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Abstract

We consider finite systems of branching particles where the particles move independently of
each other according to one-dimensional diffusions

dXt = b(Xt) dt+ σ(Xt) dWt.

Particles die at a position-dependent rate and leave a random number of offspring located in
space according to some transition kernel. In addition, new particles immigrate at a constant
rate. A process with these properties is called branching diffusion with immigration (BDI).
Observing a BDI at discrete points in time, it is not evident which discretely observed points
belong to which path. Therefore, we develop an algorithm for reconstructing the underlying
trajectory. With the aid of this algorithm, we construct a non-parametric estimator for the
squared diffusion coefficient σ2(·), essentially by filling a classical regression scheme. We prove
consistency and a central limit theorem.

Zusammenfassung

Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig
voneinander gemäß eindimensionaler Diffusionen

dXt = b(Xt) dt+ σ(Xt) dWt

bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige
Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem
immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften
wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess
zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten
Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrun-
deliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nicht-
parametrischen Schätzer für den quadrierten Diffusionskoeffizienten σ2(·), wobei die Konstruk-
tion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir
beweisen Konsistenz und einen zentralen Grenzwertsatz.





Introduction

In this thesis, we consider finite systems of branching diffusions with immigration and the
random branching of particles. Our underlying model can be described as follows:
Every particle of a finite system of particles moves independently of other particles in R
according to a one-dimensional diffusion

dXt = b(Xt) dt+ σ(Xt) dWt,

where W = (Wt)t≥0 is a one-dimensional Brownian motion and both the drift coefficient b(·)
and the diffusion coefficient σ(·) are Lipschitz continuous functions. Each particle is “killed”
at a position-dependent rate κ(·) : R→ R+, which means that a particle situated at x ∈ R at
time t ≥ 0 dies during a short time interval (t, t+ ∆] with probability

κ(x) ·∆ + o(∆), as ∆→ 0.

At its time of death, the particle is replaced by a random number of offspring k ∈ N0 with
probability pk(x), where the k newborn particles are distributed in R according to the law

Qk(x; ·) : B(Rk)→ [0, 1].

These newborn particles move and branch according to the same mechanism as the parent
particle. In addition, new particles immigrate at a constant rate c > 0, i.e., at each immigration
event exactly one new particle is added to the system of pre-existing particles and is distributed
in R according to the law ν(·).

The resulting process (ηt)t≥0 of particle configurations is a strong Markov process and is
called branching diffusion with immigration (BDI). BDI processes and their properties have
been studied in several papers, see [2], [10], [12], [13], [14], [15], [28] and [29]. However, in
these papers there may be some differences in the model as described above. For example, a
modification of the model was investigated in [10], [28] and [29]: In these models, particles
live in Rd, d ∈ N, and interactions between the particles in both their spatial motion and
the branching/reproduction/immigration mechanisms are allowed, i.e., the quantities defining
the model may also depend on the configuration of co-existing particles. Furthermore, the
models in [2], [12], [13], [15] and [29] are based on the assumption that branching particles
reproduce at their position of death, whereas in our model offspring particles are scattered in
space according to some law Qk(·, ·).
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During the last years, the existence, boundedness and continuity of the invariant measure m(·)
on the configuration space S :=

⋃
`∈N0

Rd` and of the occupation measure

m(B) :=

∫
S
x(B)m(dx), B ∈ B(Rd),

have extensively been investigated. In [13], an interesting aspect was discussed: It becomes
apparent that – as soon as branching particles reproduce at their position of death x ∈ Rd –
the density of the invariant measure m(·) may exist but it is neither bounded nor continuous.
In [29], Löcherbach proved the existence of a bounded and continuous density of m(·) on Rd

by assuming uniform ellipticity and strong smoothness resp. boundedness conditions both on
the drift coefficient b(·) and the diffusion coefficient σ(·). For this, Löcherbach makes use of
Malliavin calculus. However, in her paper she assumes that branching particles reproduce –
either zero or two offspring – at their position of death. As we have noticed before, this may
preclude the existence of a bounded and continuous Lebesgue density of m(·). Also, in [15]
Höpfner and Löcherbach discuss results about the existence of a density of m(·) and its reg-
ularity properties. In their framework, offspring particles start their spatial motion at their
parents’ position of death, too.
In Hammer’s thesis [10], the issue of the existence of bounded and continuous Lebesgue den-
sities both of m(·) and m(·) is approached. Granting that the BDI η is recurrent in the sense
of Harris, Hammer stated four assumptions which are sufficient for this existence, namely:

1. Continuous Transition Density and Heat Kernel Estimate of the “Killed” Particle Motion

2. Absolutely Continuity of Offspring and Immigration Laws

3. Fixed Bound of Possible Offspring

4. Exponential Decay of m(R`), ` ∈ N.

In particular, Hammer does not allow branching particles to reproduce at their position of
death x ∈ R, but rather that offspring particles are scattered in space according to some law
Qk(x; ·) which fulfils certain assumptions. We remark that Hammer exposed his assumptions
in the “interactive” framework where the quantities definining the model may also depend on
the configuration of co-existing particles.

Concerning statistical applications, BDI processes have been examined in [2], [12] and [14].
In [2], Brandt constructed a non-parametric estimator for the squared diffusion coefficient
σ2(·) of a BDI. For this, Brandt developed a reconstruction algorithm of the trajectory of a
discretely observed BDI and combined this algorithm with the Nadaraya-Watson-Estimator
for the squared diffusion coefficient σ2(·) of one-dimensional diffusions, which was developed
in [7]. Apart from that, in [12] resp. [14] an estimator for the branching rate κ(·) of a BDI was
constructed.
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In the first chapter of this thesis, we give a mathematical definition of the BDI process and
we explain which basic assumptions and notations are used. In particular, by assuming the
void configuration (the state of no existing particle) as a recurrent atom, the process (ηt)t≥0

becomes positive recurrent in the sense of Harris, i.e., it allows for a finite invariant measure
m(·) on S. Furthermore, we assume that our BDI model is based on Hammer’s framework
from [10] in order to make use of the bounded and continuous Lebesgue densities ofm(·) and of
m(·). As in our framework the quantities which define the model only depend on the position of
the particles, Hammer’s four assumptions slightly simplify. The reason for restricting ourselves
to the “position-dependent” case and to the case that particles live in R is that in the last
chapter statistical applications are applied. They are troublesome for diffusions which live in
Rd, d ∈ N\{1}, since their occupation time may be small or even zero in certain regions.

In the second chapter, we examine some properties of BDI’s. As a BDI contains many one-
dimensional diffusion paths, we consider their properties first. Particularly, for statistical ap-
plications in the last chapter, their behaviour during a short time interval (t, t+∆] is analysed.
Afterwards, some results are extended for branching diffusions. Denoting for some x ∈ S the
length of x = (x1, ..., x`) ∈ R` by ` = `(x) and defining

Sε :=
{
x ∈ S

∣∣ `(x) ≥ 2,∃i 6= j ∈
{

1, ..., `(x)
}

: |xi − xj | < ε
}
,

as our main result of this chapter we state a rate of convergence for m(Sε), namely

m(Sε) = O(ε), as ε→ 0,

see Theorem 2.11. For this result, it is important that we act on Hammer’s framework. The
reason for this is the phenomenon we have mentioned before: In the framework where branching
particles reproduce at their position of death, under certain assumptions a density of m(·)
exists, but it takes the value +∞ on a non-empty subset of

N :=
{
x ∈ S

∣∣ `(x) ≥ 2, ∃i 6= j ∈
{

1, ..., `(x)
}

: xi = xj
}
,

c.f. [10, p. 25f] resp. [13].

The third chapter consists of a reconstruction algorithm for the trajectory of a BDI (ηt)t≥0,

provided that we consider the BDI process at discrete points in time i∆, i ∈ N0, where
∆ > 0. For this, we define a rule for a pair (ηi∆, η(i+1)∆) being “interpretable”, i.e., we demand
that there exists an arrangement (βi∆, β(i+1)∆) of (ηi∆, η(i+1)∆) with the following properties:
Both βi∆ and β(i+1)∆ have particles which do not have close neighbours and the distance of
each particle of βi∆ to exactly one other particle of β(i+1)∆ is not more than ∆λ, for given
0 < λ < 1

2 . We will show that the expected quota of “properly interpretable pairs” (pairs
whose assignment rule is correct) up to deterministic time horizons T := T∆ > 0 converges to
1, as ∆→ 0, with a rate of convergence being set by the rate of m(Sε), see Theorem 3.4. Our
algorithm extends the partial reconstruction algorithm developed by Brandt in [2].
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In the last chapter, which consists of four sections, statistical applications for the BDI process
are applied. First, we present known estimators and their properties for the squared diffusion
coefficient σ2(·) of one-dimensional diffusions. In the second section, we construct a non-
parametric estimator σ̂2

∆(·) for the squared diffusion coefficient σ2(·) of a BDI, provided that
the trajectory of the BDI is considered at discrete points in time. The idea of this estimator
relies on Hoffmann’s publications [17] and [18] for estimating the squared diffusion coefficient
σ2(·) of one-dimensional diffusions

dXt = b(Xt) dt+ σ(Xt) dWt.

Hoffmann constructs wavelet-estimators for σ2(·) which are optimal in the minimax sense
(for integrated errors) over Besov balls, essentially by filling a classical regression scheme.
Hoffmann’s procedure is as follows: Initially, sub-boxes of a compact set D ⊆ R are filled with
a finite number of observed points Xi∆, i ∈ N0. Then, Hoffmann makes use of these observed
points in order to apply the regression identity(

X(i+1)∆ −Xi∆√
∆

)2

= σ2(Xi∆) + εi∆ +OP
(√

∆
)
, as ∆→ 0,

where εi∆ are centered martingale increments. Due to this identity, σ2(x) is estimated by
a wavelet-estimator and this estimator attains the classical minimax rate of convergence
∆

r
1+2r , r ∈ N, where r is the regularity of the diffusion coefficient σ(·). For the construc-

tion of our estimator, we adapt some of Hoffmann’s ideas:

• We fill sub-boxes of the compact set D := [0, 1] with a finite number of observed “inter-
pretable pairs” (ηi∆, η(i+1)∆), i ∈ N0, up to a certain time horizon T∆ > 0.

• We use some particles of the “interpretable pairs” in order to apply the following regres-
sion identity for one-dimensional diffusions (Xt)t≥0(

Xt+∆ −Xt√
∆

)2

= σ2(Xt) ·
(
1 + U(t,∆)

)
+OP

(√
∆
)
, as ∆→ 0,

where U(t,∆) is a F ′t+∆-measurable random variable being independent of F ′t and satis-
fying

U(t,∆)
d
= 2 ·

∫ 1

0
Ws dWs

for every t ≥ 0, ∆ > 0 (note that (F ′t)t≥0 is the filtration generated by X). This regres-
sion identity relies on ideas and estimates developed in [8] and [25, p. 356f].

It is not obvious that there are enough “interpretable pairs” in every sub-box of [0, 1] up
to a certain time horizon T∆ > 0. However, we will solve this issue by applying the Harris
recurrence of the BDI, the rate of the reconstruction algorithm and the continuity of the
density of m(·).
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In the third section, we show consistency of the estimator σ̂2
∆(·) for the class of non-negative

Lipschitz continuous diffusion coefficients σ(·) being bounded and bounded away from zero.
More exactly, we prove for every x ∈ [0, 1]∣∣σ̂2

∆(x)− σ2(x)
∣∣ = OPm

(
∆

1
3
)
, as ∆→ 0,

see Theorem 4.11. In the fourth section, we state a central limit theorem, so we show for every
x ∈ [0, 1] and for every 0 < ε < 1

3√
∆−

2
3 ·∆ε ·

(
σ̂2

∆,ε(x)

σ2(x)
− 1

)
∆→0−−−→ Z in Pm-distribution,

where Z is a standard normal distributed random variable, see Theorem 4.13. Finally, we
discuss our results and verify how they fit to well-known classical regression results: For con-
sistency, we attain the classical minimax rate of convergence ∆

1
3 by choosing the classical

optimal bandwidth h∆ := ∆
1
3 . However, for the central limit theorem our estimator depends

on both 0 < ε < 1
3 and ∆ > 0 and we receive a rate of convergence which is slightly weaker

than
√

∆−
2
3 .
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Chapter 1

The Model: Branching Diffusions with
Immigration

In this first chapter, we are going to introduce the underlying model. We consider systems of
finitely many particles (each living in R) travelling independently of each other according to
a solution of a diffusion

dXt = b(Xt) dt+ σ(Xt) dWt.

Every particle branches according to a position-dependent rate. When a particle branches, it
dies and produces, depending on its position in R, a random number of offspring. The newborn
particles are distributed randomly in space, depending on the position of the branching par-
ent particle. In addition, immigration occurs at a constant rate. At each immigration event,
exactly one new particle is added to the system at a position according to some law. The
resulting stochastic process of finite particle configurations is called branching diffusion with
immigration, henceforth BDI. The following graphic demonstrates a typical BDI path with its
branching, reproduction and immigration mechanisms during the time [0, 1].

0 T=1

+

+

+

Death and Reproduction

Death and Reproduction

Immigration

Death
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14 CHAPTER 1. THE MODEL: BRANCHING DIFFUSIONS WITH IMMIGRATION

1.1 Basic Assumptions and Notations

We will write E := R for the single particle space. A BDI as described before is a strong
Markov process η = (ηt)t≥0 taking values in the space

S :=
.⋃

`∈N0

E`

of finite ordered particle configurations, where E0 := {δ} denotes the void configuration (the
state of no existing particle). We want to distinguish between elements of the single particle
space E and the configuration space S by using standard letters x, y, z for elements of E and
bold letters x,y, z for elements of S. The length of x ∈ S is denoted by `(x), i.e., x ∈ E` if
and only if ` = `(x). We now state the first assumption which governs the motion of particles
between branching or immigration events.
Assumption 1.1 (Particle Motion)

1. For every ` ∈ N the `-particle motion X` = (X1,`, ..., X`,`) on E` is given by the
stochastic differential equations

dXj,`
t = b

(
Xj,`
t

)
dt+ σ

(
Xj,`
t

)
dW j

t , 1 ≤ j ≤ `, (1.1)

with independent one-dimensional standard Brownian motions W 1, ...,W ` driving the
motion of every particle and drift and diffusion coefficients

b(·) : E → E and σ(·) : E → E.

2. Both the drift and the diffusion coefficients are Lipschitz continuous functions.
♦

Remark 1.2
1. If ` = 0, we use the convention X0 ≡ δ.

2. According to [21, p. 178f], a sufficient condition for a unique strong solution of (1.1) is
that both b(·) and σ(·) are globally Lipschitz, i.e., there is a constant L > 0 such that

|b(x)− b(x′)|+ |σ(x)− σ(x′)| ≤ L · |x− x′| (1.2)

for every x, x′ ∈ E. As this is granted in Assumption 1.1, the stochastic differential
equation (1.1) has a unique strong solution.

3. The stochastic basis (the sample space) on which the `-particle motion happens to be
defined is not specified. As Hammer suggests in [10, p. 2], it could be the canonical
path space C(E+;E`) or any other suitable space. Furthermore, the probability measure
corresponding to the diffusion X` starting at x = (x1, ..., x`) ∈ E` is denoted by Px,

corresponding expectations by Ex and its semigroup by

Ptf(x) := Ex

(
f(X`

t )
)
, (1.3)

where f(·) ∈ B(E`).
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4. For every 1 ≤ j ≤ ` the diffusion Xj,` is a one-dimensional diffusion which takes values
in E. Its generator is given by

A f(x) = b(x) · ∂f
∂x

(x) +
1

2
σ2(x) · ∂

2f

∂x2
(x)

for twice continuously differentiable functions f(·) with compact support in E, x ∈ E,
c.f. [21, p. 212f]. Because of the independence of the diffusions Xj,`, 1 ≤ j ≤ `, according
to [21, p. 214f], the generator A (`) of X` is the sum of the generators of every single
diffusion Xj,`, i.e.,

A (`)f(x) =
∑̀
i=1

b(xi) · ∂f
∂xi

(x) +
1

2

∑̀
i=1

σ2(xi) · ∂2f

∂(xi)2
(x) (1.4)

for twice continuously differentiable functions f(·) with compact support in E`, x ∈ E`.

5. Also, E := Rd, d ∈ N, could be set for the single particle space, i.e., each solution
Xj,`
t takes values in Rd. However, we focus on the case d = 1 since in the last chapter

we will use statistical applications. They are troublesome for diffusions which live in
Rd, d ∈ N\{1}, since their occupation time may be small or even zero in certain regions.

♦

Now, we show how the branching, reproduction and immigration mechanisms work.

Assumption 1.3 (Branching and Reproduction Mechanism)
We are given a non-negative measurable function

κ(·) : E → E+

which is bounded and bounded away from zero, i.e., there are constants κ, κ > 0 such that

κ ≤ κ(x) ≤ κ (1.5)

for every x ∈ E. Moreover, we are given measurable functions

pk(·) : E → [0, 1], k ∈ N0,

such that
∑

k∈N0
pk(·) ≡ 1 and transition probabilities

Qk(·; ·) : E × B(Ek)→ [0, 1], k ∈ N.

We put
Q0(x; ·) := εδ(·), x ∈ E.

A particle belonging to the configuration x = (x1, ..., x`) ∈ E` and situated at position xi ∈ E
at time t > 0 branches at a position-dependent rate κ(xi), i.e., it dies during a small time
interval (t, t+ ∆] with probability

κ(xi) ·∆ + o(∆), (1.6)
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as ∆→ 0. At its death time, it is replaced by a random number k ∈ N0 of offspring particles
with probability pk(xi). The k offspring particles are distributed in Ek according to the law

Qk
(
xi; dv1 . . . dvk

)
on (Ek,B(Ek)).

