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Abstract

The present thesis is concerned with the study of a quantum physical system com-
posed of a small particle system (such as a spin chain) and several quantized massless
boson fields (as photon gasses or phonon fields) at positive temperature. The setup
serves as a simplified model for matter in interaction with thermal “radiation” from
different sources. Hereby, questions concerning the dynamical and thermodynamic
properties of particle-boson configurations far from thermal equilibrium are in the
center of interest. We study a specific situation where the particle system is brought
in contact with the boson systems (occasionally referred to as heat reservoirs) where
the reservoirs are prepared close to thermal equilibrium states, each at a different
temperature. We analyze the interacting time evolution of such an initial configu-
ration and we show thermal relaxation of the system into a stationary state, i.e.,
we prove the existence of a time invariant state which is the unique limit state of
the considered initial configurations evolving in time. As long as the reservoirs have
been prepared at different temperatures, this stationary state features thermody-
namic characteristics as stationary energy flures and a positive entropy production
rate which distinguishes it from being a thermal equilibrium at any temperature.
Therefore, we refer to it as non-equilibrium stationary state or simply NESS.

The physical setup is phrased mathematically in the language of C*-algebras. The
thesis gives an extended review of the application of operator algebraic theories to
quantum statistical mechanics and introduces in detail the mathematical objects
to describe matter in interaction with radiation. The C*-theory is adapted to the
concrete setup. The algebraic description of the system is lifted into a Hilbert space
framework. The appropriate Hilbert space representation is given by a bosonic Fock
space over a suitable L2-space. The first part of the present work is concluded by the
derivation of a spectral theory which connects the dynamical and thermodynamic
features with spectral properties of a suitable generator, say K, of the time evolution
in this Hilbert space setting. That way, the question about thermal relaxation
becomes a spectral problem. The operator K is of Pauli-Fierz type.

The spectral analysis of the generator K follows. This task is the core part of the
work and it employs various kinds of functional analytic techniques. The operator
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Abstract

K results from a perturbation of an operator Ly which describes the non-interacting
particle-boson system. All spectral considerations are done in a perturbative regime,
i.e., we assume that the strength of the coupling is sufficiently small. The extraction
of dynamical features of the system from properties of K requires, in particular, the
knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the
unperturbed operator L. Since convergent Neumann series expansions only qualify
to study the perturbed spectrum in the neighborhood of the unperturbed one on
a scale of order of the coupling strength we need to apply a more refined tool, the
Feshbach map. This technique allows the analysis of the spectrum on a smaller scale
by transferring the analysis to a spectral subspace. The need of spectral information
on arbitrary scales requires an iteration of the Feshbach map. This procedure leads
to an operator-theoretic renormalization group. The reader is introduced to the
Feshbach technique and the renormalization procedure based on it is discussed in
full detail. Further, it is explained how the spectral information is extracted from
the renormalization group flow.

The present dissertation is an extension of two kinds of a recent research contri-
bution by Jaksi¢ and Pillet to a similar physical setup. Firstly, we consider the more
delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly,
the system can be studied uniformly for small reservoir temperatures. The adaption
of the Feshbach map-based renormalization procedure by Bach, Chen, Frohlich, and
Sigal to concrete spectral problems in quantum statistical mechanics is a further
novelty of this work.
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Introduction

Survey of the Problem and Organization of the Thesis

This dissertation is a contribution to mathematical rigorous non-equilibrium quan-
tum statistical mechanics considering as example a simplified quantum electrody-
namical model for the interaction of matter with radiation (in a wider sense) at
positive temperature. In the center of interest is a finite dimensional particle system
(such as an N-dimensional spin or a spin chain of finite length) which interacts with
several quantized massless boson fields of infinite spatial expansion. These bosonic
fields might physically be realized as photon gasses (radiation) or as phonon fields
(quantized modes of vibration). Both sorts of bosons are responsible for two different
types of heat transfer: while the photons represent a heat radiation the propagation
of phonons is responsible for heat conduction in solids. The boson fields, occasion-
ally also referred to as heat reservoirs, interacting with the particle system need
not to be of the same type. A possible scenario covered within this general frame-
work could be a particle exposed to heat radiation through thermal photons and
in contact with a solid transferring heat through thermal phonons. It is assumed
that the bosonic subsystems are not interacting with each other. For simplicity
of notion we henceforth do not differentiate between the two mentioned types of
bosons and refer to them as photons. The key problem we are going to investigate
in this work is the question about the existence and the nature of stationary states
and their dynamical stability. Along with these dynamical issues we also study the
thermodynamic properties of the system. Hereby, the setup of the system will be
the following. Each of the photon reservoirs will be prepared in or close to a thermal
equilibrium state describing a photon ensemble of finite particle density in absence of
Bose-Finstein condensation. Each photon system for itself, isolated from the other
constituents, behaves like a free photon gas and it features the property of return to
equilibrium (RtE), i.e., the photon gas will thermally relax under the time evolution
into the equilibrium it started close by. The drive of a single infinitely expanded
photon system towards equilibrium transfers to the finite particle system once they
are coupled to each other. Hence, the composed particle-photon system shows dy-
namical stability in the sense that states which are close to a thermal equilibrium
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at a given temperature are attracted by the latter. In this context, proximity has
to be understood in the relative entropy sense. Such a setup is said to be close to
equilibrium. The situation becomes more subtle when several photon systems at
possibly different temperatures are coupled to the same particle system, this setup
would be far from equilibrium. Each reservoir shows a comparable endeavor of ther-
mal relaxation, however, towards different equilibria. This competition among the
reservoirs prevents the system from approaching a thermal equilibrium state. Nev-
ertheless, the system presumably will feature thermal relaxation in the sense that
it will converge into a stationary state. This limit state will be distinguished from
a thermal equilibrium state by the fact that it shows non-vanishing stationary heat
fluxes between the reservoirs and a positive entropy production rate.

We shall mention that the assumption about the finiteness of the particle degrees
of freedom is crucial for our analysis. The thermal relaxation of the particle-photon
system is controlled by the so called Fermi golden rule level shift which is a lower
bound to the rate of exponential decay of initial configurations into the stationary
state. The Fermi golden rule level shift is computed as the minimal probability
of any transition of a particle state from a higher energy level down to a lower
one under emission of photons carrying away the energy difference. For infinitely
many particle energy levels the infimum of these transition probabilities is typically
zero such that the Fermi golden rule level shift does not allow any prediction about
decay properties. The arguments applied in this work do not work any more for a
vanishing Fermi golden rule level shift. In fact, it is still a non-trivial open problem
to prove the thermal relaxation of particle systems with infinitely many energy levels
interacting with photons.

In this thesis we put the described physical situation of particle-photon interaction
away from equilibrium, and the analysis on it, on a mathematical footing. Hereby,
we extend the model proposed in [8] to several bosonic reservoirs and we proceed
as follows. The appropriate mathematical concept for treating quantum statistical
systems is given by the theory of C*-algebras. In Chapter 1 we thoroughly discuss
the mathematical model for the particle and the photon systems. We introduce the
Hamiltonian description of each subsystem to define a Heisenberg time evolution on
a suitable algebra of observables. Algebra and time evolution form a C*- or W*-
dynamical system. Among the states on this algebra we specify those which describe
thermal equilibria. The mathematical setup for the infinite photon systems differs
significantly from the considerations on the finite particle system. The thermody-
namic concepts, as the notion of a thermal equilibrium state, are easily accessible
in the context of a finite system and need an adaption to the infinite situation.
We outline the strategy how the photon system can be treated as a thermodynamic
limat of finite systems of a photon gas confined to increasing but bounded boxes.
The preparation of the subsystems in thermal equilibrium states provides us with
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a representation of the C*-algebra of observables, the GNS representation, which
gives rise to a particular modular structure of the dynamical system. We launch an
excursus about the Tomita-Takesaki theory, dealing with this modular structure,
which provides algebraical tools in an analytical framework. The coupling between
the particle and the photon systems is realized as a local perturbation of the non-
interacting setup. This perturbation is obtained by incorporating boson creation and
annihilation processes to first order into the Hamiltonian description. We can inter-
pret this sort of perturbation as a simplified model for minimal coupling which, in
turn, describes the realistic interaction of electrons with radiation in non-relativistic
quantum electrodynamics. The setup belongs to the class of Pauli-Fierz systems.
The first chapter is concluded by the statement of the main theorem of this work.
It rephrases the thermal relaxation properties of the particle system in interaction
with several bosonic reservoirs at different temperatures, as discussed above, in a
mathematical language. We prove in the case of differing reservoir temperatures
the existence of a non-equilibrium stationary state (NESS) which is attracting for
all physical configurations close to the setup where the subsystems, for itself, are at
equilibrium. Hereby, the approach is exponentially fast with a decay rate propor-
tional to the second power of the interaction strength and proportional to the tem-
perature of the reservoirs. Further we show that the NESS features non-vanishing
heat fluxes and the entropy production rate in this state is strictly positive. The
case where the photon reservoirs started at the same temperature is covered as a
limiting case. The dynamical behavior is equivalent to the previous situation, i.e.,
the thermal relaxation occurs exponentially fast. The thermodynamic characteristic
of the limit state, however, is quite different since in the equal temperature situation
the relaxation is towards an equilibrium configuration. All our results are pertur-
bative in the strength of the coupling and uniform for small temperatures provided
that temperature differences are not too large.

Within Chapter 2 we derive a spectral theory for the thermal relaxation process
following [28]. The aim is to connect the dynamical behavior of the interacting
system with spectral properties of a suitable generator of the time evolution. The
GNS representation together with Tomita-Takesaki’s modular theory allow us to
transfer the dynamical problems into a more convenient Hilbert space framework.
Within this framework the time evolution is generated by a family of so-called Li-
ouville operators. We single out one of these operators, the C-Liouwille operator K,
whose null space encodes the information about the NESS while the localization of
the continuous spectrum discloses the long time behavior of the evolution. However,
before the connection of the dynamical behavior and the operator can be established
the C-Liouvillean has to undergo a spectral deformation. Since the operator K is in
general neither self-adjoint nor normal nor accretive it is the spectral deformation
which is necessary to give meaning to the evolution generated by K. In our work
we apply a combination of two deformation techniques, the dilation deformation as
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used in [8] and the translation deformation applied in [23, 28]. It turns out that the
NESS is given as the zero resonance eigenvectors of K w.r.t. the chosen deformation,
i.e., in terms of the zero eigenvectors of the spectrally deformed operator Ky and of
its adjoint (Ky)*. The shift of the spectrum of Ky into the upper half plane, except
for the simple zero eigenvalue, accounts for the exponentially fast decay towards the
NESS. The first two chapters build a logical unit addressing the conceptional part
of the work which is closely related to contributions of Bach, Frohlich and Sigal, [8],
and of Jaksi¢ and Pillet [24, 27, 28|.

The second part consisting of the Chapters 3 - 5 is devoted to the underlying
spectral analysis of the problem. We launch Chapter 3 with a complete description
of the spectrum of the family of deformed Liouvilleans, the corresponding proof
will spread over the whole second part. Different spectral regions require different
techniques of analysis. The Liouvilleans of the interacting systems can be seen as
perturbations of a deformed free Liouville operator Lyy whose spectrum is totally
understood. As a rule of thumb we can keep that the closer we get to real eigenvalues
of the unperturbed problem the more difficult the analysis becomes and the more
sophisticated techniques are applied. As a first step in understanding the spectrum
we exclude spectrum in regions far enough from the spectrum of the unperturbed
Liouville operator with the means of convergent Neumann series employing relative
norm estimates of the perturbation part of the Liouvilleans. This technique will fail
when we aim to study the spectral vicinity of the formerly real eigenvalues of Lgg
due to the divergence of the free resolvent. The Feshbach technique is a suitable re-
placement since it allows a decision about the invertibility of the perturbed resolvent
based on an equivalent spectral problem after having projected out the singularity
of the free resolvent. This method was introduced as a tool for spectral analysis
in quantum field theory by Bach, Fréhlich and Sigal in [6] and was generalized in
collaboration with Chen in [4]. The smooth Feshbach map generates an operator
with isospectral properties. This operator is the free operator Ly supplemented,
in leading order in the strength of the coupling, by a matrix which is responsible
for the shift of the unperturbed eigenvalues away from the real axis. This matrix
is therefore called level shift operator. Since the shift of eigenvalues directly effects
the exponential decay rates of excited configurations of the system the level shift
operator is closely related to the Fermi golden rule.

The zero eigenvalue plays a special role which is founded by its high degree of
degeneracy. Though the level shift operator lifts the degeneracy, a simple eigenvalue
stays at the origin of the complex plane, in leading order of the perturbation, and
the isolation of this eigenvalue is given by a gap proportional to the temperature
of the reservoirs. Hence, for small temperatures (compared to the strength of the
coupling) standard perturbation theory fails again to make conclusions about the
spectrum of the full operator which we obtained after the application of the smooth
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Feshbach map. Since our endeavor is to derive all results uniformly in low temper-
atures we need to reapply the Feshbach method to tackle the spectral problems in
the neighborhood of zero. That way we enter into a process of iterative Feshbach
applications building the core part of an operator-theoretic renormalization group
which goes back to [4, 6]. The outsourcing of the renormalization procedure into
Chapter 4 accounts for the difficulties which arise in the study of the spectrum close
to zero.

In the last chapter of the main text, Chapter 5, we collect the information which
was gained by the renormalization procedure in Chapter 4 to assemble a spectral
picture of the Liouville operators in the neighborhood of zero. This is the first
time that the renormalization group of [4] is applied to a concrete model in positive
temperature quantum electrodynamics in order to draw a quantitative picture of
the spectrum in the vicinity of eigenvalues.

In a third part of this thesis we embrace in five appendices the necessary technical
tools for the considerations in the main text. Outsourcing the technicalities shall
enhance the readability of the main text without holding back the analytical issues
from the reader.

Comparison with the Literature

The field of equilibrium and non-equilibrium statistical quantum mechanics has
become recently a very active area of research. We range our work among the
significant contributions to related problems in this field where a small system is in
interaction with its environment. The environment is considered as an infinite part
of a system which allows dissipation. This environment can be of various kinds and
we mention as examples the quantized bosonic field (as photon or phonon field like
in our case), a fermi gas or simply an infinite region of a spin system (as a largely
expanded part of a crystal interacting with a small crystalline zone). The small
system usually represents a confined particle and its realization may range in the
various models from a finite ensemble of spins to an electron in a binding Coulomb
potential. During the presentation of models in statistical quantum mechanics we
occasionally draw a parallel to the zero temperature situation.

A first rigorous treatment of the dissipative properties of the Pauli-Fierz spin-
boson model (a single spin coupled to a bosonic field) was undertaken by Jaksi¢ and
Pillet in the series of papers [22, 23, 24], a review of these results is given in [25].
The main achievement of that work is the development of a spectral theory for the
RtE property connecting the spectrum of a so-called standard Liouville operator, an
appropriate generator of the time evolution in the equilibrium situation, with the
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thermal relaxation behavior of the system at positive temperature. The spectral
analysis to follow on the Liouville operator of the spin-boson model employs a new
deformation technique, the translation deformation, which generates isolated eigen-
values of the unperturbed system and allows standard perturbation theory. The
price to pay for this simplified analysis is that the used deformation puts strong
restrictions on possible coupling functions and only allows the study of the high
temperature regime.

These restrictions could be lifted by Bach, Frohlich and Sigal in [8] who not only
extended the degree of freedom for the spin but, more significantly, could prove
RtE for the spin-boson system uniformly in the positive temperature of the boson
reservoir. They adopted the concept of spectral theory from [24], and, to tackle
the uniformity in the temperature, they fell back upon the renormalization group
developed in [6]. The application of the renormalization procedure to the positive
temperature framework is outlined in [8] and enabled the authors to get along with
dilation as spectral deformation which requires much less regularity of the coupling
functions.

An alternative technical approach to study RtE for the spin-boson model was
given by Merkli in [32] who transferred the concept of Mourre estimates, also known
as positive commutators, to the spectral investigation of the positive temperature
situation. This technique incorporates the generator of the translation deforma-
tion and therefore represents an infinitesimal version of the translation deformation
technique. The strategy yields a technical improvement w.r.t. [24] in the sense that
the assumptions on the regularity of the coupling functions can be relaxed (Merkli
gets along with sufficient smoothness instead of analyticity of the coupling func-
tions w.r.t. translation), however, it proves RtE in a weaker version, namely in the
ergodic mean sense. The positive commutators cannot overcome the restriction to
high temperatures.

The papers [12, 13] by Dereziiski and Jaksi¢ are another contribution to the spec-
tral analysis of thermal Pauli-Fierz systems in relation to their thermal relaxation.

So far we discussed models where the reservoirs are given in a configuration of
finite boson density. Such a setup prohibits the macroscopic occupation of the
ground state, i.e., the description of Bose-Einstein condensation is excluded. The
recent work [33] of Merkli deals with a Bose gas at thermal equilibrium which is
so dense that it builds a condensate. The coupling of a particle system to the zero
modes of the boson gas (which correspond to the condensate) exhibits a technical
challenge. The infrared behavior of the coupling functions treated in the references
mentioned above do not provide a framework which allows an effective coupling of
the particle system to the condensate. Merkli managed to introduce a model of
an interacting particle-condensate system for which he could prove the existence of
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a stable equilibrium. Hereby, stability is meant in the following sense: any initial
condition close to the equilibrium state of the interacting system converges towards
the equilibrium of the uncoupled system if one takes successively the limit of large
time and then the limit of small coupling. The RtE property of the system is still
an open problem. The analysis is based on positive commutator techniques.

Further contributions to the particle systems interacting with a thermal photon
reservoir are the works of Frohlich and Merkli, [15], and Frohlich, Merkli and Sigal,
[16], on thermal ionization. The investigated model describes an idealized atom,
consisting of a finite number of eigenvalues lying below the ionization threshold of
a continuous spectrum, which is brought into contact with a black-body radiator at
sufficient high positive temperature. The authors show that such a system does not
possess any time-translation invariant state of positive temperature and that the
expectation value of any finite-dimensional projection in an arbitrary initial state of
positive temperature tends to zero under the time evolution. This phenomenon is
known as thermal ionization. Unlike for the spin-boson model, where the particle
system only possesses bound states, the existence of continuous spectrum gives the
idealized atom the opportunity to leave eventually any equilibrium configuration
which is in contrast to the thermal relaxation behavior of the models discussed so
far. The statements in [15, 16] are established by studying the Liouville operator
using positive commutators.

RtE has a zero temperature analogue: return into the ground state. The relevant
physical process is no longer thermal relaxation but radiative decay. It is well known
that atomic systems (non-relativistic electrons in a Coulomb potential of a nucleus) —
while possessing stable excited energy levels in the absence of an electromagnetic field
— have no stable states except for the ground state when interacting with photons.
It goes back to studies of Bach, Frohlich and Sigal, [5, 7], and ourselves, [36], on a
realistic model for non-relativistic quantum electrodynamics that the excited states
are replaced by metastable states which decay quasi-exponentially as predicted by
the Fermi golden rule. However, it is not clear how to prove that these states
relax into the ground state which would correspond to the “thermal” equilibrium at
temperature zero. The analytical difficulties are founded by the fact that the zero
temperature framework does not give us a spectral theory for RtE at hand.

The zero temperature analogue of thermal ionization is the photoelectric effect
which was studied by Bach, Klopp and Zenk in [9]. Building up on a simplified
model for an atom consisting of a single bound state and continuum the authors
managed to prove the ionization of the atom by photons as a non-statistical phe-
nomenon. The observations are in agreement with Einstein’s prediction that the
ejection of an electron from its formation only occurs if the energy of the incoming
photon cloud exceeds the ionization threshold such that the energy surplus can be
transformed into kinetic energy of the travelling electron. The ionization mechanism
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at zero temperature therefore differs significantly from the ionization by thermal
fluctuations where the photons do not have to overcome an ionization threshold.

We go over to discuss the systems appearing in the literature which are closely
related to the setup in the present thesis. The impulsion to study the thermal
relaxation of particles interacting with several bosonic heat reservoirs came from the
contribution [28]. In that paper Jaksi¢ and Pillet investigate a spin which interacts
with finitely many fermionic reservoirs which are at different positive temperatures.
Since the system is from the beginning not close to equilibrium the spectral theory
for thermal relaxation behavior developed in [24] is not applicable. In other words,
the standard Liouville operator does not carry a priori any information about the
relaxation of a system far from equilibrium. Jaksi¢ and Pillet found a remedy by
connecting the dynamical issues with an equivalent non-self-adjoint generator of
the time evolution, the C-Liouvillean. The spectrum of the C-Liouville operator
allows predictions about the time development of states (close to the configuration
where the Fermi reservoirs are at different temperatures) towards a limit state.
Further, that relaxed state, the NESS, can be characterized in terms of the C-
Liouville operator. This concept, with some modifications to improve the validity
of statements uniformly in the temperature, has been adopted by ourselves within
this thesis. While formally the setup in [28] looks similar to our model of a particle
system interacting with bosonic reservoirs at different temperatures, our situation
exhibits much more difficulties of a technical kind. This has primarily to do with the
fact that creation and annihilation processes, as they enter the interaction between
the particle system and the reservoirs, are bounded operations in the fermionic
case unlike in the bosonic case. While the C-Liouville operator is accretive in the
fermionic case, the unboundedness of bosonic creation and annihilation operators
causes that the connection of the C-Liouvillean to the time evolution it generates is
a priori unclear. This fact poses many technical subtleties which are to be tackled
to transfer the concepts of [28] to our situation. Jaksi¢ and Pillet acknowledge
in their paper that the extension to bosonic reservoirs is an important and, until
recently, an open problem. A further discrepancy between [28] and our work is that
we can study the relaxation uniformly in the reservoir temperatures. This could be
achieved firstly by modifying the C-Liouville operator and secondly by employing
the renormalization group technique. Following the arguments of [26, 27, 28, 29] we
show for our system that the entropy production in the NESS is strictly positive
when the temperatures of the reservoirs differ sufficiently.

Finally we mention some references for non-equilibrium situations in quantum spin
systems. A quantum spin system can roughly be characterized as a countably infinite
collection of sites where spins are fixed and which interact with their neighbors.
The set of sites appears as a division into finite many subsets where one of the
subsets contains only finite many sites, representing the “particle” system, while the
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others are infinite, standing for the reservoirs or simply for the environment. These
reservoirs can now be prepared at equilibrium of different temperatures. This kind
of situation is studied by Ruelle in [42] on non-negativity of the entropy production.
It is the work which introduces the notion of a NESS as it is used in [26] and also in
this work, c.f. Remark 1.16. A special case of this setup, the two-sided XY chain,
was analyzed on positivity of the entropy production by Aschbacher and Pillet in

3].

Parts of this thesis have been elaborated in cooperation with Merkli and Sigal.
The corresponding results are to appear in [34].
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1 The Positive Temperature Model
of Particles Interacting with
Radiation

Statistical quantum mechanics (StQM) is the discipline of quantum physics describ-
ing systems at positive temperature. The notion of temperature implies an uncer-
tainty of the occupation of a quantum mechanical state. This lack of information is
interpreted as thermal fluctuation and is mathematically handled with probabilis-
tic methods. A quantum mechanical state, usually represented as an element of a
Hilbert space, gets replaced by a density matrix over the same Hilbert space repre-
senting an ensemble of possible configurations, the eigenvectors of the matrix, and
their assigned occupation probability, given by the eigenvalues. The temperature
enters this framework as a parameter which characterizes the occupation probability
distributions for so-called thermal equilibrium configurations.

Since a physical state is defined by the expectation values of observable quantities
one measures in this state the mathematical notion of a state in statistical quantum
mechanics is a positive linear functional on an algebra of non commuting observables.
Since for large quantum systems (e.g., for those with infinitely many degrees of
freedom) not every such functional can be brought into relation with a density matrix
this concept of states of the quantum system goes even beyond the generalization
from Hilbert space vectors to density matrices. The corresponding mathematical
framework is provided through the theory of C*-algebras which represents a well
established field of research. The richness of this theory offers many opportunities for
the study of abstract and concrete quantum statistical systems. We will introduce
the reader to the field of C*-algebras and its techniques in the first part of this
chapter, based on the monographs [10, 11, 17]. The paper [14] gives a good review
of problems related to W*-dynamical systems.

Building up on the abstract notion we are presenting the quantum statistical
model of a particle system which is interacting with several heat reservoirs at not
necessarily the same temperatures. The model we are going to use is a slight exten-
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sion of the model proposed in [8], where the interaction of the particle system was
restricted to a single reservoir.

1.1 Operator Algebraic Approach to Statistical
Quantum Mechanics

1.1.1 States and Dynamics on C*- and W*-Algebras

The physical measurands, the observables, of a quantum system on an underlying
Hilbert space are usually given by operators on that Hilbert space. The collection
of observables forms an algebra. Inspired by the observation that the bounded op-
erators on a Hilbert space form a C*-algebra (for a definition of C*-algebras we
refer the reader to [10, Sect. 2.1]) we henceforth assume that the set of physical
quantum observables of interest is given by an abstract C*-algebra A. A physical
state (configuration) of the system is given by a (mathematical) state on the alge-
bra of observables. The subset of the dual space A* containing all positive, linear
functionals of norm one,

EA) ={(w: A—=C) e A" ||w]

=L wAA) >0, VA A},

is the convex set of all states of our system assigning real expectation (measured)
values to the self adjoint observables among the elements of A and therefore char-
acterizes the system’s configurations. Refer to [10, Sect. 2.3.2] for convexity of £(.A)
and further properties of states on C*-algebras.

In various situations a given C*-algebra A features the existence of a predual,
i.e., there exists a Banach space whose dual space is isomorphic to the algebra A.
Such an algebra is called a W*-algebra. Its predual is uniquely determined up to
isomorphisms and is denoted by A,. Since A, is isometrically imbedded into A* the
structure of a W*-algebra gives rise to a new topology on A, the o-weak topology,
generated by the system of semi-norms {A — |w(A)| |w € A, }. Further, the predual
allows a distinction of states over A, the so-called normal states which are collected
in the set

NA) = EA)NA = {we A — A |||v]

=L wAA) >0, VA A}

Apparently, the normal states are exactly the states which are continuous w.r.t.
the o-weak topology on A. We remark that a C*-algebra A C B(H), realized as
a subalgebra of the bounded operators on a separable Hilbert space H, is a W*-
algebra if and only if the algebra is weakly closed within B(H). Von Neumann’s
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Bicommutant Theorem (see [10, Thm. 2.4.11]) allows us to express the weak closure
of a subset M C B(H) as the bicommutant

M/l — (MI)/
where the commutant of a subset M C B(H) is defined by
M ={M e BH)|[M,M]=0VM e M}.
Thus, the criterion for a W*-algebra A C B(H) can be rephrased as
A" = A

The concrete realization of a W*-algebra on a Hilbert space is referred to as von
Neumann algebra. Its predual

A, =LY (H)/ {p e L'(H) |tr(pA) =0VAe A}

is the Banach space L£'(H) of trace class operators on H where we identify two
operators p ~ p' if the corresponding functionals A > A — tr(pA), tr(p’A) coincide.
The normal states are given by

A tr(pA)

for p = p* € LY(H) being a density matriz, i.e., 0 < p < 1 and tr(p) = 1. We
remark that for each C*-algebra A C B(H) the commutant algebra A" C B(H) is
weakly closed and therefore a von Neumann algebra.

A dynamics on the C*- (or W*-) algebra A of observables is introduced by a
group o = {a'},. of automorphisms o on A. The dynamics therefore evolves
the observables (Heisenberg picture). This time evolution can be lifted to a state
w € E(A), the evolved state is then given by

alxw:=woa
A state w is called stationary or time invariant w.r.t. « if for all t € R
dxw=woad =w

holds. The pair (A, a) is called a C*-dynamical system, if the group « is strongly
continuous, i.e.,

R >t al(A) (1.1)

is continuous as a map from R to A in the C*-norm topology for all A € A. In
the case that A is a W*-algebra we call the pair (A, «) a W*-dynamical system
if the group « is pointwise o-weak continuous, i.e., the map (1.1) is continuous
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for all A € A while the space A is equipped with the o-weak topology. Note
that if A = B(H) for some Hilbert space H and H = H* is an unbounded self-
adjoint operator on H then t — e~ is strongly continuous on H, and therefore
t — ol = (. )e ! constitutes a W*-dynamical system (A, a) which is not a
C*-dynamical system.

Since not every time invariant state describes a thermal equilibrium configuration
at a given temperature 7' > 0, we have to provide a distinguishing definition for
a thermal equilibrium state. The notion of a KMS (Kubo-Martin-Schwinger) state
turned out to be the right definition as an equilibrium state and generalizes the
Gibbs characterization for a finite system as considered in Section 1.2. Given a C*-
(or W*-) dynamical system (A, ), then a state w € £(A) (which has to be normal
in the W* case) is called an a-KMS state w.r.t. the inverse temperature 8 = 77!,
or short, an (a, 3)-KMS state, if for each pair A, B € A there is a function F4
which is analytic on the domain Dg:= {z € C |0 < Im(2) < 8} and continuous on
the closure Dy satisfying the KMS condition,

Fap(t) = w(Ad'(B)) and  Fap(t+i8) =w(a'(B)A) (1.2)

for all ¢ € R. One can show that the a-KMS states for any inverse temperature
[ are stationary w.r.t a while the opposite conclusion is not true. Henceforth,
we understand by a stationary state a state which is time invariant and by an
equilibrium state a KMS state.

1.1.2 GNS Representation and Tomita-Takesaki Theory

To study the dynamical behavior of a state w on a C*-algebra A under the group
a = {a'}er of automorphisms, it is useful to represent the abstract C*-algebra
on a Hilbert space. The GNS (Gelfand-Naimark-Segal) representation provides a
procedure how to construct canonically a representation m,, : A — B(H,,) into the
bounded operators on a Hilbert space H,,, such that
w(A) = (Do [T (A) 2 )4y, »

w

where the vector representative €, € H, is cyclic wr.t. m,(A), ie., the set
{m,(A)Q, |A € A} is dense in H,. For an exposition of the GNS construction
refer to [10, Sect. 2.3.3] and [17, Sect. I11.2.2], as well as to [18]. In the case that w
is a faithful state, i.e., it holds

w(A*A) =0 = A =0,

the vector Q, is also separating for 7, (A), i.e., m,(A)Q, = 0 implies already A = 0.
Note that all KMS states are faithful.
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Since the weak closure of the image of A under m,, the algebra m,(A)", is a
von Neumann algebra, it makes sense to extend the notion of normal states to
m,-normality. A state n on A is called relative normal w.r.t. w or w-normal or
m,-normal, if there is a density matrix p € £L!(H,,) such that

n(A) = tr (pm,(A)).
The states on A which are w-normal are collected in the set
No(A) :={ne&(A) |Ipe L(H,): n=tr(pm,(-)) }.

The physical significance of relative normality is that two states normal w.r.t. each
other have a finite relative entropy which means that one state can be prepared out
of the other one by changing the entropy only by a finite amount. The mathematical
concept of relative entropy of two relatively normal states is discussed further down.

We will see in a moment that w-normal states can always be represented as vector
states in the representation m, provided that w is faithful. For this insight we need
the standard form associated with the GNS triple (H,,, 7, {2,). Let us assume that
Q. is cyclic and separating for

as it is guaranteed for a faithful state w. The assignment
Sw : MLQ, — M Q, AQ, — A*Q,

is well defined as an anti-linear operator with dense domain. It is closable and the
closure shall also be denoted by S,. The adjoint anti-linear operator F,, = S is
given by the closure of

F,: M. Q, — M Q,, AQ,— ATQ,.
The polar decomposition of S,
S, = JLAY?,

defines the anti-unitary operator .J,, the so-called modular conjugation, and the
self-adjoint, positive modular operator

A, = S5,.
The modular conjugation obeys

Jo=J:=J;'  and  J,AY2=A;Y2,.
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It is due to a theorem of Tomita-Takesaki (see [10, Thm. 2.5.14] and [17, Sect. V.2.1,
Thm. 2.1.1]) that

JM,J, =M, and
) i (1.3)
AZMOAS" =M,  VieR.
The first relation of (1.3) implies that
m,: A— M, C B(H,), 7 (A) = Jym,(A)J,

is an anti-linear representation of A into the bounded operator on H,, commuting
with the representation 7,. The group o, = {0} }ier,

UZJ M, — M., ot (A) := AZAA;”,

w

is referred to as modular automorphism group. We denote by

At — 1
L, = —s-lim Zo THe
t—0 1t

= —In(A,)

the generator of the group {A”},cg.

We further introduce the natural positive cone associated with the pair (M., Qy,),

P, :={AJ,AQ, |A e M, }.
It is a consequence of Tomita-Takesaki’s theory that
JE=¢ vVéeP, and
A'P, =P, VteR.

The crucial property of P, is that each w-normal state n has a unique vector repre-
sentative in P,,, i.e., there exists a unique £ € P,, such that

n(A) = (€ [mu(A)E )y, -

Furthermore, the modular conjugation J, and the positive cone P, associated with
an w-normal faithful state n obey

Iy = Jo and P, = P. (1.4)
by [10, Prop. 2.5.30]

Given two faithful w-normal states n; = (& |7(-)§; ), , j = 1,2, with §; € P,
being the unique vector representatives from the natural cone, we define the relative
modular operator

A =SS

n,n2 * n1,m2 = N1,1M2



1.1. Operator Algebraic Approach to Statistical Quantum Mechanics

19

where the anti-linear operator .S, ,, is the closure of the map
Moo = Mu&y, A& — A (1.5)

The fact that the states 1, and ny are faithful implies that the vectors &;,&; are
separating for M,, = m,(A)". Since the vectors ; are chosen from P,, we know from
[10, Prop. 2.5.30] that the vectors are cyclic w.r.t. M, as well. This makes the
assignment (1.5) well defined as an anti-linear operator on a dense domain. With
the help of the relative modular operator we introduce the notion of relative entropy
of the state ny w.r.t. n,

Ent(772’7]1) = <€2 ‘ log (Amﬂm) &2 >Hw :

The relative entropy of two states not normal w.r.t. each other is set to be —oo.
Therefore, relative normality measures how far two states are separated in a entropy
sense. Fundamental properties of the relative entropy are

Ent(n,|n) <0

for all relative w-normal states 1,7, and

Ent(nz|m) =0 — m = 12,
c.f. [11, Sect. 6.2.3].

We are going to apply the modular structure to lift the time evolution o = {a' }er
given on the C*-algebra A to m,(A)". For (A, «) being a C*- or W*-dynamical
system and w a faithful state (which is assumed to be normal in the W*-algebra
context) we find a strongly continuous group ¢ +— U,,(t) of unitary operators U,(t)
on ‘H, leaving the positive cone P, invariant,

U.t)P, CP, VteR,

such that
T (f(A)) = U,(t) mu(A) Uu(—t) VA€ A,
c.f. [10, Cor. 2.5.32] The infinitesimal generator
L, = s-lim M
t—0 it

is the self-adjoint standard Liouville operator or standard Liouvillean associated to
the dynamical datum (A, a,w). It is worth to note that the Liouville operator
anti-commutes with the modular conjugation,

Lwa - _JwLw
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and therefore the group {e"“'},cr commutes with .J,,,

eszth — Jweszt
because of the anti-linear nature of J,,.

Because of the invariance of the positive cone P, under U, (t) = e'*~! and the
unique representation of w-normal states by vectors in P,,, the elements of the kernel
of the Liouville operator are in a one-to-one correspondence to the a-stationary, w-
normal states. This is meant in the sense that

&= (& mu( )8 )y

is a bijection from the set {£ € ker(L,) NP, | ||¢]l,, =1} in the set of all a-
stationary, wo-normal states, c.f. [10, Thm. 2.5.31]. Moreover, it holds

w

ker(L,) = {0} = {neNL(A) |noa'=nvVteR} =0 (1.6)
and
ker(L,) = C¥, [V, =1 (1.7)
= {neNL(A) |noa' =nVte R} = {(¥|m,(-)V)}.

The article [14] provides a good summary of the above connections, we refer the
reader in particular to [14, Thm. 2.12]. Therefore, the standard Liouville operator
L., — or rather its spectrum — is the appropriate object to study the dynamics of
w-normal states. Note, that the Liouville operator for a fixed dynamics o does not
change if we build it w.r.t. an w-normal state n instead w.r.t. w itself, i.e.,

L, = L,.
This goes back to (1.4) and the fact that 7 is represented in terms of .

So far we did not discuss to which extend information about KMS states is encoded
in the Liouville operator. However, the state w is an a-KMS state to the inverse
temperature § > 0 if and only if « is lifted to the modular automorphism group o
in the sense that for all A € A

T (a7P(A)) = Allm, (A)A?
holds. This is equivalent to
A, = e Pl or L, = (L,. (1.8)

Thus, the operator L, is the Liouville operator of the time evolution under which
w becomes a KMS state w.r.t. the inverse temperature one.
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1.1.3 Local Perturbations and Structural Stability of KMS
States

We perform a local perturbation on a C*- or W*-dynamical system (A, «). For a
self-adjoint element P = P* € A we define the perturbed automorphism group
ap = {ak}ier by a Dyson series

ab(A) = a(A) + Zz’”/dtl . / dt, [/ (P),[..., [a"(P),a"(A)]]],

which is well defined by [11, Prop. 5.4.1]. For a state w on A we build the standard
form (H,, 7., Qu, P, L), where L, is the Liouville operator w.r.t. the unperturbed
time evolution o. The Liouville operator Lp, corresponding to w w.r.t. the per-
turbed time evolution ap is given by

Lpy = Ly, + my(P) — 7 (P). (1.9)

If we assume that w is an (a, 3)-KMS state then the structural stability of KMS
states, c.f. [11, Thm. 5.4.4], implies that Q, € D(e #letm(P)/2) and that
(Hw7 Tw, QP,wa Pwa LP,w) Wlth

e BLutma(P))/2)
pr =
, [e=ALutma(P)/2Q ||

is the modular information of the state
wp = <QP,w ‘ Ww( ' )QP,w >

which is an (ap, 3)-KMS state. This state is the only w-normal (ap, 5)-KMS state
if and only if M,, = m,(A)" is a factor, i.e., M, N M/ = Cly,.

Given a faithful w-normal state n = (£ | 7, (-)¢) with & € P, we study the relative
entropy of the time evolved state noal, w.r.t. the reference state w which we assume
to be invariant under the unperturbed time evolution {a'}icr. It is a result from

26, 29] that

t

Ent (77 o aﬁ;|w) = Ent(n|w) — /ds <§ }eiLP‘”S[ﬂ'(P),iﬁw]e_iLP’st>
0

Ent(n|w) — /dsn o ap(d,(P)), (1.10)
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a relation which we are henceforth referring to as entropy production formula, where
we implicitly assume that there exists a derivation ¢, on A such that P is in its
domain and that

™ (0,(P)) = [7(P),iL.]

holds. The observable
Spy = 0,(P) (1.11)

is then called entropy production rate observable of the perturbed system w.r.t. the
state w. This name is motivated by the following relation which one obtains by
differentiating (1.10),

O Ent(noablw) = —noab(spy).
The entropy production rate functional
Ep, : No(A) = R, Ep,(n) :=n(spe)

assigns the expectation value of the entropy production rate to an wg-normal state.

Having the abstract structure of quantum statistical models at hand we transfer
it to the concrete system involved in this work. We proceed with our demonstration
as follows. At first, we consider the sub-systems, the particle system (Section 1.2),
and the photon reservoir (Section 1.3), separately. We review the zero temperature
model of each sub-system by defining a suitable Hilbert space and a Hamilton oper-
ator. In a second step we introduce the physically relevant measurands, the algebra
of observables, and the set of states on this algebra. The dynamics on observables
will be given in the Heisenberg picture generated by the Hamiltonian of the corre-
sponding sub-system. We identify a distinguished state which describes the system
at thermal equilibrium at a given temperature, the Gibbs state, or, more general,
the KMS state. For the equilibrium state we choose a suitable GNS representation
of the observables as bounded operators on a suitable Hilbert space, occasionally
referred to as thermal Hilbert space, and introduce the modular structure.

Equipped with the positive temperature model for each sub-system we plug them
together to get all the mathematical objects to describe simultaneously the dynamics
of the (so far non-interacting) sub-systems. However, in the case that the sub-
systems are at different temperatures the system is in a stationary state but not in
an equilibrium state. In a last step we add interaction to the model and study how
the subsystems, once at thermal equilibrium, evolve under the interacting dynamics.
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Figure 1.1: Spectrum of the particle Hamiltonian.

1.2 The Particle System

1.2.1 Particle Hilbert Space and Hamiltonian

We choose the particle system to be a simplified model for an atom or a molecule with
finite many energy levels (and no continuous spectrum). This model is described on

a particle Hilbert space
H, = C".

The particle dynamics is generated by the self-adjoint particle Hamiltonian A, which
is diagonalized in an orthonormal basis {¢;};—01,..~-1 in Hp,

Hypj = Ejpj.
For convenience we assume that the eigenvalues are increasingly ordered,
Eoy<E <---<Ex_1<0 (1.12)

1,...N—1 corresponding to their degree
of degeneracy. In particular, the particle system has a ground state o with ground
state energy Ey. The spectrum of H, is illustrated in Figure 1.1.

and are represented in the sequence {E;};—01

1.2.2 Particle Observables and Time Evolution

For the particle system we choose the algebra of observables as
‘AP = B (Hp)7
the W*-algebra of bounded operators on H,. The set of states on A, is given by

EA,) ={ne Ay |3p=p"€L(H,),0<p<1,tr(p) =1:n=tr(p(-)) },

thus all states on A, are normal. Therefore, the relative entropy between two
different states is finite. We call such a system a finite system.
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The Hamilton operator H, induces a one-parameter group a;, = {aj }er of auto-
morphisms on A, the time evolution in the Heisenberg picture, via

al(A) = et Aem

The Planck constant is set one. Note, that «,, is strongly continuous as a family of
operators on A, and therefore (A, a;,) defines a C*- and W*-dynamical system.

1.2.3 Gibbs State and GNS Representation

The entropy of a finite system in a state w = [A — tr(pA)] for a density matrix p is
given by

S(w) :==—tr(pln(p)). (1.13)
A thermal equilibrium is characterized as a state which maximizes the entropy under
certain constraints. For the canonical ensemble, which we are considering here, the
mean energy w(H,) is specified (while apparently the concept of particle number
fluctuation is not given for a finite system). Maximizing (1.13) under w(H,) = const
we obtain the equilibrium state wy, given by

wp(A) = Z " tr (e P A), (1.14)

where the Lagrangian multiplier 3, plays the role of the inverse temperature of the
particle system and the normalization factor

Z = Z(By) = tr (e M) (1.15)

represents the partition function. The equilibrium state (1.14) is referred to as
Gibbs state in which the energy levels are occupied by a Boltzmann distribution.
The finiteness of Z(3,) is the criterion for the existence of the Gibbs state and it is
the characterization of a so-called finite system. We denote by

Pp 1= Z te Pellp

the equilibrium density matrix. We note that the Gibbs state (1.14) is time invariant,
ie.,
(,dp O Oé; == Wp

for all t € R, because of the cyclicity of the trace and the commutativity of p, with
oitnt

To be consistent with the definition of an equilibrium state in Section 1.1.1 we
have to verify that the Gibbs state fulfils the KMS condition (1.2). Given two
observables A, B € A, we define the function

Fap:C—C,  Fap(z):=uw, (Aai(B)) = Z " tr (e P Aee Bem*MT)
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which is obviously an entire function fulfilling F 5(t) = wp(Aaj,(B)) and also

Fapt+iB,) = Z 'tr (e_’@pHpAe_ﬂPHpeitHPBe_ithe’@PHp)
— Z*l tr (efﬁpHpeithBefithA)
= wp, (o (B)A)

p

for all £t € R. The KMS condition therefore generalizes the Gibbs characterization of
equilibrium states. For systems with infinite partition function (1.15) (in particular,
if the Hamiltonian has continuous spectrum) the Gibbs state cannot be defined and
the KMS characterization replaces it.

We go over to write the Gibbs state w, in its GNS representation. The GNS
construction provides us with a faithful *-representation 7, of the algebra A, as
bounded operators on a suitable Hilbert space Hf) such that w, can be expressed as
a vector state,

WP<A) = <Qp |7Tp(A)Qp >H% )
with a cyclic and separating (w.r.t. m,(Ap)”) vector representative Q, € H2. We
start the GNS construction by defining the Hilbert space lej on which the represen-
tation will act,
Hf) = L*(H,),
the space of Hilbert Schmidt operators on H,. We are aware that for the finite di-
mensional Hilbert space H,, the operator spaces B(H,,) and £*(H,) coincide. How-
ever, for the sake of a more general exhibition of the GNS construction for Gibbs
states over infinite dimensional Hilbert spaces we differentiate between these two
spaces. The Hilbert Schmidt operators naturally form a Hilbert space with inner
product
(A|B >H% = tr(A*B).

Next, we introduce the representation m, by
T o Ay — B(H3), my(A)B = AB, (1.16)

for A€ A, = B(H,), B € H; = L*(H,). Since L2(H,,) is a two-sided ideal in B(H,,)
the representation 7, is well defined. It is obvious that m, is injective and it is easy
to see that 7,(A) is a bounded operator on H2,

|Imp(A)Bl}; = tr((AB)*AB) = tr(A*ABB")
< (AT Al tr(B*B) = (A%, 1Bl -

We show that 7, is a *-morphism which immediately implies that 7, is norm pre-
serving (see, e.g., [10, Sect. 2.3.1]). Let A € A, and B,C € Hﬁ, then
(C17o(A)' By = (mp(A)C| By = tr ((AC)'B)
= tr(C*A*B) = (C |7rp(A*)B>H%.
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We distinguish a vector in Hf) by defining

Qp = p;)/2 — Z*1/2e*f8pHp/2’
note that €2, is Hilbert Schmidt because p,, is trace class, and observe that

(2 | mp(A) D )ses :tr<[ L/2)* Ap1/2> = tr(ppA) = wy(A). (1.17)

It remains to show that €2, is cyclic and separating for m,(A,). To this end

consider 0 = m,(A4)8Q, = Api/?. The operator py/? is invertible on a dense domain,
so A vanishes on a dense domain. It follows A = 0 by continuity and therefore €2, is a
separating vector. To show cyclicity consider the projections P, = ZJ’;O lo) (@5 €

H2. The set {AP, |A € A,,v=0,1,...} is a dense subset of H2. Note that prl,/2 is

bounded invertible on the range of each P, and therefore Ap, Y2P, is an element of

A, and 7rp(Ap_1/2 P,)Q, = AP,. This shows that 2, is cyclic.

It is convenient to modify the representation using the following isometric isomor-
phism B
V:Ez(Hp>_’Hp®Hpa |9) <¢\ =Y,

from the Hilbert Schmidt operators into the tensor product of H, with itself.
Thereby, 1) denotes the complex conjugation of ¢ in the basis {¢;};—01,. n-1, 1.€.,

N-1 N-1
Z ajpj = Z a;pj-
5=0 5=0

The isomorphism V' transforms the GNS representation,

Vi, (A)V o @ =V ]Ag) (V] = (A9) @ ¢ = (A® 1y, )9 @ 1,

and the cyclic vector,

N-—1 N—-1
VQ, = Z7PV Y e 0 (o] = 272 e Pp; @ o).
=0 =0

Identifying HIQ) with H, ® H,, 7, with Vi, (- )V, and Q, with V), we can express
the GNS representation by

T Ap = H2 = Hy @ Hp, mp(A) = A® Ly,
N-1
Q=271 e Y0 ¢

=0
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1.2.4 Modular Structure of the Particle System

The cyclic and separating property of {0, w.rt. M, = m,(A,)" = B(Hp) @ 1y,
allows us to introduce the anti-linear map

Spt MpQ, — MQy, (A® 1y, ) = (A" ® 1y, )2y
Introducing the anti-unitary operator
Jo:Hy = Hy  H(9®Y) =00,
and the self-adjoint, positive operator
A, = e Pollo @ oot

we can decompose

Sp = JoAY? (1.18)

into the product of the particle modular conjugation and the particle modular op-
erator because of

JpAllj/2(A ®@ 1y, ) = Jp(e—ﬂpHp/QA ® e,@pHp/z)Qp

N—-1
— Z_1/2 Z e_ﬁpEj/2Jp(€_ﬂpHp/2A ® eﬁpHp/Q)(gpj R 90])
j=0

N-1
= Z7Y Jp(e A @ o))
=0

N-1

= Z7) (o @ e P2 Ag))

=0
N-1

= Z7 Y (p; @ e R0 T Ap; hor)
k=0
N-—1

= Z7P N e R | A%r) 05 @ on)
4,k=0

N-1
_ Z71/2 Z efﬁpEk/2<A*g0k ® Sok:)
k=0

= (A* & ]al)Qp
— Sp(A(X)ILHp)Qp.

Thus, the operator J, is the modular conjugation and A, the modular operator for
the particle system.
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We obtain the anti-linear representation

7 Ay — BH2),  wlh(A) = Jymy(A)J, = 1y, © 4,

p

commuting with 7,, where A emerges from the matrix A by taking the complex
conjugate of all entries w.r.t. the basis {¢;};—01.. .~n-1 , L€,

(on | Ap; ) = (o | Ap;) = (@; | A%pr) .
Further, the positive cone associated to (m,(A), (2,) is given by
Py = {mp(A) Jymp(A)Q, [A€ A} = {(A®A)Q, A€ A, }.

1.2.5 Liouville Operator and Thermal Relaxation Properties

The Liouville operator for the particle system can easily be derived from the general
relation (1.8) using the fact that w;, is a 3-KMS state,

Lp = Hp ® ]17_[p — ]17_[p ® Hp,
and one easily verifies that

mp(ap(A)) = evimy (A)e !

and that the group e'f»

sentation of L, reads

" leaves the positive cone P, invariant. The spectral repre-

N-1

L,= Z Ejx

5.k=0

©ik) (Pikl

where
{0jk == ©; ® Vr}ik=01,. .N-1

is an orthonormal basis in Hf) =H, ® H, and
spec(Ly) ={E;jr =FE; —Ey |j,k=0,1,...,.N -1}
is the spectrum of L,, c.f. Figure 1.2.

The abstract modular theory elaborated in Section 1.1.2 applied to the particle
system implies that the stationary states are given by convex combinations of the
states

= (@5 | 7o ()@55 ez
where the vectors ¢11,...,pn_1,ny-1 build an orthonormal basis of the kernel of the
particle Liouville operator L,. Therefore, there exist configurations of the system
which are close (in the sense that the relative entropy is finite) to the equilibrium
state wp, not thermally relaxing into the equilibrium as time goes by. We say that
the finite particle system does not feature the return to equilibrium property.
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Figure 1.2: Spectrum of the particle Liouvillean.

1.3 The Photon Reservoir

1.3.1 Fock Space, CCR, and Free Field Hamiltonian

We shortly review the description of photons in second quantization. Standard
references are [11, 38, 43]. The configurations of a single photon are given by square
integrable functions over R, i.e., the one-photon dynamics can be described in

by := L*[R?].

We neglect that a photon also carries a polarization degree of freedom. As it turned
out, the polarization has no influence on the result about thermal relaxation and
can be dropped for simplicity. The model we are describing here is rather a model
for phonons or scalar bosons in general. However, we will refer to this system as
photon or radiation fields — and later simply as heat reservoir. A system of v un-
distinguishable photons is described in

b, =S, L*[RY],

where the projection S, onto absolutely symmetric v-particle wave functions reflects
the fact that photons are bosons and therefore obey the Bose-Einstein statistics.
The orthogonal projection S, is given by

[Swl/](kla"'v . V|Zwu LRI m/)

TI'ESV

where 1, € b, and Ej € R? is the momentum variable of the j™ particle (we choose
the momentum representation for convenience) and S, denotes the symmetric group
of permutations of v elements. The quantized photon field is realized on the bosonic
Fock space F(by) over the one-particle space by,

Hi:=F @S [fh@) ®h1] =D, (1.19)
v=0

n-times
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understood as the set of all sequences (¢, € b,),en, which are square summable,

ie.,
(o]
D el < oo
v=0

The norm || -[|, is the usual L*-norm in b,. The zero particle (or vacuum) sector
ho is set to be the complex field,

ho :=C

and is spanned by the vacuum vector
Quac :=(1,0,0,...) € bho.

The Fock space (1.19) equipped with the canonical inner product

(W €0,)0 | (00 €000 )y, = D (b [0 )y
v=0
becomes a Hilbert space, where

(V| ou )y, /% )eou (k) d* 'k

R3v

is the usual L? inner product in h,. The bosonic Fock space is the configuration
space of a single photon field at zero temperature.

The Fock space Hy = F(hy) carries a representation of the canonical commutation
relations (CCR). We introduce the algebra of creation and annihilation operators.
Given a single photon state f € bh; and a v-photon state v, € b, the creation
operator a*(f) maps v, to a (v + 1)-photon state by “adding” f to the v-particle
configuration via

a (), =vVr+1S,41 [f @] € b (1.20)

and the annihilation operator a(f) maps v, to a (v — 1)-photon state by eliminating
f from the v-particle configuration via

—

a(f)by = | (Rry .o Ft) = /7 < ’% Ko R 1)> }ehy_l. (1.21)

b1

We make the convention that creation and annihilation operators act on the vacuum
state (.. as follows,

a*(f)Qvac = f € hla

a(f)Qac := 0. (1.22)
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The definitions (1.20, 1.21) lead to the following bounds of the creation and annihi-
lation operators,

la”(H)ully, ., < Vv + 11l 1ull,
la(H)¥ully, , < Vv Iy, 1wl

for ¢, € h,. We extend the creation and annihilation operators to closed operators
on the dense domain

(1.23)

D(a*(f)) = Dla(f)) = D(N;"?) = {(% €h,), €F

S w2, < oo}

v=0

by defining
a® ()W, €h,), := (a®(f), € hra1),

where a¥ (f) either stands for a(f) or a*(f) (subsequently we will use the sharp sym-
bol # without further remarks to make statements about creation and annihilation
operators at the same time). It is easy to show that a*(f) is the adjoint operator of
a(f) and vice versa, c.f. [11, 35, 38]. We remark that, by (1.23), the creation and
annihilation operators are relatively bounded w.r.t. the square root of the photon
number operator Ny,

(I*(f)(Nf + 1)_1/2“]_‘([)1) < ||f||h1 >

1.24
JaCH e+ 1772 < 1T, 24

where the number operator acts on a vector ¥ = (¢, € b,), from

S, < oo}

v=0

D(Nf> = {<¢V S hu)y eF

as
Nf¢ = (un € hu)y-

Further, the creation and annihilation operators fulfil the following commutation
relations, the CCR,

[a*(f), a*(9)] = [a(f), alg)] = 0,
[a(f),a* ()] = (F 1)y, -

We remark that (1.20, 1.22) imply the density of the set

(1.25)

dense

span {a*(fn) - a*(f1)Qvac | f1,-- s fu €b1,n e Ng} C Hy (1.26)

in the Fock space.
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Let now v, € b, be a Ci°-function, that is, a smooth function with compact
support. For a concrete momentum k we define the “pointwise” annihilation op-
erator a(l;) which eliminates a photon with the given momentum k (rather than a
momentum distribution f) from the v-photon configuration v, by

G(E)% = \/;1/11/(’; ) € b1 (1'27)

From the Equations (1.21, 1.27) one can conclude that

- / F(F)a(k) &F, (1.28)

in a strong sense, initially on C§°-functions in b,, but can be extended to all states
in D(Nfl/ 2)‘ The operator a*(k) which creates a photon with a concrete momentum
k can be defined in the form sense as

(¢|aE >m,1> = (albyp |v >m

The operators a*(f) and a*(k) are related via

/f “(k) d°k, (1.29)

to be understood in the form (or weak) sense. The objects a*(k) and a(k) are oper-
ator valued distributions and can be understood formally as the operators defined
in (1.20) and (1.21) with a Dirac delta momentum distribution f = 6((-) — k). We
refer the reader to [35, 38, 44| for a more detailed discussion on this subject. We
note that the CCR (1.25) translate to

(1.30)

the version of the CCR for the “pointwise” creation and annihilation operators.

The relativistic energy-momentum relation, the dispersion relation, for a free
massless photon reads

w(F) = Vi = |K|. (1.31)

The energy operator for a non-interacting photon field can be obtained by lifting
the dispersion relation (1.31) to the Fock space F(h;) by second quantization,

Hy = dl(w) = / o (R)w(R)a(F) d°F.

R3
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Figure 1.3: Spectrum of the free field Hamiltonian.

The free field Hamiltonian H; acts on a v-photon state ¢, € b, as

—

(Heaby (k1. ) = (w(/a) . +w(12;;)) bo(Ery o B

Zero is the only eigenvalue of H; and its kernel is spanned by the Fock vacuum €2,..
The rest of the spectrum covers the positive real axis and is absolutely continuous
away from zero, see Figure 1.3. The Hamiltonian is self-adjoint on its natural domain

D(Hy) := {wy eh,) € Hf‘

i / ‘(w(l?l) e +w(/%;)) Uy (ky, ... k)

VZIRSU

S < oo}.

At the end of this section we establish a tool which will be useful for later com-
putations. Given a measurable function F' : R — C we can build by functional
calculus a closed operator F'(H¢) defined on

D(F(HD) = {(h €h,) € F|

i/(F(w(Ew---w(E») Vol )

V:1R3u

2
Pk < oo}

which is acting on a v-photon state v, as follows,

F(He) (R ) = F (k) + o+ w(R)) o, oK)

- -

Although the operator F'(Hy) is not commuting with a(k) and a*(k), resp., there is
a simple relation which allows us to interchange the order of applications on vectors
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of the Fock space. Given a v-photon state 1, € b, we have

- [F (Hf n w(/;')) a(/;)wl,} (Fry. . Kon).
This computation and a similarly one for F(Hg)a*(k) show that

a(K)F(Hy) = F (Hf + w(E)) a(R),
B B B (1.32)
a* (k) F (Hf + w(k)) = F(Hp)a*(F),

on suitable domains, a relation which is known as pull through formula.

The construction of a Fock space over a general L2-space or even over an abstract
Hilbert space is explained in [11, Sect. 5.2.1-5.2.2]. Since all the concepts are literally
the same as in the concrete example presented in this section we spare a further
discussion on this topic and refer to the mentioned monograph for more details.

1.3.2 Dynamics on the Weyl Algebra

The measurements on the photon field correspond to the field operators

B(f) = % a*(f) + a( /)

and their canonical conjugated “momentum” operators
i
= —=[a"(f) —a(f)].

V2

These operators operators extend to self-adjoint operators on H;. However, they
are unbounded and do not establish a C*-algebra of operators. This motivates us
to go over to the Weyl operators

[(f) := @(f)

W(f) = e,

for f € by, which are unitary on H; because of the self-adjointness of ®(f). We
define our algebra of photon observables as the C*-algebra generated by W (f),

As == W(Dy) = span {W(J) [ [ € Dy} =%, (1.33)
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where W(Dk) is the Weyl algebra over the dense set

D; = {f eh |w_1/2f ebh } (134)

of allowed form factors, and the closure in (1.33) is taken in the uniform norm
| I3,y of bounded operators on H¢. The additional assumption on the infrared

behavior, w™2f € by, is necessary to define an equilibrium state on A; as we will
see later. Note that the field operators can be approximated in a strong sense by
linear combinations of Weyl operators since ®(f) is the infinitesimal generator of
the strongly continuous one parameter group R 3 ¢t — W (tf).

The Weyl operators inherit the CCR from the creation and annihilation operators,
they read

W ()W (g) = e 2190w (f 4 g) = e ™19 W ()W (), (1.35)

for a proof see [11, Prop. 5.2.4]. It is worth to mention that the vacuum vector Q.
is a cyclic vector for the Weyl algebra A;. This follows from (1.26) and the fact that
the creation operator a*(f) can be expressed in terms of the infinitesimal generator
of t — W(tf) as

“(f) = —[@(f) — i(i
@(f) = 7o) =@

For computations to come, we also compute the vacuum expectation value of a Weyl
operator. To this end we first remark that any v-photon state v, € b, is an analytic
vector for ®(f), it holds due to (1.23)

21| f1ly,
V2

< (VEU) T W,

1(f)" byllyy, < Vv 1| e()" |,

and therefore

ST < (V2Isl 1flly)" [tnto+1)
z:%n— ¢V||Hf S ||77Z}VHIJVZ \/m TL'(V+1)'

n=0
< (21s1 1111, )
o(v+1)/2 , ( !
Iully, Do~

n=0
< 00 (1.36)

IA
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for all s € C. In particular €, is an analytic vector such that we may compute

(Quae | W () hac )y, = Z%<Qvac|®(f)ijaC>Hf (1.37)
_ Z_: ((;]1)),] (Quae | D)) Qe )y, = exp <__||fy|m),

where we used (Quac | P(f)* ™ Qac )5, = 0 and

< Qvac } (I)<f)2ijac >Hf 2] ! * Qvau: >H

1
E<Qvac ‘(I)

% (Quae | U 20 (F)B) e D,

140 <Qm (e ),
_ 29 LA ( Qe | 90520000 ),
- ...—(,4ﬁ 171
and therein the commutation relation
2
(). (p)] = I

7

The field Hamiltonian H; generates the free time evolution {af}er on the Weyl
algebra A; by
ab(A) = et A et (1.38)

For a Weyl operator W(f), f € b1, we can express the time evolution explicitly
using the pull through formula (1.32). Note first that

P fle it = — / et (f(R)a* (8) + f(R)a(F) ) e d°F

— a(ey)

Further, we remark that the vectors ¢» = (¢, € b,),—0,..m of the Fock space which

overlap with at most finitely many v-photons sectors b, build a dense subset of
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analytic vectors for ®(f), due to (1.36). For such a vector we may calculate

00 . J s iwt J
eintW(f)e_intw — Z eint [ZCI)‘E-']C)] €_int1/J — Z [Z(I)(ej' f)] ¢ _ W(€iwtf>1/}
Jj=0 ' J=0 '

and get the time transformation law for Weyl operators as

ar(W(f)) = W(e™'f),

known as Bogoliubov transformation. This shows that, indeed, {af}ier is a group
of automorphisms of : Ay — A;. Although the map h; > f — W(f) is strongly
continuous, i.e., for any ¢» € H; we have W (f,,)1» — W(f)y whenever f, — f in by,
the group {of}ier is not strongly continuous. This is due to the fact that

W) = Tl = 2 VS €52\ {0},

see [11, Prop. 5.2.4].

1.3.3 Thermodynamic Limit and KMS State

In this section we are going to investigate the thermal equilibrium of a free photon
gas of finite density at a positive temperature Ty = 1/3;. The task is to introduce a
representation of the CCR corresponding to a KMS state which describes a photon
configuration with finite energy and particle density, in particular we study the
situation away from Bose-FEinstein condensation.

The infinite extension of the photon system is reflected by the existence of con-
tinuous spectrum of Hy which is, as we will see later, responsible for dissipative
effects, i.e., energy transport to infinity. Unlike in the case of the finite particle
system the operator e P is no longer trace class. Thus, it is not possible to define
a Gibbs state on A;. We therefore refer to the photon system as a infinite sys-
tem. The construction of a KMS state for a photon gas of finite density uses the
thermodynamic limit process which will be illustrated in the following. We use the
publications [2, 18, 31] and [11, Sect. 5.2.5] as a guideline. The cyclic representation
corresponding to the KMS state which results from the subsequent considerations
was first derived by Araki and Woods in [2].

The occupation of configurations of photons in the infinite extended position
space R? is considered as an inductive limit process where we restrict the photon
positions to increasing bounded regions A C R3. Each confined system represents
a finite system which allows the Gibbs classification of a thermal equilibrium state.
A controlled limit process which lets the box A grow to eventually include every
bounded region in R? yields an equilibrium state of the infinitely extended system.
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For a bounded region A C R? with a sufficiently regular boundary A we introduce
the configuration Hilbert space of the confined photon field as

A A
Y = F (o))
which is the bosonic Fock space over the one-photon Hilbert space

i = { € by

f=0 ae on R3\A}

of wave functions f (in the momentum representation) whose Fourier transform f
is restricted to the region A, i.e., the photon is confined in position to A. A usual
choice for A would be a box A = [—¢, (]* of finite side length 2¢ > 0.

The one-photon Hamilton operator

h§A) = H; | gA)

for the confined system is the restriction of H to bgA). We note that the Fourier

—

transform of th) is the square root of the negative Laplace operator, hEA) =Vv-A,

restricted to L?(A). Imposing classical boundary conditions the operator th) ex-
tends to a self-adjoint operator with discrete spectrum. For A = [/, ¢]* being a box
one usually imposes periodic boundary conditions.

The extension apparently depends on the boundary conditions which describe the
interaction of the photon gas with the “walls” OA of the box where it is captured.
Consequently, the dynamical behavior of the gas will depend on the boundary con-
ditions.

