of their
complexity. Models of algebraic surfaces were even produced and sold for high prices
(see [Sch1dl). But from the 1930’s on visualization of mathematics was frowned
upon for many years.

11.2. The First Visualization Software

Visualization entered back into the world of algebraic geometry in the mid-
1980’s. E.g., Fischer’s book on mathematical models appeared at that time; in
connection with this, some of the old plaster models were reproduced.

Shortly afterwards, the first software visualization tools have been developped.
Until now the one that produces the best images of singular algebraic surfaces is
still Endraf’s SURF [End03] the first version of which he implemented during the
writing of his diploma thesis. SURF is based on the raytracing method similar to
PovRAY. The latter is a much more general program which allows raytracing of any
real-world scene. But besides the fact that we personally prefer the images produced
by sURF, Endrak’s software has the advantage of being quicker. This is important
for our application as we will see later. SURF was even used to construct a model
of the Clebsch Diagonal Cubic at Fischer’s university at Diisseldorf which is a few
meters tall (see [Kae99]): The constructors used the software for drawing many
plane sections of the surface which served as the basis for the modelling process.

Another promissing approach to the visualization of algebraic surfaces is trian-
gulation. In the smooth case, it is not difficult to implement a good algorithm for
this purpose. In the singular case, the best existing software is still Morris’s software
ASURF from the LSMP package [Mor03] for which he implemented a web-frontend
using JAVAVIEW (see [Pol01]). His program is based on heuristics and does not
produce satisfactory results in many cases. To our knowledge, recent ideas on the
triangulation of singular surfaces, e.g. by Mourrain’s group in Nice, have not been
implemented yet.
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Together with so-called 3d-printers the triangulation software allows the machine-
production of real-world models. To our knowledge, this technique was first used
by mathematicians-sculpturs like Helaman Ferguson, Bathsheba Grossman, Georg
Hart. Recently, the architect Jonathan Chertok reproduced the whole Rodenberg
series by this method based on the equations communicated to him by several math-
ematicians including the author. In order to make the production of such models
easier, we implemented an extension for SURF based on Johannes Beigel’s version
of the program which uses the triangulation library GTS. Unfortunately, this soft-
are is not in a publishable state yet, but it already allowed us to produce several
examples, e.g. the first model of a 30-cuspidal sextic surface with the symmetry of
an icosahedron and a reproduction of a Clebsch diagonal cubic (fig. TT.T)).

FIGURE 11.1. A reproduction of Clebsch’s diagonal cubic surface
using a 3d-printer based on the data produced using our extension
of SURF.

11.3. Interactive Software

With our interactive visualization software SPICY and SURFEX we aim to go one
step further: The user can include the coordinates of points of a plane geometry
construction into the equations of algebraic plane curves and surfaces. If the user
then moves the points then the images of the algebraic varieties change accord-
ingly. This makes the interactive visualization of deformations and other processes
possible.

11.3.1. SricY — Interactive Constructive and Algebraic Geometry.
The core of the computer software SPICY (up to now only available as a pre-version
from [Lab03bl) is a constructive geometry program designed both for visualizing
geometrical facts interactively on a computer and for including them in publications.
Its main features are:

e Connection to external software like the computer algebra system SIN-
GULAR ([GPSO01]) and the visualization software SURF ([End03|) which
enables the user to include algebraic curves and surfaces in dynamic con-
structions.

e Comfortable graphical user-interface (cf. fig. [T.2) for interactive construc-
tions using the computer-mouse including macro-recording, animation,
etc.

e High quality export to .fig-format (and in combination with external
software like XFIG or FIG2DEV export to many other formats, like .eps,
.pstex, etc.).
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We implemented the first particular example of such a tool (called XCSPRG,
downloadable from [LvS00]) during the writing of our diploma thesis under the
direction of D. van Straten. Van Straten had the idea that SURF should be fast
enough to be able to recompute two or three images of cubic surfaces per second.
In this way, he wanted to be able to manipulate six points in the plane and see the
changing surfaces at the same time. This is exactly the purpose of XCSPRG.

