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Abstract

The fundamental aim in our investigation of the interaction of a polymer film with
a nanoparticle is the extraction of information on the dynamics of the liquid using
a single tracking particle. In this work two theoretical methods were used: one
passive, where the motion of the particle measures the dynamics of the liquid, one
active, where perturbations in the system are introduced through the particle. In the
first part of this investigation a thin polymeric film on a substrate is studied using
molecular dynamics simulations. The polymer is modeled via a bead spring model.
The particle is spheric and non structured and is able to interact with the monomers
via a Lennard Jones potential. The system is micro-canonical and simulations were
performed for average temperatures between the glass transition temperature Tg of
the film and its dewetting temperature.

It is shown that the stability of the nanoparticle on the polymer film in the
absence of gravity depends strongly on the form of the chosen interaction potential
between nanoparticle and polymer. The relative position of the tracking particle to
the liquid vapor interface of the polymer film shows the glass transition of the latter.
The velocity correlation function and the mean square displacement of the particle
has shown that it is caged when the temperature is close to the glass transition
temperature Tg. The analysis of the dynamics at long times shows the coupling of
the nanoparticle to the center of mass of the polymer chains. The use of the Stokes-
Einstein formula, which relates the diffusion coefficient to the viscosity, permits to
use the nanoparticle as a probe for the determination of the bulk viscosity of the
melt, the so called ’microrheology’. It is shown that for low frequencies the result
obtained using microrheology coincides with the results of the Rouse model applied
to the polymer dynamics.

In the second part of this investigation the equations of Linear Hydrodynamics
are solved for a nanoparticle oscillating above the film. It is shown that compress-
ible liquids have mechanical response to external perturbations induced with the
nanoparticle. These solutions show strong velocity and pressure profiles of the liq-
uid near the interface, as well as a mechanical response of the liquid-vapor interface.
The results obtained with this calculations can be employed for the interpretation
of experimental results of non contact AFM microscopy.





Zusammenfassung

In dieser Arbeit wird die Wechselwirkung zwischen einem Polymerfilm und einem
Nanoteilchen untersucht. Die grundlegende Idee dabei ist, Information über die
Dynamik der Flüssigkeit mittels der Information über die Dynamik des Teilchens
zu bekommen. Zwei Untersuchungsmethoden sind benutzt worden: eine sogenannte
passive Methode, bei der die Bewegung des Teilchens die Dynamik der Monomere
im Film misst, und eine aktive, bei der kleine Störungen in der Flüssigkeit durch
das Teilchen bewirkt werden.

In diesen Untersuchungen eines Polymerfilms auf einem Substrat wird mit Mole-
kulardynamik-Methoden simuliert. Das Polymer wird mit dem sogenannten ’bead
spring ’ Modell dargestellt. Das Teilchen ist nicht strukturiert und wechselwirkt mit
der Monomeren durch ein Lennard-Jones-Potential. Das System ist mikrokanon-
isch und die Simulationen werden ohne Schwerkraft im Temperaturbereich zwischen
Glasübergangstemperatur und der Verdampfungstemperatur durchgeführt.

Die Ergebnisse dieser Untersuchungen zeigen, dass die Stabilität des Teilchens
in der Flüssigkeit von der Form des Wechselwirkungspotentials abhängt. Die Posi-
tion des Nanoteilchens bezüglich der Grenzfläche des Films zeigt den Glasübergang
der Grenzfläche. Die Geschwindigkeitskorrelationsfunktion und das Mittlere Ver-
schiebungsquadrat zeigen für Temperaturen in der Nähe des Glasübergangs, dass es
einen Käfigeffekt für das Teilchen gibt. Die Ergebnisse dieser Untersuchungen zeigen
also, dass die Bewegung des Teilchens an die Bewegung der Polymerschwerpunkte
gekoppelt ist. Durch die Stokes-Einstein-Gleichung, die eine Verbindung zwischen
dem Diffusionskoeffizient und der Viskosität herstellt, ist es möglich, Information
über die Viskosität der Flüssigkeit mit Hilfe des Nanoteilchens zu erhalten. Diese
Methode wird ’Mikrorheologie’ genannt. Die Ergebnisse zeigen, dass nur für kleine
Frequenzen die Mikrorheologie mit dem Rouse-Modell übereinstimmt.

Im zweiten Teil dieser Arbeit sind die Gleichungen der linearisierten Hydrody-
namik für das System eines Nanoteilchens mit kleiner Oszillation auf einem flüssigen
Film gelöst worden. Die Ergebnisse zeigen, dass nur kompressible Flüssigkeiten eine
mechanische Antwort zeigen. In diesem Fall sind der Druck und das Geschwindigkeit-
sprofil in der Nähe der Grenzfläche größer als innerhalb des Films. Die Grenzfläche
zeigt also eine mechanische Antwort. Die Ergebnisse aus diesen Rechnungen können
für die Interpretation experimenteller Ergebnisse aus der Rasterkraftmikroskopie be-
nutzt werden.
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Nomenclature

Definitions Meaning

LJ Designation for Lennard Jones potential

FENE Designation for Finite Extendable non Elastic potential

PCA Predictor Corrector Algorithm

NV E Ensemble with constant number of particles, volume and energy

NV T Ensemble with constant number of particles, volume and temperature

V V Velocity Verlet algorithm

MD Molecular dynamics

MC Monte Carlo

RGA Recoil growth algorithm

FCF Force correlation function

MCT Mode coupling theory

NS Navier Stokes equations

V CF Velocity correlation function

MSD Mean square displacement

FT Fourier transform

Symbol Meaning

kB Boltzmann constant

εij Interaction particle-particle

εpi Interaction nanoparticle-fluid

σ Collision parameter of LJ potentials

r Separation particle-particle

R0 Radius of the hard core of the particle

Reff Effective Radius of the particle

Rl Thickness of the liquid layer on the nanoparticle

H = εH Hammaker constant (chapter 2)

k Parameter of the FENE potential

µcoex Coexistence chemical potential

qi Elements of the covariant coordinate system

V ol Volume.

Np Number of particles in the melt

N Number of monomers in the chain

Xp(t) Rouse modes

A1 Exponent of the polynomial fit for MSD

Ψ(t) Designation of the function for VCF

∆r2 Designation of the function for MSD
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D(t) Diffusion coefficient

G∗ Complex shear modulus

G′ Real part of the complex shear modulus (Elasticity)

G” Complex part of the complex shear modulus (Loss modulus)

φ′(ω) Real part of the FT of the velocity

φ”(ω) Complex part of the FT of VCF

H0 = H0Γ Thickness of the film in equilibrium

HΓ(r, t) Thickness of the film

δHΓ(r, t) Small oscillation of the film thickness

H0 Perturbation amplitude of the interaction potential of the nanoparticle{
vr, vθ, vz

}
Components of the velocity fields in cylindrical coordinates

vi
Γ Velocity of the interface projected on i axis

SΓ Curvature of the interface

γΓ Surface tension

Pr(t, r, z) Function of the pressure

fm(t) Temporal function of the velocity on r axis

gm(t) Temporal function of the velocity on z axis

Am(t) Temporal function of the pressure

fD
m (t) Temporal function of the velocity in the vapor phase on r axis

gD
m(t) Temporal function of the velocity in vapor phase on z axis

AD
m(t) Temporal function of the pressure in vapor phase

Jm(r) Bessel function of order m

φ(r, z, t) External potential

Hν(r,m) Hankel transformation of H0(r,m)

Kη Bulk modulus

Kξ Shear modulus

CT Isothermal bulk modulus in the liquid

CD
T Isothermal bulk modulus in the vapor phase

Bnm Expansion coefficients of the potential of the particle in the liquid phase
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1 Introduction

1.1 Brownian motion in nanoscales

One hundred years ago Einstein presented his three seminal papers about the pho-
toelectric effect, the theory of relativity and the Brownian motion. These three
papers appear as three problems on different scales[2]. At first glance, there is no
relation between these papers, but in a sense all of these three works are in a pro-
found way interconnected. The first one sets the limit of the Maxwell equations and
shows the quantum nature of light; the second was basically motivated by a research
for alternatives to the equations of Maxwell and their relation with the concept of
ether, giving as principal result a new dynamics1 and the third is an investigation
on the connection between the atomistic dynamics of liquids and the motion of
mesoscopic particles. This last work shows no apparent connection with the other
two; but the statistical nature of this phenomenon, where Einstein’s interpretation
as collisions between the particle and the liquid particles is a fundamental element
of this theory, shows Einstein’s deep interest in statistical physics and has opened
the way to a wide application of stochastic ideas in physics in different scales, even
in the quantum regime;2 therefore the quantum phenomena can also be viewed as
stochastic phenomena. The meaning of Brownian motion extends not only to the
theoretical, but also the practical fields and its concepts permeate other neighboring
disciplines. The concepts derived from the theory about Brownian motion do not
only explain fundamental phenomena in small space scales (and intermediary and
long time scales), but also help to understand the emergence of complex phenomena
in systems with many simple constituents.

One important part of the present work is devoted to the understanding of Brow-
nian motion in nanoscales and in presence of a complex fluid; therefore the following
questions are addressed: What is the difference between classical Brownian motion
and the dynamics of a single nanoparticle? Which information of the fluid can be
obtained by making an analysis of the dynamics of this nanoparticle? From this last
question, the nanoparticle can be called as a ”tracking particle” or alternatively as
a ”nanoprobe” (and in a short definition as a probe).

1therefore the research on the nature of light was the starting point for the formulation of both
works

2A kind of unification of both works was developed in recent years, by means a stochastic formu-
lation of quantum theory is proposed; in the former case the quantum description of a particle
is derived by modifying the classical description solely by the addition of a universal Brownian
motion, which satisfies certain properties [7].
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As was mentioned previously, the milestone of the Brownian motion is the concept
of thermal fluctuations, which can be classified in soft matter as kBT ' 1 (in hard
matter as kBT → 0), where the energy scale of the system is based on the intrinsic
energy scale (kBT = 1). Such fluctuations can be represented, from the point of
view of the kinetic theory, as small particles colliding with a tracking particle in
suspension. From the theory of statistical mechanics, the dynamics of the particle
is represented as the equilibrium between a diffusion and a drift current; in this case
some aspects of the dynamics of the fluctuations are independent of the intrinsic
details of the dynamic of the microscopic processes, implying that the measurements
are made in a time scale where all of such processes are uncorrelated. As a main
result an expression which connects two mean microscopical equations is obtained:
the Stokes equation, which describes overdamped fluids, and the diffusion equation,
D = kBT

ζ
, where ς is a friction coefficient. The meaning of this equation (which was

of revolutionary character) is the connection of the macroscopic with the microscopic
phenomena through the Boltzmann constant; such relation was later developed in
the so called Green-Kubo relations for other transport coefficients (for example
viscosity in liquids). In the present case, it is possible to measure the diffusion
coefficient by making an analysis of the displacement of the particle, the so called
self diffusion constant. On the other hand, each polymer chain also diffuses in the
polymer liquid; the fundamental question is in this case: if the particle has a size
equivalent to the gyration radius of a single polymer chain,3 is there some relation
between the self diffusion constant of a single big nanoparticle and the diffusion of
the particles in the fluid?

The previous theory is also the starting point for the so called ”microrheology”,
which consists in the use of a nanoparticle, called again tracking particle, that can
be used as a non invasive technique for the measurement of transport coefficients by
making an analysis of its Brownian motion. The advantage of this technique is, for
example, the possibility to use it in measurements ”in vivo” of biological materials.
This technique has been used in experimental situations for the measurement of the
complex shear modulus in polymeric networks, for example actin, where entangle-
ment of the polymer chains is observed. In this work the question is, if this technique
can be used in dense polymer melts, in the Rouse regime (see fig. 1.1) and adsorbed
on a substrate, for the measurement of local bulk viscosity.

For short and intermediary time scales it is unclear if the so called anomalous
diffusion is found, when the fluid is a complex one with long spatial and temporal
correlations; in this sense the tracking particle is also a sensor, of the complex
character of the fluid. For high fluid densities and temperatures near the glass
transition temperature Tg, it is quite evident that in intermediate times, after a
short ballistic regime, that the particle is trapped locally in a cage that prevents
the normal diffusion of the probe. The relaxation time required for the particle to
leave the cage, the time where the system reorganizes, is the so called α relaxation

3The gyration radius is defined via the second central moment of the mass distribution of the
molecule
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Figure 1.1: In this image a nanoparticle in a complex liquid is shown using confocal microscopy.
The information about the displacement of tracking particles is related to the complex
shear modulus of the liquid [8].

time. The recognition and measurement of this dynamics is also a relevant part
of this work, where the dynamics of the single tracking particle is connected with
the dynamics of single monomers as well as the center of mass of the chains. The
fundamental idea is to test if the nanoparticle can act also as a sensor for the
dynamics of the single monomers and polymer chains.

The definition of a fluid film has a particular meaning for this work: this is the
confrontation of the dynamics of the single nanoparticle not only to the dynamics
of the particles in the fluid but also to the dynamics of the liquid-vapor interface.
The main question is: is there a remarkable influence of the free interface on the
glass transition of the film? In order to answer this question the distribution of
the nanoparticle will be used as a test of the state of the interface; in this sense
the dynamics of the interface and the ”wettability” of the particle are two main
information sources that allow to find an answer to this question. The interface has
not only an influence on the statics but also on the dynamics of the nanoparticle;
this object is a fluctuating manifold associated with different modes of oscillation,
the so called capillary waves. So, it is relevant to ask: is there some influence of the
interface, and its dynamics, on the dynamics of the nanoprobe?

Regarding the simulation technique, this simple formulation of a single particle in
a liquid is an alternative for conventional simulation problems, where the perturba-
tion is introduced in the fluid using an additional wall in order to obtain information
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of the transport as well as the dynamics of the fluid. Due to the novelty of this sys-
tem some technical aspects are important to be considered: the definition of the
interaction potential of the particle with the fluid, the correct simulation protocol
and the selection of the algorithm.

1.2 Force spectroscopy and beyond

It was shown that the nanoparticle can be used as a probe for the polymeric fluid
and its interface. What happen if a force is applied through the nanoparticle, when
it is situated at the interface? This question is motivated experimentally by Atomic
Force Microscopy (AFM); in which case a small particle, called tip of the AFM, is
attached to a cantilever and approaches to the surface of the liquid. If the tip is in
contact with the surface of the liquid film, the so called tipping mode, it is possible
either to measure the thermal fluctuations of the liquid or to introduce a force on the
liquid and then, observe the response by the deflection of the cantilever. A diagram
of this technique is shown in fig. 1.2.

Noise
Spectrum

AFM experiment
Laser

Cantilever

Quadrant detector

substrate

Figure 1.2: Diagram showing the main elements of an AFM. An small tip is attached to a can-
tilever and interacts with the particles in the vicinity. The forces on the tip provoke a
deflection in the cantilever; this deflection is detected with a LASER and processed.

This work is performed under the supposition that the fluid can be described using
the Navier Stokes (NS) equations. Then it is possible to ask: how is the response
of a liquid when a single LJ particle (without cantilever) introduces a perturbation?
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In order to answer this question it will be supposed that the liquid is at rest; the
liquid can be simple as well as complex, i.e. has a complex time dependent relaxation
module. This last supposition implies that the liquid has memory effects; this means
that the liquid does not loss information of its initial conditions. The NS equations
will be solved for incompressible fluids, i.e. the density remains always constant, as
well as for compressible ones.

The understanding of this kind of systems can be useful for the solution of a variety
of problems in different technological branches and in general, due to its typical
lenght scale in the nanometer range, could have implications in nanotechnology,
which is called a global technological promise.4

One example is the storage of information on surfaces of melts near the glass tran-
sition. The AFM information storage technology utilises the application of force on
a polymer melt through a tip of an AFM in order to form a ”hole” on the surface
which represents a bit of information.5 This hole-information can be read with an
array of AFMs, and the information can be easily erased and stored by repetition of
this procedure. The advantage of this alternative technology is that the information
can be stored and erased very quickly and is not sensible to magnetic fields in con-
trast to conventional technologies.6 For such kind of systems the comprehension of
phenomena of the liquid-vapor interface is of reveled importance in order to under-
stand the stability of the hole and its dynamics dependending on the temperature
of the system.7 Another possible aplication of the results of this investigation is the
comprehension of the dynamics of the signaling in biofilms (For a short report see [3]
and [4] ); this information could carried serious consequences in healt (sterilization
of surfaces) and industry (for example corrosion).

Another example is related to the construction of nanomachines. A nanobuoy
(a tracking particle can be also considered as a nanobuoy) is one of the simplest
kind of those machines. Actually many researchers try to construct nanoboats and
nanosubmarines that are able to swim, and eventually to be directed, applied for
example to the delivery of some drug into a specific target in the human or animal
organism. The design of those nanorobots implies the knowledge of the environment
where they habit. For this reason, to obtain information from computer simulations
of the tracking particle is fundamental for the design of optimal nanorobots; further
developments require the use of computer simulations of nanorobots in nanoscales
that resemble the macroscopic counterparts, with nanogears and complex nanome-

4See for example ”Nanotech promise for global poor”, BBC News, 11 April, 2005. [5]
5An electric current flowing through the tip increases its temperature and therefore the temper-

ature of the melt. Thereafter it is possible to form a tiny hole with the same tip, taking care
to leave the melt to reach again the glass transition temperature. Each hole represents a bit of
information; a big amount of information of course is represented by an array of holes

6For a complete review of this technique see [1]
7Then we must switch off the particle (for example by making its potential equal zero) and follow

the hole (no particle position), for example using the nearest particles from the no-particle.
On the oder hand this procedure shows the possibility to produce this holes on the melt using
free colloidal particles; so, the presence of a colloid on the interface corresponds to a bit of
information.
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chanical parts. [6]

Figure 1.3: Comparison of different objects in nanoscales (National Institute of Cancer, USA).

1.3 Organization of the work

This work contains four chapters, that explain the results obtained by means of the
computer simulations and a fifth chapter dedicated to analytical calculations.

In Chapter two an explanation about the technical details of computer simula-
tions is given. In particular, the aspects taken into account for the selection of the
potential of the particle are analyzed. Chapter three is dedicated to the discussion of
the statics of the tracking particle and its relation to the glass transition of the melt,
with special emphasis on the glass transition at the interface of the film. In chapter
four the dynamics of the particle in the melt, and its coupling with the dynamics of
the fluid particles, is analyzed. Finally, in chapter five the NS equations are solved
for a liquid thin film in the presence of a nanoparticle, defined as a LJ particle, for
both simple and complex liquids, considering incompressible as well as compressible
liquids.

In appendix A a discussion about the influence of the interface on the dynamics
of the nanoparticle is made. Appendix B pressents a discussion about the diffusion
constant in bulk and in films at T ∼ Tg. In appendix C an alternative method for
the computation of the shear modulus is shown. In appendix D a short explanation
about Rouse modes is given. These first four appendices are concerned to the
simulations. The next set of appendix are for the analytical solutions of the NS
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equations. In appendix E the formulation of the Navier Stokes equations is made and
in appendix F different differential operators in cylindrical coordinates are explained.
In appendix G an alternative potential is developed in order to facilitate the Bessel-
Fourier-Bessel transformation of the external potential. In appendix H the solutions
of the NS equations for incompressible fluids are shown. In appendix I a conversion
table of some constants is shown and in appendix J the solution of the NS equations
for complex liquids in frequency domain is done.
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2 Discussion of technical details

2.1 Introduction

The aim of this work is to understand the dynamics of a single probe particle in a
complex fluid using a Molecular Dynamics (MD) method. In the present section the
problems related with this simulation, the selection of the algorithms and potentials
for the modeling of the polymer chains and substrate are discussed. As starting
ansatz the interaction potential between probe particle and liquid will be defined
as a LJ one; but such definition carries out many problems related to the stability
of the nanoparticle at the interface of the fluid film (stable or metastable vertical
distribution of the nanoparticle); for this reason an alternative definition for such
potential is proposed in order to improve the vertical distribution of the nanoparticle
in the liquid.

This chapter is divided in three parts. In the first part the choice of algorithm
and the method of iteration is discussed. In the second part the potentials for the
interaction monomer-monomer, chain-chain and monomer-substrate, are introduced;
thereafter the problems that a single LJ potential presents for the description of the
probe particle are shown and it is discussed, why in this simulation one is forced
to define an alternative potential for the probe particle. Finally the simulation
protocol is commented as well as the problems and the details of the construction
of the present simulation.

2.2 Algorithm

2.2.1 Selection of the algorithm

The description of the dynamics of a dense polymeric melt and the particle can
be modeled using for example Monte Carlo (MC) [26], Lattice Boltzmann Gas or
Molecular Dynamics. Monte Carlo methods consider only configuration space and
eliminate the momentum in the phase space; for such reason it is valid for the mod-
eling of systems in thermodynamical equilibrium, although dynamical processes can
be analyzed in different equilibrium states. The main problem of the system track-
ing particle-polymer melt is that it is a complex system with a complex relaxation
behavior inside the liquid as well as at the interface of the film, where the particle
is able to couple it to capillary waves [83]. Only after very long times the system
can reach an equilibrium state. In the present project it is necessary to extract
information of short as well as long time scales, because each time scale contains
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fundamental information of many dynamical processes; for this reason it is neces-
sary to use a method (different to MC) that can take account those different time
regimes.

One alternative simulation method (that can represent many time regimes) is the
Lattice Boltzmann gas (or lattice gas automata)[79]. In this method identical parti-
cles hop from site to site on a regular lattice, obeying simple scattering rules. Such
method is for example very useful for the modeling of liquids, where the conservation
rules represent the basic conservation of momentum in the Navier Stokes equations.
But such method represent interaction of simple particles and is not accurate for
the modeling of connected particles 1. This method can alternatively be applied
together with other simulation methods (Molecular Dynamics for example) for the
modeling of polymers in presence of solvents, where the solvent is represented by
the cellular gas automata [28]. In the present project a polymer melt is represented
and, for this reason, this method is not a reasonable alternative. The use of Molec-
ular Dynamics method (MD) avoids some of this problems; more over an additional
feature is the possibility to obtain complete information of the velocities and forces
of the particles in the system, very important for the analysis of the present system.

Molecular Dynamics acts in the continuum, in contrast to lattice methods. It is
computationally demanding but permits to modelate the dynamics of each particle
because it is based on the iterative integration of the Newton equations (see for
example [13] and [20] for an extensive explanation of the MD method), defined as

m
d−→r i

dt
=
−→
F i =

N∑

jj 6=i=1

−→
f ij +

(−→
f i

)
ext
, (2.1)

where
−→
f ij are forces derived from pair potentials. In this way the information about

the forces, velocities and positions for each particle is obtained. In this project a
routine which is based on a predictor-corrector algorithm of fifth order is used[14].

In the simulation protocol for the present project it is necessary, first to make NVT
simulations, in order to generate initial configurations, and thereafter to make NVE
simulations in order to simulate a microcanonical system, where the liquid acts as a
thermostat of the tracking particle. The first step can be easily implemented using
the so called Predictor-Corrector algorithm (PCA), where an stochastic thermostat
is implemented in order to get a constant temperature for the system, whereas for
the second step the implementation of a velocity Verlet algorithm is necessary in
order to conserve time symmetry: the first step in the protocol, with the stochastic
thermostat, represents the integration of a Langevin equation

m
dvi

dt
= γvi + f (2.2)

with f is the stochastic force, whereas the second step in the protocol represent the

1In last years some attempt was made in order to model polymers using gas automata; see for
example [29]
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integration of the Newton equations. This means, from the first to the second step
the thermostat is switched off.

One possible solution is to apply the same algorithm for the computation of both
kind of equations, say the PCA. But the main problem of PCA for NVE simulations
is that it can produce a drift in the energy for long times, because the computed
trajectories do not conserve the volume in the phase space; more over MD is based
on the integration of the Newton’s equations, which are reversible, and for PCA the
time symmetry of the fundamental equations is broken. 2 On the other side, the
Velocity Verlet (VV) algorithm produces trajectories that are related to constant
volume elements in the phase space. An agreement must be found between both
methods.

In the following section a discussion about, how the predictor-corrector algorithm
of second order is equivalent to the Velocity-Verlet algorithm, is made.

2.2.2 Predictor corrector of second order as velocity Verlet

In molecular dynamics the predictor-corrector and velocity Verlet are two common
integration schemes for numerical solution of differential equations, in particular for
the equations of motion [20]. The main idea of the PCA is to make an extrapo-
lation of a polynomial fit: in a first step a position and velocity are predicted by
extrapolation of a polynomial fit to the derivative from the previous points, which
is called the predictor step, and thereafter this result is used for the interpolation of
the derivative (corrector step). The use of the corrector part is necessary given that
numerical instabilities can appear from the predictor step.

The algorithm selected in the integration routine is the predictor-corrector algo-
rithm defined up to fifth order[14]. But energy drifts can appear with such algorithm
for NVE simulations [20], [13], [23]; when the predictor-corrector is tuned into a sec-
ond order algorithm then it is equivalent to the Velocity Verlet: this is the point
where the agreement is found.

In this subsection a proof of the equivalence of the Predictor Corrector with
the Velocity Verlet algorithm is done. The Velocity Verlet algorithm (VV) can be
expressed as

−→p i(t +
1

2
∆t) = −→p i(t) +

1

2
∆t
−→
f i(t), (2.3)

−→r i(t + ∆t) = −→r i(t) + ∆t−→p i(t)(t+ ∆t/2)/mi. (2.4)

In the first step the momentum is computed and thereafter the position is estimated.

After this last step a force computation (using the new coordinates) is carried out.
The main features of this algorithm are: it is exactly reversible, it is symplectic
(i.e. volume in the phase space is conserved) and it requires only one extensive force
evaluation per step.

2Only in the limit of infinitesimal time step this algorithm becomes time reversible [19].
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It is necessary to proof that the PCA is equivalent, with some approximation,
to the VV algorithm. The first one depends on the constants α1 and α2, which
are coefficients of the Taylor expansion, in order to compute the corrected velocity
using the predicted one. In many works there are extensive references about the
value of the optimal constants in order to make the algorithm to converges. In the
present case it is shown that, for α1 = 1 and α2 = 1, the PCA converge into an VV
algorithm, where the corrected velocity after the integration step is the function of
the velocity of the previous integration step, which is at the same time equivalent
to the predicted velocity.

Figure 2.1: Energy and selection of the integration step. From this results it is obvious that
dt = 0.02 is a stable integration step.

The predicted velocity in the predictor-corrector algorithm is given by

vp(t+ ∆t) = vp(t) + a(t)∆t. (2.5)

Inserting the predicted part into the corrector part the following expression is ob-

tained

18



vc(t+ ∆t)∆t = vp(t+ ∆t)∆t + α1
∆

..
r

2
∆t2

= vp(t)∆t + ap(t)∆t2 + α1
a′p(t + ∆t)− ap(t+ ∆t)

2
∆t2

= vp(t)∆t + ap(t)∆t2 + α1
a′p(t + ∆t)− ap(t)

2
∆t2, (2.6)

where a(t+ ∆t) = a(t). If α1 = 1 then

vc(t+ ∆t)∆t = vp(t)∆t +
1

2
ap(t)∆t2 +

1

2
a′p(t+ ∆t)∆t2, (2.7)

the last step in this demonstration consist to proof that the second coefficient must

be equal to one; the corrected acceleration is given by

1

2
ac(t + ∆t) = ap(t) + α2

a′p(t+ ∆t)− ap(t)

2

=
1

2
ap(t) + α2

1

2
a′p(t + ∆t), (2.8)

this implies, when α2 = 1 the algorithm coincides with the velocity- Verlet algorithm;

in such case

vc(t+ ∆t)∆t = vp(t)∆t+
1

2
ac(t+ ∆t)∆t2, (2.9)

where for ∆t = 0; vp(t) = vc(t).

Although all the trajectories generated with this scheme are only approximate
they do conserve a pseudo Hamiltonian, the so called ”shadow Hamiltonian” [23],
which differs from the true Hamiltonian by a true amount which vanishes when
∆t→ 0 (integration step); so, no drift in the energy will occur (the system remains
in a closed hypersurface in the phase space). In fig. 2.1 the total energy of the
system is plotted using different integrations steps. From this plot it is evident that
integration steps of 0.02 conserve the energy. This integration step is used for all
the simulations in the present project.

2.3 The model

2.3.1 Potentials

The present model can be defined as the interplay of different Van der Waals po-
tentials that describe the interaction between both the surface and the particles in
the fluid and the interaction between the particles in the fluid. In fig. 2.1 a sketch
with the main interactions and elements of the model is made. The Atomistic detail
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is not of interest in the present work because it does not bring information about
the essential physics, which is of interest to extract, involved in this problem and
implies unnecessary use of computational power. The system that we simulate is
moreover small enough and for this reason it does not experience effects related with
the gravitational field.3. In the following section a description of the potentials, that
will be used in our system, is made.

2.3.2 Selection of the potentials in the melt

The polymer chains are described by the bead-spring model, derived from the orig-
inal model suggested by Kremer and Grest [17]. In this case the attractive part of
the LJ potential can be included; without this the model would not have a liquid
phase [18].
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Figure 2.2: Sketch of the Bead spring model for the simulation of polymer melts adsorbed on
substrates: each bead represents a monomer whose interaction with other monomers
is given by a LJ potential; bond connectivity is modeled by a FENE potential. The
interaction between the particles and the substrate is given by an integrated LJ po-
tential.