Further, the operator e B s trace class on b for any positive 3 > 0. Choos-
ing a chemical potential s € R such that the shifted one-photon Hamiltonian is
striclty positive, i.e., hEA) — ,LLf]lb(A) >C ]lb(m > (), we obtain by second quantization

1 1

(w.r.t. the Fock space ]-'(f)gA))) an operator
KM = dl ) (hEA) - Nfﬂth)) = 1Y — N

which is trace class on f([ng)) by [11, Prop. 5.2.27|. This operator is referred to as
generalized Hamilton operator. Here, the operator

A
N = dry o (1,0)
is the photon number operator and

Hf(A) = th(A) (hlgA))
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is the Hamilton operator of the photon gas confined to A. The operator hEA) — g
describes the same physics on the one-photon sector as h§A) does. Hence, we use
the generalized Hamiltonian Kf(A’” 0 being the second quantization of th) — s to
implement the dynamics of the photon gas on the Fock space F (bgA)).

The finiteness of the partition function,
(Aopig)
Z(A,uf)<5f) — tr (e—Bfo . ) < o0,

reflects that the confined gas is a finite system so that we can define the Gibbs grand
canonical ensemble state. For the grand canonical ensemble not only the energy but
also the photon number are subject to fluctuations such that it only makes sense to
specify the expectation value of energy and photon number in a given state. The
thermal equilibrium is distinguished as the state w : A — tr(pA) which maximizes
the entropy functional

S (@) = — tr (pln ()

under the constraints
w (Hf(A)> = const, w (Nf(A)> = const. (1.39)

It turns out that the equilibrium state wf(A7“ f

inverse temperature (¢ is given by

) of the free photon gas in the box A at

(M) (A)
wf(A,/,Lf)(A) — Z(A“u,f)(ﬁf)fl tr (e_ﬁf(Hf —pe N )A) . (140)

The inverse temperature (¢ and the chemical potential u¢ play the role of the La-
grangian multipliers associated to the constraints (1.39), it holds

—8, In (Z(A”uf)(ﬂf)) _ wf(A,uf) (Hf(A)) ’

Lo

A, A
;O In (Z00(6r)) = w0 (Nf( )) :
The underlying algebra of observables is the Weyl algebra generated by form
factors corresponding to positions inside the region A. We define the so-called local
algebra as

1l
AEA) =W (Df N th)> = span {W(f) ‘ feDrn f)gA) } B (1.41)

)

The generalized Hamilton operator Hf(A then generates an automorphism group

Ot (A i) = {O‘f,(/\,m)}teﬂ’» on the local algebra AgA) defined as

- (Aspg) )
t K —itK (A)
O (A (A) =00 Aem e Ae A,
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where the action of af’(AM) on a Weyl operator W(f), f € bgA), is given by

iR —
&Ev(Avﬂf)(W<f)) =W <e t(hy uf)f) '

With the arguments of Section 1.1.2 we check that wf(A””) is an (o, (A, Br)-KMS
state on .AEA), we express the KMS condition (1.2) formally as

A,,LL t iﬁf = ’ (07 A E
(.L)E( f) (AO(E,(Q, )(B)) wf( )( f7( 7},Lf)( )‘ )
|O| [N Ra11d417E E" gA)

It follows from the considerations made in [11, Sect. 5.2.5] that the operators

.....

extend to bounded operators which are Hilbert-Schmidt, that is, A} . Ap  f,

are of trace class on HEA) for f1,...,fn € f)EA). This allows an extension of the
state (1.40) to polynomials in creation and annihilation operators. This extension
is continuous in the sense that

wEA,uf) (@*(f1) - a*(f)algr) - - a(gm))‘ < CH ||fj||th) H ||gk||b§/\) (1.42)
j=1 k=1

for a suitable constant C'. Using the relation

e_ﬁfo(A,Hf)/Za*(f) — a* <e—ﬁf (h’gA)_Hf> /2f> e_ﬁfo(A,uf)/Q’

which follows from the pull through formula (1.32) where we replace w(k) by th) — g

and Hy by KéA’“f), we derive with the help of the CCR (1.25) that for the two-point
functions holds

™ (a* (f)a(g))
" <a* (e_ﬂf (47 =s) 2f > BT <6_5f (n=pur)/ 29) )
Z(Aﬂu“f)(/Bf)

_ wf(Ava) (a (e*ﬁf (hﬁA)*Mf> /2g> a* (67& (hEA)*,U«f) /2f> )
= ( . ( o0 (heY ) 12 f) a ( eﬂf(hﬁA’uf)/ng

—B¢ <hEA) —,Uf) >
+ e
< g f o
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— (g ( e (N —ne) 12 f) " (e—nﬁf (n e /29) )
et
b

(eﬂf<h§1\)—ﬂf) . 1) - f > (1.43)
o

where we used the continuity (1.42) and

—nf (th)*Mf) /2 — O

pi

lim

n—oo

e

due to ﬁf(hEA) — /,L]lb(A)> > (0. To compute the one-point functions wf(A’M)(a*(f)) we
1

choose an orthonormal basis {1, ; |v,j € Ng } of HgA) where {1, ;};en, is a basis of

the v-photon sector
A
=
k=1

Since KEA’” 9 leaves the v-photon sector invariant, but the creation operator a*(f)
does not, it follows

e (50 (1) = 3 (v
V,j=0

and therefore is

bt =S,

(Aspep)
eI (g ) = 0

W™D (a*(f)) =0

for all f € bgA). Repetition of the above method shows that u)§A’“ 0 applied to
polynomials in creation and annihilation operators can be expressed in terms of
products and sums of the two-point functions (1.43), we say that the state is quasi-
free. We will resume the notion of quasi-freeness in Section 1.3.4. The quasi-free
structure of wf(A’” 9 leads to

wf(A,uf)(W(f)) = exp (_ng’“f)(;I)(f)Q))

= oo (1 (| (o2 1))
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where we defined the operator

~1
pEAﬂuf) - (eﬁf(hEA)m) _ 1) '

The arguments entering here will be illustrated further below when we present an
alternative way to motivate the definition of the equilibrium state. All the above
statements are summarized in [11, Prop. 5.2.28].

So far, we have established the equilibrium situation of the photon gas in the box
A. We aim to realize an equilibrium situation for the free gas in R?® by a controlled
lifting of the confinement for a system at equilibrium. This procedure is referred
to as thermodynamic limit and is elaborated in the sequel. We observe that the
one-particle Hilbert space th), the Fock space HﬁA) and the local algebra AgA) as
well are increasing with the size of the box in the sense that

A A
b < b,
MM < HM,
AP < A

for A C A'. Let Ay C Ay C ... be an increasing sequence of bounded regions
with sufficient regular boundaries which converges towards the whole position space,
A, / R? as n — o0, in the sense that every bounded subset of R? is contained in
a set A, if n is large enough. We denote by

A = \/ A

neN

the quasi-local algebra which is the norm closure of the algebra generated by the
union of all AgA”). Since we want to control intensive quantities as the energy
density and the photon number density of the expanding system we require that the
limit process guarantees the existence of

wf(An aHf) (Hf(An))

er ;= lim

n—o0 |A'TL | ’
1' w§An7Nf) <Nf(An)>
ng := lim
R~ A,
as real numbers, where | - | denotes the Lebesgue measure. The partition function

will diverge, i.e.,
lim Z®#0) (3) = o0,

n—oo
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) accumulate to continuous spectrum reflecting

that the system goes over to an infinite one. This implies that the equilibria wEA"’“ 2

will not tend to a Gibbs state.

since the discrete eigenvalues of Hf(A

With the arguments of [11, Prop. 5.2.29] we construct the equilibrium state in
the thermodynamic limit. Given a Weyl operator W (f) € AﬁAm) with f € hﬁAm) the
local observable W (f) will be contained in AEA”) for all n > m. This allows us to
consider the limit

w(W(f)) = lim lim ™" (W(f)) (1.44)

pe—0 n—oo

- e (=3 (7] () 1), )
= exp (—i (f1(1+2p) f>h1>

where the multiplication operator pr is given by the radiation density of a black-body
radiator

pr(F) =

eﬁfW(E) — 17

known as the Planck law. In order to describe an inert photon gas we chose the
chemical potential ¢ to be zero in the definition (1.44) of we. This, however, re-
quires that the form factors f obey a more stringent infrared regularization, namely
w™2f € L?[R?], to be in the domain of p;. This was respected in the buildup of
the algebras A, (1.33), and AﬁA), (1.41). The definition (1.44) extends to a state

on the whole quasi-local algebra qul). We further have

lim lim wf(A"’”f) (Aozg(AmM)(B)) = wi (Aaj(B))

pe—0 n—oo

for A,B € AEA") which implies that the formal KMS condition
Wy (Aoz?rwf(B)) = wr (af(B)4) ,

extended to all A, B € qul), survives the thermodynamics limit, unlike the Gibbs
characterization of an equilibrium state. However, care has to be taken since the
lack of continuity properties of the dynamics as does not make (qul), ag) a C*- nor
a W*-dynamical system such that we rephrase the KMS condition for wf once we
have a suitable representation.

We shall mention that the thermodynamic limit depends on the boundary con-
dition on the box and on the way how the thermodynamic parameters (e.g., the
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photon number or energy density) are controlled while the system is expanded. Dif-
ferent thermodynamic limit processes might yield different thermal equilibria. For
instance, if we drop the requirement about the finite particle density n¢ of the photon
gas and, instead, we postulate a finite density of particles in the ground state the
thermodynamic limit yields an equilibrium state of a free photon gas in the presence
of a sea of photons, the so-called Bose-FEinstein condensate, for details refer to [33].
The non-uniqueness of equilibrium states at a given temperature is usually referred
to as a phase transition. The typical situation would be that, for a distinguished
temperature ¢y and a chemical potential pug, there exist two or more equilibrium
states which show significantly different photon number densities. These equilibria
would be considered as different coexisting phases. In our construction of a photon
equilibrium state we implicitly avoided to be in a phase transition regime.

1.3.4 Empirical Definition of a KMS State and Araki-Woods
Representation

While the derivation of a thermal equilibrium state for the free photon gas via ther-
modynamic limit is conceptional we present an alternative approach which rather
bases on empirical physical arguments but reaches at the same result. We show
afterwards that the obtained state actually fulfils the mathematical KMS condition.
The subsequent considerations are not carried out rigorously but lead us to the
definition of the equilibrium state wy.

Since our algebra of observables A; is generated by the Weyl operators it
is sufficient to determine the action of wy on W(f). Assuming that the map
t — we(W(tf)) is analytic for any f € bh; the state is defined by the functionals
(fiy-o s fn) = we(P(f1) - @(fn)) with fi1,..., fn € by and n € N. We want to nar-
row down all the possible choices of wy by using that the photons are not interacting
with each other. To this end, we express

(@) @(f) =D D0 wlhelfii € Der( [T ()
J=1IC{1,...,n}, i=0,
151, #1=j igl

in terms of the so-called truncated functionals w) (fi;i € I). Note that I is

trunc
regarded as an ordered subset of {1,...,n}. The truncated functionals can be

extracted from the state wy recursively, e.g.,

Wi (f1) = wr(®(f1)),
Winmne(f1s f2) = wi(@(F1) @ (f2)) — wi(@(f1))wr(®(f2)),
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and represent the correlations between the operations of creating and annihilating
of photons with given momentum distributions fi,..., f,. To ensure that the state
w describes non-interacting photons we require that all multiple correlation are
vanishing, i.e., wt(ﬁl)mc(fi,i € I) =0 for all j > 3. Such a state is called quasi-free.
This assumption was physically justified for our photon model in Section 1.3.3 and
in [11, Sect. 5.2.5] where the equilibrium state of the free boson gas was derived as
the thermodynamic limit of Gibbs states over finite systems.

So far we did not use that the equilibrium state has to be time invariant. Using
that af(a*(k)) = e“®iq*(k) and ol(a(k)) = e *®iq(k) the invariance of wr under
(1.38) implies that we(a®(k)) oc 8(k) where either a# (k) = a*(k) or a#(k) = a(k). It
follows with (1.28, 1.29) and the linearity of wy that we(a*(f)) o< f(0) and we(a(f)) o
f(0). However, the evaluation of a L? function at zero is not well defined such
that the proportional constant must be zero. The same argument extends to the
application of w¢ to several creation and annihilation operators and shows that

we(a*(f1)---a*(fo)) = wela(fi)---a(fn)) = 0. In particular, we(®(f)) = 0 and
therefore the only non-zero truncated functional is

Wi (f1, f2) = wi(@(f1) @ (f2))-

We use this to express w(®(f)") in terms of wi(®(f)?). For even exponents we get

we(@(N)™) = D wl(@()Dwr(@(f))
BRIk
2 2m—2 (2n)! 21\n
= (2n — Dwr(@(f)")wr(@(f)™7) = we(®(f)7)",

nl2n

and for odd exponents we compute similarly

wr(O(f)* ) = > wl@()Dwe(@(f))
IC{1,...2n+1},
151, #1=2

2nwe(®(f)*)wr(@()™ 1) = 2" nlwe(P(f)*)"we(P(f))

and therefore

w(W(f)) = wi(@(f)*) = >

It remains to fix we(®(f)?). This requires another physical input implementing
that wy describes the radiation of non-interacting photons in a thermal equilibrium
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—

at inverse temperature f;. Given that we(a*(k)a(k’)) is the measured particle density
of photons with momentum k, &/, resp., we get by the Planck law

wi(a* (B)a() = 6(F = K)pu(R), (1.45)
where .
k) = ﬁ
pf( ) eﬁfw(k) —1

is the radiation density of a black-body radiator. We remark at this point that we
sometimes use the radial symmetry of pr to interpret

- 1
pe(E) = pe(Ek) = oBE

-1

as a function of a positive variable E, where k is a unit vector. Equation (1.45) can
be extended to

we(a™(fla(g)) = (g pef )y,
for f,g € h; and therefore

(@ (F)) = gra (1) +alf)? + 20 (Fa(f) + I1) = 5 |V T+ 20 £

2
b1
Finally we are in the position to specify wy on the Weyl algebra,

(W (f)) = exp (—i |vivens b) (1.46)

which coincides with the derivation (1.44) of an equilibrium state with the thermo-
dynamic limit procedure. We note that the definition (1.46) requires that f fulfils
the infrared behavior w™'/2f € h; what we already respected when we defined the
Weyl algebra in (1.33). Because of the CCR for Weyl operators, (1.35), and linear-
ity, the assignment (1.46) extends to polynomials in W (f;),..., W (f,). It remains
to show that wy is well defined as a state on the Weyl algebra. We will prove the
state properties of wy with the help of a theorem of Araki and Segal.

A representation (H, ) of the Weyl algebra Ag = span {W(f) | f € D¢ } into the
bounded operators on a Hilbert space H is called regular if the functions R 3 7 +—
7(W(7f)) are strongly continuous for any f € D;. Regularity of the representation
is, by Stone’s Theorem (c.f. [40, Thm. VIIL8]), equivalent to the existence of a self-
adjoint operator @, (f) on H, referred to as the field operator in the representation
m, such that for all 7 € R

T(W(rf)) =m0
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holds. For a cyclic representation (H, 7, U) of the Weyl algebra Ay, i.e., if ¥ is cyclic
w.r.t. m(Ag)”, we can associate a generating functional by

Z:D €, Z(f) = (U] x(W()T)y

where ( - | - ),, is the inner product of H. The following theorem, due to Araki and
Segal, c.f. [1, Thm. 4.2, 4.3], characterizes the generating functional of a regular
and cyclic representation of the Weyl algebra.

Theorem 1.1 (Generating Functional & Representation) Let D be a dense
subspace of 1. A map Z : D — C is the generating functional of a regular and
cyclic representation (H,m, V) of the Weyl algebra W(D) over D if and only if the
following conditions are satisfied:

(i) Z(0) = 1.
(i) The map R 3> 7+ Z(1f) is continuous for each f € D.

(i1i) For any fi,..., fn € D and any ay,...,a, € C (n € N) we have

Jk=1

Furthermore, if the conditions (1) — (iii) are fulfilled, the representation (H, 7, V) is
uniquely determined, up to unitary equivalence, by the generating functional Z.

We apply the above theorem to the map Z(f) := wi(W(f)) as given in (1.46). It
is obvious that the conditions (i) and (ii) are fulfilled. An elementary computation
shows that (iii) also holds in this specific case. By Theorem 1.1, we are given a
Hilbert space H?, a representation 7 : A — B(HZ) and a cyclic vector €y € H?
such that w¢ can be written as

wf(A) = <Qf |7Tf<A)Qf >H? (147)

for each A € A;.

The above theorem guarantees the existence of a regular, cyclic representation
(HZ, 7, Q) for the state wr. We now specify the representation. The representation
Hilbert space is given — similar to the particle case considered in Section. 1.2.3 — as
the tensor product of the zero temperature Fock space H; = F(h) with itself,

H? = H; ® H;.
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The Weyl operators in A; are mapped into the algebra of bounded operators on H?
via the assignment

m(W(f) = W(/1+pe f) @ W(/px f) (1.48)

which is extended linearly to the whole algebra. Note that, because of

me(W(f))me(W(g))
= W/THp HIW(/THprg) @ WA DW(/73)
i, et

xW(V1+pc(f +9) @ W(/pr [f +3))
= 6_%<f‘g>h17Tf(W(f +9)) = (W (f)W(9)),

the map 7; is multiplicative and a representation of the CCR. This representation
was first specified by Araki and Woods in [2] and will therefore be referred to as
Araki-Woods representation, it is the GNS representation for the state wy. The
proof, that (1.48) is indeed well defined as representation, is given in this reference.
The field operator @, (f) of the Araki-Woods representation can be derived from
(1.48) as the derivative (in a strong sense) of the strongly continuous group R >
7 +— me(W(7f)). Using the Leibniz rule we get

Pow(f) = 8 lr=ome (W (7T \/ 1+ ps f) ®I]-Hf+]]‘Hf®q)(\/_f)

The corresponding creation and annihilation operators of the representation, a’ (f)
and a,y (f), resp., are given by

[(I)aw(f> - Z(I)aw(lf)]
(V1+pe f) @ Ly + Ly, @ aly/pr ),
1 . .
aaw(f) ::ﬁ[q)aw(f> + Zq)aw(lf)]
=a(\/1 4 p; ) @ Ly, + Ly, @ a*(\/p1 [)-

This allows us to extend the representation m; from Weyl operators to polynomials
in creation and annihilation operators by setting

mi(a*(f)) = ag(f),  me(alf)) = aan(f). (1.49)

Note that the creation and annihilation operator in the Araki-Woods representation
also obey the CCR, i.e.,

g (f) =

|
SR
(]

(1.50)
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The vector
Qf = Qvac X Qva(37

built of the vacuum vectors of the Fock space factors, will play the role of the
cyclic vector. The proof of the cyclicity of Q¢ can be found in [2, p. 648] and uses
similar arguments as the proof that . is cyclic for the Weyl algebra A¢, given
in Sect. 1.3.2. With the help of (1.37) we show that the triple (HZ, 7t, Q) actually
reproduces the generating functional in the sense of (1.47),

(% [ (W () )32

= {( Qe | W0t D% ) { Do | W (/01 P )y
= oo (5 [viFas] ) e (< 1vesiz,)
= w(W(f)).

To complete the section we check explicitly the KMS condition (1.2) for the state
wr. We remark that the dynamical system (Ag, af) is neither a C*- (the evolution
{at}er is not strongly continuous in the C*-topoply) nor a W*-dynamical system
(the algebra Ay is not weakly closed in B(Hs)). In Section 1.3.6 we will address
this issue by transferring the problem from the system (A, af) to a W*-dynamical
system on the W*-algebra m¢(A¢)” using the representation ;. For the moment we
define for this particular system a KMS state to be a state which fulfills (1.2) for a
function F4 p associated with elements A, B € A;. Because of the CCR for Weyl
operators (1.35) the linear combinations

A:ZCjW(fj), B:dew(gk)>
j=1 k=1

with ¢;,d € C and f;, gr € Dy, span the algebra A;. For such a pair A, B € Ay we
compute, for t € R,

wi(Aaf(B)) = wi( Y W (h)dW (*'g0))

jk=1
= ) cdiexp ( - %Im Cfi € g )y, )“’f(W(fj + 6M9k>>
jk=1
= Z c;dy exp < - %Im { f; | e gp >b1 )
jk=1

1 .
X exp(— 1 H\/l + 2p¢ (fj —i—e“”tgk)

)
b1
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o)

> i W ()W o)) esp (= 2 (f [ e'ar), )

jk=1

X €xXp ( - % << fi ‘pfeiwtgk >r;1 + <g’€ ‘pfe_iwfj >f)1> )

Because of |e®s| < 1 and |pp(k)e=®s| < % for s € C with 0 < Im(s) < 5

and since f;, gx € Dy, the map R 3 ¢ — wi(Aaf(B)) has, by dominated convergence
theorem, an analytic continuation to Dg, = {z € C |0 <Im(z) < B }. We denote
the continuation by F4 p and observe that Fy p is continuous on the boundaries of

Dg,. We compute

Fap(t+ifB) =

where we used that

o0

S i W)W i) exp (= 2 (f; | <5g,), )

jk=1

1 . ;
S exp ( - << f; ‘pfezwt—ﬁfwgk >h1 X <gk ‘pfe—lwt-i‘ﬁfwfj >h1> >

o0

> eidiwr(W(f;))we (W (ge))

jk=1

o (= ({on [0, ))

X exp ( _ % (( fi |1+ prle Precitg, >h1> )

o0

> eidiwr(W(f3))wor(W (g)) exp ( - % (e g | fi )y, )

]7k:1

1 . ‘
cexp (=5 (( i [orfi )y, + (s oe'ae), ) )
Z c;dy exp ( — %Im < ei‘”‘tgkJ { 1 >h1 >
jk=1

1 . 2
X exp(— 1 H\/l—l-pr (e g, + f;) b )
1

> ¢jdiexp ( - %Im (e“"ar | fi )y, )Wf (W(emgk + fj))

J,k=1
u)f< Z dkch(ei“’tgk)W(ij
J,k=1

w(al(B)A), (1.51)

pre’™ =1+ py. (1.52)
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We stress that the GNS representation (HZ, 7, () of the state wy depends on
the inverse temperature (¢ of the equilibrium it is describing. We remark that for
wr and wi being the equilibrium states as constructed above at different inverse
temperatures ¢ # [}, resp., the corresponding GNS representations are not unitary
equivalent. This implies that thermal equilibria at different temperatures are not
normal w.r.t. each other, i.e., their relative entropy is infinite.

1.3.5 Modular Structure of the Photon System

The access to the modular structure of the photon system is given by the anti-linear
operator

Sf . Mfo — ./\/lfo, AQf — A*Qf
where St is initially given on M) with
Mf = Wf(Af)”

but extends to a closed operator also denoted by S;. Note that the vector 2 is both
cyclic and separating for My and therefore St is well defined on a dense domain.
The aim is to decompose S¢ in a anti-unitary operator J; and a positive operator
AE/ ? as discussed in Section 1.1.2. We introduce the positive operator

A; = e PrHi ® ePiHe
and note that

Ji[(@(fa) -+ a”(f1)) @ (@ (gm) - - - a™(91))12
= (@(g,) - a"(91) @ (@ (f,) - a (1)

defines an anti-unitary operator J; on H?. Hereby, the conjugation f of a function
f € L*[R3] is the usual (pointwise) complex conjugation. We check the relation

¥ ~—
~—r
)
oy
—

Sr = JiA? (1.53)

by explicit computations. Let W (f) € A; with e#“/2f € D;. Expanding the Weyl
operator in a power series, using that €2 is an analytic vector for ®,,(f), we obtain

'k
[ q)aw(f>ka

NE
?s“|@

(W () =

£
Il
o

,l'k:

@ (VI o0 )+ aly/T+p1 ) @ T
¥ @ (@ (V) + oy 1))

[
518

£
Il
o
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With the help of the pull through formula (1.32) and the fact that Al/ Qr = Qf we
get, using relation (1.52),

TP (W ()

o0

ik i _
= J; Z 9k/2[ [(a (V1+pre ﬁfw/zf) +a(y/1+ pr eﬁfw/Zf)) ® Ly,
k=0 )

g @ (@ (VT + al Ve )| o

—i)k
2k/2
(a*(Vpr f) +aly/pr [)) @ Ly
+ Ly, @ (a*(v/ 1+ pe ) + a(y/1+ pe f))
+a(y/pr (€7 — 1) f) ® Ly, + Loy, ® a(y/1 4 pr (e — 1)7)] Q
—i)k
2k/2
Ty, @ (a*(V/ps f) + a(/ps )

a*(V1+p f)+a(/1+pi f)) @ 1y,
+ Ly, @ a(/pr (€5 = 1) f) +a(y/1+ pr (e = 1) f) @ Loy, | Qs

I
[

k=0
X Jf

L

Il
Mf

Il
o

— &

We abbreviate

A = (a*(V/T+pf) +a\/1+pff ) ® Ly, + Ly, @ (a* (/1 f) + al\/px f))
B = a(y/T+pi (e —1)f) ® Ly, + Ly, ® al/pr (7 — 1)F)

and note that By = 0 and

B,A] = [a(y/TFpe (e = 1)),a"(VT+pr f)] @ g
+1pg ® [a(y/px (€7 = 1) f), a* (v/ps f)]
= (f]A+p)e ™ =1)f ), +(F|p(e™ = 1)),
= (fIlpr =1L —=pr) + 1+ pr = pe)l )y,

|
o
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This implies that [A + B]*Q; = Aka and we may write
Jng/QWf(W(f))Qf = Z 2k/2l<:' [ (V1+pef)+a(/1+psf)) @ Ly,
=

g © @' (Vo T) +aly )] 0
T (W(—=f))S%
= Sime(W(f)) k.

This proves the polar decomposition (1.53) of S; in the product of the modular
conjugation J;y and the square root of the modular operator Ag.

The modular conjugation J; enables us to introduce the anti-linear representation
o Ay — B(H3), i (A) = Jeme(A) J;
which acts on a Weyl operator as

m(W(f) =W/ f) @ W(V/1+pe f).

The fact that 7{ is commuting with 7¢ follows from Tomita-Takesaki theory but can
also be verified with the help of the CCR in the version (1.35) for Weyl operators,

T (W(Nm(W(g) = WK YW1+ prg) @ W(y/1+ pr [IW(
efum[<mf|mg>,,l+<mﬂmg> ]

xW (/14 pe )W (/o [) @ W(/pr g)W (\/1+ pr )
i {2 Re( f]v/pi(1+p0) g >b1}
xW(V1+pr )W (Vpr ) @ W(/or gIW (V1 + pr f)
= m(W(g)m(W([)).
As a consequence we get the relation
me(Ar)" 2 me(Ae)”,
Tomita-Takesaki theory even yields
7T§(.Af>, = Wf(Af)//.
The corresponding positive cone is given by

{Wf(A)Jfo(A)Qf ‘A c Af}

— { > GaW (V14 fi+ Vo fo) @W (o f; + /1 +pf?k)9f)

jk=1

Cly...,cp € C, fl,...,fHEDf,nE]N}.
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Figure 1.4: Spectrum of the free field Liouvillean associated with wy.

1.3.6 Liouville Operator and Return to Equilibrium

The free field Liouville operator associated with the state wy and the time evolution
ay is given by the self-adjoint operator

Lf = Hf X ﬂHf - ﬂHf X Hf.

To verify this statement we have to check that Ly implements the time evolution on
the representation space in the sense

el (A)e it = mp(al(A)), (1.54)

for all A € A;, and that the group e*! leaves the positive cone P; invariant. Given
a Weyl operator W(f) € A; we can express its evolution under g as

mef(W(f) = m(W(e'f) =W (/T4 o f) @ W (Vor e='f )
= [emw (m F)eit) @ e W (i T) €]
= elita (W (f))e L.

An extension of this relation to all observables from the Weyl algebra establishes
(1.54). Tt further holds for A € Ay,

eiLftﬂ'f(A)Jfﬂ'f(A)Qf = Wf(O{f‘(A))eriLftﬂ'f(A)Qf
= Wf(Oé?(A))Jfﬂ'f(a%(A))Qf e P
using that apparently L¢Q; = 0 and iL¢J; = JyiLe. By continuity of e'** and the fact
that P is closed it follows that the group generated by L leaves the cone invariant.

The above considerations justify that L; is referred to as standard Liouville operator
corresponding to the state we. Its spectral properties can be summarized as

ker(L¢) = CQy, specac(Ls) = R\ {0} (1.55)

and are illustrated in Figure 1.4.
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As already announced we have to reconsider the notion of KMS states for the
photon system since (A, ar) is neither a C*- nor a W*-dynamical system such that
the concepts of Section 1.1.2 do not apply directly. We are exclusively interested
in the dynamical behavior of states close to the equilibrium at inverse temperature
fr in a relative entropy sense, i.e., we study states n = (¢ |7Tf<‘>£>H?, £ € Py,
on A; which are we-normal. The fact that these states are expressible in terms of
the representation ¢ and the link (1.54) between the dynamics af on A; and the
dynamics [mray] = {[mras] Her on m(Ag)”, given by

[mroy]t(A) i= ettt Ae~

suggests that we transfer the dynamical considerations to the system (m¢(Ag)”, [mroy])
which turns out to be W*-dynamical. Identifying an wg-normal state n =
(& ”ﬂ'f(')f>7_‘? on Ay with the normal state (& | (-)f)H? on 7(Af)” we call n an
(a, Br)-KMS state if (& |(-)€) is a ([mray], Br)-KMS state. The relation (1.54) and
the computations (1.51) imply that wy is a G-KMS state w.r.t. as in this sense.

The absence of linear independent (w.r.t. ) vectors in the kernel of Ly implies
that there are no wg-normal stationary states beside the equilibrium state itself, c.f.
(1.7). Further, the fact that the remaining spectrum of L¢ is absolutely continuous
implies that any wg-normal state converges under the time evolution {at}er towards
the equilibrium as ¢ — oo. This property is referred to as return to equilibrium
property and can be understood by the following arguments. The fact that € is
separating for me(As)” = mi(Ag)" implies that Q¢ is cyclic w.r.t. 7 (Ag), c.f. [10,
Prop. 2.5.3]. Given an wg-normal state

(€ |7l )E D
with £ € Pr we find an approximating state
ne = (mp(B)Q [ me( - )mp(B) )

with B € A, ||7r§(B)Qf||H? = 1 and ||77—77€|A; < ¢ for a given ¢ > 0. This
approximation behaves under the time evolution as follows,

N(ab(A) = (mHB)O | we(ab(A)mi(B) ),
= (m(B*B) | mi(af(A)) Qf>H2
= (m(B*B) | et me(A) Qf>H2
s (m(B*B) |y (| me(A) o

= Wf(A),
where we used that the group e’** converges weakly towards the orthogonal pro-
jection |Q) (€| onto the kernel of Ly due to the spectral properties (1.55) of L.
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Because || o at —n. o af|

[n(ar(A)) = wi(ar(A))]

4+ < € uniformly in ¢ € R we obtain
f

< [n(ab(4)) = ne(ar(A))] + [ne(ei(A)) — wi(af(A))]
< et ne(ep(4)) — wiar(4))]

t—o00
— &

where £ > 0 can be chosen arbitrarily small. This implies the return to equilibrium

property
tlim n(ak(A)) = we(A) forall A€ A

We add some remarks. As illustrated above the thermal relaxation behavior of
states which have finite relative entropy compared with the equilibrium state is
predicted by spectral properties of the Liouville operator L¢. This concept was elab-
orated by Jaksi¢ and Pillet in [24]. The absolutely continuous spectrum of L¢ away
from a simple zero eigenvalue goes back to the corresponding spectral properties of
H; and it encodes the dissipative character of the system. The continuous spectrum,
as it is typical for infinite systems, enables the mechanism of sending energy to in-
finity which is necessary to force relative normal states into equilibrium by thermal
relaxation.

All states relative normal w.r.t. the equilibrium are in its region of attraction.
We cannot expect that the equilibrium state wy at inverse temperature J; is also
attracting for states which are separated by an infinite relative entropy. For instance,
any KMS state w; corresponding to an inverse temperature i # 3 is stationary
under oy and therefore will not converge towards wy. This, in turn, implies that
KMS states of the photon field at different temperatures cannot be normal w.r.t.
each other, unlike in the case of the finite particle system where all states are normal.

1.4 The Composed Particle-Photon System

The aim of this work is to study a particle system, as described in Section 1.2,
interacting with several photon reservoirs, as introduced in Section 1.3. The setup
of the joint system is the following. Each photon reservoir, still decoupled from the
particle system, will be prepared in a thermal equilibrium state — or close to it in
the relative entropy sense. Each reservoir therefore tends to thermally relax into an
equilibrium configuration as long as it is not interacting with the other constituents,
c.f. Section 1.3.6. However, we do not require that these reservoir equilibria are
w.r.t. the same temperature. In fact, we are most interested in the situation where
the reservoir temperatures do not coincide. A state describing that situation would
be far from equilibrium since it cannot be normal w.r.t. several equilibria of the
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Figure 1.5: Model of the composed particle-photon system.

photon subsystems at different temperatures. We discussed that in Section 1.3.6.
The setup is illustrated in Figure 1.5.

1.4.1 Zero and Positive Temperature Framework

The Hilbert space of configurations of a single particle system coexisting with R € N
reservoirs at zero temperature is given by the tensor product of the particle Hilbert
space ‘H,, with R copies of the bosonic Fock space Hj,

ém] |

r=1

H=H,®

The Hamilton operator Hy of the non-interacting system is given by the sum of the
Hamiltonians of the sub-systems

R
Hy = H,+ Y Hi,,

r=1

where
Hip =1y, @I, ® - @ 1y, @ Hy @y, @ -+ @ Ly

r
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is the Hamilton operator only acting on the 7™ reservoir and we abbreviate

éﬂﬁf] |

r=1

H,=H,®

The observables of the composed system are collected in the C*-algebra

©4

= span{(A@W()® - @W(fr) [A€ Ay fr. - fr €D} "

A = A, ®

on which the free time evolution
ah: A— A, af(A) = et Ae=tHot teR,
acts.

The initial setup of the joint particle-photon system as described in the introduc-
tion to this section is realized by a state which is normal w.r.t.

R
|
r=1

Hereby, the state wr, is the KMS state (1.44, 1.46) of the r' reservoir at inverse
temperature 3, > 0. We do not display the temperature dependence of the state
wo. The particle component w,, actually, can be chosen arbitrarily (all states of
the particle subsystem are normal) but is fixed as the Gibbs state (1.14) at inverse
temperature 3, > 0. The particle temperature therefore should not be thought of
as a parameter determining the thermodynamics but as a degree of freedom used
to adapt the description of the system at the analysis. For convenience we will
later choose the particle temperature the same as the minimal temperature of the
reservoirs. Apparently, the state wy is invariant under the free time evolution «y.
Using the results (1.17, 1.47) of the previous sections we write the state in its GNS
representation

Wy ‘= wp @

wo = (o |7(-)),
where

Ti=Tp ®

®7Tf7r] : A — B(H?) (1.56)

is a representation of A into the bounded operators on the Hilbert space

H =M. ®

®H§] ~HQH. (1.57)

r=1
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= —— & & & —0
Ek-E] Y O e E]-Ek

Figure 1.6: Spectrum of the free standard Liouville operator associated with wy.

The inner product { - | - ) without index shall refer to the Hilbert space H?. The
representations 7, are copies of the Araki-Woods representation 7y introduced in
(1.48) corresponding to the equilibrium of the photon gas at inverse temperature
Bf = 61"7 i.e., _

e (W(f)) =W/ 1+ pey /) @ W(/prr f),

where p¢, is the radiation density at inverse temperature (,,

- 1
(k)= ——.
Pt (k) ol 1
The vector representative
R
Q=00 |Q x| € H (1.58)
r=1

of wy is cyclic and separating for the algebra m(.4)” which follows from the cyclic and
separating properties of 2, and Q¢ w.r.t. m,(Ap)” and 7, (Af)”, resp. We remark
that the vector €2 carries, through the factor €),, a dependence on the particle
temperature (3, while the representation 7, along with the factors =, is dependent
on the reservoir temperatures [3,.

The modular structure associated with the state wy is given by the modular con-

jugation
R
]

r=1

J=J,®

and the modular operator

R
Q) Ar | =

r=1

AO = Ap®

Y

where Ag,. := e PLt and

R
Lo:=ByLy+> BiLi, (1.59)
r=1
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is a rescaled free Liouville operator, using the notation

Liy = Lig @ @ - Q@ Lypp ® Lt Qlyp ® -+ ® Lyge]

T

for the free field Liouville operator only acting on the " reservoir. The relation
Som(A)Qp = JAY T (A)Qy = m(A*) (1.60)

follows directly from previous considerations, refer to (1.18, 1.53, 1.56, 1.58). The
free rescaled Hamilton operator corresponding to (1.59) is given by

R
Hyeoe := ﬁpHp + Z ﬁer,r
r=1

and it is used to implement the rescaled time evolution
op: A— A, OL(A) 1= eHresct pgmHrescl teR, (1.61)

under which the state wg becomes a (09, 1)-KMS state. The evolution og = {of }1er
is lifted to the modular automorphism group associated with wqy via m, i.e.,

T o O_(t) — eiﬁotﬂ_( 3 )e—iﬁot'
The Liouville operator Ly corresponding to wy w.r.t. the free evolution {af}ier is

given by
R

Lo:=Ly+ > Lty
r=1

its spectrum is illustrated in Figure 1.6. Note that each eigenvalue of L, is also an
eigenvalue of Ly to which R complete real lines of continuous spectrum, resulting
from the spectra of L;,, are attached. The eigenvalues are therefore covered by
N? x R layers of continuum, hence they are embedded to a high degree. We remark
that wg is no ap-KMS state to any temperature unless the reservoir temperatures
are all the same. This statement has to be interpreted in the sense of Section 1.3.6,
i.e., the state (o | (-)) on the W*-algebra 7(A)” is no KMS state to any inverse
temperature w.r.t. the evolution [rag] = {[rao]’ }er With

[Tag]f(A) := ettt Ae— ot

for A € m(A)". The anti-linear representation resulting from the modular structure
commuting with 7 is defined in the usual way,

™ A — B(H?), 7'(A) .= Jr(A)J.
The positive cone is denoted by

P = {AJAQ, [A € n(A)"}.
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1.4.2 Jaksié-Pillet Glued Representation

This subsection rather provides some technical and notational tools to handle the
particle-photon model. For the sake of simplicity in the presentation of the model we
rewrite the Hilbert space H? as given in (1.57) and the representation 7 mapping into
the bounded operators on H? using an isometric isomorphism which glues several
Fock spaces together. This procedure goes back to the paper [23] of Jaksi¢ and Pillet
and is therefore known as Jaksié-Pillet gluing.

We start considering the factor H? = H; @ H; = F(h1) @ F(h;) corresponding to a
single photon reservoir which appears as a tensor product of two bosonic Fock space
over h1. The exponential law for Fock spaces provides us with a unitary isomorphism

V: F(hy) © F(by) = F(by & by), (1.62)

where the target space F(h; @ by) is the bosonic Fock space over h; @ b;. Its vacuum
is denoted by €2y, ¢5, and the creation and annihilation operators by a;;l@bl( f®g)
and ag, g, (f @ g), resp. The isomorphism (1.62) is given by

VIQac @ Qvac] = Q0,5

Va* (f) @ Ly, V" = ay g, (f ©0),

Vi, @ a*(9)V " = ap 0, (08 g).
Next, we note that

b ® by = L*[R®, d*k] ® L*[R®, d*k] = L*[R x 5%, d(u, )]

such that we understand (for a given pair f,g € L?[R3, d*k]) the direct sum f @ g
as a square integrable function over R x S? given by
uf(uX), u>0,

YY) eR x S%
ug(—uX), u <D0, (%)

[f@g](u7 E) = {

Applying the exponential law for Fock spaces a second time we can represent the
R-fold tensor product ®f:1 H? as a single bosonic Fock space

R H; = F(P LR x 8, d(w. )] ) = F (LR x 5% x N, d(u, 2,r)))

where N := {1,...  R}. Identifying the original Araki-Woods representation with
the glued one we may express the creation and annihilation operators acting on the
various reservoirs as

R
D L@@y @ [0 (f,) @ Ly, + 1y, ® A (9:)] @ Lyp ® -+ @ Lyep
r=1 v

T

= dj(fey)
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where f = (fi,...,fr), 9 = (g1,-.-,9gr) and

ufr(uX), u>0,

f ©gl(u, ;7)== [fr © g} (v, 2) = {ugT(—UZ)7 u<0

and

ag(h d% h(u, S, 7)ag(u, 3, )

d¥ h(u, ¥, r)ag(u, X, 1),

i/
by

for h € L?[R x S? x N¥] being the glued creation and annihilation operators, resp.
We denote by

afy(u, %)
———
= uxXx T#

-~
T

the pointwise creation and annihilation operators on the glued space F(L*[R x S? x
N#]). The corresponding field and Weyl operators are given by

1 *
Oyi(h) = 7 [az(h) + ag(h)]
W (h) = e ®a®),

The vacuum is denoted, for notational simplicity, by .. also. For notational con-
venience we abbreviate

(T, dy) := (R x $? x N, d(u, 3, 7)) (1.63)
such that we finally achieve the structure
H® = Hf, ® F(L*[T, dy)).
The pointwise creation and annihilation operators fulfil the CCR

[a;(u,E,r),a;(u’,E',r')] = lag(u, 2, r), ag(u', X, r")] =0,

* / /! / / / (164)
lag(u, X, ), af (v, 5 1")] = 6,00 (u — u)o(Z — ),

as one verifies by applying the CCR (1.30) for a, a*.
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To benefit from these notational simplifications we rewrite the representation m
in terms of objects of the glued Fock space F(Y). Let’s abbreviate

G (F) = 1p, ® - ® Loy, @ a(F) @y, ® - ® Ly,
a(f) =1y @ @ Ly, @ ¥ (f) Ry, @ -+ - @ 1y,

r

For form factors f = (f1,..., fr) € DF and A € A, we obtain
R

(Y Ao
r=1

R
= Y )L @@ | (/1)) ®11Hf+11m®<1>(\/p_?)]
r=1

®1H2®®1H2

= p(A) ®<I’g1(9(f)),

where the gluing function g is defined as

9 : D?HLQ[T] (165)
f:(f17-~'7f \/1+pfrfrr1 ..... REB \/Wf) ..... R .

ie.,

[ w WV fe(uD), u=0,
g(f)(u, X, r) = \/1_67 x {(_\/_—u) T.(—uX), u<0.

Note that g incorporates the reservoir temperatures (3, as the representation 7 does.
This finally leads to the following form of the representation m,

T(A@W(h) @ @W(fr)) = m(A) & Wala(f).

The anti-linear representation 7’ can be treated in the same way and we find that

P (A W(h) @@ W(fr)) = m(4) ® Walg (1)),

where

g’(f)(u,z,r) = _g<f)(_u?z>r)
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The field Liouville operators have the following form in the glued representation,

L, =dlg ((u, 2, 7) — 0j,u) = /du/dE ag (U, X, r)uag (u, 3, 1),
R 52

and the free Liouville operator can be expressed as

LO = Lp + Lres
where
Lies == dlg (u, 2,7) — u) = /d(u, ¥,1) ag(u, 3, r)uag(u, ¥,7). (1.66)
T

is the contribution of all photon fields.

The commutation relations (1.64) allow the same reasoning as in Section 1.3.1
which leads to the pull through formula for the glued Fock space. We state this
important formula. Let F: R — B(H?) be a measurable, operator valued function
and let

) = [ dyas AWy
Y
be the second quantization of the measurable function A : T — R, in particular,
dlg(X) is a self-adjoint operator. Then, the following commutation relations hold
true,

ag(y) F (dlg(N)) = F (dTga(A) + Ay)) aq(y),
ag (y)F (dlg(X) + A(y)) = F (dlg (X)) ag (),

to be understood in a weak sense on suitable domains.

(1.67)

1.4.3 Particle-Photon Interaction

We consider photon creation and annihilation processes of first order as interaction
between the particle system and the photon reservoirs. The interaction operator is
given by

Up 1= \/§(I)T(Gr) = ar(GT) + a:(Gr)7 (168>

where G, € L*[R3 B(H,)], r = 1,..., R, are B(H,)-valued, square integrable func-
tions and

a,(F) = / &Pk F(k)* @ an(k),

R (1.69)
o*(F) = / PRFR) @ a(F)
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is the extension of creation and annihilation operators for the r™ reservoir to B (Hp)-
valued form factors F'. The definition (1.69) has to be understood in the sense of
(1.28) and (1.29), i.e., in a weak sense. The operators v,, r = 1,..., R, are self-
adjoint and appear as a perturbation of the free Hamilton operator Hy,

H :=Hy+ gv with V= ZU’“’ (1.70)

r=1

where g € R is the coupling constant. For notational convenience we take g > 0. To
ensure the self-adjointness of the interacting Hamilton operator H we assume that
the following hypothesis is fulfilled.

Hypothesis I-1.2 (Self-Adjointness of H) We assume that the coupling func-
tions G, r =1,..., R, obey the following weighted L?-norm,

/ Bk

RS

12
| |c.(% H < o0, 1.71
W(k)] H ( ) B(Hp) ( )
This assumption results in

Lemma 1.3 (Essential Self-Adjointness of H) Under the assumption of Hy-
pothesis I-1.2, the perturbed Hamilton operator H given in (1.70) is essentially self-
adjoint for g sufficiently small.

Proof. With exactly the same arguments as in the proof of Lemma A.4 we see
that the assumptions (1.71) on the coupling functions G, imply that

ot e

Therefore the interaction gv is relatively bounded w.r.t. Hy with relative bound

R
||9U (Ho—Eo+1)_l||B(H) SQZ/dgl; ] H
T:11R3

for g sufficiently small. The essential self-adjointness of H follows by the Kato-
Rellich Theorem, see [38, Sect. X.2, Thm. X.12]. [ ]

llan(G2) + a2(Go)] (Hir + 17 e / P

R3

B(Hp

The operator H therefore extends to a self-adjoint operator whose extension is
denoted by the same symbol. This allows us to introduce a Heisenberg time evolution
a = {a'}er on bounded operators A on H by

Oét<A) — ethAe—th
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which can be expressed as a Dyson series expansion

t tn—1

at(A):ag(A)JrZ(ig)"/dtl... / dt, [l (v), [...., [l (v), ab(A)]]] . (1.72)

0

The extension of the unperturbed time evolution o to unbounded operators v, is
understood as

ab(v,) == it

vee Mt =, (el (G(+))) + ap (el (G.(+))) - (1.73)
The convergence of the r.h.s. of (1.72) towards a‘(A) holds strongly on vectors
of the form ¢ = ¥, ® [W(g1)Qvac] ® -+ ® [W(gr)ac] and for observables of the
form A = A, @ W(f1) ® --- @ W(fgr), building a dense subalgebra in A, as one
proves with similar arguments as those presented in Lemma B.1(i). Since the Dyson
series expansion (1.72) only serves as a motivation for a redefinition of the perturbed
time evolution and never enters the analysis we content ourselves with this remark
about the well-definedness of (1.72). We note that the evolution group {a'}cr is
well defined on bounded operators, however, it does not necessarily leave the Weyl
operators invariant (and therefore the algebra A neither). Using the Trotter product
formula we can see that for an observable A € A, the following holds true,
Oét(A) — s lim [eiHot/neigvt/n]” A [efigvt/nefngt/n}n )

n—oo

Since €9"*/™ is in the weak closure of the algebra A and since further of =

ettt (. )e~tHot Jeaves A invariant, we can conclude that of(A) lies in the weak closure
A" of A (this is in fact a trivial result because A" = B(H) as one easily verifies).
This implies that

a'(A) C A" = B(H).

The invariance of A under « poses a subtle difficulty in the respect that we aim
to evolve wy-normal states under a. The problem is that the state wg has no normal
extension on A”, i.e., it is not o-weakly continuous extendable to A”. Thus, the
composition wyoa! does not define a priori a state on A. We will bypass this problem
by interpreting the time evolution « not as a group of automorphism on observables
but as a group of transformations acting on wgp-normal states. Hence we have to
redefine for any n € N, (A) what we understand by o' x n rather then considering
the ill defined composition 7 o at.

We give some motivation for the definition of the evolution on wyp-normal states.
Let n = (& |m(-)¢) be an wy-normal state where £ € P. The task is to make sense
of moa!(A) for A € A in order to understand 5o o', i.e., we define the action o * 7
of a on 7. For this purpose we already extended the representation 7 to creation
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and annihilation operators. For operator-valued form factors F' € L*[R? B(H,)]
with w™V/2F € L*R?; B(H,)] we may define in a similar way to (1.49),

wlan(F)) = / P (R @ a(F)
IR3
- /dSE{ [F(E)* ® 1}4 DL @ ® Ly
IR3
@ [ V14 o) alk) @ Ly | @1y @+ @ g

(.

+ [F(E)* ® 1Hp} Bl ® - ® Ly

® [\\/pf,r(/g) by @a ()| elge ol (174

~\~
T

and
m(ar(F)) == m(a-(F))".

T

In the glued version the representation reads

R
(Y@ (F)) = dalalF)) (1.75)
r=1
for F' = (F},..., Fr), where the gluing function g extends to
g:B(H,) @ Df = B(H2) & T,
(1.76)

_ [ u Vu[F(uX) @ Ly, ], u >0,
g(F)(U,E7T) = 1 — e Bru X {(_\/—_U) [FT(—UE)* ® ILHp]a u< 0.

and the glued field operator handles operator valued form factors F' € L?[R x S? x
N{; B(Hy)] as

1 * *
Ba(F) = —= [ dy [FO)" @ aul) + o) © 3(w)]
T
Correspondingly, we can extend the anti-linear representation 7’ by setting
R R
ﬂ( 3 (I)T(FT)> = J7r< 3 @T(FT)) J =0y (g (F))
r=1 r=1

where F' = (F},..., Fg) and
g (F)(u, %, r) i= = Jog(F)(=u, X, 7) .
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It is easy to verify that
[ (r(F)), 7' (2:(G))] = 0

for all F,G € L?[R3; B(H,)] with w™Y2F, w™12G € L*R?; B(H,)].

Having extended 7 to the polynomial algebra of creation and annihilation opera-
tors with B(H,)-valued form factors we are in the position to apply the wy-normal
n to a (G) by making the canonical convention

0 (af (@) = (& | n(al (G))S) (1.77)
where we assume that € is in the form domain of 7(a¥(G)).

The above considerations and Equation (1.73) allow us to apply the representation
7 to the Dyson expansion on the r.h.s. of (1.72). We first observe that

7 ([alr (@), [, [af (v),ah(A)]]])
= [rlaf @), ..., [r(af (v)), m(ab(A))]]]

= [eotn(v) - 7' (v)]e o, |
[P (v) = 7 (v)]e ol ot (A) e ot H .

We now define o x 7 = 7o o = w(al(-)) as

o xm(A) = izg /dt1 /dtn (1.78)
o1 L o b))

tn—1

et r(e) (e o |
L [t m(v) = @' (v)]eT ol etteta(A)eT ot H

where all limit procedures have to be understood in a strong sense on vectors of the
form ¢ = [B, ® Wg(f)]Q0 and for observables of the form A=A, @ W(f;) ®---®
W (fr), refer to Lemma B.1(i) for a similar situation. To simplify the expression
(1.78) we introduce the perturbed Liouville operator

L:=1Ly+gl
where the perturbation part is given by

I:=m7(v) —7'(v) = ag(G — G') +ay(G —G') (1.79)
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with
G :=g(Gy,...,GR),

[ Vi G, (uE) @ Ly, u>0,  (180)
Gl Xor) =\ [T > {(_m)ar(—m)*mﬂp, u<0,

G :=¢(Gq,...,Gr),

T [Vil,eGuE),  wzo (18]
ebru _ (_,/_u)lep@m, u <0,

We remark that this is the analog to the perturbed Liouville operator (1.9) for the
C*-dynamical case although in our case the perturbation v is not a bounded operator
of the algebra A. To ensure self-adjointness of L we require the following properties

of G,.

and

G'(u,3,r) =

Hypothesis II-1.4 (Self-Adjointness of L) We assume that the coupling func-
tions G, r =1,..., R, obey the following bounds,

/ &Pk [w(E) tw ]

R3

< 00.
B(Hp)

Lemma 1.5 Let F' € L*[T;B(H2)] be an operator valued function on the glued
space Y obeying the weighted L? norm

[ =) (el + ) P00 g < o (1.82)
T

Then the operator
Lo+ ag(F) + a(F) (1.83)

15 essentially self-adjoint on the domain of the auxiliary operator

Loy =dlg ((u, X, 7) — |u|) = /d(u, X,1) ag(u, 3, 7)ulag (u, 3, 7).
T

Proof. Let ¢, € D(Laux). We estimate

(¢ [ (Lo + aa(F) + ay(F) ¢ )
res L _ * _
< |=55l H(Laux 172 (0aF) + 03 (F) (Lo + 1))

X | (Lo + DY | (L + 1)
[+ 1ol + CT | (L + )20 | (Lo + 1)12

IA
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where we used that L, is relatively L., bounded with relative bound smaller than
1 and where the constant C'is given by

0 = o [, ol 0 5,0 g

IN

T
g/amzw>w4+wrwnmmzwm;%y<w
T

due to Lemma A.4 (for (0,7) = (i3,0)). On the domain D(Liﬁi) we have the
commutator relation

[Lawss Lo + agi(F) + agy(F)] = [Lawx: agi(F) + ag(F)] = ag([ulF) — ag(|u|F)
because of the pull through formula (1.67). Therefore, for ¢, € D(Lgﬁ), we obtain

(¥ | [Laux + 1, Lo + ag(F) + ay(F)] @)
= ¢’ H(Laux + 1)1/2¢H H(Laux + 1)1/290“ ’

where, again by Lemma A 4,

) )
o2 Q/d(u,Z,r) [ul = [[ful F (u, Z,7) 506

2

IN

d(u, 2, 7) (Ju] + Jul™") [|F(u, 277“)”?3(%12)) < 0.

S— "

A variant of the Nelson’s Commutator Theorem as presented in [38, Thm. X.36’]
implies that the operator (1.83) is essentially self-adjoint on D(L,yx)- [

Corollary 1.6 (Self-Adjointness of L) Under the assumptions of Hypothesis II-
1.4, the operators

L = Lyt+glr(v) —'(v)],
LY = Lo+ gn(v),
LY = Ly—gr'(v),
K® = Ly+g |:7T(U) - (JS o aaﬁs(v)ﬂ : seR, >0,

are essentially self-adjoint on the domain of the operator L,.. Recall that the group
(08)ser entering K was introduced in (1.61).
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Proof. The assumption of Hypothesis 1I-1.4 implies that the form factors G
and G’ appearing in the definition (1.79) of the perturbation I = 7(v) — 7’(v) obey
the bound (1.82),

/ A, B.7) (Jul + [l ™) 16, 2, ) B

T
R o0
ul + ]
= > [t [ TR 16 G
0

R O:)H iQ - 1
= ;/d k (w(k) +w(k)” ) (1 _e,grw(;;) eﬁrw(k ) H HB(Hp)
4
< 3[R0 e ) (e ) o,
n ) ) L L L2
< ;(2@%1)!13‘“ () + 1+0(B) " +w®)?) @@,
< Q.

The same estimate holds for G’. Thus, Lemma 1.5 implies that L is essentially self-
adjoint on D(L,uy). The assertion for the other operators is proved in the same way.

Corollary 1.6 guarantees the existence of the strongly continuous one parameter
group {e'},cr. We find that the expression (1.78) is the Dyson series expansion of
elir(A)e 1 ie.,

of x w(A) = etir(A)e . (1.84)
This statement, again, employs the kind of arguments as given in Lemma B.1(i).
The evolution « is lifted to an automorphism group [ra] = {[ra]'}er on m(A)”

given by ' .

[ra]'(A) == et Ae™ 1, Aern(A)".
We take this relation as a definition and consider (1.73, 1.78) as its formal motivation
rather than a mathematically rigorous derivation.

The excursion leading to the relation (1.84) motivates us to define the time evo-
lution of an arbitrary wg-normal state n = (£ |7(-)¢) by

04*77—<f|04*7r >_<£|61Lt —iLt5>7
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having in mind that o' * n does not result from an automorphism o' on A. Nev-
ertheless, we will henceforth write n o o' instead of o' * n always being aware in
which sense the composition has to be understood and that it only makes sense for
wp-normal states.

The invariance of A under o' has a further consequence that (A, o) does not define
a dynamical system of any kind. The modular theory derived through Section 1.1 is
not directly applicable. We find a remedy in the same spirit of Section 1.3.6 where
we discussed the interpretation of (Ag, af) as a dynamical system. We first remark
the following

Lemma 1.7 The lifted system (n(A)", [ra]) is a W*-dynamical system.

Proof. We have to verify that [ra] leaves 7(A)” invariant. We choose A € (. A)”
and denote LY = Ly + V where V := gr(v) and write V' = JV.J = g7'(v). By
Corollary 1.6 the operator L) has a self-adjoint extension and we obtain with the
help of the Trotter product formula,

ez’L(OtAefiL“)t — «lim [eiLot/nein/n]” A [efin/nefiLot/n}"'

We show that eV*/™ € w(A)”. To this end we choose an arbitrary B’ € 7(.A)" and
observe that

(0] [V B o) =30 L (| ), Ble) = 0

for ¢, ¢ being from a dense set of analytic vectors for the self-adjoint operator m(v)
using that 7(v) and B’ commute. Since [¢?V*/", B'] is a bounded operator we conclude
that the commutator vanishes on the whole space and therefore 'V*/™ € 7(A)".
Since Lg, as the unperturbed Liouville operator, generates an automorphism group
leaving 7(.A)” invariant we obtain

[eiLot/nein/n}nA [efin/nefiLot/n}n c W(A)".
The strong limit does not leave the weak closure such that
e LWt feil Ot ¢ m(A)".
A second application of the Trotter product formula yields

[WO&]t(A) = slim 6iL(Z)t/ne—iV/t/ni| A [eiV’t/ne—iL(Z)t/n]

n—oo

i L) —iL®
— 67,L tAe L\t c W(A)N
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where we used that e=*V"¥/" = JeiV¥/" ] ¢ 7(A)’ commutes with A. It is obvious that
t — ettt Ae~ is strongly continuous for every A € 7(A)” which is the appropriate
continuity property for W*-dynamical systems. ]

We further have an identification between wy-normal states on A and normal
states on 7(A)” via

(Eln()e) = (1))

The state A — (€ | AQp) on 7(A)" is already given in its GNS representation and
its modular structure consists of the same data (mw(A)”, H?, J,P) as the modular
structure of wy. Since we only study wp-normal states we effectively have a W*-
algebra framework at hand. All the concepts have to be transferred to the system
(m(A)", [ral). For instance, by an wp-normal («, 5)-KMS state on A we understand
a state (& |7(-)¢) such that (& |(-)¢) is a ([ra], 3)-KMS state on m(.A)".

We check that the group {e'*'},cgr leaves the positive cone P invariant. Let
A € m(A)" and decompose the operator L = Ly + V — V/ where V' := gn(v) and
V' = gr'(v). We remark that e’V € 7(A)" and e=V'"* = Je'V'J € n(A)’. Since
Ly is a Liouville operator associated with the cone P it leaves the cone invariant.
Applying the Trotter product formula yields

e ATAQ = lim [eiLot/"e"Vt/"e_W't/” nAJAQo.

n—oo

We consider

eiLot/nein/nefiV’t/n} AJAQO — eiLot/nein/nAefiV/t/nJAQO
eiLot/n [ein/nA] J [ein/nA] QO cp
which implies inductively that [e'lot/metVt/ne=1V't/n] " AJAQ, € P. Since P is closed

we obtain

et ATAQ, € P.

The invariance of P under e’“* and (1.84) justify that L is called the standard
Liouville operator associated with wy w.r.t. the perturbed time evolution a.

1.4.4 Heat Fluxes and Entropy Production Rate

To classify the physical system in stationary states away from thermal equilibrium we
introduce the notion of heat flures and entropy production rate. By the heat flux of
one of the subsystems we understand the net flow of energy into the corresponding
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subsystem, i.e., the change of energy in time. The initial heat flux through the
particle system, when the coupling to the reservoirs is switched on, is given by

$p = Oile—oc (H,) = i[H, Hy| = i[gu, Hy]
and the initial heat flux of the 7" reservoir by
b = Ols=oa’ (Ht,) = i[H, Hy,] = i[gv,, H;,] = g[a,(—iwG,) + a(—iwG,)] .

The total flux of the system is introduced as

R
¢tot = ¢p + Z¢f,r = at|t:004t<]_10) = Z[H, HO] = _i[Ha gv]'

r=1

We remark that ¢, ¢r, and ¢ are given in terms of creation and annihilation
operators and can therefore be plugged into wp-normal states n = (& |7(-)§), for
¢ in the form domain of 7(¢p,), m(¢r,), T(Pot), resp., using the extension of 7
to polynomials in creation and annihilation operators as discussed in the previous
section, c.f. (1.77). We further note that while H,, € A, is a proper observable the
reservoir Hamiltonians Hy, cannot be expressed in terms of creation and annihilation
operators and therefore applying of wy-normal states to Hs, is not possible. Doing
so formally would lead to infinite expressions which stresses the fact that the photon
reservoirs accumulate an infinite amount of energy.

We further introduce the entropy production rate observable

R
5= ﬁp(bp + Z ﬁr(bf,r
r=1

which describes the initial change of entropy when the reservoirs at given inverse
temperatures f3,..., g are brought into interaction with the particle system at
inverse temperature (,. This definition is the translation of the thermodynamic
“slogan”

dS = pdQ,

describing the entropy change d.S in relation to the heat transfer d@, to our situation.
Using the definition of the fluxes we see that

R
§=1 |:gU, 6PHP + ZBTHf,T:| - [gv7 iHreSC]ﬂ
r=1

and further
m(s) = [gm(v),iLo],
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in consistency with the definition (1.11) of the entropy production rate in Sec-
tion 1.1.3. However, in the case of bosonic interaction neither the perturbation v
nor the entropy production rate s are elements from the algebra A but we may com-
pute their expectation value in an wy-normal state. The entropy production formula
(1.10) is also valid in the situation of unbounded entropy production observables, it
reads in this context

t

Ent (o a'|wy) = Ent(n|wo) — /dsn o a’(s) (1.85)

0

for any wy-normal state n = (& | w(-)§) with £ from the form domain of 7(s). The
proof of this relation is literally the same as the proof given in [26] for C*- and
W*-dynamical systems with bounded interactions from the algebra, except for the
convergence of the employed Dyson series which is only strong in our context.

1.4.5 Technical Requirements

We provide a set of requirements on the mathematical objects of the considered
system. These assumptions are essential for the analysis we perform on the system.
The first hypothesis deals with the regime of parameters which might influence the
observation of the studied phenomena, that are the reservoir temperatures and the
coupling constant. The coupling constant g is treated as a perturbative parameter,
i.e., it is chosen sufficiently small. All results shall hold uniformly for low tempera-
tures while the high temperature regime is excluded for simplicity. Further, several
results will only hold for small temperature differences which, however, need not to
be small compared with the strength of the coupling.

Hypothesis I1I-1.8 (Parameter Range of g and 3.) The coupling constant
g € R is a perturbative parameter which is assumed to be sufficiently small,

0< gl <1

For notational convenience we chose g > 0.

Without loss of generality we assume that the inverse reservoir temperatures are
ordered as

O<é§5min::ﬂR§"'Sﬂlz:ﬁmax<oo

where Puin 15 assumed to be uniformly bounded away from zero by a positive con-
stant B while there is no upper bound on the inverse temperatures. Further, the
temperature differences are assumed to be sufficiently small compared to a constant,
1.€.,

|ﬁmax - Bmin‘ < 1.
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The inverse temperature difference is not a perturbative parameter on the same scale
as g, i.e., we allow that |Buax — Puin| => g-

The next assumption concerns the degeneracy of the particle energy levels.

Hypothesis IV-1.9 (Non-Degeneracy of the Particle System) The eigen-
values of the particle Hamiltonian are assumed to be non-degenerate, i.e.,

Ey<Ei<--- < Eyn_q.

We need an assumption which guarantees that the photon reservoirs are effectively
coupled to the particle system such that thermal relaxation can occur. In this
context we understand by an effective coupling that any transition from a higher
particle energy level to a lower one under the emission of photons carrying away the
energy difference of the energy levels is allowed.

Hypothesis V-1.10 (Fermi Golden Rule Condition) The coupling functions
obey

2

R [ N-1
YraR ©= 27 min l mipo E,ann/dz ‘((pn | Gr(EmnX)@m )y, | | >0 (1.86)
m>n &2

The number vypgr s referred to as Fermi golden rule level shift.