After having received my diploma I developped SPICY as a much more general
and powerful tool. Let us illustrate its usefulness again with the example of cubic
surfaces:

EXAMPLE 11.1. We take three pairs of two points in the plane each pair con-
nected by a straight line (see fig. [LA). It is well-known that the blowup of the plane

E=/EY object browser B il < 8] [m] X9 |
= - v obict_mas_sodal_viow_clizs o el
ﬂ il file mode new object macres special view colorize object \

PO (58.5,20.0) 5 \ // ‘Ih:l:r%?;Q 1
BiEr=es o SERE
B || e (=22
< J2cnoen N T 2.2 2

P3 (-55.0.89.0) 4 \
* |P4(76.0-330) .

S (17.0,71.5) i //

EquO (PO,P1,P2,P3,

L3 (P2,PS)

11 (P5,P2)
L2 (P5,n1)
L3 (P3,P5)
14 (P5,P4)
L5 (P2,P0)
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FIGURE 11.2. A screen shot of the SPICY user interface showing
three lines, that meet in a point and the corresponding cubic sur-
face, which contains an Eckardt Point (3). Buttons 1 and 2 are
used to draw the lines and the surface, respectively.

in the siz points yields a smooth cubic surface if neither three of the points are on a
common line nor siz of them are on a common conic. Furthermore, the blowup is
bijective outside the siz base points, and straight lines connecting the base points are
mapped to straight lines on the cubic surface. Thus, in order to construct a cubic
surface with an Eckardt point (i.e. a point in which three lines meet) we only have
to manipulate the siz base points until the three lines in the plane meet in a point

(see [LxS03) for details).

11.3.2. SURFEX — Intuitive Visualization, even in the Internet. We of-
ten simply need a good and easy way to visualize one or more surfaces and/or curves
on them. Basically, Schmidt’s new version 1.0.3 of Endrafl’s program SURF can al-
ready produce the required images, but it has some major deficiencies concerning
the usage. First, one needs to know SURF’s programming language. Second, rota-
tion within SURF is far from intuitive. The purpose of our tool SURFEX [HLMO5|
is exactly to fill in this blank. Thus, SURFEX is basically an easy-to-use frontend
for SURF which allows intuitive rotation, scaling, and usage in general, even in the
internet. We demonstrate its usefulness at a concrete example in the next chapter.

11.3.3. SURFEX.LIB — a SINGULAR Interface for SURFEX. The current ver-
sion of SURFEX has the problem that it uses the raytracer SURF for visualizing
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algebraic surfaces. And the raytracing technique is not able to visualize real one-
dimensional parts of a surface such as the handle of the Whitney umbrella if it is
not specified as the intersection of surfaces.

FIGURE 11.3. SURFEX.LIB can also visualize surfaces with real
curves which are not contained in the real two-dimensional part
of the surface such as the swallowtail.

In combination with SINGULAR, this problem can be solved. SINGULAR can
compute the singular locus of a given surface and can then pass those surfaces
which cut out the singular curves to SURFEX. E.g., the following code produces a
correct image of the swallowtail (see fig. [T3):

LIB "surfex.lib";

ring r = 0,(x,y,2),dp;

poly swallowtail = -4*y~2%z~3-16*%x*z"4+27*y~4
+144%xxy~2%z+128%x " 2%z~ 2-256*x"3;

plotRotated(swallowtail, list(x,y,z),2);






The four-nodal Cayley cubic and its nine lines. The facts that a cubic cannot
contain more than four singularities and that any four-nodal cubic contains exactly
nine different lines was already known to the geometers of the 19t century.



CHAPTER 12

Ilustrating the Classification
of Real Cubic Surfaces

In this chapter we demonstrate the usefulness of our visualization tools SpiCcy
and SURFEX for working with algebraic surfaces. Our example is the very classical
subject of real cubic surfaces. We will see that the use of our software does not
only allow us to visualize existing surfaces, but also helps to produce equations of
surfaces (see also [LvS03|, [HLO5], [LvS00]).

In 1987, Knérrer and Miller [KIM87] classified all real cubic surfaces in P? with
respect to their topological type. Roughly, the authors say that two cubic surfaces
have the same topological type if they can be transformed continuously into each
other without changing the shape. A similar classification had already been given by
Schldfli in the 19*® century [Sch63], but Knorrer and Miller obtained more precise
and more complete results. Some of these are based on ideas of Bruce and Wall
[BWT79] who gave a modern treatment of the complex case.