3In a rigorous way the present computer experiments are related to experiments performed on
orbit without influence of the gravitational field.
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Each chain consists either of 10 or 50 monomers with mass m = 1 (in LJ units).
A truncated LJ potential acts between the monomers and is given by

ΦLJ(ri, rj) =





4ε

((
σ
rij

)12

−
(

σ
rij

)6
)

+ ε if rij < 2(2)1/6.

0 otherwise
(2.10)

where −→r ij = (−→r i − −→r j),
−→r i and −→r j being the position of two particles, σ is the

collision parameter, or length scale parameter of the system, and ε is the strength of
the interaction. Such potentials model interactions that are both soft and smooth.
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Figure 2.3: FENE and LJ potentials as a function of the distance. The LJ potential describes the
interaction between monomers and the FENE potential describes the bond connectiv-
ity. The superposition of the LJ and FENE potentials defines the bond-length of the
polymers, rbond = 0.9606 (all the units are given as LJ ones). The minimum of the LJ
potential is rmin = 21/6.

In addition to the previous potential a finitely extendable non linear elastic
(FENE) backbone potential was applied along the chain (See fig. 2.3); this po-
tential is given by

ΦFENE(rij) = −k
2
R2

0 ln

[
1−

(
rij

R0

)2
]
, (2.11)
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in the simulations performed in this work R0 = 1.5σ and k = 30ε
σ2 ; the superposition

of these potentials avoid high frequency modes and chain crossing. In fig. 2.3 the
FENE potential is shown together with the LJ potential.

The FENE potential introduces an interaction length which is smaller than the
length of the Lennard-Jones potential; in consequence, with this potential, together
with the LJ potential, two incompatible length scales in the system are introduced.4.

In this simulation more over a modified Lorentz-Berthelot mixing rule [14] was
used, which defines the cross interaction between different kind of particles in the
liquid, helping to make a differentiation between different particles. The cross in-
teraction range and interaction strength are given by the following formula

σij =
σii + σii

2
, (2.12)

εij =
√
εiiεjj. (2.13)

In the simulations performed along this project there are three types of particles:

fluid particles (which are represented as monomers), nanoparticle and the wall. For
all the three particles the interaction range is one. For the probe particle the in-
teraction strenght was ε22 = 9, i.e. for nanoparticle - nanoparticle interaction, and
εii|i6=2 = 1 for the rest of the particles.

2.3.3 Selection of the potential of the walls

The model used in the present simulations considers a flat and non structured walls.
A wall can be modeled as closed packed lattices, with a LJ-atom sitting in each lattice
point; the substrate as well as the superior wall can be modeled in an identical way
[14]. In the present case each wall consists of a single lattice with a single LJ atom
in its center; the simulation is performed in a periodic box, implying that this single
lattice is repeated periodically.

The potential of the LJ atom is a Lennard Jones potential integrated on an infinite
surface, the so called 9− 3 potential, which is given by the following expression

φW (zi) = H

((
σ

zi

)9

−
(
σ

zi

)6
)
, (2.14)

where zi is the height of a particle about the substrate.

The reference system in the present simulations is fixed at the substrate, which
represent the laboratory system. The parameter εH plays the role of a Hamaker
constant, which is the strength of the interaction of two particles separated by a
vacuum.

4That avoids long range order at low temperatures [18]
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The simulation of a nanoparticle-liquid film requires a substrate that strongly
attracts the fluid in order to simulate a liquid that is able to wet the wall and
form a homogeneous and stable film [16]. The selected constant was H = 3.2, i.e
it represents a wall that strongly attracts the liquid (this constant is related to
materials that are composed for example of gold [75]).

Is the presence of the upper wall necessary?. The main motivation of the present
problem is to compute the interactions between an adsorbed film on a substrate
-with a vapor interface- and a probe particle. In the step for the generation of initial
configurations for the liquid film, the upper wall is necessary in order to compress
the liquid up to the desired film thickness; but in the production step the upper
wall could interact with the tracking particle and the liquid-vapor interface. For
this reason in the production step the upper wall is either placed far away from the
substrate or is completely switched off. An sketch of the model and the interactions
between the particles is shown in fig. 2.2

The modeling of a particle in a film composed of a complex fluid must be defined,
such that some uniform vertical distribution of the tracking particle is obtained. For
this reason the definition of a particular potential describing the particle is necessary;
this potential, together with a description of the different ansatz used for this model,
will be discussed in the following section.

2.3.4 Interaction potential of the tracking particle

The interaction between the nanoparticle and the fluid particles is also modeled
via a Lennard Jones potential5; in the integration routine it is allowed to make the
simulation of melts with more than only one type of monomers. Using this fact,
the proposed ansatz for the present simulation is that the nanoparticle is a single
monomer of second class; that means, the probe particle is also a Lennard-Jones
sphere, where the collision parameter represents the size of the particle. This kind
of potentials leaves open the problem of the modeling of structured particles, for
example clusters of particles6.

In the first performed tests the particle flew away from the surface of the melt.
In fig. 2.4 the vertical position of the nanoparticle is for two different temperatures,
T = 0.8 and T = 1.4 shown; while for T = 0.8 the particle showed a stable position,
for T = 1.4 the distance to the substrate grows. Similar results are obtained for
different collision parameters. In particular from the plot of the force on the particle
(fig. 2.5) it is posible to observe that the forces of the melt are coupled to the particle
only at the beginning of the simulation; after t = 4500 the particle is only coupled

5There are many possible representations for the particle potential; for example for the simulation
of AFM tips see [9]

6This kind of problems studied by A. Chatterji for structured particles that performs rotating
Brownian motion [10]. As outlook an improvement of the present problem is possible by making
a definition of structured particles defined as clusters of nanoparticles.
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Figure 2.4: Vertical position of the particle for two constant temperatures, with σ = 1.4. For
T = 0.8 the particle has a stable vertical position while for T = 1.4 the dynamics
of the particle is only coupled to the thermostat, implying that the particle tends to
move away from the surface of the melt.

to the thermostat. For few later times the particle is coupled again to the melt; the
particle is coupled only to the thermostat. As consequence the particle has no stable
trajectory near the melt; this result is not satisfactory because the temperatures
where this simulation was performed are below the temperature where the liquid
evaporates.

Additional NVE simulations for particles with σ = 1.4 were performed; in this
case it is evident that the particles in the melt have no coupling to the probe particle;
eventually, when the forces with the collisions of the neighbor particles exceed the
coupling force between probe and liquid, it gets a free particle trajectory; therefore
for T = 1.4 the particle has a pure ballistic regime: in fig. 2.6 the vertical position
as well as the mean square displacement of the particle are represented; when this
function is fitted with a function of the form tx, and x ∼ 2.0, then such regime is
called ballistic, as in the present case. Only for T ≤ 0.8 it is observed that the
particle has a relative stability of its trajectory in the time window where the test
was made. There a transition from a ballistic into a diffusive regime is observed
suggesting that the particle is coupled to the dynamics of the melt (fig. 2.6).

The previous results show that there is a very weak coupling between melt and
tracking LJ particle. Possibly for T ≤ 1.4 the particle has a metastable state; this
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Figure 2.5: Force on the probe particle for T = 1.4. This plot shows that the particle has a
transient coupling to the particles of the melt. After t = 13000 the only remaining
force on the probe particle is the force of the thermostate < fT >.

fact implies that the relative stability of the vertical position for T = 0.8 is due
to the time scale where the observation is made, and possibly for later times the
particle is able to get an escape velocity, even for low temperatures. That implies,
it is possible to perform relative stable simulations for very small particles (near
the size of a monomer) when the temperature is below to T = 1.4. This solution
apparently represents a restriction in the value of the parameters allowed for the
simulations; the main idea is to represent particles with sizes near or bigger than
the typical size of the chains in the melt. For this reason new tests are necessary to
proof stability of the vertical position of bigger particles for T ≤ 0.8. For σ = 3.0
and T = 0.8 in a NVE simulation a similar situation in the trajectory of the particle
is observed: after some simulation time td (a time where a decoupling of the particle
to the dynamics of the melt is found) the force is equal to zero implying that the
melt is no more the thermostate for the particle (fig. 2.7). Only for short times the
particle has a transitory coupling to the fluid; after that, the particle follows a free
particle trajectory with a constant escape velocity.

With a simple LJ potential, with large σ, the potential is repulsive for distances
in the rage of the size of the nanoparticle. The coupling of the probe with the
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Figure 2.6: MSD and the vertical position of the particle as a function of the time for three
different temperatures: T = 0.8, T = 1.0 and T = 1.4. The particle is represented as a
LJ potential with radius σ = 1.4.The thermostat was switched off. In this simulations
for T = 1.0 and T = 1.4 and after some simulation time the particle becomes a scape
velocity and follow a free particle trajectory,whereas for T = 0.8 the particle has an
apparent stable vertical position.

neighboring particles is therefore weak; if the particle obtains enough kinetic energy
then for a given time the particle is able to get an escape velocity and follow a
trajectory of a free particle. One possible solution is to make use of an integrated
potential that could make that the particle attracts the surrounding particles in
the fluid. But the use of a detailed potential is time consuming and very hard to
implement [12].

The easiest option was to introduce a modification of the LJ potential, making it
more attractive near the interface particle-liquid. The interaction potential of the
tracking particle has the following form

φColl(ri, rj) = 4εpm

((
σcoll

rij − Ro

)12

−
(

σcoll

rij − R0

)6
)

+ ε, (2.15)

where R0 is a shift on the distance and σcoll is the particular length scale of the

nanoparticle (see fig. 2.8). Its effective radius can be expressed as

Reff = R0 + σcoll. (2.16)
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Figure 2.7: Results of NVE simulations for a tracking particle with a collision parameter σ = 3.0.
Even for T < 1.0 the particle has no stable vertical position in the melt; after some
time td the forces on the particle tend to be zero (suggesting that the particle is no
more thermalized by the polymeric melt) the velocity is constant and the tracking
particle follows a free particle trajectory.

In figure 2.8 the modified LJ potential is presented compared to a simple LJ po-

tential. In the same plot a comparison between two modified LJ potentials with
different parameters is done: one with R0 < σ and the other one with R0 ∼ σ. In
the first one the parameters permits to improve attachment of the particles on the
interface of the tracking particle by reducing the mobility of the liquid particles at
the interface probe-liquid. This point will be explained later in the section about
statics and in appendix A.

2.4 Simulation protocol

In the present work particles with effective radius Reff = 3.0, 4.0, 5.0 were simulated;
the interaction range was σcoll = 1.0. the mass of the particle is m = 25 and the
strength of the interaction between tracking particle and liquid particles is ε = 3.0.
In a couple of simulations we tested only the effect of the size of the particle on its
own dynamics.
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Figure 2.8: Comparison between a LJ potential with σ = 4.0 and two different potentials for
the tracking particle, with radius R = 4.0 but different collision parameters. The
minimum for the potential R0 > σ is near the effective radius than for R0 = σ and the
LJ potential. That implies that the adsorption force at the interface of the nanoparticle
is in the first case bigger than in the two second cases.

This variation does not leave the density of the tracking particle unchanged. In
another couple of simulations a variation of the mass of the particle in relation with
its radius was done in order to conserve the density of the probe.

Once the parameters are fixed, the simulation of the system melt-particle is
started. The steps in the simulation protocol are: generation of first configura-
tions, equilibration of the initial configuration for the melt and production, where
the tracking particle is introduced in the configuration of the melt. In the following
sections these steps will be explained.

2.4.1 Construction of the simulation

Generation of an initial configuration The creation of the first configuration
is done using a random method, which consists in a simple random walk, a config-
urational bias Monte Carlo method called ’Recoil-Growth Algorithm’ that assigns
initial random positions to the chains in a periodic box [17], [14]. With such a
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method it is possible to produce, in an efficient way, dense initial configurations,
where the structure of the chains is near the equilibrium structure of the melt, but
with many polymers overlapping. Due to the presence of flat substrate and upper
wall there are two-dimensional periodic boundary conditions and a closed bound-
ary in the third dimension. The RGA implemented in this program cannot create
initial configurations of hetero polymers; so an initial configuration with homopoly-
mers was created and then by hand the probe particle was introduced in the initial
configuration.

The production of an initial configuration is made for a melt confined between
two walls separated by a particular distance dW > HΓ (HΓ is the film thickness),
i.e. for densities below the desired density; here a NVT method is used in order to
fix the temperature of the system [16]. The walls are required for the generation
of the first configuration because at high densities the RGA produces overlapping
and eventually destruction of connectivity of the chains; so, after the generation of
a very first configuration, it is important to compress the liquid in order to increase
its density

The compression process is done moving the upper wall with a constant veloc-
ity toward the substrate [15]. The compression process is stopped when the liquid
reaches the desired density. With a short simulation the configuration was equili-
brated with a constant separation between both walls; in this step the fluid relaxes
again and dissipates the force introduced with the upper wall. Initial dense melts
were produced with ρ ∼ 0.8 at temperatures of the order of T = 0.8. This value is
particularly convenient [16] because it permits to obtain configurations with ρ ∼ 1.0
at temperatures near the glass transition temperature and ρ < 0.8 for tempera-
tures up to T ∼ 1.4. With such starting configurations it is possible to make an
exploration of different states of the liquid.

At this point there is an initial configuration of a thin polymeric film, composed
of homopolymers. It is necessary to introduce the tracking particle and start the
production of data. This step is explained in the following subsection.

Equilibration Now the upper wall is switched off and the probe particle is intro-
duced per hand. A possible alternative is to introduce the nanoparticle in the first
configuration and then make the compression of the melt together with the parti-
cle, but it is desirable that the particle ”feels” the interaction of the melt without
compression. Furthermore when the particle suddenly is placed on the surface of
the melt it is possible that connections between monomers are destroyed, destroying
the iteration process; this fact is more dramatic when additionally the system melt
particle is compressed. For this reason it is preferred to run a new NVT simulation
for melt-particle with the particle fixed at some distance from the melt (but not so
far that the particle cannot interact with the particles of the melt). In this time the
melt relaxes. Because the particle is also attached to the thermostat, it cannot fly
away from the surface of the melt. This fact together with the force produced by
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the fluid particles are responsible that the particle ”falls” onto the fluid; in this sim-
ulation there is no gravitational interaction. In the fig. 2.9 the initial configuration
for a nanoparticle above the polymer melt, with the particle placed above the melt,
is shown.

Figure 2.9: After equilibration a single particle is placed above the melt. In the present simulations
there is no gravitational force; so, the single particle approaches to the melt by means
of the interaction with the external thermostate and the coupling with the polymeric
melt. After an equilibration time a first configuration for NVE simulations is obtained.

Using the Rouse modes and the Rouse time it is relevant to check the time required
for the relaxation of the dynamics of the melt (see appendix D). From the theory it
is well known that the relaxation time is given by τ ∼ N 2; using this information
the NVT simulation is stopped.

Normally this is possible after 800000 Molecular dynamics Steps (MDS). Then the
thermostat is switched off. At this moment, there is an initial master configuration
at a fixed temperature of the adsorbed melt with the tracking particle. From the
theory and the information obtained from other simulations of dense polymeric
melts [14], [25] there is knowledge of the glass transition temperature of the system;
below this temperature the system is non ergodic [17]. Therefore simulations were
performed for temperatures above Tg, in particular the sample of temperatures T =
0.46, 0.5, 0.7, 0.8, 1.0, 1.1, 1.4 was considered (using a very intuitive language, these
simulations are performed in a temperature sandwich, i.e., for temperatures above
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the glass transition temperature but below the dewetting temperature of the liquid
film).

For melts with small polymeric chains, short equilibration steps are enough to
reach equilibration of the melt. But this method is not enough for long chains.
For example in the article of Kremer and Grest [17], the initial configurations are
produced after 5000000 integration steps. This time is longer than the typical time
used in the present simulations. One possibility to improve the statistics of the
system is doing parallel simulations and then make an average of the results obtained
with each parallel run [27]. In the present work a single simulation is made, storing
configurations each 106 MDS. Then additional parallel simulations are started with
maximal simulation times 2×106 to 3×106 MDS, using as starting configuration each
stored configuration in the previous step. Using the positions, velocities and forces
an average of each of the observables for each of the parallel run is made. This
method is applied for temperatures T = 0.85, 0.9, 0.95, 1.2, 1.3, i.e. temperatures
where the equilibration is relatively fast. This method is time consuming, taking
present that melts with 14× 103 monomers are simulated.

The simulated system equilibrates very slowly. For this reason it is crucial to make
long runs at every temperature, and in particular at low temperatures, since dynam-
ical processes slow down upon cooling. This is a very serious problem in molecular
dynamics simulations because the simulation time, as a function of the temperature,
becomes larger than the largest simulation time that can be implemented within a
PhD project. It is necessary to establish a compromise between the system size, the
run times and the complexity of the model.

2.5 Summary

In this section the main elements required for the simulation of a dense melt with
a single nanoparticle were introduced, including the simulation protocol, the po-
tentials that describe the interactions between monomers and melt-substrate; in
particular, the problems that simple LJ potentials presents for the modeling of non
structured probe particles was discussed. An improvement of the stability of the
vertical position of the tracking particle is obtained by defining a potential able to
reduce the mobility of the liquid particles near the interface particle-liquid; it was
shown that a simple modification of the LJ potential is enough in order to increase
the attraction of the liquid particles to the interface of the particle.

The main problem is the time required for the production of reasonably good
results; instead of longer simulation times (which are expensive in time as well as in
energy), short parallel simulations was performed and averaged.

As outlook the modeling of the nanoparticle can be done using one of the two
walls. This idea is interesting if the aim is to model the interaction of a dense melt
with the Tip plus cantilever of an AFM microscope: in that case one proceeds to
write the potential of the upper wall as the integrated Van der Waals potential for the
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corresponding tip geometry [9]. Given that with the present simulation method it is
possible to press the melt with the upped wall at constant velocity, then, by defining
asymmetric walls, representing the upper wall as the tip of the AFM, it could be
possible to simulate different force microscopic techniques (For such simulation the
definition of tip geometries is necessary; see for example see [9]).
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3 Interfacial effects on the
dynamics of the nanoparticle.

3.1 Abstract

In this part an analysis of the distribution of the vertical position of the particle in
the film is made, regarding the temperature as well as the thickness of the film. It is
found that near Tg the particle is at the interface of the film; this result implies that
the vertical position of the particle is sensitive to the glass transition temperature
at the liquid vapor interface. One finds an hysteresis in the embedding process
as a function of the temperature in the simulated time scales. This embedding
process depends on the definition of the interaction between the nanoparticle and
the polymer. An analysis of the solutions of the hydrostatics, in order to understand
the effect that different potentials introduce in the liquid film, is made.

3.2 Introduction

The behavior of polymers in a film is different to the behavior in bulk due to the
presence of external forces and of the interface; in this sense the knowledge of the
surface glass transition is of fundamental interest [70]. In order to obtain informa-
tion only from the film surface many experimental methods where developed, in
particular the observation of the embedding of clusters of noble metals as a function
of the temperature.

The observation of this effect is not easy given the difficulty to obtain good resolu-
tion of the particles with respect to the interface of the film [70] [74]. For this reason
an extensive experimental effort has been undertaken with the aim to understand the
behavior of the embedding process, in particular near the glass transition temper-
ature; additional work was done in order to understand the forces on nanoparticles
near polymer brushes [73]. Such methods where complemented with extensive the-
oretical investigation which relates the interfacial free energies with the penetration
of the particle (or clusters of particles) into the film [67].

In the present section the embedding process of the nanoparticle is analyzed us-
ing fundamental definitions of wetting theory and results obtained from computer
simulations, where (as was discussed elsewhere) the probe is modeled in an idealized
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way as a non structured one. A relevant question is the analysis of the onset Te of
the embedding process and the effect of the thickness of the film on this embedding.
From the experimental point of view, the embedding of small particles can be re-
garded as a measure of the glass transition temperature of the polymer in a very
narrow surface region.

In the literature there are many examples of the analysis of wetting transitions on
planar surfaces [62] as well as curved surfaces [60] [68]; in the last case the effects of
the curvature are summed in an effective bulk term, suppressing critical as well as
complete wetting. In the present computation the particle is always able to attach
liquid particles to its surface1. In this particular case monomers at the interface of
the particle do not simply collide but are also coupled to the tracking particle. In
this chapter a short description of the theory on the embedding process is made.
The following section is devoted to the characterization of the fluid film.

Then a qualitative analysis of the hydrostatics of LJ particles, and in particular for
modified LJ particles, in fluid films is developed in order to understand the wetting
behavior on such objects. The analysis of the interfacial effects of the particle and the
dependence of the embedding on the temperature of the melt is done. The analysis
of the dynamics of the particle is not the focus of this section (The dependence of
the dynamics of the particle on different potentials is discussed in the appendix A).

3.2.1 Short theoretical background: embedding of

nanoclusters and interfacial free energy

The embedding of particles in polymeric films is an effect that depends on the
interfacial energies liquid-vapor, liquid-particle and particle-vapor in the absence of
gravitational effects. The driving force of the embedding process is given by the
contribution of the nanoparticle to the Gibbs free energy, which is lowered upon the
embedding. The contribution of a single particle is given by [67]

F = πγpZ
2
0 − 2πR (γm − γmp)Z0 + 2πR2

(
γmp + γm −

1

2
γp

)
, (3.1)

where γm is the interfacial tension of the particle, γp is the interfacial tension of the

polymer and γmp is the interfacial tension between polymer and particle. Z0 is the
penetration depth with respect to the surface of the film and R is the radius of the
particle. From this expression complete embedding is expected when

γm − γp > γmp; (3.2)

1This effect is related to the attractive potential of the nanoparticle
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Figure 3.1: Snapshot of the position of the particle for T = 0.46, i.e. near the glass transition
temperature. In the panel below the position of the particle is shown for different
times. The persistence of the tracking particle at the interface of the film is due to the
slow dynamics of the liquid at this temperature.

such expression is satisfied for metals in polymer melts. In the present case a
similar theory must be valid for LJ particles; for this reason simulations with similar
parameters as gold particles were performed. There the interaction between tracking
particle and polymers is about three times larger than between adjacent monomers.

35



This implies that the mobility of the polymer chains near the nanoparticle is reduced.
In fig. 3.1 a snapshot of the position of the particle at different times is shown; this
plot shows the persistence of the vertical position of the particle at the interface; at
the same time the interface forms a depletion region near the particle. This result
will be discussed later.

3.3 Film characterization

The analysis of the dynamics of a single nanoparticle in a polymeric film requires a
good characterization of this last one: the simulation of the present system needs a
stable film on a substrate and therefore it is vital to select the correct parameters
in the melt in order to avoid its dewetting2 3. An important point in the present
work is the calculation of the film profile; this information gives information about
the mean film thickness, that can be related to the temperature of the melt.

In the present model the polymeric film is adsorbed on a non structured substrate
with an attractive long range interaction and the simulations are performed for
temperatures below the wetting temperature of the polymeric film 4. The wetting
behavior of the film can be tuned by variation of the Hammaker constant of the
interaction potential of the substrate5; given that it is necessary to gain adhesion of
the molecules with the substrate, the Hammaker constant was tuned to εH = 3.2.
The number of particles and the size of the box was chosen in order to have a
uniform spreading of the liquid; there is moreover no interest to make a variation
of the contact angle liquid-substrate and hence the computations were made for
temperatures kBT/εH < TW , where TW is the wetting transition temperature; the
corresponding density of the melt is in the present case 0.8 ≤ ρ ≤ 1. With all the
previous defined parameters a very stable film is obtained (there is no evaporation
of polymer chains from the surface of the film; a more extensive report about the
physics of the wetting behavior of polymer melts on substrates can be found in [16]).

The definition of the reference system for the measurement of the penetration
process of the particle can not be fixed with respect to the substrate because the film
has a variable thickness. Thus the information about the position of the particles
relative to the interface of the melt is basic in order to make an analysis of the

2A wetting transition is the change of the thickness of a liquid film as a function of the temperature.
An equivalent definition is, it is the change of the contact angle between the substrate and the
surface of a droplet with the temperature. For example, mercury is a substance that under
normal consitions does not wett any surface (for example saphire), i.e. it forms droplets; only
by increasing the temperature (up to 1468 degrees) mercury tends to form a uniform film on a
saphire substrate

3see for example [65] for a particular dewetting process
4Otherwise effects related to the dewetting of the film could be coupled to the dynamics of the

particle; this case is out of focus of this work.
5Which is defined as the Gibbs energy of attraction per unit cross sectional area
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Figure 3.2: Film thickness and interfacial width as a function temperature. The thickness grows

linear with temperature. In the simulated temperature range the film is below the
dewetting temperature.

embedding of the probe. At a first glance (as a qualitative analysis) the penetration
of the tracking particle can be analyzed by relating the density of the fluid with the
density of the vertical distribution of the particle. 6 This results will be discussed
later also in this section (see fig. 3.10)

At the interface the liquid density steeply decreases to the vapor density; for
z →∞ the vapor density approaches zero. The interface was fitted using a tangent
hyperbolic function

ρ(z) = ρ
1

2

[
tanh

(
z0 − z
w

)
+ 1

]
, (3.5)

where z0 is the mean film thickness and w is the width of the interface.

6The distribution H(z) of the vertical position of the liquid particles, as a function of the vertical
coordinate, is normilized by means of the following expression

N =

h∫

0

H(z)dz, (3.3)

where h is the film thickness. So, given that the liquid particles have mass equal to one, the

density distribution of the liquid is given by

ρ(z) =
H(z)

L2
(3.4)

in this formula L is the size of the periodic box.

37



Table 3.1: Thickness and density of the liquid film

T w z0 ρ
0.46 0.75 12.7 1.0
0.50 0.68 12.92 1.0
0.70 0.89 13.65 0.92
0.80 0.70 14.09 0.91
0.90 0.92 14.42 0.89
1.10 1.26 15.29 0.80
1.40 1.26 16.89 0.72

In table 3.1 the result for the film-thickness and width of the interface are shown
and plotted in 3.2, for a polymer film composed of 14400 particles; the lateral size
of the box in this simulation was 34.6σ. The thickness of the interface grows with
temperature7. The thickness of the film was controlled in the computations with
the number of particles and the size of the box.

3.4 Hydrostatics of the gas phase

A qualitative idea about interfacial effects is obtained by solving the equations of
hydrostatics for the fluid film in the system substrate-nanoparticle. For this model
the contributions related to the complex liquid are zero (i.e., in hydrostatics a com-
plex liquid is the same as a simple one). Such theory seems to be too simple but
presents a powerful tool to understand the equilibrium of the liquid film [32].

The interface of the liquid film is related to the equipotential lines produced by
the potential of the substrate and the potential of the particle. The total potential
is defined as symmetric with respect to a coordinate q2 and is given as a function of
the two coordinates q1, q3

φ = ΦT (q1, q3) . (3.6)

From the hydrostatical equations the equilibrium condition between the pressure

and the external potential is given by

ρδij∂iΦT = −∂it
ij, (3.7)

where tij = δijP , P is the pressure in the liquid. The right hand is related to the

thermodynamics of the system through the Gibbs free energy, which is given by

∂iP (q1, q3) = ρ∂iµ; (3.8)

7This result is in accordance with Mull et al. [16]
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Figure 3.3: Representation of the coordinate system used in the calculation of the solutions of the
hydrostatics of a liquid.

in this equation µ is the chemical potential and P is the pressure of the liquid [71].

The Gibbs equation is also valid for the gas phase, thus it is allowed to write an
hydrostatical relation between the external potential and the chemical potential

∂iΦT (q1, q3) = −∂iµ. (3.9)

With this equation it is possible to determine the film thickness as a functional of

the chemical potential of the gas.

3.4.1 Film thickness away from the particle for q1 →∞.

Far from the particle (q1 → ∞) the total potential approaches to the following
potential

lim
q1→∞

ΦT → ΦS, (3.10)

in this equation 8

8For this mathematical description the contravariant notation is used; that means the coordinate
system is described for each axis as q1, q2 and q3.
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Figure 3.4: Three dimensional representation of the solution of the hydrostatics. The film thickness
is represented by the contour lines, which are the equipotential lines of the potential
particle substrate satisfying eq. 3.9.

ΦS(q3) = 4εH

[(
σ

(q3)

)9

−
(

σ

(q3)

)3
]
. (3.11)

Applying this potential to the hydrostatic equation and integrating from the surface

of the film q3 = HΓ to infinity (q3 →∞) one gets the following equation

ΦS(HΓ) + ∆µ = 0, (3.12)

with

∆µ = µ∞ − µcoex, (3.13)

where µcoex is the chemical potential at the liquid-vapor interface. In such case we

can asume that µ∞ → 0, which implies that ∆µ → µcoex. This equation can be
solved for HΓ the film thickness as unknown. At this point it is helpful to define the
following variable

κf =
µcoex

4εH
, (3.14)

which replaced in eq. (3.4.1) yields to the following equation for the film thickness:

Y 3 − Y − κf = 0. (3.15)
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Figure 3.5: Profile of the interfacial line in hydrostatics for the particle, interacting with a modified
LJ potential with the liquid, at different positions: d = 8 and d = 18. All the
dimensions are in LJ units. The effective radius of the nanoparticle is Reff = 4.0σ,
with a hard core radius of R0 = 3.0σ. It is possible to observe that the particle placed
in bulk admits the formation of flat film interface. When the relative distance to the
substrate is higher, the surface of the liquid is curved and eventually condenses on the
surface of the particle.

where the following transformation was done

Y =

(
1

HΓ

)3

. (3.16)
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Furthermore it is assumed that the interaction range is σ = 1.0. This is a cubic

equation that can be analyzed bymeans of the computation of the discriminant.
The solutions of this kind of equation can be real or complex, but for the present
problem this solution which represents a physical quantity (the film thickness) must
be necessary real.
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Figure 3.6: Interface in the presence of a LJ particle with radius σ = 4.0. The temperature in
this system is the same as the temperature in fig. 3.5. In comparison with modified
LJ potentials, this kind of potentials have a very long range interaction; hence the
interface (plotted in the contour base) is curved, even when the particle is placed near
the substrate.