Note that only the transition probabilities | (n | Gr(EmnX)em )y, 2, m > n, from
a higher particle energy level E,,, down to lower level E,, under emission of a photon
of the difference energy E,,,, = E,, — E, have to be accounted for the Fermi golden
rule condition. None of the transitions to a lower energy level may be prohibited.
It is plausible that excitation processes of the particle system, i.e., transitions from
lower to higher energy levels, play no rule for the thermal relaxation properties. We
remark further that the Fermi golden rule level shift ypgr is only strictly positive if
the number of possible transitions is finite. Taking the infimum in (1.86) over infinite
many energy levels, i.e., N = 0o, we typically obtain a vanishing Fermi golden
rule level shift. Our considerations are therefore restricted to particle systems with
finitely many degrees of freedom. It is still an open problem to study the thermal
relaxation for setups where the particle system has infinitely many energy levels.

For our analysis on the interacting system we need conditions considerably
stronger than those assumed in the Hypotheses I-1.2 and II-1.4. The following
Hypotheses will provide the necessary conditions on the coupling functions for our
work and will henceforth be assumed to be fulfilled. Some mathematical analysis
on the interacting system requires a transformation of the interacting part of the
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perturbed Liouville operator with the help of the rescaled free evolution ag, we
need at various places that m(a§(v)) is well defined as analytic functions in s for
| Im(s)| < Pmax/2. To this end we intensify the Hypothesis I-1.2.

Hypothesis VI-1.11 (ag-Analyticity of the Perturbation) We assume that
the coupling functions G,, r = 1,..., R, obey the following weighted L*-norm,

/ Bk

RS

2

1
w(k)

1+

< o0 (1.87)
B(Hy)

] He(ﬁmax/Z‘i’EO)w(E) GT (l;) ‘

for a small constant €y > 0.

We remark that, while imposing the more stringent condition (1.87) on the coupling
functions to lie in a weighted L2-space, we do not require that the corresponding
weighted L?-norms of G, are bounded uniformly in the temperature. In fact, the
weighted L2-norm (1.87) grows exponentially in the inverse temperature Byay. How-
ever, this does no pose a problem since this norm never appears in the context of
the perturbation theory. The Hypothesis VI-1.11 is not crucial for the validity of
our results and it can be avoided by an approximation of the coupling functions by
rapidly decreasing functions. The gained results are uniform in the approximation
such that it can finally be removed. This strategy was carried out in [34]. In the
present work we restrict ourselves to the less general case of coupling functions to
avoid further technical inconveniences.

A main ingredient for our analysis is an analyticity property of the coupling
functions GG,. Recall that

G =9(Gy,...,Gg) € L*[Y; B(H?)]

denotes the glued coupling function. On the space L?[Y] of square integrable
functions over Y, given in (1.63), we introduce a unitary two-parameter family

{9(9)}9611{2 by
D(0)f] (u,2,7) := e‘ssgn(“)/zf(jg(u), ), 0= (6,7) € R?,

where
Jolu) == e®se2 Wy 4 7 (1.88)

and sgn is the signum function, sgn(u) = u/|u|. The parameter § parameterizes a
dilation of the function f while 7 is a translation. For f € L*[Y] we abbreviate

The family {D(0)}gcr2 implements a spectral deformation of the considered opera-
tors. We require the following properties of the coupling functions G to be fulfilled.
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I;O[H tan(6,)]

Ny,
7

[ J o
_4mﬁm;x

Figure 1.7: Illustration of the set Us, .

Hypothesis VII-1.12 (Deformation Analyticity & Regularization) The
function w — G(u,X,r) € B(H2) has, for a.e. (¥,7) € S*> x N, an analytic
continuation on the complex domain

Usy.ry :={Jo(u) |0 € Dsyry, u € R} (1.89)
where
Dsy 7y = {(5, ) e C? ‘ | Im(9)| < o, |7| <70 }, (1.90)
for fized positive constants dy, 79 > 0 fulfilling
% <y < % and 10 < 2781, (1.91)

The continuation shall also be denoted by Us, -, > z — G(z,%,1). Further, we

assume that there are positive constants C; > 0 and 0 < Cy < 2703, such that

ess-sup (|G (2, 2, 1) gz » < Culz)” for |z| < Cy (1.92)
(,r)eS2xNE °

for a positive infrared (IR) regularization v > 1. Moreover, we require the following

ultraviolet (UV) behavior to be fulfilled,

ess-sup [|G(z, X, 7)|| 2y < Cyeal for |z| > Cy, z € Usy r, (1.93)
(B,r)eS2xNE P

where a,Cs,Cy > 0 are positive constants with a > 0.
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We remark that the UV regularization (1.93) covers the assumption on the decay of
the coupling functions in Hypothesis VI-1.11. We stress that the assumptions on the
UV behavior may be weakened by approximating G by rapidly decaying functions
as done in [34]. Again, we spare the technical expenditure to focus on the essential
problems.

Remark 1.13 Under the assumptions of Hypothesis VII-1.12 the dominated con-
vergence theorem implies that the map

Dsyry = D[ BH2)], 0 G,

is analytic — pointwise a.e. and in the L? sense — for any s € C.

To illustrate the requirements of Hypothesis VII-1.12 we specify a class of coupling
functions obeying the above conditions.

Proposition 1.14 (Class of Analytic Perturbations) Let &y, 70 > 0 satisfy
(1.91) and

T0 s

cos(dp) < Bmax
Forr=1,...,R, let M, = M} € B(H,) be self-adjoint matrices and g, : Rt — C
functions on the positive real axis. Assume that the functions g, have analytic con-
tinuations (also denoted by g.) onto the domain {z € Us, -, | Re(z) > 0}. Further,
we require that the g, have continuous extensions onto the imaginary axis and take
real values there, i.e., g.(ix) € R for real x. Moreover, we assume that g, ful-
fills a certain UV reqularization, i.e., there are positive constants a,C > 0 such
that |g.(z)| < Ce " provided that = € Us, , and Re(z) > 0. Choose a number
pE {% +n ’ n € Ny } as the actual infrared regularization of the coupling functions
G,. Then the functions

(1.94)

ko Gy(K) = "2 |k P g, (1K) M, (1.95)

fulfill the requirements of Hypothesis VII-1.12. In particular, we may choose

G, () = \/ || e ** o,

’lUZth ﬁl?&)) > 0.

Proof. We first remark that, for any » = 1,..., R, the function

z

S

has simple poles in +2nmif3 ! for n € N, and is analytic elsewhere. In particular,
it has an analytic continuation into the origin of the complex plane and is non-zero
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on its domain. We show that under the conditions (1.94) on the parameters 7o, do
the set Us, -, does not contain any of the poles. By definition (1.88), we have for
0 € Ds, -, u € R and z := jy(u),

= sgn(u) tan(Im(9)),

i.e., the point z lies on the line going through 7 with slope sgn(u) tan(Im(¢d)). This
line intersects with the imaginary axis in

b:=i[Im(7) — Re(7) sgn(u) tan(Im(0))]

where

8] < [1m(7)] + | Re(7)|| tan(Im(6))| < 7o[1 + tan(do)] < -

This implies that z = jy(u) does not hit any poles. An illustration of the above
considerations is given in Figure 1.7. Hence, there exists an analytic function

/ z
U(SOJ—O 9 S 1 —_ efﬂ'rz

being the extension of R 3 u +— /u(l — e=##)~1. We now extend the functions g,
across the imaginary axis on the domain U, -, by setting

gr(—z +iy) := g (v +iy)

forz > 0,y € R and 2 +1iy € Us, ,. Using the continuity of g, on the imaginary axis
and the fact that the g, take real values there, the Schwarz reflection principle (c.f.
[41, Thm. 11.17]) implies that the functions g, are analytic on Us, ,,. Therefore, the
functions

Frillym = C, fil2) = (i2)7 2 g,(2)

are analytic as well because p € % + N. We now construct an operator valued
function

G : Usyzy X S* x NP — B(H2),

G(2, 507 1= iy [ 1= Fr(2)IM; © g
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which is analytic in the variable z by the above considerations and is the image of
the coupling functions G,., given in (1.95), under the gluing map g,

9(Gy,...,Gg)(u, X, 1)

_ ﬁ { uzpwm M, @ L] w0,
1 —ehm V=) ()P 2 (—u)P g (—u)[M, @ 14,], u < 0.
— @'\/:(w)p x{ gr(W[M, ® 1y],  u=0,
L —efm (—u)[M, © 1p)], u<0.
= iy HW)M, © 1

= G(u,%,7)
for (u,X,r) € T.

It remains to check the (IR) and the (UV) behavior of the constructed coupling
functions. Expanding G around zero gives for |z| < min{1, 7o},

S v
T o=pc I (O Ml < Cal2]

for a positive constant C'; < oo since the supremum is taken over an analytic func-
tion. Hereby, the IR regularization v of the glued functions and the IR regularization
p of the physical coupling functions are related by

1G(2, %, 1)l g2y < |22 sup
[¢I<T0

n 1
V= —.
P73
This establishes the IR regularization. Further, for |z| > 1, we obtain

~(a=e)lal? < Pt oeld?

‘|g<zaz7r)||B(Hg) S Ce §€ZS/{up 1 — 6767“4 Kl 2e ”MT”B(HP)
80,70
I¢1=1
< Cye (@l

for some positive constant C3 < oo and € > 0 such that a — e > 0, which is the UV
regularity. [ ]

1.4.6 Thermal Relaxation Behavior: A Survey of Results

Within the composed model described above two different types of systems with
contradicting thermal relaxation properties compete. While the finite particle sys-
tem possesses stationary states in a neighborhood of the equilibrium (in the relative
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entropy sense), a single infinite extended photon system would drive any state which
is normal w.r.t. the equilibrium towards the latter. Since we allow that several pho-
tonic systems are close to equilibria at different temperatures the tendency of a
return to equilibrium even leads to a competition among the reservoirs concerning
the relaxation behavior once they are coupled through the particle system. Due
to this competition of comparable reservoirs we cannot expect that the interacting
system will reach a thermal equilibrium. It is more plausible to think about the
infinitely extended reservoirs as staying at their own temperatures while the total
system approaches a time-invariant state featuring stationary heat transfer among
the photon systems through the particle system. The existence of heat fluxes sug-
gests that this stationary state cannot be a thermal equilibrium though it describes
the configuration after the initial configuration has thermally relaxed. We refer to
this state as a non-equilibrium stationary state or simply NESS. We will further
show, for sufficient large temperature differences in the reservoirs, that the standard
Liouville operator of the interacting system has a trivial kernel. This leads to the
conclusion that there are no a-stationary states which are normal w.r.t. wy. Hence,
the NESS, as a stationary state, is separated from wg by an infinite amount of rel-
ative entropy. This in turn implies that the entropy production rate in the NESS
w.r.t. wy must be strictly positive.

For the initial reservoir configurations being all close to the same equilibrium, i.e.,
the reservoir temperatures  := 3; = --- = (Br coincide, we expect that the coupled
system has an attracting equilibrium state at inverse temperature 3. The proof of
this result can be reduced to the work of Bach, Frohlich, Sigal in [8], but is also
re-derived as a special case within this work.

In either case the initial configuration of the particle system does not play any role,
the finite system is forced by the infinite systems which control the thermodynamic
processes.

The above considerations are summarized in a mathematical language in the fol-
lowing theorem which presents the main result of this thesis.

Theorem 1.15 (Relaxation & Thermodynamic Characteristics) Assume
that the conditions of the Hypotheses I-1.2-VII-1.12 are fulfilled. There exists a
state @ (i.e., a linear, positive, normalized functional) on a *-subalgebra A, which
is dense in A w.r.t. the strong topology in B(H?), and there are positive numbers
go > 0 and 03y > 0, both independent of B1,...,0r, with the following properties:
For 0 < g < go and |Bmax — Bmin| < 000 and for any wy-normal state n € N, (A)
holds

tli)rilon oal(A) =w(A) (1.96)

for all A € Ay. Further, there exists a dense subset N*** C N, (A) of wo-normal
states such that the convergence of n € N* towards @ under the time evolution is
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exponentially fast, i.e., there is a positive constant d > 0 and a decay rate given by

Tdee = Hg’ﬁm such that

lim eTdect
t—o0

noa'(A) —o(A) =0 (1.97)

for all A € Ay. Moreover, the state @

e cutends to the unique wy-normal (o, 3)-KMS state on A in case that £y =
-+- = Br =: B. Then, the entropy production rate Ep,, (©) in the state & w.r.t.
wo vanishes.

e has no wop-normal extension to A and it has a strictly positive entropy pro-
duction rate, Ep, (w) > 0, in the case thal |Bmax — Bmin| is sufficiently large
w.T.t. the coupling constant in the sense of (3.6). Further, the state & features
non-vanishing stationary heat fluzes, there exist r,r" € {1,..., R} such that

Lﬁ(gbf,r) >0 and (I)(¢f7rl) < 0.

The verification of the statements of Theorem 1.15 goes back to various results
which are the fruits of the spectral theory for NESS derived in Chapter 2. The
subalgebra A, is realized as a subset of .A*® which in turn is defined in (2.34). The
state @ is introduced in (2.35) and Corollary 2.14. The thermal relaxation (1.96,
1.97) of the system is content of Theorem 2.11. The thermodynamic characteristics
of the state as KMS condition, entropy production rate and heat fluxes are results
of Corollary 2.16 and Proposition 2.17.

Remark 1.16 (Non-Equilibrium Stationary State) The state @ of Theo-
rem 1.15 is the pointwise time limit on observables from the subalgebra Ay. This
motivates us to refer to @ as a stationary state. However, we pointed out in Sec-
tion 1.4.3 that the perturbed time evolution « is not an automorphism group on the
algebra A, and therefore cannot be applied to arbitrary states on A, but rather acts
as a time evolution on wy-normal states. Hence, the notion of time evolution of the
state © is not explained for large temperature differences (in that case & is not nor-
mal w.r.t. wy) while, in the equal temperature situation, the question of stationarity
is well posed and can be answered positively (in that case © is a KMS state). We
remark that any concept for wy-normal states which survives the long time limit can
be adapted to the state w. This vague statement shall mean the following with regard
to the time evolution o' * @ of the state @,
o' xO(A) = Slirgo wp o a®(a’(A))

for all A € Ay. Equation (1.96) then trivially implies the stationarity of © w.r.t. «
on A;.
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The notion of a NESS originally goes back to Ruelle, [42], who classified a non-
equilibrium stationary state as a weak-x-limit point of the ergodic means of the initial
configuration wy evolving under «, i.e., the set of NESS’s is the set of weak-x-limit

points of
T

1
—/dtatowo T>0

0

~

Since in our situation all wg-normal states converge weakly on a subalgebra Ay to-
wards a limit state the state @ s a NESS, and in fact the only one, in the sense of
Ruelle if we restrict to the observables in A;.



2 Dynamical and Thermal Properties
of NESS and Their Spectral
Theory

In Section 1.3.6 we briefly pointed out the spectral theory for equilibrium states. The
thermal relaxation to the equilibrium state could be derived from the fact that the
standard Liouville operator L; associated with the KMS state wy in the appropriate
representation 7 has a simple null eigenvector while the rest of its spectrum is
absolutely continuous. We crucially used that the vector representative € of the
equilibrium state is cyclic for that very representation and is left invariant by the
group e'lt* generated by the Liouville operator. The combination of both properties,
the modular structure of wy and the nature of the spectrum of L¢, allowed us to study
the evolution of we-normal states and in particular to compute the long time behavior
t — o0 in terms of the weak limit of the group e’*t*. This connection between
the thermal relaxation properties of equilibria and the spectral properties of their
Liouville operators was established by Jaksi¢ and Pillet in [24] for the description of
a single bosonic reservoir in interaction with a particle system. The same approach
was used by Bach, Frohlich and Sigal in [8] to study the return to equilibrium
property in a more general temperature regime.

Subsequently, we will outline a modified strategy to connect the thermal relaxation
properties of a system, not necessarily being close to an equilibrium state, with
spectral properties of a suitable generator of the time evolution. The approach we
are describing goes back to a work of Jaksi¢ and Pillet, published in [28], and was
modified by Merkli, Sigal, and the present author in [34].

We start our discussion by reviewing the agp-invariant state
wo = (Qo [7(-))

introduced in Section 1.4.1 describing a system of R photon reservoirs and a particle
system at different temperatures and which localizes the initial configurations of the
system. Given an wp-normal state n = (& |n(-)¢) with £ € P we defined the
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evolution of 1 under the interacting dynamics by
?70CYt _ <€ |eiLtﬂ_<')efiLt§>.

We remark that the choice of the generator L was pinned down by the request that
it implements the perturbed time evolution on the representation space,

eMr(A)e ™ = ol x 1(A),

where of * 7(A) was defined in (1.78), and that the group e'** leaves the cone P
invariant. However, if we are only demanding that a generator, say K, implements
the time evolution, i.e.,

efin(A)e ™ = ol x 1(A) = eHir(A)e (2.1)

we get a much wider selection of possible generators K. The fact that 7(A) com-

mutes with e/o77/(w)e 07 = 7/(af(w)) for all 7 € R and w being a polynomial in

creation and annihilation operators shows that the ansatz
K = Lo+ m(v) — 7'(w)

fulfills (2.1) if we understand its r.h.s. as an expansion in a Dyson series, i.e.,

o t tp—1
eBln(A)e™ ™ = r(ad(A)) + Z(ig)”/dtl . / dt,
n=1 0 0

X [eiLOt" [7(v) — 7' (w)]e~otn, [
[t () — 7 (w)]e~Eon w(ad(A))] H
— eiLtT((A)efiLt.
This expression is only a formal relation.

The degree of freedom in the definition of K can now be used to require that K
annihilates a given unit vector, say 2 € H?,

KQ=0.

Assuming that € is both cyclic and separating for 7(A)"” and that w can be chosen
in such a way that K = 0, the operator K becomes the infinitesimal generator of
a one parameter group {U (%) }ier,

Ut)[r(A)Q] := ol « 1(A)Q = eltr(A)e 1Q, Ae A,
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which is well defined due to the separating property of Q on the dense domain
7(A)"Q. We remark that this group is unitary if and only if the state

o= <Q (- )Q>
is a-stationary, namely, for A, B € A holds
< U(t)m(B)Q ‘ Ut)m(A)0 >
< Q| ettr (B A)e L) >
Woa'(B*A)

o forwoal =
} w(BA){ford)()a{t%(;}andsomeA7B€A7t€1R‘

- < T(B)Q ‘ 7(A)Q > .

In the case of a-invariance of @ the wp-normality of @ and (1.6) imply that the
standard Liouville L operator has a non-trivial kernel. However, as we will show
later in Section 3.1, Proposition 3.3, the Liouville operator has a trivial kernel
for reservoir temperature differences sufficiently large. This in turn implies that
{U(t)}+er is a non-unitary group and therefore the generator K is not self-adjoint.

—N
N

Before we give the specific choice of the vector  we formally display the link
between spectral properties of K and the long time behavior of wg-normal states
under the time evolution . The fact that € is separating for 7(A)” is equivalent to
Q being cyclic w.r.t. m(A), c.f. [10, Prop. 2.5.4]. Given an wp-normal state

n:= (& [m(-)E)

with £ € P we find an approximation

Mo = <7r’(B)Q ‘ 7( (B >

with B € A, HW’(B)QH = 1l and || =74 < € for a given € > 0. The time

evolution acts on 7, as follows,
oal(d) = (@B | (A)T(B)D)

( m(a(4)2)

- <7r’(B*B)Q ¢t (A) >
< (B W<A)(z>

“B)Q Q> <Q
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using that 7(a!(A)) = e (A)e~ " € 7(A)”, where the last three lines need some
clarification. Since K is not self-adjoint the group %! is a priori not defined and a
first task would be to understand this group in an appropriate sense. Secondly, we
have to understand the convergence of e/* as t — oo in a weak sense. Again, since

K is not self-adjoint it is not clear that the group converges towards the projection
)Q> <Q* on the null space of K. Here, the object )Q> <Q* formally built of the

eigenvectors of K and K™,

KQ =0, K =0,

is not a bounded projection operator. In fact, Q* is not a vector in H2 but rather
an element <S~2*‘ from the dual space Dj_, of an appropriate dense set Dg_, in H?

fulfilling
(&

for all v € D(K) such that K1 € Dg_,. All these statements can be made rigorous
in the language of resonance eigenvectors, as we will see later. This has the conse-
quence that the state @ is in general (i.e., for large reservoir temperature differences)
not an wg-normal state.

K¢y =0

Subsequently, we will work out the sketched strategy with mathematical rigor.

2.1 The C-Liouville Operator

We start to work out the approach discussed above. Our first observation is that
in the case of equal temperatures 3 := 3, = }; = --- = [Br the perturbed system
possesses an («, 5)-KMS state

w:={(Q|7(-)Q) (2.2)
with €2 given by
—BLY /2
Q0= e M (2.3)
e 7]
where
LY = Ly + gn(v) (2.4)

is the (left) Radon-Nikodym operator. Lemma B.3 ensures that (2.3) is well defined.
For notational completeness we also introduce the right Radon-Nikodym operator,

LY = —JLOJ = Ly — gr'(v). (2.5)
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The KMS-property of w follows formally from the structural stability, Section 1.1.3,
and the fact that wy is an ag-KMS state for equal temperatures. However, in Sec-
tion 1.1.3 we only considered bounded perturbations from the algebra A. Chapter B
provides the necessary technicalities to transfer the modular theory to our situation
acknowledging the unboundedness of the perturbation. Lemma B.5 guarantees that
Q) is in the kernel of L and therefore w is an a-stationary state and further, by
Proposition B.7, we know that w is an («, 3)-KMS state.

In the general case where the reservoir temperatures can be chosen arbitrarily the
Liouville operator cannot be expected to possess a non-trivial kernel. Inspired by
the structure of the null vector of L for the equal temperature case we fix a vector
by

67’BL(£)/2QO

where 3 € [0, Bmax] 1S a reference parameter, later chosen to match the maximal
inverse temperature (Op.. Note that (2.3) and (2.6) do not coincide as long as
the temperatures are not the same in all reservoirs since 7, and therefore also L),
depends on the inverse temperatures. Lemma B.3 ensures that (2.6) is well defined.

Since the vector Q is cyclic and separating w.r.t. 7(A)” by Lemma B.4 we may
define a one parameter group {U(t) }1er acting on the dense domain 7(A)"$2 by

Ut)[r(A)Q] := moal(A)Q = eltr(A)e 1Q, Ae A (2.7)
Our aim is to study the infinitesimal generator of that group.

Proposition 2.1 (Infinitesimal Generator of U(t)) The group R > t — U(t)

is strongly differentiable on vectors in D(L®) N (A)'Q. Its infinitesimal generator

K reads

Ut)—-1 i

K = s;li%n # =Lo+yg [W(U) - <70/2(v)>} , (2.8)
— 7

where

,Yt = 0.6 o aaﬂt — ei(Hresc_BHO)t( . )e_i(Hresc_BHO)t

and recall the definition (1.61) of of. It holds in particular

KQ=0.

Proof. For A € 7(A)" such that AQ € D(L®) we may compute

OilicoUM)[AQ] = yfioe’™ Ae Q) = y|,_oe'™" Ae~111G)
[iL©, A)Q = i(LYAQ — ALYQ).
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Since ) € D(L®Y), as one proves similar to Lemma B.3, the last line is well defined
and ¢ — U(t) is strongly differentiable on D(L®) N 7(A)"€2. For the generator K
holds

(K — LOY[AQ] = —ALYQ
Ae=BLO121(0Q,
- He—ﬁL(a/QQO”

g _
D G I

- He—ﬁL(%onH Ae_ﬂm)/QJG_LO/ZSOW(U)QO

_ _—He_w% ] A (o120 0

= —gAe P2y (Ué/z(v)> AL /2()
= —gArn (ozaw/2 o 06/2(v)> Q

= —gr' (1)) 40

where we used Lemma B.2(i) and the commutativity between A and 7/ (’yé/ *(v)) and

(L, W/(yé/Q(v))] = [Lo, w’(fyéﬂ(v))] which is responsible for

e PLO 2 (03/2(v)> 20 = ¢ PLo/ 2y <0'é/2(v)> Pho/2Q),

For the well-definedness of 7’ (O’é/ *(v)) we employed Hypothesis VI-1.11. The relation
(2.8) therefore holds on D(L®)) N7 (A)"€2. [

The generator K is referred to as C'-Liouville operator underlining that it gener-
ates the perturbed time evolution « lifted to 7w(A)”, at least formally, but it is not
the standard Liouville operator for the representation 7 in the sense that its group
U(t) does not necessarily leave the positive cone P invariant. We remark that the
standard Liouville operator L and the C-Liouville operator are the same if and only
if =14 foraltelR,ie,if §=0,=0 == Fg In the case of non-equal
temperatures the operator K is not self-adjoint.

We remark that the choice of the vector Q as the null vector of the C-Liouvillean
is somewhat arbitrary. From a conceptional point of view the vector €2y would be
a canonical candidate since its cyclic and separating properties are at hand and do
not require an extended technical argumentation. The C-Liouville operator built
up on this vector would read

Ko, =Lo+g [71'(1}) - (aéﬂ(v)ﬂ :
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This choice was made in [28] where the concept of spectral theory for NESS was
introduced. The crucial disadvantage of this approach, however, is that the pertur-
bation part of K, carries an exponential weight in the inverse temperatures,

o2 (v) = o~ (BoHp 3270 BBy ) /2, (BpHot 1 ﬁer,r)/{

such that the perturbative analysis requires that Spax is small which restricts the
considerations to a low temperature regime. Incorporating an approximation €2 of
the (non-existent) KMS state into the definition of K leads to a perturbation which
is only weighted exponentially in the temperature differences,

V2 () = e (ComBHo A2 s (Br=B) Her )20, ((Bo—B) Hypt 220 (Br—=B) Hi ) /2
It was respected in Hypothesis I11-1.8 that the differences in the inverse temperatures
have to be small.

For simplicity the further considerations are done under the assumption that

ﬁ = ﬂp = ﬂmax- (29)

2.2 Representation of the Schrodinger Time
Evolution U(t)

Formally, we can consider the group U(t) as the exponential function of K, i.e.,
U(t) = &', The group acts on vectors of m(A)"Q as a time evolution in the
Schrodinger picture. The ansatz allows to transfer the study of a Heisenberg time
evolution ¢ — «f, acting on observables, to the study of a Schrodinger evolution
t +— U(t) on vectors. This shifts the analysis into a Hilbert space framework.
However, since K is in general not self-adjoint in the non-equilibrium situation
the group U(t) is in general not unitary. The situation is even more subtle. The
imaginary part of the generator K for (pax > Bmin is neither bounded from below
nor from above such that an interpretation of U(t) as a Cj semigroup does not apply.
It is the aim of this section to represent the group U(%) in terms of its generator K.

2.2.1 The Family K of Generators

Since the lack of self-adjointness of K causes the troubles we go over to consider a
family of operators given by

s K = Ly 4 gI® (2.10)
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with

IV = x(v) — 7' (1 (v) = a (9 Gl ))* el (g g(sw))

for s in the parameter set

3., = {ZEC

1
2l < 5 +eo (2.11)

for a small positive number £y > 0. The glued coupling functions are given by (1.80,
1.81) and the notation

Gy (u, 2,r) = " ap @ 14, J(G(u, 2, 7))

N U ZK/’,'LL

o ]_ _ﬁru

Hp >
> \/aap (UE)) ® ]al7 u >0, (212)
(—v—u)ap® (G (—uX)*) @ Ly, u<0,

géﬁ) (u7 X, 7‘) = mru[ﬂAp & ap ](g/(u, 2, T))

_ u llﬁ?ru

o e/gru

{\f]al ® 0" (Goux) ). 120 g

(—vV=u)ly, ®ap™ (Gr(—u2)> , u <0,
for & = (kp, k1, ..., kr) € CE and

08 = (0, 061, .0R) = (Bp = B, 61 = B..... Br = ).
Hypothesis VII-1.12 and Remark 1.13 then imply that Q’( %) € L*[Y] for all s € 5.

such that the expression (2.10) is well defined as a family of operators on a dense
domain. By Corollary 1.6 we know that K(*) extends to a self-adjoint operator, also
denoted by K for s € R. Since L — K® = 7/(75(v) —v) and €™ (6= ¢ 7(AY,
we obtain with the Trotter product formula

eiK(s)tﬂ(A)e’iK(s)t =moal(A) =eHr(Ae ™ forall s,t € R, (2.14)

where the exponential functions in K are well defined as unitary operators due
to the self-adjointness of K(®) for real s. We remark that [0,1] > ¢ — K(%/? is a
path in the space of generators of the Heisenberg evolution connecting the standard
Liouville operator L with the C-Liouville operator K in the sense that

K2 = g and KO -,

e it (s)4 .
The next lemma shows a useful decomposition of et into known operators.
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Lemma 2.2 Let be s,t € R. The unitary operator KD has the following decom-

position,
1o (s) 1 (0) . . -7 (1) .
ezK t 6zL tl"—lse—lLOteZL tl—\zs’

where
Tg := AgePlo = = (Fo=hBLo),

Proof.  We first remark that K = Lo+ V — V'® and L) = L, + V where

V = gn(v) and V'™ := g7’ (v3(v)). We further note that V'*) = Iy®*V'Ts where
= gn’(v). This enables us to rewrite, using the Trotter product formula,

emiLOt KOt [e—iLot/ne—i\/t/n}” [ein/nei(Lo—V’(s))t/n}n

— olim [e—iLot/ne—in/n} n—2 o—ilot/n

% <e—in/ne—iLot/nei(LO—V/<5>)t/nez’\/t/n>

RTIO) 4 (Lo 1!(9) n—2
% eiLo=V')t/n [eth/nez(Lg v )t/n]

. i 3 n—3 _;
= glim [6 zLot/ne th/n} e iLot/n
n—o00

. . o a(s) )
% (6 th/ne zL02t/n€z(Lo 1% )2t/neth/n>

. . . n—3
% eiLo=V')t/n [eth/nez(LofV’(s))t/n]

_ efiLgteit(LofV’(S))

Lot . i

= e "Mlexp (itly™ (Lo — V')IY)

—iLot—is ’L'(Lofvl)t 18

e I'y”e I'y
—is_—iLot JiL™Mt1is
I'y”e e Ty,

which proves the assertion. It remains to clarify the manipulations of the parentheses
in the third and the sixth line. Set 7 = ¢/n and consider

. . o a(s) )
e ZVTe sz’ez(Lo \% )Te’lVT
— e—ZV’Te—ZLo’T S—].im

m—0o0 L

r . R0 Tm .
6sz'/m6 V'Y /m eZV’T

. » . r. (s) Tm—1
= ¢ ZVTG iLoT s-lim ezLoT/me V'Y /m

m—0o0 L

. ) ()
ezLOT/mezVTe V1 /m

. . . r. _v(s) 7
= ¢ ZVTe iLoT s-lim ezLoT/me VY1 /m

m—0o0 L

y (eiLoT/meiVTefiLo'r/m) [eiLoT/mefiV/(sM—/m]
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— 671V7'671L07' (ezLo‘rezVTeszoT) s-lim
m—oo

[eiLOT/mefiV’(”T/m mn

—iVT —iLor ( iLoT ,iVT Lo—V'))7

= e e (e e e”'LOT) el

—i i(Lo—V"'()
— e tLoT gi(Lo=V")r

Y

where we used that eLo7elV7e~iLo7 = exp(igm(af(v))) commutes with e~ 7/m for

all 7 € R. [ ]

For what follows, we assume that s € R is chosen to be real. Our goal is to find
etk (S)t¢> for suitable vectors ¢,7 € H? which has a well

defined extension to complex values of the parameter s, in particular for s = —i/2.
The following lemma presents the appropriate representation.

a representation of <gp

Lemma 2.3 For any pair of vectors ¢, € H? and for s € R, t > 0, we can write
(s 1 . ,
<g0 K )t¢> = dz <g0 ’ (z — K@) 1w>e”t (2.15)

2mi
R—ie

for any € > 0, where the integral has to be understood as an improper Riemann

integral.

Proof. Define for fixed ¢, € H? and s € R the function
iK(s)
f(t) = (o |7

and consider for Im(z) < 0 its Fourier-Laplace transform

[e.9]

fe) = [atswe =i (s

0

(= K9) 0.

For ¢ > 0 and ¢ > 0 we obtain as inverse relation

1l o
ft) = — [ dof(z— i)l
2m
= L dx <cp ‘ (x—iE—K(S))71¢>ei(m_i5)t.
2m

Next, we show that the L.h.s. of (2.15) has an analytic continuation to complex
values of the parameter s.
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Proposition 2.4 For any A € A and any t € R the vector valued function
R>s— eiK(s)tﬂ(A)Q

has an analytic continuation on the set S%o, denoted by & : $=0 — H2. Further, at

£0
4
the point s = —i/2 the function takes the value

6(~i/2) = m(a'(A)Q = U()[r(A) )

Proof. Due to (2.14) we get
eV (A0 = 1(af(A)eK 0

such that it is sufficient to consider the analyticity of s — eE7!Q.  Yet, by
Lemma 2.2, we may focus on the function

- Faise—iLoteiL(")tF’(i)sQ (2.16)
_ Z(—Zg)n / dT1 . dTn Faisﬂ_l (C((;Tl ('U) v aa’rn (’U)) FBSQ
n=0 0< 7 < <71 <t
= > (~ig)" / dry - dr, 7 (5 [og ™ (v) g ™ (v)])
n=0

0<7 <<y <t

) } 4 Q
Do [ e (o0 () g

m=0 0<61 < <em<B/2

- -1
Hereby we used Lemma B.1(i) to write 2 = HG*BL“)/ZQOH e PLO2e8L0/2Q) ) ag
Dyson series. The expansion of e~LoteiL™t in a Dyson series is standard. We check
the absolute convergence of this series. First we make use of the Jaksi¢-Pillet glued

representation to write

o (5000) = (651) 0 G
and .
7 (05 0)) = e (9(ion) ) + o (9101
where I = (1,1,...,1) € CF*!, recall definitions (2.12, 2.13). We recall the standard
estimate of creation and annihilation operators on a vector v, of the n-“photon”
sector in the Fock space over L?[Y],

G (F)p @ ul| < VA1 Fllpape sy o ® vall
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where ¢ € H2 and F € L?[T; B(H?)], c.f. Lemma A.3. Since the coupling functions
! ) are a.e. pointwise differentiable w.r.t. s for |Im(s)| < 1/2 4 &,/2 with

g(sé_,[‘?frj T
derivative

8 g( 55 - 1) (u b T’) iaﬁrqu(sd_B—TjT) (u7 27 7”) + [i(sﬁpr’ g/<55‘[‘3_7_ji‘> (U, 27 T)

and having the uniform norm bounds, guaranteed by Hypothesis VII-1.12,

by = sup g, -
| Im(s)|<1/2+¢0/2 (s8B-7,T) L2[T,B(H3)]
= sup g - < 00,
| Im(s)|<1/2+¢0/2 (s35) L2[T,B(H3)]
v, = sup 05G) o0 &
! | Im(s)|<1/2+¢0 /4 (s0B-71) L2[Y,B(H3)]
< sup (108 + 2030, | Lollsirg)) b <
by = sup HQ < 00,
I<]<B/2 L2[T.B(H3)]

we obtain by the dominated convergence theorem the complex differentiability of
B 35— 7 (9 [ag ™ (v) -+ o ™ ()]) T (™ (V) - - gt (v)) Qo

Here, we took the anti-linear nature of 7’ into account which requires the complex
conjugation of the parameter s inside 7. A further uniform estimate,

sup |7 (75 [ ™ (v) -+ ag ™ (0)]) 7 (as™ (v) - - - e (v)) Qo
| Im(s)|<1/24e0/2,
0< 7, < <11 <8,
0<a1 < <em <B/2

< Vn+m+1)(20)"(2by)™,

finally ensures the analyticity of (2.16) because of the convergence of the following

series,

3 g / dry - dry ey -+ g /(0 + m+ 1)1 (251)" (2b2)™

n,m=0 0<rp << <t,
0<¢;1 <+ <§m<[3/2

tnﬁm
n+m |
Z 9" (20)" (2b) " (1)

n,m=0

+1/m+m+1
§ n-+m nimyn Qm
g 2b)btﬁ\/n‘m'( m )

n,m=0
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- n+m nymyn Qm n+ 1 n+m—+1

< n%:()g (261)"05't" 8 Tl 2
—Vn+1 n\ [ 1 m
— V2 - <\/§gblt> Wi (\/591725)
p— n! = vm!
< 0Q.
We now evaluate at the point s = —i/2, i.e., we compute
Fal/Qe—iLoteiL(r)tré/QQ

_ G Q
— 112, iLot il ™t BLo/2 —BL® /2 0

o eTtotet e JSpe 4}}6_6L<e)/QQOH
_ 12 _—iLot iL®Wt_BLo/2 7, 68Lo/2, —BL® /2 o
= I, /Te 0t eI JeP 0 e —He_ﬁL(@/QQoH
_ 112 —iLot iL®)t —BL") /2 Qo

Iy “Je e e _He_ﬁL(e)/QQOH

_ g oit-B/2)L (it-p/pn® o

0 ”6,5L(4)/290H
_ itspne

| e=PLO26 ||
_ e—iL(f)tQ’
where we used the Lemma B.2(iii) twice and the relations L"J = —JL® and

A51/2J = JA(l)/Z = Sp. We finally obtain

€(—i/2) = m(al(A))e Ty 2emilot i) — (ot (A)).

[ |
The next task is to check the analyticity of the r.h.s. of (2.15) in s. The prob-
lematic part is that the perturbation 1) in K® = L + ¢I® is not relatively

Lo-bounded which prevents standard arguments showing analyticity of s — K (),
Instead, we apply a spectral deformation to K (*) to gain analytic properties.

2.2.2 Spectral Deformation of K*)

We start by defining the spectral deformation on the space F(L?[Y]) which was pre-
viewed in Section 1.4.5 in order to state the requirements on the coupling functions.
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We can use neither the deformation by dilation introduced in [8] nor the translation
applied in [23, 28] but we combine both types. Such a combination was already
mentioned in [8] and becomes essential in our work. The dilation deformation is
used to make the operator K sectorial while the translation separates the eigen-
values from the continuous spectrum, c.f. Figures 2.1 and 3.2. The first feature will
be useful to integrate the resolvent of K along the real axis to obtain an integral
representation of U(t), c.f. Proposition 2.9, while the isolation of eigenvalues allows
the computation of the projection on the null space of K, c.f. Proposition 2.10.
This effort has to be made since K is not self-adjoint.

Define a unitary translation group {D:(7)},er on L*[Y] which acts on a given
function f € L?[Y] as

[D¢(7) fl(u, 2,7) == flu+ 71,5, 7).

We further introduce a unitary group of dilations {D4(0)}ser which is defined on a
function f € L?[Y] by

Da(0))(u, 5, 7) 1= 52 f(dse00)y, 5 1)

We compose both transformation to an operation which first translates and then
dilates a function (note that translation and dilation do not commute such that the
order of application has to be respected). The operation

D(0) :=24(6)D¢(7) for § = (6,7) € R?

defines a two parameter family {D()}sere of unitary operators given on f € L*[T]
by
DO)f1(u, 2, 1) = =2 f (Gy(u), B, 1), (2.17)
where
jo(u) = 238 Wy 4 7, (2.18)

The family {D(0)}ger> can be lifted to the Fock space F(L?[Y]) by

D(0) [ag(fn) - 0z (f1)Q] = an(D(©O) fu) -+ ap(D(0) /1) (2.19)

for fi,..., fn € L*[Y]. In order to extend the family {D(0)}gcr2 to the space H?
we identify D(0) = 1yz ® D(0) such that particle variables remain uninfluenced by

the transformation. For a vector ¢ € F(L?[Y]) (and in particular for f € L*[Y]) we
abbreviate

Yo == D(0), fo=2(0)f,

resp., and for an operator A on F(L?[Y]) we introduce the notation

Ay = D(0)AD(6)".
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The above notations also apply to vectors ¢» € H?, form factors f € L*[T; B(H?)]
and operators A on H?. We remark that the spectral properties of A remain un-
changed under conjugation with the unitary operator (), for # € R?, i.e., the
spectrum, pure point spectrum and continuous spectrum are invariant,

spec(Ay) = spec(A), specpp (Ag) = specpp(A), spece(Ap) = spec.(A),

for # € R?. Due to the unitarity of D(f) we also have the invariance of matrix
elements of an operator A for vectors o, € H? in the sense that

(o | Agtby) = (p |AY)  for 0 € R (2.20)

However, by extending the family {®(6)}secrz to complex parameters § € C we
lose the unitarity of the transformation ®(6). Assuming that the family of operators
0 — Ap = D(0)AD ()" has an analytic continuation to complex values of 6 in an
appropriate sense (to be discussed later) we keep the invariance of the pure point
spectrum while the continuous spectrum, in general, is deformed,

specpp(Ag) = specpp(4), spece(Ag) # spec.(A) for € C*.

This observation motivates the nomenclature spectral deformation associated with
the family {®(0)}y. The benefit of the concept of spectral deformation is that the
relation (2.20) extends by analytic continuation to

(g | Agg) = (@ |Ap)  for § € C?

under the assumption that all functions 0 — @y, 1y, Ay are analytic, again in the
appropriate sense. This relation has a very useful application where we try to rewrite

<90 ‘ (= - K(S))fl¢> = <90§ (z - Kés))1 wo> (2.21)

aiming to be in the position to control the spectrum of the deformed operator
K = D(0) K@D (6)~! for complex s while the spectrum of K is not accessible
to us.

We now fill in the blanks and launch the rigorous consideration by computing
the deformation of the operators which play a role in our analysis. We collect the
corresponding results in a lemma.

Lemma 2.5 Let 0 = (§,7) € R~
(i) The spectral deformation Loy = D(0)LoD(0)~* of the free Liouville operator
Ly is given by
Loy = Ly + cosh(6) Lyes + sinh(0) Layx + 7 NVyes (2.22)
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(i)

where

Lowx = dUg((u, X, 1) — |u|) = /d(u, 3,1) ag(u, B, r)[ulag (u, X r) - (2.23)

T

1s an auziliary operator and

Nowim @l (1) = [ dyai)en(y) (2.24)

is the number operator on the bosonic Fock space F(L*[T]).

The spectral deformation IH(S) =D(ID(H), s € 8., of the operator 1)
s given by

I = a (F(S)) +ag (Fﬁ) , (2.25)

where F =[G — QE )]g, i.e.,

F(s)<u 5, r) = edsEn(w)2 [g g(s(m)} Go(u), =, 7). (2.26)

Proof.

(i) The definition (2.17, 2.19) of ©(#) and (1.66) of Ly imply that

Lop = Lp+D(0)dlg((u,,r) — uw)D(0) " = L, +dlg((u,2,7) — jo(u))
= L, +dlu((u, X, 7) s 8" Wy) 4 dly((u, 2, 7) > 7)

- Lp + TNreS + /du / d(za T) CLZ](U, 27 r)e6/2uag1(u, E, T)

0 S2xNF

0
+ / du / d(3,7) ag(u, X, e ?uag (u, 2, r)
-0 S2xNE
= L, + TNes
+ / d(u, %, 1) ag(u, ¥, 1) [cosh(6)u + sinh(0) |u[] ag(u, X, )

T
= Ly + TNyes + c0sh(0) Lyes + sinh(6) L.

(ii) The assertion follows immediately from the definition (2.17, 2.19).
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Figure 2.1: The spectrum of Loy consists of the eigenvalues of L, paired with a
V-shaped line and countably many cones of continuous spectrum arising
from the spectrum of cos(§") Lyes +8in(0") Loy, lined up along £y, — E; +
TIN. The apex angle of the cones is 7 — 2 Im(9).

We describe the spectrum of the deformed unperturbed Liouville operator, Ly .

Proposition 2.6 (Spectrum of Lyy) The definition (2.22) of Loy extends for
complex deformation parameters 8 € C*. The spectrum of Loy is then given by
spec (Lo )
= spec(Ly) + {0} U (74 {z € C || Re(z)| = sgn(sin(d"))| cot(d")| Im(z) })

U U (nT 4+ {2z € C||Re(2)| < sgn(sin(d"))|cot(d")|Im(2) })

n=2

as illustrated in Figure 2.1, where §' := Im(9). In particular, for Im(7),sin(é’) > 0
and | Re(7)| < cot(8') Im(7), the spectrum takes the form

spec (Log) = spec (L) + {0} U (7 + {2z € C||Re(z)| = cot(d') Im(z) })
U (27 +{z € C||Re(z)| < cot(d’) Im(2) })
C spec(Ly) +{0} U (74 {z € C||Re(2)| < cot(d') Im(z) }),

and the eigenvalues of Ly, are isolated eigenvalues of Loy separated from the rest of
the spectrum by a gap Im(7).

Proof. We first remark that
Lo = Da(Re(6))Lo,us 1y Da(— Re(6))
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where ©4(Re(d)) is a unitary operator. Because of the invariance of the spectrum
under unitary conjugation we henceforth may assume that Re(d) = 0. Since Ly,
Laux and N,es only act on photon variables and L, only on particle variables we have

spec (Lo g) = spec (Ly) + spec (cos(d") Lyes + 7 8I0(0") Laux + 7 Nyes) -

We now decompose the Fock space F(L?[Y]) into orthogonal subspaces,
ran(Pn,..=n)), 7 € No. It then holds

spec (cosh(0) Lyes + sinh(0) Laux + 7 Nyes)

= G [nT + spec ([COS((;,)LreS + i sin(0") Laux] rran(P[NreS:"])>] )

n=0

We recall the definitions (1.66, 2.23, 2.24) which imply that

spec <[cos(5’)Lres +48in(0") Lauy] rran(P[Nres:n])>
= {z € C||Re(2)| < sgn(sin(d”))|cot(d")| Im(2) },

for n > 2 since |Lyes| < Laux, and

spec ([008(5/)chs +181n(0") Layy] [ran(p[NreS:1])>
{cos(8")u + isin(d')|u| |u € R}
= {z € C||Re(z)| = sgn(sin(d"))| cot(d")| Im(z) },

and
spec ([cos(é’)LreS +48in(0") Layy] rraﬂ(P[Nres=01)> ={0}.

For Im(7),sin(¢’) > 0 and | Re(7)| < cot(d’) Im(7) we have
(n+ 1)1+ {2 € C||Re(z)] < cot(d") Im(z) }
C nr+{ze€C||Re(z)| <cot(d)Im(z) }

for n > 1. In particular, the eigenvalues in spec(L,) are separated from the rest of
the spectrum by a gap given by Im(7). ]

In what follows, a particular class of deformation analytic vectors will play a
crucial role. Henceforth, we fix the numbers

g<50<§ and 0< 7 <2183,

and define the domains

Dsyry = {(5, 7)€ C? } | Tm(5)| < do, | Im(7)| < 7o } ,
Df = Df xSt ccC?

00,70
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where
Df = {6eC|0<Im(d) <do},
Sho= {T€®'0<|;—|<Im(7)<7’0}.

A vector ¢ € H? is called deformation analytic if the map R? > (§,7) = 0 + 1y
has an analytic continuation on the domain Ds, -, in each variable separately. We
denote by

Dy . = {1/} cH? ‘ ¥ is deformation analytic}

the subspace of all deformation analytic vectors. A vector v € Dg_, is called
deformation analytic in D(Laux + Nies) if 0 € D(Laux + Nies) and if further the map
0 — (Laux + Nies + 1)10p has an analytic continuation on the domain Dj, ., in each
variable separately. The deformation analytic vectors in D(Laux + Nyes) are collected
in the subspace

DF™, :={¢ € Dp_, |9 is deformation analytic in D(Laux + Nyes) } -

Remark 2.7 (Restriction of Translation Parameter) The ezplicit construc-
tion of deformation analytic coupling functions in Proposition 1.14 points out the
limitation of the analyticity in the translation parameter 7. The incorporation of the
factor \/u(1 — e=Br)=1 into the glued coupling functions creates poles +2nmif3;*,
n € N, which restrict the imaginary part of the translation parameter to be small
compared to the reservoir temperature 371, Since our study of the system shall also
cover the low temperature regime the translation parameter Im(7) eventually has to
be very small. This complicates spectral analysis of the operator Ky by the following
reason. The translation parameter creates a spectral gap between the eigenvalues of
Lo g and the rest of the unperturbed spectrum of order Im(T), c.f. Proposition 2.6 and
Figure 2.1. To study the low temperature regime the magnitude of the perturbation
becomes significantly larger than the gap and standard perturbation theory does not
make predictions about the perturbation of the eigenvalues. We treat this situation
with renormalization group techniques in Chapter 4 and 5.

One could think about regqularizing the coupling functions G, such that we find
analytic continuation of G = ¢(Gy,...,GRr) around the poles £2nmi3 1, n € N,
r=1,...,R. This, however, would make the particle-photon interaction dependent
on the temperature under which the system is studied and which is not a convincing
approach. Nevertheless, in Section C.3 we construct a class of form factors, depen-
dent on the reservoir temperatures, which are mapped under the gluing to analytic
functions not featuring the poles. These functions are used to build a strongly dense
subalgebra of observables for which the thermal relaxation behavior of the system can
be studied.
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We present a lemma which makes the relation (2.21) rigorous.

Lemma 2.8 Let ¢, € DE*,. Then, for Im(z) < =2 and s € R, we may rewrite

ol t=aw) = (o] (- 57) oo

where 0 = (§,7) € DI

80,70 "

Proof. Let 6; € R and denote 6" = (d1,0). Since D4(d1) is unitary we obtain

(ool (=)o)

= (aloes | (= - DalG0K D000 ™) Dult)en )

-1
= <90W (Z - K(g+)9'> Voo > .

Thus, the map

6 <909 <Z—K§S)>_1¢a>

= <(Laux + Nres + 1)@5

-1
(Lo + Nees + 17 (2= K§7) (e + oo + 1)

X (Laux + Nres + 1)1/J0>

is constant along R +id with 0 < d < dy. Theorem C.5 and the assumptions on ¢, 1
imply that the above map is analytic so that it is independent of . By continuity
(we refer again to Theorem C.5) we obtain

—1

<90§ (2—K§S)> 1/J0>
_ 1 RO
=t (K)o

-1
= <Q0(0,7') (Z_K((O?T)> 1/}(0,7')>

(s) !

= <@t(7'1>S0(0,?) (Z_©t<7—1)K(077—)©t<7—1)_> Qt(71)¢(0,7)>

_ K(S) -1 ¢
Z (0,7‘-{-7‘1) (07T+T1)

= < Po,7+m)
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for 1 € R due to the unitarity of D(71). The same analyticity argument shows
that the above expression is independent of 7 and by continuity we finally get

() ! - )\
<909 <Z—K9> ¢0> = llg(l)<s0(o,?) (Z_K(O,T)> ¢(0,7)>

= <<p (Z—K(S))_l¢>.

2.2.3 Integral Representation of U(t)

We assemble the lemmata of the last sections to express the group U(t), in a weak
sense, as a Cauchy-like integral representation in terms of the generator K.

Proposition 2.9 (Integral Representation of U(t)) Let A € A such that
m(A)Q € D>, and let ¢ € Dy™,. Moreover, choose 6 = (id',i7') € Dy with
¢ €[g, 5] and 7' > 0. Fort >0 we have

(e|vtman) =5 [ d (o] =Ko @ ye 20

where the integration has to be understood as improper Riemann integration.

Proof. By the Lemmata 2.3 and 2.8 we may write for s € R,

<c,0 eiK(s)tﬁ(A)Q> = QLM dz <%0 ‘ (z—K(S))fl W(A)Q>ei2t
R—2i
= s - ® 12
= o [ @ (| (s K0) e Y (228)
R—2i

The Lh.s. of (2.28) has an analytic continuation in s on the set S% due to Proposi-
tion 2.4. The integral on the r.h.s. of (2.28) is well defined and analytic in s € $z0

by Theorem C.6(ii) since g, [1(A)Qy € D(Laux + Nyes). Evaluating both sides at
s = —i/2 gives

<gp ’ U(t)?T(A)Q> _ ! dz <g0§ ‘ (z — Ky) ' [r(A)Qy > et

271
R—2i

c.f. Proposition 2.4. ]
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2.3 Characterization of the NESS as a Resonance
State

2.3.1 Weak Long Time Limit of the Group U(t)

Proposition 2.9 connects the dynamical behavior of wy-normal states with the resol-
vent, and therefore with spectral properties, of the generator of the group U(t) or
rather its deformation Ky. The subsequent Chapters 3, 4, 5 are devoted to the anal-
ysis of the spectrum of Ky. We use the spectral information provided in Theorem 3.1
to compute the weak limit of the group U(t).

Proposition 2.10 (Weak Limit of U(t)) We assume that g > 0 is sufficiently
small and |Bmax — Bmin| <K 1. Let A € A such that m(A)Q2 € DE™, and let ¢ € DE™,.

SV AN + . / T T / 92 . .
Moreover, choose 0 = (id',it") € Dy - with ' € [§, 5] and 7" ~ STh 0 given in

(4.3). Then the group {U(t) her has a weak long time limit as t — oo in the sense
that

lim < 0 ‘ Ut)m(A)Q > - < 05 ) oF > < QO \ [m(A)$2g >

t—o0

where Qg is the spectral deformation of Q and an eigenvector of Ky corresponding
to the simple, isolated zero eigenvalue. The vectors (g, Q0 are the D (#)-resonance
eigenvectors of K and K*, resp., corresponding to the zero resonance specified by

KOQG =0, (KG)*Qg =0, <Q§

Qg> — 1. (2.29)

Moreover, the convergence is exponentially fast, i.e., there exist a decay rate Tgee =
7'd, where d > 0 is a positive constant, such that

e <g0 ] U(t)ﬂ(A)Q> - <¢§ ‘ Qe> <Qg ‘ (A >‘ — 0.
Proof. As a consequence of Theorem 3.1 we know that the spectrum of Ky is

contained in a half plane supplemented by a point, i.e.,

0,9

spec (Kg) C {EH/”} U {z eC ‘ Im(z) > Im (Eg;/2>) 2T } (2.30)

where 7gec = 7'd with a positive constant d > 0. Here, Eé;]i/ ?) is the simple, isolated

eigenvalue of Ky = Kg_i/ ? for which either Eé;i/ 2 —0or Im(Eé;i/ 2)) < —2Tdec
holds. Note that Im(E((];i/ 2)) > —2Tqec and Eé;i/ 2) =+ 0 together with Theorem 3.1
would contradict that zero is an eigenvalue of Ky by Proposition C.16. We set ¢ :=

’/T(A)Q and apply Proposition 2.9. With Cauchy’s integral formula we can deform
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the integration contour in (2.27) and pick the residue of the integrand associated

with the eigenvalue Eé;i/ 2

(PlU00) = o= § (|G K ) e

271

—i/2
’E((),gZ/ )_Z’:Tdcc

—i—i / dz (g5 | (2 — Ko) " g )y ™', (2.31)

2mi
RAES P +irgec

where the second integral is understood as improper Riemann integral which is
convergent by the same reasoning as in the proof to Theorem C.6(ii) using the oscil-
latory factor e®*! and integration by parts as well as the numerical range estimates
provided in Proposition A.9(ii). We remark that the integrals along the vertical
lines = + i[—2, Im(Eé;Z/Q)) + Tdec] as * — Fo00, connecting the contours R — 2i and
R + E’éj/ 2 4 iTdec, also contribute to (2.31). However, since the integrand decays
s (—i/2)
—|Im(E;"" +Tgec |t

SR T | L el

dist (z; NumRan (Ky))  — |z|

(g | (z = Ko) " g ) ™| <

for z = 2 + Eé;i/ 2 4 iTqec and a positive constant C, by Proposition A.9(ii), the
contributions of the vertical lines are zero in the limit x — +oc.

Now, we observe that
1 -1
Py:=— dz (z — Kpy)
‘E((),_gi/Q)iz‘:Tdec

is a non-orthogonal projection operator fulfilling

271

’E((),_gl/Q) _Z’:Tdec

» 1
(m-aﬁmﬁ%:_f l% dz

since the integrand is a holomorphic function inside the integration contour (Eé;i/ 2)
is a simple, isolated eigenvalue), and

1 o -1
Pyl — — f sz—E“m> U=

21 0.9

—i/2
‘E((),gl/ )_Z‘:Tdec

for all U € ker(Ky — Eé;i/ 2)). Thus, the range of P coincides with the kernel of

(Kp — Eéz/ 2)) and since Eéj/ ?isa simple eigenvalue of Ky the operator is a rank
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one projection. We remark that the fact that E(();]i/ ?is a simple, isolated eigenvalue

of Ky implies that its complex conjugate E(();]i/ Y s a simple, isolated eigenvalue of

the adjoint operator (Kjp)*. Therefore, we find vectors Wy and W% obeying

oWy = BP0y, (Ko)'Ws = BP0,

such that

Py = |Wp) (U2

Since Py # 0 is a projection,

(Wg) (U2| = Py = P} = |Wy) (U

o) (3

the vectors Wy, W5 are normalized by
(V5 | Wo) = 1.

Thus, we can rewrite the first integral in (2.31) as

% ]{ dz {5 | (z — Ko) by ) €%
|87 2] =raee
= % 7{ dz < o ‘ (Z _ Ke)_l We > eiEé;i/Q)t
’E((L_gi/Q)_Z’:Tdec
—1—% j{ dz < Y5 ‘ (z — Ke)*l be > [eizt _ eiEéfgi/z)t]
’E(():Ji/2)_2’:7—dec

_ <90§ | \1/0> <\I% { Ve > 6iEé;i/2)t

(-i/2),

using that the function z — (¢ } (2 — Ky) ™ Yo ) [em e'Fog is holomorphic

inside the integration contour. This is due to the fact that E(g;i/ ) s a simple,
isolated eigenvalue of Ky. Back to (2.31) we get

(e UM@Y) (2.32)
iEé;i/Q)t [ 9 ‘ Vo >

—Tdect _ ( 2/2) _ —1 it
dx T+ EO + 27, dec K 0 wg (& .
2m
R

€ 147} | Wy )
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Again, the integral is defined in the improper Riemann sense and we get by integra-
tion by parts for ¢t > 0,

'/dﬂﬁ <90§
R
ixt
i/2 e
= ‘/dm<(p_‘<x+E(()g/)+ZTdec_K0> 77DG> it
< ||909|| ||¢e||/ ’

t—o00
— 0,

(2.33)

. -1
(24 G + it — Ko) - 0o > et

-2
x+ EO 7 e — K@)

where the last integral converges due to Proposition A.9(ii).

To compute the limit ¢ — oo in (2.32) we first rule out the case Im(Eé;i/Q)) < 0.
Under the assumption that Im(Eé;i/Q)) < 0 we obtain limy o | (¢ |U(t)) | = oo.
In the special case A = 132y and ¢ = Q (note that Q € DF™, by Theorem C.14) we
have (¢ |U(t)y) = 1 in contradiction to the divergence. Thus, it follows E(g;i/ 2 =0.

Since Qy € ker(Ky) by Proposition C.16 we can choose Wy = Qp and v = Qg such
that (2.29) holds.

With (2.32, 2.33) we finally have
et (o |UM0) = (g | Q) (O |0 )|
llgal ol /dw

—2

i/2
> ot $+Eég/)+l7'dec—K9>

t—o00
0.

2.3.2 Thermal Relaxation to a NESS

The group {U(t)}er was originally defined in (2.7) on the dense set 7(.A)"Q. Its
long time behavior, however, could only be studied on vectors W(A)Q € D™, ct.
Proposition 2.10. This has as a consequence that the relaxation behavior of wg-
normal states can only be quantified on observables from the set

A ={aea ( n(4) € D=, | (2.34)



110

2. Dynamical and Thermal Properties of NESS ...

We will show later in Section C.3 that A*™™ contains a strongly dense *-subalgebra
A; in A such that the vector § is cyclic for 7(A;) and 7'(A;), ie., 7(A;)Q2 and
7' (A1) are dense sets in H?. On A we define a linear functional

AT LT, w(A) ::<§zg [W(A)Q]9> (2.35)

where Qg, Qg are the zero ®(f)-resonance eigenvectors of K and K* specified in
(2.29). It is not clear from the definition (2.35) neither that & defines a positive
bounded functional nor that @ is independent of the spectral deformation parameter
0 although its definition incorporates the zero D (f)-resonance eigenvectors which
depend on the spectral deformation. We verify these properties in Corollary 2.14
and therefore refer to @ as a state on A;. Note that, even if the the functional @
is independent of 6, it is not possible to remove the deformation by setting § = 0
since, in general, the vector Qg diverges as # — 0, i.e., it would leave the Hilbert
space . This reflects that, in general, © is not an wg-normal state and cannot be
expressed in terms of the representation 7.

It is worth to note that we may extend & from observables in A** to linear
combinations in creation and annihilation operators af (F), F' € L?*[R3; B(H,)],
as long as the vector 7(a#(F))Q belongs to DAX,. This simply goes back to the
extension of 7 to creation and annihilation operators in the sense of (1.74) such that
we define

ot (F) = (9|} <F>>fz]e>
= Jim wo (o' (af (7)) = fim (0 |*n(af ()0 ).

The interaction v, = a,(G,) + a(G,), the heat fluxes ¢, and ¢¢, = g[a,(—iwG,) +
a’(—iwG,)] as well as the entropy production rate s = B¢, + Zle Br¢x, belong
to this class of operators. The proof that these operators are deformation analytic
in the appropriate sense is based on the proof of Theorem C.14. Hence, it makes
sense to talk about the expectation value of the interaction energy @(gv,), of the
net heat fluxes @(¢r ) of the reservoirs and, in particular, of the entropy production
rate w.r.t. wy

Ep,, (@) = @(s)

in the state @.

In the equal temperature situation, i.e., Bpnax = Omin, We have Ky = Ly and
K = L. Further, the vector Q = Q| _3 _5 € ker(L) is the vector representative
of the unique wy-normal perturbed KMS state, c.f. Proposition B.7. Applying
Proposition C.16 in the equal temperature situation implies Lg{l; = 0. On the
other hand we have, due to (Lg)* = Lg, for the kernel ker(Lz) = €. This implies
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that Qg = M5 for a suitable factor A € € which turns out to be one by

1= (05 [0 ) = X (25 190) = MIQJP = X
using the fact that (2 € DF™, by Theorem C.14 which allows to remove the spectral
deformation. This implies that

w(A) = (Qg [[7(A)Qp) = (2 [7(A)Q2) = w(A)

for all A € A*? i.e., the state © becomes the unique wop-normal (a, 3)-KMS state
which extends to the whole algebra A. Facing the upcoming theorem about thermal
relaxation it is consistent with [8] that the attracting state @ is the KMS state of
the perturbed system.

We are prepared to state the main theorem about the thermal relaxation proper-
ties of our system in connection with spectral properties of the C-Liouville operator.

Theorem 2.11 (Thermal Relaxation to NESS) We assume that g > 0 is suf-
ficiently small and |Bupax — Puin| < 1. Any wo-normal state n € N,,,(A) converges
under the time evolution o pointwise on A*™® towards the functional @, i.e.,

tlim n (o' (A)) =@(A) for all A € A™™.
Moreover, there exists a dense subset N*™* C N, (A) of wo-normal states which
converge exponentially fast, i.e., there exists a positive decay rate

g° Yeq

T 24 D 1920C2,

Tdec (236)

with Yeq being a positive constant defined in (4.46) and C,, > 0 introduced in (4.6),
such that

lim e7dect
t—o00

for alln € N*™ and A € A*>.

n(a'(A)) —o(4)] =0

Proof. We specify the set
Nama {n € N, (A) ( IBEeA ;= <7r’(B)Q )w( . )ﬂ'(B)Q> }

where the x-algebra A; C A* C A is defined in (C.13). The set N is dense in
N, (A) by the following argument. Let 7 be an arbitrary wg-normal state. Then
there exists a unit vector £ from the positive cone P such that n = (£ |7(-)¢). By
Proposition C.10 the vector © is cyclic for 7/ (A1), i.e., for a given € > 0 there exists
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an observable B € A; such that H£ - W,(B)QH
with ||A| , = 1 holds

/ B)QH —1.ForAe A

‘Wx) - < 7 (B)Q) ‘ 7(A)r' (B >‘

< |[(¢]maxe -7 mR))| + |(¢ - 7B | x ()7 (B2
< e-=ma|( (B)Q)) Iln(4)]
< e,

ie., H” - <7r’(B)Q ]w(-)n'(3>§z>‘ <=

We now choose a state n = <7r’(B)Q ‘ (- )W’(B)Q> € N with B € A;. Since
Aj is a *-algebra by Proposition C.10 we have B*B € A;. Due to Theorem C.14
holds 7'(B*B)$2 € D&™,. We choose A € A*?* and apply Proposition 2.10,

lim y(a'(4)) = tlir£10<w’(B*BQ‘UtwA)Q>
= (["(B"B)5 |9 ) { 05 | Ir(4)0s ).