Here, we restrict ourselves to cubic surfaces with only rational double points
which is the most interesting part of the classification. We give an explicit real
affine equation for each class in their list (see table on page [[47). These allow
us to draw images for each class showing all singularities and lines (see fig. [Z3]
[[Z4 [Z3) using our software SURFEX [HLMO5].

In the already cited article, Schléfli also gave equations for each of his types
and described their construction in a very geometric way. In many cases, it is easy
to find real affine equations from these with the help of our tool SURFEX. But in the
other cases, there are too many free parameters and we have to use other methods
such as the deformation techniques described by Klein [K1e73].

To perform these deformations explicitly, it is useful to have a visualization
software at hand. We explain how to use our software SURFEX for such purposes.
SURFEX can be used directly on our webpage [Lab03al. It can produce high quality
raytraced images for publications in color or in black/white. Indeed, all the images
in this chapter are produced using SURFEX in connection with SINGULAR [GPS01].
This computer algebra program has been used to compute a primary decomposition
of the ideal (f, Fy) describing the 27 lines of f with multiplicities which allowed us to
draw the lines on the surfaces using SURFEX. Here, Fy denotes Clebsch’s covariant
of degree 9 (see, e.g., [LyS03], appendix 4.1] for a determinental formula for this
covariant).

The webpage www.CubicSurface.net [LvS00] contains some movies and more
images. SURFEX [HLMUO5| uses S. Endraf’s SURF [End03] to produce the high
quality raytraced images of the surfaces and R. Morris’s LSMP [Mor03] and
K. Polthier’s JAVAVIEW [Pol01] to allow rotation and scaling of a triangulated
preview.
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Several mathematicians have already given real affine equations for particularly
interesting cubic surfaces such as the Clebsch Diagonal Surface or the four-nodal
cubic surface. For some examples of Rodenberg’s series there also exist affine equa-
tions. But this series is restricted to only a few types of cubic surfaces, and several
of Rodenberg’s models do not show all the projective real lines because some are at
infinity. In fact, this was Rodenberg’s intention: His aim was to give an overview
of the possible singularities on cubic surfaces and the possible affine views of the
projective surfaces.

Here, instead, we do not show different affine views of the same surface. We
choose real affine equations that allow us to show all singularities and lines in a
single image (or a single real-world model if we use 3d-printers).

12.1. Knérrer/Miller’s 45 Types of Real Cubic Surfaces

To state Knorrer/Miller’s classification of real cubic surfaces with only rational
double points as singularities we need the following definition. For details and
additional results we refer to their article [KIM87].

DEFINITION 12.1 (p. 54/55 in [KMB87]).

(1) um denotes the number of (—2)-curves defined over R, in the dual resolution
graph of a rational double point that is defined over R. v denotes the
number of pairs of non-intersecting complex conjugate (—2)-curves in this

graph.

Name Old Name Normal Form Cozeter Diagram LR v

Ay Borya 2Rl g2 52 o o, 2k 0 E=1,2
A;_k ng+1 $2k+1 + y2 —|— Z2 o—e O k -1 ]C =1
A3, Ba 2k 4 y? = 22 , 2k—1 0 E=2,3
A;kal ng ka - y2 - 2,’2 o—eo—o 1 k -1 k =2
AT Co x? + y2 — 22 ° 1 0

Ay Ca 2?4 y% 4 22 . 1 0

Dy  Us 22y —y? - 2? '—‘<: 4 0

Df  Us 2y +y° 422 '—< 2 1

Dy Ur 2y +yt - 2° '—'—'< 5 0

Eg Us 23 4yt — 22 6 0

TABLE 12.1. The types of singularities occuring on real cubic sur-
faces, their normal forms, their Coxeter diagrams, and the num-
bers ugr and v.

(2) Let X be a sequence of siz points defined over R in almost general position
in P2(C) in the sense of [Dem80, p. 39]. Then there exists r(X) € Iy,
s.t. X consists of 2r points that are invariant under compler conjugation
and 6 — 2r pairwise complex conjugate points. We call r(X) the reality
index of X.

