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Abstract

The present thesis is concerned with the study of a quantum physical system com-
posed of a small particle system (such as a spin chain) and several quantized massless
boson fields (as photon gasses or phonon fields) at positive temperature. The setup
serves as a simplified model for matter in interaction with thermal “radiation” from
different sources. Hereby, questions concerning the dynamical and thermodynamic
properties of particle-boson configurations far from thermal equilibrium are in the
center of interest. We study a specific situation where the particle system is brought
in contact with the boson systems (occasionally referred to as heat reservoirs) where
the reservoirs are prepared close to thermal equilibrium states, each at a different
temperature. We analyze the interacting time evolution of such an initial configu-
ration and we show thermal relaxation of the system into a stationary state, i.e.,
we prove the existence of a time invariant state which is the unique limit state of
the considered initial configurations evolving in time. As long as the reservoirs have
been prepared at different temperatures, this stationary state features thermody-
namic characteristics as stationary energy fluxes and a positive entropy production
rate which distinguishes it from being a thermal equilibrium at any temperature.
Therefore, we refer to it as non-equilibrium stationary state or simply NESS.

The physical setup is phrased mathematically in the language of C∗-algebras. The
thesis gives an extended review of the application of operator algebraic theories to
quantum statistical mechanics and introduces in detail the mathematical objects
to describe matter in interaction with radiation. The C∗-theory is adapted to the
concrete setup. The algebraic description of the system is lifted into a Hilbert space
framework. The appropriate Hilbert space representation is given by a bosonic Fock
space over a suitable L2-space. The first part of the present work is concluded by the
derivation of a spectral theory which connects the dynamical and thermodynamic
features with spectral properties of a suitable generator, say K, of the time evolution
in this Hilbert space setting. That way, the question about thermal relaxation
becomes a spectral problem. The operator K is of Pauli-Fierz type.

The spectral analysis of the generator K follows. This task is the core part of the
work and it employs various kinds of functional analytic techniques. The operator



vi Abstract

K results from a perturbation of an operator L0 which describes the non-interacting
particle-boson system. All spectral considerations are done in a perturbative regime,
i.e., we assume that the strength of the coupling is sufficiently small. The extraction
of dynamical features of the system from properties of K requires, in particular, the
knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the
unperturbed operator L0. Since convergent Neumann series expansions only qualify
to study the perturbed spectrum in the neighborhood of the unperturbed one on
a scale of order of the coupling strength we need to apply a more refined tool, the
Feshbach map. This technique allows the analysis of the spectrum on a smaller scale
by transferring the analysis to a spectral subspace. The need of spectral information
on arbitrary scales requires an iteration of the Feshbach map. This procedure leads
to an operator-theoretic renormalization group. The reader is introduced to the
Feshbach technique and the renormalization procedure based on it is discussed in
full detail. Further, it is explained how the spectral information is extracted from
the renormalization group flow.

The present dissertation is an extension of two kinds of a recent research contri-
bution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more
delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly,
the system can be studied uniformly for small reservoir temperatures. The adaption
of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and
Sigal to concrete spectral problems in quantum statistical mechanics is a further
novelty of this work.
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Introduction

Survey of the Problem and Organization of the Thesis

This dissertation is a contribution to mathematical rigorous non-equilibrium quan-
tum statistical mechanics considering as example a simplified quantum electrody-
namical model for the interaction of matter with radiation (in a wider sense) at
positive temperature. In the center of interest is a finite dimensional particle system
(such as an N -dimensional spin or a spin chain of finite length) which interacts with
several quantized massless boson fields of infinite spatial expansion. These bosonic
fields might physically be realized as photon gasses (radiation) or as phonon fields
(quantized modes of vibration). Both sorts of bosons are responsible for two different
types of heat transfer: while the photons represent a heat radiation the propagation
of phonons is responsible for heat conduction in solids. The boson fields, occasion-
ally also referred to as heat reservoirs, interacting with the particle system need
not to be of the same type. A possible scenario covered within this general frame-
work could be a particle exposed to heat radiation through thermal photons and
in contact with a solid transferring heat through thermal phonons. It is assumed
that the bosonic subsystems are not interacting with each other. For simplicity
of notion we henceforth do not differentiate between the two mentioned types of
bosons and refer to them as photons. The key problem we are going to investigate
in this work is the question about the existence and the nature of stationary states
and their dynamical stability. Along with these dynamical issues we also study the
thermodynamic properties of the system. Hereby, the setup of the system will be
the following. Each of the photon reservoirs will be prepared in or close to a thermal
equilibrium state describing a photon ensemble of finite particle density in absence of
Bose-Einstein condensation. Each photon system for itself, isolated from the other
constituents, behaves like a free photon gas and it features the property of return to
equilibrium (RtE), i.e., the photon gas will thermally relax under the time evolution
into the equilibrium it started close by. The drive of a single infinitely expanded
photon system towards equilibrium transfers to the finite particle system once they
are coupled to each other. Hence, the composed particle-photon system shows dy-
namical stability in the sense that states which are close to a thermal equilibrium
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at a given temperature are attracted by the latter. In this context, proximity has
to be understood in the relative entropy sense. Such a setup is said to be close to
equilibrium. The situation becomes more subtle when several photon systems at
possibly different temperatures are coupled to the same particle system, this setup
would be far from equilibrium. Each reservoir shows a comparable endeavor of ther-
mal relaxation, however, towards different equilibria. This competition among the
reservoirs prevents the system from approaching a thermal equilibrium state. Nev-
ertheless, the system presumably will feature thermal relaxation in the sense that
it will converge into a stationary state. This limit state will be distinguished from
a thermal equilibrium state by the fact that it shows non-vanishing stationary heat
fluxes between the reservoirs and a positive entropy production rate.

We shall mention that the assumption about the finiteness of the particle degrees
of freedom is crucial for our analysis. The thermal relaxation of the particle-photon
system is controlled by the so called Fermi golden rule level shift which is a lower
bound to the rate of exponential decay of initial configurations into the stationary
state. The Fermi golden rule level shift is computed as the minimal probability
of any transition of a particle state from a higher energy level down to a lower
one under emission of photons carrying away the energy difference. For infinitely
many particle energy levels the infimum of these transition probabilities is typically
zero such that the Fermi golden rule level shift does not allow any prediction about
decay properties. The arguments applied in this work do not work any more for a
vanishing Fermi golden rule level shift. In fact, it is still a non-trivial open problem
to prove the thermal relaxation of particle systems with infinitely many energy levels
interacting with photons.

In this thesis we put the described physical situation of particle-photon interaction
away from equilibrium, and the analysis on it, on a mathematical footing. Hereby,
we extend the model proposed in [8] to several bosonic reservoirs and we proceed
as follows. The appropriate mathematical concept for treating quantum statistical
systems is given by the theory of C∗-algebras. In Chapter 1 we thoroughly discuss
the mathematical model for the particle and the photon systems. We introduce the
Hamiltonian description of each subsystem to define a Heisenberg time evolution on
a suitable algebra of observables. Algebra and time evolution form a C∗- or W ∗-
dynamical system. Among the states on this algebra we specify those which describe
thermal equilibria. The mathematical setup for the infinite photon systems differs
significantly from the considerations on the finite particle system. The thermody-
namic concepts, as the notion of a thermal equilibrium state, are easily accessible
in the context of a finite system and need an adaption to the infinite situation.
We outline the strategy how the photon system can be treated as a thermodynamic
limit of finite systems of a photon gas confined to increasing but bounded boxes.
The preparation of the subsystems in thermal equilibrium states provides us with
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a representation of the C∗-algebra of observables, the GNS representation, which
gives rise to a particular modular structure of the dynamical system. We launch an
excursus about the Tomita-Takesaki theory , dealing with this modular structure,
which provides algebraical tools in an analytical framework. The coupling between
the particle and the photon systems is realized as a local perturbation of the non-
interacting setup. This perturbation is obtained by incorporating boson creation and
annihilation processes to first order into the Hamiltonian description. We can inter-
pret this sort of perturbation as a simplified model for minimal coupling which, in
turn, describes the realistic interaction of electrons with radiation in non-relativistic
quantum electrodynamics. The setup belongs to the class of Pauli-Fierz systems .
The first chapter is concluded by the statement of the main theorem of this work.
It rephrases the thermal relaxation properties of the particle system in interaction
with several bosonic reservoirs at different temperatures, as discussed above, in a
mathematical language. We prove in the case of differing reservoir temperatures
the existence of a non-equilibrium stationary state (NESS) which is attracting for
all physical configurations close to the setup where the subsystems, for itself, are at
equilibrium. Hereby, the approach is exponentially fast with a decay rate propor-
tional to the second power of the interaction strength and proportional to the tem-
perature of the reservoirs. Further we show that the NESS features non-vanishing
heat fluxes and the entropy production rate in this state is strictly positive. The
case where the photon reservoirs started at the same temperature is covered as a
limiting case. The dynamical behavior is equivalent to the previous situation, i.e.,
the thermal relaxation occurs exponentially fast. The thermodynamic characteristic
of the limit state, however, is quite different since in the equal temperature situation
the relaxation is towards an equilibrium configuration. All our results are pertur-
bative in the strength of the coupling and uniform for small temperatures provided
that temperature differences are not too large.

Within Chapter 2 we derive a spectral theory for the thermal relaxation process
following [28]. The aim is to connect the dynamical behavior of the interacting
system with spectral properties of a suitable generator of the time evolution. The
GNS representation together with Tomita-Takesaki’s modular theory allow us to
transfer the dynamical problems into a more convenient Hilbert space framework.
Within this framework the time evolution is generated by a family of so-called Li-
ouville operators . We single out one of these operators, the C-Liouville operator K,
whose null space encodes the information about the NESS while the localization of
the continuous spectrum discloses the long time behavior of the evolution. However,
before the connection of the dynamical behavior and the operator can be established
the C-Liouvillean has to undergo a spectral deformation. Since the operator K is in
general neither self-adjoint nor normal nor accretive it is the spectral deformation
which is necessary to give meaning to the evolution generated by K. In our work
we apply a combination of two deformation techniques, the dilation deformation as
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used in [8] and the translation deformation applied in [23, 28]. It turns out that the
NESS is given as the zero resonance eigenvectors of K w.r.t. the chosen deformation,
i.e., in terms of the zero eigenvectors of the spectrally deformed operator Kθ and of
its adjoint (Kθ)

∗. The shift of the spectrum of Kθ into the upper half plane, except
for the simple zero eigenvalue, accounts for the exponentially fast decay towards the
NESS. The first two chapters build a logical unit addressing the conceptional part
of the work which is closely related to contributions of Bach, Fröhlich and Sigal, [8],
and of Jakšić and Pillet [24, 27, 28].

The second part consisting of the Chapters 3 - 5 is devoted to the underlying
spectral analysis of the problem. We launch Chapter 3 with a complete description
of the spectrum of the family of deformed Liouvilleans, the corresponding proof
will spread over the whole second part. Different spectral regions require different
techniques of analysis. The Liouvilleans of the interacting systems can be seen as
perturbations of a deformed free Liouville operator L0,θ whose spectrum is totally
understood. As a rule of thumb we can keep that the closer we get to real eigenvalues
of the unperturbed problem the more difficult the analysis becomes and the more
sophisticated techniques are applied. As a first step in understanding the spectrum
we exclude spectrum in regions far enough from the spectrum of the unperturbed
Liouville operator with the means of convergent Neumann series employing relative
norm estimates of the perturbation part of the Liouvilleans. This technique will fail
when we aim to study the spectral vicinity of the formerly real eigenvalues of L0,θ

due to the divergence of the free resolvent. The Feshbach technique is a suitable re-
placement since it allows a decision about the invertibility of the perturbed resolvent
based on an equivalent spectral problem after having projected out the singularity
of the free resolvent. This method was introduced as a tool for spectral analysis
in quantum field theory by Bach, Fröhlich and Sigal in [6] and was generalized in
collaboration with Chen in [4]. The smooth Feshbach map generates an operator
with isospectral properties. This operator is the free operator L0,θ supplemented,
in leading order in the strength of the coupling, by a matrix which is responsible
for the shift of the unperturbed eigenvalues away from the real axis. This matrix
is therefore called level shift operator . Since the shift of eigenvalues directly effects
the exponential decay rates of excited configurations of the system the level shift
operator is closely related to the Fermi golden rule.

The zero eigenvalue plays a special role which is founded by its high degree of
degeneracy. Though the level shift operator lifts the degeneracy, a simple eigenvalue
stays at the origin of the complex plane, in leading order of the perturbation, and
the isolation of this eigenvalue is given by a gap proportional to the temperature
of the reservoirs. Hence, for small temperatures (compared to the strength of the
coupling) standard perturbation theory fails again to make conclusions about the
spectrum of the full operator which we obtained after the application of the smooth
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Feshbach map. Since our endeavor is to derive all results uniformly in low temper-
atures we need to reapply the Feshbach method to tackle the spectral problems in
the neighborhood of zero. That way we enter into a process of iterative Feshbach
applications building the core part of an operator-theoretic renormalization group
which goes back to [4, 6]. The outsourcing of the renormalization procedure into
Chapter 4 accounts for the difficulties which arise in the study of the spectrum close
to zero.

In the last chapter of the main text, Chapter 5, we collect the information which
was gained by the renormalization procedure in Chapter 4 to assemble a spectral
picture of the Liouville operators in the neighborhood of zero. This is the first
time that the renormalization group of [4] is applied to a concrete model in positive
temperature quantum electrodynamics in order to draw a quantitative picture of
the spectrum in the vicinity of eigenvalues.

In a third part of this thesis we embrace in five appendices the necessary technical
tools for the considerations in the main text. Outsourcing the technicalities shall
enhance the readability of the main text without holding back the analytical issues
from the reader.

Comparison with the Literature

The field of equilibrium and non-equilibrium statistical quantum mechanics has
become recently a very active area of research. We range our work among the
significant contributions to related problems in this field where a small system is in
interaction with its environment. The environment is considered as an infinite part
of a system which allows dissipation. This environment can be of various kinds and
we mention as examples the quantized bosonic field (as photon or phonon field like
in our case), a fermi gas or simply an infinite region of a spin system (as a largely
expanded part of a crystal interacting with a small crystalline zone). The small
system usually represents a confined particle and its realization may range in the
various models from a finite ensemble of spins to an electron in a binding Coulomb
potential. During the presentation of models in statistical quantum mechanics we
occasionally draw a parallel to the zero temperature situation.

A first rigorous treatment of the dissipative properties of the Pauli-Fierz spin-
boson model (a single spin coupled to a bosonic field) was undertaken by Jakšić and
Pillet in the series of papers [22, 23, 24], a review of these results is given in [25].
The main achievement of that work is the development of a spectral theory for the
RtE property connecting the spectrum of a so-called standard Liouville operator , an
appropriate generator of the time evolution in the equilibrium situation, with the
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thermal relaxation behavior of the system at positive temperature. The spectral
analysis to follow on the Liouville operator of the spin-boson model employs a new
deformation technique, the translation deformation, which generates isolated eigen-
values of the unperturbed system and allows standard perturbation theory. The
price to pay for this simplified analysis is that the used deformation puts strong
restrictions on possible coupling functions and only allows the study of the high
temperature regime.

These restrictions could be lifted by Bach, Fröhlich and Sigal in [8] who not only
extended the degree of freedom for the spin but, more significantly, could prove
RtE for the spin-boson system uniformly in the positive temperature of the boson
reservoir. They adopted the concept of spectral theory from [24], and, to tackle
the uniformity in the temperature, they fell back upon the renormalization group
developed in [6]. The application of the renormalization procedure to the positive
temperature framework is outlined in [8] and enabled the authors to get along with
dilation as spectral deformation which requires much less regularity of the coupling
functions.

An alternative technical approach to study RtE for the spin-boson model was
given by Merkli in [32] who transferred the concept of Mourre estimates, also known
as positive commutators , to the spectral investigation of the positive temperature
situation. This technique incorporates the generator of the translation deforma-
tion and therefore represents an infinitesimal version of the translation deformation
technique. The strategy yields a technical improvement w.r.t. [24] in the sense that
the assumptions on the regularity of the coupling functions can be relaxed (Merkli
gets along with sufficient smoothness instead of analyticity of the coupling func-
tions w.r.t. translation), however, it proves RtE in a weaker version, namely in the
ergodic mean sense. The positive commutators cannot overcome the restriction to
high temperatures.

The papers [12, 13] by Dereziński and Jakšić are another contribution to the spec-
tral analysis of thermal Pauli-Fierz systems in relation to their thermal relaxation.

So far we discussed models where the reservoirs are given in a configuration of
finite boson density. Such a setup prohibits the macroscopic occupation of the
ground state, i.e., the description of Bose-Einstein condensation is excluded. The
recent work [33] of Merkli deals with a Bose gas at thermal equilibrium which is
so dense that it builds a condensate. The coupling of a particle system to the zero
modes of the boson gas (which correspond to the condensate) exhibits a technical
challenge. The infrared behavior of the coupling functions treated in the references
mentioned above do not provide a framework which allows an effective coupling of
the particle system to the condensate. Merkli managed to introduce a model of
an interacting particle-condensate system for which he could prove the existence of
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a stable equilibrium. Hereby, stability is meant in the following sense: any initial
condition close to the equilibrium state of the interacting system converges towards
the equilibrium of the uncoupled system if one takes successively the limit of large
time and then the limit of small coupling. The RtE property of the system is still
an open problem. The analysis is based on positive commutator techniques.

Further contributions to the particle systems interacting with a thermal photon
reservoir are the works of Fröhlich and Merkli, [15], and Fröhlich, Merkli and Sigal,
[16], on thermal ionization. The investigated model describes an idealized atom,
consisting of a finite number of eigenvalues lying below the ionization threshold of
a continuous spectrum, which is brought into contact with a black-body radiator at
sufficient high positive temperature. The authors show that such a system does not
possess any time-translation invariant state of positive temperature and that the
expectation value of any finite-dimensional projection in an arbitrary initial state of
positive temperature tends to zero under the time evolution. This phenomenon is
known as thermal ionization. Unlike for the spin-boson model, where the particle
system only possesses bound states, the existence of continuous spectrum gives the
idealized atom the opportunity to leave eventually any equilibrium configuration
which is in contrast to the thermal relaxation behavior of the models discussed so
far. The statements in [15, 16] are established by studying the Liouville operator
using positive commutators.

RtE has a zero temperature analogue: return into the ground state. The relevant
physical process is no longer thermal relaxation but radiative decay . It is well known
that atomic systems (non-relativistic electrons in a Coulomb potential of a nucleus) –
while possessing stable excited energy levels in the absence of an electromagnetic field
– have no stable states except for the ground state when interacting with photons.
It goes back to studies of Bach, Fröhlich and Sigal, [5, 7], and ourselves, [36], on a
realistic model for non-relativistic quantum electrodynamics that the excited states
are replaced by metastable states which decay quasi-exponentially as predicted by
the Fermi golden rule. However, it is not clear how to prove that these states
relax into the ground state which would correspond to the “thermal” equilibrium at
temperature zero. The analytical difficulties are founded by the fact that the zero
temperature framework does not give us a spectral theory for RtE at hand.

The zero temperature analogue of thermal ionization is the photoelectric effect
which was studied by Bach, Klopp and Zenk in [9]. Building up on a simplified
model for an atom consisting of a single bound state and continuum the authors
managed to prove the ionization of the atom by photons as a non-statistical phe-
nomenon. The observations are in agreement with Einstein’s prediction that the
ejection of an electron from its formation only occurs if the energy of the incoming
photon cloud exceeds the ionization threshold such that the energy surplus can be
transformed into kinetic energy of the travelling electron. The ionization mechanism



8 Introduction

at zero temperature therefore differs significantly from the ionization by thermal
fluctuations where the photons do not have to overcome an ionization threshold.

We go over to discuss the systems appearing in the literature which are closely
related to the setup in the present thesis. The impulsion to study the thermal
relaxation of particles interacting with several bosonic heat reservoirs came from the
contribution [28]. In that paper Jakšić and Pillet investigate a spin which interacts
with finitely many fermionic reservoirs which are at different positive temperatures.
Since the system is from the beginning not close to equilibrium the spectral theory
for thermal relaxation behavior developed in [24] is not applicable. In other words,
the standard Liouville operator does not carry a priori any information about the
relaxation of a system far from equilibrium. Jakšić and Pillet found a remedy by
connecting the dynamical issues with an equivalent non-self-adjoint generator of
the time evolution, the C-Liouvillean. The spectrum of the C-Liouville operator
allows predictions about the time development of states (close to the configuration
where the Fermi reservoirs are at different temperatures) towards a limit state.
Further, that relaxed state, the NESS, can be characterized in terms of the C-
Liouville operator. This concept, with some modifications to improve the validity
of statements uniformly in the temperature, has been adopted by ourselves within
this thesis. While formally the setup in [28] looks similar to our model of a particle
system interacting with bosonic reservoirs at different temperatures, our situation
exhibits much more difficulties of a technical kind. This has primarily to do with the
fact that creation and annihilation processes, as they enter the interaction between
the particle system and the reservoirs, are bounded operations in the fermionic
case unlike in the bosonic case. While the C-Liouville operator is accretive in the
fermionic case, the unboundedness of bosonic creation and annihilation operators
causes that the connection of the C-Liouvillean to the time evolution it generates is
a priori unclear. This fact poses many technical subtleties which are to be tackled
to transfer the concepts of [28] to our situation. Jakšić and Pillet acknowledge
in their paper that the extension to bosonic reservoirs is an important and, until
recently, an open problem. A further discrepancy between [28] and our work is that
we can study the relaxation uniformly in the reservoir temperatures. This could be
achieved firstly by modifying the C-Liouville operator and secondly by employing
the renormalization group technique. Following the arguments of [26, 27, 28, 29] we
show for our system that the entropy production in the NESS is strictly positive
when the temperatures of the reservoirs differ sufficiently.

Finally we mention some references for non-equilibrium situations in quantum spin
systems. A quantum spin system can roughly be characterized as a countably infinite
collection of sites where spins are fixed and which interact with their neighbors.
The set of sites appears as a division into finite many subsets where one of the
subsets contains only finite many sites, representing the “particle” system, while the
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others are infinite, standing for the reservoirs or simply for the environment. These
reservoirs can now be prepared at equilibrium of different temperatures. This kind
of situation is studied by Ruelle in [42] on non-negativity of the entropy production.
It is the work which introduces the notion of a NESS as it is used in [26] and also in
this work, c.f. Remark 1.16. A special case of this setup, the two-sided XY chain,
was analyzed on positivity of the entropy production by Aschbacher and Pillet in
[3].

Parts of this thesis have been elaborated in cooperation with Merkli and Sigal.
The corresponding results are to appear in [34].
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1 The Positive Temperature Model
of Particles Interacting with
Radiation

Statistical quantum mechanics (StQM) is the discipline of quantum physics describ-
ing systems at positive temperature. The notion of temperature implies an uncer-
tainty of the occupation of a quantum mechanical state. This lack of information is
interpreted as thermal fluctuation and is mathematically handled with probabilis-
tic methods. A quantum mechanical state, usually represented as an element of a
Hilbert space, gets replaced by a density matrix over the same Hilbert space repre-
senting an ensemble of possible configurations, the eigenvectors of the matrix, and
their assigned occupation probability, given by the eigenvalues. The temperature
enters this framework as a parameter which characterizes the occupation probability
distributions for so-called thermal equilibrium configurations.

Since a physical state is defined by the expectation values of observable quantities
one measures in this state the mathematical notion of a state in statistical quantum
mechanics is a positive linear functional on an algebra of non commuting observables.
Since for large quantum systems (e.g., for those with infinitely many degrees of
freedom) not every such functional can be brought into relation with a density matrix
this concept of states of the quantum system goes even beyond the generalization
from Hilbert space vectors to density matrices. The corresponding mathematical
framework is provided through the theory of C∗-algebras which represents a well
established field of research. The richness of this theory offers many opportunities for
the study of abstract and concrete quantum statistical systems. We will introduce
the reader to the field of C∗-algebras and its techniques in the first part of this
chapter, based on the monographs [10, 11, 17]. The paper [14] gives a good review
of problems related to W ∗-dynamical systems.

Building up on the abstract notion we are presenting the quantum statistical
model of a particle system which is interacting with several heat reservoirs at not
necessarily the same temperatures. The model we are going to use is a slight exten-
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sion of the model proposed in [8], where the interaction of the particle system was
restricted to a single reservoir.

1.1 Operator Algebraic Approach to Statistical
Quantum Mechanics

1.1.1 States and Dynamics on C∗- and W ∗-Algebras

The physical measurands, the observables, of a quantum system on an underlying
Hilbert space are usually given by operators on that Hilbert space. The collection
of observables forms an algebra. Inspired by the observation that the bounded op-
erators on a Hilbert space form a C∗-algebra (for a definition of C∗-algebras we
refer the reader to [10, Sect. 2.1]) we henceforth assume that the set of physical
quantum observables of interest is given by an abstract C∗-algebra A. A physical
state (configuration) of the system is given by a (mathematical) state on the alge-
bra of observables. The subset of the dual space A∗ containing all positive, linear
functionals of norm one,

E(A) := {(ω : A → �) ∈ A∗ | ‖ω‖A∗ = 1, ω(A∗A) ≥ 0, ∀A ∈ A} ,

is the convex set of all states of our system assigning real expectation (measured)
values to the self adjoint observables among the elements of A and therefore char-
acterizes the system’s configurations. Refer to [10, Sect. 2.3.2] for convexity of E(A)
and further properties of states on C∗-algebras.

In various situations a given C∗-algebra A features the existence of a predual ,
i.e., there exists a Banach space whose dual space is isomorphic to the algebra A.
Such an algebra is called a W ∗-algebra. Its predual is uniquely determined up to
isomorphisms and is denoted by A∗. Since A∗ is isometrically imbedded into A∗ the
structure of a W ∗-algebra gives rise to a new topology on A, the σ-weak topology ,
generated by the system of semi-norms {A �→ |ω(A)| |ω ∈ A∗ }. Further, the predual
allows a distinction of states over A, the so-called normal states which are collected
in the set

N (A) := E(A) ∩ A∗ = {ω ∈ A∗ ↪→ A∗ | ‖ω‖A∗ = 1, ω(A∗A) ≥ 0, ∀A ∈ A} .

Apparently, the normal states are exactly the states which are continuous w.r.t.
the σ-weak topology on A. We remark that a C∗-algebra A ⊆ B(H), realized as
a subalgebra of the bounded operators on a separable Hilbert space H, is a W ∗-
algebra if and only if the algebra is weakly closed within B(H). Von Neumann’s
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Bicommutant Theorem (see [10, Thm. 2.4.11]) allows us to express the weak closure
of a subsetM⊆ B(H) as the bicommutant

M′′ = (M′)′

where the commutant of a subsetM⊆ B(H) is defined by

M′ := {M ′ ∈ B(H) | [M,M ′] = 0∀M ∈M} .

Thus, the criterion for a W ∗-algebra A ⊆ B(H) can be rephrased as

A′′ = A.

The concrete realization of a W ∗-algebra on a Hilbert space is referred to as von
Neumann algebra. Its predual

A∗ = L1(H)/
{
ρ ∈ L1(H)

∣∣ tr(ρA) = 0∀A ∈ A
}

is the Banach space L1(H) of trace class operators on H where we identify two
operators ρ ∼ ρ′ if the corresponding functionals A � A �→ tr(ρA), tr(ρ′A) coincide.
The normal states are given by

A �→ tr (ρA)

for ρ = ρ∗ ∈ L1(H) being a density matrix , i.e., 0 ≤ ρ ≤ 1 and tr(ρ) = 1. We
remark that for each C∗-algebra A ⊆ B(H) the commutant algebra A′ ⊆ B(H) is
weakly closed and therefore a von Neumann algebra.

A dynamics on the C∗- (or W ∗-) algebra A of observables is introduced by a
group α = {αt}t∈� of automorphisms αt on A. The dynamics therefore evolves
the observables (Heisenberg picture). This time evolution can be lifted to a state
ω ∈ E(A), the evolved state is then given by

αt ∗ ω := ω ◦ αt.

A state ω is called stationary or time invariant w.r.t. α if for all t ∈ �

αt ∗ ω = ω ◦ αt = ω

holds. The pair (A, α) is called a C∗-dynamical system, if the group α is strongly
continuous, i.e.,

� � t �→ αt(A) (1.1)

is continuous as a map from � to A in the C∗-norm topology for all A ∈ A. In
the case that A is a W ∗-algebra we call the pair (A, α) a W ∗-dynamical system
if the group α is pointwise σ-weak continuous, i.e., the map (1.1) is continuous



16 1. The Positive Temperature Model ...

for all A ∈ A while the space A is equipped with the σ-weak topology. Note
that if A = B(H) for some Hilbert space H and H = H∗ is an unbounded self-
adjoint operator on H then t �→ e−iHt is strongly continuous on H, and therefore
t �→ αt := eiHt( · )e−iHt constitutes a W ∗-dynamical system (A, α) which is not a
C∗-dynamical system.

Since not every time invariant state describes a thermal equilibrium configuration
at a given temperature T > 0, we have to provide a distinguishing definition for
a thermal equilibrium state. The notion of a KMS (Kubo-Martin-Schwinger) state
turned out to be the right definition as an equilibrium state and generalizes the
Gibbs characterization for a finite system as considered in Section 1.2. Given a C∗-
(or W ∗-) dynamical system (A, α), then a state ω ∈ E(A) (which has to be normal
in the W ∗ case) is called an α-KMS state w.r.t. the inverse temperature β = T−1,
or short, an (α, β)-KMS state, if for each pair A,B ∈ A there is a function FA,B

which is analytic on the domain Dβ := {z ∈ � | 0 < Im(z) < β } and continuous on
the closure Dβ satisfying the KMS condition,

FA,B(t) = ω(Aαt(B)) and FA,B(t + iβ) = ω(αt(B)A) (1.2)

for all t ∈ �. One can show that the α-KMS states for any inverse temperature
β are stationary w.r.t α while the opposite conclusion is not true. Henceforth,
we understand by a stationary state a state which is time invariant and by an
equilibrium state a KMS state.

1.1.2 GNS Representation and Tomita-Takesaki Theory

To study the dynamical behavior of a state ω on a C∗-algebra A under the group
α = {αt}t∈� of automorphisms, it is useful to represent the abstract C∗-algebra
on a Hilbert space. The GNS (Gelfand-Naimark-Segal) representation provides a
procedure how to construct canonically a representation πω : A → B(Hω) into the
bounded operators on a Hilbert space Hω, such that

ω(A) = 〈Ωω | πω(A)Ωω 〉Hω
,

where the vector representative Ωω ∈ Hω is cyclic w.r.t. πω(A), i.e., the set
{πω(A)Ωω |A ∈ A} is dense in Hω. For an exposition of the GNS construction
refer to [10, Sect. 2.3.3] and [17, Sect. III.2.2], as well as to [18]. In the case that ω
is a faithful state, i.e., it holds

ω(A∗A) = 0 ⇐⇒ A = 0,

the vector Ωω is also separating for πω(A), i.e., πω(A)Ωω = 0 implies already A = 0.
Note that all KMS states are faithful.
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Since the weak closure of the image of A under πω, the algebra πω(A)′′, is a
von Neumann algebra, it makes sense to extend the notion of normal states to
πω-normality. A state η on A is called relative normal w.r.t. ω or ω-normal or
πω-normal, if there is a density matrix ρ ∈ L1(Hω) such that

η(A) = tr (ρ πω(A)) .

The states on A which are ω-normal are collected in the set

Nω(A) :=
{
η ∈ E(A)

∣∣ ∃ ρ ∈ L1(Hω) : η = tr(ρπω( · ))
}

.

The physical significance of relative normality is that two states normal w.r.t. each
other have a finite relative entropy which means that one state can be prepared out
of the other one by changing the entropy only by a finite amount. The mathematical
concept of relative entropy of two relatively normal states is discussed further down.

We will see in a moment that ω-normal states can always be represented as vector
states in the representation πω provided that ω is faithful. For this insight we need
the standard form associated with the GNS triple (Hω, πω, Ωω). Let us assume that
Ωω is cyclic and separating for

Mω := πω(A)′′

as it is guaranteed for a faithful state ω. The assignment

Sω :MωΩω →MωΩω, AΩω �→ A∗Ωω

is well defined as an anti-linear operator with dense domain. It is closable and the
closure shall also be denoted by Sω. The adjoint anti-linear operator Fω = S∗

ω is
given by the closure of

Fω :M′
ωΩω →M′

ωΩω, A′Ωω �→ A′∗Ωω.

The polar decomposition of Sω,

Sω = Jω∆1/2
ω ,

defines the anti-unitary operator Jω, the so-called modular conjugation, and the
self-adjoint, positive modular operator

∆ω := S∗
ωSω.

The modular conjugation obeys

Jω = J∗
ω = J−1

ω and Jω∆1/2
ω = ∆−1/2

ω Jω.
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It is due to a theorem of Tomita-Takesaki (see [10, Thm. 2.5.14] and [17, Sect. V.2.1,
Thm. 2.1.1]) that

JωMωJω =M′
ω and

∆it
ωMω∆−it

ω =Mω ∀ t ∈ �.
(1.3)

The first relation of (1.3) implies that

π′
ω : A →M′

ω ⊆ B(Hω), π′
ω(A) := Jωπω(A)Jω

is an anti-linear representation of A into the bounded operator on Hω commuting
with the representation πω. The group σω = {σt

ω}t∈�,

σt
ω :Mω →Mω, σt

ω(A) := ∆it
ωA∆−it

ω ,

is referred to as modular automorphism group. We denote by

Lω := − s-lim
t→0

∆it
ω − �Hω

it
= − ln(∆ω)

the generator of the group {∆it
ω}t∈�.

We further introduce the natural positive cone associated with the pair (Mω, Ωω),

Pω := {AJωAΩω |A ∈Mω }.

It is a consequence of Tomita-Takesaki’s theory that

Jωξ = ξ ∀ ξ ∈ Pω and

∆it
ωPω = Pω ∀ t ∈ �.

The crucial property of Pω is that each ω-normal state η has a unique vector repre-
sentative in Pω, i.e., there exists a unique ξ ∈ Pω such that

η(A) = 〈 ξ | πω(A)ξ 〉Hω
.

Furthermore, the modular conjugation Jη and the positive cone Pη associated with
an ω-normal faithful state η obey

Jη = Jω and Pη = Pω (1.4)

by [10, Prop. 2.5.30]

Given two faithful ω-normal states ηj = 〈 ξj | π( · )ξj 〉Hω
, j = 1, 2, with ξj ∈ Pω

being the unique vector representatives from the natural cone, we define the relative
modular operator

∆η1,η2 := S∗
η1,η2

Sη1,η2
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where the anti-linear operator Sη1,η2 is the closure of the map

Mωξ2 →Mωξ1, Aξ2 �→ A∗ξ1. (1.5)

The fact that the states η1 and η2 are faithful implies that the vectors ξ1, ξ2 are
separating forMω = πω(A)′′. Since the vectors ξj are chosen from Pω we know from
[10, Prop. 2.5.30] that the vectors are cyclic w.r.t. Mω as well. This makes the
assignment (1.5) well defined as an anti-linear operator on a dense domain. With
the help of the relative modular operator we introduce the notion of relative entropy
of the state η2 w.r.t. η1,

Ent(η2|η1) := 〈 ξ2 | log (∆η1,η2) ξ2 〉Hω
.

The relative entropy of two states not normal w.r.t. each other is set to be −∞.
Therefore, relative normality measures how far two states are separated in a entropy
sense. Fundamental properties of the relative entropy are

Ent(η2|η1) ≤ 0

for all relative ω-normal states η1, η2 and

Ent(η2|η1) = 0 ⇐⇒ η1 = η2,

c.f. [11, Sect. 6.2.3].

We are going to apply the modular structure to lift the time evolution α = {αt}t∈�
given on the C∗-algebra A to πω(A)′′. For (A, α) being a C∗- or W ∗-dynamical
system and ω a faithful state (which is assumed to be normal in the W ∗-algebra
context) we find a strongly continuous group t �→ Uω(t) of unitary operators Uω(t)
on Hω leaving the positive cone Pω invariant,

Uω(t)Pω ⊆ Pω ∀ t ∈ �,

such that
πω

(
αt(A)

)
= Uω(t) πω(A) Uω(−t) ∀A ∈ A,

c.f. [10, Cor. 2.5.32] The infinitesimal generator

Lω := s-lim
t→0

Uω(t)− �Hω

it

is the self-adjoint standard Liouville operator or standard Liouvillean associated to
the dynamical datum (A, α, ω). It is worth to note that the Liouville operator
anti-commutes with the modular conjugation,

LωJω = −JωLω
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and therefore the group {eiLωt}t∈� commutes with Jω,

eiLωtJω = JωeiLωt

because of the anti-linear nature of Jω.

Because of the invariance of the positive cone Pω under Uω(t) = eiLωt and the
unique representation of ω-normal states by vectors in Pω, the elements of the kernel
of the Liouville operator are in a one-to-one correspondence to the α-stationary, ω-
normal states. This is meant in the sense that

ξ �→ 〈 ξ |πω( · )ξ 〉Hω

is a bijection from the set
{
ξ ∈ ker(Lω) ∩ Pω

∣∣ ‖ξ‖Hω
= 1
}

in the set of all α-
stationary, ω0-normal states, c.f. [10, Thm. 2.5.31]. Moreover, it holds

ker(Lω) = {0} ⇐⇒
{
η ∈ Nω(A)

∣∣ η ◦ αt = η ∀ t ∈ �
}

= ∅ (1.6)

and

ker(Lω) = �Ψ, ‖Ψ‖Hω
= 1 (1.7)

⇐⇒
{
η ∈ Nω(A)

∣∣ η ◦ αt = η ∀ t ∈ �
}

= {〈Ψ |πω( · )Ψ 〉}.

The article [14] provides a good summary of the above connections, we refer the
reader in particular to [14, Thm. 2.12]. Therefore, the standard Liouville operator
Lω – or rather its spectrum – is the appropriate object to study the dynamics of
ω-normal states. Note, that the Liouville operator for a fixed dynamics α does not
change if we build it w.r.t. an ω-normal state η instead w.r.t. ω itself, i.e.,

Lω = Lη.

This goes back to (1.4) and the fact that η is represented in terms of πω.

So far we did not discuss to which extend information about KMS states is encoded
in the Liouville operator. However, the state ω is an α-KMS state to the inverse
temperature β > 0 if and only if α is lifted to the modular automorphism group σ
in the sense that for all A ∈ A

πω

(
α−βt(A)

)
= ∆it

ωπω(A)∆−it
ω

holds. This is equivalent to

∆ω = e−βLω or Lω = βLω. (1.8)

Thus, the operator Lω is the Liouville operator of the time evolution under which
ω becomes a KMS state w.r.t. the inverse temperature one.
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1.1.3 Local Perturbations and Structural Stability of KMS
States

We perform a local perturbation on a C∗- or W ∗-dynamical system (A, α). For a
self-adjoint element P = P ∗ ∈ A we define the perturbed automorphism group
αP = {αt

P}t∈� by a Dyson series

αt
P (A) := αt(A) +

∞∑
n=1

in
t∫

0

dt1 . . .

tn−1∫
0

dtn
[
αtn(P ),

[
. . . ,
[
αt1(P ), αt(A)

]]]
,

which is well defined by [11, Prop. 5.4.1]. For a state ω on A we build the standard
form (Hω, πω, Ωω,Pω, Lω), where Lω is the Liouville operator w.r.t. the unperturbed
time evolution α. The Liouville operator LP,ω corresponding to ω w.r.t. the per-
turbed time evolution αP is given by

LP,ω := Lω + πω(P )− π′
ω(P ). (1.9)

If we assume that ω is an (α, β)-KMS state then the structural stability of KMS
states, c.f. [11, Thm. 5.4.4], implies that Ωω ∈ D(e−β(Lω+πω(P ))/2) and that
(Hω, πω, ΩP,ω,Pω, LP,ω) with

ΩP,ω :=
e−β(Lω+πω(P ))/2Ωω

‖e−β(Lω+πω(P ))/2Ωω‖

is the modular information of the state

ωP := 〈ΩP,ω |πω( · )ΩP,ω 〉

which is an (αP , β)-KMS state. This state is the only ω-normal (αP , β)-KMS state
if and only ifMω = πω(A)′′ is a factor, i.e.,Mω ∩M′

ω = ��Hω .

Given a faithful ω-normal state η = 〈 ξ |πω( · )ξ 〉 with ξ ∈ Pω we study the relative
entropy of the time evolved state η◦αt

P w.r.t. the reference state ω which we assume
to be invariant under the unperturbed time evolution {αt}t∈�. It is a result from
[26, 29] that

Ent
(
η ◦ αt

P |ω
)

= Ent(η|ω)−
t∫

0

ds
〈
ξ
∣∣ eiLP,ωs[π(P ), iLω]e−iLP,ωsξ

〉

≡ Ent(η|ω)−
t∫

0

ds η ◦ αs
P (δω(P )), (1.10)
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a relation which we are henceforth referring to as entropy production formula, where
we implicitly assume that there exists a derivation δω on A such that P is in its
domain and that

π (δω(P )) = [π(P ), iLω]

holds. The observable

sP,ω := δω(P ) (1.11)

is then called entropy production rate observable of the perturbed system w.r.t. the
state ω. This name is motivated by the following relation which one obtains by
differentiating (1.10),

∂t Ent(η ◦ αt
P |ω) = −η ◦ αt

P (sP,ω).

The entropy production rate functional

Epω : Nω(A)→ �, Epω(η) := η(sP,ω)

assigns the expectation value of the entropy production rate to an ω0-normal state.

Having the abstract structure of quantum statistical models at hand we transfer
it to the concrete system involved in this work. We proceed with our demonstration
as follows. At first, we consider the sub-systems, the particle system (Section 1.2),
and the photon reservoir (Section 1.3), separately. We review the zero temperature
model of each sub-system by defining a suitable Hilbert space and a Hamilton oper-
ator. In a second step we introduce the physically relevant measurands, the algebra
of observables, and the set of states on this algebra. The dynamics on observables
will be given in the Heisenberg picture generated by the Hamiltonian of the corre-
sponding sub-system. We identify a distinguished state which describes the system
at thermal equilibrium at a given temperature, the Gibbs state, or, more general,
the KMS state. For the equilibrium state we choose a suitable GNS representation
of the observables as bounded operators on a suitable Hilbert space, occasionally
referred to as thermal Hilbert space, and introduce the modular structure.

Equipped with the positive temperature model for each sub-system we plug them
together to get all the mathematical objects to describe simultaneously the dynamics
of the (so far non-interacting) sub-systems. However, in the case that the sub-
systems are at different temperatures the system is in a stationary state but not in
an equilibrium state. In a last step we add interaction to the model and study how
the subsystems, once at thermal equilibrium, evolve under the interacting dynamics.
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Figure 1.1: Spectrum of the particle Hamiltonian.

1.2 The Particle System

1.2.1 Particle Hilbert Space and Hamiltonian

We choose the particle system to be a simplified model for an atom or a molecule with
finite many energy levels (and no continuous spectrum). This model is described on
a particle Hilbert space

Hp = �
N .

The particle dynamics is generated by the self-adjoint particle Hamiltonian Hp which
is diagonalized in an orthonormal basis {ϕj}j=0,1,...,N−1 in Hp,

Hpϕj = Ejϕj.

For convenience we assume that the eigenvalues are increasingly ordered,

E0 ≤ E1 ≤ · · · ≤ EN−1 ≤ 0 (1.12)

and are represented in the sequence {Ej}j=0,1,...,N−1 corresponding to their degree
of degeneracy. In particular, the particle system has a ground state ϕ0 with ground
state energy E0. The spectrum of Hp is illustrated in Figure 1.1.

1.2.2 Particle Observables and Time Evolution

For the particle system we choose the algebra of observables as

Ap := B(Hp),

the W ∗-algebra of bounded operators on Hp. The set of states on Ap is given by

E(Ap) =
{
η ∈ A∗

p

∣∣ ∃ ρ = ρ∗ ∈ L1(Hp), 0 ≤ ρ ≤ 1, tr(ρ) = 1 : η = tr(ρ( · ))
}

,

thus all states on Ap are normal. Therefore, the relative entropy between two
different states is finite. We call such a system a finite system.
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The Hamilton operator Hp induces a one-parameter group αp = {αt
p}t∈� of auto-

morphisms on Ap, the time evolution in the Heisenberg picture, via

αt
p(A) := eiHptAe−iHpt.

The Planck constant is set one. Note, that αp is strongly continuous as a family of
operators on Ap and therefore (Ap, αp) defines a C∗- and W ∗-dynamical system.

1.2.3 Gibbs State and GNS Representation

The entropy of a finite system in a state ω = [A �→ tr(ρA)] for a density matrix ρ is
given by

S(ω) := − tr (ρ ln(ρ)) . (1.13)

A thermal equilibrium is characterized as a state which maximizes the entropy under
certain constraints. For the canonical ensemble, which we are considering here, the
mean energy ω(Hp) is specified (while apparently the concept of particle number
fluctuation is not given for a finite system). Maximizing (1.13) under ω(Hp) = const
we obtain the equilibrium state ωp given by

ωp(A) := Z−1 tr
(
e−βpHpA

)
, (1.14)

where the Lagrangian multiplier βp plays the role of the inverse temperature of the
particle system and the normalization factor

Z ≡ Z(βp) := tr
(
e−βpHp

)
(1.15)

represents the partition function. The equilibrium state (1.14) is referred to as
Gibbs state in which the energy levels are occupied by a Boltzmann distribution.
The finiteness of Z(βp) is the criterion for the existence of the Gibbs state and it is
the characterization of a so-called finite system. We denote by

ρp := Z−1e−βpHp

the equilibrium density matrix. We note that the Gibbs state (1.14) is time invariant,
i.e.,

ωp ◦ αt
p = ωp

for all t ∈ �, because of the cyclicity of the trace and the commutativity of ρp with
eiHpt.

To be consistent with the definition of an equilibrium state in Section 1.1.1 we
have to verify that the Gibbs state fulfils the KMS condition (1.2). Given two
observables A,B ∈ Ap we define the function

FA,B : �→ �, FA,B(z) := ωp

(
Aαz

p(B)
)

= Z−1 tr
(
e−βpHpAeizHpBe−izHp

)
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which is obviously an entire function fulfilling FA,B(t) = ωp(Aαt
p(B)) and also

FA,B(t + iβp) = Z−1 tr
(
e−βpHpAe−βpHpeitHpBe−itHpeβpHp

)
= Z−1 tr

(
e−βpHpeitHpBe−itHpA

)
= ωp

(
αt

p(B)A
)

for all t ∈ �. The KMS condition therefore generalizes the Gibbs characterization of
equilibrium states. For systems with infinite partition function (1.15) (in particular,
if the Hamiltonian has continuous spectrum) the Gibbs state cannot be defined and
the KMS characterization replaces it.

We go over to write the Gibbs state ωp in its GNS representation. The GNS
construction provides us with a faithful ∗-representation πp of the algebra Ap as
bounded operators on a suitable Hilbert space H2

p such that ωp can be expressed as
a vector state,

ωp(A) = 〈Ωp |πp(A)Ωp 〉H2
p
,

with a cyclic and separating (w.r.t. πp(Ap)
′′) vector representative Ωp ∈ H2

p. We
start the GNS construction by defining the Hilbert space H2

p on which the represen-
tation will act,

H2
p := L2(Hp),

the space of Hilbert Schmidt operators on Hp. We are aware that for the finite di-
mensional Hilbert space Hp the operator spaces B(Hp) and L2(Hp) coincide. How-
ever, for the sake of a more general exhibition of the GNS construction for Gibbs
states over infinite dimensional Hilbert spaces we differentiate between these two
spaces. The Hilbert Schmidt operators naturally form a Hilbert space with inner
product

〈A |B 〉H2
p

:= tr(A∗B).

Next, we introduce the representation πp by

πp : Ap → B(H2
p), πp(A)B := AB, (1.16)

for A ∈ Ap = B(Hp), B ∈ H2
p = L2(Hp). Since L2(Hp) is a two-sided ideal in B(Hp)

the representation πp is well defined. It is obvious that πp is injective and it is easy
to see that πp(A) is a bounded operator on H2

p,

‖πp(A)B‖2H2
p

= tr((AB)∗AB) = tr(A∗ABB∗)

≤ ‖A∗A‖Ap
tr(B∗B) = ‖A‖2Ap

‖B‖2H2
p
.

We show that πp is a ∗-morphism which immediately implies that πp is norm pre-
serving (see, e.g., [10, Sect. 2.3.1]). Let A ∈ Ap and B,C ∈ H2

p, then

〈C | πp(A)∗B 〉H2
p

= 〈 πp(A)C |B 〉H2
p

= tr ((AC)∗B)

= tr(C∗A∗B) = 〈C |πp(A
∗)B 〉H2

p
.
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We distinguish a vector in H2
p by defining

Ωp := ρ1/2
p = Z−1/2e−βpHp/2,

note that Ωp is Hilbert Schmidt because ρp is trace class, and observe that

〈Ωp | πp(A)Ωp 〉H2
p

= tr
([

ρ1/2
p

]∗
Aρ1/2

p

)
= tr(ρpA) = ωp(A). (1.17)

It remains to show that Ωp is cyclic and separating for πp(Ap). To this end

consider 0 = πp(A)Ωp = Aρ
1/2
p . The operator ρ

1/2
p is invertible on a dense domain,

so A vanishes on a dense domain. It follows A = 0 by continuity and therefore Ωp is a
separating vector. To show cyclicity consider the projections Pν =

∑ν
j=0 |ϕj〉 〈ϕj| ∈

H2
p. The set {APν |A ∈ Ap, ν = 0, 1, . . . } is a dense subset of H2

p. Note that ρ
1/2
p is

bounded invertible on the range of each Pν and therefore Aρ
−1/2
p Pν is an element of

Ap and πp(Aρ
−1/2
p Pν)Ωp = APν . This shows that Ωp is cyclic.

It is convenient to modify the representation using the following isometric isomor-
phism

V : L2(Hp)→ Hp ⊗Hp, |φ〉
〈
ψ
∣∣ �→ φ⊗ ψ,

from the Hilbert Schmidt operators into the tensor product of Hp with itself.
Thereby, ψ denotes the complex conjugation of ψ in the basis {ϕj}j=0,1,...,N−1, i.e.,

N−1∑
j=0

ajϕj :=
N−1∑
j=0

ajϕj.

The isomorphism V transforms the GNS representation,

V πp(A)V −1φ⊗ ψ = V |Aφ〉
〈
ψ
∣∣ = (Aφ)⊗ ψ = (A⊗ �Hp)φ⊗ ψ,

and the cyclic vector,

V Ωp = Z−1/2V

N−1∑
j=0

e−βpEj/2 |ϕj〉 〈ϕj| = Z−1/2

N−1∑
j=0

e−βpEj/2ϕj ⊗ ϕj.

Identifying H2
p with Hp⊗Hp, πp with V πp( · )V −1, and Ωp with V Ωp we can express

the GNS representation by

πp : Ap → H2
p = Hp ⊗Hp, πp(A) := A⊗ �Hp ,

Ωp := Z−1/2

N−1∑
j=0

e−βpEj/2ϕj ⊗ ϕj.
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1.2.4 Modular Structure of the Particle System

The cyclic and separating property of Ωp w.r.t. Mp := πp(Ap)
′′ = B(Hp) ⊗ �Hp

allows us to introduce the anti-linear map

Sp :MpΩp →MpΩp, (A⊗ �Hp)Ωp �→ (A∗ ⊗ �Hp)Ωp.

Introducing the anti-unitary operator

Jp : H2
p → H2

p, Jp(φ⊗ ψ) := ψ ⊗ φ,

and the self-adjoint, positive operator

∆p := e−βpHp ⊗ eβpHp ,

we can decompose
Sp = Jp∆

1/2
p (1.18)

into the product of the particle modular conjugation and the particle modular op-
erator because of

Jp∆
1/2
p (A⊗ �Hp)Ωp = Jp(e

−βpHp/2A⊗ eβpHp/2)Ωp

= Z−1/2

N−1∑
j=0

e−βpEj/2Jp(e
−βpHp/2A⊗ eβpHp/2)(ϕj ⊗ ϕj)

= Z−1/2

N−1∑
j=0

Jp(e
−βpHp/2Aϕj ⊗ ϕj)

= Z−1/2

N−1∑
j=0

(ϕj ⊗ e−βpHp/2Aϕj)

= Z−1/2

N−1∑
j,k=0

(ϕj ⊗ e−βpEk/2〈ϕk |Aϕj 〉ϕk)

= Z−1/2

N−1∑
j,k=0

e−βpEk/2(〈ϕj |A∗ϕk 〉ϕj ⊗ ϕk)

= Z−1/2

N−1∑
k=0

e−βpEk/2(A∗ϕk ⊗ ϕk)

= (A∗ ⊗ �Hp)Ωp

= Sp(A⊗ �Hp)Ωp.

Thus, the operator Jp is the modular conjugation and ∆p the modular operator for
the particle system.
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We obtain the anti-linear representation

π′
p : Ap → B(H2

p), π′
p(A) := Jpπp(A)Jp = �Hp ⊗ A,

commuting with πp, where A emerges from the matrix A by taking the complex
conjugate of all entries w.r.t. the basis {ϕj}j=0,1,...,N−1 , i.e.,〈

ϕk

∣∣Aϕj

〉
:= 〈ϕk |Aϕj 〉 = 〈ϕj |A∗ϕk 〉 .

Further, the positive cone associated to (πp(A), Ωp) is given by

Pp := {πp(A)Jpπp(A)Ωp |A ∈ Ap } =
{
(A⊗ A)Ωp

∣∣A ∈ Ap

}
.

1.2.5 Liouville Operator and Thermal Relaxation Properties

The Liouville operator for the particle system can easily be derived from the general
relation (1.8) using the fact that ωp is a β-KMS state,

Lp := Hp ⊗ �Hp − �Hp ⊗Hp,

and one easily verifies that

πp(α
t
p(A)) = eiLptπp(A)e−iLpt

and that the group eiLpt leaves the positive cone Pp invariant. The spectral repre-
sentation of Lp reads

Lp =
N−1∑
j,k=0

Ej,k |ϕj,k〉 〈ϕj,k| ,

where
{ϕj,k := ϕj ⊗ ϕk}j,k=0,1,...,N−1

is an orthonormal basis in H2
p = Hp ⊗Hp and

spec(Lp) = {Ej,k := Ej − Ek | j, k = 0, 1, . . . , N − 1 }
is the spectrum of Lp, c.f. Figure 1.2.

The abstract modular theory elaborated in Section 1.1.2 applied to the particle
system implies that the stationary states are given by convex combinations of the
states

ηj := 〈ϕj,j | πp( · )ϕj,j 〉H2
p
,

where the vectors ϕ1,1, . . . , ϕN−1,N−1 build an orthonormal basis of the kernel of the
particle Liouville operator Lp. Therefore, there exist configurations of the system
which are close (in the sense that the relative entropy is finite) to the equilibrium
state ωp not thermally relaxing into the equilibrium as time goes by. We say that
the finite particle system does not feature the return to equilibrium property.
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Figure 1.2: Spectrum of the particle Liouvillean.

1.3 The Photon Reservoir

1.3.1 Fock Space, CCR, and Free Field Hamiltonian

We shortly review the description of photons in second quantization. Standard
references are [11, 38, 43]. The configurations of a single photon are given by square
integrable functions over �3, i.e., the one-photon dynamics can be described in

h1 := L2[�3].

We neglect that a photon also carries a polarization degree of freedom. As it turned
out, the polarization has no influence on the result about thermal relaxation and
can be dropped for simplicity. The model we are describing here is rather a model
for phonons or scalar bosons in general. However, we will refer to this system as
photon or radiation fields – and later simply as heat reservoir. A system of ν un-
distinguishable photons is described in

hν := SνL
2[�3ν ],

where the projection Sν onto absolutely symmetric ν-particle wave functions reflects
the fact that photons are bosons and therefore obey the Bose-Einstein statistics .
The orthogonal projection Sν is given by

[Sνψν ] (�k1, . . . , �kν) :=
1

ν!

∑
π∈Sν

ψν(�kπ1, . . . , �kπν)

where ψν ∈ hν and �kj ∈ �3 is the momentum variable of the jth particle (we choose
the momentum representation for convenience) and Sν denotes the symmetric group
of permutations of ν elements. The quantized photon field is realized on the bosonic
Fock space F(h1) over the one-particle space h1,

Hf := F(h1) =
∞⊕

ν=0

Sν

[
h1 ⊗ · · · ⊗ h1︸ ︷︷ ︸

n-times

]
=

∞⊕
ν=0

hν , (1.19)
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understood as the set of all sequences (ψν ∈ hν)ν∈�0 which are square summable,
i.e.,

∞∑
ν=0

‖ψν‖2hν
<∞.

The norm ‖ · ‖hν
is the usual L2-norm in hν . The zero particle (or vacuum) sector

h0 is set to be the complex field,

h0 := �,

and is spanned by the vacuum vector

Ωvac := (1, 0, 0, . . . ) ∈ h0.

The Fock space (1.19) equipped with the canonical inner product

〈 (ψν ∈ hν)ν | (ϕν ∈ hν)ν 〉Hf
:=

∞∑
ν=0

〈ψν |ϕν 〉hν

becomes a Hilbert space, where

〈ψν |ϕν 〉hν
:=

∫
�3ν

ψν(k)ϕν(k) d3νk

is the usual L2 inner product in hν . The bosonic Fock space is the configuration
space of a single photon field at zero temperature.

The Fock space Hf = F(h1) carries a representation of the canonical commutation
relations (CCR). We introduce the algebra of creation and annihilation operators.
Given a single photon state f ∈ h1 and a ν-photon state ψν ∈ hν the creation
operator a∗(f) maps ψν to a (ν + 1)-photon state by “adding” f to the ν-particle
configuration via

a∗(f)ψν :=
√

ν + 1Sν+1 [f ⊗ ψν ] ∈ hν+1 (1.20)

and the annihilation operator a(f) maps ψν to a (ν−1)-photon state by eliminating
f from the ν-particle configuration via

a(f)ψν :=

[
(�k1, . . . , �kν−1) �→

√
ν
〈

f
∣∣∣ψν( · , �k1, . . . , �kν−1)

〉
h1

]
∈ hν−1. (1.21)

We make the convention that creation and annihilation operators act on the vacuum
state Ωvac as follows,

a∗(f)Ωvac := f ∈ h1,

a(f)Ωvac := 0.
(1.22)
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The definitions (1.20, 1.21) lead to the following bounds of the creation and annihi-
lation operators,

‖a∗(f)ψν‖hν+1
≤
√

ν + 1 ‖f‖h1
‖ψν‖hν

‖a(f)ψν‖hν−1
≤
√

ν ‖f‖h1
‖ψν‖hν

(1.23)

for ψν ∈ hν . We extend the creation and annihilation operators to closed operators
on the dense domain

D(a∗(f)) = D(a(f)) = D(N
1/2
f ) :=

{
(ψν ∈ hν)ν ∈ F

∣∣∣∣∣
∞∑

ν=0

ν ‖ψν‖2hν
<∞

}

by defining
a#(f)(ψν ∈ hν)ν := (a#(f)ψν ∈ hν±1)ν ,

where a#(f) either stands for a(f) or a∗(f) (subsequently we will use the sharp sym-
bol # without further remarks to make statements about creation and annihilation
operators at the same time). It is easy to show that a∗(f) is the adjoint operator of
a(f) and vice versa, c.f. [11, 35, 38]. We remark that, by (1.23), the creation and
annihilation operators are relatively bounded w.r.t. the square root of the photon
number operator Nf , ∥∥a∗(f)(Nf + 1)−1/2

∥∥
F(h1)

≤ ‖f‖h1
,∥∥a(f)(Nf + 1)−1/2

∥∥
F(h1)

≤ ‖f‖h1
,

(1.24)

where the number operator acts on a vector ψ = (ψν ∈ hν)ν from

D(Nf) :=

{
(ψν ∈ hν)ν ∈ F

∣∣∣∣∣
∞∑

ν=0

‖νψν‖2hν
<∞

}
as

Nfψ := (νψν ∈ hν)ν .

Further, the creation and annihilation operators fulfil the following commutation
relations, the CCR,

[a∗(f), a∗(g)] = [a(f), a(g)] = 0,

[a(f), a∗(g)] = 〈 f | g 〉h1
.

(1.25)

We remark that (1.20, 1.22) imply the density of the set

span {a∗(fn) · · · a∗(f1)Ωvac | f1, . . . , fn ∈ h1, n ∈ �0 }
dense

⊆ Hf (1.26)

in the Fock space.
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Let now ψν ∈ hν be a C∞
0 -function, that is, a smooth function with compact

support. For a concrete momentum �k we define the “pointwise” annihilation op-
erator a(�k) which eliminates a photon with the given momentum �k (rather than a
momentum distribution f) from the ν-photon configuration ψν by

a(�k)ψν :=
√

ν ψν(�k, · ) ∈ hν−1. (1.27)

From the Equations (1.21, 1.27) one can conclude that

a(f) =

∫
�3

f(�k)a(�k) d3�k, (1.28)

in a strong sense, initially on C∞
0 -functions in hν , but can be extended to all states

in D(N
1/2
f ). The operator a∗(�k) which creates a photon with a concrete momentum

�k can be defined in the form sense as〈
ϕ
∣∣∣ a∗(�k)ψ

〉
F(h1)

:=
〈

a(�k)ϕ
∣∣∣ψ 〉

F(h1)
.

The operators a∗(f) and a∗(�k) are related via

a∗(f) =

∫
�3

f(�k)a∗(�k) d3�k, (1.29)

to be understood in the form (or weak) sense. The objects a∗(�k) and a(�k) are oper-
ator valued distributions and can be understood formally as the operators defined
in (1.20) and (1.21) with a Dirac delta momentum distribution f = δ(( · )− �k). We
refer the reader to [35, 38, 44] for a more detailed discussion on this subject. We
note that the CCR (1.25) translate to[

a∗(�k), a∗(�k′)
]

=
[
a(�k), a(�k′)

]
= 0,[

a(�k), a∗(�k′)
]

= δ(�k − �k′),
(1.30)

the version of the CCR for the “pointwise” creation and annihilation operators.

The relativistic energy-momentum relation, the dispersion relation, for a free
massless photon reads

ω(�k) =
√

�k2 = |�k|. (1.31)

The energy operator for a non-interacting photon field can be obtained by lifting
the dispersion relation (1.31) to the Fock space F(h1) by second quantization,

Hf := dΓ(ω) ≡
∫
�3

a∗(�k)ω(�k)a(�k) d3�k.
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0

Figure 1.3: Spectrum of the free field Hamiltonian.

The free field Hamiltonian Hf acts on a ν-photon state ψν ∈ hν as

[Hfψν ] (�k1, . . . , �kν) =
(
ω(�k1) + · · ·+ ω(�kν)

)
ψν(�k1, . . . , �kν).

Zero is the only eigenvalue of Hf and its kernel is spanned by the Fock vacuum Ωvac.
The rest of the spectrum covers the positive real axis and is absolutely continuous
away from zero, see Figure 1.3. The Hamiltonian is self-adjoint on its natural domain

D(Hf) :=
{

(ψν ∈ hν)ν ∈ Hf

∣∣∣
∞∑

ν=1

∫
�3ν

∣∣∣(ω(�k1) + · · ·+ ω(�kν)
)

ψν(�k1, . . . , �kν)
∣∣∣2 d3νk <∞

}
.

At the end of this section we establish a tool which will be useful for later com-
putations. Given a measurable function F : � → � we can build by functional
calculus a closed operator F (Hf) defined on

D(F (Hf)) :=
{

(ψν ∈ hν)ν ∈ F
∣∣∣

∞∑
ν=1

∫
�3ν

∣∣∣F (ω(�k1) + · · ·+ ω(�kν)
)

ψν(�k1, . . . , �kν)
∣∣∣2 d3νk <∞

}

which is acting on a ν-photon state ψν as follows,

[F (Hf)ψν ] (�k1, . . . , �kν) = F
(
ω(�k1) + · · ·+ ω(�kν)

)
ψν(�k1, . . . , �kν).

Although the operator F (Hf) is not commuting with a(�k) and a∗(�k), resp., there is
a simple relation which allows us to interchange the order of applications on vectors
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of the Fock space. Given a ν-photon state ψν ∈ hν we have[
a(�k)F (Hf)ψν

]
(�k1, . . . , �kν−1)

=
√

ν [F (Hf)ψν ] (�k,�k1, . . . , �kν−1)

=
√

ν F
(
ω(�k) + ω(�k1) + · · ·+ ω(�kν−1)

)
ψν(�k,�k1, . . . , �kν−1)

= F
(
ω(�k) + ω(�k1) + · · ·+ ω(�kν−1)

) [
a(�k)ψν

]
(�k1, . . . , �kν−1)

=
[
F
(
Hf + ω(�k)

)
a(�k)ψν

]
(�k1, . . . , �kν−1).

This computation and a similarly one for F (Hf)a
∗(�k) show that

a(�k)F (Hf) = F
(
Hf + ω(�k)

)
a(�k),

a∗(�k)F
(
Hf + ω(�k)

)
= F (Hf)a

∗(�k),
(1.32)

on suitable domains, a relation which is known as pull through formula.

The construction of a Fock space over a general L2-space or even over an abstract
Hilbert space is explained in [11, Sect. 5.2.1-5.2.2]. Since all the concepts are literally
the same as in the concrete example presented in this section we spare a further
discussion on this topic and refer to the mentioned monograph for more details.

1.3.2 Dynamics on the Weyl Algebra

The measurements on the photon field correspond to the field operators

Φ(f) :=
1√
2

[a∗(f) + a(f)]

and their canonical conjugated “momentum” operators

Π(f) := Φ(if) =
i√
2

[a∗(f)− a(f)] .

These operators operators extend to self-adjoint operators on Hf . However, they
are unbounded and do not establish a C∗-algebra of operators. This motivates us
to go over to the Weyl operators

W (f) := eiΦ(f),

for f ∈ h1, which are unitary on Hf because of the self-adjointness of Φ(f). We
define our algebra of photon observables as the C∗-algebra generated by W (f),

Af :=W(Df) ≡ span {W (f) | f ∈ Df }
‖ · ‖B(Hf ) , (1.33)
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where W(Df) is the Weyl algebra over the dense set

Df :=
{
f ∈ h1

∣∣ω−1/2f ∈ h1

}
(1.34)

of allowed form factors, and the closure in (1.33) is taken in the uniform norm
‖ · ‖B(Hf)

of bounded operators on Hf . The additional assumption on the infrared

behavior, ω−1/2f ∈ h1, is necessary to define an equilibrium state on Af as we will
see later. Note that the field operators can be approximated in a strong sense by
linear combinations of Weyl operators since Φ(f) is the infinitesimal generator of
the strongly continuous one parameter group � � t �→ W (tf).

The Weyl operators inherit the CCR from the creation and annihilation operators,
they read

W (f)W (g) = e−
i
2
Im〈 f | g 〉h1W (f + g) = e−iIm〈 f | g 〉h1W (g)W (f), (1.35)

for a proof see [11, Prop. 5.2.4]. It is worth to mention that the vacuum vector Ωvac

is a cyclic vector for the Weyl algebra Af . This follows from (1.26) and the fact that
the creation operator a∗(f) can be expressed in terms of the infinitesimal generator
of t �→ W (tf) as

a∗(f) =
1√
2
[Φ(f)− iΦ(if)].

For computations to come, we also compute the vacuum expectation value of a Weyl
operator. To this end we first remark that any ν-photon state ψν ∈ hν is an analytic
vector for Φ(f), it holds due to (1.23)

‖Φ(f)nψν‖Hf
≤

2 ‖f‖h1√
2

√
n + ν + 1

∥∥Φ(f)n−1ψν

∥∥
Hf

≤
(√

2 ‖f‖h1

)n

√
(n + ν + 1)!

(ν + 1)!
‖ψν‖hν

and therefore

∞∑
n=0

|s|n
n!
‖Φ(f)nψν‖Hf

≤ ‖ψν‖hν

∞∑
n=0

(√
2 |s| ‖f‖h1

)n

√
n!

√
(n + ν + 1)!

n!(ν + 1)!

≤ 2(ν+1)/2 ‖ψν‖hν

∞∑
n=0

(
2|s| ‖f‖h1

)n

√
n!

< ∞ (1.36)
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for all s ∈ �. In particular Ωvac is an analytic vector such that we may compute

〈Ωvac |W (f)Ωvac 〉Hf
=

∞∑
j=0

ij

j!

〈
Ωvac

∣∣Φ(f)jΩvac

〉
Hf

(1.37)

=
∞∑

j=0

(−1)j

(2j)!

〈
Ωvac

∣∣Φ(f)2jΩvac

〉
Hf

= exp

(
−1

4
‖f‖2h1

)
,

where we used 〈Ωvac |Φ(f)2j+1Ωvac 〉Hf
= 0 and

〈
Ωvac

∣∣Φ(f)2jΩvac

〉
Hf

=
1√
2

〈
Ωvac

∣∣Φ(f)2j−1a∗(f)Ωvac

〉
Hf

=
1√
2

〈
Ωvac

∣∣Φ(f)2j−2a∗(f)Φ(f)Ωvac

〉
Hf

+
‖f‖2h1

2

〈
Ωvac

∣∣Φ(f)2j−2Ωvac

〉
Hf

= . . . =
2j − 1

2
‖f‖2h1

〈
Ωvac

∣∣Φ(f)2j−2Ωvac

〉
Hf

= . . . =
(2j)!

j!4j
‖f‖2j

h1
.

and therein the commutation relation

[Φ(f), a∗(f)] =
‖f‖2h1√

2
.

The field Hamiltonian Hf generates the free time evolution {αt
f}t∈� on the Weyl

algebra Af by

αt
f(A) := eiHf tAe−iHf t. (1.38)

For a Weyl operator W (f), f ∈ h1, we can express the time evolution explicitly
using the pull through formula (1.32). Note first that

eiHf tΦ(f)e−iHf t =
1√
2

∫
�3

eiHf t
(
f(�k)a∗(�k) + f(�k)a(�k)

)
e−iHf t d3�k

=
1√
2

∫
�3

(
eiω(�k)tf(�k)a∗(�k) + e−iω(�k)tf(�k)a(�k)

)
d3�k

= Φ(eiωtf).

Further, we remark that the vectors ψ = (ψν ∈ hν)ν=0,...,m of the Fock space which
overlap with at most finitely many ν-photons sectors hν build a dense subset of
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analytic vectors for Φ(f), due to (1.36). For such a vector we may calculate

eiHf tW (f)e−iHf tψ =
∞∑

j=0

eiHf t
[iΦ(f)]j

j!
e−iHf tψ =

∞∑
j=0

[iΦ(eiωtf)]
j

j!
ψ = W (eiωtf)ψ

and get the time transformation law for Weyl operators as

αt
f(W (f)) = W (eiωtf),

known as Bogoliubov transformation. This shows that, indeed, {αt
f}t∈� is a group

of automorphisms αt
f : Af → Af . Although the map h1 � f �→ W (f) is strongly

continuous, i.e., for any ψ ∈ Hf we have W (fn)ψ → W (f)ψ whenever fn → f in h1,
the group {αt

f}t∈� is not strongly continuous. This is due to the fact that

‖W (f)− �Hf
‖B(Hf)

= 2 ∀f ∈ h1 \ {0},

see [11, Prop. 5.2.4].

1.3.3 Thermodynamic Limit and KMS State

In this section we are going to investigate the thermal equilibrium of a free photon
gas of finite density at a positive temperature Tf = 1/βf . The task is to introduce a
representation of the CCR corresponding to a KMS state which describes a photon
configuration with finite energy and particle density, in particular we study the
situation away from Bose-Einstein condensation.

The infinite extension of the photon system is reflected by the existence of con-
tinuous spectrum of Hf which is, as we will see later, responsible for dissipative
effects, i.e., energy transport to infinity. Unlike in the case of the finite particle
system the operator e−βfHf is no longer trace class. Thus, it is not possible to define
a Gibbs state on Af . We therefore refer to the photon system as a infinite sys-
tem. The construction of a KMS state for a photon gas of finite density uses the
thermodynamic limit process which will be illustrated in the following. We use the
publications [2, 18, 31] and [11, Sect. 5.2.5] as a guideline. The cyclic representation
corresponding to the KMS state which results from the subsequent considerations
was first derived by Araki and Woods in [2].

The occupation of configurations of photons in the infinite extended position
space �3 is considered as an inductive limit process where we restrict the photon
positions to increasing bounded regions Λ ⊆ �3. Each confined system represents
a finite system which allows the Gibbs classification of a thermal equilibrium state.
A controlled limit process which lets the box Λ grow to eventually include every
bounded region in �3 yields an equilibrium state of the infinitely extended system.
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For a bounded region Λ ⊆ �3 with a sufficiently regular boundary ∂Λ we introduce
the configuration Hilbert space of the confined photon field as

H(Λ)
f := F(h

(Λ)
1 )

which is the bosonic Fock space over the one-photon Hilbert space

h
(Λ)
1 :=

{
f ∈ h1

∣∣∣ f̂ = 0 a.e. on �
3 \ Λ

}
of wave functions f (in the momentum representation) whose Fourier transform f̂
is restricted to the region Λ, i.e., the photon is confined in position to Λ. A usual
choice for Λ would be a box Λ = [−�, �]3 of finite side length 2� > 0.

The one-photon Hamilton operator

h
(Λ)
f := Hf �

h
(Λ)
1

for the confined system is the restriction of Hf to h
(Λ)
1 . We note that the Fourier

transform of h
(Λ)
f is the square root of the negative Laplace operator, ĥ

(Λ)
f =

√
−∆ ,

restricted to L2(Λ). Imposing classical boundary conditions the operator h
(Λ)
f ex-

tends to a self-adjoint operator with discrete spectrum. For Λ = [−�, �]3 being a box
one usually imposes periodic boundary conditions.

The extension apparently depends on the boundary conditions which describe the
interaction of the photon gas with the “walls” ∂Λ of the box where it is captured.
Consequently, the dynamical behavior of the gas will depend on the boundary con-
ditions.

Further, the operator e−βfh
(Λ)
f is trace class on h

(Λ)
1 for any positive βf > 0. Choos-

ing a chemical potential µf ∈ � such that the shifted one-photon Hamiltonian is
striclty positive, i.e., h

(Λ)
f − µf�h

(Λ)
1
≥ C�

h
(Λ)
1

> 0, we obtain by second quantization

(w.r.t. the Fock space F(h
(Λ)
1 )) an operator

K
(Λ,µf)
f := dΓ

h
(Λ)
1

(
h

(Λ)
f − µf�h

(Λ)
1

)
= H

(Λ)
f − µfN

(Λ)
f

which is trace class on F(h
(Λ)
1 ) by [11, Prop. 5.2.27]. This operator is referred to as

generalized Hamilton operator . Here, the operator

N
(Λ)
f := dΓ

h
(Λ)
1

(
�

h
(Λ)
1

)
is the photon number operator and

H
(Λ)
f := dΓ

h
(Λ)
1

(
h

(Λ)
f

)
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is the Hamilton operator of the photon gas confined to Λ. The operator h
(Λ)
f − µf

describes the same physics on the one-photon sector as h
(Λ)
f does. Hence, we use

the generalized Hamiltonian K
(Λ,µf)
f being the second quantization of h

(Λ)
f − µf to

implement the dynamics of the photon gas on the Fock space F(h
(Λ)
1 ).

The finiteness of the partition function,

Z(Λ,µf )(βf) := tr
(
e−βfK

(Λ,µf )

f

)
<∞,

reflects that the confined gas is a finite system so that we can define the Gibbs grand
canonical ensemble state. For the grand canonical ensemble not only the energy but
also the photon number are subject to fluctuations such that it only makes sense to
specify the expectation value of energy and photon number in a given state. The
thermal equilibrium is distinguished as the state ω : A �→ tr(ρA) which maximizes
the entropy functional

S (ω) = − tr (ρ ln (ρ))

under the constraints

ω
(
H

(Λ)
f

)
= const, ω

(
N

(Λ)
f

)
= const. (1.39)

It turns out that the equilibrium state ω
(Λ,µf)
f of the free photon gas in the box Λ at

inverse temperature βf is given by

ω
(Λ,µf)
f (A) := Z(Λ,µf )(βf)

−1 tr

(
e
−βf

(
H

(Λ)
f −µfN

(Λ)
f

)
A

)
. (1.40)

The inverse temperature βf and the chemical potential µf play the role of the La-
grangian multipliers associated to the constraints (1.39), it holds

−∂βf
ln
(
Z(Λ,µf )(βf)

)
= ω

(Λ,µf)
f

(
H

(Λ)
f

)
,

1

βf

∂µf
ln
(
Z(Λ,µf )(βf)

)
= ω

(Λ,µf)
f

(
N

(Λ)
f

)
.

The underlying algebra of observables is the Weyl algebra generated by form
factors corresponding to positions inside the region Λ. We define the so-called local
algebra as

A(Λ)
f :=W

(
Df ∩ h

(Λ)
1

)
≡ span

{
W (f)

∣∣∣ f ∈ Df ∩ h
(Λ)
1

}‖ · ‖
B(H(Λ)

f
)

. (1.41)

The generalized Hamilton operator H
(Λ)
f then generates an automorphism group

αf,(Λ,µf) = {αt
f,(Λ,µf)

}t∈� on the local algebra A(Λ)
f defined as

αt
f,(Λ,µf)

(A) := eitK
(Λ,µf )

f Ae−itK
(Λ,µf )

f , A ∈ A(Λ)
f ,
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where the action of αt
f,(Λ,µf)

on a Weyl operator W (f), f ∈ h
(Λ)
1 , is given by

αt
f,(Λ,µf)

(W (f)) = W
(
eit(h

(Λ)
f −µf )f

)
.

With the arguments of Section 1.1.2 we check that ω
(Λ,µf)
f is an (αf,(Λ,µf), βf)-KMS

state on A(Λ)
f , we express the KMS condition (1.2) formally as

ω
(Λ,µf)
f

(
Aαt+iβf

f,(Λ,µf)
(B)
)

= ω
(Λ,µf)
f

(
αt

f,(Λ,µf )
(B)A

)
for t ∈ � and A,B ∈ A(Λ)

f .

It follows from the considerations made in [11, Sect. 5.2.5] that the operators

Af1,...,fn := a(f1) · · · a(fn)e−βfK
(Λ,µf )

f /2

extend to bounded operators which are Hilbert-Schmidt, that is, A∗
f1,...,fn

Af1,...,fn

are of trace class on H(Λ)
f for f1, . . . , fn ∈ h

(Λ)
1 . This allows an extension of the

state (1.40) to polynomials in creation and annihilation operators. This extension
is continuous in the sense that∣∣∣ω(Λ,µf)

f (a∗(f1) · · · a∗(fn)a(g1) · · · a(gm))
∣∣∣ ≤ C

n∏
j=1

‖fj‖h(Λ)
1

m∏
k=1

‖gk‖h(Λ)
1

(1.42)

for a suitable constant C. Using the relation

e−βfK
(Λ,µf )

f /2a∗(f) = a∗
(
e
−βf

(
h
(Λ)
f −µf

)
/2

f
)
e−βfK

(Λ,µf )

f /2,

which follows from the pull through formula (1.32) where we replace ω(�k) by h
(Λ)
f −µf

and Hf by K
(Λ,µf)
f , we derive with the help of the CCR (1.25) that for the two-point

functions holds

ω
(Λ,µf)
f (a∗(f)a(g))

=

tr

(
a∗
(
e
−βf

(
h
(Λ)
f −µf

)
/2

f
)
e−βfK

(Λ,µf )

f a
(
e
−βf

(
h
(Λ)
f −µf

)
/2

g
))

Z(Λ,µf )(βf)

= ω
(Λ,µf)
f

(
a
(
e
−βf

(
h
(Λ)
f −µf

)
/2

g
)
a∗
(
e
−βf

(
h
(Λ)
f −µf

)
/2

f
))

= ω
(Λ,µf)
f

(
a∗
(
e
−βf

(
h
(Λ)
f −µf

)
/2

f
)
a
(
e
−βf

(
h
(Λ)
f −µf

)
/2

g
))

+

〈
g

∣∣∣∣ e−βf

(
h
(Λ)
f −µf

)
f

〉
h
(Λ)
1
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= . . .

= ω
(Λ,µf)
f

(
a∗
(
e
−nβf

(
h
(Λ)
f −µf

)
/2

f
)
a
(
e
−nβf

(
h
(Λ)
f −µf

)
/2

g
))

+
n∑

m=1

〈
g

∣∣∣∣ e−mβf

(
h
(Λ)
f −µf

)
f

〉
h
(Λ)
1

n→∞−−−→
∞∑

m=1

〈
g

∣∣∣∣ e−mβf

(
h
(Λ)
f −µf

)
f

〉
h
(Λ)
1

=

〈
g

∣∣∣∣∣
(

e
βf

(
h
(Λ)
f −µf

)
− 1

)−1

f

〉
h
(Λ)
1

(1.43)

where we used the continuity (1.42) and

lim
n→∞

∥∥∥∥e−nβf

(
h
(Λ)
f −µf

)
/2

f

∥∥∥∥
h
(Λ)
1

= 0

due to βf(h
(Λ)
f − µ�

h
(Λ)
1

) > 0. To compute the one-point functions ω
(Λ,µf)
f (a∗(f)) we

choose an orthonormal basis {ψν,j | ν, j ∈ �0 } of H(Λ)
f where {ψν,j}j∈�0 is a basis of

the ν-photon sector

h(Λ)
ν := Sν

[
ν⊗

k=1

h
(Λ)
1

]
.

Since K
(Λ,µf)
f leaves the ν-photon sector invariant, but the creation operator a∗(f)

does not, it follows

tr
(
e−βfK

(Λ,µf )

f a∗(f)
)

=
∞∑

ν,j=0

〈
ψν,j

∣∣∣ e−βfK
(Λ,µf )

f a∗(f)ψν,j

〉
= 0

and therefore is
ω

(Λ,µf)
f (a∗(f)) = 0

for all f ∈ h
(Λ)
1 . Repetition of the above method shows that ω

(Λ,µf)
f applied to

polynomials in creation and annihilation operators can be expressed in terms of
products and sums of the two-point functions (1.43), we say that the state is quasi-
free. We will resume the notion of quasi-freeness in Section 1.3.4. The quasi-free
structure of ω

(Λ,µf)
f leads to

ω
(Λ,µf)
f (W (f)) = exp

(
−ω

(Λ,µf)
f (Φ(f)2)

2

)

= exp

(
− 1

4

〈
f
∣∣∣ (1 + 2ρ

(Λ,µf)
f

)
f
〉

h
(Λ)
1

)
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where we defined the operator

ρ
(Λ,µf)
f :=

(
e

βf

(
h
(Λ)
f −µf

)
− 1

)−1

.

The arguments entering here will be illustrated further below when we present an
alternative way to motivate the definition of the equilibrium state. All the above
statements are summarized in [11, Prop. 5.2.28].

So far, we have established the equilibrium situation of the photon gas in the box
Λ. We aim to realize an equilibrium situation for the free gas in �3 by a controlled
lifting of the confinement for a system at equilibrium. This procedure is referred
to as thermodynamic limit and is elaborated in the sequel. We observe that the
one-particle Hilbert space h

(Λ)
1 , the Fock space H(Λ)

f and the local algebra A(Λ)
f as

well are increasing with the size of the box in the sense that

h
(Λ)
1 ⊆ h

(Λ′)
1 ,

H(Λ)
f ⊆ H(Λ′)

f ,

A(Λ)
f ⊆ A(Λ′)

f

for Λ ⊆ Λ′. Let Λ1 ⊆ Λ2 ⊆ . . . be an increasing sequence of bounded regions
with sufficient regular boundaries which converges towards the whole position space,
Λn ↗ �

3 as n → ∞, in the sense that every bounded subset of �3 is contained in
a set Λn if n is large enough. We denote by

A(ql)
f :=

∨
n∈�
A(Λn)

f

the quasi-local algebra which is the norm closure of the algebra generated by the
union of all A(Λn)

f . Since we want to control intensive quantities as the energy
density and the photon number density of the expanding system we require that the
limit process guarantees the existence of

ef := lim
n→∞

ω
(Λn,µf )
f

(
H

(Λn)
f

)
|Λn|

,

nf := lim
n→∞

ω
(Λn,µf )
f

(
N

(Λn)
f

)
|Λn|

as real numbers, where | · | denotes the Lebesgue measure. The partition function
will diverge, i.e.,

lim
n→∞

Z(Λn,µf )(βf) =∞,
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since the discrete eigenvalues of H
(Λ)
f accumulate to continuous spectrum reflecting

that the system goes over to an infinite one. This implies that the equilibria ω
(Λn,µf )
f

will not tend to a Gibbs state.

With the arguments of [11, Prop. 5.2.29] we construct the equilibrium state in

the thermodynamic limit. Given a Weyl operator W (f) ∈ A(Λm)
f with f ∈ h

(Λm)
1 the

local observable W (f) will be contained in A(Λn)
f for all n ≥ m. This allows us to

consider the limit

ωf(W (f)) := lim
µf→0

lim
n→∞

ω
(Λn,µf )
f (W (f)) (1.44)

= lim
µf→0

lim
n→∞

exp

(
− 1

4

〈
f
∣∣∣ (1 + 2ρ

(Λn,µf )
f

)
f
〉

h
(Λ)
1

)
= exp

(
−1

4
〈 f | (1 + 2ρf) f 〉h1

)
where the multiplication operator ρf is given by the radiation density of a black-body
radiator

ρf(�k) :=
1

eβfω(�k) − 1
,

known as the Planck law . In order to describe an inert photon gas we chose the
chemical potential µf to be zero in the definition (1.44) of ωf . This, however, re-
quires that the form factors f obey a more stringent infrared regularization, namely
ω−1/2f ∈ L2[�3], to be in the domain of ρf . This was respected in the buildup of

the algebras Af , (1.33), and A(Λ)
f , (1.41). The definition (1.44) extends to a state

on the whole quasi-local algebra A(ql)
f . We further have

lim
µf→0

lim
n→∞

ω
(Λn,µf )
f

(
Aαt

f,(Λn,µf)
(B)
)

= ωf

(
Aαt

f(B)
)

for A,B ∈ A(Λn)
f which implies that the formal KMS condition

ωf

(
Aαt+iβf

f (B)
)

= ωf

(
αt

f(B)A
)
,

extended to all A,B ∈ A(ql)
f , survives the thermodynamics limit, unlike the Gibbs

characterization of an equilibrium state. However, care has to be taken since the
lack of continuity properties of the dynamics αf does not make (A(ql)

f , αf) a C∗- nor
a W ∗-dynamical system such that we rephrase the KMS condition for ωf once we
have a suitable representation.

We shall mention that the thermodynamic limit depends on the boundary con-
dition on the box and on the way how the thermodynamic parameters (e.g., the
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photon number or energy density) are controlled while the system is expanded. Dif-
ferent thermodynamic limit processes might yield different thermal equilibria. For
instance, if we drop the requirement about the finite particle density nf of the photon
gas and, instead, we postulate a finite density of particles in the ground state the
thermodynamic limit yields an equilibrium state of a free photon gas in the presence
of a sea of photons, the so-called Bose-Einstein condensate, for details refer to [33].
The non-uniqueness of equilibrium states at a given temperature is usually referred
to as a phase transition. The typical situation would be that, for a distinguished
temperature βf and a chemical potential µf , there exist two or more equilibrium
states which show significantly different photon number densities. These equilibria
would be considered as different coexisting phases. In our construction of a photon
equilibrium state we implicitly avoided to be in a phase transition regime.

1.3.4 Empirical Definition of a KMS State and Araki-Woods
Representation

While the derivation of a thermal equilibrium state for the free photon gas via ther-
modynamic limit is conceptional we present an alternative approach which rather
bases on empirical physical arguments but reaches at the same result. We show
afterwards that the obtained state actually fulfils the mathematical KMS condition.
The subsequent considerations are not carried out rigorously but lead us to the
definition of the equilibrium state ωf .

Since our algebra of observables Af is generated by the Weyl operators it
is sufficient to determine the action of ωf on W (f). Assuming that the map
t �→ ωf(W (tf)) is analytic for any f ∈ h1 the state is defined by the functionals
(f1, . . . , fn) �→ ωf(Φ(f1) · · ·Φ(fn)) with f1, . . . , fn ∈ h1 and n ∈ �. We want to nar-
row down all the possible choices of ωf by using that the photons are not interacting
with each other. To this end, we express

ωf(Φ(f1) · · ·Φ(fn)) =
n∑

j=1

∑
I⊆{1,...,n},
I
1, #I=j

ω
(j)
trunc(fi, i ∈ I)ωf

( n∏
i=0,
i�∈I

Φ(fi)
)

in terms of the so-called truncated functionals ω
(j)
trunc(fi, i ∈ I). Note that I is

regarded as an ordered subset of {1, . . . , n}. The truncated functionals can be
extracted from the state ωf recursively, e.g.,

ω
(1)
trunc(f1) = ωf(Φ(f1)),

ω
(2)
trunc(f1, f2) = ωf(Φ(f1)Φ(f2))− ωf(Φ(f1))ωf(Φ(f2)),
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and represent the correlations between the operations of creating and annihilating
of photons with given momentum distributions f1, . . . , fn. To ensure that the state
ωf describes non-interacting photons we require that all multiple correlation are
vanishing, i.e., ω

(j)
trunc(fi, i ∈ I) = 0 for all j ≥ 3. Such a state is called quasi-free.

