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Abstract

In this thesis, which is conducted in the field of few-body nuclear physics, we apply
the recently developed method of the Lorentz Integral Transform (LIT) to the study
of inelastic electromagnetic reactions on light nuclei. The two basic electromagnetic
reactions, i.e. nuclear photoabsorption and electron scattering off nuclei, are treated.
The LIT enables one to perform exact calculations, avoiding the complication of the
explicit evaluation of the continuum final states and reducing the problem to the
solution of a bound state like equation. With this method the final state interaction
is fully taken into account. The bound state like calculations are performed with an
hyperspherical harmonics expansion, whose convergence is accelerated by building
an effective interaction in the hyperspherical formalism (EIHH).

In this work we present the first microscopic calculation of the total photoab-
sorption cross sections below pion production of 5Li, ®He and "Li. The calculations
are performed with simple central semirealistic NN-interactions, which simulate par-
tially the tensor force, since they reproduce binding energies of two and three-body
nuclei. The obtained photoabsorption cross section of °Li shows a single broad giant
dipole resonance, while the one of °He presents two well separated peaks correspond-
ing to the break up of the neutron halo and the « core, respectively. The comparison
with experimental data shows that the addition of a P-wave interaction improves
substantially the agreement with data. For Li a single broad giant dipole resonance
is found and a good agreement with the available experimental data is achieved.

As concerns the electron scattering reaction, we present a calculation of the
longitudinal and transverse response functions for *He in the quasi-elastic region
at medium momentum transfers. A non-relativistic model for the electromagnetic
charge and current excitation operators is used. The calculation is performed with
a semirealistic interaction and a gauge invariant model is build by construction of
a meson exchange current. The effect of the two-body current on the transverse
response is investigated and preliminary results are discussed. The comparison of

the first results with the available experimental data is also shown.
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Sommario

In questa tesi, che si inserisce nell’ambito della fisica nucleare a pochi corpi, viene
applicato il recente metodo della trasformata integrale di Lorentz (LIT) allo stu-
dio delle reazioni elettromagnetiche su nuclei leggeri. Vengono trattate le reazioni
elettromagnetiche di fotoassobrimento e diffusione di elettroni da parte di nuclei. Tl
metodo della LIT permette di effettuare calcoli esatti, evitando la complicazione del
calcolo esplicito degli stati finali nel continuo e riducendo il problema alla soluzione
di un’equazione di stato legato. Con questo metodo l'interazione di stato finale
viene trattata in maniera esatta. I calcoli di stato legato vengono effettuati tramite
uno sviluppo in armoniche ipersferiche, la cui convergenza é accelerata introducendo
un’interazione efficace nell’ambito del formalismo ipersferico (EIHH).

In questo lavoro si presenta il primo calcolo microscopico della sezione d’urto
totale di fotoassorbimento sotto la soglia di produzione del pione per i nuclei di
Li, °He e "Li. I calcoli sono effettuati utilizzando interazioni NN di tipo cen-
trale semirealistico, che simulano parzialmente la presenza di una forza tensoriale,
in quanto riproducono le energie di legame di nuclei sia a due che a tre corpi. La
sezione d’urto di fotoassorbimento ottenuta per il °Li presenta una singola risonanza
gigante di dipolo, mentre quella del °He mostra due picchi ben separati che corrispon-
dono rispettivamente alla disintegrazione della parte halo del nucleo e dell” a-core
interno. Dal confronto coi dati sperimentali a disposizione si evince che I’addizione
di un’interazione in onda P migliora sostanzialmente 1’accordo con l’esperimento.
Nel caso del "Li si trova un’unica risonanza gigante di dipolo, in buon accordo con
i dati sperimentali.

Per quanto riguarda la reazione di elettrodiffusione si presenta un calcolo delle
funzioni di risposta longitudinale e trasversale per il nucleo di *He nella regione del
picco quasi-elastico per valori intermedi del momento trasferito. Per gli operatori di
carica e di corrente € stato utilizzato un modello non relativistico. Il calcolo € stato
effettuato con un’interazione semirealistica ed un modello invariante di gauge ¢ stato
costruito introducendo una corrente di scambio. Vengono discussi i risultati preli-
minari riguardo 'effetto della corrente a due corpi sulla funzione di risposta trasversa

ed infine si confrontano i risultati ottenuti con i dati sperimentali disponibili.
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Zusammenfassung

In dieser Arbeit aus dem Bereich der Wenig-Nukleonen-Physik wird die neu ent-
wickelte Methode der Lorentz Integral Transformation (LIT) auf die Untersuchung
von Kernphotoabsorption und Elektronenstreuung an leichten Kernen angewen-
det. Die LIT-Methode ermdéglicht exakte Rechnungen durchzufiihren, ohne ex-
plizite Bestimmung der Endzustinde im Kontinuum. Das Problem wird auf die
Lésung einer bindungzustandsdhnlichen Gleichung reduziert, bei der die Endzu-
standswechselwirkung vollstandig beriicksichtigt wird. Die Losung der LIT-Gleichung
wird mit Hilfe einer Entwicklung nach hypersphérischen harmonischen Funktio-
nen durchgefiihrt, deren Konvergenz durch Anwendung einer effektiven Wechsel-
wirkung im Rahmem des hypersphérischen Formalismus (EIHH) beschleunigt wird.
In dieser Arbeit wird die erste mikroskopische Berechnung des totalen Wirkungs-
querschnittes fiir Photoabsorption unterhalb der Pionproduktionsschwelle an Li,
®He und “Li vorgestellt. Die Rechnungen werden mit zentralen semirealistischen
NN-Wechselwirkungen durchgefiihrt, die die Tensor Kraft teilweise simulieren, da
die Bindungsenergien von Deuteron und von Drei-Teilchen-Kernen richtig repro-
duziert werden. Der Wirkungsquerschnitt fiir Photoabsorption an %Li zeigt nur eine
Dipol-Riesenresonanz, wihrend ®He zwei unterschiedliche Piks aufweist, die dem
Aufbruch vom Halo und vom a-Core entsprechen. Der Vergleich mit experimentellen
Daten zeigt, dass die Addition einer P-Wellen-Wechselwirkung die Ubereinstimmung
wesentlich verbessert. Bei “Li wird nur eine Dipol-Riesenresonanz gefunden, die gut
mit den verfiighbaren experimentellen Daten iibereinstimmt. Beziiglich der Elektro-
nenstreuung wird die Berechnung der longitudinalen und transversalen Antwort-
funktionen von “He im quasi-elastischen Bereich fiir mittlere Werte des Impul-
siibertrages dargestellt. Fiir die Ladungs- und Stromoperatoren wird ein nichtrela-
tivistisches Modell verwendet. Die Rechnungen sind mit semirealistischen Wech-
selwirkungen durchgefiirt und ein eichinvarianter Strom wird durch die Einfiihrung
eines Mesonaustauschstroms gewonnen. Die Wirkung des Zweiteilchenstroms auf
die transversalen Antwortfunktionen wird untersucht. Vorlaufige Ergebnisse werden

gezeigt und mit den verfiigbaren experimentellen Daten verglichen.
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Outline

This work has been undertaken during three years of PhD studies. The first part of
this period has been spent in Italy at the University of Trento, in the Department
of Physics, and the second half in Germany, at the “Institut fiir Kernphysik” of the
Johannes Gutenberg-University in Mainz.

Some of the results of this thesis are summarized in these papers [Bac02, Bac04,
Bac04b, Bac05]. The aim of writing this thesis is to give a thorough presentation
of the results obtained in these years, explaining the details of the calculations and
showing also the first developments of very recent investigations which are still under
work.

The presentation follows this structure:

e Chapter 1
We give an introduction to the subject of few-body nuclear problems concen-
trating on electromagnetic interactions. Particular attention is paid to the

motivation of this work.

e Chapter 2
The method of the Lorentz Integral Transform (LIT) is discussed in detail. The
attention is focused on the application of this method to inclusive reactions,
which are the main subject of the present work.

e Chapter 3
A brief introduction to the electromagnetic interactions is presented. Parti-
cular attention is given to the multipole decomposition of the electromagnetic
charge and current operators. At the end, an overview of the basic electro-

magnetic reactions, i.e. photoabsorption and electron scattering, is given.

e Chapter 4
The evaluation of a matrix element in the internal coordinates of an A-body

system is discussed. The hyperspherical formalism is used and the calculation



CONTENTS

of the matrix elements for one-body and two-body operators is presented. At
the end a brief discussion on the effective interaction with the hyperspherical

harmonics (EIHH) is also given.

Chapter 5

An application of the LIT method in conjunction with the EIHH technique on
nuclear photodisintegration reactions is shown. The first microscopic calcula-
tion of the total photoabsorption cross sections of six- and seven-body nuclei
is presented. A general description of the calculation is given and the obtained
results are discussed.

Chapter 6

We present an application of the LIT and EIHH methods to electron scattering
showing the results obtained for the inclusive process on *He. Both the longi-
tudinal and transverse response functions are investigated. The discussion is
divided between the longitudinal and transverse response functions, and the

corresponding charge and current operators are treated separately.

Chapter 7
We conclude with a summary of the obtained results, focusing the attention
on the goals achieved and on the remaining open questions. We also present

an overview on possible future developments.



Chapter 1
Introduction

This thesis is conducted in the field of few-body physics. The topic of the research
is the microscopic study of the dynamics of light nuclear systems. The quantum
mechanical few-body problem is an important still partially unsolved problem in
physics. It refers to the difficulties of explaining how a collection of particles responds
to the fundamental forces acting between them.

In order to study the dynamics of a nucleus, that is ruled by the nuclear force, we
investigate its response to electromagnetic probes, like photons or electrons. Probing
nuclei with electromagnetic interactions, which are weak (¢?/hc < 1), enables a
clear separation of the scattering process itself from the effects due to the nuclear
structure. These probes can therefore be seen as a very useful tool to investigate
the nuclear dynamics.

It is now accepted that QCD is the theory which underlines all of nuclear struc-
ture. However, how nuclear physics depends on the fundamental degrees of freedom
is still an open question. In fact, in the low energy regime of nuclear physics, QCD
is non perturbative and as of today the problem has not been solved exactly. Nowa-
days there are two main methods which try to solve this longstanding problem, i.e.
lattice QCD and effective field theory (EFT). On the other hand, nuclear structure
is very well described in terms of the nucleonic and mesonic degrees of freedom.
The basic nuclear interaction is very well described by semi-phenomenological high
precisions NN potentials, based on meson exchanges, which reproduce an enormous
amount of scattering data. However, in the three-body problem it has been found
that two-body forces alone are not enough to correctly describe the binding ener-
gies, but additional three-body interactions have to be considered. For havier nuclei
the study of their structure using such semi-phenomenological two- and three-body

interactions is a very interesting and actual topic.
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Light nuclei composed by few nucleons are weakly bound systems and as such
they present very few, if any, bound excited states. Experiments designed to investi-
gate the dynamics of light nuclei normally deal with continuum excitations, studying
the transition from the ground state to resonances embedded in the continuum. In-
elastic continuum reactions, where the final state is different from the initial one and
in which one or more nucleons are knocked out from the initial nucleus, are thus the
main source of interest. Clearly, in such a scenario, the fragments in the final state

interact with each other, giving rise to the so called final state interaction (FSI).

From a theoretical point of view, for the description of an inelastic reaction one
needs to know the initial and final nuclear wave functions, i.e. one has to solve the
Schrédinger equation to find the spectrum of the nuclear hamiltonian. However, it
turns out that the study of the continuum states is much more difficult than the

study of bound states.

In case of few-body systems, one can try to tackle the problem with a microscopic
approach, solving exactly the Schrodinger equation to investigate the fine details
of the dynamics. The explicit calculation of a final state wave function (FSWF)
can be done for the lightest nucleus, the deuteron, but already for the A = 3
nuclei, at energies with various open channels, it is rather complicated from the
numerical point of view. Modern calculations use either variational methods or
solve the Faddeev equations [Glo83]. Such an approach is applicable up to the
four-body problem (Faddeev-Yakubowski) only below the three-body disintegration
threshold, but it is presently out of reach for systems with A > 4. For the “classical”
few-body systems (2 < A < 4), where the explicit evaluation of the final states
can be performed with the above mentioned restriction, detailed calculations with
realistic potentials are available. However, for “bigger” light nuclei the situation is
different. Traditionally, due to shortcomings of microscopic calculations, one often
used to describe such systems within a cluster model, in which the excited nucleus
is treated as a two or three-body system according to its fragmentation, reducing
the calculation to a solvable two or three-body problem. The cluster approach has
revealed to be very useful, although it has obvious limitations, in the sense that the

genuine microscopic approach is then lost.

Nowadays, thanks to the enormous progresses made in the theory and thanks
to new computational facilities, it is possible to perform ab initio calculations of
continuum excitations in nuclei with A > 4 also above the three-body disintegration
threshold. In fact, it has been shown that using an integral transform approach the

extremely complicated calculation of the continuum wave functions is not anymore

4



1.1. NUCLEAR PHOTOABSORPTION 5

necessary. With the help of the Lorentz Integral Transform [Efr94], the evaluation of
a response function is reduced to a bound state like calculation and the full final state
interaction is taken automatically into account. Though the FSWF is not explicitly
calculated, F'SI effects on the response are exactly considered. There are quite a few
examples for the application of this approach to few-body nuclei up to A=4 (see e.g.
Refs. [Efr97a, Efr97b, Efr00, Bar01lb, Efr01, Rei03, Qua04]) and agreement of this
new approach with standard methods has been shown, where possible.

In this thesis we apply this technique to the study of nuclear photoabsorption
and electron scattering. In particular the inclusive photoabsorption of A > 4 nuclei
is firstly tackled and then the first approach to the calculation of the inclusive
longitudinal and transverse response functions for the electron scattering off the «

particle is shown.

1.1 Nuclear Photoabsorption

It is important to note that measurements of nuclear photoabsorption reactions,
v+ A — X, have been performed some 20-30 years ago for a wide number of nuclei
with different mass number A. The dominant feature in the measured cross sections
was a giant resonance, peaked between 10 and 30 MeV, observed in almost all nuclei.
Since it is mainly due to the absorption of the dipole component of the incoming
photon and almost exhausted the Thomas-Reiche-Kuhn sum rule [Eis70], it was
called giant dipole resonance (GDR). Unfortunately, after the "70s the experimental
activity on this subject was not carried on further, also because of missing theoretical
guidance. Namely, at that time the theoretical explanation of the giant dipole
resonance was given in terms of collective motions of protons and neutrons and
the big difficulties of performing a microscopic calculation had damped the interest.
Only in the last years there is a renewed interest, however, merely for the halo nuclei
(see e.g. [Aum9g|).

Nowadays, thanks to the enormous progress in few-body theory new precise mi-
croscopic calculations can be carried out and some more light can be shed on this
previously unsolved problem. One has also to note that in the last decade there
has been a tremendous progress in microscopic bound state calculations of systems
with A>4, which is only partly due to an increase of the numerical power of mod-
ern computers, but also to various new microscopical approaches (Green Function
Monte Carlo (GFMC) [Wir01|, Stochastic Variational Method (SVM) [Suz01], No
Core Shell Model (NCSM) [Nav99, Nav00|, Effective Interaction with the Hyper-

5



6 CHAPTER 1. INTRODUCTION

spherical Harmonics (EIHH) [Bar01, Bar0Ola]). In particular, the combination of
the LIT method with the EIHH has enabled us to start a new project on micro-
scopic calculations of inelastic reactions involving A>4 nuclei with full final state
interaction. These pioneering calculations are performed with simple semirealistic
potentials. In case of the three-body problem it has been shown that semirealistic
potentials lead already to quite a realistic description of the total photoabsorption
cross section |[Efr00]. Of course this is not a guarantee that this will be the same in
case of bigger systems. Nevertheless, since no other microscopic calculations of re-
actions on A > 4 nuclei exist, we would like to push forward the subject by starting
with a simple interaction, expecting it to reproduce at least the gross properties of
the reaction.

In this work we present the first microscopic calculation of the total photoabsorp-
tion cross sections of the six-body nuclei °Li and °He and of the seven-body nucleus
"Li. Here we would like to mention that traditionally systems with a number of
particles between 4 and about 15 were considered neither few-body nor many-body
systems and thus they are seen as an interesting playground to test the validity
of many-body approximations and to establish a transition region where few- and
many-body physics merge. The final aim of the work is to go towards a microscopic
view of collective aspects in nuclear physics and to test the effect of the different
parts of the NN interactions on the reaction mechanism. Another motivation for
this study is also represented by possible applications to astrophysics, where such
inclusive photoabsorption reactions are relevant to explain the nucleosyntesis pro-

Cess.

1.2 Electron Scattering

In lowest order of electron scattering, a virtual photon is exchanged between the
probing electron and the target. Energy and momentum transfer can vary indepen-
dently, in contrast to the case of real photoabsorption. For this reason it constitutes
a much richer field to study the dynamics of a nuclear system. In case of inclusive
unpolarized electron scattering, i.e. in the reaction A(e,e’), where no fragment of
the target is detected in coincidence with the scattered unpolarized electron, the
cross section can be written in terms of the longitudinal and transverse response
functions, which can be disentangled via a Rosenbluth separation.

The quasi-elastic region of the response has attracted particular attention in the

past as a good playground to study the effect of the nuclear tensor correlations and
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of the two-body electromagnetic currents. However, providing a good description of
the initial bound and of the final continuum states has always constituted the main
theoretical difficulty.

In the literature several calculations of the longitudinal and transverse response
functions for different nuclei have been shown, mainly in the plane wave impulse
approximation (PWIA), where no FSI is considered, see e.g. [Cio91, Lag91|. Such
calculations tend to drastically overestimate the experimental data in case of the
longitudinal response and to slightly underestimate the transverse response in the
quasi-elastic region. In case of heavy nuclei it is difficult to understand the reason
of that, especially because in that case higher order contributions like Coulomb
corrections become relevant and difficult to treat. Nevertheless, for massive nuclei it
is almost impossible to give a description of the FSI, if not in terms of phenomenolo-

gical optical potentials.

On the contrary, in case of few-body nuclei, where the one photon exchange ap-
proximation can be used and where also the final state interaction can be considered,
it has been shown that the excess of strength in the longitudinal response is mainly
due to the effect of the FSI, see e.g. [Are99, Glo04, Efr04]|. The interaction in the
final state is stronger in case of the monopole and therefore is not present in the

transverse response, where the PWIA fails only by about 10%.
On the other hand, the lack of transverse strength found by the theory for

various nuclei was usually attributed to the contribution of the two-body current
to the response function, which was missing or not completely treated. Theore-
tical calculations of two-body contributions in the region of the quasi-elastic peak
have been performed by many groups, but the effect found varies between 10 and
40%, such that the picture is not yet clear. Usually, calculations based on a
independent-particle initial state lead to a small contribution of the two-body cur-
rent, while calculations including short range correlation show appreciable effects,
see e.g. [Fab97, Lei90, Car94, Car02|. For few-body systems detailed calculations
of the transverse response which include a complete treatment of the F'SI and of the
two-body currents exist up to the three-body problem, with fully realistic forces.
However, in case of *He the only “exact” calculations of the transverse response
function which takes into account the FSI are performed via a Laplace transform
with a Green Function Monte Carlo technique and results are shown in the eucli-
dian space [Car94, Car02|. Although a significant effect of the consistent two-body
current is found and fully realistic interactions have been used, it is difficult to un-

derstand how the effect of the nuclear hamiltonian and of the current operator is

7



8 CHAPTER 1. INTRODUCTION

reflected in going from the euclidian space to the response function.

This difficulty is not found in case of the LIT transform, as will be pointed out.
With the help of the LIT and EIHH methods we would like to gain insight on this
scenario in the few-body regime, performing calculations where the FSI is exactly
taken into account and the current is constructed imposing gauge invariance.

In this thesis the first important steps in this direction are presented. As a test
case “He has been chosen and a semirealistic interaction model is used. Clearly, with
this model we will not be able to clarify the role of the pionic degrees of freedom,
such as tensor force and pion in flight or contact term of the two-body current, in
the reaction. This is certainly the final aim of this project, towards which we start

with a simpler example.



Chapter 2

The Lorentz Integral Transform
Method

In this chapter the method of the Lorentz Integral Transform (LIT) will be discussed
in detail. Although the method is very general and can be applied also to exclusive
processes [Lap00, Qua04|, we will focus the attention on the application to inclusive

reactions, since only these are studied in the present work.

2.1 Introduction

The study of inclusive and exclusive reactions is of great importance for the under-
standing of the dynamics of nuclear systems. From the theoretical point of view, one
of the major obstacles in such a study is the need of an explicit calculation of the wave
functions that describe the final states in the continuum, which is in practice much
more complicated than a calculation of a bound state. Nowadays it is possible to
calculate explicitly final states in the continuum for nuclei with mass number A < 4,
but it is presently out of reach for nuclei with A > 4. For this reason, alternative
methods have been proposed, like the integral transform method, that do not require
the explicit calculation of continuum wave functions, thus leading to a big simplifica-
tion of the problem. One example is the Lorentz Integral Transform (LIT) method,
that recently has been applied to the study of electromagnetic reactions on few-body
nuclei, see e.g. [Efr97b, Efr97¢, Efr00, Lap00, Efr01, Bar01b, Rei03, Qua04].

9



10 CHAPTER 2. THE LORENTZ INTEGRAL TRANSFORM METHOD

2.2 Integral Transform Method for Inclusive

Processes

In an inclusive electromagnetic reaction the response function of the system to an

external electromagnetic probe, described by an operator O(q), is defined as
Riw. @) = Y (W0l O@) 1) (Ey — Eo — ), (21)
f

where }‘I’o/f> and Ey/; denote initial and final state wave functions and energies,
respectively, and w the energy of the probe. The J-function ensures energy conser-
vation. One readily notes that the definition of the response function includes a
sum over all possible final states, also in the continuum, which are induced by the
electromagnetic probe (the notation ¥ s in (2.1) means an integration over the con-
tinuum states plus a summation over the bound states). As mentioned above, this
quantity cannot be calculated exactly using standard techniques for an arbitrary
A-body system, since the explicit calculation of the final state wave functions con-
stitutes the main bottleneck. Using an integral transform approach these difficulties
can be circumvented, and the problem is reduced to the solution of a bound state
like equation.

The starting point of such an approach is the application of an integral transform

to the response function as follows

(o, q) = / dwR(w,q)K (w,0), (2.2)
where K (w, o) is the kernel of the transform, which depends on a continuous pa-
rameter 0. The integration over the energy extends from 0~ to take into account
the possible elastic contributions in the response function. In case that no elastic
channel exists, but only inelastic bound state excitations are present, the integration
extends from w*~, where w* is the energy of the first excited state. Finally, in case
that only reactions in the continuum are induced by the operator O the integration
has to start from the disintegration threshold wy;, below which the response function
is identically zero. The only requirement to be fulfilled is the convergence of the
integral in (2.2), which will depend on the particular choice of the functional form
of the kernel and on the behavior of the response function itself, which one assumes
to go to zero at high energies. In case that the transform ¢(o, q) exists, it can be

calculated solving a bound state problem, as will be shown in the next section. The

10



2.3. CHOICE OF THE KERNEL 11

response R(w,q) is then obtained by inverting (2.2) and it automatically includes

the complete final state interaction.

2.3 Choice of the Kernel

In the literature several transforms with different kernels have been proposed, like,

for example, the Laplace transform with
K(w,o0)=¢e

or the Stieltjes transform with

1

K(w,o) = o

A criterion for the choice of the kernel is of course the possibility to calculate nume-
rically the transform. Furthermore, one can discuss the choice of the kernel from the
point of view of a stable reconstruction of the response from the integral equation
(2.2). For a given numerical accuracy the inversion of the transform ¢ is more stable
if the kernel is chosen as narrow as possible. If the kernel is broad with respect to
structures in the response, then such structures having an energy range smaller than
the range of the kernel itself will be smeared out. This can make the reconstruction

of the response difficult in view of the presence of unavoidable numerical inaccuracies
of ¢.
Keeping in mind that the best kernel has to be very narrow, one could firstly

think of the d-function
K(w,0)=0(w—0)

as the best choice. In this case, however, ¢ would be identical to the response, thus
leading back to the problem of the calculation of continuum states. The idea is then

to use a kernel
K(w>0) = f(w_075)7

which is an approximation of the d-function [WeaT75|, such that

limf(w—o0,6) = (w—0).

e—0

11



12 CHAPTER 2. THE LORENTZ INTEGRAL TRANSFORM METHOD

The gaussian and the lorentzian curves are two possible examples in this sense

1 2 /.2
_ — —(w—0)/e
f (w g, 6) 5ﬁ6 )

f(w—a,e) =

m((w—0)?4¢e%)

The choice of the best kernel is obviously governed by the properties of the equation
for the determination of the transform. In case of the gaussian-shaped kernel one
would have to deal with an operator like e 2, where H is the hamiltonian of the
system!. Of course this would make the numerical calculations much more difficult.
This problem does not arise in case one deals with the lorentzian kernel, which leads

to a simple equation as will be shown in the following section.

2.4 The Lorentz Integral Transform

For the Lorentz Integral Transform (LIT) one chooses a kernel with lorentzian shape

1

K —
(w,0) (w—oR)?+ 0%’

where 0 = —og + 107 is a complex parameter. The LIT is then defined by

L(o,q) = /OO dw . q) (2.3)

_ (w—o0g)?+ 02’

that may be viewed as a generalized sum rule depending on a continuous parameter
0. The main advantage of the LIT method is that the evaluation of £(o, q) does not
require the explicit knowledge of the response function, and therefore of the final
states |Us). As soon as L£(o,q) is given, the response R(w,q) is obtained from an

inversion of the transform.

For the calculation of the £(o, q) one notes first that it can be expressed as

& 1 1
Lioq) = / AR ) s ey (2.4)

!This can be understood performing a calculation analogous to that shown in Section 2.4 for
the lorentzian kernel.

12
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Then, using the definition of the response function in (2.1) one gets

o 1 1
Lo = | dw; (0] 0'(@) s 1)) 501 ) 6005 = By =),

which yields

1 1
W N
(Ef—Eo—i‘O'*)‘ f>< f| (Ef—E0+0')

L(o,q) = i (W] O'(q) O(q) [Ty)

f

after integrating out the d-function. Using then the fact that the states |U) are

eigenstates of the hamiltonian H of the system, namely
H|Wy) = Ef[Vy),

one gets for the LIT the following expression

L(o.q) = ; (%0l 0'(a) =y VM | Ty O o)

As last step one uses the closure relation

X:|‘I’f> (Vs =1,
7

yielding for the LIT

1 1

L(0,q) = (V| O'(q) (H — Byt o) (H— Ey + 0)

O(q) [¥o) - (2.5)
This expression obviously has the simple form of a squared norm

L(o,q) = <f13 } \Tf> (2.6)

with

“T’> = mO(Q) W) -

Therefore, the evaluation of the Lorentz transform requires the solution of the fol-

lowing differential equation

(H — Ey+0)|T) = O(a) |¥0). (2.7)

13



14 CHAPTER 2. THE LORENTZ INTEGRAL TRANSFORM METHOD

This equation has an unique solution and is Schrédinger-like, since it has the same
formal structure as the Schrédinger equation, except for an inhomogeneous source
term on the right-hand-side. Furthermore, since the norm of the right-hand-side is
finite because of the presence of the ground state |¥), also the left-hand-side of the
equation has to fulfil the same boundary condition. This means that the state )\Tf>
has a finite norm, i.e. it goes to zero at large distances similarly to a bound state.
In the light of the last considerations it is clear that in the Lorentz Integral
Transform method the difficulty of the continuum wave functions is avoided and the
problem is reduced to the solution of a bound state like equation, thus leading to a

big simplification of the task.