The discriminant is given by

D =

(−κf

2

)2

+

(−1

3

)3

. (3.17)

If D > 0 then there are one real and two conjugate imaginary solutions. If D ≤ 0

there are three real solutions.

From eq. (3.4.1), and the information of the film thickness obtained from simula-
tion results, the chemical potential is −0.0065 ≤ µcoex ≤ −0.002, for temperatures
between 0.46 ≤ T ≤ 1.4 and therefore D < 0.

The solutions of the equation (3.4.1) can be found using the so called casus irre-
ducibilis [61]
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Y1 = 2
1

2
√

27
cos(φ/3), (3.18)

Y2 = −2
1

2
√

27
cos(φ/3− 2π/3), (3.19)

Y3 = −2
1

2
√

27
cos(φ/3 + 2π/3), (3.20)

where φ is given by

φ = arccos

(
2
√

27
µcoex

8εH

)
, (3.21)
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Figure 3.7: Plot of the equation (3.4.1) for 0.46 ≤ T ≤ 1.4. The first zero of the function at z ∼ 0.5,
the transition from the repulsive to the atractive part of the potential; the second zero
is at z = H , related to the film thickness. The third zero of this function is negative
and has no physical meaning. Therefore the liquid film is adsorbed on the substrate
in the region defined between the first and second zero. In this region each horizontal
in the curve represents different chemical potentials at different temperatures. In the
small panel the same situation is plotted for the potential of the nanoparticle

Using the parameters for the liquid film, one of these solutions is H1Γ ∼ z0, the
height of the film; the other two solutions are H2Γ ∼ 0.49 and H3Γ ∼ −0.46 for
almost all the coexistence chemical potentials suggested in this section. Negative
solutions for the film thickness have no physical meaning. Therefore the present
solutions appears consistent with both results obtained using computer simulations
and the hydrostatics, because all the solutions for the film thickness, using the
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respective coexistence chemical potential, are inside the space defined by the liquid
film (see fig 3.7).

The same analysis can be applied near the isolated nanoparticle. In the next
subsection this analysis is done.

3.4.2 Film thickness close to the particle

Close to the particle the following potential is present

ΦT (q1, q3) = ΦS(q3) + Φparticle(q1, q3); (3.22)

in this case Φparticle(q1, q3) is given either by the LJ or the modified LJ potential.

The integration of the hydrostatic equation for the chemical potential in the gas
phase, from q3 = HΓ to infinity, gives

ΦT (q1, q3)− µcoex = 0. (3.23)

This equation is of order 11, that means, there is no analytical solution for H, the

thickness of the film.
In this equations the equipotential lines, where the potential plus the coexistence

chemical potential is equal to zero, represents the interface of the liquid film; there-
fore the plot of such lines is the direct representation of the film thickness. This
graphical solution is obtained and represented in figs. 3.4, 3.5, fig. 3.6 and fig.3.7.

The method used for the calculation of the film thickness on the substrate can
be used for the calculation of the film thickness on the nanoparticle away from the
substrate. In such case the equation for the liquid film on the particle is

φparticle(R) =
µcoex

4εmp
, (3.24)

where the potential for the particle is defined in spherical coordinates; in this case

the potential of the particle is the modified LJ potential (defined in chapter 2).
Making the definition of variables αpart = Rl − R0 and β = α−6, where Rl is the
position of the liquid film on the nanoparticle, then from eq. (3.24) the following
equation is obtained:

β2 − β − µcoex

4εmp

= 0; (3.25)

this is again a polynomial equation of order two that can be easily solved. The

solutions of this equation are

α1part =


 2(

1− 2

√
1 + µcoex

εmp

)




1/6

, (3.26)

44



α2part =




2(
1 + 2

√
1 + µcoex

4εmp

)




1/6

. (3.27)

The case that is represented by the previous equations imply that the substrate is at

the hardcore of the nanoparticle, i.e. for α = 0. The equations (3.4.2) and (3.4.2) has
one real and one imaginary solution if µcoex > 0. Making the same consideration
done for a flat substrate, the chemical potential vary from µcoex = −0.0062 at
T = 0.46 to µcoex = −0.0026 at T = 1.4 implying that eq. (3.25) has two real
solutions: for T = 0.46, α1 ∼ 1.0 (i.e Rl ∼ 4.0) and α2 = 3.52 (i.e Rl = 6.52) and
for T = 1.4, α1 = 1.0 (i.e Rl ∼ 4.0) and α2 = 4.08 (i.e. Rl = 7.08).

In fig. 3.7 the equipotential lines for the particle, without substrate, are shown; in
such case the system is at T = 0.46 and T = 0.8. The liquid film on the particle has
a thickness H(r) > 2σ; and it is evident that the variation with the temperature is
very smooth. Given that the size of the monomers in the polymeric film is 2σ then
it is possible to conclude that the nanoparticle has always a layer of monomers (i.e.
there is no wetting transition on the particle in the temperature regime considered
in the present simulations)

The value of the chemical potential at coexistence controls the thickness of the
film and therefore the wetting or dewetting of the fluid. In figure 3.5 different film
thickness as a result of the superposition of the substrate potential with a modified
LJ potential are represented. The solution for the equipotential lines for a particle
interacting with the fluid through a LJ and a modified LJ potential is shown in figs.
3.5, 3.6. From this plot it is important to notice that the interaction range for the
LJ particle is much bigger than for the modified LJ particle; therefore, when both
kind of particles are placed in bulk, the modified LJ particle allows the formation
of a flat interface, whereas the LJ particle produces a curved interface, even when
the particle is near the substrate.

3.4.3 Determination of the pressure for the gas phase

The solution of the equations of the hydrostatics gives information about the pres-
sure in the gas and in the liquid face. The density of the liquid remains constant
and the conservation of the momentum, represented by the Navier Stokes equations,
is given by

∂1T
11
Gas = −ρGas∂1δ

11ΦT (q1, q3),

∂3T
33
Gas = −ρGas∂3δ

33ΦT (q1, q3), (3.28)

where Tij is the stress tensor; in particular T11 = P (q1, q3) and T33 = P (q1, q3). That

means, the eq. (3.28) are two uncoupled equations on each coordinate for P (q1, q2).
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Away from the particle both equations are reduced into only one differential equation
over the coordinate q3. In the following equations the solution near the particle will
be considered; if the vapor phase is considered as an ideal gas then

ρGas =
PGasm

KT
. (3.29)

then replacing (3.4.3) into (3.28) the following equations are obtained

∂1PGas = −PGasm

KT
∂1ΦT (q1, q3), (3.30)

∂3PGas = −PGasm

KT
∂3ΦT (q1, q3). (3.31)

The integration of both equations is done for the whole gas space, i.e. from liquid

surface at q3 = H, where H is the film thickness, to infinity, and q1 = 0 to infinity.
The result is

P (q1, H) = P (q1,∞)e
m

KT
ΦT (q1,H), (3.32)

P (0, q3) = P (∞, q3)e
m

KT
ΦT (0,q3), (3.33)

where P (q1, H) is the pressure of the gas over the liquid (the barometric pressure

formula), H is the thickness of the liquid film, which is defined at the coexistence line
between the liquid and the vapor phase, P (q1,∞) is the gas pressure far away from
the liquid surface and P (∞, q1) is the pressure far away on the radial coordinate.
Due that the interface is an equipotential line

PHGas
= PHliquid

. (3.34)

That means, the barometric formula for the gas at the interface is the same as
the liquid pressure at the same point.

3.4.4 Hydrostatics for the fluid Film

In the barometric formula there is information on the dependence of the pressure
on the vertical coordinate, Pfilm = P (q3). So, in the liquid phase the equation for
the pressure is

∂3t
33
fl = −ρliq∂1δ

33ΦT . (3.35)

In case that the fluid is incompressible

ρfl = cte; (3.36)
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replacing this last expression in the first one it is obtained

∂3P = −ρfl∂3ΦT (q3). (3.37)

This equation is integrated in the interior of the film, that means between any q3

and H, the liquid surface, which depends on the chemical potential through κf .
This solution thus contains information in all the fluid space; the solution for the
pressure can be written as

P (H(κf)) = Pfl(H(κf)) + ρfl

(
ΦT (H(κf), q

1)− ΦT (q3, q
1)
)
, (3.38)

where

Pfl(H(κf)) = PGas(H(κf)), (3.39)

this last equation represents the boundary conditions liquid-gas for the hydrostatic

equations. Away from the particle the total potential tends to be the potential of the
substrate. Using the contact conditions the solution for the pressure in the liquid is

P = P∞e
m

KT
Φs(H(κf ),q1) + ρfl

[
Φs(H(κf), q

1)− Φs(q3, q
1)
]
. (3.40)

Near the particle the solution for the pressure in the film is

P = P∞e
m

KT
ΦT (H(κf ),q1) + ρfl

[
ΦT (H(κf), q

1)− ΦT (q3, q
1)
]
, (3.41)

with this last equation the complete expression for the barometric formula in vapor

and liquid, away and close to the particle, was obtained.

3.5 Interaction between the nanoparticle and the

polymer film

Simulations at low temperatures The film thickness is computed using the
formulas derived from the solutions for the hydrostatics of the fluid film. The
equipotential line to ΦT = µcoex − µ∞ defines the position of the interfacial line.
As was assumed, µ∞ → 0; this particular point has as consequence that the film
thickness depends on µcoex (in this sense it quite evident that the film thickness
can be controlled using the coexistence chemical potential). The main interest is to
make a contrast between the simulations and this theory.

In contrast to the solutions in hydrostatics, where is assumed that the film is
in a liquid state, most of the simulations for polymeric films was performed for
temperatures near the glass transition temperature Tg. This is very important to
make an interpretation the results of the simulations done for low temperatures.
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Figure 3.8: Density profile of the particles in the film close to the tracking particle at T = 0.46. In
this plot the particle is placed at the center of the coordinate system. Here it is obvious
to distinguish a depletion of the density profile near the interface particle-liquid, as
the hard core of the tracking particle does not admit a layer of particles on its surface
(see 3.7).

Nevertheless, the tracking particle always admits a film of particles (on the hard
core), as was shown in fig 3.7, the formation of this film depends first on the position
of the probe particle relative to the interface of the polymeric film and second on
the dynamics of the polymers close to the particle9. The present simulations uses
initial configurations where the nanoparticle is placed above the polymeric film;
so for initial times the particle has no neighboring monomers and only after some
simulation steps the particle is able to interact with the particles at the interface of
the melt.

If the temperature of the system is T > Tg, then the interface of the melt is
in a liquid phase, making possible the formation of the liquid film on the particle;
therefore the particle eventually embeds into the melt and searches a position where
the distance between the monomers in the polymeric film and the tracking particle
dm be dm ≥ R, R the layer on the particle defined from eq. (3.24). On the other
hand if the polymeric film is near the glass phase, is possible also that the interface
is in a glass state?

In fig. 3.8 the density profile of the monomers near the tracking particle is plotted,
for T ∼ Tg. From this plot there are two important aspects: the persistence of the
position of the particle near the interface of the film (see fig. 3.1) and the formation

9In an intuitive way it is possible to say that the formation of a film on the particle depends on
how fast the particles can move on the surface of the nanoparticle in order to form it

48



of a ’cup’ near the particle (see fig. 3.8). The small embedding of the particle into
the melt at low temperatures is an indication of the same embedding mechanism
explained in the previous paragraphs. But in such case the persistence of the vertical
position of the nanoparticle at the interface is an indication of the very slow dynamics
of the polymeric chains at the liquid-vapor interface of the film (typically for liquids
near the glass transition temperature). Therefore at T ∼ Tg the tracking particle
has only a light embedding into the film.

The time required for the formation of the layer of particles on the tracking
particle depends on the mobility of the monomers into the polymeric melt. The
density profile near the particle as well as the observation of the position of the
particle with respect to the interface permits to conclude that for T → Tg the
polymers at the interface of the film are also near the glass phase (This fact can be
related to the compliance force on the particle [74]). This result is very important
because it shows very clearly that a glass transition not only happens in bulk; the
’cup’ close to the particle in fig. 3.1 at T ∼ Tg is the result of the low mobility of
the monomers at T > Tg (see fig. 3.9 and appendix A).

There is one additional aspect related to the definition of the interaction potential
between the tracking particle and the monomers in the film. As was discussed in
chapter two about the technical details, it is necessary to choose a modified LJ
potential in order to gain stability of the particle respect to the liquid-vapor interface:
simulations with LJ particles were done but the probe particle never reached stability
on the interface. With the computation of the film thickness using hydrostatics it
is possible to observe at the interface of the film a small ’hill’ just above the LJ
particle, with σ = 4 and d = 8. Even for the particle placed at d = 2 the interface is
curved. This result can be easily verified using again the corresponding formula of
eq. (3.9) for LJ potentials; in such case the substrate is again at the surface of the
nanoparticle i.e. at R = σ. For T = 0.46, α1 = 1.0 and α2 = 3.52 (i.e for σ = 4.0,
Rl = 7.52) and for T = 1.4, α1 = 1.0 and α2 = 4.08 (i.e. Rl = 8.08). This result
suggest that LJ particles, or particles with modified LJ potential with σ > R0, have
a very long interaction range. It is very easy to conclude that the particle can have
a layer of monomers or liquid particles if the film thickness is H >> R. Because
the stability of the tracking particle on the film depends on the layer of monomers
on the particle, then the films considered in the present simulations was too thin,
many of them with H ≤ Rl, that it was impossible to guarantee the stability of the
probe particle on the film.

With the modified potential for the particle, the distribution of the vertical po-
sition of the particle is more stable than for a simple LJ potential because with
the first one the particle admits a stable thin liquid layer near its interface: the
monomers are able to trespass the interface defined at Reff , which defines the in-
teraction range of the nanoparticle, and interact with the hard core of the particle,
with R0 > σ, where σ = 1 is the typical size of the monomers in the melt. From this
last points there are additional reasons that explain why the particle simulated with
a hard core potential is more stable than the simple LJ potential: First Reff < Rl,
i.e. the effective radius of the particle is smaller than the size of the liquid film that
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Figure 3.9: As was predicted by many authors (See for example Press et al. [67]), the embedding
of nanoparticles in liquid films produces a layer of liquid particles on the particle. In
the first plot a snapshot of the particles distributed around the tracking particle at
T = 1.1 is shown; the plot below shows the density of the liquid near the nanoparticle
for two different temperatures in an horizontal cut of thickness dcut ∼ 1.0. When the
particle is inside the film the existence of a growth of density near the surface of the
particle is obvious.

the nanoparticle, without substrate, can admit; second |Ueff(r ∼ Reff )| > |ULJ |,
i.e. the potential close to the region defined by the effective radius is much deeper
than the simple LJ potential (this implies, the layer formed in the region near Reff

is composed of particles that have much lower mobility than the rest of the poly-
meric film). Therefore, a simple LJ particle admits a film over its surface but the
monomers in this region have still high mobility; for this reason any LJ particle with
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Figure 3.10: Distribution of the vertical position of the particle as a function of the temperature.
The liquid has 14400 particles and N = 10. The horizontal lines represent the
mean density of the film (see 3.2). The principal function represents the density
profile of the melt as a function of z, whereas the ’peak’ functions represent the
distribution of the particle along the same coordinate. It is obvious to observe that
this last distribution function is not Gaussian and that its breadth depends on the
temperature.

any size is reflected by the polymeric film10

Position of the tracking particle and interfacial phenomena In the initial
configuration the tracking particle is placed above the polymeric film; when the
thermostat is switched off the colloid couples only to the particles in the melt. The
modified LJ potential secures that the mobility of the liquid particles near the probe
particle is low: without such potential the particle gets enough kinetic energy and
can escape from the surface of the melt.

The position of the particle was measured with respect to the film thickness; this
result, together with the variance (σ2 = 〈(z − z0)

2〉 − 〈z − z0〉2), is presented in the
table 3.2.

This result shows that the particles sink at high temperatures and indicates very
nice a transition from a glass into a fluid behavior at the interface of the film. In

10The definition of the nanoparticle with a modified LJ interaction potential can be interpreted as
a particle with hard core and a soft surface that is able to attach fluid particles. In an intuitive
way is like a tenis ball with many cotton on its surface
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Figure 3.11: Variance of the position of the particle relative to the position of the interface as a
function of the temperature. Observe the separation between nanoparticle and the
position of the interface by increasing the temperature from Tg. Therefore the vertical
position of the particle monitors the glass transition temperature at the interface of
the melt and subsequent embedding as a function of T . This situation is confirmed
experimentally [67].

Table 3.2: Position of the particle respect to the liquid-vapor interface

T 〈z − z0〉 σ2

0.46 0.49 0.15
0.5 0.87 0.18
0.7 1.31 0.27
0.8 1.79 0.42
0.9 1.61 0.46
1.1 3.06 0.45
1.4 7.61 0.93

fig. 3.10 the distribution of the particle along the z axis is shown in different plots
as a function of the temperature. This plot gives more over information about the
change of the density of the melt with the temperature and the dependence of the
width of the distribution of the particle on the temperature. In fig.3.11 the variance
of the position of the particle relative to the position of the interface is shown; from
this plot the dependence of the embedding process on the temperature is very clear;
this result coincides with experimental observations [67].

The method used in this simulations, as well as the analogous experimental
method [67], serves to measure locally, i.e. near the nanoparticle, the glass transition
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of the polymer liquid at the interface. Although the embedding of the nanoparticle
proofs the existence of a glass transition at the interface (as was explained some
paragraphs before), it is not totally clear if the interface is in fact in a glassy state.
In the discussion above about the potential of the particle it was shown that in
the simulations the nanoparticle forms a ’cup’ near the nanoparticle; moreover the
results for the mean position of the tracking particle with respect to the interface
show that the particle is just below the interface of the film (see fig. 3.11). If the
interface, close to the nanoparticle, is in a glassy state then the particle is not able to
penetrate into the film. The results obtained with this simulations seems to confirm
the results obtained by Teichoeb et al. [75]: for T → Tg the monomers near the
interface and close to the nanoparticle are in a liquid phase.
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Figure 3.12: Histograms of the vertical position of the particle in a system with 14400 particles,
starting from an initial configuration with a temperature T = 1.1 and cooling down to
temperatures T = 0.7 and T = 0.5. The particle has an effective radius of Reff = 4.0.

The previous affirmation depends on the definition of the interaction potential
between the nanoparticle and the melt. As was shown in chapter two, and discussed
along this chapter, the definition of a modified LJ potential ensures more stability on
the vertical position of the tracking particle, implying a large attraction between the
particle and the neighboring monomers. This fact has as consequence that near the
tracking particle the liquid particles have low mobility; as consequence an adsorption
layer appears on the surface of the particle, when the particle is in bulk. In fig. 3.9
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one can observe the distribution of monomers in a lateral cut on the equatorial line
of the nanoparticle, of thickness 1.0σ; in this particular case R0 = 3.0 and σ = 1.0.
In the same figure the density distribution of the monomers in the cut as a function
of the radial coordinate r is shown for two different temperatures; here there is a
dramatic growing of the density at r = Reff , even when the particle is placed in
bulk at T ∼ Tg.
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Figure 3.13: Simulation of a system with 14400 particles, starting from an initial configuration with
a temperature T = 1.1 and cooling down to temperatures T = 0.7 and T = 0.5. The
position of the particle with respect to the interface can be controlled by changing the
temperature of the melt. The position of the particle with respect to the interface of
the film is plotted, showing an hysteresis of the embedding of the particle by cooling.

When placing the particle above the polymer film at high temperatures it is
obvious that, after long simulation times, the vertical distribution of the particle
is under the position of the interface of the melt. Could the barticle go back to
the interface indicating that the position followed is an equilibrium position? If the
conclusions obtained in this section are right, then the particle never reaches again
the interface and stays inside the film.

In order to test whether are we able to equilibrate the system, new simulations
were performed with initial configurations where the particle is placed inside the
film (This initial configurations are obtained from final configurations obtained from
simulations at T = 1.1). The results are shown in fig. 3.12 and fig. 3.13: by ’heating’
the system the tracking particle is able to embed into the melt and by cooling down
to T ∼ Tg the particle approaches again to the interface, but the final vertical
distribution is below the starting vertical distribution. The final temperature was
T = 0.5; even for T ∼ Tg it is expected to observe the same result.
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Why does the particle move from the bulk to the interface by cooling? In this
case, the particle can not admit a thick layer of particles on its surface when T → Tg,
as was shown in the solutions for the hydrostatics on the nanoparticle (see fig. 3.7);
hence when the particle is inside the film, and the system is cooled, the particle
search a region with much lower density, in this case a region near the interface.
But for temperatures T ∼ Tg the mobility of the particles at the interface is very
low, preventing the particle from reaching the interface.11
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Figure 3.14: Distribution of the vertical position of the particle as a function of the temperature.
The liquid has 2250 particles and N = 10. In this case the film is very thin and the
particle can not sink; even for T >> Tg it is possible to observe persistence of the
position of the particle on the surface of the film.

In simulations done for very thin films the particle does not penetrate the polymer
melt; even for T >> Tg the distribution of the vertical position of the particle is
centered near the interface of the film. In this case the very high density at the
interface substrate-liquid has influence on the dynamics of the interface of the film
and for this reason the particle is distributed only near the interface. In fig. 3.14 the
vertical distribution of a nanoparticle in a very thin polymer film (H ∼ 3 ∗Reff ) is
shown for two temperatures. For T ∼ Tg the particle is distributed at the interface,
as is expected, but for T = 1.4 the particle is also distributed at the interface of the
film, in contrast to the results for thicker films (see fig. 3.14).

11This is therefore an interplay between the prewetting dynamics on the tracking particle and the
interfacial dynamics of the film
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3.5.1 Conclusions

In this section the statics of the system film nanoparticle was discussed. The vertical
position of the nano particle depends on the temperature: the simulations shows that
the probe has a persistence of the position near the interface when T ∼ Tg and is
able to sink into the polymer film by increasing the temperature of the melt. This
effect shows a glass transition temperature at the interface of the film by measuring
the vertical distribution of tracking particles.

The density profiles in horizontal cuts of the polymer film near the particle were
computed and shows the appearance of a layer of monomers on the hard core of the
tracking particle, at r = Reff . For very thin films the particle allways remains close
the interface. The light embedding of the tracking particle into the film suggest that
at the interface the density is smaller than inside the film.

The results of the present simulations shows hysteresis in the embedding process,
implying that the presence of the nanoparticle at the interface at T ∼ Tg depends
on whether the particle is situated in the initial configuration. If in the initial
configuration the particle is above the film then the nanoparticle can be used as a
sensor for the glass transition at the interface of the polymeric film; this concept is
the computational analogous of the experimental method used by Teichoeb et al.
[75].

The present simulations were done for non structured particles, either with LJ
or modified LJ ones. In contrast with LJ particles, modified LJ ones have a hard
core that allows the formation of a layer of particles close to the region defined
by the effective radius Reff . This potential therefore represents a particle with
an adsorption surface that is able to attach monomers. This model is completely
different to the simple LJ nanoparticle, which represents a smooth particle that
simply collides with the liquid particles in its neighborhood.

This approximation gives reasonable good results but does not simulate real ex-
periments, where clusters of nanoparticles of noble metals (for example gold) with
diameters of 10Å are employed. As outlook it is interesting to replace the simple
non structured particles by clusters of nanoparticles. An additional interesting point
is the initial configuration at low temperatures: all the results obtained from the
simulations at Tg were computed for particles placed above the interface of the film,
but the embedding process shows that it is also possible to start simulations with
initial configurations where the particle is placed inside the film. The advantage or
disadvantage of each initial configuration depends on the phenomena to be analyzed.
The first kind of configuration permits to make the analysis of interfacial phenom-
ena, but is very hard to equilibrate; the second one is in contrast much easier to
equilibrate. This particular point is thus a personal selection and depends on the
particular problem to be investigated.
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4 Dynamics of the nanoparticle
in the polymer film

4.1 Abstract

The investigation about the motion of a particle in a polymeric film arises the
question, whether a tracking particle can be used as a sensor of the dynamics of the
complex fluid at the interface as well as in bulk.

In the present results the dynamics of the particle for different time regimes is
analyzed and sensitivity of the dynamics of the nanoprobe to the glass transition
temperature of the melt is found. It is shown that the diffusion coefficients of single
monomers in the polymeric film is related with the self diffusion coefficient of the
tracking particle. The information obtained from the displacement of the particle
is used for the computation of the complex shear modulus of the liquid near the
particle. The effect of the liquid-vapor interface on the dynamic of single particles
is also analyzed in this section.

4.2 Introduction

4.2.1 Regarding the literature

Dynamics of the probe particles

The dynamics of particles in suspension in complex liquids is a phenomenon that
has been intensively studied in the last years in order to understand viscoelastic
properties of fluids [35] as well as the change of the dynamics of the fluid due to
the presence of the particle [67][41]. In the first approach the nanoparticles are used
as probe particles, where the response of the particle to the thermal fluctuations
depends on the ”mechanical susceptibility” of the fluid. This effect is studied using
confocal microscopy. In this case the movement of the Brownian particle is described
by a Langevin equation, but the fluctuation-dissipation theorem has a slight modifi-
cation given that the medium stores energy: the correlation function between forces
is no more given by a delta function but by a memory function [56], [55].

Alternative systems for complex probing particles are also studied in order to
probe Glass transition behavior. The dynamics of a single rod in a glassy medium
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was analyzed by Moreno and Kob with the aim to understand the diffusion of non
spherical particles [47], where the particle shows similar features as the Brownian
motion of single polymers.

Abdulwahab et al. used a similar approach as in the present work, making an
attempt to understand transport properties of polymer-stabilized particles in envi-
ronment and other applications [48]. In their simulations, they model hydrodynamic
interactions that are taken into account to describe the diffusion properties of a sta-
bilized particle; such approach is an alternative to the approach used in the present
work.

Temporal and spatial scales in the system

The difference between the dynamics of the polymers and the dynamics of the liquids
depends on the fluctuation frequency of the molecules and the wave length of the
perturbation in relation to the separation between the molecules. In this sense, for
low frequencies and long wave lengths the same molecules behaves like a mean field
that conserves dynamical variables like momentum or energy; this is the starting
point for the definition of hydrodynamics. But if the wavelengths are comparable
with the intra molecular separation then this hydrodynamic picture is no more valid
[30] [31] [32].

The Brownian motion is defined just on this scale, where the size of the nanopar-
ticles particles can detect the motion of the surrounding liquid particles.1. There are
two methods in order to obtain information of this system: Introducing external per-
turbations with some frequency it is possible to observe that for long wave-lengths
and small frequencies the liquid behaves as a continuum, making possible the ap-
plication of the equations of hydrodynamics; this case will be exposed later in the
section dedicated to the linear hydrodynamics of moving particles on simple and
complex liquids. If the perturbation frequencies are small, then the liquid behaves
as a discrete medium [30]. The last situation is passive: the scale of the probe
particle is on the order of the typical wave-length of the fluctuations of the particles
of the liquid; in such a way the hydrodynamic effects are negligible for short and
intermediate time scales 2.

4.2.2 Probe particles and microrheology

In the last years conventional experimental methods, employed for rheology based
on the introduction and subsequent relaxation of perturbations in the viscoelastic

1In this case a rock in a liquid does not undergo Brownian motion, not only because it is very
massive, with a subsequent big inertia, but also because a rock is too big in order to detect the
motion of single particles in the liquid. But when the particle is not very large (but large enough
respect to the classic theory for Brownian motion) then it is quite obvious that the velocity
of the particle fluctuates around a mean velocity implying Brownian motion by hydrodynamic
interactions [42].

2In some cases the velocity correlation function shows a power law decay for long times, where
the exponent is given as 3

2 . For this long time tails it is necessary the use of hydrodynamics.
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material, have evolved into the novel method called micro rheology, by means of the
optical tracking of nanoparticles in viscoelastic materials [35] [50] [53].3 In many
experimental situations it is of special interest to analyze in a non invasive form
the relaxation processes and dynamics of biological as well as non biological mate-
rials, for example of cellular membranes [38], making this technique a fundamental
improvement for cellular and molecular biophysics. This technique is ideal for mea-
surements at high frequency in contrast to traditional techniques in rheology. Some
of the methods based on this idea are the tracking of probe particles with dynamic
light scattering (DLS), fluorescence correlation spectroscopy (FCS) and single mem-
brane channel conductance methods. The quantitative analysis of the data is based
on the analysis of the displacements of the probe particles, where the Mean Square
Displacement (MSD) is related to the linear relaxation kinetics obtained after a per-
turbation (so called Onsager Hypothesis). The first experimental approaches were
based on the study of the spontaneous thermal fluctuations of gel materials using
DLS; with this same technique the thermal fluctuations of particles in actin are
studied. Using superior spatial and temporal resolution with photo diode detection
(SPT) the investigation of viscoelastic materials at sub cellular and macromolecular
level is done. Recent advances of SPT allow to apply this technique to study of
macromolecules and cytoskeleton networks. With this technique it is also possible
to understand molecular and cellular forces, being a complement to the standard
method of the atomic force microscopy (AFM). Another application is the study of
the dynamics of DNA and its conformational dynamics without perturbations, as
well as the dynamics of such macromolecules in aqueous solutions. In this sense, the
use of micro rheology is a basic milestone in the modern biophysics [52], because it
brings the study of the complex mechanical response of bio materials from in vitro
to in vivo experiments.

