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Chapter 1

Introduction

The necessity to improve theoretical predictions for scattering processes includes the demand
for extending calculations in perturbative quantum field theories (pQFTs) to higher loop
orders in the perturbation series. Using dimensional regularization, this implies the need
to expand the analytic expressions of various Feynman diagrams to higher orders in the
regularization parameter ε, with D = 4 − 2ε, as we will explain in the following chapters.
Much effort is invested into these higher-order calculations, including attempts to find new
ways for addressing this problem. The main part of this thesis provides the description
of a new method for expanding the massless two-loop two-point function. Unlike earlier
calculations, this method will enable us to expand the integral in principle up to an arbitrary
order in ε.

The massless two-loop two-point function is interesting in different respects. On the one hand
it is needed for instance in calculations for the process e+e− → hadrons in orders of αs [GKL
1991, SuSa 1991]. On the other hand there is a number theoretical question associated with
this integral: It was shown by different authors that the low-order ε expansion of this integral
involves rational numbers and multiple zeta values. A discussion of this issue can be found
in Chapter 4. However, it was not clear whether multiple zeta values are sufficient for the
expansion of this two-loop function to all orders in ε [Broa 2003]. We will solve this problem
and give an answer to this question in Chapter 6.

These number theoretical considerations are related to investigations into mathematical struc-
tures underlying perturbative quantum field theories. Although the results of calculations
using Feynman diagrams in pQFTs are in good correspondence with experimental results
there are a lot of mathematical problems concerning the perturbation series itself that are
not yet solved. The high predictive power nevertheless suggests that the mathematical prob-
lems might be due to a lack of understanding of the series and that we did not find the correct
mathematical formulations so far. A step towards a better understanding of the mathematical
structures was done by Dirk Kreimer when he found the Hopf algebra of renormalization in
renormalizable QFTs [Krei 1998b,CoKr 1998]. Since then, the search for further mathema-
tical structures in Feynman diagrams brought up connections to several mathematical fields.
The hope is that improving the knowledge about the structures underlying the perturbation
series, one will also be able to understand the results of calculations better. We will make use
of such mathematical structures in the following chapters and emphasize their appearance in
our calculations.
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2 1. Introduction

This thesis is organized as follows: Chapters 2 and 3 provide the basic definitions necessary for
subsequent chapters. We start in Chapter 2 with a short introduction to perturbative quantum
field theories, only mentioning the very basics. Chapter 3 then defines the Hopf algebra
and Lie algebra of rooted trees and Feynman diagrams, emphasizing on the one hand the
relation between the antipode of the Hopf algebra and the counterterms of a given Feynman
diagram and on the other hand the insertion operation of Feynman graphs that allows us to
build Feynman diagrams out of certain building blocks [Krei 1998b,CoKr 1998,CoKr 2000].
However, both chapters 2 and 3 are not intended to give a full review of renormalization of
perturbative quantum field theories and its Hopf algebra structure, nor will they fully explain
the Hopf algebra and Lie algebra occurring in this context in all of their aspects. We will
neglect everything that would distract us from the main path, which necessarily implies that
we will omit many aspects that would be interesting in their own right.

Chapters 4 to 6 are dedicated to the calculation of the massless two-loop two-point function,
starting in Chapter 4 with a short introduction to some earlier works on the expansion of this
function. In Chapter 5 we will then take a closer look at the functions that typically occur
in the calculation of Feynman diagrams, and provide an overview of polylogarithms, multiple
zeta values, multiple polylogarithms, and related functions. Investigations into these functions
and their occurrence in analytic expressions of Feynman diagrams were done in [MUW 2002],
where the authors describe a way to expand sums and double sums of fractions of gamma
functions in an expansion parameter. An implementation of this work as a computer program
is provided by S. Weinzierl’s C++ library nestedsums [Wein 2002]. Since the sums mentioned
before are typical for analytical results of Feynman diagrams, nestedsums is a very useful tool
in this context and it is this library which enables us to expand the massless two-loop two-point
function. In Chapter 6 we will then describe in detail our calculation of the massless two-loop
two-point function. Contrary to former work, it will allow us to expand this function up to
an arbitrary order in the dimensional regularization parameter ε, as long as three conditions
for the set of exponents of its momenta are fulfilled.

In the last two chapters we apply the expansion of the massless two-loop two-point function to
the calculation of the non-planar two-loop vertex correction in a massless Yukawa theory and
in massless quantum electrodynamics (QED). We then examine in these theories counterterms
of graphs that are built by inserting the three divergent one-loop diagrams and the non-
planar vertex correction into each other, calculating the vertex corrections with one zero-
momentum-transfer vertex. Additionally, we consider the non-planar vertex correction with
subdivergences only in one line. The general idea that underlies this construction of graphs has
already been used before [Bier 2000] and will therefore only briefly be explained in the first part
of Chapter 7, including a presentation of the results for the one-loop diagrams. In the second
half of this chapter, we will describe the calculation of the non-planar vertex corrections for
the two theories, closing with the description of their implementation as computer programs.
Chapter 8 is dedicated to four programs, two for the massless Yukawa theory and two for
massless QED, that calculate the counterterm for an input Feynman diagram built from
the set of graphs mentioned above. To determine these counterterms the programs use the
rooted tree structure of Feynman diagrams and calculate their antipode. Using the set of
counterterms that can be built in this way, we investigate connections between the topology
of Feynman diagrams and the appearance of Riemann’s zeta function in their counterterms.
We will end this chapter with the discussion of a list of results we have produced.

Finally, Chapter 9 gives a short summary and outlook.



Chapter 2

Renormalization

Our intention here is not to give a detailed overview of perturbation theory and renormal-
ization but to sketch the general ideas and provide the necessary vocabulary needed in the
following. For an extensive introduction we refer the reader to one of the many textbooks
such as [PeSch 1995, ItZu 1980,Coll 1984] where these subjects are explained at great length
with explicit calculations. Our main interest is to provide examples that illustrate general be-
havior and correspondences between different expressions, rather than repeating proofs that
can be found elsewhere. This especially applies to the next two chapters that are related in
many respects, and we will put our emphasis on examples showing these relations.

2.1 General introduction

Consider a Feynman diagram that contains a closed loop. The momentum space Feynman
rules tell us that we have to integrate over the momentum of the particles traveling through
that loop, taking into account all possible values of this momentum from zero up to infinity.
In coordinate space, which is related to the momentum space via Fourier transformation, this
integration of the momentum up to infinity corresponds to particles that get infinitesimally
close and can lead to so-called short-distance singularities. In momentum space we find these
singularities in the form of ultra-violet divergences (UV-divergences). These divergences would
eventually lead to diverging parameters of the theory, which would thus not have any sensible
physical meaning. For UV-divergences one can solve this problem by a re-normalization of
the parameters of the theory. More precisely, one multiplies the parameters with so-called
Z-factors. These Z-factors are momentum-free series in ~ or the coupling constant respec-
tively, and absorb the divergences of the parameters. Note that we set ~ = 1 as usual in the
following.

Consider as a general example a generic Lagrangian for a scalar field theory, given by the
following formula:

L0 =
1

2
(∂µΦ)2 −

1

2
m2

0Φ
2 +

g0

n!
Φn, (2.1)

Φ denotes a field of a scalar particle and g0 a coupling constant, n ∈
�
. For n = 3 we

would obtain a renormalizable theory in 6 dimensions, for n = 4 in 4 dimensions. This

3



4 2. Renormalization

Lagrangian consists of different terms: The first monomial is the free Lagrangian leading to
a freely moving, massless particle. The second one is a mass term, which gives a mass to the
particle Φ; the third term is the interaction term. The parameters g0 and m0 are so-called
bare parameters and have no physical meaning yet. They are related to physically measurable
parameters by applying suitable renormalization conditions.

The Lagrangian (2.1) generates diagrams with UV-divergent loop integrals. We therefore
multiply the field itself, the masses and the couplings by Z-factors which are of the general
form:

Zi = 1 + δZi (2.2)

where the contributions to δZi have to be determined by the calculation of the counterterms.
We find three Z-factors here: ZΦ for the field, Zg for the coupling, and Zm for the mass.
Substituting

Φ→ Z
1/2
Φ Φ, g0 → ZgZ

−n/2
Φ g, m2

0 → ZmZ−1
Φ m2 (2.3)

we obtain for the Lagrangian:

L =ZΦ
1

2
(∂µΦ)2 − Zm

1

2
m2Φ2 + Zg

g

n!
Φn

=
1

2
(∂µΦ)2 −

1

2
m2Φ2 +

g

n!
Φn

+ δZΦ
1

2
(∂µΦ)2 + δZm

1

2
m2Φ2 + δZg

g

n!
Φn

=L0 + LCT . (2.4)

LCT is called the counterterm Lagrangian, as this part of the Lagrangian produces the coun-
terterms. These are diagrams that correspond to the original Feynman diagrams in such a
way that each counterterm provides a contribution to a Z-factor and cancels the divergence
of one particular Feynman diagram, rendering it finite. More precisely, the counterterms
correspond to Feynman diagrams in which due to (2.2) and (2.3) some vertices and edges
are replaced by a contribution of the Z-factor. The Feynman diagrams can be expanded in
their external momenta leading to a polynomial in these momenta where the highest degree is
limited by the degree of divergence of a diagram. The counterterms are thus also polynomial
in masses and momenta.

The Z-factors are determined by different vertex functions. The Z-factor for the coupling,
Zg, is calculated by vertex corrections, Zm and ZΦ by self-energies. However, the Z-factors
are not unique as there are several ways how to subtract the divergences, corresponding to
different renormalization schemes and renormalization conditions. These are conditions for
the subtraction terms that have to be fulfilled by the Green’s functions, expectation values of
time-ordered products of the fields occurring in the Lagrangian. There are some schemes like
for example the BPHZ scheme (Bogoliubov-Parasiuk-Hepp-Zimmermann) that act directly
on the integrand making it finite before one integrates over the corresponding momentum. In
other schemes one first introduces a regulator to identify the divergences. The most obvious
idea is to use a cut-off parameter Λ as the upper limit of the integration. For Λ → ∞, we
again obtain an infinite value for the integral. One can then subtract the divergent expression
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parametrized by Λ in a suitable way and render the integral finite. However, such a parameter
violates translational invariance with respect to the momentum and is also not gauge invariant.

A different regularization method that fulfills the requirements for translational and gauge
invariance is the dimensional regularization [t’HoVe 1972], which we will use in the following.
Applying this regularization scheme one calculates Feynman diagrams in D = 4− 2ε dimen-
sion. In this one translates the Feynman diagram into a Laurent series in the parameter ε
that encodes the divergence, which itself becomes visible for ε → 0. This term can then be
removed for example simply by projecting onto the pole part of the Laurent series and after-
wards subtracting this part, which corresponds to an application of the minimal subtraction
(MS) scheme. Of course there is the possibility to subtract finite terms in addition. But the
MS scheme most purely shows the mathematics of the divergence structure of graphs. Since
this is what we are interested in, the MS scheme is the scheme we will use in the following.

2.2 Feynman diagrams and power counting

After these more general remarks, we want to get into more detail: Feynman diagrams consist
of vertices and lines, or edges, of several types.1 These types are given by the theory under
consideration with its various sorts of particles and interactions. The Feynman rules assign
to each vertex and edge the corresponding analytic expression. The different kinds of propa-
gators, corresponding to the different particles, define the type of an edge and are indicated
in the Feynman diagrams in the way we draw them. The next table shows examples for some
lines and the propagators corresponding to these lines:

fermion: solid line, propagator: 1
k/

photon: curly line, propagator: 1
k2 (gµν + ξ

kµkν

k2 )

scalar boson: dashed line, propagator: 1
k2

Similarly, we obtain for instance the following two vertices for the interactions in Yukawa
theory and QED, where we only have three-point vertices between two fermions and one
boson:

Yukawa vertex: −ig

QED vertex: −ieγµ

The variables e and g denote the coupling constants and γµ is a Dirac matrix. Note that the
arrows in diagrams here and in the following indicate the direction of momentum flow.

1Please note that we use the terms Feynman graph and Feynman diagram synonymously.
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Following [Krei 2001] we call an edge internal or inner line if it connects two vertices, and
external if it connects to only one vertex. Note that we do not consider tadpole graphs. The
photon lines in the following picture are external lines, the fermion lines are inner lines.

The external structure of a graph is then provided by its external lines. The type of a vertex
is defined by the set fv of its incoming and outgoing lines. We call two sets of edges I1, I2

compatible, I1 ∼ I2, if and only if they contain the same number of edges, of the same type.
Two vertices v1, v2 are of the same type if fv1 is compatible with fv2 .

We are mainly interested in Yukawa theory and QED, which we will use in Chapter 7 and
the programs of Chapter 8. Hence we will base our examples and definitions on these two
theories, focusing on Yukawa theory. Changes in formulas or definitions for other theories
can be found in the textbooks cited at the beginning of this chapter and will not be taken
into account here.

In the process of renormalization one first has to identify the UV-divergent parts of a diagram,
that is, the parts of a Feynman diagram whose corresponding analytic expressions diverge,
when the momenta tend to infinity. We have already mentioned that the UV-divergences
are related to loops of Feynman diagrams. To decide whether there is an UV-divergence
emerging from a loop integration or not, one has to consider the large-momentum behavior
of the integrand. Consider a general scalar integral

I(p1, ..., pN ) :=

∫

d4k1...d
4kLf(p1, ..., pN , k1, ..., kL), (2.5)

where the pi, i ∈ {1, ..., N}, correspond to the external momenta of the diagram, the ki,
i ∈ {1, ..., L} are the momenta running through the loops of the diagram, and the function
f denotes the integrand consisting of fermion and boson propagators. Considering the mo-
mentum behavior, each fermion propagator contributes a factor 1

|k| , each boson propagator a
1

|k|2 . Roughly speaking, the diagram diverges if there are more powers of momentum in the

numerator than in the denominator. This fact is measured and expressed by the superficial
degree of divergence of a diagram. In 4 dimensions it is defined as the number:

ω = powers of k in the numerator - powers of k in the denominator

= 4L− IF − 2IB , (2.6)

where we expressed ω by the number IF of inner fermion lines, IB of inner boson lines, and
the number of loops L of the diagram. In theories other than QED and Yukawa theory one
may find an additional term to (2.6) due to couplings that involve derivatives of fields.

This process of determining ω by considering the contribution of the momenta of the propa-
gators and the loop integrations to the divergence of the loop is called power counting.
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Depending on the value of ω, we find:

ω < 0: the diagram is convergent

ω ≥ 0: the diagram can be divergent, more precisely:

ω = 0: the corresponding integral tends to infinity ∝ log Λ and is hence called
logarithmically divergent.

ω = 1: the diagram diverges ∝ Λ and is called linear divergent

ω = 2: it is called quadratically divergent, etc.

ω ≥ 0 is a necessary but not a sufficient condition that an integral diverges. The integral can
fulfill ω ≥ 0 and still diverge with a “smaller” degree of divergence than ω would indicate.
This might happen due to symmetries of a theory. For example, the vacuum polarization
in QED has ω = 2 and diverges logarithmically [PeSch 1995]. Additionally, a superficially
convergent or divergent diagram can have subdivergences, meaning that not the complete
diagram but only certain constituent parts of it correspond to UV-diverging integrals.

For Yukawa theory and QED we want to express ω by the number of external lines EF and EB

of a diagram. Knowing that at each vertex two fermion lines and one boson line meet, we can
express the number of vertices V as V = 2IB + EB = 1

2(2IF + EF ). Taking into account the
delta functions related to the vertices and the overall delta function that enforces momentum
conservation, we can further express the number of loop integrations as L = IF + IB −V +1.
Putting all these equations together we obtain:

ω = 4−
3

2
EF −EB . (2.7)

Note that this formula only depends on the number of external lines and not on the number
of vertices V or any inner lines IF and IB . Hence ω is not changed when we increase the
loop order of the graphs! Additionally, we see that increasing the number of external lines,
the integral becomes more and more convergent. This leads to three divergent one-loop dia-
grams for the two theories: the fermion self energy, the vacuum polarization and the vertex
correction:

As an example for a divergent diagram we consider a two-loop contribution to the vertex
correction in massless Yukawa theory at zero momentum transfer. Please note that we will
frequently omit factors (−ig)x, (iπD/2) etc. when they are not necessary for the understand-
ing and we simply want to illustrate the general behavior.
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q

q
k

k

`

`

q−kk−`
0 =

∫

d4k

∫

d4`
1

k/

1

/̀

1

/̀

1

k/

1

(q − k)2
1

(k − `)2

=

∫

d4k

∫

d4`
1

`2

1

k2

1

(q − k)2
1

(k − `)2

Power counting leads to ω = 0 when we send ` and k to infinity jointly, so the integral in total
is logarithmically divergent. This divergence is called the overall divergence of the graph.
Taking into account only the loop integration with respect to `, keeping k fixed, we find again
a logarithmic divergence:

∫

d4`
1

`2

1

(k − `)2
→ ω = 0.

This corresponds to the expression of a one-loop diagram with external momentum k. There-
fore the “inner” loop, with loop momentum `, is a subdivergence of this graph.

On the other hand for ` fixed and k →∞ one finds:
∫

d4k
1

k2

1

(q − k)2
1

(k − `)2
→ ω = −2,

which is convergent.

So we have precisely two divergences in this integral: the superficial or overall divergence,
when l and k run to infinity jointly, and one subdivergence, when k is fixed and only l tends
to infinity. Graphs like the two self-energy graphs and the vertex correction given above,
which are superficially divergent but have no subdivergences, are called primitive graphs.

The UV-divergences of a diagram are related to its loops. An important definition in this
context is that of one-particle irreducible (1PI) graphs. These are graphs that can not be
made disconnected by cutting a single inner line. A 1PI primitive graph with two external
lines is called a self-energy, a graph with three external lines an interaction or vertex graph.
The graph on the left hand side in the following picture is one-particle irreducible, the one
in the middle is not. It would split into two disjoint graphs, when one would perform the
indicated cut. Such graphs are called reducible.

In the 1PI graph on the left hand side we have an example for a graph whose subdivergences
are nested: one subdivergence lies inside another loop or divergence, respectively. For the
graph in the middle, the divergences are disjoint: The external lines of one of the divergences
are not inner lines of another graph. A third possibility is that divergences can overlap, like
in the third graph of the picture above.

Since the analytic expressions corresponding to reducible diagrams are simple products of
the analytic expressions for their irreducible parts, it is sufficient to restrict ourselves to 1PI
graphs.
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2.3 Dimensional regularization

So far we have identified the divergent parts of a diagram. In a first step towards renormal-
ization we will now regularize these divergences for a massless Yukawa theory by dimensional
regularization [t’HoVe 1972,Coll 1984] and afterwards subtract them using the minimal sub-
traction scheme. Everything which we will only briefly sketch here can be found in all detail
with proofs and calculations in [Coll 1984].

In dimensional regularization the integral is analytically continued in the complex plane from
4 to D dimensions, usually defined as D = 4 − 2ε. The D-dimensional integral has the
following properties:

• Linearity:
∫

d Dx [ a f(x) + b g(x) ] = a

∫

d Dx f(x) + b

∫

d Dx g(x) (2.8)

• Scaling behavior:
∫

d Dx f(sx) = s−D

∫

d Dx f(x) (2.9)

• Translational invariance:
∫

d Dx f(x + y) =

∫

d Dx f(x) (2.10)

In these formulas, x and y are vectors in an infinite-dimensional vector space, f and g are
functions of vectors x and y and a, b, s are scalars.

Using dimensional regularization, the result of calculations of Feynman diagrams depends on
the parameter ε. The graphs evaluate to Laurent series in ε, which can diverge for D → 4 or,
equivalently, ε→ 0.

For a general D-dimensional integral of momentum k in Euclidean space we get:

∫

dDk
[k2]a

[k2 −m2]b
= πD/2[−m2]D/2+a−b Γ(a + D/2)Γ(b− a−D/2)

Γ(D/2)Γ(b)
. (2.11)

Hence in the calculation of this integral we naturally find Euler’s gamma function. This
gamma function can be expanded using:

Γ (1 + ε) = exp (−γε) exp

(
∞∑

n=2

ζ(n)

n
(−ε)n

)

, |ε| < 1

= 1− γε +
1

2
(γ2 + ζ(2))ε2 + O(ε3) (2.12)

Note that the integral (2.11) vanishes if there is no external scale, which is provided by the
mass in this case or can, for example, be an external momentum in other cases. Hence the
integral

∫

dDk
1

[k2]a
= 0. (2.13)
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In the following, we will calculate massless integrals. These integrals are mostly of the form
(2.14), which is given in Euclidean space and for D = 4− 2ε by:

I(q; ν1, ν2) ≡
1

(µ2)−ε

∫
dDk

πD/2

1

[(q − k)2]ν1 [k2]ν2

=

(
q2

µ2

)−ε
1

[q2](ν1+ν2−2)

Γ (2− ν1 − ε) Γ (2− ν2 − ε) Γ (ν1 + ν2 − 2 + ε)

Γ (ν1)Γ (ν2)Γ (4− ν1 − ν2 − 2ε)

=
1

(µ2)−ε

1

[q2](ν1+ν2−2+ε)

Γ (2− ν1 − ε) Γ (2− ν2 − ε) Γ (ν1 + ν2 − 2 + ε)

Γ (ν1)Γ (ν2)Γ (4 − ν1 − ν2 − 2ε)

=
1

(µ2)−ε
[q2](2−(ν1+ν2)−ε)Fν1,ν2(ε) (2.14)

with

Fν1,ν2(ε) :=
Γ (2− ν1 − ε) Γ (2− ν2 − ε) Γ (ν1 + ν2 − 2 + ε)

Γ (ν1)Γ (ν2)Γ (4 − ν1 − ν2 − 2ε)
. (2.15)

The explicit calculation of this integral can be found in the Appendix C. Like the integral
(2.11), it evaluates to gamma functions that can be expanded in ε via (2.12).

The scale µ2 is introduced in order to obtain a dimensionless integral. Starting with the
Lagrangian one includes this scale in the interaction term to absorb the additional dimension
of the coupling constant when we switch to D dimensions, g → µ2−D/2g and to keep the
coupling constant dimensionless. In the following, we will consider all integrals in units of µ2,
setting µ2 = 1.

Our aim in later chapters is to investigate the appearance of zeta functions in counterterms
rather than to compare our results with experiments. Therefore we will often omit any
multiplicative factors like the coupling constant g or multiples of π.

2.4 Counterterms

2.4.1 One-loop diagrams

Let us consider the one-loop vertex function in massless Yukawa theory. It diverges logarith-
mically in 4 dimensions. In D = 4− 2ε dimensions we get:

q

q

k

q−k

k

0
=

∫

dDk
1

k/

1

k/

1

(q − k)2
=

∫

dDk
1

k2

1

(q − k)2
.

We use (2.14) and expand on the one hand the gamma functions via (2.12), and on the other
hand the term [q2]−ε into a power series in ε, where we assume for convenience that q2 > 0
(cf. Chapter 8):

[q2]−iε = exp(ln([q2]−iε)) = exp(−iε ln[q2]) = 1− iε ln[q2] + O(ε2). (2.16)
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This expansion yields:

∫

dDk
1

(q − k)2k2
= [q2]−ε F1,1 = [q2](−ε) Γ (1− ε) Γ (1− ε) Γ (ε)

Γ (1)Γ (1)Γ (2 − 2ε)

=
1

ε
+ 2− γ − ln[q2] + O(ε). (2.17)

One can see that by using dimensional regularization, we are now able to isolate the divergence
in the term 1

ε , which tends to infinity for ε → 0. Note the appearance of the ln[q2]-term in
the finite part of the expression. This will cause problems when we start to increase the loop
order.

Now that the infinity is isolated in the term 1
ε , the graph can easily be made finite by simply

removing, that means subtracting, this pole part. This is done by adding a counterterm to
the graph, which is indented in the following by a box drawn around the graph or a cross at
the vertex or line the divergence sits in. The box indicates that one projects onto the pole
part of the corresponding Laurent series and subtracts the result:

≡
1

ε
+ 2− γ − ln[q2] + O(ε) −

1

ε
= 2− γ − ln[q2] + O(ε) (2.18)

In this way we have calculated the first contribution to the Z-factor Zg. Recall that we
multiply g by Zg: g → Zgg to renormalize the expressions. In dimensional regularization, Zg

has the general form:

Zg = 1−
∞∑

j=1

∞∑

k=−j

(g2)jcj,kε
k (2.19)

and is also a Laurent series in ε. Hence we just calculated the first contribution c1,−1 = 1.
We denote this term by δZ1 := −

c1,−1

ε (−ig)2 and get Zg = 1+ δZ1. Substituting the coupling
constant g by the “new” value g → Zgg in the Feynman diagrams, one immediately obtains
the renormalized graph from the Lagrangian.

2.4.2 Multi-loop diagrams

Before we continue investigating the renormalization of UV-divergent expressions of multi-
loop diagrams, we want to make a short remark concerning infrared divergences,
IR-divergences. These are divergences that come from long-range forces in a massless theory
and appear in momentum-space as divergences when some momenta go to zero. We will
in our calculations only encounter analytic expressions whose expansions in ε give rise to
UV-divergences but not IR-divergences. This is an outcome of the fact that we calculate in
D = 4− 2ε dimensions: the divergent terms of our expansion in ε stem from certain gamma
functions in the numerator of (2.14). If we calculate and express the integral (2.14) in D
dimensions and take D different from D = 4 − 2ε, we find that for some values of D other
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gamma functions provide poles and in this give rise to IR-divergences. Since we restrict our-
selves to D = 4− 2ε, ε small, the different sorts of divergences, UV and IR, do not mix [Coll
1984].

What happens now if we increase the loop order? In dimensional regularization, an n-loop
diagram corresponds to a Laurent series that starts with lowest order ε−n. Starting with
the two-loop level, we find in the negative orders of the Laurent series terms of the form
lni[q2]/εj . Projecting onto the pole part of this series analogously to the one-loop case would
lead to a Z-factor containing terms proportional to ln[q2]. In coordinate space this would
give rise to logarithms of differential operators, as by Fourier transformation we obtain the
replacement qµ → i∂µ. Hence an expansion analogous to (2.16) would give rise to a series
involving logarithms of differential operators which eventually leads to an effective action that
is no longer local.

A solution to this problem was given by Bogoliubov, Parasiuk and Hepp, who developed a
procedure how to renormalize a graph with subdivergences recursively. It is based on the idea
that one first renormalizes subdivergences, which will eliminate the non-local terms, leading
to a graph R̄(Γ). The remaining divergence can then be subtracted by a local counterterm,
the counterterm for the overall divergence of the graph. Zimmermann then gave a recipe how
to solve this recursion by applying the forest formula.
Define:

Γ = divergent loop diagram

R̄(Γ) = the graph Γ, in which all subdivergences have been rendered finite, leaving only

the overall divergence

Z(Γ) = counterterm for the overall divergence of Γ

ΓR = finite, renormalized graph

The index R of ΓR denotes the renormalization map, like in our example the MS scheme,
R ≡ RMS . For each application of the renormalization map R (for each box respectively) one
has to multiply the expression with a minus sign. For a primitive one-loop diagram Γ, for
example, this means that:

ΓR = Γ−R(Γ) =: Γ + Z[Γ] (2.20)

since the one-loop graph is subdivergence-free.

Zimmermann’s forest formula (ZFF) now states the different steps how to construct Z(Γ) and
ΓR [Coll 1984], [ItZu 1980] for a general graph:

1. find all the divergences of a graph, denoting them by γi, i ∈
�

2. build all possible sets out of these divergences, the so-called “forests”, where the graphs
of one forest that correspond to divergent subgraphs have to be either nested or disjoint.

Hence the forests are sets consisting of the superficially divergent subdiagrams γ and, in case
the graph is overall divergent, the graph Γ itself. The empty set is also a forest. Forests that
do not contain Γ are called normal forests, forests including Γ, full forests. Since the full
forests emerge from the normal forests by simply adding Γ, there are always equally many
full and normal forests. The requirement that the subdivergences building a forest may only
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be disjoint or nested is not a limitation for the set of graphs. One automatically includes
overlapping divergences in this way [Coll 1984].

Let γX now be the subdivergence that corresponds to a forest X (e.g.: X = {γ1, γ2} ⇒
γX = γ1 ∪ γ2). Zimmermann’s forest formula then states that R̄(Γ), Z(Γ) and ΓR are given
by the formulas:

R̄(Γ) =
∑

U∈FU

(−)nU R(γU )Γ/γU (2.21)

Z(Γ) =
∑

V ∈FV

(−)nV R(γV )Γ/γV (2.22)

ΓR =
∑

W∈FW

(−)nW R(γW )Γ/γW (2.23)

where the FU denotes all normal forests U of F , FV all full forests V of F , and FW all possible
normal and full forests W . The numbers nU , nV , nW denote the number of elements in the
respective forests.2 Γ/γU denotes the graph Γ, in which the graph(s) γU have been shrunk to
a point. Note that we find: R(γ1 ∪ γ2) = R(γ1)R(γ2).

As an example to illustrate Zimmermann’s forest formula, consider again the contribution to
the two-loop vertex correction

We have seen in Section 2.2 that this graph has one subdivergence given by the inner loop and
is overall divergent. We call the subdivergence given by the inner loop {γ} and the superficial
divergence {Γ}. The possible forests are therefore: ∅, {γ}, {Γ}, {γ,Γ}. Applying (2.23) to
this graph meaning that we take these forests, apply the renormalization map R and build
the sum appropriately, we obtain:

ΓR =

2The empty set is a forest, but does not count for the different n’s.
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The interpretation of these graphs is the following: The second graph contains the coun-
terterm for the subdivergence γ. It is generated by the one-loop counterterm δZ1 calculated
in (2.17) and (2.18). Hence the one-loop renormalization already made the two-loop graph
subdivergence-free and what remains is the overall divergence. This, on the other hand, is
subtracted by the last two graphs, which bring us the next contribution δZ2 to the Z-factor:
δZ2 := −(

c2,−2

ε2 +
c2,−1

ε )(−ig)4. Hence we can represent the renormalized graph ΓR as

ΓR =
δZ1

δZ2

where again δZ1 is the counterterm for the overall divergence of the one-loop diagram and
multiplies the coupling to the external boson line like indicated in the picture. Multiplying
δZ1 also with one or both couplings to the inner boson line would give a contribution of order
g7, g9 respectively, which is not needed until we consider graphs of this order in g. δZ2 then
is the counterterm for the overall divergence of the two-loop diagram. A short calculation
for example in the massless Yukawa theory that we used before shows that in this way one
obtains Z-factors that are indeed ln[q2]i/εj-free and a renormalized graph of order g5 in the
coupling constant.



Chapter 3

Hopf and Lie algebra

In the last chapter we have demonstrated that there is a certain combinatorial structure
underlying the renormalization process of multi-loop diagrams in pQFTs, provided by Zim-
mermann’s forest formula. It was shown by D. Kreimer in 1997 that this structure is encoded
in a commutative, but not cocommutative, Hopf algebra of rooted trees HR [Krei 1998b,CoKr
1998]. This Hopf algebra can also be directly formulated on Feynman diagrams, yielding the
Hopf algebra of Feynman diagrams HFG. The Feynman rules then are maps, more precisely
characters, on the Hopf algebra into a suitable target space. The definition of a Hopf alge-
bra and other definitions needed in this context can be found in the Appendix A. It is the
antipode of the Hopf algebra of rooted trees which is implemented in the programs given in
Chapter 8 and we will therefore introduce this Hopf algebra HR in detail.

Dually to this associative commutative non-cocommutative Hopf algebra exists a cocommu-
tative Hopf algebra. This latter Hopf algebra is isomorphic to a universal enveloping algebra
U(L) of a Lie algebra L due to the Milnor-Moore theorem [MiMo 1965]. We will also briefly
introduce this Lie algebra in the following where we will focus on the Lie algebra of Feyn-
man graphs, since it is the idea of inserting graphs into each other which is one step in the
calculation of the massless two-loop two-point function in Chapter 6.

However, we want to emphasize that this chapter will only provide a short sketch of the
basic properties of the Hopf and Lie algebras, and we will focus on the structures which
we will need in the chapters to come. Similarly, we will not prove the statements which
we will make but rather illustrate them with examples. The proofs can be found in [CoKr
1998,CoKr 2000,Krei 2003b,Krei 2003a,Krei 2001,CoKr 2002] which also include reviews on
these subjects and related topics.

3.1 The Hopf algebras HR and HFG

We start with the definition of the Hopf algebra of rooted trees HR. We will then introduce the
Hopf algebra of Feynman diagrams HFG and finish this section by showing the correspondence
between HR, HFG, and Zimmermann’s forest formula.

15
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3.1.1 The Hopf algebra of rooted trees HR

A rooted tree is a simply connected set of vertices and edges, meaning that any two chosen
vertices are connected by not more than one edge. Each tree contains one special vertex
which is always drawn at the top of the tree and is called the root. We assign to the trees
an orientation by defining the edges connected to the root to be outgoing, meaning that they
are directed away from the root. In general, a vertex has incoming and outgoing edges where
the root is the only vertex with no incoming edge. The next picture shows some examples.
The root is marked here by an unfilled vertex.

The last tree in that row is an example for a tree with sidebranchings: there are two edges
originating from the root. The other trees have no sidebranchings. The number of edges
originating from a vertex v is called the fertility, f(v).

Before we continue to define the Hopf algebra, we first want to show how these rooted trees
are related to Feynman diagrams. Consider the following four graphs:

The translation from a Feynman diagram to a rooted tree has to be done in the following way:
Set boxes around all subdivergences of a Feynman graph Γ and mark their upper horizontal
lines with a dot (' vertex). Dots of nested boxes, that is boxes where one of them is contained
inside the other, are connected with a line (' edge).
For the first three Feynman diagrams of the example above we then get:

⇒

⇒

⇒

Figure 3.1: Translation of Feynman diagrams to rooted trees.
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Hence for each of these Feynman diagrams we obtain a corresponding tree. From the first
two pictures one can see that the same tree can belong to different Feynman diagrams. This
is because the tree only tells us the relative position of subdivergences, in the sense that it
encodes in which way divergent graphs sit inside each other. One can reduce this ambiguity
by turning to decorated rooted trees, where one draws the corresponding subdivergences next
to the vertices. Still one can easily find examples where the same decorated tree corresponds
to different Feynman diagrams. Hence a decorated rooted tree is assigned to a whole set of
Feynman diagrams that have the same divergence structure, meaning that they consist of
the same divergences in the same nested or disjoint appearance. However, we will soon see
that this ambiguity does not cause any problems. Anything valid due to the Hopf algebra
structure for the tree is also valid for any element in its corresponding set of graphs.

The situation is different for the fourth graph of our example, which is overall divergent and
has two overlapping subdivergences corresponding to the two “halves” of the graph. This
graph does not map onto one rooted tree, but onto two rooted trees in the following way:
In a first step, determine the maximal subdivergences of the graph. They are maximal in
the sense that there is no other subdivergence that contains them and is not the overall
divergence itself. In our example there are two maximal subdivergences, namely the only
two subdivergences of the graph that exist. To each maximal forest one then assigns a tree.
Decorating these trees with the corresponding diagrams like before we obtain:

→ +

The recipe of treating this two-loop graph is in general true for overlapping divergences.
Hence overlapping divergences are no big difficulty and simply map onto a sum of graphs
instead of one simple tree [Krei 1999].

We now want to define the structure maps of the Hopf algebra on these trees [CoKr 1998,
GBVF 2000]. We find a natural grading for rooted trees given by their number of vertices.
This is measured by the grading operator Y, which is defined by Y t = nt, where n = number
of vertices of the tree t. The number n is called the degree of the tree.

The rooted trees form a vector space, with the linear generators being single trees. One can
add these trees and multiply them with coefficients from a field, for example � . Starting from
this vector space we get a freely generated algebra A (see Appendix A), whose multiplication
is defined as the disjoint union of trees. This disjoint union is commutative and obviously
adds the degrees of the trees. A general element of the algebra therefore is a polynomial in
trees. The unit element e is the empty set.

The structure maps of the Hopf algebra are defined by operations on trees. First of all, there
are different sorts of cuts on their edges. The basic cut is an elementary cut which is a cut at
a single line of a tree. An admissible cut is a set of elementary cuts such that on the way from
each vertex up to the root there is at most one elementary cut. When we make a cut and
think of it as a real cut to a real tree, where we hold the tree by its root, there is always some
part of the tree that is pruned and exactly one part of the tree that is not. This latter part
is the one that we keep in hand, containing the root. Any cut and especially any admissible
cut therefore maps a tree onto a monomial of trees, where exactly one contains the root and
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is called RC(t). The set of trees that are pruned is denoted P C(t), cf. Fig. 3.2. Additional
to these cuts, we have empty cuts and full cuts. The empty cut is a cut at no edge. Let us
figure an additional edge incoming to the root (with no vertex to start from, otherwise one
would get a new root). A full cut is then a set of cuts that includes a cut at this additional
edge. Fig. 3.2 shows some examples. Cuts that are not full cuts are called normal cuts and
both sets only differ by the one additional cut at the edge which is incoming to the root.

non-admissible cut empty cut full cut

=

PC(t) RC(t)

Figure 3.2: Examples for the different sorts of cuts at a tree. Once we apply these cuts to a tree,
we obtain pieces of it that are pruned, building the set P C(t), and exactly one part that contains the
root, RC(t).

