The sensitivity of the photostationary state of NO_x and its implication for the oxidation capacity in a semi-rural and boreal forest region

Dissertation

zur Erlangung des Grades "Doktor der Naturwissenschaften" im Promotionsfach Physik

Am Fachbereich Physik, Mathematik und Informatik der Johannes Gutenberg-Universität Mainz, ausgeführt am Max-Planck-Institut für Chemie, Mainz

> vorgelegt von Muhammad Umar Javed geboren in Rawalpindi, Pakistan

> > Mainz, 2014

Dekan:

- 1. Gutachter:
- 2. Gutachter:

Tag der mündlichen Prüfung: 28. April 2015

Abstract

The roles of nitric oxide (NO) and nitrogen dioxide (NO₂) are strongly coupled with the cleansing capacity of the atmosphere by controlling the photochemical production of ozone (O₃) and affecting the abundance of the hydroxyl (OH) radical and nitrate radical (NO₃). During daytime, when conditions of sufficient radiation and O₃ prevail, NO and NO₂ are in a fast photochemical equilibrium, often labelled as being in a 'photostationary state'. Therefore the sum of NO and NO₂ is referred to as NO_x. The photostationary state of NO_x has been previously studied at various locations ranging from cities (highly polluted) to remote regions (less polluted). The photochemical cycling between NO and NO₂ is understood reasonably well under high NO_x conditions (typically in urban areas). In contrast, significant gaps in understanding the cycling between NO and NO₂ have been revealed in semi-rural to remote regions under low NO_x conditions. These gaps could be related to potential interferences in NO₂ measurements, especially in case of indirect methods that might suffer from artefacts. If NO₂ interferences can be excluded, it is often concluded that these gaps are related to the presence of an 'unknown oxidant' converting NO to NO₂, especially at very low NO_x concentrations. In this study, the photostationary state of NO_x is analysed to evaluate whether unknown processes are present.

A newly developed gas analyser (GANDALF) based on laser induced fluorescence (LIF) for measuring NO₂ directly was deployed for the first time during the 2011 PARADE field study. PARADE took place in a semi-rural area of central Germany in summer 2011. Comprehensive measurements of NO₂ using different techniques (DOAS, CRD, and CLD) facilitated a detailed and successful comparison of GANDALF with other NO₂ measurement techniques. In order to analyse the photostationary state of NO_x based on the NO₂ measurements by GANDALF in this environment, measurements of different relevant trace gas species and meteorological parameters have been carried out. Moderate NO_x levels 10^2 to 10^4 parts per trillion were observed during PARADE at the location, while biogenic volatile organic compounds (BVOCs) from surrounding forest, mainly coniferous trees, were of the order of 10^2 parts per trillion.

The characteristics of the NO_x photostationary state have been studied under low NO_x conditions (10^1 to 10^3 parts per trillion) for a different location in a boreal forest region during HUMPPA-COPEC-2010. The field study HUMPPA-COPEC was conducted at the 'SMEAR II' field station in Hyytiälä in southern Finland in summer 2010.

The characteristics of the photostationary state of NO_x are compared in this study for the two environments. Furthermore, the comprehensive data set including measurements of trace gases relevant for the radical chemistry [OH and hydroperoxy (HO₂) radicals], as well as measurements of the total OH reactivity, provide the opportunity to test and improve our current understanding of NO_x -related photochemistry using a box model constrained to observations.

Although NO_x levels in HUMPPA-COPEC are lower compared to PARADE, while the BVOCs levels, are higher, the cycling process from NO to NO₂ is understood reasonably well in both cases. The analysis of photostationary state reveals that potential unknown processes are not present at either of the largely different locations. The current representation of NO_x chemistry mechanisms is simulated for HUMPPA-COPEC by using the MIM3* mechanism and found to be consistent with results obtained from the photostationary state of NO_x.

Zusammenfassung

Für das Vermögen der Atmosphäre sich selbst zu reinigen spielen Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2) eine bedeutende Rolle. Diese Spurengase bestimmen die photochemische Produktion von Ozon (O3) und beeinflussen das Vorkommen von Hydroxyl-(OH) und Nitrat-Radikalen (NO₃). Wenn tagsüber ausreichend Solarstrahlung und Ozon vorherrschen, stehen NO und NO₂ in einem schnellen photochemischen Gleichgewicht, dem "Photostationären Gleichgewichtszustand" (engl.: photostationary state). Die Summe von NO und NO₂ wird deshalb als NO_x zusammengefasst. Vorhergehende Studien zum photostationären Gleichgewichtszustand von NO_x umfassen Messungen an unterschiedlichsten bei Städten Orten, angefangen (geprägt von starken Luftverschmutzungen), bis hin zu abgeschiedenen Regionen (geprägt von geringeren Luftverschmutzungen). Während der photochemische Kreislauf von NO und NO2 unter Bedingungen erhöhter NOx-Konzentrationen grundlegend verstanden ist, gibt es in ländlicheren und entlegenen Regionen, welche geprägt sind von niedrigeren NO_x-Konzetrationen, signifikante Lücken im Verständnis der zugrundeliegenden Zyklierungsprozesse. Diese Lücken könnten durch messtechnische NO₂-Interferenzen bedingt sein - insbesondere bei indirekten Nachweismethoden, welche von Artefakten beeinflusst sein können. Bei sehr niedrigen NOx-Konzentrationen und wenn messtechnische NO2-Interferenzen ausgeschlossen werden können, wird häufig geschlussfolgert, dass diese Verständnislücken mit der Existenz eines "unbekannten Oxidationsmittels" (engl.: unknown oxidant) verknüpft ist. Im Rahmen dieser Arbeit wird der photostationäre Gleichgewichtszustand von NO_x analysiert, mit dem Ziel die potenzielle Existenz bislang unbekannter Prozesse zu untersuchen.

Ein Gasanalysator für die direkte Messung von atmosphärischem NO₂ mittels laserinduzierter Fluoreszenzmesstechnik (engl. LIF – laser induced fluorescence), GANDALF, wurde neu entwickelt und während der Messkampagne PARADE 2011 erstmals für Feldmessungen eingesetzt. Die Messungen im Rahmen von PARADE wurden im Sommer 2011 in einem ländlich geprägten Gebiet in Deutschland durchgeführt. Umfangreiche NO₂-Messungen unter Verwendung unterschiedlicher Messtechniken (DOAS, CLD und CRD) ermöglichten einen ausführlichen und erfolgreichen Vergleich von GANDALF mit den übrigen NO₂-Messtechniken. Weitere relevante Spurengase und meteorologische Parameter wurden gemessen, um den photostationären Zustand von NO_x, basierend auf den NO₂-Messungen mit GANDALF in dieser Umgebung zu untersuchen. Während PARADE wurden moderate NO_x Mischungsverhältnisse an der Messstelle beobachtet ($10^2 - 10^4$ ppt_v). Mischungsverhältnisse biogener flüchtige Kohlenwasserstoffverbindungen (BVOC, engl.: biogenic volatile organic compounds) aus dem umgebenden Wald (hauptsächlich Nadelwald) lagen in der Größenordnung 10^2 ppt_v vor.

Die Charakteristiken des photostationären Gleichgewichtszustandes von NO_x bei niedrigen NO_x -Mischungsverhältnissen (10 - 10³ ppt_v) wurde für eine weitere Messstelle in einem borealen Waldgebiet während der Messkampagne HUMPPA-COPEC 2010 untersucht. HUMPPA–COPEC–2010 wurde im Sommer 2010 in der SMEARII-Station in Hyytiälä, Süd-Finnland, durchgeführt. Die charakteristischen Eigenschaften des photostationären Gleichgewichtszustandes von NO_x in den beiden Waldgebieten werden in dieser Arbeit verglichen.

Des Weiteren ermöglicht der umfangreiche Datensatz - dieser beinhaltet Messungen von relevanten Spurengasen für die Radikalchemie (OH, HO_2), sowie der totalen OH-Reaktivität – das aktuelle Verständnis bezüglich der NO_x -Photochemie unter Verwendung von einem Boxmodell, in welches die gemessenen Daten als Randbedingungen eingehen, zu überprüfen und zu verbessern.

Während NO_x-Konzentrationen in HUMPPA-COPEC 2010 niedriger sind, im Vergleich zu PARADE 2011 und **BVOC-Konzentrationen** höher, sind die Zyklierungsprozesse von NO und NO₂ in beiden Fällen grundlegend verstanden. Die Analyse des photostationären Gleichgewichtszustandes von NO_x für die beiden stark unterschiedlichen Messstandorte zeigt auf, dass potenziell unbekannte Prozesse in keinem der beiden Fälle vorhanden sind. Die aktuelle Darstellung der NO_x-Chemie wurde für HUMPPA-COPEC 2010 unter Verwendung des chemischen Mechanismus MIM3* simuliert. Die Ergebnisse der Simulation sind konsistent mit den Berechnungen basierend auf dem photostationären Gleichgewichtszustand von NO_x.

Contents

1	S	cient	ific Context and Motivation	1
	1.1	The	e Troposphere	2
	1.	1.1	Role of NO _x in tropospheric chemistry	4
		1.1.1	.1 Sources and sinks	5
	1.	.1.2	Related photochemistry	8
	1.2	The	e quasi-equilibrium state	11
	1.3	Inst	tantaneous photochemical production and loss rates of O ₃	14
	1.	.3.1	Ozone compensation point (OCP)	15
	1.	.3.2	Catalytic efficiency of NO _x	15
	1.4	Mo	tivation and the framework	16
2	G	ANI	DALF	
	2.1	The	e operational method	29
	2.	1.1	Instrumentation	
		2.1.1	.1 Diode laser	
		2.1.1	.2 Herriott cell	
		2.1.1	.3 Photon counting head device	
		2.1.1	.4 Filters	
		2.1.1	.5 Optical reference system	
		2.1.1	.6 Accessories	
	2.2	Las	ser on-off cycle selection	
	2.3	Cal	ibration system	
	2.	.3.1	Gas phase titration	
	2.	.3.2	Model simulations with lab comparison	40
		2.3.2	.1 O ₃ dependency	42
		2.3.2	.2 Residence time	44
		2.3.2	.3 Effect of temperature and pressure	45

		2.3.2	2.4 Atmospheric H ₂ O vapour dependency	48
	2	.3.3	Automated calibration setup	49
	2.4	Int	erferences by trace species	52
	2.5	Pro	ecision and limit of detection	54
	2.6	Ov	verview of different LIF instruments	57
3	F	Field	Experiment: PARADE-2011	59
	3.1	Ov	/erview	59
	3	.1.1	Site description and meteorological conditions	59
	3	.1.2	Instrumentation	63
	3	.1.3	Time series PARADE-2011	65
	3.2	M	easurement setup of GANDALF	70
	3	.2.1	PARADE NO ₂ comparison	71
	3	.2.2	NO ₂ measurement ratios distribution	75
	3.3	Oz	one photochemistry in PARADE	80
4	3.3 P	Oz Phot o	zone photochemistry in PARADE	80
4	3.3 P 4.1	Oz Photo Le	zone photochemistry in PARADE ostationary State (PSS) Analysis: PARADE-2011 ighton ratio (Φ)	80 93
4	 3.3 P 4.1 4.2 	Oz Photo Le Mo	zone photochemistry in PARADE Distationary State (PSS) Analysis: PARADE-2011 ighton ratio (Φ) odified Leighton Ratio (Φ _{mod})	
4	 3.3 P 4.1 4.2 4.3 	Oz Photo Le Ma Ex	cone photochemistry in PARADE Ostationary State (PSS) Analysis: PARADE-2011 ighton ratio (Φ) odified Leighton Ratio (Φ_{mod}) tended Leighton ratio (Φ_{ext}) including measured RO _x	
4 5	 3.3 P 4.1 4.2 4.3 H 	Oz Photo Le Ma Ex HUM	cone photochemistry in PARADE Ostationary State (PSS) Analysis: PARADE-2011 ighton ratio (Φ) odified Leighton Ratio (Φ_{mod}) tended Leighton ratio (Φ_{ext}) including measured RO _x IPPA-COPEC-2010: NO_x photochemistry	
4 5	 3.3 P 4.1 4.2 4.3 F 5.1 	Oz Photo Le Ma Ex HUM	zone photochemistry in PARADE ostationary State (PSS) Analysis: PARADE-2011 ighton ratio (Φ) odified Leighton Ratio (Φ_{mod})	
4	 3.3 P 4.1 4.2 4.3 F 5.1 5.2 	Oz Photo Le Ma Ex HUM Ov Le	cone photochemistry in PARADE ostationary State (PSS) Analysis: PARADE-2011 ighton ratio (Φ) odified Leighton Ratio (Φ_{mod}) tended Leighton ratio (Φ_{ext}) including measured RO _x IPPA-COPEC-2010: NO_x photochemistry /erview HUMPPA-COPEC-2010	
4	 3.3 P 4.1 4.2 4.3 F 5.1 5.2 	Oz Photo Le Ma Ex HUM Ov Le 5.2.7	zone photochemistry in PARADE ostationary State (PSS) Analysis: PARADE-2011 nighton ratio (Φ) odified Leighton Ratio (Φ_{mod}) tended Leighton ratio (Φ_{ext}) including measured RO _x IPPA-COPEC-2010: NO_x photochemistry verview HUMPPA-COPEC-2010 ighton ratio (Φ) 1.1 Φ_{ext2} (Inclusion of NO + HO ₂ in Φ)	
4	 3.3 4.1 4.2 4.3 5.1 5.2 	Oz Photo Le Ma Ex HUM Ov Le 5.2.7 5.2.7	zone photochemistry in PARADE ostationary State (PSS) Analysis: PARADE-2011 righton ratio (Φ) odified Leighton Ratio (Φ_{mod}) ctended Leighton ratio (Φ_{ext}) including measured ROx IPPA-COPEC-2010: NOx photochemistry /erview HUMPPA-COPEC-2010 ighton ratio (Φ) 1.1 Φ_{ext2} (Inclusion of NO + HO ₂ in Φ) 1.2 Estimation of RO ₂ from Φ_{ext2}	
4	 3.3 P 4.1 4.2 4.3 F 5.1 5.2 5.3 	Oz Photo Le Ma Ex HUM Ov Le 5.2.7 Bo	cone photochemistry in PARADE ostationary State (PSS) Analysis: PARADE-2011 nighton ratio (Φ) odified Leighton Ratio (Φ_{mod})	
4	 3.3 P 4.1 4.2 4.3 F 5.1 5.2 5.3 5 	Oz Photo Le Ma Ex HUM Ov Le 5.2.7 Bc .3.1	zone photochemistry in PARADE ostationary State (PSS) Analysis: PARADE-2011 nighton ratio (Φ) odified Leighton Ratio (Φ_{mod})	
4	3.3 P 4.1 4.2 4.3 F 5.1 5.2 5.3 5 5 5	Oz Photo Le Ma Ex HUM Ov Le 5.2.7 Bo .3.1 .3.2	zone photochemistry in PARADE ostationary State (PSS) Analysis: PARADE-2011 nighton ratio (Φ) odified Leighton Ratio (Φ_{mod})	

5.3.2.1.1 Rate coefficient for $RO_2 + NO$	
5.3.2.1.2 Halogen oxides	
5.3.2.1.3 Unknown oxidant	
5.3.2.2 Tuning of (OHReact) _{CAABA/MECCA}	
5.4 Trend of instantaneous O ₃ production in NO _x -limited regime	
5.5 Decline in Φ at low NO	
5.6 Effects of alkyl nitrates on NO _x lifetime and OPE	
6 Conclusions and Outlook	
6.1 Conclusions	
6.2 Outlook	
7 APPENDICIES	
7.1 LISTS	
7.1.1 Figures in main text	
7.1.2 Tables	
7.1.3 Abberviations	
7.2 Instrumental	
7.2.1.1 Optical filters	
7.2.1.1.1 Absorption	
7.2.1.1.2 Reflectance	159
7.2.1.1.3 Transmittance	
7.2.1.2 Laser ON/OFF cycle	161
7.2.1.3 Appurtenances	
7.2.1.4 Reactions for calibration simulations	
7.2.1.5 NO _{GPT}	
7.2.1.6 Sensitivity and LOD	
7.2.1.7 NO Accuracy	
7.2.1.8 Certified Standards	
7.2.1.8.1 NIST	

		7.2.1.8.2	Mass flow calibrator (DryCal)	. 166
7	7.3	PARAD	E-2011	.169
		7.3.1.1	Time Series of NMHC	.169
		7.3.1.2	Air Mass Origin	.169
		7.3.1.3	jO ¹ D versus HO _x	.170
		7.3.1.4	NO ₂ Ratios Correlations	.170
		7.3.1.5	Diel profile of O ₃	.177
		7.3.1.6	BVOCs and NMHC loss rates	.178
		7.3.1.7	Trends	.179
		7.3.1.7.1	Φ colour coded with relative jNO ₂	. 179
		7.3.1.7.2	NO ₂ v/s NO	. 179
		7.3.1.7.3	Effective lifetime of PAN	. 180
7	7.4	HUMPP	PA-COPEC-2010	.181
		7.4.1.1	Time series of BVOCs, (OHReact) _{meas} , and others	.181
		7.4.1.2	Φ colour coded with relative jNO ₂	.182
		7.4.1.3	Leighton Ratio with uncertainty	.183
		7.4.1.4	Trends versus NO	.183
		7.4.1.5	P(O ₃) _{PSS} and P(O ₃) _{CAABA/MECCA}	.184
7	7.5	Mechani	ism Chemical Equations	.185
-	7.6	BIBLIO	GRAPHY	.217
8	A	CKNOV	VLEDGEMENTS	235

1 Scientific Context and Motivation

Researchers have been inspired to study the physical and chemical properties of the atmosphere surrounding the planet Earth ever since the discovery of ozone (Schönbein, 1840) in the mid-19th century. This encompasses the excitement of understanding the thin envelope of air around the globe from the troposphere (0 - 18 km) to thermosphere (> 85 - 90 km). The atmosphere around Earth is a complex layer of different gas species. The most abundant gases of the atmosphere are nitrogen (78%), oxygen (21%), argon (0.93%), and water vapour, the level of which reaches up to 3 % (Seinfeld and Pandis, 2006). A number of different trace gases are present in a range of parts per quadrillion (ppq_v) to parts per million by volume (ppm_v). Various trace gases are emitted into the atmosphere by several means such as anthropogenic activities and emissions at the surface (trees, soil etc.). These gases directly or indirectly contribute to the radiative balance of Earth and in the chemical properties of the atmosphere (Seinfeld and Pandis, 2006). In the last 100 years, the physical and chemical mechanisms of the atmosphere have been disturbed due to the increase in anthropogenic activities, such as growing industry, agriculture, and traffic. Global warming (the greenhouse effect), increases in the tropospheric O₃, and ozone depletion in the stratosphere (< 50 km) are a few examples of changes forced by human activities in the Earth's atmosphere (Brasseur et al., 1999). The increase in primary pollutants, such as nitrogen oxides, sulphur dioxide, volatile organic compounds, and particulates (e.g. soot) affects the air quality. Some of these pollutants undergo photochemical reactions and give rise to secondary pollutants like ozone, oxygenated organic species, organic and inorganic acids, and particulates. The pollution degradation or the self-cleansing mechanism of the troposphere (Levy, 1971) is initiated by oxidation processes in first step and later subsequent deposition. Hydroxyl and nitrate radicals initiate the oxidation process during day and night time, respectively and control the atmosphere's self-cleansing mechanism (Lelieveld, 2010;Rohrer et al., 2014). A better understanding of processes within the atmosphere from polluted to clean regions is of interest due to the direct impacts on life.

1.1 The Troposphere

The troposphere is the lowest part of the atmosphere with a maximum depth of about 18 km in the tropics and a minimum depth of 6 - 8 km at the poles (Brasseur et al., 1999). It contains 80 - 90 % of the atmospheric mass (Brasseur et al., 1999) and nearly all the water vapour and aerosols in the atmosphere are present in this layer. The troposphere is well mixed horizontally and vertically compared to the stratosphere (Brasseur et al., 1999). Generally, temperature in the troposphere decreases with increase in height (Brasseur et al., 1999) at about an average lapse rate¹ of 6.5 °C km⁻¹. Atmospheric pressure is highest at sea level (1013.25mbar or hPa) and decreases quasi-exponentially with height (Brasseur et al., 1999). The lowest part of the troposphere above the PBL is considered to be part of the free atmosphere (Fig. 1.1) (Stull, 1988). The PBL is directly influenced by the Earth's surface emissions and the depth of the PBL is variable, depending on local topology and meteorology, from a few hundred meters to 1 - 2 kilometres (Brasseur et al., 1999).

Fig. 1.1: Stratification of planetary boundary layer. [Figure is adapted from (Stull, 1988)]

The PBL evolves with the time of day and contains different sub layers e.g. entrainment zone, convective mixed layer, nocturnal boundary layer, and surface layer (Fig. 1.1). The lower

¹ Negative rate of change in temperature with respect to height.

region of the PBL is called the surface layer and it contains large gradients of pollution concentrations, wind, moisture, and temperature. It is about 10 % of the PBL's depth (Stull, 1988). The convective mixed layer is resides on top of the surface layer; due to convective turbulence during daytime and it has a nearly uniform potential temperature² and humidity (Stull, 1988). The nocturnal boundary layer is developed due to less turbulence in the absence of surface heating at sunset to sunrise on top of the surface layer. It can be described as a stable boundary layer (Stull, 1988). On top of this layer, the leftover part of the convective mixed layer resides; this leftover part is called the residual layer (Stull, 1988). The entrainment zone is the top most part of the PBL and it separates the convective mixed layer and free troposphere. This zone contains statically stable air and has a negative buoyancy flux ³ (Stull, 1988). The entrainment zone limits the exchange of chemical compounds between PBL and free troposphere. The time scale for the exchange is in an order of several hours to days (Brasseur et al., 1999).

Besides the physical processes, several chemical reactions occur between trace gasses in the troposphere. Amongst these chemical reactions, the self-cleansing mechanism is the one which have vast impact on the quality of the Earth's atmosphere. The reactions of radicals with various chemical compounds leading to deprivations of pollutants make up the self-cleansing mechanism. The radical photochemistry also produces secondary pollutants; most prominent is O₃. In the stratosphere, O₃ is primarily responsible for the absorption of harmful ultraviolet (UV - B) radiation from Sun. These UV - B radiation can cause damage to human health (skin cancer) and ecosystems. About 90 % of O₃ in the atmospheric is located in the stratosphere (Crutzen et al., 1999). Approximately 40 % of the tropospheric O_3 is transported from the stratosphere (Roelofs and Lelieveld, 1997). The contribution of stratospheric O₃ at the surface ranges from about 10 % in summer to 60 % in winter (Roelofs and Lelieveld, 1997). The photochemical production of O_3 in the northern and southern hemispheres is 70 % and 50 % (Roelofs and Lelieveld, 1997), respectively. The increased concentration of O₃ (Tiao et al., 1986;Logan, 1985) in the troposphere is a major concern. In contrast to the stratosphere, O_3 in the troposphere has several harmful effects e.g. the crop damage (Wahid, 2006; Avnery et al., 2011a, b), an increase in premature mortality due to an increase of O₃ and particulate matter (PM_{2.5}) (Lelieveld et al., 2013) etc. NO_x⁴ and RO_x⁵

² The temperature that a parcel [@ pressure (P)] would acquire if adiabatically brought to pressure (P_0).

³ The buoyancy associated with the vertical kinematic flux of virtual potential temperature.

⁴ NO_x = [Nitric oxide (NO) + Nitrogen dioxide (NO₂)]

⁵ RO_x = [Hydroperoxyl (HO₂) + sum of organic peroxy radicals (Σ RO₂)]

control the abundances of O_3 in the troposphere. A better understanding of the role of NO_x with RO_x in the O_3 photochemistry is very important.

1.1.1 Role of NO_x in tropospheric chemistry

In presence of O_3 and sunlight, the interconversion between NO and NO₂ is very fast and therefore, the sum of NO and NO₂ is described as NO_x (= NO + NO₂). NO and NO₂ are considered primary pollutants caused by anthropogenic activity, along with carbon monoxide (CO), sulphur dioxide (SO₂), methane (CH₄), and several others. NO_x and volatile organic compounds (VOCs) are responsible for the production of O₃. The role of NO_x is an important factor in the oxidation capacity of the troposphere because it affects O₃ and contributes to the abundances of OH and NO₃. The NO_x lifetime is determined by their oxidation capacity and consequently affects their abundance. The transport of NO_x is little because of shorter lifetimes (right panel: Fig. 1.2) compared to other primary pollutants like CO, SO₂, and CH₄ etc. Due to seasonal variability of OH (Vaughan et al., 2012), the lifetime of NO_x is in the range of hours to days. Near the Earth's surface it is shorter compared to high altitudes (left side: Fig. 1.2). At higher altitudes NO_x is mostly present in form of NO because of the temperature dependence of the reaction 'NO + O₃ \rightarrow NO₂' (R. 1.1). The reaction slows at lower temperatures.

Fig. 1.2: Lifetimes of NO_x as a function of altitude [left panel from (Ehhalt et al., 1992)]. Spatial and temporal scales of variability for atmospheric constituents [right panel from (Seinfeld and Pandis, 2006)].

1.1.1.1 Sources and sinks

The main sources of NO_x (Logan, 1983) are combustion processes, microbial production in soil and lightening. Global NO_x total emissions are about $42.5 - 47.9 \text{ Tg N yr}^{-1}$ [IPCC⁶ (2007), (Solomon et al., 2007)]. About 78.5 % of total emissions of NO_x into the troposphere are due to anthropogenic activities (Solomon et al., 2007). The major contribution of anthropogenic activity comes from the fossil fuel combustion process, which accounts for 80 % of the anthropogenic emissions of NO_x (Solomon et al., 2007). As the major natural sources of NO_x soil emissions and lighting account for a total contribution of up to 29 % (Solomon et al., 2007). The transport from the stratosphere is less than 2 % (Solomon et al., 2007). SCIAMACHY⁷ observations of the average global tropospheric NO₂ column densities (molecule cm⁻²) between 2002 - 2011 are shown in Fig. 1.3 (Schneider and R. van der A., 2013). The comparatively high values of NO₂ columns (molecules cm⁻²) can be seen over America, Europe, South Africa, and China.

Fig. 1.3: Global average tropospheric NO₂ columns for the period of 2002 to 2011. [figure taken from (<u>Schneider and R. van der A., 2013</u>)].

⁷ SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY

⁶ Intergovernmental Panel on Climate Change

⁽Gottwald et al., 2006) (http://www.iup.uni-bremen.de/sciamachy/)

The direct emissions of NO₂ can be variable from 1 % to 30 % (<u>Lenner, 1987;Kurtenbach et al., 2012</u>). NO_x emissions are mostly in the form of NO (<u>Harrop, 2002</u>) and later converted to NO₂ by the reaction of NO with O₃, HO₂, RO₂, and other oxidants such as halogen oxides (R. 1.1, R. 1.2, R. 1.3, and R. 1.4) (<u>Seinfeld and Pandis, 2006</u>).

$$NO + O_3 \longrightarrow NO_2 + O_2$$
 R. 1.1

$$NO + HO_2 \rightarrow NO_2 + OH$$
 R. 1.2

$$NO + RO_2 \longrightarrow NO_2 + RO^{\bullet}$$
 R. 1.3

$$NO + XO \longrightarrow NO_2 + X$$
 (X = Cl, Br, and I) R. 1.4

NO_x acts as a key catalyst in the formation of tropospheric ozone (<u>Crutzen, 1979</u>). The photolysis of NO₂ (R. 1.5) followed by the reaction R. 1.6 is the main process for the formation of ozone in the troposphere (<u>Levy, 1972;Chameides and Walker, 1973</u>). NO_x with volatile organic compounds (VOCs)⁸ and sunlight control the photochemical production and loss of O₃ in the troposphere (<u>Liu et al., 1987</u>). The increase in emissions of NO_x and VOCs leads to photochemical smog by increasing the production of O₃ under hot and sunny conditions. In the presence of sunlight and O₃, the cycle between reactions R. 1.1, R. 1.5, and R. 1.6 is in steady state. The net effect of intercycling between R. 1.1, R. 1.5 and R. 1.6 is zero in absence of competing reactions. This intercycling is further discussed in Section 1.2. The reaction R. 1.5 is neither a source nor a sink of NO_x.

$$NO_2 + hv (\lambda < 424nm) \rightarrow NO + O(^3P)$$
 R. 1.5

In the troposphere, NO_x leads to the formation of nitric acid (HNO₃), peroxyacetylnitrate (PAN), alkyl nitrates and aerosols. R. 1.7 (Finlayson-Pitts and Pitts, 2000) is an important reaction in that it provides a daytime sink for NO_x and OH in the troposphere. The HNO₃ deposition (acid rain) contributes to eutrophication with damaging effects on the ecosystem (Durka et al., 1994). PAN is a dominant nitrate produced

⁸ VOCs = Σ (Anthropogenic + Biogenic)

 $BVOCs = \Sigma$ Biogenic

subsequently in the oxidation of acetaldehyde followed by a reaction with NO₂ (Brasseur et al., 1999) and acts as a reservoir for NO_x (Singh et al., 1992).

$$NO_2 + OH + M \rightarrow HNO_3 + M$$
 R. 1.7

$$CH_3C(O)O_2 + NO_2 + M \leftrightarrow CH_3C(O)O_2NO_2 + M$$
 R. 1.8

NO₂ reacts with O₃ to form NO₃ and, subsequently, dinitrogen pentoxide (N₂O₅), as shown in R. 1.9 and R. 1.12. In sunlight, R. 1.12 is not significant due to rapid photolysis of NO₃ back to NO₂ or NO. Photolysis rates are typically 0.016 - 0.02 s⁻¹ for the reaction R. 1.10 and 0.17 - 0.19 s⁻¹ for the reaction R. 1.11 at midday (Orlando et al., 1993;Johnston et al., 1996). During night time, NO₃ takes the role of OH and contributes to the formation of peroxy radicals by oxidation of alkenes. Hydrolysis of N₂O₅ (R. 1.13) with subsequent deposition is a sink for NO_x during night time.

$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 R. 1.9

$$NO_3 + hv \ (\lambda \le 580 nm) \rightarrow NO_2 + O$$
 R. 1.10

$$NO_3 + hv \ (\lambda < 700 nm) \rightarrow NO + O_2$$
 R. 1.11

$$NO_2 + NO_3 + M \leftrightarrow N_2O_5 + M$$
 R. 1.12

$$N_2O_5 + H_2O_{(l)} \rightarrow 2HNO_{3(aq)}$$
 R. 1.13

Alkyl nitrates (ANs) are commonly referred as organic nitrates of form RONO₂ (Rosen et al., 2004). ANs are formed in a minor branch of reaction R. 1.3, as shown in R. 1.14 (Rosen et al., 2004) and also with the reaction between alkenes and NO₃ (Browne and Cohen, 2012). The reaction R. 1.15 is important during night time since in daytime the lifetime of NO₃ is very small. In previous studies, it was concluded that ANs substantially contribute to NOy (sum of reactive nitrogen oxides) in urban (Rosen et al., 2004;Perring et al., 2010;Farmer et al., 2011) and rural areas (Murphy et al., 2006;Day et al., 2009;Beaver et al., 2012). Besides the formation of HNO₃, reaction R. 1.14 and R. 1.15 are important sinks of NO_x at least locally (Section 5.6).

$RO_2 + NO$	$\rightarrow NO_2 + RO^{\bullet}$	(1- α)	R. 1.3
$RO_2 + NO$	$\rightarrow RONO_2$	(α)	R. 1.14
Alkenes + NO	$P_3 \rightarrow RONO_2$		R. 1.15

Where α is the yield of the reaction 'RO₂ + NO' that leads to ANs. The variability [1 % to 35 % for ethylperoxy to C₈ peroxy radicals (<u>Rosen et al., 2004;Thieser, 2013</u>)] of α is dependent on the number of carbons in the peroxy radical precursor. It is described as in Eq. 1.1.

$$\alpha \coloneqq \frac{k_{1.14}}{k_{1.14} + k_{1.3}}$$
 Eq. 1.1

1.1.2 Related photochemistry

The oxidation capacity of the troposphere during daytime is mainly defined by OH and O₃ (Thompson, 1992). Besides the photolysis of nitrous acid (HONO), photolysis of O₃ is the main process for the primary formation of OH in the troposphere. O(¹D) is formed from the photolysis of O₃ (R. 1.16). In the lower troposphere with H₂O vapour presence (typically 1-2 %), the reaction between O(¹D) and H₂O vapour leads to the OH formation (R. 1.19). The greatest fraction of O(¹D) is subject to quenching process in the presence of a third molecule, mostly with N₂ and O₂ as in R. 1.17. Only about 14 % (at 298 K and 1 % H₂O vapour) of O(¹D) leads to the formation of OH (Atkinson et al., 2006).

$$O_3 + hv \ (\lambda < 335 nm) \rightarrow O_2 + O(^1D)$$
 R. 1.16

$$O({}^{1}D) + M \rightarrow O({}^{3}P) + M$$
 R. 1.17

The reaction of OH initiates the breakdown of CO and VOCs, resulting in the formation of RO_x ; the simplest of this family is HO_2 , which is formed by the oxidation of CO to CO_2 . However, CH_4 (most abundant) and other VOCs oxidise to RO_x in the manner shown in R. 1.22 and R. 1.23. The photolysis of HCHO and the reaction 'HCHO + OH' also lead to the formation of HO₂ (R. 1.24, R. 1.25, and R. 1.26) (<u>Seinfeld and Pandis, 2006</u>).

$$OH + CO \rightarrow H^{\bullet} + CO_2$$
 R. 1.20

$$H^{\bullet} + O_2 + M \rightarrow HO_2 + M$$
 R. 1.21

$$OH + RH \rightarrow R^{\bullet} + H_2O$$
 R. 1.22

$$HCHO + hv \ (\lambda < 337 nm) \rightarrow H + HCO \rightarrow R. \ 1.21$$
 R. 1.24

$$HCHO + OH \rightarrow H_2O + HCO^{\bullet}$$
 R. 1.25

$$HCO^{\bullet} + O_2 \rightarrow HO_2 + CO$$
 R. 1.26

The formation of RO_x also occurs with the oxidation of alkenes by NO_3 , but in sunlight, this process is not significant due to the rapid photolysis of NO_3 back to NO or NO_2 . In remote areas under very low NO_x concentrations, 'radical + radical' reactions (' $OH + HO_2$ ', ' $HO_2 + HO_2$ ', and ' $RO_2 + HO_2$ ') are dominant over ' $HO_2 + NO$ ' and ' $RO_2 + NO$ ' reactions, while this dominance disappears with an increase of the NO_x concentration (Carpenter et al., 1997). RO_x serves as a reservoir for OH and affects the oxidising potential of a region. The reaction R. 1.2 is also very important because it is a secondary source for OH. An overview of NO_x -related chemistry is shown in Fig. 1.4.

[Adapted from (Aldener et al., 2006;Thieser, 2013)]

Fig. 1.4: NO_x related tropospheric chemistry.

1.2 The quasi-equilibrium state

In the presence of sunlight, a quasi-equilibrium exists between NO and NO₂ due to their rapid conversion to each other that involves multiple oxidants e.g. O₃, HO₂, RO₂ etc. A simple cycling between NO and NO₂ is described by (<u>Leighton, 1961</u>) involving only O₃. During the cycling between reactions R. 1.1, R. 1.5, and R. 1.6, the production and loss rates of NO, NO₂, and O₃ become equal and there is a null cycle established in the absence of competing reactions. This null cycle is referred as a photostationary state (PSS) (<u>Cadle and Johnston, 1952;Leighton, 1961</u>) and it can be written as in Eq. 1.2.

$$NO_2 + hv (\lambda < 424nm) \rightarrow NO + O({}^{3}P)$$
 R. 1.5

$$O({}^{3}P) + O_2 + M \longrightarrow O_3 + M$$
 R. 1.6

$$NO + O_3 \longrightarrow NO_2 + O_2$$
 R. 1.1

$$\frac{[\text{NO}_2]}{[\text{NO}]} = \frac{k_{1.1} [\text{O}_3]}{j\text{NO}_2}$$
Eq. 1.2

In Eq. 1.2, jNO₂ is the photodissociation frequency (s⁻¹) of NO₂ and $k_{1.1}$ in cm³ molecule⁻¹ s⁻¹ is the rate coefficient of reaction R. 1.1 (Atkinson et al., 2004;Sander et al., 2011b). The square bracket in Eq. 1.2 represents concentrations in molecule cm⁻³. The time constant for the interconversion of NO and NO₂ is in the order of 10¹ to 10² s in the presence of sufficient amounts of radiation and O₃. A simple expression Eq. 1.3 can be used to estimate the steady state time constant (τ)_{ss} for the NO_x photostationary state (Martinez et al., 2003;Trebs et al., 2012).

$$(\tau)_{ss} = (jNO_2 + k_{1,1}[O_3])^{-1}$$
 Eq. 1.3

Rapid changes in radiation, e.g. passing clouds, and emissions of NO_x in the vicinity of measurements, e.g. mobile emissions, can perturb the balance of the system and lead to scatter in Φ , especially in morning or evening times due to large change in the solar radiation. Under these conditions the assumption of PSS is generally not valid. The possible local sinks of O_3 such as reaction with alkenes can also perturb the PSS. Dissociation or photolysis of

reservoir species such as PAN also forms NO₂. The dissociation can happen in the sampling lines with longer residence time or directly in the atmosphere and leads to a bias in the PSS.

The PSS is often described by a dimensionless parameter, called the Leighton ratio (Φ) as defined in Eq. 1.4 (Leighton, 1961).

$$\Phi := \frac{jNO_2[NO_2]}{k_{1,1}[O_3][NO]}$$
Eq. 1.4

At the dynamic equilibrium between NO-NO₂-O₃, Φ should be unity as defined in Eq. 1.4; but these cases are limited to a high NO_x region e.g. (Parrish et al., 1986;Carpenter et al., <u>1998</u>). In semi-remote areas, it deviates from unity ' $\Phi > 1$ ' e.g. (Volz-Thomas et al., 2003; Mannschreck et al., 2004) and at pristine background conditions $[NO_x = 5 - 25]$ parts per trillion by volume (ppt_v)], deviations from unity are very large ' $\Phi >> 1$ ' (<u>Hosaynali Beygi et</u> al., 2011). Chemically, O₃ is not the only single oxidant converting NO to NO₂. $\Phi > 1$ can be an indication of other oxidants besides 'NO + O_3 ' converting NO to NO₂ (Calvert and Stockwell, 1983); HO₂ and RO₂ reactions with NO are well known to form NO₂ (R. 1.2, and R. 1.3). These reactions are mainly responsible for $\Phi > 1$. Under NO_x concentrations in the order of several parts per billion by volume (ppb_v), formation of peroxy radicals is suppressed due to an increase in loss of OH due to reaction R. 1.7, and Φ is often close to unity. These conditions are typically observed in cities and highly polluted regions. While under lower NO_x concentrations in the order of ppt_v, deviations (> 1) in Φ are expected, mainly with a proportional increase of peroxy radical role in NO_2 formation e.g. (Ridley et al., 1992). By taking the contributions from peroxy radicals into account, Eq. 1.2 shows a relative proportioning of NO to NO₂ cycle. The Leighton ratio (Φ) can similarly be extended as Φ_{ext} (Eq. 1.6) with inclusion of peroxy radicals (Calvert and Stockwell, 1983).

$$\frac{[NO_2]}{[NO]} = \frac{k_{1,1} [O_3] + k_{1,2} [HO_2] + \sum k_{1,3} [RO_2]}{jNO_2}$$
Eq. 1.5

$$\Phi_{\text{ext}} := \frac{jNO_2 [NO_2]}{(k_{1,1} [O_3] + k_{1,2} [HO_2] + \sum k_{1,3} [RO_2])[NO]}$$
Eq. 1.6

The deviation $\Phi > 1$ can be used to estimate the concentrations of peroxy radicals (<u>Cantrell et al., 1997;Mannschreck et al., 2004;Trebs et al., 2012</u>) by rearranging Eq. 1.5 as follows, into Eq. 1.7. In relation Eq. 1.7, k_{eff} is the derived rate coefficient for all RO_x (<u>Cantrell et al., 1997</u>).

$$(\text{RO}_{x})_{\text{PSS}} := \frac{k_{1.1} [\text{O}_{3}]}{k_{\text{eff}}} (\Phi - 1)$$
 Eq. 1.7

$$k_{\text{eff}} \approx \left(\frac{k_{1,2} [\text{HO}_2] + \sum k_{1,3} [\text{RO}_2]}{[\text{HO}_2] + \sum [\text{RO}_2]}\right)$$
 Eq. 1.8

Halogen oxides also produce NO₂ by reacting with NO (R. 1.4). The sources of halogen oxides such as sea spray are commonly present close to an ocean. So a contribution to deviations in Φ due to 'XO + NO' reaction (R. 1.4) is expected in these regions (Harder, <u>1994;Platt and Janssen, 1995</u>) and should be taken into account. Besides peroxy radicals and halogen oxides, the presence of an unknown oxidant converting NO to NO₂ and lead to deviations in Φ has also been reported (Volz-Thomas et al., 2003;Mannschreck et al., <u>2004;Hosaynali Beygi et al., 2011</u>). Besides chemical activity, measurement uncertainty would contribute to deviations in Φ . Interferences in NO₂ measurement could also lead to the deviation in Φ .

1.3 Instantaneous photochemical production and loss rates of O₃

Reactions of RO₂ and HO₂ with NO (R. 1.2 and R. 1.3) drive the production of O₃ in the troposphere. O₃ photochemical production compared to O₃ loss is dominant in the continental boundary layer, while it is smaller in marine regions (Lelieveld and Dentener, 2000;Lelieveld et al., 2004). In general, VOCs provide the main source, whereas NO_x acts as the catalyst for the production of O₃ in the troposphere. Halogens are commonly present in the marine boundary layer (MBL) (Cicerone, 1981;Chatfield and Crutzen, 1990;Monks, 2005). In the presence of sunlight, these molecules convert to halogen atoms. Halogen atoms then undergo a chemical reaction with O₃ to form a halogen oxide and follow R. 1.4 to reproduce O₃. There is no net effect on O₃ concentrations in this cycle. But instead of reacting with NO, halogen oxides can also react with HO₂ and lead to net O₃ destruction in the MBL (Monks, 2005). The instantaneous photochemical production rate of O₃ is described (Eq. 1.9) by the reaction of RO₂ and HO₂ with NO (Crutzen et al., 1999).

$$P(O_3) \approx (k_{1,2} [HO_2] + \sum k_{1,3} [RO_2])[NO]$$
 Eq. 1.9

Since NO₂ photolysis is the main process for O₃ production, the imbalance between reaction R. 1.1, R. 1.5, and R. 1.6 can be used to describe the gross formation rate of O₃ (Eq. 1.10) (Thornton et al., 2002;Martinez et al., 2003).

$$P(O_3)_{PSS} := (jNO_2[NO_2]) - (k_{1.1}[O_3][NO])$$
 Eq. 1.10

The photochemical *in-situ* loss of O_3 can be calculated as shown in Eq. 1.11 (Crutzen et al., 1999).

$$L(O_3) \approx [O_3] (\beta \times jO^1D + k_{OH+O_3}[OH] + k_{HO_2+O_3}[HO_2])$$
 Eq. 1.11

In Eq. 1.11, jO¹D represents the photolysis frequency of O₃ and β the fraction of O(¹D) reacting with H₂O (R. 1.19), while most part of O(¹D) undergoes the process of quenching and produce back O₃ (R. 1.17, R. 1.18). The effective β is defined in Eq. 1.12.

$$\beta := \frac{k_{H_2O+O(^{1}D)} [H_2O]}{k_{H_2O+O(^{1}D)} [H_2O] + k_{N_2+O(^{1}D)} [N_2] + k_{O_2+O(^{1}D)} [O_2]}$$
Eq. 1.12

The photochemical production and loss of O_3 depends on an available concentration of NO_x in a region (Brasseur et al., 1999). The net photochemical tendency of O_3 can be defined by the difference between P(O₃) and L(O₃) (Crutzen et al., 1999).

1.3.1 Ozone compensation point (OCP)

In the troposphere, a point of equilibrium is established between the production and loss of O_3 . This point is called the ozone compensation point (OCP). It is strongly dependent on the NO_x concentration and often referred to by the term "Critical NO". A minimum value of "Critical NO" is suggested to be about 5 ppt_v of NO (about 15 - 20 ppt_v of NO_x) in the troposphere (Lelieveld and Crutzen, 1990) and it can be calculated from relation in Eq. 1.14 (Hosaynali Beygi, 2010) by rearranging P(O₃) and L(O₃) equations.

$$[NO]_{c} = \frac{L(O_{3})}{k_{1,2}[HO_{2}] + \sum k_{1,3}[RO_{2}]}$$
Eq. 1.13

1.3.2 Catalytic efficiency of NO_x

 NO_x plays an important role in the catalytic cycling of O_3 . The instantaneous catalytic efficiency of NO_x in the production of O_3 can be defined as in Eq. 1.14 (Brasseur et al., 1999). The major loss of NO_x (LNO_x) is the formation of HNO₃ and subsequent deposition. In recent studies, it has been suggested that the formation of ANs can play an important role in reducing the catalytic efficiency of NO_x (Rosen et al., 2004;Farmer et al., 2011;Browne and Cohen, 2012).

Catalytic efficiency of NO_x =
$$\frac{P(O_3)}{LNO_x}$$
 Eq. 1.14

Eq. 1.14 does not include the thermal or photolytic dissociation of reservoir species like HNO_3 , ANs, and PAN etc. Such processes could be important for releasing NO_2 and affecting the catalytic efficiency.

1.4 Motivation and the framework

O₃ is important in the oxidation capacity of the atmosphere and effect on the abundance of the OH radical, the main oxidant of the atmosphere; it is therefore influential in controlling the self-cleansing capability of the atmosphere. It was suggested that even very low concentrations of NO_x can be relevant in the production of O₃ (Lelieveld and Crutzen, 1990;Carpenter et al., 1997). Hence the self-cleansing mechanism of the atmosphere is indirectly affected by NO_x. The inter-coupling of HO_x and NO_x in the catalytic cycling of O₃ continue until the chain termination reactions take place, like the formation of HNO₃ and ANs. HNO₃ formation and subsequent deposition is generally considered as the main loss process of NO_x in the troposphere but the formation of ANs is also another major instantaneous sink of NO_x in areas with the significant biogenic emission (Browne and Cohen, 2012). ANs are important in determining the lifetime of NO_x and catalytic efficiency of NO_x in the urban and rural areas (Browne and Cohen, 2012). It was concluded that under low NO_x (< 500 ppt_v), the lifetime of NO_x is nonlinear with change in fraction of a (Browne and Cohen, 2012).

The concept of the PSS of NO_x provides a tool to test our current understanding of the coupling between NO_x, RO_x, and HO_x in the O₃ photochemistry and its implementation in the current atmospheric models. The PSS has been widely applied in the troposphere for the estimation of the O₃ production rates and NO_x, RO_x, and halogen oxides concentrations in the absence of the relevant measurements, and an enormous effort has been made by the scientific community in the past to understand the PSS and its applicability. A summary of the PSS analysis from previous studies is formulated in Table 1.1. A large number of past studies provide evidence about the importance of the concept and need to determine its reliability when applied to field observations. In past studies (Table 1.1), the PSS was evaluated with some degree of success, but often there had been a bias observed between the PSS estimates and observations (Table 1.1). The Leighton ratio (Eq. 1.4) is often used to investigate the PSS. The concept of the Leighton ratio (Section 1.2) is also used in this study to understand the NO to NO₂ conversion. The main cause of positive deviation from unity of the classical Leighton ratio is that the assumption in the classical Φ that NO₂ only forms from the O₃ and NO reaction. This assumption is erroneous, as HO₂, RO₂, and halogen oxides also contribute considerably, depending on their concentrations and the location (Table 1.1). The classical Leighton ratio had been found to be a reasonable assumption in urban regions e.g.

(Shetter et al., 1983) but far off from reality in semi-rural regions e.g. (Volz-Thomas et al., 2003) and remote regions e.g. (Hosaynali Beygi et al., 2011). Even after taking HO₂ and RO₂ contributions into account (Eq. 1.6), there can be several other reasons for the unexplained positive deviations, for example potential interferences in NO_2 instruments (Davis et al., 1993; Crawford et al., 1996; Cantrell et al., 1997), errors in the measurements (Cantrell et al., 1996), or unknown oxidant (Volz-Thomas et al., 2003; Mannschreck et al., 2004; Hosaynali Beygi et al., 2011), etc. The bias of the PSS is generally attributed due to potential interference in the measurement of NO₂, and to missing information regarding an unknown oxidant for NO to NO_2 conversion (Table 1.1). Accurate measurement of the atmospheric species is obviously important for the understanding of the atmospheric processes and validation of model results. The reliability of the PSS is also quite dependent on the accuracy of NO_x measurements. Accurate measurements of NO_x in the ppt_v range are quite challenging. Chemiluminescence is a reliable and common method for direct in-situ detection of NO. In Table 1.1 it is evident of that almost all studies of the PSS were done by using an indirect NO₂ measurement with one exception of (Matsumoto et al., 2006). The potential role of interference in the indirect measurements of NO₂, which is typically the case in commercial instruments, cannot be ruled out completely. It was concluded in past (Table 1.1) that interference in the NO_2 measurement was a reason for the bias between the PSS and observations (Davis et al., 1993;Crawford et al., 1996;Cantrell et al., 1997). This has motivated a need for the direct, spectroscopically specific, and sensitive *in-situ* measurement of NO₂.

The tropospheric concentrations of NO₂ can vary from few ppt_v (parts per trillion by volume) to 100ppb_v (parts per billion by volume), depending on the remote (Hosaynali Beygi et al., 2011) and urban conditions (Clapp and Jenkin, 2001), respectively. The high variability in NO₂ complicates its measurement. In order to perform NO₂ measurements at the remote areas (e.g. the MBL), in the upper troposphere, and lower stratosphere, a resolution of a few ppt_v is required. This is often not possible with current instruments, especially those available commercially. Techniques like the cavity ring-down absorption spectroscopy' [CRDS; (Osthoff et al., 2006;Hargrove et al., 2006)], tunable diode laser absorption spectroscopy [TDLAS; (Herndon et al., 2004)], cavity enhanced absorption spectroscopy [CEAS; (Wojtas et al., 2007)], and cavity attenuated phase shift spectroscopy [CAPS; (Ge et al., 2013)] provide a direct, *in-situ* measurements of NO₂. However, sensitivities of these direct methods are still not sufficient to measure NO₂ in ranges of a few ppt_v. The laser induced fluorescence

(LIF) technique for NO_2 detection is a promising technique for highly sensitive and selective measurements. It has already been demonstrated in several past studies [e.g. (Fong and Brune, 1997; Thornton et al., 2000; Matsumi et al., 2001; Cleary et al., 2002; Taketani et al., 2007;Dari-Salisburgo et al., 2009)], but most of these systems have large and complex laser systems. In recent times due to the availability of diode lasers, the development of a more compact LIF system with high sensitivity and selectivity has become possible. In this study, an instrument to observe NO₂ by applying the LIF technique is reported, which will also be a part of the OMO (Oxidation Mechanism Observation) mission on HALO [High Altitude and LOng Range Research Aircraft; funded by the German Federal Ministry of Education and Research, the Helmholtz-Gemeinschaft and the Max-Planck-Gesellschaft]. The investigation of the NO to NO₂ cycling has been performed by using measurements of LIF-NO₂ during the PARADE (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) field experiment in 2011 in a semi-rural forest area. The investigation and related effects have been studied for a different boreal forest location during HUMPPA-COPEC (Hyytiälä United Measurements of Photochemistry and Particles in Air -Comprehensive Organic Precursor Emission and Concentration study) in 2010.

Reference Conclusions	Detection NO2	Platform	Environment			
(Cadle and Johnston, 1952); (Leighton, 1961)	Theoretical					
Proposed classical or simple PSS equation Eq. 1.2.						
(<u>O'Brien, 1974</u>)	(<u>O'Brien, 1974</u>) Smog chamber experiment					
A chamber study was done to validate the concept of photostationary state. Equilibrium prevailed in the chamber between NO, NO ₂ , and O ₃ with hydrocarbons of low reactivity. The author also introduced the concept of estimating the concentration of radical species based on the imbalance of the classical PSS.						
(<u>Kelly et al., 1980</u>)	Indirect	Ground 1 km (ASL ⁹)	Rural, remote (Niwot Ridge, mountains of Colorado, USA)			
It was concluded that the classical PSS does not hold in clean air.						
(<u>Stedman and Jackson, 1975</u>); (<u>Calvert, 1976</u>);(<u>Shetter et al., 1983</u>)	<u>ckson, 1975</u>); Urban etter et al., 1983)					
Early studies to test the classical PSS (Eq accounted well.	. 1.2) and N	$O \rightarrow NO_2$ cor	nversion by only O_3			

Table 1.1: An historical overview of studies related to PSS analysis.

⁹ ASL (above sea level)

(Calvert and Stockwell, 1983)	Theoretical				
Inclusion of HO ₂ and RO ₂ is important in Eq.	1.2 for rural	regions.			
(<u>Mcfarland et al., 1986</u>)	Indirect	Airborne 20 - 31 km altitude	30° - 50° N		
This study was done in the stratosphere. The calculated ratio $(NO_2 / NO, Eq. 1.2)$ corresponded with the observation within the combined uncertainty of measurements and calculations.					
(<u>Parrish et al., 1986</u>)	Indirect	Ground 3 km (ASL)	Rural (Southeast of Niwot Ridge, rocky mountains of Colorado, USA)		
In this study an overestimation of the PSS estimates of oxidants was observed compared to a model and it was concluded that the type of oxidant for the conversion (NO \rightarrow NO ₂) is a mixture of peroxy radicals and halogen oxides; if exclusively peroxy radicals, enhanced concentrations can only locally contribute to the imbalance between observation and the PSS.					
(Chameides et al., 1990)	Indirect	Airborne (0 - 5 km) altitude	The west coast at Moffett Field, California, USA.		
An overall 25 % overestimation of the observe the PSS estimate of NO_2 / NO (Eq. 1.5). The	An overall 25 % overestimation of the observed ratio (NO ₂ /NO) was seen when compared to the PSS estimate of NO ₂ /NO (Eq. 1.5). The authors emphasised the requirement of accurate				

NO₂ measurements for an accurate test of the PSS.

(<u>Ridley et al., 1992</u>)	Indirect	Ground	Remote (Mauna Loa, Hawaii)			
The results of the PSS estimates reasonably agreed with the photochemical model calculations.						
(<u>Cantrell et al., 1993</u>)	Indirect	Ground 91 m (ASL)	Rural (Western Alabama, USA)			
$(RO_x)_{PSS}$ (Eq. 1.7) in this study agreed with the measured RO _x for most of the time but an overestimation of $(RO_x)_{PSS}$ had been observed for some period of time. A bias was concluded						

to exist in the measured RO_x or $(RO_x)_{PSS}$.

	(<u>Davis et al., 1993</u>)	Indirect	Airborne (2 - 6 km) altitude	North and South Atlantic
--	-------------------------------	----------	------------------------------------	-----------------------------

Inconsistency was observed between observations and the theory for some data and this bias had been attributed to unidentified interference in the NO₂ measurements.

		Taiga woodland
Indirect	Ground	(Northern Quebec,
		Canada)
	Indirect	Indirect Ground

Measurements were made above the forest canopy. High values of Φ (Eq. 1.4) were calculated. The median value for midday conditions was $\Phi = 2.9$. The oxidation of O₃ was not sufficient to explain the observed ratio of NO / NO₂. This study agreed with the results of previous studies e.g. (Parrish et al., 1986).

(<u>Poulida et al., 1994</u>)	Indirect	Ground	Rural (North Carolina, USA)			
The calculated values of Φ (Eq. 1.4) were up to 1.42 for hourly-based data set. The presence of oxidants other than O_3 for NO \rightarrow NO ₂ conversion was concluded.						
(<u>Harder, 1994</u>); (<u>Platt and Janssen, 1995</u>)	Indirect	Ground	d (Coast of Brittany)			
Theoretical						
Generally, it was proposed that an inclusion of halogen oxides is required in equation Eq. 1.5.						
(<u>Kleinman et al., 1995</u>)	Indirect	Ground	Forested (Metter, Georgia, USA)			
A reasonably good agreement is observed between $(RO_x)_{PSS}$ (Eq. 1.7) and the calculated RO_x with the budget approach.						
(<u>Crawford et al., 1996</u>)	Indirect	Airborne (0 - 12 km) altitude	Western and central North Pacific			
Interference in the NO_2 measurements was concluded to be the reason for a discrepancy between the theory and observations. The authors also emphasised the need for the spectroscopically specific NO_2 detection with a detection limit of a few ppt _v .						

(Cantrell et al., 1996)	Indirect	Ground	Remote (Mauna Loa, Hawaii)			
Inconsistency between the measurements of NO_x and RO_x was concluded to be the reason for a bias in the PSS analysis.						
(<u>Cantrell et al., 1997</u>)	Indirect	Ground 3 km (ASL)	Forested (Idaho Hill, Colorado, USA)			
Indicated possible positive interference in NO ₂ measurements based on an observed 32 % overestimation of the calculated NO / NO ₂ ratio from the PSS compared to the measured NO / NO ₂ ratio. Also $(RO_x)_{PSS}$ was observed to be higher (factor 2.1) than the measured RO _x . Generally, errors in the measurements were attributed to be a cause of difference.						
(Hauglustaine et al., 1996)	Indirect	Ground	Remote (Mauna Loa, Hawaii)			
High levels of $(RO_x)_{PSS}$ (Eq. 1.7) were observed compared to measured RO _x .						
(Carpenter et al., 1998)	Indirect	Ground	North Norfolk coast, UK			
The PSS estimates of peroxy radicals were overestimated compared to results of a model. It was stated that the O_3 loss other than NO is non-negligible and the PSS approach is reliable only in high NO _x regions.						

(<u>Rohrer et al., 1998</u>)	Indirect	Ground	Rural (Pennewitt, North-eastern Germany)

Positive deviations in Φ (Eq. 1.4) were observed. Maximum value of Φ was 1.85. Effects of NO emissions on Φ were described.

(<u>Bradshaw et al., 1999</u>)	Indirect	Airborne (0 - 12 km) altitude	Over Pacific (Southern regions)
----------------------------------	----------	-------------------------------------	------------------------------------

The NO₂ measurements were performed with a modified NO₂ inlet to avoid interference from the dissociation of NO_y species. Authors showed good agreement between the measured and calculated NO₂, with a median value of 0.93 for the ratio NO_{2meas}. / NO_{2cal}. Also the results were compared with a data set prior to the modification of the NO₂ inlet and a discrepancy $[NO_{2meas}. / NO_{2cal} = 3.36 (Mdn.)]$ had been observed between the measured and calculated NO₂. It was concluded that the main reason for the bias was interference from NO_y species [mainly PAN and pernitric acid (HO₂NO₂)].

(<u>Burkert et al., 2001</u>)	Not reported	Ground	Forest (Tábua, Portugal, 70 km east of the Atlantic coast).
---------------------------------	-----------------	--------	--

In this study the theory and observation did not match and it was concluded that the PSS concept to derive RO₂ is inadequate.
(<u>Salisbury et al., 2002</u>)	Indirect	Ground 24 m (ASL)	Semi-remote (Mace Head, Atlantic coast of Ireland)
-----------------------------------	----------	-------------------------	---

The results are in agreement qualitatively with (<u>Cantrell et al., 1997</u>) and (<u>Carpenter et al., 1998</u>).

(Volz-Thomas et al	I., 2003)
--------------------	-----------

Indirect	
----------	--

Ground

Rural (Pabstthum, Germany)

The potential presence of 'unknown oxidant' converting NO to NO_2 was concluded because of the overestimation of the PSS based calculations compared to the observations. Authors also pointed out that the PSS approach is not suitable for calculating the production rates of O_3 .

(Controll of al. 2003)	Indiract	Airborne	Northern middle
(<u>Cantien et al., 2005</u>)	Indirect	(0 - 8 km)	and high latitude

The PSS estimates of peroxy radicals and the NO / NO₂ ratio agreed with measurements at a range of NO concentration greater than 20 ppt_v. But over estimation of the PSS estimates was unexplained for the NO concentrations lower than 20 ppt_v.

$(\underline{Y \text{ ang et al., } 2004})$ Indirect	Ground	Norman,
		Newfoundland)

Authors had discussed the potential errors of the measurements (NO_x, jNO₂, and O₃) and their impact on the derived estimates of the PSS. In this study, it was seen that (RO_x)_{PSS} (Eq. 1.7) level was 77 ppt_v, considerably larger than the one observed at remote marine regions.

		Ground	Hill, Forest
(Mannschreck et al., 2004)	Indirect	985 m (ASL)	(Bavarian foothill of Alps, Germany)

Generally, an overestimation of the PSS based quantities compared to the field measurements was observed. (RO_x)_{PSS} (Eq. 1.7) were higher by factor of 2 to 3 than the measured RO_x. The potential presence of 'unknown oxidant' converting NO \rightarrow NO₂ was concluded.

(Matsumoto et al., 2006)

Diment	Ground	Urban (Southern
Direct	20 m(ASL)	Osaka, Japan)

 Φ_{ext} (Eq. 1.6) was not significantly different from unity and the oxidation of NO by unknown species was not observed.

(<u>Fleming et al., 2006</u>)	Indirect	Ground	North Norfolk coast, UK
---------------------------------	----------	--------	----------------------------

In this study the PSS approach is used to calculate the production of O_3 [P(O₃)_{PSS} (Eq. 1.10)] and is generally in agreement with (<u>Volz-Thomas et al., 2003</u>).

(<u>Griffin et al., 2007</u>)	Indirect	Ground	15 km inland from Atlantic Ocean (New England, USA)
---------------------------------	----------	--------	--

71% of the observed positive deviations in Φ (Eq. 1.4) were explained by the modelled RO_x. The rest of the positive deviations were assumed to be due to the presence of halogen chemistry most likely due to iodine.

(<u>Shon et al., 2008</u>)	Indirect	Airborne (0 - 7 km) altitude	Over Urban region (Mexico city)
------------------------------	----------	------------------------------------	------------------------------------

The NO \rightarrow NO₂ was reasonably well described by Eq. 1.5. The potential role of halogen oxides was observed for the air masses from a marine region.

			MBL
(Hosaynali Beygi et al., 2011)	Indirect	Ship	(Punta Arenas, Chile to
			La Réunion Island)

Eq. 1.5 does not justify the cycling from $NO \rightarrow NO_2$. A large discrepancy was observed between the PSS estimates and observations. The PSS estimates were overestimated compared to observations at very low NO_x levels. The potential presence of 'unknown oxidant' converting NO to NO_2 was concluded.

(Trebs et al., 2012)	

Indirect	Ship	Rivers of the city of Manaus (Amazonas State, Brazil)
		Brazil)

In some cases levels of $(RO_x)_{PSS}$ (Eq. 1.7) are significantly exceed to the modelled RO_x but generally found that the level of $(RO_x)_{PSS}$ are within the range of the model result.

2 GANDALF

This chapter describes a new Gas Analyser for Nitrogen Dioxide Applying Laser induced Fluorescence (GANDALF). GANDALF is designed for accurate [4.5 % (1 σ)], precise [0.5 % + 3ppt_v (1 σ)], *in-situ* observations of NO₂ with a low limit of detection (5 - 10 ppt_v). The instrument's characteristics are described in upcoming sections.

2.1 The operational method

The working principle of GANDALF is Laser-Induced Fluorescence (LIF) at low pressure (<10 hPa). NO₂ is excited with a wavelength well above the photolysis threshold (λ > 420 nm for NO₂) and the red-shifted fluorescence is detected during laser-off periods. The absorption cross-sections and quantum yield of NO₂ are shown in Fig. 2.1.

$$NO_2 + hv (\lambda = 449nm) \rightarrow NO_2^*$$
 R. 2.1

$$NO_2^* \rightarrow NO_2 + hv$$
 R. 2.2

The detected fluorescence hu is directly proportional to the amounts of NO₂ in the cell. The artefact signal from wall scatters (laser light) and dark counts (detector) are removed as the background level (i.e. zero level) of the instrument. The background level of GANDALF is determined by using synthetic air¹⁰. The atmospheric mixing ratios of NO₂ are derived by using Eq. 2.1.

$$NO_{2} = \left[\frac{Signal - S_{BG}}{\alpha_{c}}\right]$$
Eq. 2.1

Where 'Signal' is counts (s⁻¹) and α_c is the calibration factor or sensitivity in counts (s⁻¹ppb⁻¹). ' α_c ' is derived from the slope of counts versus the known amounts of NO₂. 'S_{BG}' is the synthetic air background level in counts (s⁻¹).

¹⁰ "Synthetische Luft KW-frei", Westfalen, Germany

Fig. 2.1: NO₂ absorption cross-sections with quantum yields. Excitation wavelength above the photolysis threshold is shown with an arrow. The absorption cross-sections and quantum yields are plotted from data (<u>Vandaele et al., 1998</u>) and (<u>Roehl et al., 1994</u>), respectively.

2.1.1 Instrumentation

The instrument contains a detection axis connected to a scroll pump and calibrator (Fig. 2.18). The mechanical and optical parts of the detection axis are visible in Fig. 2.2. All mechanical parts inside GANDALF are black anodised and most optical components (Fig. 2.2, no.12 and no.13) are continuously flushed with synthetic air (3×50 sccm) during the period of operation to avoid dead air pockets, dust, fog etc. The inlet for sampling flow is a small orifice with a diameter of 0.7 mm. The distance from point of entrance at the orifice to the centre of the detection cell (laser beams are focused at this spot) is about 150 mm. This orifice and scroll pump combination provides a pressure of 7 hPa inside the detection cell. The current sampling flow is 4100 ± 41 sccm and less than 30 ms time is required for the air molecules to reach the centre of detection cell from the point of entrance.

Fig. 2.2: The section view of GANDALF [Inventor-2009: The drawing is created by defining a plane used to cut through assembly. The figure represents the surface area of the cut];

SF: Sampling flow 1: Diode laser 2: Focussing lens 3: Optical Reference System 4: Motorised mirrors 5: Laser entrance window with wedge 6: Herriott cell's mirrors 7: Concave mirror 8: Conical baffles 9: Focusing lens 10: Optical filters 11: PMT 12: The flushing for optics 13: Zigzag surfaces for reduction of the laser scatter. [3D AutoCAD models in Fig. 2.2; the diode laser (no. 1) is by courtesy of Omicron Laserage Laserprodukte GmbH (www.omicron-laser.de), opto-mechnical parts (parts in no. 3 and 4) by courtesy of Newport (www.newport.com)].

31

2.1.1.1 Diode laser

The diode laser¹¹ in this system has a maximum output power of 250 mW with a modulation

frequency of 5 MHz and a wavelength (λ) of 447 - 450 nm. A plot of the measured intensity versus wavelength for the diode laser is shown in Fig. 2.3. The wavelength of the diode laser is measured with a spectrometer ¹². The spectrometer is calibrated by using a mercury lamp. The convolution of the laser profile and the NO₂ absorption cross-sections (Vandaele et al., 2002) yields to an effective NO₂ absorption cross-section of 5.3×10^{-19} cm²molecule⁻¹ for the wavelength of the diode laser.

