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1. Introduction

The central goal in the field of condensed matter theory is the fundamental under-
standing of physical phenomena observed in various materials, as well as reliable
predictions of their properties in all parameter regimes, resolutions, and on all length
scales. In particular, within the huge range of different types of materials, the class
of strongly correlated systems turned out to be candidates for exotic effects, like
non-classical electronic properties and magnetic ordering phenomena. These phe-
nomena are not only interesting due to the underlying fundamental physical effects,
but also due to their important role for technical applications. Famous examples
are Mott metal-insulator transitions [Mot68] and high-temperature superconduc-
tivity [LW06].

For a full (non-relativistic) description of condensed matter, the problem can be
described by the following general Hamiltonian (cf., e.g., [Czy08]):

Ĥ =

NK∑
k=1

P̂2
k

2Mk︸ ︷︷ ︸
Ekin core

+
Ne∑
i=1

p̂2
i

2me︸ ︷︷ ︸
Ekine−

+
∑
i<j

e2

|ri − rj|︸ ︷︷ ︸
e−e−int.

+
∑
l<m

e2ZlZm
|Rl −Rm|︸ ︷︷ ︸

core core int.

−
∑
r,s

e2Zr
|Rr − rs|︸ ︷︷ ︸

e− core int.

. (1.1)

This formulation was already stated in the 1920s, early after the discovery of the
Schrödinger equation in 1926 [Sch26]. The atomic theory of solid-state physics and
chemistry was fundamentally defined. Even though Eq. (1.1) was found more than
90 years ago, a fully satisfying solution is still not found today. The complexity of
the theory was realized by Paul Dirac already in 1929 [Dir29]:

“The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It therefore be-
comes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the
main features of complex atomic systems without too much computa-
tion.”

Still, Paul Dirac’s awareness describes the special character of the research in the
field of solid-state theory perfectly. We are not able to solve Eq. (1.1) for the
O(∼ 1080) atoms in the universe (“Theory of almost everything” [LP00]), not even
for a small piece of matter O(∼ 1023). The two major methodological approaches
in solid-state theory are the development of models that are able to capture specific
physical properties and the development of numerical tools, to solve these still highly
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1. Introduction

complicated quantum mechanical problems. However, the usage of abstract models,
combined with the understanding of their controlled approximation, provides a
powerful tool for a deep understanding of the connection between underlying physics
and observed phenomena.
In this thesis, I will focus on numerical methods for the solution of two models

for strongly correlated electron systems: The fermionic Hubbard model [Hub59] and
the Kondo lattice model [Kon64,Don77]. Both models emerge from a tight-binding
approach and describe localized electrons. The Hubbard model gained not only
relevance beyond the electronic context in the theory of strongly correlated sys-
tems, but also received even more attention recently, due to rapid progress in the
field of ultra-cold quantum gases [GME+02,Blo05], in which it is possible to realize
the Hubbard model in experiments on optical lattices. Coulomb interactions are
treated purely locally in the Hubbard model; this picture corresponds to the physi-
cal mechanisms in transition-metal compounds (e.g., vanadium(III) oxide) [IFT98]
where the interacting electrons are confined in narrow d- and f -shells. One of the
great achievements of the Hubbard model was the correct prediction of the Mott
metal-insulator transition [KV04,Blü02]. After more than 50 years since the origi-
nal proposal of the model, there are still remaining questions, e.g., to which extent
the physics of high-temperature superconductors is captured by the model.
The Kondo lattice model is a candidate for the description of heavy fermion ma-

terials (e.g., CeAl3 [EBF+85]), which show a strong effective mass renormalization
in the Fermi liquid state and several other phases like superconductivity [SAB+79]
and various magnetic orderings [NRLC97]. In the simplest case, the Kondo lattice
model describes free electrons that are coupled to local moments via a spin-spin
interaction. The characteristic physics emerges from a competition between the
Kondo screening [Kon64] of the local moments (singlet formation) and Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [RK54] (magnetic ordering). The latter
is an indirect interaction, caused by the polarization of the conduction electrons.
Both models will be discussed in Chap. 2 in more detail.
Different numerical approaches are used and combined in this project. Starting

from small systems, the models are solved for finite lattices using direct quantum
Monte Carlo (QMC) simulations [FMNR01], where the original d-dimensional quan-
tum problem is mapped on a (d + 1)-dimensional classical problem, which can be
solved with classical Monte Carlo methods. The most severe limitation of these
methods is the restriction to small clusters (N ≤ 400). Properties in the thermo-
dynamic limit have to be estimated by finite-size extrapolations, based on various
simulations of the problem using different system sizes.
Approaching the problem from the limit of infinite dimensions, the dynamical

mean-field theory (DMFT) [MH89a,MH89b,MV89] provides insight from an effec-
tive mean-field point of view. The original lattice problem is mapped on a single
interacting impurity, embedded in an non-interacting bath. The method neglects
all local fluctuations and is exact in the limit of infinite dimensions, respectively
coordination number. This approach can be improved using quantum cluster ex-
tensions [MJPH05]. Here a small cluster of interacting sites, instead of a single
impurity, is considered. This cluster is, again, coupled to a non-interacting bath.
These cluster DMFT methods can treat local correlation up to the extent of the
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cluster. However, (cluster) DMFT still defines a non-trivial quantum problem,
which has to be solved. The efficient solution of these impurity problems will be a
main topic in this thesis.

Structure of this Thesis

In Chap. 2, the models studied in this project are considered. We introduce the
Hubbard model and the Kondo lattice model (KLM) and discuss their basic prop-
erties. The theoretical background that is needed for the algorithm development is
reviewed in Chap. 3. We start with the derivation of the Blankenbecler-Scalapino-
Sugar quantum Monte Carlo (BSS-QMC) algorithm, which solves the Hubbard
model and the KLM on finite clusters (Sec. 3.1). The BSS-QMC simulations re-
sult in Green functions in imaginary time, so we attach an excursus on analytical
continuation, which is needed for obtaining real-frequency quantities.

The formalism of DMFT and its cluster extensions, as well as the calculation
scheme for two-particle quantities is described in Sec. 3.2.

In Chap. 4, the development of a multigrid BSS-QMC scheme, which is free of
systematic errors and valid in the thermodynamic limit, is presented. This algo-
rithm is applied to the Mott transition in the two-dimensional Hubbard model at
half-filling in Chap. 5. The integration of this unbiased BSS-QMC into the (clus-
ter) DMFT framework is described in Chap. 6. Beside the solution of BSS-QMC
related issues regarding the integration of the multigrid method into the DMFT self-
consistency, we contribute algorithmic approaches for an efficient representation of
the mean-field bath, needed for Hamiltonian based impurity solver. This problem
was often discussed in the context of exact diagonalization. The impurity solver,
developed in this project, is applied to the Mott transition in infinite dimension in
Chap. 7. Here we study the impact of systematic biases in the impurity solver on
the phase transition. In Chap. 8, we combine direct lattice calculations and the
cluster DMFT framework for investigations of the momentum dependence of the
self-energy. The impact on different models of the (cluster) DMFT approximation,
the truncation of the self-energy, is contrasted: the (anisotropic) Hubbard model in
two-dimensions at half-filling, the doped Hubbard model, and the KLM. We finish
with a conclusion and an outlook in Chap. 9.

Inclusion of Related Publications

To some extent, several parts of the presented thesis are published in peer reviewed
papers. Technical details of the multigrid Trotter extrapolation procedure and the
elimination of finite-size errors in BSS-QMC data, discussed in Chap. 4, were
published in [RGAB12], the appendix of [SGR+15], and [RB15]. The full picture of
the Mott transition in the two-dimensional Hubbard model, presented in Chap. 5,
with additional data from the dynamical vertex approximation data by Schäfer et
al. is published in [SGR+15]. The algorithmic development of the unbiased BSS-
QMC impurity solver for the single-site DMFT (Sec. 6.2) and the application on
the Mott transition in infinite dimensions (Chap. 7) are published in [RAB13].
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2. Models: Hubbard Model &
Kondo Lattice Model

The numerical algorithms, developed in this project, are applied to the Hubbard
and the Kondo lattice model. In this chapter, the fundamental properties of these
models are discussed and all important notations will be fixed. The Hubbard model
is described in Sec. 2.1 and we focus our attention on the Kondo lattice model in
Sec. 2.2.

2.1. Hubbard Model

The Hubbard model is based on the concepts of the tight-binding approxima-
tion [Wan37, KS54], in which the electrons are assumed to be strongly localized
at the ions of the underlying lattice structure. It is assumed that electrons in low-
lying atomic shells close to the nuclei (core electrons) will not be excited, but form
an effective particle with the nuclei. This weakens the original potential of the
crystal. Further, the long-range Coulomb potential of the outer valence electrons is
screened to an effectively more short-range potential, which justifies the following
approximations. In the limit of strong localization and effective short-range inter-
actions, this physical picture leads to the Hubbard model, which describes electrons
that live on a given lattice, can hop between the lattice sites (kinetic term), and
only interact with each other, if two electrons are located on the same site (on-site
interaction). This is illustrated in Fig. 2.1 (a).

In second quantization [Sch08], the kinetic part can be written as

Ĥkin =
∑
i,j,σ

tij ĉ†iσĉjσ ≡ −t
∑
〈ij〉,σ

(
ĉ†iσĉjσ + h.c.

)
. (2.1)

The matrix tij determines the hopping amplitude and encodes the underlying lattice
and band structure. One often simplifies to uniform nearest neighbor hopping t and
a single band, represented by the notation 〈i, j〉 (right hand side). The spin degree
of freedom is denoted by σ ∈ {↑, ↓}.

To describe the interaction term, one starts with the most general form for a
two-particle operator

Û =
1

2

∑
i,j,k,l

Aijkl ĉ†iσi ĉ
†
jσj

ĉkσk ĉlσl . (2.2)

In the case of Coulomb interaction

Aijkl =

〈
i, j

∣∣∣∣ e2

|ri − rj|

∣∣∣∣ k, l〉 .
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2. Models: Hubbard Model & Kondo Lattice Model

(a) (b)

U

t

t

J

localized moments

itinerant electrons

Figure 2.1. – (a) Illustration of the Hubbard model. Electrons can hop,
gaining kinetic energy t, and interact only with each other, when sitting
on the same site, with Hubbard interaction U . (b) Illustration of the
Kondo lattice model. Itinerant band of non-interacting conduction elec-
trons, which couple via a spin dependent interaction J with localized mag-
netic moments.

This long-range interaction is still too complicated to be treated with currently
available methods, so we have to approximate the problem further. One way is to
assume the interaction as purely on-site.
Under these assumptions, the Hubbard Hamiltonian with Coulomb interaction

U and chemical potential µ, reads:

Ĥ =
∑
i,j,σ

tij

(
ĉ†iσĉjσ + h.c.

)
+
∑
i

Ui n̂i↑n̂i↓ − µ
∑
i

(n̂i↑ + n̂i↓) . (2.3)

We will use the convention that µ = 0 corresponds to the half-filled case, i.e., a
density of 〈n〉=1. This relates to shifting the chemical potential by U/2. The
energy and temperature units are gauged in the way that kB ≡ 1 and t ≡ 1.
The kinetic and interaction terms do not commute, which forestalls the possibility

of a simultaneous diagonalization. So the solution of Eq. (2.3) remains non-trivial,
at least aside from special limits, e.g., the Fermi gas (U = 0) or Heisenberg (U →∞)
limits.
In one spatial dimension, the semi-analytic Bethe ansatz and the density matrix

renormalization group (DMRG) [Whi92,WH93,Sch05] yield reliable high-precision
results. In the opposite limit of infinite dimensions, the dynamical mean-field theory
(DMFT) [MV89,GKKR96] provides deep insight. However, in the interesting case
of two (and three) dimensions, less is understood. E.g., a complete picture of
the full pseudogap physics [LW06,AFG10,RGAB12] and the connection to high-Tc
superconductivity is still not satisfyingly found. In this work, we tackle the problem
of two spatial dimensions with finite-size lattice quantum Monte Carlo, combined
with sophisticated extrapolations to the thermodynamic limit, as well as cluster
extensions to DMFT.
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2.2. Kondo Lattice Model

In the last two decades, even more special attention was attributed to the Hub-
bard model, since novel developments in the field of ultra-cold quantum gases
on optical lattices granted a direct, experimental access to the Hubbard physics
[MGW+03,WES+11]. In these experiments, atoms are trapped with interfering
lasers that produce a potential pattern forming one-, two- or three-dimensional
lattices. Due to the confinement of atoms in this artificial lattice and tunneling
processes between the minima, the system is described by the Hubbard Hamilto-
nian Eq. (2.3) with an additional confining potential of the trap. These kinds of
experiments offer the possibility for direct comparison with theoretical model cal-
culations. Complementary to experiments with solid-state materials, calculations
of the Hubbard model can be proven in a different parameter regime: while cold
atoms on optical lattices realize finite-size Hubbard systems with few bands, corre-
lated solid-state systems show long-range interaction potentials with a large number
of interacting bands and electrons behave relativistically.

2.2. Kondo Lattice Model

Similar to the Hubbard model, the Kondo lattice model (KLM) describes correlated
electrons from a tight-binding point of view. But instead of an on-site Coulomb in-
teraction between the electrons, it includes a spin-spin interaction between itinerant
electrons in the conduction band and localized magnetic impurities, as depicted in
Fig. 2.1 (b). The KLM is closely related to the Kondo effect [Kon64], which occurs
in various materials (first discovered in gold, copper and lead [WJdHvdB34]). The
Kondo effect leads to a logarithmic divergence of the electrical resistivity at low-
temperatures and can be explained as scattering process of itinerant conduction
band electrons due to interaction with local moments. This functional behavior
replaces the quadratic temperature dependence in a Fermi liquid description. The
KLM turned out to be important for the description of heavy fermion materi-
als, where, within the Fermi liquid phase, the effective mass is strongly enhanced
(m∗ ∼ 1000 me). These materials are characterized by physically rich phase di-
agrams, containing, e.g., various types of magnetic ordering, quantum criticality,
and superconducting phases. Consequently, the model is studied in many research
projects [LW07,Pfl09]. Examples for real materials are rare earth or actinide com-
pounds [KKB+07], where partially filled f -orbitals serve as magnetic impurities.
Also low-dimensional systems like GaAs quantum dots or carbon nanotubes are
part of ongoing research [LAN+12].
In the theoretical treatment, the KLM describes these materials as a periodic

formation of local spin degrees of freedom (f †) that interact with conduction elec-
trons (c†) via a local interaction J . In terms of Pauli matrices σ one can write the
Hamiltonian:

HKLM =
∑
ij,σ

tij c
†
iσcjσ + J

∑
i

Si
f · Si

c, (2.4)

Si
α =

1

2

∑
σσ′

α†iσσσσ′αiσ′ with α = f, c .
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2. Models: Hubbard Model & Kondo Lattice Model

Figure 2.2. – Recent DCA study from Martin et al. [MA08]: Phase
diagram of the KLM, obtained with DCA. The considered parameter regime
is limited, due to poor scaling with the inverse temperature of the numerical
method.

In the KLM two effects compete: an indirect Ruderman-Kittel-Kasuya-Yosida
(RKKY) type interaction [RK54] between the localized moments via a polarization
cloud of conduction electrons and a singlet formation between conduction electrons
and the magnetic impurities [Wil75,KmWW80] (Kondo screening of the local mo-
ments). The RKKY interaction prefers a magnetic ordered state, while the singlet
formation leads to a disordered state.
One major challenge regarding the numerical treatment of the KLM is the need for

reaching ultra-low temperatures. It has been shown that the important coherence
temperature scale, determined by the interaction strength J , is directly connected
to the Kondo scale of a single impurity [BGG00,Ass04]:

TK = e−t/J . (2.5)

Many state-of-the-art methods suffer from poor temperature scaling and are not
able to reach the exponentially small temperature regime. Therefore it is no sur-
prise that questions related to the topology of the Fermi surface and the role of
superconductivity in the KLM are still open issues. E.g., a recent study [MA08],
using the dynamical cluster approximation, could not resolve the full ground-state
phase diagram (Fig. 2.2) of the KLM, due to restrictions by scaling issues towards
small temperatures. In this project the problem is approached by the dynamical
cluster approximation, a cluster extension to the dynamical mean-field theory com-
bined with a numerically exact quantum Monte Carlo solver, which is more effective
at ultra-low temperatures than comparable currently available algorithms.
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3. Methods: QMC & Dynamical
Cluster Approximation

In Chap. 2, the model Hamiltonians, which are considered in this project, and
their properties were reviewed. Both, the Hubbard model and the Kondo lat-
tice model (KLM) are not analytically solvable, apart from special cases, e.g., one
spatial dimension. In this section, we will discuss the numerical approaches that
form the basis for our investigations, namely the Blankenbecler-Scalapino-Sugar
quantum Monte Carlo (BSS-QMC) algorithm and the dynamical mean-field the-
ory (DMFT), including its cluster extensions. Further, we will describe the new
algorithmic achievements, developed in the scope of this project, in detail. The
presented work addresses mainly the simulation of two-dimensional systems. Here,
both models are candidates for the description of real materials, in which physi-
cal properties of particular interest emerge from quasi two-dimensional structures.
Examples are the high-Tc superconductors (e.g., cuprates) [Sca06,SWGK11], corre-
sponding to the two-dimensional doped Hubbard model, or quasi two-dimensional
heavy fermion compounds like CeCoIn5 [SU91, IYM+03, BZV+13], connected to
the KLM, which show unconventional superconductivity.

Already in the 1980s, QMC methods were used for studying Hubbard type mod-
els [Cep80, BSS81,HF86]. However, QMC suffers from the famous fermionic sign
problem [LGS+90] and is mostly restricted to small lattices and high tempera-
tures. Sufficiently large systems and low enough temperatures can only be reached
for special cases, where the sign problem is absent, e.g., at particle hole symmetry
[ARH+03,HH04]. A complementary approach, which was very successful in the last
two decades, is the dynamical mean-field theory (DMFT) [MH89a,MH89b,MV89].
Starting from the limit of infinite dimensions and with a momentum-independent
self-energy, many physical properties of strongly correlated systems could be de-
scribed, down to the relatively small dimension d = 3, e.g., the essence of the Mott
metal insulator transition could be captured [GKKR96,Blü02]. In contrast, DMFT
fails in the case of two and lower dimensions, where long-range order is forbidden by
the Mermin Wagner theorem at finite temperatures [MW66,Hoh67] and local spa-
tial fluctuations become more important [GRP+12,RGAB12,SGR+15]. To describe
these systems correctly, non-local contributions to the self-energy beyond DMFT
have to be taken into account. These can be included by diagrammatic extensions,
e.g., the dynamical vertex approximation [TKH07], or cluster extensions [MJPH05]
like cellular DMFT and dynamical cluster approximation. We will concentrate on
the latter approach in this work. In Sec. 3.1 the most important steps of the de-
viations of the BSS-QMC are recalled. We also show the origin of the systematic
bias in the method, which has to be eliminated later. In Sec. 3.2 the formalism of
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3. Methods: QMC & Dynamical Cluster Approximation

(cluster) DMFT is reviewed and the key elements for the application of BSS-QMC
as impurity solver is described.

3.1. Blankenbecler-Scalapino-Sugar Quantum
Monte Carlo

The Blankenbecler-Scalapino-Sugar quantum Monte Carlo (BSS-QMC) was pro-
posed in 1981 and developed to solve Hubbard type Hamiltonians on a finite-size
lattice [BSS81]. We will briefly review the steps that are important for understand-
ing the possibilities and challenges of the BSS-QMC. For a more detailed view we
refer to the existing literature, e.g., [ATB12].

3.1.1. Derivation

The two major parts forming the derivation of the BSS-QMC algorithm are a
Trotter-Suzuki decomposition of the partition function and a Hubbard-Stratonovich
transformation of the Hamiltonian. Let us first specify the notation. Analogue to
Eq. (2.1), ĉ†iσ (ĉiσ) denote the electron creation (annihilation) operator on site i
with spin σ = {↑, ↓} and h denotes a hermitian matrix. For a quadratic Hamiltonian

Ĥ = ĉ†iσhij ĉjσ , (3.1)

the expectation value 〈Ô〉 of an observable Ô and the partition function Z can
generally be written as traces [FW71]

〈Ô〉 = Z−1 tr
[
Ô e−βĤ

]
(3.2)

Z = tr
[
−βĤ

]
, (3.3)

where the inverse temperature is denoted by β = 1/T . All units are chosen in
in the way that kB ≡ 1. Using the formula for the n-dimensional Gauß integra-
tion [BSM08]

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxn e

−xAxT =
πn/2√
det (A)

(3.4)

with x ∈ R, A ∈ R× R

14



3.1. BSS-QMC

and under consideration of the fermionic anti-commutation relations, one can inte-
grate out the fermionic degrees of freedom, so the trace transforms into a determi-
nant of a matrix [Hir85]:

Z = det
[
1− e−βh

]
. (3.5)

In the specific case of Hubbard type Hamiltonians, Eq. (3.5) is not applicable di-
rectly, because it is valid for quadratic Hamiltonians only. So the Hubbard Hamilto-
nian Eq. (2.3), which contains fermionic operators of quartic order in the interaction
term, has to be transformed. To find a purely quadratic representation, one first
splits the kinetic and interaction part using a Trotter decomposition [Suz76]:

e−β(Ĥkin+ĤU) =
[
e−

β
Λ(Ĥkin+ĤU)

]Λ ∆τ :=−β/Λ
=

[
e∆τ(Ĥkin+ĤU)

]Λ

(3.6)

=
[
e∆τĤkine∆τĤU

]Λ

+O
(
∆τ 2

)

≈
[
e∆τĤkine∆τĤU

]Λ

.

The Eq. (3.6) gets exact in the limit

Λ→∞ ⇔ ∆τ =
β

Λ
→ 0 . (3.7)

At this point a systematic error is introduced, which scales with (∆τ)2 and im-
plies a bias in all numerical results unless eliminated afterwards.

After rewriting the interaction term

ĤU = U
∑
i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓

= U
∑
i

n̂i↑n̂i↓

= −U
2

∑
i

[
(n̂i↑ − n̂i↓)

2 − (n̂i↑ + n̂i↓)
]
,
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3. Methods: QMC & Dynamical Cluster Approximation

the Hamiltonian can be expressed with quadratic order of fermionic operators and
an auxiliary spin-1 Ising field σ [SSST87]. Formally, this is achieved via a discrete
Hubbard-Stratonovich transformation [a similar approach as in Eq. (3.4)] [Hub59]

e−∆τU n̂i↑n̂i↓ =
1

2

∑
σi(l)=±1

e2λ±σi(l)[(n̂i↑− 1
2)∓(n̂i↓− 1

2)]−U∆τ
2 (n̂i↑+n̂i↓). (3.8)

Here [tanh(λ±)]2 = ±tanh(∆τU/4) is introduced.
The application of the Trotter decomposition and Hubbard-Stratonovich trans-

formation leads to the final representation of the partition function in the grand-
canonical ensemble containing the transformed Hamiltonian:

Z = Tr
[
e−β(Ĥkin+ĤU−µN̂)

]
(3.9)

≈
∑

σi(l)=±1

Tr
Λ∏
l=1

e−∆τĤkineλ±
∑
i,ν=↑,↓ Viν(l)ĉ†iν ĉiν

with:

Vi↑ = +σi(l)−∆τ

(
µ− U

2

)
(3.10)

Vi↓ = −σi(l)−∆τ

(
µ− U

2

)
.

With the hopping matrix tij we use the following notation:

Bν(l) = e−∆τtijeV
ν
ij(l) . (3.11)

Now V carries the remaining factors in Eq. (3.9):

V ν
ij (l) = δijλ±Viν(l) (3.12)

and one can rewrite the partition function
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3.1. BSS-QMC

Z =
∑

σi(l)=±1

Tr
Λ∏
l=1

(
e−∆τ ĉ†jKjkĉkeĉ

†
rV
↑
rs(l)ĉs

)
︸ ︷︷ ︸

spin up

(
e−∆τ ĉ†jKjkĉkeĉ

†
rV
↓
rs(l)ĉs

)
︸ ︷︷ ︸

spin down

(3.13)

Z =
∑
σi(l)

det
[
1+B↑(Λ) . . . B↑(1)

]
det
[
1+B↓(Λ) . . . B↓(1)

]
. (3.14)

The matrix K contains the hopping matrix and chemical potential:

Kij = −∆τ (tij + δij µ) . (3.15)

The evaluation of the partition function and calculation of observables is done by
standard Monte Carlo techniques, sampling over the auxiliary field using, e.g., the
Metropolis Monte Carlo algorithm [MRR+53].
The most important quantity for the calculation of observables and for the in-

tegration in the framework of the dynamical mean-field theory is the one-particle
Green function:

Gσ,ij(τ) = −〈ĉi,σ(τ)ĉ†j,σ(0)〉 . (3.16)

Within the BSS-QMC algorithm, the value of the Green function at time slice l for
a fixed auxiliary field configuration can be calculated via

Gν
ij(l) = [1+Bν(l)Bν(l − 1) . . . Bν(1)Bν(Λ) . . . Bν(l + 1)]−1

ij . (3.17)

Flipping a spin of the auxiliary field σi(l) at site i and imaginary time l during a
Monte Carlo sweep affects only the Green function at (i, l). One can show that
the recalculation of the Green function at imaginary time l+ 1 can be simplified to
a matrix vector multiplication, depending on the values at imaginary time l only
(0 ≤ l∆τ ≤ (l + 1)∆τ ≤ β)

G(l + 1) = B(l)G(l)B−1(l). (3.18)
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3. Methods: QMC & Dynamical Cluster Approximation

This update procedure scales significantly better with the number of time slices
Λ than the calculation of the full Green function Eq. (3.17). However, because
of possible numerical instabilities, arising from the amplification of errors from the
finite machine precision in the matrix multiplications in Eq. (3.18), a calculation
of the full Green function has to be performed after a certain number of updates,
using Eq. (3.17). This procedure is called wrapping. In total, the algorithm scales
with O (N3Λ), where N is the number of sites. The linear scaling in Λ translates
into a linear scaling in the inverse temperature β at fixed Trotter discretization ∆τ .
This superior scaling was the main reason for choosing the BSS-QMC as impurity
solver for the dynamical mean-field theory in this research project.
The BSS-QMC can also be specified for the Kondo lattice model (KLM). The

mapping was first proposed by F. F. Assaad in 1999 [Ass99]. He showed that the
following auxiliary Hamiltonian, which is treatable by decoupling via a Hubbard-
Stratonovich transformation similar to Eq. (3.9) and efficiently solvable with QMC
[FS91,AIS97],

Ĥ =−
∑
〈ij〉,σ

tij ĉ†i,σĉj,σ −
J

4

∑
i

[∑
σ

ĉ†i,σ f̂i,σ + f̂ †i,σĉi,σ

]2

(3.19)

+ U
∑
i

(
n̂fi,↑ −

1

2

)(
n̂fi,↓ −

1

2

)
=−

∑
〈ij〉,σ

tij ĉ†i,σĉj,σ + J
∑
i

Ŝci Ŝ
f
i − J

∑
i

(
ĉ†i,σĉ

†
i,−σ f̂i,−σ f̂i,σ + h.c.

)
+ J

∑
i

(
n̂ci n̂

f
i − n̂ci − n̂fi

)
+ U

∑
i

(
n̂fi,↑ −

1

2

)(
n̂fi,↓ −

1

2

)

is projected on the KLM for sufficiently large U . The first observation was that Eq.
(3.19) conserves the number of double occupied states on the f orbitals. So in the
case of restriction to the subspace where no f orbital is double occupied, Eq. (3.19)
is equivalent to the KLM Hamiltonian [Eq. (2.4)]. In a numerical simulation this
restriction is assured by setting the Coulomb interaction U on the f orbitals large
enough, in order to suppress double occupancy.

3.1.2. Quantities on the Real Axis

The main result of BSS-QMC calculations are Green functions G(τ) in imaginary
time, respectively in terms of Matsubara frequencies

G(iωn) =

∫ β

0

dτeiωnG(τ) with ωn =
(2n+ 1)π

β
. (3.20)

However, for various applications one needs the quantities also on the real frequency
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3.1. BSS-QMC

axis, e.g., for comparison with experiments1. The connection between real frequen-
cies and Matsubara frequencies is given via the spectral representation of the Green
function:

G(iωn) = −
∫ ∞
−∞

dω′

π

Im[G(ω′)]

iωn − ω′
=

∫ ∞
−∞

dω′
A(ω′)

iωn − ω′
, (3.21)

or in terms of imaginary time:

G(τ) = −
∫ ∞
−∞

dωA(ω)
e−τω

1 + e−βω︸ ︷︷ ︸
=:K(τ,ω)

. (3.22)

The spectral function is associated with the imaginary part of the Green function:

A(ω) = − 1

π
Im[G(ω)]. (3.23)

Consequently, one has to invert Eq. (3.22) to obtain the Green function on the
real-axis. Due to the fact that the Green function G(τ) is measured on a discrete
grid and with a statistical error ∆G, the inversion of Eq. (3.22) is ill-posed and
there exist an infinite number of solutions for A(ω). Additionally, high frequency
properties of the spectral function are suppressed exponentially by the integral
kernel K.
Thus, the problem has to be regularized. This is typically done by the Maximum

Entropy Method (MEM) [Bry90,Ros12]. Main idea is to find the spectral function
that reproduces the Green function most likely, i.e., finding the maximum of the
probability distribution:

P [A|G] =
P [G|A]P [A]

P [G]
. (3.24)

The probability for appearance of the Green function P [G] drops out, because the
function is given in advance. A measure for the correctness of the spectral function
A(ω) is the agreement with the data:

P [G|A] ∝ e−χ
2

. (3.25)

with

χ2 =
∑
i

(
Gi −Gi

∆Gi

)2

, (3.26)

1E.g., with angle-resolved photo-emission spectroscopy (ARPES).
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3. Methods: QMC & Dynamical Cluster Approximation

where Gi is the Green function generated by the spectral function and Gi denotes
the discrete data obtained from BSS-QMC. Here we assume uncorrelated errors for
simplicity2. The second assumption is that the spectral function should not con-
sist of any unphysical features and can be expressed by the Shannon entropy [Sha48]

S =

∫
dω

[
A(ω)−m(ω)− ln

(
A(ω)

m(ω)

)
A(ω)

]
, (3.27)

which is a penalty term for deviations from the model spectrum m. The model
spectrum can be used to insert additional information on the system, e.g., by using
a already known spectral function from a similar problem [DHJP13]. However, in
this project we will use a constant model spectrum in any case, i.e., we require
smoothness only. The entropy term regularizes the problem and is inserted with a
Tikhonov regularization parameter α [Bel78]:

P [A|G] = eαS−χ
2

. (3.28)

The inversion of Eq. (3.22) is reduced to a minimization of Eq. (3.28), which can
be performed with various methods. For details of the derivation, determination
of the Tikhonov parameter and information on the implementation we refer to the
author’s diploma thesis [Ros12].

3.2. Dynamical Mean-Field Theory and Cluster
Extension

Beside direct solutions of the models presented in Chap. 2, which are often re-
stricted to small systems, an approach from the mean-field point of view turned out
to be a successful tool. Mean-field ansatzes have been powerful approaches at many
points in the history of statistical physics [Kad09], e.g., the Weiss mean-field theory
for spin systems [Wei07]. The central idea is that the original many-particle prob-
lem is mapped on a single particle that interacts with an effective medium, which
represents the former interaction with the other particles. These theories were very
successful in the description of phase transitions, e.g., for the Ising model, which is,
in a mean-field approach, mapped on a single spin in an effective time-independent
magnetic field. The mean-field approaches are exact in the limit of infinite dimen-
sions or coordination number respectively3.

d→∞ ⇐⇒ z →∞ . (3.29)
2In general one has to diagonalize the error correlation matrix σij and work in the corresponding
diagonal space.

3The reason for the success of d→∞ theories in three dimension is that the coordination number
is significant larger than the dimension, e.g., for a cubic face-centered lattice the coordination
number is already Z = 12.
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3.2. (C)DMFT

However, a simple time-independent mean-field approach for models with enhanced
quantum correlations, as the Hubbard model, fails. This can be explained with the
fact that quantum fluctuations on a single-site do not vanish in the limit of infinite
dimensionality. To take these fluctuations into account, the dynamical mean-field
theory (DMFT) was developed by Metzner and Vollhardt in 1989 [MH89a,MH89b,
MV89].

In this section, we will recall the main ideas of the DMFT, its limitation and
corresponding extensions. For the complete picture and historical derivations we
refer to the review by Georges et al. [GKKR96] for the DMFT and the review by
Maier et al. [MJPH05] for quantum cluster theories.

3.2.1. Single-Site DMFT

t

U

DMFT
GU

Aux.
V1

V2

V3

V4

V5V6ǫ1

ǫ2

ǫ3

ǫ4

ǫ5

ǫ6

U

(a) (b) (c)

Figure 3.1. – Mapping of the original lattice problem (a), with local interaction
U and hopping t, on a single impurity, embedded in an effective bath G (b). A
discretization of the bath leads to an auxiliary Hamiltonian (treatable with ED
or BSS-QMC), here with star topology (c).