So far we have an algebra of rooted trees. To obtain a bialgebra, we need to define a counit
and a coproduct. The counit ε: HR → � is defined as:

ε(t) = 0, ∀t 6= e; ε(e) = 1. (3.1)

The counit maps all trees except the unit e ∈ HR to zero. The coproduct ∆ is defined by the
sum of all admissible cuts:

∆(e) = e⊗ e (3.2)

∆(t) = e⊗ t + t⊗ e +
∑

admissible
cuts C

PC(t)⊗RC(t). (3.3)

Note that the coproduct is non-cocommutative, which may already be seen from the fact that
PC(t) can be a polynomial in trees, while RC(t) is always one single tree.

Having defined a bialgebra, we need an antipode S to obtain a Hopf algebra. This antipode
is defined to be:

S(e) = e (3.4)

S(t) = − t −
∑

admissible
cuts C

S[P C(t)]RC(t) (3.5)

=
∑

all full
cuts C

(−1)ncPC(t)RC(t) (3.6)
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where nc is the number of elementary cuts at a tree. In the sum over “all full cuts C” we
do not restrict ourselves to admissible cuts. Note that one obtains the same trees P C(t) and
RC(t) by the normal and full cuts. The full cuts mainly serve to provide an additional minus
sign in the definition of the antipode (3.6).

In order to renormalize graphs, we need the convolution product ∗ of rooted trees and the
combination (S ∗ id)(t) = m◦ (S⊗ id)◦∆(t), where m is the multiplication, the disjoint union
defined before. Constructing the convolution product with all these definitions, we obtain:

(S ∗ id)(t) = m ◦ (S ⊗ id) ◦∆(t)

= t + S(t) +
∑

admissible
cuts C

S[P C(t)]RC(t)

= ε(t)

= 0, ∀t 6= e. (3.7)

The sum could equally be defined over “all cuts”, all normal and full cuts, without restriction
to admissible cuts [CoKr 1998]. The result of (S ∗ id)(t) is equal to zero because we can find
for each normal cut a corresponding full cut with a relative minus sign. This simply results
from the fact that one obtains a full cut from a normal cut by setting one more cut at the
incoming line to the root. It therefore shows us that S really is the inverse of id with respect
to ∗ and hence the definition for the antipode was correct.

Let us calculate a short example:

(S ∗ id)

( )

= m ◦ (S ⊗ id) ◦∆

( )

. (3.8)

The admissible cuts are and . According to (3.3) we get:

∆
( )

= e⊗ + ⊗ e + ⊗ + ⊗ , (3.9)

and hence

m ◦ (S ⊗ id) ◦∆
( )

= m

[

S(e)⊗ + S
( )

⊗ e + S
( )

⊗ + S( )⊗

]

(3.10)
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Calculating the antipode for the trees, we obtain:

(S ∗ id)

( )

= m

[

e⊗ − ⊗ e + ⊗ e + ⊗ e− ⊗ e

− ⊗ + ⊗ − ⊗

]

= − + + − − + −

= 0

= η ◦ ε
( )

(3.11)

This simple example shows again that the structure maps [Kass 1995] were defined correctly
and that they indeed define a Hopf algebra on rooted trees.

3.1.2 The Hopf algebra of Feynman graphs HFG

In the previous Section 3.1.1 we saw how one can assign a tree to a Feynman graph by
identifying the “1PI primitive” building blocks of a graph, drawing a box around each, and
connecting the boxes in such a way that the tree encodes their nested structure. Hence we
have the correspondence between trees and 1PI graphs and like the generators of HR are
given by single trees, so the corresponding generators in this Hopf algebra of Feynman graphs
are 1PI graphs. Their multiplication is also given by disjoint union in this case.

Let us take a 1PI graph that is overall divergent. Denote the full graph with Γ and subdiver-
gences with γi. The coproduct is then given by

∆Γ = Γ⊗ 1 + 1⊗ Γ +
∑

γi$Γ

γi ⊗ Γ/γi, (3.12)

where the sum runs over all subdivergences γi. Note that γi can be several graphs. Γ/γi is
the graph Γ in which the subdivergence γi has been shrunk to a point. It is called the cograph
to γi.

The antipode in this Hopf algebra is defined as

S(Γ) = −Γ−
∑

γi⊂Γ

S(γi)Γ/γi. (3.13)

Note the similarity of (3.12) with (3.3) and of (3.13) with (3.5).

Like the grading on HR given by the number of vertices, there is a natural grading on Feynman
graphs given by the loop number of a 1PI graph.

3.1.3 Correspondence between HR, HFG, and ZFF

We have now defined the Hopf algebras on rooted trees and on Feynman graphs. Although
we have shown correspondences between the two, HR and HFG are not isomorphic as Hopf
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algebras: While one can uniquely assign to each graph a (decorated) rooted tree, any (dec-
orated) tree is assigned a whole set of Feynman graphs with the same divergence structure.
But since the combinatoric of renormalization only depends on the divergence structure of a
graph and not on the actual types of divergences, graphs with the same divergence structure
have to be renormalized by an application of the structure maps in the same combinatorial
way. Hence structure maps applied to a tree provide the correct structure maps on graphs
whose divergences occur in such a way that they can be represented by this tree according
to the rule given on page 16. For any graph we start with, the two Hopf algebras with their
coproducts and antipodes will provide the same combinatorics. Hence we can and will switch
between the two representations to express the renormalization of graphs, always using the
one that seems to best fit our problem.

So far we have given a combinatorial structure that is encoded in the Hopf algebra of (undec-
orated) rooted trees and the Hopf algebra of Feynman graphs. The Feynman rules are maps
from these Hopf algebras, the Hopf algebra HR or equivalently the Hopf algebra HFG, into a
suitable target space, for example the ring of Laurent series in ε, which we will always use as
target space in the following. Let us consider a three-loop graph:

: ←→

In (3.9) we had for the coproduct of this (undecorated) tree:

∆
( )

= e⊗ + ⊗ e + ⊗ + ⊗ (3.14)

Using (3.12) or decorating (3.14) with the corresponding divergences of the graph we obtain:

∆

( )

= e⊗ + ⊗ e

+ ⊗ + ⊗ (3.15)

The Feynman rules now provide a character, an algebra homomorphism, Φ : H → V from
the Hopf algebra to an analytic expression, an element of the ring of Laurent polynomials
in a regularization parameter ε in this case. In our example this Laurent series diverges for
ε → 0. Φ defined in this way is called a bare character. Application of the renormalization
map R, e.g. R ≡ RMS for the MS scheme, means that after mapping into a target space via
Φ, one projects this Laurent series onto its pole part:

RMS

(
∞∑

i=−n

ci

εi

)

=

−1∑

i=−n

ci

εi
, n ∈

�
. (3.16)

Hence R is a map from V → V .



22 3. Hopf and Lie algebra

Define now a new character SΦ
R. This character provides the counterterm for a graph Γ in

the renormalization scheme R and is defined by (cf. for example [Krei 2000a]):

SΦ
R(Γ) = −R[Φ(Γ)]−R




∑

γ⊂Γ

SΦ
R(γ)Φ(Γ/γ)



 . (3.17)

To ensure that SΦ
R really is a character from H to V , i.e. that:

SΦ
R(titj) = SΦ

R(ti)S
Φ
R(tj) , ∀ ti, tj ∈ H, (3.18)

the renormalization map R : V → V has to fulfill the so-called multiplicativity constraint [Krei
2000a]:

R(xy) + R(x)R(y) = R(R(x)y) + R(xR(y)) , ∀ x, y ∈ V. (3.19)

In the case of the Laurent series in ε, for instance, it is clear that one can not have the identity
R(xy) = R(x)R(y). The pole parts of a product of two series are not the product of the pole
terms of the individual series. We only want to mention that (3.19) is the defining equation
for a Baxter algebra. Hence the target space not only has to be an algebra but a Baxter
algebra, and the renormalization map R is a Rota-Baxter map [Krei 2000a].

We can now obtain a renormalized graph Γ by applying to it not the bare character Φ (e.g.
assigning to it the corresponding Laurent series) but the renormalized character SΦ

R ∗ Φ(Γ).
The R̄ operation (cf. page 12) here is given by:

R̄(Γ) = Φ(Γ) +
∑

γ⊂Γ

SΦ
R(γ)Φ(Γ/γ) , (3.20)

and we have

ΓR = SΦ
R ∗ Φ(Γ) = R̄(Γ) + SΦ

R(Γ) . (3.21)

Equation (3.21) yields the same terms as Zimmermann’s forest formula. Let us show this
by using the three-loop graph that we already introduced at the beginning of this section.
We start with Zimmermann’s forest formula: Let γ1 be the boson self-energy, the “innermost
primitive” divergence, γ2 the fermion-self energy that has γ1 as a subdivergence, and finally Γ
the overall divergence. Applying the forest formula we obtain: normal forests: ∅, {γ1}, {γ2},
{γ1, γ2}; full forests: {Γ}, {γ1,Γ}, {γ2,Γ}, {γ1, γ2,Γ} and hence:

ΓR = − − +

− + + − (3.22)

= + δZ + δZ + δZ
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where the δZ are the counterterms for the overall divergence of their index graph, sitting in
the marked line: δZ is given by the second, δZ by the third and fourth and δZ by
the four graphs in the last line. Note that the cross that marks a line only states the place
where the renormalized subdivergence was sitting and not a counterterm itself, like defined
before.

Let now Φ again be the bare map which maps a graph into the ring of Laurent series in ε.
Let us then calculate SΦ

R(Γ). Applying first the coproduct, we obtain:

SΦ
R ∗ Φ(Γ)

= m

[

SΦ
R(e)⊗ Φ

( )

+ SΦ
R

( )

⊗ Φ(e)

+SΦ
R

( )

⊗ Φ

( )

+ SΦ
R

( )

⊗ Φ

( )]

(3.23)

Using (3.17) we further get:

SΦ
R(e) = e (3.24)

SΦ
R

( )

=− ≡ δZ (3.25)

SΦ
R

( )

=− + ≡ δZ (3.26)

SΦ
R

( )

=− + + −

≡ δZ (3.27)

The multiplication map m then simply multiplies m[SΦ
R(x)⊗Φ(y)] = SΦ

R(x)Φ(y) in the space
of Laurent series. We can see here that the character SΦ

R provides the counterterm for the
overall divergence of the graph to which it is applied and hence δZ for the different divergences
of a graph, the subdivergences and the overall divergence. These δZ are the contributions to
the Z-factor. Inserting these four lines (3.24) – (3.27) back into (3.23) and multiplying the
different terms we exactly obtain (3.22).

We have described that the application of the structure maps to trees and to Feynman graphs
provide the same terms. Therefore, although the programs of Chapter 8 work on trees and
not on graphs, they will produce the terms for the overall divergence of a graph Γ and hence
in our example the graphs of SΦ

R(Γ) given in equation (3.27) for this input graph.
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3.2 Lie algebras

Dually to the commutative Hopf algebras HR and HFG we find for each a cocommutative
Hopf algebra. The Milnor-Moore theorem [MiMo 1965,CoKr 2000] then states that this latter
Hopf algebra is isomorphic to a universal enveloping algebra U(L) of a Lie algebra L. We will
only define the Lie algebra of Feynman diagrams LFG here, introducing the gluing operation.
This operation encodes the insertion of graphs into each other, which is in some sense dual
to the splitting of graphs into pieces provided by the coproduct. We will meet this gluing
operation again in Chapters 6 to 8. However, we will not make use of the Lie algebra as
such in the following. Therefore we will only introduce it briefly here and omit any further
representations of this Lie algebra although much more could be said [MeKr 2004a, MeKr
2004b,EFGK 2004a,EFGK 2004b,EFGK 2004c].

We start by defining the gluing operation ∗i that maps 1PI graphs to 1PI graphs. One has
to provide gluing data Gi that indicate where one wants to insert the graph Γ1 into another
graph Γ2 and, if necessary, in which way (that is which bijection to use). This is the place
where we need the definition of compatible lines and vertices. For example, take Γ1 to be a
vertex correction graph. If the external lines of Γ1 are compatible with the type of a vertex

vi in Γ2 (cf. Chapter 2), fvi ∼ Γ
[1]
1,ext, we define1

Γ2 ∗vi Γ1 = Γ2/vi ∪ Γ1/Γ
[1]
1,ext, (3.28)

which simply means that we identify the vertex vi in Γ2 with Γ1 and then identify the
external lines of Γ1 with fvi . Afterwards we sum over all possible bijections between fvi

and Γ
[1]
1,ext and normalize such that topologically different graphs occur only once. This

operation can easily be generalized to self-energies and edges. The place where to insert
and the bijection build the gluing data. Note, for example, that each term of a coproduct
∆̃(X) = ∆(X) − 1⊗X −X ⊗ 1 =

∑

i x′
i ⊗ x′′

i provides unique gluing data, how to insert x′

in x′′ to obtain x: we know where the subdivergence x′ was sitting in x, leading to x′′.

As a generalization of the gluing operations, the operation ∗ (without index) is defined such
that for two Feynman diagrams Γ1 and Γ2, Γ2 ∗ Γ1 means that one sums over all possible
places for inserting Γ1 into Γ2:

Γ2 ∗ Γ1 =
∑

v∈Γ
[0]
2 ,

fv∼Γ
[1]
1,ext

Γ2 ∗v Γ1 (3.29)

For example consider the two graphs: and

There are two vertices and therefore two places where one can insert the vertex correction
into the vacuum polarization, leading to:

∗ = 2

1The upper index [1] at Γ
[1]
1,ext here indicates that we are talking about a set of edges, cf. [Krei 2003a]. An

index [0] denotes a set of vertices.
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This new composition Γ2 ∗ Γ1 is not associative, but it fulfills the following relation:

Γ3 ∗ (Γ2 ∗ Γ1)− (Γ3 ∗ Γ2) ∗ Γ1 = Γ3 ∗ (Γ1 ∗ Γ2)− (Γ3 ∗ Γ1) ∗ Γ2 (3.30)

This is the defining equation for a pre-Lie algebra structure. Note that for each side being
equal to zero, one would get back the associativity law. Antisymmetrizing this automatically
provides a Lie bracket

[Γ1,Γ2] = Γ1 ∗ Γ2 − Γ2 ∗ Γ1 (3.31)

which fulfills the Jacobi identity. The Lie-bracket for our example would now give:

[

,

]

= − 2

There are two possible ways to insert the vertex correction into the vacuum polarization at
each of the vertices, but only one place to insert the vacuum polarization into the vertex
correction.

The only operation which we will use in the following is the gluing operation of inserting
singular graphs into each other. We will not make use of the more complex Lie algebra
structure of Feynman diagrams, which is discussed in the above references.
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Chapter 4

The massless two-loop two-point

function — an overview

The next three chapters are dedicated to the expansion of the massless two-loop two-point
function. We start in this chapter with a short overview of previous work that has been
done to expand this function beginning in 1980. In this context we will first emphasize the
triangle relation as an integration-by-parts identity. This relation provides a standard way to
manipulate Feynman diagrams: one can either use it to turn (some of) the Feynman diagrams
into other diagrams that are easier to expand, or at least reduce the problem to a set of basic
master diagrams, whose expansion is needed. The triangle relation is in general applicable to
cases where all exponents of the propagators are positive integers. Unfortunately, the integral
can no longer be expanded in ε by the use of standard methods once we allow for arbitrary
non-integer exponents νi. In this chapter we will describe some ways in which different authors
nevertheless succeeded in expanding this integral up to a certain order in ε.

4.1 General remarks

The expansion of the massless two-loop two-point function will be carried out in dimensional
regularization, with D = 4 − 2ε. The topology corresponding to this function is drawn in
Fig. 4.1.

ν4 ν3

ν1 ν2

ν5

Figure 4.1: The master topology for the two-loop two-point function.

The indices νi, written next to the lines in Fig. 4.1 are the exponents of the inverse momenta
squared that are attached to the corresponding lines in the graph. Analytically, this graph is

27



28 4. The massless two-loop two-point function — an overview

then given in Minkowski space by

Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

= (−p2)ν12345−2m+2ε

∫
dDk1

iπ
D
2

∫
dDk2

iπ
D
2

1

(−k2
1)

ν1(−k2
2)

ν2(−k2
3)

ν3(−k2
4)

ν4(−k2
5)

ν5
(4.1)

with

νijk = νi + νj + νk, (4.2)

k3 = k2 − p, k4 = k1 − p, k5 = k2 − k1, (4.3)

D = 2m− 2ε. (4.4)

Note that m is simply a number here and should not be confused with a mass term. The
minus signs for the momenta and the factors 1

iπD/2 and (−p2)ν12345−2m+2ε are due to a notation
which is used in [BiWe 2003] (cf. Chapter 6) and was introduced for convenience. The factor
(−p2)ν12345−2m+2ε, for example, makes the integral dimensionless. The indices νi are of the
general form νi = ni + aiε. This form originates from the fact that subdivergences inside a
graph increase the exponents of momenta by terms proportional to jε, j ∈

�
. We will see

this more explicitly in Chapter 7.

The underlying topology for this two-loop diagram of Fig. 4.1 is the master topology for the
two-loop two-point case. All other two-loop diagrams can be obtained from this diagram by
shrinking one of the internal lines to a point or, equivalently, setting one of the indices νi to
zero.

The result of the massless one-loop two-point function of Fig. 4.2 in Euclidean space was
already given in Chapter 2 and its calculations can be found in Appendix C. For indices ν1

and ν2 the result is simply:

ν1

ν2

q q

Figure 4.2: The master topology for the one-loop two-point function.

Î(1,2)(m− ε, ν1, ν2) =

∫
dDk

iπD/2

1

[k2]ν1 [(q − k)2]ν2
=: [q2](m−ε−ν1−ν2)Fν1,ν2(ε) (4.5)

with

Fν1,ν2(ε) =
Γ(ν12 −m + ε)

Γ(ν1)Γ(ν2)

Γ(m− ε− ν1)Γ(m− ε− ν2)

Γ(2m− 2ε − ν12)
. (4.6)

The momentum q is the external momentum running through the diagram. We have met this
integral already in (2.14). From (4.6) we can see that these integrals can be expressed by a



4.2. Integer exponents νi — the triangle relation 29

fraction consisting solely of Euler’s gamma function. As we have seen in (2.12) these gamma
functions can be expanded by the formula

Γ (1− ε) = exp (γε) exp

(
∞∑

n=2

ζ(n)

n
(ε)n

)

, |ε| < 1 (4.7)

into a Laurent series in ε. The function ζ(k) =
∑∞

n=1
1

nk in (4.7) is Riemann’s zeta function.

The term [q2](m−ε−ν1−ν2) can be expanded as in (2.16) by expressing it in the form of an
exponential function:

[q2]x = exp(ln([q2]x)) = exp(x ln[q2]) = 1 + x ln[q2] + O(x2). (4.8)

A non-integer value for νi in this case, with νi = ni+aiε, ni, ai ∈ � , only changes the argument
of a gamma function. Hence it becomes immediately obvious that in the ε expansion of this
one-loop integral only Riemann’s zeta function appears.

One of the major questions now is whether this is also true for the expansion of the function
Î(2,5), including non-integer exponents.

4.2 Integer exponents νi — the triangle relation

The integral Î(2,5) with νi ∈
�
, ∀i, can be expressed in terms of the one-loop functions Î(1,2)

using the triangle relation. This relation can be obtained by integration by parts [ChTk 1981,
DaBo 1990, Davy 1991]. The integration-by-parts identities are based on the translational
invariance of the D-dimensional integral (2.10) written in the form:

0 =

∫

dDk
∂

∂k
(integrand). (4.9)

Applying ∂
∂k to a general propagator or to a D-dimensional vector kµ leads to the relations:

∂

∂kµ
kµ = D

∂

∂kµ

1

(k + x)2α
= −2α

(k + x)µ

(k + x)α+1

∂

∂kµ

1

(x− k)2α
= 2α

(x− k)µ

(x − k)α+1

Note that by doing this, we obtain a vector expression for a derivative of a propagator. Hence
we apply ∂

∂k · k in the integrand instead of ∂
∂k alone:

0 =

∫

dDk
∂

∂kµ

kµ

Denom.
. (4.10)

In this way we produce scalar products of momenta in the numerator that themselves can be
expressed by linear combinations of the propagators in the denominator of the integrand.

Let us apply ∂
∂k2 µ

(k2 − k1)
µ to our integral (4.1) to give an example:

0 =

∫

dDk1d
Dk2

∂

∂k2 µ

(k2 − k1)
µ

[−k2
1 ]

ν1 [−k2
2]

ν2 [−(k2 − p)2]ν3 [−(k1 − p)2]ν4 [−(k2 − k1)2]ν5



30 4. The massless two-loop two-point function — an overview

The derivative acts on each term in the numerator and denominator of the integrand that
depends on k2. Hence we get

∫

dDk1d
Dk2

∂

∂k2 µ

(k2 − k1)
µ

(ν1, ν2, ν3, ν4, ν5)

= D

∫

dDk1d
Dk2

1

(ν1, ν2, ν3, ν4, ν5)
+ 2ν2

∫

dDk1d
Dk2

k2 µ(k2 − k1)
µ

(ν1, ν2 + 1, ν3, ν4, ν5)

+ 2ν3

∫

dDk1d
Dk2

(k2 − p)µ(k2 − k1)
µ

(ν1, ν2, ν3 + 1, ν4, ν5)
+ 2ν5

∫

dDk1d
Dk2

(k2 − k1)µ(k2 − k1)
µ

(ν1, ν2, ν3, ν4, ν5 + 1)
(4.11)

where we abbreviated the denominator by giving only its exponents (ν1, ν2, ν3, ν4, ν5).

Using the scalar product identities:

k2 · k1 =
1

2

[
−(k2 − k1)

2 + k2
2 + k2

1

]
(4.12)

p · ki =
1

2

[
−(p− ki)

2 + p2 + k2
i

]
(4.13)

to cancel expressions in the numerator with propagators in the denominator, we obtain the
following relation:

0 =
[
(D − 2ν5 − ν1 − ν2)− ν22

+(5− − 1−)− ν33
+(5− − 4−)

]
Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

(4.14)

or, solving for Î(2,5):

Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

=
1

(D − 2ν5 − ν1 − ν2)

[
ν22

+(5− − 1−) + ν33
+(5− − 4−)

]
Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5).

(4.15)

The operator i± acts on the integral and increases/decreases the exponent of the propagator
i by 1, for example:

1+Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5) = Î(2,5)(m− ε, ν1 + 1, ν2, ν3, ν4, ν5). (4.16)

This is one form of the triangle relation. The name for this relation becomes clear when we
express (4.14) graphically. The operators that lower the exponents of propagators all act on
lines that form a triangle inside the graph. In this case it is “the left” half:

4 3

1 2

5 →

+

- +

+-

+

+

- +

+-

Figure 4.3: The form (4.14) of the triangle relation applied to the two-loop two-point master topology.
The + and − signs indicate that the exponent of the momentum corresponding to a line has been
increased/decreased by one.
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The operators 2+ and 3+ increase the exponent of the propagator attached to lines 2 and 3
by one and 1−, 4−, and 5− decrease the power of the propagator of the lines 1, 4 and 5 by
one.

Due to the symmetry of the graph there are three similar relations for the other lines. Ad-
ditionally, one obtains relations of this form by taking the derivative with respect to another
momentum (other than k2 in this case) and with other choices of momenta in the numera-
tor. In this way one obtains a whole family of relations between the integral Î(2,5) and other
integrals, where the exponents of the propagators were increased or decreased by one.

Applying (4.14) to Î(2,5)(m− ε, 1, 1, 1, 1, 1) and shrinking lines with index zero to a point, we
get for the four topologies on the right hand side of Fig. 4.3, omitting the plus signs:

Figure 4.4: The form (4.14) of the triangle relation applied to Î(2,5)(m − ε, 1, 1, 1, 1, 1). Lines with
index zero have been shrunk to a point and + signs omitted.

The corresponding integrals read (ordered from left to right in the first and second line):

I1 =

∫

dDk1d
Dk2

1

[−k2
1][−k2

2 ]
2[−(k2 − p)2][−(k1 − p)2]

(4.17)

I2 =

∫

dDk1d
Dk2

1

[−k2
2]

2[−(k2 − p)2][−(k1 − p)2][−(k2 − k1)2]
(4.18)

I3 =

∫

dDk1d
Dk2

1

[−k2
1][−k2

2 ][−(k2 − p)2]2[−(k1 − p)2]
(4.19)

I4 =

∫

dDk1d
Dk2

1

[−k2
1][−k2

2 ][−(k2 − p)2]2[−(k2 − k1)2]
(4.20)

As the topologies of the graphs 1 and 3 already suggest, the corresponding integrals I1

and I3 split into two disjoint one-loop integrals of the form (4.5). This leads to a result
of the form F1,1(ε)

2[q2]−2ε. In the case of the integrals I2 and I4, which are just mirror
images of each other, we can first do the integration with respect to k1 corresponding to
the one-loop subdivergence and afterwards with respect to k2. These are again two one-
loop integrations with a result F1,1F1,1+ε[q

2]−2ε and we get in total the well-known result
Î(2,5)(m − ε, 1, 1, 1, 1, 1) = 6ζ(3) + O(ε). A more explicit explanation for the fact that the
integrals, especially I2 and I4 result in the F -functions with indices of the form stated above
will be given in Chapter 7.

In case that one of the indices of the two-loop master topology becomes negative, the graph
reduces again either to the disjoint or nested integration of one-loop diagrams of Fig. 4.4, or
to zero, as one can easily convince oneself.
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For general νi, with νi not necessarily being integers, the triangle relation provides a relation
between graphs with different exponents of the propagators. One can use these relations to
reduce graphs to a set of “basic” graphs, which then have to be expanded in ε.

Looking at (4.14) or its graphical representation Fig. 4.3 more closely, one can see that
it suffices that the exponents νi ∈

� 0 for i ∈ {1, 4, 5} in order to reduce the integral to
integrals like the ones in Fig. 4.4. A repeated application of relation (4.14) to the integral
Î(2,5)(m−ε, n1, ν2, ν3, n4, n5), ni ∈

� 0, νj ∈ � , would eventually lead to integrals in which one
of these ni is equal to zero, as we have just seen. The resulting integrals can then always be
solved using the one-loop result (4.5).

Similar considerations for the other cases of the triangle relation lead to the conclusion that
the triangle relation is of particular use whenever we have Î(2,5) with three integer coefficients
at three adjacent lines. Nevertheless, already for Î(2,5)(m − ε, 1, 1, 1, 1, ν5), ν5 = n5 + a5ε,
with n5 6= 0, a5 6= 0, the integration-by-parts identities are not sufficient anymore to expand
the integral. In this case one cannot express the integral purely by functions Fν1,ν2 . Note
again that the one-loop graphs evaluate into a fraction of gamma functions. The fact that
Î(2,5)(m− ε, 1, 1, 1, 1, ν5) is not expressible by these functions is already a hint that a fraction
of gamma functions is in general not sufficient.

4.3 Non-integer exponents νi

Over the years, several attempts have been undertaken to expand the massless two-loop
two-point function for different sets of indices. The investigations into this integral and its
Laurent series expansion for non-integer indices started, to the best of our knowledge, in
1980 with a paper of Chetyrkin, Kataev and Tkachov [CKT 1980], applying the Gegenbauer
polynomial x-space technique to Î(2,5)(m − ε, ν1, ν2, ν3, ν4, ν5). It was followed by the paper
[ChTk 1981] where the authors introduced the integration-by-parts technique (IBP) which we
just described, and combined it with the Gegenbauer polynomial technique. In this way the
authors were able to express Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5) for

a) νi integers, ∀i

b) ν1 = n + ε, and ν2, ..., ν5, n integers

in the form of a fraction of gamma functions. They also noticed that this is no longer possible
once there is a subdivergence sitting in the “middle line” of this graph, which carries the
number 5 and index ν5 in our way of assigning these numbers to the lines, given in Fig. 4.1.

In 1983, D.I.Kazakov [Kaza 1983] calculated an expansion of Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5) in
coordinate space for all indices of the form νi = 1+aiε. He succeeded to expand this integral
up to the order ε3, using the uniqueness relation. In its “pure form” this is an identity between
a three line vertex and a triangle, stating that one can substitute a three-point vertex, where
all the indices of the adjacent lines sum up to D, by a triangle whose indices of the constituent
lines sum up to D/2, times some product of gamma functions, cf. Fig. 4.5. Starting from this
relation, one obtains a set of rules that yield relations between vertices, lines and triangles
similar to those obtained by integration-by-parts-identities.
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α2 α3

α1
P

αi=D
= v(α1, α2, α3) D

2 − α3
D
2 − α2

D
2 − α1with

v(α1, α2, α3) = πD/2
3∏

i=1

Γ(D
2 − αi)

Γ(αi)
, α3 = D − α1 − α2

Figure 4.5: The uniqueness relation. It provides an identity between a three line vertex and a triangle
in coordinate space, stating that one can substitute a three-point vertex, where all the indices of the
adjacent lines sum up to D, by a triangle, whose indices of the constituent lines sum up to D/2, times
some product of gamma functions.

In the following two years, Kazakov was able to extend the calculation to the next order
in ε, ε4 [Kaza 1984, Kaza 1985]. In the process of this calculation, he derived a functional
equation which is fulfilled by the analytic result of a diagram with indices νi = 1, i = 1, ..., 4,
ν5 non-integer, which already indicated that this result might be related to hypergeometric
functions of the type 3F2 (see Appendix B).

A next major step in the exploration of the massless two-loop two-point function was done
by taking into account the symmetry of this diagram. The graph of this function is obviously
symmetric under a reflection at the inner vertical line or a reflection with respect to the
external lines. This leads to an invariance of the integral under the following two permutations
of exponents:

(ν1, ν2, ν3, ν4)→ (ν2, ν1, ν4, ν3) (4.21)

(ν1, ν2, ν3, ν4)→ (ν4, ν3, ν2, ν1). (4.22)

But there are even more symmetry relations: In [Broa 1986,BaBr 1988] D.J. Broadhurst and
D.T. Barfoot exploited the Z2×S6 symmetry group [Broa 1986,BaBr 1988,GoIs 1985], which
is of order 1440 and possesses three generators. To be able to investigate this symmetry the
authors “closed” the external lines of the diagram, turning it into a three-loop vacuum diagram
(cf. Fig. 4.6) and searched for the possible symmetry relations and the transformations that
accomplish them.

Figure 4.6: In [Broa 1986,BaBr 1988] D.J. Broadhurst and D.T. Barfoot closed the external lines
of the two-loop two-point function and obtained a vacuum bubble diagram. They were then able to
expand the corresponding function in ε, using symmetry relations for this vacuum diagram.
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In this way the integral could first be expanded for indices νi = 1 + aiε up to order ε5 [Broa
1986] and two years later up to ε6 [Broa 1986,BaBr 1988]. To carry out the transformations
analytically, Barfoot and Broadhurst defined a function f(ν0, ν1, ν2, ν3, ν4, ν5), related to the
function Î(2,5), which in our notation is given by:

Î(2,5)(ν0, ν1, ν2, ν3, ν4, ν5) =
1

(D − 3)Γ(D/2 − 1)2





10∏

j=1

Γ(D/2− νj)

Γ(νj)





1/2

(4.23)

× f(ν0, ν1, ν2, ν3, ν4, ν5). (4.24)

The variable ν0 is related to the dimension of the integral and ν6 to ν10 are auxiliary variables
associated with the vertices of the tetrahedral vacuum diagram:

ν0 = D/2 = m− ε, ν8 = 2ν0 − ν145,

ν6 = 3(D/2) − ν12345, ν9 = ν345 − ν0,

ν7 = 2ν0 − ν235, ν10 = ν125 − ν0. (4.25)

The function f(ν0, ν1, ν2, ν3, ν4, ν5) is then invariant under Z2 × S6, where the symmetric
group S6 is generated by the six-cycle and the transposition:

(ν0, ν1, ν2, ν3, ν4, ν5)→ (ν0, ν2, ν5, ν4, 3ν0 − ν12345, ν3), (4.26)

(ν0, ν1, ν2, ν3, ν4, ν5)→ (ν0,−ν0 + ν145, ν2,−ν0 + ν345, ν0 − ν5, ν0 − ν4), (4.27)

the group Z2 by the reflection:

(ν0, ν1, ν2, ν3, ν4, ν5)→ (ν0, ν0 − ν1, ν0 − ν2, ν0 − ν3, ν0 − ν4, ν0 − ν5). (4.28)

In order to obtain the expansion of the integral for all νi = 1+aiε up to order ε6, Broadhurst
and Barfoot used the fact that, by applying group theory, one can get the result for the
integral with νi = 1 + aiε by the expansion of the same integral, where two adjacent lines
have index 1.

D.J. Broadhurst found in the order ε5-term of the expansion of the function f for the first
time that this term not only involved Riemann’s zeta functions, but additionally a double

sum U6,2 ≡
∑

n>m
(−1)n−m

n6m2 , which is not reducible to single zeta functions or a product of
them (cf. Chapter 5). This is also the only double sum up to the next order in ε, as no
further non-reducible double sum appears in that order [Broa 1986].

In 1996, A.V.Kotikov [Koti 1996] calculated a result for the massless two-loop two-point di-
agram with three subdivergences, where the two lines with index 1 are adjacent:

ν4 1

ν1 1

ν5

1

ν3

1

ν4

ν5

1

ν3

ν1

ν4

1
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and as a special case the graph Î(2,5)(m − ε, 1, 1, 1, 1, ν5). Using an enhanced Gegenbauer-
polynomial technique, he was able to express the result of these graphs in terms of

3F2 – functions of unit argument. He gave the following formula for the special case
Î(2,5)(m− ε, 1, 1, 1, 1, ν5), reformulated in [Groz 2003], to:

Î(2,5)(m− ε, 1, 1, 1, 1, n)

= 2Γ(ν0 − 1)Γ(ν0 − n− 1)Γ(n− 2ν0 + 3)
[

2Γ(ν0 − 1)

(2ν0 − 2n− 4)Γ(n + 1)Γ(3ν0 − n− 4)
3F2

[
1, 2ν0 − 2, n− ν0 + 2
n + 1, n− ν0 + 3

; 1

]]

−
πcotπ(2ν0 − n)

Γ(2ν0 − 2)

(4.29)

for non-integer n.

In [BGK 1997], D.J.Broadhurst, J.A.Gracey, and D.Kreimer then continued the work of [BaBr
1988] using integration-by-parts identities to construct a recurrence relation

(ν5 + 2− 2ν0)I4(δ, ν3, ν4, ν5) +
(ν3 + ν5 + 1− 2ν0)(ν4 + ν5 + 1− 2ν0)

(ν5 + 1− ν0)
I4(δ − 1, ν3, ν4, ν5 − 1)

= ν5(δ + ν5 + 1− 2ν0)F1,δ

(
Fν3,ν5+1

δ − ν4
+

Fν4,ν5+1

δ − ν3

)

(4.30)

for I4(δ, ν3, ν4, ν5) = Î(2,5)(2ν0−δ−2, 1, 1, ν3, ν4, ν5). This is again a function for the two-loop
two-point graph, where two adjacent lines carry index 1, and δ = ν345 − ν0. The function
Fνi,νj denotes the function for the one-loop case (4.5). Broadhurst, Gracey and Kreimer
then solved the recurrence relation, introducing a function S(a, b, c, d), which itself involves a
Saalschützian 3F2 – function [Slat 1966]:

I4(δ, ν3, ν4, ν5) = ν5δF1,δ+1

(
Fν3,ν5+1

2ν0 − 3
S(ν0 − ν3 − 1, ν4 − 1, ν0 + ν3 − δ − 2, δ − ν4)

+
Fν4,ν5+1

2ν0 − 3
S(ν0 − ν4 − 1, ν3 − 1, ν0 + ν4 − δ − 2, δ − ν3)

)

(4.31)

with

S(a, b, c, d) =
πcotπc

H(a, b, c, d)
−

1

c
−

b + c

bc
F (a + c,−b,−c, b + d) (4.32)

and

H(a, b, c, d) =
Γ(1 + a)Γ(1 + b)Γ(1 + c)Γ(1 + d)Γ(1 + a + b + c + d)

Γ(1 + a + c)Γ(1 + a + d)Γ(1 + b + c)Γ(1 + b + d)
, (4.33)

F (a, b, c, d) ≡
∞∑

n=1

(−a)n(−b)n

(1 + c)n(1 + d)n
=3 F2

[
−a,−b, 1
1 + c, 1 + d

; 1

]

− 1. (4.34)

The explicit properties fulfilled by S(a, b, c, d) and F (a, b, c, d) can be found in [BGK 1997].
The authors show that I4(δ, ν3, ν4, ν5) reduces to Euler’s gamma functions when any element
of {ν5, δ, 2ν0 − ν5 − 2, 2ν0 − δ − 2} is equal to unity.
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Taking into account knot theoretic considerations about the different zeta functions that
can possibly occur and the group of transformations of 3F2 series, Broadhurst, Gracey and
Kreimer succeeded in expanding the master two-loop diagram for νi = 1+ aiε up to order ε8,
which corresponds to zeta functions up to the level ζ(11). In this way they could show that
the ε expansion of this two-loop integral not only involves zeta functions of depth one, but
starting from order ε5 also an (alternating) double sum (see Chapter 5). We mentioned the
appearance of this function before. The order ε8 even involves a triple sum. Questions for the
different occurring functions were also investigated in [Broa 2003], where the next expansion
level ε9 for the integral defined above was announced.