Fig. 2.3: Wavelength plot for the diode laser, operated with repetition rate of 5MHz.

2.1.1.2 Herriott cell

The Herriot cell (Herriott et al., 1964) is used to achieve multiple passes for the enhancement of the laser light at the centre of the detection cell. The detection cell of GANDALF is positioned in between the Herriott cell's mirrors. The Herriott cell's mirrors have 99.99 % reflectivity (IBS coating)¹³ in the spectral range of 445 nm to 455 nm. The absorption of light in the Herriot cell's mirror is very small (< 0.1 %). The distance between the Herriott cell's mirrors is twice to their radius of curvature (R = 128 mm). The fluorescent contaminants of Herriott cell's mirrors are measured with the background level measurements (zero air). The laser beam is directed (Fig. 2.2, no.4) into the detection cell by using motorised mirrors. These mirrors are coated to achieve high reflectivity (> 99 %) for a light incidence at 45° (angle of incidence) with a wavelength range between 445 and 455 nm. The laser beam makes a conical shape of multiple passes (25 to 30) inside the detection cell as shown in Fig. 2.4 (A). The multiple passes of the laser beam makes a diameter of about 8 mm at the centre of the detection cell as shown in Fig. 2.4 (A). An open system is also shown in Fig. 2.4 (B),

¹¹ Omicron Laserage (CW Diode-Laser), laserproduckte GmbH, Germany Power stability <1 % hour⁻¹, pointing stability: <10μrad

Beam diameter: 2.55 (perpendicular: 0°/mm) & 2.53 (parallel: 90°/mm)

¹² HR4000 High-Resolution Spectrometer, Ocean Optics, USA

¹³ ATFilms (IBS coating), USA

but this is based on an arbitrary setting on optical bench and here distance between Herriott cell's mirrors is not twice to the radius of curvature.

Fig. 2.4: Multiple passes of the laser beam are visible in the detection cell (A) and in between the Herriott cell's mirrors on an optical bench (B).

2.1.1.3 Photon counting head device

A photomultiplier¹⁴ (PMT) is used for the detection of fluorescence. The PMT is located at a perpendicular position from the sampling flow. The effective area of the PMT is 5 mm in diameter and has a GaAsP / GaAs photocathode with a radiant sensitivity of 87.4 mA W⁻¹. The spectral response of the PMT is in wavelengths of between 380 nm and 890 nm. The PMT has peak sensitivity at 800 nm with a quantum efficiency of 12 %. The fluorescence signal is focused on the PMT by using collimating lenses (Fig. 2.2, no.9) and there is an aluminium concave mirror (Fig. 2.2, no.7) located opposite of the PMT, which redirects fluorescent photons towards the detector.

2.1.1.4 Filters

In front of the PMT, interference filters ¹⁵ (Fig. 2.2, no.10) are used to get rid of any contributions of photons due to scatter from walls of the sampling chamber, Rayleigh scattering and Raman scattering. The filters have a cut-on wavelength of 470 nm and 550 nm with an average transmission of 98 % in the spectral range from cut-on +3 nm to 900 nm. The reflectivity of filters is higher than 99 % for the spectral ranges below the cut-on

¹⁴ Hamamatsu (H7421-50), Japan

Count sensitivity: $2.1 \times 10^5 \text{ s}^{-1} \text{pW}^{-1}$ at 550 nm and $3.9 \times 10^5 \text{ s}^{-1} \text{pW}^{-1}$ at 800 nm

¹⁵ Barr Associates, Inc., USA

wavelengths. The filters have a very small (< 1 %) absorption leading to the fluorescence. The fluorescent contaminant is corrected with the background level measurements.

2.1.1.5 Optical reference system

An optical system is installed to monitor the change in the wavelength and power of the diode laser continuously during a period of operation. The optical system (Fig. 2.2, No.3) consists of photodiodes¹⁶, beam splitters, and a NO₂-filled cuvette before the detection cell as shown in Fig. 2.5. The laser beam splits into a ratio about 9:1 at the beam splitter (Fig. 2.5, 3.1) and ~ 85 - 90 % of the beam goes into the detection cell. The remaining part of the beam (approx. 10 - 15 % i.e. about 25 - 35 mW) splits in to a ratio 1:1 at the beam splitter (Fig. 2.5, 3.2). One half (approx. 5 %) goes to the photodiode (*ref.*) (Fig. 2.5, 3.3) and the other half (approx. 5 %) passes through a NO₂-filled cuvette (Fig. 2.5, 3.4) that is detected by the second photodiode (*CNO*₂) (Fig. 2.5, 3.5). The signal from the photodiode (*ref.*) is used for the continuous diode laser's power monitoring and also as reference for the other photodiode (*CNO*₂). The photodiode (*CNO*₂) is used to monitor the changes in wavelength of the diode laser. The change in wavelength of the diode laser is identified with relative absorption in the cuvette. The signals from these photodiodes are used to account for any relative changes in the power and wavelength of the diode laser.

To suppress stray light, BG12¹⁷ band-pass filters are used in front of the photodiodes. A diode test to check the dependency of absorption in the cuvette (Fig. 2.5, 3.4) with respect to wavelength is shown in Fig. 2.6. During the test, the amount of NO₂ was kept constant inside the detection cell and only the bias current of the diode laser was changed to achieve different wavelength. The signals from the PMT and the photodiode (*CNO*₂) are normalised to the photodiode (ref.) to account for change in the power of the diode laser. A correlation plot between [(*CNO*₂) / (*ref.*)] and [PMT / (*ref.*)] is shown in Fig. 2.6. The values of ratio on the y-axis represent the signal from the fluorescence of NO₂, while the ratio on the x-axis is due to the absorption of the laser light. When the wavelength of the diode laser corresponded to the highest absorption of NO₂, at the same time the highest fluorescence signal is detected by the PMT. There is one photodiode (not shown) at the outlet of the detection cell. The signal from this photodiode is used to monitor any changes inside the Herriott cell, such as mirror reflectivity, beam deflection, and for the Herriott cell's alignment.

¹⁶ OSD 50-5T, Centronic, UK

¹⁷ ITOS (transmittance of approximately 80% at 450nm), Germany

Fig. 2.5: Inventor 2009 assembly of the optical reference system

- 3.1: Beam splitter (reflectivity 10 % at 45°)
- 3.2: Beam splitter (reflectivity 50 % at 45°)

3.3: Photodiode (*ref.*)

3.4: NO₂ cuvette

3.5: Photodiode (CNO₂)

[3D AutoCAD models in Fig. 2.5; for the diode laser (blue) is by courtesy of Omicron Laserage Laserprodukte GmbH (www.omicron-laser.de) and beam splitter holder (3.1 and 3.2) by courtesy of Newport (www.newport.com)].

Fig. 2.6: A plot between the PMT and photodiode (*CNO*₂); both signals are normalised to the photodiode (*ref.*).

2.1.1.6 Accessories

The stray light in the system is reduced to a minimum level by using a combination of baffles. There are different types of baffles (Fig. 2.2, No.11 and 13) used inside the system to reduce scatter from walls or mirrors. The shape of a baffle surface is based on a zigzag pattern with a 30° angle. The sharpened edges of a baffle provide less surface area for the laser light to scatter and have the characteristic of a beam dump (7.2.1.2; A, B, and C). While operating the instrument in the field trial and lab, the diode laser and PMT are continuously kept at a constant temperature (25 ± 2 °C) by using a circulated water chiller. There is a need to keep the PMT and the diode laser system at constant temperature according to the manufacturer's recommendations. An elevated temperature can lead to an increase in the dark counts of the PMT, change in the power or wavelength of the diode laser, and even permanent damage from overheating. Similarly a decrease in temperature can lead to

condensation. So, it is required to avoid such changes by maintaining constant temperature. Based on calculations for ambient conditions, a chiller with a cooling capacity of about 100 W is required to maintain temperature. Copper cooling plates (7.2.1.2, D) are designed to generate turbulent flow for good cooling efficiency.

2.2 Laser on-off cycle selection

The diode laser has a 'Deepstar' mode, which is exploited as an advantage for the system. While operating in this mode, with the fast repetition rate of 5 MHz, there is no laser radiation during the off period. The rise time for the diode laser to transition from on to off is based on a theoretical calculation by taking into account key parameters like NO₂ absorption cross-section, pressure, flow velocity, lifetime NO₂ fluorescence, interference filter's suppression and the power of the diode laser. Fig. 2.7 shows a simulated fluorescence signal from 1 ppb_v of NO₂ available during the duty cycles of '100 ns / 100 ns' and '100 ns / 300 ns' as an example for an initial 5000 ns period. The calculated sensitivity for different laser onoff cycles is shown in Fig. 2.8. For a comparison to current operational on-off cycle, three different possibilities have been demonstrated in Fig. 2.8. Relative sensitivity is plotted against the diode laser turn-off duration for a different turn-on time. The best sensitivity of the instrument is achievable by the operating on-off cycle of 200 ns. The diode laser is operated currently with the on-off cycle of 200 ns (1:1). The raw signal is stored in 4 ns bins (4 ns bin = 1 channel) for a specified time of integration (typically 1 s is used). In GANDALF, the laser on-off cycle is 200 ns and the fluorescence from NO₂ is detected during laser off period (channel 15 - 39, appendix 7.2.1.2). The first few channels (channel 15 - 19) of the laser off period are ignored because these channels contain scatters from the laser light and walls of detection cell. The sum of channels (in this case 20 - 38) is considered as a signal for NO₂ for further data acquisition.

Fig. 2.7: Simulated ON/OFF cycles for operating the diode-laser

Fig. 2.8: Sensitivity of the instrument based on simulation is demonstrated for three different on/off cycles of diode laser operation.

2.3 Calibration system

The LIF method is not an absolute method and requires calibration. The sensitivity (Eq. 2.1) of GANDALF is determined with known amounts of NO_2 for different conditions such as background noise, laser power or wavelength, temperature, pressure, residence time in sampling line etc. The calibration system is described with its characteristics and uncertainties in the following sections.

2.3.1 Gas phase titration

NO₂ gas is available commercially and it can be used for calibration (Thornton et al., 2000;Dari-Salisburgo et al., 2009), but there is much concern about the stability of NO₂ in a cylinder. Therefore, the quantitative gas phase titration between NO and O₃ (R. 1.1) is used to produce NO₂ for the calibration of GANDALF. NO standards are available commercially; in this case the NO calibration mixture for the gas phase titration is traceable to a primary NIST¹⁸ standard (4.91 ± 0.04 µmol mol⁻¹). The uncertainty of the primary NIST standard is better than 1 % (level of confidence 95 %). The overall uncertainty of the derived value of NO calibration mixture is 2 %. This includes the uncertainty of the primary NIST standard and the maximum relative standard deviation (1.5 %) of the derived value of NO calibration mixture (appendix 7.2.1.7).

NO concentrations are almost completely consumed during a gas phase titration in the calibrator. This is achieved by using a high concentration of O₃. NO₂ also react with O₃ to form NO₃ (R. 1.9). Although the reaction ['NO₂ + O₃' (R. 1.9)] has a slow reaction rate $[3.5 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at k₂₉₈ (Atkinson et al., 2004)] compared to the 'NO + O₃' reaction $[1.8 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at k₂₉₈ (Atkinson et al., 2004)], but with the presence of higher concentrations and longer residence times, the reaction between NO₂ and O₃ can be important and leads to a loss of the NO₂ generated in the calibrator. The reaction (R. 1.9) also leads to a further reaction between NO₂ and NO₃ (R. 1.12). The calibrator for GANDALF has a reaction chamber, which is used for the gas phase titration between NO and O₃ and afterward, the calibration gas is diluted with synthetic air (zero air). A box model is used to assess a best possible scenario for the calibrator e.g. amounts of concentrations, residence time, and flow rates etc.

¹⁸ National Institute of Standards and Technology [an agency of U.S. Department of Commerce, www.nist.gov]

2.3.2 Model simulations with lab comparison

A best scenario is found for the calibration setup by using Box Model (BM) simulations (appendix 7.2.1.4). These simulations helped to optimise the effect of factors like residence time, pressure, temperature, and reactions (like; R. 1.1, R. 1.9, and R. 1.12). The balance between NO and O_3 concentration varied to achieve maximum conversion efficiency for $NO \rightarrow NO_2$ in simulations and compared with lab results. According to the best scenario, a residence time of about 7.5 s with a ratio of O_3 to NO larger than 12 is required inside the reaction chamber. This way, NO can be converted efficiently to NO₂ and the negative effects of different parameters (as described above) will be minimised. This setup was deployed for calibration and results compared with the model. The comparison between lab tests and model simulation is good. A BM simulation based on typical parameters¹⁹ of the calibrator for gas phase titration between NO and O_3 is shown in Fig. 2.9 and Fig. 2.10. The mixing ratios of NO, O₃, and NO₂ are plotted as a function of residence time in Fig. 2.9. This simulation shows that more than 99 % of NO is converted inside the reaction chamber. The major fraction of NO is converted to NO_2 with in the residence time of 7.5 s. Inside the reaction chamber, Fig. 2.10 shows evidence that the formation of NO_3 and N_2O_5 is negligible $(< 0.5 \text{ ppb}_{v})$ compared to NO₂ (> 100 ppb_v). The formation of NO₃ and N₂O₅ can only raise 1 % uncertainty in the generated NO₂ for typical operating conditions of the calibrator.

 $^{^{19} \}mbox{ For this specific simulation, initial parameters; } NO = 5 \mbox{ sccm} \times 10.55 \mbox{ ppm}_v, \\ O_3 = 500 \mbox{ sccm} \times 1.7 \mbox{ ppm}_v, \\ \mbox{ Residence time} = 7.5 \mbox{ s, } \\ \mbox{ Flow} = 8000 \mbox{ sccm} \\ \mbox{ Temperature and Pressure} = 298 \mbox{ K and } 1013.25 \mbox{ hPa}$

Fig. 2.9: Box model simulation of gas phase titration between NO and O₃

Fig. 2.10: Formation of NO_3 and N_2O_5 , based on simulation shown in Fig. 2.9.

2.3.2.1 O₃ dependency

To check the optimum ranges of O_3 concentrations, for an optimum combination of residence time and conversion efficiency, the calibration system was tested with different concentrations of O_3 in the lab. Fig. 2.11 shows the response of the PMT of GANDALF to a change in the O_3 mixing ratios of the calibrator with a constant NO concentration. The PMT signal is proportional to the amount of NO₂ generated inside the calibrator. At concentrations of O_3 lower than 1 ppm_v in the calibrator, a lower signal of the PMT was observed (Fig. 2.11). This is because not all the NO is utilised within the reaction chamber. The PMT signal started to decrease after achieving a maximum signal at about 1.3 ppm_v of O_3 for a constant concentration of NO. This is also well explained by BM simulations. The peaks are similar in case of the PMT signal and BM simulations. The decrease in PMT signals at high O_3 concentrations (1.3 ppm_v to 5 ppm_v) is also well explained by the derived NO₂ concentrations from the BM. This decrease in PMT signal is mainly due to a loss of NO₂ because of reactions R. 1.9 and R. 1.12 at a high concentrations of NO₂ and O₃.

Fig. 2.11: PMT signal with respect to change in O₃ mixing ratios.

The higher O_3 concentration in the calibrator provides a shorter NO lifetime. The uncertainty of the generated NO₂ ('NO + O₃' titration) is much less sensitive to O₃ compared to NO. This uncertainty arises due to an increase in the loss of NO₂ inside the reaction chamber because of the formation of NO₃ and N₂O₅. The reduction in NO₂ is only 1 % (Fig. 2.12) with an increase of 1 ppm_v in O₃ above the maxima at about 1.3 ppm_v of O₃ (Fig. 2.11). The O₃ concentrations are always kept above this threshold limit and the concentrations are measured with an O₃ analyser having a typical precision of 5 %. Above the threshold, a 5 % change in O₃ can only produce an uncertainty in NO₂ of less than 0.5 %.

Fig. 2.12: NO₂ loss due to increase in O₃ inside the GANDALF calibrator.

2.3.2.2 Residence time

A NO_x analyser ²⁰ is used to determine the remaining concentrations of NO inside the calibrator after the gas phase titration. About 99 % of NO is utilised in the gas phase titration for most of the cases at $O_3 > 1.3$ ppm_v. Based on NO and O_3 concentrations, there are two different regimes inside the calibration system as a function of flow rate: (1) reaction chamber for the gas phase titration (2) dilution with synthetic air after the reaction chamber. For the calibration system, the total residence time for the synthetic calibration gas is determined by using Eq. 2.3.

$$NO_{GPT} = D[NO_i] \left(e^{-(k_{1,1}[O_3]t_1)} \right) \left(e^{-(k_{1,1}[D \times O_3]t_2)} \right)$$
Eq. 2.2

$$\Rightarrow [t_1 + D t_2] = -\left[\frac{\ln\left(\frac{NO_{GPT}}{D [NO_i]}\right)}{k_{1.1} [O_3]}\right]$$
Eq. 2.3

In Eq. 2.3, 'NO_{GPT}' is measured with a NO_x analyser and is defined as 'the remaining concentration of NO in the calibration gas after the gas phase titration and dilution'. 'NO_i' is the initial concentration of NO without the gas phase titration. 'D' is the dilution factor and is a ratio between the reaction chamber flows to total flow. 't₁' is the residence time for the reaction chamber and 't₂' is the travel time for gas required after the reaction chamber to the inlet of GANDALF. 'O₃' is the concentration inside the reaction chamber and is measured with a commercial UV-photometer²¹. 'k_{1.1}' is the temperature dependent rate coefficient for R. 1.1. There are two slightly different values reported in the literature for 'k_{1.1}' as follows:

$$k_{1.1} = 3 \times 10^{-12} \times e^{(-1500/T)}$$
(Sander et al., 2011b)
$$k_{1.1} = 1.4 \times 10^{-12} \times e^{(-1310/T)}$$
(Atkinson et al., 2004) (IUPAC)

²⁰ Model: ECO PHYSICS CLD 780 TR, Switzerland

²¹ ANSYCO, O3-41M, 'Analytische Systeme und Componenten GmbH', Germany

Based on Eq. 2.3, the average value of total residence time ' $[t_1 + D t_2]$ ' is 7.32 s (JPL) with a variability of 0.25 s and 8.38 s (IUPAC) with a variability of 0.29 s. The estimated accuracy of these two values of the total residence time is 6.5 % (1 σ). The calculated total residence time with assumption of plug flow is 7.73 s. The likelihoods for being accurate for k_{1.1} (IUPAC) and k_{1.1} (JPL) are indistinguishable with respect to plug flow assumption as shown in Fig. 2.13, with blue and green shaded areas for k_{1.1} (IUPAC) and k_{1.1} (JPL), respectively.

Fig. 2.13: Residence time for NO₂ calibration gas in the calibrator.

2.3.2.3 Effect of temperature and pressure

The temperature and pressure also affect the formation of NO_2 inside the reaction chamber. These effects are tested with the BM. In simulations, all parameters except temperature or pressure are kept constant. The change in temperature always affects the rate of the reactions. At low temperatures, the reaction between NO and O₃ slows, and the conversion efficiency from NO to NO₂ can be disturbed for a constant residence time. The temperature inside the GANDALF's calibrator is about 30 to 40 °C. The BM simulation suggested that any change in the temperature within an interval of [5, 45 °C] leads to an uncertainty of only 1 % (1 σ). Similarly, the effect on the calibration gas due to a change in the atmospheric pressure is not significant. Based on the BM simulation, the uncertainty in the NO₂ concentration of calibration gas due to a change in the atmospheric pressure over an interval of [800, 1013.25] hPa can be maximally 0.5 % (1 σ). Fig. 2.14 and Fig. 2.15 show the plot (BM) for NO₂ formation versus residence time inside the reaction chamber at different temperatures and pressures, respectively. Notice in the figures of BM simulations that the mixing ratios of formed NO₂ are fairly constant from a residence time of 6 s to 7.5 s.

Fig. 2.14: NO₂ concentrations (BM simulation) inside the calibrator as a function of time based on different temperatures.

Fig. 2.15: NO₂ concentrations (BM simulation) inside the calibrator as a function of time for different pressures (mbar or hPa).

2.3.2.4 Atmospheric H₂O vapour dependency

The calibration gas for GANDALF primarily contains N₂ (~79.5 %) and O₂ (~20.5 %) with H₂O vapour (< 25 ppm_v). The level of H₂O vapour in the atmosphere reaches up to 3 % (<u>Seinfeld and Pandis, 2006</u>). The sensitivity of the instrument is mainly reduced by rising the atmospheric H₂O vapour because an increase of atmospheric H₂O vapour leads to an increase in the quenching of NO₂ fluorescence. The effect of atmospheric H₂O vapour on sensitivity is corrected for by the simultaneous measurement of H₂O vapour in the atmosphere. The H₂O dependency is checked by diluting the calibration gas with known amounts of water vapour concentrations. The H₂O concentrations are determined with an existing calibration system for the LIF-OH instrument (<u>Martinez et al., 2010</u>).

The effect observed for H₂O vapour is slightly different for channel 20 - 23 and channel 24 - 38. In the data analysis, each of the sections is evaluated for H₂O vapour dependency separately. Fig. 2.16 (L) shows a plot for the LN of intensity with respect to time and based on different H₂O concentrations. The distinguishing slopes in Fig. 2.16 (L) for the two sections present relevant quenching effects. Fig. 2.16 (R) demonstrates the effects of change in the atmospheric H₂O on the sensitivity of GANDALF. The decrease in the sensitivity for channel 20 - 23 and channel 24 - 38 is $4.5 \% \pm 0.3 \% (1\sigma)$ and $5 \% \pm 0.3 \% (1\sigma)$, respectively, at 1 % of atmospheric H₂O vapour.

Fig. 2.16: The dependence of NO₂ fluorescence intensity on increasing water vapour concentrations in GANDALF (L). Change in sensitivity (normalised to zero H₂O %) due to change in water vapour (scale equivalent to atmospheric H₂O %) (R).

2.3.3 Automated calibration setup

A robust calibration system has been developed for the automated calibration of the instrument. GANDALF is calibrated 4 - 8 times per day during a field operation to determine changes in the sensitivity and shift in the background level of the instrument. An example for a plot of the instrument signal counts (s⁻¹) versus known amount of NO₂ concentration is shown in Fig. 2.17. The calibration system is controlled by Mass Flow Controllers (MFC)²² and electronic valves²³. All MFC are calibrated using a DryCal²⁴ sensor which is trace able to a NIST standard (NIST traceability is confirmed by Westphal²⁵). The uncertainty in operating range of flow, based on a certified value is 1 % (level of confidence 95 %). O₃ is generated for the calibration using an ozone generator²⁶. The concentrations of O_3 are measured from time to time by using a commercial UV photometer. Different NO₂ mixing ratios are achieved by changing the NO flow (range up to 10 ± 0.1 sccm), whereby the O₃ concentration (> 1.3 ppm_v) and flow (500 \pm 5 sccm) are kept constant. Fig. 2.18 shows a schematic of the setup for the automated calibration procedure of GANDALF. A small calibration pump (Cal. pump) is connected to the main sampling line of GANDALF. A threeway electronic valve (EV2) and manual needle valve (MNV) are attached in front of the Cal. pump. To achieve residence time of less than 0.1 s in the sampling line for minimising the line effects (e.g. decomposition of species like PAN, chemical reaction of the ambient NO and O_3 etc.), a flow ≥ 10000 sccm is required during ambient air measurements. GANDALF has a flow of 4100 sccm through the pin hole and the rest of the flow is diverted to a main exhaust by the Cal. pump. The EV2 opens line L1 or L2 for the Cal. Pump at positions P1 or P2, respectively. The amount of total sampling flow can be increased or decreased by adjusting the MNV. During ambient air measurements, EV2 is opened for L1 at position P1 and allows an extra flow of about 8000 - 9000 sccm to pass from the sampling flow to the Cal. Pump, as shown by the L1 line (green) plus arrow (white) in Fig. 2.18. Line L1 is simultaneously used to condition the NO calibration line with a flow of 2 sccm NO gas. Frequent zero-air measurements (once per hour during PARADE-2011 for example) are necessary to monitor changes in the background level of GANDALF. During background level measurements, an excess of zero-air 3900 sccm (aqua colour arrow, Fig. 2.18) is

²² MKS Instruments and Bronkhorst HIGH-TECH B.V, USA

²³ Solenoid Operated Diaphragm, Galtek, USA

²⁴ DC-2, BIOS International Corporation, USA

²⁵ WESTPHAL measurement and control technique GmbH & Co. KG, Germany

²⁶ SOG2, 185nm, UVP - Ultraviolet Products, USA

diverted to the Cal. pump through the line L1 at P1(EV2) along with 5100 sccm flow of ambient air. A three-way electronic valve (EV3) with MFC (Syn.) is used to switch synthetic air background flow (8000 ± 80 sccm) on and off in the line L3 at P2 (EV3) and the dilution of NO₂ calibration gas at P1 (EV3). During calibration of GANDALF, EV2 is open in the line L2 at P2 to take an overflow of 3900 sccm with 5100 sccm from the ambient as shown with the red colour line (L2) in Fig. 2.18. For the gas phase titration, the flow of O₃ is switch on and off with two-way electronic valve EV1 and MFC (O₃). The flow of NO (1 - 10 sccm) is controlled by a MFC (NO) as shown in Fig. 2.18. Since all overflows are diverted to an exhaust, this setup allows frequent checks of the GANDALF's sensitivity and background level without disturbing the ambient conditions for a nearby operating instrument. Based on calibrations during PARADE-2011, the deviation in repeatability of the sensitivity was less than 2.7 % (1 σ). The overall uncertainty of the calibration system taking propagation of errors into account is better than 5 % (1 σ).

Fig. 2.17: A plot between known amounts of NO₂ versus the fluorescence signal as an example of the calibration of GANDALF. The calibration constant α_c (Eq. 2.1) is determined by the slope of the curve.

2.4 Interferences by trace species

There can be several atmospheric gas species that can absorb the laser light inside the detection cell and undergo a process of photodissociation and fluorescence. These processes can lead to interference for the NO₂ measurements with GANDALF directly (photodissociation process) or indirectly (fluorescence). The absorption cross-section of several abundant gas species is checked at the wavelength of the diode laser. Iodine monoxide (IO) has an absorption cross-section $[3.9 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$, (Harwood et al., 1997)] factor about 8 times higher than NO₂ at 449 nm and the presence of IO has been reported in the marine areas (Commane et al., 2011). Even a few ppt_v of IO in the atmosphere can contribute significantly to the fluorescence signal of NO₂, but the fluorescence lifetime of IO is only 1-10 ns [e.g. (Bekooy et al., 1983;Newman et al., 1998)]. The initial 20 ns signal during laser off period is neglected in the GANDALF data evaluation and therefore after 20 ns the IO fluorescence signal is insignificant to interfere with the NO₂ fluorescence signal.

Nitrogen containing inorganic species (NO₃, N₂O₅, HONO₂, HO₂NO₂, PAN, ClONO, ClNO₂, and ClONO₂) can produce NO₂ by photodissociation and this can happen inside the detection cell. The absorption cross-sections at 449 nm has not been reported in literature for these gas species [N₂O₅ (Harwood et al., 1993), HONO₂ (Burkholder et al., 1993), HO₂NO₂ (Singer et al., 1989), PAN (Talukdar et al., 1995), and ClONO (Molina and Molina, 1977)] and it is not known that these species exhibit any absorption of the laser light resulting in photodissociation. The absorption cross-section for the gas species [ClONO₂ (Molina and Molina, 1979), and ClNO₂ (Ghosh et al., 2012)] is a factor about 10⁴ smaller than NO₂ at 449 nm and can therefore be neglected.

NO₃ has a larger absorption cross-section (Wayne et al., 1991) at 449 nm compared to previously described nitrogen containing inorganic species. The effective absorption cross-section [calculated from (Wayne et al., 1991)] is about a factor of 2 smaller compared to that of NO₂ at the wavelength of the diode laser. NO₃ also has a red-shifted fluorescence spectra (Wood et al., 2003) similar to the case of NO₂. So NO₃ is the species with the most potential to interfere with NO₂ measurements in GANDALF. The recommended quantum yield of NO₃ is about 1 at wavelengths below 585 nm (Sander et al., 2011b); hence, its fluorescence is not likely to interfere with the NO₂ fluorescence because the photodissociation of NO₃ to NO₂ is by far the most dominant process present inside the detection cell. Interference from photodissociation of NO₃ is a two-photon process for the instrument as below:

 $NO_3 + hv_{DiodeLaser} \rightarrow NO_2 + hv_{DiodeLaser} \rightarrow NO_2^* \rightarrow NO_2 + hv_1^*$

The ratio of the atmospheric concentration between NO₂ and NO₃ is very high e.g. during PARADE the median value of the ratio NO₂ / NO₃ = 430 at NO₃ > 0 with a minimum value 12, so the impact of NO₃ to NO₂ conversion compared to the ambient NO₂ is insignificant inside the detection cell (e.g. Eq. 2.5). A relative contribution [NO₃ \rightarrow NO₂ / NO_{2(ambient)}] of 1% is achievable inside the detection cell only if NO₃ in the atmosphere is a factor about 62 larger than NO₂, but this scenario is highly unlikely, as NO₃ will always be smaller than NO₂ in the atmosphere. The photodissociation lifetime of NO₃ is about $1.2 \times 10^4 \ \mu s$ (Eq. 2.4) while the residence time in the beam of the laser is only about 2 µs. So the efficiency of the one-photon process (ambient NO₂ + hv_{DiodeLaser} \rightarrow NO₂^{*} \rightarrow NO₂ + hv[°]) will always greater than the two-photon process as previously described in this paragraph, so it will predominate.

$$\tau (\text{NO}_3)_{\text{photodis.}} \approx \left(\begin{cases} \text{Eff. abs. cross - section} = 2.7 \times 10^{-19} \frac{\text{cm}^2}{\text{molecule}} \end{cases} \right) \\ \times \{ \text{Quantum yield} = 1 \} \\ \times \left\{ \text{Laser photon flux} = 3 \times 10^{20} \frac{\text{photon}}{\text{cm}^2} \text{ s}^{-1} \right\} \approx 10^4 \,\mu\text{s} \end{cases}$$

$$NO_{3} \rightarrow NO_{2} \approx \left(\begin{cases} Eff. abs. cross - section = 2.7 \times 10^{-19} \frac{cm^{2}}{molecule} \\ \end{cases} \right) \\ \times \{Quantum yield = 1\} \times \{Residence time = 2 \ \mu s\} \\ \times \{Laser photon \ flux = 3 \times 10^{20} \frac{photon}{cm^{2}} \ s^{-1} \\ \} \\ \times \{Ambient \ NO_{3} = 2 \times 10^{9} \frac{molecule}{cm^{3}} \\ \} \right) \approx \frac{10^{5} molecule}{cm^{3}}$$

Alkenes and aromatics (aldehydes and benzene) are also abundant in the troposphere. The absorption cross-sections of alkenes and aromatics exist in the UV range (< 300 nm) (<u>Keller-Rudek et al., 2013</u>), well below the visible wavelengths and cannot interfere with GANDALF (contains blue laser light). To minimise the impact of heterogeneous or thermal conversion of species like, PAN, HO₂NO₂, and N₂O₅ to yield NO₂, a short residence time of < 0.1 s is generally used by keeping the sampling flow high [e.g. PARADE ≈ 12000 sccm in 0.1 m long sampling line, (Section 3.2 and 7.3.1.4)]. The systematic dependency on the several measured atmospheric quantities was checked for differences between GANDALF and other measurements of NO₂ during PARADE-2011. No evidence of systematic correlation for a potential interference is observed for GANDALF (Section 3.2.2).

2.5 Precision and limit of detection

The precision of the instrument is evaluated by taking random individual calibration points into account during the field experiment (PARADE-2011) and the relative precision of GANDALF is shown in Fig. 2.19 for these data points. The relative precision on calibration points was better than 0.5 % (1 σ min⁻¹) for most of the data points despite a few outliers (Fig. 2.19). An absolute value of 3 ppt_v is required to add in the relative precision for overall precision of GANDALF. The absolute value of 3 ppt_v (1σ) is obtained from an offset of a fit between absolute precision of calibration points verses the mixing ratios of NO₂. This absolute value arises from variability in the zero-air signal. The variations in background level signal for GANDALF follows a square root dependency on integration time. These variations around an average value for zero-air mostly control precision of the instrument close to detection limit. The zero-air deviations can be reduced by using a high averaging interval. The precision of the instrument background level was also investigated using a continous signal of zero-air for about 50 minutes. In order to verify the square root dependency of the signal variability on integration time, an Allan deviation plot is used (Riley, 1995;Land et al., 2007). Fig. 2.20 shows an overlapping (Riley, 2008) Allan deviation plot of variations in a background level with respect to averaging time. The variations in background level with a 60 s integration time is equivalent to an absolute NO₂ value of about 3 ppt_v. This plot (Fig. 2.20) also shows that the random noise of the instrument background level can be reduced by averaging, with square root dependency of time, up to a 500 s period. The background level of GANDALF is frequantly checked during a field operation (e.g. during PARADE, 1 background level check per hour). An extra variable uncertainty can also be involved that depends on the time interval between two background level measurements (Section 3.2).

The background level is important for defining the limit of detection (LOD). It can be assessed by the variation of the zero-air signal. Based on an Allan deviation plot (Fig. 2.20), a limit of detection about 3 ppt_v of NO₂ for 1 minute averages is expected and even lower for higher averages of time up to 500 s. In this case the LOD of GANDALF is calculated based on relation (Eq. 2.6) by considering a background level twice to the actual background level.

$$LOD = \frac{SNR}{\alpha_c} \sqrt{\frac{2 S_{BG}}{t}}$$
 Eq. 2.6

In Eq. 2.6, α_c is the calibration factor or sensitivity in counts (s⁻¹ ppb⁻¹) and SNR is 2. S_{BG} is synthetic air background in counts (s⁻¹) and 't' is the averaging time in seconds. The LOD for GANDALF, based on sensitivity and background measurements during the field experiment (PARADE-2011), varied between 5 and 10ppt_v.

Fig. 2.19: Relative precision check of GANDALF for randomly selected NO₂ calibration points.

Fig. 2.20: An overlapping Allan deviation plot for the dependence of the 1σ variation in the background level vs. integration time.

2.6 Overview of different LIF instruments

Reference	$\lambda^{\text{laser type}}$	Laser	Abs. cross-sec.	Cell	LOD
		power	(×10 ⁻¹⁹)	pressure	[SNR = 2]
	(nm)	(mW)	cm ² molecule ⁻¹	(Pa)	(ppt _v min ⁻¹)
(George and Obrien, 1991)	532 ²⁷	250	1.5	37	600
(Fong and Brune, 1997)	565 ²⁸	250	0.6	1000	460
(<u>Thornton et al., 2000</u>)	585 ²⁹	100-400	1	467	6
(<u>Matsumi et al., 2001</u>)	440 ³⁰	100	7	35	12
(Matsumoto et al., 2001)	523.5 ³¹	360	1.4	93	125
(<u>Cleary et al., 2002</u>)	640.2 ³²	16	3.9 ^c	27	145
(Matsumoto and Kajii, 2003)	532 ³³	6500	1.5	267	4
(<u>Taketani et al., 2007</u>)	410 ³⁴ , 473 ³⁵	10, 15	6, 3	67	390, 140
(Parra and George, 2009)	406.3 ³⁶	35	6	101325	2000 ^A
(Dari-Salisburgo et al., 2009)	532 ³⁷	8000-12000	1.5	60	12
GANDALF	447- 450 ³⁸	max. 200	5.3 ^E	700	5-10

Table 2.1.	Overview of	f different I II	Finstruments (operating	narametere	and LOD)
Table 2.1 .	Overview O		r mstruments (operating	parameters	and LOD)

^E Effective absorption cross-section (Section 2.1.1.1).

^C Cooling enhancement.

^A Ambient pressure in the detection cell.

²⁷ Nd:YAG laser

²⁸ Copper vapour laser-pumped dye laser

²⁹ Pulsed YAG-pumped dye laser

³⁰ Optical parametric oscillator laser

³¹ Nd:YLF laser harmonic

³² External-cavity tunable diode laser

 ³³ Nd:YVO₄ pulse laser pumped by a solid-state laser
 ³⁴ GaN-based laser diode

³⁵ Diode-pumped Nd:YAG laser
³⁶ CW GaN semiconductor laser diode
³⁷ YAG Q-switched intra-cavity doubled laser

³⁸ CW diode laser

3 Field Experiment: PARADE-2011

An overview of the conditions is provided in this chapter. The intercomparison of NO₂measurements and O₃-related photochemistry is discussed in up-coming sections.

3.1 Overview

The PARADE (**PA**rticles and **RA**dicals: **D**iel observations of the impact of urban and biogenic Emissions) field experiment took place at the Taunus Observatory on Kleiner Feldberg (825m ASL; 50° 13' 25'' N, 8° 26' 56'' E), in Germany from the 15th of August (DOY³⁹ = 226) to the 9th of September (DOY = 251) 2011. The general focus of PARADE was to investigate summertime biogenic emissions and photochemistry in a semi-rural environment. A description of conditions from previous observations can be found in (Crowley et al., 2010). The objective of PARADE was to investigate the photochemistry at the interface between the biosphere and the lower troposphere. This includes the study of nitryl chloride's chemistry (Phillips et al., 2012), the VOCs emission response of Norway spruce (*Picea abies*) trees with seasonal variations (Bourtsoukidis et al., 2012;2014) and related effect of the total OH reactivity (Nölscher et al., 2013), and the impact of radicals on aerosol chemistry (Bonn et al., 2013). In this chapter, NO₂ measurements with GANDALF are discussed in comparison to other instruments. A budget for the O₃ photochemistry is presented to estimate the O₃ tendency of the region.

3.1.1 Site description and meteorological conditions

The observatory is located in the vicinity of the Taunus region at the hilltop of Kleiner Feldberg (Fig. 3.1). The measurement site is a semi-rural area with significant biogenic emissions. A total area of 5 km radius around the observatory is dominated by coniferous (40 %), broad-leaved (32.5 %), and mixed forest (9 %). The coniferous forest is a major contributor of biogenic emissions from the northeast side, whereas the southwest side is dominated by broad leaved forest. The measurement platform (Fig. 3.4) was located at the top of the observatory. The area around the platform (in 50 m radius) has only a few trees and the land is covered with grass and blueberry bushes. The site is often affected by

³⁹ DOY (Day of year 2011)

anthropogenic activities of nearby cities such as Frankfurt/Main (30 km SE), Wiesbaden (20

km SW), Mainz (25 km SSW), and some roads within 5 - 10 km, depending on the wind directions. To provide an overview of the area around the observatory (50 km radius), Table 3.1 shows a percentage composition of different land uses.

The temperature during PARADE varied within the range of 5 - 28 °C with an overall average of 14.8°C. The temperature conditions

Fig. 3.1: Orography of the Taunus region [adapted from (<u>Handisides, 2001</u>)]

during PARADE can be separated into two phases. The periods of DOY = 226 - 237 and DOY = 243 - 246) for PARADE were slightly warmer and the temperature mostly stayed above 15 °C, whereas in the other periods of DOY = 238 - 242 and DOY = 248 - 252 the temperature was below 15°C. The relative humidity (RH) had an overall average value of 77 % and variations within the interval of [37, 100] %. There were several episodes of rain during PARADE. In the later part of the campaign, consistent fog was persisted in the early morning hours. An overview of several measured meteorological parameters is presented in Fig. 3.2.

Fig. 3.2: Time series of some meteorological parameters during PARADE-2011.
The dominant air mass at the observatory arrived from the southwest (SW) to the northwest (NW) side of Kleiner Feldberg. Based on HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) (Draxler and Hess, 1998) back trajectories for 48h, the air mass originated from five different sectors (Phillips et al., 2012;Thieser, 2013). In the initial period of PARADE (15 - 26 August), its origin was from the south to west wind sectors over the Continental region, with some contributions from the Mediterranean Sea, whereas during the period of 29 - 31 August, contributions from the UK were dominant. In the last phase of PARADE (5 - 10 September), its origin was westerly coming from Atlantic. Fig. 3.3 shows wind rose frequency distributions measured at the observatory over a Google map view. The shaded area in Fig. 3.3 shows an expected high anthropogenic influence.

Fig. 3.3: Frequency distributions of wind directions with wind speed (colour-coded: wind speed in ms⁻¹). [Google Map view⁴⁰].

⁴⁰ www.google.com/maps/

Table 3.1:	Land use	within a	radius	of 50 km.
------------	----------	----------	--------	-----------

Land use	50 km radius	NW	NE	SW	SE
	%	%	%	%	%
URBAN FABRIC (continuous)	0.10	0.01	0.02	0.12	0.24
URBAN FABRIC (discontinuous)	10.91	6.33	9.41	10.15	17.76
INDUSTRIAL & COMERCIAL UNITS	1.78	0.36	0.86	1.58	4.35
ROAD AND RAIL NETWORKS	0.12	0.04	0.07	0.05	0.32
PORT AREAS	0.06	-	-	0.09	0.13
AIRPORTS	0.30	-	-	0.18	1.03
MINERAL EXTRACTION SITES	0.23	0.32	0.18	0.11	0.31
DUMP SITES	0.09	0.04	0.02	0.22	0.09
CONSTRUCTION SITES	0.01	-	-	-	0.04
GREEN URBAN AREAS	0.41	0.01	0.16	0.35	1.13
SPORT FACILITES	0.54	0.17	0.23	0.40	1.34
NON IRRIGATED ARABLE LAND	32.52	29.56	40.33	31.37	28.80
VINEYARDS	2.35	-	-	9.36	0.03
FRUIT TREES & BERRY PLANTATIONS	1.06	-	1.03	2.35	0.87
PASTURES	7.91	14.90	9.18	3.01	4.54
COMPLEX CULTIVATION PATTERNS	4.40	4.95	4.36	4.44	3.85
AGRICULTURE AND NATURAL VEG.	1.34	2.01	1.19	1.52	0.66
BROAD-LEAVED FOREST	19.77	26.94	19.91	20.07	12.14
CONIFEROUS FOREST	5.46	2.56	4.30	3.70	11.30
MIXED FOREST	9.38	11.57	8.24	8.06	9.64
NATURAL GRASSLANDS	0.31	0.05	0.24	0.53	0.41
TRANSITIONAL WOODLAND-SHRUB	0.18	0.15	0.08	0.30	0.18
SPARSELY VEGETATED AREAS	0.01	-	0.04	-	-
INLAND MARSHES	0.04	-	0.02	0.13	-
WATER COURSES	0.59	-	-	1.86	0.49
WATER BODIES	0.15	0.03	0.14	0.08	0.36

Table 3.1 is adapted from the analysis of land uses⁴¹.

⁴¹ Analysis of land uses

Prepared by: Pablo J. Hidalgo (University of Huelva)

Digital cartographic database: Corine Land Cover'2006

⁽http://www.eea.europa.eu/publications/COR0-landcover)

⁻ Corine Land Cover 2006 raster data - version 13 (02/2010)

^{- 100} meters resolution raster data on land cover for the CLC2006 inventory.

⁻ Data file: g100_06.tif, available at http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster/

3.1.2 Instrumentation

Sampling lines for most of the trace gas monitoring instruments were located within a 5 m area at the top of the platform (Fig. 3.4). The height of the platform was about 8 m above

ground and the top of platform was above the forest canopy. A brief overview of the instrumentation during PARADE and their uncertainties with detection limits is presented in Table 3.2. Note that all data sets for analysis are based on available 10 minute averages.

Fig. 3.4: The platform location at the Taunus Observatory on Kleiner Feldberg

Parameters	Instrument/Technique	Limit of	Uncertainties of	Operator
		detection	measurements	
		utituti		
O ₃	UV Photometric An.	1 ppb _v	4 ppb _v ; 1.6 %	MPIC ^I
NO	CLD	4 ppt _v / 2s	21 ppt _v ; 4 %	MPIC
СО	RT-QCLS	3 ppb _v / 1 s	5 %	MPIC
CO ₂	NDIR Abs.		1.5 ppm _v	UM ^{II}
H ₂ O ₂	AL2021	32.9 ppt _v /3 s	14.2 %	MPIC
НСНО		25.4 ppt _v /3 s	14.3 %	
NO ₂	See! Table 3.3			
PAN	Iodide CIMS	-	20 % + 2 ppt _v	MPIC
PAA			$20 \% + 2 ppt_v$	
CINO ₂			$25 \% + 2 ppt_v$	
NO ₃	CRDS	2 - 3 ppt _v	20 % + 2 ppt _v	MPIC
N_2O_5		5 - 6 ppt _v	$15 \% + 2 ppt_v$	
ANs	TD-CRDS	$> 50 \text{ ppt}_{v}$	5 - 6 %	MPIC

Table 3.2: An overview of instrumental methods deployed during PARADE.

31	Overview
5.1	Overview

PANs		$> 50 \text{ ppt}_v$	5 - 6 %	
OH, HO ₂	LIF	$4 \times 10^5 {\rm cm}^{-3}$,	Accu.= 30 %, 30 %	MPIC
		0.2 ppt _v	Prec.= 30 %, 5 %	
$RO_x = \Sigma (RO_2) + HO_2$	PeRCA	1 - 3 ppt _v	50 %	IUP-UB ^{III}
OH reactivity	CRM/PTR-MS	4 s ⁻¹	20 %	MPIC
BVOCs	TD-GC-MS	10 ppt _v	20 - 30 %	MPIC
$NMHC(C_2 - C_{12})$	GC-FID	-	-	MPIC
Methanol, toluene	PTR-TOF-MS	0.24 ppb _v ,	5 - 7 %	UW ^{IV}
		13 ppt _v		
H ₂ SO ₄	CIMS	$4 \times 10^4 \text{cm}^{-3}$	-	GUF ^v
Aerosol size	FMPS, APS	-	-	MPIC
distribution				
Photolysis rates	CCD spectrometer	-	> 10 %	FZ Jülich ^{VI}
HONO	LOPAP	7 ppt _v	10 %	FZ Jülich
Particle size dist.	Nano-SMPS	-	-	GUF
NO ₂ , NO ₃ , O ₃ ,	LPDOAS	-	2%,2%,2%,	IUP-HD ^{VII}
SO ₂ , HCHO,			0.1 %, 5 %,	
HONO			5 %	
Meteo.	-	-	-	GUF,
				DWD ^{VIII} ,
				HLUG ^{IX}

^IMAX-PLANCK-INSTITUT FÜR CHEMIE

(Department of Air Chemistry, Particle Chemistry, Satellite Research Group and Biogeochemistry)

^{II} JOHANNES GUTENBERG UNIVERSITÄT Mainz (Atmospheric Physics Department)

III UNIVERSITÄT Bremen (Institute of Environmental Physics)

^{IV} BERGISCHE UNIVERSITÄT Wuppertal (Atmospheric Physics Group)

^V GOETHE UNIVERSITÄT Frankfurt (Institute for Atmospheric and Environmental Sciences)

^{VI} FORSCHUNGSZENTRUM Jülich (Institut for Atmospheric Chemistry, Institute for Energy and Climate Research)

VII RUPRECHT-KARLS-UNIVERSITÄT Heidelberg (Institute of Environmental Physics)

VIII Deutscher Wetterdienst

^{IX} Hessisches Landesamt für Umwelt und Geologie

3.1.3 Time series PARADE-2011

Time series of selected atmospheric trace gases measurements and photolysis frequencies during PARADE are shown in Fig. 3.5. The photolysis frequency of NO₂ (jNO₂) was measured using a CCD-array (charge-coupled device) actinic spectroradiometer above the canopy; the details about the instrument and operating principle are described elsewhere (Bohn et al., 2008). The local time at the location was UTC (Coordinated Universal Time) + 2.

High values of jNO_2 up to 0.01 s^{-1} were observed around 11:00 UTC. The overall median concentration of NO_x (NO + NO₂) was 2.1 ppb_v with variations in the range of [0.44, 21] ppb_v. NO was measured by using a chemoluminescence detector (CLD) at the top of the platform. This method is a direct technique for NO measurements and is based on chemiluminescent gas phase reaction of NO and O₃ to yield excited NO₂ (Fontijn et al., 1970); the emitted photons from the chemiluminescent reaction are proportional to the ambient levels of NO. The instrument setup for NO was similar to the one described by (Hosaynali Beygi et al., 2011). NO was higher corresponding to daytime from 4:00 to 19:00 UTC with a maximum concentration of about 5 ppb_v. The median concentration of NO over the entire period during daytime and night time was $0.2 \pm 0.5 (1\sigma)$ ppb_v and $4 \pm 5 (1\sigma)$ ppt_v, respectively. NO₂ was measured with several different techniques (Table 3.3). Based on the measurements of GANDALF (Chapter 1) the median concentration of NO₂ for the entire period of PARADE was $2.0 \pm 2.1 (1\sigma)$ ppb_v with minimum and maximum concentrations of 0.41 ppb_v and 20.8 ppb_v, respectively. Higher concentrations of NO₂ were observed during rush hours in the morning and evening times (Fig. 3.5).

The concentrations of O_3 varied from]9, 90[ppb_v, with an overall median value of 41.3 ppb_v. O_3 was measured based on the UV absorption method with an O_3 analyser (Thermo-Electron, model 49C, USA), that shared the sampling line with the CLD instrument. O_3 concentrations have shown a dip on several occasions with high NO and NO₂ concentrations. This dip can be related to fresh NO emissions at roads close by the observatory. An increase in O_3 was observed under sunny conditions due to photochemical production on several days during the initial part of the campaign. The daily profile of O_3 shows maximum concentrations at afternoon to evening times for the entire period. During night time a decreasing trend was observed in O_3 for PARADE.

CO was measured by using a quantum cascade laser based spectrometer in the midinfrared (about 2190 cm⁻¹). A description of the instrument can be found in (Li et al., <u>2012</u>). The concentration of CO varied from [71, 180] ppb_v with a median value of 99 ppb_v for the entire period of PARADE. In general, there was a co-existence between the elevated levels of NO_x and CO. This is appeared to be related with a transport of wind from regions with higher concentrations of pollutants.

The biogenic volatile organic compounds (BVOCs) were measured above the canopy by using a Thermal **D**esorber **G**as Chromatograph **M**ass **S**pectrometer (TD-GC-MS) and the setup for the instrument was similar to the one described previously for a different location (Song et al., 2011). Measured Σ BVOCs⁴² showed a pronounced diurnal cycle with maximum value of about half a ppb_v at 16:00 UTC. The overall median value of Σ BVOCs concentrations was 137 ppt_v with a standard deviation of 76 ppt_v. Also a set of BVOCs concentrations was measured close to the forest edge within a dynamical plant cuvette (Bourtsoukidis et al., 2012). The concentrations derived from the cuvette measurement are roughly a factor about 10 higher than the concentrations measured at the top of platform (about 60 m away in the open) with TD-GC-MS instrument. A clear decline in levels of BVOCs at the platform is present compared to inside the cuvette and this decline is mainly related to the dilution.

The measurements of total RO_x ($HO_2 + RO_2$) were also available throughout the intensive period of the campaign. The measurements of RO_x are based on the PeRCA (Peroxy Radical Chemical Amplification) technique. The technique is an indirect method for the detection of RO_x . In the PeRCA instrument, RO_x is chemically converted into NO_2 in a chain reaction and subsequently the resultant NO_2 is detected (Andrés-Hernández et al., 2001). The uncertainty of RO_x measurements were high (overall 50 % level reported) due to potential malfunction in the PeRCA instrument. The RO_x data is averaged over 10 min. intervals by using a Savitzky-Golay filter (Savitzky and Golay, 1964). RO_x averages showed a positive trend with temperature but no trend with the measured BVOCs. The median value of the RO_x concentrations for the entire period was 8 ± 6 (1σ) ppt_v with a maximum value of 39 ppt_v.

The total OH loss rate (OH reactivity) was also measured using a Comparative Reactivity Method (Nölscher et al., 2012) above the forest canopy. The observed OH reactivity reached up to the value of about 7.7 s⁻¹ with an overall median value of 1.28 s^{-1} for the entire period. For most of the period of PARADE, the total OH reactivity was low and the measurements were under the detection limit (4 s⁻¹) of the instrument.

⁴² Σ (Isoprene+ α -pinene+myrcene+limonene)

In the later period of PARADE, OH (beginning on DOY = 242) and HO₂ (beginning on DOY = 246) radicals were measured with a LIF instrument above the canopy using a setup similar to the one as described for HUMPPA (<u>Hens et al., 2013</u>). The median observed concentrations of OH and HO₂ were $9 \pm 3.1 (1\sigma) \times 10^5$ molecule cm⁻³ and $3 \pm 1.53 (1\sigma)$ ppt_v, respectively for the measurement period. A correlation between OH and the photolysis frequency of O₃ (jO¹D) was used to estimate OH concentrations for the entire duration of PARADE. This correlation is described by an empirical power-law function as (Eq. 3.1) (<u>Rohrer and Berresheim, 2006</u>).

$$[OH] = a \times (jO^1D)^b + c$$
 Eq. 3.1

Where coefficients 'a', 'b', and 'c' describe the average influence of 'reactants', 'light dependent' and 'light independent' processes on OH. A least squares fit (appendix 7.3.1.3) of the function for the measured OH (in molecule cm⁻³) versus $jO^1D / 10^{-5} (s^{-1})$ yields 'a' (slope) = $5.18 \pm 0.2 (1\sigma) \times 10^5$ and 'b' = $0.88 \pm 0.07 (1\sigma)$. The parameters are obtained by neglecting night time data of measured OH [@ $jO^1D > 1 \times 10^{-7} s^{-1}$] and the parameter 'c', in order of -10⁴ molecule cm⁻³, can be neglected compared to the atmospheric OH concentrations (in order of $10^5 - 10^6$ molecule cm⁻³). The calculated concentrations of OH for PARADE vary over the range of $[0.008, 1.3] \times 10^6$ molecule cm⁻³. The relative uncertainty (100 %) of the calculated OH based on the function (Eq. 3.1) is estimated from 1σ residuals of the fit. A linear correlation between jO¹D and HO₂ was observed for PARADE and it is used to estimate HO₂ for the total period of the campaign. Based on filtered data for $jO^1D > 1 \times 10^{-7} s^{-1}$ (neglecting night data), the correlation between the measured HO₂ (in ppt_v) and jO¹D / 10⁻⁵ (s⁻¹) yields a slope of 2.3 \pm 0.3 (1 σ) with an offset of 2.1 \pm 0.2 (1 σ) ppt_v (appendix 7.3.1.3). The offset corresponds to a non-photolytic source e.g. ozonolysis of alkenes involved in the production of HO₂. The calculated HO₂ has a median value of 3.5 ± 1.7 (1 σ) ppt_v for the entire period. The relative uncertainty of the calculated HO₂ is < 45 % and is also assessed with 1σ residuals of the fit.

3.2 Measurement setup of GANDALF

GANDALF was deployed outside at the platform on top of a container (Fig. 3.4). The flow in the sampling line was 12000 ± 120 sccm. A flow of 4100 ± 41 sccm was required for the detection axis, while the excess flow was diverted to an exhaust line by using a second pump. The sampling flow rate provided a residence time of less than 0.1 s in a 0.1 m sampling line. This was sufficient to suppress the impact of heterogeneous or thermal conversion of PAN, peroxynitric acid (HO₂NO₂), methyl peroxy nitrate (CH₃O₂NO₂) and N₂O₅ to yield NO₂. The formation of NO₂ in the sampling line was negligible due to the faster reaction between ambient NO and O₃. The campaign averages of the observed concentrations of NO, O₃ and NO₂ were 0.25 ppb_v, 44 ppb_v and 2.6 ppb_v respectively. Based on average NO and O₃ concentrations, the formation of NO₂ from the reaction 'NO + O₃' in the sampling line was less than 0.01 % with respect to the ambient NO₂ concentrations. Line loss or photolysis of NO₂ was avoided by using PTFE lines (Polytetrafluoroethylene) covered with a black heatshrink material.

The average pressure inside the detection cell for the entire period of PARADE was $6.95 \pm 0.27 (1\sigma)$ hPa. Several automated calibrations (2 - 10 per day) and background level measurements (once per hour) were conducted during PARADE to ensure the precision and accuracy of the instrument. Based on the hourly background level measurements, we established that the deviations for 70 % successive background level measurements (no. of measurements > 500) were less than an absolute value of 8 ppt_v of NO₂. An overall picture of a general setup is presented in Fig. 2.18. A malfunction of the O₃ generator had occurred within the period of 4 to 9 September that disturbed the GANDALF calibration system. A correction of 12 % is introduced for the period of 4 to 9 September, based on the correlation of GANDALF with CRDS prior to 4 September. During the last few days from 4 to 9 September, an extra baffle (7.2.1.2, C) was also installed in GANDALF. The baffle can be inserted easily into the detection block of GANDALF without disturbing the alignment of the laser. The advantage of the baffle is that it reduces the background counts by ~50 % while decreasing sensitivity by less than 5 %.

3.2.1 PARADE NO₂ comparison

NO₂ concentrations were measured with eight different instruments. Two instruments (HLUG and MoLa) were located at ground while six instruments were sampling at the top of the platform. The measurement techniques, uncertainties, time resolutions and LOD are summarised in Table 3.3 for the instruments located on the platform (Fig. 3.4). The average ambient concentrations of NO₂ during PARADE were approx. 2 - 3 ppb_v with a range of approx. 400 ppt_v to 20 ppb_v. NO₂ instruments listed in Table 3.3 represent *in-situ* measurement techniques with the exception the LP-DOAS (Long Path Differential Optical Absorption Spectroscopy), which is detailed below.

LP-DOAS: This instrument is based on traditional Differential Optical Absorption Spectroscopy (DOAS) (Platt et al., 1979;Perner and Platt, 1979). DOAS follows the Beer-Lambert law of absorption to determine total amounts of the atmospheric trace gases (Platt and Stutz, 2008). DOAS allows direct and absolute measurements of multiple trace gases in the atmosphere by using the distinct absorption band structure of the specific molecule. LP-DOAS is based on active remote sensing and requires an artificial light source (Chan et al., 2012). It provides an average concentration of NO₂ or other trace gases through quantitative detection using the absorption over a light path of typically a few kilometres.

CE-DOAS: Cavity-Enhanced DOAS (<u>Platt et al., 2009</u>) measurements of NO₂ were also available during PARADE. This method is based on absorption spectroscopy in a cavity and provides *in-situ* measurements of trace gases (<u>Platt et al., 2009</u>). CE-DOAS requires calibration to quantify the Rayleigh scattering and losses of the cavity.

CRDS: Besides the DOAS instruments, another NO₂ measurement technique using a Cavity Ring-Down Spectrometer (CRDS) was available. CRDS is a cavity-assisted method like CE-DOAS (Platt et al., 2009). It is a direct method for *in-situ* measurements and requires calibration of the Rayleigh scattering and losses of the cavity like in the case of CE-DOAS. In CRDS, reflective mirrors are used across an optical cavity. To obtain the concentration of a trace gas with CRDS, absorption measurements to determine the time constant for exponential decay of the light intensity with and without an absorber are made in an optical cavity (Brown et al., 2001;Schuster et al., 2009;Paul and Osthoff, 2010;Thieser, 2013). The major uncertainty of the above-mentioned methods is due to the error in the absorption cross-section of NO₂.

CLD/Blue-light converter: Along with the absolute methods, the concentrations of NO₂ were determined with a two-channel chemoluminescence detector (CLD). The CLD

instrument of MPIC (Table 3.3) is a modified version (<u>Hosaynali Beygi et al., 2011</u>) of the ECO-Physics CLD 790 SR. CLD is an indirect method of *in-situ* NO₂ measurement. In this technique, NO₂ is detected by conversion via photolysis to NO ['NO₂ + hu (< 420 nm) \rightarrow NO'] with subsequent detection of NO by chemoluminescence.

LIF: This is a direct method for the detection of NO_2 based on laser induced fluorescence. The description of LIF has already been provided in chapter 1.

Table 3.3: NO₂ instruments during PARADE-2011

Measurements	Technique	Uncertainty of	Limit of	Time
(Operator)		measurements	detection	resolution
GANDALF (MPIC)	Laser-Induced Fluorescence	5 % (1o) + 11 ppt _v	5 - 10 ppt _v 1 min ⁻¹ (SNR:2)	1 s
CLD	Two-channel	105 ppt _v ; 10 %	55 ppt _v	2 s
(MPIC)	Chemoluminescence		2 s ⁻¹ (1σ)	
	Detector			
CRDS	Cavity Ring-Down	5 - 6 %; 20 ppt _v	50 ppt _v	4 s
(MPIC)	Spectrometer		$4s^{-1}(2\sigma)$	
CE-DOAS	Cavity-Enhanced DOAS	5 - 10 %	300 ppt _v	30 s
(IUP-HD)				
LP-DOAS	Long Path DOAS	2 %	-	-
(IUP-HD)				
CLD	Chemoluminescence	Data is not available.		
(IUP-UB)	Detector			

(located or sampling at the top of platform)

A median value of the atmospheric NO₂ concentration is derived from the NO₂ measurements of all individual instruments at the platform. For a valid correlation between the derived median NO₂ and individual NO₂ measurements, only those values of the derived median NO₂ were selected when simultaneous data for all NO₂ measurements were available. Fig. 3.6 shows plots of the correlation between individual NO₂ measurements and the derived median NO₂ concentrations. The uncertainty of individual instruments is shown as error bars on the y-axis while horizontal error bars represents the standard deviation of the derived median NO₂. The regression is done by using a 'bivariate' fit according to the method as described in (<u>York et al., 2004;Cantrell, 2008</u>). The York method accounts for the uncertainties in both dimensions (x-axis and y-axis).

The correlation between **GANDALF** and the derived median NO₂ is $R^2 = 0.99$ [panel **B** of Fig. 3.6]. The measurements of GANDALF show an over-estimation of 3 % compared to the derived median values of NO₂. This overestimation from the derived median value is insignificant as it is within the range of the instrument uncertainties. The relative uncertainty of GANDALF is about 5 % and it follows an exponential trend versus the absolute NO₂ concentrations. The slope and offset of fit are 1.03 and 0.027 ppb_v with the absolute error of fit being 0.006 and 0.01 ppb_v, respectively.

The correlation ($R^2 = 0.99$) between **CLD** and the derived median NO₂ values is shown in panel **C** of Fig. 3.6. Overall, the data of the CLD is about 5 % below the median, but this difference is within the uncertainty of the CLD measurement. The reported uncertainty of the CLD for the NO₂ measurements is the larger of 105 ppt_v or 10 %. The slope and offset are 0.95 and – 0.1 ppb_v, respectively.

The slope and offset in case of **CRDS** are 1.06 and 0.01 ppb_v with correlation $R^2 = 0.99$ as shown in the panel **D** of Fig. 3.6. The reported upper limit of uncertainty in case of CRDS is larger of 6 % or 20 ppt_v. The differences between CRDS and the derived median NO₂ values are below the limitation of instrument errors in this case as well.

LP-DOAS and **CE-DOAS** instruments showed correlations with the derived median NO₂ values with $R^2 = 0.96$ and $R^2 = 1$ ([**E**] and [**F**] Fig. 3.6), respectively. In the case of LP-DOAS, the slope is 1.02 with a negligible offset of -0.002 ppb_v. The slope and offset for CE-DOAS is 0.92 and -0.032 ppb_v, respectively. In the case of both DOAS instruments, the differences from the derived median NO₂ values are well within the measurement uncertainties (Table 3.3).

Generally all instruments for NO₂ showed reasonable agreement with the derived median NO₂. GANDALF (+ 3 %), CRDS (+ 6 %) and LP-DOAS (+ 2 %) showed overestimation compared to the derived median values while CLD was about -5 % and CE-DOAS about -8 % below the median values. The overall differences are within the range of instrument uncertainties.

Fig. 3.6: Correlation plots (Overall [A], GANDALF [B], CLD [C], CRDS [D], LP-DOAS [E], CE-DOAS [F]) of individual NO₂ measurement versus the derived median values of all NO₂ measurement at platform during PARADE.

3.2.2 NO₂ measurement ratios distribution

Different measurements of trace gases, meteorological parameters, and photolysis frequencies (Table 3.2) during PARADE provided an opportunity to look for any indication of a systematic difference between NO₂ instruments. The inlets of the *in-situ* NO₂ instruments (Table 3.3) were located within a radius of 5 m at the top of platform. Ratios of the individual NO₂ measurements and GANDALF are calculated and compared in respect of different atmospheric parameters, which are referred to as ratios further in this section. The distribution of ratios is shown as a histogram in the upper panel of Fig. 3.7 [A1, A2, A3, and A4]. The histograms show the distribution of ratios with their respective normal distribution fits. The 'normal probability plot' for empirical probability versus ratios is shown in the lower panel of Fig. 3.7 [B1, B2, B3, and B4]. This plot is interpreted as a graphical representation of the normal distribution of ratios. The plot stays linear as long as the distributions are normal, and the deviation from the linear fit shows the departure of ratios from normal distribution. The solid line in the lower panel of Fig. 3.7 is between the 25th and 75th interquartile range of a ratio. The gap between probabilities (y-grid lines) is not linear and it is representative of the distance between quantiles of normal distribution.

The average, median, and standard deviation (STD) values of ratios comparing GANDALF with other instruments are given in Table 3.4. The variation in these ratios (CRDS/GANDALF, CE-DOAS/GANDALF, and CLD/GANDALF) is small compared to the one in case of LP-DOAS/GANDALF. This is expected as the LP-DOAS is not an *in-situ* technique and instead determines an average concentration over the light path. The average and median values of ratios are similar in all cases. The ratios CRDS / GANDALF and LP-DOAS/GANDALF are close to unity, whereas in the case of CE-DOAS/GANDALF and CLD/GANDALF, it deviates from unity by 0.15. All ratios generally show a normal distribution Fig. 3.7 [A1, A2, A3, and A4] but the skewness in LP-DOAS / GANDALF (A1 in Fig. 3.7) on both sides of the average value is larger than other cases (A2, A3, and A4 in Fig. 3.7).

Table 3.4:	Overall average,	median a	nd standard	deviation	values	of ratios	with	respect to
	GANDALF	and other	NO ₂ measu	rements d	uring P	ARADE		

Ratio	Average	Median	STD (1σ)
LP-DOAS/GANDALF	0.96	0.97	0.19
CRDS/GANDALF	1.01	1.01	0.06
CE-DOAS/GANDALF	0.86	0.86	0.07
CLD/GANDALF	0.85	0.84	0.09

In the lower panel of Fig. 3.7 [B1, B2, B3, and B4], the probabilities show a deviation from normality and a tail on top (towards right) and bottom (towards left) sides can be observed. Tail is an indicator of outliers caused for example by the non-normality of the precision at low values, background level, and potential interferences of NO₂ instruments. Panels ([B1, B2, B3 and B4] of Fig. 3.7) show that a major fraction of the ratios is normally distributed, as it can be observed from the 25th to 75th interquartile range of probability in all cases. The percentile of probability towards normality is slightly greater (about 10th to 90th percentile) in case of CLD/GANDALF compared to others. The percentile is about 15th to 80th and 25th to 90th with (CRD/GANDALF, CE-DOAS/GANDALF) and (LP-DOAS/GANDALF), respectively. A perfect normal distribution should not be expected for ratios as NO₂ instruments are not measuring exactly the same quantity due to differences in length of sampling lines and potential interference.