As stated above, the main idea in DMFT is the mapping of the original lattice
problem [Fig. 3.1 (a)] on an interacting impurity in a non-interacting bath [Fig.
3.1 (b)], represented by the bath Green function G with an action A:

A [ψ, ψ∗,G] =

β∫
0

β∫
0

dτ dτ ′
∑
σ

ψ∗σ(τ)G−1
σ ψσ(τ ′) (3.30)

− U
β∫

0

dτ ψ∗↑(τ)ψ↑(τ)ψ∗↓(τ)ψ↓(τ) ,

here in imaginary time τ ∈ [0, β] and in terms of Grassmann fields ψ, ψ∗. The
resulting problem, defined by the action Eq. (3.30), is still a highly non-trivial
quantum problem that has to be solved with sophisticated methods. The solution
will be topic in Sec. 3.2.4.
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3. Methods: QMC & Dynamical Cluster Approximation

The bath Green function is the equivalent to the mean-field in classical Weiss
mean-field theories, e.g., the effective magnetic field in the solution of the Ising
model. In contrast to non-dynamical electronic theories, the impurity site can ex-
change electrons with the bath, i.e., in the case of the single band Hubbard model,
the impurity can change between the states

|·〉 ∈ {|0〉 , |↑〉 , |↓〉 , |↑↓〉} . (3.31)

The bath Green function is determined by a self-consistent procedure as depicted
in Fig. 3.2. The different steps are connected via Dyson equations. We recall the
expression for the Green function of a non-interacting system, with dispersion εk, in
momentum space and in terms of fermionic Matsubara frequencies ωn = (2n+1)π/β

Gσ,k(iωn) =
1

iωn + µ− εk
. (3.32)

The full Green function of the interacting system can be written as:

Gσ,k(iωn) =
1

iωn + µ− εk − Σσ,k(iωn)
. (3.33)

At this point, the self-energy Σ is introduced, which represents the influence of
the interaction. Eq. (3.33) can be interpreted as the defining equation for the
self-energy.
The central approximation within the DMFT framework is that the self-energy

is estimated as a purely local quantity. The Dyson equation reduces to

G−1
σ,k(iωn) = [Gσ,k(iωn)]−1 − Σσ,k(iωn)

d→∞
= [Gσ,k(iωn)]−1 − Σσ(iωn) . (3.34)

Finally, the local Green function is obtained by momentum space integration:

Gσ(iωn) =

∫
ddk

(2π)d
1

iωn + µ− εk − Σσ(iωn)
. (3.35)
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3.2. (C)DMFT

GΣ

G G

(3.35)

Solution of impurity problem (3.30)

(3.34) (3.34)

Figure 3.2. – Schematic representation of the DMFT self-consistency
equations.

Self-consistency is reached, when the local Green function Eq. (3.35) and the impu-
rity Green function Gc, obtained from the solution of the impurity problem, become
identically:

Gσ(iωn)
!

= Gc
σ(iωn) . (3.36)

The complete self-consistency procedure is depicted in Fig. 3.2. The self-consistency
loop is iterated until convergence.

Hamiltonian Representation

In the above DMFT formalism, the new quantum impurity problem is defined by Eq.
(3.30), where G represents a continuous bath. While the most existing algorithms,
like Hirsch-Fye quantum Monte Carlo (HF-QMC) [Hir85, Hir88] and continuous-
time Quantum Monte Carlo, [GML+11] deal directly with this action formulation,
an alternative class of available impurity solver need a Hamiltonian representation
of the impurity problem. For the construction of a corresponding Hamiltonian,
one needs a bath representation with a, depending on the method, finite or infinite
number of discrete sites. We will come back to a comparison of the properties of
different impurity solvers in Sec. 3.2.4.

Let us start with an impurity Hamiltonian to find a discrete representation of
the bath. An appropriate Hamiltonian that is directly connected to the DMFT
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3. Methods: QMC & Dynamical Cluster Approximation

impurity problem was suggested by P.W. Anderson in 1961 [And61]:

ĤAnd =
∑
i,σ

εiâ
†
iσâiσ︸ ︷︷ ︸

bath dispersion

+
∑
l,σ

Vl

(
â†lσĉσ + ĉ†σâlσ

)
︸ ︷︷ ︸

coupling

+ U ĉ†↑ĉ↑ĉ
†
↓ĉ↓︸ ︷︷ ︸

local interaction

. (3.37)

Here â†iσ (âiσ) creates (annihilates) electrons in a non-interacting bath, and ĉ†iσ
(ĉiσ) creates (annihilates) electrons on the impurity site. For a finite number of
bath sites, the Anderson model can be visualized, e.g., through the star geometry
in Fig. 3.1 (c). The parameters of the bath, i.e., bath dispersion {εi} and hybridiza-
tion between bath sites and impurity {Vi} have to be determined within the DMFT
procedure. To build up the connection to the DMFT framework, one uses the Green
function corresponding to the Hamiltonian Eq. (3.37) [GKKR96], assuming a finite
number of bath sites Nb,

G−1(ω) = ω + µ−
∫ +∞

−∞
dω′

∆(ω′)

ω − ω′︸ ︷︷ ︸
≡Γ(ω)

≈ ω + µ−
Nb∑
l=1

V 2
l

ω − εl
. (3.38)

The bath parameters and, thereby, the hybridization function Γ(ω) are determined
in every DMFT iteration by fitting the functional form in Eq. (3.38) to G, obtained
from the impurity Green function and self-energy via Eq. (3.34), e.g., using a χ2

fit4. After determination of the bath parameters, the Hamiltonian Eq. (3.37) can
be solved by lattice quantum Monte Carlo methods (e.g., BSS-QMC) or, for a small
number of bath sites, by exact diagonalization.

3.2.2. Cluster Extensions

As mentioned in Chap. 1, single-site DMFT was very successful in the context
of the Hubbard model in three and higher dimensions. However, the lack of mo-
mentum dependence in the self-energy and the neglect of short-range fluctuations
lead to qualitatively incorrect results for one- and two-dimensional systems. One
can distinguish two major approaches for extending the single-site DMFT approx-
imation; first, diagrammatic methods, including higher order vertices (dynamical
vertex approximation [TKH07] or dual fermion approach [RKL08]) and second,
cluster extensions, which describe an interacting cluster, instead of a single site, in
an effective medium. In this section, we will focus on the latter class.
4Thus, the function

χ2 [{Vαk}, {εα}] =
cutoff∑
n=0

[
GDMFT(iωn)− Gfit(iωn; {Vαk}, {εα})

]2
is minimized with respect to the bath parameters.
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3.2. (C)DMFT

Figure 3.3. – Illustration of the Hamiltonian based representation of the
cluster impurity problem in the framework of cellular DMFT.

x̃

X

(0, 0)

(a)

K

k̃

Γ

(b)

Figure 3.4. – Definition of the intra- and inter-cluster vectors within
cellular DMFT and DCA. (a) real space and (b) reciprocal space.

In the framework of cluster DMFT, one can derive a real-space version, the
cellular DMFT, using a locator expansion. Cellular DMFT does not preserve the
translation symmetry of the original lattice, but retains the original matrix elements
on the cluster. The non-interacting bath is coupled to the surface of the cluster.
A discrete representation of this problem is shown in Fig. 3.3 for the case of the
one-dimensional Hubbard model and a three-site cluster.

One can restore this symmetry and find a slightly different algorithmic approach,
which is based on a truncation of the self-energy in momentum space: the dynamical
cluster approximation (DCA). The DCA, in return, leads to renormalized hopping
elements on the interacting cluster. The two formalisms are closely related and can
be transformed into each other by certain redefinitions of phase factors and cluster
Fourier transformations.

Depending on the purpose, both methods have advantages and disadvantages.
During this project, a cellular DMFT and a DCA framework was implemented. On
the one hand, cellular DMFT is the more generic one, because BSS-QMC, used
here as impurity solver, is formulated in real space. The bath is only coupled to the
surface of the cluster, so in some cases less bath sites are needed. On the other hand,
DCA turned out to be more favorable for the calculation of pairing susceptibilities,
due to the restoration of the translation invariance.
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3. Methods: QMC & Dynamical Cluster Approximation

For the derivation of the cluster self-consistency equations, we will follow the
review by Maier et al. [MJPH05] and refer to it for more detailed information.
As starting point for the locator expansion is the original lattice partitioned in
smaller clusters. This is sketched in Fig. 3.4 (a) for real space and Fig. 3.4 (b) for
momentum space. The original vectors x and k are split in inter- and intra-cluster
vectors, corresponding to Fig. 3.4

k = k̃ + K x = x̃ + X . (3.39)

With these definitions, we will use the following definitions of Fourier transforma-
tions between functions f of inter- and intra-cluster coordinates, assuming a total
number of N sites, divided in clusters with Nc sites:

f(X, x̃) =
Nc

N

∑
k̃

eik̃·x̃f(X, k̃) (3.40)

f(X, k̃) =
∑
x̃

e−ik̃·x̃f(X, x̃) (3.41)

f(X, k̃) =
1

Nc

∑
K

ei(k̃+K)·Xf(K, k̃) (3.42)

f(K, k̃) =
∑
X

e−i(k̃+K)·Xf(X, k̃). (3.43)

The idea of the derivation of the cluster extensions to the DMFT, based on the
locator expansion, is the separation of quantities in their inter- and intra-cluster
contributions, and treating the influence on a single cluster, emerging from the
surrounding clusters, on a mean-field level. With the convention that all quantities
are Nc × Nc matrices in the intra-cluster coordinates, one writes for the hopping
matrix and self-energy

t(x̃i − x̃j) = tcδx̃i,x̃j + δt(x̃i − x̃j) (3.44)

Σ(x̃i − x̃j, iωn) = Σc(iωn)δx̃i,x̃j + δΣ(x̃i − x̃j, iωn). (3.45)

With these definitions one can rewrite the Dyson equation for the Green func-
tion:

26



3.2. (C)DMFT

G(x̃i − x̃j, iωn) = Gc(iωn)δx̃i,x̃j + Gc(iωn)
∑
l

[δtcδx̃i,x̃l (3.46)

+ δΣ(x̃i − x̃l, iωn)
]
G(x̃l − x̃j, iωn) ,

where Gc is the cluster Green function:

Gc(iωn) = [(iωn + µ)1− tc −Σc(iωn)]−1. (3.47)

The equivalent of Eq. (3.46) in momentum space is obtained via Fourier transfor-
mation Eq. (3.41)

G(k̃, iωn) = Gc(iωn) + Gc(iωn)
[
δtc(k̃) + δΣ(k̃, iωn)

]
G(k̃, iωn). (3.48)

Analogous to single-site DMFT, we neglect (to some extent) the momentum de-
pendence of the self-energy, i.e., δΣ in Eq. (3.48) is dropped. The self-energy is
truncated to the cluster and the equation simplifies to

G−1(k̃, iωn) = G−1
c (iωn)− δtc(k̃). (3.49)

In the momentum space picture, the restriction implies a patching of the Brillouin
zone. On these patches the self-energy is piece-wise constant. This coarse graining
is also applied to the Green function by intra-cluster momentum integration of Eq.
(3.49):

G(iωn) =
Nc

N

∑
k̃

G(k̃, iωn) ≡
[
G−1
c (iωn)− Γ(iωn)

]−1 . (3.50)

The resulting hybridization function Γ(iωn) represents the effective interaction of
the isolated cluster with its surrounding; the Nc × Nc matrix G(iωn) plays a role
analogous to the Weiss mean-field.
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3. Methods: QMC & Dynamical Cluster Approximation

Cellular DMFT

Within the framework of the cellular DMFT, the hybridization function is deter-
mined self-consistently using equations (3.47), (3.50) and the cluster Dyson equation

Σc(iωn) = G−1(iωn)−G−1
c (iωn). (3.51)

When the hybridization function is determined by Eq. (3.50) it defines the new
quantum problem that has to be solved by an appropriate impurity solver, such as
quantum Monte Carlo. These steps are iterated until convergence is reached.

Dynamical Cluster Approach

The approximation in cellular DMFT, directly derived from the locator expansion
by neglecting the inter-cluster contribution of the self-energy, means that the phase
factors exp(ik̃ · x̃) in self-energy diagrams are not taken into account. The neglect
of these phase factors is equivalent to a basis change of the creation and annihilation
operators [Koc11]

ĉx(k)
CDMFT−→ ĉX(k̃) =

∑
x̃

e−ik̃·x̃ ĉx̃+X(k̃) , (3.52)

which results in the same hopping matrix elements on the cluster as in the original
lattice, but breaks the translation symmetry. To arrive at a self-consistent formu-
lation that restores the symmetry, one uses

ĉx(k)
DCA−→ ĉX(k̃) =

∑
x̃

e−ik̃·(x̃+X) ĉx̃+X(k̃) (3.53)

for transforming the operators. A drawback is that the cluster hopping elements
differ now from the original Hamiltonian.

Summarizing the above, in a real space picture DCA and cellular DMFT are
distinguished only by different choices of the gauge [KSG08]. After restoring the
translation invariance, one formulates the DCA self-consistency in terms of the clus-
ter momenta K and arrives at the following scheme:
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CDMFT Aux.
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Figure 3.5. – Mapping of the original full lattice problem (a) on a cluster
embedded in an effective continuous bath (b) and exemplary representation
of a possible bath discretization (c), defining an auxiliary Hamiltonian that
is treatable with ED or BSS-QMC.

1. Initial guess for Γ(iωn) or, alternatively, for the bath Green function. At this
point the original lattice geometry enters via the dispersion ε(k)

G(K, iωn) = [iωn + µ− ε̄(K)− Γ(K, iωn)]−1 (3.54)

ε̄(K) =
1

Vpatch

∫
patch

dk̃ ε(K− k̃) .

2. Solve the new quantum problem, e.g., using QMC methods, yielding the clus-
ter Green function Gc.

3. Calculate the new cluster self-energy

Σc(K, iωn) = G−1(K, iωn)−G−1
c (K, iωn). (3.55)

4. Obtain the coarse-grained lattice Green function via coarse graining

G(K, iωn) =
1

Vpatch

∫
patch

dk̃
[
iωn + µ− ε(K + k̃)−Σc(K, iωn)

]−1

. (3.56)

5. Obtain the new bath Green function via the Dyson equation

G(K, iωn) =
[
Σc(K, iωn) + G−1(K, iωn)

]−1 . (3.57)

6. Iterate steps 2. - 5.

The usage of the coarse-grained dispersion ε̄ reflects the fact that the cluster hop-
ping is renormalized to an effective hopping

tDCA(Xi,Xj) =
1

Nc

∑
K

ei(Xi−Xj)·K ε̄(K) . (3.58)

The Fourier transformation is a special case of Eq. (3.42), after integrating k̃

29



3. Methods: QMC & Dynamical Cluster Approximation

out. Due to the restored translation invariance, all self-consistency equations are
diagonal in the cluster momenta. Thus, in contrast to cellular DMFT, no matrix
inversions are needed.

Hamiltonian Representation

With the same arguments as in Sec. 3.2.1, one writes down a Hamiltonian rep-
resentation for the cluster problem. In the case of cluster methods, the scalar
hybridization function in Eq. (3.38) becomes a matrix in the cluster coordinates in
real space and a diagonal function of the cluster momenta in momentum space:

Γ(Xi,Xj, iωn) =

Nb∑
α

V ∗iαVjα
iωn − εbathα

(3.59)

Γ(K, iωn) =

Nb∑
α

|Vα(K)|2
iωn − εbathα

. (3.60)

The generalization of Eq. (3.37) for the cluster problem reads (spin indices sup-
pressed)

ĤAnd =
∑
α

εbathα â†αâα +
∑
i,j

tij

(
ĉ†i ĉj + h.c.

)
+ (3.61)

∑
α,i

(
V †iαâ

†
αĉi + Viαâαĉ

†
i

)
+ U

∑
i

n̂i↓n̂i↑ .

For the special case of Nc = 1, both cellular DMFT and DCA reduce to the single-
site DMFT. The cluster methods become exact in the limit of infinite cluster size
Nc →∞.

3.2.3. Lattice & Dispersion

In Sec. 3.2.1 and Sec. 3.2.2 the mappings of the original full lattice problem on
an auxiliary problem in the (C)DMFT frameworks have been discussed. Within
single-site DMFT, the original lattice structure enters only via the dispersion εk
of the non-interacting problem in Eq. (3.35) and for cluster extensions in Eq.
(3.56). In cellular DMFT, the real-space hopping matrix is preserved within the
cluster, so the geometry of the cluster is the same as in the original lattice. Since
the cluster geometry in momentum space is arbitrary for DCA the coarse-grained
dispersion Eq. (3.54) will additionally depend on the choice of the cluster pattern.
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3.2. (C)DMFT

Figure 3.6. – Examples for the DCA patching of the Brillouin zone for
a 2 × 2 cluster (left) and a 4 × 4 cluster (right). For a highly symmetric
model, e.g., the isotropic Hubbard model on a square lattice, patches with
same colors are identical and the DCA equations are only calculated for
vectors within the irreducible part of the Brillouin zone.

The corresponding real space matrix elements, needed as input for the BSS-QMC
impurity solver, are obtained via a Fourier transformation Eq. (3.58).

In this project, the focus is set on two-dimensional systems. Considered lattices
are the square lattice with nearest neighbor-hopping t (tx = ty = t, t′ = 0), the
anisotropic square lattice (tx 6= ty, t

′ = 0) and the isotropic square lattice with ad-
ditional next-nearest-neighbor hopping t′ (tx = ty = t, t′ 6= 0). For these systems,
the dispersion is given by

εk = − 2 [tx cos(kx) + ty cos(ky)]− 4 t′ cos(kx) cos(ky) , (3.62)

which is easily obtained via a Fourier transformation of the hopping matrix.
In the DCA implementation performed as part of this thesis, the patterns for the

patching of the Brillouin zone are rectangular. This is sketched in Fig. 3.6 for a
2× 2 cluster (left) and a 4× 4 cluster (right). In the highly symmetric case of the
translationally invariant square lattice with only nearest neighbor hopping, patches
with same colors are identical by symmetry. For the self-consistency equations and
fitting procedure, only irreducible points of the Brillouin zone have to be taken into
account.

3.2.4. Impurity Solvers

In Sec. 3.2.1 and Sec. 3.2.2, the DMFT framework and its cluster extensions were
introduced. For each of the variants, the most difficult step is the solution of the
new quantum problem defined by Eq. (3.38), Eq. (3.50), or Eq. (3.57), respectively.
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3. Methods: QMC & Dynamical Cluster Approximation

The available tools, which can serve as impurity solver, are the main limitation for
the applicability of (C)DMFT. In this section, we will discuss the main properties,
strengths, and weaknesses of state-of-the-art impurity solvers and motivate why the
development of an unbiased impurity solver, with a superior scaling in the inverse
temperature, was a worthy goal of this thesis.

Existing impurity solvers can, in general, be partitioned in two types: direct im-
purity solvers, formulated in the action representation of the impurity problem,
Eq. (3.30), and Hamiltonian based solvers, which map the original (cluster) DMFT
problem (with a continuous bath) on an auxiliary Hamiltonian Eq. (3.61) with a
finite bath.
For a long time, the Hirsch-Fye auxiliary-field quantum Monte Carlo method

(HF-QMC) [HF86] has been the prevalent solver for DMFT studies at finite tem-
peratures. The formulation of HF-QMC is very similar to the BSS-QMC, described
in Sec. 3.1. In contrast to the BSS-QMC algorithm, which is tailored for finite-
size lattice Hamiltonians, HF-QMC directly works on the action formulation Eq.
(3.30). The algorithm requires a Trotter discretization of the path integral rep-
resentation of the bath Green function in Λ = β/∆τ equidistant imaginary-time
intervals 0 ≤ τi ≤ β to decouple kinetic and interaction terms. Additionally, a
Hubbard-Stratonovich transformation is applied on the interaction term, which re-
places the electron-electron interaction with a coupling to an external binary field.
This auxiliary field can be sampled with classical Monte Carlo techniques. The
required matrix operations lead to a scaling with the cube of the number of time
slices. Keeping the imaginary time discretization ∆τ constant, to obtain compara-
ble results, this translates into a cubic scaling with the inverse temperature β. The
Trotter discretization introduces a systematic bias, which may be eliminated by an
extrapolation of the raw results to the limit ∆τ → 0.
More recently, such Trotter discretizations could be avoided by the development

of so called continuous-time impurity solvers (CT-QMC) [GML+11]. This type of
impurity solvers are based on stochastic sampling of Feynman diagrams in a series
expansion of the partition function. However, the available CT-QMC approaches
scale also at least with the cube of β. Thus, all these direct methods scale cubi-
cally in β and can hardly approach ultra-low temperature phases, where interesting
physical phenomena take place.
In the class of Hamiltonian based approaches, exact diagonalization (ED) related
methods [CK94] have been the prevalent solvers so far. The original impurity prob-
lem, formulated with a continuous bath, is mapped on an effective Hamiltonian,
corresponding to a discretization of this bath [Fig. 3.5 (c)], as described at the ends
of Sec. 3.2.1 and Sec. 3.2.2. After diagonalization of the auxiliary Hamiltonian, the
local Green function is calculated from the eigenvalues of the problem. One advan-
tage of ED, compared to QMC methods, is the direct access to observables on the
real-frequency axis. However, the discretization of the bath leads to a systematic
bias, not present in direct impurity solvers. This systematic bias can be reduced by
increasing the number of bath orbitals. One should also mention the ED related nu-
merical renormalization group (NRG) [Wil75] approach to DMFT [BCP08]. Here
the continuous bath is mapped on a semi-infinite chain, on which the bath pa-
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Impurity solver Scaling N Scaling β Systematic bias
CT-QMC N3/eN β3 -
HF-QMC N3 β3 Trotter discretization
ED/NRG eN - Bath discretization
BSS-QMC N3 β Trotter discretization

Bath discretization

Table 3.1. – Overview on common impurity solvers for (cluster) DMFT,
judged by their scaling with bath or interacting sites N , scaling with the
inverse temperature β, and systematic errors, which have to be eliminated
somehow.

rameters are determined by a renormalization group approach, instead of a fitting
procedure. This approach results in a chain structure, in which the contribution
of more distant sites are less important. In real simulations the chain length is
limited by an energy cutoff. However, ED and NRG are strongly limited, due to
the exponential scaling with the number of sites of the problem (bath sites as well
as impurity sites). This constraint is especially severe for multi-band models or
cluster extension of DMFT.

More recently, a new Hamiltonian based impurity solver was formulated by
Khatami et al. [KLB+10]. In this approach, the auxiliary problem is solved us-
ing BSS-QMC, described in Sec. 3.1. The advantage of the BSS-QMC method,
compared to HF-QMC and CT-QMC, is its linear scaling in the inverse temper-
ature. Compared to ED and NRG, BSS-QMC can easily handle large numbers
of bath orbitals, due to its cubic scaling with lattice sites. However, BSS-QMC
is based on a Hubbard-Stratonovich transformation and Trotter decoupling, which
leads to Trotter discretization errors (analogous to HF-QMC).

A comparison of the different state-of-the-art solvers is given in Table 3.2.4. This
overview gives the motivation for the major goal of this project: the development
of an algorithm that is numerically exact and retains the favorable linear scaling
in the inverse temperature. As was shown in the case of HF-QMC, it is possible
to eliminate Trotter errors with a multigrid extrapolation method [Blü08], even
on the level of Green functions and self-energies. We have already demonstrated
in earlier studies that an analogous error elimination scheme can be applied to
BSS-QMC and additionally, even finite-size errors can be eliminated [Ros12]. We
have constructed an algorithm that is numerically exact, in the sense that the
resulting Green functions do not suffer from any systematic errors. In a previous
study, the proposed algorithm was applied to study pseudogaps emergent in the
two-dimensional Hubbard model [RGAB12]. The numerical details of constructing
an unbiased BSS-QMC algorithm and the generalization to an impurity solver for
DMFT and cluster DMFT, will be discussed in Chap. 4 and Chap. 6.

3.2.5. Susceptibilities

One considered application of the efficient impurity solver with linear-in-β scaling
was the investigation of the phase diagram of the two-dimensional Kondo lattice

33



3. Methods: QMC & Dynamical Cluster Approximation

model (KLM), described in Sec. 2.2. The idea was to extend a previous DCA study
[cf. Fig. 2.2] [MA08], led by our collaborator Prof. Dr. F. F. Assaad, that was
limited by the employed HF-QMC impurity solver. Because of the cubic scaling of
the impurity solver with the inverse temperature it was not possible to track the
exponentially small Kondo temperature down to small J [Eq. (2.5)]. Based on a
recent variational Monte Carlo study [AFB14], a superconducting phase is presumed
for doped systems at low temperatures. Our strategy was, to detect the onset of
superconductivity via the calculation of the pairing susceptibility. The numerically
expensive calculation is done after the convergence of the self-consistency cycle
only. While the DCA calculations were performed within the scope of this project,
the implementation of the spin susceptibility measurements into the BSS-QMC
algorithm was assigned to Dr. Kuang-Shing Chen in the group of Prof. Dr. Fakher
Assaad at the University of Würzburg. The algorithmic approach is similar to the
calculation of spin susceptibilities in continuous-time QMC methods, which were
used to identify a superconducting phase in the Hubbard model on a triangular
lattice [CMY+13,Che13]. Unfortunately, Chen left science in December 2014 quite
abruptly, before finishing this code and it was not possible to replace him at short
notice. Thus, the investigation of the superconducting phase of the KLM is left
for following studies. Instead, we concentrated on another interesting application:
the momentum dependence of self-energies in the KLM and Hubbard model (Chap.
8). However, to facilitate the connection of follow-up projects, we will discuss the
main ideas of the calculation of spin susceptibilities within the BSS-QMC and DCA
frameworks5.
The two-particle Green function in the particle-hole channel is defined as [ADGS75]

χσ,σ′(q, k, k
′) =

∫ β

0

∫ β

0

∫ β

0

∫ β

0

dτ1dτ2dτ3dτ4 e
i[(ωn+νn)τ1−ωnτ2+ωn′τ3−(ω′n+νn)τ4]×

× 〈T α̂k+qσ(τ1)α̂†kσ(τ2)α̂k′σ′(τ3)α̂†k′+qσ′(τ4)〉 , (3.63)

where T is the time-ordering operator, α̂† (α̂) creation (annihilation) operators,
and α̂ ∈ {ĉ, f̂} corresponds to the band index [cf. Fig. 2.1 (b)]. For simplification,
the combined indices k = (k, iωn), k′ = (k′, iω′n), and q = (q, iνn) are used. The
fact that only three momenta and frequencies appear, reflects the reduction of one
degree of freedom in space and time due to momentum and energy conservation.
Analogous to the Dyson equation, Eq. (3.34), one writes the Bethe-Salpeter equa-
tion

χσ,σ′(q, k, k
′) = χ0

σ,σ′(q, k, k
′) + (3.64)

+ χ0
σ,σ′′(q, k, k

′′)Γσ′′,σ′′′(q, k
′′, k′′′)χσ′′′,σ′(q, k

′′′, k′).

5At this point, I thank Dr. Kuang-Shing Chen and Prof. Dr. Fakher Assaad for the enlightening
discussions and explanations.
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The non-interacting susceptibility is denoted by χ0. The irreducible vertex function
Γ plays the role of the self-energy in the one-particle formalism. The corresponding
DCA approximation, implies the coarse-graining of Eq. (3.64), again using capital
Ks for inter-cluster vectors:

χσ,σ′(q,K,K
′) = χ0

σ,σ′(q,K,K
′) + (3.65)

+χ0
σ,σ′′(q,K,K

′′)Γσ′′,σ′′′(q,K
′′, K ′′′)χσ′′′,σ′(q,K

′′′, K ′).

While the self-energy on the cluster is, within the DCA approximation, the same
as the coarse-grained self-energy, this does not hold for two-particle quantities, be-
cause the self-consistency is only used on the one-particle level. Susceptibilities
are calculated after fully converged DCA simulations. The coarse-grained non-
interacting susceptibility6 on the lattice is calculated from the one-particle Green
function [FYC+11]:

χ0
l (q,K,K

′) = δσ,σ′δK,K′δωn,ω′n
N

Nc

∑
k̃

Gσ(K + k̃, iωn)Gσ(K + k̃ + q, iωn + iνn).

(3.66)

The cluster susceptibilities (χ0
c , χc) are calculated by the impurity solver. For cor-

responding vertex functions the Bethe-Salpeter-Equation is inverted. The lattice
susceptibility χl is, finally, obtained by setting the coarse-grained lattice vertex
function Γl equal to the cluster vertex function Γc:

(
χ0
l

)−1 −
(
χl
)−1

= Γl = Γc =
(
χ0
c

)−1 −
(
χc
)−1 (3.67)

χl =
[(
χ0
l

)−1
+
(
χc
)−1 −

(
χ0
c

)−1
]−1

= χ0
l [1− Γl χ

0
l︸︷︷︸

=M

]−1 .

In the case of the pairing susceptibility χl(q, k,−k) and iωn → 0, M is the pairing
matrix. It can be used for a classification of superconducting phases, e.g., deciding
between s- and d-wave superconductivity by comparison of the the leading eigen-
values of M as function of the momentum [KMJ09].
The calculation of the cluster susceptibilities in the BSS-QMC algorithm is based

on single-particle Green functions. In contrast to the calculation of single-particle
6The term non-interacting susceptibility is used to emphasize the analogies to the Dyson equation
[Eq. (3.46)]. Strictly speaking, the definition is assigned to a bubble approximation involving
interacting Green functions.
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observables, where only equal-time Green functions are needed, the full Green func-
tion, depending on two imaginary-time variables (or Matsubara frequencies) has to
be calculated. These measurements lead to a O(β2) scaling, but have only to be
done as one shot after the full convergence of the DCA self-consistency. One of the
numerical challenges is the storage and processing of large Green function matrices.
Rewriting the particle-hole susceptibility Eq. (3.63), with the convention that the
numbers {1, 2, 3, 4} carry all degrees of freedom7:

χph(1, 2; 3, 4) = 〈T α̂1α̂
†
2α̂3α̂

†
4〉 − 〈T α̂1α̂

†
2〉 〈T α̂3α̂

†
4〉 (3.68)

and, analogously, the particle-particle susceptibility

χpp(1, 2; 3, 4) = 〈T α̂1α̂2α̂
†
3α̂
†
4〉 − 〈T α̂1α̂2〉 〈T α̂†3α̂†4〉 = 〈T α̂1α̂2α̂

†
3α̂
†
4〉 . (3.69)

In the last step, particle conservation

〈T α̂†1α̂†2〉 = 〈T α̂1α̂2〉 = 0 (3.70)

was used. Using the notation 〈...〉MC for Monte-Carlo averages and the QMC single-
particle Green function G, we find for the measurement of the particle-hole suscep-
tibility using Wick’s theorem [Wic50]

〈χph(12; 34)〉MC = 〈〈T α̂1α̂
†
2α̂3α̂

†
4〉〉MC − 〈〈T α̂1α̂

†
2〉〉MC 〈〈T α̂3α̂

†
4〉〉MC (3.71)

= 〈〈T α̂1α̂
†
4〉 〈T α̂†2α̂3〉+ 〈T α̂1α̂

†
2〉 〈T α̂3α̂

†
4〉〉MC − 〈G12〉MC 〈G34〉MC

= 〈G12G34〉MC − 〈G14G32〉MC − 〈G12〉MC 〈G34〉MC

and for the particle-particle susceptibility:

〈χpp(12; 34)〉MC = 〈〈T α̂1α̂2α̂
†
3α̂
†
4〉〉MC (3.72)

= 〈〈T α̂1α̂
†
4〉 〈T α̂2α̂

†
3〉〉MC

= 〈G14G23〉MC .

In general, more terms will remain in Eq. (3.72) than written here. In the case of
the KLM, they drop out due to symmetry reasons. By analyzing the Hamiltonian
7The formulation of the susceptibility measurements shown here were worked out in detail by
Dr. Kuang-Shing Chen (unpublished).
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Eq. (3.19), one finds that in the particle-particle channel only the spin configura-
tions

σ1 =↑, σ2 =↓, σ3 =↓, σ4 =↑
and

σ1 =↓, σ2 =↑, σ1 =↑, σ2 =↓

contribute to the susceptibility8. Summarizing the above, for the calculations of
the two-particle quantities, we need the full matrix

〈G12〉MC = −〈〈T ĉσĉ
†
σ〉〉MC δσ,σ′δα,α′δK,K′δω,ω′ . (3.73)

At the time of writing, the measurements of the cluster quantities were basically
included in the KLM BSS-QMC code, but not tested and combined with the DCA
lattice susceptibilities. These calculations have to be shifted to a follow-up project.

8Not all symmetries are respected in every QMC measurement, i.e., for all auxiliary field config-
urations. E.g., particle conservation is respected in all configurations, but the Green functions
become diagonal in the orbital index after the QMC average only:

〈T ĉσ f̂†σ〉 6= 0 = 〈〈T ĉσ f̂†σ〉〉MC .
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4. Numerical Developments I:
Unbiased BSS-QMC

In this chapter, the details of various numerical developments achieved in this
project, are presented. These algorithms are necessary for obtaining unbiased re-
sults from BSS-QMC, for lattice studies as well as for the integration within a
(cluster) DMFT framework that will be presented in Chap. 6.