Chapter 5

Nested sums

In the previous chapter we encountered gamma functions or, more generally, hypergeometric
functions in the ε-expansion of Feynman graphs. The immediate question arising from this
is, how one can expand these functions themselves in the regularization parameter ε. For the
one-loop case of (4.5) it was sufficient to apply formula (4.7) for the gamma function near unit
argument to provide us with the Taylor expansion of this one-loop diagram and the knowl-
edge that we can only get rational numbers and Riemann’s zeta function in this expansion.
However, one small step to the more complicated topology of the massless two-loop two-point
function already stopped this formula from being sufficient for the expansion. Likewise, we
are in this case no longer able to make a statement about the numbers, or functions that
could arise: We have not yet excluded the possibility that other (transcendental) functions
might occur at orders εn, n > 9.

The following Chapter 6 will introduce a new way to expand the massless two-loop two-
point function, using the C++ library nestedsums [Wein 2002]. This new method will solve
both problems. It will enable us to expand the massless two-loop two-point function up
to an arbitrary order in ε and will equally enable us to deduce from the calculation pro-
cess itself which functions can possibly occur. The library nestedsums, which we use at
the end of these calculations, includes four classes, called transcendental fct type A() to
transcendental fct type D(). These classes are prototypes for sums and double sums of
gamma functions of various arguments and can be expanded within nestedsums using so-called
Z-sums and S-sums. These objects are generalizations of those functions that can occur in
the expansion of the prototype classes. More precisely, the Z- and S-sums are generalizations
of multiple polylogarithms (MPL), (multiple) zeta values (MZV), harmonic functions, etc.,
which typically occur in the expansion of Feynman diagrams. We will refer to this whole
family of functions as multiple nested sums, a name that will become obvious once we defined
them; this will be done in the first section. We will also put some emphasis on the algebraic
properties of multiple polylogarithms, introducing the shuffle and stuffle relations, which we
will meet again in another context in Chapter 8. In Section 5.2, we will then present the
C++ library nestedsums, the theoretical background and the four classes mentioned above.
However, we will not describe the employed algorithms in detail and refer the reader to [Wein
2002] instead.

37
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5.1 Nested sums

5.1.1 From polylogarithms to multiple polylogarithms

In this section we want to introduce classical polylogarithms, multiple zeta values and related
functions, and also want to provide some of their algebraic properties. We will try to do this
in a way that gives an idea of the development of the research on these functions over the
years and shows their appearance in different contexts of mathematics and physics. However,
this is only a basic sketch and meant as a short introduction. To provide a full review of the
work on these functions and their occurrence in physics calculations is out of the scope of this
thesis.

Any function which we will introduce here, can either be represented as an infinite sum or
as an integral, a fact on which the algebraic properties of these functions will rely. However,
we will not always provide both representations in this introductory section, but mostly refer
to sums, always having in mind that we will later use nestedsums. A table of the different
functions with their representation as sums can be found in Section 5.2.

We start our introduction to multiple polylogarithms with Euler [Eule 1771]. He studied the
dilogarithm function

Li2(x) = −

∫ x

0

log(1− x′)

x′
dx′ =

∫ x

0

dx′

x′

∫ x′

0

dx′′

1− x′′
, |x| ≤ 1. (5.1)

The dilogarithm can equally be represented as a sum in the following way:

Li2(x) =

∞∑

i=1

xi

i2
, |x| ≤ 1. (5.2)

For x = 1, this sum reduces to a so-called harmonic sum, which is generally defined as

Sm(n) =
n∑

i=1

1

im
, (5.3)

leading to the identity:

Li2(1) =

∞∑

i=1

1i

i2
= S2(∞). (5.4)

A next step with importance for calculations was undertaken by L. Lewin in [Lewi 1981],
who gathered the work of different authors and introduced a general standard notation for
classical polylogarithms

Lin(x) =

∞∑

i=1

xi

in
, (5.5)

Lin(x) =

∫ x

0

Lin−1(x)

x
dx (5.6)

and related functions. These functions are now widely used in physics calculations.
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In [KMR 1970], Kölbig et al. then revised and corrected a former work of N. Nielsen on a
generalization of classical polylogarithms [Niel 1909], rewriting the classical polylogarithm in
another form:

Lin(x) =
(−1)n−1

(n− 2)!

∫ 1

0
logn−2 t log(1− xt)

dt

t
, (n ≥ 2). (5.7)

N. Nielsen investigated yet more general functions, which Kölbig et al. [KMR 1970] named
Nielsen’s generalized polylogarithms:

Sn,p(x) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0
logn−1 t logp(1− xt)

dt

t
. (5.8)

These functions reduce to classical polylogarithms for p = 1, Sn−1,1(x) = Lin(x). However,
Kölbig et al. were mainly guided by the desire to find transformations for these functions,
rather than to investigate their algebraic properties.

Research in the area of polylogarithms, including their algebraic properties, received a major
boost ten years later starting with an article by D. Zagier [Zagi 1994] who extended Riemann’s
zeta function to the multidimensional case:1

ζ(s) =

∞∑

n>0

1

ns
→ ζ(s1, ..., sr) =

∞∑

n1>...nr>0

1

ns1
1 ...nsr

r
(s1 ≥ 2, si ≥ 1). (5.9)

The variable r is called the depth of the zeta function and s = s1 + ...+sr its weight. D. Zagier
called these multidimensional functions multiple zeta values (MZVs).2 In the same article, he
gave a review of connections of zeta functions to various branches in mathematics, to number
theory in particular, and referred to their appearance in several different contexts.

Sums of the form (5.9) are in the subsequent literature also called Euler or Euler/Zagier sums
(for example in [BBB 1997]). We will follow [Wein 2002,MUW 2002] here and refer to sums
only as Euler-Zagier sums if the upper summation boundary is finite and continue to call
them MZVs if the sums are infinite sums. If one also allows the appearance of the number −1
in the numerator of the terms of a sum, these sums are called alternating sums [Broa 1996],
e.g.:

ζ(s1, ..., sr;σ1, ..., σr) =

∞∑

n1>...nr>0

σn1
1

ns1
1

...
σnr

r

nsr
r

, σj = ±1, ∀j. (5.10)

One also finds in the literature the convention that the numbers −1 in the numerator are
indicated by a bar over the corresponding variable σ.

1Note that Zagier defined the multiple zeta values with a reversed order of the terms of the sum:

ζ(s) =
∞

X

n>0

1

ns
→ ζ(s1, ..., sr) =

∞
X

nr>...n1>0

1

n
s1

1 ...nsr

r
(sr ≥ 2, si ≥ 1).

The same applies to Goncharov’s polylogarithms (see page 41). However, it is more convenient and has become
standard by now, to present the MZVs in the way we have done in the text above. It is also the definition
that is implemented in nestedsums and GiNaC (cf. Section 5.2).

2Please note that we will often call MZVs simply zeta functions, as long as the meaning is unambiguous.
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In the following years, much work on MZVs has been performed by both mathematicians
and physicists, either emphasizing the more mathematical point of view or increasingly
investigating functions that occur in the calculation of massive or massless Feynman diagrams.
Most of the developments in this area, which we will refer to in subsequent paragraphs, took
place in parallel and were often inspired by each other. The way in which we present the
functions here, is guided by the idea to go from the “simplest” to the “most complex” and is
not necessarily meant to be chronologically correct.

We want to start here with harmonic sums. J.A.M. Vermaseren reopened the work on har-
monic sums [Verm 1999] in physics. He showed by explicit calculations that harmonic sums

Sm(n) =
n∑

i=1

1

im
(5.11)

S−m(n) =

n∑

i=1

(−1)i

im
(5.12)

with m > 0, and “higher harmonic sums” or multiple harmonic sums that are recursively
defined by

Sm,j1,...,jp(n) =

n∑

i=1

1

im
Sj1,...,jp(i), (5.13)

occurred in the Mellin transforms of functions, which one typically encounters in calculations
of Feynman diagrams. Note that a negative m does not mean that the corresponding m
in the denominator has a relative minus sign, but that we have an alternating sum with a
corresponding (−1)i in the numerator. One should also be aware that the nested “inner”
sums Sj1,...,jp(i), in the harmonic sums of (5.13), which are recursive forms of (5.11), all
possess a summation limit that runs up to i and not (i− 1) as it was, for example, the case
for the multiple zeta values. These upper summation limits of nested sums will become more
important in the following.

Referring to this work, Remiddi and Vermaseren [ReVe 2000] generalized Nielsen’s polyloga-
rithm and defined the harmonic polylogarithms (HPL), H(~mw;x). For the integral represen-
tation of this harmonic polylogarithms see [ReVe 2000]. We only want to state the power
series expansion for a general harmonic polylogarithm at this point:

H(~mw;x) =

∞∑

i1>...>iw

xi1

i1
a1

1

i2
a2

...
1

iw
aw

, (5.14)

with ~mw = a1(~mw−1) = (a1, ..., aw). Also in this case one can find an alternating form with
numbers −1 in the numerator of the terms in the sum.

We claimed that the harmonic polylogarithms are a generalization of Nielsen’s polylogarithms
and indeed one finds from the sum representation of both functions (cf. Table 5.1):

Sn,p(x) = H(n + 1, 1, ..., 1
︸ ︷︷ ︸

p−1

;x) (5.15)
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Another major step in examining these multiple nested sums was the definition of multiple
polylogarithms (MPL) by A.B. Goncharov [Gon 1998]. These are on the one hand multidi-
mensional generalizations of the classical polylogarithm (5.5) and on the other hand general-
izations of MZVs to (arbitrary) variables xi:

Lin1,...,nm(x1, ..., xm) =

∞∑

k1>...>km>0

xk1
1 ...xkm

m

kn1
1 ...knm

m
. (5.16)

Starting from the middle of the 1990s and following Zagier’s work, much progress on the
subject of MZVs and related sums could be achieved by D.J. Broadhurst, J.M. Borwein,
D.M. Bradley and co-workers. Their work included both a numerical part which consisted of
tests of relations between zeta values using computers, and a more algebraic part in which
they investigated the underlying mathematical structures. This work led to much progress
concerning the algebraic properties of these functions.

We especially want to emphasize the paper [BBBL 2001] of Borwein, Bradley, Broadhurst
and Lisoněk, who worked on Goncharov’s multiple polylogarithms defining it in a different
form by introducing functions λ

λ

(
s1, ..., sk

b1, ..., bk

)

:=

∞∑

ν1,...,νk=1

k∏

j=1

b
−νj

j





k∑

i=j

νi





−sj

(5.17)

which equal Gonachrov’s MPLs:

Lisk,...,s1(xk, ..., x1) = λ

(
s1, ..., sk

y1, ..., yk

)

, yj :=

j
∏

i=1

x−1
i . (5.18)

Using this function λ, Borwein et al. compiled in [BBBL 2001] an excellent compendium
about MPLs and related functions, such as the MZVs. They calculated and proved different
algebraic relations fulfilled by MPLs and MZVs, particularly elaborating on the problem how
to express MZVs of depth k in terms of MZVs of lower depth. In doing this they investigated
the “shuffle” and “stuffle” (quasi-shuffle) relations for these functions, which we will introduce
in the next section.

5.1.2 Algebraic relations: shuffle and quasi-shuffle

The interest in relations between different zeta functions already reaches back to Euler who
tried to establish some of these relations. He showed for instance that the following relation
holds:

ζ(2, 1) =
∞∑

n=1

1

n2

n−1∑

k=1

1

k
=

∞∑

n=1

1

n3
= ζ(3). (5.19)

This is nowadays known to be a special case of the more general duality relation for MZVs
[BBBL 2001]:

ζ(s1 + 2, 1, ..., 1
︸ ︷︷ ︸

r1

, ..., sm + 2, 1, ..., 1
︸ ︷︷ ︸

rm

) = ζ(rm + 2, 1, ..., 1
︸ ︷︷ ︸

sm

, ..., r1 + 2, 1, ..., 1
︸ ︷︷ ︸

s1

). (5.20)
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Zagier, too, tried to find algebraic relations like (5.20). He conjectured for example the
identity

ζ(3, 1, 3, 1, ..., 3, 1
︸ ︷︷ ︸

2n

) =
2 π4n

(4n + 2)!
=

1

4n
ζ(4, 4, ..., 4
︸ ︷︷ ︸

n

), (5.21)

which was later proved to be correct in [BBBL 2001]. In Zagier’s article one can also find the
following formula [Zagi 1994]:

ζ(k − 1, 1) =
k − 1

2
ζ(k)−

1

2

k−2∑

r=2

ζ(r)ζ(k − r). (5.22)

In this latter relation, a zeta function of depth two is expressed via zeta functions, or a product
of zeta functions, of lower depth. To find such relations for zeta functions is one of the big
aims in this context. In the attempt to investigate these relations in more detail, it was found
that, whenever one multiplies two zeta functions, there are always two different relations that
can be obtained. Citing [BBBL 2001] one gets for example:

ζ(2, 1)ζ(2) = 6ζ(3, 1, 1) + 3ζ(2, 2, 1) + ζ(2, 1, 2) (5.23)

and equally

ζ(2, 1)ζ(2) = 2ζ(2, 2, 1) + ζ(4, 1) + ζ(2, 3) + ζ(2, 1, 2). (5.24)

Note that if we define the weight w of a product of zeta functions as the sum of the corre-
sponding weights:

w(
∏

i

ζ(ji)) =
∑

i

ji,

we observe that the weight is preserved in both cases, (5.23) and (5.24). If we equally define
the depth of a product of zeta functions as the sum of the individual depths, it is only
preserved in (5.23), but not in (5.24). Equations (5.23) and (5.24) indicate that there are two
algebra structures on MZVs (on MPLs). These two algebra relations are the shuffle product
and the quasi-shuffle product [Hoff 2000]. We want to define them in a general way, before
we show their connection to zeta functions.

A shuffle relation can be defined in an abstract way on words consisting of letters: Let X be
a finite set, called an alphabet, whose elements are letters. A word on the alphabet X is a
finite sequence of elements of X:

x = x1...xk. (5.25)

Concatenation of words defines a multiplication on the set X

(xi1 ...xik)(xik+1
...xin) = xi1 ...xikxik+1

...xin (5.26)

and gives rise to a free monoid X∗ (see Appendix A) on the set of words. The unit element
is the empty word. Each word is a product of letters. The length k of the word x defines a
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natural grading on words. The shuffle product on these words is denoted by the symbol

∃

and defined via the recursive formula:

1

∃

ω = ω

∃

1 = ω, (5.27)

xu

∃

yv = x(u

∃

yv) + y(xu

∃

v) (5.28)

for words ω, u, v and letters x, y. The shuffle product provides a commutative � -algebra.

For a, b, x, y letters, (5.28) for example leads to:

ab

∃

xy = a(b

∃

xy) + x(ab

∃

y) = ... = abxy + axby + axyb + xaby + xayb + xyab. (5.29)

One can see that the relative order of the two sets a, b and x, y in the result of the shuffle
product is preserved.

Consider now another operation on the letters of X denoted by the bracket [·,·], which is
commutative, associative, and adds degrees. A quasi-shuffle algebra is then defined as the
commutative, associative � -algebra with the product given by:

aω1 ∗ bω2 = a(ω1 ∗ bω2) + b(aω1 ∗ ω2) + [a, b](ω1 ∗ ω2). (5.30)

The zeta functions fulfill this latter quasi-shuffle product via their representation as sums.
We will see this explicitly in the next section and ask the reader for some patience at this
point.

The shuffle product on the other hand is fulfilled by the zeta functions via their representation
as iterated integrals. An iterated integral is generally defined in the following way [Kass 1995]:
Let ω1, ..., ωn be complex-valued 1-forms on a real interval [a, b], with ωi = fi(si)dsi. An
iterated integral is defined as:

∫ b

a
ω1...ωn =

∫ b

a
f1(s1)

∫ s1

a
f2(s2)

∫ s2

a
ω3...ωnds2ds1

=

n∏

j=1

∫ yj−1

a
fj(yj)dyj, y0 = c. (5.31)

Since the upper integration limit of each integral is the integration variable of the integral “it
sits in”, it is justified to call these integrals nested integrals.

Iterated integrals have the following properties:

∫ b

a
ω1...ωn = (−1)n

∫ a

b
ωn...ω1,

∫ c

a
ω1...ωn =

∫ b

a
ω1...ωn +

n−1∑

k=1

∫ b

a
ω1...ωk

∫ c

b
ωk+1...ωn +

∫ c

b
ω1...ωn,

for a < b < c, and finally fulfill the important equation:

∫ b

a
ω1...ωn

∫ b

a
ωn+1...ωn+m =

∑

σ

∫ b

a
ωσ(1)...ωσ(n+m) (5.32)
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where σ runs over all (n,m) – shuffles, i.e. over all

(
n + m

n

)

permutations σ of the set

{1, 2, ..., n + m} such that σ−1(i) < σ−1(j) for 1 ≤ i < j ≤ n and n + 1 ≤ i < j ≤ n + m.

The connection between zeta functions and iterated integrals was given by M.Kontsevich, who
found a realization of MZVs in the form of these integrals, that goes back to Drinfel’d [Zagi
1994] :3

ζ(i1, ..., ik) =

∫ 1

0

(
ds

s

)i1−1 ds

1− s
...

(
ds

s

)ik−1 ds

1− s
. (5.33)

Hence we find for example:

ζ(3, 2) =

∫

1>s1>...>s5>0

ds1

s1

ds2

s2

ds3

1− s3

ds4

s4

ds5

1− s5
. (5.34)

Since the iterated integrals fulfill the shuffle relation (5.32), we obtain a corresponding shuffle
relation for MZVs. This relation leads to (5.23) for the product of ζ(2, 1)ζ(2) [BBBL 2001];
the second relation (5.24) can thus be found by multiplication of sums.4

The connection of the iterated integral representation to the more abstract words on which
we defined the two relations was investigated by Michael E. Hoffman, [Hoff 2000,Hoff 1997].
Let us just give the basic idea of this approach by stating that one can define a map which
assigns to each form in the iterated integral representation of a zeta function a letter x or y:

ds

s
→ x,

ds

1− s
→ y, (5.35)

and hence define for each zeta function a map into the set of words in these two indeterminates
by:

ζ(i1, ..., ik)→ xi1−1y...xik−1y . (5.36)

There is the obvious restriction for the words to begin with x and to end with y coming from
(5.33). Hoffman then defines the shuffle and quasi-shuffle product on the � -vector space of
these words. We will only show using these words that the equation (5.23) really holds: Using
(5.36), we can write ζ(2, 1) and ζ(2) as:

ζ(2, 1) ≡ xyy, ζ(2) ≡ xy. (5.37)

Building the shuffle relation for ζ(2, 1)ζ(2) by shuffling these words leads to:

xyy

∃

xy = xyyxy + 3xyxyy + 6xxyyy. (5.38)

A translation of this result back into zeta functions via (5.36) gives (5.23).

In [Hoff 2000, Hoff 1997] one can also find relations between the words defined above and
so-called Lyndon words [Reut 1993, MiPe 2000]. These are words fulfilling a certain order

3To work with the more general MPLs, one only has to substitute 1
1−s

by 1
x−s

. Again, the MZVs are just
MPLs for xi = 1.

4Note that the shuffle relation is also called weight-length shuffle and the quasi-shuffle-relation depth-length

shuffle or stuffle in [BBBL 2001].
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relation: Let L be a totally ordered set, which means that for any two elements x, y ∈ L either
x ≤ y or y ≤ x. Provide L∗, the free monoid of L, with the alphabetical or lexicographical
order, that is:

∀ u,w ∈ L∗, w 6= e⇒ u < uw, (5.39)

∀ u, v1, v2 ∈ L∗, ∀ x, y ∈ L, x < y ⇒ uxv1 < uyv2. (5.40)

A Lyndon word on L∗ is a nonempty word which is smaller than all its nontrivial proper right
factors; in other words, w is a Lyndon word if w 6= 1 and if for each factorization w = uv
with u, v 6= 1, one has w < v. Let X = {x0, x1} with x0 < x1, the Lyndon words of length 5
or less on X∗ given in alphabetical order are then [MiPe 2000]:

{x0, x
4
0x1, x

3
0x1, x

3
0x

2
1, x

2
0x1, x

2
0x1x0x1, x

2
0x

2
1, x

2
0x

3
1, x0x1, x0x1x0x

2
1, x0x

2
1, x0x

3
1, x0x

4
1, x1}.

The shuffle and the quasi-shuffle algebra are both freely generated by these Lyndon words.
In [MiPe 2000], Minh and Petitot used the Lyndon words to calculate all possible relations
between zeta functions up to weight 10, by using a Gröbner basis representation. We will use
these relations to reduce zeta functions of a certain depth to zeta functions of lower depths
in Chapter 8.

5.2 nestedsums — the theory and some of its functions

So far we have introduced different sorts of functions that can all be expressed via integrals
and (nested) sums. One of the reasons why they were investigated is their appearance in
high energy physics calculations. We mentioned in Chapter 4 that there is a relation between
knot theory and high energy physics, which was found by D. Kreimer. He could show that
there is a close connection between the appearance of zeta functions in the counterterms of
Feynman diagrams and its underlying topology [Krei 1997,Krei 2000b]. Kreimer invented a
way to translate Feynman diagrams into knots, and ultimately into braids (see [Kass 1995]),
and found a rule how to relate a certain braid word, and hence a certain Feynman diagram,
to zeta functions. Investigations into these questions will be the subject of Chapter 7.

In Chapter 4 we also remarked that Kreimer’s work could be used to expand the massless
two-loop two-point function in the dimensional regularization parameter ε. In this context
only zeta functions and alternating zeta functions occurred, for some cases a simple result of
the fact that an integral could be expressed solely by a fraction of Euler’s gamma function.
The more complicated cases then involved a hypergeometric series, which ultimately is also
a sum of a fraction of gamma functions.

In the introduction to harmonic sums in the last chapter we also referred to the work of
Remiddi and Vermaseren who found harmonic sums in the expansion of Mellin moments of
functions occurring in calculations of Feynman diagrams [Verm 1999,ReVe 2000]. This is one
example for the idea of finding typical “basis elements” in which one might be able to expand
the result of a Feynman diagram.

Generally speaking, the more abstract work on multiple nested sums went along with the idea
that one could find functions typical for Feynman diagrams, and that one should be able to
express general results in terms of these functions. A step in this direction was done with the
creation of the C++ library nestedsums, which we will introduce now and which provides a
systematic approach to this question.
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5.2.1 nestedsums — the general idea

The library nestedsums is a computer library written in C++ [Wein 2002]. Itself uses an-
other C++ library written for symbolic computations, called GiNaC, which was and still is
developed at Mainz University [GiNaC].

The basic idea behind nestedsums [MUW 2002,Wein 2002] is to introduce newly defined sums
that interpolate between the different multiple nested sums, MZVs, Nielsen’s polylogarithms,
harmonic polylogarithms, etc. for differently chosen sets of values of their parameters. These
basic sums are called Z-sums and S-sums. They are defined in the following way:

Z(n) =

{
1, n ≥ 0
0, n < 0

(5.41)

Z(n;m1, ...,mk;x1, ..., xk) =
n∑

i=1

xi
1

im1
Z(i− 1;m2, ...,mk;x2, ..., xk) (5.42)

=
∑

n≥i1>i2>...>ik>0

xi1
1

im1
1

...
xik

k

imk
k

. (5.43)

S(n) =

{
1, n > 0
0, n ≤ 0;

(5.44)

S(n;m1, ...,mk;x1, ..., xk) =

n∑

i=1

xi
1

im1
S(i;m2, ...,mk ;x2, ..., xk) (5.45)

=
∑

n≥i1≥i2≥...≥ik≥1

xi1
1

im1
1

...
xik

k

imk
k

(5.46)

Hence the Z- and S-sums are nested sums. The variable k is called the depth, w = m1+...+mk

the weight, as with the zeta functions. Note that the difference between Z-sums and S-sums
lies in the summation index of the iterated sum. They can be transformed recursively into
each other [MUW 2002]:

S(n;m1, ...;x1, ...) =
n∑

i1=1

xi1
1

im1
1

i1−1∑

i2=1

xi2
2

im2
2

S(i2;m3, ...;x3, ...)

+ S(n;m1 + m2,m3, ...;x1x2, x3, ...),

Z(n;m1, ...;x1, ...) =
n∑

i1=1

xi1
1

im1
1

i1∑

i2=1

xi2
2

im2
2

Z(i2 − 1;m3, ...;x3, ...)

− Z(n;m1 + m2,m3, ...;x1x2, x3, ...).

where the first formula allows to convert from a S-sum to a Z-sum and the second formula vice
versa. Table 5.1 shows how the Z- and S-sums interpolate between the different functions.
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S-sums

S(n;m1, ...,mk;x1, ..., xk) =

n∑

i1≥...≥ik>0

xi1
1

im1
1

...
xik

k

imk
k

harmonic sums

S(n;m1, ...,mk; 1, ..., 1) =

n∑

i1≥...≥ik>0

1

im1
1

...
1

imk
k

Z-sums

Z(n;m1, ...,mk;x1, ..., xk) =

n∑

i1>...>ik>0

xi1
1

im1
1

...
xik

k

imk
k

Euler-Zagier sums

Z(n;m1, ...,mk; 1, ..., 1) =
n∑

i1>...>ik>0

1

im1
1

...
1

imk
k

= Zm1,...,mk
(n)

multiple zeta values

Z(∞;m1, ...,mk; 1, ..., 1) =

∞∑

i1>...>ik>0

1

im1
1

...
1

imk
k

classical polylogarithms

Lin(x) = Z(∞;n;x) =
∞∑

i>0

xi

in

Nielsen’s polylogarithms

Sn,p(x) = Z(∞;n + 1, 1, ..., 1
︸ ︷︷ ︸

p−1

;x, 1, ..., 1) = Lin+1,1, ..., 1
︸ ︷︷ ︸

p−1

(x, 1, ..., 1
︸ ︷︷ ︸

p−1

)

=

∞∑

i1>...>ip>0

xi1

in+1
1

1

i2
...

1

ip

harmonic polylogarithms

Hm1,...,mk
(x) = Z(∞;m1, ...,mk ;x, 1, ..., 1) = Lim1,...,mk

(x, 1, ..., 1
︸ ︷︷ ︸

k−1

)

=
∞∑

i1>...>ik>0

xi1

im1
1

1

im2
2

...
1

imk
k

multiple polylogarithms

Lim1,...,mk
(x1, ..., xk) = Z(∞;m1, ...,mk ;x1, ..., xk) =

∞∑

i1>...>ik>0

xi1
1

im1
1

...
xik

k

imk
k

Table 5.1: The connection between Z-sums, S-sums and multiple nested sums.
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We can now define the quasi-shuffle algebra structure. It is fulfilled by the Z- and S-sums
and hence also by the MZVs and MPLs. For the product of two sums with the same upper
summation limit we get:

Z(n;m1, ...mk;x1...xk)Z(n;m′
1, ...m

′
k;x

′
1...x

′
l)

=

n∑

i1=1

xi1
1

im1
1

Z(i1 − 1;m2, ...mk;x2...xk)Z(i1 − 1;m′
1, ...m

′
k;x′

1...x
′
l)

+

n∑

i2=1

x
′i2
1

i
m′

1
2

Z(i2 − 1;m1, ...mk;x1...xk)Z(i2 − 1;m′
2, ...m

′
k;x′

2...x
′
l)

+
n∑

i=1

(x1x
′
1)

i

im1+m′
1
Z(i− 1;m2, ...mk;x2...xk)Z(i− 1;m′

2, ...m
′
k;x′

2...x
′
l).

The concatenation of x1 with x′
1 in the last line corresponds to the commutative, associative,

degree-adding operation [·,·] defined in equation (5.30). Analogously, one obtains for the
S-sums:

S(n;m1, ...mk;x1...xk)S(n;m′
1, ...m

′
k;x

′
1...x

′
l)

=
n∑

i1=1

xi1
1

im1
1

S(i1;m2, ...mk;x2...xk)S(i1;m
′
1, ...m

′
k;x

′
1...x

′
l)

+
n∑

i2=1

x
′i2
1

i
m′

1
2

S(i2;m1, ...mk;x1...xk)S(i2;m
′
2, ...m

′
k;x′

2...x
′
l)

−
n∑

i=1

(x1x
′
1)

i

im1+m′
1
S(i;m2, ...mk;x2...xk)S(i;m′

2, ...m
′
k;x′

2...x
′
l),

where we find a minus sign in front of the part belonging to the [ , ]-operation. The multipli-
cation relation is important because it enables us to write a product of Z-sums (S-sums) with
the same summation limit as a sum of single Z-sums (S-sums), e.g.:

Z11(n)Z1(n) = Z21(n) + Z12(n) + 3Z111(n).

We end this short theoretical introduction to nestedsums with the remark that, since the
Z-sums fulfill a quasi-shuffle algebra relation, they also form a Hopf algebra: M.E.Hoffman
showed in [Hoff 2000] that each shuffle algebra is a Hopf algebra and this fact was explicitly
formulated for the Z-sums in [MUW 2002].

5.2.2 nestedsums — the four classes of functions

There are four types of sums involving gamma functions that are already implemented into
nestedsums. They are prototypes for functions that often occur in calculations in particle
physics. The four classes are:
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Type A:

n∑

i=1

xi

(i + c)m

Γ(i + a1 + b1ε)

Γ(i + c1 + d1ε)
...

Γ(i + ak + bkε)

Γ(i + ck + dkε)
Z(i + o− 1,m1, ...,ml, x1, ..., xl),

Type B:

n−1∑

i=1

xi

(i + c)m

Γ(i + a1 + b1ε)

Γ(i + c1 + d1ε)
...

Γ(i + ak + bkε)

Γ(i + ck + dkε)
Z(i + o− 1,m1, ...,ml, x1, ..., xl)

×
yn−i

(n− i + c′)m′

Γ(n− i + a′1 + b′1ε)

Γ(n− i + c′1 + d′1ε)
...

Γ(i + a′k′ + b′k′ε)

Γ(i + c′k′ + d′k′ε)

× Z(n− i + o′ − 1,m′
1, ...,m

′
l′ , x

′
1, ..., x

′
l′),

Type C:

−
n∑

i=1

(
n
i

)

(−1)i xi

(i + c)m

Γ(i + a1 + b1ε)

Γ(i + c1 + d1ε)
...

Γ(i + ak + bkε)

Γ(i + ck + dkε)
S(i + o,m1, ...,ml, x1, ..., xl),

Type D:

−
n−1∑

i=1

(
n
i

)

(−1)i xi

(i + c)m

Γ(i + a1 + b1ε)

Γ(i + c1 + d1ε)
...

Γ(i + ak + bkε)

Γ(i + ck + dkε)
S(i + o,m1, ...,ml, x1, ..., xl)

×
yn−i

(n− i + c′)m′

Γ(n− i + a′1 + b′1ε)

Γ(n− i + c′1 + d′1ε)
...

Γ(i + a′k′ + b′k′ε)

Γ(i + c′k′ + d′k′ε)

× S(n− i + o′,m′
1, ...,m

′
l′ , x

′
1, ..., x

′
l′),

where aj, a
′
j , cj , c

′
j , o, o

′ are integers, c, c′ are nonnegative integers and b, b′, d, d′ are arbitrary
numbers. The algorithms for the expansion of these functions are implemented in the classes
transcendental sum type A to transcendental sum type D and a detailed description can
be found in [Wein 2002,MUW 2002].

The general idea to achieve the results includes performing the ε expansion for the gamma
functions via the formula

Γ(n + ε) = Γ(1 + ε)Γ(n)
(
1 + εZ1(n− 1) + ε2Z11(n− 1) + ε3Z111(n− 1) + ... + εn−1Z11...1(n− 1)

)
(5.47)

for positive n, and

Γ(−n + 1 + ε) =
Γ(1 + ε)

ε

(−1)n−1

Γ(n)

(
1 + εS1(n− 1) + ε2S11(n− 1) + ε3S111(n− 1) + ...

)

(5.48)

for negative n.
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The functions Γ(1 + ε) are then ε-expanded by the GiNaC series expansion method. The
four classes transcendental sum type A to transcendental sum type D consist of fractions
of gamma functions of different arguments, whose expansion involves Z- and S-sums via
(5.47) and (5.48). In the end we multiply these two types of sums and can use their algebra
structures to express the result. This is the general idea for the expansion of these four classes
of sums, which is implemented in the C++ library nestedsums. We will not explicitly describe
the entire implementation here and refer the reader again to [Wein 2002].

The four classes transcendental sum type A to transcendental sum type D are then used
by the classes transcendental fct type A() to transcendental fct type D() modeled on
generalizations of hypergeometric functions.

Type A:

Γ(d1)...Γ(dn)

Γ(d′1)...Γ(d′n′)

∞∑

i=0

Γ(i + a1)...Γ(i + ak)

Γ(i + a′1)...Γ(i + a′k−1)

xi

i!
,

Type B:

Γ(d1)...Γ(dn)

Γ(d′1)...Γ(d′n′)

∞∑

i=0

∞∑

j=0

Γ(i + a1)...Γ(i + ak)

Γ(i + a′1)...Γ(i + a′k−1)

Γ(j + b1)...Γ(j + bl)

Γ(j + b′1)...Γ(j + b′l−1)

×
Γ(i + j + c1)...Γ(i + j + cm)

Γ(i + j + c′1)...Γ(i + j + c′m)

xi
1

i!

xj
2

j!
,

Type C:

Γ(d1)...Γ(dn)

Γ(d′1)...Γ(d′n′)

∞∑

i=0

∞∑

j=0

Γ(i + a1)...Γ(i + ak)

Γ(i + a′1)...Γ(i + a′k)

Γ(i + j + c1)...Γ(i + j + cm)

Γ(i + j + c′1)...Γ(i + j + c′m−1)

xi
1

i!

xj
2

j!
,

Type D:

Γ(d1)...Γ(dn)

Γ(d′1)...Γ(d′n′)

∞∑

i=0

∞∑

j=0

Γ(i + a1)...Γ(i + ak)

Γ(i + a′1)...Γ(i + a′k)

Γ(j + b1)...Γ(j + bl)

Γ(j + b′1)...Γ(j + b′l)

×
Γ(i + j + c1)...Γ(i + j + cm)

Γ(i + j + c′1)...Γ(i + j + c′m−1)

xi
1

i!

xj
2

j!
.

Consider as an example the generalized hypergeometric function:

J+1FJ(a1, ..., aJ+1; b1, ..., bJ ;x) =

∞∑

i=0

(a1)i...(aJ+1)i
(b1)i...(bJ )i

xi

i!

=
Γ(b1)...Γ(bJ )

Γ(a1)...Γ(aJ+1)

∞∑

i=0

xi

i!

Γ(i + a1)

Γ(i + b1)
...

Γ(i + aJ)

Γ(i + bJ)
Γ(i + aJ+1)

=
Γ(b1)...Γ(bJ )

Γ(a1)...Γ(aJ+1)

∞∑

i=0

xi Γ(i + a1)

Γ(i + b1)
...

Γ(i + aJ)

Γ(i + bJ)

Γ(i + aJ+1)

Γ(i + 1)

(5.49)
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where (a)i = Γ(i+a)
Γ(a) is the Pochhammer symbol, which is related to the Appell symbol via:

(a)i ≡ (a, i). Going from the second to the third line in (5.49) we used that Γ(i + 1) = i!
for i ∈

�
. Note that there always have to be the same number of gamma functions in the

numerator and denominator of such sums, to be able to use nestedsums. Taking out the term
for n = 0, one can rewrite this sum:

J+1FJ (a1, ..., aJ+1; b1, ..., bJ ;x) = 1 +
Γ(b1)...Γ(bJ )

Γ(a1)...Γ(aJ+1)

∞∑

i=1

xi Γ(i + a1)

Γ(i + b1)
...

Γ(i + aJ)

Γ(i + bJ)

Γ(i + aJ+1)

Γ(i + 1)
.

(5.50)

This form of a sum of gamma functions is implemented in transcendental fct type A().
Let us calculate an example. Consider the function

2F1(aε, bε; 1 − cε;x) =

∞∑

i=0

(aε)i(bε)i

(1− cε)i

xi

i!
(5.51)

=
Γ(1− cε)

Γ(aε)Γ(bε)

∞∑

i=0

xi

i!

Γ(i + aε)

Γ(i + 1− cε)
Γ(i + bε) (5.52)

One has to write a program calling transcendental fct type A() in the following form:

transcendental_fct_type_A(x,

lst(a*eps,b*eps),lst(1-c*eps),

lst(1-c*eps),lst(a*eps,b*eps),

eps,order,expand_status::expansion_required).