We will refer to κ(·) as the branching rate, to (pk(·))k∈N0
as the reproduction law and to

(Qk(·; ·))k∈N as the spatial branching distribution.
♦

Assumption 1.4 (Immigration Mechanism)
New particles immigrate at a constant rate c > 0 : If there are ` ∈ N0 particles at positions
x = (x1, ..., x`) ∈ E` at time t > 0, one new particle immigrates during a small time interval
(t, t+ ∆] with probability

c ·∆ + o(∆), (1.7)

as ∆→ 0. The immigrating particle is distributed in E according to

ν(·) : B(E)→ [0, 1],

to which we refer as the immigration law.
♦

Remark 1.5
1. Combining both Assumptions 1.3 and 1.4,

α(`)(x) :=
∑̀
i=1

κ(xi) + c (1.8)

gives the rate at which a branching or immigration event happens, starting from a `-
particle configuration x ∈ E`.

2. According to (1.5), (1.6) and (1.7), there are two constants c, c > 0 such that

c ≤ min{κ, c} ≤ max{κ, c} ≤ c.

Thus, using (1.8) for every ` ∈ N and x ∈ E` it holds

c · (`+ 1) ≤ α(`)(x) ≤ c · (`+ 1), (1.9)

i.e.,
α(`)(·) � `, `→∞.

3. Denoting τ for the first branching/immigration time and using equation (1.8), the semi-
group of the `-particle motion X` killed at rate α(`)(·) is given by

Pαt f(x) := Ex

(
f(X`

t ) · 1{t<τ}
)

= Ex

(
f(X`

t ) exp

(
−
∫ t

0
α(`)(X`

s) ds

))
, (1.10)
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where f(·) ∈ B(E`) and x ∈ E`. Furthermore, the occupation times of the killed `-
particle motion are given by the generalized resolvent

R(`)
α (x;B) := Ex

(∫ τ

0
1B(X`

t )dt

)
(1.11)

for every x ∈ E`, B ∈ B(E`). By partial integration, it holds

R(`)
α (x;B) = Ex

(∫ ∞
0

1B(X`
t ) exp

(
−
∫ t

0
α(`)(X`

s) ds

)
dt

)
=

∫ ∞
0

Pαt (x, B) dt (1.12)

for every x ∈ E`, B ∈ B(E`). Setting B := E`, we receive in (1.11)

R(`)
α (x, E`) = Ex(τ) (1.13)

and combining (1.9) with (1.12), for every x ∈ E` it holds

1

c · (`+ 1)
≤ R(`)

α (x;E`) ≤ 1

c · (`+ 1)
,

i.e.,

R(`)
α (·;E`) � 1

`
, `→∞. (1.14)

Denoting P κt the semigroup of the killed particle motion X` without immigration

P κt f(x) := Ex

(
f(X`

t ) exp
(
−
∑̀
j=1

∫ t

0
κ(Xj,`

s ) ds
))

, (1.15)

because of (1.8) it holds

Pαt f(x) = exp(−ct) · P κt f(x) (1.16)

for every x ∈ E`, f(·) ∈ B(E`).

4. Originally, in Hammer’s model the branching/reproduction rate resp. the spatial off-
spring distribution may both depend on the branching parent and the configuration of
co-existing particles, c.f. [10, p. 2f]. Apart from that, in [2], [12], [13], [15] and [29], it is
assumed that offspring particles start their spatial motion at their parents’ position of
death, which means

Qk(x; ·) = εx(·)⊗k (1.17)

on Ek for every k ∈ N and x ∈ E. However, in the next section we will give reasons why
we do not allow for spatial offspring distributions such as (1.17) and we will specify the
spatial offspring distribution.

♦
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Now, we describe how we can create a BDI by using the previous assumptions. As Hammer
mentions in [10, p. 6], a BDI η with the desired properties relies on the “killing and restarting”-
procedure for Markov processes developed by Ikeda, Nagasawa and Watanabe in [20] (see also
[30]). Let us outline this construction: Let X = (X)t≥0 denote the S-valued process describing
a finite system of particles such that for ` ∈ N, starting from ` particles, X evolves as the
given process X` on E`, without any branching or immigration. In other words, X is the
direct sum process of the given `-particle motions X`, ` ∈ N. For ` = 0 (starting from the
void configuration δ), by convention we have Xt = δ for all t > 0. The process X is now
stopped with a configuration-dependent rate α(·) : S → E+ defined layer-wise as in (1.8).
At its death time, it is restarted with a new initial configuration chosen by a jump kernel
K(·; ·) : S × B(S) → [0, 1] which is defined as follows: For each ` ∈ N, 1 ≤ i ≤ ` and k ∈ N0

define a mapping Π`,k,j(·; ·) : E` × Ek → E`−1+k by

Π`,k,i(x;v) := (x1, ..., xi−1, v1, ..., vk, xi+1, ..., x`), k ∈ N,

Π`,0,i(x) := Π`,0,i(x; δ) := (x1, ..., xi−1, xi+1, ..., x`), k = 0.

It can be interpreted as a mapping which replaces the i-th particle xi of a given `-particle
configuration x = (x1, ..., x`) ∈ E` by k ∈ N0 particles at positions v1, ..., vk. Also, for ` ∈ N0,

x = (x1, ..., x`) ∈ E` and v ∈ E we write

(x, v) := (x1, ..., x`, v) ∈ E`+1

for the configuration obtained by concatenation (with the understanding that (δ, v) = v if
` = 0). The jump kernel is then defined as

K(x; ·) :=
1

α(`)(x)
·

( ∑
k∈N0

∑̀
i=1

κ(xi)pk(x
i)

∫
Ek
Qk(x

i; dv1... dvk) εΠ`,k,i(x;v)(·)

+ c

∫
E
ν(dv) ε(x,v)(·)

)
(1.18)

for x = (x1, ..., x`) ∈ E`, ` ∈ N0.

The procedure described above can be made by using the so-called “Revival Theorem” for
Markov processes, see [20]. Applying it under our assumptions, the resulting process of particle
configurations can be constructed as a strong Markov process

η =
(
Ω,F , (Ft)t≥0, (Px)x∈S , (ηt)t≥0, (θt)t≥0

)
(1.19)

on some suitable stochastic basis with a right-continuous filtration. The process η takes values
in S∂ = S ∪ {∂}, where ∂ is an extra point adjoined to the space S as a “cemetery” in
order to account for the possibility of explosion of the process (accumulation of branching or
immigration events in finite time). Writing

τ∞ := inf
{
t > 0: ηt /∈ S

}
≤ ∞
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for the (possibly finite) life-time (in the sense of explosion time), η has càdlàg paths before
time τ∞, and we have an increasing sequence

0 := τ0 < τ1 < τ2... ↑ sup
n∈N

τn = τ∞ (1.20)

of (Ft)t≥0- stopping times given by

τn = τn−1 + τ1 ◦ θτn−1 , n ∈ N, (1.21)

corresponding to branching or immigration events in the process η, c.f. [10, p. 6].

Remark 1.6
1. Concerning the BDI process η, we want to write expectations w.r.t. the probability

measure Px by Ex, where x ∈ S. The transition semigroup of η is denoted by

Pt(x;F ) := Ex

(
1F (ηt) · 1{t<τ∞}

)
. (1.22)

Furthermore, we interpret (1.12) as a transition kernel on S ×B(S) such that, if x ∈ E`,
the measure Rα(x, ·) charges only the layer E`, i.e.,

Rα(x, ·) := R(`)
α (x; · ∩ E`), (1.23)

where x ∈ E`, F ∈ B(E`).

2. Remember the generator A (`) from the `-particle motion in (1.4) and the jump kernel
K(x, ·) from (1.18). We denote by A the generator of the direct sum process X. It acts
on functions f(·) = (f (`)(·))`∈N0 on S layerwise via (A f)(`)(x) = A (`)f (`)(x) for x ∈ E`.
Then, the generator A of the BDI η is given by

Af(x) = A f(x) + α(x) ·
∫
S
K(x; dy)(f(y)− f(x)), x ∈ S.

3. Regarding the jump kernel in (1.18), in contrast to [2], [13] and [15], branching particles
are not inserted at the end of the configuration but substitute the dying particle.

♦

So far, it is not evident that η has an infinite life-time. In the next section, we will see that
assuming positive Harris recurrence of the process η with δ as a recurrent atom, we obtain
infinite life-time of η.

1.2 Ergodicity and Invariant Measure

As mentioned before, we will work, in addition to Assumptions 1.1, 1.3 and 1.4, under the
following assumption, c.f. [10, p. 11].
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Assumption 1.7 (Recurrence)
We assume that the process η admits the void configuration δ as a recurrent atom with finite
expected return time. Defining

R := inf
n∈N

{
τn | ητn = δ

}
,

we suppose that

Ex(R) <∞, x ∈ S. (1.24)

♦

Remark 1.8
It is clear that Assumption 1.7 entails non-explosion of the BDI η. Thus, in (1.20) we have

0 =: τ0 < τ1 < τ2... ↑ ∞ = τ∞ Px-a.s., x ∈ S.

♦

Definition 1.9
Under Assumption 1.7, a finite measure m(·) on (S,B(S)) is defined via

m(F ) := Eδ

(∫ R

0
1F (ηs) ds

)
, F ∈ B(S). (1.25)

♦

Note that m(F ) gives the expected occupation time of a Borel set F ∈ B(S) during one life
cycle of the BDI η. Condition (1.24) is sufficient to ensure recurrence of the BDI η in a strong
sense, and the measure m(·) defined in (1.25) turns out to be the (essentially unique) invariant
measure for η on (S,B(S)) as the following proposition shows.

Proposition 1.10
Grant Assumption 1.7. Then, the BDI η is positive recurrent in the sense of Harris, and its
invariant measure (unique up to normalisation) coincides with m(·) defined in (1.25).

Proof
We can decompose the trajectory of the BDI η into independent identically distributed life
cycles on account of the successive re-entry times into the void configuration δ. Then, by
applying the strong law of large numbers (see for instance [33, p. 150]) and (1.24), one can
verify one (of several different ones) definition of the Harris recurrence, i.e., for every x ∈ S
and m(F ) > 0 ∫ ∞

0
1F (ηs) ds =∞ Px-a.s.

(see for instance [1, p. 24]). Finally, by using the ratio limit theorem (see [1, p. 30]) for Harris
recurrent processes, one obtains that the invariant measure coincides with m(·) defined in
(1.25). For the detailed proof, see [10, p. 12f].

�
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Remark 1.11
1. There is a series representation of the invariant measure m(·) on the configuration space
S. For every F ∈ B(S) we have

m(F ) =
∑
n∈N0

Eδ
(
1{τn<R} ·Rα(ητn ;F )

)
, (1.26)

c.f. [10, p. 17].

2. Assumption 1.7 also implies that the void configuration δ is a recurrent atom for the
skeleton chain (ηi∆)i∈N0 for every ∆ > 0. To prove this, we assume the contrary. Then,
there is ∆ > 0 such that the probability of the event{

∃i0 ∈ N0 such that for every i ≥ i0 : ηi∆ /∈ δ
}

is greater than zero. As δ is a recurrent atom for the time-continuous chain (ηt)t≥0, there
is a sequence (Rn)n∈N of finite successive re-entry times into the void configuration such
that ηRn ∈ δ and Rn ≥ i0 for every n ∈ N. As ηi∆ /∈ δ for every i ≥ i0, with probability
greater than zero immigration occurs during the time (Rn, Rn + ∆] for every n ∈ N.
Now, for every n ∈ N we define

An,∆ :=
{
Immigration occurs during the time (Rn, Rn + ∆]

}
.

Denoting Acn,∆ the complement of An,∆, it holds∑
n∈N

P(Acn,∆) =
∑
n∈N

exp(−c∆) =∞

and because of the pairwise independence of (Acn,∆)n∈N, by the Borell-Cantelli lemma
(see for instance [24, p. 53]) we receive

P
(
An,∆ finally

)
= 0,

which is a contradiction. Hence, the skeleton chain (ηi∆)i∈N0 is recurrent in the sense of
Harris and its invariant measure m′(·) can be identified with the invariant measure m(·)
from the time-continuous Harris chain (ηt)t≥0, according to [1]. Out of the finiteness of
m(·), the finiteness of m′(·) immediately follows, i.e., (ηi∆)i∈N0 is positive recurrent in
the sense of Harris, too.

♦

We introduce some additional notation: For a function f(·) : E → E, let f(·) : S → E denote
the function on the configuration space defined by

f(x) :=
∑̀
i=1

f(xi) if x = (x1, ..., x`) ∈ E`, ` ∈ N, f(δ) := 0.
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If f(·) is of the form f(x) = 1B(x) for some Borel set B ∈ B(E), we also write

x(B) :=

`(x)∑
i=1

1B(xi), x ∈ S, (1.27)

for the number of particles in the configuration x with position in B. This notation is motivated
by the measure-valued point of view, where x(B) is just the total mass of the Borel set B
under the finite point measure x =

∑`
i=1 εxi .

Definition 1.12
Under Assumption 1.7 and making use of (1.27), we define a measure m(·) on (E,B(E)) by

m(B) :=

∫
S
x(B)m(dx) = Eδ

(∫ R

0
ηs(B) ds

)
, B ∈ B(E).

The measure m(·) is called the invariant occupation measure or intensity measure of m(·).
♦

The measure m(·) describes (up to normalization) the expected occupation time of a subset
B ∈ B(E) by all particles whose life span is contained in one life cycle of η. We emphasise
that under Assumption 1.7 alone, it is generally not assured that m(·) is a finite measure on
(E,B(E)), i.e., finiteness of m(·) is a strictly stronger condition than (1.24). Further, finiteness
of m(·) means

m(E) =

∫
S
`(x)m(dx) =

∑
`∈N

` ·m(E`) <∞ (1.28)

and thus concerns the decay of m(E`), as ` → ∞. In the next section, we will give sufficient
conditions in order to achieve finiteness and good properties of m(·).

1.3 Hammer’s Framework

In his thesis [10], Hammer found sufficient conditions for the existence of a locally bounded
and continuous Lebesgue density of the invariant measure m(·). Even though under condition
(1.17) (branching particles reproduce at their position of death) a Lebesgue density may exist,
it can have, even under best conditions, “strangely shaped” densities. Let us outline this
phenomenon, c.f. [10, p. 25f] resp. [13]: Consider a binary branching Brownian motion with
immigration in Ed, d ≥ 2, where particles move independently of each other on Brownian
paths. Furthermore, particles branch at a constant rate κ > 0 and leave either zero or two
offspring at their position of death with probability p0 or p2 = 1−p0 <

1
2 . Immigration occurs

at a constant rate c > 0 with an immigration distribution having a strictly positive density

p(·) ∈ C∞b (Ed) :=
{
f(·) : Ed → E

∣∣ f(·) is bounded and infinitely often differentiable

with bounded derivates of all orders
}
.
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First, Hammer shows that both the invariant measure m(·) and the occupation measure m(·)
are finite. Secondly, he proves that there is a non-negative function γ(·) on S and a set

N :=
{
x ∈ S

∣∣ `(x) ≥ 2,∃i 6= j ∈
{

1, ..., `(x)
}

: xi = xj
}

(1.29)

such that γ(·) is continuous onN c, has singularities at all points of a non-empty subset Ñ ⊆ N
and the invariant density γ(·) is minorized by γ(·). In particular, there can be no version of
the density γ(·) which is continuous and locally bounded.
In order to avoid this effect, it is reasonable to take Hammer’s framework as a basis. In his
thesis, Hammer stated two assumptions ([10, p. 30f]) which are sufficient for the existence of a
locally bounded and continuous Lebesgue density ofm(·). Before we outline these assumptions,
remark that C0(E) denotes the set of real valued continuous functions f(·) vanishing for
x→ ±∞, i.e.,

C0(E) :=

{
f(·) : E → E

∣∣ f(·) is continuous and lim
x→∞

f(x) = lim
x→−∞

f(x) = 0

}
.

Assumption 1.13 (Heat Kernel Estimate)
We assume that there exist t0 > 0 and C > 0 such that the one-dimensional diffusion with

killing rate κ(·) and 0 < κ ≤ κ(·) ≤ κ admits a density function p(κ)
t (x, y) being continuous in

the variable y ∈ E and satisfying a heat kernel estimate, i.e.,

p
(κ)
t (x; y) ≤ C · exp(−κt) · t−

1
2 exp

(
−(x− y)2

2Ct

)
, t ∈ (0, t0], x, y ∈ E. (1.30)

♦

Assumption 1.14 (Absolutely Continuity of Offspring and Immigration Laws)
1. For all k ∈ N we assume the following: We have

Qk(x; dv1... dvk) = qk(x; v1, ..., vk) dv1... dvk on (Ek,B(Ek))

for all x ∈ E, where qk(x; ·) : Ek → E+ is continuous for each fixed x ∈ E. Moreover,
there is a function q̂k(·) ∈ C0(E)∩L1(E) such that for all x ∈ E and (v1, ..., vk) ∈ Ek it
holds

qk(x; v1, ..., vk) ≤
k∏
j=1

q̂k(x− vj). (1.31)

For k = 0 we write
q0(x; δ) := q̂0(x) := 1, x ∈ E.

In addition, for the Fourier transform of the upper bound q̂k(·) we require

F(q̂k)(·) ∈ L1(E), k ∈ N. (1.32)
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2. We assume the following: The immigration law ν(·) can be written as

ν(dv) = π(v) dv on (E,B(E)),

where π(·) : E → E+ is a function in C0(E) ∩ L1(E). Finally, we require

F(π)(·) ∈ L1(E). (1.33)

♦

Using these assumptions, Hammer was able to prove the following theorem.

Theorem 1.15 (Locally Bounded and Continuous Lebesgue Density of m(·))
Under Assumptions 1.13 and 1.14, the invariant measure m(·) on the configuration space
(S,B(S)) admits a Lebesgue density γ(·) =

(
γ(`)(·)

)
`∈N0

which is locally C0, i.e.,

γ(`)(·) ∈ C0(E`), ` ∈ N0.

Proof
For the proof, see [10, p. 35f].