Fig. 3.7: Distribution for comparative instrument ratios is shown in upper panels and a normal probability plot for comparative instrument ratios is shown in lower panels.

To identify systematic deviations based on other trace gases or parameters, ratios are further compared with the observed data of several trace gases, radiation, and metrological parameters. There are only two cases, where a systematic correlation of ratios was observed with the observed quantities during PARADE, as shown in Fig. 3.8 and Fig. 3.9. In **Case 1**, ratios are presented as a function of the observed O₃ concentrations. The ratio between CLD and GANDALF shows a decreasing trend with respect to increase in the O₃ concentrations (subplot **C4**, Fig. 3.8). This ratio (CLD/GANDALF) averages 0.95 at levels less than 20 ppb_V O₃. It decreases to an average of 0.86 over the interval of 20 to 42 ppb_V O₃, while averaging 0.81 at levels above 42 ppb_V of O₃. There is no trend observed in other ratios (CRDS/GANDALF, LP-DOAS/GANDALF, and CE-DOAS/GANDALF) as shown in Fig. 3.8. The trend for CLD/GANDALF might be attributed to some line loss of NO₂ with respect to the increase in ambient O₃ in the CLD data set. The subplot (**C4**, Fig. 3.8) is also cross checked by altering the GANDALF data in the denominator to the other three measurements (LP-DOAS, CRDS, and CE-DOAS) and similar results are observed as in the previous case with GANDALF.

Fig. 3.8: Ratios as a function of the ambient O₃ during PARADE.

In **Case 2** (subplot **D3**, Fig. 3.9), a correlation is observed for the ratio between CE-DOAS/GANDALF as a function of jNO₂. At higher values of jNO₂, the ratio approaches unity. The sampling line for CE-DOAS and CRDS was the same and no correlation for the ratio between CRDS and GANDALF is seen with respect to jNO₂. So, the cause of correlation is not expected to be due to the accumulation of NO₂ in the sampling line of CE-DOAS. The correlation might be related to background level corrections for the Rayleigh scattering in CE-DOAS or potential interference due to some species other than NO₂ in the sampling line at high levels of solar radiation. This correlation is also not observed between other ratios (in case of LP-DOAS and CLD) with respect to GANDALF. Also, a cross check was done for panel D3 (Fig. 3.9) by switching GANDALF in the denominator to three other measurements (LP-DOAS, CRDS, and CLD); similar results were observed as previously. Besides the above-described systematic correlations, no indication of a potential interference is observed for any instrument (appendix 7.3.1.4).

Fig. 3.9: Ratios as a function of the measured jNO₂ during PARADE.

3.3 Ozone photochemistry in PARADE

The role of O_3 is crucial in defining the tropospheric oxidation capacity as it leads to the atmospheric oxidants OH (R. 1.16 followed by R. 1.19) and NO₃ (R. 1.9). The in-situ instantaneous O₃ production is a complex function of proportioning between NO_x, HO_x, and $RO_x = (HO_2 + RO_2)$. RO_x radicals are formed by the reaction of VOCs and OH. The reaction between NO and RO_x is responsible for the formation of O₃ via NO₂ photolysis in the troposphere. A null cycle exists between NO-NO₂-O₃ in the absence of competing reactions and under the steady-state conditions (Section 1.2), which leads to no net O_3 production or loss. The null cycle is perturbed by the presence of peroxy radicals. This chemical imbalance of the perturbed null cycle can also be used to estimate the instantaneous net photochemical production rates of O₃ (Eq. 1.10) (Thornton et al., 2002; Volz-Thomas et al., 2003; Martinez et al., 2003). However, this concept is only valid under the photostationary state condition (Section 1.2). The main source for the formation of O_3 is come from VOCs and NO_x act as a catalyst. The instantaneous O₃ production has a positive tendency with an increase in NO_x concentrations under VOC-saturated conditions. The VOC-saturated or NO_x-sensitive regime is referenced to conditions when the loss of odd hydrogen radicals due to 'radical + radical' reactions ('OH + HO₂', 'HO₂ + HO₂' 'RO₂ + HO₂') forming peroxides is dominant (Sillman, 1999) compared to 'radicals+ NO_x' reactions forming HNO₃ and ANs (R. 1.7 and R. 1.14). While under VOC-limited or NO_x-saturated conditions, the loss of odd hydrogen radicals is mainly controlled by 'radicals + NO_x ' reactions. A negative trend of the instantaneous O_3 production versus NO_x is expected in the NO_x-saturated or VOC-limited regimes (Thornton e<u>t al., 2002</u>).

The O₃ photochemistry is assessed for PARADE by considering several reactions that contribute to the *in-situ* production and loss of O₃. To exclude night time data, a photolysis frequency filter ($jO^1D > 1 \times 10^{-7} s^{-1}$) has been applied. Further, to avoid periods with heavy fog and condensation, only data with specific conditions (visibility > 1 km, relative humidity < 90 % and precipitation = 0 mm hr⁻¹) are selected. A positive trend is reported between O₃ and temperature at several places with biogenic emissions (Duenas et al., 2002;Rasmussen et al., 2012). A positive correlation between the locally measured temperature and O₃ is also observed during PARADE (appendix 7.3.1.5). At elevated temperatures (> 13 °C), higher values of O₃ were observed and the reverse for temperatures $\leq 13 °C$. Based on this separation by temperature, the data set for O₃ photochemical production or loss rates was further divided into two different regimes [low ($\leq 13 °C$) and

high (> 13 °C)] to provide a more detailed analysis. Rate coefficients for O_3 reactions are taken from the literature (Finlayson-Pitts and Pitts, 2000;Atkinson et al., 2004, 2006;Sander et al., 2011b). Based on filtered data, the available time window for the O_3 budget analysis is from 5:00 UTC to 18:00 UTC.

 O_3 is formed in the troposphere via NO₂ photolysis. So any loss of NO₂ other than through photolysis will also contribute in the reduction of O₃ production efficiency under NO_x-limited conditions. The loss processes involving radicals such as formation of nitric acid, ANs, and peroxides lead to the loss of NO₂ and ultimately decrease the O₃ production efficiency. The formation of nitric acid, ANs, and peroxides are referred to here as the indirect loss of O₃. PAN is assumed to be in steady state and it does not lead to a source or sink for radicals (Spirig et al., 2002;Kleinman, 2005), therefore the production and decomposition of PAN is not considered.

The measurement of total ANs was available during PARADE (Table 3.2) and in the absence of information regarding separate fractions of ANs, the correlation between ANs and O_x ($O_3 + NO_2$) can be used to derive the effective branching ratio α_{eff} (Rosen et al., 2004;Perring et al., 2010;Farmer et al., 2011). According to correlation between ANs and O_x , the effective branching ratio for R. 1.14 can be defined as in Eq. 3.2.

$$\alpha_{\rm eff} = \frac{2}{\Delta[O_x] / \Delta[ANs]}$$
 Eq. 3.2

In relation Eq. 3.2, $\Delta [O_x] / \Delta [ANs]$ is estimated from slope of correlation between O_x and ANs. For PARADE, α_{eff} varied in the range of [2.2, 4.7] % with an average value of 3.37 ± 0.75 % (Thieser, 2013). In the reaction (' α RO₂ + NO', R. 1.14), the average value of α_{eff} is used for the calculation of ANs production. The average value of α_{eff} is based on composite mixture of all VOCs including CO (Browne and Cohen, 2012) because the measured O_x concentration contains contributions from both HO₂ and RO₂ radicals. Therefore α_{eff} would be smaller than the actual branching ratio for RO₂ species (Browne and Cohen, 2012).

The photochemical O₃ tendency $[T(O_3) = P(O_3) - L(O_3)]$ is a measure of the net O₃ production due to its production and loss processes (<u>Crutzen et al., 1999</u>). The O₃ tendency is positive during PARADE for the daytime periods. The net O₃ production described here is the production of O₃ due to peroxy radicals and the direct loss of O₃. RO_x measurement of the PeRCA instrument contains the sum of RO₂ and HO₂. Based on reactions 'RO_{x (PeRCA)} + NO',

the median value of the production rate of O_3 is $[15 \pm 31 (1\sigma)] \times 10^6$ molecule cm⁻³ s⁻¹. A generic rate coefficient (Jenkin et al., 1997;Saunders et al., 2003) is used for the reaction 'RO_{x (PeRCA)} + NO'. There is no significant difference [Median ratio = $k_{(HO2+NO)}/k_{generic} = 0.98 \pm 0.004 (1\sigma)$] between the generic rate constant and the 'HO₂ + NO' rate constant, so the separation based on [RO₂ = RO_{x(PeRCA)} - HO_{2(calculated)}] does not contribute considerably to the above-described median value of the O₃ production. The variability of the O₃ production is larger due to the scatter in the observed RO_x concentration. The standard error $(1\sigma / \sqrt{n})$ of the O₃ production is $\pm 1.2 \times 10^6$ molecule cm⁻³ s⁻¹. Based on hourly median values of the O₃ production, the maximum value of 37×10^6 molecule cm⁻³ s⁻¹ is calculated to occur at about 12:00 UTC for elevated temperatures.

The *in-situ* O_3 loss rates are described previously in Eq. 1.11. This assumption only represents the major *in-situ* photochemical loss in remote regions. Other reactions also contribute to an O_3 loss like reaction with alkenes in the boundary layer. Several different alkenes were measured during PARADE. Here, alkenes are divided into two different groups for the calculation of the direct O_3 loss. **1**) those emitted by the vegetation are called as BVOCs⁴³ and **2**) the remaining alkenes like NMHC⁴⁴. Besides alkenes, O_3 reactions with aromatics (benzene and toluene) are also considered for the total or fractional loss calculations of O_3 . The overall loss of O_3 for PARADE is described in Eq. 3.3.

$$L(O_{3}) \approx [O_{3}] (\beta \times jO(^{1}D) + k_{OH+O_{3}} [OH] + k_{HO_{2}+O_{3}} [HO_{2}] + k_{BVOCs+O_{3}} [BVOCs]$$
$$+ k_{NMHC+O_{3}} [NMHC] + k_{arom+O_{3}} [aromatics])$$
Eq. 3.3

Where β in Eq. 3.3 is the fraction of O(¹D) reacting with H₂O to produce OH. Reactions leading to photolysable species such as NO₂ and NO₃ are not considered a loss during daytime due to the rapid photolysis and reformation of O₃, as discussed previously (Section 1.1.1.1). The O₃ photochemical loss in Eq. 3.3 is based on measured data, while in case of OH and HO₂ on calculated data. The total loss (Eq. 3.3) of O₃ versus daytime fraction is shown in the subplot [A] of Fig. 3.10. The overall median value of the total O₃ loss is $2.2 \pm 1.5 (1\sigma) \times 10^6$ molecule cm³ s⁻¹ and the standard error is $\pm 0.08 \times 10^6$ molecule cm⁻³ s⁻¹. The O₃ loss increases up to 7×10^6 molecule cm⁻³ s⁻¹ and 2×10^6 molecule cm⁻³ s⁻¹ for the

⁴³ isoprene, α -pinene, myrcene, limonene

⁴⁴ ethene, propene, 1,3-butadiene, cis-2-butene,1-pentene.

time window of 12:00 UTC to 14:00 UTC with temperature > 13 °C and \leq 13 °C, respectively. The absolute chemical loss rates of O₃ due to different reactants as a daytime fraction and hourly median values are shown in Fig. 3.10 for two different temperature conditions. Hourly median values of relative fractional contribution to the O₃ loss are also shown in Fig. 3.11 for different reactants.

Photolysis of O₃ described with β is the largest loss during the middle of day, being up to 5×10^6 molecule cm⁻³ s⁻¹. β (Eq. 1.12) has varied in the range of [3.5, 13.2] % with average and median values of 8 % and 7 %, respectively. The absolute median value (Fig. 3.10) of the O₃ photolysis loss is $[1 \pm 1.12 (1\sigma)] \times 10^6$ molecule cm⁻³ s⁻¹ for temperatures higher than 13 °C and $[0.26 \pm 0.3 (1\sigma)] \times 10^6$ molecule cm⁻³ s⁻¹ at lower temperatures ≤ 13 °C. The relative fraction of the photolytic loss of O₃ to total loss is up to 60 % (at temperatures > 13 °C) around 12:00 UTC (Fig. 3.11). This fractional loss of O₃ decreases to < 30 % at morning and evening times. In comparison, the relative fraction of the photolytic O₃ loss in the case of the temperatures ≤ 13 °C has shown similar trend but slightly less compared to the one in the case for temperatures greater than 13 °C.

The loss of O_3 with respect to HO_x (OH + HO₂) is also highest in the middle of the day. The maximum values [up to 0.8×10^6 molecule cm⁻³ s⁻¹] are observed around 12:00 UTC. The median of O_3 value the loss due to HO_x is $[0.27 \pm 0.15 (1\sigma)] \times 10^{6}$ molecule cm⁻³ s⁻¹ and $[0.13 \pm 0.08 (1\sigma)] \times 10^{6}$ molecule cm⁻³ s⁻¹ at elevated (> 13 °C) and lower temperatures (\leq 13 °C), respectively. The O₃ loss due to the reaction with OH is much lower than the reaction with HO₂. The ratio [(O₃ loss due to OH) / $(O_3 \text{ loss due to } HO_2)$] varies in the range of [0.006, 0.25] for PARADE. The fractional variations in the O_3 loss due to HO_x mainly stay in the interval of [7, 13] % and [11, 18] % at higher and lower temperatures, respectively.

The O₃ loss due to overall measured BVOCs is comparable to the one observed in the case of O₃ photolysis but not occurring at the same time. The highest loss due to BVOCs was at 16:00 UTC [up to 2.7×10^6 molecule cm⁻³ s⁻¹]. Higher concentrations of myrcene and limonene were observed in morning times during PARADE. So the prominent high loss of O₃ due to BVOCs is present in the morning period of the time around 7:00 UTC [up to 1.6×10^6 molecule cm⁻³ s⁻¹]. The median value of the O₃ loss due to BVOCs is $[1 \pm 0.5 (1\sigma)] \times 10^6$ molecule cm⁻³ s⁻¹ and $[0.33 \pm 0.08 (1\sigma)] \times 10^6$ molecule cm⁻³ s⁻¹ at higher and lower temperatures, respectively. Amongst the observed BVOCs, the highest loss of O₃ is due to myrcene [up to 0.12×10^6 molecule cm⁻³ s⁻¹] while the smallest is due to isoprene [maximum up to 0.08×10^6 molecule cm⁻³ s⁻¹]. The lowest relative fractional loss due to BVOCs (about 20 %) is present around 12:00 UTC and it increases up to 55 % and 70 % during morning and evening times for higher temperatures, respectively. The relative fraction of O₃ loss due to BVOCs stays higher at high temperatures and vice versa.

The highest loss of O₃ due to NMHC is present during morning hours (some outliers) and evening times. Over all, an increasing tendency in the O₃ loss due to NMHC is observed with respect to daytime at higher temperatures, while a negative trend is observed for lower temperatures. The median value of O₃ loss due to BVOCs is $[0.33 \pm 0.12 (1\sigma)] \times 10^6$ molecule cm⁻³ s⁻¹ and $[0.2 \pm 0.04 (1\sigma)] \times 10^6$ molecule cm⁻³ s⁻¹ at higher and lower temperatures, respectively. The relative fraction of this loss is higher during morning times; for both temperature regimes, it stays in the range of]35, 40[%. It decreases in the range of]5, 13[% at 12:00 UTC and increases again to]22, 25[% at evening times. Despite outliers due to propene, 1-pentene remains the largest contributor among NMHC, while ethene is the smallest contributor to the loss of O₃.

The relative fractions of the O_3 loss due to aromatics (benzene and toluene) are << 1 % and negligible compared to others. Therefore absolute or fractional losses of O_3 due to aromatics are not shown in Fig. 3.10 and Fig. 3.11.

Reaction of alkenes with O₃ is a removal process for them, as are the alkenes beside reactions between OH and alkenes. Although the rate coefficients for 'O₃ + alkenes' reactions are very small in magnitude compared to the corresponding 'OH + alkenes' reactions, but high tropospheric O₃ concentrations make this removal process important (Finlayson-Pitts and Pitts, 2000). The removal of BVOCs due to O₃ was higher than the corresponding removal due to OH during PARADE. The BVOCs loss due to O₃ varies in the range of $[0.12, 0.92] \times 10^6$ molecule cm⁻³s⁻¹ with a median value of $0.82 \pm 0.54 (1\sigma) \times 10^6$ molecule cm⁻³s⁻¹. The corresponding loss due to OH has a median value of $[0.22 \pm 0.24 (1\sigma)] \times 10^6$ molecule cm⁻³s⁻¹ with a variation in the range of [0.002, 1.01] $\times 10^6$ molecule cm⁻³s⁻¹. In the case of NMHC however, the loss with respect to OH is larger compared to the corresponding loss with respect to O₃. The median value of the NMHC loss due to reaction with OH is $[0.5 \pm 0.4 (1\sigma)] \times 10^6$ molecule cm⁻³s⁻¹ with variations of $[0.007, 1.77] \times 10^6$ molecule cm⁻³s⁻¹. In the case of reaction with O₃, the median value of NMHC loss is $[0.30 \pm 0.12 (1\sigma)] \times 10^6$ molecule cm⁻³s⁻¹ with small variations of $[0.12, 0.92] \times 10^6$ molecule cm⁻³s⁻¹ compared to OH (appendix 7.3.1.6).

85

[T > 13 °C].

Fig. 3.11: Fractional contribution to total loss of O_3 with several groups of measured species as described in the text for T > 13 °C and T \leq 13 °C in the upper and lower panels, respectively.

For the contribution of different species to production and loss of O₃, three different time windows of daytime fraction were selected as follows. (1):- [8:00, 10:00] UTC, (2):-]10:00, 14:00] UTC, (3):-]14:00, 16:00] UTC. Overall median values of production and loss rates of O₃ for PARADE during the different time windows, in two different temperature regimes, are shown in Fig. 3.12. The O₃ tendency is positive for the different selected time windows regardless of the temperature filter. The maximum net O₃ production rate $(21.7 \times 10^6 \text{ molecule cm}^{-3} \text{s}^{-1})$ is calculated for time window (2) at higher temperature. This is due to higher radiation and eventually higher OH leading to the higher production of peroxy radicals. The lowest net O₃ production rate $(0.62 \times 10^6 \text{ molecule cm}^{-3} \text{ s}^{-1})$ is found in the time window (3) at lower temperatures.

The production of HNO₃ is similar to the production of ANs in time windows (1) and (2) at lower temperatures. The loss of NO_x to HNO₃ is higher than the corresponding loss to ANs at higher temperatures for time windows (1) and especially (2). But the loss of NO_x to HNO₃ becomes smaller than the corresponding loss to ANs for time window (3) regardless of temperature. This indicates that the role of ANs as a sink for NO_x is important and could not be neglected, as suggested in a previous study (Browne and Cohen, 2012).

The reaction of ' $HO_2 + RO_2$ ' shows dominance over other 'radical + radical' reactions at all times. In addition, rates in Fig. 3.12 for 'radical + radical' reactions are not multiplied by 2. Two radicals are lost in each 'radical + radical' reaction, so the numbers should be considered as ($2 \times Rates$), but only for 'radical + radical' reactions (' $HO_2 + OH$ ', ' $HO_2 + HO_2$ ' and ' $HO_2 + RO_2$ ').

The O₃ loss due to dry deposition is dominant over chemical loss in PARADE during daytime and it is calculated based on the characterisation of the boundary layer height (BLH) by radiosonde (type: GRAW DFM - 06) measurements on several days at different time scales. The median values of O₃ loss rates due to dry deposition are also shown in Fig. 3.12 for different time windows by considering a deposition velocity of 1 cm s⁻¹ for O₃ (Droppo, 1985;Finlayson-Pitts and Pitts, 2000) based on median values of BLH.

]14, 16] UTC and two different temperature ranges (13°C >T≤13°C).

The calculated lifetime of O₃ during PARADE with respect to reaction with different species is summarised in (Table 3.5, Table 3.6 and Table 3.7) for different periods of time of the day. The shortest O₃ lifetime was due to photolysis at middle of day [10:00, 14:00] UTC and at the higher temperature ranges, while it decreases within the morning and afternoon time windows and also with the decrease in temperature. The longest O₃ lifetimes were with respect to aromatics like toluene and benzene. The O₃ lifetimes due to BVOCs (except isoprene) and HO₂ have smaller scales compared to NMHC and OH. The overall photochemical lifetimes of O₃ can be calculated as in τ (O₃) (Eq. 3.4).

$$\tau (O_3) = \frac{1}{k_{X+O_3} [X] + k_{Y+O_3} [Y] + \cdots}$$
Eq. 3.4

'X' and 'Y' (Eq. 3.4) represent different species (like; OH, HO₂, alkenes, etc.) with their respective rate coefficients for reaction with O₃. For PARADE, the average and median values of τ (O₃) are 7.1 days and 6.6 days, respectively, with variations of]2.6, 18.1[days.

Table 3.5: Lifetimes of O₃ with respect to different species measured at PARADE-2011. Time window [08:00, 10:00] UTC.

Rate × [conc.]	Lifetim	e of O_3 for	or respect	tive loss ((days)	Lifetime of O ₃ for respective loss (days)				
as on Y-axis Fig. 3.10	@ Tem	p. > 13 °	С			@ Temp. ≤ 13 °C				
	Avg.	Mdn.	Max.	Min.	STD	Avg.	Mdn.	Max.	Min.	STD
$\beta \times jO^1D$	12	9	48	5	7	18	16	39	11	6
k _{OH+03} [OH]	279	238	974	152	132	334	298	608	196	103
k _{HO2+O3} [HO2]	52	48	95	35	12	58	55	81	41	10
k _{αpin+03} [α-pin]	87	82	199	60	24	181	162	316	93	71
k _{lm+03} [limonene]	53	51	93	29	14	117	120	151	77	23
k _{myr+03} [myrcene]	42	35	105	22	17	64	58	99	42	18
k _{iso+03} [isoprene]	839	720	2277	287	415	1183	1215	1886	727	260
k _{tol.+03} [toluene]	$\begin{array}{c} 0.5 \\ \times \ 10^7 \end{array}$	0.4 $\times 10^7$	$\begin{array}{c} 1.5 \\ \times \ 10^7 \end{array}$	0.1 $\times 10^7$	$\begin{array}{c} 0.3 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 1.2 \\ \times \ 10^7 \end{array}$	1×10^7	3.1 × 10 ⁷	$\begin{array}{c} 0.2 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 0.8 \\ \times \ 10^7 \end{array}$
k _{Ben.+03} [benzene]	1×10^7	$\begin{array}{c} 0.8 \\ \times \ 10^7 \end{array}$	4 × 10 ⁷	0.4 $\times 10^7$	0.6 $\times 10^7$	$\begin{array}{c} 1.6 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 1.5 \\ \times \ 10^7 \end{array}$	3.7 × 10 ⁷	0.7 $\times 10^7$	$\begin{array}{c} 0.8 \\ \times \ 10^7 \end{array}$
k _{E+03} [ethene]	1215	1221	2238	532	372	1627	1919	2554	633	668
k _{1,3BD+03} [butadiene]	377	378	521	245	62	458	449	509	403	29
k _{P+03} [propene]	370	398	737	76	201	680	775	1358	263	303
k _{Cis2B+03} [cis-2-butene]	303	283	654	115	127	345	339	421	285	39
k _{1P+03} [1-pentene]	87	90	107	71	9	88	82	123	73	15

Table 3.6: Lifetimes of O₃ with respect to different species measured at PARADE-2011. Time window]10:00, 14:00] UTC.

Rate × [conc.]	Lifetim	e of O ₃ fo	or respect	tive loss ((days)	Lifetime of O ₃ for respective loss (days)				
on Y-axis Fig. 3.10	@ Tem	p. > 13 °	С			@ Temp. ≤ 13 °C				
	Avg.	Mdn.	Max.	Min.	STD	Avg.	Mdn.	Max.	Min.	STD
$\beta \times jO^1D$	8	7	29	3	4	20	16	75	8	13
k _{OH+03} [OH]	202	179	1994	129	132	353	271	1111	181	205
k _{HO2+O3} [HO2]	41	40	109	30	9	57	52	99	39	16
k _{αpin+03} [α-pin]	104	95	250	46	39	196	212	286	109	61
k _{lm+03} [limonene]	67	61	150	29	27	127	128	173	102	15
k _{myr+03} [myrcene]	63	45	174	22	39	89	89	141	45	31
k _{iso+03} [isoprene]	677	534	2705	183	440	1196	1076	6717	391	880
k _{tol.+03} [toluene]	0.6 $\times 10^7$	0.4 $\times 10^7$	3.3 × 10 ⁷	$\begin{array}{c} 0.12 \\ \times \ 10^7 \end{array}$	0.6 $\times 10^7$	1.8 × 10 ⁷	1.6 × 10 ⁷	3.9 × 10 ⁷	0.5 $\times 10^7$	$\begin{array}{c} 0.9 \\ \times \ 10^7 \end{array}$
k _{Ben.+03} [benzene]	$\begin{array}{c} 1.2 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 0.9 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 4.8 \\ \times \ 10^7 \end{array}$	0.4 $\times 10^7$	$\begin{array}{c} 0.8 \\ \times \ 10^7 \end{array}$	2.1 × 10 ⁷	2 × 10 ⁷	$\frac{11}{\times 10^7}$	0.7 $\times 10^7$	1.6 × 10 ⁷
k _{E+03} [ethene]	1334	1255	4118	478	596	2300	2345	4303	942	838
k _{1,3BD+03} [butadiene]	343	341	517	170	68	442	459	588	218	76
k _{P+03} [propene]	463	477	1348	59	251	835	890	1518	333	338
k _{Cis2B+03} [cis-2-butene]	273	249	798	87	122	371	366	585	288	60
k _{1P+03} [1-pentene]	91	91	145	74	10	98	98	133	76	18

Table 3.7: Lifetimes of O₃ with respect to different species measured at PARADE-2011. Time window]14:00, 16:00] UTC.

Rate × [conc.]	Lifetim	e of O_3 for	or respect	tive loss ((days)	Lifetime of O ₃ for respective loss (days)				
on Y-axis Fig. 3.10	@ Tem	p. > 13 °	С			@ Temp. ≤ 13 °C				
	Avg.	Mdn.	Max.	Min.	STD	Avg.	Mdn.	Max.	Min.	STD
$\beta \times jO^1D$	22	17	72	6	15	72	72	174	17	36
k _{OH+03} [OH]	492	382	4352	184	398	1064	962	2338	300	486
k _{HO2+O3} [HO2]	68	65	119	41	16	93	95	114	55	14
k _{αpin+03} [α-pin]	83	79	175	33	31	131	126	230	96	29
k _{lm+03} [limonene]	53	47	125	19	27	97	98	110	61	13
k _{myr+03} [m yrcene]	47	37	122	16	25	68	61	127	43	24
k _{iso+03} [isoprene]	627	615	1208	221	247	912	856	1334	686	167
k _{tol.+03} [toluene]	0.7 $\times 10^7$	0.6 $\times 10^7$	$\begin{array}{c} 4.6 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 0.1 \\ \times \ 10^7 \end{array}$	0.7 $\times 10^7$	$\begin{array}{c} 1.6 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 1.7 \\ \times \ 10^7 \end{array}$	3.2 × 10 ⁷	$\begin{array}{c} 0.8 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 0.5 \\ \times \ 10^7 \end{array}$
k _{Ben.+03} [benzene]	1×10^7	$\begin{array}{c} 0.9 \\ \times \ 10^7 \end{array}$	3.1 × 10 ⁷	$\begin{array}{c} 0.5 \\ \times \ 10^7 \end{array}$	0.4 $\times 10^7$	$\begin{array}{c} 1.9 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 1.9 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 2.4 \\ \times \ 10^7 \end{array}$	$\begin{array}{c} 1.1 \\ \times \ 10^7 \end{array}$	0.4 $\times 10^7$
k _{E+03} [ethene]	1706	1721	3329	622	581	2357	2370	2885	2011	192
k _{1,3BD+03} [b utadiene]	358	355	531	154	87	476	482	570	392	44
k _{P+03} [propene]	524	570	873	61	199	833	905	1255	557	216
k _{Cis2B+03} [cis-2-butene]	309	289	609	98	136	439	446	554	331	50
k _{1P+03} [1-pentene]	88	91	118	74	8	107	108	144	78	26

4 Photostationary State (PSS) Analysis: PARADE-2011

The focus of this chapter is to understand the role of different species in the cycling between NO and NO₂ and specifically evaluate the potential role of an 'unknown' oxidant for PARADE-2011. The PSS is investigated by using the concept of the Leighton ratio (Leighton, 1961).

4.1 Leighton ratio (Φ)

The Leighton ratio Φ (Eq. 1.4) is often used to describe the PSS between NO and NO₂. During periods of sunlight, a null cycle exists between NO-NO₂-O₃ as described by reactions R. 1.1, R. 1.5, and R. 1.6. However, variations in the intensity of solar radiation like passing clouds and the local emissions of NO_x can perturb the PSS.

To avoid scatter in Φ due to rapid changes in solar radiation during early morning and late evening, a filter corresponding to $jNO_2 \ge 5 \times 10^{-3} s^{-1}$ for high photolysis frequency has been applied. Based on this filter, the calculated median time $(\tau)_{SS}$ (Eq. 1.3) for the establishment of PSS is 33 s with a variation in the range of [23, 65] s. The relative change in jNO₂ (10 minute averages) was less than 15 % for most of the filtered data set. No correlation is observed between the variation in jNO₂ and deviations in Φ (appendix 7.3.1.7.1). The reason for the absence of a correlation is that the data set for the calculation of Φ is based on averages over longer time periods (600 s) while the PSS is established within less than 65 s. Thus the averaging over longer period provides sufficient time for readjustments of the PSS even after an interruption of radiation. Emissions of NO_x in the vicinity of the measurement site can perturb the PSS. The nearby main emissions of NO_x were expected from road traffic. Based on the values of the locally measured wind speed, a distance in the range of [25, 463[m from the sampling point is required to buffer the PSS (@jNO₂ \ge 5 × 10⁻³ s⁻¹). There were no major roads located within a 300 m radius of the observatory; the nearest main roads were at a distance of 335 m north and > 700 m west of the field site. There was a small road around the observatory within a distance > 150m, but it had only infrequent traffic. So in order to avoid emissions from the nearest road at 335 m north, which can perturb the PSS, an extra filter (Filter_Road) has been applied. Consequently, any data point with conditions 'Filter_Road = $2 \times (\tau)_{SS}$ (s) × wind speed (m s⁻¹) > 300 m' is rejected. Thus the application of 'Filter_Road' minimised the possibility for disturbance of the PSS due to local emissions. Moreover, the PSS is expected to settle within 150 m prior to the sampling point for the remaining set of data points. The corresponding time window for the data analysis is between 7:00 to 16:00 UTC. During PARADE, the local time at the observatory was UTC + 2.

The time series for NO, NO₂, O₃, jNO₂ and others have been already shown in Fig. 3.5. Φ (Eq. 1.4) (Leighton, 1961) has been calculated for PARADE by using the measured data of NO, NO₂, O₃ and jNO₂. Fig. 4.1 shows the calculated Φ as a function of NO_x mixing ratios. Φ nearly converged to unity for higher NO_x levels while there are significant deviations from unity ($\Phi > 1$) at NO_x values of less than 4 ppb_v. Since O₃ is not the only oxidant converting NO to NO₂, these deviations ($\Phi > 1$) are probably due to NO₂ being formed by other oxidants which are not accounted in Eq. 1.4.

Fig. 4.1: Leighton ratio (Φ) during PARADE with respect to NO_x (log-log scale). Errors in Φ due to measurement uncertainties are indicated by the vertical error bars.

Errors in individual values of Φ are also shown in Fig. 4.1. The overall uncertainties of the measured parameters in Φ were listed in Table 3.2 and Table 3.3. The average and median values of the relative uncertainty in Φ are 19 % and 18.7 %, respectively, with variations in the interval of [18, 25] %. The uncertainty is determined by the propagation of errors based on parameters in Eq. 1.4 by using the following Eq. 4.1.

$$\Delta \Phi^{2} = \left(\left(\frac{\partial \Phi}{\partial j NO_{2}} \times \Delta j NO_{2} \right)^{2} + \left(\frac{\partial \Phi}{\partial NO_{2}} \times \Delta NO_{2} \right)^{2} + \left(\frac{\partial \Phi}{\partial NO_{2}} \times \Delta NO_{2} \right)^{2} + \left(\frac{\partial \Phi}{\partial k_{1,1}} \times \Delta k_{1,1} \right)^{2} + \left(\frac{\partial \Phi}{\partial NO} \times \Delta NO \right)^{2} + \left(\frac{\partial \Phi}{\partial O_{3}} \times \Delta O_{3} \right)^{2} \right)$$
Eq. 4.1

In Eq. 4.1, ' Δ ' represents the individual uncertainty of parameters in Φ . The uncertainty in Φ is on average 16 % larger at levels of NO_x < 4 ppb_v compared to levels of NO_x ≥ 4 ppb_v. With respect to different parameters in Φ , a relative fractional contribution (RFC⁴⁵) absolute value of the individual errors to the sum of absolute values of individual errors is shown in Fig. 4.2 as a function of NO_x. The binned averages of the RFC with standard deviations (1 σ) for 0.3 ppb_v NO_x intervals are also shown in Fig. 4.2.

From the error of rate coefficient ($k_{1,1}$) of the reaction R. 1.1, The maximum RFC is up to about 42.3 % of the total uncertainty in Φ ; this maximum RFC is observed at around 4 ppb_v of NO_x. It decreases to ~32 % with the decrease in NO_x to less than 2 ppb_v.

The RFC from measurement errors of O_3 is in the range of [17, 25] %. There is no significant trend in the RFC with the variability of NO_x levels.

$$^{45} \text{ RFC} = \frac{\left|\frac{\partial \Phi}{\partial X_{i}} \times \Delta X_{i}\right|}{\left|\frac{\partial \Phi}{\partial jNO_{2}} \times \Delta jNO_{2}\right| + \left|\frac{\partial \Phi}{\partial NO_{2}} \times \Delta NO_{2}\right| + \left|\frac{\partial \Phi}{\partial k_{1.1}} \times \Delta k_{1.1}\right| + \left|\frac{\partial \Phi}{\partial NO} \times \Delta NO\right| + \left|\frac{\partial \Phi}{\partial O_{3}} \times \Delta O_{3}\right|}$$

where $X_i = jNO_2$, NO_2 , $k_{1.1}$, NO, and O_3

The RFC for jNO_2 varies between 13 to 14 % for NO_x above 2 ppb_v. A minor decrease in the RFC of jNO_2 to 10.6 % is observed with respect to a decrease in NO_x below 2 ppb_v.

Measured NO RFC [10.3, 24.6] % increases with decrease in NO_x. For NO_x higher than 3 ppb_v, the RFC of NO is 10.3 to 11.5 %, whereas it increases to ~25 % for NO_x values below 0.9 ppb_v.

Maximum contribution (> 14.5 %) in the Φ uncertainty due to NO₂ measurements is observed at around 4 ppb_v of NO_x. The RFC due to NO₂ does not show significant trend with respect to NO_x levels and mainly varies between 13 to 15 %.

The absolute errors in Φ (Eq. 4.1) are greater at low NO_x levels. The error contributed by NO increases about 15 % at lower NO_x; however, at the same time there is about 10 to 15 % combined decrease is observed in errors due to k_{1.1}, jNO₂, and NO₂. The increasing trend in Φ with the decrease in NO_x levels (Fig. 4.1 or Fig. 4.3) has a chemical explanation and is only partially due to uncertainties of the NO measurement.

Fig. 4.2: Relative fraction of the uncertainty in Φ due to different parameters as a function of NO_x mixing ratios.
Fig. 4.3 shows an overview of Φ and colour-coded locally measured wind direction for correlations to different air masses. The average values of Φ and the average measurement error are calculated for 0.3 ppb_v NO_x bins and shown in Fig. 4.3 as well. To calculate averages, the minimum limit for a NO_x bin is at least 5 data points. The deviation of Φ increases with decrease in NO_x below to 4 ppb_v. There is no correlation observed for deviations of Φ with respect to the locally measured wind directions.

Fig. 4.3: Average Φ as a function 0.3 ppb_v of NO_x bin with measurement uncertainty of over bin averages.

In addition to O_3 , RO_x ($HO_2 + RO_2$) are well known oxidants that react with NO, to produce NO₂. The observed negative trend in the case of RO_x versus NO (Fig. 4.5) during PARADE is similar to the case of Φ versus NO_x (Fig. 4.3). RO_x contributes to deviations (Φ >1) at least to some extent, even if other oxidants like the halogen oxides are present or there are other reasons such as loss of O₃ due to the 'O₃ + alkenes' reaction. To support the notion that RO_x contributes to positive deviation in Φ , the instantaneous production rates of NO₂ have been calculated by taking reactions like 'NO + O₃' (R. 1.1) , 'NO + RO_x' (R. 1.3, R. 1.2), and PAN decomposition (R. 1.8) into account. Fig. 4.4 shows the relative fraction of the NO₂ production rates (median = $3.2 \pm 2.8 (1\sigma) \times 10^8$ molecule cm⁻³ s⁻¹) during PARADE for 'NO + O₃', 'NO + RO_x', and decomposition of PAN. The relative fraction of 'NO + RO_x' compared to 'NO + O₃' decreases with elevated NO₂. Major contribution in NO₂ production rates occurs from the 'NO + O₃' reaction. The relative fraction of 'NO + O₃' remains above 90 % for NO₂ > 2 ppb_v. Maximum relative fraction of 'RO_x + NO' was observed for NO₂ < 2 ppb_v; it was scattered in the range of [5, 25[%; based on 0.3 ppb_v NO_x bins, it averages up to 12.6 %. During PARADE, a decrease in RO_x with respect to increasing NO was observed (Fig. 4.5). This appears to be due to an increase in RO_x sinks with increasing NO levels, as described by reactions R. 1.2, R. 1.3, and R. 1.14. Similar to RO_x, a decrease in O₃ was also observed with increasing NO concentrations. A positive trend in ANs with respect to NO (Fig. 4.5) indicates increase in the loss of radicals forming organic nitrates at higher NO_x. This shows that positive deviation in Φ at low NO_x levels is most probably caused by the reaction 'NO + RO_x \rightarrow NO₂'.

Fig. 4.4: Fraction of NO₂ production rates for different reactions.

Fig. 4.5: Measured O₃, RO_x and ANs as a function of NO during PARADE.

4.2 Modified Leighton Ratio (Φ_{mod})

NO, NO₂ and O₃ also react with different trace gases apart from the reactions R. 1.1, R. 1.5 and R. 1.6. The PSS establish in shorter time scales; the impact from other processes such as O₃ deposition, 'NO + OH', 'NO₂ + OH', PAN decomposition, O₃ photolysis, and 'O₃ + alkenes' is not great enough to perturb the PSS.

During PARADE, the O_3 lifetime was in order of days, excluding the dry deposition (Section 3.3, Table 3.5, Table 3.6 and Table 3.7). So any loss of O_3 is not sufficient to perturb the PSS for PARADE.

The reaction of NO₂ with OH (R. 1.7) is a NO_x sink. The lifetime of NO₂ due to reaction with OH during PARADE was in the range of $]6 \times 10^4$, 4×10^5 [s. This reaction (R. 1.7) cannot perturb NO₂ concentrations enough to affect the PSS.

The decomposition of PAN can increase the concentration of NO_x. The effective lifetime of PAN (τ)_{PAN} is described by Eq. 4.2 (<u>Finlayson-Pitts and Pitts, 2000</u>) and it was greater than 7×10^3 s (appendix 7.3.1.7.3) during PARADE.

$$(\tau)_{PAN} = \frac{1}{k_{CH_3C(O)OONO_2 \to NO_2}} \left(1 + \frac{k_{CH_3C(O)OO + NO_2}}{k_{CH_3C(O)OO + NO}} \left[NO_2 \right] \right)$$
Eq. 4.2

The time scale for the PAN decomposition to NO_2 is very large compared to the characteristic time required for establishing the PSS. Therefore, the decomposition of PAN cannot considerably perturb the PSS for PARADE.

The lifetime of NO due to OH was greater than 7.8×10^4 s and is likewise unable to perturb the PSS considerably.

The sensitivity of the deviation in Φ for $\Phi > 1$ was tested based on the time scale required for the PSS establishment. A modified form Φ_{mod} (Eq. 4.3) was calculated to see the absolute effects on deviations and compared with Φ (Eq. 1.4). This estimation (Eq. 4.3) is useful to assess the effect on Φ deviations due to involvement of NO, NO₂ and O₃ in chemical reactions (excluding 'RO_x + NO \rightarrow NO₂').

$$\Phi_{\text{mod}} = \left(\frac{j\text{NO}_2\left[\text{NO}_2 + \text{NO}_{2\text{eff}}\right]}{k_{1.1}\left[\text{O}_3 + \text{O}_{3\text{eff}}\right]\left[\text{NO} + \text{NO}_{\text{eff}}\right]}\right)$$
Eq. 4.3

The major production or loss processes of NO, NO₂, and O₃ are accounted for in Eq. 4.3. The production and loss in NO, NO₂, and O₃ are described by NO_{eff}, NO_{2eff}, and O_{3eff}, respectively, in Eq. 4.4, Eq. 4.5, and Eq. 4.6 for the time window of $(\tau)_{ss}$ (Eq. 1.3). The basic idea behind Φ_{mod} (Eq. 4.3) is that it will describe actual Φ in an absence of production or loss processes other than NO-NO₂-O₃ cycle R. 1.1, R. 1.5, and R. 1.6 but excluding 'RO_x + NO \rightarrow NO₂'.

$$NO_{eff} \approx (\tau)_{ss} \times k_{OH+NO} [OH] [NO]$$
 Eq. 4.4

$$NO_{2eff} \approx (\tau)_{ss} \times (k_{OH+NO} [OH] [NO_2] - k_{Diss.} [PAN])$$
 Eq. 4.5

$$\begin{split} O_{3\text{eff}} &\approx (\tau)_{ss} \times [O_3] \times \left(\beta \times jO^1 D + k_{NO_2 + O_3} [NO_2] + k_{OH + O_3} [OH] + k_{HO_2 + O_3} [HO_2] + k_{Iso. + O_3} [isoprene] + k_{\alpha-\text{Pin.+}O_3} [\alpha - \text{pinene}] + k_{Myr. + O_3} [myrcene] + k_{Im + O_3} [limonene] + k_{Im + O_3} [limonene] + k_{Eth. + O_3} [ethene] + k_{Pro. + O_3} [propene] + k_{ButD + O_3} [1,3 - butadiene] + k_{Cis2B. + O_3} [cis - 2 - Butene] + k_{1-P. + O_3} [1 - \text{pentene}] + k_{Ben. + O_3} [benzene] + k_{tol + O_3} [toluene] + V_d / BLH) \end{split}$$

Based on the information 'concentration = $(\tau)_{SS} \times loss$ or production rates', the loss processes are added and the production processes are subtracted. In NO_{eff}, the loss processes for NO due to P(HONO) is considered over the time scale of $(\tau)_{ss}$. The loss of NO₂ towards HNO₃, and production from PAN decomposition is considered in Eq. 4.5, where k_D (Atkinson et al., 2004) is the decomposition rate. In Eq. 4.6, several loss processes are taken into account for O₃, based on the available measurements of alkenes during PARADE. V_d is the deposition velocity of O₃ and a value of 1cm s⁻¹ (Droppo, 1985;Finlayson-Pitts and Pitts, 2000) for upper estimate is used with a boundary layer height (BLH) of 1000 m.

The ratio Φ / Φ_{mod} is shown in Fig. 4.6. The median value of Φ / Φ_{mod} is $1.015 \pm 0.005 (1\sigma)$ at NO_x lower than 3 ppb_v. The maximum value of contribution to the deviation of Φ from the production and loss processes as described in Eq. 4.4, Eq. 4.5, and Eq. 4.6 is less than 3 % and it is insignificant if the uncertainties of the measured quantities in Eq. 4.4, Eq. 4.5, and Eq. 4.6 are considered. The local sinks of O₃ (Eq. 4.6) were not important in accounting for the positive deviations in Φ . Even multiplying BVOCs (isoprene, α -pinene, myrcene and limonene in Eq. 4.6) concentrations by a factor of 20 and allowing a 10 times enhancement in the photolytic loss of O₃ [$\beta = 1$ (Eq. 1.12)] cannot produce considerable difference in the ratio Φ / Φ_{mod} . Hence, it can be concluded that for PARADE, the observed deviations in Φ are not significantly affected by the involvement of NO, NO₂, and O₃ with other physical or chemical processes, excepting 'RO_x + NO'.

Eq. 4.6

Fig. 4.6: Effect on Φ due to the involvement of NO, NO₂, and O₃ in other chemical and physical processes.

4.3 Extended Leighton ratio (Φ_{ext}) including measured RO_x

Interconversion of NO and NO₂ in the presence of O₃ is rapid during periods of sunlight (<u>Cadle and Johnston, 1952;Leighton, 1961</u>) and the role of RO_x in the process cannot be ignored (<u>Calvert and Stockwell, 1983;Bradshaw et al., 1999</u>). The classical Leighton ratio Φ has been extended by the contribution of RO_x. The total sum of peroxy radicals (HO₂ + RO₂) was measured with the PeRCA instrument during PARADE and these measurements were used to evaluate the extended Leighton ratio Φ_{ext} (Eq. 1.6). The inclusion of RO_x significantly reduces the deviation in Φ as observed in Φ_{ext} (Fig. 4.7). The resulting reduction in Φ at lower NO_x concentration (<4 ppb_y) is greater than the reduction in Φ at elevated NO_x values.

This is because of the fact that the larger RO_x concentrations were observed at lower NO_x concentrations (Fig. 4.4). Deviations in $\Phi_{ext} > or < 1$ are mostly below the uncertainty of Φ_{ext} , as shown in Fig. 4.8.

Fig. 4.7: Extended (Φ_{ext}) and classical Leighton ratio (Φ) are plotted versus NO_x mixing ratios for PARADE (log-log scale).

Different types of peroxy radicals present in the atmosphere react with NO at different rates. Φ_{ext} has been calculated (Fig. 4.7) using three different assumptions for the rate coefficient 'k_(ROx+NO)' value of the 'RO_x + NO' reaction as follow.

(1) If all the measured RO_x are considered as HO₂, then $k_{(ROx+NO)} = k_{(HO2+NO)}$. (Atkinson et al., 2004).

(2) If RO_x = methyl peroxy radical (CH₃O₂), then then 'k_(ROx+NO)' = 'k_(CH3O2+NO)' (<u>Atkinson et al., 2006</u>).

(3) If a generic rate coefficient is used for ' $k_{(ROx+NO)}$ ' from MCM3.2 (Jenkin et al., 1997;Saunders et al., 2003).

The reduction in deviations is smaller in the case (2) compared to cases (1) and (3), as shown in Fig. 4.7. The average difference of the reduction between cases (1), (2), and (3) is less than 1.4 % and is not significant. An overview of Φ_{ext} for PARADE is presented in Fig. 4.8, with the generic rate coefficient used for the 'RO_x + NO' reaction and an uncertainty of 25 % assigned to it. Φ_{ext} is also shown in Fig. 4.8 with calculated uncertainty due to measurements (Table 3.2). The deviations in Φ_{ext} are slightly larger than 1 at NO_x < 3.6 ppb_v compared to higher NO_x > 3.6 ppb_v. For more than 82 % of data set, the observed deviations in Φ_{ext} are within the range of the uncertainty in Φ_{ext} .

The overall population average of Φ_{ext} is plotted in the lower panel of Fig. 4.8. The standard error of the average is derived from the distribution of Φ_{ext} by using $1\sigma / \sqrt{n}$. Only a single data point with a value $\Phi_{ext} = 3.70$ at NO_x = 3.36 ppb_y is omitted from the calculation of the average, as it does not seem to be the part of the distribution. The average value of Φ_{ext} is 1.09 with standard error of \pm 0.02. The average uncertainty due to measurement for Φ_{ext} is ± 0.2 (1 σ). Due to the uncertainty (± 0.2) of measurements, the average value (1.09) of Φ_{ext} is not significantly different from unity. The sensitivity of the average value of $\Phi_{ext} = 1.09$ is also tested by varying the values within the uncertainty of some parameters in Φ_{ext} (Eq. 1.6). The lowest uncertainty in the measured NO is about 0.021 ppb_v. By changing the measured NO to + 0.021 ppb_v, the average value for Φ_{ext} is improved to 1.045 ± 0.13 (1 σ) with a standard error of 0.01. If the values for jNO₂ are reduced to 5 %, the average value for Φ_{ext} distribution is 1.035 ± 0.14 (1 σ) with standard error of 0.01. Similarly, combining these two variations of NO and jNO₂, the average of Φ_{ext} is 0.99 ± 0.131 (1 σ). This suggests that within the uncertainty of the measurements, Φ_{ext} appears to 1 for case-4 (combine change in NO and jNO₂) as shown in Fig. 4.8, it is still noteworthy that in the case-1 (normal) a systematic bias remains as shown in the lower panel of Fig. 4.8.

Fig. 4.8: Overview of Φ_{ext} (with measurement uncertainties) as a function of NO_x mixing ratios in the upper panel with x-axis in log scale. The lower panel shows averages with $\pm 1\sigma$ variability. Note that for the lower panel, all avg. Φ_{ext} have less than 1.2 % standard error

 $(1\sigma / \sqrt{n}).$

The PSS was further tested to verify the significance of deviations with respect to the measured NO₂ during PARADE. NO₂ from the PSS is calculated for two cases: with and without RO_x inclusion as shown in Eq. 4.7 and Eq. 4.8, respectively.

$$\left(\mathrm{NO}_{2}\right)_{\mathrm{PSS}} = \left(\frac{\mathrm{k}_{1.1}\left[\mathrm{O}_{3}\right]\left[\mathrm{NO}\right]}{\mathrm{jNO}_{2}}\right) \qquad \mathrm{Eq.}\ 4.7$$

$$\left(\mathrm{NO}_{2}\right)_{\mathrm{PSSext}} = \left(\frac{\mathrm{k}_{1.1}\left[\mathrm{O}_{3}\right] + \mathrm{k}_{\mathrm{MCM3.2}}\left[\mathrm{RO}_{x}\right]_{\mathrm{PeRCA}}}{\mathrm{jNO}_{2}}\right)\left[\mathrm{NO}\right]$$
Eq. 4.8

The absolute errors in the calculated NO₂ were evaluated by using propagation of errors according to the relation in Eq. 4.9. X_i represents the different quantities in Eq. 4.9. The maximum and minimum absolute errors in (NO₂)_{PSS} and (NO₂)_{PSSext} are given in Table 4.1 for two different NO_x ranges. The relative errors are found to be larger for the lower NO_x values for both (NO₂)_{PSS} and (NO₂)_{PSSext}.

$$\Delta(\mathrm{NO}_{2})_{\mathrm{PSSext}} = \sqrt{\sum \left(\Delta X_{\mathrm{i}} \times \frac{\partial (\mathrm{NO}_{2})_{\mathrm{PSSext}}}{\partial (X_{\mathrm{i}})}\right)^{2}}$$
Eq. 4.9

Table 4.	1: Absolute errors in NO ₂ calculated fro	m PSS (Eq. 4.7 and Eq. 4.8).

	$NO_x \le 3.8 ppb_v$		$NO_x > 3.8 \ ppb_v$			
	Min	Max	Mdn	Min	Max	Mdn
	(ppb _v)	(ppb _v)	(ppb _v)	(ppb _v)	(ppb _v)	(ppb _v)
(NO ₂) _{PSS}	0.08	0.46	0.25	0.32	1.48	0.62
(NO ₂) _{PSSext}	0.09	0.52	0.30	0.36	1.5	0.66

Based on the York method (<u>York et al., 2004</u>), which takes both x and y errors into account (Fig. 4.9), a good overall correlation $[R^2 > 0.95]$ is observed between the measured NO₂ and calculated NO₂ [(NO₂)_{PSS} and (NO₂)_{PSSext}].

Fig. 4.9: Calculated NO₂ from PSS versus measured NO₂ during PARADE. Three different possibilities are shown $\mathbf{A} = (NO_2)_{PSS}$, $\mathbf{B} = (NO_2)_{PSSext}$, $\mathbf{C} = (NO_2)_{PSSext}$ [@ NO = NO + 0.021 ppb_v and jNO₂ = jNO₂ - (0.05 × jNO₂)].

(NO₂)_{PSS} from Eq. 4.7 is overall 10 % less than the measured NO₂. In contrast, taking the RO_x measurements into account in the (NO₂)_{PSSext} calculation (Eq. 4.8), reduces the difference to 4 % compared to the measured NO₂. For the combined effect of cases 'NO = NO + 0.021 ppb_v' and 'jNO₂= jNO₂- (0.05 × jNO₂)' as described in this section above, (NO₂)_{PSSext} is further improved and overestimated by only 2 % compared to the measured NO₂.

The remaining deviations (> 1) in Φ_{ext} were smaller than the uncertainty in Φ_{ext} . The sensitivity of Φ_{ext} was tested by varying NO and jNO₂ below the corresponding uncertainty of measurement and further improvements in reducing the remaining deviations were observed. It seems that the Φ_{ext} converged to unity within the uncertainties of measurements (case 4, Fig. 4.8). Similarly, in the second approach, the NO₂ calculations based on Eq. 4.8 agree reasonably well with the measured NO₂ below the uncertainty of the NO₂ measured data

(about 5 %). Therefore, it is concluded that the NO_x-related photochemistry is explained by the PSS model during PARADE and it is consistent with the field measurements of NO₂ though within the uncertainty of the measurements. It is important to mention that a small bias persists in Φ_{ext} or the NO₂ calculations from PSS for normal-cases and this bias could translate up to about 10 ppt_v of 'equivalent RO₂' concentrations but considering the uncertainties of the measurements it is statistically insignificant. Concluding for PARADE, a statistical evidence to justify the presence of an 'unknown oxidant' is insufficient and limited by the measurement uncertainties.

5 HUMPPA-COPEC-2010: NO_x photochemistry

Emissions of reactive organic species from a boreal forest provide sinks for oxidants OH, O₃ and NO₃. The boreal forest makes up one-third of the world's forest and covers about 15 million km² area of the northern latitude (FAO, 2010); the impact on the oxidation photochemistry over this large area of land is expected to be large. The general objective of the field experiment was to characterise the chemical and physical phenomenon of the atmosphere over a boreal forest (Williams et al., 2011). This includes the study of the HO_x budget (Hens et al., 2013), organic aerosol characterisation (Vogel et al., 2013), a study of PAN and peroxyacetic acid (PAA) with its implications for PAN fluxes (Phillips et al., 2012), oH reactivity (Nölscher et al., 2012), emissions rates of terpenes (Yassaa et al., 2012), and the impact of the boundary layer on the atmospheric chemistry (Ouwersloot et al., 2012). The objective of the work in this chapter is to investigate the PSS under very low NO_x conditions. A model is also used to test the validity of our current understanding of the cycling between NO_x and the potential role of an 'unknown oxidant'. The role of alkyl nitrates is also discussed in relation to the NO_x lifetime and O₃ production efficiency (OPE) in the boreal forest region.

5.1 Overview HUMPPA-COPEC-2010

HUMPPA-COPEC (Hyytiälä United Measurements of Photochemistry and Particles in Air -Comprehensive Organic Precursor Emission and Concentration study) campaign took place between 12 July and 12 August 2010 at the boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) at Hyytiälä (181 m ASL; 61°51' N, 24°17' E), Southern Finland. The location is a remote area with high biogenic emissions. The dense forest coverage within 5 km the station is composed of coniferous⁴⁶ forest (62 %), mixed⁴⁷ forest (25 %), and shrubs (7.6 %). Coniferous trees are a significant contributor to emissions of monoterpenes and these emissions are a function of temperature (Guenther et al., 1995). The nearest large city is Tampere (200k pop. in 2012) at a distance of about 60km S-SW direction from the station. SMEAR II (Hari and Kulmala, 2005) is equipped with towers and

⁴⁶ mainly Scots pine and spruce

⁴⁷ Birch and confers

masts to provide platforms for several instruments to monitor the atmospheric parameters at different altitudes.

The average temperature during the period of measurement was 20 °C with variations of]10, 33[°C. These were remarkably high compared to temperatures recorded in previous years at the location. A comparison of temperatures with previous years can be found in (Williams et al., 2011). The pressure varied in the range of]979, 1003[hPa with an average value of 992 hPa. Daylight lasted about 18h at the site location during HUMPPA-COPEC. Based on three-day HYSPLIT back trajectories (Draxler and Hess, 1998), air mass origin can be segregated into the four wind sectors (NW, NE, SW, and SE) (Williams et al., 2011). Most (53.7 %) of the air masses arrived at site from the SW direction. The contributions to the air mass originating from the SE and NW were 20.7 % and 10.3 %, respectively.

Analytical techniques: For HUMPPA-COPEC, an additional tower was installed at the SMEAR-II site. The height of tower was about 24 m and the top of the tower was about 2 - 3 m above the forest canopy. The inlet lines and sensors for different atmospheric parameters were at top of the tower (24 m). Table 5.1 gives an overview of the measured gas species and photolysis frequencies at the top of tower related to this discussion. The analysis is based on the available 5 min averages of the data set listed in Table 5.1. A vast data set of more than 50 parameters was measured at different heights and within a radius of 200 m. A detailed list of instrumentation can be found in (Williams et al., 2011). The time series of important quantities regarding the PSS (Table 5.1) are shown in

Fig. 5.1 and appendix 7.4.1.1. Based on results from PARADE, it was observed that HO₂ and RO₂ along with O₃ are important for the PSS analysis, so during HUMPPA-COPEC a period is selected when HO₂ and OH (a precursor for RO₂) measurements above the canopy were available. The period starts on the 1st of August 2010 (JD = 213) and lasts until the 7th of August 2010 (JD = 219). The local time during HUMPPA-COPEC at the observatory was UTC + 3.

Highest values of photolysis frequencies were present at 10:00 UTC. OH and HO₂ radicals were measured with a well-established instrument based on laser-induced fluorescence technique. Details of the measurement setup and procedure for HUMPPA-COPEC are discussed in (Hens et al., 2013;Novelli et al., 2014). OH followed a pronounced daily profile with peak concentrations at about 10:00 UTC (maximum value of 4.6×10^6 molecule cm⁻³). The variations in HO₂ were in the range of [2.5, 46.7] ppt_v with a median value of 12 ppt_v. NO and NO₂ measurements were conducted with a chemiluminescence detector (CLD) (Hosaynali Beygi et al., 2011). An increase in the NO

concentrations was observed beginning at sunrise around 2:00 UTC in the morning because of the photolysis of NO₂. From 12:00 UTC onward, NO concentrations were started to decrease until 19:00 UTC (Fig. 5.1). During the night, from about 8:00 UTC to 2:00 UTC, the median value of the observed NO was $1.2 \pm 2 (1\sigma)$ ppt_v. Lower NO₂ concentrations had been measured from 6:00 to 18:00 UTC with a median value of $0.25 \pm 0.1 (1\sigma)$ ppb_v. For the remaining interval, the median value of NO₂ was $0.45 \pm 0.2 (1\sigma)$ ppb_v. The variation in NO₂ for the whole period was [0.09, 2] ppb_v (Fig. 5.1). O₃ was measured by using the UVabsorption technique described in (Gros et al., 1998). The concentration of O₃ showed a positive trend with respect to time from 4:00 to 12:00 UTC and decreased for the later period until 4:00 UTC. The median concentration of O₃ was 41.6 ppb_v with variations of]22, 62[ppb_v.

Parameter	Instrument/Technique	LOD	Uncertainty	Institute
O ₃	UV	1 ppb _v	1 %; 4 ppb _v	MPIC
NO	CLD	5 ppt _v	10.3 ppt _v + 5 %	MPIC
NO ₂	CLD (+BLC ⁴⁸)	5 ppt _v	14.2 ppt _v + 6 %	MPIC
ОН	IPI-LIF-FAGE ⁴⁹	9×10 ⁵ cm ⁻³	Accu. = 30% Prec.= 5×10^{5} cm ⁻³	MPIC
HO ₂	LIF-FAGE	0.4 ppt _v	Accu. = 30 % Prec. < 0.8 ppt _v	MPIC
Photolysis freqs.	Filter-radiometer	-	5 - 15 %	FZ Jülich
Total OH Reactivity	CRM ⁵⁰	3 s ⁻¹	Accu. = 16% Prec. = $3 - 4 s^{-1}$	MPIC
BVOCs	TD-GC-MS ⁵¹	9 ppt _v	10 - 15 %	MPIC
PAN	CIMS	-	-	MPIC
НСНО	Aerolaser AL4021	17.4 ppt _v	34 %	MPIC
СО	Aerolaser AL5002	1 ppb _v	< 10 %	MPIC
Meteo.	-	-	-	SMEAR II

Table 5.1: A list of instrumentation during HUMPPA-COPEC related to this discussion.

⁴⁸ Blue light convertor

⁴⁹ InletPreInjector-Laser-Induced Fluorescence-Fast Gas Expansion

⁵⁰ Comparative Reactivity Method (Nölscher et al., 2012)

⁵¹ Thermal Desorber Gas Chromatograph Mass Spectrometer

Fig. 5.1: Time series of some important trace gas species, jNO₂, and meteorological parameters during HUMPPA-COPEC-2010 in the upper panel. Lower panel shows an overview of the setup.

5.2 Leighton ratio (Φ)

The conditions during HUMPPA-COPEC were different than PARADE in terms of the NO_x and BVOCs concentrations. The O_3 concentration was similar to the one for PARADE. Generally, the conditions in HUMPPA-COPEC can be regarded as NO_x -limited (Section, 5.4).

A sufficient actinic flux and O₃ concentrations are required to achieve the PSS within a short period of time. To gain access the period where the PSS is expected to become established in a short time interval, the data for Φ (Eq. 1.4) is filtered for jNO₂ $(jNO_2 \ge 5 \times 10^{-3} \text{ s}^{-1})$ as it was in the analysis of the PARADE data set. During HUMPPA-COPEC, the average value of the estimated time to establish NO_x equilibrium was 40 s with a variation of [29, 61] s. Variations in radiation, such as passing clouds can perturb the PSS. In this case, the effect of local variation in the radiation is assessed by calculating point-to-point relative differences in the available 5 minute averages of the measured jNO_2 data. The relative change for most of the data set is less than 20 %. There was no correlation observed between variation in jNO₂ and deviation in Φ (appendix 7.4.1.2). The reason for the lack of correlation is that the data set for the calculation of Φ is based on averages over a longer time period compared to the time required for the PSS to establish. Based on the locally measured wind speeds, NO_x should be in equilibrium within a distance of less than 200 m around the sampling point. The major roads around the observatory are at a distance of 1 km (SW), 1.8 km (W), and 1.9 km (E). Therefore, emissions of NO_x at these roads are unlikely to perturb the local PSS at the sampling site. Note all upcoming discussions are based on the filtered data.

NO_x concentrations⁵² during HUMPPA-COPEC were low compared to PARADE. Φ (Eq. 1.4) is calculated for HUMPPA-COPEC based on measured data of NO, NO₂, O₃, and jNO₂. Φ as a function of NO for both HUMPPA-COPEC and PARADE is shown in Fig. 5.2. Deviations in $\Phi > 1$ are larger in HUMPPA-COPEC compared to PARADE. This indicates that the role of oxidants other than O₃ in converting NO to NO₂ is higher compared to PARADE. The deviation (> 1) in Φ in the case of HUMPPA-COPEC increased with a decrease in NO concentrations up to 44 ppt_v, while a decreasing trend is observed with the further decrease in NO below 44 ppt_v. This decreasing trend is discussed further in Section 5.5. The relative error in Φ in case for HUMPPA-COPEC due to parameters in Eq. 1.4 varied

⁵² HUMPPA-COPEC; NO_x =]0.1, 0.9[ppb_v and NO =]0.019, 0.25[ppb_v PARADE; NO_x =]0.7, 13.5[ppb_v and NO =]0.09, 5[ppb_v

from 30 to 65 % at NO values of 100 to 20 ppt_v (appendix 7.4.1.3). The lifetime of O₃ including deposition during HUMPPA-COPEC was within $]1 \times 10^5$, 3×10^5 [s. Lifetimes of NO and NO₂ due to reaction with OH at OH > 0 were within $]2 \times 10^4$, 8×10^5 [s and $]1.8 \times 10^4$, 7×10^5 [s, respectively. These lifetimes are in the order of 10^4 to 10^5 s and very high compared to the time required (]29, 61[s) for NO_x to reach equilibrium, so the reactions 'O₃ + BVOCs', 'NO₂ + OH', and 'NO + OH' are unlikely to contribute in $\Phi > 1$ deviations as had been observed in the case of PARADE.

Fig. 5.2: Φ as a function of NO for HUMPPA-COPEC-2010 and PARADE-2011. NO concentrations on x-axis are represented in log scale.

5.2.1.1 Φ_{ext2} (Inclusion of NO + HO₂ in Φ)

BVOCs and OH are precursors for RO_x and larger concentrations of these species were measured (appendix 7.4.1.1) during HUMPPA-COPEC compared to PARADE, so the deviations in Φ (> 1) due to high RO_x are expected to be larger as well. HO₂ measurements were available during HUMPPA-COPEC. Based on these measurements, the contribution of R. 1.2 to Φ is introduced and defined as Φ_{ext2} (Eq. 5.1).

$$\Phi_{\text{ext2}} \coloneqq \frac{j\text{NO}_2[\text{NO}_2]}{(k_{1,1}[\text{O}_3] + k_{1,2}[\text{HO}_2])[\text{NO}]}$$
Eq. 5.1

In (Eq. 5.1), $k_{1.2}$ (Atkinson et al., 2004) is the rate coefficient for the reaction of NO and HO₂ (R. 1.2). Φ and Φ_{ext2} are shown in Fig. 5.3 as a function of NO for HUMPPA-COPEC. The deviations ($\Phi > 1$) are reduced with inclusion of 'NO + HO₂' contributions, but Φ_{ext2} is still significantly larger (40%) than unity at levels of NO < 0.1 ppb_v and the remaining deviations (> 1) in Φ_{ext2} are expected to be from 'NO + RO₂'. The calculated NO₂ from the PSS (Eq. 4.7) was about 17 % less than the measured NO₂ for HUMPPA-COPEC, whereas this difference was only 11 % in case of PARADE. If all deviations in Φ for HUMPPA-COPEC are related to peroxy radicals and no unknown chemistry is involved, then this difference of the calculated NO₂ (Eq. 4.7) tells that the concentrations of peroxyradicals are roughly a factor of about 1.5 higher than during PARADE. The difference decreased 17 % to 9 %, after inclusion of HO₂ in the PSS by using Eq. 5.2 for HUMPPA-COPEC. Eq. 5.2 is slightly different from Eq. 4.8, as this only contains HO₂ measurements, not RO_x (available in case of PARADE).

$$(NO_2)_{PSSext2} = \frac{(k_{1,1}[O_3] + k_{1,2}[HO_2])[NO]}{jNO_2}$$
 Eq. 5.2

Fig. 5.3: Φ and Φ_{ext2} as a function of NO for HUMPPA-COPEC.