2.5 Method of the Inversion

Once one has evaluated an integral transform ¢ (o, q) of the response, one has to
invert it in order to obtain the desired response function R (w,q), which is the
observable one would like to compare with experimental measurements.

From a mathematical point of view the integral transform in (2.2) can be written

H{R(w q)}=9¢(0),

where Z denotes the integral transform as a functional of R (w,q), and “inverting”
the transform means finding the inverse kernel of the inverse functional Z-! such
that

ITHo(0)} =R(w,a).

Unfortunately, Z~! is not always analytically given, and in this case the transform
cannot be analytically inverted. The numerical inversion belongs to a class of prob-
lems denoted in the literature as “ill posed problems”. The LIT case is an example
of transform, whose inverse kernel is not analytically defined.

In principle, one could also compare the calculated transform of a response func-
tion with the corresponding transform of the response function determined by ex-
perimental data |[Car94, Car02|. This is possible only when measurements extend
on a wide energy spectrum which enable an integration up to infinity or a clear
data extrapolation of the high energy behavior. Furthermore, although this proce-
dure does not require the inversion of the transform and therefore the solution of
an “ill posed problem”; it can be misleading because the underlying physics may be

obscured by the fact that dynamical aspects of different nature of the response are

14



2.5. METHOD OF THE INVERSION 15

combined in the transform (low energy and high energy properties). Therefore it is

preferable to go through the inversion.

In order to perform the inversion of the LIT one has to solve the integral equation
n (2.2), which is recalled here
o 1

L(o,q)= | dwR(w, ,
(0,q) e (w Q)(M_UR)QJFU%

numerically. One method for finding a numerical solution is based on an expansion

Mz

CTLXTL ) q7 ) (28)

n=1

where {x, (w,q,a)} is a set of known functions that depend on a parameter «. For
each o they form a complete set. These functions are chosen such that their integral

transform is well known

L, (0,q,a) =T{xn (w,q,a)}.

This means that the integral transform of the response will be

L(o,q) = cnly (0,q,), (2.9)

WE

n=1

via the same coeflicients ¢, of (2.8), since the integral transform is a linear operation.

The coefficients of the expansion are obtained from a best fit requiring

>

k=1

2
[, UR,O'],C] ch n O’R,O'[,q, ) = min, (2.10)

for fixed o and o7, and for a sufficiently large set of {o%, k =1, ..., K} values. This
problem then reduces to the solution of a system of linear equations, which still
can become “ill posed” if N is of the order of K. Namely, it is well known that a
solution to Eq. (2.2) is unstable with respect to high frequency oscillations. This
means that one has to apply a regularization procedure |[Efr99b, Efr99a| in order
to find a regularized solution that suppresses the high frequency oscillations. In
this case one chooses the number N of basis function of the expansion (2.8) much
smaller than the number K of values for the parameter or. Therefore N plays then

the role of a regularization parameter and solutions for the response are found in a

15
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R() L(Og , 0,=10 MeV)

/ 10 MeV

w Og

Figure 2.1: Two responses that differ from each other in an energy range of the order of
o1 correspond to two different curves in the transformed space.

region of stability of N, which can be checked using different sets of functions for
the expansion of the response in (2.8). Two possible sets, that have been used, are

presented below

Xn(w,a) = w”+%e_§,

W .
Xn(w, @) = w™e na with ng const.

It turns also out that the inclusion of the known threshold behavior of R(w, q) into
the basis functions increases the accuracy of the inversion. For similar reasons every
known information of the response function should be taken into account in the
choice of the basis functions for the inversion. Finally, the quality of the inversion
can be checked by calculating known sum rules via the integration of the response.

A big advantage of the Lorentz transform is the presence of a complex para-
meter ¢, which means that in practice one has an additional degree of freedom, the
imaginary part oy, with respect to a transform with only a purely real parameter.
Since it determines the size of the “range” of the transform, it plays the role of an
energy resolution. It therefore has to be chosen sufficiently small, since any two
responses different form each other in an energy interval comparable with o; lead
to different transforms, as shown in Fig. 2.1, and thus can be discriminated also
in the presence of numerical errors in the calculation of £. Clearly, the smaller o;
is, the more difficult it is to reach high precision in the calculation of the Lorentz
transform. Therefore the most convenient value for o7 is of the order of the width
of the response function. Different values of o; can then be chosen for performing
a test on the inversion procedure, since the resultant R(w, q) has not to depend on
this parameter. This constitutes a very strong check on the method, and it is an

additional reason to consider the lorentzian kernel as the preferable choice.

16



Chapter 3
Electromagnetic Interaction

The electromagnetic interaction is the best understood force in physics and it also
constitutes a very important tool for the study of nuclear structure. The excitation of
nuclei with electromagnetic probes enables one to obtain information on the nuclear
dynamics, which, on the other hand, is governed by the strong interaction.

Since the interaction is relatively weak, of the order of the fine structure constant
a = 1/137, a perturbative approach can be used and in most of the cases the lowest
order of perturbation theory is sufficient. This allows a simple interpretation of the

observables. In other words

“With the electromagnetic probe, we can immediately relate the cross section
to the transition matriz element of the current operator and thus directly to the
structure of the target itself”

[De Forest-Walecka, Ann. Phys. 1966].
This is not the case for the reactions on nuclei with strongly interacting projectiles,
e.g. with pions or protons. The big advantage of studying electromagnetic reactions

on nuclei is that the observables are related to the current matrix element
Ty = (U] 7| W) (3.1)

where |Wy) and |Uy) describe the initial ground state and final state of the studied

nucleus, respectively, and J* is the electromagnetic current operator.

From a theoretical point of view one has to construct an electromagnetic current
consistent with the dynamical framework and then the main effort has to be ad-
dressed to a good description of the wave functions of the system. This part will be
discussed in the next chapter. In the following a brief review of the electromagnetic

current and of its multipole decomposition is presented.

17



18 CHAPTER 3. ELECTROMAGNETIC INTERACTION

3.1 The Electromagnetic Current

Since the electromagnetic interaction is weak, it is reasonable to assume that it ad-
mits a Taylor expansion with respect to the electromagnetic potential A, (x) [Are99],

which means that the interaction hamiltonian is
Hipg(A) = / P () A () gt +

at first order. For a given hamiltonian H;,;(A), the current is obtained by taking

the first functional derivative with respect to A(x) at A =0

 SHi(A)

Ju(x) = SAN(z) (3.2)

A=0

An important property is the gauge invariance which leads to the conservation of

the electromagnetic current according to the Noether theorem, that reads

0 j () = 0, (3.3)

written in a covariant way. The above continuity equation can also be written in

this way
V- j(x) = —ilH, p(x)], (3-4)

if the charge operator p(x) does not depend explicitly on time. In the last equation
H is the nuclear hamiltonian. Clearly, the gauge invariance condition implies the

conservation of the electromagnetic charge
d
—Q=0,
dtQ
where

Q= [ daplo)

The continuity equation has important consequences since it enables a simple ex-
pression for the current in the low energy regime, i. e. in the limit of zero momentum
of the photon. This property, known as Siegert theorem [Sie37|, will be shown later

on, after the discussion of the multipole decomposition of the current.

18



3.2. MULTIPOLE DECOMPOSITION 19

3.2 Multipole Decomposition

The information on the internal dynamics of the nuclear system is contained in
the current matrix elements (3.1). Since the intrinsic states of the nucleus can be
classified according to the total angular momentum, it is very useful to perform
a multipole decomposition of the charge and of the current operators, where each
multipole transfers a definite angular momentum. The advantage of this approach
is that one can use angular momentum selection rules and Wigner-Eckart theorem,
separating the geometrical aspects form the dynamical properties of the system,

which remain in the reduced matrix element.

First of all one considers the Fourier transform of the four-vector current operator

) = / P p(x), (3.5)
I(q) = / e j(x), (3.6)

where one writes separately the charge and the current operators. In the following

the multipole decomposition is performed separately for these two operators.

3.2.1 Charge Operator

The starting point of a multipole decomposition is the expansion of the plane wave

in spherical harmonics [Edm74]
e =4y il ji(qu) Y, (2)Y,](9), (3.7)
Jp

where = denotes the angular coordinates of the vector x expressed in spherical
coordinates (z,0,, ¢,), and § is the same for the vector q. The symbols j;(qr) are

the Bessel functions. Using this expression in the (3.5) one has
pla) =4 SV (@) [ dapx)is (a0 (@) 38)
Ju

where one defines the Coulomb multipole to be

2’—]

Coula) == [ dip@)} @) = [ Poristaoy) @, (9)

19



20 CHAPTER 3. ELECTROMAGNETIC INTERACTION

which is a spherical tensor of rank J, and therefore the corresponding matrix element
can be calculated using the Wigner-Eckart theorem. The expression of the current

operator in terms of the Coulomb multipoles is then

_4WZHYJ NCu(q). (3.10)

3.2.2 Current Operator

Since the current operator is a vector, the expansion is done in terms of the vector

spherical harmonics [Edm74|

Y4,(4) =) (11T |[mép) Y (d)e, (3.11)
mé§

where e, with £ = 0, %1, is a set of vectors defined with respect to a spherical basis

1 :
e =— T(em + iey)
€0 = €,
1 :
e, = ﬁ(ex —iey).

Here (e, e, e,) are the three vectors defining the reference system. The vector

spherical harmonics form a complete set on the unit sphere with

/d Yf;%(”) Y5,(0) = 0550w (3.12)

The expansion of the electromagnetic current in momentum space reads |[Gol00]

=47y T(Q) Y (9) (3.13)
lJp

where the coefficients of the expansion are given by

Tita) = 4= [ '3 () Yhula) (3.14)

With the notation ¢ the modulus |q| is meant, while ¢ clearly denotes the angular
coordinates (,, p,). The vectors q and ¢’ differ only for the orientation and not for

the modulus.

According to angular momentum rules it is clear that [ can assume only the

20



3.2. MULTIPOLE DECOMPOSITION 21

values |J — 1|, J, and J + 1, and therefore in (3.13) one can explicitly write the sum

onl as

J(a) =dr )y (J7, @Y (@) + J5,(@) Y550 + T550 (@) Y55,0(d) - (3.15)

Defining then the following quantities with good parity

I5u(@) = 4m (77, (0 Y5 12(0) + TS (@) Y55 104(0), (3.16)
Iyu (@) = 47}, (0) Y1y (@) (3.17)

with the meaning of electric and magnetic multipoles, respectively, the total current

operator becomes
J(@)=> (I9.(a) +I7a)). (3.18)

Ju
In this way one can collect the vector spherical harmonics with different parity (—1)”

and (—1)7"", in the electric and magnetic part of the operator, respectively.

Concentrating firstly on the electric multipoles, one can show (see also [Bac01])

that the following expression holds

M@ = @@ / dg’' (&' 3 (@) Y (@)
L o@x Y% (@) / 4Q' (@' % Y",,(@) 3 (@),

which means a separation into longitudinal and transverse components with respect

to q. Note that q denotes the unitary vector . Then one can define accordingly

lal”
the longitudinal and the transverse electric multipoles as

L0 = - [ '@ -3 @)V @), (319)
T = 4 [ 4@ x Yi,@0) 3 (@). (3.20)

The longitudinal and the transverse electric multipole are related to the multipoles
in (3.14) as

. VI VI +1

L0 =20 - Y ) 3:21)
. VI +1 Ve

TJL(C]) = _TJLAILJ—l(q) - 7 J5J+1(q)- (3.22)

21



22 CHAPTER 3. ELECTROMAGNETIC INTERACTION

For the magnetic current, in an analogous way, one obtains

I799(q) = Y*5,(3) / 433 (q) - Y (@), (3.23)

from where one can get the definition of the magnetic multipoles

1

T30 = 1=

[ a3 (@) Y5 = 75,0 (3.21)
according to the (3.14), which is purely transverse, since

q- Y?Jl(@) = 0.
If one now chooses the direction of the photon momentum to be along the z-axis
q = g€, = geo,

then

~

)
—e,.
VAar #

The multipole expansion of the current is therefore

Yl = (117]0pp)

J(@) = Y VArJ[L],(q)eo + p (J1I|0pp) TS, (q)e;]

Jp
+ > VAT (J1T|0pg) T (q)es- (3.25)
Jp

Since the current is a vector, it has three components

I (q) =ex-J(q)

with A = 0, &1 with respect to the spherical basis (3.12), where

Ia(q) = (=2 (L +630) Y J [LS(0)0r0 + (T5h(q) + AT (q)) an) - (3.26)

3.2.3 Siegert Theorem

The Siegert theorem states that in the low energy limit the transverse electric mul-
tipoles can be related to the Coulomb multipoles. This is a very important theorem,

since it enables one to calculate electric transition matrix element knowing only the

22



3.2. MULTIPOLE DECOMPOSITION 23

charge density and therefore without an explicit expression of the current operator.

. N VS D | )
axYh,(q) =i TqYuJ(Q> + ZﬁYan(Q%

the transverse electric multipole in (3.20) can be written as
e g S+ + 1.
TJL :__/ / q - J(q )Y @)+ T JJ+11(q> J(d)|,

(3.27)
where the part proportional to ' - J(q') can be written in terms of the Coulomb

Making use of

multipoles making use of the continuity equation. In momentum space current

conservation reads
q-J(q) =wp(q), (3.28)

which means that the transverse multipole is given by

. 1 R J+1w R J R
Th(a) = —— [ dd" |y Tgp(d)YJ(Q’) + ﬁYﬁJm(Q’) - J(d)
S5.(a0) + K5 (q), (3.29)

introducing the Siegert operator

S5.(a) = 47T\/J7+1 < / dq'p ) (3.30)

and the correction to the Siegert operator

K =~ [ 400 -3, (331

In the limit that the photon momentum goes to zero the dominant part of the electric
transverse multipole is given by the Siegert operator, since the correction Kﬁlﬂ(q) is
two powers higher in ¢ (this is easily shown in coordinate space, see also [Bac01]).
Obviously, the Siegert operator is given by the Coulomb operator of (3.9) as

Siula) = —\ i o) (3.32)

23



24 CHAPTER 3. ELECTROMAGNETIC INTERACTION

The approximation of the electric transverse multipole by the Siegert operator is
quite reliable at low photon momentum, i.e. ¢R < 1, where R characterizes the
spatial extension of the system. However, with increasing q, it is necessary to
calculate also the contribution of K¢, (q), where one has to know the explicit form

of the current operator.

3.3 Models for the Electromagnetic Operators

The construction of the electromagnetic current is straightforward for point parti-
cles. For a given hamiltonian one can use the method of minimal substitution and
then the current is found using (3.2), applying the derivative with respect to the
electromagnetic potential [Are82, Are90).

If one considers a free particle with mass m and charge e, described by a non-

relativistic hamiltonian H, = %, using the method of minimal substitution

HO — HO — €A0(I'),
p— p—cA(r),

one obtains
H(A) = Hy — %(p CA(r) + A(r) - p) + eAg(r) + O(A?).

Performing then the derivative (3.2) one recovers the expression for the point charge

density and for the pure convection current

plx) = ed(x ),
I = 5-{p.olx— 1)},

No spin current term is generated in this way, since it is a relativistic property.

However, adding formally to the hamiltonian a vanishing term term like

H0:H0—|—i%0'-(p><p).

where p is the magnetic moment of the particle, then minimal substitution generates
the spin current

P(x) = i%a x [p,8(x — 1)), (3.33)

which is purely transverse and therefore V - j* = 0. From this last example it is

24



3.3. MODELS FOR THE ELECTROMAGNETIC OPERATORS 25

clear that within this minimal substitution method there is an arbitrariness, since
one can always add purely transverse terms to the electromagnetic current without

violating its conservation.

Up to now, using the minimal coupling scheme, we have derived the non-relativistic
expression for the one-body charge, convection and spin current operators. There-

fore, in an A-body nuclear system the charge operator has the form

1+ 7
po(x) =€) 5 O(x 1), (3.34)
k

where the charge e, of the k-th nucleon is described within the isospin formalism,
introducing the third component 7 of its isospin. The convection and spin current

operators for an A-body system will look like

) e 1+7

c - 5 .

J(l)(x) 2m - 2 {pk7 (X rk)}?

inx) = iy L+, X [pr, 6(x — 14)] (3.35)
J) - 5, k H 5 k X |Pk; k)l :

where 1, are the magnetic moments of proton and neutron /i,/,. The subscript (1)
in the last formulas indicates that they are one-body operators. The charge operator

of (3.34) and the currents in (3.35) satisfy the continuity equation
V -y (x) = —i[T, p(x)], (3.36)

with the total current ji) = jfl) + jfl), where 7' is the total kinetic energy of the
A-body system
Pi

T = )
2m

However, if one considers an interacting system with a hamiltoninan H = Hy + V,
the continuity equation will contain also the commutator [V, p(x)], which is not
always vanishing. This means, that, depending on the kind of interaction one uses
to describe the system, additional terms will be required for the electromagnetic

current in order to satisfy the continuity equation.

Already in the early days of nuclear physics it was clear that, since the nuclear
force has an exchange character, an additional electromagnetic current had to exist.
Namely, if one considers a simple exchange potential V' = Vj(rpy ) Pon, With rp,, being

the distance between a proton and a neutron and P, the exchange operator, then

25



26 CHAPTER 3. ELECTROMAGNETIC INTERACTION

the commutator [V, p(x)] # 0 and an additional current density is needed to fulfil
gauge invariance. This will be a two-body operator, since the commutator [V, p(x)]
has a two-body character for a given two-body potential and one-body charge.

In practice, in case one has a potential with isospin dependence or a momentum
dependence, such that [V, p(x)] # 0, an electromagnetic current operator has to be

introduced to satisfy
V- (x) = —ilV, p(x)]. (3.37)

Again, for a given potential, the form of the two-body current can be recovered
using the minimal coupling procedure. Clearly, the problem of the arbitrariness
introduced by such an approach remains and the consequence is the non-uniqueness
of the current that satisfies the symmetry principle. For this reason it is desirable to
have an underlying physical model for the NN interaction with well defined degrees of
freedom, such that the construction of the consistent current is uniquely defined. If
one interprets the NN interaction as due to the exchange of mesons (pion, rho, etc.),
the corresponding two-body current will be called meson exchange current (MEC),
since it is the electromagnetic current generated by the interaction of photons with
exchanged mesons.

In Appendix A the derivation of the two-body current in case of the one pion
exchange potential is shown in detail. In Chapter 6 this subject will be discussed
further, where we will define a meson exchange current consistent with the potential

model used.

3.4 Basic Electromagnetic Processes

If one considers the first order of perturbation theory, the processes in which only
one photon is involved are real photoabsorption (see e.g. |Eis70]) and virtual one-
photon exchange in electron scattering (see e.g. [Cio80, Fru84, Ahk94, Don03]). In
the following we will discuss these two processes for a general nuclear systems with
A nucleons. The described formalism will then be needed in the chapters where the

obtained results are discussed.

3.4.1 Photoabsorption

In photoabsorption a real photon  with momentum q and energy w = |q| is ab-
sorbed by an A-body system that makes a transition from the ground state |\V;) to
a final state |U;) with energies and momenta (Ey, Py) and (Ey, Py), respectively.
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3.4. BASIC ELECTROMAGNETIC PROCESSES 27

In case of inclusive photoabsorption no final state is measured.

© E.R)

(EO! PO)

Figure 3.1: Diagram for photoabsorption; a real photon 7 is absorbed by the system that
undergoes a transition from the initial state |W¢) to a final state |¥y).

The total cross section of the process [Bac01] is related to the response function
R(w) in this way
() 42
o(w) = w
2Jo+1

where « is the fine structure constant, Jy is the initial total angular momentum of

R(w), (3.38)

the nucleus and R(w) is defined as
1 o
R(w) = §i:|<\:[lf|J)\(W)‘\IJO>|25(E}¢‘—EO—W), (3.39)
/3

where J) is the transverse current. Since the photon is real it can only have trans-
verse polarization A = £1. This is the reason why only transverse electromagnetic
currents are relevant in such a reaction. It is well known that in most of the cases, in
the energy region above particle emission threshold and below pion photoproduction,
w < 140 MeV, only the lowest multipole of the transverse electromagnetic current
is needed, namely the electric dipole E1. Furthermore, as shown in the previous
section, it can be expressed in terms of the Coulomb multipole C}, via the Siegert
theorem (see e.g. [Sie37, Efr99b]), where the effects of meson exchange currents are

already included.

3.4.2 Electron Scattering

In case of electron scattering, a virtual photon v* is exchanged between the probing
electron and the nuclear system of the target. An electron with four-momentum
k* = (e, k) is scattered through an angle 6, to a four-momentum state £ = (¢/, k).
The virtual photon carries four-momentum transfer ¢* = (w, q) and, in interacting
with the nucleus, causes it to make a transition from the ground state |¥,) with

four-momentum Fj' = (Ey, Po) to a final state |[Wy) with four-momentum P} =
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Figure 3.2: Diagram for the electron scattering in the one photon exchange approximation.
A virtual photon 7* is exchanged between an electron of initial and final four-momenta
k* and k", respectively, and a given system described by the ground and final state four-
momenta P} and P;‘ , respectively.

(E¢,Pys). For the conservation of the four-momentum one has ¢ = k* — k' =
P{ — P} Furthermore one has that ¢, = w® — q* < 0' for electron scattering
corresponding to the exchange of space-like virtual photons. This means that energy
and momentum transfer (w,q) can vary independently, in contrast to the case of
real photoabsorption, with the restriction mentioned before. For this reason, one
can say that electron scattering is a more rich reaction to study the dynamics of a
system, since it already contains in the limit |q| — w the information obtained in

real photoabsorption.

The polarization of the exchanged virtual photon can also vary between trans-
verse and longitudinal direction, depending on the scattering angle .. Therefore
in electron scattering all terms of the current, also the longitudinal parts, play a
role. Namely, in case of inclusive unpolarized electron scattering, i.e. in the reac-
tion A(e,e’), where no fragment of the target is detected in coincidence with the

scattered unpolarized electron, the cross section in the laboratory system takes the

form P o ) P
g 2 Ve
_ 2 X < 4
0o oM {q‘l Rp(w,q)+ (2q2 + tan 2) RT(w,q)} (3.40)
with ¢ = |q| and @* = —¢7, where the longitudinal and transverse response functions
are defined as
Rea) = Y0015 W0 5B ~ By~ o) (3.41)

I
Re(w.a) = Yo 3 [0 @ W) 5B~ Bo—w). (342
!

A==1

!Clearly, the four-vector squared ¢,,¢* is here denoted with ¢7.
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in which one recognizes the charge and the transverse current operators. Further-

more, the Mott cross section o, is given by

[ acosf,/2 ?
M T\ 2esin?6,/2

The expression in (3.40) is valid in plane wave Born approximation for the electron,
i.e. where Coulomb distortions are negligible (which is the case for light nuclei).
Furthermore, the extreme relativistic limit has been used, which means that the
electron mass has been neglected with respect to its energy. This is clearly true
when € > 0.5 MeV, which is the case of all laboratories where nuclear reactions are
studied.

Using a Rosenbluth separation it is possible to disentangle the longitudinal re-
sponse function R (w,q) from the transverse one Rr(w,q). Here one can note that,
contrary to photoabsorption, there is a longitudinal response. The longitudinal part
of the current is related to the charge operator by the continuity equation (3.28).

Since w and q can vary independently, one can study the response functions as
functions of the energy w, keeping the momentum ¢ = |q| fixed or vice versa, one can
vary the momentum, keeping w unchanged. In any case, depending on the values of
energy and momentum transfer in the reaction a varying number of multipoles has
to be considered in the expansion of the charge and current operators.

These aspects will be discussed further in Chapter 6 where results on electron

scattering off *He are presented.
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Chapter 4
Evaluation of the Matrix Elements

In this chapter the evaluation of a matrix element in the internal coordinates of
an A-body system is discussed. The hyperspherical formalism is used, and two
separated sections for the matrix elements of one-body and two-body operators
are presented. At the end a brief discussion on the effective interaction in the

hyperspherical harmonics expansion (EIHH) is also given.

4.1 Basic Concepts

For the calculation of electromagnetic reactions on A-body nuclei it is necessary to
evaluate matrix elements of a given operator that acts on an A-body wave function.
This is required first of all for the solution of the Schrédinger equation, where matrix
elements of the kinetic energy and of the potential have to be calculated. Further-
more, within the LIT method, additional matrix elements for the source term in the
right-hand-side of equation (2.7) are needed. These matrix elements are of the kind
of those shown in Eq. (3.1), where the form of the operator depends on the reaction

under study.

Our approach consists in the calculation of matrix elements with respect to
internal wave functions, where the center of mass motion has already been separated
from the internal dynamics. This is very useful since in the Schrédinger equation
and in the current matrix elements only the internal degrees of freedom are relevant.

The A-body internal coordinates are
r; =1; — Ren, (4.1)
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32 CHAPTER 4. EVALUATION OF THE MATRIX ELEMENTS

where
1 A
Rcm = Z ; r;,

denotes the center of mass coordinate. We work in the center of mass frame, with

Zr;:O.

)

The matrix elements we are interested in are of this kind
(U O(r], ..., ry) [¥)

where O is a generic operator as function of the relative coordinates, while |¥) and
|W’) are internal states of the system. We will use the hyperspherical formalism to
calculate this matrix element. In order to do that, the internal wave function of the
A-body system is described in terms of a set of A — 1 independent 3-dimensional
Jacobi coordinates, {n,,k =1,..., A — 1} defined as

k—1 1
N1 = T (I‘k T r o1 ZZ:;I‘Z> ck=2,..., A, (4.2)

instead of using the r} coordinates, which are not linearly independent. Then, start-
ing from the Jacobi coordinates one can apply the recursive transformation to hy-
perspherical coordinates in Eq. (B.4). The aim is to expand the A-body internal
states |U) and |¥’) in terms of the hyperspherical harmonics (HH), introduced in
Appendix B, and then to write the operator in terms of the hyperspherical coor-
dinates. The crucial point is that, since we are working with identical fermions it
is necessary that the basis states are fully antisymmetrized. The hyperspherical
harmonics for an A-body system shown in Appendix B are linear combinations of
products of Jacobi polynomials times ordinary spherical harmonics. They do not
possess any peculiar property under permutation of particles. However, in our case
we need a set of hyperspherical harmonics that are irreducible representations of the

permutation group S, of A particles.

There are different algorithms available that enable one to construct hyperspheri-
cal harmonics with well defined symmetry properties under permutation of particles,
such as the NKG (Novoselsky-Katriel-Gilmore) [Nov88| and the FE (Fomin-Efros)
|Fom81] algorithms.