�

Remark 1.16
1. At first glance, Assumptions 1.13 and 1.14 may seem artificial. However, considering

that as soon as branching particles reproduce at their position of death the Lebesgue
density of m(·) can have bad properties, some stronger conditions have to balance this.
An example for Qk(x, ·) being a normal distribution with small variance and fulfilling
the first assumption in Assumption 1.14 is given in [10, p. 34f].

2. The heat kernel estimation in Assumption 1.13 is based on the idea that the transition
density of a one-dimensional diffusion can be estimated by a transition density of a
Brownian motion which is

1√
2πt

exp

(
−(x− y)2

2t

)
.

It is a classical result from partial differential equation theory (see for instance [6, p. 228f]
resp. [26]) that Assumption 1.13 is fulfilled if the following two points are granted:

• The diffusion coefficient σ(·) is bounded away from zero.

• The drift coefficient b(·), the diffusion coefficient σ(·) and the branching rate κ(·)
are bounded and continuous in the sense of Hölder.

Apart from that, the density p(κ)
t (·; ·) does not vanish if the diffusion coefficient σ(·) is

bounded away from zero.
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3. In [2], [12] and [29], it assumed that p1(x) = 0 for every x ∈ E since in these frame-
works offspring particles start their spatial motion at their parents’ position of death,
which means that distinguishing between a dying and a non-dying particle would not
be possible if p1(x) > 0. By Assumption 1.14, offspring particles are scattered around
their parents’ position of death x ∈ E according to a specified law Qk(x, ·), which is why
p1(x) > 0 for x ∈ E is allowed.

4. As the particles move independently of each other, there is a product structure of

pκt (x;y) =

`(x)∏
i=1

p
(κ)
t (xi; yi), x,y ∈ S. (1.34)

We want to emphasise this fact because it will be an important tool for our proofs later.
Originally, in Hammer’s thesis both the drift coefficient and the diffusion coefficient may
also depend on the configuration of co-existing particles, i.e., a product structure of
pκt (x;y) is generally not given. Apart from that, in the original version of Assumption
1.13 Hammer demands that Pαt (x;y) has a transition density pαt (x;y) and he assumes
an estimate for pαt (x;y) similarly as in (1.30) (whereas C is replaced by constants C`, ` ∈
N). Because of our position-dependent case and the independence of the particles, our
assumption reduces as stated in Assumption 1.13.

5. As Hammer mentions in [10, p. 32], under Assumption 1.13 the generalized resolvent
kernel R(`)

α (x; ·) (equation (1.12)) has the density

r(`)
α (x;y) :=

∫ ∞
0

pαt (x;y) dt (1.35)

which is integrable in y for every fixed x ∈ S since (1.13) and (1.20) give

Rα(x;S) = R(`)
α (x;E`) = Ex(τ1) <∞.

Furthermore, defining for x,y ∈ S

r(`)
α,ε(x;y) :=

∫ ε

0
pαt (x;y) dt (1.36)

and using the Chapman-Kolmogorov identity (see for instance [33, p. 228]), we can
rewrite r(`)

α (x;y) to

r(`)
α (x;y) = r(`)

α,ε(x;y) +

∫
E`
r(`)
α (x; z) pαε (z;y) dz. (1.37)

By applying this identity, one can show that (1.30) extends to every interval (0, t0],

where t0 > 0, c.f. [10, p. 30]. In this case, the constant C > 0 in (1.13) changes and
depends on t0.
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6. Using the series representation of the invariant measure m(·) in (1.26), the density of
γ(·) in restriction to each layer E` is given by

γ(`)(·) =
∑
n∈N0

Eδ

(
1{τn<R} · r

(`)
α (ητn ; ·)

)
. (1.38)

If the diffusion coefficient σ(·) is bounded away from zero, p(κ)
t (·, ·) does not vanish

according to the second remark before. Then, r(`)
α (·; ·) from (1.35) does not vanish either

and the density in (1.38) is strictly positive.

7. As we can see from (1.26) and (1.38) combined with (1.37), to ensure that the invariant
measure m(·) admits a Lebesgue density γ(·) (without any boundedness or continuity
properties), Assumption 1.14 is not needed, but rather Assumption 1.13. We mention
this fact since it occurs in the next example and in a proof later.

♦

Example 1.17
For every ε > 0 we define the set of configurations

Sε :=
{
x ∈ S

∣∣ `(x) ≥ 2,∃i 6= j ∈
{

1, ..., `(x)
}

: |xi − xj | < ε
}

(1.39)

which consists of configurations x ∈ S having at least two components with a distance of less
than ε and let

Dε := S\Sε =
{
x ∈ S

∣∣ `(x) ≥ 2,∀i 6= j ∈
{

1, ..., `(x)
}

: |xi − xj | ≥ ε
}

(1.40)

its complement. Defining

S0 :=
⋂
ε>0

Sε =
{
x ∈ S

∣∣ `(x) ≥ 2, ∃i 6= j ∈
{

1, ..., `(x)
}

: xi = xj
}

=
⋃
`≥2

{
x ∈ E`

∣∣∃i 6= j : xi = xj
}
, (1.41)

S0 coincides withN from (1.29) and consists of a union of hyperplanes which each has Lebesgue
measure zero. As m(·) admits a Lebesgue density because of Assumption 1.13 and because of
descending continuity, it holds

m(Sε)
ε→0−−−→ m(S0) = 0.

By this procedure, it is not evident how fast the convergence of m(Sε) to zero is, i.e., we do not
have a rate of convergence. Particularly, in the case where offspring particles start their spatial
motion at their parents’ position of death, we have mentioned in the beginning of this section
that the density of m(·) may take the value +∞ on N . Therefore, this fact can preclude a
rate of convergence for m(Sε). However, by using assumptions from Hammer’s framework, we
are able to give a rate of convergence for m(Sε) and we will show that it is of order O(ε), as
ε→ 0. For this, we still need a further assumption which is mentioned herafter.

♦
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In the section before, we have mentioned that we also want to guarantee good properties for
the occupation measure m(·), i.e., m(·) shall be finite and shall have a bounded Lebesgue
density on E. For this case, Hammer also stated sufficient conditions (two assumptions) we
want to enumerate now, c.f. [10, p. 58f].

Assumption 1.18 (Fixed Bound of Possible Offspring)
We require that Assumption 1.14 holds (except that we do not assume (1.32) and (1.33)). In
addition, grant the following: There exists a fixed upper bound k0 ∈ N for the possible number
of offspring, i.e., there is k0 ∈ N such that

pk(x) = 0 (1.42)

for every x ∈ E and every k > k0.
♦

Assumption 1.19 (Exponential Decay of m(E`))
We assume exponential decay of (m(E`))`∈N, i.e., there exist constants C > 0 and 0 < q < 1

such that

m(E`) ≤ Cq`

for every ` ∈ N.
♦

Using these assumptions, Hammer was able to show the following theorem.

Theorem 1.20 (Bounded and Continuous Lebesgue Density of m(·))
Grant Assumptions 1.18 and 1.19. Then, the occupation measure m(·) on (E,B(E)) admits a
Lebesgue density of class C0(E).

Proof
For the proof see [10, p. 63f].

�

Remark 1.21
1. Using the density γ(·) =

(
γ(`)(·)

)
`∈N0

of the invariant measure m(·), the density of the
occupation measure m(·) is given by

dm

dλλ
(·) =

∑
`∈N

∑̀
i=1

∫
E`−1

γ(`)
(
x1, ..., xi−1, ·, xi+1, ..., x`

)
dx1... dxi−1 dxi+1 ... dx`.

If the diffusion coefficient σ(·) is bounded away from zero, for every ` ∈ N0 the density
γ(`)(·) is strictly positive according to the sixth remark in Remark 1.16. Then, the density
dm
dλλ (·) does not vanish either.
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2. Because of Assumption 1.19, for every k ∈ N it holds∫
S
`k(x) m(dx) =

∑
`∈N

`k ·m(E`) ≤ C ·
∑
`∈N

`k · q` <∞. (1.43)

Setting k = 1 implies finiteness of the occupation measure m(·), i.e.,

m(E) =

∫
S
`(x) m(dx) <∞. (1.44)

3. Hammer stated reasonable conditions for fulfilling Assumption 1.19. Assuming addition-
ally to (1.42) that the branching rate and the reproduction rate are constants, i.e.,

κ(x) ≡ κ and pk(x) ≡ pk

for every x ∈ E with p0 < 1 and “subcritical reproduction”, i.e.,

ρ :=
∑
k∈N

kpk < 1, (1.45)

there exist constants C > 0 and 0 < q < 1 such that

m(E`) ≤ C · q
`

`
≤ Cq`,

c.f. [10, p. 20].

4. Originally, Hammer demands that there is an increasing sequence of constants

1 ≤ K1 ≤ K2 ≤ ... ≤ K` ≤ K`+1 ≤ ... <∞

growing at most polynomially in ` ∈ N such that the marginals of pαt (x;y)∫
E`−1

pαt (x;y) dy1... dyi−1 dyi+1... dy`

can be estimated similarly as in (1.30) with C replaced by K`, ` ∈ N. As in our case par-
ticles only depend on the position and move independently of each other, this condition
is fulfilled because of the product structure (1.34) and K` := C for every ` ∈ N.

5. In [29], Löcherbach proved the existence of a bounded and continuous density of m(·)
on Ed, d ∈ N, by assuming uniform ellipticity and strong smoothness resp. boundedness
conditions both on the drift and the diffusion coefficients. For this, Löcherbach makes
use of Malliavin calculus. However, in her paper she assumes that branching particles
reproduce – either zero or two offspring – at their position of death. As we have remarked
in the beginning of this section, this may preclude the existence of a locally bounded
and continuous density of m(·).
Furthermore, in [15] Höpfner and Löcherbach discuss results about the existence of a
density of m(·) and its regularity properties. In their framework, offspring particles start
their spatial motion at their parents’ position of death, too.

♦



Chapter 2

Properties of Branching Diffusions
with Immigration

In this chapter, we want to present some results about BDI processes η = (ηt)t≥0. Before we
show these properties, it is helpful to examine the properties of one-dimensional diffusions,
i.e., solutions of equation (1.1)

dXt = b(Xt) dt+ σ(Xt) dWt.

Particularly, we are interested in their behaviour during a small time interval (t, t+ ∆], where
t ≥ 0.

2.1 Properties of One-Dimensional Diffusions

In this subsection, let (Ω′,F ′, P ) be the probability space of the (strong) solution X = Xj,`

of equation (1.1)
dXt = b(Xt) dt+ σ(Xt) dWt

and let (F ′t)t≥0 be the filtration generated by X.

Assumption 2.1
(a) We assume that both the drift coefficient b(·) and the diffusion coefficient σ(·) are

bounded, i.e., there are constants b, σ > 0 such that for every x ∈ E

|b(x)| ≤ b and |σ(x)| ≤ σ.

(b) The diffusion coefficient σ(·) is bounded away from zero, i.e., there is a constant σ > 0

such that for every x ∈ E
0 < σ ≤ σ(x).

♦

29
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Proposition 2.2
Let X = Xj,` be the solution of (1.1) and let Assumption 2.1(a) hold. Then, for every t ≥ 0

1. E

(∣∣∣ ∫ t+∆

t
b(Xs)− b(Xt) ds

∣∣∣) = O
(
∆

3
2
)
, as ∆→ 0.

2. E

(∣∣∣ ∫ t+∆

t
(Xs −Xt) b(Xs) ds

∣∣∣) = O
(
∆

3
2
)
, as ∆→ 0.

3. E

(∣∣∣ ∫ t+∆

t
σ2(Xs)− σ2(Xt) ds

∣∣∣) = O
(
∆

3
2
)
, as ∆→ 0.

4. E

(∣∣∣ ∫ t+∆

t
σ(Xs)− σ(Xt) dWs

∣∣∣) = O(∆), as ∆→ 0.

5.
∫ t+∆

t
(Xs −Xt) · σ(Xs) dWs = σ2(Xt) ·

∫ t+∆

t
Ws dWs +OP

(
∆

3
2
)
, as ∆→ 0.

Proof
The following estimations rely on ideas from [8, p. 129f] and [25, p. 356f]. Because of the
Markov property, it is enough to consider the case t = 0. Let 0 < s ≤ ∆.

1. Because of the boundedness of b(·), it holds

|Xs −X0| =
∣∣∣ ∫ s

0
σ(Xv) dWv +

∫ s

0
b(Xv) dv

∣∣∣
≤
∣∣∣ ∫ s

0
σ(Xv) dWv

∣∣∣+

∫ s

0
|b(Xv)| dv

≤ sup
r∈[0,∆]

∣∣∣ ∫ r

0
σ(Xv) dWv

∣∣∣+ b ·∆. (2.1)

Burkholder-Davis-Gundy’s inequality (see [32, p. 93]), the quadratic variation〈∫ ·
0
σ(Xv) dWv

〉
r

=

∫ r

0
σ2(Xv) dv

and the boundedness of σ(·) imply that for every p ≥ 1 there is a constant Kp > 0 such that

E

((
sup

r∈[0,∆]

∣∣∣ ∫ r

0
σ(Xv) dWv

∣∣∣)p) = Kp · E

((∫ ∆

0
σ2(Xv) dv

) p
2

)
≤ Kp · σp ·∆

p
2 . (2.2)

Therefore, with p = 1 in (2.2) we get in (2.1) for sufficiently small ∆ > 0

E
(

sup
s∈[0,∆]

|Xs −X0|
)
≤ E

(
sup

r∈[0,∆]

∣∣∣ ∫ r

0
σ(Xv) dWv

∣∣∣)+ b ·∆

≤ K1 · E

((∫ ∆

0
σ2(Xv) dv

) 1
2

)
+ b ·∆

≤ K1σ ·
√

∆ + b ·∆

≤ C ′ ·
√

∆, (2.3)



2.1. PROPERTIES OF ONE-DIMENSIONAL DIFFUSIONS 31

where C ′ := max
{
K1σ, b

}
. As b(·) is Lipschitz continuous, we gain with (2.3)

E

(∣∣∣ ∫ ∆

0
b(Xs)− b(X0) ds

∣∣∣) ≤ L · E (∫ ∆

0
|Xs −X0| ds

)
≤ L ·∆ · E

(
sup

s∈[0,∆]
|Xs −X0|

)
≤ L · C ′ ·∆

3
2 = O

(
∆

3
2
)
, as ∆→ 0. (2.4)

2. As b(·) is bounded, we receive

E

(∣∣∣ ∫ ∆

0
(Xs −X0) · b(Xs) ds

∣∣∣) ≤ b · E (∫ ∆

0
|Xs −X0| ds

)
and with the same estimation from (2.4) we obtain

E

(∣∣∣ ∫ ∆

0
(Xs −X0) · b(Xs) ds

∣∣∣) = O
(
∆

3
2
)
, as ∆→ 0.

3. As σ(·) is bounded and Lipschitz continuous, it holds

∣∣σ2(Xs)− σ2(X0)
∣∣ =

∣∣σ(Xs) + σ(X0)
∣∣ · ∣∣σ(Xs)− σ(X0)

∣∣
≤ 2σ · L · |Xs −X0|

≤ 2σ · L · sup
s∈[0,∆]

|Xs −X0|.

Proceeding as in (2.3) and (2.4), we get

E

(∣∣∣ ∫ ∆

0
σ2(Xs)− σ2(X0) ds

∣∣∣) = O
(
∆

3
2
)
, as ∆→ 0.

4. By (2.1), it holds

(
Xs −X0

)2 ≤ ( sup
r∈[0,∆]

∣∣∣ ∫ r

0
σ(Xv) dWv

∣∣∣+ b ·∆
)2

=

(
sup

r∈[0,∆]

∣∣∣ ∫ r

0
σ(Xv) dWv

∣∣∣)2

+ 2 · sup
r∈[0,∆]

∣∣∣ ∫ r

0
σ(Xv) dWv

∣∣∣ · b ·∆ + b
2 ·∆2.

(2.5)

Setting p = 1 and p = 2 in (2.2), we receive in (2.5)

E

(
sup

s∈[0,∆]

(
Xs −X0

)2
)

= O(∆), as ∆→ 0. (2.6)
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Now, because of Jensen’s inequality (see for instance [33, p. 112]), Itô’s isometry (see for
instance [32, p. 48]), the Lipschitz continuity of σ(·) and (2.6), we finally receive

E

(∣∣∣ ∫ ∆

0
σ(Xs)− σ(X0) dWs

∣∣∣) ≤ (E((∫ ∆

0
σ(Xs)− σ(X0) dWs

)2
)) 1

2

=

(
E

(∫ ∆

0

(
σ(Xs)− σ(X0)

)2
ds

)) 1
2

≤ L ·

(
E

(∫ ∆

0
sup

s∈[0,∆]

(
Xs −X0

)2
ds

)) 1
2

= L ·

(
E

(
sup

s∈[0,∆]

(
Xs −X0

)2
)) 1

2

·
√

∆

= O(∆), as ∆→ 0.

5. Defining

X̄s :=

∫ s

0
σ(Xv)− σ(X0) dWv +

∫ s

0
b(Xv) dv,

we decompose

Xs −X0 = σ(X0) ·Ws + X̄s. (2.7)

Because of the previous results, it holds

E
(

sup
s∈[0,∆]

X̄2
s

)
= O(∆2), as ∆→ 0.

Using this, by Jensen’s inequality, Itô’s isometry, Fubini’s theorem (see for instance [33, p. 103])
and the boundedness of σ(·), we receive

E

(∣∣∣σ(X0) ·
∫ ∆

0
X̄s dWs

∣∣∣) ≤ σ · (∫ ∆

0
E
(

sup
s∈[0,∆]

X̄2
s

)
ds

) 1
2

= O
(
∆

3
2
)
, as ∆→ 0. (2.8)

Similarly, we gain

E

(∣∣∣ ∫ ∆

0

(
Xs −X0

)
·
(
σ(Xs)− σ(X0)

)
dWs

∣∣∣)
≤ L ·

(∫ ∆

0
E
(

sup
s∈[0,∆]

(
Xs −X0

)4)
ds

) 1
2

.