5.2.1.2 Estimation of RO₂ from Φ_{ext2}

If it is assumed that the cause for the deviation in Φ_{ext2} (> 1) is RO₂, then this difference (>1) can be used to derive RO₂ concentrations for HUMPPA-COPEC according to relation Eq. 5.3.

$$(\text{RO}_2)_{\text{PSS}} \approx \frac{k_{1.1} [\text{O}_3] + k_{1.2} [\text{HO}_2]}{k_{1.3}} (\Phi_{\text{ext}2} - 1)$$
 Eq. 5.3

In Eq. 5.3, $k_{1.3}$ is generic rate coefficient for reaction between RO₂ and NO (Jenkin et al., <u>1997;Saunders et al., 2003</u>). For HUMPPA-COPEC, the median value of the ratio between (RO₂)_{PSS} and HO₂ is 1.04 ± 0.5 (1 σ). (RO₂)_{PSS} concentrations are shown as a function of NO in Fig. 5.4. A negative trend is observed in (RO₂)_{PSS} with respect to increase in NO

concentrations. Concentrations of $(RO_2)_{PSS}$ below 20 ppt_v are calculated at NO levels > 100 ppt_v, while the variations in $(RO_2)_{PSS}$ at NO levels < 100 ppt_v are in the range of]0, 51[ppt_v.

Fig. 5.4: Estimated RO₂ for HUMPPA-COPEC as a function of NO.

5.3 Box model simulations

Deviations (> 1) in Φ are observed as shown previously in Fig. 5.3. These deviations (> 1) decline with the inclusion of the 'HO₂ + NO' contribution for the case of Φ_{ext2} . RO₂ measurements were not available during HUMPPA-COPEC. So to assess the effects of RO₂ on remaining deviations (> 1) in Φ_{ext2} (Fig. 5.3), an alternative method is used to calculate RO₂.

Numerical models are used commonly in the atmospheric studies to simulate the effects of missing species. These models are often combined with chemical and physical processes. In this case, CAABA/MECCA [Chemistry As A Boxmodel Application / Module Efficiently Calculating the Chemistry of the Atmosphere] model is used to estimate the levels of RO₂ for HUMPPA-COPEC.

5.3.1 Introduction to the mechanism applied

CAABA is a box model used with MECCA chemistry and it is referred as CAABA/MECCA (Sander et al., 2011a). MECCA includes a comprehensive set of atmospheric reactions. In this case the monoterpene mechanism (MTM) is used together with the MIM3* mechanism. MIM3* mechanism is an MIM2 [Mainz Isoprene Mechanism (Taraborrelli et al., 2009)]-like version of MIM3 (Taraborrelli et al., 2012) with oxidation of the major terpenes (α -pinene, β pinene, β -myrcene, Δ^2 -carene, Δ^3 -carene and α -farnesene) additionally added (<u>Hens et al.</u>, 2013). The difference between MIM3 and MIM3* is that reactions like ' $RO_2 + HO_2$ ', hydroperoxy-aldehyde and H-shifts are considered as in MIM2. The oxidation of α - and β pinene is same as in MCM [Master Chemical Mechanism, MCM3.2 (Jenkin et al., 1997; Jenkin et al., 2005)], while the oxidation of β -myrcene and α -farnesene follows an isoprene like oxidation path with carene assumed to yield products similar to α -pinene. A detailed set of equations in the mechanism can be found in Section 7.5 or in the supplement of (Hens et al., 2013). The deposition of nitrates, PAN, aldehydes, and peroxides in the mechanism is added from the literature (Evans et al., 2000). The halogen and sulphur chemistry with heterogeneous and aqueous phase reactions were deactivated in the simulations.

The model is constrained to include quantities like concentrations of NO, O₃, OH, HO₂, H₂O, HCHO, isoprene, α -pinene, β -pinene, Δ^3 -carene, β -myrcene and photolysis frequencies, i.e. the values are fixed to observed concentrations. The simulations terminates

when NO₂ has reached equilibrium. These simulations are only carried out if data of all constrained species is available at a photolysis frequency of $jNO_2 \ge 5 \times 10^{-3} \text{ s}^{-1}$.

5.3.2 Results of simulations

An estimate of different RO₂ species has been obtained based on CAABA/MECCA simulations. The CAABA/MECCA simulations are referred as simulations for the remainder of the text. The simulated median values of the mixing ratios of RO₂ species from different precursors are given in Table 5.2. From the simulations, about 70 % of relative median fractions are due to α -pinene-related RO₂ and methyl peroxy radical (CH₃O₂). CH₃O₂ is the largest individual contributor to the RO₂ concentration. The relative contributions to total RO₂ from isoprene-related RO₂ are less than 10 % based on median values. Total median contributions from β -pinene and myrcene-related RO₂ are less than 5 %. Less than 17 % of the total RO₂ fraction is from other RO₂ species, mainly with C₃, C₄ and higher carbon numbers. A bar chart is shown in Fig. 5.5 that shows the relative fraction of RO₂ species from different precursors as a function of the measured NO concentrations. In addition to CH₃O₂, monoterpene (pinene and carene)-related RO₂ are considerably large compared to isoprene-related RO₂. This confirms the importance of monoterpenes compared to isoprene-related chemistry in boreal forest condition as concluded in previous studies (Williams et al., 2007;Nölscher et al., 2012).

Туре	Average	Median	STD
	(ppt _v)	(ppt _v)	(1σ)
CH ₃ O ₂	2.50	2.37	1.34
α - pinene related RO ₂	2.71	2.40	1.55
β - pinene related RO ₂	0.1	0.1	0.04
Myrcene related RO ₂	0.3	0.2	0.34
Isoprene related RO ₂	0.70	0.54	0.52
RO ₂ with C ₄	0.25	0.22	0.19
Others	1.10	0.86	0.84

Table 5.2: Average, median and standard deviation values of different RO_{2(CAABA/MECCA)} species.

Fig. 5.5: Relative fraction of RO_{2(CAABA/MECCA)} as a function of NO.

The sum of RO₂ based on simulation values [(RO₂)_{CAABA/MECCA}] mostly stayed below 10 ppt_v for NO > 100 ppt_v. At low NO concentrations, the variations in (RO₂)_{CAABA/MECCA} are within the interval of]0, 27[ppt_v. Based on the median values, the derived (RO₂)_{PSS} from the PSS (Eq. 5.3) are higher than the simulated (RO₂)_{CAABA/MECCA} by a factor of 2.72 ± 3.6 for NO < 100 ppt_v and 2.02 ± 1.4 for NO > 100 ppt_v. More than 90 different RO₂ species are present in the applied mechanism and 'RO₂ + NO' reactions are differentiated based on yields and some rate coefficients for NO₂ formation. All 'RO₂ + NO' reactions from simulations are considered separately and applied individually to investigate the PSS. In Fig. 5.6, Φ , Φ_{ext2} and Φ_{ext} are plotted as a function of NO. As a brief reminder for the reader, Φ only contains the contribution of 'NO + O₃', while Φ_{ext2} only contains contributions from 'NO + O₃' and 'NO + HO₂'. Φ_{ext} contains the contribution of 'NO + O₃', 'HO₂ + NO' and '(RO₂)_{1→n} + NO'. There are significant deviations (> 1) up to about 30 - 40 % remaining for levels of NO (< 80 ppt_v). At higher levels of NO (> 80 ppt_v), Φ_{ext} almost converges to 1.1, but It can be clearly observed that the simulated $(RO_2)_{CAABA/MECCA}$, measured HO₂ and O₃ are not sufficient to justify NO to NO₂ conversion occurring especially at NO levels below 80 ppt_v.

Fig. 5.6: Φ , Φ_{ext2} , and Φ_{ext} are shown as a function of NO.

5.3.2.1 Discrepancy between simulations and PSS

The possible reasons for the discrepancy between simulations and the PSS system are discussed in the following sections.

5.3.2.1.1 Rate coefficient for RO₂ + NO

It had been suggested that the rate coefficient for the calculation of $(RO_2)_{PSS}$ could be critical (Matsumoto et al., 2006) and lead to a discrepancy. The rate coefficients for an individual 'RO₂ + NO' are different from the one used to derive $(RO_2)_{PSS}$ from deviations of Φ_{ext2} (Eq. 5.3). This difference in the rate coefficients between an individual 'RO₂ + NO' and the generic rate coefficient can lead to the discrepancy. The advantage of the MIM3* mechanism is that the rate coefficients for the individual 'RO₂ + NO' reactions are differentiated based on yields and some rate coefficients for the formation of NO₂. A weighted rate coefficient 'k_{1.3W}' for the reaction 'RO₂ + NO' (R. 1.3) is calculated and compared with the generic rate coefficient 'k_{1.3}' applied in the case of (RO₂)_{PSS} (Eq. 5.3). The relative amounts of various RO₂ species to sum in RO₂ [(RO₂)_{CAABA/MECCA}] is provided by simulations. 'k_{1.3W}' is calculated according to relation Eq. 5.4.

$$k_{1.3W} \approx \left[\frac{1}{\sum_{i=1}^{N} [R_i O_2]} \left(k_{R_1 O_2 + NO} [R_1 O_2] + \dots + k_{R_N O_2 + NO} [R_N O_2] \right) \right]$$
Eq. 5.4

Considering the temperature dependence, the calculated average and median values of weighted rate coefficient ' $k_{1.3W}$ ' are 9.53×10^{-12} and 9.45×10^{-12} cm³ molecule⁻¹ s⁻¹, respectively, while the generic rate coefficient ' $k_{1.3}$ ' in Eq. 5.3 has average and median values of 9.15×10^{-12} and 9.14×10^{-12} cm³ molecule⁻¹ s⁻¹, respectively. So the difference between both rate coefficients is less than 5 %. The difference between ' $k_{1.3W}$ ' and ' $k_{1.3}$ ' is not sufficient to explain a factor > 2 over-estimation of the derived (RO₂)_{PSS} compared to the simulated RO_{2(CAABA/MECCA)}.

5.3.2.1.2 Halogen oxides

Halogen chemistry was deactivated in simulations. Halogen oxides are well known to react with NO and form NO_2 (R. 1.4) but these reactions are not expected in the absence of halogen

sources like sea salt spray in the middle of a boreal forest region in the case of HUMPPA-COPEC. The required amounts of halogen oxides based on deviation in Φ_{ext} can be estimated as in Eq. 5.5.

$$(XO)_{PSS} \approx \frac{k_{1.1} [O_3] + k_{1.2} [HO_2] + k_{1.3} [RO_2]_{CAABA/MECCA}}{k_{1.4}} (\Phi_{ext} - 1)$$
 Eq. 5.5

In Eq. 5.5, $k_{1.4}$ is a rate coefficient for the reaction between halogen oxides and NO (R. 1.4). XO is representative of halogen oxides such as ClO, BrO and IO. The value of rate coefficients for reactions 'ClO + NO', 'BrO + NO', and 'IO + NO' varies in the range of $[1.95, 2.1] \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K based on IUPAC data. In Eq. 5.5, an average value of rate coefficient $(1.91 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ for the reactions 'ClO + NO', 'BrO + NO', and 'IO + NO', and 'IO + NO' is used. Based on Eq. 5.5, the calculated average and median values for XO concentrations are 6.1 ± 5.1 (1 σ) ppt_v and 6.0 ± 5.1 (1 σ) ppt_v at NO < 100 ppt_v, respectively. The variations in the estimated concentrations of XO are in the range of]– 4, 18[ppt_v at NO less than 100 ppt_v. For NO larger than 100ppt_v, the estimated average and median values for XO concentrations are 3.1 ± 2 (1 σ) ppt_v and 2.5 ± 2 (1 σ) ppt_v, respectively and the variation in the estimated XO are within the interval of]– 2, 6[ppt_v. The required concentrations of XO to explain deviations in Φ_{ext} are very large and no measurement has been reported with such a high concentrations of halogen oxides in a boreal forest.

5.3.2.1.3 Unknown oxidant

Levels of RO₂ from deviations in Φ are not explained by the model studies or measurements in the past (Carpenter et al., 1998). It had been concluded that the presence of an unknown oxidant converting NO to NO₂ could lead to unexplained deviations in $\Phi > 1$ (Volz-Thomas et al., 2003;Mannschreck et al., 2004;Hosaynali Beygi et al., 2011). In order to test the hypothesis of unknown oxidant for the location, it is important to check whether the amount of VOCs yielding to RO₂ production is complete in simulations. Almost all VOCs react with OH, so the loss rate of OH in CAABA/MECCA would be a good indicator of completeness of the constrained VOCs.

The total OH reactivity (s⁻¹) [(OHReact)_{meas}] was measured above the forest canopy during HUMPPA-COPEC. (OHReact)_{meas} was detected based on a Comparative Reactivity Method (CRM). In the CRM, the total OH reactivity is determined by the competitivereactions of OH to a selected reagent e.g. pyrrole compared to OH by other atmospheric reactive compounds (<u>Nölscher et al., 2012</u>). The model does not provide the OH reactivity directly; therefor it is calculated based on simulation results by summing all loss rates of OH and dividing them by the OH concentration.

The ratio between the measured and simulated OH reactivity [(OHReact)_{meas}/(OHReact)_{CAABA/MECCA}] is shown in Fig. 5.7 as a function of NO for HUMPPA-COPEC. The simulation failed to reproduce the values of (OHReact)meas. (OHReact)_{CAABA/MECCA} mostly under-estimated by a factor in the range of]1.01, 8[compared to the measured (OHReact)_{meas}. Generally, the under-estimation of (OHReact)_{CAABA/MECCA} is larger at around 50 ppt_v NO and at about the same level of NO, the maximum deviations (>1) were observed in Φ (Fig. 5.6). Also unexplained deviations in Φ_{ext} [with O₃, HO₂, and (RO₂)_{CAABA/MECCA}] are higher at similar scales of NO (Fig. 5.6). In simulations, it was observed that the constrained VOCs are not sufficient to explain (OHReact)_{meas}. The reaction between VOCs and OH is a precursor for RO₂, so a missing OH reactivity in simulations is an indication of the missing RO₂ precursors, leading to under-estimation of (RO₂)_{CAABA/MECCA} compared to (RO₂)_{PSS}. This could be a possible reason for the unexplained remaining deviations in Φ_{ext} after using (RO₂)_{CAABA/MECCA}. This hypothesis of missing VOCs for the input of simulation is tested further and explained in the next section.

5.3.2.2 Tuning of (OHReact)CAABA/MECCA

A series of simulations were performed using an increment of the measured BVOCs concentrations large enough to achieve a match between the measured total OH reactivity [(OHReact)_{meas}] and the OH reactivity from the model [(OHReact)_{CAABA/MECCA}]. An initial guess for how much to increase all constrained BVOCs was provided by the difference in the ratio between (OHReact)_{meas} and (OHReact)_{CAABA/MECCA}. Increasing BVOCs concentrations by some factor, to get a match between (OHReact)_{meas} and (OHReact)_{meas} and (OHReact)_{CAABA/MECCA}, is referred to here as tuning (OHReact)_{CAABA/MECCA}. Tuning is done until (OHReact)_{CAABA/MECCA} and (OHReact)_{meas} agree within a difference of \pm 5 %. This procedure is only performed for those data points where the ratio (OHReact)_{meas} / (OHReact)_{CAABA/MECCA} is shown in Fig. 5.7. Also, the plot in Fig. 5.7 is colour-coded to show the additional tuning factor for the measured BVOCs. A factor of 1 means no increase in the measured BVOCs whenever the measured reactivity was smaller than the model reactivity.

Fig. 5.7: Ratio between the total measured and simulated OH reactivity as a function of NO.

Prior to the tuning, no correlation was observed between the simulated RO₂ [(RO₂)_{CAABA/MECCA}] and (OHReact)_{meas} as shown in the left panel of Fig. 5.8. Based on simulations without the tuning, the ratio (RO₂)_{PSS} / (RO₂)_{CAABA/MECCA} was 2.73 (Mdn.), 3.84 (avg.) \pm 3.6 (1 σ) at NO concentrations of \leq 100 ppt_v and 2.03 (Mdn.), 2.24 (avg.) \pm 1.4 (1 σ) at NO concentrations > 100 ppt_v, respectively. (RO₂)_{CAABA/MECCA} was lower than (RO₂)_{PSS} by a factor 2 to 3.

After the tuning of the OH reactivity, $(RO_2)_{CAABA/MECCA}$ from the new simulations correlates with $(OHReact)_{meas}$ as shown in the right panel of Fig. 5.8. The ratio between $(RO_2)_{PSS}$ and $(RO_2)_{CAABA/MECCA}$ is improved to 1.11 (Mdn.), 1.24 (avg.) ± 0.6 (1 σ) at less than 100 ppt_v of NO for the new simulations with the tuned OH reactivity. Based on this improvement for the ratio between $(RO_2)_{PSS}$ and $(RO_2)_{CAABA/MECCA}$, it is therefore likely that a lack of VOCs in the previous simulations was the major cause for underestimation of $(RO_2)_{CAABA/MECCA}$ compared to $(RO_2)_{PSS}$.

Fig. 5.8: RO₂ based on simulations as a function of the measured OH reactivity. The left hand side in the figure is prior to the tuning while the right hand side is based on tuned (OHReact)_{CAABA/MECCA}.

The remaining deviations in Φ_{ext} (> 1) as shown previously in Fig. 5.6 are further investigated based on the new simulations with the tuned (OHReact)_{CAABA/MECCA}. Φ_{ext} is again calculated for the new simulations, and referred to here as $\Phi_{ext(T)}$, is shown in Fig. 5.9 along with Φ and Φ_{ext} . An improvement in the reduction of the deviation with the tuned (OHReact)_{CAABA/MECCA} for the case of $\Phi_{ext(T)}$ is clearly visible in Fig. 5.9. The overall median and average values of $\Phi_{ext(T)}$ are 1.001 ± 0.105 (1 σ) and 0.996 ± 0.105 (1 σ), respectively. Neglecting the one outlier in $\Phi_{ext(T)}$ [$\Phi_{ext(T)}$ = 0.63 at NO = 0.11 ppb_v], the median and average values for remaining of $\Phi_{ext(T)}$ are 1.00 ± 0.07 (1 σ) and 1.01 ± 0.07 (1 σ), respectively.

Fig. 5.9: Φ , Φ_{ext} is based on the measured data and simulations at normal BVOCs concentrations. $\Phi_{ext(T)}$ is based on results from the new simulations with the tuned OH reactivity in the model.

Prior to the tuning of (OHReact)_{CAABA/MECCA}, the ratio between the measured NO₂ [NO_{2(meas)}] and the simulated NO₂ [NO_{2(CAABA/MECCA)}] as a function of NO concentration is shown in (Fig. 5.10, [A]). A considerable difference, larger than the uncertainty (avg. < 13%) of the NO₂ measurement, exists between the measured NO₂ and NO_{2(CAABA/MECCA)}. 41.7 % of NO_{2(CAABA/MECCA)} data points under-estimated compared to the NO₂ measurement by]10, 40[%. About 45.6 % of NO_{2(CAABA/MECCA)} data points from simulations under-estimated the measurements \leq 10%. Only 12.6% of NO_{2(CAABA/MECCA)} data points over-estimated the measurements up to 10%.

The ratio between NO_{2(meas)} and NO_{2(CAABA/MECCA)} is improved for the simulations with the tuned (OHReact)_{CAABA/MECCA}. For the data set where OH reactivity data was available, except for a single outlying data point with a value of 0.61 at 110 ppt_v of NO, all of the deviations in NO_{2(meas)} / NO_{2(CAABA/MECCA)} (tuned) are within \pm 15 % from unity as shown in Fig. 5.10 panel [B]. The corresponding data points without tuned (OHReact)_{CAABA/MECCA} simulations are plotted in Fig. 5.10 panel [B] for comparison. The error bars are plotted in Fig. 5.10 panel [B] at 1 \pm uncertainty of the measured NO₂. Despite a single point, all of variations in the ratio are below the uncertainty of NO₂ measurements.

The production rates of O₃ are also simulated to compare with $P(O_3)_{PSS}$ (Eq. 1.10). A minor branch of the reaction 'RO₂ + HO₂' that leads to O₃ formation had been reported in literature [e.g. MCM3.2 (Jenkin et al., 1997;Saunders et al., 2003), (Groß, 2013)]. In the simulation results, the 'RO₂ + HO₂' branch leading to the O₃ formation was in order of 10^5 molecule cm⁻³ s⁻¹ and it is therefore negligible compared to reactions 'RO₂ + NO' and 'HO₂ + NO' in the order of 10^7 molecule cm⁻³ s⁻¹.

Without the tuned (OHReact)_{CAABA/MECCA}, the production rates of O₃ [P(O₃)_{CAABA/MECCA}] based on simulations were under-estimated by about 30 to 50 % compared to the rate derived from the PSS (Eq. 1.10, P(O₃)_{PSS}). The average and median values of the ratio P(O₃)_{PSS}/P(O₃)_{CAABA/MECCA} at NO < 100 ppt_v were 1.50 ± 0.5 (1 σ) and 1.46 ± 0.5 (1 σ), respectively. At NO > 100 ppt_v, the average and median values of the ratio P(O₃)_{PSS}/P(O₃)_{CAABA/MECCA} were 1.30 ± 0.27 (1 σ) and 1.31 ± 0.27 (1 σ), respectively.

With the tuned (OHReact)_{CAABA/MECCA}, the ratio between P(O₃)_{PSS} and P(O₃)_{CAABA/MECCA} is notably improved for simulations. The new average and median values of this ratio at NO < 100ppt_v are 1.04 ± 0.24 (1 σ) and 1 ± 0.24 (1 σ), respectively. This improvement in the ratio shows that the model has explained reasonably well the production of O₃ compared to the PSS approach and the previously found bias is considerably reduced.

The uncertainty of simulated results due to rate coefficients is estimated by using the Monte Carlo method in CAABA/MECCA (Sander et al., 2011a). Typically, a Monte Carlo simulation consists of several hundred runs of the applied mechanism with slightly different rate coefficients in each run and the given model run is terminated at the equilibrium condition like just the actual simulation. The boundary for the variations in rate coefficients for Monte Carlo simulation was kept within the uncertainty of a rate coefficient. In the absence of an uncertainty estimate in the literature, the relative uncertainty of 25 % was used. The result from a Monte Carlo simulation of 9999 runs based on MIM3* mechanism is shown in Fig. 5.11. The binned frequency distribution from the Monte Carlo simulation is shown for various estimated quantities, such as the concentration of (RO₂)_{CAABA/MECCA}, the concentration of NO_{2(CAABA/MECCA}, the OH reactivity based on the model simulations (OHReact)_{CAABA/MECCA} and the instantaneous production rates of O₃ from simulations [P(O₃)_{CAABA/MECCA}]. The relative uncertainty of different quantities based on Monte Carlo simulations is given in Table 5.3. The values in Table 5.3 describe the largest found uncertainty due to rate coefficients.

	Relative uncertainty (15)
(RO ₂) _{CAABA/MECCA}	14 %
NO _{2(CAABA/MECCA)}	25 %
(OHReact) _{CAABA/MECCA}	10 %
Р(О3)саава/месса	12 %

Table 5.3: Relative uncertainty based on Monte Carlo simulations

Concluding for HUMPPA-COPEC, it has been observed that the NO to NO₂ conversion is reasonably well explained for the boreal forest and the deviations in Φ during HUMPPA-COPEC are accounted for by known chemistry. The main contributors to deviations in Φ are peroxy radicals. By adding measured HO₂ + modelled RO₂ using the tuned OH reactivity, the overall median and average values of $\Phi_{ext(T)}$ were 1.001 ± 0.105 (1 σ) and 0.996 ± 0.105 (1 σ). Therefore, PSS is an effective and realistic approach for assessing

NO to NO_2 conversion. Further, NO_x chemistry in the current chemical mechanism reasonably agrees with the PSS system.

Fig. 5.10: [A] Ratio [NO_{2(meas)} / NO_{2(CAABA/MECCA)}] as a function of NO for simulations without tuned OH reactivity. [B] Ratio [NO_{2(meas)} / NO_{2(CAABA/MECCA)}] as a function of NO for simulations with tuned (OHReact)_{CAABA/MECCA}.

frequency

Yequency

5.4 Trend of instantaneous O₃ production in NO_x-limited regime

The instantaneous photochemical production rate of O_3 [P(O_3)_{PSS}] is calculated by using Eq. 1.10. The median value of P(O₃)_{PSS} for HUMPPA-COPEC is $1.15 \pm 0.60 (1\sigma) \times 10^7$ molecules cm⁻³ s⁻¹. The instantaneous production rates of HUMPPA-COPEC are roughly a factor > 2 smaller than for PARADE at similar conditions of radiations ($iNO_2 \ge 5 \times 10^{-3} \text{ s}^{-1}$). P(O₃)_{PSS} for HUMPPA-COPEC as a function of NO is shown in Fig. 5.12. The absolute uncertainty in P(O₃)_{PSS} at NO levels ≥ 0.1 ppb_v is in the range of [0.9, 2.7] $\times 10^7$ molecules $cm^{-3}s^{-1}$. At low NO levels < 0.1 ppb_y, the absolute uncertainty varied within the interval of $[0.6, 1.4] \times 10^7$ molecules cm⁻³ s⁻¹. The absolute average uncertainty of P(O₃)_{PSS} due to measurements is 1×10^7 molecules cm⁻³ s⁻¹ with a 1σ variability of $\pm 0.3 \times 10^7$ molecules cm⁻³ 3 s⁻¹. Generally, the relative uncertainties in P(O₃)_{PSS} decrease with increasing NO. A linear increase in P(O₃)_{PSS} is observed with respect to increasing NO during HUMPPA-COPEC. In Fig. 5.12, $P(O_3)_{PSS}$ shows two distinct gradients in respect to NO. The best separation between the two gradients could be distinguished by temperature $\leq / > 21$ °C but the mechanism for an underlying process related to temperature is not clear. Comparing the slopes, the rise in P(O₃)_{PSS} with respect to NO were about 3 times faster at values below about 50 ppt_v of NO (Fig. 5.12) compared to values at elevated NO levels.

The instantaneous production of O_3 is proportional to the NO_x concentration during HUMPPA-COPEC. This type of trend of the O₃ production versus NO_x is usually expected in VOC-saturated or NO_x-limited conditions (Thornton et al., 2002). In this regime, the main loss of radicals is due to the 'radical + radical' chain termination reactions such as 'HO₂ + OH', 'HO₂ + HO₂', and 'HO₂ + RO₂'. Note 'RO₂ + RO₂' reactions are not loss reactions for the radicals and therefore not considered. The role of 'radical + NO_x' reactions leading to chain termination is not expected to be significant. This has been investigated using a similar approach to one in a previous study at a different location (Thornton et al., 2002). The losses of radicals due to chain termination processes are calculated from equations (Eq. 5.6, Eq. 5.7 and Eq. 5.8) as described in (Thornton et al., 2002).

$$LNO_{x}HO_{x} = LNO_{x} + LHO_{x}$$
 Eq. 5.6

$$LNO_x = k_{1.7} [NO_2][OH] + \alpha_{eff} \times k_{1.14} [(RO_2)_{PSS}][NO]$$
 Eq. 5.7
LHO_x =
$$2k_{HO_2+OH}$$
 [HO₂][OH] + $2k_{HO_2+HO_2}$ [HO₂]² + $2k_{HO_2+RO_2}$ [HO₂][(RO₂)_{PSS}] Eq. 5.8

In Eq. 5.7 and Eq. 5.8, generic rate coefficients are considered for ' $k_{RO2 + NO}$ ' and ' $k_{HO2 + RO2}$ ' based on MCM3.2 (Jenkin et al., 1997;Saunders et al., 2003). The ANs production is described as in the reaction R. 1.14 by the branching ratio (α_{eff}). The average fraction for the production of organic nitrates with > 2 carbon atoms can be up to 10 % under typical BVOCs emissions like isoprene and monoterpenes from a forest (Browne and Cohen, 2012). However, the fraction for the formation of CH₃O₂ + NO \rightarrow CH₃ONO₂ is only (1 ± 0.7) % (Butkovskaya et al., 2012). In the case of the tuned (OHReact)_{CAABA/MECCA} (Section 5.3.2.2), the median value of the CH₃O₂ relative contribution to total RO₂ was only 23.7 %. The effective branching ratio (α_{eff}) for '(RO₂)_{PSS} + NO' in Eq. 5.7 should be smaller than 10 % as (RO₂)_{PSS} has major contributions from both types of VOCs, i.e. biogenic and CH₄. By considering a 1 % yield of ANs from CH₃O₂ and 10 % yield of ANs from the rest of RO₂, a value for $\alpha_{eff} \approx 7$ to 8 % had been determined for the total ANs formation in Eq. 5.7. A more detailed analysis is done in Section 5.6.

Radical + radical reactions (Eq. 5.8) have shown a clear dominance over 'radicals + NO_x' reactions (Eq. 5.7) for this area. A median value of $1.24 \pm 0.7 (1\sigma) \times 10^7$ molecules cm⁻³ s⁻¹ is calculated for LHO_x (Eq. 5.8), which is much higher than that for LNO_x (Eq. 5.7) with a median value of only $0.06 \pm 0.03 (1\sigma) \times 10^7$ molecules cm⁻³ s⁻¹. The ratios [LHO_x / LNO_xHO_x and LNO_x / LNO_xHO_x] are plotted against NO in Fig. 5.13. The relative efficiency (loss / total loss) of both loss processes are clearly separated over the whole range of NO concentrations during HUMPPA-COPEC. The loss of radicals due to 'radical + radical' reactions is dominant over the whole range of NO concentrations compared to the loss process due to reaction with NO_x. The efficiency of the loss due to radicals radicals reactions stays above 90 % below 0.1 ppb_v of NO. Generally a crossover in efficiencies is associated with the change of chemical regimes from VOC-saturated to VOC-limited (Thornton et al., 2002). The efficiencies of both loss processes approached at elevated NO level > 0.2 ppb_v but never crossed each other. This supports the hypothesis that the regime during HUMPPA-COPEC was mainly VOC-saturated.

Fig. 5.12: P(O₃)_{PSS} as a function of NO during HUMPPA-COPEC-2010.

Fig. 5.13: The efficiency of the chain termination processes as a function of NO.

5.5 Decline in Φ at low NO

A negative trend was observed in Φ with decrease in the NO concentrations from about 44 to 20 ppt_v (Fig. 5.2). The peak value of Φ was observed at about 44 ppt_v of NO. The peak value

(at 44 ppt_v NO) is determined by taking the average of Φ over NO bins of 10 ppt_v. A decrease was observed in OH and HO₂ with respect to the decrease in NO below 44 ppt_v (Section 7.4.1.4) during HUMPPA-COPEC. This decrease in radicals might be related to the decrease in the production of radicals or an increase in the loss of radicals mainly due to 'radical + radical' reactions. OH is the precursor for HO₂ and RO₂, so a

(Fig. 5.2): Φ as a function of NO.

decrease in the OH concentrations would also lead to a decrease in HO₂ and RO₂ concentrations. The conditions during HUMPPA-COPEC were mostly NO_x-limited (Fig. 5.13). The point of decline at the peak in Φ is selected for further investigation of the production and loss efficiencies of O₃ under a NO_x-limited regime.

The instantaneous *in-situ* production rate of O₃ [P(O₃)_{PSS} as in Eq. 1.10] was compared with the direct and indirect loss rates of O₃. The direct loss rates of O₃ [DL(O₃)] were calculated by considering individual available measurements of OH, HO₂ and BVOCs. 'Radical + radical' reactions decrease the *in-situ* production efficiency of O₃. Radicals are formed in the chain of O₃ as O₃ \rightarrow OH \rightarrow RO_x \rightarrow O₃; at the end of chain, the initial O₃ is recycled. But 'radical + radical' reactions lead to a chain termination and the initial O₃ is not recycled. The radical loss rate due to 'radical + radical' reactions is referred as an indirect loss rate of O₃ [IL(O₃)]. For HUMPPA-COPEC, IL(O₃) and DL(O₃) are described in Eq. 5.9 and Eq. 5.10, respectively.

$$IL(O_3) = L_{HO_2+OH} + L_{HO_2+HO_2} + L_{HO_2+RO_2}$$
Eq. 5.9

$$DL(O_3) = k_{O_3+OH} [O_3][OH] + k_{O_3+HO_2} [O_3][HO_2] + k_{O_3+BVOCs} [O_3][BVOCs]$$
Eq. 5.10

The balance between the production and loss rates of O_3 is an important factor in the tropospheric O₃ budget. HO₂ and RO₂ reactions with NO (R. 1.2 and R. 1.3) lead to O₃ production whereas 'HO₂ + OH', 'HO₂ + RO₂', and 'HO₂ + HO₂' are indirectly related to O_3 loss with some exceptions, but not a significant one in some $(HO_2 + RO_2)$ reactions. In order to examine the efficiency of radical reaction rates as a function of NO_x , the total rate (**TR**) is defined as the sum of *in-situ* reaction rates based on reactions 'HO₂ + NO' and 'RO₂ + NO' that collectively lead to O₃ production and 'radical + radical' reactions that do not lead to O₃ production. The relative efficiencies in these cases are defined as ratios of RRad+Rad / TR and $\mathbf{R}_{\text{Rad}+\text{NO}}$ / TR. These ratios of radical reaction efficiencies are shown in the upper panel of Fig. 5.14. A negative trend is seen in the ratio \mathbf{R}_{Rad+NO} / TR with declining NO. The ratio $\mathbf{R}_{\text{Rad}+\text{NO}}$ / $\mathbf{T}\mathbf{R}$ declines from about 0.9 at NO > 150 ppt_v to approx. 0.25 at NO < 20 ppt_v. The competing ratio $\mathbf{R}_{\text{Rad}+\text{Rad}}$ / **TR** showed an increase from about 0.15 at NO > 150 ppt_v to about 0.75 at NO < 20 ppt_v. A crossover point between ratios $\mathbf{R}_{\text{Rad+NO}}$ / $\mathbf{T}\mathbf{R}$ and $\mathbf{R}_{\text{Rad+Rad}}$ / $\mathbf{T}\mathbf{R}$ can be observed around 50 ppt_v of NO. The role of radicals is defined by the availability of NO_x in context of the O₃ production or loss. Under low NO_x conditions, the competition is shifted in favour of 'radical + radical' reactions compared to 'RO_x + NO' reactions. This shift is suggested by the **decline** in Φ for the condition during HUMPPA-COPEC because deviations (> 1) in Φ are directly related to concentration of RO_x.

The O₃ production and direct loss rates as a function of NO are shown in the lower panel of Fig. 5.14. The measured concentrations of BVOCs (isoprene, α -pinene, β -pinene, β myrcene and Δ^3 -carene) are used for the calculation of the O₃ loss rates. Due to less frequent data a median value of loss frequency based on methacrolein (MACR) and methyl vinyl ketone (MVK) measurements is added in calculating the loss rates of O₃. The measurements of the O₃ deposition velocity were also available. The depositional loss rates of O₃ are calculated with BLH of 1000m during HUMPPA-COPEC. Based on radiosonde measurements, the average, median, and geometric-mean values of the BLH for the mixed layer were 1081, 1100, and 956 meters, respectively.

The P(O₃)_{PSS} (Eq. 1.10) remained higher than DL(O₃) (Eq. 5.10) over wide ranges of NO > 30 ppt_v concentrations. But including the depositional loss of O₃ (Dep) to DL(O₃), P(O₃)_{PSS} and 'DL(O₃) + Dep' become similar below NO concentrations of 40 ppt_v (Fig. 5.14). Eq. 5.11 is considered to verify the crossover by using equations as described previously Eq. 5.9, Eq. 5.10, and Eq. 1.10. The crossover points are calculated by using Eq. 5.11 to derive

the value of NO concentration by considering that at crossover $(P(O_3)_{PSS} \approx IL(O_3))$ and $(P(O_3)_{PSS} \approx DL(O_3))$.

$$(NO)_{IC} = \frac{IL(O_3)}{\left(\frac{jNO_2[NO_2]}{[NO]}\right) - k_{1,1}[O_3]} \quad \text{and} \quad (NO)_{DC} = \frac{DL(O_3)}{\left(\frac{jNO_2[NO_2]}{[NO]}\right) - k_{1,1}[O_3]} \quad \text{Eq. 5.11}$$

The derived values of NO concentration (NO)_{IC} and (NO)_{DC} from Eq. 5.11 are presented in Table 5.4. Based on averages in Table 5.4, the value of NO [(NO)_{IC}] for crossover point between $P(O_3)_{PSS}$ and $IL(O_3)$ is about 27 % higher than the value of NO for the peak in Φ (Fig. 5.2) at about NO = 44 ppt_v. This contrasts with the case of $DL(O_3)$, in which the crossover point is about 74 % lower than the value (44 ppt_v) of NO for the peak in Φ . With the addition of the O_3 depositional loss in Eq. 5.11, the value for the cross over point between $P(O_3)_{PSS}$ and $DL(O_3) + Dep'$ versus NO remains to 20 % lower than the value (44 ppt_v) of NO for the peak in Φ . Due to the missing measurements of some VOCs and secondary species, the loss of O₃ is under-estimated for this case. This missing loss is likely to shift the crossover towards the value of NO concentration where the peak in Φ occurred. The derived values (Eq. 5.11) of NO concentration are based on the measured data, so the errors in these values (Table 5.4) are large (roughly > 80 %). The crossover points in Fig. 5.14 are unique in describing the balance between 'radical + radical' reactions and 'radical + NO' reactions. In low NO_x conditions, the balance is shifted in favour of the chain termination process as described by the 'radical + radical' reactions and leads to decrease in O₃ production efficiency.

Table 5.4: Analytically derived average and median values of (NO)_{IC} and (NO)_{DC} according to Eq. 5.11 for different concentrations of species.

Eq. 5.11	Average (ppt _v)	Median (ppt _v)	1σ variability (ppt _v)
(NO) _{IC}	55.7	55.2	16.2
(NO) _{DC} @ DL(O ₃)	11.5	10.8	3.2
$(NO)_{DC} @ DL(O_3) + Dep$	35.2	31.5	12.9

Fig. 5.14: Upper panel shows radical reaction rate efficiency in term of production and indirect loss of O₃. The lower panel shows the O₃ production and direct loss rates as a function of NO.

5.6 Effects of alkyl nitrates on NO_x lifetime and OPE

Alkyl nitrates (ANs) are regarded as reservoir species for tropospheric reactive nitrogen and the pathway for their photochemical formation is similar to the one for O₃ [(Simpson et al., 2006) and reference there in]. ANs are mainly formed in the troposphere by a minor branch reaction between RO₂ and NO (R. 1.14). The fraction of this branch (R. 1.14) compared to R. 1.3 is described by α (Eq. 1.1). The effective branching ratio α for ANs varies in the atmosphere, depending on the availability of different RO₂ species (Thieser, 2013;Browne and Cohen, 2012). The direct emission of ANs from anthropogenic activities like industrial activity are also observed (Simpson et al., 2002). These species represent the substantial fraction of total NO_y species from rural (Murphy et al., 2006;Day et al., 2009;Beaver et al., 2012) and urban regions (Rosen et al., 2004;Perring et al., 2010;Farmer et al., 2011).

ANs are regarded as local sinks for NO_x because the typical chemical lifetime of ANs is in order of days to weeks [(Nollet, 2006) and reference there in]. The production of ANs is an important sink of NO_x during day and night in addition to the loss via the production of HNO₃. The nocturnal formation of ANs mainly results from reaction between NO₃ and alkenes. The fractional loss of NO_x to ANs formation is dominant nocturnally compared to HNO₃ formation (Browne and Cohen, 2012). The importance of ANs increases with high biogenic activity, in context to the loss of NO_x. Photolysis and reaction with OH are important atmospheric loss processes for ANs (Talukdar et al., 1997) during daytime and the loss of ANs increases with the increase in chain length of alkyl group (Schneider et al., 1998). In a recent study based on a steady-state box model and WRF-Chem model (Browne and Cohen, 2012), it has been concluded that ANs play important role in the lifetimes of NO_x and in O₃ production efficiency. The aim of this disscussion is to determine the qualitative effects of ANs on the NO_x-related photochemistry in the boreal forest region chracterised by significant emission of biospheric VOCs. The effects of varying α (R. 1.14 and Eq. 1.1) have been assessed for HUMPPA-COPEC on the fate of NO_x in the O₃-related photochemistry. RO₂ concentrations for this disscussion are based on Φ_{ext2} deviations (Section 5.2.1.2), so the filter (jNO₂ \ge 5 × 10⁻³ s⁻¹) is used.

The losses to HNO₃ [LNO_x(HNO₃)] and ANs [LNO_x(ANs)] are considered as the main chain terminating processes for NO_x. The instantaneous loss rate of NO_x to HNO₃ based on reaction 'NO₂ + OH' is lower (Table 5.5) than the one in case of NO_x to ANs based on reaction 'NO + α RO₂'.

Table 5.5: NO_x loss rate to HNO_3 and ANs based on median concentrations of reactants
during HUMPPA-COPEC.

Param.	Median	LNO _x to (HNO ₃)	LNO _x to (ANs)
	@ $(jNO_2 \ge 5 \times 10^{-3} s^{-1})$	$ imes 10^5$ (molecule cm ⁻³ s ⁻¹)	$ imes 10^5$ (molecule cm ⁻³ s ⁻¹)
NO ₂	5.82×10^9 molecule cm ⁻³		
NO	1.16×10^9 molecule cm ⁻³		
RO ₂	4.87×10^8 molecule cm ⁻³		
ОН	1.78×10^6 molecule cm ⁻³	1.21	3.88 (with $\alpha = 0.075$)
$k_{(NO + RO2)}$	$9.15 \times 10^{-12} \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$		
$k_{\left(NO2+OH\right)}$	$1.17 \times 10^{\text{-}11} \text{cm}^3 \text{molecule}^{\text{-}1} \text{s}^{\text{-}1}$		

The sensitivity of the NO_x loss rates changes with the variation in α . The loss of NO_x to formation of HNO₃ and ANs increases with increasing NO_x levels. Also the ratio $LNO_x(HNO_3) / LNO_x(AN_s)$ has a positive trend with increase in NO_x. The relative change in $LNO_x(HNO_3)$ to the total loss $[LNO_x(HNO_3) + LNO_x(AN_s)]$ rises, while the relative change in LNO_x(ANs) to total loss declines with the increase in NO_x concentrations. The relative fraction of both losses to total loss as a function of NO_x is shown in Fig. 5.15. A negative trend in the ratio (shown in green) due to ANs formation and a positive trend in the ratio (blue) due to HNO₃ formation are described by the trend line. Based on these results, the production of ANs is very important, much higher and dominant under low-NO_x conditions compared to the production of HNO₃.

The sensitivity of ANs formation was tested by varying the value of α and observing the corresponding effects on the effective lifetime of NO_x [τ (NO_x)] and catalytic efficiency of NO_x for the production of O₃. τ (NO_x) is calculated according to relation (Eq. 5.12) (Browne and Cohen, 2012) for HUMPPA-COPEC.

$$\tau \left(\text{NO}_{x} \right) = \frac{\left[\text{NO}_{x} \right]}{\text{LNO}_{x}}$$
 Eq. 5.12

$$LNO_x = k_{1.7} [NO_2][OH] + \alpha \times k_{1.14} [(RO_2)_{PSS}][NO]$$
 Eq. 5.7

To investigate the effect of α on the NO_x lifetime, it was varied within the range of [0, 10] % in Eq. 5.7. A negative and nonlinear effect of $\tau(NO_x)$ with respect to increase in α is observed. Panels (I to VI) in Fig. 5.16 show the effect of α on τ (NO_x) for different ranges of NO_x. The panel 'L' of Fig. 5.16 shows a combined plot of panels (I to VI) and vertical error bars represent the 1 σ variability of the calculated median values. The absolute values of τ (NO_x) have changed significantly from $\alpha = 0$ % to $\alpha = 10$ %. The absolute change in τ (NO_x) at the low NO_x concentrations is much larger compared to the change at high NO_x concentrations (Fig. 5.16). For example in panel I of Fig. 5.16 for the NO_x range of ≤ 150 ppt_v, the lifetime of NO_x is about 23 hr at $\alpha = 0$ % and it changes to 5 hr at $\alpha = 10$ %. In panel VI of Fig. 5.16 for larger than 470 ppt_v of NO_x, the lifetime of NO_x is about 12 hr at $\alpha = 0$ % and it changes to 3 hr at $\alpha = 10$ %. However, the relative change in τ (NO_x) from $\alpha = 0$ % to $\alpha = 10$ % was in the range of [75, 87] % for panels I to VI in Fig. 5.16.

ANs reduce the production efficiency of O_3 by providing a sink for NO_x . The effect of α was further investigated in terms of the catalytic efficiency of NO_x in the production of O₃ as described in Section 1.3.2. The total production of O₃ from HO₂ and RO₂ is considered based on chemical imbalance of the PSS as described by Eq. 1.10. The catalytic efficiency of NO_x is calculated according to relation Eq. 1.14 and it is shown as a function of NO_x in Fig. 5.17. The catalytic efficiency of NO_x in production of O_3 can be stated as the O_3 production efficiency (OPE) (Liu et al., 1987; Brasseur et al., 1999). The median values of the OPE are calculated at specific ranges of NO_x bins for HUMPPA-COPEC (Fig. 5.17). The minimum number of data points to calculate a median value for the OPE is 5. More data was present at NO_x concentrations < 470 ppt_v compared to the larger concentrations, so a NO_x bin range of 50 ppt_v is used there, while for higher levels NO_x bin is 100 ppt_v. The OPE is reduced significantly by up to 90 % at the highest value (10 %) of α . Based on the expected values of α [5 - 10] % in a forest region (Browne and Cohen, 2012)], OPE is expected to decline in the range of]45, 90[% compared to the case when $\alpha = 0$ % for HUMPPA-COPEC. The reduction in OPE for $\alpha = 3$ %, 5 %, and 10 % compared to the case $\alpha = 0$ % is remarkably large at lower NO_x levels (Fig. 5.17). In context of the OPE versus NO_x, the difference in the reduction of OPE at levels of $NO_x > 470 \text{ ppt}_v$ is smaller compared to the levels of NO_x < 470 ppt_v. This shows that the effect of ANs formation on the OPE is very important, especially at low NO_x levels. A negative trend in the OPE versus NO_x concentrations for HUMPPA-COPEC was observed at NO_x levels \geq 470 ppt_v in all cases of α . The negative trend versus increase in NO_x is more prominent in the case of $\alpha = 0$ % and $\alpha = 1$ % over the whole NO_x range. For cases $\alpha = 3 \%$, 5 % and 10 %, no significant trend is present in OPE versus increase in NO_x at NO_x levels < 470 ppt_v. Also, the relative differences between OPE at $\alpha = 3$ %, 5 %, and 10 % are fairly constant at levels of NO_x < 470 ppt_y.

The chain termination processes for NO_x , leading to HNO_3 and ANs, provide an upper estimate for $\tau(NO_x)$ and OPE as the conversion of HNO_3 and ANs back to NO_x will minimise these effects. The results have shown that $\tau(NO_x)$ and OPE are very sensitive to α for HUMPPA-COPEC and suggest that the effect of ANs formation for climate models and future strategies regarding O_3 abundances is very important, especially in the forest regions and at low NO_x concentrations.

Fig. 5.15: The ratio for the loss of NO_x via formation of HNO_3 [LNO_x(HNO₃)] to the total loss and the loss of NO_x via formation of ANs [LNO_x(ANs)] to the total loss are shown as a function of NO_x . Trend lines in both cases are shown according to least squares fit.

Fig. 5.16: Median values of $\tau(NO_x)$ as a function of α at different NO_x ranges during HUMPPA-COPEC in panels 'I to VI'. The lower panel 'L' is represented in log scale for y-axis and it shows median values of $\tau(NO_x)$ at different NO_x ranges together with 1 σ variability as error bars.

Fig. 5.17: OPE as a function of NO_x concentrations during HUMPPA-COPEC.

6 Conclusions and Outlook

6.1 Conclusions

A laser-induced fluorescence (LIF)-based instrument (GANDALF) has been developed for the measurement of atmospheric NO₂. LIF instruments have already been deployed in past to measure NO₂ directly and selectively, reaching detection limits down to 5 ppt_y (Table 2.1). This required the use of large and expensive laser systems like Nd:YAG lasers or dye laser systems. Recently, the availability of much smaller and lighter diode lasers makes it possible to build much more compact instruments with comparable sensitivities. First attempts in previous projects to build such systems using diode lasers have compact design but did not achieve detection limits suitable for measurements of NO_2 in remote regions and the upper troposphere (Table 2.1). GANDALF has been tailored towards a compact design [diode laser $(mass = \langle 2 kg and power = max. 250 mW)$ with a low detection [5 - 10 ppt_v at 1 minute with signal to noise ratio (SNR) = 2], a high precision of better than $0.5 \% + 3 \text{ ppt}_v$ for 1 minute time interval and a fast repetition rate of 5 MHz, making it capable of measuring NO₂ throughout the troposphere. The reliability of GANDALF was successfully tested during the PARADE-2011 field campaign and during a successful comparison carried out at the observatory of the Deutscher Wetterdienst (DWD) in Hohenpeissenberg, Germany. The selectivity of NO₂ measurement with GANDALF was assessed during PARADE in ambient air and no potential interference was found.

In past studies, there appeared to be a lack of understanding of the cycling between NO and NO₂. This was often linked to the presence of an 'unknown oxidant' converting NO to NO₂. In order to understand the cycling between NO and NO₂, the photostationary state of NO_x (PSS) for a semi-rural area during PARADE was investigated using the concept of the Leighton ratio (Φ Eq. 1.4) by using measurements of NO₂ conducted with the newly developed GANDALF instrument. The Leighton ratio is calculated based on the measured data of NO, NO₂, O₃, and jNO₂. Φ converged towards unity for higher NO_x concentrations but higher positive deviations in Φ were observed under low NO_x conditions (Fig. 4.3). In order to investigate the potential cause of these positive deviations, the role of NO, NO₂, and O₃ in other chemical reactions in addition to the null cycle of NO-NO₂-O₃, excluding the reactions 'HO₂ + NO' and 'RO₂ + NO', was assessed (Φ_{mod} Eq. 4.3). The effect of these

chemical and physical (O₃ deposition) processes on deviations in Φ was less than 3 % and insignificant as discussed in the Section 4.2.

The total sum of peroxy radicals RO_x (HO₂+RO₂) was measured by the PeRCA instrument of the University of Bremen during PARADE. This enabled the 'RO_x+NO' contribution to be calculated and included in the Leighton ratio, producing an extended ratio Φ_{ext} (Eq. 1.6), and the aforementioned positive deviations from unity were reduced. The average Φ_{ext} was 1.09, a divergence from unity of 9 %, with an associated measurement error of about 0.2. In order to test the significance of this 9 % difference, the sensitivity of Φ_{ext} to only NO and jNO₂ was further tested by varying them in amount below the corresponding measurement uncertainties. Φ_{ext} converged from 1.09 to 1.045 ± 0.13 (1 σ) by introducing + 21 ppt_v in NO, and from 1.09 to 1.035 ± 0.14 (1 σ) by reducing jNO₂ only 5 %. These changes of values in NO, and jNO₂ are within the range of measurement accuracy of the respective data. Further, by performing this sensitivity test with a combined change of values in NO and jNO₂, Φ_{ext} declined further to become 0.99 ± 0.13 (1 σ) (case-4, Fig. 4.8). Based on the evidence of the analyses in this study, it is concluded that there is no statistically significant evidence for or suggestion of an 'unknown oxidant' in PARADE, and peroxy radicals along O₃ account wholly for the conversion of NO to NO₂.

A lack of understanding the underlying process of NO to NO₂ conversion is revealed to be most prominent at low NOx conditions. The measured data set from HUMPPA-COPEC was used to contrast and compare the NO to NO₂ cycling with PARADE. NO_x levels at HUMPPA-COPEC were low, while biogenic volatile organic compounds (BVOCs) were high compared to PARADE. The reactivity of BVOCs and related secondary compounds was expected to be greater compared to PARADE. The observed deviations (>1) in Φ for this location are even larger compared to PARADE (Fig. 5.2). This is expected, as higher levels of HO₂ were measured compared to PARADE. By introducing the contributions from $HO_2 +$ NO' in Φ (Φ_{ext2} , Eq. 5.1) for HUMPPA-COPEC, positive deviations of Φ declined but remained considerably larger than unity (Fig. 5.3). RO₂ levels [(RO₂)_{PSS}] were inferred from the remaining deviations (> 1) of Φ_{ext2} (Eq. 5.1). In the absence of measured RO₂, a model was deployed to calculate RO₂ concentrations for HUMPPA-COPEC in order to assess the nature of Φ deviations. The model was constrained with several observed quantities like concentrations of NO, O₃, HO₂, OH, BVOCs, HCHO, CO, CH₄, and H₂O vapor with photolysis frequencies. Levels of peroxy radicals (measured HO₂ + simulated RO₂) were not sufficient to explain the deviation (> 1) in Φ (Fig. 5.6). Generally, 'BVOCs + OH' reactions leading to RO₂ formation are important in a forested region. The adequacy of the simulated RO₂ was tested by using a comparison of the total measured OH reactivity and simulated OH reactivity. The simulated OH reactivity was significantly lower than the measured OH reactivity. This suggested there were missing precursors of RO₂ in the simulations. The unexplained higher measured OH reactivity is indirect evidence for unmeasured BVOCs or secondary oxidation products. This hypothesis was tested by tuning the model OH reactivity with increasing concentrations of BVOCs, enough to match the model OH reactivity with the measured OH reactivity (Fig. 5.7). With these matched OH reactivity inputs, the positive deviations in Φ are substantially reduced by the introduction of measured HO₂ and simulated RO₂ in Φ for the case of $\Phi_{ext(T)}$ (Fig. 5.9). The overall median and average values of $\Phi_{ext(T)}$ were $1.001 \pm 0.105 (1\sigma)$ and $0.996 \pm 0.105 (1\sigma)$, respectively. These aspects suggest the Φ deviations (> 1) during HUMPPA-COPEC can be explained by peroxy radicals. The NO_xrelated photochemistry is reasonably well explained within the measurement uncertainty by the PSS model at two different locations and it is consistent with the field measurements of NO₂. Evidence for or suggestion of an unknown oxidant converting NO to NO₂ is statistically insignificant in case of either PARADE or HUMPPA-COPEC. In addition, use of the Leighton ratio is a realistic approach even under low-NO_x conditions.

The O₃ budget was assessed during PARADE for daytime chemistry. The daytime tendency of O₃ was significantly positive for semi-rural conditions. The major loss mechanism of O₃ at this site was due to dry deposition and was significantly higher than photochemical losses (Fig. 3.12). The lifetimes of O₃ were longer due to chemical losses compared to those of depositional loss. The largest photochemical loss rate observed was due to the photolysis of O₃, while the smallest loss rate was due to aromatics like benzene and toluene. During PARADE, the reaction with O₃ was the major removal process of primary BVOCs like isoprene, α -pinene, myrcene, and limonene collectively and it was a factor of about 3.7 higher compared to corresponding removal due to OH. In contrast, the collective removal for anthropogenic alkenes such as ethene, propene, 1, 3-butadiene, cis-2-butene, and 1-pentene due to OH was a factor about 1.66 larger than the removal due to O₃. The production of O₃ during HUMPPA-COPEC was smaller than PARADE by more than a factor of two.

A decrease in the measured HO_2 was observed with respect to decrease in NO levels during HUMPPA-COPEC. The corresponding effect is well described by the decline from the peak in the Leighton ratio with respect to decrease in NO at about 44 ppt_v. A crossover point at about 55 ppt_v of NO was observed between the reaction rates of 'radical + NO' reactions and 'radical + radical' reactions. The crossover point indicates equal importance and a balance between the 'radical + NO' reactions and 'radical + radical' reactions. This crossover point was about 20 % higher than the NO level for the peak in Φ . Meanwhile, a crossover between the production and direct loss rates of O₃ (based on measured species and with dry deposition) is observed at NO concentration of 30 to 35 ppt_v. With the assumption of the existence of additional, unmeasured BVOCs, this crossover point between the O₃ production and direct loss would most likely shift towards higher NO levels where the peak in Φ occurred. This unique peak in Φ at the specific level of NO can be a good indication of the balance between the O₃ production and loss (Table 5.4 and Fig. 5.14). This specific level of NO is different to the one described as 'Critical NO' in the literature (Lelieveld and <u>Crutzen, 1990</u>), as 'Critical NO' is based on the chemical loss of O₃ but not sum of chemical and physical losses as in this case.

The effect of alkyl nitrates (ANs) was tested for the NO_x lifetime and the O₃ production efficiency (OPE). It was observed that the lifetime of NO_x and the OPE are reduced and very sensitive to the formation of ANs as suggested by a previous study (Browne and Cohen, 2012). Based on calculations for HUMPPA-COPEC using the measured data and RO₂ derived from the PSS, it is concluded that the correct estimate for the branching ratio for the ANs formation is necessary, especially under conditions of low NO_x in an area characterised by high BVOCs abundances. The potential role of ANs formation as a sink of NO_x is similar to or might be even more important than HNO₃ formation and should be considered in climate models and forecasts of regional O₃ abundances.

6.2 Outlook

The formation of ANs is an important sink for NO_x and effects the OPE. The accurate measurement of ANs is important for the assessment of local O₃ abundances. LIF systems in combination with the thermal dissociation method (<u>Day et al., 2002</u>) are also used and very useful for the detection of ANs. Without any substantial modification, GANDALF will be capable of measuring ANs by coupling with the thermal dissociation. This improvement can provide very useful data on ANs for the future to constrain models and further improve the current understanding of regional O₃ concentrations.

It has been observed that the use of the PSS is valid under two different forest ecosystems. But there is still a need to validate the PSS system under different conditions such as the upper troposphere, the marine boundary layer, and the tropical rain forest. The analysis of the PSS in past had been done in several studies at ground level, but only a few of this analyses took airborne measurements from ground to the upper troposphere. Airborne measurements of NO₂ especially in the upper troposphere face the challenge of fast decomposition of nitrates so instruments have difficulties in providing highly selective, precise, and fast measurements as required for NO₂ observations in the upper troposphere. Experienced has been that LIF is a reliable and promising method for the *in-situ* measurement of NO₂. During the OMO⁵³ project, including NO₂ measurements with GANDALF, several other important radical measurements (e.g. OH, HO₂, and RO₂) will be conducted. This will be a future opportunity to analyse the PSS from the surface to the upper troposphere.

A few PSS-related studies in past are done in the marine boundary layer (Hosaynali Beygi et al., 2011;Trebs et al., 2012). But often the halogen oxides measurements for the analysis of the PSS are missing. With a small modification, GANDALF can fulfil the requirement of iodine monoxide (IO) measurements for the PSS analysis in coastal regions. The current CW diode laser of the instrument will be replaced by a mono-mode dual diode laser [λ (online) = 445 nm and λ (offline) = 442 nm] for on and off resonance measurements of NO₂. The absorption cross-sections of IO are 1.1×10^{-17} cm² molecule⁻¹ (high) and 3.5×10^{-19} cm² molecule⁻¹ (low) at 445 nm and 442.09 nm, respectively (Bloss et al., 2001). In addition, LIF systems have been used in past for the IO measurement (Whalley et al., 2007). With the new mono-mode laser, GANDALF can also be used for direct measurements of IO simultaneously with NO₂. This ability of GANDALF to measure the atmospheric IO

⁵³ HALO [High Altitude and LOng Range Research Aircraft] campaign called OMO [Oxidation Mechanism Observation].

simultaneously with NO₂ will improve PSS analysis in coastal regions. Besides investigation of the PSS, the effect of halogen oxide on O₃ loss had been found to be important in coastal regions, e.g. (Dix et al., 2013). So a measurement of such species is helpful for model studies to quantify the effect of halogen oxides on the O₃ budget.

7 APPENDICIES

7.1 LISTS

7.1.1 Figures in main text

Fig. 1.1: Stratification of planetary boundary layer. [Figure is adapted from (Stull, 1988)]....2 Fig. 1.2: Lifetimes of NO_x as a function of altitude [left panel from (Ehhalt et al., 1992)]. Spatial and temporal scales of variability for atmospheric constituents [right panel from Fig. 1.3: Global average tropospheric NO₂ columns for the period of 2002 to 2011. [figure taken from (Schneider and R. van der A., 2013)].....5 Fig. 1.4: NO_x related tropospheric chemistry.10 Fig. 2.1: NO₂ absorption cross-sections with quantum yields. Excitation wavelength above the photolysis threshold is shown with an arrow. The absorption cross-sections and quantum yields are plotted from data (Vandaele et al., 1998) and (Roehl et al., 1994), respectively....30 Fig. 2.2: The section view of GANDALF [Inventor-2009: The drawing is created by defining a plane used to cut through assembly. The figure represents the surface area of the cut];31 Fig. 2.3: Wavelength plot for the diode laser, operated with repetition rate of 5MHz......32 Fig. 2.4: Multiple passes of the laser beam are visible in the detection cell (A) and in between Fig. 2.6: A plot between the PMT and photodiode (CNO₂); both signals are normalised to the Fig. 2.8: Sensitivity of the instrument based on simulation is demonstrated for three different Fig. 2.9: Box model simulation of gas phase titration between NO and O₃......41 Fig. 2.10: Formation of NO₃ and N₂O₅, based on simulation shown in Fig. 2.9......41

Fig. 2.14: NO ₂ concentrations (BM simulation) inside the calibrator as a function of time
based on different temperatures
Fig. 2.15: NO ₂ concentrations (BM simulation) inside the calibrator as a function of time for
different pressures (mbar or hPa)47
Fig. 2.16: The dependence of NO ₂ fluorescence intensity on increasing water vapour
concentrations in GANDALF (L). Change in sensitivity (normalised to zero $\mathrm{H_{2}O}$ %) due to
change in water vapour (scale equivalent to atmospheric H_2O %) (R)48
Fig. 2.17: A plot between known amounts of NO_2 versus the fluorescence signal as an
example of the calibration of GANDALF. The calibration constant α_c (Eq. 2.1) is determined
by the slope of the curve
Fig. 2.18: Schematic view of Setup for automated calibrations during out door operation51
Fig. 2.19: Relative precision check of GANDALF for randomly selected NO ₂ calibration
points55
Fig. 2.20: An overlapping Allan deviation plot for the dependence of the 1σ variation in the
background level vs. integration time
Fig. 3.1: Orography of the Taunus region [adapted from (Handisides, 2001)]60
Fig. 3.2: Time series of some meteorological parameters during PARADE-201160
Fig. 3.3: Frequency distributions of wind directions with wind speed (colour-coded: wind
speed in ms ⁻¹). [Google Map view]61
Fig. 3.4: The platform location at the Taunus Observatory on Kleiner Feldberg63
Fig. 3.5: Time series of some relevant atmospheric species during PARADE-201169
Fig. 3.6: Correlation plots (Overall [A], GANDALF [B], CLD [C], CRDS [D], LP-
DOAS [E], CE-DOAS [F]) of individual NO_2 measurement versus the derived median values
of all NO ₂ measurement at platform during PARADE74
Fig. 3.7: Distribution for comparative instrument ratios is shown in upper panels and a
normal probability plot for comparative instrument ratios is shown in lower panels77
Fig. 3.8: Ratios as a function of the ambient O ₃ during PARADE78
Fig. 3.9: Ratios as a function of the measured jNO ₂ during PARADE79
Fig. 3.10: Absolute total loss of O_3 is shown in subplot 'A' and it is colour-coded with
temperature. This figure is based on the sum of direct chemical losses
(I+II+III+IV+aromatics) as described in the text. Filtered absolute losses due jO ¹ D(I),
HO _x (II), BVOCs(III) and NMHC(IV) are also included as subparts for two temperature
ranges [T \leq 13 °C] and [T $>$ 13 °C]85

Fig. 3.11: Fractional contribution to total loss of O_3 with several groups of measured species
as described in the text for $T>13\ ^\circ C$ and $T\leq 13\ ^\circ C$ in the upper and lower panels,
respectively
Fig. 3.12: Median values of different indirect and direct loss rates of O ₃ in molecule cm ⁻³ s ⁻¹
for three different time windows [8, 10],]10, 14] and]14, 16] UTC and two different
temperature ranges ($13^{\circ}C > T \le 13^{\circ}C$)
Fig. 4.1: Leighton ratio (Φ) during PARADE with respect to NO _x (log-log scale). Errors in Φ
due to measurement uncertainties are indicated by the vertical error bars94
Fig. 4.2: Relative fraction of the uncertainty in Φ due to different parameters as a function of
NO _x mixing ratios96
Fig. 4.3: Average Φ as a function 0.3 ppb _v of NO _x bin with measurement uncertainty of over
bin averages
Fig. 4.4: Fraction of NO ₂ production rates for different reactions
Fig. 4.5: Measured O ₃ , RO _x and ANs as a function of NO during PARADE99
Fig. 4.6: Effect on Φ due to the involvement of NO, NO ₂ , and O ₃ in other chemical and
physical processes102
Fig. 4.7: Extended (Φ_{ext}) and classical Leighton ratio (Φ) are plotted versus NO _x mixing
ratios for PARADE (log-log scale)103
Fig. 4.8: Overview of Φ_{ext} (with measurement uncertainties) as a function of NOx mixing
ratios in the upper panel with x-axis in log scale. The lower panel shows averages with $\pm1\sigma$
variability. Note that for the lower panel, all avg. Φ_{ext} have less than 1.2 % standard error
$(1\sigma / \sqrt{n}).$
Fig. 4.9: Calculated NO ₂ from PSS versus measured NO ₂ during PARADE. Three different
possibilities are shown $\mathbf{A} = (NO_2)_{PSS}$, $\mathbf{B} = (NO_2)_{PSSext}$, $\mathbf{C} = (NO_2)_{PSSext}$ [@
$NO = NO + 0.021 \ ppb_v \ and \ jNO_2 = jNO_2 - (0.05 \times jNO_2)]. \$
Fig. 5.1: Time series of some important trace gas species, jNO ₂ , and meteorological
parameters during HUMPPA-COPEC-2010 in the upper panel. Lower panel shows an
overview of the setup112
Fig. 5.2: Φ as a function of NO for HUMPPA-COPEC-2010 and PARADE-2011. NO
concentrations on x-axis are represented in log scale114
Fig. 5.3: Φ and Φ_{ext2} as a function of NO for HUMPPA-COPEC
Fig. 5.4: Estimated RO ₂ for HUMPPA-COPEC as a function of NO117
Fig. 5.5: Relative fraction of RO _{2(CAABA/MECCA)} as a function of NO120
Fig. 5.6: Φ , Φ_{ext2} , and Φ_{ext} are shown as a function of NO

Fig. 5.7: Ratio between the total measured and simulated OH reactivity as a function of NO.
Fig. 5.8: RO ₂ based on simulations as a function of the measured OH reactivity. The left hand
side in the figure is prior to the tuning while the right hand side is based on tuned
(OHReact) _{CAABA/MECCA}
Fig. 5.9: Φ , Φ_{ext} is based on the measured data and simulations at normal BVOCs
concentrations. $\Phi_{\text{ext}(T)}$ is based on results from the new simulations with the tuned OH
reactivity in the model
Fig. 5.10: [A] Ratio [NO _{2(meas)} / NO _{2(CAABA/MECCA)}] as a function of NO for simulations
without tuned OH reactivity. [B] Ratio $[NO_{2(meas)} / NO_{2(CAABA/MECCA)}]$ as a function of NO for
simulations with tuned (OHReact) _{CAABA/MECCA}
Fig. 5.11: Monte Carlo simulations for the estimation of uncertainties due to rate coefficients
in
Fig. 5.12: P(O ₃) _{PSS} as a function of NO during HUMPPA-COPEC-2010134
Fig. 5.13: The efficiency of the chain termination processes as a function of NO134
Fig. 5.14: Upper panel shows radical reaction rate efficiency in term of production and
indirect loss of O3. The lower panel shows the O3 production and direct loss rates as a
function of NO
Fig. 5.15: The ratio for the loss of NO_x via formation of HNO_3 [LNO _x (HNO ₃)] to the total
loss and the loss of NO_x via formation of ANs [LNO _x (ANs)] to the total loss are shown as a
function of NO _x . Trend lines in both cases are shown according to least squares fit142
Fig. 5.16: Median values of $\tau(NO_x)$ as a function of α at different NO _x ranges during
HUMPPA-COPEC in panels 'I to VI'. The lower panel 'L' is represented in log scale for y-
axis and it shows median values of $\tau(\mathrm{NO}_x)$ at different NO_x ranges together with 1σ
variability as error bars
Fig. 5.17: OPE as a function of NO _x concentrations during HUMPPA-COPEC144

7.1.2 Tables

Table 1.1: An historical overview of studies related to PSS analysis
Table 2.1: Overview of different LIF instruments (operating parameters and LOD)
Table 3.1: Land use within a radius of 50 km
Table 3.2: An overview of instrumental methods deployed during PARADE63
Table 3.3: NO2 instruments during PARADE-2011
Table 3.4: Overall average, median and standard deviation values of ratios with respect to
GANDALF and other NO ₂ measurements during PARADE76
Table 3.5: Lifetimes of O_3 with respect to different species measured at PARADE-2011.
Time window [08:00, 10:00] UTC90
Table 3.6: Lifetimes of O ₃ with respect to different species measured at PARADE-2011.
Time window]10:00, 14:00] UTC91
Table 3.7: Lifetimes of O_3 with respect to different species measured at PARADE-2011.
Time window]14:00, 16:00] UTC92
Table 4.1: Absolute errors in NO ₂ calculated from PSS (Eq. 4.7 and Eq. 4.8)106
Table 5.1: A list of instrumentation during HUMPPA-COPEC related to this discussion111
Table 5.2: Average, median and standard deviation values of different RO _{2(CAABA/MECCA)}
species119
Table 5.3: Relative uncertainty based on Monte Carlo simulations 129
Table 5.4: Analytically derived average and median values of $(NO)_{IC}$ and $(NO)_{DC}$ according
to Eq. 5.11 for different concentrations of species
Table 5.5: NO_x loss rate to HNO_3 and ANs based on median concentrations of reactants
during HUMPPA-COPEC140

7.1.3 Abberviations

Gallium Arsenide Phosphide, 33 (OHReact)_{meas} GANDALF total OH reactivity (s-1) measurement, 125 ANs Gas Analyzer for Nitrogen Dioxide Applying Laser Alkyl nitrates, 7 induced Fluorescence, 29 HALO ASL above sea level, 19 The High Altitude and LOng Range Research Aircraft, 18, 151 BG Background, 55 HR BLH High Reflectivity, 32 HUMPPA-COPEC Boundary layer height, 88 BM Hyytiälä United Measurements of Photochemistry Box Model, 40 and Particles in Air - Comprehensive Organic **BVOCs** Precursor Emission and Concentration study, 18 Biogenic Volatile Organic Compounds, 67 HYSPLIT CAABA Hybrid Single-Particle Lagrangian Integrated Chemistry As A Boxmodel Application, 120 Trajectory, 61 CAPS IL(O₃) Cavity Attenuated phase Shift Spectroscopy, 17 indirect loss rate of O3, 137 CCD k_{eff} effective (derived rate coefficient) for all ROx, 13 charge-coupled device, 66 CEAS LIF Cavity Enhanced Absorption Spectroscopy, 17 Laser-Induced Fluorescence, 29 **CE-DOAS** LN Cavity Enhanced Differential Optical Absorption Natural logarithm (base e), 48 Spectroscopy, 72 LOD CLD limit of detection, 55 LP-DOAS Chemoluminescence Detector, 66 CRDS Long Path Differential Optical Absorption Cavity Ring-Down Absorption Spectroscopy, 17 Spectroscopy, 72 D MBL dilution factor, 44 marine boundary layer, 14 DL(O₃)] MCM direct loss rates of O3, 137 Master Chemical Mechanism, 120 DOY MECCA Module Efficiently Calculating the Chemistry of the Day of year, 59 Е Atmosphere, 120 MFC east, 115 ΕV Mass Flow Controller, 49 Electronic Valve, 49 MIM GaAsP/GaAs Mainz Isoprene Mechanism, 120

MNV Mannual Needle Valve, 49 NE northeast, 112 NIST National Institute of Standards and Technology (an agency of US Department of Commerce), 39 NO_{2(CAABA/MECCA)} the simulated NO2, 130 NOGPT the remaining concentration of NO in the calibration gas after gas phase titration, 44 NO_x [Nitric oxide (NO) + Nitrogen dioxide (NO2)], 3 NW northwest, 61 OCP ozone compensation point, 15 OPE O3 production efficiency, 143 Р(О3)саава/месса The production rates of O3 from simulations, 130 PAN peroxyacetylnitrate, 6 PARADE PArticles and RAdicals Diel observations of the impact of urban and biogenic Emissions, 18 PBL planetary boundary layer, 2 PMT Photomultiplier (Photon counting head), 33 ppb_v parts per billion by volume, 12 ppm_v parts per million by volume, 1 ppq_{v} parts per quadrillion by volume, 1 ppt_v parts per trillion by volume, 12

PSS

```
photostationary state, 11
PTFE
   Polytetrafluoroethylene, 71
RFC
   relative fraction of contribution, 97
RH
   relative humidity, 60
RO<sub>x</sub>
   [Hydroperoxyl (HO2) + sum of organic peroxy radicals
      (Σ RO2)], 3
SCIAMACHY
   SCanning Imaging Absorption spectroMeter for
      Atmospheric CHartographY, 5
SE
   southeast, 112
SW
   southwest, 61
T(O_3)
   photochemical ozone tedency, 82
TD-GC-MS
   Thermal Desorber Gas Chromatograph Mass
      Spectrometer, 67
TDLAS
   Tunable Diode Laser Absorption Spectroscopy, 17
VOCs
   volatile organic compounds, 6
W
   west, 115
Φ
   Leighton ratio, 12
\Phi_{\text{ext}}
   extended Leighton ratio, 12
Φext(T)
   Φext with the tuned OH reactivity for the model, 129
\Phi_{\text{ext2}}
   extended Leighton ratio only with O3 and HO2
      contributions, 117
\Phi_{mod}
   modified Leighton ratio with inclusion of several loss
      or formation processes, 102
```

7.2 Instrumental

7.2.1.1 Optical filters

7.2.1.1.1 Absorption

The absorption of two different cut on filters inside the detection optics of GANDALF. (A-I: [x-axis: 380-900nm] cut on at 470nm and A-II: [x-axis: 440-900nm] cut on at 550nm). These figures (A-I and A-II) are provided by Barr Associates, Inc. (www.barrassociates.com).