4.1. Impact & Elimination of Trotter Errors

In Sec. 3.1 the derivation of the BSS-QMC algorithm was shown. One of the main
steps consists of a Trotter decomposition of the Hamiltonian. This leads to sys-
tematic biases in the results of BSS-QMC simulations. Eq. (3.6) implies that the
Trotter impact on observables is proportional to ∆τ 2 in leading order. To elimi-
nate this systematic error, a set of simulations with different values of ∆τ , for fixed
physical parameters, is performed. Afterwards, the final result is obtained by an
extrapolation to the limit ∆τ → 0. In Fig. 4.1, the extrapolation scheme is demon-
strated for the double occupancy

D = 〈n̂↓n̂↑〉 (4.1)

for the half-filled Hubbard model on a square lattice at weak coupling U = 2
and moderate temperature T = 0.10, for different lattice sizes. Lines denote linear
fits. Values at ∆τ 2 = 0 are the final extrapolated values for the double occupancy
extracted from these fits. The dependence on ∆τ 2 is convincingly linear, which
opens the opportunity to save computational time by using larger values of ∆τ and
performing the extrapolation1.
In most cases, the ∆τ → 0 extrapolation for the double occupancy and other

static quantities is straight forward and absolutely reliable. However, for the cal-
culation of dynamical quantities, like spectral functions or self-energies, one needs
to perform the Trotter extrapolation on the level of the Green function. This is es-
pecially important when the BSS-QMC algorithm serves as impurity solver, as will
be discussed in Chap. 6. Trotter biased Green functions, obtained from BSS-QMC
calculations, do not only show a quantitative shift, but also suffer directly from the
1To gain the same precision for the final value without extrapolation, one has to perform a
calculation using very small values of ∆τ . This calculation is computationally more expensive
than the whole set of simulations used for the extrapolation.
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Figure 4.1. – Example for the impact and extrapolation of the systematic
Trotter bias in BSS-QMC: double occupancy as function of the squared Trotter
discretization (∆τ)2 for the half-filled Hubbard model on a square lattice at weak
coupling U = 2 and moderate temperature T = 0.10 for different system sizes.
Lines: linear fits for obtaining extrapolated values, marked at (∆τ)2 = 0.

discretization in imaginary time, i.e., the functions can only be measured on a finite
grid

G(τ) ≈ Gi = G(τi) , with i ∈ [0, . . . ,Λ = β/∆τ ] , τi = i∆τ . (4.2)

For dynamic quantities, the Trotter extrapolation has to be carried out sepa-
rately at all imaginary-time points τ . Here the problem arises that for an arbitrary
choice of the ∆τ grid, the measured raw Green functions will not share the same
supporting points [symbols in the inset of Fig. 4.2 (a)]. Hence, the Green functions
have to be brought on a common grid. One way to adapt the different grids is
to perform a spline interpolation. However, a direct interpolation on the level of
the Green function, e.g., by cubic splines, introduces a large bias, due to the non-
vanishing higher derivatives of G(τ) [Blü02]. To solve this issue, an intermediate
step is introduced: instead of performing a spline interpolation on the level of G(τ),
we interpolate a difference Green function ∆G, which is defined by subtracting the
BSS-QMC Green functions {G∆τj} from a reference Green function Gref [red solid
line Fig. 4.2 (a)]:
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Figure 4.2. – Extrapolation scheme for Trotter biased Green functions
obtained from BSS-QMC: (a) Trotter biased Green functions from BSS-
QMC (symbols), reference Green function used within the extrapolation
scheme (red solid line) and unbiased result (black solid line). (b) Depen-
dence of the Green function at fixed imaginary-time points τ as function of
the squared Trotter discretization error (∆τ)2, lines show linear fit in (∆τ)2.
(c) Schematic representation of the multigrid extrapolation procedure.

∆G∆τj(τi) = Gref
∆τj

(τi)−G∆τj(τi) (4.3)

with Gref
∆τj

(τi) = A
(
e−τ/τ0 ± e−(β−τ)/τ0

)
.

The ± sign indicates that, depending on the shape of the Green function, a symmet-
ric or anti-symmetric reference Green function is used. In cases where this extrap-
olation scheme is applied automatically, like in the cluster DMFT self-consistency,
the BSS-QMC Green functions are split in their symmetric and anti-symmetric
parts in advance, and treated separately2. The errors, which are introduced by

2The reference Green function can be determined by various approaches, e.g., a high-frequency
expansion of the self-energy [PWN97]. Here the general form Eq. (4.3) is used, to ensure of
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a cubic spline interpolation, arise from non-vanishing higher order derivatives of
G(τ). The regularization through the reference Green function is most useful, if
the data and the reference Green function agree in higher order derivatives. The
free parameters in Eq. (4.3) are fitted in the way that the second derivative of the
data and the reference Green function agree well at τ → 0, where the contribution
of higher order terms is most significant. So a minimization procedure for every
BSS-QMC Green function

min

{[
δ2

δτ 2
i

Gref
∆τj

(τi)−
δ2

δτ 2
i

G∆τj(τi)

]2

τi→0

}
(4.4)

is performed.
The spline interpolation yields Green functions that are still Trotter biased, but

quasi continuous in imaginary time. I.e., they can be evaluated on an arbitrary
fine τ grid [lines in Fig. 4.2 (a)]. Now one can perform the ∆τ extrapolation on
this grid and obtain a Green function free from significant Trotter errors and quasi
continuous in imaginary time [black solid line in Fig. 4.2 (a)].
The full Trotter extrapolation scheme is sketched in Fig. 4.2 (c). For exem-

plary imaginary-time points, the quality of the extrapolation is demonstrated in
Fig. 4.2 (b). A further advantage of the extrapolation procedure is the stability of
the Fourier transformation to Matsubara frequencies,

G(iωn) =

β∫
0

dτ G(τ) e−iωnτ . (4.5)

In the case of the directly obtained BSS-QMC Green functions on the discrete
time grid, the transformation Eq. (4.5) can cause unphysical features in G(iωn).
In a recent study, we compared the impact of finite-size effects on different quan-

tities and parameter sets [RGAB12] in the two-dimensional Hubbard model. We
found that the Green function is not equally biased at all points in momentum
space. This imbalance becomes stronger in the vicinity of the crossover tempera-
ture, where antiferromagnetic fluctuations become important. Thus, for the final
results, a quantitative comparison with complementary methods can only be per-
formed after the elimination of systematic errors. The same holds for the Trotter
bias. We compare the impact of the Trotter discretization on diagonal and off-
diagonal Green functions in Fig. 4.3. Here for a 2 × 2 cluster embedded in an
effective bath at the low temperature β = 25 in the Mott insulating phase (U = 8).
While for the half-filled case the diagonal BSS-QMC Green functions are identi-

the stability of the fit in automated extrapolation procedures. These procedures are needed
for large Green function matrices, with arbitrary entries, in the cluster DMFT framework; see
Chap. 6.
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4.2. Unbiased Self-Energy in the Thermodynamic Limit
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Figure 4.3. – Comparison of Trotter bias in diagonal and off-diagonal
Green functions in imaginary time (a). Exemplaric ∆τ → 0 extrapolation
for τ = 0.1 (b).

cally at τ = 03, the off-diagonal Green functions [colored lines in Fig. 4.3] deviate
strongly from each other and from the extrapolated result [black solid line in Fig.
4.3]. Furthermore, the maximal deviation in the off-diagonal Green functions (at
τ = 0) is larger than in the diagonal functions (maximum at τ = β/2, not shown).
The specific dependence on the discretization ∆τ is shown in Fig. 4.3 (b) for τ = 0.1
close to zero. Lines show quadratic fits in (∆τ)2, used for determination of the un-
biased values. The off-diagonal elements also show more dominant quadratic ∆τ 2

contributions to the ∆τ dependence.
We conclude that only a careful elimination of systematic errors can lead to fully

consistent and meaningful results.

4.2. Unbiased Self-Energy in the Thermodynamic
Limit

A quantity, which is often considered in DMFT studies for the analysis of the prop-
erties of a system, is the self-energy Σ(iωn). The self-energy can be calculated from
the Green function via the Dyson equation

Σk (iωn) = iωn + µ− εk −G−1
k . (4.6)

Here, µ denotes the chemical potential and εk the dispersion of the non-interacting
problem. In direct lattice calculations, the limited cluster size is the main bias.

In this section, an algorithmic approach that yields self-energy data free from
systematic errors and in the thermodynamic limit is presented. To achieve a reli-

3Their value is determined by the filling of the system.
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4. Numerical Developments I: Unbiased BSS-QMC

able finite-size (FS) analysis, large lattices have to be considered, e.g., for the two-
dimensional Hubbard model, lattice calculations up to 256 sites were performed.
Due to the large amount of computer time needed for these calculations4, we have
to reduce the precision in the Monte Carlo procedure, by reducing the number of
sweeps, to produced results in a reasonable time scale. After the elimination of
Trotter errors of the noisy raw data, using the scheme presented in Sec. 4.1, some
significant fluctuations remain inevitably in the resulting G(τ). This is illustrated
in Fig. 4.4, for the Hubbard model on a 16× 16 square lattice at low temperature
T = 0.04 and weak coupling U = 2. Thick colored lines show data with higher pre-
cision, thin lines with lower precision (1/10th number of Monte Carlo sweeps). The
extrapolated Green function is denoted by black circles. On the level of Matsubara
frequencies, the lack of smoothness of the Green function in imaginary time causes
non-causal features, e.g., a deviation from the 1/iωn high-frequency behavior. This
impact is more severe in the self-energy Eq. (4.6) and leads to unphysical features.
This bias can be reduced by a smoothing procedure. For the self-energies, which
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Figure 4.4. – Extrapolation of BSS-QMC Green functions to ∆τ → 0.
Analytic continuation (MEM, black line) regularizes the results of point-
wise extrapolations (symbols) and yields stable results (gray line) even in
the case of noisy raw data (thin colored lines).

will be shown in Chap. 5, a regularization procedure based on a maximum entropy
method (MEM) [Bry90] was developed, where the corresponding spectral function
A(ω) is computed via the inversion

G(τ) = −
∫ ∞
−∞

dω A(ω)
e−ωτ

1 + e−ωβ
. (4.7)

4The BSS-QMC algorithm scales with N3, i.e., a calculation for the 16×16 lattice takes 64 times
longer than a calculation for the 8× 8 lattice, if the precision is kept constant.
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Trotter discretization ∆τ on the Matsubara self-energy.

The intermediate spectral function A(ω) is used only for producing continuous and
smooth Green functions G(τ) via Eq. (4.7). Even if the quality of spectral func-
tions, calculated via MEM, can be questionable, the procedure is stable, because we
are interested in G(τ) only and not in the specific form of A(ω). We can guarantee
that the G(τ), calculated from Eq. (4.7), reproduces the data within the errors of
the method, shown as solid line in Fig. 4.4. Notably, the results based on high-
or low-precision data (thick black line vs. gray line) are hardly distinguishable and
can both be used for stable computations of self-energies. So the method can yield
reliable smooth unbiased Green functions, even from noisy data, which gives the
great opportunity to safe up to a factor of ten in computational time, just by reduc-
ing the number of Monte Carlo sweeps. The impact of errors in the Green function
on the level of the self-energy is shown in Fig. 4.5 (a). The self-energies, directly
computed from the ∆τ -extrapolated data (green dashed lines), show noisy behavior
at higher frequencies. This is corrected by the smoothing procedure (black solid
lines). Thin lines show the results for data sets with poor statistics. The physically
most important low-frequency range remains untouched. In contrast, the impact
of Totter errors shown in Fig. 4.5 (b) have their major effect on the low-frequency
range. Only the combination of ∆τ extrapolation and the smoothing procedure can
lead to results that are comparable to other methods, e.g., the dynamical vertex
approximation (DΓA). A comparison is shown in the next section.

Extrapolation to the Thermodynamic Limit

In the previous section, we presented methods, which can produce unbiased self-
energies from BSS-QMC Green function, without significant systematic errors, aris-
ing from the finite ∆τ discretization or noisy data. However, these BSS-QMC
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Figure 4.6. – Finite-size (FS) analysis of the self-energy on the Matsubara
axis at weak coupling U = 2, k = (π, 0) for the two-dimensional Hubbard
model on a square lattice at half-filling. FS BSS-QMC data (open symbols
and broken colored lines), extrapolated BSS-QMC results in the thermo-
dynamic limit (circles and black bold solid line), and DΓA data (gray line)
at T = 0.04 (a) and T = 0.10 (c); also shown are momentum-independent
single-site DMFT results (thin black lines). (b)+(d) FS BSS-QMC (sym-
bols) data for the first three Matsubara frequencies versus inverse system
size plus extrapolations in linear order in L−2 (thin lines) and quadratic
order (thick lines).

self-energies still correspond to finite-size (FS) clusters. To obtain actual unbiased
self-energies, one has to perform a FS extrapolation of the self-energy.
For a careful analysis of FS effects, we simulated systems from 36 up to 256 sites.

The extrapolation of the self-energy to the thermodynamic limit is performed by
fitting Σ(iωn;L) for every Matsubara frequency ωn as a function of the linear system
size L.
This procedure is demonstrated in Fig. 4.6 for the self-energy of the half-filled

Hubbard model on L × L square lattices at the momentum point k = (π, 0). The
two panels on the left hand side show results at low temperatures T = 0.04, the
panels on the right at the elevated temperature T = 0.10. Fig. 4.6 (a) and Fig.
4.6 (c) show FS biased self-energies for the different lattice sizes (colored symbols
and broken lines). The BSS-QMC data show large finite-size effects: the smallest
systems (8× 8, triangles) show insulating behavior at both temperatures, indicated
by a strong enhancement of the self-energy at small ωn. Towards larger system sizes,
the insulating tendency is reduced at T = 0.04 and vanishes completely at T = 0.10.
The functional dependence of the magnitude of the self-energy on the system size
is shown in Fig. 4.6 (b) and Fig. 4.6 (d) for the first three Matsubara frequencies,
where the strongest FS effects appear. The FS extrapolation is performed by fitting
polynomials in L−2: the final value is determined by the mean of a quadratic fit
(thick colored lines) and a linear fit (thin colored lines) and the error is given by their
difference. Only for the two smallest Matsubara frequencies a significant deviation
from a linear dependence on the inverse system size is found.
The final extrapolated self-energies are free from significant Trotter bias and

valid in the thermodynamic limit. They are shown as black lines and circles in
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4.2. Unbiased Self-Energy in the Thermodynamic Limit

Fig. 4.6 (a) and Fig. 4.6 (c), respectively. To validate the consistency of the
method, self-energies, obtained from single-site DMFT (thin black solid line) and
DΓA (gray dashed line) are also shown. Due to the neglect of short-range interac-
tions, the paramagnetic single-site DMFT results are expected to have a tendency
towards metallic solutions, and serve here as lower boundary for the self-energy.
The reasonable agreement with DΓA shows the high quality of the error elimina-
tion schemes. Remarkably, even the results for the 16× 16 lattice deviate strongly
from the correct solution. Valid results can only be obtained by careful finite-size
analysis. The full picture of the comparison of the different methods, in the context
of the two-dimensional Hubbard model, is discussed in Chap. 5.
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5. Mott Transition in the 2d
Hubbard Model

In this chapter, the methods described in Chap. 4 are used for studying the Mott
metal-insulator transition of the two dimensional Hubbard model at half-filling.
The study was performed within a joint project with the Graz University of Tech-
nology, where variational cluster approximation (VCA) [PAD03] calculations were
performed and Vienna University of Technology, where dynamical vertex approx-
imation (DΓA) data were produced. The full study is published in [SGR+15].
The final results are summarized in Fig. 5.1. Colored lines in the phase diagram
mark phase transitions in the temperature-interaction plane, investigated in dif-
ferent studies using alternative numerical methods. For guidance, the mean-field
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Figure 5.1. – Phase diagram of the the Hubbard model on a square
lattice, obtained with complementary techniques. DMFT [Blü02,KJMP05],
CDMFT [PHK08], VCA and DΓA [SGR+15] data. Unbiased BSS-QMC
results for U = 2, T = 0.10 and T = 0.04 (green crosses).
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complementary methods, DΓA and unbiased BSS, supported the theory of
the absence of the MIT at finite temperatures and interaction strengths.
Not shown: vanishing real parts, due to particle hole symmetry.

Néel temperature T 3D
N for three dimensions is shown1(gray dashed double-dotted

line). The key message of our study is that, in contrast to former studies, no Mott-
Hubbard transition is found at finite temperature T and any interaction strength U .
Instead, the model describes a paramagnetic insulator at low enough temperatures
for any U > 0.
With respect to DMFT (pink dotted line), which neglects short-range correlation

completely, the introduction of nonlocal correlations, e.g., by cluster extensions to
DMFT (CDMFT, violet line), shifts the MIT towards lower interaction strengths.
Using finite-size extrapolated unbiased BSS-QMC and DΓA, longer-range correla-
tions are included. The green dashed line marks the transition temperature and
interaction, at which a spectral gap is opened with increasing U , due to a strong
enhancement of the electronic scattering rate for low frequencies [cf. Fig. 5.2]. The
crossover from metallic to insulating behavior (identified by a strong enhancement of
the imaginary part of the self-energy at low frequencies) at low enough temperatures
is shown in Fig. 5.2 for the weak coupling U = 2. While at the high temperature
T = 0.10 (left panel) both, DΓA (open squares) and unbiased BSS-QMC (filled
squares) show metallic behavior, an insulating gap opens at the two most relevant
points on the (non-interacting) Fermi surface, namely at the nodal [k = (π/2, π/2)]
and at the antinodal [k = (π, 0)] point, at the lower temperature T = 0.04 (right
panel) and corrects the metallic DMFT result (black solid line). The true solution,
using BSS-QMC at these two temperatures, could only be determined by careful
finite-size analysis (cf. Fig. 4.6).

1The shown line for T 3D
N is rescaled to match the energy scale of the two-dimensional model

(U/
√
Z = const.) [GRP+12].
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The shift of the MIT towards U = 0, with the systematic inclusion of spatial
correlations, shows the physical origin of the observed crossover: due to the prox-
imity to the AF long-range ordered phase at T = 0, spatial AF spin correlation
are enhanced. This can be shown by consideration of the static real-space spin
correlation function

χs(x) =

∫ β

0

dτ 〈S(x, τ)S(0, 0)〉 , (5.1)

which can be related to the correlation length ξ, using the expression for the long-
distance limit [AS06]:

|χs(x→∞)| ∝
√
ξ

x
e−x/ξ. (5.2)

In Fig. 5.3, spin correlation functions are shown. The functions are normalized
on their on-site value χs(r = 0) and plotted along the x direction. By fitting the
functional form in Eq. (5.2) to the data, the correlation length can be estimated.
Fig. 5.3 (a) shows results for BSS-QMC simulation for 16 × 16 lattice. While the
correlation lengths at T = 0.10 is smaller than the cluster size and can be estimated
to ξ ≈ 3.7, the correlations decay much more slowly at the lower temperature
T = 0.04. For the latter, one can conclude, based on the BSS-QMC results only,
that the correlation length is larger than the size of the cluster. These results are
confirmed by the more reliable estimation by DΓA . The estimation of ξ ≈ 4 at
T = 0.10 is in excellent agreement with the BSS-QMC results [Fig. 5.3 (b)]. At
T = 0.04 [Fig. 5.3 (c)] the correlation length is in order of 103 and clearly exceeds the
reachable cluster sizes in lattice BSS-QMC. The alternating sign reflects the short-
to middle-range AF ordering. This shows unambiguously that the the extending AF
fluctuations drive the 2d Hubbard model into a phase where it is a paramagnetic
insulator for all interactions and low enough (but still finite) temperatures. This
picture is different from a MIT at finite T , i.e., a nonzero Uc > 0 at T > 0, predicted
in former (C)DMFT studies.

51



5. Mott Transition in the 2d Hubbard Model

(a)

(b) (c)

0.0

0.2

0.4

0.6

0.8

1.0

 0  2  4  6  8  10  12  14  16

| 
χ

S
(r

)/
χ

S
(0

) 
|

r 

U = 2.0 

16 x 16 

∆τ = 0.07 

ξ0.10 ≈ 3.7

T = 0.10 

T = 0.04

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

 0  5  10  15  20

χ
S
(r

) 
/ 

χ
S
(0

) 

r 

U = 2   T= 0.10

DΓA

fit (ξ ≈ 4)

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

 0  20  40  60  80  100  120

r 

U = 2   T= 0.04

ξ ≈ 1000

DΓA
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6. Numerical Developments II:
Unbiased BSS-QMC as
Impurity Solver

In Chap. 4, a multigrid BSS-QMC scheme was discussed that yields Green functions
without significant systematic errors. This multigrid BSS-QMC procedure is not
only very useful for direct lattice calculations, as applied in the study of the two-
dimensional Hubbard model presented in Chap. 5, but could also be useful as
impurity solver for DMFT and its cluster extensions. As already highlighted in
Sec. 3.2.4, combining BSS-QMC and DMFT has great potential in leading to new
insights in ultra-low-temperature physics, by its superior linear scaling in the inverse
temperature. In this chapter, we will discuss how the unbiased multigrid BSS-QMC
is integrated in the DMFT framework in detail (Sec. 6.2) and which modifications
were necessary for applications to cluster extensions of DMFT (Sec. 6.3). We will
also cover algorithmic developments (Sec. 6.1), regarding the discretization of the
bath, which are also important for other Hamiltonian based solvers, such as exact
diagonalization (ED).

6.1. Determination of Bath Parameters

Within the DMFT framework, in every iteration step the new quantum impurity
problem is defined by a bath Green function G

G(iωn) = [iωn + µ− t− Γ]−1 , (6.1)

which describes a continuous bath. Here µ denotes the chemical potential and
t the Hopping matrix on the cluster. For application of Hamiltonian based solvers,
one has to find a discrete representation of the bath. Starting from a given DMFT
Green function, one can calculate the Hybridization function Γ via the inversion of
Eq. (6.1). For the impurity Hamiltonian Eq. (3.61), the hybridization function can
be written as function of the hybridization parameters {Vα} and bath dispersion
{εbathα }, which are undetermined at this stage

Γ(iωn) =

Nb∑
α

V ∗αVα
iωn − εbathα

. (6.2)
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6. Numerical Developments II: Unbiased BSS-QMC as Impurity Solver

Figure 6.1. – Illustration of the complexity of the minimization procedure
for the bath representation: Here for the simple caseNb = 1, Nc = 2. Scaled
squared deviation χ2 (z-axis) Eq. (6.3) as function of the bath parameters
V , ε (x-y-plane).

The parameters are determined by a χ2 fit, i.e., by minimizing

χ2 [{Vαk}, {εα}] =


∑

ij

∑cutoff
n=0

[
GDMFT
ij (iωn)− Gfitij (iωn; {Vαk}, {εα})

]2 (
cellular
DMFT

)
∑

K

∑cutoff
n=0

[
GDMFT
K (iωn)− GfitK (iωn; {Vαk}, {εα})

]2 (
DCA

) .

(6.3)

The number of chosen bath sites Nb has to be large enough to ensure that the
fit fulfills the required precision. For a given number of bath sites, finding a satis-
fying bath representation is a crucial step for the efficiency of the solver. Goal is
to gain a representation with as few sites as possible. If we recall the scaling with
the number of bath orbitals of available Hamiltonian based solvers (Table 3.2.4),
i.e., exponentially for ED and cubically for BSS-QMC, this will have a significant
influence on the amount of computational time needed for a calculation. The fit
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Figure 6.2. – (a) Scheme of the general DMFT self-consistency cycle, in-
cluding the “impurity problem” (dashed box). Established impurity solvers
include (b) the Hirsch-Fye (HF-QMC) algorithm and (c) exact diagonal-
ization (ED). (d) The proposed algorithm approximates the bath Green
function G in terms of the parameters Vi, εi of an auxiliary Hamiltonian
Eq. (3.37) with Nb “bath” sites [like ED (c)]. Corresponding Green func-
tions are computed using BSS-QMC for a grid ∆τmin ≤ ∆τj ≤ ∆τmax of
Trotter discretizations. The subsequent extrapolation of ∆τ → 0 yields
the Green function, free of significant Trotter errors and continuous in τ ,
which is easily Fourier transformed and fed back into the self-consistency
cycle [RAB13].

problem in the framework of single-site DMFT is easily treatable with standard
downhill methods, because only one function Γ(iωn) has to be fitted. However, the
minimization problem is highly non-trivial in the case of cluster methods. For a
cluster with Nc sites, N2

c complex functions have to be fitted simultaneously using
(Nc + 1)Nb parameters. The complexity of the problem is demonstrated in Fig.
6.1; here the functional form of χ2(V1 , ε

bath
1 ) for the simple case of two cluster sites

and one bath site is shown.
Already in the easy two dimensional case, it is clear that simple downhill meth-

ods will fail, due to the divergences in χ2. Therefore, a multi-step minimization
algorithm for the cluster problem was developed. To avoid trapping in local min-
ima of the minimization function, a sophisticated stochastic hybrid algorithm,
based on simulated annealing and parallel tempering (SA&PT minimization), is
used [LPA+09]. The details of the implementation are described in Appendix A.
After identifying the approximate minimum region via SA&PT minimization, the
final parameters are determined by a semi-analytic local post-convergence, using
standard downhill methods, e.g., simplex minimization [PTVF07]. The quality of
the final fit depends on the number of used bath sites. A more detailed study on
the impact of the bath discretization will be presented in Chap. 7.

6.2. Single-Site DMFT

In this section, the details of the integration of the multigrid BSS-QMC approach
into the DMFT self-consistency cycle are explained. Another focal point will be the
benefit of the unbiased solver compared to a finite-∆τ solver, originally proposed
in [KLB+10]. In Fig. 6.2, the integration of different types of impurity solvers is
sketched. The DMFT self-consistency cycle [upper part of Fig. 6.2 (a)] is identical
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6.3. Cluster Extensions

for all approaches, while the impurity problem (dashed box) is replaced by a specific
solver. Direct solvers, like Hirsch-Fye QMC Fig. 6.2 (b), can work directly with the
action representation of the problem. For Hamiltonian based approaches, like ED
[Fig. 6.2 (c)] and BSS-QMC [Fig. 6.2 (d)], the bath has to be discretized (denoted
by yellow boxes).

The multigrid BSS-QMC solver is implemented as follows: for a given hybridiza-
tion within one DMFT iteration, the Hamiltonian Eq. (3.37) is solved for different
values of ∆τ , resulting in Trotter biased Green functions. These Green functions
are extrapolated to ∆τ → 0, resulting in one unbiased, quasi continuous-time Green
function, as described in Sec. 4.1. This Green function can easily be Fourier trans-
formed to the Matsubara axis and fed back into the DMFT self-consistency cycle.
To check the validity of the extrapolation, we solve the impurity problem with ex-
act diagonalization, for a small number of bath sites and fixed bath parameters,
and compare these results with Green functions from the unbiased BSS-QMC. This
comparison is shown in Fig. 6.3. Here single-site DMFT results for the Bethe
lattice are shown. Fig. 6.3 (a) shows Green functions for an interaction strength
in the metallic phase and Fig. 6.3 (b) in the insulating phase. Broken lines show
Trotter biased solutions. Only the extrapolated Green function (red solid line) can
reproduce the correct results obtained with ED (gray dashed line) within the error
of the method. This comparison shows that the unbiased BSS-QMC can be used
in the same manner as ED, but with the possibility to simulate more sites, due to
the superior scaling [N3 vs. exp(N)]. The scaling issue will become particularly
important in the context of cluster extensions, where additionally more interacting
cluster sites can be simulated. We investigate the impact of the bath discretization
on final results by the application of the solver to the Mott transition in single-site
DMFT. This study will be presented in Chap. 7.

6.3. Cluster Extensions

The algorithmic structure of the cluster solver is very similar to the case of single-
site DMFT. However, new challenges arise, due to the treatment of an interacting
cluster instead of a single site. Consequently, not only a single Green function, but
a full Nc ×Nc Green function matrix has to be extrapolated to the limit ∆τ → 0.
This is performed with the methods, presented in section Sec. 4.1, in a stable
manner.

In Sec. 3.2.2 the two versions of cluster extensions were contrasted. Both, the
cellular DMFT and the DCA were implemented and used in this thesis. In the case
of cellular DMFT, the problem is formulated in real space and can be directly solved
with BSS-QMC. Details are provided in Sec. 6.3.1. For the implementation of the
DCA scheme, a representation of the (momentum space) DCA problem in real space
had to be found. This representation has to fulfill the assumptions of DCA, namely
periodic boundary conditions and translationally invariant bath parameters. Then,
the resulting real-space problem is solved by BSS-QMC. The full DCA scheme is
discussed in Sec. 6.3.2.
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6.3.1. Cellular DMFT

In the case of cellular DMFT, the representation of the cluster and the discrete
bath is straightforward. The truncation to the cluster in Eq. (3.48) leaves the in-
tra cluster hopping untouched, so the cluster hopping matrix is the same as in the
original lattice. The bath represents the interaction with the surrounding of the
cluster and is, thus, coupled to the cluster surface only, sketched in Fig. 6.4 (a) for
a one dimensional example. At this point, the translation symmetry of the original
lattice is broken, i.e., the cluster sites become, in general, non-equivalent. For the
final evaluation of physical quantities, one can average the core region of the cluster,
where the weakest surface effects are expected. In order to benchmark the imple-
mentation, the method is applied to the one-dimensional Hubbard model, for which
bare dynamical mean-field calculations are least reliable. The results are summa-
rized in Fig. 6.4 (b); here results for the double occupancy Eq. (4.1) as function
of the temperature are compared for different methods. For one spatial dimension,
the Hubbard model is exactly solvable by Bethe ansatz in the thermodynamic limit,
which serves as reference solution (black solid line). The result can be recaptured
by direct lattice BSS-QMC for the relatively large chain length Nc = 16 (blue
triangles). In contrast, paramagnetic single-site DMFT deviates strongly at low
temperatures (red diamonds). Remarkably, antiferromagnetic (AF) DMFT (green
circles) is closer to the correct results, even if it assumes AF long-range order, which
is physically incorrect1. The better agreement can be explained with the fact that
at low temperatures, short-range AF fluctuations become relevant, not captured by
paramagnetic DMFT. The cellular DMFT includes AF fluctuations on the cluster
and converges very fast with the cluster size. While for two interacting sites (violet
open squares) a slight deviation for the intermediate temperature regimes is found,
the solution obtained with three-site cluster DMFT (blue filled squares) reproduces
the reference result within the error bars of the method.

6.3.2. DCA

In contrast to cellular DMFT, the DCA is formulated in momentum space and
restores the translation symmetry. This symmetry has to be respected by the real-
space formulation needed for BSS-QMC. The DCA self-consistency equations yield
the coarse-grained hybridization function Γ(K, iωn), which has to be fitted with the
finite-bath representation Eq. (3.60) to determine the bath parameters. One can
either fit the bath parameters in momentum space and perform the Fourier trans-
formation Eq. (3.42) for the hybridization matrix to define the real-space problem,
or, as realized in the final version of the developed DCA code, first Fourier trans-
form Γ(K, iωn) to Γij(iωn) and perform the fit in real-space. Both procedures were
tested during the project. The quality of the results turned out to be independent
of the sequence of Fourier transformation and fitting procedure.
A further difference to the cellular DMFT is the restriction of the parameter

space for the fit parameter, due to required translation invariance. In practice, the

1No magnetic long-range order appears in the one-dimensional system and for two-dimensional
systems at T = 0 only, as predicted by the Mermin Wagner theorem [Geb00].
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Figure 6.4. – (a) Illustration of the coupling to a discrete mean-field
bath in cellular DMFT. (b) Benchmark of cellular DMFT implementation,
for the one-dimensional Hubbard model at half-filling. Exact results from
BSS-QMC for a 16-site cluster (blue triangles) and Bethe ansatz in the
thermodynamic limit shown as reference.

fitting procedure becomes more stable, due to the smaller number of degrees of
freedom. To fulfill the symmetry, the interacting real-space cluster is implemented
with periodic boundary conditions and the bath sites have the same geometry as the
interacting cluster. The bath sites are realized as an extra layer (second orbital)
on top of the interacting cluster. More bath sites are added by stacking several
layers on top of each other, i.e., the number of bath sites has to be a multiple of the
number of cluster sites (Nb = N · Nc, N ∈ N+). Further, for the bath sites within
one layer ν the symmetry condition

ενα ≡ εν , V ν
αj ≡ V ν

‖α−j‖ (6.4)

is forced. Here, α denotes bath sites and j denotes cluster sites. Similar to single-
site DMFT the fit quality is better with a larger number of bath layers. This is
illustrated in Fig. 6.5 for the example of a 2 × 2 cluster. Here the target bath
Green function from DCA (red solid lines), obtained with the BSS-QMC solver, is
compared to a discrete representation with one bath layer (blue short-dashed lines)
and two bath layers (green dashed lines). We show the three irreducible cluster
momenta K = (0, 0) (top row), K = (0, π) (middle row) and K = (π, π) (bottom
row). Plots in the left column show the imaginary part of the Green function, plots
in the right column the real part. By adding a second layer of bath sites, more
precision is gained, in particular for the real part of the Green function. The real
part is mainly determined by the dispersion of the bath sites, which is only one
degree of freedom for a single layer, as directly seen from Eq. (6.4).
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Figure 6.5. – Momentum-dependent imaginary part (left column) and
real part (right column) of DCA bath Green functions on a 2 × 2 clus-
ter. Not shown: G(π,0) = G(0,π). Agreement of the bath Green function
obtained via QMC solution and DCA self-consistency (red solid line) and
their representation fitted with a discrete bath for one bath layer (circles,
green dashed line) and two bath layers (triangles, blue dashed line).
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Figure 6.6. – The filling within the DCA convergence process approaches
its target value, realized with controlled adjustment of the chemical poten-
tial µ and the bath dispersion εα. Here for a 2× 2 DCA calculation of the
Kondo lattice model.

A further difference between DCA and cellular DMFT is that the hopping ma-
trix elements on the real-space cluster are not the same as for the original lattice.
The substitution of the original dispersion εk with the coarse grained ε̄K, which
depends on the chosen pattern for the patching of the Brillouin zone, introduces
additional phase factors. The coarse graining leads to a renormalized hopping,
which is determined by the cluster Fourier transform Eq. (3.42) of ε̄K. Finally the
determined real-space problem is solved using BSS-QMC, which gives the impurity
cluster Green function matrix G in real space. This Green function matrix has to
be Fourier transformed to cluster momenta using the cluster Fourier transformation
Eq. (3.43) and the DCA self-consistency cycle can be closed.

Filling

The BSS-QMC algorithm is formulated in the grand canonical ensemble. I.e., the
filling of the system is determined by the chemical potential µ on the cluster sites
and the dispersion ε of the bath sites. E.g., for half filling and one bath layer, one
may restrict the parameter space to

〈n〉 = 1 → µ = 0, ε = 0 . (6.5)

Half filling is guaranteed, but the opportunity to use ε as degree of freedom for
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the fit of the bath Green function is lost. Instead, for two bath layers one can set

〈n〉 = 1 → µ = 0 ε1 = ε, ε2 = −ε . (6.6)

For an arbitrary target filling 〈n〉, the DCA is initialized with a guess for the
chemical potential µ = µstart and µ is adjusted in every iteration step until the
target filling is reached. In the DCA implementation developed in this thesis, the
value of µ for the next iteration step is estimated by a linear fit of the dependence
of the filling on the chemical potential and bath parameters 〈n(µ, εα)〉, observed
in previous iterations. The convergence of this procedure is demonstrated in Fig.
6.6. As example we picked a DCA calculation with a 2 × 2 cluster of the KLM at
T = 0.033 and target filling 〈n〉 = 0.90. The filling converges quickly to the target
value.