In this work we use for the construction of antisymmetrized hyperspherical states
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a Fortran90 code, developed by Z. zzz, where an extension of the NKG algorithm is
implemented [Bar97al. In the NKG method the hyperspherical functions belonging
to a well defined irreducible representation (irrep) of the symmetric group Sa are
constructed recursively by building all the coefficients of fractional parentage (cfps),
see e.g. [Sit72]. In the algorithm proposed by Z. zzz the hyperspherical harmonics
are also constructed in a recursive way, but one first builds the irreps of the kinematic
rotational group O(A — 1), and then one performs the reduction O(A —1) | S4. In
this way one obtains the symmetrization with respect to permutation of particles
S of functions that were already irreps of the group O(A — 1). Note that the word
“symmetrization” is used in the sense of constructing any irreducible representation
of the permutation group. The power of this algorithm lies in the big reduction
one obtains in the total number of c¢fps needed, which results in a much faster code
where less memory is needed. Therefore, with this method one can construct the

antisymmetrized states for the A-body problem also for A > 4.

The advantage of using antisymmetrized states is that for a generic one-body
operator O() = Zle O;, the evaluation of the matrix element is reduced to the
calculation of the matrix element of an operator that acts only on the last coordinate,

as
(U] Oy [¥) = AU O4 ') (4.3)

In an analogous way, in case of a two-body operator Oy = Zi =1 Oij, the evalua-
tion of the matrix element is reduced to the calculation of the matrix element of an

operator acting only on the two last coordinates, as

A(A—1)

(¥]0@ W) = 25

(U|Opa1|V). (4.4)
Note that in the matrix elements (4.3) and (4.4), while the operators depend only
on one and two coordinates, respectively, the wave functions still depend on all A
particles.

Furthermore, if one expands the wave functions |¥) and |¥') in terms of the
A-body antisymmetrized hyperspherical harmonics, which are irreducible represen-
tations of the group Su according to the chain of symmetry groups S4 D Sa-1 D
-+ D 8 D &1, one can reduce the dimension of the above matrix elements to a linear
combination of single particle matrix elements in case of (4.3) and of two particle
matrix elements for (4.4), making use of the coefficients of fractional parentage, as

will be discussed briefly later.
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4.2 The Hyperspherical Basis

In the hyperspherical formalism (for details see Appendix B), one always has to deal
with 3(A—1) internal coordinates of the system, among them one is the hyper-radial
coordinate ps_1 = p and all the others constitute a set of (34 —4) angles, which are

collected under one single symbol (2.

The internal wave function of an A-body system, that depends on the A—1 vector
Jacobi coordinates and on the A spins and isospins of the constituent particles, is

written in the hyperspherical formalism in the following way [Bar97a, Bar99|

U0y, Ma 1, St St ta) = O Ricy(p)Hico (51, 54, 11, s ta), (45)
Kv

where Ry, are hyper-radial functions depending only on the hyper-radius and Hg ,
are the totally antisymmetrized hyperspherical harmonics coupled with spin-isospin
basis functions, depending on 2 and on the A spin-isospins of the particles. Note
that the hyper-radius is symmetric under permutation of particles. The functions

Hy, are defined as

A
HKV(Q,Sl, ...,SA,tl,...,tA) = Z M X

Yaq1 V |FA|
J

X [yKA_lLA_erYA_1a§_1 (Q) ® XSTf‘A?A_laiT (817 <y SA, tl? ceey tA)] NED (46)

The symmetrized hyperspherical harmonics Vi, 1, m, ra v 10k, DOSSess gran-
dangular momentum K, ; (see Appendix B), good angular momentum L = L, 1,
with projection M = M4, and belong to well defined irreducible representations
'y e T'y € ... € T'4 of the permutation group-subgroup chain §; C S C ... C Sy,
denoted by the Yamanouchi symbol [I'4,Ya 1] = [['4,T4_1,...,T1]. The dimen-
sion of the irreducible representation I'; is denoted by |I';| and Ar, y, , is a phase

factor. Analogously, the functions xgg ;7. sT are properly symmetrized

Ta1,Va 10
spin-isospin states with total spin S, with prgj;caoL S., and total isospin 1", with
projection T} as good quantum numbers. The label o | (a57) is needed to remove
the degeneracy of the hyperspherical (spin-isospin) states with a given symmetry. In
the expression of the functions H , in (4.6) v represents all indices but K = K_;.
We have furthermore coupled the spin and space parts of the wave function to a
total angular momentum J with projection J=.

The construction of the spin-isospin wave function as well as hyperspherical

harmonics is done recursively. Each A-body spin-isospin function is written as linear
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combination of coupled products of (A — 1)-particles wave functions and the A—th
particle states. The coefficients of the expansion are a sort of coefficients of fractional
parentage. The spin (A — 1)-particles wave functions are constructed recursively,
coupling s; with s; to Ss, Sy with s3 to S3, and so on up to S4_;. In an analogous
way one builds also the isospin part of the wave function. Finally, for the spin-isospin

functions we write

XSTf‘A,);'A_laiT (817 <y SA, tl7 (XD tA) = (47)

> [(Saci;9)S(Tac; )TT a0 [FSTT 4y ] x

Sa—1Ta-105%
ST
[XSA71TA711~“A71,37A7204i21 ® s t] :
Here the spin and isospin of the last particle are indicated with s = s4 and t = t 4,
respectively, while S4_; and T4, denote isospin and spin of the residual (A — 1)-

body system, respectively.

Similarly one can use a recursive procedure to construct the A-particle sym-
metrized HH, where the expansion coefficients are made of two types of coefficients
of fractional parentage

yKA—1LA—1>\A—1FAYA—1Oéf§_1 (Q) -

Z [(AA—QFA_152_1))\A_1|})\A_1I‘Aﬁj‘] >

)‘A72IB;\A,1
Z [(Ka—2La—oAa—2B4_ 0 O)Ka1La 1|} Ka1LaaAa184_1] ¥
Ka_oLa_2B% 0

y(KA—2LA—2>\A—25§_2FA—1YA—2@,_1;f)KA—1LA—1 (Q) (4'8)

The two types of coefficients of fractional parentage are the orthogonal-hyperspherical
cfps for the construction of the HH as irreducible representation of the group O,
and the orthogonal cfps for the reduction O(A — 1) | S, [Bar99, Bar01, Bar0Olal.
The indices A4_2 and A4 label the states according to the canonical chain of sub-
groups O4_1 D Os 5 D ... D Oy used in the construction (for details see [Bar97al).
The degeneracy removing indices 35 | and 3} are condensed in (35, 3}) = of

in the starting expression of the HH in Eq. (4.8).

Instead of coupling a total spin state S, given by the recursive coupling of 1,2, .. A-
spin particles, with an angular momentum L of A —1 Jacobi coordinate, constructed

again recursively, to a total angular momentum J (LS scheme), one can use another
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coupling scheme. Namely, one can couple the the spin and angular momenta of the
last particle s and ¢ to j, and then j with the total angular momentum J4_; of the
(A — 1) particle system, given by the coupling of (S4_1L4_2) (JJ scheme). In this
way one can work more comfortably with all degrees of freedom of the last particle
¢;s and j. It is obtained by using standard recoupling methods introducing the
nine-j symbols. Thus, the hyperspherical spin-isospin internal basis function Hy,,
that we now call simply |[K]), with [K] = Kv, looks like
AFA7YA—1

[K]) = ; “/ITal AA%I [(AaelaaBh-)Aa1FAaaTaBl] x

Z [(Ka—aLa—aAa_af8 o O)Ka_1La_q|}Ka1Laida_184_1] x
Ka_oLa_2B% L0

> [(Saci;9)8(Taci; )TT a0 [}STT aay] x
Sa—1Ta-105%

Las Sai Jaa

> JaaSLj ¢ s j [(Taat)TT?)
JJa L S J
|((Sa—1Ka—aLaada—soly sTa 1Y o)Ja_1;(sl)j)JJ?). (4.9)

Note that the indices of the quantum numbers for the (A — 1)-body system refer to
the number of Jacobi coordinates in case of the angular momentum L4 5, and to
the number of particles in case of spin S4_; and total angular momentum J,_;.

In the following we will show how one can calculate the matrix element of a
one-body operator with the hyperspherical basis state. This formalism will be used
later on in Chapter 5 and 6 where we will dela with the one-body charge and current

operators.

4.3 Omne-body Operators

We will now consider a general one-body spherical tensor operator of the form

Og)MTTZ _ Z OJM(I‘Q, Ui)OTTZ (73), (4.10)

that acts in the coordinate-spin space with O™, carrying angular momentum 7
with projection M, and in the isospin space with O77=  carrying isospin 7 with

projection 7, .
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First of all one would like to use the antisymmetrization of the function like in

Eq. (4.3). Before proceeding, it is useful to note the relation between the relative

Figure 4.1: Example of the three Jacobi coordinates in a four-body system. Only the
unnormalized ones, 7),, are shown for simplicity. The last Jacobi coordinate, i.e. 73, is
proportional to the coordinate of the last particle in the center of mass, i.e. r) in the
specific case.

position of the A-th particle and the last Jacobi coordinate (see Eq. (4.2))

B A
Na1 = A—l

r,. (4.11)

An example of this relation is shown in Fig. 4.1 for a four-particle system. Further-
more, within the hyperspherical formalism one uses the notationn,_; = (n4_1,74-1)
and then the modulus of the last Jacobi coordinate is adopted to build the hyper-

radius and the last hyperangle using the transformation in (B.4). In fact

Na-1 = psin g,

where p = pa_1 = >, n? is the hyper-radius and ¢ = @,_; is the last hyperspherical
angle defined in Appendix B. This means that the coordinate of the last particle

becomes, in the hyperspherical formalism,

. A-—1 . .
'y = (ry, 7y) = ( T pSIIlcp,nA_l) : (4.12)

where for the angular part it yields 7y = 94_1.
At this point we can finally reduce the hyperspherical matrix element of the

one-body operator on the antisymmetrized basis states of the (4.9) to

[K']) = A(K]| 07 (4, 7'y, 0.4) OT 7= (7a) [[KT]) (4.13)

IMTT,
(K110
where the operator acts now only on the last particle degrees of freedom. Note that
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we are not considering for the moment the hyper-radial part of the wave function
Ry, (p), which will be discussed later. For this reason the matrix element in (4.13)
depends still on the hyper-radius p. The spatial-spin operator is assumed to be also

separable in a scalar radial part and an angular tensorial part as
OTM (! iy, 04) =R (v )OJM (P4, 04) - (4.14)

Any one-body operator can be written at most as a sum of terms like (4.14). Using
then the coefficients of fractional parentage, the matrix element can be reduced to

a linear combination of one-body matrix elements as

(KN OTM(xy, 0.4)0TT=(14) |[K']) =
A A T
S oA, A= 1)e( A, A—1)—tala rryraTa]

A VT[T

Lao Sas1 Jaa Lao Sas1 Jaa
Y LSLSH s ¢ 8 (s j X
Ja—1,4,5" I/ S’ J! L S J

A—-1
(K ol; Ky 1| R <\/ /1511190> ‘KA 2 Kasq) ¥

(_)J—M( J J T JA 1+’ +I+T J/J{ joJ Jaa } %

-M M M J 7T
(€ 9)jll O7 (71, 04) I(€" 8)5") x
(_)T—Tz ( ?z TZ 77:/; ) TA 1+t +T+7'TT/{ ;, Z: Tz;jl }
(] O7 (1) IIt) (4.15)

where Ar,r, , and AF/A are phase factors, I'y_1, [y and I'4 are the dimension

Ta1
of the irreps, and finally the coefficients ¢(A, A — 1) and ¢(A’, A — 1) are the cfps
of (4.9), that are not written again in order to simplify the notation. The sum in
(4.15) runs over all the possible irreps denoted with I'y_; € I'y and also 'y _; € T'y.
In (4.15) we have made use of the Wigner-Eckart theorem both for the spatial-spin
tensor part and for the isospin part of the operator, to separate the geometrical
information of the three-j symbols from the reduced matrix elements. Then we

have used the fact that the operator acts only on the last particle. Note that the
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dynamical one-body reduced matrix elements in the angular-spin space
(€ )71 O7(#y, 0a) (€ 8)5") (4.16)

and in the isospin space

(O (ma) [I¥) (4.17)

can be calculated analytically with standard angular momentum methods. This is
not the case of the radial matrix element that appears also in the (4.15). Namely,

in the hyperspherical formalism it has the following form [Bar97a)

A—-1 . .
07 (p) = (Ka—aol; Ka_1| R7 < o Psin 80> |Ky ol Kax)

jus

N (K g (K4 N (K K s ) /  dip(sin )2(cos ©) 4 (sin )" (cos o) K-
0

A-1
A

P8 cos(20)RT < psin cp) (sin @) (cos gO)KA*QPn(,a/’ﬂ) cos(2yp), (4.18)

where the normalization constants are given in (B.20), P*? and Pr(fl’ﬁ " are the
Jacobi polynomials introduced in Appendix B with n and n’ as in Eq. (B.19), with
a="0+3, o =0+ and finally 3 = K45 + 3‘47_8. This one-dimensional hy-
perangular integral can be calculated numerically with a Gauss-Jacobi quadrature
method [Pre92|, where the grid points are defined on the variable = = cos(2¢). The
result is clearly a matrix element that still depends on the hyper-radius, over which

we have not yet integrated.

The hyper-radial part of the wave function in Eq. (4.6) is expanded |Bar99]

R (p Z Cr b, (p) (4.19)

in terms of the functions ¢, , that contain the generalized Laguerre polynomials and

are defined by

a—(3A—4)

o) =™ () m(Det am

where a and n, are parameters of the polynomials. The hyper-radial matrix element
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becomes then

(Rico(p)| O (p) |Ricrr(p)) = Y Clvel™ / N dpp** ", (0)O7 (p) by, (p), (4.21)

’ 0

TLPTLP

where we have used the proper measure in the integration on the hyperangle (see
Eq. (B.6)). The one-dimensional hyper-radial integration in (4.21) is performed nu-
merically with a Gauss-Laguerre quadrature method [Pre92|, where the grid points
are defined on the variable z = £, such that the quantity b plays the role of a scaling
parameter for the range of integration.

Here, we would like to stress again that within the present approach, the com-
plicated calculation of the many-body matrix elements (4.3) of a given one-body
operator, which in general would be a (3A — 3)-dimensional matrix element, is re-
duced to a linear combination of one-body matrix elements, that consists each in a
two-dimensional numerical integration, while the rest is completely analytically cal-
culable. In the following we will proceed with an analogous treatment for a two-body

operator.

4.4 Two-Body Operators

We would like now to consider a two-body spherical tensor operator in the form

oL TT= =3 " 07M(x), v, 01,0,) 0" (73, 77), (4.22)

i T
i<j
that acts in the coordinate-spin space with O™ carrying angular momentum .7
with projection M, and in the isospin space with O77=, carrying isospin 7 with
projection 7,. We are interested in calculating the matrix element of such an ope-
rator between totally antisymmetrized states using the hyperspherical formalism,
as introduced in the previous sections. They are needed for the calculation of any
two-body current matrix element and of course in the solution of the Schrédinger
equation, where matrix elements of the potential are required. We would like to
firstly reduce such matrix elements to matrix elements of the operator acting only
on the last two particles, A and A — 1, as in Eq. (4.4). Then, following an approach
like for the one-body operator, one would like to write them as linear combination of
two-body matrix elements via the cfps. It is clear that, since any of these two-body
matrix elements depends on the relative coordinates r’; and r/y_,, and on the spin-

isospins of the last two particles 04_1,74_1 and o4, 74, one would need to consider
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a further generation of the cfps with respect to the (4.9), in order to disentangle the
degrees of freedom of the last two particles and not only of the last one. This makes
the calculation of a two-body matrix element more difficult.

However, this complication is not completely necessary in case of the potential
matrix element, since it depends only on the relative distance between particle A
and particle A — 1, which can be related to one Jacobi coordinate only. In fact, the
normal Jacobi coordinates are defined such that the first one is the relative distance
between particle 1 and 2, and the last one is the distance between particle A and
the center of mass of the residual A —1 system (see Figure 4.1). This means that for
an operator that depends only on the distance between particle A and A — 1, one
needs to rotate the Jacobi coordinate such that the last coordinate represents the
interparticle distance. Performing this kinematical rotation one can then consider
only one generation of the cfps in case of the HH. Clearly, for the spin-isospin wave
functions, one always has to take into account two generations of cfps.

The complication can be reduced further with some shrewdness. Namely, con-

structing the coordinates in the reverse order as,
A
| A—k 1
=\ — - s k=1,..,A—1. 4.2
Ny A—i—l—k,‘(rk A_ki:zk;lrz>v k ) ey ( 3)

one can simplify the calculation of two-body matrix elements, since no further rota-

tion is required. Namely, the last Jacobi coordinate in this case is proportional to

Figure 4.2: Example of the three reverse Jacobi coordinate in a four-body system. Only
the unnormalized ones are shown for simplicity. The last Jacobi coordinate, i.e. 73, is
proportional to the distance between last two particle, i.e. particle 3 and 4 in the specific
case.

the distance between particle A and A — 1

1

Na1 = i(rA—l —Tra),

as one can see also in the example presented in Figure 4.2.
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This means that, in case of a two-body operator that depends only on the relative

distance between particles, as

Oég\/tTTz — Z OIM((r} — r’), o, 0,)OT T (1, 1)), (4.24)

1<j

using antisymmetrized states is easy to see that

(K] OZ T [K)) = (4.25)
A(A-1)

9 <[K” OJM <\/§p sin s TA}A—I? OA, UA—I) OTTZ (TA7 TA—I) HK,]>

in the hyperspherical formalism. The matrix element of such a two-body operator
can be constructed in a very similar way as in (4.9), where only one generation of
cfps is needed for the HH but two generations are needed for the spin-isospin wave
functions. This means that in case of the spin-isospin cfps, as those in (4.7), one
has to go back one step further in the irreps tree, considering also those irreps with
[y €T 4 g €4 (see for details [Bar0lal]). Apart from that, the main structure of
the matrix elements is the same as in (4.9), with a difference in the interpretation of
the symbols in the spin-isospin part. In fact now one couples the states describing
the last two particles with the residual (A — 2)-body system. Therefore, in the
spin-isospin wave function one should now substitute the index A —1 with A — 2 in
(4.9), and the quantum numbers s and ¢ refer now to the last two-particle system,
in the sense that they are obtained from the coupling of (s4_154)s and (ta_1ta)t,
respectively. Concerning the hyperspherical coordinates the wave function remains
the same as in (4.9), since the operator acts finally only on the last Jacobi coordinate.
For these reasons, within this approach, the calculation of the matrix element of a
two-body operator that depends only on the relative distance of particles is the same
as the calculation of the matrix element of a one-body operator. Therefore we will

not write the formal expression as in the previous section.

Summarizing, within the HH formalism one can treat the two-body operators,
which depend on the relative distance only, in two ways, namely, using the forward
order of the Jacobi coordinate as in (4.2) and performing a kinematical rotation
or, starting directly from the reverse Jacobi coordinate (4.23), where the rotation is
saved. It turns out that in both procedures the calculation of the matrix element of
such two-body operator is similar to the calculation of a one-body operator, since

at the end only the integration over one Jacobi coordinate is performed.

As already mentioned, this procedure can be applied in case of any two-body
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nuclear interaction, but not for every two-body current operator. In case of the
matrix element for a general two-body operator a further generation of cfps also in
case of the HH would be required and one would need to perform the integration on
the two last Jacobi coordinates.

Nevertheless, in the present work, only matrix elements of two-body operators
which depend on the relative distance only are calculated and in case of the meson-
exchange current an approximation is made to treat the general two-body operator
with this restriction. The validity of such an approximation will be discussed in
Chapter 6, where the results obtained for electron scattering are presented.

In the following a brief discussion of the effective interaction in the hypersphe-
rical harmonics is given, since it is used in the solution of the Schrédinger and

Schrédinger-like equation.

4.5 Effective Interaction with the Hyperspherical

Harmonics

Let us consider an A-body nuclear system, described by the following hamiltonian

A 2 A
— a2 g
H= Z 2m N Z Vi
=1 1<J
with a two body interaction V;;. Our goal is to solve the Schrédinger equation
in an exact way working with internal degrees of freedom via the hyperspherical
formalism. After the subtraction of the center of mass motion the hamiltonian in

the hyperspherical coordinates is given by

1 K? -
Hint = =5 (Ap—?> +D Vi

1<j

. A—-1
where one recognizes the Laplace operator A, = A,

(see Eq. (B.9) and (B.10)) and the hyperspherical grandangular momentum operator

for A —1 Jacobi coordinates

K = K4_,. We would like to solve the internal Schrédinger equation

Hmt\lf(’l’]l, ey MA_1,S15 -+, SA,tl, ...,tA) = E\I’(T]l, ey MA_1,S15 -+, SA,tl, ...,tA),

expanding the wave function V(n,,...,m4_1, 1, ..., S4,t1,...,t4) in terms of the an-

tisymmetrized hyperspherical harmonics (see (4.5) and (4.6)). The hyperspherical
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harmonics are, by definition, the eigenvectors of the operator K? with eigenvalues
K(K + 3A —5). They can be used to describe the angular part of the internal

A-body wave function. Note that the kinetic energy 7' = —5-(A, — Ip{—;) in the
hyperspherical formalism is made of a purely hyper-radial part 7, = —ﬁAp, de-

pending only on p, and of another part Tx = — %, called hyperspherical kinetic

2m
energy, which is clearly diagonal in the hyperspherical basis. Therefore, expanding
the hyper-radial part of the wave functions in terms of the Laguerre polynomials,
as in Eq. (4.19) and Eq. (4.20), one can show that the solution of the Schrédinger

equation is reduced to the solution of an hyper-radial equation (see [Bar97al).

Although the hyperspherical harmonics constitute a very good basis, it turns
out that the convergence of the expansion is very slow especially in case of hard-
core potentials, which is the situation in nuclear physics. In order to speed up the
convergence of the expansion several methods have been proposed in the literature.
One solution is to insert a two-body correlation factor into the basis wave functions
(CHH), e.g. [Fen72, Ros92|. In the present work we have used another approach,
where an effective interaction has been built within the hyperspherical formalism
(EIHH) [Bar01, Bar0O1lal.

The idea of the effective interaction is a very old one in physics. Since we perform
an expansion on a set of basis states and clearly the expansion has to be truncated
at some point, we always have to work in a model space, called P-space and charac-
terized by a projection operator P. In our case this model space is constituted by all
the hyperspherical harmonics that possess a grandangular momentum K < K,,4,.
It turns out that it is not necessary to build also an effective interaction in the
hyper-radial space, since full convergence is reached already with 30 — 50 Laguerre
polynomials. The complementary space is called ()-space and is characterized by a
projection operator (). This means that the union of these two spaces covers the
entire Hilbert space, i.e. P+ () = 1. One can define an effective interaction that,
acting only in the P-space, contains the influence of the ()-space and which leads
for the corresponding effective hamiltonian to the same eigenvalues of the original
hamiltonian. One method to build the effective interaction is to use the Lee-Suzuki
procedure with the similarity transformation X [Suz80, Suz82, Suz83|. In this ap-

proach the effective hamiltonian is given by

XP, (4.26)

A
T+sz‘j

1<j

H.;p=PX 'HXP=PX!
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where Verp = PX—! [Zij Vz-j] X P is the effective interaction. Note that the effec-
tive hamiltonian acts only in the P-space and contains the influence of the ()-space
through the action of the transformation operator X = e“, which is responsible of
the reprojection of the information contained in the ()-space into the model space.
Namely, it is defined such that that w = QwP. The representation of the origi-
nal hamiltonian and of the transformed one, after the application of the similarity

transformation, is the following

Hpp | H g H 0
H= 221290 ) L g=Xx"Hx =221 (4.27)
Hpq | Hgq Hpq | Hgq

and the effective hamiltonian is clearly H.;; = Hpp. The condition that the operator
w has to satisfy in order to yield ]:]Q p=0is

Q(H + [H,w] —wHw)P =0, (4.28)

which can be obtained using the fact that the transformation admits the following
expansion X = 1 + w, since w? = w3 = .. = 0 (it can be seen from the form
of the operator w = QwP). One can calculate the eigenvectors of the effective
hamiltonian H.s¢, which are contained in the P-space, i.e. one can construct the
space ép = {|¥,) : H|¥,) = ¢,|¥,) with |¥,) = P|¥,)}. With the help of
the transformation X one can also construct the corresponding space for the true
hamiltonian, i.e. ep = {|¥,) : |¥,) = X|¥,) with |¥,) € ép}. Clearly any
element of this last space has components also in the ()-space. The important fact
is that any vector belonging to €p is eigenvector of the true hamiltonian with the
same eigenvalue as for the effective hamiltonian. Namely, it holds that H|V,) =

HXﬁ’u) = XX_IHX|®;1> = Xﬁﬁ’u) = EHX|®H> = €u|Wp)-

It can be proven that, knowing only the space ep, one can construct the similarity

transformation via the matrix element of the operator w from

(alwlB) =Y (BTN A ar (4.29)

"

where (A),, = (a|¥,) and |a) and |3) are basis states for the P-space and Q)-space,
respectively. The solution for w given in (4.29) satisfies the condition required in
Eq. (4.28) for the effective interaction. It is clear that, within this approach, in
order to construct the effective interaction one has to be able to build not only the

P-space, but also the (J-space.
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An equivalent hermitian effective interaction can be constructed through the

transformation [Suz82|

P+w I P+w
VP +wlw)P /P(1+wfw)P’

Hepp = (4.30)
where the operator w is the same as in (4.29).

Since the effective interaction contains the whole A-body information of the @
space, the calculation of the A-body effective interaction is as difficult as finding
the full space solutions. Furthermore, in general, the effective interaction appearing
in Eq. (4.26) is an A-body effective interaction, also if one starts from a two-body
NN potential. This makes the exact solution of the Eq. (4.26) very difficult and
the difficulty increases with increasing A. The idea is then to build an approximate
effective interaction, with the requirement that

VI Voif P 1,

e

max

i.e., enlarging the dimension of the model P-space with increasing K,,,, and n P

the approximated effective interaction should converge to the exact one.

One method to find an approximate effective interaction was already proposed in
the context of shell model calculations, where the harmonic oscillator basis functions
are defined in terms of the Jacobi coordinates, the so called “No Core Shell Model”
(NCSM) calculations [Nav96, Nav98, Nav99|. It consists in substituting the A-body

effective interaction with a sum of two-body effective interactions

A A
Vepp = PXTH D Vi | XP — VJ}”F:ZVS?}, i
i<j 1<j

where the two-body effective interaction is derived from a two-body hamiltonian
H® = Hy+V®,

with [Hy, P] = [Hyp, Q] = 0 and PHyQ = QHoP = 0. The two-body effective
interaction is obtained calculating exactly the Lee-Suzuki transformation for a two
body problem in the presence of A — 2 non-interacting nucleons. Practically, one

constructs the two-body hermitian effective interaction as

P2+w2 P2+w2

HY, = H® .
\/P2(1+wgw2)P2 \/Pg(l—i-wg(xJQ)PQ

(4.31)
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The index 2 in w and in the projection operators refers to the fact that only two
particles are interacting. The two-body effective interaction is then obtained sub-
tracting Hy as

v _ g®

erp = Hyp — PHoP.