7.2.1.1.2 Reflectance

The reflectance of two different cut on filters inside the detection optics of GANDALF. (R-I: [x-axis: 380-900nm] cut on at 470nm and R-II: [x-axis: 440-900nm] cut on at 550nm). These figures (R-I and R-II) are provided by Barr Associates, Inc. (www.barrassociates.com).

7.2.1.1.3 Transmittance

The transmittance of two different cut on filters inside the detection optics of GANDALF. (T-I: [x-axis: 380-900nm] cut on at 470nm and T-II: [x-axis: 440-900nm] cut on at 550nm). These figures (T-I and T-II) are provided by Barr Associates, Inc. (www.barrassociates.com).

7.2.1.2 Laser ON/OFF cycle

Figure: 200ns on-off cycle of laser for a signal (~12ppb_v NO₂) [y-axis arb. unit]

7.2.1.3 Appurtenances

Figure: Baffles (A,B,C) and cooling plate internal structure (D).

7.2.1.4 Reactions for calibration simulations

Note; all rate coefficients from k1 to k64 are based on temperature dependence and taken from (Atkinson et al., 2004).

: $O + O_2 = O_3$; k1 k25 : $OH + O_3 = HO_2 + O_2;$ k28 : $HO_2 + O_3 = OH + O_2 + O_2$; : $O + NO = NO_2$; k31 k32 : $O + NO_2 = O_2 + NO;$: $O + NO_2 = NO_3;$ k33 k34 : $O + NO_3 = O_2 + NO_2$; k39 : $OH + HONO = H_2O + NO_2$; k40 : $OH + HNO_3 = H_2O + NO_3$; k41 : $OH + HNO_4 = products;$ k42 : OH + NO = HONO;k43 : $OH + NO_2 = HNO_3$; k44 : $OH + NO_3 = HO_2 + NO_2$; k45 : $HO_2 + NO = OH + NO_2$; k46 : $HO_2 + NO_2 = HNO_4$; k47 : $HNO_4 = HO_2 + NO_2$; k48 : $HO_2 + NO_3 = products;$ k53 : $NO + NO + O_2 = NO_2 + NO_2$; k54 : $NO + O_3 = NO_2 + O_2$; k55 : $NO + NO_2 = N_2O_3$; k56 : $N_2O_3 = NO + NO_2;$: $NO + NO_3 = NO_2 + NO_2$; k57 k58 : $NO_2 + O_3 = NO_3 + O_2$; k59 : $NO_2 + NO_2 = N_2O_4$; k60 : $N_2O_4 = NO_2 + NO_2$; k61 : $NO_2 + NO_3 = N_2O_5$; k62 : $N_2O_5 = NO_2 + NO_3$; k63 : $N_2O_5 + H_2O = HNO_3 + HNO_3$; k64 : $N_2O_5 + H_2O + H_2O = HNO_3 + H_2O$;

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O_x , HO_x , NO_x and SO_x species, Atmos Chem Phys, 4, 1461-1738, 2004.

7.2.1.5 NOGPT

Figure: NO_{GPT} (NO after gas phase titration), as measured by a CLD

7.2.1.6 Sensitivity and LOD

Figure: An example for the sensitivity of GANDALF in left panel, taken from an automated calibrated period of PARADE-2011. LOD for the same period in the right panel.

7.2.1.7 NO Accuracy

Figure: [A] diagram for NIST setup. [B] An example of NIST measured by TEI⁵⁴ monitor.
[C] Deviations (max 1.5 %) around average derived NO mixture value based on NIST. [D]
The calculated NO accuracy (max 2.5 %) inside reaction chamber for different flows of NO during PARADE.

⁵⁴ C42, Thermo Environmental Instrument

7.2.1.8 Certified Standards

7.2.1.8.1 NIST

National Institute of Standards & Technology (NIST) standard used to compare NO calibration gas for the calibrator of GANDALF.

- united	National Institute of 2	Standards & Technology
- B)	Certificate	of Analysis
	Standard Referen	nce Material [®] 2627a
	Nitric Oxi	de in Nitrogen
	(Nominal Amount-of-Sub	ostance Fraction – 5 µmol/mol)
	This certificate reports the	certified values for Lot 48-H-XX.
\supset	This Standard Reference Material (SRM) is a primary gas as concentration [1], may be related to secondary work instruments used for nitric oxide determinations and for	mixture for which the amount-of-substance fraction, expressed cing standards. The SRM is intended for the calibration of other uses.
	This SRM mixture is supplied in a DOT 3AL specification Mixtures are shipped with a nominal pressure excees 0.65 m^3 (23.0 ft ³) of useable mixture. The cylinder is the stainless steel valve, which is the recommended outlet for	n aluminum (6061 alloy) cylinder with a water volume of 6 L. ding 12.4 MPa (1800 psig) which provides the user with e property of the purchaser and is equipped with a CGA-660 r this nitric oxide mixture.
	Certified Value: This SRM mixture has been certified to Nitrogen (NO_X) in a nitrogen (N_2) matrix. The certified to sample number.	or the concentrations of nitric oxide (NO) and total oxides of values, given below, apply to the identified cylinder and NIST
	Nitric Oxide (NO) Concentration: Total oxides of Nitrogen (NO _x) Concentration:	$\frac{4.91 \ \mu mol/mol}{5.09 \ \mu mol/mol} \pm 0.04 \ \mu mol/mol}{5.09 \ \mu mol/mol} \pm 0.04 \ \mu mol/mol}$
	Cylinder Number: CAL016555	NIST Sample Number: 48-H-61
Э	The uncertainty of the certified value includes the est comparisons to the lot standard (LS), and the uncertainty- lot. This uncertainty is expressed as an expanded uncerta factor $k=2$. The true value for the nitric oxide and total o in the interval defined by the certified value $\pm U$ with a la	imated uncertainties in the NIST standards, the analytical of comparing the LS with each of the mixtures comprising this inty $U = ku_e$ with u_e determined by experiment and a coverage xides of nitrogen amount-of-substance fraction is asserted to lie evel of confidence of approximately 95 % [2].
	Expiration of Certification: This certification is valid fu the measurement uncertainties specified, provided the SI given in this certificate.	om this certificate issue date until 31 December 2011, within RM is handled and stored in accordance with the instructions
	Hydrotest Date: May 2005	Blend Date: September 2005
	Cylinder and Gas Handling Information: A high-purit and CGA-660 outlet should be used to safely reduce the p regulator should be evacuated and purged to prevent accic times) opening the valve and pressurizing the regulator, vent line. This SRM should NOT be used after the interna be stored under normal laboratory conditions within the	y, two-stage pressure regulator with a stainless steel diaphragm ressure and to deliver this SRM mixture to the instrument. The lental contamination of the SRM by repeatedly (minimum five then closing the valve and releasing the pressure safely into a al pressure drops below 0.8 MPa (100 psig). This SRM should temperature range of 15 °C and 30 °C.
	The analytical measurements leading to the certification on NIST Analytical Chemistry Division.	f this current SRM lot were performed by W.J. Thorn III of the
		Stephen A. Wise, Chief Analytical Chemistry Division
	Gaithersburg, MD 20899 Certificate Issue Date: 02 June 2008	Robert L. Watters, Jr., Chief Measurement Services Division

7.2.1.8.2 Mass flow calibrator (DryCal)

NIST standard for DryCal sensors, DC-LC-1 and HC-LC-1, BIOS International.

Start .	FCONTRO			Neuveveg 283 66038N WDOHE The Netherlands	H Tel. +31 (0): N Fax +31 (0): Web: www.tj	24 379 2120 24 379 1063 pf-control.nl
CalDate : 08 Ju Page : 1 of	une 2010 1		Calib	oration Co	ertificat	е
GENERAL DETAILS						
Customer name :	Westphal Mess-	und Regeltechnik	Manufacturer	: Bios Interno	ational	
Customer ref :	R10-000379	•	Product	: DC-2 base		
internal ref. :	12875		Serial no.	: 104451		
			Revision	: 1.15		
AS RECEIVED TEST D	ATA					
femperature, pressure and fi	requency are tested follow	ing the Bios pracedure PR04-05 Rev	r.E			
Tool Number	Description	Cal. Date	Due Do	ote	Cert.	
DVM001	Frequency cour	nter 10/8/2009	10/8/20	010		
P00107	UNI3 pressure in	d. 11/27/2009	11/27/2	2010	409752	
			102.7.			1
	99993.10	A ind. temp [°C]	22.50	A Ind. P (mm	Hg]	755.00
Frequency in tolerance	res	Tomporature	res	Pressure in Idlerand	ce i i imming	res
Frequency B	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	remperature		Pressu	re (mmHgj	
99993		22.5			755.00	
99950	100050	21.2		8	*	g
	1000,0	21.2	23.8	8	1 sh mears	2
			22 S0	242	753.00	26
Minim	num value / Maximur	m value 💧 Meas	22.50 ured / indicated valu	22	753.00	764
Minim AS SHIPPED TEST DAT emperature, pressure and #	num value / Maximur A equency are tested follows	m value A Meas	22:30 ured / indicated valu	342	753.00	266
Minim Minim As SHIPPED TEST DAT emperature, pressure and the fool Number Tool Number	num value / Maximur A equency are tested follow Description	m value A Meas	22:50 22:50 22:50 22:50 20:000	342	753.00	264
Minim Minim As SHIPPED TEST DAT Imperature, pressure and it Tool Number DVM001 T0010	num value / Maximur A eauency are tested followi Description Frequency cour P1100 sensor	n value A Meas Ing the Bios procedure PR04-05 Rev Cal. Date ther 10/8/2009 9/11/2009	22:30 22:30 22:30 22:30 20:00 20	32	Cert.	264
Minim Minim As shipped test dat imperature, pressure and it fool Number DVM001 T00101 P00107	A A A A Description Frequency cour P1100 sensor UNI3 pressure inc	m value A Meas mg the Bios procedure FR04-05 Rev Cal. Date 07/11/2009 d. 11/27/2009	22.30 22.30 22.30 22.30 20.00 10.00 20	32	Cert.	264
Minim Minim Minim As SHIPPED TEST DAT emperature, pressure and it fool Number DVM001 T00101 P00107 Ind freq. [µS]	A A A A Cescription Frequency cour P1100 sensor UNI3 pressure inc 99993.10	m value Measure PR0+05 Rev ang the Bios procedure PR0+05 Rev Cal. Date ter 10/8/2009 9/11/2009 d. 11/27/2009 A Ind, Temp [°C]	22:30 ured / indicated valu	A Ind. P from	Cert. 409752	25500
Minim Minim Minim As SHIPPED TEST DAT emperature, pressure and it fool Number DVM001 f00101 P00107 Ind freq. [µS] inequency in tolerance	A A A A Cequency are tested followi Frequency cour PT100 sensor UNI3 pressure inc 99993.10 Yes	m value ▲ Measing the Bios procedure PR0+05 Rev Cal. Date ther 10/8/2009 9/11/2009 d. 11/27/2009 ▲ Ind. Temp [°C] Temp in tolerance ± 1.3 °C	22:30 22:30 22:30 22:30 Due Dale 10/8/2010 9/11/2010 11/27/2010 22:50 Yes	A Ind. P (mm Pressure in tolerance	Cent. 409752 Hgj se ± 11mmHg	755.00 Yes
Minim Minim Minim As SHIPPED TEST DAT emperature, pressure and it fool Number DVM001 r00101 P00107 Ind freq. [µS] frequency [µ	A A A Cectiplion Frequency cour P1100 sensor UNI3 pressure inc 99993.10 Yes IS	m value ▲ Meas mg the Bios procedure FR04-05 Rev Cal. Date 10/8/2009 9/11/2009 d. 11/27/2009 d. 11/27/2009 ▲ Ind. Temp [°C] Temp in tolerance ± 1.3 °C	22:30 22:30 22:30 22:30 20:00 20	A Ind. P (mm Pressure in toleranc Pressu	Cert. 409752 Hgj re [mmHg]	ž 755.00 Yes
Minim Minim Minim As SHIPPED TEST DAT Imperature, pressure and it Tool Number DVM001 Tool 0 VM001 P00107 Ind freq. [µS] frequency [µ 99933	A A A Cescription Frequency cour PTIOS sensor UNI3 pressure inc 99993.10 Yes IS	m value ▲ Meas Ing the Bios procedure FR04-05 Rev Cal. Date 10/8/2009 9/11/2009 11/27/2009 11/27/2009 ▲ Ind. Temp [°C] Temp in tolerance ± 1.3 °C 22.5	Le und / indicated valu (E Due Dale 10/8/2010 9/11/2010 11/27/2010 22:50 Yes	A Ind. P (mm Pressure in toleranc Pressu	Cert. 409752 Hgj re [mmHg] 355 00	755.00 Yes
Minim Minim Minim As SHIPPED TEST DAT Imperature, pressure and if Tool Number DVM001 Tool 01 P00107 M Ind freq. [µS] Frequency [µ S9993 M	A A A A Cescription Frequency cour PTIO0 sensor UNI3 pressure inc 99993.10 Yes ISI	m value ▲ Meas Ing the Bios procedure FR04-05 Rev Cal. Date 10/8/2009 d. 11/27/2009 d. 11/27/2009 ▲ Ind. Temp [°C] Temp in tolerance ± 1.3 °C 22.5 ▲	22:30 ured / indicated valu .€ Due Date 10/8/2010 9/11/2010 11/27/2010 22:50 Yes	A Ind. P (mm Pressure in toleranc Pressu	Cert. 409752 Hgj re [mmHg] 755.00	755.00 Yes
Minim Minim Minim MS SHIPPED TEST DAT emperature, pressure and # fool Number DVM001 T00101 200107 M Ind freq. [µS] requency [µ S9993 S9993 S9993	A A A A Cescription Frequency cour PTIO0 sensor UNI3 pressure inc 99993.10 Yes ISI 100050	m value ▲ Meas ing the Bios procedure PR04-05 Rev Cal. Date Cal. Date 10/8/2009 d. 11/27/2009 d. 11/27/2009 ▲ Ind. Temp [°C] Temp in tolerance ± 1.3 °C ↓ 22.5 ↓ 21.5 Lib ti	22.30 ured / indicated value	A Ind. P (mm Pressure in toleranc Pressu	Cert. 409752 Hgj re [mmHg] 755.00	755.00 Yes
Minim M	A A A A Cescription Frequency cour PTIO0 sensor UNI3 pressure inc 99993.10 Yes ISJ 100050	m value ▲ Meas ing the Bios procedure PR04-05 Rev Cal. Date ater 10/8/2009 d. 11/27/2009 d. 11/27/2009 ▲ Ind. Temp [°C] Temp in tolerance ± 1.3 °C ↓ 22.5 ↓ 21.5 ↓ Let 1 21.5 ↓ Let 1 ↓ 22.5 ↓ 23.5 ↓	22.30 ured / indicated value	A Ind. P (mm Pressure in toleranc Pressu	Cert. 409752 Hgj re [mmHg] 755.00	755.00 Yes
Minim Minim Minim MS SHIPPED TEST DAT emperatue, pressure and # tool Number DVM001 V0101 V0101 V0101 v0101 requency in tolerance Frequency [99993 99950 Minim	A A A Constraints of tested following A Description Frequency court PTIO0 sensor UNI3 pressure int 99993.10 Yes 100050 100050	m value Measure PR04-05 Rev Cal. Date ter 10/8/2009 9/11/20/9 d. 11/27/2009 M. Ind. Temp [°C] Temp in tolerance ± 1.3 °C 22.5 21.5 Lab 22.5 21.5 Lab	E 22.30 ured / indicated value E Due Date 10/8/2010 9/11/2010 11/27/2010 22:50 Yes eng 24.1 age 25.1 age 25.1 age 25.1 age 25.1 age 25.1 age 26.1 age 27.1 age	A Ind. P (mm Pressure in toleranc Pressu	409752 Hgj rre [mmHg] 755.00 Ltb press 753.00	755.00 Yes
Minim Minim Minim Minim Minim Minim Minim Minim Minim	A A A A Cectriplion Frequency cour PTIO0 sensor UNI3 pressure inc 99993.10 Yes ISI 100050 IUNI3 pressure inc 100050 IUNI3 pressure inc 100050	m value ▲ Measing the Bios procedure PR04-05 Rev Cal. Date Cal. Date 10/8/2009 d. 11/27/2009 ▲ Ind. Temp [°C] Temp in tolerance ± 1.3 °C 21.5 21.5 Lib i 22.5 A Measing Cal. Date 22.5 A Measing Cal. Date 21.5 Lib i 22.5 A Measing Cal. Date A M	Due Date 10/8/2010 9/11/2010 11/27/2010 22:50 Yes areg 24.1 80	Pressure in tolerance Pressure in tolerance Pressure	Cert. 409752 Hg] be ± 11mmHg re [mmHg] 755.00 Lisb press 753.00	755.00 Yes
Minim Minim Minim Massel Minim Minim Minim Minim Minim	A A A Cescription Frequency cour PTIO0 sensor UNI3 pressure inc 99993.10 Yes IS 100050 hum value / Maximum	m value A Measure Measure Measure A	22.30 ured / indicated value	Pressure in tolerance Pressure in tolerance Pressure	Cert. 409752 Hg] re [mmHg] 755.00 Lab press 753.00	755.00 Yes
Minim Minim Minim Massessment Minim Minim Minim Minim	num value / Maximur A equency are tested followi Description Frequency cour PT100 sensor UNI3 pressure inc 99993.10 Yes ISI 100050 num value / Maximum	m value A Measure Measure Measure A	22.30 ured / indicated value	Pressure in tolerance Pressure in tolerance Pressure		755.00 Yes
Minim	A A Control of the second formation of the second fo	m value A Measure Measure Measure A Measure A Measure A Measure Measure Measure Measure Measure A Measure	22.30 ured / indicated value	Pressure in tolerance		755.00 Yes

TPF	CONTROL	CALLER AND A LOCAL RAY IN 19
		CALIBRATION CERTIFICATE
		17871
Applicant Customer name	Westphol Mess-und Regettechnik	
Contoct Address	E. Reuveni Lourinweg 20	
	6532(1 - Unoquin Germany	
Order reference applicant Order reference TPF Control	R10-000379 12875	
Instrument Information (DUT)		
Instrument	Primary Flow Calibrator Bios international	
Serial no.	104661 DCI C-1	
Revision		
Calibration method	The device under test is connected in a parallel collatator to compare flow readings. An approprie flow - Divide Indoncies; al provoure is used to g This flow is measured in an A-8 method A-reading lab standard. B-reading device un	tartup to the mentioned flow printle warm up time is incorporated. peneate a flow.
Period of calibration	8 juni 2010	
Callbration result	The results of the collection are presented on pogo 3 measurement is board on the standard uncertainly in which provides a confidence level of approximately. The standard uncertainly of measurement has been.	d 12. The reported uncertainly of multiplied by a coverage lactor 1=2. 95%. Belentrined In accordance with EA-402.
Callbration iraceability	The measurements have been executed using stands (inter/notionol standards has been demonstrated tow	ands for which the traceability to varids the RvA.
Remarks		
Certificate İssue daite	Wijchen, 8 juni 2010	
Caltration Jechnicion Khald Horcach		Technical Manager Rik van de Bovenkamp
		Ŀ,
TP/ Control b.v. Heaveverg 2030 4403 an WINCIPA Tel. 451 24 279 2120 For. 451 24 279 2120 For. 451 24 279 2120	Public Immedian of the Educeron Congregatory Interconnection of the Educeron Congregatory Interconnection (Aurona Congregatory Internec- tional Construction Auronaceuron Party Inter- enced Recognition of the The Interdict Michael Control One Conflictuation	Theready calling of the computer calification is defined as the first operational of the computer calification is defined to the unitary promotions of the control of the product of the control is hard and used product the control is hard and used control of Clonicity, MV, summary any Cataling or Office Clonicity, MV, summary any Cataling
Form BMS 41, £9 - Rev D dated 1-0	01-50	Pope I of 2

ТРЕ	GONTROL	CALIBRATION CALIBRATION RVA K 149
	0	ALIBRATION CERTIFICATE 12878
Applicant Customer name Contoct Address	Westphal Mess- und Regeliechnik E. Reuveni Loutivies 2.0 68121 - Oteburnn 68172	
Order reference applicant Order reference IPF Control	R10-000379 12875	
Instrument Intermetion (Dur) Instrument Monutociure Serici no. Mootei Revision	Primary Row Calibrator Bios International 10034 C-HC-1	
Callbration method	The device under test is connected in a paralet set, calibrator to compare flow readings. An appropriate las - Pryced products: a flow source is used to gener this flow is measured in an As method (Arreading lab standard, Brreading device under t	p to the mentioned flow s vorm up time is incorporcied. rate a flow.
Period of calibration	8 juni 2010	
Calibration result	The results of the collication are presented on page 2 of 2 measurement is toosed on the standard uncertainly multiple which provides a confidence level of approximitely 95%. The standard uncertainly of measurement has been deleted the standard uncertainly of measurement has been deleted and the standard uncertainly of measurement has been deleted the standard uncertainly of measurement but been deleted the standard uncertaint the standard the standard uncertaint the standard the standard uncertaint the standard the standard	. The reported uncentainty of ded by a coverage lactor (e.2 mined in accordance with E.4.402.
Calibration fraceability Remarks	The measurements have been executed using standards i (inter)national standards has been demonstrated towards	or which line tracedually to the RVA.
Certificate Issue date	Wijchen, 8 juni 2010	
Coltration lechnician Khalid Harkach		technical Manager Bit van de Bownkamp
117 Control b.v. Nieuweweg 283a 1643 an Wuckiek (Ni) 1643 an 2437 an 2130 Fox - 512 24377 1003 Fox - 512 24377 1003	An A monitor of the Euclosum Concentration and a concentration of the physical Control Manufactured Approaches Control Encoursed Approaches Frances Research Approaches Frances Research Approaches Frances Research Approaches Approac	Necessriphical of the comparise colliderial Judicesd of the differentiation of the comparise on the second of the under-permission of the exploritions are provide the strateging and a strateging and a provide the strateging and a strateging and provide the strateging and a strateging and and a strateging and a strateging and a strateging and a strateging and a strateging and a strateging and a stra
Form BMS 41.09 - Rev D dated 1-0	5-10	Poge 1 ol 2

7.2 Instrumental

VI BHATION VA K 149	12878		ERTAINTY ow [%]	.32% .37% .38%			ERTAINTY	.32% .37%	.37%			50000]				
CERT			PIC	000			UNCI		0			45000						
RATION			Limit [%]	1.00			1.	1.00	1.50			40000						
CALIBI			ATION (ERROR)	2.79 10.35 498.00			ATION (ERROR)	0.21 6.70	506.50			000 35000					%00I-	
			DEV Of Rate [%] Flo	0.56 0.21 1.00			DEVI	0.04 0.13	1.02			25000 30		Flow		indard reading	guipc	
		04.5 mbar	Tool no.	B00101 B00104 B00104		04.4 mbar	READING	B00101 B00104	B00104			20000			m	reading - Lab sta	Lab standard re	
DNTR		b. Pressure 10	AB STANDARD w[ml/min]	498.41 5023.65 49602.00	ADJUSTMEN	o. Pressure 10	AB STANDARD	491.05 5005.30	19573.50			15000			ESULTS AFTER AD JUSTIA	Instrument	= 001	
		°C La	NG 원		LTS AFTER /		NG					1000			CAUBRATION F	of hur Davids	apy: nevia	
F	DUND RESULTS	emperature 21.2	[ml/min]	501.20 5034.00 50100.00	BRATION RESUL	emperature 20.7	STRUMENT READIN	491.25 5012.00	50080.00	2.00 1.50 1.00	0.50 ¥	-0.50 0 50	-1.50	-2.00 1	- OUND RESULTS	si Antiolion is dolormico	Jeviation is determine	
milli	SFC	ab. Te	ž		ALIE	ab. Ie	N				[%] uc	ottsiveO	1		- AS FC	Thod	ine d	
7.3 PARADE-2011

7.3.1.1 Time Series of NMHC

Figure: Time series of different alkenes and aromatics during PARADE-2011.

7.3.1.2 Air Mass Origin

Figure: Origin of air mass for PARADE-2011 [Figure is taken from Crowley, J., 2012 (Presentation at PARADE data meeting Mainz)]

7.3.1.3 jO^1D versus HO_x

A plot of correlation of the measured OH and HO₂ versus jO^1D in upper and lower panel, respectively, based on filter ($jO^1D > 1 \times 10^{-7} \text{ s}^{-1}$) during PARADE.

7.3.1.4 NO₂ Ratios Correlations

This section is related to NO_2 comparison for PARADE. A series of upcoming figures shows ratio (between all NO_2 measurements and GANDALF) as a function of different observed quantities to see any systematic correlation. Each figure is a set of four subplots according to different instruments. Y-axis of figures below is shown as follow (with data colour to show sequence of upcoming figures for quick go through).

> LP-DOAS/GANDALF CRDS/GANDALF CE-DOAS/GANDALF CRD/GANDALF

7.3.1.5 Diel profile of O₃

Figure: $O_3 v/s$ day fraction during PARADE-2011 and colour coded with temperature.

Figure: Loss rates of alkenes with respect to O₃ and OH during PARADE.

7.3.1.7 Trends

7.3.1.7.1 Φ colour coded with relative jNO₂

Figure: Φ as a function of NO and colour coded with relative change in jNO₂ during 10minute.

7.3.1.7.2 NO₂ v/s NO

Figure: NO₂ as a function of NO during PARADE-2011 at $jNO_2 \ge 5 \times 10^{-3} s^{-1}$ and Filter_Road.

Figure: The effective lifetime of PAN during PARADE as a function of NO/NO₂ ratio for filtered data. The plot is also colour-coded with temperature.

7.4 HUMPPA-COPEC-2010

7.4.1.1 Time series of BVOCs, (OHReact)_{meas}, and others

7.4.1.2 Φ colour coded with relative jNO₂

Figure: Φ as a function of NO and colour coded with relative change in jNO₂.

7.4.1.3 Leighton Ratio with uncertainty

Figure: Φ with measurement uncertainty is shown as a function of NO for PARADE and HUMPPA-COPEC.

Figure: OH, HO_2 and H_2O_2 plotted as a function of NO. The square symbol are median values of $10ppt_v$ NO bin.

7.4.1.5 P(O₃)_{PSS} and P(O₃)_{CAABA/MECCA}

Figure: P(O₃)_{PSS} correlation with (PO₃) _{CAABA/MECCA} from simulation. P(O₃)_{PSS} is calculated based on Eq. 1.10. Blue data is based on simulations with tuned (OHReact)_{CAABA/MECCA} while red data points are without tuning of (OHReact)_{CAABA/MECCA}. The slope is based on robust regression [it uses iteratively reweighted least squares (<u>Holland and Welsch, 1977</u>)].

7.5 Mechanism Chemical Equations

The generic rate constants (KRO₂NO, KRO₂HO₂, KAPNO, KRO₂NO₃, KNO₃AL and KDEC) in the mechanism are based on MCM3.2 (Jenkin et al., 1997;Saunders et al., 2003).

The Chemical Mechanism of MECCA

KPP version: 2.2.1_rs5 MECCA version: 3.3 Date: June 30, 2014. Selected reactions: "Tr && G && !S && !Cl && !Br && !I && !Hg" Number of aerosol phases: 0 Number of species in selected mechanism: Gas phase: 395Aqueous phase: 0 All species: 395 Number of reactions in selected mechanism: Gas phase (Gnnn): 979 Aqueous phase (Annn): 0 Henry (Hnnn): 0 Photolysis (Jnnn): 102 Heterogeneous (HETnnn): 0 Equilibria (EQnn): 0 Isotope exchange (DGnnn): 0 Dummy (Dnn): 0 All equations: 1081

		Table	1: Gas phase reactions	
#	labels	reaction	rate coefficient	reference
G1000	StTrG	$O_2 + O(^1D) \rightarrow O(^3P) + O_2$	3.2E-11*EXP(70./temp)	Sander et al. (2003)
G1001	StTrG	$O_2 + O(^{3}P) \rightarrow O_3$	6.E-34*((temp/300.)**(-2.4))*cair	Sander et al. (2003)
G2100	StTrG	$H + O_2 \rightarrow HO_2$	k_3rd(temp,cair,5.7E-32,1.6,7.5E-11,0., 0.6)	Sander et al. (2003)
G2104	StTrG	$OH + O_3 \rightarrow HO_2$	1.7E-12*EXP(-940./temp)	Sander et al. (2003)
G2105	StTrG	$OH + H_2 \rightarrow H_2O + H$	2.8E-12*EXP(-1800./temp)	Sander et al. (2006)
G2107	StTrG	$HO_2 + O_3 \rightarrow OH$	1.E-14*EXP(-490./temp)	Sander et al. (2003)
G2109	StTrG	$HO_2 + OH \rightarrow H_2O$	4.8E-11*EXP(250./temp)	Sander et al. (2003)
G2110	StTrG	$HO_2 + HO_2 \rightarrow H_2O_2$	k_H02_H02	Christensen et al. (2002),
				Kircher and Sander (1984)*
G2111	StTrG	$H_2O + O(^1D) \rightarrow 2 OH$	2.2E-10	Sander et al. (2003)
G2112	StTrG	$H_2O_2 + OH \rightarrow H_2O + HO_2$	2.9E-12*EXP(-160./temp)	Sander et al. (2003)
G3101	StTrG	$N_2 + O(^1D) \rightarrow O(^3P) + N_2$	1.8E-11*EXP(110./temp)	Sander et al. (2003)
G3103	StTrGN	$NO + O_3 \rightarrow NO_2 + O_2$	3.E-12*EXP(-1500./temp)	Sander et al. (2003)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Sander et al. (2003)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Sander et al. (2003)
G3109	StTrGN	$NO_3 + NO_2 \rightarrow N_2O_5$	k_N03_N02	Sander et al. (2003)*
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_NO3_NO2/(3.E-27*EXP(10990./temp))	Sander et al. (2003)*
G3200	TrG	$\rm NO + OH \rightarrow HONO$	k_3rd(temp,cair,7.E-31,2.6,3.6E-11,0.1, 0.6)	Sander et al. (2003)
G3201	StTrGN	$NO + HO_2 \rightarrow NO_2 + OH$	3.6E-12*EXP (270/temp)	Atkinson et al. (2004)
G3202	StTrGN	$NO_2 + OH \rightarrow HNO_3$	k_3rd(temp,cair,1.48E-30,3.,2.58E-11, 0.,0.6)	Mollner et al. (2010)
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Sander et al. (2003)*
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Sander et al. (2003)
G3205	TrG	$HONO + OH \rightarrow NO_2 + H_2O$	1.8E-11*EXP(-390./temp)	Sander et al. (2003)
G3206	StTrGN	$HNO_3 + OH \rightarrow H_2O + NO_3$	k_HNO3_OH	Sander et al. (2003)*
G3207	StTrGN	$HNO_4 \rightarrow NO_2 + HO_2$	k_NO2_HO2/(2.1E-27*EXP(10900./temp))	Sander et al. (2003)*
G3208	StTrGN	$HNO_4 + OH \rightarrow NO_2 + H_2O$	1.3E-12*EXP(380./temp)	Sander et al. (2003)
G4101	StTrG	$CH_4 + OH \rightarrow CH_3O_2 + H_2O$	1.85E-20*EXP(2.82*log(temp)-987./temp)	Atkinson (2003)
G4102	TrG	$CH_3OH + OH \rightarrow HCHO + HO_2$	7.3E-12*EXP(-620./temp)	Sander et al. (2003)
G4103a	StTrG	$\rm CH_3O_2 + \rm HO_2 \rightarrow \rm CH_3OOH$	4.1E-13*EXP(750./temp)/(1.+1./	Sander et al. (2003)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
4103b	StTrG	$CH_3O_2 + HO_2 \rightarrow HCHO + H_2O + O_2$	4.1E-13*EXP(750./temp)/(1.+	Sander et al. (2003)*
			497.7*EXP(-1160./temp))	
34104	StTrGN	$CH_3O_2 + NO \rightarrow HCHO + NO_2 + HO_2$	2.8E-12*EXP(300./temp)	Sander et al. (2003)
4105	TrGN	$CH_3O_2 + NO_3 \rightarrow HCHO + HO_2 + NO_2$	1.3E-12	Atkinson et al. (1999)
4106a	StTrG	$CH_3O_2 \rightarrow HCHO + HO_2$	2.*R02*9.5E-14*EXP(390./temp)/(1.+1./	Sander et al. (2003)
			26.2*EXP(1130./temp))	
4106b	StTrG	$CH_3O_2 \rightarrow .5 \text{ HCHO} + .5 \text{ CH}_3OH$	2.*R02*9.5E-14*EXP(390./temp)/(1.+	Sander et al. (2003)
			26.2*EXP(-1130./temp))	
4107	StTrG	$CH_3OOH + OH \rightarrow .6 CH_3O_2 + .4 HCHO + .4 OH + H_2O$	k_CH300H_OH	see note
4108	StTrG	$HCHO + OH \rightarrow CO + H_2O + HO_2$	9.52E-18*EXP(2.03*log(temp)+636./temp)	Sivakumaran et al. (2003)
4109	TrGN	$HCHO + NO_3 \rightarrow HNO_3 + CO + HO_2$	3.4E-13*EXP(-1900./temp)	Sander et al. (2003)*
4110	StTrG	$\rm CO + OH \rightarrow H + CO_2$	1.57E-13 + cair*3.54E-33	McCabe et al. (2001)
4111	TrG	$HCOOH + OH \rightarrow CO_2 + HO_2 + H_2O$	4.5E-13	IUPAC (2013)
4112e	TrGC	$HCHO + HO_2 \rightarrow HOCH2O2$	7.7E-15*EXP(625./temp)	IUPAC (2013)
4113e	TrGC	$HOCH2O2 \rightarrow HCHO + HO_2$	2.E12*EXP(-7000./temp)	IUPAC (2013)
4114e	TrGC	$HOCH2O2 + HO_2 \rightarrow .5 HOCH2OOH + .5 HCOOH + .2$	5.6E-15*EXP(2300./temp)	Jenkin et al. (2007)
		$OH + .2 HO_2 + .3 H_2O$		
4115e	TrGC	$HOCH2O2 + NO \rightarrow NO_2 + HO_2 + HCOOH$	2.8E-12*EXP(300./temp)	Sander et al. (2003)
4116e	TrGC	$HOCH2O2 + NO_3 \rightarrow NO_2 + HO_2 + HCOOH$	1.2E-12	see note
4117e	TrGC	$HOCH2O2 \rightarrow HCOOH + .62 HO_2$	1.4E-12*R02	see note
4118e	TrGC	$HOCH2OOH + OH \rightarrow HOCH2O2 + H_2O$	0.6*k_CH300H_OH + krohro	see note
4119e	TrGC	$HOCH2OOH + OH \rightarrow OH + HCOOH + H_2O$	ks*fsoh*fsooh	see note
4200	TrGC	$C_2H_6 + OH \rightarrow C_2H_5O_2 + H_2O$	1.49E-17*temp*temp*EXP(-499./temp)	Atkinson (2003)
4201e	TrGC	$C_2H_4 + O_3 \rightarrow HCHO + .63 CO + .13 HO_2 + 0.37$	1.2E-14*EXP(-2630./temp)	Sander et al. (2003)*
		HOCH2OOH + .13 OH		
4202	TrGC	$C_2H_4 + OH \rightarrow HOCH_2CH_2O_2 + H_2O$	k_3rd(temp,cair,1.E-28,0.8,8.8E-12,0.,	Sander et al. (2003)
			0.6)	
4203	TrGC	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH$	7.5E-13*EXP(700./temp)	Sander et al. (2003)
4204	TrGNC	$C_2H_5O_2 + NO \rightarrow CH_3CHO + HO_2 + NO_2$	2.6E-12*EXP(365./temp)	Sander et al. (2003)
4205	TrGNC	$C_2H_5O_2 + NO_3 \rightarrow CH_3CHO + HO_2 + NO_2$	2.3E-12	Atkinson et al. (1999)
4206	TrGC	$C_2H_5O_2 \rightarrow .98 \text{ CH}_3\text{CHO} + .38 \text{ HO}_2 + .02 \text{ HOCH}_2\text{CH}_2\text{O}_2$	3.1E-13*R02	Rickard and Pascoe (2009)*
4207	TrGC	$\mathrm{C_{2}H_{5}OOH} + \mathrm{OH} \rightarrow .43 \mathrm{C_{2}H_{5}O_{2}} + .43 \mathrm{H_{2}O} + .57 \mathrm{CH_{3}CHO}$	0.6*k_CH300H_OH + 8.01E-12	see note
		+ .57 OH		
4208ea	TrGC	$CH_3CHO + OH \rightarrow CH_3C(O)OO + H_2O$	4.4E-12*EXP(365./temp)*0.95	Atkinson et al. (2006)

ц	labola	Table 1: Gas phase reaction	ons (continued)	no forma o c
#	Tradeis	CH CHO + OH + 84 HCOCH2O2 + 1 HCHO + 1 CO	A AF 10+FVP(26F (torn)+0.05	Athieses at al. (2006)
G4208eb	IIGC	$+ .06 \text{ GLYOX} + .16 \text{ OH} + \text{H}_2\text{O}$	4.4E-12*EXP(305./temp)*0.05	Atkinson et al. (2006)
G4209	TrGNC	$CH_3CHO + NO_3 \rightarrow CH_3C(O)OO + HNO_3$	KNO3AL	Sander et al. (2003)
G4210e	TrGC	$CH_3COOH + OH \rightarrow CH_3O_2 + CO_2 + H_2O$	4.2E-14*exp(850./temp)	IUPAC (2013)
G4211et1	TrGC	$CH_3C(O)OO + HO_2 \rightarrow OH + CH_3O_2 + CO_2$	KAPH02*0.70	Taraborrelli (2014)*
G4211et2	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3C(O)OOH$	KAPH02*0.12	Taraborrelli (2014)*
G4211et3	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3COOH + O_3$	KAPH02*0.18	Taraborrelli (2014)*
G4212	TrGNC	$CH_3C(O)OO + NO \rightarrow CH_3O_2 + CO_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001)
G4213	TrGNC	$CH_3C(O)OO + NO_2 \rightarrow PAN$	k_CH3CO3_NO2	Tyndall et al. (2001)*
G4214	TrGNC	$CH_3C(O)OO + NO_3 \rightarrow CH_3O_2 + NO_2 + CO_2$	4.E-12	Canosa-Mas et al. (1996)
G4217	TrGC	$CH_3C(O)OO \rightarrow .7 CH_3O_2 + .7 CO_2 + .3 CH_3COOH$	1.00E-11*R02	Rickard and Pascoe (2009)
34218	TrGC	$CH_3C(O)OOH + OH \rightarrow CH_3C(O)OO + H_2O$	0.6*k_CH300H_0H	Rickard and Pascoe (2009)*
34220	TrGNC	$PAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	9.50E-13*EXP(-650./temp)	Rickard and Pascoe (2009)
G4221	TrGNC	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Sander et al. (2003)*
G4223e	TrGC	$HOCH_2CHO + OH \rightarrow .84 HOCH2CO + .16 HOCHCHO + .2 HO2 + H2O$	8.00E-12	Rickard and Pascoe (2009)
G4224e	TrGNC	$HOCH_{2}CHO + NO_{2} \rightarrow HOCH_{2}CO + HNO_{2}$	KNO3AL	Rickard and Pascoe (2009)
34255et2	TrGC	$HOCH_2CO \rightarrow HOCH_2CO_2$	KDEC*.97	Taraborrelli (2014)*
34255et3	TrGC	$HOCH2CO \rightarrow OH + HCHO + CO$	KDEC*.03	Taraborrelli (2014)*
34256et2	TrGC	$HOCHCHO \rightarrow GLYOX + HO_{2}$	KDEC	Taraborrelli (2014)
G4225	TrGC	$\text{HOCH}_2\text{CO}_3 \rightarrow .7 \text{ HCHO} + .7 \text{ CO}_2 + .7 \text{ HO}_2 + .3 \text{ HOCH}_2\text{CO}_3 + .7 \text{ HO}_2 + .3 \text{ HO}_2\text{ HO}_2 + .3 \text{ HO}_2\text{ HO}_2 + .3 \text{ HO}$	1.00E-11*R02	Rickard and Pascoe (2009)
G4226ea	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HCHO + HO_2 + OH + CO_2$	KAPHO2*rco3 oh	Taraborrelli (2014)*
34226eb	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_3H$	KAPH02*rco3 ooh	Taraborrelli (2014)*
G4226ec	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_2H + O_3$	KAPHO2*rco3_o3	Taraborrelli (2014)*
G4227	TrGNC	$HOCH_2CO_3 + NO \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KAPNO	Rickard and Pascoe (2009)
G4228	TrGNC	$HOCH_2CO_3 + NO_2 \rightarrow PHAN$	k_CH3C03_N02	Rickard and Pascoe (2009)
G4229	TrGNC	$HOCH_2CO_3 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KR02N03*1.60	Rickard and Pascoe (2009)
G4230e	TrGC	$HOCH_2CO_2H + OH \rightarrow .09 HCHO + .09 CO_2 + .91 HCOCO_2H + HO_2 + H_2O$	kco2h+ks*fsoh*fco2h	Taraborrelli (2014)
34231ea	TrGC	$HOCH_2CO_2H + OH \rightarrow HOCH_2CO_2 + H_2O$	0.6*k CH300H 0H	Taraborrelli (2014)
34231eb	TrGC	$HOCH_2CO_3H + OH \rightarrow HCOCO_3H + HO_2$	ks*fsoh*fco2h	Taraborrelli (2014)
G4232	TrGNC	$PHAN \rightarrow HOCH_2CO_2 + NO_2$	k PAN M	Rickard and Pascoe (2009)
64233	TrGNC	$PHAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	1 12E-12	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G4234e	TrGC	$\mathrm{GLYOX} + \mathrm{OH} \rightarrow 1.2 \ \mathrm{CO} + .6 \ \mathrm{HO}_2 + .4 \ \mathrm{HCOCO3A} +$	3.1E-12*EXP(340./temp)	IUPAC (2013)
		H ₂ O		
G4235e	TrGNC	$\mathrm{GLYOX} + \mathrm{NO}_3 \rightarrow 1.2 \text{ CO} + .6 \text{ HO}_2 + .4 \text{ HCOCO3A} +$	KNO3AL	Rickard and Pascoe (2009)
		HNO ₃		
G4235et2	TrGNC	$\mathrm{HCOCO3A} \rightarrow 1.5 \mathrm{\ CO} + .5 \mathrm{\ HO}_2 + .5 \mathrm{\ OH} + .5 \mathrm{\ CO}_2$	KDEC	Taraborrelli (2014)
G4236	TrGC	$\text{HCOCO}_3 \rightarrow .7 \text{ CO} + .7 \text{ HO}_2 + .7 \text{ CO}_2 + .3 \text{ HCOCO}_2\text{H}$	1.00E-11*R02	Rickard and Pascoe (2009)
G4237e	TrGC	$\mathrm{HCOCO}_3 + \mathrm{HO}_2 \rightarrow \mathrm{HO}_2 + \mathrm{CO} + \mathrm{CO}_2 + \mathrm{OH}$	KAPH02	Feierabend et al. (2008), Taraberelli (2014)
G4238	TrGNC	$HCOCO_3 + NO \rightarrow HO_2 + CO + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G4239	TrGNC	$\mathrm{HCOCO}_3 + \mathrm{NO}_3 \rightarrow \mathrm{HO}_2 + \mathrm{CO} + \mathrm{NO}_2 + \mathrm{CO}_2$	KR02N03*1.60	Rickard and Pascoe (2009)
G4239t2	TrGNC	$\mathrm{HCOCO}_3 + \mathrm{NO}_2 \rightarrow \mathrm{HO}_2 + \mathrm{CO} + \mathrm{NO}_3 + \mathrm{CO}_2$	k_CH3CO3_NO2	Orlando and Tynd (2001), Taraborrelli (2014)*
G4240	TrGC	$HCOCO_2H + OH \rightarrow CO + HO_2 + CO_2 + H_2O$	kco2h+kt*fo*fco2h	Taraborrelli (2014)
G4241	TrGC	$HCOCO_3H + OH \rightarrow .2 HCOCO_3 + .8 CO + .8 OH + .8 CO_2 + H_2O$	0.6*k_CH300H_0H+kt*fo*fco2h	Taraborrelli (2014)
34242	TrGC	$HOCH_2CH_2O_2 \rightarrow .6 HOCH_2CH_2O + .2 HOCH_2CHO + .2 ETHGLY$	2.00E-12*R02	Rickard and Pascoe (2009)
G4244	TrGC	$HOCH_2CH_2O_2 + HO_2 \rightarrow HYETHO2H$	2.00E-13*EXP(1250./temp)	Rickard and Pascoe (2009)
34243	TrGNC	$HOCH_2CH_2O_2 + NO \rightarrow .24875 HO_2 + .4975 HCHO + .74625 HOCH_2CH_2O + .995 NO_2 + .005 ETHOHNO3$	KRO2NO	Orlando et al. $(1998b)^*$
G4245	TrGNC	ETHOHNO3 + OH \rightarrow .93 NO3CH2CHO + .93 HO ₂ + .07	ks*(fsoh*fch2ono2+fono2*fpch2oh)	Taraborrelli (2014)
		$HOCH_2CHO + .07 NO_2 + H_2O$	+krohro	
34246a	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CH_2O_2 + H_2O$	0.6*k_CH300H_OH	Rickard and Pascoe (2009)
34246b	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CHO + OH + H_2O$	ks*fsooh*fpch2oh	Taraborrelli (2014)
G4246c	TrGC	$HYETHO2H + OH \rightarrow HOOCH2CHO + HO_2 + H_2O$	ks*fsoh*fpch2oh+krohro	Taraborrelli (2014)
G4247a	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HOCH_2CHO$	6.00E-14*EXP(-550./temp)*C(ind_02)	Orlando et al. (1998b)
34247Ъ	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HCHO + HCHO$	9.50E+13*EXP(-5988./temp)	Orlando et al. (1998b)
G4248	TrGC	$ETHGLY + OH \rightarrow HOCH_2CHO + HO_2 + H_2O$	2*ks*fsoh*fpch2oh+2*krohro	Taraborrelli (2014)
G4249e	TrGC	$HCOCH2O2 \rightarrow 0.6 HCHO + 0.6 CO + 0.6 HO_2 + 0.2 GLYOX + 0.2 HOCH_2CHO$	2.00E-12*R02	Taraborrelli (2014)
34250e	TrGC	$HCOCH2O2 + HO_2 \rightarrow 0.85 HOOCH2CHO + 0.15 HCHO + 0.15 CO + 0.15 HO_2 + 0.15 OH$	KR02H02*0.387	Taraborrelli (2014)
4251e	TrGC	$HCOCH2O2 + NO \rightarrow NO_2 + HCHO + CO + HO_2$	KR02N0	Taraborrelli (2014)
G4252e	TrGC	$HCOCH2O2 + NO_3 \rightarrow HCHO + CO + HO_2 + NO_2$	KR02N03	Taraborrelli (2014)

		Table 1: Gas phase reacti	ions (continued)	
#	labels	reaction	rate coefficient	reference
G4253e	TrGC	HOOCH2CHO + OH \rightarrow .71 OH + .31 HCHO + .31 CO + .40 GLYOX + .29 HCOCH2O2	0.6*k_CH300H_0H+ks*fsooh*fcho+.8*8.E-12	Taraborrelli (2014)
G4254e	TrGNC	$HOOCH2CHO + NO_3 \rightarrow OH + HCHO + CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G4257e	TrGC	$\rm NO3CH2CHO + OH \rightarrow \rm HCHO + \rm CO_2 + \rm NO_2 + \rm H_2O$	1.E-11	Paulot et al. (2009a), Taraborrelli (2014)
G4258e	TrGNC	$HOOCH2CO3 + NO \rightarrow NO_2 + OH + HCHO + CO_2$	KAPNO	Taraborrelli (2014)
G4259e	TrGNC	$HOOCH2CO3 + NO_3 \rightarrow NO_2 + OH + HCHO + CO_2$	KR02N03*1.60	Taraborrelli (2014)
G4260e	TrGC	$HOOCH2CO3 + HO_2 \rightarrow 2 OH + HCHO + CO_2$	KAPH02*rco3_oh	Taraborrelli (2014)
G4260et2	TrGC	$HOOCH2CO3 + HO_2 \rightarrow HOOCH2CO3H$	KAPH02*rco3_ooh	Taraborrelli (2014)*
G4260et3	TrGC	$HOOCH2CO3 + HO_2 \rightarrow HOOCH2CO2H + O_3$	KAPH02*rco3_o3	Taraborrelli (2014)*
G4261e	TrGC	HOOCH2CO3 \rightarrow .7 OH + .7 HCHO + .7 CO ₂ + .3 HOOCH2CO2H	1.00E-11*R02	Taraborrelli (2014)
G4262e	TrGC	$HOOCH2CO3H + OH \rightarrow HOOCH2CO3 + H_2O$	2.*0.6*k_CH300H_0H	Taraborrelli (2014)
G4263e	TrGC	$HOOCH2CO3H + OH \rightarrow HCOCO_3H + OH + H_2O$	ks*fsooh*fco2h	Taraborrelli (2014)
G4265e	TrGC	$HOOCH2CO2H + OH \rightarrow HCOCO_2H + OH + H_2O$	ks*fsooh*fco2h+kco2h	Taraborrelli (2014)
G4266e	TrGC	CH2CO + OH \rightarrow .6 HCHO + .6 HO ₂ + .6 CO + .4 HOOCH2CO2H	2.8E-12*exp(510./temp)	Baulch et al. (2005), Taraborrelli (2014)*
G4267e	TrGC	$CH3CHOHOOH + OH \rightarrow CH_3COOH + OH$	kt*ftooh*ftoh + krohro	Taraborrelli (2014)
G4268e	TrGC	$CH3CHOHOOH + OH \rightarrow CH3CHOHO2$	0.6*k_CH300H_OH	Taraborrelli (2014)
G4269e	TrGC	$\rm CH3CHOHO2 \rightarrow CH_3CHO + HO_2$	3.46E12*EXP(-12500./(1.98*temp))	Hermans et al. (2005), Tarabor- relli (2014)
G4270e	TrGC	$\rm CH_3CHO + HO_2 \rightarrow CH3CHOHO2$	3.46E12*EXP(-12500./(1.98*temp)) /(6.34E26*EXP(-14700./(1.98*temp)))	Hermans et al. (2005), Tarabor- relli (2014)
G4271e	TrGC	CH3CHOHO2 + HO ₂ \rightarrow .5 CH3CHOHOOH + .3 CH ₃ COOH + .2 CH ₃ O ₂ + .2 HCOOH + .2 OH	5.6E-15*EXP(2300./temp)	Taraborrelli (2014)
G4272e	TrGC	$CH3CHOHO2 \rightarrow CH_3O_2 + HCOOH + OH$	1.4E-12*R02	Taraborrelli (2014)
G4273e	TrGC	$CH3CHOHO2 + NO \rightarrow CH_3O_2 + HCOOH + OH + NO_2$	KR02N0	Taraborrelli (2014)
G4300	TrGC	$\begin{array}{l} {\rm C}_{3}{\rm H}_{8}+{\rm OH}\rightarrow.736~{\rm iC}_{3}{\rm H}_{7}{\rm O}_{2}+.264~{\rm C}_{2}{\rm H}_{5}{\rm O}_{2}+.264~{\rm CO}_{2}\\ +.264~{\rm HO}_{2}+{\rm H}_{2}{\rm O} \end{array}$	1.55E-17*temp*temp*EXP(-61./temp)	Rickard and Pascoe (2009)*
G4301et2	TrGC	$\begin{array}{l} C_{3}H_{6}+O_{3}\rightarrow.0855CH3CHOHOOH+.4389CH_{3}CHO\\ +.4389H_{2}O_{2}+.0456CH_{3}COOH+.285HCOCH2O2+\\ .0855CH_{4}+.0855CO_{2}+.0342CH2CO+.0513CH_{3}OH\\ +.0228CH_{3}C(O)OO+.57HCHO+.2709CO+.0688\\ HO_{2}+.1591HOCH2OOH+.43CH_{3}CHO+.3766OH \end{array}$	6.5E-15*EXP(-1900./temp)	Taraborrelli (2014)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4302	TrGC	$C_3H_6 + OH \rightarrow HYPROPO2$	k_3rd(temp,cair,8.E-27,3.5,3.E-11,0., 0.5)	Atkinson et al. (1999)
G4303	TrGNC	$C_{3}H_{6} + NO_{3} \rightarrow PRONO3BO2$	4.6E-13*EXP(-1155./temp)	Atkinson et al. (1999)
G4304	TrGC	$iC_3H_7O_2 + HO_2 \rightarrow iC_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson (1997)*
G4305	TrGNC	$iC_3H_7O_2 + NO \rightarrow .96 CH_3COCH_3 + .96 HO_2 + .96 NO_2 + .04 iC_3H_7ONO_2$	2.7E-12*EXP(360./temp)	Atkinson et al. (1999)
G4306	TrGC	$iC_3H_7O_2 \rightarrow CH_3COCH_3 + .8 HO_2$	4.E-14*R02	Rickard and Pascoe (2009)*
34307	TrGC	iC ₃ H ₇ OOH + OH \rightarrow .27 iC ₃ H ₇ O ₂ + .73 CH ₃ COCH ₃ + .73 OH + H ₂ O	1.66E-11 + 0.6*k_CH300H_0H	Rickard and Pascoe $(2009)^*$
G4311	TrGC	$CH_3COCH_3 + OH \rightarrow CH_3COCH_2O_2 + H_2O$	1.33E-13+3.82E-11*EXP(-2000./temp)	Sander et al. (2003)
G4312e	TrGC	$CH_3COCH_2O_2 + HO_2 \rightarrow .15 \text{ OH} + .15 \text{ CH}_3C(O)OO + .15 \text{ HCHO} + .85 \text{ CH}_3COCH_2O_2H$	8.6E-13*EXP(700./temp)	Taraborrelli (2014)
G4313	TrGNC	$CH_3COCH_2O_2 + NO \rightarrow CH_3C(O)OO + HCHO + NO_2$	2.9E-12*EXP(300./temp)	Sander et al. (2003)
G4314	TrGC	$CH_3COCH_2O_2 \rightarrow .6 CH_3C(O)OO + .6 HCHO + .2 MGLYOX + .2 CH_3COCH_2OH$	7.5E-13*EXP(500./temp)*2.*R02	Tyndall et al. (2001)
G4321	TrGNC	$CH_3COCH_2O_2 + NO_3 \rightarrow CH_3C(O)OO + HCHO + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4315a	TrGC	$CH_3COCH_2O_2H + OH \rightarrow CH_3COCH_2O_2 + H_2O$	0.6*k_CH300H_OH	Rickard and Pascoe (2009)*
G4315b	TrGC	$CH_3COCH_2O_2H + OH \rightarrow MGLYOX + OH + H_2O$	ks*fsooh*fco	Taraborrelli (2014)
G4316e	TrGC	$CH_3COCH_2OH + OH \rightarrow CH3COCHOH + H_2O$	1.60E-12*EXP(305./temp)	Taraborrelli (2014)
G4336ea	TrGC	$CH3COCHOH \rightarrow MGLYOX + HO_2$	0.8485	Taraborrelli (2014)
G4317e	TrGC	$\mathrm{MGLYOX} + \mathrm{OH} \rightarrow .4~\mathrm{CH_3O_2} + .6~\mathrm{CH_3C(O)OO} + 1.4~\mathrm{CO}$	1.9E-12*EXP(575./temp)	Baeza-Romero et al. (2007),IU PAC (2013)
G4331	TrGNC	$MGLYOX + NO_3 \rightarrow CH_3C(O)OO + CO + HNO_3$	KNO3AL*2.4	Rickard and Pascoe (2009)
34320	TrGNC	$iC_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2$	6.2E-13*EXP(-230./temp)	Atkinson et al. (1999)
G4322	TrGC	$HYPROPO2 \rightarrow CH_3CHO + HCHO + HO_2$	8.80E-13*R02	Rickard and Pascoe (2009)
G4323	TrGC	$HYPROPO2 + HO_2 \rightarrow HYPROPO2H$	KR02H02*0.520	Rickard and Pascoe (2009)
34324	TrGNC	$HYPROPO2 + NO \rightarrow CH_3CHO + HCHO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)
G4325	TrGNC	$HYPROPO2 + NO_3 \rightarrow CH_3CHO + HCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4326a	TrGC	$HYPROPO2H + OH \rightarrow HYPROPO2$	0.6*k_CH300H_OH	Rickard and Pascoe (2009)
G4326b	TrGC	$HYPROPO2H + OH \rightarrow CH_3COCH_2OH + OH$	ks*fsoh*fpch2oh+kt*ftooh*fpch2oh	Taraborrelli (2014)
G4327	TrGNC	$PRONO3BO2 + HO_2 \rightarrow PR2O2HNO3$	KR02H02*0.520	Rickard and Pascoe (2009)
G4328	TrGNC	$PRONO3BO2 + NO \rightarrow NOA + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)
G4329	TrGNC	$PRONO3BO2 + NO_3 \rightarrow NOA + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4330a	TrGNC	$PR2O2HNO3 + OH \rightarrow PRONO3BO2$	1.90E-12*EXP(190./temp)	Rickard and Pascoe (2009)
G4330b	TrGNC	$PR2O2HNO3 + OH \rightarrow NOA + OH$	kt*ftooh*fch2ono2	Rickard and Pascoe (2009)