This assumption was physically justified for our photon model in Section 1.3.3 and
in [11, Sect. 5.2.5] where the equilibrium state of the free boson gas was derived as
the thermodynamic limit of Gibbs states over finite systems.

So far we did not use that the equilibrium state has to be time invariant. Using

that αt
f(a

∗(�k)) = eiω(�k)ta∗(�k) and αt
f(a(�k)) = e−iω(�k)ta(�k) the invariance of ωf under

(1.38) implies that ωf(a
#(�k)) ∝ δ(�k) where either a#(�k) = a∗(�k) or a#(�k) = a(�k). It

follows with (1.28, 1.29) and the linearity of ωf that ωf(a
∗(f)) ∝ f(0) and ωf(a(f)) ∝

f(0). However, the evaluation of a L2 function at zero is not well defined such
that the proportional constant must be zero. The same argument extends to the
application of ωf to several creation and annihilation operators and shows that
ωf(a

∗(f1) · · · a∗(fn)) = ωf(a(f1) · · · a(fn)) = 0. In particular, ωf(Φ(f)) = 0 and
therefore the only non-zero truncated functional is

ω
(2)
trunc(f1, f2) = ωf(Φ(f1)Φ(f2)).

We use this to express ωf(Φ(f)n) in terms of ωf(Φ(f)2). For even exponents we get

ωf(Φ(f)2n) =
∑

I⊆{1,...,2n},
I
1, #I=2

ωf(Φ(f)2)ωf(Φ(f)2n−2)

= (2n− 1)ωf(Φ(f)2)ωf(Φ(f)2n−2) =
(2n)!

n!2n
ωf(Φ(f)2)n,

and for odd exponents we compute similarly

ωf(Φ(f)2n+1) =
∑

I⊆{1,...,2n+1},
I
1, #I=2

ωf(Φ(f)2)ωf(Φ(f)2n−1)

= 2nωf(Φ(f)2)ωf(Φ(f)2n−1) = 2nn!ωf(Φ(f)2)nωf(Φ(f))

= 0,

and therefore

ωf(W (f)) =
∞∑

n=0

i2n

(2n)!
ωf(Φ(f)2n) =

∞∑
n=0

(−1)n

n!
ωf(Φ(f)2)n

= exp

(
−ωf(Φ(f)2)

2

)
.

It remains to fix ωf(Φ(f)2). This requires another physical input implementing
that ωf describes the radiation of non-interacting photons in a thermal equilibrium
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at inverse temperature βf . Given that ωf(a
∗(�k)a(�k′)) is the measured particle density

of photons with momentum �k,�k′, resp., we get by the Planck law

ωf(a
∗(�k)a(�k′)) = δ(�k − �k′)ρf(�k), (1.45)

where

ρf(�k) =
1

eβfω(�k) − 1

is the radiation density of a black-body radiator . We remark at this point that we
sometimes use the radial symmetry of ρf to interpret

ρf(E) ≡ ρf(Ek̂) =
1

eβE − 1

as a function of a positive variable E, where k̂ is a unit vector. Equation (1.45) can
be extended to

ωf(a
∗(f)a(g)) = 〈 g | ρff 〉h1

for f, g ∈ h1 and therefore

ωf(Φ(f)2) =
1

2
ωf(a

∗(f)2 + a(f)2 + 2a∗(f)a(f) + ‖f‖2h1
) =

1

2

∥∥∥√1 + 2ρf f
∥∥∥2

h1

.

Finally we are in the position to specify ωf on the Weyl algebra,

ωf(W (f)) = exp

(
−1

4

∥∥∥√1 + 2ρf f
∥∥∥2

h1

)
(1.46)

which coincides with the derivation (1.44) of an equilibrium state with the thermo-
dynamic limit procedure. We note that the definition (1.46) requires that f fulfils
the infrared behavior ω−1/2f ∈ h1 what we already respected when we defined the
Weyl algebra in (1.33). Because of the CCR for Weyl operators, (1.35), and linear-
ity, the assignment (1.46) extends to polynomials in W (f1), . . . ,W (fn). It remains
to show that ωf is well defined as a state on the Weyl algebra. We will prove the
state properties of ωf with the help of a theorem of Araki and Segal.

A representation (H, π) of the Weyl algebra Af = span {W (f) | f ∈ Df } into the
bounded operators on a Hilbert space H is called regular if the functions � � τ �→
π(W (τf)) are strongly continuous for any f ∈ Df . Regularity of the representation
is, by Stone’s Theorem (c.f. [40, Thm. VIII.8]), equivalent to the existence of a self-
adjoint operator Φπ(f) on H, referred to as the field operator in the representation
π, such that for all τ ∈ �

π(W (τf)) = eiτΦπ(f)
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holds. For a cyclic representation (H, π, Ψ) of the Weyl algebra Af , i.e., if Ψ is cyclic
w.r.t. π(Af)

′′, we can associate a generating functional by

Z : Df → �, Z(f) := 〈Ψ |π(W (f))Ψ 〉H

where 〈 · | · 〉H is the inner product of H. The following theorem, due to Araki and
Segal, c.f. [1, Thm. 4.2, 4.3], characterizes the generating functional of a regular
and cyclic representation of the Weyl algebra.

Theorem 1.1 (Generating Functional & Representation) Let D be a dense
subspace of h1. A map Z : D → � is the generating functional of a regular and
cyclic representation (H, π, Ψ) of the Weyl algebra W(D) over D if and only if the
following conditions are satisfied:

(i) Z(0) = 1.

(ii) The map � � τ �→ Z(τf) is continuous for each f ∈ D.

(iii) For any f1, . . . , fn ∈ D and any a1, . . . , an ∈ � (n ∈ �) we have

n∑
j,k=1

Z(fj − fk)e
i
2
Im〈 fj | fk 〉h1ajak ≥ 0.

Furthermore, if the conditions (i) – (iii) are fulfilled, the representation (H, π, Ψ) is
uniquely determined, up to unitary equivalence, by the generating functional Z.

We apply the above theorem to the map Z(f) := ωf(W (f)) as given in (1.46). It
is obvious that the conditions (i) and (ii) are fulfilled. An elementary computation
shows that (iii) also holds in this specific case. By Theorem 1.1, we are given a
Hilbert space H2

f , a representation πf : Af → B(H2
f ) and a cyclic vector Ωf ∈ H2

f

such that ωf can be written as

ωf(A) = 〈Ωf | πf(A)Ωf 〉H2
f

(1.47)

for each A ∈ Af .

The above theorem guarantees the existence of a regular, cyclic representation
(H2

f , πf , Ωf) for the state ωf . We now specify the representation. The representation
Hilbert space is given – similar to the particle case considered in Section. 1.2.3 – as
the tensor product of the zero temperature Fock space Hf = F(h1) with itself,

H2
f := Hf ⊗Hf .
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The Weyl operators in Af are mapped into the algebra of bounded operators on H2
f

via the assignment

πf(W (f)) := W (
√

1 + ρf f)⊗W (
√

ρf f) (1.48)

which is extended linearly to the whole algebra. Note that, because of

πf(W (f))πf(W (g))

= W (
√

1 + ρf f)W (
√

1 + ρf g)⊗W (
√

ρf f)W (
√

ρf g)

= e
− i

2

[
Im〈√1+ρf f |√1+ρf g 〉

h1
+Im〈√ρf f |√ρf g 〉

h1

]

×W (
√

1 + ρf [f + g])⊗W (
√

ρf [f + g])

= e−
i
2
〈 f | g 〉h1πf(W (f + g)) = πf(W (f)W (g)),

the map πf is multiplicative and a representation of the CCR. This representation
was first specified by Araki and Woods in [2] and will therefore be referred to as
Araki-Woods representation, it is the GNS representation for the state ωf . The
proof, that (1.48) is indeed well defined as representation, is given in this reference.
The field operator Φaw(f) of the Araki-Woods representation can be derived from
(1.48) as the derivative (in a strong sense) of the strongly continuous group � �
τ �→ πf(W (τf)). Using the Leibniz rule we get

Φaw(f) := i−1∂τ |τ=0πf(W (τf)) = Φ(
√

1 + ρf f)⊗ �Hf
+ �Hf

⊗ Φ(
√

ρf f).

The corresponding creation and annihilation operators of the representation, a∗
aw(f)

and aaw(f), resp., are given by

a∗
aw(f) :=

1√
2
[Φaw(f)− iΦaw(if)]

=a∗(
√

1 + ρf f)⊗ �Hf
+ �Hf

⊗ a(
√

ρf f),

aaw(f) :=
1√
2
[Φaw(f) + iΦaw(if)]

=a(
√

1 + ρf f)⊗ �Hf
+ �Hf

⊗ a∗(
√

ρf f).

This allows us to extend the representation πf from Weyl operators to polynomials
in creation and annihilation operators by setting

πf(a
∗(f)) := a∗

aw(f), πf(a(f)) := aaw(f). (1.49)

Note that the creation and annihilation operator in the Araki-Woods representation
also obey the CCR, i.e.,

[a∗
aw(f), a∗

aw(g)] = [aaw(f), aaw(g)] = 0,

[aaw(f), a∗
aw(g)] = 〈 f | g 〉h1

.
(1.50)
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The vector
Ωf := Ωvac ⊗ Ωvac,

built of the vacuum vectors of the Fock space factors, will play the role of the
cyclic vector. The proof of the cyclicity of Ωf can be found in [2, p. 648] and uses
similar arguments as the proof that Ωvac is cyclic for the Weyl algebra Af , given
in Sect. 1.3.2. With the help of (1.37) we show that the triple (H2

f , πf , Ωf) actually
reproduces the generating functional in the sense of (1.47),

〈Ωf |πf(W (f))Ωf 〉H2
f

=
〈

Ωvac

∣∣∣W (
√

1 + ρf f)Ωvac

〉
Hf

〈
Ωvac

∣∣W (
√

ρf f)Ωvac

〉
Hf

= exp

(
−1

4

∥∥∥√1 + ρf f
∥∥∥2

h1

)
exp

(
−1

4
‖√ρf f‖2h1

)
= ωf(W (f)).

To complete the section we check explicitly the KMS condition (1.2) for the state
ωf . We remark that the dynamical system (Af , αf) is neither a C∗- (the evolution
{αt

f}t∈� is not strongly continuous in the C∗-topoply) nor a W ∗-dynamical system
(the algebra Af is not weakly closed in B(Hf)). In Section 1.3.6 we will address
this issue by transferring the problem from the system (Af , αf) to a W ∗-dynamical
system on the W ∗-algebra πf(Af)

′′ using the representation πf . For the moment we
define for this particular system a KMS state to be a state which fulfills (1.2) for a
function FA,B associated with elements A,B ∈ Af . Because of the CCR for Weyl
operators (1.35) the linear combinations

A =
∞∑

j=1

cjW (fj), B =
∞∑

k=1

dkW (gk),

with cj, dk ∈ � and fj, gk ∈ Df , span the algebra Af . For such a pair A,B ∈ Af we
compute, for t ∈ �,

ωf(Aαt
f(B)) = ωf

( ∞∑
j,k=1

cjW (fj)dkW (eiωtgk)
)

=
∞∑

j,k=1

cjdk exp
(
− i

2
Im
〈
fj

∣∣ eiωtgk

〉
h1

)
ωf

(
W (fj + eiωtgk)

)
=

∞∑
j,k=1

cjdk exp
(
− i

2
Im
〈
fj

∣∣ eiωtgk

〉
h1

)
× exp

(
− 1

4

∥∥∥√1 + 2ρf (fj + eiωtgk)
∥∥∥2

h1

)
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=
∞∑

j,k=1

cjdkωf(W (fj))ωf(W (gk)) exp
(
− 1

2

〈
fj

∣∣ eiωtgk

〉
h1

)
× exp

(
− 1

2

(〈
fj

∣∣ ρfe
iωtgk

〉
h1

+
〈
gk

∣∣ ρfe
−iωtfj

〉
h1

))
.

Because of |eiω(�k)s| ≤ 1 and |ρf(�k)e−iω(�k)s| ≤ const.

ω(�k)
for s ∈ � with 0 ≤ Im(s) ≤ βf

and since fj, gk ∈ Df , the map � � t �→ ωf(Aαt
f(B)) has, by dominated convergence

theorem, an analytic continuation to Dβf
= {z ∈ � | 0 < Im(z) < βf }. We denote

the continuation by FA,B and observe that FA,B is continuous on the boundaries of
Dβf

. We compute

FA,B(t + iβf) =
∞∑

j,k=1

cjdkωf(W (fj))ωf(W (gk)) exp
(
− 1

2

〈
fj

∣∣ eiωt−βfωgk

〉
h1

)
× exp

(
− 1

2

(〈
fj

∣∣ ρfe
iωt−βfωgk

〉
h1

+
〈
gk

∣∣ ρfe
−iωt+βfωfj

〉
h1

))
=

∞∑
j,k=1

cjdkωf(W (fj))ωf(W (gk))

exp
(
− 1

2

(〈
gk

∣∣ ρfe
βfωe−iωtfj

〉
h1

))
× exp

(
− 1

2

(〈
fj

∣∣ [1 + ρf ]e
−βfωeiωtgk

〉
h1

))
=

∞∑
j,k=1

cjdkωf(W (fj))ωf(W (gk)) exp
(
− 1

2

〈
eiωtgk

∣∣ fj

〉
h1

)
× exp

(
− 1

2

(〈
eiωtgk

∣∣ ρffj

〉
h1

+
〈
fj

∣∣ ρfe
iωtgk

〉
h1

))
=

∞∑
j,k=1

cjdk exp
(
− i

2
Im
〈
eiωtgk

∣∣ fj

〉
h1

)
× exp

(
− 1

4

∥∥∥√1 + 2ρf (eiωtgk + fj)
∥∥∥2

h1

)
=

∞∑
j,k=1

cjdk exp
(
− i

2
Im
〈
eiωtgk

∣∣ fj

〉
h1

)
ωf

(
W (eiωtgk + fj)

)
= ωf

( ∞∑
j,k=1

dkcjW (eiωtgk)W (fj)
)

= ωf(α
t
f(B)A), (1.51)

where we used that

ρfe
βfω = 1 + ρf . (1.52)
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We stress that the GNS representation (H2
f , πf , Ωf) of the state ωf depends on

the inverse temperature βf of the equilibrium it is describing. We remark that for
ωf and ω′

f being the equilibrium states as constructed above at different inverse
temperatures βf �= β′

f , resp., the corresponding GNS representations are not unitary
equivalent. This implies that thermal equilibria at different temperatures are not
normal w.r.t. each other, i.e., their relative entropy is infinite.

1.3.5 Modular Structure of the Photon System

The access to the modular structure of the photon system is given by the anti-linear
operator

Sf :MfΩf →MfΩf , AΩf �→ A∗Ωf .

where Sf is initially given onMfΩf with

Mf := πf(Af)
′′

but extends to a closed operator also denoted by Sf . Note that the vector Ωf is both
cyclic and separating for Mf and therefore Sf is well defined on a dense domain.
The aim is to decompose Sf in a anti-unitary operator Jf and a positive operator
∆

1/2
f as discussed in Section 1.1.2. We introduce the positive operator

∆f := e−βfHf ⊗ eβfHf

and note that

Jf [(a∗(fn) · · · a∗(f1))⊗ (a∗(gm) · · · a∗(g1))Ωf ]

:= (a∗(gm) · · · a∗(g1))⊗ (a∗(fn) · · · a∗(f 1))Ωf

defines an anti-unitary operator Jf on H2
f . Hereby, the conjugation f of a function

f ∈ L2[�3] is the usual (pointwise) complex conjugation. We check the relation

Sf = Jf∆
1/2
f (1.53)

by explicit computations. Let W (f) ∈ Af with eβfω/2f ∈ Df . Expanding the Weyl
operator in a power series, using that Ωf is an analytic vector for Φaw(f), we obtain

πf(W (f))Ωf =
∞∑

k=0

ik

k!
Φaw(f)kΩf

=
∞∑

k=0

ik

2k/2k!

[
(a∗(
√

1 + ρf f) + a(
√

1 + ρf f))⊗ �Hf

+ �Hf
⊗ (a∗(

√
ρf f) + a(

√
ρf f))

]k
Ωf .
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With the help of the pull through formula (1.32) and the fact that ∆
1/2
f Ωf = Ωf we

get, using relation (1.52),

Jf∆
1/2
f πf(W (f))Ωf

= Jf

∞∑
k=0

ik

2k/2k!

[
(a∗(
√

1 + ρf e−βfω/2f) + a(
√

1 + ρf eβfω/2f))⊗ �Hf

+ �Hf
⊗ (a∗(

√
ρf eβfω/2f) + a(

√
ρf e−βfω/2f))

]k
Ωf

=
∞∑

k=0

(−i)k

2k/2k!

×Jf

[
(a∗(
√

ρf f) + a(
√

ρf f))⊗ �Hf

+ �Hf
⊗ (a∗(

√
1 + ρf f) + a(

√
1 + ρf f))

+ a(
√

ρf (eβfω − 1)f)⊗ �Hf
+ �Hf

⊗ a(
√

1 + ρf (e−βfω − 1)f)
]k

Ωf

=
∞∑

k=0

(−i)k

2k/2k![
�Hf
⊗ (a∗(

√
ρf f) + a(

√
ρf f))

+ (a∗(
√

1 + ρf f) + a(
√

1 + ρf f))⊗ �Hf

+ �Hf
⊗ a(
√

ρf (eβfω − 1)f) + a(
√

1 + ρf (e−βfω − 1)f)⊗ �Hf

]k
Ωf .

We abbreviate

A := (a∗(
√

1 + ρf f) + a(
√

1 + ρf f))⊗ �Hf
+ �Hf

⊗ (a∗(
√

ρf f) + a(
√

ρf f)),

B := a(
√

1 + ρf (e−βfω − 1)f)⊗ �Hf
+ �Hf

⊗ a(
√

ρf (eβfω − 1)f)

and note that BΩf = 0 and

[B,A] =
[
a(
√

1 + ρf (e−βfω − 1)f), a∗(
√

1 + ρf f)
]
⊗ �Hf

+�Hf
⊗
[
a(
√

ρf (eβfω − 1)f), a∗(
√

ρf f)
]

=
〈
f
∣∣ (1 + ρf)(e

−βfω − 1)f
〉

h1
+
〈
f
∣∣ ρf(e

βfω − 1)f
〉

h1

= 〈 f | [(ρf − 1− ρf) + (1 + ρf − ρf)] f 〉h1

= 0.
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This implies that [A + B]kΩf = AkΩf and we may write

Jf∆
1/2
f πf(W (f))Ωf =

∞∑
k=0

(−i)k

2k/2k!

[
(a∗(
√

1 + ρf f) + a(
√

1 + ρf f))⊗ �Hf

+ �Hf
⊗ (a∗(

√
ρf f) + a(

√
ρf f))

]k
Ωf

= πf(W (−f))Ωf

= Sfπf(W (f))Ωf .

This proves the polar decomposition (1.53) of Sf in the product of the modular
conjugation Jf and the square root of the modular operator ∆f .

The modular conjugation Jf enables us to introduce the anti-linear representation

π′
f : Af → B(H2

f ), π′
f(A) := Jfπf(A)Jf

which acts on a Weyl operator as

π′
f(W (f)) = W (

√
ρf f)⊗W (

√
1 + ρf f).

The fact that π′
f is commuting with πf follows from Tomita-Takesaki theory but can

also be verified with the help of the CCR in the version (1.35) for Weyl operators,

π′
f(W (f))πf(W (g)) = W (

√
ρf f)W (

√
1 + ρf g)⊗W (

√
1 + ρf f)W (

√
ρf g)

= e
−i Im

[
〈√ρf f |√1+ρf g 〉

h1
+〈√1+ρf f |√ρf g 〉

h1

]

×W (
√

1 + ρf g)W (
√

ρf f)⊗W (
√

ρf g)W (
√

1 + ρf f)

= e
−i Im

[
2 Re
〈

f
∣∣∣√ρf(1+ρf) g

〉
h1

]

×W (
√

1 + ρf g)W (
√

ρf f)⊗W (
√

ρf g)W (
√

1 + ρf f)

= πf(W (g))π′
f(W (f)).

As a consequence we get the relation

π′
f(Af)

′ ⊇ πf(Af)
′′,

Tomita-Takesaki theory even yields

π′
f(Af)

′ = πf(Af)
′′.

The corresponding positive cone is given by

Pf := {πf(A)Jfπf(A)Ωf |A ∈ Af }

=
{ n∑

j,k=1

cjckW (
√

1 + ρf fj +
√

ρf fk)⊗W (
√

ρf f j +
√

1 + ρf fk)Ωf

∣∣∣
∣∣∣c1, . . . , cn ∈ �, f1, . . . , fn ∈ Df , n ∈ �

}
.
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0

Figure 1.4: Spectrum of the free field Liouvillean associated with ωf .

1.3.6 Liouville Operator and Return to Equilibrium

The free field Liouville operator associated with the state ωf and the time evolution
αf is given by the self-adjoint operator

Lf := Hf ⊗ �Hf
− �Hf

⊗Hf .

To verify this statement we have to check that Lf implements the time evolution on
the representation space in the sense

eiLf tπf(A)e−iLf t = πf(α
t
f(A)), (1.54)

for all A ∈ Af , and that the group eiLf t leaves the positive cone Pf invariant. Given
a Weyl operator W (f) ∈ Af we can express its evolution under αf as

πf(α
t
f(W (f))) = πf(W (eiωtf)) = W

(
eiωt
√

1 + ρf f
)
⊗W

(√
ρf eiωtf

)
=
[
eiHf tW

(√
1 + ρf f

)
e−iHf t

]
⊗
[
e−iHf tW

(√
ρf f
)
eiHf t
]

= eiLf tπf(W (f))e−iLf t.

An extension of this relation to all observables from the Weyl algebra establishes
(1.54). It further holds for A ∈ Af ,

eiLf tπf(A)Jfπf(A)Ωf = πf(α
t
f(A))Jfe

iLf tπf(A)Ωf

= πf(α
t
f(A))Jfπf(α

t
f(A))Ωf ∈ Pf

using that apparently LfΩf = 0 and iLfJf = JfiLf . By continuity of eiLf t and the fact
that Pf is closed it follows that the group generated by Lf leaves the cone invariant.
The above considerations justify that Lf is referred to as standard Liouville operator
corresponding to the state ωf . Its spectral properties can be summarized as

ker(Lf) = �Ωf , specac(Lf) = � \ {0} (1.55)

and are illustrated in Figure 1.4.
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As already announced we have to reconsider the notion of KMS states for the
photon system since (Af , αf) is neither a C∗- nor a W ∗-dynamical system such that
the concepts of Section 1.1.2 do not apply directly. We are exclusively interested
in the dynamical behavior of states close to the equilibrium at inverse temperature
βf in a relative entropy sense, i.e., we study states η = 〈 ξ |πf( · )ξ 〉H2

f
, ξ ∈ Pf ,

on Af which are ωf-normal. The fact that these states are expressible in terms of
the representation πf and the link (1.54) between the dynamics αf on Af and the
dynamics [πfαf ] = {[πfαf ]

t}t∈� on πf(Af)
′′, given by

[πfαf ]
t(A) := eiLf tAe−iLf t,

suggests that we transfer the dynamical considerations to the system (πf(Af)
′′, [πfαf ])

which turns out to be W ∗-dynamical. Identifying an ωf-normal state η =
〈 ξ | πf( · )ξ 〉H2

f
on Af with the normal state 〈 ξ | ( · )ξ 〉H2

f
on πf(Af)

′′ we call η an

(αf , βf)-KMS state if 〈 ξ | ( · )ξ 〉 is a ([πfαf ], βf)-KMS state. The relation (1.54) and
the computations (1.51) imply that ωf is a βf-KMS state w.r.t. αf in this sense.

The absence of linear independent (w.r.t. Ωf) vectors in the kernel of Lf implies
that there are no ωf-normal stationary states beside the equilibrium state itself, c.f.
(1.7). Further, the fact that the remaining spectrum of Lf is absolutely continuous
implies that any ωf-normal state converges under the time evolution {αt

f}t∈� towards
the equilibrium as t → ∞. This property is referred to as return to equilibrium
property and can be understood by the following arguments. The fact that Ωf is
separating for πf(Af)

′′ = π′
f(Af)

′ implies that Ωf is cyclic w.r.t. π′
f(Af), c.f. [10,

Prop. 2.5.3]. Given an ωf-normal state

η := 〈 ξ |πf( · )ξ 〉H2
f

with ξ ∈ Pf we find an approximating state

ηε := 〈 π′
f(B)Ωf |πf( · )π′

f(B)Ωf 〉H2
f

with B ∈ Af , ‖π′
f(B)Ωf‖H2

f
= 1 and ‖η − ηε‖A∗

f
< ε for a given ε > 0. This

approximation behaves under the time evolution as follows,

ηε(α
t
f(A)) =

〈
π′

f(B)Ωf

∣∣ πf(α
t
f(A))π′

f(B)Ωf

〉
H2

f

=
〈
π′

f(B
∗B)Ωf

∣∣ πf(α
t
f(A))Ωf

〉
H2

f

=
〈
π′

f(B
∗B)Ωf

∣∣ eiLf tπf(A)Ωf

〉
H2

f

t→∞−−−→ 〈 π′
f(B

∗B)Ωf |Ωf 〉H2
f
〈Ωf | πf(A)Ωf 〉H2

f

= ωf(A),

where we used that the group eiLf t converges weakly towards the orthogonal pro-
jection |Ωf〉 〈Ωf | onto the kernel of Lf due to the spectral properties (1.55) of Lf .



56 1. The Positive Temperature Model ...

Because ‖η ◦ αt
f − ηε ◦ αt

f‖A∗
f

< ε uniformly in t ∈ � we obtain

|η(αt
f(A))− ωf(α

t
f(A))| ≤ |η(αt

f(A))− ηε(α
t
f(A))|+ |ηε(α

t
f(A))− ωf(α

t
f(A))|

≤ ε + |ηε(α
t
f(A))− ωf(α

t
f(A))|

t→∞−−−→ ε,

where ε > 0 can be chosen arbitrarily small. This implies the return to equilibrium
property

lim
t→∞

η(αt
f(A)) = ωf(A) for all A ∈ Af .

We add some remarks. As illustrated above the thermal relaxation behavior of
states which have finite relative entropy compared with the equilibrium state is
predicted by spectral properties of the Liouville operator Lf . This concept was elab-
orated by Jakšić and Pillet in [24]. The absolutely continuous spectrum of Lf away
from a simple zero eigenvalue goes back to the corresponding spectral properties of
Hf and it encodes the dissipative character of the system. The continuous spectrum,
as it is typical for infinite systems, enables the mechanism of sending energy to in-
finity which is necessary to force relative normal states into equilibrium by thermal
relaxation.

All states relative normal w.r.t. the equilibrium are in its region of attraction.
We cannot expect that the equilibrium state ωf at inverse temperature βf is also
attracting for states which are separated by an infinite relative entropy. For instance,
any KMS state ω′

f corresponding to an inverse temperature β′
f �= β is stationary

under αf and therefore will not converge towards ωf . This, in turn, implies that
KMS states of the photon field at different temperatures cannot be normal w.r.t.
each other, unlike in the case of the finite particle system where all states are normal.

1.4 The Composed Particle-Photon System

The aim of this work is to study a particle system, as described in Section 1.2,
interacting with several photon reservoirs, as introduced in Section 1.3. The setup
of the joint system is the following. Each photon reservoir, still decoupled from the
particle system, will be prepared in a thermal equilibrium state – or close to it in
the relative entropy sense. Each reservoir therefore tends to thermally relax into an
equilibrium configuration as long as it is not interacting with the other constituents,
c.f. Section 1.3.6. However, we do not require that these reservoir equilibria are
w.r.t. the same temperature. In fact, we are most interested in the situation where
the reservoir temperatures do not coincide. A state describing that situation would
be far from equilibrium since it cannot be normal w.r.t. several equilibria of the
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Figure 1.5: Model of the composed particle-photon system.

photon subsystems at different temperatures. We discussed that in Section 1.3.6.
The setup is illustrated in Figure 1.5.

1.4.1 Zero and Positive Temperature Framework

The Hilbert space of configurations of a single particle system coexisting with R ∈ �
reservoirs at zero temperature is given by the tensor product of the particle Hilbert
space Hp with R copies of the bosonic Fock space Hf ,

H := Hp ⊗
[

R⊗
r=1

Hf

]
.

The Hamilton operator H0 of the non-interacting system is given by the sum of the
Hamiltonians of the sub-systems

H0 := Hp +
R∑

r=1

Hf,r,

where
Hf,r := �Hp ⊗ [�Hf

⊗ · · · ⊗ �Hf
⊗ Hf︸︷︷︸

r

⊗�Hf
⊗ · · · ⊗ �Hf

]
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is the Hamilton operator only acting on the rth reservoir and we abbreviate

Hp ≡ Hp ⊗
[

R⊗
r=1

�Hf

]
.

The observables of the composed system are collected in the C∗-algebra

A := Ap ⊗
[

R⊗
r=1

Af

]
= span {A⊗W (f1)⊗ · · · ⊗W (fR) |A ∈ Ap, f1, . . . , fR ∈ Df }

‖ · ‖B(H)

on which the free time evolution

αt
0 : A → A, αt

0(A) := eiH0tAe−iH0t, t ∈ �,

acts.

The initial setup of the joint particle-photon system as described in the introduc-
tion to this section is realized by a state which is normal w.r.t.

ω0 := ωp ⊗
[

R⊗
r=1

ωf,r

]
.

Hereby, the state ωf,r is the KMS state (1.44, 1.46) of the rth reservoir at inverse
temperature βr > 0. We do not display the temperature dependence of the state
ω0. The particle component ωp, actually, can be chosen arbitrarily (all states of
the particle subsystem are normal) but is fixed as the Gibbs state (1.14) at inverse
temperature βp > 0. The particle temperature therefore should not be thought of
as a parameter determining the thermodynamics but as a degree of freedom used
to adapt the description of the system at the analysis. For convenience we will
later choose the particle temperature the same as the minimal temperature of the
reservoirs. Apparently, the state ω0 is invariant under the free time evolution α0.
Using the results (1.17, 1.47) of the previous sections we write the state in its GNS
representation

ω0 = 〈Ω0 |π( · )Ω0 〉 ,
where

π := πp ⊗
[

R⊗
r=1

πf,r

]
: A → B(H2) (1.56)

is a representation of A into the bounded operators on the Hilbert space

H2 := H2
p ⊗
[

R⊗
r=1

H2
f

]
∼= H⊗H. (1.57)
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Ej-Ek... ...0Ek-Ej

Figure 1.6: Spectrum of the free standard Liouville operator associated with ω0.

The inner product 〈 · | · 〉 without index shall refer to the Hilbert space H2. The
representations πf,r are copies of the Araki-Woods representation πf introduced in
(1.48) corresponding to the equilibrium of the photon gas at inverse temperature
βf = βr, i.e.,

πf,r(W (f)) := W (
√

1 + ρf,r f)⊗W (
√

ρf,r f),

where ρf,r is the radiation density at inverse temperature βr,

ρf,r(�k) :=
1

eβrω(�k) − 1
.

The vector representative

Ω0 := Ωp ⊗
[

R⊗
r=1

Ωf

]
∈ H2 (1.58)

of ω0 is cyclic and separating for the algebra π(A)′′ which follows from the cyclic and
separating properties of Ωp and Ωf w.r.t. πp(Ap)

′′ and πf,r(Af)
′′, resp. We remark

that the vector Ω0 carries, through the factor Ωp, a dependence on the particle
temperature βp while the representation π, along with the factors πf,r, is dependent
on the reservoir temperatures βr.

The modular structure associated with the state ω0 is given by the modular con-
jugation

J := Jp ⊗
[

R⊗
r=1

Jf

]
and the modular operator

∆0 := ∆p ⊗
[

R⊗
r=1

∆f,r

]
= e−L0 ,

where ∆f,r := e−βrLf and

L0 := βpLp +
R∑

r=1

βrLf,r (1.59)
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is a rescaled free Liouville operator, using the notation

Lf,r := �H2
p
⊗ [�H2

f
⊗ · · · ⊗ �H2

f
⊗ Lf︸︷︷︸

r

⊗�H2
f
⊗ · · · ⊗ �H2

f
]

for the free field Liouville operator only acting on the rth reservoir. The relation

S0π(A)Ω0 := J∆
1/2
0 π(A)Ω0 = π(A∗)Ω0 (1.60)

follows directly from previous considerations, refer to (1.18, 1.53, 1.56, 1.58). The
free rescaled Hamilton operator corresponding to (1.59) is given by

Hresc := βpHp +
R∑

r=1

βrHf,r

and it is used to implement the rescaled time evolution

σt
0 : A → A, σt

0(A) := eiHresctAe−iHresct, t ∈ �, (1.61)

under which the state ω0 becomes a (σ0, 1)-KMS state. The evolution σ0 = {σt
0}t∈�

is lifted to the modular automorphism group associated with ω0 via π, i.e.,

π ◦ σt
0 = eiL0tπ( · )e−iL0t.

The Liouville operator L0 corresponding to ω0 w.r.t. the free evolution {αt
0}t∈� is

given by

L0 := Lp +
R∑

r=1

Lf,r,

its spectrum is illustrated in Figure 1.6. Note that each eigenvalue of Lp is also an
eigenvalue of L0 to which R complete real lines of continuous spectrum, resulting
from the spectra of Lf,r, are attached. The eigenvalues are therefore covered by
N2×R layers of continuum, hence they are embedded to a high degree. We remark
that ω0 is no α0-KMS state to any temperature unless the reservoir temperatures
are all the same. This statement has to be interpreted in the sense of Section 1.3.6,
i.e., the state 〈Ω0 | ( · )Ω0 〉 on the W ∗-algebra π(A)′′ is no KMS state to any inverse
temperature w.r.t. the evolution [πα0] = {[πα0]

t}t∈� with

[πα0]
t(A) := eiL0tAe−iL0t

for A ∈ π(A)′′. The anti-linear representation resulting from the modular structure
commuting with π is defined in the usual way,

π′ : A → B(H2), π′(A) := Jπ(A)J.

The positive cone is denoted by

P := {AJAΩ0 |A ∈ π(A)′′ }.
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1.4.2 Jakšić-Pillet Glued Representation

This subsection rather provides some technical and notational tools to handle the
particle-photon model. For the sake of simplicity in the presentation of the model we
rewrite the Hilbert spaceH2 as given in (1.57) and the representation π mapping into
the bounded operators on H2 using an isometric isomorphism which glues several
Fock spaces together. This procedure goes back to the paper [23] of Jakšić and Pillet
and is therefore known as Jakšić-Pillet gluing .

We start considering the factor H2
f = Hf⊗Hf = F(h1)⊗F(h1) corresponding to a

single photon reservoir which appears as a tensor product of two bosonic Fock space
over h1. The exponential law for Fock spaces provides us with a unitary isomorphism

V : F(h1)⊗F(h1)
∼=−→ F(h1 ⊕ h1), (1.62)

where the target space F(h1⊕h1) is the bosonic Fock space over h1⊕h1. Its vacuum
is denoted by Ωh1⊕h1 and the creation and annihilation operators by a∗

h1⊕h1
(f ⊕ g)

and ah1⊕h1(f ⊕ g), resp. The isomorphism (1.62) is given by

V [Ωvac ⊗ Ωvac] := Ωh1⊕h1 ,

V a∗(f)⊗ �Hf
V −1 := a∗

h1⊕h1
(f ⊕ 0),

V �Hf
⊗ a∗(g)V −1 := a∗

h1⊕h1
(0⊕ g).

Next, we note that

h1 ⊕ h1 = L2[�3, d3�k]⊕ L2[�3, d3�k] ∼= L2[�× S2, d(u, Σ)]

such that we understand (for a given pair f, g ∈ L2[�3, d3k]) the direct sum f ⊕ g
as a square integrable function over �× S2 given by

[f ⊕ g](u, Σ) :=

{
uf(uΣ), u ≥ 0,

ug(−uΣ), u < 0,
(u, Σ) ∈ �× S2.

Applying the exponential law for Fock spaces a second time we can represent the
R-fold tensor product

⊗R
r=1H2

f as a single bosonic Fock space

R⊗
r=1

H2
f
∼= F
( R⊕

r=1

L2[�× S2, d(u, Σ)]
)
∼= F

(
L2[�× S2 ×�R

1 , d(u, Σ, r)]
)
,

where �R
1 := {1, . . . , R}. Identifying the original Araki-Woods representation with

the glued one we may express the creation and annihilation operators acting on the
various reservoirs as

R∑
r=1

�H2
f
⊗ · · · ⊗ �H2

f
⊗ [a#(fr)⊗ �Hf

+ �Hf
⊗ a#(gr)︸ ︷︷ ︸

r

]⊗ �H2
f
⊗ · · · ⊗ �H2

f

≡ a#
gl(f ⊕ g),
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where f = (f1, . . . , fR), g = (g1, . . . , gR) and

[f ⊕ g](u, Σ, r) := [fr ⊕ gr](u, Σ) =

{
ufr(uΣ), u ≥ 0,

ugr(−uΣ), u < 0

and

agl(h) =
R∑

r=1

∫
�3

du

∫
S2

dΣ h(u, Σ, r)agl(u, Σ, r)

a∗
gl(h) =

R∑
r=1

∫
�3

du

∫
S2

dΣ h(u, Σ, r)a∗
gl(u, Σ, r),

for h ∈ L2[�× S2 ×�R
1 ] being the glued creation and annihilation operators, resp.

We denote by

a#
gl(u, Σ, r)

≡ u×

⎧⎪⎪⎨⎪⎪⎩
�H2

f
⊗ · · · ⊗ �H2

f
⊗ [a#(uΣ)⊗ �Hf︸ ︷︷ ︸

r

]⊗ �H2
f
⊗ · · · ⊗ �H2

f
, u ≥ 0,

�H2
f
⊗ · · · ⊗ �H2

f
⊗ [�Hf

⊗ a#(−uΣ)︸ ︷︷ ︸
r

]⊗ �H2
f
⊗ · · · ⊗ �H2

f
, u < 0

the pointwise creation and annihilation operators on the glued space F(L2[�×S2×
�

R
1 ]). The corresponding field and Weyl operators are given by

Φgl(h) :=
1√
2

[
a∗

gl(h) + agl(h)
]
,

Wgl(h) := eiΦgl(h).

The vacuum is denoted, for notational simplicity, by Ωvac also. For notational con-
venience we abbreviate

(Υ, dy) := (�× S2 ×�R
1 , d(u, Σ, r)) (1.63)

such that we finally achieve the structure

H2 ≡ H2
p ⊗F(L2[Υ, dy]).

The pointwise creation and annihilation operators fulfil the CCR[
a∗

gl(u, Σ, r), a∗
gl(u

′, Σ′, r′)
]

= [agl(u, Σ, r), agl(u
′, Σ′, r′)] = 0,[

agl(u, Σ, r), a∗
gl(u

′, Σ′, r′)
]

= δr,r′δ(u− u′)δ(Σ− Σ′),
(1.64)

as one verifies by applying the CCR (1.30) for a, a∗.
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To benefit from these notational simplifications we rewrite the representation π
in terms of objects of the glued Fock space F(Υ). Let’s abbreviate

a#
r (�k) := �Hf

⊗ · · · ⊗ �Hf
⊗ a#(�k)︸ ︷︷ ︸

r

⊗�Hf
⊗ · · · ⊗ �Hf

,

a#
r (f) := �Hf

⊗ · · · ⊗ �Hf
⊗ a#(f)︸ ︷︷ ︸

r

⊗�Hf
⊗ · · · ⊗ �Hf

,

Φr(f) := ar(f) + a∗
r(f),

Wr(f) := eiΦr(f).

For form factors f = (f1, . . . , fR) ∈ DR
f and A ∈ Ap we obtain

π
( R∑

r=1

A⊗ Φr(fr)
)

=
R∑

r=1

πp(A)⊗ �H2
f
⊗ · · · ⊗ �H2

f
⊗
[
Φ(
√

1 + ρf,r fr)⊗ �Hf
+ �Hf

⊗ Φ(
√

ρf,r f r)︸ ︷︷ ︸
r

]
⊗ �H2

f
⊗ · · · ⊗ �H2

f

= πp(A)⊗ Φgl

(
(
√

1 + ρf,r fr)r=1,...,R ⊕ (
√

ρf,r f r)r=1,...,R

)
= πp(A)⊗ Φgl(g(f)),

where the gluing function g is defined as

g : DR
f → L2[Υ],

f = (f1, . . . , fR) �→ g(f) := (
√

1 + ρf,r fr)r=1,...,R ⊕ (
√

ρf,r f r)r=1,...,R,
(1.65)

i.e.,

g(f)(u, Σ, r) =

√
u

1− e−βru
×
{√

u fr(uΣ), u ≥ 0,

(−
√
−u) f r(−uΣ), u < 0.

Note that g incorporates the reservoir temperatures βr as the representation π does.
This finally leads to the following form of the representation π,

π
(
A⊗W (f1)⊗ · · · ⊗W (fR)

)
= πp(A)⊗Wgl(g(f)).

The anti-linear representation π′ can be treated in the same way and we find that

π′
(
A⊗W (f1)⊗ · · · ⊗W (fR)

)
= π′

p(A)⊗Wgl(g
′(f)),

where

g′(f)(u, Σ, r) := −g(f)(−u, Σ, r)

=

√
u

eβru − 1
×
{√

u f r(uΣ), u ≥ 0,

(−
√
−u) fr(−uΣ), u < 0.
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The field Liouville operators have the following form in the glued representation,

Lf,r = dΓgl ((u, Σ, j) �→ δj,ru) ≡
∫
�

du

∫
S2

dΣ a∗
gl(u, Σ, r)uagl(u, Σ, r),

and the free Liouville operator can be expressed as

L0 = Lp + Lres

where

Lres := dΓgl ((u, Σ, r) �→ u) ≡
∫
Υ

d(u, Σ, r) a∗
gl(u, Σ, r)uagl(u, Σ, r). (1.66)

is the contribution of all photon fields.

The commutation relations (1.64) allow the same reasoning as in Section 1.3.1
which leads to the pull through formula for the glued Fock space. We state this
important formula. Let F : �→ B(H2

p) be a measurable, operator valued function
and let

dΓgl(λ) ≡
∫
Υ

dy a∗
gl(y)λ(y)agl(y)

be the second quantization of the measurable function λ : Υ → �, in particular,
dΓgl(λ) is a self-adjoint operator. Then, the following commutation relations hold
true,

agl(y)F (dΓgl(λ)) = F (dΓgl(λ) + λ(y)) agl(y),

a∗
gl(y)F (dΓgl(λ) + λ(y)) = F (dΓgl(λ)) a∗

gl(y),
(1.67)

to be understood in a weak sense on suitable domains.

1.4.3 Particle-Photon Interaction

We consider photon creation and annihilation processes of first order as interaction
between the particle system and the photon reservoirs. The interaction operator is
given by

vr :=
√

2 Φr(Gr) := ar(Gr) + a∗
r(Gr), (1.68)

where Gr ∈ L2[�3;B(Hp)], r = 1, . . . , R, are B(Hp)-valued, square integrable func-
tions and

ar(F ) :=

∫
�3

d3�k F (�k)∗ ⊗ ar(�k),

a∗
r(F ) :=

∫
�3

d3�k F (�k)⊗ a∗
r(

�k)

(1.69)
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is the extension of creation and annihilation operators for the rth reservoir to B(Hp)-
valued form factors F . The definition (1.69) has to be understood in the sense of
(1.28) and (1.29), i.e., in a weak sense. The operators vr, r = 1, . . . , R, are self-
adjoint and appear as a perturbation of the free Hamilton operator H0,

H := H0 + gv with v :=
R∑

r=1

vr, (1.70)

where g ∈ � is the coupling constant. For notational convenience we take g ≥ 0. To
ensure the self-adjointness of the interacting Hamilton operator H we assume that
the following hypothesis is fulfilled.

Hypothesis I-1.2 (Self-Adjointness of H) We assume that the coupling func-
tions Gr, r = 1, . . . , R, obey the following weighted L2-norm,∫

�3

d3�k

[
1 +

1

ω(�k)

]∥∥∥Gr(�k)
∥∥∥2

B(Hp)
<∞. (1.71)

This assumption results in

Lemma 1.3 (Essential Self-Adjointness of H) Under the assumption of Hy-
pothesis I-1.2, the perturbed Hamilton operator H given in (1.70) is essentially self-
adjoint for g sufficiently small.

Proof. With exactly the same arguments as in the proof of Lemma A.4 we see
that the assumptions (1.71) on the coupling functions Gr imply that

∥∥[ar(Gr) + a∗
r(Gr)] (Hf,r + 1)−1

∥∥
B(H)
≤
∫
�3

d3�k

[
1 +

1

ω(�k)

]∥∥∥Gr(�k)
∥∥∥2

B(Hp)
.

Therefore the interaction gv is relatively bounded w.r.t. H0 with relative bound

∥∥gv (H0 − E0 + 1)−1
∥∥
B(H)
≤ g

R∑
r=1

∫
�3

d3�k

[
1 +

1

ω(�k)

]∥∥∥Gr(�k)
∥∥∥2

B(Hp)
< 1

for g sufficiently small. The essential self-adjointness of H follows by the Kato-
Rellich Theorem, see [38, Sect. X.2, Thm. X.12].

The operator H therefore extends to a self-adjoint operator whose extension is
denoted by the same symbol. This allows us to introduce a Heisenberg time evolution
α = {αt}t∈� on bounded operators A on H by

αt(A) := eiHtAe−iHt
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which can be expressed as a Dyson series expansion

αt(A) = αt
0(A) +

∞∑
n=1

(ig)n

t∫
0

dt1 . . .

tn−1∫
0

dtn
[
αtn

0 (v),
[
. . . ,
[
αt1

0 (v), αt
0(A)
]]]

. (1.72)

The extension of the unperturbed time evolution α0 to unbounded operators vr is
understood as

αt
0(vr) := eiH0tvre

−iH0t = ar

(
eiωtαt

p(Gr( · ))
)

+ a∗
r

(
eiωtαt

p(Gr( · ))
)
. (1.73)

The convergence of the r.h.s. of (1.72) towards αt(A) holds strongly on vectors
of the form ψ = ψp ⊗ [W (g1)Ωvac] ⊗ · · · ⊗ [W (gR)Ωvac] and for observables of the
form A = Ap ⊗ W (f1) ⊗ · · · ⊗ W (fR), building a dense subalgebra in A, as one
proves with similar arguments as those presented in Lemma B.1(i). Since the Dyson
series expansion (1.72) only serves as a motivation for a redefinition of the perturbed
time evolution and never enters the analysis we content ourselves with this remark
about the well-definedness of (1.72). We note that the evolution group {αt}t∈� is
well defined on bounded operators, however, it does not necessarily leave the Weyl
operators invariant (and therefore the algebra A neither). Using the Trotter product
formula we can see that for an observable A ∈ A, the following holds true,

αt(A) = s-lim
n→∞

[
eiH0t/neigvt/n

]n
A
[
e−igvt/ne−iH0t/n

]n
.

Since eigvt/n is in the weak closure of the algebra A and since further αt
0 =

eiH0t( · )e−iH0t leaves A invariant, we can conclude that αt(A) lies in the weak closure
A′′ of A (this is in fact a trivial result because A′′ = B(H) as one easily verifies).
This implies that

αt(A) ⊆ A′′ = B(H).

The invariance of A under α poses a subtle difficulty in the respect that we aim
to evolve ω0-normal states under α. The problem is that the state ω0 has no normal
extension on A′′, i.e., it is not σ-weakly continuous extendable to A′′. Thus, the
composition ω0◦αt does not define a priori a state on A. We will bypass this problem
by interpreting the time evolution α not as a group of automorphism on observables
but as a group of transformations acting on ω0-normal states. Hence we have to
redefine for any η ∈ Nω0(A) what we understand by αt ∗ η rather then considering
the ill defined composition η ◦ αt.

We give some motivation for the definition of the evolution on ω0-normal states.
Let η = 〈 ξ |π( · )ξ 〉 be an ω0-normal state where ξ ∈ P. The task is to make sense
of π ◦αt(A) for A ∈ A in order to understand η ◦αt, i.e., we define the action αt ∗ π
of α on π. For this purpose we already extended the representation πf to creation
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and annihilation operators. For operator-valued form factors F ∈ L2[�3;B(Hp)]
with ω−1/2F ∈ L2[�3;B(Hp)] we may define in a similar way to (1.49),

π(ar(F )) :=

∫
�3

d3�k π
(
F (�k)∗ ⊗ ar(�k)

)
=

∫
�3

d3�k
{[

F (�k)∗ ⊗ �Hp

]
⊗ �H2

f
⊗ · · · ⊗ �H2

f

⊗
[√

1 + ρf,r(�k) a(�k)⊗ �Hf︸ ︷︷ ︸
r

]
⊗ �H2

f
⊗ · · · ⊗ �H2

f

+
[
F (�k)∗ ⊗ �Hp

]
⊗ �H2

f
⊗ · · · ⊗ �H2

f

⊗
[√

ρf,r(�k)�Hf
⊗ a∗(�k)︸ ︷︷ ︸

r

]
⊗ �H2

f
⊗ · · · ⊗ �H2

f

}
(1.74)

and
π(a∗

r(F )) := π(ar(F ))∗.

In the glued version the representation reads

π
( R∑

r=1

Φr(Fr)
)

= Φgl(g(F )) (1.75)

for F = (F1, . . . , FR), where the gluing function g extends to

g : B(Hp)⊗DR
f → B(H2

p)⊗Υ,

g(F )(u, Σ, r) :=

√
u

1− e−βru
×
{√

u [Fr(uΣ)⊗ �Hp ], u ≥ 0,

(−
√
−u) [Fr(−uΣ)∗ ⊗ �Hp ], u < 0.

(1.76)

and the glued field operator handles operator valued form factors F ∈ L2[�× S2 ×
�

R
1 ;B(H2

p)] as

Φgl(F ) :=
1√
2

∫
Υ

dy
[
F (y)∗ ⊗ agl(y) + F (y)⊗ a∗

gl(y)
]
.

Correspondingly, we can extend the anti-linear representation π′ by setting

π′
( R∑

r=1

Φr(Fr)
)

:= Jπ
( R∑

r=1

Φr(Fr)
)
J = Φgl(g

′(F ))

where F = (F1, . . . , FR) and

g′(F )(u, Σ, r) := −Jpg(F )(−u, Σ, r)Jp.
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It is easy to verify that
[π(Φr(F )), π′(Φr(G))] = 0

for all F,G ∈ L2[�3;B(Hp)] with ω−1/2F, ω−1/2G ∈ L2[�3;B(Hp)].

Having extended π to the polynomial algebra of creation and annihilation opera-
tors with B(Hp)-valued form factors we are in the position to apply the ω0-normal
η to a#

r (G) by making the canonical convention

η
(
a#

r (G)
)

:=
〈
ξ
∣∣ π(a#

r (G))ξ
〉

(1.77)

where we assume that ξ is in the form domain of π(a#
r (G)).

The above considerations and Equation (1.73) allow us to apply the representation
π to the Dyson expansion on the r.h.s. of (1.72). We first observe that

π
([

αtn
0 (v),

[
. . . ,
[
αt1

0 (v), αt
0(A)
]]])

=
[
π(αtn

0 (v)),
[
. . . ,
[
π(αt1

0 (v)), π(αt
0(A))

]]]
=
[
eiL0tn [π(v)− π′(v)]e−iL0tn ,

[
. . . ,
[
eiL0t1 [π(v)− π′(v)]e−iL0t1 , eiL0tπ(A)e−iL0t

] ]]
.

We now define αt ∗ π ≡ π ◦ αt ≡ π(αt( · )) as

αt ∗ π(A) := π(αt
0(A)) +

∞∑
n=1

(ig)n

t∫
0

dt1 . . .

tn−1∫
0

dtn (1.78)

×π
([

αtn
0 (v),

[
. . . ,
[
αt1

0 (v), αt
0(A)
]]])

= eiL0tπ(A)e−iL0t +
∞∑

n=1

(ig)n

t∫
0

dt1 . . .

tn−1∫
0

dtn

×
[
eiL0tn [π(v)− π′(v)]e−iL0tn ,

[
. . . ,
[
eiL0t1 [π(v)− π′(v)]e−iL0t1 , eiL0tπ(A)e−iL0t

] ]]
where all limit procedures have to be understood in a strong sense on vectors of the
form ψ = [Bp ⊗Wgl(f)]Ω0 and for observables of the form A = Ap ⊗W (f1)⊗ · · · ⊗
W (fR), refer to Lemma B.1(i) for a similar situation. To simplify the expression
(1.78) we introduce the perturbed Liouville operator

L := L0 + gI

where the perturbation part is given by

I := π(v)− π′(v) = agl(G − G ′) + a∗
gl(G − G ′) (1.79)
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with

G := g(G1, . . . , GR),

G(u, Σ, r) =

√
u

1− e−βru
×
{√

uGr(uΣ)⊗ �Hp , u ≥ 0,

(−
√
−u)Gr(−uΣ)∗ ⊗ �Hp , u < 0,

(1.80)

and

G ′ := g′(G1, . . . , GR),

G ′(u, Σ, r) =

√
u

eβru − 1
×
{√

u�Hp ⊗Gr(uΣ)
∗
, u ≥ 0,

(−
√
−u)�Hp ⊗Gr(−uΣ), u < 0,

(1.81)

We remark that this is the analog to the perturbed Liouville operator (1.9) for the
C∗-dynamical case although in our case the perturbation v is not a bounded operator
of the algebra A. To ensure self-adjointness of L we require the following properties
of Gr.

Hypothesis II-1.4 (Self-Adjointness of L) We assume that the coupling func-
tions Gr, r = 1, . . . , R, obey the following bounds,∫

�3

d3�k
[
ω(�k) + ω(�k)−2

] ∥∥∥Gr(�k)
∥∥∥2

B(Hp)
<∞.

Lemma 1.5 Let F ∈ L2[Υ;B(H2
p)] be an operator valued function on the glued

space Υ obeying the weighted L2 norm∫
Υ

d(u, Σ, r)
(
|u|+ |u|−1

)
‖F (u, Σ, r)‖2B(H2

p) <∞. (1.82)

Then the operator
L0 + agl(F ) + a∗

gl(F ) (1.83)

is essentially self-adjoint on the domain of the auxiliary operator

Laux := dΓgl ((u, Σ, r) �→ |u|) ≡
∫
Υ

d(u, Σ, r) a∗
gl(u, Σ, r)|u|agl(u, Σ, r).

Proof. Let ϕ, ψ ∈ D(Laux). We estimate∣∣〈ψ ∣∣ (L0 + agl(F ) + a∗
gl(F )

)
ϕ
〉∣∣

≤
[∥∥∥∥Lres + Lp

Laux + 1

∥∥∥∥+
∥∥(Laux + 1)−1/2

(
agl(F ) + a∗

gl(F )
)
(Laux + 1)−1/2

∥∥]
×
∥∥(Laux + 1)1/2ψ

∥∥∥∥(Laux + 1)1/2ϕ
∥∥

≤ [1 + ‖Lp‖+ C]
∥∥(Laux + 1)1/2ψ

∥∥∥∥(Laux + 1)1/2ϕ
∥∥ ,



70 1. The Positive Temperature Model ...

where we used that Lres is relatively Laux bounded with relative bound smaller than
1 and where the constant C is given by

C2 := 2

∫
Υ

d(u, Σ, r) |u|−1 ‖F (u, Σ, r)‖2B(H2
p)

≤ 2

∫
Υ

d(u, Σ, r)
(
|u|+ |u|−1

)
‖F (u, Σ, r)‖2B(H2

p) <∞

due to Lemma A.4 (for (δ, τ) = (iπ
2
, 0)). On the domain D(L

3/2
aux) we have the

commutator relation[
Laux, L0 + agl(F ) + a∗

gl(F )
]

=
[
Laux, agl(F ) + a∗

gl(F )
]

= a∗
gl(|u|F )− agl(|u|F )

because of the pull through formula (1.67). Therefore, for ϕ, ψ ∈ D(L
3/2
aux), we obtain∣∣〈ψ ∣∣ [Laux + 1, L0 + agl(F ) + a∗

gl(F )
]
ϕ
〉∣∣

≤ C ′ ∥∥(Laux + 1)1/2ψ
∥∥∥∥(Laux + 1)1/2ϕ

∥∥ ,

where, again by Lemma A.4,

C ′2 := 2

∫
Υ

d(u, Σ, r) |u|−1 ‖|u|F (u, Σ, r)‖2B(H2
p)

≤ 2

∫
Υ

d(u, Σ, r)
(
|u|+ |u|−1

)
‖F (u, Σ, r)‖2B(H2

p) <∞.

A variant of the Nelson’s Commutator Theorem as presented in [38, Thm. X.36’]
implies that the operator (1.83) is essentially self-adjoint on D(Laux).

Corollary 1.6 (Self-Adjointness of L) Under the assumptions of Hypothesis II-
1.4, the operators

L = L0 + g [π(v)− π′(v)] ,

L(�) := L0 + gπ(v),

L(r) := L0 − gπ′(v),

K(s) := L0 + g
[
π(v)− π′

(
σs

0 ◦ α−βs
0 (v)

)]
, s ∈ �, β > 0,

are essentially self-adjoint on the domain of the operator Laux. Recall that the group
(σs

0)s∈� entering K(s) was introduced in (1.61).
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Proof. The assumption of Hypothesis II-1.4 implies that the form factors G
and G ′ appearing in the definition (1.79) of the perturbation I = π(v)− π′(v) obey
the bound (1.82),∫

Υ

d(u, Σ, r)
(
|u|+ |u|−1

)
‖G(u, Σ, r)‖2B(H2

p)

=
R∑

r=1

∞∫
0

u2du

∫
S2

dΣ
|u|+ |u|−1

1− e−βru
‖Gr(uΣ)‖2B(Hp)

−
R∑

r=1

0∫
−∞

u2du

∫
S2

dΣ
|u|+ |u|−1

1− e−βru
‖Gr(−uΣ)‖2B(Hp)

=
R∑

r=1

∫
R3

d3�k
(
ω(�k) + ω(�k)−1

)( 1

1− e−βrω(�k)
+

1

eβrω(�k) − 1

)∥∥∥Gr(�k)
∥∥∥2

B(Hp)

≤
R∑

r=1

∫
R3

d3�k
(
ω(�k) + ω(�k)−1

)(
2β−1

r ω(�k)−1 + 1
)∥∥∥Gr(�k)

∥∥∥2

B(Hp)

≤
R∑

r=1

(
2β−1

r + 1
) ∫

R3

d3�k
(
ω(�k) + 1 + ω(�k)−1 + ω(�k)−2

)∥∥∥Gr(�k)
∥∥∥2

B(Hp)

< ∞.

The same estimate holds for G ′. Thus, Lemma 1.5 implies that L is essentially self-
adjoint on D(Laux). The assertion for the other operators is proved in the same way.

Corollary 1.6 guarantees the existence of the strongly continuous one parameter
group {eiLt}t∈�. We find that the expression (1.78) is the Dyson series expansion of
eiLtπ(A)e−iLt, i.e.,

αt ∗ π(A) = eiLtπ(A)e−iLt. (1.84)

This statement, again, employs the kind of arguments as given in Lemma B.1(i).
The evolution α is lifted to an automorphism group [πα] = {[πα]t}t∈� on π(A)′′

given by
[πα]t(A) := eiLtAe−iLt, A ∈ π(A)′′.

We take this relation as a definition and consider (1.73, 1.78) as its formal motivation
rather than a mathematically rigorous derivation.

The excursion leading to the relation (1.84) motivates us to define the time evo-
lution of an arbitrary ω0-normal state η = 〈 ξ |π( · )ξ 〉 by

αt ∗ η :=
〈
ξ
∣∣αt ∗ π( · )ξ

〉
=
〈
ξ
∣∣ eiLtπ( · )e−iLtξ

〉
,
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having in mind that αt ∗ η does not result from an automorphism αt on A. Nev-
ertheless, we will henceforth write η ◦ αt instead of αt ∗ η always being aware in
which sense the composition has to be understood and that it only makes sense for
ω0-normal states.

The invariance ofA under αt has a further consequence that (A, α) does not define
a dynamical system of any kind. The modular theory derived through Section 1.1 is
not directly applicable. We find a remedy in the same spirit of Section 1.3.6 where
we discussed the interpretation of (Af , αf) as a dynamical system. We first remark
the following

Lemma 1.7 The lifted system (π(A)′′, [πα]) is a W ∗-dynamical system.

Proof. We have to verify that [πα] leaves π(A)′′ invariant. We choose A ∈ π(A)′′

and denote L(�) = L0 + V where V := gπ(v) and write V ′ = JV J = gπ′(v). By
Corollary 1.6 the operator L(�) has a self-adjoint extension and we obtain with the
help of the Trotter product formula,

eiL(�)tAe−iL(�)t = s-lim
n→∞

[
eiL0t/neiV t/n

]n
A
[
e−iV t/ne−iL0t/n

]n
.

We show that eiV t/n ∈ π(A)′′. To this end we choose an arbitrary B′ ∈ π(A)′ and
observe that

〈
ψ
∣∣ [eiV t/n, B′]ϕ 〉 =

∞∑
k=0

(igt)k

nkk!

〈
ψ
∣∣ [π(v)k, B′]ϕ

〉
= 0,

for ψ, ϕ being from a dense set of analytic vectors for the self-adjoint operator π(v)
using that π(v) and B′ commute. Since [eiV t/n, B′] is a bounded operator we conclude
that the commutator vanishes on the whole space and therefore eiV t/n ∈ π(A)′′.
Since L0, as the unperturbed Liouville operator, generates an automorphism group
leaving π(A)′′ invariant we obtain[

eiL0t/neiV t/n
]n

A
[
e−iV t/ne−iL0t/n

]n ∈ π(A)′′.

The strong limit does not leave the weak closure such that

eiL(�)tAe−iL(�)t ∈ π(A)′′.

A second application of the Trotter product formula yields

[πα]t(A) = s-lim
n→∞

[
eiL(�)t/ne−iV ′t/n

]n
A
[
eiV ′t/ne−iL(�)t/n

]n
= eiL(�)tAe−iL(�)t ∈ π(A)′′
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where we used that e−iV ′t/n = JeiV t/nJ ∈ π(A)′ commutes with A. It is obvious that
t �→ eiLtAe−iLt is strongly continuous for every A ∈ π(A)′′ which is the appropriate
continuity property for W ∗-dynamical systems.

We further have an identification between ω0-normal states on A and normal
states on π(A)′′ via

〈 ξ | π( · )ξ 〉 ↔ 〈 ξ | ( · )ξ 〉 .

The state A �→ 〈Ω0 |AΩ0 〉 on π(A)′′ is already given in its GNS representation and
its modular structure consists of the same data (π(A)′′,H2, J,P) as the modular
structure of ω0. Since we only study ω0-normal states we effectively have a W ∗-
algebra framework at hand. All the concepts have to be transferred to the system
(π(A)′′, [πα]). For instance, by an ω0-normal (α, β)-KMS state on A we understand
a state 〈 ξ |π( · )ξ 〉 such that 〈 ξ | ( · )ξ 〉 is a ([πα], β)-KMS state on π(A)′′.

We check that the group {eiLt}t∈� leaves the positive cone P invariant. Let
A ∈ π(A)′′ and decompose the operator L = L0 + V − V ′ where V := gπ(v) and
V ′ := gπ′(v). We remark that eiV t ∈ π(A)′′ and e−iV ′t = JeiV tJ ∈ π(A)′. Since
L0 is a Liouville operator associated with the cone P it leaves the cone invariant.
Applying the Trotter product formula yields

eiLtAJAΩ0 = lim
n→∞

[
eiL0t/neiV t/ne−iV ′t/n

]n
AJAΩ0.

We consider[
eiL0t/neiV t/ne−iV ′t/n

]
AJAΩ0 = eiL0t/neiV t/nAe−iV ′t/nJAΩ0

= eiL0t/n
[
eiV t/nA

]
J
[
eiV t/nA

]
Ω0 ∈ P

which implies inductively that
[
eiL0t/neiV t/ne−iV ′t/n

]n
AJAΩ0 ∈ P. Since P is closed

we obtain

eiLtAJAΩ0 ∈ P.

The invariance of P under eiLt and (1.84) justify that L is called the standard
Liouville operator associated with ω0 w.r.t. the perturbed time evolution α.

1.4.4 Heat Fluxes and Entropy Production Rate

To classify the physical system in stationary states away from thermal equilibrium we
introduce the notion of heat fluxes and entropy production rate. By the heat flux of
one of the subsystems we understand the net flow of energy into the corresponding
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subsystem, i.e., the change of energy in time. The initial heat flux through the
particle system, when the coupling to the reservoirs is switched on, is given by

φp := ∂t|t=0α
t(Hp) = i[H,Hp] = i[gv,Hp]

and the initial heat flux of the rth reservoir by

φf,r := ∂t|t=0α
t(Hf,r) = i[H,Hf,r] = i[gvr, Hf,r] = g [ar(−iωGr) + a∗

r(−iωGr)] .

The total flux of the system is introduced as

φtot := φp +
R∑

r=1

φf,r = ∂t|t=0α
t(H0) = i[H,H0] = −i[H, gv].

We remark that φp, φf,r and φtot are given in terms of creation and annihilation
operators and can therefore be plugged into ω0-normal states η = 〈 ξ | π( · )ξ 〉, for
ξ in the form domain of π(φp), π(φf,r), π(φtot), resp., using the extension of π
to polynomials in creation and annihilation operators as discussed in the previous
section, c.f. (1.77). We further note that while Hp ∈ Ap is a proper observable the
reservoir Hamiltonians Hf,r cannot be expressed in terms of creation and annihilation
operators and therefore applying of ω0-normal states to Hf,r is not possible. Doing
so formally would lead to infinite expressions which stresses the fact that the photon
reservoirs accumulate an infinite amount of energy.

We further introduce the entropy production rate observable

s := βpφp +
R∑

r=1

βrφf,r

which describes the initial change of entropy when the reservoirs at given inverse
temperatures β1, . . . , βR are brought into interaction with the particle system at
inverse temperature βp. This definition is the translation of the thermodynamic
“slogan”

dS = βdQ,

describing the entropy change dS in relation to the heat transfer dQ, to our situation.
Using the definition of the fluxes we see that

s = i

[
gv, βpHp +

R∑
r=1

βrHf,r

]
= [gv, iHresc],

and further

π(s) = [gπ(v), iL0],



1.4. The Composed Particle-Photon System 75

in consistency with the definition (1.11) of the entropy production rate in Sec-
tion 1.1.3. However, in the case of bosonic interaction neither the perturbation v
nor the entropy production rate s are elements from the algebra A but we may com-
pute their expectation value in an ω0-normal state. The entropy production formula
(1.10) is also valid in the situation of unbounded entropy production observables, it
reads in this context

Ent
(
η ◦ αt|ω0

)
= Ent(η|ω0)−

t∫
0

ds η ◦ αs(s) (1.85)

for any ω0-normal state η = 〈 ξ |π( · )ξ 〉 with ξ from the form domain of π(s). The
proof of this relation is literally the same as the proof given in [26] for C∗- and
W ∗-dynamical systems with bounded interactions from the algebra, except for the
convergence of the employed Dyson series which is only strong in our context.

1.4.5 Technical Requirements

We provide a set of requirements on the mathematical objects of the considered
system. These assumptions are essential for the analysis we perform on the system.
The first hypothesis deals with the regime of parameters which might influence the
observation of the studied phenomena, that are the reservoir temperatures and the
coupling constant. The coupling constant g is treated as a perturbative parameter,
i.e., it is chosen sufficiently small. All results shall hold uniformly for low tempera-
tures while the high temperature regime is excluded for simplicity. Further, several
results will only hold for small temperature differences which, however, need not to
be small compared with the strength of the coupling.

Hypothesis III-1.8 (Parameter Range of g and βr) The coupling constant
g ∈ � is a perturbative parameter which is assumed to be sufficiently small,

0 < |g| � 1.

For notational convenience we chose g > 0.

Without loss of generality we assume that the inverse reservoir temperatures are
ordered as

0 < β ≤ βmin := βR ≤ · · · ≤ β1 =: βmax <∞
where βmin is assumed to be uniformly bounded away from zero by a positive con-
stant β while there is no upper bound on the inverse temperatures. Further, the
temperature differences are assumed to be sufficiently small compared to a constant,
i.e.,

|βmax − βmin| � 1.
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The inverse temperature difference is not a perturbative parameter on the same scale
as g, i.e., we allow that |βmax − βmin|  g.

The next assumption concerns the degeneracy of the particle energy levels.

Hypothesis IV-1.9 (Non-Degeneracy of the Particle System) The eigen-
values of the particle Hamiltonian are assumed to be non-degenerate, i.e.,

E0 < E1 < · · · < EN−1.

We need an assumption which guarantees that the photon reservoirs are effectively
coupled to the particle system such that thermal relaxation can occur. In this
context we understand by an effective coupling that any transition from a higher
particle energy level to a lower one under the emission of photons carrying away the
energy difference of the energy levels is allowed.

Hypothesis V-1.10 (Fermi Golden Rule Condition) The coupling functions
obey

γFGR := 2π
R

min
r=1

[
N−1

min
m,n=0,
m>n

E2
m,n

∫
S2

dΣ
∣∣∣〈ϕn |Gr(Em,nΣ)ϕm 〉Hp

∣∣∣2 ] > 0. (1.86)

The number γFGR is referred to as Fermi golden rule level shift.

Note that only the transition probabilities | 〈ϕn |Gr(Em,nΣ)ϕm 〉Hp
|2, m > n, from

a higher particle energy level Em down to lower level En under emission of a photon
of the difference energy Em,n = Em−En have to be accounted for the Fermi golden
rule condition. None of the transitions to a lower energy level may be prohibited.
It is plausible that excitation processes of the particle system, i.e., transitions from
lower to higher energy levels, play no rule for the thermal relaxation properties. We
remark further that the Fermi golden rule level shift γFGR is only strictly positive if
the number of possible transitions is finite. Taking the infimum in (1.86) over infinite
many energy levels, i.e., N = ∞, we typically obtain a vanishing Fermi golden
rule level shift. Our considerations are therefore restricted to particle systems with
finitely many degrees of freedom. It is still an open problem to study the thermal
relaxation for setups where the particle system has infinitely many energy levels.

For our analysis on the interacting system we need conditions considerably
stronger than those assumed in the Hypotheses I-1.2 and II-1.4. The following
Hypotheses will provide the necessary conditions on the coupling functions for our
work and will henceforth be assumed to be fulfilled. Some mathematical analysis
on the interacting system requires a transformation of the interacting part of the
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perturbed Liouville operator with the help of the rescaled free evolution α0, we
need at various places that π(αs

0(v)) is well defined as analytic functions in s for
| Im(s)| ≤ βmax/2. To this end we intensify the Hypothesis I-1.2.

Hypothesis VI-1.11 (α0-Analyticity of the Perturbation) We assume that
the coupling functions Gr, r = 1, . . . , R, obey the following weighted L2-norm,∫

�3

d3�k

[
1 +

1

ω(�k)

]∥∥∥e(βmax/2+ε0)ω(�k)Gr(�k)
∥∥∥2

B(Hp)
<∞ (1.87)

for a small constant ε0 > 0.

We remark that, while imposing the more stringent condition (1.87) on the coupling
functions to lie in a weighted L2-space, we do not require that the corresponding
weighted L2-norms of Gr are bounded uniformly in the temperature. In fact, the
weighted L2-norm (1.87) grows exponentially in the inverse temperature βmax. How-
ever, this does no pose a problem since this norm never appears in the context of
the perturbation theory. The Hypothesis VI-1.11 is not crucial for the validity of
our results and it can be avoided by an approximation of the coupling functions by
rapidly decreasing functions. The gained results are uniform in the approximation
such that it can finally be removed. This strategy was carried out in [34]. In the
present work we restrict ourselves to the less general case of coupling functions to
avoid further technical inconveniences.

A main ingredient for our analysis is an analyticity property of the coupling
functions Gr. Recall that

G = g(G1, . . . , GR) ∈ L2[Υ;B(H2
p)]

denotes the glued coupling function. On the space L2[Υ] of square integrable
functions over Υ, given in (1.63), we introduce a unitary two-parameter family
{D(θ)}θ∈�2 by

[D(θ)f ] (u, Σ, r) := eδ sgn(u)/2f(jθ(u), Σ, r), θ = (δ, τ) ∈ �2,

where
jθ(u) := eδ sgn(u)u + τ (1.88)

and sgn is the signum function, sgn(u) = u/|u|. The parameter δ parameterizes a
dilation of the function f while τ is a translation. For f ∈ L2[Υ] we abbreviate

fθ := D(θ)f.

The family {D(θ)}θ∈�2 implements a spectral deformation of the considered opera-
tors. We require the following properties of the coupling functions G to be fulfilled.
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τ0

1
max2 −βπi

1
max4 −βπi

1
max4 −− βπi

1
max2 −− βπi

)]tan(1[ 00 δτ +

{jθ (u) | − ∞ < u < ∞} δ0

Figure 1.7: Illustration of the set Uδ0,τ0 .

Hypothesis VII-1.12 (Deformation Analyticity & Regularization) The
function u �→ G(u, Σ, r) ∈ B(H2

p) has, for a.e. (Σ, r) ∈ S2 × �R
1 , an analytic

continuation on the complex domain

Uδ0,τ0 := {jθ(u) | θ ∈ Dδ0,τ0 , u ∈ � } (1.89)

where
Dδ0,τ0 :=

{
(δ, τ) ∈ �2

∣∣ | Im(δ)| < δ0, |τ | < τ0

}
, (1.90)

for fixed positive constants δ0, τ0 > 0 fulfilling

π

8
< δ0 <

π

4
and τ0 ≤ 2πβ−1

max. (1.91)

The continuation shall also be denoted by Uδ0,τ0 � z �→ G(z, Σ, r). Further, we
assume that there are positive constants C1 > 0 and 0 < C2 < 2πβ−1

max such that

ess-sup
(Σ,r)∈S2×�R

1

‖G(z, Σ, r)‖B(H2
p) ,≤ C1|z|ν for |z| ≤ C2 (1.92)

for a positive infrared (IR) regularization ν ≥ 1. Moreover, we require the following
ultraviolet (UV) behavior to be fulfilled,

ess-sup
(Σ,r)∈S2×�R

1

‖G(z, Σ, r)‖B(H2
p) ≤ C3e

−a|z|2 for |z| ≥ C4, z ∈ Uδ0,τ0 (1.93)

where a, C3, C4 > 0 are positive constants with a > 0.
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We remark that the UV regularization (1.93) covers the assumption on the decay of
the coupling functions in Hypothesis VI-1.11. We stress that the assumptions on the
UV behavior may be weakened by approximating G by rapidly decaying functions
as done in [34]. Again, we spare the technical expenditure to focus on the essential
problems.

Remark 1.13 Under the assumptions of Hypothesis VII-1.12 the dominated con-
vergence theorem implies that the map

Dδ0,τ0 → L2[Υ;B(H2
p)], θ �→ eisjθGθ

is analytic – pointwise a.e. and in the L2 sense – for any s ∈ �.

To illustrate the requirements of Hypothesis VII-1.12 we specify a class of coupling
functions obeying the above conditions.

Proposition 1.14 (Class of Analytic Perturbations) Let δ0, τ0 > 0 satisfy
(1.91) and

τ0

cos(δ0)
<

π

βmax

. (1.94)

For r = 1, . . . , R, let Mr = M∗
r ∈ B(Hp) be self-adjoint matrices and gr : �+ → �

functions on the positive real axis. Assume that the functions gr have analytic con-
tinuations (also denoted by gr) onto the domain {z ∈ Uδ0,τ0 |Re(z) > 0 }. Further,
we require that the gr have continuous extensions onto the imaginary axis and take
real values there, i.e., gr(ix) ∈ � for real x. Moreover, we assume that gr ful-
fills a certain UV regularization, i.e., there are positive constants a, C > 0 such
that |gr(z)| ≤ Ce−a|z|2, provided that z ∈ Uδ0,τ0 and Re(z) > 0. Choose a number
p ∈
{

1
2

+ n
∣∣n ∈ �0

}
as the actual infrared regularization of the coupling functions

Gr. Then the functions

�k �→ Gr(�k) := ip+ 3
2 |�k|pgr(|�k|)Mr (1.95)

fulfill the requirements of Hypothesis VII-1.12. In particular, we may choose

Gr(�k) =

√
|�k| e−a|�k|2Mr

with a
cos(2δ0)

> 0.

Proof. We first remark that, for any r = 1, . . . , R, the function

z �→ z

1− e−βrz

has simple poles in ±2nπiβ−1
r for n ∈ �, and is analytic elsewhere. In particular,

it has an analytic continuation into the origin of the complex plane and is non-zero
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on its domain. We show that under the conditions (1.94) on the parameters τ0, δ0

the set Uδ0,τ0 does not contain any of the poles. By definition (1.88), we have for
θ ∈ Dδ0,τ0 , u ∈ � and z := jθ(u),

Im(z)− Im(τ)

Re(z)− Re(τ)
= sgn(u) tan(Im(δ)),

i.e., the point z lies on the line going through τ with slope sgn(u) tan(Im(δ)). This
line intersects with the imaginary axis in

b := i [Im(τ)− Re(τ) sgn(u) tan(Im(δ))]

where

|b| ≤ | Im(τ)|+ |Re(τ)|| tan(Im(δ))| ≤ τ0[1 + tan(δ0)] ≤
2τ0

cos(δ0)
< 2πβ−1

max.

This implies that z = jθ(u) does not hit any poles. An illustration of the above
considerations is given in Figure 1.7. Hence, there exists an analytic function

Uδ0,τ0 � z �→
√

z

1− e−βrz

being the extension of � � u �→
√

u(1− e−βru)−1. We now extend the functions gr

across the imaginary axis on the domain Uδ0,τ0 by setting

gr(−x + iy) := gr(x + iy)

for x > 0, y ∈ � and x+iy ∈ Uδ0,τ0 . Using the continuity of gr on the imaginary axis
and the fact that the gr take real values there, the Schwarz reflection principle (c.f.
[41, Thm. 11.17]) implies that the functions gr are analytic on Uδ0,τ0 . Therefore, the
functions

fr : Uδ0,τ0 → �, fr(z) := (iz)p+ 1
2 gr(z)

are analytic as well because p ∈ 1
2

+ �. We now construct an operator valued
function

G : Uδ0,τ0 × S2 ×�R
1 → B(H2

p),

G(z, Σ, r) := i

√
z

1− e−βrz
fr(z)[Mr ⊗ �Hp ]
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which is analytic in the variable z by the above considerations and is the image of
the coupling functions Gr, given in (1.95), under the gluing map g,

g(G1, . . . , GR)(u, Σ, r)

=

√
u

1− e−βru
×
{√

u ip+ 3
2 upgr(u)[Mr ⊗ �Hp ], u ≥ 0,

(−
√
−u)(−i)p+ 3

2 (−u)pgr(−u)[Mr ⊗ �Hp ], u < 0.

= i

√
u

1− e−βru
(iu)p+ 1

2 ×
{

gr(u)[Mr ⊗ �Hp ], u ≥ 0,

gr(−u)[Mr ⊗ �Hp ], u < 0.

= i

√
u

1− e−βru
fr(u)[Mr ⊗ �Hp ]

= G(u, Σ, r)

for (u, Σ, r) ∈ Υ.

It remains to check the (IR) and the (UV) behavior of the constructed coupling
functions. Expanding G around zero gives for |z| ≤ min{1, τ0},

‖G(z, Σ, r)‖B(H2
p) ≤ |z|p+ 1

2 sup
|ζ|≤τ0

∣∣∣∣∣
√

ζ

1− e−βrζ
gr(ζ)

∣∣∣∣∣ ‖Mr‖B(Hp) ≤ C1|z|ν

for a positive constant C1 <∞ since the supremum is taken over an analytic func-
tion. Hereby, the IR regularization ν of the glued functions and the IR regularization
p of the physical coupling functions are related by

ν = p +
1

2
.

This establishes the IR regularization. Further, for |z| ≥ 1, we obtain

‖G(z, Σ, r)‖B(H2
p) ≤ Ce−(a−ε)|z|2 sup

ζ∈Uδ0,τ0
,

|ζ|≥1

∣∣∣∣∣
√

ζ

1− e−βrζ

∣∣∣∣∣ |ζ|p+ 1
2 e−ε|ζ|2 ‖Mr‖B(Hp)

≤ C3e
−(a−ε)|z|2

for some positive constant C3 <∞ and ε > 0 such that a− ε > 0, which is the UV
regularity.

1.4.6 Thermal Relaxation Behavior: A Survey of Results

Within the composed model described above two different types of systems with
contradicting thermal relaxation properties compete. While the finite particle sys-
tem possesses stationary states in a neighborhood of the equilibrium (in the relative
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entropy sense), a single infinite extended photon system would drive any state which
is normal w.r.t. the equilibrium towards the latter. Since we allow that several pho-
tonic systems are close to equilibria at different temperatures the tendency of a
return to equilibrium even leads to a competition among the reservoirs concerning
the relaxation behavior once they are coupled through the particle system. Due
to this competition of comparable reservoirs we cannot expect that the interacting
system will reach a thermal equilibrium. It is more plausible to think about the
infinitely extended reservoirs as staying at their own temperatures while the total
system approaches a time-invariant state featuring stationary heat transfer among
the photon systems through the particle system. The existence of heat fluxes sug-
gests that this stationary state cannot be a thermal equilibrium though it describes
the configuration after the initial configuration has thermally relaxed. We refer to
this state as a non-equilibrium stationary state or simply NESS. We will further
show, for sufficient large temperature differences in the reservoirs, that the standard
Liouville operator of the interacting system has a trivial kernel. This leads to the
conclusion that there are no α-stationary states which are normal w.r.t. ω0. Hence,
the NESS, as a stationary state, is separated from ω0 by an infinite amount of rel-
ative entropy. This in turn implies that the entropy production rate in the NESS
w.r.t. ω0 must be strictly positive.

For the initial reservoir configurations being all close to the same equilibrium, i.e.,
the reservoir temperatures β := β1 = · · · = βR coincide, we expect that the coupled
system has an attracting equilibrium state at inverse temperature β. The proof of
this result can be reduced to the work of Bach, Fröhlich, Sigal in [8], but is also
re-derived as a special case within this work.

In either case the initial configuration of the particle system does not play any role,
the finite system is forced by the infinite systems which control the thermodynamic
processes.

The above considerations are summarized in a mathematical language in the fol-
lowing theorem which presents the main result of this thesis.

Theorem 1.15 (Relaxation & Thermodynamic Characteristics) Assume
that the conditions of the Hypotheses I-1.2-VII-1.12 are fulfilled. There exists a
state ω̃ (i.e., a linear, positive, normalized functional) on a ∗-subalgebra A1, which
is dense in A w.r.t. the strong topology in B(H2), and there are positive numbers
g0 > 0 and δβ0 > 0, both independent of β1, . . . , βR, with the following properties:
For 0 < g < g0 and |βmax − βmin| < δβ0 and for any ω0-normal state η ∈ Nω0(A)
holds

lim
t→∞

η ◦ αt(A) = ω̃(A) (1.96)

for all A ∈ A1. Further, there exists a dense subset N ana ⊂ Nω0(A) of ω0-normal
states such that the convergence of η ∈ N ana towards ω̃ under the time evolution is



1.4. The Composed Particle-Photon System 83

exponentially fast, i.e., there is a positive constant d > 0 and a decay rate given by
τdec = g2d

2+βmax
such that

lim
t→∞

eτdect
∣∣η ◦ αt(A)− ω̃(A)

∣∣ = 0 (1.97)

for all A ∈ A1. Moreover, the state ω̃

• extends to the unique ω0-normal (α, β)-KMS state on A in case that β1 =
· · · = βR =: β. Then, the entropy production rate Epω0

(ω̃) in the state ω̃ w.r.t.
ω0 vanishes.

• has no ω0-normal extension to A and it has a strictly positive entropy pro-
duction rate, Epω0

(ω) > 0, in the case that |βmax − βmin| is sufficiently large
w.r.t. the coupling constant in the sense of (3.6). Further, the state ω̃ features
non-vanishing stationary heat fluxes, there exist r, r′ ∈ {1, . . . , R} such that

ω̃(φf,r) > 0 and ω̃(φf,r′) < 0.

The verification of the statements of Theorem 1.15 goes back to various results
which are the fruits of the spectral theory for NESS derived in Chapter 2. The
subalgebra A1 is realized as a subset of Aana which in turn is defined in (2.34). The
state ω̃ is introduced in (2.35) and Corollary 2.14. The thermal relaxation (1.96,
1.97) of the system is content of Theorem 2.11. The thermodynamic characteristics
of the state as KMS condition, entropy production rate and heat fluxes are results
of Corollary 2.16 and Proposition 2.17.

Remark 1.16 (Non-Equilibrium Stationary State) The state ω̃ of Theo-
rem 1.15 is the pointwise time limit on observables from the subalgebra A1. This
motivates us to refer to ω̃ as a stationary state. However, we pointed out in Sec-
tion 1.4.3 that the perturbed time evolution α is not an automorphism group on the
algebra A, and therefore cannot be applied to arbitrary states on A, but rather acts
as a time evolution on ω0-normal states. Hence, the notion of time evolution of the
state ω̃ is not explained for large temperature differences (in that case ω̃ is not nor-
mal w.r.t. ω0) while, in the equal temperature situation, the question of stationarity
is well posed and can be answered positively (in that case ω̃ is a KMS state). We
remark that any concept for ω0-normal states which survives the long time limit can
be adapted to the state ω̃. This vague statement shall mean the following with regard
to the time evolution αt ∗ ω̃ of the state ω̃,

αt ∗ ω̃(A) := lim
s→∞

ω0 ◦ αs(αt(A))

for all A ∈ A1. Equation (1.96) then trivially implies the stationarity of ω̃ w.r.t. α
on A1.
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The notion of a NESS originally goes back to Ruelle, [42], who classified a non-
equilibrium stationary state as a weak-∗-limit point of the ergodic means of the initial
configuration ω0 evolving under α, i.e., the set of NESS’s is the set of weak-∗-limit
points of ⎧⎨⎩ 1

T

T∫
0

dt αt ◦ ω0

∣∣∣∣∣∣T > 0

⎫⎬⎭ .

Since in our situation all ω0-normal states converge weakly on a subalgebra A1 to-
wards a limit state the state ω̃ is a NESS, and in fact the only one, in the sense of
Ruelle if we restrict to the observables in A1.



2 Dynamical and Thermal Properties
of NESS and Their Spectral
Theory

In Section 1.3.6 we briefly pointed out the spectral theory for equilibrium states. The
thermal relaxation to the equilibrium state could be derived from the fact that the
standard Liouville operator Lf associated with the KMS state ωf in the appropriate
representation πf has a simple null eigenvector while the rest of its spectrum is
absolutely continuous. We crucially used that the vector representative Ωf of the
equilibrium state is cyclic for that very representation and is left invariant by the
group eiLf t generated by the Liouville operator. The combination of both properties,
the modular structure of ωf and the nature of the spectrum of Lf , allowed us to study
the evolution of ωf-normal states and in particular to compute the long time behavior
t → ∞ in terms of the weak limit of the group eiLf t. This connection between
the thermal relaxation properties of equilibria and the spectral properties of their
Liouville operators was established by Jakšić and Pillet in [24] for the description of
a single bosonic reservoir in interaction with a particle system. The same approach
was used by Bach, Fröhlich and Sigal in [8] to study the return to equilibrium
property in a more general temperature regime.

Subsequently, we will outline a modified strategy to connect the thermal relaxation
properties of a system, not necessarily being close to an equilibrium state, with
spectral properties of a suitable generator of the time evolution. The approach we
are describing goes back to a work of Jakšić and Pillet, published in [28], and was
modified by Merkli, Sigal, and the present author in [34].

We start our discussion by reviewing the α0-invariant state

ω0 = 〈Ω0 |π( · )Ω0 〉

introduced in Section 1.4.1 describing a system of R photon reservoirs and a particle
system at different temperatures and which localizes the initial configurations of the
system. Given an ω0-normal state η = 〈 ξ |π( · )ξ 〉 with ξ ∈ P we defined the
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evolution of η under the interacting dynamics by

η ◦ αt =
〈
ξ
∣∣ eiLtπ( · )e−iLtξ

〉
.

We remark that the choice of the generator L was pinned down by the request that
it implements the perturbed time evolution on the representation space,

eiLtπ(A)e−iLt = αt ∗ π(A),

where αt ∗ π(A) was defined in (1.78), and that the group eiLt leaves the cone P
invariant. However, if we are only demanding that a generator, say K, implements
the time evolution, i.e.,

eiKtπ(A)e−iKt = αt ∗ π(A) = eiLtπ(A)e−iLt (2.1)

we get a much wider selection of possible generators K. The fact that π(A) com-
mutes with eiL0τπ′(w)e−iL0τ = π′(ατ

0(w)) for all τ ∈ � and w being a polynomial in
creation and annihilation operators shows that the ansatz

K = L0 + π(v)− π′(w)

fulfills (2.1) if we understand its r.h.s. as an expansion in a Dyson series, i.e.,

eiKtπ(A)e−iKt = π(αt
0(A)) +

∞∑
n=1

(ig)n

t∫
0

dt1 . . .

tn−1∫
0

dtn

×
[
eiL0tn [π(v)− π′(w)]e−iL0tn ,

[
. . . ,
[
eiL0t1 [π(v)− π′(w)]e−iL0t1 , π(αt

0(A))
] ]]

= eiLtπ(A)e−iLt.