The rule for the order of the lists in this transcendental fct type A() is: first the nu-
merator, then the denominator, first the gamma functions inside the sum, then the gamma
functions of the multiplicative factor in front of the sum. The order is a parameter up to
which the expansion should be performed, eps is the expansion parameter and a GiNaC
symbol here. After converting the result into a standard form using the nestedsums function
convert Zsums to standard form(F21), the result for this expansion up to order eps3 is:

F21

=Z(Infinity)+eps^2*b*Li(2,x)*a

+S(1,2,x)*(eps^3*b*a^2+eps^3*b*a*c+eps^3*b^2*a)+eps^3*b*a*Li(3,x)*c

Z(Infinity) is the unit 1 in nestedsums. Hence the result becomes:

2F1(aε, bε; 1 − cε;x) = 1 + ε2 ab Li2(x) + ε3[S1,2(x) ab (a + c + b) + abc Li3(x)] + O(ε4)

(5.53)

This result agrees with results provided in the literature.
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Chapter 6

The massless two-loop two-point

function

In Chapter 4 we presented a number of ways to expand the massless two-loop two-point
function up to a certain order in ε. Most of them used some sort of relation fulfilled by
the integral, with the application of this relation leading to other integrals we can solve.
This procedure is a standard way of handling Feynman diagrams: After tensor reduction
to scalar integrals or, equivalently, the use of Schwinger parametrization, one applies alge-
braic relations such as the integration-by-parts identities to reduce the set of integrals to a
(hopefully small) set of master integrals, which have to be expanded. However, we will follow
the work of S. Weinzierl, P. Uwer, and S. Moch [MUW 2002] here and solve the integrals
directly for different exponents of propagators and different space-time dimensions. This can
be achieved using the library nestedsums, which we introduced in the last chapter. We will
therefore transform the analytic expression for the massless two-loop two-point function into
the form of the transcendental fct type A() and transcendental fct type B(), using
Mellin-Barnes integrals. For a short introduction into the theory of Mellin-Barnes integrals
the reader should visit the Appendix B. The idea to express the two-loop two-point func-
tion in this form and to use the library nestedsums was conceived by Stefan Weinzierl. We
then independently performed the calculation and implemented it as a computer program.
Afterwards we compared the results of these programs and checked their agreement, also with
results in the literature. The calculation and the results have been published in [BiWe 2003].

6.1 The expansion of Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

We will stay close to the paper [BiWe 2003] in this chapter and explain the calculation of the
integral in the way it is parametrized there. The main idea is to write the integral Î(2,5) as
a double Mellin-Barnes integral. This is done by performing the calculation in a way that
follows the Lie algebra gluing operation of Feynman graphs, which we explained in Chapter 3
and which can also be seen in Fig. 6.1. This figure shows that one first calculates the ex-
pression for the one-loop three-point graph, which will be a double Mellin-Barnes integral,
and combines its result with the analytic expression for the one-loop two-point graph. The
exponents of the momenta in the propagators of the one-loop two-point function will be

53
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= 1 ∗1

Figure 6.1: In the same way in which one can build the graph for the massless two-loop two-point
function by inserting the one-loop three-point graph on the right into the vertex denoted by “1” of
the one-loop two-point graph, we will calculate the analytic expression for the massless two-loop two-
point function by first calculating the three-point function, transforming it into a double Mellin-Barnes
integral, and combining its result afterwards with the analytic expression for the one-loop two-point
function.

altered by the insertion of the one-loop three-point subgraph. This will eventually lead us to
a double Mellin-Barnes integral representation for the massless two-loop two-point function.
In a second step the double Mellin-Barnes integral is then calculated by closing the integration
contour and summing up the residues of the integrand in all possible ways. This will give rise
to eleven functions that will all be of the form of one of the following two functions G+ and
G−:

G±(a1, a2, a3, a4; b1, b2, b3; c1, c2, c3)

=

∞∑

n=0

∞∑

j=0

(−1)n+j

n!j!

Γ(∓n− j − a1)Γ(±n + j + a2)Γ(∓n + j + a3)

Γ(±n + j + a4)

Γ(∓n∓ b1)Γ(n + b2)

Γ(∓n∓ b3)
Γ(∓n∓ b3)

Γ(−j − c1)Γ(j + c2)

Γ(−j − c3)
,

where one or both of the sums can be finite. Functions of this type on the other hand can be
expanded in ε with the help of the library nestedsums. We will go through all of these steps
in detail in the following.

6.1.1 Decomposition of Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

We already introduced the integral and all abbreviations in Chapter 4. However, we repeat
the conventions here for greater convenience:

Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

= (−p2)ν12345−2m+2ε

∫
dDk1

iπ
D
2

∫
dDk2

iπ
D
2

1

(−k2
1)

ν1(−k2
2)

ν2(−k2
3)

ν3(−k2
4)

ν4(−k2
5)

ν5
, (6.1)

with

k3 = k2 − p, k4 = k1 − p, k5 = k2 − k1, (6.2)

D = 2m− 2ε. (6.3)

This corresponds to the two-loop two-point graph with the following distribution of momenta:

ν1 ν2

ν3ν4

ν5
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The factor (−p2)ν12345−2m+2ε makes the integral dimensionless. The exponents νi are of the
form νi = ni + aiε, where the ni are positive integers and the ai nonnegative real numbers.
The abbreviation νijk = νi + νj + νk is a short cut for sums of exponents.

We already remarked in Chapter 4 that the form of the exponents originates from the fact
that any subdivergence sitting inside a line of a Feynman diagram changes the corresponding
exponent of this line from an integer value to the form νi = ni+aiε. We will see this explicitly
in Chapter 7. Hence allowing this form of exponents in the general integral will enable us, for
instance, to use the massless two-loop two-point function in the ε expansion of the non-planar
vertex correction with subdivergences in Section 7.2.

To start with the calculation of (6.1) we group the momenta differently and decompose the
integral into two building blocks as follows:

Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

=

∫
dDk1

iπ
D
2

∫
dDk2

iπ
D
2

(−p2)ν12345−2m+2ε

[−k2
1 ]

ν1 [−k2
2 ]

ν2 [−(k2 − p)2]ν3 [−(k1 − p)2]ν4 [−(k2 − k1)2]ν5
(6.4)

=

∫
dDk1

iπ
D
2

(−p2)ν14−m+ε

[−k2
1]

ν1 [−(k1 − p)2]ν4

︸ ︷︷ ︸

=: Î(1,2)(m− ε, ν1, ν4)

∫
dDk2

iπ
D
2

(−p2)ν235−m+ε

[−k2
2]

ν2 [−(k2 − p)2]ν3 [−(k2 − k1)2]ν5

︸ ︷︷ ︸

=: I(1,3)(m− ε, ν2, ν3, ν5)

(6.5)

or again:

Î(1,2)(m− ε, ν1, ν4) := (−p2)ν14−m+ε

∫
dDk1

iπ
D
2

1

(−k2
1)

ν1(−k2
4)

ν4
(6.6)

I(1,3)(m− ε, ν2, ν3, ν5) := (−p2)ν235−m+ε

∫
dDk2

iπ
D
2

1

(−k2
2)

ν2(−k2
3)

ν3(−k2
5)

ν5
(6.7)

Note that the result of (6.7) depends on (−k2
1) and (−k2

4) only by the dimensionless variables

x :=
(
−p2

−k2
1

)

and y :=
(
−p2

−k2
4

)

, which are the propagators of the integral (6.6). In this, we find

the idea of inserting the three point graph into the two-point graph mentioned before: After
calculating the three-point function (6.7) one obtains a momentum-independent expression
times an expression for the momentum that only alters the exponents of the propagators in
(6.6).

Apart from the multiplicative factor (−p2)ν14−m+ε, the two-point integral (6.6) is just the
integral (4.5) leading to the functions Fν1,ν2(ε):

Î(1,2)(m− ε, ν1, ν4) =
Γ(ν14 −m + ε)

Γ(ν1)Γ(ν4)

Γ(m− ε− ν1)Γ(m− ε− ν4)

Γ(2m− 2ε− ν14)

= Fν1,ν4 (6.8)

6.1.2 Calculation of the Mellin-Barnes integrals for I (1,3)(m− ε, ν2, ν3, ν5)

We start with the calculation of the integral (6.7):

I(1,3) = (−p2)ν235−m+ε

∫
dDk2

iπ
D
2

1

(−k2
2)

ν2(−k2
3)

ν3(−k2
5)

ν5
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with k3 = k2− p, k5 = k2− k1 and D = 2m− 2ε. Note that in this section we will often omit
the function arguments.

Applying the Feynman parametrization:

1

Am1
1 Am2

2 ...Amn
n

=

∫ 1

0
dx1...dxn δ

(∑

xi − 1
) Πxmi−1

i

[
∑

xiAi]
P

mi

Γ(m1 + ... + mn)

Γ(m1)...Γ(mn)
(6.9)

to the momenta of the integral, we get:

I(1,3) = (−p2)ν235−m+εΓ(235)
∫ 1

0
dx1dx2dx3 δ

(∑

xi − 1
) ∫ dDk2

iπ
D
2

xν2−1
1 xν3−1

2 xν5−1
3

(
−x1k2

2 − x2k2
3 − x3k2

5

)ν2+ν3+ν5
,

where we have used the abbreviation

Γ(235) :=
Γ(ν2 + ν3 + ν5)

Γ(ν2)Γ(ν3)Γ(ν5)
.

In a next step, we express the denominator in terms of the momenta k1, k2 and p and re-group
the expressions:

(−x1k
2
2 − x2k

2
3 − x3k

2
5) = −x1k

2
2 − x2k

2
2 + 2x2k2 · p− x2p

2 − x3k
2
2 + 2x3k2 · k1 − x3k

2
1

= −(x1 + x2 + x3)k
2
2 + 2x2k2 · p− x2p

2 + 2x3k2 · k1 − x3k
2
1

= −k2
2 + 2x2k2 · p + 2x3k2 · k1 − x2p

2 − x3k
2
1 ,

where we have used x1 + x2 + x3 = 1 in the last step. We now want to isolate the k2-
dependence, knowing that in dimensional regularization we may shift the integration variable
k2 without changing the integral. To do this we add a zero in the form of ±(x2p + x3k1)

2.
Since

(k2 − x2p− x3k1)
2 = k2

2 − 2x2k2 · p− 2x3k2 · k1 + (x2p + x3k1)
2,

we obtain in this way:

−k2
2 + 2x2k2 · p + 2x3k2 · k1 − (x2p + x3k1)

2 − x2p
2 − x3k

2
1 + (x2p + x3k1)

2

= −(k2 − x2p− x3k1)
2 − x2p

2 − x3k
2
1 + (x2p + x3k1)

2

Then we shift k2 via k2 → k2 − x2p− x3k1 and obtain for the denominator:

−(k2 − x2p− x3k1)
2 − x2p

2 − x3k
2
1 + (x2p + x3k1)

2 → −k2
2 − x2p

2 − x3k
2
1 + (x2p + x3k1)

2,

leading to

I(1,3) = (−p2)ν235−m+εΓ(235)

∫ 1

0
dx1dx2dx3 δ

(∑

xi − 1
)

×

∫
dDk2

iπ
D
2

xν2−1
1 xν3−1

2 xν5−1
3

(
−k2

2 + (x2p + x3k1)2 − x2p2 − x3k2
1

)ν2+ν3+ν5
.
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For the k2 integration, we use a special case of formula (2.11) in Minkowski space:
∫

dDl

iπ
D
2

1

(−l2 −∆)α
=

Γ(α− D
2 )

Γ(α)
(−∆)

D
2
−α , (6.10)

and hence obtain:

I(1,3) = (−p2)ν235−m+εΓ(235)

∫ 1

0
dx1dx2dx3 δ

(∑

xi − 1
)

xν2−1
1 xν3−1

2 xν5−1
3

Γ(ν235 −
D
2 )

Γ(ν235)

×




1

(
(x2p + x3k1)2 − x2p2 − x3k2

1

)ν235−
D
2



 .

Making the denominator dimensionless by including the term (−p2)ν235−m+ε, it can now be
rewritten as:

−
(x2

2p
2 + 2x2x3p · k1 + x2

3k
2
1)

p2
+ x2 + x3

k2
1

p2

= −x2(x2 − 1)− 2x2x3
p · k1

p2
− x2

3

k2
1

p2
+ x3

k2
1

p2
.

Using

k2
4 = (k1 − p)2 = k2

1 − 2k1 · p + p2 ⇒ −2k1 · p = k2
4 − k2

1 − p2

we obtain

−x2(x2 − 1)− 2x2x3
p · k1

p2
− x3(x3 − 1)

k2
1

p2

= −x2(x2 − 1) + x2x3

(
k2
4

p2
−

k2
1

p2
− 1

)

− x3(x3 − 1)
k2
1

p2

= (−x2
2 + x2 − x2x3) + x2x3

k2
4

p2
+ (−x2

3 + x3 − x2x3)
k2
1

p2

= x2(1− x2 − x3) + x2x3
k2
4

p2
+ x3(1− x2 − x3)

k2
1

p2

= x2x1 + x2x3
k2
4

p2
+ x3x1

k2
1

p2

⇒ I(1,3) = Γ(235)

∫ 1

0
dx1dx2dx3 δ

(∑

xi − 1
)

xν2−1
1 xν3−1

2 xν5−1
3

Γ(ν235 −
D
2 )

Γ(ν235)

×






1
(

x2x1 + x2x3
k2
4

p2 + x3x1
k2
1

p2

)ν235−
D
2




 .

We now apply the inverse Mellin-Barnes transformation to the expression in parentheses,
according to formula (B.46) of the Appendix:

1

(A1 + A2)ν
=

1

2πi

∫ c+i∞

c−i∞
dσAσ

1A−ν−σ
2

Γ(−σ)Γ(ν + σ)

Γ(ν)
(6.11)
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The integration contour is a parallel to the imaginary axis at real value c, indented in such
a way that it separates the poles of the functions Γ(−σ) from the ones of Γ(ν + σ) (see
Appendix B).

Define now A1 and A2 to be A1 := x2x3
k2
4

p2 , A2 := (x3x1
k2
1

p2 + x1x2) and ν := ν235 −
D
2 . We

then get for the fraction above:

1
(

x2x1 + x2x3
k2
4

p2 + x3x1
k2
1

p2

)ν235−
D
2

=
1

2πi

∫ γ1+i∞

γ1−i∞
dσ

(

x2x3
k2
4

p2

)σ (

x3x1
k2
1

p2
+ x1x2

)−ν235+D
2
−σ Γ(−σ)Γ(ν235 −

D
2 + σ)

Γ(ν235 −
D
2 )

Applying the inverse Mellin-Barnes transformation to (x3x1
k2
1

p2 + x1x2)
−ν235+D

2
−σ again, we

obtain:

1
(

x2x1 + x2x3
k2
4

p2 + x3x1
k2
1

p2

)ν235−
D
2

=
1

(2πi)2

∫ γ1+i∞

γ1−i∞
dσ

(

x2x3
k2
4

p2

)σ ∫ γ2+i∞

γ2−i∞
dτ

(

x3x1
k2
1

p2

)τ

× (x1x2)
−(ν+σ+τ) Γ(−σ)Γ(−τ)Γ(ν235 −

D
2 + σ + τ)

Γ(ν235 −
D
2 )

.

Hence the integral becomes

I(1,3) =

1

(2πi)2
1

Γ(ν2)Γ(ν3)Γ(ν5)

×

∫ 1

0
dx1dx2dx3 δ(

∑

xi − 1)

∫ γ1+i∞

γ1−i∞
dσ

∫ γ2+i∞

γ2−i∞
dτ xν2−ν−σ−1

1 xν3−ν−τ−1
2 xν5+σ+τ−1

3

×

(
k2
4

p2

)σ (
k2
1

p2

)τ

Γ(−σ)Γ(−τ)Γ(ν235 −
D

2
+ σ + τ).

Let us consider in a next step the integrals with respect to xi. We start with the x1 integration:

∫ 1

0
dx1dx2dx3 δ

(∑

xi − 1
)

x
−ν3−ν5+

D
2
−σ−1

1 x
−ν2−ν5+

D
2
−τ−1

2 xν5+σ+τ−1
3

=

∫ 1

0
dx2

∫ 1−x2

0
dx3(1− x2 − x3)

−ν3−ν5+
D
2
−σ−1x

−ν2−ν5+D
2
−τ−1

2 xν5+σ+τ−1
3

=

∫ 1

0
dx2

∫ 1−x2

0
dx3(1− x2 − x3)

a−1xb−1
2 xc−1

3 .

From the first to the second line the delta function causes not only the “substitution” of x1

by 1−x2−x3, it also forces the integration with respect to x3 to go from 0 to 1−x2, instead
of from 0 to 1. In the last line we introduced a := −ν3 − ν5 + D

2 − σ, b := −ν2 − ν5 + D
2 − τ
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and c := ν5 + σ + τ for greater convenience. Compare this result with the representation of
the beta function (B.26):

∫ 1

0
dxxa−1(1− x)b−1 = B(a, b) =

Γ(a)Γ(b)

Γ(a + b)
(6.12)

We are using this relation to express the corresponding integral in terms of gamma functions.
Set x3 = (1− x2)x′

3, dx3 = (1− x2) dx′
3:

∫ 1

0
dx2

∫ 1−x2

0
dx3(1− x2 − x3)

a−1xb−1
2 xc−1

3

=

∫ 1

0
dx2x

b−1
2

∫ 1

0
dx′

3(1− x2)(1− x2 − (1− x2)x
′
3)

a−1(1− x2)
c−1(x′

3)
c−1

=

∫ 1

0
dx2x

b−1
2

∫ 1

0
dx′

3(1− x2)(1− x2)
a−1(1− x′

3)
a−1(1− x2)

c−1(x′
3)

c−1

=

∫ 1

0
dx2x

b−1
2 (1− x2)

a+c−1

∫ 1

0
dx′

3(1− x′
3)

a−1(x′
3)

c−1

=
Γ(b)Γ(a + c)

Γ(a + b + c)

Γ(c)Γ(a)

Γ(a + c)

=
Γ(a)Γ(b)Γ(c)

Γ(a + b + c)

=
Γ(ν5 + σ + τ)Γ(m− ε− σ − ν35)Γ(m− ε− τ − ν25)

Γ(2m− 2ε− ν235)
.

Gathering all the results and putting them together, we get for the integral:

I(1,3) =
1

(2πi)2
1

Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)
(6.13)

×

∫ γ1+i∞

γ1−i∞
dσ

∫ γ2+i∞

γ2−i∞
dτ

(
k2
4

p2

)σ (
k2
1

p2

)τ

Γ(−σ)Γ(−τ)Γ(σ + τ + ν235 −m + ε)

× Γ(σ + τ + ν5)Γ(−σ + m− ε− ν35)Γ(−τ + m− ε− ν25).

By inserting this result into (6.6), the terms
(

k2
4

p2

)σ
and

(
k2
1

p2

)τ
now cause a change in the

exponents of the corresponding propagators and we finally obtain the following Mellin-Barnes
integral for the integral (6.4):

Î(2,5) =
1

(2πi)2
1

Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)
(6.14)

×

∫ γ1+i∞

γ1−i∞
dσ

∫ γ2+i∞

γ2−i∞
dτ

Γ(−σ)Γ(−σ + m− ε− ν35)Γ(σ + m− ε− ν4)

Γ(−σ + ν4)

×
Γ(−τ)Γ(−τ + m− ε− ν25)Γ(τ + m− ε− ν1)

Γ(−τ + ν1)

×
Γ(−σ − τ + ν14 −m + ε)Γ(σ + τ −m + ε + ν235)Γ(σ + τ + ν5)

Γ(σ + τ + 2m− 2ε− ν14)
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6.1.3 Collecting residues — general remarks

In the last section we transformed the integral Î(2,5) into a Mellin-Barnes integral (6.14). The
aim now is to expand this integral in the dimensional regularization parameter ε. Before
we start to perform this expansion we have to discuss some general issues concerning this
expansion:

Residues

The basic idea is to close the integration contours of the Mellin-Barnes integrals (6.14) to the
left or the right, and to sum up the residues of the gamma functions lying inside the region
enclosed by the integration contour. For the residues of the gamma function we find:

res(Γ(−x + a), x = a + n) = −
(−1)n

n!
, res(Γ(x + a), x = −a− n) = +

(−1)n

n!
(6.15)

The piece of the integration contour parallel to the imagi-
nary axis lies at a real value such that it separates the poles
of the gamma functions of the form Γ(−x + a), which lie to
the right of it, from those of the functions Γ(x + a) placed
to its left. If this cannot be achieved by a straight line, this
parallel is indented appropriately as shown in the picture on
the right.

We choose to close the contour to the right at +∞. Hence only the gamma functions of the
form Γ(−x + a) contribute when summing up the poles. Since we close the contour to the
right, the integration is done clockwise and we get an additional minus sign that cancels the
one appearing in the formula for the residues. In total, we get (−1)n

n! for the gamma function

Γ(−x + a) at the points x = a + n for n ∈
�

and an infinite sum
∑

n
(−1)n

n! over all poles.

The general idea

We will always start with the integration with respect to σ and perform the τ integration in
a second step. The calculation is done according to the following recipe:

1. Find all gamma functions Γσ that can contribute poles for the σ integration

2. Choose one particular gamma function Γ(−σ + a) ∈ Γσ and take the whole integral
(6.14) at the value σ = a + n, where this chosen gamma function contributes the poles.
Substitute this gamma function by the sum over its residues.

3. Find the gamma functions Γτ that contribute poles for the remaining τ integration and
continue analogously to step 2) for the σ integration by choosing one particular gamma
function out of Γτ , taking the integral (6.14) at that certain value of τ for which this
chosen gamma function has its poles, and substituting the chosen gamma function by
the sum over its residues. Continue in this way with every gamma function in Γτ .

4. Take the next gamma function in Γσ and apply steps 2 and 3 to the integral for this
chosen gamma function.
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In this way one obtains all possible combinations of gamma functions with poles inside the
integration contour for the σ integration and the τ integration. In a last step one has to sum
up all these cases.

We see that there are five gamma functions in the numerator of (6.14) that are of the form
Γ(−x + a), with x being either σ or τ :

Γ(−σ), Γ(−σ + m− ε− ν35), Γ(−τ), Γ(−τ + m− ε− ν25), Γ(−σ − τ + ν14 −m + ε)

Note that since one gamma function contains both variables, we have three gamma functions
with contributing poles for each integration variable.

We do not have to consider gamma functions Γ(−σ + a) and Γ(−τ + b) in the denominator
of integrals, because they do not contribute poles. However, they can affect the calculation
by canceling poles from gamma functions in the numerator of the integral, once we start
collecting the residues. Hence they can in our case terminate the sum of the residues which
we would obtain and let it end at a finite value. Since the only relevant gamma functions
for such a case are Γ(−σ + ν4) and Γ(−τ + ν1), this can only happen when ν1 or ν4 are
integers. The poles in the numerator and denominator then cancel starting at the value ν1

(ν4). Consider for example the combination Γ(−σ)/Γ(−σ+ν4). The function Γ(−σ) has poles
at σ = 0, 1, 2, ..., whereas Γ(−σ + ν4) on the other hand has poles at σ = ν4, ν4 + 1, ν4 + 2, ....
Hence, starting from the positive integer ν4, the poles of the gamma functions cancel and the
sum for the residue of the function Γ(−σ) is restricted to the set 0, ..., ν4 − 1.

The different cases

Let us now have a closer look at the different cases: for each integration we obtain a sum
over the residues. Hence the general result will be an infinite double sum. In the following,
we will use the convention that the sum obtained from the integral dσ will always have the
summation index n, and the sum obtained from the dτ integration will have the summation
index j:

∫

dσ →
∑

n

∫

dτ →
∑

j

Since in some gamma functions both variables occur, the evaluation with respect to σ naturally
affects the one over τ : it shifts the poles. Consider for example the following pair of gamma
functions:

for the σ integration: Γ(−σ + m− ε− ν35),

for the τ integration: Γ(−τ − σ + ν14 −m + ε).

Doing the σ integration first, we only get residues if σ = m − ε − ν35 + n. Therefore we
have to take the remaining gamma functions at this particular value of σ, which also shifts
Γ(−τ − σ + ν14 −m + ε) to

Γ(−τ − σ + ν14 −m + ε)|σ=m−ε−ν35+n = Γ(−τ + n + ν1345 − 2m + 2ε).

Hence the σ integration shifts the poles for τ to the values τ = −n− ν1345 + 2m− 2ε + j.
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Since we have three gamma functions contributing poles for each integration and we have to
take all possible combinations of these functions, we obtain nine terms in total. Additionally,
we will have two terms T34 and T35 whose appearance will be explained below:

T11 : Γ(−σ) Γ(−τ)

T12 : Γ(−σ) Γ(−τ + m− ε− ν25)

T13 : Γ(−σ) Γ(−σ − τ + ν14 −m + ε)|σ=n

T21 : Γ(−σ + m− ε− ν35) Γ(−τ)

T22 : Γ(−σ + m− ε− ν35) Γ(−τ + m− ε− ν25)

T23 : Γ(−σ + m− ε− ν35) Γ(−σ − τ + ν14 −m + ε)|σ=m−ε−ν35+n

T31 : Γ(−σ − τ + ν14 −m + ε) Γ(−τ)

T32 : Γ(−σ − τ + ν14 −m + ε) Γ(−τ + m− ε− ν25)

T33 : Γ(−σ − τ + ν14 −m + ε) Γ(−σ − τ + ν14 −m + ε)|σ=−τ+ν14−m+ε+n

T34 : Γ(−σ − τ + ν14 −m + ε) Γ(−σ)|σ=−τ+ν14−m+ε+n

T35 : Γ(−σ − τ + ν14 −m + ε) Γ(−σ + m− ε− ν35)|σ=−τ+ν14−m+ε+n

(6.16)

The cases Txy are denoted such that the first index always belongs to the gamma function
providing the poles for the σ integration and the second one to the function yielding the poles
of the τ integration. In the end, we have to sum up all these different cases to obtain the
result for (6.14):

Î(2,5) = T11 + T12 + T13 + T21 + T22 + T23 + T31 + T32 + T33 + T34 + T35. (6.17)

Why do we have the cases T34 and T35?

We want to calculate the integral for arbitrary variables m and νi. However, to make state-
ments concerning the poles and to be able to decide which poles have to be taken into account
one has to do the calculation once for arbitrary but fixed values of the variables m and νi.
For other values the poles simply “move” in the complex plane, but always just by a finite
distance. Therefore, this “moving of poles” does not cause a problem in the general case. One
can always deform the contour in such a way that the poles stay inside the integration area.
Hence, although the following calculation is done and its result programmed for arbitrary
variables, we had to choose some special values for m and νi to decide at some point of the
calculation whether the poles start to move in or out of the integration area (c.f. T13, T23).
We chose m = 2, νi = 1 and the contour parallel to the imaginary axis at Rez = −1/3 as
special values. One can convince oneself that this is a possible choice for the real part of the
contour parallel to the imaginary axis for the chosen set of m and νi.

Some more techniques

Since the functions transcendental fct type A() to transcendental fct type D() can
only handle gamma functions of the form Γ(n + a) and not Γ(−n + a) inside the terms of
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an infinite sum, we will transform such gamma functions with a negative variable n or j into
ones with a positive n or j via the “reflection formula” (B.16):

Γ(−n + a) = (−1)n Γ(a)Γ(1 − a)

Γ(n + 1− a)
(6.18)

Note again that, fortunately, this only has to be done for gamma functions appearing inside
an infinite sum.

Although the final result of our calculation is finite, we might produce some infinities in
intermediate states. Since in the process of our calculation we express the two-loop integral
as a combination of several sums with a “1” in the numerator and, on the other hand, the
algorithms of nestedsums use partial fractioning, one convergent sum might be split into two
divergent series. For example, the constituent terms of the convergent sum:

∞∑

n=1

1

n(n + 1)
= 1 (6.19)

would be split into

1

n(n + 1)
=

1

n
−

1

(n + 1)
, (6.20)

producing two divergent sums. To avoid this problem, we introduce an additional factor xn

and multiply the term of the sum with it. At the end we then take the limit x → 1. More
precisely, we insert xσ

1xτ
2 into the integrand of (6.14). This leads to convergent sums as long

as 0 ≤ x2 < x1 < 1. The result for the two-loop integral is then recovered by first sending
x1 → 1 and afterwards x2 → 1.

Convergence of the integral

To be able to apply the theorem of residues, we have to ensure that the contour at infinity
gives a vanishing contribution. We find three conditions for the values νi:

ν1 + ν125 − 2m + 2ε < 1

ν4 + ν345 − 2m + 2ε < 1

−1 < (ν1 + ν125 − 2m + 2ε) + (ν4 + ν345 − 2m + 2ε).

(6.21)

They are obtained in the following way: Since we always start closing the contour with respect
to σ and afterwards with respect to τ , we first have to guarantee that the integrand in (6.14)
vanishes for σ →∞. In a second step we then look at the integrals corresponding to the cases
T1x to T3x . These are the remaining integrals for τ that have to be considered after closing
the contour and collecting the residues for σ, and which have to vanish for τ →∞.

To derive equations (6.21) we use Barnes asymptotic expansion of the gamma function, which
is valid for |x| → ∞ and |arg x | < π:

ln Γ(x + c) ∼ (x + c) ln x − x −
1

2
ln

x

2π
−

∞∑

n=1

Bn+1

n(n + 1)

(

−
1

x

)n

. (6.22)
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If we investigate for instance the asymptotic behavior for σ → ∞, there are eight gamma
functions depending on σ in (6.14) that we have to consider. Six of those appear in the
numerator, two in the denominator:

numerator: denominator:

Γ(−σ) Γ(−σ + ν4)

Γ(−σ + m− ε− ν35) Γ(σ + τ + 2m− 2ε− ν14)

Γ(σ + m− ε− ν4)

Γ(−σ − τ −m + ε + ν14)

Γ(σ + τ −m + ε + ν235)

Γ(σ + τ + ν5)

These are the contributing functions for σ →∞. Taking the logarithm of the fraction of these
gamma functions, we have to add and subtract the expressions for these functions according
to (6.22). The terms ±σ immediately cancel when we sum up the eight cases. Considering
only the relevant terms, which are the ones proportional to ln σ, we find that these consist
of ln σ multiplied by a factor originating from the constant c in (6.22) and the term ln(±σ)

2π .
Considering, for example, the convergence of the first integral with respect to σ, we obtain:

(−2m + 2ε + ν1 + ν125 − 2) ln σ. (6.23)

Since we are interested in the behavior of the fraction of gamma functions, we now have to
exponentiate expression (6.23), leading to

σ(−2m+2ε+ν1+ν125−2). (6.24)

This is the expression that has to vanish for σ → ∞, and from this we obtain the first
condition in (6.21). The cases T1x and T2x both lead to the second condition, while the
third one stems from the case T3x .

6.1.4 Collecting residues — the different cases

T11, T12, T21, and T22

Let us first consider the cases T11, T12, T21, and T22. For all of these cases the σ integration
does not affect the poles in τ and they can all be calculated in a similar way. As an example
we take T11, and hence the gamma functions Γ(−σ) and Γ(−τ).

For both gamma functions the poles in the numerator and denominator of the integral might
possibly cancel, namely if ν4 = n4+ a4ε for σ or ν1 = n1+ a1ε for τ are integers. We therefore
have to distinguish between the cases:

Case 1 : a1 = 0, a4 = 0 (6.25a)

Case 2 : a1 6= 0, a4 = 0 (6.25b)

Case 3 : a1 = 0, a4 6= 0 (6.25c)

Case 4 : a1 6= 0, a4 6= 0 (6.25d)
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Case 1:
Both sums are finite: The sum over n ranges from 0, ..., ν4−1, the sum over j from 0, ..., ν1−1.
As both sums are finite, we do not need to apply the “reflection formula” for any of the gamma
functions:

T11 =
1

Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)

×
ν4−1∑

n=0

ν1−1∑

j=0

(−1)(n+j)xnyj

n!j!

Γ(−n)Γ(−n + m− ε− ν35)Γ(n + m− ε− ν4)

Γ(−n + ν4)

×
Γ(−j)Γ(−j + m− ε− ν25)Γ(j + m− ε− ν1)

Γ(−j + ν1)

×
Γ(−n− j + ν14 −m + ε)Γ(n + j −m + ε + ν235)Γ(n + j + ν5)

Γ(n + j + 2m− 2ε− ν14)

(6.26)

Case 4:
In case 4, both sums tend to infinity and one has to apply (6.18) to all places where σ or τ
occur with a negative sign inside a gamma function:

T11 = Γ(−m + ε + ν14)Γ(1 + m− ε− ν14)

×
Γ(m− ε− ν35)Γ(1−m + ε + ν35)Γ(m− ε− ν25)Γ(1−m + ε + ν25)

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)Γ(ν5)Γ(2m− 2ε − ν235)Γ(1 − ν1)Γ(1− ν4)

×
∞∑

n=0

∞∑

j=0

xnyj Γ(n + m− ε− ν4)Γ(n + 1− ν4)Γ(j + m− ε− ν1)Γ(j + 1− ν1)

Γ(n + 1)Γ(n + 1−m + ε + ν35)Γ(j + 1)Γ(j + 1−m + ε + ν25)

×
Γ(n + j −m + ε + ν235)Γ(n + j + ν5)

Γ(n + j + 2m− 2ε− ν14)Γ(n + j + 1 + m− ε− ν14)
(6.27)

Cases 2 and 3:
These are mixed versions of cases 1 and 4 with one finite and one infinite sum.
Case 2:

T11 =
Γ(m− ε− ν25)Γ(1 −m + ε + ν25)

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)Γ(1− ν1)
ν4−1∑

n=0

(−x)n Γ(−n + m− ε− ν35)Γ(n + m− ε− ν4)Γ(−n−m + ε + ν14)Γ(1 + n + m− ε− ν14)

Γ(n + 1)Γ(−n + ν4)

∞∑

j=0

yj Γ(j + m− ε− ν1)Γ(n + j −m + ε + ν235)Γ(n + j + ν5)Γ(j + 1− ν1)

Γ(n + j + 2m− 2ε− ν14)Γ(j + 1−m + ε + ν25)Γ(n + j + 1 + m− ε− ν14)Γ(j + 1)

(6.28)
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Case 3:

T11 =
Γ(m− ε− ν35)Γ(1−m + ε + ν35)

Γ(ν2)Γ(ν3)Γ(ν4)Γ(ν5)Γ(2m− 2ε− ν235)Γ(1 − ν4)
ν1−1∑

j=0

(−y)j Γ(−j + m− ε− ν25)Γ(j + m− ε− ν1)Γ(−j −m + ε + ν14)Γ(1 + j + m− ε− ν14)

Γ(j + 1)Γ(−j + ν1)

∞∑

n=0

xn Γ(n + m− ε− ν4)Γ(n + j −m + ε + ν235)Γ(n + j + ν5)Γ(n + 1− ν4)

Γ(n + j + 2m− 2ε − ν14)Γ(n + 1−m + ε + ν35)Γ(n + j + 1 + m− ε− ν14)Γ(n + 1)

(6.29)

Analogous calculations and statements apply to the combinations of gamma functions leading
to T12 (2 cases), T21 (2 cases) and T22 (1 case).

T13 and T23

In this part we need to consider fixed values for m, νi and the real part Re(γ) of the integration
contour parallel to the imaginary axis. The reason for this is that the poles will move out of the
area enclosed by the contour once we start performing the τ integration: After accomplishing
the σ integration, a dependence on n from the residue of this first integration enters the
relevant gamma function for the τ integration and changes the values of the poles in τ . For
T13 we obtain

Γ(−τ − σ + ν14 −m + ε) → Γ(−n− τ + ν14 −m + ε) ,

and for T23

Γ(−τ − σ + ν14 −m + ε) → Γ(−(m− ε− ν35 + n)− τ + ν14 −m + ε)

= Γ(−n− τ + ν1345 − 2m + 2ε).

We have to check if, for increasing n, these poles move out of the integration area. Taking
the values m = 2 and νi = 1, as described before, we obtain for the relevant gamma function
yielding the poles for T13: Γ(−n − τ + ν14 − m + ε) = Γ(−n − τ + ε). This means that
the poles lie at τ = −n + ε + j and depend on n. For n = 0 we obtain poles at τ = ε + j
leading to poles that are enclosed by the contour and contribute for j ∈

�
0. For n = 1 we

have τ = −1 + ε + j. Here the pole for j = 0 is no longer placed inside the integration area!
The first pole lying inside is the one for j = 1 (τ = ε). It is easy to see by induction that this
can be generalized and that the poles for j always contribute starting from j = n. Hence the
second sum, emerging from the integration over τ , starts from n instead of 0.

Since we are talking about the case T13 and therefore about the function Γ(−σ), we again
have to distinguish between the cases a4 6= 0 and a4 = 0.
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i) a4 6= 0:

T13 =
1

Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)

×
∞∑

n=0

(−1)n

n!
xn

∞∑

j=n

(−1)j

j!
y−n+j+ν14−m+ε Γ(−n + m− ε− ν35)Γ(n + m− ε− ν4)

Γ(−n + ν4)

×
Γ(n− j + m− ε− ν14)Γ(n− j + 2m− 2ε− ν1245)Γ(−n + j + ν4)

Γ(n− j + m− ε− ν4)

×
Γ(j − 2m + 2ε + ν12345)Γ(j −m + ε + ν145)

Γ(j + m− ε)
(6.30)

In order to be able to use the nestedsums functions transcendental fct type A() and
transcendental fct type B() both sums have to start at 0, though. Therefore, the sums
have to be rewritten by shifting the indices:

∞∑

n=0

∞∑

j=n

f(n, j)→
∞∑

n1=0

∞∑

n2=0

f(n1, n2; j = n1 + n2, n = n2).