Clearly, for a two-body problem one can easily construct an effective interaction
according to the Lee-Suzuki method, since it can be solved exactly. Therefore,
defining a model space P, and a complementary (), space one can obtain from
Eq. (4.29) the operator wy and thus the transformation operator. In effect this means
we replace the original A interacting nucleons by an A-body system where only two
particles interact, i.e. a two body system embedded into A — 2 non-interacting

nucleons as depicted in Fig. (4.3).

2
H H( )
3
—— <
—_—
S —
s
<1 =

Figure 4.3: Representation of our reduction: the A-body system where all particles in-
teract pairwise, described by H is substituted with an A-body system in which only two
particle interact and the others are spectators, described by H). The interaction is de-
picted with an ellipse that connect the two involved nucleons in a four body-system, as an
example.

Therefore the natural choice for the two-body hamiltonian is

1 K2
H® = — 2 4V, 4, 4.32
3 7 VA (432)
which contains the total hyperspherical kinetic energy, defined through the grandan-
gular operator! K 2 and the interaction between the last two particles. It contains
informations of the residual A — 2 system via the kinetic energy and via the hyper-
radial coordinate, which has a collective character. Therefore we can say that the

other non-interacting A — 2 particle contribute to H® with a “medium correction”.

!Note that, contrary to the notation used up to now, here the operator is denoted with the hat,
since it is necessary to distinguish the operator from the eigenvalue.
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The matrix element of H® between the A-body hyperspherical wave functions

are

1 K(K +3A-5)
<[KH H(2) HK/]> = 532355TQT2/"‘5SA_QSA_25TA_2TA_2 |:§[K”K/](Sssl§tt/% p2

o
+ 5[KA_21[K;4_2}Vm‘ét;%ws/t/(P)}, (4.33)

where one sees that H® is diagonal in the quantum numbers [K4_,]. Furthermore,
the kinetic energy is also diagonal in [K]|. The matrix element Vé‘;t’jﬁ%,s/t, (p) is
diagonal in ¢, s and ¢ in case of a central interaction. This matrix element is like
that in (4.15) in the sense that it consists in an integral that can be solved with a

two-dimensional Gauss quadrature integration.

Thus, from the last expression it is clear that the effective interaction depends
on the residual states, since due to the hyperangular integration it depends on K4_o
(see (4.18)). This medium correction results in a faster convergence of the effective
interaction compared to the bare one [Bar01, Bar0lal, but the price one has to pay is
that for each state one has to calculate a different effective interaction, resulting in a
so called “state dependent effective interaction”. In fact, for every fixed value of K4_o
of the model space P one can determine the matrix elements of H®. Then one can
diagonalize it in order to construct the ep space and the similarity transformation,
according to the Lee-Suzuki method [Suz80]. In our case the model P-space is made
of {[K]: K < Kyar with fixed K4 o} with P, C P, and the QQs-space is obtained
by {[K] : Kmar < K < Kpyax with fixed Ka_o}. The value of Ky 4x is chosen
to be about 60 for purely S-wave interaction and about 180 for P-wave potentials.
We recall that the relation between K and K4_» is always K = 2n+ K4_o+{. The
Ps- and Q)s-spaces clearly depend on K4 5 and therefore we will have as many of
them as the number of K 4_5 values in the P-space. For simplicity, however, we do
not indicate this dependence in our notation. At this point one can solve Eq. (4.29),
going through the inversion of the matrix A,, with dimension np, where np is the
number of HH basis functions in the P-space that belong to the subspace [K4_s],
and consequently to the corresponding P,. Therefore, for every K, 5 value one has
an effective interaction, which is obtained subtracting the kinetic energy from the

effective hamiltonian

2
(2) g LK
Verp aa = Hepp = 5 2 (4.34)

Finally one can use this two-body effective interaction to solve the A-body problem.

Namely, using an antisymmetrized basis state one can relate the matrix element of
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the approximate effective interaction to the matrix element of the last pair

A(A-1) <

vy = 25

2)
Vers A,A—1>7

where in the last matrix element only one Jacobi coordinate is involved, with the
relative distance rq 41 = Vo, = (\/§p sin 90,77,4_1) in hyperspherical coordi-
nates. This is exactly the matrix element of the two-body effective interaction we
have calculated where only particle A interacts with particle A — 1. Note that only
the effective interaction Ve%)c A1 1s actually needed in this method, and not all

the different Ve(j?} ;;» Which makes “natural” the choice of the starting hamiltonian in
(4.32).

i

Figure 4.4: Schematization of the EIHH method: a two-body effective interaction is
constructed starting form H () and then it is used in the solution of the A-body Schrédinger
equation.

In order to understand better why this approximated effective interaction should
converge to the exact one, we present in Fig. 4.4 a schematization of the approx-
imation performed. This picture is only meant to visualize things in a figurative
manner, with no pretension of completeness, for which we refer to the literature,
e.g. [Suz80, Nav96, Nav9g, Bar01, Bar0lal. In the picture, the total A-body Hilbert
space is separated in the model P-space and in the complementary ()-space. Within
the A-body Hilbert space we isolate the “two-body interaction“ space, defining a
P, and a @), space for every K, 5, in which only two particles interact with each
other, while the others are frozen. Working in these spaces one constructs the
effective interaction, that clearly includes the information of the ()5 space. There-

fore, with enlarging the P-space (which in our case means increasing K,,.,) also
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the space P, is consequently enlarged. This means the effective interaction used
to solve the A-body problem contains almost all the information of the () space,
since the not considered contributions (marked with bars in Fig. 4.4) tends to zero
when P — 1 (K4 — 00). Therefore, the approximate effective interaction has to
converge to the exact A-body effective interaction and therefore to the bare one.

The effective interaction method in conjunction with the hyperspherical formal-
ism has revealed to be a very good bound state technique, since it enables one to
obtain a fast convergence in the hyperspherical harmonics basis expansion, and the
matrix elements required are at most two-dimensional numerical matrix elements,
while all the rest can be performed analytically. This last property cannot be ob-
tained using the correlation method, where, via the Jastrow factor, all the Jacobi
coordinates are mixed and usually one has to calculate the 3(A — 1)-dimensional
integrals with a Monte Carlo method, which is numerically very time consuming.

With the EIHH it has been possible indeed to obtain bound state properties for
nuclei with 4 < A < 7 with great success, as will be shown also in this work. Clearly,
in increasing the mass number A, the number of hyperspherical harmonics states for
a given K., value becomes very large, and at some point it constitutes a bottleneck,
if all states are kept and no selection of basis states is made, i.e. eliminating certain
states with no influence.

Since the EIHH is a very good bound state technique that enables one to calcu-
late wave functions, it can also be used to solve the Schrédinger-like equation one
ends up with the LIT method. Quite a few examples of reactions studied with the
combination of these two methods are already available in the literature (see e.g.
[Bar01b, Bac02, Bac04, Bac04b, Gaz04]), and some of them will be presented in the

present, work.
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Chapter 5
Application to Photodisintegration

In this chapter the first microscopic calculation of the total photoabsorption cross
sections of six- and seven-body nuclei is presented. The final state interaction is
completely taken into account with the LIT method. The discussion of the results

follows a general description of the calculation.

5.1 Description of the Calculation

In an inclusive photodisintegration reaction, v + A — X, a real photon v with
momentum q and energy w = |q| is absorbed by an A-body nucleus that makes
a transition from the ground state with energy and momentum (Ey, Py) to a final
state described by (Ef,Py), that is not measured. The cross section of the process
(Eq. (3.38)) is proportional to the response function of the transverse current (see
Eq. (3.39)). As already mentioned, below pion production only the E1 multipole of
the current has to be taken into account, because it is well known that the dipole
approximation is excellent for describing the total photoabsorption cross section of
nuclei, see e.g. |Eis70, Are91|. Using the Siegert theorem, the operator to consider

in the response function takes, in the long wave range limit!, the simple form of

D.=)»" . (5.1)
k=1

Here 77 and 2 represent the third component of the isospin operator and of the

coordinate of the k-th particle in the center of mass reference frame, respectively.

The response function R(w) is calculated according to the LIT method by solving

!The Bessel function is approximated as j;(qr) ~ L for gr < 1.
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the following “Schrodinger-like” equation
(H — Ey + 0)|¥) = D.|W). (5.2)

The first step to solve Eq. (5.2) is to find the solution W, for the ground state,
which is then used as input for the generalized eigenvalue problem (5.2) for W.
Our method consists in expanding ¥, and ¥ in terms of the A-body symmetrized
HH [Bar97b, Bar98|. The expansion is performed up to maximal values of the HH
grand-angular momentum quantum number K0 _ for ¥y and K,,,, for U. The
number of HH states for a given grand-angular momentum depends on the A-body
system considered. We improve the convergence of the HH expansion using the
EIHH method [Bar01, BarOla|. In case of U, the basis states are constructed with
the quantum numbers of the ground state. For U the basis functions possess the
quantum numbers selected by the isovector dipole transition. The specific quantum
numbers of the nuclei being studied will be shown later in the presentation of the

results.

In order to evaluate the LIT we calculate the quantity (¥|¥) using the Lanc-
zos algorithm [Mar03|. It can be proven that the use of the Lanczos algorithm is
equivalent to solving Eq. (5.2) by a matrix inversion, which is quite time consuming.
The advantage of this algorithm is that it is very fast, since only multiplications of
matrices with vectors are required, as will be explained later.

In case of semirealistic interactions the total orbital angular momentum L, and
the total spin Sy are good quantum numbers of the ground state |Wo(ME, My)),
with projections MF and M, respectively. Then, one can rewrite the LIT of the

response as (see [Mar03, Bac01])

1 1 1
L(og,01) = Z

2Lo+1 25, + 10y ~

0770

1
x Im{(Wo(My, My)|D}

D, |Wo(ME M2 .
zH_EO_O_R_Z»O_I ‘ 0( 0> 0)>}7(53)

The transform L(og,o0;) is evaluated by inserting a complete set of projection ope-
rators
> oM M) (Wo(M", M) = Y Poars,
C,ML MS C,ML MS
where C' = {L,S,T,T% =} stands for the quantum numbers characterizing the chan-
nels (angular momentum, spin, isospin, isospin projection and parity, respectively),

while M* and M? are the third components of angular momentum and spin. In the

52



5.1. DESCRIPTION OF THE CALCULATION 53

sum only the channels allowed by the dipole selection rules need to be considered
and, since the dipole operator does not depend on spin, we do not need to aver-

age over the initial spin projections (M), neither to sum over M*°. Therefore one

obtains
L(on, o) L LS (e D we) P { (| ! W)
71 01 2Ly + 1o, e 7y s "
C,ML,ME
(5.4)
where PoD U
c Do) (5.5)

We) = :
v (¥o|D.PeD. W)

To simplify the notation, in the last two equations the dependence on M* and M}
has been omitted, as will be done in the following.

It can be shown [Mar03| that one can use the Lanczos algorithm to calculate the
(5.4). The recursion relation to use is

bn+1‘()0n+1> - H“Pn) + an|80n> - bn|30n—1> ) (56)

an = (PnlH|en), b = [lbn]@n)l], (5.7)

where {|p,);n > 0} is an orthonormal set and a,, and b,, are the Lanczos coefficients,
starting with a given |pg) and by = 0. Taking (5.5) as starting Lanczos vector, the
imaginary part in the LIT becomes a continued fraction in terms of the Lanczos

coefficients as

1
H—EO—O'R—iO'[

Fo =t { (el ) | =t

B) )
by ;
b3

(z —ag) —
o)z ),

(5.8)
where z = Ey + or + io;. In Ref. [Mar03] it is shown that a rapid convergence of
the continued fraction is reached. Note that in the recursion (5.6) only products of
matrices with vectors are needed. Furthermore, in this way, once one has calculated
the Lanczos coefficients for every channel, the LIT for different oz and oy can be
easily evaluated, while using the method of matrix inversion one would need to
repeat the inversion procedure for every value of o.

In this way the total LIT can be written as sum of the Lorentz transforms of the
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individual channels

E(O’R, O'[) = Z ﬁc(O’R, 0'[) y (59)

where for every channel one has Lo (og,07) = NgFC. Here N is connected to the
norm of PoD.,|¥y),

1

1
2 _
NC_2L0+1

VoD, [T |2 = U,|D.P-D.|V,). 1
> Wl D) = g > (WolD:FPeDi| o). (5.10)
ML Mt ML ME

This formalism will be used in the discussion of the results.

5.2 Results for °Li and “He Photoabsorption

For the first six-body photoabsorption calculations we have made use of simple
nucleon-nucleon (NN) potentials, the so-called semirealistic interactions. We have
used three different models: the Malfliet-Tjon (MTI-III) [Mal69] and Minnesota
(MN) [Tho77| potentials, acting in (L =even) states only, and the AV4’ [Pie02], that
includes also (L=odd)-wave interactions. The MTI-III model contains Yukawa-type
potentials and has a strong short range repulsion, while the MN consists of Gauss-
type potentials and has a rather soft core. The MTI-III potential is fitted to the
NN scattering S-wave phase-shifts, Sy and 3S;, up to the pion threshold, whereas
the MN potential is fitted to low-energy two- and three-body data. The AV4’ is a
simplified version of the AV18 potential where only the first central terms are kept
and no tensor force is included. The prime indicates that it is not simply a truncated
version of the AV18, but the parameters are refitted to reproduce the binding energy
of the deuteron. These potentials are all called semirealistic, because, despite their

simple structure, they “effectively” include partially the influence of the tensor force.

As a first step one has to solve the Schrédinger equation to find the solution
for the ground state, making sure that convergence in K° __ is reached. With a
central interaction no coupling between spin and angular momentum is required,
and therefore the good quantum numbers to use for the construction of the wave
functions for “He (and °Li) are: angular momentum Lo = 0 (0), spin Sp = 0 (1),
isospin Ty = 1 (0) with third component 7*=—1 (0). In Table 5.1 we present the
values for binding energies that we have obtained with the three different potential
models. The values reported in Table 5.1 correspond to a calculation with K° = 10

max

for the dominant S-wave potentials and with K° = 14 for the AV4’. In fact,

max
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Table 5.1: Binding energies of °Li and He obtained with EIHH for the three potentials
and the GFMC results for AV4’ [Pie02] in comparison with experimental data. The error
bars of the experimental data are not presented since they are smaller than the second
digit. In the calculations the Coulomb force is always included.

| | MTI-III [ MN | AvV4 [ AV4-GFMC | EXP |
B.E.(°Li) [MeV] | -35.88(20) | -34.89(10) | -36.44(10) -35.81(3) -31.99
B.E.(°He) [MeV] | -31.87(10) | -30.48(10) | -32.87(10) -32.22(3) -29.27

the addition of the (L=odd)-wave interactions leads to a slower convergence in the
grandangular momentum. The binding energies are compared to those obtained
from the Green Function Monte Carlo (GFMC) calculation with the AV4’ potential
[Pie02], and to the experimental values. It is clear that the EIHH results for AV4’
do not agree completely with the GFMC values, since there is a difference of 2%.
One should mention that there are other calculations, with the No Core Shell Model
(NCSM) |Bac05], that give an energy of -36.78 (12) MeV for SLi with AV4’ which
is closer to the EIHH value. For the MN potential without the Coulomb force the
result of NCSM for the binding energy of °Li, -36.50(8) MeV, is compatible with
that of EIHH, -36.64(10) MeV (the difference with the value in Table 5.1 is due to
the Coulomb force). Unfortunately, no GFMC calculations with this potential are
available. The origin of this discrepancy is still not understood, but detailed studies
by the various groups are under way [Bac05]. Nevertheless, it is known that a small
difference in the binding energy of a nucleus does not lead to a dramatic difference
in the absorption cross section. Thus, in the following we will describe in greater

details the calculation of the LIT and of the photoabsorption cross section.

To evaluate the LIT one uses the ground state as input in the Schrodinger-like
equation (5.2). Since the dipole carries angular momentum 1 and isospin 1 the good
quantum numbers for ¥ in case of *He (°Li) are: L =1 (1), S =0 (1), T = 1
and 2 (1), T.=—1 (0). Note that in case of SHe there are two different final isospin
channels, T=1 and 2, since the third possibility T=0 is not possible because of the

conservation of the third component of the isospin, which is T,=—1.

With respect to the convergence of the LIT as a function of K° _ and K.,

max

it was sufficient, in case of the AV4’ potential, to consider the bound state calcu-
lated with K° = 12, yielding as binding energy E, = —32.90 MeV for He and

max

Ey = —36.47 MeV for °Li (note that the small difference with respect to the values
presented in Table 5.1 is due to the different K used). Since U depends on ¥, one

max

has also to check whether the norm (U|U), i.e. £(og,0;), converges for K0 =12

max
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Figure 5.1: (a) LIT for °Li (o7 = 10 MeV) with AV4’ and MTI-III potentials; HH con-
vergence of LIT as function of K, with K¢ = 13 for the AV4’ (b) and K, = 9 for the
MTI-III (c) potential (see definition of R in the text).

Indeed the transforms £(or, 07 = 10 MeV) obtained with K° = 12 and 14 at fixed
Koo differ by less than 1%.

In case of the MTI-IIT and MN potentials the calculations of the LIT are per-
formed with a bound state expansion up to KO _ = 10, which has been found to
be sufficient. In Fig. 5.1 we show the convergence of the LIT for °Li for the AV4’
and the MTI-III potentials. In the upper panel the two LIT results obtained with
the highest considered K,,,, are presented, while in the two lower panels we show
the relative error R in percent, for the two potentials separately. The quantity R is

defined as
‘C(Kmaz) - ‘C(Krel)

R(Kma:caKrel) = E(K l)

x 100 . (5.11)
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Figure 5.2: (a) LIT for ®He (67 = 10 MéV), in the isospin channel T'= 1, with AV4’ and
MN potentials; HH convergence of LIT as function of K., with K, = 13 for the AV4’
(b) and K, = 11 for the MN (c) potential.

One can clearly see quite a nice convergence pattern with increasing K.

In Fig. 5.2 we present an analogous picture for °He with the AV4’ and the MN
potentials. One finds rather satisfactory results, but compared to °Li the AV4’ case
exhibits a slower convergence, e.g., in the lower or range, where mainly strength
from the threshold region is sampled, one has R(K ., = 11) ~ 1% in case of °Li
and R(K,., = 11) ~ 3% in case of °He. Figures 5.1 and 5.2 also illustrate that
the convergence is better for the dominant S-wave potentials, with interaction in
(L=even)-waves only. Thus addition of (L=odd)-wave interactions seems to lead to
a slightly slower convergence of the HH expansion, as already mentioned. In fact
performing LIT calculations with a modified AV4’ potential, namely with switched

off (L=odd)-wave interaction, one gets a convergence pattern similar to those of MN
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58 CHAPTER 5. APPLICATION TO PHOTODISINTEGRATION

or MTI-III potentials.

Here one has to mention the fact that these calculations have been performed on
a parallel machine?. In fact, the dimensionality of the problem to solve is rather big,
since the number of hyperspherical states used in the solution of the Schrédinger
(and Schrédinger-like) equation increases dramatically with K in case of a six-body
system, see e.g. Table 5.2. The impossibility to perform such calculations on a

Table 5.2: Number Ny of hyperspherical harmonics at a given K9, value for the six-

body problem. The total number of states to use in the expansion is obtained multiplying
Ny with the number of Laguerre polynomials ~ 30.

K? 41 6 8 10 12 14

max

Ny | 8|42 | 186 | 695 | 2278 | 6664

simple PC could only be overcome by parallelizing the code and then by running
the programs on more powerful machines?.

Another way to overcome the problem of the increasing number of states consists
in performing a cut on those states which do not contribute in the expansion. In
fact the present results were obtained by eliminating such states. The details of this
technical aspect are described in [Bac04].

In the following the results of the photoabsorption cross section are discussed.
They are obtained using Eq. (3.38), where R(w) is taken from the inversion of the
best calculated LIT.

In Fig. 5.3 we show our final results for the three potentials [Bac02, Bac04].
The three interactions show a qualitatively similar behavior of o(w) differing only
slightly in the position, height and width of the curves. There is one single giant
dipole resonance peak for Li and two well separated peaks for ®He. For the latter one
finds a low-energy peak at about w=8 MeV (present only in the T=1 channel), which
is due to the breakup of the halo part of ‘He and a second bump, at about w=32
MeV (with contributions of about 60% from T=1 and 40 % form T=2 channels),
which is caused by the breakup of the a-core of the nucleus. This requires higher
photon energies, since in order to have a T=2 final state one has to break the core.
The SLi total cross section does not show such a substructure. This is probably
due to the fact that the breakup in two three-body nuclei, 3He + 3H, fills the gap

between the halo and the a-core peaks. Note that in case of °He a corresponding

2IBM SP4 at CINECA (Bologna, Ttaly).
3The parallelization of the code has been part of the present PhD work, but will not be discussed
further, since it is too technical.
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o(w) [mb]

o(w) [mb]

Figure 5.3: Total photoabsorption cross sections for the six-body nuclei with AV4’, MN
and MTI-III potentials: (a) °Li, (b) ®He.

breakup in two identical nuclei, *H + 3H, can not be induced by the dipole operator.

The two peaks of the ®He can also have another interpretation, namely the low

Soft Dipole Giant Dipole

Figure 5.4: Soft mode and giant dipole mode of He.

energy peak may represent a “soft mode” in which the two neutrons of the skin of
the nucleus oscillate against the a-core, whereas the second peak describes an usual
giant dipole resonance, in which all protons move against all neutrons in a collective
motion, as depicted in Fig. 5.4. In the framework of “halo-nuclei” research, this
low-energy peak has been foreseen and it has been called “pigmy resonance” since it
was expected to be small. It is interesting to note that this microscopic calculation

for SHe leads to a soft mode peak which is actually much higher than the so-called
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60 CHAPTER 5. APPLICATION TO PHOTODISINTEGRATION

“giant” dipole resonance. Namely, the separation energy of the two neutrons is very
low (0.975 MeV), which means that they can easily be knocked out by the photon.

41 Av4 — t ]
| MN -—- _ ]
3 MTI-IIl - - /.«"
i) | Aumann et al. »
E |
’§ 2 o
5
11 *He
@
0 .
0 1 2 3 4 5 6 7 8
w [MeV]
4 T T T T T T
| AV —  MN --- MTI-IIl ---
Berman + Junghans et al. o
. 3 | Berman + Shin et al. AT T -
o) R T = =~
c - Berman et al. = /.’/ b
/§ 2 5 ;}i
B/ ’ Qé é&} }
# @
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Figure 5.5: Theoretical and experimental photoabsorption cross section results (see also
text): (a) %He with data from [Aum98, Aum01] (theoretical results convoluted with in-
strumental response function); (b) %Li with experimental data from [Ber65, Jun79, Shi75].

At this point it is interesting to compare the results obtained with available
experimental data. In Fig. 5.5 we show the results of a recent low-energy experiment
by Aumann et al. [Aum98, Aum01] on %He in comparison with our curves. The
experimental cross section was extracted from Coulomb excitation of °He using a
secondary radioactive ‘He beam. It is evident that our theoretical results have
a similar shape, but are shifted by about 1 to 3 MeV towards higher energies,
depending on the potential used.

In case of °Li the experimental situation is a bit more complex. The semi-

inclusive channel Li(v, Y ) measured by Berman et al. [Ber65] corresponds to the
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total o(w) below w = 15.7 MeV. At higher energy channels not involving neutrons
open up (®*He + 3H, 3H + p +d), which are not measured in [Ber65]. Regarding
these last two channels we show two experimental data sets: Junghans et al. [Jun79]
and Shin et al. [Shi75] (for both it is not clear whether *H + d + p is measured or
not). In order to make the comparison simpler, we have summed these data with
the Berman data. At low energies, up to 10 MeV, the comparison of theoretical and
experimental results is similar to the °He case with a shift of the theoretical cross
section to somewhat higher energies. At higher energies the data indicate a faster
fall-off of the cross section than the theory. On the other hand the experimental
situation is clearly not settled as one can note from the different results of Refs.
[Jun79] and [Shi75|. Figure 5.5 shows also that for the AV4’ potential one finds an
enhancement of strength in the threshold region and lower strength at higher energies
compared to the dominant S-wave potentials. It is evident that the inclusion of the
P-wave interaction improves the agreement with experimental data considerably.
This is particularly the case for 5Li. In fact with the AV4’ potential one has quite
a good agreement with experimental data up to about 12 MeV. In case of ®He
the increase of low-energy strength is not sufficient, there is still some discrepancy
with data. Probably, in order to describe the halo structure of this nucleus, more
refined potentials are needed. In particular the spin-orbit (LS) component of the
NN potential could play a role in the determination of the soft dipole resonance. In
fact in a single particle picture of He the two halo neutrons will mainly stay in a
p-state and can interact with one of the core nucleons via the LS-force. Another
reason for the discrepancy could be the convergence. As already pointed out, our
HH convergence is quite satisfactory for °Li, whereas it is still not yet fully complete
in case of ®He. The pronounced halo structure of this nucleus could make the HH
expansion more difficult.

In conclusion one can say that further investigations, both in theory and expe-
riment, are needed: experimental data are too few (°He) or do not present a clear
picture (°Li), and from the theoretical point of view, more effort has to be addressed

to the inclusion of additional parts in the NN potential.

5.3 Results for 'Li Photodisintegration

For the total photoabsorption of “Li again the Argonne potential AV4’ [Pie02] was
used, since it has resulted in a better description of experimental data in case of

6He and °Li photodisintegration. One would expect the addition of the P-wave
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interaction to play a role in all P-shell nuclei, therefore also in “Li.

The ground state of "Li has total angular momentum and parity J™ = % , and
isospin 1y = % with projection 7§ = —%. Using central forces, one has ground state
orbital angular momentum Ly = 1 and spin Sy = 3.

For the ground state calculation of "Li good convergence is reached with K0 =
9 with a binding energy of —45.28(10) MeV. Further increase to KO = 11 leads
only to a small change of the binding energy by 0.05 MeV. In Figure 5.6 we show
the convergence pattern of the binding energy of “Li with the AV4’ potential as a

function of K?°

s Where one can see that a good convergence plateau is reached. In

E,[MeV]

Figure 5.6: Binding energy of "Li with the AV4’ potential as function of the grandangular

momentum KO, .

Table 5.3 the number of hyperspherical functions for each K value is presented.
As one can see, this number is increasing dramatically. Actually, the calculation
of the binding energy with K, = 11 has been performed with a reduction of the

hyperspherical harmonics from 9888 to 4512, cutting those states which did not

contribute to the binding energy at lower K __. Although the convergence pattern

is rather good, the obtained result for the ground state energy is not in agreement
with the one obtained with a GFMC calculation [Pie02], which is —43.9(1) MeV.
Again, as in case of the six-body calculations, the origin of this discrepancy is not
yet understood.

Considering then the dipole transition, there are six different channels allowed
by the selection rules corresponding to angular momenta L = Ly —1, Ly, Lo+ 1, spin
S = Sy and isospins T' = Tj, T + 1 with isospin projection conserved 7% = T§. In
Table 5.4 the good quantum numbers of these channels are listed. This means that

one has to calculate six different LITs, according to what has been discussed above,
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9 . for TLi. The
total number of states to use in the expansion is obtained multiplying Nygy with the
number of Laguerre polynomials ~ 30.