		Table 1: Gas phase reacti	ons (continued)		
#	labels	reaction	rate coefficient	reference	
G4332	TrGNC	$NOA + OH \rightarrow MGLYOX + NO_2$	ks*fco*fono2+kp*fco	Taraborrelli (2014)	_
G4333e	TrGC	HOCH2COCHO + OH \rightarrow .8609 HOCH2CO + .8609 CO + .1391 HCOCOCHO + .1391 HO ₂	1.9E-12*EXP(575./temp)+ks*fsoh*fco	Taraborrelli (2014)	
G4334e	TrGNC	$HOCH2COCHO + NO_3 \rightarrow HOCH2CO + CO + HNO_3$	KNO3AL*2.4	Taraborrelli (2014)	
G4337e	TrGC	$\rm CH3COCO2H + OH \rightarrow CH_3C(O)OO + H_2O + CO_2$	4.9E-14*EXP(276./temp)	Mellouki and (2003), Taraborrelli (2014)	Mu
G4338e	TrGC	$HOCH2COCH2O2 \rightarrow HCHO + HOCH2CO$	R02*2.0E-12	Taraborrelli (2014)	
G4339e	TrGC	$\begin{array}{l} \mbox{HOCH2COCH2O2} + \mbox{HO}_2 \rightarrow .15 \mbox{ HCHO} + .15 \mbox{ HOCH2CO} \\ + .15 \mbox{ OH} + .85 \mbox{ HOCH2COCH2OOH} \end{array}$	KR02H02*0.520	Taraborrelli (2014)	
G4340e	TrGC	$HOCH2COCH2O2 + NO \rightarrow HCHO + HOCH2CO + NO_2$	KRO2NO	Taraborrelli (2014)	
G4341e	TrGC	$HOCH2COCH2OOH + OH \rightarrow HOCH2COCHO + OH$	ks*fsooh*fco	Taraborrelli (2014)	
G4342e	TrGC	$HOCH2COCH2OOH + OH \rightarrow HOCH2COCH2O2$.6*k_CH300H_OH	Taraborrelli (2014)	
G4343e	TrGC	$HOCH2COCH2OOH + OH \rightarrow HCOCOCH2OOH + HO_2$	0.9295*1.60E-12*EXP(305./temp)	Taraborrelli (2014)*	
G4344e	TrGC	$\begin{array}{l} \mbox{HCOCOCH2O2} \rightarrow 0.6 \mbox{ HCOCO3A} + 0.6 \mbox{ HCHO} + 0.2 \\ \mbox{HCOCOCHO} + 0.2 \mbox{ HOCH2COCHO} \end{array}$	2.00E-12*R02	Taraborrelli (2014)	
G4345e	TrGC	$HCOCOCH2O2 + NO \rightarrow HCOCO3A + HCHO + NO_2$	KR02N0	Taraborrelli (2014)	
G4346e	TrGC	$\begin{array}{l} \mathrm{HCOCOCH2O2}+\mathrm{HO}_{2}\rightarrow0.85\mathrm{HCOCOCH2OOH}+0.15\\ \mathrm{HCOCO3A}+0.15\mathrm{HCHO}+0.15\mathrm{OH} \end{array}$	KR02H02*0.520	Taraborrelli (2014)	
G4347e	TrGC	$HCOCOCH2O2 + NO_3 \rightarrow HCOCO3A + HCHO + NO_2$	KR02N03	Taraborrelli (2014)	
G4348e	TrGC	$HCOCOCH2OOH + OH \rightarrow HOOCH2CO3 + CO + H_2O$	kt*fo*fco	Taraborrelli (2014)	
G4349e	TrGC	$HCOCOCH2OOH + OH \rightarrow HCOCOCHO + OH + H_2O$	ks*fsooh*fco	Taraborrelli (2014)	
G4350e	TrGC	$HCOCOCH2OOH + OH \rightarrow HCOCOCH2O2 + H_2O$	0.6*k_CH300H_OH	Taraborrelli (2014)	
G4351e	TrGC	$\begin{array}{rl} \mbox{HCOCOCH2OOH} + \mbox{NO}_3 \rightarrow \mbox{HOOCH2CO3} + \mbox{CO} + \\ \mbox{HNO}_3 \end{array}$	KNO3AL*2.4	Taraborrelli (2014)	
G4352e	TrGC	$HCOCOCHO + OH \rightarrow HCOCO3A + CO$	2*kt*fco*fo	Taraborrelli (2014)	
G4353e	TrGC	$\begin{array}{l} {\rm CH3CHCO} + {\rm OH} \rightarrow .72 \ {\rm CO} + .72 \ {\rm CH}_3 {\rm CHO} + .72 \ {\rm HO}_2 + \\ .21 \ {\rm CH3COCO2H} + .07 \ {\rm CH}_3 {\rm CHO} + .07 \ {\rm HO}_2 + .07 \ {\rm CO}_2 \end{array}$	7.6E-11	Hatakeyama et (1985),Taraborrelli (2014)*	al
G4354e	TrGC	$HCOCCH3CO + OH \rightarrow CO + CH3COCHOH$	1E-10*acho	Hatakeyama et (1985),Taraborrelli (2014)*	al
G4355e	TrGC	$\rm CH3COCHCO + OH \rightarrow \rm CO + \rm CH3COCHOH$	7.6E-11*acoch3	Hatakeyama et (1985),Taraborrelli (2014)*	al
G4400	TrGC	$nC_4H_{10} + OH \rightarrow LC_4H_9O_2 + H_2O$	1.81E-17*temp*temp*EXP(114./temp)	Atkinson (2003)*	
G4401	TrGC	$\begin{array}{l} {\rm LC_4H_9O_2} \rightarrow 0.254\ {\rm CO_2} + 0.5552\ {\rm MEK} + 0.5552\ {\rm HO_2} + \\ 0.3178\ {\rm CH_3CHO} + 0.4448\ {\rm C_2H_5O_2} \end{array}$	2.5E-13*R02	Rickard and Pascoe (2009)*	
G4402	TrGC	$LC_4H_9O_2 + HO_2 \rightarrow LC_4H_9OOH$	KR02H02*0.625	Rickard and Pascoe (2009)	

#	labels	reaction	rate coefficient	reference
G4403	TrGNC	$\begin{array}{l} {\rm LC_4H_9O_2+NO\rightarrow0.9172NO_2+0.233CO_2+0.5092}\\ {\rm MEK+0.5092HO_2+0.2915CH_3CHO+0.408C_2H_5O_2}\\ {\rm +0.0828LC4H9NO3} \end{array}$	KR02N0	Rickard and Pascoe (2009)*
G4404	TrGC	$\begin{array}{l} {\rm LC_4H_9OOH}\ + \ OH \ \rightarrow \ 0.2285796 \ {\rm LC_4H_9O_2}\ + \ 0.7117253 \\ {\rm MEK}\ + \ 0.1193902 \ {\rm CO_2}\ + \ 0.0596951 \ {\rm C_2H_5O_2}\ + \ 0.7714204 \\ {\rm OH}\ + \ {\rm H_2O} \end{array}$	2.636E-11	Rickard and Pascoe (2009)*
G4405e	TrGC	$\begin{array}{l} MVK + O_3 \rightarrow .87 \ MGLYOX + 0.5481 \ CO + 0.1392 \\ HO_2 + 0.1392 \ OH + 0.3219 \ HOCH2OOH + .13 \ HCHO + \\ 0.04680 \ OH + 0.04680 \ CO + 0.07280 \ CH_3 \\ CH_3 \\ CHO + .026 \ CO_2 + .026 \ HCHO + .026 \ HO_2 + 0.02402 \\ MGLYOX + 0.02402 \ H_2 \\ O_2 + 0.007176 \ CH3COCO2H \end{array}$	8.5E-16*EXP(-1520./temp)	Taraborrelli (2014)
G4406e	TrGC	$MVK + OH \rightarrow LHMVKABO2$	2.6E-12*EXP(610./temp)	Taraborrelli (2014)*
G4413	TrGC	$MEK + OH \rightarrow LMEKO2 + H_2O$	3.24E-18*temp*temp*EXP(414./temp)	Rickard and Pascoe (2009)*
G4414ea	TrGC	$LMEKO2 + HO_2 \rightarrow LMEKOOH$	KR02H02*0.625*rcoch2o2_ooh	Taraborrelli (2014)
G4414eb	TrGC	$ \begin{array}{l} {\rm LMEKO2}+{\rm HO}_2\rightarrow 0.538{\rm HCHO}+0.538{\rm CO}_2+0.459\\ {\rm HOCH}_2{\rm CH}_2{\rm O}_2+0.079{\rm C}_2{\rm H}_5{\rm O}_2+0.462{\rm CH}_3{\rm C}({\rm O}){\rm OO}+\\ 0.462{\rm CH}_2{\rm CHO}+{\rm OH} \end{array} $	KR02H02*0.625*rcoch2o2_oh	Taraborrelli (2014)
G4415	TrGNC	$ \begin{array}{l} {\rm LMEKO2}+{\rm NO}\rightarrow0.538{\rm HCHO}+0.538{\rm CO}_2+0.459\\ {\rm HOCH}_2{\rm CH}_2{\rm O}_2+0.079{\rm C}_2{\rm H}_5{\rm O}_2+0.462{\rm CH}_3{\rm C(O)OO}+\\ 0.462{\rm CH}_2{\rm CHO}+{\rm NO}_2 \end{array} $	KRO2NO	Rickard and Pascoe (2009)*
G4416	TrGC	LMEKOOH + OH \rightarrow 0.40851 CH ₃ COCH ₂ O ₂ + 0.350196 BIACET + 0.807212 OH + 0.048506 C ₂ H ₅ O ₂ + 0.505522 CO ₂ + 0.192788 LMEKO2 + H ₂ O	3.786E-11	Rickard and Pascoe (2009)*
G4417	TrGNC	$ \begin{array}{c} {\rm LC4H9NO3} + {\rm OH} \rightarrow 0.91423 \ {\rm MEK} + 0.08577 \ {\rm C_2H_5O_2} + \\ {\rm 0.17154} \ {\rm CO_2} + {\rm NO_2} + {\rm H_2O} \end{array} $	9.598E-13	Rickard and Pascoe $(2009)^{\ast}$
G4418	TrGNC	$MPAN + OH \rightarrow CH_3COCH_2OH + CO + NO_2$	3.2E-11	Orlando et al. (2002)
G4419	TrGNC	$MPAN \rightarrow MACO3 + NO_2$	k_PAN_M	see note
G4420	TrGC	$\begin{array}{rcl} {\rm LMEKO2} & \rightarrow & 0.538 \ {\rm HCHO} \ + \ 0.538 \ {\rm CO}_2 \ + \ 0.459 \\ {\rm HOCH}_2{\rm CH}_2{\rm O}_2 \ + \ 0.079 \ {\rm C}_2{\rm H}_5{\rm O}_2 \ + \ 0.462 \ {\rm CH}_3{\rm C}({\rm O}){\rm OO} \ + \\ {\rm 0.462 \ CH}_3{\rm CHO} \end{array}$	1.483E-12*R02	Rickard and Pascoe $(2009)^*$
G4421e	TrGC	MACR + OH \rightarrow .45 MACO3 + .55 MACRO2	8.E-12*EXP(380./temp)	Orlando et (1999b),Taraborrelli (2014)
G4422e	TrGC	$\begin{array}{l} {\rm MACR} + {\rm O}_3 \rightarrow 0.5481~{\rm CO} + 0.1392~{\rm HO}_2 + 0.1392~{\rm OH} + \\ {\rm 0.3219}~{\rm HOCH2OOH} + .87~{\rm MGLYOX} + .13~{\rm HCHO} + .13 \\ {\rm OH} + .065~{\rm HCOCOCH2O2} + .065~{\rm CO} + .065~{\rm CH}_3{\rm C}({\rm O}){\rm OO} \end{array}$	1.36E-15*EXP(-2112./temp)	Taraborrelli (2014)

		and a start of the second	m · · ·	6
#	labels	reaction	rate coefficient	reference
34423	TIGNO	MACR + $NO_3 \rightarrow MACO_3 + HNO_3$	KNU3AL*2.0	Rickard and Pascoe (2009
34424e	TrGC	$MACO3 \rightarrow .7 MACO2 + .3 MACO2H$	1.00E-11*RU2	Taraborrelli (2014)
34425e	TrGC	$MACO3 + HO_2 \rightarrow MACO2 + OH$	KAPHU2*rco3_oh	Taraborrelli (2014)
G4425et2	TrGC	$MACO3 + HO_2 \rightarrow MACO3H$	KAPH02*rco3_ooh	Taraborrelli (2014)
G4425et3	TrGC	$MACO3 + HO_2 \rightarrow MACO2H + O_3$	KAPHO2*rco3_o3	Taraborrelli (2014)
G4426e	TIGNC	$MACO3 + NO \rightarrow MACO2 + NO_2$	8.70E-12*EXP(290./temp)	Taraborrelli (2014)
34427	TrGNC	$MACO3 + NO_2 \rightarrow MPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009
34428e	TrGNC	$MACO3 + NO_3 \rightarrow MACO2 + NO_2$	KR02N03*1.60	Taraborrelli (2014)
G4429e	TrGC	$\label{eq:macro} \begin{array}{l} {\rm MACRO2} \rightarrow .7 \ {\rm CH_3COCH_2OH} + .7 \ {\rm HCHO} + .7 \ {\rm HO_2} + \\ {\rm .3 \ MACROH} \end{array}$	9.20E-14*R02	Taraborrelli (2014)
4430e	TrGC	$MACRO2 + HO_2 \rightarrow MACRO + OH$	KR02H02*0.625*rcoch2o2_oh	Taraborrelli (2014)
G4430et2	TrGC	$MACRO2 + HO_2 \rightarrow MACROOH$	KR02H02*0.625*rcoch2o2_ooh	Taraborrelli (2014)
34431e	TrGNC	$MACRO2 + NO \rightarrow .85 MACRO + .85 NO_2 + .15 MACRN$	KR02N0	Taraborrelli (2014)
G4432e	TrGNC	$MACRO2 + NO_3 \rightarrow MACRO + NO_2$	KR02N03	Taraborrelli (2014)
G4433ea	TrGC	$MACROOH + OH \rightarrow MACRO2$	0.6*k_CH300H_OH	Taraborrelli (2014)
G4433eb	TrGC	$MACROOH + OH \rightarrow CO + OH + CH_3COCH_2OH$	kt*fo*ftch2oh*falk	Taraborrelli (2014)
G4433ec	TrGC	$MACROOH + OH \rightarrow CO + MGLYOX + HO_2$	ks*fsoh*fpch2oh + krohro	Taraborrelli (2014)
G4434e	TrGC	$MACROH + OH \rightarrow CH_3COCH_2OH + CO + HO_2$	kt*fo*ftch2oh*falk	Taraborrelli (2014)
G4434et2	TrGC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	KDEC	Taraborrelli (2014)
4435e	TrGC	$MACO2H + OH \rightarrow CH_3COCH_2OH + HO_2 + CO_2$	(kadt+kadp)*aco2h+kco2h	Taraborrelli (2014)
G4436e	TrGC	$MACO3H + OH \rightarrow CH_3COCH_2OH + CO_2 + OH$	0.6*k_CH300H_OH+(kadt+kadp)*aco2h	Taraborrelli (2014)
G4437e	TrGC	$\label{eq:LHMVKABO2} \begin{array}{l} \mbox{LHMVKABO2} \rightarrow .024\ \mbox{CO2H3CHO} + .072\ \mbox{CH3COCHOH} \\ \mbox{H.OT2}\ \mbox{HCHO} + .5280\ \mbox{CH}_2\ \mbox{CH}_2\ \mbox{CHO} \\ \mbox{H.OCH}_2\ \mbox{CHO} + .5280\ \mbox{HOCH}_2\ \mbox{CHO} \\ \mbox{HOCH}_2\ \mbox{CHO} + .176\ \mbox{BIACETOH} + .2\ \mbox{HO12CO3C4} \end{array}$	1.014E-12*R02	Taraborrelli (2014)*
G4438e	TrGC	LHMVKABO2 + HO ₂ \rightarrow OH + HOCH ₂ CHO + CH ₃ C(O)OO	KR02H02*0.625*.88*rcoch2o2_oh	Taraborrelli (2014)
4438et2	TrGC	$LHMVKABO2 + HO_2 \rightarrow LHMVKABOOH$	KR02H02*0.625*(.12+.88*rcoch2o2_ooh)	Taraborrelli (2014)
4439ea	TrGNC	LHMVKABO2 + NO \rightarrow .12 CH3COCHOH + .88 HOCH ₂ CHO + .88 CH ₃ C(O)OO + .12 HCHO + NO ₂	KR02N0*(10.11)	Taraborrelli (2014)*
4439eb	TrGNC	LHMVKABO2 + NO \rightarrow HMVKNO3	KR02N0*0.11	Taraborrelli (2014)
34440e	TrGNC	LHMVKABO2 + NO ₃ \rightarrow .12 MGLYOX + .88 HOCH ₂ CHO + .88 CH ₃ C(O)OO + .12 HCHO + .12 HO ₂ + NO ₂	KR02N03	Taraborrelli (2014)*

Table 1: Gas phase reactions (... continued)

F	labels	reaction	rate coefficient	reference
4441e	TrGC	LHMVKABOOH + OH \rightarrow .12 CO2H3CHO + .88 BIACETOH + OH	0.6*k_CH300H_0H+.12*ks*fsooh*fpch2oh+ 88*kt*ftoob*fpch2ob*fco	Taraborrelli (2014)*
4449e	TrGC	$CO2H3CHO + OH \rightarrow CO2H3CO3$	kt*fo*falk	Taraborrelli (2014)
4449et2	TrGC	$CO2H3CHO + OH \rightarrow CH3COCOCHO + HO_2 + H_2O$	kt*fco*ftob*fcbo	Taraborrelli (2014)
4450	TrGNC	$CO2H3CHO + NO_2 \rightarrow CO2H3CO3 + HNO_2$	KN034L*4 0	Rickard and Pascoe (2009)
4451e	TrGC	$CO2H3CO3 \rightarrow CH3COCHOH + CO_2$	1 00E-11*B02	Taraborrelli (2014)
4452e	TrGC	$CO2H3CO3 + HO_2 \rightarrow OH + CH3COCHOH + CO_2$	KAPH02*rco3 oh	Taraborrelli (2014)
4452et2	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO2H + O_2$	KAPH02*rco3 o3	Taraborrelli (2014)
4452et3	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO3H$	KAPH02*rco3 oob	Taraborrelli (2014)
4453e	TrGNC	$CO2H3CO3 + NO \rightarrow CH3COCHOH + NO_2 + CO_2$	KAPNO	Taraborrelli (2014)
4454e	TrGNC	$CO2H3CO3 + NO_2 \rightarrow CH3COCHOH + NO_2 + CO_2$	KB02N03*1.60	Taraborrelli (2014)
4455	TrGC	$CO2H3CO3H + OH \rightarrow 0.5127$ $CO2H3CO3 + 0.4873$	kt*fco2b*fco*ftob+0 6*k CH300H 0H	Taraborrelli (2014)*
1100	noe	$CH_2C(O)OO + 0.4873 CO + 0.4873 CO_2 + 0.4873 OH$	10-10020-100-100-0.0-x_000000_00	raraborrein (2014)
4455t2	TrGC	$CO2H3CO2H + OH \rightarrow CH3COCOCO2H + HO_{2}$	kt*fco2h*fco*ftoh+kco2h	Taraborrelli (2014)
4456a	TrGC	$HO12CO3C4 + OH \rightarrow BIACETOH + HO_2$	kt*ftoh*falk*fco	Taraborrelli (2014)
4456b	TrGC	$HO12CO3C4 + OH \rightarrow CO2H3CHO + HO_2$	ks*fsoh*falk	Taraborrelli (2014)
4457e	TrGC	MACO2 \rightarrow .65 CH ₂ O ₂ + .65 CO + .65 HCHO + .35 OH	KDEC	Taraborrelli (2014)
		$+.35 \text{ CH}_{2}\text{COCH}_{2}\text{O}_{2} + \text{CO}_{2}$		
4458e	TrGC	LHMVKABO2 \rightarrow .88 MGLYOX + .88 HCHO + .12	KHSD	Taraborrelli (2014)
		$HOOCH2CHO + .12 CH_2C(O)OO + OH$		/
4459e	TrGNC	$MACRO2 \rightarrow MGLYOX + HCHO + OH$	KHSB	Taraborrelli (2014)
4460e	TrGNC	$HMVKNO3 + OH \rightarrow 7 MGLYOX + 7 HCOOH + 7 NO2$	5 6E-12	Taraborrelli (2014)
11000	1101-10	$+ 3 \text{ CO2H3CHO} + 3 \text{ NO}_2 + \text{H}_2\text{O}$		ruusonrom (sorr)
4461e	TrGC	MACRN + OH \rightarrow .08 CH ₂ COOH + .08 HCHO + .15 NO ₂	5.E-11	Taraborrelli (2014)
		+ .07 HCOOH + .07 MGLYOX + .85 CH ₂ COCH ₂ OH +		1000000 (2011)
		$85 \text{ NO}_2 + .93 \text{ CO}_2 + \text{H}_2\text{O}_2$		
4462e	TrGC	EZCH3CO2CHCHO \rightarrow 9 CH3COCHCO + 1	k16HS	Taraborrelli (2014)*
		$CH_{2}C(0)OO + .01 GLYOX + .18 CO + .09 HO_{2} +$		(1011)
		OH		
4463e	TrGC	EZCHOCCH3CHO2 → HCOCCH3CO + OH	K16HS	Taraborrelli (2014)*
4500e	TrGC	$C_{z}H_{s} + O_{2} \rightarrow .3508 \text{ MACB} + 0.01518 \text{ MACO2H} + .2440$	1.03E-14*EXP(-1995 /temp)	Taraborrelli (2014)*
		$MVK + 7085 HCHO + 11 HOCH2OOH + 1275 C_2H_6$	noon of an (received by	1000011000 (2011)
		$+ 1575 \text{ CH}_{2}\text{C}(0)\text{OO} + 0510 \text{ CH}_{2}\text{O}_{2} + 0.2625 \text{ HO}_{2} +$		
		$.27 \text{ OH} + .09482 \text{ H}_{2}\text{O}_{2} + .255 \text{ CO}_{2} + .522 \text{ CO} + 0.07182$		
		HCHO + .03618 HCOCH2O2 + .01782 CO		

Table 1: Gas phase reactions (continued)					
G4501e	TrGC	$C_5H_8 + OH \rightarrow .63$ ISOPAB + .30 ISOPCD + .07 LISOPEFO2	2.7E-11*EXP(390./temp)*(1iseg)	Taraborrelli (2014)*	
G4502	TrGNC	$C_5H_8 + NO_3 \rightarrow NISOPO2$	3.15E-12*EXP(-450./temp)	Rickard and Pascoe (2009)	
G4503e	TrGC	$ISOPAB + O_2 \rightarrow LISOPACO2$	5.530E-13	Taraborrelli (2014)*	
G4504e	TrGC	$ISOPAB + O_2 \rightarrow ISOPBO2$	3.E-12	Taraborrelli (2014)*	
G4505e	TrGC	$ISOPCD + O_2 \rightarrow DLISOPACO2$	6.780E-13	Taraborrelli (2014)*	
G4506e	TrGC	$ISOPCD + O_2 \rightarrow ISOPDO2$	3.E-12	Taraborrelli (2014)*	
G4507e	TrGC	$LISOPACO2 \rightarrow ISOPAB + O_2$	3.1E12*exp(-7900./temp)*.6+ 7.8E13*exp(-8600./temp)*.4	Taraborrelli (2014)*	
G4508e	TrGC	$ISOPBO2 \rightarrow ISOPAB + O_2$	3.7E14*exp(-9570./temp) +4.2E14*exp(-9970./temp)	Taraborrelli (2014)*	
G4509e	TrGC	$\text{DLISOPACO2} \rightarrow \text{ISOPCD} + \text{O}_2$	5.65E12*exp(-8410./temp)*.42+ 1.4E14*exp(-9110./temp)*.58	Taraborrelli (2014)*	
G4510e	TrGC	$\rm ISOPDO2 \rightarrow \rm ISOPCD + O_2$	5.0E14*exp(-10120./temp) +8.25E14*exp(-10220/temp)	Taraborrelli (2014)*	
G4511e	TrGC	LISOPACO2 \rightarrow ZCODC23DBCOOH + HO ₂	K16HS	Taraborrelli (2014)*	
G4512e	TrGC	DLISOPACO2 \rightarrow ZCODC23DBCOOH + HO ₂	K16HS	Taraborrelli (2014)*	
G4513et3	TrGC	LISOPACO2 \rightarrow .9 LHC4ACCHO + .8 HO ₂ + .1 ISOPAOH	2.4E-12*R02	Rickard and Pascoe (2009)	
G4514t2	TrGC	$LISOPACO2 + HO_2 \rightarrow LISOPACOOH$.706*KR02H02	Rickard and Pascoe (2009)	
G4515et2	TrGNC	LISOPACO2 + NO \rightarrow 0.95 LHC4ACCHO + 0.95 HO ₂ + 0.95 NO ₂ + .05 LISOPACNO3	KR02N0	Lockwood et al. (2010), Tarabo relli (2014)	
G4506et3	TrGNC	$LISOPACO2 + NO_3 \rightarrow LHC4ACCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)	
G4507et3	TrGC	DLISOPACO2 \rightarrow .9 LHC4ACCHO + .8 HO ₂ + .1 ISOPAOH	2.4E-12*R02	Rickard and Pascoe (2009)	
G4511et3	TrGC	$DLISOPACO2 + HO_2 \rightarrow LISOPACOOH$.706*KR02H02	Rickard and Pascoe (2009)	
G4512et3	TrGNC	DLISOPACO2 + NO \rightarrow 0.95 LHC4ACCHO + 0.95 HO ₂ + 0.95 NO ₂ + 05 LISOPACNO3	KR02N0	Lockwood et al. (2010), Taraberelli (2014)	
G4513et4	TrGNC	$DLISOPACO2 + NO_3 \rightarrow LHC4ACCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)	
G4514e	TrGC	$LISOPACOOH + OH \rightarrow LISOPACO2$	0.6*k CH300H 0H	Taraborrelli (2014)	
G4514et2	TrGC	LISOPACOOH + OH \rightarrow ZCODC23DBCOOH + HO ₂	ks*fallyl*fsoh	Taraborrelli (2014)	
G4514et3	TrGC	LISOPACOOH + OH \rightarrow LHC4ACCHO + OH	ks*fsooh*fallvl+ krohro	Taraborrelli (2014)	
G4514et4	TrGC	$LISOPACOOH + OH \rightarrow IEPOX + OH$	(kadt+kads)*ach2oh*ach2ooh	Taraborrelli (2014)	
G4515	TrGC	$\rm ISOPAOH + OH \rightarrow \rm LHC4ACCHO + HO_2$	(kadt+kads)*ach2oh*ach2oh+ ks*fsoh*fallvl+krohro	Taraborrelli (2014)	

#	labels	reaction	rate coefficient	reference
G4516e	TrGNC	$LISOPACNO3 + OH \rightarrow LISOPACNO3O2$	9.5E-11	Paulot et al. (2009a), Taraborrell (2014)
G4517e	TrGC	ISOPBO2 \rightarrow .8 MVK + .8 HCHO + .8 HO ₂ + .2 ISOPBOH	8.E-13*R02	Rickard and Pascoe (2009)
G4518	TrGC	$ISOPBO2 + HO_2 \rightarrow ISOPBOOH$.706*KR02H02	Rickard and Pascoe (2009)
G4519e	TrGNC	$\begin{array}{l} \mathrm{ISOPBO2} + \mathrm{NO} \rightarrow .947 \; \mathrm{MVK} + .947 \; \mathrm{HCHO} + .947 \; \mathrm{HO}_2 \\ + .947 \; \mathrm{NO}_2 + .053 \; \mathrm{ISOPBNO3} \end{array}$	KR02N0	Lockwood et al. (2010), Tarabor- relli (2014)
G4520e	TrGNC	$\begin{array}{l} \mathrm{ISOPBO2} + \mathrm{NO}_3 \rightarrow \mathrm{MVK} + .75 \ \mathrm{HCHO} + .75 \ \mathrm{HO}_2 + .25 \\ \mathrm{CH}_3\mathrm{O}_2 + \mathrm{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)
G4521ea	TrGC	$ISOPBOOH + OH \rightarrow IEPOX + OH$	(kads+kadp)*ach2ooh	Paulot et al. (2009b), Taraborrelli (2014)
G4521eb	TrGC	$ISOPBOOH + OH \rightarrow ISOPBO2$	0.6*k_CH300H_OH	Taraborrelli (2014)
G4521ec	TrGC	$\begin{array}{l} \text{ISOPBOOH} + \text{O}_3 \rightarrow 0.1368 \ \text{MACROOH} + 0.1368 \ \text{H}_2\text{O}_2 \\ + 0.2280 \ \text{HO}_2 + 0.4332 \ \text{CH}_3\text{COCH}_2\text{OH} + 0.2280 \ \text{CO}_2 + \\ 0.6384 \ \text{OH} + 0.2052 \ \text{CO} + .57 \ \text{HCHO} + .43 \ \text{MACROOH} \\ + 0.06880 \ \text{HO}_2 + 0.06880 \ \text{OH} + 0.2709 \ \text{CO} + 0.1591 \\ \text{HOCH2OOH} \end{array}$	1.E-17	Taraborrelli (2014)*
G41911	TrGC	ISOPBOOH + OH \rightarrow MGLYOX + HOCH ₂ CHO	krohro+ks*falk*fsoh	Taraborrelli (2014)
G4522e	TrGC	ISOPBOH + OH \rightarrow MVK + .75 HCHO + .75 HO ₂ + .25 CH ₃ O ₂	ks*falk*fsoh+(kadp+kads)*ach2oh	Taraborrelli (2014)
G4523e	TrGNC	$ISOPBNO3 + OH \rightarrow ISOPBDNO3O2$	1.3E-11	Paulot et al. (2009a), Taraborrelli (2014)
G4524	TrGC	$\rm ISOPDO2 \rightarrow .8~MACR + .8~HCHO + .8~HO_2 + .1~HCOC5 + .1~ISOPDOH$	2.9E-12*R02	Rickard and Pascoe (2009)
G4525	TrGC	$ISOPDO2 + HO_2 \rightarrow ISOPDOOH$.706*KR02H02	Rickard and Pascoe (2009)
G4526e	TrGNC	$\begin{array}{l} \mathrm{ISOPDO2} + \mathrm{NO} \rightarrow .85 \ \mathrm{MACR} + .85 \ \mathrm{HCHO} + .85 \ \mathrm{HO}_2 + \\ .85 \ \mathrm{NO}_2 + .15 \ \mathrm{ISOPDNO3} \end{array}$	KRO2NO	Lockwood et al. (2010), Tarabor- relli (2014)
G4527	TrGNC	$ISOPDO2 + NO_3 \rightarrow MACR + HCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4528ea	TrGC	$ISOPDOOH + OH \rightarrow IEPOX + OH$	(kadt+kadp)*ach2ooh	Paulot et al. (2009b), Taraborrelli (2014)
G4528eb	TrGC	ISOPDOOH + OH \rightarrow ISOPDO2	0.6*k_CH300H_OH	Taraborrelli (2014)
G4528ec	TrGC	$ISOPDOOH + OH \rightarrow HCOC5 + OH$	kt*ftooh*fallyl*fpch2oh	Taraborrelli (2014)
G4528ed	TrGC	$ISOPDOOH + OH \rightarrow CH_3COCH_2OH + GLYOX + OH$	ks*fpch2oh*fsoh	Taraborrelli (2014)
G45222	TrGC	ISOPDOOH + $O_3 \rightarrow 1.393$ OH + BIACETOH + .67 HCHO + 0.05280 HO ₂ + 0.2079 CO + 0.1221 HOCH2OOH	1.E-17	Taraborrelli (2014)*

#	labels	reaction	rate coefficient	reference
G4529e	TrGC	$ISOPDOH + OH \rightarrow HCOC5 + HO_2$	2.*krohro+(kt*ftoh*fallyl+ks*fsoh)	Taraborrelli (2014)
			<pre>*fpch2oh+(kadt+kadp)*ach2oh</pre>	
G4530e	TrGNC	$ISOPDNO3 + OH \rightarrow ISOPBDNO3O2$	1.3E-11	Paulot et al. (2009a), Taraborrelli (2014)
G4531	TrGNC	$NISOPO2 \rightarrow .8 NC4CHO + .6 HO_2 + .2 LISOPACNO3$	1.3E-12*R02	Rickard and Pascoe (2009)
G4532	TrGNC	$NISOPO2 + HO_2 \rightarrow NISOPOOH$.706*KR02H02	Rickard and Pascoe (2009)
G4533	TrGNC	$NISOPO2 + NO \rightarrow NC4CHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G4534	TrGNC	$NISOPO2 + NO_3 \rightarrow NC4CHO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G4535	TrGNC	$NISOPOOH + OH \rightarrow NC4CHO + OH$	1.03E-10	Rickard and Pascoe (2009)
G4536	TrGNC	$NC4CHO + OH \rightarrow LNISO3$	4.16E-11	Rickard and Pascoe (2009)
G4537e	TrGNC	NC4CHO + O ₃ \rightarrow .27 NOA + .027 HCOCO ₂ H + .0162	2.40E-17	Taraborrelli (2014)*
		$GLYOX + .0162 H_2O_2 + .1458 HCOCO3A + .0405$		
		HCOOH + .0405 CO + .8758 OH + .365 MGLYOX +		
		$.73 \text{ NO}_2 + 0.7705 \text{ HCHO} + .4055 \text{ CO}_2 + .73 \text{ GLYOX}$		
G4538	TrGNC	$NC4CHO + NO_3 \rightarrow LNISO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G4539	TrGNC	$LNISO3 + HO_2 \rightarrow LNISOOH$.5*.706*KR02H02 + .5*KAPH02	Rickard and Pascoe (2009)
G4540e	TrGNC	LNISO3 + NO \rightarrow NOA + .5 HOCHCHO + .5 CO + .5	.5*KAPNO +.5*KRO2NO	Rickard and Pascoe (2009)
		$HO_2 + NO_2 + .5 CO_2$		
G4541e	TrGNC	LNISO3 + NO ₃ \rightarrow NOA + .5 HOCHCHO + .5 CO + .5 HO ₂ + NO ₂ + 5 CO ₂	1.3*KR02N03	Rickard and Pascoe (2009)
G4542	TrGNC	$LNISOOH + OH \rightarrow LNISO3$	2.65E-11	Rickard and Pascoe (2009)
G4543e	TrGC	$LHC4ACCHO + OH \rightarrow LC578O2$	(kadtertprim+kads)*acho*ach2oh	Taraborrelli (2014)
G4543et2	TrGC	LHC4ACCHO + OH \rightarrow LHC4ACCO3	kcho	Taraborrelli (2014)
G4543et3	TrGC	$LHC4ACCHO + OH \rightarrow ZCODC23DBCOD + HO_{2}$	ks*fsoh*fallvl	Taraborrelli (2014)
G4544	TrGC	LHC4ACCHO + $O_3 \rightarrow .2225$ CH ₃ C(O)OO + .89 CO	2.40E-17	Rickard and Pascoe (2009)
		+ .0171875 HOCH ₂ CO ₂ H $+$.075625 H ₂ O ₂ $+$.0171875		
		HCOCO ₂ H + .2775 CH ₃ COCH ₂ OH + .6675 HO ₂ +		
		.2603125 GLYOX + .2225 HCHO + .89 OH + .2603125		
		HOCH ₂ CHO + .5 MGLYOX		
G4545	TrGNC	$LHC4ACCHO + NO_3 \rightarrow LHC4ACCO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G4546e	TrGC	$LC578O2 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25$	9.20E-14*R02	Rickard and Pascoe (2009)
		HOCHCHO + .75 HOCH ₂ CHO + .75 HO ₂		V. T. B. V. Market and S.
G4547e	TrGC	$LC578O2 + HO_2 \rightarrow MGLYOX + HOCH_2CHO + OH$	KR02H02*0.706*rcoch2o2_oh	Rickard and Pascoe (2009)
G4547et2	TrGC	$LC578O2 + HO_2 \rightarrow LC578OOH$	KR02H02*0.706*rcoch2o2_ooh	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G4548e	TrGNC	$LC578O2 + NO \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX +$	KR02N0	Rickard and Pascoe (2009)
		$.25 \text{ HOCHCHO} + .75 \text{ HOCH}_2\text{CHO} + .75 \text{ HO}_2 + \text{NO}_2$		
G4549e	TrGNC	$LC578O2 + NO_3 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX$	KR02N03	Rickard and Pascoe (2009)
		+ .25 HOCHCHO $+$.75 HOCH ₂ CHO $+$.75 HO ₂ $+$ NO ₂		
G4586e	TrGC	$LC578O2 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25$	KHSB	Taraborrelli (2014)
		$HOCH_2CHO + .75 HOCH_2CHO + HO_2 + OH$		
G4550e	TrGC	$LC578OOH + OH \rightarrow LC578O2$	0.6*k_CH300H_0H	Taraborrelli (2014)*
G4550et2	TrGC	$LC578OOH + OH \rightarrow C1ODC2OOHC4OD + HO_2$	kt*fo*ftch2oh*falk+	Taraborrelli (2014)*
			kt*ftoh*fpch2oh*fpch2oh+	
			ks*fsoh*fpch2oh	
G4551e	TrGC	LHC4ACCO3 \rightarrow .3 LHC4ACCO2H + .7 OH + .35	1.00E-11*R02	Taraborrelli (2014)*
		$MACRO2 + .35 LHMVKABO2 + .7 CO_2$		
G4552e	TrGC	$LHC4ACCO3 + HO_2 \rightarrow 2 OH + .5 MACRO2 + .5$	KAPHO2*rco3_oh	Taraborrelli (2014)*
		$LHMVKABO2 + CO_2$		
G4552et2	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO3H$	KAPHO2*rco3_ooh	Taraborrelli (2014)
G4552et3	TrGC	$\rm LHC4ACCO3 + HO_2 \rightarrow \rm LHC4ACCO2H + O_3$	KAPH02*rco3_o3	Taraborrelli (2014)
G4553e	TrGNC	LHC4ACCO3 + NO \rightarrow .5 MACRO2 + .5 LHMVKABO2	KAPNO	Taraborrelli (2014)*
	T CNC	$+ NO_2 + CO_2$		D'1 1 1D (2000
G4554	TrGNC	$LHC4ACCO3 + NO_2 \rightarrow LC5PAN1719$	k_CH3CU3_NU2	Rickard and Pascoe (2009
G4555e	TrGNC	LHC4ACCO3 + NO ₃ \rightarrow .5 MACRO2 + .5 LHMVKABO2	1.6*KRU2NU3	Taraborrelli (2014)*
CAEEC-	THOO	$+ NO_2 + CO_2$	0 505 11	Track analli (2014)
G4556e	IIGO	$LHO4ACCO2H + OH \rightarrow OH + .5 MACRO2 + .5$	2.52E-11	Taraborrein (2014)
C4557	Tree	$LHC4ACCO3H + OH \rightarrow 1HC4ACCO3$	2 895-11	Rickard and Passon (2000)
G4558	TrGNC	$LC5PAN1719 \rightarrow LHC4ACCO3 \pm NO_{2}$	E PAN M	Rickard and Pascoe (2009)
C4559	Trene	$LC5PAN1719 \rightarrow OH \rightarrow 5 MACROH \rightarrow 5 HO12CO3C4 \rightarrow$	2 525-11	Rickard and Pascoe (2009)
04000	nano	$CO + NO_{2}$	2.021 11	ruckard and Fascoc (2005)
G4560a	TrGC	$HCOC5 + OH \rightarrow C59O2$	3 81F-11	Bickard and Pascoe (2009)
G4560eb	TrGC	$HCOC5 + O_2 \rightarrow BIACETOH + 335 H_2O_2 + 0.67 HCHO$	7.51E-16*EXP(-1521 /temp)	Taraborrelli (2014)
0100000		+ 0.2079 CO + 0.1221 HOCH2OOH + 0.05280 OH	Hold To the (Toble, tonp)	radoorron (2017)
G4561	TrGC	$C59O2 \rightarrow CH_{\circ}COCH_{\circ}OH + HOCH_{\circ}COCH_{\circ}OH$	9.20E-14*B02	Taraborrelli (2014)
G4562e	TrGC	$C59O2 + HO_2 \rightarrow OH + CH_3COCH_2OH + HOCH_2CO$	KR02H02*0.706*rcoch2o2 oh	Taraborrelli (2014)
G4562et2	TrGC	$C59O2 + HO_2 \rightarrow C59OOH$	KR02H02*0.706*rcoch2o2 ooh	Taraborrelli (2014)
G4563	TrGNC	$C59O2 + NO \rightarrow CH_3COCH_2OH + HOCH_2CO + NO_2$	KRO2NO	Taraborrelli (2014)
G4564	TrGNC	$C59O2 + NO_3 \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KR02N03	Taraborrelli (2014)

Table 1: Gas phase reactions (continued)				
#	labels	reaction	rate coefficient	reference
G4565	TrGC	$C59OOH + OH \rightarrow C59O2$	9.7E-12	Taraborrelli (2014)
G4566e	TrGC	$\rm IEPOX+OH\rightarrow LC578O2+H_2O$	5.78E-11*EXP(-400/temp)	Paulot et al. (2009b), Taraborrell (2014)
G4567e	TrGC	$ISOPBO2 \rightarrow MVK + HCHO + OH$	KHSB	Taraborrelli (2014)
G4568e	TrGC	$ISOPDO2 \rightarrow MACR + HCHO + OH$	KHSD	Taraborrelli (2014)
G4577ea	TrGC	$\label{eq:code} \begin{array}{l} \text{ZCODC23DBCOOH} + \text{OH} \rightarrow .6 \text{ C10DC202C4OOH} + .4 \\ \text{C100HC202C4OD} \end{array}$	kadt*acho*ach2ooh	Taraborrelli (2014)
G4577eb	TrGC	$\label{eq:code} \begin{array}{l} \text{ZCODC23DBCOOH} + \text{OH} \rightarrow .6 \text{ C1ODC3O2C4OOH} + .4 \\ \text{C1OOHC3O2C4OD} \end{array}$	kads*acho*ach2ooh	Taraborrelli (2014)
G4577e	TrGC	$ZCODC23DBCOOH + OH \rightarrow ZCO3HC23DBCOD$	kt*fo*falk+0.6*k_CH300H_0H	Taraborrelli (2014)
G4577et2	TrGC	$ZCODC23DBCOOH + OH \rightarrow OH + ZCODC23DBCOD$	ks*fsooh*fallvl	Taraborrelli (2014)
G4577et3	'nGC	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.4E-17	Taraborrelli (2014)*
G4578e	TrGC	C100HC202C40D \rightarrow .78 CH ₃ COCH ₂ O ₂ H + .78 HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH	8.00E-13*R02	Taraborrelli (2014)
G4579e	TrGC	C10OHC202C4OD + NO \rightarrow .78 CH ₃ COCH ₂ O ₂ H + .78 HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH + NO ₂	KR02N0	Taraborrelli (2014)
G4580e	TrGC	$C1OOHC2O2C4OD + HO_2 \rightarrow C1OOHC2OOHC4OD$	KR02H02*0.706	Taraborrelli (2014)
G4580ea	TrGC	$C1OOHC2O2C4OD \rightarrow CH_3COCH_2O_2H + GLYOX + OH$	KHSB	Taraborrelli (2014)
G4581e	TrGC	$C1ODC2O2C4OOH \rightarrow OH + C1ODC2OOHC4OD$	K15HSDHB	Taraborrelli (2014)
G4581et2	TrGC	C100HC200HC40D + OH \rightarrow C10DC200HC40D + OH	ks*fsooh*fpch2oh	Taraborrelli (2014)
G4581et3	TrGC	$C1OOHC2OOHC4OD + OH \rightarrow CH_3COCH_2O_2H + OH + 2 CO + 2 HO_2$	kt*ftoh*fpch2oh*fpch2oh	Taraborrelli (2014)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4581et4	TrGC	$C1OOHC2OOHC4OD + OH \rightarrow C1OOHC2O2C4OD$	0.6*k_CH300H_OH	Taraborrelli (2014)
G4581et6	TrGC	C10DC302C400H \rightarrow MGLY0X + HO0CH2CH0 +	2.90E-12*R02	Taraborrelli (2014)
		HO ₂		
G4581et7	TrGC	$C1ODC3O2C4OOH + NO \rightarrow MGLYOX + HOOCH2CHO$	KR02N0	Taraborrelli (2014)
		$+ HO_2 + NO_2$		
G4581et8	TrGC	$C1ODC3O2C4OOH + HO_2 \rightarrow .5 CH_3C(O)OO + .5 CO +$	KR02H02*0.706	Taraborrelli (2014)*
		$.5 \text{ MGLYOX} + .5 \text{ HO}_2 + \text{HOOCH2CO3}$		
G4581et9	TrGC	$C1ODC3O2C4OOH \rightarrow MGLYOX + OH + HOOCH2CHO$	KHSD	Taraborrelli (2014)
G4581et10	TrGC	$C1OOHC3O2C4OD \rightarrow .625 MGLYOX + 2 CO + 1.625$	K15HSDHB	Taraborrelli (2014)*
		$HO_2 + .375 CH_3C(O)OO + .375 CO_2 + OH$		
G4582e	TrGC	$LHC4ACCO3 \rightarrow ZCO3HC23DBCOD + HO_2$	K16HS	Taraborrelli (2014)*
G4583e	TrGC	$ZCODC23DBCOD + OH \rightarrow C1ODC2O2C4OD$	2*kt*fo*falk+(kadt+kads)*acho*acho	Taraborrelli (2014)
G4584e	TrGC	$C1ODC2O2C4OD + HO_2 \rightarrow OH + MGLYOX +$	KR02H02*0.706*rcoch2o2_oh	Taraborrelli (2014)
a4504 + 0	mac	HUCHCHU	VD00100.0 700	T
G4584et2	TrGC	$C10DC202C40D + HO_2 \rightarrow C10DC200HC40D$	KRU2HU2*0.706*rcoch2o2_ooh	Taraborrelli (2014)
G4585e	IrGC	$CIODC2O2C4OD + NO \rightarrow NO_2 + MGLYOX + HOCHCHO$	KRU2NU	Taraborrelli (2014)
C4595a+2	THEC	$C1ODC2O2C4OD \rightarrow MCLVOX + HOCHCHO$	8 00F-13+P02	Taraborralli (2014)
C4585et3	Trac	$C10DC202C10D \rightarrow MGLYOX + 2 CO + 5 OH$	2 *kt*fo*ftch2oh*falk+	Taraborrelli (2014)*
04000610	ngo	erobezooneiob + on -/ montox + 2 co + on	kt*ftoh*fcho*fpch2oh	Taraborrein (2014)
G4587e	TrGC	LISOPACNO3O2 + NO \rightarrow 21 NOA + 21 HOCH ₂ CHO	KBO2NO	Taraborrelli (2014)
010010	nuo	$+ .21 HO_2 + .49 HO12CO3C4 + .49 HCHO + .49 NO_2 +$		ruluborroni (2011)
		.045 HMVKNO3 + .045 HCHO + .255 CH ₃ COCH ₂ OH +		
		$.255 \text{ NO3CH2CHO} + .225 \text{ H}_2\text{O}_2 + \text{NO}_2$		
G4587et2	TrGC	LISOPACNO3O2 \rightarrow .21 NOA + .21 HOCH ₂ CHO + .21	8.00E-13*R02+KR02H02*0.706*c(ind_H02)	Taraborrelli (2014)
		$HO_2 + .49 HO12CO3C4 + .49 HCHO + .49 NO_2 + .045$		
		HMVKNO3 + .045 HCHO + .255 CH ₃ COCH ₂ OH + .255		
		NO3CH2CHO + $.225 H_2O_2$		
G4587et3	TrGC	ISOPBDNO3O2 + NO \rightarrow .6 CH ₃ COCH ₂ OH + .6	KR02N0	Taraborrelli (2014)
		$HOCH_2CHO + .26 MACRN + .14 HMVKNO3 + .4 HCHO$		
		$+ .4 \text{ HO}_2 + 1.6 \text{ NO}_2$		
G4587et4	TrGC	$\mathrm{ISOPBDNO3O2} \rightarrow .6~\mathrm{CH_3COCH_2OH} + .6~\mathrm{HOCH_2CHO}$	2.9E-12*R02+KR02H02*0.706*c(ind_H02)	Taraborrelli (2014)
		+ .26 MACRN $+$.14 HMVKNO3 $+$.4 HCHO $+$.4 HO ₂ $+$		
		$.6 \text{ NO}_2$		

Table 1: Gas phase reactions (continued)				
#	labels	reaction	rate coefficient	reference
G4588e	TrGNC	$\begin{array}{l} LISOPACNO3 \ + \ O_3 \ \rightarrow \ .8704 \ OH \ + \ .365 \ HO_2 \ + \ .73 \\ MGLYOX \ + \ .4325 \ NO3CH2CHO \ + \ .135 \ CH_3COCH_2OH \\ + \ .0675 \ GLYOX \ + \ .4325 \ NO_2 \ + \ .0891 \ H_2O_2 \ + \ .135 \ NOA \\ + \ .0675 \ HOCHCHO \ + \ .3866 \ HOCH_2CHO \ + \ .0405 \ CH_3OH \\ + \ .0405 \ CO \ + \ .0054 \ HOCH2CO \end{array}$	4.E-16	Taraborrelli (2014)
G4599e	TrGC	$ \begin{array}{l} LISOPACOOH + O_3 \rightarrow 1.3272 \ OH + 0.36986 \ HO_2 + \\ .0432 \ H_2O_2 + 0.23002 \ CO + .2025 \ CH_3OOH + .01215 \\ HOCH2OOH + 0.3704 \ HCHO + .00405 \ CH_3OH + .0405 \\ CO_2 + .1825 \ HOCH2COCH2O2 + .365 \ MGLYOX + \\ .3866 \ HOOCH2CHO + .135 \ CH_3COH_2OH + .0675 \\ GLYOX + .00324 \ HCOCO3A + .3866 \ HOCH_2CHO + .135 \\ CH_3COCH_3O_3H + .0675 \ HOCHCHO + .0054 \ HOCH2CHO + .135 \\ \end{array} $	4.829E-16	Taraborrelli (2014)
G4598et3	TrGC	ZCO3HC23DBCOD + OH \rightarrow .62 CO2H3CHO + .62 OH + .62 CO ₂ + .38 MGLYOX + .38 HCOCO ₃ H + .38 HO ₂	kadt*acho*aco2h	Taraborrelli (2014)*
G4598et4	TrGC	$ \begin{array}{l} \text{ZCO3HC23DBCOD} + \text{OH} \rightarrow .62 \text{ CH3COCO3H} + 1.24 \text{ CO} \\ + 1.24 \text{ HO}_2 + .38 \text{ CH3COCHOH} + .38 \text{ CO} + .38 \text{ HO}_2 + \\ .38 \text{ OH} + .38 \text{ CO}_2 \end{array} $	kads*acho*aco2h	Taraborrelli (2014)*
G41311	TrGC	LISOPEFO2 \rightarrow .7143 MACR + .2857 MVK + HCHO + HO ₂	2.40E-12*R02	Taraborrelli (2014)
G41341	TrGC	LISOPEFO2 + NO \rightarrow .7143 MACR + .2857 MVK + HCHO + HO ₂ + NO ₂	KR02N0	Taraborrelli (2014)
G41351t2	TrGC	LISOPEFO2 + HO ₂ \rightarrow .7143 MACR + .2857 MVK + HCHO + HO ₂	KR02H02*0.706	Taraborrelli (2014)
G41361	TrGC	LISOPEFO2 + $NO_3 \rightarrow .7143$ MACR + .2857 MVK + HCHO + HO ₂ + NO_2	KR02N03	Taraborrelli (2014)
G41378	TrGC	LISOPEFO2 \rightarrow PEROXYRINGC2O2	9.39E9*EXP(-7322/temp)	Taraborrelli (2014)
G41341t2	TrGC	LISOPEFO2 \rightarrow .7143 MACR + .2857 MVK + HCHO + OH	.7143*KHSD+.2857*KHSB	Taraborrelli (2014)
G413112	TrGC	$PEROXYRINGC2O2 \rightarrow CH3COCH2OOCH2CHO + HO_2$	8.00E-13*R02	Taraborrelli (2014)
G413416	TrGC	$\begin{array}{l} {\rm PEROXYRINGC202+NO\rightarrowCH3COCH2OOCH2CHO}\\ {\rm +HO_2+NO_2} \end{array}$	KR02N0	Taraborrelli (2014)*
G413519	TrGC	$PEROXYRINGC2O2 + HO_2 \rightarrow PEROXYRINGC2OOH$	KR02H02*0.706	Taraborrelli (2014)
G413618	TrGC	$\begin{array}{l} {\rm PEROXYRINGC202} + {\rm NO}_3 \rightarrow {\rm CH3COCH2OOCH2CHO} \\ + {\rm HO}_2 + {\rm NO}_2 \end{array}$	KR02N03	Taraborrelli (2014)
G413417	TrGC	$PEROXYRINGC2O2 \rightarrow CH3COCH2OOCH2CHO + OH$	KHSB	Taraborrelli (2014)

	Table 1: Gas phase reactions (continued)				
#	labels	reaction	rate coefficient	reference	
G413619	TrGC	$PEROXYRINGC2OOH + OH \rightarrow PEROXYRINGC2O2$	0.6*k_CH300H_0H	Taraborrelli (2014)	
G413621	TrGC	$PEROXYRINGC2OOH + OH \rightarrow MGLYOX + 2 CO + 2$	kt*ftoh*falk*fpch2oh	Taraborrelli (2014)*	
		HO_2			
G413622	TrGC	$\label{eq:peroxyring} \text{PEROXYRINGC2OOH} + \text{OH} \rightarrow .8405 \; \text{HCHO} + .8405 \; \text{OH}$	ks*fsoh*falk+ks*fsooh*falk	Taraborrelli (2014)	
		+.8405 CO2H3CHO + .1595 C10DC2OOHC4OD + .1595			
		HO ₂		7. 121	
G4136	TrGC	$CH3COCH2OOCH2CHO + OH \rightarrow CH_3C(O)OO + CO_2$	kt*fo*ftch2oh	Taraborrelli (2014)*	
	m. 0.0	+ 2 HCHO		TE 1 IV (001.0)	
G413610	TrGC	$CH_3COCH_2OOCH_2CHO + OH \rightarrow GLYOX + CH_3COCH_2OOCH_2OHO + OH \rightarrow GLYOX + CH_3COCH_2OHO + OH \rightarrow GLYOX + CH_3COCH_2OH + CH_3COCH_2OHO + OH \rightarrow GLYOX + CH_3COCH_2OHO + CH_3COCH_2OHO + CH_3COCH_2OHO + OH \rightarrow GLYOX + CH_3COCH_2OHO + CH_3COCH_3COCH_2OHO + CH_3COCH_2OHO + CH_3COCH_3COCH_2OHO + CH_3COCH_3COCH_2OHO + CH_3COCH_3COCH_3COCH_3COCH_3$	ks*icho*isooh	Taraborrelli (2014)	
041261+0	THOC	$CH_{3}C(0)OO + HCHO$	hatfactface)	Tenchemalli (9014)	
64130162	IIGC	\pm HO ₂	KS+1C0+1S00I	Taraborrein (2014)	
G45mbo1	TrGC	$MBO + OH \rightarrow LMBOABO2$	8.1E-12*EXP(610/TEMP)	Rickard and Pascoe (2009)	
U TOMO U T	nde			Taraborrelli (2014)	
G45mbo2	TrGC	$MBO + O_3 \rightarrow HCHO + .16 CH_3COCH_3 + .16 HO_2 + .16$	1.0E-17*0.57	Rickard and Pascoe (2009).	
		CO + .16 OH + .84 MBOOO		Taraborrelli (2014)	
G45mbo3	TrGC	$\mathrm{MBO} + \mathrm{O}_3 \rightarrow \mathrm{IBUTALOH} + .63 \ \mathrm{CO} + .37 \ \mathrm{HOCH2OOH}$	1.0E-17*0.43	Rickard and Pascoe (2009),	
		$+ .16 \text{ OH} + .16 \text{ HO}_2$		Taraborrelli (2014)	
G45mbo4	TrGC	$MBO + NO_3 \rightarrow LNMBOABO2$	4.6E-14*EXP(-400/TEMP)	Rickard and Pascoe (2009),	
	10004868000882			Taraborrelli (2014)	
G45mbo5	TrGC	$LMBOABO2 + HO_2 \rightarrow LMBOABOOH$	KR02H02*0.706	Rickard and Pascoe (2009),	
	maa			Taraborrelli (2014)	
G45mbo6	TrGC	$LMBOABO2 + NO \rightarrow LMBOABNO3$	KRU2NU*(0.064+0.026)/2.	Rickard and Pascoe (2009),	
C4Embo7	THOC	IMPOARO2 INO A HOCH CHO I CH COCH I HO	KB00N0+(0.026+0.074)/0 + 67	Pickard and Passon (2000)	
G45m007	ngo	$\pm NO_2$	RR02N0*(0.930+0.974)/2.*.07	Taraborrelli (2014)	
G45mbo8	TrGC	LMBOABO2 + NO \rightarrow IBUTALOH + HCHO + HO ₂ +	KR02N0*(0.936+0.974)/2.*.33	Rickard and Pascoe (2009).	
		NO ₂		Taraborrelli (2014)	
G45mbo9	TrGC	LMBOABO2 \rightarrow HOCH ₂ CHO + CH ₃ COCH ₃ + HO ₂	8.8E-13*R02*.67	Rickard and Pascoe (2009).	
				Taraborrelli (2014)	
G45mbo10	TrGC	LMBOABO2 \rightarrow IBUTALOH + HCHO + HO ₂	8.8E-13*R02*.33	Rickard and Pascoe (2009),	
				Taraborrelli (2014)	
G45mbo11	TrGC	$LMBOABOOH + OH \rightarrow MBOACO + OH$.67*2.93E-11+.33*2.05E-12	Rickard and Pascoe (2009),	
1				Taraborrelli (2014)*	

		Table 1: Gas phase reacti	ons (continued)	
#	labels	reaction	rate coefficient	reference
G45mbo12	TrGC	$LMBOABOOH + OH \rightarrow LMBOABO2$.6*k_CH300H_OH	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo13	TrGC	LMBOABOOH + $h\nu \rightarrow HOCH_2CHO + CH_3COCH_3 + HO_2 + OH$	1.14*jx(ip_CH300H)*.67	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo14	TrGC	LMBOABOOH + $h\nu \rightarrow$ IBUTALOH + HCHO + HO ₂ + OH	1.14*jx(ip_CH300H)*.33	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo15	TrGC	$\rm LMBOABNO3 + OH \rightarrow MBOACO + NO_2$.67*1.75E-12+.33*2.69E-12	Rickard and Pascoe (2009) Taraborrelli (2014)*
G45mbo16	TrGC	$MBOACO + OH \rightarrow MBOCOCO + HO_2$	3.79E-12	Rickard and Pascoe (2009)
G45mbo17	TrGC	$MBOACO + h\nu \rightarrow HCHO + HO_2 + IPRHOCO3$	J_ACETOL	Rickard and Pascoe (2009)
G45mbo18	TrGC	$MBOCOCO + OH \rightarrow CO + IPRHOCO3$	1.38E-11	Rickard and Pascoe (2009)
G45mbo19	TrGC	$MBOCOCO + h\nu \rightarrow CO + HO_2 + IPRHOCO3$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
G45mbo20	TrGC	IBUTALOH + OH \rightarrow IPRHOCO3	1.4E-11	Rickard and Pascoe (2009)
G45mbo21	TrGC	$IBUTALOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + HO_2 + CO$	J_ACETOL	Rickard and Pascoe (2009)
G45mbo22	TrGC	$\mathrm{IPRHOCO3} + \mathrm{HO}_2 \rightarrow \mathrm{CH}_3\mathrm{COCH}_3 + \mathrm{HO}_2 + \mathrm{OH}$	KAPHO2*rco3_oh	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo23	TrGC	$\mathrm{IPRHOCO3} + \mathrm{HO_2} \rightarrow \mathrm{IPRHOCO2H} + \mathrm{O_3}$	KAPH02*rco3_o3	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo24	TrGC	$IPRHOCO3 + HO_2 \rightarrow IPRHOCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo25	TrGC	$IPRHOCO3 + NO \rightarrow CH_3COCH_3 + HO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45mbo26	TrGC	$IPRHOCO3 + NO_2 \rightarrow C4PAN5$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45mbo27	TrGC	$IPRHOCO3 + NO_3 \rightarrow CH_3COCH_3 + HO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45mbo28	TrGC	$IPRHOCO3 \rightarrow CH_3COCH_3 + HO_2$	1.00E-11*R02*0.7	Rickard and Pascoe (2009)
G45mbo29	TrGC	$IPRHOCO3 \rightarrow IPRHOCO2H$	1.00E-11*R02*0.3	Rickard and Pascoe (2009)
G45mbo30	TrGC	$IPRHOCO2H + OH \rightarrow CH_3COCH_3 + HO_2$	1.72E-12	Rickard and Pascoe (2009)
G45mbo31	TrGC	$IPRHOCO3H + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)
G45mbo32	TrGC	$OH + IPRHOCO3H \rightarrow IPRHOCO3$	4.80E-12	Rickard and Pascoe (2009)
G45mbo33	TrGC	$C4PAN5 \rightarrow IPRHOCO3 + NO_2$	K_PAN_M	Rickard and Pascoe (2009)
G45mbo34	TrGC	$C4PAN5 + OH \rightarrow CH_3COCH_3 + CO + NO_2$	4.75E-13	Rickard and Pascoe (2009)
G45mbo35	TrGC	$\rm LNMBOABO2 + HO_2 \rightarrow \rm LNMBOABOOH$	KR02H02*0.706	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo36	TrGC	LNMBOABO2 + NO \rightarrow .65 NO3CH2CHO + .65 CH ₃ COCH ₃ + .65 HO ₂ + .35 IBUTALOH + .35 HCHO + .35 NO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009) Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference
G45mbo37	TrGC	LNMBOABO2 + $NO_3 \rightarrow .65$ NO3CH2CHO + .65 CH ₃ COCH ₃ + .65 HO ₂ + .35 IBUTALOH + .35 HCHO + .35 NO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo38	TrGC	LNMBOABO2 \rightarrow .65 NO3CH2CHO + .65 CH ₃ COCH ₃ + .65 HO ₂ + .35 IBUTALOH + .35 HCHO + .35 NO ₂	8.8E-13*R02	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo39	TrGC	LNMBOABOOH + OH \rightarrow .65 C4MCONO3OH + .35 NMBOBCO + OH	.65*4.89E-12+.35*2.52E-12	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo40	TrGC	$\texttt{LNMBOABOOH} + \texttt{OH} \rightarrow \texttt{LNMBOABO2}$.6*k_CH300H_0H	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo41	TrGC	LNMBOABOOH + $h\nu \rightarrow NO3CH2CHO + CH_3COCH_3 + HO_2 + OH$	1.14*jx(ip_CH300H)*.65	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo42	TrGC	LNMBOABOOH + $h\nu \rightarrow IBUTALOH + HCHO + NO_2 + OH$	1.14*jx(ip_CH300H)*.35	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo43	TrGC	C4MCONO3OH + OH \rightarrow CH ₃ COCH ₃ + HCHO + CO ₂ + NO ₂	1.23E-12	Rickard and Pascoe (2009) Taraborrelli (2014)*
G45mbo44	TrGC	NMBOBCO + OH \rightarrow NC4OHCO3	4.26E-12	Rickard and Pascoe (2009)
G45mbo45	TrGC	$\rm NC4OHCO3 + HO_2 \rightarrow \rm IBUTALOH + NO_2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo46	TrGC	$\rm NC4OHCO3 + HO_2 \rightarrow \rm NC4OHCO3H$	KAPH02*(rco3_o3+rco3_ooh)	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo47	TrGC	$NC4OHCO3 + NO \rightarrow IBUTALOH + NO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45mbo48	TrGC	$NC4OHCO3 + NO_2 \rightarrow NC4OHCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45mbo49	TrGC	$NC4OHCO3 + NO_3 \rightarrow IBUTALOH + NO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45mbo50	TrGC	$NC4OHCO3 \rightarrow IBUTALOH + NO_2$	1.00E-11*R02	Rickard and Pascoe (2009)
G45mbo51	TrGC	$NC4OHCO3H + OH \rightarrow NC4OHCO3$	4.50E-12	Rickard and Pascoe (2009)
G45mbo52	TrGC	$NC4OHCO3H \rightarrow IBUTALOH + NO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)
G45mbo53	TrGC	$NC4OHCPAN + OH \rightarrow IBUTALOH + CO + NO_2 + NO_2$	1.27E-12	Rickard and Pascoe (2009)
G45mbo54	TrGC	$NC4OHCPAN \rightarrow NC4OHCO3 + NO_2$	K_PAN_M	Rickard and Pascoe (2009)
G45mbo55	TrGC	$\rm MBOOO \rightarrow \rm IPRHOCO2H$	1.60E-17*C(ind_H20)*(0.08+0.15)	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo56	TrGC	$\rm MBOOO \rightarrow \rm IBUTALOH + H_2O_2$	1.60E-17*C(ind_H20)*0.77	Rickard and Pascoe (2009) Taraborrelli (2014)
G45mbo57	TrGC	$MBOOO + CO \rightarrow IBUTALOH$	1.20E-15	Rickard and Pascoe (2009)
G45mbo58	TrGC	$MBOOO + NO \rightarrow IBUTALOH + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G45mbo59	TrGC	$MBOOO + NO_2 \rightarrow IBUTALOH + NO_3$	1.00E-15	Rickard and Pascoe (2009)

		Table 1: Gas phase reacti	ions (continued)	
#	labels	reaction	rate coefficient	reference
G45mbo60	TrGC	$MBOOO + SO_2 \rightarrow IBUTALOH + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G410apin1	TrGC	$\rm APINENE + OH \rightarrow \rm LAPINABO2$	1.47E-11*EXP(467/TEMP)*(.50+.25)	Vereecken et al. (2007), Tarabor- relli (2014)*
G410apin2	TrGC	$\rm APINENE + OH \rightarrow MENTHEN6ONE + HO_2$	1.47E-11*EXP(467/TEMP)*.25*.60	Vereecken et al. (2007), Tarabor- relli (2014)*
G410apin3	TrGC	APINENE + OH \rightarrow LVROO6R1O2	1.47E-11*EXP(467/TEMP)*.25*.40	Vereecken et al. (2007), Tarabor- relli (2014)*
G410apin4	TrGC	$\rm LAPINABO2 + NO \rightarrow PINAL + HO_2 + NO_2$	KR02N0*0.770	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apin5	TrGC	$\rm LAPINABO2 + NO \rightarrow \rm LAPINABNO3$	KR02N0*0.230	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apin6	TrGC	$\rm LAPINABO2 + HO_2 \rightarrow \rm LAPINABOOH$	KR02H02*0.914	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apin7	TrGC	$\rm LAPINABO2 \rightarrow PINAL + HO_2$	R02*(.33*9.20E-14+.67*8.80E-13)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apin9	TrGC	$\label{eq:laplace} \text{LAPINABOOH} + \text{OH} \rightarrow .33 \; \text{LAPINABO2} + .67 \; \text{C96CO3}$.33*1.83E-11+.67*3.28E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apin10	TrGC	$\label{eq:LAPINABOOH} {\rm LAPINABOOH} + {\rm h}\nu \rightarrow {\rm PINAL} + {\rm HO}_2 + {\rm OH}$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apin11	TrGC	$\mathrm{LAPINABNO3} + \mathrm{OH} \rightarrow .33 \ \mathrm{PINAL} + .67 \ \mathrm{C96CO3} + \mathrm{NO}_2$.33*5.50E-12+.67*3.64E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apin12	TrGC	MENTHEN6ONE + OH \rightarrow OHMENTHEN6ONEO2	(kads+kadt)*acoch3	Vereecken et al. (2007), Tarabor- relli (2014)
G410apin13	TrGC	MENTHEN6ONE + h $\nu \rightarrow$ LVRO6R1O2 + OH	1.14*jx(ip_CH300H)	Vereecken et al. (2007), Tarabor- relli (2014)
G410apin14	TrGC	OHMENTHEN6ONEO2 + NO \rightarrow LV2OHMENTHEN6ONE + HO ₂ + NO ₂	KR02N0	Vereecken et al. (2007), Tarabor- relli (2014)
G410apin15	TrGC	OHMENTHEN6ONEO2 + $HO_2 \rightarrow LV2OHMENTHEN6ONE$	KR02H02*0.914	Vereecken et al. (2007), Tarabor- relli (2014)
G410apin16	TrGC	OHMENTHEN6ONEO2 \rightarrow LV2OHMENTHEN6ONE + HO ₂	R02*9.20E-14	Vereecken et al. (2007), Tarabor- relli (2014)
G410apin17	TrGC	LV2OHMENTHEN6ONE + OH \rightarrow LCARBON	1E-11	Vereecken et al. (2007), Tarabor- relli (2014)
G410apin18	TrGC	LV2OHMENTHEN6ONE + h $\nu \rightarrow$ LCARBON + OH	1.14*jx(ip_CH300H)	Vereecken et al. (2007), Tarabor-