(3) Let X be a cubic surface in P(C) defined over R with only rational double
points. The reality index r(X) of X is defined as follows: Let X denote
the desingularization of X and X (%) the blowup of P?(C) along X. Then,
r(X) =r(%), if)? >~ X (X) for a sequence ¥ of siz points in almost general
position in P?(C). Otherwise, r(X) = —1.
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Using this notion it is possible to compute the number of lines on a real cubic
surface:

THEOREM 12.1 (Satz 2.8 in [KIMB8T]). Let X C P3(C) be a cubic surface defined
over R with only rational double points as singularities. Suppose that the real part
Xr C P3(R) of X has k singular points. Denote by ugr(X) the sum of the ugr for
these singular points and by v(X) the sum of the v of all singularities on X. Then
the real part Xg contains exactly [(XR) lines, where

(2+2r(X) — pr(X))(1 + 2r(X) — pr(X))
2

(12.1) I(XR) = —(r(X)-2)+k—v(X).

For a cubic surface X C P?(C) we can read the topology of its real part
Xr C P3(R) from the reality index. E.g., the five smooth cubic surfaces, clas-
sically denoted by Fi, Fy, ..., F5 (see [Segd2]), are classified by the reality index,
e.g., r(Fs5) = —1.

EXAMPLE 12.1. We illustrate the previous theorem using our software SPICY:
We construct five points on a circle and another point. Furthermore, we write
a SINGULAR. procedure which computes the equation of the cubic surface and the
lines on them (this can be done by only computing 3 x 3 determinants, see e.g.
[LyS03]). We can now tell SPICY to recompute the equation and then SURF to
draw the corresponding image each time one of the siz points has been moved (see
figure[IZ, for details we refer to [LvS03)|). Using Knorrer/Miller’s formula [IZ1),
it is easy to compute the number of lines for the surface X in the leftmost figure.
This one is smooth, i.e. k = ur(X) = v(X) =0, and all the siz points are real, i.e.
r(X) = 3. By the formula, X contains [(X) = 27 real lines (which is also easy to
see by other means).

] Po

Ps Ps Ps

FI1GURE 12.1. The blowing-up of the projective plane in six points,
such that all six are on a common conic, is a cubic surface with an
ordinary double point. Note the changing of the lines, when we
drag the point P,. When P, lies on the conic through the other
five points, 2 - 6 lines meet in the double point (1b — 3b) and six
pairs of two lines coincide (1a — 3a).
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Now let the sizth point also be on the circle as in the rightmost figure. Then it
is well-known that the corresponding cubic surface develops an A] -singularity and
that twelve of the 27 lines pass through this ordinary double point and coincide in
pairs. This development can be visualized interactively using SPICY by moving the
sixth point slowly. According to table [[Z1] on page ur(Y) =1, v(X) =0 for
the 1-nodal cubic surface Y and of course k = 1. Formula [IZ1) thus gives 21 as
required.

We can now state Knorrer/Miller’s main result on cubic surfaces with only
rational double points:

THEOREM 12.2 (Classification, Liste 4 in [KIMS8T7]). Let X C P3(C) be a cubic
surface defined over R with only rational double points and let Xg = XNP3(R) be its
real part. Then the topological type of X is one of the 45 types given in table[IZ4 on
the facing page. If X has exactly 3A; singularities and X contains exactly 12 lines
(no. 18/19 in the table) then its topological type can be determined by prop. IZ3
below. Otherwise, the topological type of X is determined by its singularities, its
number of lines, and the reality index r(X).

To explain how to distinguish between the topological types 18 and 19, we need
Knorrer /Miller’s notion of a configuration type of an A7 singularity. We only give
a sloppy definition and illustrate it using SURFEX, see [KMS87, p. 63] for details.
For this local study we have to work in affine space:

For an A] singularity, the tangent cone is of the form 22 + y* — 2%, This cone
intersects the cubic surface X in a curve of degree 2-3 = 6, which consists in fact of
six lines, counted with multiplicities. Knorrer /Miller describe such a configuration
by a small circle together with six points (counted with multiplicities) because a
small real sphere around the singularity intersects X in two small real “circles”
(fig. on page [[48). On each of these circles there lies one point of each of the
real lines. Therefore, Knorrer/Miller denote a pair of complex conjugated lines by
a point in the center of the circle, the real points are drawn on the circle in the
correct order. Different such configurations correspond to cubic surfaces of different
topological types.