The function f is a replacement character for the fraction of gamma functions obtained in
this case. Hence we get

T13 = yν14−m+ε Γ(m− ε− ν35)Γ(1−m + ε + ν35)

Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)

×
Γ(m− ε− ν14)Γ(1−m + ε + ν14)Γ(2m− 2ε− ν1245)Γ(1− 2m + 2ε + ν1245)

Γ(ν4)Γ(1 − ν4)Γ(m− ε− ν4)Γ(1−m + ε + ν4)

×
∞∑

n1=0

∞∑

n2=0

xn2yn1

(n1 + n2)!n2!

Γ(n1 + ν4)Γ(n1 + 1−m + ε + ν4)

Γ(n1 + 1−m + ε + ν14)Γ(n1 + 1− 2m + 2ε + ν1245)

×
Γ(n2 + 1− ν4)Γ(n2 + m− ε− ν4)

Γ(n2 + 1−m + ε + ν35)

×
Γ(n1 + n2 − 2m + 2ε + ν12345)Γ(n1 + n2 −m + ε + ν145)

Γ(n1 + n2 + m− ε)
. (6.31)

ii) a4 = 0: The sum over n only runs to ν4 − 1.

T13 =
1

Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)

×
ν4−1∑

n=0

(−1)n

n!
xn

∞∑

j=n

(−1)j

j!
y−n+j+ν14−m+ε Γ(−n + m− ε− ν35)Γ(n + m− ε− ν4)

Γ(−n + ν4)

×
Γ(n− j + m− ε− ν14)Γ(n− j + 2m− 2ε− ν1245)Γ(−n + j + ν4)

Γ(n− j + m− ε− ν4)

×
Γ(j − 2m + 2ε + ν12345)Γ(j −m + ε + ν145)

Γ(j + m− ε)
. (6.32)



68 6. The massless two-loop two-point function

In this case it is sufficient to shift the index j in such a way that the sum again starts at
j = 0:

∞∑

j=n

f(n, j)→
∞∑

j′=0

f(n, j′; j′ = j − n) (6.33)

This leads to the result

T13 =
Γ(m− ε− ν14)Γ(1−m + ε + ν14)Γ(2m− 2ε− ν1245)Γ(1− 2m + 2ε + ν1245)

Γ(m− ε− ν4)Γ(1−m + ε + ν4)Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)

×
ν4−1∑

n=0

(−1)n

n!
xn Γ(−n + m− ε− ν35)Γ(n + m− ε− ν4)

Γ(−n + ν4)
yν14−m+ε

×
∞∑

j=0

(−1)n+j

(n + j)!
yj Γ(j + 1−m + ε + ν4)Γ(j + ν4)

Γ(j + 1 + ν14 −m + ε)Γ(j + 1 + ν1245 − 2m + 2ε)

×
Γ(n + j − 2m + 2ε + ν12345)Γ(n + j −m + ε + ν145)

Γ(n + j + m− ε)
. (6.34)

T23 can be calculated analogously to T13, apart from the fact, of course, that there is only
one case, similar to the case a4 6= 0 in T13, since it does not matter whether a1 and a4 are
real or complex.

T3x - the general case

Consider the case where the σ integration has already been performed and the residues for
the function Γ(−σ − τ + ν14 −m + ε) collected, but we still have to do the integration with
respect to τ :

T3x =
1

Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)

∞∑

n=0

(−1)n

n!

∫

dτ xν14−m+ε xn−τyτ

×
Γ(n− 2m + 2ε + ν12345)Γ(n−m + ε + ν145)

Γ(n + m− ε)

×
Γ(τ − n + m− ε− ν14)Γ(τ − n + 2m− 2ε− ν1345)

Γ(τ − n + m− ε− ν1)

× Γ(−τ)Γ(−τ + m− ε− ν25)Γ(τ + m− ε− ν1)
Γ(−τ + n + ν1)

Γ(−τ + ν1)
. (6.35)

The combination of gamma functions Γ(−τ+n+ν1)
Γ(−τ+ν1)

will soon be of special importance. The
different cases T3x are related to the following gamma functions:

T31 : Γ(−τ) T34 : Γ(τ − n− ν14 + m− ε)

T32 : Γ(−τ + m− ε− ν25) T35 : Γ(τ − n + 2m− 2ε− ν1345)

T33 : Γ(−τ + n + ν1)
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T31 and T32

In T31, we have to distinguish again between the two cases ν4 real and ν4 complex. After
closing the contour for the τ integration we obtain

T31 =
1

Γ(ν2)Γ(ν3)Γ(ν5)Γ(2m− 2ε− ν235)

∞∑

n=0

∞∑

j=0

(−1)n

n!

(−1)j

j!
xν14−m+ε xn−jyj

×
Γ(n− 2m + 2ε + ν12345)Γ(n−m + ε + ν145)

Γ(n + m− ε)

×
Γ(j − n + m− ε− ν14)Γ(j − n + 2m− 2ε− ν1345)

Γ(j − n + m− ε− ν1)

× Γ(−j + m− ε− ν25)Γ(j + m− ε− ν1)
Γ(−j + n + ν1)

Γ(−j + ν1)
. (6.36)

i) a4 6= 0:

One problem now arises from the gamma functions that have an argument consisting of
a combination of n and j with changing sign, as one cannot achieve a positive sign for both
of them simultaneously. The sums will therefore be separated and rewritten in the following
way:

∞∑

n=0

∞∑

j=0

f(n, j) =

∞∑

n=0

n∑

j=0

f(n, j) +

∞∑

n=0

∞∑

j=n

f(n, j)−
∞∑

j=n=0

f(n, j)

=

∞∑

n1=0

n∑

n2=0

f(n1, n2;n = n1 + n2, j = n2)

+
∞∑

n1=0

n∑

n2=0

f(n1, n2;n = n2, j = n1 + n2)−
∞∑

j=n=0

f(n, j),

and we continue afterwards like in the cases before.

ii) a4 = 0:

Let us take a closer look at the fraction Γ(−j+n+ν1)
Γ(−j+ν1)

. This combination does not contribute
any poles, since the poles of the denominator start “further to the left” in the complex plane
than the ones in the numerator. Nevertheless, this fraction is of course not zero and is in an
expanded form equal to

Γ(−j + n + ν1)

Γ(−j + ν1)
=

(−j + n + ν1 − 1)!

(−j + ν1 − 1)!
= (−j + n + ν1 − 1) · ... · (−j + ν1). (6.37)

For this product to not have any term equal to zero, we need the condition j < ν1 or
j > n + ν1 − 1. These are the two cases that have to be calculated:

1)

∞∑

n=0

ν1−1∑

j=0

f(n, j) 2)

∞∑

n=0

∞∑

j=n+ν1

f(n, j)
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Case 1) is completely analogous to cases we have already discussed, with one finite and one
infinite sum where no shifting is needed. However, in case 2) the sums have to be shifted
again:

∞∑

n=0

∞∑

j=ν1

f(n, j) =
∞∑

n=0

∞∑

j′=n

f(n, j′; j′ = j − ν1) =
∞∑

n1=0

∞∑

n2=0

f(n1, n2;n = n1 + n2, j
′ = n2).

Proceeding through the calculation, one also has to apply the identity:

Γ(−j + n + ν1)

Γ(−j + ν1)
= (−j + ν1) · ... · (−j + n + ν1 − 1)

= (−1)n(j − ν1) · ... · (j − ν1 − n + 1)

= (−1)n Γ(j − ν1 + 1)

Γ(j − ν1 − n + 1)

to avoid the appearance of terms like

Γ(−j + n)

Γ(−j)
.

T32 is calculated like T31, except for the fact that there is no case a4 = 0. One only has to
do the splitting into three sums as for T31, a4 6= 0.

T33

The combination of gamma functions

Γ(−τ + n + ν1)

Γ(−τ + ν1)

does not contribute any poles and therefore T33 = 0.

T34 and T35

The fact that we have cases T34 and T35 at all has to be explained first. The corresponding
gamma functions related to these two are:

T34 : Γ(τ − n− ν14 + m− ε)

T35 : Γ(τ − n + 2m− 2ε− ν1345).

The variables τ and n have different signs again. So for different values of n, poles of this
gamma function move into the integration area of the integral over τ and we obtain, similar
to the results in T13 and T23, a dependence of the poles of the τ integration on the value of
n. We show this by an example: Considering our pre-defined values for m and νi, we find for
the gamma function of the case T34 that Γ(τ −n− ν14 + m− ε) = Γ(−τ −n + ε). Hence the
poles are at τ = n + ε − j and therefore dependent on n. For n = 0 we get τ = ε − j, and
only for the case j = 0 is the pole inside the integration contour. By a similar consideration
one can convince oneself that the sum with respect to j for general n always runs up to n.
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Analogous statements apply to T35 and this almost suffices to solve this case. The only
remaining calculational step is to bring the sums (n = 0...∞, j = 0...n) into the form of two
infinite sums (with respect to n1 and n2). However, what has to be taken into account is

that we are dealing with gamma functions of the form Γ(x+a) that lead to a residue + (−1)n

n! .
Therefore, compared to the other results, T34 and T35 now have a relative minus sign.

Case T34 is slightly more complicated. In this case the two possibilities for a4, a4 6= 0 or
a4 = 0, again have to be distinguished. Performing this calculation for the general case one
obtains a term

Γ(ν4 − j + n)

Γ(ν4 − j)
.

This is the analogous form to Γ(−j+n+ν1)
Γ(−j+ν1)

which appeared is the case T31, a1 = 0. So also in
this case we have to consider the two parts j < ν4 or j > n+ ν4− 1. Since additionally j ≤ n
at the same time, the case j > n + ν4 − 1 does not exist. For j < ν4 one gets two sums that
also have to be transformed by

ν4−1∑

j=0

∞∑

n=j

f(n, j) =

ν4−1∑

j=0

∞∑

n′=0

f(n′, j;n′ = n− j).

Cancellation of terms

Having a closer look at the terms T13, T23, T34 and T35 one finds

T13 + T34 = 0

T23 + T35 = 0

This is already the case before the expansion in ε. For both pairs (T13 ,T34) and (T23 ,T35)
the results arise from the same gamma functions just by considering them in a changed order.
Hence their cancellation seems to be related to the order in which we perform the integration
for σ and τ . This would need some further investigation. To speed up the program, we will
omit these four cases from the beginning.

For the integral (6.14) we therefore obtain

Î(2,5) = T11 + T12 + T21 + T22 + T31 + T32. (6.38)

6.2 The expansion of Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5) — the program

In the last section we expressed the result for the integral Î(2,5)(m − ε, ν1, ν2, ν3, ν4, ν5) in
the form of several finite and infinite double sums. These sums are exactly of the form of
the four classes transcendental fct type A() to transcendental fct type D(), which we
introduced in Section 5.2. More precisely, we will only need two of these functions, that is
transcendental fct type A() and transcendental fct type B(). Fig. 6.2 shows the tree
of the different programs involved. We did not include how the functions themselves call the
different functions transcendental fct type A() and transcendental fct type B().
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F_T21()

F_T22()
F_T31.cc

F_T32.cc

zeta_subs()

F_T32_cc()

F_T31_cc()

F_T31_rc()

F_T22_cc()

F_T12_cr()

F_T12_cc()

F_T21_rc()

F_T21_cc()

F_T11_cc()

F_T11_cr()

F_T11_rc()

F_T11_cc()

F_T32()

F_T31()

Figure 6.2: The tree of function invocations in the program for expanding the massless
two-loop two-point function. We omitted the functions transcendental fct type A() and
transcendental fct type B(), which are called in the end in different combinations (see Section
6.1).

The following functions are implemented:

• residuum(): This is the main program in which one can set the order up to which
the function shall be expanded, the dimension of the space m = D

2 , and the exponents
of the propagators in the integral, by specifying the integer parts n i and the integers
proportional to ε, a i of an exponent νi = ni + aiε. It then calls the functions F TXY()

with the values set accordingly. The variables X and Y correspond to the names of the
functions as defined in Section 6.1.

• F T XY(): As we have seen in Section 6.1, for some cases we get different sums de-
pending on whether ν1 and/or ν4 are real or complex. Therefore the functions F TXY()

themselves call functions F TXY ab(), where a and b can be “r” or “c” according to νi

being real or complex. The first index a corresponds to ν1, and b to ν4.

• F T XY ab(): The functions F TXY ab() call the functions transcendental fct type A()

and transcendental fct type B() according to Section 6.1.
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• zeta subs(): This function substitutes zeta functions of higher depth by zeta functions
of lower depth using the relations given in [MiPe 2000]. Additionally, it substitutes zeta
functions of even degree by powers of π, using the relation

ζ(2k) =
(−1)k+1B2k

2(2k)!
(2π)2k, k ∈

�
(6.39)

with the Bernoulli numbers

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B3 = 0, B4 = −

1

30
, · · ·

Bn =
n∑

k=0

(
n
k

)

Bk, for n ≥ 2. (6.40)

6.3 The expansion of Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5) - the results

Using our program residuum(), let us calculate as an arbitrarily chosen example the function
Î(2,5) for the values νi = 1 + ε, ∀i , Î(2,5)(2− ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε) up to the order
ε4 in the expansion parameter ε:

Î(2,5)(2− ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε)

=

6ζ(3)

+ ε[−4ζ(2, 2) − 16ζ(3, 1) + 8/45π4 − 12γEζ(3) + 12ζ(3)]

+ ε2[−144ζ(5) − 8ζ(2, 2) − 16/45γEπ4 + 8ζ(2, 2)γE + 144ζ(2, 3) − 32ζ(3, 1) + 16/45π4

+ 45π2ζ(3) + 204ζ(3, 2) + 216ζ(2, 1, 2) − 24γEζ(3) + 12γ2
Eζ(3) + 408ζ(3, 1, 1)

+ 32ζ(3, 1)γE − 36ζ(2, 1)π2 + 228ζ(4, 1) + 24ζ(3) + 228ζ(2, 2, 1)]

+ ε3[−288ζ(5) − 16ζ(2, 2) − 32/45γEπ4 − 456γEζ(4, 1) + 288ζ(5)γE − 1656ζ(2, 2, 1, 1)

+ 16ζ(2, 2)γE + 74/3ζ(2, 2)π2 − 408γEζ(3, 2) − 1728ζ(2, 1, 2, 1) + 288ζ(2, 3) − 64ζ(3, 1)

− 864ζ(2, 1, 3) + 884ζ(3)2 − 90γEπ2ζ(3)− 1368ζ(3, 2, 1) + 32/45π4 + 90π2ζ(3)

− 456γEζ(2, 2, 1) − 36ζ(4, 1, 1) + 408ζ(3, 2) + 288ζ(2, 1, 1)π2 + 432ζ(2, 1, 2) + 829/945π6

− 432γEζ(2, 1, 2) − 1504ζ(3, 3) − 48γEζ(3)− 864ζ(2, 1)ζ(3) − 8ζ(2, 2)γ2
E − 1764ζ(2, 2, 2)

+ 24γ2
Eζ(3)− 1024ζ(4, 2) − 1260ζ(2, 3, 1) + 816ζ(3, 1, 1) + 64ζ(3, 1)γE − 3600ζ(3, 1, 1, 1)

− 1728ζ(2, 1, 1, 2) − 288ζ(2, 3)γE − 892/3ζ(3, 1)π2 + 72γEζ(2, 1)π2 − 72ζ(2, 1)π2

+ 456ζ(4, 1) − 532ζ(2, 4) − 32ζ(3, 1)γ2
E − 1872ζ(3, 1, 2) + 48ζ(3) + 16/45γ2

Eπ4

− 816γEζ(3, 1, 1) + 456ζ(2, 2, 1) − 8γ3
Eζ(3) + 884ζ(5, 1)]

+ ε4[−1768γEζ(3)2 + 25920ζ(2, 1, 1, 1, 2) − 1898/5ζ(2, 1)π4 − 576ζ(5) − 32ζ(2, 2)

− 72γ2
Eζ(2, 1)π2 − 4320π2ζ(2, 1, 1, 1) + 1784/3ζ(3, 1)γEπ2 − 64/45γEπ4 + 1064γEζ(2, 4)

− 912γEζ(4, 1) + 576ζ(5)γE − 3312ζ(2, 2, 1, 1) + 32ζ(2, 2)γE + 8768ζ(3, 3, 1)

+ 6824/3ζ(3, 1)ζ(3) + 1416ζ(5, 1, 1) + 72γEζ(4, 1, 1) + 3744γEζ(3, 1, 2) + 816γ2
Eζ(3, 1, 1)

+ 1040ζ(5)π2 + 148/3ζ(2, 2)π2 − 816γEζ(3, 2) − 3456ζ(2, 1, 2, 1) + 3312ζ(2, 2, 1, 1)γE
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− 60614ζ(7) + 576ζ(2, 3) + 1622π2ζ(4, 1) − 1658/945γEπ6 + 1728γEζ(2, 1, 3)

− 156ζ(4, 1, 2) + 2736γEζ(3, 2, 1) + 4γ4
Eζ(3) + 10248ζ(3, 2, 2) − 1728ζ(2, 1, 3)

+ 1768ζ(3)2 − 148/3ζ(2, 2)γEπ2 + 16632ζ(4, 1, 1, 1) − 180γEπ2ζ(3) + 24336ζ(3, 1, 2, 1)

− 2736ζ(3, 2, 1) + 64/45π4 − 1768γEζ(5, 1) + 180π2ζ(3) + 16/3ζ(2, 2)γ3
E − 128ζ(3, 1)

− 912γEζ(2, 2, 1) − 72ζ(4, 1, 1) + 816ζ(3, 2) + 7812ζ(2, 4, 1) + 576ζ(2, 1, 1)π2

+ 1728γEζ(2, 1)ζ(3) + 24048ζ(3, 2, 1, 1) + 864ζ(2, 1, 2) − 864γEζ(2, 1, 2) − 3008ζ(3, 3)

+ 818ζ(3, 2)π2 − 96γEζ(3) + 334π2ζ(2, 2, 1) − 1728ζ(2, 1)ζ(3) − 16ζ(2, 2)γ2
E

− 288ζ(5)γ2
E + 24768ζ(2, 1, 3, 1) + 90γ2

Eπ2ζ(3)− 18020ζ(5, 2) − 13420ζ(4, 3)

− 3528ζ(2, 2, 2) − 11372ζ(3, 4) + 3752ζ(6, 1) + 48γ2
Eζ(3) + 25920ζ(2, 1, 1, 2, 1)

+ 12960ζ(2, 1, 1, 3) + 4196ζ(2, 2, 3) − 2048ζ(4, 2) − 2520ζ(2, 3, 1) + 1316/3ζ(2, 3)π2

+ 50976ζ(3, 1, 1, 1, 1) − 36ζ(2, 1, 2)π2 + 1632ζ(3, 1, 1) + 128ζ(3, 1)γE − 7200ζ(3, 1, 1, 1)

− 3456ζ(2, 1, 1, 2) − 576ζ(2, 1, 1)γEπ2 + 24224/3ζ(2, 2)ζ(3) − 32/135γ3
Eπ4

+ 8568ζ(4, 2, 1) + 2376ζ(2, 1, 4) − 576ζ(2, 3)γE + 25920ζ(2, 1, 2, 1, 1) + 3528γEζ(2, 2, 2)

+ 456γ2
Eζ(2, 2, 1) − 1784/3ζ(3, 1)π2 + 3456γEζ(2, 1, 1, 2) − 6800ζ(2, 5) + 144γEζ(2, 1)π2

+ 288ζ(2, 3)γ2
E − 16γ3

Eζ(3)− 144ζ(2, 1)π2 + 912ζ(4, 1) + 10180ζ(2, 3, 2)

− 1064ζ(2, 4) + 2572π2ζ(3, 1, 1) + 26640ζ(3, 1, 1, 2) − 64ζ(3, 1)γ2
E − 3744ζ(3, 1, 2)

+ 17712ζ(2, 2, 2, 1) + 26352ζ(2, 2, 1, 1, 1) + 96ζ(3) + 32/45γ2
Eπ4 + 2520γEζ(2, 3, 1)

+ 2048γEζ(4, 2) + 456γ2
Eζ(4, 1) + 64/3ζ(3, 1)γ3

E + 4256ζ(3, 1, 3) + 73651/108π4ζ(3)

+ 1768ζ(5, 1) + 408γ2
Eζ(3, 2) − 1632γEζ(3, 1, 1) + 912ζ(2, 2, 1) + 7200γEζ(3, 1, 1, 1)

+ 3008γEζ(3, 3) + 21888ζ(2, 1, 2, 2) + 1658/945π6 + 20304ζ(2, 2, 1, 2) + 432γ2
Eζ(2, 1, 2)

+ 3456ζ(2, 1, 2, 1)γE + 19080ζ(2, 3, 1, 1) + 12960ζ(2, 1, 1)ζ(3)]

We can simplify the zeta functions of depth > 1 by using the Gröbner basis provided by
H.N.Minh and M.Petitot in [MiPe 2000]. This reduces the size of the output considerably
and we finally obtain:

Î(2,5)(2− ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε)

= (6.41)

6ζ(3)

+ ε[1/10π4 − 12γEζ(3) + 12ζ(3)]

+ ε2[372ζ(5) − 1/5γEπ4 + 1/5π4 − π2ζ(3)− 24γEζ(3) + 12γ2
Eζ(3) + 24ζ(3)]

+ ε3[744ζ(5) − 2/5γEπ4 − 744ζ(5)γE − 892ζ(3)2 + 2γEπ2ζ(3) + 2/5π4 − 2π2ζ(3)

+ 1199/1260π6 − 48γEζ(3) + 24γ2
Eζ(3)− 8γ3

Eζ(3) + 48ζ(3) + 1/5γ2
Eπ4]

+ ε4[1784γEζ(3)2 + 1488ζ(5) − 4/5γEπ4 − 1488ζ(5)γE − 62ζ(5)π2 + 18450ζ(7)

− 1199/630γEπ6 + 4γ4
Eζ(3)− 1784ζ(3)2 + 4γEπ2ζ(3) + 4/5π4 − 4π2ζ(3)

+ 1199/630π6 − 96γEζ(3) + 744ζ(5)γ2
E − 2γ2

Eπ2ζ(3) + 48γ2
Eζ(3)− 2/15γ3

Eπ4

− 16γ3
Eζ(3) + 96ζ(3) + 2/5γ2

Eπ4 − 1777/60π4ζ(3)] (6.42)
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In this way one can in principle expand the function Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5) up to any
order in ε, only limited by the available computer memory. In [BiWe 2003] we used a γE-free
expansion of this integral by multiplying it with the factor

c−2
Γ =

(
Γ(1− 2ε)

Γ(1 + ε)Γ(1− ε)2

)2

, (6.43)

which reasonably lowers the amount of used memory. The result for the function
Î(2,5)(2− ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε) multiplied with this factor becomes:

Î(2,5)(2− ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε)

= (6.44)

6ζ(3)

+ ε[1/10π4 + 12ζ(3)]

+ ε2[372ζ(5) + 1/5π4 + 24ζ(3)]

+ ε3[744ζ(5) − 864ζ(3)2 + 2/5π4 + 61/63π6 + 48ζ(3)]

+ ε4[1488ζ(5) + 18450ζ(7) − 1728ζ(3)2 + 4/5π4 + 122/63π6 + 96ζ(3) − 144/5π4ζ(3)]
(6.45)

However, using this program we can not only expand Î(2,5)(m − ε, ν1, ν2, ν3, ν4, ν5), but we
are also able to make statements about the types of functions that can possibly occur in
its Taylor expansion. In Chapter 4 we mentioned that D. Broadhurst found a first double
sum in the expansion of the function Î(2,5) [Broa 1986]. This gave rise to the question
what sort of functions could in general occur in this expansion [Broa 2003]. We can answer
this question now from our calculation: we have seen that we can express all our results
in (double) sums of gamma functions in the form of transcendental fct type A() and
transcendental fct type B() that are taken at unit argument. Hence the Laurent series
expansion of Î(2,5) only involves rational numbers and multiple zeta values (cf. Table 5.1).
We formulated this statement in [BiWe 2003] as a theorem:

Theorem: Multiple zeta values are sufficient for the Laurent expansion of the two-loop
integral Î(2,5)(m − ε, ν1, ν2, ν3, ν4, ν5), if all powers of the propagators are of
the form νj = nj + ajε, where the nj are positive integers and the aj are
nonnegative real numbers.

Apart from the general expansion of the massless two-loop two-point function, this constitutes
another important result of our calculation.
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Chapter 7

Building massless Feynman

diagrams

As one application of the expansion of the function Î(2,5) we will now calculate the non-planar
vertex correction in massless Yukawa theory and massless QED. These two-loop skeleton
graphs will be implemented into a program in Chapter 8 with which one can calculate the
counterterms for a special class of Feynman diagrams automatically. “A special class” means
that we are restricted to Feynman diagrams that can be built from a set P of all primitive
one-loop diagrams of the theory, and the non-planar vertex correction as a primitive two-loop
diagram:

P =

{ }

By “building” Feynman diagrams from the elements of P we mean that we start with a
single graph Γ1 from this set and insert graphs γi ∈ P at places that are compatible with the
external structure of the graph γi. This again follows the idea of inserting graphs by using
gluing data, which we explained in Chapter 3. In this sense, the elements of P are “building
blocks” for the graphs we want to investigate.

This idea of using primitive graphs as building blocks of Feynman diagrams and to use them
for calculating the counterterms of graphs, was on the one hand exploited by D.Kreimer
in [Krei 1998a,Krei 2000b], and was, for the one-loop diagrams of the set P in the above cited
massless theories, also subject of my diploma thesis [Bier 2000]. This PhD thesis extends the
diploma thesis in the following ways:

• We are calculating the one-loop vertex corrections in Yukawa theory and QED with a
different assignment of momenta.

• We are introducing a C++ computer program that calculates the counterterms for an
input Feynman diagram automatically.

• We are extending the set P of primitive building blocks by the non-planar vertex cor-
rection.

77
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Although the results for the different graphs were calculated by myself, the program im-
plementing these calculations for the massless theories has been written by a former PhD
student at Mainz University, Richard Kreckel. It is written in C++ and uses the computer
library GiNaC. First results obtained from this program, not including the non-planar vertex
correction, were published in [BKK 2002]. This program has now been extended to include
the non-planar vertex correction. For this, it was necessary to introduce new classes in the
program and to modify it to allow insertions into five different places of a graph, instead of
only two like for the one-loop case.

Before we start in the next section with an introduction to the scheme emerging from the
insertion of massless graphs into each other, which underlies the computer program, we want
to clearly set up the framework in which we are working. Subsequent calculations are all
subject to the following conditions:

• We are calculating all graphs in the massless case.

• We are using dimensional regularization with D = 4−2ε, hence the parameter m in the
function Î(2,5) is equal to m = 2. As the renormalization scheme we are using minimal
subtraction.

• The vertex graphs, the one-loop vertex correction, and the non-planar vertex correction
are calculated for zero momentum transfer (zmt), which leads to them depending only
on one external momentum q.

• The vertex graphs are calculated for two different assignments of momenta.

• The non-planar vertex correction is only considered for the case of subdivergences sitting
in one particular line.

In the first section we will only refer to the one-loop diagrams. Since they have already
been covered in my diploma thesis, this section is mainly addressed to readers who do not
already know this scheme. Anyone familiar with it may treat the rest of the first section as
a recapitulation, or may skip it completely and continue directly with the non-planar vertex
correction in Section 7.2.

7.1 One-loop diagrams

As we are calculating dimensionally regularized diagrams, our analytic expressions for the
Feynman graphs and their counterterms will be Laurent series in the regularization parame-
ter ε. We start with graphs that are built from primitive one-loop diagrams. These one-loop
diagrams will all have the underlying topology of the one-loop two-point function:

This includes the vertex correction, as we only consider it for the case of zero momentum
transfer. The topology of the one-loop two-point function is related to the functions Fν1,ν2
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introduced in (4.5). All integrals corresponding to the one-loop graphs or to graphs built
from them will therefore evaluate to sums and/or products of these functions.

We will start by explaining the general scheme for the case of the massless Yukawa theory.
We like to stress here again that since we do not calculate processes related to experiments,
but rather want to make general statements about the appearance of zeta functions in
countert̃erms, we will omit all coupling constants and other for our purpose “unnecessary”
multiplicative factors. These constants would not alter the general results and would just
complicate the presentation.

7.1.1 Yukawa theory

The Lagrangian of the massive Yukawa theory is given by

LYukawa = Ψ̄(i/∂ −mΨ)Ψ +
1

2
(∂µΦ)2 −

1

2
m2

ΦΦ2 − gΨ̄ΨΦ, (7.1)

where Ψ is a fermion field, Φ a field for a scalar particle, and g is the coupling constant.

For the massless case one derives from this Lagrangian the following free propagators for
particles with momentum q: 1

6q for the fermion and 1
q2 for the boson. For the vertex correction

we find: −ig � , with the unit matrix � . In diagrams, the scalar particle is denoted by a dashed
line, the fermion by a solid line.

The three primitive one-loop diagrams in P are (cf. Chapter 2):

fermion self-energy , boson self-energy, vertex correction

We already mentioned that we will calculate the vertex correction for two different assignments
of momenta, with case 1 being the one with the zmt vertex connected to the external boson
line, and case 2 being the one where this vertex is one of the two vertices connected to the
external fermion lines:

q

q

k

q−k

k

0

0

q

k

k

q+k

q

case 1 case 2

Figure 7.1: The two different assignments of momenta for the one-loop vertex correction.
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To explain the general idea underlying the building of graphs, consider the one-loop fermion
self-energy for which we get the analytic expression:

q q

q−k

k

≡

∫

dDk
1

k/

1

(q − k)2
=

∫

dDk
k/

k2(q − k)2
(C.5)
= [q2]−ε 1

2
F1,1 q/ (7.2)

The result for the vector integral in the last step, (C.5), can be found in the Appendix C.
Note that the result is proportional to q/. If we insert this graph into an inner fermion line of
another graph with momentum k, we get for this line a graphical replacement:

k

→

k k

`

k−`

Analytically, this corresponds to the replacement

1

k/
→

1

k/

(
1

2
F1,1[k

2]−εk/

)
1

k/
= [k2]−ε 1

2
F1,1

1

k/
. (7.3)

This means that instead of the free propagator 1
k/ , one now has two propagators 1

k/ surrounding
the expression for the subdivergence. Since the subdivergence itself is proportional to the
inverse of the free propagator of the line in which it is inserted, it cancels with one part of the
“additional” free propagator. What remains is an expression that again has the form of a free
fermion propagator 1

k/ , multiplied with a function of ε, 1
2F1,1, and a momentum-dependent

term [k2]−ε. Since we only insert primitive, i.e. in particular, divergent graphs into divergent
graphs, this inner fermion line in which we insert is still an inner line of a “bigger”, divergent
graph Γ, and we have to integrate over the momentum k. If we insert, for example, the
one-loop fermion self-energy once into itself:

1

∗1 =

we obtain:

q qkk `

k−`

q−k
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One can see the insertion at the inner line with momentum k. Analytically this becomes:

∫

dDk
1

k/

(

[k2]−ε1

2
F1,1k/

)
1

k/

1

(q − k)2
=

1

2
F1,1

∫

dDk
1

k/
[k2]−ε k/

k/

1

(q − k)2

=
1

2
F1,1

∫

dDk
k/

k2
[k2]−ε 1

(q − k)2

=
1

2
F1,1

∫

dDk
k/

[k2]1+ε[(q − k)2]

After inserting the subdivergence, the integral for this two-loop diagram again has the form
of the integral (7.2), with the only difference being the exponent of the fermion momentum
in the denominator, which has been changed by +1 · ε. One can easily convince oneself that
each additional subdivergence increases this exponent by +ε. Furthermore, this integral is
multiplied by the (q-independent) factor 1

2F1,1 of the one-loop self-energy.

With equation (C.5) one then finds (note from (2.14) that the functions Fν1,ν2 are symmetric!)

∫

dDk
1

k/

(

[k2]−ε 1

2
F1,1k/

)
1

k/

1

(q − k)2
=

1

2
F1,1 [Fε,1 + F1+ε,1] [q

2]−2εq/ (7.4)

The important thing here is that the results of the one-loop and also of the two-loop calculation
in (7.2) and (7.4) are of the following form: one term of functions that only depends on ε, one
term [q2]−(2)ε, and the inverse of the free propagator q/. One generally finds that the result of
a graph, built from the primitive one-loop graphs always consists of the following four parts:

1. (−ig)2x with x = number of vertices,

2. a (product of) momentum-independent function(s) of ε,

3. [q2]−yε , where y = number of loops in total,

4. the inverse propagator of the external line, with the corresponding momentum, or the
inverse unit matrix for the vertex corrections.

These are the ingredients which we also find for all other types of self-energies and vertex
corrections, also in QED. Each loop is in particular characterized by its corresponding sum
of functions Fν1,ν2 . Hence we will give these sums special names: fermion self-energies will
always be denoted by Σ, vacuum polarizations by Π, and vertex corrections by Γ. We assign
to these functions a pair of indices (i, j) that count the number of subdivergences sitting
inside the loop and additionally state at which line the subdivergences are located according
to the following rules:
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Σi,j: i = # subdivergences at the fermion line,
j = # subdivergences at the boson line.

Πi,j: i = # subdivergences at the lower fermion line,
j = # subdivergences at the upper fermion line.

Γ1
i,j: i = # fermion self-energies and vertex corrections

plugged into the zmt vertex and the internal edges connected to it,
j = # subdivergences at the boson line not connected to this vertex.

Γ2
i,j: i = # fermion or boson self-energies and vertex corrections

plugged into the zmt vertex and the internal edges connected to it,
j = # fermion self-energies at the fermion line not connected to
the vertex of zmt.

We use the same names to denote complete graphs, indicating the difference by placing
brackets around the indices of the functions, for instance Σ[0,0]. However, there are some
ambiguities when we name the graphs in this way, as the index does not indicate the type
of the subdivergences sitting in one line, but only their total number. Nevertheless, this will
not cause too many problems at this point and we will ignore this fact for now.

The result for the one-loop and two-loop fermion self-energies then reads:

Σ[0,0](q
2) = Σ0,0[q

2]−εq/ (7.5)

Σ[1,0](q
2) = Σ0,0Σ1,0[q

2]−2εq/ (7.6)

One can immediately see that it is possible to reconstruct the corresponding graph from each
result. For the two-loop graph, for example, we find that the term [[q2]−ε]2 = [q2]−2ε indicates
a graph consisting of two loops. The product Σ0,0Σ1,0 makes a statement about the explicit
form of the graphs: the part Σ0,0 for the subdivergence tells us that it is a primitive fermion
self-energy. Σ1,0 however, being the term with the highest number of subdivergences, states
the form of the “outer” graph: a fermion self energy with one (Σ1 ,0) subdivergence sitting
at the fermion line (the left index has been increased by one). We will often only provide
these functions Σi,j, Πi,j or Γi,j, when talking about subdivergent graphs or corrections. The
remaining parts of the result for an integral can be determined uniquely.

Note again that the functions defined above contain all orders in ε including finite orders and
not only the divergent parts of the Laurent series.

To complete this section, we give the functions Σi,j, Πi,j , and Γ
1/2
i,j in their general form. They

are calculated analogously to the examples above:

Σi,j :=
1

2
[Fiε,1+jε + F1+iε,1+jε − F1+iε,jε], (7.7)

Πi,j/tr( � ) := −
1

2
[Fiε,1+jε − F1+iε,1+jε + F1+iε,jε], (7.8)

Γ1
i,j := F1+iε,1+jε, (7.9)

Γ2
i,j :=

1

2
[F2+iε,jε − F2+iε,1+jε + F1+iε,1+jε]. (7.10)

We have divided the boson self-energy by the trace of the unit matrix tr( � ) (trace over spinor
indices) for easier comparison of insertions of subgraphs into boson and fermion lines.
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7.1.2 QED

The Lagrangian for massive QED is given by

LQED = Ψ̄(i /D −m)Ψ−
1

4
(Fµν)2 −

1

2ξ
(∂µAµ)2

= Ψ̄(i/∂ −m)Ψ− eΨ̄γµΨAµ −
1

4
(Fµν)2 −

1

2ξ
(∂µAµ)2, (7.11)

where Ψ is again a fermion field, Aµ is the electromagnetic vector potential, Fµν = ∂µAν−∂νAµ

is the electromagnetic field tensor, e is the coupling constant, and Dµ = ∂µ + ieAµ the gauge-
covariant derivative. The term −1/(2ξ)(∂µAµ)2 is the gauge fixing term.

The free propagators in QED for particles with momentum q are: 1
6q for the fermion and

1

q2
(gµν + ξ

qµqν

q2
) for the photon, which is drawn as a wavy line. Note that we have a

free parameter ξ, the gauge parameter, entering the calculations. For the vertex we find:
(−ie)γµ, with γµ an element of the Dirac algebra, fulfilling the anti-commutation relations
{γµ, γν} = γµγν + γνγµ = 2gµν .

The most important differences to the Yukawa theory stem from the gauge parameter in the
photon propagator and from the QED vertex −ieγµ, where the appearance of gamma matrices
with their Clifford algebra structure make the calculations more complicated. Nevertheless the
scheme introduced in the last chapter that states how graphs are translated into an analytic
expression, remains the same. Therefore we will mainly just provide the differences and
important changes compared to the Yukawa theory without giving the calculations explicitly.
Only the case of the vertex correction is going to be examined in more detail as it will be
necessary to introduce matrices for the functions Γi,j.