Squaring (2.5) and using (2.2) with p = 1, p = 2, p = 3 and p = 4, it holds

E
(

sup
s∈[0,∆]

(
Xs −X0

)4)
= O(∆2), as ∆→ 0.
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Therefore, we receive

E

(∣∣∣ ∫ ∆

0

(
Xs −X0

)
·
(
σ(Xs)− σ(X0)

)
dWs

∣∣∣) = O
(
∆

3
2
)
, as ∆→ 0. (2.9)

Finally, we obtain by (2.7), (2.8) and (2.9)∫ ∆

0
(Xs −X0) · σ(Xs) dWs = σ(X0) ·

∫ ∆

0
(Xs −X0) dWs

+

∫ ∆

0

(
Xs −X0

)
·
(
σ(Xs)− σ(X0)

)
dWs

= σ(X0) ·
∫ ∆

0

(
σ(X0) ·Ws + X̄s

)
dWs

+

∫ ∆

0

(
Xs −X0

)
·
(
σ(Xs)− σ(X0)

)
dWs

= σ2(X0) ·
∫ ∆

0
Ws dWs + σ(X0) ·

∫ ∆

0
X̄s dWs

+

∫ ∆

0

(
Xs −X0

)
·
(
σ(Xs)− σ(X0)

)
dWs

= σ2(X0) ·
∫ ∆

0
Ws dWs +OP

(
∆

3
2
)
, as ∆→ 0.

�

The following regression identity for one-dimensional diffusions will play a crucial role in the
last chapter in which we apply statistical applications for the BDI process.

Theorem 2.3
Let X = Xj,` be the solution of (1.1) and let Assumption 2.1(a) hold. Then, for every t ≥ 0

it holds (
Xt+∆ −Xt√

∆

)2

= σ2(Xt) ·
(
1 + U(t,∆)

)
+OP

(√
∆
)
, as ∆→ 0,

where U(t,∆) is a F ′t+∆-measurable random variable being independent of F ′t and satisfying

U(t,∆)
d
= 2 ·

∫ 1

0
Ws dWs

for every t ≥ 0 and ∆ > 0.

Proof
As the previous proof, this proof is based on ideas from [8, p. 129f] and [25, p. 356f]. Let t ≥ 0.

We define the functions b̌(x) := 2x · b(x) and σ̌(x) := 2x · σ(x). Then, by using Itô’s formula
(see for instance [32, p. 60]), we receive

X2
t+∆ −X2

t =

∫ t+∆

t
b̌(Xs) ds+

∫ t+∆

t
σ̌(Xs) dWs +

∫ t+∆

t
σ2(Xs) ds.
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Using this and

Xt+∆ −Xt =

∫ t+∆

t
b(Xs) ds+

∫ t+∆

t
σ(Xs) dWs,

it holds(
Xt+∆ −Xt

)2
=
(
X2
t+∆ −X2

t

)
− 2Xt ·

(
Xt+∆ −Xt

)
=

∫ t+∆

t
b̌(Xs)− b̌(Xt) ds

+

∫ t+∆

t
σ̌(Xs)− σ̌(Xt) dWs

+

∫ t+∆

t
σ2(Xs)− σ2(Xt) ds+ σ2(Xt) ·∆

−
∫ t+∆

t
2Xt ·

(
b(Xs)− b(Xt)

)
ds

−
∫ t+∆

t
2Xt ·

(
σ(Xs)− σ(Xt)

)
dWs

= σ2(Xt) ·∆

+

∫ t+∆

t
σ̌(Xs)− σ̌(Xt) dWs −

∫ t+∆

t
2Xt ·

(
σ(Xs)− σ(Xt)

)
dWs

+

∫ t+∆

t
b̌(Xs)− b̌(Xt) ds−

∫ t+∆

t
2Xt ·

(
b(Xs)− b(Xt)

)
ds

+

∫ t+∆

t
σ2(Xs)− σ2(Xt) ds

= σ2(Xt) ·∆

+ 2 ·
∫ t+∆

t
(Xs −Xt) · σ(Xs) dWs

+ 2 ·
∫ t+∆

t
(Xs −Xt) · b(Xs) ds

+

∫ t+∆

t
σ2(Xs)− σ2(Xt) ds.

Hence, by using the fifth, second and third part of the previous proposition, we receive(
Xt+∆ −Xt√

∆

)2

= σ2(Xt) ·
(
1 + U(t,∆)

)
+OP

(√
∆
)
, as ∆→ 0,

where U(t,∆) is a F ′t+∆-measurable random variable being independent of F ′t and satisfying

U(t,∆)
d
= 2 ·

∫ 1

0
Ws dWs for every t ≥ 0, ∆ > 0.

�

A further important tool will be the exponential inequality (by Brandt, c.f. [2, p. 23f]) which
states that for given 0 < λ < 1

2 a diffusion stays in a neighbourhood of a size ∆λ during the
time period (t, t+ ∆] with high probability.
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Lemma 2.4
Let X = Xj,` be the solution of (1.1) and let Assumption 2.1(a) hold. Then, for t ≥ 0, ∆ > 0

and 0 < λ < 1
2 it holds

Py

({
sup

s∈[0,∆]
|Xs+t −Xt| > ∆λ

})
≤ c1 exp

(
−c2∆2λ−1

)
=: gλ(∆),

where c1, c2 are positive constants being independent of t and y ∈ E.

Proof
For the proof see [2, p. 26f].

�

Remark 2.5
There is a version of Lemma 2.4 which does not use the boundedness of the drift coefficient
b(·). By using (1.2), there is a constant K > 0 such that

|b(x)| ≤ K · (1 + |x|)

for every x ∈ E (notice that K depends on the Lipschitz-constant L from (1.2)), i.e., the drift
coefficient b(·) has a linear growth rate. Then, according to [16, p. 206f], the following holds:
For 0 < λ < 1

2 and 1
2 < η′ < 1− λ there is ∆0 > 0 such that

Py

({
sup

s∈[0,∆]
|Xs+t −Xt| > ∆λ

}
∩
{
|Xt| ≤ ∆−η

′
})
≤ gλ(∆)

for every t ≥ 0 and every 0 < ∆ < ∆0. However, in the last chapter some applications demand
that the drift coefficient is bounded, therefore we restrict ourselves to Assumption 2.1(a).

♦

2.2 Properties of Branching Diffusions

Using the previous lemma, our aim is to show the following: For given 0 < λ < 1
2 , the

probability that a subprocess of a branching diffusion without immigration, starting in xk,

leaves a neighbourhood of a size ∆λ around xk during a time period of length ∆ is of order
O(∆), as ∆→ 0. For this, let s > 0, y ∈ E and(

η
(s,y)
t

)
t≥s (2.10)

a subprocess of a BDI, which describes a branching diffusion without immigration starting at
time s with a single particle situated at y ∈ E. Let

B∆λ(y) :=
{
z ∈ E

∣∣ |z − y| ≤ ∆λ
}

(2.11)
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denote the points of E which have a distance to y of less than ∆λ. We define

a∆(s, y) :=

{∫ s+∆

s
η(s,y)
u (Bc

∆λ(y)) du > 0

}
(2.12)

which represents the event that a subprocess without immigration (η
(s,y)
t )t≥s starts at time

s with a single particle located in y ∈ E and leaves a neighbourhood of a size ∆λ around y
during a short time period (s, s+ ∆]. Using (2.12), we define

A∆(s,x) :=

`(x)⋃
k=1

a∆(s, xk). (2.13)

Taking the previous notation, we can now formulate the proposition.
Proposition 2.6
Let Assumption 2.1(a) hold. Then, for s ≥ 0 and y ∈ E

P
(
a∆(s, y)

)
= O(∆),

as ∆→ 0, independently of the initial position.

Proof
The proof is based on [2, p. 32], though it has some differences since branching particles do
not reproduce at their position of death. As the subprocess η(s,y) from (2.10) is a Markov
process, it is enough to consider the case s = 0. Up to the first branching at time τ1, the
process (η

(0,y)
t )0≤t≤τ1 is a one-dimensional diffusion, as in (1.1). Remember that according to

Assumption 1.3, it holds

P
({
τ1 < ∆

})
= O(∆), (2.14)

as ∆→ 0. We define the event

Ay :=

{
sup

0≤u≤∆∧τ1

∣∣η(0,y)
u − y

∣∣ > ∆λ

}
which describes that the diffusion (η

(0,y)
t )0≤t≤τ1 leaves the ∆λ-neighbourhood of its inital

position y ∈ E before time ∆ ∧ τ1. Then, because of Lemma 2.4 and (2.14) it holds

P
(
a∆(0, y)

)
= P

(
a∆(0, y) ∩Ay

)
+ P

(
a∆(0, y) ∩Acy

)
≤ P(Ay) + P

(
Acy, τ1 < ∆,

`(ητ1 )⋃
k=1

{∫ ∆

τ1

η
(0,ηkτ1 )
u (Bc

∆λ(y)) du > 0

})
≤ P(Ay) + P

({
τ1 < ∆

})
≤ gλ(∆) +O(∆)

= O(∆), (2.15)

as ∆→ 0.

�
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Remark 2.7
In (2.15) we have used the inclusion{

Acy, τ1 < ∆,

`(ητ1 )⋃
k=1

{∫ ∆

τ1

η
(0,ηkτ1 )
u (Bc

∆λ(y)) du > 0

}}
⊆
{
τ1 < ∆

}
(2.16)

in order to show that the probability of (2.16) is of order O(∆), as ∆ → 0. At first glance,
this estimation seems rough because we have not used anything about the spatial offspring
distribution and we have only applied the fact that branching events occur with probability
of order O(∆) in a time period of length ∆, as ∆→ 0. In his thesis, Brandt was able to state
an exponential inequality (similar to Lemma 2.4) for the probability of the left side of (2.16),
assuming that “subcritical reproduction” (see (1.45)) holds and that offspring particles start
their spatial motion at their parents’ position of death, c.f. [2, p. 32f]. However, by granting
Assumptions 1.14 and 1.18 from Hammer’s framework, we are not able to reach such good
estimations because the probability that at the branching time τ1 every offspring starts its
motion in a neighbourhood of length ∆λ around y (conditioned on the event Acy ∩

{
τ1 < ∆

}
)

is of order O(∆λ), as ∆→ 0, as we will prove below. Hence, we receive for the probability that
at the branching time τ1 at least one offspring starts its motion outside of B∆λ(y) (conditioned
on the event Acy ∩

{
τ1 < ∆

}
)

P

`(ητ1 )⋃
k=1

{∫ ∆

τ1

η
(0,ηkτ1 )
u (Bc

∆λ(y)) du > 0

} ∣∣∣∣Acy ∩ {τ1 < ∆
}

≥ P

`(ητ1 )⋃
k=1

{
ηkτ1 ∈ B

c
∆λ(y)

} ∣∣∣∣Acy ∩ {τ1 < ∆
}

= 1−P

`(ητ1 )⋂
k=1

{
ηkτ1 ∈ B∆λ(y)

} ∣∣∣∣Acy ∩ {τ1 < ∆
}

≥ 1−O(∆λ), (2.17)

as ∆ → 0. So, inclusion (2.16) is not a severe restriction. We want to finish this remark by
showing

P

`(ητ1 )⋂
k=1

{
ηkτ1 ∈ B∆λ(y)

} ∣∣∣∣Acy ∩ {τ1 < ∆
} = O(∆λ),

as ∆→ 0. For this, w.l.o.g. we assume `(ητ1) > 0. Then, according to the absolutely continuity
of the offspring law (Assumption 1.14) and using that there cannot exist more than k0 offspring
(Assumption 1.18), it holds

P

( `(ητ1 )⋂
k=1

{
ηkτ1 ∈ B∆λ(y)

} ∣∣∣∣Acy ∩ {τ1 < ∆
})

= 1B
∆λ

(y)(ητ−1
) ·

k0∑
k=1

pk(ητ−1
) ·Qk

(
ητ−1

;
[
−∆λ + y; y + ∆λ

]k)
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≤ 1B
∆λ

(y)(ητ−1
) ·

k0∑
k=1

pk(ητ−1
) ·

k∏
i=1

y+∆λ∫
−∆λ+y

q̂k
(
ητ−1
− vi

)
dvi

≤ 1B
∆λ

(y)(ητ−1
) ·

k0∑
k=1

pk(ητ−1
) ·

k∏
i=1

(
2∆λ · ||q̂k||∞

)

≤
k0∑
k=1

∆λk · 2k · ||q̂k||k∞

≤ ∆λ · 2k0 · k0 · max
1≤k≤k0

{
||q̂k||k∞

}
= O(∆λ), (2.18)

as ∆→ 0.

♦

Using the previous proposition, we have the following corollary.
Corollary 2.8
Let Assumption 2.1(a) hold. Then, there is a constant C > 0 such that for sufficiently small
∆ > 0 and for every s ≥ 0, x ∈ S

P
(
A∆(s,x)

)
≤ C∆ · `(x).

Proof
This is a direct consequence of the definition of A∆(s,x) from (2.13) and Proposition 2.6.

�

Now, we introduce some notation. Given ηi∆, we write η(i∆,ηki∆)

(i+1)∆ for the positions of particles
belonging to η(i+1)∆ and being offspring of a particle situated at ηki∆, i.e.,

η
(i∆,ηki∆)

(i+1)∆ :=
{
ηj(i+1)∆ ∈ η(i+1)∆

∣∣ 1 ≤ j ≤ `(η(i+1)∆), the particle situated at ηj(i+1)∆ is

the offspring of a particle situated at ηki∆
}

(2.19)

(if there are no offspring, set η(i∆,ηki∆)

(i+1)∆ := ∅). Moreover, ηI(i+1)∆ denotes the positions of all
particles belonging to η(i+1)∆ and being offspring of particles which have immigrated during
the time interval (i∆, (i+ 1)∆] (if there are no immigrants, set ηI(i+1)∆ := ∅), i.e.,

ηI(i+1)∆ :=
{
ηj(i+1)∆ ∈ η(i+1)∆

∣∣ 1 ≤ j ≤ `(η(i+1)∆), the particle situated at ηj(i+1)∆ is the off-

spring of a particle which immigrated during (i∆, (i+ 1)∆]
}
.

(2.20)

Using this notation, we can split each configuration η(i+1)∆ into two disjoint parts, namely

η(i+1)∆ =

`(ηi∆)⋃
k=1

η
(i∆,ηki∆)

(i+1)∆

.
∪ ηI(i+1)∆. (2.21)
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Furthermore, we remember the set of configurations with close and far neighbours from (1.39)
and (1.40). In our case, we set ε := 2∆λ resp. ε := 4∆λ and consider

S2∆λ =
{
x ∈ S

∣∣ `(x) ≥ 2,∃i 6= j ∈
{

1, ..., `(x)
}

: |xi − xj | < 2∆λ
}

resp.

D4∆λ =
{
x ∈ S

∣∣ `(x) ≥ 2,∀i 6= j ∈
{

1, ..., `(x)
}

: |xi − xj | ≥ 4∆λ
}
.

Proposition 2.9
Let Assumption 2.1(a) hold. Then, there is a constant C > 0 such that for sufficiently small
∆ > 0 and for every x ∈ S

1D
4∆λ

(x) ·Px

({
η∆ ∈ S2∆λ

})
≤ C∆ · `(x).

Proof
Depending on the event (2.13), for x ∈ S it holds

1D
4∆λ

(x) ·Px

({
η∆ ∈ S2∆λ

})
= 1D

4∆λ
(x) ·Px

({
η∆ ∈ S2∆λ

}
∩A∆(0,x)

)
+ 1D

4∆λ
(x) ·Px

({
η∆ ∈ S2∆λ

}
∩
(
A∆(0,x)

)c )
. (2.22)

The first term can be estimated by Corollary 2.8, i.e., there is a constant C ′ > 0 such that

Px

({
η∆ ∈ S2∆λ

}
∩A∆(0,x)

)
≤ C ′∆ · `(x) (2.23)

for sufficiently small ∆ > 0. Consider the second term in (2.22). Because of the event(
A∆(0,x)

)c
, every subprocess (

η
(0,xk)
t

)
t≥0

that starts in xk (with x ∈ D4∆λ) at time zero stays in a neighbourhood of a size ∆λ around
xk during the time [0,∆). As every particle belonging to x has a distance of more than 4∆λ

to its adjacent particles and η∆ has at least two particles with a distance of less than 2∆λ,
immigration must occur during the time [0,∆). Denoting τ1 the first immigration time after
time zero, this means

1D
4∆λ

(x) ·Px

({
η∆ ∈ S2∆λ

}
∩
(
A∆(0,x)

)c )
≤ 1D

4∆λ
(x) ·Px

({
ηI∆ 6= ∅

}
∩
{
τ1 < ∆

})
. (2.24)

According to (1.7), the probability that immigration occurs in a time period of length ∆ is of
order O(∆), as ∆→ 0. This is why there is a constant C ′′ > 0 such that for sufficiently small
∆ > 0

1D
4∆λ

(x) ·Px

({
η∆ ∈ S2∆λ

}
∩
(
A∆(0,x)

)c ) ≤ C ′′∆. (2.25)
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Altogether, using (2.23) and (2.25), we receive for sufficiently small ∆ > 0

1D
4∆λ

(x) ·Px

({
η∆ ∈ S2∆λ

})
= 1D

4∆λ
(x) ·Px

({
η∆ ∈ S2∆λ

}
∩A∆(0,x)

)
+ 1D

4∆λ
(x) ·Px

({
η∆ ∈ S2∆λ

}
∩
(
A∆(0,x)

)c )
≤ C ′∆ · `(x) + C ′′∆

≤ C ′′′∆ ·
(
`(x) + 1

)
≤ C∆ · `(x),

where C ′′′ := max {C ′, C ′′} > 0 and C := 2C ′′′ > 0.