Benchmark: Half-Filled Hubbard Model on a Square Lattice

A generic test case for the DCA implementation is the half-filled Hubbard model
on a square lattice. In this case, we can compare to the unbiased numerical results
that were presented in Chap. 5. The bias in the DCA results can be quantified by
comparison to the impact of finite-size effects in BSS-QMC and the approximations
of DΓA . Results are shown for the low temperature T = 0.04 [lower green cross in
Fig. 5.1] at weak coupling U = 2. DCA calculations were performed for 2× 2 and
4×4 clusters. We focus on the self-energy at k = (π, 0), since k = (π/2, π/2) is not
available in 2× 2 DCA. In Fig. 6.7 the imaginary part of the self-energy is shown,
similar to Fig. 5.2. Due to particle-hole symmetry, real parts vanish on the Fermi
edge. Unbiased BSS-QMC (black circles) and DΓA (orange triangles) represent the
reference results. Since the DCA adds nonlocal corrections to DMFT, single-site
DMFT results (gray dots) define a lower boundary for the range of consistent DCA
results in the insulating phase. The DCA results lie in the expected area between
the unbiased results and DMFT data. At low frequencies the results for the small
2× 2 cluster show finite-size effects, which are reduced for the larger 4× 4 cluster.
In the frequency range of 0.63 < iωn < 2.93 the 4×4 results deviate even more from
the reference than the 2× 2 results2. For a proper judgment of the deviation of the
DCA results from the reference, we compare to bare finite-size lattice BSS-QMC
calculations. These data are presented as open circles in Fig. 6.8. The 4× 4 lattice
calculation (green circles) deviate about a factor ten more from the reference results
(black filled circles) than the 4× 4 DCA calculation. Even the 16× 16 results (pink
circles), which need a factor of ∼ 150 more computer time than the 4× 4 DCA for
2The assigned error bars may underestimate the real bias. For the BSS-QMC results, error bars
are estimated by the difference between quadratic and linear FS extrapolation, as discussed
in Sec. 4.2. For DCA the difference between the last self-consistency iterations are used as
measure for the inaccuracy. Influence of the finite bath, biases introduced by the ∆τ → 0
extrapolation, smoothing procedures, and subsequent Fourier transformation are not taken
into account.

62



6.3. Cluster Extensions

-0.3

-0.2

-0.1

 0

 0  1  2  3  4

Im
[Σ

(i
ω

n
)]

ωn 

U = 2   T= 0.04

(π,0)

4x4 DCA

2x2 DCA

DMFT 

DΓA (static λ)

unbiased BSS

Figure 6.7. – Imaginary part of the self-energy: unbiased BSS-QMC and
DΓA, already shown in Fig. 5.2, compared to DCA data for 2×2 and 4×4
clusters.

one iteration3, are further away than the DCA results. The deviations shown in
Fig. 6.7 are much smaller than the influence of systematic bias in the direct lattice
calculations. Thus, we conclude that the great agreement of DCA calculations with
the unbiased results, even for small numbers of cluster sites, proves the stability
and quality of the developed numerical schemes.

3For the estimation of the computational time, consumed by the impurity solver, one has to take
the scaling of cluster and bath sites, i.e., the total number of sites, into account. In the case
presented here, two bath layers in real space were used. I.e., N = Nc + Nb = 16 + 2 · 16 and
cubic scaling with the total number of sites was assumed.
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7. Unbiased Study of the Mott
Transition in Infinite
Dimensions

In this chapter, a detailed study on the impact of systematic errors associated with
the impurity solver on DMFT results is presented. We analyze the influence of the
finite number of bath sites and the Trotter bias on physical quantities. As a classic
example, we investigate the well known Mott metal-insulator transition (MIT) in
DMFT, where reference results are available from established DMFT studies with
Hirsch-Fye QMC as impurity solver [Blü02]. In Sec. 7.1, the impact of Trotter bias
in the DMFT framework is studied, by comparing the developed unbiased multigrid
DMFT impurity solver and a BSS-QMC solver with a fixed Trotter discretization
error as well as results obtained via exact diagonalization (ED). In Sec. 7.2, the
impact of the finite bath representation for the impurity problem is analyzed. The
latter part of the study is not only relevant for the BSS-QMC solver, but also for
all Hamiltonian based solvers, e.g., exact diagonalization. Large parts of this study
were published in [RAB13].

7.1. Impact of the Trotter Bias

For investigating the impact of the Trotter error and its propagation through the
DMFT self-consistency procedure, we observe the MIT in infinite dimensions for the
half-filled Hubbard model on the Bethe lattice for temperatures below the critical
temperature of the first order transition T ≤ T ∗ ≈ 0.055 [Blü02,BG13]. We observe
the transition from the metallic to the insulating phase as a function of the Hubbard
interaction U . The transition can be observed by investigating the interaction
dependence of static observables such as the double occupancy D, related to the
potential energy Epot

D = 〈n̂↓n̂↑〉 =
Epot

U
, (7.1)

and the quasiparticle weight

Z =

[
1− ∂ ReΣ(ω)

∂ω

∣∣∣
ω=0

]−1

≈
[
1 +

ImΣ(iω0)

πT

]−1

. (7.2)
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Figure 7.1. – Double occupancy and quasiparticle weight as functions of
the Hubbard interaction U , obtained via self-consistent DMFT calculations
using various impurity solvers: unbiased multigrid HF-QMC (crosses), BSS-
QMC with fixed Trotter discretization (open symbols), unbiased multigrid
BSS-QMC (circles), and ED (diamonds). Upper lines mark metallic, lower
lines insulating solutions; their overlap in parameter space is the coexistence
region. Due to the propagating Trotter bias, the coexistence region, in the
results obtained with the finite-∆τ solver, is shifted with respect to the
correct solution.
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The latter one is proportional to the inverse of the effective mass m∗

Z−1 ∝ m∗ (7.3)

and tracks the breakdown of the Fermi liquid behavior. Both quantities show a
discontinuity in the interaction at the critical value U = U∗ when the insulating
phase is entered.

The MIT is observed using DMFT with different types of solvers. We compare
the Trotter biased BSS-QMC solver to ED and to the unbiased multigrid BSS-QMC
solver. The results are shown in Fig. 7.1. Here the double occupancy Fig. 7.1 (a)
[Eq. (7.1)] and quasiparticle weight Fig. 7.1 (b) [Eq. (7.2)] as function of the
interaction U at fixed temperature T = 0.04 are shown. Upper curves belong to
solutions in the metallic phase, lower curves to the insulating phase. In vicinity of
the phase transition, a coexistence region can be identified. Within this coexistence
region, the DMFT self-consistency has two meta-stable solutions, i.e., the DMFT
converges to a metallic or an insulating solution, depending on the initial values.
In order to determine the extend of the coexistence region, one starts with a small
(large) U and initializes the next run for the larger (smaller) U with the converged
metallic (insulating) solution. The interaction is increased (decreased) until the
meta-stable solution is lost and the self-consistency converges to the insulating
(metallic) solution, respectively.

Black lines denote reference results, obtained from an unbiased multigrid HF-
QMC impurity solver. ED and BSS-QMC results are obtained using a fixed number
of bath sites Nb = 4. Open symbols show the results from the Trotter biased BSS-
QMC solver for different discretization values ∆τ . The final results are not only
shifted quantitatively with respect to the reference results, but also qualitatively: a
growing and a shift of the coexistence region towards larger values of U is observed.
In contrast, the newly developed unbiased multigrid BSS-QMC solver (red circles)
and exact diagonalization can reproduce the HF-QMC results. Remaining marginal
deviations are related to the finite-bath discretization. This bias will be discussed
in Sec. 7.2 in more detail.

For a more quantitative analysis of the impact of the Trotter discretization, we
show the dependency of D on the squared imaginary-time discretization in Fig. 7.2.
Filled symbols show values obtained via the extrapolation procedure within the
multigrid solver, i.e., for a fixed Hamiltonian. Open symbols show results obtained
after independent convergence of the DMFT self-consistency for different values
of ∆τ . While the dependence within the multigrid procedure is regular, linear,
and stable, results for the finite-∆τ solver show a non-monotonous dependence
in the metallic regime at U = 4.7 (upper green curves) and even instabilities at
U = 5.0 (lower blue curves). For the latter data set, results for larger values of the
discretization (∆τ > 0.5) are not shown, due to the fact that the Trotter biased
results then converge to a metallic solution, instead to the correct insulating one.
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via Trotter biased single-∆τ BSS-QMC. Filled symbols show the corre-
sponding values within the unbiased multigrid BSS-QMC scheme. Exam-
ples for two interactions U = 4.7 (upper green curves) and U = 5.0 (lower
blue curves). Curves are obtained via polynomial fits.

Small symbols and dots mark results for smaller values of ∆τ = {0.1, 0.2}, used
for checking the validity of the ∆τ → 0 extrapolation. Within the multigrid pro-
cedure, the extrapolation is stable and produces the correct result, even for large
∆τmin. Instead, the extrapolation after the DMFT self-consistency (solid lines), can
only be successful, if one includes smaller values of ∆τ (small symbols, dotted thin
lines). Even if for the multigrid procedure a whole set of BSS-QMC simulations has
to be performed in every DMFT iteration, the single-∆τ solver needs at least the
same amount of computer time to reach a comparable precision. This is attributed
to the requirement of a much smaller ∆τ value, which is computationally much
more expensive. A further advantage of the multigrid procedure is that it can be
highly parallelized in a trivial manner: every run for a value of ∆τ is independent
and so the set of runs can be distributed on a high-performance computing cluster.

A further important check for the stability of the multigrid procedure is the sen-
sitivity to the ∆τ grid chosen for the extrapolation. In Fig. 7.3, extrapolated
Green functions for different ∆τ grids are shown. The example shows imaginary-
time Green functions from single-site DMFT calculations in the insulating phase
(U = 4.7, T = 0.04) and for four bath sites. Within the denoted ∆τ range, five
to seven values of ∆τ were used for the extrapolation. The convincing agreement
within the statistical errors of the method demonstrates that the multigrid proce-
dure is stable with respect to the choice of ∆τ grids.
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Optimal Grid Determination

In the last paragraph, we showed that the results of the multigrid procedure do not
depend significantly on the chosen imaginary-time grids. This freedom can be used
for optimizing the ∆τ values with respect to efficiency and stability. In Sec. 3.1 the
linear scaling with the inverse temperature O(β = Λ∆τ) was discussed. However,
after a certain number of time steps a more expensive update (wrapping) has to be
performed in order to avoid instabilities arising from round-off errors in the matrix
operations. As rule of thumb, the full Green function update should be performed
after

Nwrap . ∆τ−1 (7.4)

steps. The BSS-QMC implementation, used in this project, demands the addi-
tional condition that the number of total time slices Λ has to be an integer multiple
of Nwrap. This conditions leads to the specific situation that simulations with larger
∆τ values can need more computational time than simulations with smaller values
of ∆τ , due to the step-like form of Nwrap(∆τ). The developed cluster DMFT code
optimizes the ∆τ grid in order to minimize computer time for a given accuracy and
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stability condition automatically. The expected runtime, which is minimized, can
be calculated via a linear estimator

t[∆τ ] =
β

∆τ︸︷︷︸
=Λ

[
A

(
1− 1

Nwrap(∆τ)

)
+B

(
1

Nwrap(∆τ)

)]
. (7.5)

Where Nwrap(∆τ) is given by Eq. (7.4) and respects the condition

modNwrapΛ = 0 .

The time constants are determined by the time needed for a fast update (A) and a
full update (B). In practice, they depend on the technical details of the supercom-
puter environment and can be determined empirically by simple test runs.

7.2. Impact of the Bath Discretization

In this section, the impact of the bath discretization on DMFT results is discussed.
Due to limitations in the number of bath sites, one has to accept less than perfect
representations of the bath and estimate the resulting inaccuracies. This is even
more severe for methods like exact diagonalization, in which adding further bath
sites enhances the computational costs exponentially O(eNb). We compare the
quality of the representation of the DMFT bath Green function for different sizes of
the bath. In a further analysis, the propagation of the finite-size error through the
self-consistency is analyzed. Analogous to Sec. 7.1, the MIT in infinite dimensions
is considered.
We first analyze the agreement between the continuous and discretized bath on

the level of the bath Green function G(iωn), specifically on a metallic solution
(U = 5.1) of the Hubbard model at half-filling. In order to resolve deviations at
higher Matsubara frequencies, we show in Fig. 7.4 G(iωn) ·ωn and thus compensate
the dominant iω−1

n behavior. The picked data set was generated at the ultra-
low temperature T = 0.01, where the impact of restrictions to a small number
of bath orbitals is expected to be more severe than for higher temperatures. The
more difficult fit problem at low temperatures can be explained with the increasing
importance of low-energy features in the spectrum of the system; i.e., more energy
levels are needed for a correct description.
Fig. 7.4 shows the agreement of the target bath Green function from DMFT

(black solid line) and finite-size bath representations (colored lines), obtained by
fitting of the bath parameters [Eq. (6.3)]. The representation with one bath site
only is far off, even at the most important small Matsubara frequencies. With
taking more bath sites into account, the fit converges monotonously to the target
function. For Nb = 4 the low-frequency range is represented satisfyingly, but the
fitted function shows remaining deviation at higher Matsubara frequencies. The
bath is completely converged for Nb = 6, i.e., no gain in precision can be found for
Nb = 7 on this scale. The required precision has to be decided for each application
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Figure 7.4. – Imaginary part of the bath Green function on Matsubara
axis times frequency. Continuous bath Green function (black solid line)
given from DMFT self-consistency and its representation for different num-
ber of bath sites (colored lines). Not shown Re[G(iωn)] = 0, due to particle
hole symmetry.

and parameter regime; the number of bath sites is usually kept constant through-
out the self-consistency cycle. One could also think of a scheme, where results are
pre-converged with a smaller number of bath sites, and using the resulting bath
Green function as input for later high-precision simulations with a larger number
of bath sites.

In order to investigate the propagation of the bath discretization error through
the DMFT self-consistency cycle, we return to the MIT in the half-filled one-band
Hubbard model within single-site DMFT. In Sec. 7.1, all data shown for Z and D
were calculated with a fixed number of bath sites Nb = 4. We now proceed with the
analysis, using an exact diagonalization solver [GKKR96] for small numbers of bath
sites Nb ≤ 5 and our unbiased BSS-QMC solver for a larger number of bath sites,
which is feasible due to the superior scaling. Again, we use HF-QMC results as ref-
erence. At the lowest temperature T = 0.01, additional data were produced using
the continuous-time hybridization expansion solver [WCdM+06,WM06] (CT-HYB)
as available from the Algorithms and Libraries for Physics Simulations (ALPS)
project [BCE+11].

In Fig. 7.5 results for T = 0.04 are shown, HF-QMC (black points) and ED/BSS-
QMC for Nb = 4 (open circles) data are the same as in already shown in Fig. 7.1.
If one uses less bath sites (Nb = 3), the results deviate strongly from the reference
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Figure 7.5. – DMFT estimates for the double occupancy D and quasi-
particle weight Z as function of the interaction U at T = 0.04, for different
numbers of bath sites: multigrid BSS-QMC (open circles), ED (open tri-
angles and squares). Reference results are given by multigrid HF-QMC
results (points).

solution. The curves converge to the correct results with Nb = 5 (orange triangles)
and no gain in precision is found for Nb = 6 (blue triangles). Fig. 7.6 shows
the same study at the lowered temperature T = 0.02, here Nb = 6 bath sites are
necessary for reproduction of the reference results. In this regime, the multigrid
BSS-QMC solver is already more efficient than corresponding ED implementations.
At the lowest considered temperature T = 0.01, seven bath sites were used for
the final result1. Here small deviations from the HF-QMC results remain near the
transition line. For double checking the results, also CT-HYB data are shown (gray
diamonds), which agree perfectly with the unbiased BSS-QMC results.
This study shows that the number of bath sites has to be increased, when the

temperature is lowered. However, in the presented test cases one additional bath
site had to be added when the temperature was halved, so the total linear-in-β
scaling is not spoiled by the slow required increase of the number of bath sites.

1Here the BSS-QMC is already a factor ten faster than the used ED implementation.
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Figure 7.6. – Same as Fig. 7.5, at the lower temperature T = 0.02.
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8. Momentum Dependence of the
Self-Energy

The key approximations in DMFT is neglecting, or for its cluster extensions coarse-
graining (cf. Sec. 3.2), the momentum dependence of the self-energy. These approx-
imations are correct in the limit of infinite spatial dimensionality only. However,
in this thesis we focus on systems that are mainly two dimensional. An interesting
question, not studied extensively in the literature, is the precise impact of the ne-
glect of the momentum dependence in the self-energy in lower dimensional systems.
The understanding, in which cases and parameter regimes nonlocal features are
more or less important, does not only tell about the reliability of (cluster) DMFT
studies1, but can also help in formulating more efficient simulation schemes. One
ansatz is the DCA+, suggested by Staar et al. [SMS13], which uses an interpolation
of the self-energy between the central points of the DCA patches, instead of the
constant value. However, this requires an appropriate assumption of the functional
form of the self-energy for each considered model. Recently, it was found in the
three-dimensional case that the static and dynamic part of the self-energy show
a different order of nonlocal dependence [STT15], and, thus, can be processed on
different levels.

We investigate the momentum dependence of the self-energy in two-dimensional
systems by comparing direct lattice BSS-QMC data to DCA calculations. Results
are shown for the anisotropic Hubbard model on rectangular lattices (Sec. 8.1) as
well as for the KLM (Sec. 8.2) and for the doped Hubbard model (Sec. 8.3) on the
square lattice.

The results shown in this section are part of a project with Petra Pudleiner,
who performed the BSS-QMC calculation for the anisotropic Hubbard model, and
which is led by Prof. Blümer. In this project, the main focus is set on the evolu-
tion of nonlocal correlations for the anisotropic Hubbard model and direct lattice
calculations. Further goal is finding a suitable parametrization for the self-energy
throughout the full Brillouin zone. With such a parametrization a full calculation
of the self-energy is possible, i.e., continuous in momentum space. This is related to
our previous study on pseudogap physics in the half-filled two-dimensional Hubbard
model [RGAB12], where a continuous representation of the Green function along
high-symmetry lines was found. In the case of the anisotropic Hubbard model, I
restrict myself to the comparison of the BSS-QMC data with DCA (Sec. 8.1). A
full study will be published elsewhere. Further, I will focus on the evolution of the
momentum dependence with doping (Sec. 8.3) and compare to nonlocal correlation
in the KLM (Sec. 8.2).
1The analysis of the momentum dependence of the self-energy can show in detail, where the
neglect of nonlocal correlations misses important features.
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8. Momentum Dependence of the Self-Energy

8.1. Anisotropic Hubbard Model

We investigate the anisotropic Hubbard model Eq. (2.3) on a rectangular lattice,
i.e., with hopping amplitudes in x- and y-direction tx ≤ ty. We introduce the
dimensionless scaling parameter

α =
tx
ty

(8.1)

that interpolates between the isotropic two-dimensional case (α = 1) and the quasi
one-dimensional case (α = 0). The parameter α also affects the effective coordi-
nation number Zeff

2, which changes the non-interacting bandwidth Eq. (3.62). A
meaningful comparison of results for different values of α is only possible by us-
ing adapted energy scales. The relevant energy scale is set by the variance of the
dispersion [GB11,GRP+12,CSGB13]. Thus, for all presented results the hopping
amplitudes are rescaled in order to fix the variance to its the value in the isotropic
case:

〈ε2〉 =
1

π

∫ π

−π

∫ π

−π
dkxdky [−2 tx cos(kx)− 2 ty cos(ky)]

2 (8.2)

=
1

π

∫ π

−π

∫ π

−π
dkxdky

[
4 t2xcos(kx)− 4 ty txcos(ky)cos(kx) + 4 t2y cos(ky)

]

=
4

π

[
t2x

(
1

2
kx +

1

2
cos(kx)sin(kx)

)
+ t2y

(
1

2
ky +

1

2
cos(ky)sin(ky)

)]π
−π

= 2t2x + 2t2y
!

= const. ≡ 4 .

Combining Eq. (8.2) with the definition of α Eq. (8.1), the rescaled hopping
amplitudes are given by

tx = α

√
2

α2 + 1
and ty =

√
2

α2 + 1
. (8.3)

For a deeper understanding of the impact of the DCA coarse graining on the
self-energy, we compare 2 × 2 DCA results to data from direct lattice BSS-QMC
simulations. Due to its finer momentum resolution, BSS-QMC serves as a measure
2The parameter α modulates the effective coordination number between the isotropic two-
dimensional case Z2d = 4 and the quasi one dimensional case Z1d = 2.
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Figure 8.1. – Imaginary part of the self-energy on the Matsubara axis at
k = (π, 0): direct lattice BSS-QMC (dashed lines) compared to 2× 2 DCA
calculations (solid lines) for different values of anisotropy α = tx/ty.

for the reasonability of the DCA approximation. We compare the results for the
imaginary part of the antinodal [k = (π, 0)] self-energy on the Matsubara axis
for different values of α ∈ {0.000, 0.309, 0.588, 0.809, 1.000}. The data are shown
in Fig. 8.1. While the DCA results (solid lines) deviate strongly from the BSS-
QMC data (dashed lines) in the isotropic case (violet lines), even qualitatively, the
curves seem to collapse quickly with the reduction of α. However, the collapse
is not traced back to a better agreement of DCA and direct lattice calculations
with stronger anisotropy. The full picture can only be understood by analyzing the
full momentum dependence throughout the Brillouin zone. One idea for a better
understanding was to use a suitable parametrization of the self-energy. As ansatz,
we use a representation via the non-interacting dispersion [cf., Fig. 8.2 and Eq.
(3.62)], i.e., instead of analyzing the self-energy as two-dimensional function of the
momentum Σ(kx, ky), we consider Σ[ε(kx, ky)]. Results for the imaginary part of
the self-energy at the first Matsubara frequency are shown in Fig. 8.3. It turns out
that the self-energy depends smoothly on the dispersion. Strong deviations are only
found at the Fermi edge (e.g., ε = 0 for α = 1, upper plot). At these points, the
dispersion is identically, but the self-energy is significantly momentum dependent.
This is a characteristic feature of the pseudogap physics3, which we have already
observed in the Green functions along the Fermi edge [RGAB12].

3The term pseudogap physics is related to properties of some cuprates that are d-wave supercon-
ductors. In these materials a momentum-dependent opening of a pseudogap in the spectral
function between k = (π, 0) and k = (π/2, π/2) is observed.
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8. Momentum Dependence of the Self-Energy

(a) (b)

(c) (d)

Figure 8.2. – Non-interacting dispersion of the anisotropic rectangular
lattice for different values of α = tx/ty. Isotropic case (a), intermediate
anisotropies (b) and (c), and quasi one-dimensional model (d). Illustration
created by P. Pudleiner.

We return to the mapping between momenta and dispersion, given by Eq. (3.62)
and visualized in Fig. 8.2. The isotropic case Fig. 8.2 (a) shows perfect nesting at
half-filling and protects the particle-hole symmetry on the Fermi edge (black areas).
This leads, e.g., to a symmetric imaginary time Green function at k = (π, 0). By
adding anisotropy, shown in Fig. 8.2 (b) and (c), the non-interacting Fermi surface is
shifted. For finite-size calculations a smaller number of lattice points are located on
the Fermi surface, which can be a disadvantage in interpreting physical quantities,
e.g., spectral functions. This situation can be improved by adapting the value of
anisotropy α and the ratio of the number of lattice sites on the rectangular lattice
in the way that a maximum number of momentum points are located on the non-
interacting Fermi surface. In the quasi one-dimensional case Fig. 8.2 (d), the Fermi
surface depends on the momentum in x-direction only.
With this picture in mind, one can relate to the results shown in Fig. 8.3. For

all anisotropies, the DCA approximation to the self-energy results in the correct
behavior far away from the Fermi surface (|ε| → 4) and shows the maximum devi-
ation at the Fermi edge (ε = 0). In the isotropic case Fig. 8.3, this agrees with the
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8. Momentum Dependence of the Self-Energy

strong deviation in the violet curves in Fig. 8.1, where εα=1(π, 0) = 0. The better
agreement of DCA and direct lattice calculations for larger α on the first sight is
traced back to the fact that the considered point k = (π, 0) is shifted away from
the Fermi surface. This shift is marked with blue points in Fig. 8.3 (a) - (c). Thus,
the agreement is not globally enhanced.
The used DCA scheme is not able to resolve any momentum dependence in the

quasi one-dimensional case Fig. 8.3 (c). However, this result might be an artifact of
the specific implementation, which is optimized for two-dimensional lattice struc-
tures. For all calculations the same patching of the Brillouin zone was used: patch
centers K = {(0, 0), (0, π), (π, 0), (π, π)} with quadratically shaped areas. A rather
one-dimensional patching scheme, e.g., a stripe pattern, is expected to capture the
momentum resolution more successfully when smaller values of α are approached.

8.2. Kondo Lattice Model

In this section, we will focus on the quality of the DCA approximation for the
Kondo lattice model (KLM). Again, the momentum dependence of the self-energy
is analyzed. This topic was recently studied by Gang Li [Li13] by comparing single-
site DMFT to the dual fermion (DF) extension to DMFT [RKL08], which introduces
the momentum dependence diagrammatically by considering higher order diagrams
of the Green function. Li found that the momentum-dependent dispersion of the DF
self-energy varies around the constant value the DMFT. This result suggests that the
DCA coarse graining, i.e., averaging the self-energy on the patches in momentum
space, will result in values close to the single-site DMFT solution. We address
the question by comparing direct lattice BSS-QMC results with DCA calculations,
analogous to the Hubbard model study (Fig. 8.3). For the KLM we are restricted
to smaller lattices, due to the much larger computational effort associated with the
additional f -band in the model.
Results for the isotropic square lattice at J = 1.4 and moderate temperature

T = 1/5.6 are presented in Fig. 8.4. Open circles show data from 6×6 direct lattice
calculations using BSS-QMC. Open squares denote data obtained with DCA and the
unbiased cluster solver developed in this project. In the self-energy, the momentum
dependence is already weak at the first Matsubara frequency (green open circles).
At the second Matsubara frequency (blue open circles) the self-energy is nearly
momentum independent and collapses for higher frequencies. These results support
the findings from Li, who predicted a weak dependence of the self-energy.

Comparison to the Hubbard Model

The parameters of the Hubbard model [Fig. 8.3 (a)] and KLM (Fig. 8.4) are not
directly connected in the intermediate regime, but we can still compare the results
under the consideration that they describe a similar phase; both parameter sets
{U = 4, T = 1/5.6, µ = 0} and {J = 1.4, T = 1/5.6, µ = 0} describe a paramagnetic
phase above an insulating AF ground state. The quantitative difference in the
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Figure 8.4. – Investigation of nonlocal effects in the two-dimensional
KLM. Imaginary part of the self-energy at the first and second Matsubara
frequency for lattice BSS-QMC (open circles) and 2×2 DCA (open squares).

momentum dependence of the self-energy is significant. As we have seen in the
Hubbard model, DMFT or DCA with a small number of sites, are not able to
describe the momentum dependence sufficiently, especially not in vicinity of the
Fermi edge. Away from the Fermi edge, the DCA results fairly match the BSS-
QMC data4.
But even if the structure in momentum space is flatter and more regular for the

KLM than for the Hubbard model, the DCA still provides not an optimal solution.
One has to note that these findings are valid in the considered paramagnetic

phase only. Exploring further parameter regimes, e.g., the superconducting phase,
could unveil different scenarios. The question, how far the properties of the self-
energy are significantly changed by phase transitions represents an interesting topic
for further projects.

8.3. Hole Doped Hubbard Model

Up to this point, all investigations on the anisotropic Hubbard model in Sec. 8.1
and on the KLM on a square lattice in Sec. 8.2 were performed at half-filling.
In this section the impact of doping on the momentum dependent self-energy is
4The shown finite-size BSS-QMC data have a better momentum resolution than DCA and can
point out where nonlocal features are important. However, they still contain systematic errors,
which can also lead to quantitative differences between the solutions.
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Figure 8.5. – Momentum dependence of the self-energy for various fillings;
(a) as function of the Matsubara frequency at fixed momentum k = (0, π);
(b) as function of the dispersion at the first Matsubara frequency iω0.

studied. Due to the fermionic sign problem in QMC methods, the calculations were
performed at the slightly elevated temperature T = 1/3.6 and for the comparatively
small lattice size 8 × 8. The density n in the system is controlled by the chemical
potential µ [cf. Sec. 6.3.2].
Results were obtained for the values

µ 0.00 0.25 0.50 0.75 1.40
n 1.00 0.97 0.93 0.89 0.76

The considered temperature is higher than the crossover temperature (T ∗ ≈ 0.18
for U = 4) at half-filling and T ∗ is further reduced by lowered density [JMHT01], i.e.,
we will not cross any phase boundary by doping the system for the used parameter
range.
Fig. 8.5 (a) shows the imaginary (left) and real part (right) of the self-energy on

the Matsubara axis at fixed momentum k = (0, π). Again, particle-hole symmetry
assures Re[Σ(iωn)] = 0 at half-filling (red squares). While for weak doping and
half-filling the shape of Im[Σ(iωn → 0)] suggests a slightly insulating behavior, the
system becomes metallic with decreased density. This behavior is expected, as well
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as the overall reduction of the imaginary part of Σ(iωn), and can be explained by
the decreasing correlations, due to the dilution of the system.

In Fig. 8.5 (b) the self-energy at the lowest Matsubara frequency Σ(iω0) is shown
as function of the non-interacting dispersion. With increased doping of the system,
the self-energy becomes flatter in ε and so in momentum space. Also, the momentum
dependence on the Fermi edge is reduced with increased doping: the spread of the
values at ε = 0 is reduced from ∼ 16% at n = 1 and n = 0.97 to 10% at n = 0.89
and collapses to ∼ 1% at n = 0.76. Summarizing the results, one can conclude that
the DMFT approximation (assumption of a momentum independent self-energy)
is worst at half-filling and becomes better for doped systems in the paramagnetic
phase.

8.4. Real-Frequency Results

In the previous sections, we analyzed the momentum dependence of the self-energy
on the Matsubara axis. This is the generic approach for QMC based methods, be-
cause their direct results are Green functions in imaginary time or frequency. To
gain results on the real-time or real-frequency axis, one has to perform analytical
continuation, described in Sec. 3.1.2. The continuation scheme can introduce ad-
ditional errors, which might make an identification of the momentum dependence
more difficult. However, the physically interesting quantities are functions on the
real-frequency axis, e.g., spectral functions. In this section we check the consistency
of the results on the real axis with the findings of the study on the Matsubara axis.
As example, we review the data for the isotropic Hubbard model, discussed in Sec.
8.1. Real-frequency data are obtained by analytic continuation of the self-energy,
described in Sec. 3.1.2 and Appendix B.

In Fig. 8.6 (a) we present results for the self-energy on the real-frequency axis,
obtained by analytical continuation of the data shown as violet lines in Fig. 8.1
[U = 4, T = 1/5.6, α = 1.000,k = (π, 0)]. BSS-QMC (green dashed lines) and
DCA (red solid lines) agree very well in the high-frequency features. As already
suggested by the contrary tendencies on the Matsubara axis for Im[Σ(iω0)] (Fig.
8.1), the finite-size BSS-QMC data show insulating behavior [resulting in a peak at
Σ(ω = 0)], while the DCA results show Fermi liquid behavior5.

Analogous to the procedure in the previous sections, we analyze the momentum-
dependence of the self-energy via the parametrization with the non-interacting dis-
persion. The real-frequency self-energy at ω = 0 is shown in Fig. 8.6 (b). Again,
DCA and BSS-QMC deviate strongly at the Fermi surface (|ε| = 0) and agree for
momentum points far away from the Fermi surface (|ε| → 4). It is worth to under-
line the agreement of the real parts, which is much better than one could reasonably

5In the Fermi-liquid theory, the value of the imaginary part of the self-energy close to the Fermi
surface is connected with the inverse lifetime of the quasi-particles: Im[Σ(ω ≈ 0)] ∝ 1/τ . I.e.,
Im[Σ(ω ≈ 0)] = 0 for a perfect Fermi liquid. By perturbation theory, one can show that the
self-energy evolves quadratically: Im[Σ(ω)] ∝ ω2 for |ω| � 1 [Lut60,Lut61].
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Figure 8.6. – Momentum dependence of the self-energy on the real-
frequency axis in the isotropic Hubbard model in two dimensions; (a)
Self-energy at k = (π, 0), observed with DCA (red solid line) and BSS-
QMC (green dashed line); (b) Self-energy at ω = 0 as function of the
non-interacting dispersion.

expect after the application of the various numerical schemes for obtaining the final
result6.
The real-frequency results confirm the findings from the analysis on imaginary-

frequency data Sec. 8.1, which proofs the reliability of the developed scheme and
gives access to physically more meaningful quantities, e.g., spectral functions.

6Especially, the analytical continuation can introduce uncontrolled features into the imaginary
part of the self-energy, which would be amplified by the application of the Kramers Kronig
relation for the calculation of the real part.
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9. Summary and Outlook

The intention of this thesis was the development of highly efficient and numerically
exact methods for solving quantum Hamiltonians for strongly correlated systems
at low temperatures. The developed algorithms are based on the Blankenbecler-
Scalapino-Sugar quantum Monte Carlo (BSS-QMC) algorithm, used for direct lat-
tice calculations and also for the application within the dynamical mean-field theory
(DMFT), including its cluster extensions. BSS-QMC is very efficient at low tem-
peratures, but suffers from systematic errors, namely Trotter bias and finite-size
errors. We eliminated this Trotter error first in the context of direct lattice calcula-
tions and presented a scheme that yields unbiased Green functions from BSS-QMC
(Chap. 4). This scheme was complemented by finite-size extrapolations on the level
of the self-energy, to finally gain unbiased results, valid in the thermodynamic limit.
In Chap. 5, these algorithms were applied to the two-dimensional Hubbard model
Eq. (2.3). The study was performed in collaboration with the Group of Prof. Held
from Vienna University of Technology, who approached the problem using dynam-
ical vertex approximation (DΓA). Although the unbiased BSS-QMC and the DΓA
are two completely independent methods, both support the same physical picture:
no Mott-transition occurs at any finite temperature and interaction strength in the
model, which is contrary to former studies.