In these experiments, the local viscosity is represented by small scale structure
and is estimated via the measurement of the displacement of small particles, whereas
bulk viscosity could show bulk moduli. The connection between the Brownian mo-
tion of the particle and the bulk viscosity can be approached as an elasticity that is
the same for a purely viscous fluid, under the assumption of non slip-Stokes-Einstein
relationship can be generalized to all the frequencies. In this way a mean field as-
sumption relates macroscopic stress relaxations with microscopic stress relaxations,
i.e. there is no differentiation between local and global viscosity [50].

Another approach takes the elastic component of the suspending medium more
directly into account. Non slip boundary conditions facilitates the movement of a
sphere immersed in a viscous compressible liquid; if this sphere is subjected to a
particular frequency the increase of the net velocity of the fluid around the sphere
(compliance) is proportional to the inverse of the shear modulus. But for small
frequencies this coupling does not exist, and the osmotic compressibility of the
medium may also influence the Brownian motion of the tracking particle. Therefore

3The knowledge of the local viscosity can have additional applications in the comprehension of
the conformation of proteins [66]
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both the suspending and transverse moduli may influence the motion of a Brownian
probe below some critical frequency[43] [44].

4.2.3 Structure of the present chapter

In the first section a short introduction about the theory of the dynamics of the
nanoparticle as well as of the melt is made, where the analysis of different time
regimes offers particular information on the behavior of the liquid molecules. In an
special section the fundamentals of micro-rheology are explained.

In the part devoted to the exposition of results are described for short and inter-
mediary time regimes the dynamics of the particle. A main point in this section is
to analyze if it is possible to use the nanoparticle as a probe for the dynamics in
the melt; for this reason the relation between the dynamics of the particle and the
polymer dynamics is analyzed. Finite size effects as well as effects induced by the
interface are also discussed. Finally some results of the computation of transport
coefficients are shown. A particular point is the implementation of the computation
of the viscoelasticity of the film using the velocity correlation function (VCF) of the
particle.

4.3 Theoretical background

4.3.1 Short and intermediary time regimes

Equations of motion

The basic assumption in MD simulations is that there is a system with many particles
that can be solved integrating the Newton equations of motion; in this way the
equations of motion defines a density of points in the phase space which is constant.
In particular there is interest in one relevant point, say a1, the trajectory of the
particle of interest, and a2 the rest of particles. The Liuville equation in this case is
[42]

∂

∂t

(
a1

a2

)
=

(
L11 L12

L21 L22

)(
a1

a2

)
(4.1)

where Lij are the elements of the Liuville operator. The solution of the equation for

a2 is

a2 = eL22ta2(0) +

∫ t

0

eL22(t−s)L21a1(s)ds; (4.2)

making a substitution of this equation into the differential equation for a1 the fol-
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lowing differential equation is obtained

∂a1

∂t
= L11a1 + L12

(
eL22ta2(0) +

∫ t

0

eL22(t−s)L21a1(s)ds

)
. (4.3)

In this equation the information of the initial conditions for a2(0) is irrelevant and

replaced by a mean fluctuating element, which is the noise of the system. So the
previous equation is equivalent to the generalized equation for the dynamical variable
a1 expressed as [30]

∂a1

∂t
= iΩ0a1 +R(t)−

∫ t

0

K(s− t)a1(s)ds, (4.4)

where Ω0 accounts for the existence of propagation process associated with the time

evolution of the time variable, R(t) represents the random fluctuations in the system
and the function K(s− t) represent the memory or retardation effect of the liquid.

Two functions are necessary for the analysis of the dynamics of the particle:
the Mean Square Displacement of the particle, MSD, and the Velocity Correlation
Function, VCF. The MSD defined as

∆r2 =

3∑

i=1

〈(
qi(t)− qi(0)

)2〉
, (4.5)

where qi(t) is the coordinate of the particle, and the VCF defined as

Ψ(t) =
〈q̇i(t).q̇i(0)〉
〈q̇i(0)q̇i(0)〉 ; (4.6)

in this formula the VCF is represented in its normalized form.

From this equation is possible to make a derivation of the differential equation
that describes the VCF, which is given by [30]

dΨ(t)

dt
= −

∫ t

0

K(t− t′)Ψ(t′)dt′. (4.7)

The information obtained from this equation contains essential features of the re-

laxation dynamics of the system. For very short times the behavior of the memory
function is similar to the Force Correlation Function, FCF. For long times the mem-
ory function equation tends asymptotically to the simple Langevin equation; in an
asymptotic limit the memory effect vanishes and gives

dΨ(t)

dt
= −γΨ(t), (4.8)

that means, for infinite times the correlation function decays exponentially; this

asymptotic limit is the Markovian limit of the general non Markovian generalized
Langevin equation. In fig. 4.1 is possible to observe the contrast between a pure
Markovian example and some results taken from computer simulations.
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Figure 4.1: VCF of a tracking particle in a complex fluid (Nmon/chain = 10) in contrast with
the prediction of the conventional theory for Brownian motion at T = 1.4. The
conventional theory does not take into account the appearance of memory effects in
the VCF.

Some aspects of the kinetic theory

The movement of the particle in a liquid is due to the collision of fluid particles with
the probe particle. For simple liquids one considers two principal time windows: the
ballistic regime and the transition from a ballistic into a diffusive regime [34]. The
ballistic regime is characterized by the inclusion of switch on effects, i.e. for t >> 0,
v(0)e−tα, that means the relaxation of the initial velocity of the Brownian particle
is take into account4.

In dense or complex liquids, the intermediary time scale is given by the convolution
of relaxation processes that take place in the liquid and is sensitive to variations
of temperature and density. So, in this time regime the VCF reflects essential
characteristics of the fluid (please refer to fig. 4.1 and fig. 4.2). For low densities
Ψ(t) decays exponentially, as is shown in the figure 1, whereas for complex fluids
this function is like a damped oscillation (fig. 4.1 and fig. 4.2); this fact is related
to many body correlation effects in the fluid.

For high densities the VCF shows an over damped behavior and after some time
eventually reaches negative values. This fact is related to repetition of correlated

4That means, the ballistic regime is the relaxation of the initial velocity of the Brownian particle.
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Figure 4.2: Computation of the VCF of a tracking particle embedded in a polymeric fluid with
14400 monomers, each polymeric chain consist of 10 monomers, adsorbed on a flat
substrate. The simulation was performed in a two dimensional periodic box. This plot
show a damped oscillation of the VCF, suggesting an oscillation inside the solvation
shell; for infinite times the VCF tends to be zero. For short times a negative tail of
the function appears, even for temperatures above the glass transition temperature.

collisions with neighboring particles; this last ones form the so called ‘cage’ around
the particle [56] [63]. After some time the particle is able to escape from the cage
and the correlations in the system relaxes; in such a time regime the particle is able
to diffuse.

4.3.2 Long time regimes: diffusion

With the information of position and velocity it is quite evident that the possibility
to deduce the transport coefficients in the liquid using the dynamical variables of
the nanoparticle. The first coefficient that can be directly estimated is the diffusion
constant. There are two equivalent methods for the estimation of this coefficient:
the first one is based on the measurement of the Mean Square Displacement, the
second on the VCF. The diffusion coefficient can be computed as

D = lim
t→∞

1

2d

〈∆−→r 2〉
t

, (4.9)
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in this equation −→r = ri
−→e i and d is the dimensionality of the Brownian motion of

the particle. In the present system there are periodic boundary conditions on x and
y; in this plane the particle is able to diffuse. Along the axis z the particle is able to
stay on the fluid surface or sink into the film; hence the movement is confined on this
direction and no diffusion can occur (The fluid film is like a swimming pool where
the swimmer is free to move on an horizontal plane; but the swimmer is restricted
to submerge only to the bottom of the pool). In order to avoid problems related to
anisotropic diffusion (which is out of the focus of this project) the MSD is measured
in the (x, y) plane. In the figure 3 the effect that the anisotropy induces on the MSD
is nicely shown.

Figure 4.3: In this plot the MSD of the tracking particle in the fluid film is resolved along the x,
y and z axis together with the total radial coordinate R2 = x+y2 + z2 (Np = 2250,
N = 10). The particle diffuses freely along the x− y axis, but reaches a saturation for
many of the simulated temperatures along the z axis. It is quite evident to recognize
a diffusive behavior when the MSD can be fitted by a function tD∗t. The effect
introduced by the anisotropy is evident in the non diffusive behavior of ∆R2.

From a statistical mechanics point of view it is possible to make the computation
of the diffusion coefficient using the correlation of the velocities of the particle [33].
This correlation first relaxes in very short times to zero; only for long times it is
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expected that the diffusion equation is valid. The diffusion coefficient is obtained as
the integral in time of the VCF, for times longer than molecular times

D =
1

d
v2
0 lim

t→∞

∫ t

0

Ψ(t′)dt′; (4.10)

here d is again the dimension of the system. 5 The plot of DV CF (t) shows for short

times a principal peak (which corresponds to the negative tail of the VCF, i.e. the
effect of the cage on the particle) and a repetition of secondary peaks which again
represent the oscillation of the particle inside the cage.
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Figure 4.4: DV CF (t) obtained as the integral of the VCF in the time. For long times the formation
of a plateau like behavior is evident; this corresponds to the region where the particle
freely diffuses, i.e. where D is a constant. For short times memory effects appear to
dominate the system; this fact implies an oscillatory behavior of this function.

The main interest here is the long time behavior for the measurement of the self
diffusion constant. The division of the MSD by time, which converges to the same
value as the integrals of the VCF, the value of the diffusion constant of the particle.
In fig. 4.5 this method is presented for simulations performed for a nanoparticle in
a polymeric film with N = 10 (in this plot only the long tail for DMSD(t) is plotted;
the results for Nmon/chain = 50 will be presented later). For longer times DMSD and
DV CF converge into a plateau like behavior which corresponds to the value of the self

5Here T = 2
d

1
K

〈
1
2m
∑
i

v2
i

〉
such that

〈
v2
〉

= 2KT
m .

65



diffusion coefficient. For short times repeated collisions on the suspended particle
take place, the so called ring collisions. These are correlated collisions which leads to
non linear kinetic equations. Such correlations are more evident for a probe particle
of variable size and mass in a dense fluid. If the particle is large, then correlated
collisions will be considered, because Rcoll >> Σ, where Σ is the mean path of the
molecule. In such case many ring collisions take place before the molecule moves
away.

After long times the diffusion coefficient for large molecules, considering slip
boundary conditions, is given by

D =
kBT

4πη (Rcoll/2)
. (4.11)

In the simulations the slip condition holds for all the particles in the fluid. In

particular, the simulation considers a non structured probe particle and therefore
this relation holds for the nanoprobe immersed in the fluid 6.

Microrheology

A polymeric liquid presents a kind of duality between a solid and a pure liquid.
Solids store mechanical energy and are elastic; fluids dissipate mechanical energy
and are viscous. Many materials, including polymer melts, are viscoelastic; i.e.
store and dissipate energy. The elastic susceptibility is described by means of the
complex shear modulus. In the following section there will be developed the theory
related to the viscoelastic response of a probe in a liquid.

The complex shear modulus7 describes the elastic susceptibility

G∗(ω) = G′(ω) +G”(ω), (4.12)

which is the stress in a material when an oscillatory force is applied. The real part is

the storage modulus, which is the ratio between the elastic component of the stress
tensor with the strain, and the imaginary part is the loss modulus; in this case the
stress and the strain are in phase

G′ = σij
el

γ̇ij
. (4.13)

The imaginary part of the susceptibility is the ratio between the viscous part of the

6The slip boundary conditions can be modified if the displacement of the particle is measured
together with adsorbed layer: in this case the particles at the interface of the particle can induce
slip length or stick boundary condition. But in the present case only the tracking particle is
considered.

7This modulus is similar to the complex dielectric constant.
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Figure 4.5: Method for the computation of the Diffusion coefficient. DMSD(t) corresponds to the
MSD divided by the time, whereas DV CF (t) correspond to the integral of the VCF. In
this plot only the long time behavior of DMSD is represented. The convergence region,
where both functions reaches a plateau, is the diffusion regime where the diffusion
coefficient is a constant. In this system N = 10 and Np = 14400.

stress and the strain and is called the loss modulus; the tress is out of phase with
the strain

G” =
σij

visc

γ̇ij
. (4.14)

By causality the stress and strain are related through the Kramers-Kroning relation

G′(ω) = frac2π

∫ ∞

0

G”(ζ)dζ

ζ2 − ω2
. (4.15)

The contributions of the storage and the loss modulus depend on the frequency. For

simple liquids frequencies are big enough to make measurements with conventional
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experimental methods. But for complex fluids the relevant frequencies can be very
small, because there is in those system a coupling of many different time scales. It is
necessary either to improve the experiments in order to cover a big spectrum of fre-
quencies or to propose novel experimental alternative methods. This improvement
is based on the measurement of the displacement of nanoparticles, as proposed by
Mason and Weitz [44] [35] [50]. In those experiments the bulk mechanical suscepti-
bility is coupled to the response of the colloid. Is there a justification in the theory
for the implementation of this method?(see for example [39] for a resume about mi-
crorheology). The viscoelasticity appears like the response of a viscoelastic medium
to external perturbations; and in this case the perturbations are the thermodynamic
fluctuations of the colloidal particle. Therefore the determination of the response of
the viscoelastic fluid is done in the frequency regime of the thermal fluctuations. In
this computation there are two main expressions that include two principal relax-
ation processes: first the viscoelastic stress tensor expressed as the convolution of
the strain with a memory function, called the Maxwell constitutive equation

σij =

t∫

0

Kvisc(t′)γ̇ij(t− t′)dt′, (4.16)

and the equation for the velocity correlation function

m
dφ(t)

dt
= −

∫
KV CF (t′ − t)φ(t′)dt′, (4.17)

where the VCF is defined as

φ(t) = 〈v(t)v(0)〉 . (4.18)

The Laplace transform of the first equation gives

Kvisc(s) =
σij(s)

γ̇ij(s)
= η, (4.19)

that means, this memory function is connected with the viscosity of the system; this

function can be either a tensor of fourth grade or a constant (that means the tensor
reduces to constant coefficients in the diagonal). From the theory of viscoelasticity
it is known that the shear modulus is connected with the viscosity (for infinite
frequency)

G∗(s) = sη(s). (4.20)

The fundamental supposition in the present theory is that the Memory Function

for the VCF is related with the Memory Function for the viscoelastic medium. In
Hydrodynamics the stress tensor is defined as the sum of the pressure-stress tensor,
the stress tensor connected with the bulk viscosity and the shear stress tensor
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σij = σij
P + σij

bulk + σij
shear = gij

(
P + ηbulk∇ivi

)
+ ηshear∇ivj, (4.21)

so the viscosity stress tensor is the sum of one tensor that is a functional of the

metric tensor and a second tensor

σij = gijσbulk + σij
shear, (4.22)

where σij
Shear has off diagonal elements different from zero. That is, the memory

function for the viscoelasticity can be expressed as a functional of such metric

Kvisc(s) = Kvisc(s)
[
gijσBulk + σij

Shear

]
. (4.23)

Now, if small perturbations around the bulk viscosity are introduced and a functional

expansion of this memory function in therms of the general viscosity is made, then

Kvisc(s)[σ
ij] ∼ Kvisc(s)

[
gijσBulk

]
+
∂Kvisc(s)

∂[σij
Bulk]

σij
Shear

γ̇ij
+ · · · , (4.24)

for σij
Shear small 8. If the fluctuations of this memory function around the shear

tensor are small then the memory function can be expressed as

Kvisc(s) ∼ Kvisc(s)
[
gijσBulk

]
. (4.25)

In the present case all the elements of the fourth rank tensor reduce to the elements

of the diagonal that are different from zero, because it depends only on the metric
tensor; physically, this last result implies that the memory function expresses the
dissipation function in the bulk.(So strictly speaking a computation of the shear
modulus accounts only for bulk contributions).

Due to the fact that in the fluctuation-dissipation theorem the fluctuation is con-
nected to the dissipation in the bulk it is quite obvious to relate the memory function
for the VCF with the memory function in the bulk

Kvisc ∼ KV CF . (4.26)

This affirmation must be taken with care and is no more valid when the oscillations

of the memory function in the shear regime grow, for example near interfaces. The
memory function at the left side is related with a global relaxation function; the
right function is local; that means, this equation is a mean-field like approximation.

8For very complex experimental or simulation conditions the element ∂Kvisc(s)
∂[σij ] can be approxi-

mated as the differential of the memory function respect to the stress tensor, i.e.:
∂Kvisc(s)

∂[σij ] ∼ Kvisc(s2)−Kvisc(s1)
σij (s2)−σij(s1)

The use of this general formula requires the knowledge of the variation of the memory function
with respect to the bulk viscosity.
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Applying the Laplace transform to this equation on the relation for the memory
function the following expression is obtained

smφ(s)−mφ(0) = −K(s)φ(s), (4.27)

implying

K(s) =
kBT

φ(s)
− sm, (4.28)

where φ(0) = kBT/m, is the initial correlation function (kB is the Boltzmann con-

stant). Wherefore the complex shear modulus is given as a function of the VCF as

G∗(s) =
s

4πR

kBT

φ(s)
− s2m, (4.29)

where the first therm reflects the fluctuation-dissipation in the system; here R is the

radius of the nanoparticle; in this relation it is taken into account that slip boundary
conditions are present9. The second therm is related to inertia. If s→ 0 this therm
is negligible. In this manner one obtains a frequency free viscosity connected with
the diffusion of a free particle; i.e., given that

s2∆r2 = 6φ(s); (4.30)

then

G∗
Diff (s) =

1

4πR

kBT

s∆r2
, (4.31)

taking into account the sum over all the contributions of the collisions of the fluid

particles with the nanoparticle. It is then possible to express the Laplace transform
as a functional of the Fourier transform cosidering that

G∗
Diff (s) =

1

2π

∫ ∞

−∞
dω

G∗
Diff(ω)

s− iω , (4.32)

for s ∼ iω the integral reduces to G∗
Diff (s) = G∗

Diff(ω). Using this result the follow-

ing expression for the shear modulus is obtained

G∗(ω) = iω
1

4πR

[
kBT (φ′(ω)− iφ”(ω))

φ′(ω)2 + φ”(ω)2
+ ω2m

]
; (4.33)

from this computation the storage modulus is thus

9This a modification with respect to Weitzs theory: there, the experiments are for structured
nanoparticles with stick boundary conditions; but in the computer simulations the nanoparticle
is represented as a soft LJ one that can not produce stick. So, the factor 6 in the original theory
must be changed to the prefactor 4 in the computer simulations.
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G′(ω) =
1

4πR

ωTφ”(ω)

φ′(ω)2 + φ”(ω)2
, (4.34)

and the loss modulus is

G”(ω) =
1

4πR

[
ωkBTφ′(ω)

φ′(ω)2 + φ”(ω)2
+ ω2m

]
. (4.35)

Both results satisfy the Kramers-Kroning relation. This result is only valid if the

radius of the particle is small compared to the mean free path of the bath particles;
therefore for very large particles this relation is no more valid (strong dependence
on the diffusivity of the particle on the size of the particle).

4.4 Results

The dynamics of the particle is analyzed using the information of its displacement.
The Hamiltonian describing the dynamics of the melt contains the potentials intro-
duced in the section dedicated to the technical details; such Hamilton functions has
no intra molecular bond angle potential and therefore there is no tendency in the
chains of the melt to become stiffer at lower temperatures. Consequently, the size
of the chains does not change dramatically along the whole temperature range of
the present simulation. [18] [80] [45]

For the analysis of the following results ∆r2 was fitted using the formula

∆r2 = atx (4.36)

The simulation of a single particle produces a very poor statistics. In the present

results the statistics of the measurements done on the particle is improved by doing
parallel runs for each temperature in the melt. In fig. 4.6 the vertical position of
the particle for different runs is shown; in this result it is obvious that in some of
these runs there are further relaxation process that allows further embedding of the
nanoparticle. This effect induces a change in the slope of the MSD. This case will
be shown later in the section devoted to the description of the results (see fig. 4.14).

4.4.1 Short times

Ballistic regime and analysis of Ψ(t)

First the nanoparticle has a ballistic behavior, where the MSD is proportional to the
square of the time. The ballistic regime is related to the mean kinetic energy of the
melt; so, dividing the MSD with the temperature a coincidence of the MSD appears
for all the temperatures in all of the computations. In this case, the displacement
of the nanoparticle is proportional to the time elevated to a constant x < 1. In
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Figure 4.6: Parallel runs for each temperature were performed in order to improve the statistics of
the system. In this plot there are represented the runs for T = 1.2, showing the vertical
position (z coordinate) of the particle. For some of these runs an additional embedding
of the particle in the melt after some simulation time is quite evident, suggesting that
further relaxation process takes place in the melt. This additional embedding affects
the computation of the MSD.

the conventional Langevin equation the memory function is taken to be a constant
that describes the dissipation in the system; therefore the VCF has an exponential
decay: the average of the product of two velocities is the same as the equilibrium
ensemble average, as the system is ergodic (the phase average can be identified with
a time average over infinite time). This theory implies that the particle lost very
fast the information of the initial collisions. The simulations of the tracking particle
shows in Ψ(t), for particles with Reff > 1, that this behavior does not hold. Even
for T = 1.4, Ψ(t) shows an oscillatory character similar to a Bessel function of
order zero. For very short times it is quite evident that Ψ(t) is the same for all
the temperatures. Then for 0.25 < t < 0.5 the characteristic dip of the function is
observed, making each VCF a function of the temperature. For t ∼ 1, Ψ(t) has a
negative tail; thereafter follows a peak -characteristic also for all temperatures- and
then the function relaxes (refer again to fig. 4.2). For t → ∞ one has Ψ(t) → 0.
This result shows that molecular motions in the time region t→∞ are dominated
by the repulsion of neighboring molecules, leaving to conclude that the behavior of
the nanoparticle in a complex fluids does not approaches the conventional Ornstein-
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Uhlembek process, even for high temperatures (fig. 4.1). The derivative of the VCF
is related to the memory function associated to Ψ(t). The result of the simulations
suggest a persistence of the memory function for 0 < t < 2. For high temperatures
this function relaxes in 1 < t < 2, whereas for low temperatures this function relaxes
for t ∼ 2. The effect of the number of monomers in each chain is reflected in the
dynamics of the particle at long times and will be analyzed in the next sections; for
short and intermediary times the connectivity of the chains has no influence in the
dynamics of the nanoparticle and therefore there is no particular difference in Ψ(t)
for two different simulations in two different melts (see fig.4.7).10.
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Figure 4.7: Two different VCF of the tracking particle for two different situations: one when the
liquid is composed of polymer chains with Nmon/chain = 10 and the other one with
Nmon/chain = 50. In short times and T > Tg the VCF of the nanoparticle has no
dependence on the number of monomers in the chain.

Time behavior of the caging and relaxation of the displacement of the
nanoparticle

The duration of the caging for g0 is 0.1 < t < 100, i.e. it has a long duration.
Making a comparison with the duration of the caging of the single nanoparticle it
is found that the time duration of the plateau in the MSD of the tracking particle

10Fluctuations of the VCF after this times are thus associated to noise and not to relaxation
effects.

73



is smaller than the time of the plateau of single monomers [80] [14]. The MCT
relates the relaxation time with the glass transition temperature of the liquid [25].
In fig. 4.8 the trajectory around the particle in the x − y plane is shown for two
different temperatures. For temperatures close to the glass transition temperature
an arresting of the trajectory appears, which is related to the cage of the particle.

From a qualitatively point of view it is evident where the caging for single monomers
in the melt begins at tcg g0; for the center of mass of the chains this time is approx-
imately 0.1, similar to the time where the caging of the nanoparticle begins, tcg prt.
For simulations done with NT = 2250 monomers the particle evolves sooner from
a ballistic into a caging regime than for a system with NT = 14400 (please see fig.
4.9 and fig. 4.12). In the present simulations the difference of the cage size was
∆σcage ∼ 0.01.

It is interesting to observe that the size of the cage for Reff = 5.0 is similar to the
size of the cage for Reff = 4.0; this result suggest that the size of the cage does not
changes by changing the size of the particle. For T >> Tg the particle pretend to
evolve from a ballistic into a diffusive regime for all the system that was simulated.
That implies, the caging of the nanoparticle is related to the typical glass behavior
of the melt.

Caging of single monomers in the polymer film: tracking particles to
define the glass transition of the liquid

The dynamics of the tracking particle is compared with previous results obtained
for similar systems (in particular results obtained from the simulation of dense melts
between two plates, presented in fig. 4.10. The displacement of single monomers in
the melt is given by

g0 =
〈[
qi(t)− qi(0)

]2〉
(4.37)

where qi is the position of a single monomer, and:

g3(t) =

〈(−→
RG(t)− −→RG(0)

)2
〉

(4.38)

where
−→
RGis the center of mass of the chain. 11

11In the same model the displacement of the single monomers is also analyzed; for the inner
monomers the displacement is analyzed using the following definition

g1(t) =
〈(−→r N/2(t)−−→r N/2(0)

)2〉
(4.39)

whereas the displacement of the end to end monomers is defined as

g4(t) =
〈
(−→r end(t)−−→r end(0))

2
〉

(4.40)

It is possible to make equivalent definitions in the center of mass reference frame of the chain,
denoted by g2(t) for the inner monomers and g5(t) for the end monomers.
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Figure 4.8: Position of the particle in the x − y plane. In the first panel the temperature of
the melt is T = 0.46; in the second one the temperature is T = 1.4. In both cases
the displacements are shown for three million of molecular dynamics steps. At low
temperatures it is easy to observe that the solvation shell prevents the free diffusion
of the particle; for T > Tg the particle has diffused in all the simulation box.

At relatively low temperatures the ballistic regime of g0 evolves into a sub diffu-
sive behavior predicted by many theories [28]. For temperatures close to the glass
transition there is a coupling of many relaxation effects. Thus for short times the dy-
namics of single monomers evolves from a ballistic regime into a plateau like regime
that precedes the sub diffusive one. This plateau is related with the cage which is
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Figure 4.9: Radial MSD for a liquid composed of 2250 particles. In this plot a transition form a
ballistic into a diffusive regime is observed for temperatures above the glass transition
temperature; for temperatures close to the glass transition temperature a plateau in
the MSD appears, which is related to the caging of the particle. The duration of the
caging regime is relatively short and MSD evolves into a subdiffusive regime with a
characteristic slope of 0.3.

typical for glass formers ( see for example in Varnik or Aichele [80] [14]). Given
the extension in time of this behavior, the diffusive behavior is only found after
long times. The results of the present work show very nicely that, for temperatures
close to the glass transition temperature, the dynamics of the single nanoparticle
has also a transition from a ballistic into a plateau like behavior. The caging of
the particle depends on the density and temperature of the liquid and can be ob-
served for also for simple liquids. The size of the cage of the nanoparticle is bigger
than the typical size of the cage for monomers encountered in previous works: the
present result show that 0.03 < σcage(part) < 0.04, whereas the cage for monomers
is 0.3 < σcage(g0) < 0.4 (For this comparison the results computed by M. Aichele,
fig. 4.10 were used); making the comparison of the size of the cage for g3 it is quite
evident that it is more related with the cage of the tracking particle. Additionally,
the size of the cage of a nanoparticle in a complex fluid in bulk is slightly smaller
than the size of the cage for a nanoparticle on a film 12. Therefore for short times
the dynamics of the nanoparticle is coupled to the dynamics of the center of mass of
the chains. This result is interesting because using the displacement of tracers in a

12This affirmation is valid only when the particle in the initial configuration is above the film
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dense melt it is possible to measure the critical behavior of the last one; the crossover
from a ballistic regime into the cage is a function of the size of the nanoparticle.
So the relaxation at later times must also be a function of the dimensions of the
particle. This point is problematic if the tracking particle is used as a detector: it is
quite obvious that it is possibly to use it in a qualitative way but not as an accurate
quantitative method.

Figure 4.10: Dynamics of single monomers and CM of the chains. This results was taken from M.
Aichele’s PhD. Work.

It was shown that the embedding of the particle depends on the the temperature
in the melt. In the fig. 4.11 an snapshot of the particle in the liquid for two different
temperatures (and after two million of simulation steps) is shown; there it is evident
that at temperatures close to the glass transition temperature the particle is near the
liquid-vapor interface. For temperatures above the glass transition temperature the
particle sinks (See chapter 3). This fact implies that the relaxation of the nanoprobe
depends not only on the relaxation of the polymers in the liquid but also on the
relaxation of interfacial phenomena (probably capillary waves). The relation of the
slope of the MSD for a nanoparticle in a bulk must be different to the particle in the
film. So the main idea is to proof the effect of the interface on the dynamics of the
nanoparticle by making representative simulations in bulk (at two temperatures)
for simple as well complex fluids (the film thickness is either H0Γ = 9 or H0Γ = 15,
i.e. large enough in order to take into account the influence of the substrate on the
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particle). In the bulk of the complex fluid, the occurrence of the plateau happens
earlier than in the film, whereas in a bulk (of a simple liquid) the starting time of
the sub diffusive regime is comparable with this time for the system particle-film
(see fig. 4.15). After the caging of the particle there is in bulk a transition into a
sub diffusive regime with a characteristic slope for the fit for ∆r2 of x ∼ 0.5 in the
complex liquid and x ∼ 0.9 for the simple liquid. So, this result shows sensitivity of
the dynamics of the particle to the connectivity of the monomers.