�

Remark 2.10
In the previous proposition, we have not mentioned the position where the immigrated particle
starts its motion. If we grant Assumption 1.14, the immigration law has a Lebesgue density
in C0(E) ∩ L1(E). Considering this, we could get a better estimation in (2.25), namely that
(2.25) is of order O(∆1+λ), as ∆→ 0. However, since the first term of (2.22) is smaller than
or equal to C ′∆ · `(x) (and this estimation is not that rough according to Remark 2.7), the
order of (2.22) does not really improve even if (2.25) is of order O(∆1+λ), as ∆→ 0. This is
why we discontinue inquiry into this line.

♦

As already mentioned in Example 1.17, we want to conclude this chapter by giving a rate of
convergence for m(Sε), as ε→ 0, where

Sε =
{
x ∈ S

∣∣ `(x) ≥ 2,∃i 6= j ∈
{

1, ..., `(x)
}

: |xi − xj | < ε
}

is the set of configurations in S in which at least two components have a distance of less than
ε > 0. In this chapter, this rate of convergence is our main result and it will be an important
tool for the next proofs.

Theorem 2.11
Grant Assumptions 1.13, 1.19 and 2.1(a). Then, it holds

m(Sε) = O(ε), as ε→ 0.

Proof
According to the seventh remark in Remark 1.16, we know that a sufficient criterion for a
Lebesgue density of the invariant measure m(·) is Assumption 1.13. Therefore, it holds

m(Sε) =
∑
`∈N0

∫
Sε∩E`

γ(`)(x) dx, (2.26)
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where γ(`)(·) is given by equation (1.38)

γ(`)(x) =
∑
n∈N0

Eδ

(
1{τn<R} · r

(`)
α (ητn ;x)

)
(2.27)

with

r(`)
α (ητn ;x) = r

(`)
α,1(ητn ;x) +

∫
E`
r(`)
α (ητn ; z) pα1 (z;x) dz (2.28)

according to (1.37). Because of Fubini’s theorem, (2.27) and (2.28), it holds∫
Sε∩E`

γ(`)(x) dx =
∑
n∈N0

Eδ

(
1{τn<R} ·

∫
Sε∩E`

r
(`)
α,1(ητn ;x) dx

)

+
∑
n∈N0

Eδ

(
1{τn<R} ·

∫
Sε∩E`

dx

∫
E`
r(`)
α (ητn ; z) pα1 (z;x) dz

)
. (2.29)

Now, we estimate the single terms which appear in (2.29).

1. By applying (1.36) and Fubini’s theorem, it holds∫
Sε∩E`

r
(`)
α,1(ητn ;x) dx =

∫ 1

0
dt

∫
Sε∩E`

pαt (ητn ;x) dx.

Using the identity in (1.16) and (1.34), we receive∫
Sε∩E`

pαt (ητn ;x) dx ≤
∫

Sε∩E`

∏̀
i=1

p
(κ)
t (ηiτn ;xi) dx1... dx` (2.30)

(remember that we write xk for a component of the configuration x ∈ S, where 1 ≤ k ≤ `(x)).
For fixed ` ∈ N, in the set Sε∩E` there are

(
`
2

)
possibilities to arrange components i 6= j with

|xi − xj | < ε. Using this, Fubini’s theorem and the heat kernel estimate for a single motion
with branching (according to the fifth remark in Remark 1.16, w.l.o.g. we may set t0 := 1 in
(1.30), i.e., there is is a constant C1 > 0 such that

p
(κ)
t (η1

τn ;x) ≤ C1 · t−
1
2 exp

(
−

(η1
τn − x)2

2C1t

)
for every 0 < t ≤ 1), we can estimate (2.30) by∫

Sε∩E`

∏̀
i=1

p
(κ)
t (ηiτn ;xi) dx1... dx`

≤
(
`

2

)∫
E
p

(κ)
t (η`τn ;x`) dx`...

∫
E
p

(κ)
t (η2

τn ;x2) dx2

x2+ε∫
−ε+x2

p
(κ)
t (η1

τn ;x1) dx1

≤ C1 ·
√

2πC1 ·
(
`

2

)∫
E
p

(κ)
t (η`τn ;x`) dx`...

∫
E
p

(κ)
t (η2

τn ;x2) dx2

×
x2+ε∫
−ε+x2

1√
2πC1t

exp

(
−

(η1
τn − x

1)2

2C1t

)
dx1. (2.31)
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For t > 0 the function

ϕη
τ1
n
,C1t(x) :=

1√
2πC1t

exp

(
−

(η1
τn − x)2

2C1t

)
is the density of a normal distribution with expectation η1

τn and variance C1t. Hence, for every
x ∈ E it holds

x+ε∫
−ε+x

1√
2πC1t

exp

(
−

(η1
τn − y)2

2C1t

)
dy ≤ 2ε · 1√

2πC1t
. (2.32)

Furthermore, for every 1 ≤ i ≤ ` it holds∫
E
p

(κ)
t (ηiτn , x) dx ≤ 1. (2.33)

Sticking together (2.32) and (2.33), we receive in (2.31)

C1 ·
√

2πC1 ·
(
`

2

)∫
E
p

(κ)
t (η`τn ;x`) dx`...

∫
E
p

(κ)
t (η2

τn ;x2) dx2

×
x2+ε∫
−ε+x2

1√
2πC1t

exp

(
−

(η1
τn − x

1)2

2C1t

)
dx1

≤ C1 ·
(
`

2

)
· 2ε · t−

1
2 ·

≤ C1 · `2 · ε · t−
1
2 . (2.34)

Hence, combining (2.30) with (2.34), we have∫
Sε∩E`

pαt (ητn ;x) dx ≤ C1 · `2 · ε · t−
1
2 . (2.35)

Thus, we obtain in (2.35)∫ 1

0
dt

∫
Sε∩E`

pαt (ητn ;x) dx ≤ C1 · `2 · ε ·
∫ 1

0
t−

1
2 dt

= 2C1 · `2 · ε (2.36)

2. Now, we want to estimate the expression∫
Sε∩E`

dx

∫
E`
r(`)
α (ητn ; z) pα1 (z;x) dz (2.37)

from equation (2.29) similarly as above. We rewrite (2.37) by Fubini’s theorem to∫
Sε∩E`

dx

∫
E`
r(`)
α (ητn ; z) pα1 (z;x) dz =

∫
E`
r(`)
α (ητn ; z) dz

∫
Sε∩E`

pα1 (z;x) dx. (2.38)
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Proceeding as in the lines before (2.35), we receive with t = 1∫
Sε∩E`

pα1 (z;x) dx ≤ C1 · `2 · ε. (2.39)

Hence, (2.38) can be estimated by∫
Sε∩E`

dx

∫
E`
r(`)
α (ητn ; z) pα1 (z;x) dz ≤ C1 · `2 · ε ·

∫
E`
r(`)
α (ητn ; z) dz. (2.40)

We remember (1.14) which states an asymptotic behaviour for the occupation times of the
killed `-particle motion, i.e.,∫

E`
r(`)
α (ητn ; z) dz = R(`)

α (ητn ;E`) � 1

`
, `→∞. (2.41)

Thus, there is a constant C ′1 > 0 such that (2.40) becomes∫
Sε∩E`

dx

∫
E`
r(`)
α (ητn ; z) pα1 (z;x) dz ≤ C ′1 · ` · ε (2.42)

for sufficiently large `.

3. According to (1.26), it holds

m(E`) =
∑
n∈N0

Eδ

(
1{τn<R} · 1{ητn∈E`} ·R

(`)
α (ητn ;E`)

)
. (2.43)

Combining (2.43) with (2.41), we achieve that∑
n∈N0

Eδ

(
1{τn<R} · 1{ητn∈E`}

)
� ` ·m(E`), `→∞. (2.44)

As we assume exponential decay of (m(E`))`∈N (Assumption 1.19), there exist C ′ > 0 and
0 < q < 1 such that

m(E`) ≤ C ′q`

and in (2.44) ∑
n∈N0

Eδ

(
1{τn<R} · 1{ητn∈E`}

)
≤ C ′ · ` · q` (2.45)

for sufficiently large `.

4. Now, we combine the results. In (2.29) we have, because of (2.36), (2.42) and (2.45)∫
Sε∩E`

γ(`)(x) dx ≤ C ′ · ` · q` · 2C1 · `2 · ε

+ C ′ · ` · q` · C ′1 · ` · ε (2.46)
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resp. if we set C ′′ := max
{

2C1 · C ′, C ′ · C ′1
}
we receive in (2.46)∫

Sε∩E`

γ(`)(x) dx ≤ C ′′ · `3 · q` · ε (2.47)

for sufficiently large `. The right-hand side of (2.47) is summable in ` ∈ N0, i.e.,

C ′′′ :=
∑
`∈N0

`3 · q` <∞. (2.48)

Writing C := C ′′ ·C ′′′ > 0, we get by equations (2.47) and (2.48), regarding to our expression
(2.26) in the very beginning,

m(Sε) =
∑
`∈N0

∫
Sε∩E`

γ(`)(x) dx

≤ C ′′ · C ′′′ · ε

= C · ε, (2.49)

i.e.,
m(Sε) = O(ε),

as ε→ 0. Our proof is complete.
�

Remark 2.12
1. Regarding (2.32), we notice that because of this inequality we finally obtain a rate of

order O(ε), as ε → 0. If it were possible to estimate (2.32) more accurately, we could
attain a better order. However, a Taylor expansion on the left side of (2.32) shows that
the order of this expression cannot be improved. This is why we are not able to get a
better rate of convergence than O(ε), as ε→ 0.

2. As we can see in the previous proof, Assumptions 1.13 and 1.19 from Hammer’s frame-
work play a crucial role in order to obtain a rate of convergence. However, we do not
make use of Assumptions 1.14 or 1.18 from Hammer’s framework.

♦



Chapter 3

A Reconstruction Algorithm for
Branching Diffusions with
Immigration

In this chapter, our aim is to reconstruct the underlying trajectory of a BDI assuming that
we observe the BDI process at discrete points in time. This reconstruction algorithm connects
ideas from Brandt’s algorithm ([2, p. 39]) to some assumptions from Hammer’s framework
(see subsection 1.3).
Before we can specify this algorithm, we will introduce some notation and want to remark
that we write ∆ := ∆n := 1/n, where n ∈ N and T := T∆ > 0 for a time horizon which may
depend on ∆ > 0 (if it depends on ∆, then T∆ → ∞ and T∆/∆ → ∞ for ∆ → 0 must be
fulfilled).

3.1 Notation

Consider the path of a BDI η at a regular grid of time i∆, where i ∈ N0. We assume that we
are able to see only the positions of the particles but not their pedigree, which means that at
each time i∆ the configuration

ηi∆ =
(
η1
i∆, ..., η

`(ηi∆)
i∆

)
(3.1)

is observed in form of the point measure
∑`(ηi∆)

k=1 εηki∆
. Let

βi∆ =
(
β1
i∆, ..., β

`(ηi∆)
i∆

)
(3.2)

denote an arbitrary arrangement of ηi∆ viewed as point measure
∑`(ηi∆)

k=1 εηki∆
. By introducing

the equivalence relation for x,y ∈ S via

45
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x =p y :⇐⇒

`(x) = `(y) and there exists a permutation π′

of {1, ..., `(x)} such that π′(x) = y,

it holds

βi∆ =p ηi∆. (3.3)

We are now faced with the following problem: Based on the observations βi∆ and β(i+1)∆, we
cannot determine

η
(i∆,βki∆)

(i+1)∆ :=
{
ηj(i+1)∆ ∈ η(i+1)∆

∣∣ 1 ≤ j ≤ `(η(i+1)∆), the particle situated at ηj(i+1)∆ is

the offspring of a particle situated at βki∆
}

(3.4)

since we do not know how the BDI process behaves during the time (i∆, (i+1)∆] as branching
or immigration could occur. However, we are able to approximate this expression as we will
see in the next section. Before we outline this approximation, remember the set Dε from (1.40)
which describes the set of configurations with far neighbours, i.e.,

Dε =
{
x ∈ S

∣∣ `(x) ≥ 2,∀i 6= j ∈
{

1, ..., `(x)
}

: |xi − xj | ≥ ε
}
.

3.2 A Partial Reconstruction Algorithm

Let 0 < λ < 1
2 be fixed and let βi∆ be an arrangement of ηi∆ with i ∈ N0 and 1 ≤ k ≤ `(ηi∆).

Define

β
[i∆,βki∆]

(i+1)∆ :=
{
βm(i+1)∆ ∈ β(i+1)∆

∣∣ 1 ≤ m ≤ `(β(i+1)∆), |βm(i+1)∆ − β
k
i∆| ≤ ∆λ

}
(3.5)

which is the set of the positions of particles (belonging to β(i+1)∆) whose distance to βki∆ is
less than or equal to ∆λ. Moreover, let

βI(i+1)∆ := β(i+1)∆

∖( `(βi∆)⋃
j=1

β
[i∆,βji∆]

(i+1)∆

)

denote the set of the positions of particles (belonging to β(i+1)∆) whose distance to every
particle of βi∆ is greater than ∆λ.

Definition 3.1 (Interpretable Pair)
A pair (ηi∆, η(i+1)∆) is called interpretable if there exists an arrangement (βi∆, β(i+1)∆) with
the following properties:βi∆ ∈ D4∆λ and β(i+1)∆ ∈ D2∆λ ,∣∣β[i∆,βki∆]

(i+1)∆

∣∣ = 1 for every 1 ≤ k ≤ `(βi∆).

♦
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The previous definition focuses on pairs (ηi∆, η(i+1)∆) which have an arrangement (βi∆, β(i+1)∆)

with good properties: The arrangement (βi∆, β(i+1)∆) has to fulfil that both βi∆ and β(i+1)∆

have particles which do not have close neighbours, i.e., every particle of βi∆ has to have a
distance of greater than at least 4∆λ to its adjacent particles resp. every particle of β(i+1)∆

has to have a distance of greater than 2∆λ to its adjacent particles. Furthermore, for every
particle situated at βki∆ (and belonging to βi∆) we consider a ∆λ-neighbourhood of βki∆. Then,
arrangements which have exactly one particle of β(i+1)∆ in a ∆λ-neighbourhood of βki∆ for
every 1 ≤ k ≤ `(βi∆) are filtered.
The following graphic demonstrates our idea. The green dots are particles of interpretable
pairs, whereas the red dots are particles of a pair which is not interpretable.

0 iΔ  (i+1)Δ jΔ (j+1)Δ T=1

Δλ { 

kΔ (k+1)Δ

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Remark 3.2
1. It is obvious that not every pair (ηi∆, η(i+1)∆) is interpretable and that we are not

interested in every arrangement (βi∆, β(i+1)∆). This is why we have to show that there
are enough interpretable pairs resp. the case that there is a non-interpretable pair does
not occur often.

2. If we compare our reconstruction algorithm with Brandt’s algorithm in [2, p. 39], there
are the following differences: Our focus lies on pairs (ηi∆, η(i+1)∆) which have to fulfil
certain conditions. Whereas Brandt demands that an arrangement βi∆ of ηi∆ has to
have far neighbours for considering a ∆λ-neighbourhood around every particle of βi∆,
we require that both the particles of βi∆ and of β(i+1)∆ have far neighbours. In addition,
we demand that there is exactly one particle of β(i+1)∆ in a ∆λ-neighbourhood of βki∆
for every 1 ≤ k ≤ `(βi∆). So, using our algorithm we filter more configurations.
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3. For every i ∈ N0 the event {
(ηi∆, η(i+1)∆) is interpretable

}
(3.6)

is measurable concerning

Hi∆ := σ
(
η0, η∆, ..., η(i+1)∆

)
(with H := (Hi∆)i∈N0

) and the set of all interpretable pairs is denoted by

G̃ :=
{

(ηi∆, η(i+1)∆) ∈ S × S
∣∣ i ∈ N0, (ηi∆, η(i+1)∆) is interpretable

}
. (3.7)

♦

For every i ∈ N0 and every 1 ≤ k ≤ `(βi∆) we define the event

b∆(i∆, βki∆) :=
{
The particle situated at βki∆ at time i∆ dies during the time (i∆, (i+1)∆]

}
.

We remember the sets (3.4) resp. (3.5) and for every i ∈ N0 we consider the event

`(βi∆)⋂
k=1

{
β

[i∆,βki∆]

(i+1)∆ =p η
(i∆,βki∆)

(i+1)∆

}
∩
(
b∆(i∆, βki∆)

)c
. (3.8)

The event (3.8) is measurable concerning

Gi∆ := σ
(
ηs
∣∣ 0 ≤ s ≤ (i+ 1)∆

)
= F(i+1)∆

(with G := (Gi∆)i∈N0) and is fulfilled if for every 1 ≤ k ≤ `(βi∆) the sets

β
[i∆,βki∆]

(i+1)∆ and η
(i∆,βki∆)

(i+1)∆

coincide and no particle belonging to βi∆ dies during the time (i∆, (i + 1)∆]. Particularly,
this means that the assignment in (3.5) is correct. If we combine the event (3.8) with (3.6),
we receive {

(ηi∆, η(i+1)∆) is interpretable
}

∩
`(βi∆)⋂
k=1

{
β

[i∆,βki∆]

(i+1)∆ =p η
(i∆,βki∆)

(i+1)∆

}
∩
(
b∆(i∆, βki∆)

)c (3.9)

which is measurable concerning the sigma-field Gi∆. (3.9) describes the event that the pair
(ηi∆, η(i+1)∆) is interpretable, the assignment in (3.5) is correct and every particle belonging
to βi∆ neither dies nor it makes “big excursions” during the time (i∆, (i+ 1)∆]. We want to
emphasise that (3.9) is not measurable concerning the sigma-field Hi∆ since we do not know
what happens during the time (i∆, (i+ 1)∆] by observing the path only at discrete points in
time i∆, i ∈ N0.
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Definition 3.3 (Properly Interpretable Pair)
A pair (ηi∆, η(i+1)∆) which fulfils (3.9) is called properly interpretable pair.

♦

The set of all properly interpretable pairs is denoted by

G :=
{

(ηi∆, η(i+1)∆) ∈ S × S
∣∣ i ∈ N0, (ηi∆, η(i+1)∆) is properly interpretable

}
. (3.10)

In the next theorem, we will see that the expected quota of properly interpretable pairs during
the time [0, T ] converges to 1, as ∆→ 0, which is why our procedure makes sense.