This expression is only a formal relation.

The degree of freedom in the definition of K can now be used to require that K
annihilates a given unit vector, say Ω̃ ∈ H2,

KΩ̃ = 0.

Assuming that Ω̃ is both cyclic and separating for π(A)′′ and that w can be chosen
in such a way that KΩ̃ = 0, the operator K becomes the infinitesimal generator of
a one parameter group {U(t)}t∈�,

U(t)[π(A)Ω̃] := αt ∗ π(A)Ω̃ = eiLtπ(A)e−iLtΩ̃, A ∈ A,
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which is well defined due to the separating property of Ω̃ on the dense domain
π(A)′′Ω̃. We remark that this group is unitary if and only if the state

ω̂ :=
〈

Ω̃
∣∣∣ π( · )Ω̃

〉
is α-stationary, namely, for A,B ∈ A holds〈

U(t)π(B)Ω̃
∣∣∣U(t)π(A)Ω̃

〉
=

〈
Ω̃
∣∣∣ eiLtπ(B∗A)e−iLtΩ̃

〉
= ω̂ ◦ αt(B∗A){
=
�=

}
ω̂(B∗A)

{
for ω̂ ◦ αt = ω̂
for ω̂ ◦ αt �= ω̂ and some A,B ∈ A, t ∈ �

=
〈

π(B)Ω̃
∣∣∣ π(A)Ω̃

〉
.

In the case of α-invariance of ω̂ the ω0-normality of ω̂ and (1.6) imply that the
standard Liouville L operator has a non-trivial kernel. However, as we will show
later in Section 3.1, Proposition 3.3, the Liouville operator has a trivial kernel
for reservoir temperature differences sufficiently large. This in turn implies that
{U(t)}t∈� is a non-unitary group and therefore the generator K is not self-adjoint.

Before we give the specific choice of the vector Ω̃ we formally display the link
between spectral properties of K and the long time behavior of ω0-normal states
under the time evolution α. The fact that Ω̃ is separating for π(A)′′ is equivalent to
Ω̃ being cyclic w.r.t. π(A)′, c.f. [10, Prop. 2.5.4]. Given an ω0-normal state

η := 〈 ξ | π( · )ξ 〉

with ξ ∈ P we find an approximation

ηε :=
〈

π′(B)Ω̃
∣∣∣ π( · )π′(B)Ω̃

〉
with B ∈ A,

∥∥∥π′(B)Ω̃
∥∥∥ = 1 and ‖η − ηε‖A∗ < ε for a given ε > 0. The time

evolution acts on ηε as follows,

ηε ◦ αt(A) =
〈

π′(B)Ω̃
∣∣∣ π(αt(A))π′(B)Ω̃

〉
=

〈
π′(B∗B)Ω̃

∣∣∣ π(αt(A))Ω̃
〉

=
〈

π′(B∗B)Ω̃
∣∣∣ eiKtπ(A)Ω̃

〉
t→∞−−−→

〈
π′(B∗B)Ω̃

∣∣∣ Ω̃〉〈 Ω̃∗
∣∣∣ π(A)Ω̃

〉
=: ω̃(A),
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using that π(αt(A)) = eiLtπ(A)e−iLt ∈ π(A)′′, where the last three lines need some
clarification. Since K is not self-adjoint the group eiKt is a priori not defined and a
first task would be to understand this group in an appropriate sense. Secondly, we
have to understand the convergence of eiKt as t→∞ in a weak sense. Again, since
K is not self-adjoint it is not clear that the group converges towards the projection∣∣∣Ω̃〉〈Ω̃∗

∣∣∣ on the null space of K. Here, the object
∣∣∣Ω̃〉〈Ω̃∗

∣∣∣ formally built of the

eigenvectors of K and K∗,

KΩ̃ = 0, K∗Ω̃∗ = 0,

is not a bounded projection operator. In fact, Ω̃∗ is not a vector in H2 but rather

an element
〈
Ω̃∗
∣∣∣ from the dual space D′

D−a of an appropriate dense set DD−a in H2

fulfilling 〈
Ω̃∗
∣∣∣Kψ = 0

for all ψ ∈ D(K) such that Kψ ∈ DD−a. All these statements can be made rigorous
in the language of resonance eigenvectors, as we will see later. This has the conse-
quence that the state ω̃ is in general (i.e., for large reservoir temperature differences)
not an ω0-normal state.

Subsequently, we will work out the sketched strategy with mathematical rigor.

2.1 The C-Liouville Operator

We start to work out the approach discussed above. Our first observation is that
in the case of equal temperatures β := βp = β1 = · · · = βR the perturbed system
possesses an (α, β)-KMS state

ω := 〈Ω |π( · )Ω 〉 (2.2)

with Ω given by

Ω :=
e−βL(�)/2Ω0∥∥e−βL(�)/2Ω0

∥∥ (2.3)

where

L(�) := L0 + gπ(v) (2.4)

is the (left) Radon-Nikodym operator . Lemma B.3 ensures that (2.3) is well defined.
For notational completeness we also introduce the right Radon-Nikodym operator ,

L(r) := −JL(�)J = L0 − gπ′(v). (2.5)
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The KMS-property of ω follows formally from the structural stability, Section 1.1.3,
and the fact that ω0 is an α0-KMS state for equal temperatures. However, in Sec-
tion 1.1.3 we only considered bounded perturbations from the algebra A. Chapter B
provides the necessary technicalities to transfer the modular theory to our situation
acknowledging the unboundedness of the perturbation. Lemma B.5 guarantees that
Ω is in the kernel of L and therefore ω is an α-stationary state and further, by
Proposition B.7, we know that ω is an (α, β)-KMS state.

In the general case where the reservoir temperatures can be chosen arbitrarily the
Liouville operator cannot be expected to possess a non-trivial kernel. Inspired by
the structure of the null vector of L for the equal temperature case we fix a vector
by

Ω̃ :=
e−βL(�)/2Ω0∥∥e−βL(�)/2Ω0

∥∥ (2.6)

where β ∈ [0, βmax] is a reference parameter, later chosen to match the maximal
inverse temperature βmax. Note that (2.3) and (2.6) do not coincide as long as
the temperatures are not the same in all reservoirs since π, and therefore also L(�),
depends on the inverse temperatures. Lemma B.3 ensures that (2.6) is well defined.

Since the vector Ω̃ is cyclic and separating w.r.t. π(A)′′ by Lemma B.4 we may
define a one parameter group {U(t)}t∈� acting on the dense domain π(A)′′Ω̃ by

U(t)[π(A)Ω̃] := π ◦ αt(A)Ω̃ = eiLtπ(A)e−iLtΩ̃, A ∈ A. (2.7)

Our aim is to study the infinitesimal generator of that group.

Proposition 2.1 (Infinitesimal Generator of U(t)) The group � � t �→ U(t)
is strongly differentiable on vectors in D(L(�))∩ π(A)′′Ω̃. Its infinitesimal generator
K reads

K := s-lim
t→0

U(t)− �H2

it
= L0 + g

[
π(v)− π′

(
γ

i/2
0 (v)

)]
, (2.8)

where

γt
0 := σt

0 ◦ α−βt
0 = ei(Hresc−βH0)t( · )e−i(Hresc−βH0)t

and recall the definition (1.61) of σt
0. It holds in particular

KΩ̃ = 0.

Proof. For A ∈ π(A)′′ such that AΩ̃ ∈ D(L(�)) we may compute

∂t|t=0U(t)[AΩ̃] = ∂t|t=0e
iLtAe−iLtΩ̃ = ∂t|t=0e

iL(�)tAe−iL(�)tΩ̃

= [iL(�), A]Ω̃ = i(L(�)AΩ̃− AL(�)Ω̃).
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Since Ω̃ ∈ D(L(�)), as one proves similar to Lemma B.3, the last line is well defined
and t �→ U(t) is strongly differentiable on D(L(�)) ∩ π(A)′′Ω̃. For the generator K
holds

(K − L(�))[AΩ̃] = −AL(�)Ω̃

= −Ae−βL(�)/2L(�)Ω0∥∥e−βL(�)/2Ω0

∥∥
= − g∥∥e−βL(�)/2Ω0

∥∥Ae−βL(�)/2π(v)Ω0

= − g∥∥e−βL(�)/2Ω0

∥∥Ae−βL(�)/2Je−L0/2S0π(v)Ω0

= − g∥∥e−βL(�)/2Ω0

∥∥Ae−βL(�)/2π′
(
σ

i/2
0 (v)

)
Ω0

= −gAe−βL(�)/2π′
(
σ

i/2
0 (v)

)
eβL(�)/2Ω̃

= −gAπ′
(
α
−iβ/2
0 ◦ σ

i/2
0 (v)

)
Ω̃

= −gπ′
(
γ

i/2
0 (v)

)
AΩ̃

where we used Lemma B.2(i) and the commutativity between A and π′(γ
i/2
0 (v)) and

[L(�), π′(γ
i/2
0 (v))] = [L0, π

′(γ
i/2
0 (v))] which is responsible for

e−βL(�)/2π′
(
σ

i/2
0 (v)

)
eβL(�)/2Ω̃ = e−βL0/2π′

(
σ

i/2
0 (v)

)
eβL0/2Ω̃.

For the well-definedness of π′(σ
i/2
0 (v)) we employed Hypothesis VI-1.11. The relation

(2.8) therefore holds on D(L(�)) ∩ π(A)′′Ω̃.

The generator K is referred to as C-Liouville operator underlining that it gener-
ates the perturbed time evolution α lifted to π(A)′′, at least formally, but it is not
the standard Liouville operator for the representation π in the sense that its group
U(t) does not necessarily leave the positive cone P invariant. We remark that the
standard Liouville operator L and the C-Liouville operator are the same if and only
if γt

0 = �A for all t ∈ �, i.e., if β = βp = β1 = · · · = βR. In the case of non-equal
temperatures the operator K is not self-adjoint.

We remark that the choice of the vector Ω̃ as the null vector of the C-Liouvillean
is somewhat arbitrary. From a conceptional point of view the vector Ω0 would be
a canonical candidate since its cyclic and separating properties are at hand and do
not require an extended technical argumentation. The C-Liouville operator built
up on this vector would read

KΩ0 = L0 + g
[
π(v)− π′

(
σ

i/2
0 (v)

)]
.
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This choice was made in [28] where the concept of spectral theory for NESS was
introduced. The crucial disadvantage of this approach, however, is that the pertur-
bation part of KΩ0 carries an exponential weight in the inverse temperatures,

σ
i/2
0 (v) = e−(βpHp+

∑R
r=1 βrHf,r)/2ve(βpHp+

∑R
r=1 βrHf,r)/2,

such that the perturbative analysis requires that βmax is small which restricts the
considerations to a low temperature regime. Incorporating an approximation Ω̃ of
the (non-existent) KMS state into the definition of K leads to a perturbation which
is only weighted exponentially in the temperature differences,

γ
i/2
0 (v) = e−((βp−β)Hp+

∑R
r=1(βr−β)Hf,r)/2ve((βp−β)Hp+

∑R
r=1(βr−β)Hf,r)/2.

It was respected in Hypothesis III-1.8 that the differences in the inverse temperatures
have to be small.

For simplicity the further considerations are done under the assumption that

β = βp = βmax. (2.9)

2.2 Representation of the Schrödinger Time
Evolution U(t)

Formally, we can consider the group U(t) as the exponential function of K, i.e.,
U(t) = eiKt. The group acts on vectors of π(A)′′Ω̃ as a time evolution in the
Schrödinger picture. The ansatz allows to transfer the study of a Heisenberg time
evolution t �→ αt, acting on observables, to the study of a Schrödinger evolution
t �→ U(t) on vectors. This shifts the analysis into a Hilbert space framework.
However, since K is in general not self-adjoint in the non-equilibrium situation
the group U(t) is in general not unitary. The situation is even more subtle. The
imaginary part of the generator K for βmax > βmin is neither bounded from below
nor from above such that an interpretation of U(t) as a C0 semigroup does not apply.
It is the aim of this section to represent the group U(t) in terms of its generator K.

2.2.1 The Family K(s) of Generators

Since the lack of self-adjointness of K causes the troubles we go over to consider a
family of operators given by

s �→ K(s) := L0 + gI(s) (2.10)
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with
I(s) := π(v)− π′ (γs

0(v)
)

= a∗
gl

(
G − G ′(s �δβ)

)
+ agl

(
G − G ′(s �δβ)

)
for s in the parameter set

�ε0 :=

{
z ∈ �

∣∣∣∣ |z| < 1

2
+ ε0

}
(2.11)

for a small positive number ε0 > 0. The glued coupling functions are given by (1.80,
1.81) and the notation

G(�κ)(u, Σ, r) := eiκru[ακp
p ⊗ �Ap ](G(u, Σ, r))

=

√
u

1− e−βru
eiκru

×
{√

u α
κp
p (Gr(uΣ))⊗ �Hp , u ≥ 0,

(−
√
−u)α

κp
p (Gr(−uΣ)∗)⊗ �Hp , u < 0,

(2.12)

G ′(�κ)(u, Σ, r) := eiκru[�Ap ⊗ α−κp
p ](G ′(u, Σ, r))

=

√
u

eβru − 1
eiκru

×

⎧⎨⎩
√

u�Hp ⊗ α
−κp
p

(
Gr(uΣ)

∗)
, u ≥ 0,

(−
√
−u)�Hp ⊗ α

−κp
p

(
Gr(−uΣ)

)
, u < 0,

(2.13)

for �κ = (κp, κ1, . . . , κR) ∈ �R+1 and

�δβ := (δβp, δβ1, . . . , δβR) := (βp − β, β1 − β, . . . , βR − β) .

Hypothesis VII-1.12 and Remark 1.13 then imply that G ′
(s �δβ)

∈ L2[Υ] for all s ∈ �ε

such that the expression (2.10) is well defined as a family of operators on a dense
domain. By Corollary 1.6 we know that K(s) extends to a self-adjoint operator, also
denoted by K(s), for s ∈ �. Since L−K(s) = π′(γs

0(v)−v) and eiπ′(γs
0(v)−v)t ∈ π(A)′,

we obtain with the Trotter product formula

eiK(s)tπ(A)e−iK(s)t = π ◦ αt(A) = eiLtπ(A)e−iLt for all s, t ∈ �, (2.14)

where the exponential functions in K(s) are well defined as unitary operators due
to the self-adjointness of K(s) for real s. We remark that [0, 1] � ς �→ K(−iς/2) is a
path in the space of generators of the Heisenberg evolution connecting the standard
Liouville operator L with the C-Liouville operator K in the sense that

K(−i/2) = K and K(0) = L.

The next lemma shows a useful decomposition of eiK(s)t into known operators.
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Lemma 2.2 Let be s, t ∈ �. The unitary operator eiK(s)t has the following decom-
position,

eiK(s)t = eiL(�)tΓ−is
0 e−iL0teiL(r)tΓis

0 ,

where

Γ0 := ∆0e
βL0 = e−(L0−βL0).

Proof. We first remark that K(s) = L0 + V − V ′(s) and L(�) = L0 + V where
V := gπ(v) and V ′(s) := gπ′ (γs

0(v)). We further note that V ′(s) = Γ−is
0 V ′Γis

0 where
V ′ := gπ′(v). This enables us to rewrite, using the Trotter product formula,

e−iL(�)teiK(s)t = s-lim
n→∞

[
e−iL0t/ne−iV t/n

]n [
eiV t/nei(L0−V ′(s))t/n

]n
= s-lim

n→∞

[
e−iL0t/ne−iV t/n

]n−2
e−iL0t/n

×
(
e−iV t/ne−iL0t/nei(L0−V ′(s))t/neiV t/n

)
× ei(L0−V ′(s))t/n

[
eiV t/nei(L0−V ′(s))t/n

]n−2

= s-lim
n→∞

[
e−iL0t/ne−iV t/n

]n−3
e−iL0t/n

×
(
e−iV t/ne−iL02t/nei(L0−V ′(s))2t/neiV t/n

)
× ei(L0−V ′(s))t/n

[
eiV t/nei(L0−V ′(s))t/n

]n−3

= . . .

= e−iL0teit(L0−V ′(s))

= e−iL0t exp
(
itΓ−is

0 (L0 − V ′)Γis
0

)
= e−iL0tΓ−is

0 ei(L0−V ′)tΓis
0

= Γ−is
0 e−iL0teiL(r)tΓis

0 ,

which proves the assertion. It remains to clarify the manipulations of the parentheses
in the third and the sixth line. Set τ = t/n and consider

e−iV τe−iL0τei(L0−V ′(s))τeiV τ

= e−iV τe−iL0τ s-lim
m→∞

[
eiL0τ/me−iV ′(s)τ/m

]m
eiV τ

= e−iV τe−iL0τ s-lim
m→∞

[
eiL0τ/me−iV ′(s)τ/m

]m−1

eiL0τ/meiV τe−iV ′(s)τ/m

= e−iV τe−iL0τ s-lim
m→∞

[
eiL0τ/me−iV ′(s)τ/m

]m−1

×
(
eiL0τ/meiV τe−iL0τ/m

) [
eiL0τ/me−iV ′(s)τ/m

]
= . . .
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= e−iV τe−iL0τ
(
eiL0τeiV τe−iL0τ

)
s-lim
m→∞

[
eiL0τ/me−iV ′(s)τ/m

]m
= e−iV τe−iL0τ

(
eiL0τeiV τe−iL0τ

)
ei(L0−V ′(s))τ

= e−iL0τei(L0−V ′(s))τ ,

where we used that eiL0τ̃eiV τe−iL0τ̃ = exp(igπ(ατ̃
0(v))) commutes with e−iV ′(s)τ/m for

all τ̃ ∈ �.

For what follows, we assume that s ∈ � is chosen to be real. Our goal is to find

a representation of
〈

ϕ
∣∣∣ eiK(s)tψ

〉
for suitable vectors ϕ, ψ ∈ H2 which has a well

defined extension to complex values of the parameter s, in particular for s = −i/2.
The following lemma presents the appropriate representation.

Lemma 2.3 For any pair of vectors ϕ, ψ ∈ H2 and for s ∈ �, t ≥ 0, we can write〈
ϕ
∣∣∣ eiK(s)tψ

〉
=

1

2πi

∫
�−iε

dz
〈

ϕ
∣∣∣ (z −K(s)

)−1
ψ
〉

eizt (2.15)

for any ε > 0, where the integral has to be understood as an improper Riemann
integral.

Proof. Define for fixed ϕ, ψ ∈ H2 and s ∈ � the function

f(t) :=
〈

ϕ
∣∣∣ eiK(s)tψ

〉
and consider for Im(z) < 0 its Fourier-Laplace transform

f̂(z) :=

∞∫
0

dt f(t)e−izt = −i
〈

ϕ
∣∣∣ (z −K(s)

)−1
ψ
〉

.

For ε > 0 and t ≥ 0 we obtain as inverse relation

f(t) =
1

2π

∞∫
−∞

dx f̂(x− iε)ei(x−iε)t

=
1

2πi

∞∫
−∞

dx
〈

ϕ
∣∣∣ (x− iε−K(s)

)−1
ψ
〉

ei(x−iε)t.

Next, we show that the l.h.s. of (2.15) has an analytic continuation to complex
values of the parameter s.
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Proposition 2.4 For any A ∈ A and any t ∈ � the vector valued function

� � s �→ eiK(s)tπ(A)Ω̃

has an analytic continuation on the set � ε0
4
, denoted by ξ : � ε0

4
→ H2. Further, at

the point s = −i/2 the function takes the value

ξ(−i/2) = π(αt(A))Ω̃ = U(t)[π(A)Ω̃].

Proof. Due to (2.14) we get

eiK(s)tπ(A)Ω̃ = π(αt(A))eiK(s)tΩ̃

such that it is sufficient to consider the analyticity of s �→ eiK(s)tΩ̃. Yet, by
Lemma 2.2, we may focus on the function

s �→ Γ−is
0 e−iL0teiL(r)tΓis

0 Ω̃ (2.16)

=
∞∑

n=0

(−ig)n

∫
0≤τn≤···≤τ1≤t

dτ1 · · · dτn Γ−is
0 π′ (α−τ1

0 (v) · · ·α−τn
0 (v)

)
Γis

0 Ω̃

=
∞∑

n=0

(−ig)n

∫
0≤τn≤···≤τ1≤t

dτ1 · · · dτn π′ (γs
0

[
α−τ1

0 (v) · · ·α−τn
0 (v)

])
×

∞∑
m=0

(−g)m

∫
0≤ς1≤···≤ςm≤β/2

dς1 · · · dςm π
(
αiςm

0 (v) · · ·αiς1
0 (v)

) Ω0∥∥e−βL(�)/2Ω0

∥∥ .
Hereby we used Lemma B.1(i) to write Ω̃ =

∥∥∥e−βL(�)/2Ω0

∥∥∥−1

e−βL(�)/2eβL0/2Ω0 as

Dyson series. The expansion of e−iL0teiL(r)t in a Dyson series is standard. We check
the absolute convergence of this series. First we make use of the Jakšić-Pillet glued
representation to write

π′
(
γs

0 ◦ α
−τj

0 (v)
)

= a∗
gl

(
G ′(s �δβ−τj�1)

)
+ agl

(
G ′(s �δβ−τj�1)

)
and

π
(
α

iςj
0 (v)

)
= a∗

gl

(
G(iςj�1)

)
+ agl

(
G(−iςj�1)

)
,

where �1 = (1, 1, . . . , 1) ∈ �R+1, recall definitions (2.12, 2.13). We recall the standard
estimate of creation and annihilation operators on a vector ψn of the n-“photon”
sector in the Fock space over L2[Υ],∥∥∥a#

gl(F )ϕ⊗ ψn

∥∥∥ ≤ √n + 1 ‖F‖L2[Υ;B(H2
p)] ‖ϕ⊗ ψn‖ ,
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where ϕ ∈ H2
p and F ∈ L2[Υ;B(H2

p)], c.f. Lemma A.3. Since the coupling functions
G ′
(s �δβ−τj�1)

are a.e. pointwise differentiable w.r.t. s for | Im(s)| < 1/2 + ε0/2 with

derivative

∂sG ′(s �δβ−τj�1)
(u, Σ, r) = iδβruG ′(s �δβ−τj�1)

(u, Σ, r) +
[
iδβpLp,G ′(s �δβ−τj�1)

(u, Σ, r)
]

and having the uniform norm bounds, guaranteed by Hypothesis VII-1.12,

b1 := sup
| Im(s)|≤1/2+ε0/2

∥∥∥G ′(s �δβ−τj�1)

∥∥∥
L2[Υ,B(H2

p)]

= sup
| Im(s)|≤1/2+ε0/2

∥∥∥G ′(s �δβ)

∥∥∥
L2[Υ,B(H2

p)]
<∞,

b′1 := sup
| Im(s)|≤1/2+ε0/4

∥∥∥∂sG ′(s �δβ−τj�1)

∥∥∥
L2[Υ,B(H2

p)]

≤ sup
r=1,...,R

(
|δβr|+ 2|δβp| ‖Lp‖B(H2

p)

)
b1 <∞,

b2 := sup
|ς|≤β/2

∥∥∥G(iς�1)

∥∥∥
L2[Υ,B(H2

p)]
<∞,

we obtain by the dominated convergence theorem the complex differentiability of

� ε0
4
� s �→ π′ (γs

0

[
α−τ1

0 (v) · · ·α−τn
0 (v)

])
π
(
αiςm

0 (v) · · ·αiς1
0 (v)

)
Ω0.

Here, we took the anti-linear nature of π′ into account which requires the complex
conjugation of the parameter s inside π′. A further uniform estimate,

sup
| Im(s)|≤1/2+ε0/2,

0≤τn≤···≤τ1≤t,
0≤ς1≤···≤ςm≤β/2

∥∥π′ (γs
0

[
α−τ1

0 (v) · · ·α−τn
0 (v)

])
π
(
αiςm

0 (v) · · ·αiς1
0 (v)

)
Ω0

∥∥
≤
√

(n + m + 1)! (2b1)
n(2b2)

m,

finally ensures the analyticity of (2.16) because of the convergence of the following
series,

∞∑
n,m=0

gn+m

∫
0≤τn≤···≤τ1≤t,

0≤ς1≤···≤ςm≤β/2

dτ1 · · · dτn dς1 · · · dςm
√

(n + m + 1)! (2b1)
n(2b2)

m

=
∞∑

n,m=0

gn+m(2b1)
n(2b2)

m tnβm

2mn!m!

√
(n + m + 1)!

=
∞∑

n,m=0

gn+m(2b1)
nbm

2 tnβm

√
n + 1

n!m!

(
n + m + 1

m

)
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≤
∞∑

n,m=0

gn+m(2b1)
nbm

2 tnβm

√
n + 1

n!m!
2n+m+1

=
√

2

( ∞∑
n=0

√
n + 1√

n!

(√
8gb1t

)n
)( ∞∑

m=0

1√
m!

(√
2gb2β

)m
)

< ∞.

We now evaluate at the point s = −i/2, i.e., we compute

Γ
−1/2
0 e−iL0teiL(r)tΓ

1/2
0 Ω̃

= Γ
−1/2
0 e−iL0teiL(r)teβL0/2JS0e

−βL(�)/2 Ω0∥∥e−βL(�)/2Ω0

∥∥
= Γ

−1/2
0 e−iL0teiL(r)teβL0/2JeβL0/2e−βL(�)/2 Ω0∥∥e−βL(�)/2Ω0

∥∥
= Γ

−1/2
0 Je−iL0teiL(�)te−βL(�)/2 Ω0∥∥e−βL(�)/2Ω0

∥∥
= S0e

−(it−β/2)L0e(it−β/2)L(�) Ω0∥∥e−βL(�)/2Ω0

∥∥
= e(−it−β/2)L(�) Ω0∥∥e−βL(�)/2Ω0

∥∥
= e−iL(�)tΩ̃,

where we used the Lemma B.2(iii) twice and the relations L(r)J = −JL(�) and

∆
−1/2
0 J = J∆

1/2
0 = S0. We finally obtain

ξ(−i/2) = π(αt(A))eiL(�)tΓ
−1/2
0 e−iL0teiL(r)tΓ

1/2
0 Ω̃ = π(αt(A))Ω̃.

The next task is to check the analyticity of the r.h.s. of (2.15) in s. The prob-
lematic part is that the perturbation I(s) in K(s) = L0 + gI(s) is not relatively
L0-bounded which prevents standard arguments showing analyticity of s �→ K(s).
Instead, we apply a spectral deformation to K(s) to gain analytic properties.

2.2.2 Spectral Deformation of K(s)

We start by defining the spectral deformation on the space F(L2[Υ]) which was pre-
viewed in Section 1.4.5 in order to state the requirements on the coupling functions.
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We can use neither the deformation by dilation introduced in [8] nor the translation
applied in [23, 28] but we combine both types. Such a combination was already
mentioned in [8] and becomes essential in our work. The dilation deformation is
used to make the operator K(s) sectorial while the translation separates the eigen-
values from the continuous spectrum, c.f. Figures 2.1 and 3.2. The first feature will
be useful to integrate the resolvent of K along the real axis to obtain an integral
representation of U(t), c.f. Proposition 2.9, while the isolation of eigenvalues allows
the computation of the projection on the null space of K, c.f. Proposition 2.10.
This effort has to be made since K is not self-adjoint.

Define a unitary translation group {Dt(τ)}τ∈� on L2[Υ] which acts on a given
function f ∈ L2[Υ] as

[Dt(τ)f ](u, Σ, r) := f(u + τ, Σ, r).

We further introduce a unitary group of dilations {Dd(δ)}δ∈� which is defined on a
function f ∈ L2[Υ] by

[Dd(δ)f ](u, Σ, r) := eδ sgn(u)/2f(eδ sgn(u)u, Σ, r).

We compose both transformation to an operation which first translates and then
dilates a function (note that translation and dilation do not commute such that the
order of application has to be respected). The operation

D(θ) := Dd(δ)Dt(τ) for θ = (δ, τ) ∈ �2

defines a two parameter family {D(θ)}θ∈�2 of unitary operators given on f ∈ L2[Υ]
by

[D(θ)f ](u, Σ, r) = eδ sgn(u)/2f(jθ(u), Σ, r), (2.17)

where
jθ(u) = eδ sgn(u)u + τ. (2.18)

The family {D(θ)}θ∈�2 can be lifted to the Fock space F(L2[Υ]) by

D(θ)
[
a∗

gl(fn) · · · a∗
gl(f1)Ω0

]
:= a∗

gl(D(θ)fn) · · · a∗
gl(D(θ)f1)Ω0 (2.19)

for f1, . . . , fn ∈ L2[Υ]. In order to extend the family {D(θ)}θ∈�2 to the space H2

we identify D(θ) ≡ �H2
p
⊗D(θ) such that particle variables remain uninfluenced by

the transformation. For a vector ψ ∈ F(L2[Υ]) (and in particular for f ∈ L2[Υ]) we
abbreviate

ψθ := D(θ)ψ, fθ := D(θ)f,

resp., and for an operator A on F(L2[Υ]) we introduce the notation

Aθ := D(θ)AD(θ)−1.
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The above notations also apply to vectors ψ ∈ H2, form factors f ∈ L2[Υ;B(H2
p)]

and operators A on H2. We remark that the spectral properties of A remain un-
changed under conjugation with the unitary operator D(θ), for θ ∈ �2, i.e., the
spectrum, pure point spectrum and continuous spectrum are invariant,

spec(Aθ) = spec(A), specpp(Aθ) = specpp(A), specc(Aθ) = specc(A),

for θ ∈ �2. Due to the unitarity of D(θ) we also have the invariance of matrix
elements of an operator A for vectors ϕ, ψ ∈ H2 in the sense that

〈ϕθ |Aθψθ 〉 = 〈ϕ |Aψ 〉 for θ ∈ �2. (2.20)

However, by extending the family {D(θ)}θ∈�2 to complex parameters θ ∈ � we
lose the unitarity of the transformation D(θ). Assuming that the family of operators
θ �→ Aθ = D(θ)AD(θ)−1 has an analytic continuation to complex values of θ in an
appropriate sense (to be discussed later) we keep the invariance of the pure point
spectrum while the continuous spectrum, in general, is deformed,

specpp(Aθ) = specpp(A), specc(Aθ) �= specc(A) for θ ∈ �2.

This observation motivates the nomenclature spectral deformation associated with
the family {D(θ)}θ. The benefit of the concept of spectral deformation is that the
relation (2.20) extends by analytic continuation to

〈ϕθ |Aθψθ 〉 = 〈ϕ |Aψ 〉 for θ ∈ �2

under the assumption that all functions θ �→ ϕθ, ψθ, Aθ are analytic, again in the
appropriate sense. This relation has a very useful application where we try to rewrite〈

ϕ
∣∣∣ (z −K(s)

)−1
ψ
〉

=

〈
ϕθ

∣∣∣∣ (z −K
(s)
θ

)−1

ψθ

〉
(2.21)

aiming to be in the position to control the spectrum of the deformed operator
K

(s)
θ = D(θ)K(s)D(θ)−1 for complex s while the spectrum of K(s) is not accessible

to us.

We now fill in the blanks and launch the rigorous consideration by computing
the deformation of the operators which play a role in our analysis. We collect the
corresponding results in a lemma.

Lemma 2.5 Let θ = (δ, τ) ∈ �2.

(i) The spectral deformation L0,θ = D(θ)L0D(θ)−1 of the free Liouville operator
L0 is given by

L0,θ = Lp + cosh(δ)Lres + sinh(δ)Laux + τNres (2.22)
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where

Laux = dΓgl((u, Σ, r) �→ |u|) ≡
∫
Υ

d(u, Σ, r) a∗
gl(u, Σ, r)|u|agl(u, Σ, r) (2.23)

is an auxiliary operator and

Nres := dΓgl(1) ≡
∫
Υ

dy a∗
gl(y)agl(y) (2.24)

is the number operator on the bosonic Fock space F(L2[Υ]).

(ii) The spectral deformation I
(s)
θ = D(θ)I(s)D(θ)−1, s ∈ �ε0, of the operator I(s)

is given by

I
(s)
θ = a∗

gl

(
F

(s)
θ

)
+ agl

(
F

(s)
θ

)
, (2.25)

where F
(s)
θ = [G − G ′

(s �δβ)
]θ, i.e.,

F
(s)
θ (u, Σ, r) = eδ sgn(u)/2

[
G − G ′(s �δβ)

]
(jθ(u), Σ, r). (2.26)

Proof.

(i) The definition (2.17, 2.19) of D(θ) and (1.66) of Lres imply that

L0,θ = Lp + D(θ)dΓgl((u, Σ, r) �→ u)D(θ)−1 = Lp + dΓgl((u, Σ, r) �→ jθ(u))

= Lp + dΓgl((u, Σ, r) �→ eδ sgn(u)u) + dΓgl((u, Σ, r) �→ τ)

= Lp + τNres +

∞∫
0

du

∫
S2×�R

1

d(Σ, r) a∗
gl(u, Σ, r)eδ/2uagl(u, Σ, r)

+

0∫
−∞

du

∫
S2×�R

1

d(Σ, r) a∗
gl(u, Σ, r)e−δ/2uagl(u, Σ, r)

= Lp + τNres

+

∫
Υ

d(u, Σ, r) a∗
gl(u, Σ, r) [cosh(δ)u + sinh(δ)|u|] agl(u, Σ, r)

= Lp + τNres + cosh(δ)Lres + sinh(δ)Laux.

(ii) The assertion follows immediately from the definition (2.17, 2.19).
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Im(τ)

Im(δ)
2τ

3τ

4τ

5τ

τ

Ej−Ek 0 ...... Ek−Ej... ...

Figure 2.1: The spectrum of L0,θ consists of the eigenvalues of Lp, paired with a
V-shaped line and countably many cones of continuous spectrum arising
from the spectrum of cos(δ′)Lres + i sin(δ′)Laux, lined up along Ek−Ej +
τ�. The apex angle of the cones is π − 2 Im(δ).

We describe the spectrum of the deformed unperturbed Liouville operator, L0,θ.

Proposition 2.6 (Spectrum of L0,θ) The definition (2.22) of L0,θ extends for
complex deformation parameters θ ∈ �2. The spectrum of L0,θ is then given by

spec (L0,θ)

= spec (Lp) + {0} ∪ (τ + {z ∈ � | |Re(z)| = sgn(sin(δ′))| cot(δ′)| Im(z) })

∪
∞⋃

n=2

(nτ + {z ∈ � | |Re(z)| ≤ sgn(sin(δ′))| cot(δ′)| Im(z) })

as illustrated in Figure 2.1, where δ′ := Im(δ). In particular, for Im(τ), sin(δ′) > 0
and |Re(τ)| ≤ cot(δ′) Im(τ), the spectrum takes the form

spec (L0,θ) = spec (Lp) + {0} ∪ (τ + {z ∈ � | |Re(z)| = cot(δ′) Im(z) })
∪ (2τ + {z ∈ � | |Re(z)| ≤ cot(δ′) Im(z) })

⊆ spec (Lp) + {0} ∪ (τ + {z ∈ � | |Re(z)| ≤ cot(δ′) Im(z) }) ,

and the eigenvalues of Lp are isolated eigenvalues of L0,θ separated from the rest of
the spectrum by a gap Im(τ).

Proof. We first remark that

L0,θ = Dd(Re(δ))L0,(iδ′,τ)Dd(−Re(δ))



102 2. Dynamical and Thermal Properties of NESS ...

where Dd(Re(δ)) is a unitary operator. Because of the invariance of the spectrum
under unitary conjugation we henceforth may assume that Re(δ) = 0. Since Lres,
Laux and Nres only act on photon variables and Lp only on particle variables we have

spec (L0,θ) = spec (Lp) + spec (cos(δ′)Lres + i sin(δ′)Laux + τNres) .

We now decompose the Fock space F(L2[Υ]) into orthogonal subspaces,
ran(P[Nres=n]), n ∈ �0. It then holds

spec (cosh(δ)Lres + sinh(δ)Laux + τNres)

=
∞⋃

n=0

[
nτ + spec

(
[cos(δ′)Lres + i sin(δ′)Laux] �ran(P[Nres=n])

)]
.

We recall the definitions (1.66, 2.23, 2.24) which imply that

spec
(
[cos(δ′)Lres + i sin(δ′)Laux] �ran(P[Nres=n])

)
= {z ∈ � | |Re(z)| ≤ sgn(sin(δ′))| cot(δ′)| Im(z) } ,

for n ≥ 2 since |Lres| ≤ Laux, and

spec
(
[cos(δ′)Lres + i sin(δ′)Laux] �ran(P[Nres=1])

)
= {cos(δ′)u + i sin(δ′)|u| |u ∈ � }
= {z ∈ � | |Re(z)| = sgn(sin(δ′))| cot(δ′)| Im(z) } ,

and
spec
(
[cos(δ′)Lres + i sin(δ′)Laux] �ran(P[Nres=0])

)
= {0}.

For Im(τ), sin(δ′) > 0 and |Re(τ)| ≤ cot(δ′) Im(τ) we have

(n + 1)τ + {z ∈ � | |Re(z)| ≤ cot(δ′) Im(z) }
⊆ nτ + {z ∈ � | |Re(z)| ≤ cot(δ′) Im(z) }

for n ≥ 1. In particular, the eigenvalues in spec(Lp) are separated from the rest of
the spectrum by a gap given by Im(τ).

In what follows, a particular class of deformation analytic vectors will play a
crucial role. Henceforth, we fix the numbers

π

8
< δ0 <

π

4
and 0 < τ0 < 2πβ−1

max

and define the domains

Dδ0,τ0 :=
{
(δ, τ) ∈ �2

∣∣ | Im(δ)| < δ0, | Im(τ)| < τ0

}
,

D+
δ0,τ0

:= D+
δ0
× S+

τ0
⊆ �2,
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where

D+
δ0

:= {δ ∈ � | 0 < Im(δ) < δ0 } ,

S+
τ0

:=

{
τ ∈ �

∣∣∣∣ 0 <
|τ |
2

< Im(τ) < τ0

}
.

A vector ψ ∈ H2 is called deformation analytic if the map �2 � (δ, τ) = θ �→ ψθ

has an analytic continuation on the domain Dδ0,τ0 in each variable separately. We
denote by

DD−a :=
{
ψ ∈ H2

∣∣ψ is deformation analytic
}

the subspace of all deformation analytic vectors. A vector ψ ∈ DD−a is called
deformation analytic in D(Laux + Nres) if ψ ∈ D(Laux + Nres) and if further the map
θ �→ (Laux + Nres + 1)ψθ has an analytic continuation on the domain Dδ0,τ0 in each
variable separately. The deformation analytic vectors in D(Laux +Nres) are collected
in the subspace

Daux
D−a := {ψ ∈ DD−a |ψ is deformation analytic in D(Laux + Nres) } .

Remark 2.7 (Restriction of Translation Parameter) The explicit construc-
tion of deformation analytic coupling functions in Proposition 1.14 points out the
limitation of the analyticity in the translation parameter τ . The incorporation of the
factor

√
u(1− e−βru)−1 into the glued coupling functions creates poles ±2nπiβ−1

r ,
n ∈ �, which restrict the imaginary part of the translation parameter to be small
compared to the reservoir temperature β−1

r . Since our study of the system shall also
cover the low temperature regime the translation parameter Im(τ) eventually has to
be very small. This complicates spectral analysis of the operator Kθ by the following
reason. The translation parameter creates a spectral gap between the eigenvalues of
L0,θ and the rest of the unperturbed spectrum of order Im(τ), c.f. Proposition 2.6 and
Figure 2.1. To study the low temperature regime the magnitude of the perturbation
becomes significantly larger than the gap and standard perturbation theory does not
make predictions about the perturbation of the eigenvalues. We treat this situation
with renormalization group techniques in Chapter 4 and 5.

One could think about regularizing the coupling functions Gr such that we find
analytic continuation of G = g(G1, . . . , GR) around the poles ±2nπiβ−1

r , n ∈ �,
r = 1, . . . , R. This, however, would make the particle-photon interaction dependent
on the temperature under which the system is studied and which is not a convincing
approach. Nevertheless, in Section C.3 we construct a class of form factors, depen-
dent on the reservoir temperatures, which are mapped under the gluing to analytic
functions not featuring the poles. These functions are used to build a strongly dense
subalgebra of observables for which the thermal relaxation behavior of the system can
be studied.
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We present a lemma which makes the relation (2.21) rigorous.

Lemma 2.8 Let ϕ, ψ ∈ Daux
D−a. Then, for Im(z) ≤ −2 and s ∈ �, we may rewrite〈

ϕ
∣∣∣ (z −K(s)

)−1
ψ
〉

=

〈
ϕθ

∣∣∣∣ (z −K
(s)
θ

)−1

ψθ

〉
where θ = (δ, τ) ∈ D+

δ0,τ0
.

Proof. Let δ1 ∈ � and denote θ′ = (δ1, 0). Since Dd(δ1) is unitary we obtain〈
ϕθ

∣∣∣∣ (z −K
(s)
θ

)−1

ψθ

〉
=

〈
Dd(δ1)ϕθ

∣∣∣∣ (z −Dd(δ1)K
(s)
θ Dd(δ1)

−1
)−1

Dd(δ1)ψθ

〉
=

〈
ϕθ+θ′

∣∣∣∣ (z −K
(s)
θ+θ′

)−1

ψθ+θ′

〉
.

Thus, the map

δ �→
〈

ϕθ

∣∣∣∣ (z −K
(s)
θ

)−1

ψθ

〉
=

〈
(Laux + Nres + 1)ϕθ

∣∣∣∣(Laux + Nres + 1)−1
(
z −K

(s)
θ

)−1

(Laux + Nres + 1)−1

× (Laux + Nres + 1)ψθ

〉
is constant along �+ id with 0 < d < δ0. Theorem C.5 and the assumptions on ϕ, ψ
imply that the above map is analytic so that it is independent of δ. By continuity
(we refer again to Theorem C.5) we obtain〈

ϕθ

∣∣∣∣ (z −K
(s)
θ

)−1

ψθ

〉
= lim

δ→0

〈
ϕθ

∣∣∣∣ (z −K
(s)
θ

)−1

ψθ

〉
=

〈
ϕ(0,τ)

∣∣∣∣ (z −K
(s)
(0,τ)

)−1

ψ(0,τ)

〉
=

〈
Dt(τ1)ϕ(0,τ)

∣∣∣∣ (z −Dt(τ1)K
(s)
(0,τ)Dt(τ1)

−1
)−1

Dt(τ1)ψ(0,τ)

〉
=

〈
ϕ(0,τ+τ1)

∣∣∣∣ (z −K
(s)
(0,τ+τ1)

)−1

ψ(0,τ+τ1)

〉



2.2. Representation of the Schrödinger Time Evolution U(t) 105

for τ1 ∈ � due to the unitarity of Dt(τ1). The same analyticity argument shows
that the above expression is independent of τ and by continuity we finally get〈

ϕθ

∣∣∣∣ (z −K
(s)
θ

)−1

ψθ

〉
= lim

τ→0

〈
ϕ(0,τ)

∣∣∣∣ (z −K
(s)
(0,τ)

)−1

ψ(0,τ)

〉
=
〈

ϕ
∣∣∣ (z −K(s)

)−1
ψ
〉

.

2.2.3 Integral Representation of U(t)

We assemble the lemmata of the last sections to express the group U(t), in a weak
sense, as a Cauchy-like integral representation in terms of the generator K.

Proposition 2.9 (Integral Representation of U(t)) Let A ∈ A such that
π(A)Ω̃ ∈ Daux

D−a and let ϕ ∈ Daux
D−a. Moreover, choose θ = (iδ′, iτ ′) ∈ D+

δ0,τ0
with

δ′ ∈ [π
8
, π

4
] and τ ′ > 0. For t > 0 we have〈
ϕ
∣∣∣U(t)π(A)Ω̃

〉
=

1

2πi

∫
�−2i

dz
〈

ϕθ

∣∣∣ (z −Kθ)
−1 [π(A)Ω̃]θ

〉
eizt (2.27)

where the integration has to be understood as improper Riemann integration.

Proof. By the Lemmata 2.3 and 2.8 we may write for s ∈ �,〈
ϕ
∣∣∣ eiK(s)tπ(A)Ω̃

〉
=

1

2πi

∫
�−2i

dz
〈

ϕ
∣∣∣ (z −K(s)

)−1
π(A)Ω̃

〉
eizt

=
1

2πi

∫
�−2i

dz

〈
ϕθ

∣∣∣∣ (z −K
(s)
θ

)−1

[π(A)Ω̃]θ

〉
eizt. (2.28)

The l.h.s. of (2.28) has an analytic continuation in s on the set � ε0
4

due to Proposi-

tion 2.4. The integral on the r.h.s. of (2.28) is well defined and analytic in s ∈ � ε0
4

by Theorem C.6(ii) since ϕθ, [π(A)Ω̃]θ ∈ D(Laux + Nres). Evaluating both sides at
s = −i/2 gives〈

ϕ
∣∣∣U(t)π(A)Ω̃

〉
=

1

2πi

∫
�−2i

dz
〈

ϕθ

∣∣∣ (z −Kθ)
−1 [π(A)Ω̃]θ

〉
eizt,

c.f. Proposition 2.4.
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2.3 Characterization of the NESS as a Resonance
State

2.3.1 Weak Long Time Limit of the Group U(t)

Proposition 2.9 connects the dynamical behavior of ω0-normal states with the resol-
vent, and therefore with spectral properties, of the generator of the group U(t) or
rather its deformation Kθ. The subsequent Chapters 3, 4, 5 are devoted to the anal-
ysis of the spectrum of Kθ. We use the spectral information provided in Theorem 3.1
to compute the weak limit of the group U(t).

Proposition 2.10 (Weak Limit of U(t)) We assume that g > 0 is sufficiently
small and |βmax−βmin| � 1. Let A ∈ A such that π(A)Ω̃ ∈ Daux

D−a and let ϕ ∈ Daux
D−a.

Moreover, choose θ = (iδ′, iτ ′) ∈ D+
δ0,τ0

with δ′ ∈ [π
8
, π

4
] and τ ′ ∼ g2

2+βmax
as given in

(4.3). Then the group {U(t)}t∈� has a weak long time limit as t→∞ in the sense
that

lim
t→∞

〈
ϕ
∣∣∣U(t)π(A)Ω̃

〉
=
〈

ϕθ

∣∣∣ Ω̃θ

〉〈
Ω̃∗

θ

∣∣∣ [π(A)Ω̃]θ

〉
where Ω̃θ is the spectral deformation of Ω̃ and an eigenvector of Kθ corresponding
to the simple, isolated zero eigenvalue. The vectors Ω̃θ, Ω̃

∗
θ

are the D(θ)-resonance
eigenvectors of K and K∗, resp., corresponding to the zero resonance specified by

KθΩ̃θ = 0, (Kθ)
∗Ω̃∗

θ
= 0,

〈
Ω̃∗

θ

∣∣∣ Ω̃θ

〉
= 1. (2.29)

Moreover, the convergence is exponentially fast, i.e., there exist a decay rate τdec =
τ ′d, where d > 0 is a positive constant, such that

lim
t→∞

eτdect
∣∣∣〈ϕ

∣∣∣U(t)π(A)Ω̃
〉
−
〈

ϕθ

∣∣∣ Ω̃θ

〉〈
Ω̃∗

θ

∣∣∣ [π(A)Ω̃]θ

〉∣∣∣ = 0.

Proof. As a consequence of Theorem 3.1 we know that the spectrum of Kθ is
contained in a half plane supplemented by a point, i.e.,

spec (Kθ) ⊆
{

E
(−i/2)
0,g

}
∪
{

z ∈ �
∣∣∣ Im(z) ≥ Im

(
E

(−i/2)
0,g

)
+ 2τdec

}
(2.30)

where τdec = τ ′d with a positive constant d > 0. Here, E
(−i/2)
0,g is the simple, isolated

eigenvalue of Kθ = K
(−i/2)
θ for which either E

(−i/2)
0,g = 0 or Im(E

(−i/2)
0,g ) ≤ −2τdec

holds. Note that Im(E
(−i/2)
0,g ) > −2τdec and E

(−i/2)
0,g �= 0 together with Theorem 3.1

would contradict that zero is an eigenvalue of Kθ by Proposition C.16. We set ψ :=
π(A)Ω̃ and apply Proposition 2.9. With Cauchy’s integral formula we can deform
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the integration contour in (2.27) and pick the residue of the integrand associated

with the eigenvalue E
(−i/2)
0,g ,

〈ϕ |U(t)ψ 〉 =
1

2πi

∮
∣∣∣E(−i/2)

0,g −z
∣∣∣=τdec

dz
〈
ϕθ

∣∣ (z −Kθ)
−1 ψθ

〉
eizt

+
1

2πi

∫
�+E

(−i/2)
0,g +iτdec

dz
〈
ϕθ

∣∣ (z −Kθ)
−1 ψθ

〉
eizt, (2.31)

where the second integral is understood as improper Riemann integral which is
convergent by the same reasoning as in the proof to Theorem C.6(ii) using the oscil-
latory factor eizt and integration by parts as well as the numerical range estimates
provided in Proposition A.9(ii). We remark that the integrals along the vertical

lines x + i[−2, Im(E
(−i/2)
0,g ) + τdec] as x→ ±∞, connecting the contours �− 2i and

� + E
(−i/2)
0,g + iτdec, also contribute to (2.31). However, since the integrand decays

as ∣∣〈ϕθ

∣∣ (z −Kθ)
−1 ψθ

〉
eizt
∣∣ ≤ e

−
[
Im
(
E

(−i/2)
0,g

)
+τdec

]
t ‖ϕθ‖ ‖ψθ‖

dist (z; NumRan (Kθ))
≤ C

|x| ,

for z = x + E
(−i/2)
0,g + iτdec and a positive constant C, by Proposition A.9(ii), the

contributions of the vertical lines are zero in the limit x→ ±∞.

Now, we observe that

Pθ :=
1

2πi

∮
∣∣∣E(−i/2)

0,g −z
∣∣∣=τdec

dz (z −Kθ)
−1

is a non-orthogonal projection operator fulfilling(
Kθ − E

(−i/2)
0,g

)
Pθ =

1

2πi

∮
∣∣∣E(−i/2)

0,g −z
∣∣∣=τdec

dz

[
z − E

(−i/2)
0,g

z −Kθ

− �H2

]
= 0,

since the integrand is a holomorphic function inside the integration contour (E
(−i/2)
0,g

is a simple, isolated eigenvalue), and

PθΨ =
1

2πi

∮
∣∣∣E(−i/2)

0,g −z
∣∣∣=τdec

dz
(
z − E

(−i/2)
0,g

)−1

Ψ = Ψ

for all Ψ ∈ ker(Kθ − E
(−i/2)
0,g ). Thus, the range of Pθ coincides with the kernel of

(Kθ − E
(−i/2)
0,g ) and since E

(−i/2)
0,g is a simple eigenvalue of Kθ the operator is a rank
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one projection. We remark that the fact that E
(−i/2)
0,g is a simple, isolated eigenvalue

of Kθ implies that its complex conjugate E
(−i/2)
0,g is a simple, isolated eigenvalue of

the adjoint operator (Kθ)
∗. Therefore, we find vectors Ψθ and Ψ∗

θ
obeying

KθΨθ = E
(−i/2)
0,g Ψθ, (Kθ)

∗Ψ∗
θ

= E
(−i/2)
0,g Ψ∗

θ
,

such that

Pθ = |Ψθ〉
〈
Ψ∗

θ

∣∣ .
Since Pθ �= 0 is a projection,

|Ψθ〉
〈
Ψ∗

θ

∣∣ = Pθ = P 2
θ = |Ψθ〉

〈
Ψ∗

θ

∣∣Ψθ

〉 〈
Ψ∗

θ

∣∣ ,
the vectors Ψθ, Ψ

∗
θ

are normalized by〈
Ψ∗

θ

∣∣Ψθ

〉
= 1.

Thus, we can rewrite the first integral in (2.31) as

1

2πi

∮
∣∣∣E(−i/2)

0,g −z
∣∣∣=τdec

dz
〈
ϕθ

∣∣ (z −Kθ)
−1 ψθ

〉
eizt

=
1

2πi

∮
∣∣∣E(−i/2)

0,g −z
∣∣∣=τdec

dz
〈
ϕθ

∣∣ (z −Kθ)
−1 ψθ

〉
eiE

(−i/2)
0,g t

+
1

2πi

∮
∣∣∣E(−i/2)

0,g −z
∣∣∣=τdec

dz
〈
ϕθ

∣∣ (z −Kθ)
−1 ψθ

〉 [
eizt − eiE

(−i/2)
0,g t

]

= 〈ϕθ |Ψθ 〉
〈
Ψ∗

θ

∣∣ψθ

〉
eiE

(−i/2)
0,g t

using that the function z �→
〈
ϕθ

∣∣ (z −Kθ)
−1 ψθ

〉 [
eizt − eiE

(−i/2)
0,g t

]
is holomorphic

inside the integration contour. This is due to the fact that E
(−i/2)
0,g is a simple,

isolated eigenvalue of Kθ. Back to (2.31) we get

〈ϕ |U(t)ψ 〉 (2.32)

= eiE
(−i/2)
0,g t

[
〈ϕθ |Ψθ 〉

〈
Ψ∗

θ

∣∣ψθ

〉
+

e−τdect

2πi

∫
�

dx

〈
ϕθ

∣∣∣∣ (x + E
(−i/2)
0,g + iτdec −Kθ

)−1

ψθ

〉
eixt

]
.
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Again, the integral is defined in the improper Riemann sense and we get by integra-
tion by parts for t > 0,∣∣∣∣ ∫

�

dx

〈
ϕθ

∣∣∣∣ (x + E
(−i/2)
0,g + iτdec −Kθ

)−1

ψθ

〉
eixt

∣∣∣∣ (2.33)

=

∣∣∣∣ ∫
�

dx

〈
ϕθ

∣∣∣∣ (x + E
(−i/2)
0,g + iτdec −Kθ

)−2

ψθ

〉
eixt

it

∣∣∣∣
≤ ‖ϕθ‖ ‖ψθ‖

t

∫
�

dx

∥∥∥∥(x + E
(−i/2)
0,g + iτdec −Kθ

)−2
∥∥∥∥

t→∞−−−→ 0,

where the last integral converges due to Proposition A.9(ii).

To compute the limit t→∞ in (2.32) we first rule out the case Im(E
(−i/2)
0,g ) < 0.

Under the assumption that Im(E
(−i/2)
0,g ) < 0 we obtain limt→∞ | 〈ϕ |U(t)ψ 〉 | = ∞.

In the special case A = �B(H2) and ϕ = Ω̃ (note that Ω̃ ∈ Daux
D−a by Theorem C.14) we

have 〈ϕ |U(t)ψ 〉 = 1 in contradiction to the divergence. Thus, it follows E
(−i/2)
0,g = 0.

Since Ω̃θ ∈ ker(Kθ) by Proposition C.16 we can choose Ψθ = Ω̃θ and Ψ∗
θ

= Ω̃∗
θ

such
that (2.29) holds.

With (2.32, 2.33) we finally have

eτdect
∣∣∣〈ϕ |U(t)ψ 〉 −

〈
ϕθ

∣∣∣ Ω̃θ

〉〈
Ω̃∗

θ

∣∣∣ψθ

〉∣∣∣
≤ ‖ϕθ‖ ‖ψθ‖

2πt

∫
�

dx

∥∥∥∥(x + E
(−i/2)
0,g + iτdec −Kθ

)−2
∥∥∥∥

t→∞−−−→ 0.

2.3.2 Thermal Relaxation to a NESS

The group {U(t)}t∈� was originally defined in (2.7) on the dense set π(A)′′Ω̃. Its
long time behavior, however, could only be studied on vectors π(A)Ω̃ ∈ Daux

D−a, c.f.
Proposition 2.10. This has as a consequence that the relaxation behavior of ω0-
normal states can only be quantified on observables from the set

Aana :=
{

A ∈ A
∣∣∣ π(A)Ω̃ ∈ Daux

D−a

}
. (2.34)
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We will show later in Section C.3 that Aana contains a strongly dense ∗-subalgebra
A1 in A such that the vector Ω̃ is cyclic for π(A1) and π′(A1), i.e., π(A1)Ω̃ and
π′(A1)Ω̃ are dense sets in H2. On Aana we define a linear functional

ω̃ : Aana → �, ω(A) :=
〈

Ω̃∗
θ

∣∣∣ [π(A)Ω̃]θ

〉
(2.35)

where Ω̃∗
θ
, Ω̃θ are the zero D(θ)-resonance eigenvectors of K and K∗ specified in

(2.29). It is not clear from the definition (2.35) neither that ω̃ defines a positive
bounded functional nor that ω̃ is independent of the spectral deformation parameter
θ although its definition incorporates the zero D(θ)-resonance eigenvectors which
depend on the spectral deformation. We verify these properties in Corollary 2.14
and therefore refer to ω̃ as a state on A1. Note that, even if the the functional ω̃
is independent of θ, it is not possible to remove the deformation by setting θ = 0
since, in general, the vector Ω̃∗

θ
diverges as θ → 0, i.e., it would leave the Hilbert

space . This reflects that, in general, ω̃ is not an ω0-normal state and cannot be
expressed in terms of the representation π.

It is worth to note that we may extend ω̃ from observables in Aana to linear
combinations in creation and annihilation operators a#

r (F ), F ∈ L2[�3;B(Hp)],
as long as the vector π(a#

r (F ))Ω̃ belongs to Daux
D−a. This simply goes back to the

extension of π to creation and annihilation operators in the sense of (1.74) such that
we define

ω̃(a#
r (F )) :=

〈
Ω̃∗

θ

∣∣∣ [π(a#
r (F ))Ω̃]θ

〉
= lim

t→∞
ω0

(
αt(a#

r (F ))
)

= lim
t→∞

〈
Ω0

∣∣ eiLtπ(a#
r (F ))e−iLtΩ0

〉
.

The interaction vr = ar(Gr) + a∗
r(Gr), the heat fluxes φp and φf,r = g[ar(−iωGr) +

a∗
r(−iωGr)] as well as the entropy production rate s = βpφp +

∑R
r=1 βrφf,r belong

to this class of operators. The proof that these operators are deformation analytic
in the appropriate sense is based on the proof of Theorem C.14. Hence, it makes
sense to talk about the expectation value of the interaction energy ω̃(gvr), of the
net heat fluxes ω̃(φf,r) of the reservoirs and, in particular, of the entropy production
rate w.r.t. ω0

Epω0
(ω̃) = ω̃(s)

in the state ω̃.

In the equal temperature situation, i.e., βmax = βmin, we have Kθ = Lθ and
K = L. Further, the vector Ω = Ω̃|βmax=βmin=β ∈ ker(L) is the vector representative
of the unique ω0-normal perturbed KMS state, c.f. Proposition B.7. Applying
Proposition C.16 in the equal temperature situation implies LθΩθ = 0. On the
other hand we have, due to (Lθ)

∗ = Lθ, for the kernel ker(Lθ) = �Ω̃∗
θ
. This implies
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that Ω̃∗
θ

= λΩθ for a suitable factor λ ∈ � which turns out to be one by

1 =
〈

Ω̃∗
θ

∣∣∣Ωθ

〉
= λ 〈Ωθ |Ωθ 〉 = λ ‖Ω‖2 = λ

using the fact that Ω ∈ Daux
D−a by Theorem C.14 which allows to remove the spectral

deformation. This implies that

ω̃(A) = 〈Ωθ | [π(A)Ω]θ 〉 = 〈Ω |π(A)Ω 〉 = ω(A)

for all A ∈ Aana, i.e., the state ω̃ becomes the unique ω0-normal (α, β)-KMS state
which extends to the whole algebra A. Facing the upcoming theorem about thermal
relaxation it is consistent with [8] that the attracting state ω̃ is the KMS state of
the perturbed system.

We are prepared to state the main theorem about the thermal relaxation proper-
ties of our system in connection with spectral properties of the C-Liouville operator.

Theorem 2.11 (Thermal Relaxation to NESS) We assume that g > 0 is suf-
ficiently small and |βmax − βmin| � 1. Any ω0-normal state η ∈ Nω0(A) converges
under the time evolution α pointwise on Aana towards the functional ω̃, i.e.,

lim
t→∞

η
(
αt(A)

)
= ω̃(A) for all A ∈ Aana.

Moreover, there exists a dense subset N ana ⊆ Nω0(A) of ω0-normal states which
converge exponentially fast, i.e., there exists a positive decay rate

τdec =
g2

2 + βmax

γeq

1920C2
χ1

, (2.36)

with γeq being a positive constant defined in (4.46) and Cχ1 > 0 introduced in (4.6),
such that

lim
t→∞

eτdect
∣∣η (αt(A)

)
− ω̃(A)

∣∣ = 0

for all η ∈ N ana and A ∈ Aana.

Proof. We specify the set

N ana :=
{

η ∈ Nω0(A)
∣∣∣ ∃B ∈ A1 : η =

〈
π′(B)Ω̃

∣∣∣ π( · )π′(B)Ω̃
〉}

where the ∗-algebra A1 ⊆ Aana ⊆ A is defined in (C.13). The set N ana is dense in
Nω0(A) by the following argument. Let η be an arbitrary ω0-normal state. Then
there exists a unit vector ξ from the positive cone P such that η = 〈 ξ |π( · )ξ 〉. By
Proposition C.10 the vector Ω̃ is cyclic for π′(A1), i.e., for a given ε > 0 there exists
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an observable B ∈ A1 such that
∥∥∥ξ − π′(B)Ω̃

∥∥∥ < ε/2 and
∥∥∥π′(B)Ω̃

∥∥∥ = 1. For A ∈ A
with ‖A‖A = 1 holds∣∣∣η(A)−

〈
π′(B)Ω̃

∣∣∣ π(A)π′(B)Ω̃
〉∣∣∣

≤
∣∣∣〈 ξ
∣∣∣ π(A)(ξ − π′(B)Ω̃)

〉∣∣∣+ ∣∣∣〈 ξ − π′(B)Ω̃
∣∣∣ π(A)π′(B)Ω̃

〉∣∣∣
≤
∥∥∥ξ − π′(B)Ω̃

∥∥∥(‖ξ‖+
∥∥∥π′(B)Ω̃

∥∥∥) ‖π(A)‖
< ε,

i.e.,
∥∥∥η − 〈 π′(B)Ω̃

∣∣∣ π( · )π′(B)Ω̃
〉∥∥∥

A∗
< ε.

We now choose a state η =
〈

π′(B)Ω̃
∣∣∣ π( · )π′(B)Ω̃

〉
∈ N ana with B ∈ A1. Since

A1 is a ∗-algebra by Proposition C.10 we have B∗B ∈ A1. Due to Theorem C.14
holds π′(B∗B)Ω̃ ∈ Daux

D−a. We choose A ∈ Aana and apply Proposition 2.10,

lim
t→∞

η(αt(A)) = lim
t→∞

〈
π′(B∗B)Ω̃

∣∣∣U(t)π(A)Ω̃
〉

=
〈

[π′(B∗B)Ω̃]θ

∣∣∣ Ω̃θ

〉〈
Ω̃∗

θ

∣∣∣ [π(A)Ω̃]θ

〉
.

Hereby, we used that π′(B) commutes with π(αt(A)) = eiLtπ(A)e−iLt ∈ π(A)′′.
Since both vectors, [π′(B∗B)Ω̃]θ and Ω̃θ, are analytic in each variable of θ = (δ, τ)
we conclude that the function

θ �→ p(θ) :=
〈

[π′(B∗B)Ω̃]θ

∣∣∣ Ω̃θ

〉
is analytic. Because the deformation D(θ) is unitary for θ ∈ �2, the function p is
constant on �2,

p(θ) =
〈

[π′(B∗B)Ω̃]θ

∣∣∣ Ω̃θ

〉
=
〈

D(θ)π′(B∗B)Ω̃
∣∣∣D(θ)Ω̃

〉
=
〈

π′(B∗B)Ω̃
∣∣∣ Ω̃〉 =

〈
π′(B)Ω̃

∣∣∣ π′(B)Ω̃
〉

= η(�B(H2)) = 1.

Due to analyticity, the function p is constant on its whole domain. This implies that

lim
t→∞

η(αt(A)) = ω̃(A).

Further, the convergence is exponentially fast with the given decay rate τdec by
Proposition 2.10 since π′(B∗B)Ω̃ ∈ Daux

D−a .

Now, we consider the time evolution of an arbitrary ω0-normal state η. Let ε > 0
and A ∈ Aana. There exists a state ηε ∈ N ana such that ‖η − ηε‖A∗ < ε/(‖A‖A +1).
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It holds

|η(αt(A))− ω̃(A)| ≤ |η(αt(A))− ηε(α
t(A))|+ |ηε(α

t(A))− ω̃(A)|
≤ ‖η − ηε‖A∗

∥∥αt(A)
∥∥
A + |ηε(α

t(A))− ω̃(A)|

≤ ε
‖A‖A
‖A‖A + 1

+ |ηε(α
t(A))− ω̃(A)|

≤ ε + |ηε(α
t(A))− ω̃(A)|

t→∞−−−→ ε,

based on the convergence properties for states ηε ∈ N ana studied above. This implies

lim
t→∞

η(αt(A)) = ω̃(A),

however, the convergence needs not to be exponentially fast.

Remark 2.12 (Exponential Decay Rate) Proposition 2.10 illustrates that the
translation parameter τ ′ as chosen in (2.36) is proportional to the exponential rate
τdec of convergence towards the NESS. The relation (2.36) implies that the rate of
convergence gets larger if the reservoirs are stronger coupled to the particle system,
i.e., if g increases, or if the thermal fluctuations grow, i.e., if the minimal reservoir
temperature Tmin = β−1

max increases. It is noteworthy that

τdec
g→0∼ g2 and τdec

βmax→∞∼ β−1
max = Tmin.

Hence, for weak coupling the decay is governed by the strength of the interaction
while in the low temperature regime the thermal fluctuation dominates the relaxation
process.

Corollary 2.13 We make the same assumptions as in Theorem 2.11. Let η =
〈 ξ | π( · )ξ 〉, ξ ∈ P, be an ω0-normal state. Let Φ stand for the entropy production
rate s, the heat fluxes φf,r or the interaction energy v and assume that ξ is in the
form domain of Φ. Then the expectation value of Φ in the state η converges under
the time evolution towards ω̃(Φ),

lim
t→∞

η
(
αt(Φ)

)
= ω̃(Φ).

Moreover, if we choose η from the class N ana then the convergence is exponentially
fast,

lim
t→∞

eτdect
∣∣η (αt(Φ)

)
− ω̃(Φ)

∣∣ = 0,

where the rate of convergence τdec is given in (2.36).
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Proof. Since π(Φ)Ω̃ ∈ Daux
D−a we conclude the convergence properties with the

same arguments as those presented in the proof of Theorem 2.11.

Corollary 2.14 The definition (2.35) of ω̃ is independent of the spectral deforma-
tion and it holds

sup
A∈Aana\{0}

|ω̃(A)|
‖A‖A

= 1 and ω̃(A∗A) ≥ 0

for A ∈ Aana with A∗A ∈ Aana. In particular, ω̃ is a state (i.e., a positive, normalized
linear functional) on the ∗-subalgebra A1 ⊆ Aana ⊆ A given in (C.13).

Proof. Let A ∈ Aana. By Theorem 2.11 holds

ω̃(A) = lim
t→∞

ω0(α
t(A))

which is independent of the spectral deformation parameters θ. We further observe
that

|ω̃(A)| = lim
t→∞

∣∣〈 e−iLtΩ0

∣∣ π(A)e−iLtΩ0

〉∣∣ ≤ ‖A‖A
and, for A∗A ∈ Aana,

ω̃(A∗A) = lim
t→∞

ω0(α
t(A∗A)) ≥ 0

because ω0 ◦ αt is a state on A. Since ω̃(�B(H2)) = ω0(�B(H2)) = 1 the functional is
a state on each ∗-subalgebra contained in Aana.

Theorem 2.11 describes the state ω̃ as the limit point of ω0-normal states propa-
gating under α. This means that each state which is close (in the relative entropy
sense) to the preparation of the subsystems at equilibrium at inverse temperatures
βp, β1, . . . , βR, resp., will converge under the interacting time evolution towards ω̃ on
a subalgebra of observables. This motivates us to refer to ω̃ as the non-equilibrium
stationary state, or simply NESS, attracting all configurations with finite relative
entropy w.r.t. ω0. We point out that the attribute “non-equilibrium” could be
misleading since ω̃ becomes a KMS state in the equal temperature situation as one
expects. Nevertheless we keep this notion since, in general, the state ω̃ will be far
from being a thermal equilibrium. We will substantiate this in the subsequent sec-
tion by computing the thermodynamic characteristics of the system in the state ω̃
such as non-vanishing stationary heat fluxes and positive entropy production rate
which speak for a non-equilibrium situation.

We further note that stationarity of ω̃ w.r.t. α is not a defined concept either.
Recall that the perturbed time evolution is not given on the algebra of observables
(it does not leave the algebra invariant, we refer to the discussion about this issue
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in Section 1.4.3 and Remark 1.16) but rather on ω0-normal states. Hence, for ω̃
not being ω0-normal its evolution w.r.t. α is not explained. Given an observable
A ∈ Aana we are able to compute the expectation value in the state ω̃. At given
time t ∈ � the observable will have propagated under the Heisenberg evolution to
αt(A) and thereby may have left the set Aana. The application of the state ω0 to
αt(A) is possible with the interpretation ω0(α

t(A)) = ω0 ◦ αt(A) where ω0 ◦ αt =〈
e−iLtΩ0

∣∣ π( · )e−iLtΩ0

〉
is an ω0-normal state. The time evolution of ω̃ then can be

understood in the sense

ω̃
(
αt(A)

)
= lim

s→∞
ω0 ◦ αs(αt(A)).

The state ω̃ is then α-stationary by concept.

As a last observation concerning the nature of the NESS we consider the case that
ω̃ is ω0-normal, i.e., there exists a vector ξ ∈ P such that ω̃(A) = 〈 ξ |π(A)ξ 〉 for
A ∈ Aana. Then the NESS extends uniquely to a normal state η := 〈 ξ | π( · )ξ 〉 on
the whole algebra A, using that π(Aana) is strongly dense in π(A) by the arguments
of the proof to Proposition C.10. The state η is α-stationary on Aana,

η(αt(A)) = η ◦ αt(A) = lim
s→∞

η ◦ αs+t(A) = ω̃(A) = η(A).

Since Aana is strongly dense in A the time invariance extends to all observables by
the following reason. Let A ∈ A, then there exists a sequence (An)n∈� ⊆ Aana with
limn→∞ π(An)ψ = π(A)ψ for all ψ ∈ H2 and it holds

η
(
αt(A)

)
=
〈
e−iLtξ

∣∣ π(A)e−iLtξ
〉

= lim
n→∞

〈
e−iLtξ

∣∣ π(An)e−iLtξ
〉

= lim
n→∞

η
(
αt(An)

)
= lim

n→∞
η(An) = lim

n→∞
〈 ξ |π(An)ξ 〉

= η(A).

The invariance of the normal state η implies that ξ ∈ ker(L), see the discussion of
Section 1.1.2 and [10, Thm. 2.5.31]. Let η′ be another α-stationary ω0-normal state.
Then η′ coincides with η on Aana by Theorem 2.11 and

η′(A) = lim
t→∞

η′ (αt(A)
)

= ω̃(A) = lim
t→∞

η
(
αt(A)

)
= η(A), A ∈ Aana,

and due to the strong density of Aana in A it is η′ = η on A. Hence, we conclude

ker(L) = �ξ

with the help of (1.7). Vice versa, if ξ is an eigenstate of L corresponding to an
eigenvalue E ∈ � then the state η := 〈 ξ |π( · )ξ 〉 is apparently α-stationary and it
follows that η(A) = ω̃(A) for all A ∈ Aana, thus

ker(L) �= {0} ⇐⇒ dim(ker(L)) = 1. (2.37)
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Under the assumptions of Theorem 2.11 the above considerations lead to a remark-
able set of the equivalences,

∃ ξ ∈ H2 : ω̃(A) = 〈 ξ | π(A)ξ 〉 ∀A ∈ Aana

⇐⇒ ∃ ξ ∈ H2 \ {0} : ker(L) = �ξ

⇐⇒ specpp(L) �= ∅
⇐⇒ ker(L) �= {0}
⇐⇒ specpp(L) = {0},

(2.38)

where the last equivalence goes back to [21, Thm. 1.1] saying that under the as-
sumption that the standard Liouville operator has a simple zero eigenvalue then
specpp(L) is an additive subgroup of �. However, by Proposition 3.3, there is no
point spectrum outside a finite box around zero, hence the group of eigenvalues is
the trivial group only consisting of zero itself.

2.3.3 Thermodynamic Characterization of the NESS

After having introduced the NESS of the interacting systems and its dynamical
(attracting) properties in the previous section we now focus on the thermodynamic
characteristics of the state ω̃. We compute the expectation value of the entropy
production rate in this state and the net heat fluxes of the subsystems.

Proposition 2.15 Let g > 0 be sufficiently small and |βmax − βmin| � 1. The
entropy production rate w.r.t. ω0 in the state ω̃ is non-negative,

Epω0
(ω̃) ≥ 0,

and it further holds

Epω0
(ω̃) = 0 ⇐⇒ 0 ∈ specpp(L).

Proof. The entropy production formula (1.85) implies

1

t

t∫
0

ds ω0 ◦ αs(s) = −1

t
Ent
(
ω0 ◦ αt|ω0

)
≥ 0
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for all t > 0, using that Ent(ω0|ω0) = 0. The l.h.s. converges towards Epω0
(ω̃) as

t→∞, ∣∣∣∣1t
t∫

0

ds ω0 ◦ αs(s)− Epω0
(ω̃)

∣∣∣∣ ≤ 1

t

t∫
0

ds |ω0 ◦ αs(s)− ω̃(s)|

=
1

t

T∫
0

ds |ω0 ◦ αs(s)− ω̃(s)|+ 1

t

t∫
T

ds |ω0 ◦ αs(s)− ω̃(s)|

<
1

t

T∫
0

ds |ω0 ◦ αs(s)− ω̃(s)|+ t− T

t
ε

t→∞−−−→ ε,

where, for a given ε > 0, the number T > 0 is chosen such that |ω0 ◦ αs(s) −
Epω0

(ω̃)| < ε for all t ≥ T , c.f. Corollary 2.13. This proves that the entropy
production rate in ω̃ is non-negative,

Epω0
(ω̃) = lim

t→∞

1

t

t∫
0

ds ω0 ◦ αs(s) ≥ 0.

We now assume that 0 ∈ specpp(L). As a consequence of (2.38) we know that
ω̃ coincides on Aana with an ω0-normal, α-invariant state η. An application of the
entropy production formula (1.85) yields

Epω0
(ω̃) = ω̃(s) = lim

t→∞
η
(
αt(s)

)
= η(s) = −∂t|t=0 Ent

(
η ◦ αt|ω0

)
= 0.

Vice versa, if Epω0
(ω̃) = 0 then the state η̃ :=

〈
Ω̃
∣∣∣ π( · )Ω̃

〉
∈ N ana obeys

Ent
(
η̃ ◦ αt|ω0

)
= Ent(η̃|ω0)−

t∫
0

ds
[
η̃ ◦ αs(s)− Epω0

(ω̃)
]

≥ Ent(η̃|ω0)−
t∫

0

ds e−τdecs |eτdecs [η̃ ◦ αs(s)− ω̃(s)]|

≥ −C,

for a positive constant C < ∞, because of Corollary 2.13 where the rate τdec of
exponential convergence is given in (2.36). By [37, Prop. 5.27.] the set

{γ ∈ Nω0(A) |Ent(γ|ω0) ≥ −C }
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is compact w.r.t. the weak topology on the Nω0(A) (note that the definition of the
relative entropy in [37] differs by a relative sign from ours). This means that there
exists an ω0-normal state η and a sequence (tn)n∈� ⊆ � with tn → ∞ as n → ∞
such that

lim
n→∞

η̃
(
αtn(A)

)
= η(A)

for all A ∈ A. This implies that ω̃(A) = η(A) for all A ∈ Aana and the relation
(2.38) yields 0 ∈ specpp(L).

Corollary 2.16 Let g > 0 be sufficiently small. If βmax = βmin then the entropy
production rate in the state ω = ω̃|βmax=βmin

is zero,

Epω0
(ω) = 0.

If |βmax− βmin| is sufficiently large compared to the coupling constant g in the sense
of (3.6) then the entropy production rate in the state ω̃ is strictly positive,

Epω0
(ω̃) > 0.

Proof. This follows immediately from the Proposition 2.15 and Proposition 3.3
describing the spectrum of the standard Liouville operator L depending on the
temperature difference βmax − βmin.

The positivity of the entropy production rate in the NESS has consequences on
the heat fluxes through the reservoirs.

Proposition 2.17 (Energy Conservation and Stationary Fluxes) Let g > 0
be sufficiently small and |βmax−βmin| � 1. The energy flux φp of the particle system
and the total energy flux φtot vanish in the NESS,

ω̃ (φp) = 0 and ω̃ (φtot) = 0.

If 0 �∈ specpp(L), e.g., if the temperature difference βmax − βmin is sufficiently
large compared to the coupling constant g in the sense of (3.6), then there are
non-vanishing stationary heat fluxes through the reservoirs, i.e., there exist r, r′ ∈
1, . . . , R such that

ω̃ (φf,r) > 0 and ω̃ (φf,r′) < 0. (2.39)

If further only two reservoirs at inverse temperatures βmax = β1 > β2 = βmin

are coupled to the particle system then the stationary heat flux goes from the hotter
(r=2) to the colder (r=1) reservoir, i.e.,

ω̃(φf,1) > 0, ω̃(φf,2) = −ω̃(φf,1) < 0.
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Proof. We first observe that the energy flux of the particle system vanishes in
the NESS. By definition is φp = ∂t|t=0α

t(Hp) where Hp acts trivially on the photon
variables and therefore Hp ∈ A1. Therefore holds

ω̃ (φp) = lim
s→∞

ω0

(
∂t|t=0α

t+s(Hp)
)

= ∂t|t=0 lim
s→∞

ω0

(
αt+s(Hp)

)
= ∂t|t=0ω̃(Hp) = 0.

We now consider the total flux observable φtot = −∂t|t=0α
t(v). With the same

arguments as before we obtain

ω̃ (φtot) = − lim
s→∞

ω0

(
∂t|t=0α

t+s(v)
)

= −∂t|t=0 lim
s→∞

ω0

(
αt+s(v)

)
= −∂t|t=0ω̃(v) = 0

using Corollary 2.13, and therefore

R∑
r=1

ω̃(φf,r) = 0. (2.40)

We now assume that 0 �∈ specpp(L). This implies that
∑R

r=1 βrω̃(φf,r) =
Epω0

(ω̃) > 0. There exists a label r = 1, . . . , R with ω̃(φf,r) > 0. To fulfil the flux
balance (2.40) we find another reservoir label r′ = 1, . . . , R such that ω̃(φf,r′) < 0.

For R = 2 we can express one reservoir heat flux as the negative of the other one.
The positivity of the entropy production rate in ω̃ yields

(β1 − β2)ω̃(φf,1) = Epω0
(ω̃) > 0.

Since β1 > β2 it follows that ω̃(φf,1) > 0 and therefore ω̃(φf,2) < 0.

The Proposition 2.17 describes that the particle system does not accumulate or
provide energy in the NESS and that the total energy is preserved while the infinitely
large extended reservoirs feature stationary heat fluxes when they were prepared at
different temperatures. This is in no contradiction to the time invariance of the
NESS. The reservoir energy “observables”, the Hamiltonians Hf,r, do not belong to
A and not even to the polynomial algebra of creation and annihilation operators.
A formal application of an ω0-normal state (or the time limit ω̃) yields an infinite
expectation value reflecting the fact that the reservoirs contain an infinite amount
of energy. Roughly speaking, the amount of energy stays the same, namely infinite,
over finite time intervals even if the reservoirs show a non-vanishing energy flux.

In the case that two reservoirs are coupled to the particle system it is possible
to compute perturbatively the energy flux from the hotter into the colder reservoir.
We anticipate a result from [34] saying that the net flux of the first reservoir in the
NESS is given in leading order as

ω̃(φf,1) = g2φ′ + o(g2)O (βmax − βmin) (2.41)
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where
φ′ := lim

ε↘0
2 Re
〈
Ω∗

0

∣∣ π(v1)iLf,1(L0 + iε)−1e−β1L0/2π(v1)Ω0

〉
.

Hereby, the vectors Ω0, Ω
∗
0 are given by

Ω0 = Ωp ⊗ Ωvac, Ω∗
0 = ζ ⊗ Ωvac

where Ωp, ζ are the zero eigenvectors of the level shift operator Λ
(−i/2)
0 and its adjoint

(Λ
(−i/2)
0 )∗, discussed in the Sections 3.3.2 and 3.5. While Ωp was already introduced

in Section 1.2 the vector ζ ∈ ker(Lp) is fixed through(
Λ

(−i/2)
0

)∗
ζ = 0, 〈 ζ |Ωp 〉ker(Lp) = 1.

An explicit expression for φ′ is given by

φ′ = 2π
N−1∑
j,k=1,
j>k

∫
S2

dΣ
E3

j,k

eβ1Ej,k/2 − e−β1Ej,k/2
|G1(Ej,kΣ)|2

[
κje

−β1Ek − κke
−β1Ej

]
,

where κj > 0 are the coefficients of the expansion of ζ in the basis {ϕj,j}j=0,...,N−1

of ker(Lp),

ζ =
N−1∑
j=0

κjϕj,j,

for the particular choice βp = β1, compare with (2.9). The proof of (2.41) presented
in [34] uses the perturbation theory for the resonance eigenvectors Ω̃θ and Ω̃∗

θ
. The

expansion of these vectors is carried out under the assumption that the reservoir
temperatures are sufficiently high. To avoid this restriction one would have to apply
a renormalization process. Since such an analysis would be a complete project for it-
self we content ourselves with presenting the results of the perturbative computation
of the heat flux.
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Spectral Analysis





3 Spectral Analysis of the Operators

K
(s)
θ

This chapter is devoted to the analysis of the spectrum of the operators K
(s)
θ . In fact,

this chapter (along with the subsequent ones) is the technically most involved and
it provides all necessary properties of the C-Liouvillean K to study the evolution of
the group t �→ U(t) ≡ eiKt.

The global picture of the spectrum of K
(s)
θ is given by a numerical range estimate,

c.f. Proposition A.9 and Lemmata C.1 and C.2. Roughly speaking, the numerical
range, and therefore also the spectrum, is confined to a truncated cone with apex
angle π−2 Im(δ) as illustrated in Figure 3.1. The sectorial property of K

(s)
θ is already

sufficient to make the representation of the group U(t) in terms of integration over
the resolvent (z − Kθ)

−1 a well defined expression, c.f. Lemma 2.8 and (2.27) of
Proposition 2.9. The proof of the sectorial location of the spectrum goes back to
rather standard relative bound estimates on the perturbation as they are provided
in Appendix A.

However, the spectral property of K
(s)
θ along the real axis, in particular around the

origin of the complex plane, is not accessible only with estimates on the perturbation.
It is the structure of the null space and the absence of spectrum on the positive and
negative real axis which determine the long time limit of the group U(t). Therefore,
we need to apply more subtle tools in order to obtain insight into spectral regions
close to the real axis. The closest neighborhood of particle eigenvalues, i.e., points
from the spectrum of the particle Liouvillean Lp, can be treated by the Feshbach
technique transferring the analysis to an equivalent problem on a spectral subspace.
That way we gain clarification about the spectrum around spec(Lp)\{0}, namely we
can show that all the spectrum moves from the real axis into the upper half plane,
provided that Im(δ), Im(τ) > 0. This procedure is the main task of the present
chapter. The strategy in proving the shift of the eigenvalues uses arguments as in
[8], however, the non-self-adjointness of K(s) for s �∈ � poses some difficulties. They
have been dealt with in the project [34] and enter this work in Section 3.3.
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Ej−Ek 0 ...... Ek−Ej

Im(τ)

Im(δ)

Im(δ)

~g

... ...

π−
2I

m
(δ

)

Figure 3.1: The spectrum of L0,θ for the parameter choice (3.1, 3.2) consists of the
eigenvalues of Lp, paired with cones of continuous spectrum arising from
the spectrum of (Lres)θ. The apex angle of the cones is π − 2 Im(δ) and
they are separated from the eigenvalues by a shift Im(τ). The relative

bound of the perturbation gI
(s)
θ w.r.t. Im(L0,θ) confines the spectrum

of K
(s)
θ to the pink region, contained in a truncated cone of apex angle

π − 2 Im(δ).

The zero eigenvalue of Lp plays a special role. This is related to its N = dimHp-
fold degeneration. The spectral analysis near the origin requires multiple applica-
tions of the Feshbach technique. The importance of a Feshbach iteration procedure
is accounted by outsourcing it into Chapter 4. The following Chapter 5 provides
the corresponding spectral interpretation of the Feshbach procedure and relates it
to K

(s)
θ .

The spectral information arising from the analysis of the subsequent chapters is
summarized in Theorem 3.1. Before stating the main theorem we first do some
preparation work.

Throughout this chapter, and also the subsequent ones, we assume the following
choice of parameters. Let the deformation parameters θ = (iδ′, iτ ′) ∈ (i�+)2 fulfill

δ′ ∈
[π
8
,
π

4

]
and τ ′ ∈ (0, 2πβ−1

max), (3.1)

and let the parameter s obey
s ∈ �ε0 (3.2)

as in (2.11). All spectral considerations of this chapter are done on a scale ρ > 0.
Since that scale shall measure close environments of the particle eigenvalues we
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require that it is small compared to the distance of two neighboring points from the
spectrum of Lp, i.e.,

ρ < min
e,e′∈spec(Lp)

e�=e′

|e− e′| =: dLp . (3.3)

In fact, we will fix the parameter ρ by coupling it to g,

ρ := g2/3(1+ε̃) (3.4)

where 0 < ε̃ < 1/4. This guarantees the order relation

g2

sin(δ′)
� ρ� dLp

for g sufficiently small. We use the scale ρ to define disjoint subsets of � on which
different approaches are undertaken to study the contained spectrum of K

(s)
θ . We

introduce the set

S :=

{
z ∈ �

∣∣∣∣ Im(z) ≤ sin(δ′)

2
ρ

}
,

on which a refined spectral analysis is performed. The complement of S is far
enough inside the upper half plane such that the spectrum inside � \ S is described
sufficiently detailed for our purposes by the rough numerical range localization given
in Proposition A.9. To study the spectrum in S we decompose

S =
[ ⋃

e∈spec(Lp)

Se

]
∪ S,

where, for e ∈ spec(Lp),

Se := {z ∈ S | |z − e| ≤ 4ρ } ,
S := S \

⋃
e∈spec(Lp)

Se. (3.5)

The sets S, Se for e �= 0 and S0 are shown in Figure 3.2. The color code refers to
the different approaches to tackle the spectral analysis: on the blueish area S we
prove absence of the spectrum by ordinary expansion of the resolvent in a Neumann
series, the greyish regions are treated with the Feshbach technique, and the greenish
region is subject to Feshbach iteration.
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Figure 3.2: Illustration of the spectrum of K
(s)
θ : Absence of spectrum in S (away

from particle eigenvalues); localization of the spectrum in the upper half
plane in Se near non-zero particle eigenvalues e ∈ spec(Lp)\{0}; isolated,
simple eigenvalue in the neighborhood of zero. No prediction is made
about the region outside S.

3.1 Spectral Picture of the Standard and the
C-Liouville Operator

Theorem 3.1 (Spectrum of K
(s)
θ ) Let the parameters θ = (iδ′, iτ ′) and s obey

(3.1) and (3.2). Further, we fix the translation parameter by

τ ′ :=
g2γeq

2 + βmax

,

in accordance with (3.1), where the positive constant γeq is explained in (4.46).
Under these conditions and the further requirement that g is small enough and
|βmax − βmin| � 1, the spectrum of K

(s)
θ can be described as follows.
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(i) There exists a complex number E
(s)
0,g ∈ S0 of norm∣∣∣E(s)

0,g

∣∣∣ ≤ 4g2 ‖Γeq‖B(ker(Lp))

which is a simple, isolated eigenvalue of K
(s)
θ . The level shift operator Γeq

is defined in (4.44) whereby its norm is estimated uniformly in the inverse
temperatures.

(ii) The eigenvalue E
(s)
0,g has the lowest imaginary part among all other spectral

points in a neighborhood of order ρ, it holds[
spec
(
K

(s)
θ

)
\
{

E
(s)
0,g

}]
∩ S0 ⊆

{
z ∈ �

∣∣∣ Im(z) ≥ Im
(
E

(s)
0,g

)
+ 2τdec

}
.

The gap τdec is proportional to the translation parameter,

τdec :=
τ ′

1920C2
χ1

,

where the positive constant Cχ1 is introduced in (4.6).

(iii) For e ∈ spec(Lp) \ {0} the spectrum of K
(s)
θ inside the region Se is shifted

completely into the upper half plane by a distance of order g2, it holds

spec
(
K

(s)
θ

)
∩ Se ⊆

{
z ∈ �

∣∣∣ Im(z) ≥ g2γFGR

4

}
where the Fermi golden rule level shift γFGR was introduced in (1.86).