Vacuum polarization

Let us start by calculating the QED vacuum polarization:

q q

k

q+k

γµγν

It evaluates to the result:

Π[0,0](q2) = − (2−D)
(1−D) [q

2]−ε 1

2
F1,1tr( � )

[

gµν −
qµqν

q2

]

q2

= [q2]−εΠ0,0

[

gµν −
qµqν

q2

]

q2 (7.12)

with

Π0,0 = (2−D)
(1−D)

1

2
F1,1tr( � ) (7.13)
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Apart from the multiplicative term 1
q2 , the expression in parentheses in equation (7.12) corre-

sponds to the free propagator for ξ = −1 and reflects the transversality of the photon. Later
on, we want to insert this vacuum polarization into photon lines of other graphs causing the
gauge parameter attached to these lines to be fixed at −1, which one can easily convince
oneself by a small calculation. This has to be taken into account in the following.

Since we do not consider a gauge invariant class of Feynman diagrams for higher loop orders,
we will only include the one-loop vacuum polarization without subdivergences in this thesis.

Fermion self-energy

For the fermion self-energy we have to consider two cases, as the one-loop vacuum polarization
sitting in an inner photon line of a graph as a subdivergence forces the gauge parameter of
this line to be ξ = −1. Hence we now have to distinguish between the two cases, with and
without a subdivergence at the photon line of a graph.

Let j be the number of subdivergences at the photon line. We calculate the result of the
fermion self-energy to

j = 0 : Σ̃i,0 := (2−D)Σi,0 + ξΣ
′

i,0, (7.14)

Σi,0 =
1

2
[F1+iε,1 + Fiε,1] and Σ

′

i,0 =
1

2
[F−1+iε,2 − 2Fiε,2 − Fiε,1 + F1+iε,2 − F1+iε,1]

(7.15)

j 6= 0 : Σ̃i,j =
1

2
[(2−D)Fjε,1+iε − (3−D)F1+jε,iε − (3−D)F1+jε,1+iε

+F2+jε,−1+iε − 2F2+jε,iε + F2+jε,1+iε] (7.16)

The second case could be written as only one function with the help of the Kronecker-Delta:

Σ̃i,j =
1

2
[ (2−D)Fjε,1+iε − (3−D)F1+jε,iε − (3−D)F1+jε,1+iε

+F2+jε,−1+iε − 2F2+jε,iε + F2+jε,1+iε ] (1− δ0,j)

+ [ (2−D)Σi,0 + ξ Σ
′

i,0 ] δ0,j , (7.17)

but the programs of Chapter 8 use the first representation.

Note that in our conventions, a gauge parameter of value ξ = 0 corresponds to the Feynman
gauge, ξ = −1 to the Landau gauge [PeSch 1995].

Vertex corrections

Since the vertex graphs are in our case only dependent on one external momentum q, the exter-

nal structure of the vertex correction consists of two form factors, one for γµ and one for
qµq/
q2 :

Γµ(0, q, q) = F1(q
2) γµ + F2(q

2)
qµq/
q2 . When we insert this graph into another graph and,

correspondingly, this result into an integral for the outer loop of the “bigger” graph, we will
get a sum of two integrals: one for the insertion of the part proportional to γµ and one for
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the insertion of the expression proportional to qµq//q2. This forces us to introduce two-by-two

matrices [KrDe 1999] whose four entries are given by four functions ∆
(i,j)
a,b . The indices (i, j)

count the number of internal insertions like before, while the indices a, b have the values 1
or 2, with the case b = 1 corresponding to the result that stems from an internal vertex γµ,
b = 2 to the one derived from an internal vertex qµq//q2. The index a enumerates the two
possible form factors in the result.

We again give an example. For the one-loop vertex correction of case 1 of Fig. 7.1 we obtain:

q

q

k

k

q−k
0

=
[

∆
(0,0)
1,1 γµ + ∆

(0,0)
2,1

qµq/
q2

]

[q2]−ε.

If we insert this graph into itself, we obtain the sum of two integrals:

∆
(0,0)
11

∫

dDkγα 1

k/
(γµ)

1

k/
γβ

[

gαβ + ξ
(q − k)α(q − k)β

(q − k)2

]
1

[(q − k)2][k2]ε

+ ∆
(0,0)
21

∫

dDkγα 1

k/

(
kµk/

k2

)
1

k/
γβ

[

gαβ + ξ
(q − k)α(q − k)β

(q − k)2

]
1

[(q − k)2][k2]ε

= ∆
(0,0)
11

[

∆
(1,0)
11 γµ + ∆

(1,0)
21

qµq/

q2

]

[q2]−2ε + ∆
(0,0)
21

[

∆
(1,0)
12 γµ + ∆

(1,0)
22

qµq/

q2

]

[q2]−2ε

=

[(

∆
(0,0)
11 ∆

(1,0)
11 + ∆

(0,0)
21 ∆

(1,0)
12

)

γµ +
(

∆
(0,0)
11 ∆

(1,0)
21 + ∆

(0,0)
21 ∆

(1,0)
22

) qµq/

q2

]

[q2]−2ε. (7.18)

The multiplication of the ∆
(i,j)
a,b can be reformulated as a matrix multiplication. Corresponding

to each vertex correction we define a matrix

M1
i,j :=

(

∆
(i,j)
11 ∆

(i,j)
12

∆
(i,j)
21 ∆

(i,j)
22

)

, (7.19)

where the upper index refers to the two cases of vertex corrections under consideration. We
omit it in the matrix entries for simplicity. For vertex corrections of case 1, the index i is
the total number of subdivergences at the fermion line, with no difference whether it is of the
form Σ or Γ, and j the number of subdivergences at the photon line.

For a two-loop vertex correction, for instance, this means that we begin with the inner vertex
correction marked with a box:

≡M1
0,0 =

(

∆
(0,0)
11 0

∆
(0,0)
21 0

)
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and then multiply this with the matrix for the outer vertex correction, which has one vertex
correction as a subdivergence:

≡M1
1,0 =

(

∆
(1,0)
11 ∆

(1,0)
12

∆
(1,0)
21 ∆

(1,0)
22

)

⇒

(

∆
(1,0)
11 ∆

(1,0)
12

∆
(1,0)
21 ∆

(1,0)
22

)(

∆
(0,0)
11 0

∆
(0,0)
21 0

)

=

(

∆
(1,0)
11 ∆

(0,0)
11 + ∆

(1,0)
12 ∆

(0,0)
21 0

∆
(1,0)
21 ∆

(0,0)
11 + ∆

(1,0)
22 ∆

(0,0)
21 0

)

.

Multiplying (7.20) with (1, 0)T [q2]−2ε, we get the result as the column vector

(

(∆
(1,0)
11 ∆

(0,0)
11 + ∆

(1,0)
12 ∆

(0,0)
21 )[q2]−2ε

(∆
(1,0)
21 ∆

(0,0)
11 + ∆

(1,0)
22 ∆

(0,0)
21 )[q2]−2ε

)

. (7.20)

The upper entry of this vector is the form factor F1(q
2) belonging to γµ and the lower one

is the form factor F2(q
2) belonging to qµq/

q2 . We can check that this is the same result we

obtained in (7.18).

Subdivergences that are not vertex corrections, i.e. Σi,j and Πi,j, are multiplied with a unit
matrix and inserted in the string of matrices in front of the matrix belonging to the vertex
correction which they are a part of. They increase the subscripts i, j accordingly in that

matrix. We get two sets of four functions ∆
(i,j)
a,b in terms of Fν1,ν2 functions, one for each

assignment of momenta, which we do not want to list here explicitly. The interested reader
can find them from our publicly available programs: http://wwwthep.physik.uni-mainz.

de/Publications/theses.html.

7.2 The non-planar vertex correction

7.2.1 The theory behind the programs

In the last section we have shown how we can build graphs from primitive one-loop diagrams
pi ∈ P in massless Yukawa theory and QED. We have also calculated or provided all the
necessary functions to describe these graphs. In this section we now want to calculate a two-
loop building block of P , given by the non-planar two-loop vertex correction. More precisely,
we will calculate this non-planar vertex correction for two different assignments of momenta
like in the one-loop case.

For the non-planar vertex correction, the integrals (4.5) that sufficed for performing the
calculations in the last section, are not sufficient anymore. This is due to the fact that in
this primitive two-loop case, we do not find the same master topology as before. Consider
a two-loop non-planar vertex correction for a momentum flow similar to the one-loop vertex
correction of case 1:
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q

q

0
↔

q q0

We will again denote the graphs according to the two different momentum flows case 1 and
case 2 (cf. page 79). Due to the vertex of zero momentum transfer being at the inner vertex,
we immediately obtain as the underlying topology the two-loop two-point master topology:

4 3

1 2

5

where we have again written the indices of Chapter 6 next to the lines. This topology, on
the other hand, immediately leads to the integral Î(2,5)(m − ε, ν1, ν2, ν3, ν4, ν5). Since the
program includes the possibility for subdivergences occurring inside Feynman diagrams, and
since these subdivergences change the exponents of propagators in integrals by an additional
part proportional to ε, we need Î(2,5) also for complex exponents of the momenta.

The following sections will explain in which way we calculated the non-planar vertex correction
for massless Yukawa theory and massless QED. These calculations are implemented in the
programs of Section 7.2.2.

The four graphs which we will calculate together with the corresponding integrals are, for the
massless Yukawa theory in case 1 and case 2 :

q

q

0
↔

q q0
`

`

`+k

q−k`+k−q

k

∫

dDkdD`
1

(q/− k/) /̀ /̀ (/̀ + k/)

1

(` + k − q)2k2
=

∫

dDkdD`
(q/− k/)(/̀ + k/)

(` + k − q)2(q − k)2(` + k)2`2k2

0

q

q
↔

q q0
`

`

`+k

q−k−(`+k−q)

−k

∫

dDkdD`
1

/̀ (−k/) (q/− k/) [−(/̀ + k/− q/)]

1

(` + k)2`2
=

∫

dDkdD`
/̀k/(q/− k/)(/̀ + k/− q/)

(` + k − q)2(q − k)2(` + k)2`4k2
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For massless QED in case 1 and case 2 we have:

q

q

0
↔

q q0
`

`

`+k

q−k`+k−q

k

γβ

γρ

γσ γα

γµ

∫

dDkdD` γα (q/− k/) γρ /̀ γµ /̀ γβ (/̀ + k/) γσ

×
[gαβ + ξ(kαkβ/k2)][gρσ + ξ((` + k − q)ρ(` + k − q)σ/(` + k − q)2)]

(` + k − q)2(q − k)2(` + k)2[`2]2k2
= A(q2)γµ + B(q2)

qµq/

q2

0

q

q
↔

q q0
`

`

`+k

q−k−(`+k−q)

−k

γβ

γρ

γσ γα

γµ

∫

dDkdD` γα /̀ γρ k/ γµ (q/− k/) γβ (/̀ + k/− q/) γσ

×
[gαβ + ξ(`α`β/`2)][gρσ + ξ((` + k)ρ(` + k)σ/(` + k)2)]

(` + k − q)2(q − k)2(` + k)2[`2]2k2
= A(q2)γµ + B(q2)

qµq/

q2

The calculation of the four graphs always follows the same general idea:

• We always take the trace of the integrals, leading to scalar products in the numerators
that can be expressed as sums of propagators in the denominators of the integrals via:

q · ` = 1
2 [(q − k)2 − (` + k − q)2 − k2 + (` + k)2]

q · k = 1
2 [−(q − k)2 + q2 + k2]

` · k = 1
2 [(` + k)2 − k2 − `2]

Products of these scalar products and the cancellation with propagators in the denom-
inator lead to several integrals, either of the form Î(2,5) or Fν1,ν2 .

• Whenever possible, we apply the triangle relation. Since we only consider subdiver-
gences at one particular line of the non-planar vertex correction, this is sufficient for
calculating the cases of subdivergences at the lines with index ν1 to ν4.
For subdivergences at lines ν1 and ν4 we use

Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

=
1

(D − ν1 − ν4 − 2ν5)
[

ν1

[
Î(2,5)(m− ε, ν1 + 1, ν2, ν3, ν4, ν5 − 1)− Î(2,5)(m− ε, ν1 + 1, ν2 − 1, ν3, ν5, ν4)

]

+ ν4

[
Î(2,5)(m− ε, ν1, ν2, ν3, ν4 + 1, ν5 − 1)− Î(2,5)(m− ε, ν1, ν2, ν3 − 1, ν4 + 1, ν5)

]]

,

(7.21)
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for subdivergences at lines ν2 and ν3

Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

=
1

(D − ν2 − ν3 − 2ν5)
[

ν2

[
Î(2,5)(m− ε, ν1, ν2 + 1, ν3, ν4, ν5 − 1)− Î(2,5)(m− ε, ν1 − 1, ν2 + 1, ν3, ν5, ν4)

]

+ ν3

[
Î(2,5)(m− ε, ν1, ν2, ν3 + 1, ν4, ν5 − 1)− Î(2,5)(m− ε, ν1, ν2, ν3 + 1, ν4 − 1, ν5)

]]

.

(7.22)

• For subdivergences at line 5 with index ν5, we transform Î(2,5)(2 − ε, ν1, ν2, ν3, ν4, ν5)
for different values of the exponents into the form Î(2,5)(2 − ε, 1, 1, 1, 1 + λεε, 1) using
relations that are provided in Appendix D.

Let us give an example by calculating the Yukawa case 1 without subdivergences. Like in
the one-loop case, this integral evaluates into a function of the external momentum q and the
unit matrix:

∫

dDkdD`
(q/− k/)(/̀ + k/)

(` + k − q)2(q − k)2(` + k)2`2k2
= F (q2) � (7.23)

We always divide by tr( � ) so the result obtained from the programs of Chapter 8 will be the
function F (q2), which is a simple function in Yukawa theory or a matrix in QED.

We first take the trace on both sides of (7.23) and obtain for the numerator

tr[(q/− k/)(/̀ + k/)] = (q · ` + q · k − k · `− k2) tr( � ) . (7.24)

The scalar products can be expressed by a sum of the propagators in the denominator as
explained before, and hence

tr[(q/− k/)(/̀ + k/)] =
1

2

[
−(` + k − q)2 − k2 + `2 + q2

]
tr( � ) . (7.25)

Substituting this sum into the numerator of (7.23) leads to four integrals:
∫

dDkdD`
tr[(q/− k/)(/̀ + k/)]

(` + k − q)2(q − k)2(` + k)2`2k2

=
tr( � )

2

×

[∫

dDkdD`
−(` + k − q)2

(` + k − q)2(q − k)2(` + k)2`2k2
+

∫

dDkdD`
−k2

(` + k − q)2(q − k)2(` + k)2`2k2

+

∫

dDkdD`
`2

(` + k − q)2(q − k)2(` + k)2`2k2
+

∫

dDkdD`
q2

(` + k − q)2(q − k)2(` + k)2`2k2

]

=
tr( � )

2

×

[

−

∫

dDkdD`
1

(q − k)2(` + k)2`2k2
−

∫

dDkdD`
1

(` + k − q)2(q − k)2(` + k)2`2

+

∫

dDkdD`
1

(` + k − q)2(q − k)2(` + k)2k2
+ q2

∫

dDkdD`
1

(` + k − q)2(q − k)2(` + k)2`2k2

]

(7.26)
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We have already seen in the context of the triangle relation in Section 4.2 how this cancel-
lation of propagators in numerators and denominators affects integrals and their graphical
representation. If we indicate the elimination of a propagator by shrinking the corresponding
line in the graph to a point, the integrals in equation (7.26) give rise to the following topolo-
gies:

q−k

`+k k

`

`+k−q q−k

`+k

`

`+k−q q−k

`+k k

`+k−q q−k

`+k k

`

From these pictures, we could immediately read off the results of the calculations, but we
want to show them explicitly once: In the first integral, the momentum l only occurs in
two propagators. We can therefore group the corresponding propagators and integrate using
equation (4.5):

∫
dDkdD`

(q − k)2(` + k)2`2k2
=

∫
dDk

(q − k)2k2

∫
dD`

(` + k)2`2
=

∫
dDk

(q − k)2k2
[k2]−εF1,1

= F1,1

∫
dDk

(q − k)2[k2]1+ε
= F1,1F1,1+ε[q

2]−2ε

In the second integral, both ` and k occur in three propagators. Using (2.9) we can shift the
integration momenta, for example by setting k ′ = ` + k:
∫

dDkdD`

(` + k − q)2(q − k)2(` + k)2`2
=

∫
dDk′dD`

(k′ − q)2(q + `− k′)2(k′)2`2

=

∫
dDk′

(q − k′)2(k′)2

∫
dD`

((q − k′) + `)2`2
= F1,1F1,1+ε[q

2]−2ε

The third integral is different, but even easier to solve. Setting `′ = ` + k, the integral
immediately splits into two disjoint integrations:

∫
dDkdD`′

(`′ − q)2(q − k)2(`′)2k2
=

∫
dDk

(q − k)2k2

∫
dD`′

(`′ − q)2(`′)2

= F1,1F1,1[q
2]−2ε

By shifting the momenta like we just did, we can solve any integral with four propagators.
They will always reduce to a product of two functions Fν1,ν2 , or will be zero when one of the
integration variables only occurs in one single propagator. The fourth integral in (7.26) gives
rise to the function Î(2,5)(m− ε, 1, 1, 1, 1, 1), which we can now directly expand in ε using the
program residuum of Chapter 6.1

1It is immediately clear that a small shift in the momenta transforms the representation of the integral used
here into the one of the function Î(2,5) used in Chapter 6.
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Hence we find in these four results the nested structure of the integrations of the first two
integrals in (7.26) corresponding to the first two topologies, where we can explicitly see the
subintegration over `. The third picture mirrors the disjoint integration of the third integral in
(7.26), while the last picture corresponds to the fourth integral that still has five propagators.

In principle, the calculations do not change when we allow for subdivergences in the graphs.
One just has to keep in mind that once there are subdivergences, momenta in the numerator
will no longer cancel with the corresponding ones in the denominator, but only alter their
exponents. We will in these cases try to apply the triangle relation to solve the occurring
integrals. Since we restrict ourselves to the case where the non-planar vertex correction has
subdivergences only at one of its inner lines, the triangle relations are indeed sufficient for
subdivergences at lines with the indices ν1 to ν4. However, they are not sufficient for subdi-
vergences in the middle line with index ν5. In this particular case we will need the function
Î(2,5)(m−ε, ν1, ν2, ν3, ν4, ν5). In the process of calculation, one obtains Î(2,5) for example with
exponents Î(2,5)(2−ε, 2, 1, 1, 1, a5ε). We can expand the function Î(2,5)(m−ε, ν1, ν2, ν3, ν4, ν5)
for different exponents, as long as the conditions (6.21) are fulfilled. However, we will trans-
form any integral Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5), whether it fulfills the conditions or not, into
the form Î(2,5)(m − ε, 1, 1, 1, 1, 1 + a5ε), using relations similar to the triangle relation, or
combinations of those. One can find these relations and the way in which they were obtained
in Appendix D. We then only have to expand the function Î(2,5)(2− ε, 1, 1, 1, 1, 1 + a5ε) into
a Laurent series in ε.

For the QED graphs we again have to take into account that we obtain two form factors:

∫

dDkdD` γα (q/− k/) γρ /̀ γµ /̀ γβ (/̀ + k/) γσ

×
[gαβ + ξ(kαkβ/k2)][gρσ + ξ((` + k − q)ρ(` + k − q)σ/(` + k − q)2)]

(` + k − q)2(q − k)2(` + k)2[`2]2k2
= A(q2)γµ + B(q2)

qµq/

q2

And thus we again have to calculate the entries for the 2 × 2 matrices. This is done in the
following way: We project onto the form factors by multiplying both sides of the equation
once with γµ and once with qµq//q2. We then continue like in the Yukawa theory for the two
resulting expressions, which are called zg and zq in the program: we first take the trace of
the numerator and substitute scalar products by sums of propagators in the denominator of
the integrals. The two form factors can then be built in the following way:

A = (zq − zg)/(1 −D),

B = (zg −D zq)/(1 −D). (7.27)

The calculation of the two form factors then follows the calculation in the Yukawa theory and
finally expresses these form factors in terms of the functions Fν1,ν2 and Î(2,5).

7.2.2 The programs for calculating the non-planar vertex correction

The tree of functions for the calculation of the non-planar vertex correction is shown in
Fig. 7.2. Note that the integral Î(2,5) is called I 5(), and the functions Fν1,ν2 are called
F ab() in this program.
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trace_programs()

dispatch()

GiNaC archive
file

I_5()case_four()triangle1()

V_vector() A_tensor() B_tensor()

F_ab()

mgamma()

tgamma()

triangle2()

Figure 7.2: The tree of function invocations in the programs for calculating the function or matrix
entries for the non-planar vertex correction in massless Yukawa theory and QED.

The main programs

The name trace programs() in Fig. 7.2 is a placeholder for the individual programs

yukawa1_gamma2(), yukawa2_gamma2(),

qed1_11_21_gamma2(), qed2_11_21_gamma2(),

qed1_12_22_gamma2(), qed2_12_22_gamma2().

These are the main programs for calculating the analytic result of the non-planar vertex
correction. For Yukawa theory and QED the numbers 1 and 2 denote the two different cases
of momentum flow. In QED the names are extended by the indices of the matrix entries
calculated by the respective program.

In these programs, the trace of the numerator of the integrals corresponding to the four
graphs is calculated using the GiNaC functions dirac slash() and dirac trace(). A D-
dimensional Clifford algebra element e.g. q/, is given by dirac slash(q,D) and dirac trace()

then takes the trace of an expression containing such elements. The scalar products that might
then occur are substituted by the corresponding sum of momenta of the denominator of the
integral, as explained in Section 7.2.1. The exponents of the momenta in the denominators
of integrals can be of the form ni + aiε when subdivergences are inserted (cf. Section 7.1).
Hence, in the corresponding programs the exponents consist of two parts, one integer-part
and one part proportional to ε.

The functions themselves call the function dispatch() from which they receive the result for
the different integrals in the form of functions tgamma() and I 5() (see below). The results
for the different integrals are then added and written into an archive file.
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The programs in QED calculate the two form factors A proportional to γµ and B proportional

to
qµq/
q2 , in the way we explained before.

The dispatch() function

This function accepts the expressions for the different integrals encoded by the integer-parts
and ε-parts of the exponents of the propagators, produced, for example, in the program
yukawa1 gamma2(). In a first step, a list prop list of objects of class propagator is produced
containing the different propagators of an integral encoded by the momentum (p) and its
corresponding integer (i) and ε (e) exponent.

Via a scan through that list different variables and counters are set and according to their
values the appropriate functions case four(), triangle1(), triangle2() or I 5() for the
integrals are called.

triangle1() and triangle2()

As the name already indicates, these are the functions for the triangle relation of cases 1 and 2,
given in (7.21) and (7.22). They map one integral onto four integrals according to the rule
(7.21) if there are no subdivergences at the lines with the indices ν2, ν3 and ν5, and to
(7.22) if there are no subdivergences at lines with indices ν1, ν4 and ν5. triangle1() and
triangle2() call the function dispatch() with the values for the integer and ε parts of the
exponents of the propagators set according to the triangle relation.

case four()

This function contains the results for the integrals with different momenta and different
numerator structure expressed in terms of the functions F ab(), V vector(), A tensor()

and B tensor(). It mainly consists of if-clauses that check the different values of special
counters and return the results for the integrals accordingly. In the case of integral Î(2,5) it
calls the function I 5() .

V vector()

V vector() returns the combination of functions F ab() that corresponds to the result of a
vector integral, defined in (C.5).

A tensor() and B tensor()

A tensor() and B tensor() are the combinations of F ab()s that correspond to the A and
B part of the result of the tensor integral (C.8).

F ab()

F ab() is the function for the integral (4.5). It returns the fraction of six gamma functions
defined there. These gamma functions are called as mgamma() functions.
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mgamma()

mgamma(k,l,x) brings the gamma functions into the form constant(k) ∗ tgamma (1 + l x). This
combination proved to be faster in the expansion as Laurent series than an expansion of
tgamma (n + l x) with n 6= 1.

tgamma()

This tgamma() is the “usual” gamma function and is itself a GiNaC function that can easily
be expanded in its argument.

I 5()

This function is called by case four() whenever we encounter Î(2,5)(2 − ε, ν1, ν2, ν3, ν4, ν5),
νi 6= 0, ∀i. We have already explained that in our restricted class of Feynman diagrams,
with only one subdivergence, this case can only occur when there is a subdivergence in
line “5”. I 5() uses the equations (D.1) to (D.5) to bring the integral, respectively the
function I 5(), to the form I 5(1,0,1,0,1,0,1,0,1,a 5), where all the exponents of the
propagators are equal to 1 except for the propagator with momentum l, whose exponent
is 1 + a5 · ε, a5 ∈

�
. Hence the output of this function is a sum of functions F ab() and

I 5(1,0,1,0,1,0,1,0,1,a 5).



Chapter 8

Counterterms of massless Feynman

diagrams

8.1 The programs

In the present chapter we will first describe a set of four programs, called yukawa1(),
yukawa2(), qed1(), and qed2(), that calculate the counterterm for an input graph. These
programs were originally written by Richard Kreckel. He implemented the one-loop scheme of
Section 7.1 as a computer program which led to a first publication of results in
[BKK 2002]. We refer the reader to this article for the explicit construction of the programs.
Here, we want to focus on the way in which one has to use them and the major changes
due to the extension of the program by the non-planar vertex correction. The programs
together with documentation can be downloaded from http://wwwthep.physik.uni-mainz.

de/Publications/theses.html.

In the second part of this chapter we will present results obtained with the help of these
programs. The questions which we are interested in all concern the connection between the
appearance of Riemann’s zeta function and the underlying topology of a Feynman diagram.

General remarks

The set of graphs whose counterterms we can calculate is constrained to graphs that are
constructed from the building blocks of the set P described in Chapter 7. After mapping
such a graph to a tree following Fig. 3.1, the input for the graph into the programs is a
decorated rooted tree in list notation. Consider, for instance, a two-loop example and its
corresponding rooted tree given in Fig. 8.1. In the third column we have added the tree
in list notation (cf. also [Krei 1998b]). Similarly to the rooted trees, these lists encode the
relative position of the divergences inside a graph. The symbol Γ̃ here and in the following
denotes the primitive non-planar vertex correction. All three representations of the graph
in Fig. 8.1 provide the same information. The programs then calculate the antipode of this
rooted tree by setting all the full cuts defined in equation (3.6) of Chapter 3 and summing
up the different terms of the sum — the trees with the different assignments of cuts provided
by the antipode. The different terms of the sum, or the different trees, respectively, together
build the counterterm for the overall divergence of the graph (cf. Chapter 2 and 3).

95
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q

q

0 ↔ ↔ ((Σ)Γ̃)

Figure 8.1: Three different representations for a graph: as a Feynman diagram, as its corresponding
tree, and in list notation.

In the last chapter we assigned to each divergent loop a function Σi,j, Πi,j, etc (cf. page 82).
These functions are related to the vertices of the tree and are implemented in the programs in
the form of classes that can be evaluated. The fermion self-energy which corresponds to the
function Σ is called Sigma, the Vacuum polarization corresponding to Π is called Vacuum, the
one-loop vertex correction is denoted by Gamma (Γ), and the non-planar vertex correction by
Gamma2 (Γ̃). Evaluating these classes means expanding the corresponding functions up to an
order that is implicitly and correctly set by the program itself. The boolean parameter cut,
which is also set automatically by the program, then decides whether this Laurent series is to
be projected onto its pole part or not, corresponding to the application of the renormalization
map RMS .

One remark is necessary at this point. We have seen in Section 7.1 that the general result for
a graph mainly consists of two terms: the functions Σi,j, Πi,j, etc., and a term proportional
to [q2]−iε, where i is the number of loops of the graph. If we now expand the result we have
to expand both terms. The expression proportional to [q2] is, as we have seen in (2.16) and
(4.8), expanded via the exponential series:

[q2]−iε = exp(ln([q2]−iε)) = exp(−iε ln[q2]) = 1− iε ln[q2] + O(ε2). (8.1)

We know that the counterterms of Feynman diagrams do not contain any non-local terms

proportional to lnj [q2]
εi (cf. Chapter 2). Although these fractions emerge at different interme-

diate steps, they cancel once we sum up all contributing terms. Since we know this, we can
simply ignore the terms involving ln[q2] from the very beginning, and only consider the “1”

in (8.1). All other parts proportional to lnj [q2]
εi have to cancel in the sum, which allows us to

work solely with the functions Σi,j, Πi,j , etc. On the one hand this makes the calculations
as such easier, and on the other hand it lowers the amount of computer memory used. A
question that could be asked in this context is, whether this restriction could be a source of
mistakes in the program. We know that expressions

(
ln [q2]

)i
always occur in combination

with the Euler-Mascheroni constant γE , and that the counterterms are also γE-free. Indeed
we find in the calculation of a counterterm that intermediate terms of the sum in general
involve constants γE , but that all these constants cancel once we build the sum. This is used
as a check inside the program, and any γE remaining in the expression for the antipode would
cause an error message. Hence we believe that this serves as a check that we were allowed
to ignore the

(
ln [q2]

)i
in (8.1) and did not cause any mistakes. A calculation involving the

complete series (8.1) is not necessary at this point and would not provide us with further
information. The same argument holds for the fact that we restricted ourselves to momenta
q2 > 0. Additional imaginary parts due to a momentum q2 < 0 would drop out due to the
same reasons as the terms ln[q2] or γE vanish, and therefore cause no problems.
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We want to make one technical remark concerning the non-planar vertex correction. Unlike
the functions for the one-loop graphs that are defined directly inside the corresponding classes,
the result for the two-loop non-planar vertex correction with different subdivergences is stored
in GiNaC archive files (cf. Fig. 7.2). Hence we have additional functions yuk1 Gamma2 ev(),
yuk2 Gamma2 ev(), qed1 Gamma2 ev(), and qed2 Gamma2 ev(), that are called inside the
classes for the non-planar vertex correction. In these functions we substitute I 5() by the
function I 5 ev() containing the expansion of the function I 5() up to the order ε4 and for
a5 = 1, ..., 10. This result has been generated using the program residuum of Chapter 6.
In the end, yuk1 Gamma2 ev() to qed2 Gamma2 ev() return the function or the matrix for
Gamma2 in the form of expressions that are properly expanded.

8.2 How to use the programs

Consider again the non-planar vertex correction with its underlying topology. We assigned
already in Chapters 4, 6, and 7 a certain number to each line of this topology:

4 3

1 2

5

These numbers are now used to indicate in which line the subdivergences are sitting, by
adding a subscript with the number of the line to the corresponding divergence. Consider
again the graph from our previous example:

q

q

0
↔

q q0

The fermion self-energy is sitting at line “1” of the non-planar vertex correction. Therefore
the class for this subdivergence is called Sigma 1. The same works for the lines “3” and “5”,
which are the only lines we have to take into account for fermion subdivergences. Note that
as we have a vertex of zero momentum transfer, we do not have to distinguish between the
two possible pieces of the fermion line above and below the zero momentum transfer vertex
which are denoted by the number 5. All the different classes for the four different cases are
listed in Appendix E.

In Yukawa theory the input line for this graph would be: ((Sigma 1)Gamma2). In QED we
additionally have a gauge parameter ξ which is assigned to its corresponding expression in
brackets “[ ]”, ((Sigma 1[xi])Gamma2[xi]). The gauge parameter can be a symbol xi or
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any numerical value. Note that the gauge parameter for the graph Gamma2, the non-planar
vertex correction, is the gauge parameter for both lines.

Here is an example how the programs calculate the result for this graph. We choose QED
with the momentum distribution of case 1:

1 $ ./qed1.out "((Sigma_1[xi])Gamma2[xi])"
2 After decoration the tree has these indices:
3 (Gamma2[1,0,0,0,0][xi](Sigma_1[0,0,0,0,0][xi]))
4 ----+----#----+----#----+----#----+----#----+----#----+----#
5 The antipode of this tree appears to be:
6

7 (2/3+xi+1/4*xi^2-1/12*xi^3)*x^(-2)
8 +(-2/3-5/6*xi-5/24*xi^2-1/24*xi^3)*x^(-1)

The graph to be computed is passed in list form as a string on the command line, together
with the gauge parameter. Line 3 shows the set of indices attached to the divergences,
indicating the place of insertion of the subdivergences. Note how the indices i and j are
set up automatically. The next line is a simple progress bar, useful when computations take
longer. The result is then printed as a power series in the regularization parameter, here
called x instead of ε. Since each divergence is primitive and therefore starts with a term 1

ε , a
general result is a Laurent series whose lowest order equals the number of vertices of a tree,
which is two in this example.

8.3 Counterterms and zeta functions

With the help of the programs yukawa1() to qed2() it is now very easy to investigate the
counterterms of Feynman diagrams built from the primitive graphs cited above. We will give
some of the results obtained using the program, but before this, we would like to define more
explicitly what we mean by the “underlying topology” of a Feynman diagram.

Consider any loop diagram. To obtain the topology of this graph one first ignores the external
lines and the types of all inner lines of a graph, drawing them all as a solid line. In a second
step one transforms the remaining picture into the form of a circle containing inner lines. If
the picture obtained in this way does not immediately show a typical and known topology,
one tries to deform the picture in such a way that it is equal to one of the basic topologies
like, for example, the ladder topology. Fig. 8.2 shows two examples. In the first row we see a
graph with an underlying “swiss cheese topology”. The second row shows an example for a
graph with a ladder topology. This topology is not immediately obvious, so we deformed the
graph from the second to the third picture by pulling the right-most line “into the middle”
of the graph, as indicated by the two arrows. This is an allowed operation to identify the
topology. To cut a line into two halves, for example, would not be allowed.

In Chapter 4 we have already referred to a connection between the underlying topology
of a Feynman diagram and the appearance of Riemann’s zeta function in the expansion
of the corresponding analytic expression. This connection has been extensively studied by
D. Kreimer, who defined a way to translate Feynman diagrams into knots or links and finally
into braids [Krei 1997, Krei 2000b]. It could, for example, be shown that in the Laurent
series of counterterms of Feynman diagrams with a ladder topology, only rational numbers
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⇒ ⇒

⇒ ⇒ ⇒

Figure 8.2: Two examples that illustrate how one can find the underlying topology of a Feynman
diagram. The first graph leads to a “swiss cheese” topology, the second graph to a ladder topology.
For the second graph we have to deform the picture in one step to be able to identify the ladder
topology.

occur [DKT 1996,DEMcA 1997,Krei 1997,Krei 2000b,Krei 1998a]. Furthermore, D. Kreimer
showed that the first possible non-ladder topology is related to the appearance of ζ(3), like
shown in Fig. 8.3, where we have drawn one possible realization of this topology within our
set of graphs.

→ → ζ(3)

Figure 8.3: The connection between a topology and the appearance of ζ(3) in its counterterm (see
[Krei 1997] for a detailed explanation).

However, to describe the way in which these results were obtained and the interconnections
that can be derived from this is out of the scope of this thesis. We restrict ourselves to the
presentation of some interesting results that have been obtained using the above mentioned
programs. Before that, we have to remark that we will only consider the 1

ε - term, the residue
of the graphs. The reason for this is that it is the only order contributing to the β-function
of the renormalization group [Coll 1984].

Ladder diagrams

We have already seen an example for a graph with ladder topology in Fig. 8.2. The underlying
topology for a graph with ladder topology is in general given by:
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The next figure shows graphs that realize this topology, built within our set of graphs:

In Fig. 8.2 we have shown how the third graph indeed corresponds to an underlying ladder
topology. For all the graphs with ladder topology which we tested for both theories we could
always confirm that the coefficients in the Laurent series of their counterterms only involve
rational numbers. As an example we state here the result for the third graph in the above
row with a momentum distribution of case 1 and gauge parameter ξ:

= (−1
3 −

2
3ξ − 1

3ξ2)ε−3 + (17
18 + 11

9 ξ + 5
18ξ2)ε−2 + ( 7

36 + 1
3ξ + 5

36ξ2)ε−1

Note that the vacuum polarization in the inner vertex correction causes the gauge parameter
of this line to be −1, which has to be inserted manually in the input line of the program.
The corresponding vertex correction is convergent for this value of the gauge parameter, so
the Laurent series starts with ε−3 instead of ε−4.

Symmetries in coefficients of zeta functions - one-loop building blocks

In this section we will only consider the one-loop building blocks of P , excluding the non-
planar vertex correction. One question we want to investigate is, whether one can find sym-
metries that apply to the coefficients of zeta functions, if one changes the flow of momentum
in a diagram. Consider, for example, the vertex corrections of case 1 and 2 in Yukawa theory.
We draw the case 2 here a little different from before, to be able to compare the graphs more
easily.

q

q

0

(a) Vertex correction of case 1.

q

q

0

(b) Vertex correction of case 2.

We now insert two fermion self-energies into the innermost vertex correction of both graphs
which then represent the same topology but with different momentum flows. Let us denote
the graphs according to the names assigned to them in Fig. 8.4. The letter Γ tells us that
the outermost divergence is a vertex correction. The upper index indicates the two different
cases, while the index [2, 0, n] states the number of subdivergences inside the graph. These
subdivergences can be of the form of a fermion self-energy (2), vacuum polarization (0) or
vertex correction (n).
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Γ1
[2,0,n] = ... Γ2

[2,0,n] = ...