Hereby, we used that 7/(B) commutes with m(af(A)) = eir(A)e™ € m(A)".
Since both vectors, [7/(B*B)y and Qy, are analytic in each variable of § = (§,7)
we conclude that the function

er<9);:<[ "(B*B)Q) ‘Qg>

is analytic. Because the deformation ®(6) is unitary for # € R?, the function p is
constant on R?,

p(o) = <[ (B >fz] 2) = :
Q> < ‘/<B)Q>:77<HB(H2)):1-

Due to analyticity, the function p is constant on its whole domain. This implies that

Jim (e (4)) = 2(4).

Further, the convergence is exponentially fast with the given decay rate 7ge. by
Proposition 2.10 since 7'(B*B)Q € D™, .

Now, we consider the time evolution of an arbitrary wp-normal state . Let ¢ > 0
and A € A™. There exists a state n. € N*** such that ||n —n.|| .. <e/(||A]] 4+ 1).
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It holds
(e’ (A)) —o(A)] < [n(e’(A)) = (' (A)] + |ne(a’(A)) — &(A)]
< = nella, (ot (A, + Ine(a(A)) — o(A)]
A . B
< €m + [ne(a’(A)) — @(A)]
< et n(a’(A)) = o(A)]

based on the convergence properties for states n. € N studied above. This implies

lim 5(a*(4)) = &(A),

t—o0

however, the convergence needs not to be exponentially fast. [ ]

Remark 2.12 (Exponential Decay Rate) Proposition 2.10 illustrates that the
translation parameter ™' as chosen in (2.36) is proportional to the exponential rate
Taee Of convergence towards the NESS. The relation (2.56) implies that the rate of
convergence gets larger if the reservoirs are stronger coupled to the particle system,
i.e., if g increases, or if the thermal fluctuations grow, i.e., if the minimal reservoir
temperature Ty, = ~1 increases. It is noteworthy that

max

g—0 2 Bmax—00

—1
Tdee ™~ g and Tdec = Tmin-

Hence, for weak coupling the decay is governed by the strength of the interaction
while in the low temperature regime the thermal fluctuation dominates the relaxation
process.

Corollary 2.13 We make the same assumptions as in Theorem 2.11. Let n =
(E|m(-)E), € € P, be an wo-normal state. Let ® stand for the entropy production
rate s, the heat fluxes ¢r, or the interaction energy v and assume that & is in the
form domain of ®. Then the expectation value of ® in the state n converges under
the time evolution towards &(P),

. t _ o~
lim 7 (a(®)) = &(2).
Moreover, if we choose n from the class N*™ then the convergence is exponentially
fast,

lim e7dect
t—o00

7 (0!(®)) — &(@)] =0,

where the rate of convergence Tgee S given in (2.36).
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Proof. Since 7(®)Q € DA™, we conclude the convergence properties with the
same arguments as those presented in the proof of Theorem 2.11. [ ]

Corollary 2.14 The definition (2.35) of @ is independent of the spectral deforma-
tion and it holds

wp 120

= and  ©(ATA) >0
aeamnfoy [l All 4

for A € A2 with A*A € A*?®. In particular, @ is a state (i.e., a positive, normalized
linear functional) on the x-subalgebra Ay C A C A given in (C.13).

Proof. Let A € A***. By Theorem 2.11 holds

w(A) = 1tlim wo(a'(A))
which is independent of the spectral deformation parameters 8. We further observe
that . .
B(A)] = Jim [(10 | (A)e 0 )| < 1Al

and, for A*A € A2,
W(A*A) = tlim wo(a'(A*A)) >0

because wy o o is a state on A. Since &(1ppe2)) = wo(lpmez)) = 1 the functional is
a state on each x-subalgebra contained in 4%"*. [ ]

Theorem 2.11 describes the state @ as the limit point of wg-normal states propa-
gating under .. This means that each state which is close (in the relative entropy
sense) to the preparation of the subsystems at equilibrium at inverse temperatures
Bp, B1, - - ., Br, resp., will converge under the interacting time evolution towards w on
a subalgebra of observables. This motivates us to refer to @ as the non-equilibrium
stationary state, or simply NESS, attracting all configurations with finite relative
entropy w.r.t. wy. We point out that the attribute “non-equilibrium” could be
misleading since @ becomes a KMS state in the equal temperature situation as one
expects. Nevertheless we keep this notion since, in general, the state © will be far
from being a thermal equilibrium. We will substantiate this in the subsequent sec-
tion by computing the thermodynamic characteristics of the system in the state @
such as non-vanishing stationary heat fluxes and positive entropy production rate
which speak for a non-equilibrium situation.

We further note that stationarity of @ w.r.t. « is not a defined concept either.
Recall that the perturbed time evolution is not given on the algebra of observables
(it does not leave the algebra invariant, we refer to the discussion about this issue
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in Section 1.4.3 and Remark 1.16) but rather on wg-normal states. Hence, for @
not being wp-normal its evolution w.r.t. « is not explained. Given an observable
A € A*™ we are able to compute the expectation value in the state @. At given
time ¢ € R the observable will have propagated under the Heisenberg evolution to
a'(A) and thereby may have left the set A**®. The application of the state wy to
a'(A) is possible with the interpretation wy(a’(A)) = wg o a(A) where wy o af =
{ e71Qy } 7(-)e Qg ) is an wp-normal state. The time evolution of @ then can be
understood in the sense

@ (a'(A)) = lim wy o a®(a(A)).

S§—00

The state w is then a-stationary by concept.

As a last observation concerning the nature of the NESS we consider the case that

@ is wp-normal, i.e., there exists a vector £ € P such that @(A) = (¢ |7(A)¢) for

A € A* Then the NESS extends uniquely to a normal state n := (£ |7(-)£) on

the whole algebra A, using that 7w(.4*"*) is strongly dense in 7(.A) by the arguments
of the proof to Proposition C.10. The state 7 is a-stationary on 4",
n(a’(4)) =noa'(A) = lim noa’(A) = &(A) = n(A).

Since A** is strongly dense in A the time invariance extends to all observables by

the following reason. Let A € A, then there exists a sequence (A,)ex C A* with
lim,, oo T(Ap) = w(A)Y for all ¢ € H? and it holds

n (O(t<A)) — <67iLt§ ‘W(A)efiLt€> — nh_{lolo < efiLtf |7T(An)efiljt£>
= lim 7 (a’(4,)) = lim n(A,) = lim (£ |7(A,)¢)

= 1(A).

The invariance of the normal state n implies that £ € ker(L), see the discussion of
Section 1.1.2 and [10, Thm. 2.5.31]. Let 1’ be another a-stationary wy-normal state.
Then 7’ coincides with 7 on A** by Theorem 2.11 and

n'(A) = lim i/ (a'(A)) = ©(A) = lim 5 (' (A)) = n(A), Ae A,

t—o00 t—o00

and due to the strong density of A**® in A it is n’ = n on A. Hence, we conclude
ker(L) = C¢

with the help of (1.7). Vice versa, if £ is an eigenstate of L corresponding to an
eigenvalue E' € R then the state n := (£ |7(-)¢) is apparently a-stationary and it
follows that n(A) = ©(A) for all A € A4**2, thus

ker(L) # {0} — dim(ker(L)) = 1. (2.37)
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Under the assumptions of Theorem 2.11 the above considerations lead to a remark-
able set of the equivalences,

JEeH?: O(A) = (¢ |T(A)E) VA A™

FE € H?\ {0} : ker(L) = C¢

specpp(L) # 0 (2.38)
ker(L) # {0}

specpp (L) = {0},

1117

where the last equivalence goes back to [21, Thm. 1.1] saying that under the as-
sumption that the standard Liouville operator has a simple zero eigenvalue then
specpp(L) is an additive subgroup of R. However, by Proposition 3.3, there is no
point spectrum outside a finite box around zero, hence the group of eigenvalues is
the trivial group only consisting of zero itself.

2.3.3 Thermodynamic Characterization of the NESS

After having introduced the NESS of the interacting systems and its dynamical
(attracting) properties in the previous section we now focus on the thermodynamic
characteristics of the state ©. We compute the expectation value of the entropy
production rate in this state and the net heat fluxes of the subsystems.

Proposition 2.15 Let g > 0 be sufficiently small and |Bmax — Bmin| < 1. The
entropy production rate w.r.t. wg in the state @ 1s non-negative,

Ep,, (@) >0,
and it further holds

Ep,, (@) =0 = 0 € specpp(L).

Proof. The entropy production formula (1.85) implies

t

1 1
i /dswo oa’(s) = —5 Ent (wo o at]wo) >0

0
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for all t > 0, using that Ent(wo|wg) = 0. The Lh.s. converges towards Ep,, (&) as
t — 00,

t t

1 1
’;/dswooas(s) —Ep,,(@)] < g/ds lwo 0 a’(s) — &(s)|
0 0
1 r 1 /
= g/ds lwo 0 a®(s) — @(s)| + Z/ds lwo 0 a®(s) — W(s)|
0 T
1 [ T
t—
< E/ds lwo 0 @®(8) — &(s)| + "
0
t—o00

where, for a given € > 0, the number 7" > 0 is chosen such that |wy o a®(s) —
Ep,, (@)| < e for all t > T, cf. Corollary 2.13. This proves that the entropy
production rate in @ is non-negative,

¢
1
Ep,, (@) = lim p /ds wp o a’(s) > 0.

t—o00

0

We now assume that 0 € spec,,(L). As a consequence of (2.38) we know that
@ coincides on A with an wp-normal, a-invariant state 7. An application of the
entropy production formula (1.85) yields

Ep,, (@) = &(s) = tlilglon (a(s)) = n(s) = —0|i=0 Ent (n o a'|wp) = 0.

Vice versa, if Ep,, (@) = 0 then the state 7 := <Q ’ (- )Q> € N obeys

t

Ent (ﬁ o at|w0) = Ent(7]wy) — /ds [ﬁ oa’(s) — Ep,, (CD)]

> Ent(7lwo) — / ds 7 [eTee [ 0 a’(s) — w(s)]|
0

Z _07

for a positive constant C' < oo, because of Corollary 2.13 where the rate 74e. of
exponential convergence is given in (2.36). By [37, Prop. 5.27.] the set

{7 € Nuy(A) [ Ent(vlwo) = —C'}
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is compact w.r.t. the weak topology on the N, (A) (note that the definition of the
relative entropy in [37] differs by a relative sign from ours). This means that there
exists an wp-normal state 1 and a sequence (t,),en € R with ¢, — 00 as n — o
such that

lim 77 (at” (A)) =n(A)

for all A € A. This implies that ©(A) = n(A) for all A € A*** and the relation
(2.38) yields 0 € specy,(L). [

Corollary 2.16 Let g > 0 be sufficiently small. If Buax = Bmin then the entropy
production rate in the state w = &g, .—p,., 1S 2€T0,

Ep,, (w) = 0.

If | Bmax — Bmin| is sufficiently large compared to the coupling constant g in the sense
of (3.6) then the entropy production rate in the state & is strictly positive,

Ep,, (@) > 0.

Proof. This follows immediately from the Proposition 2.15 and Proposition 3.3
describing the spectrum of the standard Liouville operator L depending on the
temperature difference Gnax — Bmin- [

The positivity of the entropy production rate in the NESS has consequences on
the heat fluxes through the reservoirs.

Proposition 2.17 (Energy Conservation and Stationary Fluxes) Let g > 0
be sufficiently small and |Bmax — Pmin| < 1. The energy fluz ¢, of the particle system
and the total energy flur ¢or vanish in the NESS,

@ (¢p) =0 and @ (¢or) = 0.

If 0 & specpp(L), e.g., if the temperature difference Bmax — Bmin 1S sufficiently
large compared to the coupling constant g in the sense of (3.6), then there are
non-vanishing stationary heat fluzes through the reservoirs, i.e., there exist r,r' €
1,..., R such that

w (Qﬁfﬂn) >0 and w (QSf,r,-/) < 0. (239)

If further only two reservoirs at inverse temperatures Pumax = P1 > P2 = Puin
are coupled to the particle system then the stationary heat flux goes from the hotter
(r==2) to the colder (r=1) reservoir, i.e.,

O(gr1) >0, O(¢pr2) = —0(de1) < 0.
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Proof. We first observe that the energy flux of the particle system vanishes in
the NESS. By definition is ¢, = 0;|t—oa’(H},) where H, acts trivially on the photon
variables and therefore H,, € A;. Therefore holds

w (¢p) = SILIEO wWo (8t]t:0at+s(Hp)) = 8t|t:0 sh_)rglowg (Odt+S(Hp)) = 0,5’,5:0(.:)(1‘[1)) =0.

We now consider the total flux observable ¢y = —0i|;=o’(v). With the same
arguments as before we obtain
@ (o) = — slirglo wo (Ot]e=0 ™ (v)) = —4|1=0 sllrgo wo (a'5(v)) = —=O|mow(v) =0

using Corollary 2.13, and therefore

S o(rr) = 0. (2.40)

We now assume that 0 ¢ specp,(L). This implies that S 8.0(é,) =
Ep,, (@) > 0. There exists a label » = 1,..., R with &(¢¢,) > 0. To fulfil the flux
balance (2.40) we find another reservoir label 7 =1,..., R such that &(¢s,/) < 0.

For R = 2 we can express one reservoir heat flux as the negative of the other one.
The positivity of the entropy production rate in @ yields

(81 — B2)@(¢¢1) = Ep,, (@) > 0.
Since 1 > [ it follows that @(¢¢1) > 0 and therefore w(¢¢2) < 0. ]

The Proposition 2.17 describes that the particle system does not accumulate or
provide energy in the NESS and that the total energy is preserved while the infinitely
large extended reservoirs feature stationary heat fluxes when they were prepared at
different temperatures. This is in no contradiction to the time invariance of the
NESS. The reservoir energy “observables”, the Hamiltonians Hy,, do not belong to
A and not even to the polynomial algebra of creation and annihilation operators.
A formal application of an wy-normal state (or the time limit @) yields an infinite
expectation value reflecting the fact that the reservoirs contain an infinite amount
of energy. Roughly speaking, the amount of energy stays the same, namely infinite,
over finite time intervals even if the reservoirs show a non-vanishing energy flux.

In the case that two reservoirs are coupled to the particle system it is possible
to compute perturbatively the energy flux from the hotter into the colder reservoir.
We anticipate a result from [34] saying that the net flux of the first reservoir in the
NESS is given in leading order as

J}(¢f,l) = 92¢/ + 0(92)0 (ﬁmax - Bmin) (241)
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where

¢ = 21{% 2 Re < QF | m(vr)iLer (Lo + is)_le_ﬂlLo/%r(vl)Qo > )
Hereby, the vectors )y, €25 are given by
Q0 = Qp ® Qvaca QS = C ® Qvac

where €, ¢ are the zero eigenvectors of the level shift operator Aé_i/ 2 and its adjoint

(A(()_i/ 2))*, discussed in the Sections 3.3.2 and 3.5. While (2, was already introduced
in Section 1.2 the vector ¢ € ker(L,) is fixed through

(A7) ¢=0, (C1% ) = 1

An explicit expression for ¢’ is given by

J.k e~ PE B E;
_zﬂz/dze&w?_e_ﬁlwg Gr(E ) [ye B — e

]’k 1»52
Jj>

where x; > 0 are the coefficients of the expansion of ¢ in the basis {¢;;}j=0.. .n-1
of ker(L,),

N—-1
(= E K05
=0

for the particular choice 3, = 31, compare with (2.9). The proof of (2.41) presented
in [34] uses the perturbation theory for the resonance eigenvectors (g and Q* The
expansion of these vectors is carried out under the assumption that the reservmr
temperatures are sufficiently high. To avoid this restriction one would have to apply
a renormalization process. Since such an analysis would be a complete project for it-
self we content ourselves with presenting the results of the perturbative computation
of the heat flux.
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3 Spectral Analysis of the Operators

K

This chapter is devoted to the analysis of the spectrum of the operators K, és). In fact,
this chapter (along with the subsequent ones) is the technically most involved and
it provides all necessary properties of the C-Liouvillean K to study the evolution of
the group t — U(t) = &1

The global picture of the spectrum of K 9(5) is given by a numerical range estimate,
c.f. Proposition A.9 and Lemmata C.1 and C.2. Roughly speaking, the numerical
range, and therefore also the spectrum, is confined to a truncated cone with apex
angle 7—21Im(d) as illustrated in Figure 3.1. The sectorial property of K| és) is already
sufficient to make the representation of the group U(t) in terms of integration over
the resolvent (z — Ky)~!' a well defined expression, c.f. Lemma 2.8 and (2.27) of
Proposition 2.9. The proof of the sectorial location of the spectrum goes back to
rather standard relative bound estimates on the perturbation as they are provided
in Appendix A.

However, the spectral property of K, és) along the real axis, in particular around the
origin of the complex plane, is not accessible only with estimates on the perturbation.
It is the structure of the null space and the absence of spectrum on the positive and
negative real axis which determine the long time limit of the group U(t). Therefore,
we need to apply more subtle tools in order to obtain insight into spectral regions
close to the real axis. The closest neighborhood of particle eigenvalues, i.e., points
from the spectrum of the particle Liouvillean L, can be treated by the Feshbach
technique transferring the analysis to an equivalent problem on a spectral subspace.
That way we gain clarification about the spectrum around spec(L;)\ {0}, namely we
can show that all the spectrum moves from the real axis into the upper half plane,
provided that Im(d),Im(7) > 0. This procedure is the main task of the present
chapter. The strategy in proving the shift of the eigenvalues uses arguments as in
8], however, the non-self-adjointness of K) for s ¢ R poses some difficulties. They
have been dealt with in the project [34] and enter this work in Section 3.3.
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Figure 3.1: The spectrum of Ly for the parameter choice (3.1, 3.2) consists of the
eigenvalues of L, paired with cones of continuous spectrum arising from
the spectrum of (L,e)g. The apex angle of the cones is 7 — 2Im(d) and
they are separated from the eigenvalues by a shift Im(7). The relative
bound of the perturbation glg(s) w.r.t. Im(Lgy) confines the spectrum

of K(gs) to the pink region, contained in a truncated cone of apex angle
m —2Im(J).

The zero eigenvalue of L, plays a special role. This is related to its N = dim H-
fold degeneration. The spectral analysis near the origin requires multiple applica-
tions of the Feshbach technique. The importance of a Feshbach iteration procedure
is accounted by outsourcing it into Chapter 4. The following Chapter 5 provides
the c(ogresponding spectral interpretation of the Feshbach procedure and relates it
to K,”.

The spectral information arising from the analysis of the subsequent chapters is
summarized in Theorem 3.1. Before stating the main theorem we first do some
preparation work.

Throughout this chapter, and also the subsequent ones, we assume the following
choice of parameters. Let the deformation parameters § = (id’,i7’) € (iR")? fulfill

§ e [3, q and e (0,276:L), (3.1)
84
and let the parameter s obey
s €5, (3.2)

as in (2.11). All spectral considerations of this chapter are done on a scale p > 0.
Since that scale shall measure close environments of the particle eigenvalues we
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require that it is small compared to the distance of two neighboring points from the
spectrum of L, i.e.,

< i — €| =:d;.. 3.3
P e,e’erillatrcl(Lp) ’6 € ‘ Lp ( )
e#e’

In fact, we will fix the parameter p by coupling it to g,
p = 92/3(1+€) (34)

where 0 < £ < 1/4. This guarantees the order relation

g2

sin(d)

<<p<< de

for g sufficiently small. We use the scale p to define disjoint subsets of C on which
different approaches are undertaken to study the contained spectrum of Kés). We
introduce the set

sin(¢’
S = {zEC ’Im(z) < 1n2( >p},
on which a refined spectral analysis is performed. The complement of S is far
enough inside the upper half plane such that the spectrum inside €\ S is described
sufficiently detailed for our purposes by the rough numerical range localization given
in Proposition A.9. To study the spectrum in S we decompose

s=| U s]us

e€spec(Lp)
where, for e € spec(Ly),

Se:={z€S8||lz—¢€|<4dp},
S:=8\ U S.. (3.5)

e€spec(Lp)

The sets S, S, for e # 0 and Sy are shown in Figure 3.2. The color code refers to
the different approaches to tackle the spectral analysis: on the blueish area S we
prove absence of the spectrum by ordinary expansion of the resolvent in a Neumann
series, the greyish regions are treated with the Feshbach technique, and the greenish
region is subject to Feshbach iteration.



126

3. Spectral Analysis of the Operators Ke(s)

Figure 3.2: Illustration of the spectrum of Kés): Absence of spectrum in S (away
from particle eigenvalues); localization of the spectrum in the upper half
plane in S, near non-zero particle eigenvalues e € spec(L;,)\{0}; isolated,
simple eigenvalue in the neighborhood of zero. No prediction is made
about the region outside S.

3.1 Spectral Picture of the Standard and the
C-Liouville Operator

Theorem 3.1 (Spectrum of KG(S)) Let the parameters 6 = (id',i7") and s obey
(8.1) and (3.2). Further, we fix the translation parameter by

2
pe 9%
2 +ﬂmax

in accordance with (3.1), where the positive constant Yeq is explained in (4.46).
Under these conditions and the further requirement that g is small enough and
|Bmax — Bmin| < 1, the spectrum of K(gs) can be described as follows.
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(i) There exists a complex number Eé € Sy of norm

‘E(S < 4% |T

eq || B(ker(Lp))

which is a simple, isolated eigenvalue of KG(S). The level shift operator I'eq
is defined in (4.44) whereby its norm is estimated uniformly in the inverse
temperatures.

(i) The eigenvalue E( has the lowest imaginary part among all other spectral
points in a nezghborhood of order p, it holds

[spec (Kés)> \ {Eésg)}] NSy C {z eC ’Im(z) > Im (Eé?) + 2T dec } )

The gap Tqec s proportional to the translation parameter,

7_/

Tdec - — )
1920C2,
where the positive constant Cy, is introduced in (4.6).

(111) For e € spec(L,) \ {0} the spectrum of KG(S) inside the region S, is shifted
completely into the upper half plane by a distance of order g2, it holds

spec (Kés)> NS, C {z eC ‘Im(z) > 9272&}

where the Fermi golden rule level shift ypgr was introduced in (1.86).

(iv) There is no spectrum inside S, i.e.,
spec <K(§S)> NS =10.

(v) Globally, the spectral information of K(gs) 15 accessible via the numerical range,
NumRan (K §8)>

C {ze@‘lm(z)z—ljtmax{w

(IRe(2) = [ Lyl 1,0} |-

Further, for any z ¢ spec(Kés)) there exists a positive constant C < oo such
C

that
(2 (S)> R R +

for fized Im(2) and | Re(2)| sufficiently large.
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Proof. Theorem 3.1 is the technically most challenging theorem of this work,
its proof spreads over the subsequent chapters. At this point we give the references
to the corresponding proofs.

(i) The statement about the spectrum of K és) inside &y is a direct consequence of
Theorem 5.8(ii). It employs the Sections 3.3, 3.5 and the Chapters 4, 5.

(ii) The separation of the eigenvalue E((fg) from the rest of the spectrum in S
follows directly from Theorem 5.8(iii).

(iii) The assertion about the spectrum in S, is a consequence of Theorem 3.19. The
result is based on the analysis of the Sections 3.3 and 3.4.

(iv) The absence of spectrum inside S is considered in Section 3.2 and is guaranteed
by Proposition 3.4.

(v) The global localization and the resolvent estimate goes back to the numerical
range estimate provided in Proposition A.9.

We study the localization of the eigenvalue Eé;i/ 2 of the deformed C-Liouvillean
Ky in more detail.

Proposition 3.2 (Kernel of the deformed C-Liouvillean Kj) Under the
same assumptions of Theorem 3.1 and for the particular choice s = —% we have

: ) ~ 2
E((J;Z/Q) = 0 and the kernel of Ké_zm = Ky is spanned by €y, i.e.,

ker (Kg) = @Qg

Proof. It follows from Proposition C.16 that zero is also an eigenvalue of
Ky = K(gfi/ ) The knowledge about the spectrum in Sy provided by Theorem 3.1
implies that either E(();/ 2 =0or Im(Eé;i/ 2)) < —274ec since otherwise zero would
not appear in the spectrum of Ky. However, in the proof to Proposition 2.10 we
showed that Im(Eé;i/ 2)) < 0 contradicts that K is the generator of the group U(t).

Note that we did not use the present proposition within the proof of Proposition 2.10.

Hence, we have Eé;/ 2 = 0. Due to the simplicity of the eigenvalue and KyQp =0,
we conclude that the kernel of Ky is spanned by Qg. [ ]

While it is impossible to deduct the spectrum of the C-Liouvillean K from Ky we
are able to make conclusion about the spectrum of the self-adjoint standard Liouville
operator L from its deformation Ly = K (go).
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Proposition 3.3 (Absolutely Continuous Spectrum of L) For g > 0 suffi-
ciently small and |Bmax— Puin| < 1 the spectrum of the self-adjoint standard Liouville
operator L outside the interval [—4p, 4p] is absolutely continuous. In particular, there
is no eigenvalue outside [—4p, 4p].

o [f further Bunax = Pumin, t-€., all reservoirs are at the same temperature, the
operator L has a simple eigenvalue at zero and the rest of the spectrum is
absolutely continuous, it holds

ker(L) = ®Q|ﬁmax:ﬂmm:ﬂa speca.(L) =R\ {0}.

o [f further

: Z(28)
ga < (ﬁmax - ﬂmin)2 |:1 - — :| 5 (36)
Z(B)?
where B := (Buin + Bmax)/2, i-e., the reservoir temperature differences are

sufficiently large compared to the coupling constant, the whole spectrum of L
15 absolutely continuous,

spec(L) = speca.(L) = R.

Then, in particular, the standard Liouvillean possesses no eigenvalues.

Proof. Assume that 6 obeys the assumptions of Theorem 3.1, then the same
theorem implies that for the spectrum of Ly holds,

spec (Lg) \ Sp C {z eC ‘Im(z) > 92%1% }

If further Bhax = Bmin We have Ly = Ky and therefore Proposition 3.2 applies. Thus,
zero is an isolated simple eigenvalue of Ly and the rest of the spectrum is shifted
into the upper half plane by 274ec.

On the other hand, if the restriction (3.6) holds then the spectrum of Ly is com-
pletely in the upper half plane by Proposition 3.24, it is

spec (Lg) C {z € C|Im(z) > ¢}

where

C = gQ'VFGR min {1’ (ﬁmax - Bmin)2de |:1 . Z(2B):| } ‘

4 16 Z(6)?

Let (a,b) C R be a bounded interval. The interval can be chosen arbitrarily if we
assume the extra condition (3.6). We choose it from R \ {0} for Bpax = Bmin and
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aux

in the general case we exclude that (a,b) overlaps with [—4p, 4p]. For ¢ € DE™, we
consider the function

2 f(2)=(¢|(z=L) " p)

which is analytic on the lower half plane. For Im(z) < —2 we may rewrite

F(2)={pg|(z—Lo) " o)

using Lemma 2.8. Due to the spectral properties of Ly the function f has an analytic
continuation on the domain (a,b) + i(—o00, ') for a positive constant ¢’. Hence, we
have

b b
sup /dx |Im<g0’(:c+ie—L)_1g0>‘: sup /dx IIm f(x +i€)| < 0.

O<e<c! O<e<c!
Since the vector ¢ was chosen from the dense set DZ*, we can apply [39,
Thm. XIII.20] and obtain that (a,b) is contained in the absolutely continuous part
of the spectrum.

It remains to show that zero is a simple eigenvalue of L in the case Bnax = Oumin-
Since, under this extra condition, the standard Liouville operator L coincides with
the C-Liouville operator K we conclude that

~ e_/gL(Z) /2QO
Q= Qprac=prin=p = Te 77720, ] e ker(L),
hence, zero is an eigenvalue of L. The simplicity follows from (2.37). [

)

In this chapter and the subsequent ones the operator K(gs will be estimated in

terms of the operator

Mgy := dTgi((u, X, 7) — mg(u)) = Im(Lop) = sin(0") Laux + 7' Nres,

me(u) := sin(8')|u| + 7. (3.7)

Note that the above definition coincides with the definitions (A.9) and (A.10) for
6 = (i0',i7") € (iR*)? such that sin(¢’) > 0.

3.2 Spectrum away from Particle Eigenvalues

In this section we analyze the set spec(KéS)) N'S. We will find that the operator
K}¥ has no spectrum in S.
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Proposition 3.4 For z € S and ¢ < psin(d') < dp, = Min, ¢regpec(r,) |€ — €], the
e#e’
operator (Kés) — 2) is invertible and its inverse is a bounded operator. Thus, we have

spec (K(gs)> NS =10.

Proof. We show that the inverse operator of (Ky — z) can be expressed as a
norm convergent Neumann series,

( KO Z) ! (3.8)
( i
_ (M +p)'?
Lo’g —Z
- —1/2 7(s) _12 Mg +p " —1/2
XD 9+ )7L (Mg + p) AR (Mg + )7
n=0 ’
To estimate the series we consider two cases. First, we assume that | Im(z)| < %p

2
e € spec(Ly). Having in mind that My = Im(Loy) = sin(0’)Lyes + 7' Nyes and
Re(Lop) = Lp + c0s(8') Laux for 8 = (id',47") and that Ly, Lyes, Nyes and Ly, are
pairwise commuting self-adjoint operators with |Lyes| < Lauwx, the application of
functional calculus yields

N2
and with (3.5), we conclude that |Re(z) —¢e| > \/(4,0)2 - (Mp> > 3p for all

7M[0] s sup mtp + sup _m+e
Log—z|| = o<m<p, |e—Re(z)+cos(6)l]  m>p |m —Im(z)]
[e|<m/sin(¢’),
e€spec(Lp)
2p 2p
+ —— <8,
3p—cot(d)p  p— Sm§5 ) p
because § < ¢’ < 7. The second case considers Im(z) < —w ,
Mg +p _mtp mitp 2
Log—z|| ~ mz0 |m —Im(2)| ~ mzom + %p sin(d’) '

Together with Lemma A.5, we see that

M[g] +p
L079 —Z

g
psin(d’

HQ(M[(;] + P)_l/zfzgs)(M[a] +p) 12 <C

1
<_a
)_2

for a positive constant C' < oco. This ensures the norm convergence of the series
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(3.8) and we end up with the following estimate for the resolvent,

-1 1
P

3.3 Spectrum in the Neighborhood of Particle
Eigenvalues

We go over to study the set spec(Ky) NS, for a particle eigenvalue e € spec(Ly).
Choosing z € S, close to an eigenvalue e of the unperturbed Liouville operator L,
it is not possible to prove invertibility of (Ky — z) with the help of a Neumann series
expansion. We apply the smooth Feshbach map as introduced in [4], c.f. Appendix E,
to study spectral properties of (Ky — z) . This results into the Theorem 3.19 and
Proposition 3.24.

To apply the smooth Feshbach map we first choose a smooth cutoff function
O : Ry — [0,1] with

supp(0) = [0, 1], and O(x)=1 <= z¢€ [0, g] . (3.9)

We use the function © to define a smooth partition of the one,
Xf,(x) —i—Yi(m) =1 Vo e Ry,
where

\(@) = sin (56(p7'a) ).

(3.10)
— m _
X, (2) := cos (5@(0 1%)) ,
are smooth functions x,,x, : Ry — [0, 1] with
7
supp(x,) = [0, pl, Xp(z) =1 <= z € {O, gp} , and
: (3.11)
P = [§p.0) ) =1 = 1 € o)

The parameter p > 0 plays the role of a cutoff parameter. We introduce via spectral
calculus a smooth “projection” operator

Eew = Xp <|Lp — 6| X I].]-‘(LQ[TD + 17—(% & M[Q]) S B (HQ) ;
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where, recall, Mjg = Im(Lo) = sin(0") Laux + 7' Nres. Because of (3.3), the operator
=, can also be expressed as
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Zep = Pir,—a ® Xo(Mpg))

(3.12)
and write Mg
rewrite

with Pz —¢ being the (sharp) orthogonal projection on the eigenspace of L, corre-
sponding to the eigenvalue e. We further define a B(H2)-valued function

Kot = Xp(u) Plr,=

fooo udP(u) in its spectral representation. This enables us to

Bep = Xep(Myg)) = / Xep(u) @ dP(u)
0
smooth “projector”,

in the sense of generalized spectral calculus. We also introduce the complementary

[1]|

ep T

\/1 — .:ap = yp <|Lp — 6| X IL]:(L2[T]) —+ 17—[% (%9} M[Q])
N-—1

Xp(|Ejr = €l +u) [pjk) (psn] © dP(u)

X€7p(M[9]),
where the B(H32)-valued function X, , is given by

7,k=0

N-1
Xepiur > X,(1Ejk — el +u) [oi) (054 -
The relation (3.12) allows us to write

Bep = \/ P~ ® Lrepry + Pry—a @ X, (M) .

range of the operators =, , and =, ,. We define
€p

where Pip: | = 1 —Pr,—¢ = Pr,+¢ 1s the complementary projection w.r.t. Pz —g.

We conclude this notational part by introducing orthogonal projections on the
P, , : orthogonal projection on ran (=, ,),

P, , : orthogonal projection on ran

P. :=1-P.,
(Eevp) ) ﬁL
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and note that
P

ep = {ILpfe\mﬂLQm+1H%®M[6]<p}
= Pr,=q ® P[M[(9 <]
Pe,p = P|:|Lp_€®]1]?(L2[T])+]1H%®M[9]>%p:|7
j’p = Mt ® P[M[9]<”] * ILH% ® P[M[e]Zp]>
1

P
e,p {|Lp e\@]lﬂLQ[T])Jr]lHQ@M[@] g}

= Plr,=a @ Py, <1

Since the operator My has no singular spectrum away from zero, the projections

-1 .
P, ,and P, 7, coincide and therefore
) '8

P = P 7 = P[Lp;ée] X P[M < p] —+ ILH2 X P[ (313)

2Eo)

3.3.1 First Application of the Smooth Feshbach Map

We use the freshly introduced notation to define the first application of the smooth
Feshbach map, discussed in Appendix E, to the operator family
K = Log+gIy,  s€$..

Considering the operator Loy as the unperturbed part which commutes with =, ,
and Eeyp and g[é.s) as a perturbation we get for each z € S, a = ,-Feshbach pair
(Ké(,s) —2,Lo9 — 2). To this pair we can apply the smooth Feshbach map J=, ,,

Feon (K =2 Log—2) = Log—2+ 05, I0Z, (3.14)

-1
2 )= s s
-9 ':'57919( ):‘e,p (KQ( ) o Z) “&P[e( )‘—‘6 09

e,p

(1]

where = =
(KG(S) _ Z)g = |:L079 — 2+ gEe,pIQ(S)E€7P:| rran(ﬁe,p)
Ee,p

is the operator of interest with the perturbation regularized in a spectral neighbor-
hood of the particle eigenvalue e. The image (3.14) under the Feshbach map has
to be understood as an operator on ran (=, ,) = ran (P, ,). The endeavor of what

-1
follows is to show that (3.14) is well defined, i.e., that the resolvent (K(gs) — z)

Ze,p

exists, and that (3.14) defines a bounded operator on ran (P ).
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Lemma 3.5 If ¢*> < psin(¢') < dr, and z € S, than the operator (K(gs) — z>

is invertible on ran (=, ,) and its inverse is bounded.

Proof. We expand in a Neumann series,
_ -1 _
P., (Kgs> - z)= P., (3.15)
o M, , 1/2
— Pe,p( o] T 1)
Log —Z
= M9 +p
X Z { 95 (Mg + p) ™17 (Mg + p)~*Z. Lo[e] —z }

X<M[9} _'_p) 1/2 Pe,p

We prove the norm convergence of this series by estimating the terms separately.
First, we decompose P, , = P; + P, corresponding to (3.13) where

Py =Py 2 ® P[M[9]<§p], P = ]lHQ X P[M[o >1p]

and consider
L() 0 — Z

<

(3.16)

€,p

€,p

—|—p—
LOQ_Z

Mg +p,
Loy — Z Lo 0 — Z ‘
These operator norms can be estimated via functional calculus using that Ly, Lyes,

Nies and Ly, are pairwise commuting self-adjoint operators. Since |Lyes| < Laux, We
get

min] < o
Log—z - m<Ip, le’ + £ cos(0’) — Re(z)]
e’ spec(Lp)\{e}.
e[ <m)/ sin(&")
5P
= vemmtbone 1 — el = e — Re(z)] — Zpcot(0)
2p 15

<

0 4, 7 ; < Ps
L, —4p — gpcotd’ — 4dp,

where we used that pcot(d’) < dr, and p sufficiently small such that dr, — 4p —
Tpcot(d’) > dﬂ. The second norm in (3.16) is treated similarly,

MGH_'O < sup _mrp sup 1+7p—|—1m(2)
Loy — z T o>l |m — Im(z)| m>Ip m — Im(z)
sin(4")
< 14 M < 5.
7 sin(d’)
gP— —o P
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Altogether, we get
< 6. (3.17)

M@]+P—
Log—z

Further, we estimate

C

< D =t
psin(d’)

H(M[e} + P)_1/2]9(8)(M[9] +p) 2

for a positive constant C' < oo, where we made use of the relative bounds on the
perturbation Ie(s) provided in Lemma A.5. Finally, we have

M[g] —i—p

| SO <

9Zeo(Mig) + p) ™Iy (Mig) + p) M °Z, psin(d)

(3.18)

N —

for g* < psin(d’) which ensures the norm convergence of the Neumann series (3.15).
Thus, (Kés) — z) is invertible with

e,p

ull

— s -1 12
RO
Eep P

[ |

We can conclude with the help of Lemma A.5 that Eevplg(s):ep, Ze plés)uep and

E&,}IG(S)E&,, all extend to bounded operators on ran(=, ,). Therefore, the operators

K 6(,5) — z and Loy — z build a Z, ,-Feshbach pair in the sense of Appendix E, and in
particular the operator (3.14) is well defined as an element of B(ran(=. ,)). Theo-

rem E.1 then provides a spectral link between K, 6(,8)

map SEW.

and its image under the Feshbach

Proposition 3.6 (Isospectral Link) The operator §=, , (Ke(s) —2z,Log—2) has the

same spectral properties as the original operator Ke(s) in the sense that

2z € spec (Kﬁ) NS, (3.19)
<= 0 € spec <§Ee,p <K(§S) — 2, Ly — z)) and z € S,.
Proposition 3.6 suggests to study the spectrum of the operator (3.14). The re-

maining part of this chapter is devoted to this task. A main result is the following
proposition.
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Proposition 3.7 Let z € S, and s € S.,. For 0 = (id',i7’) as chosen in (3.1) and
g* < psin(d') < dp,, the operator %EE”O(KéS) — z,Lop — 2) defined in (3.14) is of
the form
§e., (K — 2, Log — 2) (3.20)
= Pop[Log— 2+ A @ x5 (Mpg)] Peyp + 620 (g7 072 4 gp7 12 4 p7)

where the level shift operator A% € B(ran(Pz,—)) is given by

A =l Py [ dy [60) = Gy 0] (3.21)

T

X (Lp —e+u+ie)™? [g(y) — QES@,) (y)} Bip,=e
and the remainder term g*>QO (gflp”“/2 +gp 2+ p”) =0 (g2+5) 15 estimated uni-
formly in z € S, and uniformly in the inverse temperatures. Hereby, the number

v > 1 is the exponent of the infrared reqularization of the glued coupling function G
introduced in (1.92), Hypothesis VII-1.12.

Proof. We first observe that due to Lemma A.5

‘<g’ P, IP.,

V+1/2)

(8)=
*—*eplg *—*ep ‘ - gp

the operator (3.14) can be written as
3’Ee,p (KB(S) - Z? LO,Q - Z)

O 195 (kO _ )\ 5 0= |p
- e,p 0,0 z g Hep 9 —ep 0 z —e,plyp —e,p e,p

[11]

e,p

+920( -1 V+1/2) (322)

Hence, it remains to consider the resolvent term in (3.22). The term is — up to small
errors — the level shift operator. The remaining part of the proof is tackled step by
step by elaborating the following Lemmata 3.8 — 3.14. [ ]

In order to estimate the resolvent in (3.22) we introduce some notation,
[Ve} 1= a; (o), Ve] = ag (Gp) ,
L a

07, [%L— [Wf L» 7], = [l = ),

The indices ¢ and a stand for creation and annihilation part, resp.
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Lemma 3.8 Onran(P.,), we have

€,p=0 ‘:‘67/)

= s -1 = 5)—
2l By (K = 2) . Ze,0y)

Ze,p

= s -1 = s)| — v
Eep [19( )] e (Ké ) — Z); Eep [Ig( )} Zep + O (p").

Ze,p

Proof. We start the proof observing that

-1
= (s)= (s) = (8)=
\_467p_[9 ‘—‘E,p (KG - Z) fu— I

= e,pte  “ep

=, (3.24)

—1
= &) = (s) = (8)| =
Se,p [Ie ]Cfe,p (Ke - Z>= Ze,p [Ie } JZer

© _ - . o Mg +p n
X Z {—g:e,p(M[e] + ,0) 1/2]é )(M[e] + ,0) 1/2= 6] }

n=0

—er L079 —Z
[0 + )2 || M+ )72 157] (Mg + )72

oo
X2
n=0

X H(M[G] + p)_l/zge,p” H []0(5)] aEe,P
= 0 (/OV> )

where the estimates (3.17), (3.18), (A.14) and (A.16) enter in the last line.

p
‘_‘67p

x (Mg + p) B, [fés)} E

IN

(M[G] + p)Ee,p
Lo,g — Z

n

= - S _1/2~ M@ + P
9E.,(Mig) + p) 7157 (Mg + p) ”h,pﬁ

In the next step we replace the perturbed by the unperturbed resolvent.
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Lemma 3.9 We have

(s) (s) = ;] =
= 1) 2 (1), 2],

Ze,p

_ = )| = -l=
= Sep [[9 Ze,p <L0,9Pe,p - Z) e,
a

Proof. We compute the difference

-1
= (s)| = S = s —_
=e.p [[0 } Sep (K(S )~ Z>= Zep [[9( )] =
a Se,p ¢
= )| = P = )| =
CTer |:]0 ] a‘_‘e’p (LO,G'Pe’p B Z) —e,p |:Ie i| c_‘e7p

—1
= )| = s = 7o=F D 1= )| =
=e,p [](g )} e <K(g ) Z) Hevplfg =e,p (LO o0Lep — z) =e,p [](5 )]

|+ P)Ze,
C ol 0 (7] it | 22
0,0 — <
N S —1/2= M9 +p
x D (|9Zes (Mo +p) 2157 (Mig) + p) 1/2~e,pL0H—z
n=0 ,
+p)Z.
0
’“eﬂ(M[eﬁp) V215 (Mig) + p) 1/2H H%
0,06 — %
s+ )72 [17] (004 007 0+ 22
O(gp’l/Q).

Next, we show that the leading contributions to the level shift operator are the

level shift operators for the single reservoirs and that reservoir correlations can be
neglected.

Lemma 3.10 We have

= ()| = D -l= ()| =
Ze,p [Ie L“eyp (LU,GP&P - Z) Ze,p [[ ]

0 —=ep
c

R
= Ee,P Z Qgl,r <F§(S)( Ty T 7T)) EG,P (LO,G?
r=1

-1 — * S —_
ep Z) ‘:‘eypagl,r (FQ( )( N 7T)> -
+0(p"),

where ay ,(u,X) = ag(u,,r) and ag,(u,X) = ag(u,¥,r) are the creation and
annihilation operators for the r'™ reservoir.
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R}, j # k, we will show that

Proof. For j,k € {1,...,
Rik = Zeplgly <F§(§)( K ,j)) Eep (LUﬁFaP - Z>_1 Ee,pa;uc <F9(S)( I k)) Sep
= 0(p).
To this end we introduce the projections
t=j,k,

PP =Pl

B reservoir, where

only acting on the /¢
M[(;) = drgl((ua 27 T) = 6r,ém9(u))

is the part of Mg which acts on the variables of the £ reservoir. As a consequence

we get
[Pfgj)a glk(F)] =0 for j # k.
Note that A
e = Ee,oPM = PYE, ,
and therefore
) j
R]k = Ze,plglj (Fg ( ) )) Pp(])uep
—-1= % s —_
X (LO,é)Pep - Z) :eﬁpp(k)aglk <F€( )( ) ’k)> —e,p
Taking the norm gives
—_ 3 M[H +P>
IRkl < ‘ Ee.plal j (1[m9§p]F§( (.- )) (Mg + p) 1/2H ‘ P
0,0L7ep — <
H(Mw] + ) Pay,, (1[mQSp1Fe( (S Jf)) e

= 0(p"),

where we used (3.17), Lemma A.4, (A.11), and arguments elaborated in the proof

of Lemma A.5 to see that
(- 0d)) (Mg + )2

‘ Ee,plglj (1[m9§p}F§(S
[ ) 211
1 HF§ (U, 27 .])
< = du | dX -
sin(d’) |Jo(u)]
me(u)<p 52
- 1/2
C
< d 2v—1 — O v
< o o) ).
e (u)<p
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for a constant C'. [ |

The next lemma allows us to integrate out the photon variables.

Lemma 3.11 We have

e() == X, (Mg +me(uw) =X, (ILp — €] + Mg + mg(u)) . (3.25)

[1]]

Proof. We are going to apply the pull through formula (1.67). Pulling creation
and annihilation operators through the cutoft operator =, , gives rise to the operators
of the type (3.25) and

e (u,u) =X, (M[e] + mg(u) + mg(u’)) .

With this notation at hand we can compute

= - -1= * s —_
Hepz Agl,r (F( ' )) Zep (LooPep — 2) Se,plglr (Fe( )< " ‘7T)> Sep

= \_ep/dy/dy 57"7“/Fs ®O,g1( )

T T
X (Log + jo(u) + jo(') — 2) ™ B p(u, u) FS (1) @ ag(y)Ee,.



142 3. Spectral Analysis of the Operators Kés)

To estimate the second term we choose vectors ¢, of norm |¢| = ||#]] = 1 and
compute in a similar way to the proofs of the Lemmata A.4 and A.5,

(-

Ee,p / dy/d?/ 57’,7"F§(§) (y)* ® a;l(y/)ge,p(uv u/) (LO,G + ]9(U) + j@(ul) - Z)_l

T Y
XEe,p(% U,)Fe(S) (y) @ ag(y)Ze, ¥ >'
_ 2 2
< [ fan |57 wr [ E(y)
> Y Lmg(u)<p] o (w)] ) Y Lime(w)<p] o ()]
,1Y2
X Oyt || Zep(u, 1) (Log + jo(u) + jo(u') — z)_1 Zep(u, i) ]
1/2 1/2
X /dy lo(w)| lag(y)Ze 01 /dy Lo ()| |l ag () Ze 0|1
T Y
< sSup —e,p (LO@ +]9(u) —f—jg(Ul) - z)ilH
meg(u),me(u)<p
_ 27 1/2 97 1/2
[an |72y [ |57 @)
X me(u 0. 7 N me(u N
Y Lmg(u)<p] o (w)] J Y Lime(u)<p] o ()]
1
X ——— || Mg =, M=,
v M2l .1
— (f)(101+21/)7

where we made use of the functional calculus to obtain

=2 . . _
sup Ze, (Loo + Jo(u) + jo(u') — 2) !

me(u),me(u)<p

Pevp

< sup  ||(Log + jo(u) + jo(u) — 2) "

mg(u),me(u)<p

1
(L, + COS(5/)[Lres +u+ u/] — Re(2)) P,z ® P[M[e]ﬁgp]

< sup
mg(u),meg(u')<p
-1
+ sup (Mg + me(u) + mo(u') — Im(z)) P[M[9]>Zp]
meg (u);me (') <p °
1 8 _
=0(p").

S Bt 14 T T dsm(@))p
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The next task is to replace z by e (recall that |z — e| < 4p) and Loy by L
Lemma 3.12 We have

Proof.

We compute the resulting difference term

_ 2)—15

Eep(t) (Log + jo(u) —2)~

X [c08(6") Lyes + iMjg + € — 2] (L + jo(u)

w) = ¢) ' Ee, (w)FS (y)2
“Zen [ Y ED W) Py P @Een) (Lao + o) = 2)”
T

X [€08(6") Lyes + iMjg + € — 2] (L + jo(u) — e)”!
X Bep (W) Pep() Plag < Fo (0)Ze
where FW

(3.27)
(u) is the orthogonal projection on ran(=. ,(u)) given by

Pep(u) = Pryza ® Lrapr) + Pry=q @ Py

[9]+me (U)Z%ﬂ] ’
Introducing two further projections
P1 = P[Lp;ée] & P[ <p]
Py(u) =

Plr,=e) ® P15 ()< <]
we can decompose
ﬁ67ﬁ<u>P[M[9]§p] = Pl + P2 (u)
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Thus, we compute the integrand in (3.27) on the range of the projections P; and
Py(u). First, we consider

||P1 (Log + jo(u) — 2) " [co8(6") Lyes + iMjg) + € — 2] (Lp + jo(u) — e) Py
le — z| + cos(d")|¢| +m

< E’ESpgng’,),,\{e}’ le/ + cos(8")0 + im + jo(u) — z||e/ + jo(u) — €]

0| <m/ sin(8")
< 6p sup L .
= sin(o) cespecl L)\ €/ + cos()0 + im + jo(u) — 2|l + jo(u) — €]

le|<m/sin(6")

. . : e d
To estimate the remaining fraction we distinguish two cases. Assume that |u| < %
which implies that

le" — 2+ cos(6") +im + jo(u)| > | — e+ cos(d" )l + cos(d')u + Re(e — 2)|
> | —ef = cos(&)(|€] + |ul) — |e — 2]
> dg" +0(p)
for ¢ being of order p, and
€~ e+ do(u)| 2 ¢ — e + cos(du] > .

d .
The complementary case, |u| > =&, yields

le" — z 4 cos(6" )0+ im + jo(u)] > |m+my(u) — Im(z)]
> sin(¢')[u] — |m| — [e — 2|
sin(d”)
z —5 A, +O0(p)
and
sin(d)

€' — e+ Jo(u)| = [me(u)| >

5 dr,-
Either case suggests that
igg HP1 (Log + jo(u) — z)_l [cos(é’)Lres +iMjg) + € — z] (Lp + jo(u) — e)_1 PlH
=0(p).
We go over to compute
| P2 (w) (Lo + jo(u) — 2) ™" [cos(6") Lyes + iMjg) + € — 2] (Ly + jo(u) — €)™ Pa(w)]|

sin(d') || jo(u) (cos(0") Lyes + iMig) + jo(u) + € — 2)
6p 1

IN

: sup ; - - .
sin(d’) T mo(w)<m<p, |70(w)] |cos(6")€ + im + jo(u) + e — Z|
11 <p/ sin()
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Again, we consider two cases to estimate the fraction. First, we choose u € R such

that [jg(u)| > (7P This allows us to find an upper bound for
1 2

L < < .
- - o 5p) (P

o) Teos@)E+im -+ joCu) € =21~ |y (o) — sty

Let now |jg(u)| < Sm( 57P which implies that the integration parameter is restricted
to
o < [Reloto)] _ Ll 12
cos(0’) cos(d') — cos(d) sin(d)

and further holds
1

1
o ()] [cos(@)E + im + Ja(w) + e — 2]~ To(uw)][m + mg(ux) — Im(2)]
1 8

<
]jg(u)|<8p sm<5>p) 3pljo(u)]

IN

sin(d’)

Ip and Im(z) < p-

since m + mg(u) >

Applying all this knowledge to (3.27), we end up with

' 3
) - oo
W37w._squk/ﬁy O |||Fw)
Y
o fon 0]
P b TP
Y
" o] = w]
+T/ Y H o)1= 2275 o (u)]
= O(p+p™).
|
Now, we remove the cutoff operators =, ,(u) from (3.26)
Lemma 3.13 We have
= (3.28)

/@ﬂf<>_w<>wp+%w»—@1§WWM$Nw%w

T
:_w/@F W) (Ly + o) — &) FS (9)Z0, + O (02).

T



146 3. Spectral Analysis of the Operators Kés)

Proof. We show that the contribution of 1 —Ezp(u) = 22 ,(u) to (3.28) is small,
where we define

Eep(t) == Plr,— @ X, (M[o] + mg(u)) )

Computing the differences, we obtain

= [ o
| o |=wl
< /dyl[me(u)<ﬂ] ‘jg(u)‘ —O(p )
T

As a last task, we remove the spectral parameters 6 = (i, i7"). Moreover we will
show that

Lemma 3.14 The r.h.s. of (3.28) up to the error terms is independent of 0 and
can be represented as

B,y / dy Fﬁ ()" (Lp + jo(u) — ) " By (y)Ee., (3.29)
T
= h{.% Zep / dy FG (y)* (Lp +u—e+ z‘e)*l F) (y)Ee,p.
T

Proof. First, note that
(Ly + jo(u) —e) ™' = lim (L + jo(u) — e+ ie)”!

in norm topology since Im(jg(u)) > 0 for our choice of § = (9, 7) with Im(9), Im(7) >
0. For € > 0, we have analyticity of 6 — (L, + jo(u) — e + ie) " in 6 and T separately
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on the domain 0 < Im(é) < 7 and Im(7) > 0, because of

e&sgn(u) ‘u’

(Lp + jo(u) —e + ie)2

Os (Lp + jo(u) —e+ ie)fl = —

and

Or (Lp + jo(u) — e + ie)_l =—(Ly+jo(u) —e+ i&?)_Q ,

using that
H o+ Jo(u) —e+ie)” ||<52,

uniformly in #. Further, we stress that § = (8,7) — (Ly + jo(u) — e +1ie)”" is
continuous as Im(d), Im(7) N\, 0. By dominated convergence theorem we have ana-
lyticity of

0 =(0,7) — Ze, / dy S (y)* (Ly + jo(u) — e +ie) " Fy” (y)=e, (3.30)
T

for 0 < Im(0) < §, 0 < Im(7) < 270, and continuity for Im(d), Im(7) \, 0. Let

now 6 = (0,7) € R2. Substituting the integration variables,
u+T7T — u ,u >0,
u+7T — U ;u < 0,
we see easily that (3.30) is invariant under a translation 6 — 6 +6 for § € R2.

Because of analyticity the function (3 30) is independent of 6 = (4, 7) as long as
0 <Im(0) < F and 0 < Im(7) < 27 Continuity finally yields that

max*

S [ EP W) (Lt dnw) = e+ i) E )=,

Y
= B, / dyF® (y)" (Ly +u — e +ie) " FO(y)=,,.
Y
The assertion follows since, for § = (i0’,i7') with § < ¢ < T and 0 < 7" <

2731 | the limit procedure € \, 0 and the mtegratlon commute by the dominated
convergence theorem,

=, [ dyF )" (Lo+ ) - e+ i) E )=
T

= = [ WFP W) (Lot daw) — o) E W),
T
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3.3.2 The Level Shift Operator

After having extracted the leading orders of the Feshbach operator =, , (Kés) —
z, Lop — ) in Proposition 3.7, it becomes necessary to study the level shift operator

AY) defined in (3.21) in order to understand the spectrum of F=, , (Ké,s) —2z,Log—2).

The aim of this subsection is to understand the level shift operator ALY of the
R-reservoir system as the sum of contributions from each reservoir. Moreover, it is
the goal of the subsequent consideration to study the qualitative deviation of the
level shift operator from the equal temperature case 5_5 = (B, — 3,0,...,0).

Let us introduce the notation

AY = —lm [ d(uD) Ry, (G(u3,7) - Gl (.2, )] (3.31)
RxS?
X (Lp —e+u+ie)™? [g(u, X,r)— Q'<s623) (u, Z,r)} P, =)

for the level shift operator of the r* reservoir such that

Having the notation

at hand we can rewrite (3.31) as

AC (3.32)

e,r

= —lim [ d(u,3) Pu,=q [G(y)" — 7P A(=505,)G'(4)" A'(505,)]
RxS2

X(Ly — ¢ +u+i2) ") [Gly) — A (—556,)G (4) A'(5y)] Pre)

for y = (u, 3, 7). The level shift operator A(ﬂ of a single reservoir emerges from the
single reservoir equilibrium situation §3, = 3, = 0 via conjugation, as the following
lemma states.

Lemma 3.15 On the range of Py —.), the level shift operator ASQ corresponding to
the ™ reservoir can be expressed as

AL) = A(s(Br = Bp))ADA(=5(6, — By)),
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where
A9 =t [ dw.D) Py 60) - G
R x.S2
X (Lp —e+u+ie) 7 [G(y) = G'(y)] Pr,=q-
Proof. Let € > 0 and set R. = R.(u,%) := (Lp, +u—e+ig) . Also, we
abbreviate Py := P —,. We take into account that
[A(0),G'(y)] = 0 =[A'(b),G(y)] (3.33)
for all b € C and further
A(b)A'(=b) = etle, (3.34)
which implies that ‘
Py A(b) = €™ Py A'(b). (3.35)

We are going to use the above relations to expand the product representation (3.32)
of AEfZ into four addends,

(GG) = PuaG(y) RG(y) P = PyG(y)* A'(DRA'(=b)G(y) P
= PgAb)G(y) RG(y)A(-b) P
for any b € C,
(G'G") == Pye ™A (=s083,)G (y)* A'(s63,)
><Reeis‘w’““A’(—séﬁp)g'(y)A'(séﬁp)P[e]
= PgA'(=s65,)G'(y) " R-G'(y) A'(5655) P
= PgAb)G (y) " RG (y) A(—b) Py
for any b € C,
(GG") = PuG(y) R.e™ A (=556,)G (y)A'(s55,) P
= PgA(—568,)G(y) Re"*"""G' (y) A(s63p) P,
(G'G) = Pe ™A (=s603,)G ()" A'(s60,)R-G (y) P
= PyA(—568,)G (y) Ree PG (y) A(s63,) Py
where we made use of (3.33, 3.34, 3.35) at several points. Choosing b = s(3, — 5,),

the terms (GG) and (G'G’) have already the required structure. Therefore, we focus
on (GG') and (G'G). Applying (3.34, 3.35) again, we can transform

(GG") = PyA(=s60,)A'(s05,)G(y) Ree™ TG (y) A(=5(05, — 03,)) P
= PyA(s(86, = 6,))G(y) Ree™ =G (y) A(~5(35, — 053,)) Pre

and, equivalently,

(G'G) = Py A(s(65, = 65,))G' (y) Ree™ 7 =G () A(=5(36, — 38,)) P
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This allows us to write

AL) = PyA(s(r = 6)) (A9 +li [ d(u, %) Rufa, )| Al-s(5, — 5)) P
R xS2

R5 = Rg(u7 E) = g(y)*RE [eiséﬂr(Lp-i-u—e) . ILH%} g/(y)

+G/(y) Re [ B — 1] Gy,

Thus, the assertion is proved by showing that

li{% d(u, ) PR (u,X)Pg = 0.
RxS2

We are approaching this task by noting that

o0

Ra — —Z/dt ei(Lp—i—u—e—i-ia)t.

0
Therefore,

Py (y) Re [e*“‘wLP*“’e’ — ﬂwg] G(y) Py

[e.o]

- / dt P[@]g/(y)*ei(quis)t |:€77ls5ﬁru€in(tfs6ﬁT)g(y)efin(tfs(sﬁT)

0
_ 6intg(y)e—int:| Py
= — / dt Ij[e]ei(u+i£)t [e—isciﬂruein(t—séﬁr)g(y)e—in(t—séﬁr)
0
_ eintg(y)e—int} Q"(y)*P[e]
= =i [depgge e [l 1] 6 )Ry
0

where we used in the second and third line that the expression in parenthesis acts
trivially on the right factor of the tensor product space Hf) = H, ® H,, and therefore
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G'(y)* commutes through the integral. So far, we have
PgRe(u,X)Pe = Py {Q ()" (Lp+u—e+ie)”" [eiséﬁr(%ﬂ—e) - 17@} G'(y)
~G(y) (Ly —u—e—ie)" [eismr(Lp_u_e) - ﬂug} Q/(y)*}P[e]-
Note, that

G(—u, S, r) = —e PG (u, B, 1) and
G(—u, 2, r) = —eV2G (u, %, r)"

Integrating over R x S? 3 (u,X) and performing a transformation of variables,
u — —u, for the second addend, we get

/ d(u, %) PyR.(u, )Py

RxS?
_ / d(u, %) PG y)" [(Ly +u— e +ie) ™" — (Ly +u— e —ie)"']
RxS2
% [ei%@m_e) - BH%} G'(y)Pq
_ / d(u, Z) P[e]g(y)* —2ie 5 |:6i85ﬁ7-(Lp+u—e) o ]]-'H2} g/(y)P[e]
(Lp+u—e)” +¢2 ?
RxS2
N
e—0 *
SN / A1, Z) PuG(y)* o) (03l 6 (s +u — )
FRE=IR % g2
x [1— eisw’"(Ej’”u_e)} G'(y) Py
= 0,
where (- ) denotes the delta distribution. [

Lemma 3.15 allows us to derive properties of the level shift operator Aéi)n from the
case s = 0.

3.4 Spectrum in the Neighborhood of Non-Zero
Eigenvalues

In this section we study the level shift operator A associated with non-zero particle
eigenvalues e # 0. The localization of the spectrum of A in the upper half plane
allows the conclusion about the absence of eigenvalues of K 9(8) on the real axis in S,.
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We launch this section by considering the space P[Lp:ng. For a fixed e €
spec(L;,) we introduce the sets

I.:={(j,k) €{0,1,...., N =1} |Ej = e},
Ie(l) :{36{07177N_1}|E|k6{07]‘77N_1} Ej’k:€}7
I® = {ke{0,1,...,N -1} [3j€{0,1,...,N =1} : Ejp =e},

e

and the corresponding projections

PN T, —-TIW (4, k) = g,
pg) T, — 16(2), (7,k) — k.

Apparently, the projections pgl) and pg) are surjective. The Hypothesis IV-1.9
ensures that the projections are also injective, namely, let (j, k), (m,n) € Z, with
5=, k) = pP(m,n) =m. Ttis B; — By = Ej, = ¢ = Eppn = Em — Ey and,
since j = m, we have E, = E,,. The non-degeneracy of the particle eigenvalues then

implies that £ = n. The same argument shows the injectivity of pg). Therefore, we

find a bijection b, : 79 — 72 such that

T. = {(j,be(5) | s €I }.

This implies that
{00} jer)

is an orthonormal basis of the eigenspace P[Lp:eﬂ'[f) of L, corresponding to the
eigenvalue e. For e € spec(L,) \ {0}, we derive spectral properties of the level shift

operator Aé?,? using the matrix element representation in this basis.

Lemma 3.16 The spectrum of the level shift operator A£?2 for e € spec(Ly,) \ {0} is
contained in the upper half plane, it holds

Tm (4 [ A ), > 97 ¥l

or all v € Pr__aH?, where
[Lp=e] p

1 [N—-2 N-1
Y= g (mine IR min e B2

and

=y = 20 [one (Bya) (L4 ore (Bsa) [ 43 1GUES)P (336)
S2

for j > k.



3.4. Spectrum in the Neighborhood of Non-Zero Eigenvalues

153

Proof. The matrix elements of Ag? in the basis {Spj,be(j)}j ez are given by
(A2, .
= <S0m be (m) ‘ g)r@n be(n >H2
N—1
= _11\1% UE <§0mbem)‘F on£>H2<(ka|F @nbe(n)>H2
T ke=0g Y

X (Bge—e+u+ie) ",

where y = (u,2,7) € T and, recall, F = G — G'. We abbreviate
Wik = (in |GWerk )y and  G(y)ix = (055 19 W) @5 s

to write
N—1
> (oot | FW) @t Vo Pt | F (W) >H% (Bre—e+u+ie)™
k(=0 i
N—1
= Z |:g(y)k,mg<y)k,n58,be(m)5E,be + G () eb.(m) )ebe(m)G () .00 (n) Ok ;m Ok m
k(=0

— G ()b, (m) )b (m)G(Y) knOkmOe b (n) — g(:U)k,mg/(y)Z,be(n)5Z,bg(m)5k,n:|
X (Epy—e+u+ie)™!
N—1
= Obe(m),be(n) g(?J)k,mg(y)k,n(Ek,be(m) —etu+ ie)_l
k=0
1

+0m,n g/(y)é,be(m)g/(y)e,be(n)(Em,g —e+u+ is)_l
0

=G (Y)e. (n),be m)g( )m ,n(Em7be(n) —et+u+ ia)_l
g( )n mG (V)b (m) be(n) (Bnpe(m) — € +u + ie)”!