Table 5.3: Number Ngg of hyperspherical harmonics as function of K9

K° 315 | 7 9 11

max

Npg | 2|37 | 325 | 2016 | 9888

in order to obtain the total photoabsorption cross section.

Table 5.4: Good quantum numbers for the channels |¥) with C' =1, ..., 6 allowed by the
dipole selections rules for "Li.

|W1)  [Wa) [W3) [Wy) [Us5) [|Ug)

L 0 0 9 2 1 1
Sl 3 3 3 3 3 3
1 3 1 3 1 3

T 3 3 3 5 3 3
z 1 1 1 1 1 1

") =5 =35 =5 =3 =35 =3

At this point, one can also say that, because of the dipole selection rule K =
Ky £+ 1 between states with hyperangular momenta K and K, an expansion of the
ground state up to a certain K° _implies that in |¥¢) only states with hyperangular
momentum K < K,,,, = K. + 1 contribute to the LIT. Thus it is expected that

for sufficiently high K° __ a further increase of K,,,, beyond K° _+1 will not result

max axr

in a significant change. For this reason one has to consider calculations of the LIT
with KO  for the ground state and K° _ + 1 for the transform, and consequently,

max max

the convergence in K° _ has to be investigated.

In the present work, the best calculation of the LIT corresponds to a final state
with K., = 10. In this case the number of HH-basis states to be included becomes
quite large, especially for the channels with Lo = 1 and 2. For example, for channel
C =3 and K,,,. = 10 one has already 6348 hyperspherical states. This number has
to be multiplied by the number of hyper-radial states, about 30, to obtain the total
number N of states needed in the expansion. Therefore, also in case of the |¥¢) it
is desirable to discard those HH states which give only negligible contributions to
the LIT. To this end one can study the importance of the HH states according to
their spatial symmetry. One finds that quite a few of them can safely be neglected
(for more details see [Bac04b]). The validity of the approximation can be checked
by performing calculations with the complete set of states for lower values of K4,

and comparing the results with those using a truncated set.
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In this way one can accomplish for K,,,, = 10 a sizable reduction from N =
190440 to N = 111900 total basis functions, for C' = 3. A similar reduction has
been done also for C' = 4,5, 6, whereas for C' = 1 and 2 all hyperspherical harmonics
have been considered in the calculation, since with Lo = 0 the number of states is
still not critical. The estimated error introduced by these truncations is of the order
of 0.5%.

The error introduced by the symmetry truncation can also be checked in a second
way. Considering the sum over the norms N2 defined in (5.10) and using complete-

ness, one finds

1 1
2 — Ve |D, |V |* = U,|DID, |V 12

ML ME ME

where the last expression is nothing else than the mean expectation value of the
operator DID, in the ground state, that can be easily calculated (see Ref. [Bac02]).
With respect to Eq. (5.12) we obtained 1.877 [fm?] for the ground state expectation
value with KU = 9, while using a symmetry truncated expansion for |¥¢) up to

K = 10 we get 1.871 [fm2]. The small difference of 0.3% reflects the small error

introduced by the symmetry truncation.

As next point we address the quality of convergence of the LIT with respect to
the HH expansion. The best calculations we could perform for the LIT are those
with KO =9 and K,,,, = 10, which are denoted by Lc(9/10) (note that in this
case the selection rule of the dipole for the grandangular momentum is fulfilled). It
is likely, that a further increase to KO = 11 and K0, = 12, Lc(11/12) would
lead to an improvement of the convergence, and a comparison between L(9/10)
and Lc(11/12) could give the order of magnitude of the numerical accuracy of the
calculations. Although the calculation of the ground state for K2 = 11 can be
performed, the corresponding calculation of the final state with K., = 12, i.e.
Lc(11/12), is beyond our present technical capabilities, whereas it can be done
for Kyper = 10, i.e. L(11/10) can be calculated (in this case the dipole selection
rule is not exhausted). Thus the question now is, how much is the convergence
improved in going from £-(9/10) to £~(11/10). The answer to this question can be
taken as estimation of the error in the calculation. Therefore, we define the relative

percentage error by

Lc(11/10) = L(9/10)
Lc(11/10)

Re = x 100, (5.13)
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Figure 5.7: Relative error in percent of the calculation of the LITs (o7 = 10 MeV) for
some channel C (see text for details).

and study the behavior of R for the different channels. In Fig. 5.7 the convergence
pattern of R is shown for four channels. One can readily see that the relative error
is of about 5% for the presented channels in the energy range of interest. Assuming
that the other two channels behave similarly, one can estimate a total uncertainty
of about 5%.

Now results for photodisintegration of "Li will be discussed. In Fig. 5.9 we
show both the calculated total cross section and the contributions of the separate
channels. The energetically lowest open channel is the 7' = % channel associated
with the reaction "Li +v — “He +*H with a threshold of 2.47 MeV (the theoretical
threshold obtained with the AV4’ potential is 4.17 MeV), whereas the lowest open
T = % channel corresponds to “Li ++ — ®He + p, whose threshold is 9.975 MeV
(the theoretical value is 12.41 MeV). In Fig. 5.8 the theoretical thresholds have
been used. For the 7' = 1/2 channels in Fig. 5.8 (a) one readily sees that by
far the largest contribution comes from channel 3 rising steeply above threshold,
reaching a maximum around 17 MeV and falling off only slowly. Channel 5 is
the next in importance rising only slowly above 10 MeV with a maximum near
33 MeV and becoming then comparable in size to channel 3. Only in the very
near threshold region channel 1 is dominant but then becomes much smaller than
the other two channels. In Fig. 5.8 (b) the 7" = 3/2 channels have two dominant
contributions, almost similar in size. Channel 4 is slightly larger showing also a
steep rise at threshold and slow fall-off with a maximum near 23 MeV whereas the
second in importance, channel 6, shows a slow rise and a peak around 40 MeV.

Compared to these two channels, the remaining channel 2 appears quite marginal.
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Figure 5.8: Contribution of various channels to the total cross section. Panels (a) and (b)
show the separate contributions of the different channels and their sum for 7" = 1/2 and
T = 3/2, respectively. Panel (c) shows again the 7' = 1/2 and T = 3/2 contributions and
the total cross section.

In view of the two maxima of almost equal height with a separation by about
17 MeV the total T = 3/2-contribution exhibits a broader distribution than the
T = 1/2-contribution with a shoulder on the low-energy side. The maxima of both
contributions have about the same size but are separated by about 20 MeV. Thus,
the resulting total cross section in Fig. 5.8 (c) shows also a broad distribution with
a steep rise right above threshold, a slight shoulder above the maximum and a slow
fall-off at higher energies. This characteristic behavior is indeed exhibited by the
experimental data on “Li in Fig. 5.9 where we show a comparison of the theoretical
result to experimental data from [Ahr75]. Note that the theoretical cross section
is shifted here from the theoretical threshold to the experimental one. One readily

notes that the gross properties of the data, steep rise, broad maximum and slow
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Figure 5.9: Comparison of the theoretical photoabsorption cross section calculated with
AV4’ potential with experimental data from [Ahr75].

fall off, are very well reproduced quantitatively over the whole energy region by
the theory. It is worthwhile to emphasize that this result is based on an ab initio
calculation in which the complicated final state interaction of the 7-body system
is rigorously taken into account by application of the LIT method. No adjustable
parameters were used, the sole ingredient being the AV4’ NN potential model. It
remains to be seen whether the slight variation of the data near and above the
maximum will also be found in an experiment with improved accuracy. Therefore,
a new measurement of the total cross section with a higher precision, especially
in energy resolution, would be very desirable. Furthermore, in order to clarify the
question whether a simple semi-realistic potential like the AV4’ model is sufficient for
an accurate theoretical description of this reaction, one should perform calculations

with more realistic nuclear forces including a 3N-force.
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Chapter 6
Application to Electron Scattering

In this chapter we present the results obtained for the longitudinal and transverse
response functions of *He with a microscopic calculation performed via the LIT
method in conjunction with the EIHH. In the discussion two main sections are
presented, where the longitudinal and transverse response functions and the corre-

sponding charge and current operators, are treated separately.

6.1 Longitudinal Response Function

In an inclusive electron scattering experiment it is possible to disentangle the longi-
tudinal response function form the transverse response via a Rosenbluth separation
as shown in Chapter 3. We recall that the longitudinal response function, given in

(3.42), is defined by means of the charge operator p(q) as
Ro(w,a) = F 100 o) [90) 8BS — o — ), (6.1)
f

where in the present case Uy is the ground state of *He with binding energy Ej, and
U, is an unmeasured final state with energy F;. The complication of the explicit
calculation of all final states in the (6.1) is circumvented via the LIT method, where
one has to solve the bound state equation

(H = Ey +0)|¥) = jw, q)|[¥o). (6.2)

We use a non-relativistic dynamical model and we take the single-particle form
of the electromagnetic charge operator as in Eq. (3.34). Our purpose is to study

the longitudinal response Rj(w,q) as a function of the energy transfer w and for
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70 CHAPTER 6. APPLICATION TO ELECTRON SCATTERING

a fixed value of the three-momentum modulus ¢ = |q|. We are mainly interested
in exploring the region of the quasi-elastic peak, from the lowest disintegration

threshold up to pion-production.

The longitudinal response function Ry (w,q) has already been calculated for “‘He
with the LIT method [Efr97a] using as NN interaction the simple semirealistic TN
potential [Efr97a, Efr99a|, that provides a very good description of the S-wave phase
shift up to pion threshold. A very good agreement with the experimental data from
|[Dyt88, Zgh94| was obtained in the quasi-elastic region for three values of momentum
transfer ¢ = 300, 400 and 500 MeV/c. In the calculation presented in [Efr97a]
a hyperspherical harmonics expansion of the wave function was implemented. A
correlation method was used to accelerate the convergence and the matrix elements

were evaluated with the help of a Monte Carlo calculation.

At present, we are interested in doing an analogous calculation, however using
the EIHH method, since it is numerically much faster and the convergence pattern
has been proven to be better [Bar01b].

The charge operator we use for solving the (6.2) has the following form

- 1473 1—7 " iar!
poy(w,a) =Y | —5~Gh(g) + LGR(q) e, (6.3)
2 2

k

where we have taken the one-body charge of (3.34), expressed in momentum space,
and the electric nucleon form factors G%/ "(qz) have been introduced. The 7} is
the third component of the isospin and rj, is the coordinate in the center of mass
frame corresponding to particle k. Note that we have separated the electric charge
e, since it is customary to incorporate it in the Mott cross section appearing in the
expression of the inclusive cross section, as shown in (3.40). We use the usual dipole
fit for the Sachs form factors G%/ "(q2) |Gal71]. Since they depend on the squared

2 — ¢%, we insert their contribution only after the

four-momentum transfer ¢> = w
inversion of the LIT, where we have the information of the energy w in the response
function. This means, we first separate the charge operator into an isoscalar (s) and

in an isovector (v) part, for a fixed value of the momentum q, as

poy(w.a) = (Ghlap) + Gilap) (@)
+ (Gg(qp) — Gu(ap)) Py (@), (6.4)
where the form factors are factorized in front and are not anymore included in the
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isoscalar and isovector charge operators, defined as
s 1 iq-r)
/)(1)(01) = 256 Fs
k
v TI? iq-r!
pyl@) = D e (6.5)
k

which do not depend on the energy w. The difference between the isoscalar and
isovector charge is in the isospin part of the operator, which is simply % times an
unit operator for the isoscalar part and %’? for the isovector part.

We firstly solve the Schrodinger-like equation with the two operators in (6.5),
providing the two solutions for (U|¥) with the Lanczos method, as discussed in
Chapter 5. Only after the inversion of the LIT, where we obtain an isoscalar and an
isovector response function, depending on the energy w, we can add the information
of the form factors. This is done at the very end, as will be shown later.

In the calculation of the matrix elements of the one-body operators in (6.5) we
will make use of the antisymmetrization of the wave function as in Eq. (4.13), such
that the real matrix element one has to consider corresponds to the operator acting
only on the coordinate of the last particle. This means that we can practically

consider the following form for our isoscalar and isovector charge operators

s iq-r’ 1
/)(1)((1) = Ae A§,
v — iq-r’ T.i
plyla) = Ae A (6.6)

We perform a multipole expansion of (6.6) by means of the isoscalar and isovector
Coulomb multipoles. A detailed description of the calculation of these multipoles
is presented in Appendix C. Choosing the direction of q to be along the Z axis, the

multipole expansion reads

ity (@) = C"(a), (6.7)

where C%/"(q) are the isoscalar (s) and isovector (v) Coulomb multipoles. The
expansion in multipoles is performed up to convergence in .J, which depends on the
value of momentum transfer ¢ considered. This means that we solve a Schrodinger-
like equation for every multipole. Obviously, the LIT of the response of the isoscalar
charge operator in (6.5) is given by the sum of the LIT for every C5(g), and the
same for the isovector part.
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We have performed the calculation using two semirealistic interactions, the TN
potential [Efr99a], yielding for “He a ground state energy of Fy = —31.34 MeV, and
the Malfliet-Tjon potential [Mal69|, yielding Ey = —30.56 MeV. We have studied
the response Ry (w,q) as function of the energy w, for two fixed values of ¢ = 300

and 500 MeV /c along Z; for this reason we will write from now only R (w).
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Figure 6.1: The Lorentz integral transform of the various isovector Coulomb multipoles,
consecutively summed, as a function of the parameter orp with oy = 20 MeV fixed. The
MTI-III potential is used and results for momentum transfer ¢ = 300 MeV /c are shown in
the upper panel and for ¢ = 500 MeV /c in the lower panel.

In Figure 6.1 we firstly present the LIT for the various isovector multipoles for
two values of momentum transfer ¢ = 300 and ¢ = 500 MeV /¢, obtained with
the MTI-III potential. We start from the transform L(og, o;) of the first isovector
Coulomb multipole C¢ and then we add the contribution of the transform of the
next multipole, C’f, then C~'§, etc., until convergence is reached. One readily sees
that in case of momentum transfer ¢ = 300 MeV/c a good convergence of the

multipole expansion is reached with five Coulomb multipoles, up to C’}f, whereas
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for a momentum transfer ¢ = 500 MeV /¢ two more multipoles are needed and the
maximal Coulomb multipole considered is C¥.

The calculations of the LITs have been performed with an expansion of the
grandangular momentum K9 = 10 for the ground state, K., = 9 for the odd
Coulomb multipoles and K,,,, = 10 for the even ones. A very good convergence
in the HH expansion is reached, and the corresponding convergence error can be
estimated to be below 0.5%. An analogous calculation is performed for the isoscalar

Coulomb multipoles.
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Figure 6.2: The response functions of the various isovector Coulomb multipoles, recur-
sively summed, as a function of the center of mass energy w obtained with the MTI-III
potential: results for momentum transfer ¢ = 300 MeV/c in the upper panel and for
g = 500 MeV /c in the lower panel.

Inverting the various LITs, we get a convergence pattern for the longitudinal
isovector response function, which is depicted in Figure 6.2. At this level, no nucleon
form factors have been included yet. One recognizes the quasi-elastic regime, which

is peaked at a center of mass energy w of about 70 MeV in case of momentum
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transfer ¢ = 300 MeV /c, while at ¢ = 500 MeV /c the broader peak is found at
about 120 MeV. The presented threshold behavior is also very different: in case of
momentum ¢ = 300 MeV /c a very steep rise above threshold with a high shoulder
is found, while for ¢ = 500 MeV /c a much slower rise of the response function with

a smaller shoulder is seen.
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Figure 6.3: Response functions of the isoscalar Coulomb multipoles with the MTI-III:
comparison of the C’g contribution with the sum of all contributing multipoles. Results
for momentum transfer ¢ = 300 MeV/c in the upper panel and for ¢ = 500 MeV /c in the
lower panel.

The isoscalar multipoles show a very similar convergence pattern in the expansion
in J with the difference that there is more strength in the multipole ég, especially
close to threshold. In Figure 6.3 we present the response of the multipole C’S in
comparison with the total isoscalar longitudinal response obtained from the sum of
all Coulomb multipoles needed to reach convergence. One notes that in the low
energy region the ég multipole presents a peak, which is very pronounced in case

of momentum transfer ¢ = 300 MeV /c, and less pronounced, but still relevant, for
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the momentum value ¢ = 500 MeV /c. We have to say that the response of the C’S
is obtained from an inversion of the LIT, where the elastic contribution has been
taken out. In fact, the C§ transition on *He nucleus can give rise to an elastic
reaction in which the final state is the same as the initial one with total spin and
parity J™ = 0%. This contribution is present in the LIT and therefore it has to
be subtracted in order to consider the pure inelastic response function above the
disintegration threshold. This is obtained performing the inversion of the LIT with
the usual basis state (see Chapter 2) and an additional elastic term like cd(w). From
the best fit of the inversion procedure, one gets the coefficient ¢, allowing one to

remove this contribution from the total response.

In order to compare the theoretical results with experimental data one has to
consider the response as a function of the energy in the laboratory system and
not of the center of mass, therefore we have to consider the recoil energy shift as
Wigh = W + %. At this point we can also add the information of the form factors
(G% + G%) and (G% — G%) for the isoscalar and isovector part, respectively, with
G%'/n(wl%zb —¢*).

Our theoretical curves obtained with the MTI-III and TN potential are shown in
Figure 6.4 in comparison with the available experimental data form Bates [Dyt88],
Saclay [Zgh94] and finally with a world data fit from [Car02, Jou04]. The total
longitudinal response is dominated by the isoscalar response close to threshold,
where one recognizes a peak in case of ¢ = 300 MeV and a shoulder in case of
q = 500 MeV due to the ég multipole. This structure is not present in the data as
regarding the ¢ = 300 MeV measurements, while a similar threshold behavior is seen
at ¢ = 500 MeV in the data. Furthermore, one notes that for the lower momentum
value the theoretical results tend to overestimate the data from Bates and from the
world data set, but also at some point the higher Saclay data. The same happens in
case of ¢ = 500 MeV, where our curve reproduces pretty well the shape of the data,
but it is a bit higher. This is probably due to the fact that no relativistic corrections
have been included. In fact, in [Efr97a] where a relativistic correction, the Darwin
Foldy term, has been accounted for via a modification of the form factors [DeF84],
the agreement with data at the higher momentum transfer value was better. From
Figure 6.4 one can also see that the two semirealistic potentials, the MTI-III [Mal69]
and the TN |Efr99a] lead to a very similar description of the longitudinal response
function of *He, although for the MTI-III results one always finds slightly more
strength than for the TN potential.

Finally, the effect of the tensor force and of other terms of the NN interaction on

75



76

CHAPTER 6. APPLICATION TO ELECTRON SCATTERING

this observable could be investigated only by performing a microscopic calculation
with realistic interactions.
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Figure 6.4: Comparison of the theoretical results obtained with the MTI-III and TN
potential for the longitudinal response with the available experimental data form Bates
[Dyt88|, Saclay [Zgh94| and a world data fit from [Car02, Jou04]|. Results for momentum
transfer ¢ = 300 MeV /c in the upper panel and for ¢ = 500 MeV /c in the lower panel.

Comparing these results with the standard plane wave impulse approximation
(PWIA) calculations in the literature, see e.g. [Cio91, Lag91|, we can see that the
inclusion of the FSI leads to a much better description of the experimental data.
The PWIA predicts namely 40% strength more than a full calculation, while at
g = 500 MeV the overestimation is of the order of 10% [Car92, Efr98].
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6.2 Transverse Response Function

For the inclusive electron scattering we recall that the transverse response is given
by

Rr(w, q) :I [ ] T w, @) [Wo)* + [(¥ | T (w, @) [¥0)[*] 6(w — Ef — Ey) (6.8)
f

where the operators J.(w, q) are the components of the transverse current J(w, q) in
the spherical basis and the energy dependence is due to the presence of form factors
for the nucleons as in case of the charge operator. In an inclusive unpolarized
reaction the two projections of the transverse components of the current give the

same contribution, i.e.
Y1051 2t 1w =Y 1001 - ) ) (6.9
f f
Therefore, it is sufficient to calculate one contribution and then use

Re(w. @) =Y 2100|100 [¥0) 80— E; — Eu). (6.10)
f

In the literature one finds several calculations of the above quantity in the plane
wave impulse approximation (PWIA) for different nuclei, e.g. [Cio91, Lag91|, which
slightly underestimate the transverse response shown by data in the quasi-elastic
region. The transverse response function of a nucleus has not yet been calculated
with the LIT and the EIHH methods and at present our emphasis lies on the cal-
culation of Rr(w,q) in case of “He. As discussed in Chapter 3, in a non-relativistic
approach the current operator is given by a one-body and a two-body contribution

J(wv q) = J(l)(w’ q) + J(Q)(w> CI> = Z Ji(w’ q) + Z Jij(wa q)- (6'11)

i<j

The one-body current operator consists in the spin current J fl) (w,q) and in the
convection current J{; (w, q), whereas the two-body operator J(2)(w, q) is the already
mentioned meson exchange current (MEC), which depends on the interaction model

used.

The lack of transverse strength found by the theory was usually attributed to the
contribution of the two-body current to the response function, which was missing

or not completely taken into account. However, different calculations which include
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two-body currents have found different effects, between 10% and 40%, such that the
picture is not yet clear. Our aim consists in the calculation of the exact transverse
response function of “He, where the FSI is completely taken into account and a gauge
invariant model for the current is constructed. For this purpose, we will consider

firstly a simple semirealistic interaction model, to start to tackle the problem.

In the region of the quasi-elastic peak it is well known from standard PWIA
calculations, that the dominant term of the current is the one-body spin part. For
this reason we will start to investigate the transverse spin current response. Then,

we will also treat the convection current and finally the consistent MEC.

In analogy to what done in case of the longitudinal response, in order to study
Rr(w,q) with the full FSI we use the fact that the energy dependence of the ex-
citation operators is included in the form factors and we solve the Schrodinger-like
equation

(H — By + o)) = V2, (g) | ¥0), (6.12)
where on the right-hand-side we have now the current operator as a function of the
momentum only. We add the energy dependence after the inversion of the transform.

In the following we present three sections where we discuss the calculation of the
matrix elements of J,(¢) and of the corresponding responses in case of the three

current operators, J fl), J f1) and J o).

6.2.1 The Spin Current

The spin current has already been defined in Eq. (3.35). It has a purely transverse

contribution and in the momentum space it assumes the form

s 1 147 " 1—73 ar!
Tl = 5 3 (G5 + Gl 5T ) x @i, (613
k

where the charge e has not been written, since it is included in the Mott cross
section (Eq. (3.40)). In the above expressions the magnetic form factors of proton
and neutron Gﬁ//[n(qi) are defined through the electric form factors and the magnetic
moments as G%n(qi) = pp/nG'y(q)), where p, = 2.793 py and p, = —1.913 py.
The o}, are the Pauli spin matrices, 77 is the third component of the isospin and

finally r) are the coordinates of particle & in the center of mass frame.

In analogy to what has been done for the charge operator, the spin current can
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be separated in isoscalar (s) and isovector (v) part as

wlw.a) = (Gh(a) +C(a)I5) (@)
+ (Ghi(ap) — Gir(aD) I (@), (6.14)

where the form factors are kept in front and thus are not anymore included in the

isovector and isoscalar spin current operators, defined as

8(3) o Z 1 iqr’,
Joy (@) = o g 5(0% x q)e" I
- 3
s(v) _ ¢ T_k iqr,
Joy (@) = o ) (o) x q)e' M, (6.15)

which do not depend on the energy w. As in case of the charge operator, we firstly
provide the solutions of (U|¥) for the two operators in Eq. (6.15) with a fixed value
of momentum transfer |q| = ¢. The contribution of the form factors, which are
functions of ¢2 = w? — ¢, will be included at the very end, after the inversion of the
Lorentz transforms, where we have a response as function of the energy w.

In the calculation of the matrix elements of the one-body operators in (6.15) we
will make use of the antisymmetrization of the wave function as in Eq. (4.13), such
that one has to consider only the operator acting on the last coordinate. This means
we can use the following redefinition of the isoscalar and isovector spin currents as

i

S(s ,L'r/ 1
J(i))(Q) = A%(UAXCI)QCIA§

i iqr/ TEZ
A%(UA X q)e'tra =, (6.16)

I (@ ;

(1)

These last operators can be decomposed into multipoles yielding following expansion

for the components of the isoscalar and isovector spin currents with q || 2

Tt (@) = Z}: (B5"(q) + M5 (q)), (6.17)

where E3/*(q) are the electric and M%/(q) the magnetic isoscalar (s) and isovector

(v) multipoles, respectively. A detailed derivation of the multipole decomposition
of the spin current and the description of the corresponding matrix elements is
presented in Appendix C.

The expansion in multipoles is performed up to convergence in J, which depends

on the value of momentum transfer q considered. As for the longitudinal response, we
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solve a Schrodinger-like equation for every multipole and the LIT of the response of
the isoscalar spin current operator in (6.13) is given by the sum of the LIT for every
E*%(q) and M3(q) multipoles, and analogously for the isovector part. No interference
between electric and magnetic moments exists, since they have different parity.
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Figure 6.5: The Lorentz integral transform of the various isovector electric and magnetic
multipoles, consecutively summed, as a function of the parameter o — Ey with o7 = 20
MeV fixed. The TN potential is used (Ey = —31.34 MeV) and the momentum transfer is
g = 300 MeV /c.

We have performed the calculation using two semirealistic interactions, the TN
potential [Efr99a] and the Malfliet-Tjon potential [Mal69]. We have studied the
contribution of the spin current to Ry (w,q) for two fixed values of ¢ = 300 and 500
MeV /c along Z; for this reason we will write from now only Rr(w).

In Figure 6.5 we firstly present the LIT for the various isovector electric and
magnetic multipoles for the value of momentum transfer ¢ = 300 MeV /c obtained
with the TN potential. We start from the transform L(og, o) of the first isovector
multipole EV(q) and M7 (q), respectively, and then we add the contribution of the
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Figure 6.6: The Lorentz integral transform of the various isovector electric and magnetic
multipoles, consecutively summed, as a function of the parameter op — Ey with o7 = 20
MeV fixed. The TN potential is used (Ey = —31.34 MeV) and the momentum transfer is
g = 500 MeV /c.

transform of the next multipoles, FY(q) and M3 (q) and so on, until convergence is
reached. One readily sees that in case of the electric multipoles a good convergence
of the expansion is reached considering all multipoles up to J = 4, whereas for the
magnetic multipole one more contribution (J = 5) has been added. This is due
to the fact that the strength of the multipole strongly depends on the order of the
Bessel function appearing in the multipole expression (see (C.24)). In case of the
electric multipoles Ej/ “(q) one deals with the Bessel function of order .J, whereas in
case of Mj/ “(q) two Bessel functions contribute, the J — 1 and the J + 1, among
which the lower one dominates. In the light of the fact that the Ej/ “(q) and the

Mjfl (¢) contain the same Bessel function j;(¢r’), the convergence pattern shown
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82 CHAPTER 6. APPLICATION TO ELECTRON SCATTERING

in Fig. 6.5 should be clear. A similar picture is obtained for the MTI-III potential.