Figure 8.4: The one-loop vertex corrections with their different assignments of momenta. The index
[2, 0, n] indicates the number of subdivergences inside the graph: two fermion self-energies, no vacuum
polarization, and n vertex corrections.

We then obtain for the graphs Γ1
[2,0,n] and Γ2

[2,0,n], n ∈ {1, ..., 5}:

res(Γ1
[2,0,1]) =

5

48
−

1

8
ζ(3) (8.2)

res(Γ2
[2,0,1]) =

1

12
−

1

8
ζ(3) (8.3)

res(Γ1
[2,0,2]) =

1

20
−

9

40
ζ(3)−

3

80
ζ(4) (8.4)

res(Γ2
[2,0,2]) =

1

240
−

1

20
ζ(3)−

3

80
ζ(4) (8.5)

res(Γ1
[2,0,3]) = −

(
23

90
+

9

20
ζ(3) +

7

80
ζ(4) +

7

240
ζ(5)

)

(8.6)

res(Γ2
[2,0,3]) = −

(

−
1

240
+

1

6
ζ(3) +

1

80
ζ(4) +

7

240
ζ(5)

)

(8.7)

res(Γ1
[2,0,4]) = −

(
919

630
+

71

70
ζ(3) +

111

560
ζ(4) +

1

12
ζ(5) +

1

560
ζ(3)2 +

1

112
ζ(6)

)

(8.8)

res(Γ2
[2,0,4]) = −

(
65

224
+

11

140
ζ(3) +

1

16
ζ(4) +

1

120
ζ(5) +

1

560
ζ(3)2 +

1

112
ζ(6)

)

(8.9)

res(Γ1
[2,0,5]) = −

(
6481

1120
+

33613

13440
ζ(3) +

2133

4480
ζ(4) +

101

480
ζ(5) +

27

4480
ζ(3)2

+
27

896
ζ(6) +

3

4480
ζ(3)ζ(4) +

7

1920
ζ(7)

)

(8.10)

res(Γ2
[2,0,5]) = −

(
863

3360
+

61

160
ζ(3) +

27

1120
ζ(4) +

7

120
ζ(5) +

1

2240
ζ(3)2

+
1

448
ζ(6) +

3

4480
ζ(3)ζ(4) +

7

1920
ζ(7)

)

(8.11)
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First of all, we see that the first zeta function appearing in Yukawa theory for the graphs
Γ1

[2,0,1] and Γ2
[2,0,1] is ζ(3), not ζ(2) as one could expect since ζ(2) would be the zeta function

with the smallest possible integer argument. Note that the underlying topology for these
graphs is the “swiss cheese” topology of Fig. 8.2.

The residues are in general a linear combination of terms of varying transcendental weight.
Like in Chapter 5 we define the transcendental weight w of a monomial

∏

i ζ(ji) as

w(
∏

i

ζ(ji)) =
∑

i

ji.

The weight vanishes for a rational number. The above results then show that on the one
hand, the highest transcendental weight increases with the number of loops. On the other
hand, they confirm that the coefficient of the highest-weight transcendental in the transition
from res(Γ1

[2,0,n]) to res(Γ2
[2,0,n]) is invariant. This is the symmetry we were looking for. A

proof of this symmetry behavior of the graphs under a change of momentum-flow can be
found in [BKK 2002].

A similar relation holds in QED where we again find the first zeta function to be a ζ(3) in the
graphs Γ1

[2,0,1] and Γ2
[2,0,1] with “swiss cheese” topology. The symmetry described so far and

the general behavior can also be found in QED, independent from the chosen gauge [BKK
2002].

The non-planar vertex correction iterated into itself

Next, we will investigate graphs built from the non-planar vertex correction. For a discussion
concerning the relation between the topology of such a graph and the appearance of zeta
functions we refer the reader again to [Krei 2000b].

To denote graphs including the non-planar vertex correction, we already called this vertex
correction Γ̃. The upper index at this Γ̃ counts the two possible momentum distributions in
the way described above, while we add a fourth index to the set of lower indices to denote
the number of non-planar vertex corrections appearing as subdivergences. Hence we find, for
example:

Γ̃1
[0,0,0,2] =

q

q

0

We again start with the massless Yukawa theory, inserting in a first step the non-planar vertex
correction several times into itself. This is only possible at the vertex of zero momentum
transfer, leading to the following results for the two cases:
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res(Γ̃1
[0,0,0,0]) =

1

2
(8.12)

res(Γ̃2
[0,0,0,0]) =

1

2
(8.13)

res(Γ̃1
[0,0,0,1]) = −

3

4
+

3

4
ζ(3) (8.14)

res(Γ̃2
[0,0,0,1]) = −

1

4
+

3

4
ζ(3) (8.15)

res(Γ̃1
[0,0,0,2]) =

5

2
−

7

2
ζ(3) +

3

2
ζ(3)2 (8.16)

res(Γ̃2
[0,0,0,2]) =

1

2
− ζ(3) +

3

2
ζ(3)2 (8.17)

res(Γ̃1
[0,0,0,3]) = −

91

8
+

165

8
ζ(3)−

27

2
ζ(3)2 +

27

8
ζ(3)3 +

15

16
ζ(5) (8.18)

res(Γ̃2
[0,0,0,3]) = −

9

8
+

27

8
ζ(3)−

27

8
ζ(3)2 +

27

8
ζ(3)3 +

15

16
ζ(5) (8.19)

res(Γ̃1
[0,0,0,4]) =

306

5
−

273

2
ζ(3) +

594

5
ζ(3)2 −

243

5
ζ(3)3 +

81

10
ζ(3)4 −

39

4
ζ(5) + 9ζ(3)ζ(5)

(8.20)

res(Γ̃2
[0,0,0,4]) =

16

5
−

54

5
ζ(3) +

81

5
ζ(3)2 −

54

5
ζ(3)3 +

81

10
ζ(3)4 − 3ζ(5) + 9ζ(3)ζ(5) (8.21)

res(Γ̃1
[0,0,0,5]) = −

1463

4
+ 969ζ(3) − 1050ζ(3)2 + 585ζ(3)3 −

675

4
ζ(3)4 +

81

4
ζ(3)5

+ 85ζ(5) −
525

4
ζ(3)ζ(5) +

225

4
ζ(3)2ζ(5) +

63

64
ζ(7) (8.22)

res(Γ̃2
[0,0,0,5]) = −

119

12
+ 40ζ(3)−

135

2
ζ(3)2 +

135

2
ζ(3)3 −

135

4
ζ(3)4 +

81

4
ζ(3)5

+
25

2
ζ(5)−

75

2
ζ(3)ζ(5) +

225

4
ζ(3)2ζ(5) +

63

64
ζ(7) (8.23)

One can deduce several things from (8.12) to (8.23):

• Only odd zeta functions occur; there are no zeta functions with an even argument.

• The first zeta function, ζ(3), appears at the four-loop level, which corresponds to one
insertion of the non-planar vertex correction into itself. With each additional non-planar
vertex correction as subdivergence we get an additional power of ζ(3). If i is the number
of non-planar vertex correction subdivergences, we get powers of ζ(3) ranging from ζ(3)
to ζ(3)i.
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• Starting from three subdivergences (8 loops), also ζ(5) and ζ(7) appear, first as a
singular term and then also multiplied with ζ(3) and ζ(3)2.

• Comparing the two different cases the following rational coefficients of zeta functions
are found to be equal: For pure powers of ζ(3), exactly the coefficient of the highest
power of zeta functions is the same for both cases; for ζ(5) it is the coefficient of the
product with the highest power of ζ(3) occurring in it; for ζ(7) the behavior is similar,
where in this case we only have a product with ζ(3)0 = 1.

The even zeta functions are related to powers of π via the Bernoulli numbers Bk:

ζ(2k) =
(−1)k+1B2k

2(2k)!
(2π)2k, k ∈

�
(8.24)

with

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B3 = 0, B4 = −

1

30
, · · ·

Bn =

n∑

k=0

(
n
k

)

Bk, for n ≥ 2. (8.25)

which was also used in the function zeta subs() of Chapter 6 (cf. (6.39) and (6.40)). Hence
we can deduce from the first item that there are no powers of π appearing in the counterterms
of the non-planar vertex correction.

The situation changes slightly once we turn to QED. Here, the gauge parameter destroys the
symmetries we found so far. This needs some explanation. Let us start by noticing that the
first three of the observations listed above are still valid for a general gauge parameter ξ. We
only have odd zeta functions occurring, with the same power behavior as described above.
We have tested this effect up to the orders described for Yukawa theory, but here we only
give the counterterm for the primitive graph and one iteration of itself as an illustration:

res(Γ̃1
[0,0,0,0]) = 2 + ξ −

1

4
ξ2 (8.26)

res(Γ̃2
[0,0,0,0]) = 2 + ξ −

1

4
ξ2 (8.27)

res(Γ̃1
[0,0,0,1]) = 4 + 12ξζ(3) +

11

32
ξ4 − 9ξ −

13

4
ξ2 −

1

2
ξ3 + 3ξ2ζ(3) (8.28)

res(Γ̃2
[0,0,0,1]) = −2 + 6ξζ(3) +

3

32
ξ4 − 2ξ −

1

8
ξ2 +

3

8
ξ3 + 6ζ(3) +

3

2
ξ2ζ(3) (8.29)

Taking a closer look at the gauge parameter, we can see that for ξ = 0 the ζ(3) in (8.28) even
completely vanishes, while we keep a 6ζ(3) in (8.29). On the other hand, one can always find
a special gauge in which certain zeta functions agree in their rational coefficient. But still,
this is not true for a general gauge parameter ξ. However, since we did not try to consider
gauge invariant graphs this should not be regarded as a claim that the symmetry found in
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Yukawa theory can not be found in QED. It is only a statement about the results obtained
within our set of graphs. The investigation of gauge invariant graphs and their symmetries
would need some further work, which has not been carried out so far.

One more remark concerning a test of the program. Before we used the Gröbner basis to
simplify relations of zeta functions (cf. Chapter 6), a general result of the form of equations
(8.12) to (8.23) contained a term proportional to qµq//q2 consisting of complicated-looking
relations of zeta functions of different depths and weights. They all canceled to zero once we
used the relations provided by the Gröbner basis and (8.24). We consider this to be a test
for the calculation of the graph Gamma2.

Shuffles of the non-planar two-loop and the one-loop vertex correction

In a next step, we build combinations of the one-loop vertex correction Γ and the non-planar
vertex correction Γ̃. Using the gluing operation of Section 3.2, we define words built out of
these letters in the following way: Take one one-loop vertex correction, the letter Γ, and one
non-planar vertex correction, the letter Γ̃. By gluing Γ into Γ̃ or vice versa, we obtain the
words ΓΓ̃ and Γ̃Γ, respectively:

∗ =

Γ̃ ∗ Γ = ΓΓ̃

Note the change of order which is due to the fact that we glue the graph on the right hand
side of the ∗ into the graph to the left.

We can then build shuffles of these letters according to Chapter 5, such as:

Γ

∃

Γ̃ = ΓΓ̃ + Γ̃Γ (8.30)

ΓΓ

∃

Γ̃ = ΓΓΓ̃ + ΓΓ̃Γ + Γ̃ΓΓ (8.31)

Γ

∃

Γ̃Γ̃ = ΓΓ̃Γ̃ + Γ̃ΓΓ̃ + Γ̃Γ̃Γ (8.32)

ΓΓ

∃

Γ̃Γ̃ = ΓΓΓ̃Γ̃ + ΓΓ̃ΓΓ̃ + ΓΓ̃Γ̃Γ + Γ̃ΓΓΓ̃ + Γ̃ΓΓ̃Γ + Γ̃Γ̃ΓΓ (8.33)

In the following we list the residues for these graphs in Yukawa theory of case 1, denoting the
graphs by their corresponding words:

ΓΓ̃ =
1

2
Γ̃Γ =

5

6
− ζ(3)

ΓΓΓ̃ =
19

24
Γ̃Γ̃Γ = −

289

120
−

9

5
ζ(3)2 −

1

1200
π4 +

37

10
ζ(3)

ΓΓ̃Γ =
3

2
+

1

240
π4 −

5

4
ζ(3) Γ̃ΓΓ̃ = −

31

20
+

1

300
π4 +

11

10
ζ(3)

Γ̃ΓΓ =
35

24
−

1

240
π4 − ζ(3) ΓΓ̃Γ̃ = −

197

120
−

1

400
π4 +

6

5
ζ(3)
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ΓΓΓ̃Γ̃ = −
291

80
+

17

40
ζ(5)−

13

2400
π4 +

49

20
ζ(3)

ΓΓ̃ΓΓ̃ = −
127

30
+

29

40
ζ(5) +

1

2400
π4 +

93

40
ζ(3)

ΓΓ̃Γ̃Γ = −
607

90
+

53

60
ζ(5)−

33

10
ζ(3)2 −

1

90
π4 +

263

30
ζ(3) +

1

100
π4ζ(3)

Γ̃ΓΓΓ̃ = −
61

18
+

7

24
ζ(5) +

1

144
π4 +

25

12
ζ(3)

Γ̃ΓΓ̃Γ = −
173

30
+

21

40
ζ(5)− 3ζ(3)2 −

1

2400
π4 +

327

40
ζ(3)

Γ̃Γ̃ΓΓ = −
299

48
+

9

10
ζ(5)−

27

10
ζ(3)2 +

23

2400
π4 +

77

10
ζ(3)−

1

100
π4ζ(3)

And hence we obtain:

Γ

∃

Γ̃ =
4

3
− ζ(3) (8.34)

ΓΓ

∃

Γ̃ =
15

4
−

9

4
ζ(3) (8.35)

Γ

∃

Γ̃Γ̃ = −
28

5
+ 6ζ(3)−

9

5
ζ(3)2 (8.36)

ΓΓ
∃

Γ̃Γ̃ = −30 +
63

2
ζ(3)− 9ζ(3)2 +

15

4
ζ(5) (8.37)

We can see here that in all cases, the terms involving zeta functions of an even number,
expressed as powers of π, vanish! This is true for π4 alone, and also in the combination
with a zeta function of an odd argument in the form of π4ζ(3). We have tested this to also
be true for the shuffle of ΓΓΓ

∃

Γ̃Γ̃Γ̃. In the counterterms for this shuffle, zeta functions of
the following forms occur: ζ(3), ζ(4), ζ(5), ζ(6), ζ(7), ζ(8), ζ(3)2, ζ(3)3, ζ(3)ζ(4), ζ(3)ζ(5),
ζ(3)ζ(6), ζ(4)ζ(5). If we sum up the counterterms, the coefficients of zeta functions involving
ζ(4), ζ(6) and ζ(8) add up to zero. We have checked that the same is true for Yukawa case 2.

Also in the case of QED we have checked that we find the same behavior for the shuffles
(8.30) to (8.32), this time even for a general gauge parameter ξ!

To summarize, we have shown some results that confirm numerically the connection between
the topology of a graph and the appearance of zeta functions in its counterterm. However,
we only took a first glance into the underlying symmetries that even seem to involve a shuffle
algebra structure.



Chapter 9

Summary and outlook

The main achievement of this thesis is the expansion of the massless two-loop two-point
function. Former works on this function only succeeded in expanding it maximally up to
order ε8 in the dimensional regularization parameter ε, and were limited to certain choices of
the exponents of its momenta. Our new method allows us to expand this function up to an
arbitrary order in ε, where the exponents can have any value as long as the set of exponents
fulfills three limiting conditions arising within the calculation.

The calculation of the massless two-loop two-point function included the decomposition of
the integral into a one-loop two-point and a one-loop three-point function, where the latter
was rewritten into a double Mellin-Barnes integral. Recombining these two we obtained an
integral for the two-loop two-point function whose integrand consists of a fraction of Euler’s
gamma functions. We then closed the integration contour at infinity and collected the residues
of the gamma functions. This procedure transformed the integral into sums and double sums
of gamma functions that have exactly the form of functions implemented in the C++ library
nestedsums. Using these functions, we wrote a computer program with which one can expand
the massless two-loop two-point function in the parameter ε, with the only limitation on the
expansion order being the available computer memory.

Apart from the problem of expanding this integral up to higher loop orders, there is also a
number theoretical question concerning the (transcendental) numbers that can occur in this
expansion. Before we performed our calculation it was known that up to the order ε9 only
rational numbers and multiple zeta values occur. Taking a closer look at the nestedsums
functions involved in our calculations, we were able to deduce that rational numbers and
multiple zeta values are in fact the only numbers that can occur in the expansion of the
massless two-loop two-point function. There are no other numbers, transcendental or not,
that could appear in any order of ε.

We would like to stress here that the use of Mellin-Barnes integrals and the library nestedsums
by far not have been fully exploited yet, inviting one to apply it to other Feynman diagrams
or other problems occurring in the context of perturbative quantum field theories.

In the second part of this thesis, we applied the expansion of the massless two-loop two-point
function to the calculation of the non-planar vertex correction in massless Yukawa theory and
massless QED, and implemented the result of these calculations into four programs. These
programs use the antipode of the Hopf algebra of rooted trees, which governs the process
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of renormalization of Feynman diagrams, and calculate this antipode for an input Feynman
graph, yielding its counterterm. The set of graphs that can be examined with the help of
these programs are graphs in massless Yukawa theory and massless QED built by insertion of
the three divergent one-loop diagrams and the non-planar vertex correction into each other,
where this insertion of graphs is part of the Lie algebra of Feynman diagrams. The vertex
graphs have been calculated with one zero-momentum-transfer vertex and with two different
assignments of momenta. Additionally, we restrict ourselves to the case where subdivergences
inside the non-planar vertex correction only occur in one chosen line.

Using the programs described, we investigated the connection between the underlying topol-
ogy of Feynman diagrams and the appearance of zeta functions in the residue of their coun-
terterms. We could confirm that the coefficients of residues in counterterms of graphs with a
ladder topology only involve rational numbers. This applies to both theories.

Considering the vertex graphs with the two different assignments of momenta we could show
that the coefficients of the corresponding residues are subject to a symmetry relation when
we change the momentum flow through the diagrams. This symmetry expresses itself in the
fact that the coefficient of the zeta function with the highest transcendental weight remains
the same when we change from one assignment of momenta to the other. For Yukawa theory
this symmetry is strictly fulfilled. This is not the case in QED, where the gauge parameter
partially destroys this symmetry. Since we did not calculate a gauge invariant set of graphs
this can not be seen as a contradiction and would have to be clarified by further investigations.

For the non-planar vertex corrections we could show that the counterterms only involve odd
zeta functions starting with ζ(3), but that there are no even zeta functions, i.e. powers of
π, to any order in ε. This absence of powers of π could also be found in the residues of
combinations of graphs given by shuffling the one-loop vertex correction with the non-planar
vertex correction. To shuffle graphs means inserting them into each other and summing
over the results in a way that is defined by the shuffle relation. This shuffle relation is
one of the algebraic relations fulfilled by multiple zeta values, or more generally by multiple
polylogarithms. It is not known yet, in which sense the analogy between counterterms and
multiple zeta values holds and how deep-reaching it is. Equivalently, it would be interesting
to know if there are other relations fulfilled by the counterterms, and whether one could use
all these relations and apply them to questions arising from scattering processes. This has to
be left open at this point and needs to be investigated in the future.



Appendix A

Algebras

In the following sections, we have compiled some of the different algebraic structures used
throughout the previous chapters. Most of the definitions are taken from [Kass 1995, Reut
1993].

A.1 Monoid

A set M with an operation m : M ×M →M is called a monoid, if m is associative and there
exists a unit element e with respect to m.

A.2 Free algebra

Let X be a set. Consider the vector space � X with the basis given by the set of all words
xi1 ...xip in the alphabet X, including the empty word ∅. Define the degree of the monomial
xi1 ...xip as its length p. Concatenation of words defines a multiplication on � X by

(xi1 ...xip)(xip+1 ...xin) = xi1 ...xipxip+1 ...xin . (A.1)

Formula (A.1) equips � X with an algebra structure, called the free algebra on the set X. The
unit is the empty word: 1 = ∅.

A.3 Hopf algebra

The starting point for the definition of a Hopf algebra is a vector space V over a field � . We
will, step by step, add structure maps to this vector space until we obtain the Hopf algebra.
This can be visualized by introducing the definitions in the form of commutative diagrams.

A � -vector space V is defined by the operation “+” and the scalar multiplication. An algebra
A has one additional associative operation “·”, called multiplication.
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Algebra

A unital, associative algebra (A,m, η) is a triple, consisting of a � -vector space A, and linear
maps m : A ⊗ A → A (the multiplication), and η (the unit): � → A, such that each of the
following two diagrams commutes:

associativity: unit:

A⊗A⊗A
id⊗m //

m⊗id
��

A⊗A

m

��
A⊗A m

// A

� ⊗A
η⊗id //

∼=
%%JJJJJJJJJJ

A⊗A

m

��

A⊗ �
id⊗ηoo

∼=
yytttttttttt

A

Commutativity of a diagram means that following the two possible ways to travel through
the diagram, one obtains the same result.

The map η enables us to write the definition of the scalar product via commutative diagrams:
scalar multiplication of elements of A with a field element means that to each a ∈ A there is
an element λa ∈ A, with λ ∈ � . This multiplication with a scalar is performed in the following
way: the field � can be embedded as a subalgebra into A, by mapping the unit element 1 �

onto 1A. This embedding is done by the function η : � → A, η : 1 � 7→ 1A. Multiplication of
an algebra element a ∈ A with λ ∈ � then has to be understood as mapping this element λ1 �

of the field to λ 1A in A and multiplying a with λ times 1A of A.

If we write out the diagrams explicitly, the linear map m acts on the elements of the algebra
in the following way:

m : A⊗A→ A,

a⊗ b 7→ m(a⊗ b) ≡ a · b = c

The associativity, for example, can be read off this diagram by following the two possible
ways to travel through it:

a⊗ b⊗ c
m⊗id // a · b⊗ c

m // (a · b) · c. (A.2)

a⊗ b⊗ c
id⊗m // a⊗ b · c

m // a · (b · c). (A.3)

The algebra is commutative, if in addition the following diagram commutes:

A⊗A
τA,A //

m
##FF

FF
FF

FF
F

A⊗A

m
{{xx

xx
xx

xx
x

A

(A.4)

τ is the flip that switches the order of the factors: τ(a⊗ b) = b⊗ a.

A coalgebra now is a vector space with all the additional structure maps given by the diagrams
above, where we simply reverse the arrows and add to each map the prefix “co-”.



A.3. Hopf algebra 111

Coalgebra

A coalgebra is a triple (C,∆, ε), where C is a � -vector space, and ∆ and ε are two linear maps

∆ : C → C ⊗C coproduct
ε : C → � counit

such that the following diagrams commute:

coassociativity: counit:

C ⊗ C ⊗ C C ⊗ C
id⊗∆oo

C ⊗ C

∆⊗id

OO

C
∆

oo

∆

OO � ⊗ C C ⊗ C
ε⊗idoo id⊗ε // C ⊗ �

C

∼=

eeKKKKKKKKKK
∼=

99ssssssssss

∆

OO
(A.5)

The coalgebra is cocommutative if the corresponding diagram to (A.4) commutes:

C
∆

##GG
GG

GG
GG

G

∆

{{ww
ww

ww
ww

w

C ⊗ C
τC,C // C ⊗ C

(A.6)

A shorthand notation for the coproduct is provided by Sweedler ′s notation: If x is an element
of the coalgebra (C,∆,ε), the element ∆(x) of C ⊗ C is written in the form

∆(x) =
∑

i

x′
i ⊗ x′′

i .

An element x of a coalgebra C is called primitive if:

∆(x) = 1⊗ x + x⊗ 1. (A.7)

In a next step, we now introduce a � -vector space, which is an algebra and a coalgebra at the
same time.

Bialgebra

A bialgebra (B,m, η,∆, ε) consists of a vector space B, where (B,m, η) is a unital algebra and
(B,∆, ε) a counital coalgebra, such that the maps ∆ and ε are unital algebra homomorphisms.

Or, differently speaking: one could say that a bialgebra is a vector space which additionally
is an algebra and a coalgebra, with these two structures being compatible, meaning that the
product of the coproducts is the coproduct of the products:

∆(xy) = ∆(x)∆(y), x, y ∈ A (A.8)
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On the left-hand side of this equation we have the product in the tensor product space, which
is in Sweedler’s notation:

∆(xy) =
∑

i

(xy)′i ⊗ (xy)′′i

This is then equal to the right-hand side

∆(x)∆(y) = (
∑

j

x′
j ⊗ x′′

j )(
∑

k

y′k ⊗ y′′k) =
∑

jk

x′
jy

′
k ⊗ x′′

jy
′′
k

to achieve compatibility.

So far we have constructed a vector space that additionally is an algebra and a coalgebra, with
both structures being compatible. To get a Hopf algebra we just need one more structure,
the antipode. It is defined via the convolution product:

Convolution product

Let (C,∆C ,εC) be a coalgebra and (A,mA,ηA) an algebra. Hom(C,A) is the vector space of
linear maps from C to A. Let f, g ∈ Hom(C,A). The convolution product ∗ of two functions
f and g, f ∗ g, is defined as

∗ : Hom(C,A)⊗Hom(C,A)→ Hom(C,A),

(f ⊗ g) 7→ f ∗ g := mA ◦ (f ⊗ g) ◦∆C (A.9)

The operation ◦ is the usual concatenation of maps and hence ∗ leads to the series of maps

C
∆C // C ⊗ C

f⊗g // A⊗A
mA // A . (A.10)

In Sweedler’s notation this reads:

(f ∗ g)(x) =
∑

i

f(x′
i)g(x′′

i ) (A.11)

Hom(C,A) is a unital associative algebra. The scalar product, the action of the field on this
algebra, is defined as

η∗ : � → Hom(C,A),

λ 7→ η∗(λ) := λ(ηA ◦ εC)

In particular, the unit in this algebra is given by

η∗(1 � ) = 1Hom(C,A) = ηA ◦ εC .
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Consider now a bialgebra (H,m, η,∆, ε). The functions f, g ∈ Hom(C,A) become the
endomorphisms from H to H, End(H). Hence they also form an associative algebra
(End(H), ∗, η ◦ ε), with the convolution product as multiplication:

∗ : End(H)⊗End(H)→ End(H)

(F ⊗G) 7→ F ∗G := m ◦ (F ⊗G) ◦∆

The unit in End(H) has the form:

1End(H) = (η ◦ ε), (A.12)

H
ε
→ � η

→ H (A.13)

and therefore maps H onto multiples of 1H .

Antipode

The identity map idH is in particular an element in End(H), but, as we have just seen, it is
not the unit element with respect to the convolution product. This means that there might
be an inverse to idH ∈ End(H). If this inverse exists, it is unique. This inverse of idH with
respect to the convolution product is called the antipode S := (idH )−1

∗ . It fulfills

S ∗ idH = idH ∗ S = η ◦ ε = 1End(H). (A.14)

S is an algebra antihomomorphism, i.e. S(a · b) = S(b)S(a). If H is commutative or cocom-
mutative, S2 = idH .

Summing all this up, we get to the definition:

Hopf algebra

A Hopf algebra is a tuple (H,m, η,∆, ε, S), i.e. a bialgebra on which an antipode S exists.

An example: the Hopf algebra of the group algebra G

Let us provide an example to illustrate the Hopf algebra. Consider as an algebra the group
algebra which is defined as follows. Let G be a group. � G is the vector space with basis G,
i.e. � G = {a|a =

∑

u∈G a(u)u, u ∈ G, a(u) ∈ � }. � G is commutative if and only if G is an
abelian group. The multiplication on � G is defined by the multiplication on G, and the unit
is defined by η(λ) := λe, e being the neutral element in G. Define as the coproduct for all
elements of � G the linear map

∆ : � G→ � G⊗ � G,

g 7→ ∆(g) := g ⊗ g,

and the counit

ε : � G→ � ,

g 7→ ε(g) := 1 � .
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The identity id � G maps all g onto g. Therefore we get for the antipode S

S : � G→ � G,

g 7→ S(g) := g−1.

This can easily be seen by applying (A.14). On the one hand we get

η · ε(g) = η(ε(g)) = e,

on the other hand:

m ◦ (S ⊗ id � G) ◦∆(g) = m ◦ (S ⊗ id � G) ◦ (g ⊗ g)

= m ◦ (S(g) ⊗ g)

= e,

⇒ S(g) = g−1.

An inverse with respect to ∗ for endomorphisms on H

It is now possible to define an inverse for maps F ∈ End(H) with respect to the convolution
product and to define a group, using the antipode. (A.14) can be expressed diagrammatically
as:

H ⊗H
S⊗id // H ⊗H

m

��
H η◦ε

//

∆

OO

H

(A.15)

A map F ∈ End(H) is an endomorphism in particular an algebra homomorphism, i.e. the
map F maps the identity 1H onto 1H . Hence:

(η ◦ ε)(c) = F ◦ (η ◦ ε)(c) = 〈1H〉, ∀c ∈ H, (A.16)

where 〈1H〉 is the linear span of the unit in H. Since the image of (η ◦ ε)(c) is in 〈1H〉, we
obtain:

⇒ (η ◦ ε)(c) = F ◦ (η ◦ ε)(c) = F ◦ [m ◦ (S ⊗ id) ◦∆](c)

= m ◦ [((F ◦ S)⊗ F )] ◦∆(c)

= ((F ◦ S) ∗ F )(c), (A.17)

⇒ F−1
∗ = F ◦ S, (A.18)

which is the usual concatenation of the function F with the antipode S. We express this
graphically as

H ⊗H
S⊗id // H ⊗H

F

##H
H

H
H

H

m

��
H

E◦ε
//

∆

OO

H
F

// H

(A.19)
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Homomorphisms Φ ∈ Hom(H,V )

Consider in a next step algebra homomorphisms Φ ∈ Hom(H,V ), from the Hopf algebra into
an algebra V , so-called characters. A character in general is an algebra homomorphism from
a Hopf algebra into a ring V . As an algebra homomorphism, Φ fulfills

Φ(a b) = Φ(a)Φ(b). (A.20)

We know that we have a convolution product and an antipode on H. This can be used to
define a group structure on Hom(H,V ) with respect to the convolution product.

The unit element for the convolution product on Hom(H,V ) has the general form (ηV ◦ ε).1

This unit element will now be expressed with the help of the fact that H is a Hopf algebra
and as such possesses an antipode that allows defining an inverse.

By the same considerations that led to (A.16), namely that F ∈ End(H) is an algebra
homomorphism and maps 1H onto 1H , we find in this case for arbitrary Φ ∈ Hom(H,V ):
(ηV ◦ ε)(c) = Φ(η ◦ ε)(c), ∀c ∈ H. Therefore we get analogously to (A.17):

(Φ ◦ (η ◦ ε))(c) = Φ ◦ (η ◦ ε)(c)

= Φ ◦ [m ◦ (S ⊗ id) ◦∆](c)

= m ◦ [(Φ ◦ S ⊗ Φ)] ◦∆(c)

= ((Φ ◦ S) ∗ Φ)(c) (A.21)

⇒ Φ−1
∗ = Φ ◦ S

Graphically this can be drawn as:

H ⊗H
S⊗id // H ⊗H

m

��

Φ

##G
G

G
G

G

H
E◦ε

//

∆

OO

H
Φ

// V

(A.22)

The map Φ ◦ S is the inverse element of Φ in the group Hom(H,V ) of maps from a Hopf
algebra H into a target space V .

A.4 Lie algebra

A Lie algebra L is a vector space with a bilinear map [, ] : L× L→ L, called the Lie bracket,
satisfying the following two conditions for all x, y, z ∈ L:

1. (antisymmetry) [x, y] = −[y, x]

2. (Jacobi identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

1ηV carries the index V to emphasize the space in which it maps.
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A.5 Universal enveloping algebra

Let V be a � -vector space. Define T 0(V ) = � , T 1(V ) = V , T n(V ) = V ⊗n (the tensor product
of n copies of V) if n > 1. The canonical isomorphisms

T n(V )⊗ T m(V ) ∼= T n+m(V ) (A.23)

induce an associative product on the vector space T (V ) =
⊕

n≥0 T n(V ). Equipped with this
algebra structure, T (V ) is called the tensor algebra of V . The product on T (V ) is explicitly
given by

(x1 ⊗ ...⊗ xn)(xn+1 ⊗ ...⊗ xn+m) = x1 ⊗ ...⊗ xn ⊗ xn+1 ⊗ ...⊗ xn+m, (A.24)

where x1, ..., xn, xn+1, ..., xn+m are elements of V . The unit for this product is the image of
the unit element 1 in � = T 0(V ). Let iV be the canonical embedding of V = T 1(V ) into
T (V ). By (A.24) we have

x1 ⊗ ...⊗ xn = iV (x1)...iV (xn), (A.25)

which allows us to set

x1...xn = x1 ⊗ ...⊗ xn (A.26)

whenever x1, ..., xn are elements of V .

To any Lie algebra L we assign an (associative) algebra U(L), called the enveloping algebra
of L, and a morphism of Lie algebras iL : L→ L(U(L)). We define the enveloping algebra as
follows. Let I(L) be the two-sided ideal of the tensor algebra T (L) generated by all elements
of the form xy − yx− [x, y], where x, y are elements of L. We then define

U(L) = T (L)/I(L). (A.27)



Appendix B

The gamma function and related

functions

The following definitions and calculations are mainly taken from [PaKa 2001,Apos 1976,Carl
1977].

B.1 The gamma function

Euler’s gamma function Γ(x) is defined as

Γ(x) =

∫ 1

0
(− log(t))x−1dt (B.1)

=

∫ ∞

0
e−ttx−1dt. (B.2)

It is analytic in the entire complex plane except for simple poles at s ∈ {0,−1,−2, ...} ≡ � −
0 .

The second integral is the Mellin integral representation of Γ, which we will explain in more
detail in section B.2. From equation (B.1) we get Γ(1) = 1. From equation (B.2) on the other
hand, we can derive the functional equation for the gamma function:

Γ(1 + x) = xΓ(x). (B.3)

For integer values this becomes

Γ(n + 1) = nΓ(n) = n! , (B.4)

the well-known connection between the function Γ(n) and the factorial n!.

We need to expand gamma functions that depend on an argument x. This can be done
with the help of the following theorem (Weierstrass): For any real number x, except for the
negative integers (0,−1,−2, ..), we have the infinite product

Γ(1 + x) = e−γExex/p 1
∏∞

p=1

(

1 + x
p

) , (B.5)

117
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and for |x| < 1

Γ(1 + x) = e−γEx exp

(
∞∑

k=2

(−1)kζ(k)

k
xk

)

(B.6)

We use equation (B.6) to expand the gamma function in x. Any gamma function occurring
in the calculations can be brought into the form Γ(1 + nx), n ∈ � , with the help of (B.3) and
then be expanded in x with (B.6).

The constant γE in equations (B.5) and (B.6) is the Euler-Mascheroni constant:

γE = lim
p→∞

(

1 +
1

2
+ ... +

1

p
− log p

)

= 0.57721... (B.7)

Besides this defining equation, one can also represent γE as a sum:

γE =
∞∑

k=2

(−1)kζ(k)

k
, (B.8)

which one might compare with (B.6).

Substituting the variable t in (B.2) by (n + a)t′, one immediately obtains the formula

Γ(x) = (n + a)x

∫ ∞

0
e−(n+a)t′(t′)x−1dt′ (B.9)

⇔ (n + a)−x =
1

Γ(x)

∫ ∞

0
e−(n+a)t′(t′)x−1dt′ (B.10)

which is quite useful in calculations. Another equation that relates an expression similar to
the one of (B.10) to a sum over gamma functions leads to hypergeometric functions:

(1− x)−a = 1 + ax + a(a + 1)
x2

2!
+ ...

=

∞∑

m=0

(a,m)
xm

m!
, |x| < 1, (B.11)

with m ∈
�
, a ∈ � . If a = −n is a negative integer, all coefficients with m > n vanish and

(B.11) becomes the usual binomial formula (1− x)n =
∑n

k=0

(
n
k

)

(−x)k.

The symbol (a,m) is called Appell’s symbol and is defined as

(a,m) = a(a + 1)(a + 2)...(a + m− 1), (B.12)

(a, 0) = 1, (B.13)

(a,−m) =
1

(a− 1)(a− 2)...(a −m)
, a 6= 1, 2, ...m. (B.14)

Pochhammer’s symbol (a)m denotes the same quantity: (a)m = (a,m).
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Let a ∈ � and the integers m,n ∈
�

be such that both sides of the following equations are
well-defined. We then have:

(a,m + n) = (a,m)(a + m,n), (addition formula) (B.15)

(a,−n) = (−1)n/(1− a, n), (reflection formula) (B.16)

(2a, 2n) = 22n(a, n)(a + 1/2, n), (duplication formula) (B.17)

Using (B.3) and (B.12) one finds that for Re(x) > 0 and m ∈
�
:

Γ(x) =
Γ(x + 1)

x
=

Γ(x + 2)

x(x + 1)
= ... =

Γ(x + m)

(x,m)
(B.18)

⇔ (x,m) =
Γ(x + m)

Γ(x)
(B.19)

From (B.16) one then immediately obtains the reflection formula for gamma functions, which
we apply in chapter 6:

Γ(1− x + n)

Γ(1− x)

Γ(x− n)

Γ(x)
= (−1)n (B.20)

⇔ Γ(−n + x) = (−1)n Γ(x)Γ(1 − x)

Γ(n + 1− x)
. (B.21)

Let us consider (B.11) again. This is the first example of a hypergeometric function, namely

(1− x)−a =
∞∑

m=0

(a,m)
xm

m!
=

∞∑

m=0

Γ(a + m)

Γ(a)

xm

m!
=:1F0(a;x), |x| < 1. (B.22)

A general hypergeometric function pFq(a1, ..., ap; b1, ..., bq ;x) is defined to be:

pFq(a1, ..., ap; b1, ..., bq ;x) :=

∞∑

m=0

(a1,m)...(ap,m)

(b1,m)...(bq,m)

xm

m!
(B.23)

=
Γ(b1)...Γ(bq)

Γ(a1)...Γ(ap)

∞∑

m=0

xm

m!