=

~
Il

1

I
l MZ

{ Wil (Erpo(m) — € + u +i€)”

G (=) ke P (Emp — e +u+ig) ™

+g(_y)b (n),be (m)g(y)m,n(Em,be(n) —e+u-+ ié)_l
+G (Y)n.mG (—Y)be (m) be () (Bnpo(m) — € + u+ i) ™"

using that &, (m)p.(n) = Omn, due to the bijectivity of b, and that G'(y) =
—J,G(—y)J, and therefore

G'W)ij = —G(=¥)ij; (3.37)
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we interpret —y = (—u, X,r) for y = (u,X,r) € Y. The integration over (u,¥) €
R x S? and a transformation of variables u — —u in the integration of the second
addend gives

(A (3.38)

N—
Z / {’g( Vi) * (B po(my — € + u +ig) ™"
= ]R><S2

NG W)k po(my > (Erm + € +u — if)_l]

—lim [ d(u,X) {9 (=96 0),be(m) G W (B, ) — € + 1+ i) ™!
RxS2

+ G(Y)nmG(=Y)be(m) be(n) (Ernbe(m) — €+ u + i@)l] :

We now compute the matrix elements of Im(Ag?),

1 —_—
22 [(AEOT)m,n o (Ag?”)‘)n,m:| (339)
g
a{%z / (u, Dg 2 ’( be(m) — € +u)? 4 €2
]R><S2
+ 1)k -
y k,be(m) (Ekym + €_|_u)2 + 52

£
(Em,be(n) — e+ U)2 + 52

+hm / (u, %) { Y)be(n),be(m)G (Y ) mn

]R><$’2

€
+g( )nmg( ) )be(n)(Enb(m)_e+u)2+52]

k=0

N—

Z/dZ [|g B gor 3,k 4 1G (B (m) s 57 )k m)|:|

52
|: Ebe ),be(n) s b 7ﬂ)be(n ,be m)g( nmazar)m,n

+ g(Em,n; ) )n mg(Eb ),be(m)» b r)b (m),b (n):| .

where we used the relations

Eipoim) — € = Eppm) — Empem) = Ekms
Enpen) — €= Enpen) — Empem) = Ebo(m) pe(n)



3.4. Spectrum in the Neighborhood of Non-Zero Eigenvalues 155

for all m,n € 7Y and k = 0,1,..., N—1. We use the matrix element representation
to show strict positivity Im(Ag?,z). Let ¢ € P[Lp:e}Hf, be a unit vector, i.e., there exist

complex numbers r;, j € I(gl), such that Zjez(l) |k;j]?=1and ¢ = zjez(l) KiPibe(j)-
Using the abbreviation

B (X)) = VT G(Ejr, 3,7k,

we compute

- X rnmIZ / 0 [|Bs®F + B

mEZ(l)
mnEIél) S2
r 2 r 2
= > [az [|Hm|2|3m,n(2)\ +18m* | By, () oy ()|
m,nGIél),sQ

+ Embin By, (m) b (n) (2) Bl (2)

+ R B ST, 50 )
. 2 , 2
bl [0z S ma©F + ¥ (B e
mez!) 52 kg1l 5
We consider the two sums in (3.40) separately. We estimate the first sum,
, 2 . 2
5[ bl [ + ol |2 s )

m,nGI((il) S2

+ EmHnte(m),be(n) (E)Bz,m(zm

+ En’imB:n,n(E)Bge(n)ﬁe(m) (Z>

1
Y Z /dE [‘“mBrTn,n(E)‘Z+‘EmBge(m),be(n)(E)}Q

m,nel'é1> S2

+ ”inB:L,m@)‘Q + ‘Ente(n),bc(m)<E) ’

|
+2Re (EmHnte(m),be(n) (E)Bz,m(z}))
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+ 2Re (Fnkim By, 1 (2) By, () 4oy (2)) }

2

> /dZ UﬁmBZe(m),be(n)(E) + k0 By 1 (2)

m,nel'é1> S2

DO | —

_|_

- 42
Fn By, (0 o) (2) + Em By, 1, (2) ]
> 0. (3.41)

To compute the second sum in (3.40) we assume that e < 0, the other case e > 0 is
treated in the same way. Since E,, . m) = € < 0 it follows that m < b.(m) for all

m € TV, This implies that N — 1 ¢ 7 and that be(m) # 0 for all m € 70 e,
0¢ 7). This observation is used to estimate

S il [ a5 X 1P+ X 1Ba) ]

mezM 52 kgZM kgz?
r 2 r 2
> Ytk [ @ [ O + [ Bomol©]
meZV 52
> min /dZ |B] x_1(2)]* + min /dz 1B ()]
mez) ’ meT® ’
2
N2 2 N-1 2
> min / Ay | Bl n_1(2)| + min / ds |B,o(2)] (3.42)
52 52

We remark that the same lower bound (3.42) is derived in the case e > 0 such that
all further considerations are done for both cases, e > 0 and e < 0. Since E,, n_1 <0
and E,,, > 0 we obtain

r 2
/ 05 | B, v, (D)
52
= ’/T/dz ’g(Em,NbeaT)N*Lm’z
52
E]2V—1,m

|1 — eﬁTEN—l,m |
S2

= 7By e P o (B 1) (14 ptr(Enoim)
X /dE |G7‘(EN—1,mE)m,N—1|2
S2

1
— §e_ﬁrEN71,M/2n}"V_l7m (343)

X |Gr(EN71,mE>m,N71 |2

= 7
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and

r 2 2
/dE |Bm,0(2)‘ = 7'('/dE }Q(E(m,Oazvr)O,m‘
52 52
E2, 2
fnd Wm/dz |G7~<Em702)07m|
S2

= w2l [ (i) (L4 pre(Emo)
X /dZ G (B o2)o.m|?
SQ

1
— ieﬁrEm,O/Qn:np (344)

Plugging (3.41, 3.42, 3.43, 3.44) into (3.40) gives

1 N72 _ NTI
Im (¢ | AY), . > 3 {mme GrENAm | A in e e 2yn
p m=0 m=1

We check that the gap 7. quantifying the spectral shift of AE?Q into the upper half
plane is positive uniformly in the j,.

Lemma 3.17 (i) The gap 7. for e # 0 is strictly positive uniformly in 3, > 0, it
holds

N-1
inf 5] > min mE2, / A% |G (B oX)on|* > VFQGR >0
S2

where the Fermi golden rule level shift yeqr was defined in (1.86) and assumed
to be positive.

(ii) The matrix A,S?,? is bounded uniformly in 3, — oo,

(0

lim sup ||Ae,r)* HB(P[Lp:e]H?J

Br—00

< 00,

i.€., it is bounded uniformly for the inverse temperature in the parameter range
as specified in Hypothesis I11-1.8. This statement holds at first for e # 0 and
is proved here under this assumption. In Lemma 3.22(ii) we show that the
estimate also holds in the case e = 0.
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Proof.

(i)

Form=0,...,N—2andn=1,..., N — 1 we compute

1
5 e N B )
1| Bs B [ 45 16 (Bxan Dl
S2
+ B2 (L4 o1y (Bug) [ 4 1Gol(Bna®al
S2
Broo, WEgp/dz G (EnoS)onl?
52
Since pg,.(E) = (e’ — 1)7! decreases monotonically in 3, for E > 0 we

conclude that

N-1
7. > min7E; / A% |G (En ool > VFQGR,

n=

SQ

which is strictly positive by the Fermi golden rule condition, Hypothesis V-1.10.

We first consider the imaginary part of Aé?,? whose matrix elements have been
computed in (3.39). We remark that for any j, k,m,n with 7 > k holds

E',k Br—o00
|g(Ej,k7 27 T)m,n| = m |Gr(Ej,kE)m,n| > gk |Gr(Ej,kE)m,n|
and
E; . —00
1G(Er g, )] =~ |G (Bjp ) ] 2220

\/eﬁrEj,k — ]_
(0)

for a.e. ¥ € S2. This implies that every matrix element of Im(Ae.) is uniformly
bounded for 3, — oo and this implies the uniform bound of

lim sup HIm(A(OQ < 00.

Br—o0 “ )”B<P[Lp:e]H%>

We go over to consider the real part. To this end we recall the matrix element
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representation (3.38) of AE?T) to compute

1 B
5| (00, + (A9,

Eym+u

2 k,m

- mmmzj/ (0.) | = 10
ORxs2 7

+1G W) kpe ()|

Eipom) +u }
(Ek be(m) + u)2 + g2
Epn+u
"(Epn +u)? + €2

e\0
R xS2

— lim d(u, ) {Q(—y)be(n),be(m)g( Jmn

Enm +u
+ G (1) nmG(—)be (m) be(m) (B + ) 1 62} '

Since for u > 0

Br—o0

G(u, %, T)m,n| —u |Gr(uz)m,n| )
|g(_u> E7T)m,n| m O

the above principle values stay bounded for 3, — oco. This implies the uniform

bound
(0)

llm sup “Re(Ae,r) HB(P[L :e]H%’)

/87’_’00

< OQ.

The Lemmata 3.15 and 3.16 allow to describe the spectral properties of the full
level shift operator AL

Proposition 3.18 (i) Assume that the particle temperature coincides with the
temperature of one of the reservoirs, i.e., 3, = B, for somer’ =1,..., R. For

|Bmax — Puin| < 1, the imaginary part of the level shift operator AY corre-
sponding to the operator K®) associated with the eigenvalue e € spec(Ly)\ {0}
18 strictly positive, it holds

s r YFGR
I (9 [ A )0 2 7 [0l = =57 1l

for all ¥ € P{LP:G]H; In particular, we have positivity of the imaginary part
of the level shift operator AT corresponding to the C-Liouville operator

K = K2 If the eigenvalue e € spec(Ly) \ {0} is non-degenerate than the
same estimate holds without the condition |Bmax — Bmin| < 1.
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11 e imaginmary part o € LeVEL SNIJL OPETALOT [\e = COTTESPONAING TO e stanaar
i) The imagi t of the level shift tor A ding to the standard

Liouville operator L = K©) associated with the particle eigenvalue e # 0 obeys
the estimate

R
\ v
w (0|40, 2 (z %) Il = BTSN i,
r=1

for all ¢ € P[Lp:e}Hg.

Proof.

(i) We set

fr = A(_g(ﬁr - ﬁp>>w
and write with the help of Lemma 3.15

Im < (4 ’ Ags)w >H2

= (| A% >H +Zlm (& [ADA(=2iTm(s)(6, — 8,))¢- )

r;ﬁr
= (v A%y >H +Zlm (& |A9¢, )
r;ér
+Zlm & [ AL [A(=2iTm(s) (B, — Bp)) — 1) &)
r;é'r
R
> 3 [l + 3 |k = C1210(5) (B — Buin) AL gy | 160
=1

r=1,
r#r’
/ 2 YFGR 2
> o [l = TR Il

for the positive constant C = HHpHB(Hp) exp(2] Im(s)|(Brmax

Bmin) || Hp || B(Hp)) < o0 and |Bmax — Bmin] < 1 sufficiently small. Hereby,

AY s is bounded uniformly in 3, from compact subsets of
HP

R*, refer to Lemma 3.17.

If the eigenvalue e € spec(Ly) \ {0} is simple then A is a complex number

rather than a matrix and is holds by Lemma 3.15 AP = Zle AS?,?. Hence,
the dependence of the temperature differences drops out.

we used that
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(ii) Lemma 3.15 implies that

R R
Im (v [ AP ), = Y Im(w [ADY),, > (Zlmvz) 19113
r=1 r=1

TFGR 2
R [

v

The operator AY) carries the name level shift operator since it is accountable
for the shift of the eigenvalue e of the unperturbed deformed Liouvillean Ly into

the upper half plane. This is due to the fact that the operator Kés) has the same
spectral properties as the image Sae,p(Kés) — 2, Ly g — z) + z under the Feshbach map
for z € S, c.f. Theorem E.1. Further, by Proposition 3.7, the Feshbach operator is
in leading order the free Liouville operator Ly g, restricted to the eigenspace ker (L, —
e)n ran(P[M[9]<p])
Xz(M[g]), having strictly positive imaginary part. Figure 3.3 illustrates how the

, and the correction term of lowest order is the operator g2A£S) ®

addition of the operator ¢2A% to the free part Loy affects a shift of the spectrum
into the upper half plane. The gap between the spectrum and the real axis is so big
that higher order correction terms cannot destroy it. The full Feshbach operator
has spectrum separated from the real axis by a gap of order g2, c.f. Figure 3.4. The
next theorem uses this observation to describe the spectrum of K 9(8) in S,.

Theorem 3.19 (Spectrum of KG(S) in S;) Under the assumptions of Theo-

rem 3.1, the spectrum of Kés) inside the region S, around a non-zero particle eigen-
value e € spec(Ly,) \ {0} can be located by

spec <K§s)) NS, C {z €S,

Im(z) > ¢° VFIR } .

Proof. The isospectrality of the smooth Feshbach map §=z., implies that
Z € spec <K(§S)> NS, if and only if z € spec(F=, , (Kés) —2,Lop—2)+2)and z € S..
By Proposition 3.7 we know that

SEW(KQ(S) —z,Log—2)+2="Pe,[Log+ PAY @ xi(M[g])] P.,+ 0O (g*") (3.45)

where the remainder term is estimated uniformly in z € S.. We compute the
numerical range of the imaginary part of this operator. To this end let ¢ € ran(F. ,)

and decompose 1) = 1 + ;- where 9; € ran(P[M[e]Sgp]) and i € ran(P[MwP%p])
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@
o
+ o -
‘ ¢ ~T ’ I ~g2
0 0 0
Spec(l—o,e P, ) spec(g 2A(eS ) ) Spec(l—o,e F,*t0 ZA(es ) )

Figure 3.3: Composing the spectrum of the leading orders of §=,, (Kés) —z,Log —
z) + z out of the free operator Lyy and the level shift operator AY.

Figure 3.4: Spectrum of the operator Kés) inside the region S, for e # 0.

and compute

Im (1 | [Log + g*AY @ x2(Mig)] )
= (1 | [Mig + ¢ T (AL)) © X3 (Mig))] 41 )
+ (01 | [Mpg + g° Im (AY) @ X5(Myg)] ¥ )
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v

g* {1 [Im (AD) 9 ) + (¥f | Mgyt )

¥ 7
P el + gl

P (el + [l )

TFGR 2
P vl

v

v

where we used that Mg > 0 and Im(Ags)) ® x2(Mjg) > 0 and Im(Ags)) > ren by
Proposition 3.18, and p > ¢g*. Together with (3.45) we have

tn (0[5, (K57 1 Laa = )+ 2] )

> ¢ (B 0(e)) vl

TFGR
> g e,

for g sufficiently small. This implies that

ot (5 (1) —.11p 3 +9) € {c <102 758

and hence

e (5 08121 2) € {c <m0 225

by [30, Cor. 3.3.]. The isospectrality of the Feshbach map leads to the assertion. W

3.5 Spectrum in the Neighborhood of the Zero
Eigenvalue

In this section we focus on the analysis of the spectrum of K és) in the neighborhood

of zero. The main purpose is to compute explicitly the level shift operator Aés)
whose properties will allow a further a%)golication of the Feshbach map in Chapter 4
— in order to study the spectrum of K,;” on smaller scales.

Lemma 3.20 The level shift operator A[(fz associated with the zero eigenvalue e = 0
of Ly, is anti-selfadjoint, i.e.,

A =ily,  with Lo, =T,
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Moreover, the matriz elements of o, in the orthonormal basis {¢;;}j=o1,. N-1 Of
the kernel of L, are given by
N-1

(FO,T)m,n = (mm | Loronn >H§ = Om,n Z eﬁrEm’kﬂn:n,k - (1= 5771,71)7777;1,717 (3.46)
k=0,

k#m
where the positive numbers 17, have been defined in (3.36). Further, the matriv
elements fulfill
(FO,T‘)m’n = (FOJ‘)n’m € R.

Proof. The matrix elements of Aé?2 are given by

< 0,r man Pm, 0,1"90, Hf,

N-1
= —h{r(l)z /d(u72)<‘Pm,m|F(y)*§0k,ﬁ>ng<90k,€’F(y)¢n,n>ng
kl=0R 5 g2

X (Ek,z +u+ Z’E)fl,

where y = (u, 2, 7) € T and, recall FF = G — G'. We abbreviate
Gk = (Pin |9WPri )y and  G(y)jn = (95 |G W) @ik )2

to express
N-1
Z <(10m,m | F(y)*wk,ﬁ >7—[% <90k,€ | F(y)¢n,n >H12> (Ekz,é +u+ 7:5)_1
k=0
N-1 - -
— Z [g(y)k,mg(y)k,n(;&méé,n + g/(y)ﬁ,mg/(y)é,nék,mék,n
k,0=0

- g,(y)f,mg(y)k,nék,méﬁ,n - g(y)k,mg/(y)l,néﬁ,mék,n} (Ek,f +u—+ 'L.s)_l

= Omn [g(y)k,mg(y)k,n(Ek,m +u+ie) !

+ T Wk )i B+ u+ i)

_g/(y)n,mg(y)m,n(Em,n +u+ Z.g)_l - g(y)n,mg/(y)m,n(En,m +u+ ig)_l

= bun 3 [GmGW)in (B + -+ i) !

+ (=) kmG (kB + i+ i)
+g<_y)n,mg(y)m,n(Em,n +u—+ Z.g)_l + g(y)n,mg(_y)m,n(En,m +u—+ is)_la
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where we used (3.37). The integration over (u,3) € R x S? and a transformation
of variables u +— —u while integrating the second and fourth addend yields

(A(()?2> = mnhmz / u Z kmg( )kn(Ek,m+u+i5>_1

]R><S2

— G kmG W) n (B + 1 — Z-g)_l]

~tim [ 4 D) (GG B+ ut2) !
RxS?

- g<_y)n mg(y)m n(Emn +u-— ie)_l]

N
_ mnhmZ/ ) 190kl

IR><S2

—lim d(u, 2) 20 Im [G(=9)nmG (W) mm (B + u +ig) "]

e\0
RxS2
21e
= mnhmz d(u, %) |G (Y) km|* (B + )2 + €2
]R><S2 o
' 21e
+ }3{% / d(”v E) g<_y)n,mg(y)m,n (Em,n + u)? + 52
R xS2

N-1
= 27T7/ 5m,n Z /dz ‘g(Em,ka 2771)/6,771‘2
k=0 52

+27TZ/dEg< m,n , )nmg< n,m; 7T)m,n

52

N-1
= 2m lémmZ/dE |g(Em,k>27T)k,m|2

+<1—5m,n)/dzg(Em,n, YemG (B, ,r)m,n].

82

Here, we used that

G(—y

U2 Gruzmn27 U>O’
JnmG (W) mm = — x4 |G () 2
Vebru 1 eBru —9 |G (—uX)pm|”, u <0,
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is negative, and in particular real, as one easily checks by explicit computations. We
now define I'y, in terms of its matrix elements,

N-1

(Cor)pn = 2m lammz / A% |G (B S, ) km|”
k=0 g
kit

+ (1= 600 / 45 G(Epns ) nmG (B S Fhn | € R
SQ

such that A(()?T) = il'o, and apparently (I'o,) = (I'o), .- This implies that I, is
selfadjoint. To give a more explicit representation to (I'g,), , we remark that, for
J >k,

o [RGB, 571506 Bras %o
5’2
2rE?
_ Jrk ‘ 12
N \/eﬂrEj,k + efﬂrEj,k — 2 /'dZ |GT(E‘77kE)k"]|
5‘2
= 2B\ [pen () (Ut i (Eyr) / 45 |G (B 5

5'2

—_ ‘s _ T
= Tk = ke

Further, we note that

u? G.(uX):xl*,  wu>0,
|g(y)]7k‘2 _ {| ( )]7k|

[1—e B 7 ) |G (—uD)r,)®, u <0,

and therefore, for k # m,

/ A% |G (B, 27 k|

SQ

/ " ‘i . {IGAEm,kE)k,mF, m >k

L= e PPus] | Gr(BimDmal* s m <k,
S2

= dx
S2

— _eﬁrEm,k/Q / dz g(Ek;,’ﬂH 27 T)m7kg<Em,k’ Z’ T)k,m
S2

B2, ePrBmn/? y G (B X)iml” s m >k,
\/<]_ — e_ﬁrEm,k)<€ﬂ'rEm,k — ]_) |G7’(Ek,m2)m,k|27 m < k,

1 T
27_(_ nm,k :
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Thus, we get

(FO,T mn mn Z BrEm k/2 —— (1 — 5m7n)n:n,n'

k;ém

The detailed balance structure (3.46) of the matrix elements of I'y, gives rise to
the knowledge about positivity of Iy, and uniqueness of the zero eigenvalue.

Lemma 3.21 The self-adjoint operator Iy, is non-negative and it has a simple zero
etgenvalue. The kernel of 'y, is spanned by the vector

N-1
Qp(B,) = Z(8,) 712 ey,
k=0

Moreover, the gap between the zero and the next positive eigenvalue is at least

N-1
= Z(/HT‘) mlno /’Lmn ?
m>n

ﬁ?”(E ‘i'Ek)/2zr];7 — /’Lk,]

where
T
Hj ke

In other words,

(9 | Tosth )as = 76 113
for all ¢ € ker(L,) with ¢ L Q,(5,).

Proof. We compute

N-1
Z(ﬁr)l/QFo,er(ﬁr) — Ze ﬁrEn/zror%n
n=0
N-1
- Z € /BTE /2 )m,n Spm,m
m,n=0
-1 [ N-1
m=0 k=0,
k#m n;ém
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Therefore, the matrix Iy, has a zero eigenvector with strictly positive components.
Since further the matrix has strictly negative off-diagonal elements (o), .. = — 7.,
for m # n, we obtain by a Perron-Frobenius argument that zero is a simple eigen-
value being the bottom of the spectrum of I'y,. For this insight we consider the
matrix
N—1
(%Ll%( (Fo 'r)m m) Ilker(Lp) Lo,

having non-negative matrix elements and we note that the positive vector 2,(3,) is
an eigenvector corresponding to the elgenvalue max’’ (Fo r), m- Lhe application of

20, Hauptsatz 1.8] implies that max’ _5 (T, ) m.m 18 @ simple elgenvalue and further
that it is the eigenvalue with the largest absolute value.

To estimate the gap between the zero eigenvalue and the rest of the spectrum we
choose ¢ = Z " ki L Qp(3,) and we compute

N-1
<¢ ‘ FO,Tw >H% = Z Rmfn (Fovr)m,n
m,n:O
—1N-1 N—1N-1
S D) ETICI o) SEI
m=0 k=0, m=0 n=0,
k;ém n#m
m,n=0
m,n=0, ,
m>n
N—-1
N 1
m,n=0,
m>n m,n=0,
m>n
N-1 N-1 2
N-1
_ min Nmn Z e PrEn Z !Hm|2 _ fBTEm/%m
m,n=0,
m>n _n:O m=0
N-1 i 9 2
= mn'rlLan :umn Z(ﬁT) HZ/}H’H% - Z<ﬁ7‘) <w |Qp<ﬁ7’) >'H%
m>n B
N-1 9
= min w ) 200 11
m>n
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For our results it is important that the gap 7{ is strictly positive, uniformly in
B, > 0. This fact is given by the next lemma.

Lemma 3.22 (i) The gap v is strictly positive uniformly in 3, > 0, it holds

N-1
,@info v > mirh QWEin/dZ |G,,(Ernm§])mn|2 > ypar > 0
r>> m,n=u, ’

m>n 52

where the Fermi golden rule level shift ypar was defined and assumed to be
positive in (1.86).

(1) The matriz L'y, is bounded uniformly in 3, — oo,

15D [T ey < Mk > 272, / 05 (G (B S)om? < 00,

- —00

#m s?

i.e., it is bounded uniformly for the inverse temperature in the parameter range
as specified in Hypothesis I11-1.8.

Proof.

(i) We consider for m > n

N-1
2B = Y e S En By
=0

(Em—En)/2
ePr( )/ -

v

— QWEE;W (1+ ptr(Emn)) / A% |G (Epmn ) nml
SQ

onEr, / A% |G (Bpn ) nml” -
SQ

Br—0o0

Since pt,(Epn) = (€% Fmn —1)~1 is monotonically decreasing in 3. we obtain

2
> Yrar > 0,

N-1

m>n 52

while the positivity of the quantity of the r.h.s. is ensured through the as-
sumption of the Fermi golden rule condition, Hypothesis V-1.10.
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(i)

For j > k we have

eiﬁrE,j,k/zn;k < eﬁrEj,k/z,’?;’k — 27TE]27]€ (1+ pfjr(E k) /dz |G.(E 3, kE)k]’

SQ
and therefore
”FOJ’HB(ker (Lp))
< max ‘ = maX eﬁr ’"’6/277;1
k;ém
vy Nl
< Mk Y 2B (4 ol Bn) [ S G BnaShinl’
o 52
5 vy Nl
- —00 — 9 2
%lez%cz QWEmvk/dE |G (Em ke 2) k|
= s
< Q.

The Lemmata 3.15, 3.20 and 3.21 allow to localize the numerical range of the level
shift operator.

Proposition 3.23 (i) The level shift operator A((fm) corresponding to the C-

(i)

Liouville operator K = K% has zero as simple eigenvalue and its kernel
is spanned by the eigenvector 2, = Q,(8,). If further the particle temperature
coincides with the temperature of one of the reservoirs, i.e., B, = By for some
" =1,...,R, and |Bumax — Pmin| < 1 is sufficiently small then we have the
estimate

(o [ASy)
for all i € ker(L,) with ¢ L Q.

r 2 2
o 200 Wl 2 twcn 10l

In the case that the particle and the reservoir temperatures coincide, i.e., 3 =
Bp = b1 = -+ = Br, the anti-self-adjoint level shift operator A(()O) corresponding
to the standard Liouville operator L = K©) has zero as simple eigenvalue and
its kernel is spanned by the eigenvector Q,(3). For Q,(8) L ¢ € ker(L,) we
have the estimate

R
—i (v \Aé%)Hg > (Zv) ([ comerny ([
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(111) In the case that at least two reservoirs are at diﬁer@nt temperatures, i.e., Puin <

Buax, the anti-selfadjoint level shift operator A corresponding to the standard
Liouville operator L = K© obeys the followmg estimate,

=i (0 [AD ), 2 wcn [1= (D (Bain) |90 | 141

for all iy € ker(L,). Hereby, the distance of the eigenvalue with the lowest
imaginary part from the real axis is of order

YFGR [1 - <Qp(ﬁmin> ‘ Qp(ﬁmax) >Hg:| (347)

Yrardr, {1 Z (23)}

Z [(6max - /Gmin>2 - O (|/6max - 6min|3)} 16 2(3)2

where 3 = (Bmax + Bmin) /2. In particular, A(()O) has no zero eigenvalue.

Proof.

(i) We note that

. N-—1
A (%(ﬁr o ﬁp)) Qp(ﬁp) _ Z(ﬁp)_l/Q Z e—ﬂpEj/Q [6_(57'_6P)Hp/2<pj:| ® ©;
=0

N-1
= Z(B,)7? )Y e TPy,
=0
Z(5)
Z(p)

().

By Lemmata 3.15, 3.20 and 3.21 we get

A0, = 1304 (=50 - ) Tod (56, - 5)) 905

20 (i
20 4 (=306~ f0)) Post(5)

3 =
1= i[V]=

Since I'y , has purely negative off-diagonal elements so has the matrix zA —i/2)
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because of
(—z'Ag—i/”) — < O ‘ (=)Ao, >
m,n H2

_ ER: < A < gp)) Gmm | Tos A (%(ﬁr 5p)) Pnn >H2

r=1 P

= Y BTRE (T,

r=1

=y

An application of [20, Hauptsatz 1.8] similar to the one in the proof of
Lemma 3.21 yields that zero is a simple eigenvalue and that no other eigenvalue
of —iA(()_l/ ?) has negative real part.

Let now Q,(8,) L ¢ € ker(L,). For r =1,..., R, the vector
&= 4 (—%(ﬁr - @)) v

is orthogonal to the vector Q,(3,) = Z(8,) V2 Z(8,)2A (L(8, — 5p)) ().
With this notation we obtain with Lemma 3.21

(6] 45775),

— <’¢|F07T/ Hz +Zlm 67’ |F07" ( ( 513))57")7'(%
r;ér

- <1/J | FO,T’Q/J >7—{% + Z <€7’ | FO,r&r >H}2,
r=1,
rr’

—|—ZIH1 & ’F()r[ ((ﬁr_ﬂp)_]l)]fr>7-l§

r;ér
R
r! 2 r . 2
> 3 Wl + D [76 = ITor [A (8 = B)) = Wlager)) 615
r=1,
r;ér’
r 2
> 3 10l + Z % = ClBmax = Buin! ol | 16112y

r;ér
2 2
= 0 19l = yeer 19l
for the positive constant C':= |[Hy |5y eXP((Brmax — Buin) [[Hpll52,)) < 00,

for |Amax — Bmin| sufficiently small. Hereby, we used Lemma 3.22 to estimate
7o and ||To. | 552y uniformly in 3, from a compact set in R*.
P
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(ii) Since A(()O) = iZle Lo, and further Iy, Q,(8) = [o,2,(8,) = 0 we see im-
mediately that A(()O)Qp(ﬂ) = 0. The application of Lemma 3.21 implies for
¥ L Oy(6)

vl

R
—i<w\Aé°>¢>H2=;< Torthag = 3295 Wl = Rovan ¥l

P

(ili) Throughout the proof we assume that ¢ € ker(L,) with |[¢||,. = 1. We first
observe that holds

~i (v )Ag@@Hg > Y ([Tt )y

r=1,R
By Lemmata 3.21 and 3.22 we have
(91Tt = v [ 1= (0000 1 g ]
for a unit vector ). Hence, we obtain
(o |a),
> WFGR{z—( o Bu) 19| = (2B 1105 }

The aim of the subsequent considerations is to maximize the function ¢ —
([ Y)g P+ | (2| ¥ )42 |* under the constraint [|¢]|,,. = 1 where Q; :=
p P P

Qp (Bmax) and Qg = Q(Omin) are unit vectors. Since fmax > Fmin the vectors
; and €2, span a two-dimensional space and we can express the vector ¢ in
this basis, i.e., 1 = a1 + @282 + 1 where 1 L span(€2, 2y). We obtain

2

(9 19} (3.48)
2

|2+ a1 (0] Q2 )

= <1 + <Ql | QQ >$";2)> Ua1]2 -+ ‘(12’2} +4 < Ql ’ Q2 >'H% Re(ﬁlag)

’<Ql W)Hg 2+

2

ar +as (4 |QQ>H%

using that

=

-1
< Ql ’ Q2 >HI2> = Z(ﬂmln>71/22(ﬁmax)il/2 eiEj(ﬁmin‘i’ﬁmax)/z

J

Il
o

7 (/Bmin-gﬁmax )

\/Z<ﬂmin) Z(ﬁmax)
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is strictly positive. The constraint ||¢||,. = 1 translates to
P

L= [l = ol + laaf® +2{ 2 [92), Re(@az) + nla . (3.49)

Plugging (3.49) into (3.48), we get

2

‘(Ql |¢>Hg 2"’ ‘<Q2 W)Hg
= 2(1= ) — (1= (2 12)5) [l + o]

This expression increases if |a;|? + |az|? becomes smaller. Fixing the absolute
value of ay, ay the sum of squares |a1|* + |az|? is minimal under the constraint
(3.49) for ay,as € RT. In order to maximize (3.48) we maximize the function

£ (R§)* = Ry,
Flay, as, ¢) = 2(1 — 2) — (1 0| >3{%) a2+ a2] .

on the manifold
{(ar.2,0) € (R}’

With the help of a Lagrange multiplier A we find the coordinates of the critical
point to fulfil

a%+a§—|—2<91\QQ>Hga1a2+02:1}.

_(1—<m¢ﬂg;9ay-xpy+@<Q”Qng — 0,

_<1_<Ql|QZ>%%>G2_)\|:GQ+G1<91’92>H§] = O’
—2c—Xc = 0,
af + a3 +2 (D | Qo )yp araz + ¢

The first two equations yield

(1= 12)3) + A (14 (2 1)) ) lar +az] = 0,
(1= 4201207 ) + 2 (1= (2 D)) ) [ — ] = 0
which implies, since a; + as > 0 under the constraint, that

(D |Q)7 — 1
L1 {0 [ Q)

= ([ )y —1# =2

which in turn yields that ¢ = 0 and a; = a9 and therefore

1
T+ () [ Q)

2 2 _
ay +a; =
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This gives
0 "4l "< L ([ 14+ (0 |0
’< g +‘< 219D = L () R
and finally

— <¢ ‘A(()0>¢ >H2 > YRGR [1 — (Y |QQ>H3 .

P

We now compute the order of the gap. We start observing that

1 (92, 1—(0;|0,)2%,
(0 [y = g L7 [y
p 1+<Ql|QQ>H% 2

where 03 := (Bumax — Omin)/2. Apparently, the function f : Rj — R is real-
analytic and it holds f(0) = 0. We compute higher orders,

2(B) [2(8 )28+ ) = 2'(B ~ ) Z(F + )]
2[2(8 - )25 + )]’

f'(x) =

Set h(z) == Z(B —2)Z'(B+2) — Z'(B — ) Z(B + x), it is h(0) = 0 and also
f(0) = 0. We compute the second derivative of f,

7()
Z(3)

2[Z(B—2)Z(B + )]’

x{ (25— 0)2(B+2) - 22/ — )2/ (B+ 2) + 25— 2)2"(B + )

x Z(B—x)Z(B + x)
—2h(2)0, [Z(B — 2)Z(B + )] }
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and, evaluating at x = 0 gives,

f1(0) = .

= Z(B) 2 ([E? - BB + |E} — EjE]) e Bty

W
t

Al
o

i

J,k=0,
i<k
d N—-1 B N-—1
> LEQL e B(Ej+Ey) —m@]
2207 |f=,
_dg, [1 ZZB)}
o2 Z(B)?
> 0.

The expansion of f implies that

tran |1 (0 || > (382 = 0 (65)) veGrdL, [1 _ Z@B)]

4 Z(B)?
which is the assertion (3.47).

We use the previous propositions in order to describe the spectrum of the deformed
standard Liouville operator Ly = K, 9(0) under further restrictions on the reservoir
temperatures.

Proposition 3.24 (Spectrum of Ly in Sy) We make the same assumption as
under Theorem 3.1. Further, we assume that s =0 and

g6~ < 11— <Qp<ﬁmin) ’Qp(ﬁmax> >Hf, )

in particular Buax > Omin- We remark that, by (3.47), this condition can be expressed

. o < (B = G | 1= Z(gg} ,
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SpeC(LOG P0 P )

Figure 3.5: Composing the spectrum of the leading orders of §=, , (Ko—z,Log—2)+2

out of the free operator Ly and the level shift operator Aé_i/ 2,

Figure 3.6: Localization of the spectrum of Ky up to order ¢g?: the isolated zero
eigenvalue disappears in a “cloud of possible spectrum”.

where B = (Bumax + Bumin)/2. Then, the spectrum of Ly = Kéo) inside the region Sy
can be located by

spec (Ly) NS C { € o | Tm(=) = 6(Buax — o)

s, [, Z20)||
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Proof. The isospectrality of the smooth Feshbach map §=,, implies that
z € spec(Lg) NSy if and only if 2 € spec(Fz,, (Lo — 2, Loy — 2) + 2) N Sy. By
Proposition 3.7 we know that

=0, (Lo — 2. Log — 2) + 2 = Py [Lo,g + Ay @ Xﬁ(M[g})] Py, + O (9*") (3.50)

where the remainder term is estimated uniformly in z € &§;. We compute the
numerical range of the imaginary part of this operator. To this end let ¢ € ran(F ,)

and decompose 1) = 1 + b1 where 9; € ran(P[M[e]S%p]) and i € ran(P[M[OP%p])

and compute

i (6 | [Zoa+ g°AF © X3(Mig)| v )
= <¢1 [M[G] +g"Im (Aéo)) ® X,%(M[e})] th >
+ < Ui [Mw] +g°Im <A50)> ® X,QJ(MM)] Vi >
g (o [1m (A ) v ) + (ot | Myt )
v [1 = () | Qo) g | lnlP + o [t
> g%ean |1 = (Qp(Buin) | 2p(Bunae) b | (Ihnl* + )

= g [1 = {Qp(Buin) | Qp(Bmas) dg | 1011

v

Vv

where we used that Mg > 0 and Im(A((JO)) ® X5(Mjg)) > 0 and Im(AéO)) > yrar[l —
(2 (Bumin) | o (Bmax) )442), by Proposition 3.23(iii), and p > ¢*. Together with (3.50)
we have

I (¢ | (S, (Lo — 2, Log — 2) + 2] )

> ghyecr (1= ((Buin) | (Bna) b + O (5°) ) 11
- <Qp(ﬁmin) | Qp(ﬁmax) >H2

> g*yrer 5 = o]
d Z(29)
> 2 max ~ Mmin 2’7FGR Lo |:1 - — 2
> g (G — i) Zn | W
for ¢ sufficiently small and |Gpax — Omin| < 1. The isospectrality of the Feshbach
map leads to the assertion. ]

The previous proposition describes the spectrum of KQ(O) = Ly under additional
temperature constraints. The second special case of interest is the particular choice
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s = —i/2. Employing the isospectrality in the sense of Proposition 3.6 we can study
the operator

S=o, (Ko — 2, Loy — 2) + 2
= R, [Lo,e + 92Aé_i/2) ® X?;(M[e])} R,+0O (92+5)
= Py |[Log + AP = AT @ 2 (M| B, + O (6°79)
instead of Ky = K, g_i/ %) Since Ly and A(()_i/ ?) act on different variables the spectrum
of Loy [ran(po’p) +g2A(()_Z/2) is given by
spec <L0,9 rran(Poyp) +g2AE)_l/2)>
= Spec (LO,O rran(Poyp)) + 92 sSpec (AE)_Z/Q)>

c {0yu{¢ e |m(Q) = tan(d)| Re(¢)] + min{r’, O (¢*)} |

= A97
by Proposition 3.23(i), where

s )

tan(d) = min < tan(d’), B(ker(Lp))

Re(Ag_im)HB(

ker(Lp))

Therefore, in leading orders, the operator §z, , (Kp— 2z, Log—2)+ 2 has a simple zero
eigenvalue separated from the rest of the spectrum by a gap given by min{’, O (¢*)},
see Figure 3.5. However, the gap is smaller than the deformation parameter 7/ which
in turn is proportional to the minimal temperature of the reservoirs. Thus, in the
situation where the temperature is small compared to the coupling constant, i.e.,
7' < O (g?), the higher order corrections to §z,,(Kg — z, Loy — z) + 2z destroy the
localization of an isolated eigenvalue, see Figure 3.6.

The study of the spectrum around zero for both operators, Ky and Ly, without
any additional constraints on the parameters Gpax, Omin and g, requires a more so-
phisticated analytical technique. The renormalization transformation in Chapter 4
provides such a tool which allows the spectral analysis on smaller scales and delivers
detailed results about the spectrum near the origin.



4 Smooth Feshbach lteration and
Renormalization

The analysis of the spectrum of KG(S) in the nearest neighborhood of zero is done
iteratively on decreasing scales. The iterative process requires a sequence of Hilbert
spaces (H(”))n:1,27.,_, on each Hilbert space H™ acts a family C 2 By 2 z —
K® [z] of bounded operators. The operator family K (") encodes the spectral in-
formation of its predecessor family K™~ on a small scale around the origin. The
transition between the operator families is done by the renormalization transforma-
tion. The iteration of the renormalization transformation generates a discrete flow
of operator families on the sequence of Hilbert spaces and, connected to the operator
flow, a flow of spectral information representing the spectrum of the initial data K és)
of the iterative process on smaller and smaller scales. The concept of the renormal-
ization group (RG) based on the Feshbach map was invented by Bach, Frohlich and
Sigal in [6] for applications to spectral problems in quantum field theory. It entered
the analysis of concrete models in quantum electrodynamics and quantum statistical
mechanics in [5, 7, 6, 36]. A technical refinement was achieved by the same authors
in collaboration with Chen in [4] by employing the smooth Feshbach map instead of
the standard one. The present chapter is devoted to an adaption of this technique to
our concrete problem. The main modifications compared to [4] are that the analysis
of the positive temperature system requires an additional control parameter, this
was already discussed in [8]. Further, one of the control parameters does not scale
properly in our situation such that the renormalization transformation does leave
the underlying Hilbert spaces invariant but works on a decreasing sequence of spaces
which eventually collapse to dimension one. Hence, we get along with finitely many
iteration steps and do not care for limit processes. The first challenge, however, is
to fit the operator Kb(,s) of interest into the framework provided in [4] as done in
Section 4.2. We launch this chapter by introducing the necessary preliminaries.
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4.1 Sequence of Hilbert Spaces and Banach Spaces
of Operators

Throughout this chapter we make the same assumptions on the parameters s, § =
(0,7) and p as in the previous one, recall in particular (3.1, 3.2, 3.4). We introduce
two small positive numbers, p, and p,., which measure the underlying scale of the
renormalization transformation. In the first step of renormalization, the scale is

given through
e
0<p.=0 (—) ,
P

for the exact definition see (4.43), where in the successive steps the scale is given by
0< < !
P =20

We remark that the parameter p,, will be chosen independently of the coupling
constant g and of the scale p = ¢%/3(179) of the previous chapter, compare with the
defining relation (4.5). In fact, the number p,, is considered to be large w.r.t. g
and p, i.e., g, p < p.. Associated to the scales p, and p.. we define a sequence of
Hilbert spaces

HY s H@ D DM D e DL D VD 2 HWN)

by

H™ = HE @ Plagy, < PP

[0n]<
where

7—{(<lgo = ker<Lp>7
H(fgo::@, n=23,....,N,

is a finite dimensional Hilbert space representing the particle degrees of freedom in
the n™ step, and

0, = (id,i7’) == (z’é’,ipL) € (iIRT)?,
]

(4.1)
P n=1
Pln) -= {

pppisZ, > 2,

are sequences of effective deformation parameters and scales, resp. The estimating
operator in the n™ iteration step therefore reads

7_/

Mjp,; = dlg [my,| = sin(8") Laux + m]\f]res
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where, recall,

,7_/

my, (u) = sin(&)|u| + —.
Pl

The number of iteration steps A is chosen such that

/ /

<1<
PIN-1] PN

and therefore the infinite dimensional Hilbert spaces H™, n =1,..., N —1, collapse
to a one dimensional space

HN) = ker(N,es) = CQp.

Without loss of generality we assume that A/ > 3, otherwise we choose 7’ sufficiently
small. This is possible since we nowhere require that the translation deformation
parameter 7 is sufficiently large, unlike for the dilation parameter ¢’. In fact, the
condition N/ > 3 results in

' < pv-y < ppe = O (¢7) - (4.2)
Hence, to comply with this requirement, we choose from now on

C 9% eq

T = < min{pp,, 2761}, 4.3
> {ppe; 210} (4.3)

for g sufficiently small, where the constant 7., is defined in (4.46) and enters the
concrete definition (4.43) of p,. We further define the sets

QM = {(QbQQ) € R?

M = {(u, 2, 7) €T |mg, (u) <1}.

!
@)l + <1, € 0,1 }

n

Next, we introduce Banach spaces Qﬂgg, R+ S € Ny, of functions
wg)‘s . Q(n) % {M(n)}R—l-S N H(<no)o

which are continuously differentiable w.r.t. the variable ¢ € Q™ i.e.,
wfs[- Y e O (@i ml)

for almost every Y(#5) ¢ { MM }E+S  Further, the functions are required to be
totally symmetric w.r.t. the variables y € {M™}# and 5% € {M™}5. Finally,
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the functions obey the norm bound

<>’ .:\/me) ’ + |7 S
H Wg s (n) R,S (n) 9% R,S (n) )
O — dy (5) ) 1 &97 ] (44)
Wp'g = 373 SUP ||wig [q,Y } 0 1
(n) my, (Y(R’S)) qeQ(n) B(H<oo)

{M)}R+S

where the norm of the gradient has to be understood as
iy~ 2 [P

Here, we make use of the notation introduced in Appendix D prior to Theorem D.3.
The parameter p appearing in the definition (4.4) of the norm || - ||?;) will be used in
Section 4.4 to establish the contracting property of the renormalization procedure
and it is assumed to obey

JIZawist

0" H Hy

1
5 < pu < min{1, v},

where v is the infrared regularization of the coupling functions, c.f. Hypothesis VII-
1.12. The number p and the parameter p,, are related through

1
wok 16 —2/n < —
12 ( CXl) — 20

where the incorporated constant C,, > 1 only depends on the cutoff function x;
introduced in Section 3.3, Equation (3.10), and is fixed such that

(4.5)

106 + . [2Ix1 ()] + 14X (2)]] < Cy, (4.6)
ze|0,

holds. The constant C,, plays a significant role in the proof of Lemma 4.10 and of

Proposition 4.4. The parameter p represents the infrared regularization of the form
factors needed for the renormalization procedure. The direct sum

P W (4.7)

R+S5>0

is defined as the space of all sequences (w% g € QITR S) with finite weighted

R+S5>0
/*-norm

Z 5 (R+S) Hw e

(n),€ R+5>0

viiz)
H B.5) pis>0

where the weight is given by

P 1

gi= Y0 <3
o 4CX1 B 4CX1(16CX1) 4
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The space (217( ) - |7 é) is a Banach space.

This space can canonically be embedded into the bounded operators on H™. This

embedding is given by
Wiy : 205 — B (H™),

4.9)
Wi, ( <n>> - i [ (n)] (
() { YRS ) gm0 > W [wi's
R+5>0
where Wn)[ ] = PMW,, ][ ]P(”) ie.,
Won [1] = POWo [wfid] PP = POl [, ] PO,
and, for R+ S > 1,
(n) | ._ pn) (n) 1 p(n)
W) Wps| = P W, Wp's P (4.10)
n dY R’S * n
- / 720 0) wifh [ Y5 0 (5) P
my, (¥ (1)
{M(n)}RJrS
are the Wick monomials of order (R, S) corresponding to wg{% and
po . ) =0 ® Plagy ]y =1
n=23,....,N,

P[M[omﬁl]’
Note that the definition (4.10) is con-

is the orthogonal projection on H
sistent on ran(P®™) with the definition of W[gn][wgé] given in (D.6). Hereby,
wgg [Ap,); Y 9] is defined via functional calculus where
Ap,) = (cos(6")Lyes, Mi,)) (4.11)
= dly(Ng,) E/d(u,z,'r) ag (1w, 3, 7) N, (u)ag (u, 3, 1)
Y
is a pair of commuting self-adjoint operators and
/
Ao, (1) := (cos(8")u, my, (u)) = (COS(5/)U, sin(d")u| + —) :
Pin]
Note that
= (4.12)

spec (cos((s’)Lres rranP[M[a <] ) X spec <M[0n} rranP[M[e <] ) o
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is the set of control parameters controlling the dependence of the Wick monomials
on the free operators cos(d’) Lyes and My,

We will need later the partially integrated Wick monomials acting on H™ |
W [wgﬁp,sﬂ] (A y®), ) (4.13)
= POWED [0l 50| (9, 59) PO
R,S
— pn dy ) o ( (R))
e, (Y BS))1/2 ! Y
{M(n)}R+S

< ufsna [N+ X 0,0, 519,50 g (5) P

The next proposition guarantees that the embedding W) is well defined. Hence-
forth, we assume that the parameters p, & are chosen as in (4.5, 4.8).

Proposition 4.1 For R+ S > 1, the assignment (4.10) is well defined as a map
(n

from Qﬂgg into the bounded operators on H™ . Furthermore, for wR,g € Qﬂgg, the
following norm bound is obeyed,

n) <L H (n) ‘
HW(”) [wR’S} HB(H(n)) = Rigs 1S

Before proving the Proposition 4.1 we first provide a lemma.

Lemma 4.2 Let ¢y € H™, R > 1, a > 0 and y™ = (y1,...,yr) € TE. Then the
following inequality holds true,

1
lagt () ¥l < ReFmy (u)a g () |0 - (4.14)

Proof. An application of the pull through formula (1.67) yields
Jaa 0) lger = [ (5) P, <y

— (R)

N P[M[enﬁzf:lmen("j)ﬁl] a1 (1) wHH(")

R
= P[Zle men("j)ﬁl} gl (y( )) 77Z}H

H(n)

H(n)
where y; = (u;,%;,7;). To conclude the proof we define an auxiliary function
f(z) ==z ln(z). Since f is convex we obtain for positive numbers a4, ...,ar € (0,1]

with Zle a; =1,

D (") =D a;f(a;h) = f <Z ajagl) = f(R) = RIn(R).

J=1 Jj=1
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This implies a; ---ap < R~f. For Zle mg, (u;) < 1 set a; := Amg, (u;) € (0,1]
where A > 1 is chosen such that Z;L a; = 1. It then holds

R R
m, () = [[mo. () = [[} 'es < OR)F < R7%.
j=1 j=1

and therefore
1 < R *my (uB)~e,

n

This implies (4.14). [

Proof of Proposition 4.1. Let ¢, € H™ be arbitrary. The application of
Lemma 4.2 with a := 1/2 4 p allows the following computation,

‘<¢ ’W(”) [wgg} v >H<n)

dy (#:5) « (. (R, (n) (R,S) ~(S)
= / m 1/2 <¢ ‘ agl (y ) wR,S [A[Gn]? Y ’ :| a’gl (y ) S0>
On

)
M) }R+S
dY(R’S) (n)

< Vs [q; VB H
- / me, (Y (R5))1/? sogim IS ¢ ] BHEL)

{M)}R+S

% [Jag () || [|ag (5%) ¢||
Nl 14y RoS) H
< . / dy B9 "Paeat ’wR’S G ) BH))
= VRESS mg, (¥ ()
{M()}R+S "
% Jag (v) ¥ lag (5'%) ||
Ngr(1)Ns(p)
- RRSS
1/2
dy ) ™ w1
S R 1|
{M(m)}R+S
- RESS HwR’S ‘(n)’
where

Na(eh) = / dy P rma, () lag (5™) o

MmO} R
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We show inductively over R € N that
2
Nr(¥) < [|(Mjg, + )2

for any € > 0. This relation is obviously true for R = 1 since N;(¢)) = <w | Mg, % >

Further, we have for y® = (y1,...,yr_1,yr) = (Y E Y yr), y; = (u;,8;,7;) € T,

Ngr(y) = / dyVmg, (y V)

{M(n)}Rfl

- / dyr (ag (y ( @Z) | [ (yr)mo, (yr)ag (yr)] ag (y(R_l)) V)

M(n)

2
— — 1/2 —
= / dy(R l)men(y(R 1)) HM[ei]agl (y(R 1)) T/JH
{M(n)}R—l

{M(n)}Rfl

1/2

Mi,) (R—1) 1/2

X — agl (Y (Mg, +¢) "=t
(M[on] +e+ Y mg, (uj)) o ( )

2

IN

/ dy ™D ma, (y ") [lag (37 (Mg, + ) 20|
(M) }R-1

= Np_y (Mg, + 5)1/21/)) )

where we used the pull through formula (1.67). We finally obtain
Woo [05] lyy = 2 [0 [ W [whis] )
H " RS s e Ve [R5 ]2 )

(14¢)B+s H
— s |[|W
- RESS RS (n)

e—0

(n)

1 me)
VREGS 713

An immediate consequence of Proposition 4.1 is

Corollary 4.3 The map Wy) — B(H(”)) is well defined and for w™ =
(wgf)g>R+szo € Qﬂ;f) holds

[We L™l < ™15,
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and 4
HW(n) [w(n)} HB(H<n)) <¢ Hw(n)H(n),g

if w(%) = 0.

The Wick monomials of order (0,0) are functions in Aj,j. We decompose the
corresponding space of functions as

2wy = H% o T = { (w§d 0], wif]-] - wipl0]) iy € 2080 }

i

into a direct sum of all possible H(fgo—valued offsets of the functions of (0, 0)-order
and a space

r = {rec (enmnt)

T(0) =0, [Tl 7o == sup [[[VeT ()l g < OO}
qGQ(") < oo

of differentiable functions vanishing at zero. The space 7™ is a Banach space
equipped with the norm || - || -,). That way we can rewrite

Wy =H eTVe @ whk.
R+S5>1

Components in 7™ are assigned to functions of the free operators Ay, =
(COS((S/)Lresa M[&J)’

(n) (n) (n) (n) . m(n
(w(o,o)['] — Wo,0) [0]) = <w(o70) [Aje.)] = W(0,0) [0]) = T [Apa]

while components belonging to H(fo)o are mapped under W, in the case n =
2,3,..., N, to multiples of the identity operator,

w((n) ) [O] = wég,)()) [O] 17—[(") = _E(n) 17‘((") ,

representing a spectral shift. In the case n = 1 the component wé?& [0] is mapped to

1 1
wig 0] = wo) [0 ® Lr(zapry = —EM @ Lr(zapyy,

which represents a multidimensional level shift operator on the particle variables.
The non-scalar situation of the spectral shift requires a separate consideration of the
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renormalization transformation acting on QU;;) as we will see later. The components

of mgfg, R+ S > 1, are mapped to Wick monomials,
(n) (n
Wrs = W) wR s| =W

which represent the space of perturbations to the free operators 7 [Ap,] — E™,

Henceforth we will understand an element w™ = (wgg) R+S5>0 € QIT;?Z) as an operator

K™ =Wy [w™] = T™ [Ap,] — E™ + W™ € B(H™).

The aim of this chapter is the spectral analysis of operators from the class
W) [QU;?)] C B(H™). The renormalization procedure requires that we are able
to treat operators which depend analytically rather than linearly on a spectral pa-
rameter z. Therefore, we introduce the Banach space 20(" of analytic functions

Bl/492|—>w”)[ ] Eﬂﬁ(n)

where we set
B.={CeC]||(|<r}.

The space 20 is equipped with the supremum-norm,
#
o™ My g 3= sup [l [l -
1/4

By W) [mﬂn)} we understand the space of analytic functions By 3 2z — K M[z] €
Win) [?ZU;Z )} on Bj/4 with values in W, [QU;?)}

4.2 Initial Data for the Renormalization Procedure

It is the aim of the present chapter to iterate the application of the smooth Feshbach
map in order to study the spectrum of K és) on smaller scales. As we will see in the
subsequent sections the smooth Feshbach map, embedded in the renormalization
transformation, links operators from the class W, [QI];TZ )] € B(H™) to operators

from W(nﬂ)[ﬂﬂ(nﬂ | € B(H™V), preserving certain spectral properties. To be in
position to ag)ply the renormalization procedure to the object of interest, namely the
operator K¢ p orrather its image §=, , (K és) —2z, Ly p— =) under the first application of
the smooth Feshbach map (given in (3.14) and discussed in Section 3.3), we have to
fit it into the framework of Banach spaces of operators just described in the previous
Section 4.1. To this end it is necessary to rewrite 350’p<K9(8) — 2,Lop — 2) in terms
of the free operator Ljy and the Wick monomials.
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We recall the Neumann series expansion (3.15) of the restricted resolvent (K és) —
z)=' to rewrite the defining expression (3.14) of =, , (Ké(,s) — 2z, Lop— 2) as a series,

=0,p

Sz, (K = 2 Log - 2)

00 =2 L-1
= L0,9 — 2 — Z(_g)LEO,p[éS) < L [9(8)> EO,pa

Log — =
L=1 0.6

where the absolute convergence of the series is guaranteed by the arguments of the
proof to Lemma 3.5. For a fixed L € N we set

Fo()\l, )\2) = XO,p(/\Q) = FL(/\I, /\2),

-2
- Xo,(A2)
Fy( M, Ag) = L
Z( 1 2) T(O)[)\ly )\2; Z] _ E(O)[Z]’

where we abbreviate
TON, Ag; 2] 1= Ay + i),
EO[z] := 2,

and

Wi, Ae, i 2] = 9 (y)mo(w),

woi M e, 7 2] = 9B () mo(@)' 12, (4.15)

wg)s =0, R+S5>2

with FG(S) =[G — g,(safa)]e as introduced in (2.26) and y = (u, %, 7),§ = (4, %, 7) € T.

We recall the set of notations of Chapter D. Having these notations at hand we can
write

WO] .= gIlY = Wiy, [<w§g’)5[' ; Z]>R+S>1]

(see definition (D.6)) and

=2 L-1
L= (s) Z0p  7(s) =
=Ny I =,
[%at’} LO,@ — 2 [% 14

= Fo(Ag)WO L FL(Ag) WO 2] -+ WO g (A WO 2] i (Agg)

where Ay = (cos(6') Lyes, Mjg)) is introduced in Section 4.1 and Appendix D, see
(4.11) and (D.1), resp. The application of Theorem D.3 yields

o (6 =) = (2
Suo,p( 9 zZy,Log — 2 Wi [ wR,S[Z] R4S50

= TO[Ap; 2] — EO] + W]
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where

and the integral kernels wg{g are the symmetrization (in the sense of (D.8)) of the

functions

’JJ%}S[A; Y(R’S); z]

SIS > [H(”) (*q)

L=1 ri4---+rrp=R, P1,41,--PL,4L" /=1
S14-+sp =8 TetPetsetar=1

X Xo,, ()\2 " [% ) (Y(R,S))]z)

s 6 r ~
(P 8] (3487 ) )
2
X, (Mg + 20+ [ (V)]

TO [N+ A+ (Y9) £ 3350 N (af)) 2] = BO

X

2 S ~(s1,—
Ko (Mg + 20+ [ (V)] + 555 mg (a0232)))
TO [Ag + A+ (VE9) + 570 0 (0741)) 5] — BOL

TL,SL 0 6 ’r R,S . TL ~(SL).
X W[(e} : |:w£L)+PL75L+‘IL] (A "/2) ( ( )) ?yé )73/2 )7 3) >
Qvac

x X, <>\2+ [ (v®)] Zme (ag? )) ,

for R+5 >1 and
[ 2]
= TO\ 2] — EO

) DY Xop (M)

P1,491,---, PL,qL:
petqe=1

X

2
X, (Mg + X2)
(0,0) 0,p \X1[0] 2
><<W[9} [ Wy, ql] (A;2) T(0) [A[e] + A\ z} — EO)[z]
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y X, (Mig) + o)
T7(0) [A[g} + A Z] — E©) [Z]

W[(G(}’O) [ Wy, qJ (A; Z)> Xo,p (A2),
QVaC

where A = (A1, A2), [(A1, A2)]; := A; and the functions née) are defined in (D.10).

The notation for the partially integrated Wick monomials W(” »5t) [wﬁglm , +qe] is

explained in (D.7), the vacuum expectation value () in (D.2).

The operator 35”([(59) — z,Loy — z) is defined on ran(P,) = ker(L,) ®
P[M[G]gp]]:[LQ(T)]' We use the unitary rescaling operator S, defined in (D.12) and

the rescaling map &, acting on an operator A like
S,(A) = p_lSpASp_l,

given in (D.13), Appendix D.2, to blow up the domain. We refer to Appendix D.2
for a detailed discussion of &, in particular one shall consult (D.14) for the scaling
properties of the bosonic variables. As a consequence we get with the functional
calculus

Sp Py F(LP)) = Prg, a5 <o) SoF (L2X]) = Py, < F(LPY])

M[Q]Sp] [Ql]gp]

where 0; = (i0’,ip~17"). We define the family of operators

1
KO = 6, (3=, (K = 2961 Lo — ZO1])) . ll<q  (416)
which lives on the space

HO = ker(Ly) ® | P} ]<1]]-"(L2[T])}.

M) <
The spectral parameter z is adjusted by the function

Z®: Byjy — B, ZO[2] := pz. (4.17)

The isospectral property of the Feshbach map, Theorem E.1, and the fact that &,
leaves the dimension of the kernel invariant implies the following equivalence,

ZO1[2] € spec (K(SS)> = 0 € spec (KW [z]) (4.18)
for all z € By4.

Consulting Proposition D.4 we see that this family of operators can be written as

KW[z] =Wy, l(wg,)s[';ZDMSZO} TO[Ag,); 2] — ED[] + WP[2],  (4.19)
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for

EV[2] = —ui[0, 2] = —p~ ED[pz],
TO; 2] == wig[, 2] = wig[0, 2] = p~ TN [pA; 2], (4.20)
WO, — ( .. ) )
1= W | (wlihl-4)

The rescaling procedure transfers to the integral kernels which are modified by s,,
given in (D.15). The rescaled integral kernels read

wks N YRS o] =5, (w%l,)s[- ;pz]> [\ Y (9] (4.21)
[e') L
-1 L—1 Te + Do Se+ qe
2SI SIS S | (A I G
L=1 ri+-+rp=R, P1,91;--"PL,qL"* =1

s1+-+s=8 Tetpetsetqe=1

A ot YRS, 2]

where we abbreviate for, fixed L € N, the tuple DS, 4, = (70, e, S0, o), €

Np)**. The function VL . s the symmetrization (in the sense of (D.8)) of
7p7 7qL

Vi, VY 89; 2] = (4.22)
Xo.1 <)\2 + [77(()61) (Y(R’S))L>
71,51 0 01 7"1 ~
X <W[(9] : [w£1)+p1,81+th] (P (A + 77; : (Y(R S)) ) >>
-9 1 s1
Xo1 (P_IMG] + A2+ [77? : (Y(R’S)ﬂ 25t Ma, ( >>
X

T(0) |:A[9] +p ()\ + 7](91 (Y(S)) + Z 1 Ao, (ula >>

)(071 (pilM[g] + )\2 + [77291)1 (Y(R’S))] SL l1 me, ( (L
TO [+ p (A0} (V09) + 552, v, (ufﬂ?)) 2| - F

rL,S (0) (61)
5 W[(Q]L L) [er+pL75L+QLi| ( ()\_|_7] 1 (Y(RS))

x Xo. <A2+[ " (v ) ] +Zm91<““>>

: 1>>>

),

X
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for R+5>1 and

wilo[X: 2] (4.23)
= p " (TOp); pz] — EVp2])
+p! Z(—l)L_l Z Xo1 (M)
=2 L1 PL AL
Petqe=1

—2 _
o ( W0 [ 0) } (p\: p2) Xoq (P 1M[9] +/\2)
0] (Wpig) (PASP T(0) [A[e} + p/\;,OZ} — EO)[pz]

X1 (07 Mg+ Xo)

’ (0,0) 1, (0)
T Thgy + phipz] = BOpa] V0 (o] (Pi02) >

Qvac
XXO,l ()\2) .
One easily checks the above relations using that
N (py ) = pn @ (YD) mg(pu) = pme, (u)
and B o
Xop(pr) = Xoa(x),  Xoplpr) = Xoa(2).
Note that the first term in the expansion of w(% [A; z] is given by
p H(TOpA; p2] — ED[pz]) = TON; 2] — BEO2] = (A +iX) — 2. (4.24)

We connect the representation (3.20) with (4.19) by making the following obser-
vation. Because of

<W[91] |:(wg7)s[ . ’ Z]>R+S>1:| >Q — 07 <T(1)[A[91]7 Z]>Qvac = T(l) [07 Z] — O

the term EM[z] in (4.19) is determined by
EW[] = — (KW,

and therefore, with the help of (3.20),

BV = (8, (8=, (K§" ~ p2. Los = p2)) )

Qvac
2+€
= z——A(S +(9( ) (4.25)
p p
where the remainder term O (g”sp ) = (9( (4+e)/ 3) is estimated uniformly in

|z| < 1/4.
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We now show that the operator family z — KW[z] qualifies as initial data for

(1 )

the renormalization procedure, i.e., the integral kernels wj’s generating K® and

defined in (4.21) build an element in 20

Proposition 4.4 The sequence w := (—E(l), T, wg)s of integral kernels

’ )R+Szl
given in (4.20, 4.21, 4.23) obeys the following bounds,

O (gp“) -0 (gl+2u/3(1+€)) 7

H R+5>1 (1)
212
) o) (9 )

B(ker(LP)) p (4 26)

sup HE(D ]

By - ZHB(ker(Lp))

1 2
sup ‘VAT [\; 2] — () — (9_2) = O (g212/3)
2€B1/4, L) Bker(Ly)) p
reo™)

The last estimate in (4.26) can be improved,

2
. g
sup | T 2] = (M +82%9) | sgenr, ) = © (9,0“ + —) : (4.27)
2631/4 P p
reQ®
Proof. Recall the definition (4.21) of wg)s in terms of the functions ‘77%?5,%

given in (4.22). Plugging the bounds on f/;f,l,?s,qL provided in Lemma 4.10(iii) (see
below) into (4.21) we get

f: (L+1) (CX1> (20 Y D (eME)”

p ri1+--4rp=R, P1,41;--, PL,qL:
$1--tsp =8 Tetpetsetqe=1

where 1 < C,, < oo is the constant introduced in (4.6), only depending on the
cutoff function y;. We further used that (‘] ? k) < 20tk and Hle opetae < ok
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since 1y + pe + s¢ + @ = 1. Summing over R+ S > 1 yields

“ R+S>1

(1),¢
#
= > & sup w2
R+S>1 2€B1 /4 1)
S (@) ¥
< 20,0 ) (L+1) (L) ¢~ (RH)
L=1 P R+S>1
L
x ) > (20M@")
Fidetrp =R, P1,d1,PL,qL:
s1+-+sp =8 Tetpetsetaqe=1
oo C L - s L
< oS (%) [zg—lgm_uw» 3 (zgp) (zsq)]
L=1 P r+s=1 \p=0 q=0
- 6Cy, gM (w(?) g
< 2C 1p1+M L+1 |:X1——
* ;( ) p&(1 —§)?
_ 96C>2<1p“gM(g(0))
B £(1—¢)?
where we used
- - 1 2 —x 1
L+1)z" = —  — 1= <8 0<ax< .
Z( + Z 1_93)2 :c<1_x)2_ x, _a:_2
L=1 Tz

This relation is applicable due to (3.4, 4.5, 4.8) and

g GCX1M(£(O)) 1/6 128M( ) 2 1/p
" 76 16C,, <
pei-gr =0 3 Gl

for g sufficiently small. Under the assumptions (3.4, 4.5, 4.8) on the involved pa-
rameters we have

l\DI»—

. 96C2,prgM ()
me &1 = &
< gl+2ﬂ/3(1+5)1536M(g(0))cil(16cx1)l/“

The relation (4.25) allows a simple estimate of

sup HE(I)
2631/4

ZHB(ker(Lp)) =

2+-€
L0 (g ) .
Blker(Ly)) p



4.2. Initial Data for the Renormalization Procedure

197

[t remains to estimate the deviation of 7™ from the function (A1, Ag) = A+ i,
To this end we consider the representation (4.23) and recall the relation (4.24) to

compute
7. 7\ 1
)\T P\, Z] - i

sup
2€By /4, B(ker(Lp))
reQ®
-1 (1) .
= p Z Z Sop ‘VAVO—’T”O”L ;2] ‘ HB(ker(Lp))

L—2P1:q1,pr,qr: *€B1/4,
petqe=1 e

[e.9]

< ;CM(L +1) (&> S (gMw?)”

p P1,491,--, PrL,qr:
pet+qe=1

( 2cX1gM@0>>)L
P

O
12CX1 (2CX1g]p\/[(u—) ))

g2
= —24SC§1M(Q(O))2,
P

N
g‘s
NE
-
=

IN

where we used that

for()gxgé,and

for g sufficiently small.