In case of the momentum transfer ¢ = 500 MeV /¢ the convergence of the mul-
tipole expansion is clearly slower than for ¢ = 300 MeV /¢ and two more multipoles
have to be considered, as shown in Fig. 6.6. For the momentum transfer ¢ = 500
MeV/c the LITs present some small oscillation in the tail, as one can see from
Fig. 6.6. This is due to the fact that in the calculation of the matrix elements we
have kept the same parameters for the hyper-radial and hyperangular quadrature
integration as in case of ¢ = 300 MeV/c. Since the momentum transfer here is
higher, the numerical integrations are not anymore as accurate as in Fig. 6.5. This
effect can be easily removed increasing for example the number of Laguerre poly-
nomials used in the expansion of the wave function and accordingly the number of
grid-points used in the quadrature integration. Looking at Fig. 6.6 one can see that
such oscillations compensate each other in the sum of all multipole, where they are
much less pronounced. Nevertheless, they do not have any effect on the inversion
procedure, which is stable to such regular small oscillations in the tail [Efr99al. We
have verified it, performing some calculations of the LIT with an improved numerical

integration, which is clearly more time consuming.

We have calculated the transforms with an expansion of the grandangular mo-
mentum K¢, . = 10 for the ground state, K., = 9 for the odd electric multipoles
and K,,,, = 10 for the even electric ones. In case of the magnetic multipole we have
used on the contrary K,,,, = 10 for the odd and K,,,, = 9 for the even multipoles,
due to the opposite parity. A very good convergence in the HH expansion is reached,

and the corresponding convergence error can be estimated to be below 0.5%.

In order to compare the theoretical results with experimental data we have to
invert the transforms of the multipoles and then to consider the responses as a
function of the energy in the laboratory system wy,;, = w + %. At this level the
information of the form factors (G4, + G%,) and (G4, — G%,) for the isoscalar and
isovector part, respectively, can be added using Gﬁ//ln(wfab —q).

As in case of the longitudinal response [Efr97a], one can invert the transform of
every multipole and then sum the inversions or, on the contrary, one can firstly sum
the LITs and then invert the sum of the transforms. These two procedures have to
give the same result, up to a small numerical error, if the inversions are stable. We
prefer to invert the single multipoles, since in this case one can judge the stability
of each inversion, especially if the different multipoles present different structures.

Nevertheless, the percentage difference of the two methods is about 1%.

In Fig. 6.7 we show the total transverse response to the spin current obtained
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Figure 6.7: Comparison of the theoretical results obtained with the MTI-III and TN
potential for the transverse response of the spin current with the available experimental
data form Bates [Dyt88], Saclay [Zgh94] and a world data fit from [Car02, Jou04]. Results
for momentum transfer ¢ = 300 MeV /c in the upper panel and for ¢ = 500 MeV /c in the
lower panel.

with the MTI-IIT and TN potentials in comparison with the available experimental
data form Bates [Dyt88|, Saclay [Zgh94] and finally with a world data fit from
|Car02, Jou04|. As in case of the longitudinal response, also Ry(w) deriving from
J o (q) is dominated by the quasi-elastic peak for both the momentum transfer values
g = 300 MeV/c and ¢ = 500 MeV /c. One can see that for the lower momentum
value the two potentials lead to a very similar description of the response, although
the MTI-IIT presents a slightly more pronounced structure at low energy. This
substructure is found also in case of ¢ = 500 MeV /c, close to threshold and it is

mainly due to the effect of E; and M; excitations.

From Fig. 6.7 it is clear that the theoretical curves miss some strength, especially

in the peak region. It is very likely that part of the missing strength will be provided
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by the not yet included current contributions of Jfl)(w, q) and J(oy(w,q). On the
other hand, we have to remember that we are using simple semirealistic interactions,
whose capability to give a detailed description of the nuclear dynamics can only be
tested comparing their results with calculations obtained with realistic potentials.
The first question, whether the missing strength is due to the missing parts of the
current can be answered adding also the contribution of the convection current and

of the MEC to the transverse response.

6.2.2 The Convection Current

First of all we recall that the convection current, as already defined in Eq. (3.35), is

given by

2m

(%) = g 30 5 e d(x ) (618

where we have omitted the charge e, since as usual it is already included in the Mott
cross section. Note that the convection current is written as function of the coordi-
nates r; of a generic reference frame and of the corresponding conjugate variables
pr = —i V.

In the momentum space, applying a Fourier transform, it becomes

3

) = g e et (Gta) 5+ i) )

where we have added the electric form factors of the proton and of the neutron
functions of the four-momentum squared qi. Writing explicitly the anticommutator,

one can separate the convection current into two terms as

wa) = Jc’f(w7q>+J§f( q)
1 1—
= Zez“k(Gp >+T’“+G}f;<qi) 27’“)

; 1+ 7 1—73
iqr 2 k n( 2 k
+ E Ek eI py (Gij(qﬂ) 5 + Gi(qs) 5 )7 (6.19)

where the first part is purely longitudinal with respect to the direction of q, while
the second one contains a longitudinal and a transverse part.

Now we would like to have the intrinsic convection current as a function of the
coordinates in the center of mass frame as in case of the charge and spin current

where we wrote the operators as functions of the coordinates rj. If the operators
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depend on the coordinates r; only, as for the charge, the spin current and the purely
longitudinal convection current, one can simply apply the transformation (4.1) to
the relative coordinates r}.. In the center of mass frame clearly rj = ry, such that
the operators remain the same in the relative coordinate system. On the other
hand, in case of the second part of the convection current, Jf’llg (w,q), we also have
a dependence on the conjugate momenta py, which have to be written as a function
of the relative and center of mass momenta. However, the relative momenta are
not a set of A independent variables and we cannot simply define the conjugate
variable p}, = —iV}, since the usual commutation relation is not satisfied, but it

holds [r},,, P/jg] = i(k; — %)0ap- In fact, as for the coordinates ry, also the gradients

= _d
k — drj,

internal coordinate involves all the other coordinates, since >, rj, = 0. For this

are not linearly independent, which means that the derivative on a certain

reason it is always preferable to work with independent coordinates in order to have
conjugate momenta which are defined as usual through the simple derivative. Thus,
we will firstly make use of the antisymmetrization of the wave function and then we
will relate the coordinate r 4 and the momentum p4 to the Jacobi coordinates which
are linearly independent and where the conjugate momenta are well defined via the
corresponding gradients. Therefore, concerning the convection current J fllg (w,q),

we firstly separate it in isoscalar and isovector parts as

) = (G + GRa) I @) + (@) - G )3 @), (6:20)

where the isoscalar and isovector operators do not depend on the energy w anymore

and are defined as

1 1
JC,b(S) = A— qr A -
(1) (Q) me | ) 5

C v 1 ) 3
Jei )(q) = A_ezqrApAT_A
m

o 5 (6.21)

At this point, using the transformation (4.2) to Jacobi coordinates, one finds

Al T (6.22)
ry=1\/—— — .
A A Na \/an
where 1, = VAR,,,. Calling the Jacobi conjugate coordinates q, = —idin, one has
A-1 1
Pa =\~ da + ﬁQO- (6.23)
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In the center of mass frame we have 1, = 0 and furthermore the contribution of
do can be neglected, since it does not act on the intrinsic wave function we are
interested in. This means we can simply consider the following expressions

A—1 A—1
r, = T A and p/y = 7 da-1 (6.24)

If we now want to write the operators as a function of the internal coordinate ry,
as done for the charge and spin current, we can write
— 1 A-1d A—-14d

— _ e e 2
da- A dng, A ar, (6:25)

Finally, the operators in (6.21) become

o) () = AL e Om( ) (6.26)

1) m s/v

as function of the internal coordinate r’,, where the isospin operator OTTZ( ta) is
s1rnply 1 and " for the isoscalar and isovector part, respectively. Note that they
contain a derlvatlve that will act on the wave functions on the right in the matrix

elements. The treatment of such a derivative term is discussed in Appendix C.

In analogy to what has been done for the spin current, also the .J, (¢) component
of the transverse convection current can be expanded in isoscalar and isovector elec-

tric and magnetic multipoles. Namely, considering that the transverse component

of the convection current is included in the operator J7, ) s/ ”)(q), we can write
c,b(s/v s/v s/v
TS q) = (B (a) + M3 (q)). (6.27)

J

The explicit derivation of the multipole expansion of the convection current is pre-
sented in Appendix C. Clearly the multipole expansion has to be considered up to
convergence in J and the effect on the response function can be studied. It is well
known from the literature, that the contribution of the convection current to the
transverse response function is very small with respect to that of the spin current at
medium momentum transfer. This can already be seen from the fact that the spin
current in (6.13) is proportional to g, while this is not the case of the transverse
convection current, as in J fll; of (6.19). This means that with increasing momentum
transfer q the effect of the convection current on the response function becomes

smaller with respect to the spin part.

86



6.2. TRANSVERSE RESPONSE FUNCTION 87

Furthermore, since we are considering as NN interactions the TN [Efr99a| and the
MTI-III [Mal69] potential, for which [V, p(x)] # 0 holds, also the MEC contribute
to the transverse response. The effect of the convection and of the two-body current
to the first electric multipole F; will be discussed in the section on the Siegert test
presented in this Chapter. In the following we firstly discuss the meson exchange

current in case of the MTI-III potential.

6.2.3 The Meson Exchange Current

Since our final aim is to study exactly the transverse response function of the electro-
disintegration of *He including all current contributions, we have also to deal with
the already mentioned MEC. In Chapter 3 we stressed the fact that the explicit form
of the two-body current depends on the potential model used and can be recovered
using the minimal coupling method. In this section we will apply the latter to the
case of the MTI-IIT potential. We choose to work with the MTI-III since it has
the simple form of a scalar meson exchange and therefore the construction of the
corresponding MEC is straightforward (see also Appendix A), since it consists only

in meson in flight terms, as depicted in Fig. 6.8. This is not the case of the TN

N N
Meson in Flight Term

Figure 6.8: Diagram of the meson-in-flight two-body current.

interaction, where one would firstly have to rewrite the r-space part of the potential
as a superposition of meson propagators and then to build the corresponding MEC.
In the following we present a detailed derivation of the two-body current in case of
the MTI-III.

The Malfliet-Tjon potential is defined as

V(r) = Viz(r)Prs + Vai(r) Ps, (6.28)
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where r = |r| = |r; — rg|, the radial functions are
e—mr e—mar
‘/13(’/’) = A - B s
T r
e—mir e—mar
Vsi(r) = C m—— D , (6.29)
T

and the projectors are given by

P13: ]_—0'1'0'2 3"‘7’1'7’2
4 4

3+01'Ug ]_—7'1'7'2
P = ) .
e

The constants A, B, C, D and the masses mj, my can be found also in [Bar01]. If we

call the radial quantity

6—m1/2r

Jml/Q (T) =

(6.31)

dmr
and we recognize it to be a propagator of a scalar meson with mass m/,, we get the

following expression for the Malfliet-Tjon potential

Vi) = o <AJm1 (r) = By (1) + Cy (1) — Dy (7“)) (6.32)
v ( C3ATy (F) + 3By (1) + Oy () — Dy m) —
v & (AJml (1) = By () — 3C Ty (r) + 3D, (7’)) S
v 2 ( Aoy (F) + By (1) — Cy () + D, (7’)) (01-02) (11-73).

In the last expression one recognizes that the first term consists of the purely central
part of the potential, the second part contains only a spin dependence, the third
only an isospin dependence and finally the last term is the spin-isospin part. For our
purpose, the only parts of the potential that need to be considered are those which

do not commute with the charge operator p(x) = elJ;Tf)é(x —ry) + 61+2T236(X —15),

therefore the part of the potential containing an isospin dependence. We will write

this part as non-commuting (NC) potential

VNC(r) =4 71 - Ty (aJm1 (r) + By () + (Vs (1) + 6Ty (1)) 01 - 0'2), (6.33)
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where the new constants are defined as

1 1
1 1
7:—1—6(A+C), 6:E(B+D)'

The corresponding meson exchange current is very easily recovered. In fact, applying
the minimal coupling to the non commuting potential we will get only meson in
flight terms, since the only momentum dependence is in the propagators J,,, , ().

Therefore, the consistent meson exchange current will have the following form

GUTI-T () = (6.34)

> >
A (71 X 72)° {aJml(lh — &)V dm, (X = 1af) + B, (|11 = X[) VoS, (|2 — 72

<> <>
+(wml<\r1 )T ([ — 1) + 81— 2]) T T (1 — rz\)) o az],

where the derivatives gm act only on the propagatos J, , and not on the wave
function in the matrix element. Since there is no momentum dependence in the
Malfliet-Tjon potential, no contact term is present in the corresponding meson ex-
change current (see also Appendix A).

It can be verified that the continuity equation
Vg T (x 1, ra) = =i [VE(Jey = 1)), p(x)] (6.35)

holds.

Due to the presence of the isospin operator (71 x 75)% in Eq. (6.34), the contri-
bution of the MEC is purely isovector. Furthermore, we can see that this two-body
operator is in general a function of both particle coordinates r; and ry and not only
of the difference of the two r = r; — ry as for the potential itself.

At this point, if we want to proceed in the calculation of the effect of the MEC
on the transverse response function, in analogy to what done for the spin and con-
vection current, we have to consider the two-body current in momentum space
JI(VQI)TI_HI(q, ri,re). We firstly note that the meson in flight current appearing in
Eq. (6.34) consist in a linear combination of terms like

<>
Joy(x,r1,19) = J(Jr1 = x[) Vo ([x —12]) =

1 e—mri—x[) —m(|x—r2)

(4m)2 |ry—x| " |x—ro| ’
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where we omit the isospin parts for simplicity and write only one mass m. In order

to work in momentum space we have to consider the Fourier transform as

—m(|r1—x]) —m(|x—rz])

1

(&
J(Q)(qa rl>r2) = ( )2

de 67Lq~x €

v.

Ir; — x| |x — 1o

S Ry (Vxe—mﬂx—ml))
(4m)? Ir; — x| |x — 1o
5/

After some steps (writing the propagators with the integral representation as in
Eq. (A.2) and using the symmetry property between x and ry/,), this operator

becomes

eiri—r2)p Li(ri+r2)-3q

[(p+ 39)? +m?|[(p — 39)? +m?]

1

(27)?

Jolarir) = (V= Va) [ &
We can now perform a transformation in the two nucleon system, going from the
two coordinates r; and ry to a new set of coordinates, the center of mass of the

two-body system and the relative coordinate as

ry +7ro
9 )

R:

r=r; —Is.
In these coordinates we have that
V,—-V,=2V,,

such that the two-body current operator becomes

6z(r1—r2)~p

Tl — 34 + ]

1 .
Jo(q,r,R) = —¢R4 Vr/d?’p
4E R = i o+ 1)

Calling the quantity

eirp

[(p + 39)* + m?][(p — 39)* + m?]’

In(q,r) = /d3p

which depends only on the relative coordinate and contains the mass m of the meson,

the current is finally simply

1 .
Jo(q,r,R) = ReZR'q(VrIm(q, r)). (6.37)
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In case of the Malfliet-Tjon potential the consistent two-body current in Eq. (6.34)
is a linear combination of terms like those shown in the last equation with two
different masses m; and my in the functions I,,, /Q(q, r). Note that in a matrix
element calculation the gradient in the last expression acts only on /,,, , and not on

the wave functions, as in case of the convection current.

As already mentioned the two-body current operator does not depend on the re-
lative coordinate r only, but it also includes a dependence on the center of mass of the
two-body system, i.e. R. In Chapter 4 we have stressed that the calculation of such a
general two-body matrix element with the symmetrized hyperspherical harmonics is
much more complicated than the calculation of a one-body operator matrix element,
since one has to consider a further generation of the coefficient of fractional parentage
and one has to integrate on the last two coordinates. Nevertheless, we have also
said that the calculation of the matrix element of a two-body operator that simply
depends on the relative coordinate r is analogous to the calculation of a one-body
matrix element, and therefore much simpler. For this reason, we will neglect in the
following the center of mass dependence in the two-body current of (6.37) and we
will concentrate on the function I,,(q,r) which depends only on the relative motion,

i.e. we will consider an approximate two-body current as

! V.l.(q,r). (6.38)

~ 4

J(2) (qa r, R) = J?Q) (q> I')

This approximation is certainly good in case of low momentum transfer q, where
the quantity e’@® « 1, but its effect for high momentum transfer cannot be judged
a priori. The question whether such an approximation makes sense in a calculation
with momentum transfer ¢ = 300 or 500 MeV /c, as we would like to do, could be
answered only performing a full calculation, without any approximations. Neverthe-
less, we will perform for the moment this approximation and we will try to estimate

its effect.

Our purpose is then to consider the MEC in case of the MTI-III potential as in

Eq. (6.34) with the above mentioned approximation, which in momentum space is

liLa 1 n
JI(\/2[;[‘I 111, (w,q) = F(G%(qi) — GE(qi)) Z(Ti X Tj)3 {aVri].Iml (q,(r; —rj)) +
1<j
ﬂvrijlme (q, (r; — rj))+ <7Vrij]m1 (aq, (r; — rj)) + 5Vrijlm1 (aq, (r; — rj))) Oi- o-j:| ’
(6.39)

91



92 CHAPTER 6. APPLICATION TO ELECTRON SCATTERING

where we have now written the operator acting on pairs of particles of an A-body
system and we have included the isovector form factor as usual.

At this point, in analogy to what was done for the spin and convection cur-
rents also the J,(q) component of the meson exchange current can be expanded
in multipoles, neglecting the form factors dependence, whose information is added
later, as usual. Actually, it turns out that all magnetic multipoles vanish for such a
two-body current operator (see Appendix C) and therefore the multipole expansion

reads simply
MTI-III,a(v v e
Joye M (g) =D Ej(g) = —v2r Y TS (g). (6.40)
J J

Calculating this multipoles and taking into account the interference between con-
vection and MEC currents one can study the effect of the latter on the transverse
response function for *He.

However, another way to perform a calculation of the transverse response func-
tion consists in making use of the Siegert theorem, as introduced in Chapter 3. In

fact each transverse electric multipole can be separated into two terms like

75.(q) = 55,(q) + K5,(q),

where the first one, Sf,lu(q), is the so called Siegert operator, which is proportional
to the Coulomb multipole as in Eq. (3.32), and the second one is the correction
to the Siegert operator. In case of the Siegert operator the effect of the MEC is
automatically taken into account without any need to explicitly write the form of
the two-body current. Therefore it serves as method to understand the effect of
the meson exchange current with respect to the convection current in the electric
multipoles. On the other hand, depending on the value of the momentum transfer ¢
under study, the effect of the correction K f}lu(q) can be small or sizable with respect
to the Siegert operator itself. Usually, in case of low momentum transfer ¢gr < 1,
the Siegert operator is enough to correctly describe the electric transverse multipole.
This is not the case for higher momentum transfers like ¢ = 300 and 500 MeV /c.
The effect of the correction K¢, (q) is in any case smaller than S, (q), since the it
contains a higher Bessel function. For this reason, one can use the Siegert operator
to relate the dominant term of the electric multipole to the Coulomb one, where no
explicit MEC is needed, and then one can study the effect of the MEC only on the
correction K §L(q) This would be in our case the preferable strategy, since we do

not know a priori the effect of the approximation done on the MEC for the MTI-TII
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potential. Namely, its effect can be reduced if it is included only in the correction to
the Siegert operator and not directly into all transverse multipoles 7%, (q), since it
would be a “correction to a correction”. We should also remember that the error of
this procedure is smaller only because of the fact that no magnetic multipole exist
for this current. In a different situation, the only way to study the effect of the
MEC on the magnetic multipole is to calculate explicitly the M, considering also
the interference with other current terms, since no Siegert theorem exists for the
magnetic part.

In the following we will show how we have used the Siegert theorem to estimate
the effect of the MEC in the electric dipole and to check the correctness of the
numerical evaluation of the convection current multipoles. Finally, we use again the
Siegert test to understand the effect of the approximation made in the MEC for the
MTI-III potential.

6.2.4 The Siegert Test

In Chapter 3 we have seen that the Siegert operator is written in terms of Coulomb

multipoles, making use of the continuity equation, as

S5.(0) = =/ %%r’@u( ). (6.41)

The Siegert operator has to be the same as the first part of the electric multipole in

Eq. (3.27)
le ‘]+ 1 Al oAd
Tyl (q) = 47r1/ /d -J(d) Y,/ (") (6.42)

where all terms of the electromagnetic current are explicitly considered. Since there
is a scalar product in the definition, it is clear that the spin current, which is purely
transverse, does not contribute to 7T’ }if(q), while the convection and the two-body
current both contribute to it. Therefore, if one calculates the electric multipole
T¥.(q) using the convection current J{,) plus the consistent MEC current J(3), the
identity S,(¢) = T%!(q) has to hold On the other hand, it is clear that if one
compares the Siegert operator in (6.42), where the convection current and the MEC
are implicitly included, with the T’ (¢) including only the convection current, one
can estimate the influence of MEC on the corresponding multipole.

We have done such a comparison in case of the electric dipole, J = 1, which we
will call E1. In Fig. 6.9 we show the Siegert operator of (6.41) in comparison with
Ti¢(q) of (6.42) obtained with J{,) only; the momentum transfer ¢ = 300 MeV /c
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94 CHAPTER 6. APPLICATION TO ELECTRON SCATTERING

has been chosen and the calculation is performed with the MTI-III potential. The
Siegert, part of the electric multipole for the convection current is derived in detail
in Appendix C, where also the calculation of the corresponding matrix element is
discussed. One readily sees that the convection current alone covers only about

0.003 ‘ ‘ ‘
MTI-111 Siegert
—
%
2 0002 [
3
o
0.001 -
0
0

Figure 6.9: Comparison of the Siegert operator SfL(q), which includes implicitly the MEC
effect, with the dipole electric multipole T{Zl (q) of the convection current for the MTI-III
potential and for the momentum transfer ¢ = 300 MeV /c. The multipoles are divided by

g with respect to formulas.

40% of the total dipole strength of the Siegert operator in the quasi-elastic peak
region. For this reason we can say that in case of this high momentum transfer the
MEC have a relevant effect, which is about 60% of the total dipole strength. A
similar comparison can be done for all multipoles of the current. A more detailed
explanation of these calculations is presented in the following paragraphs.

A good check of the numerical evaluation of the convection current matrix ele-
ment, that contains a derivative operator which acts on the wave function, can be
done using the Siegert theorem in case of an interaction that satisfies the commu-
tation relation [V, p(x)] = 0. This is certainly the case of a purely central potential
with no spin-isospin dependence. For this reason we have chosen to work with the
central version of the Malfliet-Tjon (MTV) potential, wich is simply
—m)r o—AT

- B
T T

(&

V(r)=A’ (6.43)

with parameters A’, B’ and m}, m), as given in [Bar01]. With this MTV we obtain a
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ground state energy for *He which is —31.36 MeV, but we also see a dipole resonance
below the disintegration threshold. This creates a very similar situation for the LIT
as that found in case of the Coulomb multipole Cj for the longitudinal response.
The difference is that here we do not have an elastic channel but a bound state
dipole excitation. This excitation corresponds to a metastable resonance, peaked
below the disintegration threshold, that will decay again into the ground state. This
contribution is present in the LIT and can be subtracted calculating the energy E*
of the metastable state and then performing the inversion of the LIT with the usual
basis state (see Chapter 2) and an additional term like ¢d(w —w*) with w* = E*— E,.
To simplify further the calculation we have decided to work with another potential,
which has been obtained starting from the MTV and modifying the amplitudes A’
and B’ in order to move the resonance to the continuum. Taking new amplitudes,
defined as the 80% of those in [Bar01l]|, we have obtained a ground state energy
of —12.56 MeV, but the bound resonance has disappeared. We call this potential
MTV’ and we will use it as a toy potential to perform a faster Siegert test. The
name “toy” is ment to underline the fact that the obtained binding energy is far
away from being semirealistic.

Using the MTV’ potential we have performed the Siegert test only for the dipole
multipole E1. The test, if done properly, has to show that the Siegert operator
coincides with the convection current dipole, since no MEC exists for this potential

model. The Siegert operator for the dipole is clearly
. w
S5.(q) = —ZﬂgClp(q). (6.44)

Since it contains a dependence on the energy w, that is factorizable, in order to
calculate the response function of the system to the excitation of such an operator,
we firstly calculate the LIT for the Coulomb operator C,, we invert it, i.e. we get

R (w) and then we obtain the response to S/, as

RS (W) =2 <%)2 RO (). (6.45)

Concerning the contribution of the convection current to the Siegert part of the
electric multipoles, an explicit derivation of it is presented in Appendix C. Both

parts of the convection current in (6.19), the purely longitudinal Jf’l‘; and also J '(3’113,
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which contains a transverse and a longitudinal term, contribute to 1" l’ff (q), such that

Tiil(a) = T (@) + T3, (0). (6.46)
Using Eq. (C.48) and (C.52) we get the form of T}i(a/b)(q) for the dipole (J = 1),
which are, omitting the isospin structure,

159 (g) =~y (0) = — 2L () () (6.47)

V2m V2m :

P = V2AZDT D voe) L+ 2wt < o)
Since the parity of these operators is the same and they both lead to transitions
with a final angular momentum J; = 1 in case of *He (Jy = 0), they can interfere
whith each other. This means that the response of the system to the operator (6.46)
is not simply the sum of the responses of the two operators in (6.47), but one has
to consider also the interference term. We have firstly calculated the LIT for the
two operators in (6.47) separately, solving two Schrodinger-like equations. Then,
from the inversions of the two we get the separate responses of 7" if“) and T’ ifb). In
order to calculate the response of the total convection current with the LIT we have
simply summed the two right-hand-sides of the Schrodinger-like equations solved
before, i.e. T’flu(a)\‘ll@ and T’fﬁb)\‘ll@, and then we have used it as source term of a
third Schrodinger-like equation. Inverting the corresponding LIT one gets obviously
the response of the total convection current. Clearly, this is analogous as writing
directly one single operator Tl";l as the sum of the two terms in (6.47) and calculating
only one right-hand-side for the Schrodinger-like equation. The only advantage of
the procedure we have used is that one can study separately the effect of the single
parts of the operator, with the corresponding interference. In Fig. 6.10 we show
the Siegert test in case of the isovector dipole for the momentum values ¢ = 3, 100
and 300 MeV/c. The response function of the Siegert operator is compared with

the response of the dipole T’TL in case of the convection current. The separated

) el(b)
1p »

Bessel functions j, and js, are also presented in the picture. One can see that for

contributions of 7" ib(a , containing the Bessel function j;, and T’ including the

the lowest momentum value, i.e. ¢ =3 MeV /c, only the component proportional to

the Bessel jy plays a role, while the others are negligible.
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Figure 6.10: Comparison of the isovector dipole Siegert operator and the isovector electric
dipole of the convection current in case of the MTV’ potential for various momentum
transfers. We also show the two separate contributions of the convection current, one
containing the Bessel functions jy and jo, and the other containing the Bessel function j;.
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In case of ¢ = 100 MeV /c the T” ifb) dominates over the T” flu(a) component, but their
combined contribution agrees quite well with the Siegert operator. Finally, in case
of momentum transfer ¢ = 300 MeV /¢ one can see how T" if“) and T" ifb) interfere
destructively to give a total contribution which again agrees quite well with the
Siegert, dipole response. The small deviations between Siegert and total convection
current response reflect the size of the numerical error, which is certainly below a
few percent. The numerical error comes from the fact that the matrix elements of
the two operators are calculated in a very different way, leading to two different
LITs. Furthermore, they derive from two different inversions. Note that such a
comparison cannot be done at a transform level, since the information on the energy
w in the Siegert operator can be added only after the inversion procedure. Since such
numerical error is clearly small, we can say that the Siegert test of the convection
current in case of the MTV’ potential shows that the numerical integration of the
convection current has been performed correctly.