(iv) There is no spectrum inside S, i.e.,

spec
(
K

(s)
θ

)
∩ S = ∅.

(v) Globally, the spectral information of K
(s)
θ is accessible via the numerical range,

NumRan
(
K

(s)
θ

)
⊆
{

z ∈ �
∣∣∣∣ Im(z) ≥ −1 + max

{
sin(δ′)

8
(|Re(z)− ‖Lp‖B(Hp) |), 0

}}
.

Further, for any z �∈ spec(K
(s)
θ ) there exists a positive constant C < ∞ such

that ∥∥∥∥(z −K
(s)
θ

)−1
∥∥∥∥ ≤ C

|Re(z)|+ 1

for fixed Im(z) and |Re(z)| sufficiently large.



128 3. Spectral Analysis of the Operators K
(s)
θ

Proof. Theorem 3.1 is the technically most challenging theorem of this work,
its proof spreads over the subsequent chapters. At this point we give the references
to the corresponding proofs.

(i) The statement about the spectrum of K
(s)
θ inside S0 is a direct consequence of

Theorem 5.8(ii). It employs the Sections 3.3, 3.5 and the Chapters 4, 5.

(ii) The separation of the eigenvalue E
(s)
0,g from the rest of the spectrum in S0

follows directly from Theorem 5.8(iii).

(iii) The assertion about the spectrum in Se is a consequence of Theorem 3.19. The
result is based on the analysis of the Sections 3.3 and 3.4.

(iv) The absence of spectrum inside S is considered in Section 3.2 and is guaranteed
by Proposition 3.4.

(v) The global localization and the resolvent estimate goes back to the numerical
range estimate provided in Proposition A.9.

We study the localization of the eigenvalue E
(−i/2)
0,g of the deformed C-Liouvillean

Kθ in more detail.

Proposition 3.2 (Kernel of the deformed C-Liouvillean Kθ) Under the
same assumptions of Theorem 3.1 and for the particular choice s = − i

2
we have

E
(−i/2)
0,g = 0 and the kernel of K

(−i/2)
θ = Kθ is spanned by Ω̃θ, i.e.,

ker (Kθ) = �Ω̃θ.

Proof. It follows from Proposition C.16 that zero is also an eigenvalue of
Kθ = K

(−i/2)
θ . The knowledge about the spectrum in S0 provided by Theorem 3.1

implies that either E
(−i/2)
0,g = 0 or Im(E

(−i/2)
0,g ) ≤ −2τdec since otherwise zero would

not appear in the spectrum of Kθ. However, in the proof to Proposition 2.10 we
showed that Im(E

(−i/2)
0,g ) < 0 contradicts that K is the generator of the group U(t).

Note that we did not use the present proposition within the proof of Proposition 2.10.
Hence, we have E

(−i/2)
0,g = 0. Due to the simplicity of the eigenvalue and KθΩ̃θ = 0,

we conclude that the kernel of Kθ is spanned by Ω̃θ.

While it is impossible to deduct the spectrum of the C-Liouvillean K from Kθ we
are able to make conclusion about the spectrum of the self-adjoint standard Liouville
operator L from its deformation Lθ = K

(0)
θ .



3.1. Spectral Picture of the Standard and the C-Liouville Operator 129

Proposition 3.3 (Absolutely Continuous Spectrum of L) For g > 0 suffi-
ciently small and |βmax−βmin| � 1 the spectrum of the self-adjoint standard Liouville
operator L outside the interval [−4ρ, 4ρ] is absolutely continuous. In particular, there
is no eigenvalue outside [−4ρ, 4ρ].

• If further βmax = βmin, i.e., all reservoirs are at the same temperature, the
operator L has a simple eigenvalue at zero and the rest of the spectrum is
absolutely continuous, it holds

ker(L) = �Ω̃|βmax=βmin=β, specac(L) = � \ {0}.

• If further

gε̃ � (βmax − βmin)
2

[
1− Z(2β)

Z(β)2

]
, (3.6)

where β := (βmin + βmax)/2, i.e., the reservoir temperature differences are
sufficiently large compared to the coupling constant, the whole spectrum of L
is absolutely continuous,

spec(L) = specac(L) = �.

Then, in particular, the standard Liouvillean possesses no eigenvalues.

Proof. Assume that θ obeys the assumptions of Theorem 3.1, then the same
theorem implies that for the spectrum of Lθ holds,

spec (Lθ) \ S0 ⊆
{

z ∈ �
∣∣∣ Im(z) ≥ g2γFGR

4

}
.

If further βmax = βmin we have Lθ = Kθ and therefore Proposition 3.2 applies. Thus,
zero is an isolated simple eigenvalue of Lθ and the rest of the spectrum is shifted
into the upper half plane by 2τdec.

On the other hand, if the restriction (3.6) holds then the spectrum of Lθ is com-
pletely in the upper half plane by Proposition 3.24, it is

spec (Lθ) ⊆ {z ∈ � | Im(z) ≥ c }

where

c := g2γFGR

4
min

{
1,

(βmax − βmin)
2dLp

16

[
1− Z(2β)

Z(β)2

]}
.

Let (a, b) ⊆ � be a bounded interval. The interval can be chosen arbitrarily if we
assume the extra condition (3.6). We choose it from � \ {0} for βmax = βmin and
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in the general case we exclude that (a, b) overlaps with [−4ρ, 4ρ]. For ϕ ∈ Daux
D−a we

consider the function
z �→ f(z) :=

〈
ϕ
∣∣ (z − L)−1 ϕ

〉
which is analytic on the lower half plane. For Im(z) ≤ −2 we may rewrite

f(z) =
〈
ϕθ

∣∣ (z − Lθ)
−1 ϕθ

〉
using Lemma 2.8. Due to the spectral properties of Lθ the function f has an analytic
continuation on the domain (a, b) + i(−∞, c′) for a positive constant c′. Hence, we
have

sup
0<ε<c′

b∫
a

dx
∣∣Im 〈ϕ ∣∣ (x + iε− L)−1 ϕ

〉∣∣ = sup
0<ε<c′

b∫
a

dx |Im f(x + iε)| <∞.

Since the vector ϕ was chosen from the dense set Daux
D−a we can apply [39,

Thm. XIII.20] and obtain that (a, b) is contained in the absolutely continuous part
of the spectrum.

It remains to show that zero is a simple eigenvalue of L in the case βmax = βmin.
Since, under this extra condition, the standard Liouville operator L coincides with
the C-Liouville operator K we conclude that

Ω := Ω̃|βmax=βmin=β =
e−βL(�)/2Ω0∥∥e−βL(�)/2Ω0

∥∥ ∈ ker(L),

hence, zero is an eigenvalue of L. The simplicity follows from (2.37).

In this chapter and the subsequent ones the operator K
(s)
θ will be estimated in

terms of the operator

M[θ] := dΓgl((u, Σ, r) �→ mθ(u)) = Im(L0,θ) = sin(δ′)Laux + τ ′Nres,

mθ(u) := sin(δ′)|u|+ τ ′.
(3.7)

Note that the above definition coincides with the definitions (A.9) and (A.10) for
θ = (iδ′, iτ ′) ∈ (i�+)2 such that sin(δ′) > 0.

3.2 Spectrum away from Particle Eigenvalues

In this section we analyze the set spec(K
(s)
θ ) ∩ S. We will find that the operator

K
(s)
θ has no spectrum in S.



3.2. Spectrum away from Particle Eigenvalues 131

Proposition 3.4 For z ∈ S and g2 � ρ sin(δ′)� dLp = mine,e′∈spec(Lp)
e�=e′

|e− e′|, the

operator (K
(s)
θ −z) is invertible and its inverse is a bounded operator. Thus, we have

spec
(
K

(s)
θ

)
∩ S = ∅.

Proof. We show that the inverse operator of (Kθ − z) can be expressed as a
norm convergent Neumann series,(

K
(s)
θ − z

)−1

(3.8)

=
(M[θ] + ρ)1/2

L0,θ − z

×
∞∑

n=0

{
−g(M[θ] + ρ)−1/2I

(s)
θ (M[θ] + ρ)−1/2M[θ] + ρ

L0,θ − z

}n

(M[θ] + ρ)−1/2.

To estimate the series we consider two cases. First, we assume that | Im(z)| ≤ sin(δ′)
2

ρ

and with (3.5), we conclude that |Re(z) − e| ≥
√

(4ρ)2 −
(

sin(δ′)
2

ρ
)2

≥ 3ρ for all

e ∈ spec(Lp). Having in mind that M[θ] = Im(L0,θ) = sin(δ′)Lres + τ ′Nres and
Re(L0,θ) = Lp + cos(δ′)Laux for θ = (iδ′, iτ ′) and that Lp, Lres, Nres and Laux are
pairwise commuting self-adjoint operators with |Lres| ≤ Laux, the application of
functional calculus yields∥∥∥∥M[θ] + ρ

L0,θ − z

∥∥∥∥ ≤ sup
0≤m≤ρ,

|�|≤m/ sin(δ′),
e∈spec(Lp)

m + ρ

|e− Re(z) + cos(δ′)�| + sup
m>ρ

m + ρ

|m− Im(z)|

≤ 2ρ

3ρ− cot(δ′)ρ
+

2ρ

ρ− sin(δ′)
2

ρ
≤ 8,

because π
8
≤ δ′ ≤ π

4
. The second case considers Im(z) < − sin(δ′)

2
ρ,∥∥∥∥M[θ] + ρ

L0,θ − z

∥∥∥∥ ≤ sup
m≥0

m + ρ

|m− Im(z)| ≤ sup
m≥0

m + ρ

m + sin(δ′)
2

ρ
=

2

sin(δ′)
< 8.

Together with Lemma A.5, we see that∥∥∥∥g(M[θ] + ρ)−1/2I
(s)
θ (M[θ] + ρ)−1/2M[θ] + ρ

L0,θ − z

∥∥∥∥ ≤ C
g√

ρ sin(δ′)
≤ 1

2
,

for a positive constant C < ∞. This ensures the norm convergence of the series
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(3.8) and we end up with the following estimate for the resolvent,∥∥∥∥(K(s)
θ − z

)−1
∥∥∥∥ ≤ 16

ρ
.

3.3 Spectrum in the Neighborhood of Particle
Eigenvalues

We go over to study the set spec(Kθ) ∩ Se for a particle eigenvalue e ∈ spec(Lp).
Choosing z ∈ Se, close to an eigenvalue e of the unperturbed Liouville operator L0,θ,
it is not possible to prove invertibility of (Kθ−z) with the help of a Neumann series
expansion. We apply the smooth Feshbach map as introduced in [4], c.f. Appendix E,
to study spectral properties of (Kθ − z) . This results into the Theorem 3.19 and
Proposition 3.24.

To apply the smooth Feshbach map we first choose a smooth cutoff function
Θ : �+

0 → [0, 1] with

supp(Θ) = [0, 1], and Θ(x) = 1 ⇐⇒ x ∈
[
0,

7

8

]
. (3.9)

We use the function Θ to define a smooth partition of the one,

χ2
ρ(x) + χ2

ρ(x) = 1 ∀x ∈ �+
0 ,

where

χρ(x) := sin
(π

2
Θ(ρ−1x)

)
,

χρ(x) := cos
(π

2
Θ(ρ−1x)

)
,

(3.10)

are smooth functions χρ, χρ : �+
0 → [0, 1] with

supp(χρ) = [0, ρ], χρ(x) = 1 ⇐⇒ x ∈
[
0,

7

8
ρ

]
, and

supp(χρ) =

[
7

8
ρ,∞
)

, χρ(x) = 1 ⇐⇒ x ∈ [ρ,∞).

(3.11)

The parameter ρ > 0 plays the role of a cutoff parameter. We introduce via spectral
calculus a smooth “projection” operator

Ξe,ρ := χρ

(
|Lp − e| ⊗ �F(L2[Υ]) + �H2

p
⊗M[θ]

)
∈ B
(
H2
)
,
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where, recall, M[θ] = Im(L0,θ) = sin(δ′)Laux + τ ′Nres. Because of (3.3), the operator
Ξe,ρ can also be expressed as

Ξe,ρ = P[Lp=e] ⊗ χρ(M[θ]) (3.12)

with P[Lp=e] being the (sharp) orthogonal projection on the eigenspace of Lp corre-
sponding to the eigenvalue e. We further define a B(H2

p)-valued function

Xe,ρ : u �→ χρ(u)P[Lp=e]

and write M[θ] =
∫∞
0

udP (u) in its spectral representation. This enables us to
rewrite

Ξe,ρ = Xe,ρ(M[θ]) ≡
∞∫

0

Xe,ρ(u)⊗ dP (u)

in the sense of generalized spectral calculus. We also introduce the complementary
smooth “projector”,

Ξe,ρ :=
√
�− Ξ2

e,ρ = χρ

(
|Lp − e| ⊗ �F(L2[Υ]) + �H2

p
⊗M[θ]

)
=

N−1∑
j,k=0

∞∫
0

χρ(|Ej,k − e|+ u) |ϕj,k〉 〈ϕj,k| ⊗ dP (u)

=

∞∫
0

Xe,ρ(u)⊗ dP (u) ≡ Xe,ρ(M[θ]),

where the B(H2
p)-valued function Xe,ρ is given by

Xe,ρ : u �→
N−1∑
j,k=0

χρ(|Ej,k − e|+ u) |ϕj,k〉 〈ϕj,k| .

The relation (3.12) allows us to write

Ξe,ρ =
√

P⊥
[Lp=e] ⊗ �F(L2[Υ]) + P[Lp=e] ⊗ χ2

ρ(M[θ]) ,

where P⊥
[Lp=e] := �−P[Lp=e] = P[Lp �=e] is the complementary projection w.r.t. P[Lp=e].

We conclude this notational part by introducing orthogonal projections on the
range of the operators Ξe,ρ and Ξe,ρ. We define

Pe,ρ : orthogonal projection on ran (Ξe,ρ), P⊥
e,ρ := �− Pe,ρ,

P e,ρ : orthogonal projection on ran
(
Ξe,ρ

)
, P

⊥
e,ρ := �− P e,ρ,
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and note that

Pe,ρ = P[
|Lp−e|⊗�F(L2[Υ])+�H2

p
⊗M[θ]<ρ

]
= P[Lp=e] ⊗ P[M[θ]<ρ],

P e,ρ = P[
|Lp−e|⊗�F(L2[Υ])+�H2

p
⊗M[θ]>

7
8
ρ

],
P⊥

e,ρ = P[Lp �=e] ⊗ P[M[θ]<ρ] + �H2
p
⊗ P[M[θ]≥ρ],

P
⊥
e,ρ = P[

|Lp−e|⊗�F(L2[Υ])+�H2
p
⊗M[θ]≤ 7

8
ρ

]
= P[Lp=e] ⊗ P[M[θ]≤ 7

8
ρ].

Since the operator M[θ] has no singular spectrum away from zero, the projections

P
⊥
e,ρ and Pe, 7

8
ρ coincide and therefore

P e,ρ = P⊥
e, 7

8
ρ

= P[Lp �=e] ⊗ P[M[θ]<
7
8
ρ] + �H2

p
⊗ P[M[θ]≥ 7

8
ρ]. (3.13)

3.3.1 First Application of the Smooth Feshbach Map

We use the freshly introduced notation to define the first application of the smooth
Feshbach map, discussed in Appendix E, to the operator family

K
(s)
θ = L0,θ + gI

(s)
θ , s ∈ �ε0.

Considering the operator L0,θ as the unperturbed part which commutes with Ξe,ρ

and Ξe,ρ and gI
(s)
θ as a perturbation we get for each z ∈ Se a Ξe,ρ-Feshbach pair

(K
(s)
θ − z, L0,θ − z). To this pair we can apply the smooth Feshbach map FΞe,ρ ,

FΞe,ρ

(
K

(s)
θ − z, L0,θ − z

)
= L0,θ − z + gΞe,ρI

(s)
θ Ξe,ρ (3.14)

−g2Ξe,ρI
(s)
θ Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρI
(s)
θ Ξe,ρ,

where (
K

(s)
θ − z

)
Ξe,ρ

=
[
L0,θ − z + gΞe,ρI

(s)
θ Ξe,ρ

]
�ran(P e,ρ)

is the operator of interest with the perturbation regularized in a spectral neighbor-
hood of the particle eigenvalue e. The image (3.14) under the Feshbach map has
to be understood as an operator on ran (Ξe,ρ) = ran (Pe,ρ). The endeavor of what

follows is to show that (3.14) is well defined, i.e., that the resolvent
(
K

(s)
θ − z

)−1

Ξe,ρ

exists, and that (3.14) defines a bounded operator on ran (Pe,ρ).
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Lemma 3.5 If g2 � ρ sin(δ′) � dLp and z ∈ Se than the operator
(
K

(s)
θ − z

)
Ξe,ρ

is invertible on ran
(
Ξe,ρ

)
and its inverse is bounded.

Proof. We expand in a Neumann series,

P e,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

P e,ρ (3.15)

= P e,ρ

(M[θ] + ρ)1/2

L0,θ − z

×
∞∑

n=0

{
−gΞe,ρ(M[θ] + ρ)−1/2I

(s)
θ (M[θ] + ρ)−1/2Ξe,ρ

M[θ] + ρ

L0,θ − z

}n

×(M[θ] + ρ)−1/2P e,ρ .

We prove the norm convergence of this series by estimating the terms separately.
First, we decompose P e,ρ = P1 + P2 corresponding to (3.13) where

P1 := P[Lp �=e] ⊗ P[M[θ]<
7
8
ρ], P2 := �H2

p
⊗ P[M[θ]≥ 7

8
ρ]

and consider∥∥∥∥M[θ] + ρ

L0,θ − z
Ξe,ρ

∥∥∥∥ ≤ ∥∥∥∥M[θ] + ρ

L0,θ − z
P e,ρ

∥∥∥∥ ≤ ∥∥∥∥M[θ] + ρ

L0,θ − z
P1

∥∥∥∥+

∥∥∥∥M[θ] + ρ

L0,θ − z
P2

∥∥∥∥ . (3.16)

These operator norms can be estimated via functional calculus using that Lp, Lres,
Nres and Laux are pairwise commuting self-adjoint operators. Since |Lres| ≤ Laux, we
get ∥∥∥∥M[θ] + ρ

L0,θ − z
P1

∥∥∥∥ ≤ sup
m< 7

8
ρ,

e′∈spec(Lp)\{e},
|�|≤m/ sin(δ′)

m + ρ

|e′ + � cos(δ′)− Re(z)|

≤ sup
e′∈spec(Lp)\{e}

15
8
ρ

|e′ − e| − |e− Re(z)| − 7
8
ρ cot(δ′)

≤
15
8
ρ

dLp − 4ρ− 7
8
ρ cot δ′

≤ 15

4dLp

ρ,

where we used that ρ cot(δ′) � dLp and ρ sufficiently small such that dLp − 4ρ −
7
8
ρ cot(δ′) >

dLp

2
. The second norm in (3.16) is treated similarly,∥∥∥∥M[θ] + ρ

L0,θ − z
P2

∥∥∥∥ ≤ sup
m≥ 7

8
ρ

m + ρ

|m− Im(z)| = sup
m≥ 7

8
ρ

[
1 +

ρ + Im(z)

m− Im(z)

]

≤ 1 +
ρ + sin(δ′)

2
ρ

7
8
ρ− sin(δ′)

2
ρ
≤ 5.
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Altogether, we get ∥∥∥∥M[θ] + ρ

L0,θ − z
Ξe,ρ

∥∥∥∥ ≤ 6. (3.17)

Further, we estimate∥∥∥(M[θ] + ρ)−1/2I
(s)
θ (M[θ] + ρ)−1/2

∥∥∥ ≤ C√
ρ sin(δ′)

,

for a positive constant C < ∞, where we made use of the relative bounds on the
perturbation I

(s)
θ provided in Lemma A.5. Finally, we have∥∥∥∥gΞe,ρ(M[θ] + ρ)−1/2I

(s)
θ (M[θ] + ρ)−1/2Ξe,ρ

M[θ] + ρ

L0,θ − z

∥∥∥∥ ≤ 7C
g√

ρ sin(δ′)
≤ 1

2
(3.18)

for g2 � ρ sin(δ′) which ensures the norm convergence of the Neumann series (3.15).

Thus,
(
K

(s)
θ − z

)
Ξe,ρ

is invertible with

∥∥∥∥P e,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

P e,ρ

∥∥∥∥ ≤ 12

ρ
.

We can conclude with the help of Lemma A.5 that Ξe,ρI
(s)
θ Ξe,ρ, Ξe,ρI

(s)
θ Ξe,ρ and

Ξe,ρI
(s)
θ Ξe,ρ all extend to bounded operators on ran(Ξe,ρ). Therefore, the operators

K
(s)
θ − z and L0,θ − z build a Ξe,ρ-Feshbach pair in the sense of Appendix E, and in

particular the operator (3.14) is well defined as an element of B(ran(Ξe,ρ)). Theo-

rem E.1 then provides a spectral link between K
(s)
θ and its image under the Feshbach

map FΞe,ρ .

Proposition 3.6 (Isospectral Link) The operator FΞe,ρ(K
(s)
θ −z, L0,θ−z) has the

same spectral properties as the original operator K
(s)
θ in the sense that

z ∈ spec
(
K

(s)
θ

)
∩ Se (3.19)

⇐⇒ 0 ∈ spec
(
FΞe,ρ

(
K

(s)
θ − z, L0,θ − z

))
and z ∈ Se.

Proposition 3.6 suggests to study the spectrum of the operator (3.14). The re-
maining part of this chapter is devoted to this task. A main result is the following
proposition.
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Proposition 3.7 Let z ∈ Se and s ∈ �ε0. For θ = (iδ′, iτ ′) as chosen in (3.1) and

g2 � ρ sin(δ′) � dLp, the operator FΞe,ρ(K
(s)
θ − z, L0,θ − z) defined in (3.14) is of

the form

FΞe,ρ(K
(s)
θ − z, L0,θ − z) (3.20)

= Pe,ρ

[
L0,θ − z + g2Λ(s)

e ⊗ χ2
ρ(M[θ])

]
Pe,ρ + g2O

(
g−1ρν+1/2 + gρ−1/2 + ρν

)
,

where the level shift operator Λ
(s)
e ∈ B(ran(P[Lp=e])) is given by

Λ(s)
e := − lim

ε↘0
P[Lp=e]

∫
Υ

dy
[
G(y)− G ′(s �δβ)(y)

]∗
(3.21)

× (Lp − e + u + iε)−1
[
G(y)− G ′(s �δβ)(y)

]
P[Lp=e]

and the remainder term g2O
(
g−1ρν+1/2 + gρ−1/2 + ρν

)
= O

(
g2+ε̃
)

is estimated uni-
formly in z ∈ Se and uniformly in the inverse temperatures. Hereby, the number
ν ≥ 1 is the exponent of the infrared regularization of the glued coupling function G
introduced in (1.92), Hypothesis VII-1.12.

Proof. We first observe that due to Lemma A.5

g
∥∥∥Ξe,ρI

(s)
θ Ξe,ρ

∥∥∥ ≤ g
∥∥∥Pe,ρI

(s)
θ Pe,ρ

∥∥∥ = O
(
gρν+1/2

)
the operator (3.14) can be written as

FΞe,ρ(K
(s)
θ − z, L0,θ − z)

= Pe,ρ

[
L0,θ − z − g2Ξe,ρI

(s)
θ Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρI
(s)
θ Ξe,ρ

]
Pe,ρ

+g2O
(
g−1ρν+1/2

)
. (3.22)

Hence, it remains to consider the resolvent term in (3.22). The term is – up to small
errors – the level shift operator. The remaining part of the proof is tackled step by
step by elaborating the following Lemmata 3.8 – 3.14.

In order to estimate the resolvent in (3.22) we introduce some notation,[
Vθ

]
c
:= a∗

gl (Gθ) ,
[
Vθ

]
a

= agl (Gθ) ,[
W

(s)
θ

]
c
:= a∗

gl

(
G ′(s �δβ),θ

)
,

[
W

(s)
θ

]
a

:= agl

(
G ′(s �δβ),θ

)
,[

I
(s)
θ

]
c
:=
[
Vθ

]
c
−
[
W

(s)
θ

]
c
,

[
I

(s)
θ

]
a

:=
[
Vθ

]
a
−
[
W

(s)
θ

]
a
.

(3.23)

The indices c and a stand for creation and annihilation part, resp.
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Lemma 3.8 On ran(Pe,ρ), we have

Ξe,ρI
(s)
θ Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρI
(s)
θ Ξe,ρ

= Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ +O (ρν) .

Proof. We start the proof observing that

Ξe,ρI
(s)
θ Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρI
(s)
θ Ξe,ρ

−Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ

= Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

+Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

+Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ. (3.24)

We compute representatively for all addends in (3.24),∥∥∥∥Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

∥∥∥∥
=
∥∥∥Ξe,ρ

[
I

(s)
θ

]
a
(M[θ] + ρ)−1/2 (M[θ] + ρ)Ξe,ρ

L0,θ − z

×
∞∑

n=0

{
−gΞe,ρ(M[θ] + ρ)−1/2I

(s)
θ (M[θ] + ρ)−1/2Ξe,ρ

M[θ] + ρ

L0,θ − z

}n

× (M[θ] + ρ)−1/2Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

∥∥∥
≤
∥∥Ξe,ρ(M[θ] + ρ)1/2

∥∥∥∥∥(M[θ] + ρ)−1/2
[
I

(s)
θ

]
a
(M[θ] + ρ)−1/2

∥∥∥∥∥∥∥∥(M[θ] + ρ)Ξe,ρ

L0,θ − z

∥∥∥∥∥
×

∞∑
n=0

∥∥∥∥gΞe,ρ(M[θ] + ρ)−1/2I
(s)
θ (M[θ] + ρ)−1/2Ξe,ρ

M[θ] + ρ

L0,θ − z

∥∥∥∥n

×
∥∥(M[θ] + ρ)−1/2Ξe,ρ

∥∥∥∥∥[I(s)
θ

]
a
Ξe,ρ

∥∥∥
= O (ρν) ,

where the estimates (3.17), (3.18), (A.14) and (A.16) enter in the last line.

In the next step we replace the perturbed by the unperturbed resolvent.
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Lemma 3.9 We have

Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ

= Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ +O

(
gρ−1/2

)
.

Proof. We compute the difference∥∥∥Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ

−Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ

∥∥∥
= g

∥∥∥∥Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
K

(s)
θ − z

)−1

Ξe,ρ

Ξe,ρI
(s)
θ Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ

∥∥∥∥
≤ g

∥∥Ξe,ρ(M[θ] + ρ)1/2
∥∥∥∥∥(M[θ] + ρ)−1/2

[
I

(s)
θ

]
a
(M[θ] + ρ)−1/2

∥∥∥∥∥∥∥∥(M[θ] + ρ)Ξe,ρ

L0,θ − z

∥∥∥∥∥
×

∞∑
n=0

∥∥∥∥gΞe,ρ(M[θ] + ρ)−1/2I
(s)
θ (M[θ] + ρ)−1/2Ξe,ρ

M[θ] + ρ

L0,θ − z

∥∥∥∥n

×
∥∥∥Ξe,ρ(M[θ] + ρ)−1/2I

(s)
θ (M[θ] + ρ)−1/2

∥∥∥∥∥∥∥∥(M[θ] + ρ)Ξ
2

e,ρ

L0,θ − z

∥∥∥∥∥
×
∥∥∥(M[θ] + ρ)−1/2

[
I

(s)
θ

]
c
(M[θ] + ρ)−1/2

∥∥∥∥∥(M[θ] + ρ)1/2Ξe,ρ

∥∥
= O

(
gρ−1/2

)
.

Next, we show that the leading contributions to the level shift operator are the
level shift operators for the single reservoirs and that reservoir correlations can be
neglected.

Lemma 3.10 We have

Ξe,ρ

[
I

(s)
θ

]
a
Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρ

[
I

(s)
θ

]
c
Ξe,ρ

= Ξe,ρ

R∑
r=1

agl,r

(
F

(s)

θ
( · , · , r)

)
Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρa

∗
gl,r

(
F

(s)
θ ( · , · , r)

)
Ξe,ρ

+O (ρν) ,

where a∗
gl,r(u, Σ) := a∗

gl(u, Σ, r) and agl,r(u, Σ) := agl(u, Σ, r) are the creation and

annihilation operators for the rth reservoir.
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Proof. For j, k ∈ {1, . . . , R}, j �= k, we will show that

Rj,k := Ξe,ρagl,j

(
F

(s)

θ
( · , · , j)

)
Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρa

∗
gl,k

(
F

(s)
θ ( · , · , k)

)
Ξe,ρ

= O (ρν) .

To this end we introduce the projections

P (�)
ρ := P[

M
(�)
[θ]

≤ρ
], � = j, k,

only acting on the �th reservoir, where

M
(�)
[θ] = dΓgl((u, Σ, r) �→ δr,�mθ(u))

is the part of M[θ] which acts on the variables of the �th reservoir. As a consequence,
we get

[P (j)
ρ , a∗

gl,k(F )] = 0 for j �= k.

Note that
Ξe,ρ = Ξe,ρP

(k)
ρ = P (j)

ρ Ξe,ρ

and therefore

Rj,k = Ξe,ρagl,j

(
F

(s)

θ
( · , · , j)

)
P (j)

ρ Ξe,ρ

×
(
L0,θP e,ρ − z

)−1
Ξe,ρP

(k)
ρ a∗

gl,k

(
F

(s)
θ ( · , · , k)

)
Ξe,ρ.

Taking the norm gives

‖Rj,k‖ ≤
∥∥∥Ξe,ρagl,j

(
1[mθ≤ρ]F

(s)

θ
( · , · , j)

)
(M[θ] + ρ)−1/2

∥∥∥∥∥∥∥∥(M[θ] + ρ)Ξ
2

e,ρ

L0,θP e,ρ − z

∥∥∥∥∥
×
∥∥∥(M[θ] + ρ)−1/2a∗

gl,k

(
1[mθ≤ρ]F

(s)
θ ( · , · , k)

)
Ξe,ρ

∥∥∥
= O (ρν) ,

where we used (3.17), Lemma A.4, (A.11), and arguments elaborated in the proof
of Lemma A.5 to see that∥∥∥Ξe,ρagl,j

(
1[mθ≤ρ]F

(s)

θ
( · , · , j)

)
(M[θ] + ρ)−1/2

∥∥∥
≤ 1

sin(δ′)

⎡⎢⎣ ∫
mθ(u)≤ρ

du

∫
S2

dΣ

∥∥∥F (s)

θ
(u, Σ, j)

∥∥∥2

|jθ(u)|

⎤⎥⎦
1/2

≤ C

sin(δ′)

⎡⎢⎣ ∫
mθ(u)≤ρ

du|jθ(u)|2ν−1

⎤⎥⎦
1/2

= O (ρν) ,
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for a constant C.

The next lemma allows us to integrate out the photon variables.

Lemma 3.11 We have

Ξe,ρ

R∑
r=1

agl,r

(
F

(s)

θ
( · , · , r)

)
Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρa

∗
gl,r

(
F

(s)
θ ( · , · , r)

)
Ξe,ρ

= Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (L0,θ + jθ(u)− z)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ +O

(
ρ1+2ν

)

where

Ξe,ρ(u) := Xe,ρ

(
M[θ] + mθ(u)

)
= χρ

(
|Lp − e|+ M[θ] + mθ(u)

)
. (3.25)

Proof. We are going to apply the pull through formula (1.67). Pulling creation
and annihilation operators through the cutoff operator Ξe,ρ gives rise to the operators
of the type (3.25) and

Ξe,ρ(u, u′) := Xe,ρ

(
M[θ] + mθ(u) + mθ(u

′)
)
.

With this notation at hand we can compute

Ξe,ρ

R∑
r=1

agl,r

(
F

(s)

θ
( · , · , r)

)
Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρa

∗
gl,r

(
F

(s)
θ ( · , · , r)

)
Ξe,ρ

= Ξe,ρ

∫
Υ

dy

∫
Υ

dy′ δr,r′F
(s)

θ
(y)∗ ⊗ agl(y)

× Ξe,ρ

(
L0,θP e,ρ − z

)−1
Ξe,ρF

(s)
θ (y′)⊗ a∗

gl(y
′)Ξe,ρ

= Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (L0,θ + jθ(u)− z)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ

+Ξe,ρ

∫
Υ

dy

∫
Υ

dy′ δr,r′F
(s)

θ
(y)∗ ⊗ a∗

gl(y
′)Ξe,ρ(u, u′)

× (L0,θ + jθ(u) + jθ(u
′)− z)

−1
Ξe,ρ(u, u′)F

(s)
θ (y′)⊗ agl(y)Ξe,ρ.
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To estimate the second term we choose vectors ϕ, ψ of norm ‖ϕ‖ = ‖ψ‖ = 1 and
compute in a similar way to the proofs of the Lemmata A.4 and A.5,∣∣∣∣∣
〈

ϕ

∣∣∣∣∣Ξe,ρ

∫
Υ

dy

∫
Υ

dy′ δr,r′F
(s)

θ
(y)∗ ⊗ a∗

gl(y
′)Ξe,ρ(u, u′) (L0,θ + jθ(u) + jθ(u

′)− z)
−1

×Ξe,ρ(u, u′)F
(s)
θ (y′)⊗ agl(y)Ξe,ρ ψ

〉∣∣∣∣∣
≤
[∫

Υ

dy 1[mθ(u)≤ρ]

∥∥∥F (s)

θ
(y)∗
∥∥∥2

|jθ(u)|

∫
Υ

dy′ 1[mθ(u′)≤ρ]

∥∥∥F (s)
θ (y′)

∥∥∥2

|jθ(u′)|

× δr,r′

∥∥∥Ξe,ρ(u, u′) (L0,θ + jθ(u) + jθ(u
′)− z)

−1
Ξe,ρ(u, u′)

∥∥∥2
]1/2

×

⎡⎣∫
Υ

dy |jθ(u)| ‖agl(y)Ξe,ρϕ‖2
⎤⎦1/2 ⎡⎣∫

Υ

dy |jθ(u)| ‖agl(y)Ξe,ρψ‖2
⎤⎦1/2

≤ sup
mθ(u),mθ(u′)≤ρ

∥∥∥Ξ2

e,ρ (L0,θ + jθ(u) + jθ(u
′)− z)

−1
∥∥∥

×

⎡⎢⎣∫
Υ

dy 1[mθ(u)≤ρ]

∥∥∥F (s)

θ
(y)∗
∥∥∥2

|jθ(u)|

⎤⎥⎦
1/2 ⎡⎢⎣∫

Υ

dy′ 1[mθ(u′)≤ρ]

∥∥∥F (s)
θ (y′)

∥∥∥2

|jθ(u′)|

⎤⎥⎦
1/2

× 1

sin2(δ′)

∥∥M[θ]Ξe,ρϕ
∥∥∥∥M[θ]Ξe,ρψ

∥∥
= O

(
ρ1+2ν

)
,

where we made use of the functional calculus to obtain

sup
mθ(u),mθ(u′)≤ρ

∥∥∥Ξ2

e,ρ (L0,θ + jθ(u) + jθ(u
′)− z)

−1
∥∥∥

≤ sup
mθ(u),mθ(u′)≤ρ

∥∥∥(L0,θ + jθ(u) + jθ(u
′)− z)

−1
P e,ρ

∥∥∥
≤ sup

mθ(u),mθ(u′)≤ρ

∥∥∥(Lp + cos(δ′)[Lres + u + u′]− Re(z))
−1

P[Lp �=e] ⊗ P[M[θ]≤ 7
8
ρ]

∥∥∥
+ sup

mθ(u),mθ(u′)≤ρ

∥∥∥(M[θ] + mθ(u) + mθ(u
′)− Im(z)

)−1
P[M[θ]≥ 7

8
ρ]

∥∥∥
≤ 1

dLp − (3 cot(δ′) + 4) ρ
+

8

(7− 4 sin(δ′))ρ
= O

(
ρ−1
)
.
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The next task is to replace z by e (recall that |z − e| ≤ 4ρ) and L0,θ by Lp.

Lemma 3.12 We have

Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (L0,θ + jθ(u)− z)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ (3.26)

= Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (Lp + jθ(u)− e)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ +O

(
ρ + ρ2ν

)
.

Proof. We compute the resulting difference term,

Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (L0,θ + jθ(u)− z)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ

−Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (Lp + jθ(u)− e)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ

= −Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (L0,θ + jθ(u)− z)−1

×
[
cos(δ′)Lres + iM[θ] + e− z

]
(Lp + jθ(u)− e)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ

= −Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗P[M[θ]≤ρ]P e,ρ(u)Ξe,ρ(u) (L0,θ + jθ(u)− z)−1

×
[
cos(δ′)Lres + iM[θ] + e− z

]
(Lp + jθ(u)− e)−1

× Ξe,ρ(u)P e,ρ(u)P[M[θ]≤ρ]F
(s)
θ (y)Ξe,ρ, (3.27)

where P e,ρ(u) is the orthogonal projection on ran(Ξe,ρ(u)) given by

P e,ρ(u) := P[Lp �=e] ⊗ �F(L2[Υ]) + P[Lp=e] ⊗ P[M[θ]+mθ(u)≥ 7
8
ρ].

Introducing two further projections,

P1 := P[Lp �=e] ⊗ P[M[θ]≤ρ],

P2(u) := P[Lp=e] ⊗ P[ 7
8
ρ−mθ(u)≤M[θ]≤ρ],

we can decompose

P e,ρ(u)P[M[θ]≤ρ] = P1 + P2(u).
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Thus, we compute the integrand in (3.27) on the range of the projections P1 and
P2(u). First, we consider∥∥P1 (L0,θ + jθ(u)− z)−1 [cos(δ′)Lres + iM[θ] + e− z

]
(Lp + jθ(u)− e)−1 P1

∥∥
≤ sup

e′∈spec(Lp)\{e},
0≤m≤ρ,

|�|≤m/ sin(δ′)

|e− z|+ cos(δ′)|�|+ m

|e′ + cos(δ′)� + im + jθ(u)− z||e′ + jθ(u)− e|

≤ 6ρ

sin(δ′)
sup

e′∈spec(Lp)\{e},
0≤m≤ρ,

|�|≤m/ sin(δ′)

1

|e′ + cos(δ′)� + im + jθ(u)− z||e′ + jθ(u)− e| .

To estimate the remaining fraction we distinguish two cases. Assume that |u| ≤ dLp

2

which implies that

|e′ − z + cos(δ′)� + im + jθ(u)| ≥ |e′ − e + cos(δ′)� + cos(δ′)u + Re(e− z)|
≥ |e′ − e| − cos(δ′)(|�|+ |u|)− |e− z|

≥ dLp

2
+O (ρ)

for � being of order ρ, and

|e′ − e + jθ(u)| ≥ |e′ − e + cos(δ′)u| ≥ dLp

2
.

The complementary case, |u| > dLp

2
, yields

|e′ − z + cos(δ′)� + im + jθ(u)| ≥ |m + mθ(u)− Im(z)|
≥ sin(δ′)|u| − |m| − |e− z|

≥ sin(δ′)

2
dLp +O (ρ)

and

|e′ − e + jθ(u)| ≥ |mθ(u)| ≥ sin(δ′)

2
dLp .

Either case suggests that

sup
u∈�

∥∥P1 (L0,θ + jθ(u)− z)−1 [cos(δ′)Lres + iM[θ] + e− z
]
(Lp + jθ(u)− e)−1 P1

∥∥
= O (ρ) .

We go over to compute∥∥P2(u) (L0,θ + jθ(u)− z)−1 [cos(δ′)Lres + iM[θ] + e− z
]
(Lp + jθ(u)− e)−1 P2(u)

∥∥
≤ 6ρ

sin(δ′)

∥∥∥∥∥ P2(u)

jθ(u)
(
cos(δ′)Lres + iM[θ] + jθ(u) + e− z

)∥∥∥∥∥
≤ 6ρ

sin(δ′)
sup

7
8
ρ−mθ(u)≤m≤ρ,

|�|≤ρ/ sin(δ′)

1

|jθ(u)| |cos(δ′)� + im + jθ(u) + e− z| .
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Again, we consider two cases to estimate the fraction. First, we choose u ∈ � such
that |jθ(u)| > 12

sin(δ′)ρ. This allows us to find an upper bound for

1

|jθ(u)| |cos(δ′)� + im + jθ(u) + e− z| ≤
1

|jθ(u)|
(
|jθ(u)| − 6

sin(δ′)ρ
) ≤ 2

|jθ(u)|2 .

Let now |jθ(u)| ≤ 12
sin(δ′)ρ which implies that the integration parameter is restricted

to

|u| ≤ |Re(jθ(u))|
cos(δ′)

≤ |jθ(u)|
cos(δ′)

≤ 12

cos(δ′) sin(δ′)
ρ

and further holds

1

|jθ(u)| |cos(δ′)� + im + jθ(u) + e− z| ≤
1

|jθ(u)||m + mθ(u)− Im(z)|

≤ 1

|jθ(u)|
(

7
8
ρ− sin(δ′)

2
ρ
) ≤ 8

3ρ|jθ(u)| ,

since m + mθ(u) ≥ 7
8
ρ and Im(z) ≤ sin(δ′)

2
ρ.

Applying all this knowledge to (3.27), we end up with

‖(3.27)‖ ≤ C ′

sin(δ′)

[
ρ

∫
Υ

dy
∥∥∥F (s)

θ
(y)∗
∥∥∥∥∥∥F (s)

θ (y)
∥∥∥

+ ρ

∫
Υ

dy 1[|jθ(u)|> 12
sin(δ′)ρ

]
∥∥∥F (s)

θ
(y)∗
∥∥∥∥∥∥F (s)

θ (y)
∥∥∥

|jθ(u)|2

+

∫
Υ

dy 1[|jθ(u)|≤ 12
sin(δ′)ρ

]
∥∥∥F (s)

θ
(y)∗
∥∥∥∥∥∥F (s)

θ (y)
∥∥∥

|jθ(u)|

]
= O

(
ρ + ρ2ν

)
.

Now, we remove the cutoff operators Ξe,ρ(u) from (3.26)

Lemma 3.13 We have

Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (Lp + jθ(u)− e)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ (3.28)

= Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗ (Lp + jθ(u)− e)−1 F

(s)
θ (y)Ξe,ρ +O

(
ρ2ν
)
.
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Proof. We show that the contribution of �−Ξ
2

e,ρ(u) = Ξ2
e,ρ(u) to (3.28) is small,

where we define

Ξe,ρ(u) := P[Lp=e] ⊗ χρ

(
M[θ] + mθ(u)

)
.

Computing the differences, we obtain∥∥∥Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξe,ρ(u) (Lp + jθ(u)− e)−1 Ξe,ρ(u)F

(s)
θ (y)Ξe,ρ

−Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗ (Lp + jθ(u)− e)−1 F

(s)
θ (y)Ξe,ρ

∥∥∥
=

∥∥∥∥∥∥Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗Ξ2

e,ρ(u) (Lp + jθ(u)− e)−1 F
(s)
θ (y)Ξe,ρ

∥∥∥∥∥∥
=

∥∥∥∥∥∥Ξe,ρ

∫
Υ

dy
F

(s)

θ
(y)∗Ξ2

e,ρ(u)F
(s)
θ (y)

jθ(u)
Ξe,ρ

∥∥∥∥∥∥
≤
∫
Υ

dy 1[mθ(u)≤ρ]

∥∥∥F (s)

θ
(y)∗
∥∥∥∥∥∥F (s)

θ (y)
∥∥∥

|jθ(u)| = O
(
ρ2ν
)
.

As a last task, we remove the spectral parameters θ = (iδ′, iτ ′). Moreover we will
show that

Lemma 3.14 The r.h.s. of (3.28) up to the error terms is independent of θ and
can be represented as

Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗ (Lp + jθ(u)− e)−1 F

(s)
θ (y)Ξe,ρ (3.29)

= lim
ε↘0

Ξe,ρ

∫
Υ

dy F (s)(y)∗ (Lp + u− e + iε)−1 F (s)(y)Ξe,ρ.

Proof. First, note that

(Lp + jθ(u)− e)−1 = lim
ε↘0

(Lp + jθ(u)− e + iε)−1

in norm topology since Im(jθ(u)) > 0 for our choice of θ = (δ, τ) with Im(δ), Im(τ) >
0. For ε > 0, we have analyticity of θ �→ (Lp + jθ(u)− e + iε)−1 in δ and τ separately
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on the domain 0 < Im(δ) < π
4

and Im(τ) > 0, because of

∂δ (Lp + jθ(u)− e + iε)−1 = − eδ sgn(u)|u|
(Lp + jθ(u)− e + iε)2

and
∂τ (Lp + jθ(u)− e + iε)−1 = − (Lp + jθ(u)− e + iε)−2 ,

using that ∥∥(Lp + jθ(u)− e + iε)−2
∥∥ ≤ ε−2,

uniformly in θ. Further, we stress that θ = (δ, τ) �→ (Lp + jθ(u)− e + iε)−1 is
continuous as Im(δ), Im(τ) ↘ 0. By dominated convergence theorem we have ana-
lyticity of

θ = (δ, τ) �→ Ξe,ρ

∫
Υ

dy F
(s)

θ
(y)∗ (Lp + jθ(u)− e + iε)−1 F

(s)
θ (y)Ξe,ρ (3.30)

for 0 < Im(δ) < π
4
, 0 < Im(τ) < 2πβ−1

max, and continuity for Im(δ), Im(τ) ↘ 0. Let

now θ̃ = (δ̃, τ̃) ∈ �2. Substituting the integration variables,

jθ̃(u) = eδ̃u + τ̃ �→ u , u ≥ 0,

jθ̃(u) = e−δ̃u + τ̃ �→ u , u < 0,

we see easily that (3.30) is invariant under a translation θ �→ θ + θ̃ for θ̃ ∈ �2.
Because of analyticity the function (3.30) is independent of θ = (δ, τ) as long as
0 < Im(δ) < π

4
and 0 < Im(τ) < 2πβ−1

max. Continuity finally yields that

Ξe,ρ

∫
Υ

dyF
(s)

θ
(y)∗ (Lp + jθ(u)− e + iε)−1 F

(s)
θ (y)Ξe,ρ

= Ξe,ρ

∫
Υ

dyF (s)(y)∗ (Lp + u− e + iε)−1 F (s)(y)Ξe,ρ.

The assertion follows since, for θ = (iδ′, iτ ′) with π
8

< δ′ < π
4

and 0 < τ ′ <
2πβ−1

max, the limit procedure ε ↘ 0 and the integration commute by the dominated
convergence theorem,

lim
ε↘0

Ξe,ρ

∫
Υ

dyF
(s)

θ
(y)∗ (Lp + jθ(u)− e + iε)−1 F

(s)
θ (y)Ξe,ρ

= Ξe,ρ

∫
Υ

dyF
(s)

θ
(y)∗ (Lp + jθ(u)− e)−1 F

(s)
θ (y)Ξe,ρ.
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3.3.2 The Level Shift Operator

After having extracted the leading orders of the Feshbach operator FΞe,ρ(K
(s)
θ −

z, L0,θ− z) in Proposition 3.7, it becomes necessary to study the level shift operator

Λ
(s)
e defined in (3.21) in order to understand the spectrum of FΞe,ρ(K

(s)
θ −z, L0,θ−z).

The aim of this subsection is to understand the level shift operator Λ
(s)
e of the

R-reservoir system as the sum of contributions from each reservoir. Moreover, it is
the goal of the subsequent consideration to study the qualitative deviation of the
level shift operator from the equal temperature case �δβ = (βp − β, 0, . . . , 0).

Let us introduce the notation

Λ(s)
e,r := − lim

ε↘0

∫
�×S2

d(u, Σ) P[Lp=e]

[
G(u, Σ, r)− G ′(s �δβ)(u, Σ, r)

]∗
(3.31)

× (Lp − e + u + iε)−1
[
G(u, Σ, r)− G ′(s �δβ)(u, Σ, r)

]
P[Lp=e]

for the level shift operator of the rth reservoir such that

Λ(s)
e =

R∑
r=1

Λ(s)
e,r.

Having the notation

A(b) := eibHp ⊗ �Hp = πp

(
eibHp

)
,

A′(b) := �Hp ⊗ eibHp = π′
p

(
e−ibHp

)
at hand we can rewrite (3.31) as

Λ(s)
e,r (3.32)

= − lim
ε↘0

∫
�×S2

d(u, Σ) P[Lp=e]

[
G(y)∗ − e−isδβruA′(−sδβp)G ′(y)∗A′(sδβp)

]
×(Lp − e + u + iε)−1

[
G(y)− eisδβruA′(−sδβp)G ′(y)A′(sδβp)

]
P[Lp=e],

for y = (u, Σ, r). The level shift operator Λ
(s)
e,r of a single reservoir emerges from the

single reservoir equilibrium situation δβr = δβp = 0 via conjugation, as the following
lemma states.

Lemma 3.15 On the range of P[Lp=e], the level shift operator Λ
(s)
e,r corresponding to

the rth reservoir can be expressed as

Λ(s)
e,r = A(s(βr − βp))Λ

(0)
e,rA(−s(βr − βp)),
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where

Λ(0)
e,r = − lim

ε↘0

∫
�×S2

d(u, Σ) P[Lp=e] [G(y)− G ′(y)]
∗

× (Lp − e + u + iε)−1 [G(y)− G ′(y)] P[Lp=e].

Proof. Let ε > 0 and set Rε ≡ Rε(u, Σ) := (Lp + u− e + iε)−1. Also, we
abbreviate P[e] := P[Lp=e]. We take into account that

[A(b),G ′(y)] = 0 = [A′(b),G(y)] (3.33)

for all b ∈ � and further
A(b)A′(−b) = eibLp , (3.34)

which implies that
P[e]A(b) = eibeP[e]A

′(b). (3.35)

We are going to use the above relations to expand the product representation (3.32)

of Λ
(s)
e,r into four addends,

(GG) := P[e]G(y)∗RεG(y)P[e] = P[e]G(y)∗A′(b)RεA
′(−b)G(y)P[e]

= P[e]A(b)G(y)∗RεG(y)A(−b)P[e]

for any b ∈ �,

(G ′G ′) := P[e]e
−isδβruA′(−sδβp)G ′(y)∗A′(sδβp)

×Rεe
isδβruA′(−sδβp)G ′(y)A′(sδβp)P[e]

= P[e]A
′(−sδβp)G ′(y)∗RεG ′(y)A′(sδβp)P[e]

= P[e]A(b)G ′(y)∗RεG ′(y)A(−b)P[e]

for any b ∈ �,

(GG ′) := P[e]G(y)∗Rεe
isδβruA′(−sδβp)G ′(y)A′(sδβp)P[e]

= P[e]A(−sδβp)G(y)∗Rεe
isδβruG ′(y)A(sδβp)P[e],

(G ′G) := P[e]e
−isδβruA′(−sδβp)G ′(y)∗A′(sδβp)RεG(y)P[e]

= P[e]A(−sδβp)G ′(y)∗Rεe
−isδβruG(y)A(sδβp)P[e],

where we made use of (3.33, 3.34, 3.35) at several points. Choosing b = s(βr − βp),
the terms (GG) and (G ′G ′) have already the required structure. Therefore, we focus
on (GG ′) and (G ′G). Applying (3.34, 3.35) again, we can transform

(GG ′) = P[e]A(−sδβp)A
′(sδβr)G(y)∗Rεe

isδβr(Lp+u)G ′(y)A(−s(δβr − δβp))P[e]

= P[e]A(s(δβr − δβp))G(y)∗Rεe
isδβr(Lp+u−e)G ′(y)A(−s(δβr − δβp))P[e]

and, equivalently,

(G ′G) = P[e]A(s(δβr − δβp))G ′(y)∗Rεe
−isδβr(Lp+u−e)G(y)A(−s(δβr − δβp))P[e].
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This allows us to write

Λ(s)
e,r = P[e]A(s(βr − βp))

⎡⎣Λ(0)
e,r + lim

ε↘0

∫
�×S2

d(u, Σ) Rε(u, Σ)

⎤⎦A(−s(βr − βp))P[e],

where

Rε ≡ Rε(u, Σ) := G(y)∗Rε

[
eisδβr(Lp+u−e) − �H2

p

]
G ′(y)

+G ′(y)∗Rε

[
e−isδβr(Lp+u−e) − �H2

p

]
G(y).

Thus, the assertion is proved by showing that

lim
ε↘0

∫
�×S2

d(u, Σ) P[e]Rε(u, Σ)P[e] = 0.

We are approaching this task by noting that

Rε = −i

∞∫
0

dt ei(Lp+u−e+iε)t.

Therefore,

P[e]G ′(y)∗Rε

[
e−isδβr(Lp+u−e) − �H2

p

]
G(y)P[e]

= −i

∞∫
0

dt P[e]G ′(y)∗ei(u+iε)t
[
e−isδβrueiLp(t−sδβr)G(y)e−iLp(t−sδβr)

− eiLptG(y)e−iLpt
]
P[e]

= −i

∞∫
0

dt P[e]e
i(u+iε)t

[
e−isδβrueiLp(t−sδβr)G(y)e−iLp(t−sδβr)

− eiLptG(y)e−iLpt
]
G ′(y)∗P[e]

= −i

∞∫
0

dt P[e]G(y)ei(−Lp+u+e+iε)t
[
e−isδβr(−Lp+u+e) − �H2

p

]
G ′(y)∗P[e]

= P[e]G(y) (−Lp + u + e + iε)−1
[
e−isδβr(−Lp+u+e) − �H2

p

]
G ′(y)∗P[e],

where we used in the second and third line that the expression in parenthesis acts
trivially on the right factor of the tensor product space H2

p = Hp⊗Hp and therefore
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G ′(y)∗ commutes through the integral. So far, we have

P[e]Rε(u, Σ)P[e] = P[e]

{
G(y)∗ (Lp + u− e + iε)−1

[
eisδβr(Lp+u−e) − �H2

p

]
G ′(y)

−G(y) (Lp − u− e− iε)−1
[
eisδβr(Lp−u−e) − �H2

p

]
G ′(y)∗

}
P[e].

Note, that

G(−u, Σ, r) = −e−βru/2G(u, Σ, r)∗ and

G ′(−u, Σ, r) = −eβru/2G ′(u, Σ, r)∗.

Integrating over � × S2 � (u, Σ) and performing a transformation of variables,
u �→ −u, for the second addend, we get∫
�×S2

d(u, Σ) P[e]Rε(u, Σ)P[e]

=

∫
�×S2

d(u, Σ) P[e]G(y)∗
[
(Lp + u− e + iε)−1 − (Lp + u− e− iε)−1]

×
[
eisδβr(Lp+u−e) − �H2

p

]
G ′(y)P[e]

=

∫
�×S2

d(u, Σ) P[e]G(y)∗
−2iε

(Lp + u− e)2 + ε2

[
eisδβr(Lp+u−e) − �H2

p

]
G ′(y)P[e]

ε→0−−→ 2π
N∑

j,k=1

∫
�×S2

d(u, Σ) P[e]G(y)∗ |ϕj,k〉 〈ϕj,k| δ (Ej,k + u− e)

×
[
1− eisδβr(Ej,k+u−e)

]
G ′(y)P[e]

= 0,

where δ( · ) denotes the delta distribution.

Lemma 3.15 allows us to derive properties of the level shift operator Λ
(s)
e,r from the

case s = 0.

3.4 Spectrum in the Neighborhood of Non-Zero
Eigenvalues

In this section we study the level shift operator Λ
(s)
e associated with non-zero particle

eigenvalues e �= 0. The localization of the spectrum of Λ
(s)
e in the upper half plane

allows the conclusion about the absence of eigenvalues of K
(s)
θ on the real axis in Se.
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We launch this section by considering the space P[Lp=e]H2
p. For a fixed e ∈

spec(Lp) we introduce the sets

Ie :=
{
(j, k) ∈ {0, 1, . . . , N − 1}2

∣∣Ej,k = e
}

,

I(1)
e := {j ∈ {0, 1, . . . , N − 1} | ∃ k ∈ {0, 1, . . . , N − 1} : Ej,k = e } ,
I(2)

e := {k ∈ {0, 1, . . . , N − 1} | ∃ j ∈ {0, 1, . . . , N − 1} : Ej,k = e } ,

and the corresponding projections

p(1)
e : Ie → I(1)

e , (j, k) �→ j,

p(2)
e : Ie → I(2)

e , (j, k) �→ k.

Apparently, the projections p
(1)
e and p

(2)
e are surjective. The Hypothesis IV-1.9

ensures that the projections are also injective, namely, let (j, k), (m,n) ∈ Ie with

j = p
(1)
e (j, k) = p

(1)
e (m,n) = m. It is Ej − Ek = Ej,k = e = Em,n = Em − En and,

since j = m, we have Ek = En. The non-degeneracy of the particle eigenvalues then
implies that k = n. The same argument shows the injectivity of p

(2)
e . Therefore, we

find a bijection be : I(1)
e → I(2)

e such that

Ie =
{
(j, be(j))

∣∣ j ∈ I(1)
e

}
.

This implies that {
ϕj,be(j)

}
j∈I(1)

e

is an orthonormal basis of the eigenspace P[Lp=e]H2
p of Lp corresponding to the

eigenvalue e. For e ∈ spec(Lp) \ {0}, we derive spectral properties of the level shift

operator Λ
(0)
e,r using the matrix element representation in this basis.

Lemma 3.16 The spectrum of the level shift operator Λ
(0)
e,r for e ∈ spec(Lp) \ {0} is

contained in the upper half plane, it holds

Im
〈
ψ
∣∣Λ(0)

e,rψ
〉
H2

p
≥ γr

e ‖ψ‖
2
H2

p

for all ψ ∈ P[Lp=e]H2
p, where

γr
e :=

1

2

[
N−2

min
m=0

e−βrEN−1,m/2ηr
N−1,m +

N−1

min
m=1

eβrEm,0/2ηr
m,0

]
and

ηr
j,k := ηr

k,j := 2πE2
j,k

√
ρf,r(Ej,k) (1 + ρf,r(Ej,k))

∫
S2

dΣ |Gr(Ej,kΣ)k,j|2 (3.36)

for j > k.
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Proof. The matrix elements of Λ
(0)
e,r in the basis

{
ϕj,be(j)

}
j∈I(1)

e
are given by(

Λ(0)
e,r

)
m,n

:=
〈
ϕm,be(m)

∣∣Λ(0)
e,rϕn,be(n)

〉
H2

p

= − lim
ε↘0

N−1∑
k,�=0

∫
�×S2

d(u, Σ)
〈
ϕm,be(m)

∣∣F (y)∗ϕk,�

〉
H2

p

〈
ϕk,�

∣∣F (y)ϕn,be(n)

〉
H2

p

× (Ek,� − e + u + iε)−1,

where y = (u, Σ, r) ∈ Υ and, recall, F = G − G ′. We abbreviate

G(y)j,k := 〈ϕj,k | G(y)ϕk,k 〉H2
p

and G ′(y)j,k := 〈ϕj,j | G ′(y)ϕj,k 〉H2
p

to write
N−1∑
k,�=0

〈
ϕm,be(m)

∣∣F (y)∗ϕk,�

〉
H2

p

〈
ϕk,�

∣∣F (y)ϕn,be(n)

〉
H2

p
(Ek,� − e + u + iε)−1

=
N−1∑
k,�=0

[
G(y)k,mG(y)k,nδ�,be(m)δ�,be(n) + G ′(y)�,be(m)G ′(y)�,be(n)δk,mδk,n

− G ′(y)�,be(m)G(y)k,nδk,mδ�,be(n) − G(y)k,mG ′(y)�,be(n)δ�,be(m)δk,n

]
× (Ek,� − e + u + iε)−1

= δbe(m),be(n)

N−1∑
k=0

G(y)k,mG(y)k,n(Ek,be(m) − e + u + iε)−1

+δm,n

N−1∑
�=0

G ′(y)�,be(m)G ′(y)�,be(n)(Em,� − e + u + iε)−1

−G ′(y)be(n),be(m)G(y)m,n(Em,be(n) − e + u + iε)−1

−G(y)n,mG ′(y)be(m),be(n)(En,be(m) − e + u + iε)−1

= δm,n

N−1∑
k=0

[
|G(y)k,m|2(Ek,be(m) − e + u + iε)−1

+ |G(−y)k,be(m)|2(Em,k − e + u + iε)−1

]
+G(−y)be(n),be(m)G(y)m,n(Em,be(n) − e + u + iε)−1

+G(y)n,mG(−y)be(m),be(n)(En,be(m) − e + u + iε)−1

using that δbe(m),be(n) = δm,n, due to the bijectivity of be, and that G ′(y) =
−JpG(−y)Jp and therefore

G ′(y)i,j = −G(−y)i,j, (3.37)
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we interpret −y = (−u, Σ, r) for y = (u, Σ, r) ∈ Υ. The integration over (u, Σ) ∈
� × S2 and a transformation of variables u �→ −u in the integration of the second
addend gives(

Λ(0)
e,r

)
m,n

(3.38)

= −δm,n lim
ε↘0

N−1∑
k=0

∫
�×S2

d(u, Σ)

[
|G(y)k,m|2(Ek,be(m) − e + u + iε)−1

− |G(y)k,be(m)|2(Ek,m + e + u− iε)−1

]
− lim

ε↘0

∫
�×S2

d(u, Σ)

[
G(−y)be(n),be(m)G(y)m,n(Em,be(n) − e + u + iε)−1

+ G(y)n,mG(−y)be(m),be(n)(En,be(m) − e + u + iε)−1

]
.

We now compute the matrix elements of Im(Λ
(0)
e,r),

1

2i

[(
Λ(0)

e,r

)
m,n
−
(
Λ

(0)
e,r

)
n,m

]
(3.39)

= δm,n lim
ε↘0

N−1∑
k=0

∫
�×S2

d(u, Σ)

[
|G(y)k,m|2

ε

(Ek,be(m) − e + u)2 + ε2

+ |G(y)k,be(m)|2
ε

(Ek,m + e + u)2 + ε2

]
+ lim

ε↘0

∫
�×S2

d(u, Σ)

[
G(−y)be(n),be(m)G(y)m,n

ε

(Em,be(n) − e + u)2 + ε2

+ G(y)n,mG(−y)be(m),be(n)
ε

(En,be(m) − e + u)2 + ε2

]
= πδm,n

N−1∑
k=0

∫
S2

dΣ

[
|G(Em,k, Σ, r)k,m|2 + |G(Ebe(m),k, Σ, r)k,be(m)|2

]

+π

∫
S2

dΣ

[
G(Ebe(m),be(n), Σ, r)be(n),be(m)G(En,m, Σ, r)m,n

+ G(Em,n, Σ, r)n,mG(Ebe(n),be(m), Σ, r)be(m),be(n)

]
.

where we used the relations

Ek,be(m) − e = Ek,be(m) − Em,be(m) = Ek,m,

Em,be(n) − e = Em,be(n) − Em,be(m) = Ebe(m),be(n)



3.4. Spectrum in the Neighborhood of Non-Zero Eigenvalues 155

for all m,n ∈ I(1)
e and k = 0, 1, . . . , N−1. We use the matrix element representation

to show strict positivity Im(Λ
(0)
e,r). Let ψ ∈ P[Lp=e]H2

p be a unit vector, i.e., there exist

complex numbers κj, j ∈ I(1)
e , such that

∑
j∈I(1)

e
|κj|2 = 1 and ψ =

∑
j∈I(1)

e
κjϕj,be(j).

Using the abbreviation

Br
j,k(Σ) :=

√
π G(Ej,k, Σ, r)k,j

we compute

Im
〈
ψ
∣∣Λ(0)

e,rψ
〉
H2

p

=
1

2i

∑
m,n∈I(1)

e

κmκn

[(
Λ(0)

e,r

)
m,n
−
(
Λ

(0)
e,r

)
n,m

]

=
∑

m∈I(1)
e

|κm|2
N−1∑
k=0

∫
S2

dΣ
[∣∣Br

m,k(Σ)
∣∣2 +
∣∣Br

be(m),k(Σ)
∣∣2]

+
∑

m,n∈I(1)
e

κmκn

∫
S2

dΣ
[
Br

be(m),be(n)(Σ)Br
n,m(Σ) + Br

m,n(Σ)Br
be(n),be(m)(Σ)

]
=

∑
m,n∈I(1)

e

∫
S2

dΣ

[
|κm|2

∣∣Br
m,n(Σ)

∣∣2 + |κm|2
∣∣Br

be(m),be(n)(Σ)
∣∣2

+ κmκnB
r
be(m),be(n)(Σ)Br

n,m(Σ)

+ κnκmBr
m,n(Σ)Br

be(n),be(m)(Σ)

]
+
∑

m∈I(1)
e

|κm|2
∫
S2

dΣ

[ ∑
k �∈I(1)

e

∣∣Br
m,k(Σ)

∣∣2 +
∑

k �∈I(2)
e

∣∣Br
be(m),k(Σ)

∣∣2 ]. (3.40)

We consider the two sums in (3.40) separately. We estimate the first sum,∑
m,n∈I(1)

e

∫
S2

dΣ

[
|κm|2

∣∣Br
m,n(Σ)

∣∣2 + |κm|2
∣∣Br

be(m),be(n)(Σ)
∣∣2

+ κmκnB
r
be(m),be(n)(Σ)Br

n,m(Σ)

+ κnκmBr
m,n(Σ)Br

be(n),be(m)(Σ)

]
=

1

2

∑
m,n∈I(1)

e

∫
S2

dΣ

[ ∣∣κmBr
m,n(Σ)

∣∣2 +
∣∣κmBr

be(m),be(n)(Σ)
∣∣2

+
∣∣κnB

r
n,m(Σ)

∣∣2 +
∣∣κnBr

be(n),be(m)(Σ)
∣∣2

+ 2 Re
(
κmκnB

r
be(m),be(n)(Σ)Br

n,m(Σ)
)
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+ 2 Re
(
κnκmBr

m,n(Σ)Br
be(n),be(m)(Σ)

) ]
=

1

2

∑
m,n∈I(1)

e

∫
S2

dΣ

[ ∣∣∣κmBr
be(m),be(n)(Σ) + κnBr

n,m(Σ)
∣∣∣2

+
∣∣∣κnB

r
be(n),be(m)(Σ) + κmBr

m,n(Σ)
∣∣∣2 ]

≥ 0. (3.41)

To compute the second sum in (3.40) we assume that e < 0, the other case e > 0 is
treated in the same way. Since Em,be(m) = e < 0 it follows that m < be(m) for all

m ∈ I(1)
e . This implies that N − 1 �∈ I(1)

e and that be(m) �= 0 for all m ∈ I(1)
e , i.e.,

0 �∈ I(2)
e . This observation is used to estimate∑

m∈I(1)
e

|κm|2
∫
S2

dΣ

[ ∑
k �∈I(1)

e

∣∣Br
m,k(Σ)

∣∣2 +
∑

k �∈I(2)
e

∣∣Br
be(m),k(Σ)

∣∣2 ]

≥
∑

m∈I(1)
e

|κm|2
∫
S2

dΣ
[∣∣Br

m,N−1(Σ)
∣∣2 +
∣∣Br

be(m),0(Σ)
∣∣2]

≥ min
m∈I(1)

e

∫
S2

dΣ
∣∣Br

m,N−1(Σ)
∣∣2 + min

m∈I(2)
e

∫
S2

dΣ
∣∣Br

m,0(Σ)
∣∣2

≥
N−2

min
m=0

∫
S2

dΣ
∣∣Br

m,N−1(Σ)
∣∣2 +

N−1

min
m=1

∫
S2

dΣ
∣∣Br

m,0(Σ)
∣∣2 . (3.42)

We remark that the same lower bound (3.42) is derived in the case e > 0 such that
all further considerations are done for both cases, e > 0 and e < 0. Since Em,N−1 ≤ 0
and Em,0 ≥ 0 we obtain∫

S2

dΣ
∣∣Br

m,N−1(Σ)
∣∣2

= π

∫
S2

dΣ |G(Em,N−1, Σ, r)N−1,m|2

= π
E2

N−1,m

|1− eβrEN−1,m|

∫
S2

dΣ |Gr(EN−1,mΣ)m,N−1|2

= πE2
N−1,me−βrEN−1,m/2

√
ρf,r(EN−1,m) (1 + ρf,r(EN−1,m))

×
∫
S2

dΣ |Gr(EN−1,mΣ)m,N−1|2

=
1

2
e−βrEN−1,m/2ηr

N−1,m (3.43)
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and ∫
S2

dΣ
∣∣Br

m,0(Σ)
∣∣2 = π

∫
S2

dΣ
∣∣G(E(m,0, Σ, r)0,m

∣∣2
= π

E2
m,0

|1− e−βrEm,0|

∫
S2

dΣ |Gr(Em,0Σ)0,m|2

= πE2
m,0e

βrEm,0/2
√

ρf,r(Em,0) (1 + ρf,r(Em,0))

×
∫
S2

dΣ |Gr(Em,0Σ)0,m|2

=
1

2
eβrEm,0/2ηr

m,0 (3.44)

Plugging (3.41, 3.42, 3.43, 3.44) into (3.40) gives

Im
〈
ψ
∣∣Λ(0)

e,rψ
〉
H2

p
≥ 1

2

[
N−2

min
m=0

e−βrEN−1,m/2ηr
N−1,m +

N−1

min
m=1

eβrEm,0/2ηr
m,0

]
.

We check that the gap γr
e quantifying the spectral shift of Λ

(0)
e,r into the upper half

plane is positive uniformly in the βr.

Lemma 3.17 (i) The gap γr
e for e �= 0 is strictly positive uniformly in βr > 0, it

holds

inf
βr>0

γr
e ≥

N−1

min
n=1

πE2
n,0

∫
S2

dΣ |Gr(En,0Σ)0,n|2 ≥
γFGR

2
> 0

where the Fermi golden rule level shift γFGR was defined in (1.86) and assumed
to be positive.

(ii) The matrix Λ
(0)
e,r is bounded uniformly in βr →∞,

lim sup
βr→∞

∥∥Λ(0)
e,r

∥∥
B(P[Lp=e]H2

p)
<∞,

i.e., it is bounded uniformly for the inverse temperature in the parameter range
as specified in Hypothesis III-1.8. This statement holds at first for e �= 0 and
is proved here under this assumption. In Lemma 3.22(ii) we show that the
estimate also holds in the case e = 0.
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Proof.

(i) For m = 0, . . . , N − 2 and n = 1, . . . , N − 1 we compute

1

2

[
e−βrEN−1,m/2ηr

N−1,m + eβrEm,0/2ηr
m,0

]
= π

[
E2

N−1,mρf,r(EN−1,m)

∫
S2

dΣ |Gr(EN−1,mΣ)m,N−1|2

+ E2
n,0 (1 + ρf,r(En,0))

∫
S2

dΣ |Gr(En,0Σ)0,n|2
]

βr→∞−−−−→ πE2
n,0

∫
S2

dΣ |Gr(En,0Σ)0,n|2 .

Since ρf,r(E) = (eβrE − 1)−1 decreases monotonically in βr for E > 0 we
conclude that

γr
e ≥

N−1

min
n=1

πE2
n,0

∫
S2

dΣ |Gr(En,0Σ)0,n|2 ≥
γFGR

2
,

which is strictly positive by the Fermi golden rule condition, Hypothesis V-1.10.

(ii) We first consider the imaginary part of Λ
(0)
e,r whose matrix elements have been

computed in (3.39). We remark that for any j, k,m, n with j > k holds

|G(Ej,k, Σ, r)m,n| =
Ej,k√

1− e−βrEj,k
|Gr(Ej,kΣ)m,n|

βr→∞−−−−→ Ej,k |Gr(Ej,kΣ)m,n|

and

|G(Ek,j, Σ, r)m,n| =
Ej,k√

eβrEj,k − 1
|Gr(Ej,kΣ)n,m|

βr→∞−−−−→ 0

for a.e. Σ ∈ S2. This implies that every matrix element of Im(Λ
(0)
e,r) is uniformly

bounded for βr →∞ and this implies the uniform bound of

lim sup
βr→∞

∥∥Im(Λ(0)
e,r)
∥∥
B(P[Lp=e]H2

p)
<∞.

We go over to consider the real part. To this end we recall the matrix element
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representation (3.38) of Λ
(0)
e,r to compute

1

2

[(
Λ(0)

e,r

)
m,n

+
(
Λ

(0)
e,r

)
n,m

]
= δm,n lim

ε↘0

N−1∑
k=0

∫
�×S2

d(u, Σ)

[
− |G(y)k,m|2

Ek,m + u

(Ek,m + u)2 + ε2

+ |G(y)k,be(m)|2
Ek,be(m) + u

(Ek,be(m) + u)2 + ε2

]
− lim

ε↘0

∫
�×S2

d(u, Σ)

[
G(−y)be(n),be(m)G(y)m,n

Em,n + u

(Em,n + u)2 + ε2

+ G(y)n,mG(−y)be(m),be(n)
En,m + u

(En,m + u)2 + ε2

]
.

Since for u > 0

|G(u, Σ, r)m,n|
βr→∞−−−−→ u |Gr(uΣ)m,n| ,

|G(−u, Σ, r)m,n|
βr→∞−−−−→ 0,

the above principle values stay bounded for βr →∞. This implies the uniform
bound

lim sup
βr→∞

∥∥Re(Λ(0)
e,r)
∥∥
B(P[Lp=e]H2

p)
<∞.

The Lemmata 3.15 and 3.16 allow to describe the spectral properties of the full
level shift operator Λ

(s)
e .

Proposition 3.18 (i) Assume that the particle temperature coincides with the
temperature of one of the reservoirs, i.e., βp = βr′ for some r′ = 1, . . . , R. For

|βmax − βmin| � 1, the imaginary part of the level shift operator Λ
(s)
e corre-

sponding to the operator K(s) associated with the eigenvalue e ∈ spec(Lp)\{0}
is strictly positive, it holds

Im
〈
ψ
∣∣Λ(s)

e ψ
〉
H2

p
≥ γr′

e ‖ψ‖
2
H2

p
≥ γFGR

2
‖ψ‖2H2

p

for all ψ ∈ P[Lp=e]H2
p. In particular, we have positivity of the imaginary part

of the level shift operator Λ
(−i/2)
e corresponding to the C-Liouville operator

K = K(−i/2). If the eigenvalue e ∈ spec(Lp) \ {0} is non-degenerate than the
same estimate holds without the condition |βmax − βmin| � 1.
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(ii) The imaginary part of the level shift operator Λ
(0)
e corresponding to the standard

Liouville operator L = K(0) associated with the particle eigenvalue e �= 0 obeys
the estimate

Im
〈
ψ
∣∣Λ(0)

e ψ
〉
H2

p
≥
(

R∑
r=1

γr
e

)
‖ψ‖2H2

p
≥ R

γFGR

2
‖ψ‖2H2

p
,

for all ψ ∈ P[Lp=e]H2
p.

Proof.

(i) We set
ξr := A(−s(βr − βp))ψ

and write with the help of Lemma 3.15

Im
〈
ψ
∣∣Λ(s)

e ψ
〉
H2

p

= Im
〈

ψ
∣∣∣Λ(0)

e,r′ψ
〉
H2

p

+
R∑

r=1,
r �=r′

Im
〈
ξr

∣∣Λ(0)
e,rA(−2i Im(s)(βr − βp))ξr

〉

= Im
〈

ψ
∣∣∣Λ(0)

e,r′ψ
〉
H2

p

+
R∑

r=1,
r �=r′

Im
〈
ξr

∣∣Λ(0)
e,rξr

〉

+
R∑

r=1,
r �=r′

Im
〈
ξr

∣∣Λ(0)
e,r [A(−2i Im(s)(βr − βp))− �] ξr

〉

≥ γr′
e ‖ψ‖

2
H2

p
+

R∑
r=1,
r �=r′

[
γr

e − C|2 Im(s)(βmax − βmin)|
∥∥Λ(s)

e

∥∥
B(H2

p)

]
‖ξr‖2H2

p

≥ γr′
e ‖ψ‖

2
H2

p
≥ γFGR

2
‖ψ‖2H2

p

for the positive constant C := ‖Hp‖B(Hp) exp(2| Im(s)|(βmax −
βmin) ‖Hp‖B(Hp)) < ∞ and |βmax − βmin| � 1 sufficiently small. Hereby,

we used that
∥∥∥Λ(s)

e

∥∥∥
B(H2

p)
is bounded uniformly in βr from compact subsets of

�
+, refer to Lemma 3.17.

If the eigenvalue e ∈ spec(Lp) \ {0} is simple then Λ
(s)
e is a complex number

rather than a matrix and is holds by Lemma 3.15 Λ
(s)
e =

∑R
r=1 Λ

(0)
e,r . Hence,

the dependence of the temperature differences drops out.
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(ii) Lemma 3.15 implies that

Im
〈
ψ
∣∣Λ(0)

e ψ
〉
H2

p
=

R∑
r=1

Im
〈
ψ
∣∣Λ(0)

e,rψ
〉
H2

p
≥
(

R∑
r=1

Im γr
e

)
‖ψ‖2H2

p

≥ R
γFGR

2
‖ψ‖2H2

p
.

The operator Λ
(s)
e carries the name level shift operator since it is accountable

for the shift of the eigenvalue e of the unperturbed deformed Liouvillean L0,θ into

the upper half plane. This is due to the fact that the operator K
(s)
θ has the same

spectral properties as the image FΞe,ρ(K
(s)
θ −z, L0,θ−z)+z under the Feshbach map

for z ∈ Se, c.f. Theorem E.1. Further, by Proposition 3.7, the Feshbach operator is
in leading order the free Liouville operator L0,θ, restricted to the eigenspace ker(Lp−
e) ∩ ran(P[M[θ]<ρ]), and the correction term of lowest order is the operator g2Λ

(s)
e ⊗

χ2
ρ(M[θ]), having strictly positive imaginary part. Figure 3.3 illustrates how the

addition of the operator g2Λ
(s)
e to the free part L0,θ affects a shift of the spectrum

into the upper half plane. The gap between the spectrum and the real axis is so big
that higher order correction terms cannot destroy it. The full Feshbach operator
has spectrum separated from the real axis by a gap of order g2, c.f. Figure 3.4. The
next theorem uses this observation to describe the spectrum of K

(s)
θ in Se.

Theorem 3.19 (Spectrum of K
(s)
θ in Se) Under the assumptions of Theo-

rem 3.1, the spectrum of K
(s)
θ inside the region Se around a non-zero particle eigen-

value e ∈ spec(Lp) \ {0} can be located by

spec
(
K

(s)
θ

)
∩ Se ⊆

{
z ∈ Se

∣∣∣ Im(z) ≥ g2γFGR

4

}
.

Proof. The isospectrality of the smooth Feshbach map FΞe,ρ implies that

z ∈ spec
(
K

(s)
θ

)
∩Se if and only if z ∈ spec(FΞe,ρ(K

(s)
θ − z, L0,θ− z)+ z) and z ∈ Se.

By Proposition 3.7 we know that

FΞe,ρ(K
(s)
θ − z, L0,θ − z) + z = Pe,ρ

[
L0,θ + g2Λ(s)

e ⊗ χ2
ρ(M[θ])

]
Pe,ρ +O

(
g2+ε̃
)

(3.45)

where the remainder term is estimated uniformly in z ∈ Se. We compute the
numerical range of the imaginary part of this operator. To this end let ψ ∈ ran(Pe,ρ)
and decompose ψ = ψ1 + ψ⊥

1 where ψ1 ∈ ran(P[M[θ]≤ 7
8
ρ]) and ψ⊥

1 ∈ ran(P[M[θ]>
7
8
ρ])
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~τ ′

0

( )ρθ ,,0spec ePL

0

~g2

( ))(2spec s
eg Λ

0

~g2

τ ′~

( ))(2
,,0spec s

ee gPL Λ+ρθ

+ →

Figure 3.3: Composing the spectrum of the leading orders of FΞe,ρ(K
(s)
θ − z, L0,θ −

z) + z out of the free operator L0,θ and the level shift operator Λ
(s)
e .

τ ′~

g2+ε ~

0

~g2
g2 ~

Se

Figure 3.4: Spectrum of the operator K
(s)
θ inside the region Se for e �= 0.

and compute

Im
〈
ψ
∣∣ [L0,θ + g2Λ(s)

e ⊗ χ2
ρ(M[θ])

]
ψ
〉

=
〈
ψ1

∣∣ [M[θ] + g2 Im
(
Λ(s)

e

)
⊗ χ2

ρ(M[θ])
]
ψ1

〉
+
〈
ψ⊥

1

∣∣ [M[θ] + g2 Im
(
Λ(s)

e

)
⊗ χ2

ρ(M[θ])
]
ψ⊥

1

〉
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≥ g2
〈
ψ1

∣∣ Im (Λ(s)
e

)
ψ1

〉
+
〈
ψ⊥

1

∣∣M[θ]ψ
⊥
1

〉
≥ g2γFGR

2
‖ψ1‖2 +

7

8
ρ
∥∥ψ⊥

1

∥∥2

≥ g2γFGR

2

(
‖ψ1‖2 +

∥∥ψ⊥
1

∥∥2
)

= g2γFGR

2
‖ψ‖2

where we used that M[θ] ≥ 0 and Im(Λ
(s)
e ) ⊗ χ2

ρ(M[θ]) ≥ 0 and Im(Λ
(s)
e ) ≥ γFGR

2
, by

Proposition 3.18, and ρ g2. Together with (3.45) we have

Im
〈

ψ
∣∣∣ [FΞe,ρ(K

(s)
θ − z, L0,θ − z) + z

]
ψ
〉

≥ g2
(γFGR

2
+O
(
gε̃
))
‖ψ‖2

≥ g2γFGR

4
‖ψ‖2 ,

for g sufficiently small. This implies that

NumRan
(
FΞe,ρ(K

(s)
θ − z, L0,θ − z) + z

)
⊆
{

ζ ∈ �
∣∣∣ Im(ζ) ≥ g2γFGR

4

}
and hence

spec
(
FΞe,ρ(K

(s)
θ − z, L0,θ − z) + z

)
⊆
{

ζ ∈ �
∣∣∣ Im(ζ) ≥ g2γFGR

4

}
by [30, Cor. 3.3.]. The isospectrality of the Feshbach map leads to the assertion.

3.5 Spectrum in the Neighborhood of the Zero
Eigenvalue

In this section we focus on the analysis of the spectrum of K
(s)
θ in the neighborhood

of zero. The main purpose is to compute explicitly the level shift operator Λ
(s)
0

whose properties will allow a further application of the Feshbach map in Chapter 4
– in order to study the spectrum of K

(s)
θ on smaller scales.

Lemma 3.20 The level shift operator Λ
(0)
0,r associated with the zero eigenvalue e = 0

of Lp is anti-selfadjoint, i.e.,

Λ
(0)
0,r = iΓ0,r with Γ0,r = Γ∗

0,r.
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Moreover, the matrix elements of Γ0,r in the orthonormal basis {ϕj,j}j=0,1,...,N−1 of
the kernel of Lp are given by

(Γ0,r)m,n := 〈ϕm,m |Γ0,rϕn,n 〉H2
p

= δm,n

N−1∑
k=0,
k �=m

eβrEm,k/2ηr
m,k − (1− δm,n)ηr

m,n, (3.46)

where the positive numbers ηr
j,k have been defined in (3.36). Further, the matrix

elements fulfill
(Γ0,r)m,n = (Γ0,r)n,m ∈ �.

Proof. The matrix elements of Λ
(0)
0,r are given by(

Λ
(0)
0,r

)
m,n

:=
〈

ϕm,m

∣∣∣Λ(0)
0,rϕn,n

〉
H2

p

= − lim
ε↘0

N−1∑
k,�=0

∫
�×S2

d(u, Σ) 〈ϕm,m |F (y)∗ϕk,� 〉H2
p
〈ϕk,� |F (y)ϕn,n 〉H2

p

× (Ek,� + u + iε)−1,

where y = (u, Σ, r) ∈ Υ and, recall F = G − G ′. We abbreviate

G(y)j,k := 〈ϕj,k | G(y)ϕk,k 〉H2
p

and G ′(y)j,k := 〈ϕj,j | G ′(y)ϕj,k 〉H2
p

to express

N−1∑
k,�=0

〈ϕm,m |F (y)∗ϕk,� 〉H2
p
〈ϕk,� |F (y)ϕn,n 〉H2

p
(Ek,� + u + iε)−1

=
N−1∑
k,�=0

[
G(y)k,mG(y)k,nδ�,mδ�,n + G ′(y)�,mG ′(y)�,nδk,mδk,n

− G ′(y)�,mG(y)k,nδk,mδ�,n − G(y)k,mG ′(y)�,nδ�,mδk,n

]
(Ek,� + u + iε)−1

= δm,n

N−1∑
k=0

[
G(y)k,mG(y)k,n(Ek,m + u + iε)−1

+ G ′(y)k,mG ′(y)k,n(Em,k + u + iε)−1
]

−G ′(y)n,mG(y)m,n(Em,n + u + iε)−1 − G(y)n,mG ′(y)m,n(En,m + u + iε)−1

= δm,n

N−1∑
k=0

[
G(y)k,mG(y)k,n(Ek,m + u + iε)−1

+ G(−y)k,mG(−y)k,n(Em,k + u + iε)−1
]

+G(−y)n,mG(y)m,n(Em,n + u + iε)−1 + G(y)n,mG(−y)m,n(En,m + u + iε)−1,
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where we used (3.37). The integration over (u, Σ) ∈ � × S2 and a transformation
of variables u �→ −u while integrating the second and fourth addend yields

(
Λ

(0)
0,r

)
m,n

= −δm,n lim
ε↘0

N−1∑
k=0

∫
�×S2

d(u, Σ)
[
G(y)k,mG(y)k,n(Ek,m + u + iε)−1

− G(y)k,mG(y)k,n(Em,k + u− iε)−1
]

− lim
ε↘0

∫
�×S2

d(u, Σ)
[
G(−y)n,mG(y)m,n(Em,n + u + iε)−1

− G(−y)n,mG(y)m,n(Em,n + u− iε)−1
]

= δm,n lim
ε↘0

N−1∑
k=0

∫
�×S2

d(u, Σ) |G(y)k,m|2
2iε

(Ek,m + u)2 + ε2

− lim
ε↘0

∫
�×S2

d(u, Σ) 2i Im
[
G(−y)n,mG(y)m,n(Em,n + u + iε)−1

]
= δm,n lim

ε↘0

N−1∑
k=0

∫
�×S2

d(u, Σ) |G(y)k,m|2
2iε

(Ek,m + u)2 + ε2

+ lim
ε↘0

∫
�×S2

d(u, Σ)G(−y)n,mG(y)m,n
2iε

(Em,n + u)2 + ε2

= 2πi δm,n

N−1∑
k=0

∫
S2

dΣ |G(Em,k, Σ, r)k,m|2

+2πi

∫
S2

dΣG(Em,n, Σ, r)n,mG(En,m, Σ, r)m,n

= 2πi

[
δm,n

N−1∑
k=0,
k �=m

∫
S2

dΣ |G(Em,k, Σ, r)k,m|2

+ (1− δm,n)

∫
S2

dΣG(Em,n, Σ, r)n,mG(En,m, Σ, r)m,n

]
.

Here, we used that

G(−y)n,mG(y)m,n = − u2

√
eβru + e−βru − 2

×
{
|Gr(uΣ)m,n|2 , u ≥ 0,

|Gr(−uΣ)n,m|2 , u < 0,
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is negative, and in particular real, as one easily checks by explicit computations. We
now define Γ0,r in terms of its matrix elements,

(Γ0,r)m,n := 2π

[
δm,n

N−1∑
k=0,
k �=m

∫
S2

dΣ |G(Em,k, Σ, r)k,m|2

+ (1− δm,n)

∫
S2

dΣG(Em,n, Σ, r)n,mG(En,m, Σ, r)m,n

]
∈ �,

such that Λ
(0)
0,r = iΓ0,r and apparently (Γ0,r)m,n = (Γ0,r)n,m. This implies that Γ0,r is

selfadjoint. To give a more explicit representation to (Γ0,r)m,n we remark that, for
j > k,

2π

∫
S2

dΣG(Ek,j, Σ, r)j,kG(Ej,k, Σ, r)k,j

= −
2πE2

j,k√
eβrEj,k + e−βrEj,k − 2

∫
S2

dΣ |Gr(Ej,kΣ)k,j|2

= −2πE2
j,k

√
ρf,r(Ej,k) (1 + ρf,r(Ej,k))

∫
S2

dΣ |Gr(Ej,kΣ)k,j|2

= −ηr
j,k = −ηr

k,j.

Further, we note that

|G(y)j,k|2 =
u2

|1− e−βru| ×
{
|Gr(uΣ)j,k|2 , u ≥ 0,

|Gr(−uΣ)k,j|2 , u < 0,

and therefore, for k �= m,∫
S2

dΣ |G(Em,k, Σ, r)k,m|2

=

∫
S2

dΣ
E2

m,k

|1− e−βrEm,k | ×
{
|Gr(Em,kΣ)k,m|2 , m > k,

|Gr(Ek,mΣ)m,k|2 , m < k,

=

∫
S2

dΣ
E2

m,ke
βrEm,k/2√

(1− e−βrEm,k)(eβrEm,k − 1)
×
{
|Gr(Em,kΣ)k,m|2 , m > k,

|Gr(Ek,mΣ)m,k|2 , m < k,

= −eβrEm,k/2

∫
S2

dΣG(Ek,m, Σ, r)m,kG(Em,k, Σ, r)k,m

=
1

2π
ηr

m,k.
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Thus, we get

(Γ0,r)m,n = δm,n

N−1∑
k=0,
k �=m

eβrEm,k/2ηr
m,k − (1− δm,n)ηr

m,n.