Theorem 3.4
Grant Assumptions 1.13, 1.19 and 2.1(a). Then, the expected quota of pairs (ηi∆, η(i+1)∆),

0 ≤ i ≤ bT/∆c − 1, being properly interpretable converges to 1. It even holds

1 ≥ Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1G

(
(ηi∆, η(i+1)∆)

))
= Pm

({
(η0, η∆) ∈ G

})
≥ 1−O(∆λ),

as ∆→ 0.

In order to show this theorem, we must prove the following proposition.

Proposition 3.5
Grant Assumptions 1.13, 1.19 and 2.1(a) and let βi∆ be observations of the BDI η, where
0 ≤ i ≤ bT/∆c − 1. Then, it holds

1. Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1S
4∆λ

(βi∆)

)
= O(∆λ), as ∆→ 0.

2. Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1⋃`(βi∆)

k=1

{∣∣η(i∆,βk
i∆

)

(i+1)∆

∣∣6=1

}
)

= O(∆), as ∆→ 0.

3. Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1⋃`(βi∆)

k=1 b∆(i∆,βki∆)

)
= O(∆), as ∆→ 0.

4. Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1S
2∆λ

(β(i+1)∆)

)
= O(∆), as ∆→ 0.

5. Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1⋃`(βi∆)

k=1

{
β

[i∆,βk
i∆

]

(i+1)∆
6=pη

(i∆,βk
i∆

)

(i+1)∆

}
)

= O(∆), as ∆→ 0.
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Proof
1. As m(·) is the invariant measure of the BDI process, it holds

Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1S
4∆λ

(βi∆)

)
=

1

bT/∆c

bT/∆c−1∑
i=0

Pm

({
βi∆ ∈ S4∆λ

})
=

1

bT/∆c
· bT/∆c ·m(S4∆λ)

= m(S4∆λ).

Now, we can use Theorem 2.11 which states

m(S4∆λ) = O(∆λ),

as ∆→ 0.

2. We can split the F(i+1)∆-measurable event

{∣∣η(i∆,βki∆)

(i+1)∆

∣∣ 6= 1
}

=
{∣∣η(i∆,βki∆)

(i+1)∆

∣∣ = 0
}
∪̇
{∣∣η(i∆,βki∆)

(i+1)∆

∣∣ > 1
}

into two disjoint parts. The first part describes that at time (i+ 1)∆ no offspring of a particle
situated at βki∆ is left. Hence, the particle starting in βki∆ must have died during the time
(i∆, (i+1)∆]. The second part describes the event that at time (i+1)∆ two or more offspring
of a particle situated at βki∆ are left. This means that the particle starting in βki∆ must have
branched during the time (i∆, (i+ 1)∆]. Thus,

{∣∣η(i∆,βki∆)

(i+1)∆

∣∣ 6= 1
}
⊆ b∆(i∆, βki∆). (3.11)

According to Assumption 1.3, the probability that the particle situated at βki∆ dies during the
time (i∆, (i+ 1)∆] is of order O(∆), as ∆→ 0, so we receive in (3.11)

Pm

({ ∣∣η(i∆,βki∆)

(i+1)∆

∣∣ 6= 1
} ∣∣Fi∆) = O(∆), (3.12)

as ∆ → 0. Using (3.12), the invariance of m(·) and the finiteness of the occupation measure
m(·) according to (1.44), we obtain

Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1⋃`(βi∆)

k=1

{∣∣η(i∆,βk
i∆

)

(i+1)∆

∣∣6=1

}
)

≤ Em

(
1

bT/∆c

bT/∆c−1∑
i=0

`(βi∆)∑
k=1

Pm

({∣∣η(i∆,βki∆)

(i+1)∆

∣∣ 6= 1
} ∣∣Fi∆))
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= O(∆) ·Em

(
1

bT/∆c

bT/∆c−1∑
i=0

`(βi∆)

)

= O(∆) · 1

bT/∆c
· bT/∆c

∫
S
`(x) m(dx)

= O(∆)

∫
S
`(x) m(dx)

= O(∆),

as ∆→ 0.

3. Because of Assumption 1.3, for every 1 ≤ k ≤ `(βi∆) it holds

Pm

(
b∆(i∆, βki∆)

∣∣Fi∆) = O(∆),

as ∆→ 0. Proceeding exactly as in the second part of this proof, it follows

Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1⋃`(βi∆)

k=1 b∆(i∆,βki∆)

)
= O(∆),

as ∆→ 0.

4. As β∆ =p η∆, we can use Proposition 2.9 which states that there is a constant C > 0 such
that for sufficiently small ∆ > 0 and for every x ∈ S

1D
4∆λ

(x) ·Px

({
β∆ ∈ S2∆λ

})
≤ C∆ · `(x). (3.13)

Using that m(·) is invariant, (3.13) and the finiteness of the occupation measure m(·) from
(1.44), we receive for sufficiently small ∆ > 0

Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1S
2∆λ

(β(i+1)∆)

)

=
1

bT/∆c
· bT/∆c ·Em

(
1D

4∆λ
(β0) · 1S

2∆λ
(β∆)

)
=

∫
S
1D

4∆λ
(x) ·Px

({
β∆ ∈ S2∆λ

})
m(dx)

≤
∫
S
C∆ · `(x)m(dx)

= C∆

∫
S
`(x)m(dx)

= O(∆),

as ∆→ 0.

5. First of all, we show that there is a constant C > 0 such that for sufficiently small ∆ > 0

and for every 0 ≤ i ≤ bT/∆c − 1

1D
4∆λ

(βi∆) ·Pm

({
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

} ∣∣Fi∆) ≤ C∆ · `(βi∆). (3.14)
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In order to prove (3.14), we proceed similarly as in the proof of Proposition 2.9. We remember
the events from (2.12) and (2.13) and write

A∆(i∆, βi∆) =

`(βi∆)⋃
k=1

a∆(i∆, βki∆) (3.15)

for the event that there is one particle belonging to βi∆ (and situated at βki∆) whose subprocess(
η

(i∆,βki∆)
t

)
t≥0

(without immigration) leaves a neighbourhood of a size ∆λ around βki∆ during the time period
(i∆, (i+ 1)∆]. Depending on (3.15), we get in (3.14)

1D
4∆λ

(βi∆) ·Pm

({
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

} ∣∣Fi∆)
≤ 1D

4∆λ
(βi∆) ·Pm

({
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

}
∩A∆(i∆, βi∆)

∣∣Fi∆)
+ 1D

4∆λ
(βi∆) ·Pm

({
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

}
∩
(
A∆(i∆, βi∆)

)c ∣∣Fi∆) . (3.16)

As βi∆ =p ηi∆, the first term in (3.16) can be estimated with Corollary 2.8, i.e., there is a
constant C ′ > 0 such that for sufficiently small ∆ > 0

1D
4∆λ

(βi∆) ·Pm

({
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

}
∩A∆(i∆, βi∆)

∣∣Fi∆) ≤ C ′∆ · `(βi∆). (3.17)

Consider the second term in (3.16). Because of
(
A∆(i∆, βi∆)

)c
, for every 1 ≤ k′ ≤ `(βi∆) the

subprocess (
η

(i∆,βk
′
i∆)

t

)
t≥0

(without immigration) which starts in βk
′
i∆ (with βi∆ ∈ D4∆λ) at time i∆ stays in a neigh-

bourhood of a size ∆λ around βk′i∆ during the time (i∆, (i+ 1)∆]. Particularly, this means

η
(i∆,βki∆)

(i+1)∆ ⊆ β[i∆,βki∆]

(i+1)∆ . (3.18)

Because of (3.18) and {
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

}
, (3.19)

immigration must occur during the time (i∆, (i+1)∆], i.e., denoting τ i∆ the first immigration
time after time i∆, we get for βi∆ ∈ D4∆λ

Pm

({
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

}
∩
(
A∆(i∆, βi∆)

)c ∣∣Fi∆)
≤ Pm

({
β

[i∆,βki∆]

(i+1)∆ ∩ η
I
(i+1)∆ 6= ∅

}
∩
{
τ i∆ < (i+ 1)∆

} ∣∣Fi∆) . (3.20)

According to (1.7), there is a constant C ′′ > 0 such that the probability of immigration during
the time period (i∆, (i+ 1)∆] is smaller than or equal to C ′′∆, for sufficiently small ∆ > 0.
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This is why (3.20) can be estimated by

1D
4∆λ

(βi∆) ·Pm

({
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

}
∩
(
A∆(i∆, βi∆)

)c ∣∣Fi∆) ≤ C ′′∆ (3.21)

for sufficiently small ∆ > 0. Combining (3.17) and (3.21), we have proved (3.14).

Now, we can finish our proof. Using inequality (3.14), m(·) being an invariant measure and∫
S
`2(x)m(dx) <∞

from (1.43), we obtain for sufficiently small ∆ > 0

Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1⋃`(βi∆)

k=1

{
β

[i∆,βk
i∆

]

(i+1)∆
6=pη

(i∆,βk
i∆

)

(i+1)∆

}
)

≤ Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) ·
`(βi∆)∑
k=1

Pm

({
β

[i∆,βki∆]

(i+1)∆ 6=p η
(i∆,βki∆)

(i+1)∆

} ∣∣Fi∆))

≤ Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · `(βi∆) · C∆ · `(βi∆)

)

≤ C∆

∫
S
`2(x)m(dx)

= O(∆),

as ∆→ 0.

�

Remark 3.6
1. In the first part of the proof of Proposition 3.5, because of Theorem 2.11 we are able to

obtain a rate of convergence for

Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1S
4∆λ

(βi∆)

)
= m(S4∆λ).

In particular, this is due to Assumptions 1.13 and 1.19 from Hammer’s framework.

2. In the fifth part of the proof of Proposition 3.5, in inequality (3.20) we have not made
use of the position where the immigrating particle starts its motion. By applying the
same arguments as in Remark 2.10, we would not achieve better results if we considered
this (for this, Assumption 1.14 must be assumed). Therefore, we discontinue inquiry into
this line.

♦

Now, using Proposition 3.5 we are able to prove Theorem 3.4.
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Proof (of Theorem 3.4)

It holds

bT/∆c−1∑
i=0

1G

(
(ηi∆, η(i+1)∆)

)
=

bT/∆c−1∑
i=0

1D
4∆λ
×D

2∆λ

(
(βi∆, β(i+1)∆)

)
· 1⋂`(βi∆)

k=1

{
β

[i∆,βk
i∆

]

(i+1)∆
=pη

(i∆,βk
i∆

)

(i+1)∆

}
× 1⋂`(βi∆)

k=1

{∣∣η(i∆,βk
i∆

)

(i+1)∆

∣∣=1

} · 1⋂`(βi∆)

k=1

(
b∆(i∆,βki∆)

)c
≥
bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1D
2∆λ

(β(i+1)∆) ·
(

1− 1⋃`(βi∆)

k=1

{∣∣η(i∆,βk
i∆

)

(i+1)∆

∣∣6=1

}

− 1⋃`(βi∆)

k=1

{
β

[i∆,βk
i∆

]

(i+1)∆
6=pη

(i∆,βk
i∆

)

(i+1)∆

} − 1⋃`(βi∆)

k=1 b∆(i∆,βki∆)

)

≥
bT/∆c−1∑
i=0

1D
4∆λ

(βi∆)−
bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1⋃`(βi∆)

k=1

{
β

[i∆,βk
i∆

]

(i+1)∆
6=pη

(i∆,βk
i∆

)

(i+1)∆

}

−
bT/∆c−1∑
i=0

1⋃`(βi∆)

k=1

{∣∣η(i∆,βk
i∆

)

(i+1)∆

∣∣ 6=1

} − bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1S
2∆λ

(β(i+1)∆)

−
bT/∆c−1∑
k=1

1⋃`(βi∆)

k=1 b∆(i∆,βki∆)

= bT/∆c −
bT/∆c−1∑
i=0

1S
4∆λ

(βi∆)

−
bT/∆c−1∑
i=0

1⋃`(βi∆)

k=1

{∣∣η(i∆,βk
i∆

)

(i+1)∆

∣∣6=1

}

−
bT/∆c−1∑
k=1

1⋃`(βi∆)

k=1 b∆(i∆,βki∆)

−
bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1S
2∆λ

(β(i+1)∆)

−
bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1⋃`(βi∆)

k=1

{
β

[i∆,βk
i∆

]

(i+1)∆
6=pη

(i∆,βk
i∆

)

(i+1)∆

}

resp. after dividing by bT/∆c

1 ≥ 1

bT/∆c

bT/∆c−1∑
i=0

1G

(
(ηi∆, η(i+1)∆)

)
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≥ 1− 1

bT/∆c

bT/∆c−1∑
i=0

1S
4∆λ

(βi∆)

− 1

bT/∆c

bT/∆c−1∑
i=0

1⋃`(βi∆)

k=1

{∣∣η(i∆,βk
i∆

)

(i+1)∆

∣∣6=1

}

− 1

bT/∆c

bT/∆c−1∑
k=1

1⋃`(βi∆)

k=1 b∆(i∆,βki∆)

− 1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1S
2∆λ

(β(i+1)∆)

− 1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1⋃`(βi∆)

k=1

{
β

[i∆,βk
i∆

]

(i+1)∆
6=pη

(i∆,βk
i∆

)

(i+1)∆

}. (3.22)

Using Theorem 3.5, we conclude

1 ≥ Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1G

(
(ηi∆, η(i+1)∆)

))
≥ 1−O(∆λ)−O(∆).

Since 0 < λ < 1
2 , this means

1 ≥ Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1G

(
(ηi∆, η(i+1)∆)

))
≥ 1−O(∆λ),

as ∆→ 0. Our proof is complete.
�

Remark 3.7
In inequality (3.22), we could have estimated

− 1

bT/∆c

bT/∆c−1∑
i=0

1D
4∆λ

(βi∆) · 1S
2∆λ

(β(i+1)∆) ≥ − 1

bT/∆c

bT/∆c−1∑
i=0

1S
2∆λ

(β(i+1)∆). (3.23)

Then, we could renounce using the fourth part of Proposition 3.5 and by applying the first
part of Proposition 3.5, we still receive the same result from Theorem 3.4. However, by our
previous proof we can see that the only term with weaker order is

Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1S
4∆λ

(βi∆)

)
= O(∆λ),

as ∆→ 0, since the other terms are of order O(∆), as ∆→ 0. This is why we do not estimate
as in (3.23).

♦
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Due to the previous results, we receive the following useful corollary.

Corollary 3.8
Grant Assumptions 1.13, 1.19 and 2.1(a).

1. The expected quota of interpretable pairs (ηi∆, η(i+1)∆), 0 ≤ i ≤ bT/∆c − 1, converges
to 1. It even holds

1 ≥ Em

(
1

bT/∆c

bT/∆c−1∑
i=0

1
G̃

(
(ηi∆, η(i+1)∆)

))
= Pm

({
(η0, η∆) ∈ G̃

})
≥ 1−O(∆λ),

as ∆→ 0.

2. For every s ≥ 0, it holds

Pm

({
(ηs, ηs+∆) ∈ G̃\G

})
= O(∆),

as ∆→ 0.

Proof
The first part directly follows by Theorem 3.4 and G ⊆ G̃. The second part follows by using
similar arguments to those in the proof of Proposition 3.5.

�



Chapter 4

Non-Parametric Estimation of the
Diffusion Coefficient of Branching
Diffusions with Immigration

In this chapter, we have three main goals: First, our aim is to construct an estimator for the
squared diffusion coefficient σ2(·) of a BDI from discrete data by using the results from the
previous chapters. Secondly, we want to show consistency of this estimator. Thirdly, we show
that our estimator fulfils a central limit theorem.
As a BDI process contains many one-dimensional diffusions which branch and immigrate, it
is helpful to know how estimation for the diffusion coefficient of a one-dimensional diffusion
(as in (1.1)) works. In the case that a one-dimensional diffusion is observed at discrete points
in time, non-parametric estimation of the diffusion coefficient is an issue which has been
widely elaborated in literature, for example by Dacunha-Castelle and Florens-Zmirou in [3],
by Florens-Zmirou in [7], by Comte, Genon-Catalot and Rozenholc in [4] resp. [25, p. 341f], by
Kutoyants in [27], by Genon-Catalot and Jacod in [8] and [9], by Jacod in [23], or by Hoffmann
in [17], [18] and [19]. We want to take a closer look at some of them.

4.1 Estimators for One-Dimensional Diffusions

A well-known estimator for the squared diffusion coefficient of a one-dimensional diffusion is
an estimator by Florens-Zmirou in [7] which is based on the Nadaraya-Watson-Estimator. For
this, let X = Xj,` be the (strong) solution of (1.1), let h∆ be the bandwidth and Bh∆

(x) :={
y ∈ E

∣∣ |y − x| < h∆

}
. Then, for fixed point in time T := 1 and for x ∈ E the estimator is

σ̃2
∆(x) :=

bT/∆c−1∑
i=0

1Bh∆
(x)(Xi∆) ·

(
X(i+1)∆−Xi∆√

∆

)2

bT/∆c−1∑
i=0

1Bh∆
(x)(Xi∆)

· 1{ bT/∆c−1∑
i=0

1Bh∆
(x)(Xi∆)6=0

}. (4.1)
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Theorem 4.1 (Florens-Zmirou)
LetX = Xj,` be the solution of (1.1) with drift coefficient b(·) ∈ C2

b (E) and diffusion coefficient
σ(·) ∈ C3

b (E). Further, let σ̃2
∆(·) be the estimator from (4.1) and let x ∈ [0, 1].

1. If ∆−1h4
∆ → 0, as ∆→ 0, then σ̃2

∆(x) is a consistent estimator for σ2(x).

2. If ∆−1h3
∆ → 0, as ∆→ 0, then√

h∆

∆

(
σ̃2

∆(x)

σ2(x)
− 1

)
∆→0−−−→

(
LT (x)

)− 1
2 · Z in P -distribution,

where LT (x) denotes the local time of the diffusion X at x and Z is a standard normal
distributed random variable independently of X.