To establish (4.27) we recall the definition (4.12) of Q) and apply functional
calculus to the pair Aj,) = (cos(d") Lres, Mg,]) of normal operators,

sup HT(I)[)\; 2] — (A + i
AeQ™)

= HT(I)[A[el]Q Z] — Lo,

) HB(ker(Lp))

sy

2
< HK(l)[z] — Log, 42— %Aff’ ® X2 (Mp,))

B(H™))
2
s

2
+ HE‘”M 2+ A AP @ XMy

B(ker(Lyp)) B(HW)
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e (ults)

=0 (%i) +0(97")

uniformly in z € By 4, by (4.25, 4.26), Proposition 3.7 and Corollary 4.3.

The analyticity of z — w®[z] follows from Lemma 4.10(iii) and the absolute
convergence (uniformly in the parameter z € By/4) of the above series of analytic

functions z — VT(;,?S,qL[- ;2] [

4.3 The Renormalization Transformation

We are now prepared to introduce the renormalization transformation 72,()1*),73,(,2,

n=2,3,...,N, which acts on suitable poly-discs in 20 given by

D) — ™) — (—E®™[.],T™)]. ( . > e
(e,n) {Q [ T] (wrsl -] R4+S>1
sup VqT [Q7 Z]_ 7 =€
2€By 4, BH,)
qEQ<”)
a3 1B =y < [ (20D, ]

for suitable £,7 > 0. This poly-disc is a collection of all elements w™ in 20
which are close to the element w'™ := (z — —2z,(q1,q2; 2) — (@1 +1iq2),0), ie.,

W) [w(") 2]] is close to the operator

W(”) [w5<n) [ZH = COS((S/)Lres + ZM[Gn} — 2= LO,Gn rH(n) —Z.

The renormalization transformation is a composition of three operations: a deci-
mation of degrees of freedom via the smooth Feshbach map followed by a rescaling
procedure and an adjustment of spectral parameters. These operations are explained
in subsequent subsections.

4.3.1 Adjustment of Spectral Parameters

The first ingredient to the renormalization transformation, the smooth Feshbach
map, is only defined for spectral parameters on a scale p,. (p« for the first iteration
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step) rather than for all z € B4, reflecting the fact that the Feshbach map allows
the spectral analysis on a smaller scale. We forestall the needed transformation of
spectral parameters from B /4 to a proper scale before we discuss the Feshbach map
in Section 4.3.2

For w" = (-EW 7O (wg,)s)R+Szl) as defined in (4.21, 4.23) and for w™ =
(—E™, 7™ (wR é)R+5>1) € D™ (e,n), n=2,3,...,N, we define the complex sets

D [w"] = {z 3 ‘ ’<E(1)>Qp 2] < p*/4} = (EWY," (B, ), (4.28)
and
-1
D [w™] :={z € By ||[EM[Z]| < pu/d } = E™ [B,. ], (4.29)
for n = 2,3,...,N, as the collection of all spectral parameters z which allow an

application of the Feshbach map to W, [w(”) [z]] Hereby, the function <E (1)> Q18
defined by

(EW)g, i Bya = C, (BV)g [2]:= (2 [ BV )y,

and it inherits the analytic properties from E®. As a simple consequence we ob-
tain the following lemma which locates the set D [w(")] and describes the mapping
properties of <E(1)>Q and E™ on D [w™)].

P

Lemma 4.5 Letn =1,...,N and set p = p. in the case n = 1 and p := p. for
n=23,..,N. Assume O <p< s (m addition to the premous assumptions on
P« and p**) Let wY as defined in (4 21, 4.23) and choose w'™ € D™ (e, n) with
0<n<p/16 forn=2,3,... . N. We assume that g is sufficiently small and that

|Bmax - Bmin‘ < 1

(i) Then, the following inclusion holds true

Bspiie © Bpjay © D [w™] € Byjary € Bsge. (4.30)

(i1) We have

7
Mg =1 <=5 n=1,
" 176 (4.31)
0. E™)[2] 1|<7n<Eﬁ, n=23,...,N,

Jor all |z| < 5
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(i1i) The function

R™ : D [w™] — By, R™[z] :=
[_ } 1/4 [ ] p;*lE(n)[ZL n:273’...,N

15 biholomorphic, i.e., it is bijective and its inverse
Z0 .= [R™] ™ : By — D [w™)] (4.32)
is a holomorphic function obeying
10.2"[z] = p| < 12pm (4.33)

for all z € Byy.

Proof.

(i) We start with the observation that, in the case n = 1,

et - Sl |0 (5)
— 9_: H< Q (ABS) _ A(()S)]ﬁmangminzﬁp> 0y >‘ Lo (gé)]

= p*o (lﬁmax - ﬁmin| + gé>
<7

for |Omax — Pmin| < 1 and g sufficiently small, recall (4.25). We used that the

level shift operator Aés) | Bmax—Bmin—p, i the equal temperature situation has €2,
as zero eigenvector,

Ay

R
ﬁmaxzﬁmin:ﬁp Qp = ZZ FO,T‘ ﬁr:ﬂp Qp - 0
r=1

and that ALY — AJY| Bunax—fmin=0, 18 Of order |Bmax — Bmin|. We first prove the
inclusion (4.30). Let z € Bj/4—y, then, in the case n =1,

(B, 2]

and, forn =2,3,..., N,

P P
< _— = —
+ |z <+ 1 n 1

< ‘<E(1)>Qp [2] — 2

p**_n:p**
4 4

‘E(")[ZH < |E(")[z] —z|+ ]zl <n+
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(i)

(iii)

For z € D [Q(”)] we have, for n = 1,

<77+&,

2l < [(BD)g, [2] - 2 :

+|(BD)q, 12

and, forn =2,3,..., /N,

2] < [B™[E] — 2| + [EM[:]| <+ B2,

We go over to prove (4.31). We restrict ourselves to the case n = 2,3,... N,

the case n = 1 is similar. Let |z| < 55. Cauchy’s Integral formula applied to
the holomorphic function E™ and (4.30) yield, for p,./4 +n < a < 1/4,

1 EM[] —
.0 1] = o f T
I¢|=a

1
< asup |[EM[¢] (| sup ——
CI<a | | ¢l=a € — 2/
an an
<
(a—1z)? ~ (a—35)?

7
<
— 320

7

where we chose a = 3—72

The relation (4.31) implies that the function z — E™[z] is injective on By 39
with holomorphic inverse.

Now, we show surjectivity of E™ : D [w(")] — Bjs. We first observe that
E® [D [Q(")H C EM™ [31/40} since D [w(")} C Bsj/16 € Bijag (for p < 2—10) and
E™ is injective on the even bigger ball B; /32. Assume that E™ [D [Q(")H ;
Bj/a, i.c., there exists ¢ € E™ [By0\ D [w™]]NBjs. Thus, z := EM ™[] €
Bijso \ D [w™]. This implies |[E™[z]| = |¢| < p/4 which is in contradiction
toz & D [w(”)].

The bijectivity of R®™ = 5~'E™ : D [w™] — By,4 guarantees the existence
of the inverse function Z™ : B, 4 — D [w(”)} and its derivative fulfils

1
ROV [Z00[2]

0.2z - p| = ‘ p

~‘ 1— Em (2]

’ B [Z0[2]
e

< 7 <7p

= P B zeg)] T

< 127
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for all 2 € By /4, where the prime stands for the derivative w.r.t. the spectral
parameter.

The function z +— Z [z] is the appropriate adjustment of spectral parameters
from the disc By /4 to D [Q(”)] which is comparable to a ball of radius p/4 = p. /4, for
n=1, and p/4 = p./4, for n =2 3,...  N. The implication of the estimate (4.33)
is that the map Z first shrinks the domain B, /4 by a factor p and then performs
a parallel shift given by the complex number Z(™[0] — up to higher order correction
terms. The following corollary rephrases the fact in a mathematical language.

Corollary 4.6 Letn=1,...,N and set p := p, in the case n = 1 and p := p.. for
n=23,...,N. Under the assumption of Lemma 4.5 we have for the adjustment
function Z™ defined in (4.32) the following expansion,

|2 = Z™(C) = p(z = O] < 126mz — ],
for all z,¢ € Bys.

4.3.2 Decimation of Degrees of Freedom via Smooth Feshbach
Map: lteration Step n =2,3,..., N

Given an operator of type
K™ [z] = W [Q(") 2] = 7™ [Ap,g; 2] — EM[2] + WMz, (4.34)

gained by an element w™ € D™ (€,7m), the renormalization procedure shall provide
a method to obtain detailed information about the spectrum of K([z] around
the origin on decreasing scales which is not accessible by standard perturbative
arguments treating 7™ [Ap,j; 2] — E™[2] as a free operators (whose spectrum is
considered to be understood) and W([z] as an interaction term. The smooth
Feshbach map provides an opportunity to encode the spectral information of K (™ |z]
on a scale p,, as the spectrum of an operator which lives on a spectral subspace.
Transferring the analysis of K(™[z] to an operator on a spectral subspace can be
understood as an effective decimation of degrees of freedom.

The application of the smooth Feshbach map requires a smooth cutoff function
Xp.. : Rg — [0,1] as introduced in Section 3.3, Equations (3.9) through (3.11).
Given this function we define a smooth “projection” operator

2 = Xp.. (Mp,)
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and its complementary “projection” operator by

=(n) / —(n)2 _
:p** = ]1H(n) — :/()*Z = Xp** (M[(?n])

We further introduce orthogonal projections on the range of the operators EE,”) and
Ef)n) We define

ngj : orthogonal projection on ran (EI(D")), 1’:’p(:‘3L = 1y — P,gff,
FEJZ : orthogonal projection on ran <§/(Zi>, ﬁ(pziL = 1ym) — FSZ ,

and note that

P;SZL*) = P[M[@n]<p**]’

Py = Pl 0.
P;SZ)L = L [Migpy2pee]
Pl = P <t

Subsequently, we show that for w™ € D™ (g,n) and z € D[w™)] the operator
KW[2] = T™[Ap, ;2] — E™[2] + WM [z], n=2,3,..., N, given in (4.34) together
with the unperturbed part T™[Ap,; 2] — E([2] build a =\ Feshbach pair in the
sense of Appendix E.

Lemma 4.7 Let 0 < p,. < % (in addition to the previous assumptions on p..) and
choose forn = 2,3,... N an element w™ = <—E("), M, (wgg)RJrng) c D™ (e, n)
with 0 < e, < p../16.

(i) For q=(q1,q2) € Q™ with g € [{pus, 1] holds

70z — B[] = 5

for all = € D[w™)] and therefore T™[Ny, ;2] — EM™[2] is invertible on

(:(n)
ran (=

p**> and its inverse is bounded by

F(n)

Poxx

T™[Ap,; 2] — EM[2]

2
P

<

B(H(n))
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(ii) For any z € D[w™)] the operator
KM[z] = W) [w(n)] — 7™ [Ajg,g; 2] — EM™[z] + WM [z

together with the free part T™[Ap,); 2] — E™[z] build a 5272 -Feshbach pair,
i.e., the operator

K®[2]_w = TM[Ap,j;2] — E®[] + Eo W)=,

=
b Pxx Pxx

15 bounded invertible on the range of Ef()n)
Proof.

(i) We compute for ¢ = (q1,¢q2) € Q™ with ¢» € [p,.,1] and z € D[w™],
T™g; 2] = EW[2)] > g1 +ige — [T™]g; 2] = (g1 +igo) | — |[E™ 2]

n)lx~ 1 n
> lal = sup [Vl (1)l - 1B
Geo)
> l—¢e)——F— 2 cpu(l—— ) ——
2 laf(1—e) = =g 16 1
S p**'
- 2
This estimate and the functional calculus imply
P,. . Pl>1p.]
T™[Ap,); 2] — B[] B(H™) (q1,92)€Q™ TM (g1, go; 2] — EM)[2]
2
< .
P

(ii) Apparently, the operators ngl,gszi and T[N, 1; 2] — EM™[2] commute mutu-
ally. Since further W(™|z] is a bounded operator, it is sufficient to prove invert-
ibility of K™ [2]_() on ran (E(n)> to show that (K™[z], T™[Ay,; 2] — E™][z])

Pk

Pk
is a Ef,’fl—Feshbach pair. We invert K™[z]_) by expansion in a norm conver-

Pk

gent Neumann series,

Py K[, Py (4.35)

(n) Ch () P
— ﬁ n 1 ‘_‘p** W(’n) E n Pxx
" ( T TRy 2] — EO[E) 5 | 7w (A5 2] = E®™]z]

() o g . B0
= ? n i P W(n) E n Drx
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where

=(n)

T [A[gn], Z] FE [Z] B(H(”))
—-(n)
P
P (n)
= [T Ay, ;2] — EO[Z] W [Z]HB(H<n))
" B(H™)
2 n 2
< ¢ H (wﬁ{,)s> < —&n
Pex Rt821|(n)e  Prx

§
< 2«1
- 8

where we use the embedding Corollary 4.3.

Lemma 4.7 guarantees that the smooth Feshbach map §_» may be applied to
= Pxk

the pair (K™ [z], T™[Ap,}; 2] — E™[z]) for K™[z] given in (4.34) with w™ €
D™ (p,./16, ps./16) and z € D[w™]. We use the expansion (4.35) to rewrite the
image under the Feshbach map as

oo (KW, T™[Ap,) 2] = E™2]) (4.36)

= 7™ [Ag.g; 2] — E™ [z] + EE,’QW(”) [Z]E;")

=(n n) 1 1= 1-(n -1 =0 n =(n
—:E,*ZW( )[2]:p**K( )[Z]E(n) :p**W( )[z]ug*z
= pxk
= T™[Ap,);2] — EW[2] + EQ W [z]=0

© =(n)
N EmpmpE™ [ Zpus (n)[ 1=

L

P W [z]:(")

P
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4.3.3 Rescaling Bosonic Variables and Renormalization
Transformation: lteration Step n=2.3,... . N

For a given w™ € D™ (¢, ), e,n < p../16, we could build in the previous section
an operator §_ (K™[z],T™[Ap,};2] — E™[z]) given in (4.36) which acts on the
=Pk sk

reduced Hilbert space PVH ™ = P[M[e | <p**]f (L?[Y]). The aim of this section is
to rescale the bosonic variables L.y, Lyes and Ny within the operator (4.36) such
that it lives on a spectral subspace where the variable Mj,) is of order one rather
than of order p,.. To this end we employ the unitary rescaling operator S,,, defined
in (D.12) and the rescaling map &, acting on an operator A like

Prx "

We refer to Appendix D.2 and (D.14) for details on &,_,. Consequently we get with
the functional calculus

S,..PMH™ = So. Pl

prxd pos ]f(L2[T]) = P[s Sp**]:<L2[T]>

Pk M[Qn]sfj*l* Sp**}

|F(L20]) = H D,

On) <P

[p**M[9n+1]§ﬂ**

The fact that My, = sin(0’) Laux + ,0[;}17" Nies does not scale properly under &,
(the operator L,. scales as p0, while the operator N, scales as p*_*l) but that
the translation parameter p[;]lT’ is blown up by a factor p_! is the reason why the
rescaling operator S,,, does not bring back the space P(Z) H™ to the space H™ but

maps it to a subspace H" V.

The renormalization transformation RE,") incorporates the decimation of degrees
of freedom via Feshbach map Szén) , the rescaling &,,, of bosonic variables and the
adjustment Z of spectral parameters to map an element w™ € D™ (e,n) for
€,m < p.s/16, or rather the associated family of operators By/q 3 2z — K™[z] =
Wiy lw™]-; 2]] on H™, to an operator family By/q 3 z — K"V [z] on H" . The
assignment is as follows,

R DO(e, ) — Wiy [0+

(RE ™)) [] == &,.. [Sogn (K[ T Ap,:¢) = BP[A])] | (4.37)
¢ = Z2"[z] € Dlw™),

where w™ = (—E(”),T(”),(wgg)R+szl) and K[z] = Wyy[w™[-;2]. The as-
signment (4.37) is the definition of the frequently mentioned renormalization trans-
formation. With the help of (4.36), Theorem D.3, Proposition D.4 and the same
arguments as used in Section 4.2 we see that the image

RO ] = Wiasn) [w)]

Pxx L— -
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under the renormalization transformation is generated by a sequence w™*!) =
(wggl))R+S>o of integral kernels given by

wip sV Y9 ] (4.38)
- b (re+ e\ [0+ q
R —1 L—1 J4 4 V4 V4
— e Y Y [H (o) (o)
L=1 ri+-+rp=R, P1,41,-->PLqL: [ (=1

S14-+sp =8 Tetpetsetqe>1
(n+1 R,S).
x VD) [y (RS, o),

D84,

for R+ S5 > 1, and

wile™V A 2] (4.39)
= o (T[puXi Z7L]] = puc2)
o D (=DF YT X ()
L=2 P1,q1,-PL,4L"
pet+qe>1
2 (-1
Xl (p** M[Qn} + )\2)
W0 [, A 20
><< (n) [ Wpy, QI] (p [ ]) T(n) [A[en] —i—p**)\;Z(”)[Z” — PaxZ x

X1 (P** M[en] + /\2) W(O,O) w™

. 7(n)
" g [A[Gn] + pas; Z [ H — PxxR (n) [ pL,qL] (p**)\,Z [2])>

Qvac

The functions WSZ:;?L appearing in (4.38) are the symmetrization (in the sense of
(D.8)) of

VD) [\ Y (RS, 4] (4.40)

D59y,

1= <X1 (P*_*lM[en} + Ao + [77(()0"+1)(Y(R’S))]2>
< W (08 e | (9o (A0 (VR ) 0 2002
% (ot [0 @] 45 (7))
" 70 [ (A (v 1 ST (@) 2] - pune
% (ot [ )]+ z;: mo (1753))
T [pos (A (VR9) + 57550 N, (557))) 3 200[2]] = pavz

TL,S n On rL s n
x W™ [wﬁLlpL,smL} (per (A +1)(Y( syt 55 ) s 20

(ot s ] > . (157 )
QV&C

X
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Hereby we used (D.15) of Proposition D.4 and

On On
né )(p**Y(R,S)) — p**né +1)(Y(R,S))’ an(p**u) = PuxMeg, ., (u)

and
X psx (p**x) = X1 (x)a Yp** (p**x) = Yl(x)

(n+1

Identifying the sequence w™*") with the operator Wit [w™ V] it generates we can

understand the renormalization transformation 72(")

ok

as a map

RN . D(")(s,n) N Qg(nﬂ)’

Pk

() [0y (M)] .= 4, (n+1)

(4.41)

with w1 given in (4.38) and (4.39). Setting
K(nJrl)[z] — W(n+1){ﬂ(n+1)[' ; Z]]

we observe that the definition (4.37, 4.41), the isospectral property of the smooth
Feshbach map provided in Theorem E.1 and the invariance of the kernel under the
rescaling &,,, lead to the spectral link between K (") and its image K1 under the
renormalization transformation,

0 € spec (K™ [Z™M[2]]) = 0 € spec (K"*V[z]),

4.42
0 € specyy (K™ [ZM[2]]) = 0 € specyy, (K™V[2]) (4.42)

for all z € Bysy. Thus, the spectral information of K (M[¢] for parameters ¢ :=
ZM[z] € ZM[Byyy] = Dlw™] D B, 4y, ie., in a p.-neighborhood of zero, is
encoded as the spectral information of K(™+Y[2] for spectral parameters from the
ball By/4. Therefore, studying the spectral properties of the family z — K (1) [2]
on a scale p%, enables us to analyze the spectrum of K(™[z] on a scale p,,. In
Section 4.4 we show that, under certain conditions, R,(,") even maps D™ (g,7m) into
D"+ (e 4+1/2,1/2) which allows an iteration of the renormalization transformation
and generates a discrete flow, c.f. Section 4.5. Linking the spectral information of
each iteration step with the previous one enables us to understand the spectrum of
K™(] for ¢ on an arbitrary scale p*, as long as we incorporate k iteration steps.
This recursive localization of the spectrum is worked out in Chapter 5.

4.3.4 Decimation of Degrees of Freedom via Smooth Feshbach
Map: lteration Step n =1

The application of the smooth Feshbach map to KV)[z] (introduced in Section 4.2)
is different from the previous sections since the decimation of degrees of freedom
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is not only restricted to the bosonic variables but acts also on the particle sector.
Given the cutoff function y; and the scaling parameter

Pr 1= —p%q (4.43)

(the constant 7., is defined in (4.46) below) we define the smooth “projection”
operator

20 = Xp. (Teq ® Lrpr) + Tker(ry) © Migy))

where
Feq = Im (A(()S)|ﬁmax:5min:ﬂp>

is the imaginary part of the level shift operator Aés) associated with K for the
equilibrium case where all reservoir temperatures 3, coincide with the particle tem-
perature 3, (we refer to Section 3.3.2 to recall the properties of the level shift
operator). Due to Lemmata 3.15 and 3.20 the operator I's, is independent of s,

R
Tea =Y Torls.=, (4.44)
r=1
and it holds
AE)S) - Z-Feq =0 (S(ﬁmax - ﬁmin)) (445>

if we let (3, coincide with a reservoir temperature [,/ as postulated in (2.9). Because
of Proposition 3.23(ii) the operator I'e, has a one dimensional kernel spanned by €,
and all other eigenvalues are separated from zero by a gap

R
inf [spec(leq) \ {0}] = Yeq = Z'Yg > Ryrgr (4.46)

r=1

which is strictly positive by Hypothesis V-1.10, uniformly in the inverse tempera-

tures. Therefore, the operator Egl*) can be written as

=8 = 1) (] ® xp. (Mpgy))

if p. < 7eq which is fulfilled for g sufficiently small which we henceforth assume.

Thus, the operator E,(i) can be expressed via functional calculus as

—(1 1
20 = X (M),

where

X/(JP P X, () [Qp) (92,
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is a smooth function R — B(ker(L,)). The complementary “projection” operator

is defined as
=(1) —(1)2 1)
E,) = V1w — 25 =X, (Mp,),

N-1

(1) _
X, tue > X, ((Teq)in +u) [055) (Pl
4,k=0

where

is a smooth function with values in B(ker(Ly)) and (I'eq)jn := (@ [ Teqhyk Dier(r,)
are the matrix elements of I's, in the orthonormal basis {¢;;};=o,. ~—1 of ker(Ly).

We conclude this notational part by introducing orthogonal projections on the

range of the operators Eg) and E/(i). We define
P/S) : orthogonal projection on ran (Eg)), P;jﬂ = Lker(z,) — P,S),

-1 I =(1) S+ -
P, orthogonal projection on ran <:p* >, P, = Tyer(r,) — P,

and note that

Pp(:) = P[Feqmﬂm+11ker<Lp>®M[eﬂ<P*]
= Q) (| ® P[M[91]<p*]’
?;1*) = P[Feqmﬂr]+lker<Lp)®M[911>§P*]’
= () ()" © Plag,, <70] + 112 @ Plag, 57,0
P,SPL = P[reqmﬂr]+11ker<Lp>®M[61]ZP*]
= (1) ()" © P[M[91]<p*] t 1z ® P[M[Ql]zp*]’
FS)L = P[Fequm+11ker<Lp)®M[91]§§P*]

= |Qp> <Qp| ® P[M[

91]§%p*]’
where (|Qp> <Qp|)J— = ILker(Lp) - |Qp> <Qp|-

In what follows we proceed similar to Section 4.3.2 by applying the smooth
Feshbach map to the operator K(V[z]. To this end we have to extract a “free
part” from K(M[z] which, together with K1 [z], forms a Zi)-Feshbach pair in the
sense of Appendix E. The difficulty in this situation is that the canonical choice
TW[Aj,1;2] — EW[z] as a free part does not qualify since it is not necessarily com-

muting with the cutoff operator Eg). However, the leading orders

2
TV [Ap,; 2] = Log, T —2+ i%req @ X1 (Mp,))
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of TW[Ap,); 2] — EW[2] are a suitable choice as we will prove below. Hereby, we
define

2
TON 2] = (A +ide) — 2 + z'%ﬁuz)req.

Apparently, T(l)[A[gﬂ;z] commutes with EE}*) and El()l*). The perturbative part of

K®W[z] which results from distinguishing 7") [Ajg,); 2] as free part is then given by

2
W(l)[z] = K(l)[z] — T(l)[A[Ql]; Z] = K(l)[z] — (L0,91 —z+ i%req & X%(M{gﬂ))

2

2+4-€
= ‘% (A((f) - iFeq> ® Xi(Mp,)) + O (gp )

T o (o
= ;O (ga + S(ﬁmax - ﬁmin))

= p*O (gE~ + S(ﬁmax - Bmin)) ’ (447)
because of (4.25, 4.45). Alternatively, we may express W [z] in terms of Wick
monomials

W =W (v@) . )
=Wy | (Frsls2l) o
where
M W g’
W g [\ 2] = wg g Azl — (M + i) +2— i?xf()\g)Feq,
W = whs,  R+S>1.
o) . w1 rtian .50 (1)_
Note that @'’ = (W}g)r+s>0 also has a contribution @y to the 2j o-sector of
order
sup ﬁ}(()l()) [A; 2] (4.48)
2681/4 ’ B(ker(LP))
reQ)
_ TO[ A 1: 2] — EO[2] — TOAf H
S [Ajo); 2] (2] [Ajoy); 2] S
= sup ||[WW[z] - W[z H
26854 [ ] [ ] B(HW)

2
= 0 <gpﬂ + %(98 + |5max - ﬁmin|)) )

using functional calculus, recall the definition (4.12) of Q) and using (4.26, 4.47)
together with Corollary 4.3.
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Lemma 4.8 (i) Let = € D[wY]. Then the operator T(l)[A[Qﬂ;z] is bounded in-

-1

vertible on ran(P, ") and the resolvent obeys the following norm bound,

Px

|70 A 27 P

Px

3
<2
Blker(Lp)) — ps

(i) For z € Dlw™M] and |Bmax — Pmin| < 1 and g sufficiently small the operator

P

=2 — 1),y — 1
K(l)[z]ém = T(l)[A[gl]; z] + :2*)W(1)[z]:( )
P

is  bounded invertible on the ran(?ﬁ)l*)). Therefore,  the pair

(KW[z], T [Afg,1; 2]) is a Eﬁ) -Feshbach pair.
Proof.

(i) We start by decomposing the projection FS) = P, + P, where
. € -
Pr= (|Q) (D))~ ® P[M[01]<§p*]7 Py = Tyer(z,) ® P[M[el]zép*]

and compute the norm of the resolvent 7 [Ajg,g;2) 7! = (Lo, — 2 + i%l’eq)*l

separately on each of the sub-ranges. We start considering

9 1
(L0,91 —zZ+ i%req ® X%(M[(’l])) Py

B(ker(Lp))

1 1

< sup TS

0<m<Zp., |m —Im(z)+ Le
e€spec(leq)\{0} p

1 1
i, S
o Yea T igPx P

<

)

using Lemma 4.5(1), and go over to estimate

2 -1
(Lo,el —z+ i%Feq ® X?(M[eﬂ)) Py

B(ker(Lp))
< 1 < 1
< sup < -
m>Zp., |m —Im(z)+ ﬁexf(m)‘ P+ — [ Im(2)]
e€spec(leq) P
< 1 < 2
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Altogether, we obtain

*

3
<=,
Bler(zy))

9 '
‘ (Lo,91 —z+ Z'?Feq ® X%(M[Oﬂ)) P,

(i) We recall the estimate (4.47) of the perturbative part W®[z] to estimate

=W O EN @A 1P
- =Wz, Iz 4.49
’ b [Z] 0x [ [01}7 Z] Px B(ker(Lp)) ( )
< 3w
s B(ker(Lp))

= O (95 + |ﬁmax - ﬁminD < 1

for | Bmax — Omin| < 1 and g sufficiently small. This relative bound and (i) allow

the expansion of K(M[z]Z into a norm convergent Neumann series,

Px

— 1 =
P, K[, P, (4.50)

Due to Lemma 4.8 the smooth Feshbach map is applicable to the Eﬁ)—FeshbaCh
pair (KW 2], TW[Aj,; 2]) for z € D{w"], we refer to Appendix E for details on the
Feshbach map. With the help of the expansion (4.50) we can write

Feon (KO TO Ay 2)) (451)

= TW[Apy; 2] + ZL WD)
_EOHOLED gO)12L EVHm)E0

Sk

=117 [,1=(1)
oW [z]up*

oo =(1)
N 2O ED [ Ze st
2.5 5. TM[Agp,; 2] A1

Il
N
=
3
2
_|_
[1

L=0
=(1)
B WO [zEW
TO[Apy; 2] P
= T(l){A[Gl]vz]
oo =(1)2 L
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and understand it as an operator on ran(Pp(i )).

4.3.5 Rescaling Bosonic Variables and Renormalization
Transformation: lteration Step n =1

The rescaling of the operator - (KM[z], TW[Ag,; 2]) and the underlying Hilbert

space P,gi )H® on which the operator acts is performed in exactly the same way as
in Section 4.2 and 4.3.3. We directly go over to define the ﬁrst a?phcatlon of the
renormalization transformation Rp*) to the initial data w™®) = (w R, s) R+S>05

RO [w®] = w®,

Px

where the sequence w® := (wg)s) R+s>0 1S given by

wis[A; Y 9); 2] (4.52)
- = re+Dp S¢e+q
R -1 L-1 0 {4 0 y4
-y s () ()
L=1 ri+-+rp=R, PL,41,-->PLqL: [ (=1

sitFsp= S Tet+petset+qe>0
xV2 A\ Y RS )

TPS‘I

for R+ S5 > 1, and

wio[A; 2] (4.53)
= o (9 | (T9 [0 20]] = 00l [p.4; 20 []])Qp>ker(“
+o. D (=DF YT X ()
L=2 p1,4915---, PLqL:
pe+qe>0
<2,
X4 (P*IM[91]+)\2)

WO 50 1 (52 Z0[2]) =
@ [l (7 ) T [Agg,) + pd; ZW[2]]

-2, _
X1~ (5 Mg+ %) 00 2(1) . 7(1)
D [Apgy) + pud; Z02]] W [pr,qL} (pX; ZW[2]) Qo ).
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The functions %E,QJ?WL appearing in (4.52) are the symmetrization (in the sense of
(D.8)) of

7O DY ®), (4.54)
p,s,4q,

Xl( Mgy + Ao + [ (92)(Y(R,S))]2>

< W (68 v | (90 (3 0 (V0000 g0 20121
Ygl) ()\2 + [ (92)<Y(R,S)>} + 28}:1 me, (@Sﬂl)))
X
T(1) [/)* (/\ + 77592)(3/ RS)) + 251 Mo, (ulg )) ;Z(l)[zﬂ
h —(1)? X sL1 SL—1
X <>\2+ [U(LG (Y )} + 20551 me, (“(LLU)))
T [p. (A+ 2, (Y 09) + 5505 N, (a8757)) ) 5201

rL,8 o (1 0 T ~(s .
v W((l)L L) [wiL)erL SLJqu] (,0* ()\ + néz)(y(R,S)),y( L)’yé L)) ,Z(l)[2]>
“ 1 (Aﬁ[ qu +Zm92 (uLJ>> Qo>

Note that the additional term Xl()\g)w(()lo [p:A; ZW12]] appearing in (4.53) and the
fact that the summation indices r,p, s 4, and 0, p, 0, q, in (4.52, 4.53), resp., range
over 1y + py + s¢ + qe > 0 instead of ry 4+ py + s, + qo > 1 are due to the existence of
the wo?o—contribution in W,

X

One convinces oneself by consulting (4.51), Theorem D.3, Proposition D.4 and by
comparing with the elaborations in the Sections 4.2 and 4.3.3 that w® is chosen
such that

Wy [(RD®) -] = . [3oe (KOZOEL TV Mgy 201]))| (455)

and observe that due to (4.55) and Theorem E.1 the families z +— K®)[z] and
2+ K®]2] are spectrally linked in the sense that

0 € spec (K [Z(l)[z]}) = 0 € spec (K®[z])

0 €specy, (KU [ZV[E]) == 0€specy, (KP[2]) (4.56)

for all z € By4.



216

4. Smooth Feshbach Iteration and Renormalization

We close this section with a remark about the leading term in (4.53). We expand
(setting ¢ := ZW[2])

o (9 | (T9 [p.2 2] = 300} [pod 200 ) 9 ) (4.57)

ker(Lp)
:<%

1 . g2
+ﬁuﬁ}w$mxd—w+Mﬁ C 9 %MW4 0
PP ker(Lp)

* P

2

{[()\1+i)\2) < 1y 5/)* 2(A2)Feq]

*

=<M+Mg—ﬁu»§

%

+X1 >\2 <Qp | [T(l p*)\ C] p*()\l + 7’)\2) - E(l)[c]] Qp >ker(Lp)

(EW)q (¢l -

P
+x3( /\2 <Q | [TDp. A ¢] = pulAr +iX)] >ker(Lp)

= —z+ (Al +iX2) +X1(\2)

This decomp051t10n will be useful to show in Theorem 4.9(ii) that w® belongs to a
poly-disc D@ (g5, 15).

4.4 Contracting Property of the Renormalization
Transformation

The iteration of the renormalization transformation requires a control of the mapping
properties of Rp .. We show that Rp maps a poly-disc D™ (e,n) into a poly-disc
DD (e ) for suitable &, 17, i.e., RS maps its domain into the domain of RS,

Theorem 4.9 (i) For w™ € D™ (e, n), n > 2, with e,n < £ we have

R D(n+1)( n 77)
11) For |Bmax — Bmin| K 1 and g sufficiently small we have
(ii) g Y
w? = RE,I*) [w(”} e D (€2,m2)
where
32C,, > 320,

E9 =

and w? = (wgy)s)mszo is given in (4.52, 4.53).
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The contracting property of the renormalization transformation jol uses the
following lemma to a great extend.

Lemma 4.10 Fiz L € N and r,p, 8,4, = (r0,pe,50,q0)=1 € (No)** and set R :=
Zle re and S := Zle Sp.

(i) Let n = 2,3,... . N and w™ = (wgé>R+s>o € DM (g, n) for e,n < pu/16.
For vy + pe + s¢ +q > 1 we consider the function

V(n+1) [)\ Y RS) ]

D,8,4;

= <Fo (Pt Aoy + )

L
(re,s (n)
H{W 5 [ Wrotpy, Se+<]e:|
1

(e (D 0795400, 520) s 2002 )

X Fy (p Njp,) + ) }>

QVHC

with

Fo()\) =\ ()\2 + [Uéenﬂ)(}/(R,S))} 2) ’

FL<)‘) = X1 ()‘2 + [nLnH) Y(RS ] +Zm0n+l (uL_] >> )
% (R + [nf "*”(WRS)] + 5 mo (@)

T [p** (A + (YR £ 3 N, <ﬂ/§,5f)>> ; Z™) [Z]} — Pax?

for € =1,...,L =1, as defined in (4.40). Then, the function By > z —

VT(ZJSF}I [-; 2] is analytic with values in fmgf;fl) and obeys the following bound,

Fg(}\) =

-1 ||17(n+1) [- #
p** T’,p,S,qL

; 2]
(n+1)
#

()

‘ ‘ wreere Setaqe

RARIE]
< 2<L+1)CL+1 1+u)(R+S) LH

e /pﬁe qgl

using the convention that 0° := 1.
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(ii) Forry+pe+si+qe > 0 we consider the function f/r(,f,?s,qL given in (4.54). Then
2

the function Byy 3 2 %Eﬁ?s,qL[- : 2| is analytic with values in ;s and obeys
the following bound,

#

o (1) . 7(1)
w SN AP
[ [2]] oy

T¢+Pe,Se+qe

L
< 2(L+ )CL+1 (14+p) (R+S5) LH

e /pzf qZIZ

(11i) Forre+pe+ se+qe = 1 we consider the function f/?%?s,qL given in (4.22). Then

the function Byy 3 z ‘71511;?37%[- : 2| is analytic with values in Qﬂg’)s and obeys
the following bound,

o[V

TquL H

< (L+ )C>l</1+1p(1+#)(R+S)fL (gM(Q(O)))L7

where

1/2

M(w®) = pe{gl“?};;g)*}/dy [0 () ™" + mp(u) =] Hﬁ(y)HZ(H@

and Fe( =[G — g( )]9 is explained in (2.26). The number M (w)) is finite
for % < u < v where v is the infrared reqularization of Hypothesis VII-1.12.

Proof.

(i) Since the cutoff function y; is smooth with compact support we have

IE(N+ ) oV <Cy,,  £=0,L

j=12
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and (using the abbreviation A\ := née"“)(Y(R’S)) +D 00 n+1(uésj)))
[E]+ D 103, Fe(Y)
j=1,2
Xi <)\2 + 5\?)
<
T(n) [,0** (/\ + 20 ) Z( )[z]] — Pux?
% (Yo +287) (@0, T) pos (A +AO) ;2002

+
j=1,2
2%, (4 30) 005, (30 + 39)
T0) [pos (A4 30) 5 200[2]] = pu.2

< Capi

+

for the positive constant C,,
the cutoff function X1

ne instead of 7, "“)(Y(R,S)))

Prx.
> L.

V (n+1)

P54,

) Y2

< H [Fe (P Mg +A) ||B(H(n>)
=0

(n) e ~(
wre-ﬁ-pe,se-&-qz{} <p** <)‘ + Nei Yy ‘ 'y Yp

IN
x

n (e~
[wf(‘tz}rpeyse+%} <p** <)‘ + Ne; yé ’ 7yé

By product rule we obtain

O, Ve Y 92
1) ~
n+1 (R,S). n+1
- |:‘/r(p—§q) i|>\ [A Y ] + [V;(,pj@_,q)L A

J

> 1 given in (4.6),
We made use of Lemma 4.7(1) to estimate

(T( [p** (A + W) Z( )[z]} - p**z>2

only depending on

Next, we observe that (writing

(4.58)

) 2 |y,

80) 2% M) HB(H(n)) ’

(4.59)

@)
| Dy,
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where
)
n+1 . R,S
Vi), ey
L k—1
s < I {Fg_mp;:m@n] )
k=1 =1
W [0l ] (P (A0, 500) 1 2012)) }
X O, Fr(py Mo, + )
L
< 1 {W((f;ﬁ’”) [wﬁf}im,sme} (p** <A+m;y§ )7%@) AL [Z])
{=k+1
X Fy (p Mg, + ) }>
Qvac
and
)
n+1 R,S).
[ TPy |y ¥ Y )7Z]

J

L
k=1
X H { re 50) [ r?im Sz+qg] <p** ()\ + My (rz)’ QS@)) ;Z(n) [Z])

X Fo(pi Ao, + A)}

X p**W((ZS“ ) [& Wik, s;ﬁ-%} (/)** (A + s y“’”wff”) ;2 [Z])

X H {Fg p** n]+/\)

l=k+1

x Wiseo [wﬁﬂpz,we] <p** <>\ + 7]€7yé7“2)7yé8£)> AL [z]> }

% Fy (5= Ay + A) >
Qvac

The two terms [w;‘ﬂ} ] (1.2) [\ Y9 2] are estimated as follows,

[V(”“)]( YRS, ] (4.60)

sy |
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L
S Z HaAij p** A[9 ] + )\ HB (H(™)) H ||F€ p** A[9 + )\ HB(H<”))
o
8 I_IHW(MSZ [ Wretpe, S’*‘”} (p** ()\+m;y§ R ) ARIP ])HB(H(M)
L+1
< (L+1)F

TS . s0)\ . 7(n
8 H HW( 7 [ Wretpe, 5”‘”} (p** </\+m,y§ 70 > 2! )[Z]>HB(H(n))

and

‘ [f/(”“) } (2) [\ Y ES). 4]
A

WXL
J

L
< TTHFom Mo + Ml o,

=
{p**
k=1

0
L
D

rkvsk)
|:8 wTk +Pk,Sk -HIk]

Y <Sk>> . 7(n) > H
(p** <)\ + Ny Y » Yg ) Z [Z] BH™)

7,8 o (re) ~(se) ) L 7(n
XHHW(Z ! [ ’“W’WW} (p** (A+%y€ ’y5£>’Z( )[Z]>HB(H<n>)}

e;ék
CL+1

IN

L—2
Prx

S [ ]

k=1
7 30) 21|
(p** <>\+77k,yk »?/k: > e B(H(™)

74,8 . se)\ . n
x H HWW? ! [ ’"é*pfvsfw} (p** (/\+W’y‘g R > 2! )[ZD HB(H(")) }
E;ék

Inserting the estimates (4.60, 4.61) into (4.59) and using (4.58) we obtain

sup

D [\ Y (RS), ]] + sup ‘a Pt [\, Y (RS), ]‘
AeQ(n+1)

r T,p,S
Tp.S,d, AeQuhD) AjVrpsia,

(4.61)
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C2(L+1)

< 3(L+1)2 72—
L
(resse) (n)
§ g { AESQ%IL)H) ’W [ 7"e+pg,s@+qe:|
2
o (A sy, M);Z(n) )
(p ( NesYe 5 Yo 2] s
i A Sglipﬂ) HW 5 [@ ww-ﬁ-p/ 5/+qe}

€ n

(p** (A + ey, yésé)) WAL [Z])

2
BH™) |

Integration against the measure myg, (Y (%%))=3=21 gy (B5) yields

n+1

2
Vit 1o * (4.62)
DS | (1) '
dy (F:5)
- / e, (Y (B:5))3+2n
{M(n+1)}R+S nr
sup |V [y (7). ]‘ + sup ‘ajw;lj;; ;Y (R9), }‘
AeQ(n+1) = ,\eg<n+1>

CQ(L+1) L dY ’r’g,Sg)
< 3(L+1)? 2L H / Mo, ., (Y (rese))3+2p
=1 {M(n+1)}T£+SZ

(re,se) |, (1)
‘W(n§ ‘ [ww-ﬂ-pz,Squ]

X sup
AeQ(r+h)

2

(N . (re) (54)) 7(n) )H
(p < +n€ayf » Yy ) [Z] B(H™)

- sup Z Wi [0

AeQ(nt) ;=

(e (A m ™, 5 ) 1 20121)

2
B(H™)

dY (re:se)
(Y (resse))3+2u

S B(LA 1PCY S 2 { | =

{M)retse

(re,8¢) (n) (10 ~(50). 7 (n i
‘W(n; ' [wre+pz,se+%} <)\’y£ Z Ve [ ’Z( )[ZD HB(H("))
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+ sup Z HW(W’SZ [ Tzﬂ?eﬁfr%]

(ka2 20) |
'Y ) B(H("))

where we performed the transformation Y ("es0) s p=1y (ese) of integration
variables and used that

m0"+1 (p** Y(rbsl)) = p;*re_SZmGn (Y(rbse))a
prMT € M™),
Pex (A +1m0) € Q(n) Ve Q(n—&-l)‘
We apply Proposition 4.1 to see that
dY(TZaSZ)
/ me,, (Y (re:se))3+2

{M)Yretse

(re,sw[ (n) }( ) =(50). () >H2
X W A) b ’Z
AZZI()M ‘ (n) | Wretpeseta Yo Y [2] B
< 1
o
dytres) (n) (r)  (50) 2
n Lo\ ol (n)
X / e, (Y (rese))3+2u Wryrppserarl Y0 T 2] (n)
{Mm)}retse
1 (n) el
= p?zqzz sz+Pe78z+Qe[Z( )[ZH (n)
Inserting this estimate in (4.62) finally gives
#
7(n+1)
p** r,p,S ’qL[ 72] (n+1)

#

Te+m7se+qe [Z(n) [2]] ()

(n+1)

The analyticity of z +— V,,p s, [ ; z] follows from the analytic properties of the

< 2(L+1)CL+1 (14+p)(R+S)— H

**

functions z — TM[-; 2], E™z], wgzg[ ; z] and the above estimates.
(ii) The proof is the same as under (i).

(iii) The strategy in proving the second assertion only differs from the proof of (i)
due to the fact that the Wick monomials

W(rm [ 7(3)+pbse+qz]( <A+n“’1) (VS 0 G0, ))
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in (4.22) are not bounded operators on ‘H* = H2 ® F(L*[T]). However, by

sandwiching the Wick monomials with the operator (Mg + 1)~!/% we obtain
a bounded operator

Wy =
70,8 [% r ~(s
(Mg + D7 PWE [0l ] (0 (A0l (Y9) 1y 55 2) )
X(M[g} +1)” 1/2,

cf. Lemma A.5 and recall that, by definition (4.15), wg:?)s = 0 holds for
R+ S > 2. Introducing the operator-valued functions (we use the abbreviation

0 LR 15t ) s
A)) = Xo, </\2 N [m()el) (Y(R,s))} > ,
2
F(A) == Xoa </\2 + :\(L)> ;

(Mg + 1)X, (Az A )

E(\) =
T [p ()\ + A(€)> ;pz] — EO[pz]
for ¢ =1,...,L —1, we may write
L
‘/;(11))5!1 [)\;Y(R,S); ] <F0 9] + )\ H {WgFg 9] + )\)}>
=1 Qvac
We observe that, for £ =1,..., L —1,
Mg + 1 Ca

Hﬁe(l)_lA[G] + /\)H = 73,1 <A2 + 5\?) < =

p (Lo’g + A0 — z) P

with C,, > 1 given in (4.6), as one shows with the same arguments as those
used in the proof of Lemma 3.5, Equations (3.16) - (3.17). The same kind of
estimate holds for the derivatives 0y, Fy(p~'Apg 4+ A). Proceeding as under (i)

and making use of dy, wg’)s = (0 we arrive at

5 #\ 2
(1741

1)
< (L+ 1)202(L+1) p(2+2u)(R+S)72L+2

TZ SZ
X
/ m@ T‘[ s¢) 3+2u
/=1

Yretse
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(Mig) + 1) 2WE [0l | (20575 02)
2}

X |g° max /dy [mg(u) ™" + me(u) '] ||F(y)||123(H2)
FE{FéS>,F§(5) }T P

X sup
AeR2

x (M[é)] + 1)71/2

< (L+ 1)QC;§L+1)p(2+2u)(R+S)—2L+2

where we used that (for rp = s, = 0)

H(M{e] +1)” 1/2W 00) [ w? ql] (\; pz) (M[(,] +1) 1/2”

2
< max g* H(M[g] + 1)*1/ az (F) (Mg + 1)*1/2
Fe{F{® FO"}

IEW) 50
< & max / dy 10
Fe{F{® FO"} J me(u)

refer to Lemma A.4, and (for p, = ¢, = 0)

dy _ ro,s 122
/7MH(M[91+1) V2WGE [w, ] (A pz) (Mg + 1) 712

me(u)3+2
2
< | e O

2
¢>  max /dy 7||F<y)“8m%).
Fe{Fés),F§(§>*} T mg(u )+

IN

The analyticity of z — IN/T%?S#JL [-; 2] is obvious.

Proof of Theorem 4.9.

(i) Recall the definition (4.38) of wp?gl) in terms of the functions Vrpsq)
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Lemma 4.10(i) implies that

#
n+1
ng"s )[‘ 2] (n+1)

< ZQCXI (L+1 )(CI)L(%?“)MS > >

Prex Fidedrp =R, P1:1s-PL.dL"
s14-+sp=8 Te+petse+qe>1

L 9 \ Pt 9 \ ) . ”
X — — Wy, A
E K\/p_e) (@) ol Al (nJ
where we used that (j + k> < 27tk Summation over R + S > 1 yields,
n+1
R+sz1 (n41).€
n #
= > & swp |lugt[
R+5>1 z€B1/4 (n+1)
0o C L
<acaryuen () Y Y%
L=1 P R+S>1r1++r,=R, PL,qL,--PLyqL
S14tsp= S Tetpetsetqr>1
L
X H l( 2 ) ( 28 > £ (re+petsetae)
1 L\VPe Ve
(n) oIk
X sup wT‘ngpg,serqe[ ) [Z]]
2631/4 (n)
< acup Yy (S
2% ¢ '
#
22 > &0 sup [ [ 20| ]
[r+s>1p 0 ( ) q=0 (\/&) zeBl/4 (n)
L
S C
< 4C, p ST (L+1) xi <w<”>>
Y ; Pas(1 — 26)? B5) pis>1 ().
2 (n)
s 128Capm (wR’S) R+8>1
(n),€
< I
- 2

where we used

[e.o]

1 2—x

L=1
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0<z<

l\DIH

Cu (wm) >
Pu(1—=26)2 ||\ ) s>

since £ < 1/4 and n < &= and 128C} pt, = 128C3 (16C,,) "> < 1/2.
Xl

< 4CXI n 1

Next, we estimate for T™+V[); 2] 1= wO%H [\; 2] — w(%ﬂ)[o; z],

sup ‘V,\T(nH)[A; z] — (1)‘

ZEBI/4,
)\GQ("-H)
< sup  |(VaT™) [pah; Z0[2]) — (1)‘
ZGBl/4, ?
AeQer)
+Z > plt sup )V Vipos, [ Z]’
0 D11y PLdL: 2€B1 /4,
Petqe>1 AeQ(n+1)
< sup |VaT™[\; 2] — (1)
2631/4, ?
xeQ™
L
%) C i 4
e, e[S 5w ol
L=2 B optg>1 2€B1 /4
< sup |VaT™[\; 2] — (1)
2631/4 1
xeQ™
L
oo C .
rac, Sz + 1) [Sut ‘(wgyg) ]
L=2 P B4521|(n) ¢
< sup |VaT™I[\; 2] — (1)‘
2631/4, ?
AeQ™
C..¢ ’
24C X1 < (n))
* Xl[ Kok ‘ wR’S R+S>1 (n),€
n
< i
< e+ 5’

where we used

= d |~ | ) s 3— 2z )
ZL—i—l %[Zx —x—x]:xmﬁmxa
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for0<a:§2,and

Cy.€ (w(n)) Cxi§ P _ § <1/2
Dur RS) pis>1 (e P 8C,, 8~
and
3 g2 2 5 ¢2 02 ¢2 3
24 Xl (w ) <24X> T g 3 X2 = L
02, RS ) pis>1 (). p?, 8Cy, Pk 16 — 2
Finally, we see that E"*[z] := — (”H)[O z] deviates from z by
sup [E"[] -z < Y N plt sup [Vihhl [U;Z]‘
2€B1/a L=2P1,91,---,PL,qL* 2€B1/4
Petqe=1
2
Cy.€
< 2c, |22 (wih)
o Xl[ o ' wR7S R+S5>1 (n),£

IN

n
5

(ii) With the same arguments as under (i) and with the help of Lemma 4.10(ii) we

(2)€
< AC I (L1 [ ()
X ; pi(1 — 2€)? R85 ) pis>0 (1)
< st (o)
> le* wR,S R+S>0 (D¢

< 12,

for |Bmax — Omin| < 1 and g sufficiently small where we used that

-1 o (1) >
w 4.63
P ( RS) pis>o "y (4.63)
-1 D1y, (1)
= p, sup w, )\,Z —+ H(w ) :|
LeBl/4, 001 | s B5) pes=1]| ) ¢
xeQ®

2

= p.'O (gp“ + %(95 + | Brnax — 6min|))
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plte
O ( g +gg+|5max_ﬁmin|)

= 0 (g2(1+é)(1+u)/371 + g‘€~ + |ﬁmax - ﬁmin‘)

1
< Z
- 2

due to Proposition 4.4, Equation (4.48) and since p > 1/2 and € > 0.
Next, for T@[); 2] := w((f()) (A 2] — w((fg [0; z], we have with the help of (4.57)

VAT 2] — C)

(o

sup
z2€B1 4,
AeQ®

< sup xi(A2)

(VATW) [pX; ZW[2]] - C) ‘ p >ker(Lp)

z2€B14,
reQ®
+p. ' sup [OnxT(A2)| {
z2€By 4,
AeQ®
(0 [ [P0 2O = puha +3)] 00,
- ’<E(1)>Qp [ZW1[2]] - Z(l)[z}‘ }
_ 2
+Z Z p.’ sup VAVO(,p),O,qL [A; 2]
L=2 P1,41,---.PL,qL" 2€B1 /4,
Pe+qe>0 AeQ®
< sup |||VaTW[A; 2] — <1>
2€B )4, L) 1 B(ker(Ly))
reo®
C .
+2L sup { HT(l)[)\; 2zl — (M + 7,)\2)||B(ker(L N
Px 2€By 4, P
Aeo
e
+ HE<1>[z] — 24+ =AY }
P Blker(Ly))
C
Louc,, | u H (wgg)
2 1+p
g ~
= 0 (; + pg _}_g‘E + |ﬁmax - Bminl)
< &9

for |Bmax — Omin| < 1 and ¢ sufficiently small, using Proposition 4.4 and (4.25,
4.63).
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Finally, we have for E®)[z] := —w((fg [0; 2],

sup ’EQ) — 2| £ 24C,, [ Caé H V(l R+S>0

2
< 72.
ZEB1/4 ( )E

4.5 Flow under the Renormalization Transformation

The repeated application of the renormalization transformation is possible under
the assumptions of Theorem 4.9. The iteration generates a discrete renormalization
group flow of integral kernels,

1
Loty . R M), n=1,
- Row™], n=2,3,...,N—1,

associated with the initial value w™) as given in (4.21, 4.23). To the flow

(n) — (—gm™ 70 ( (”)>
(w )n:l ..... N ( ’ ’ ) pes>1 N

.....

we assign a flow (K™),_

Bijy 22— K[z := W, [w(”)[- ;2] = T[N 2] — EM[2] + W[z (4.64)

where

WL =W | (wfhl531),, -

The first addend, 7" [A[gn], z], of the decomposition (4.64) is the dominating part.
The gradient of the function 70 fulfills
1
‘VAT [A; 2] — () <e
AL

sup
2631/47
AeQ(

n

which in turn implies that
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for all A = (A1, A2) € Q™ and 2z € B ;4. Thus, the operator T [Ajp,); 2] is given, up
to an error of order (1+4cot(0’))e,, by the free Liouville operator cos(0") Lyes+i M, =
Log, Trm-

The second part in the decomposition (4.64) is simply a complex number, in
the case n = 2,3,...,N, or a matrix, in the case n = 1, where the assignment
Bijs > 2+ EM[z] is analytic. This part describes a shift of the spectrum of K™[z]
in the complex plane w.r.t. the spectrum of the free Liouville operator Ly, . For
E™][z] we have the bound

sup HE(")[Z] - zHB(H(n ) < s (4.66)

ZGBl/4 <eo

The last part of the decomposition (4.64) is a small perturbation of the spectrum
whose concrete form is not of particular interest in this section and in what follows.
We only need that

sup HW(R)[Z]HB(HW)) < . (4.67)
2631/4

The bounds ¢, and 7, are due to Proposition 4.4 and Theorem 4.9 and are ex-
plicitly given by

2
Yeq 7 Pese
Pk €2 1= )
T i= oo 32C,, (4.68)
X1 n—2
N 1= 2:332, n > 3, Eni=¢Ea+ M 22%, n > 3.
k=1

We remark that 1 > 4p, > gp* (since veq is smaller than the gap between the
lowest and second smallest eigenvalue of ') and

2 24¢
9 HA(S) O 9 I
p 1190 ez, p I
= 2 I eqllserryy) + © (Bimax — i) o) <92+€>
Yeq p
< m

for | Bumax — Pmin| < 1 and g sufficiently small.
We stress that the operator family KW) for n = A/ takes the form

KW) [2] = —_EW) 2]
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since HN) = ker(Nyes) = CQp and T™ [Ag,1; 2] Tker(Nee)= T™[0; 2] Txer(Nee)= 0 and

The spectra of the families z — K™ ][z] are linked through

0 € spec (K"Mz]) < 0€spec (K™ [Z2M o 0z DL]),

4.69

0 € specyy (K™M[2]) <= 0 € specy, (K™ [ZM o ... 0 2 HFD[]]) (4.69)
for all z € B4, see (4.42, 4.56) where the functions Z™ are connected to E™ by
(4.32). For completion we recall the relation (4.18) and the definition Z(©[z] = pz
to see that

ZO 6. 020V € spec (Ke(s)> = 0 € spec (K(") 2])
(4.70)
70 o...0 Z207D[2] € specy, (Kﬁ) = 0 € specp, (K™[2]) .

Since Z0 o ... 0 Zm=1) [Bl /4} is comparable with a ball of radius py, /4 the incor-
poration of more iteration steps in the renormalization procedure allows the study
of the spectrum of K, és) on smaller and smaller scales. The process of extracting
spectral information from higher iteration steps is worked out in the next chapter.



5 Recursive Localization of the
Spectrum of KGS on Decreasing
Scales

-----

in (4.64), Section 4.5, and the associated flow of spectral information given by the
relations (4.69, 4.70) provide a tool to zoom into any arbitrary small spectral neigh-
borhood of zero of the operator K, és). The zooming procedure works as follows. Each
renormalization iteration step n the operator K(™[z] decomposes due to (4.64) in
the same way into a free part T [Ap,|; 2] (which is in leading order the spectrally
deformed, free Liouville operator L, whose spectrum is confined to a cone), a spec-
tral shift £™][z] (only deviating slightly from the spectral parameter z itself), and
a small perturbation W [z]. Further, in each step all these terms are controlled by
bounds (4.65, 4.66, 4.67) of the same order. Therefore, we can locate the spectrum
of K™[z] in a shifted, smeared out cone. However, the error terms do not allow
predictions about the spectrum within the band of “smearing”. In particular, the
closest neighborhood of the tip of the cone is not accessible with this rough analysis
of the spectrum. The isospectral link (4.69) between the iteration steps implies that
the spectrum of K(™[z] around the tip of the cone on a scale p¥, /4 can be regained
from the spectrum of K™+ [z] by blowing up the p¥,/4-neighborhood to the full
circle of radius 1/4 using the function (Z™ o ..o Z("*#=)=1 Thus, after having
magnified the spectrum on the scale p¥, /4 it looks the same as the spectrum on the
scale 1/4. Figure 5.1 illustrates the magnifying process.

The magnifying procedure can now be used to assemble a finer picture of the
spectrum of K (™ [z] by piling up the spectrum on scales p¥, /4 obtained by shrinking
the smeared out cone including the spectrum of K™**[z]. This process is done
recursively. As a result we obtain that the error bands to the smeared out cone in a
pF. /4-neighborhood around the tip can be reduced by a factor p¥, which significantly
improves the spectral picture close to the tip, we refer to the Figure 5.2.

In the very last step of renormalization the family of operators z — KWM)[z] =
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Figure 5.1: The spectral information of K™ inside the yellowish shaded area D™ is
encoded as the spectral information of K™ in the yellowish ball B; /4.

The area D™ is blown up through the function Z =" The reddish
shaded area DY is subject to further analysis employing the spectral

link with the spectrum of K ®+2).
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D sv(K™)

Figure 5.2: The refined information about the spectrum of K™+ inside the yellow-
ish ball By, is transferred via the function Z ) to the yellow area D)
which allows a refinement of the localization of the spectrum of K.
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—EWM)[z] reduces to a scalar function and therefore the spectrum consists of a single
point inside the ball By /4. This isolation of the spectral point survives the reassem-

bli(n)g of the spectrum and finally leads to an isolated eigenvalue of the operator
K,”.

In this chapter we make the same assumptions on the parameters s, 6 = (id',i7’),
P, Px, Psx @s in the previous ones, recall (3.1, 3.2, 3.4, 4.3, 4.5, 4.43).

5.1 Spectrum of the Operator Families (K")), and
Isospectral Link

The information about the operator family K (™ collected in Section 4.5 allows us
to state a first — though not very detailed — result about the spectral properties of
K™,

Lemma 5.1 Introduce the notation

2

) = 17"'a _17
sin(6') " N

b, = 2n, +

and define the cone
Ay = {C € € [Im() > tan(®)| Re(C)] }. (5.1)
Forn=1,...,.N — 1, we define the sets
oM .= {z € By ‘dist(z;A(;/) <b, } .

The spectrum of K™[z], n = 1,...,. N — 1, inside the ball By can be located as
follows,

spec(K™[z] + 2) N By, € C™ (5.2)
and

spec(KM)[z]) = {—E(N)[z]} : (5.3)
Proof. The assertion is obvious for the case n = N. Let n=1,..., A — 1 and
write

K™ [2] + 2 = Lo, [1m +R™ (2],
where the remainder term R™[z] = T™[Ap, ;2] — (cos(d")Lyes +iMpg,)) + 2 —
E™[2] + W™[z] can be estimated as

sup ||R™[2]|| < 2m, + [1 + cot(8)]e, < by,
2631/4
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because of (4.65, 4.66, 4.67). Since we know that Lgg, [4e is a normal bounded
operator on H™ and further

spec(Log, [1m) C As

we conclude through application of the following Lemma 5.2 that (5.2) holds. R

Lemma 5.2 Let H be a normal bounded operator on a Hilbert space and let I be a
bounded operator on the same Hilbert space. The spectrum of the sum (H + I) can
be located as

spec(H + 1) C {z € C | dist(z;spec(H)) < |II| } -

Proof. Let z € C with dist(z;spec(H)) > ||I||. In particular z ¢ spec(H)
and therefore (H — z) has a bounded inverse (H — z)~!. Since H is normal so
is (H — z)~! and we have by functional calculus a norm estimate ||[(H — 2)7}| <
[dist(z; spec(H))]. Thus the operator I(H—z)! has by assumption a norm strictly
smaller than one which implies the convergence of the Neumann series

(H=2)'"N [I(H—-2)""=H-2)""[1+I(H-2)"" " =(H+1-2)"

n=0

and therefore z ¢ spec(H + I). [

The spectrum of each operator K (™|[z] is not of primary interest for our analysis.
The notion of singular values of an operator family D > z — F[z] on a domain
D C C is more suitable for our purposes. We define the set sv(F') of singular values
in the following way,

sv(F) :={z € D |spec(F[z]) 20}. (5.4)

For notational convenience we will henceforth refer to the set of singular values as
the spectrum of the family of operators. Correspondingly, the point spectrum svp,
of the operator family F'is defined as

sVpp(F) :={z € D |spec,,(F[z]) 20} . (5.5)

Note that the set of singular values of a family of the type C > 2z — F|z] =
F — 2z coincides with the spectrum of F', i.e., sv(F[-]) = spec(F) and sv,(F[-]) =
specpp(F'). Lemma 5.1 has its analogue in the following corollary.

Corollary 5.3 Forn=1,...,N — 1 we have the relation
sv(K™) c o™ (5.6)

and
sv(EW)) = sv (KW = {z € Byjy |[EM[2] =0} . (5.7)
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The aim of the subsequent consideration is to connect the spectral properties of
a family K*) with the properties of its successors K™ n > k. in order to pull
back the information to the spectrum of K *). That way, we successively refine the
spectral information in a neighborhood of zero on smaller and smaller scales.