The detailed balance structure (3.46) of the matrix elements of Γ0,r gives rise to
the knowledge about positivity of Γ0,r and uniqueness of the zero eigenvalue.

Lemma 3.21 The self-adjoint operator Γ0,r is non-negative and it has a simple zero
eigenvalue. The kernel of Γ0,r is spanned by the vector

Ωp(βr) := Z(βr)
−1/2

N−1∑
k=0

e−βrEk/2ϕk,k.

Moreover, the gap between the zero and the next positive eigenvalue is at least

γr
0 := Z(βr)

(
N−1

min
m,n=0,
m>n

µr
m,n

)
,

where

µr
j,k := eβr(Ej+Ek)/2ηr

j,k = µr
k,j.

In other words,

〈ψ |Γ0,rψ 〉H2
p
≥ γr

0 ‖ψ‖
2
H2

p

for all ψ ∈ ker(Lp) with ψ ⊥ Ωp(βr).

Proof. We compute

Z(βr)
1/2Γ0,rΩp(βr) =

N−1∑
n=0

e−βrEn/2Γ0,rϕn,n

=
N−1∑

m,n=0

e−βrEn/2 (Γ0,r)m,n ϕm,m

=
N−1∑
m=0

[
N−1∑
k=0,
k �=m

e−βrEm/2eβrEm,k/2ηr
m,k −

N−1∑
n=0,
n�=m

e−βrEn/2ηr
m,n

]
ϕm,m

= 0.
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Therefore, the matrix Γ0,r has a zero eigenvector with strictly positive components.
Since further the matrix has strictly negative off-diagonal elements (Γ0,r)m,n = −ηr

m,n

for m �= n, we obtain by a Perron-Frobenius argument that zero is a simple eigen-
value being the bottom of the spectrum of Γ0,r. For this insight we consider the
matrix (

N−1
max
m=0

(Γ0,r)m,m

)
�ker(Lp) − Γ0,r

having non-negative matrix elements and we note that the positive vector Ωp(βr) is
an eigenvector corresponding to the eigenvalue maxN−1

m=0 (Γ0,r)m,m. The application of

[20, Hauptsatz 1.8] implies that maxN−1
m=0 (Γ0,r)m,m is a simple eigenvalue and further

that it is the eigenvalue with the largest absolute value.

To estimate the gap between the zero eigenvalue and the rest of the spectrum we
choose ψ =

∑N−1
j=0 κjϕj,j ⊥ Ωp(βr) and we compute

〈ψ |Γ0,rψ 〉H2
p

=
N−1∑

m,n=0

κmκn (Γ0,r)m,n

=
N−1∑
m=0

N−1∑
k=0,
k �=m

|κm|2eβrEm,k/2ηr
m,k −

N−1∑
m=0

N−1∑
n=0,
n�=m

κmκnη
r
m,n

=
N−1∑

m,n=0

µr
m,n

[ ∣∣e−βrEn/2κm

∣∣2 − e−βrEn/2κme−βrEm/2κn

]

=
N−1∑

m,n=0,
m>n

µr
m,n

∣∣e−βrEn/2κm − e−βrEm/2κn

∣∣2

≥
(

N−1

min
m,n=0,
m>n

µr
m,n

)
N−1∑

m,n=0,
m>n

∣∣e−βrEn/2κm − e−βrEm/2κn

∣∣2

=

(
N−1

min
m,n=0,
m>n

µr
m,n

)⎡⎣N−1∑
n=0

e−βrEn

N−1∑
m=0

|κm|2 −
∣∣∣∣∣
N−1∑
m=0

e−βrEm/2κm

∣∣∣∣∣
2
⎤⎦

=

(
N−1

min
m,n=0,
m>n

µr
m,n

)[
Z(βr) ‖ψ‖2H2

p
− Z(βr)

∣∣∣〈ψ |Ωp(βr) 〉H2
p

∣∣∣2]

=

(
N−1

min
m,n=0,
m>n

µr
m,n

)
Z(βr) ‖ψ‖2H2

p
.



3.5. Spectrum in the Neighborhood of the Zero Eigenvalue 169

For our results it is important that the gap γr
0 is strictly positive, uniformly in

βr > 0. This fact is given by the next lemma.

Lemma 3.22 (i) The gap γr
0 is strictly positive uniformly in βr > 0, it holds

inf
βr>0

γr
0 ≥

N−1

min
m,n=0,
m>n

2πE2
m,n

∫
S2

dΣ |Gr(Em,nΣ)n,m|2 ≥ γFGR > 0

where the Fermi golden rule level shift γFGR was defined and assumed to be
positive in (1.86).

(ii) The matrix Γ0,r is bounded uniformly in βr →∞,

lim sup
βr→∞

‖Γ0,r‖B(ker(Lp)) ≤
N−1
max
m=0

N−1∑
k=0,
k �=m

2πE2
m,k

∫
S2

dΣ |Gr(Em,kΣ)k,m|2 <∞,

i.e., it is bounded uniformly for the inverse temperature in the parameter range
as specified in Hypothesis III-1.8.

Proof.

(i) We consider for m > n

Z(βr)µ
r
m,n =

N−1∑
j=0

e−βrEjeβr(Em+En)/2ηr
m,n

≥ eβr(Em−En)/2ηr
m,n

= 2πE2
m,n (1 + ρf,r(Em,n))

∫
S2

dΣ |Gr(Em,nΣ)n,m|2

βr→∞−−−−→ 2πE2
m,n

∫
S2

dΣ |Gr(Em,nΣ)n,m|2 .

Since ρf,r(Em,n) = (eβrEm,n − 1)−1 is monotonically decreasing in βr we obtain

γr
0 ≥

N−1

min
m,n=0,
m>n

2πE2
m,n

∫
S2

dΣ |Gr(Em,nΣ)n,m|2 ≥ γFGR > 0,

while the positivity of the quantity of the r.h.s. is ensured through the as-
sumption of the Fermi golden rule condition, Hypothesis V-1.10.
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(ii) For j > k we have

e±βrEj,k/2ηr
j,k ≤ eβrEj,k/2ηr

j,k = 2πE2
j,k (1 + ρf,r(Ej,k))

∫
S2

dΣ |Gr(Ej,kΣ)k,j|2

and therefore

‖Γ0,r‖B(ker(Lp))

≤ N−1
max
m,n=0

∣∣∣(Γ0,r)m,n

∣∣∣ = N−1
max
m=0

N−1∑
k=0,
k �=m

eβrEm,k/2ηr
m,k

≤ N−1
max
m=0

N−1∑
k=0,
k �=m

2πE2
m,k (1 + ρf,r(Em,k))

∫
S2

dΣ |Gr(Em,kΣ)k,m|2

βr→∞−−−−→ N−1
max
m=0

N−1∑
k=0,
k �=m

2πE2
m,k

∫
S2

dΣ |Gr(Em,kΣ)k,m|2

< ∞.

The Lemmata 3.15, 3.20 and 3.21 allow to localize the numerical range of the level
shift operator.

Proposition 3.23 (i) The level shift operator Λ
(−i/2)
0 corresponding to the C-

Liouville operator K = K(−i/2) has zero as simple eigenvalue and its kernel
is spanned by the eigenvector Ωp ≡ Ωp(βp). If further the particle temperature
coincides with the temperature of one of the reservoirs, i.e., βp = βr′ for some
r′ = 1, . . . , R, and |βmax − βmin| � 1 is sufficiently small then we have the
estimate

Im
〈

ψ
∣∣∣Λ(−i/2)

0 ψ
〉
H2

p

≥ γr′
0 ‖ψ‖

2
H2

p
≥ γFGR ‖ψ‖2H2

p

for all ψ ∈ ker(Lp) with ψ ⊥ Ωp.

(ii) In the case that the particle and the reservoir temperatures coincide, i.e., β =

βp = β1 = · · · = βR, the anti-self-adjoint level shift operator Λ
(0)
0 corresponding

to the standard Liouville operator L = K(0) has zero as simple eigenvalue and
its kernel is spanned by the eigenvector Ωp(β). For Ωp(β) ⊥ ψ ∈ ker(Lp) we
have the estimate

−i
〈

ψ
∣∣∣Λ(0)

0 ψ
〉
H2

p

≥
(

R∑
r=1

γr
0

)
‖ψ‖2H2

p
≥ RγFGR ‖ψ‖2H2

p
.
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(iii) In the case that at least two reservoirs are at different temperatures, i.e., βmin <

βmax, the anti-selfadjoint level shift operator Λ
(0)
0 corresponding to the standard

Liouville operator L = K(0) obeys the following estimate,

−i
〈

ψ
∣∣∣Λ(0)

0 ψ
〉
H2

p

≥ γFGR

[
1− 〈Ωp(βmin) |Ωp(βmax) 〉H2

p

]
‖ψ‖2H2

p

for all ψ ∈ ker(Lp). Hereby, the distance of the eigenvalue with the lowest
imaginary part from the real axis is of order

γFGR

[
1− 〈Ωp(βmin) |Ωp(βmax) 〉H2

p

]
(3.47)

≥
[
(βmax − βmin)

2 −O
(
|βmax − βmin|3

)] γFGRdLp

16

[
1− Z(2β)

Z(β)2

]

where β := (βmax + βmin)/2. In particular, Λ
(0)
0 has no zero eigenvalue.

Proof.

(i) We note that

A

(
i

2
(βr − βp)

)
Ωp(βp) = Z(βp)

−1/2

N−1∑
j=0

e−βpEj/2
[
e−(βr−βp)Hp/2ϕj

]
⊗ ϕj

= Z(βp)
−1/2

N−1∑
j=0

e−βrEj/2ϕj,j

=

√
Z(βr)

Z(βp)
Ωp(βr).

By Lemmata 3.15, 3.20 and 3.21 we get

Λ
(−i/2)
0 Ωp(βp) = i

R∑
r=1

A

(
− i

2
(βr − βp)

)
Γ0,rA

(
i

2
(βr − βp)

)
Ωp(βp)

= i

R∑
r=1

√
Z(βr)

Z(βp)
A

(
− i

2
(βr − βp)

)
Γ0,rΩp(βr)

= 0.

Since Γ0,r has purely negative off-diagonal elements so has the matrix −iΛ
(−i/2)
0
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because of(
−iΛ

(−i/2)
0

)
m,n

:=
〈

ϕm,m

∣∣∣ (−i)Λ
(−i/2)
0 ϕn,n

〉
H2

p

=
R∑

r=1

〈
A

(
− i

2
(βr − βp)

)
ϕm,m

∣∣∣∣Γ0,rA

(
i

2
(βr − βp)

)
ϕn,n

〉
H2

p

=
R∑

r=1

e(βr−βp)Em,n/2 (Γ0,r)m,n .

An application of [20, Hauptsatz 1.8] similar to the one in the proof of
Lemma 3.21 yields that zero is a simple eigenvalue and that no other eigenvalue
of −iΛ

(−i/2)
0 has negative real part.

Let now Ωp(βp) ⊥ ψ ∈ ker(Lp). For r = 1, . . . , R, the vector

ξr := A

(
− i

2
(βr − βp)

)
ψ

is orthogonal to the vector Ωp(βr) = Z(βr)
−1/2Z(βp)

1/2A
(

i
2
(βr − βp)

)
Ωp(βp).

With this notation we obtain with Lemma 3.21

Im
〈

ψ
∣∣∣Λ(−i/2)

0 ψ
〉
H2

p

= 〈ψ |Γ0,r′ψ 〉H2
p
+

R∑
r=1,
r �=r′

Im 〈 ξr |Γ0,rA (i(βr − βp)) ξr 〉H2
p

= 〈ψ |Γ0,r′ψ 〉H2
p
+

R∑
r=1,
r �=r′

〈 ξr |Γ0,rξr 〉H2
p

+
R∑

r=1,
r �=r′

Im 〈 ξr |Γ0,r [A (i(βr − βp)− �)] ξr 〉H2
p

≥ γr′
0 ‖ψ‖

2
H2

p
+

R∑
r=1,
r �=r′

[
γr

0 − ‖Γ0,r [A (i(βr − βp))− �]‖B(H2
p)

]
‖ξr‖2H2

p

≥ γr′
0 ‖ψ‖

2
H2

p
+

R∑
r=1,
r �=r′

[
γr

0 − C|βmax − βmin| ‖Γ0,r‖B(H2
p)

]
‖ξr‖2H2

p

≥ γr′
0 ‖ψ‖

2
H2

p
≥ γFGR ‖ψ‖2H2

p

for the positive constant C := ‖Hp‖B(Hp) exp((βmax − βmin) ‖Hp‖B(Hp)) < ∞,

for |βmax − βmin| sufficiently small. Hereby, we used Lemma 3.22 to estimate
γr

0 and ‖Γ0,r‖B(H2
p) uniformly in βr from a compact set in �+.
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(ii) Since Λ
(0)
0 = i

∑R
r=1 Γ0,r and further Γ0,rΩp(β) = Γ0,rΩp(βr) = 0 we see im-

mediately that Λ
(0)
0 Ωp(β) = 0. The application of Lemma 3.21 implies for

ψ ⊥ Ωp(β)

−i
〈

ψ
∣∣∣Λ(0)

0 ψ
〉
H2

p

=
R∑

r=1

〈ψ |Γ0,rψ 〉H2
p
≥

R∑
r=1

γr
0 ‖ψ‖

2
H2

p
≥ RγFGR ‖ψ‖2H2

p
.

(iii) Throughout the proof we assume that ψ ∈ ker(Lp) with ‖ψ‖H2
p

= 1. We first

observe that holds

−i
〈

ψ
∣∣∣Λ(0)

0 ψ
〉
H2

p

≥
∑

r=1,R

〈ψ |Γ0,rψ 〉H2
p
.

By Lemmata 3.21 and 3.22 we have

〈ψ |Γ0,rψ 〉H2
p
≥ γFGR

[
1−
∣∣∣〈Ωp(βr) |ψ 〉H2

p

∣∣∣2] .

for a unit vector ψ. Hence, we obtain

−i
〈

ψ
∣∣∣Λ(0)

0 ψ
〉
H2

p

≥ γFGR

[
2−
∣∣∣〈Ωp(βmax) |ψ 〉H2

p

∣∣∣2 − ∣∣∣〈Ωp(βmin) |ψ 〉H2
p

∣∣∣2] .

The aim of the subsequent considerations is to maximize the function ψ �→
| 〈Ω1 |ψ 〉H2

p
|2 + | 〈Ω2 |ψ 〉H2

p
|2 under the constraint ‖ψ‖H2

p
= 1 where Ω1 :=

Ωp(βmax) and Ω2 := Ωp(βmin) are unit vectors. Since βmax > βmin the vectors
Ω1 and Ω2 span a two-dimensional space and we can express the vector ψ in
this basis, i.e., ψ = a1Ω1 + a2Ω2 + η where η ⊥ span(Ω1, Ω2). We obtain∣∣∣〈Ω1 |ψ 〉H2

p

∣∣∣2 +
∣∣∣〈Ω2 |ψ 〉H2

p

∣∣∣2 (3.48)

=
∣∣∣a1 + a2 〈Ω1 |Ω2 〉H2

p

∣∣∣2 +
∣∣∣a2 + a1 〈Ω1 |Ω2 〉H2

p

∣∣∣2
=
(
1 + 〈Ω1 |Ω2 〉2H2

p

) [
|a1|2 + |a2|2

]
+ 4 〈Ω1 |Ω2 〉H2

p
Re(a1a2)

using that

〈Ω1 |Ω2 〉H2
p

= Z(βmin)
−1/2Z(βmax)

−1/2

N−1∑
j=0

e−Ej(βmin+βmax)/2

=
Z
(

βmin+βmax

2

)√
Z(βmin)Z(βmax)
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is strictly positive. The constraint ‖ψ‖H2
p

= 1 translates to

1 = ‖ψ‖2H2
p

= |a1|2 + |a2|2 + 2 〈Ω1 |Ω2 〉H2
p
Re(a1a2) + ‖η‖2H2

p
. (3.49)

Plugging (3.49) into (3.48), we get∣∣∣〈Ω1 |ψ 〉H2
p

∣∣∣2 +
∣∣∣〈Ω2 |ψ 〉H2

p

∣∣∣2
= 2

(
1− ‖η‖2H2

p

)
−
(
1− 〈Ω1 |Ω2 〉2H2

p

) [
|a1|2 + |a2|2

]
.

This expression increases if |a1|2 + |a2|2 becomes smaller. Fixing the absolute
value of a1, a2 the sum of squares |a1|2 + |a2|2 is minimal under the constraint
(3.49) for a1, a2 ∈ �+. In order to maximize (3.48) we maximize the function

f : (�+
0 )3 → �

+
0 ,

f(a1, a2, c) := 2(1− c2)−
(
1− 〈Ω1 |Ω2 〉2H2

p

) [
a2

1 + a2
2

]
.

on the manifold{
(a1, a2, c) ∈ (�+

0 )3
∣∣∣ a2

1 + a2
2 + 2 〈Ω1 |Ω2 〉H2

p
a1a2 + c2 = 1

}
.

With the help of a Lagrange multiplier λ we find the coordinates of the critical
point to fulfil

−
(
1− 〈Ω1 |Ω2 〉2H2

p

)
a1 − λ

[
a1 + a2 〈Ω1 |Ω2 〉H2

p

]
= 0,

−
(
1− 〈Ω1 |Ω2 〉2H2

p

)
a2 − λ

[
a2 + a1 〈Ω1 |Ω2 〉H2

p

]
= 0,

−2c− λc = 0,

a2
1 + a2

2 + 2 〈Ω1 |Ω2 〉H2
p
a1a2 + c2 = 1.

The first two equations yield((
1− 〈Ω1 |Ω2 〉2H2

p

)
+ λ
(
1 + 〈Ω1 |Ω2 〉H2

p

))
[a1 + a2] = 0,((

1− 〈Ω1 |Ω2 〉2H2
p

)
+ λ
(
1− 〈Ω1 |Ω2 〉H2

p

))
[a1 − a2] = 0

which implies, since a1 + a2 > 0 under the constraint, that

λ =
〈Ω1 |Ω2 〉2H2

p
− 1

1 + 〈Ω1 |Ω2 〉H2
p

= 〈Ω1 |Ω2 〉H2
p
− 1 �= −2

which in turn yields that c = 0 and a1 = a2 and therefore

a2
1 + a2

2 =
1

1 + 〈Ω1 |Ω2 〉H2
p

.
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This gives

∣∣∣〈Ω1 |ψ 〉H2
p

∣∣∣2 +
∣∣∣〈Ω2 |ψ 〉H2

p

∣∣∣2 ≤ 2−
1− 〈Ω1 |Ω2 〉2H2

p

1 + 〈Ω1 |Ω2 〉H2
p

= 1 + 〈Ω1 |Ω2 〉H2
p

and finally

−i
〈

ψ
∣∣∣Λ(0)

0 ψ
〉
H2

p

≥ γFGR

[
1− 〈Ω1 |Ω2 〉H2

p

]
.

We now compute the order of the gap. We start observing that

1− 〈Ω1 |Ω2 〉H2
p

=
1− 〈Ω1 |Ω2 〉2H2

p

1 + 〈Ω1 |Ω2 〉H2
p

≥
1− 〈Ω1 |Ω2 〉2H2

p

2

=
1

2
− Z(β)2

2Z(β − δβ)Z(β + δβ)

=: f(δβ)

where δβ := (βmax − βmin)/2. Apparently, the function f : �+
0 → � is real-

analytic and it holds f(0) = 0. We compute higher orders,

f ′(x) =
Z(β)2

[
Z(β − x)Z ′(β + x)− Z ′(β − x)Z(β + x)

]
2
[
Z(β − x)Z(β + x)

]2 .

Set h(x) := Z(β − x)Z ′(β + x) − Z ′(β − x)Z(β + x), it is h(0) = 0 and also
f ′(0) = 0. We compute the second derivative of f ,

f ′′(x)

=
Z(β)2

2
[
Z(β − x)Z(β + x)

]3
×
{[

Z ′′(β − x)Z(β + x)− 2Z ′(β − x)Z ′(β + x) + Z(β − x)Z ′′(β + x)
]

× Z(β − x)Z(β + x)

− 2h(x)∂x

[
Z(β − x)Z(β + x)

]}
,
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and, evaluating at x = 0 gives,

f ′′(0) =
Z ′′(β)Z(β)− Z ′(β)2

Z(β)2

= Z(β)−2

N−1∑
j,k=0

[E2
j − EjEk]e

−β(Ej+Ek)

= Z(β)−2

N−1∑
j,k=0,
j<k

(
[E2

j − EjEk] + [E2
k − EjEk]

)
e−β(Ej+Ek)

= Z(β)−2

N−1∑
j,k=0,
j<k

(Ej − Ek)
2e−β(Ej+Ek)

≥ dLp

2Z(β)2

[
N−1∑
j,k=0

e−β(Ej+Ek) −
N−1∑
j=0

e−2βEj

]

=
dLp

2

[
1− Z(2β)

Z(β)2

]
> 0.

The expansion of f implies that

γFGR

[
1− 〈Ω1 |Ω2 〉H2

p

]
≥
(
δβ2 −O

(
δβ3
)) γFGRdLp

4

[
1− Z(2β)

Z(β)2

]
which is the assertion (3.47).

We use the previous propositions in order to describe the spectrum of the deformed
standard Liouville operator Lθ = K

(0)
θ under further restrictions on the reservoir

temperatures.

Proposition 3.24 (Spectrum of Lθ in S0) We make the same assumption as
under Theorem 3.1. Further, we assume that s = 0 and

gε̃ � 1− 〈Ωp(βmin) |Ωp(βmax) 〉H2
p
,

in particular βmax > βmin. We remark that, by (3.47), this condition can be expressed
as

gε̃ � (βmax − βmin)
2

[
1− Z(2β)

Z(β)2

]
,
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Figure 3.5: Composing the spectrum of the leading orders of FΞ0,ρ(Kθ−z, L0,θ−z)+z

out of the free operator L0,θ and the level shift operator Λ
(−i/2)
0 .

0

τ ′~

g2+ε ~

0

~g2

S0

Figure 3.6: Localization of the spectrum of Kθ up to order g2: the isolated zero
eigenvalue disappears in a “cloud of possible spectrum”.

where β = (βmax + βmin)/2. Then, the spectrum of Lθ = K
(0)
θ inside the region S0

can be located by

spec (Lθ) ∩ S0 ⊆
{

z ∈ S0

∣∣∣∣ Im(z) ≥ g2(βmax − βmin)
2γFGRdLp

64

[
1− Z(2β)

Z(β)2

]}
.
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Proof. The isospectrality of the smooth Feshbach map FΞ0,ρ implies that
z ∈ spec (Lθ) ∩ S0 if and only if z ∈ spec(FΞ0,ρ(Lθ − z, L0,θ − z) + z) ∩ S0. By
Proposition 3.7 we know that

FΞ0,ρ(Lθ − z, L0,θ − z) + z = P0,ρ

[
L0,θ + g2Λ

(0)
0 ⊗ χ2

ρ(M[θ])
]
P0,ρ +O

(
g2+ε̃
)

(3.50)

where the remainder term is estimated uniformly in z ∈ S0. We compute the
numerical range of the imaginary part of this operator. To this end let ψ ∈ ran(P0,ρ)
and decompose ψ = ψ1 + ψ⊥

1 where ψ1 ∈ ran(P[M[θ]≤ 7
8
ρ]) and ψ⊥

1 ∈ ran(P[M[θ]>
7
8
ρ])

and compute

Im
〈

ψ
∣∣∣ [L0,θ + g2Λ

(0)
0 ⊗ χ2

ρ(M[θ])
]
ψ
〉

=
〈

ψ1

∣∣∣ [M[θ] + g2 Im
(
Λ

(0)
0

)
⊗ χ2

ρ(M[θ])
]
ψ1

〉
+
〈

ψ⊥
1

∣∣∣ [M[θ] + g2 Im
(
Λ

(0)
0

)
⊗ χ2

ρ(M[θ])
]
ψ⊥

1

〉
≥ g2

〈
ψ1

∣∣∣ Im(Λ(0)
0

)
ψ1

〉
+
〈
ψ⊥

1

∣∣M[θ]ψ
⊥
1

〉
≥ g2γFGR

[
1− 〈Ωp(βmin) |Ωp(βmax) 〉H2

p

]
‖ψ1‖2 +

7

8
ρ
∥∥ψ⊥

1

∥∥2

≥ g2γFGR

[
1− 〈Ωp(βmin) |Ωp(βmax) 〉H2

p

] (
‖ψ1‖2 +

∥∥ψ⊥
1

∥∥2
)

= g2γFGR

[
1− 〈Ωp(βmin) |Ωp(βmax) 〉H2

p

]
‖ψ‖2

where we used that M[θ] ≥ 0 and Im(Λ
(0)
0 )⊗ χ2

ρ(M[θ]) ≥ 0 and Im(Λ
(0)
0 ) ≥ γFGR[1−

〈Ωp(βmin) |Ωp(βmax) 〉H2
p
], by Proposition 3.23(iii), and ρ g2. Together with (3.50)

we have

Im
〈
ψ
∣∣ [FΞ0,ρ(Lθ − z, L0,θ − z) + z

]
ψ
〉

≥ g2γFGR

(
1− 〈Ωp(βmin) |Ωp(βmax) 〉H2

p
+O
(
gε̃
))
‖ψ‖2

≥ g2γFGR

1− 〈Ωp(βmin) |Ωp(βmax) 〉H2
p

2
‖ψ‖2

≥ g2(βmax − βmin)
2γFGRdLp

64

[
1− Z(2β)

Z(β)2

]
‖ψ‖2

for g sufficiently small and |βmax − βmin| � 1. The isospectrality of the Feshbach
map leads to the assertion.

The previous proposition describes the spectrum of K
(0)
θ = Lθ under additional

temperature constraints. The second special case of interest is the particular choice
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s = −i/2. Employing the isospectrality in the sense of Proposition 3.6 we can study
the operator

FΞ0,ρ(Kθ − z, L0,θ − z) + z

= P0,ρ

[
L0,θ + g2Λ

(−i/2)
0 ⊗ χ2

ρ(M[θ])
]
P0,ρ +O

(
g2+ε̃
)

= P0,ρ

[
L0,θ + g2Λ

(−i/2)
0 − g2Λ

(−i/2)
0 ⊗ χ2

ρ(M[θ])
]
P0,ρ +O

(
g2+ε̃
)

instead of Kθ = K
(−i/2)
θ . Since L0,θ and Λ

(−i/2)
0 act on different variables the spectrum

of L0,θ �ran(P0,ρ) +g2Λ
(−i/2)
0 is given by

spec
(
L0,θ �ran(P0,ρ) +g2Λ

(−i/2)
0

)
= spec

(
L0,θ �ran(P0,ρ)

)
+ g2 spec

(
Λ

(−i/2)
0

)
⊆ {0} ∪

{
ζ ∈ �

∣∣∣ Im(ζ) ≥ tan(δ̃)|Re(ζ)|+ min{τ ′,O
(
g2
)
}
}

=: Aθ,

by Proposition 3.23(i), where

tan(δ̃) = min

⎧⎪⎨⎪⎩tan(δ′),

∥∥∥Im(Λ
(−i/2)
0 )

∥∥∥
B(ker(Lp))∥∥∥Re(Λ

(−i/2)
0 )

∥∥∥
B(ker(Lp))

⎫⎪⎬⎪⎭ .

Therefore, in leading orders, the operator FΞ0,ρ(Kθ−z, L0,θ−z)+z has a simple zero
eigenvalue separated from the rest of the spectrum by a gap given by min{τ ′,O (g2)},
see Figure 3.5. However, the gap is smaller than the deformation parameter τ ′ which
in turn is proportional to the minimal temperature of the reservoirs. Thus, in the
situation where the temperature is small compared to the coupling constant, i.e.,
τ ′ � O (g2), the higher order corrections to FΞ0,ρ(Kθ − z, L0,θ − z) + z destroy the
localization of an isolated eigenvalue, see Figure 3.6.

The study of the spectrum around zero for both operators, Kθ and Lθ, without
any additional constraints on the parameters βmax, βmin and g, requires a more so-
phisticated analytical technique. The renormalization transformation in Chapter 4
provides such a tool which allows the spectral analysis on smaller scales and delivers
detailed results about the spectrum near the origin.



4 Smooth Feshbach Iteration and
Renormalization

The analysis of the spectrum of K
(s)
θ in the nearest neighborhood of zero is done

iteratively on decreasing scales. The iterative process requires a sequence of Hilbert
spaces (H(n))n=1,2,..., on each Hilbert space H(n) acts a family � ⊇ B1/4 � z �→
K(n)[z] of bounded operators. The operator family K(n) encodes the spectral in-
formation of its predecessor family K(n−1) on a small scale around the origin. The
transition between the operator families is done by the renormalization transforma-
tion. The iteration of the renormalization transformation generates a discrete flow
of operator families on the sequence of Hilbert spaces and, connected to the operator
flow, a flow of spectral information representing the spectrum of the initial data K

(s)
θ

of the iterative process on smaller and smaller scales. The concept of the renormal-
ization group (RG) based on the Feshbach map was invented by Bach, Fröhlich and
Sigal in [6] for applications to spectral problems in quantum field theory. It entered
the analysis of concrete models in quantum electrodynamics and quantum statistical
mechanics in [5, 7, 6, 36]. A technical refinement was achieved by the same authors
in collaboration with Chen in [4] by employing the smooth Feshbach map instead of
the standard one. The present chapter is devoted to an adaption of this technique to
our concrete problem. The main modifications compared to [4] are that the analysis
of the positive temperature system requires an additional control parameter, this
was already discussed in [8]. Further, one of the control parameters does not scale
properly in our situation such that the renormalization transformation does leave
the underlying Hilbert spaces invariant but works on a decreasing sequence of spaces
which eventually collapse to dimension one. Hence, we get along with finitely many
iteration steps and do not care for limit processes. The first challenge, however, is
to fit the operator K

(s)
θ of interest into the framework provided in [4] as done in

Section 4.2. We launch this chapter by introducing the necessary preliminaries.
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4.1 Sequence of Hilbert Spaces and Banach Spaces
of Operators

Throughout this chapter we make the same assumptions on the parameters s, θ =
(δ, τ) and ρ as in the previous one, recall in particular (3.1, 3.2, 3.4). We introduce
two small positive numbers, ρ∗ and ρ∗∗, which measure the underlying scale of the
renormalization transformation. In the first step of renormalization, the scale is
given through

0 < ρ∗ = O
(

g2

ρ

)
,

for the exact definition see (4.43), where in the successive steps the scale is given by

0 < ρ∗∗ ≤
1

20
.

We remark that the parameter ρ∗∗ will be chosen independently of the coupling
constant g and of the scale ρ = g2/3(1+ε̃) of the previous chapter, compare with the
defining relation (4.5). In fact, the number ρ∗∗ is considered to be large w.r.t. g
and ρ, i.e., g, ρ � ρ∗∗. Associated to the scales ρ∗ and ρ∗∗ we define a sequence of
Hilbert spaces

H(1) ←↩ H(2) ⊇ · · · ⊇ H(n) ⊇ H(n+1) ⊇ · · · ⊇ H(N−1) � H(N )

by

H(n) := H(n)
<∞ ⊗

[
P[M[θn]≤1]F(L2[Υ])

]
,

where

H(1)
<∞ := ker(Lp),

H(n)
<∞ := �, n = 2, 3, . . . ,N ,

is a finite dimensional Hilbert space representing the particle degrees of freedom in
the nth step, and

θn := (iδ′, iτ ′
n) :=

(
iδ′, i

τ ′

ρ[n]

)
∈ (i�+)2,

ρ[n] :=

{
ρ, n = 1

ρρ∗ρ
n−2
∗∗ , n ≥ 2,

(4.1)

are sequences of effective deformation parameters and scales, resp. The estimating
operator in the nth iteration step therefore reads

M[θn] = dΓgl [mθn ] = sin(δ′)Laux +
τ ′

ρ[n]

Nres
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where, recall,

mθn(u) = sin(δ′)|u|+ τ ′

ρ[n]

.

The number of iteration steps N is chosen such that

τ ′

ρ[N−1]

≤ 1 <
τ ′

ρ[N ]

and therefore the infinite dimensional Hilbert spaces H(n), n = 1, . . . ,N−1, collapse
to a one dimensional space

H(N ) = ker(Nres) = �Ω0.

Without loss of generality we assume that N ≥ 3, otherwise we choose τ ′ sufficiently
small. This is possible since we nowhere require that the translation deformation
parameter τ ′ is sufficiently large, unlike for the dilation parameter δ′. In fact, the
condition N ≥ 3 results in

τ ′ ≤ ρ[N−1] ≤ ρρ∗ = O
(
g2
)
. (4.2)

Hence, to comply with this requirement, we choose from now on

τ ′ :=
g2γeq

2 + βmax

< min{ρρ∗, 2πβ−1
max}, (4.3)

for g sufficiently small, where the constant γeq is defined in (4.46) and enters the
concrete definition (4.43) of ρ∗. We further define the sets

Q(n) :=

{
(q1, q2) ∈ �2

∣∣∣∣ tan(δ′)|q1|+
τ ′

ρ[n]

≤ 1, q2 ∈ [0, 1]

}
,

M(n) := {(u, Σ, r) ∈ Υ |mθn(u) ≤ 1 } .

Next, we introduce Banach spaces W
(n)
R,S, R + S ∈ �0, of functions

w
(n)
R,S : Q(n) × {M(n)}R+S → H(n)

<∞

which are continuously differentiable w.r.t. the variable q ∈ Q(n), i.e.,

w
(n)
R,S[ · , Y (R,S)] ∈ C1

(
Q(n);H(n)

<∞

)
for almost every Y (R,S) ∈ {M(n)}R+S. Further, the functions are required to be
totally symmetric w.r.t. the variables y(R) ∈ {M(n)}R and ỹ(S) ∈ {M(n)}S. Finally,
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the functions obey the norm bound∥∥∥w(n)
R,S

∥∥∥#

(n)
:=

√∥∥∥w(n)
R,S

∥∥∥2

(n)
+
∥∥∥∣∣∣∇qw

(n)
R,S

∣∣∣∥∥∥2

(n)
<∞,∥∥∥w(n)

R,S

∥∥∥2

(n)
:=

∫
{M(n)}R+S

dY (R,S)

mθn (Y (R,S))
3+2µ sup

q∈Q(n)

∥∥∥w(n)
R,S

[
q; Y (R,S)

]∥∥∥2

B(H(n)
<∞)

,
(4.4)

where the norm of the gradient has to be understood as∥∥∥∣∣∣∇qw
(n)
R,S[ · ]

∣∣∣∥∥∥2

B(H(n)
<∞)

=
∑
j=1,2

∥∥∥∂qj
w

(n)
R,S[ · ]

∥∥∥2

B(H(n)
<∞)

.

Here, we make use of the notation introduced in Appendix D prior to Theorem D.3.
The parameter µ appearing in the definition (4.4) of the norm ‖ · ‖#(n) will be used in
Section 4.4 to establish the contracting property of the renormalization procedure
and it is assumed to obey

1

2
≤ µ < min{1, ν},

where ν is the infrared regularization of the coupling functions, c.f. Hypothesis VII-
1.12. The number µ and the parameter ρ∗∗ are related through

ρ∗∗ = (16Cχ1)
−2/µ ≤ 1

20
(4.5)

where the incorporated constant Cχ1 ≥ 1 only depends on the cutoff function χ1

introduced in Section 3.3, Equation (3.10), and is fixed such that

106 + sup
x∈[0,1]

[2|χ′
1(x)|+ 14|χ′

1(x)|] ≤ Cχ1 (4.6)

holds. The constant Cχ1 plays a significant role in the proof of Lemma 4.10 and of
Proposition 4.4. The parameter µ represents the infrared regularization of the form
factors needed for the renormalization procedure. The direct sum

W
(n)
# :=

⊕
R+S≥0

W
(n)
R,S (4.7)

is defined as the space of all sequences
(
w

(n)
R,S ∈W

(n)
R,S

)
R+S≥0

with finite weighted

�1-norm ∥∥∥∥(w(n)
R,S

)
R+S≥0

∥∥∥∥#

(n),ξ

:=
∑

R+S≥0

ξ−(R+S)
∥∥∥w(n)

R,S

∥∥∥#

(n)

where the weight is given by

ξ :=

√
ρ∗∗

4Cχ1

=
1

4Cχ1(16Cχ1)
1/µ
≤ 1

4
. (4.8)
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The space
(
W

(n)
# , ‖ · ‖#(n),ξ

)
is a Banach space.

This space can canonically be embedded into the bounded operators onH(n). This
embedding is given by

W(n) : W
(n)
# → B

(
H(n)
)
,

W(n)

[(
w

(n)
R,S

)
R+S≥0

]
:=
∑

R+S≥0

W(n)

[
w

(n)
R,S

] (4.9)

where W(n)[w
(n)
R,S] := P (n)W[θn][w

(n)
R,S]P (n), i.e.,

W(n)

[
w

(n)
0,0

]
:= P (n)W[θn]

[
w

(n)
0,0

]
P (n) = P (n)w

(n)
0,0

[
Λ[θn]

]
P (n),

and, for R + S ≥ 1,

W(n)

[
w

(n)
R,S

]
:= P (n)W[θn]

[
w

(n)
R,S

]
P (n) (4.10)

= P (n)

∫
{M(n)}R+S

dY (R,S)

mθn (Y (R,S))
1/2

a∗
gl

(
y(R)
)
w

(n)
R,S

[
Λ[θn]; Y

(R,S)
]
agl

(
ỹ(S)
)
P (n)

are the Wick monomials of order (R,S) corresponding to w
(n)
R,S and

P (n) :=

⎧⎨⎩P[Lp=0] ⊗ P[M[θ1]≤1], n = 1,

P[M[θn]≤1], n = 2, 3, . . . ,N ,

is the orthogonal projection on H(n). Note that the definition (4.10) is con-

sistent on ran(P (n)) with the definition of W[θn][w
(n)
R,S] given in (D.6). Hereby,

w
(n)
R,S

[
Λ[θn]; Y

(R,S)
]

is defined via functional calculus where

Λ[θn] :=
(
cos(δ′)Lres,M[θn]

)
(4.11)

≡ dΓgl(λθn) ≡
∫
Υ

d(u, Σ, r) a∗
gl(u, Σ, r)λθn(u)agl(u, Σ, r)

is a pair of commuting self-adjoint operators and

λθn(u) := (cos(δ′)u,mθn(u)) =

(
cos(δ′)u, sin(δ′)|u|+ τ ′

ρ[n]

)
.

Note that

spec
(

cos(δ′)Lres �ran P
[M[θn]≤1]

)
× spec

(
M[θn] �ran P

[M[θn]≤1]

)
= Q(n) (4.12)
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is the set of control parameters controlling the dependence of the Wick monomials
on the free operators cos(δ′)Lres and M[θn].

We will need later the partially integrated Wick monomials acting on H(n),

W(p,q)
(n)

[
w

(n)
R+p,S+q

] (
λ; y(p)

∗ , ỹ(q)
∗
)

(4.13)

:= P (n)W(p,q)
[θn]

[
w

(n)
R+p,S+q

] (
λ; y(p)

∗ , ỹ(q)
∗
)
P (n)

= P (n)

∫
{M(n)}R+S

dY (R,S)

mθn(Y (R,S))1/2
a∗

gl

(
y(R)
)

× w
(n)
R+p,S+q

[
Λ[θn] + λ; y(R), y(p)

∗ , ỹ(S), ỹ(q)
∗
]
agl

(
ỹ(S)
)
P (n).

The next proposition guarantees that the embedding W(n) is well defined. Hence-
forth, we assume that the parameters µ, ξ are chosen as in (4.5, 4.8).

Proposition 4.1 For R + S ≥ 1, the assignment (4.10) is well defined as a map

from W
(n)
R,S into the bounded operators on H(n). Furthermore, for w

(n)
R,S ∈W

(n)
R,S, the

following norm bound is obeyed,∥∥∥W(n)

[
w

(n)
R,S

]∥∥∥
B(H(n))

≤ 1√
RRSS

∥∥∥w(n)
R,S

∥∥∥
(n)

.

Before proving the Proposition 4.1 we first provide a lemma.

Lemma 4.2 Let ψ ∈ H(n), R ≥ 1, a > 0 and y(R) = (y1, . . . , yR) ∈ ΥR. Then the
following inequality holds true,∥∥agl

(
y(R)
)
ψ
∥∥
H(n) ≤

1

RaRmθn(u(R))a

∥∥agl

(
y(R)
)
ψ
∥∥
H(n) . (4.14)

Proof. An application of the pull through formula (1.67) yields∥∥agl

(
y(R)
)
ψ
∥∥
H(n) =

∥∥∥agl

(
y(R)
)
P[M[θn]≤1]ψ

∥∥∥
H(n)

=
∥∥∥P[M[θn]+

∑R
j=1 mθn (uj)≤1]agl

(
y(R)
)
ψ
∥∥∥
H(n)

≤
∥∥∥P[

∑R
j=1 mθn (uj)≤1]agl

(
y(R)
)
ψ
∥∥∥
H(n)

where yj = (uj, Σj, rj). To conclude the proof we define an auxiliary function
f(x) := x ln(x). Since f is convex we obtain for positive numbers a1, . . . , aR ∈ (0, 1]
with

∑R
j=1 aj = 1,

R∑
j=1

ln(a−1
j ) =

R∑
j=1

ajf(a−1
j ) ≥ f

(
R∑

j=1

aja
−1
j

)
= f(R) = R ln(R).
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This implies a1 · · · aR ≤ R−R. For
∑R

j=1 mθn(uj) ≤ 1 set aj := λmθn(uj) ∈ (0, 1]

where λ ≥ 1 is chosen such that
∑R

j=1 aj = 1. It then holds

mθn(u(R)) =
R∏

j=1

mθn(uj) =
R∏

j=1

λ−1aj ≤ (λR)−R ≤ R−R.

and therefore

1 ≤ R−aRmθn(u(R))−a.

This implies (4.14).

Proof of Proposition 4.1. Let ψ, ϕ ∈ H(n) be arbitrary. The application of
Lemma 4.2 with a := 1/2 + µ allows the following computation,∣∣∣〈ψ

∣∣∣W(n)

[
w

(n)
R,S

]
ϕ
〉
H(n)

∣∣∣
=

∣∣∣∣∣∣∣
∫

{M(n)}R+S

dY (R,S)

mθn (Y (R,S))
1/2

〈
ψ
∣∣∣ a∗

gl

(
y(R)
)
w

(n)
R,S

[
Λ[θn]; Y

(R,S)
]
agl

(
ỹ(S)
)
ϕ
〉∣∣∣∣∣∣∣

≤
∫

{M(n)}R+S

dY (R,S)

mθn (Y (R,S))
1/2

sup
q∈Q(n)

∥∥∥w(n)
R,S

[
q; Y (R,S)

]∥∥∥
B(H(n)

<∞)

×
∥∥agl

(
y(R)
)
ψ
∥∥∥∥agl

(
ỹ(S)
)
ϕ
∥∥

≤ 1√
RRSS

∫
{M(n)}R+S

dY (R,S)

supq∈Q(n)

∥∥∥w(n)
R,S

[
q; Y (R,S)

]∥∥∥
B(H(n)

<∞)

mθn (Y (R,S))
1+µ

×
∥∥agl

(
y(R)
)
ψ
∥∥∥∥agl

(
ỹ(S)
)
ϕ
∥∥

≤
√

NR(ψ)NS(ϕ)

RRSS

×

⎡⎢⎣ ∫
{M(n)}R+S

dY (R,S)

mθn (Y (R,S))
3+2µ sup

q∈Q(n)

∥∥∥w(n)
R,S

[
q; Y (R,S)

]∥∥∥2

B(H(n)
<∞)

⎤⎥⎦
1/2

=

√
NR(ψ)NS(ϕ)

RRSS

∥∥∥w(n)
R,S

∥∥∥
(n)

,

where

NR(ψ) :=

∫
{M(n)}R

dy(R)mθn(y(R))
∥∥agl

(
y(R)
)
ψ
∥∥2

.
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We show inductively over R ∈ � that

NR(ψ) ≤
∥∥(M[θn] + ε)R/2ψ

∥∥2

for any ε > 0. This relation is obviously true for R = 1 since N1(ψ) =
〈
ψ
∣∣M[θn]ψ

〉
.

Further, we have for y(R) = (y1, . . . , yR−1, yR) = (y(R−1), yR), yj = (uj, Σj, rj) ∈ Υ,

NR(ψ) =

∫
{M(n)}R−1

dy(R−1)mθn(y(R−1))

×
∫

M(n)

dyR

〈
agl

(
y(R−1)

)
ψ
∣∣ [a∗

gl(yR)mθn(yR)agl(yR)
]
agl

(
y(R−1)

)
ψ
〉

=

∫
{M(n)}R−1

dy(R−1)mθn(y(R−1))
∥∥∥M1/2

[θn]agl

(
y(R−1)

)
ψ
∥∥∥2

=

∫
{M(n)}R−1

dy(R−1)mθn(y(R−1))

×

∥∥∥∥∥∥
(

M[θn]

M[θn] + ε +
∑R−1

j=1 mθn(uj)

)1/2

agl

(
y(R−1)

)
(M[θn] + ε)1/2ψ

∥∥∥∥∥∥
2

≤
∫

{M(n)}R−1

dy(R−1)mθn(y(R−1))
∥∥agl

(
y(R−1)

)
(M[θn] + ε)1/2ψ

∥∥2

= NR−1

(
(M[θn] + ε)1/2ψ

)
,

where we used the pull through formula (1.67). We finally obtain∥∥∥W(n)

[
w

(n)
R,S

]∥∥∥
B(H(n))

= sup
‖ψ‖=‖ϕ‖=1

∣∣∣〈ψ
∣∣∣W(n)

[
w

(n)
R,S

]
ϕ
〉
H(n)

∣∣∣
≤

√
(1 + ε)R+S

RRSS

∥∥∥w(n)
R,S

∥∥∥
(n)

ε→0−−→ 1√
RRSS

∥∥∥w(n)
R,S

∥∥∥
(n)

.

An immediate consequence of Proposition 4.1 is

Corollary 4.3 The map W(n) :→ B(H(n)) is well defined and for w(n) =

(w
(n)
R,S)R+S≥0 ∈W

(n)
# holds∥∥W(n)

[
w(n)
]∥∥

B(H(n))
≤
∥∥w(n)

∥∥#

(n),ξ
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and ∥∥W(n)

[
w(n)
]∥∥

B(H(n))
≤ ξ
∥∥w(n)

∥∥#

(n),ξ

if w
(n)
0,0 = 0.

The Wick monomials of order (0, 0) are functions in Λ[θn]. We decompose the
corresponding space of functions as

W
(n)
0,0 = H(n)

<∞ ⊕ T (n) =
{(

w
(n)
0,0 [0], w

(n)
0,0 [ · ]− w

(n)
0,0 [0]

) ∣∣∣w(n)
0,0 ∈W

(n)
0,0

}
into a direct sum of all possible H(n)

<∞-valued offsets of the functions of (0, 0)-order
and a space

T (n) :=

{
T ∈ C1

(
Q(n);H(n)

<∞

) ∣∣∣∣∣
T (0) = 0, ‖T‖T (n) := sup

q∈Q(n)

‖|∇qT (q)|‖B(H(n)
<∞)

<∞
}

of differentiable functions vanishing at zero. The space T (n) is a Banach space
equipped with the norm ‖ · ‖T (n) . That way we can rewrite

W
(n)
# = H(n)

<∞ ⊕ T (n) ⊕
⊕

R+S≥1

W
(n)
R,S.

Components in T (n) are assigned to functions of the free operators Λ[θn] =
(cos(δ′)Lres,M[θn]),(

w
(n)
(0,0)[ · ]− w

(n)
(0,0)[0]

)
�→
(
w

(n)
(0,0)[Λ[θn]]− w

(n)
(0,0)[0]

)
=: T (n)

[
Λ[θn]

]
,

while components belonging to H(n)
<∞ are mapped under W(n), in the case n =

2, 3, . . . ,N , to multiples of the identity operator,

w
(n)
(0,0)[0] �→ w

(n)
(0,0)[0]�H(n) =: −E(n)

�H(n) ,

representing a spectral shift. In the case n = 1 the component w
(1)
0,0[0] is mapped to

w
(1)
(0,0)[0] �→ w

(1)
(0,0)[0]⊗ �F(L2[Υ]) =: −E(1) ⊗ �F(L2[Υ]),

which represents a multidimensional level shift operator on the particle variables.
The non-scalar situation of the spectral shift requires a separate consideration of the
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renormalization transformation acting on W
(1)
# as we will see later. The components

of W
(n)
R,S, R + S ≥ 1, are mapped to Wick monomials,

w
(n)
R,S �→ W(n)

[
w

(n)
R,S

]
=: W (n),

which represent the space of perturbations to the free operators T (n)[Λ[θn]] − E(n).

Henceforth we will understand an element w(n) = (w
(n)
R,S)R+S≥0 ∈W

(n)
# as an operator

K(n) :=W(n)

[
w(n)
]

= T (n)
[
Λ[θn]

]
− E(n) + W (n) ∈ B(H(n)).

The aim of this chapter is the spectral analysis of operators from the class
W(n)[W

(n)
# ] ⊆ B(H(n)). The renormalization procedure requires that we are able

to treat operators which depend analytically rather than linearly on a spectral pa-
rameter z. Therefore, we introduce the Banach space W(n) of analytic functions

B1/4 � z �→ w(n)[z] ∈W
(n)
#

where we set
Br := {ζ ∈ � | |ζ| < r } .

The space W(n) is equipped with the supremum-norm,∥∥w(n)[ · ]
∥∥

(n),ξ
:= sup

z∈B1/4

∥∥w(n)[z]
∥∥#

(n),ξ
.

ByW(n)

[
W(n)

]
we understand the space of analytic functions B1/4 � z �→ K(n)[z] ∈

W(n)

[
W

(n)
#

]
on B1/4 with values in W(n)

[
W

(n)
#

]
.

4.2 Initial Data for the Renormalization Procedure

It is the aim of the present chapter to iterate the application of the smooth Feshbach
map in order to study the spectrum of K

(s)
θ on smaller scales. As we will see in the

subsequent sections the smooth Feshbach map, embedded in the renormalization
transformation, links operators from the class W(n)[W

(n)
# ] ⊆ B(H(n)) to operators

from W(n+1)[W
(n+1)
# ] ⊆ B(H(n+1)), preserving certain spectral properties. To be in

position to apply the renormalization procedure to the object of interest, namely the
operator K

(s)
θ or rather its image FΞ0,ρ(K

(s)
θ −z, L0,θ−z) under the first application of

the smooth Feshbach map (given in (3.14) and discussed in Section 3.3), we have to
fit it into the framework of Banach spaces of operators just described in the previous
Section 4.1. To this end it is necessary to rewrite FΞ0,ρ(K

(s)
θ − z, L0,θ − z) in terms

of the free operator L0,θ and the Wick monomials.
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We recall the Neumann series expansion (3.15) of the restricted resolvent (K
(s)
θ −

z)−1

Ξ0,ρ
to rewrite the defining expression (3.14) of FΞ0,ρ(K

(s)
θ − z, L0,θ− z) as a series,

FΞ0,ρ

(
K

(s)
θ − z, L0,θ − z

)
= L0,θ − z −

∞∑
L=1

(−g)LΞ0,ρI
(s)
θ

(
Ξ

2

0,ρ

L0,θ − z
I

(s)
θ

)L−1

Ξ0,ρ,

where the absolute convergence of the series is guaranteed by the arguments of the
proof to Lemma 3.5. For a fixed L ∈ � we set

F̃0(λ1, λ2) := X0,ρ(λ2) =: F̃L(λ1, λ2),

F̃�(λ1, λ2) :=
X

2

0,ρ(λ2)

T (0)[λ1, λ2; z]− E(0)[z]
, � = 1, . . . , L− 1,

where we abbreviate

T (0)[λ1, λ2; z] := λ1 + iλ2,

E(0)[z] := z,

and

w
(0)
1,0[λ1, λ2, y; z] := gF

(s)
θ (y)mθ(u)1/2,

w
(0)
0,1[λ1, λ2, ỹ; z] := gF

(s)

θ
(ỹ)∗mθ(ũ)1/2,

w
(0)
R,S := 0, R + S ≥ 2

(4.15)

with F
(s)
θ = [G −G ′

(s �δβ)
]θ as introduced in (2.26) and y = (u, Σ, r), ỹ = (ũ, Σ̃, r̃) ∈ Υ.

We recall the set of notations of Chapter D. Having these notations at hand we can
write

W (0)[z] := gI
(s)
θ =W[θ]

[(
w

(0)
R,S[ · ; z]

)
R+S≥1

]
(see definition (D.6)) and

gLΞ0,ρI
(s)
θ

(
Ξ

2

0,ρ

L0,θ − z
I

(s)
θ

)L−1

Ξ0,ρ

= F̃0(Λ[θ])W
(0)[z]F̃1(Λ[θ])W

(0)[z] · · ·W (0)[z]F̃L−1(Λ[θ])W
(0)[z]F̃L(Λ[θ])

where Λ[θ] = (cos(δ′)Lres,M[θ]) is introduced in Section 4.1 and Appendix D, see
(4.11) and (D.1), resp. The application of Theorem D.3 yields

FΞ0,ρ

(
K

(s)
θ − z, L0,θ − z

)
= W[θ]

[(
ŵ

(1)
R,S[z]

)
R+S≥0

]
≡ T̂ (1)[Λ[θ]; z]− Ê(1)[z] + Ŵ (1)[z]
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where

Ê(1)[z] := −ŵ
(1)
0,0[0; z],

T̂ (1)[λ; z] := ŵ
(1)
0,0[λ; z]− ŵ

(1)
0,0[0; z],

Ŵ (1)[z] :=W[θ]

[(
ŵ

(1)
R,S[ · ; z]

)
R+S≥1

]
and the integral kernels ŵ

(1)
R,S are the symmetrization (in the sense of (D.8)) of the

functions

w̃
(1)
R,S[λ; Y (R,S); z]

:=
∞∑

L=1

(−1)L−1
∑

r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�=1

[
L∏

�=1

(
r� + p�

r�

)(
s� + q�

s�

)]

×X0,ρ

(
λ2 +

[
η

(θ)
0

(
Y (R,S)

)]
2

)
×
〈
W(r1,s1)

[θ]

[
w

(0)
r1+p1,s1+q1

] (
λ + η

(θ)
1

(
Y (R,S)

)
; y

(r1)
1 , ỹ

(s1)
1 ; z

)

×
X

2

0,ρ

(
M[θ] + λ2 +

[
η

(θ)
1

(
Y (R,S)

)]
2
+
∑s1

j=1 mθ

(
ũ

(s1)
1,j

))
T (0)
[
Λ[θ] + λ + η

(θ)
1 (Y (R,S)) +

∑s1

j=1 λθ

(
ũ

(s1)
1,j

)
; z
]
− E(0)[z]

· · ·

×
X

2

0,ρ

(
M[θ] + λ2 +

[
η

(θ)
L−1

(
Y (R,S)

)]
2
+
∑sL−1

j=1 mθ

(
ũ

(sL−1)
L−1,j

))
T (0)
[
Λ[θ] + λ + η

(θ)
L−1 (Y (R,S)) +

∑s1

j=1 λθ

(
ũ

(sL−1)
L−1,j

)
; z
]
− E(0)[z]

×W(rL,sL)
[θ]

[
w

(0)
rL+pL,sL+qL

] (
λ + η

(θ)
L

(
Y (R,S)

)
; y

(rL)
L , ỹ

(sL)
L ; z

)〉
Ωvac

×X0,ρ

(
λ2 +

[
η

(θ)
L

(
Y (R,S)

)]
2
+

sL∑
j=1

mθ

(
ũ

(sL)
L,j

))
,

for R + S ≥ 1 and

ŵ
(1)
0,0[λ; z]

:= T (0)[λ; z]− E(0)[z]

+
∞∑

L=2

(−1)L−1
∑

p1,q1,...,pL,qL:
p�+q�=1

X0,ρ (λ2)

×
〈
W(0,0)

[θ]

[
w(0)

p1,q1

]
(λ; z)

X
2

0,ρ

(
M[θ] + λ2

)
T (0)
[
Λ[θ] + λ; z

]
− E(0)[z]
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× · · · ×
X

2

0,ρ

(
M[θ] + λ2

)
T (0)
[
Λ[θ] + λ; z

]
− E(0)[z]

W(0,0)
[θ]

[
w(0)

pL,qL

]
(λ; z)

〉
Ωvac

X0,ρ (λ2) ,

where λ = (λ1, λ2), [(λ1, λ2)]j := λj and the functions η
(θ)
� are defined in (D.10).

The notation for the partially integrated Wick monomials W(r�,s�)
[θ]

[
w

(0)
r�+p�,s�+q�

]
is

explained in (D.7), the vacuum expectation value 〈 · 〉Ωvac
in (D.2).

The operator FΞ0,ρ(K
(s)
θ − z, L0,θ − z) is defined on ran(P0,ρ) = ker(Lp) ⊗

P[M[θ]≤ρ]F [L2(Υ)]. We use the unitary rescaling operator Sρ defined in (D.12) and

the rescaling map Sρ acting on an operator A like

Sρ(A) = ρ−1SρAS−1
ρ ,

given in (D.13), Appendix D.2, to blow up the domain. We refer to Appendix D.2
for a detailed discussion of Sρ, in particular one shall consult (D.14) for the scaling
properties of the bosonic variables. As a consequence we get with the functional
calculus

SρP[M[θ]≤ρ]F(L2[Υ]) = P[SρM[θ]S
−1
ρ ≤ρ]SρF(L2[Υ]) = P[ρM[θ1]≤ρ]F(L2[Υ])

where θ1 = (iδ′, iρ−1τ ′). We define the family of operators

K(1)[z] := Sρ

(
FΞ0,ρ

(
K

(s)
θ − Z(0)[z], L0,θ − Z(0)[z]

))
, |z| < 1

4
, (4.16)

which lives on the space

H(1) = ker(Lp)⊗
[
P[M[θ1]≤1]F(L2[Υ])

]
.

The spectral parameter z is adjusted by the function

Z(0) : B1/4 → Bρ/4, Z(0)[z] := ρz. (4.17)

The isospectral property of the Feshbach map, Theorem E.1, and the fact that Sρ

leaves the dimension of the kernel invariant implies the following equivalence,

Z(0)[z] ∈ spec
(
K

(s)
θ

)
⇐⇒ 0 ∈ spec

(
K(1)[z]

)
(4.18)

for all z ∈ B1/4.

Consulting Proposition D.4 we see that this family of operators can be written as

K(1)[z] =W[θ1]

[(
w

(1)
R,S[ · ; z]

)
R+S≥0

]
= T (1)[Λ[θ1]; z]− E(1)[z] + W (1)[z], (4.19)
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for

E(1)[z] := −w
(1)
0,0[0, z] = −ρ−1Ê(1)[ρz],

T (1)[λ; z] := w
(1)
0,0[λ, z]− w

(1)
0,0[0, z] = ρ−1T̂ (1)[ρλ; ρz],

W (1)[z] :=W[θ1]

[(
w

(1)
R,S[ · ; z]

)
R+S≥1

]
.

(4.20)

The rescaling procedure transfers to the integral kernels which are modified by sρ,
given in (D.15). The rescaled integral kernels read

w
(1)
R,S[λ; Y (R,S); z] := sρ

(
ŵ

(1)
R,S[ · ; ρz]

)
[λ; Y (R,S)] (4.21)

= ρ−1

∞∑
L=1

(−1)L−1
∑

r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�=1

[
L∏

�=1

(
r� + p�

r�

)(
s� + q�

s�

)]

×V (1)
r,p,s,q

L
[λ; Y (R,S); z]

where we abbreviate for, fixed L ∈ �, the tuple r, p, s, q
L

:= (r�, p�, s�, q�)
L
�=1 ∈

(�0)
4L. The function V

(1)
r,p,s,q

L
is the symmetrization (in the sense of (D.8)) of

Ṽ (1)
r,p,s,q

L
[λ; Y (R,S); z] := (4.22)

X0,1

(
λ2 +

[
η

(θ1)
0

(
Y (R,S)

)]
2

)
×
〈
W(r1,s1)

[θ]

[
w

(0)
r1+p1,s1+q1

] (
ρ
(
λ + η

(θ1)
1

(
Y (R,S)

)
; y

(r1)
1 , ỹ

(s1)
1 ; z

))

×
X

2

0,1

(
ρ−1M[θ] + λ2 +

[
η

(θ1)
1

(
Y (R,S)

)]
2
+
∑s1

j=1 mθ1

(
ũ

(s1)
1,j

))
T (0)
[
Λ[θ] + ρ

(
λ + η

(θ1)
1 (Y (R,S)) +

∑s1

j=1 λθ1

(
ũ

(s1)
1,j

))
; ρz
]
− E(0)[ρz]

· · ·

×
X

2

0,1

(
ρ−1M[θ] + λ2 +

[
η

(θ1)
L−1

(
Y (R,S)

)]
2
+
∑sL−1

j=1 mθ1

(
ũ

(sL−1)
L−1,j

))
T (0)
[
Λ[θ] + ρ

(
λ + η

(θ1)
L−1 (Y (R,S)) +

∑s1

j=1 λθ1

(
ũ

(sL−1)
L−1,j

))
; ρz
]
− E(0)[ρz]

×W(rL,sL)
[θ]

[
w

(0)
rL+pL,sL+qL

] (
ρ
(
λ + η

(θ1)
L

(
Y (R,S)

)
; y

(rL)
L , ỹ

(sL)
L ; z

))〉
Ωvac

×X0,1

(
λ2 +

[
η

(θ1)
L

(
Y (R,S)

)]
2
+

sL∑
j=1

mθ1

(
ũ

(sL)
L,j

))
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for R + S ≥ 1 and

w
(1)
0,0[λ; z] (4.23)

:= ρ−1
(
T (0)[ρλ; ρz]− E(0)[ρz]

)
+ρ−1

∞∑
L=2

(−1)L−1
∑

p1,q1,...,pL,qL:
p�+q�=1

X0,1 (λ2)

×
〈
W(0,0)

[θ]

[
w(0)

p1,q1

]
(ρλ; ρz)

X
2

0,1

(
ρ−1M[θ] + λ2

)
T (0)
[
Λ[θ] + ρλ; ρz

]
− E(0)[ρz]

× · · · ×
X

2

0,1

(
ρ−1M[θ] + λ2

)
T (0)
[
Λ[θ] + ρλ; ρz

]
− E(0)[ρz]

W(0,0)
[θ]

[
w(0)

pL,qL

]
(ρλ; ρz)

〉
Ωvac

×X0,1 (λ2) .

One easily checks the above relations using that

η(θ)(ρY (R,S)) = ρη(θ1)(Y (R,S)), mθ(ρu) = ρmθ1(u)

and
X0,ρ(ρx) = X0,1(x), X0,ρ(ρx) = X0,1(x).

Note that the first term in the expansion of w
(1)
0,0[λ; z] is given by

ρ−1
(
T (0)[ρλ; ρz]− E(0)[ρz]

)
= T (0)[λ; z]− E(0)[z] = (λ1 + iλ2)− z. (4.24)

We connect the representation (3.20) with (4.19) by making the following obser-
vation. Because of〈

W[θ1]

[(
w

(1)
R,S[ · ; z]

)
R+S≥1

]〉
Ωvac

= 0,
〈
T (1)[Λ[θ1]; z]

〉
Ωvac

= T (1)[0; z] = 0

the term E(1)[z] in (4.19) is determined by

E(1)[z] = −
〈
K(1)[z]

〉
Ωvac

and therefore, with the help of (3.20),

E(1)[z] = −
〈
Sρ

(
FΞ0,ρ(K

(s)
θ − ρz, L0,θ − ρz)

)〉
Ωvac

= z − g2

ρ
Λ

(s)
0 +O

(
g2+ε̃

ρ

)
, (4.25)

where the remainder term O
(
g2+ε̃ρ−1

)
= O

(
g(4+ε̃)/3

)
is estimated uniformly in

|z| < 1/4.
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We now show that the operator family z �→ K(1)[z] qualifies as initial data for

the renormalization procedure, i.e., the integral kernels w
(1)
R,S generating K(1) and

defined in (4.21) build an element in W(1).

Proposition 4.4 The sequence w(1) :=
(
−E(1), T (1), w

(1)
R,S

)
R+S≥1

of integral kernels

given in (4.20, 4.21, 4.23) obeys the following bounds,

∥∥∥∥(w(1)
R,S

)
R+S≥1

∥∥∥∥
(1),ξ

= O (gρµ) = O
(
g1+2µ/3(1+ε̃)

)
,

sup
z∈B1/4

∥∥E(1)[z]− z
∥∥
B(ker(Lp))

≤ g2

ρ

∥∥∥Λ(s)
0

∥∥∥
B(ker(Lp))

+O
(

g2+ε̃

ρ

)
= O

(
g1+(1−2ε̃)/3

)
,

sup
z∈B1/4,

λ∈Q(1)

∥∥∥∥∣∣∣∣∇λT
(1)[λ; z]−

(
1
i

)∣∣∣∣∥∥∥∥
B(ker(Lp))

= O
(

g2

ρ2

)
= O

(
g(2−4ε̃)/3

)
.

(4.26)

The last estimate in (4.26) can be improved,

sup
z∈B1/4,

λ∈Q(1)

∥∥T (1)[λ; z]− (λ1 + iλ2)
∥∥
B(ker(Lp))

= O
(

gρµ +
g2

ρ

)
. (4.27)

Proof. Recall the definition (4.21) of w
(1)
R,S in terms of the functions Ṽ

(1)
r,p,s,q

L

given in (4.22). Plugging the bounds on Ṽ
(1)
r,p,s,q

L
provided in Lemma 4.10(iii) (see

below) into (4.21) we get

sup
z∈B1/4

∥∥∥w(1)
R,S[ · ; z]

∥∥∥#

(1)

≤
∞∑

L=1

Cχ1(L + 1)

(
Cχ1

ρ

)L (
2ρ1+µ

)R+S
∑

r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�=1

(
2gM(ω(0))

)L

where 1 ≤ Cχ1 < ∞ is the constant introduced in (4.6), only depending on the

cutoff function χ1. We further used that

(
j + k

j

)
≤ 2j+k and

∏L
�=1 2p�+q� ≤ 2L
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since r� + p� + s� + q� = 1. Summing over R + S ≥ 1 yields∥∥∥∥(w(1)
R,S

)
R+S≥1

∥∥∥∥
(1),ξ

=
∑

R+S≥1

ξ−(R+S) sup
z∈B1/4

∥∥∥w(1)
R,S[ · ; z]

∥∥∥#

(1)

≤ 2Cχ1ρ
1+µ

∞∑
L=1

(L + 1)

(
Cχ1

ρ

)L ∑
R+S≥1

ξ−(R+S)

×
∑

r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�=1

(
2gM(ω(0))

)L

≤ 2Cχ1ρ
1+µ

∞∑
L=1

(L + 1)

(
Cχ1

ρ

)L
[
2ξ−1gM(ω(0))

∑
r+s=1

(
r∑

p=0

ξp

)(
s∑

q=0

ξq

)]L

≤ 2Cχ1ρ
1+µ

∞∑
L=1

(L + 1)

[
6Cχ1gM(ω(0))

ρξ(1− ξ)2

]L

≤
96C2

χ1
ρµgM(ω(0))

ξ(1− ξ)2

where we used

∞∑
L=1

(L + 1)xL =
d

dx

∞∑
L=0

xL − 1 =
1

(1− x)2
− 1 = x

2− x

(1− x)2
≤ 8x, 0 ≤ x ≤ 1

2
.

This relation is applicable due to (3.4, 4.5, 4.8) and

g

ρ

6Cχ1M(ω(0))

ξ(1− ξ)2
≤ g1/6 128M(ω(0))

3
C2

χ1
(16Cχ1)

1/µ ≤ 1

2
,

for g sufficiently small. Under the assumptions (3.4, 4.5, 4.8) on the involved pa-
rameters we have∥∥∥∥(w(1)

R,S

)
R+S≥1

∥∥∥∥
(1),ξ

≤
96C2

χ1
ρµgM(ω(0))

ξ(1− ξ)2

≤ g1+2µ/3(1+ε̃)1536M(ω(0))C3
χ1

(16Cχ1)
1/µ

The relation (4.25) allows a simple estimate of

sup
z∈B1/4

∥∥E(1)[z]− z
∥∥
B(ker(Lp))

≤ g2

ρ

∥∥∥Λ(s)
0

∥∥∥
B(ker(Lp))

+O
(

g2+ε̃

ρ

)
.
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It remains to estimate the deviation of T (1) from the function (λ1, λ2) �→ λ1 + iλ2.
To this end we consider the representation (4.23) and recall the relation (4.24) to
compute

sup
z∈B1/4,

λ∈Q(1)

∥∥∥∥∣∣∣∣∇λT
(1)[λ; z]−

(
1
i

)∣∣∣∣∥∥∥∥
B(ker(Lp))

≤ ρ−1

∞∑
L=2

∑
p1,q1,...,pL,qL:

p�+q�=1

sup
z∈B1/4,

λ∈Q(1)

∥∥∥∣∣∣∇λV
(1)
0,p,0,q

L
[λ; z]

∣∣∣∥∥∥
B(ker(Lp))

≤
∞∑

L=2

Cχ1(L + 1)

(
Cχ1

ρ

)L ∑
p1,q1,...,pL,qL:

p�+q�=1

(
gM(ω(0))

)L
≤ Cχ1

∞∑
L=2

(L + 1)

(
2Cχ1gM(ω(0))

ρ

)L

≤ 12Cχ1

(
2Cχ1gM(ω(0))

ρ

)2

=
g2

ρ2
48C3

χ1
M(ω(0))2,

where we used that

∞∑
L=2

(L + 1)xL =
d

dx

[ ∞∑
L=0

xL − x− x2

]
=

1

(1− x)2
− 1− 2x = x2 3− 2x

(1− x)2
≤ 12x2,

for 0 ≤ x ≤ 1
2
, and

2Cχ1gM(ω(0))

ρ
≤ 1

2

for g sufficiently small.

To establish (4.27) we recall the definition (4.12) of Q(1) and apply functional
calculus to the pair Λ[θ1] = (cos(δ′)Lres,M[θ1]) of normal operators,

sup
λ∈Q(1)

∥∥T (1)[λ; z]− (λ1 + iλ2)
∥∥
B(ker(Lp))

=
∥∥T (1)[Λ[θ1]; z]− L0,θ1

∥∥
B(H(1))

≤
∥∥∥∥K(1)[z]− L0,θ1 + z − g2

ρ
Λ

(s)
0 ⊗ χ2

1(M[θ1])

∥∥∥∥
B(H(1)))

+

∥∥∥∥E(1)[z]− z +
g2

ρ
Λ

(s)
0

∥∥∥∥
B(ker(Lp))

+
g2

ρ

∥∥∥Λ(s)
0 ⊗ χ2

1(M[θ1])
∥∥∥
B(H(1))
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+ξ

∥∥∥∥(w(1)
R,S

)
R+S≥1

∥∥∥∥
(1),ξ

= O
(

g2

ρ

)
+O (gρµ) ,

uniformly in z ∈ B1/4, by (4.25, 4.26), Proposition 3.7 and Corollary 4.3.

The analyticity of z �→ w(1)[z] follows from Lemma 4.10(iii) and the absolute
convergence (uniformly in the parameter z ∈ B1/4) of the above series of analytic

functions z �→ V
(1)
r,p,s,q

L
[ · ; z].

4.3 The Renormalization Transformation

We are now prepared to introduce the renormalization transformation R(1)
ρ∗ ,R(n)

ρ∗∗ ,
n = 2, 3, . . . ,N , which acts on suitable poly-discs in W(n) given by

D(n)(ε, η) :=

{
w(n) =

(
−E(n)[ · ], T (n)[ · ],

(
w

(n)
R,S[ · ]

)
R+S≥1

)
∈W(n)

∣∣∣∣∣
sup

z∈B1/4,

q∈Q(n)

∥∥∥∥∣∣∣∣∇qT
(n)[q; z]−

(
1
i

)∣∣∣∣∥∥∥∥
B(H(n)

<∞)

≤ ε,

sup
z∈B1/4

∥∥E(n)[z]− z
∥∥
B(H(n)

<∞)
≤ η,

∥∥∥∥(w(n)
R,S[ · ]

)
R+S≥1

∥∥∥∥
(n),ξ

≤ η

}
for suitable ε, η > 0. This poly-disc is a collection of all elements w(n) in W(n)

which are close to the element w
(n)
∗ := (z �→ −z, (q1, q2; z) �→ (q1 + iq2), 0), i.e.,

W(n)[w
(n)[z]] is close to the operator

W(n)[w
(n)
∗ [z]] = cos(δ′)Lres + iM[θn] − z = L0,θn �H(n) −z.

The renormalization transformation is a composition of three operations: a deci-
mation of degrees of freedom via the smooth Feshbach map followed by a rescaling
procedure and an adjustment of spectral parameters. These operations are explained
in subsequent subsections.

4.3.1 Adjustment of Spectral Parameters

The first ingredient to the renormalization transformation, the smooth Feshbach
map, is only defined for spectral parameters on a scale ρ∗∗ (ρ∗ for the first iteration
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step) rather than for all z ∈ B1/4, reflecting the fact that the Feshbach map allows
the spectral analysis on a smaller scale. We forestall the needed transformation of
spectral parameters from B1/4 to a proper scale before we discuss the Feshbach map
in Section 4.3.2

For w(1) = (−E(1), T (1), (w
(1)
R,S)R+S≥1) as defined in (4.21, 4.23) and for w(n) =

(−E(n), T (n), (w
(n)
R,S)R+S≥1) ∈ D(n)(ε, η), n = 2, 3, . . . ,N , we define the complex sets

D
[
w(1)
]

:=
{

z ∈ B1/4

∣∣∣ ∣∣∣〈E(1)
〉

Ωp
[z]
∣∣∣ < ρ∗/4

}
=
〈
E(1)
〉−1

Ωp
[Bρ∗/4], (4.28)

and

D
[
w(n)
]

:=
{
z ∈ B1/4

∣∣ ∣∣E(n)[z]
∣∣ < ρ∗∗/4

}
= E(n)−1

[Bρ∗∗/4], (4.29)

for n = 2, 3, . . . ,N , as the collection of all spectral parameters z which allow an
application of the Feshbach map to W(n)

[
w(n)[z]

]
. Hereby, the function

〈
E(1)
〉

Ωp
is

defined by〈
E(1)
〉

Ωp
: B1/4 → �,

〈
E(1)
〉

Ωp
[z] :=

〈
Ωp

∣∣E(1)[z]Ωp

〉
ker(Lp)

and it inherits the analytic properties from E(1). As a simple consequence we ob-
tain the following lemma which locates the set D

[
w(n)
]

and describes the mapping

properties of
〈
E(1)
〉

Ωp
and E(n) on D

[
w(n)
]
.

Lemma 4.5 Let n = 1, . . . ,N and set ρ̃ := ρ∗ in the case n = 1 and ρ̃ := ρ∗∗ for
n = 2, 3, . . . ,N . Assume 0 < ρ̃ ≤ 1

20
(in addition to the previous assumptions on

ρ∗ and ρ∗∗). Let w(1) as defined in (4.21, 4.23) and choose w(n) ∈ D(n)(ε, η) with
0 < η ≤ ρ̃/16 for n = 2, 3, . . . ,N . We assume that g is sufficiently small and that
|βmax − βmin| � 1.

(i) Then, the following inclusion holds true

B3ρ̃/16 ⊆ Bρ̃/4−η ⊆ D
[
w(n)
]
⊆ Bρ̃/4+η ⊆ B5ρ̃/16. (4.30)

(ii) We have ∣∣∣∂z

〈
E(1)
〉

Ωp
[z]− 1

∣∣∣ ≤ 7η ≤ 7

16
ρ̃, n = 1,∣∣∂zE

(n)[z]− 1
∣∣ ≤ 7η ≤ 7

16
ρ̃, n = 2, 3, . . . ,N ,

(4.31)

for all |z| ≤ 1
32

.
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(iii) The function

R(n) : D
[
w(n)
]
→ B1/4, R(n)[z] :=

{
ρ−1
∗
〈
E(1)
〉

Ωp
[z], n = 1,

ρ−1
∗∗ E(n)[z], n = 2, 3, . . . ,N

is biholomorphic, i.e., it is bijective and its inverse

Z(n) :=
[
R(n)
]−1

: B1/4 → D
[
w(n)
]

(4.32)

is a holomorphic function obeying∣∣∂zZ
(n)[z]− ρ̃

∣∣ ≤ 12ρ̃η (4.33)

for all z ∈ B1/4.

Proof.

(i) We start with the observation that, in the case n = 1,∣∣∣〈E(1)
〉

Ωp
[z]− z

∣∣∣ =
g2

ρ

∣∣∣〈Ωp

∣∣∣Λ(s)
0 Ωp

〉∣∣∣+O(g2+ε̃

ρ

)
=

g2

ρ

[∣∣∣〈Ωp

∣∣∣ (Λ(s)
0 − Λ

(s)
0 |βmax=βmin=βp

)
Ωp

〉∣∣∣+O (gε̃
)]

= ρ∗O
(
|βmax − βmin|+ gε̃

)
< η

for |βmax − βmin| � 1 and g sufficiently small, recall (4.25). We used that the

level shift operator Λ
(s)
0 |βmax=βmin=βp in the equal temperature situation has Ωp

as zero eigenvector,

Λ
(s)
0 |βmax=βmin=βpΩp = i

R∑
r=1

Γ0,r|βr=βpΩp = 0

and that Λ
(s)
0 − Λ

(s)
0 |βmax=βmin=βp is of order |βmax − βmin|. We first prove the

inclusion (4.30). Let z ∈ Bρ̃/4−η, then, in the case n = 1,∣∣∣〈E(1)
〉

Ωp
[z]
∣∣∣ ≤ ∣∣∣〈E(1)

〉
Ωp

[z]− z
∣∣∣+ |z| < η +

ρ∗
4
− η =

ρ∗
4

,

and, for n = 2, 3, . . . ,N ,∣∣E(n)[z]
∣∣ ≤ ∣∣E(n)[z]− z

∣∣+ |z| < η +
ρ∗∗
4
− η =

ρ∗∗
4

.
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For z ∈ D
[
w(n)
]

we have, for n = 1,

|z| ≤
∣∣∣〈E(1)

〉
Ωp

[z]− z
∣∣∣+ ∣∣∣〈E(1)

〉
Ωp

[z]
∣∣∣ < η +

ρ∗
4

,

and, for n = 2, 3, . . . ,N ,

|z| ≤
∣∣E(n)[z]− z

∣∣+ ∣∣E(n)[z]
∣∣ < η +

ρ∗∗
4

.

(ii) We go over to prove (4.31). We restrict ourselves to the case n = 2, 3, . . . ,N ,
the case n = 1 is similar. Let |z| ≤ 1

32
. Cauchy’s Integral formula applied to

the holomorphic function E(n) and (4.30) yield, for ρ∗∗/4 + η < a < 1/4,

∣∣∂zE
(n)[z]− 1

∣∣ =

∣∣∣∣∣∣∣
1

2πi

∮
|ζ|=a

E(n)[ζ]− ζ

(ζ − z)2
dz

∣∣∣∣∣∣∣
≤ a sup

|ζ|≤a

∣∣E(n)[ζ]− ζ
∣∣ sup
|ζ|=a

1

|ζ − z|2

<
aη

(a− |z|)2
<

aη

(a− 1
32

)2

≤ 7η ≤ 7

16
ρ∗∗ ≤

7

320

where we chose a = 7
32

.

(iii) The relation (4.31) implies that the function z �→ E(n)[z] is injective on B1/32

with holomorphic inverse.

Now, we show surjectivity of E(n) : D
[
w(n)
]
→ Bρ̃/4. We first observe that

E(n)
[
D
[
w(n)
]]
⊆ E(n)

[
B1/40

]
since D

[
w(n)
]
⊆ B5ρ̃/16 ⊆ B1/40 (for ρ̃ ≤ 1

20
) and

E(n) is injective on the even bigger ball B1/32. Assume that E(n)
[
D
[
w(n)
]]

�

Bρ̃/4, i.e., there exists ζ ∈ E(n)
[
B1/40 \D

[
w(n)
]]
∩Bρ̃/4. Thus, z := E(n)−1

[ζ] ∈
B1/40 \ D

[
w(n)
]
. This implies

∣∣E(n)[z]
∣∣ = |ζ| < ρ̃/4 which is in contradiction

to z �∈ D
[
w(n)
]
.

The bijectivity of R(n) = ρ̃−1E(n) : D
[
w(n)
]
→ B1/4 guarantees the existence

of the inverse function Z(n) : B1/4 → D
[
w(n)
]

and its derivative fulfils

∣∣∂zZ
(n)[z]− ρ̃

∣∣ =

∣∣∣∣ 1

R(n)′ [Z(n)[z]]
− ρ̃

∣∣∣∣ = ρ̃

∣∣∣∣∣1− E(n)′ [Z(n)[z]
]

E(n)′ [Z(n)[z]]

∣∣∣∣∣
≤ ρ̃

∣∣∣1− E(n)′ [Z(n)[z]
]∣∣∣

1−
∣∣1− E(n)′ [Z(n)[z]]

∣∣ ≤ 7ρ̃η
1

1− 7η

≤ 12ρ̃η
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for all z ∈ B1/4, where the prime stands for the derivative w.r.t. the spectral
parameter.

The function z �→ Z(n)[z] is the appropriate adjustment of spectral parameters
from the disc B1/4 to D

[
w(n)
]

which is comparable to a ball of radius ρ̃/4 = ρ∗/4, for
n = 1, and ρ̃/4 = ρ∗∗/4, for n = 2, 3, . . . ,N . The implication of the estimate (4.33)
is that the map Z(n) first shrinks the domain B1/4 by a factor ρ̃ and then performs
a parallel shift given by the complex number Z(n)[0] – up to higher order correction
terms. The following corollary rephrases the fact in a mathematical language.

Corollary 4.6 Let n = 1, . . . ,N and set ρ̃ := ρ∗ in the case n = 1 and ρ̃ := ρ∗∗ for
n = 2, 3, . . . ,N . Under the assumption of Lemma 4.5 we have for the adjustment
function Z(n) defined in (4.32) the following expansion,∣∣Z(n)[z]− Z(n)[ζ]− ρ̃(z − ζ)

∣∣ ≤ 12ρ̃η|z − ζ|,

for all z, ζ ∈ B1/4.

4.3.2 Decimation of Degrees of Freedom via Smooth Feshbach
Map: Iteration Step n = 2, 3, . . . ,N

Given an operator of type

K(n)[z] =W(n)

[
w(n)[z]

]
= T (n)

[
Λ[θn]; z

]
− E(n)[z] + W (n)[z], (4.34)

gained by an element w(n) ∈ D(n)(ε, η), the renormalization procedure shall provide
a method to obtain detailed information about the spectrum of K(n)[z] around
the origin on decreasing scales which is not accessible by standard perturbative
arguments treating T (n)

[
Λ[θn]; z

]
− E(n)[z] as a free operators (whose spectrum is

considered to be understood) and W (n)[z] as an interaction term. The smooth
Feshbach map provides an opportunity to encode the spectral information of K(n)[z]
on a scale ρ∗∗ as the spectrum of an operator which lives on a spectral subspace.
Transferring the analysis of K(n)[z] to an operator on a spectral subspace can be
understood as an effective decimation of degrees of freedom.

The application of the smooth Feshbach map requires a smooth cutoff function
χρ∗∗ : �+

0 → [0, 1] as introduced in Section 3.3, Equations (3.9) through (3.11).
Given this function we define a smooth “projection” operator

Ξ(n)
ρ∗∗ := χρ∗∗

(
M[θn]

)
,
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and its complementary “projection” operator by

Ξ
(n)

ρ∗∗ :=

√
�H(n) − Ξ

(n)
ρ∗∗

2
= χρ∗∗(M[θn]).

We further introduce orthogonal projections on the range of the operators Ξ
(n)
ρ∗∗ and

Ξ
(n)

ρ∗∗ . We define

P (n)
ρ∗∗ : orthogonal projection on ran

(
Ξ(n)

ρ∗∗

)
, P (n)⊥

ρ∗∗ := �H(n) − P (n)
ρ∗∗ ,

P
(n)

ρ∗∗ : orthogonal projection on ran
(
Ξ

(n)

ρ∗∗

)
, P

(n)⊥
ρ∗∗ := �H(n) − P

(n)

ρ∗∗ ,

and note that

P (n)
ρ∗∗ = P[M[θn]<ρ∗∗],

P
(n)

ρ∗∗ = P[M[θn]>
7
8
ρ∗∗],

P (n)⊥
ρ∗∗ = P[M[θn]≥ρ∗∗],

P
(n)⊥
ρ∗∗ = P[M[θn]≤ 7

8
ρ∗∗].

Subsequently, we show that for w(n) ∈ D(n)(ε, η) and z ∈ D[w(n)] the operator
K(n)[z] = T (n)[Λ[θn]; z]− E(n)[z] + W (n)[z], n = 2, 3, . . . ,N , given in (4.34) together

with the unperturbed part T (n)[Λ[θn]; z] − E(n)[z] build a Ξ
(n)
ρ∗∗-Feshbach pair in the

sense of Appendix E.

Lemma 4.7 Let 0 < ρ∗∗ ≤ 1
20

(in addition to the previous assumptions on ρ∗∗) and

choose for n = 2, 3, . . .N an element w(n) =
(
−E(n), T (n), (w

(n)
R,S)R+S≥1

)
∈ D(n)(ε, η)

with 0 < ε, η ≤ ρ∗∗/16.

(i) For q = (q1, q2) ∈ Q(n) with q2 ∈ [7
8
ρ∗∗, 1] holds∣∣T (n)[q; z]− E(n)[z]

∣∣ ≥ ρ∗∗
2

for all z ∈ D[w(n)] and therefore T (n)[Λ[θn]; z] − E(n)[z] is invertible on

ran
(
Ξ

(n)

ρ∗∗

)
and its inverse is bounded by

∥∥∥∥∥ P
(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]

∥∥∥∥∥
B(H(n))

≤ 2

ρ∗∗
.



204 4. Smooth Feshbach Iteration and Renormalization

(ii) For any z ∈ D[w(n)] the operator

K(n)[z] :=W(n)

[
w(n)
]

= T (n)[Λ[θn]; z]− E(n)[z] + W (n)[z]

together with the free part T (n)[Λ[θn]; z] − E(n)[z] build a Ξ
(n)
ρ∗∗-Feshbach pair,

i.e., the operator

K(n)[z]
Ξ

(n)
ρ∗∗

= T (n)[Λ[θn]; z]− E(n)[z] + Ξ
(n)

ρ∗∗W
(n)[z]Ξ

(n)

ρ∗∗

is bounded invertible on the range of Ξ
(n)

ρ∗∗.

Proof.

(i) We compute for q = (q1, q2) ∈ Q(n) with q2 ∈ [7
8
ρ∗∗, 1] and z ∈ D[w(n)],∣∣T (n)[q; z]− E(n)[z]

∣∣ ≥ |q1 + iq2| −
∣∣T (n)[q; z]− (q1 + iq2)

∣∣− |E(n)[z]|

≥ |q| − sup
q̃∈Q(n)

∣∣∣∣∇q̃T
(n)[q̃; z]−

(
1
i

)∣∣∣∣ |q| − |E(n)[z]|

≥ |q| (1− ε)− ρ∗∗
4
≥ 7

8
ρ∗∗

(
1− ρ∗∗

16

)
− ρ∗∗

4

≥ ρ∗∗
2

.

This estimate and the functional calculus imply∥∥∥∥∥ P
(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]

∥∥∥∥∥
B(H(n))

= sup
(q1,q2)∈Q(n)

∣∣∣∣∣ P[q2≥ 7
8
ρ∗∗]

T (n)[q1, q2; z]− E(n)[z]

∣∣∣∣∣
≤ 2

ρ∗∗
.

(ii) Apparently, the operators Ξ
(n)
ρ∗∗ , Ξ

(n)

ρ∗∗ and T (n)[Λ[θn]; z]−E(n)[z] commute mutu-

ally. Since further W (n)[z] is a bounded operator, it is sufficient to prove invert-

ibility of K(n)[z]
Ξ

(n)
ρ∗∗

on ran
(
Ξ

(n)

ρ∗∗

)
to show that (K(n)[z], T (n)[Λ[θn]; z]−E(n)[z])

is a Ξ
(n)
ρ∗∗-Feshbach pair. We invert K(n)[z]

Ξ
(n)
ρ∗∗

by expansion in a norm conver-

gent Neumann series,

P
(n)

ρ∗∗K
(n)[z]−1

Ξ
(n)
ρ∗∗

P
(n)

ρ∗∗ (4.35)

= P
(n)

ρ∗∗

(
1 +

Ξ
(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]
W (n)[z]Ξ

(n)

ρ∗∗

)−1

P
(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]

= P
(n)

ρ∗∗

∞∑
L=0

(
−

Ξ
(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]
W (n)[z]Ξ

(n)

ρ∗∗

)L

P
(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]
,
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where

∥∥∥∥∥ Ξ
(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]
W (n)[z]Ξ

(n)

ρ∗∗

∥∥∥∥∥
B(H(n))

≤
∥∥∥∥∥ P

(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]

∥∥∥∥∥
B(H(n))

∥∥W (n)[z]
∥∥
B(H(n))

≤ 2

ρ∗∗
ξ

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥
(n),ξ

≤ 2

ρ∗∗
ξη

≤ ξ

8
< 1

where we use the embedding Corollary 4.3.