In Chap. 6, we integrated the unbiased BSS-QMC as impurity solver into the
DMFT framework and presented the extension to cluster methods. Beside solutions
for QMC specific issues, we developed algorithms for the efficient treatment of
a finite bath in (cluster) DMFT. These findings are also important for related
methods, e.g, exact diagonalization. The efficient impurity solver was successfully
tested on the one- and two-dimensional Hubbard model and benchmarked with
various complementary methods1.

The quantitative impact of Trotter errors in the DMFT context was studied by
application to the Mott transition in infinite dimensions. While the Trotter bi-
ased impurity solver yields a different critical value for the transition and a shifted
coexistence region (Chap. 7), the multigrid BSS-QMC solver reproduces the refer-
ence results, obtained by exact diagonalization, exactly. For obtaining the entire
picture, we also analyzed the impact of the bath discretization by comparison to
well-established Hirsch-Fye QMC results, which could be reproduced down to the
ultra-low temperature T = 0.01, with a manageable number of bath sites.

Finally, we put a prominent topic, the neglect of nonlocal correlations within
DMFT, on solid grounds (Chap. 8): We compared direct lattice BSS-QMC re-
sults, which have a dense momentum grid, to coarse-grained results obtained using
the dynamical cluster approximation for the half-filled anisotropic Hubbard model,
1Exact diagonalization, Bethe ansatz, direct lattice QMC, Hirsch-Fye QMC, continuous-time
QMC, and DΓA .
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the doped Hubbard model, and for the Kondo lattice model (KLM). The out-
come may provide guidance for further cluster DMFT studies: The importance of
nonlocal correlations strongly depends on the model and parameters. For the half-
filled (anisotropic) Hubbard model in two-dimensions a momentum-independent
self-energy is a poor approximation and will miss important effects in vicinity of
the Fermi edge (Fig. 8.1). In contrast, a weaker momentum dependence and a
better agreement with DCA is found for the KLM (Fig. 8.4) and the strongly
doped Hubbard model (Fig. 8.5), at least in the paramagnetic phase2. We further
showed that the self-energy can, at least away from the Fermi edge, be smoothly
parameterized by the noninteracting dispersion. This representation paves the way
for numerically more efficient schemes, due to a deeper understanding of the con-
sequences of DMFT type approximations.

Outlook

The developed numerical schemes establish a basis for many applications. For
models with a manageable fermionic sign problem, the presented unbiased impurity
solver for DMFT is more efficient at ultra-low temperatures than state-of-the art
algorithms such as continuous-time QMC. With this toolbox, interesting phases of
the Hubbard and Kondo lattice model can be explored. A generic example is the
superconducting phase of the KLM. In a follow-up project, the calculation of the
pairing susceptibility described in Sec. 3.2.5 can be implemented and the full phase
diagram of the doped two-dimensional KLM can be measured. The self-consistency
is already implemented in the DCA code and we showed that the fermionic sign
problem is manageable for the interesting parameter regime.
Our studies on the momentum-dependent self-energy were performed for param-

agnetic phases only. To complete the full story, also magnetically ordered phases,
superconducting phases, and the vicinity of phase transitions have to be studied.
With a deep understanding of the exact momentum-dependence of the self-energy,
more efficient cluster DMFT schemes could be developed, e.g., by an improved
representation and parametrization in momentum space.

2This picture might change dramatically when a magnetic ordered or superconducting phase is
entered.
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Appendix A.

Stochastic Fit Algorithm

When Hamiltonian based impurity solvers are used, the fitting procedure for the
bath parameters becomes a crucial point in the framework of (cluster) DMFT.
Due to underdeterminedness, the problem is ill-posed. In consequence, the energy
landscape of the function χ2, in which the minimum has to be found, is complicated
and can contain divergent regions (cf. Fig. 6.1). Thus, the application of standard
downhill methods to the minimization problem fail. We present an implementation
a stochastic fitting procedure, based on parallel tempering and simulated annealing
(PT&SA), is used [LPA+09]. The algorithm is based on stochastic sampling of
the target parameters (here: hybridization and bath dispersion), looking for the
minimal value of the χ2 [Eq. (6.3)]. Simulated annealing is a concept that is
comparable to Monte Carlo methods used for classical systems. One starts with
a high artificial temperature, e.g., configurations where steps in all directions are
accepted with a high probability. The temperature is reduced successively until the
method is converged.

Simulated annealing
1. choose starting temperature T start and target temperature T target

2. guess starting configuration (fitting parameters {Vαβ})

3. change configuration (vary v ∈ {Vαβ})

4. Metropolis transition
acceptance probability min [1, exp {−∆χ2/T}]

5. Annealing (if an appropriate condition fulfilled)
T new = T target + (T old − T target)C with C < 1

6. return to step 3. until convergence

Here, ∆χ2 denotes the change in the quality of the fit, caused by the variation of v.
In the scheme of parallel tempering, a temperature grid is chosen. The replicas

of the parameter set, simulated with high temperature, move fast through differ-
ent regions in the parameter space, while low-temperature replicas may converge
in a (local) minimum. After a certain number of iteration steps, replicas are inter-
changed with a temperature dependent probability. In terms of physical systems,
the method can sample high and low energy configurations simultaneously.
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Parallel tempering

1. choose artificial temperature grid {Ti}

2. guess starting configuration (fitting parameters {V i
αβ})

3. change configuration for each temperature T ∈ {Ti} (vary v ∈ {V i
αβ})

4. Metropolis transition acceptance probability min [1, exp {−∆χ2/Ti}]

5. Replica transition (swap configurations {V i
αβ}� {V i+1

αβ })
acceptance probability min [1, exp {∆χ2 (1/Ti − 1/Tj)}]

6. return to step 3. until convergence

In the implemented PT&SA hybrid approach, these two methods are combined.
The chosen temperature grid is annealed after convergence of the parallel temper-
ing procedure. This combined method has many free parameters, e.g., the choice
of the temperature grid and annealing factors. The full algorithm is sketched in
Fig. A.1. Within the (cluster) DMFT self-consistency cycle, the algorithm works
automatically: The free parameters are adjusted in the way that the transition and
acceptance rates reach the recommended values in [LPA+09]. The improvement of
the fit, compared to downhill minimization, is demonstrated in Fig. A.2 for a cellu-
lar DMFT calculation for an Nc = 4 site Hubbard chain and Nb = 4 bath sites. The
order of the plots corresponds to the entries of the Green function matrix: beginning
from the left plot, the upper panel shows G00, G10, G20, G30 etc. Specifically, the
imaginary parts are shown in the upper right triangle, including the diagonal, while
the real parts are shown in the lower left triangle. The missing information follows
from symmetries Gij = Gji and Re[Gii] = 0. The bath Green function (red solid
line) is fitted with semi-analytic downhill methods (blue short-dashed line) and the
stochastic PT& SA approach (green dashed line). The quantitative improvement
is seen in all elements of the Green function.
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Figure A.1. – Illustration of the hybrid parallel tempering and simulated
annealing scheme.
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Figure A.2. – Improving of the global fit of the Green functions matrix
from CDMFT (red solid line), by using the PT&SA (green dashed line),
compared to semi-analytic downhill methods (blue short-dashed line).
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Appendix B.

Self-Energy on the Real Axis
In this appendix, we explain the algorithmic details of the calculation of self-energies
on the real axis.

In Sec. 4.2, a method for obtaining unbiased self-energies from BSS-QMC cal-
culations was presented. However, the final unbiased self-energy is a function of
Matsubara frequencies. To gain results for real frequencies, one has to perform an-
alytical continuation. By inserting the spectral representation of the Green function
Eq. (3.21) into the Dyson equation Eq. (3.33), one finds the representation of the
self-energy [VZN04]:

Σ(k, iωn) = Σ(0)(k) +

∫ ∞
−∞

dω′
AΣ(k, ω′)

iωn − ω′
, (B.1)

where Σ(0) is the (real) frequency-independent part and AΣ = −Im[Σ]/π denotes
the spectral function of the self-energy. For technical reasons, the specific im-
plementation of the Maximum Entropy Method (MEM) [cf. Sec. 3.1.2] used for
analytical continuation works for imaginary time Green functions only. To use the
same program for the self-energy as for the Green function, we have to transform
the self-energy in the way that it has the same analytical properties as the Green
function. Here, two major issues arise: First, the self-energy on the Matsubara axis
Eq. (B.1) cannot be Fourier transformed directly to the imaginary-time axis, due
to the constant contribution Σ(k), which has to be subtracted. Second, the spectral
function of the self-energy AΣ is not normalized, which violates the assumption that
the input function for the MEM yields normalized spectra. This can be corrected
on the level of of the Matsubara axis by analysis of the behavior of the self-energy
at high frequencies. We expand the Eq. (B.1):

[Σ(k, iωn)]n→∞ = Σ(0)(k) +

[∫ ∞
−∞

dω′
1

iωn

AΣ(k, ω′)

1− ω′/iωn

]
n→∞

(B.2)

= Σ(0)(k) +
1

iωn

∫ ∞
−∞

dω′
∞∑
k=0

AΣ(k, ω′)

(
ω′

iωn

)k
= Σ(0)(k) +

∞∑
k=0

(
1

iωn

)k+1 ∫ ∞
−∞

dω′AΣ(k, ω′) (ω′)
k︸ ︷︷ ︸

k-th moment of AΣ(k,ω′)
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In contrast to the Green function, the real part of the self-energy is constant c = Σ(0)

in the high frequency range, which leads to a divergence in the Fourier transforma-
tion iωn → τ . This constant has to be subtracted from the self-energy for the proper
definition of the transformation. The shift in Re[Σ(iωn)] corresponds to a different
choice of the zero-energy level. The absence of normalization corresponds to a fac-
tor b in the high-frequency behavior in Im[Σ(iωn)] [contribution of the k = 0 term
in Eq. (B.2)]. For the application of the MEM tool, the input function must have
the same analytical properties. To assure these properties, the following algorithm
is used (k index suppressed):

1. determine constants c and b by fitting the tail of the self-energy Σ(iωn) to

Σ(iωn)
n→∞−→ c+

b

iωn

2. calculate rescaled self-energy

Σ̄(iωn) =
1

b
(Σ(iωn)− c)

3. transform to imaginary time

Σ̄(iωn)
FT−→ Σ̄(τ)

4. apply MEM for analytical continuation

Σ̄(τ)
MEM−→ AΣ̄(ω) = − 1

π
Im
[
Σ̄(ω)

]
5. rescale imaginary part of the self-energy

Im [Σ(ω)] = b Im
[
Σ̄(ω)

]
6. obtain real part by Kramers Kronig relation

Im [Σ(ω)]
KK−→ Re [Σ(ω)] .

In the last step one uses the Kramers Kronig relation to obtain the real part of the
self-energy [Kro26,Kra27]

Re [Σ(ω)] = − 1

π
P

∫ ∞
−∞

dω′
Im [Σ(ω′)]

ω − ω′ , (B.3)

where P denotes the calculation of the principal value. The fitting procedure for
the determination of b and c is shown in Fig. B.1, for the isotropic two-dimensional
Hubbard model on a 8 × 20 lattice at U = 4 and T = 1/5.6. The corresponding
self-energy on the real-frequency axis is plotted in Fig. B.2.
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Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model
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We compute unbiased spectral functions of the two-dimensional Hubbard model by extrapolating Green
functions, obtained from determinantal quantum Monte Carlo simulations, to the thermodynamic and continuous
time limits. Our results clearly resolve the pseudogap at weak to intermediate coupling, originating from
a momentum selective opening of the charge gap. A characteristic pseudogap temperature T ∗, determined
consistently from the spectra and from the momentum dependence of the imaginary-time Green functions,
is found to match the dynamical mean-field critical temperature, below which antiferromagnetic fluctuations
become dominant. Our results identify a regime where pseudogap physics is within reach of experiments with
cold fermions on optical lattices.

DOI: 10.1103/PhysRevB.86.155109 PACS number(s): 71.10.Fd, 71.27.+a, 71.30.+h, 74.72.−h

I. INTRODUCTION

A peculiar feature of (underdoped) high-Tc superconduc-
tors is the coupling of antiferromagnetic fluctuations to charge
degrees of freedom, which leads to a strong momentum
dependence of the spectral functions. In particular, it induces
pseudogaps in the normal state, i.e., a suppression of the
density of states at the Fermi energy, which can be probed using
(angular resolved) photoemission, inverse photoemission, and
related techniques. The pseudogap shares the d-wave symme-
try with the order parameter of the superconducting phases
occurring at low temperatures and near optimal doping.1–3

Pseudogap physics can also be expected in the undoped
Hubbard model. In the absence of electronic correlations, the
tight binding model is characterized by a coherence tempera-
ture Tcoh, set by the bandwidth W . For weak Hubbard interac-
tion U � W , antiferromagnetic spin fluctuations, with energy
scale Tspin, will develop below the coherence temperature.
Hence, the temperature window TN < T < Tspin < Tcoh is
characterized by a metallic state coupled to antiferromagnetic
fluctuations, which sets the stage for pseudogap physics. Here
TN is the Néel temperature, at or below which long range
order generates a full gap in the presence of perfect nesting (in
dimensions d � 2, with TN = 0 in d = 2).

Theorists have tried to verify this scenario on the basis
of numerical simulations and to compute reliable spectra
for decades. Direct simulations can only be performed for
clusters of finite extent, usually employing periodic bound-
ary conditions. Early determinantal quantum Monte Carlo4

(DQMC) studies at moderately weak coupling (U/t = 4)
led to spectra with significant low-temperature pseudogap
features only for small cluster sizes; thus, pseudogaps in the
undoped 2d Hubbard model were regarded as pure finite-size
(FS) artifacts.5,6 Later studies at similar coupling strengths7–10

found pseudogaps also at large cluster sizes, but did not allow
for quantitative predictions in the thermodynamic limit. A
recent study using the dynamical vertex approximation (D�A)
observed reentrant behavior incompatible with the earlier
results.11

A central limitation of all previous numerical pseudogap
studies is that results for different cluster sizes (e.g., in DQMC
simulations) were compared only at fixed temperatures and at

the level of spectral functions. With increasing cluster size,
these show diverse effects: shifts of spectral peaks, transfer
of spectral weight, and the opening or closing of gaps. A
direct pointwise extrapolation of these positive semidefinite
and normalized functions is clearly impossible. In fact, we
are not aware of any published attempts of deriving spectral
properties in the thermodynamic limit from DQMC data in
any context.

In this paper, we present (i) the local spectral function,
(ii) momentum-resolved spectral functions at high-symmetry
points, and (iii) momentum-resolved spectral functions along
high-symmetry lines of the Brillouin zone in the thermody-
namic limit. All results are based on FS extrapolations of
imaginary-time Green functions, obtained from DQMC, with
subsequent analytic continuation to the real axis using the
maximum entropy method (MEM)12 and, in case (iii), a Fourier
fit of the momentum dependence. The final results are free of
significant systematic errors and represent the thermodynamic
and continuous time limits in an unbiased way.

Thereby, we can not only unambiguously confirm the
pseudogap scenario and study the nodal-antinodal dichotomy
in unprecedented detail, but also explore the temperature
dependence of the pseudogap opening and identify a charac-
teristic temperature T ∗. At weak to intermediate couplings, T ∗

tracks the onset of short-ranged magnetic fluctuations, and is
equally shown to compare remarkably well with the dynamical
mean-field critical temperature for antiferromagnetic long-
range order.

In Sec. II, we introduce the model, set up our notation,
characterize the established methods (DQMC, MEM) under-
lying our approach, and specify our implementations. The new
methods for eliminating systematic biases from Green function
and spectra are, then, presented in Sec. III, first for the DQMC
Trotter error, then for finite-size effects. Our main results
are discussed in Sec. IV, starting with pseudogap features in
the spectral functions for the “nodal” and “antinodal”13 high-
symmetry k points on the Fermi surface and their evolution
as a function of temperature. We then show, with continuous
momentum resolution, how the pseudogap evolves throughout
the Brillouin zone (BZ) and discuss non-Fermi liquid physics
that is not accessible by conventional methods. Finally, we
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determine the characteristic pseudogap temperature T ∗ for
U � W and relate it to spin correlation functions and other
characteristic temperature scales of the model.

II. MODEL AND CONVENTIONAL METHODS

A. Hubbard model

Our starting point is the single-band Hubbard Hamiltonian
with nearest-neighbor hopping t on a square lattice (with unit
lattice spacing a ≡ 1):

Ĥ = Ĥ0 + U
∑

i

n̂i↑ n̂i↓ (1)

Ĥ0 = −t
∑
〈ij〉,σ

ĉ
†
iσ ĉjσ =

∑
k,σ

εk n̂kσ (2)

εk = −2t[cos(kx) + cos(ky)]. (3)

Here, ĉiσ (ĉ†iσ ) are annihilation (creation) operators for a
fermion with spin σ ∈ {↑ , ↓} at site i; n̂iσ = ĉ

†
iσ ĉiσ . In the

following, the energy scale will be set by t ≡ 1.
At half filling n ≡ 〈n̂i↑ + n̂i↓〉 = 1 and in the noninteract-

ing limit U = 0, the occupied momentum states form a square
(dark shaded) within the square Brillouin zone illustrated in
Fig. 1(a) (in the thermodynamic limit), which implies a perfect
nesting instability: The Fermi surface (gray line) transforms
into itself when shifted by the antiferromagnetic wave vector
(π,π ). As a consequence, any finite interaction U > 0 drives
this model to long-range antiferromagnetic order (only) in the
ground state.

While a conventional notation is well established for the
center � and the corner M of the BZ of the square lattice as
well as for the antinodal X point, this seems not to be the case
for the nodal point; in Fig. 1 and in the following, we denote
this midpoint of �M as M′.

B. Determinantal quantum Monte Carlo algorithm

The Hubbard model, Eq. (1), is solved in this work
for clusters with a finite number N of sites [implying a

Γ   = (0,0)

X  = (π ,0)

M’ = (π /2,π /2)

M

M′
X

Γ

M  = (π,π)

M

X

Γ

M

M′

X

Γ

8 x 8 

10 x 10 

12 x 12 

(a) (b)

FIG. 1. (Color online) Brillouin zone (BZ) of the square lattice:
(a) full BZ with Fermi surface (gray line) and occupied momenta
in thermodynamic limit (dark shaded) at U = 0; letters denote high-
symmetry points; color lines and arrows indicate the path used in
Fig. 9. (b) Irreducible wedge of BZ with momenta occurring in finite-
size clusters of linear dimension L = 8,10,12 with periodic boundary
conditions.

discrete momentum grid, see Fig. 1(b)] at finite temperatures
T using the DQMC algorithm developed by Blankenbecler,
Scalapino, and Sugar,4 with modifications by Hirsch.14 It
is based on (i) a uniform discretization of the imaginary-
time interval 0 � τ � β [with β = 1/(kBT )], occurring in
the path integral, into � time slices of width �τ = β/�,
(ii) a Trotter decoupling of kinetic and interaction terms, and
(iii) a Hubbard-Stratonovich transformation which replaces
the electron-electron interaction at each time slice and site
by the coupling of the electrons to a binary auxiliary field.
Expectation values are obtained by Monte Carlo importance
sampling of field configurations, with weights given by a
product of two determinants for the two spin components.
In the particle-hole symmetric case considered in this study,
this product is always positive, i.e., the sign problem is absent.
The numerical effort scales as βN3. A detailed review of the
algorithm used can be found in Ref. 15.

In this work, we obtained imaginary-time Green functions
and spin correlation functions between each pair of sites by
applying the DQMC method to square lattice clusters L × L

of the linear size L = 8,10,12,14,16 with periodic boundary
conditions, using a set of Trotter discretizations with 0.1 �
�τ � 0.42 and typically 50 bins with 5000 sweeps over the
auxiliary field each. For the largest systems, individual runs
took about a month of computer time; up to five such runs
were averaged over in order to reduce error bars. This resulted
in typical statistical errors in the (finite-size) Green functions
of O(10−4). Note that the DQMC scaling with L6 makes it
difficult to access much larger system sizes directly: L = 20
(L = 32) would increase the effort by a factor of about 4 (64)
compared to L = 16. Local properties were averaged over all
sites, momentum (k) dependent properties were obtained by
Fourier transforms of the real-space measurements.

C. Maximum entropy method

Since DQMC calculations provide Green functions G

(and correlation functions) only at imaginary times, their
interpretation as dynamical information requires an analytic
continuation to the real axis. Specifically, one has to invert
relations of the form

G(τ ) = −
∫ ∞

−∞
dω A(ω)

e−τω

1 + e−βω
,

where A(ω) = −Im G(ω)/π is the corresponding spectral
function. This is an ill-posed problem, as the exponential
kernel suppresses the impact of features in A(ω) at large |ω| on
G(τ ); in the DQMC context, further complications arise from
the fact that G is only measured on the discrete imaginary-time
grid {τl = l�τ }�−1

l=0 . The MEM finds the most probable spec-
trum, given the data Ḡl ± �Gl , by balancing the misfit of a
given candidate spectrum (measured by the corresponding χ2)
with an entropy constraint which favors smooth spectra.12,16

In our implementation, the resulting minimization problem is
solved deterministically using a Newton scheme in the singular
space of the kernel. Its application both to DQMC raw data for
local and k dependent Green functions and to Green functions
obtained from Trotter and/or FS extrapolations always resulted
in reliable and consistent maximum entropy spectra.
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III. EXTRACTION OF UNBIASED SPECTRA IN THE
THERMODYNAMIC LIMIT

What sets our main results, to be presented in Sec. IV,
apart from earlier work, is their direct relevance in the
thermodynamic limit, i.e., the absence of significant bias.
We now specify our methodology for eliminating Trotter
and finite-size errors from Green functions and establish its
accuracy and reliability on the level of Green functions and
spectra.

A. Trotter errors and extrapolation �τ → 0

As discussed in subsection II B, the DQMC method
decouples electronic interactions (and evaluates, e.g., Green
functions) at the cost of introducing an artificial imaginary-
time discretization �τ , which implies an unphysical bias in
all DQMC estimates of observables. In the absence of phase
transitions, DQMC raw results are expected (and observed) to
depend smoothly on �τ , in the form of a power series; for
some static observables, such as the total energy, it is easy to
prove17 polynomial dependence on �τ 2.

The effects of the Trotter discretization on the imaginary-
time Green function G(τ ) are illustrated in Fig. 2(a): (i) each
of the raw data sets (symbols) lives on a different τ grid;
(ii) at fixed values of τ , the data (or a linear interpolation—
dashed/dotted lines) is shifted to smaller absolute values at
larger �τ . Obviously, unbiased results (for a fixed cluster size
L in real space) can only be expected after an extrapolation
of �τ → 0. On the other hand, such an extrapolation is not
possible locally, i.e., at fixed τ , but requires a global approach
that can use input from DQMC raw data at all discretizations
�τ for each imaginary time τ of interest.

The black solid lines in Fig. 2(a) represent the result of a
multigrid procedure, originally developed in the context of the
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FIG. 2. (Color online) Impact of Trotter discretization and ex-
trapolation of �τ → 0: (a) for local imaginary-time Green functions
G(τ ) at U = 4, T = 0.20, L = 8 in the range 0 � τ � β/2 = 2.5
(inset: magnified view for τ � 1.7); (b) corresponding local spectral
functions A(ω). (c) for the difference between nodal and antinodal
Green functions (cf. subsection IV C) versus temperature.

Hirsch-Fye quantum Monte Carlo method for the Anderson
impurity model.18 The multigrid method is based on the fact
that “reference” Green functions Gref(τ ) with sufficiently
accurate asymptotics at τ → 0 (and τ → β), in particular
for the curvature, can easily be derived from weak-coupling
expansions (or, alternatively, from the “best” QMC data via
MEM); consequently, the difference between the measured
Green functions G�τ (τi) and the reference Gref(τi) can be
adequately represented by a natural cubic spline for each value
of �τ ; all of these splines can, then, be evaluated on a common
(fine) grid. For this transformed data, we find a nearly linear
dependence on �τ 2 (plus a small curvature), so that pointwise
extrapolations �τ → 0 are reliable and accurate. At the level
of G, the shift of the unbiased result [black solid line in
Fig. 2(a)] of about 10−3 compared to the best raw data [at
�τ = 0.1, squares and dash-dotted line in Fig. 2(a)] is still
significant.

This is no longer true on the level of spectra, shown in
Fig. 2(b), due to the intrinsic complications of MEM: The
results for �τ = 0.1 agree within accuracy with the unbiased
spectrum. Thus, we may conclude that �τ = 0.1 is “good
enough” for spectral data (at U = 4) and that an elimination of
the Trotter error is not necessary for reducing unphysical bias
below significance. At the same time, the smooth consistent
evolution of the spectra with �τ confirms our MEM procedure
both for the DQMC raw data and for extrapolated Green
functions.

Even smaller Trotter errors than observed in Fig. 2(a)
can be expected for differences of Green functions, due
to error cancellation. Indeed, the scalar pseudogap measure
|GM′ − GX|, to be introduced in subsection IV C, is impacted
significantly by Trotter errors only for large discretizations; the
bias become negligible for �τ � 0.1, as shown in Fig. 2(c).
Therefore an explicit elimination of this error is, again, not
necessary.

B. Finite-size extrapolations of local spectra and on
high-symmetry k points in the BZ

A FS extrapolation of local properties or k resolved prop-
erties at high-symmetry points is relatively straightforward:
One accumulates raw data at various values of the linear
extent L and then extrapolates using polynomial least-square
fits in 1/L2. In the case of imaginary-time Green functions,
independent extrapolations have to be performed for each
value of τ (on the grid with spacing �τ in the case of DQMC
raw data or the grid chosen in the extrapolation �τ → 0
discussed in the previous section). As shown in Fig. 3 for
U = 4, T = 0.2, the Green function depends on system size
quite significantly at generic imaginary times [except for the
limits τ → 0 or, equivalently, τ → β (not shown)] both at
the antinodal (a) and nodal (b) momentum points. At the
same time, the dependence is quite regular so that least-square
extrapolations (lines) can be restricted to low orders.

Obviously, this “local” procedure can only include lattice
sizes for which the k point under consideration exists [cf.
Fig. 1(b)]; for the antinodal point, this requirement is fulfilled
for all even values of L, while the nodal M′ point is only present
if L is a multiple of 4 (which restricts the set to L = 8,12,16
in our study). Still, as seen in Fig. 3(b), the extrapolation
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FIG. 3. (Color online) Imaginary-time Green functions (for se-
lected values of τ ) versus squared inverse linear dimension (empty
symbols) and least-squares extrapolation L → ∞ (lines and large
full symbols) at high-symmetry momentum points: (a) at antinodal
X point, (b) at nodal M′ point (small symbols for L = 10,14: from
Fourier fit as shown in Fig. 5).

is reliable even with only three data points (per fit), as the
dependence is almost perfectly linear.19 At the same time,
the FS extrapolation is particularly important at the nodal M′
point, as FS effects are much stronger than in the antinodal
case [shown in Fig. 3(a)].

Note that 4 × 4 clusters (with periodic boundary condi-
tions) have a special symmetry: They have the same topology
as a 2 × 2 × 2 × 2 hypercube with open boundary conditions;
as a consequence, the next-nearest neighbors along one of the
axes and the ones along the diagonal become equivalent, which
implies that the X and M′ points are identical in momentum
space at L = 4. In order to avoid the associated extra bias we
exclude this system size and consider only lattices with L � 8
in this study.

The full resulting Green functions in the thermodynamic
limit are shown as solid lines in Fig. 4 for the antinodal (a) and
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FIG. 4. (Color online) Upper row: imaginary-time DQMC Green
functions (U = 4, T = 0.2, �τ = 0.1) at antinodal (a) and nodal (b)
points, respectively, for finite-size clusters (open symbols and broken
lines) plus extrapolated (cf. Fig. 3) results in thermodynamic limit
(filled circles and solid lines). Lower row: corresponding spectral
functions.

nodal (b) k points, respectively, together with their finite-size
equivalents (dashed and dotted lines).

We see, again, that FS effects are much more prominent at
M′ [note the different scales in the insets of Fig. 4(a) and 4(b)].
The effect is even much stronger on the level of the correspond-
ing spectra, shown in Fig. 4(c) and 4(d), respectively: In an
8 × 8 system (dashed-dotted line), nodal and antinodal spectra
are qualitatively very similar, with a clear pseudogap feature,
and differ mainly in peak height (at |ω| ≈ 0.7); at k = X,
the spectrum remains nearly unchanged at larger system sizes
and in the thermodynamic limit. At k = M′, in contrast, the
pseudogap dip shrinks significantly for larger systems and is
completely lost in the thermodynamic limit, where a quasi-
particle shape appears. This shows that essential pseudogap
physics, with a nodal-antinodal dichotomy, is really a property
of the thermodynamic limit and that the bias inherent in
finite-size systems dangerously distorts the physical picture.

C. FS extrapolations of spectra along high-symmetry
momenta in the BZ

The elimination of FS errors at generic momenta requires
“global” extrapolations that involve some kind of functional
fitting procedures in momentum space. For momenta along
high-symmetry lines, these fits have the form of Fourier series
which may be adapted in order to take all symmetries into
account. In the following, we will illustrate the algorithm for
the most important path, the irreducible portion XM′ of the
noninteracting Fermi surface. This path can be parametrized
as

kx = (2 − κ) π/2; ky = κ π/2; κ ∈ [0,1] ;

then κ = 0 corresponds to X ≡ (π,0) while κ = 1 corresponds
to M′ ≡ (π/2,π/2). At particle-hole symmetry, all functions
f have to be symmetric with respect to both end points, which
implies that they can be represented in the form

f (κ) = a0 +
∞∑

n=1

an sin2(n κ π/2)

with coefficients an. We have chosen to fit the difference
of the Green function for each k (along the line) with
respect to the antinodal Green function (corresponding to
κ = 0); this implies that the zeroth-order coefficient vanishes
exactly. The symbols in Fig. 5(a) represent DQMC data for
the difference Green functions at τ = β/2 = 2.5; evidently
their interpolation using the above Fourier series up to third
order (dashed/dotted lines) works quite well. Furthermore,
the associated Fourier coefficients depend very regularly (i.e.,
almost perfectly linearly) on 1/L2, as seen in Fig. 5(b), and
decay exponentially as a function of order. Consequently, an
extrapolation to the thermodynamic limit is possible on the
level of the coefficients (using a least-squares fit) with high
precision; the extrapolated coefficients yield a reliable estimate
Gk(τ = 2.5) for all k along the path [solid line in Fig. 5(a)].
This procedure has to be performed independently for each
value of τ ; spectra can then be obtained using MEM on an
arbitrarily dense k grid. Similar procedures were employed
separately for each high-symmetry line indicated in Fig. 1(a).
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FIG. 5. (Color online) Example of finite-size extrapolation of
imaginary-time Green functions along high-symmetry lines in the
BZ, here for the path X → M′ [cf. Fig. 1(a)] and τ = β/2: (a)
difference Green functions with respect to GX (symbols), fitted with
a Fourier series (broken lines) and final result of the extrapolation to
the thermodynamic limit (black solid line), (b) extrapolation of the
corresponding Fourier coefficients.

IV. RESULTS

A. Pseudogap signatures at nodal and antinodal k points

Let us, first, turn to the antinodal and nodal spectra shown
in Fig. 6(a) and 6(b), respectively. At the elevated temperature
T = 0.50 (dotted lines) the spectra have quasiparticle (QP)
shape at all system sizes and for both momentum points. FS
effects are negligible: Even the spectra of the smallest systems
considered (8 × 8, left column) do not deviate visibly from
those in the thermodynamic limit (right column); also the
momentum dependence along the Fermi surface is minimal
at T = 0.50, with about 20% larger peak height at the nodal
M′ point.

In the 8 × 8 case (left column), the largest system size fully
considered in previous studies, a pseudogap dip appears almost
simultaneously at T = 0.28 and T = 0.24 (dashed lines) at the
X and M′ points, respectively, and quickly deepens to an almost
complete gap at T = 0.18 (dashed-dotted line). Given only this
data, one would conclude that any momentum dependences
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FIG. 6. (Color online) Evolution of the DQMC spectral functions
with temperature at U = 4 for finite clusters with 8 � L � 16 and in
the thermodynamic limit: (a) at the antinodal point [k = X ≡ (π,0)],
(b) at the nodal point [k = M′ ≡ (π/2,π/2)].

beyond the free dispersion are inessential, i.e., that the physics
might be in reach of theories with a momentum-independent
self-energy [in particular, the dynamical mean-field theory
(DMFT)]. However, this picture is distorted by finite-size
effects and far from the truth: In the thermodynamic limit
(right column in Fig. 6), the antinodal spectra have QP shape
only for T � 0.28; at T = 0.24, a slight dip emerges at ω = 0
which develops to a significant PG at T = 0.20 and an almost
complete gap at T = 0.18. 20 In contrast, the nodal spectrum
retains QP form down to T = 0.20 (while even the 16 × 16
system shows a PG dip at this temperature), before a PG
emerges at T = 0.18. Thus, the FS extrapolation detailed
above is really essential for fully resolving the nodal-antinodal
dichotomy, which is at the heart of PG physics at finite
temperatures. Only in the limit T → 0, i.e., in the presence of
long-range order, one expects a DMFT-like picture to become
valid (again, as for high T ) with fully gapped spectra all along
the Fermi surface.

This implies that finite-size effects should mainly have two
consequences on the level of spectra: (i) shift characteristic
PG temperatures upwards, (ii) dilute the nodal-antinodal
dichotomy in the vicinity of these characteristic temperatures.