EXAMPLE 12.2. Example (a) is a configuration with one real point of multiplicity
2, two real ones of multiplicity 1, and two complex conjugated ones. The other two
examples show two doubled and two simple points (see fig. [Z2):

(a) @ o (b) @ (KMis),  (c) @ (KMo). O

PrOPOSITION 12.3 (Topological Types 18/19, p. 63 in [KMR&8T]). If a cubic
surface X has exactly 3A] singularities and contains 12 lines then X has the topo-

logical type 18 if the singular points have a configuration of type (example

[Z2 (b)). Otherwise, the AT singularities of X have a configuration of type
(example MZA (c)) and X has the topological type 19.
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Name Sp. Cl. Sing. r | Equation
KM; I 12 ¢ 3 27 KMoy + 3(2® +y° — 2%)
KM, 1 12 ¢ 2 15 KMor + £((2 +1)? — 27)
KM; I 12 ¢ 1 7 KMar+ 2((24+1)* + (z — 1)?) — 4y?
KMy I 12 ¢ 0 3 KM; -4
KM; 112 ¢ 1 3 KMar — 2((2+ 1) + 2?)
KMs II 10 A7 3 21 KMoy + 2(z? + y?)
KM~ II 10 A7 2 11 KMoy + 2% + ¢/?
KMs II 10 A7 1 5 KM — 4y?
KM, I 10 A7 0 3 KM —3(z? +y?)
KMo II 10 Ay 0 3 pc+(z+1)27
KM, IV 8 247 3 16 KMar + 32
KM, IV 8 247 2 8 KMoy + 22 —Lz+3)?
KM13 IV 8 214; 1 4 KM27 — y
KMi4 II1 9 AQ_ 3 15 KMy + (y )
KMis III 9 A; 2 7 pl+2°— 22(17 )= L(x—-y)?
KMle 111 9 A2_ 1 3 KM43 - y
KM~ m 9 Af 0 3 pc+2®
KM;s VIII 6 3A7 3 12 KMys + 2%(z + 1)
KMy VIII 6 3A7 3 12 KMus + 227
KMy VIII 6 3A7 2 6 KMoy — 22
KMoy VI 7 A7A7 3 11 pl+2°+22(x+y—2)+ &(z— 1)
KMas VI 7 A;A7 2 5 pl+2°+2%(x +y) Lz —-1)?
KMas vV 8 Ay 3 10 wnyr(erz)( (22— (), w=1-2
KM24 V 8 A; 2 4 KM32 IOOZ ( )
KMos Vv 8 AS_ 1 2 KMss + — 100 ( )
KMoz vV 8 Af 1 4 222+ 95w+ 22 — 22 — 4%, w=1—y
KMay; XVI 4 4A7 3 9 4(pc+ 3) +3(2 +y°) (2 — 6) — 2(3+ 4z + 727)
KMas XIII 5 A;247 3 8 KMuys +2%(x+2)
KMo IX 6 2A2_ 3 7 KMys + (l‘ — 1)
KM30 IX 6 214; 2 3 KM43 (x - 1)
KMa: X 6 AJAT 3 7 wxzf(erz)(x -y, w=1-z
KM3, X 6 A;A7 2 3 wry— (x+2)(x*+y?),w=1—z
KMss VII 7 Ay 3 6 wey+yiztyr? -2 w=1-z—y—=z
KMsy VII 7 Ay 2 2 wry—ylztyrP -2, w=1-z—y—z
KMs;s XII 6 Dg 3 6 (z+y+2)fwtayr,w=3i1-z—y—2)
KMss XII 6 Dj 1 2 @+y+2w+ @ +y’)z,w=11-2-y—2)
KMs; XVII 4 247;A7 3 5 KMys+ (z—1)22
KMss XVIIT 4 A;247 3 5 wrz+y*(z+2),w=2(14+z—y+2)
KMso XIV 5 A;A7 3 4 wrz—y’z+ 22y, w=21(1—y—2)
KMyo XI 6 A; 3 3 wxz+y2z+x?’fz3,w:17x
KMy XI 6 Ag 2 1 wez+y’z+23+23 w=1
KMyo XV 5 Dy 3 3 wx2+y22+xz2, w=1+zx
KMs3 XXI 3 345 3 3 t+2°
KMy XIX 4 A;A7 3 2 wrz—vy’z—a%w=1-2
KMys XX 4 FEj 3 1 22w—a+yd,w=1—-z—y