Figure 4.11: Snapshots showing the position of the probe particle for T = 0.46 and T = 1.1 after
several million of simulation steps. As was discussed else where, the vertical position
of the particle is sensitive to the temperature of the melt. In the first case the particle
is on the surface of the liquid; in the second case the particle sinks into the liquid.
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Finite size effects and dependence on the radius of the particle

The use of periodic boundary conditions may manifest in time correlation functions
as a local disturbance that can propagate through the system and reappear in the
same place. This effect depends on the temperature and it was shown that the
relaxation times are dependent of the size of the system.

Figure 4.12: Two different simulations with different number of particles, but same size of chains.
The lateral size of the box is the same for both simulations; the thickness is different
but the density is the same. This result suggest a finite film thickness effect.

The dependence of the MSD of the nanoparticle on the number of particles in
the box was tested. The results are presented in fig. 4.12. A test for two films
with same density and size of periodic box was made: one with Np = 14400 and
the other with Np = 2250. For very short times it was found that the MSD is the
same for both systems. But for T → Tg it is observed that the plateau in both
systems is different (in both cases the particle is at the interface of the film). Given
that the particle is close to the interface of the film it is possible to conclude that
inter facial effects have a dependence on the size of the system (i.e. finite size effects
should occur for intermediary and large times). For T = 1.4 it is quite obvious
that both curves does not coincide; but in this case it is not clear if such difference
is related to finite size effects, as for NT = 2250 the particle does not completely
sinks into the melt. Given that finite size effects can influence the computation of
diffusion constants, the estimation and analysis of diffusion of tracking particles is

79



done preferably for thick films with many particles(for glass formers the ideal size
of the system is Np > 1000 [51]) 13.

The size of the particle itself has also influence on its dynamics; the bigger the
particle the bigger the probability of occurrence of correlated collisions. The results
of a simulation performed with 2250 monomers (each polymer with ten monomers
pro chain) and two different effective radius, Reff = 3.0 and Reff = 4.0, is shown
fig. 4.13. The effect of the size of the particle is evident at T = 0.46 in the size of
the cage; at T = 1.4 the particle with Reff = 3.0 evolve direct from a ballistic into a
diffusive regime, whereas the particle with Reff = 4.0 shows a subdiffusive regime,
giving a clue of the persistence of correlated collisions on the particle.

4.4.2 Long times: Displacement of the particle and polymer
dynamics

If the particle is connected with the dynamics of the liquid then its relaxation be-
havior must be related with the relaxation of the melt. The relaxation behavior
can be analyzed by observing the self diffusion behavior. In the present section a
comparison between the displacement of the particle and the displacement of the
melt is made.

The short time behavior showed a coupling to g3
14; that implies that for low

temperatures the displacement of the particle is insensitive to the dynamics of single
monomers. For intermediary times it is here possible to observe that x < 1.

In comparison with other results [14] it is obvious that in the present simulations
the duration of the plateau is much shorter: in this case the particle leaves earlier
its own cage. 15 Therefore the relaxation process of the particle is not related to
the dynamics of single monomers of the chains. But it is interesting to observe that
still for T → Tg and long times the slope of the MSD is x ∼ 0.66, even in bulk.
This fact implies that relaxation processes in intermediary times of single monomers
couples with the dynamics of the nanoparticles. The slopes of ∆r2 are similar to the
characteristic slopes for g0. Thus, the dynamics of a single probe particle shows in
a qualitative way the coupling to the dynamics of single monomers and the chains
in the melt.

In simulations for N = 50 the MSD has a no stable slope (see fig. 4.14): after an
intermediary time regime the particle reaches a diffusive regime and then the slope

13Given that the tracking particle can not completly sink into the very thin film at any temperature,
the dynamics of the particle is more coupled to the dynamics of the interface, in contrast to
thick films

14Here the longitude scale of the nanoparticle is identical to g3, because the displacement of the
particle is only possible when many of the nearest monomers move out from the neighbor of
the tracking particle. When there are N monomers, then its center of mass have moved 1

N g0

[59].
15One possible explanation of this fact is that the cage of the single nanoparticle vanish earlier

because the particle is not correlated with its neighbors; in contrast each monomer is correlated
at least with one neighbor particle due to its connectivity
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Figure 4.13: Dependence of the MSD of the particle on its radius for three different temperatures:
T = 0.46, 0.8, 1.1. This result was obtained from a simulation with Np = 2250 and
N = 10. From this plot it is evident that the bigger the particle the bigger the
persistence of correlated collisions. Self for T = 1.0 the MSD shows a subdiffusive
regime after the ballistic regime.

decays into a value x < 1.0 Analyzing separate parallel runs it observed that in some
of them the particle penetrates further into the melt; this fact is an indication that
the vertical position that a particle reaches at a particular time is strongly varying
with the possibility of metastable states and that it can be subjected to further
relaxation processes.

Effect of the interface

The present problem has two possible scenarios: the probe particle is either on the
film or in bulk. In fig. 4.15 the MSD of the tracking particle in bulk as well as in
the film is plotted. In both cases the temperature is T = 0.46, implying that in the
film case the particle is at the liquid-vapor interface. In bulk it is obvious that the
transition from a plateau into a sub diffusive behavior with a characteristic slope of

81



Figure 4.14: Averaged MSD for Np = 14400 and N = 50. For long times the slope of the MSD
shows a cross over; this fact is related with further relaxation effects of the probe
particle in the liquid (which takes place in some parallel runs).

x ∼ 0.5. In film there is a transition from the plateau into a sub diffusive behavior
with an slope of x ∼ 0.3.. In this last case the proximity of the nanoparticle to the
interface implies that the particle is coupled to the interfacial particles, which are
pertaining in collective modes, the so called capillary waves, whose relaxation time
is different from those of collective modes in the bulk.

After some time the slope of the MSD tends into x1 ∼ 0.5 and for much bigger
times eventually the particle reaches a diffusive regime. That implies, the dynamics
of the particle detects not only the dynamics of the molecules but also the inter-
facial dynamics. The consequence of this coupling is that the particle needs very long
times to reach a complete relaxation into a diffusive regime, because the capillary
waves need long relaxation times, imposing a fundamental methodological problem,
because it is necessary to make simulations in long times in order to improve the
statistics. Even with parallel runs it is hard to obtain good statistics.

Diffusion

The determination of the diffusion coefficients, as was discussed in this section, has
been made using the division of the MSD by time and the integral in the time of
the VCF. In fig. 4.16 the result of the integral of the VCF for N = 50 is presented;
in fig. 4.5 there a similar plot is shown but for Nmon/chain = 10. The caging of
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Figure 4.15: Comparison of the MSD in film and in bulk at T = 0.46 for a film with Np = 14400,
Nmon/chain = 10. For long times the slope of the MSD in the film is small than
in bulk. Given that the particle is at the surface of the film this plot suggest that
the particle is subjected to relaxation processes at the interface. For a simple liquid
(LJ particles) the subdiffusive regime evolves into a diffusive one; in this last case
the density of the liquid was small in order to observe caging of the particle. The
fluctuations of the MSD are related to oscillations of the particle inside the wetting
layer (please refer to the corresponding appendix).

the particle and its oscillation into the solvation shell, represented by the second
peak can be clearly seen, before the particle begins to diffuse. The time where both
DMSD(t) and DV CF (t) are constant is the time regime where the particle diffuses
in the film (this regime is represented by a plateau like behavior of both functions
D(t)).

Because the present system relaxes very slowly it is very difficult to obtain very
accurate values for this constant. In particular the diffusion constant drops rapidly
upon cooling and then comes a point in temperature where it is no longer possible
to extract meaningful values from the long time behavior of the MSD. For this
reason simulations for temperatures above Tg was started. In the following table
the results extracted from this both plots for the diffusion constant is presented, for
a melt consisting of 10 monomers per chain. A relevant characteristic of the self

diffusion coefficients in polymer melts is the dependence onN , where the dynamics is
described in terms of Rouse model16. The estimation of the self diffusion coefficient
forN = 50 is made and then compared with previous computed diffusion coefficients.
For example for T = 1.2, D50

D10
|part = 0.2.

16The central prediction of the Rouse model is that η ∼ N

83



0

0.002

0.004

0.006

D
T=0.46

0

0.01

0.02

0.03

D T=0.8

0

0.005

0.01

0.015

0.02

T=1.2

0

0.002

0.004

0.006

0.008

D

T=0.85

0
0.002
0.004
0.006
0.008

0.01

T=1.3

1 10 100 1000 10000
t

0
0.002
0.004
0.006
0.008

0.01

D T=0.95

1 10 100 1000 10000
t

0
0.005

0.01
0.015
0.02

T=1.4

Figure 4.16: Integral of the VCF and MSD divided on the time for the determination of the
Diffusion constant of the liquid film. Nmon/chain = 50 and Np = 14400. The region
of convergence of DMSD(t) and DV CF (t) corresponds to the diffusive regime of the
tracking particle.

Table 4.1: Diffusion coefficients as a function of the temperature

T D ∆D
0.46 2.8*10−5 3.39*10−5

0.5 0.00012 1.3*10−4

0.7 0.0008 0.000135
0.8 0.002 0.0002
0.9 0.00309 0.0002
1.1 0.0086 0.0005
1.4 0.004 0.00035

Contrasting with the results obtained from the Rouse theory it is well know that
D50

D10
= 0.2 [58]. Therefore, the dynamics of the single particle do reflects the Rouse

dynamics of the polymer melt. In fig. 4.17 the logarithm of the self diffusion
coefficients as a function of the inverse of the temperature is presented. The fit
with an exponential function permits to make the conjecture about the existence of
an Arrhenius Law governing the diffusion coefficients. The result of the fit permits
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Figure 4.17: Plot of the diffusion coefficients (in logarithmic scale) as a function of the inverse
temperature for Nmon/chain = 10 and Nmon/chain = 50. This result suggest that the
Arrhenius law is valid for the computed self diffusion coefficients; a cross over in the
fit could be related with a transition in the interface allowing the particle to ’sinks’
into the melt. A second fit was made taking into account the dependence of the self
diffusion coefficient on the number of monomers in each chain; such fit shows good
agreement with the present results.

to conclude that such law hods relatively well for the self diffusion constant of the
nanoparticle. But it is interesting to observe the existence of a cross over in the
diffusion coefficients. In a previous section the vertical position of the particle was
discussed and it was concluded that for T ∼ Tg the molecules at the interface has
low mobility, but for some particular temperature the mobility of such molecules
increase (the interface becomes softer) and the particle is allowed to sink. Therefore
this cros over probably indicates the temperature where a transition at the interface
occurs letting the particle sink inside the film.

4.4.3 Microrheology results

The time evolution of the MSD provides a measure of the frequency dependent linear
viscoelastic modulus of the film. The magnitude of the complex modulus is given
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Figure 4.18: Real and imaginary part of the shear modulus for a polymer film composed of 14400
monomers, where Nmon/chain = 10. The first panel corresponds to the elastic mod-
ulus and the second panel corresponds to the viscosity modulus; in both cases the
predicted Rouse modulus is plotted [58] [54].

by G(s) = kBT/(πReffs∆r
2(s)), where s is the Laplace frequency.

For the computation of the storage and loss modulus it is necessary first to perform
the Fourier transform of the VCF 17 or of D(t), the so called power spectrum. The
imaginary part of the transform of any function κ(t) can be estimated making the
transform over the sinus function

17The upper boundary of the integral on time is the maximal simulation time; the integral is
moreover multiplied by two given the symmetry of the transformation
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κ”(ω) = 2
1

2π

∞∫

0

κ(t) sin(ωt)dt (4.41)

whereas the real part can be computed over the cosines function:

κ′(ω) = 2
1

2π

∞∫

0

κ(t) cos(ωt)dt (4.42)

when a transformation over the frequency ω = 2πν is made then it is possible

to lost the symmetry with the inverse transformation [95] [58]; for this reason the
transforms are multiplied by the factor 1

2π
. These results are non normalized

φ(ω) = φ′(ω)− iφ”(ω) (4.43)

The transformation is made over the whole simulation time. For this reason an

alternative method as the conventional Weitz et al. method was developed. The
description of the alternative computation is made in appendix C; the diffusion
function is used, derived from the MSD, DMSD(t), and the VCF, DV CF (t), and is
Fourier transformed (in the second case this relation is a direct derivation from the
VCF). So the Stokes-Einstein equation relates the viscosity, as a function of D(t)−1,
and the complex shear modulus.

In fig. 4.18 the storage and the loss modulus are shown. This result was obtained
for a system with Np = 14400 and N = 10 at T = 0.9 and a comparison with
theoretical values is done [58] [54]. In the first case there is no convergence to the
theoretical predicted value, where the curve has a characteristic slope of ∼ ω1. In
the second case the loss modulus has convergence to the theoretical predicted value
for low frequencies; in this case for t → 0, G′′/ω ∼ η0, with η0, the viscosity close
to the particle. This value has again coincidence with the viscosity computed using
the results for the self diffusion coefficient of the nanoparticle.

In macroscopic rheological experiments the aplyed strain is pure stress; on the
other hand in microrheology the tracking particle responds to all of the thermally
excited modes of the system, including the longitudinal compression modes of the
melt [53]. This point implies that the results obtained with microrheology only
converge to conventional results in a restricted frequency domain, where the response
of the particle is related to the stress in the fluid.

The introduction of the probe particle reduces moreover the density in the melt
in the vicinity of the particle 18. Therefore the response of the tracking particle is
only sensitive to the local environment and is not capable to measure observables in
bulk for all the time scales. One possible solution is to make the correlation of the
fluctuations of two probes, separated by enough distance, in order to improve the
results obtained using microrheology19.

18The thin layer at the surface of the tracking particle
19For an account about the measurement of the viscosity at high frequencies see [57].
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4.5 Outlook and Conclusions

A film consisting of a complex fluid presents a phenomenology covering many scales,
from the dynamics of single monomers to macroscopic observables like diffusion and
viscosity coefficients. Such phenomenology requires many particular experimental
methods in order to extract accurate information. The point in this section is,
whether a nanoparticle can be used as single experimental method in order to extract
the information of such phenomenology. In answering this question three main
problems were regarded: the coupling of the nanoparticle to the dynamics of single
monomers, the coupling of the nanoparticle to the polymeric chains and the effect
of the dynamics of the liquid-vapor interface.

The particle in the liquid is a Brownian particle that responses to the thermal
fluctuations of the liquid particles. Instead of simple collisions (like simple liquids)
the present case presents a more complicated phenomenology due to the connec-
tivity of the particles, which is related to a memory function that depends on the
temperature of the liquid. The analysis of the VCF of the tracking particle has
shown that the particle is caged when the temperature is near the glass transition
temperature Tg; given that the particle is at the interface of the film (as was shown
in chapter 3) this result probes glass transition at the interface. The present result
was confirmed in all the simulations performed with different number of monomers
and polymers.

The analysis for short times has shown that the dynamics of the nanoparticle
is not quantitatively related to the dynamics of single monomers for temperatures
near the critical temperature. For long times the MSD as well as the VCF permit
to extract information of macroscopic coefficients; in this case it was shown that
the self diffusion coefficient of the probe is related to the diffusion coefficient of the
center of mass of the polymer chains (as is predicted in the Rouse model).

In such time regimes a particular question arises: the use of the Stokes-Einstein
formula (which relates the diffusion coefficient to the viscosity) as a method for
the determination of the bulk viscosity of the melt. The results obtained with the
present method show a good agreement of the loss modulus with the theoretical
value predicted by the Rouse model, but the storage modulus shows a considerable
deviation from to the predicted function. In this case it is quite evident that the
results obtained with a microrheological probe are related to its local behavior and
does not completely reflect the bulk shear modulus (as is predicted by Lubensky et.
al. [53]). Only for low frequencies the results obtained with microrheology coincides
with conventional rheology (in particular with the shear modulus predicted by the
Rouse model).

Notwithstanding the simplicity of the simulation concept, the main problem in
the simulation of this system is the computational time. The melt requires long
simulation times to get equilibration and the statistics of a single particle is poor
(the improvement of the statistics of the particle requires a lot of simulation time).
So, the advantage in using a single test particle is compensated by the disadvantage
in the long simulation times. The simulation of a couple of million of MDS of parallel
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configurations is an alternative method for the improvement of the statistics of the
single particle.

A probe particle has proofed to be a good qualitative method and, in some cases,
to be a good quantitative method, not withstanding the poor statistics that can
be obtained with a single particle. As outlook it is interesting to introduce two
probes instead of only one, placed far away from each other, in order to make the
correlation of their fluctuations, the so called two point microrheology. With such
method it is theoretically possible to obtain a better measure of the bulk shear
modulus. Moreover the present problem is an idealized case where the particle is
non structured; so the question is, whether a structured particle has a different
dynamics as a simple one.
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5 Linearized hydrodynamics of a
polymeric film under load of a
nanoparticle

In this section the solutions of the Navier-Stokes equation, describing a thin liq-
uid film under an external small perturbation, are calculated. The perturbation
is induced with an oscillating Lennard-Jones potential on the vertical coordinate.
The fundamental motivation of this work is to make a description of the interaction
between the liquid and an idealized tip of an AFM [77] 1.

The equations for an incompressible fluid are solved. In this approximation it
is shown that the computed solutions are trivial because the interface is at rest.
This implies, that only the compressibility of the fluid allows the transmission of
external perturbations into the bulk of the liquid. The solution for a compressible
liquid is non trivial; the result shows non vorticity of the velocity, with a maximal
hydrostatical pressure at the vapor-liquid as well as the liquid-substrate interface.
Inside the liquid damped oscillation of the magnitude of the pressure are observed.
Such a pressure profile has also a damped oscillation on the radial axis, with a
maximum pressure under the particle and at the interface substrate-liquid.

Hydrodynamics is a description of systems whose typical scales are greater than
the scale of the molecules that compose it. Experimentally this supposition implies
that the fluid must be in bulk. In the present calculation a liquid film will be
considered with a thickness bigger than the typical gyration radius of single polymer
chains (consisting of 10 to 50 monomers pro chain). The aim of this calculations is
to model a liquid under similar conditions as in the simulations that were described
above. For the following calculations the film thickness is about 14.7 LJ units, with
a liquid with density ρ = 0.8 (quantities are given in terms of LJ units).

Hydrodynamics is a description of liquids, whose relaxation time is slower than
the relaxation time of the component molecules [32]. The Navier Stokes equation,
together with the continuity equation, describe the equilibrium dynamics of the
liquid and are given in a general form as

m∂tv
i = ∇jT

ij, (5.1)

1In a previous work the computation of the interaction between a film and a curved surface was
made in order to understand the interaction between a big AFM tip and a fluid film [92]
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∂tρ+∇iρv
i = 0. (5.2)

where vi is the covariant component of the velocity and T ij is the stress tensor. The

first equation represents the momentum balance: the momentum change on left hand
is given by the gradient of the stress tensor (which contains a pressure tensor) on the
right side. This tensor contains information on the forces and relaxation processes
in the liquid. The second equation, the so called continuity equation, shows the
conservation of mass in space and time. In the present problem consideration of the
equilibrium of energy is not needed since constant temperature is assumed.

The system to be modeled consists of a particle suspended over a liquid film,
which is adsorbed on an impermeable substrate. The target is to obtain information
about the mechanics of the fluid when a small mechanical perturbation is introduced
into the system through the particle ; in this case the system remains in thermal
equilibrium. The particle creates a Van der Waals like external potential for the
liquid; which depends on the distance between the particle and the substrate (see
5.1) 2

dT = H0Γ + d, (5.3)

where HΓ is the film thickness in thermal equilibrium and d is the distance between

the interface of the particle and liquid film. The effective radius of the nanoparticle
is Reff = σ + R0; this definition preserves the old definition of the radius of the
particle done for the simulations. So, the mechanical perturbation is a function of
the distance parameter between particle and the liquid-vapor interface of the film.
The aim of this model is to emulate, for example, the harmonic movement of a
cantilever in an AFM microscope; in this case the particle represents the tip of the
AFM without cantilever 3.

For the present calculation the perturbation represented by small perturbations
of the external potential (see fig. 5.1)

φ→ φ+ δφ. (5.4)

is given by

δφ =

(
∂φ

∂d

)
δd, (5.5)

where

δd = H0 sin(ωt), (5.6)

with ω the frequency and H0 the amplitude of the oscillation motion of the nano-

particle along the z axis. In experimental situations the perturbation is represented

2See in the chapter about technical details the section about the potential of the particle
3In the present case a simple model for the particle, represented as a LJ one, is shown. Neverthe-

less there are many possible potentials that can simulate the tip of an AFM; see for example
[93]
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as a contact-separation of the tip from the liquid surface, the so called tapping
mode.4.

The perturbation induces in the same way small perturbations in the velocity and
pressure fields around the equilibrium value for both variables

vi → vi + δvi, (5.7)

P → P + δP. (5.8)

From the hydrostatics it is well known that the velocity field in equilibrium is vi = 0;

thus in the present case there is only a field of small velocities generated by the small
perturbations of the nanoparticle. The description for this field is made via the so
called linearized Navier-Stokes equations: due to small perturbations the non linear
differential equations can be approximated by linear ones.

Additionally at the boundary between film and vapor there will be a fluctuating
interface. Then the linearized thickness is defined as

HΓ(r, t) = H0Γ + δH(r, t), (5.9)

4In the present project a Gaussian as well as an harmonic perturbation will be considered.

Figure 5.1: Coordinates of the system particle -liquid film. The nanoparticle has a small oscillation
above the liquid-vapor interface, with thickness HΓ
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where H0Γ is the thickness of the film at equilibrium and δH(r, t) is the time depen-

dent perturbation.
The modeling of this fluid, using the Navier Stokes equations, generates a depen-

dence of the solutions on the following parameters

vi = vi(t, r, z)[{H0}, {ρ, η, ς}, {ε, σ, d, Reff}]. (5.10)

In that case the fields that solve the system of equations depend on the radial

and vertical coordinate (the solution of the present problem assumes a cylindrical
symmetry). Regarding the different parameters: one family of parameters is the
amplitude of the external perturbation; the second family of parameters corresponds
to the nature of the liquid, i.e. its density, shear viscosity and bulk viscosity. If the
fluid is incompressible then the velocity depends only on the shear viscosity. The
third family of parameters corresponds to the external potential: the form of the
particle, which is simulated through this potential, the strength of the potential and
the separation between the particle and the substrate. In the calculation of the final
results, ε = 1, σ = 1 and Reff = 4. The density is in the present case ρ = 0.8,
which corresponds to the density of a polymeric film with thickness H0 ∼ 14 and
Np = 14400. The value of this density was measured in the simulations for T = 0.9.

5.1 Hydrodynamics of compressible and

incompressible fluids

In the first part of this section the right boundary conditions are derived for the
interface vapor-liquid of the liquid film in the presence of the nanoparticle. For the
derivation of these equations, a general mathematical form for the surface condition
is used, which is valid for any extensive quantity by considering a global balance
equation [76] [81]. The solutions for the linearized hydrodynamics for a compressible
as well as an incompressible liquid are explored. Both simple and complex fluids are
considered. All the results are computed using LJ units.

5.1.1 Boundary conditions at the interface

In the present case, a small oscillation over the fluid film is introduced in order
to obtain a mechanical response; this oscillation is thermal equilibrium but it is
not small enough to ignore oscillations of the interface, implying a time dependent
surface curvature 5. This scenario is more complicated than the trivial case of a flat

5The theory is a mean field theory and therefore there are no thermal fluctuations as, for example,
capillar waves [83]
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interface and it is necessary for the determination of the desired solutions, where
the inclusion of curved surfaces cannot be avoided.

The balance equation at an interface for any field ψ1 for a phase 1 in a region Gph1

and ψ2 in a region containing phase 2, Gph2, is given by the following expression [76]
6

−→
e′z
(−→

Ψ 1 − −→vΓρ1ψ1

)
−−→e′z

(−→
Ψ 2 − −→vΓρ2ψ2

)
−
(
dχ

dt
− 2SΓ |−→vΓ|χ

)
+ τ = 0, (5.11)

with −→vΓ, the velocity of the interface Γ and χ the surface density defined as the

distribution of the field ψ at the interface Γ. 2SΓ is the curvature tensor for the
interface, τ the surface source density and

−→
e′z the unit normal vector for a point on

the interface. The field
−→
Ψ describes the flux density of the field ψ in each phace; it

is defined as
−→
Ψ =

−→
Φ + ρψ−→v . (5.12)

Given that the interface is a fluctuating surface, the normal vector is given by

−→
e′z = N (−ς(r, t)−→er +−→ez ) , (5.13)

where ς(r, t) = dδH(r,t)
dr

; here δH(r, t) is the amplitude of fluctuation of the interface.

In a similar way it is possible to rewrite the tangential vector as

−→
e′r = N (−→er + ς(r, t)−→ez ) . (5.14)

The second tangential vector is trivially
−→
e′θ. In both equations the prefactor N is

given by

N =
1

2
√
ς(r, t)2 + 1

, (5.15)

which is the normalization function. The total film thickness is given by the su-

perposition of the mean film thickness and the fluctuation of the interface, i.e.
HΓ(r, t) = H0Γ + δH(r, t), where δH(r, t) is a small perturbation of the surface.
Therefore, it is important to consider ς(r, t)2 as a very small function; this suppo-
sition allows to linearize the previous equations and implies that the normalization
factor is N = 1. The equation eq. (5.11) is useful for the determination of the
conservation of mass and momentum at the interface; both particular cases will be
discussed in the calculation of the boundary conditions.

6This means, the interface is two dimensional
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5.2 Solution of the NS equations in the liquid film

5.2.1 Incompressible fluids

The starting strategy is to use the method of separation of variables because the
symmetry of the system is known. It is advantageous to formulate the solution as
an expansion in periodic functions of r and z which preserves the symmetry of the
system

vi =
∑

mn

f i
nm(t)fvr(mr)fvz(nz), (5.16)

where fvr(mr) and fvz(nz) are periodic functions. As ansatz for the velocity and

pressure fields for an incompressible fluid an expansion in a Fourier-Bessel series
over the r coordinate is proposed: an expansion in Fourier series in z leads to a
trivial solution for the velocity fields when the initial conditions are applied (the
pressure in the incompressible core is not trivial), because a solution in the form

fnm(t) = f0e
−τnmt, (5.17)

is obtained. This result indicates that the transmission of external perturbations

into the liquid film is only possible when the density of the fluid is not a constant, i.e.
the transmission of external perturbations into the film is related to the transmission
of sound waves in the liquid. In the following the compressible NS equations for a
film under external load by a nanoparticle will be solved (see appendix H to see the
complete solution for the incompressible case).

5.2.2 Compressible fluids

The concept of compressible fluid is related to a non constant liquid density. This
particular aspect, under the light of linearized hydrodynamics, implies fluctuations of
the density related to fluctuations of the pressure and velocity. This means that the
Navier Stokes equations must have an additional term that contains an isothermal
bulk coefficient.

The isothermal bulk modulus for a substance is defined by [94]

κT = −V
(
dP

dV

)

T

; (5.18)

this coefficient has units of pressure (for examples for typical polymers see Appendix

I). In the previous expression, P is the pressure and V is the volume of the substance.
If the mass of the substance remains constant, the linear relation between density
and pressure is given by 7

7δρ = dρ
dv δV = − m

V 2 δV = ρ
κT

δP
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δρ =
1

κT

ρδP, (5.19)

where ρ is the density of the liquid.

For compressible liquids, in the frame of linear hydrodynamics one has to take
into account that the density will have small perturbations; such fluctuations can
be expressed as

ρ→ ρ+ δρ, (5.20)

where ρ is the density in equilibrium and δρ is a small perturbation of this density.

Using the condition of compressibility of a liquid one obtains

ρ+ δρ = ρ

(
1 +

1

κT
δP

)
. (5.21)

In this equation δP is a small pressure perturbation. The density has a small

perturbation around an equilibrium density, which is related to fluctuations of the
pressure. Using this expression it is possible to write the correct continuity and
Navier Stokes equations for the compressible liquid.

Therefore the following form for the continuity equation is obtained (in order to
simplify the notation, the differential equations are writen for A instead of δA)

∂tP + CT (∇rv
r +∇zv

z) = 0, (5.22)

where CT = κT

P0
is a constant given in terms of the isothermal bulk modulus. The

Navier-Stokes equations are

∂tv
i = −∂iP − ρ∂iφ′δd+Kη∆v

i +Kζδ
ii∂i

(
∇jv

j
)
, (5.23)

here i = r and j = z; on the right side the stress tensor represents a compressible

fluid, where Kη is the kinematic viscosity (also called dynamic viscosity [94]) and
Kζ is a constant defined from the bulk-stress coefficient, the so called bulk viscosity
[94][79]; for typical polymers with Newtonian behavior the coefficient of viscosity η
is in the range of 10−3 to 10−1 Nsm−1. In appendix I all of these constants will be
explained in detail.