Characteristic PG temperature T ∗: As the opening of the
PG is not a thermodynamic phase transition, it lacks a unique
critical temperature. It is still useful (and common)1–3,21 to
define a characteristic PG temperature T ∗, for comparison
with other temperature or energy scales of the system. An
obvious choice of the required scalar PG measure is a dip in
the spectral function. We specify this “pseudogap strength”
by the reduction of spectral weight at ω = 0, compared to the
maximum:

rk ≡ 1 − Ak(ω = 0)/ max
ω

Ak(ω) ,

as shown for the (anti)nodal points in Fig. 7. This repre-
sentation reveals that the onset of the PG is slow only at
k = X: As soon as rX ≈ 0.5, rM′ jumps to the full value within
a narrow temperature range �T ≈ 0.03. The results in the
thermodynamic limit (filled circles) can be fitted with a Fermi
function form (solid lines); using their inflection points yields
T ∗

X ≈ 0.20, T ∗
M′ ≈ 0.18. Note that, again, the FS effects are

much stronger at k = M′ than at k = X.
Comparison with the literature: In a pioneering study,

Huscroft et al.10 had obtained first bounds on the FS errors in
DQMC spectra by complementing DQMC results for N � 64
sites with those of the dynamical cluster approximation (DCA)
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FIG. 7. (Color online) Scalar measure of pseudogap strength (see
text) versus temperature: (a) at antinodal, (b) at nodal point. The
nodal-antinodal dichotomy is fully apparent only in the thermody-
namic limit (solid lines).
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FIG. 8. (Color online) Spectral functions of the half-filled Hub-
bard model at the antinodal point [k = X ≡ (π,0)] and for weak
coupling U = 5.2: (a) Unbiased spectrum at T = 0.20 (solid line),
in comparison with earlier DCA and finite-size DQMC results.10 (b)
DQMC spectra for 12 × 12 lattice.

employing N k patches in the self-energy. The resulting
antinodal spectral functions for U = 5.2 are shown as dashed
and dotted lines in Fig. 8(a), respectively. The shaded region
denotes the bounds in which one would expect the true
spectrum, according to the opposite FS tendencies (with
DQMC over- and DCA underestimating gaps at small cluster
sizes) of both methods. Note that the remaining uncertainty
is still significant and that the bounds are not rigorous, due to
numerical noise and the difficulties of the MEM.

Our unbiased estimate of AX(ω), shown as solid line in
Fig. 8(a), reduces these uncertainties drastically: We find that
the spectral weight at low frequencies (|ω| � 0.3) is much
smaller than predicted by DCA, but still significant (i.e., larger
than the raw DQMC prediction). The true peak height at
|ω| ≈ 1.1 is close to the average of the DCA and DQMC
predictions. At large frequencies |ω| � 1.5, we find excellent
agreement with the earlier DQMC estimates10 which shows
that the DQMC FS errors are small in this region (cf. Fig. 6)
and also verifies the procedures for analytic continuation; in
contrast, DCA is still far off (at N = 64).

Compared with the results for U = 4 presented in Fig. 6, our
unbiased result [solid line in Fig. 8(a)] shows much stronger
PG characteristics, as is certainly expected at the stronger
interaction U = 5.2. Spectra for a full range of temperatures
at this interaction are shown in Fig. 8(b) for a 12 × 12 system;
these results can directly be compared with the second column
in Fig. 6. Already at the highest temperature T = 0.50 [dotted
line in Fig. 8(b)], the spectral peak is much broader, i.e., more
spectral weight has been shifted away from the origin than
at U = 4. This tendency towards more insulating behavior
remains at lower T : The peak-to-peak width is about twice as
large as for U = 4. At T = 0.18 (dash-dotted line), no spectral
weight can be resolved at |ω| � 0.5, so that the PG looks
numerically like a full gap. In addition, the characteristic PG
temperature is clearly shifted upwards, with a well-developed
PG already at T = 0.28; the dependence of T ∗ on U will be
studied more broadly in subsection IV C.

B. Evolution of pseudogap in full momentum-resolved
spectral function

So far, we have presented results which, for given param-
eters U and T , are of a similar nature as those previously

FIG. 9. (Color online) Unbiased local spectra A(ω) (first column)
and momentum-resolved spectra Ak(ω) for U = 4 and k along the
path through the Brillouin zone illustrated in Fig. 1(a); the pseudogap
opens with strong k dependence at T � T ∗ ≈ 0.20. A local maximum
in the spectral density at ω = 0 (arrow) is indicative of spin-polaron
physics.

discussed in the literature. The main advances of our study
of nodal and antinodal spectra are (i) our elimination of the
(enormous) finite-size bias inherent in raw results and (ii) our
explicit analysis of temperature effects. We will now turn to
fundamentally new results, namely spectra with full momen-
tum resolution.

Figure 9 shows unbiased momentum-resolved spectra
Ak(ω) throughout the whole Brillouin zone, along the path
indicated in Fig. 1(a), at weak coupling U = 4 and in a
temperature range 0.18 � T � 0.28; in addition, the left
column contains the local spectra A(ω), corresponding to an
average over all k. We have chosen a path �XM′MX that
contains the irreducible portion XM′ of the noninteracting
Fermi surface (at half filling). The inclusion of this subpath
allows us to study the nodal-antinodal dichotomy continuously
and in detail; more generally, all variations along this path
(where εk = 0) arise from a k dependent self-energy, i.e.,
effects beyond DMFT.

At T = 0.28 (first row in Fig. 9), the local intensity maxima
are unique at each k point and agree rather well with the
noninteracting dispersion εk (dashed line), except for the edges
ω � 4. A well-defined quasiparticle peak at ω ≈ 0 (especially
sharp near k = M′ and more diffuse at k = X) is consistent
with a Fermi liquid description. This picture changes at T =
0.20 (second row), when the spectrum splits at k ≈ X, i.e., a
pseudogap opens at the antinodal point, while the rest of the
spectrum (at momenta with εk = 0) is essentially unchanged.
The gap size decreases smoothly on the line X → M′. Only
at T � 0.18 (third row) the QP is destroyed also at k = M′; a
PG then extends over all momenta.

Compared to the strong temperature dependence along the
path XM′, the spectra appear nearly unchanged in the rest
of the BZ. In particular, a sharp dispersive quasiparticle-like
band, indicated by an arrow in the top panel, evolves from the
X point about halfway towards the � point (and, equivalently
by particle-hole symmetry, from the X point towards the M
point). We interpret this feature, which is not accessible in
conventional DQMC studies at FS, as the formation of a spin
polaron band (arrow in Fig. 9), with an energy offset at lower
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FIG. 10. (Color online) Test of MEM accuracy at U = 4, T =
0.28: The local spectral function A(ω) (dashed line), calculated from
the local Green function G(τ ), agrees well with the average Ak(ω) ≡
1
N

∑
k Ak(ω) (solid line). Both curves reveal a dip at ω � 0.8 which

is absent at this temperature in AM′ (ω) (short-dashed line) and AX(ω)
(dotted line).

T indicating the magnetic exchange scale. It ends (at higher
|εk|) in a “waterfall” which breaks up the band structure into
low and high energy features.22

Taken together, our results indicate that, apart from inco-
herent features at |ω| ≈ 4 which are present at all temperatures
and should continuously evolve into Hubbard bands with
increasing U , interaction effects come into play with lowering
T first very locally (in momentum space) around the antinodal
X point; apparently, the strong enhancement of scattering by
the van Hove singularity at X completely determines the
physics in this region. This explains why the spectra can
become sharper, implying a reduction in the imaginary part
of the self energy, on the path from X towards � (up to the
position of the arrow in Fig. 9, corresponding to the energy
ω indicated by dotted lines), i.e., with increasing εk and ω;
a behavior which is exactly opposite to usual Landau Fermi
liquid and also to DMFT physics.

This suppression of spectral weight around X already at
elevated temperatures also explains the slight dip seen in the
local spectrum at T = 0.28 (dots and dotted lines in top panel
of Fig. 9; cf. also Fig. 10): While the momenta around M′ and in
the spin-polaron band region (arrow) contribute “normally” to
the local spectrum, the contributions from momenta near X are
spread out to about a much larger width (with a significant frac-
tion at |ω| � 1); the missing weight at ω � 1 results in the dip.

One might worry that this analysis puts too much confidence
in the accuracy of our data and that the dip in the local spectrum
at T = 0.28, a local suppression in A(ω) by abound 10%
in a narrow frequency range, corresponding to a “missing
weight” of about 1%, could also result from uncertainties
in the MEM procedure. Therefore, we have checked its
consistency and accuracy in the largest finite-size system
(16 × 16) by comparing the local spectrum A(ω) (dashed
line in Fig. 10), obtained by direct analytic continuation using
MEM from the local Green function G(τ ) with the average of
all (here 256) momentum-resolved spectra Ak(ω) in Fig. 10.
As G(τ ) ≡ 1

N

∑
k Gk(τ ) ≡ Gk(τ ), both spectra should agree,

if evaluated exactly: A(ω)
!= Ak(ω) ≡ 1

N

∑
k Ak(ω). As the

MEM is inherently nonlinear, due to the entropy constraint,
deviations must be expected in practice. However, our proce-
dure, with very accurate DQMC data, seems to be quite stable:

FIG. 11. (Color online) Spectral functions Ak(ω) for k along the
Fermi edge (line from X → M′; cf. Fig. 1). FS results (L = 8,16)
converge (slowly) to the thermodynamic limit both pointwise and by
refinements of the k resolution.

Although the k dependent spectral functions Ak(ω) differ
substantially at different k points (shown in Fig. 10 only for
the nodal and antinodal points using short-dashed and dotted
lines, respectively) and have much more pronounced features
than the local spectral function A(ω) (long-dashed line),
their average Ak(ω) (solid line) agrees with it nearly within
linewidth; only the magnified inset reveals tiny differences
at small frequencies. So we conclude that our techniques are
more than adequate and that the small dip discussed above is,
indeed, physical.

Let us, finally, stress that our eliminations of finite-size
errors have been absolutely essential for obtaining unbiased
momentum-resolved spectra, as illustrated in Fig. 11 for the
path X → M′: Not only is the convergence at the end points
k = X and k = M′ slow, the k resolution is also quite coarse,
with only one intermediate point for L = 8 and only three
intermediate points for L = 16. It is clear that a very significant
extension of the cluster size (e.g., to 64 × 64, implying a
factor of 46 = 4096 in computer time) would be needed in
order to match the momentum resolution of our extrapolation
procedure.

C. Evolution of characteristic pseudogap temperature
T ∗ with interaction U

Apart from yielding a momentum dependent T ∗, the
criterion used in subsection IV A has the disadvantage of
depending on the ill-conditioned analytic continuation of the
imaginary-time DQMC Green functions to the real axis. On
the other hand, it is difficult to define specific PG criteria on
the level of the imaginary-time Green functions [cf. Fig. 4(a)
and 4(b)].23 However, the nodal-antinodal dichotomy, i.e.,
the momentum dependence of the Green functions along
the line X → M′ (arising from a momentum dependence
of the irreducible self-energy) turns out to be illuminating:
Fig. 12(a) shows that the norm of the difference between the
imaginary-time Green functions,

|GM′ − GX| ≡
{ ∫ β

0
dτ |GM′ (τ ) − GX(τ )|2/β

}1/2

,

is strongly enhanced (at U = 4) in the temperature range where
the PG opens. Not surprisingly, this peak becomes sharper
and shifts towards lower T in the thermodynamic limit; the
position of the maximum yields a natural unique definition of
the characteristic PG temperature T ∗ ≈ 0.20, indicated by a
vertical dotted line in Fig. 12.

155109-7



D. ROST, E. V. GORELIK, F. ASSAAD, AND N. BLÜMER PHYSICAL REVIEW B 86, 155109 (2012)
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FIG. 12. (Color online) Properties of finite clusters and in the
thermodynamic limit at U = 4: (a) Difference between nodal and
antinodal Green functions versus temperature; its maximum defines
the characteristic PG temperature T ∗ ≈ 0.20. (b) Unnormalized spin
structure factor at antiferromagnetic wave vector k = (π,π ). Dotted
vertical lines mark T ∗.

As discussed in the introduction, the PG is associated
(at n ≈ 1) with AF correlations and may be regarded as a
precursor of a fully gapped long-range ordered AF phase
which, in d = 2, is realized only in the ground state.24 Thus,
we should expect to see a strong enhancement in suitable
spin correlation functions. While the nearest-neighbor spin
correlations are only very moderately enhanced at T � T ∗
(not shown), the spin structure function is seen in Fig. 12(b) to
increase by a full factor of 4 in the range 0.9 T ∗ � T � 1.1 T ∗.
At the same time, FS effects explode at T � T ∗. All this shows
that the PG is driven by the development of AF order at a scale
which is large compared to the lattice spacing.

The PG physics and, in particular, the momentum depen-
dence observed at U = 4 should disappear at strong coupling,
when already the high-temperature phase is gapped at n = 1. 25

The dichotomy should also vanish in the limit U → 0, where
the energy scale Tspin vanishes, and so does the magnitude
of the pseudogap. Indeed, the momentum dependence is seen
in Fig. 13 to peak at U ≈ 4 and to decay quickly for larger
couplings, where also FS effects (which can be estimated from
the thin lines, corresponding to 8 × 8, in comparison to the
main 12 × 12 results) become irrelevant. At fixed cluster size,
also the results at weaker coupling (U = 3, U = 2) fall off;
unfortunately, they suffer from significant FS effects which
are too costly to eliminate. Still, the peak positions allow us
to estimate T ∗(U ) in the full range of weak to intermediate
coupling as denoted by symbols in the inset of Fig. 13. 26 Also
shown is the mean-field estimate of the critical temperature
for AF long-range order (solid line). At first sight, this
DMFT estimate of the Néel temperature T DMFT

N would appear
irrelevant, as the true TN = 0 by the Mermin-Wagner theorem.
However, we find that T ∗ ≈ 0.9 T DMFT

N for 4 � U � 8; a
correction of FS effects for U = 2 and U = 3 should push the
corresponding values of T ∗ also below T DMFT

N . So the DMFT
identifies the relevant temperature scale for spin coherence
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FIG. 13. (Color online) Difference between nodal and antinodal
Green functions versus temperature: DQMC results at weak to
intermediate coupling (2 � U � 8) for 12 × 12 clusters (thick lines)
and 8 × 8 clusters (thin lines). Inset: associated T ∗ in comparison
with DMFT Néel temperature.

(as was previously observed in the strong-coupling regime27);
however, it lacks the momentum resolution which is essential
to capture the pseudogap physics explored in this paper.

V. CONCLUSION

After decades of research, our understanding of the
two-dimensional Hubbard model, especially regarding the
extent to which it captures the pseudogap and high-Tc

physics of cuprates, is still far from complete. Numerical
simulations21,28–33 give valuable hints, but continue to be
dominated by finite-size effects.34 We have overcome the
finite-size barrier and presented momentum-resolved spectral
functions in the thermodynamic limit, obtained by systematic
extrapolation of DQMC Green functions (L → ∞ and �τ →
0). Based on this achievement, we were able to disentangle
the delicate interplay of dynamical and spatial magnetic
correlations. At weak to intermediate couplings, this interplay
leads, indeed, to the formation of a pseudogap in the half-filled
band. The pseudogap originates from a strong k dependence of
the self-energy, which results in a d-wave-like anisotropy in the
opening of the charge gap and a “waterfall” substructure of the
spectrum. The associated temperature scale T ∗ is determined
by the onset of antiferromagnetic fluctuations (and nearly
agrees with T DMFT

N ), i.e., is rather high compared to other
coherence scales and should be in reach of experiments with
ultracold fermions on optical lattices.35,36
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We present an algorithm for solving the self-consistency equations of the dynamical mean-field theory (DMFT)
with high precision and efficiency at low temperatures. In each DMFT iteration, the impurity problem is mapped
to an auxiliary Hamiltonian, for which the Green function is computed by combining determinantal quantum
Monte Carlo (BSS-QMC) calculations with a multigrid extrapolation procedure. The method is numerically
exact, i.e., yields results which are free of significant Trotter errors, but retains the BSS advantage, compared
to direct QMC impurity solvers, of linear (instead of cubic) scaling with the inverse temperature. The new
algorithm is applied to the half-filled Hubbard model close to the Mott transition; detailed comparisons with
exact diagonalization, Hirsch-Fye QMC, and continuous-time QMC are provided.
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I. INTRODUCTION

The dynamical mean-field theory (DMFT) [1–4] and its
cluster extensions [5,6] are powerful approaches for the
numerical treatment of correlated electron systems, both in
the model context and for materials science, e.g., embedded
in the LDA + DMFT [7] or GW + DMFT [8–11] frameworks
which extend density functional theory to strongly correlated
materials [3,12]. Recently, many DMFT studies have also
appeared in the context of ultracold fermions on optical
lattices [13–15]. The DMFT reduces electronic lattice models
to impurity problems, which have to be solved self-consistently
[16–18]. A challenging part of this iterative procedure is the
computation of the interacting Green function for a given
impurity configuration (defined by the fixed local interactions
and the self-consistent Weiss field). Thus, the availability
of efficient and reliable impurity solvers determines the
complexity of models and the parameter space that can be
accessed using the DMFT.

Quantum Monte Carlo (QMC) impurity solvers allow for
numerically exact solutions of the DMFT self-consistency
equations at finite temperatures. In the case of the Hirsch-Fye
auxiliary field (HF-QMC) method [16,19,20], all raw estimates
contain systematic errors due to the inherent Trotter decom-
position and associated imaginary-time discretization [19,21];
unbiased results can only be obtained after an extrapolation
of the discretization interval �τ → 0 [22,23]. Diagrammatic
QMC impurity solvers [24–27] sample partition function and
Green functions in continuous (imaginary) time (CT), i.e.,
avoid systematic biases. However, in all of these direct QMC
approaches, the computational effort scales cubically [28] with
the inverse temperature β = 1/kBT , which limits their access
to low-temperature phases.

Exact diagonalization (ED)-based impurity solvers [29]
require a discrete representation of the impurity action in terms
of an auxiliary Hamiltonian, which is then solved either by
full diagonalization (for evaluations at arbitrary temperature)
or using a Lanczos procedure [30] (e.g., at T = 0). As the
numerical effort scales exponentially with the number Nb of
auxiliary “bath” sites, Nb has to be kept quite small, which

introduces, again, a bias and is a particularly severe limitation
for multiorbital or cluster DMFT studies at finite temperatures.

Recently, Khatami et al. proposed another Hamiltonian-
based scheme [31], in which the Green function and other
relevant properties of the auxiliary problem are computed
using the determinantal BSS-QMC method developed by
Blankenbecler, Scalapino, and Sugar [32]. The advantage of
this scheme, compared to ED, is the possibility of using more
bath sites (due to cubic instead of exponential scaling with
Nb); the advantage over the direct QMC impurity solvers is
the linear, instead of cubic, scaling in β [33]. The authors
established the feasibility of the method and proved that the
associated sign problem (arising at general band filling in
cluster extensions of DMFT, in frustrated lattices, and for
generic multiband models) converges to that of HF-QMC
for sufficiently fine bath discretization [31]. However, as
all BSS-QMC applications to date, the Green functions and
all observable estimates resulting from their implementation
suffer from systematic Trotter errors.

In this work, we construct a similar algorithm where the
Trotter bias inherent in the BSS Green functions is eliminated
using a multigrid procedure before feeding them back in
the self-consistency cycle. As a DMFT building block, the
resulting method is an exact quasi-CT QMC impurity solver
with linear scaling in the inverse temperature. Its scaling
advantage over direct QMC impurity solvers should allow
access to lower temperatures, in particular in multiorbital and
cluster DMFT studies.

The paper is organized as follows: In Sec. II we briefly
review the DMFT equations and the BSS-QMC algorithm
and fully specify our multigrid DMFT-BSS approach. As a
test case, the new method is applied (in single-site DMFT)
to the half-filled Hubbard model in the vicinity of the Mott
transition in Sec. III. Here, we first focus on the Green function
at moderately low temperature T = t/25 and then discuss
important observables, namely the double occupancy and
quasiparticle weight, also at lower temperatures. The accuracy
of our approach is established by comparisons with the results
of the (multigrid) HF-QMC, ED and CT-QMC solvers, as well
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as with the previous (finite �τ ) DMFT-BSS implementation.
We show that our elimination of the Trotter error improves
the results dramatically. We also discuss the impact of the
bath discretization and establish convergence to the thermo-
dynamic limit. A summary and outlook conclude the paper
in Sec. IV.

II. THEORY AND ALGORITHMS

In this section, we lay out the proposed algorithm for
solving the DMFT self-consistency equations without sig-
nificant Trotter errors and with a computational effort that
grows only linearly with the inverse temperature. We start out
by reviewing the general DMFT framework and established
methods (ED, HF-QMC, CT-QMC) for its solution in Sec. II A
in sufficient detail to expose the similarities and differences
with respect to the new method. Here we also discuss some
algorithmic choices, in particular regarding the Hamiltonian
representation in our ED implementation, that are essential
ingredients also for the BSS-QMC-based approaches. We
then turn to the BSS-QMC method and its applicability in
the DMFT context in Sec. II B, and specify, finally, our new
numerically exact implementation in Sec. II C. For simplicity,
and in line with the numerical results to be presented in
Sec. III, we write down the formalism for the single-band
Hubbard model and the original, single-site variant of DMFT.
Extensions to cluster DMFT (and to multiband models) should
be straightforward, but require some generalizations (e.g., for
the treatment of offdiagonal Green functions) and will be
pursued in a subsequent publication.

A. DMFT and established impurity solvers

1. The Hubbard model on a lattice or graph

We consider the single-band Hubbard model

H = H0 + Hint =
∑
ij,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ , (1)

where c
†
iσ (ciσ ) creates (annihilates) an electron with spin

σ ∈ {↑ , ↓} on lattice site i; niσ = c
†
iσ ciσ is the corresponding

density, tij = tj i the hopping amplitude between sites i and
j (or the local potential for i = j ); U quantifies the on-site
interaction. Usually, the hopping is defined to be translationally
invariant, e.g., tij = −t for nearest-neighbor bonds on an
infinite mathematical lattice [as illustrated in Fig. 1(a) for a

t

U

DMFT
GU

Aux.
V1

V2

V3

V4

V5V61

2

3

4

5

6

U

(a) (b) (c)

FIG. 1. (Color online) Mapping of the original lattice problem
(a), with local interaction U and hopping t , on a single impurity (b),
embedded in an effective bath G. (c) Discretization of the bath in
terms of an auxiliary Hamiltonian (treatable with ED or BSS-QMC),
here with star topology.

square lattice] or on a finite cluster with periodic boundary
conditions. However, neither the DMFT nor direct QMC
approaches to the Hubbard model depend crucially on such
assumptions, as will be discussed in Sec. II B.

2. General DMFT self-consistency procedure

If all lattice sites are equivalent and for spatially homoge-
neous phases, the DMFT maps the original lattice problem
(1), illustrated in Fig. 1(a), onto a single-impurity Anderson
model [Fig. 1(b)], which has to be solved self-consistently.
The impurity problem is defined by its action

A[ψ,ψ∗,G] =
∫ β

0

∫ β

0
dτ dτ ′ ∑

σ

ψ∗
σ (τ )G−1

σ ψσ (τ ′)

− U

∫ β

0
dτ ψ∗

↑(τ ) ψ↑(τ ) ψ∗
↓(τ ) ψ↓(τ ), (2)

here in imaginary time τ ∈ [0,β] and in terms of Grassmann
fields ψ , ψ∗. G is the “bath” Green function, i.e., the
noninteracting Green function of the impurity, which is related
to the full impurity Green function G,

Gσ (τ ) = −〈Tτ ψσ (τ ) ψ∗
σ (0)〉A (3)

(with the time ordering operator Tτ ), and the self-energy � by
the (impurity) Dyson equation

G−1
σ (iωn) = G−1

σ (iωn) − �σ (iωn), (4)

here written in terms of fermionic Matsubara frequencies ωn =
(2n + 1)πT at finite temperature T ; here and in the following,
we set h̄ = kB = 1.

The central DMFT assumption is that of a local self-energy
on the lattice [1]: �ijσ (iωn) = δij�iiσ (iωn), which is identified
with the impurity self-energy. Similarly, the impurity Green
function is identified with the local component of the lattice
Green function:

Gσ (iωn) = Giiσ (iωn) = {t + [iωn + μ − �σ (iωn)]1}−1
ii

=
∫ ∞

−∞
dε

ρ(ε)

iωn + μ − �σ (iωn) − ε
, (5)

where the last expression is valid in the homogeneous case,
ρ(ε) denotes the noninteracting density of states, and t is the
matrix with elements tij .

The general DMFT iteration scheme is illustrated in
Fig. 2(a): starting, e.g., with an initial guess � = �0 of the
self-energy, the Green function G is computed using the lattice
Dyson equation (5). In a second step, � and G yield the bath
Green function G via the impurity Dyson equation (4), which
defines, in combination with the local interactions, the impurity
problem [illustrated in Fig. 1(b)], the solution of which is the
nontrivial part of the algorithm. A second application of the
impurity Dyson equation (4), to the resulting G and to G,
yields a new estimate of the self-energy �, which closes the
self-consistency cycle. In the following, we discuss the primary
options for addressing the impurity problem.

3. Direct impurity solvers

One class of methods directly evaluates the path integral
representation of the Green function [Eqs. (3) and (2)] for a
continuous bath G, which corresponds to a DMFT solution
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iωn → τ

Δτ

ED

G → Vi, εi

Nb τ → iωn

Δτ → 0

BSS-QMC
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BSS-QMC

Δτj

G → Vi, εi

Nb
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FIG. 2. (Color online) (a) Scheme of the general DMFT self-consistency cycle, including the “impurity problem” (dashed box). Established
impurity solvers include (b) the Hirsch-Fye (HF-QMC) algorithm and (c) exact diagonalization (ED): cf. the main text. (d) The proposed
algorithm approximates the bath Green function G in terms of the parameters Vi , εi of an auxiliary Hamiltonian (6) with Nb “bath” sites
[like ED (c)]. Corresponding Green functions are computed using BSS-QMC for a grid �τmin � �τj � �τmax of Trotter discretizations. The
subsequent extrapolation of �τ → 0 yields the Green function, free of significant Trotter errors and continuous in τ , which is easily Fourier
transformed and fed back into the self-consistency cycle.

of the original lattice problem in the thermodynamic limit
after self-consistency. We will refer to such methods as “direct
impurity solvers.”

For a long time, the Hirsch-Fye QMC (HF-QMC) algorithm
has been the method of choice for nonperturbative DMFT
calculations [16]. HF-QMC is based on a discretization of
the imaginary time τ ∈ [0,β] into � “time slices” of width
�τ = β/�, a Trotter decomposition of the interaction and
kinetic terms in Eq. (2), and a Hubbard-Stratonovich trans-
formation, which replaces the electron-electron interaction
by an auxiliary binary field on each time slice; the resulting
problem is then solved employing Wick’s theorem and Monte
Carlo importance sampling over the field configurations. As
configurations can be updated in the case of a single spin flip
(i.e., an auxiliary-field change on a single time slice) with a
matrix-vector operation of cost O(�2) and � local updates
are needed for a global configuration update, the numerical
cost of the HF-QMC algorithm scales as �3. All HF-QMC
results have statistical errors (which decay as N−1/2 for N

“sweeps,” each consisting of � attempted single-spin updates)
and systematic errors resulting from the Trotter decomposition.
As �τ has to be kept constant for roughly constant systematic
error upon variation of T , the numerical effort of HF-QMC
scales as the cube of the inverse temperature, β3. This is also
true for the numerically exact (unbiased) “multigrid” HF-QMC
method [34].

The integration of the (conventional) HF-QMC method into
the DMFT self-consistency cycle is illustrated in Fig. 2(b)
[as a specification of the lower dashed box in Fig. 2(a)]: a
fixed choice of �τ (diamond-shaped selection box) defines
the grid τl = l�τ with 0 � l � � for a Fourier transform
(square box) of the Matsubara bath Green function G(iωn)
(with |ωn| � ωmax for some cutoff frequency ωmax) to the
imaginary-time equivalent {G(τl)}�l=0. After application of the
HF-QMC algorithm (rounded box), the result {G(τl)}�l=0 is
transformed back to Matsubara frequencies (square box);
this step requires special care in order to get around
the Nyquist theorem, e.g., using analytic weak-coupling
results [23,35,36].

More recently, conceptionally different QMC approaches
have been formulated, which are based on diagrammatic

expansions of the action (2) in continuous imaginary time,
either in the interaction U (CT-INT [37]) or in the bath
hybridization (CT-HYB [25,26]), and on a stochastic sampling
of Feynman diagrams; CT-AUX [38] is related to the HF-
QMC method [27]. All of these continuous time (CT-QMC)
algorithms require Fourier transforms, before and (with the
exception of CT-INT) after the QMC part; the numerical cost
is associated primarily with matrix updates, similar to those
arising in HF-QMC, with a total scaling of the computational
effort, again, as β3.

Thus, all direct QMC-based impurity solvers are very costly
at low T , which limits their access to low-temperature phases
of particular physical interest.

4. Auxiliary Hamiltonian and exact diagonalization

Another class of numerical approaches, such as the “exact
diagonalization” methods, cannot directly be applied to the
action-based formulation of the impurity problem, but requires
a Hamiltonian representation [39]. One possibility is the “star
topology” illustrated in Fig. 1(c), where a central “impurity”
site (with the same interactions as the impurity problem, here
U ) is connected by hopping matrix elements Viσ to a number
Nb of noninteracting “bath sites,” each characterized by a local
potential εiσ . In general, this representation has to be spin-
dependent, leading to the Anderson Hamiltonian

HAnd = ε0

∑
σ

nσ + Un↑n↓

+
∑

σ

Nb∑
i=1

[εiσ niσ + Viσ (a†
iσ cσ + H.c.)], (6)

where c†σ (cσ ) creates (annihilates) an electron with spin σ ∈
{↑,↓} on the impurity site and a

†
iσ (aiσ ) creates (annihilates) an

electron with spin σ on bath site i; nσ = c†σ cσ , niσ = a
†
iσ aiσ are

the corresponding number operators. In this work, we consider
only nonmagnetic phases, which implies spin symmetric bath
parameters Vi↓ = Vi↑, εi↓ = εi↑.

For a fixed choice of Nb, the bath parameters εiσ ,Viσ

are determined such that the noninteracting impurity Green
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function GAnd,σ associated with HAnd, with

G−1
And,σ (ω) = ω + μσ −

Nb∑
i=1

V 2
iσ

ω − εiσ

, (7)

is “close” to the target bath Green function G according to
some metric (see below). Note that the resulting spectrum
− 1

π
ImGAnd,σ (ω + i0+) is necessarily discrete (for finite Nb),

in contrast to piecewise smooth spectrum of the true bath
Green function; in this sense, the mapping to a Hamiltonian
implies a “bath discretization” in frequency space; this step
clearly introduces a bias which has to be controlled particularly
carefully within iterative procedures such as the DMFT.

The integration of this type of approach in the DMFT cycle
is illustrated for the case of ED in Fig. 2(c): for a fixed choice
of Nb (diamond shaped box), the parameters Vi,εi (here and in
the following we suppress spin indices) are adjusted (rounded
box) as to minimize the bath misfit

χ2 [{Vi,εi}] =
nc∑

n=0

wn |GAnd(iωn; {Vi,εi}) − G(iωn)|2 , (8)

with a cutoff Matsubara frequency iωnc
and the weight-

ing factor wn, which can be used to optimize the bath
parametrization [40] and which we set to wn = 1 [41]. As
this fit is performed directly on the Matsubara axis, no Fourier
transform is needed for G. Using ED (rounded box), the Green
function G can be evaluated on the Matsubara axis [29];
therefore, the DMFT cycle is closed without any Fourier
transform.

The minimization of χ2 [as defined in Eq. (8)] is performed
in our ED and BSS-DMFT calculations using the Newton
method, based on analytic expressions for the derivative ∇χ2

with respect to the bath parameters. Due to the multidimen-
sional character of the problem, this deterministic method is
often trapped in local minima; thus, a naive implementation
of Newton-based methods will, in general, not find globally
optimal parameters, which can induce unphysical fixed points
in the DMFT iteration procedure. Therefore, we use not only
the solution {Vi,εi} of the previous iteration as initialization,
but perform a large number (up to 1000) of independent
Newton searches, starting also from random initial parameters.
Of the resulting locally optimal solutions, we choose the one
with minimum χ2 as the final result of the minimization
procedure; typically, about 1% of the individual searches come
close to this (estimated) global optimum.

An advantage of ED, compared to QMC algorithms, is that
Green functions and spectra can be computed directly on the
real axis, without analytic continuation; however, numerical
broadening of the resulting discrete peaks is required. This
discretization problem is particularly severe as the numerical
effort of the matrix diagonalization scales exponentially with
the total number of sites (here Nb + 1), which limits the
applicability of ED for cluster extensions of DMFT or
multiband models.

B. Principles of the BSS-QMC algorithm and application
as a DMFT impurity solver

In Eq. (6), we have used the conventional notation for
the auxiliary Hamiltonian that emphasizes its interpretation

as an impurity model, e.g., with different creation operators
for electrons on the central “impurity” site (c†σ ) and on the
bath sites (a†

iσ ), respectively. However, with the changes
cσ → c0σ , nσ → n0σ , and a

†
iσ → c

†
iσ , Viσ → tσ0i it essentially

reproduces the Hubbard model (1) on a graph, just with
nonuniform interaction (U acting only on site 0) and, possibly,
spin-dependent hopping amplitudes and local energies.

As a consequence, the model (6) is not only treatable with
the universal ED approach, but also with more specific methods
developed for Hubbard-type models. As pointed out recently
by Khatami et al. [31], this includes the determinantal quantum
Monte Carlo approach by Blankenbecler, Scalapino, and Sugar
[32,42] (BSS-QMC), which, thereby, becomes applicable as a
DMFT impurity solver. In the following, we will first sketch the
established BSS-QMC approach (for an extended discussion,
including issues of parallelization, see Ref. [43]) and then
discuss its application in the DMFT context.