TABLE 12.2. Our nice real affine equations for Knorrer /Miller’s 45
The abreviation Sp. denotes Schlafli’s species

topological types.

of the surface, CI. its class, Sing. its singularities. r denotes the

reality index and [ the number of real lines on the surface.
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F1GURE 12.2. The configuration of the lines cut out by the tan-
gent cone at one of the three A; singularities of our surfaces with
topological types no. 18 and 19. For each of the surfaces, we show
two views (a), (b) from different angles. The white lines have mul-
tiplicity two, the black ones have multiplicity one. The figure above
illustrates how SURFEX can draw curves on surfaces using the cor-
responding feature of SURF. To draw the two doubled white lines,
we computed the equations £4, £5 cutting these out on the surface
using SINGULAR. Then we chose the numbers of the equations from
the drop down menu in the row called C2 and selected the color
white.

12.2. Constructing Nice Real Affine Equations

12.2.1. Nice Equations. By a nice real affine equation f for a given topo-
logical type ¢ we mean an equation, s.t. its projective closure f has the required
topological type and s.t. the plane at infinity neither contains a singularity nor a line
of f. It has also to be possible to see all its singularities and lines in a single picture
(modulo guessing using symmetries). This is not a precise definition. Nevertheless,
we formulate our main result in the form of a theorem:

THEOREM 12.4. For each topological typet € {1,2,...,45} of real cubic surfaces
with only rational double points there is a nice affine equation KM; in the sense of
the preceding paragraph.  The equations KM, are given in table IZZA on page [T{7]

and the corresponding pictures are shown in the figures [IZ.3, [IZA The colors
of the lines indicate their multiplicities.

REMARK 12.5. For a nice equation for a given topological we do not require the
greatest possible symmetry because we want the equations to be generic in the sense
that the configuration of the lines on the surface should not be too special. E.g., the
Clebsch Cubic Surface has 10 so-called Eckardt Points in which three of its 27 real
lines meet, but a generic cubic surface with 27 lines does not have any such point.
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FiGurRE 12.3. The surfaces KM;i,...,KMi5. The colors of the
lines indicate their multiplicities: H 1, W2, W3, W4, 5
m6, 18 W9, 10, W12, W15 W16, W 27.
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FIGURE 12.4. The surfaces KMysg, ..., KM3g. The colors of the
lines indicate their multiplicities: W1, W2, W3, W4, W5
me6 8 WY, 10, W12, W15 W16, W 27.
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FIGURE 12.5. The surfaces KMs1,...,KMy5. The colors of the
lines indicate their multiplicities: W1, W2, W3, W4, &5
m6, 18 W9, 10, W12, W15 W16, W 27.
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REMARK 12.6. Schlifli orders the cubic surfaces first by their class and then
by the worst singularity occuring. This differs from Kndrrer/Miller’s order which
is first by the sum of the Milnor numbers of the singularities and then by the worst
singularity occuring.

In the following subsections we describe how to construct such surfaces.

12.2.2. Via Projective Equations. For the projective case, Schlifli already
gave equations in [Sch63|. He describes in a very geometric way how to construct
them. In [Cay69], Cayley gives the same equations again and computes a lot of
additional data connected to the surfacesf]

To obtain a nice real affine equation from one of Schlifli’s equations is an easy
task for most topological types with higher singularities (A3 or higher): We just
have to choose a good hyperplane at infinity and maybe some constants which is
not difficult using our tool SURFEX:

EXAMPLE 12.3. Let us take the equation wxz + 32z + 2% = 0 given by Schlifli
[Sch63| p. 357] for a projective cubic surface with an Ay and As singularity. The
choice w =1 — z gives our affine equation KMyy.

For those surfaces with only A; and As singularities, this method does not work
well because of the great number of free parameters. In this case, we can either write
down the equation directly (section TZZ3)), or we can use a deformation process
(section MZZA) already described by F. Klein in [KIe73].

12.2.3. Direct Construction. In some cases, it is easy to write down a nice
real affine equation for a topological type directly using symmetry. For this purpose,
we will use the three plane curves shown in figure 26

L
> P
™~

tl =23 + 322 — 3ay? + 3y* — 4 pc:=tl+4 pl:i=(z—-1)(y—1)(z+y)

FIGURE 12.6. Three plane curves, useful for constructing nice
equations for cubic surfaces.