Lemma 4.7 guarantees that the smooth Feshbach map F
Ξ

(n)
ρ∗∗

may be applied to

the pair (K(n)[z], T (n)[Λ[θn]; z] − E(n)[z]) for K(n)[z] given in (4.34) with w(n) ∈
D(n)(ρ∗∗/16, ρ∗∗/16) and z ∈ D[w(n)]. We use the expansion (4.35) to rewrite the
image under the Feshbach map as

F
Ξ

(n)
ρ∗∗

(
K(n)[z], T (n)[Λ[θn]; z]− E(n)[z]

)
(4.36)

= T (n)[Λ[θn]; z]− E(n)[z] + Ξ(n)
ρ∗∗W

(n)[z]Ξ(n)
ρ∗∗

−Ξ(n)
ρ∗∗W

(n)[z]Ξ
(n)

ρ∗∗K
(n)[z]−1

Ξ
(n)
ρ∗∗

Ξ
(n)

ρ∗∗W
(n)[z]Ξ(n)

ρ∗∗

= T (n)[Λ[θn]; z]− E(n)[z] + Ξ(n)
ρ∗∗W

(n)[z]Ξ(n)
ρ∗∗

−
∞∑

L=0

Ξ(n)
ρ∗∗W

(n)[z]Ξ
(n)

ρ∗∗

(
−

Ξ
(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]
W (n)[z]Ξ

(n)

ρ∗∗

)L

×
Ξ

(n)

ρ∗∗

T (n)[Λ[θn]; z]− E(n)[z]
W (n)[z]Ξ(n)

ρ∗∗

= T (n)[Λ[θn]; z]− E(n)[z]

+
∞∑

L=0

Ξ(n)
ρ∗∗W

(n)[z]

⎛⎝− Ξ
(n)

ρ∗∗

2

T (n)[Λ[θn]; z]− E(n)[z]
W (n)[z]

⎞⎠L

Ξ(n)
ρ∗∗ .
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4.3.3 Rescaling Bosonic Variables and Renormalization
Transformation: Iteration Step n = 2, 3, . . . ,N

For a given w(n) ∈ D(n)(ε, η), ε, η ≤ ρ∗∗/16, we could build in the previous section
an operator F

Ξ
(n)
ρ∗∗

(
K(n)[z], T (n)[Λ[θn]; z]− E(n)[z]

)
given in (4.36) which acts on the

reduced Hilbert space P
(n)
ρ∗∗H(n) = P[M[θn]≤ρ∗∗]F(L2[Υ]). The aim of this section is

to rescale the bosonic variables Laux, Lres and Nres within the operator (4.36) such
that it lives on a spectral subspace where the variable M[θn] is of order one rather
than of order ρ∗∗. To this end we employ the unitary rescaling operator Sρ∗∗ defined
in (D.12) and the rescaling map Sρ∗∗ acting on an operator A like

Sρ∗∗(A) = ρ−1
∗∗ Sρ∗∗AS−1

ρ∗∗ .

We refer to Appendix D.2 and (D.14) for details on Sρ∗∗ . Consequently we get with
the functional calculus

Sρ∗∗P
(n)
ρ∗∗H

(n) = Sρ∗∗P[M[θn]≤ρ∗∗]F(L2[Υ]) = P[Sρ∗∗M[θn]S
−1
ρ∗∗≤ρ∗∗]Sρ∗∗F(L2[Υ])

= P[ρ∗∗M[θn+1]≤ρ∗∗]F(L2[Υ]) = H(n+1).

The fact that M[θn] = sin(δ′)Laux + ρ−1
[n]τ

′Nres does not scale properly under Sρ∗∗

(the operator Laux scales as ρ0
∗∗ while the operator Nres scales as ρ−1

∗∗ ) but that
the translation parameter ρ−1

[n]τ
′ is blown up by a factor ρ−1

∗∗ is the reason why the

rescaling operator Sρ∗∗ does not bring back the space P
(n)
ρ∗∗H(n) to the space H(n) but

maps it to a subspace H(n+1).

The renormalization transformation R(n)
ρ∗∗ incorporates the decimation of degrees

of freedom via Feshbach map F
Ξ

(n)
ρ∗∗

, the rescaling Sρ∗∗ of bosonic variables and the

adjustment Z(n) of spectral parameters to map an element w(n) ∈ D(n)(ε, η) for
ε, η ≤ ρ∗∗/16, or rather the associated family of operators B1/4 � z �→ K(n)[z] =
W(n)[w

(n)[ · ; z]] on H(n), to an operator family B1/4 � z �→ K(n+1)[z] on H(n+1). The
assignment is as follows,

R(n)
ρ∗∗ : D(n)(ε, η)→W(n+1)

[
W(n+1)

]
,(

R(n)
ρ∗∗ [w

(n)]
)
[z] := Sρ∗∗

[
F

Ξ
(n)
ρ∗∗

(
K(n)[ζ], T (n)[Λ[θn]; ζ]− E(n)[ζ]

)]
,

ζ := Z(n)[z] ∈ D[w(n)],

(4.37)

where w(n) = (−E(n), T (n), (w
(n)
R,S)R+S≥1) and K(n)[z] = W(n)[w

(n)[ · ; z]. The as-
signment (4.37) is the definition of the frequently mentioned renormalization trans-
formation. With the help of (4.36), Theorem D.3, Proposition D.4 and the same
arguments as used in Section 4.2 we see that the image

R(n)
ρ∗∗ [w

(n)] =W(n+1)

[
w(n+1)

]
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under the renormalization transformation is generated by a sequence w(n+1) =

(w
(n+1)
R,S )R+S≥0 of integral kernels given by

w
(n+1)
R,S [λ; Y (R,S); z] (4.38)

:= ρ−1
∗∗

∞∑
L=1

(−1)L−1
∑

r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�≥1

[
L∏

�=1

(
r� + p�

r�

)(
s� + q�

s�

)]

×V (n+1)
r,p,s,q

L
[λ; Y (R,S); z],

for R + S ≥ 1, and

w
(n+1)
0,0 [λ; z] (4.39)

:= ρ−1
∗∗
(
T (n)[ρ∗∗λ; Z(n)[z]]− ρ∗∗z

)
+ρ−1

∗∗

∞∑
L=2

(−1)L−1
∑

p1,q1,...,pL,qL:
p�+q�≥1

χ2
1 (λ2)

×
〈
W(0,0)

(n)

[
w(n)

p1,q1

] (
ρ∗∗λ; Z(n)[z]

) χ2
1

(
ρ−1
∗∗ M[θn] + λ2

)
T (n)
[
Λ[θn] + ρ∗∗λ; Z(n)[z]

]
− ρ∗∗z

× · · ·

×
χ2

1

(
ρ−1
∗∗ M[θn] + λ2

)
T (n)
[
Λ[θn] + ρ∗∗λ; Z(n)[z]

]
− ρ∗∗z

W(0,0)
(n)

[
w(n)

pL,qL

] (
ρ∗∗λ; Z(n)[z]

)〉
Ωvac

.

The functions V
(n+1)
r,p,s,q

L
appearing in (4.38) are the symmetrization (in the sense of

(D.8)) of

Ṽ (n+1)
r,p,s,q

L
[λ; Y (R,S); z] (4.40)

:=

〈
χ1

(
ρ−1
∗∗ M[θn] + λ2 +

[
η

(θn+1)
0 (Y (R,S))

]
2

)
×W(r1,s1)

(n)

[
w

(n)
r1+p1,s1+q1

] (
ρ∗∗

(
λ + η

(θn+1)
1 (Y (R,S)); y

(r1)
1 , ỹ

(s1)
1

)
; Z(n)[z]

)
×

χ2
1

(
λ2 +

[
η

(θn+1)
1 (Y (R,S))

]
2
+
∑s1

j=1 mθn+1

(
ũ

(s1)
1,j

))
T (n)
[
ρ∗∗

(
λ + η

(θn+1)
1 (Y (R,S)) +

∑s1

j=1 λθn+1

(
ũ

(s1)
1,j

))
; Z(n)[z]

]
− ρ∗∗z

. . .

×
χ2

1

(
λ2 +

[
η

(θn+1)
L−1 (Y (R,S))

]
2
+
∑sL−1

j=1 mθn+1

(
ũ

(sL−1)
L−1,j

))
T (n)
[
ρ∗∗

(
λ + η

(θn+1)
L−1 (Y (R,S)) +

∑sL−1

j=1 λθn+1

(
ũ

(sL−1)
L−1,j

))
; Z(n)[z]

]
− ρ∗∗z

×W(rL,sL)
(n)

[
w

(n)
rL+pL,sL+qL

] (
ρ∗∗

(
λ + η

(θn+1)
L (Y (R,S)); y

(rL)
L , ỹ

(sL)
L

)
; Z(n)[z]

)
× χ1

(
ρ−1
∗∗ M[θn] + λ2 +

[
η

(θn+1)
L (Y (R,S))

]
2
+

sL∑
j=1

mθn+1

(
ũ

(sL)
L,j

))〉
Ωvac

.
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Hereby we used (D.15) of Proposition D.4 and

η
(θn)
� (ρ∗∗Y

(R,S)) = ρ∗∗η
(θn+1)
� (Y (R,S)), mθn(ρ∗∗u) = ρ∗∗mθn+1(u)

and
χρ∗∗(ρ∗∗x) = χ1(x), χρ∗∗(ρ∗∗x) = χ1(x).

Identifying the sequence w(n+1) with the operatorW(n+1)[w
(n+1)] it generates we can

understand the renormalization transformation R(n)
ρ∗∗ as a map

R(n)
ρ∗∗ : D(n)(ε, η)→W(n+1),

R(n)
ρ∗∗ [w

(n)] := w(n+1)
(4.41)

with w(n+1) given in (4.38) and (4.39). Setting

K(n+1)[z] :=W(n+1)[w
(n+1)[ · ; z]]

we observe that the definition (4.37, 4.41), the isospectral property of the smooth
Feshbach map provided in Theorem E.1 and the invariance of the kernel under the
rescaling Sρ∗∗ lead to the spectral link between K(n) and its image K(n+1) under the
renormalization transformation,

0 ∈ spec
(
K(n)

[
Z(n)[z]

])
⇐⇒ 0 ∈ spec

(
K(n+1)[z]

)
,

0 ∈ specpp

(
K(n)

[
Z(n)[z]

])
⇐⇒ 0 ∈ specpp

(
K(n+1)[z]

) (4.42)

for all z ∈ B1/4. Thus, the spectral information of K(n)[ζ] for parameters ζ :=
Z(n)[z] ∈ Z(n)[B1/4] = D[w(n)] ⊇ Bρ∗∗/4−η, i.e., in a ρ∗∗-neighborhood of zero, is
encoded as the spectral information of K(n+1)[z] for spectral parameters from the
ball B1/4. Therefore, studying the spectral properties of the family z �→ K(n+1)[z]
on a scale ρ0

∗∗ enables us to analyze the spectrum of K(n)[z] on a scale ρ∗∗. In

Section 4.4 we show that, under certain conditions, R(n)
ρ∗∗ even maps D(n)(ε, η) into

D(n+1)(ε+η/2, η/2) which allows an iteration of the renormalization transformation
and generates a discrete flow, c.f. Section 4.5. Linking the spectral information of
each iteration step with the previous one enables us to understand the spectrum of
K(n)[ζ] for ζ on an arbitrary scale ρk

∗∗ as long as we incorporate k iteration steps.
This recursive localization of the spectrum is worked out in Chapter 5.

4.3.4 Decimation of Degrees of Freedom via Smooth Feshbach
Map: Iteration Step n = 1

The application of the smooth Feshbach map to K(1)[z] (introduced in Section 4.2)
is different from the previous sections since the decimation of degrees of freedom
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is not only restricted to the bosonic variables but acts also on the particle sector.
Given the cutoff function χ1 and the scaling parameter

ρ∗ :=
g2

2ρ
γeq (4.43)

(the constant γeq is defined in (4.46) below) we define the smooth “projection”
operator

Ξ(1)
ρ∗ := χρ∗

(
Γeq ⊗ �F [Υ] + �ker(Lp) ⊗M[θ1]

)
,

where

Γeq := Im
(
Λ

(s)
0 |βmax=βmin=βp

)
is the imaginary part of the level shift operator Λ

(s)
0 associated with K(s) for the

equilibrium case where all reservoir temperatures βr coincide with the particle tem-
perature βp (we refer to Section 3.3.2 to recall the properties of the level shift
operator). Due to Lemmata 3.15 and 3.20 the operator Γeq is independent of s,

Γeq =
R∑

r=1

Γ0,r|βr=βp , (4.44)

and it holds

Λ
(s)
0 − iΓeq = O (s(βmax − βmin)) (4.45)

if we let βp coincide with a reservoir temperature βr′ as postulated in (2.9). Because
of Proposition 3.23(ii) the operator Γeq has a one dimensional kernel spanned by Ωp

and all other eigenvalues are separated from zero by a gap

inf [spec(Γeq) \ {0}] ≥ γeq :=
R∑

r=1

γr
0 ≥ RγFGR (4.46)

which is strictly positive by Hypothesis V-1.10, uniformly in the inverse tempera-
tures. Therefore, the operator Ξ

(1)
ρ∗ can be written as

Ξ(1)
ρ∗ = |Ωp〉 〈Ωp| ⊗ χρ∗(M[θ1])

if ρ∗ < γeq which is fulfilled for g sufficiently small which we henceforth assume.

Thus, the operator Ξ
(1)
ρ∗ can be expressed via functional calculus as

Ξ(1)
ρ∗ = X(1)

ρ∗ (M[θ1]),

where

X(1)
ρ∗ : u �→ χρ∗(u) |Ωp〉 〈Ωp| ,
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is a smooth function �+
0 → B(ker(Lp)). The complementary “projection” operator

is defined as

Ξ
(1)

ρ∗ :=

√
�H(n) − Ξ

(1)
ρ∗

2
= X

(1)

ρ∗ (M[θ1]),

where

X
(1)

ρ∗ : u �→
N−1∑
j,k=0

χρ∗ ((Γeq)j,k + u) |ϕj,j〉 〈ϕk,k|

is a smooth function with values in B(ker(Lp)) and (Γeq)j,k := 〈ϕj,j |Γeqϕk,k 〉ker(Lp)

are the matrix elements of Γeq in the orthonormal basis {ϕj,j}j=0,...,N−1 of ker(Lp).

We conclude this notational part by introducing orthogonal projections on the

range of the operators Ξ
(1)
ρ∗ and Ξ

(1)

ρ∗ . We define

P (1)
ρ∗ : orthogonal projection on ran

(
Ξ(1)

ρ∗

)
, P (1)⊥

ρ∗ := �ker(Lp) − P (1)
ρ∗ ,

P
(1)

ρ∗ : orthogonal projection on ran
(
Ξ

(1)

ρ∗

)
, P

(1)⊥
ρ∗ := �ker(Lp) − P

(1)

ρ∗ ,

and note that

P (1)
ρ∗ = P[Γeq⊗�F[Υ]+�ker(Lp)⊗M[θ1]<ρ∗]

= |Ωp〉 〈Ωp| ⊗ P[M[θ1]<ρ∗],

P
(1)

ρ∗ = P[Γeq⊗�F[Υ]+�ker(Lp)⊗M[θ1]>
7
8
ρ∗],

= (|Ωp〉 〈Ωp|)⊥ ⊗ P[M[θ1]<
7
8
ρ∗] + �H2

p
⊗ P[M[θ1]≥ 7

8
ρ∗],

P (1)⊥
ρ∗ = P[Γeq⊗�F[Υ]+�ker(Lp)⊗M[θ1]≥ρ∗]

= (|Ωp〉 〈Ωp|)⊥ ⊗ P[M[θ1]<ρ∗] + �H2
p
⊗ P[M[θ1]≥ρ∗],

P
(1)⊥
ρ∗ = P[Γeq⊗�F[Υ]+�ker(Lp)⊗M[θ1]≤ 7

8
ρ∗]

= |Ωp〉 〈Ωp| ⊗ P[M[θ1]≤ 7
8
ρ∗],

where (|Ωp〉 〈Ωp|)⊥ := �ker(Lp) − |Ωp〉 〈Ωp|.

In what follows we proceed similar to Section 4.3.2 by applying the smooth
Feshbach map to the operator K(1)[z]. To this end we have to extract a “free

part” from K(1)[z] which, together with K(1)[z], forms a Ξ
(1)
ρ∗ -Feshbach pair in the

sense of Appendix E. The difficulty in this situation is that the canonical choice
T (1)[Λ[θ1]; z]− E(1)[z] as a free part does not qualify since it is not necessarily com-

muting with the cutoff operator Ξ
(1)
ρ∗ . However, the leading orders

T̆ (1)[Λ[θ1]; z] = L0,θ1 �H(1) −z + i
g2

ρ
Γeq ⊗ χ2

1(M[θ1])
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of T (1)[Λ[θ1]; z] − E(1)[z] are a suitable choice as we will prove below. Hereby, we
define

T̆ (1)[λ; z] := (λ1 + iλ2)− z + i
g2

ρ
χ2

1(λ2)Γeq.

Apparently, T̆ (1)[Λ[θ1]; z] commutes with Ξ
(1)
ρ∗ and Ξ

(1)

ρ∗ . The perturbative part of

K(1)[z] which results from distinguishing T̆ (1)[Λ[θ1]; z] as free part is then given by

W̆ (1)[z] := K(1)[z]− T̆ (1)[Λ[θ1]; z] = K(1)[z]−
(

L0,θ1 − z + i
g2

ρ
Γeq ⊗ χ2

1(M[θ1])

)
=

g2

ρ

(
Λ

(s)
0 − iΓeq

)
⊗ χ2

1(M[θ1]) +O
(

g2+ε̃

ρ

)
=

g2

ρ
O
(
gε̃ + s(βmax − βmin)

)
= ρ∗O

(
gε̃ + s(βmax − βmin)

)
, (4.47)

because of (4.25, 4.45). Alternatively, we may express W̆ (1)[z] in terms of Wick
monomials

W̆ (1)[z] =W(1)

[(
w̆

(1)
R,S[ · ; z]

)
R+S≥0

]
where

w̆
(1)
0,0[λ; z] := w

(1)
0,0[λ; z]− (λ1 + iλ2) + z − i

g2

ρ
χ2

1(λ2)Γeq,

w̆
(1)
R,S := w

(1)
R,S, R + S ≥ 1.

Note that w̆(1) := (w̆
(1)
R,S)R+S≥0 also has a contribution w̆

(1)
0,0 to the W

(1)
0,0-sector of

order

sup
z∈B1/4,

λ∈Q(1)

∥∥∥w̆(1)
0,0[λ; z]

∥∥∥
B(ker(Lp))

(4.48)

= sup
z∈B1/4

∥∥∥T (1)[Λ[θ1]; z]− E(1)[z]− T̆ (1)[Λ[θ1]; z]
∥∥∥
B(H(1))

= sup
z∈B1/4

∥∥∥W̆ (1)[z]−W (1)[z]
∥∥∥
B(H(1))

= O
(

gρµ +
g2

ρ
(gε̃ + |βmax − βmin|)

)
,

using functional calculus, recall the definition (4.12) of Q(1), and using (4.26, 4.47)
together with Corollary 4.3.
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Lemma 4.8 (i) Let z ∈ D[w(1)]. Then the operator T̆ (1)[Λ[θ1]; z] is bounded in-

vertible on ran(P
(1)

ρ∗ ) and the resolvent obeys the following norm bound,∥∥∥T̆ (1)[Λ[θ1]; z]−1P
(1)

ρ∗

∥∥∥
B(ker(Lp))

≤ 3

ρ∗
.

(ii) For z ∈ D[w(1)] and |βmax − βmin| � 1 and g sufficiently small the operator

K(1)[z]
Ξ

(1)
ρ∗

:= T̆ (1)[Λ[θ1]; z] + Ξ
(1)

ρ∗ W̆ (1)[z]Ξ
(1)

ρ∗

is bounded invertible on the ran(P
(1)

ρ∗ ). Therefore, the pair

(K(1)[z], T̆ (1)[Λ[θ1]; z]) is a Ξ
(1)
ρ∗ -Feshbach pair.

Proof.

(i) We start by decomposing the projection P
(1)

ρ∗ = P1 + P2 where

P1 := (|Ωp〉 〈Ωp|)⊥ ⊗ P[M[θ1]<
7
8
ρ∗], P2 := �ker(Lp) ⊗ P[M[θ1]≥ 7

8
ρ∗]

and compute the norm of the resolvent T̆ (1)[Λ[θ1]; z]−1 = (L0,θ1 − z + ig2

ρ
Γeq)

−1

separately on each of the sub-ranges. We start considering∥∥∥∥∥
(

L0,θ1 − z + i
g2

ρ
Γeq ⊗ χ2

1(M[θ1])

)−1

P1

∥∥∥∥∥
B(ker(Lp))

≤ sup
0≤m< 7

8
ρ∗,

e∈spec(Γeq)\{0}

1∣∣∣m− Im(z) + g2

ρ
e
∣∣∣ ≤ 1

g2

ρ
γeq − | Im(z)|

≤ 1
g2

ρ
γeq − 5

16
ρ∗
≤ 1

ρ∗
,

using Lemma 4.5(i), and go over to estimate∥∥∥∥∥
(

L0,θ1 − z + i
g2

ρ
Γeq ⊗ χ2

1(M[θ1])

)−1

P2

∥∥∥∥∥
B(ker(Lp))

≤ sup
m≥ 7

8
ρ∗,

e∈spec(Γeq)

1∣∣∣m− Im(z) + g2

ρ
eχ2

1(m)
∣∣∣ ≤ 1

7
8
ρ∗ − | Im(z)|

≤ 1
7
8
ρ∗ − 5

16
ρ∗
≤ 2

ρ∗
.
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Altogether, we obtain∥∥∥∥∥
(

L0,θ1 − z + i
g2

ρ
Γeq ⊗ χ2

1(M[θ1])

)−1

P
(1)

ρ∗

∥∥∥∥∥
B(ker(Lp))

≤ 3

ρ∗
.

(ii) We recall the estimate (4.47) of the perturbative part W̆ (1)[z] to estimate∥∥∥Ξ(1)

ρ∗ W̆ (1)[z]Ξ
(1)

ρ∗ T̆ (1)[Λ[θ1]; z]−1P
(1)

ρ∗

∥∥∥
B(ker(Lp))

(4.49)

≤ 3

ρ∗

∥∥∥W̆ (1)[z]
∥∥∥
B(ker(Lp))

= O
(
gε̃ + |βmax − βmin|

)
< 1

for |βmax−βmin| � 1 and g sufficiently small. This relative bound and (i) allow
the expansion of K(1)[z]−1

Ξ
(1)
ρ∗

into a norm convergent Neumann series,

P
(1)

ρ∗ K(1)[z]−1

Ξ
(1)
ρ∗

P
(1)

ρ∗ (4.50)

= T̆ (1)[Λ[θ1]; z]−1

∞∑
L=0

(
−Ξ

(1)

ρ∗ W̆ (1)[z]Ξ
(1)

ρ∗ T̆ (1)[Λ[θ1]; z]−1
)L

.

Due to Lemma 4.8 the smooth Feshbach map is applicable to the Ξ
(1)
ρ∗ -Feshbach

pair (K(1)[z], T̆ (1)[Λ[θ1]; z]) for z ∈ D[w(1)], we refer to Appendix E for details on the
Feshbach map. With the help of the expansion (4.50) we can write

F
Ξ

(1)
ρ∗

(
K(1)[z], T̆ (1)[Λ[θ1]; z]

)
(4.51)

= T̆ (1)[Λ[θ1]; z] + Ξ(1)
ρ∗ W̆ (1)[z]Ξ(1)

ρ∗

−Ξ(1)
ρ∗ W̆ (1)[z]Ξ

(1)

ρ∗ K(1)[z]−1

Ξ
(1)
ρ∗

Ξ
(1)

ρ∗ W̆ (1)[z]Ξ(1)
ρ∗

= T̆ (1)[Λ[θ1]; z] + Ξ(1)
ρ∗ W̆ (1)[z]Ξ(1)

ρ∗

−
∞∑

L=0

Ξ(1)
ρ∗ W̆ (1)[z]Ξ

(1)

ρ∗

(
−

Ξ
(1)

ρ∗

T̆ (1)[Λ[θ1]; z]
W̆ (1)[z]Ξ

(1)

ρ∗

)L

×
Ξ

(1)

ρ∗

T̆ (1)[Λ[θ1]; z]
W̆ (1)[z]Ξ(1)

ρ∗

= T̆ (1)[Λ[θ1]; z]

+
∞∑

L=0

Ξ(1)
ρ∗ W̆ (1)[z]

⎛⎝− Ξ
(1)

ρ∗

2

T̆ (1)[Λ[θ1]; z]
W̆ (1)[z]

⎞⎠L

Ξ(1)
ρ∗
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and understand it as an operator on ran(P
(1)
ρ∗ ).

4.3.5 Rescaling Bosonic Variables and Renormalization
Transformation: Iteration Step n = 1

The rescaling of the operator F
Ξ

(1)
ρ∗

(K(1)[z], T̆ (1)[Λ[θ1]; z]) and the underlying Hilbert

space P
(1)
ρ∗ H(1) on which the operator acts is performed in exactly the same way as

in Section 4.2 and 4.3.3. We directly go over to define the first application of the
renormalization transformation R(1)

ρ∗ to the initial data w(1) = (w
(1)
R,S)R+S≥0,

R(1)
ρ∗

[
w(1)
]

:= w(2),

where the sequence w(2) := (w
(2)
R,S)R+S≥0 is given by

w
(2)
R,S[λ; Y (R,S); z] (4.52)

:= ρ−1
∗

∞∑
L=1

(−1)L−1
∑

r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�≥0

[
L∏

�=1

(
r� + p�

r�

)(
s� + q�

s�

)]

×V (2)
r,p,s,q

L
[λ; Y (R,S); z],

for R + S ≥ 1, and

w
(2)
0,0[λ; z] (4.53)

:= ρ−1
∗

〈
Ωp

∣∣∣ (T̆ (1)
[
ρ∗λ; Z(1)[z]

]
− χ2

1(λ2)w̆
(1)
0,0

[
ρ∗λ; Z(1)[z]

])
Ωp

〉
ker(Lp)

+ρ−1
∗

∞∑
L=2

(−1)L−1
∑

p1,q1,...,pL,qL:
p�+q�≥0

χ2
1 (λ2)

×
〈

Ω0

∣∣∣∣∣W(0,0)
(1)

[
w̆(1)

p1,q1

] (
ρ∗λ; Z(1)[z]

) X
(1)

1

2 (
ρ−1
∗ M[θ1] + λ2

)
T̆ (1)
[
Λ[θ1] + ρ∗λ; Z(1)[z]

]
× · · · ×

X
(1)

1

2 (
ρ−1
∗ M[θ1] + λ2

)
T̆ (1)
[
Λ[θ1] + ρ∗λ; Z(1)[z]

]W(0,0)
(1)

[
w̆(1)

pL,qL

] (
ρ∗λ; Z(1)[z]

)
Ω0

〉
.
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The functions V
(2)
r,p,s,q

L
appearing in (4.52) are the symmetrization (in the sense of

(D.8)) of

Ṽ (2)
r,p,s,q

L
[λ; Y (R,S); z] (4.54)

:=

〈
Ω0

∣∣∣∣∣χ1

(
ρ−1
∗ M[θ1] + λ2 +

[
η

(θ2)
0 (Y (R,S))

]
2

)
×W(r1,s1)

(1)

[
w̆

(1)
r1+p1,s1+q1

] (
ρ∗

(
λ + η

(θ2)
1 (Y (R,S)); y

(r1)
1 , ỹ

(s1)
1

)
; Z(1)[z]

)
×

X
(1)

1

2 (
λ2 +

[
η

(θ2)
1 (Y (R,S))

]
2
+
∑s1

j=1 mθ2

(
ũ

(s1)
1,j

))
T̆ (1)
[
ρ∗

(
λ + η

(θ2)
1 (Y (R,S)) +

∑s1

j=1 λθ2

(
ũ

(s1)
1,j

))
; Z(1)[z]

]
. . .

×
X

(1)

1

2 (
λ2 +

[
η

(θ2)
L−1(Y

(R,S))
]

2
+
∑sL−1

j=1 mθ2

(
ũ

(sL−1)
L−1,j

))
T̆ (1)
[
ρ∗

(
λ + η

(θ2)
L−1(Y

(R,S)) +
∑sL−1

j=1 λθ2

(
ũ

(sL−1)
L−1,j

))
; Z(1)[z]

]
×W(rL,sL)

(1)

[
w̆

(1)
rL+pL,sL+qL

] (
ρ∗

(
λ + η

(θ2)
L (Y (R,S)); y

(rL)
L , ỹ

(sL)
L

)
; Z(1)[z]

)
× χ1

(
λ2 +

[
η

(θ2)
L (Y (R,S))

]
2
+

sL∑
j=1

mθ2

(
ũ

(sL)
L,j

))
Ω0

〉
.

Note that the additional term χ2
1(λ2)w̆

(1)
0,0

[
ρ∗λ; Z(1)[z]

]
appearing in (4.53) and the

fact that the summation indices r, p, s, q
L

and 0, p, 0, q
L

in (4.52, 4.53), resp., range
over r� + p� + s� + q� ≥ 0 instead of r� + p� + s� + q� ≥ 1 are due to the existence of
the w̆

(1)
0,0-contribution in w̆(1).

One convinces oneself by consulting (4.51), Theorem D.3, Proposition D.4 and by
comparing with the elaborations in the Sections 4.2 and 4.3.3 that w(2) is chosen
such that

W(2)

[(
R(1)

ρ∗ [w(1)]
)
[z]
]

= Sρ∗

[
F

Ξ
(1)
ρ∗

(
K(1)[Z(1)[z]], T̆ (1)[Λ[θ1]; Z

(1)[z]]
)]

(4.55)

holds. We set

K(2)[z] :=W(2)[w
(2)[ · ; z]]

and observe that due to (4.55) and Theorem E.1 the families z �→ K(1)[z] and
z �→ K(2)[z] are spectrally linked in the sense that

0 ∈ spec
(
K(1)

[
Z(1)[z]

])
⇐⇒ 0 ∈ spec

(
K(2)[z]

)
0 ∈ specpp

(
K(1)

[
Z(1)[z]

])
⇐⇒ 0 ∈ specpp

(
K(2)[z]

) (4.56)

for all z ∈ B1/4.
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We close this section with a remark about the leading term in (4.53). We expand
(setting ζ := Z(1)[z])

ρ−1
∗

〈
Ωp

∣∣∣ (T̆ (1)
[
ρ∗λ; Z(1)[z]

]
− χ2

1(λ2)w̆
(1)
0,0

[
ρ∗λ; Z(1)[z]

])
Ωp

〉
ker(Lp)

(4.57)

=

〈
Ωp

∣∣∣∣∣
{ [

(λ1 + iλ2)−
ζ

ρ∗
+ i

g2

ρρ∗
χ2

1(λ2)Γeq

]

+ χ2
1(λ2)

[
1

ρ∗
w

(1)
0,0[ρ∗λ; ζ]− (λ1 + iλ2) +

ζ

ρ∗
− i

g2

ρρ∗
χ2

1(λ2)Γeq

]}
Ωp

〉
ker(Lp)

= (λ1 + iλ2)− χ2
1(λ2)

ζ

ρ∗

+χ2
1(λ2)

1

ρ∗

〈
Ωp

∣∣ [T (1)[ρ∗λ; ζ]− ρ∗(λ1 + iλ2)− E(1)[ζ]
]
Ωp

〉
ker(Lp)

= −z + (λ1 + iλ2) + χ2
1(λ2)

〈
E(1)
〉

Ωp
[ζ]− ζ

ρ∗

+χ2
1(λ2)

1

ρ∗

〈
Ωp

∣∣ [T (1)[ρ∗λ; ζ]− ρ∗(λ1 + iλ2)
]
Ωp

〉
ker(Lp)

.

This decomposition will be useful to show in Theorem 4.9(ii) that w(2) belongs to a
poly-disc D(2)(ε2, η2).

4.4 Contracting Property of the Renormalization
Transformation

The iteration of the renormalization transformation requires a control of the mapping
properties of R(n)

ρ∗∗ . We show that R(n)
ρ∗∗ maps a poly-disc D(n)(ε, η) into a poly-disc

D(n+1)(ε′, η′) for suitable ε′, η′, i.e., R(n)
ρ∗∗ maps its domain into the domain of R(n+1)

ρ∗∗ .

Theorem 4.9 (i) For w(n) ∈ D(n)(ε, η), n ≥ 2, with ε, η ≤ ρ∗∗
8Cχ1

we have

R(n)
ρ∗∗

[
w(n)
]
∈ D(n+1)

(
ε +

η

2
,
η

2

)
.

(ii) For |βmax − βmin| � 1 and g sufficiently small we have

w(2) = R(1)
ρ∗

[
w(1)
]
∈ D(2)(ε2, η2)

where
ε2 :=

ρ∗∗
32Cχ1

, η2 :=
ρ∗∗

32Cχ1

and w(2) = (w
(2)
R,S)R+S≥0 is given in (4.52, 4.53).
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The contracting property of the renormalization transformation R(n)
ρ∗∗ uses the

following lemma to a great extend.

Lemma 4.10 Fix L ∈ � and r, p, s, q
L

= (r�, p�, s�, q�)
L
�=1 ∈ (�0)

4L and set R :=∑L
�=1 r� and S :=

∑L
�=1 s�.

(i) Let n = 2, 3, . . . ,N and w(n) =
(
w

(n)
R,S

)
R+S≥0

∈ D(n)(ε, η) for ε, η ≤ ρ∗∗/16.

For r� + p� + s� + q� ≥ 1 we consider the function

Ṽ (n+1)
r,p,s,q

L
[λ; Y (R,S); z]

=

〈
F0

(
ρ−1
∗∗ Λ[θn] + λ

)
×

L∏
�=1

{
W(r�,s�)

(n)

[
w

(n)
r�+p�,s�+q�

]
(
ρ∗∗

(
λ + η

(θn+1)
� (Y (R,S)); y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)
× F�

(
ρ−1
∗∗ Λ[θn] + λ

)}〉
Ωvac

with

F0(λ) := χ1

(
λ2 +

[
η

(θn+1)
0 (Y (R,S))

]
2

)
,

FL(λ) := χ1

(
λ2 +

[
η

(θn+1)
L (Y (R,S))

]
2
+

sL∑
j=1

mθn+1

(
ũ

(sL)
L,j

))
,

F�(λ) :=
χ2

1

(
λ2 +

[
η

(θn+1)
� (Y (R,S))

]
2
+
∑s�

j=1 mθn+1

(
ũ

(s�)
�,j

))
T (n)
[
ρ∗∗

(
λ + η

(θn+1)
� (Y (R,S)) +

∑s�

j=1 λθn+1

(
ũ

(s�)
�,j

))
; Z(n)[z]

]
− ρ∗∗z

for � = 1, . . . , L − 1, as defined in (4.40). Then, the function B1/4 � z �→
Ṽ

(n+1)
r,p,s,q

L
[ · ; z] is analytic with values in W

(n+1)
R,S and obeys the following bound,

ρ−1
∗∗

∥∥∥Ṽ (n+1)
r,p,s,q

L
[ · ; z]

∥∥∥#

(n+1)

≤ 2(L + 1)CL+1
χ1

ρ(1+µ)(R+S)−L
∗∗

L∏
�=1

∥∥∥w(n)
r�+p�,s�+q�

[ · ; Z(n)[z]]
∥∥∥#

(n)√
pp�

� qq�

�

.

using the convention that 00 := 1.
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(ii) For r� +p� +s� +q� ≥ 0 we consider the function Ṽ
(2)
r,p,s,q

L
given in (4.54). Then

the function B1/4 � z �→ Ṽ
(2)
r,p,s,q

L
[ · ; z] is analytic with values in W

(2)
R,S and obeys

the following bound,

ρ−1
∗

∥∥∥Ṽ (2)
r,p,s,q

L
[ · ; z]

∥∥∥#

(2)

≤ 2(L + 1)CL+1
χ1

ρ(1+µ)(R+S)−L
∗

L∏
�=1

∥∥∥w̆(1)
r�+p�,s�+q�

[ · ; Z(1)[z]]
∥∥∥#

(1)√
pp�

� qq�

�

.

(iii) For r� +p� +s� +q� = 1 we consider the function Ṽ
(1)
r,p,s,q

L
given in (4.22). Then

the function B1/4 � z �→ Ṽ
(1)
r,p,s,q

L
[ · ; z] is analytic with values in W

(1)
R,S and obeys

the following bound,

ρ−1
∥∥∥Ṽ (1)

r,p,s,q
L
[ · ; z]

∥∥∥#

(1)

≤ (L + 1)CL+1
χ1

ρ(1+µ)(R+S)−L
(
gM(ω(0))

)L
,

where

M(ω(0)) :=

⎡⎣ max
F̃∈
{

F
(s)
θ ,F

(s)

θ

∗}
∫
Υ

dy
[
mθ(u)−1 + mθ(u)−1−2µ

] ∥∥∥F̃ (y)
∥∥∥2

B(H2
p)

⎤⎦1/2

and F
(s)
θ = [G − G ′

(s �δβ)
]θ is explained in (2.26). The number M(ω(0)) is finite

for 1
2
≤ µ < ν where ν is the infrared regularization of Hypothesis VII-1.12.

Proof.

(i) Since the cutoff function χ1 is smooth with compact support we have

|F�(λ)|+
∑
j=1,2

|∂λj
F�(λ)| ≤ Cχ1 , � = 0, L
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and (using the abbreviation λ̃(�) := η
(θn+1)
� (Y (R,S)) +

∑s�

j=1 λθn+1(ũ
(s�)
�,j ))

|F�(λ)|+
∑
j=1,2

|∂λj
F�(λ)|

≤

∣∣∣∣∣∣
χ2

1

(
λ2 + λ̃

(�)
2

)
T (n)
[
ρ∗∗

(
λ + λ̃(�)

)
; Z(n)[z]

]
− ρ∗∗z

∣∣∣∣∣∣
+
∑
j=1,2

∣∣∣∣∣∣∣
χ2

1

(
λ2 + λ̃

(�)
2

)
ρ∗∗(∂λj

T (n))
[
ρ∗∗

(
λ + λ̃(�)

)
; Z(n)[z]

]
(
T (n)
[
ρ∗∗

(
λ + λ̃(�)

)
; Z(n)[z]

]
− ρ∗∗z

)2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
2χ1

(
λ2 + λ̃

(�)
2

)
∂λ2χ1

(
λ2 + λ̃

(�)
2

)
T (n)
[
ρ∗∗

(
λ + λ̃(�)

)
; Z(n)[z]

]
− ρ∗∗z

∣∣∣∣∣∣
≤ Cχ1ρ

−1
∗∗

for the positive constant Cχ1 ≥ 1 given in (4.6), only depending on
the cutoff function χ1. We made use of Lemma 4.7(i) to estimate∣∣∣T (n)

[
ρ∗∗

(
λ + λ̃(�)

)
; Z(n)[z]

]
− ρ∗∗z

∣∣∣ ≥ ρ∗∗
2

. Next, we observe that (writing

η� instead of η
(θn+1)
� (Y (R,S)))∣∣∣Ṽ (n+1)

r,p,s,q
L
[λ; Y (R,S); z]

∣∣∣ (4.58)

≤
L∏

�=0

∥∥F�

(
ρ−1
∗∗ Λ[θn] + λ

)∥∥
B(H(n))

×
L∏

�=1

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥
B(H(n))

≤
CL+1

χ1

ρL−1
∗∗

×
L∏

�=1

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥
B(H(n))

.

By product rule we obtain

∂λj
Ṽ (n+1)

r,p,s,q
L
[λ; Y (R,S); z] (4.59)

=
[
Ṽ (n+1)

r,p,s,q
L

](1)
λj

[λ; Y (R,S); z] +
[
Ṽ (n+1)

r,p,s,q
L

](2)
λj

[λ; Y (R,S); z],
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where[
Ṽ (n+1)

r,p,s,q
L

](1)
λj

[λ; Y (R,S); z]

:=
L∑

k=1

〈
k−1∏
�=1

{
F�−1(ρ

−1
∗∗ Λ[θn] + λ)

×W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)}
× ∂λj

Fk(ρ
−1
∗∗ Λ[θn] + λ)

×
L∏

�=k+1

{
W(r�,s�)

(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)
× F�

(
ρ−1
∗∗ Λ[θn] + λ

)}〉
Ωvac

and[
Ṽ (n+1)

r,p,s,q
L

](2)
λj

[λ; Y (R,S); z]

:=
L∑

k=1

〈
F0(ρ

−1
∗∗ Λ[θn] + λ)

×
k−1∏
�=1

{
W(r�,s�)

(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)
× F�(ρ

−1
∗∗ Λ[θn] + λ)

}
× ρ∗∗W(rk,sk)

(n)

[
∂λj

w
(n)
rk+pk,sk+qk

] (
ρ∗∗

(
λ + ηk; y

(rk)
k , ỹ

(sk)
k

)
; Z(n)[z]

)
×

L∏
�=k+1

{
F�

(
ρ−1
∗∗ Λ[θn] + λ

)
×W(r�,s�)

(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)}

× FL

(
ρ−1
∗∗ Λ[θn] + λ

)〉
Ωvac

.

The two terms [Ṽ
(n+1)
r,p,s,q

L
]
(1,2)
λj

[λ; Y (R,S); z] are estimated as follows,∣∣∣∣[Ṽ (n+1)
r,p,s,q

L

](1)
λj

[λ; Y (R,S); z]

∣∣∣∣ (4.60)
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≤
L∑

k=0

∥∥∂λj
Fk(ρ

−1
∗∗ Λ[θn] + λ)

∥∥
B(H(n))

L∏
�=0,
��=k

∥∥F�(ρ
−1
∗∗ Λ[θn] + λ)

∥∥
B(H(n))

×
L∏

�=1

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥
B(H(n))

≤ (L + 1)
CL+1

χ1

ρL−1
∗∗

×
L∏

�=1

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥
B(H(n))

and∣∣∣∣[Ṽ (n+1)
r,p,s,q

L

](2)
λj

[λ; Y (R,S); z]

∣∣∣∣ (4.61)

≤
L∏

�=0

∥∥F�(ρ
−1
∗∗ Λ[θn] + λ)

∥∥
B(H(n))

×
L∑

k=1

{
ρ∗∗

∥∥∥W(rk,sk)
(n)

[
∂λj

w
(n)
rk+pk,sk+qk

]
(
ρ∗∗

(
λ + ηk; y

(rk)
k , ỹ

(sk)
k

)
; Z(n)[z]

)∥∥∥
B(H(n))

×
L∏

�=1,
��=k

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥
B(H(n))

}

≤
CL+1

χ1

ρL−2
∗∗

×
L∑

k=1

{∥∥∥W(rk,sk)
(n)

[
∂λj

w
(n)
rk+pk,sk+qk

]
(
ρ∗∗

(
λ + ηk; y

(rk)
k , ỹ

(sk)
k

)
; Z(n)[z]

)∥∥∥
B(H(n))

×
L∏

�=1,
��=k

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥
B(H(n))

}
.

Inserting the estimates (4.60, 4.61) into (4.59) and using (4.58) we obtain

sup
λ∈Q(n+1)

∣∣∣Ṽ (n+1)
r,p,s,q

L
[λ; Y (R,S); z]

∣∣∣2 + sup
λ∈Q(n+1)

∑
j=1,2

∣∣∣∂λj
Ṽ (n+1)

r,p,s,q
L
[λ; Y (R,S); z]

∣∣∣2
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≤ 3(L + 1)2C
2(L+1)
χ1

ρ2L−2
∗∗

×
L∏

�=1

{
sup

λ∈Q(n+1)

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

]
(
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥2

B(H(n))

+ sup
λ∈Q(n+1)

∑
j=1,2

∥∥∥W(r�,s�)
(n)

[
∂λj

w
(n)
r�+p�,s�+q�

]
(
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥2

B(H(n))

}
.

Integration against the measure mθn+1(Y
(R,S))−3−2µ dY (R,S) yields(∥∥∥Ṽ (n+1)

r,p,s,q
L
[ · ; z]

∥∥∥#

(n+1)

)2

(4.62)

=

∫
{M(n+1)}R+S

dY (R,S)

mθn+1(Y
(R,S))3+2µ

{

sup
λ∈Q(n+1)

∣∣∣Ṽ (n+1)
r,p,s,q

L
[λ; Y (R,S); z]

∣∣∣2 + sup
λ∈Q(n+1)

∑
j=1,2

∣∣∣∂λj
Ṽ (n+1)

r,p,s,q
L
[λ; Y (R,S); z]

∣∣∣2}

≤ 3(L + 1)2C
2(L+1)
χ1

ρ2L−2
∗∗

L∏
�=1

{ ∫
{M(n+1)}r�+s�

dY (r�,s�)

mθn+1(Y
(r�,s�))3+2µ

×
{

sup
λ∈Q(n+1)

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

]
(
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥2

B(H(n))

+ sup
λ∈Q(n+1)

∑
j=1,2

∥∥∥W(r�,s�)
(n)

[
∂λj

w
(n)
r�+p�,s�+q�

]
(
ρ∗∗

(
λ + η�; y

(r�)
� , ỹ

(s�)
�

)
; Z(n)[z]

)∥∥∥2

B(H(n))

}}

≤ 3(L + 1)2C2(L+1)
χ1

ρ(2+2µ)(R+S)−2L+2
∗∗

L∏
�=1

{ ∫
{M(n)}r�+s�

dY (r�,s�)

mθn(Y (r�,s�))3+2µ

×
{

sup
λ∈Q(n)

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
λ; y

(r�)
� , ỹ

(s�)
� ; Z(n)[z]

)∥∥∥2

B(H(n))
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+ sup
λ∈Q(n)

∑
j=1,2

∥∥∥W(r�,s�)
(n)

[
∂λj

w
(n)
r�+p�,s�+q�

]
(
λ; y

(r�)
� , ỹ

(s�)
� ; Z(n)[z]

)∥∥∥2

B(H(n))

}}
.

where we performed the transformation Y (r�,s�) �→ ρ−1
∗∗ Y (r�,s�) of integration

variables and used that

mθn+1(ρ
−1
∗∗ Y (r�,s�)) = ρ−r�−s�

∗∗ mθn(Y (r�,s�)),

ρ∗∗M(n+1) ⊆M(n),

ρ∗∗(λ + η�) ∈ Q(n) ∀λ ∈ Q(n+1).

We apply Proposition 4.1 to see that∫
{M(n)}r�+s�

dY (r�,s�)

mθn(Y (r�,s�))3+2µ

× sup
λ∈Q(n)

∥∥∥W(r�,s�)
(n)

[
w

(n)
r�+p�,s�+q�

] (
λ; y

(r�)
� , ỹ

(s�)
� ; Z(n)[z]

)∥∥∥2

B(H(n))

≤ 1

pp�

� qq�

�

×
∫

{M(n)}r�+s�

dY (r�,s�)

mθn(Y (r�,s�))3+2µ

∥∥∥w(n)
r�+p�,s�+q�

[ · , y(r�)
� , · , ỹ(s�)

� , Z(n)[z]]
∥∥∥2

(n)

=
1

pp�

� qq�

�

∥∥∥w(n)
r�+p�,s�+q�

[Z(n)[z]]
∥∥∥2

(n)

Inserting this estimate in (4.62) finally gives

ρ−1
∗∗

∥∥∥Ṽ (n+1)
r,p,s,q

L
[ · ; z]

∥∥∥#

(n+1)

≤ 2(L + 1)CL+1
χ1

ρ(1+µ)(R+S)−L
∗∗

L∏
�=1

∥∥∥w(n)
r�+p�,s�+q�

[Z(n)[z]]
∥∥∥#

(n)√
pp�

� qq�

�

.

The analyticity of z �→ Ṽ
(n+1)
r,p,s,q

L
[ · ; z] follows from the analytic properties of the

functions z �→ T (n)[ · ; z], E(n)[z], w
(n)
R,S[ · ; z] and the above estimates.

(ii) The proof is the same as under (i).

(iii) The strategy in proving the second assertion only differs from the proof of (i)
due to the fact that the Wick monomials

W(r�,s�)
[θ]

[
w

(0)
r�+p�,s�+q�

] (
ρ
(
λ + η

(θ1)
�

(
Y (R,S)

)
; y

(r�)
� , ỹ

(s�)
� ; z

))
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in (4.22) are not bounded operators on H2 = H2
p ⊗ F(L2[Υ]). However, by

sandwiching the Wick monomials with the operator (M[θ] + 1)−1/2 we obtain
a bounded operator

W̃� ≡
(M[θ] + 1)−1/2W(r�,s�)

[θ]

[
w

(0)
r�+p�,s�+q�

] (
ρ
(
λ + η

(θ1)
�

(
Y (R,S)

)
; y

(r�)
� , ỹ

(s�)
� ; z

))
×(M[θ] + 1)−1/2,

c.f. Lemma A.5 and recall that, by definition (4.15), w
(0)
R,S = 0 holds for

R+S ≥ 2. Introducing the operator-valued functions (we use the abbreviation

λ̃(�) := η
(θ1)
� (Y (R,S)) +

∑s�

j=1 λθ1(ũ
(s�)
�,j ) again)

F̂0(λ) := X0,1

(
λ2 +

[
η

(θ1)
0

(
Y (R,S)

)]
2

)
,

F̂L(λ) := X0,1

(
λ2 + λ̃

(L)
2

)
,

F̂�(λ) :=
(M[θ] + 1)X

2

0,1

(
λ2 + λ̃

(�)
2

)
T (0)
[
ρ
(
λ + λ̃(�)

)
; ρz
]
− E(0)[ρz]

for � = 1, . . . , L− 1, we may write

Ṽ (1)
r,p,s,q

L
[λ; Y (R,S); z] =

〈
F̂0

(
ρ−1Λ[θ] + λ

) L∏
�=1

{
W̃�F̂�

(
ρ−1Λ[θ] + λ

)}〉
Ωvac

.

We observe that, for � = 1, . . . , L− 1,

∥∥∥F̂�(ρ
−1Λ[θ] + λ)

∥∥∥ =

∥∥∥∥∥∥ M[θ] + 1

ρ
(
L0,θ + λ̃(�) − z

)X
2

0,1

(
λ2 + λ̃

(�)
2

)∥∥∥∥∥∥ ≤ Cχ1

ρ

with Cχ1 ≥ 1 given in (4.6), as one shows with the same arguments as those
used in the proof of Lemma 3.5, Equations (3.16) - (3.17). The same kind of
estimate holds for the derivatives ∂λj

F�(ρ
−1Λ[θ] + λ). Proceeding as under (i)

and making use of ∂λj
w

(0)
R,S = 0 we arrive at(∥∥∥Ṽ (1)

r,p,s,q
L
[ · ; z]

∥∥∥#

(1)

)2

≤ (L + 1)2C2(L+1)
χ1

ρ(2+2µ)(R+S)−2L+2

×
L∏

�=1

{ ∫
Υr�+s�

dY (r�,s�)

mθ(Y (r�,s�))3+2µ
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× sup
λ∈�2

∥∥∥(M[θ] + 1)−1/2W(r�,s�)
[θ]

[
w

(0)
r�+p�,s�+q�

] (
λ; y

(r�)
� , ỹ

(s�)
� ; ρz

)
× (M[θ] + 1)−1/2

∥∥∥2
}

≤ (L + 1)2C2(L+1)
χ1

ρ(2+2µ)(R+S)−2L+2

×

⎡⎣g2 max
F∈
{

F
(s)
θ ,F

(s)

θ

∗}
∫
Υ

dy
[
mθ(u)−1 + mθ(u)−1−2µ

]
‖F (y)‖2B(H2

p)

⎤⎦L

where we used that (for r� = s� = 0)

∥∥∥(M[θ] + 1)−1/2W(0,0)
[θ]

[
w(0)

p�,q�

]
(λ; ρz) (M[θ] + 1)−1/2

∥∥∥2

≤ max
F∈
{

F
(s)
θ ,F

(s)

θ

∗} g2
∥∥∥(M[θ] + 1)−1/2a#

gl (F ) (M[θ] + 1)−1/2
∥∥∥2

≤ g2 max
F∈
{

F
(s)
θ ,F

(s)

θ

∗}
∫
Υ

dy
‖F (y)‖2B(H2

p)

mθ(u)
,

refer to Lemma A.4, and (for p� = q� = 0)∫
Υ

dy

mθ(u)3+2µ

∥∥∥(M[θ] + 1)−1/2W(r�,s�)
[θ]

[
w(0)

r�,s�

]
(λ; y; ρz) (M[θ] + 1)−1/2

∥∥∥2

≤ max
F∈
{

F
(s)
θ ,F

(s)

θ

∗}
∫
Υ

dy

mθ(u)3+2µ
g2mθ(u)2 ‖F (y)‖2B(H2

p)

≤ g2 max
F∈
{

F
(s)
θ ,F

(s)

θ

∗}
∫
Υ

dy
‖F (y)‖2B(H2

p)

mθ(u)1+2µ
.

The analyticity of z �→ Ṽ
(1)
r,p,s,q

L
[ · ; z] is obvious.

Proof of Theorem 4.9.

(i) Recall the definition (4.38) of w
(n+1)
R,S in terms of the functions Ṽ

(n+1)
r,p,s,q

L
.
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Lemma 4.10(i) implies that∥∥∥w(n+1)
R,S [ · ; z]

∥∥∥#

(n+1)

≤
∞∑

L=1

2Cχ1(L + 1)

(
Cχ1

ρ∗∗

)L (
2ρ1+µ

∗∗
)R+S

∑
r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�≥1

×
L∏

�=1

[(
2
√

p�

)p�
(

2
√

q�

)q� ∥∥∥w(n)
r�+p�,s�+q�

[ · ; Z(n)[z]]
∥∥∥#

(n)

]

where we used that

(
j + k

j

)
≤ 2j+k. Summation over R + S ≥ 1 yields,∥∥∥∥(w(n+1)

R,S

)
R+S≥1

∥∥∥∥
(n+1),ξ

=
∑

R+S≥1

ξ−(R+S) sup
z∈B1/4

∥∥∥w(n+1)
R,S [ · ; z]

∥∥∥#

(n+1)

≤ 4Cχ1ρ
1+µ
∗∗

∞∑
L=1

(L + 1)

(
Cχ1

ρ∗∗

)L ∑
R+S≥1

∑
r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�≥1

×
L∏

�=1

[(
2ξ
√

p�

)p�
(

2ξ
√

q�

)q�

ξ−(r�+p�+s�+q�)

× sup
z∈B1/4

∥∥∥w(n)
r�+p�,s�+q�

[ · ; Z(n)[z]]
∥∥∥#

(n)

]
≤ 4Cχ1ρ

1+µ
∗∗

∞∑
L=1

(L + 1)

(
Cχ1

ρ∗∗

)L

×
[ ∑

r+s≥1

r∑
p=0

(
2ξ
√

p

)p s∑
q=0

(
2ξ
√

q

)q

ξ−(r+s) sup
z∈B1/4

∥∥wn
r,s[ · ; Z(n)[z]]

∥∥#

(n)

]L

≤ 4Cχ1ρ
1+µ
∗∗

∞∑
L=1

(L + 1)

[
Cχ1

ρ∗∗(1− 2ξ)2

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥
(n),ξ

]L

≤ 128C2
χ1

ρµ
∗∗

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥
(n),ξ

≤ η

2
,

where we used
∞∑

L=1

(L + 1)xL =
d

dx

∞∑
L=0

xL − 1 =
1

(1− x)2
− 1 = x

2− x

(1− x)2
≤ 8x,
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0 ≤ x ≤ 1
2
, and

Cχ1

ρ∗∗(1− 2ξ)2

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥
(n),ξ

≤ 4Cχ1η

ρ∗∗
≤ 1

2

since ξ ≤ 1/4 and η ≤ ρ∗∗
8Cχ1

and 128C2
χ1

ρµ
∗∗ = 128C2

χ1
(16Cχ1)

−2 ≤ 1/2.

Next, we estimate for T (n+1)[λ; z] := w
(n+1)
0,0 [λ; z]− w

(n+1)
0,0 [0; z],

sup
z∈B1/4,

λ∈Q(n+1)

∣∣∣∣∇λT
(n+1)[λ; z]−

(
1
i

)∣∣∣∣
≤ sup

z∈B1/4,

λ∈Q(n+1)

∣∣∣∣(∇λT
(n)
)
[ρ∗∗λ; Z(n)[z]]−

(
1
i

)∣∣∣∣
+

∞∑
L=2

∑
p1,q1,...,pL,qL:

p�+q�≥1

ρ−1
∗∗ sup

z∈B1/4,

λ∈Q(n+1)

∣∣∣∇λV
(n+1)
0,p,0,q

L
[λ; z]

∣∣∣
≤ sup

z∈B1/4,

λ∈Q(n)

∣∣∣∣∇λT
(n)[λ; z]−

(
1
i

)∣∣∣∣
+2Cχ1

∞∑
L=2

(L + 1)

[
Cχ1

ρ∗∗

∑
p+q≥1

sup
z∈B1/4

∥∥w(n)
p,q [ · ; z]

∥∥#

(n)

]L

≤ sup
z∈B1/4,

λ∈Q(n)

∣∣∣∣∇λT
(n)[λ; z]−

(
1
i

)∣∣∣∣
+2Cχ1

∞∑
L=2

(L + 1)

[
Cχ1ξ

ρ∗∗

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥
(n),ξ

]L

≤ sup
z∈B1/4,

λ∈Q(n)

∣∣∣∣∇λT
(n)[λ; z]−

(
1
i

)∣∣∣∣
+24Cχ1

[
Cχ1ξ

ρ∗∗

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥
(n),ξ

]2

≤ ε +
η

2
,

where we used

∞∑
L=2

(L + 1)xL =
d

dx

[ ∞∑
L=0

xL − x− x2

]
= x2 3− 2x

(1− x)2
≤ 12x2,
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for 0 ≤ x ≤ 1
2
, and

Cχ1ξ

ρ∗∗

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥
(n),ξ

≤ Cχ1ξ

ρ∗∗

ρ∗∗
8Cχ1

=
ξ

8
≤ 1/2

and

24
C3

χ1
ξ2

ρ2
∗∗

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥2

(n),ξ

≤ 24
C3

χ1
ξ2

ρ2
∗∗

ρ∗∗
8Cχ1

η = 3
C2

χ1
ξ2

ρ∗∗
η =

3η

16
≤ η

2
.

Finally, we see that E(n+1)[z] := −w
(n+1)
0,0 [0; z] deviates from z by

sup
z∈B1/4

∣∣E(n+1)[z]− z
∣∣ ≤ ∞∑

L=2

∑
p1,q1,...,pL,qL:

p�+q�≥1

ρ−1
∗∗ sup

z∈B1/4

∣∣∣V (n+1)
0,p,0,q

L
[0; z]
∣∣∣

≤ 24Cχ1

[
Cχ1ξ

ρ∗∗

∥∥∥∥(w(n)
R,S

)
R+S≥1

∥∥∥∥
(n),ξ

]2

≤ η

2
.

(ii) With the same arguments as under (i) and with the help of Lemma 4.10(ii) we
obtain ∥∥∥∥(w(2)

R,S

)
R+S≥1

∥∥∥∥
(2),ξ

≤ 4Cχ1ρ
1+µ
∗

∞∑
L=1

(L + 1)

[
Cχ1

ρ∗(1− 2ξ)2

∥∥∥∥(w̆(1)
R,S

)
R+S≥0

∥∥∥∥
(1),ξ

]L

≤ 128C2
χ1

ρµ
∗

∥∥∥∥(w̆(1)
R,S

)
R+S≥0

∥∥∥∥
(1),ξ

< η2,

for |βmax − βmin| � 1 and g sufficiently small where we used that

ρ−1
∗

∥∥∥∥(w̆(1)
R,S

)
R+S≥0

∥∥∥∥
(1),ξ

(4.63)

= ρ−1
∗

[
sup

z∈B1/4,

λ∈Q(1)

∥∥∥w̆(1)
0,0[λ; z]

∥∥∥
B(ker(Lp))

+

∥∥∥∥(w(1)
R,S

)
R+S≥1

∥∥∥∥
(1),ξ

]

= ρ−1
∗ O
(

gρµ +
g2

ρ
(gε̃ + |βmax − βmin|)

)
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= O
(

ρ1+µ

g
+ gε̃ + |βmax − βmin|

)
= O

(
g2(1+ε̃)(1+µ)/3−1 + gε̃ + |βmax − βmin|

)
≤ 1

2

due to Proposition 4.4, Equation (4.48) and since µ ≥ 1/2 and ε̃ > 0.

Next, for T (2)[λ; z] := w
(2)
0,0[λ; z]− w

(2)
0,0[0; z], we have with the help of (4.57)

sup
z∈B1/4,

λ∈Q(2)

∣∣∣∣∇λT
(2)[λ; z]−

(
1
i

)∣∣∣∣
≤ sup

z∈B1/4,

λ∈Q(2)

χ2
1(λ2)

∣∣∣∣∣
〈

Ωp

∣∣∣∣ ∣∣∣∣(∇λT
(1)
)
[ρ∗λ; Z(1)[z]]−

(
1
i

)∣∣∣∣Ωp

〉
ker(Lp)

∣∣∣∣∣
+ρ−1

∗ sup
z∈B1/4,

λ∈Q(2)

∣∣∂λ2χ
2
1(λ2)

∣∣ {
∣∣∣〈Ωp

∣∣ [T (1)[ρ∗λ; Z(1)[z]]− ρ∗(λ1 + iλ2)
]
Ωp

〉
ker(Lp)

∣∣∣
+
∣∣∣〈E(1)

〉
Ωp

[Z(1)[z]]− Z(1)[z]
∣∣∣ }

+
∞∑

L=2

∑
p1,q1,...,pL,qL:

p�+q�≥0

ρ−1
∗ sup

z∈B1/4,

λ∈Q(2)

∣∣∣∇λV
(2)
0,p,0,q

L
[λ; z]

∣∣∣
≤ sup

z∈B1/4,

λ∈Q(1)

∥∥∥∥∣∣∣∣∇λT
(1)[λ; z]−

(
1
i

)∣∣∣∣∥∥∥∥
B(ker(Lp))

+
Cχ1

ρ∗
sup

z∈B1/4,

λ∈Q(1)

{∥∥T (1)[λ; z]− (λ1 + iλ2)
∥∥
B(ker(Lp))

+

∥∥∥∥E(1)[z]− z +
g2

ρ
Λ

(s)
0

∥∥∥∥
B(ker(Lp))

}

+24Cχ1

[
Cχ1ξ

ρ∗

∥∥∥∥(w̆(1)
R,S

)
R+S≥0

∥∥∥∥
(1),ξ

]2

= O
(

g2

ρ2
+

ρ1+µ

g
+ gε̃ + |βmax − βmin|

)
< ε2

for |βmax− βmin| � 1 and g sufficiently small, using Proposition 4.4 and (4.25,
4.63).
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Finally, we have for E(2)[z] := −w
(2)
0,0[0; z],

sup
z∈B1/4

∣∣E(2)[z]− z
∣∣ ≤ 24Cχ1

[
Cχ1ξ

ρ∗

∥∥∥∥(w̆(1)
R,S

)
R+S≥0

∥∥∥∥
(1),ξ

]2

< η2.

4.5 Flow under the Renormalization Transformation

The repeated application of the renormalization transformation is possible under
the assumptions of Theorem 4.9. The iteration generates a discrete renormalization
group flow of integral kernels,

w(n+1) :=

{
R(1)

ρ∗ [w(1)], n = 1,

R(n)
ρ∗∗ [w

(n)], n = 2, 3, . . . ,N − 1,

associated with the initial value w(1) as given in (4.21, 4.23). To the flow

(
w(n)
)

n=1,...,N =

(
−E(n), T (n),

(
w

(n)
R,S

)
R+S≥1

)
n=1,...,N

we assign a flow (K(n))n=1,...,N of families of bounded operators given by

B1/4 � z �→ K(n)[z] :=W(n)

[
w(n)[ · ; z]

]
= T (n)[Λ[θ]; z]− E(n)[z] + W (n)[z] (4.64)

where

W (n)[z] :=W(n)

[(
w

(n)
R,S[ · ; z]

)
R+S≥1

]
.

The first addend, T (n)[Λ[θn]; z], of the decomposition (4.64) is the dominating part.
The gradient of the function T (n) fulfills

sup
z∈B1/4,

λ∈Q(n)

∥∥∥∥∣∣∣∣∇λT
(n)[λ; z]−

(
1
i

)∣∣∣∣∥∥∥∥
B(H(n)

<∞)

≤ εn

which in turn implies that∥∥T (n)[λ; z]− (λ1 + iλ2)
∥∥
B(H(n)

<∞)
≤ |λ|εn ≤ [1 + cot(δ′)]εn (4.65)
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for all λ = (λ1, λ2) ∈ Q(n) and z ∈ B1/4. Thus, the operator T (n)[Λ[θn]; z] is given, up
to an error of order (1+cot(δ′))εn, by the free Liouville operator cos(δ′)Lres+iM[θn] =
L0,θn �H(n) .

The second part in the decomposition (4.64) is simply a complex number, in
the case n = 2, 3, . . . ,N , or a matrix, in the case n = 1, where the assignment
B1/4 � z �→ E(n)[z] is analytic. This part describes a shift of the spectrum of K(n)[z]
in the complex plane w.r.t. the spectrum of the free Liouville operator L0,θn . For
E(n)[z] we have the bound

sup
z∈B1/4

∥∥E(n)[z]− z
∥∥
B(H(n)

<∞)
≤ ηn. (4.66)

The last part of the decomposition (4.64) is a small perturbation of the spectrum
whose concrete form is not of particular interest in this section and in what follows.
We only need that

sup
z∈B1/4

∥∥W (n)[z]
∥∥
B(H(n))

≤ ηn. (4.67)

The bounds εn and ηn are due to Proposition 4.4 and Theorem 4.9 and are ex-
plicitly given by

η1 := 4ρ∗
‖Γeq‖B(ker(Lp))

γeq

,

η2 :=
ρ∗∗

32Cχ1

,

ηn :=
η2

2n−2
, n ≥ 3,

ε1 := O
(

g2

ρ2

)
,

ε2 :=
ρ∗∗

32Cχ1

,

εn := ε2 + η2

n−2∑
k=1

2−k, n ≥ 3.

(4.68)

We remark that η1 ≥ 4ρ∗  gρµ (since γeq is smaller than the gap between the
lowest and second smallest eigenvalue of Γeq) and

g2

ρ

∥∥∥Λ(s)
0

∥∥∥
B(ker(Lp))

+O
(

g2+ε̃

ρ
+ gρµ

)
= 2ρ∗

‖Γeq‖B(ker(Lp)) +O (|βmax − βmin|)
γeq

+O
(

g2+ε̃

ρ

)
≤ η1

for |βmax − βmin| � 1 and g sufficiently small.

We stress that the operator family K(N ) for n = N takes the form

K(N )[z] = −E(N )[z]
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since H(N ) = ker(Nres) = �Ω0 and T (n)[Λ[θN ]; z] �ker(Nres)= T (n)[0; z] �ker(Nres)= 0 and〈
Ω0

∣∣W (n)[z]Ω0

〉
= 0.

The spectra of the families z �→ K(n)[z] are linked through

0 ∈ spec
(
K(n+k)[z]

)
⇐⇒ 0 ∈ spec

(
K(n)

[
Z(n) ◦ · · · ◦ Z(n+k−1)[z]

])
,

0 ∈ specpp

(
K(n+k)[z]

)
⇐⇒ 0 ∈ specpp

(
K(n)

[
Z(n) ◦ · · · ◦ Z(n+k−1)[z]

]) (4.69)

for all z ∈ B1/4, see (4.42, 4.56) where the functions Z(n) are connected to E(n) by
(4.32). For completion we recall the relation (4.18) and the definition Z(0)[z] = ρz
to see that

Z(0) ◦ · · · ◦ Z(n−1)[z] ∈ spec
(
K

(s)
θ

)
⇐⇒ 0 ∈ spec

(
K(n)[z]

)
,

Z(0) ◦ · · · ◦ Z(n−1)[z] ∈ specpp

(
K

(s)
θ

)
⇐⇒ 0 ∈ specpp

(
K(n)[z]

)
.

(4.70)

Since Z(0) ◦ · · · ◦ Z(n−1)
[
B1/4

]
is comparable with a ball of radius ρ[n]/4 the incor-

poration of more iteration steps in the renormalization procedure allows the study
of the spectrum of K

(s)
θ on smaller and smaller scales. The process of extracting

spectral information from higher iteration steps is worked out in the next chapter.



5 Recursive Localization of the
Spectrum of K

(s)
θ on Decreasing

Scales

The renormalization group flow of operator families (z �→ K(n)[z])n=1,...,N introduced
in (4.64), Section 4.5, and the associated flow of spectral information given by the
relations (4.69, 4.70) provide a tool to zoom into any arbitrary small spectral neigh-

borhood of zero of the operator K
(s)
θ . The zooming procedure works as follows. Each

renormalization iteration step n the operator K(n)[z] decomposes due to (4.64) in
the same way into a free part T (n)[Λ[θn]; z] (which is in leading order the spectrally
deformed, free Liouville operator L0,θn whose spectrum is confined to a cone), a spec-
tral shift E(n)[z] (only deviating slightly from the spectral parameter z itself), and
a small perturbation W (n)[z]. Further, in each step all these terms are controlled by
bounds (4.65, 4.66, 4.67) of the same order. Therefore, we can locate the spectrum
of K(n)[z] in a shifted, smeared out cone. However, the error terms do not allow
predictions about the spectrum within the band of “smearing”. In particular, the
closest neighborhood of the tip of the cone is not accessible with this rough analysis
of the spectrum. The isospectral link (4.69) between the iteration steps implies that
the spectrum of K(n)[z] around the tip of the cone on a scale ρk

∗∗/4 can be regained
from the spectrum of K(n+k)[z] by blowing up the ρk

∗∗/4-neighborhood to the full
circle of radius 1/4 using the function (Z(n) ◦ · · · ◦ Z(n+k−1))−1. Thus, after having
magnified the spectrum on the scale ρk

∗∗/4 it looks the same as the spectrum on the
scale 1/4. Figure 5.1 illustrates the magnifying process.

The magnifying procedure can now be used to assemble a finer picture of the
spectrum of K(n)[z] by piling up the spectrum on scales ρk

∗∗/4 obtained by shrinking
the smeared out cone including the spectrum of K(n+k)[z]. This process is done
recursively. As a result we obtain that the error bands to the smeared out cone in a
ρk
∗∗/4-neighborhood around the tip can be reduced by a factor ρk

∗∗ which significantly
improves the spectral picture close to the tip, we refer to the Figure 5.2.

In the very last step of renormalization the family of operators z �→ K(N )[z] =
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Figure 5.1: The spectral information of K(n) inside the yellowish shaded area D(n) is
encoded as the spectral information of K(n+1) in the yellowish ball B1/4.

The area D(n) is blown up through the function Z(n)−1
. The reddish

shaded area D(n+1) is subject to further analysis employing the spectral
link with the spectrum of K(n+2).
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Figure 5.2: The refined information about the spectrum of K(n+1) inside the yellow-
ish ball B1/4 is transferred via the function Z(n) to the yellow area D(n)

which allows a refinement of the localization of the spectrum of K(n).
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−E(N )[z] reduces to a scalar function and therefore the spectrum consists of a single
point inside the ball B1/4. This isolation of the spectral point survives the reassem-
bling of the spectrum and finally leads to an isolated eigenvalue of the operator
K

(s)
θ .

In this chapter we make the same assumptions on the parameters s, θ = (iδ′, iτ ′),
ρ, ρ∗, ρ∗∗ as in the previous ones, recall (3.1, 3.2, 3.4, 4.3, 4.5, 4.43).

5.1 Spectrum of the Operator Families (K(n))n and
Isospectral Link

The information about the operator family K(n) collected in Section 4.5 allows us
to state a first – though not very detailed – result about the spectral properties of
K(n).

Lemma 5.1 Introduce the notation

bn := 2ηn +
2

sin(δ′)
εn, n = 1, . . . ,N − 1,

and define the cone

Aδ′ := {ζ ∈ � | Im(ζ) ≥ tan(δ′)|Re(ζ)| } . (5.1)

For n = 1, . . . ,N − 1, we define the sets

C(n) :=
{
z ∈ B1/4

∣∣ dist(z; Aδ′) ≤ bn

}
.

The spectrum of K(n)[z], n = 1, . . . ,N − 1, inside the ball B1/4 can be located as
follows,

spec(K(n)[z] + z) ∩B1/4 ⊆ C(n) (5.2)

and
spec(K(N )[z]) =

{
−E(N )[z]

}
. (5.3)

Proof. The assertion is obvious for the case n = N . Let n = 1, . . . ,N − 1 and
write

K(n)[z] + z = L0,θn �H(n) +R(n)[z],

where the remainder term R(n)[z] = T (n)[Λ[θn]; z] −
(
cos(δ′)Lres + iM[θn]

)
+ z −

E(n)[z] + W (n)[z] can be estimated as

sup
z∈B1/4

∥∥R(n)[z]
∥∥ ≤ 2ηn + [1 + cot(δ′)]εn ≤ bn
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because of (4.65, 4.66, 4.67). Since we know that L0,θn �H(n) is a normal bounded
operator on H(n) and further

spec(L0,θn �H(n)) ⊆ Aδ′

we conclude through application of the following Lemma 5.2 that (5.2) holds.

Lemma 5.2 Let H be a normal bounded operator on a Hilbert space and let I be a
bounded operator on the same Hilbert space. The spectrum of the sum (H + I) can
be located as

spec(H + I) ⊆ {z ∈ � | dist(z; spec(H)) ≤ ‖I‖ } .

Proof. Let z ∈ � with dist(z; spec(H)) > ‖I‖. In particular z /∈ spec(H)
and therefore (H − z) has a bounded inverse (H − z)−1. Since H is normal so
is (H − z)−1 and we have by functional calculus a norm estimate ‖(H − z)−1‖ ≤
[dist(z; spec(H))]−1. Thus the operator I(H−z)−1 has by assumption a norm strictly
smaller than one which implies the convergence of the Neumann series

(H − z)−1

∞∑
n=0

[
−I(H − z)−1

]n
= (H − z)−1

[
�+ I(H − z)−1

]−1
= (H + I − z)−1

and therefore z /∈ spec(H + I).

The spectrum of each operator K(n)[z] is not of primary interest for our analysis.
The notion of singular values of an operator family D � z �→ F [z] on a domain
D ⊆ � is more suitable for our purposes. We define the set sv(F ) of singular values
in the following way,

sv(F ) := {z ∈ D | spec(F [z]) � 0 } . (5.4)

For notational convenience we will henceforth refer to the set of singular values as
the spectrum of the family of operators. Correspondingly, the point spectrum svpp

of the operator family F is defined as

svpp(F ) := {z ∈ D | specpp(F [z]) � 0 } . (5.5)

Note that the set of singular values of a family of the type � � z �→ F [z] =
F − z coincides with the spectrum of F , i.e., sv(F [ · ]) = spec(F ) and svpp(F [ · ]) =
specpp(F ). Lemma 5.1 has its analogue in the following corollary.

Corollary 5.3 For n = 1, . . . ,N − 1 we have the relation

sv(K(n)) ⊆ C(n) (5.6)

and
sv(K(N )) = svpp(K

(N )) =
{
z ∈ B1/4

∣∣E(N )[z] = 0
}

. (5.7)
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The aim of the subsequent consideration is to connect the spectral properties of
a family K(k) with the properties of its successors K(n), n ≥ k, in order to pull
back the information to the spectrum of K(k). That way, we successively refine the
spectral information in a neighborhood of zero on smaller and smaller scales.

We recall that each family K(n) of the form (4.64) comes with a biholomorphic
function

Z(n) : B1/4 → D(n),

defined in (4.32), associated with the analytic function z �→ E(n)[z] which maps the
ball B1/4 of radius 1/4 onto the set

D(n) := D[w(n)]

introduced in (4.28, 4.29). Since

sup
z∈B1/4

∣∣∂zZ
(n)[z]− ρ̃

∣∣ ≤ 12ρ̃ηn, (5.8)

by (4.33), Lemma 4.5(iii), the function Z(n) is – up to small corrections – a rescaling
function which shrinks the ball B1/4 by a factor ρ̃ := ρ∗, for n = 1, and ρ̃ := ρ∗∗,
for n = 2, 3, . . . ,N , down to the domain D(n) which is almost a ball of radius ρ̃/4,
namely

Bρ̃/4−ηn ⊆ D(n) ⊆ Bρ̃/4+ηn ,

by Lemma 4.5(i). The function Z(n) relates the spectra of K(n) and K(n+1) in the
following sense,

sv
(
K(n+k)

)
= sv

(
K(n) ◦ Z(n) ◦ · · · ◦ Z(n+k−1)

)
,

svpp

(
K(n+k)

)
= svpp

(
K(n) ◦ Z(n) ◦ · · · ◦ Z(n+k−1)

)
,

(5.9)

due to (4.69). Therefore, the analysis of the spectrum of K(n) in a ρ̃/4-neighborhood
of zero can be replaced by the analysis of the spectrum of K(n+1) in a ball of radius
1/4. Since we can locate the spectrum of each family K(n) on a scale 1/4 we can

recursively locate the spectrum of the initial family K
(s)
θ on arbitrary scales ρ[n] by

considering the subsequent n families.

5.2 Reassembling the Spectrum

We perform the recursive localization. First we observe that the last application of
the renormalization procedure produces an operator family on a one dimensional
space and that therefore the spectrum is completely understood,

sv(K(N )) = svpp(K
(N )) =

{
Z(N )(0)

}
. (5.10)
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To describe the pullback of information from a family to its predecessor family we
introduce some notation. Set

b∗ := 2η1 +
2

sin(δ′)
(ε1 + η1),

r∗ :=
2b∗

sin(δ′)
,

b∗∗ := 2η2 +
2

sin(δ′)
(ε2 + η2),

r∗∗ :=
2b∗∗

sin(δ′)
.

Note that b1 ≤ b∗ and bn ≤ b∗∗ for n ≥ 2. A simple geometric argument illustrated
in Figure 5.3 shows that

Im(z) ≥ b∗ for all z ∈ C(1) \Br∗ ,

Im(z) ≥ b∗∗ for all z ∈ C(n) \Br∗∗ , n = 2, 3, . . . ,N − 1
(5.11)

Since δ′ ∈ [π
8
, π

4
] and

144ε2 + 196η2 < ρ∗∗

because of (4.6, 4.68) we have

Br∗ ⊆ Bρ∗/4−η1 ⊆ D(1),

Br∗∗ ⊆ Bρ∗∗/4−ηn ⊆ D(n),
(5.12)

thus, Br∗ , Br∗∗ are included in the image of B1/4 under Z(1), Z(n), resp. We are
prepared to define recursively subsets Σ(n) of C(n) by

Σ(N ) :=
{
Z(N )(0)

}
,

Σ(n) :=
(
C(n) \Br∗∗

)
∪ Z(n)

[
Σ(n+1)

]
, n = 2, . . . ,N − 1,

Σ(1) :=
(
C(1) \Br∗

)
∪ Z(1)

[
Σ(2)
]
.

The isospectral link (5.9) between the families K(n) and the localization (5.6, 5.7,
5.10, 5.12) imply that

sv(K(n)) ⊆ Σ(n). (5.13)

For convenience we introduce an abbreviation for the composition of the functions
Z(k), . . . , Z(n) for k ≤ n,

Z
(n)
(k) := Z(k) ◦ · · · ◦ Z(n) : B1/4 → D(k),

and use this notation to introduce the set

Σ̇(n) := Σ(n) \
{

Z
(N )
(n) (0)

}
,

which includes all spectral points of K(n) except the one originating from the eigen-
value of K(N ).

The goal of the further considerations is to show that Z
(N )
(n) (0) is the point with

lowest imaginary part among all points in Σ(n) and that it is uniformly (on the scale
ρN−k
∗∗ ) separated from Σ̇(n). Before we state the corresponding proposition we first

provide some preparatory lemmata.
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Figure 5.3: Relations between the parameters r̃ ∈ {r∗, r∗∗}, b̃ ∈ {b∗, b∗∗}, bn, and δ′.

Lemma 5.4 For n = 2, . . . ,N holds∣∣∣Z(N )
(n) (0)

∣∣∣ ≤ 2ηn,∣∣∣Z(N )
(1) (0)

∣∣∣ ≤ η1 + 4ρ∗η2 ≤ 2η1.
(5.14)

Proof. We first remark that for ζ = Z(k)(0) the following estimate holds,

|ζ| =
∣∣ζ − E(k)[ζ]

∣∣ ≤ ηk,

and that (5.8) implies that∣∣Z(k)(z)− Z(k)(ζ)− ρ̃(z − ζ)
∣∣ ≤ 12ρ̃ηk|z − ζ|, (5.15)
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which was already stated in Corollary 4.6, for ρ̃ := ρ∗, if n = 1, and ρ̃ := ρ∗ for
n ≥ 2. Define ζk := Z

(N )
(N−k)(0) and note that

|ζ0| =
∣∣Z(N )(0)

∣∣ ≤ ηN ,

|ζk+1| =
∣∣Z(N−k−1)(ζk)

∣∣
≤
∣∣Z(N−k−1)(ζk)− Z(N−k−1)(0)− ρ∗∗ζk

∣∣+ ∣∣Z(N−k−1)(0)
∣∣+ ρ∗∗|ζk|

≤ ρ∗∗(12ηN−k−1 + 1)|ζk|+ ηN−k−1

≤ 2ρ∗∗|ζk|+ ηN−k−1, k = 0, . . . ,N − 3,

|ζN−1| =
∣∣Z(1)(ζN−2)

∣∣
≤
∣∣Z(1)(ζN−2)− Z(1)(0)− ρ∗ζN−2

∣∣+ ∣∣Z(1)(0)
∣∣+ ρ∗|ζN−2|

≤ ρ∗(12η1 + 1)|ζN−2|+ η1

≤ 2ρ∗|ζN−2|+ η1,

where we used that 12ηk < 1. This implies the estimate

|ζk| ≤
k∑

j=0

(2ρ∗∗)
jηN−k+j = ηN−k

k∑
j=0

ρj
∗∗ <

ηN−k

1− ρ∗∗
< 2ηN−k,

for k ≤ N − 2, since ρ∗∗ < 1/2, and

|ζN−1| ≤ 2ρ∗|ζN−2|+ η1 ≤ η1 + 4ρ∗η2 ≤ 2η1,

due to the definition (4.68) of η1 and η2 < 1. The assertion follows by choosing
k = N − n.

A direct consequence of Lemma 5.4 and (5.11) is the following

Corollary 5.5 For n = 2, . . . ,N − 1 holds

Im
(
z − Z

(N )
(n) (0)

)
≥ b∗∗ − 2ηn ≥

2

sin(δ′)
(ε2 + η2) for all z ∈ C(n) \Br∗∗

and

Im
(
z − Z

(N )
(1) (0)

)
≥ b∗ − 2η1 ≥

2

sin(δ′)
(ε1 + η1) for all z ∈ C(1) \Br∗ .

The next Lemma describes how two points move w.r.t. each other under the
iterative application of functions Z(n).

Lemma 5.6 Let z, ζ ∈ B1/4 and 1 ≤ k ≤ n ≤ N . For k ≥ 2 holds∣∣∣Z(n)
(k) (z)− Z

(n)
(k) (ζ)− ρn−k+1

∗∗ (z − ζ)
∣∣∣ ≤ 36ρn−k+1

∗∗ ηk|z − ζ| (5.16)
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and ∣∣∣Z(n)
(1) (z)− Z

(n)
(1) (ζ)− ρ∗ρ

n−1
∗∗ (z − ζ)

∣∣∣ ≤ 36ρ∗ρ
n−1
∗∗ η1|z − ζ| (5.17)

and ∣∣∣Z(n)
(0) (z)− Z

(n)
(0) (ζ)− ρ[n+1](z − ζ)

∣∣∣ ≤ 36ρ[n+1]η1|z − ζ| (5.18)

where Z(0)[z] = ρz is the function defined in (4.17) and the scale ρ[n] was introduced
in (4.1).

Proof. The case n = 1 in (5.17) follows directly from Corollary 4.6. Henceforth,
we assume n ≥ 2. Introduce j := n− k and denote

rj := Z
(n)
(n−j)(z)− Z

(n)
(n−j)(ζ)− ρj+1

∗∗ (z − ζ), j ≤ n− 2,

rn−1 := Z
(n)
(1) (z)− Z

(n)
(1) (ζ)− ρ∗ρ

j
∗∗(z − ζ).

Corollary 4.6 implies that

|r0| =
∣∣Z(n)(z)− Z(n)(ζ)− ρ∗∗(z − ζ)

∣∣ ≤ 12ρ∗∗ηn|z − ζ|.

We prove inductively that (5.16, 5.17) hold. Set ρ̃ := ρ∗ if j = n− 1 and ρ̃ := ρ∗∗ if
j ≤ n− 2. Applying Corollary 4.6 again we find

|rj| =
∣∣∣Z(n−j)

(
Z

(n)
(n−j+1)(z)

)
− Z(n−j)

(
Z

(n)
(n−j+1)(ζ)

)
− ρ̃ρj

∗∗(z − ζ)
∣∣∣

≤
∣∣∣Z(n−j)

(
Z

(n)
(n−j+1)(z)

)
− Z(n−j)

(
Z

(n)
(n−j+1)(ζ)

)
−ρ̃
(
Z

(n)
(n−j+1)(z)− Z

(n)
(n−j+1)(ζ)

) ∣∣∣
+ρ̃
∣∣∣Z(n)

(n−j+1)(z)− Z
(n)
(n−j+1)(ζ)− ρj

∗∗(z − ζ)
∣∣∣

≤ 12ρ̃ηn−j

∣∣∣Z(n)
(n−j+1)(z)− Z

(n)
(n−j+1)(ζ)

∣∣∣+ ρ̃|rj−1|

≤ 12ρ̃ηn−j

(
|rj−1|+ ρj

∗∗|z − ζ|
)

+ ρ̃|rj−1|
= ρ̃(12ηn−j + 1)|rj−1|+ 12ρ̃ρj

∗∗ηn−j|z − ζ|

≤ 5ρ̃

4
|rj−1|+ 12ρ̃ρj

∗∗ηn−j|z − ζ|,

where we use that 12ηn−j < 1/4. This recursive estimate allows us to find a bound
on |rj|,

|rj| ≤ 12ρ̃ρj
∗∗|z − ζ|

j∑
m=0

(
5

4

)m

ηn−j+m < 12ρ̃ρj
∗∗|z − ζ|ηn−j

∞∑
m=0

(
5

8

)m

=
12

1− 5
8

ρ̃ρj
∗∗ηn−j|z − ζ| < 36ρ̃ρj

∗∗ηn−j|z − ζ|

= 36ρ̃ρn−k
∗∗ ηk|z − ζ|.
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The assertion (5.18) follows by multiplying the inequality (5.17) with ρ.

We state the main Proposition of this chapter.

Proposition 5.7 (Spectral Gap) Let n = 1, . . . ,N − 1 and z ∈ Σ̇(n). Then, the

point Z
(N )
(n) (0) is separated from z in the following way,

Im
(
z − Z

(N )
(n) (0)

)
≥ ρN−n

∗∗
60Cχ1

,

for n ≥ 2. For n = 1 holds

Im
(
z − Z

(N )
(1) (0)

)
≥ ρ∗ρ

N−2
∗∗

60Cχ1

.

The Proposition 5.7 is illustrated in Figure 5.4.

Proof. If n = 1 and z ∈ C(1) \Br∗ then Corollary 5.5 implies

Im
(
z − Z

(N )
(1) (0)

)
≥ 2

sin(δ′)
(ε1 + η1) ≥ 8ρ∗ ≥

ρ∗ρ
N−2
∗∗

60Cχ1

,

if n ≥ 2 and z ∈ C(n) \Br∗∗ then

Im
(
z − Z

(N )
(n) (0)

)
≥ 2

sin(δ′)
(ε2 + η2) ≥

ρ∗∗
8Cχ1

≥ ρN−n
∗∗

60Cχ1

holds by application of Corollary 5.5. Otherwise, since z �= Z
(N )
(n) (0), there exists a

k = 1, . . . ,N − 1− n and an element ζ ∈ C(n+k) \ Br∗∗ , such that z = Z
(n+k−1)
(n) (ζ).

Set ξ := Z
(N )
(n+k)(0) and compare the vectors ξ and ζ. Due to Lemma 5.4 we know

that |ξ| ≤ 2ηn+k ≤ 2η2 and together with (5.11) we get

Im(ζ − ξ) ≥ b∗∗ − 2η2.

We rewrite the difference ζ − ξ in polar coordinates, i.e.,

Im(ζ − ξ) = sin(α)|ζ − ξ|.
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Figure 5.4: Spectral gap between Z
(N )
(n) (0) and Σ̇(n).