#	labels	reaction	rate coefficient	reference
G410apin18t2	TrGC	$PINAL + OH \rightarrow C96CO3$	4.20E-11*0.772	Rickard and Pascoe (2009), Taraborralli (2014)
G410apin19	TrGC	$\mathrm{PINAL} + \mathrm{OH} \rightarrow \mathrm{PINALO2}$	4.20E-11*0.228	Rickard and Pascoe (2009),
G410apin20	TrGC	$\mathrm{PINAL} \rightarrow \mathrm{C96O2} + \mathrm{CO} + \mathrm{HO}_2$	jx(ip_HOCH2CH0)	Rickard and Pascoe (2009),
G410apin21	TrGC	$\rm PINAL + NO_3 \rightarrow C96CO3 + HNO_3$	3.80E-14	Taraborrelli (2014) Rickard and Pascoe (2009),
G410apin	TrGC	$\rm C96CO3 \rightarrow 0.3$ PINONIC + 0.7 C96O2	1.00E-11*R02	Rickard and Pascoe (2009),
G410apint2	TrGC	$C96CO3 + HO_2 \rightarrow PERPINONIC$	KAPH02*rco3_ooh	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint3	TrGC	$\rm C96CO3 + HO_2 \rightarrow PINONIC + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (2009), Teraborrelli (2014)
G410apint4	TrGC	$\rm C96CO3 + HO_2 \rightarrow C96O2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint5	TrGC	$\rm C96CO3+NO_2\rightarrow C10PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint6	TrGC	$\rm C96CO3 + \rm NO \rightarrow \rm C96O2 + \rm NO_2$	KAPNO	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint7	TrGC	$\rm C96CO3 + \rm NO_3 \rightarrow \rm C96O2 + \rm NO_2$	KR02N03*1.60	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint8	TrGC	$\rm C10PAN2 \rightarrow C96CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint9	TrGC	$\rm C10PAN2 + OH \rightarrow \rm NORPINAL + \rm CO + \rm NO_2$	3.66E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint10	TrGC	$C96O2 \rightarrow C97O2$	1.30E-12*R02	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint11	TrGC	$\rm C96O2 + NO \rightarrow \rm C96NO3$	KR02N0*0.157	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint12	TrGC	$\rm C96O2+HO_2\rightarrow C96OOH$	KR02H02*0.890	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint13	TrGC	$\rm C96O2 + \rm NO \rightarrow \rm C97O2 + \rm NO_2$	KR02N0*0.843	Rickard and Pascoe (2009), Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference	
G410apint14	TrGC	$C96NO3 + h\nu \rightarrow C97O2 + NO_2$	J_IC3H7NO3+J_ACETOL	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint15	TrGC	$\rm C96NO3 + OH \rightarrow \rm NORPINAL + \rm NO_2$	2.88E-12	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint16	TrGC	C96OOH + h $\nu \rightarrow$ C97O2 + OH	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint17	TrGC	$\rm C96OOH + OH \rightarrow C96O2$	1.90E-12*EXP(190/TEMP)	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint18	TrGC	$\rm C96OOH + OH \rightarrow \rm NORPINAL + OH$	1.30E-11	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint19	TrGC	$C97O2 \rightarrow C98O2$	6.70E-15*R02	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint20	TrGC	$\rm C97O2 + \rm NO \rightarrow \rm C98O2 + \rm NO_2$	KRO2NO	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint21	TrGC	$C97O2 + HO_2 \rightarrow C97OOH$	KR02H02*0.890	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint22	TrGC	$\rm C97OOH + h\nu \rightarrow C98O2 + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint23	TrGC	$\rm C97OOH + OH \rightarrow C97O2$	1.05E-11	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint24	TrGC	$\rm C98O2 \rightarrow C614O2 + CH_3COCH_3$	6.70E-15*R02	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint25	TrGC	$C98O2 + NO \rightarrow C98NO3$	KR02N0*0.118	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint26	TrGC	$\rm C98O2 + NO \rightarrow C614O2 + CH_3COCH_3 + NO_2$	KR02N0*0.882	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint27	TrGC	$\rm C98O2 + HO_2 \rightarrow C98OOH$	KR02H02*0.890	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint28	TrGC	$\rm C98OOH + h\nu \rightarrow C614O2 + CH_3COCH_3 + OH$	1.14*jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint29	TrGC	$\rm C98OOH + OH \rightarrow C98O2$	2.05E-11	Rickard and Pascoe (2 Taraborrelli (2014)	2009),
G410apint30	TrGC	$\mathrm{PINONIC} + \mathrm{OH} \rightarrow \mathrm{C96O2}$	6.65E-12	Rickard and Pascoe (2 Taraborrelli (2014)	2009),

#	labels	reaction	rate coefficient	reference
G410apint31	TrGC	$PINONIC + h\nu \rightarrow C96O2 + HO_2$	J_ACETOL	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint32	TrGC	NORPINAL + OH \rightarrow C85CO3	2.64E-11	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint33	TrGC	NORPINAL + $h\nu \rightarrow C85O2 + CO + HO_2$	jx(ip_HOCH2CH0)	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint34	TrGC	$\mathrm{NORPINAL} + \mathrm{NO}_3 \rightarrow \mathrm{C85CO3} + \mathrm{HNO}_3$	KNO3AL*8.5	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint35	TrGC	$\mathrm{PERPINONIC} + \mathrm{h}\nu \rightarrow \mathrm{C96O2} + \mathrm{OH}$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint36	TrGC	$\text{PERPINONIC} + \text{OH} \rightarrow \text{C96CO3}$	9.73E-12	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint37	TrGC	$C85CO3 \rightarrow C85O2$	1.00E-11*R02	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint38	TrGC	$\rm C85CO3 + \rm NO \rightarrow \rm C85O2 + \rm NO_2$	KAPNO	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint39	TrGC	$\rm C85CO3 + \rm NO_2 \rightarrow \rm C9PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint40	TrGC	$\rm C85CO3 + HO_2 \rightarrow C85CO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint41	TrGC	$\rm C85CO3 + HO_2 \rightarrow C85O2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint42	TrGC	$C85O2 \rightarrow C86O2$	6.70E-15*R02	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint43	TrGC	$\rm C85O2 + HO_2 \rightarrow C85OOH$	KR02H02*0.859	Rickard and Pascoe (200 Taraberrelli (2014)
G410apint44	TrGC	$\rm C85O2+NO\rightarrowC86O2+NO_2$	KR02N0	Rickard and Pascoe (200 Tarabarralli (2014)
G410apint45	TrGC	$\rm C9PAN2 \rightarrow C85CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (200 Tarabarralli (2014)
G410apint46	TrGC	$\rm C9PAN2 + OH \rightarrow C85OOH + CO + NO_2$	6.60E-12	Rickard and Pascoe (200 Taraberrelli (2014)
G410apint47	TrGC	$\rm C85CO3H \rightarrow C85O2 + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (200 Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference
G410apint48	TrGC	$C85CO3H + OH \rightarrow C85CO3$	1.02E-11	Rickard and Pascoe (2009) Tereborrelli (2014)
G410apint49	TrGC	$\rm C85OOH + h\nu \rightarrow C86O2 + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint50	TrGC	$\rm C85OOH + OH \rightarrow C85O2$	1.29E-11	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint51	TrGC	$\rm C86O2 \rightarrow C511O2 + CH_3COCH_3$	6.70E-15*R02	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint52	TrGC	$\rm C86O2 + NO \rightarrow \rm C511O2 + \rm CH_3 \rm COCH_3 + \rm NO_2$	KR02N0	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint53	TrGC	$C86O2 + HO_2 \rightarrow C86OOH$	KR02H02*0.859	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint54	TrGC	$\rm C86OOH + h\nu \rightarrow C511O2 + CH_3COCH_3 + OH$	1.14*jx(ip_CH300H)+ jx(ip_HOCH2CH0)	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint55	TrGC	$\rm C86OOH + OH \rightarrow C86O2$	3.45E-11	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint56	TrGC	$\mathrm{PINALO2} + \mathrm{HO}_2 \rightarrow \mathrm{PINALOOH}$	KR02H02*0.914	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint57	TrGC	$PINALO2 + NO \rightarrow PINALNO3$	KR02N0*0.050	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint58	TrGC	$\rm PINALO2 + \rm NO \rightarrow C106O2 + \rm NO_2$	KR02N0*0.950	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint59	TrGC	$PINALO2 \rightarrow C106O2$	6.70E-15*R02	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint60	TrGC	$\rm PINALOOH + OH \rightarrow PINALO2$	2.75E-11	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint61	TrGC	$\rm PINALOOH + h\nu \rightarrow C106O2 + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint62	TrGC	$PINALNO3 + OH \rightarrow CO235C6CHO + CH_3COCH_3 + NO_3$	2.25E-11	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint63	TrGC	$PINALNO3 + h\nu \rightarrow C106O2 + NO_2$	J_IC3H7N03+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint64	TrGC	$\rm C106O2+HO_2\rightarrow C106OOH$	KR02H02*0.914	Rickard and Pascoe (2009) Taraborrelli (2014)

		Table 1: Gas phase reacti	ions (continued)	
#	labels	reaction	rate coefficient	reference
G410apint65	TrGC	$C106O2 + NO \rightarrow C106NO3$	KR02N0*0.125	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint66	TrGC	$\rm C106O2 + \rm NO \rightarrow \rm C716O2 + \rm CH_3\rm COCH_3 + \rm NO_2$	KR02N0*0.875	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint67	TrGC	$\rm C106O2 \rightarrow C716O2 + CH_3COCH_3$	6.70E-15*R02	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint68	TrGC	$\rm C106OOH + OH \rightarrow C106O2$	8.01E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint69	TrGC	$\rm C106OOH + h\nu \rightarrow C716O2 + CH_3COCH_3 + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint70	TrGC	$\rm C106NO3 + OH \rightarrow \rm CO235C6CHO + \rm CH_3COCH_3 + \rm NO_2$	7.03E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint71	TrGC	$\rm C106NO3+h\nu\rightarrow C716O2+CH_3COCH_3+NO_2$	J_IC3H7NO3+ jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint72	TrGC	$\rm CO235C6CHO+NO_3\rightarrow CO235C6CO3+HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint73	TrGC	$\rm CO235C6CHO+OH\rightarrow CO235C6CO3$	6.70E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint74	TrGC	$\rm CO235C6CHO+h\nu\rightarrow CHOC3COCO3+CH_3C(O)OO$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint75	TrGC	$\rm CO235C6CO3 + HO_2 \rightarrow C235C6CO3H$	KAPH02*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint76	TrGC	$\rm CO235C6CO3 + HO_2 \rightarrow CO235C6O2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (2009),
G410apint77	TrGC	$\rm CO235C6CO3 + NO \rightarrow CO235C6O2 + NO_2$	KAPNO	Rickard and Pascoe (2009),
G410apint78	TrGC	$\rm CO235C6CO3 + NO_2 \rightarrow C7PAN3$	k_CH3C03_N02	Rickard and Pascoe (2009),
G410apint79	TrGC	$\rm CO235C6CO3 \rightarrow CO235C6O2$	1.00E-11*R02	Rickard and Pascoe (2009),
G410apint80	TrGC	$\rm C235C6CO3H + OH \rightarrow CO235C6CO3$	4.75E-12	Rickard and Pascoe (2009),
G410apint81	TrGC	C235C6CO3H + h $\nu \rightarrow$ CO235C6O2 + OH	1.14*jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Taraborrelli (2014) Rickard and Pascoe (2009), Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference	
G410apint82	TrGC	$CO235C6O2 + HO_2 \rightarrow CO235C6OOH$	KR02H02*0.770	Rickard and Pascoe	(2009)
				Taraborrelli (2014)	(2000)
G410apint83	TrGC	$CO235C6O2 + NO \rightarrow CO23C4CO3 + HCHO + NO_2$	KR02N0	Rickard and Pascoe	(2009)
G410apint84	TrGC	$CO235C6O2 \rightarrow CO23C4CO3 + HCHO$	2.00E-12*R02	Rickard and Pascoe	(2009)
, in output to i	noo	00100001 / 001001000 / 110110		Taraborrelli (2014)	(2000)
G410apint85	TrGC	$C7PAN3 + OH \rightarrow CO235C5CHO + CO + NO_2$	8.83E-13	Rickard and Pascoe	(2009)
				Taraborrelli (2014)	
G410apint86	TrGC	$C7PAN3 \rightarrow CO235C6CO3 + NO_2$	k_PAN_M	Rickard and Pascoe	(2009)
2410apint87	TrGC	$CO235C6OOH + OH \rightarrow CO235C6O2$	1 01E-11	Bickard and Pascoe	(2009)
arroupincov	nde	020000001 011 / 002000002	1.010 11	Taraborrelli (2014)	(2000)
G410apint88	TrGC	$CO235C6OOH + h\nu \rightarrow CO23C4CO3 + HCHO + OH$	1.14*jx(ip_CH300H)+ 2.15*jx(ip_MGLYOX)	Rickard and Pascoe	(2009)
				Taraborrelli (2014)	
G410apint89	TrGC	$C716O2 + HO_2 \rightarrow C716OOH$	KR02H02*0.820	Rickard and Pascoe	(2009)
2410	maa	C71609 + NO + C012C4CHO + CH C/O/OO + NO	KDOONO	Taraborrelli (2014)	(2000)
G410apint90	IIGC	$C/1602 + NO \rightarrow CO13C4CHO + CH_3C(O)OO + NO_2$	RRUZNU	Taraborrelli (2014)	(2009),
G410apint91	TrGC	$C716O2 \rightarrow CO13C4CHO + CH_3C(O)OO$	8.80E-13*R02	Rickard and Pascoe	(2009)
1				Taraborrelli (2014)	()
G410apint92	TrGC	$C716OOH + OH \rightarrow CO235C6CHO + OH$	1.20E-10	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	1
G410apint93	TrGC	$C716OOH + h\nu \rightarrow CO13C4CHO + CH_3C(O)OO + OH$	1.14*jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe	(2009)
3410anint94	TrGC	$C51102 \rightarrow CH_{\circ}C(0)OO + HCOCH2CHO$	8 80E-13*B02	Rickard and Pascoe	(2009)
unoupinou	noe	00002 / 0030(0)00 / 1000012000		Taraborrelli (2014)	(2000)
G410apint95	TrGC	$C51102 + NO \rightarrow CH_3C(O)OO + HCOCH2CHO + NO_2$	KRO2NO	Rickard and Pascoe	(2009)
				Taraborrelli (2014)	
G410apint96	TrGC	$C511O2 + HO_2 \rightarrow C511OOH$	KR02H02*0.706	Rickard and Pascoe	(2009)
1410	THOO	$CE1100H + h_{H} \rightarrow CH C(0)00 + HCOCH2CH0 + 0H$		Taraborrelli (2014)	(2000)
3410apint97	nge	$C_{01100H} + II \nu \rightarrow C_{130(0)00} + HCOCH2CH0 + OH$	1.14+Jx(1p_0no00n)+Jx(1p_n00n20n0)	Taraborrelli (2014)	(2009)
G410apint98	TrGC	$C511OOH + OH \rightarrow C511O2$	7.49E-11	Rickard and Pascoe	(2009).
en a server o 🗢 en 2000 Franklik				Taraborrelli (2014)	

#	labels	reaction	rate coefficient	reference	
G410apint99	TrGC	$HCOCH2CHO + OH \rightarrow HCOCH2CO3$	4.29E-11	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint100	TrGC	$\rm HCOCH2CHO + h\nu \rightarrow \rm HCOCH2O2 + \rm HO_2 + \rm CO$	jx(ip_HOCH2CHO)*2	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint101	TrGC	$\rm HCOCH2CHO+NO_3\rightarrow HCOCH2CO3+HNO_3$	2*KNO3AL*2.4	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint102	TrGC	$\rm C614O2 \rightarrow \rm CO23C4CHO + \rm HCHO + \rm HO_2$	8.80E-13*R02	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint103	TrGC	$\rm C614O2 + NO \rightarrow C614NO3$	KR02N0*0.098	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint104	TrGC	$\rm C614O2 + NO \rightarrow \rm CO23C4CHO + \rm HCHO + \rm HO_2 + \rm NO_2$	KR02N0*0.902	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint105	TrGC	$\rm C614O2+HO_2\rightarrow C614OOH$	KR02H02*0.770	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint106	TrGC	$\rm C614NO3 + h\nu \rightarrow \rm CO23C4CHO + \rm HCHO + \rm HO_2 + \rm NO_2$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint107	TrGC	$\rm C614NO3 + OH \rightarrow C614CO + NO_2$	7.11E-12	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint108	TrGC	C614OOH + h $\nu \rightarrow$ CO23C4CHO + HCHO + HO_2 + OH	1.14*jx(ip_CH300H)+2.15*jx(ip_MGLY0X)	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint109	TrGC	$\rm C614OOH + OH \rightarrow C614CO + OH$	8.69E-11	Rickard and Pascoe	(2009)
G410apint110	TrGC	C614CO + $h\nu \rightarrow CH3COCOCH2O2 + HOCH_2CO_3$	J_ACETOL	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint111	TrGC	$\rm C614CO+OH\rightarrow CO235C5CHO+HO_2$	3.22E-12	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint112	TrGC	$\rm CH3COCOCH2O2 \rightarrow \rm CH_3C(O)OO + \rm HCHO + \rm CO$	2.00E-12*R02	Rickard and Pascoe	(2009)
G410apint113	TrGC	$\rm CH3COCOCH2O2 + HO_2 \rightarrow CH3COCOCH2OOH$	KR02H02*0.625	Rickard and Pascoe	(2009)
G410apint114	TrGC	$CH3COCOCH2O2 + NO \rightarrow CH_3C(O)OO + HCHO + CO + NO_2$	KRO2NO	Rickard and Pascoe Taraborrelli (2014)	(2009)
G410apint115	TrGC	$CH3COCOCH2OOH + OH \rightarrow CH3COCOCHO + OH$	ks*fco*fsooh	Rickard and Pascoe Taraborrelli (2014)	(2009)

		Table 1: Gas phase reacti	ons (continued)	
#	labels	reaction	rate coefficient	reference
G410apint116	TrGC	$\rm CH3COCOCH2OOH + OH \rightarrow CH3COCOCH2O2$.6*k_CH300H_0H	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint117	TrGC	CH3COCOCH2OOH + $h\nu \rightarrow$ CH3COCOCHO + OH + HO_2	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint118	TrGC	CH3COCOCH2OOH + $h\nu \rightarrow CH_3C(O)OO + CO + OH$ + HCHO	J_ACETOL	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint119	TrGC	$\rm CH3COCOCH2OOH + h\nu \rightarrow CH_3C(O)OO + HCOCO_3$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint120	TrGC	$\rm CO235C5CHO + OH \rightarrow CO23C4CO3 + CO$	1.33E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint121	TrGC	$\rm CO235C5CHO + h\nu \rightarrow CO23C4CO3 + CO + HO_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint122	TrGC	$\rm CO235C5CHO+NO_3\rightarrow CO23C4CO3+CO+HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint123	TrGC	$\rm CO23C4CHO+OH\rightarrowCO23C4CO3$	6.65E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint124	TrGC	CO23C4CHO + h $\nu \rightarrow$ CH3COCOCH2O2 + HO_2 + CO	jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint125	TrGC	CO23C4CHO + h $\nu \rightarrow \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{OO}$ + HCOCH2CO3	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint126	TrGC	$\rm CO23C4CHO+NO_3\rightarrow CO23C4CO3+HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint127	TrGC	$\rm CO23C4CO3 \rightarrow CH3COCOCH2O2$	1.00E-11*R02	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint128	TrGC	$\rm CO23C4CO3 + NO \rightarrow CH3COCOCH2O2 + NO_2$	KAPNO	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint129	TrGC	$\rm CO23C4CO3 + NO_2 \rightarrow C5PAN9$	k_CH3CO3_NO2	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint130	TrGC	$\rm CO23C4CO3 + HO_2 \rightarrow CO23C4CO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint131	TrGC	$\rm CO23C4CO3 + HO_2 \rightarrow CH3COCOCH2O2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (2009), Tarabarralli (2014)
G410apint132	TrGC	$\rm CO23C4CO3H + h\nu \rightarrow CH3COCOCH2O2 + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference	
G410apint133	TrGC	$CO23C4CO3H + h\nu \rightarrow CO23C4CO3$	4.23E-12	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	
G410apint134	TrGC	$C5PAN9 \rightarrow CO23C4CO3 + NO_2$	k_PAN_M	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	
G410apint135	TrGC	$C5PAN9 + OH \rightarrow CO23C3CHO + CO + NO_2$	3.12E-13	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	
G410apint136	TrGC	$\rm HCOCH2CO3 \rightarrow 0.7~HCOCH2O2 + 0.3~HCOCH2CO2H$	1.00E-11*R02	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	
G410apint137	TrGC	$HCOCH2CO3 + NO \rightarrow HCOCH2O2 + NO_2$	KAPNO	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	
G410apint138	TrGC	$HCOCH2CO3 + NO_2 \rightarrow C3PAN2$	k_CH3CO3_NO2	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	
G410apint139	TrGC	$HCOCH2CO3 + HO_2 \rightarrow HCOCH2CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe	(2009),
	53753			Taraborrelli (2014)	
G410apint140	TrGC	$\rm HCOCH2CO3 + HO_2 \rightarrow \rm HCOCH2CO2H + O_3$	KAPH02*rco3_o3	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	
G410apint141	TrGC	$HCOCH2CO3 + HO_2 \rightarrow HCOCH2O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe	(2009),
			benefit all staff frequency of the fre	Taraborrelli (2014)	
G410apint142	TrGC	$C3PAN2 \rightarrow HCOCH2CO3 + NO_2$	k_PAN_M	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	(
G410apint143	TrGC	$C3PAN2 + OH \rightarrow GLYOX + CO + NO_2$	2.10E-11	Rickard and Pascoe	(2009),
				Taraborrelli (2014)	(2000)
G410apint144	TrGC	$HCOCH2CO2H + OH \rightarrow HCOCH2O2$	2.14E-11	Rickard and Pascoe	(2009),
	maa	udoduodoau - L. udoduooa - Uo		Taraborrelli (2014)	(0000)
G410apint145	TrGC	$HCOCH2CO2H + h\nu \rightarrow HCOCH2O2 + HO_2$	Jx(1p_HUCH2CHU)	Rickard and Pascoe	(2009),
0440	maa	A DIMENIE I O A DIMDOO	1 04P 45+PVD (700 (TPVD) + 50+ 10	$C_{\text{rest}} = 1 (2008)$	
G410apint146	TIGC	APINENE + $O_3 \rightarrow APINBOO$	1.01E 15+EXP(-732/1EMP)+.50+.18	Capouet et al. (2008)	
G410apint147	THEC	$APINENE + O_3 \rightarrow PINONIC$	1.01E 15+EXP(-732/1EMP)+.50+.10	Capouet et al. (2008)	
G410apint148	THEC	APINENE + $O_3 \rightarrow OH + NORFINAL + CO + HO_2$	1.01E-15*EAP(-732/1EMP)*.50*.00	Capouet et al. (2008)	
G410apint149	THEC	APINENE + $O_3 \rightarrow APINAOO$	1.01E-15*EAP(-732/TEMP)*.50*.12	Capouet et al. (2008)	
C410apint150	THEC	$A \operatorname{PINAOO} \to \operatorname{PINAI} + \operatorname{POO}_{2}$	1.01E - 10 + EAF(-(32/1EPF) + .00 + (.22 + .00) 1.00E - 17 + c(ind HOO)	Diskard and Passon	(2000)
G410apint151	1100	AT INAU \rightarrow TINAL \mp H ₂ U ₂	1.00E-1/*C(ING_NZO)	Tarabarralli (2014)	(2009),
G410apint150	TECC	$APINAOO + CO \rightarrow PINAI$	1 205-15	Rickard and Passon	(2000)
0410apintib2	1160		1.206 10	Taraborrelli (2014)	(2009),

#	labels	reaction	rate coefficient	reference
G410apint153	TrGC	$\rm APINAOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009),
G410apint154	TrGC	$\rm APINAOO + NO_2 \rightarrow PINAL + NO_3$	1.00E-15	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint155	TrGC	$\rm APINAOO + SO_2 \rightarrow PINAL + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint156	TrGC	APINBOO \rightarrow PINONIC	1.00E-17*c(ind_H20)*(0.08+0.15)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint157	TrGC	$\rm APINBOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)*0.77	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint158	TrGC	$\rm APINBOO + CO \rightarrow PINAL$	1.20E-15	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint159	TrGC	$\rm APINBOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint160	TrGC	$\rm APINBOO+NO_2\rightarrow PINAL+NO_3$	1.00E-15	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint161	TrGC	$\rm APINBOO + SO_2 \rightarrow PINAL + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint162	TrGC	$C109O2 \rightarrow C89CO3 + HCHO$	2.00E-12*R02	Rickard and Pascoe (2009), Taraborrelli (2014)*
G410apint163	TrGC	$\rm C109O2 + NO \rightarrow C89CO3 + HCHO + NO_2$	KR02N0	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint164	TrGC	$C109O2 + HO_2 \rightarrow C109OOH$	KR02H02*0.914	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint165	TrGC	$C109OOH \rightarrow C89CO3 + HCHO + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint166	TrGC	$C109OOH + OH \rightarrow C109CO + OH$	5.47E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint167	TrGC	$C109OOH + h\nu \rightarrow C89CO3 + HCHO + OH$	J_ACETOL	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint168	TrGC	$C109CO + OH \rightarrow C89CO3 + CO$	5.47E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint169	TrGC	$C109CO + h\nu \rightarrow C89CO3 + CO + HO_2$	jx(ip_MGLYOX)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference
G410apint170	TrGC	$\rm C89CO3 \rightarrow .56\ C811CO3 + .14\ C89O2 + 0.3\ C89CO2H$	1.00E-11*R02	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint171	TrGC	$\rm C89CO3 + HO_2 \rightarrow C89CO3H$	KAPH02*rco3_ooh	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint172	TrGC	$\rm C89CO3 + HO_2 \rightarrow C89CO2H + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint173	TrGC	$\mathrm{C89CO3} + \mathrm{HO}_2 \rightarrow .80\ \mathrm{C811CO3} + 0.20\ \mathrm{C89O2} + \mathrm{OH}$	KAPH02*rco3_oh	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint174	TrGC	$C89CO3 + NO_2 \rightarrow C89PAN$	k_CH3C03_N02	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint175	TrGC	$\rm C89CO3 + NO \rightarrow 0.80 \ C811CO3 + 0.20 \ C89O2 + NO_2$	KAPNO	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint176	TrGC	$\mathrm{C89CO2H} + \mathrm{OH} \rightarrow 0.80\ \mathrm{C811CO3} + 0.20\ \mathrm{C89O2}$	2.69E-11	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint177	TrGC	C89CO2H + h $\nu \to 0.80$ C811CO3 + 0.20 C89O2 + HO2	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint178	TrGC	$\mathrm{C89CO3H} \rightarrow 0.80\ \mathrm{C811CO3}$ + 0.20 $\mathrm{C89O2}$ + OH	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint179	TrGC	$\rm C89CO3H + OH \rightarrow C89CO3$	3.00E-11	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint180	TrGC	$\rm C89PAN \rightarrow C89CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint181	TrGC	$C89PAN + OH \rightarrow CH_3COCH_3 + CO13C4CHO + CO + NO_2$	2.52E-11	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint182	TrGC	$C811CO3 \rightarrow 0.7 \ C811O2 + 0.3 \ PINIC$	1.00E-11*R02	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint183	TrGC	$\rm C811CO3 + HO_2 \rightarrow C811CO3H$	KAPH02*rco3_ooh	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint184	TrGC	$\rm C811CO3 + HO_2 \rightarrow PINIC + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint185	TrGC	$\rm C811CO3 + HO_2 \rightarrow C811O2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (2009 Taraborralli (2014)
G410apint186	TrGC	$\rm C811CO3 + NO \rightarrow C811O2 + NO_2$	KAPNO	Rickard and Pascoe (2009 Taraborrelli (2014)

		Table 1: Gas phase reac	tions (continued)	
#	labels	reaction	rate coefficient	reference
G410apint187	TrGC	$C811CO3 + NO_2 \rightarrow C811PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009),
G410apint188	TrGC	$\mathrm{PINIC} + \mathrm{OH} \rightarrow \mathrm{C811O2}$	7.29E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf1	TrGC	$\rm C89O2 + HO_2 \rightarrow C89OOH$	KR02H02*0.859	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf2	TrGC	$C89O2 + NO \rightarrow C89NO3$	KR02N0*0.104	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf3	TrGNC	$\rm C89O2 + NO \rightarrow C810O2 + NO_2$	KR02N0*0.896	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf4	TrGNC	$\mathrm{C89O2}+\mathrm{NO}_3\rightarrow\mathrm{C810O2}+\mathrm{NO}_2$	KR02N03	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf5	TrGC	$C89O2 \rightarrow C810O2$	6.70E-15*R02	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf6	TrGC	$\rm C89OOH + OH \rightarrow C89O2$	3.61E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf7	TrGJC	$\rm C89OOH + h\nu \rightarrow C810O2 + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf8	TrGC	$\mathrm{C89NO3} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{C013C4CHO} + \mathrm{NO_2}$	2.56E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf9	TrGJNC	$\rm C89NO3 + h\nu \rightarrow C810O2 + NO_2$	J_IC3H7NO3+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf10	TrGC	$C810O2 + HO_2 \rightarrow C810OOH$	KR02H02*0.914	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf11	TrGNC	$C810O2 + NO \rightarrow C810NO3$	KR02N0*0.104	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf12	TrGNC	$\rm C810O2 + \rm NO \rightarrow \rm CH_3\rm COCH_3 + \rm C514O2 + \rm NO_2$	KR02N0*0.896	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf13	TrGNC	$\rm C810O2 + NO_3 \rightarrow CH_3COCH_3 + C514O2 + NO_2$	KR02N03	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf14	TrGC	$\rm C810O2 \rightarrow CH_3COCH_3 + C514O2$	6.70E-15*R02	Rickard and Pascoe (2009), Taraborrelli (2014)
G410ap188bf15	TrGC	$\rm C810OOH + OH \rightarrow C810O2$	8.35E-11	Rickard and Pascoe (2009), Taraborrelli (2014)

		Table 1: Gas phase reacti	ions (continued)	
#	labels	reaction	rate coefficient	reference
G410ap188bf16	TrGJC	$\rm C810OOH + h\nu \rightarrow CH_3COCH_3 + C514O2 + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf17	TrGNC	$\rm C810NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	4.96E-11	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf18	TrGJC	$\rm C810NO3+h\nu\rightarrow CH_3COCH_3+C514O2+NO_2$	2.84*J_IC3H7N03+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf19	TrGC	$\rm C514O2 + HO_2 \rightarrow \rm C514OOH$	KR02H02*0.706	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf20	TrGNC	$C514O2 + NO \rightarrow C514NO3$	KR02N0*0.129	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf21	TrGNC	$\rm C514O2 + NO \rightarrow \rm CO13C4CHO + HO_2 + NO_2$	KR02N0*0.871	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf22	TrGNC	$\rm C514O2 + NO_3 \rightarrow \rm CO13C4CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf23	TrGC	$\rm C514O2 \rightarrow \rm CO13C4CHO + HO_2$	2.50E-13*R02	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf24	TrGC	$\rm C514OOH + OH \rightarrow \rm CO13C4CHO + OH$	1.10E-10	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf25	TrGJC	C514OOH + h $\nu \rightarrow$ CO13C4CHO + HO_2 + OH	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0) *2.0	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf26	TrGC	$\rm C514NO3 + OH \rightarrow \rm CO13C4CHO + \rm NO_2$	4.33E-11	Rickard and Pascoe (2009) Taraborrelli (2014)
G410ap188bf27	TrGJC	$\rm C514NO3 + h\nu \rightarrow \rm CO13C4CHO + HO_2 + NO_2$	J_IC3H7NO3+jx(ip_HOCH2CH0)*2.0	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint189	TrGC	$C811O2 \rightarrow C812O2$	1.30E-12*R02	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint190	TrGC	$C811O2 + HO_2 \rightarrow C811OOH$	KR02H02*0.859	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint191	TrGC	$\rm C811O2 + NO \rightarrow C812O2 + NO_2$	KR02N0	Rickard and Pascoe (2009) Taraborrelli (2014)*
G410apint192	TrGC	$\rm C811CO3H + h\nu \rightarrow C811O2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint193	TrGC	$\rm C811CO3H + OH \rightarrow C811CO3$	1.04E-11	Rickard and Pascoe (2009) Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference
G410apint194	TrGC	$\rm C811PAN \rightarrow C811CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint195	TrGC	$\rm C811PAN + OH \rightarrow C721CHO + CO + NO_2$	6.77E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint196	TrGC	$C812O2 \rightarrow C813O2$	9.20E-14*R02	Rickard and Pascoe (2009), Taraborrelli (2014)*
G410apint197	TrGC	$\rm C812O2 + NO \rightarrow C813O2 + NO_2$	KR02N0	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint198	TrGC	$C812O2 + HO_2 \rightarrow C812OOH$	KR02H02*0.859	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint199	TrGC	$\rm C812OOH + h\nu \rightarrow C813O2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint200	TrGC	$\rm C812OOH + OH \rightarrow C812O2$	1.09E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint201	TrGC	$\rm C813O2 \rightarrow CH_3COCH_3 + C512O2$	6.70E-15*R02	Rickard and Pascoe (2009), Taraborrelli (2014)*
G410apint202	TrGC	$\rm C813O2 + NO \rightarrow CH_3COCH_3 + C512O2 + NO_2$	KR02N0	Rickard and Pascoe (2009), Taraborrelli (2014)*
G410apint203	TrGC	$\rm C813O2 + HO_2 \rightarrow C813OOH$	KR02H02*0.859	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint204	TrGC	$\rm C813OOH + h\nu \rightarrow CH_3COCH_3 + C512O2 + OH$	1.14*jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint205	TrGC	$\rm C813OOH+OH\rightarrowC813O2$	1.86E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint206	TrGC	$\rm C721CHO+NO_3\rightarrow C721CO3+HNO_3$	KNO3AL*8.5	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint207	TrGC	$\rm C721CHO+OH\rightarrow C721CO3$	2.63E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint208	TrGC	$\rm C721CHO \rightarrow C721O2 + CO + HO_2$	jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint209	TrGC	$\rm C721CO3 + HO_2 \rightarrow C721CO3H$	KAPH02*rco3_ooh	Rickard and Pascoe (2009), Taraborrelli (2014)
G410apint210	TrGC	$\rm C721CO3 + HO_2 \rightarrow C721O2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (2009), Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference
G410apint211	TrGC	$C721CO3 + HO_2 \rightarrow NORPINIC + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint212	TrGC	$\rm C721CO3 + \rm NO \rightarrow \rm C721O2 + \rm NO_2$	KAPNO	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint213	TrGC	$\rm C721CO3 + NO_2 \rightarrow C721PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint214	TrGC	$\rm C721CO3 + NO_3 \rightarrow C721O2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint215	TrGC	$C721CO3 \rightarrow C721O2$	1.00E-11*R02*0.7	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint216	TrGC	$C721CO3 \rightarrow NORPINIC$	1.00E-11*R02*0.3	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint217	TrGC	$\rm C721O2 + HO_2 \rightarrow C721OOH$	KR02H02*0.820	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint218	TrGC	$\rm C721O2 + NO \rightarrow C722O2 + NO_2$	KR02N0	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint219	TrGC	$C721O2 \rightarrow C722O2$	1.30E-12*R02	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint220	TrGC	$\rm C721CO3H + OH \rightarrow C721CO3$	9.65E-12	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint221	TrGC	$\rm C721CO3H + h\nu \rightarrow C721O2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint222	TrGC	NORPINIC + OH \rightarrow C721O2	6.57E-12	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint223	TrGC	$\rm C721PAN + OH \rightarrow C721OOH + CO + NO_2$	2.96E-12	Rickard and Pascoe (2009 Taraborrelli (2014)
G410apint224	TrGC	$\rm C721PAN \rightarrow C721CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009 Tarabarralli (2014)
G410apint225	TrGC	$\rm C721OOH + OH \rightarrow C721O2$	1.27E-11	Rickard and Pascoe (2009 Tarabarralli (2014)
G410apint226	TrGC	$\rm C721OOH + h\nu \rightarrow C722O2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009 Tarabarralli (2014)
G410apint227	TrGC	$C722O2 + HO_2 \rightarrow C722OOH$	KR02H02*0.820	Rickard and Pascoe (2009) Taraborrelli (2014)

		Table 1: Gas phase re	actions (continued)		
#	labels	reaction	rate coefficient	reference	
G410apint228	TrGC	$C722O2 + NO \rightarrow CH_3COCH_3 + C44O2 + NO_2$	KR02N0	Rickard and Pascoe (2009),	
G410apint229	TrGC	$\rm C722O2 \rightarrow CH_3COCH_3 + C44O2$	6.70E-15*R02	Taraborrelli (2014) Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint230	TrGC	$\rm C722OOH + OH \rightarrow C722O2$	3.31E-11	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint231	TrGC	$\rm C722OOH + h\nu \rightarrow CH_3COCH_3 + C44O2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint232	TrGC	$C44O2 + HO_2 \rightarrow C44OOH$	KR02H02*0.625	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint233	TrGC	$C44O2 + NO \rightarrow HCOCH2CHO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint234	TrGC	$C44O2 \rightarrow HCOCH2CHO + HO_2$	8.80E-13*R02	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint235	TrGC	$C44OOH + OH \rightarrow C44O2$	7.46E-11	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint236	TrGC	C44OOH + h $\nu \rightarrow$ HCOCH2CHO + HO ₂ + OH	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint237	TrGC	$C512O2 \rightarrow C513O2$	1.30E-12*R02	Rickard and Pascoe (2009), Taraborrelli (2014)*	
G410apint238	TrGC	$C512O2 + HO_2 \rightarrow C512OOH$	KR02H02*0.706	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint239	TrGC	$\rm C512O2 + NO \rightarrow C513O2 + NO_2$	KR02N0	Rickard and Pascoe (2009), Taraborrelli (2014)*	
G410apint240	TrGC	$\rm C512OOH + h\nu \rightarrow C513O2 + OH$	1.14*jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint241	TrGC	$\rm C512OOH + OH \rightarrow \rm CO13C4CHO + OH$	1.01E-10	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint242	TrGC	$C513O2 \rightarrow GLYOX + HOC2H4CO3$	8.80E-13*R02	Rickard and Pascoe (2009), Taraborrelli (2014)*	
G410apint243	TrGC	$\rm C513O2 + NO \rightarrow GLYOX + HOC2H4CO3 + NO_2$	KR02N0	Rickard and Pascoe (2009), Taraborrelli (2014)	
G410apint244	TrGC	$C513O2 + HO_2 \rightarrow C513OOH$	KR02H02*0.706	Rickard and Pascoe (2009), Taraborrelli (2014)	

Table 1: Gas phase reactions (continued)							
#	labels	reaction	rate coefficient	reference			
G410apint245	TrGC	$CO13C4CHO + OH \rightarrow CHOC3COCO3$	1.33E-10	Rickard and Pascoe (2009),			
G410apint246	TrGC	$\rm CO13C4CHO + h\nu \rightarrow \rm CHOC3COO2 + \rm CO + \rm HO_2$	jx(ip_HOCH2CH0)*2	Taraborrelli (2014) Rickard and Pascoe (2009),			
G410apint247	TrGC	$\rm CO13C4CHO+NO_3\rightarrow CHOC3COCO3+HNO_3$	2*KNO3AL*5.5	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint248	TrGC	C513OOH + h $\nu \rightarrow$ GLYOX + HOC2H4CO3 + OH	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint249	TrGC	$\rm C513OOH + OH \rightarrow C513CO + OH$	9.23E-11	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint250	TrGC	$\rm CHOC3COCO3 \rightarrow \rm CHOC3COO2$	1.00E-11*R02	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint251	TrGC	$\rm CHOC3COCO3 + HO_2 \rightarrow \rm CHOC3COOOH$	KAPH02	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint252	TrGC	$\rm CHOC3COCO3 + NO_2 \rightarrow \rm CHOC3COPAN$	k_CH3C03_N02	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint253	TrGC	$\rm CHOC3COCO3 + \rm NO \rightarrow \rm CHOC3COO2 + \rm NO_2$	KAPNO	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint254	TrGC	$\rm CHOC3COO2 \rightarrow \rm HCOCH2CO3 + \rm HCHO$	2.00E-12*R02	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint255	TrGC	$\rm CHOC3COO2 + HO_2 \rightarrow C413COOOH$	KR02H02*0.625	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint256	TrGC	$\rm CHOC3COO2 + NO \rightarrow \rm HCOCH2CO3 + \rm HCHO + \rm NO_2$	KR02N0	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint257	TrGC	$\rm C513CO+OH\rightarrow HOC2H4CO3+CO+CO$	2.64E-11	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint258	TrGC	$\rm C513CO + h\nu \rightarrow \rm HOC2H4CO3 + \rm HO_2 + \rm CO + \rm CO$	jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint259	TrGC	$\rm C413COOOH + OH \rightarrow CHOC3COO2$	8.33E-11	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint260	TrGC	C413COOOH + h $\nu \rightarrow$ HCOCH2CO3 + HCHO + OH	1.14*jx(ip_CH300H)+jx(ip_H0CH2CH0) +J ACETOL	Rickard and Pascoe (2009), Taraborrelli (2014)			
G410apint261	TrGC	$\rm CHOC3COOOH + OH \rightarrow CHOC3COCO3$	7.55E-11	Rickard and Pascoe (2009), Taraborrelli (2014)			
#	labels	reaction	rate coefficient	reference			
--------------------	--------	---	------------------------------------	--			
G410apint262	TrGC	$\rm CHOC3COOOH + h\nu \rightarrow \rm CHOC3COO2 + OH$	1.14*jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)			
G410apint263	TrGC	$CHOC3COPAN \rightarrow CHOC3COCO3 + NO_2$	+J_ACETOL k_PAN_M	Taraborrelli (2014) Rickard and Pascoe (2009)			
				Taraborrelli (2014)			
G410apint264	TrGC	$CHOC3COPAN + OH \rightarrow C4CODIAL + CO + NO_2$	7.19E-11	Rickard and Pascoe (2009)			
2410apin+265	Tree	$C4CODIAL + OH \rightarrow C319COCO3$	3 39F-11	Taraborrelli (2014) Rickard and Pascoe (2000)			
0410ap1110200	1100	CACODIAL + OII - CSI2COCOS	5.691-11	Taraborrelli (2014)			
G410apint266	TrGC	$\rm C4CODIAL + h\nu \rightarrow \rm HCOCOCH2O2 + \rm HO_2 + \rm CO$	jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)			
	maa			Taraborrelli (2014)			
G410apint267	TrGC	$C4CODIAL + h\nu \rightarrow HCOCH2CO3 + HO_2 + CO$	Jx(1p_MGLYUX)	Rickard and Pascoe (2009) Taraborrelli (2014)			
G410apint268	TrGC	$C4CODIAL + NO_3 \rightarrow C312COCO3 + HNO_3$	2*KN03AL*4.0	Rickard and Pascoe (2009)			
				Taraborrelli (2014)			
G410apint269	TrGC	$C312COCO3 \rightarrow HCOCOCH2O2$	1.00E-11*R02	Rickard and Pascoe (2009)			
G410anint270	THEC	$C312COCO3 + HO_{2} \rightarrow C312COCO3H$	KAPHO2*rco3 oob	Bickard and Pascoe (2009)			
d 110 dp 11 db 1 d	100			Taraborrelli (2014)			
G410apint271	TrGC	$\rm C312COCO3 + HO_2 \rightarrow \rm HCOCOCH2O2 + OH$	KAPH02*(1-rco3_ooh)	Rickard and Pascoe (2009)			
	TOO	Calacocoa - No - Calacopan	1 0110000 1100	Taraborrelli (2014)			
G410apint272	IrGC	$C312COCO3 + NO_2 \rightarrow C312COPAN$	R_CH3CU3_NU2	Taraborrelli (2014)			
G410apint273	TrGC	$C312COCO3 + NO \rightarrow HCOCOCH2O2 + NO_2$	KAPNO	Rickard and Pascoe (2009)			
1 2				Taraborrelli (2014)			
G410apint274	TrGC	$C312COCO3H + OH \rightarrow C312COCO3$	1.63E-11	Rickard and Pascoe (2009)			
G410apint275	TrGC	$C312COCO3H + h\nu \rightarrow HCOCOCH2O2 + OH$	1.14*ix(ip CH300H)+ix(ip MGLYOX)	Rickard and Pascoe (2009)			
/				Taraborrelli (2014)			
G410apint276	TrGC	$C312COPAN \rightarrow C312COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)			
C410apin+277	THOC	C212COPAN + OH > HCOCOCHO + CO + NO	1 97E-11	Taraborrelli (2014) Rickard and Passoo (2000)			
0410apintz//	1100	$c_{12}c_{01}$ and $+$ on $-$ neococho $+$ co $+$ No ₂	1.216 11	Taraborrelli (2014)*			
G410apint278	TrGC	$\mathrm{HOC2H4CO3} \rightarrow 0.7 \ \mathrm{HOCH_2CH_2O_2} + 0.3 \ \mathrm{HOC2H4CO2H}$	1.00E-11*R02	Rickard and Pascoe (2009)			
				Taraborrelli (2014)			

#	labels	reaction	rate coefficient	reference
G410apint279	TrGC	$\rm HOC2H4CO3 + NO \rightarrow \rm HOCH_2CH_2O_2 + NO_2$	KAPNO	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint280	TrGC	$\rm HOC2H4CO3 + HO_2 \rightarrow \rm HOC2H4CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint281	TrGC	$\rm HOC2H4CO3 + HO_2 \rightarrow \rm HOCH_2CH_2O_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint282	TrGC	$\rm HOC2H4CO3 + HO_2 \rightarrow \rm HOC2H4CO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint283	TrGC	$\rm HOC2H4CO3 + NO_2 \rightarrow C3PAN1$	k_CH3CO3_NO2	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint284	TrGC	$\rm HOC2H4CO2H + OH \rightarrow \rm HOCH_2CH_2O_2$	1.39E-11	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint285	TrGC	$\rm HOC2H4CO3H + OH \rightarrow \rm HOC2H4CO3$	1.73E-11	Rickard and Pascoe (200 Taraborrelli (2014)
3410apint286	TrGC	$\rm HOC2H4CO3H + h\nu \rightarrow \rm HOCH_2CH_2O_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint287	TrGC	$\rm C3PAN1 \rightarrow HOC2H4CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint288	TrGC	$\rm C3PAN1 + OH \rightarrow \rm HOCH_2\rm CHO + \rm CO + \rm NO_2$	4.51E-12	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint289	TrGC	$\rm APINENE + NO_3 \rightarrow \rm LNAPINABO2$	1.2E-12*EXP(490./temp)	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint290	TrGC	$\mathrm{LNAPINABO2} \rightarrow \mathrm{PINAL} + \mathrm{NO_2}$	(.65*6.70E-15+.35*2.50E-13)*R02	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint291	TrGC	$\rm LNAPINABO2 + NO \rightarrow PINAL + NO_2 + NO_2$	KR02N0	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint292	TrGC	$\mathrm{LNAPINABO2} + \mathrm{HO_2} \rightarrow \mathrm{LNAPINABOOH}$	KR02H02*0.914	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint293	TrGC	$\mathrm{LNAPINABO2} + \mathrm{NO}_3 \rightarrow \mathrm{PINAL} + \mathrm{NO}_2 + \mathrm{NO}_2$	KR02N03	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint294	TrGC	$\label{eq:linabound} {\rm LNAPINABOOH} + {\rm h}\nu \rightarrow {\rm PINAL} + {\rm NO}_2 + {\rm OH}$	1.14*jx(ip_CH300H)	Rickard and Pascoe (200 Taraborrelli (2014)
G410apint295	TrGC	$\rm LNAPINABOOH + OH \rightarrow C96CO3$.65*6.87E-12+.35*1.23E-11	Rickard and Pascoe (200 Taraborrelli (2014)*

#	labels	reaction	rate coefficient	reference
G410bpin	TrGC	$BPINENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467/TEMP)*(0.8326*0.3+ 0.068)/(0.8326+0.068)	Vereecken and Peeters (2012)*
G410bpint2	TrGC	$BPINENE + OH \rightarrow LVROO6R102$	1.47E-11*EXP(467/TEMP)*0.8326*0.7/ (0.8326+0.068)	Vereecken and Peeters (2012)*
G410bpint3	TrGC	$BPINAO2 + HO_2 \rightarrow BPINAOOH$	KR02H02*0.914	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint4	TrGC	$BPINAO2 + NO \rightarrow BPINANO3$	KR02N0*0.240	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint5	TrGC	$\rm BPINAO2 + NO \rightarrow \rm NOPINONE + \rm HCHO + \rm HO_2 + \rm NO_2$	KR02N0*0.760	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint6	TrGC	$\rm BPINAO2 \rightarrow \rm NOPINONE + \rm HCHO + \rm HO_2$	9.20E-14*R02	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint7	TrGC	$\rm BPINAOOH + OH \rightarrow BPINAO2$	1.33E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint8	TrGC	$\label{eq:BPINAOOH} \mathrm{BPINAOOH} + \mathrm{h}\nu \rightarrow \mathrm{NOPINONE} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{OH}$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009), Taraborrelli (2014)
A10bpint9	TrGC	$\rm BPINANO3 + OH \rightarrow \rm NOPINONE + \rm HCHO + \rm NO_2$	4.70E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
3410bpint10	TrGC	$LVROO6R1O2 + NO \rightarrow LVROO6R3O2 + CH_3COCH_3 + NO_2$	KR02N0*0.892	Vereecken and Peeters (2012), Taraborrelli (2014)
G410bpint11	TrGC	$LVROO6R102 + NO \rightarrow LVROO6R1NO3$	KR02N0*0.108	Vereecken and Peeters (2012), Taraborrelli (2014)
G410bpint12	TrGC	$\rm LVROO6R1O2 + HO_2 \rightarrow \rm LVROO6R1OOH$	KR02H02*0.914	Vereecken and Peeters (2012), Taraborrelli (2014)
G410bpint13	TrGC	$\rm LVROO6R1O2 \rightarrow \rm LVROO6R3O2 + CH_3COCH_3$	1.60E-13*RD2	Vereecken and Peeters (2012), Taraborrelli (2014)
G410bpint14	TrGC	$\rm LVROO6R3O2 \rightarrow \rm LVROO6R5O2$	5.68E10*exp(-8745/TEMP)	Vereecken and Peeters (2012), Taraborrelli (2014)*
G410bpint15	TrGC	$\rm LVROO6R3O2 + \rm NO \rightarrow \rm LVROO6R3O + \rm NO_2$	KR02N0*0.890	Vereecken and Peeters (2012), Taraborrelli (2014)
G410bpint16	TrGC	$\rm LVROO6R3O2+\rm NO\rightarrow\rm LVROO6R3NO3$	KR02N0*0.110	Vereecken and Peeters (2012), Taraborrelli (2014)
3410bpint17	TrGC	$\rm LVROO6R3O2 + HO_2 \rightarrow \rm LVROO6R3OOH$	KR02H02*0.820	Vereecken and Peeters (2012), Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference
G410bpint18	TrGC	$LVROO6R3O2 \rightarrow LVROO6R3O$	2.50E-13*R02	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint19	TrGC	$\rm LVROO6R3O \rightarrow \rm LVROO6R4P + HO_2$	5.7E10*exp(-2949/TEMP)	Vereecken and Peeters (2012) Taraborrelli (2014)*
G410bpint20	TrGC	$\rm LVROO6R5O2 \rightarrow \rm LVROO6R5P + OH$	9.17E10*exp(-8706/TEMP)	Vereecken and Peeters (2012) Taraborrelli (2014)*
G410bpint21	TrGC	$\rm LVRO6R1O2 + \rm NO \rightarrow \rm LVRO6R3O2 + \rm NO_2$	KR02N0*0.747	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint22	TrGC	$\rm LVRO6R1O2 + \rm NO \rightarrow \rm LVRO6R1NO3$	KR02N0*0.253	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint23	TrGC	$\rm LVRO6R1O2 + HO_2 \rightarrow \rm LVRO6R1OOH$	KR02H02*0.914	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint24	TrGC	$\rm LVRO6R1O2 \rightarrow \rm LVRO6R3O2$	8.80E-13*R02	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint25	TrGC	$\rm LVRO6R3O2+NO\rightarrow \rm LVRO6R3P+NO_2$	KR02N0*0.893	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint26	TrGC	$\rm LVRO6R3O2+NO\rightarrowLVRO6R3NO3$	KR02N0*0.107	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint27	TrGC	$\rm LVRO6R3O2+HO_2\rightarrow \rm LVRO6R3OOH$	KR02H02*0.914	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint28	TrGC	$\rm LVRO6R3O2 \rightarrow \rm LVRO6R3P$	5.00E-12*R02	Vereecken and Peeters (2012) Taraborrelli (2014)
G410bpint29	TrGC	$\mathrm{NOPINONE} + \mathrm{OH} \rightarrow \mathrm{NOPINDO2}$	1.55E-11	Lewis et al. (2005), Rickard and Pascoe (2009), Taraborrell (2014)
G410bpint30	TrGC	$\rm NOPINDO2 + HO_2 \rightarrow \rm NOPINDOOH$	KR02H02*0.890	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint31	TrGC	$\rm NOPINDO2 + NO \rightarrow C89CO3 + NO_2$	KR02N0	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint32	TrGC	$\rm NOPINDO2 \rightarrow C89CO3$	2.00E-12*R02	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint33	TrGC	$\mathrm{NOPINDOOH} + \mathrm{OH} \rightarrow \mathrm{NOPINDCO} + \mathrm{OH}$	2.63E-11	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint34	TrGC	NOPINDOOH + $h\nu \rightarrow C89CO3 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009) Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference
G410bpint35	TrGC	NOPINDCO + OH \rightarrow C89CO3	3.07E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint36	TrGC	BPINENE + $O_3 \rightarrow$ NOPINONE + .63 CO + .37 HOCH2OOH + .16 OH + .16 HO ₂	1.5E-17*.051/(1027)	Nguyen et al. (2009), Tarabor- relli (2014)
G410bpint37	TrGC	$BPINENE + O_3 \rightarrow NOPINOO$	1.5E-17*.368/(1027)	Nguyen et al. (2009), Tarabor- relli (2014)
G410bpint38	TrGC	$\rm BPINENE + O_3 \rightarrow \rm NOPINDO2 + OH$	1.5E-17*.283/(1027)	Nguyen et al. (2009), Tarabor- relli (2014)
G410bpint40	TrGC	$BPINENE + O_3 \rightarrow C8BC + CO_2$	1.5E-17*(.104+.167)/(1027)	Nguyen et al. (2009), Tarabor- relli (2014)*
G410bpint41	TrGC	$C8BC + OH \rightarrow C8BCO2$	3.04E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint42	TrGC	$C8BCO2 + HO_2 \rightarrow C8BCOOH$	KR02H02*0.859	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint43	TrGC	$C8BCO2 + NO \rightarrow C8BCNO3$	KR02N0*0.138	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint44	TrGC	$C8BCO2 + NO \rightarrow C89O2 + NO_2$	KR02N0*0.862	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint45	TrGC	$C8BCO2 \rightarrow C89O2$	2.50E-13*R02	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint46	TrGC	$\rm C8BCOOH + OH \rightarrow C8BCCO + OH$	1.62E-11	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint47	TrGC	$\rm C8BCOOH + h\nu \rightarrow C89O2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint48	TrGC	$\rm C8BCNO3 + OH \rightarrow C8BCCO + NO_2$	1.84E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint49	TrGC	$\rm C8BCNO3 \rightarrow C89O2 + NO_2$	J_IC3H7ND3	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint50	TrGC	$C8BCCO + OH \rightarrow C89O2$	3.94E-12	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint51	TrGC	$\rm NOPINOO \rightarrow NOPINONE + H_2O_2$	6.00E-18*c(ind_H20)	Rickard and Pascoe (2009), Taraborrelli (2014)
G410bpint52	TrGC	$\rm NOPINOO + CO \rightarrow \rm NOPINONE$	1.2E-15	Rickard and Pascoe (2009), Taraborrelli (2014)

#	labels	reaction	rate coefficient	reference
G410bpint53	TrGC	$NOPINOO + NO \rightarrow NOPINONE + NO_2$	1.E-14	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint54	TrGC	$\rm NOPINOO+NO_2\rightarrow NOPINONE+NO_3$	1.E-15	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint55	TrGC	$\rm NOPINOO+SO_2\rightarrow NOPINONE+H_2SO_4$	7.E-14	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint56	TrGC	$\rm BPINENE + NO_3 \rightarrow \rm LNBPINABO2$	2.51E-12	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint57	TrGC	$\label{eq:lnbpinabol} \text{LNBPINABO2} + \text{HO}_2 \rightarrow \text{LNBPINABOOH}$	KR02H02*0.914	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint58	TrGC	LNBPINABO2 + NO \rightarrow NOPINONE + HCHO + NO ₂ + NO ₂	KR02N0	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint59	TrGC	LNBPINABO2 + NO ₃ \rightarrow NOPINONE + HCHO + NO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint60	TrGC	$LNBPINABO2 \rightarrow NOPINONE + HCHO + NO_2$	9.20E-14*R02*0.7	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint61	TrGC	$LNBPINABO2 \rightarrow BPINANO3$	9.20E-14*R02*0.3	Rickard and Pascoe (2009) Taraborrelli (2014)*
G410bpint62	TrGC	$\texttt{LNBPINABOOH} + \texttt{OH} \rightarrow \texttt{LNBPINABO2}$	9.58E-12	Rickard and Pascoe (2009) Taraborrelli (2014)
G410bpint63	TrGC	LNBPINABOOH + $h\nu \rightarrow NOPINONE + HCHO + NO_2$ + OH	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009) Taraborrelli (2014)
G410apint296	TrGC	$CARENE + OH \rightarrow LAPINABO2$	8.7E-11*(.50+.25)	Wolfe et al. (2011), Taraborrell (2014)*
G410apint297	TrGC	$CARENE + OH \rightarrow MENTHEN6ONE + HO_2$	8.7E-11*.25*.60	Wolfe et al. (2011), Taraborrell (2014)
G410apint298	TrGC	$CARENE + OH \rightarrow LVROO6R102$	8.7E-11*.25*.40	Wolfe et al. (2011), Taraborrell (2014)
G410apint299	TrGC	$CARENE + O_3 \rightarrow APINBOO$	2.E-16*.50*.18	Wolfe et al. (2011), Taraborrell (2014)
G410apint300	TrGC	$CARENE + O_3 \rightarrow PINONIC$	2.E-16*.50*.16	Wolfe et al. (2011), Taraborrell (2014)
G410apint301	TrGC	$\mathrm{CARENE} + \mathrm{O}_3 \rightarrow \mathrm{OH} + \mathrm{NORPINAL} + \mathrm{CO} + \mathrm{HO}_2$	2.E-16*.50*.66	Wolfe et al. (2011), Taraborrell (2014)

#	labels	reaction	rate coefficient	reference
G410apint302	TrGC	$CARENE + O_3 \rightarrow APINAOO$	2.E-16*.50*.12	Wolfe et al. (2011), Taraborrelli (2014)
G410apint303	TrGC	$CARENE + O_3 \rightarrow OH + C109O2$	2.E-16*.50*(.22+.66)	Wolfe et al. (2011), Taraborrelli (2014)*
3410apint304	TrGC	$\mathrm{CARENE}+\mathrm{NO}_3\rightarrow\mathrm{LNAPINABO2}$	9.5E-12	Wolfe et al. (2011), Taraborrelli (2014)
G410myrc	TrGC	$\mathrm{BMYRCENE} + \mathrm{OH} \rightarrow \mathrm{MYRCISOPO2}$	9.19E-12*exp(1071./temp)*0.64	Hites and Turner (2009), Or- lando et al. (2000), Taraborrelli (2014)
G410myrct2	TrGC	$\rm BMYRCENE + OH \rightarrow MYRCO2$	9.19E-12*exp(1071./temp)*0.36	Hites and Turner (2009), Or- lando et al. (2000), Taraborrelli (2014)
G410myrct3	TrGC	BMYRCENE + $O_3 \rightarrow .25 \text{ CH}_3\text{COCH}_3 + .75 \text{ OH} + .75$ CH ₂ COCH ₂ O ₂ + MYRCCHO	4.7E-16	Atkinson and Arey (2003), Taraborrelli (2014)
G410myrct4	TrGNC	$\rm BMYRCENE + NO_3 \rightarrow MYRCNO3$	1.1E-11	Atkinson and Arey (2003), Taraborrelli (2014)
G410myrct5	TrGC	$MYRCO2 \rightarrow CH_3COCH_3 + HO_2 + MYRCCHO$	8.E-13*R02	Taraborrelli (2014)
G410myrct6	TrGC	$MYRCO2 + HO_2 \rightarrow MYRCOOH$	KR02H02	Taraborrelli (2014)
G410myrct7	TrGCN	$\begin{array}{r} \text{MYRCO2} + \text{NO} \rightarrow .80 \text{ CH}_3\text{COCH}_3 + .80 \text{ HO}_2 + .80 \\ \text{MYRCCHO} + .80 \text{ NO}_2 + .20 \text{ MYRCNO3} \end{array}$	KR02N0	Taraborrelli (2014)*
G410myrct8	TrGCJ	MYRCOOH + $h\nu \rightarrow CH_3COCH_3 + OH + HO_2 + MYRCCHO$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
G410myrct9	TrGC	$\rm MYRCOOH + OH \rightarrow MYRCOOHISOPO2$	1.55E-10	Baker et al. (2004), Taraborrelli (2014)
G410myrct10	TrGC	$\begin{array}{l} {\rm MYRCOOH} + {\rm NO}_3 \rightarrow {\rm CH}_3{\rm COCH}_3 + {\rm SURCH3CHO} + \\ {\rm NISOPO2} \end{array}$	4.7E-13	Baker et al. (2004), Taraborrelli (2014)
G410myrct11	TrGC	$MYRCNO3 + OH \rightarrow iC_3H_7ONO_2 + MYRCCHOISOPO2$	1.55E-10	see note
G410myrct12	TrGC	$MYRCISOPO2 \rightarrow MYRCISOPO$	1.E-12*R02	Taraborrelli (2014)
G410myrct13	TrGC	$MYRCISOPO2 + HO_2 \rightarrow MYRCISOPOOH$	KR02H02	Taraborrelli (2014)
G410myrct14	TrGC	MYRCISOPO2 + NO \rightarrow .8 MYRCISOPO + .8 NO ₂ + .2 MYRCISOPNO3	KR02N0	Taraborrelli (2014)
G410myrct15	TrGC	$MYRCISOPO2 \rightarrow MYRCHPALD + HO_2$	K16HS	Taraborrelli (2014)*
G410myrct16	TrGC	MYRCISOPO \rightarrow CH ₃ COCH ₃ + SURCH3CHO + .43 MVK + .27 MACR + .7 HCHO + .29 LHC4ACCHO + HO.	KDEC	Taraborrelli (2014)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G410myrct17	TrGC	$\frac{MYRCISOPNO3 + OH \rightarrow CH_3COCH_3 + HO_2 + SUBCH_3CHO + ISOPPNO2}{SUBCH_3CHO + ISOPPNO2}$	kadt+kads	Taraborrelli (2014)
G410myrct18	TrGC	MYRCISOPOOH + $h\nu \rightarrow MYRCISOPO + OH$	1.14*ix(in CH300H)	Taraborrelli (2014)
G410myrct19	TrGC	MYRCISOPOOH + OH \rightarrow SUBCH3CHO + 43	kadt+kads	Taraborrelli (2014)
01100010	1100	ISOPBOOH + $.27$ ISOPDOOH + $.29$ LISOPACOOH +	nau o nau o	Taraborroni (2011)
		$CH_2COCH_2 + HO_2$		
G410mvrct20	TrGCJ	MYRCHPALD + $h\nu \rightarrow OH + ZCODC23DBCOOH + HO_2$	J HPALD	Taraborrelli (2014)
G410myrct21	TrGC	MYRCHPALD + OH \rightarrow MYRCCHOHPALD + HO ₂ +	kadt+kads	Taraborrelli (2014)
		CH ₃ COCH ₃		
G410myrct22	TrGC	$MYRCHPALD + OH \rightarrow SURCH3CO3 + SURCH3CHO +$	(kadt+kads)*acho*ach2ooh	Taraborrelli (2014)
•		$HCHO + GLYOX + HO_2$		
G410myrct23	TrGC	MYRCHPALD + $O_3 \rightarrow$ MYRCCHOHPALD + .25	4.7E-16	Taraborrelli (2014)
		$CH_3COCH_3 + .75 OH + .75 CH_3COCH_2O_2$		
G410myrct24	TrGC	$\rm MYRCCHO \ + \ OH \ \rightarrow \ SURCH3CHO \ + \ $	1.55E-10	Baker et al. (2004), Taraborrell
		MYRCCHOISOPO2		(2014)
G410myrct25	TrGC	$MYRCCHO + NO_3 \rightarrow SURCH3CHO + NISOPO2$	4.7E-13	Baker et al. (2004), Taraborrell
				(2014)
G410myrct26	TrGC	MYRCCHOISOPO2 \rightarrow MYRCCHOISOPO	1.E-12*R02	Taraborrelli (2014)
G410myrct27	TrGC	$MYRCCHOISOPO2 + HO_2 \rightarrow SURCH3CHO + .43$	KR02H02	Taraborrelli (2014)
		ISOPBOOH + .27 ISOPDOOH + .29 LISOPACOOH		
G410myrct28	TrGC	$MYRCCHOISOPO2 + NO \rightarrow .8 MYRCCHOISOPO + .8$	KR02N0	Taraborrelli (2014)
		$NO_2 + .2$ SURCH3CHO + .2 ISOPBNO3		
G410myrct29	TrGC	$MYRCCHOISOPO2 \rightarrow MYRCCHOHPALD + HO_2$	K16HS	Taraborrelli (2014)*
G410myrct30	TrGC	$MYRCCHOISOPO \rightarrow SURCH3CHO + .43 MVK + .27$	KDEC	Taraborrelli (2014)
		MACR $+$.7 HCHO $+$.29 LHC4ACCHO $+$ HO ₂		
G410myrct31	TrGCJ	MYRCCHOHPALD + $h\nu \rightarrow$ SURCH3CHO + OH +	J_HPALD	Taraborrelli (2014)
	T GG	$ZCODC23DBCOOH + HO_2$	(1	TE 1 11: (201.0)
G410myrct32	IrGC	$MYRCCHOHPALD + OH \rightarrow SURCH3CHO + .3$	(kadt+kads)*acho*ach2ooh	Taraborrelli (2014)
		C10DC202C400H + .2 C100HC202C40D + .3		
0410	TOO	NVBCOOUEODO2 · NVBCOOUEODO	1 5 10:000	T1: (2014)
G410myrct33	TrGC	$MTRCOOHISOPO2 \rightarrow MTRCOOHISOPO$	1.E-12*RU2	Taraborrelli (2014)
G410myrct34	THEC	$MTRCOOHISOPO2 + HO_2 \rightarrow MTRCOOHISOPOOH$	KRU2HU2	Taraborrelli (2014)
G410myFCt35	nge	$NO_{0} \pm 2 CH_{0}COCH_{0} \pm 2 SUBCH3CHO \pm 2 ISOPBNO3$	RRU2NU	Taraborreni (2014)
G410myrct36	TrGC	$MVRCOOHISOPO2 \rightarrow MVRCOOHHPALD + HO_{2}$	K16HS	Taraborrelli (2014)*
GHIOMYICLOU	1100		A10hD	raraborreni (2014)