We recall that each family K™ of the form (4.64) comes with a biholomorphic
function
Z™ . By — D™,

defined in (4.32), associated with the analytic function z — E™|z] which maps the
ball By, of radius 1/4 onto the set

D™ = Dw™]

introduced in (4.28, 4.29). Since
sup |6ZZ(”)[Z] —p| < 12pm,, (5.8)

Z€B1/4

by (4.33), Lemma 4.5(iii), the function Z™ is — up to small corrections — a rescaling
function which shrinks the ball B/, by a factor p := p,, for n = 1, and p := ps.,
for n = 2,3,..., N, down to the domain D™ which is almost a ball of radius /4,
namely

By/i—y, € D™ C Byjisn,,

by Lemma 4.5(i). The function Z™ relates the spectra of K™ and K™Y in the
following sense,

SV (K(n+k)) — gv (K(n) o 7M o... 0 Z(n+k71)) :

5.9
SVpp (K(nHC)) = SVpp (K(n) 0oZMo.. 0 Z("Jrk*l)) (5.9)

)

due to (4.69). Therefore, the analysis of the spectrum of K™ in a §/4-neighborhood
of zero can be replaced by the analysis of the spectrum of K1 in a ball of radius
1/4. Since we can locate the spectrum of each family K™ on a scale 1/4 we can

recursively locate the spectrum of the initial family K, 9(8) on arbitrary scales pp, by
considering the subsequent n families.

5.2 Reassembling the Spectrum

We perform the recursive localization. First we observe that the last application of
the renormalization procedure produces an operator family on a one dimensional
space and that therefore the spectrum is completely understood,

sv(KW)) = svp, (KW = {ZM)(0)} . (5.10)
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To describe the pullback of information from a family to its predecessor family we
introduce some notation. Set
2 2
by :=2 — , bys := 2 — ,
m+ Sin(®) (e1+m) N2 + Sin (@) (e2 4+ m2)
Ty (= ——, Tog 1= ————.
sin(6’) sin(d’)
Note that b; < b, and b, < b, for n > 2. A simple geometric argument illustrated
in Figure 5.3 shows that

Im(z) > b. for all z € CW\ B,_,

- (5.11)
Im(z) >b,, forallzeC™\B,_, n=23,....N—1
Since ¢’ € [§, §] and
144¢e9 + 196772 < Psex
because of (4.6, 4.68) we have
B,. C B, /4, € DV,
e = (5.12)

T

thus, B,,, B,,, are included in the image of B;,, under ZW 7™M resp. We are
prepared to define recursively subsets £ of C™ by

SN = {ZWM(0)},
»nn) . (C(n) \ Bm*) AR [E(n+1)] . on=2,...,.N—1,
n) . (C(l) \ B, ) U zm [2(2)} _
The isospectral link (5.9) between the families K™ and the localization (5.6, 5.7,

5.10, 5.12) imply that
sv(K™) c u™, (5.13)
For convenience we introduce an abbreviation for the composition of the functions

Z® . ZW for k < n,

25 =2"o.. 02" By — DV,

and use this notation to introduce the set

S(n n N
20 =3\ {Z80(0)},

which includes all spectral points of K (™ except the one originating from the eigen-
value of KW,

The goal of the further considerations is to show that Z((T/L\)f) (0) is the point with

lowest imaginary part among all points in 3™ and that it is uniformly (on the scale
pN=F) separated from X", Before we state the corresponding proposition we first
provide some preparatory lemmata.
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S

sin(8”)

FZ—\M‘WEZ

sin(8")

Figure 5.3: Relations between the parameters 7 € {r,, r..}, be {bs, busc }, by, and §'.

Lemma 5.4 Forn=2,...,N holds
N
20| < 2m.,
" (5.14)
‘Z(l) (0)‘ < +4pae < 2m1.
Proof. We first remark that for ¢ = Z®)(0) the following estimate holds,
<= [¢ = EVLC] < m,

and that (5.8) implies that

20(z) — 299(C) = (= — )] < 127mil= - | (5.15)
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which was already stated in Corollary 4.6, for p := p,, if n = 1, and p := p, for
n > 2. Define ¢, := Z((%)_k) (0) and note that

| Z(0)] < nw,

| ZN (G|

| ZN D () = ZVFD(0) = pue] + | ZNTFDO0)] + pusl Gl
P (1208 —j—1 + 1) |G| + Nnr—k—1

QP**!CkH??N—k—l, k=0,...,N =3,

|12 (Cv-s)]

1ZW (Cn—z) — ZD(0) — puCua| + |Z0(0)| + pelr—2]

p«(12m + 1)[Cv—2| +m

2p,|Cv—2| + 1,

ol

|Ch+1]

IA NN

[eva=1

IA A A

where we used that 127, < 1. This implies the estimate

k
"IN =k
|Gkl < ZO 200 ) NN g = TN~ kZpi* ST, 20N k5

for k < N — 2, since p,. < 1/2, and

[Cv-1] < 2p:|Cv—a| +m1 <+ 4pama < 2y,
due to the definition (4.68) of 7; and 7 < 1. The assertion follows by choosing
E=N —n. ]

A direct consequence of Lemma 5.4 and (5.11) is the following

Corollary 5.5 Forn=2,...,N —1 holds

(g2 4+ 12) for all z€ C™\ B,

Im (Z - Z((ﬁ)/)(o)) > by — 2 >

2
sin(d")

and

—(e1+m)  forallze CY\B,,

The next Lemma describes how two points move w.r.t. each other under the
iterative application of functions Z™.

Lemma 5.6 Let 2,( € Byjy and 1 <k <n <N. For k > 2 holds

Z((n))< ) — Z(n)(c) o k+1( — )| < 36p7 k+177k|2 (] (5.16)
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and
Z0)() = Z0)(Q) = popi = O)| < 6pupitmlz =) (57)

and

|Z)(2) = Z5)(0) = Pz = )| < 36ppmarmlz = ¢] (5.18)
where ZO[z] = pz is the function defined in (4.17) and the scale pj, was introduced
in (4.1).

Proof. The case n = 1 in (5.17) follows directly from Corollary 4.6. Henceforth,
we assume n > 2. Introduce j :=n — k and denote

rpi= 20 () = 200 (O = Pz = Q) j<n—2,
ra1 = Z0)(2) = 2 () = pepl(z = C).
Corollary 4.6 implies that
[rol = [2(2) = Z7(Q) = puslz = O] < 12panalz = C|.

We prove inductively that (5.16, 5.17) hold. Set p:= p, if j =n —1 and p := p., if
J <n —2. Applying Corollary 4.6 again we find

il = |20 (200 10(2) = 207 (200,0(©) = el = ©)

-p (Z(n—j+1)(z> N Z(n—j+1)(<)> ‘
9 [28)y(2) = 280y (Q) = Pz = O)
12p0—; Z((le+1)(z) - Z((Z)fjﬂ)(@

12— (Irj-1| + plilz = €]) + plri—1]
P(120n—j + 1)|rj_1| + 12pp5 1n—j|z — (|

55 »
Z|”’j—1| +12pp) n—j|z — ¢,

IN

+ plrjl

IA

IA

where we use that 127, _; < 1/4. This recursive estimate allows us to find a bound
on |r;],

j m 0o m

B 5 » 5

|7"j’ < 12p,0i*’2 - <| Z (Z) NMn—j+m < 12ppi*|z - C|77n—j Z <§>
m=0

m=0
12 _ o
= 1_—§Pﬂi*77nijz — ¢l < 36pplutn—j1z — ¢
8

= 36pp) |z — Cl.
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The assertion (5.18) follows by multiplying the inequality (5.17) with p.

We state the main Proposition of this chapter.

Proposition 5.7 (Spectral Gap) Letn =1,...,.N —1 and z € . Then, the

point Z((T/L\)/)(O) is separated from z in the following way,

W) pn
I (= = 20)) = GG

forn > 2. Forn =1 holds

-2
Im (z — Z(N)(0)> > péggi .
X1

The Proposition 5.7 is illustrated in Figure 5.4.

Proof. If n=1and z € CW\ B, then Corollary 5.5 implies

-2

2 P
>8 *> kk ,
Z Gy &1 T m) 280 2 e

(= - Z£)(0))

if n>2and z € C™ \ B, then

2 p -
Im (2 — Z™0)) > > Lo P
o (Z ) ( )) Z @) &2 T 2 50 - 2 Gocn

holds by application of Corollary 5.5. Otherwise, since z # Z(%)(O), there exists a

k=1,...,N —1—nand an element ¢ € C™\ B, | such that z = Z((Z)Mil)

Set & = Z((ﬁ)k)(O) and compare the vectors & and (. Due to Lemma 5.4 we know

that || < 2n,4x < 212 and together with (5.11) we get

Im(C = &) = bus — 212

We rewrite the difference ¢ — € in polar coordinates, i.e.,

Im(¢ =€) = sin(a)[¢ - £].
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C"\B,
Z(rr)[c(n-l-l) \Br.. ] 2(”) Z({:;)[O]

Z(N-2)[C(N—l) \B ]

(n)

Figure 5.4: Spectral gap between Z((ﬁ)[)(O) and 2.

A simple geometric argument (we refer the reader to Figure 5.3 for details) shows

[tan(a)| s _

2
b —2 o
= sin(d) B in(6)— @) _
2 + €2 e T T E2
> sin(d') ————
212 + €2) + 2z 8in (') + 1 sin®(9') ( )5772 + 2e9
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Since Im(¢ — &) is positive we conclude

| tan ¢ - sin(d”) - 1 sin(8")

sin(a) = \/1 +tan2(0£) - \/25 +Sin2(5/) 6

because ¢ € [r/8,7/4]. Now we get with Lemma 5.6

Im <z . Z((g)(())) — Im <Z((Z)+k_1)(C) - Z{,’jﬁ’“‘”(&))
> ppltIm(C — &) — 36ppl, ¢ — €]
= PPl ¢ — €l(sin(a) — 36m,)
o (1)

6
ey (A2 +e2) 4 sin(d’)
_ k—1 -9 — 36 n
PP s < Sin2(5/> + il’l((sl)n2 7]2) < 6 Ui

S
- e sin (¢’
> ppls (6 + des) ( é ) 36%)
in(6’) 45
e (S0 45
= PPy ( 50 1
= —1-n
> PPy ’
- 60C,,
where p := p, for n = 1 and p := p,.. otherwise, and where we used that §' €
[7/8,7/4] and 457, /4 < 1/600. [

A direct consequence of the Proposition 5.7 is the following statement which
describes the spectrum of K, és) in a ball By,.

Theorem 5.8 (Spectrum of K(gs) in 8)) Under the assumptions of this chapter

on the parameters 0 = (id’,it") and s we have the following spectral picture of Ke(s),
for | Bmax — Pumin| <€ 1 and g sufficiently small.

(i) The spectrum of the operator Kgs) inside the ball Sy C Ba, is contained in the
set

»(0) . (0(0) \ Bp/4) AN [2(1)} C 0

where the set
OO0 = {2 € 8 |dist (z; {0} U[iT' + As]) < bg }

is illustrated in Figure 3.6. The cone Ag is given in (5.1) and by = O (g*).
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(ii) The operator K(gs) has a simple, isolated eigenvalue Eéfg) = Z(((J)\)/)(O) with

)

< 492 ||Feq||3(ker(Lp)) )

(11i) The eigenvalue E(()S) 18 separated from the rest of the spectrum in the sense that

7g
s PN
I < — E{ )> >
BT R09) = Goe,

for all z € £O\ {E(()S;} The gap can be estimated by

/

PN o T 9*Yeq _ 9*eq
60C,, = 7T 960C2, ~ (960C2,)(2 + fumax) O

a$ Pmax — 00.
Proof.

(i) For z € Sy = By, the isospectral relation (3.19) holds, i.e., z € spec(Kés)) NSy
if and only if

Z € spec <Sgo,p (Kés) —2,Log — z) + z) N So.

Recall that the Feshbach operator can be expanded as

S’Eo,p (Kg(s) —2,Lop — Z)
= Poy [Log+ A @3 (M)| o, + O (6°)
= COS(5,)Lres + lM[Q} + ig2req + 920 (95 + |6max - 6min| + 1) .

by Proposition 3.7. The operator cos(0')Lyes + iMjg + ig°T'eq is a normal,
bounded operator on ran(Fy ,) and its spectrum is given by

spec (cos(é”)LrOS + iMpg) + ngPCq)
- U [ig2@ + spec (cos(cS’)Lres + iM[g})}

e€spec(leq)

c U ligge+{0}ulir’ + Ap)]

e€spec(leq)

2
— {0} U (Z% + A5/>
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(iii)

since min(spec(I'eq) \ {0}) > ¢*7eq > 7. The Lemma 5.2 implies that
spec(KS) NSy € CO). By (4.70) we have

spec (Kés)> N B4 =sv (K(l) o Z(O)_1> .
Since sv(K (M) C 1) we arrive at the assertion.

Relation (5.10) suggests that Z)(0) is in the pure point spectrum of the
family ™) and with the help of (5.9) we obtain

s N N s
E&g) = Z((O))(O) = pZ((l))(O) € specpp (Ke( )) )

Further the dimension of the kernel of KW)[ZW)[0]] is trivially one and since
the Feshbach map and therefore also the renormalization transformation is
multiplicity preserving (refer to Theorem E.1) the eigenvalue Eéf; of Kés) is
simple. Lemma 5.4 localizes the position of the eigenvalue,

I eall srerz,))

|E) —4g%|T

_ _
—r ‘Zu) ‘ < 2pm = 8pp. » eall B(ker(z,)) -

Replacing in Figure 5.3 the labels b, by by and 7. by p/4 we see easily that

Im(z) > —bgcos(d') + sin(d) (g)z — b2

2 2
it o[ 20
for all z € C) \ B,/a, since by = O (¢*) < p. This results in

PIN]
60Cy,’

P

>
39 =

s . p .
Im (z - Eé,;) > sm(él)ﬁ — 44? ITeall srerryy) = sin(¢d")

[\]

for z € C\ B, 4, because g*> < p and p > ppy for N > 3.

Now choose z := p¢ € spec(KS7) N B,y with z # E(()fg). The first part of this
theorem implies that ¢ € £ and Proposition 5.7 yields
s PIN] PIN—1]Psx
(2= E5)) = pm (¢ 25)(0)) = —
miz O,g p m C (1) ( ) —_ 6OCX1 GOCXI

7_/ 7_/

= > - 27—dec

(16Cy,)?/#60C,, ~ 960C2,

9*Yeq _ 9*%eq { 1
(9606)%1)(2 + 5111&)() ﬂmax (960621)(1 + 2/61’;1;.X> ’
for > 1/2. Recall the definitions (4.3) of 7" and (4.5) of p,..
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Appendices






A Relative Bounds on the
Perturbation

In this appendix we provide the relative bounds of the interaction part of the Liou-
ville operators K, és) which enter the analysis in the main text. The relative bounds

allow a first rough spectral localization of Kg(s), i.e., as a result, we obtain a lo-
calization of the numerical range, c.f. Proposition A.9. We carefully display the
dependence of the relative norms on the reservoir temperatures to avoid interfer-
ences with the coupling constant. The employed estimates are of standard type and
have already been applied partially in [8].

The operators we are dealing with in the main text are defined on the Hilbert

space
2 2
H="H, ® F(L[Y]),
where
Hy = Hy ® H, = CV N @ ¢V

is the positive temperature particle Hilbert space and F(L?[Y]) is the Fock space
over

(T,dy) = (R x S* x N¥ d(u,%,7)).
describing the photon configurations at positive temperature. The family of opera-
tors studied in Chapter 3 is of the form
KG(,S) = L()’g + g[és), S € Sgo, (Al)

where § = (6, 7) are from a suitable subset in C? while 3., is given in (2.11). The
deformed free Liouville operator was introduced as

Loy = L,+ ILHg ® [cosh(0) Lyes 4 sinh(0) Laux + 7 Nyes|
= L+ cosh(0)Lyes + sinh(6) Laux + 7 Nres
(we henceforth omit trivial tensor products with the identity operator) with
Lyies = dUg((u, 2, 7) — u),
Lawx = dlg((u, X, 7) = |ul),
Nies = dlg((u, 2, 7) — 1).
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The spectrally deformed perturbation operator I, és) is given by

8) *
=561 ) 00615
where the incorporated coupling functions are of the form

/ G (uY) ® 1y, >0,
g;(lt,ED,T) = i—:jéf:Zi;I X {:\/GI (u ) Hp u

(—vV—u)Gp(—uX)* @ 1y, u<O0,
u
gE’_{) (u’ Z’ T> - eﬁru _ 1
Vuly, @ op"™ (GT(UE)*> ) u >0,
X

(—V=u)ly, ® ap"™" (M) , u<0,

... kg) € C* and

1KrU

e

for £ = (kp, K1,

—

03 = (0Bp, 0P1, .., 0Br) = (Bp — B, 51 = B,...,Br — B) -

The spectrally deformed functions are defined through composition with the function

ue Golu) = Wy 4 7
namely

Go(u, B, 1) = 282G (jo(u), 2, 1),
Glryo(u, 2, 1) = 782G (g (u), 5, 7).

The well-definedness of Gy and g’(S 5).0 as L*[Y]-functions is guaranteed by Hypoth-

esis VII-1.12 for s € 8., and 0 € Ds, ., defined in (1.90). One even has the following
uniform bounds provided in Lemma A.1. We introduce the abbreviation

PO =G0

which allows us to simplify

10 = ay (FY) + ag (F).

(A.2)
Lemma A.1 Under the assumptions of Hypothesis VII-1.12 we have

1 oG E|(Brmasx—Brnin) | -H15(Bemasx —Banin) I/ (20)
/dy [1 + 7|j9(u)|9} HF(, (y)HB(H%) < Cye (A.3)
T

for o < 2v + 1, uniformly in 0 € Ds, ., s € B, and uniformly in the inverse
temperatures 3, i.e., the constant C, < 0o can be chosen independently of s, 0, 3,.
The positive constant E is given by E := 4 ||HpHB(Hp) = —4Fy and a > 0 is the UV
reqularization postulated in Hypothesis VII-1.12, Equation (1.93).
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Proof. We observe that
FO(2,8,r) = G(2,8,7) — "% [1, @ 0@ (G'(2,2,7))

is pointwise analytic in z € Us, ., defined in (1.89), for almost every (3, r) € 5% x N
and obeys the bound

I1F9 =5 lspy < 190507 ) [1 o+ P05 AARER=AD]
< C|Z|Ve_a‘z|2+|5(ﬁ7"_5)‘|Z|+2||HpHB(HP)|5(ﬂp_ﬁ)|

with C' < oo being a positive constant, a > 0 and v > 1, due to Hypothesis VII-
1.12. We now perform spectral deformation on F(®). A first remark is that the
integral (A.3) does not depend on Re(d) as one sees by transforming the variables
of integration, u + e~ Re@sen(w)y (the independence of Re(d) is connected to the
unitarity of the dilation group D4(9) for a real parameter ). We henceforth assume
Re(d) = 0 and obtain the bound

[1+ |jo(w)| ]

2

’Fe(s)(u, ¥r)

B(H2)

. — S . 2
= |:1+‘]9(U>| Q} ||F( )<.]9(u)727r)H3('HI2))
C [| o) [** + | o ) 2] &2 P 2153 =)o A1y iy (5 =)

VANVAN

x exp (—2a(lu] — |7[)* + 2[s(8, — B)|(Jul + |7]))
CQ |]9 u) V+|j ( )|2u g] 4HHp||B(Hp)| s(Bp—B)|—2alr|2+2]5(Br—B)7]

xexpE 2a |l = ol (2] + *= ) )

= C?[|jo(w)[? + ljo(u)[P7¢] e! Mo llnouy o= AIH 205 =007
2
X exp (2|$ T‘ +M)
2a

o (<o - () »

We consider for ¢ := |7| + [s(8, — ()|/(2a) and any power ( € R the integral

sup / du / d(Z,7) |ul* exp (—2afu| — c]?)
c>
_0|u|21 S2xNR

) 2
C* (1o (w)[** + | (u )|2” 2] Aol Io(Po=0)
2

< 2C"sup / d(u, 2, 1) exp (—2d'[u — c]?)
c>0
 RtxS2xNER

3/2 /
< QC”/d(u,E,T) exp (—2a'u?) < w (A.5)
a/
T
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where C’ < oo is a positive constant independent of ¢ and 0 < a’ < a. Further, for
¢ > 0, we compute the integral

sgg/du / d(E,T)|j9(u)|4exp(—2a[|u|—0]2)
i S2xNR

< /du / 40, 1) ([u] + 7)< 4mR[1 + )¢ (A.6)

lu|<1 S2x N

and for 0 < ¢ < 1, we consider the integral

sgg/du / d(E,r)|j9(u)|_<exp(—2a[|u|—0]2)
i S2xNE

1

<2 fau [ dEn)a < T L P )

0 S2xNF

The estimate (A.4) together with the integral bounds (A.5, A.6, A.7) yields

!@{LH%&W“FﬁwW;@

C//(l +TO)QVGIS(BmaX_/Bmin)l(4I|HpHB(HP>+4T())els(ﬁynax_ﬁmin)P/(Qa)

VARPVAN

C”(l + 7_0)2V687T|5|€4HHP||B(HP) ‘s(ﬁmaxfﬁmin”e‘s(ﬁmaxfﬁmin)lz/(2a)

using that ﬁpvﬁ € [ﬁminaﬁmax] and TO(ﬁmax - ﬁmin) S 27T(ﬁmax - ﬁmin)/ﬁmax S 27T7
where C” < oo is a positive constant independent of s and 6 and the inverse tem-
peratures. We finally observe that |s| < 1/2 4 . [

Remark A.2 The Lemma A.1 suggest that the effective strength of the perturbation
Ie(s), (A.2), of the operator Kés), (A.1), is given by the effective coupling constant
gl = geEls(ﬂmax*ﬁmin)|+|3(ﬂmax*ﬁmin)|2/(2a).

It 1s crucial that g grows as the temperature difference increases but is independent
of the order of the inverse temperatures Bmin, Bmax. 1This allows the treatment of the
low temperature regime, 1.e., large magnitudes of Buin, with the means of perturba-
tion theory, as long as the reservoir temperatures do not differ to much. This is
in contrast to the analysis in [28] where the coupling functions of the C-Liouville
operator are weighted exponentially in the inverse temperatures. The analysis of the
operator Kés), however, requires at various places that |Bumax — Pmin| < 1 such that
effectively the smallness of gy is equivalent to the smallness of g.
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We focus on the relative bound of the perturbation 9(3). We first recall the relative
bounds of creation and annihilation operators w.r.t. the number operator.

Lemma A.3 Let I € L*[T;B(H?2)] be an over T square integrable, B(H?)-valued
function. The creation and annihilation operators obey the following relative bound,

gl(F)(NreS +1)7 1/2‘ < HFHL?[T;B(HE)}‘ (A.8)
Proof. The assertion follows directly from the definition, compare with (1.24).
[

Subsequently, we derive relative bounds on the perturbation I, 9(8) w.r.t. the positive
operator

Mgy := e/ %Ol sin(Tm(8)) | Lawx + |7 Nees = dTar (1, S, 7) = mg(u)), (A.9)

where
me(u) = |ule! Ol sin(Im(8))| + |7]. (A.10)

Lemma A.4 Let 0 = (0,7) with 0 < |Im(d)| <

and |Im(7)| < 27 Let

max

3
F e [T, dy; B(H?)] be an over T square integrable, B(H?)-valued function fulﬁlling
fdy (1 - |J0 > I1F(y )HzQa(Hg) < 00.

(i) The creation and annihilation operators obey the following relative bounds,

SUPg~0 ”agl(F)(MW +d 71/2” (A.11)
SUDg>0 H(M[H] + d 1/2 ol ” |
1/2 1/2
Hﬂmwm 1 1E W) 50
JLLL 1 [l
ma(u) = [sin(Im(d))[/2 |Jo(w)]
T T
and
H@wmm+1”w (A12)
[(Mjg) + 1) Pag(F)| |

- 1/2

< /@(HWJM)W@%%>

T

- 1/2

1 2
J@0+bmmwmmw)W@MW>

IN
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(i1) Let d > 0 and P[M[9]<d] be the orthogonal projection on the spectral subspace

of Mg corresponding to spectral subset [0,d]. The creation and annihilation

operators fulfill the following bounds on the range of the projection P[M <d]’

’ 1/2

17 () 5042
< v2d / AYLpmy(wy<d =~
o] |5 ol
S g

Hag1 F)P[M[6J<d] (A.13)
|7

9 1/2
2d IE W) 52y

T - r /N d 1m9 U .
[sin(Tm(5))] / YHmolsd =5 )]

T

Proof.

(i) We start proving (A.11). Let ¢ € H be a unit vector, ||¢|| =1, and d > 0. We
have

l|agi (F) (Mg + )~y

< /dy||F( )”BHQ Hagl ) (Mg + d) U2¢H
T

) 1/2
IE ()52
< dy———2%)
mo(u)
T

1/2
" / dy ( (Mig) + &)™ | ay(y)ma(w)an (y) (Mg + d) 720
i ' 5 /2
/ HF(y)”B(Hg) ]\4[(9 1/2
- | )
mg(u)
: : 1/2 1/2

IN

/d IIF(y)HZ(Hg) _ 1 /d IIF(y)Ilémg)
) Y me(w) = Tsin(Im(0))[1/2 J YT @) ’

where we used that

mg(u) > [ sin(Im(0)] (Jule™® + |7]) > |sin(Im(8))]| o (u)]-
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To obtain (A.12) we compute for ||¢| =1,
g () Mgy + 1) 72

— /dy /dy<F Mg + 1)71/2) ’F(y) @ ag(y)ay(y) (Mg + 1)71/2w>

IA

/dMMY)%H2H 0+ )7
/ 4y / dy( F(y/) © ag(y) (Mg + 1)/

F@®%wwm+www>

2

IN

dy | F ()|l + /dy||F( sy llas () (M) +1)72
T

1 2
dy (1 + m) IE W) 522

= 2
))||j9(u)|> 1E @) s r¢z) -

dy |1
Y ( T Tsin(m(s
where we used the pull through formula (1.67) and the CCR (1.64).

IN

INA
B— B— S~

To prove the second parts of (A.11, A.12), we observe that these relations con-
cern the corresponding adjoint operators of the estimated ones and therefore
the assertion follows from the above estimates.

(i) Since P[M <d] is a projection we can write, using the pull through formula,

@t (F) Py = / WPt +motw<a F0) © a1 (9) Py <
T

= / dyLimy<a £ (y) © ag(y) Py, <d
T

= Qg (1[m9§d]F) P[M[g]gd]‘
The estimate (A.13) is implied by (A.11),

Jostn

IN

Hagl(F)P[ 9]<d](M[9]—|—d —1/2 H H (M —i—d)l/?P[ <d]H
< Vad |jag (1pmy<a F) (Mg + d) ||

Mg <d| H
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5 1/2
1FO) e

me(u)

< vad / AYLjmg(u)<d
T

9 1/2
2d IEW) 52

[sin(Tm(8))| !y[“xﬂ o)

The second assertion is proved in the same manner.

A consequence of Lemma A.4 is the relative (form) bound of the perturbation 7, 9(5)

w.r.t. M[g].

Lemma A.5 (Relative Form Bound of Igs)) Under the assumptions of Hypoth-
esis VII-1.12, and for 0 € Dy, , with |Im(5)| > 0, the perturbation Ig(s) obeys the
following relative bounds.

(i) For any d > 0 holds

Cg[s]
d| sin(Im(9))]

g H<M[0} +d) "I (Mg + ) (A.14)

where C' < 00 is a positive constant independent of 6, s, d and the inverse
temperatures. Further, we have

9 H]egs)(Mw +1)712

’ < C Jls]
| sin(Im(9))]

(A.15)
g||(ag + )20

for a positive constant C' < 0o, uniformly in 6, s and the inverse temperatures.

(i) If we further assume that T < [Im(6)| < 7, then there is a positive constant
C < oo such that

)| [75”] Prany <
9Py | 57]

recall the notation (3.23),

)= (7)) = e ().

)

d v+1/2
< C’g[s} (m) ) (A.lﬁ)
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and therefore also

(®) d v+1/2
9| Pl 157 Plasg < | < 2 (| 1m<sm(5))|) ’ (A-17)
where v > 1 is the infrared reqularization of the coupling functions as defined
in (1.92).
Proof.

(i) Recall that ]0(5) = ay (Fe(s)> +ag (Fg(g)) Lemma A .4, Equation (A.11), implies
that

g H(M[G] +d) V2L (Mg + d)_l/zH

720 0| ool 17
- 2 /d H 0 (y)HB(Hg) H s W) B(H2)
= I\ Tsin@m@@) ) ™ o)
< || (Mg + &)~
Og[s}

Y

d| sin(Im(0))]

which is due to Lemma A.1. The estimate (A.15) follows in the same way
using Lemmata A.1 and A.4 and (A.12).

(ii) By applying Lemma A.4, Equation (A.13), we obtain

() 2 1/2
£
gHP [I(g] H <y 2d /dyl H 0 ) B(H2)
M= [70 ] || = P\ Tsin(Im(8))] J o)<l ()|
Note that mg(u) < d implies |u| < m and therefore the integration

parameter u is restricted to a compact region independent of ¥ < [Im(4)| < 7.
Using that due to Hypothesis VII-1.12

1/2
{/d(E,r)HF(S)(Z,Z,T)HZ(HZ)] ~l asz—0,
S2x NI

uniformly in s, and

- < ol Re(d)] < mo(u)
o)) < e Oul +|r| < T
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we can estimate the integrand

2

W)
g / d(E’T)H !jiu)tlgmp)

S2xNFE

HF(S)Q@(u),Z,T)HZ(Hg)
< g / d(s,7) o ()

S2xNE

| N mo(u,) 2v—1
< Cyglis(u)|*~ < Cyyq (W) .

The last integration over u finally yields

v+1/2
g HP[MMSCI] [IMCH < gt (M) '

The other relations are derived in the same way.

Lemma A.6 Under the assumptions of Hypothesis VII-1.12 and for 0 € Dy, -, with
| Im(0)| > 0, the commutator [M[g], I;S)} obeys for d > 0 the following relative bound,

g H(M[e} +d)~ Y2 [M[e],fés)] (Mg + d)_l/QH < Car (A.18)

where C' < 00 is a positive constant independent of 6, s, d and the inverse reservoir
temperatures.

Proof. Since

(Moo 13”) = [ Mooy (£7) + e (F7)] = iy (moFy”) = aa (maFy”)
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we obtain by Equation (A.11) of Lemma A.4

g || My + a2 [y, 157] (g + )2

< gt + ) (maES) | Nt + )

+]|(Mg + )72

Clgl (mgFg(g)) (M[g] + d)71/2

1/2
< ga | [aymao) ([ES W), +[F00)],
- B(H2) 0 B(H2)
Y
< Cg[s] :
Vd
by the same arguments as used in the proof of Lemma A.1. [ ]

Lemma A.7 Under the assumptions of Hypothesis VII-1.12 and for 6 € Ds, -, with
| Im(0)| > 0, we obtain the following relative bounds,

g H <]9(5) _ ](s)) (M[G] + 1)71/2

9

(A.19)
g H(M[e] +1)72 (IG(S) - ﬂs)) H

0|
< Cgpy ( sin(]Tm(9))) ! 1)

for a positive constant 0 < C < oo, uniformly in 6, s and the inverse reservoir
temperatures.

/

Proof. Consider the derivative of the coupling functions Fe(s) =Gy — G (s573).0

w.r.t. the spectral parameters,
Vo (u.3,7) = (05 (0, 2,1, 0, (u,37) )
and denote
Vol = (aﬂ(gS%aTIgs))

- <a; <85F9(8)> T+ (aSF §(§)) ) gl <87Fe(s)> + ag (&Ff)))
= ay (VQFQ(S)> + Gg <V§F§(§)> .
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We compute the derivatives explicitly,
0sFy (uw,,r) = 05 [P FO) (g (u), 2, 7)]

1 s s .
= 3 sgn(u)Fe( )(u, Xr)+ [8UF( )]e (u, X, 7r)0sjo(u)

= sun) (HF87 ) 4 O 0,50, (1, 2,0))

and

O F (u,2,7) = 9, [P @2 EE) (o (u), 2, 7)]
_ Osen(u)/2 [@UF(S)} (je(u),Z,T’)
- [, 5 )

By Lemma A.4 and under the assumptions of Hypothesis VII-1.12 we obtain for the
relative bound

g || [ = 18%) = os1876] (g + 1))

_ gH [a; (ng) ~ Fiohy = 055,

+ag (B = FQ) = 05F05) | (Mg +1) 772

T/ W <1 e Im(§)|)|je(u)|)

) ( |70 = £ 0 - 07

< gC

BP0~ F @) - 057 w3

_ < 9lg1s >
sin(|Im(d)]) ’

for a positive constant C', by dominated convergence theorem. Hereby we used the
analyticity of 6 — Fe(s) in the L?-sense as guaranteed by Hypothesis VII-1.12 and
Remark 1.13. It further holds

g H [I(((i)r) — 1) — arf((g,)f)T} (Mg + 1)_1/2H

i (Flony = F© = 0 y7)

+ ag (Fgh — F© - bLF((S ) (17| Nos + 1) 7172
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x <\¢!Nres+1>”2
M[g]—l—l
(s)
< g F(O,T) aF(OT
B |T| o
L2[T;B(H2)]
N e
+g
7| N
L2[T;B(H2)]
= go(1),

as 7 — 0, due to the analyticity of 6 — Fés) and a similar argument as in the proof
of Lemma A.1. We further get the estimates

) ) 91915

051y 6( Mg +1)712| = © | ’

QH 51y 0 (Mg + 1) H ( sin(| Im(0)])
)T(M[9]+1)‘1/2H = O(gy), as7—0

All the above computations result in
g H (Ie(s) = I(s)> (Mg +1)71/2 ‘

o)1) o

! | |
< Clgpy ( sin(] Tm(9))) ! 1)

for a positive constant C’. The estimate on g H(M[g} +1)71/2 (]0(8) — ](S)>

in the same way. ]

ol (1 1) a0

is proven

Corollary A.8 Under the assumptions of Hypothesis VII-1.12, for 0 € Ds, -, with
| Im(0)| > 0, and for s € R, we obtain the following relative bounds,

QHIm <Ig(8)> (Mg +1)71/2 o ( " +1> .
o| (Mg + 1)/2 1 (zﬁ)” -\ Ve @)

for a positive constant 0 < C' < oo, uniformly in 0 and in s on compact subsets of
R.

Proof. We remark that 1" = I®) for s € R and therefore

[(5) — 7)) [ﬁs) —JG)
(s) (s) _ 7(s) o 0
Im<19>=1m<19 —18>= .

21



264

A. Relative Bounds on the Perturbation

The assertion follows by Lemma A.7. [ |

The relative bounds serve us to locate the numerical range, NumRan(Ké(,s)), of
the operator KG(S).

Proposition A.9 (Numerical Range of Ke(s)) Let 0 = (§,7) € ©C? obey

| Im(0)| < % and @ < Im(7) < 27831, Moreover, we assume that s € S and

either of the further conditions,

(i) Let s € R.

(ii) Let |Im(5)| € [Z, 2],

)

Then, for sufficient small gj5, the operator KG(,S 1s sectorial, i.e., its numerical range

lies in the following sector,

NumRan (K 9(8) )

sen®) () = ~1 -+ max { 5O (R = 12,0),0} }.

C {ZE(D

where ¢ := Im(6).

Proof. We first exclude ¢’ = 0 and we restrict ourselves to study the case

0’ > 0. The complementary case is treated by considering Kés) = Kg(g)*. Further,

we may assume that Re(d) = 0. This assumption is no restriction of generality since
K = D4(Re (6))KSDq(Re (5)) ! for ¢ := (i Im(5), 7) and the numerical range is
invariant under conjugation with the unitary operator ®q4(Re(d)). Subsequently, we
assume § = i’ € iR™.

Let ¢ € D(K(gs)) be a unit vector, ||| = 1. We compute

Re (v |57 )
_ ‘< ” ) [Lp + ¢08(8") Lyes + Re(7) Nues + g Re (Iﬁ)] " >(

COS((S/)LreS + Re(T)Nres
Ipll + | || 575
Sin(6") Laux + | 7| Nyes + 1

IN

+g H(M[01 +1)7Re (fe(s)> (Mg +1)712

‘]W((M[eﬁl)w
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1 g[S}C
< Lyl + | =5 +
= || PH [s1n(5’) sin(5’)

< Lol + gy (¥ ] Mo+ 0 (A21)

]<¢|(M[9}+1)1/’>

for a positive constant C' because of Lemma A.5 and for g sufficiently small. Fur-
ther, we get

(oK0)
= (0| [$in(0) Laws + (7 N + g Tin (1) ] )
. [1_ (Im(7) = |7]) Nies H

sin(6") Laux + | 7| Nres + 1
— 9| Mgy + )72 1m0 (17 (0 + 1)—1/2H] (0] (Mg +1)p) — 1

Im(7 _ s
) 2m ) a1

]W\ Mg+ 1)y ) — 1

We continue this estimation for the different assumptions made in the statement of
the corollary.

(i) Under the assumptions of (i) and with the help of Corollary A.8 we obtain

>

s 1
Im<w (Ke( )¢> > {2 —g[slc] o | (Mg +1)¢) =1
1
Z< | (Mg +1)¢) = 1> —1, (A.22)
for a positive constant C’ and for gj, sufficiently small.

(ii) Under the assumption of (ii) we cannot apply Corollary A.8, instead we esti-
mate using Lemma A.5

s 1 sC
(¢ | K§y) > [5—% (v | (Mg + 1)) —1
> (0| (Mg + 1)~ 1> -1, (A.23)

for a positive constant C’ and for gjq sufficiently small because sin(é") > %
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Plugging the inequality (A.21) into (A.22, A.23) we finally get
5/
I (¢ ’Kg%> > —1—i—max{sm (’R (v ’K >’ ~ 1Lyl ,o}.

We take up the case ¢’ = 0 which is paired with the additional assumption (i),

i.e., s € R. We note that § — Kés) is strongly continuous, thus

(o] wnw ) = lim (0 [ K@)

From here follows
m (0 [ Ky ) = Tt (0 | K0 )

5/
> limsm (’Re< ’KW >‘—HLPH>—1
50

= -1




B Technicalities of the Modular
Structure of the Interacting
System

The perturbation theory for KMS states and their structural stability under local
perturbation discussed in [11] and outlined in Section 1.1.3 does not directly apply to
the situation where the perturbation does not belong to the underlying C*-algebra
but is given in terms of unbounded field operators. Subsequently we prove that
all results extend not only formally but also in a rigorous way to our situation.
Further, in the non-equilibrium situation there is no concept like structural stability,
however, some techniques can be borrowed from the equilibrium situation but need
an adaption to our setup. We provide these technical lemmata which allow a carefree
application to advanced computations in the main text.

B.1 Dyson Series Expansions and the Domain of the
Operator 5

We recall the definitions (2.4, 2.5, 1.59) of the operators L), L) and L.

Lemma B.1 (Dyson Series Expansion) Assume that |Im(s)] < Fuax/2 and
| Im(2)| < 1/2 with | Im(s) + Bmax Im(2)| < Pimax/2-

(i) The operators e#oeist” e~islog=izlo  gnd e=izLog=isbogisk™ cizLo qre densely

defined and their domains include linear combinations of vectors ALy with
A = A, @ Wy(F) where A, € B(H2) and F € L*[YX] has compact support.
Moreover we may express the application of these operators on Ay as a Dyson
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series,

6zz£0 ezsL e zsLoe 1zLo AQO
oo

= S [ daeede (o (e (o) -0 (o) AR,

=
o

0<¢n<<a1<1

e ZZ[:Oe zsLOe'LsL e'LzEOAQO

= Z(isg)" / dy -+ ds, 7 (057 (g™ (v) -+ - g > (v)) ) A

0<¢n<<a1<1

(ii) The operators e*Foeisl” gmisLog=izLo gnd e=i*Log=islogislTgizlo  gre closable
and their closures

*

*
1) . izLo isL®) —isLo —izLo
Dl = [e e e e ,

(2) —izLo —isLo isL© izLo] ™"
DS = |e e 0 eo

have trivial kernels.

(i1i) Let A" € w(A)'. Then, the vector A'Qq is in the domain of the operators DY
and DgQZ) and the following relations hold true,

Dglz AIQO _ Alezzﬁo ezsL e 15L06 1zLg QO
- Aleizﬁo eisLm QO
- 9
. . (0
D£Qz AIQO _ AIG zzﬁoe isLg 67,5L ezzﬁo QO

AIG 7,25[:06 isLg 6zsL QO-
PI'OOf.

(i) We only consider the operator e#£o¢ist!” ¢=iskog=izLo the second assertion is
proved in the same way. We first check the analyticity of A€, for the operator
Ly and L. Since € is an analytic vector for @y (F) we may write

A=A, @) —%u(F)" .
m=0 ’
For F supported on [—p, p] x S? x N we have

k
|Lb@a(F)" 0]l < (IZpllure) +mp) |9alF)™ 0l
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and therefore, by Lemma A.3,
L5 A

k
= (IILy ||BH2 +mp)

< N 4llspa) Y

m=0

k
= (ILy HW +mp)

< N Allsgey D

m=0

[ (F)™ 20|

(0 (V2 [ Fllpapr )

For ¢ € € we obtain the following estimate,

Z' |

o0

||AP||B(HI2)) vm + 1 <

m=0

IN

m k
\/§ HFHLQ[T]) io: |§’k (“LPHB(’H%) "‘mp)
!
vm! 0 k!

(V2 1Pl o)
HAP”B(H%) vm + 1 N exp (|€| (“LPHB(H%) + mﬂ))

3

m=0

<\/§ exp ([s|p) ||F||L2[T]>
NG

< o (5l Lol ) 14pllsirgy > vVim+1
m=0
< o0

which shows that A€, is an analytic vector for Ly. The same way, we can verify
that A€)y is an analytic vector for any linear combination of the free Liouville
operators Ly and L. In particular, AQ is in the domain of e~*foe=%f0 —
et sLot2L0) and the map ¢ — e Loe=2£0 AQ) is differentiable.

Let P[I LO]<A] denote the projection on the spectral subspace of L) correspond-
ing to the interval [-\, \] C R. Obviously, the vector P[‘L(e)‘Q]e”'SLOe’iZLOAQO

isL®)

is in the domain of e and we have analyticity of the map

i L) —isLo ,—izL
Co¢r—e” P[ILWISA]G 1600 AQ)

and we may write

is(£)
6zsL P

—isLg —1zLo
[|L(Z>‘§/\]€ e AQO

1
—iz is 6 —is _is

0
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1

= P[|L(m§/\] <6—iz£OAQQ -+ /dg ez‘scL(@ [iSQW(U)] e—iscLoe—iZLOAQO>

0
1

P[|L(e>\§/\] (e*izLOAQO + isg/dg eisqL(f)efz'scLoﬂ_ (a8g<v)) efizEOAQ(]).
0

We aim to apply the above relation iteratively. To this end we remark that
the map

Gy = e kog (a8 (1)) e E0 AQ.

is differentiable for ¢, € [0, <] using Hypothesis VI-1.11. With the same argu-
ments as above we get the expansion

isL(® —1is —iz
e'sk PUL(Z J<a]€ Log=izlo AQ) (B.1)

oo
L(f 1<A] E : isg)"
n=0

X / dsy - - de, m (a5 (v) - - - o (v)) e 0 AQ.

0<en << <1

We now show that the series on the r.h.s. of (B.1) converges even after dropping
the projection P[| PCIENE We first observe that

o -m m

—izLg —z0p L 1 * —
o izl AQ, =a, g (Ap)@Z_Om [ﬁ (agl(F+) —|—ag1(F )] Qo

where

Fru,2,r) = e “PF(u,2,r),
F~(u,%,r) = e #rvF(u, 2, r)

obeying
1= oy < €22 1P oy = B
We further use that
7 (0 ) = ap (G ) + a1 (Gser))

where T = (1,1,...,1) € C**! recall (2.12), and that the uniform bound

by == sup HQ<CT) < 00

| Im ()| <Bmax/2, L2[0;B(H3)]
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is guaranteed by the Hypotheses VI-1.11 and VII-1.12. Moreover, the map
S g(gf) € L?[T; B(H2)] is continuous by the same hypotheses and the domi-

nated convergence theorem. Together with the relative bound of creation and
annihilation operators w.r.t. the number operator, see Lemma A.3, we obtain
continuity of the map

(615 55) = 7 (05 (ag™ () - a5 (v)) [Ap @ (ap(FF) + ag(F7))"] Qo

which makes the integrals in (B.1) well defined. Also by Lemma A.3 we get
the estimate

sup |7 (g (v) -+ o (v) [Ap ® (agy(F*) + ag(F7))™] Q|

|Im(§j)|§ﬁma)c7j:1 ..... n
< Al spa) V/(n+m 4+ 1)1H(261)" (262)"

The absolute convergence of the series in (B.1) follows by the next estimate,

io: |sg|" / de, - - - ds, (n +m 4+ 1)1 (2b))"(v/2 by)™

m!

n,m=0 0<gn<<ai <1

=Y Phsgl(VERmY it L)

nlm!

n,m=0

V1 2bsg|™ (V2 bo)™ m+n+1
2 )

\/n—4b15 " o= (V8by)™
Z Jr| g\z(\/m)

<

m=0
< oo,

where we used that ( m +anl +1 ) < gnAmtl

Now we remove in (B.1) the cutoff \. We note that s-limy_. P[\L(f)\q] = lye2.

isL®

Reconsidering (B.1) and using that e is a closed operator we obtain that

—isLg —1zLo —ZSL() —izLg
e e AQy = hm P[IL“)|<>\] e AQy

isL(®)

is in the domain of e and

elSL e znge zzllgAQO (B2)

Stisgr [ dasedo (@) g ) e A

0<¢n << <1
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(i)

(iii)

Finally, to meet the assertion, we show that the vector given in (B.2) is in the
domain of the operator e?**°. This follows by the closedness of €***0 and

eiz£0 eisL(Z)efisLoefizLOAQO (B3)
= Z(isg)” / dsy - - - ds, €750 (afm (v) - - - (v)) e T AQ
n=0 0<en<<a <1
= s [ daeede (o (e ()0 (o) AR
n=0

0<¢p < <61 <1
using that the r.h.s. of (B.3) converges because
m (05 0 0” (v)) = ag (g(zﬁ+s§jf>> + g <g(zﬁ+§<ﬁ)> ,

B =By, B1,-..,0r) € CEL obeys for | Im(s) + Buax Im(2)| < Buax/2 a similar
uniform L?-bound,

< 00,

sup Hg . ﬁ‘
| Tm(6)|<Bmax /2, (¢A+4T)
| Tm(¢)[<1/2:
| Im(<)+ﬁmax Im(g)‘gﬁmax/2

L2[5B(H3)]

as in the above elaboration.

We only focus on the operator e#£oeisL® ¢=isLog=izLo  Ttg closability follows
from the fact that the adjoint operator is densely defined. To this end we

observe that

|:ezz£0 ezsL e zsLo6 zzﬁo] 2 ezz[,o ezsLoe isL e izLo

where the r.h.s. is defined on a dense set by (i).

To show that the closure Dglg has a trivial kernel it suffices to show that the
range of the operator [e”ﬁo eiSL(De_”LOe—”‘O] is dense. This, in turn, follows

from

- D ( oi7L0 isL(®) ,—isLo e—z‘zL())

ran <|:6zzﬁgezsL e 13L06 zz£0i| ) D ran (ezzﬁoezsLoe isL e zzﬁo)

which, again by (i), is dense.

Again, we only consider the operator eizLogisL g=isLog=izLo  Note that M’ :=
7(A) is the strong closure of linear combinations of operators of the type
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m'(B') = B, ® Wa(F'), F € L*[Y] having compact support, considered un-
der (i) (we refer to the von Neumann density theorem, see [10, Cor. 2.4.15]).
Therefore, there are elements BJ* € B(H2) and F;; € L*[Y] compactly sup-

ported such that s-lim; .., B} = A" where B} := Z,ﬁl BIF @ Wa(Fjx) € M.

The first part of this lemma implies that the vectors BJ{) are in the domain

of eizLoisl! g=isLog=izLo an{ allows the following expansion in a Dyson series,
i#Lo pisL®) —isLo ,~izLo B; Qo

o0

= G0 [ dadamlo )i ) B
n=0 0<gn << <1
= B;- Z(isg)” / dsy - - - ds, m (0§ (g™ (v) - - - g™ (v))) Qo
n=0

0<¢n << <1

_ B;ezzﬁo ezsL e zsLo6 'LZLQQO

j—00 . ST () .
Alezzﬁo ezsL e zsLoe 1zLo Q[)’

using that B} commutes with 7 (0§ (g™ (v) -+ - g™ (v))) and that the Dyson

series converges on {)y. The assertion follows because D§12 is the closure of the

. ST () .
operator ezzﬁoezsL e~ islog zzﬁo.

For computational purposes it is necessary to understand how the anti-linear
operator Sy extends from the dense set m(.A)"€.

Lemma B.2 (Domain of Sy) (i) Let F, € L*[R* B(H,)], r = 1,..., R, with

(i)

wY2F, € L*R3B(H,)|. Further, choose A € A such that w(A)Qy €
D(Nrt/SZ), where Ny 1S the “photon” number operator on the bosonic Fock
space F(L?[Y]) over L[Y] (which ensures that w(A)Qyq is in the domain of the
operator T (af(Fr)) which can be expressed in terms of creation and annihi-
lation operators over F(L?[Y]), see definition (1.75) and Lemma A.3). Then
the vector 7 (a¥ (F,)) w(A)Qq is in the domain of Sy, introduced in (1.60), and
it holds the following identity,

So [ (a(F,)) m(A)Q] = m(A)7 (af (F)*) Q.

Let BV, F™ e LR%B(H,)], r; = 1,...,R, with w '2FY €
L*[R3 B(H,)]. Then the vector m (afll(]ﬂn(ll)» Cee T (aﬁ"(ﬂ(:))) Qg is in the
domain of Sy and it holds

So [7? (afﬁl(qul))) ceeT (aﬁl"(ﬂ(:))) QO] =7 (a#”(F("))*) ceem (afll(ﬂ(ll))*) Q.

1 Tn
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(iii) Let |Tm(s)| < Bumax/2. Then, the vectors e’ Qg and e=*L0es2Qy are in the
domain of Sy and we have

@) _sLo 5LO
So [eSL Qg} = e 50 Q), and

_ (©) sLO)
So |:€ SLOBSL QO:| = €SL Qo.

Proof.

(i) We only consider the case a (F,) = a,(F,), the other case is treated in the
same way. Since F,. € L?[R?; B(H,,)] = L*[R? @ B(H,) we express

Np,
F= lim »  frMp
m=1

with 2 w™/2f" € L[2[R3] and M" € B(H,). Using the notation F" :=
(0,...,0, f . 0,...,0), we may write
<~
v o= w(a-(F))m(A)Q
Nn
= lim Y 7 (a,(fn M) m(A)Q
m=1

— lim 3 [ (M) © ag (a(F)] 7(A).

n—oo
m=1

Note that the annihilation operator aq(g(F,:)) can be expressed as a strong
limit of Weyl operators by
n Ca(g(Fy) + iPa(ig(Fy))
agl(g(Fm)) = . .
V2
Waltg(F)) + iWa(itg(Fy)) — (1 +0)1

= s-lim
t—0 NoY

such that 1 can be written as the limit

v =l
t—»O’
of vectors
N, . . .
- Wa(tg(Fy)) + iWa(itg(F7)) — (1 +10)1
nt = (M) @ —& m UL
Q/} )t mZZI P( ) \/§t
X W(A)QO
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with [M" @ (W, (¢f) + iW,(itf") — (1 + i)1)]A € A, thus ¢, € D(Sp).
Applying Sy to 1y, gives

S0¢n,t
N %zﬁ m (AT My @ (We(=tfr,) — iWe(=itfy) — (1 = )1)]) Qo
(A (ap(F) Qo

where we just did the above steps backwards using that

ooy i Valltg(Fy)) — iWa (itg(Fr)) — (1 —4)1
agl(g(Fm)) - SZEIOH \/it :

Since Sy is a closed operator we conclude that ¢ € D(Sy) and

St = w(A")7 (a2(F) Qo

T

as claimed.
(ii) The assertion is proved in the same way as under (i), we omit the proof.

(iii) We remark that the vector L0 can be expanded in a series as

(0) ) _
6sL QO — GSL e sﬁLOQO

o0

= 3 (s9)" / dey -+ dey (0™ (0) -+~ 0 (1)) Q.

n=0 0<gn << <1

c.f. Lemma B.1(i). By (ii) we know that 7 (ag ™" (v) - - g™ (v)) Qo € D(Sp)
and

So [ (ag ™ (v) - g™ (v)) Qo] =7 (ag™ (v) -+ ag™" (v)) Qo.

The closedness of Sy implies that st Qo € D(Sy) with

So [eSL(Z)QO} = Z(Eg)" / dsy - ds, m (a7 (v) - ™ (v)) Qo
n=0

0<en << <1

—sLe L®O
= e loeSEQ,.

The second assertion follows by S; ' = Sp.
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B.2 Existence of the Perturbed KMS State

We ensure that the vector representative of the perturbed KMS state can be de-
fined in our framework. We present a more general lemma which considers the
non-equilibrium case where the reservoir temperatures (31, . .., g do not necessarily
coincide. It is a generalization of [8, Thm. IV.3] to different reservoir temperatures.

Lemma B.3 The vector €y is in the domain of the operator e=BLO/2 for all B €
0, Bmax| and the image obeys the norm bound

-ALO/2q) H < {1 Z(5) } B.A
e max-< 1, )
| "= Z(%) (B4)
2,2 R
— 2 T - 2
X exp 9 g /dgk: 1+ - e(ﬁ“‘ax_ﬁr)w(k*)/QGr(k) < 00.
2 r:l]R3 ﬁ w(k) B(Hp)

Hence, the norm of 6*5L<4)/QQO 1s bounded uniformly in the inverse temperatures as
long as |Bmax — Bmin| i bounded.

Proof. It follows from Lemma B.1(i) that Qo € D(e~#L/2). To prove the norm

bound we show that <QO ’e*m(@ QO> , is bounded by the square of the r.h.s. of
H
(B.4). By expansion in a Dyson-series, see Lemma B.1(i), we get

< O ‘ LY, >H2

oy [ dsdsa (0 |rlaf ()0l (00 )

0<sp < <5158

an / dSl e dSQn <Q0 | 77'(0{’682" (/U) Ce 'le QO >H2 . B 5)

0<s2p<-<51<8

R
(o) = Y / d3E7r<e_5HPGT(E)eSHP®e “® gz (k)
R3

r=1

+ eszpG (E)* sHp ® esw(k)ar(];)>

_ ZZ/d?’kﬂ (G (F e ©a(Fors)), (BS)

r=1 o=%+
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where
at(k,r,s) = e Pa(k),
a (k,rs) = esw(ﬂ)ar(lg),
GH(kr) = G(k),
G (k) = G.(k)"

Plugging (B.6) into (B.5) we get

(su] e,

S
n=0

(o

By - -/d?’EQn

O1yeeey oon==, = R3 R3

0<s2p<-<51<8

T |:e*52anGU'2n(k2n’ rzn)e(SmrSM—l)Hp . 6(82781)HPG01 (kla 7nl)esal

® a02n<E2n7 T'2n, 52n) cea” (EI; ry, 51):| QO>

>

-

n=0  onom=dog, L<si<p

Z(Bp) " tr (e‘(ﬁp‘“*”")HpG”"(Ezn,r2n)e(52n‘”“—1)HP X oo
X €(S2781)HPG01 (El, ’1“1))

X [wer ® -+ @ we g (GUQ"(EM, Ton, Son) - * 'agl(lzla 71, 81)) . (B.7)

We are going to apply the Holder’s inequality for the trace,
(A By AnB) < [T 1B [T er(4,02),
j=1 j=1

where p; > 0 and pt 4 -+ p-! =1, to control the contribution of the trace in
(B.7). To this end, we distinguish two cases. First we assume that 8, > 3. We
define p1 = —B,/(—8, + 51 — s20), Pj = —Bp/(S2m2—j — Sont1-5), J = 2,...,2n,
which are all positive since 0 < s; — 5,41 < 8 < 3, and their inverses sum up to
one. With Holder’s inequality we obtain

Z(ﬂp)_l tr (6—(ﬁp—81+82n)HpG02n (EQM ,’aQn)e(SQn_Sanl)Hp . els2—s) Hp o (];fl’ 7“1))

2n
< Z(By) ttr (e‘ﬁPHP) HG”]'(/Z-,W) ’
p 31_[1 REY | P

. B.8
‘B(Hp) (B8)

2n
= 11 HGUj(kjaTj)
j=1
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In the complementary case, 5, < [, we define p; = —F/(—=0 + s1 — San), p; =
—B/(S2n+2—j — Sant+1-4), J = 2,...,2n, which are again positive. Note, that

tr (e_(ﬁp_ler”")lep) = tr (e_ﬁHPeﬁﬁl:fzanp) < tr (e7")

since H, < 0 by assumption, see (1.12). Applying the Hélder inequality therefore
gives

Z(6p>_l tr (e—(ﬁp—81+82n)HpG02n(Ezm 7a2n)6(52n_52n—1)Hp L. e(SQ_Sl)HpGUI (Eb 7,1)>

2n
< 2(8) " tr () [T |67 i)
j=1

‘B(Hp)

(B.9)

‘B(Hp) '

Z(8) 1y (i
G (kj,rj)
Zo L1671 B
Since the reservoir state wyes 1= wr1 @ -+ @ wy g is quasi-free we get with Wick’s
theorem, Lemma D.1,

Wres <a02n('Ig2n7 T'on, S2n) e agl (Eh T, Sl))

n

= Z H Wres <aUT<2j> (ET(QJ'% TT(2j)7 ST(QJ))

X a7 (Kp(2j-1), Tr(2j-1), 57(2j71)))7 (B.10)

where Py, is the set of all permutations 7 € Sy, which fulfil 7(1) < 7(3) < -+ <
7(2n — 1) and 7(25 — 1) < 7(2j) for j = 1,...,n. We refer to the elaborations in
Section 1.3.4, in particular to the definition (1.45) of w¢. The only non-vanishing
contributions in (B.10) are

—

3} L Bebs )
wres(a™ (k, 7, 8)at (K, v s)) = 6,8k — k)

9

wres<a+<];;’ T? 8)0’7(];;/77,/7 S/)) - (57‘ r’5(E - E/>w
7 ebrw(k) _ 1

For application in (B.7) we consider the case 0 < s < s’ < . We introduce the
abbreviation ds := s’ — s € [0, 5] to calculate
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eﬁ"'“(E)x_l +x

T
< sup  0,,0(k—K') oBrw®) _ 1

ze[1,e8w(R))

o 5 ﬂmaxW(E) 1
< 60(k — k’)!

efrw(k) — 1
< 6, 0(k — K)elPmaxBe® coth(8,w(k)/2). (B.11)
Using Equations (B.8, B.9, B.10, B.11) and
B ~ (2n)!
#Py, =(2n—1)2n—3)---1 = S|

we can perform the sum over ¢; in (B.7) to estimate

(900"

VAN

IN

HQ

max {1, ZZ(([?I,)) } i g / dsy -+ - dsop

=0 0<sy, << <P

R 2n
X Z /dglgl"'/d3E2nHHGi(Ej>rj)
j=1

T1yeens r2n:1]R3 R3

B(Hy)

X

2! , , e ,
( ) H 57'2j—177”2j5(k2j_1 - k2j)e(ﬁmax Frajeoths;) COth(ﬁszw(ij)/Q)

2np! A
J=1

max {1’ ZZ<(ﬁi)> }

et n! 2 B(Hp)

mx{l%}

292 R ) )
X exp % Z/dg‘k) COth(ﬁﬂﬂ(k)/Q) He(ﬁmaX7ﬁr)w(kr)/2Gr(k)
=1ps

— 1 [P o > - z S (2
XYy = > / d*k coth(Bw(k)/2) Hewmax—ﬁr)w(kr)/agr(k)H
:1]R3

2

B(Hp)
Z(p) }
max < 1,
e
R
, 2 ; - 12
2 102 3 (ﬁmax_ﬁr)w(kr)/2
xexp | ¢°f /dk 1+ _,] e G.(k) :
2 o) 504

where we used that coth(x)/2 < 14 1/x. This expression is finite due to the
assumptions of Hypothesis VI-1.11. [ ]
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Lemma B.4 (Cyclic & Separating Property of Q) The vector
87’8[/“)/290
le=o29720 |

is cyclic and separating for M := n(A)" and M’ :=7(A)" for all 5 € [0, Prax)-

Q=

Proof. We first prove the cyclicity of (:2 w.r.t. M. We remark that it is equiv-
alent to prove the separating property of 2 for M’ = 7(A)', see [10, Prop. 2.5.3].
To this end, choose A" € M’ such that A’QQ = 0. An application of Lemma B.1(iii)

implies that A’€)y is in the domain of D(i—}’)o and it holds
2 b

DY A, = Ale P20, = 0

zﬂo

which implies that A’QQy = 0 because DEB) has trivial kernel, c¢.f. Lemma B.1(ii).
Due to the cyclic property of Qy w.r.t. ./\/l we conclude that A" = 0.

It remains to prove that  is also separating for M. Let A € M be chosen such

that AQ = 0. Since JAJ € M’ and because of Lemma B.1(iii) the vector JAJQ is
in the domain of the operator DE_?_ ; and

D(f,) L JAJQ = JAJ6_50/26’6L0/2€_’8L(2>/2€£O/QQO.

Using the modular data (J, Ag, Sp) associated with the state wy = (Qo | 7(-)Q0)
(see (1.60)) and an application of Lemma B.2(iii) gives

T3
= ASOeﬂLO/Qe*M(l)/ZQO
AB_BL(Z)ﬂQO

= 0.
2)

This implies AQy = 0 since J is invertible and Dzﬂ : has a trivial kernel, see

Lemma B.1(ii). This, in turn, implies A = 0 due to the separatmg property of €.
[

The subsequent consideration are done under the assumption that all reservoir
temperatures coincide, i.e., = 3, = 1 = -+ = fg. We aim to establish w =
(Q|7(-)Q) with Q = Qlg,...—g..=0, given in (2.2), as the perturbed KMS state.

Lemma B.5 (Zero Eigenvector of L) For 3 := 3, = 1 = - = (g, the vector
Q= Q|g=pum=p given in (2.3) is in the kernel of the perturbed Liouville operator
L.
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Proof. Note that L = LY — gn’(v) and therefore

Le‘ﬁL(zWQO = [L(z) — gﬂ’(v)]e_ﬂL(e)/QQO
—5L<4>/2[L(z) . geﬁL(Z)/QW/(U)Q—,BL“)/Z]QO
’ﬁL(Z)/Q m(v) — Je’ﬂL(r)/Qw(v)eﬁL(r)/QJ]QO

[
,ﬁL(f)/z[ﬂ(v) _ JefﬂLo/27T(v)eﬁLo/2]Qo
*ﬁmw [7(v) — Je’ﬂLO/ZW(U)]Qm

where we used that e #L"/2x(v)efL/2 = ¢=BLo/2r(y)ePLlo/2 as one checks by an
explicit expansion in a Dyson series. Since wy = (o |7(-)€) is an (ap, 5)-KMS
state we obtain

Je Pl 2r()Qy = JA(l)/QW(v)QO = Som(v)Q = 7(v*)Qy = 7(v)Q
using that the anti-linear operator Sy can be extended to m(v)p, see Lemma B.2(i).

We finally get Le=AL“/2Q), = 0. n

Next, we prove the invariance of {2 under the modular conjugation .J.

Lemma B.6 The vector $2 is a fix point of the modular conjugation J, i.e., JQ =,
for equal temperatures 3 := 3, = = --- = Bg.

Proof. We use that J = Syet0/2 (since wy = ( Qo | 7(-)Q0 ) is an (g, 3)-KMS
state) to obtain

Je_ﬁL(z)/zQO = 50€BL0/26_6L(£)/2QO = €_ﬁL(Z)/QQQ,

where we used Lemma B.2(iii). [

It follows the KMS property of w.

Proposition B.7 (KMS Property of w) In the equal temperature case 3 =
Bp = B1 = -+ = Br the operator

A= Pl

is the modular operator associated with the state w = (Q |7(-)Q). This implies that
w is an (o, B)-KMS state, i.e., the state A — (Q | AQ) is an (a, B)-KMS state for
the W*-dynamical system (m (A)”,t — e )e ) in the sense of Section 1.1.1.
Following the arguments of Section 1.1.3 it is the only wo-normal KMS-state since
w(A)" is a factor.
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Proof. We have to verify that the operator
S = JAY?

fulfills the relation
S AQ = A*Q)

for all A € w(.A)”. For a given A € n(A)" with AQ € D(e #L/2) holds

e PLPAQ = e L2 AP = ¢ PLY 2 4P 20 = 0 te PR 2 AQ,

where C' := |le=BL"/ QQOH. The above relation can be checked by an explicit expan-

sion of e~ PL/2 AePL/2 and e=PL7/2 AePL/2 in a Dyson series using that A commutes
with 7'(v). Using the modular structure for wy = (g | 7(- )€ ) and the relation
JLY = — Lt J we obtain

JePERAQ = €7 e PEYR Ay = 0712 T AQ,
— O1PL20=BLo/2g AQ ) = O 1L /2e=BLo/2 g )
= CTLATPEY 2Bl = 07 AR Je PR 20,
= A*JQ = A*Q.