Similarly to the HF-QMC method (cf. Sec. II A3), the BSS-
QMC approach is based on a Trotter-Suzuki decomposition,
here of the partition function

Z = Tr(e−β(HK+HV )) (9)

≈ Z�τ = Tr

(
�∏

l=0

e−�τHK e−�τHV

)
, (10)

where HV (HK ) corresponds to the interaction (kinetic and
local potential) contribution to the Hubbard-type models (1)
or (6) and �τ = β/�. Again, a discrete Hubbard-Stratonovich
transformation replaces the interaction term by a binary
auxiliary field {h} with hi(l) = ±1 at each site i and time
slice l. The trace in Eq. (10) then simplifies to

Z�τ =
∑
{h}

det[M {h}
↑ ]det[M {h}

↓ ] with

M {h}
σ = 1 + B�,σ

[{hi(�)}Ni=1

] · · · B1,σ

[{hi(1)}Ni=1

]
, (11)

where B is defined in terms of the hopping matrix K:

Bl,σ

[{hi(l)}Ni=1

] = eσλdiag[h1(l),...,hN (l)] e−�τK. (12)

The interaction strength is encoded in the parameter λ =
cosh−1(eU�τ/2). The computation of thermal averages of
physical observables O takes the form:

〈O〉 =
∑
{h}

[
O{h} P {h}

�τ

]
,

(13)

P {h}
�τ = 1

Z�τ

det[M {h}
↑ ]det[M {h}

↓ ].

At particle-hole symmetry, the weights P {h}
�τ are always

positive; i.e., the sums can be evaluated at arbitrary precision,
without any sign problem. As in HF-QMC, the problem is
solved by Monte Carlo importance sampling of the auxiliary
field {h} and evaluation of the Green function at time slice l,
with

G
{h}
l,σ = [1 + Bl−1,σ · · · B1,σ B�,σ · · · Bl,σ ]−1. (14)

As a spin flip in the auxiliary field hi(l) at time slice l and site i

only affects Bl,σ at this site, the ratio of the weights, needed for
the decision whether a proposed spin flip is accepted, involves
only local quantities; a full recomputation of the determinants
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of N × N matrices appearing in Eq. (11) is not needed. The
computational effort is further reduced by calculating the
Green function at time slice l + 1 from the quantities at time
slice l, using so-called “wrapping”:

Gl+1,σ = B−1
l,σ Gl,σ Bl,σ . (15)

In order to avoid the accumulation of numerical errors in
the matrix multiplications, it is necessary to recalculate the
full Green function at regular intervals. This is particularly
important at low temperatures.

All this considered, the numerical cost scales cubically
with the number of sites and linearly with the number of
time slices; at constant �τ , this translates to a total effort
O(N3β), where N = Nb + 1. Note that a need for finer bath
discretizations at lower temperatures could potentially spoil
the scaling advantage of the method over direct impurity
solvers; we will show in Sec. III C that this is not the case
for our test applications.

The application in the DMFT context [31] starts with the
computation of the Hamiltonian parameters (for some choice
of Nb), exactly like in the ED approach. As in the HF-QMC
approach, one then chooses some discretization �τ , computes
{G(l�τ )}�l=0 for the impurity site, and applies a (nontrivial)
Fourier transform back to Matsubara frequencies. The result is
an impurity solver with superior scaling (linear in β) compared
to the direct impurity solvers (cubic in β), however, with a bias
due to the Trotter discretization �τ (in addition to a possible
bias due to the bath discretization with Nb sites), which, as we
will show in Sec. III, can be quite significant.

C. Specification of multigrid BSS-QMC algorithm

The central feature of our new algorithm is the elimination
of this systematic Trotter error, while retaining the advantage
of linear-in-β scaling inherent in the BSS-QMC method. In the
following, we will specify the method and illustrate it using
an example (Fig. 3), that will be discussed in detail in Sec. III.

In contrast to the previous DMFT-BSS implementation
with a unique discretization �τ in all BSS computations
throughout the DMFT self-consistency cycle, the (impu-
rity) Green function of the Hamiltonian HAnd at hand
is computed in M � 20 parallel BSS runs (indexed by
1 � i � M), each employing a homogeneous imaginary-
time grid with a specific discretization (�τ )i , chosen
from a set {(�τ )i |(�τ )min � (�τ )i � (�τ )max} with typ-
ically 6–9 different elements. Green functions resulting
from BSS-QMC runs with the same discretization (�τ )i =
(�τ )j are averaged over, thereby reducing the dependen-
cies on initialization conditions and further enhancing the
parallelism.

This leads to a set of Green functions defined, in general,
on incommensurate imaginary-time grids (symbols in Fig. 3).
In order to apply a local �τ → 0 extrapolation, all G(�τ )i
have to be transformed to a common grid. This is possible
since the true G(τ ) is a smooth function; however, a direct
spline interpolation of the raw QMC results, neglecting higher
derivatives, would not be accurate [44]. Instead, we consider
differences between the raw data {G(�τ )i (l�τ )}�i

l=0 and a
reference Green function, obtained via Eq. (5) from a model
self-energy �ref

σ (iωn) [35,36], written here for the single-band
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FIG. 3. (Color online) BSS-QMC impurity Green functions at
T = 0.04 (symbols) using a bath representation with Nb = 4 sites
(with parameters of converged DMFT-ED solution, long-dashed
lines) and results of multigrid extrapolation to �τ = 0 (solid lines).
Upper panel: metallic phase (U = 4.4). Lower panel: insulating phase
(U = 5.1). Arrows denote τ values for which the extrapolation is
shown in Fig. 4.

case (for multiband generalizations, see Ref. [45]):

�ref
σ (iωn) = U

(
〈n−σ 〉 − 1

2

)
+ 1

2
U 2 〈n−σ 〉 (1 − 〈n−σ 〉)

×
(

1

iωn + ω0
+ 1

iωn − ω0

)
, (16)

which recovers the exact high-frequency asymptotics of
�(iωn) and G(iωn) for any choice of the free parameter
ω0 and, therefore, approximates the second and higher-order
derivatives of G(τ ) at τ → 0 (and τ → β) well. This match
can be further improved by adjusting ω0. Consequently, the dif-
ferences {G(�τ )i (l�τ ) − Gref(l�τ )}�i

l=0 have smaller absolute
values and much smaller higher derivatives than the original
data; in particular, their curvature vanishes asymptotically at
the boundaries [46]. Thus, they are well represented by natural
cubic splines.

Usually, the parameters of the piecewise polynomials
constituting such a spline fspline(x) are determined from
discrete data {fmeas(xi)}Ni=0 such that the discrete data are
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reproduced exactly: fspline(xi) = fmeas(xi) for all 0 � i �
N . However, in the QMC context, all measurements have
statistical errors; i.e., the discrete data are better represented as
{fmeas(xi) ± �fmeas(xi)}Ni=0 with standard deviations �fmeas,
which are also estimated within the QMC procedure. It is
clear that the usual interpolating splines, which do not take
the uncertainties of the discrete data into account, contain
more features than warranted by the data (in particular at the
Nyquist frequency); in the context of Green functions this
includes the possibility of acausal behavior. We use, instead,
smoothing spline fits [47,48] which reproduce the discrete
data only within error bars, which are typically O(10−3), (and
minimize the curvatures under this constraint); these fits can
be computed in a very similar procedure and at the same cost
as interpolating splines.

After combining these approximating “difference” splines
with exact expressions for Gref(τ ) resulting from Eqs. (16)
and (5), we obtain smooth approximations of the Green
functions, as seen in Fig. 3(a); the inset also demonstrates
slight deviations of the continuous spline fits from the discrete
data (within error bars), e.g., for the discretization �τ = 0.7
(dotted line) at τ ≈ 1.4 (circle), while most other data points
are reproduced within the line widths.

These smooth approximations can be evaluated on an
arbitrarily fine common grid (e.g., with �τfine = 0.005) and
extrapolated to �τ → 0. This is illustrated in Fig. 4 for the
representative values of τ denoted by arrows in Fig. 3(a).
Even though most of the raw BSS-QMC data do not include
estimates of the Green functions at these precise values of τ ,
the transformed data (symbols in Fig. 4) depend very regularly
on �τ , falling on nearly straight lines as a function of (�τ )2.
Therefore, they can accurately and reliably be extrapolated
to �τ → 0 (lines in Fig. 4 and symbols at �τ = 0); an
application of this procedure at all τ (on the fine grid)
leads to quasi-continuous Green functions without significant
Trotter errors, shown as solid lines in Fig. 3. These results
can be Fourier transformed to Matsubara frequencies in a
straightforward manner [cf. Fig. 1(d)]. A similar approach
has also been useful for computing unbiased spectra from
BSS-QMC [49].
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τ = 12.5

FIG. 4. (Color online) BSS-QMC estimates of imaginary-time
Green functions G�τ (τ ) at T = 0.04, U = 4.4 after interpolation
(corresponding to the colored broken lines in Fig. 3) for selected
values of τ (symbols) and extrapolation to �τ = 0 using least-squares
fits (lines).

At first sight, the computational advantage of the multigrid
procedure is less obvious in the BSS-QMC context than
for HF-QMC [34,50], since the numerical effort for direct
computations at small �τ grows only linearly, not cubically,
with (�τ )−1 in the BSS case (while the systematic errors
decay generically as (�τ )2 for a given impurity problem).
However, even for a fixed Hamiltonian, so much accuracy can
be gained by extrapolation that it more than offsets the cost of
the additional grid points. This is true, in particular, since stable
results are best obtained by averaging over independent BSS-
QMC runs; performing these on variable grids then allows
for extrapolation without additional cost. Furthermore, the
individual runs thermalize faster in the multigrid variant, due to
the smaller number of time slices (and proportionally shorter
run time per sweep), which enhances the parallelism. Most
importantly, as we will see below, the DMFT self-consistency
can magnify any bias of the employed impurity solvers in
complicated ways (in the vicinity of phase transitions), so that
controlled results are really dependent on unbiased methods,
such as our multigrid approach.

III. RESULTS

In this section, we compare results of the new numerically
exact “multigrid” BSS-QMC method with raw BSS-QMC re-
sults (at finite Trotter discretization), with reference ED results
(which are exact at the level of the auxiliary Hamiltonian), and
with the predictions of established impurity solvers (multigrid
HF-QMC [34] and CT-HYB [25,26,51]). These comparisons
are performed in three stages: In Sec. III A we keep the
bath G and its approximation by an auxiliary Hamiltonian
fixed and discuss the impact of the Trotter error and its
elimination without the complications of the DMFT self-
consistency. In Sec. III B, we compare full DMFT solutions
obtained using the various algorithms at moderate temperature
(T = 0.04), focusing on the impact of Trotter errors on the
resulting estimates of double occupancy and quasiparticle
weight. Finally, we present results also at lower temperatures
T � 0.01 (with DMFT self-consistency), where the impact
of the bath discretization becomes particularly relevant,
in Sec. III C.

Following the established practice for the evaluation of
DMFT impurity solvers [23,28], all of these comparisons are
performed for the half-filled Hubbard model with semi-elliptic
“Bethe” density of states [52] (full band width W = 4) within
the paramagnetic phase. Specifically, we choose temperatures
T � 0.04, which are below the critical temperature T ∗ ≈
0.055 [36,50] of the first-order metal-insulator transition,
and interactions close to or within the coexistence region
of metallic and insulating solutions, which arises from the
mean-field character of the DMFT.

A. Green function extrapolation at fixed bath
Hamiltonian parameters

In general, a bias present in an impurity solver has a
two-fold impact: On the one hand, it affects estimates of
Green functions and all other properties for a given impurity
problem, defined by its bath Green function G. On the other
hand, it shifts the fixed point of the DMFT self-consistency
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cycle; i.e., it also modifies the converged bath Green function,
which, in turn, also affects the measured Green functions
and all other properties. In this subsection, we study the first
effect in isolation by fixing the bath Green function to the
converged solution of the ED procedure for Nb = 4 bath sites
(with Hamilton parameters {εi,Vi}4

i=1). As the same auxiliary
Hamiltonian is used also in the BSS-QMC algorithm, the ED
estimates of the Green function are exact for the purpose of
the current comparison; the impact of the bath discretization
(which corresponds to a bias on the DMFT level) will be
discussed in Sec. III C.

Local imaginary-time Green functions G(τ ) are shown in
Fig. 3(a) for the metallic phase, at U = 4.4, and in Fig. 3(b) for
the insulating phase, at U = 5.1. Here and in the following,
we restrict the imaginary-time range to 0 � τ � β/2; data for
τ > β/2 follow from the particle-hole symmetry G(β − τ ) =
G(τ ). Symbols (in the magnified insets) represent raw BSS-
QMC results (with discretizations �τ = 0.4, �τ = 0.7, and
�τ = 0.9); colored long-dashed, dotted, and dash-dotted lines
denote interpolations obtained using the methods described in
Sec. II C. Due to the large discretization, these data deviate
significantly from the ED reference results (gray long-dashed
lines), in particular at moderately low imaginary times τ ≈
2. In contrast, multigrid BSS-QMC Green functions (solid
lines) are indistinguishable from the ED data at U = 5.1
and very close to them at U = 4.4, with deviations of the
order of statistical errors. Thus, our method yields, indeed,
quasi-continuous Green functions without significant Trotter
errors in both test cases, although the discretizations of the
underlying raw BSS-QMC computations (with 0.3 � �τ �
1.0) would be considered much too coarse in conventional
applications.

A very similar picture emerges in an analogous comparison
for the two coexisting solutions at U = 4.74, shown in Fig. 5.
Again, the raw BSS-QMC results (symbols and colored broken
lines) show a strong systematic bias, towards more metallic
Green functions and of different magnitude in the different
phases, while the extrapolated Green functions agree nearly
perfectly with the ED references. In fact, some of the BSS
Green functions calculated for an insulating bath (lower set
of symbols and broken lines) show such large discretization
errors at small τ � 2, that they approach the exact Green
function of the metallic DMFT solution (upper solid and
long-dashed lines). One may suspect from this observation
that these biased “insulating” solutions will not be associated
with stable DMFT fixed points if they are fed back in the
self-consistency cycle; such shifts of stability regions induced
by the Trotter bias at �τ > 0 will, indeed, be seen in
Sec. III B.

It is clear that the proposed multigrid extrapolation tech-
nique can only be useful as a practical method if it is insensitive
to the particular set {(�τ )i} of discretizations in the underlying
BSS-QMC runs; i.e., if no sensible choice leads to a significant
bias. This is demonstrated in Fig. 6 for the insulating phase at
U = 4.7: the Green functions for the same auxiliary problem
obtained from multigrid extrapolations with three different �τ

grids [53] agree perfectly within the precision of the method.
The latter is primarily determined by the statistical errors,
i.e., by the number of sweeps and, possibly, by the numerical
precision in the matrix operations. Only if raw BSS-QMC data
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FIG. 5. (Color online) BSS-QMC impurity Green functions at
T = 0.04 and U = 4.74 (symbols and colored broken lines) using
a bath representation with Nb = 4 sites (with parameters fixed by
converged DMFT-ED solution, long-dashed lines) and extrapolation
to �τ = 0 (solid lines). Upper (lower) set of curves: metallic
(insulating) bath.

of much higher precision was available (with many millions
of sweeps per run), additional accuracy could be gained
by choosing smaller discretizations (e.g., 0.1 � �τ � 0.3).
As a rule of thumb, the multigrid procedure can be based
on discretizations �τ that are 3 to 10 times as large as
the discretization that one would choose in a conventional
BSS-QMC procedure.
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FIG. 6. (Color online) Green functions in the insulating phase
at T = 0.04, U = 4.7, extrapolated from BSS-QMC results using
different imaginary-time grids [53] (at fixed bath representation).
The excellent agreement shows that the multigrid procedure is stable
with respect to its technical parameters.
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B. Comparisons of impurity solvers at full DMFT
self-consistency: Impact of Trotter errors

So far, we have compared different algorithms just at the
impurity level, i.e., for a fixed bath Green function (determined
from a self-consistent DMFT-ED calculation). In contrast,
we will now discuss results of completely independent
DMFT solutions, each of which corresponds to full self-
consistency for a given impurity solver (cf. Fig. 2). For all
Hamiltonian-based methods (ED, BSS-QMC, and multigrid
BSS-QMC), the number of bath sites is restricted to Nb = 4
(as above); the impact of this parameter will be studied in
Sec. III C.

Specifically, we discuss static observables that are particu-
larly useful for discriminating between metallic and (possibly
coexisting) insulating DMFT solutions, namely, the double
occupancy

D = 〈n↑n↓〉, (17)

which is proportional to the interaction energy Eint = UD,
and the quasiparticle weight

Z =
[

1 − ∂ Re �(ω)

∂ω

∣∣∣
ω=0

]−1

≈
[

1 + Im �(iω1)

πT

]−1

.

(18)

Open symbols in Fig. 7 denote estimates resulting from
self-consistent DMFT solutions using the conventional BSS-
QMC impurity solver at finite discretization 0.3 � �τ �
0.5, i.e., using the scheme established in Ref. [31]. The

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

D

T = 0.04, Nb = 4

0.0

0.1

0.2

4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2

Z

U 

(a)

(b)

multigrid HF
BSS (Δτ=0.5)
BSS (Δτ=0.4)
BSS (Δτ=0.3)
BSS (Δτ→ 0)

ED

FIG. 7. (Color online) Estimates of double occupancy D(U ) and
quasiparticle weight Z(U ) obtained in independent self-consistent
DMFT calculations using various impurity solvers: multigrid HF-
QMC (crosses), conventional BSS-QMC (open symbols), multigrid
BSS-QMC (circles), and ED (diamonds). In each panel, the upper
(lower) sets of curves correspond to metallic (insulating) solutions.
Lines are guides to the eye only. Arrows in (a) indicate parameters
for which the discretization dependence is studied in Fig. 8.

estimated values of Z, shown in Fig. 7(b), have a nearly
uniform offset in the metallic phase at U � 4.8 relative to
each other and relative to the reference ED solution (gray
diamonds). The Trotter bias inherent in the conventional
BSS-QMC procedure also leads to a significant overestima-
tion of the range of stability of the metallic solution: The
metallic BSS-QMC solutions extend to much larger interac-
tions (e.g., to U ≈ 5.1 at �τ = 0.4) than the ED reference
solution.

This is also seen in corresponding estimates of the double
occupancy [Fig. 7(a)]; however, for these observables the
Trotter bias is highly nonuniform (in the metallic solution):
at U = 4.7 (arrow), the conventional BSS-QMC estimates
are nearly on top of each other; relative deviations are only
clearly seen at stronger interactions U � 4.9 and (to a lesser
degree) at weaker interactions U � 4.5. At the same time,
nearly all of these data deviate significantly (and without
obvious systematics) from the reference ED result (diamonds),
so that an a posteriori elimination of the Trotter bias seems
impossible.

In contrast, the new multigrid BSS-QMC procedure, as
discussed in Sec. II C and illustrated in Fig. 2(d), leads to
estimates of both D and Z (filled circles) which perfectly
recover the ED solutions, even though they are based on BSS-
QMC runs with �τ � 0.3.

This is also true for the insulating solutions (lower sets of
curves in Fig. 7), the stability range of which is also shifted
towards stronger interactions in the case of conventional
BSS-QMC calculations (open symbols); here the Trotter bias
appears roughly uniform for D and very nonuniform for Z.
Again, the multigrid BSS-QMC results agree perfectly with
the ED reference data.

For comparison, crosses and black solid lines in Fig. 7
denote estimates of an unbiased direct impurity solver, namely
the multigrid HF-QMC method [34]; these show good overall
agreement with both the ED and the multigrid BSS-QMC
data. A slight negative deviation in the estimates of D of the
latter, Hamiltonian-based, methods can be traced back to the
relatively poor bath discretization with Nb = 4 auxiliary sites
(cf. Sec. III C).

Since the double occupancy D is best computed directly
on the impurity level (in QMC-based approaches), its physical
value has to be extrapolated from raw estimates D�τ , with
discretizations corresponding to the different grid points
used within the multigrid procedure (in contrast to the
quasiparticle weight Z, which follows from the self-energy
�, which, in turn, is determined from unbiased Green
functions).

As seen in Fig. 8, the Trotter bias inherent in these raw
estimates (filled symbols) is perfectly regular [54] even at
large �τ , so that reliable extrapolations �τ → 0 (thick dashed
lines) are possible both in the metallic phase, at U = 4.7 (upper
set of curves), and in the insulating phase, at U = 5.0 (lower
set of curves).

In contrast, estimates of D resulting from conventional
BSS-QMC calculations in the same range of discretizations
�τ � 0.3 (large open symbols in Fig. 8) show such irregular
dependencies on �τ that quadratic least-square fits (solid
lines) lead to extrapolations �τ → 0 with significant offsets.
Roughly accurate results (dotted lines) can only be obtained
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 0.02

 0.03
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 0.05

0.0 0.1 0.2 0.3 0.4 0.5

D

(Δτ)2

T = 0.04, Nb = 4

U = 4.7

U = 5.0

FIG. 8. (Color online) Discretization dependence of the double
occupancy D as estimated from BSS-QMC, using either the multigrid
scheme (filled symbols) or self-consistent BSS-QMC solutions at
finite �τ (open symbols), within the metallic phase at U = 4.7 (upper
data set) or the insulating phase at U = 5.0 (lower data set). Dashed
(solid) lines denote least squares fits to the multigrid (conventional)
BSS-QMC data at �τ � 0.3; dotted lines denote fits that include also
data at �τ = 0.1 and �τ = 0.2 (small open symbols).

when including raw data at much smaller discretizations (small
open symbols). This shows, again, that only an elimination
of all Trotter errors within the self-consistency cycle, as
introduced by our multigrid approach, can efficiently generate
high-precision results.

C. Comparisons of impurity solvers at full DMFT
self-consistency: Impact of bath discretization

So far, we have restricted the bath representation in all
Hamiltonian-based impurity solvers (ED and both variants
of BSS-QMC) to only Nb = 4 bath sites and focused on
the impact of the Trotter errors and their elimination. From
the mutual agreement with multigrid HF-QMC, an impurity
solver which treats the bath directly on the action level, we
can conclude that this coarse bath discretization allows for
reasonably accurate estimates of D and, in particular, Z at the
moderately low temperature T = 0.04. However, the ED and
multigrid BSS-QMC estimates of D were found in Fig. 7 to lie
a bit below the multigrid HF-QMC data; this deviation must be
an artifact of the bath discretization if the multigrid HF-QMC
reference data are correct. Moreover, we must suspect that the
bath discretization bias gets worse (at constant Nb) at lower
temperatures.

Figure 9 shows estimates of D(U ) and Z(U ) at T = 0.04,
similarly to Fig. 7 and with the same multigrid HF-QMC
reference data (crosses), but now using Hamiltonian-based
impurity solvers with 3 � Nb � 6 bath sites. Here and in
the following, “BSS” refers to multigrid BSS-QMC data,
i.e., without significant Trotter errors; for simplicity, we have
used this method only for the largest auxiliary Hamiltonian
(Nb = 6). Smaller bath sizes (Nb = 3, Nb = 4, and Nb = 5)
are represented only by the ED solution, which is cheaper
and free of statistical noise. At the resolution of Fig. 9,
the estimates associated with the finer bath discretizations
Nb = 5 (triangles) and Nb = 6 (circles) agree with each
other. Therefore and since they are also consistent with the
unbiased multigrid HF-QMC data (crosses), we conclude that

 0.02

 0.03

 0.04

 0.05

 0.06

D

T = 0.04

multigrid HF
multigrid BSS Nb=6

ED Nb=5

ED Nb=4

ED Nb=3

0.0

0.1

4.5 4.6 4.7 4.8 4.9 5.0 5.1

Z
U 

(a)

(b)

FIG. 9. (Color online) Estimates of double occupancy D(U ) and
quasiparticle weight Z(U ) at T = 0.04, obtained in self-consistent
DMFT calculations using Hamiltonian-based impurity solvers with
3 � Nb � 6 bath sites: multigrid BSS-QMC (circles), ED (open
symbols). Multigrid HF-QMC results (crosses) represent the limit
Nb → ∞. In each panel, the upper (lower) sets of curves correspond
to metallic (insulating) solutions. Lines are guides to the eye only.

convergence with respect to the bath discretization is reached
already at Nb = 5 at T = 0.04. In contrast, the ED estimates
of D are apparently slightly too small at Nb = 4 (pentagons);
corresponding results at Nb = 3 (squares) are far off both for
D and Z.

Note that consistent convergence of observable estimates
with Nb, as demonstrated in Fig. 9 (as well as Fig. 10 and
Fig. 11) can only be observed when optimal Hamiltonian
parameters are determined with great care, as described in
Sec. II A, within each self-consistency cycle; otherwise some
bath sites may remain ineffective or the estimates can even
get worse upon increasing Nb. In addition (as always in the
DMFT context), it is essential that enough DMFT iterations are
performed at each phase point in order to ensure convergency
with respect to the self-consistency cycle (cf. Fig. 2).

Halving the temperature amplifies the bath discretization
effects, as seen in Fig. 10: At T = 0.02, only the best
Hamiltonian representation (Nb = 6, evaluated with multigrid
BSS-QMC, circles) recovers all reference multigrid HF-
QMC results (crosses) within their accuracy. At Nb = 5, the
estimates of D in the insulating phase are already slightly
too small; at Nb = 4, strong negative deviations in D(U ) are
apparent also for the metallic solution. The impact of the bath
discretization becomes even much stronger at T = 0.01, as
shown in Fig. 11 for the metallic phase, which is interesting
as a strongly renormalized Fermi liquid (while the properties
of the insulating phase are asymptotically independent of tem-
perature). We find that even the results for Nb = 5 and Nb = 6
deviate significantly in Fig. 11(a) from each other and from the
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FIG. 10. (Color online) Estimates of double occupancy D(U ) and
quasiparticle weight Z(U ) at T = 0.02, using bath discretizations
with 4 � Nb � 6 sites, analogous to Fig. 9.

multigrid HF-QMC reference result, especially at U = 5.3,
near the edge of the stability region of the metallic phase.
Only the multigrid BSS-QMC results using Nb = 7 bath sites
(circles) agree with the reference data within their precision;
even better agreement is observed with data obtained using
the CT-HYB impurity solver (diamonds). Note that BSS-QMC

 0.03

 0.04

D

T = 0.01

CT-HYB
multigrid HF

multigrid BSS Nb=7
ED Nb=6
ED Nb=5
ED Nb=4

0.00
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0.10
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FIG. 11. (Color online) Estimates of double occupancy D(U ) and
quasiparticle weight Z(U ) at T = 0.01, using bath discretizations
with 4 � Nb � 7 sites, analogous to Fig. 9. The CT-HYB data
(diamonds) also represent the limit Nb → ∞.

is much more efficient than ED at Nb = 7; in particular, the
latter would need orders of magnitude more main memory than
the former.

As noted in Sec. II B, a strong increase with inverse
temperature of the number Nb of bath sites needed for a given
accuracy could, in principle, eliminate the scaling advantage
of the DMFT-BSS approach, as its computational cost does not
only include the direct factor β, but also a factor N3

b ≡ N3
b (β).

However, our results indicate that this effect is minor: In our
test case, we needed to add one bath site upon halving the
temperature for roughly constant accuracy; this is consistent
with a scaling Nb ∝ ln(β), i.e., an overall computational cost
proportional to β[ln(β)]3 which is still linear up to logarithmic
corrections.

IV. CONCLUSIONS

The DMFT and its extensions are invaluable tools for
the study of phenomena associated with strong electronic
correlations and for quantitative predictions of properties of
correlated materials. However, the numerical solution of the
DMFT self-consistency equations remains a great challenge:
the established, direct, QMC impurity solvers yield unbiased
results, but provide only limited access to the low-T phase re-
gions of interest, due to the cubic scaling of their computational
cost with the inverse temperature β. Exact diagonalization
(ED) approaches, on the other hand, are limited by their
exponential scaling with the number of sites N of the auxiliary
Hamiltonian.

The multigrid BSS-QMC algorithm presented in this work
allows for solving the DMFT self-consistency equations with
an effort that grows only linearly with β; in contrast to an
earlier BSS-QMC-based method [31], it is free of significant
Trotter errors, i.e., numerically exact at the level of the
auxiliary Hamiltonian. Since the computational cost grows
only cubically with N , much better representations of the bath
are possible than for ED. As demonstrated by applications
to the half-filled Hubbard model in and near the coexistence
region of metallic and insulating solutions and by comparisons
with direct QMC impurity solvers, the new method yields
unbiased results (for sufficiently fine bath discretization),
in spite of using quite coarse Trotter discretizations in the
underlying BSS-QMC evaluations.

The new unbiased quasi-CT impurity solver should show
its full potential in multi-band cases and in cluster extensions
of DMFT, where the prefactor N3 of the BSS-QMC scheme
(compared to a factor of 1 in HF-QMC calculations in single-
site DMFT) is leveled off by the increased complexity of the
original DMFT problem. Our approach can also be extended
beyond Hubbard models; it could be particularly valuable for
the cellular DMFT treatment of the Kondo lattice model, where
interesting temperature regimes are out of reach of the existing
impurity solvers [26,55].
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[36] N. Blümer, Ph.D. thesis, University of Augsburg, 2002.
[37] A. Rubtsov and A. Lichtenstein, Sov. Phys. JETP 80, 61

(2004).
[38] E. Gull, P. Werner, O. Parcollet, and M. Troyer, Europhys. Lett.

82, 57003 (2008).
[39] E. Koch, G. Sangiovanni, and O. Gunnarsson, Phys. Rev. B 78,

115102 (2008).
[40] D. Sénéchal, Phys. Rev. B 81, 235125 (2010).
[41] In our experience, this choice for wn is not crucial: other choices

lead to very similar results.
[42] F. F. Assaad and H. G. Evertz, in Computational Many Particle

Physics, Lecture Notes in Physics, Vol. 739, edited by H. Fehske,
R. Schneider, and A. Weiße (Springer Verlag, Berlin, 2008),
p. 277.

[43] C.-R. Lee, I.-H. Chung, and Z. Bai, in IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (IEEE
Computer Society Press, Washington, DC, 2010), pp. 1–9.

[44] J. Joo and V. Oudovenko, Phys. Rev. B 64, 193102 (2001).
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We have studied the impact of nonlocal electronic correlations at all length scales on the Mott-Hubbard
metal-insulator transition in the unfrustrated two-dimensional Hubbard model. Combining dynamical vertex
approximation, lattice quantum Monte Carlo, and variational cluster approximation, we demonstrate that
scattering at long-range fluctuations, i.e., Slater-like paramagnons, opens a spectral gap at weak-to-intermediate
coupling, irrespective of the preformation of localized or short-range magnetic moments. This is the reason why
the two-dimensional Hubbard model has a paramagnetic phase which is insulating at low enough temperatures
for any (finite) interaction and no Mott-Hubbard transition is observed.

DOI: 10.1103/PhysRevB.91.125109 PACS number(s): 71.27.+a, 71.10.Fd, 71.30.+h

I. INTRODUCTION

The Mott-Hubbard metal-insulator transition (MIT) [1]
is one of the most fundamental hallmarks of the physics
of electronic correlations. Nonetheless, astonishingly little
is known exactly, even for its simplest modeling, i.e., the
single-band Hubbard Hamiltonian [2]: Exact solutions for this
model are available only in the extreme, limiting cases of one
and infinite dimensions.

In one dimension, the Bethe ansatz shows that there is
actually no Mott-Hubbard transition [3–5]; in other words,
it occurs for a vanishingly small Hubbard interaction U .
At any U > 0 the one-dimensional (1D) Hubbard model is
insulating at half filling. One dimension is, however, rather
peculiar: While there is no antiferromagnetic ordering even
at temperature T = 0, antiferromagnetic spin fluctuations are
strong and long ranged, decaying slowly, i.e., algebraically.
Also, the (doped) metallic phase is not a standard Fermi liquid
but a Luttinger liquid.

For the opposite extreme, infinite dimensions, the dy-
namical mean-field theory (DMFT) [6] becomes exact [7],
which allows for a clear-cut and, to a certain extent, almost
“idealized” description of a pure Mott-Hubbard MIT. In
fact, since in D=∞ only local correlations survive [7], the
Mott-Hubbard insulator of DMFT consists of a collection
of localized (but not long-range ordered) magnetic moments.
This way, if antiferromagnetic order is neglected or sufficiently
suppressed, DMFT describes a first-order MIT [6,8], ending
with a critical end point.

As an approximation, DMFT is applicable to the more
realistic cases of the three- and two-dimensional Hubbard
models. However, the DMFT description of the MIT is the
very same here since only the noninteracting density of
states (DOS) and, in particular, its second moment enter.
This is a natural shortcoming of the mean-field nature of
DMFT: antiferromagnetic fluctuations have no effect at all
on the DMFT spectral function or self-energy above the
antiferromagnetic ordering temperature TN .

In three dimensions, antiferromagnetic fluctuations reduce
TN sizably compared to the DMFT (see Fig. 1), although they
are significant only at T � TN . Hence, the reliability of the
DMFT results for the spectral functions is not spoiled in three

dimensions except for the proximity of the antiferromagnetic
transition [9–12], whereas deviations from the DMFT entropy
and susceptibilities can be significant also at higher T [12,13].
With this background, it is maybe not surprising that DMFT
also yields a good description of the MIT even for realistic
material cases, such as the textbook example V2O3 [14].

Much more intriguing, and challenging, is the two-
dimensional (2D) case, which is most relevant for high-
temperature superconductivity and the rapidly emerging field
of oxide thin films and heterostructures. In fact, this issue has
been intensely debated since the 1970s: On the one hand,
several analytical and numerical results [15–20] suggested
that a metallic phase is found at weak coupling, with a
MIT at a finite Uc. At the same time, calculations with the
two-particle self-consistent (TPSC) approach [21–23] showed
a pseudogap in the perturbative regime of small U [24]. Finally,
in Anderson’s view [25] the 2D physics should be considered
fully nonperturbative, similar [5] to that in one dimension,
yielding a Mott gap and the localized physics of the 2D
Heisenberg Hamiltonian for all U > 0.