Performing an analogous calculation in case of the MTI-III potential one can
estimate the influence of the MEC in the dipole response and study its dependence
on the energy w and momentum transfer ¢. However, our final aim is also to include
explicitly in the transverse response function the effect of the MEC for the MTI-
IIT potential. Since we have introduced an approximation in the two-body current
neglecting the center of mass motion R of the two-particle system, we can again use
the Siegert test to check the validity of this assumption. For this purpose we have
calculated the Siegert part of the dipole operator in (6.42) in case of the J 1(\/2[)TI_IH’&
of Eq. (6.39). The explicit derivation of the Siegert part of the electric multipole for
the MEC is presented in Appendix C. In case of the dipole the main structure of

the operator is, up to some factor and omitting the isospin isovector structure,

T (¢) = Am

1,u(>_\/§

where the radial functions are defined in (C.56) of Appendix C. Note that, consid-
ering also the MEC, we have to perform the Siegert test in case of the isovector

[®10(q,74,4-1) — V201 5(q,74,4-1)] V! (Faa-1), (6.48)

dipole, since no isoscalar contribution of the MEC is present. Furthermore, we have
again to consider the interference between convection current and MEC, since they
both contribute to the dipole excitation.

In Fig. 6.11 we present the Siegert test for the isovector dipole operator in case
of the MTI-III potential for three values of momentum transfer ¢ = 3 MeV /¢, 100
MeV /¢ and 300 MeV /c.
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Figure 6.11: Comparison of the isovector dipole Siegert operator with the isovector electric
dipole induced by the MEC, by the convection current and finally by the sum of the two
currents. The calculations are performed with the MTI-III potential for various momentum
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We see the comparison between the response function of the Siegert operator in
(6.44), of T’ilu of Eq. (6.42) in case of the total convection current, in case of the
MEC, and in case where both contributions with the relative interference are taken
into account. From Fig. 6.11 one can see that the convection current shows a similar
shape as the Siegert result although of smaller size for all three different momentum
values, while the response of the MEC presents a rather flat behavior over the whole

energy spectrum.

One can note that the relative effect of the MEC alone with respect to the total
dipole strength of the Siegert operator increases with increasing ¢, moving from
about 9% in case of ¢ = 3 MeV/c up to about 20% in case of ¢ = 300 MeV/c.
Considering also the interference part, namely comparing the Siegert operator with
the convection current alone, one can estimate the total effect of the MEC on the
dipole, which appears important, reaching about 60% in case of ¢ = 300 MeV /c.
From the last figure we can also see that we do not get perfect agreement between
the Siegert response and the combined response of convection current and MEC. We
note a small constant deviation in the tail of the response, which is present in all three
momentum transfer values. In case of ¢ = 300 MeV /c we find a deviation also in the
low energy region, where the convection current with MEC give a higher contribution
to the dipole than the Siegert operator itself. This second last disagreement is
certainly due to the approximation we have done in the two-body current, since it
is found only for the highest momentum value. We can therefore conclude that the
performed approximation has an effect which depends on the momentum value, as
expected. This effect seems not to be present or to be negligibly small up to the
100 MeV /¢ of momentum transfer, while it reaches about 10% on the peak in case
of ¢ = 300 MeV /c.

The fact that we do not get the same accuracy in the Siegert test in case of
MTV’ and MTI-III potential for low momentum values, where the approximation
of the MEC should not have an effect, can be due to numerical error or still to a
wrong implementation of the MEC multipole. The numerical error could be big-
ger in the presence of the MEC, since we are summing two different calculations,
where a one-body and a two-body matrix element are evaluated. Nevertheless, this
question should be investigate further, for example performing the Siegert test also
for other multipoles. Another possible source of error is the fact that within an
effective interaction method one should use the similarity transformation also on
the excitation operators, i.e. on the charge and currents. Up to now we have not

used these effective operators, since in convergence this is not necessary. However,
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it could be possible that the MEC is more sensitive to such fine corrections than a
simple Coulomb multipole, since it is introduced to ensure consistency and gauge
invariance. This point has to be analyzed further by studying the LIT at higher
K0z values.

Furthermore, if the effect of the approximation done in the MEC turns out to be
of about 10% one could calculate the effect of the MEC in the transverse response
function using the Siegert theorem and considering the explicit form of the two-
body current only to the correction Kf,lu(q) to the Siegert operator in the electric
multipole, see Eq. (3.31). This would certainly limit the error of the approximation
under 10%, since Kjlﬂ(q) is of second order with respect to the Siegert operator in
the total electric multipole.

Concluding, we can say that we have calculated for the first time the transverse
response function for “He with the LIT and EIHH methods, using semirealistic
potentials. The effect of the spin current is dominant in comparison to the other
current parts, but it is clearly not enough to reach the experimental data for Ry (w).

The convection current operator, which contains a derivative acting on the wave
function, has been implemented in the HH formalism without difficulties. Its effect
is however small on the total transverse response.

The effect of the two-body current has been estimated to be of about 60% of
the total dipole strength in case of ¢ = 300 MeV/c. A consistent MEC has been
built for the MTI-III potential, but an approximation has been done in order to
simplify the more complicated calculation of a two-body operator matrix element.
The first checks on the correctness of the implementation of the MEC and of the
validity of the performed approximation have been carried on. Further investigation
is necessary to finally answer the question about the total effect of the MEC on the

transverse response of “He in case of semirealistic potentials.
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Chapter 7
Conclusions and Outlook

In the following two sections, one on the photoabsorption on A > 4 nuclei and
the other on electron scattering off “He, we briefly summarize the results obtained,
focusing the attention on the goals achieved and on the remaining open questions.
We also present an overview on possible future developments of these studies.

7.1 Photoabsorption Reactions on A > 4 Nuclei

In this thesis we have presented the first microscopic calculation of the total photo-
disintegration cross section for six- and seven-body nuclei with complete inclusion
of the FSI. We have used the dipole approximation for the excitation operator and
simple semirealistic potentials as NN interaction.

The cross sections of °Li and ®He show a rather different structure. While SLi
exhibits a single broad giant dipole resonance, one clearly distinguishes two well se-
parated peaks for *He. The low-energy peak is due to the breakup of the “He neutron
halo, whereas the second peak corresponds to the breakup of the « core. Unfortu-
nately, in case of °Li no inclusive experiment exists to the best of our knowledge
and the comparison with data obtained from different exclusive experiments is quite
unclear. In case of °He new data at low energy obtained with radioactive beams are
available and the agreement of the calculations is qualitatively satisfactory, while the
second peak at higher energies still waits experimental confirmation. The addition
of a P-wave interaction, which is achieved using the AV4’ potential, improves sub-
stantially the agreement with data. It is evident that further experimental activities
are necessary in order to shed more light on the six-nucleon photoabsorption cross
sections.

For the 7Li a single broad giant dipole resonance is found with the AV4’ potential
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and a good agreement with the available experimental data is obtained. From the
theoretical point of view the question whether a semirealistic interaction is enough
to describe the reaction mechanism can be answered only by performing calculations
with full realistic two-body and three-body potentials.

For the future, the possible developments of this project are:

e Go beyond the dipole approximation in the total photoabsorption cross sec-
tion to understand whether the effect of other multipoles is appreciable and

improves the comparison with data;

e Use more realistic interactions to finally confirm or disprove the results ob-

tained from semirealistic potentials;

e Study systematically the effect of the various interaction terms, such as spin-

orbit and tensor force, on observables in the continuum;

e Find a way to discard those states in the HH expansion which do not con-
tribute, since at some point the increasing number of basis states constitutes

the main technical bottleneck;

e Push finally the method up to A = 8 nuclei, where other halo nuclei, e.g. *He,

are present or other reactions of astrophysical interest could be investigated.

7.2 Electron Scattering off ‘He

We have presented a calculation of the longitudinal and transverse response func-
tions for inclusive electron scattering off “He. The quasi-elastic region has been
investigated at medium momentum transfer. A non-relativistic model for the elec-
tromagnetic charge and current excitation operators has been used. The calculations
have been performed again with semirealistic interactions and a gauge invariant
model has been build by construction of a consistent meson exchange current for
the MTI-III potential.

The longitudinal response is compared with the available experimental data and
with the already existing calculation performed with the LIT and the correlation
method |Efr97a]. We obtained an overall reasonable agreement with experimental
data, although our curves are slightly high also with respect to the previous calcu-
lation [Efr97al, where a relativistic corrections (Darwin-Foldy term) were included,
which reduces the strength. With the MTI-III potential we see a substructure in
the longitudinal response at ¢ = 300 MeV, which is not shown by data.
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Concerning the transverse response, the dominant one-body spin current has
been treated and its response has been compared with data, finding some miss-
ing strength, which is probably due to the not yet present convection current and
MEC. The one-body convection current has been implemented and checked via the
Siegert test for the dipole contribution at various momentum transfers. We have
also investigated the effect of the meson exchange currents for the MTI-III on the
transverse response function. For this purpose an approximation has been made
on the consistent MEC in order to treat it as an operator that simply depends on
the relative distance between particles. The first estimations of the accuracy of this
approximation are discussed. The effect of the MEC has been found to be of about
60% of the total dipole strength for a momentum transfer of ¢ = 300 MeV /c.

Further studies are needed to finally calculate exactly the transverse response

with all current parts. For the future the following points remain to be investigated:

e Perform the Siegert test for the various multipoles beyond the dipole to inve-

stigate the relative importance of the convection current and of the MEC;

e Calculate explicitly the contribution of the MEC to the correction to the
Siegert operator. The Siegert operator alone is probably not enough for de-

scribing the electric dipole transition at medium momentum transfer;

e Treat the MEC exactly without any approximation, generalizing the calcula-
tion of the two-body operator matrix element in the HH formalism (actually
it turns out that this is as difficult as considering a three-body nuclear force
as done in [Bar04]);

e Once one finally has calculated the transverse response function of *He with the
FSI and with a consistent MEC for the MTI-III potential, one can investigate

the effect of more realistic interactions;

e Study the effect of relativistic contributions at medium and high momentum

transfer;

e Extend the study of electron scattering with the LIT and ETHH methods on
heavier nuclei (A > 4).
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Appendix A

One Pion Exchange Current

In the following a short didactic example of a meson exchange current is presented.
The one-pion exchange current is formally derived from the one-pion exchange po-

tential using the minimal coupling method.

If one constructs a simple model of two non-relativistic nucleons interacting with
a pion field, like in Figure A.1, one can derive by standard methods [Bjo64] the
explicit form of the one pion exchange potential [Are82|, which is given by

2

VOPE<I‘1 — I'Q) = —%’Tl : T2(0'1 : Vl)(O'Q . Vg)JmW(I‘l — I'Q), (Al)

where ry/2,T1/2, and o1/, are the coordinates, isospins and spins of nucleon 1 and

2, respectively. Here the function

d3p ei(rl—rg)-p 1 6—mﬂ|r1—r2\
J. ) = = A2
w(rl r2) / (27T>3 p2 + mgr 471— ‘r]_ . I'Q‘ ( )

is the propagator of the pion of mass m,. Clearly, the gradients in the (A.1) act on
the pion propagator.

Making use of the fact that [p, f(r)] = —iV f(r), for every function f of the
coordinates, the OPE potential can be written as follows

2
VOPE(Pl —Iy) = %[(01 : p1)>[(02 “P2), Z(Tf)(Tf)T< rlﬂ\m\rzﬂ >]

g j

Y

(A.3)
which is a more convenient expression if one wants to construct a consistent meson

exchange current using the minimal substitution, as will be explained later. Here
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Figure A.1: Diagram of two nucleons exchanging a pion.

the pion propagator is represented by
B 1
I, (11 — 1) =< rlu\7p2 w2 |rop >,

where with the notation |ry /214 > a pion state at position ry/, with charge j is meant.

Furthermore the quantity > (71')(7 )T is the scalar product 71 - 7.
In order to recover the corresponding one pion exchange current we will now

apply minimal coupling by the following substitution

P1 — P1 — €1A1(1‘)7
P2 — P2 — €2A2(I‘),
p - p - eﬂ'AT('(r)J

and then recover the exchange current from the functional derivative like in Eq. (3.2)

~OPE SV (A)

J(2) (X, rl,rg) = —T . (A4)
A=0
The minimal substitution in the potential leads to
OPE f2
V(v -1y, A) = mZ (1 (P1—e1A1)), |(o2 - (P2 — e2A2)),
1

S < ml gt | )

I

from which it is clear that the expression in Eq. (A.3) is useful because the pion
momentum dependence is explicitly written, and therefore one can directly apply

the minimal coupling.
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For the derivative in Eq. (A.4) we then obtain

~OPE 2
j?g) (X> r171'2) = —%{ [ - 0'1615(X - 1'1), [0'2 " P2, (7'1 : Tz)Jm(l“1 - I'2)H +

+ [(o1-p1), [ — 02e20(x —13), (T1 - T2) S (r1 — 12)] | +
+ [(e1-p1), [(02-p2), Y (A7)
< rlu\ﬁm%u{p,é(x — rw)}lﬂ%m?rhg,u > ] }
(A.6)

The next step to do is to write the charges of the nucleons with the isospin formalism,

3
as ey = H;“ and to make use of the following commutation relation

[Tl . 7'2,7'?/2] = :t22(’7'1 X T2)3.

In this way, one gets from the first two lines of Eq. (A.6) the contact terms of the

1 2 1 2
I L + I LA
N N N N
Contact Term Contact Term

Figure A.2: Diagrams of the two contact terms of the one pion exchange current.

current, represented in Fig. A.2, which are formally

2
jS;Et(x, ry,ry) = —ﬁ(rl X 7'2)30'1(0'2 Vo), (r1 —13)0(x —11) + (1 < 2).

(A7)

In order to derive the so called “pion in flight term”, see Fig. A.3, we have to rewrite
the two last lines of Eq. (A.6), using the following relation

D)) =il x 75)°

m

and explicitly writing the anticommutator. The first term of the anticommutator,
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N N
Pionin Flight Term

Figure A.3: Diagram of the pion in flight term for the one pion exchange current.

inserting two times a complete set [ d®r|r ><r| =1, is then

1 1
< r1u|7p5(x —Ip)———|rou >=
24+ m2 p2 +

m
dr [ <l I >< rl8(x — 1)1 >< \#\ >
r<rip 2pr r|0(x —r,)|r r +m72rr2,u
1
d3 < —_— >0 — <r|l—- >
/ r < +m2p|r (1) < ¥l e

1 1 ‘
=< r1u|mp|x > X‘m‘rgﬂ >= —z(Vsz(rl — X))Jm(X — 1'2)

m ™

where we have used the fact that < r | r' >= J(r — r’) and we have integrated out

the ¢ functions. The second part of the anticommutator will lead to
Jm(rl — X)ZVIJm(X — I'Q),

so that the total expression of the pion in flight current is

~OPE

2 <—>
9 (x, 11, 1) = %(n X T2 (01 Vo) (02 - Vo) on (11 — X)W o T (% — T2),
(A.S)

whose Feynman diagram is shown in Fig. A.3.

The total OPE current is obviously the sum of the contact terms and of the pion

in flight term as

jg;E(x, ry,re) = — 7'1 X T3) {a’l 02 Va)p (r1 —13)d(x —11) — (1 > 2)

(o1 Vo) (o2 Vo) Iy (r1 — X)V T (x — rg)} (A.9)
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Appendix B

The Hyperspherical Formalism

In the following the definition of hyperspherical coordinates is presented. Then the
form of the Laplace operator in these coordinates is discussed and finally the recur-

sive construction of the A-body hyperspherical harmonics is shown as in |[Bar97a).

B.1 Hyperspherical Coordinates

In order to define the hyperspherical coordinates it is necessary to start from a set
of internal A — 1 normalized Jacobi coordinates (see Eq. (4.2)). The (k—1)-th Jacobi
coordinate is proportional to the position of the k—th particle relative to the center
of mass of the k — 1 particles (i = 1,...,k — 1). Each coordinate 7, consists of a
radial part 7, and an angular part denoted with 7, = (0y, ¢1). A two-body system
is characterized by only one Jacobi coordinate n,, which of course has a radial part
n and an angular part 7, = (01, ¢1).

A three-body systems is described by two Jacobi radial coordinates n;, and 7,
and by two pairs of angular coordinates 7; = (61, ¢1) and 7y = (62, ¢2), which are
the starting point for the construction of the hyperspherical coordinates. These are
described by a hyper-radial coordinate p; and by a hyper-angular coordinate o,
defined as

T =p1 = pP2COS P,
N2 = p2sings. (B.1)

The six dimensional volume element is given by

d‘/ﬁ = pgdp2d55 = pgdpg Sil’l2 (QOQ) 0082 (QOQ) d()OQdTAthA]Q, (BQ)
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where dSj5 is the angular volume element associated the hypersphere in five dimen-
sions and d7); and dr), are the volume elements associated to the angular part of the
Jacobi coordinates 7); and 7),, respectively. The hyperangle ¢, assumes values in the
range [0, Z].

Adding one particle, and therefore another Jacobi coordinate, one can define the

hyper-radial coordinate, p3, and the hyperangular one, ¢3, in the following way

P2 = pP3CO8P3,

N3 = pssings. (B.3)

The hyperspherical coordinates of a four-body system with three Jacobi coordinates
consist in a set of eight angular coordinates, the hyperspherical angles o and (s,
the six spherical angles 7y, 72, 73, and an hyper-radial coordinate ps.

The nine dimensional volume element related to the four-body system is
dVy = pSdpsdSs = pidps sin® (3) cos® (p3) dpsdijsdSs,

where dSs is the angular volume element associated to the eight dimensional hyper-

sphere and dSj is defined in (B.2). The measure d7; is the volume element associated

with the angular coordinates 7); and the hyperangle 5 varies in the range [O, g}
In general, having defined the hyper-radial coordinate p;_;, one defines p; and

Yk, such that

Pk—1 = Pk COS P,
M = Pk Sin ey, (B.4)
where
k 1 k+1
2
ph=piatni= =7 (-1 (B.5)
i—1 i<j

Here one can note that the hyper-radial coordinate is symmetric with respect to
the permutation of the single particle coordinates. It also does not depend on the
precise choice of the Jacobi coordinates.

The 3 (A — 1) internal coordinates of the A-body system are described by one
hyper-radial coordinate, p4, by A—2 hyper-angular coordinates, for wich we use the
notation @a_1) = {2, ¥3,..., a1}, and finally by 2 (A — 1) angular coordinates,
that are denoted with a collective symbol Qa_1) = {1,792, ..., -1}

These coordinates depend on the set of starting Jacobi coordinates, since, chang-
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ing the indices of the particles a different set of hyperangular and angular coordinates

is obtained (only the hyper-radius remains unchanged).

The volume element related to the A — 1 Jacobi coordinates n,,n,,...,m4_; is

AVaa_yy = ptdpa—1dSsa—s (B.6)

3A—T7 (

P dpa—ysin? (a_1) cos ©a-1)dpa_1dia_1dSsa_rz,

where dS34_7 and dS34_4 are the volume elements associated to the hypersphere
in 3A — 7 and 3A — 4 dimensions, respectively, and dn,_; is the volume element
associated to the angular part of the last Jacobi coordinate. Again, the hyperangle

pA_pvaries in the range [O, g}

B.2 The Laplace Operator in Hyperspherical Coor-

dinates

The internal kinetic energy operator for a two-body system is given by the three
dimensional Laplace operator expressed in terms of the relative coordinate, i.e. the

Jacobi coordinate 1, = (11, 71),

1 .
Ay =Dy, = Ay — 517,
Un
where the radial part is
A 0? 2 0

_ _l’_ _
"ot omom

and 7, is the relative angular momentum operator!.
The internal kinetic energy of a three-particle system is described by the six

dimensional Laplace operator, which is the sum of the three dimensional Laplace

operators acting separately on the coordinates 1, and n,

1

R 1 .
U%K% - —263.

A(2) = Am + Anz = Am + Anz - 7
2

Using Eq. (B.1) one can transform the two coordinates 7, and 7 into the hyper-

radial coordinate p, and the hyperangular coordinate ¢s, by means of which the

!Note that we use the hat to denote the operator every time it is necessary to distinguish it
from the corresponding eigenvalue.
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Laplace operator becomes

1 -
Ay =A% — p—%Kg. (B.7)

The radial part of Eq (B.7) depends only on the hyper-radial coordinate ps,

0? 5 0
A= 2
72 0ps  paOpe

whereas the hyperspherical angular momentum K 2 is expressed in terms of the
hyperangular coordinate ¢, and of the two angular momenta 1 2 and ¢ 2 as
. o 9) 1 I

K2=_—""_ _4cot(2 + 02 4 — 2. B.8
2 D2 (2¢2) Oy cos?(py) ' sin? (2) 2 (B8)

The internal orbital angular momentum of the three-particle system is Lo=101410,.

It is to note that the operators L3 and L* commute with A, £3, £3 and K 3.

The Laplace operator in 3 (A — 1) dimensions, that describes the internal kinetic
energy of an A-body system, is given by the sum of the Laplace operators that act

on the Jacobi coordinates 1,, 15, ..., 44

From this expression follows a recursion relation for the Laplace operator of an

A-body system

A—2 1 )

=AY K2 O4A

MNa-1 PA—2 2

Aary = Aag + A

With the help of Eq. (B.4) one can transform the coordinates ps_o and 14

into hyper-radial coordinate p4_; and hyperangular coordinate ¢ 4_1, such that the

Laplace operator for A — 1 Jacobi coordinates in terms of the hyperspherical coor-
dinates becomes

A1 1

I

K2 .. (B.9)
where the radial part is

a1 0? 3(A-1)—1 0
= + B.10
P4, pPA-1 dpa-1 ( )

In Eq. (B.9) the operator K% | is the hyperspherical angular momentum associated
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with the A particles and can be expressed in a recursive way as a function of K7_,,

@?4_1 and ¢ 4_; as follows

5 o? 3A4-9—(3A—5)cos (204_1) O 02
i P ABASs@oa) 0
0054 sin (2¢4-1) Opa_1  sin®a_q
R’Q
% (B.11)
cos® a1

where K2 = (2. The internal orbital angular momentum of the A particles is
Ly = La_y+{, . Furthermore, the operators K2_,, ¢%_,, K%_,, L% | and
[:j_l commute with each other. Therefore the hyperspherical states are labelled
with a set of good quantum numbers K4 1, K4 o,..., Ky, corresponding to the
hyperspherical angular momenta, with L4, L4_s,..., Lo corresponding to the sphe-
rical angular momenta of A — 1, A — 2, ..., and 2 particles, with projection M, ; of
L4, and finally with 41, £4_o,..., {5, {1, corresponding to the angular part the

Jacobi coordinates.

B.3 The Hyperspherical Harmonics

The angular part of the internal wave function of a two-particle system is described
by the spherical harmonics Yy, (71). Adding another particle, described by the
function Yi,m, (72), one can form a three particle internal state 1,00, (Q2))
with Q) = {1, 72}, which is eigenstate of the operators ¢2, /3, L2 and L3. Tt is
obtained by coupling the angular momenta of the states Yy, (/1) and Yo, ., (72) in

the conventional way

Sronmnss () = Y (GlaLolmimaMs) Yo, () Yegms (72) (B.12)

mi,m2

where only the Jacobi angular coordinates 7; and 7, are involved.

The eigenfunctions of the hyperspherical angular momentum K 2, expressed in
Eq. (B.8), are functions of the hyperangular coordinate ¢, and depend on the values
of the quantum numbers K5, /5 and K; = ¢4, in the following way

. L (et a+d
Vicpitnt, (92) = Na (Ka; o0y (sin 3) (cos p3)" Pn(22 pa+1) (cos2ps),  (B.13)
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b+35.0+3) . . . . .
where Pn(Q2 50+3) is a Jacobi polynomial? [WeaT75|, n, is a non-negative integer

number and Ky = 2ns + ¢; + {5. The normalization constant is

1
(2K2—|—4) RQ'F (n2+€2+€1+2) ?
F(n2+€2+%)F(n2+€1+%)

No (Ko laty) =

The eigenvalues of K2, corresponding to the eigenfunctions in Eq. (B.13), are
Ky (K +4), where Ky > (1405 > Ly > 0. The parity of the functions in Eq. (B.13)

is (—)fte,

The hyperspherical harmonics for a three-particle system which are eigenfunc-
tions both of K'2 and L2, are obtained by the product of the (B.13) with the functions
in (B.12),

Vi) (Q(2)= ‘P(2)) = Vrcaitat, (92) Prodtyitses (Q(z)) . (B.14)

With the notation [K3] we denote the set of good quantum numbers Ky, Lo, Mo,
(1 and /5, that label completely the states that depend on the five angular internal

coordinates, 7)1 = (61, ¢1), 2 = (02, ¢2) (in Q) and @,.

In order to appreciate the recursion procedure one needs to consider a four-body
system. Starting from the above three-particle wave funtions, one can construct the
hyperspherical harmonics for a four-particle system by coupling these functions to
the spherical harmonics Yy, (73). This is obtained in three steps. First of all, one

couples the angular momenta L, and /5 to L3 obtaining

¢L3M3;[K2]é3 (9(3)7902) = Z <L2€3L3|M2m3M3> y[Kzl (9(2% 902) Yg3m3 (ﬁ3) (B-15)

Mz,mg

This function has seven internal coordinates 7; = (01, ¢1), 72 = (02, ¢2), w2 and
N3 = (63,¢3). Then, using the transformation in Eq. (B.3), one constructs the

eigenfunctions for the hyperspherical angular momentum K 2,

) ) l3+3, Ko+2
Urcytare (93) = Ny (Kt (55) (sim ) (cos 93) PR (conpy) - (B16)
: (3+3.K2+2) . : . . .
where, again, Py, is a Jacobi polynomial, and n3 is a non-negative integer

o -H" n a+n n .
2Pn 0 (55) = mfgf_" (1 - 5C) * (1 - 5C)B+ with x € [—17 1]

116



B.3. THE HYPERSPHERICAL HARMONICS 117

number, such that K3 = 2n3 + K, + 3. The normalization constant N is given by

1
(2K3 + 7) n3'F (ng + £3 + K2 + %) ?

N3 (K3;03K5) =
3( 3,43 2) F(n3+€3+%>1—‘(n3+[{2+3)

The eigenvectors of K 2 corresponding to the eigenfunctions in (B.16) are K3 (K3 + 7),
where K3 > Ky + f3 > 0. These eigenfunctions have the parity (—)%2*%. From the
product of the functions ®;, s, k), in Eq. (B.15), and ¢x,,e,x, in Eq. (B.16) one

constructs the hyperspherical harmonics Yk,

Virsl (3 03)) = Vrcaitaica (03) Pronts, (oo (U3, 92)

where [K3] represent the set of good quantum numbers K3, L3, M3, Ky, Lo, {3, lo
and /;.