Here we used Lemma B.6 and that

eﬁL(r)/Qe_BLO/ZA*QO = Je_ﬁL(e)ﬂeﬁLom(JA*J)Qo
= J(JA*J)e P 2ePhol20)
—  A*PLY2-BLo/2q)

see Lemma B.1(iii). Thus, the operator e % is the modular operator associated

with w and since L is the perturbed Liouville operator w.r.t. w we conclude that

the (a, 3)-KMS condition for w is fulfilled. [



C Analytic Continuations of
Operators and Vectors

In Lemma 2.3 of Section 2.2 we managed to find a resolvent representation for the
unitary group ¢’X“’* for real s. The task, however, is to extend the relation (2.15)
to complex parameters s, in particular we want to find a representation of the group
Ut) = & for K = K=/, While we could show the analyticity in s of the
Lh.s. of (2.15) already in Section 2.2 it is not until now that we address the issue of
analyticity of the r.h.s. of (2.15). Although the spectrum of K() is located on the
real axis for s € R we lose control over it as soon as we complexify the parameter.
The problem here is the lack of coercivity — the perturbation I¢® is not relatively
Lo-bounded. We bypass that difficulty by performing a spectral deformation on
K® as introduced in Section 2.2.2. The advantage of this particular deformation is
that the deformed perturbation [és) is now relatively bounded w.r.t. the deformed
free Liouville operator Lgg which in turn becomes sectorial. This requires that
the dilation parameter §, which is responsible for the rotation of the continuous
spectrum into the upper half plane, has sufficiently large imaginary part.

Throughout the whole chapter we fix

7
O<50<Z’ 0< 79 < 213
and we introduce the following notation

D+

00,70

= D;O X S;B C C?
for a subset of

Dsyry = {(6,7) € C? ‘ | Im(8)| < o, |7| < 70 }
where

Dy = {0e€C|0<Im(d) <o},
Sy o= {reC|o<|r] <2/Im(r)| < 70}
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C.1 Spectral Deformation Analyticity of K(SS)

In this section we provide analyticity results of the resolvent (z - K (3))71 under

spectral deformation. In this section we follow closely the arguments of [8, App. Al.

The operator Mg defined in (A.9) will play a crucial role in the estimations. First
—1

we consider the invertibility of (z - K, és)> for spectral parameters far away from

the real axis.

Lemma C.1 Let Im(z) < —2 and choose the deformation parameters as 0 =
(0,7) € D, ,,- Choose s € S

00,70 "

(i) Assume further that s € R.

(i) Assume further that Im(0) € [, §].

Then the operator | z — KQ(S)) 18 1nvertible on a dense set and its inverse extends to

a bounded operator with norm

s -1 L
‘ <z ~ K >> H < dist{zaNumRan (Ko(s))}‘

Proof. Our first observations is that we may assume without loss of generality
that & = id' is purely imaginary. Note that K\ = Dq(Re(8)) K% Dq(Re(8))
where 0’ := (iIm(0),7), and Dq(Re(0)) is a unitary operator. Since the numerical

range and the norm of an operator remain invariant under unitary conjugation we
may assume Re(d) = 0. In this case we have Im(Lg) = Mg+ (Im(7) — |7]) Nyes, nOteE
that sin(Im(d)) > 0.

Now, we consider

Kés)* = |:Lp + COS(é)Lres + Re(T)NreS + g Re ([9(8)>i|

—1q [sin(é’)LauX + Im(7) Npes + g Im (Ie(s)ﬂ )
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*

For ¢ € D(Laux + Nies) € DK we have

Tm < (Mg +1)""¢ ‘ Kés)*¢>
_ % K (Mg + 1)~ ‘gjés)*¢> _ <glés)*¢ ‘ (Mg + 1)~ >]
—Im< Mg + 1) | i[sin(6) Laus +Im(f) Nees]t))

sin(d") Laux + Im(7
_ M 1 I(s aux r
<¢H o+ ,gRe v Mg +1

) =)
%[@m(ﬂswwwﬂ > (Wi om (1))
- es>

Sin(¢") Lawx + Im(7
_ M 1 ](s aux T
<¢H o+ 17 ’gRe 4 Mg + 1

—Re<g1m<]98>1/)‘(M[9]+1)_¢>. 1)

We estimate the terms separately. First, we consider

(o [ e ()] )

_ ‘< (Mg +1)"/2 ‘ (Mg + 1) 1/2 [M[g],gRe (1655))} (Mg + 1)—1¢>)

Cg||(Myg + 1) 2|
= Cyg(v|(Mg+1)"y), (C.2)

IA

for some positive constant C', using Lemma A.6. To estimate the last term of (C.1)
we consider the two cases of additional assumptions.

(i) Since s € R Corollary A.8 implies that
(gt (57) o | (Mg + 1710 )| < g€ 10l (C.3)
for a positive constant C’.

(ii) Since Im(é) € [£, 5] and therefore sin(Im(d)) > 3 we obtain

!

(ot (17) 0] O+ 1710 )| < —Es 0l < 307 01 (€

for a positive constant C’, using Lemma A.5.
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Plugging the estimates (C.2, C.3, C.4) into (C.1) gives

i ( (Mg + 1)~ | K" )
< _ <¢ sin(0") Laux + Im(7) Nyes

Mg +1
+C'q [1¥|?
= (1+Cg) (¢ | (Mg + 1))+ (C'g— 1) ¢

<¢‘ \T!—Im( ))Nres¢>

o+ 1

¢>+C@@M g+ 1))

< u+cm<quw+1rw>+(cy—hﬁf)wwﬁ
< (1+Co) (¢ [ (Mg + 1)) + (C’g - %) [
< (1+Cg) (v | (Mg +1)""), (C.5)

for g sufficiently small. The above inequality extends to all ¢ € D(Kés)*). We now
aim to show that the kernel of (z — K(gs))* is trivial which in turn implies that the

range of (z — Ke(s)) is dense. To this end we choose ¢ € ker [(z — Kés))*] . With the
help of (C.5) we end up with

Im(z2) < (Mg + 1)~ | ¢>

—Im ( (Mg +1)""¢ | z¢)
T (Mg + 1) | K570

> —(1+Cg) (Mg +1)"0 |[¥)
> —g<(M[e1+1 v|v)

for g < 1. Since Im(z) < —2 we conclude that ¢ = 0.

The localization of the numerical range of Kés), Proposition A.9, along with [19,
Prop. 19.7] imply that z € Sp@C(Ke(s)) and

~1
‘ (z — Ke(s)>

1

< .
dist {z, NumRan (K 9(8)) }

The previous lemma has an important implication on the decay of the resolvent
—1
<z — Kﬁ) as Re(z) — oo.
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Lemma C.2 Under the assumptions of Lemma C.1 on the parameters 8 = (9,7)
and s we have

spec (Kg”) C{zeC|Im(z) > -2}

and for v € R with |x| > 2||L,|| holds
1 16v2 |]"
- g vV~
S {f’ Sin(Tm(3)) H

—-n

H ((x —20) — Kﬁ)

for each n € N.

Proof. Since NumRan <K(§s)> C{z€ C|Im(z) > —1} by Proposition A.9 we
obtain
spec (Ka(s)> C{zeC|Im(z) > -2}

using Lemma C.1. To prove the norm bound it is sufficient to consider the case n = 1.
We use Proposition A.9 to estimate for ( € NumRan <K§S)> and 0’ := Im(9),

@=2)=C = o= Re(Q)] +[2 + ()]

> 5 [l Re@l 1 max {0, P Retc) - 12,0}

> % {]a: — Re(¢)| + 1 4+ max {0, s1n8((5’) (% — |z — Re(()|> H

Ll+1], B <R
- % L 1], Bl > o - Re(0)
, 1 sin(0)

> |z + 1]m1n{%, TG }

Lemma C.1 finally yields
: 9\ ¢ 1
H ((3: — =K )> = dist {(:v — 2i), NumRan (Kﬁ)}
16v/2
< m max {\/g, m} .

We need another preparatory lemma before we are in position to state the theorem
about spectral deformation analyticity.
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Lemma C.3 Choose the parameters 0 = (6,7) € C? and s € C as in Lemma C.1
and assume that Im(z) < —2. Then, for g sufficiently small, the operators

-1
B, = (Laws + Moo ) (2= K§7) (L + Neew + 1)

defined on D(Laux + Nyes), extend to bounded operators of norm
(2— (s))_lH (C.6)
K, )

201 [1 40 (g)]
dist {z, NumRan (Kﬁ) } '

|Bi.|| < O+ 0(g)]

<

Proof. We may restrict our considerations on the case that § = 79 is purely
imaginary, by the following argument. Let 6’ := (i Im(9), 7), then 6 = (Re(4),0) + 6’
holds and therefore

By, = (Laux+ Nies +1)7 Da(Re(0)) (z — Ké;”)1 Dq(Re(6))*
X (Laus + Nyes + 1)
— D4(Re(0)) (dTg (e~ Be@ =@ y)) 4 Ny +1) 7 <z - Kg,”)l
x (AT (e Be@h @ y)) 4 Ny 4+ 1) Da(Re(6)) .
Since Dg(Re(d)) is unitary we get
1B = || @ (e 0=l + N + 1) (2 - KP)

< (dTy (e~ R ) 4 N,y + 1)

15

) |

- Laux + Nres + 1 -
- (dlg (eFIRe@)sen(w)|y|) + Ny + 1)

Laus + Nyes + 1 i
(dDg (eFIRe@lsen(w)|y|) + Nyes + 1)

< o5 |

X

From now on we assume that § = 0’ € iR.
Consider
) -1 -1 O\
Z - Kg (Laux + Nres + ]-) - (Laux + Nres + 1) Z — K@
O L[ (o)
= <Z - Kgs > (Laux + Nres + 1)7 [Kgs aLaux + Nres:|

-1 )"
X (L + N + 1) (2= K)
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Both sides are bounded operators, because the commutator is relatively (L. +
Nies + 1)-bounded. This, in turn, can be seen by rewriting

K, Luwe + N = 9 [1§”, Laws + New|

and using that the commutator on the r.h.s. can be expressed as linear combination
of creation and annihilation operators. Those are, due to Lemma A.3, relatively
bounded w.r.t. N, with relative bound given by the norms of the coupling functions.
Therefore

H (Laux + Nres + 1)_1 [KéS)a Laux + Nres:|

=0,
Thus, the operator
A= (z- Kés))l (L + Noes + 17 [ K, L + Noco|
is bounded with norm ||A|| = O (g) where we used Lemma C.1 and that
dist {z,NumRan <Kés)>} >1 for Im(z) < -2,

see Proposition A.9. Thus,

—1 —1
14+ A) (Lo + Neew = D7 2 = K9) (Lo + Noww + D) = (2 = K
0 [/

and
—1
Bf, = (Law+ N+ 17" <z _ K§S)> (Lo + Nyeo + 1)
)}
= (1+A)™! (Z—Ko )

which is bounded with norm

IBE] < [1+0(9)] \

g 1+ 0 (g)
(z— K >) H < dist{zaNumRan (K(gs>>}.

The proof for Be_, . 1s similar. |
Proposition C.4 (Strong Analyticity of K(gs)) Let s € $.,. Then the map

Dyymy 3 01— K

is strongly analytic on D(Laux + Nyes), in each variable separately.
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Proof. We set
Os Lo = sinh(0) Lyes + cosh(6) Laux,

O0rLop = Nres, (1)
and
00, Ky) = 8, Log + 90,15
= O, Log+9 |y (0, F) + ag (05,5 (C.8)

with 6, standing for § or 7, resp. All above operators are relative bounded w.r.t.
(Laux + Nies + 1). We consider, representatively, the differentiability w.r.t. ¢ only.
We choose 0 = (4, 7) € Ds, -, and § = (¢’,0) and compute

H {Lo,ewf — Loy

5, - a(§LO,0:| (Laux + Nres + 1)71

cosh(d +¢') — cosh(d) . Lyes
< 5 | e s
— cosh
* 5 b)) | Lo N 1
&' —0 O,

because of |Lyes| < |Laux|, and

(s) (s)
[IG+0’ — 1y
6/

§|a

+

- 66[9(5)] (Laux + Nres + 1)_1

() pls)
* <F9+€/ _ F9

gl Y

- 85F9(S)> (Laux + Nres + 1>_1

(3) )
EL = o —
%Qﬁ%ri—%#j@m+Mm“V

s) s
Fyly — Fy”

5 — Ok

L2[0;B(H3))] L2[T;B(HR))]

' —0
—> 07

which holds true since 6 — Fe(s) is analytic because of Hypothesis VII-1.12 and

Remark 1.13. Hence, the operator Kés) is strongly analytic on D(Laux + Nyes) in 0.
The analyticity w.r.t. 7 is proved in the same way. [ ]

From the Lemmata C.1, C.3 and Proposition C.4 we obtain the analyticity of
the regularized resolvent (Lauy + Nyes + 1) 71 (2 — Kés))_l(Laux + Nies + 1)~ in the
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deformation parameters. The awareness of the need to regularize the resolvent in
order to show deformation analyticity originates from [8, App. A].

Theorem C.5 (Deformation Analyticity) Let s € R and Im(z) < —2. The
reqularized resolvent

—1
Df 500 R = (Luux + Nuew +1) " (z - Kﬁ) (Lane + Nyes + 1)1 (CL9)

00,70

as a function of 0 = (8, 7) is analytic, in each variable separately, on the domain
D More precisely, for fixed § € D(}Z the map 7 — Rég)ﬂ 1s analytic on the

40,70
domain S} and for fived T € S} the map § — RE;)T) s analytic on the domain Dg;.

Moreover, the map 6 — R((f) 1s continuously extendable to 8D(§Z’TO.

Proof. Note that, due to Proposition C.4, the operators Ly and K(SS) are
strongly differentiable w.r.t. 8 = (6, 7) with the partial derivatives given in (C.7,
C.8). We consider, representatively, the differentiability w.r.t. § only. Let 6 =
(6,7) € Df _, denote ' = (¢§',0) and consider

00,70

-1 1
z—Ke(Jr)e,) —(z—Kg( ))
6/

(Laux + Nres + 1)71 [ <

—1 -1
(oot o (s ) | v

(s) (s)
A KS), — K
= <Laux+Nres+1>‘1[(2—K§f29,) Roco 20

-1

— (- K9) o 85K9<8>] (= K)  (Lae + Nw + 1)

s) s)
K 9(+9' - K 0(

= B;_+9/,s (Laux + Nres + 1)_1 [ 5/

_ M;@] (Laux + Nees + 1) By,

+ —1 (3) (S) (S) —1
+B9+9’,s (Laux+Nres+1) |:K0+9, _KG :| (Z_KB )

X aéKéS) (Laux + Nres + 1)_1 Bejs
j— Q(;/
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Because of Lemma C.3 the operators B, , and By, o, are uniformly bounded as
0" — 0 such that there is a positive constant C' with

Qs
K(S) L — K(S)
S C (Laux + Nres + 1)—1 % - 85K9(S) (Laux + Nres + 1)_1
A |
% 05K (L + Noew + 1) ]
=0, ),

Here, we used the strong analyticity of 6 — Ke(s) on the domain D(L.ux + Nyes) as
provided in Proposition C.4. This concludes the proof of analyticity of (C.9) in §.

. . . Jr .
To prove continuity in 6 € Dy we consider

1 IO O “1
(Laux + Nres + 1) z K9+9/ z K9 (Laux + Nres + 1)

Bt N 17 [ K] (N 17 B
&' —0 0’

by the same arguments as above. The analyticity and continuity w.r.t. 7 is proved
in the same way. [ |

C.2 Analytic Continuation of Kés) in s

Theorem C.6 Let Im(z) < —2 and choose § = (6,7) € Dy, . such that § = id’
with §' € [Z, %] and Re(7) = 0.

814

(i) Then the reqularized resolvent
S 35— R = RY(2)

—1
= (Laux + Nres + 1)71 <Z - K55)> (Laux + Nres + 1)71

1 analytic in s.
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(ii) Then, for ¢, € H?, the improper Riemann integral

B 3 s p(s) = / dz <80 ‘Rés)(z)w>eizt

R—-2:

1S analytic in s.
Proof.

(i) Note that K{” = Log + g [w(v) — 7' (1§(v))], such that
asKéS) = _98871’ ('Yg(v))g
= —g [a; (859’(5(;5),9) + agl (aggzgtﬁ),@)] )

in a strong sense on D(L,ux + Nyes). The derivatives of the coupling functions
are explicitly given by

09550 Z7) = 10ia ()G 55 (0 2:) + 160y [ Ly G5 (1 1)
(a4 o ), 2

recall the definition (2.13). We abbreviate

1

-1 —
aSRéS) = (Laux + Nres + 1)71 (Z B KG(S)) [asKéS)] (Z B Ké8)>
X (Laux + Nees + 1) 7.

Let s € S%o and s’ € C such that s + ¢’ € S%o. With the same arguments as
in the proof of Theorem C.5 we obtain that

s+s’ s
Ré ) _ Ré ) _ aSRéS) (ClO)

lim
s'—0 S
using the analyticity of s — g’(S )0 in the L? sense due to the Hypotheses VI-
1.11 and VII-1.12 and the dominated convergence theorem.
(ii) We first prove the convergence of the improper Riemann integral. For z =

r— 20 € R — 2i with |[x|] > 2||L,|| we have by Lemma C.2 the following
estimate on the matrix element,

N A
K“" (- 5) ‘”>‘§ CEDE
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for n € N, which in turn shows that the improper Riemann integral

b
- o @) i(z—2i)t
lblm de { ¢ |((z—2i) — K, v Ye

—a

=b
i(z—24)t v

_ i
b Lo @Y\ e

+ lim bdm <<,0 ‘ ((x—Qz’) —KO(S)>2@/J> e

x—21)t

it

a,b—o0

% _9 i(z—2i)t
- /dx <g0 ‘ (<x_2¢>—K;S>) ¢>6 -
7

— 00

converges uniformly in s. We now consider for s, s+ s’ € S%o

p(s+s) —pls) / I <90 ’aRés)(Z)w>€izt

S/
R—-2¢
R(s—l—s') 2) — R(s) » . N
- / dz<g0 — ) &) o8 e ) e
R—-2¢
K(5+5/) _ K(S)
S (Laux + Nres + ]-)_1 [9—,9 - asKg()S) (Laux + Nres + 1)_1
S
< [ @z 1B 1B I 1
R—2¢
i H(Laux + Nres + 1)—1 [Kés-Fs’) o K(§S):| H
X 05K (L + N + 1)
-1
< [ @ 18 @I BN | (- 57) el
s'—0 07

where we used the relation (C.10) and the strong differentiability of s — K 9(8).
Further we used the following uniform norm bound for Bei’S = B;%S(z),

-1
(z — Kﬁ)

<

1B2(2)]| < 1+ 0 (g) \

|z| + 1
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for z = x —2i € R — 2i and for a positive constant C' < oo, see Lemmata C.3,
and the bound on the resolvent provided by Lemma C.1. This implies the
absolute convergence of

02
/dZHBMS B < / lafr 1z =
R—2i
and

[ @ Bt 57|

R—2i

<Z—K9(S)>1H < E[dxﬁjl)g < o0,

uniformly in s’

C.3 Deformation Analytic Observables

In Section 2.3.1 we introduced a functional w which was defined on a subset 4*** of
observables, defined in (2.34). The observables collected in A*** are referred to as
deformation analytic observables and are characterized as those elements A € A for
which m(A)Q € D(Lauy + Nyes) and the deformation 6 — (Laux + Nres + 1)[m(A)Q]y
is analytic in each variable separately, i.e., 7(A)Q € D&> . It is the aim of this
section to prove that A" contains a strongly dense x-subalgebra 4; in A. To this
end we will proceed as follows. We construct a set D*@ which is dense in L?[R3|?
and is mapped under the gluing function g, defined in (1.65), to a dense set R* in
ran(g) C L?*[Y]. The span of observables of the type A := A, @ W (f1)®---@W (fr)
for A, € A, and (f1,... fr) € D* is then strongly dense in A. In a further step
we show that w(A)Q = [Ap ® 13,] ® Wa(g(fi1,---, fr)) has the required analytic
properties.

We equip the R-fold cartesian product X := Dt of the space Dy defined in (1.34)

with the norm
R 1 L 1/2
1o Fr)ly = (Z/ [ +ﬁ}|fr(k)l>

which makes it to a Banach space.
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Lemma C.7 The gluing function g : X — L?[T] is a bounded (continuous) real-
linear map and has a bounded inverse g—' : ran(g) — X with norm bounds

o ()| oy < 2max{1, Boal*} £

(C.11)
o7 (F)|| » < V2max{1, B2} 1 Fll oy -

Proof. For f = (f1,..., fr) € X we have

R % 2
I8 = 3 [ du [ e f )P
0

S2
r Y 2 )
=Y [ du [ d% 1o fr(—uX)l
r=1 0 g2
R 2 2
B u u 9
= > du/dz L_e_m A — | f (uD)]
r= 52

eﬁr|k| — efﬁr|k|

e e Gl

For « > 0 we consider the function

i, Plr) = —— <,

which is strictly monotonously decreasing such that

_14e® cosh(

~ 1—e  sinh(

x—t(x)

N8 o8

1+e™
> lim ¢(2) = 1.
o = A1)
We also have | . | . .
+€ Z + x _ _[6—5]—1 Z -
1l—e=2 rl—e 2 T T

for € € [0, z], thus

Further, for z < In(2),

—x ¢ In(2)
1+e < 2 :g T :2i<26 <4 1_}_&)
l—e 7 1—e" rl—e% x T T
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and, for z > In(2),

1 —x 1 1
T in(2) = 2

l1—e*®

Altogether, we have for x > 0,

This gives the following bound,

1+ |fr(15)|

S min{1, ﬁmax}; / &F

L] 4 el -
< 3
< Z / R BP

IN

4max{1, ﬁmm}Z/dg 1+ £ (k).

Therefore, the gluing function g : X — L?[T] is a bounded (continuous) real-linear
map and has a bounded inverse g~! : ran(g) — X with the norm bounds given in

(C.11). [

We are going over to describe the range of g.

Lemma C.8 The range of the gluing function g is given by

ran(g) = {F € L*[Y] | F(u,%,r) = — PP (—u, 2, r) a.e. }.

Proof. While the inclusion “C” comes from the definition of g, we check the
inclusion “2”. For F' € L*[Y] we define f, : R®* - C,r=1,..., R, by

V1-— e—ﬁfW k
S F( |k, =7 ).
k|

() =
(k) 7
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We show that f:= (f1,..., fr) € X,

> [ e[+ L]

r=1 R3

R

17 1 = e Bru
< g /u2du/d2 {1—#—} %lF(U,E,T)F
u u
7":1

oo

< — e )| F(u, )
=lre &
u+1 B
< s [T et >} [airwr
u€R™T, u
rele/ T
2
= CIFI L
using that
1
C = sup [u+ (1 —6_5’“)] < 0
u€RT, u
’/‘EJNfL
since 1 1
u u
1i 1—e Py =3, 1i 1—e Py =1.
lim ——(1 - =4,  lim ——(1—e"")
If further F(u,X,r) = —e#"/2F(—u,%,r) a.e. then f is the pre-image of F' under
g [

We now consider the subset R C ran(g) given by

R = {(U,E,r) — P (u, S, r) | he L°[Y],3M >0 1ju>ah =0 a.e.,

h(u,%,7) = —h(—u, %, r) a.e.}.
Note that R is dense in ran(g). For F(u, %, r) = e*“/*h(u, %, r), F € R°, we define
he(u,2,7) = Ge x h(u, X, ) /dung—u h(x,3,7),
R
for € > 0, the convolution of h with the Gaussian

1 2

x
_zZ
E\/_ 2

e ¢

Ge(z) =
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w.r.t. the variable u. Note that

he(u, ¥, 1) = —he(—u, 3, 7)

as one sees as follows,

he(u,2,1) = /dazGa(x—u)h(m,Z,r) :/d$G£($+U)h<_x,E,r)

_ —/d:v Gz — (=), 5 7) = (=, 5, 7).

Further, we consider the decay of G. * h(u,X,r) as |u| — co. Let M > 0 such that
1jy>rh = 0 a.e., therefore,

M
|Ge x h(u, X, r)| < /deg(x —w)|h(z, Z,7)| < 2M ||A| joopy G=(C — w)
“M

for a.e. (X,r) € S? x N and a suitable ¢ € [-M, M]. For u > M we have

exp(—z(u— M)?)
e/ ’

|G€ * ]’L(U, E,T)’ S 2M ||h||L°°[T]

and for u < —M,

exp(—g (u+ M)?)
e/ ’

‘Gs * h<u727r)| <2M HhHLOC[T]

which implies, for |u| > M,

exp(—a%(qf — 2M|u| + M?))
e/ ’

(G # b, £,7)| < 2M ||| gy (C.12)

for a.e. (X,7) € S? x NI
Lemma C.9 The set

Rana =
{(u, 2,7) = e7YAG, x hu, S, 1) ‘ (u, 2, 7) — P4 h(u,%,r) € R®, e > O}

is a dense subset of ran(g).
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Proof. It follows from the decay properties (C.12) of G. * h that (u,X,7) —
PG xh(u, X, r) € L2[X] for (u, 2, 7) > e®%4h(u, 3, r) € R°, thus R** C ran(g).
In order to proof the density we first note that, for a function h € L?*[Y], holds,

2

HGE*hHiQ[T] = /d(u,E,T) /deE(x—u)h(x,E,r)

T R
< /d(u,Z,T)/dee(x—u)/deE(a:—u)|h(:r,2,r)]2
T R R
||G5||L1[]R}/d(x,§],r)|h(x,§],r)|2/duG5(x—u)
T T
= NGell T NPl Z2pey = 1Rl 2 -

We now show that G. % h “=% h in the L%sense. For a given h and 1 > 0 we find
a continuous, compactly supported function f € L*[Y| with |h — f|| ey < /2.
Since

|Gexh=hllpoyy < N = hllpepy + 1Ge* [ = fllpopry + 1Ge* (F = D)l 2y

< 2 = Al opry + IGe * f = Fllpopry

n+Ge* f— f”L?m )

the proof of the convergence of G. x h towards h may be reduced to continuous,
compactly supported functions h,

A\

2

|G x h — hHigm = /d(u, ¥,7) /dx Ge(x)[h(u+ z, 2, 1) — h(u,3,7)]
Y
< /d(u, X,r) /dm Gy (z) |h(u+ ez, 2, 7) — h(u, 2, 7)[?
Y R
=2 0.
This concludes the proof. [ |

Using that g=! : ran(g) — X is continuous, the set
Dana . g—l(Rana)

is dense in X. Since further X is dense in L?[R?]® the set D* is dense in L?[R?]",
as well. We build the collection A; of observables defined by

Ay = span {4, @ W() -+ W(fr) | Ay € Ay, (i fr) € D™ ). (C.13)

We remark that the selection D** of coupling functions and the collection A; of
observables, along with the function g, depend on the reservoir temperatures.
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Proposition C.10 (Density of Analytic Observables) The set A, is a
strongly dense x-algebra in A. Moreover, the vector Q) is cyclic w.r.t. w(A;) and

7' (A1), i.e., the spaces (A1)Q and ©'(A1)Q are dense in H2.

Proof. By definition, the collection A; of observables is a linear space. Further,
due to the CCR (1.35) for Weyl operators, the product W(f)W(g) of two Weyl
operators W(f),W(g) can be expressed as a multiple of a single Weyl operator
W (f + g) obtained by adding the form factors f and g. Since the space D*? is
linear, the set A; is closed under multiplication. Moreover, the space A; is closed
under conjugation because W (f)* = W(—f). Therefore, the collection A; forms a
x-algebra. Since

A=span {A, @ W) W(fr) [Ay € Ay, (Jr- . Jn) € X} 500

the algebra A; is strongly dense in A. This follows from the density of D** in X
and the fact that W(g,) — W(g) strongly if g, — g, see [11, Prop. 5.2.4].

We go over to proof the cyclicity of Q w.r.t. 7(A;). By construction we have
m(A1) = span {[Ap ® ILHp] ® Wal(g) ‘ A, € Ay, g € RT™ }

and

- lserey

m(A) = span {[Ap ® Ly, ] ® Wa(g) | A, € A, g €ran(g) }

and due to the density of R* in ran(g) we conclude with the same arguments as
above that m(A;) is strongly dense in 7(A). This, in turn, implies that 7(A;)" =
m(A)", i.e., the weak closures coincide. It follows by von Neumann’s density theorem,
[10, Cor. 2.4.15.], that the x-algebra m(A;) is strongly dense in its weak closure
m(A)".

Now, let ¢ € H? and € > 0 arbitrary. Since Q is cyclic w.r.t. 7(A)” by Lemma B.4
we find an element B € 7(A)” such that Hw — BQH < g/2. Since 7(A;) is strongly

dense in 7(.A)” there is an observable A € A; with HW(A)Q — BQH < ¢/2. It follows

that
H¢ - w(A)QH < H¢ - BQH n HBQ - W(A)QH <e.

The cyclicity of Q w.r.t. 7/(A;) is proved in the same way using that
7(A1) = span {[Ly, © A,] @ Wy(g) | Ay € Ay, g € g/(D™) }

and

I ()

7' (A) = span {[]al ®Zp] ® Walg) | A, € A, g €ran(g) }
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where g'(D*%) is dense in ran(g’), and that Q is is cyclic w.r.t. 7(A)’ by Lemma B.4.
|

The next task is to study the analytic deformation properties of observables A €
A;. Let f € D™ and write the function F := g(f) € R*™* as F(u, %, r) = */4G_ «
h(u, ¥, r). Due to regularization of h by convolution with the entire function G, the
function u — F(u, Y, r) extends to an entire function on C for a.e. (X,r) € S? x NI,
also denoted by z — F'(z, %, r). Therefore, we can build the deformation

[g(f)]G(u> 2, T) = Fﬁ’(u? X, T) = eésgn(u)/QF(jG(u)> 2, T)

where, recall, jo(u) = %"y + 7, for § = (6,7) € C. We show that the function
F € R™? remains an L2-function even after spectral deformation.

Lemma C.11 Let f € D™ qnd set F := g(f) € R™. Let § = (6,7) € C* with
| Im(0)| < &. Then, the deformed function Fy stays in L?, i.e.,

Fy=g(f)lo € L*[T].

Proof. We write F(u,X,r) = e>¥/4G, * h(u,Z,r) with € > 0 and (u, Z,7)
ePrultp(u, o, r) € R°. Since

2
HF9||§,2[T} = /d(U,E,T) |e5sgn(u)eﬁrjo(U)/2| /deE(x—jg(u))h(x,E,r)
T R

we may assume Re(d) = 0 as one sees by performing a transformation of integration
variables u — e~ Re(@)sen(wy, We estimate

2
||F9||izm < /d(u,E,r) eﬁTRe(j‘)(“))m[/dx|G5(x—j9(u))||h(x,2,r)|} :

T R

Using that |e*] = eR°®) and Re(z?) = Re(2)? — Im(2)? and therefore |e*’| =
eRe(z)Q—Im(z)Q we get

Im (jg(u))?
e2

G — jolu))] = exp( ) G — Re(jo(u)))
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and, with this relation and (C.12),

1Bollom < [ dlaZ2r) exp (”m(gﬂ ; %Re(je(u)))
T

x G. * |h|(Re(jo(u)), 2, 1)
AM? [Pl goopr) a2

e2r

2 [ B (2 — T (ag))?
9 / dtu3.r) exp (= 5| Retiaw)? = (i)

AM

I Re(io(u)] + 5 Relio(w)
< 00 (C.14)

_|_

where M > 0 is chosen such that 1j,>ah = 0 a.e. Further, we used that

Re(jg(u)) = cos(8')u + Re(r),
Im(jg(u)) = sin(¢") [u| + Im(7),

for ¢ := Im(9), and therefore

Re(jp(u))* — Im(jo(u))?
= cos(28)u* + 2cos(d") Re(T)u — 2sin(8") Im(7)|u| + Re(7)? — Im(7)>.

The fact that the coefficient cos(20’) of the leading order u? is strictly positive for
|0'] < § guarantees the finiteness of the integration over u in (C.14). [

The next statement characterizes the deformation analytic properties of functions
in Ra",

Lemma C.12 Let f € D*® and set F := g(f) € R*™*. The function

0= (0,7) — Fy=1[a(f)]e

is analytic in the L*-sense (in each variable separately) on the domain |Im(§)| <
and T € C.

s
4

Proof. We write, as usual, F'(u,X,r) = e¥**G. x h(u, X, r) with ¢ > 0 and
(u, S, 7) = F¥/4h(u, %, r) € RO, First, we note that it is obvious that 6 +— Fp(y) is
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pointwise analytic, for a.e. y € T, and that (with ; =6, 65 = 7)

. 1 (z—jg (w)?
89j Fy(u,X,r) = 89]- [eésgn(u)ﬂeﬁﬂe(wﬂ / o 20, h(z, %, T):|
EN/TT

—  dsen(u)/2+0rjo(u) /4/dx W#h(x,ﬁ,r)
5ﬁ
R

o[ 2o DN, 5,220,
(
)=
)=

2
Further, the derivatives of jy(u) are given as

aéje(u ( ) 6sgn(u) 6sgn(u |U‘,
T]H(u

such that

05 Fy(u, 2, 7) = "5 |y [8,F), (u, S, 7) + Sgnz(u)F@(u, 5, 7).,
OrFp(u, 2, 1) = [0, F], (u, 2, 7).

The same arguments as in the proof of Lemma C.11 show that both, 0sFy and
0-Fy, are functions in L*[Y] for |Im(d)| < % and |Im(7)| < 27 By dominated
convergence theorem we can conclude that

m ax

|0/| ||F9+9’ Fp — (V@F@) ’ 0,||L2[T] —0

as |0'] — 0. n

Remark C.13 The coupling functions f € D*? are tailor-made such that the glued
image 0 — [g(f)]g is smoothed out around the poles +2nmi; ', n € N, r =1,... R,
which usually appear under the gluing. Therefore, the function (0,7) — [g(f)]e s
entire in 7. The smoothing and therefore also the construction of the set D*'®

s dependent on the inverse reservoir temperatures. We refer to the discussion of
Remark 2.7.

We now justify that the elements of A; are deformation analytic observables.

Theorem C.14 (Deformation Analytic Observables) For any observable
A € Ay the wvectors w(A)QY and 7'(A)Q) are in the domain of the operator
(Lauwx + Nies + 1) and the functions

R25 6 = (5,7) — (Laux + Noes + 1) [W(A)QL



C.3. Deformation Analytic Observables

305

and

R23 0 = (6,7) — (Laue + Nees + 1) [w’(A)Q]
0

have analytic continuations (in each variable separately) to the domain
Dgoq-o—{57' € C*||Im(8)| < bo, |7| <70 }

max

Jor § <do < 7§ and 7o < 27w In other words,

m(A)Q C DX, and — 7(A;)Q C DL

a-
Proof. With the help of Lemma B.1(i) we write the vector {2 as a Dyson series,

Q= C’Z(—g)" / dsy - ds, 7 (af™(v) - aft (v) Qo,

0<s, < <51<8/2

1
where C 1= ’ e‘ﬁmeQoH and

7 (057 0)) = a3 (Ge1) ) + 021 (G-i))

where T = (1,1,..., 1) € C#F, recall the notation (2.12) of G(z). Now let 4, € A,
and f = (fl; e 7fR) € D™ Set A = Ap X W(fl) R R W(fR) € ./4,1 and
F = g(f) and expand 7(A) = m,(4p) ® Wy(g(f)) in a series,

( ®Z 2m/2 gl )+ag1(F>]m7

where the convergence is meant in a strong sense. Therefore we may write

_ 0 im(—ag\"
T(AQ = Cmp(Ap)® Y % / dsy - - - ds,

m,n=0 0<sn < <51<3/2

[0+ 0" TT [ (G ) + 0 (9 )] 0

We apply spectral deformation to every single addend in the above series. We remark
that 6 — Fy = [g(f)]s is analytic in the L? sense, by Lemma C.12, and so is 6 —
[Q( ﬂs,f)] 9 by Hypothesis VII-1.12 and Remark 1.13. The relative bound of creation

and annihilation operators w.r.t. NidZ as provided in Lemma A.3 guarantees that

0 [a%y(Fp) + ag(F. H [ ( (isn_T) 0 > + ag ([g(—isn_jf)]§>:| Q



306 C. Analytic Continuations of Operators and Vectors

inherits the analytic properties from 6 — Fy and 6 — [Q( iisji‘)]g. With the argu-

ments as given in the proof of Lemma B.1(i) we see that the series

~ & im —q n
m(A)Qly = Cmp(4p) ® Z QW(L/%Z' / dsy - --ds,
m,n=0 :

0<sp<<51<6/2

% [a;(Fa + ag(F H [ gl( (isn_s } ) + agl ([g(_isn_jf)b)] Q

7=0

converges uniformly on each compact subset of Dy, , which results in the analyticity
of 0 — [m(A)Q]y. To estimate

< O’e5ﬂmax/2
L2[Y3B(H2))

|16,

uniformly in 0 < s; < Bhnax/2 and 6 € D, . we employ the same arguing as in the
proof to Lemma A.1.

So far we have proved that W(A)Q € Do_,. We now consider

(Laux + Nres) [W(A)Q]Q

[e.9]

= Crmp(4,) ® Z 2775/272! / dsy - -dsp

m,n=0 0<sn < <51 <f/2

{ S [t (Fo) + ag(Fy)] [atu((Jul + 1)) — ag((Jul + 1)F)]

X 1_[0 [a; ([Q(isn_ﬁ)b) + ag ([Q(,isn_jf)]gﬂ

y z_: { 1:[ [a; ([g(isn,ﬁ)b) + ag ([Q(fisn,jf)b)] }

J=0

X [a; ((|U| + 1)[9(“",&)]9) — Qg ((|u| + 1)[9(43”41)}5)]

A T o (9 h) + 0 (9 )] }}Q

j=t+1

where we used the pull through formula to commute (Laux + Nyes) with the creation
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and annihilation operators,

[Laux + NreS7 a;l(FQ)]

As before, we find uniform bounds on

[ (] + 1)F9||L2[’I‘] + ||F9||L2[T] < Ch,

|l + 1)1, o]

S CQ;

L[] + H [g(ﬂsjf)]6’ L2[Y]

which allow an estimate

| (Zas + N 4)03 |

(m+n)y/Im s DU (™ (g8C\"
< CHAPHB Z mln! ( 1) ( 2)
m+n [(m+n+1\ /m+1/C 95C;
= Ol S \/m—ﬂr ) (" )
m,n=0
m+1 n+1) m+1/Cy gBC%
< C|a, Hmm;o m m\v2) 2
( n—i—l
— 20 Ayl SUELAE Z aoes
) 2 \/_ Vn!
< 00,

uniforml~y in # on compact subsets of D, ,,. We conclude that 6 — (Laux + Nyes +
1)[7(A)S2]y is analytic, again using that 6 — (|u| + 1)Fy and 0 — (Ju| + 1)[g(il.sjf)]9

are analytic functions in the L2-sense.

Since an arbitrary element from 4; is a (finite) linear combination of elements
of the type A, @ W(f1) ® -+ @ W(fr) with (f1,..., fr) € D** we conclude that
7(Ap)Q2 C DE™,. The proof of 7'(A;)Q2 C DEF™, uses the same arguments. [

Corollary C.15 The set D&™, is dense in H>.

Proof. By the Theorem C.14 we know that 7(A4;)Q C D&, while Proposi-

a

tion C.10 guarantees that (A, )< is dense in H?2. [
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Proposition C.16 (Zero Eigenvector of Kj) For any 6 € Ds, ,,, the vector
15 in the kernel of Ky, i.e., 3
KpQy = 0.

Proof. . The previous Theorem C.14 implies that Qe D(Laux + Nies) and
therefore Q2 € D(Kjy). Further, we know that the map

0 — (Lanx + Nyes + 1)@6
is analytic, separately in the parameters 0 and 7. So is the map
0 — Kp(Laux + Nyes + 1)
by Proposition C.4. Therefore the function
fiDsymy =M, f(0) = Koo
is analytic. For arbitrary 7 € R holds
F(0,7) = D (1) KDy (—7)D(1)Q = Dy (1) KQ = 0,

since ) € ker(K) by construction. Hence, by analyticity, f(0,7) = 0 for all (0,7) €
Ds, +,- Let 6 € R with (d,7) € Ds, -, then

F(6,7) = Da(6) K (0. Da(—)Da ()01 = Da(6) £(0,7) = 0.

Finally, by analyticity, we conclude that KyQy = f (0) =0 for all @ € Dy, +,. ]



D Manipulations on Wick Monomials

D.1 Wick Ordering

The aim of the present chapter is to provide a technical tool — known as the Wick
ordering procedure — which allows to rewrite arbitrary products of creation and
annihilation operators and free operators in a standard form by commuting creation
operators to the very left and annihilation operators to the right side of a product.
The results presented here are taken from [6, App. A] and are adapted to our
situation. In what follows we consider a Hilbert space

H = Hooo @ F(L?[Y)),

where H_., is an arbitrary finite dimensional Hilbert space. In the applications in
the main text we choose either Hooo = H2 = CN* or Hes = ker(L,) = CN or
Heoo = ker(Teq) = CQ,,. The space F(L*[Y]) is the bosonic Fock space over L?[Y]

where

as introduced in (1.63) on which the creation and annihilation operators ay(y) and
agq(y), resp., act. We recall the notation

Ag = (cos(é')LreS, ]\/[[9]) (D.1)
= dl'g(Ng) E/d(u,E,r) ag (u, 3, 7)Ao (u)ag (u, 3, 7)
where
Ao(u) = (cos(0")u, mg(u)) = (cos(d")u,sin(d")|u] + 1)
for

0 = (i',i7') € (iR1)?,
the definition of my was given in (3.7, A.10).

We first introduce some notation. Let n € N and fix a multi index ¢ =
(S1,--+55n) € {£}" We denote aj(y;) = ag(y;) and ay(y;) := ag(y;) for a set
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of points y1,...,y, € Y. Further we introduce the abbreviation Nt := {1,...,n}
and for a subset D C N7 we define D* := {j € D |g; = +}. The Wick ordered
product 3 - ¢ of creation and annihilation operators a;(yj), j € D, is defined as

i = 1] ahw) I aalvs):

=1, jeD+ jeD—

Here and henceforth, we make the convention H;;l Aj = A;--- A, about the order
of products of operators A;. The expectation value (A)Qm € B(H<) of an operator

on H in the vacuum state Q... is defined as

dim(H<oo)

<A>Qvac = Z |w]> <¢] ® vac | Awk ® Qac >ﬂ <?/1k| s (D.2)

jk=1

where {¢;};-1, . dim(1-.) 15 an orthonormal basis of H..

The Wick’s theorem allows to convert arbitrary products of creation and annihi-
lation operators into sums of Wick ordered products, it reads as follows,

Lemma D.1 (Wick’s Theorem) For n € N choose yi,...,y, € Y and
(S1y---y5n) €{E}". It holds

[[aiw)= > <Ha§i(yj)> | DK (D.3)

j=1 DCN} \ j=1, vae JED
in the sense of operator valued distributions.

Proof. We prove the assertion inductively over n. The statement is obviously
true for n = 1. Now assume that (D.3) holds for all products with n > 1 factors.
We consider the Lh.s. of (D.3) with n 4+ 1 factors. We first assume that ¢, = —,

then
n+1
< 11 ag’l(yj>> =0
QV&C

J=1,
J¢D
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for any subset D C N?*! with n 4+ 1 ¢ D. The induction hypothesis yields

n+1
Haé(yj) - Z < )> H agl Yile gl (Ynt1)
=1 Qvac

—=

S
B
—~
&

DCN? jeD

[
R
g

Es

= Z< ;ﬁ(yj)> 11 e w)ag(yns):
QV&C

DCN? j;]]l), jeD
J
n+1
_ Sif,
= E agl(yj) Hagl Yile
DCN7H j;ﬂlj Quac JED
J

We go over to consider the case ¢,41 = +. We remark that the CCR can be
represented as

[a;’f (yk)7 agl(yn-&-l)] = <agf (yk)a'gl(yn+1)>ﬂ
and therefore, for D C N7,

<Ha;1<yj>a;<yn+1>> =Y (e )i (i), < II y]> -
Qvac Qvac

J=1, k¢D j:l
Jj€D J¢DU{k}

vac

Using the induction hypothesis we get

n+1 n n
H a; (v;) = yn+1 H ag1 yj) + <a§'f (yk)a;(yml»gm H a;(yj)
J

DCN? jeD

= > <Ha§i(yj)> 2 (nir) [ ] o (w))s
+Z Z <agl Yr) g yn+1)>Qvac< H a;{(yj)>

k=1 DCN7\{k} i=1,
J¢DU{k}
o | D
jeb
- 5 (Mot sosimen T
DCN7 \ j=1, Quac jeD
Jj¢D
+ Z <Ha§’1(y]~)agﬁ(yu+1)> Hagl vile
DENT \ j=1 Quac ~ JED

gD
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n+1
= Z < a;(yj)> Hagl Yj)e-
Qvac

DCN?HL A j=1 JjeD
JgDh

Lemma D.2 For n € N we choose points y; = (u;,2;,7;) € T and measur-
able functions F; : R x [0,00) — B(H<x), 7 = 1,...,n. Fiz a multi index
S =(S1,...,6n) € {Z£}". Then the following equality holds,

Jljl agi (y;) Fi(Ap))]
)3 { IT 0]

DCN? - jeb+
(T 6 (35 3 e+ 32 )
=1 1= 1 i:j+17 Qvac /\:A[O]
z'elD* ieDt
X{ 1T ag‘l(yj)} (D-4)
jeD—

in the sense of operator valued distribution. Hereby, F;(Ajg) is defined via functional
calculus using that the components of Ay are self-adjoint operators commuting with
each other. The indicator function 1(j) for a subset D C NV is defined to be one

if 7 € D and to be zero otherwise such that for an operator A holds [A]lD(j) = A for
jeD and [A™Y =1 for j ¢ D.

Proof. With a twofold application of the pull through formula (1.67) and of
Lemma D.1 we obtain

H gl y] 9] )]

Jj=1

= e 15 (Am + Z Sida(us)

7=1 7=1 i=j+1
DCN? < vac J=1 7=1 i=j+1

=§IH%%<H@W>
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<115 (Am + ) o) + ) dolu ) [1 watw).
j=1

i=j+1 i€D™ jeD~
We now use that for a measurable function F' : R x [0,00) — B(H<s) and any
operator A on H the relation

(A)g.. F(0,0) = (AF(Am)),,

vac

and therefore

(A)q,.. F(hg) = (AF(A

+ A
Vac )>Qvac )\:A[g]
holds. This and another application of the pull through formula leads to

n

H lagi (y;) F(Apg)]
ST i)

DCNY jeD+

<Hag1 Yj HF <A[9]+)‘+ Z Cz)\e uz + Z )\9 Ul )>
P =1 Qyac

i=j4+1 €D~
J¢€b

x H ag (Y5)

jED-

= > JI ¢

DCN7T jeDt

" < H [agi (y; )]IN?\DO) I (AW] A+ Z Sida(u;) + Z )\e(uz’)>>

j=1 1=j+1, €D~

i€D
< [ «

JjeED~

)\:A[g]

The assertion follows by the next consideration

n

> ada(w) + > Mo(w) = D> Nelw) = D> Aglu) + Y Aal(us)

1=j+1, ieD— 1=7+1, i=j+1, ieD—
€D ieDt €D~
n J
= E )\g(u,) + E )\g(u,)
i=j+1, i=1
ieDt ieD~
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The previous result allows us to “normal order” products of Wick monomials.
Before we state the corresponding theorem we first provide some notational tools.
Let L,S, R € Nand let (r1,...,7r1),(s1,...,5.) € N¥ be vectors of natural numbers
whose components fulfil 7;+- - -+r;, = R and s;+- - -+s; = S. For vectors y®) € TF
and 7% € T we write

YRS) = (B §9) g T+,

= () T () €T
g(S) _ <y§51)7‘ o ’g(sL)> c TS gésé) — <~é7sf), .. ,géssée) € e
and (r0) _ (o) y2(r0) (7o) () — (o0 50 50
Yej = (“e; X0 Ty )’ Uej = ( BT Jf)-

We further abbreviate

Ay B:S5) — dy(R)df/(S)

H dyy™, dyy"” H dyy"?),

A = Hdgész)’ d,glgse) _ Hdgézg)
=1 j=1
and
L Ty
ay () =TLaa (). e () =Tl (47)
/=1 j=1
L 50
Qg] (y(R)) = H gl (yéw)) , gl (%m) =1]1% (Né,sf)>
=1 J=1
and

mg (y7) = ﬁme (yé’"f)) , me < ) Hme (u” ) ;
e e it

With these notations at hand we define the Wick monomials. To this end we choose
a sequence of measurable form factors

wgrs: R x [0,00) X TR B(Heoo), R+S>0,
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such that for almost every A € R x [0,00) the functions (yi,...,yr+s) —
Wi s\ Y1, ..., Yres] are square integrable over Y. The map Wy assigns an
operator on H, the series of Wick monomials, to the sequence of form factors by

Wiol[(wWr,s)r+s>0] = ZE: Wi [wr,s]

R+5>0
with
Wigl[wo o] := woo [Ag] (D.5)
and
Wl ] /‘ dY (B.S) *( m» [A -Ymsq (%a) (D.6)
RSl = o reni? w Y a :
[0]|WR,S nm(}/Ubﬂ)VZ gl \Y R,S |1\[6) gl \Y

TR+S

for R+ S > 1. Finally, we introduce partially integrated Wick monomaials
W[(éﬁ’q) [Wripsiql : R X [0,00) x TP x T4 — {operators on H} (D.7)
defined by

W[(p ? [WR+p,5+4] ()\ y* >Z/>(k ))

dY(RS
/ m9 RS) 1/2

YTR+S

x ag (y") wripstq [Agy + Xy, 0P, 5,510 ag (5°)
for yip) € T? and gjﬁq) S

The above operators are well defined and even bounded on suitable subspaces
Heoo ® P[ My, Sl]}_ (L?[Y]) of H, the corresponding statement is made in Section 4.1,

Proposition 4.1. In this appendix we are rather interested in algebraic properties
and manipulations of these operators. Thus, the next theorem has to be understood
as an algebraic statement — having in mind that it may be read as a relation for
bounded operators when it finds application in Chapter 4.

Theorem D.3 (Ordering of Wick Monomials) For L € N we choose mea-
surable functions Fy, Fi,...,Fr © R x [0,00) — B(H<w). Further, let wrs :
R x [0,00) x TR x Y9 — B(H.s), R+ S > 0, be a sequence of measurable
form factors such that for almost every A\ € R x [0,00) the functions wgs[A; -]
are square integrable over YHHS.  Further, we assume that the functions y® —
wr.s[X;y B, 79 and §9) — wpr sy, 55 are totally symmetric under permu-

tation of the variables y® = (yiRl), . ,yé L ) and g% = (gﬁsl), o ,Q(LSL)), resp.
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Set W := Wyg[(wr,s) r+-s>m) for m € No and identify Fy = Fy(Ajg). Then, the al-
ternating product FoW F\W --- W F,_{W F, can be expressed as a series of ordered
Wick monomials,

RWRW - - WF_WF, = > Wyligs],
R+S5>0

where the integral kernels wg g are the symmetrization

WrsA; YL, - YR, s - Us) (D3)
1 ~ ~
= Z R'S'UJRSP\ Yrls s YR Unts - - > Uns]
TE€SR,
neSs

of the functions wgr s given by

UNJR’S[/\; Y(R’S)]

L
_ Z Z H T’g TP\ [(Setq
. SZ
ri+-+rp=R, PL,41,--PL,qL: | (=

$1b-tsp=8 Tetpetsetge>m

x Ey ()\ + 770 (y(R,S)))

[y

« <W[(07j1,s1) [wr1+p1,51+q1] ()\ + 77 (Y(R S)) yyl)?y(sﬂ)

x I (A[a] + A+ n§9’ (Y(R’S)) + Z Ao (u§S})>>
=1

sp—1
X Fp <A[9]+)‘+77529)1 ZA9< = 1>>
TI,,S 6 r ~(s
X W[e]L 2 [wTLﬂDL,SLJqu] <)‘ + 77(L) (Y(R’S)) y(LL)vy(L L)> >
Qvac

SI,
x I, ()\ +a) (VD) 437 Ae(aL,j)> , (D.9)

=1

where
—1 S5 L Tj

ny (Y9 ZAQ( ) > (). (D.10)

7j=1 i=1 Jj=l+1 i=1



D.1. Wick Ordering

317

Proof. We introduce the abbreviation Wg g := Wig(wg,s] to write

RWRW - WFE, A WF, = > FWg s FiWa,s, - Wa,.s, FL.
R1+512m7
Rp+S.>m

We compute each addend of this series separately. Let R = ZeL:1 R, and S =

S0, Sp. Then
FOWR1 SlFleQ Sy * WRL,SLFL

dY (R,S)
/ m@ (RS 1/2

YTR+S

x Fo[Ajglag (?ARI)> WR, .5, [A[e]; ?J%Rl),ﬂisl)] (g] (@55”> Fi[Aqg]

x Fr_1[Ajgag (y(LRL) > WR, .S, [A[O]S Y, ?J(LSL)] Qg) (ﬂ(LSL)) Fr[Ag]-

We now apply Lemma D.2 which allows to write the above expression as a sum,
indexed by subsets D of N = {1,... R + S}, over Wick ordered products. To
handle combinatorial difficulties we go over to represent the sets D and NF*5 ag

L T [ L ~ 1 N = R,E,j ]:1”R ,
s = [ o (|, M= (0D =1 )
L/=1 i /=1 ] NS,€:{<S>€7])‘]:1,-..,SL},
- L — . -
- D :]Dm./\/”
D = |UDre|u|UDse|. S
(=1 i L0=1 ] ]DS,Z =D ﬂng.

Using this representation the summation over subsets of Nt is replaced by

)SIEED SRED SIETED SED SRR IR

DCNfHS Dr1CNR,1 Ds,1CNs,1 DR, L CNR,L Ds,. CNs,L

Each subset Dy, specifies those r; := #Dpy < R, variables {y,; | (R,¢,j) € Drys}
that are Wick ordered outside the vacuum expectation value (appearing in the
creation operators to the left), and those R, — 1, = #(Ngy \ Dgry) variables
{ye; | (R,?,7) & Dgre} that appear in the vacuum expectation value in (D.4). The
subset ]]35,4 correspondingly specifies the variables of the annihilation operators that
are Wick ordered outside the vacuum expectation value. We consider a special term
contributing to the sum,

]DRJ {(R,é,j) ’] =1, 777}7
Nre\Dr, = {(R.4,5)|j=re+1,....Re },
Dse = {(S.64)|i=1,....5},
Ns\Dse = {(S,0,5) |j=sc+1,....5}
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According to Lemma D.2 the contribution generated by this term is given by

L

dyq dye C
. 1/2 . )1/2 a;( f,j)]
L e 1 s T
X {F@ ()\ + Z Z /\9(U&j)>

/=1

(=1 j=1
dy dy ©
1,5 1,5 *
<[ H /mg )12 H /me 1/2] LH agl(yl,j)]
j= 7"1+1 j=s1 +1 =ri+1
X WR,,8, (A[0]+)\+771 >y1R1)>y1 ) LH agl ylj ]
=s1+1
S1
x F) (A[g] +a+n? 4+ Ae(alﬂ.))
j=1
Sr—1
x F_, (A[g] A+ > Ag(aL_Lj))
j—l
Rp,
dyL] dij %
H /me )12 H me (i 1/2 H ag(Yr.5)
Jj=rr, +1 Jj=sL, +1 j=rr+1

XwRL’SL<A”+/\+TIL9)ayL . >[H agly1J]>
_SL+1 Qvac
L sg
[H H agl(g&j)]
A=A,

L dy dy L
ﬁ 0,5 .
= ‘77
x{ o)
(W ) (32

S1
x F (A[g] +a+n? +> Ae(am)>

(=1 j=1

j=1
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Sr—1
x 4 <A[9] R Z Ae(%u))

Jj=1

D ] (4 02, 50 > }
QVdC

A=Ay
L sy
w00
=1 j=1
= A [(RZ7 Ty, Sfa 85)%:1] )
where
-1 8j L Tj
=22 Ao+ 3 > A ()
J=1 1=l Jj=t+1 i=1
and
y;f* = (yﬁ,la s 7yf,1”g) y gZZ* = (gﬁ,ly cee agf,w) .
Since the integral kernels wg, g, ()\; yéR‘Z), yése)> are totally symmetric in the variables

yéR"’) and gjgs"), resp., the contribution of subsets Dgy, Dgy, £ =1,..., L, to the sum

(D.11) only depends on ry = #Dpg, and s, = #Dg,. Counting the subsets leads to
the following expression,

FoWh,, lelVVR2 $o  Wrps FL

bl (16

r1=0 rr,=0s1=0 s,=0

A [(Rﬁ, Tes Sh S@)%:l}

and therefore

FOWF1W---WFL TWEY
R, S
= 2 Z DIDIE Z
R1+S1>m, r1=0 rr,=0s1=0 sr,=0
Rp+Sp>m

A [(RZ, Ty, Séa SZ)%:J .

() ()

Embracing all terms A [(RZ, re; So, s,g)gL:J in the above sum which feature the same
numbers of r + --- + rp free creation and s; 4+ - - - 4+ s, free annihilation operators
which are not contracted in the vacuum expectation value and sorting the sum by
those numbers we obtain

RWRW - WF_WF, = > Weglors],
R+S>0

where the functions wg g are given in (D.9). Permuting the integration variables in
the definition (D.6) of Wg we see that Wiy [wr,s] = Wig[Wr,s| which concludes the
proof. ]
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D.2 Rescaling

In this section we introduce a map which allows rescaling of the operators Ajy. For
a fixed p > 0 we define the unitary rescaling operator S, on F(L?*[Y]) by

Sp lag(fa) -+ agy(f1)] = ag(Spfa) - - ag(S, 1) (D.12)
where
[Sp 1w, 2, 7) 1= o2 f(pu, 2, 7)
for f € L*[Y]. Tt is a simple consequence that
Spag(u,E,T)Sp_l = p /2 #(p u, X, )

and therefore
Spdlg[f] Sp_l = p_l/Qngl[Spf]

for any f € F(L?*[Y]). We define a rescaling map &, acting on operators, given by
S,(A) :=p 'S,AS . (D.13)
The free operators transform under &, like

Sp(Nres)
Sp(Lies)
S, (Laux) = Laux,
S, (Mis i) = (c08(8") Laux + p~ 7' Nres) = M5t ip177))-

res I

p
Lr687 D 14

We aim to apply the rescaling to Wick monomials gained by a sequence
(wr.s)rts>o0 of form factors.

Proposition D.4 (Rescaling of Form Factors) Let (wgs)pis>0 be a sequence
of form factors obeying the conditions of Theorem D.3 and 6 = (i0',i7') € (iR™)2.

The corresponding series of Wick monomials Wig) [(Wr,s) r-s>0] transforms under
rescaling as

S, W [(wr,s)r+s=0]) = W] [(5p(wR,S)) R+SZO] :
where the map s, acts on a form factor wrs as
[50(wrs)|(A; YUY = p~hwp 5(pA; pY ) (D.15)

and 6, == (i8',ip~'7).
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Proof. We obtain via functional calculus
&, (Wplwr,s])
_|_RtS dy (1:5) .
- F T 172 el (p 1y(R))

my (Y (R9)

YTR+S

X Sywp,s [08(8") Lies, Migy; Y] S ag (p7'5)

R,S
1 RS ay s a (0~'y™)
me (Y(R,S))l/z g

= p
TR+S

X WR,s {P COS((S/)Lrem pM[@l]; Y(Rﬂ)} Qg (p_lg(S))

L R4S dy (B9 « [ (R RS (5
= / g (Y (R 8 (¥') wr,s [pAo; pY ] ag (5°)
6 b

YTR+S

- i * (y® (R,S) _(5)
= p / (VR S))l/z g (v wr,s [pA; pY 5] ag (5)
0 1]

YTR+S 1

= Wiy [8,(wn.s)]
using that my (pY (B5)) = pf+Smy (V(ES).
|
We remark that the rescaling of the bosonic variables effects the deformation
parameter 6 in the assignment Wiy[wg,s]. The translation parameter 7 appearing

in Mg, describing the separation of the eigenvalues from the continuous spectrum,
effectively increases by a factor p~1, it is 7/ + p~ 17/,



E The Smooth Feshbach Map

In this appendix we review the technique of the Smooth Feshbach Map as introduced
in [4]. Given a separable Hilbert space H and a closed operator H on H, the smooth
Feshbach map allows to transfer the analysis of the nature of the spectrum of H near
zero to the study of the spectrum of an operator which lives on a proper subspace.

Let = = =% € B(H) be a self-adjoint operator on H which is bounded as 0 < = < 1.
The operator = may be realized as an orthogonal projection operator or as a smooth
cutoff function of a self-adjoint operator. The latter is chosen as a realization in the
applications in the Chapters 3 and 4 which explains the notion of smooth Feshbach
map. We define via functional calculus the complementary operator

= V]]-H_E2'

For two closed operators H,T defined on the same domain in H representing a
perturbed operator H =T + W and its unperturbed version T" we define

Hz =T+ =WZ=, Hz =T +EZWZ

[1]]

where we further assume that = and = leave the domain of 7" invariant and commute
with T'. For our purposes we require that T' [;.n=) is a bounded operator on the
range of =. We call such a pair (H,T') a Feshbach pair associated with =, or simply
a =-Feshbach pair, if the operators Hg and HZ are bounded invertible on the range

of = and further the operators
|Hz|"'?EWE,  EWZE|Hg| Y’

extend to bounded operators on H where |Hz| := /HZHz. For a =-Feshbach pair
(T, W) we can define the Feshbach operator associated to =, H,T' by

3=(H,T) =T +=(H - T)Z — Z(H — T)ZHZ'S(H - T)=.
The smooth Feshbach map
S=:{(H,T) | (H,T) is a =-Feshbach pair } — B(ran(Z))

assigns a bounded operator on ran(Z) to a =-Feshbach pair (H,T).

The benefit of the smooth Feshbach map is its isospectral property.
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Theorem E.1 (Isospectrality of the Smooth Feshbach Map) Let = be a
positive operator on the separable Hilbert space 'H, bounded from below and above
by 0 < 2 <1 and let = = /1y — =2 the complementary operator. Let (H,T)
be a Feshbach pair associated with =. Then we have the following spectral relation
between the operator H and its image §=(H,T) under the smooth Feshbach map,

(i) H is bounded invertible if and only if §=(H,T) is bounded invertible on ran(Z).
(ii) If ¢ € ker(H) \ {0} then Z¢ € ker(F=(H,T)) \ {0}.
(iii) If ¢ € ker(F=(H,T)) \ {0} then (2 —ZHZ'Z(H — T)Z)p € ker(H) \ {0}.

(iv) The multiplicity of the zero eigenvalue is conserved, i.e., dim(ker(H)) =
dim(ker(F=(H,T))).

Proof. The proof to this assertion is purely algebraical and rather lengthy. We
therefore omit it and refer the reader to [4, Thm. 2.1] where the original proof can
be found. ]

Corollary E.2 (Reconstruction of Eigenvectors) Let = be an operator as in
Theorem E.1 and let (H,T) be a =-Feshbach pair. Assume that zero is a simple
eigenvalue of H and let 1 # 0 be the corresponding eigenvector. Then the eigenvector
can be reconstructed as

= (2-EH'S(H - 7)) 2y

where A € C\ {0} is a suitable scalar. If further the eigenvector obeys 1 & ran(Z)
then holds \ = 1.

Proof. By Theorem E.1(ii) follows that Z¢ € ker(§=(H,T)) \ {0}. A further
application of Theorem E.1(iii) implies that (E—EH;E(H—T)E)E#J € ker(H)\{0},
hence it is a multiple of v,

b= (E _EHZ'E(H - T)E) =,
A € €\ {0}, due to the simplicity of the zero eigenvalue. Since ¢ = =) 4 §2w we
obtain via projection P = P* on the orthogonal complement of ran(Z),
E2) = \PE%y.

We consider the case P=%) = 0 which implies Py = 0, hence ¢ € ran=. Vice versa,
if ¢ ¢ ran = then we conclude P=%) # 0 and therefore \ = 1. [
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