EXAMPLE 12.4 (Constructing KMys with three A, Singularities). We take the
polynomial tl defining three triangle-symmetric lines (fig. [ZA) in the x, y-plane and
add the term z3: KMys = tl + 23. At each intersection point of the lines tl, this
gives a singularity of type A, with z-coordinate 0, see fig. [Z&(a).

The four-nodal surface KMy7 can be constructed in a similar way. This and
a lot more information on nodal surfaces with dihedral symmetry can be found in
S. Endrafs’s Ph.D. thesis [End96|. The following example uses a plane curve with a
solitary point. In the same way we obtain the surface KMag with an A7 singularity.

1Attention, Cayley’s list on p. 321 contains some typos.
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ExampPLE 12.5 (Constructing KMo with an Aj Singularity). To construct a
surface with an Ay Singularity which has the normal form x? + y? + 2% we start
with the triangle-symmetric plane cubic pc (fig. IZA on the preceding page). The
origin is a solitary point (i.e., a singularity with normal form x°® + y2). Thus the
surface pc+ 22 has an Ay singularity with normal form x° +y?+ 22 and is triangle-
symmetric. To obtain the desired affine topology we require a third root on the
{x =y =0} azes at z = —1: KMy = pc + (z + 1)-22.

12.2.4. The Deformation Process. Klein’s strategy for obtaining surfaces
with fewer singularities from surfaces with many singularities is based on the fact
that any singularity on a cubic surface can be deformed separately.

By the definition of a singularity, the origin can only be a singularity of an
affine surface f if the tangent cone of f has degree at least 2. Thus, in order to
smooth an isolated singularity at the origin, we can simply add a term of degree
1 or 0. But which terms can we add to the equation of f without changing the
type of a singularity at the origin? For A; singularities, this is very easy: These
singularities are characterized by the fact that their tangent cone also defines an A;
singularityE So, we can add any term of degree greater than two and any term of
degree two whose coefficient is small enough. B.g. z? +y? — 2% + {522 + fay + 23
has a singularity of type A at the origin.

Using the preceding facts we can deform a cubic surface with four singularities
of type A into one with only three such singularities:

ExAMPLE 12.6 (Smoothing one of four A; Singularities). Let KMay; be the
cubic surface with four A7 -singularities (see table [ZA on page [I{7A). Three of its
singularities lie in the plane {z = 0}. Using SURFEX, it is easy to find an ¢, s.t. the
surface KMoy + £22 has the desired topology (see fig. [Z0):

Go to the SURFEX web-page [HLMOB|, start the SURFEX program, and enter
the equation of KMar. Then add a term +0.1¥z°2 and check the permanently
checkbox — this will premanently recompute raytraced images of your surface. Drag
the computer mouse over the green ball to rotate the surface until you see all sin-
gularities. You can scale the image by pressing s on your keyboard while dragging.
Now your SURFEX screen should look similar to fig. [Z7 on the next page. The
singularity in the middle has been smoothed in such a way that the neighborhood of
the singularity looks like a hyperboloid of one sheet. Adding -0.1+z°2 leads to a
neighborhood which looks like a hyperboloid of two sheets. a

It is a little more subtle to keep singularities of type A} or A;r, j > 1, while
deforming others. Forgetting about the sign for a moment, these singularities have
the equation 277! +y% 4 22 in a suitable coordinate system. A;,j > 1, singularities
are characterized by the property that their tangent cone is of degree two and
consists of the union of two different planesE

Let f be a polynomial in three variables z,y, z defining a singularity of type
A;,j > 2, at the origin. By the finite determinacy theorem (see, e.g., [Dim8&7]),
we can add an element of the ideal I := m?.J; to f without changing the type

2This is also the reason why the geometers of the 19t century called the A; singularities
conical singularities or singularities of type C2. Other names are proper node, ordinary double
point.

S3This is the reason why the classical geometers called a singularity of type A; a biplanar node
Bj1. A singularity whose tangent cone consists of a single multiple plane was called a uniplanar
node.
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FI1GURE 12.7. Smoothing one of the four singularities of the cubic
surface KMo7.

of the singularity. Here, m denotes the maximal ideal (x,y,z) of the origin and
thus m? = (22, 2y, vz, 9%, yz,2%). Jy:= (%, g—i, %) is the so-called jacobian ideal

generated by the partial derivatives of f.