In order to formulate the general recursive procedure for the construction of
the hyperspherical harmonics of an A-body system, with A — 1 Jacobi coordinates,
one assumes that the hyperspherical functions for an (A — 1)-body system, Vi, .1,
with A — 2 Jacobi coordinates, are already available. These functions possess a well
defined hyperspherical angular momentum K4 - and an orbital angular momentum
L 4_5 with projection M4_. They depend on the set of angular coordinate €2(4_9)
and the hyperspherical coordinates ¢(4_2). The hyperspherical harmonics for A-
body are obtained in three steps.

First of all one couples the functions Vix, ,j and Yo, ., , (€24-1) in order to obtain

q)LA—lMA—l;[KAfﬂeA—l (Q(A—1)7 CP(A—Q)) = (B'17)
Z(LA_2€A_1LA_1 | Ma—ama 1 Ma_1)Vircs o(Qa2), Pa—2))Yeu yma(Ha—1) -

Ma_2,ma—1

Then, using the transformation (B.4), one constructs the orthonormalized eigen-

functions of the hyperspherical angular momentum K 2, by

¢KA,1;€A,1KA,2 (@A—l) - (B18)

€A71+%7KA72+ 3A2_8

Na K s 1304 1K 4_9)(sin p4_1)"4(cos @A_l)KA*QPTSA_l )(cos 204-1)

where n4_; is a non-negative integer number, such that

KA—I = 2nA_1 + KA_2 + KA_l, (Blg)
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and the normalization coefficient NV4_; is

Nacr (Ka-1;0a1Ka2) =

1
(2Ka-1+3A—=5)n, T (nA—1 + Ky 0+ ly 4+ 3A2—5) p

B.20
I (nA—l +la1 + %) r (nA—l + Kq o+ MT—G) ( )

The eigenvalues of the operator K2_, corresponding to the eigenfunctions in (B.18)

are
Ka_1(Kaq+3A=5),

where K4 1 > K4 _o+f4_1 > 0. The functions in (B.18) have the parity (—)&4-2+¢a-1,

Finally, the hyperspherical harmonics for A —1 Jacobi coordinates, Vix, ,}, with
angular momentum L 4_1, are built by the product of the functions Py My [Kaalta s
in Eq. (B.17) and the ¢k, .0, ,x,_, in Eq. (B.18), as

Viras) (a1, oa-1) =
U aita1Kaz (A=) PraiMa v iKaslea s (Qamn, pa-p) . (B.21)

Here [K 4 1] represent the set of quantum numbers K, 1, La 1, Ma_1, [Ka_o
and ¢4_;. The hyperspherical harmonics )ik, ,; for an A-body system, defined in
Eq. (B.21), form a complete orthonormal set of eigenfunctions on the hypersphere

that satisfy the relation
View] | V1) = Ot i

with

Ol N K] = OKn K pyr OLn Ly OMy My OlKn 1], [K s3]
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Appendix C

Multipole Expansions and Matrix

Elements

In this Appendix we present the multipole expansion of the charge operator p(1)(q)
and of the current operator J(q), to which we have referred in Chapter 6. The
discussion on the current operator is separated into three sections: spin current
J¢))(a), convection current J¢;,(q) and finally MEC J(5)(q) consistent with the MTI-
III potential. In case of convection current and MEC we present also the explicit

derivation of the Siegert part of the electric multipole.

As the structure of each multipole operator is derived we discuss briefly how we

calculate the corresponding matrix element.

C.1 The Charge Operator

In Chapter 3 the multipole decomposition of the charge operator has been shown.
Here we recall that the charge operator can be written by means of the Coulomb

multipoles as

poy(@) =47 > i’V () Cou(g)- (C.1)

In case of the electron scattering the longitudinal response function is determined
via the charge operator, choosing the direction of the photon momentum to be along

the 2 axis, i.e. q = ¢Z. This means that the spherical harmonics can be reduced to

~

s
\/E 70>
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such that the expression in (C.1) becomes
pay(q) = VA > il JC(q), (C.2)
J
where

Coola) = / B py (x)i s (q2)Y] (2). (C3)

We use the expression of the charge operator in the coordinate space as in Eq. (3.34)

(without the electric charge e), separating the isoscalar and the isovector part in
iy (x) =D d(x — ') OT = (1), (C.4)
k

where the isospin operator O77=(#;) is 3, i.e. 7 = 0 and 7. = 0, for the isoscalar

(s) part and %’3, iie. 7 =1 and 7. = 0, for the isovector (v) part. Using the

antisymmetrization of the wave function we can write
ity (x) = A 3(x = 1'4) 07T (1), (C5)

where the operator now acts only on the last coordinate. Consequently the isoscalar

and isovector Coulomb multipoles become then
C30'(a) = Ajs(ariy) Yg (F) 0T = (t.4), (C.6)

after the integration of the J-function. The multipole expansion of the charge oper-

ator can also be written as
P () =>_CY (), (C.7)
J

where the new multipoles C'/"(¢) contain all factors as C/*(q) = Vaxi’ JC)o(q),
with the expression of C(¢) as in Eq. (C.6).

In the calculation of the matrix elements of the Coulomb multipoles as in (4.15),
one has (up to factors) a radial matrix element as in Eq. (4.18) where the radial

function to consider is essentially the Bessel j;(gr’;) with 1y = /45 psin¢ and an
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angular reduced matrix element as in Eq. (4.16) which turns out to be simply|Edm74]

v | € G s L eed [0 T
/ . YJ N ‘gl ZAN -1 s+j'+J 55 .
(€ s)glI Y= () (€ s)5") = (=1) Jj{j/ v J}w/47r<0 0 0)
(C.8)

The isospin matrix elements of O77=(t,) are trivial.

C.2 The Spin Current Operator

In order to calculate the multipole expansion of the spin current we will make use

of the formalism that has been introduced in Chapter 3.

First of all we will evaluate the quantity in Eq. (3.14) in case of the spin current

J fl), ie.
Tia) = 4= [ 'Sy () Y (), (©9)
The electric and magnetic mutlipoles are defined in terms of this quantity. Concern-
ing the spin current operator, we will firstly separate it in isoscalar and isovector
components, neglecting the form factor contributions. We will therefore use the ex-
pression given in (6.16) for the isoscalar and isovector parts, where we already made
use of the antisymmetrization of the wave function in the matrix element. In the
derivation of the multipole decomposition we will, for simplicity, consider only the
structure of the operator in the spin-space configuration, i.e. (o4 X q)eiqr'A. This
is namely the same for both isoscalar and isovector components, if one neglects the

Ai 1

3
. . T . .
factor - and the isospin operators 5 and ' for the isoscalar and isovector part,

respectively. They will be added at the very end of the calculation.
The quantity to calculate is then

1

Thla) = o= [ di'toa x ) Vi) (€10

where one can use the fact that the vector product in Eq. (C.10) is related to the

tensor product of rank 1 in the following way

2
eaxd) = V2o x o' ©1)
7
where the superscript denotes the rank of the operator. Using the definition of the
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vector spherical harmonics given in the (3.11) one obtains for the scalar product

47
1 . . .
o xa - Y5,(0") =[5 a V(@) x oy < YHEL (C.12)
where |q| = |q|" = ¢ has been used. If one then recouples the two tensor products
in the last expression such that the two spherical harmonics, which are functions of

¢, are coupled to a third spherical harmonics one gets

ol x g Y5 () = (—1)'3 iZh{l b }(1 : ")[azm@'nz.

[ J h 0 00
(C.13)
We can now expand the plane wave appearing in Eq. (C.10) as
¢ = dm (=) LGolqry) [V (7)) x YA, (C.14)
¢

where the jy(qr’y) are Bessel functions. Using now the expressions in Eq. (C.13) and
(C.14) one gets for the J7 (¢) that

7o) = <—i>‘€je<qr:4><—1>lizza{1 bl }(1 ! h)
/d(j’[[Yf(f’;l) X Yf((j/)]o x [0_114 X Yh((j/)]J]i. (C,15)

If one now recouples the three tensor products appearing in the last formula such
that the two spherical harmonics, which are functions of ¢/, are coupled again to a

third one, one gets, after some steps, the final expression for J%,(q) as

V6 , 11 1 11 ¢
J(g) = —q) (=) (=) (r’){ }( )
q q . Je\qT 4 . 00 0

Y4(#,) x a4]7. (C.16)

Now, we would like to calculate the electric 75, (¢) and magnetic 77, (¢) multi-

poles, which are related to the J%,(¢) as shown in (3.22) and (3.24), respectively.

For the electric multipoles one firstly needs to consider J%, ,(q) for which one

can explicitly write the sum in ¢, since the three-j symbol leads to ¢ = J,J — 2.
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Consequently one obtains

V6 — 1 1 1|1 J1J
JH = Z=q(=i)’JJ-1 j,(qr
JJ—l(q) Z.C]( Z) ]J(C.ITA) g1 J J 0 0 0

[Y7(#y) x o}, (C.17)

where one readily sees that only the case ¢ = J contributes, since the case { = J —2
is zero due to the coupling in the tensor product. Analogously for J%,.  (q) one

obtains

V6 o a— 1 1 1 1 J+1 J
Jy = —q(—i)’ JJH ! Y7 (7! ,
JJ+1(q) ; CI( Z) ]J(QTA) J J J 0 0 0 [ ( )XUA]
(C.18)

Using the last two expression one can write, after some steps, the electric multipole
as (see (3.22))

T3k ) = — AL gy (IO [V (7) x o OT ). (C.19)

where we have reduced the three-j and six-j symbols to a Clebsch-Gordan coefficient
and we have added the factors and the isospin operators we had omitted before for

simplicity. In the last expression oTr *(t4) is equal to % and for the isoscalar and

s/v
isovector part, respectively.

For the magnetic multipoles one needs to consider only J%,(q) (see (3.24)), for
which one can explicitly write the sum in ¢, where both cases { = J—1and { = J+1

contribute to give finally

<J 11J1011) jiy_1 (qrl) [Y 7 (7)) x o 4] +
<$Humnmﬂuwmwm<>xaﬂ}0£% ). (C.20)

In the last expression all factors of the current and the isospin operators have been
considered. One sees from (C.20) that the structure of the magnetic multipoles
is very similar to the electric ones, with the main difference that there are two
Bessel functions and two spherical harmonics which contributes to T’ }Zag (¢) and only
one to T5!,(q). The parities of T (q) and T7,(q) are clearly (~=1)7 and (—1)"*",

respectively.

Choosing now the direction of the photon momentum to be along the Z axis

123



124 APPENDIX C. MULTIPOLE EXPANSIONS AND MATRIX ELEMENTS

one can use the formula given in (3.26) to obtain the expression of the multipole

decomposition for the J, component of the spin current

Toe (a) = —V2r ST (T5h(q) + TR (g)) - (C.21)

Via the expression for T/ (¢q) and 77" (q) in (C.19) and (C.20), we can rewrite the

multipole decomposition for the isoscalar (s) and isovector (v) spin current as

TS @) =D (BY" (@) + M5 (@), (C.22)
J

where Ej/ “(q) is the electric multipole and Mj/ Y the magnetic with projection yu = 1.

Their final expressions are

BY"(q) = AVATS (i) s (qr's) (JLIOLL) [V (7)) x o4O (ta) - (C:28)
and
M) = AVERZEL @7 T -LI01) s (art) ) < b +

()7 FFLCHLIOL el [ 00 x ol FOTE (1),
(C.24)

respectively, where, the difference between the isoscalar and isovector multipoles is

only in the isospin operator O7" 1o (La)-

In the calculation of the matrix elements of the electric and magnetic multipoles
of the one-body spin current operator as in (4.15) one finds a radial matrix element,
as in Eq. (4.18), where the radial function to consider is practically the Bessel
Jr(gr'’y), up to some factors, with r, = \/gp sing and with L =J —1,J,J+1
depending whether it is an electric or a magnetic multipole. Finally, the angular
reduced matrix element, as in Eq. (4.16), can be easily calculated and it turns out
to be simply [Edm74|

(0 s)j]| [YE#) x ab) (¢ 8)5") =

¢ 0 L
I s s 1 g sl = 2
Jg i J
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¢ 0 L

(Lo (¢ L ¢
= 55'J 1 —1)¢ V6, C.26
77 ; i ' ( >\/E<0 0 0) (C.26)
JJ

where L = J—1, J, J+1 depending whether it is an electric or a magnetic multipole.
The isospin matrix elements are trivial and they are exactly the same as for the

isoscalar and isovector charge operators.

C.3 The Convection Current Operator

We would like to decompose in multipoles the transverse convection current to in-
clude its effect on the transverse response. For this purpose, as done for the spin
current, we want to evaluate the quantity in Eq. (3.14) in case of the convection
current J ?1)- In Chapter 6 we have shown that the part of convection current which
includes a transverse term, i.e. Jf’s of (6.19), can be separated into isoscalar and
isovector parts which have the expression as in (6.26) as a function of the last inter-
nal coordinate r’y. Thus we clearly deal with isoscalar and isovector multipoles. In
order to perform the multipole expansion we will consider only the main structure
of the operators in (6.26), i.e. €4V, with V/j = - , , where we neglect the factor

A L and the isospin operators OTTZ( A)-

The quantity to calculate is then
Tia) = 3= [ e Y @), (20

where V', - Y",,(¢) = [Y'(¢') x V'}]] and the plane wave ¢'¥™4 can be expanded as

n (C.14). This means that we have to evaluate

Ja) = Z(—i)elfje(qu)/dé’[[Y’(é’) x V7T x [YA) < Yl (C.28)
¢
Recoupling the tensor products appearing in the last formula such that the two
spherical harmonics, which are functions of ¢/, are coupled to a third one as function
of ¢’, and then performing the angular integration one gets the final expression for
Jh(q) as
Th(a) = 3(griy) [V (7y) x V4. (C.29)

Now, we can write the electric 75, (¢) and magnetic 77" (¢q) multipoles using the
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. an . as a function of the q)- e electric multipoles become
3.22 d (3.24 f i chf,‘l The el i Itipoles b

J+1

Ti(q) = —v2 Y ijilgry)

l=J-1

)= (ILT|01L) [Y' (7)) x V47, (C.30)

ol ~

where we have the contributions of two Bessel functions, and the magnetic multipoles

are

T50%(a) = —v2¢ s (arly) (JLI|OLL)[Y (7)) x V315 (C.31)

The multipole decomposition of the J, for the transverse convection current using

the formula in (3.26) becomes

T (g) = Z (B (q) + M5"(q)), (C:32)

with
E"(q) = —/‘ﬂ;1M{:Ji_lliljz<qrg>i<zu\on>[Yl(f’> x VAl; }OZ;H A)
MY (q) = Tia(aqrly) TV IL Y (7)) x WA OT = (t4), (C.33)

where we have finally added all the coefficients and the isospin operators. Clearly,
electric and magnetic multipoles have different parities, which are (—1)” and (—1)7*1,
respectively.

In the calculation of the matrix elements of these multipoles as in (4.15) we have
to take care of the reduced matrix element, as in Eq. (4.16), which is now
<(£ s)j H [YI(#,) x V;{}"H ( s’)j’> with | = J —1,.J,J + 1 depending whether it
is an electric or magnetic multipole, and where both the spherical harmonics and
the gradient act on the angular part of wave function. After some steps [Edm74] it

becomes

<£s H W) x V] H >:( 1)s+g+£/+ejj{j, Z’/ j}jx

L1 J e (e 1 ¢
{0 }f(o L), cs0

ZII

Using the gradient formula the reduced matrix element of the gradient can be written
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as

<£l/ HvﬁH £/> — M( d/ — ¢ ) 54//7@_;,_1 — \/? ( d + g—_t_l) 65”,5’—17 (C35)

i /
dr'y 1y dr'y '

where, thanks to the Kronecker § one can explicitly write the sum in (C.34). Clearly,
in the last expression 7’4 is the modulus |r’4|, which is as usual related to the last

Jacobi coordinate and thus to the hyperspherical coordinates p = ps_; and ¢ =

PA—1 aS
A—-1
ry = psin . (C.36)
A
Therefore the derivative becomes
d A d cosp d
— = ¢ino— . C.37
dra A—-1 (smgodp—l— P dgo) ( )

as a function of the hyperspherical coordinates. Finally, the reduced matrix element
in (C.34) becomes

where the constants A, B and C are

_— 11 J 1 0
A = IV - (C.39)
VIS 00 0
. 11 J A A |
— -1V , (C.40)
v o0 - 00 0
_— 1 1
B — vl ! / R
¢ ¢ 1 \o o o0
0—1Vel +1) : / £ (C.41)
¢ ¢ -1 \oo o0
and o~
gy | € G s | sl
C = (=1)sH 0+ J—, C.42
(1) ZA NN S (C.42)
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respectively.

Therefore, in the radial matrix element, as in Eq. (4.18), the radial functions

to consider are now not only the Bessel function, but we have to take care also of

da
dy

(4.18) and (4.21) are practically polynomials, i.e. Jacobi polynomials as functions

the derivatives and d%. Since the basis functions we use in the matrix elements
of ¢ and Laguerre polynomials as functions of p (see Chapter 4), we can evaluate
the derivatives analytically, using the properties of the mentioned polynomials. This
means, that finally, the integrations in ¢ and p can be done using again two numerical

quadratures.

C.3.1 Siegert Part of the Electric Multipole

In order to evaluate the contribution of the convection current to the Siegert part

of the electric multipole we have to consider the following quantity (see Eq. (3.27))

. v [TxL [, )
T/Jl,u(q) - _E T / dq,q, ' J(l) (q/)Y,uJ(q/)7 (043)

with ¢ = < and || = |d'| = ¢ as usual. For this purpose we have to take into

Y
account both parts of the convection current in Eq. (6.19), since they both contain

a longitudinal term which contributes to the scalar product present in the above
integration. In the derivation of the Siegert part of the electric multipole we will

consider for simplicity only the main structure of the operators in coordinate space,

i.e.
ca Aq o
Told) = g 2™,
b W(A—=1) ;0
Jpld) = ————e 9V, (C.44)

where we neglect the form factors and the isospin operator for simplicity, and we
directly use the antisymmetrization of the wave function. The contribution of the
purely longitudinal convection current in (C.44) to the integration in (C.43) is clearly
proportional to a Coulomb multipole, since only the plane wave has to be expanded.

Namely, the contribution to the Siegert operator form the part (a) of the current is

1 /J+1Aq ) il R
T/€l(ll) _ a9 /d /_iq -rij ’ . 4
7n (@) N T g, | dde 2 (q) (C.45)
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Expanding the plane wave one gets

ella J+1 Aq . . ) R )
T30 (0) = =\ g D Gear) V(i) / dq'Y,(@)Y,/(@),  (C.46)
£m
which becomes, using the orthogonality of the spherical harmonics,

el(a J+1 Aq T . R
T/J;S )(CI) =Y/ T%Z‘]]J(QTA)YMJ(TA)- (C.47)

The last expression is proportional to the Coulomb multipole C},, as

rel(a J+1 q .
T JZ;S )(CI) =1/ 7 am JCJM(Q)- (C.48)

The parity of the last operator is clearly (—1)7 and the calculation of the corre-

sponding matrix elements proceeds as for the Coulomb multipoles.

In the following we will calculate the contribution of the second part of the
convection current, (b), to the Siegert operator. The quantity to study is then

. 1 [T+1i(A—1 - g
50 = | T fag q v ety (a9

First of all we can use the fact that the scalar product appearing in the last expression

is
& -V = V3" X VAP,
and then, expanding the plane wave as in (C.14), one gets

0 = AT D S Cagr

14

/ dq’ [[@" x V3] < [[V() < Y@ < Y(§)) ] (C.50)

Recoupling then the tensor products such that the two spherical harmonics, which
are functions of ¢/, are coupled to a third one, and using the fact that ' =
Y1(q') one gets

g = -y LAY ;<—z~>%<qr;>;ﬁ<—”h<g ) g)
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- / ai' [YN(@) x V',J° x [Y*(7) x Y@ ]2, (C.51)

At this point one can proceed, as done for the spin current, recoupling the three
tensor products in the last expression such that again the two spherical harmonics,
which are functions of ¢’, are coupled to a third one; then one can perform the
angular integration in dq’. After some steps, calculating explicitly the values of the
nine-j and six-j symbols deriving from the coupling, one gets the final result which

reads

T'?S%q):—M%%HV“Z@)“léje(qr;)(ﬁ ! ;)[W@)xvmi.

14

Clearly, in the last expression the sum over ¢ can be written explicitly, since due to
the presence of the three-j symbol only the terms with / = J —1and ¢ = J + 1

contribute. Therefore, we can finally write

rel(b) . J+1(A—1) J+i/nNJ| 7 7. ’ J-1 J 1
15, (Q)——\/TT(—U () [J—ljj—l(qm)< 0 0 O)

J+HL J 1

[Y“(ﬂ)xv;],{—JHjJH(qr;)< o

) [YH(#,) x Vg];ﬁ], (C.52)
where one clearly sees that the Siegert part of the electric multipole derived from
the second part of the convection current J fll; contains two contributions with two
different Bessel functions, j;_; and j;.i, and two spherical harmonics with multi-
polarity J — 1 and J + 1. The parity is clearly (—1)7 for both parts. The matrix
element of this operator is calculated in the usual way. The reduced matrix element
of the tensor products [Y/*/7=1(#,) x V',]7 are defined as in (C.38).

C.4 MEC Operator

We are now interested in performing a multipole expansion of the MEC we have
derived in case of the MTI-III potential. For this purpose we have to consider the
quantity in Eq. (3.14) with the current in (6.39), which represents a consistent two-
body current for the MTI-III potential with the approximation discussed in Chapter

6. We will perform the multipole expansion using for simplicity only the structure
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of such an operator, i.e.

(@) =V, In(q,r) 4 1), (C.53)

; / I / : / — d
with ry ,_; = ry —r)_; in the center of mass frame, and V, = = A We

consider only the operator acting on the last two particles, assuming to have already

used the antisymmetrization of the wave function in the matrix element of the two-

A(A-1)
2

body operator, yielding also the factor , which we now omit.

The quantity to calculate is then

J(q) /qu,V,;A in(d, rAA 1) Y5(d), (C.54)
where we can use the fact that V, - Y%, (¢) = [Y(¢) x V, | ||/ and where we

can expand the function I,,(q, 1’y , ;) as shown in [Fab76, Lei80|

Lufaraac) = (4m) 37 (=) 000 (q.raam) [Y(@) ¥ Y(aa)]’.  (C.59)

f{=even

The functions @7 ;(¢,74,4-1), With 74 41 = [r4.41], are generally defined in terms

of the Bessel functions as

B0 = / W oran)Qu2), (C.56)
with
Q()zl/ldpe() (C.57)
£ 2), z—=x '

where Py(z) is a Legendre polynomial with

1 1
= —p" + ¢ +m’).
Pq 4

Using the last relations we get

Thg) =4m Y (= ef/df?' YHG )%V, XY ) )Y (Faa-) 90 (¢, 7a,4-1),
{=even
(C.58)

where as usual one has to recouple the tensor products such that the two spherical

harmonics, which are functions of ¢’, are coupled to a third one. Performing the
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angular integration, after some steps one gets

Th(q) = 4m (=) (=1) [V, | <Y (Faa-1)]; (g, maa-1), (C.59)

AA-1

with [ even. Using the generalized gradient formula |[Edm74, Var88| one can show
that

11 J

[V,i,i1><Yl(fA,A—1)]i<I>?l(q,rA,A_l)zzJ—’—l(—M(0 -

)YHJ(fA,A—l)q)b,l(qa rA,A—l);

(C.60)
with ®},(¢q,74,4-1) as in (C.56), such that the quantity J%;(¢) becomes finally

17 J

Tila) = 47r<z'>“i( Do

) Y/ (Faa-1) ©55(q,7a,4-1), (C.61)
with [ even. From the expression in (C.61) one can easily see, that in case of J =1
the operator is identically zero, which means that no magnetic multipoles exist for
such a meson-exchange current, since 777"/ (¢) = J';(¢q) = 0. The electric multipoles
can be calculated inserting the above expression with [ = J —1and [ = J + 1 in
Eq. (3.22).

One can easily understand that the calculation of the matrix element of these
two-body multipole operators proceeds in an analogous way as in (4.15), where in the
radial matrix element we have to consider the functions @},,l(q, ra.4—1). Concerning
their calculation we have made use of an integral representation in terms of the
Hankel functions with complex argument, see [Lei80, WeaT75].

The expression in (C.61) has to be used in case one wants to write explicitly
the electric multipoles of the MEC to study its effect on the transverse response
function. In the following we will proceed with the calculation of the Siegert part
of the electric multipole deriving from the MEC (see Eq. (3.27)). This will be used
in the Siegert check.

C.4.1 Siegert Part of the Electric Multipole

In order to evaluate the contribution of the MEC to the Siegert part of the electric
multipole we have to consider the following quantity (see Eq- (3.27))

. T )
T/Jl/.t(q) - _E T / dq/q, . (2) (q/)YHJ(q,), (062)
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in analogy to what we have done in case of the convection current. Therefore, we

have to calculate

/1€ J+1 A~ / Al
7%, (0) = =4 T /d VLo )Y, (C.63)

where the scalar product can be written as

ql . Vl — \/g[q > V/l

AA-1

= —ViarlY' (@) x V!, 1.

AA-1

Using the expansion in (C.55) we get

{=even

/ AFYHE) x TP x [YA@) X YEaa)] x V(@)

l\)lw

/el
T Ju

Recoupling two times the tensor products in the last expression such that the sphe-
rical harmonics as function of ¢’ are coupled to a third one, and performing the

angular integration, one gets after some steps

e ¢ J 1 )
T'5,(q) = —4m > (=)l < )[ngi_lxw(mﬂ_l)}i 0 ,(q.74.4-1)-

0 0 0
(C.65)
Finally, making use of the relation (C.60), we can write the Siegert part of the MEC

{=even

as

2
. o (0 J 1 )
T'5,(q) = 4mi+ >~ 2 (O . O) Y (Fa,a-1) 4 0(q,ma,000), (C.66)

f{=even

where clearly only the cases with / = J — 1 and ¢ = J + 1 will contribute. Namely,

in order to calculate the matrix element of this operator we have to take

—2f J-1 J 1 JH J 1
R(raa-1)=J-1 ( )cDJJ (g Taa- 1)+J+1 ( 00 )CDIJ,J+1(Q7TA,A—1>

0 0 0 0
(C.67)

as radial function and the spherical harmonics YHJ (7a.4—1) will appear in the calcu-

lation of the reduced matrix elements.
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coordinate, i.e. 73, is proportional to the distance between last two particle,

i.e. particle 3 and 4 in the specificcase. . . . . . . . ... o000 L.

Representation of our reduction: the A-body system where all particles
interact pairwise, described by H is substituted with an A-body system in
which only two particle interact and the others are spectators, described
by H?). The interaction is depicted with an ellipse that connect the two

involved nucleons in a four body-system, as an example. . . . . . . . . ..

Schematization of the EIHH method: a two-body effective interaction is
constructed starting form H® and then it is used in the solution of the

A-body Schrédinger equation. . . . . . ... oL oL Lo oL
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