The solutions can again be expressed as an expansion of periodic functions, which
preserves the symmetry of the system. As ansatz, the solution for velocity vi as well
as pressure P is given in terms of a Fourier-Bessel-Fourier series in r and z

vr =
∑

n,m

fnm(t) cos(nz)J1(mr), (5.24)

vz =
∑

n,m

gnm(t) sin(nz)J0(mr), (5.25)
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P =
∑

n,m

Anm(t) cos(nz)J0(mr), (5.26)

φ̂′ =
∑

n,m

H0Bnm(t) cos(nz)J0(mr). (5.27)

The last of the previous equations expresses the expansion of the perturbation in-

troduced with the external potential in a Fourier-Bessel series, where Bnm are the
expansion coefficients.

Using the same ansatz defined for the solutions of the velocity fields, it is advan-
tageous to express the last differential operator of the Navier Stokes equations as

−→∇ .−→v =
∑

n,m

[mfnm(t) + nπgnm(t)] cos(nz)J0(mr). (5.28)

The vector defined in terms of the two velocity fields and pressure is an eigenvector

of the Navier Stokes equations.
The equations for the time function of the pressure Anm(t), fnm(t), the time

function for the velocity field in r and gnm(t), time function for the velocity field in
z, are obtained as

dfnm(t)

dt
= mAnm(t) +mεcBnmH0 sin(ωct)

−(π2n2 +m2)Kηfnm(t) +

Kζ

(
−m2fnm(t)− πmngnm(t)

)
, (5.29)

dgnm(t)

dt
= πnAnm(t) + πnεcBnmH0 sin(ωct)−

(m2 + π2n2)Kηgnm(t) +

Kζ

(
−π2n2gnm(t)− πmnfnm(t)

)
, (5.30)

dAnm(t)

dt
+ CT (mf(t) + πng(t)) = 0.

In order to facilitate the calculation of the solutions, the following parameters are

defined

B1 =
(
m2 + (nπ)2)Kη +m2Kζ , (5.31)

B2 =
(
m2 + (nπ)2)Kη + (nπ)2Kζ . (5.32)

Substitution into the time equations for the velocity fields yields
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dfmn(t)

dt
= −B1fnm(t)− πmnKζgnm(t)

+mAnm(t) +mεcBnmH0 sin(ωct), (5.33)

dgmn(t)

dt
= −πmnKζfnm(t)−B2gnm(t)

+πnAnm(t) + πnεcBnmH0 sin(ωct). (5.34)

These equations can be written in an equivalent vectorial form as:

d

dt




Anm(t)
gnm(t)
fnm(t)


 =




0 −CTπn −CTm
πn −B2 −πnmKζ

m −πnmKζ −B1






Anm(t)
gnm(t)
fnm(t)


+




0
πnεcBnmH0 sin(ωct)
mεcBnmH0 sin(ωct)


 , (5.35)

which is a first order inhomogeneous, linear differential vector equation. There

are two possible ways to solve the previous equation. The first one is to make a
Fourier transform in order to obtain an algebraic equation in the frequency space,
the second is to diagonalize the matrix and obtain uncoupled equations for each time
coefficient. The first alternative is convenient if the target is to make an analysis
on the frequency domain of the solutions; the second alternative is a solution in the
conventional time domain. In the following sections both solutions will be explained.

5.2.3 Solutions in the time domain

The solution of the differential equation in the time domain can be found by uncou-
pling each differential equation for each coefficient; for this target a diagonalization
of the matrix with constant coefficients of the differential equation is performed.
The following linear transformations are proposed

vnm(t) = (nπ) fnm(t)−mgnm(t), (5.36)

unm(t) = (nπ) gnm(t) +mfnm(t). (5.37)

Making the substitution of eq. (5.36) and (5.37) into eq. (5.35), and after some

algebraic manipulations, the following differential equations for the fields unm(t)
and vnm(t) is obtained
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dunm(t)

dt
=

(
m2 + (nπ)2)Anm(t)−

(
m2 + (nπ)2) [Kη +Kζ ] unm(t)

+
(
m2 + (nπ)2) εcBnmH0 sin(ωct), (5.38)

dvnm(t)

dt
= −

(
m2 + (nπ)2)Kηvnm(t), (5.39)

dAmn(t)

dt
= −CTunm(t). (5.40)

After these transformations the equation for vnm(t) is uncoupled from the other two

fields. The solution of equation (5.39) is

vnm(t) = β0e
−Kη(π2n2+m2)t (5.41)

where β0 is a constant which depends on the initial conditions.

For Amn(t), unm(t) the following equation is obtained

d

dt

(
P0Amn(t)
κuunm(t)

)
=

(
0 −CT

(m2 + π2n2) − [π2n2 +m2] (Kη +Kζ)

)
(5.42)

×
(
P0Amn(t)
κuunm(t)

)
+

(
0

(π2n2 +m2)BnmεcH0 sin(ωct)

)
.

At this point it is possible to make the following definitions:

Â =

(
0 −CT

(m2 + π2n2) − [π2n2 +m2] (Kη +Kζ)

)
=

(
0 p12

p21 p22

)
(5.43)

−→χ (t) =

(
Amn(t)
unm(t)

)
(5.44)

−→
h (t) =

(
0

(π2n2 +m2)BnmεcH0 sin(ωct)

)
. (5.45)

Using these definitions one gets

d−→χ (t)

dt
= Â−→χ (t) +

−→
h (t) (5.46)

which is of first order in t, and linear with an inhomogeneity given by the vector
−→
h (t).

This equation can be solved diagonalizing the matrix Â. If M̂ is the modal matrix,
then

M̂−1ÂM̂ = Ŝ, (5.47)
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where Ŝ is the spectral matrix consisting of the eigen values of the matrix Â

Ŝ =

(
λ1 0
0 λ2

)
. (5.48)

The eigen values of matrix Â are

λ1 =
p22 + 2

√
p2

22 + 4p12p21

2
, (5.49)

λ2 =
p22 − 2

√
p2

22 + 4p12p21

2
. (5.50)

The real or complex character of the solution of the NS equations depends on λi.

From the previous equations it is quite evident that λi is complex if (m2 +nπ2)(Kη +
Kζ)

2 < CT . For typical polymer fluids [88] it is observed that (1 + π2)(Kη +Kζ)
2 >

CT and for this reason the results computed in this work are real.
The matrix equation will be satisfied by the following modal matrix

M̂ =

(
− λ2

p21
− λ1

p21

1 1

)
, (5.51)

M̂−1 =

( − p21

λ2−λ1
− λ1

λ2−λ1
p21

λ2−λ1

λ2

λ2−λ1

)
. (5.52)

Using the previous equations, in particular eq. (5.52), an uncoupled equation for a

vector
−→
G(t) is obtained

−→
G (t) = M̂−1−→χ (t), (5.53)

−→
G(t) =

(
αnm(t)
$nm(t)

)
. (5.54)

Therefore, an equation for
−→
G (t) is obtained

d
−→
G(t)

dt
= ŜGl(t) + M̂−1−→h (t) (5.55)

=

(
λ1 0
0 λ2

)(
αnm(t)
$nm(t)

)

+



(

−λ1

λ2−λ1

)
(π2n2 +m2)BnmεcH0 sin(ωct)(

λ2

λ2−λ1

)
(π2n2 +m2)BnmεcH0 sin(ωct)


 .

This equation is an uncoupled equation for each component of the vector
−→
G (t) and

is symmetric with respect to the parameters λi; the solution of this equation is
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αnm(t) =

(
eλ1tα0 +

λ1BnmεcH0 (π2n2 +m2)

(λ2
1 + ω2

c ) (λ2 − λ1)
[ωc cos(t) + λ1 sin(t)]

)
, (5.56)

$nm(t) =

(
eλ2t$0 −

λ2BnmεcH0 (π2n2 +m2)

(λ2
2 + ω2

c) (λ2 − λ1)
[ωc cos(t) + λ2 sin(t)]

)
. (5.57)

Figure 5.2: Velocity profile for non contact mode at t = 1. The distance of the particle to the
interface of the liquid is d = 0.42 (All the distance dimensions are normalized to the
film thickness H0Γ; in these calculations H0Γ = 1 ). This result shows that the velocity
profile is distributed in peacks, with a main peak under the nanoparticle, at r = 0; for
r → ∞ the velocity profile is smaller, and eventualy tends to be zero. The velocity
profile inside the bulk is smaller than the velocity near the interface.
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Thus, the solution for −→χ (t) is

−→χ (t) = M̂
−→
G (t). (5.58)

Whit this transformation it is possible to make the computation of the functions

unm(t) and Anm(t) respectively as

unm(t) = αnm(t) +$nm(t) (5.59)

=

(
eλ1tα0 +

λ1BnmεcH0 (π2n2 +m2)

(λ2
1 + ω2

c) (λ2 − λ1)
× [ωc cos(t) + λ1 sin(t)]

)
+

(
eλ2t$0 −

λ2BnmεcH0 (π2n2 +m2)

(λ2
2 + ω2

c ) (λ2 − λ1)
[ωc cos(t) + λ2 sin(t)]

)
,

Anm(t) = − λ2

p21
αnm(t)− λ2

p21
$nm(t) (5.60)

= − λ2

p21

(
eλ1tα0 +

λ1BnmεcH0 (π2n2 +m2)

(λ2
1 + ω2

c ) (λ2 − λ1)
[ωc cos(t) + λ1 sin(t)]

)
−

λ2

p21

(
eλ2t$0 −

λ2BnmεcH0 (π2n2 +m2)

(λ2
2 + ω2

c) (λ2 − λ1)
[ωc cos(t) + λ2 sin(t)]

)
.

Finally the functions vnm(t) and unm(t) are linearly transformed into fnm(t) and

gnm(t)

fnm(t) =

(
munm(t) + nπvnm(t)

m2 + (nπ)2

)
, (5.61)

gnm(t) =

(
mvnm(t)− nπunm(t)

m2 + (nπ)2

)
; (5.62)

These solutions must fulfill initial conditions and for this reason it is necessary to

make correct definitions for the constants inside the previous expressions. The initial
velocity fields as well as the pressure field are at the initial time equal to zero. For
the time function of the pressure and the velocity fields one has

Anm(0) = 0, (5.63)

fnm(0) = 0, (5.64)

gnm(0) = 0. (5.65)

These last two conditions also imply
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vnm(0) = 0, (5.66)

which yields β0 = 0. For the other velocity field there is also a similar definition for

the initial condition

unm(0) = 0 (5.67)

Nevertheless, it is necessary to consider initial conditions for the αnm(t) and $nm(t)

as

αnm(0) = 0, (5.68)

$nm(0) = 0. (5.69)

This last equations permits to fix the constants α0 and $0

α0 =
λ1BnmεcH0 (π2n2 +m2)

(λ2
1 + ω2

c ) (λ2 − λ1)
, (5.70)

$0 =
λ2BnmεcH0 (π2n2 +m2)

(λ2
2 + ω2

c ) (λ2 − λ1)
. (5.71)

With the previous definitions given by equations (5.70) and (5.71) it is possible to

deduce the corresponding field functions

αnm(t) = α0

[
cos(t) + λ1 sin(t)− eλ1t

]
, (5.72)

$nm(t) = $0

[
eλ2t − cos(t)− λ2 sin(t)

]
. (5.73)

that means, the solutions are the composition of an oscillatory and a relaxation part.

The complete solutions of the NS equations for a compressible fluid are

vr(r, z, t) =
∑

n,m

m

m2 + (nπ)2 × (
λ1BnmεcH0 (π2n2 +m2)

(λ2
1 + ω2

c ) (λ2 − λ1)
×

(−ωce
λ1t + [ωc cos(t) + λ1 sin(t)]) +

λ2BnmεcH0 (π2n2 +m2)

(λ2
2 + ω2

c ) (λ2 − λ1)
×

(ωce
λ2t − [ωc cos(t) + λ2 sin(t)]))×

J0(mr) cos(nz), (5.74)
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vz(r, z, t) =
∑

n,m

−nπ
m2 + (nπ)2 × (

λ1BnmεcH0 (π2n2 +m2)

(λ2
1 + ω2

c ) (λ2 − λ1)
×

(−ωce
λ1t + [ωc cos(t) + λ1 sin(t)])

+
λ2BnmεcH0 (π2n2 +m2)

(λ2
2 + ω2

c) (λ2 − λ1)
×

(ωce
λ2t − [ωc cos(t) + λ2 sin(t)]))×

J1(mr) sin(nz), (5.75)

P (r, z, t) =
∑

n,m

(− λ2

p21

× λ1BnmεcH0 (π2n2 +m2)

(λ2
1 + ωc) (λ2 − λ1)

×

(−ωce
λ1t + [ωc cos(t) + λ1 sin(t)])−

λ1

p21

λ2BnmεcH0 (π2n2 +m2)

(λ2
2 + ωc) (λ2 − λ1)

×

(ωce
λ2t − [ωc cos(t) + λ2 sin(t)]))×

J0(mr) cos(nz). (5.76)

The previous solutions are a version that contain the coefficients λi and pij defined for

the calculation of the uncoupled equations. Replacing the corresponding coefficients
into λi one obtains

λ1 =
[
π2n2 +m2

]
(Kη +Kζ)

−1 + 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
, (5.77)

λ2 =
[
π2n2 +m2

]
(Kη +Kζ)

−1− 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
, (5.78)

λ2 − λ1 = −
[
π2n2 +m2

]
(Kη +Kζ)

2

√
1− CT

[π2n2 +m2] (Kη +Kζ)
. (5.79)

The explicit solutions for the pressure and velocity fields are
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vr(r, z, t) =
∑

n,m

mBnmεcH0

m2 + (nπ)2 ×
√

[π2n2 +m2] (Kη +Kζ)

2
√

[π2n2 +m2] (Kη +Kζ)− CT

×

×([4

(
1− 2

√
1− CT

[π2n2 +m2] (Kη +Kζ)

)
÷

((
[
π2n2 +m2

]
(Kη +Kζ) (−1 +

2

√
1− CT

[π2n2 +m2] (Kη +Kζ)
))2 + 4ω2

c )]×

(−ωce

0

B

B

B

@

[π2n2+m2](Kη+Kζ)

−1+ 2

v

u

u

t

1−
CT

[π2n2+m2](Kη+Kζ)
2

1

C

C

C

A

t

+

[ωc cos(t) + (
[
π2n2 +m2

]
(Kη +Kζ)×

−1 + 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
) sin(t)]) +

[4

(
1− 2

√
1− CT

[π2n2 +m2] (Kη +Kζ)

)
÷

((
[
π2n2 +m2

]
(Kη +Kζ) (1 +

2

√
1− CT

[π2n2 +m2] (Kη +Kζ)
))2 + 4ω2

c )]×

(ωce

0

B

B

B

@

[π2n2+m2](Kη+Kζ)

−1− 2

v

u

u

t

1−
CT

[π2n2+m2](Kη+Kζ)
2

1

C

C

C

A

t

−
[ωc cos(t) + (

[
π2n2 +m2

]
(Kη +Kζ)×

−1− 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
) sin(t)]))×

J0(mr) cos(nz), (5.80)
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vz(r, z, t) =
∑

n,m

−nπλ1BnmεcH0

m2 + (nπ)2 ×
√

[π2n2 +m2] (Kη +Kζ)

2
√

[π2n2 +m2] (Kη +Kζ)− CT

([4

(
1− 2

√
1− CT

[π2n2 +m2] (Kη +Kζ)

)
÷

((
[
π2n2 +m2

]
(Kη +Kζ) (−1 +

2

√
1− CT

[π2n2 +m2] (Kη +Kζ)
))2 + 4ω2

c )]×

(−ωce

0

B

B

B

@

[π2n2+m2](Kη+Kζ)

−1+ 2

v

u

u

t

1−
CT

[π2n2+m2](Kη+Kζ)
2

1

C

C

C

A

t

+

[ωc cos(t) + (
[
π2n2 +m2

]
(Kη +Kζ)×

−1 + 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
) sin(t)])

+[4

(
1− 2

√
1− CT

[π2n2 +m2] (Kη +Kζ)

)
÷

((
[
π2n2 +m2

]
(Kη +Kζ) (1 +

2

√
1− CT

[π2n2 +m2] (Kη +Kζ)
))2 + 4ω2

c )]×

(ωce

0

B

B

B

@

[π2n2+m2](Kη+Kζ)

−1− 2

v

u

u

t

1−
CT

[π2n2+m2](Kη+Kζ)
2

1

C

C

C

A

t

−[ωc cos(t) + (
[
π2n2 +m2

]
(Kη +Kζ)×

−1− 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
) sin(t)]))×

J1(mr) sin(nz), (5.81)
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P (r, z, t) =
∑

n,m

BnmεcH0(− (Kη +Kζ)
−1− 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
×

[4

(
1− 2

√
1− CT

[π2n2 +m2] (Kη +Kζ)

)
÷

((
[
π2n2 +m2

]
(Kη +Kζ) (−1 +

2

√
1− CT

[π2n2 +m2] (Kη +Kζ)
))2 + 4ω2

c )]×

(−ωce

0

B

B

B

@

[π2n2+m2](Kη+Kζ)

−1+ 2

v

u

u

t

1−
CT

[π2n2+m2](Kη+Kζ)
2

1

C

C

C

A

t

+[ωc cos(t) +
[
π2n2 +m2

]
(Kη +Kζ)×

−1 + 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
sin(t))]−

[4

(
1− 2

√
1− CT

[π2n2 +m2] (Kη +Kζ)

)
÷

((
[
π2n2 +m2

]
(Kη +Kζ) (1 +

2

√
1− CT

[π2n2 +m2] (Kη +Kζ)
))2 + 4ω2

c )]×

(ωce

0

B

B

B

@

[π2n2+m2](Kη+Kζ)

−1− 2

v

u

u

t

1−
CT

[π2n2+m2](Kη+Kζ)
2

1

C

C

C

A

t

−[ωc cos(t) + (
[
π2n2 +m2

]
(Kη +Kζ)×

−1− 2

√
1− CT

[π2n2+m2](Kη+Kζ)

2
) sin(t)]))×

J0(mr) cos(nz). (5.82)

These solutions are restricted in its domain to the boundary imposed by the liquid-
vapor interface. In order to obtain all the boundary conditions it is neccesary to
solve the NS equations in the gas phase and then correctely define the interface.
The calculation of the solutions of the NS equations in the gas phase is presented
in the next section.
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5.3 Solutions in the gas phase

For the gas phase it is also possible to suppose that there are small perturbations of
the mean velocity and pressure fields. The NS equations are formulated in this case ,
for the description of the small velocities and pressure, treating into the gas phase as
a compressible non viscous liquid. A similar ansatz as presented for the liquid phase,
is proposed for the small variation of the pressure and the two components of the
velocity, i.e. the solutions are expressed as an expansion of orthonormal functions,
with the function in the time as an unknown.

The velocity and pressure fields are calculated from the liquid-vapor interface to
infinity; in this case limz→∞ Pr(r, z, t) → 0 and also limz→∞ vi(r, z, t) → 0; both
conditions allow the formulation of an exponential ansatz for the functions over the
z axis. The proposed solutions are (in a similar way as the liquid phase, the small
perturbations of each field δF will be noted simply as F )

vr
D(r, z, t) =

∑

n,m

fD
nm(t)e−nzJ1(mr), (5.83)

vz
D(r, z, t) =

∑

n,m

gD
nm(t)e−nzJ0(mr), (5.84)

PD
r (r, z, t) =

∑

n,m

AD
nm(t)e−nzJ0(mr), (5.85)

φ′D(r, z, t) =
∑

n,m

BD
nmH0e

−nzJ0(mr). (5.86)

The last equation require the estimation of the coefficients BD
nm for the perturba-

tion of the potential in the gas phase.
The gas above the liquid film is also a compressible liquid whose viscosity is

extremely small; thus the only components of the stress tensor are the pressure on
its diagonal. Therefore, from the NS equations and the continuity equation, three
equations for each of those three fields are obtained:

d

dt




fD
nm(t)
gD

nm(t)
AD

nm(t)


 =




0 0 m
0 0 nπ

−CD
T m CD

T 2πn 0






fD
nm(t)
gD

nm(t)
AD

nm(t)


 (5.87)

+




m
2πn
0


 εcB

D
nmH0 sin(ωct),

CD
T is the isothermal compressibility constant for the gas phase (in this case a

perfec gas will be considered).
From this equation
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d

dt

(
1

m
fD

nm(t)− 1

nπ
gD

nm(t)

)
= 0, (5.88)

the integration of the previous equation gives:

fD
nm(t) =

m

nπ
gD

nm(t) + Ktef . (5.89)

For t = 0 there are no velocity fields in the gas phase; therefore gD
nm(t) = 0 and

fD
nm(t) = 0. This last condition implies that Ktef = 0, making possible to stake the

following relation:

fD
nm(t) =

m

nπ
gD

nm(t). (5.90)

Replacing this result into the eq. (5.87) one obtain

d

dt

(
gD

nm(t)
AD

nm(t)

)
=

(
0 m
DT 0

)(
gD

nm(t)
AD

nm(t)

)
+

(
εcB

D
nmH0 sin(ωct)

0

)
. (5.91)

where DT = (nπ)2−m2

nπ
CD

T . The equivalent vectorial form of the previous equation
is

d

dt

−→
χD = ÂD

−→
χD +

−→
hD, (5.92)

which can be diagonalized in order to get an uncoupled differential equation; the
elements in the previous equation are

ÂD =

(
0 m
DT 0

)
, (5.93)

−→
χD =

(
gD

nm(t)
AD

nm(t)

)
, (5.94)

−→
hD

(
εcB

D
nmH0 sin(ωct)

0

)
. (5.95)

Diagonalizing the matrix ÂD gives the following spectral matrix:

ŜD =

( √
DTm 0
0 −

√
DTm

)
, (5.96)

and using the same method applied for the liquid phase, uncoupled differential
equations are obtained

dαD
nm(t)

dt
=

√
DTm

2m

(
2mαD

nm(t) + εcB
D
nmH0 sin(ωct)

)
, (5.97)
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d$D
nm(t)

dt
= −
√
DTm

2m

(
2mαD

nm(t) + εcB
D
nmH0 sin(ωct)

)
, (5.98)

where8

αD
nm(t) =

√
DTm

2m
gD

nm(t) +
1

2
AD

nm(t), (5.100)

$D
nm(t) = −

√
DTm

2m
gD

nm(t) +
1

2
AD

nm(t). (5.101)

The solutions of the equations (5.97) and (5.98) are

αD
nm(t) = Cαe

√
DT mt − εcB

D
nmH0

√
DTm

2m(DTm+ ω2
c )
× (5.102)

(ωc cos(ωct)−
√
DTm sin(ωct)), (5.103)

$D
nm(t) = −C$e−

√
DT mt +

εcB
D
nmH0

√
DTm

2m(DTm+ ω2
c)
×

(ωc cos(ωct)−
√
DTm sin(ωct)). (5.104)

Taking again into account that gD
nm(0) = 0 and AD

nm(0) = 0, it is possible to say
that $D

nm(0) = 0 and αD
nm(0) = 0. This condition implies that the constants Cα and

C$ have the following values

Cα = −C$ =
εcB

D
nmH0ωc

√
DTm

2m(DTm + ω2
c )

; (5.105)

transforming $D
nm and αD

nm into gD
nm and AD

nm one obtains

gD
nm(t) =

m√
DTm

(
αD

nm(t)−$D
nm(t)

)

=
εcB

D
nmH0ωc

2(DTm+ ω2
c )

[e
√

DT mt +

e−
√

DT mt + 2 cos(ωct)] (5.106)

8The matrix of eigenvectors is in this case

M̂D =

( m√
DT m

−m√
DT m

1 1

)
(5.99)
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AD
nm(t) = αD

nm(t) +$D
nm(t)

= −εcB
D
nmH0ωc

√
DTm

2m(DTm+ ω2
c )

[e−
√

DT mt −

e
√

DT mt + 2DTm sin(ωt)] (5.107)

the two solutions for eq. (5.92). The complete solutions in the gas space are

vr
D(r, z, t) =

∑

n,m

m

nπ

εcB
D
nmH0ωc

2( (nπ)2−m2

nπ
CD

T m + ω2
c )
×

[e

q

(nπ)2−m2

nπ
CD

T mt + e−
q

(nπ)2−m2

nπ
CD

T mt

+2 cos(ωct)]× e−nzJ1(mr), (5.108)

vz
D(r, z, t) =

∑

n,m

εcB
D
nmH0ωc

2( (nπ)2−m2

nπ
CD

T m + ω2
c )
×

[e

q

(nπ)2−m2

nπ
CD

T mt + e−
q

(nπ)2−m2

nπ
CD

T mt

+2 cos(ωct)]× e−nzJ0(mr), (5.109)

PD
r (r, z, t) =

∑

n,m

−
εcB

D
nmH0ωc

√
(nπ)2−m2

nπ
CD

T m

2m( (nπ)2−m2

nπ
CD

T m+ ω2
c )
×

[e−
q

(nπ)2−m2

nπ
CD

T mt − e
q

(nπ)2−m2

nπ
CD

T mt +

2
(nπ)2 −m2

nπ
CD

T m sin(ωt)]× e−nzJ0(mr). (5.110)

In the previous equation it is interesting to observe that there are imaginary values
for (nπ)2 < m2, implying that the exponetial functions are related only to a pure
relaxatory but also to an oscillatory behavior(this result has origin in the definition
of the ansatz on the z axis; in contrast, the solutions for the liquid phase are periodic
and do not invert any sign in the continuity equation).

In the section about the results the calculation of the coefficients BD
nm will be done.

In the next section the calculation of the boundary conditions for the liquid-vapor
phase will be presented.
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5.4 Boundary conditions at the liquid-vapor

interface

The perturbation of the liquid film by an external force induces not only deviations
of the pressure and velocity, but also deviations of the interface. As was defined
in the introduction of this chapter, the perturbation induced into the system imply
also a perturbation of the vector normal to the interface

−→e ′z = ς(r, t)−→e r +−→e z, (5.111)

where ς(r, t) is the perturbation of the normal vector, depending on the displacement

of the interface. In the following points the general equations for the boundary
conditions at the liquid-vapor interface are shown, considering conservation of mass
and momentum.

1. Mass: The general equation for the mass conservation is

ρI (−→v I |Γ −−→v Γ)−→e ′z − ρII (−→v II|Γ − −→v Γ)−→e ′z =

[
−dχm

dt
+ 2SΓ |−→vΓ|χm + τ

]
.

(5.112)
Because −→v a and −→v Γ are small velocities, the elements of second order involved

in this formula will be reduced to first order therms.

Then the following equation is obtained

ρI (−→v I |Γ − −→v Γ)−→e z − ρII (−→v II|Γ − −→v Γ)−→e z =

[
−dχm

dt
+ 2SΓ |−→vΓ|χm + τ

]
.

(5.113)
where −→v a are the velocities in the phases I or II, ρI is the density in the phase

I and ρII is the density in the phase II; the velocity of the interface is in this
equation given by −→v Γ. The left side is related to the rate of evaporation of
the liquid, defined as:

ṁ = ρI (−→v I |Γ − −→v Γ)−→e z − ρI (−→v II − −→v Γ)−→e z. (5.114)

On the right side χm represents the accumulation of mass at the interface, SΓ

represents the curvature of the interface, and τ is the surface density of mass
production.

In this problem there is no accumulation of mass at the interface and there-
fore there is no flux of mass inside of the system. Furthermore there is no
production of mass at the interface. Then

τ = 0, (5.115)
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χm = 0 (5.116)

and consequently the equation for the conservation of mass can be reduced to

the following one (in the following equations −→v represents the velocity field in
the fluid and −→vD the velocity field in the gas phase)

ρ (−→v |Γ − −→vΓ)−→ez − ρD (−→vD|Γ −−→vΓ)−→ez = 0, (5.117)

which can be rewriten as the following equation, which describes the velocity

field at the interface:

−→vΓ
−→ez =

(ρ−→v |Γ − ρD
−→vD|Γ)

ρ− ρD

−→ez . (5.118)

and completes the condition of mass conservation at the liquid-vapor interface.

The boundary condition considered for the analysis of the conservation of
momentum at the interface, will be presented in the following item.

2. Momentum: The most general equation for the conservation of momentum is
given as

(←→
T I −

←→
T II

)
|Γ−→e ′z − ṁ (−→p I − −→p II) |Γ =

[
−d
−→χ p

dt
+ 2SΓ |−→vΓ| −→χ p +←→τ −→e ′z

]
,

(5.119)

where
←→
T a is the stress tensor in phase I or II and −→p a is the momentum in

phase I or II. On the right side of the equation −→χ p is the density flux at the
interface

−→χ p = −→vΓχm. (5.120)

Using the fact that there is no accumulation of mass at the interface, given by

(5.120), then
−→χ p = 0, (5.121)

2SΓ |−→vΓ| −→χ p = 0. (5.122)

The last element of the right side of eq. (2) is given by

←→τ −→e ′z = 2γΓSΓ
−→e ′z, (5.123)

where γΓ is the surface tension of the interface. Therefore, considering that

the rate of evaporation is equal to zero (eq. (5.124)) eq. (2) can be expressed
in the following way

(←→
T I −

←→
T II

)
|Γ−→e ′z = 2γΓSΓ

−→e ′z. (5.124)

The solutions of this equation will be given in the next section.