Proof
The proof can be found in [7, p. 800f].

�

Remark 4.2
1. The estimator σ̃2

∆(·) is optimal in the minimax sense under square-error loss for the class
of non-negative Lipschitz continuous diffusion coefficients being bounded and bounded
away from zero, c.f. [19, p. 342f].

2. For an introduction to local times of stochastic processes, we refer to [31, p. 222f].
♦

Another possibility for estimating the squared diffusion coefficient of a one-dimensional diffu-
sion was examined by Hoffmann in [17] and [18] by using wavelet methods and Besov spaces
(for an introduction to wavelets and Besov spaces, we refer to [11, p. 17ff]). Hoffmann con-
structs wavelet-estimators which are optimal in the minimax sense (for integrated errors) over
Besov balls, essentially by filling a classical regression scheme. For this, similarly to Theorem
2.3, under certain conditions on the drift and diffusion coefficients Hoffmann makes use of the
regression identity(

X(i+1)∆ −Xi∆√
∆

)2

= σ2(Xi∆) + εi∆ +OP
(√

∆
)
, as ∆→ 0, (4.2)

where εi∆ are martingale increments, c.f. [17, p. 449]. Assuming that the path of the diffusion
is observed at discrete points in time i∆ with 0 ≤ i ≤ bT/∆c − 1, he recovers σ2(x) from
several observations Xi∆ by regarding (4.2), where each observation Xi∆ lies around x in
an appropriate small area. More exactly, Hoffmann divides the compact set D := [0, 1] into
bh−1

∆ c many boxes C`∆ and demands that every box has been filled with b∆−1h∆c observations
Xi∆ up to time T := 1. For each observed point Xi∆, he sets a mark on a regular grid into
the box in which the observed point has fallen. By this, Hoffmann succeeds in constructing
wavelet-estimators for the squared diffusion coefficient σ2(·).
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Nevertheless, in Hoffmann’s procedure the following problem occurs: It is not clear that each
box C`∆, 1 ≤ ` ≤ bh−1

∆ c, has been filled with b∆−1h∆c observations Xi∆ up to time T := 1.
For example, choose the compact set [0, 1] and consider the Ornstein-Uhlenbeck process

Xt = X0 · e−t + 3 · (1− e−t) + 0.3 ·
∫ t

0
es−t dWs, X0 = 0.9 a.s.

It is unlikely that this process takes on values in [0, 0.5] during the time [0, T ]. Hoffmann
handles the problem of having enough observations Xi∆ in each box by conditioning on the
event that for every x ∈ [0, 1] the local time

LT (x) := lim
ε→0

1

2ε

∫ T

0
1{
|Xs−x|≤ε

} ds (4.3)

is greater than a given threshold ν ′ > 0, c.f. [17, p. 449] and [18, p. 136]. However, for statistical
application this event is not appropriate since by observing the path of a diffusion at discrete
points in time we are not able to determine whether this event has been fulfilled.

Remark 4.3
1. We want to outline the results from classical regression scheme, i.e., estimation of a

regression function f(·) (by using a local polynomial estimator of order r ∈ N) from
n ∈ N observations (Xi, Yi), where Xi are equally spaced or uniformly distributed on
D := [0, 1] and

Yi = f(Xi) + εi

with centered martingale increments εi, c.f. [34, p. 34f]. The estimator makes use of nh
observations and (under certain assumptions) it has mean-squared risk MSE satisfying
for every f(·) with regularity r ∈ N and for every x ∈ [0, 1]

MSE = MSE(x) =
(
Biasf (x)

)2
+ Varf (x) ≤ c1 · h2r + c2 ·

1

nh
, (4.4)

where c1 and c2 are positive constants, c.f. [34, p. 40]. Thus, by bias-variance-tradeoff,
we receive the optimal bandwidth h := hn := n−

1
1+2r and

MSE = O
(
n−

2r
1+2r

)
, as n→∞. (4.5)

Hence, the optimal rate of convergence is n−
r

1+2r which coincides with h = hn for r = 1.

2. In [5], the rates from classical regression are achieved for estimating a regression function
f(·) by using wavelet methods. Based on this, in [17] and [18] Hoffmann shows that his
wavelet-based regression estimators for σ2(·) are minimax (for integrated errors) over
Besov balls, i.e., they attain the rate ∆

r
1+2r , where r ∈ N is the regularity of the diffusion

coefficient σ(·). Also, Jacod achieves the same rate in [23], where he constructs a non-
parametric estimator of kernel type for the diffusion coefficient σ(·), both for pointwise
estimation and for estimation on a compact subset D ⊆ E.

♦
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4.2 Construction of the Estimator

In [2, p. 57f], Brandt developed an estimator for the squared diffusion coefficient of a BDI
resting on Florens-Zmirou’s Nadaraya-Watson-Estimator. We now want to construct an esti-
mator for the squared diffusion coefficient of a BDI by approaching Hoffmann’s way of filling a
classical regression scheme and combining it with our reconstruction algorithm from the third
chapter.
We consider the BDI process at discrete points in time i∆ during the time interval [0, T∆],
where 0 ≤ i ≤ bT∆/∆c − 1 (in our case, the time horizon T∆ depends on ∆ and is specified
below). Our aim is to estimate σ2(x) for some x ∈ D, where D ⊆ E is compact. W.l.o.g., we
may set D := [0, 1]. Denoting h′∆ :=

(
bh−1

∆ c
)−1

, we divide [0, 1] into h′−1
∆ many boxes

C`∆ :=
[
(`− 1) · h′∆, ` · h′∆

]
, 1 ≤ ` ≤ h′−1

∆ .

Remember the interpretable pairs from Definition 3.1 and define for every 1 ≤ ` ≤ h′−1
∆

G̃`∆ :=
{

(ηi∆, η(i+1)∆) ∈ S × S
∣∣ i ∈ N0, (ηi∆, η(i+1)∆) is interpretable and

∃k ∈ {1, ..., `(ηi∆)} : ηki∆ ∈ C`∆
}

(4.6)

the set of all interpretable pairs (ηi∆, η(i+1)∆) whose first configuration ηi∆ at least contains
one particle in C`∆. For every 1 ≤ ` ≤ h′−1

∆ we now defineHi∆ = σ
(
η0, η∆, ..., η(i+1)∆

)
stopping

times via

T `1 := inf
{
i∆ ≥ 0

∣∣ (ηi∆, η(i+1)∆) ∈ G̃`∆
}
,

T `j := inf
{
i∆ > T `j−1

∣∣ (ηi∆, η(i+1)∆) ∈ G̃`∆
}
, j ∈ N\{1}. (4.7)

Define for 1 ≤ ` ≤ h′−1
∆ and j ∈ N

β∗
T `j

:= inf
{
βk
T `j

∣∣ 1 ≤ k ≤ `(βT `j ), βk
T `j
∈ C`∆

}
(4.8)

and β∗
T `j+∆

let be the position of the unique particle (belonging to βT `j+∆) whose distance

to β∗
T `j

is smaller than or equal to ∆λ (this particle exists because of the property of being

interpretable). Further, we define for every 1 ≤ ` ≤ h′−1
∆ and j ∈ N the increments

Y ∗
T `j

:=
β∗
T `j+∆

− β∗
T `j√

∆
. (4.9)

Let M∆ be monotonously increasing with M∆ →∞, as ∆→ 0. Provided that every box C`∆
is filled with bM∆c points during the time [0, T∆], i.e., by chosing

T∆ := sup
1≤`≤h′−1

∆

T `bM∆c + ∆, (4.10)

we define the estimator σ̂2
∆(·) for σ2(·) as follows.
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Definition 4.4 (Estimator for the Squared Diffusion Coefficient of a BDI)
By using the previous notations, the estimator σ̂2

∆(·) for the squared diffusion coefficient σ2(·)
of a BDI is defined for every x ∈ [0, 1] via

σ̂2
∆(x) :=

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
Y ∗
T `j

)2
.

♦

Remark 4.5
1. The estimator works as follows: For given x ∈ [0, 1], the first sum in Definition 4.4

chooses the box C`∆ =
[
(` − 1) · h′∆, ` · h′∆

]
, 1 ≤ ` ≤ h′−1

∆ , which contains x. Then, the
estimator σ̂2

∆(x) estimates σ2(x) by making use of bM∆c quadratic increments

(
Y ∗
T `j

)2
=

(
β∗
T `j+∆

− β∗
T `j√

∆

)2

and averaging them. By specifying h∆ and M∆ appropriately and by applying the re-
construction algorithm from the third chapter together with the following regression
identity for one-dimensional diffusions (Xt)t≥0 (see Theorem 2.3)(

Xt+∆ −Xt√
∆

)2

= σ2(Xt) ·
(
1 + U(t,∆)

)
+OP

(√
∆
)
, as ∆→ 0,

where U(t,∆) is a F ′t+∆-measurable random variable being independent of F ′t and satis-
fying

U(t,∆)
d
= 2 ·

∫ 1

0
Ws dWs

for every t ≥ 0 and ∆ > 0, we will prove that our estimator is consistent and that it
fulfils a central limit theorem.

2. We have to make sure that T∆ in (4.10) is finitePm-a.s. Otherwise, defining the estimator
in Definition 4.4 does not make sense since its sum needs bM∆c quadratic increments(
Y ∗
T `j

)2
. In the next subsection, we will prove that finiteness of T∆ can be assured by

applying the Harris recurrence of the BDI, the rate of the reconstruction algorithm and
the continuity of the density of m(·).

3. In (4.8), we could also set

β∗
T `j

:= sup
{
βk
T `j

∣∣ 1 ≤ k ≤ `(βT `j ), βk
T `j
∈ C`∆

}
because it does not matter which particle in the box C`∆ at time T `j is chosen. For filling
points in the boxes C`∆, 1 ≤ ` ≤ h′−1

∆ , one could also think about using every particle
of βT `j which lies in C`∆. However, since the pair (ηT `j

, ηT `j+∆) is interpretable particles

of βT `j have a distance of more than 4∆λ to each other. This is why we merely take one

particle of βT `j which lies in C`∆.
♦
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4.2.1 Specifications

In this subsection, we want to specify 0 < λ < 1
2 from the reconstruction algorithm and

h∆ resp. M∆ from the previous construction. Furthermore, we want to explain why the time
horizon T∆ as defined in (4.10) is finite Pm-a.s. Because of the considerations from the first
remark in Remark 4.3, we know that the optimal bandwidth h∆ = ∆

1
1+2r in classical regression

framework depends on the regularity r ∈ N of the diffusion coefficient σ(·). We adapt this
bandwidth to our framework and examine the case r = 1 which deals with the class of non-
negative Lipschitz continuous diffusion coefficients σ(·) being bounded and bounded away from
zero.

Assumption 4.6
Let ∆ > 0 and let the diffusion coefficient σ(·) be in the class of non-negative Lipschitz
continuous functions being bounded and bounded away from zero. Further, let 0 < ε < 1

3 .

1. The parameter λ fulfils 0 < 5
12 < λ < 1

2 .

2. The bandwidth h∆ is set to h∆ := ∆
1
3 .

3. M∆ is set to either

(a) M∆ := ∆−1h∆ = ∆−
2
3

or

(b) M∆ := M∆,ε := ∆−1h∆ · 2∆2ε = 2∆−
2
3

+2ε.

♦

Remark 4.7
1. Depending on how to set M∆, we will write Assumption 4.6(a) resp. Assumption 4.6(b).

For showing consistency of our estimator, we will make use of Assumption 4.6(a), i.e.,
the number of used observations is the same as in classical regression framework (see
first remark in Remark 4.3). However, to prove a central limit theorem we will see that
we have to use Assumption 4.6(b) for technical reasons (the exact reasons for this will
be explained after the proof). Apart from that, later we will outline why we restrict
ourselves to the case r = 1.

2. By the first two points of Assumption 4.6, it holds

0 ≤ ∆2λ

h∆
≤ ∆λ

h∆
≤ ∆

4
5
λ

h∆

=
∆

4
5
λ

∆
1
3

= ∆
4
5
λ− 1

3
∆→0−−−→ 0 (4.11)
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and
√

∆

h∆
= ∆

1
6

∆→0−−−→ 0. (4.12)

Applying Assumption 4.6(a), we receive

M
− 1

2
∆ = h∆ (4.13)

and by Assumption 4.6(b), we obtain for every 0 < ε < 1
3

M
− 1

2
∆,ε =

1√
2
· h∆ ·∆−ε. (4.14)

♦

We now want to show that the time horizon in (4.10) is finite Pm-a.s. Since the second part of
Remark 1.11 provides that the skeleton chain (ηi∆)i∈N0 (resp.

(
(ηi∆, η(i+1)∆)

)
i∈N0

) is positive
recurrent in the sense of Harris, for verifying the finiteness of the stopping times T j` for every
1 ≤ ` ≤ h′−1

∆ and 1 ≤ j ≤ bM∆c, we have to show∫
1
G̃

(
(η0, η∆)

)
· η0(C`∆) dm′ > 0,

where m′(·) is the invariant measure of the skeleton chain. As we know from the second part
of Remark 1.11 that m′(·) can be identified with m(·), we can also check that∫

1
G̃

(
(η0, η∆)

)
· η0(C`∆) dm > 0. (4.15)

We want to verify this in the next proposition.

Proposition 4.8
Let Assumptions 1.13, 1.14, 1.18, 1.19, 2.1 and 4.6 hold. Then, for sufficiently small ∆ > 0 it
holds ∫

1
G̃

(
(η0, η∆)

)
· η0(C`∆) dm > 0.

Proof
According to Theorem 1.20, the occupation measure m(·) has a continuous density dm

dλλ (·). As
σ(·) is bounded away from zero, the density dm

dλλ (·) is strictly positive according to the first
remark in Remark 1.21. This is why

C1 := min
x∈[0,1]

{
dm

dλλ

(
x
)}

> 0 (4.16)

and for every 1 ≤ ` ≤ h′−1
∆ we receive

m
(
C`∆
)
≥ C1 · h∆. (4.17)
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Moreover, by the Hölder inequality (see for instance [33, p. 99]) with conjugates p := 5
4 and

q := 5, the first part of Corollary 3.8 and (1.43), there is C2 > 0 such that for sufficiently
small ∆ and every 1 ≤ ` ≤ h′−1

∆∫
1
G̃c

(
(η0, η∆)

)
· η0(C`∆) dm ≤

(∫
1
G̃c

(
(η0, η∆)

)
dm

) 4
5

·
(∫

`5(η0) dm

) 1
5

=

(
Pm

({
(η0, η∆) /∈ G̃

})) 4
5

·
(∫
S
`5(x)m(dx)

) 1
5

≤ C2 ·∆
4
5
λ. (4.18)

Because of (4.11), it holds

C2 ·
∆

4
5
λ

h∆

∆→0−−−→ 0,

in particular this means that there is ∆0 > 0 such that for all 0 < ∆ ≤ ∆0

C1h∆ − C2∆
4
5
λ > 0. (4.19)

Now, we combine (4.17), (4.18), (4.19) and we receive that for every 0 < ∆ ≤ ∆0∫
1
G̃

(
(η0, η∆)

)
· η0(C`∆) dm =

∫
η0(C`∆) dm−

∫
1
G̃c

(
(η0, η∆)

)
· η0(C`∆) dm

=

∫
S
x(C`∆)m(dx)−

∫
1
G̃c

(
(η0, η∆)

)
· η0(C`∆) dm

= m
(
C`∆
)
−
∫
1
G̃c

(
(η0, η∆)

)
· η0(C`∆) dm

≥ C1h∆ − C2∆
4
5
λ

> 0.

Our proof is complete.
�

Remark 4.9
In the proof of the previous proposition, there are two crucial passages we want to empha-
sise. First, for verifying (4.17) we make use of the previous equation (4.16), which relies on
Assumptions 1.14, 1.18, 1.19 and 2.1. Secondly, we apply our reconstruction algorithm from
the third chapter together with (1.43) in (4.18), which relies on Assumptions 1.13, 1.19 and
2.1. In particular, we entirely utilize Hammer’s framework from subsection 1.3, i.e., we make
use of Assumptions 1.13, 1.14, 1.18 and 1.19.

♦

By using the previous proposition, we receive the following theorem.
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Theorem 4.10
Grant Assumptions 1.13, 1.14, 1.18, 1.19, 2.1 and 4.6. Further, for every 1 ≤ ` ≤ h′−1

∆ and
1 ≤ j ≤ bM∆c let T `j be defined as in (4.7). Then, for sufficiently small ∆ > 0 it holds

T∆ :=

(
sup

1≤`≤h′−1
∆

T `bM∆c + ∆

)
<∞ Pm-a.s.

Proof
As we have mentioned before, because of the Harris recurrence of the chain (ηi∆)i∈N0 (resp.(
(ηi∆, η(i+1)∆)

)
i∈N0

) and the previous proposition, for every 1 ≤ ` ≤ h′−1
∆ and 1 ≤ j ≤ bM∆c

the stopping times T `j are finite Pm-a.s. (for sufficiently small ∆ > 0). This is why T∆ is finite
Pm-a.s. for sufficiently small ∆ > 0, too.

�

Due to the previous theorem, we receive the result that our regression scheme will be filled most
certainly, assuming that we observe the BDI process sufficiently long. By this, in comparison
to Hoffmann’s way of filling a regression scheme (see (4.3)), our regression scheme is filled
without conditioning on any local time.
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4.3 Consistency of the Estimator

In this section, for every x ∈ [0, 1] we show that the estimator σ̂2
∆(x) from Definition 4.4 is

consistent for σ2(x). The following theorem holds.
Theorem 4.11
Grant Assumptions 1.13, 1.14, 1.18, 1.19, 2.1 and 4.6(a). Then, for every x ∈ [0, 1] the estimator
σ̂2

∆(x) is consistent for σ2(x), i.e.,

σ̂2
∆(x)

∆→0−−−→ σ2(x) in Pm-probability.

It even holds ∣∣σ̂2
∆(x)− σ2(x)

∣∣ = OPm

(
∆

1
3
)
, as ∆→ 0.