A simple geometric argument (we refer the reader to Figure 5.3 for details) shows

| tan(α)| =
| Im(ζ − ξ)|
|Re(ζ − ξ)| ≥

b∗∗ − 2η2

r∗∗ + 2η2

=
b∗∗ − 2η2

2
sin(δ′)b∗∗ + 2η2

= sin(δ′)
b∗∗ − 2η2

2b∗∗ + 2 sin(δ′)η2

= sin(δ′)

2
sin(δ′)(η2 + ε2)

4
sin(δ′)(η2 + ε2) + 4η2 + 2 sin(δ′)η2

= sin(δ′)
η2 + ε2

2(η2 + ε2) + 2η2 sin(δ′) + η2 sin2(δ′)
≥ sin(δ′)

η2 + ε2

5η2 + 2ε2

>
sin(δ′)

5
.
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Since Im(ζ − ξ) is positive we conclude

sin(α) =
| tan α|√

1 + tan2(α)
≥ sin(δ′)√

25 + sin2(δ′)
>

1

6
sin(δ′)

because δ′ ∈ [π/8, π/4]. Now we get with Lemma 5.6

Im
(
z − Z

(N )
(n) (0)

)
= Im

(
Z

(n+k−1)
(n) (ζ)− Z

(n+k−1)
(n) (ξ)

)
≥ ρ̃ρk−1

∗∗ Im(ζ − ξ)− 36ρ̃ρk−1
∗∗ ηn|ζ − ξ|

= ρ̃ρk−1
∗∗ |ζ − ξ|(sin(α)− 36ηn)

≥ ρ̃ρk−1
∗∗ (r∗∗ − 2η2)

(
sin(δ′)

6
− 36ηn

)
= ρ̃ρk−1

∗∗

(
4(η2 + ε2)

sin2(δ′)
+

4

sin(δ′)
η2 − 2η2

)(
sin(δ′)

6
− 36ηn

)
≥ ρ̃ρk−1

∗∗ (6η2 + 4ε2)

(
sin(δ′)

6
− 36ηn

)
≥ ρ̃ρk

∗∗C−1
χ1

(
sin(δ′)

20
− 45

4
ηn

)
≥ ρ̃ρN−1−n

∗∗
60Cχ1

,

where ρ̃ := ρ∗ for n = 1 and ρ̃ := ρ∗∗ otherwise, and where we used that δ′ ∈
[π/8, π/4] and 45ηn/4 ≤ 1/600.

A direct consequence of the Proposition 5.7 is the following statement which
describes the spectrum of K

(s)
θ in a ball B4ρ.

Theorem 5.8 (Spectrum of K
(s)
θ in S0) Under the assumptions of this chapter

on the parameters θ = (iδ′, iτ ′) and s we have the following spectral picture of K
(s)
θ ,

for |βmax − βmin| � 1 and g sufficiently small.

(i) The spectrum of the operator K
(s)
θ inside the ball S0 ⊆ B4ρ is contained in the

set

Σ(0) :=
(
C(0) \Bρ/4

)
∪ Z(0)

[
Σ(1)
]
⊆ C(0)

where the set

C(0) := {z ∈ S0 | dist (z; {0} ∪ [iτ ′ + Aδ′ ]) ≤ b0 }

is illustrated in Figure 3.6. The cone Aδ′ is given in (5.1) and b0 = O (g2).
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(ii) The operator K
(s)
θ has a simple, isolated eigenvalue E

(s)
0,g := Z

(N )
(0) (0) with∣∣∣E(s)

0,g

∣∣∣ ≤ 4g2 ‖Γeq‖B(ker(Lp)) .

(iii) The eigenvalue E
(s)
0,g is separated from the rest of the spectrum in the sense that

Im
(
z − E

(s)
0,g

)
≥ ρ[N ]

60Cχ1

for all z ∈ Σ(0) \ {E(s)
0,g}. The gap can be estimated by

ρ[N ]

60Cχ1

≥ 2τdec :=
τ ′

960C2
χ1

=
g2γeq

(960C2
χ1

)(2 + βmax)
∼ g2γeq

βmax

as βmax →∞.

Proof.

(i) For z ∈ S0 = B4ρ the isospectral relation (3.19) holds, i.e., z ∈ spec(K
(s)
θ )∩S0

if and only if

z ∈ spec
(
FΞ0,ρ

(
K

(s)
θ − z, L0,θ − z

)
+ z
)
∩ S0.

Recall that the Feshbach operator can be expanded as

FΞ0,ρ

(
K

(s)
θ − z, L0,θ − z

)
= P0,ρ

[
L0,θ + g2Λ

(s)
0 ⊗ χ2

ρ(M[θ])
]
P0,ρ +O

(
g2+ε̃
)

= cos(δ′)Lres + iM[θ] + ig2Γeq + g2O
(
gε̃ + |βmax − βmin|+ 1

)
.

by Proposition 3.7. The operator cos(δ′)Lres + iM[θ] + ig2Γeq is a normal,
bounded operator on ran(P0,ρ) and its spectrum is given by

spec
(
cos(δ′)Lres + iM[θ] + ig2Γeq

)
=

⋃
e∈spec(Γeq)

[
ig2e + spec

(
cos(δ′)Lres + iM[θ]

)]
⊆

⋃
e∈spec(Γeq)

[
ig2e + {0} ∪ (iτ ′ + Aδ′)

]
= {0} ∪

(
i

g2γeq

2 + βmax

+ Aδ′

)
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since min(spec(Γeq) \ {0}) ≥ g2γeq > τ ′. The Lemma 5.2 implies that

spec(K
(s)
θ ) ∩ S0 ⊆ C(0). By (4.70) we have

spec
(
K

(s)
θ

)
∩Bρ/4 = sv

(
K(1) ◦ Z(0)−1

)
.

Since sv(K(1)) ⊆ Σ(1) we arrive at the assertion.

(ii) Relation (5.10) suggests that Z(N )(0) is in the pure point spectrum of the
family K(N ) and with the help of (5.9) we obtain

E
(s)
0,g = Z

(N )
(0) (0) = ρZ

(N )
(1) (0) ∈ specpp

(
K

(s)
θ

)
.

Further the dimension of the kernel of K(N )[Z(N )[0]] is trivially one and since
the Feshbach map and therefore also the renormalization transformation is
multiplicity preserving (refer to Theorem E.1) the eigenvalue E

(s)
0,g of K

(s)
θ is

simple. Lemma 5.4 localizes the position of the eigenvalue,∣∣∣E(s)
0,g

∣∣∣ = ρ
∣∣∣Z(N )

(1)

∣∣∣ ≤ 2ρη1 = 8ρρ∗
‖Γeq‖B(ker(Lp))

γeq

= 4g2 ‖Γeq‖B(ker(Lp)) .

(iii) Replacing in Figure 5.3 the labels bn by b0 and r∗ by ρ/4 we see easily that

Im(z) ≥ −b0 cos(δ′) + sin(δ′)

√(ρ

4

)2

− b2
0

≥ − sin(δ′)
ρ

16
+ sin(δ′)

√(ρ

4

)2

−
(ρ

8

)2

≥ sin(δ′)
ρ

16

for all z ∈ C(0) \Bρ/4, since b0 = O (g2)� ρ. This results in

Im
(
z − E

(s)
0,g

)
≥ sin(δ′)

ρ

16
− 4g2 ‖Γeq‖B(ker(Lp)) ≥ sin(δ′)

ρ

32
≥ ρ[N ]

60Cχ1

,

for z ∈ C(0) \Bρ/4, because g2 � ρ and ρ ρ[N ] for N ≥ 3.

Now choose z := ρζ ∈ spec(K
(s)
θ ) ∩ Bρ/4 with z �= E

(s)
0,g . The first part of this

theorem implies that ζ ∈ Σ̇(1) and Proposition 5.7 yields

Im
(
z − E

(s)
0,g

)
= ρ Im

(
ζ − Z

(N )
(1) (0)

)
≥ ρ[N ]

60Cχ1

=
ρ[N−1]ρ∗∗

60Cχ1

=
τ ′

(16Cχ1)
2/µ60Cχ1

≥ τ ′

960C2
χ1

= 2τdec

=
g2γeq

(960C2
χ1

)(2 + βmax)
=

g2γeq

βmax

[
1

(960C2
χ1

)(1 + 2β−1
max)

]
,

for µ ≥ 1/2. Recall the definitions (4.3) of τ ′ and (4.5) of ρ∗∗.
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Part III

Appendices





A Relative Bounds on the
Perturbation

In this appendix we provide the relative bounds of the interaction part of the Liou-
ville operators K

(s)
θ which enter the analysis in the main text. The relative bounds

allow a first rough spectral localization of K
(s)
θ , i.e., as a result, we obtain a lo-

calization of the numerical range, c.f. Proposition A.9. We carefully display the
dependence of the relative norms on the reservoir temperatures to avoid interfer-
ences with the coupling constant. The employed estimates are of standard type and
have already been applied partially in [8].

The operators we are dealing with in the main text are defined on the Hilbert
space

H = H2
p ⊗F(L2[Υ]),

where
H2

p = Hp ⊗Hp ≡ �N×N ⊗�N×N

is the positive temperature particle Hilbert space and F(L2[Υ]) is the Fock space
over

(Υ, dy) ≡ (�× S2 ×�R
1 , d(u, Σ, r)).

describing the photon configurations at positive temperature. The family of opera-
tors studied in Chapter 3 is of the form

K
(s)
θ = L0,θ + gI

(s)
θ , s ∈ �ε0, (A.1)

where θ = (δ, τ) are from a suitable subset in �2 while �ε0 is given in (2.11). The
deformed free Liouville operator was introduced as

L0,θ = Lp + �H2
p
⊗ [cosh(δ)Lres + sinh(δ)Laux + τNres]

≡ Lp + cosh(δ)Lres + sinh(δ)Laux + τNres

(we henceforth omit trivial tensor products with the identity operator) with

Lres = dΓgl((u, Σ, r) �→ u),

Laux = dΓgl((u, Σ, r) �→ |u|),
Nres = dΓgl((u, Σ, r) �→ 1).
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The spectrally deformed perturbation operator I
(s)
θ is given by

I
(s)
θ = a∗

gl

(
Gθ − G ′(s �δβ),θ

)
+ agl

(
Gθ − G ′(s �δβ),θ

)
,

where the incorporated coupling functions are of the form

G(u, Σ, r) =

√
u

1− e−βru
×
{√

u Gr(uΣ)⊗ �Hp , u ≥ 0,

(−
√
−u)Gr(−uΣ)∗ ⊗ �Hp , u < 0,

G ′(�κ)(u, Σ, r) =

√
u

eβru − 1
eiκru

×

⎧⎨⎩
√

u�Hp ⊗ α
−κp
p

(
Gr(uΣ)

∗)
, u ≥ 0,

(−
√
−u)�Hp ⊗ α

−κp
p

(
Gr(−uΣ)

)
, u < 0,

for �κ = (κp, κ1, . . . , κR) ∈ �R+1 and

�δβ = (δβp, δβ1, . . . , δβR) = (βp − β, β1 − β, . . . , βR − β) .

The spectrally deformed functions are defined through composition with the function

u �→ jθ(u) = eδ sgn(u)u + τ,

namely

Gθ(u, Σ, r) = eδ sgn(u)/2G(jθ(u), Σ, r),

G ′(�κ),θ(u, Σ, r) = eδ sgn(u)/2G ′(�κ)(jθ(u), Σ, r).

The well-definedness of Gθ and G ′
(s �δβ),θ

as L2[Υ]-functions is guaranteed by Hypoth-

esis VII-1.12 for s ∈ �ε0 and θ ∈ Dδ0,τ0 , defined in (1.90). One even has the following
uniform bounds provided in Lemma A.1. We introduce the abbreviation

F (s) := G − G ′(s �δβ)

which allows us to simplify

I
(s)
θ = a∗

gl

(
F

(s)
θ

)
+ agl

(
F

(s)

θ

)
. (A.2)

Lemma A.1 Under the assumptions of Hypothesis VII-1.12 we have∫
Υ

dy

[
1 +

1

|jθ(u)|�
] ∥∥∥F (s)

θ (y)
∥∥∥2

B(H2
p)
≤ C�e

E|s(βmax−βmin)|+|s(βmax−βmin)|2/(2a) (A.3)

for � < 2ν + 1, uniformly in θ ∈ Dδ0,τ0, s ∈ �ε0 and uniformly in the inverse
temperatures βr, i.e., the constant C� < ∞ can be chosen independently of s, θ, βr.
The positive constant E is given by E := 4 ‖Hp‖B(Hp) = −4E0 and a > 0 is the UV

regularization postulated in Hypothesis VII-1.12, Equation (1.93).
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Proof. We observe that

F (s)(z, Σ, r) = G(z, Σ, r)− eis(βr−β)z
[
�Ap ⊗ α−s(βp−β)

p

]
(G ′(z, Σ, r))

is pointwise analytic in z ∈ Uδ0,τ0 , defined in (1.89), for almost every (Σ, r) ∈ S2×�R
1

and obeys the bound∥∥F (s)(z, Σ, r)
∥∥
B(H2

p)
≤ ‖G(z, Σ, r)‖B(H2

p)

[
1 + e|s|(|βr−β||z|+2|βp−β|)]

≤ C|z|νe−a|z|2+|s(βr−β)||z|+2‖Hp‖B(Hp)|s(βp−β)|

with C < ∞ being a positive constant, a > 0 and ν ≥ 1, due to Hypothesis VII-
1.12. We now perform spectral deformation on F (s). A first remark is that the
integral (A.3) does not depend on Re(δ) as one sees by transforming the variables
of integration, u �→ e−Re(δ) sgn(u)u (the independence of Re(δ) is connected to the
unitarity of the dilation group Dd(δ) for a real parameter δ). We henceforth assume
Re(δ) = 0 and obtain the bound[

1 + |jθ(u)|−�
] ∥∥∥F (s)

θ (u, Σ, r)
∥∥∥2

B(H2
p)

=
[
1 + |jθ(u)|−�

] ∥∥F (s)(jθ(u), Σ, r)
∥∥2

B(H2
p)

≤ C2
[
|jθ(u)|2ν + |jθ(u)|2ν−�

]
e
−2a|jθ(u)|2+2|s(βr−β)||jθ(u)|+4‖Hp‖B(Hp)|s(βp−β)|

≤ C2
[
|jθ(u)|2ν + |jθ(u)|2ν−�

]
e
4‖Hp‖B(Hp)|s(βp−β)|

× exp
(
−2a(|u| − |τ |)2 + 2|s(βr − β)|(|u|+ |τ |)

)
= C2

[
|jθ(u)|2ν + |jθ(u)|2ν−�

]
e
4‖Hp‖B(Hp)|s(βp−β)|−2a|τ |2+2|s(βr−β)τ |

× exp

(
−2a

[
|u|2 − |u|

(
2|τ |+ |s(βr − β)|

a

)])
= C2

[
|jθ(u)|2ν + |jθ(u)|2ν−�

]
e
4‖Hp‖B(Hp)|s(βp−β)|+2|s(βr−β)τ |

× exp

(
2|s(βr − β)τ |+ |s(βr − β)|2

2a

)
× exp

(
−2a

[
|u| −

(
|τ |+ |s(βr − β)|

2a

)]2)
. (A.4)

We consider for c := |τ |+ |s(βr − β)|/(2a) and any power ζ ∈ � the integral

sup
c≥0

∫
|u|≥1

du

∫
S2×�R

1

d(Σ, r) |u|ζ exp
(
−2a[|u| − c]2

)
≤ 2C ′ sup

c≥0

∫
�+×S2×�R

1

d(u, Σ, r) exp
(
−2a′[u− c]2

)
≤ 2C ′

∫
Υ

d(u, Σ, r) exp
(
−2a′u2

)
≤ 8π3/2RC ′

√
2a′

(A.5)



254 A. Relative Bounds on the Perturbation

where C ′ <∞ is a positive constant independent of c and 0 < a′ < a. Further, for
ζ ≥ 0, we compute the integral

sup
c≥0

∫
|u|≤1

du

∫
S2×�R

1

d(Σ, r) |jθ(u)|ζ exp
(
−2a[|u| − c]2

)
≤
∫

|u|≤1

du

∫
S2×�R

1

d(Σ, r) (|u|+ |τ |)ζ ≤ 4πR[1 + τ0]
ζ (A.6)

and for 0 ≤ ζ < 1, we consider the integral

sup
c≥0

∫
|u|≤1

du

∫
S2×�R

1

d(Σ, r) |jθ(u)|−ζ exp
(
−2a[|u| − c]2

)

≤ 2

1∫
0

du

∫
S2×�R

1

d(Σ, r) |u− |τ ||−ζ ≤ 8πR

1− ζ

[
|1− |τ ||1−ζ + |τ |1−ζ

]
. (A.7)

The estimate (A.4) together with the integral bounds (A.5, A.6, A.7) yields∫
Υ

dy

[
1 +

1

|jθ(u)|�
] ∥∥∥F (s)

θ (y)
∥∥∥2

B(H2
p)

≤ C ′′(1 + τ0)
2νe

|s(βmax−βmin)|(4‖Hp‖B(Hp)+4τ0)
e|s(βmax−βmin)|2/(2a)

≤ C ′′(1 + τ0)
2νe8π|s|e

4‖Hp‖B(Hp)|s(βmax−βmin)|
e|s(βmax−βmin)|2/(2a)

using that βp, β ∈ [βmin, βmax] and τ0(βmax − βmin) ≤ 2π(βmax − βmin)/βmax ≤ 2π,
where C ′′ < ∞ is a positive constant independent of s and θ and the inverse tem-
peratures. We finally observe that |s| < 1/2 + ε0.

Remark A.2 The Lemma A.1 suggest that the effective strength of the perturbation
I

(s)
θ , (A.2), of the operator K

(s)
θ , (A.1), is given by the effective coupling constant

g[s] := geE|s(βmax−βmin)|+|s(βmax−βmin)|2/(2a).

It is crucial that g[s] grows as the temperature difference increases but is independent
of the order of the inverse temperatures βmin, βmax. This allows the treatment of the
low temperature regime, i.e., large magnitudes of βmin, with the means of perturba-
tion theory, as long as the reservoir temperatures do not differ to much. This is
in contrast to the analysis in [28] where the coupling functions of the C-Liouville
operator are weighted exponentially in the inverse temperatures. The analysis of the
operator K

(s)
θ , however, requires at various places that |βmax − βmin| � 1 such that

effectively the smallness of g[s] is equivalent to the smallness of g.
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We focus on the relative bound of the perturbation I
(s)
θ . We first recall the relative

bounds of creation and annihilation operators w.r.t. the number operator.

Lemma A.3 Let F ∈ L2[Υ;B(H2
p)] be an over Υ square integrable, B(H2

p)-valued
function. The creation and annihilation operators obey the following relative bound,∥∥∥a#

gl(F )(Nres + 1)−1/2
∥∥∥ ≤ ‖F‖L2[Υ;B(H2

p)] . (A.8)

Proof. The assertion follows directly from the definition, compare with (1.24).

Subsequently, we derive relative bounds on the perturbation I
(s)
θ w.r.t. the positive

operator

M[θ] := e|Re(δ)|| sin(Im(δ))|Laux + |τ |Nres = dΓgl((u, Σ, r) �→ mθ(u)), (A.9)

where
mθ(u) := |u|e|Re(δ)|| sin(Im(δ))|+ |τ |. (A.10)

Lemma A.4 Let θ = (δ, τ) with 0 < | Im(δ)| ≤ π
2

and | Im(τ)| < 2πβ−1
max. Let

F ∈ L2[Υ, dy;B(H2
p)] be an over Υ square integrable, B(H2

p)-valued function fulfilling∫
Υ

dy
(
1 + 1

|jθ(u)|

)
‖F (y)‖2B(H2

p) <∞.

(i) The creation and annihilation operators obey the following relative bounds,

supd>0

∥∥agl(F )(M[θ] + d)−1/2
∥∥ ,

supd>0

∥∥(M[θ] + d)−1/2a∗
gl(F )

∥∥
}

(A.11)

≤

⎡⎣∫
Υ

dy
‖F (y)‖2B(H2

p)

mθ(u)

⎤⎦1/2

≤ 1

| sin(Im(δ))|1/2

⎡⎣∫
Υ

dy
‖F (y)‖2B(H2

p)

|jθ(u)|

⎤⎦1/2

and ∥∥a∗
gl(F )(M[θ] + 1)−1/2

∥∥ ,∥∥(M[θ] + 1)−1/2agl(F )
∥∥
}

(A.12)

≤

⎡⎣∫
Υ

dy

(
1 +

1

mθ(u)

)
‖F (y)‖2B(H2

p)

⎤⎦1/2

≤

⎡⎣∫
Υ

dy

(
1 +

1

| sin(Im(δ))||jθ(u)|

)
‖F (y)‖2B(H2

p)

⎤⎦1/2

.
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(ii) Let d > 0 and P[M[θ]≤d] be the orthogonal projection on the spectral subspace

of M[θ] corresponding to spectral subset [0, d]. The creation and annihilation
operators fulfill the following bounds on the range of the projection P[M[θ]≤d],

∥∥∥agl(F )P[M[θ]≤d]

∥∥∥ ,∥∥∥P[M[θ]≤d]a
∗
gl(F )

∥∥∥
⎫⎪⎬⎪⎭ ≤

√
2d

⎡⎣∫
Υ

dy1[mθ(u)≤d]

‖F (y)‖2B(H2
p)

mθ(u)

⎤⎦1/2

(A.13)

≤
√

2d

| sin(Im(δ))|

⎡⎣∫
Υ

dy1[mθ(u)≤d]

‖F (y)‖2B(H2
p)

|jθ(u)|

⎤⎦1/2

.

Proof.

(i) We start proving (A.11). Let ψ ∈ H be a unit vector, ‖ψ‖ = 1, and d > 0. We
have

∥∥agl(F )(M[θ] + d)−1/2ψ
∥∥

≤
∫
Υ

dy ‖F (y)‖B(H2
p)

∥∥agl(y)(M[θ] + d)−1/2ψ
∥∥

≤

⎡⎣∫
Υ

dy
‖F (y)‖2B(H2

p)

mθ(u)

⎤⎦1/2

×

⎡⎣∫
Υ

dy
〈
(M[θ] + d)−1/2ψ

∣∣ a∗
gl(y)mθ(u)agl(y)(M[θ] + d)−1/2ψ

〉⎤⎦1/2

=

⎡⎣∫
Υ

dy
‖F (y)‖2B(H2

p)

mθ(u)

⎤⎦1/2〈
ψ

∣∣∣∣ M[θ]

M[θ] + d
ψ

〉1/2

≤

⎡⎣∫
Υ

dy
‖F (y)‖2B(H2

p)

mθ(u)

⎤⎦1/2

≤ 1

| sin(Im(δ))|1/2

⎡⎣∫
Υ

dy
‖F (y)‖2B(H2

p)

|jθ(u)|

⎤⎦1/2

,

where we used that

mθ(u) ≥ | sin(Im(δ))|
(
|u|eRe(δ) + |τ |

)
≥ | sin(Im(δ))||jθ(u)|.
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To obtain (A.12) we compute for ‖ψ‖ = 1,∥∥a∗
gl(F )(M[θ] + 1)−1/2ψ

∥∥2

=

∫
Υ

dy′
∫
Υ

dy
〈
F (y′)(M[θ] + 1)−1/2ψ

∣∣F (y)⊗ agl(y
′)a∗

gl(y)(M[θ] + 1)−1/2ψ
〉

≤
∫
Υ

dy ‖F (y)‖2B(H2
p)

∥∥(M[θ] + 1)−1/2ψ
∥∥2

+

∫
Υ

dy′
∫
Υ

dy
〈
F (y′)⊗ agl(y)(M[θ] + 1)−1/2ψ

∣∣∣
F (y)⊗ agl(y

′)(M[θ] + 1)−1/2ψ
〉

≤
∫
Υ

dy ‖F (y)‖2B(H2
p) +

⎡⎣∫
Υ

dy ‖F (y)‖B(H2
p)

∥∥agl(y)(M[θ] + 1)−1/2ψ
∥∥⎤⎦2

≤
∫
Υ

dy

(
1 +

1

mθ(u)

)
‖F (y)‖2B(H2

p)

≤
∫
Υ

dy

(
1 +

1

| sin(Im(δ))||jθ(u)|

)
‖F (y)‖2B(H2

p) ,

where we used the pull through formula (1.67) and the CCR (1.64).

To prove the second parts of (A.11, A.12), we observe that these relations con-
cern the corresponding adjoint operators of the estimated ones and therefore
the assertion follows from the above estimates.

(ii) Since P[M[θ]≤d] is a projection we can write, using the pull through formula,

agl(F )P[M[θ]≤d] =

∫
Υ

dyP[M[θ]+mθ(u)≤d]F (y)⊗ agl(y)P[M[θ]≤d]

=

∫
Υ

dy1[mθ(u)≤d]F (y)⊗ agl(y)P[M[θ]≤d]

= agl

(
1[mθ≤d]F

)
P[M[θ]≤d].

The estimate (A.13) is implied by (A.11),∥∥∥agl(F )P[M[θ]≤d]

∥∥∥ ≤ ∥∥∥agl(F )P[M[θ]≤d](M[θ] + d)−1/2
∥∥∥∥∥∥(M[θ] + d)1/2P[M[θ]≤d]

∥∥∥
≤
√

2d
∥∥agl

(
1[mθ≤d]F

)
(M[θ] + d)−1/2

∥∥
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≤
√

2d

⎡⎣∫
Υ

dy1[mθ(u)≤d]

‖F (y)‖2B(H2
p)

mθ(u)

⎤⎦1/2

≤
√

2d

| sin(Im(δ))|

⎡⎣∫
Υ

dy1[mθ(u)≤d]

‖F (y)‖2B(H2
p)

|jθ(u)|

⎤⎦1/2

.

The second assertion is proved in the same manner.

A consequence of Lemma A.4 is the relative (form) bound of the perturbation I
(s)
θ

w.r.t. M[θ].

Lemma A.5 (Relative Form Bound of I
(s)
θ ) Under the assumptions of Hypoth-

esis VII-1.12, and for θ ∈ Dδ0,τ0 with | Im(δ)| > 0, the perturbation I
(s)
θ obeys the

following relative bounds.

(i) For any d > 0 holds

g
∥∥∥(M[θ] + d)−1/2I

(s)
θ (M[θ] + d)−1/2

∥∥∥ ≤ Cg[s]√
d| sin(Im(δ))|

(A.14)

where C < ∞ is a positive constant independent of θ, s, d and the inverse
temperatures. Further, we have

g
∥∥∥I(s)

θ (M[θ] + 1)−1/2
∥∥∥ ,

g
∥∥∥(M[θ] + 1)−1/2I

(s)
θ

∥∥∥
⎫⎪⎬⎪⎭ ≤ C ′g[s]√

| sin(Im(δ))|
(A.15)

for a positive constant C ′ <∞, uniformly in θ, s and the inverse temperatures.

(ii) If we further assume that π
8

< | Im(δ)| < π
4
, then there is a positive constant

C <∞ such that

g
∥∥∥[I(s)

θ

]
a
P[M[θ]≤d]

∥∥∥ ,

g
∥∥∥P[M[θ]≤d]

[
I

(s)
θ

]
c

∥∥∥
⎫⎪⎬⎪⎭ ≤ Cg[s]

(
d

| Im(sin(δ))|

)ν+1/2

, (A.16)

recall the notation (3.23),[
I

(s)
θ

]
a

= agl

(
F

(s)

θ

)
,

[
I

(s)
θ

]
c
= a∗

gl

(
F

(s)
θ

)
,
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and therefore also

g
∥∥∥P[M[θ]≤d]I

(s)
θ P[M[θ]≤d]

∥∥∥ ≤ 2Cg[s]

(
d

| Im(sin(δ))|

)ν+1/2

, (A.17)

where ν ≥ 1 is the infrared regularization of the coupling functions as defined
in (1.92).

Proof.

(i) Recall that I
(s)
θ = a∗

gl

(
F

(s)
θ

)
+agl

(
F

(s)

θ

)
. Lemma A.4, Equation (A.11), implies

that

g
∥∥∥(M[θ] + d)−1/2I

(s)
θ (M[θ] + d)−1/2

∥∥∥
≤ g

√
2

| sin(Im(δ))|

⎡⎢⎢⎣∫
Υ

dy

∥∥∥F (s)
θ (y)

∥∥∥2

B(H2
p)

+
∥∥∥F (s)

θ
(y)
∥∥∥2

B(H2
p)

|jθ(u)|

⎤⎥⎥⎦
1/2

×
∥∥(M[θ] + d)−1/2

∥∥
≤ Cg[s]√

d| sin(Im(δ))|
,

which is due to Lemma A.1. The estimate (A.15) follows in the same way
using Lemmata A.1 and A.4 and (A.12).

(ii) By applying Lemma A.4, Equation (A.13), we obtain

g
∥∥∥P[M[θ]≤d]

[
I

(s)
θ

]
c

∥∥∥ ≤ g

√
2d

| sin(Im(δ))|

⎡⎢⎢⎣∫
Υ

dy1[mθ(u)≤d]

∥∥∥F (s)
θ (y)

∥∥∥2

B(H2
p)

|jθ(u)|

⎤⎥⎥⎦
1/2

.

Note that mθ(u) ≤ d implies |u| ≤ d
| sin(Im(δ))| and therefore the integration

parameter u is restricted to a compact region independent of π
8

< | Im(δ)| < π
4
.

Using that due to Hypothesis VII-1.12[ ∫
S2×�R

1

d(Σ, r)
∥∥F (s)(z, Σ, r)

∥∥2

B(H2
p)

]1/2

∼ |z|ν as z → 0,

uniformly in s, and

|jθ(u)| ≤ e|Re(δ)||u|+ |τ | ≤ mθ(u)

| sin(Im(δ))| ,
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we can estimate the integrand

g

∫
S2×�R

1

d(Σ, r)

∥∥∥F (s)
θ (y)

∥∥∥2

B(H2
p)

|jθ(u)|

≤ g

∫
S2×�R

1

d(Σ, r)

∥∥F (s)(jθ(u), Σ, r)
∥∥2

B(H2
p)

|jθ(u)|

≤ Cg[s]|jθ(u)|2ν−1 ≤ Cg[s]

(
mθ(u)

| sin(Im(δ))|

)2ν−1

.

The last integration over u finally yields

g
∥∥∥P[M[θ]≤d]

[
I

(s)
θ

]
c

∥∥∥ ≤ C ′g[s]

(
d

| sin(Im(δ))|

)ν+1/2

.

The other relations are derived in the same way.

Lemma A.6 Under the assumptions of Hypothesis VII-1.12 and for θ ∈ Dδ0,τ0 with

| Im(δ)| > 0, the commutator
[
M[θ], I

(s)
θ

]
obeys for d > 0 the following relative bound,

g
∥∥∥(M[θ] + d)−1/2

[
M[θ], I

(s)
θ

]
(M[θ] + d)−1/2

∥∥∥ ≤ Cg[s]√
d

, (A.18)

where C <∞ is a positive constant independent of θ, s, d and the inverse reservoir
temperatures.

Proof. Since

[
M[θ], I

(s)
θ

]
=
[
M[θ], a

∗
gl

(
F

(s)
θ

)
+ agl

(
F

(s)

θ

)]
= a∗

gl

(
mθF

(s)
θ

)
− agl

(
mθF

(s)

θ

)
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we obtain by Equation (A.11) of Lemma A.4

g
∥∥∥(M[θ] + d)−1/2

[
M[θ], I

(s)
θ

]
(M[θ] + d)−1/2

∥∥∥
≤ g

∥∥∥(M[θ] + d)−1/2a∗
gl

(
mθF

(s)
θ

)∥∥∥∥∥(M[θ] + d)−1/2
∥∥

+g
∥∥(M[θ] + d)−1/2

∥∥∥∥∥agl

(
mθF

(s)

θ

)
(M[θ] + d)−1/2

∥∥∥
≤ gd−1/2

⎡⎣∫
Υ

dy mθ(u)

(∥∥∥F (s)
θ (y)

∥∥∥2

B(H2
p)

+
∥∥∥F (s)

θ
(y)
∥∥∥2

B(H2
p)

)⎤⎦1/2

≤ Cg[s]√
d

,

by the same arguments as used in the proof of Lemma A.1.

Lemma A.7 Under the assumptions of Hypothesis VII-1.12 and for θ ∈ Dδ0,τ0 with
| Im(δ)| > 0, we obtain the following relative bounds,

g
∥∥∥(I(s)

θ − I(s)
)

(M[θ] + 1)−1/2
∥∥∥ ,

g
∥∥∥(M[θ] + 1)−1/2

(
I

(s)
θ − I(s)

)∥∥∥
⎫⎪⎬⎪⎭ (A.19)

≤ Cg[s]

(
|δ|√

sin(| Im(δ)|)
+ 1

)

for a positive constant 0 < C < ∞, uniformly in θ, s and the inverse reservoir
temperatures.

Proof. Consider the derivative of the coupling functions F
(s)
θ = Gθ − G ′(s �δβ),θ

w.r.t. the spectral parameters,

∇θF
(s)
θ (u, Σ, r) :=

(
∂δF

(s)
θ (u, Σ, r), ∂τF

(s)
θ (u, Σ, r)

)
,

and denote

∇θI
(s)
θ :=

(
∂δI

(s)
θ , ∂τI

(s)
θ

)
=
(
a∗

gl

(
∂δF

(s)
θ

)
+ agl

(
∂δF

(s)

θ

)
, a∗

gl

(
∂τF

(s)
θ

)
+ agl

(
∂τF

(s)

θ

))
≡ a∗

gl

(
∇θF

(s)
θ

)
+ agl

(
∇θF

(s)

θ

)
.
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We compute the derivatives explicitly,

∂δF
(s)
θ (u, Σ, r) = ∂δ

[
eδ sgn(u)/2F (s)(jθ(u), Σ, r)

]
=

1

2
sgn(u)F

(s)
θ (u, Σ, r) +

[
∂uF

(s)
]
θ
(u, Σ, r)∂δjθ(u)

= sgn(u)

(
1

2
F

(s)
θ (u, Σ, r) + eδ sgn(u)u

[
∂uF

(s)
]
θ
(u, Σ, r)

)
and

∂τF
(s)
θ (u, Σ, r) = ∂τ

[
eδ sgn(u)/2F (s)(jθ(u), Σ, r)

]
= eδ sgn(u)/2

[
∂uF

(s)
]
(jθ(u), Σ, r)

=
[
∂uF

(s)
]
θ
(u, Σ, r).

By Lemma A.4 and under the assumptions of Hypothesis VII-1.12 we obtain for the
relative bound

g
∥∥∥[I(s)

θ − I
(s)
(0,τ) − ∂δI

(s)
θ δ
]
(M[θ] + 1)−1/2

∥∥∥
= g

∥∥∥[a∗
gl

(
F

(s)
θ − F

(s)
(0,τ) − ∂δF

(s)
θ δ
)

+ agl

(
F

(s)

θ
− F

(s)
(0,τ) − ∂δF

(s)

θ
δ
) ]

(M[θ] + 1)−1/2
∥∥∥

≤ gC

[∫
Υ

dy

(
1 +

1

sin(| Im(δ)|)|jθ(u)|

)

×
(∥∥∥F (s)

θ (y)− F
(s)
(0,τ)(y)− ∂δF

(s)
θ (y)δ

∥∥∥2

B(H2
p)

+
∥∥∥F (s)

θ
(y)− F

(s)
(0,τ)(y)− ∂δF

(s)

θ
(y)δ
∥∥∥2

B(H2
p)

)]1/2

= o

(
|δ|g[s]√

sin(| Im(δ)|)

)
,

for a positive constant C, by dominated convergence theorem. Hereby we used the
analyticity of θ �→ F

(s)
θ in the L2-sense as guaranteed by Hypothesis VII-1.12 and

Remark 1.13. It further holds

g
∥∥∥[I(s)

(0,τ) − I(s) − ∂τI
(s)
(0,τ)τ

]
(M[θ] + 1)−1/2

∥∥∥
≤ g

∥∥∥[a∗
gl

(
F

(s)
(0,τ) − F (s) − ∂τF

(s)
(0,τ)τ

)
+ agl

(
F

(s)
(0,τ) − F (s) − ∂τF

(s)
(0,τ)τ

) ]
(|τ |Nres + 1)−1/2

∥∥∥
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×
∥∥∥∥∥
(
|τ |Nres + 1

M[θ] + 1

)−1/2
∥∥∥∥∥

≤ g

∥∥∥∥∥F
(s)
(0,τ) − F (s) − ∂τF

(s)
(0,τ)τ

|τ |

∥∥∥∥∥
L2[Υ;B(H2

p)]

+g

∥∥∥∥∥F
(s)
(0,τ) − F (s) − ∂τF

(s)
(0,τ)τ

|τ |

∥∥∥∥∥
L2[Υ;B(H2

p)]

= g[s]o(1),

as τ → 0, due to the analyticity of θ �→ F
(s)
θ and a similar argument as in the proof

of Lemma A.1. We further get the estimates

g
∥∥∥∂δI

(s)
θ δ(M[θ] + 1)−1/2

∥∥∥ = O
(

|δ|g[s]√
sin(| Im(δ)|)

)
,

g
∥∥∥∂τI

(s)
(0,τ)τ(M[θ] + 1)−1/2

∥∥∥ = O
(
g[s]

)
, as τ → 0.

All the above computations result in

g
∥∥∥(I(s)

θ − I(s)
)

(M[θ] + 1)−1/2
∥∥∥

≤ g
∥∥∥(I(s)

θ − I
(s)
(0,τ)

)
(M[θ] + 1)−1/2

∥∥∥+ g
∥∥∥(I(s)

(0,τ) − I(s)
)

(M[θ] + 1)−1/2
∥∥∥

≤ C ′g[s]

(
|δ|√

sin(| Im(δ)|)
+ 1

)

for a positive constant C ′. The estimate on g
∥∥∥(M[θ] + 1)−1/2

(
I

(s)
θ − I(s)

)∥∥∥ is proven

in the same way.

Corollary A.8 Under the assumptions of Hypothesis VII-1.12, for θ ∈ Dδ0,τ0 with
| Im(δ)| > 0, and for s ∈ �, we obtain the following relative bounds,

g
∥∥∥Im(I(s)

θ

)
(M[θ] + 1)−1/2

∥∥∥ ,

g
∥∥∥(M[θ] + 1)−1/2 Im

(
I

(s)
θ

)∥∥∥
⎫⎪⎬⎪⎭ ≤ Cg[s]

(
|δ|√

sin(| Im(δ)|)
+ 1

)
(A.20)

for a positive constant 0 < C < ∞, uniformly in θ and in s on compact subsets of
�.

Proof. We remark that I(s)∗ = I(s) for s ∈ � and therefore

Im
(
I

(s)
θ

)
= Im

(
I

(s)
θ − I(s)

)
=

(
I

(s)
θ − I(s)

)
−
(
I

(s)

θ
− I(s)

)
2i

.
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The assertion follows by Lemma A.7.

The relative bounds serve us to locate the numerical range, NumRan(K
(s)
θ ), of

the operator K
(s)
θ .

Proposition A.9 (Numerical Range of K
(s)
θ ) Let θ = (δ, τ) ∈ �

2 obey

| Im(δ)| < π
4

and |τ |
2
≤ Im(τ) < 2πβ−1

max. Moreover, we assume that s ∈ � ε0
2

and
either of the further conditions,

(i) Let s ∈ �.

(ii) Let | Im(δ)| ∈ [π
8
, π

4
].

Then, for sufficient small g[s], the operator K
(s)
θ is sectorial, i.e., its numerical range

lies in the following sector,

NumRan
(
K

(s)
θ

)
⊆
{

z ∈ �
∣∣∣∣ sgn(δ′) Im(z) ≥ −1 + max

{
| sin(δ′)|

8
(|Re(z)| − ‖Lp‖) , 0

}}
,

where δ′ := Im(δ).

Proof. We first exclude δ′ = 0 and we restrict ourselves to study the case

δ′ > 0. The complementary case is treated by considering K
(s)
θ = K

(s)

θ

∗
. Further,

we may assume that Re(δ) = 0. This assumption is no restriction of generality since

K
(s)
θ = Dd(Re (δ))K

(s)
θ′ Dd(Re (δ))−1 for θ′ := (i Im(δ), τ) and the numerical range is

invariant under conjugation with the unitary operator Dd(Re(δ)). Subsequently, we
assume δ = iδ′ ∈ i�+.

Let ψ ∈ D(K
(s)
θ ) be a unit vector, ‖ψ‖ = 1. We compute∣∣∣Re

〈
ψ
∣∣∣K(s)

θ ψ
〉∣∣∣

=
∣∣∣〈ψ

∣∣∣ [Lp + cos(δ′)Lres + Re(τ)Nres + g Re
(
I

(s)
θ

)]
ψ
〉∣∣∣

≤ ‖Lp‖+

[∥∥∥∥ cos(δ′)Lres + Re(τ)Nres

sin(δ′)Laux + |τ |Nres + 1

∥∥∥∥
+ g
∥∥∥(M[θ] + 1)−1/2 Re

(
I

(s)
θ

)
(M[θ] + 1)−1/2

∥∥∥] 〈ψ ∣∣ (M[θ] + 1)ψ
〉
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≤ ‖Lp‖+

[
1

sin(δ′)
+

g[s]C√
sin(δ′)

] 〈
ψ
∣∣ (M[θ] + 1)ψ

〉
≤ ‖Lp‖+

2

sin(δ′)

〈
ψ
∣∣ (M[θ] + 1)ψ

〉
, (A.21)

for a positive constant C because of Lemma A.5 and for g[s] sufficiently small. Fur-
ther, we get

Im
〈

ψ
∣∣∣K(s)

θ ψ
〉

=
〈

ψ
∣∣∣ [sin(δ′)Laux + Im(τ)Nres + g Im

(
I

(s)
θ

)]
ψ
〉

≥
[
1−
∥∥∥∥ (Im(τ)− |τ |)Nres

sin(δ′)Laux + |τ |Nres + 1

∥∥∥∥
− g
∥∥∥(M[θ] + 1)−1/2 Im

(
I

(s)
θ

)
(M[θ] + 1)−1/2

∥∥∥] 〈ψ ∣∣ (M[θ] + 1)ψ
〉
− 1

≥
[

Im(τ)

|τ | − g
∥∥∥(M[θ] + 1)−1/2 Im

(
I

(s)
θ

)
(M[θ] + 1)−1/2

∥∥∥] 〈ψ ∣∣ (M[θ] + 1)ψ
〉
− 1

We continue this estimation for the different assumptions made in the statement of
the corollary.

(i) Under the assumptions of (i) and with the help of Corollary A.8 we obtain

Im
〈

ψ
∣∣∣K(s)

θ ψ
〉
≥
[
1

2
− g[s]C

′
] 〈

ψ
∣∣ (M[θ] + 1)ψ

〉
− 1

≥ 1

4

〈
ψ
∣∣ (M[θ] + 1)ψ

〉
− 1 ≥ −1, (A.22)

for a positive constant C ′ and for g[s] sufficiently small.

(ii) Under the assumption of (ii) we cannot apply Corollary A.8, instead we esti-
mate using Lemma A.5

Im
〈

ψ
∣∣∣K(s)

θ ψ
〉
≥
[

1

2
− g[s]C

′√
sin(δ′)

] 〈
ψ
∣∣ (M[θ] + 1)ψ

〉
− 1

≥ 1

4

〈
ψ
∣∣ (M[θ] + 1)ψ

〉
− 1 ≥ −1, (A.23)

for a positive constant C ′ and for g[s] sufficiently small because sin(δ′) ≥ 1
3
.
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Plugging the inequality (A.21) into (A.22, A.23) we finally get

Im
〈

ψ
∣∣∣K(s)

θ ψ
〉
≥ −1 + max

{
sin(δ′)

8

(∣∣∣Re
〈

ψ
∣∣∣K(s)

θ ψ
〉∣∣∣− ‖Lp‖

)
, 0

}
.

We take up the case δ′ = 0 which is paired with the additional assumption (i),

i.e., s ∈ �. We note that δ �→ K
(s)
θ is strongly continuous, thus〈

ψ
∣∣∣K(s)

(0,τ)ψ
〉

= lim
δ′↘0

〈
ψ
∣∣∣K(s)

(iδ′,τ)ψ
〉

.

From here follows

Im
〈

ψ
∣∣∣K(s)

(0,τ)ψ
〉

= lim
δ′↘0

Im
〈

ψ
∣∣∣K(s)

(iδ′,τ)ψ
〉

≥ lim
δ′↘0

sin(δ′)

8

(∣∣∣Re
〈

ψ
∣∣∣K(s)

(iδ′,τ)ψ
〉∣∣∣− ‖Lp‖

)
− 1

= −1.



B Technicalities of the Modular
Structure of the Interacting
System

The perturbation theory for KMS states and their structural stability under local
perturbation discussed in [11] and outlined in Section 1.1.3 does not directly apply to
the situation where the perturbation does not belong to the underlying C∗-algebra
but is given in terms of unbounded field operators. Subsequently we prove that
all results extend not only formally but also in a rigorous way to our situation.
Further, in the non-equilibrium situation there is no concept like structural stability,
however, some techniques can be borrowed from the equilibrium situation but need
an adaption to our setup. We provide these technical lemmata which allow a carefree
application to advanced computations in the main text.

B.1 Dyson Series Expansions and the Domain of the
Operator S0

We recall the definitions (2.4, 2.5, 1.59) of the operators L(�), L(r) and L0.

Lemma B.1 (Dyson Series Expansion) Assume that | Im(s)| ≤ βmax/2 and
| Im(z)| ≤ 1/2 with | Im(s) + βmax Im(z)| ≤ βmax/2.

(i) The operators eizL0eisL(�)
e−isL0e−izL0 and e−izL0e−isL0eisL(�)

eizL0 are densely
defined and their domains include linear combinations of vectors AΩ0 with
A = Ap ⊗ Wgl(F ) where Ap ∈ B(H2

p) and F ∈ L2[Υ] has compact support.
Moreover we may express the application of these operators on AΩ0 as a Dyson
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series,

eizL0eisL(�)

e−isL0e−izL0AΩ0

=
∞∑

n=0

(isg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn π (σz
0 (αsςn

0 (v) · · ·αsς1
0 (v))) AΩ0,

e−izL0e−isL0eisL(�)

eizL0AΩ0

=
∞∑

n=0

(isg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn π
(
σ−z

0

(
α−sς1

0 (v) · · ·α−sςn
0 (v)

))
AΩ0.

(ii) The operators eizL0eisL(�)
e−isL0e−izL0 and e−izL0e−isL0eisL(�)

eizL0 are closable
and their closures

D(1)
s,z :=

[
eizL0eisL(�)

e−isL0e−izL0

]∗∗
,

D(2)
s,z :=

[
e−izL0e−isL0eisL(�)

eizL0

]∗∗
have trivial kernels.

(iii) Let A′ ∈ π(A)′. Then, the vector A′Ω0 is in the domain of the operators D
(1)
s,z

and D
(2)
s,z and the following relations hold true,

D(1)
s,zA

′Ω0 = A′eizL0eisL(�)

e−isL0e−izL0Ω0

= A′eizL0eisL(�)

Ω0,

D(2)
s,zA

′Ω0 = A′e−izL0e−isL0eisL(�)

eizL0Ω0

= A′e−izL0e−isL0eisL(�)

Ω0.

Proof.

(i) We only consider the operator eizL0eisL(�)
e−isL0e−izL0 , the second assertion is

proved in the same way. We first check the analyticity of AΩ0 for the operator
L0 and L0. Since Ω0 is an analytic vector for Φgl(F ) we may write

AΩ0 = Ap ⊗
∞∑

m=0

im

m!
Φgl(F )mΩ0.

For F supported on [−ρ, ρ]× S2 ×�R
1 we have∥∥Lk

0Φgl(F )mΩ0

∥∥ ≤ (‖Lp‖B(H2
p) + mρ

)k

‖Φgl(F )mΩ0‖
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and therefore, by Lemma A.3,∥∥Lk
0AΩ0

∥∥
≤ ‖Ap‖B(H2

p)

∞∑
m=0

(
‖Lp‖B(H2

p) + mρ
)k

m!
‖Φgl(F )mΩ0‖

≤ ‖Ap‖B(H2
p)

∞∑
m=0

(
‖Lp‖B(H2

p) + mρ
)k

m!

√
(m + 1)!

(√
2 ‖F‖L2[Υ]

)m

.

For ς ∈ � we obtain the following estimate,

∞∑
k=0

|ς|k
k!

∥∥Lk
0AΩ0

∥∥
≤ ‖Ap‖B(H2

p)

∞∑
m=0

√
m + 1

(√
2 ‖F‖L2[Υ]

)m

√
m!

∞∑
k=0

|ς|k
(
‖Lp‖B(H2

p) + mρ
)k

k!

= ‖Ap‖B(H2
p)

∞∑
m=0

√
m + 1

(√
2 ‖F‖L2[Υ]

)m

√
m!

exp
(
|ς|
(
‖Lp‖B(H2

p) + mρ
))

≤ exp
(
|ς| ‖Lp‖B(H2

p)

)
‖Ap‖B(H2

p)

∞∑
m=0

√
m + 1

(√
2 exp (|ς|ρ) ‖F‖L2[Υ]

)m

√
m!

< ∞

which shows that AΩ0 is an analytic vector for L0. The same way, we can verify
that AΩ0 is an analytic vector for any linear combination of the free Liouville
operators L0 and L0. In particular, AΩ0 is in the domain of e−isL0e−izL0 =
e−i(sL0+zL0) and the map ς �→ e−iςL0e−izL0AΩ0 is differentiable.

Let P[|L(�)|≤λ] denote the projection on the spectral subspace of L(�) correspond-

ing to the interval [−λ, λ] ⊆ �. Obviously, the vector P[|L(�)|≤λ]e
−isL0e−izL0AΩ0

is in the domain of eisL(�)
and we have analyticity of the map

� � ς �→ eiςL(�)

P[|L(�)|≤λ]e
−iςL0e−izL0AΩ0

and we may write

eisL(�)

P[|L(�)|≤λ]e
−isL0e−izL0AΩ0

= P[|L(�)|≤λ]e
−izL0AΩ0 +

1∫
0

dς ∂ς

[
P[|L(�)|≤λ]e

isςL(�)

e−isςL0e−izL0AΩ0

]
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= P[|L(�)|≤λ]

(
e−izL0AΩ0 +

1∫
0

dς eisςL(�)

[isgπ(v)] e−isςL0e−izL0AΩ0

)

= P[|L(�)|≤λ]

(
e−izL0AΩ0 + isg

1∫
0

dς eisςL(�)

e−isςL0π (αsς
0 (v)) e−izL0AΩ0

)
.

We aim to apply the above relation iteratively. To this end we remark that
the map

ς2 �→ e−isς2L0π (αsς
0 (v)) e−izL0AΩ0.

is differentiable for ς2 ∈ [0, ς] using Hypothesis VI-1.11. With the same argu-
ments as above we get the expansion

eisL(�)

P[|L(�)|≤λ]e
−isL0e−izL0AΩ0 (B.1)

= P[|L(�)|≤λ]

∞∑
n=0

(isg)n

×
∫

0≤ςn≤···≤ς1≤1

dς1 · · · dςn π (αsςn
0 (v) · · ·αsς1

0 (v)) e−izL0AΩ0.

We now show that the series on the r.h.s. of (B.1) converges even after dropping
the projection P[|L(�)|≤λ]. We first observe that

e−izL0AΩ0 = α−zβp
p (Ap)⊗

∞∑
m=0

im

m!

[
1√
2

(
a∗

gl(F
+) + agl(F

−)
]]m

Ω0

where

F+(u, Σ, r) := e−izβruF (u, Σ, r),

F−(u, Σ, r) := e−izβruF (u, Σ, r)

obeying ∥∥F±∥∥
L2[Υ]

≤ eβmaxρ/2 ‖F‖L2[Υ] =: b1.

We further use that

π
(
α

sςj
0 (v)

)
= a∗

gl

(
G(sςj�1)

)
+ agl

(
G(sςj�1)

)
,

where �1 = (1, 1, . . . , 1) ∈ �R+1, recall (2.12), and that the uniform bound

b2 := sup
| Im(ς)|≤βmax/2,

∥∥∥G(ς�1)

∥∥∥
L2[Υ;B(H2

p)]
<∞
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is guaranteed by the Hypotheses VI-1.11 and VII-1.12. Moreover, the map
ς �→ G(ς�1) ∈ L2[Υ;B(H2

p)] is continuous by the same hypotheses and the domi-

nated convergence theorem. Together with the relative bound of creation and
annihilation operators w.r.t. the number operator, see Lemma A.3, we obtain
continuity of the map

(ς1, . . . , ςn) �→ π (σz
0 (αsςn

0 (v) · · ·αsς1
0 (v)))

[
Ap ⊗

(
a∗

gl(F
+) + agl(F

−)
)m]

Ω0

which makes the integrals in (B.1) well defined. Also by Lemma A.3 we get
the estimate

sup
| Im(ςj)|≤βmax, j=1,...,n

∥∥π (αsςn
0 (v) · · ·αsς1

0 (v))
[
Ap ⊗

(
a∗

gl(F
+) + agl(F

−)
)m]

Ω0

∥∥
≤ ‖Ap‖B(H2

p)

√
(n + m + 1)! (2b1)

n(2b2)
m.

The absolute convergence of the series in (B.1) follows by the next estimate,

∞∑
n,m=0

|sg|n
∫

0≤ςn≤···≤ς1≤1

dς1 · · · dςn

√
(n + m + 1)! (2b1)

n(
√

2 b2)
m

m!

=
∞∑

n,m=0

|2b1sg|n(
√

2 b2)
m

√
(n + m + 1)!

n!m!

=
∞∑

n,m=0

√
n + 1 |2b1sg|n√

n!

(
√

2 b2)
m

√
m!

√(
m + n + 1

m

)

≤ 2
∞∑

n=0

√
n + 1 |4b1sg|n√

n!

∞∑
m=0

(
√

8 b2)
m

√
m!

< ∞,

where we used that

(
m + n + 1

m

)
≤ 2n+m+1.

Now we remove in (B.1) the cutoff λ. We note that s-limλ→∞ P[|L(�)|≤λ] = �H2 .

Reconsidering (B.1) and using that eisL(�)
is a closed operator we obtain that

e−isL0e−izL0AΩ0 = lim
λ→∞

P[|L(�)|≤λ]e
−isL0e−izL0AΩ0

is in the domain of eisL(�)
and

eisL(�)

e−isL0e−izL0AΩ0 (B.2)

=
∞∑

n=0

(isg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn π (αsςn
0 (v) · · ·αsς1

0 (v)) e−izL0AΩ0.
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Finally, to meet the assertion, we show that the vector given in (B.2) is in the
domain of the operator eizL0 . This follows by the closedness of eizL0 and

eizL0eisL(�)

e−isL0e−izL0AΩ0 (B.3)

=
∞∑

n=0

(isg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn eizL0π (αsςn
0 (v) · · ·αsς1

0 (v)) e−izL0AΩ0

=
∞∑

n=0

(isg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn π (σz
0 (αsςn

0 (v) · · ·αsς1
0 (v))) AΩ0

using that the r.h.s. of (B.3) converges because

π
(
σz

0 ◦ α
sςj
0 (v)

)
= a∗

gl

(
G(z�β+sςj�1)

)
+ agl

(
G(z�β+sςj�1)

)
,

�β = (βp, β1, . . . , βR) ∈ �R+1, obeys for | Im(s)+βmax Im(z)| ≤ βmax/2 a similar
uniform L2-bound,

sup
| Im(ς)|≤βmax/2,
| Im(ζ)|≤1/2:

| Im(ς)+βmax Im(ζ)|≤βmax/2

∥∥∥G(ζ�β+ς�1)

∥∥∥
L2[Υ;B(H2

p)]
<∞,

as in the above elaboration.

(ii) We only focus on the operator eizL0eisL(�)
e−isL0e−izL0 . Its closability follows

from the fact that the adjoint operator is densely defined. To this end we
observe that [

eizL0eisL(�)

e−isL0e−izL0

]∗
⊇ eizL0eisL0e−isL(�)

e−izL0

where the r.h.s. is defined on a dense set by (i).

To show that the closure D
(1)
s,z has a trivial kernel it suffices to show that the

range of the operator
[
eizL0eisL(�)

e−isL0e−izL0

]∗
is dense. This, in turn, follows

from

ran
([

eizL0eisL(�)

e−isL0e−izL0

]∗)
⊇ ran

(
eizL0eisL0e−isL(�)

e−izL0

)
= D

(
eizL0eisL(�)

e−isL0e−izL0

)
which, again by (i), is dense.

(iii) Again, we only consider the operator eizL0eisL(�)
e−isL0e−izL0 . Note thatM′ :=

π(A)′ is the strong closure of linear combinations of operators of the type
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π′(B′) = B′
p ⊗Wgl(F

′), F ∈ L2[Υ] having compact support, considered un-
der (i) (we refer to the von Neumann density theorem, see [10, Cor. 2.4.15]).
Therefore, there are elements Bj,k

p ∈ B(H2
p) and Fj,k ∈ L2[Υ] compactly sup-

ported such that s-limj→∞ B′
j = A′ where B′

j :=
∑Kj

k=1 Bj,k
p ⊗Wgl(Fj,k) ∈ M′.

The first part of this lemma implies that the vectors B′
jΩ0 are in the domain

of eizL0eisL(�)
e−isL0e−izL0 and allows the following expansion in a Dyson series,

eizL0eisL(�)

e−isL0e−izL0B′
jΩ0

=
∞∑

n=0

(isg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn π (σz
0 (αsςn

0 (v) · · ·αsς1
0 (v))) B′

jΩ0

= B′
j

∞∑
n=0

(isg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn π (σz
0 (αsςn

0 (v) · · ·αsς1
0 (v))) Ω0

= B′
je

izL0eisL(�)

e−isL0e−izL0Ω0

j→∞−−−→ A′eizL0eisL(�)

e−isL0e−izL0Ω0,

using that B′
j commutes with π (σz

0 (αsςn
0 (v) · · ·αsς1

0 (v))) and that the Dyson

series converges on Ω0. The assertion follows because D
(1)
s,z is the closure of the

operator eizL0eisL(�)
e−isL0e−izL0 .

For computational purposes it is necessary to understand how the anti-linear
operator S0 extends from the dense set π(A)′′Ω0.

Lemma B.2 (Domain of S0) (i) Let Fr ∈ L2[�3;B(Hp)], r = 1, . . . , R, with
ω−1/2Fr ∈ L2[�3;B(Hp)]. Further, choose A ∈ A such that π(A)Ω0 ∈
D(N

1/2
res ), where Nres is the “photon” number operator on the bosonic Fock

space F(L2[Υ]) over L2[Υ] (which ensures that π(A)Ω0 is in the domain of the
operator π

(
a#

r (Fr)
)

which can be expressed in terms of creation and annihi-
lation operators over F(L2[Υ]), see definition (1.75) and Lemma A.3). Then
the vector π

(
a#

r (Fr)
)
π(A)Ω0 is in the domain of S0, introduced in (1.60), and

it holds the following identity,

S0

[
π
(
a#

r (Fr)
)
π(A)Ω0

]
= π(A∗)π

(
a#

r (Fr)
∗)Ω0.

(ii) Let F
(1)
r1 , . . . , F

(n)
rn ∈ L2[�3;B(Hp)], rj = 1, . . . , R, with ω−1/2F

(j)
rj ∈

L2[�3;B(Hp)]. Then the vector π
(
a#1

r1
(F

(1)
r1 )
)
· · ·π

(
a#n

rn
(F

(n)
rn )
)

Ω0 is in the

domain of S0 and it holds

S0

[
π
(
a#1

r1
(F (1)

r1
)
)
· · ·π

(
a#n

rn
(F (n)

rn
)
)
Ω0

]
= π
(
a#n

rn
(F (n)

rn
)∗
)
· · ·π

(
a#1

r1
(F (1)

r1
)∗
)
Ω0.
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(iii) Let | Im(s)| ≤ βmax/2. Then, the vectors esL(�)
Ω0 and e−sL0esL(�)

Ω0 are in the
domain of S0 and we have

S0

[
esL(�)

Ω0

]
= e−sL0esL(�)

Ω0 and

S0

[
e−sL0esL(�)

Ω0

]
= esL(�)

Ω0.

Proof.

(i) We only consider the case a#
r (Fr) = ar(Fr), the other case is treated in the

same way. Since Fr ∈ L2[�3;B(Hp)] ∼= L2[�3]⊗ B(Hp) we express

Fr = lim
n→∞

Nn∑
m=1

fn
mMn

m

with fn
m, ω−1/2fn

m ∈ L2[�3] and Mn
m ∈ B(Hp). Using the notation F n

m :=
(0, . . . , 0, fn

m︸︷︷︸
r

, 0, . . . , 0), we may write

ψ := π (ar(Fr)) π(A)Ω0

= lim
n→∞

Nn∑
m=1

π (ar(f
n
mMn

m)) π(A)Ω0

= lim
n→∞

Nn∑
m=1

[πp(M
n
m)⊗ agl (g(F n

m))] π(A)Ω0.

Note that the annihilation operator agl(g(F n
m)) can be expressed as a strong

limit of Weyl operators by

agl(g(F n
m)) =

Φgl(g(F n
m)) + iΦgl(ig(F n

m))√
2

= s-lim
t→0

Wgl(tg(F n
m)) + iWgl(itg(F n

m))− (1 + i)�√
2 t

such that ψ can be written as the limit

ψ = lim
n→∞,
t→0

ψn,t

of vectors

ψn,t :=
Nn∑

m=1

πp(M
n
m)⊗ Wgl(tg(F n

m)) + iWgl(itg(F n
m))− (1 + i)�√

2 t

× π(A)Ω0

=
1√
2 t

Nn∑
m=1

π ([Mn
m ⊗ (Wr(tf

n
m) + iWr(itf

n
m)− (1 + i)�)] A) Ω0
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with [Mn
m ⊗ (Wr(tf

n
m) + iWr(itf

n
m) − (1 + i)�)]A ∈ A, thus ψn,t ∈ D(S0).

Applying S0 to ψn,t gives

S0ψn,t

=
1√
2 t

Nn∑
m=1

π (A∗ [Mn
m

∗ ⊗ (Wr(−tfn
m)− iWr(−itfn

m)− (1− i)�)]) Ω0

n→∞−−−→
t→0

π(A∗)π (a∗
r(Fr)) Ω0

where we just did the above steps backwards using that

a∗
gl(g(F n

m)) = s-lim
t→0

Wgl(tg(F n
m))− iWgl(itg(F n

m))− (1− i)�√
2 t

.

Since S0 is a closed operator we conclude that ψ ∈ D(S0) and

Sψ = π(A∗)π (a∗
r(Fr)) Ω0,

as claimed.

(ii) The assertion is proved in the same way as under (i), we omit the proof.

(iii) We remark that the vector esL(�)
Ω0 can be expanded in a series as

esL(�)

Ω0 = esL(�)

e−sβL0Ω0

=
∞∑

n=0

(sg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn π
(
α−isςn

0 (v) · · ·α−isς1
0 (v)

)
Ω0,

c.f. Lemma B.1(i). By (ii) we know that π
(
α−isςn

0 (v) · · ·α−isς1
0 (v)

)
Ω0 ∈ D(S0)

and

S0

[
π
(
α−isςn

0 (v) · · ·α−isς1
0 (v)

)
Ω0

]
= π
(
αisς1

0 (v) · · ·αisςn
0 (v)

)
Ω0.

The closedness of S0 implies that esL(�)
Ω0 ∈ D(S0) with

S0

[
esL(�)

Ω0

]
=

∞∑
n=0

(sg)n

∫
0≤ςn≤···≤ς1≤1

dς1 · · · dςn π
(
αisς1

0 (v) · · ·αisςn
0 (v)

)
Ω0

= e−sL0esL(�)

Ω0.

The second assertion follows by S−1
0 = S0.
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B.2 Existence of the Perturbed KMS State

We ensure that the vector representative of the perturbed KMS state can be de-
fined in our framework. We present a more general lemma which considers the
non-equilibrium case where the reservoir temperatures β1, . . . , βR do not necessarily
coincide. It is a generalization of [8, Thm. IV.3] to different reservoir temperatures.

Lemma B.3 The vector Ω0 is in the domain of the operator e−βL(�)/2 for all β ∈
[0, βmax] and the image obeys the norm bound∥∥∥e−βL(�)/2Ω0

∥∥∥ ≤ max

{
1,

Z(β)

Z(βp)

}
(B.4)

× exp

⎛⎝g2β2

2

R∑
r=1

∫
�3

d3�k

[
1 +

2

βrω(�k)

]∥∥∥e(βmax−βr)ω(�kr)/2Gr(�k)
∥∥∥2

B(Hp)

⎞⎠ <∞.

Hence, the norm of e−βL(�)/2Ω0 is bounded uniformly in the inverse temperatures as
long as |βmax − βmin| is bounded.

Proof. It follows from Lemma B.1(i) that Ω0 ∈ D(e−βL(�)/2). To prove the norm

bound we show that
〈

Ω0

∣∣∣ e−βL(�)
Ω0

〉
H2

is bounded by the square of the r.h.s. of

(B.4). By expansion in a Dyson-series, see Lemma B.1(i), we get〈
Ω0

∣∣∣ e−βL(�)

Ω0

〉
H2

=
∞∑

n=0

(−g)n

∫
0≤sn≤···≤s1≤β

ds1 · · · dsn

〈
Ω0

∣∣ π(αisn
0 (v) · · ·αis1

0 (v))Ω0

〉
H2

=
∞∑

n=0

g2n

∫
0≤s2n≤···≤s1≤β

ds1 · · · ds2n

〈
Ω0

∣∣ π(αis2n
0 (v) · · ·αis1

0 (v))Ω0

〉
H2 . (B.5)

Note that

π(αis
0 (v)) =

R∑
r=1

∫
�3

d3�k π
(
e−sHpGr(�k)esHp ⊗ e−sω(�k)a∗

r(
�k)

+ e−sHpGr(�k)∗esHp ⊗ esω(�k)ar(�k)
)

=
R∑

r=1

∑
σ=±

∫
d3�k π

(
e−sHpGσ(�k, r)esHp ⊗ aσ(�k, r, s)

)
, (B.6)
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where

a+(�k, r, s) := e−sω(�k)a∗
r(

�k),

a−(�k, r, s) := esω(�k)ar(�k),

G+(�k, r) := Gr(�k),

G−(�k, r) := Gr(�k)∗.

Plugging (B.6) into (B.5) we get〈
Ω0

∣∣∣ e−βL(�)

Ω0

〉
=

∞∑
n=0

g2n
∑

σ1,...,σ2n=±

∫
0≤s2n≤···≤s1≤β

ds1 · · · ds2n

R∑
r1,...,r2n=1

∫
�3

d3�k1 · · ·
∫
�3

d3�k2n

〈
Ω0

∣∣∣π[e−s2nHpGσ2n(�k2n, r2n)e(s2n−s2n−1)Hp · · · e(s2−s1)HpGσ1(�k1, r1)e
s1Hp

⊗ aσ2n(�k2n, r2n, s2n) · · · aσ1(�k1, r1, s1)
]
Ω0

〉
=

∞∑
n=0

g2n
∑

σ1,...,σ2n=±

∫
0≤s2n≤···≤s1≤β

ds1 · · · ds2n

R∑
r1,...,r2n=1

∫
�3

d3�k1 · · ·
∫
�3

d3�k2n

Z(βp)
−1 tr

(
e−(βp−s1+s2n)HpGσ2n(�k2n, r2n)e(s2n−s2n−1)Hp × · · ·

× e(s2−s1)HpGσ1(�k1, r1)
)

× [ωf,1 ⊗ · · · ⊗ ωf,R]
(
aσ2n(�k2n, r2n, s2n) · · · aσ1(�k1, r1, s1)

)
. (B.7)

We are going to apply the Hölder’s inequality for the trace,

tr(A1B1 · · ·AmBm) ≤
m∏

j=1

‖Bj‖
m∏

j=1

tr(|Aj|pj)1/pj ,

where pj > 0 and p−1
1 + · · · + p−1

m = 1, to control the contribution of the trace in
(B.7). To this end, we distinguish two cases. First we assume that βp ≥ β. We
define p1 = −βp/(−βp + s1 − s2n), pj = −βp/(s2n+2−j − s2n+1−j), j = 2, . . . , 2n,
which are all positive since 0 ≤ sj − sj+1 ≤ β ≤ βp and their inverses sum up to
one. With Hölder’s inequality we obtain

Z(βp)
−1 tr

(
e−(βp−s1+s2n)HpGσ2n(�k2n, r2n)e(s2n−s2n−1)Hp · · · e(s2−s1)HpGσ1(�k1, r1)

)
≤ Z(βp)

−1 tr
(
e−βpHp

) 2n∏
j=1

∥∥∥Gσj(�kj, rj)
∥∥∥
B(Hp)

=
2n∏

j=1

∥∥∥Gσj(�kj, rj)
∥∥∥
B(Hp)

. (B.8)
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In the complementary case, βp < β, we define p1 = −β/(−β + s1 − s2n), pj =
−β/(s2n+2−j − s2n+1−j), j = 2, . . . , 2n, which are again positive. Note, that

tr
(
e−(βp−s1+s2n)p1Hp

)
= tr

(
e−βHpe

β
β−βp

β−s1+s2n
Hp

)
≤ tr
(
e−βHp

)
since Hp ≤ 0 by assumption, see (1.12). Applying the Hölder inequality therefore
gives

Z(βp)
−1 tr

(
e−(βp−s1+s2n)HpGσ2n(�k2n, r2n)e(s2n−s2n−1)Hp · · · e(s2−s1)HpGσ1(�k1, r1)

)
≤ Z(βp)

−1 tr
(
e−βHp

) 2n∏
j=1

∥∥∥Gσj(�kj, rj)
∥∥∥
B(Hp)

=
Z(β)

Z(βp)

2n∏
j=1

∥∥∥Gσj(�kj, rj)
∥∥∥
B(Hp)

. (B.9)

Since the reservoir state ωres := ωf,1 ⊗ · · · ⊗ ωf,R is quasi-free we get with Wick’s
theorem, Lemma D.1,

ωres

(
aσ2n(�k2n, r2n, s2n) · · · aσ1(�k1, r1, s1)

)
=
∑

τ∈P2n

n∏
j=1

ωres

(
aστ(2j)(�kτ(2j), rτ(2j), sτ(2j))

× aστ(2j−1)(�kτ(2j−1), rτ(2j−1), sτ(2j−1))
)
, (B.10)

where P2n is the set of all permutations τ ∈ S2n which fulfil τ(1) < τ(3) < · · · <
τ(2n − 1) and τ(2j − 1) < τ(2j) for j = 1, . . . , n. We refer to the elaborations in
Section 1.3.4, in particular to the definition (1.45) of ωf . The only non-vanishing
contributions in (B.10) are

ωres(a
−(�k, r, s)a+(�k′, r′, s′)) = δr,r′δ(�k − �k′)

e(βr+s−s′)ω(�k)

eβrω(�k) − 1
,

ωres(a
+(�k, r, s)a−(�k′, r′, s′)) = δr,r′δ(�k − �k′)

e(−s+s′)ω(�k)

eβrω(�k) − 1
.

For application in (B.7) we consider the case 0 ≤ s ≤ s′ ≤ β. We introduce the
abbreviation δs := s′ − s ∈ [0, β] to calculate∑

σ,σ′=±
ωres(a

σ(�k, r, s)aσ′
(�k′, r′, s′))

= δr,r′δ(�k − �k′)
e(βr−δs)ω(�k) + eδsω(�k)

eβrω(�k) − 1
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≤ sup
x∈[1,eβω(�k)]

δr,r′δ(�k − �k′)
eβrω(�k)x−1 + x

eβrω(�k) − 1

≤ δr,r′δ(�k − �k′)
eβmaxω(�k) + 1

eβrω(�k) − 1

≤ δr,r′δ(�k − �k′)e(βmax−βr)ω(�k) coth(βrω(�k)/2). (B.11)

Using Equations (B.8, B.9, B.10, B.11) and

#P2n = (2n− 1)(2n− 3) · · · 1 =
(2n)!

2nn!

we can perform the sum over σj in (B.7) to estimate〈
Ω0

∣∣∣ e−βL(�)

Ω0

〉
H2

≤ max

{
1,

Z(β)

Z(βp)

} ∞∑
n=0

g2n

∫
0≤s2n≤···≤s1≤β

ds1 · · · ds2n

×
R∑

r1,...,r2n=1

∫
�3

d3�k1 · · ·
∫
�3

d3�k2n

2n∏
j=1

∥∥∥G±(�kj, rj)
∥∥∥
B(Hp)

×(2n)!

2nn!

n∏
j=1

δr2j−1,r2j
δ(�k2j−1 − �k2j)e

(βmax−βr2j )ω(�kr2j ) coth(βr2j
ω(�k2j)/2)

= max

{
1,

Z(β)

Z(βp)

}

×
∞∑

n=0

1

n!

⎡⎣g2β2

2

R∑
r=1

∫
�3

d3�k coth(βrω(�k)/2)
∥∥∥e(βmax−βr)ω(�kr)/2Gr(�k)

∥∥∥2

B(Hp)

⎤⎦n

= max

{
1,

Z(β)

Z(βp)

}

× exp

⎛⎝g2β2

2

R∑
r=1

∫
�3

d3�k coth(βrω(�k)/2)
∥∥∥e(βmax−βr)ω(�kr)/2Gr(�k)

∥∥∥2

B(Hp)

⎞⎠
≤ max

{
1,

Z(β)

Z(βp)

}

× exp

⎛⎝g2β2

R∑
r=1

∫
�3

d3�k

[
1 +

2

βrω(�k)

]∥∥∥e(βmax−βr)ω(�kr)/2Gr(�k)
∥∥∥2

B(Hp)

⎞⎠ ,

where we used that coth(x)/2 ≤ 1 + 1/x. This expression is finite due to the
assumptions of Hypothesis VI-1.11.
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Lemma B.4 (Cyclic & Separating Property of Ω̃) The vector

Ω̃ :=
e−βL(�)/2Ω0∥∥e−βL(�)/2Ω0

∥∥
is cyclic and separating for M := π(A)′′ and M′ := π(A)′ for all β ∈ [0, βmax].

Proof. We first prove the cyclicity of Ω̃ w.r.t. M. We remark that it is equiv-
alent to prove the separating property of Ω̃ for M′ = π(A)′, see [10, Prop. 2.5.3].
To this end, choose A′ ∈ M′ such that A′Ω̃ = 0. An application of Lemma B.1(iii)

implies that A′Ω0 is in the domain of D
(1)
iβ
2

,0
and it holds

D
(1)
iβ
2

,0
A′Ω0 = A′e−βL(�)/2Ω0 = 0

which implies that A′Ω0 = 0 because D
(1)
iβ
2

,0
has trivial kernel, c.f. Lemma B.1(ii).

Due to the cyclic property of Ω0 w.r.t. M we conclude that A′ = 0.

It remains to prove that Ω̃ is also separating for M. Let A ∈ M be chosen such
that AΩ̃ = 0. Since JAJ ∈M′ and because of Lemma B.1(iii) the vector JAJΩ0 is

in the domain of the operator D
(2)
iβ
2

,− i
2

and

D
(2)
iβ
2

,− i
2

JAJΩ0 = JAJe−L0/2eβL0/2e−βL(�)/2eL0/2Ω0.

Using the modular data (J, ∆0, S0) associated with the state ω0 = 〈Ω0 | π( · )Ω0 〉
(see (1.60)) and an application of Lemma B.2(iii) gives

JD
(2)
iβ
2

,− i
2

JAΩ0 = AJe−L0/2eβL0/2e−βL(�)/2Ω0

= AS0e
βL0/2e−βL(�)/2Ω0

= Ae−βL(�)/2Ω0

= 0.

This implies AΩ0 = 0 since J is invertible and D
(2)
iβ
2

,− i
2

has a trivial kernel, see

Lemma B.1(ii). This, in turn, implies A = 0 due to the separating property of Ω0.

The subsequent consideration are done under the assumption that all reservoir
temperatures coincide, i.e., β := βp = β1 = · · · = βR. We aim to establish ω =
〈Ω | π( · )Ω 〉 with Ω = Ω̃|βmax=βmin=β, given in (2.2), as the perturbed KMS state.

Lemma B.5 (Zero Eigenvector of L) For β := βp = β1 = · · · = βR, the vector
Ω = Ω̃|βmax=βmin=β given in (2.3) is in the kernel of the perturbed Liouville operator
L.
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Proof. Note that L = L(�) − gπ′(v) and therefore

Le−βL(�)/2Ω0 = [L(�) − gπ′(v)]e−βL(�)/2Ω0

= e−βL(�)/2[L(�) − geβL(�)/2π′(v)e−βL(�)/2]Ω0

= ge−βL(�)/2[π(v)− Je−βL(r)/2π(v)eβL(r)/2J ]Ω0

= ge−βL(�)/2[π(v)− Je−βL0/2π(v)eβL0/2]Ω0

= ge−βL(�)/2[π(v)− Je−βL0/2π(v)]Ω0,

where we used that e−βL(r)/2π(v)eβL(r)/2 = e−βL0/2π(v)eβL0/2 as one checks by an
explicit expansion in a Dyson series. Since ω0 = 〈Ω0 |π( · )Ω0 〉 is an (α0, β)-KMS
state we obtain

Je−βL0/2π(v)Ω0 = J∆
1/2
0 π(v)Ω0 = S0π(v)Ω0 = π(v∗)Ω0 = π(v)Ω0

using that the anti-linear operator S0 can be extended to π(v)Ω0, see Lemma B.2(i).

We finally get Le−βL(�)/2Ω0 = 0.

Next, we prove the invariance of Ω under the modular conjugation J .

Lemma B.6 The vector Ω is a fix point of the modular conjugation J , i.e., JΩ = Ω,
for equal temperatures β := βp = β1 = · · · = βR.

Proof. We use that J = S0e
βL0/2 (since ω0 = 〈Ω0 | π( · )Ω0 〉 is an (α0, β)-KMS

state) to obtain

Je−βL(�)/2Ω0 = S0e
βL0/2e−βL(�)/2Ω0 = e−βL(�)/2Ω0,

where we used Lemma B.2(iii).

It follows the KMS property of ω.

Proposition B.7 (KMS Property of ω) In the equal temperature case β :=
βp = β1 = · · · = βR the operator

∆ := e−βL

is the modular operator associated with the state ω = 〈Ω |π( · )Ω 〉. This implies that
ω is an (α, β)-KMS state, i.e., the state A �→ 〈Ω |AΩ 〉 is an (α, β)-KMS state for
the W ∗-dynamical system (π(A)′′, t �→ eiLt( · )e−iLt) in the sense of Section 1.1.1.
Following the arguments of Section 1.1.3 it is the only ω0-normal KMS-state since
π(A)′′ is a factor.
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Proof. We have to verify that the operator

S := J∆1/2

fulfills the relation
S AΩ = A∗Ω

for all A ∈ π(A)′′. For a given A ∈ π(A)′′ with AΩ ∈ D(e−βL/2) holds

e−βL/2AΩ = e−βL/2AeβL/2Ω = e−βL(�)/2AeβL(�)/2Ω = C−1e−βL(�)/2AΩ0,

where C :=
∥∥∥e−βL(�)/2Ω0

∥∥∥. The above relation can be checked by an explicit expan-

sion of e−βL/2AeβL/2 and e−βL(�)/2AeβL(�)/2 in a Dyson series using that A commutes
with π′(v). Using the modular structure for ω0 = 〈Ω0 |π( · )Ω0 〉 and the relation
JL(�) = −L(r)J we obtain

Je−βL/2AΩ = C−1Je−βL(�)/2AΩ0 = C−1eβL(r)/2JAΩ0

= C−1eβL(r)/2e−βL0/2S0AΩ0 = C−1eβL(r)/2e−βL0/2A∗Ω0

= C−1A∗eβL(r)/2e−βL0/2Ω0 = C−1A∗Je−βL(�)/2Ω0

= A∗JΩ = A∗Ω.

Here we used Lemma B.6 and that

eβL(r)/2e−βL0/2A∗Ω0 = Je−βL(�)/2eβL0/2(JA∗J)Ω0

= J(JA∗J)e−βL(�)/2eβL0/2Ω0

= A∗eβL(r)/2e−βL0/2Ω0,

see Lemma B.1(iii). Thus, the operator e−βL is the modular operator associated
with ω and since L is the perturbed Liouville operator w.r.t. ω we conclude that
the (α, β)-KMS condition for ω is fulfilled.



C Analytic Continuations of
Operators and Vectors

In Lemma 2.3 of Section 2.2 we managed to find a resolvent representation for the
unitary group eiK(s)t for real s. The task, however, is to extend the relation (2.15)
to complex parameters s, in particular we want to find a representation of the group
U(t) = eiKt for K = K(−i/2). While we could show the analyticity in s of the
l.h.s. of (2.15) already in Section 2.2 it is not until now that we address the issue of
analyticity of the r.h.s. of (2.15). Although the spectrum of K(s) is located on the
real axis for s ∈ � we lose control over it as soon as we complexify the parameter.
The problem here is the lack of coercivity – the perturbation I(s) is not relatively
L0-bounded. We bypass that difficulty by performing a spectral deformation on
K(s) as introduced in Section 2.2.2. The advantage of this particular deformation is
that the deformed perturbation I

(s)
θ is now relatively bounded w.r.t. the deformed

free Liouville operator L0,θ which in turn becomes sectorial. This requires that
the dilation parameter δ, which is responsible for the rotation of the continuous
spectrum into the upper half plane, has sufficiently large imaginary part.

Throughout the whole chapter we fix

0 < δ0 <
π

4
, 0 < τ0 < 2πβ−1

max

and we introduce the following notation

D+
δ0,τ0

:= D+
δ0
× S+

τ0
⊆ �2

for a subset of

Dδ0,τ0 =
{
(δ, τ) ∈ �2

∣∣ | Im(δ)| < δ0, |τ | < τ0

}
where

D+
δ0

:= {δ ∈ � | 0 < Im(δ) < δ0 } ,
S+

τ0
:= {τ ∈ � | 0 < |τ | < 2| Im(τ)| < τ0 } .
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C.1 Spectral Deformation Analyticity of K
(s)
θ

In this section we provide analyticity results of the resolvent
(
z −K(s)

)−1
under

spectral deformation. In this section we follow closely the arguments of [8, App. A].
The operator M[θ] defined in (A.9) will play a crucial role in the estimations. First

we consider the invertibility of
(
z −K

(s)
θ

)−1

for spectral parameters far away from

the real axis.

Lemma C.1 Let Im(z) ≤ −2 and choose the deformation parameters as θ =

(δ, τ) ∈ D+
δ0,τ0

. Choose s ∈ � ε0
2
.

(i) Assume further that s ∈ �.

(ii) Assume further that Im(δ) ∈ [π
8
, π

4
].

Then the operator
(
z −K

(s)
θ

)
is invertible on a dense set and its inverse extends to

a bounded operator with norm

∥∥∥∥(z −K
(s)
θ

)−1
∥∥∥∥ ≤ 1

dist
{

z, NumRan
(
K

(s)
θ

)} .

Proof. Our first observations is that we may assume without loss of generality
that δ = iδ′ is purely imaginary. Note that K

(s)
θ = Dd(Re(δ))K

(s)
θ′ Dd(Re(δ))−1,

where θ′ := (i Im(δ), τ), and Dd(Re(δ)) is a unitary operator. Since the numerical
range and the norm of an operator remain invariant under unitary conjugation we
may assume Re(δ) = 0. In this case we have Im(L0) = M[θ] +(Im(τ)−|τ |)Nres, note
that sin(Im(δ)) ≥ 0.

Now, we consider

K
(s)
θ

∗
=
[
Lp + cos(δ)Lres + Re(τ)Nres + g Re

(
I

(s)
θ

)]
−i
[
sin(δ′)Laux + Im(τ)Nres + g Im

(
I

(s)
θ

)]
.
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For ψ ∈ D(Laux + Nres) ⊆ D(K
(s)
θ

∗
) we have

Im
〈

(M[θ] + 1)−1ψ
∣∣∣K(s)

θ

∗
ψ
〉

=
1

2i

[〈
(M[θ] + 1)−1ψ

∣∣∣ gI
(s)
θ

∗
ψ
〉
−
〈

gI
(s)
θ

∗
ψ
∣∣∣ (M[θ] + 1)−1ψ

〉]
− Im

〈
(M[θ] + 1)−1ψ

∣∣ i[sin(δ′)Laux + Im(τ)Nres]ψ
〉

=
1

2i

〈
ψ
∣∣∣ [(M[θ] + 1)−1, g Re

(
I

(s)
θ

)]
ψ
〉
−
〈

ψ

∣∣∣∣ sin(δ′)Laux + Im(τ)Nres

M[θ] + 1
ψ

〉
+

1

2i

[〈
ig Im

(
I

(s)
θ

)
ψ
∣∣∣ (M[θ] + 1)−1ψ

〉
−
〈

(M[θ] + 1)−1ψ
∣∣∣ ig Im

(
I

(s)
θ

)
ψ
〉]

=
1

2i

〈
ψ
∣∣∣ [(M[θ] + 1)−1, g Re

(
I

(s)
θ

)]
ψ
〉
−
〈

ψ

∣∣∣∣ sin(δ′)Laux + Im(τ)Nres

M[θ] + 1
ψ

〉
−Re

〈
g Im

(
I

(s)
θ

)
ψ
∣∣∣ (M[θ] + 1)−1ψ

〉
. (C.1)

We estimate the terms separately. First, we consider∣∣∣〈ψ
∣∣∣ [(M[θ] + 1)−1, g Re

(
I

(s)
θ

)]
ψ
〉∣∣∣

=
∣∣∣〈 (M[θ] + 1)−1/2ψ

∣∣∣ (M[θ] + 1)−1/2
[
M[θ], g Re

(
I

(s)
θ

)]
(M[θ] + 1)−1ψ

〉∣∣∣
≤ Cg

∥∥(M[θ] + 1)−1/2ψ
∥∥2

= Cg
〈
ψ
∣∣ (M[θ] + 1)−1ψ

〉
, (C.2)

for some positive constant C, using Lemma A.6. To estimate the last term of (C.1)
we consider the two cases of additional assumptions.

(i) Since s ∈ � Corollary A.8 implies that∣∣∣〈 g Im
(
I

(s)
θ

)
ψ
∣∣∣ (M[θ] + 1)−1ψ

〉∣∣∣ ≤ gC ′ ‖ψ‖2 , (C.3)

for a positive constant C ′.

(ii) Since Im(δ) ∈ [π
8
, π

4
] and therefore sin(Im(δ)) ≥ 1

3
we obtain

∣∣∣〈 g Im
(
I

(s)
θ

)
ψ
∣∣∣ (M[θ] + 1)−1ψ

〉∣∣∣ ≤ gC ′

| sin(Im(δ))| ‖ψ‖
2 ≤ 3gC ′ ‖ψ‖2 , (C.4)

for a positive constant C ′, using Lemma A.5.
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Plugging the estimates (C.2, C.3, C.4) into (C.1) gives

Im
〈

(M[θ] + 1)−1ψ
∣∣∣K(s)

θ

∗
ψ
〉

≤ −
〈

ψ

∣∣∣∣ sin(δ′)Laux + Im(τ)Nres

M[θ] + 1
ψ

〉
+ Cg

〈
ψ
∣∣ (M[θ] + 1)−1ψ

〉
+C ′g ‖ψ‖2

= (1 + Cg)
〈
ψ
∣∣ (M[θ] + 1)−1ψ

〉
+ (C ′g − 1) ‖ψ‖2

+

〈
ψ

∣∣∣∣ (|τ | − Im(τ)) Nres

M[θ] + 1
ψ

〉
≤ (1 + Cg)

〈
ψ
∣∣ (M[θ] + 1)−1ψ

〉
+

(
C ′g − Im(τ)

|τ |

)
‖ψ‖2

≤ (1 + Cg)
〈
ψ
∣∣ (M[θ] + 1)−1ψ

〉
+

(
C ′g − 1

2

)
‖ψ‖2

≤ (1 + Cg)
〈
ψ
∣∣ (M[θ] + 1)−1ψ

〉
, (C.5)

for g sufficiently small. The above inequality extends to all ψ ∈ D(K
(s)
θ

∗
). We now

aim to show that the kernel of (z −K
(s)
θ )∗ is trivial which in turn implies that the

range of (z−K
(s)
θ ) is dense. To this end we choose ψ ∈ ker

[
(z −K

(s)
θ )∗
]
. With the

help of (C.5) we end up with

Im(z)
〈
(M[θ] + 1)−1ψ

∣∣ψ 〉 = − Im
〈
(M[θ] + 1)−1ψ

∣∣ zψ 〉
= − Im

〈
(M[θ] + 1)−1ψ

∣∣∣K(s)
θ

∗
ψ
〉

≥ −(1 + Cg)
〈
(M[θ] + 1)−1ψ

∣∣ψ 〉
≥ −3

2

〈
(M[θ] + 1)−1ψ

∣∣ψ 〉
for g � 1. Since Im(z) ≤ −2 we conclude that ψ = 0.

The localization of the numerical range of K
(s)
θ , Proposition A.9, along with [19,

Prop. 19.7] imply that z ∈ spec(K
(s)
θ ) and

∥∥∥∥(z −K
(s)
θ

)−1
∥∥∥∥ ≤ 1

dist
{

z, NumRan
(
K

(s)
θ

)} .