More recently, most precise numerical studies have shown
unambiguously that the short-range spin fluctuations do
actually reduce the critical interaction Uc for the MIT in
two dimensions compared to DMFT and reverse its slope
(see Fig. 1). (Note that the DMFT insulating phase has the
full entropy of free spins, i.e., ln 2 per site, implying the
positive DMFT slope dUc/dT > 0 of Fig. 1.) Such a 2D
picture has been established by cluster DMFT (CDMFT) [26],
dynamical cluster approximation (DCA) [27,28], and second-
order dual-fermion [29] studies [30], which systematically
include nonlocal correlations beyond DMFT. However, given
the limited cluster sizes of CDMFT and DCA calculations,
only short-range correlations are included.

In this paper, we revisit the MIT in two dimensions and
the effect of antiferromagnetic spin-fluctuations thereupon. To
this end, we employ three methods: (i) the variational cluster
approximation (VCA) [31], which includes short-range corre-
lations, (ii) the dynamical vertex approximation (D�A), which
includes short- and long-range correlations beyond DMFT
on the same footing [32], and (iii) lattice quantum Monte
Carlo (QMC) simulations [33–35] of unprecedented accuracy
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FIG. 1. (Color online) MIT of the Hubbard model on a square
lattice determined by different nonperturbative techniques. The
DMFT transition line (blue [39]) is shifted towards lower inter-
action values due to short-range spatial correlations (violet line:
CDMFT [26]; orange cross at T = 0: VCA). This trend is accompa-
nied by a simultaneous shrinking of the coexistence regions (hatched
regions). The inclusion of long-range fluctuations leads to a vanishing
Uc in the low-temperature regime (crosses and red dashed line:
D�A; solid red box: BSS-QMC). Error bars mark the temperature
range, where the onset of an insulating behavior on the whole Fermi
surface has been found, according to the electronic self-energy of
D�A (see Fig. 3). Also shown are the DMFT [9] and the D�A 3D
Néel temperatures (light gray dotted lines) [11] as well as the D�A
2D one (gray line at T = 0) [40] which fulfills the Mermin-Wagner
theorem [41]; 4t ≡ 1 sets the energy scale.

made possible by the algorithmic progress, increased computer
power, and careful extrapolations (see the Appendix) [36,37].

II. PHASE DIAGRAM IN TWO DIMENSIONS

Let us first summarize the results of our combined com-
parative studies for the half-filled Hubbard model on a square
lattice with nearest-neighbor hopping t ≡ 1/4 using the phase
diagram in Fig. 1; all details on the spectra and the underlying
physics of the different regimes are presented afterwards.

Our VCA data for the MIT at zero temperature (orange
cross in Fig. 1) appear to be consistent with the previous
CDMFT, DCA, and older VCA [38] studies, as well as
with second-order dual-fermion [29] calculations [30]: short-
range antiferromagnetic correlations reduce the critical Uc

(violet line) significantly with respect to DMFT. Moreover,
the width of the coexistence region is considerably reduced
(see the violet hatched area for CDMFT [26]). The VCA
calculations performed on different clusters, however, also
suggest something more definite in this respect: At low
temperatures, the smaller U is, the more important the effect
of longer-range antiferromagnetic fluctuations becomes.

To address this issue in more detail, we include such
long-range correlations by means of D�A. Results are also
compared with lattice Blankenbecler-Scalapino-Sugar (BSS)
QMC calculations [33]. The red dashed line in Fig. 1 marks
the interaction Uc(T ), above which, for a given temperature T ,
a spectral gap is opened because of a strong enhancement of

the electronic scattering rate in the very low frequency regime
(see below).

These D�A data, confirmed by our extrapolated BSS-
QMC data, strongly suggest that at low enough T strong
antiferromagnetic spin fluctuations always open a spectral
gap, even at arbitrarily small values of U (red dashed line
in Fig. 1). Hence, for T → 0, Uc → 0; that is, no MIT can be
identified any longer for the 2D unfrustrated Hubbard model,
similar to what happens in one dimension. As we will elaborate
in the following, the mechanism is, however, rather different
in this case. By increasing U the temperature of the onset of
the insulating behavior is enhanced until the high-temperature
crossover regime of DMFT at intermediate U is reached: Here,
the electron mobility is already suppressed by purely local
correlations.

Our results for the phase diagram indicate that the
“idealized” physical picture of the Mott-Hubbard metal-
insulator transition of DMFT is completely overturned in two
dimensions by strong, spatially extended antiferromagnetic
correlations. In the following, we will discuss explicitly
the most important aspects in terms of spatial correlations
over different length scales and their underlying physics by
analyzing in detail the numerical data used for determining
the phase diagram in two dimensions.

III. SHORT-RANGE CORRELATIONS

The physics of short-range correlations at T = 0 is captured
very well by VCA in the paramagnetic phase. In fact, our
results for a VCA cluster of Nc = 4 sites (plus four bath sites)
show a clear-cut MIT at a finite Uc = 1.4 for T = 0, within
the CDMFT coexistence region of a metallic and an insulating
solution. The local spectral function A(ω) and the self-energy
�(iωn) at the Fermi level of the two coexisting solutions at
U = Uc = 1.4 are reported in Fig. 2. The two solutions differ
qualitatively, showing a correlated metallic behavior with a
quasiparticle weight of ZVCA = 0.37 at k = (π,0) (bottom
panel) and an insulating behavior (top panel) characterized
by a divergence of Im �(iωn) and a corresponding spectral
gap, respectively. The VCA calculation of the grand potential
indicates that for U < Uc = 1.4 the thermodynamically stable
solution is the metallic one, while for U > 1.4 the insulator
is stabilized, with a level crossing at U = Uc. Such a Uc

value is in fairly good agreement with CDMFT [26]; it gets
reduced by slightly increasing the lattice size in the VCA
calculations from Uc = 1.4 for Nc = 4 = 2 × 2 to Uc = 1.325
for Nc = 6 = 2 × 3. This reflects the fact that correlations of
very short range (actually two sites in the case of Nc = 4) are
strong enough to destroy the low-temperature metallic phase
at intermediate coupling but are less effective for lower values
of the interaction. In fact, in the presence of a T =0 (magnetic)
instability, a correct description of the weak-coupling regime
in two dimensions cannot be obtained without the inclusion of
correlations on all length scales, as we show in the following.

IV. LONG-RANGE CORRELATIONS

We include correlations on all length scales by either
extrapolating lattice BSS-QMC results to Nc → ∞ or using
D�A [32] in its ladder version [40], a diagrammatic extension
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FIG. 2. (Color online) Local spectral function of the two coexisting solutions obtained in VCA at the T = 0, U = Uc = 1.4 MIT for a
four-site cluster plus four bath sites. (left) Metallic solution; (right) insulating solution. The insets show the corresponding self-energies at
k = (π,0).

of DMFT (see [29,42,43]) based on the two-particle ver-
tex [44,45]. Certainly, both approaches have their limitations,
either due to the extrapolation procedure of the cluster results
(see the Appendix) or due to the selection of the more
relevant subsets of diagrams. Hence, cross-checking the results
of these complementary approaches, as we do here, is of
utmost importance. In fact, the good agreement observed (top
panels of Fig. 3) validates our results and at the same time
supports the physical interpretation discussed below. The top
panels of Fig. 3 show our D�A and BSS-QMC data of the
imaginary part of the electronic self-energy �(k,iωn) for the
most significant k points at the Fermi surface [i.e., the “nodal”
point k = (π

2 , π
2 ) and the “antinodal” point k = (π,0)] as a

function of Matsubara frequencies for a rather small value
of U = 0.5 at two different temperatures (T = 0.025 and
T = 0.010). Here, one can immediately appreciate how the
one-particle physics changes even qualitatively when reducing
T : AtT =0.025 both D�A (top left panel) and lattice QMC
(left inset) self-energies display a Fermi-liquid behavior for
all k points, not radically different from the DMFT results
(blue squares in Fig. 3). Even the quasiparticle renormalization
Z = (1 − ∂Im�(k,iωn)

∂ωn
|ωn→0)−1 � 0.9 is similar. In contrast, the

scattering rate γ at the Fermi surface is increased from
γDMFT = −Im�DMFT(k,i0+) = 0.002 to (k averaged) γ̄D�A �
0.014, with a moderate k differentiation [46]. By reducing
T , γD�A quickly gets enhanced on the whole Fermi surface,
always displaying its largest value at k = (π,0). At T = 0.010
the self-energy has already changed completely (see Fig. 3,
right): Im�(k,iωn) acquires an evident downturn for all k
points at very low frequencies. This shows that the Fermi
surface is completely destroyed at low T , even at the nodal
momentum k = (π/2,π/2). Such a qualitative change in the
low-frequency self-energy behavior has been exploited for
defining the red dashed line marking the destruction of the
whole Fermi surface and hence insulating behavior in our
phase diagram (Fig. 1).

V. PHYSICAL INTERPRETATION

Our combined numerical analysis shows that there is
no Mott-Hubbard transition at finite U in the unfrustrated

2D Hubbard model, but it also clarifies unambiguously the
physical origin of this result. Evidently, the shift of the
border of the MIT towards U = 0 (Fig. 1) already repre-
sents an indication for rather extended spatial fluctuations,
which emerge from the proximity to the T = 0 long-range
antiferromagnetic order. The important questions still to be
answered are, Can this intuitive picture be confirmed in a
less heuristic and more direct way? What is the exact nature
of these extended antiferromagnetic spin fluctuations? These
questions can be answered by extending our study of the low-T
weak-coupling regime to the D�A spin-correlation function
χs(r,i	n = 0) = ∫ β

0 dτ 〈Sz(r,τ )Sz(0,0)〉 in real space. Our
results for U = 0.5 are reported in the middle panels of Fig. 3,
where we show, as a representative case, the spatial decay
of χs along the x direction, normalized to its r = 0 value at
T = 0.025 (metal) and T = 0.010 (insulator): In both cases,
χs displays an alternating sign, which is the typical hallmark
of predominant antiferromagnetic fluctuations. The spatial
extensions of such fluctuations are quite different, however.
In fact, the long-distance behavior of χs can be approximated

by its asymptotic expression |χs(r →∞)|∝
√

ξ

r
e−r/ξ [47]. But

the correlation length ξ varies from ∼4 in the metallic phase
to values of ξ ≈ 1000 in the low-T insulating phase. A more
quantitative understanding is provided by the study of the
T dependence of ξ in D�A (see bottom panels of Fig. 3).
By reducing T , ξ displays a well-defined crossover to an
exponential behavior, which approximately matches the onset
of the low-T insulating regime at weak coupling. This shows
that the spin fluctuations responsible for the destruction of the
Fermi surface at low T have such a large spatial extension
that it is difficult to capture with (nonextrapolated) cluster
calculations [48,49]. For instance, the corresponding VCA
self-energy at T = 0 (orange curve in Fig. 3) displays a very
clear metallic behavior, similar to that of DMFT.

Insight can also be gained from the potential energy. Our
D�A and BSS-QMC results show that the destruction of the
metallic state upon decreasing T is accompanied by a slight
reduction in potential energy U 〈n↑n↓〉 by about 1% for the
data in Fig. 3. However, this effect occurs in the presence
of strong and very extended (ξ  100) spin correlations.
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FIG. 3. (Color online) (top) Imaginary parts of the self-energies for U = 0.5 and T = 0.025 (left) and T = 0.010 (right), comparing DMFT
(blue squares), D�A [red circles: k = (π/2,π/2); red crosses: k = (π,0)], VCA (orange; T = 0), and BSS-QMC (insets; see the Appendix).
Even for the very small interaction U = 0.5 an insulating gap is opened at T ≈ 0.014 in D�A as well as in BSS-QMC. (middle) Real-space
dependence of the D�A spin-correlation function χs(r)/χs(�0) for the same parameters as above. Shown is the cut r = (x,0), where x is given
in units of the lattice spacing a = 1. The solid gray line (guide to the eye) interpolates between the values at different lattice vectors (blue
diamonds). By fitting (see also the dashed lines in the bottom panels) we obtain the correlation lengths ξ ≈ 4 at T =0.025 (left), while ξ ≈ 1000
at T =0.010 (right). (bottom) T dependence of ξ−1 for different interaction values. A crossover to an exponential behavior is observed at T

consistent with the onset of the insulating behavior [pink (green) area for U =0.5 (0.75)].

Therefore, the physics cannot be really different from the truly
long-range ordered phase [50]. This rules out any particular
role of prelocalization of the magnetic moments in destroying
the Fermi-liquid state, as well as the possibility of mapping
the whole low-T physics onto the 2D Heisenberg model, as
proposed by Anderson [25]. Rather, the emerging physics
appears to be more consistent with the description of the TPSC
approach [22,23], at least in the weak-coupling regime, and of
the low-T calculations with the nonlinear sigma model [51],
as well as to the experimental estimates of ξ in electron-doped
cuprates [52]. In fact, the slight decrease in the potential energy
is a clear hallmark [53–55] of the Slater-like nature of the
antiferromagnetic fluctuations as is the large ξ . We can hence

interpret this as “Slater paramagnons.” The corresponding
physical picture is the following: For all U >0, a gap is
opened at low enough T because of the enhanced electronic
scattering with extended antiferromagnetic paramagnons. The
nature of such spin fluctuations, reflecting the behavior of
the T = 0 ordered phase [51,56] from which they originate,
smoothly evolves from Slater (weak to intermediate coupling)
to Heisenberg (strong coupling). In this respect, it is worth
recalling that DCA results [53] on small clusters (Nc = 4)
also suggest the crossover from Slater-like to Heisenberg-like
fluctuations for U larger than (at least) 1.25. Although still
smaller [48], these interaction values are not too far away
from the regime where the crossover to Heisenberg physics
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is predicted to occur in the long-range ordered phase by
DMFT [54].

VI. CONCLUSIONS

We have studied the effects of spatial correlations on
different length scales on the MIT in the 2D half-filled Hubbard
model: for all U > 0, at low enough (but finite) T , we find a
paramagnetic insulator. This is the result of strong scattering at
extended antiferromagnetic fluctuations (paramagnons). The
nature of these fluctuations gradually evolves from Slater-like
to Heisenberg-like, tracking an analogous evolution for
the T = 0 antiferromagnet. This physical picture is quite
different from both state-of-the art DMFT/CDMFT, which
finds a finite Uc for the (metastable) paramagnetic phase,
and the strong-coupling idea of an effective low-T 2D
Heisenberg model, which assumes preformed spins even at
low U . Instead, the 2D Hubbard model has Uc = 0, and the
nature of the most relevant spin fluctuations is Slater-like
in the whole weak- to intermediate-coupling regime. Let us
stress that if we frustrate the 2D square lattice away from
perfect nesting, e.g., by adding a nearest-neighbor hopping,
antiferromagnetism and hence the MIT originating from
antiferromagnetic fluctuations are expected to shift to a finite
Uc > 0, implying a quantum critical point.
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APPENDIX

The numerical results presented in this paper have been
obtained using complementary techniques with quite different
characteristics. Among those, the dynamical vertex approxi-
mation (D�A) yields results directly in the thermodynamic
limit [32]; the variational cluster approximation (VCA), on
the other hand, is good for short-range correlations [31],
and finally, the Blankenbecler-Scalapino-Sugar (BSS) QMC
calculations for the Hubbard model are applicable to clusters
with a finite number N of lattice sites, with N = L2 for square
lattices with linear extent L. In its generic formulation, the
BSS-QMC algorithm introduces a further systematic bias due
to a Trotter discretization of the imaginary time [33]. In this
work, we employ a multigrid approach for obtaining quasicon-
tinuous imaginary-time Green’s functions without significant
Trotter bias [37], which can be reliably Fourier transformed
in order to compute self-energies; similar strategies have
proven successful in the context of DMFT studies using the
Hirsch-Fye QMC algorithm [36,57,58]. As a result, all “raw”
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FIG. 4. (Color online) Self-energy on the imaginary axis at U =
0.5, β = 100. (a) Finite-size BSS-QMC data (open symbols and
colored lines), extrapolated BSS-QMC results in the thermodynamic
limit (circles and thick black solid line), and D�A data (gray
dash-double-dotted line) vs Matsubara frequency ωn at momentum
k = (π,0); also shown are momentum-independent single-site DMFT
results (thin black line). (b) Finite-size BSS-QMC (symbols) data for
the first three Matsubara frequencies vs inverse system size plus
extrapolations in linear order in L−2 (thin lines) and quadratic order
(thick lines). (c) and (d) Analogous analysis at k = (π/2,π/2).

data shown in this appendix should be regarded as numerically
exact for a given cluster size. The BSS-QMC computational
effort scales as N3/T at temperature T , i.e., proportionally
to L6 at fixed T , which limits high-precision calculations (as
we need here for determining the self-energy on the percent
level) to L � 16. The properties of such finite systems will, in
general, depend on the exact system size (and shape as well
as boundary conditions) and may deviate drastically from the
thermodynamic limit.

We will show in the following that reliable extrapolations
to the thermodynamic limit, as shown in Fig. 3, are still
possible in the parameter range of interest based on BSS-QMC
data obtained for quadratic clusters (with periodic boundary
conditions) and linear extents L = 8,10,12,14,16.

In the left column of Fig. 4, estimates of the self-energy
�(k,iωn) at interaction U = 0.5 and inverse temperature
β = 100 are shown versus Matsubara frequency ωn for the two
momenta k = (π,0) [Fig. 4(a)] and k = (π/2,π/2) [Fig. 4(c)];
due to particle-hole symmetry the self-energy is purely
imaginary at these k points. Finite-size (FS) BSS-QMC data
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(open symbols and colored lines) depend strongly on the lattice
size: with decreasing linear extent L, they show increasingly
insulating tendencies, i.e., larger absolute values of Im �(iωn)
at the lowest ωn. However, as demonstrated in Fig. 4(b), for
the lowest three Matsubara frequencies at k = (π,0), this bias
is very systematic: Already linear extrapolations in the inverse
size L−2 (thin solid lines) yield reasonable first estimates of
the thermodynamic limit L−2 → 0. Much better fits can be
obtained at higher orders, e.g., using quadratic fits in L−2 (thick
lines); however, these become increasingly unstable (in the
presence of statistical noise) at higher orders. In order to define
a consistent procedure that is also stable at k = (π/2,π/2),
where fewer system sizes are available (see below), we use the
average of linear and quadratic extrapolation as the final result,
with error bars that coincide with the individual extrapolations,
as illustrated by the black circle with error bars for �(iω0) in
Fig. 4(b):

�∞ = 1
2

(
�∞

lin + �∞
quad

)
, �∞ = 1

2

∣∣�∞
lin − �∞

quad

∣∣.

The final result of this extrapolation [black circles in
Fig. 4(a)] shows perfect agreement with D�A (gray dash-
double-dotted line) at almost all Matsubara frequencies. A
minor quantitative deviation is only observed at the smallest
Matsubara frequency, at which the absolute value of Im�(k,ω)
is somewhat smaller in D�A.

Since only lattices with linear dimensions L = 4,8,12, . . .

contain the momentum k = (π/2,π/2) in the Brillouin zone
(for periodic boundary conditions), we have only three system
sizes available for extrapolation in this case [symbols in
Fig. 4(d)]. However, the curvatures of the (here, necessarily
perfect but intrinsically somewhat unstable) quadratic fits
agree well with those obtained at k = (π,0), which supports
their reliability. Again, the D�A prediction (here, a metallic
self-energy with a visible momentum differentiation) agrees
well with the final BSS-QMC results [black circles in
Fig. 4(c)].

At the elevated temperature T = 1/40, the finite-size bias
affects the raw BSS-QMC results even more drastically, as
seen in Fig. 5: at both k points, the smallest systems (8 × 8, red
downward triangles) have clearly insulating character, while
D�A (dash-double-dotted line) yields a metallic solution,

-0.04
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-0.01

0.00

Im
 Σ

(i ω
n)
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10x10 
12x12 
14x14 
16x16 
L→ ∞
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L-2 

(a) (b)

(c) (d)

(π,0)

(π/2,π/2)

FIG. 5. (Color online) Self-energy on the imaginary axis at
U = 0.5, β = 40, analogous to Fig. 4.

just like (paramagnetic) DMFT (thin gray line). However,
the 16 × 16 system (squares) is already large enough to
show significant metallic tendencies. Even more importantly,
Figs. 5(b) and 5(d) demonstrate that the dependency of the raw
BSS-QMC data on L−2 is very regular and almost linear again
(even across the FS-induced metal-insulator crossover), so that
the extrapolation L−2 → 0 is still reliable, with even smaller
resulting error bars than at T = 1/100. Interestingly, the final
BSS-QMC results at k = (π/2,π/2) [black circles in Fig. 5(c)]
agree with DMFT within error bars; only at k = (π,0) do
nonlocal antiferromagnetic correlations induce a significantly
more insulating character.
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Deciding the fate of the false Mott transition in two
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Abstract. We present an algorithm for the computation of unbiased Green functions and self-
energies for quantum lattice models, free from systematic errors and valid in the thermodynamic
limit. The method combines direct lattice simulations using the Blankenbecler-Scalapino-Sugar
quantum Monte Carlo (BSS-QMC) approach with controlled multigrid extrapolation techniques.
We show that the half-filled Hubbard model is insulating at low temperatures even in the weak-
coupling regime; the previously claimed Mott transition at intermediate coupling does not exist.

1. Introduction
Numerous studies of the Hubbard model [1] have greatly enhanced our understanding of strongly
correlated electron systems within the last four decades. Specialized methods, namely the semi-
analytic Bethe ansatz and the density matrix renormalization group (DMRG) [2], yield reliable
high-precision results (only) in the case of one spatial dimension. Conversely, the dynamical
mean-field theory (DMFT) [3, 4] provides deep insight in the limit of high dimensionality.
However, the intermediate regime of two (and three) dimensions is less well understood, e.g.,
with respect to pseudogap physics [5–7] and high-Tc superconductivity. In this paper, we will
address another open question: the nature of the Mott metal-insulator transition (MIT) [8,9] of
the half-filled Hubbard model in two dimensions (D = 2).

As indicated by shaded regions in Fig. 1, the Hubbard model is insulating at half filling (1
electron per site) and sufficiently strong coupling, in any dimension, while it is metallic at weak
coupling – as long as the translational symmetry is not broken, e.g., by magnetic order. For
D = 3, one finds antiferromagnetic (AF) ordering [10], which implies insulating behavior, below
the Néel temperature TN (gray dash-dotted line). Such long-range order is ruled out by the
Mermin-Wagner theorem in D = 2 (at temperature T > 0). Single-site DMFT predicts a MIT
with critical interactions 2.3 . Uc . 2.9 (pink dotted line). This transition line is shifted to
weaker interactions within cluster DMFT (CDMFT), which includes short-range correlations
on small clusters (violet solid line) [11]. However, the low-T metallic phase implied by the
CDMFT result is incompatible with several earlier studies highlighting effects of “short-range
antiferromagnetism” [7, 12, 13]. To clarify the situation, we apply the Blankenbecler-Scalapino-
Sugar quantum Monte Carlo (BSS-QMC) [14] approach with controlled multigrid extrapolation
techniques to selected points in the phase diagram (green crosses). We will show that these points
are separated by a MIT line (or narrow crossover) and conclude that the 2D Mott physics is
quite similar to the 3D case [15], in spite of the Mermin-Wagner theorem.

ar
X

iv
:1

50
4.

05
09

0v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

0 
A

pr
 2

01
5



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.5  1  1.5  2  2.5  3

 T

 U

CDMFT

T
N

3D

QMC

?

 m
e

ta
l

 i
n

s
u

la
to

r

full spin

correlations

nonlocal

correlations

DMFT

Figure 1. Schematic representation of the
MIT in the Hubbard model at half filling on
a square lattice. Green crosses: parameters
selected for our unbiased QMC study. Gray
dash-dotted line: Néel temperature for the
cubic lattice (rescaled).
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2. Model and Methods
The single-band Hubbard Hamiltonian is given by

Ĥ =− t
∑
〈ij〉,σ

ĉ†iσ ĉjσ + U
∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
, (1)

with number operators n̂iσ = ĉ†iσ ĉiσ, next-neighbor hopping t, and local interactions U . In this
paper, we set t = 0.25 and consider finite-size clusters with periodic boundary conditions.

The BSS-QMC algorithm is based on a Trotter-Suzuki decomposition of the partition function

Z = Tr
(
e−β(Ht+HU )

)
≈ Z∆τ = Tr

(
Λ∏
l=0

e−∆τHte−∆τHU

)
, (2)

where HU (Ht) corresponds to the interaction (kinetic) term in (1), β = 1/T is the inverse
temperature (kb ≡ 1) and Λ denotes the number of time slices (Λ = β/∆τ). A discrete Hubbard-
Stratonovich transformation simplifies the interaction term, which is quartic in the fermionic
operators, to a quadratic form and a coupling to an auxiliary Ising field h. As usual for quadratic
Hamiltonians, the fermionic degrees of freedom can be integrated out and the partition function
is expressed by determinants of matrices:

Z∆τ =
∑
{h}

det
[
M
{h}
↑

]
det
[
M
{h}
↓

]
. (3)

The sum in (3), and finally the computation of all observables, is performed by Monte Carlo
methods. The main results of the BSS-QMC algorithm are Green functions Gij(τl) on a discrete
imaginary-time grid {τl ∈ [0, β]} for each pair of real-space coordinates {i, j} on the given lattice.
The involved matrix operations for the calculation of the determinants in (3) lead to a scaling
of O(ΛN3

c ), which restricts the algorithm to relatively small clusters (Nc . 400).
To arrive at reliable conclusions regarding the Mott transition using BSS-QMC, one has first

to eliminate all systematic errors (finite-size as well as Trotter errors) and, secondly, calculate
the self-energy on the Matsubara axis, Σ(iωn), from the imaginary-time Green function in a
stable manner. These steps are described in the following.
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3. Elimination of systematic errors
As the elimination of Trotter errors is well established [16–19], we will sketch the scheme only
briefly and focus on the problem specific and physically more relevant finite-size analysis and
present a stable method to calculate unbiased Green functions, even if the raw data are noisy.

Trotter bias – The raw BSS-QMC Green functions (thick colored lines in Fig. 2) do not
only live on different imaginary-time grids {τi}, depending on the chosen discretization ∆τ , but
are also shifted with respect to each other (and to the exact solution). After aligning them on
a common fine grid [20] the Trotter errors can be eliminated with high precision by piecewise
extrapolations of ∆τ → 0 (circles) [19]. However, some fluctuations remain inevitably, especially
when using noisy raw data (using a factor of 10 less QMC sweeps; thin colored lines). These can
be greatly reduced by regularization via a maximum entropy method (MEM), which computes
corresponding spectral functions via the inversion of

G(τ) = −
∫ ∞
−∞

dω A(ω)
e−ωτ

1 + e−ωβ
. (4)

Note that the intermediate spectra A(ω) are used only for producing continuous and smooth
Green functions G(τ) via (4); in this combination, the procedure is stable. After this step,
the results based on high- or low-precision data (thick black line vs. gray line) are hardly
distinguishable and can both be used for stable computations of self-energies.

Self-energy – These quasi-continuous G(τ) can be reliably Fourier transformed to the
Matsubara axis:

G(iωn) =

∫ β

0
dτ G(τ) e−iωnτ . (5)

A quantity of great interest for the analysis of the Mott transition is the imaginary part of the
momentum-resolved self-energy, which is connected to the BSS-QMC Green function G and the
non-interacting Green function G via a Dyson equation [21]

Σk (iωn) = G−1
k (iωn)−G−1

k (iωn) = iωn + µ− εk −G
−1
k , (6)

where µ is the chemical potential and εk the dispersion of the noninteracting problem. As
shown in Fig. 3 (b), the MEM regularizing procedure leads to estimates (crosses and black line)
of the imaginary part of the self-energy (the real part vanishes at k = (π, 0) due to particle-hole
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Figure 4. Finite-size scaling of Matsubara self-energy at U = 0.5, k = (π, 0). Finite-
size BSS-QMC data (open symbols and broken colored lines), extrapolated BSS-QMC results
in the thermodynamic limit (circles and black bold solid line), and DΓA data (gray line)
versus Matsubara frequency ωn at T = 0.01 (a) and T = 0.025 (c); also shown are
momentum-independent single-site DMFT results (thin black lines). (b)+(d) Finite-size BSS-
QMC (symbols) data for the first three Matsubara frequencies versus inverse system size plus
extrapolations in linear order in L−2 (thin lines) and quadratic order (thick lines).

symmetry) which are smooth even at higher frequencies. In contrast, the direct results (green
circles) fluctuate significantly even when based on high-precision raw data (and even more so for
noisy raw data; thin dashed green lines). Note that both methods agree very well at the lowest
Matsubara frequencies, where the QMC predictions are most reliable.

In Fig. 3 (b) the influence of the Trotter discretization is shown. The Trotter biased self-
energies (broken colored lines) deviate from the exact result (black solid line) for large values of
∆τ , in particular at the lowest frequencies. However, in the parameter regime explored in this
study, we can afford small enough values of ∆τ so that the elimination of Trotter errors is less
essential than the finite-size extrapolation to be discussed below.

Finite-size extrapolation of the self-energy – Using the methods described above, unbiased
and stable estimates of the Matsubara self-energy have been obtained for square L×L clusters
with sizes ranging from 8×8 to 16×16 (with a computational effort that varies as N3

c = L6, i.e.,
by a factor of 26 = 64 in this range). Results at the “anti-nodal” [22] momentum point k = (π, 0)
[throughout the paper, unit lattice spacing a = 1 is assumed] are shown (colored symbols and
broken lines) in Fig. 4(a) for the low temperature T = 0.01 and in Fig. 4(c) for the elevated
temperature T = 0.025, respectively. Evidently, the finite-size effects are enormous: while the
smallest systems (8×8, triangles) show insulating behavior, i.e., a strong enhancement of Σ(iωn)
towards small frequencies, at both temperatures, this tendency is reduced with increasing L at
T = 0.01 [Fig. 4(a)] and completely eliminated at T = 0.025 [Fig. 4(c)]. Obviously, careful
extrapolations are needed for reliable predictions in the thermodynamic limit.

These are, indeed, possible, as shown in Fig. 4(b) for T = 0.01 and in Fig. 4(d) for
T = 0.025, respectively, for the three lowest Matsubara frequencies (where the finite-size effects
are largest): as a function of L−2, the finite-size results (symbols) can be fitted with second-order
polynomials (thick lines) with high precision; as these fit functions have small curvatures, linear
extrapolations (thin lines) to the thermodynamic limit (i.e., L−2 → 0) deviate only slightly from
the quadratic ones. We use these deviations as error bars and the arithmetic average of both
extrapolation procedures as final result, as indicated for Σ(iω0) by a black symbol in Fig. 4(b).
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4. Mott physics and correlation lengths
These final QMC results [black symbols and lines in Fig. 4(a) and Fig. 4(c)] show that the
character of the system changes drastically between the selected phase points (crosses in Fig.
1): while the QMC self-energy indicates a metallic phase at T = 0.025, very similar to the
DMFT solution [thin black line in Fig. 4(c)], the low-temperature phase is clearly insulating
- and completely unlike the paramagnetic DMFT solution [thin black line in Fig. 4(a)]. In
contrast, the QMC results are strikingly similar to the DΓA predictions (gray dash-dotted lines),
especially at low T . The dynamical vertex approximation (DΓA) [23, 24] is a diagrammatic
extension of DMFT which works directly in the thermodynamic limit (without any need for
finite-size extrapolations); for the full set of DΓA results see [25]. QMC and DΓA together show
convincingly that the suspected phase transition (dotted line in Fig. 1) is, indeed, present.

The question remains how exactly this metal-insulator transition (or crossover) is related to
magnetic properties. After all, long-range AF order is excluded, in D = 2, by the Mermin-
Wagner theorem. However, as shown in Fig. 5(a), the spin correlations decay much more slowly
at T = 0.01 (circles) than at T = 0.025 (squares). More precisely, the correlation length at the
elevated temperature can be estimated (using 16× 16 QMC data) to ξ ≈ 3.7 while it is clearly
too large (ξ � 30) at T = 0.01 to allow precise determination using QMC. For this observable,
DΓA predictions, shown in Fig. 5(b) and Fig. 5(c) are more reliable, yielding correlation lengths
of ξ ≈ 4 at the higher temperature, in excellent agreement with QMC, and ξ > 300 at T = 0.01,
also consistent with QMC. Using DΓA we could also show that the temperature dependence of
ξ changes its character at the Mott transition (see [25]).

Conclusion and acknowledgements
In spite of its simplifications, the Hubbard model remains a challenging target for theorists,
especially in the interesting case of two spatial dimensions. All available methods have certain
limitations, many of which are of particular concern in the nonperturbative intermediate-



coupling regime at low temperatures and in the presence of longer-range correlations. Therefore,
a single method can hardly yield authoritative results; some predictions may even be completely
off (such as the CDMFT transition line in Fig. 1).

In the study presented in this work (with focus on the QMC methodology; for the full
story, see [25]), we have applied two methods (an unbiased variant of BSS-QMC as well as
the dynamical vertex approximation) with completely different characteristics. Only the near-
perfect agreement between both sets of results makes the predictions truly authoritative (and
validates technical choices on either side). We have settled one important question at half filling,
namely the character of the Mott metal-insulator transition on the square lattice: it is driven
by exponentially long-ranged [25] antiferromagnetic correlations, which act similarly to the AF
long-range order in the cubic case, and is not connected to a quantum-critical point at U > 0.

The same methodology may be useful in other parameter ranges, e.g., for frustrated or
anisotropic Hubbard models, doped systems, or multi-band models. It might also be worthwhile
to compute transport properties, within bubble approximation or beyond, in order to observe
the metal-insulator transition even more directly (than via the self-energy).

We acknowledge support from the research unit FOR 1346 of the German Research
Foundation (DFG) and the graduate school GSC 266.
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