Proof
First of all, we notice that for every 1 ≤ ` ≤ h′−1

∆ and 1 ≤ j ≤ bM∆c the stopping times T `j
from (4.7) resp. the time horizon T∆ := sup1≤`≤h′−1

∆
T `bM∆c + ∆ fulfil

Pm

({
T `j <∞

})
= Pm

({
T∆ <∞

})
= 1

for sufficiently small ∆ > 0, according to Theorem 4.10. This is why we set ∆ > 0 in the way
that this condition is fulfilled and we observe the trajectory of the BDI at discrete points in
time i∆, where 0 ≤ i ≤ bT∆/∆c − 1.

We remember the sets of interpretable pairs G̃ and properly interpretable pairs G from Defi-
nitions 3.1 and 3.3. It holds

0 ≤ σ̂2
∆(x) =

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
Y ∗
T `j

)2
=

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
Y ∗
T `j

)2 · 1
G̃

(
(ηT `j

, ηT `j+∆)
)

=

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
Y ∗
T `j

)2 · 1G((ηT `j , ηT `j+∆)
)

+

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
Y ∗
T `j

)2 · 1
G̃\G

(
(ηT `j

, ηT `j+∆)
)
,

hence

|σ̂2
∆(x)− σ2(x)| ≤

∣∣∣ h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

((
Y ∗
T `j

)2 · 1G((ηT `j , ηT `j+∆)
)
− σ2(x)

)∣∣∣
+
∣∣∣ h′−1

∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
Y ∗
T `j

)2 · 1
G̃\G

(
(ηT `j

, ηT `j+∆)
)∣∣∣

=: (I) + (II). (4.20)
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Consider (I): Here, we show that

(I) = OPm(h∆) +OPm

(
M
− 1

2
∆

)
, (4.21)

as ∆ → 0. For every 1 ≤ ` ≤ h′−1
∆ and 1 ≤ j ≤ bM∆c each particle situated at β∗

T `j
does not

die during the time interval (T `j , T
`
j + ∆] because (ηT `j

, ηT `j+∆) is a properly interpretable pair.

This is why we may use Theorem 2.3, i.e., for every 1 ≤ ` ≤ h′−1
∆ and 1 ≤ j ≤ bM∆c the

following identity holds(
Y ∗
T `j

)2 · 1G((ηT `j , ηT `j+∆)
)

=
(
Y ∗
T `j

)2 · 1G((ηT `j , ηT `j+∆)
)
· 1{T `j<∞}

= σ2(β∗
T `j

) ·
(
1 + U `j

)
+OPm

(√
∆
)
, (4.22)

as ∆→ 0, where U `j are independent identically distributed random variables with distribution

U `j
d
= 2 ·

∫ 1
0 Ws dWs. Furthermore, by the boundedness resp. Lipschitz continuity of σ(·) and

the fact that by construction for x ∈ C`∆ it holds
∣∣β∗
T `j
− x
∣∣ = O(h∆), as ∆→ 0, we receive

∣∣σ2(β∗
T `j

)− σ2(x)
∣∣ = O(h∆), (4.23)

as ∆→ 0. Sticking together (4.22) and (4.23), we obtain

(I) =
∣∣∣ h′−1

∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

((
Y ∗
T `j

)2 · 1G((ηT `j , ηT `j+∆)
)
− σ2(x)

)∣∣∣
=
∣∣∣ h′−1

∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
σ2(β∗

T `j
) ·
(
1 + U `j

)
+OPm

(√
∆
)
− σ2(x)

)∣∣∣
≤ OPm

(√
∆
)

+

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

∣∣σ2(β∗
T `j

)− σ2(x)
∣∣

+
∣∣∣ h′−1

∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

σ2(β∗
T `j

) · U `j
∣∣∣

≤ OPm

(√
∆
)

+O(h∆) +
∣∣∣ h′−1

∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
σ2(β∗

T `j
)− σ2(x)

)
· U `j

∣∣∣
+
∣∣∣ h′−1

∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

σ2(x) · U `j
∣∣∣

≤ OPm

(√
∆
)

+O(h∆) +

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

∣∣σ2(β∗
T `j

)− σ2(x)
∣∣ · |U `j |

+ σ2(x) ·
∣∣∣ h′−1

∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

U `j

∣∣∣
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= OPm

(√
∆
)

+O(h∆) +O(h∆) · 1

bM∆c

bM∆c∑
j=1

|U `′j |

+ σ2(x) ·
∣∣∣ 1

bM∆c

bM∆c∑
j=1

U `
′
j

∣∣∣, (4.24)

as ∆→ 0.

Since |U `′j |
d
= 2 ·

∣∣ ∫ 1
0 Ws dWs

∣∣ for every j ∈ N and 0 < Em
(
2 ·
∣∣ ∫ 1

0 Ws dWs

∣∣) ≤ 2, it holds

1

bM∆c

bM∆c∑
j=1

|U `′j | = OPm(1), (4.25)

as ∆→ 0.

As U `′j , j ∈ N, are independent identically distributed random variables with distribution

U `
′
j

d
= 2 ·

∫ 1
0 Ws dWs, hence

Em

(
2 ·
∫ 1

0
Ws dWs

)
= 0 resp. Varm

(
2 ·
∫ 1

0
Ws dWs

)
= 2 > 0, (4.26)

by using the Central Limit Theorem (see for instance [22, p. 416]) it holds

∣∣∣ 1

bM∆c

bM∆c∑
j=1

U `
′
j

∣∣∣ = OPm

(
M
− 1

2
∆

)
, (4.27)

as ∆→ 0. Applying (4.25), (4.27) and (4.12) to (4.24), we receive

OPm

(√
∆
)

+O(h∆) +O(h∆) · 1

bM∆c

bM∆c∑
j=1

|U `′j |+ σ2(x) ·
∣∣∣ 1

bM∆c

bM∆c∑
j=1

U `
′
j

∣∣∣
= OPm

(√
∆
)

+O(h∆) +O(h∆) · OPm(1) + σ2(x) · OPm

(
M
− 1

2
∆

)
= oPm(h∆) +OPm(h∆) +OPm(h∆) +OPm

(
M
− 1

2
∆

)
= OPm(h∆) +OPm

(
M
− 1

2
∆

)
, (4.28)

as ∆→ 0.

Consider (II): Here, we show that

(II) = oPm(h∆), (4.29)

as ∆→ 0, by verifying

Em
(
(II)
)

= O
(
∆2λ

)
,
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as ∆ → 0. Because of the property of being interpretable, for every 1 ≤ ` ≤ h′−1
∆ and

1 ≤ j ≤ bM∆c it holds
∣∣β∗
T `j+∆

− β∗
T `j

∣∣ ≤ ∆λ, this is why

(
Y ∗
T `j

)2
=

(
β∗
T `j+∆

− β∗
T `j√

∆

)2

≤ ∆2λ−1. (4.30)

Using this and the second part of Corollary 3.8, i.e.,

Em

(
1
G̃\G

(
(ηT `j

, ηT `j+∆)
))

= Pm

({
(ηT `j

, ηT `j+∆) ∈ G̃\G
} ∣∣ {T `j <∞}) = O(∆), (4.31)

as ∆→ 0, it holds

Em
(
(II)
)

= Em

( h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

(
Y ∗
T `j

)2 · 1
G̃\G

(
(ηT `j

, ηT `j+∆)
))

≤ ∆2λ−1 ·
h′−1

∆∑
`=1

1C`∆
(x) · 1

bM∆c

bM∆c∑
j=1

Em

(
1
G̃\G

(
(ηT `j

, ηT `j+∆)
))

= O
(
∆2λ

)
, (4.32)

as ∆→ 0. Since ∆2λ = o(h∆), as ∆→ 0, see (4.11), it follows

(II) = oPm(h∆),

as ∆→ 0.

Combining (4.21) resp. (4.29) and using (4.13), we can complete our proof since∣∣σ̂2
∆(x)− σ2(x)

∣∣ ≤ (I) + (II)

= OPm(h∆) +OPm

(
M
− 1

2
∆

)
+ oPm(h∆)

= OPm(h∆) +OPm

(
M
− 1

2
∆

)
= OPm(h∆) = OPm

(
∆

1
3
)
, (4.33)

as ∆→ 0.

�

Remark 4.12
1. If we consider the result from the previous theorem, there is some analogy to the results

from classical regression we have mentioned in the first remark in Remark 4.3. The
second to last line of (4.33) gives(

σ̂2
∆(x)− σ2(x)

)2
= OPm(h2

∆) +OPm

(
M−1

∆

)
,
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as ∆ → 0. As we use Assumption 4.6(a), i.e., M−1
∆ = ∆h−1

∆ , this result corresponds
to MSE of (4.4) in classical regression and we receive its optimal rate ∆

2
3 , as ∆ → 0,

because we obtain (
σ̂2

∆(x)− σ2(x)
)2

= OPm(∆
2
3 ),

as ∆ → 0. The reason why we do not receive the rate O(∆
2
3 ), as ∆ → 0, (after tak-

ing expectation) as in (4.4) is that in our decomposition stochastically bounded terms
emerge. However, this is an effect which particularly appears due to using the Central
Limit Theorem in (4.27) and cannot be avoided.

2. We now want to explain why we restrict ourselves to the case r = 1. Actually, our
proof for consistency works analogically for the class of r ∈ N\{1}-times continuously
differentiable diffusion coefficients σ(·), where σ(·) is bounded and bounded away from
zero and its r derivatives are each bounded. For this, the parameters λ, h∆ and M∆

have to be fit, i.e., we choose

3 + 2r

4 + 8r
< λ <

1

2
(4.34)

and motivated by classical regression framework

h∆ := ∆
1

1+2r and M∆ := ∆−1h∆ = ∆−
2r

1+2r (4.35)

are set. Then, it holds(
σ̂2

∆(x)− σ2(x)
)2

= OPm

(
∆

2
1+2r

)
+OPm

(
M−1

∆

)
,

as ∆ → 0. As we can see, in comparison to classical regression from the first remark
in Remark 4.3, we do not reach the power r in the bias term. The reason for this are
equations (4.23) appearing in (4.28) and (4.23) being applied together with (4.25) in
(4.28) since the terms

O(h∆) = OPm

(
∆

1
1+2r

)
resp. O(h∆) · OPm(1) = OPm(h∆) = OPm

(
∆

1
1+2r

)
,

as ∆→ 0, cannot be further estimated in any power of r ∈ N\{1}. This can be explained
by the fact that in our case local polynomial weights of order r ∈ N\{1} which eliminate
each power being smaller than r are not available (in classical regression, such weights
exist, c.f. [34, p. 36f]). As we do not have this analogy to classical regression results for
r ∈ N\{1}, we restrict ourselves to r = 1.

♦
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4.4 A Central Limit Theorem for the Estimator

In this section, we show that our estimator from Definition 4.4 fulfils a central limit theorem.
Here, we will work by using Assumption 4.6(b). Particularly, this means that our estimator
depends on both 0 < ε < 1

3 and ∆ > 0. This is why in this case we will write for the estimator
σ̂2

∆,ε(·) instead of σ̂2
∆(·).

Theorem 4.13
Grant Assumptions 1.13, 1.14, 1.18, 1.19, 2.1 and 4.6(b). Then, for every 0 < ε < 1

3 and
x ∈ [0, 1] it holds√

∆−
2
3 ·∆ε ·

(
σ̂2

∆,ε(x)

σ2(x)
− 1

)
∆→0−−−→ Z in Pm-distribution,

where Z is a standard normal distributed random variable.

Proof
As in the previous theorem, we set ∆ > 0 small in the way that for every 1 ≤ ` ≤ h′−1

∆ and
1 ≤ j ≤ bM∆,εc the stopping times T `j from (4.7) resp. the time horizon

T∆,ε := sup
1≤`≤h′−1

∆

T `bM∆,εc + ∆

fulfil
Pm

({
T `j <∞

})
= Pm

({
T∆,ε <∞

})
= 1,

see Theorem 4.10. Thus, we observe the trajectory of the BDI at discrete points in time i∆,
where 0 ≤ i ≤ bT∆,ε/∆c − 1.

Similarly, as in (4.20) (here without the absolute value) it holds

σ̂2
∆,ε(x)− σ2(x) =

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆,εc

bM∆,εc∑
j=1

((
Y ∗
T `j

)2 · 1G((ηT `j , ηT `j+∆)
)
− σ2(x)

)

+

h′−1
∆∑
`=1

1C`∆
(x) · 1

bM∆,εc

bM∆,εc∑
j=1

(
Y ∗
T `j

)2 · 1
G̃\G

(
(ηT `j

, ηT `j+∆)
)

=: (I) + (II).

Consider (I): Taking (4.24) (drop the absolute value in the last line), together with (4.25) it
holds

(I) = OPm

(√
∆
)

+O(h∆) +OPm(h∆) + σ2(x) · 1

bM∆,εc

bM∆,εc∑
j=1

U `
′
j , (4.36)
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as ∆→ 0. Defining

Z∆,ε :=

1
bM∆,εc ·

∑bM∆,εc
j=1 U `

′
j√

2
M∆,ε

,

by (4.12) we can rewrite (4.36) to

(I) = OPm(h∆) +

√
2

M∆,ε
· σ2(x) · Z∆,ε, (4.37)

as ∆→ 0.

Consider (II): Using the same calculations as in the previous theorem (notice that (II) is
non-negative), it holds

(II) = oPm(h∆), (4.38)

as ∆→ 0.

Now, combining (4.37) resp. (4.38) it holds

σ̂2
∆,ε(x)− σ2(x) = OPm(h∆) +

√
2

M∆,ε
· σ2(x) · Z∆,ε + oPm(h∆),

= OPm(h∆) +

√
2

M∆,ε
· σ2(x) · Z∆,ε, (4.39)

as ∆ → 0. As we have mentioned before, we make use of Assumption 4.6(b) (instead of
Assumption 4.6(a)), i.e., M∆ = M∆,ε depends both on 0 < ε < 1

3 and ∆ > 0. Therefore, by
using the identity

OPm(h∆) = h∆ ·∆−ε · oPm(1),

as ∆→ 0, and (4.14), we receive for 0 < ε < 1
3 in (4.39)

σ̂2
∆,ε(x)− σ2(x) = h∆ ·∆−ε · oPm(1) +

√
2

M∆,ε
· σ2(x) · Z∆,ε

= h∆ ·∆−ε · σ2(x) · oPm(1) + h∆ ·∆−ε · σ2(x) · Z∆,ε

= h∆ ·∆−ε · σ2(x) ·
(
oPm(1) + Z∆,ε

)
,

as ∆→ 0. As σ(·) is bounded away from zero, this means√
∆−

2
3 ·∆ε ·

(
σ̂2

∆,ε(x)

σ2(x)
− 1

)
= oPm(1) + Z∆,ε, (4.40)

as ∆→ 0. Because of (4.26), the Central Limit Theorem and Slutsky’s lemma (see for instance
[24, p. 260]) give

Z∆,ε =

1
bM∆,εc

∑bM∆,εc
j=1 U `

′
j√

2
M∆,ε

∆→0−−−→ Z in Pm-distribution, (4.41)
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where Z is a standard normal distributed random variable. Combining (4.40) and (4.41), we
obtain by Slutsky’s lemma for every 0 < ε < 1

3√
∆−

2
3 ·∆ε ·

(
σ̂2

∆,ε(x)

σ2(x)
− 1

)
∆→0−−−→ Z in Pm-distribution.

�

Remark 4.14
1. We want to explain why Assumption 4.6(b) (instead of Assumption 4.6(a)) is used in

the previous theorem. Because of (4.39), there is a term which is merely stochastically
bounded by h∆. This is slightly too weak since we need a term which goes to zero in
probability in order to achieve a central limit theorem (see lines between (4.39) and
(4.40)). This is why we use the identity

OPm(h∆) = h∆ ·∆−ε · oPm(1),

as ∆→ 0, for sufficiently small 0 < ε < 1
3 . This contributes to the fact that our estimator

does not only depend on ∆ > 0 but also on ε and that the rates for our central limit
theorem are slightly weaker than h∆. However, the factor ∆−ε is not a severe loss if we
consider the following: We remember that according to the first remark in Remark 4.2,
Florens-Zmirou’s estimator is optimal in the minimax sense under square-error loss for
the class of non-negative Lipschitz continuous diffusion coefficients σ(·) being bounded
and bounded away from zero. Nevertheless, for consistency and a central limit theorem
σ(·) is assumed to have regularity r = 3 (see assumptions in Theorem 4.1), i.e., for
technical reasons a greater regularity than r = 1 has to be set. In our framework, we
merely demand that σ(·) is bounded, bounded away from zero and Lipschitz continuous.
So, in comparison to Florens-Zmirou’s regularity assumption r = 3, the factor ∆−ε seems
an acceptable loss.
Furthermore, the factor 2 in M∆,ε is needed for extinguishing the standard deviation
part √

Varm

(
2 ·
∫ 1

0
Ws dWs

)
=
√

2

which occurs by applying the Central Limit Theorem (see (4.41)).

2. For a central limit theorem, we could also consider the class of r ∈ N\{1}-times con-
tinuously differentiable diffusion coefficients σ(·), where σ(·) is bounded and bounded
away from zero and its r derivatives are each bounded. Indeed, the previous proof works
analogically by setting

3 + 2r

4 + 8r
< λ <

1

2
resp. h∆ := ∆

1
1+2r

and for given 0 < ε < 1
1+2r

M∆,ε := 2 ·∆−
2

1+2r
+2ε.
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Then, it holds√
∆−

2
1+2r ·∆ε ·

(
σ̂2

∆,ε(x)

σ2(x)
− 1

)
∆→0−−−→ Z in Pm-distribution,

where Z is a standard normal distributed random variable. In this case, in comparison to
M∆ from (4.35),M∆,ε does not even have the power r, i.e., the gap to classical regression
framework is greater. Because of this and on account of the same considerations as in
the second remark of Remark 4.12, we again restrict ourselves to the case r = 1.

♦
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