Γ(a1 + m)...Γ(ap + m)

Γ(b1 + m)...Γ(bq + m)
. (B.24)

We need to expand such hypergeometric functions that depend on a regularization parameter
x and even generalizations of them to double sums. This is done with the help of the library
nestedsums (cf. chapter 5).

Other functions closely related to the gamma function are the beta function B(x, y) and the
psi or digamma function Ψ(x):

The beta function is defined as a fraction of gamma functions:

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
= B(y, x). (B.25)

Like the gamma function, the beta function can be represented by integrals:

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt, (B.26)

=

∫ ∞

0

tx−1

(t + 1)x+y
dt, Re(x, y) > 0. (B.27)
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The psi or digamma function is defined for any positive integer as the logarithmic derivative
of Γ(x), that is:

Ψ(x) =
d

dx
(log(Γ(x))) =

Γ′(x)

Γ(x)
. (B.28)

The polygamma functions Ψn(x) = Ψ(n)(x) are defined by

Ψn(x) =
dn+1

dxn+1
(log(Γ(x))), Ψ0(x) = Ψ(x). (B.29)

Recursively we get: Ψn(x + 1) = Ψn(x) + (−1)nn!
xn+1 , and explicitly for the digamma function:

Ψ(1 + x) = −γE +

∞∑

k=2

(−1)kζ(k)xk−1, |x| < 1, (B.30)

= −
1

1 + x
− (γE − 1) +

∞∑

k=2

(−1)k(ζ(k)− 1)xk−1, |x| < 1. (B.31)

One can see from (B.30) that Ψ(1) = Γ′(1) = −γE.

B.2 Mellin-Barnes integrals and gamma functions

We will now define the Mellin transform of a function and the Mellin-Barnes integral, following
very closely the book [PaKa 2001]. The Mellin transform is closely related to the Laplace
transform of a function. Consider the two-sided (bilateral) Laplace transform of a function
g(x):

L[g; s] =

∫ ∞

−∞
e−sτg(τ)dτ. (B.32)

It is holomorphic and converges absolutely in a strip a < Re(s) < b, where a and b are real
constants (a < b) such that for every (small) positive ε:

g(τ) =

{
O(e(a+ε)τ ) as τ → +∞

O(e(b−ε)τ ) as τ → −∞
. (B.33)

If we now put τ = − log x and f(x) ≡ g(− log x), we find:

L[g; s] =

∫ ∞

0
xs−1g(− log x)dx =

∫ ∞

0
xs−1f(x)dx (B.34)

This is defined to be the Mellin transform on (0,∞) of the function f(x):

M [f ; s] = F (s) =

∫ ∞

0
xs−1f(x)dx. (B.35)

The integral (B.35) defines the Mellin transform in a vertical strip in the s plane. The
boundaries are determined by the analytic structure of f(x) for x → 0+ and x → +∞.
Suppose that

f(x) =

{
O(x−a−ε) as x→ 0+

O(x−b+ε) as x→ +∞
(B.36)
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where ε > 0 and a < b. Then the integral (B.35) converges absolutely and defines an analytic
function in the strip a < Re(s) < b.

We are interested in the inversion formula for M [f ; s]. This follows directly from the inversion
formula for the Laplace transform. For continuous g(τ) in L[g; s] as defined above, we have
the inversion

g(τ) =
1

2πi

∫ c+i∞

c−i∞
esτL[g; s]ds, (B.37)

where a < c < b. With the same variable transformation as in (B.34), we get the result:

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sM [f ; s]ds (a < c < b). (B.38)

This inversion formula for the Mellin transform is valid at all points x ≥ 0 for which f(x) is
continuous.

Let us give some examples. We already denoted equation (B.2), the Mellin integral definition
of the gamma function:

Γ(s) =

∫ ∞

0
xs−1e−xdx. (B.39)

Comparing this equation (B.39) with (B.35) for f(x) = e−x it is now obvious why this name
is justified. The inverse Mellin integral (or Mellin-Barnes integral) for Γ(x) leads to:

e−x =
1

2πi

∫ c+i∞

c−i∞
x−sΓ(s)ds, |arg x| <

1

2
π; x 6= 0, (B.40)

where the vertical line Re(s)=c, with c > 0 is lying to the right of all poles of Γ(s).

We will not get further into questions of convergence of these functions including the range
of values on which they are defined, like the restriction to (|arg x| < 1

2π; x 6= 0) in (B.40).
For more information see for example [PaKa 2001].

The integral (B.40) can be analytically continued to the entire complex plane by

e−x =
1

2πi

∫

C
x−sΓ(s)ds, (B.41)

where C denotes a loop in the complex s plane that encircles the poles of Γ(s) (in the positive
sense) with endpoints at infinity at Re(s) < 0.

Consider as another example the beta function defined in (B.25) to (B.27):

B(x, y) =

∫ 1

0
τx−1(1− τ)y−1dτ =

∫ ∞

0

τx−1

(1 + τ)x+y
dτ (B.42)

=
Γ(x)Γ(y)

Γ(x + y)
(Re(x, y) > 0). (B.43)

We have

M [(1 + x)−a; s] =
Γ(s)Γ(a− s)

Γ(a)
(B.44)
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for 0 < Re(s) < Re(a). So we obtain for the inversion formula:

1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(a− s)x−sds =

Γ(a)

(1 + x)a
(B.45)

for 0 < c < Re(a) and |arg x| < π.
Replacing s by −s in (B.45) we get an equivalent formula:

1

(x + y)a
=

1

2πi

∫ c+i∞

c−i∞
ds xsy−a−s Γ(−s)Γ(a + s)

Γ(a)
(B.46)

which we used in the calculations of chapter 6.

The value of c is such that the parallel to the imaginary axis
is placed between the poles of the Gamma function Γ(−s)
and Γ(a+s), and is indented appropriately if necessary. This
situation is sketched in the picture to the right.

There are many more relations between gamma functions and Mellin-Barnes integrals. In
particular, there are relations between hypergeometric functions of different kinds and their
Mellin-Barnes integral representations, see [PaKa 2001]. For all of these integrals one always
has to be careful as for which values of the parameters they are defined.
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Integrals

All scalar, vector and tensor integrals are calculated in Euclidean space. However, we will omit
the index E for the momenta. Additionally, we always calculate in D = 4− 2ε dimensions.

C.1 Scalar integral

∫
dDk

πD/2

1

[(q + k)2]ν1 [k2]ν2
=

∫
dDk

πD/2

1

[(q − k)2]ν1 [k2]ν2
= [q2](2−(ν1+ν2)−ε)Fν1,ν2(ε) (C.1)

with:

Fν1,ν2(ε) :=
Γ (2− ν1 − ε) Γ (2− ν2 − ε) Γ (ν1 + ν2 − 2 + ε)

Γ (ν1)Γ (ν2)Γ (4 − ν1 − ν2 − 2ε)
(C.2)

Proof:
We start using Feynman parametrization:

1

Am1
1 Am2

2 ...Amn
n

=

∫ 1

0
dx1...dxn δ

(∑

xi − 1
) Πxmi−1

i

[
∑

xiAi]
P

mi

Γ(m1 + ... + mn)

Γ(m1)...Γ(mn)
(C.3)

and obtain

∫
dDk

πD/2

1

[(q + k)2]ν1 [k2]ν2
=

∫
dDk

πD/2

∫ 1

0
dx1dx2

δ(x1 + x2 − 1)xν1−1
1 xν2−1

2

[x1(q + k)2 + x2k2]ν1+ν2

Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)
(C.4)

For the momentum-dependent denominator we obtain:

x1(q + k)2 + x2k
2 = x1q

2 + x12q · k + x1k
2 + x2k

2.

The delta function enforces that x2 = 1− x1:

x1q
2 + x12q · k + x1k

2 + x2k
2 = x1q

2 + x12q · k + x1k
2 + k2 − x1k

2

= x1q
2 + x12q · k + k2

= (k + x1q)
2 + x1q

2 − x2
1q

2

123
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Shifting the momentum k to k → (k + x1q) we obtain

(k + x1q)
2 + x1q

2 − x2
1q

2 = (k + x1q)
2 + x1(1− x1)q

2 −→ k2 + x1x2q
2.

Inserting this denominator back into (C.4) we get

∫
dDk

πD/2

1

[(q + k)2]ν1 [k2]ν2
=

Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

∫
dDk

πD/2

∫ 1

0
dx1dx2

δ(x1 + x2 − 1)xν1−1
1 xν2−1

2

[k2 + x1x2q2]ν1+ν2
.

In a next step we use a generalization of formula (2.11) in Euclidean space

∫
dDk

πD/2

1

(k2 + m2)α
=

Γ(α− D
2 )

Γ(α)

(
m2
)D

2
−α

and obtain
∫

dDk

πD/2

1

[(q + k)2]ν1 [k2]ν2
= [q2](D/2−ν1−ν2) Γ(ν1 + ν2 −D/2)

Γ(ν1)Γ(ν2)
∫ 1

0
dx1dx2δ(x1 + x2 − 1)xν1−1

1 xν2−1
2 [x1x2]

(D/2−ν1−ν2).

The integrals over the two variables x1 and x2 become

∫ 1

0
dx1dx2δ(x1 + x2 − 1)xν1−1

1 xν2−1
2 [x1x2]

(D/2−ν1−ν2)

=

∫ 1

0
dx1x

ν1−1
1 (1− x1)

ν2−1[x1(1− x1)]
(D/2−ν1−ν2)

=

∫ 1

0
dx1x

D/2−ν2−1
1 (1− x1)

D/2−ν1−1.

With the definition of the beta function (B.26) we obtain:

∫
dDk

πD/2

1

[(q + k)2]ν1 [k2]ν2
= [q2](

D
2
−ν1−ν2)

Γ(D
2 − ν1)Γ(D

2 − ν2)Γ(ν1 + ν2 −
D
2 )

Γ(ν1)Γ(ν2)Γ(D − ν1 − ν2)

D=4−2ε
≡ [q2](2−ν1−ν2−ε) Γ (2− ν1 − ε) Γ (2− ν2 − ε) Γ (ν1 + ν2 − 2 + ε)

Γ (ν1)Γ (ν2)Γ (4 − ν1 − ν2 − 2ε)
.

C.2 Vector integral

∫
dDk

πD/2

k/

[(q + k)2]ν1 [k2]ν2
= −

∫
dDk

πD/2

k/

[(q − k)2]ν1 [k2]ν2

= [q2]2−(ν1+ν2)−ε 1

2
[Fν1−1,ν2 − Fν1,ν2 − Fν1,ν2−1] q/ (C.5)

Proof:

The calculation is based on the Lorentz invariant decomposition of the result: After inte-
gration, the integral can only depend on the external scale, the external momentum q in
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this case. Additionally, due to Lorentz invariance, the result has again to be of the form of
a Lorentz vector times a function of q2 of the correct dimension, forming the only possible
Lorentz scalar. Hence the general result will be of the form:

∫
dDk

πD/2

kµ

[(q + k)2]ν1 [k2]ν2
= qµA(q2)[q2]2−(ν1+ν2)−ε (C.6)

For the calculation of A(q2), we multiply by qµ:

∫
dDk

πD/2

kµ qµ

[(q + k)2]ν1 [k2]ν2
= A(q2)[q2]2−(ν1+ν2)−εq2 (C.7)

and use the identity

kµqµ ≡ k · q =
1

2
((q + k)2 − q2 − k2)

Canceling momenta in the numerator and denominator of the integrand then leads to

A(q2)[q2]3−(ν1+ν2)−ε =
1

2

(∫
dDk

πD/2

1

[(q + k)2]ν1−1[k2]ν2

−

∫
dDk

πD/2

q2

[(q + k)2]ν1 [k2]ν2
−

∫
dDk

πD/2

1

[(q + k)2]ν1 [k2]ν2−1

)

=
1

2
[q2]3−(ν1+ν2)−ε [Fν1−1,ν2 − Fν1,ν2 − Fν1,ν2−1]

⇒ A(q2) =
1

2
[Fν1−1,ν2 − Fν1,ν2 − Fν1,ν2−1]

C.3 Tensor integral

∫
dDk

πD/2

kµkν

[(q − k)2]ν1 [k2]ν2
=

∫
dDk

πD/2

kµkν

[(q + k)2]ν1 [k2]ν2
= [q2]3−(ν1+ν2)−ε [A gµν + B

qµqν

q2
]

(C.8)

with

A = 1
(1−D)

[
1

4
Fν1−2,ν2 −

1

2
Fν1−1,ν2 −

1

2
Fν1−1,ν2−1 +

1

4
Fν1,ν2 −

1

2
Fν1,ν2−1 +

1

4
Fν1,ν2−2

]

B = 1
(1−D)×

[

−
D

4
Fν1−2,ν2 +

D

2
Fν1−1,ν2 +

D

2
Fν1−1,ν2−1 −

D

4
Fν1,ν2 +

1

2
(2−D)Fν1,ν2−1 −

D

4
Fν1,ν2−2

]

.

Proof:

Similar considerations like the ones for the vector integral lead to the conclusion that the
result of the tensor integral again has to be a tensor depending solely on q. Hence we have as
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the most general form for this result [A(q2) gµν + B(q2)
qµqν

q2 ]. To determine the coefficients

A and B, we contract the integral once with gµν and once with qµqν/q
2.

For the first case we get:
∫

dDk

πD/2

kµgµνkν

[(q + k)2]ν1 [k2]ν2
= [Agµνgµν + B

qµgµνqν

q2
] [q2]3−(ν1+ν2)−ε

⇔

∫
dDk

πD/2

1

[(q + k)2]ν1 [k2]ν2−1
= [A ·D + B ] [q2]3−(ν1+ν2)−ε

using gµνgµν = D. Hence we get

[A ·D + B ] = Fν1,ν2−1 (C.9)

Contracting the integral (C.8) with qµqν

q2 , we get on the other hand

1

q2

∫
dDk

πD/2

kµqµkνq
ν

[(q + k)2]ν1 [k2]ν2
=

1

q2

∫
dDk

πD/2

(k · q)2

[(q + k)2]ν1 [k2]ν2
(C.10)

using

(k · q) =
1

2
[(q + k)2 − q2 − k2]

one can again cancel momenta in the numerator with those in the denominator of the integrand
like for (C.5), eventually leading to six integrals, where the exponents of the momenta in the
denominator have been lowered by 1 or 2:

(C.10) =
1

4
[q2]3−(a+b)−(1+i+j)ε

[
F(a−2)+iε,b+jε − 2F(a−1)+iε,b+jε − 2F(a−1)+iε,(b−1)+jε

+Fa+iε,b+jε + 2Fa+iε,(b−1)+jε + Fa+iε,(b−2)+jε

]
(C.11)

Using that (C.8) · q
µqν

q2 is equal to:

[A + B] [q2]3−(a+b)−(1+i+j)ε

and comparing both sides, we get

A + B =
1

4
F(a−2)+iε,b+jε −

1

2
F(a−1)+iε,b+jε −

1

2
F(a−1)+iε,(b−1)+jε +

1

4
Fa+iε,b+jε

+
1

2
Fa+iε,(b−1)+jε +

1

4
Fa+iε,(b−2)+jε (C.12)

Taking (C.9) and (C.12) together and solving for A and B, we get:

A = 1
(1−D)

[
1

4
F(a−2)+iε,ν2

−
1

2
F(a−1)+iε,ν2

−
1

2
F(a−1)+iε,(b−1)+jε

+
1

4
Fν1,ν2 −

1

2
Fν1,(b−1)+jε +

1

4
Fν1,(b−2)+jε

]

B = 1
(1−D)

[

−
D

4
F(a−2)+iε,ν2

+
D

2
F(a−1)+iε,ν2

+
D

2
F(a−1)+iε,(b−1)+jε

−
D

4
Fν1,ν2 +

1

2
(2−D)Fν1,(b−1)+jε −

D

4
Fν1,(b−2)+jε

]



Appendix D

Relations for Î(2,5)

As we already mentioned in chapter 7 we want to bring integrals Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)
with ν5 = n5 + a5ε, a5 6= 0, into the form Î(2,5)(m − ε, 1, 1, 1, 1, 1 + a5ε), so we will have no
problems concerning the convergence of the integral, and only have to expand one integral in
ε. To achieve this, we use other relations besides the triangle relations (7.21) and (7.22) to
lower the exponents ν1, ν2, ν3, and ν4 by one or to increase the exponent of ν5 by one.

The relations used to lower one of the exponents except ν5 can be obtained similar to the
triangle relations where we simply shift other momenta of the integral and/or set up the
vector integral not by using the momentum l, but the momentum k. Since the calculation
is completely analogous to the calculation for the triangle relations, we will simply state the
shifted momentum, the derivative, and the momentum added in the numerator of the integral.
Furthermore, we will write the relations in the short-cut notation we used before, only stating
the exponents.

Momentum: l′ = l + k − q, k′ = q − k, numerator: lµ, derivative: ∂
∂lµ

Î(2,5)(m− ε, ν1 + 1, ν2, ν3, ν4, ν5)

=
[

− (D − ν1 − 2ν4 − ν5) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

+ ν1 Î(2,5)(m− ε, ν1 + 1, ν2, ν3, ν4 − 1, ν5)

+ ν5

[

Î(2,5)(m− ε, ν1, ν2, ν3, ν4 − 1, ν5 + 1) − Î(2,5)(m− ε, ν1, ν2, ν3 − 1, ν4, ν5 + 1)
] ]

/ν1

(D.1)

Momentum: l′ = l + k − q, k′ = q − k, numerator: kµ, derivative: ∂
∂kµ

Î(2,5)(m− ε, ν1, ν2 + 1, ν3, ν4, ν5)

=
[

− (D − ν2 − 2ν3 − ν5) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

+ ν2 Î(2,5)(m− ε, ν1, ν2 + 1, ν3 − 1, ν4, ν5)

+ν5

[

Î(2,5)(m− ε, ν1, ν2, ν3 − 1, ν4, ν5 + 1) − Î(2,5)(m− ε, ν1, ν2, ν3, ν4 − 1, ν5 + 1)
] ]

/ν2

(D.2)

127



128 D. Relations for Î(2,5)

Momentum: l′ = l + k, numerator: kµ, derivative: ∂
∂kµ

Î(2,5)(m− ε, ν1, ν2, ν3 + 1, ν4, ν5)

=
[

− (D − 2ν2 − ν3 − ν5) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

+ ν3 Î(2,5)(m− ε, ν1, ν2 − 1, ν3 + 1, ν4, ν5)

+ ν5

[

Î(2,5)(m− ε, ν1, ν2 − 1, ν3, ν4, ν5 + 1) − Î(2,5)(m− ε, ν1 − 1, ν2, ν3, ν4, ν5 + 1)
] ]

/ν3

(D.3)

Momentum: l′ = l + k, numerator: lµ, derivative: ∂
∂lµ

Î(2,5)(m− ε, ν1, ν2, ν3, ν4 + 1, ν5)

=
[

− (D − 2ν1 − ν4 − ν5) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

+ ν4 Î(2,5)(m− ε, ν1 − 1, ν2, ν3, ν4 + 1, ν5, )

+ ν5

[

Î(2,5)(m− ε, ν1 − 1, ν2, ν3, ν4, ν5 + 1) − Î(2,5)(m− ε, ν1, ν2 − 1, ν3, ν4, ν5 + 1)
] ]

/ν4

(D.4)

The last two relations are the symmetric counterparts of the first two. They all state how one
can decrease one single exponent by one, except for ν5. It is not possible to find a relation
for Î(2,5) in a similar form that decreases ν5 by one. This shows that ν5, corresponding to the
momentum at the “center line” of the master topology, is a “special” exponent.

Once we have lowered the exponents ν1, ν2, ν3, and ν4 to 1 using (D.1) to (D.4), we will then
be left with integrals of the form Î(2,5)(m− ε, 1, 1, 1, 1,−1+a5ε). If ν5 is the only non-integer
exponent (the only line with a subdivergence) we can bring these integrals to the form 1+a5ε
plus functions Fν1,ν2 , by using a combination of the equations (7.21) and (D.1) to (D.4). We
will first derive these functions for general exponents and show in a second step that they
give rise to the relations we need. Let us start by considering the triangle relation 1:

0 = (D − ν1 − ν4 − 2ν5) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

+ ν4 Î(2,5)(m− ε, ν1, ν2, ν3 − 1, ν4 + 1, ν5) − ν4 Î(2,5)(m− ε, ν1, ν2, ν3, ν4 + 1, ν5 − 1)

+ ν1 Î(2,5)(m− ε, ν1 + 1, ν2 − 1, ν3, ν4, ν5) − ν1 Î(2,5)(m− ε, ν1 + 1, ν2, ν3, ν4, ν5 − 1)

Inserting (D.4) for Î(2,5)(m−ε, ν1, ν2, ν3−1, ν4 +1, ν5) and (D.1) for Î(2,5)(m−ε, ν1 +1, ν2−1,
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ν3, ν4, ν5) with ν5 replaced by ν5 − 1 we get (the multiplicative factors ν1 and ν4 cancel):

0 = (D − ν1 − ν4 − 2ν5) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

+ ν4 Î(2,5)(m− ε, ν1, ν2, ν3 − 1, ν4 + 1, ν5)

+ (D − 2ν1 − ν4 − (ν5 − 1)) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5 − 1)

− ν4 Î(2,5)(m− ε, ν1 − 1, ν2, ν3, ν4 + 1, ν5 − 1)

− (ν5 − 1)
[

Î(2,5)(m− ε, ν1 − 1, ν2, ν3, ν4, ν5) − Î(2,5)(m− ε, ν1, ν2 − 1, ν3, ν4, ν5)
]

+ ν1 Î(2,5)(m− ε, ν1 + 1, ν2 − 1, ν3, ν4, ν5)

+ (D − ν1 − 2ν4 − (ν5 − 1)) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5 − 1)

− ν1 Î(2,5)(m− ε, ν1 + 1, ν2, ν3, ν4 − 1, ν5 − 1)

− (ν5 − 1)
[

Î(2,5)(m− ε, ν1, ν2, ν3, ν4 − 1, ν5)− Î(2,5)(m− ε, ν1, ν2, ν3 − 1, ν4, ν5)
]

.

Although it is not too obvious at first sight, this is the equation we need. We have to solve
it for Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5 − 1) and obtain:

(2D − 3ν1 − 3ν4 − 2(ν5 − 1)) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5 − 1)

=

− (D − ν1 − ν4 − 2ν5) Î(2,5)(m− ε, ν1, ν2, ν3, ν4, ν5)

− ν4 Î(2,5)(m− ε, ν1, ν2, ν3 − 1, ν4 + 1, ν5) + ν4 Î(2,5)(m− ε, ν1 − 1, ν2, ν3, ν4 + 1, ν5 − 1)

+ (ν5 − 1)
[

Î(2,5)(m− ε, ν1 − 1, ν2, ν3, ν4, ν5) − Î(2,5)(m− ε, ν1, ν2 − 1, ν3, ν4, ν5)
]

− ν1 Î(2,5)(m− ε, ν1 + 1, ν2 − 1, ν3, ν4, ν5) + ν1 Î(2,5)(m− ε, ν1 + 1, ν2, ν3, ν4 − 1, ν5 − 1)

+ (ν5 − 1)
[

Î(2,5)(m− ε, ν1, ν2, ν3, ν4 − 1, ν5) − Î(2,5)(m− ε, ν1, ν2, ν3 − 1, ν4, ν5)
]

(D.5)

We can split the integrals on the right-hand side into two groups: For one group, ν5 − 1 has
been increased by one, like we wanted. For the second set of integrals that still depends on
ν5 − 1, there is always an additional exponent ν1, ν2, ν3, or ν4 lowered by one. If the other
exponents are all equal to one, the integrals of the second set will simply factorize into a
product of two Fν1,ν2 functions for which the integer part of the exponent may be negative.
If the exponents are not equal to 1 but are natural numbers, a repeated application of this
equation will also lead to the factorization into functions Fν1,ν2 . In any case we will be left
with an integral of the form

Î(2,5)(m− ε, 1, 1, 1, 1, 1 + a5ε).

Equations (D.1) to (D.5) are implemented in the function I 5().
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Appendix E

The classes

This chapter lists the different classes implemented in the programs yukawa1, yukawa2, qed1,
and qed2 described in chapter 8.

yukawa1

Sigma Fermion self-energy, possibly sitting as subdivergence at the fermion
line of Sigma, the fermion lines of Gamma, or the “lower” fermion
line of Vacuum.
This Sigma is not used for Gamma2.

Sigma flipped Fermion self-energy, sitting as subdivergence at the “upper” fermion line
of Vacuum.

Sigma 1 Fermion self-energy, sitting as subdivergence at line 1 of Gamma2.
Sigma 4 Fermion self-energy, sitting as subdivergence at line 4 of Gamma2.
Sigma 5 Fermion self-energy, sitting as subdivergence at line 5 of Gamma2.
Vacuum Boson self-energy, possibly sitting as subdivergence in Sigma or in

Gamma.
Vacuum 2 Boson self-energy, sitting as subdivergence in line 2 of Gamma2.
Vacuum 3 Boson self-energy, sitting as subdivergence in line 3 of Gamma2.
Gamma One-loop vertex correction, possibly sitting in Gamma.
Gamma 5 One-loop vertex correction, sitting at entry 5 of Gamma2.
Gamma2 Non-planar vertex correction, possibly sitting in Gamma.
Gamma2 5 Non-planar vertex correction, sitting at entry 5 of Gamma2.
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yukawa2

Sigma Fermion self-energy, possibly sitting as subdivergence at the fermion
line of Sigma, the fermion lines of Gamma connected to the zmt vertex,
or the “lower” fermion line of Vacuum.
This Sigma is not used for Gamma2.

Sigma flipped Fermion self-energy, sitting as subdivergence at the “upper” fermion line
of Vacuum or the fermion line of Gamma not connected to the zmt vertex.

Sigma 2 Fermion self-energy, sitting as subdivergence at line 2 of Gamma2.
Sigma 3 Fermion self-energy, sitting as subdivergence at line 3 of Gamma2.
Sigma 4 Fermion self-energy, sitting as subdivergence at line 4 of Gamma2.
Sigma 5 Fermion self-energy, sitting as subdivergence at line 5 of Gamma2.
Vacuum Boson self-energy, not used as subdivergence.
Vacuum Sigma Boson self-energy, sitting as subdivergence in Sigma.
Vacuum Gamma Boson self-energy, sitting as subdivergence in Gamma.
Vacuum 1 Boson self-energy, sitting as subdivergence in line 1 of Gamma2.
Vacuum 5 Boson self-energy, sitting as subdivergence in line 5 of Gamma2.
Gamma One-loop vertex correction, possibly sitting in Gamma.
Gamma 5 One-loop vertex correction, sitting at entry 5 of Gamma2.
Gamma2 Non-planar vertex correction, possibly sitting in Gamma.
Gamma2 5 Non-planar vertex correction, sitting at entry 5 of Gamma2.

qed1

Sigma Fermion self-energy, possibly sitting as subdivergence at the fermion
line of Sigma or the fermion lines of Gamma.
This Sigma is not used for Gamma2.

Sigma 1 Fermion self-energy, sitting as subdivergence at line 1 of Gamma2.
Sigma 4 Fermion self-energy, sitting as subdivergence at line 4 of Gamma2.
Sigma 5 Fermion self-energy, sitting as subdivergence at line 5 of Gamma2.
Vacuum Boson self-energy, possibly sitting as subdivergence in Sigma or in

Gamma.
Vacuum 2 Boson self-energy, sitting as subdivergence in line 2 of Gamma2.
Vacuum 3 Boson self-energy, sitting as subdivergence in line 3 of Gamma2.
Gamma One-loop vertex correction, possibly sitting in Gamma.
Gamma 5 One-loop vertex correction, sitting at entry 5 of Gamma2.
Gamma2 Non-planar vertex correction, possibly sitting in Gamma.
Gamma2 5 Non-planar vertex correction, sitting at entry 5 of Gamma2.
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qed2

Sigma Fermion self-energy, possibly sitting as subdivergence at the fermion
line of Sigma or the fermion lines of Gamma connected to the zmt vertex.
This Sigma is not used for Gamma2.

Sigma flipped Fermion self-energy, sitting at the fermion line of Gamma
not connected to the zmt vertex.

Sigma 2 Fermion self-energy, sitting as subdivergence at line 2 of Gamma2.
Sigma 5 Fermion self-energy, sitting as subdivergence at line 5 of Gamma2.
Vacuum Boson self-energy, not used as subdivergence.
Vacuum Sigma Boson self-energy, sitting as subdivergence in Sigma.
Vacuum Gamma Boson self-energy, sitting as subdivergence in Gamma.
Vacuum 1 Boson self-energy, sitting as subdivergence in line 1 of Gamma2.
Vacuum 5 Boson self-energy, sitting as subdivergence in line 5 of Gamma2.
Gamma One-loop vertex correction, possibly sitting in Gamma.
Gamma 5 One-loop vertex correction, sitting at entry 5 of Gamma2.
Gamma2 Non-planar vertex correction, possibly sitting in Gamma.
Gamma2 5 Non-planar vertex correction, sitting at entry 5 of Gamma2.
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Texts)

[Groz 2003] A.G. Grozin : Lectures on multiloop calculations; Int. J. Mod. Phys. A19

(2004) 473–520 [hep-ph/0307297]

[Hoff 2000] M.E. Hoffman : Quasi-shuffle products; J. Algebraic Combin. 11 (2000)
49–68 [math.QA/9907173]

[Hoff 1997] M.E. Hoffman : The algebra of multiple harmonic series; J. Algebra 194

(1997) 477–495

[ItZu 1980] C. Itzykson , Zuber, J.B. : Quantum Field Theory; New York: McGraw-Hill,
1980

[Kass 1995] C. Kassel : Quantum Groups; New York: Springer, 1995. (Graduate Texts
in Mathematics 155)

[Kaza 1983] D.I. Kazakov : The method of uniqueness, a new powerful technique for mul-
tiloop calculations; Phys. Lett. B133 (1983) 406–410

[Kaza 1984] D.I. Kazakov : Calculation of Feynman diagrams by the “uniqueness” method;
Theor. Math. Phys. 58 (1984) 223–230

[Kaza 1985] D.I. Kazakov : Many loop calculations: the uniqueness method and functional
equations; Theor. Math. Phys. 62 (1985) 84–89

[KMR 1970] K.S. Kölbig, J.A. Mignaco , E. Remiddi : On Nielsens’s generalized polylog-
arithms and their numerical calculations; B.I.T. 10 (1970) 38;
K.S. Kölbig: Nielsens’s generalized polylogarithms; SIAM J. Math. Anal.
17 (1986) 1232

[Koti 1996] A.V. Kotikov : The Gegenbauer Polynomial Technique: the evaluation of
a class of Feynman diagrams; Phys. Lett. B375 (1996) 240–248 [hep-
ph/9512270]

[Krei 1997] D. Kreimer : Habilitationsschrift: Renormalization and Knot Theory;
J. Knot Theor. Ramifications 6 (1997) 479–581 [q-alg/9607022]



138 BIBLIOGRAPHY

[Krei 1998a] D. Kreimer : On knots in subdivergent diagrams; Eur. Phys. J. C2 (1998) 757
[hep-th/9610128]

[Krei 1998b] D. Kreimer : On the Hopf algebra structure of perturbative quantum field
theories; Adv. Theor. Math. Phys. 2 (1998) 303 [q-alg/9707029]

[Krei 1999] D. Kreimer : On overlapping divergences; Commun. Math. Phys. 204 (1999)
669 [hep-th/9810022]

[Krei 2000a] D. Kreimer : Chen’s iterated integral represents the operator product expan-
sion; Adv. Theor. Math. Phys. 3 (2000) 3 [hep-th/9901099]

[Krei 2000b] D. Kreimer : Knots and Feynman Diagrams; Cambridge: Cambridge Lec-
ture Notes in Physics 13, 2000

[Krei 2001] D. Kreimer : Structures in Feynman Graphs -Hopf Algebras and Symmetries;
talk given at the “Dennisfest”, “Graphs and Patterns in Mathematics and
Theoretical Physics”, Stony Brook, June 2001, final version, to appear in the
Proceedings [arXiv:hep-th/0202110]

[Krei 2003a] D. Kreimer : New mathematical structures in renormalizable quantum field
theories; Annals Phys. 303 (2003) 179–202; Erratum-ibid. 305 (2003) 79
[arXiv:hep-th/0211136]

[Krei 2003b] D. Kreimer : Unique factorization in perturbative QFT; Talk given at “Rad-
Cor 2002 - Loops and Legs 2002”, Kloster Banz, Germany, Sep 8-13, 2002,
Nucl. Phys. Proc. Suppl. 116 (2003) 392–396 [arXiv:hep-ph/0211188]

[KrDe 1999] D. Kreimer, R. Delbourgo : Using the Hopf algebra structure of QFT in
calculations; Phys. Rev. D60 (1999) 105025 [hep-th/9903249]

[Lewi 1981] L. Lewin : Dilogarithms and Associated Functions; North Holland 1958;
Polylogarithms and Associated Functions; North Holland 1981

[MeKr 2004a] I. Mencattini, D. Kreimer : Insertion and Elimination Lie Algebra: the
Ladder case; Lett. Math. Phys. 67 (2004) 61–74 [arXiv:math.QA/0308042]

[MeKr 2004b] I. Mencattini, D. Kreimer : The Structure of the Ladder Insertion-
Elimination Lie algebra; [arXiv:math-ph/0408053]

[MiMo 1965] J.W. Milnor , J.C. Moore : On the structure of Hopf algebras; Ann. Math.
81 (1965) 211–264

[MiPe 2000] H.N. Minh, M.Petitot : Lyndon words, polylogarithms and the Riemann ζ
function; Disc. Math. 217 (2000) 273

[MUW 2002] S. Moch, P. Uwer, S. Weinzierl : Nested sums, expansion of transcendental
functions and multiscale multiloop integrals; J. Math. Phys. 43 (2002) 3363–
3386, [hep-ph/0110083]

[Niel 1909] N. Nielsen : Der Eulersche Dilogarithmus und seine Verallgemeinerungen;
Nove Acta Leopoldina Halle 90 (1909) 123



BIBLIOGRAPHY 139

[PaKa 2001] R.B. Paris , D. Kaminsky : Asymptotics and Mellin-Barnes integrals; Cam-
bridge: Cambridge Univ. Press, 2001

[PaTa 1984] P. Pascual , R. Tarrach : QCD: Renormalization for the Practitioner; Berlin
[u.a.]: Springer, 1984. (Lecture Notes in Physics; 194)

[PeSch 1995] M.E. Peskin , D.V. Schroeder : An introduction to quantum field theory;
Reading, Mass.: Perseus Books, 1995

[ReVe 2000] E. Remiddi , J.A.M. Vermaseren : Harmonic polylogarithsm; Int. J. Mod.
Phys. A15 (2000) 725 [hep-ph/9905237]

[Reut 1993] C. Reutenauer : Free Lie Algebras; Oxford: Clarendon Press, 1993

[Slat 1966] L.J. Slater : Generalized hypergeometric functions; Cambridge: Cambridge
Univ. Press, 1966

[SuSa 1991] L.R. Surguladze, M.A. Samuel : Total hadronic cross-section in e+ e- an-
nihilation at the four loop level of perturbative QCD; Phys. Rev. Lett. 66

(1991) 560–563, Erratum ibid. 66 (1991) 2416

[t’HoVe 1972] t’Hooft, G. , Veltman, M. : Regularization and renormalization of gauge fields;
Nucl. Phys. B44 (1972) 189–213

[Tkach 1981] F.V. Tkachov : A theorem on analytical calculability of four loop renormal-
ization group functions; Phys. Lett. B100 (1981) 65–68

[Verm 1999] J.A.M. Vermaseren : Harmonic sums, Mellin transforms and Integrals; Int.
J. Mod. Phys. A14 (1999) 2037 [hep-ph/9806280]

[Wein 2002] S. Weinzierl : Symbolic expansion of transcendental functions; Comput. Phys.
Commun. 145 (2002) 357–370 [math-ph/0201011]

[Wein 2003] S. Weinzierl : Algebraic Algorithms in Perturbative Calculations; Proceedings
of Les Houches ”Frontiers in Number Theory, Physics and Geometry”. (2003)
[hep-th/0305260]

[Zagi 1994] D. Zagier : Values of zeta functions and their applications; in First European
Congress of Mathematics Vol.II, Birkhäuser Boston, Boston, 1994, 497–512