114



5.4.1 Conservation of momentum at the interface:

boundary conditions.

The equation (5.124) is valid for the present case where phase I is the liquid phase
and the phase II is the vapor phase, i.e.

(←→
T −←→T D

)
|Γ−→n = 2γΓSΓ

−→n . (5.125)

where −→e ′z = ς(r, t)−→e r+
−→e z is the normal vector to the interface,

←→
T I =

←→
T0 0+δ

←→
T

(
←→
T 0 is the stress tensor in equilibrium, whose diagonal elements are the pressure

in equilibrium) and SΓ = S0Γ + δSΓ
9; Considering that the perturbations of the

system are very small, the previous equation can be derived into

2γΓ (S0Γ + δSΓ) (−→e ′z) =
(←→
T 0 + δ

←→
T
)
|Γ (−→e ′z)−

(←→
T 0D + δ

←→
T D

)
|Γ (−→e ′z)

2γΓ (S0Γ
−→e ′z + (δSΓ)−→e z) =

←→
T 0|Γ−→e ′z +

(
δ
←→
T |Γ

)−→e z −
←→
T 0D|Γ−→e ′z +

(
δ
←→
T D|Γ

)−→e z (5.126)

In this last expression the perturbation of the equilibrium curvature at the interface

is given by

SΓ =
1

2
∇ ∇HΓ√

1 + (∇HΓ)2
, (5.127)

such that the linearized form of the surface curvature is given by

S0Γ + δSΓ =
1

2
∇ ∇H0Γ√

1 + (∇H0)
2

+
1

2
∇2δHΓ(r, t). (5.128)

The perturbations of the system are small deviations from the equilibrium state.

Aditionally the particle is placed far away from the interface where S0Γ → 0 (the
surface tension is different to zero). Therefore for the film thickness

HΓ(r, t)→ H0Γ + δHΓ(r, t), (5.129)

where H0Γ is a constant. That means, the small perturbations introduce small

deviations of the mean surface, where the curvature is absent. This result implies
that the boundary will be evaluated at H0Γ (if this condition does not holds, i.e.
for bigger perturbations of the system, the equations are again non linear). The

9It is interesting to observe that the equations in general relativity have the same form as the
equations for this boundary condition. See for example[87]

115



conditions imposed for this equations have as principal implication that only non
contact mode of AFM microscopy can be evaluated using linearized hydrodynamics.

In equilibrium a flat interface has the following implication for the equation for
the boundary condition

←→
T 0|Γ −

←→
T 0D|Γ = 0, (5.130)

that means, in equilibrium the pressure of the gas phase is equal the pressure in
the liquid phase. Therefore eq.(5.126) reduces to the following equation

(
δ
←→
T |Γ − δ

←→
T D|Γ

)−→e z = 2γΓδSΓ
−→e z (5.131)

which describes the boundary conditions at the liquid-vapor interface under small
external perturbations introduced by a nanoparticle (in the vapor phase), placed
above the liquid-vapor interface.

In the present particular case the liquid and the vapor phase are compressible,
with a viscous liquid phase. The problem is described in cylindrical coordinates and
the system is symmetric on the radial coordinate. So the elements of the projected
stress tensor10 on the normal of the interface are:

←→
T I
−→e z =

(
T rz

T zz

)
(5.133)

where

T rz(r, z, t) = Kη [∇rv
z(r, z, t) +∇zv

r(r, z, t)] (5.134)

T zz(r, z, t) = −δzzP (r, z, t)+(Kη + δzzKξ)∇zv
z(r, z, t)+Kξδ

zz∇rv
r(r, z, t). (5.135)

T zz
D (r, z, t) = −δzzPD(r, z, t) (5.136)

The equation eq. (5.131) is reduced to the following equations (In order to simply
the notation δS0Γ will be writed as SΓ(r, t))

Kη [∇rv
z +∇zv

r] |Γ = 0, (5.137)

2γΓSΓ(r, t) = [−δzzP (r, z, t) + δzzPD(r, z, t)− φ′(r, z)δd(t) +

(Kη + δzzKξ)∇zv
z(r,H0Γ, t) +Kξδ

zz∇rv
r(r,H0Γ, t)]|Γ.(5.138)

10The stress tensor for compressible fluids is represented by means of the following expresion:

T ij = Pδij + Kηδii∇iv
j + Kξδ

ij∇iv
i (5.132)
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The eq. (5.137) is a von Neuman like boundary condition for vz(r, z, t) at the

interface and is one of the searched boundary conditions. This condition will be
satisfied by the ansatz proposed for this velocity, because it is given by a sinus
function whose complete period is defined inside the film

∇r

∑

n,m

vz
0gnm(t) sin(nz)|ΓJ1(mr) +

∇z

∑

n,m

vr
0fnm(t) cos(nz)|ΓJ0(mr) =

∑

n,m

[vz
0gnm(t) sin(2πn)|Γ∇rJ1(mr) +

vr
0fnm(t) sin(2πn)J0(mr)] = 0. (5.139)

This solution implyies that the boundary condition for mass conservation reduces

into the following formula:

vz
Γ =

ρDv
z
D|Γ

ρD − ρ
. (5.140)

Takig into account both, the ansatz proposed for the solutions of the presure and

the velocity fields into the liquid film, and the definition of the gradient operator in
cylindrical coordinates (right side of eq. (5.138)), the following expresion is obtained

γΓ∇2δH(r, t) =
∑

n,m

[AD
nm(t)e−nπ + {−Anm(t) + (nπ) (Kη + δzzKξ) gnm(t)

+Kξδ
zzmfnm}(t) cos(2πn)]J0(mr), (5.141)

which is a second order homogeneous differential equation. The following ansatz for

δHΓ(r, t) is propossed

δHΓ(r, t) =
∑

n,m

W 0Γ
nm(t)J0(mr), (5.142)

with

W 0Γ
nm(t) =

e−2πn

γΓm2
AD

nm(t) +
cos(2πn)

γΓm2
[−Anm(t)− BnmεcH0 sin(ωct)

+(nπ) (Kη + δzzKξ) gnm(t) +Kξδ
zzmfnm(t)]. (5.143)

In this equation it is possible to introduce the solutions for Anm(t), AD
nm(t), gnm(t)

and fnm(t). Replacing this solutions into (5.143)and after some algebra
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H0Γ
nm(t) =

εcH0ωc

γΓ
[−

BD
nm

√
(nπ)2−m2

nπ
CD

T m

2m( (nπ)2−m2

nπ
CD

T m+ ω2
c )
×

[e−
q

(nπ)2−m2

nπ
CD

T mt − e
q

(nπ)2−m2

nπ
CD

T mt +

2
(nπ)2 −m2

nπ
CD

T m sin(ωt)]× e−2πn

−Bnm[
(λ2 + (Kξ(m

2 − nπ)2)−Kη(nπ)2))λ1

(λ2
1 + ω2

c )(λ2 − λ1)
×

(cos(t) + λ1 sin(t)− eλ1t) +

(λ1 + (Kξ(m
2 − (nπ)2)−Kη(nπ)2))λ2

(λ2
2 + ω2

c )(λ2 − λ1)
×

(− cos(t)− λ2 sin(t) + eλ2t)] cos(2πn)]. (5.144)

which represents the function in the time of the small curvature of the interface;

this set of equations complete the boundary conditions for the liquid and the vapor
phase, giving information of its displacement.

The displacement of the interface can be projected over the r and z axis; as
was shown in equation (5.140) the z component of the velocity at the interface is
related to the component on the z axis of the velocity in the vapor phase. The total
interfacial velocity is given by

vΓ =
∂H(r, t)

∂t
, (5.145)

and therefore

vr
Γ =

√
(vΓ)2 − (vz

Γ)2, (5.146)

implying that the liquid at the interface suffers a normal and tangential displace-

ment. The velocity of the liquid phase on the z axis at the interface is zero, implying
condensation of the gas at the interface of the film; therefore the dynamics of the
interface, in particular its velocity, is interpreted as the mechanical response of this
gas condensation (i.e. the fluctuations of the interface can be found in the gas
condensation at the interface).

5.4.2 Boundary conditions at substrate and radial boundary
conditions

At the substrate there is a perfect mathematical boundary without curvature (in
this particular problem a non structured substrate is considered). Aditionally there
is moreover no accumulation of mass and consequentely no density flux at this
interface. Using the equation for the determination of the boundary conditions eq.
(5.11) the following conditions are obtained:
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1. Mass: the considered substrate is impermeable, i.e. there is no transport
of mass through the solid-liquid interface. From the equation (5.11) for the
conservation of mass the only therm that survive is the rate of transport of
liquid through the substrate, given by:

ṁf = 0 (5.147)

2. The substrate is non structured and admits slip boundary conditions. i.e. the
tangential velocity at the surface of the solid-liquid interface is different to
zero.

At infinite separation from the particle the solutions of the pressure and velocity
fields must vanish. Then the following boundary conditions are imposed in the
present system

lim
r→∞

vi = 0, (5.148)

lim
r→∞

P = 0, (5.149)

The first condition is fulfilled by the expansion of vz in terms of sin(nz); the second

condition is fulfilled by the Bessel expansion of all the solutions.

Remarks about the solutions In fig. 5.3 the pressure and the vertical compo-
nent of the velocity are plotted as a function of the time, for r = 0 and z = H0Γ;
these results show (for the parameters employed in this numerical computations see
the introduction) that the relaxation part only dominates for t → 0; for t > 0 the
solution is dominated by the harmonic functions.

The most significant result is the dependence of the velocity fields on the external
potential, where the defect is imposed by an harmonic perturbation. In fig. 5.2 the
velocity fields for a compressible simple liquid are represented for fixed time and
for a fixed distance of the particle from the liquid film. In this case the density of
the liquid is ρ = 0.8, the amplitude of the perturbation is about 6σ (the constants
used in this calculation can be consulted in appendix I). In this solution a very fast
relaxation of the velocity fields inside the liquid film is evident, where the velocity
is particularly high at both interfaces of the liquid film.

The density and viscosity, as well as the film thickness and proper frequency,
are quantities that permits to make the calculation of the Reynolds number of the
system (see [78] [79]). If Reη < 30 the fluid is laminar [79] [94]. So if this condition
is not satisfied, then the liquid is turbulent. For thin films this condition is satisfied
if both the proper velocity and the film thickness are small enough.
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Figure 5.3: Time dependence of the solutions for velocity at a fixed frequency ωc = 1.0 (All the
unities are normalized. See appendix I). From this results it is possible see that the
oscillatory part have dominance in the solutions. In the first two figures above the
components of the velocity field vr and vz are plotted as a function of the vertical
distance and time.

5.5 Alternative potential and Bnm coefficients

The calculation of the solutions for the linearized hydrodynamics requires the ex-
pansion of the external potential in Bessel-Fourier-Bessel series. It was repeatedly
shown that the particle interact with the liquid with a LJ potential; the main prob-
lem is that the transformation of such potential has no closed form, as is shown
in appendix G. For this reason, an alternative potential, given as a functional of
exponential functions, is introduced. This alternative function has a similar shape
as the conventional potential and has a closed form after the Bessel-Fourier-Bessel
transformation. This function is

φ =
1

e

“

r−R−σ
γ1

” − 1

e

“

r−R−σ
γ2

” , (5.150)

which is a superposition of an attractive and a repulsive part, in a similar way as a

LJ potential. In this formula R is the radius of the particle and σ is the collision
parameter.
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Figure 5.4: The solution for the pressure is shown in two different time regimes; this result suggest
that the pressure has in such system a very slow relaxatory behavior.

The corresponding Fourier transform for this function is

Bnm i =
1

π

h∫

0

sin(nz)dz

∞∫

0

drrφi′J0(mr), (5.151)

where

φi′ =
eσ0e

− r
γi (d− z)√

(d− z)2 + r2

, (5.152)

with σ0 = σ + R and i = 1, 2. Then the complete transformation for the potential

can be written as

Bnm = Bnm 1 +Bnm 2. (5.153)

After the calculation of the Hankel transform [91] of the potential with respect to

the parameter d this function can be used to obtain the typical function
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H[ ∂φ
∂d ] =

√
2 (d− z)γ

1
4
i e

σ0 (d− z)
√
π(1 + γim2)

1
4

K1/2

[
(d− z)

√
(1 + γim2) /γi

]
. (5.154)

Here the following equivalent function for the fractional Bessel function of third

order is employed

K1/2 [(d− z)A] =

√
2
√
πe−A(d−z)

√
A(d− z)

, (5.155)

where A =
√

(1 + γim2) /γi. Using this transformation, the second integral over z

is obtained as

Bnm i =
2γ

1
4
i e

σ0−Ad

√
A(1 + γim2)

1
4

2π∫

0

eAz(d− z) sin(nz)dz

=
2γ

1
4
i e

σ0−Ad

√
A(1 + γim2)

1
4

1

(A2 + n2)2 ×

[cos(nz)
(
n3z − ndA2 − n3d− 2nA+ nzA2

)
+

sin(nz)
(
A3d+ Adn2 + A2 − n2 − A3z − Azn2

)
]2π
0 (5.156)

Bnm i =
2γ

1
4
i e

σ0−Ad

√
A(1 + γim2)

1
4

1

(A2 + n2)2 × (5.157)

[cos(2πn)

(
2πn3 − ndA2

−n3d− 2nA+ 2πnA2

)
− (5.158)

(
−ndA2 − n3d− 2nA

)
+ (5.159)

sin(2πn)

(
A3d+ Adn2 + A2

−n2 − 2πA3 − 2πAn2

)
]. (5.160)

With this potential it is possible to obtain analytical results for the Fourier -Bessel-
Fourier coefficients. Given that n ∈ N , is recommended to express the expansion
coefficient of the potential of the nanoparticle as

Bnm i =
2γ

1
4
i e

σ0−Ad

√
A(1 + γim2)

1
4

1

(A2 + n2)2 ×

[cos(2πn)
(
2πn3 − ndA2 − n3d− 2nA+ 2πnA2

)

−
(
−ndA2 − n3d− 2nA

)
]. (5.161)

This potential, and its transform, will be used along the present chapter for the
calculation of the corresponding results. For the parameters employed in the present
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Figure 5.5: Fourier-Bessel-fourier transform of the modified LJ potential, for a particle with
Reff = 4, as a function of m and n.

problem (see appendix I), the dependence of the transform Bnm on n and m is shown
in the figure 5.5.

On the other hand the expansion coefficients in the gas phase BD
nm can be ex-

pressed as

BD
nm =

∫ ∞

H0

dze−nz

∫ ∞

0

drrφ′(r, z)J0(mr); (5.162)

in such case the Fourier-Bessel transformation can be done; using the same expres-

sion for the Kummer function defined above in eq. (5.162), the following equation
for each coefficient BD

nm i is obtained

BD
nm i =

2γ
1/4
i eσ0−Ad

√
A(1 + γim2)1/4

lim
z→∞

[e−(A+n)z(−Ad− nπd+ Az + nπz + 1) +

e−(A+n)H0(Ad+ nπd− AH0 − nπH0 − 1)] (5.163)

due that A > 0, then the previous expression reduces to

BD
nm i =

2γ
1/4
i eσ0−Ad

√
A(1 + γim2)1/4

e−(A+n)H0(Ad+ nπd− AH0 − nπH0 − 1) (5.164)

completing the expressions necessary for the expansion coefficients of the external

potential.

123



5.6 Results

The presented results in this section were performed using periodic perturbations,
given by the function sin(ωct). The size of the film and the nanoparticle in this
calculations are not different as those used for the simulations; the effective radius
of the particle is in this case Reff = 10 and the thickness of the liquid is H0Γ = 14,
all quantities given in LJ unities. In appendix I the constants and main quantities
used in this computations are shown

The solutions for the time domain show, as very interesting feature, two main
peaks, one at the substrate and the other at the interface; at intermediary positions
the pressure fluctuates around a mean value (see fig. 5.6 and fig. 5.7). In compress-
ible fluids it was considered that the pressure is connected to the density through
the isothermal bulk modulus; so the plots for the pressure are related to the density
of the fluid.

The maximum pressure in the profile lies under the particle surrounded by small
pressure maxima for r > r0, where r0 is the position of the particle. When r → ∞
the pressure tends to zero. The pressure profile shows also a dramatic relaxation of
the pressure in the bulk of the film.

Figure 5.6: Small perturbation of the pressure for a compressible simple liquid with harmonic
perturbations introduced by a nanoparticle at a fixed time and at r = 0. In this case,
a big pressure peak close to the substrate-liquid and liquid-vapor interfaces is evident;
in bulk the pressure profile has a small oscillatory behavior just bellow zero. As in
the present case, the liquid is compressible, this pressure profile is related to a density
profile.

124



The boundary conditions restricts the present problem to non contact modes (the
so called non typing mode in AFM microscopy), where the position of the particle
is given by zp = H0Γ + d. In the present calculations d = 6, which is large enough
in order to avoid a curvature at the interface (See chapter 3). An analysis of the z
component of the velocity is made in order to verify the boundary conditions: the
solution fluctuates around a mean function that shows that the movement of the
liquid at the substrate is compensated by the motion of the liquid at the interface,
where the velocity produces compression lines (according to the theory, the present
solutions do not admit vorticity).

All the plots presented in this chapter were computed for a fixed time, where the
system is in an oscillatory regime. The solutions in the time domain are composed
by a relaxatory and an oscillatory part; the relaxation obtained in this calculations
was very fast. The plot of the solutions allows also to observe that near any of both
interfaces the response of the liquid is bigger than inside the film, making possible
to observe only small perturbations inside the film.

Figure 5.7: Pressure of a compressible simple liquid under load in the time domain, for a fixed
time as a function of r and z. The nanoparticle is placed at r = 0. It is quite evident
that at bulk the pressure dissipates faster than at both interfaces, where the maximal
pressure is situated below the nanoparticle. Furthermore the intensity decreases as the
distance to the nanoparticle increases.
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5.7 Conclusions

In this section the calculation of the NS equations was shown for a liquid confined
between a substrate and a single nanoparticle, for compressible and incompressible
liquids, restricted to a single frequency ωc = 1. The most interesting result is the
qualitative agreement with the results of simulations of fluids between two plates.
It was observed that slip boundary conditions permits the existence of symmetric
velocity and pressure profiles at the interface and at the substrate. The solutions
for the velocity do not show vorticity; this result is clear because there are only
small perturbations on the system. Aditionally the velocity shows small localized
perturbations; the modulus of the velocity at the interface is bigger than the modulus
of the velocity inside the liquid film.

The present results are only valid for a particle situated at a relative large dis-
tance to the interface in order to avoid its curvature. This restriction implies small
deviations of the flat interface. It is important to take into account the limitations
of this model, if it is used for the interpretation of experimental results, like, for ex-
ample, non typing mode in AFM microscopy. The modelation of typing mode imply
a curved interface that makes, through the boundary conditions, the NS equations
be no more linear; therefore this calculation is useful for films with interfaces that,
in equilibrium, are flat. An other restriction is the nature of the liquid: the results
presented are valid only for simple liquids; in the appendix J a short calculation in
the frequency domain for a complex liquid (using the so called Maxwell model for
the viscosity) is shown.
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A The effect of the interface on
the dynamics of the particle

A.1 Short times

In this work there are two fundamental problems to be analyzed: one is related
to the statics of the system (chapter 3), which was useful for the detection of the
glass transition at the interface of the liquid film, and the other is related to the
dynamics of the probe and its coupling with the dynamics of the particles in the melt
(chapter 4). The present appendix is placed between both analysis. The question to
be answered is: has the liquid-vapor interface as well as the probe-liquid interface
some influence on the dynamics of the tracking particle? This question is closely
related with the definition of the interaction potential of the particle: is there some
difference in the dynamics of a particle that interacts with a simple LJ potential or
with a modified LJ potential with the monomers?

In this case observations in the bulk are contrasted with observations at the poly-
mer film. Moreover in the present section a comparison between the VCF and the
FCF for a simple LJ particle and the modified LJ particle is shown. The relation
between the MSD and the VCF of a modified LJ particle at different temperatures
helps to do an analysis of the behavior of the dynamics of the tracking particle and,
together with the analysis of the embedding of the particle, to obtain information
on the interplay between interface and displacement.

In contrast with the results shown in chapter 4, the VCF for a LJ particle does
not have the same damped oscillation behavior as that of the modified LJ particle
(see fig. A.1); instead the behavior of this function shows a relaxation, similar to the
typical behavior of Ornstein-Uhlenbeck process [33]. In particular this function fits
to an exponential function. For T = 0.8 the function Ψ(t) has also a negative tail
that relaxes to zero; this result suggests that correlated collisions between the probe
and liquid particles dominate the dynamics of the tracking particle. 1. For T = 1.4
the relaxation character and a very small negative tail of the VCF is evident; this
result insinuates that the dynamics of the LJ nanoparticle at this temperature is
dominated by binary collisions, whereas in the first case the total force acting on

1The conventional theories for self diffusion in liquids are based on the Boltzmann equation, where
binary collisions between particles are take into account. Such picture is applicable only for
low densities; but it will be used in this section for the interpretation of the dynamics of the
particles in the fluid [56][63] [64]
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Figure A.1: VCF for a simple LJ particle at short times and three different temperatures above
Tg. For T = 1.4 is possible to observe a long decay and a very small negative tail
of the function. In contrast with the results obtained in chapter 4, at T >> Tg the
VCF in this case do not shows the damped oscillatory behavior but the conventional
behavior of VCF of LJ liquids [Yip].

the particle has origin in the collisions between the particle and all the neighboring
particles.

This result explains again the stability of the vertical position of the particle, as
was shown in the analysis of the statics of the system, and permits to understand why
the modified LJ potential is more stable for the simulation of tracking particles than
simple LJ potentials: the persistence of negative tails in the VCF of the modified
LJ particle at very short times, shown in the chapter 4, has origin in the persistence
of correlated collisions, even for T >> Tg, which are also responsible to ’trap’ the
particle in the melt. The results of the VCF for simulations with LJ particles at
short times is plotted in fig. A.1. 2

As was shown in the previous section, on the nanoparticle there is not only a

2For T ∼ Tg the negative part of the VCF is related to the diffusion of the cage on the particle
[63], where independent correlated collisions lead to a negative tail of the VCF. For fluids with
continuous interactions -for example polymer liquids- independent binary collisions leads to
damped oscillations of the VCF. Such result can be interpreted as oscillations of the particle in
its solvation shell [63] which is in this time regime at rest; in the next order the cage is allowed
to move. After this time the particle can diffuse, making the self diffusion coefficient different
to zero.
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Figure A.2: Cut snapshots with different interaction potentials of the tracking particle for T = 0.8;
the fluid has N = 2250, with Np = 10. In this plot two different situations was tested:
R0 = 1.0, for Reff = 3.0 and Reff = 4.0, and R0 = 2.0 with. For R0 = 2.0 with
Reff = 4.0 the effective radius of the layer of the monomers is similar to Reff , whereas
for R0 = 1.0, with Reff = 3.0, this layer is smaller than Reff = 3.0. This analysis
probes whether the hard core of the particle interacts with the monomers in the film.

solvation shell but also a layer of particles around the core of the tracking particle;
this fact is confirmed in the density profiles close to the particle and the qualitative
calculations of the hydrostatics of the liquid: as was discussed in a previous chapter,
for T ∼ Tg the particle produces at the interface an indentation, whereas for T > Tg

the particle sinks inside the melt and permits the formation of a layer at its interface
(as was demonstrated in the results of the density profile close to the particle and
the qualitative results for hydrostatics). In both extremes the tracking particle is
strongly coupled to the monomers in the neighborhood by means of the strongly
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Figure A.3: Density profile for N = 2250, with Np = 10 at T = 0.8. In the first panel R0 < σ

(this result is not normalized); in the second one R0 ∼ σ. In the first case it is quite
obvious that the nanoparticle is part of the other bulk particles, whereas the second
density profile shows that the particle produces an excluded density and modifies the
bulk density near the particle.

attractive character of the potential at the interface of the particle.

Therefore the layer of monomers on the particle induces additional effects in its
dynamics by means of the increase of correlated collisions. Making a variation of
the size of the hard core it is fundamental to observe the variation of the layer of
particles on the nanoparticle and therefore to control different effects on the MSD
of the probe. So, if R0 → Reff the area of the hard core is similar to the effective
area and therefore the area of the layer of particles is similar to the effective size
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Figure A.4: DS for N = 2250, with Np = 10 at T = 0.8. For R0 < σ it is evident that the particle
evolves directly from a ballistic into a diffusive regime; in the curve below the MAD
for a particle with R0 ∼ σ. In this last case the particle has a subdiffusive regime
before the particle reaches a r=diffusive behavior, showing that the particle does not
diffuses like a conventional LJ particle.

of the particle; a particle interacting with a simple LJ potential represents in this
case a particle with a simple hard core, without a layer of particles, i.e R0 = Reff

and, therefore, the particle is not trapped by the neighboring monomers . On
the other hand if R0 << Reff the size of the layer on the particle decreases; if
R0 → σ the tracking particle has the same behavior as the monomers in the melt.
In fig. A.2 a cut of 1σ in the polymer melt, at the equatorial line of the tracking
particle, is shown; in this case the system consists of 2250 monomers, the particle
has Reff = 3.0, R0 = 1.0, and Reff = 4.0, R0 = 2.0 respectively. In this snapshot
the variation of the size of the layer of particles on the tracking particle is evident.
The density profile as a function of this variation is shown in fig. A.3. In bot cases
the MSD was computed at T = 0.8; the result is shown in fig. A.4. For R0 → Reff

the particle shows a subdiffusive behavior, whereas for the smaller hard core particle
(for R0 = 1.0, Reff = 3.0 and Reff = 4.0) there is a direct transition from a ballistic
into a diffusive regime . This result shows very clearly the effect of the layer on the
tracking particle, even for T >> Tg, i.e. the effective covering layer of monomers on
the tracking particle has a similar role as a solvation shell3 4.

3A solvation shell is similar as the cage on the particle. See [63]
4At temperatures close to the glass transition temperature the MSD shows very short subdifusive
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An other question is, why the duration time of the plateau of the MSD in the
present simulations is so short? 5 In contrast with the monomers in the melt, the
hard core of the particle is able to diffuse inside the effective radius Reff , where the
density of particles is much smaller than outside of the particle. This affirmation
has support in fig. A.3, where the density of the melt in the cut, as a function of r,
is plotted from the center of the particle to r = 40.

crossovers. In the film this effect is reflected by a characteristic plateau (caging of the particle)
followed by a very short subdiffusive regime with a characteristic slope x1 and then either the
formation of a second short plateau in bulk (Please refer to the corresponding plots for the
MSD of the particle in bulk discussed in chapter 4) or the transition into an other subdiffusive
regime with an other characteristic slope x2. The described result can be again interpreted as
the effect of the coupling between the particles at the layer on the nanoparticle; therefore the
particles at the layer suffer also caging (which is detected in the MSD of the tracking particle).

5F. Varnik, personal conversation.
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B D(t) in film and in bulk at
T ∼ Tg

For low temperatures the nanoparticle remains close to the interface of the film,
when in the initial configuration the particle is placed above the film1; in this case,
observing the snapshots for the system melt-particle fig. 3.10, is possible to observe
that the particle produces a curvature of the interface, which is not totally flat. Is
it possible that this defect at the interface has some influence on the dynamics of
nanoparticles? In this case the temperature is close to Tg; fluctuations of the inter-
face at such temperature are very slow and therefore insignificant for short times.
For very long times the system reaches an ergodic limit and therefore it is possible
to account for an averaged interface, which means an averaged curvature. In the
present case after intermediary to long relaxation times such curvature is soft, affect-
ing the diffusion of the particle [83]. Making an analysis of the MSD of the tracking
particle it is possible to observe that at low temperatures there is a persistence of the
subdiffusive behavior. After this regime the system relaxes into a diffusive regime.
If the curvature of the interface plays a role in the dynamics of the particle (in this
case the interface is a fluctuating surface, the so called capillary waves) then it is
reasonable to think that this fact must have influence in the computation of the
transport coefficients: the diffusion constant of the particle and the viscosity of the
liquid close to the particle. So the diffusion constant in bulk must be different than
the diffusion constant of the particle close to the interface of the film

∆D(t) = DBulk(t)−DFilm(t) (B.1)

For this reason simulations in the bulk including a simple and a complex liquid are

crucial in order to understand the influence of the interface. The test simulations
show that there is a difference between the diffusion coefficient at short and inter-
mediary times: in bulk this coefficient is slightly bigger than on the film. In fig. B.1
the diffusion coefficient, measured as ∆r2/t is shown for a nanoparticle in a complex
liquid in bulk and in the polymer film; an additional simulation shows the results
for the diffusion coefficient of a particle inside a simple LJ liquid. In this results
is possible to observe that for short times ∆D(t) > 0, showing that the interface
has influence on the particle at short time regimes. In intermediary to long time

1Like a hockey player on a frozen lake: at the interface the monomers have a very low mobility
and therefore (and for the happiness of the player) he remains at the interface. The seasons
convert the hokey player into a swimmer.
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Figure B.1: Difference of the Self diffusion coefficient as a function of time of the particle in bulk
and on the polymer film, with N = 10. In the first panel the different diffusion
functions are shown; in the panel below the difference of the diffusion coefficients in
bulk and to film is shown. In short and intermediary times there is no convergence
of Dbulk to Dfilm; this result shows the influence of interfacial effects in short time
regimes. In long times an oscillation around zero is observed (but with lot of statistical
errors).

regimes, ∆D(t) fluctuates around zero. In this case, an improvement of the statistics
is neccesary.