EXAMPLE 12.7. We take the singularity of type A; at the origin, defined by
fi=a"+y?*—2% = 0. Its jacobian ideal is J; = (x3,y, 2). If we choose g1 := zy € m?
and g2 ==y € J; we get g := g1go = xy>. Then f + g still defines a singularity of
type As at the origin. Furthermore, f+cg is an A5 singularity for € small enough.

We now come to the global situation of a cubic surface f with only isolated
singularities of type A;,7 > 1. The following example describes how to use the
techniques above to deform some of its singularities while keeping others:

ExXAMPLE 12.8 (Deforming two of three A5 Singularities to A] Singularities).
We start with the surface KMys which has exactly three singularities of type A5
(fig. @ZB(a)). The surface tl + 23 + 22 (fig. IZB(b)) has three singularities of
type Al at the same coordinates, because the tangent cone is a cone of the form
22 — y? + 22 locally at each of these points. One of these singularities has the
coordinates Q := (—2,0,0). To get a surface with a singularity of type A5 at Q) and
two singularities of type A7, we need to adjust the construction slightly.

Our general remarks from the beginning of this subsection tell us that we have
to look at the jacobian ideal Jxwm,, at Q. Owver the rational numbers, SINGULAR
gives the following primary decomposition: Jxm,, = (7,y,2%) N (x —1,5% —3,2%)N
(x +2,y,2%). Locally at Q, the relevant primary component is (v + 2,y, 2%). We
choose E := 1 +2 € (v +2,y,2%). As 2? € m?, we then know that KMy3 + 2? - E
has a singularity of type Az at Q.

Locally at the other two singularities (which both have x-coordinate 1), E takes
the value 1 + 2 = 3. Thus, at these singularities, KMy3 + 22 - E behaves like
KMy3 + 22 - 3, which has A] singularities at these points as already seen above.

To check that our choices of planes and constants were reasonable and to un-
derstand the construction a little better, we can again use SURFEX. We type the
equation of KMys into SURFEX as f1. Then we add another two equations using the
add eqn button and choose f2 to be x+2 and f3 to be z. If the permanently check-
box is activated we already see the three surfaces in one picture. When adjusting the
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FIGURE 12.8. Deforming the surface KMy3 (image (a)) with three
singularities of type A; into KMgg (image (¢)) with one such sin-
gularity and two A singularities.
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colors by clicking at the right of the equations, we get a result similar to fig. [Z38.
We can hide some of the surfaces by deselecting the checkbox at the right of the
equations. When typing into f1 the changes described above, we obtain successively
the three lower images shown in the figure. We can produce the black/white images
used for the present publication in the following way: We press the button showing
the small disk, select the dithered checkbox, choose an appropriate resolution, and
then click on save. A small dialog shows up, where we can give some filename. The
high-resolution image is then computed on the webserver. From there, it can then
be downloaded using the your files button in the SURFEX window.

O



A cone, a quadric surface with a node. How many nodes can a surface of degree d
in P? have?



Finally

It is natural to try to apply the methods and algorithms presented in the second
part of this work to similar cases. In particular, it would be interesting to construct
a surface in P? of degree 11 with 430 nodes and to find out if our conjecture on the
number of nodes on dihedral-symmetric surfaces (chapter B) can be improved. If
such surfaces exist, will their numbers of nodes be realizable with only real nodes?

Families of varieties within which one searches for some particularly interest-
ing examples also occur in other branches of algebraic geometry. Variants of the
algorithm that we presented in chapter @ can thus also be applied to such problems.

Another wide field with a lot of potential for extensions is the visualization of
real hypersurfaces with (many) singularities. First, our visualization tools which
we presented in part Bl can be optimized and extended in many aspects. But also
the triangulation of real singular varieties which has still not been developped in
a satisfactory way would be an interesting achievement. E.g., in combination with
(maybe three-dimensional) dynamic constructive geometry software (similar to our
tool SpiCY) this would open the way to make visualization even more interactive
and intuitive.

When browsing through our historical survey (part[l) and our new constructions
(part B), one can see that there are still lots of interesting open questions in the
field of hypersurfaces with many singularities and related areas. We hope that the
present work encourages many other people to work on this fascinating subject.
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