The previous lemma has an important implication on the decay of the resolvent(
z −K

(s)
θ

)−1

as Re(z)→∞.
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Lemma C.2 Under the assumptions of Lemma C.1 on the parameters θ = (δ, τ)
and s we have

spec
(
K

(s)
θ

)
⊆ {z ∈ � | Im(z) > −2 }

and for x ∈ � with |x| ≥ 2 ‖Lp‖ holds∥∥∥∥((x− 2i)−K
(s)
θ

)−n
∥∥∥∥ ≤
[

1

|x|+ 1
max

{
√

8 ,
16
√

2

sin(Im(δ))

}]n

for each n ∈ �.

Proof. Since NumRan
(
K

(s)
θ

)
⊆ {z ∈ � | Im(z) ≥ −1 } by Proposition A.9 we

obtain
spec
(
K

(s)
θ

)
⊆ {z ∈ � | Im(z) > −2 }

using Lemma C.1. To prove the norm bound it is sufficient to consider the case n = 1.

We use Proposition A.9 to estimate for ζ ∈ NumRan
(
K

(s)
θ

)
and δ′ := Im(δ),

|(x− 2i)− ζ| ≥ 1√
2

[|x− Re(ζ)|+ |2 + Im(ζ)|]

≥ 1√
2

[
|x− Re(ζ)|+ 1 + max

{
0,

sin(δ′)

8
(|Re(ζ)| − ‖Lp‖)

}]
≥ 1√

2

[
|x− Re(ζ)|+ 1 + max

{
0,

sin(δ′)

8

(
|x|
2
− |x− Re(ζ)|

)}]

≥

⎧⎨⎩
1√
2

[
|x|
2

+ 1
]
, |x|

2
≤ |x− Re(ζ)|,

1√
2

[
sin(δ′)|x|

16
+ 1
]
, |x|

2
> |x− Re(ζ)|

≥ [|x|+ 1] min

{
1√
8
,
sin(δ′)

16
√

2

}
.

Lemma C.1 finally yields∥∥∥∥((x− 2i)−K
(s)
θ

)−1
∥∥∥∥ ≤ 1

dist
{

(x− 2i), NumRan
(
K

(s)
θ

)}
≤ 1

|x|+ 1
max

{
√

8 ,
16
√

2

sin(δ′)

}
.

We need another preparatory lemma before we are in position to state the theorem
about spectral deformation analyticity.
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Lemma C.3 Choose the parameters θ = (δ, τ) ∈ �2 and s ∈ � as in Lemma C.1
and assume that Im(z) ≤ −2. Then, for g sufficiently small, the operators

B±
θ,s := (Laux + Nres + 1)∓1

(
z −K

(s)
θ

)−1

(Laux + Nres + 1)±1 ,

defined on D(Laux + Nres), extend to bounded operators of norm∥∥B±
θ,s

∥∥ ≤ e2|Re(δ)| [1 +O (g)]

∥∥∥∥(z −K
(s)
θ

)−1
∥∥∥∥ (C.6)

≤ e2|Re(δ)| [1 +O (g)]

dist
{

z, NumRan
(
K

(s)
θ

)} .

Proof. We may restrict our considerations on the case that δ = iδ is purely
imaginary, by the following argument. Let θ′ := (i Im(δ), τ), then θ = (Re(δ), 0)+θ′

holds and therefore

B±
θ,s = (Laux + Nres + 1)∓1

Dd(Re(δ))
(
z −K

(s)
θ′

)−1

Dd(Re(δ))−1

× (Laux + Nres + 1)±1

= Dd(Re(δ))
(
dΓgl

(
e−Re(δ) sgn(u)|u|

)
+ Nres + 1

)∓1
(
z −K

(s)
θ′

)−1

×
(
dΓgl

(
e−Re(δ) sgn(u)|u|

)
+ Nres + 1

)±1
Dd(Re(δ))−1.

Since Dd(Re(δ)) is unitary we get∥∥B±
θ,s

∥∥ =
∥∥∥ (dΓgl

(
e−Re(δ) sgn(u)|u|

)
+ Nres + 1

)∓1
(
z −K

(s)
θ′

)−1

×
(
dΓgl

(
e−Re(δ) sgn(u)|u|

)
+ Nres + 1

)±1
∥∥∥

≤
∥∥∥∥∥
(

Laux + Nres + 1

(dΓgl (e∓|Re(δ)| sgn(u)|u|) + Nres + 1)

)±1
∥∥∥∥∥∥∥B±

θ′,s

∥∥
×
∥∥∥∥∥
(

Laux + Nres + 1

(dΓgl (e±|Re(δ)| sgn(u)|u|) + Nres + 1)

)∓1
∥∥∥∥∥

≤ e2|Re(δ)| ∥∥B±
θ′,s

∥∥ .

From now on we assume that δ = iδ′ ∈ i�.

Consider (
z −K

(s)
θ

)−1

(Laux + Nres + 1)−1 − (Laux + Nres + 1)−1
(
z −K

(s)
θ

)−1

=
(
z −K

(s)
θ

)−1

(Laux + Nres + 1)−1
[
K

(s)
θ , Laux + Nres

]
× (Laux + Nres + 1)−1

(
z −K

(s)
θ

)−1

.
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Both sides are bounded operators, because the commutator is relatively (Laux +
Nres + 1)-bounded. This, in turn, can be seen by rewriting[

K
(s)
θ , Laux + Nres

]
= g
[
I

(s)
θ , Laux + Nres

]
and using that the commutator on the r.h.s. can be expressed as linear combination
of creation and annihilation operators. Those are, due to Lemma A.3, relatively
bounded w.r.t. Nres with relative bound given by the norms of the coupling functions.
Therefore ∥∥∥(Laux + Nres + 1)−1

[
K

(s)
θ , Laux + Nres

]∥∥∥ = O (g) .

Thus, the operator

A :=
(
z −K

(s)
θ

)−1

(Laux + Nres + 1)−1
[
K

(s)
θ , Laux + Nres

]
is bounded with norm ‖A‖ = O (g) where we used Lemma C.1 and that

dist
{

z, NumRan
(
K

(s)
θ

)}
≥ 1 for Im(z) ≤ −2,

see Proposition A.9. Thus,

(1 + A) (Laux + Nres + 1)−1
(
z −K

(s)
θ

)−1

(Laux + Nres + 1)+1 =
(
z −K

(s)
θ

)−1

and

B±
θ,s = (Laux + Nres + 1)−1

(
z −K

(s)
θ

)−1

(Laux + Nres + 1)+1

= (1 + A)−1
(
z −K

(s)
θ

)−1

which is bounded with norm∥∥B±
θ,s

∥∥ ≤ [1 +O (g)]

∥∥∥∥(z −K
(s)
θ

)−1
∥∥∥∥ ≤ 1 +O (g)

dist
{

z, NumRan
(
K

(s)
θ

)} .

The proof for B−
θ,s is similar.

Proposition C.4 (Strong Analyticity of K
(s)
θ ) Let s ∈ �ε0. Then the map

Dδ0,τ0 � θ �→ K
(s)
θ

is strongly analytic on D(Laux + Nres), in each variable separately.
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Proof. We set

∂δL0,θ = sinh(δ)Lres + cosh(δ)Laux,

∂τL0,θ = Nres,
(C.7)

and

∂θj
K

(s)
θ = ∂θj

L0,θ + g∂θj
I

(s)
θ

= ∂θj
L0,θ + g

[
a∗

gl

(
∂θj

F
(s)
θ

)
+ agl

(
∂θj

F
(s)

θ

)]
(C.8)

with θj standing for δ or τ , resp. All above operators are relative bounded w.r.t.
(Laux + Nres + 1). We consider, representatively, the differentiability w.r.t. δ only.
We choose θ = (δ, τ) ∈ Dδ0,τ0 and θ′ = (δ′, 0) and compute∥∥∥∥[L0,θ+θ′ − L0,θ

δ′
− ∂δL0,θ

]
(Laux + Nres + 1)−1

∥∥∥∥
≤

∣∣∣∣cosh(δ + δ′)− cosh(δ)

δ′
− sinh(δ)

∣∣∣∣ ∥∥∥∥ Lres

Laux + Nres + 1

∥∥∥∥
+

∣∣∣∣sinh(δ + δ′)− sinh(δ)

δ′
− cosh(δ)

∣∣∣∣ ∥∥∥∥ Laux

Laux + Nres + 1

∥∥∥∥
δ′→0−−−→ 0,

because of |Lres| ≤ |Laux|, and∥∥∥∥∥
[

I
(s)
θ+θ′ − I

(s)
θ

δ′
− ∂δI

(s)
θ

]
(Laux + Nres + 1)−1

∥∥∥∥∥
≤

∥∥∥∥∥a∗
gl

(
F

(s)
θ+θ′ − F

(s)
θ

δ′
− ∂δF

(s)
θ

)
(Laux + Nres + 1)−1

∥∥∥∥∥
+

∥∥∥∥∥agl

(
F

(s)

θ+θ′ − F
(s)

θ

δ′
− ∂δF

(s)

θ

)
(Laux + Nres + 1)−1

∥∥∥∥∥
≤

∥∥∥∥∥F
(s)
θ+θ′ − F

(s)
θ

δ′
− ∂δF

(s)
θ

∥∥∥∥∥
L2[Υ;B(H2

p)]

+

∥∥∥∥∥F
(s)

θ+θ′ − F
(s)

θ

δ′
− ∂δF

(s)

θ

∥∥∥∥∥
L2[Υ;B(H2

p)]

δ′→0−−−→ 0,

which holds true since θ �→ F
(s)
θ is analytic because of Hypothesis VII-1.12 and

Remark 1.13. Hence, the operator K
(s)
θ is strongly analytic on D(Laux + Nres) in δ.

The analyticity w.r.t. τ is proved in the same way.

From the Lemmata C.1, C.3 and Proposition C.4 we obtain the analyticity of
the regularized resolvent (Laux + Nres + 1)−1(z −K

(s)
θ )−1(Laux + Nres + 1)−1 in the
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deformation parameters. The awareness of the need to regularize the resolvent in
order to show deformation analyticity originates from [8, App. A].

Theorem C.5 (Deformation Analyticity) Let s ∈ � and Im(z) ≤ −2. The
regularized resolvent

D+
δ0,τ0
� θ �→ R

(s)
θ := (Laux + Nres + 1)−1

(
z −K

(s)
θ

)−1

(Laux + Nres + 1)−1 (C.9)

as a function of θ = (δ, τ) is analytic, in each variable separately, on the domain

D+
δ0,τ0

. More precisely, for fixed δ ∈ D+
δ0

the map τ �→ R
(s)
(δ,τ) is analytic on the

domain S+
τ0

and for fixed τ ∈ S+
τ0

the map δ �→ R
(s)
(δ,τ) is analytic on the domain D+

δ0
.

Moreover, the map θ �→ R
(s)
θ is continuously extendable to ∂D+

δ0,τ0
.

Proof. Note that, due to Proposition C.4, the operators L0,θ and K
(s)
θ are

strongly differentiable w.r.t. θ = (δ, τ) with the partial derivatives given in (C.7,
C.8). We consider, representatively, the differentiability w.r.t. δ only. Let θ =
(δ, τ) ∈ D+

δ0,τ0
, denote θ′ = (δ′, 0) and consider

(Laux + Nres + 1)−1

[(
z −K

(s)
θ+θ′

)−1

−
(
z −K

(s)
θ

)−1

δ′

−
(
z −K

(s)
θ

)−1

∂δK
(s)
θ

(
z −K

(s)
θ

)−1
]

(Laux + Nres + 1)−1

= (Laux + Nres + 1)−1

[(
z −K

(s)
θ+θ′

)−1 K
(s)
θ+θ′ −K

(s)
θ

δ′

−
(
z −K

(s)
θ

)−1

∂δK
(s)
θ

](
z −K

(s)
θ

)−1

(Laux + Nres + 1)−1

= B+
θ+θ′,s (Laux + Nres + 1)−1

[
K

(s)
θ+θ′ −K

(s)
θ

δ′
− ∂δK

(s)
θ

]
(Laux + Nres + 1)−1 B−

θ,s

+B+
θ+θ′,s (Laux + Nres + 1)−1

[
K

(s)
θ+θ′ −K

(s)
θ

] (
z −K

(s)
θ

)−1

× ∂δK
(s)
θ (Laux + Nres + 1)−1 B−

θ,s

=: Qδ′ .
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Because of Lemma C.3 the operators B−
θ,s and B+

θ+θ′,s are uniformly bounded as
δ′ → 0 such that there is a positive constant C with

‖Qδ′‖

≤ C

[∥∥∥∥∥(Laux + Nres + 1)−1

[
K

(s)
θ+θ′ −K

(s)
θ

δ′
− ∂δK

(s)
θ

]
(Laux + Nres + 1)−1

∥∥∥∥∥
+
∥∥∥(Laux + Nres + 1)−1

[
K

(s)
θ+θ′ −K

(s)
θ

]∥∥∥
×
∥∥∥∂δK

(s)
θ (Laux + Nres + 1)−1

∥∥∥]
δ′→0−−−→ 0.

Here, we used the strong analyticity of θ �→ K
(s)
θ on the domain D(Laux + Nres) as

provided in Proposition C.4. This concludes the proof of analyticity of (C.9) in δ.
To prove continuity in θ ∈ D+

δ0,τ0
we consider

(Laux + Nres + 1)−1

[(
z −K

(s)
θ+θ′

)−1

−
(
z −K

(s)
θ

)−1
]

(Laux + Nres + 1)−1

= B+
θ+θ′,s (Laux + Nres + 1)−1

[
K

(s)
θ+θ′ −K

(s)
θ

]
(Laux + Nres + 1)−1 B−

θ,s

δ′→0−−−→ 0,

by the same arguments as above. The analyticity and continuity w.r.t. τ is proved
in the same way.

C.2 Analytic Continuation of K
(s)
θ in s

Theorem C.6 Let Im(z) ≤ −2 and choose θ = (δ, τ) ∈ D+
δ0,τ0

such that δ = iδ′

with δ′ ∈ [π
8
, π

4
] and Re(τ) = 0.

(i) Then the regularized resolvent

� ε0
2
� s �→ R

(s)
θ ≡ R

(s)
θ (z)

= (Laux + Nres + 1)−1
(
z −K

(s)
θ

)−1

(Laux + Nres + 1)−1

is analytic in s.
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(ii) Then, for ϕ, ψ ∈ H2, the improper Riemann integral

� ε0
2
� s �→ p(s) :=

∫
�−2i

dz
〈

ϕ
∣∣∣R(s)

θ (z)ψ
〉

eizt

is analytic in s.

Proof.

(i) Note that K
(s)
θ = L0,θ + g [π(v)− π′ (γs

0(v))]θ such that

∂sK
(s)
θ = −g∂sπ

′ (γs
0(v)
)

θ

= −g
[
a∗

gl

(
∂sG ′(s �δβ),θ

)
+ agl

(
∂sG ′(s �δβ),θ

)]
,

in a strong sense on D(Laux + Nres). The derivatives of the coupling functions
are explicitly given by

∂sG ′(s �δβ),θ
(u, Σ, r) = iδβrjθ(u)G ′(s �δβ),θ

(u, Σ, r) + iδβp

[
Lp,G ′(s �δβ),θ

(u, Σ, r)
]

= i
(
δβruG ′(s �δβ) + δβp

[
Lp,G ′(s �δβ)( · )

])
θ
(u, Σ, r),

recall the definition (2.13). We abbreviate

∂sR
(s)
θ := (Laux + Nres + 1)−1

(
z −K

(s)
θ

)−1 [
∂sK

(s)
θ

] (
z −K

(s)
θ

)−1

× (Laux + Nres + 1)−1 .

Let s ∈ � ε0
2

and s′ ∈ � such that s + s′ ∈ � ε0
2
. With the same arguments as

in the proof of Theorem C.5 we obtain that

lim
s′→0

R
(s+s′)
θ −R

(s)
θ

s′
= ∂sR

(s)
θ (C.10)

using the analyticity of s �→ G ′
(s �δβ),θ

in the L2 sense due to the Hypotheses VI-

1.11 and VII-1.12 and the dominated convergence theorem.

(ii) We first prove the convergence of the improper Riemann integral. For z =
x − 2i ∈ � − 2i with |x| ≥ 2 ‖Lp‖ we have by Lemma C.2 the following
estimate on the matrix element,∣∣∣∣〈ϕ

∣∣∣∣ (z −K
(s)
θ

)−n

ψ

〉∣∣∣∣ ≤ 68n ‖ϕ‖ ‖ψ‖
(|x|+ 1)n

,
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for n ∈ �, which in turn shows that the improper Riemann integral

lim
a,b→∞

b∫
−a

dx

〈
ϕ

∣∣∣∣ ((x− 2i)−K
(s)
θ

)−1

ψ

〉
ei(x−2i)t

= lim
a,b→∞

〈
ϕ

∣∣∣∣ ((x− 2i)−K
(s)
θ

)−1

ψ

〉
ei(x−2i)t

it

∣∣∣∣∣
x=b

x=−a

+ lim
a,b→∞

b∫
−a

dx

〈
ϕ

∣∣∣∣ ((x− 2i)−K
(s)
θ

)−2

ψ

〉
ei(x−2i)t

it

=

∞∫
−∞

dx

〈
ϕ

∣∣∣∣ ((x− 2i)−K
(s)
θ

)−2

ψ

〉
ei(x−2i)t

it

converges uniformly in s. We now consider for s, s + s′ ∈ � ε0
2∣∣∣∣∣∣p(s + s′)− p(s)

s′
−
∫

�−2i

dz
〈

ϕ
∣∣∣ ∂R

(s)
θ (z)ψ

〉
eizt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

�−2i

dz

〈
ϕ

∣∣∣∣∣ R(s+s′)
θ (z)−R

(s)
θ (z)

s′
− ∂sR

(s)
θ (z)ψ

〉
eizt

∣∣∣∣∣∣
≤

∥∥∥∥∥(Laux + Nres + 1)−1

[
K

(s+s′)
θ −K

(s)
θ

s′
− ∂sK

(s)
θ

]
(Laux + Nres + 1)−1

∥∥∥∥∥
×
∫

�−2i

dz
∥∥B+

θ,s+s′(z)
∥∥∥∥B−

θ,s(z)
∥∥ ‖ϕ‖ ‖ψ‖

+
∥∥∥(Laux + Nres + 1)−1

[
K

(s+s′)
θ −K

(s)
θ

]∥∥∥
×
∥∥∥∂δK

(s)
θ (Laux + Nres + 1)−1

∥∥∥
×
∫

�−2i

dz
∥∥B+

θ,s+s′(z)
∥∥∥∥B−

θ,s(z)
∥∥∥∥∥∥(z −K

(s)
θ

)−1
∥∥∥∥ ‖ϕ‖ ‖ψ‖

s′→0−−−→ 0,

where we used the relation (C.10) and the strong differentiability of s �→ K
(s)
θ .

Further we used the following uniform norm bound for B±
θ,s ≡ B±

θ,s(z),

∥∥B±
θ,s(z)

∥∥ ≤ [1 +O (g)]

∥∥∥∥(z −K
(s)
θ

)−1
∥∥∥∥ ≤ C

|x|+ 1
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for z = x− 2i ∈ �− 2i and for a positive constant C <∞, see Lemmata C.3,
and the bound on the resolvent provided by Lemma C.1. This implies the
absolute convergence of∫

�−2i

dz
∥∥B+

θ,s+s′(z)
∥∥∥∥B−

θ,s(z)
∥∥ ≤ ∫

�

dx
C2

(|x|+ 1)2
<∞

and ∫
�−2i

dz
∥∥B+

θ,s+s′(z)
∥∥∥∥B−

θ,s(z)
∥∥∥∥∥∥(z −K

(s)
θ

)−1
∥∥∥∥ ≤ ∫

�

dx
C3

(|x|+ 1)3
<∞,

uniformly in s′.

C.3 Deformation Analytic Observables

In Section 2.3.1 we introduced a functional ω which was defined on a subset Aana of
observables, defined in (2.34). The observables collected in Aana are referred to as
deformation analytic observables and are characterized as those elements A ∈ A for
which π(A)Ω̃ ∈ D(Laux + Nres) and the deformation θ �→ (Laux + Nres + 1)[π(A)Ω̃]θ
is analytic in each variable separately, i.e., π(A)Ω̃ ∈ Daux

D−a. It is the aim of this
section to prove that Aana contains a strongly dense ∗-subalgebra A1 in A. To this
end we will proceed as follows. We construct a set Dana which is dense in L2[�3]R

and is mapped under the gluing function g, defined in (1.65), to a dense set Rana in
ran(g) ⊆ L2[Υ]. The span of observables of the type A := Ap⊗W (f1)⊗· · ·⊗W (fR)
for Ap ∈ Ap and (f1, . . . fR) ∈ Dana is then strongly dense in A. In a further step
we show that π(A)Ω̃ = [Ap ⊗ �Hp ] ⊗Wgl(g(f1, . . . , fR)) has the required analytic
properties.

We equip the R-fold cartesian product X := DR
f of the space Df defined in (1.34)

with the norm

‖(f1, . . . , fR)‖X :=

( R∑
r=1

∫
�

d3�k

[
1 +

1

|�k|

]
|fr(�k)|2

)1/2

which makes it to a Banach space.
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Lemma C.7 The gluing function g : X → L2[Υ] is a bounded (continuous) real-
linear map and has a bounded inverse g−1 : ran(g)→ X with norm bounds

‖g(f)‖L2[Υ] ≤ 2 max{1, β−1/2
min } ‖f‖X ,∥∥g−1(F )

∥∥
X ≤
√

2 max{1, β1/2
max} ‖F‖L2[Υ] .

(C.11)

Proof. For f = (f1, . . . , fR) ∈ X we have

‖g(f)‖2L2[Υ] =
R∑

r=1

∞∫
0

du

∫
S2

dΣ
u2

1− e−βru
|fr(uΣ)|2

−
R∑

r=1

0∫
−∞

du

∫
S2

dΣ
u2

1− e−βru
|fr(−uΣ)|2

=
R∑

r=1

∞∫
0

du

∫
S2

dΣ

[
u2

1− e−βru
+

u2

eβru − 1

]
|fr(uΣ)|2

=
R∑

r=1

∫
�3

d3�k
eβr|�k| − e−βr|�k|

(1− e−βr|�k|)(eβr|�k| − 1)
|fr(�k)|2

=
R∑

r=1

∫
�3

d3�k
1 + e−βr|�k|

1− e−βr|�k|
|fr(�k)|2.

For x > 0 we consider the function

x �→ t(x) :=
1 + e−x

1− e−x
=

cosh(x
2
)

sinh(x
2
)
, t′(x) = − 1

2 sinh2(x
2
)

< 0,

which is strictly monotonously decreasing such that

1 + e−x

1− e−x
≥ lim

x̃→∞
t(x̃) = 1.

We also have
1 + e−x

1− e−x
≥ 1

x

x

1− e−x
=

1

x
[e−ξ]−1 ≥ 1

x

for ξ ∈ [0, x], thus
1 + e−x

1− e−x
≥ 1

2

[
1 +

1

x

]
.

Further, for x ≤ ln(2),

1 + e−x

1− e−x
≤ 2

1− e−x
=

2

x

x

1− e−x
=

2eξ

x
≤ 2eln(2)

x
≤ 4

[
1 +

1

x

]
,
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and, for x ≥ ln(2),

1 + e−x

1− e−x
≤ t(ln(2)) =

1 + 1
2

1− 1
2

= 3 ≤ 4

[
1 +

1

x

]
.

Altogether, we have for x > 0,

1

2

[
1 +

1

x

]
≤ 1 + e−x

1− e−x
≤ 4

[
1 +

1

x

]
.

This gives the following bound,

1

2
min{1, β−1

max}
R∑

r=1

∫
�3

d3�k

[
1 +

1

|�k|

]
|fr(�k)|2

≤
R∑

r=1

∫
�3

d3�k
1 + e−βr|�k|

1− e−βr|�k|
|fr(�k)|2

≤ 4 max{1, β−1
min}

R∑
r=1

∫
�3

d3�k

[
1 +

1

|�k|

]
|fr(�k)|2.

Therefore, the gluing function g : X → L2[Υ] is a bounded (continuous) real-linear
map and has a bounded inverse g−1 : ran(g) → X with the norm bounds given in
(C.11).

We are going over to describe the range of g.

Lemma C.8 The range of the gluing function g is given by

ran(g) =
{
F ∈ L2[Υ]

∣∣F (u, Σ, r) = −eβru/2F (−u, Σ, r) a.e.
}

.

Proof. While the inclusion “⊆” comes from the definition of g, we check the
inclusion “⊇”. For F ∈ L2[Υ] we define fr : �3 → �, r = 1, . . . , R, by

fr(�k) :=

√
1− e−βr|�k|

|�k|
F

(
|�k|,

�k

|�k|
, r

)
.
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We show that f := (f1, . . . , fR) ∈ X ,

R∑
r=1

∫
�3

d3�k

[
1 +

1

|�k|

]
|fr(�k)|2

≤
R∑

r=1

∫
�+

u2du

∫
S2

dΣ

[
1 +

1

u

]
1− e−βru

u2
|F (u, Σ, r)|2

≤
R∑

r=1

∫
�+

du

∫
S2

dΣ
u + 1

u
(1− e−βru)|F (u, Σ, r)|2

≤ sup
u∈�+,
r∈�R

1

[
u + 1

u
(1− e−βru)

] ∫
Υ

dy |F (y)|2

= C ‖F‖2L2[Υ]

using that

C := sup
u∈�+,
r∈�R

1

[
u + 1

u
(1− e−βru)

]
<∞

since

lim
u→0

u + 1

u
(1− e−βru) = βr, lim

u→∞

u + 1

u
(1− e−βru) = 1.

If further F (u, Σ, r) = −eβru/2F (−u, Σ, r) a.e. then f is the pre-image of F under
g.

We now consider the subset R0 ⊆ ran(g) given by

R0 :=

{
(u, Σ, r) �→ eβru/4h(u, Σ, r)

∣∣∣∣h ∈ L∞[Υ], ∃M > 0 : 1[|u|≥M ]h = 0 a.e.,

h(u, Σ, r) = −h(−u, Σ, r) a.e.

}
.

Note that R0 is dense in ran(g). For F (u, Σ, r) = eβru/4h(u, Σ, r), F ∈ R0, we define

hε(u, Σ, r) := Gε ∗ h(u, Σ, r) :=

∫
�

duGε(x− u)h(x, Σ, r),

for ε > 0, the convolution of h with the Gaussian

Gε(x) :=
1

ε
√

π
e−

x2

ε2
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w.r.t. the variable u. Note that

hε(u, Σ, r) = −hε(−u, Σ, r)

as one sees as follows,

hε(u, Σ, r) =

∫
�

dxGε(x− u)h(x, Σ, r) =

∫
�

dxGε(x + u)h(−x, Σ, r)

= −
∫
�

dxGε(x− (−u))h(x, Σ, r) = −hε(−u, Σ, r).

Further, we consider the decay of Gε ∗ h(u, Σ, r) as |u| → ∞. Let M > 0 such that
1[|u|≥M ]h = 0 a.e., therefore,

|Gε ∗ h(u, Σ, r)| ≤
M∫

−M

dxGε(x− u)|h(x, Σ, r)| ≤ 2M ‖h‖L∞[Υ] Gε(ζ − u)

for a.e. (Σ, r) ∈ S2 ×�R
1 and a suitable ζ ∈ [−M,M ]. For u ≥M we have

|Gε ∗ h(u, Σ, r)| ≤ 2M ‖h‖L∞[Υ]

exp(− 1
ε2 (u−M)2)

ε
√

π
,

and for u ≤ −M ,

|Gε ∗ h(u, Σ, r)| ≤ 2M ‖h‖L∞[Υ]

exp(− 1
ε2 (u + M)2)

ε
√

π
,

which implies, for |u| ≥M ,

|Gε ∗ h(u, Σ, r)| ≤ 2M ‖h‖L∞[Υ]

exp(− 1
ε2 (u

2 − 2M |u|+ M2))

ε
√

π
, (C.12)

for a.e. (Σ, r) ∈ S2 ×�R
1 .

Lemma C.9 The set

Rana :={
(u, Σ, r) �→ eβru/4Gε ∗ h(u, Σ, r)

∣∣ (u, Σ, r) �→ eβru/4h(u, Σ, r) ∈ R0, ε > 0
}

is a dense subset of ran(g).
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Proof. It follows from the decay properties (C.12) of Gε ∗ h that (u, Σ, r) �→
eβru/4Gε∗h(u, Σ, r) ∈ L2[Υ] for (u, Σ, r) �→ eβru/4h(u, Σ, r) ∈ R0, thus Rana ⊆ ran(g).
In order to proof the density we first note that, for a function h ∈ L2[Υ], holds,

‖Gε ∗ h‖2L2[Υ] =

∫
Υ

d(u, Σ, r)

∣∣∣∣ ∫
�

dxGε(x− u)h(x, Σ, r)

∣∣∣∣2
≤
∫
Υ

d(u, Σ, r)

∫
�

dxGε(x− u)

∫
�

dxGε(x− u)|h(x, Σ, r)|2

= ‖Gε‖L1[�]

∫
Υ

d(x, Σ, r) |h(x, Σ, r)|2
∫
Υ

duGε(x− u)

= ‖Gε‖2L1[�] ‖h‖
2
L2[Υ] = ‖h‖2L2[Υ] .

We now show that Gε ∗ h
ε→0−−→ h in the L2-sense. For a given h and η > 0 we find

a continuous, compactly supported function f ∈ L2[Υ] with ‖h− f‖L2[Υ] < η/2.
Since

‖Gε ∗ h− h‖L2[Υ] ≤ ‖f − h‖L2[Υ] + ‖Gε ∗ f − f‖L2[Υ] + ‖Gε ∗ (f − h)‖L2[Υ]

≤ 2 ‖f − h‖L2[Υ] + ‖Gε ∗ f − f‖L2[Υ]

< η + ‖Gε ∗ f − f‖L2[Υ] ,

the proof of the convergence of Gε ∗ h towards h may be reduced to continuous,
compactly supported functions h,

‖Gε ∗ h− h‖2L2[Υ] =

∫
Υ

d(u, Σ, r)

∣∣∣∣ ∫
�

dxGε(x)[h(u + x, Σ, r)− h(u, Σ, r)]

∣∣∣∣2
≤

∫
Υ

d(u, Σ, r)

∫
�

dxG1(x) |h(u + εx, Σ, r)− h(u, Σ, r)|2

ε→0−−→ 0.

This concludes the proof.

Using that g−1 : ran(g)→ X is continuous, the set

Dana := g−1(Rana)

is dense in X . Since further X is dense in L2[�3]R the set Dana is dense in L2[�3]R,
as well. We build the collection A1 of observables defined by

A1 := span {Ap ⊗W (f1) · · ·W (fR) |Ap ∈ Ap, (f1, . . . , fR) ∈ Dana } . (C.13)

We remark that the selection Dana of coupling functions and the collection A1 of
observables, along with the function g, depend on the reservoir temperatures.
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Proposition C.10 (Density of Analytic Observables) The set A1 is a
strongly dense ∗-algebra in A. Moreover, the vector Ω̃ is cyclic w.r.t. π(A1) and
π′(A1), i.e., the spaces π(A1)Ω̃ and π′(A1)Ω̃ are dense in H2.

Proof. By definition, the collection A1 of observables is a linear space. Further,
due to the CCR (1.35) for Weyl operators, the product W (f)W (g) of two Weyl
operators W (f),W (g) can be expressed as a multiple of a single Weyl operator
W (f + g) obtained by adding the form factors f and g. Since the space Dana is
linear, the set A1 is closed under multiplication. Moreover, the space A1 is closed
under conjugation because W (f)∗ = W (−f). Therefore, the collection A1 forms a
∗-algebra. Since

A = span {Ap ⊗W (f1) · · ·W (fR) |Ap ∈ Ap, (f1, . . . , fR) ∈ X }‖ · ‖B(H)

the algebra A1 is strongly dense in A. This follows from the density of Dana in X
and the fact that W (gn)→ W (g) strongly if gn → g, see [11, Prop. 5.2.4].

We go over to proof the cyclicity of Ω̃ w.r.t. π(A1). By construction we have

π(A1) = span
{
[Ap ⊗ �Hp ]⊗Wgl(g)

∣∣Ap ∈ Ap, g ∈ Rana
}

and

π(A) = span
{
[Ap ⊗ �Hp ]⊗Wgl(g)

∣∣Ap ∈ Ap, g ∈ ran(g)
}‖ · ‖B(H)

and due to the density of Rana in ran(g) we conclude with the same arguments as
above that π(A1) is strongly dense in π(A). This, in turn, implies that π(A1)

′′ =
π(A)′′, i.e., the weak closures coincide. It follows by von Neumann’s density theorem,
[10, Cor. 2.4.15.], that the ∗-algebra π(A1) is strongly dense in its weak closure
π(A)′′.

Now, let ψ ∈ H2 and ε > 0 arbitrary. Since Ω̃ is cyclic w.r.t. π(A)′′ by Lemma B.4

we find an element B ∈ π(A)′′ such that
∥∥∥ψ −BΩ̃

∥∥∥ < ε/2. Since π(A1) is strongly

dense in π(A)′′ there is an observable A ∈ A1 with
∥∥∥π(A)Ω̃−BΩ̃

∥∥∥ < ε/2. It follows

that ∥∥∥ψ − π(A)Ω̃
∥∥∥ ≤ ∥∥∥ψ −BΩ̃

∥∥∥+
∥∥∥BΩ̃− π(A)Ω̃

∥∥∥ < ε.

The cyclicity of Ω̃ w.r.t. π′(A1) is proved in the same way using that

π′(A1) = span
{
[�Hp ⊗ Ap]⊗Wgl(g)

∣∣Ap ∈ Ap, g ∈ g′(Dana)
}

and

π′(A) = span
{
[�Hp ⊗ Ap]⊗Wgl(g)

∣∣Ap ∈ Ap, g ∈ ran(g′)
}‖ · ‖B(H)
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where g′(Dana) is dense in ran(g′), and that Ω̃ is is cyclic w.r.t. π(A)′ by Lemma B.4.

The next task is to study the analytic deformation properties of observables A ∈
A1. Let f ∈ Dana and write the function F := g(f) ∈ Rana as F (u, Σ, r) = eβru/4Gε∗
h(u, Σ, r). Due to regularization of h by convolution with the entire function Gε the
function u �→ F (u, Σ, r) extends to an entire function on � for a.e. (Σ, r) ∈ S2×�R

1 ,
also denoted by z �→ F (z, Σ, r). Therefore, we can build the deformation

[g(f)]θ(u, Σ, r) = Fθ(u, Σ, r) = eδ sgn(u)/2F (jθ(u), Σ, r)

where, recall, jθ(u) = eδ sgn(u)u + τ , for θ = (δ, τ) ∈ �. We show that the function
F ∈ Rana remains an L2-function even after spectral deformation.

Lemma C.11 Let f ∈ Dana and set F := g(f) ∈ Rana. Let θ = (δ, τ) ∈ �2 with
| Im(δ)| < π

4
. Then, the deformed function Fθ stays in L2, i.e.,

Fθ = [g(f)]θ ∈ L2[Υ].

Proof. We write F (u, Σ, r) = eβru/4Gε ∗ h(u, Σ, r) with ε > 0 and (u, Σ, r) �→
eβru/4h(u, Σ, r) ∈ R0. Since

‖Fθ‖2L2[Υ] =

∫
Υ

d(u, Σ, r)
∣∣eδ sgn(u)eβrjθ(u)/2

∣∣ ∣∣∣∣ ∫
�

dxGε(x− jθ(u))h(x, Σ, r)

∣∣∣∣2

we may assume Re(δ) = 0 as one sees by performing a transformation of integration
variables u �→ e−Re(δ) sgn(u)u. We estimate

‖Fθ‖2L2[Υ] ≤
∫
Υ

d(u, Σ, r) eβr Re(jθ(u))/2

[ ∫
�

dx |Gε(x− jθ(u))||h(x, Σ, r)|
]2

.

Using that |ez| = eRe(z) and Re(z2) = Re(z)2 − Im(z)2 and therefore |ez2| =
eRe(z)2−Im(z)2 we get

|Gε(x− jθ(u))| = exp

(
Im(jθ(u))2

ε2

)
Gε(x− Re(jθ(u)))
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and, with this relation and (C.12),

‖Fθ‖2L2[Υ] ≤
∫
Υ

d(u, Σ, r) exp

(
2 Im(jθ(u))2

ε2
+

βr

2
Re(jθ(u))

)
×Gε ∗ |h|(Re(jθ(u)), Σ, r)2

≤
4M2 ‖h‖2L∞[Υ]

ε2π
e−2M2

ε2

×
∫
Υ

d(u, Σ, r) exp

(
− 2

ε2

[
Re(jθ(u))2 − Im(jθ(u))2

]

+
4M

ε2
|Re(jθ(u))|+ βr

2
Re(jθ(u))

)
< ∞ (C.14)

where M > 0 is chosen such that 1[|u|≥M ]h = 0 a.e. Further, we used that

Re(jθ(u)) = cos(δ′)u + Re(τ),

Im(jθ(u)) = sin(δ′)|u|+ Im(τ),

for δ′ := Im(δ), and therefore

Re(jθ(u))2 − Im(jθ(u))2

= cos(2δ′)u2 + 2 cos(δ′) Re(τ)u− 2 sin(δ′) Im(τ)|u|+ Re(τ)2 − Im(τ)2.

The fact that the coefficient cos(2δ′) of the leading order u2 is strictly positive for
|δ′| < π

4
guarantees the finiteness of the integration over u in (C.14).

The next statement characterizes the deformation analytic properties of functions
in Rana.

Lemma C.12 Let f ∈ Dana and set F := g(f) ∈ Rana. The function

θ = (δ, τ) �→ Fθ = [g(f)]θ

is analytic in the L2-sense (in each variable separately) on the domain | Im(δ)| < π
4

and τ ∈ �.

Proof. We write, as usual, F (u, Σ, r) = eβru/4Gε ∗ h(u, Σ, r) with ε > 0 and
(u, Σ, r) �→ eβru/4h(u, Σ, r) ∈ R0. First, we note that it is obvious that θ �→ Fθ(y) is
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pointwise analytic, for a.e. y ∈ Υ, and that (with θ1 = δ, θ2 = τ)

∂θj
Fθ(u, Σ, r) = ∂θj

[
eδ sgn(u)/2eβrjθ(u)/4

∫
�

dx
1

ε
√

π
e−

(x−jθ(u))2

ε2 h(x, Σ, r)

]

= eδ sgn(u)/2+βrjθ(u)/4

∫
�

dx
1

ε
√

π
e−

(x−jθ(u))2

ε2 h(x, Σ, r)

×
{[

βr

4
+

2(x− jθ(u))

ε2

]
∂θj

jθ(u) + δ1,j
sgn(u)

2

}
.

Further, the derivatives of jθ(u) are given as

∂δjθ(u) = sgn(u)eδ sgn(u)u = eδ sgn(u)|u|,
∂τjθ(u) = 1,

such that

∂δFθ(u, Σ, r) = eδ sgn(u)|u| [∂uF ]θ (u, Σ, r) +
sgn(u)

2
Fθ(u, Σ, r),

∂τFθ(u, Σ, r) = [∂uF ]θ (u, Σ, r).

The same arguments as in the proof of Lemma C.11 show that both, ∂δFθ and
∂τFθ, are functions in L2[Υ] for | Im(δ)| < π

4
and | Im(τ)| < 2πβ−1

max. By dominated
convergence theorem we can conclude that

1

|θ′| ‖Fθ+θ′ − Fθ − (∇θFθ) · θ′‖L2[Υ] → 0

as |θ′| → 0.

Remark C.13 The coupling functions f ∈ Dana are tailor-made such that the glued
image θ �→ [g(f)]θ is smoothed out around the poles ±2nπiβ−1

r , n ∈ �, r = 1, . . . , R,
which usually appear under the gluing. Therefore, the function (δ, τ) �→ [g(f)]θ is
entire in τ . The smoothing and therefore also the construction of the set Dana

is dependent on the inverse reservoir temperatures. We refer to the discussion of
Remark 2.7.

We now justify that the elements of A1 are deformation analytic observables.

Theorem C.14 (Deformation Analytic Observables) For any observable
A ∈ A1 the vectors π(A)Ω̃ and π′(A)Ω̃ are in the domain of the operator
(Laux + Nres + 1) and the functions

�
2 � θ = (δ, τ) �→ (Laux + Nres + 1)

[
π(A)Ω̃

]
θ
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and
�

2 � θ = (δ, τ) �→ (Laux + Nres + 1)
[
π′(A)Ω̃

]
θ

have analytic continuations (in each variable separately) to the domain

Dδ0,τ0 =
{
(δ, τ) ∈ �2

∣∣ | Im(δ)| < δ0, |τ | < τ0

}
for π

8
< δ0 < π

4
and τ0 ≤ 2πβ−1

max. In other words,

π(A1)Ω̃ ⊆ Daux
D−a and π′(A1)Ω̃ ⊆ Daux

D−a.

Proof. With the help of Lemma B.1(i) we write the vector Ω̃ as a Dyson series,

Ω̃ = C

∞∑
n=0

(−g)n

∫
0≤sn≤···≤s1≤β/2

ds1 · · · dsn π
(
αisn

0 (v) · · ·αis1
0 (v)

)
Ω0,

where C :=
∥∥∥e−βL(�)/2Ω0

∥∥∥−1

and

π
(
α

isj

0 (v)
)

= a∗
gl

(
G(isj�1)

)
+ agl

(
G(−isj�1)

)
,

where �1 = (1, 1, . . . , 1) ∈ �R+1, recall the notation (2.12) of G(�κ). Now let Ap ∈ Ap

and f = (f1, . . . , fR) ∈ Dana. Set A := Ap ⊗ W (f1) ⊗ · · · ⊗ W (fR) ∈ A1 and
F := g(f) and expand π(A) = πp(Ap)⊗Wgl(g(f)) in a series,

π(A) = πp(Ap)⊗
∞∑

m=0

im

2m/2m!

[
a∗

gl(F ) + agl(F )
]m

,

where the convergence is meant in a strong sense. Therefore we may write

π(A)Ω̃ = Cπp(Ap)⊗
∞∑

m,n=0

im(−g)n

2m/2m!

∫
0≤sn≤···≤s1≤β/2

ds1 · · · dsn

×
[
a∗

gl(F ) + agl(F )
]m n−1∏

j=0

[
a∗

gl

(
G(isn−j�1)

)
+ agl

(
G(−isn−j�1)

)]
Ω0.

We apply spectral deformation to every single addend in the above series. We remark
that θ �→ Fθ = [g(f)]θ is analytic in the L2 sense, by Lemma C.12, and so is θ �→
[G(±isj�1)]θ by Hypothesis VII-1.12 and Remark 1.13. The relative bound of creation

and annihilation operators w.r.t. N
1/2
res as provided in Lemma A.3 guarantees that

θ �→
[
a∗

gl(Fθ) + agl(Fθ)
]m n−1∏

j=0

[
a∗

gl

(
[G(isn−j�1)]θ

)
+ agl

(
[G(−isn−j�1)]θ

)]
Ω0
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inherits the analytic properties from θ �→ Fθ and θ �→ [G(±isj�1)]θ. With the argu-

ments as given in the proof of Lemma B.1(i) we see that the series

[π(A)Ω̃]θ = Cπp(Ap)⊗
∞∑

m,n=0

im(−g)n

2m/2m!

∫
0≤sn≤···≤s1≤β/2

ds1 · · · dsn

×
[
a∗

gl(Fθ) + agl(Fθ)
]m n−1∏

j=0

[
a∗

gl

(
[G(isn−j�1)]θ

)
+ agl

(
[G(−isn−j�1)]θ

)]
Ω0

converges uniformly on each compact subset of Dδ0,τ0 which results in the analyticity
of θ �→ [π(A)Ω̃]θ. To estimate∥∥∥[G(isj�1)]θ

∥∥∥
L2[Υ;B(H2

p)]
≤ C ′e5βmax/2

uniformly in 0 ≤ sj ≤ βmax/2 and θ ∈ Dδ0,τ we employ the same arguing as in the
proof to Lemma A.1.

So far we have proved that π(A)Ω̃ ∈ DD−a. We now consider

(Laux + Nres)[π(A)Ω̃]θ

= Cπp(Ap)⊗
∞∑

m,n=0

im(−g)n

2m/2m!

∫
0≤sn≤···≤s1≤β/2

ds1 · · · dsn

×
{

m−1∑
�=0

[
a∗

gl(Fθ) + agl(Fθ)
]� [

a∗
gl((|u|+ 1)Fθ)− agl((|u|+ 1)Fθ)

]
×
[
a∗

gl(Fθ) + agl(Fθ)
]m−1−�

×
n−1∏
j=0

[
a∗

gl

(
[G(isn−j�1)]θ

)
+ agl

(
[G(−isn−j�1)]θ

)]
+
[
a∗

gl(Fθ) + agl(Fθ)
]m

×
n−1∑
�=0

{ �−1∏
j=0

[
a∗

gl

(
[G(isn−j�1)]θ

)
+ agl

(
[G(−isn−j�1)]θ

)]}
×
[
a∗

gl

(
(|u|+ 1)[G(isn−�

�1)]θ

)
− agl

(
(|u|+ 1)[G(−isn−�

�1)]θ

)]
×
{ n−1∏

j=�+1

[
a∗

gl

(
[G(isn−j�1)]θ

)
+ agl

(
[G(−isn−j�1)]θ

)]}}
Ω0

where we used the pull through formula to commute (Laux + Nres) with the creation
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and annihilation operators,

[Laux + Nres, a
∗
gl(Fθ)] =

∫
Υ

dy Fθ(y)⊗ [Laux + Nres, a
∗
gl(y)]

=

∫
Υ

d(u, Σ, r) Fθ(u, Σ, r)⊗ a∗
gl(y)(|u|+ 1)

= a∗
gl((|u + 1|)Fθ).

As before, we find uniform bounds on

‖(|u|+ 1)Fθ‖L2[Υ] + ‖Fθ‖L2[Υ] ≤ C1,∥∥∥(|u|+ 1)[G(±isj�1)]θ

∥∥∥
L2[Υ]

+
∥∥∥[G(±isj�1)]θ

∥∥∥
L2[Υ]

≤ C2,

which allow an estimate∥∥∥(Laux + Nres)[π(A)Ω̃]θ

∥∥∥
≤ C ‖Ap‖B(Hp)

∞∑
m,n=0

(m + n)
√

(m + n + 1)!

m!n!

(
C1√

2

)m(
gβC2

2

)n

= C ‖Ap‖B(Hp)

∞∑
m,n=0

m + n√
n!

√(
m + n + 1

m + 1

)√
m + 1

m!

(
C1√

2

)m(
gβC2

2

)n

≤ C ‖Ap‖B(Hp)

∞∑
m,n=0

(m + 1)(n + 1)√
n!

2m+n+1

√
m + 1

m!

(
C1√

2

)m(
gβC2

2

)n

= 2C ‖Ap‖B(Hp)

∞∑
m=0

(m + 1)3/2

√
m!

(
√

2 C1)
m

∞∑
n=0

n + 1√
n!

(gβC2)
n

< ∞,

uniformly in θ on compact subsets of Dδ0,τ0 . We conclude that θ �→ (Laux + Nres +
1)[π(A)Ω̃]θ is analytic, again using that θ �→ (|u|+ 1)Fθ and θ �→ (|u|+ 1)[G(±isj�1)]θ

are analytic functions in the L2-sense.

Since an arbitrary element from A1 is a (finite) linear combination of elements
of the type Ap ⊗W (f1) ⊗ · · · ⊗W (fR) with (f1, . . . , fR) ∈ Dana we conclude that
π(A1)Ω̃ ⊆ Daux

D−a. The proof of π′(A1)Ω̃ ⊆ Daux
D−a uses the same arguments.

Corollary C.15 The set Daux
D−a is dense in H2.

Proof. By the Theorem C.14 we know that π(A1)Ω̃ ⊆ Daux
D−a while Proposi-

tion C.10 guarantees that π(A1)Ω̃ is dense in H2.
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Proposition C.16 (Zero Eigenvector of Kθ) For any θ ∈ Dδ0,τ0, the vector Ω̃θ

is in the kernel of Kθ, i.e.,
KθΩ̃θ = 0.

Proof. The previous Theorem C.14 implies that Ω̃ ∈ D(Laux + Nres) and
therefore Ω̃ ∈ D(Kθ). Further, we know that the map

θ �→ (Laux + Nres + 1)Ω̃θ

is analytic, separately in the parameters δ and τ . So is the map

θ �→ Kθ(Laux + Nres + 1)−1

by Proposition C.4. Therefore the function

f : Dδ0,τ0 → H2, f(θ) := KθΩ̃θ

is analytic. For arbitrary τ ∈ � holds

f(0, τ) = Dt(τ)KDt(−τ)Dt(τ)Ω̃ = Dt(τ)KΩ̃ = 0,

since Ω̃ ∈ ker(K) by construction. Hence, by analyticity, f(0, τ) = 0 for all (0, τ) ∈
Dδ0,τ0 . Let δ ∈ � with (δ, τ) ∈ Dδ0,τ0 , then

f(δ, τ) = Dd(δ)K(0,τ)Dd(−δ)Dd(δ)Ω̃(0,τ) = Dd(δ)f(0, τ) = 0.

Finally, by analyticity, we conclude that KθΩ̃θ = f(θ) = 0 for all θ ∈ Dδ0,τ0 .



D Manipulations on Wick Monomials

D.1 Wick Ordering

The aim of the present chapter is to provide a technical tool – known as the Wick
ordering procedure – which allows to rewrite arbitrary products of creation and
annihilation operators and free operators in a standard form by commuting creation
operators to the very left and annihilation operators to the right side of a product.
The results presented here are taken from [6, App. A] and are adapted to our
situation. In what follows we consider a Hilbert space

H̃ := H<∞ ⊗F(L2[Υ]),

where H<∞ is an arbitrary finite dimensional Hilbert space. In the applications in
the main text we choose either H<∞ = H2

p = �
N2

or H<∞ = ker(Lp) ∼= �
N or

H<∞ = ker(Γeq) = �Ωp. The space F(L2[Υ]) is the bosonic Fock space over L2[Υ]
where

(Υ, dy) = (�× S2 ×�R
1 , d(u, Σ, r))

as introduced in (1.63) on which the creation and annihilation operators a∗
gl(y) and

agl(y), resp., act. We recall the notation

Λ[θ] =
(
cos(δ′)Lres,M[θ]

)
(D.1)

≡ dΓgl(λθ) ≡
∫
Υ

d(u, Σ, r) a∗
gl(u, Σ, r)λθ(u)agl(u, Σ, r)

where
λθ(u) = (cos(δ′)u,mθ(u)) = (cos(δ′)u, sin(δ′)|u|+ τ ′)

for
θ = (iδ′, iτ ′) ∈ (i�+)2,

the definition of mθ was given in (3.7, A.10).

We first introduce some notation. Let n ∈ � and fix a multi index ς =
(ς1, . . . , ςn) ∈ {±}n. We denote a+

gl(yj) := a∗
gl(yj) and a−

gl(yj) := agl(yj) for a set
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of points y1, . . . , yn ∈ Υ. Further we introduce the abbreviation �n
1 := {1, . . . , n}

and for a subset � ⊆ �
n
1 we define �± := {j ∈ � | ςj = ±}. The Wick ordered

product •
• · •• of creation and annihilation operators a

ςj
gl(yj), j ∈ �, is defined as

•
•

n∏
j=1,
j∈�

a
ςj
gl(yj)

•
• :=

∏
j∈�+

a+
gl(yj)

∏
j∈�−

a−
gl(yj).

Here and henceforth, we make the convention
∏n

j=1 Aj := A1 · · ·An about the order
of products of operators Aj. The expectation value 〈A〉Ωvac

∈ B(H<∞) of an operator

on H̃ in the vacuum state Ωvac is defined as

〈A〉Ωvac
:=

dim(H<∞)∑
j,k=1

|ψj〉 〈ψj ⊗ Ωvac |Aψk ⊗ Ωvac 〉H̃ 〈ψk| , (D.2)

where {ψj}j=1,...,dim(H<∞) is an orthonormal basis of H<∞.

The Wick’s theorem allows to convert arbitrary products of creation and annihi-
lation operators into sums of Wick ordered products, it reads as follows,

Lemma D.1 (Wick’s Theorem) For n ∈ � choose y1, . . . , yn ∈ Υ and
(ς1, . . . , ςn) ∈ {±}n. It holds

n∏
j=1

a
ςj
gl(yj) =

∑
�⊆�n

1

〈
n∏

j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

•
•
∏
j∈�

a
ςj
gl(yj)

•
• (D.3)

in the sense of operator valued distributions.

Proof. We prove the assertion inductively over n. The statement is obviously
true for n = 1. Now assume that (D.3) holds for all products with n ≥ 1 factors.
We consider the l.h.s. of (D.3) with n + 1 factors. We first assume that ςn+1 = −,
then 〈

n+1∏
j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

= 0
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for any subset � ⊆ �n+1
1 with n + 1 �∈ �. The induction hypothesis yields

n+1∏
j=1

a
ςj
gl(yj) =

∑
�⊆�n

1

〈
n∏

j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

•
•
∏
j∈�

a
ςj
gl(yj)

•
•a

−
gl(yn+1)

=
∑
�⊆�n

1

〈
n∏

j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

•
•
∏
j∈�

a
ςj
gl(yj)a

−
gl(yn+1)

•
•

=
∑

�⊆�n+1
1

〈
n+1∏
j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

•
•
∏
j∈�

a
ςj
gl(yj)

•
•.

We go over to consider the case ςn+1 = +. We remark that the CCR can be
represented as

[aςk
gl (yk), a

+
gl(yn+1)] =

〈
aςk

gl (yk)a
+
gl(yn+1)

〉
Ωvac

and therefore, for � ⊆ �n
1 ,〈

n∏
j=1,
j �∈�

a
ςj
gl(yj)a

+
gl(yn+1)

〉
Ωvac

=
∑
k �∈�

〈
aςk

gl (yk)a
+
gl(yn+1)

〉
Ωvac

〈
n∏

j=1,
j �∈�∪{k}

a
ςj
gl(yj)

〉
Ωvac

.

Using the induction hypothesis we get

n+1∏
j=1

a
ςj
gl(yj) = a+

gl(yn+1)
n∏

j=1

a
ςj
gl(yj) +

n∑
k=1

〈
aςk

gl (yk)a
+
gl(yn+1)

〉
Ωvac

n∏
j=1,
j �=k

a
ςj
gl(yj)

=
∑
�⊆�n

1

〈
n∏

j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

•
•a

+
gl(yn+1)

∏
j∈�

a
ςj
gl(yj)

•
•

+
n∑

k=1

∑
�⊆�n

1 \{k}

〈
aςk

gl (yk)a
+
gl(yn+1)

〉
Ωvac

〈
n∏

j=1,
j �∈�∪{k}

a
ςj
gl(yj)

〉
Ωvac

× •
•
∏
j∈�

a
ςj
gl(yj)

•
•

=
∑
�⊆�n

1

〈
n∏

j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

•
•a

+
gl(yn+1)

∏
j∈�

a
ςj
gl(yj)

•
•

+
∑
�⊆�n

1

〈
n∏

j=1,
j �∈�

a
ςj
gl(yj)a

+
gl(yn+1)

〉
Ωvac

•
•
∏
j∈�

a
ςj
gl(yj)

•
•
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=
∑

�⊆�n+1
1

〈
n+1∏
j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

•
•
∏
j∈�

a
ςj
gl(yj)

•
•.

Lemma D.2 For n ∈ � we choose points yj = (uj, Σj, rj) ∈ Υ and measur-
able functions Fj : � × [0,∞) → B(H<∞), j = 1, . . . , n. Fix a multi index
ς = (ς1, . . . , ςn) ∈ {±}n. Then the following equality holds,

n∏
j=1

[
a

ςj
gl(yj)Fj(Λ[θ])

]
=
∑
�⊆�n

1

[ ∏
j∈�+

a+
gl(yj)

]

×
〈

n∏
j=1

[
a

ςj
gl(yj)

]1�n
1 \�(j)

Fj

(
Λ[θ] + λ +

j∑
i=1,

i∈�−

λθ(ui) +
n∑

i=j+1,
i∈�+

λθ(ui)

)〉
Ωvac

∣∣∣∣∣
λ=Λ[θ]

×
[ ∏

j∈�−
a−

gl(yj)

]
(D.4)

in the sense of operator valued distribution. Hereby, Fj(Λ[θ]) is defined via functional
calculus using that the components of Λ[θ] are self-adjoint operators commuting with
each other. The indicator function 1�(j) for a subset � ⊆ �n

1 is defined to be one

if j ∈ � and to be zero otherwise such that for an operator A holds [A]1�(j) = A for

j ∈ � and [A]1�(j) = � for j �∈ �.

Proof. With a twofold application of the pull through formula (1.67) and of
Lemma D.1 we obtain

n∏
j=1

[
a

ςj
gl(yj)Fj(Λ[θ])

]
=

n∏
j=1

a
ςj
gl(yj)

n∏
j=1

Fj

(
Λ[θ] +

n∑
i=j+1

ςiλθ(ui)

)

=
∑
�⊆�n

1

〈
n∏

j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac

•
•

n∏
j=1,
j∈�

a
ςj
gl(yj)

•
•

n∏
j=1

Fj

(
Λ[θ] +

n∑
i=j+1

ςiλθ(ui)

)

=
∑
�⊆�n

1

∏
j∈�+

a+
gl(yj)

〈
n∏

j=1,
j �∈�

a
ςj
gl(yj)

〉
Ωvac
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×
n∏

j=1

Fj

(
Λ[θ] +

n∑
i=j+1

ςiλθ(ui) +
∑
i∈�−

λθ(ui)

) ∏
j∈�−

a−
gl(yj).

We now use that for a measurable function F : � × [0,∞) → B(H<∞) and any
operator A on H̃ the relation

〈A〉Ωvac
F (0, 0) =

〈
AF (Λ[θ])

〉
Ωvac

and therefore

〈A〉Ωvac
F (Λ[θ]) =

〈
AF (Λ[θ] + λ)

〉
Ωvac

∣∣
λ=Λ[θ]

holds. This and another application of the pull through formula leads to

n∏
j=1

[
a

ςj
gl(yj)Fj(Λ[θ])

]
=
∑
�⊆�n

1

∏
j∈�+

a+
gl(yj)

×
〈

n∏
j=1,
j �∈�

a
ςj
gl(yj)

n∏
j=1

Fj

(
Λ[θ] + λ +

n∑
i=j+1

ςiλθ(ui) +
∑
i∈�−

λθ(ui)

)〉
Ωvac

∣∣∣∣∣
λ=Λ[θ]

×
∏

j∈�−
a−

gl(yj)

=
∑
�⊆�n

1

∏
j∈�+

a+
gl(yj)

×
〈

n∏
j=1

[
a

ςj
gl(yj)

]1�n
1 \�(j)

Fj

(
Λ[θ] + λ +

n∑
i=j+1,

i∈�

ςiλθ(ui) +
∑
i∈�−

λθ(ui)

)〉
Ωvac

∣∣∣∣∣
λ=Λ[θ]

×
∏

j∈�−
a−

gl(yj).

The assertion follows by the next consideration

n∑
i=j+1,

i∈�

ςiλθ(ui) +
∑
i∈�−

λθ(ui) =
n∑

i=j+1,
i∈�+

λθ(ui)−
n∑

i=j+1,
i∈�−

λθ(ui) +
∑
i∈�−

λθ(ui)

=
n∑

i=j+1,
i∈�+

λθ(ui) +

j∑
i=1,

i∈�−

λθ(ui).
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The previous result allows us to “normal order” products of Wick monomials.
Before we state the corresponding theorem we first provide some notational tools.
Let L, S,R ∈ � and let (r1, . . . , rL), (s1, . . . , sL) ∈ �L be vectors of natural numbers
whose components fulfil r1+· · ·+rL = R and s1+· · ·+sL = S. For vectors y(R) ∈ ΥR

and ỹ(S) ∈ ΥS we write

Y (R,S) =
(
y(R), ỹ(S)

)
∈ ΥR+S,

y(R) =
(
y

(r1)
1 , . . . , y

(rL)
L

)
∈ ΥR, y

(r�)
� =

(
y

(r�)
�,1 , . . . , y

(r�)
�,r�

)
∈ Υr� ,

ỹ(S) =
(
ỹ

(s1)
1 , . . . , ỹ

(sL)
L

)
∈ ΥS, ỹ

(s�)
� =

(
ỹ

(s�)
�,1 , . . . , ỹ

(s�)
�,s�

)
∈ Υs�

and
y

(r�)
�,j =

(
u

(r�)
�,j , Σ

(r�)
�,j , r

(r�)
�,j

)
, ỹ

(r�)
�,j =

(
ũ

(s�)
�,j , Σ̃

(s�)
�,j , r̃

(s�)
�,j

)
.

We further abbreviate

dY (R,S) = dy(R)dỹ(S),

dy(R) =
L∏

�=1

dy
(r�)
� , dy

(r�)
� =

r�∏
j=1

dy
(r�)
�,j ,

dỹ(S) =
L∏

�=1

dỹ
(s�)
� , dỹ

(s�)
� =

s�∏
j=1

dỹ
(s�)
�,j

and

a∗
gl

(
y(R)
)

=
L∏

�=1

a∗
gl

(
y

(r�)
�

)
, a∗

gl

(
y

(r�)
�

)
=

r�∏
j=1

a∗
gl

(
y

(r�)
�,j

)
,

agl

(
ỹ(R)
)

=
L∏

�=1

agl

(
ỹ

(s�)
�

)
, agl

(
ỹ

(s�)
�

)
=

s�∏
j=1

agl

(
ỹ

(s�)
�,j

)
and

mθ

(
Y (R,S)

)
= mθ

(
y(R)
)
mθ

(
ỹ(S)
)
,

mθ

(
y(R)
)

=
L∏

�=1

mθ

(
y

(r�)
�

)
, mθ

(
y

(r�)
�

)
=

r�∏
j=1

mθ

(
u

(r�)
�,j

)
,

mθ

(
ỹ(S)
)

=
L∏

�=1

mθ

(
ỹ

(s�)
�

)
, mθ

(
ỹ

(s�)
�

)
=

s�∏
j=1

mθ

(
ũ

(s�)
�,j

)
With these notations at hand we define the Wick monomials. To this end we choose
a sequence of measurable form factors

wR,S : �× [0,∞)×ΥR+S → B(H<∞), R + S ≥ 0,
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such that for almost every λ ∈ � × [0,∞) the functions (y1, . . . , yR+S) �→
wR,S[λ; y1, . . . , yR+S] are square integrable over ΥR+S. The map W[θ] assigns an

operator on H̃, the series of Wick monomials , to the sequence of form factors by

W[θ][(wR,S)R+S≥0] :=
∑

R+S≥0

W[θ][wR,S]

with
W[θ][w0,0] := w0,0

[
Λ[θ]

]
(D.5)

and

W[θ][wR,S] :=

∫
ΥR+S

dY (R,S)

mθ (Y (R,S))
1/2

a∗
gl

(
y(R)
)
wR,S

[
Λ[θ]; Y

(R,S)
]
agl

(
ỹ(S)
)

(D.6)

for R + S ≥ 1. Finally, we introduce partially integrated Wick monomials

W(p,q)
[θ] [wR+p,S+q] : �× [0,∞)×Υp ×Υq → {operators on H̃} (D.7)

defined by

W(p,q)
[θ] [wR+p,S+q]

(
λ; y(p)

∗ , ỹ(q)
∗
)

:=

∫
ΥR+S

dY (R,S)

mθ(Y (R,S))1/2

× a∗
gl

(
y(R)
)
wR+p,S+q

[
Λ[θ] + λ; y(R), y(p)

∗ , ỹ(S), ỹ(q)
∗
]
agl

(
ỹ(S)
)

for y
(p)
∗ ∈ Υp and ỹ

(q)
∗ ∈ Υq.

The above operators are well defined and even bounded on suitable subspaces
H<∞⊗P[M[θ]≤1]F(L2[Υ]) of H̃, the corresponding statement is made in Section 4.1,

Proposition 4.1. In this appendix we are rather interested in algebraic properties
and manipulations of these operators. Thus, the next theorem has to be understood
as an algebraic statement – having in mind that it may be read as a relation for
bounded operators when it finds application in Chapter 4.

Theorem D.3 (Ordering of Wick Monomials) For L ∈ � we choose mea-
surable functions F0, F1, . . . , FL : � × [0,∞) → B(H<∞). Further, let wR,S :
� × [0,∞) × ΥR × ΥS → B(H<∞), R + S ≥ 0, be a sequence of measurable
form factors such that for almost every λ ∈ � × [0,∞) the functions wR,S[λ; · ]
are square integrable over ΥR+S. Further, we assume that the functions y(R) �→
wR,S[λ; y(R), ỹ(S)] and ỹ(S) �→ wR,S[λ; y(R), ỹ(S)] are totally symmetric under permu-

tation of the variables y(R) =
(
y

(R1)
1 , . . . , y

(RL)
L

)
and ỹ(S) =

(
ỹ

(S1)
1 , . . . , ỹ

(SL)
L

)
, resp.
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Set W := W[θ][(wR,S)R+S≥m] for m ∈ �0 and identify F� ≡ F�(Λ[θ]). Then, the al-
ternating product F0WF1W · · ·WFL−1WFL can be expressed as a series of ordered
Wick monomials,

F0WF1W · · ·WFL−1WFL =
∑

R+S≥0

W[θ][ŵR,S],

where the integral kernels ŵR,S are the symmetrization

ŵR,S[λ; y1, . . . yR, ỹ1, . . . , ỹS] (D.8)

:=
∑

π∈SR,
η∈SS

1

R!S!
w̃R,S[λ; yπ1, . . . , yπR, ỹη1, . . . , ỹηS]

of the functions w̃R,S given by

w̃R,S[λ; Y (R,S)]

:=
∑

r1+···+rL=R,
s1+···+sL=S

∑
p1,q1,...,pL,qL:

r�+p�+s�+q�≥m

[
L∏

�=1

(
r� + p�

r�

)(
s� + q�

s�

)]

×F0

(
λ + η

(θ)
0

(
Y (R,S)

))
×
〈
W(r1,s1)

[θ] [wr1+p1,s1+q1 ]
(
λ + η

(θ)
1

(
Y (R,S)

)
; y

(r1)
1 , ỹ

(s1)
1

)
× F1

(
Λ[θ] + λ + η

(θ)
1

(
Y (R,S)

)
+

s1∑
j=1

λθ

(
ũ

(s1)
1,j

))
· · ·

× FL−1

(
Λ[θ] + λ + η

(θ)
L−1

(
Y (R,S)

)
+

sL−1∑
j=1

λθ

(
ũ

(sL−1)
L−1,j

))

×W(rL,sL)
[θ] [wrL+pL,sL+qL

]
(
λ + η

(θ)
L

(
Y (R,S)

)
; y

(rL)
L , ỹ

(sL)
L

)〉
Ωvac

×FL

(
λ + η

(θ)
L

(
Y (R,S)

)
+

sL∑
j=1

λθ(ũL,j)

)
, (D.9)

where

η
(θ)
�

(
Y (R,S)

)
:=

�−1∑
j=1

sj∑
i=1

λθ

(
ũ

(sj)
j,i

)
+

L∑
j=�+1

rj∑
i=1

λθ

(
u

(rj)
j,i

)
. (D.10)
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Proof. We introduce the abbreviation WR,S :=W[θ][wR,S] to write

F0WF1W · · ·WFL−1WFL =
∑

R1+S1≥m,
...

RL+SL≥m

F0WR1,S1F1WR2,S2 · · ·WRL,SL
FL.

We compute each addend of this series separately. Let R =
∑L

�=1 R� and S =∑L
�=1 S�. Then

F0WR1,S1F1WR2,S2 · · ·WRL,SL
FL

=

∫
ΥR+S

dY (R,S)

mθ(Y (R,S))1/2

× F0[Λ[θ]]a
∗
gl

(
y

(R1)
1

)
wR1,S1

[
Λ[θ]; y

(R1)
1 , ỹ

(S1)
1

]
agl

(
ỹ

(S1)
1

)
F1[Λ[θ]]

· · ·
× FL−1[Λ[θ]]a

∗
gl

(
y

(RL)
L

)
wRL,SL

[
Λ[θ]; y

(RL)
L , ỹ

(SL)
L

]
agl

(
ỹ

(SL)
L

)
FL[Λ[θ]].

We now apply Lemma D.2 which allows to write the above expression as a sum,
indexed by subsets � of �R+S

1 = {1, . . . , R + S}, over Wick ordered products. To
handle combinatorial difficulties we go over to represent the sets � and �R+S

1 as

�
R+S
1 ≡

[
L⋃

�=1

NR,�

]
∪
[

L⋃
�=1

ÑS,�

]
,

NR,� = {(R, �, j) | j = 1, . . . , RL } ,

ÑS,� =
{
(S, �, j)˜

∣∣ j = 1, . . . , SL

}
,

� ≡
[

L⋃
�=1

�R,�

]
∪
[

L⋃
�=1

�̃S,�

]
,

�R,� = � ∩NR,�,

�̃S,� = � ∩ ÑS,�.

Using this representation the summation over subsets of �R+S
1 is replaced by∑

�⊆�R+S
1

≡
∑

�R,1⊆NR,1

∑
�̃S,1⊆ÑS,1

· · ·
∑

�R,L⊆NR,L

∑
�̃S,L⊆ÑS,L

. (D.11)

Each subset �R,� specifies those r� := #DR,� ≤ R� variables {y�,j | (R, �, j) ∈ �R,� }
that are Wick ordered outside the vacuum expectation value (appearing in the
creation operators to the left), and those R� − r� = #(NR,� \ �R,�) variables
{y�,j | (R, �, j) �∈ �R,� } that appear in the vacuum expectation value in (D.4). The
subset �̃S,� correspondingly specifies the variables of the annihilation operators that
are Wick ordered outside the vacuum expectation value. We consider a special term
contributing to the sum,

�R,� = {(R, �, j) | j = 1, . . . , r� } ,

NR,� \�R,� = {(R, �, j) | j = r� + 1, . . . , R� } ,
�̃S,� =

{
(S, �, j)˜

∣∣ j = 1, . . . , s�

}
,

ÑS,� \ �̃S,� =
{
(S, �, j)˜

∣∣ j = s� + 1, . . . , S�

}
.
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According to Lemma D.2 the contribution generated by this term is given by

L∏
�=1

⎡⎣ r�∏
j=1

∫
Υ

dy�,j

mθ(u�,j)1/2

s�∏
j=1

∫
Υ

dỹ�,j

mθ(ũ�,j)1/2

⎤⎦[ L∏
�=1

r�∏
j=1

a∗
gl(y�,j)

]

×
{

F0

(
λ +

L∑
�=1

r�∑
j=1

λθ(u�,j)

)

×
〈[

R1∏
j=r1+1

∫
Υ

dy1,j

mθ(u1,j)1/2

S1∏
j=s1+1

∫
Υ

dỹ1,j

mθ(ũ1,j)1/2

][
R1∏

j=r1+1

a∗
gl(y1,j)

]

× wR1,S1

(
Λ[θ] + λ + η

(θ)
1 ; y

(R1)
1 , ỹ

(S1)
1

)[ S1∏
j=s1+1

agl(ỹ1,j)

]

× F1

(
Λ[θ] + λ + η

(θ)
1 +

S1∑
j=1

λθ(ũ1,j)

)
· · ·

× FL−1

(
Λ[θ] + λ + η

(θ)
L−1 +

SL−1∑
j=1

λθ(ũL−1,j)

)

×
[

RL∏
j=rL+1

∫
Υ

dyL,j

mθ(uL,j)1/2

SL∏
j=sL+1

∫
Υ

dỹL,j

mθ(ũL,j)1/2

][
RL∏

j=rL+1

a∗
gl(yL,j)

]

× wRL,SL

(
Λ[θ] + λ + η

(θ)
L ; y

(RL)
L , ỹ

(SL)
L

)[ SL∏
j=sL+1

agl(ỹ1,j)

]〉
Ωvac}∣∣∣∣∣

λ=Λ[θ]

[
L∏

�=1

s�∏
j=1

agl(ỹ�,j)

]

=
L∏

�=1

⎡⎣ r�∏
j=1

∫
Υ

dy�,j

mθ(u�,j)1/2

s�∏
j=1

∫
Υ

dỹ�,j

mθ(ũ�,j)1/2

⎤⎦[ L∏
�=1

r�∏
j=1

a∗
gl(y�,j)

]

×
{

F0

(
λ + η

(θ)
0

)
×
〈
W(r1,s1)

[θ] [wR1,S1 ]
(
λ + η

(θ)
1 ; y

(r1)
1,∗ , ỹ

(s1)
1,∗

)
× F1

(
Λ[θ] + λ + η

(θ)
1 +

S1∑
j=1

λθ(ũ1,j)

)
· · ·
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× FL−1

(
Λ[θ] + λ + η

(θ)
L−1 +

SL−1∑
j=1

λθ(ũL−1,j)

)

×W(rL,sL)
[θ] [wRL,SL

]
(
λ + η

(θ)
1 ; y

(rL)
L,∗ , ỹ

(sL)
L,∗

)〉
Ωvac

}∣∣∣∣∣
λ=Λ[θ]

×
[

L∏
�=1

s�∏
j=1

agl(ỹ�,j)

]
=: A

[
(R�, r�; S�, s�)

L
�=1

]
,

where

η
(θ)
� :=

�−1∑
j=1

sj∑
i=1

λθ (ũj,i) +
L∑

j=�+1

rj∑
i=1

λθ (uj,i)

and
yr�

�,∗ := (y�,1, . . . , y�,r�
) , ỹs�

�,∗ := (ỹ�,1, . . . , ỹ�,s�
) .

Since the integral kernels wR�,S�

(
λ; y

(R�)
� , ỹ

(S�)
�

)
are totally symmetric in the variables

y
(R�)
� and ỹ

(S�)
� , resp., the contribution of subsets �R,�, �̃S,�, � = 1, . . . , L, to the sum

(D.11) only depends on r� = #�R,� and s� = #�̃S,�. Counting the subsets leads to
the following expression,

F0WR1,S1F1WR2,S2 · · ·WRL,SL
FL

=

R1∑
r1=0

· · ·
RL∑

rL=0

S1∑
s1=0

· · ·
SL∑

sL=0

[
L∏

�=1

(
R�

r�

)(
S�

s�

)]
A
[
(R�, r�; S�, s�)

L
�=1

]
and therefore

F0WF1W · · ·WFL−1WFL

=
∑

R1+S1≥m,
...

RL+SL≥m

R1∑
r1=0

· · ·
RL∑

rL=0

S1∑
s1=0

· · ·
SL∑

sL=0

[
L∏

�=1

(
R�

r�

)(
S�

s�

)]
A
[
(R�, r�; S�, s�)

L
�=1

]
.

Embracing all terms A
[
(R�, r�; S�, s�)

L
�=1

]
in the above sum which feature the same

numbers of r1 + · · · + rL free creation and s1 + · · · + sL free annihilation operators
which are not contracted in the vacuum expectation value and sorting the sum by
those numbers we obtain

F0WF1W · · ·WFL−1WFL =
∑

R+S≥0

W[θ][w̃R,S],

where the functions w̃R,S are given in (D.9). Permuting the integration variables in
the definition (D.6) of W[θ] we see that W[θ][w̃R,S] =W[θ][ŵR,S] which concludes the
proof.
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D.2 Rescaling

In this section we introduce a map which allows rescaling of the operators Λ[θ]. For
a fixed ρ > 0 we define the unitary rescaling operator Sρ on F(L2[Υ]) by

Sρ

[
a∗

gl(fn) · · · a∗
gl(f1)Ω0

]
:= a∗

gl(Sρfn) · · · a∗
gl(Sρf1)Ω0 (D.12)

where
[Sρf ](u, Σ, r) := ρ1/2f(ρu, Σ, r)

for f ∈ L2[Υ]. It is a simple consequence that

Sρa
#
gl(u, Σ, r)S−1

ρ = ρ−1/2a#
gl(ρ

−1u, Σ, r)

and therefore
SρdΓgl[f ]S−1

ρ = ρ−1/2dΓgl[Sρf ]

for any f ∈ F(L2[Υ]). We define a rescaling map Sρ acting on operators, given by

Sρ(A) := ρ−1SρAS−1
ρ . (D.13)

The free operators transform under Sρ like

Sρ(Nres) = ρ−1Nres,

Sρ(Lres) = Lres,

Sρ(Laux) = Laux,

Sρ(M[(iδ′,iτ ′)]) =
(
cos(δ′)Laux + ρ−1τ ′Nres

)
= M[(iδ′,iρ−1τ ′)].

(D.14)

We aim to apply the rescaling to Wick monomials gained by a sequence
(wR,S)R+S≥0 of form factors.

Proposition D.4 (Rescaling of Form Factors) Let (wR,S)R+S≥0 be a sequence
of form factors obeying the conditions of Theorem D.3 and θ = (iδ′, iτ ′) ∈ (i�+)2.
The corresponding series of Wick monomials W[θ] [(wR,S)R+S≥0] transforms under
rescaling as

Sρ

(
W[θ] [(wR,S)R+S≥0]

)
=W[θ1]

[
(sρ(wR,S))R+S≥0

]
,

where the map sρ acts on a form factor wR,S as

[sρ(wR,S)](λ; Y (R,S)) := ρ−1wR,S(ρλ; ρY (R,S)) (D.15)

and θ1 := (iδ′, iρ−1τ ′).
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Proof. We obtain via functional calculus

Sρ

(
W[θ][wR,S]

)
= ρ−1−R+S

2

∫
ΥR+S

dY (R,S)

mθ (Y (R,S))
1/2

a∗
gl

(
ρ−1y(R)

)
× SρwR,S

[
cos(δ′)Lres,M[θ]; Y

(R,S)
]
S−1

ρ agl

(
ρ−1ỹ(S)

)
= ρ−1−R+S

2

∫
ΥR+S

dY (R,S)

mθ (Y (R,S))
1/2

a∗
gl

(
ρ−1y(R)

)
× wR,S

[
ρ cos(δ′)Lres, ρM[θ1]; Y

(R,S)
]
agl

(
ρ−1ỹ(S)

)
= ρ−1+ R+S

2

∫
ΥR+S

dY (R,S)

mθ (ρY (R,S))
1/2

a∗
gl

(
y(R)
)
wR,S

[
ρΛ[θ1]; ρY (R,S)

]
agl

(
ỹ(S)
)

= ρ−1

∫
ΥR+S

dY (R,S)

mθ1 (Y (R,S))
1/2

a∗
gl

(
y(R)
)
wR,S

[
ρΛ[θ1]; ρY (R,S)

]
agl

(
ỹ(S)
)

= W[θ1] [sρ(wR,S)]

using that mθ

(
ρY (R,S)

)
= ρR+Smθ1

(
Y (R,S)

)
.

We remark that the rescaling of the bosonic variables effects the deformation
parameter θ in the assignment W[θ][wR,S]. The translation parameter τ appearing
in M[θ], describing the separation of the eigenvalues from the continuous spectrum,
effectively increases by a factor ρ−1, it is τ ′ �→ ρ−1τ ′.



E The Smooth Feshbach Map

In this appendix we review the technique of the Smooth Feshbach Map as introduced
in [4]. Given a separable Hilbert space H and a closed operator H on H, the smooth
Feshbach map allows to transfer the analysis of the nature of the spectrum of H near
zero to the study of the spectrum of an operator which lives on a proper subspace.

Let Ξ = Ξ∗ ∈ B(H) be a self-adjoint operator onH which is bounded as 0 ≤ Ξ ≤ 1.
The operator Ξ may be realized as an orthogonal projection operator or as a smooth
cutoff function of a self-adjoint operator. The latter is chosen as a realization in the
applications in the Chapters 3 and 4 which explains the notion of smooth Feshbach
map. We define via functional calculus the complementary operator

Ξ :=
√
�H − Ξ2 .

For two closed operators H,T defined on the same domain in H representing a
perturbed operator H = T + W and its unperturbed version T we define

HΞ := T + ΞWΞ, HΞ := T + ΞWΞ

where we further assume that Ξ and Ξ leave the domain of T invariant and commute
with T . For our purposes we require that T �ran(Ξ) is a bounded operator on the
range of Ξ. We call such a pair (H,T ) a Feshbach pair associated with Ξ, or simply
a Ξ-Feshbach pair , if the operators HΞ and H∗

Ξ
are bounded invertible on the range

of Ξ and further the operators

|HΞ|
−1/2 ΞWΞ, ΞWΞ |HΞ|

−1/2

extend to bounded operators on H where |HΞ| :=
√

H∗
Ξ
HΞ . For a Ξ-Feshbach pair

(T,W ) we can define the Feshbach operator associated to Ξ, H, T by

FΞ(H,T ) := T + Ξ(H − T )Ξ− Ξ(H − T )ΞH−1

Ξ
Ξ(H − T )Ξ.

The smooth Feshbach map

FΞ : {(H,T ) | (H,T ) is a Ξ-Feshbach pair } → B(ran(Ξ))

assigns a bounded operator on ran(Ξ) to a Ξ-Feshbach pair (H,T ).

The benefit of the smooth Feshbach map is its isospectral property.
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Theorem E.1 (Isospectrality of the Smooth Feshbach Map) Let Ξ be a
positive operator on the separable Hilbert space H, bounded from below and above
by 0 ≤ Ξ ≤ 1 and let Ξ =

√
�H − Ξ2 the complementary operator. Let (H,T )

be a Feshbach pair associated with Ξ. Then we have the following spectral relation
between the operator H and its image FΞ(H,T ) under the smooth Feshbach map,

(i) H is bounded invertible if and only if FΞ(H,T ) is bounded invertible on ran(Ξ).

(ii) If ψ ∈ ker(H) \ {0} then Ξψ ∈ ker(FΞ(H,T )) \ {0}.

(iii) If ϕ ∈ ker(FΞ(H,T )) \ {0} then (Ξ− ΞH−1

Ξ
Ξ(H − T )Ξ)ϕ ∈ ker(H) \ {0}.

(iv) The multiplicity of the zero eigenvalue is conserved, i.e., dim(ker(H)) =
dim(ker(FΞ(H,T ))).

Proof. The proof to this assertion is purely algebraical and rather lengthy. We
therefore omit it and refer the reader to [4, Thm. 2.1] where the original proof can
be found.

Corollary E.2 (Reconstruction of Eigenvectors) Let Ξ be an operator as in
Theorem E.1 and let (H,T ) be a Ξ-Feshbach pair. Assume that zero is a simple
eigenvalue of H and let ψ �= 0 be the corresponding eigenvector. Then the eigenvector
can be reconstructed as

ψ = λ
(
Ξ− ΞH−1

Ξ
Ξ(H − T )Ξ

)
Ξψ

where λ ∈ � \ {0} is a suitable scalar. If further the eigenvector obeys ψ �∈ ran(Ξ)
then holds λ = 1.

Proof. By Theorem E.1(ii) follows that Ξψ ∈ ker(FΞ(H,T )) \ {0}. A further
application of Theorem E.1(iii) implies that (Ξ−ΞH−1

Ξ
Ξ(H−T )Ξ)Ξψ ∈ ker(H)\{0},

hence it is a multiple of ψ,

ψ = λ
(
Ξ− ΞH−1

Ξ
Ξ(H − T )Ξ

)
Ξψ,

λ ∈ � \ {0}, due to the simplicity of the zero eigenvalue. Since ψ = Ξ2ψ + Ξ
2
ψ we

obtain via projection P = P ∗ on the orthogonal complement of ran(Ξ),

PΞ2ψ = λPΞ2ψ.

We consider the case PΞ2ψ = 0 which implies Pψ = 0, hence ψ ∈ ran Ξ. Vice versa,
if ψ �∈ ran Ξ then we conclude PΞ2ψ �= 0 and therefore λ = 1.
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[5] V. Bach, J. Fröhlich, and I.M. Sigal. Quantum electrodynamics of confined
non-relativistic particles. Adv. in Math., 137:299–395, 1998.
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[27] V. Jakšić and C.-A. Pillet. Mathematical theory of non-equilibrium quantum
statistical mechanics. J. Stat. Phys., 108:787–829, 2002.



329
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Detailed balance, 167
Dilation deformation, 3, 98
Dispersion relation, 32
Dissipative, 37, 56
Dynamical system

C∗-, 2, 15
W ∗-, 2, 15

Dynamics
free, 58
free field, 36
interacting, 65
on observables, 15
on states, 15
particle, 24
rescaled, 60
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Dyson series, 21, 66, 68, 71, 86, 267,
268, 276

Einstein, 7
Ensemble

canonical, 24
grand canonical, 39

Entropy, 24, 39
production formula, 22, 75
production rate, 2, 73, 113, 116

functional, 22
observable, 22

relative, 17, 19

Fermi golden rule, 4
condition, 76, 158, 169
level shift, 2, 76, 157, 169

Feshbach
isospectrality, 4, 136, 161, 178,

192, 322, 323
iteration, 124
map (smooth), 4, 132, 189, 202,

322
operator, 322
pair, 134, 203, 210, 322
technique, 4, 123

Fock space
bosonic, 29
exponential law, 61

Formula
entropy production, 22, 75
pull through, 34, 64
Trotter product, 66

Fröhlich, 4, 6, 82, 85, 180
Function

cutoff, 132, 202, 209
gluing, 63, 67
one-point, 41
two-point, 40

Functional
generating, 47
truncated, 44

Hamiltonian
free field, 32
generalized, 38
non-interacting, 57
particle, 23
rescaled, 60

Heat
conduction, 1
flux, 2, 73, 113

stationary, 118
radiation, 1

Hilbert space
particle, 23
particle-photon, 57
photon field, 29

confined, 38
Hypothesis

α0-analyticity of perturbation, 77
deformation analyticity, 78
Fermi golden rule condition, 76
non-degeneracy, 76
parameter range, 75
self-adjointness of H, 65
self-adjointness of L, 69

Jakšić, 4, 5, 56, 61, 85
Jakšić-Pillet gluing, 61

Klopp, 7
KMS condition, 16

Liouvillean, 3
C-, 3, 90
deformed, 99
free, 60
free field, 54
particle, 28
perturbed, 68
rescaled, 60
standard, 5, 19

Merkli, 6
Modular
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automorphism group, 18, 60
conjugation, 17, 27, 53, 59
operator, 17, 27, 53, 59

relative, 18
structure, 3

Mourre estimate, 6

NESS, 3, 82, 114
Numerical range, 264

Observable, 58
analytic, 301, 304
boson, 35
local, 39
particle, 23
quasi-local, 42

Operator
annihilation, 30

glued, 62
pointwise, 32

auxiliary, 69, 100
conjugated momentum, 34
creation, 30

glued, 62
pointwise, 32

Feshbach, 322
field, 34, 46

glued, 62
Hamilton

free field, 32
generalized, 38
non-interacting, 57
particle, 23
rescaled, 60

level shift, 4, 137, 148, 152, 159,
161, 163, 170, 188

Liouville, 3
C-, 3, 90
deformed, 99
free, 60
free field, 54
particle, 28
perturbed, 68

rescaled, 60
standard, 5, 19

number, 100
photon number, 31, 38
Radon-Nikodym

left, 88
rescaling, 320
Weyl, 34

glued, 62

Partition function, 24, 39
Pauli-Fierz

spin-boson model, 5
system, 3

Perron-Frobenius argument, 168
Perturbation, 64

local, 21
Phase transition, 44
Photoelectric effect, 7
Pillet, 4, 5, 56, 61, 85
Planck law, 43, 46
Positive commutator, 6
Predual, 14

Regularization
infrared, 35, 43, 46, 78, 137, 183,

218, 259
ultraviolet, 78

Renormalization
group, 5, 180

flow, 230
scale, 181
transformation, 180, 198, 206, 214
zooming, 233

Representation
anti-linear, 18, 28, 53, 60
Araki-Woods, 48
cyclic, 47
GNS, 3, 16, 25, 48, 58
Jakšić-Pillet glued, 61
regular, 46

Rescaling
map, 192
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Resonance, 106
eigenvector, 4, 88, 106, 110

Return to equilibrium, 1, 55
Return to ground state, 7
Ruelle, 9, 84

Schwarz reflection principle, 80
Second quantization, 29
Segal, 46
Sigal, 4, 6, 82, 85, 180
Singular values, 237
Spectral

deformation, 77, 97
analyticity, 78, 289, 291, 304
dilation, 98
translation, 98

State, 14
ω-normal, 17
equilibrium, 16
faithful, 16
Gibbs, 24, 39
KMS, 16, 24
metastable, 7
non-equilibrium stationary, 3, 82,

114
normal, 14
quasi-free, 41, 45
stationary, 15

Structural stability, 21
System

finite, 24
infinite, 37

Theorem
bicommutant, 15
Nelson’s commutator, 70
Stone’s, 46
Tomita-Takesaki, 18

Thermal
equilibrium, 16, 114
ionization, 7
relaxation, 111

Thermodynamic

characteristics, 116
limit, 2, 37, 42

Tomita-Takesaki theory, 3
Topology

σ-weak, 14
Translation deformation, 4, 98

Vector
cyclic, 16
deformation analytic, 103
separating, 16
vacuum, 30

von Neumann, 14

Wick
monomial, 184, 315

embedding, 185
partially integrated, 185, 315

ordered product, 310
ordering, 309
theorem, 310

Woods, 37, 48

XY chain, 9

Zenk, 7
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