The test done with a simple liquid shows that at intermediary times this coefficient
is bigger than the previous computed coefficients. Thus the complexity of the fluid
as well as the presence of the particle at the interface (only for small temperatures
and intermediary times) has influence on the diffusion of the particle.
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C Method for the computation of
the shear module using the time
dependent diffusion coefficient

C.1 Relation between D(t) and VCF

In the long time limit the integral of the VCF, DV CF (t), converges to the time
derivative of the MSD, DMSD(t), and the convergence value is equal to the self
diffusion constant. Such constant is a functional of the viscosity of the system.
From the results of the present simulations there is accurate information for both
DV CF (t) and DMSD(t). The idea is to use both expressions for the computation of
the shear modulus in the philosophy of microrheology.

The intermediary times of both functions represents the intermediary time of a
function that depends of a non constant viscosity. The expression leading to the
diffusion coefficient can be expressed as

lim
t→∞

D(t) =
1

d

[∫ t

0

φ(t′)dt′+
∫ ∞

t

φ(t′)dt′
]
, (C.1)

where D(t) is a time dependent function that determines the diffusion coefficient and

d is the dimension of the system; in the simulations there is a finite computation
time where D(ta)→ D, i.e. ∫ ta

t

φ(t′)dt′ = D, (C.2)

so, applying the Laplace transform in the first equation it is necessary to make the

computation of the VCF using the time dependent diffusion coefficient:

φ(s) = dsD(s)− dD. (C.3)

The Laplace transform can be expressed as a Fourier transform, in such a way that

the previous expression for the VCF can be writen as

D(ω) = −iω1

d
φ(ω)− iωD (C.4)

and hence:
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φ(ω) = dωD(ω)− dD. (C.5)

Any expression in the frequency domain can be expressed as the superposition of a

real and imaginary part. So the function related to the diffusion coefficient can be
expressed as

D(ω) = D(ω)− iIm[D(ω)], (C.6)

Using this expression, the real part of the VCF in frequency domain is given by

<[φ(ω)] = dωIm[D(ω)]− dD, (C.7)

and the imaginary part can be expressed as:

=[φ(ω)] = dωRe[D(ω)]. (C.8)

As both DV CF (t)and DMSD(t) converges in some time regime then

<[φ(ω)] = dωIm[DV CF (ω)]− dDV CF ≈ dωIm[DMSD(ω)]− dDMSD (C.9)

=[φ(ω)] = dωRe[DV CF (ω)] = dωRe[DMSD(ω)] (C.10)

this result shows two alternative ways to make the computation of the shear module

using the VCF.

C.2 Computation of the viscosity

Using the Stokes-Einstein law it is possible to express the viscosity in the liquid as
a function of the diffusion coefficient as

η = lim
t→∞

kBT

6πD(t)Rpart
. (C.11)

The objection to use this expression for the computation of the frequency dependent

viscosity is that the Stokes-Einstein relation is only valid for very long times. But
this expression, together with the equivalence of both the memory function of the
VCF and of the viscosity in bulk, is just the starting point for any measurement in
microrheology [44] (somewhere else it was shown that G∗

Diff(s) = η0 = 1
4πR

kBT
s∆r2 ).

Therefore it is imperative to express the Fourier transform of this expression in the
following way

F [η](ω) =
kBT

6πRpart
F [(D(t))−1](ω) (C.12)

and hence the shear modulus as:

G(ω) = iωF [η](ω) (C.13)
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In repeated computations, using the conventional methods for microrheology, where

a Laplace transform is involved, has shown inaccuracy: the introduction of two
transformations in the analysis is probably related with the appearance of numerical
imprecisions So, the real part of the shear modulus can be expressed as

G′(ω) = −ωIm[F [η](ω)] = −ω kBT

6πRpart
Im[F [(D(t))−1](ω)] (C.14)

and the imaginary part is given by

G”(ω) = −ωRe[F [η](ω)] = −ω kBT

6πRpart
Re[F [(D(t))−1](ω)], (C.15)

Due that in the present simulation there is enough information of D(t), and D−1(t)

has no singularity, it is allowed to use this function in the place of the VCF in order
to compute the shear modulus.
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D Rouse modes

The fundamental idea behind the Rouse model is the solution of the equations of
motion of a system composed of beads and springs. The equation governing such
system is similar to the Langevin equation and has the following form

∂
−→
R n

∂t
=
∑

m

Hmn

(
− ∂U

∂
−→
Rm

+
−→
f m

)
+

1

2
kBT

∑

m

∂

∂
−→
Rm

Hmn, (D.1)

where U is the potential between the beads defined as:

U =
3kBT

2b2

N∑

n=2

(−→
Rn −

−−−→
Rn−1

)2

, (D.2)

and Hmn = gmn

ξ
is the mobility matrix and Rn represents the position of the n’th

bead. From these positions it is possible to make the following definitions: The
mean square of the end-to end distance is defined as

Re =
〈
(rN − r1)2〉 , (D.3)

and the gyration Radius as

RG =
1

N

N∑

i=1

〈
(ri − RCM)2〉 ; (D.4)

moreover the mean square displacement of the center of mass is

〈
(RG(t)− RG(0))2〉 = 6

kBT

Nζ
t. (D.5)

Considering:

P (t) = RN(t)−R0(t), (D.6)

the end to end vector one can derive

〈P (t)P (0)〉 = Nb2
∑

p=1,2..

8

p2π2
e
− tp2

τ1 , (D.7)

where the relaxation time is given by
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τ1 =
ζN2b2

3π2kBT
(D.8)

A basic assumption of the Rouse model is that every monomer experiences a local

random force which is Gaussian distributed. If R = ri(t)− rj(0) represent the dis-
placement of two particles, then R is also Gaussian distributed. Such displacements
can be expressed using the Rouse modes, given by

Xp =
1

N

N∑

i=1

ri(t) cos

[
pπ(i− 1/2)

N

]
, (D.9)

where p denotes the mode index. In the present work the rouse modes were analyzed

and it is shown that the modes correlation functions are orthogonal,

〈Xp(t)Xq(t)〉 = δpq (D.10)

using this characteristic we are able to make the computation of the displacements

of the monomers.
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Figure D.1: Rouse modes for a polymer melt with Np = 2250 and N = 10. The temperature of
this system is T = 0.8.

(−→r 1,
−→r 2, ....) the position of the beads; moreover, using this modes, it is possible

to get an uncoupled differential equation by making a transformation of the equation
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(D.1) for −→r 1into an equation for Xp(t). The mean square amplitude of each mode
is given by

〈
X2

p(t)
〉

=
b2

4 sin2(pπ/2N)
, (D.11)

and the relaxation function is given by

〈Xp(t)Xq(0)〉 =
〈
X2

p (t)
〉
et/τp , (D.12)

where

τp =
12kT

ζb2
sin2

( pπ
2N

)
(D.13)

for long chains and small mode number τp ∼ (N/p)2. In fig. D.1 the Rouse modes

for a film consisting of Np = 2250 monomers, each chain with N = 10, are shown.
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E Formulation of the Navier
Stokes equations in cylindrical
coordinates with rotational
symmetry

The equations for the hydrostatics describe an equilibrium between the pressure of
the liquid and the force induced by an external field. If such a field is represented
by a potential φ the following equation is obtained

∇iP = −ρ∇iφ. (E.1)

Using this formula we get the following expressions for the divergence of the stress

tensors is obtained

∇rt
rr = −∇rg

rrδP − ρ∇rg
rrδφ, (E.2)

∇zt
zz = −∇zg

zzδP − ρ∇zg
zzδφ; (E.3)

These formulas express the diagonal elements of the stress tensor, which are related

to the external force and the pressure in the liquid.
The viscosity tensor is related to the strain rate. Implicitly, it was included a

compressional stress in addition to shear. This tensor must be invariant under
rotation or translation of the reference frame, implying isotropy of the stress. If
pb

a = ∂av
b, then the stress tensor can be written as a sum of pab in the following

way1

pab =
1

2

(
pab + pba

)
+

1

2

(
pab − pba

)
, (E.4)

where the second term is related to a rigid body rotation (or vorticity). For an

incompressible fluid this viscosity tensor is given only in terms of the symmetrical
combinations of gab 2

trz = −η [∇rg
rrδvz +∇zg

zzδvr] , (E.5)

1Landau, Lehrbuch der Theoretischen Physik VI [32]
2See for example Rothman and Zalensky. In this case it is supposed that the metric tensor is self

symmetric [79].
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where grr = gzz = 1 and η is the shear viscosity.

The general formula for the divergence of the Viscous-stress tensor - with zero
compressibility- in tree dimensions is

3∑

j=1

∂tij

∂xj
=

3∑

j=1

∂

∂xj

[
∂vi

∂xj
+
∂vj

∂xi

]
= ∆vi +

∂ (∇j · vj)

∂xi
= ∆vi, (E.6)

where ∆ is the Laplacian operator on a vector field, which can be expressed in

cylindrical coordinates in the following way

∇rt
rz = −η

[
∇2

rδv
r +∇2

zδv
r
]
, (E.7)

∇zt
rz = −η

[
∇2

rδv
z +∇2

zδv
z
]
. (E.8)

Combining all the equations (E.5), (E.7) and (E.8), the following Navier Stokes

equations for the velocity fields with shear viscosity are obtained

ρ∂tδv
r = ∇rt

rr +∇zt
rz

= −∇rδP − ρ∇r

(
∂φ

∂d

)
δd− η∆δvr, (E.9)

ρ∂tδv
z = ∇zt

zz +∇rt
rz

= −∇zδP − ρ∇z

(
∂φ

∂d

)
δd− η∆δvz. (E.10)

these equations are valid for incompressible fluids.
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F Differential operators and
cylindrical coordinates

F.1 Appendix 5-2: Laplacian in cylindrical

coordinates

In cylindrical coordinates the vector Laplacian has the following form 1:

∆
(
vr, vθ, vz

)
=




∂2vr

∂r2 + 1
r2

∂2vr

∂θ2 + ∂2vr

∂z2 + 1
r

∂vr

∂r
− 2

r2
∂vθ

∂θ
− vr

r2

∂2vθ

∂r2 + 1
r2

∂2vθ

∂θ2 + ∂2vθ

∂z2 + 1
r

∂vθ

∂r
+ 2

r2
∂vr

∂θ
− vθ

r2

∂2vz

∂r2 + 1
r2

∂2vz

∂θ2 + ∂2vz

∂z2 + 1
r

∂vz

∂r


 (F.1)

This expression, derived from the differential geometry [87], is applied along this
work for the expression of the differential operators in the NS equations.

F.2 Main operations with Bessel functions

The solution of the NS equations is in the present solutions based on the concept
of eigenfunctions. In particular the Bessel functions are eigenfunctions of differ-
ential operators, i.e. the gradient and the Laplacian. In this short appendix this
fundamental characteristic is shown:

∇2
rJ1(mr)êr =

[
∂2J1(mr)

∂r2
+

1

r

∂J1(mr)

∂r
− J1(mr)

r2

]
êr = −m2J1(mr)êr (F.2)

∇2
zJ0(mr)êz =

[
∂2J0(mr)

∂r2
+

1

r

∂J0(mr)

∂r

]
êz = −m2J0(mr)êz (F.3)

∇rJ1(mr)êr =
1

r
∂rrJ1(mr)êr = mJ0(mr) (F.4)

∂rJ0(mr) = −mJ1(mr) (F.5)

1In this case the Laplacian must be refereed to a covariant derivative For general operations in
cylindrical coordinates [95] [87]
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G Determination of the
coefficients Bnm for the
expansion in
Fourier-Bessel-Fourier series for(
∂φ
∂d

)
assuming a flat interface

The variation of the potential φ is a function of the derivative of the external function
with respect to the distance d. In the present case, there is also a small perturbation
of the potential which is related to the potential of the particle. Therefore, the
expansion must only be done for the potential of the particle. Along this work it is
considered that the particle interacts through a LJ potential with the liquid. Such
a potential can be defined as

φ̂′ = −12
(
d− z

2π

)
σ12

((
d− z

π

)2
+ r2

)7 +
6
(
d− z

2π

)
σ6

((
d− z

π

)2
+ r2

)4 . (G.1)

This potential can be expanded in a Fourier-Bessel-Fourier series; this implies

φ̂′ =
∑

n;m

Bnm sin(nz)J0(mr), (G.2)

where n = 1, 2, 3, ..... and m = 1, 2, 3, .....

In the present case

Bnm =
1

π

2π∫

0

B0m(z) sin(nz)dz, (G.3)

are the coefficients for the Fourier series. In this case B0m(z) are the coefficients

calculated from the Fourier-Bessel series. 1 The integral over r has an infinite
domain; it ables us to write the Fourier-Bessel coefficients as Hankel-transforms,
which are defined as

1See ”Advanced Engineering Mathematics”, Kryzig, [89] for a complete discussion of the mathe-
matical properties of this series.
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B0m(z) =

∞∫

0

φ̂′J0(mr)rdr. (G.4)

The original description for a Hankel transform is: 2

Hν[f(r);m] =

∞∫

0

f(r)Jυ(mr)(mr)
1
2dr. (G.5)

Thus, in this point the problem is to find the right formula that could give the

equivalence between the integral and the Hankel transformation. If there is an
equivalence, and the Hankel transform is known, one has resolved this integral.

The strategy used is to redefine the potential in convenient functions and rewrite
this integrals as known formulas. The potential is in general a sum of functions of
the form

$1(r, z) = a
(
a2 + r2

)−7
σ12, (G.6)

$2(r, z) = a
(
a2 + r2

)−3
σ6, (G.7)

where

a =
(
d− z

π

)
, (G.8)

such that

φ̂′ = −12$1(r, z) + 6$2(r, z). (G.9)

The solution of the integral for the coefficients is thus reduced to the numerical

evaluation of the two integrals

b0m(z)1 =

∞∫

0

$1J0(mr)rdr, (G.10)

b0m(z)2 =

∞∫

0

$2J0(mr)rdr (G.11)

This integral can be solved as a Hankel transform if and only if the function f(r) is

expressed as

f1(r) = a
(
a2 + r2

)−µ′1
r

1
2 , (G.12)

f2(r) = a
(
a2 + r2

)−µ′2
r

1
2 . (G.13)

2The definition of the following Hankel Transformations is taken from ”The Bateman Project”.
[91]
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Thus

b0m(z)1 =

∞∫

0

$1(r, z)J0(mr)rdr =
1

2
√
m
H0[f1(r);m], (G.14)

b0m(z)2 =

∞∫

0

$2(r, z)J0(mr)rdr =
1

2
√
m
H0[f2(r);m], (G.15)

Following the ‘Bateman project’ [91] it is possible to write

Hν[a
(
a2 + r2

)−µ−1
r

1
2 ;m] =

aν−µ+1mµ+ 1
2Kν−µ(am)

2µΓ(µ+ 1)
, (G.16)

where µ′ = µ + 1 and Kν−µ is the modified Bessel function. This formula is valid

only if

<(a) > 0, (G.17)

and

−1 < <(ν) < 2<(µ) +
3

2
. (G.18)

In the previous equations <(a) symbolizes the real part of a.

In this case ν = 0. For µ = 3 are obtained

H0[a
(
a2 + r2

)−4
r

1
2 ;m] =

a−2m3+ 1
2K−3(am)σ6

8Γ(4)
. (G.19)

For µ = 6

H0[a
(
a2 + r2

)−7
r

1
2 ;m] =

a−5m6+ 1
2K−6(am)σ12

26Γ(7)
; (G.20)

since3

K−ν(w) = Kν(w), (G.21)

it is allowed to write

H0[a
(
a2 + r2

)−4
r

1
2 ;m] = −a

−2m3+ 1
2K3(am)σ6

8Γ(4)
, (G.22)

H0[a
(
a2 + r2

)−7
r

1
2 ;m] = −a

−5m6+ 1
2K6(am)σ12

26Γ(7)
. (G.23)

Here it importnat to make the reconstruction of the formula for the coefficients of

3This property can be observed in Abramowitz and Stegun [90]
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the potential. The relation between the coefficients and the Hankel transformations
is

b0m(z)1 =
1

2
√
m
H0[f1(r);m], (G.24)

b0m(z)2 =
1

2
√
m
H0[f2(r);m], (G.25)

and from both formulas it is essential to rewrite the expansion coefficient as

B0m(z) = −12b0m(z)1 + 6b0m(z)2 (G.26)

= 12
a−5m6K6(am)σ12

26Γ(7)
− 6

a−2m3+ 1
2K3(am)σ6

8Γ(4)
.

The integral over z is between the substrate and the interface, with a position HΓ

on z axis, where HΓ represents the film thickness. This thickness is independent of
the coordinates for a flat interface. Thus

Bnm =
1

π

2π∫

0

[
12
a−4m6K6(am)σ12

26Γ(7)
− 6

a−2m3+ 1
2K3(am)σ6

8Γ(4)

]
sin(nz)dz. (G.27)

This integral is not analytic and can be solved with numerical methods. But the

tarjet is to have a closed analytical formula for this transformation. For this reason
an alternative function with the same chape as the -modified- LJ potential was used
in chapter 5.
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H Solutions of the NS equations
for an incompressible fluid

The present system is axisymmetric around the position of the particle above the
film; moreover the liquid in this first approximation has a constant density. This
condition for incompressibility implies

∇rδv
r +∇zδv

z = 0. (5)

In the former case the velocity fields are very small, such that the Navier stokes

equations are reduced in to the following equations [32]

ρ∂tδv
r = −∇rδP − ρ∇r

(
∂φ

∂d

)
δd+ η

[
∇2

rδv
r +∇2

zδv
r
]
, (6-a)

for the r component of the velocity field, and

ρ∂tδv
z = −∇zδP − ρ∇z

(
∂φ

∂d

)
δd+ η

[
∇2

rδv
z +∇2

zδv
z
]
, (6-b)

for the component z of the corresponding field.

Using the definition of the Laplacian in cylindrical coordinates and taking in
account that the velocities in the fluid are symmetric on z, one can rewrite the
linear Navier-Stokes equation in cylindrical coordinates for the corresponding fields
as [79]

∂tv
r = ∂rP − εc∂rφ̂′δd+Kη

[
1

r
∂r (r∂rv

r)− vr

r2 + π2∂
2vr

∂z2

]
, (H.1)

∂tv
z = π∂zP − πεc∂zφ′δd+Kη

[
1

r
∂r (r∂rv

z) + π2∂
2vz

∂z2

]
. (H.2)

Since this equation is linear, the sum of two or more individual solutions is also a

solution. That permit us to write the solution as a sum of harmonic solutions.
From this frontier conditions and the from of the differential equations the solution

for vi as well as P can be expressed thus as a Fourier-Bessel-Fourier series in r and
z.

vr =
∑

n,m

fnm(t) cos(nz)J1(mr), (H.3)
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vz =
∑

n,m

gnm(t) sin(nz)J0(mr), (H.4)

δP =
∑

n,m

Anm(t) cos(nz)J0(mr), (H.5)

φ̂′ =
∑

n,m

Bnm(t) cos(nz)J0(mr). (H.6)

Using the last ansatz for the potential

∂rφ′ = −
∑

n;m

mBnm cos(nz)J1(mr), (H.7)

∂zφ′ = −
∑

n;m

nBnm sin(nz)J0(mr). (H.8)

The Laplacian of the solutions for the velocities gives:

∆vr = −(m2 + π2n2)vr, (H.9)

∆vz = −(m2 + π2n2)vz, (H.10)

More over using the condition ∇rv
r = −∇zv

z and from the incompressibility the
following identity is obtained

mfmn(t) = ngnm(t) (H.11)

Inserting this last condition and the proposed solutions into the Navier Stokes equa-

tions one obtains the following equations in the time

dfmn(t)

dt
= mAnm(t) +mεcBnmH0 sin(ωt) +Kη(m

2 + π2n2)fnm(t), (H.12)

m

n

dfmn(t)

dt
= πnAnm(t) + πnεcBnmH0 sin(ωt) +Kη(m

2 + π2n2)
m

n
fnm(t). (H.13)

Both equations, after some algebraic manipulation, can be reduced into a single one

if

Anm(t) = −BnmεcH0 sin(t). (H.14)

That means that the small perturbations in the pressure are in mechanical equilib-

rium with the small perturbations in the potential. Replacing this equation in the
equation one gets a differential equation in time for the function f(t)

152



dfmn(t)

dt
= −(π2n2 +m2)Kηfnm(t) (H.15)

with the following solution

fnm(t) = e−τnmt (H.16)

f0 is given by the initial conditions. The field at t = 0 is fnm(t = 0) = 0. Then the

solution for the time dependent part of the field fnm(t) is trivial!
This last result shows that the approximation of the liquid film into an incom-

pressible one does not allow the transmission of mechanical load into the liquid. For
this reason it is necessary to consider compressible fluids.
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I Table of conversions

The solutions given in chapter 5 are given in LJ units. In this short appendix some
typical unitis for polymer liquids and the conversion in LJ unities are given [88].
In the present case the energy unit is the strength of the LJ potential ε0 and the
distance unit σ is the radius of a single monomer. The main convertion of unities
are

1Pa = N/m2 (I.1)

1N = J/m (I.2)

1Pa = J/m3 (I.3)

For the pressent problem the following convertions of energy, force, distance, pres-
sure in LJ unities can be maid (All unities taked from the handbook of polymers,
IFF school about soft condensed matter)

1J = 6.03× 1020ε, (I.4)

1N = 6.03× 1011ε/σ, (I.5)

1m = 1× 109σ, (I.6)

1Pa = 6.03× 10−7ε/σ3. (I.7)

The surface tension of a typical polymer film is [83]

γΓ = 0.01N/m = 6.03ε/σ2, (I.8)

the typicall dynamic viscosity for a polymer is

Kη = 106MPa, (I.9)

which can be expressed as

Kη = 1× 1012Pa = 7.53× 105ε/σ3. (I.10)

On the other hand the bulk viscosity is given by
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kξ =
1

2(1 + ν)
E. (I.11)

and the isothermal coefficient by

kT =
1

3(2ν − 1)
E, (I.12)

where E is the Young modulus. For typical polymers

ν = 0.3, (I.13)

and

E = 1MPa. (I.14)

Therefore

Kξ =
1

8
MPa = 7.53× 10−2ε/σ3, (I.15)

KT =
1

15
MPa = 4.03× 10−2ε/σ3, (I.16)

and the isothermal bulk modulus in the liquid film is

CT =
kξ

P0
= 3.3× 10−3ε/σ3. (I.17)

For the computation of the solutions in the chapter 5 all the coordinates are
normilized to the film thickness H0.
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J Solutions of the NS equations
for complex fluids in the
frequency domain

J.1 Non-Newtonian fluids: Maxwell model.

J.1.1 Viscoelastic fluids

In the viscoelastic fluids the stress tensor has some dependence on a memory func-
tion, that means, very slow relaxation process take place in the system. One possible
way to model such relaxation process is through the so called generalized Maxwell
model: here the pressure tensor is related to the composition of a strain tensor with
a function describing a relaxation process:

T ij =

∫
G (t− t́)

•
Υ

ij

dτ, (J.1)

where
•
Υ

ij

is the derivative strain tensor with the time, and G (t− t́) is the memory

function. This function is related to the strain tensor in the following way [78] [84]

•
Υ

ij

= ∇i∇jδv
i(ri, τ). (J.2)

In the linear Maxwell model the memory function can be expressed as an exponential

function

T ij =
∑

k

∫ t

−∞

ηk

λk

e−(t−τ)λk

•
Υ

ij

(ri, τ)dτ, (J.3)

where τ is the relaxation time. In this case, the viscosity is not constant any more

and is the result of the integration over the relaxation modulus [86]. Moreover
the sum is infinite allowing an infinite spectrum of relaxation times and viscosities.
The previous expression represents a convolution of the strain with the relaxation
function; in a general form this means

T ij = etλk ⊗
•
Υ

ij

(ri, τ). (J.4)
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Figure J.1: Magnitude of the total velocity in the complex liquid film as a function of z and ω,
the frequency of perturbation. This magnitude was computed for r → 0, i.e. under
the nanoparticle. It is allowed to observe the characteristic oscillation of the pressure
in the bulk, together with the peaks of pressure at the interfaces substrate-liquid and
liquid-vapor.

In the present calculation only few relaxation times are considered; this simplifies

the sum to only few terms.

J.2 Solution of the linear hydrodynamics for

non-Newtonian liquids

The Maxwell model for complex fluids is based on a convolution of the strain tensor
with a function expressing the relaxation of the fluid. The Fourier transform of a
convolution is

F [f(t)⊗ g(t)] = F [

∫ ∞

−∞
f(t− τ)g(τ)dτ ] = F [f(t)]F [g(t)]. (J.5)

A Fourier transform is performed in order to find a solution of the NS equations. In
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this sense it is also neccesary to make a Fourier transform of the Maxwell formula
for viscoelastic fluids

F [
∑

k

∫ ∞

−∞

ηk

λk
e−(t−τ)λk

•
Υ

ij

(ri, τ)dτ ] =
∑

k

ηk

λk
F [e−λkt]

∗F [
•
Υ

ij

(ri, t)]. (J.6)

Therefore the Fourier transform of the stress tensor is in this case

T ij(ω, r, z) = − 1

2π2

[
λk

ω2 + (λk/2π)2

]
•
Υ

ij

(r, z, ω); (J.7)

as effect of this transformation a viscosity is obtained that depends on the internal

relaxation times of the complex fluid and in the frequency: Kη → K(λk, ω)

Kη = − 1

2π2

[
λk

ω2 + (λk/2π)2

]
; (J.8)

this condition implies that Kη is replaced for K(λk, ω). In this sense it is convenient

to express the solutions of the NS equations in a frequency space, rather than time
space. This option allows to make a direct comparison with experiments performed
also in frequency space. The definition of this memory function is only one of many
possible definitions that can be explored using the previous solutions.

Other alternative approaches could express the complex relaxation processes in
the liquid; but in this work the representation of the complex fluid is restricted to the
Maxwell model. In fig. J.1 and fig. J.2 the solutions of the velocities in the frequency
domain (Fourier space) are plotted, when the system has a Gaussian perturbation
and the nanoparticle has contact with the fluid. This value was computed under
the nanoparticle. Such kind of perturbation implies sensitivity for low frequencies.
In the simple liquid it is necessary to observe fast dissipation of the velocity as a
function of the frequency, whereas the complex fluid preserves a complex velocity
patron for ω > 0. For ω → ∞ the velocity tends to zero .The proper frequency of
the system was ω0 = 1.0 in LJ units.

J.2.1 solution in the frequency space

The matrix equation (5.35) can be rewritten as a vectorial one

d

dt

−→
A fl(t) = M̂p

−→
A fl(t) +

−→
Ω ex(t), (J.9)

with:
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Figure J.2: Total velocity of a complex and simple compressible liquid as a function of z and of
the frequency ω under Gaussian perturbation and tapping mode. In the first panel
the magnitude of the velocity is shown; in the two panels a comparison of the velocity
profiles for the complex and the simple liquids is shown. From this plots it is evident
the fast relaxation of the velocity in the simple liquid. With a Gaussian perturbation
the liquid has no sensitivity at high frequencies; for ω > 0 there is a persistence of the
velocity at both interfaces of the liquid film.

−→
A fl(t) =




Anm(t)
gnm(t)
fnm(t)


 , (J.10)

M̂p =




0 −CTπn −CTm
πn −B2 −πnmKζ

m −πnmKζ −B1


 , (J.11)
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−→
Ω ex(t) =




0
πnεcBnmH0 sin(ωct)
mεcBnmH0 sin(ωct)


 . (J.12)

Applying the Fourier transform on the vectorial differential equation yields the fol-

lowing algebraic equation

Figure J.3: Pressure profile in the Fourier space: in the first panel the pressure function for a
complex fluid is presented, whereas in the second panel the pressure for a simple liquid
is show. Both profiles are functions of ω and z and were computed for r = 0, i.e.
under the particle. Given that the fluid is incompressible it is imperative to say that
the pressure fluctuations correspond to density fluctuations. For ω ∼> 0 there is some
persistence of density fluctuations for the simple liquid in bulk. In comparison with
this result, the density fluctuations in the complex fluid slows in the bulk agreement
with the frequency grow. For ω →∞, Pr → 0.
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iω
−→
A fl(ω) = M̂p

−→
A fl(ω) +

−→
Ω ex(ω), (J.13)

and solving for
−→
A fl(ω) the following expression is obtained

−→
A fl(ω) =

(
Îiω − M̂p

)−1−→
Ω ex(ω), (J.14)

The function
(
Îiω − M̂p

)
matrix is 3 × 3 and its inverse can be easily computed

by conventional methods. This matrix is a functional of both the shear and bulk
viscosities, which are explained in the section 4 of this chapter; its solution makes
possible to introduce the Maxwell expression for both viscosities and find the solu-
tions of the dynamics of a complex fluid in frequency domain.1 The corresponding
results will be discussed in the section called ’results’.

1In such calculations it is introduced a Gaussian perturbation with the form

F [e−ω1t2 ](ω) =

√
π

ω1
e−π2ω2/ω1 , (J.15)

where ω1 is the proper perturbation frequency.
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