APPENDICIES

Table 1: Gas phase reactions (continued)				
#	labels	reaction	rate coefficient	reference
G410myrct37	TrGC	$\begin{array}{l} \mbox{MYRCOOHISOPO} \rightarrow \mbox{CH}_3\mbox{COCH}_3 + \mbox{SURCH3CHO} + .43 \\ \mbox{MVK} + .27 \mbox{ MACR} + .7 \mbox{ HCHO} + .29 \mbox{ LHC4ACCHO} + \\ \mbox{HO}_2 + \mbox{OH} \end{array}$	KDEC	Taraborrelli (2014)
G410myrct38	TrGCJ	MYRCOOHISOPOOH + $h\nu \rightarrow MYRCOOHISOPO + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
G410myrct39	TrGCJ	MYRCOOHISOPOOH + $h\nu \rightarrow CH_3COCH_3 + HO_2 + SURCH3CHO + .43$ ISOPBOOH + .27 ISOPDOOH + .29 LISOPACOOH + OH	1.14*jx(ip_CH300H)	Taraborrelli (2014)
G410myrct40	TrGCJ	$\begin{array}{rll} \mathrm{MYRCOOHHPALD} + \mathrm{h}\nu \rightarrow \mathrm{CH}_3\mathrm{COCH}_3 + \mathrm{OH} + \\ \mathrm{SURCH3CHO} + \mathrm{OH} + \mathrm{ZCODC23DBCOOH} + \mathrm{HO}_2 \end{array}$	J_HPALD	Taraborrelli (2014)
G410myrct41	TrGC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(kadt+kads)*acho*ach2ooh	Taraborrelli (2014)
G410myrct42	TrGC	SURCH3CHO + OH \rightarrow SURCH3CO3 + H ₂ O	4.4E-12*EXP(365./temp)	Taraborrelli (2014)*
G410myrct43	TrGC	SURCH3CHO + $h\nu \rightarrow$ HCHO + HO ₂ + HO ₂ + CO	jx(ip_CH3CH0)	Taraborrelli (2014)
G410myrct44	TrGC	SURCH3CHO + $NO_3 \rightarrow HNO_3 + SURCH3CO3$	KNO3AL	Taraborrelli (2014)
G410myrct45	TrGC	$SURCH3CO3 \rightarrow HCHO + HO_2 + CO_2$	1.00E-11*0.7*R02	Taraborrelli (2014)
G410myrct46	TrGC	$SURCH3CO3 \rightarrow SURCH3CO2H$	1.00E-11*0.3*R02	Taraborrelli (2014)
G410myrct47	TrGC	$SURCH3CO3 + HO_2 \rightarrow OH + HCHO + HO_2 + CO_2$	KAPH02*0.44	Taraborrelli (2014)
G410myrct48	TrGC	$SURCH3CO3 + HO_2 \rightarrow SURCH3CO3H$	KAPH02*0.41	Taraborrelli (2014)
G410myrct49	TrGC	$SURCH3CO3 + HO_2 \rightarrow SURCH3CO2H + O_3$	KAPH02*0.15	Taraborrelli (2014)
G410myrct50	TrGC	$SURCH3CO3 + NO_2 \rightarrow SURPAN$	k_CH3C03_N02	Taraborrelli (2014)
G410myrct51	TrGC	$SURCH3CO3 + NO \rightarrow NO_2 + HCHO + HO_2 + CO_2$	KAPNO	Taraborrelli (2014)
G410myrct52	TrGC	$SURCH3CO3 + NO_3 \rightarrow NO_2 + HCHO + HO_2 + CO_2$	KR02N03*1.60	Taraborrelli (2014)
G410myrct53	TrGC	$SURCH3CO2H + OH \rightarrow HCHO + HO_2 + CO_2$	4.2E-14*exp(850./temp)	Taraborrelli (2014)*
G410myrct54	TrGC	$SURCH3CO3H + h\nu \rightarrow HCHO + HO_2 + OH + CO_2$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
G410myrct55	TrGC	$SURCH3CO3H + OH \rightarrow SURCH3CO3 + H_2O$	0.6*k_CH300H_0H	Taraborrelli (2014)
G410myrct56	TrGC	$SURPAN \rightarrow SURCH3CO3 + NO_2$	k_PAN_M	Taraborrelli (2014)
G410myrct57	TrGC	$SURPAN + OH \rightarrow HCHO + CO + NO_2$	9.50E-13*EXP(-650./temp)	Taraborrelli (2014)
G410afarn	TrGC	$FARNESENE + OH \rightarrow LFARNISOPO2$	2.7E-11*EXP(390./temp)	Taraborrelli (2014)*
G410afarnt2	TrGC	$FARNESENE + OH \rightarrow LFARNO2$	2.*1.9E-11*exp(450./temp)	Taraborrelli (2014)*
G410afarnt3	TrGC	FARNESENE + $O_3 \rightarrow$ FARNCHO + .25 CH ₃ COCH ₃ + .75 OH + .75 CH ₃ COCH ₂ O ₂	6.51E-15*exp(-829./temp)	Taraborrelli (2014)*
G410afarnt4	TrGC	FARNESENE + $O_3 \rightarrow MHO + MYRCCHO + .75 OH$	6.51E-15*exp(-829./temp)	Taraborrelli (2014)*
G410afarnt5	TrGNC	$FARNESENE + NO_3 \rightarrow LFARNO2$	2E-12+2*9.37E-12	Taraborrelli (2014)*

48

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G410afarnt6	TrGC	$LFARNO2 \rightarrow LFARNO$	8.E-13*R02	Taraborrelli (2014)
G410afarnt7	TrGC	$LFARNO2 + HO_2 \rightarrow LFARNOOH$	KR02H02	Taraborrelli (2014)
G410afarnt8	TrGC	LFARNO2 + NO \rightarrow .75 LFARNO + .75 NO ₂ + .25	KR02N0	Taraborrelli (2014)
		LFARNONO2		
G410afarnt9	TrGCJ	$LFARNOOH + h\nu \rightarrow LFARNO + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
G410afarnt10	TrGC	$LFARNOOH + OH \rightarrow MHOOOH + MYRCCHOISOPO2$	2.7E-11*EXP(390./temp)	Taraborrelli (2014)
G410afarnt11	TrGC	LFARNONO2 + OH \rightarrow .5 MHO + .5 FARNCHO +	2.*1.9E-11*exp(450./temp)	Taraborrelli (2014)
		MYRCISOPNO3		
G410afarnt12	TrGC	LFARNO \rightarrow .5 MHO + .5 MYRCCHO + .5 FARNCHO +	KDEC	Taraborrelli (2014)
		$.5 \text{ CH}_3 \text{COCH}_3 + \text{HO}_2$		
G410afarnt13	TrGC	$LFARNISOPO2 \rightarrow LFARNISOPO$	1.E-12*R02	Taraborrelli (2014)
G410afarnt14	TrGC	$LFARNISOPO2 + HO_2 \rightarrow LFARNISOPOOH$	KR02H02	Taraborrelli (2014)
G410afarnt15	TrGC	$\rm LFARNISOPO2 + NO \rightarrow .75 \ LFARNISOPO + .75 \ NO_2 + .7$	KR02N0	Taraborrelli (2014)
		.25 LFARNISOPNO3		
G410afarnt16	TrGC	$LFARNISOPO2 \rightarrow MYRCCHOHPALD + HO_2 + MHO$	K16HS	Taraborrelli (2014)*
G410afarnt17	TrGC	LFARNISOPO \rightarrow MHO + MYRCCHOISOPO	KDEC	Taraborrelli (2014)
G410afarnt18	TrGC	LFARNISOPNO3 + OH \rightarrow MHO + HO ₂ + ISOPBNO3	kadt+kads	Taraborrelli (2014)
G410afarnt19	TrGC	$LFARNISOPOOH + h\nu \rightarrow LFARNISOPO + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
G410afarnt20	TrGC	LFARNISOPOOH + OH \rightarrow MHO + MYRCCHOISOPO2	kadt+kads	Taraborrelli (2014)
G410afarnt21	TrGC	LFARNISOPOOH + $O_3 \rightarrow MHO + MYRCCHOISOPO2$	2.*6.51E-15*exp(-829./temp)	Taraborrelli (2014)*
		+ .75 OH		
G410afarnt22	TrGC	$FARNCHO + OH \rightarrow FARNCHOO2$	1.9E-11*exp(450./temp)	Taraborrelli (2014)*
G410afarnt23	TrGC	$FARNCHO + OH \rightarrow FARNCHOISOPO2$	2.7E-11*EXP(390./temp)	Taraborrelli (2014)*
G410afarnt24	TrGC	$FARNCHO + O_3 \rightarrow OPA + MYRCCHO + .75 OH$	6.51E-15*exp(-829./temp)	Taraborrelli (2014)*
G410afarnt25	TrGNC	$FARNCHO + NO_3 \rightarrow FARNCHOISOPO2$	2E-12	Taraborrelli (2014)*
G410afarnt26	TrGNC	$FARNCHO + NO_3 \rightarrow FARNCHOO2$	9.37E-12	Taraborrelli (2014)*
G410afarnt27	TrGC	$FARNCHOO2 \rightarrow FARNCHOO$	8.E-13*R02	Taraborrelli (2014)
G410afarnt28	TrGC	$FARNCHOO2 + HO_2 \rightarrow FARNCHOOOH$	KR02H02	Taraborrelli (2014)
G410afarnt29	TrGC	$FARNCHOO2 + NO \rightarrow .75 FARNCHOO + .75 NO_2 + .25$	KR02N0	Taraborrelli (2014)
		FARNCHONO3		
G410afarnt30	TrGCJ	$FARNCHOOOH + h\nu \rightarrow FARNCHOO + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
G410afarnt31	TrGC	$FARNCHOOOH + OH \rightarrow OPA + HO_2 +$	2.7E-11*EXP(390./temp)	Taraborrelli (2014)*
		MYRCCHOISOPO2		
G410afarnt32	TrGC	$FARNCHONO3 + OH \rightarrow OPA + MYRCISOPNO3$	1.9E-11*exp(450./temp)	Taraborrelli (2014)*
G410afarnt33	TrGC	$FARNCHOO \rightarrow OPA + MYRCCHO + HO_2$	KDEC	Taraborrelli (2014)
		49		

#	labels	reaction	rate coefficient	reference
G410afarnt34	TrGC	FARNCHOISOPO2 → FARNCHOISOPO	1.E-12*R02	Taraborrelli (2014)
G410afarnt35	TrGC	$FARNCHOISOPO2 + HO_2 \rightarrow FARNCHOISOPOOH$	KR02H02	Taraborrelli (2014)
H10afarnt36	TrGC	FARNCHOISOPO2 + NO \rightarrow .75 FARNCHOISOPO + .75 NO ₂ + .25 FARNCHOISOPNO3	KR02N0	Taraborrelli (2014)
410afarnt37	TrGC	$\label{eq:FARNCHOISOPO2} \begin{split} & \mbox{FARNCHOISOPO2} \rightarrow \mbox{OPA} + \mbox{MYRCCHOHPALD} + \mbox{HO} \\ & \mbox{HO} \end{split}$	K16HS	Taraborrelli (2014)*
410afarnt38	TrGC	FARNCHOISOPO \rightarrow OPA + MYRCCHOISOPO	KDEC	Taraborrelli (2014)
410afarnt39	TrGC	$FARNCHOISOPNO3 + OH \rightarrow OPA + HO_2 + ISOPBNO3$	kadt+kads	Taraborrelli (2014)
410afarnt40	TrGC	FARNCHOISOPOOH + $h\nu \rightarrow$ FARNCHOISOPO + OH	1.14*jx(ip_CH300H)	Taraborrelli (2014)
3410afarnt41	TrGC	FARNCHOISOPOOH + OH \rightarrow OPA + MYRCCHOISOPO2	kadt+kads	Taraborrelli (2014)
410afarnt42	TrGC	FARNCHOISOPOOH + $O_3 \rightarrow OPA$ + MYRCCHOISOPO2 + .75 OH	6.51E-15*exp(-829./temp)	Taraborrelli (2014)
410afarnt43	TrGC	$\rm MHO + OH \rightarrow \rm MHOO2$	1.37E-10	Smith et al. (1996), Taraborrel (2014)*
410afarnt44	TrGC	$\begin{array}{l} {\rm MHO}+{\rm O}_3\rightarrow.25~{\rm CH}_3{\rm COCH}_3+.125~{\rm OPA}+.25~{\rm GLYOX}\\ {\rm +}~.25~{\rm CH}_3{\rm COCH}_2{\rm O}_2~+~.125~{\rm H}_2{\rm O}_2~+~.75~{\rm OH}~+~.75\\ {\rm CH}_3{\rm COCH}_2{\rm O}_2~+~.75~{\rm OPA} \end{array}$	3.9E-16	Grosjean et al. (1996), Tarabor relli (2014)*
410afarnt45	TrGC	$MHO + NO_3 \rightarrow MHOO2$	7E-12	Smith et al. (1996), Taraborrell (2014)
G410afarnt46	TrGC	$MHOO2 \rightarrow CH_3COCH_3 + OPA + HO_2$	8.E-13*R02	Taraborrelli (2014)
410afarnt47	TrGC	$MHOO2 + HO_2 \rightarrow MHOOOH$	KR02H02	Taraborrelli (2014)
G410afarnt48	TrGC	$\begin{array}{l} \text{MHOO2} + \text{NO} \rightarrow .25 \text{ MHONO3} + .75 \text{ CH}_3\text{COCH}_3 + .75 \\ \text{OPA} + .75 \text{ HO}_2 + .75 \text{ NO}_2 \end{array}$	KR02N0	Taraborrelli (2014)
G410afarnt49	TrGC	$\rm MHOOOH + OH \rightarrow \rm MHOO2$	0.6*k_CH300H_OH	Taraborrelli (2014)
410afarnt50	TrGC	$MHOOOH + OH \rightarrow MHOCODOOH + HO_2$	kt*ftoh*falk*falk	Taraborrelli (2014)
410afarnt51	TrGCJ	$MHOOOH + h\nu \rightarrow CH_3COCH_3 + OPA + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
G410afarnt52	TrGCJ	$\begin{array}{l} MHOCODOOH + h\nu \rightarrow CH_{3}COCH_{3} + CH_{3}COCH_{2}O_{2} + \\ SURCH3CO3 + OH \end{array}$	1.14*jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)	Taraborrelli (2014)*
G410afarnt53	TrGC	$MHONO3 + OH \rightarrow MHOCODNO3 + HO_2$	kt*ftoh*falk*fch2ono2	Taraborrelli (2014)
410afarnt54	TrGC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	2.84*J_IC3H7N03	Taraborrelli (2014)
G410afarnt55	TrGC	$OPA + OH \rightarrow CH_3COCH_2O_2 + SURCH3CO3$	2.E-11	Fruekilde et al. (1997), Tarabor relli (2014)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G410afarnt56	TrGCJ	$OPA + h\nu \rightarrow CH_3COCH_2O_2 + SURCH3CO3 + HO_2$	jx(ip_CH3CH0)+jx(ip_CH3COCH3)	Taraborrelli (2014)

APPENDICIES

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

k_H02_H02 =

k N03 N02 = k

kadp = 0.45E - 11

kads = 3.0E - 11

kadt = 5.5E - 11

apan = 0.56

acho = 0.31

acoch3 = 0.76

ach2ono2 = 0.47

ach2oh = 1.7

ach2ooh = 0.21

acoh = 2.2

a cooh = 2.2

(1.5E-12*EXP(19./temp)+1.7E-33*EXP(1000./temp)

H20)). The value for the first (pressure-independent) part is from Christensen et al. (2002), the water term

G3110: The rate coefficient is defined as backward re-

G3203: The rate coefficient is: $k_N02_H02 = k_$

3rd(temp,cair,1.8E-31,3.2,4.7E-12,1.4,0.6). G3206: The rate coefficient is: k_HNO3_ DH = 2.4E-14 * EXP(460./temp) + 1./ (1./

cair)* (1.+1.4E-21*EXP(2200./temp)*C(ind_

3rd(temp, cair, 2.E-30, 4.4, 1.4E-12, 0.7, 0.6).

G2110: The rate coefficient is:

from Kircher and Sander (1984).

G3109: The rate coefficient is:

action divided by equilibrium constant.

aco2h = 0.25

kadsecprim = 3.0E - 11

kadtertprim = 5.7E - 11

activation factors (parameter names starting with a)

*Notes:

Rate coefficients for three-body reactions are defined via the function $\mathbf{k}_{-} \mathbf{3rd}(T, M, k_0^{300}, n, k_{inf}^{300}, m, f_c)$. In the code, the temperature T is called **temp** and the concentration of "air molecules" M is called **cair**. Using the auxiliary variables $k_0(T)$, $k_{inf}(T)$, and k_{ratio} , $\mathbf{k}_{-} \mathbf{3rd}$ is defined as:

 $\begin{array}{lll} k_0(T) &=& k_0^{300} \times \left(\frac{300 \mathrm{K}}{T}\right)^n \\ k_{\mathrm{inf}}(T) &=& k_{\mathrm{inf}}^{300} \times \left(\frac{300 \mathrm{K}}{T}\right)^m \\ k_{\mathrm{ratio}} &=& \frac{k_0(T) M}{k_{\mathrm{inf}}(T)} \\ \mathbf{k_3rd} &=& \frac{k_0(T) M}{1 + k_{\mathrm{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_1(k_{\mathrm{ratio}}))^2}\right)} \end{array}$

A similar function, called k_3rd_iupac here, is used by Atkinson et al. (2005) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

of rate constants as developed by Taraborrelli (2010). SAR for H-addition do C-C double bonds: SAR for H-abstraction:

base rate constants

base rate constants

(1)

(2)

(3)

(4)

ks = 8.42E - 13

 $kt \hspace{.1in} = \hspace{.1in} 1.75E-12$

kp = 1.24E - 13

krohro = 1.6E - 13

 $kcho = 5.55E - 12 \times EXP(311/T) * .95(13)$

 $kco2h = .66 \times 4.2E - 14 \times exp(850/T)$ (15)

fsoh = 3.44

ftoh = 2.68

fsooh = 7.

ftooh = 7.

fch2ono2 = 0.2

fono2 = 0.04

fcpan = .25

fallyl = 3.6

falk = 1.23

fcho = 0.55

fco2h = 1.67

fpch2oh = 1.29

ftch2oh = 0.53

fco = 0.73

fo = 8.15

activation factors (parameter names starting with f)

(10)

(11)

(12)

(14)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

52

(6.5E-34 * EXP(1335./temp)*cair) + 1./ (2.7E-17 * EXP(2199./temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4103a: Sander et al. (2006) recommend a zero product yield for HCHO. G4103b: Sander et al. (2006) recommend a zero product yield for HCHO.

G4107: The rate coefficient is: $\mbox{k_CH300H_OH} = 5.3E\text{-}12\mbox{*EXP}\ (190.\mbox{/temp}).$

G4109: The same temperature dependence assumed as for $\rm CH_3CHO+NO_3.$

G4201e: The product distribution is from Rickard and Pascoe (2009), after substitution of the Criegee intermediate by its decomposition products.

G4206: The product C_2H_5OH , which reacts only with OH, is substituted by its degradation products ≈ 0.1 HOCH₂CH₂O₂ + 0.9 CH₃CHO + 0.9 HO₂.

G4207: The rate constant 8.01E-12 is for the H abstraction in alpha to the -OOH group (Rickard and Pascoe, 2009) and $0.6*\kappa\text{CH300H}.0\text{H}$ is for the $C_2\text{H}_5\text{O}_2$ channel. The branching ratios are calculated from the terms of the rate coefficient at 298 K.

G4211et1: personal communication C. Gross (MPICH) G4211et2: personal communication C. Gross (MPICH) G4211et3: personal communication C. Gross (MPICH)

G4213: The rate coefficient is: $k_CH3C03_N02 = k_3rd(temp, cair, 8.5E-29, 6.5, 1.1E-11, 1., 0.6)$.

G4218: The rate coefficient is the same as for the CH_3O_2 channel in G4107 ($CH_3OOH+OH$).

G4221: The rate coefficient isk_PAN_M = k_CH3CO3_N02/9.E-29*EXP(-14000./temp), i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G4226ea: personal communication C. Gross (MPICH) G4226eb: personal communication C. Gross (MPICH) G4226ec: personal communication C. Gross (MPICH) G4243: Orlando et al. (1998a) estimated that about 25% of the $\rm HOCH_2CH_2O$ in this reaction is produced with sufficient excess energy that it decomposes promptly. The decomposition products are 2 $\rm HCHO$ + $\rm HO_2$.

G4255et2: personal communication C. Gross (MPICH) G4255et3: personal communication C. Gross (MPICH) G4260et2: personal communication C. Gross (MPICH) G4260et3: personal communication C. Gross (MPICH) G4266e: 0.4 CO2HCH2O2 approximated to

 $\label{eq:hooch2} \begin{array}{c} \text{HOOCH2CO2H} \\ \text{G4300: The product NC3H7O2 is substituted with its} \\ \text{degradation products $C_2H_5O_2 + CO_2 + HO_2$.} \end{array}$

G4304: The value for the generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

G4306: The MCM (Rickard and Pascoe, 2009) products are 0.2 IPROPOL + 0.2 CH₃COCH₃ + 0.6 IC3H7O. IPROPOL and IC3H7O are substituted with their degradation products. We assume IPROPOL to be oxidized entirely to CH₃COCH₃ + HO₂ by OH. IC3H7O + O₂ produces the same products.

G4307: Analogous to G4207 for both rate coefficient and branching ratios.

G4315a: The same value as for G4107 (CH₃OOH + OH) is used, multiplied by the branching ratio of the CH₃O₂ channel.

G4343e: k for the major channel of ACETOL + OH G4353e: .28 CH3CHO2CO2H yield approximated by .14 CH3COCO2H + .14 CH3CHO

G4354e: k for (CH3)2CCO adjusted

G4355e: k for (CH3)2CCO adjusted

53

G4400: LC₄H₉O₂ represents 0.127 NC4H9O2 + 0.873 SC4H9O2.

G4401: NC4H9O and SC4H9O are substituted with 2 CO₂ + C₂H₃O₂ and 0.636 MEK + HO₂ and 0.364 CH₃CHO + C₂H₅O₂, repectively. The stoichiometric coefficients on the right side are weighted averages.

G4403: The alkyl nitrate yield is the weighted average yield for the two isomers forming from NC4H9O2 and SC4H9O2.

G4404: The product distribution is the weighted average of the single isomer hydroperoxides. It is calculated from the rate constants of single channels and the ratio of the isomers NC4H9O2 and SC4H9O2. The overall rate constant for this reaction is calculated as weighted average of the channels rate constants. The relative weight of the products from NC4H9O0H and SC4H9OOH are then 0.0887 and 0.9113. The channels producing RO_2 are given the rate coefficient 0.6% CH3O0H_OH as for G4107. For NC4H9OOH the products are 0.327 NC4H9O2 + 0.673 C3H7CHO + 0.673 C3H7CHO is then substituted with 2 CO_2 + C2H_5O_2 + 0.673 C3H7CHO + 1.346 CO_2 + 0.673 C_2H_5O_2 + 0.673 C3H7CHO + 0.219 SC4H9O2 + 0.781 MEK + 0.781 OH.

G4406e: Lumped products from Taraborrelli et al. (2009).

G4413: LMEKO2 represents 0.459 MEKAO2 + 0.462 MEKBO2 + 0.079 MEKCO2.

G4415: Alkyl nitrate formation is neglected. The products of MEKAO and MEKCO are substituted with HCHO + CO₂ + HOCH₂CH₂O₂ and HCHO + CO₂ + C₂H₅O₂.

G4416: LMEKOOH is assumed having the composition 0.459 MEKAOOH + 0.462 MEKBOOH + 0.079 MEKCOOH. MEKAOOH + OH gives 0.89 CO2C3CHO +

4441e: The rate coefficient and products are 30% for	CO2	H-abstraction channels neglected, branching ratios re-
4440e: as for G4439ea	G4537e: $O2NOCH2COCH2O2 = NO2 + 2 HCHO +$	nels neglected, branching ratios re-scaled. G410apin3:
4439ea: products are the weighted average for the de- omposition of $0.3 \text{ HMVKAO} + 0.7 \text{ HMVKBO}$.	tion with OH yields BIACETOH recycling OH \rightarrow substitution with BIACETOH	G410apin1: H-abstraction channels neglected, branch- ing ratios re-scaled G410apin2: H-abstraction chan-
actions of each single RO2 in the MCM (Rickard and accoe, 2009).	G45222: HYBIACETOOA approximated to yield BI-ACETOH only, CH3COCHOOHCH2OH's main reac-	G45mbo43: NO3CH2CO3 = HCHO + CO2 + NO2 following to Paulot et al(2009)
roducts are the weighted average for the permutation	al(1999)	G45mbo15: approx. not as in MCM!!!
omposition 0.3 HMVKAO2 + 0.7 HMVKBO2. The	G4521ec: k parent alkene, branching from Rickard et	G45mbo11: approximated to yield only MBOACO
1e weighted average for the isomers.34437e: LHMVKABO2 is a lumped species of virtual	G4512e: $k_{H-shift}^{1.6}$	G4136: CH3COCH2OOCH2CO3 \rightarrow CH3CO3 + CO2 + 2 HCHO
4420: Products are as in G4415. Only the main chan- els for each isomer are considered. Rate constant is	G4510e: as for G4509e $C4511c; h^{1.6}$	HCOCOHCH3CHO substituted with CH3COCHOH + CO + HO2
4419: The same value as for PAN is assumed.	G4509e: eisopco2 42percent and zisopao2 58percent	G4598et3: ZC1O3HC23DBC4OD 62percent G4598et4:
vely.	G4508e: as for G4507e	G4585at3: approximation H-abstraction only at C1
• H ₂ O For the product distribution NC4H9NO3 and C4H9NO3 account for 0.08577 and 0.91423 respec-	G4507e: eisopao2 60percent zisopao2 40percent, MIME	+ 2 HO2)
$IO_2 + H_2O$. SC4H9NO3 + OH gives MEK + NO ₂	G4506e: k=1.5E-12*2.	+ 2 CO + HO2) + .375 CO2 + .375(MGLYOX + CO
3H7CHO being substituted with $2 \text{ CO}_2 + \text{C}_2\text{H}_5\text{O}_2$.	G4505e: k=.3E-12*.46+1.E-12*.54	+ .375 CO2 + .375 HCOCOHCH3CHO \rightarrow .25(MG- LYOX + 2 CO + 2 HO2) + .375 CO + .375(CH3CO3
$C4H9NO3 + OH$ gives $C3H7CHO + NO_2 + H_2O$ with	G4504e: k=1.5E-12*2.	C10DC30DC40D + .375 CO + .375 CH3COCOCHO
bundances for NC4H9NO3 and SC4H9NO3, respec- vely. Product distribution is calculated accordingly.	G4503e: k=.3E-12*.77+1.4E-12*.23	G4581et10: C1ODC3OOHC4OD + OH \rightarrow .25
4417: The rate coefficient is the combination of he ones for the two isomers weighted by the relative	1.33 HCHO + .67 HCOCH2O2 + .33 CO G4501e: coefficients from Paulot et al(2009)ACP	\rightarrow .5 CH3CO3 + .5 CO + .5 MGLYOX + .5 HO2 +
\cdot H ₂ O.	G4500e: $M_{H-shift}$ G4500e: MVKO2 substituted with HCHO + ACO3 =	COCH200H
- 0.386 MEKCO2 + H ₂ O. EGLYOX is substituted rith $C_2H_5O_2$ + 2 CO ₂ and the products become 0.614	+ .1 GLYOX + .9 Ch3COCOCh0 \rightarrow Ch3CO3 + .1 GLYOX + 1.8 CO + .9 HO2; $k_{H-shift}^{1,6}$	G4577et3: from MIME ZCODC23DBCOOH = 0.64 ZC10DC23DBC40OH + 0.36 ZC10OHC23DBC40D, HOOCH2COCH2O2 substituted with HCO-
$-0.11 \text{ MEKAO2} + H_2O. \text{ MEKBOOH} + OH gives$.758 BIACET + 0.758 OH + 0.242 MEKBO2 + H_2O. IEKCOOH + OH gives 0.614 EGLYOX + 0.614 OH	G4462e: EZCH3CO2CHCHO 90:10 mixture of the Z- and E-isomer, CH3COCHO2CHO \rightarrow .1 CH3CO3 + .1 GLYOX + .9 CH3COCHOOHCHO \rightarrow .1 CH3CO3	G4552e: Peroxy vinyl radical chemistry neglected G4553e: Peroxy vinyl radical chemistry neglected G4555e: Peroxy vinyl radical chemistry neglected
tituted with $CH_3COCH_2O_2 + CO_2$ and the products ecome 0.80 CH-COCH_O_ + 0.80 CO_ + 0.80 OH	and give $CH3CO3 + CO + CO2 + OH$	G4551e: Peroxy vinyl radical chemistry neglected
89 OH + 0 11 MEKAO2 + H ₂ O CO2C3CHO is sub-	G4455: CH3COCOCO3H assumed to photolyse quickly	$G4550et^{2}$: LC57800H = 6 C5700H + 4 C5800H

G410apint150: endo-cyclic vinyl ROOH assumed not be formed	G410bpint40: .167 is for the neglected lact one stemming from the dioxirane as C8BC $$	G410afarnt5: k sum of 4-methylhexa-3,5-dienal (Baker et al., 2004) and twice 2-methyl-2-butene.
G410apint162: C920CO3, C109CO, C109OH neglected	G410bpint61: BPINBNO3 produced but approximated	G410afarnt16: $k_{H-shift}^{1,6}$
G410apint191: C811NO3 neglected	by BPINANO3	G410afarnt21: k for 2-methyl-2-butene
G410apint196: C812OH neglected	G410apint296: 2- and 3-CARENE together treated as the more emitted 3-CARENE, being similar to AP-	G410afarnt22: k for 2-methyl-2-butene
G410apint201: C813OH neglected	INENE and assumed to yield the same products.	G410afarnt23: k for addition to the isoprene unit
G410apint202: C813NO3 neglected	G410apint303: endo-cyclic vinyl ROOH assumed not	G410afarnt24: k for 2-methyl-2-butene
G410apint237: C512OH and CO13C4CHO neglected G410apint239: C512NO3 neglected	be formed G410myrct7: 20percent alkylnitrate yield like for AP- INENE	G410afarnt25: k of 4-methylhexa-3,5-dienal (Baker et al., 2004).
C410apint242: C3150H + C515CO hegiected	G410mvrct15: $k_{\mu}^{1,6}$	G410afarnt26: k of 2-methyl-2-butene
G410apint295: NC101CO substituted with C96CO3	G410mvrct29: $k_{1,6}^{1,6}$	G410afarnt31: k for addition to the isoprene unit
G410bpin: BPINBO2 minor and similar to	$G410myret36: k^{1,6}$	G410afarnt32: k of 2-methyl-2-butene
BPINAO2, peroxy ring closure of BPINCO2 is	G410myrct53: k acetic acid + OH	G410afarnt37: $k_{H-shift}^{1,6}$
0.6/s fast and traditional chemistry is neglected BPINCO2=LVROO6R102, G410bpint2: BPINB02	G410myrct42: Surrogate acetaldehyde.	G410afarnt43: 1.57E-10 for k was relative to
minor and similar to BPINAO2, peroxy ring closure	G410afarn: k for addition to the isoprene unit	k(trans-2-butene), with the new k= $5.662E-11(IUPAC)$, k(MHO+OH) is 13percent lower
of BPINCO2 is 0.6/s fast and traditional chemistry is	G410afarnt2: k for 2-methyl-2-butene	C410sformt44, 25 CLVOX + 25 CH2COCH2O2 mage
G410bpint14: 1.5-H-shift	G410afarnt3: O3 + outer double bond k for 2-methyl-	products of CH3OCCH2CHO2CHO ox.
G410bpint19: LVROO6R13OO formation neglected	2-butene, OH-yield might be much lower	G410afarnt52: CO2H3CO3 approximation
G410bpint20: traditional reactions neglected because of complexity	2-butene, MYRCCHO approximation, OH-yield might be much lower	G410afarnt55: Approximation: OPACO3 is CH3COCH2O2 + SURCH3CO3.

#	labels	reaction	rate coefficient	reference	
J1000	StTrGJ	$O_2 + h\nu \rightarrow O(^{3}P) + O(^{3}P)$	jx(ip_02)	see note	
J1001a	StTrGJ	$O_3 + h\nu \rightarrow O(^1D)$	jx(ip_01D)	see note	
J1001b	StTrGJ	$O_3 + h\nu \rightarrow O(^3P)$	jx(ip_03P)	see note	
J2101	StTrGJ	$H_2O_2 + h\nu \rightarrow 2 \text{ OH}$	JX(ip_H2O2)	see note	
J3101	StTrGNJ	$NO_2 + h\nu \rightarrow NO + O(^{3}P)$	jx(ip_NO2)	see note	
13103a	StTrGNJ	$NO_3 + h\nu \rightarrow NO_2 + O(^{3}P)$	jx(ip_NO2O)	see note	
ЈЗ103Ъ	StTrGNJ	$NO_3 + h\nu \rightarrow NO$	jx(ip_NOO2)	see note	
J3104a	StTrGNJ	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	see note	
J3200	TrGJ	$HONO + h\nu \rightarrow NO + OH$	JX(ip_HONO)	see note	
J3201	StTrGNJ	$HNO_3 + h\nu \rightarrow NO_2 + OH$	JX(ip_HNO3)	see note	
J3202	StTrGNJ	$HNO_4 + h\nu \rightarrow .667 NO_2 + .667 HO_2 + .333 NO_3 + .333 OH$	JX(ip_HNO4)	see note	
14100e	StTrGJ	$CH_3OOH + h\nu \rightarrow HCHO + OH + HO_2$	1.14*jx(ip_CH300H)	see note	
14101a	StTrGJ	$\rm HCHO + h\nu \rightarrow H_2 + CO$	jx(ip_COH2)	see note	
I4101b	StTrGJ	$\rm HCHO + h\nu \rightarrow \rm H + \rm CO + \rm HO_2$	jx(ip_CHOH)	see note	
J4104e	StTrGJ	$HOCH2OOH + h\nu \rightarrow OH + HO_2 + HCOOH$	1.14*jx(ip_CH300H)	see note	
J4200e	TrGCJ	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	1.14*jx(ip_CH300H)	see note	
J4201	TrGCJ	$CH_3CHO + h\nu \rightarrow CH_3O_2 + HO_2 + CO$	jx(ip_CH3CH0)	see note	
J4202e	TrGCJ	$CH_3C(O)OOH + h\nu \rightarrow CH_3O_2 + OH + CO_2$	1.14*jx(ip_CH3CO3H)	see note	
J4204e	TrGNCJ	$\begin{array}{l} PAN + h\nu \rightarrow .6 \ CH_3C(O)OO + .6 \ NO_2 + .4 \ CH_3O_2 + .4 \ CO_2 \\ + .4 \ NO_3 \end{array}$	jx(ip_PAN)	see note	
J4205ae	TrGCJ	$HOCH_2CHO + h\nu \rightarrow HCHO + 2 HO_2 + CO$	jx(ip_HOCH2CH0)*0.70	Taraborrelli (2014)	
J4205be	TrGCJ	$\rm HOCH_2CHO + h\nu \rightarrow 1.16~OH + .84~HCOCH2O2 + .1~HCHO + .1~CO + .06~GLYOX$	jx(ip_HOCH2CH0)*0.15	Taraborrelli (2014)	
14205ce	TrGCJ	$HOCH_2CHO + h\nu \rightarrow CH_3OH + CO$	jx(ip_HOCH2CH0)*0.15	Taraborrelli (2014)	
J4206e	TrGCJ	$\rm HOOCH2CHO + h\nu \rightarrow OH + HCHO + CO + HO_2$	1.14*jx(ip_CH300H)+jx(ip_ HOCH2CH0)	Taraborrelli (2014)	
14206et2	TrGCJ	$\mathrm{HOCH}_2\mathrm{CO}_3\mathrm{H} + \mathrm{h}\nu \rightarrow \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{OH} + \mathrm{CO}_2$	1.14*jx(ip_CH300H)	Rickard and 1 (2009)*	Pascoe
4207	TrGCJ	$PHAN + h\nu \rightarrow HOCH_2CO_3 + NO_2$	jx(ip_PAN)	see note	
4208	TrGCJ	$GLYOX + h\nu \rightarrow 2 CO + 2 HO_2$	jx(ip_GLYOX)	see note	
14209	TrGNCJ	$\mathrm{HCOCO_{2}H} + \mathrm{h}\nu \rightarrow \mathrm{2}\ \mathrm{HO_{2}} + \mathrm{CO} + \mathrm{CO_{2}}$	jx(ip_MGLYOX)	Rickard and $(2009)^*$	Pascoe
J4210e	TrGNCJ	$\mathrm{HCOCO_3H} + \mathrm{h}\nu \rightarrow \mathrm{HO_2} + \mathrm{CO} + \mathrm{OH} + \mathrm{CO_2}$	1.14*jx(ip_CH300H)+jx(ip_ HOCH2CH0)	Rickard and (2009)*	Pascoe

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J4211e	TrGCJ	$\rm HYETHO2H + h\nu \rightarrow \rm HOCH_2CH_2O + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
J4212	TrGCJ	$ETHOHNO3 + h\nu \rightarrow HO_2 + 2 HCHO + NO_2$	J_IC3H7NO3	see note
J4213e	TrGCJ	$HOOCH2CO3H + h\nu \rightarrow OH + HCHO + CO_2 + OH$	2*1.14*jx(ip_CH300H)	Taraborrelli (2014)
J4214e	TrGC	$HOOCH2CO2H + h\nu \rightarrow OH + HCHO + HO_2 + CO_2$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
J4215e	TrGC	CH2CO + h $\nu \to$.4 CO2 + .8 H + .34 CO + .34 OH + .34 HO2 + .16 HCHO + .16 O(^3P) + .1 HCOOH + CO	J_ketene* 0.36	Taraborrelli (2014)
J4216e	TrGC	$CH3CHOHOOH + h\nu \rightarrow CH_3O_2 + HCOOH + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
J4217e	TrGCJ	$NO3CH2CHO + h\nu \rightarrow HO_2 + CO + HCHO + NO_2$	1.59*J_IC3H7NO3+jx(ip_CH3COCH3)	Taraborrelli (2014)
J4300e	TrGCJ	$iC_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	1.14*jx(ip_CH300H)	von Kuhlmann (2001)*
J4301	TrGCJ	$CH_3COCH_3 + h\nu \rightarrow CH_3C(O)OO + CH_3O_2$	jx(ip_CH3COCH3)	see note
J4302	TrGCJ	$CH_3COCH_2OH + h\nu \rightarrow CH_3C(O)OO + HCHO + HO_2$	J_ACETOL	see note
J4303	TrGCJ	$MGLYOX + h\nu \rightarrow CH_3C(O)OO + CO + HO_2$	jx(ip_MGLYOX)	see note
J4304e	TrGCJ	$CH_3COCH_2O_2H + h\nu \rightarrow CH_3C(O)OO + HCHO + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Taraborrelli (2014)
J4305e	TrGCJ	$HOCH2COCH2OOH + h\nu \rightarrow HOCH2CO + HCHO + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Taraborrelli (2014)
J4306	TrGNCJ	$\mathrm{iC_3H_7ONO_2} + \mathrm{h}\nu \rightarrow \mathrm{CH_3COCH_3} + \mathrm{NO_2} + \mathrm{HO_2}$	J_IC3H7NO3	von Kuhlmann et al. (2003)*
J4307	TrGCJ	$NOA + h\nu \rightarrow CH_3C(O)OO + HCHO + NO_2$	J_IC3H7NO3+jx(ip_CH3COCH3)	see note
J4309e	TrGCJ	$HYPROPO2H + h\nu \rightarrow CH_3CHO + HCHO + HO_2 + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
J4310e	TrGNCJ	$PR2O2HNO3 + h\nu \rightarrow NOA + HO_2 + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
J4311e	TrGCJ	$HOCH2COCHO + h\nu \rightarrow HOCH2CO + CO + HO_2$	jx(ip_MGLYOX)	Taraborrelli (2014)
J4312e	TrGCJ	CH3COCO2H + h $\nu \rightarrow$.5 CH ₃ CHO + .8 CO ₂ + .4 CH ₃ C(O)OO + .3 HO ₂ + .1 CH ₃ COOH + .1 OH + .2 CO	JX(IP_MGLYOX)	Taraborrelli (2014)
J4313e	TrGCJ	$HCOCOCH2OOH + h\nu \rightarrow HCOCO3A + HCHO + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Taraborrelli (2014)
J4314e	TrGCJ	$HCOCOCH2OOH + h\nu \rightarrow HOOCH2CO3 + CO + HO_2$	JX(IP_MGLYOX)	Taraborrelli (2014)
J4315e	TrGCJ	$HCOCOCHO + h\nu \rightarrow HCOCO3A + HO_2 + CO$	2*JX(IP_MGLYOX)	Taraborrelli (2014)
J4316e	TrGC	$CH3COCO3H + h\nu \rightarrow CH_3C(O)OO + OH + CO_2$	<pre>JX(IP_MGLYOX)+1.14*jx(ip_CH300H)</pre>	Taraborrelli (2014)
J4317e	TrGC	$CH3CHCO + h\nu \rightarrow C_2H_4 + CO$	J_ketene*0.36*2.	Taraborrelli (2014)*
J4400e	TrGCJ	$\begin{array}{l} {\rm LC_4H_9OOH} + {\rm h}\nu \rightarrow {\rm OH} + 0.254\ {\rm CO_2} + 0.5552\ {\rm MEK} + 0.5552 \\ {\rm HO_2} + 0.3178\ {\rm CH_3CHO} + 0.4448\ {\rm C_2H_5O_2} \end{array}$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
J4401	TrGCJ	$MVK + h\nu \rightarrow C_3H_6 + CO$	jx(ip_MVK)	Taraborrelli (2014)*
J4403	TrGCJ	$MEK + h\nu \rightarrow CH_3C(O)OO + C_2H_5O_2$	0.42*jx(ip_CHOH)	von Kuhlmann et al. (2003)*

#	labels	reaction	rate coefficient	reference
J4404e	TrGCJ	$\begin{array}{rl} {\rm LMEKOOH} + {\rm h}\nu \rightarrow 0.538 \ {\rm HCHO} + 0.538 \ {\rm CO}_2 + 0.459 \\ {\rm HOCH}_2{\rm CH}_2{\rm O}_2 + 0.079 \ {\rm C}_2{\rm H}_5{\rm O}_2 + 0.462 \ {\rm CH}_3{\rm C}({\rm O}){\rm OO} + 0.462 \\ {\rm CH}_3{\rm CHO} + {\rm OH} \end{array}$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (2009)*
J4405	TrGCJ	BIACET + $h\nu \rightarrow 2 \text{ CH}_3\text{C}(0)\text{OO}$	2.15*jx(ip_MGLYOX)	see note
14406	TrGNCJ	$ \begin{array}{l} LC4H9NO3 + h\nu \rightarrow NO_2 + 0.254 \ CO_2 + 0.5552 \ MEK + 0.5552 \\ HO_2 + 0.3178 \ CH_3CHO + 0.4448 \ C_2H_5O_2 \end{array} $	J_IC3H7N03	see note
4407e	TrGNCJ	$MPAN + h\nu \rightarrow .6 MACO3 + .6 NO_2 + .4 MACO2 + .4 NO_3$	jx(ip_PAN)	Taraborrelli (2014)*
4409e	TrGCJ	$CO2H3CO3H + h\nu \rightarrow CH3COCHOH + OH + CO_2$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
J4410	TrGCJ	$\rm CO2H3CO3H + h\nu \rightarrow CH_3C(O)OO + HO_2 + HCOCO_3H$	J_ACETOL	Rickard and Pascoe (2009)*
14410t2	TrGCJ	$CO2H3CO2H + h\nu \rightarrow CH_3C(O)OO + HCOCO_2H + HO_2$	J_ACETOL	Taraborrelli (2014)
14411	TrGCJ	MACR + $h\nu \rightarrow .5$ MACO3 + .5 MACO2 + .5 CO + HO ₂	jx(ip_MACR)	see note
14412e	TrGCJ	MACROOH + $h\nu \rightarrow MACRO + OH$	1.14*jx(ip_CH300H)+ 2.77*jx(ip_ HOCH2CH0)	see note
4414	TrGCJ	$MACROH + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	see note
14415e	TrGCJ	$MACO3H + h\nu \rightarrow MACO2 + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2014)
14416e	TrGCJ	LHMVKABOOH + $h\nu \rightarrow .12$ CH3COCHOH + .88 CH ₃ C(O)OO + .88 HOCH ₂ CHO + .12 HCHO + OH	1.14*jx(ip_CH300H)+J_ACETOL	Taraborrelli (2014)
14418e	TrGCJ	$CO2H3CHO + h\nu \rightarrow CH3COCHOH + CO + HO_2$	jx(ip_HOCH2CH0)+J_ACETOL	Taraborrelli (2014)
14419	TrGCJ	$\rm HO12CO3C4 + h\nu \rightarrow CH_3C(O)OO + HOCH_2CHO + HO_2$	J_ACETOL	Rickard and Pascoe (2009)*
4420e	TrGCJ	$BIACETOH + h\nu \rightarrow CH_3C(O)OO + HOCH2CO$	2.15*jx(ip_MGLYOX)	Taraborrelli (2014)
14421e	TrGC	HCOCCH3CO + h $\nu \rightarrow .5$ OH + .25 HCOCOCH2O2 + .25 CH ₃ C(O)OO + .5 CH3CHOO + .5 CO	J_KETENE	Taraborrelli (2014)
4422e	TrGC	$\begin{array}{l} CH3COCHCO + h\nu \rightarrow .0192 \ CH3COCO2H + .1848 \ H_2O_2 + \\ .2208 \ MGLYOX + .36 \ OH + .36 \ CO + .56 \ CH_3C(O)OO + .2 \\ CH_3CHO + .2 \ CO_2 + .2 \ HCHO + .2 \ HO_2 \end{array}$	J_KETENE*0.5	Taraborrelli (2014)
4422et2	TrGC	$CH3COCHCO + h\nu \rightarrow CH3CHCO + CO$	J_KETENE*0.5	Taraborrelli (2014)
4423e	TrGCJ	$CH3COCOCHO + h\nu \rightarrow CH_3C(O)OO + CO + CO + HO_2$	jx(ip_MGLYOX)	Taraborrelli (2014)
4424e	TrGCJ	$CH3COCOCHO + h\nu \rightarrow CH_3C(O)OO + HCOCO3A$	2.15*jx(ip_MGLYOX)	Taraborrelli (2014)
4424et2	TrGC	$CH3COCOCO2H + h\nu \rightarrow CH_3C(O)OO + CO + CO_2 + HO_2$	3.15*jx(ip_MGLYOX)	Taraborrelli (2014)
4502et2	TrGCJ	LISOPACOOH + $h\nu \rightarrow LHC4ACCHO + HO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
4503et2	TrGNCJ	LISOPACNO3 + $h\nu \rightarrow$ LHC4ACCHO + HO ₂ + NO ₂	0.59*J_IC3H7N03	see note

#	labels	reaction	rate coefficient	reference
J4504e	TrGCJ	ISOPBOOH + $h\nu \rightarrow MVK + HCHO + HO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
J4505e	TrGNCJ	$ISOPBNO3 + h\nu \rightarrow MVK + HCHO + HO_2 + NO_2$	2.84*J_IC3H7NO3	see note
J4506e	TrGCJ	$ISOPDOOH + h\nu \rightarrow MACR + HCHO + HO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
J4507	TrGNCJ	$ISOPDNO3 + h\nu \rightarrow MACR + HCHO + HO_2 + NO_2$	J_IC3H7NO3	see note
J4508e	TrGNCJ	$NISOPOOH + h\nu \rightarrow NC4CHO + HO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
J4509	TrGNCJ	$NC4CHO + h\nu \rightarrow NOA + 2 CO + 2 HO_2$	jx(ip_MACR)	see note
J4510e	TrGNCJ	LNISOOH + h ν \rightarrow NOA + OH + .5 HOCHCHO + .5 CO + .5 HO ₂ + .5 CO ₂	1.14*jx(ip_CH300H)	Taraborrelli et al. $(2009)^*$
J4511e	TrGCJ	LHC4ACCHO + h $\nu \rightarrow .5$ LHC4ACCO3 + .5 HO ₂ + .5 OH + .25 MACRO2 + .25 LHMVKABO2	jx(ip_MACR)	Taraborrelli (2014)*
J4512e	TrGCJ	LC578OOH + $h\nu \rightarrow .25$ CH ₃ COCH ₂ OH + .75 MGLYOX + .25 HOCHCHO + .75 HOCH ₂ CHO + .75 HO ₂ + OH	1.14*jx(ip_CH300H)+ 2.77*jx(ip_ HOCH2CH0)	Taraborrelli (2014)
J4513e	TrGCJ	LHC4ACCO3H + $h\nu \rightarrow$ OH + .5 MACRO2 + .5 LHMVKABO2 + OH + CO ₂	J_HPALD	Taraborrelli (2014)*
J4514	TrGNCJ	LC5PAN1719 + $h\nu \rightarrow .6$ LHC4ACCO3 + .6 NO ₂ + .2 MACRO2 + .2 LHMVKABO2 + .4 CO ₂ + .4 NO ₃	jx(ip_PAN)	see note
J4515e	TrGCJ	$HCOC5 + h\nu \rightarrow MACO2 + HOCH2CO$	0.5*jx(ip_MVK)	Taraborrelli (2014)
J4516e	TrGCJ	$C59OOH + h\nu \rightarrow CH_3COCH_2OH + HOCH2CO + OH$	J_ACETOL+1.14*jx(ip_CH300H)	Taraborrelli (2014)
J4517e	TrGCJ	$ZCODC23DBCOOH + h\nu \rightarrow LHC4ACCO3 + OH$	J_HPALD	Taraborrelli (2014)
J4518e	TrGCJ	ZCO3HC23DBCOD + h $\nu \rightarrow .62$ EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + OH + CO_2	J_HPALD	Taraborrelli (2014)
J4519e	TrGCJ	C100HC200HC40D + $h\nu \rightarrow CH_3COCH_2O_2H + OH + 2 CO + HO_2$	2.77*JX(IP_HOCH2CH0)	Taraborrelli (2014)
J4520e	TrGCJ	C10OHC2OOHC4OD + $h\nu \rightarrow .5$ CH ₃ COCH ₂ O ₂ H + .5 HOCHCHO + .5 CO2H3CHO + .5 HCHO + 1.5 OH	2.*1.14*JX(IP_CH300H)	Taraborrelli (2014)
J4523e	TrGCJ	$C1ODC2OOHC4OD + h\nu \rightarrow MGLYOX + HOCHCHO + OH$	1.14*JX(IP_CH300H)	Taraborrelli (2014)
J4524e	TrGCJ	$C1ODC2OOHC4OD + h\nu \rightarrow CO2H3CHO + CO + HO_2 + OH$	2.*2.77*JX(IP_HOCH2CH0)	Taraborrelli (2014)*
J4525	TrGCJ	PEROXYRINGC2OOH + h $\nu \rightarrow$ CH3COCH2OOCH2CHO + HO2 + OH	1.14*JX(IP_CH300H)	Taraborrelli (2014)
J4526	TrGCJ	PEROXYRINGC2OOH + h $\nu \rightarrow$ HCHO + OH + HO ₂ + CO2H3CHO	1.14*JX(IP_CH300H)	Taraborrelli $(2014)^\ast$

#	labels	reaction	rate coefficient	reference
J4525e	TrGCJ	ZCODC23DBCOD + $h\nu \rightarrow .5$ CH3COCHCO + $.5$ HCOCCH3CO + CO + HO ₂ + OH	jx(ip_NO2)*0.1*0.5	Taraborrelli (2014)
J4526e	TrGCJ	CH3COCH2OOCH2CHO + $h\nu \rightarrow CH_3C(O)OO + HCHO + GLYOX + HO_2$	1.14*JX(IP_CH300H)+J_ACETOL	Taraborrelli (2014)
J4527e	TrGCJ	CH3COCH2OOCH2CHO + $h\nu \rightarrow CH_3C(O)OO$ + HCHO + HCHO + CO + HO ₂	jx(ip_HOCH2CH0)	Taraborrelli (2014)

*Notes:

J4212: It is assumed that J(ETHOHNO3) is the same as J(iC₃H₇ONO₂).

J-values are calculated with an external module and J4302: Following von Kuhlmann et al. (2003), we use $J(\rm CH_3\rm COCH_2\rm OH)=0.11*jx(ip_CHOH).$ As an addithen supplied to the MECCA chemistry. Values that originate from the Master Chemical Mechanism (MCM) by Rickard and Pascoe (2009) are transtional factor, the quantum yield of 0.65 is taken from Orlando et al. (1999a). lated according in the following way: $J(11) \rightarrow jx(ip_COH2)$ J4306: Following von Kuhlmann et al. (2003), we use $J(12) \rightarrow jx(ip_CHOH)$ $J(iC_3H_7ONO_2)=\texttt{3.7*jx(ip_PAN)}.$ $J(15) \rightarrow jx(ip_HOCH2CH0)$ J4307: NOA contains the cromophores of both $\rm CH_3COCH_3$ and a nitrate group. It is assumed here that the J values are additive, i.e.: J(NOA) = $J(13) → JX(1p_HOLSLBU)$ $J(13) → JX(1p_HOLSLBU)$ $J(22) → JX(1p_HOLSLBU)$ $J(23)+J(24) → JX(1p_HVK)$ $J(31)+J(32)+J(33) → JX(1p_GLY0X)$ $J(34) → JX(1p_HOLV0X)$ $J(24) → JX(1p_HOLV0X)$ $J(CH_3COCH_3) + J(iC_3H_7ONO_2).$ J4317e: products Chong and Kistiakowsky 1964, 0.36 quantum yield at 334nm Kelley and Hase1975, factor 2 $\begin{array}{l} \textbf{J(41)} \rightarrow \textbf{jx(ip_CH300H)} \\ \textbf{J(53)} \rightarrow \textbf{J(iC_3H_7ONO_2)} \\ \textbf{J(54)} \rightarrow \textbf{J(iC_3H_7ONO_2)} \end{array}$ because of bigger structure and fit to C2H4_LBA J4401: Romero et al(2005) $J(55) \rightarrow J(iC_3H_7ONO_2)$ J4406: It is assumed that J(LC4H9NO3) is the same as $J(56)+J(57) \rightarrow jx(ip_NOA)$ J(iC₃H₇ONO₂). J4207: It is assumed that J(PHAN) is the same as J(PAN).

vsis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J4414: It is assumed that J(MACROH) is 2.77 times larger than $J(HOCH_2CHO)$, consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J4505: It is assumed that J(ISOPBNO3) = 2.84 \times $J(iC_3H_7ONO_2)$, consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009). J4509: It is assumed that J(NC4CHO) is the same as

J(MACR).

J4511e: Peroxy vinyl radical chemistry approximated

J4513e: Peroxy vinyl radical chemistry approximated J4514: It is assumed that J(LC5PAN1719) is the same as J(PAN).

J4524e: the loss of C4OD is neglected

J4405: It is assumed that J(BIACET) is 2.15 times J4524e: the loss of C4OD is negrected larger than J(MGLYOX), consistent with the photol- J4526: decomposition of a dialkoxy radical

60

ned that J(BIACET) is 2.15 times

References

- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic con nounds: 1 Alkanes and alken J. Phys. Chem. Ref. Data, 26, 215–290, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH Baulch, D. L., Bowman, C. T., Cobos, C., Cox, R. A., radicals with alkanes and cycloalkanes, Atmos. Chem Phys., 3, 2233–2307, 2003.
- Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chemical Reviews, 103(12), 4605–4638, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Sum-mary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version August 1999. http://www.iupac-kinetic.ch.cam.ac.uk, 1999.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, Jr., R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version March 2005, http://www.iupac-kinetic.ch.cam.ac.uk, 2005.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055, 2006.
- Baeza-Romero, M. T., Glowacki, D. R., Blitz, M. A. Heard, D., Pilling, M. J., Rickard, A., and Seakins, P.: A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration, Phys. Chem. Chem. Phys., 9, 4114-4128, doi:10.1039/b702916k, 2007.

Baker, J., Arev, J., and Atkinson, R.: Kinetics of the Gas-Phase Reactions of OH Radicals, NO₃ Radicals and O₃ with Three C₇-Carbonyls Formed From The Atmospheric Reactions of Myrcene, Ocimene and Terpinolene, J. Atmos. Chem., pp. 241-260, 2004.

Just, T., Kerr, J. A., Pilling, M. J., Stocker, D., Troe, J., Tsang, W., Walker, R. W., and Warnatz, J.: Evaluated Kinetic Data for Combustion Modeling: Sup-plement II, J. Phys. Chem. Ref. Data, 34, 757–1397, 2005

Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between $CH_3(O)O_2$ and NO₃ important in the night-time troposphere?, J. Chem. Soc. Faraday Trans., 92, 2211-2222, 1996.

Capouet, M., Müller, J.-F., Ceulemans, K., Comper nolle, S., Vereecken, L., and Peeters, J.: Modeling aerosol formation in alpha-pinene photo-oxidation experiments, J. Geophys. Res., 8, doi:10.1029/ experiments, J. Ge 2007JD008995, 2008.

Christensen, L. E., Okumura, M., Sander, S. P., Salawhristensen, L. E., Okumura, M., Sander, S. P., Salaw-itch, R. J., Toon, G. C., Sen, B., Blavier, J.-F., and Jucks, K. W.: Kinetics of $HO_2 + HO_2 \rightarrow H_2O_2 +$ O_2 : Implications for stratospheric H_2O_2 , Geophys. Res. Lett., 29, doi:10.1029/2001GL014525, 2002.

Feierabend, K. J., Zhu, L., Talukdar, R. K. and Burkholder, J. B.: Rate coefficients for the OH + HC(O)C(O)H (Glyoxal) raction between 210 and 390 K, J. Phys. Chem. A, 112, 73-82, 2008.

Fruekilde, P., Hjorth, J., Jensen, N., Kotzias, D., and Ozonolysis at vegetation surfaces: Larsen, source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere, At-

61

mos. Environ., doi:10.1016/S1352-2310(97)00485-8, 1997.

Grosjean, D., and Seinfeld, J. H.: Grosiean. E., Gas+Phase Reaction of Ozone with Trans-2-Hexenal, Trans-2-Hexenyl Acetate, Ethylvinyl Ketone, and 6-Methyl-5-Hepten-2-One, Int. J. Chem. Kinetics, pp. 373-382, 1996

Hatakeyama, S., Honda, S., and Akimoto, H.: Rate con stants and mechanism for reactions of keten with OH radicals in air at 299 \pm 2K, Bull. Chem. Soc. Jpn., pp. 2157–2162, 1985.

Hermans, I., Mulller, J.-F., Nguyen, T. L., Jacobs, P. A., and Peeters, J.: Kinetics of α-Hydroxy-alkylperoxyl Radicals in Oxidation Processes. HO₂--Initiated Oxidation of Ketones/Aldehvdes near the Tropopause, J. Phys. Chem. A, pp. 4303–4311, doi: 10.1021/jp044080v, 2005.

Hites, R. A. and Turner, A. M.: Rate Constants for the Gas-Phase β -Myrcene+OH and Isoprene+OH Reactions as a Function of Temperature, Int. J. Chem. Kinetics, pp. 407-413, 2009.

IUPAC: Evaluated Kinetic Data, http://iupac. pole-ether.fr/, 2013.

Jenkin, M. E., Hurley, M. D., and Wallington, T. J.: Investigation of the radical product channel of the $CH_3C(O)O_2 + HO_2$ reaction in the gas phase, Phys. Chem. Chem. Phys., 9, 3149–3162, doi:10.1039/ b702757e, 2007.

Kircher, C. C. and Sander, S. P.: Kinetics and mecha-nism of HO₂ and DO₂ disproportionations, J. Phys. Chem., 88, 2082–2091, 1984.

Lewis, P. J., Bennett, K. A., and Harvey, J. N.: A computational study of the atmospheric oxidation of

- Lockwood, A. L., Shepson, P. B., Fiddler, M. N., and Alaghmand, M.: Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry, Atmos. Chem. Phys., 10, 6169–6178, doi: 10.5194/acp-10-6169-2010, 2010.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction $\rm OH+CO$ under atmospheric conditions, Geophys. Res. Lett., 28. 3135-3138. 2001.
- Mellouki, A. and Mu, Y.: On the atmospheric degradation of pyruvic acid in the gas phase, J. Photochem. Photobiol. A: Chem., doi:10.1016/S1010-6030(03) 00070-4, 2003.
- Mollner, A. K., Valluvadasan, S., Feng, L., Sprague, M. K., Okumura, M., Milligan, D. B., Bloss, W. J., Sander, S. P., Martien, P. T., Harley, R. A., McCoy, A. B., and Carter, W. P. L.: Rate of Gas Phase As-sociation of Hydroxyl Radical and Nitrogen Dioxide, Science doi:10.1126/science.110300.2010 Science, doi:10.1126/science.1193030, 2010.
- Nguyen, T. L., Peeters, J., and Vereecken, L.: Theoretical study of the gas-phase ozonolysis of β -pinene (C₁₀H₁₆), Phys. Chem. Chem. Phys., doi:10.1039/ b822984h, 2009.
- Orlando, J. J. and Tyndall, G. S.: The atmospheric chemistry of the HC(O)CO radical, Int. J. Chem. Kinetics, 33, 149-156, 2001.
- Orlando, J. J., Tyndall, G. S., Bilde, M., Ferronato, C., Wallington, T. J., Vereecken, L., and Peeters, J.: Laboratory and theoretical study of the oxy radicals in the OH- and Cl-initiated oxidation of ethene, J. Phys. Chem. A, 102, 8116-8123, 1998a.

- nopinone, Phys. Chem. Chem. Phys., pp. 1643–1649, doi:10.1039/b418909d, 2005. C., Wallington, T. J., Vereecken, L., and Peeters, J.: Laboratory and Theoretical Study of the Oxy Radicals in the OH- and Cl-Initiated Oxidation of Ethene, J. Phys. Chem. A, 102, 8116-8123, 1998b.
 - Orlando, J. J., Tyndall, G. S., Fracheboud, J. M., Estupinan, E. G., Haberkorn, S., and Zimmer, A.: The rate and mechanism of the gas-phase oxidation of hydroxyacetone, Atmos. Environ., 33, 1621-1629,
 - Orlando, J. J., Tyndall, G. S., and Paulson, S. E.: Mechanism of the OH-initiated oxidation of methacrolein, Geophys. Res. Lett., 26, 1999b.
 - Orlando, J. J., Noziere, B., Tyndall, G. S., Orze-chowska, G. E., Paulson, S. E., and Rudich, Y.: Product studies of the OH- and ozone-initiated oxidation some monoterpens, J. Geophys. Res., pp. 11561-11572. 2000.
 - Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with $CH_2=C(CH_3)C(O)OONO_2$ (MPAN), Atmos. Environ., 36, 1895-1900, 2002.
 - Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479–1501, 2009a.
 - Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., St. Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene, Science, 325, doi: 10.1126/science.1172910, 2009b.

Rickard, A. and Pascoe, S.: The Master Chemi-cal Mechanism (MCM), http://mcm.leeds.ac.uk, 2000

Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, Jet Propulsion Laboratory, Pasadena, CA, 2003.

Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Num-ber 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, http://jpldataeval.jpl. nasa.gov. 2006.

vakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821-4827, 2003.

Smith, A. M., Rigler, E., Kwok, E. S. C., and Atkin-son, R.: Kinetics and Products of the Gas-Phase Reactions of 6-Methyl-5-hepten-2-one and trans-Cinnamaldehyde with OH and NO₃ Radicals and O₃ and Cold Cold Cold and NO₃ Radicals and O₃ at 296(±2K), Environ. Sci. Technol., pp. 1781–1785,

Taraborrelli, D.: Isoprene Oxidation and its Impacts on the Atmospheric Composition, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, http://d-nb.info/1003538770/34, 2010.

Taraborrelli, D.: Mainz Organics Mechanism, (in preparation), 2014.

- Taraborrelli, D., Lawrence, M. G., Butler, T. M. araborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mech-anism 2 (MIM2): an isoprene oxidation mecha-nism for regional and global atmospheric modelling, Atmos. Chem. Phys., 9, 2751–2777, http://www. atmos-chem-phys.net/9/2751, 2009.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moan, S. S., Cox, R. A., Gramer, C., Deschark, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157–12182, 2001.

Vereecken, L. and Peeters, J.: A theoretical study of the OH-initiated gas-phase oxidation mechanism of b-pinene $(C_{10}H_{16})$: first generation productsw, Phys Chem. Chem. Phys., pp. 3802-3815, doi:10.1039/ c2cp23711c, 2012.

- ereecken, L., Müller, J.-F., and Peeters, J.: Low Z volatility poly-oxygenates in the OH-initiated atmospheric oxidation of α -pinene: impact of non-traditional peroxyl radical chemistry, Phys. Chem. Chem. Phys., 9, 5241-5248, doi:10.1039/b708023a, 2007
- von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3Dmodeling study considering non-methane hydrocar-bons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.

von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J.,

and Rasch, P. J.: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model descrip-tion and ozone results, J. Geophys. Res., 108D, doi: 10.1029/2002JD002893, 2003.

Wolfe, G. M., Thornton, J. A., Bouvier-Brown, N. C., Goldstein, A. H., Park, J.-H., McKay, M., Matross, D. M., Mao, J., Brune, W. H., LaFranchi, B. W., Browne, E. C., Min, K.-E., Wooldridge, P. J., Co-hen, R. C., Crounse, J. D., Faloona, I. C., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Huisman, A., and Keutsch, F. N.: The Chemistry of Atmosphere-Forest Exchange (CAFE) Model Part 2: Applica-tion to BEARPEX-2007 observations, Atmos. Chem. Phys. 11, 1269–1204, doi:10.5194/acm.11.2169.2011 Phys., 11, 1269–1294, doi:10.5194/acp-11-1269-2011, 2011.

7.6 **BIBLIOGRAPHY**

Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity and loss mechanisms of NO₃ and N₂O₅ in a polluted marine environment: Results from in situ measurements during New England Air Quality Study 2002, J Geophys Res-Atmos, 111, Artn D23s73

Doi 10.1029/2006jd007252, 2006.

Andrés-Hernández, M. D., Burkert, J., Reichert, L., Stöbener, D., Meyer-Arnek, J., Burrows, J. P., Dickerson, R. R., and Doddridge, B. G.: Marine boundary layer peroxy radical chemistry during the AEROSOLS99 campaign: Measurements and analysis, Journal of Geophysical Research, 106, 20833, 10.1029/2001jd900113, 2001.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O_x , HO_x , NO_x and SO_x species, Atmos Chem Phys, 4, 1461-1738, 2004.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmos Chem Phys, 6, 3625-4055, 2006.

Avnery, S., Mauzerall, D. L., Liu, J. F., and Horowitz, L. W.: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage, Atmos Environ, 45, 2284-2296, DOI 10.1016/j.atmosenv.2010.11.045, 2011a.

Avnery, S., Mauzerall, D. L., Liu, J. F., and Horowitz, L. W.: Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O_3 pollution, Atmos Environ, 45, 2297-2309, DOI 10.1016/j.atmosenv.2011.01.002, 2011b.

Bakwin, P. S., Jacob, D. J., Wofsy, S. C., Munger, J. W., Daube, B. C., Bradshaw, J. D., Sandholm, S. T., Talbot, R. W., Singh, H. B., Gregory, G. L., and Blake, D. R.: Reactive Nitrogen-Oxides and Ozone above a Taiga Woodland, J Geophys Res-Atmos, 99, 1927-1936, Doi 10.1029/93jd02292, 1994.

Beaver, M. R., St Clair, J. M., Paulot, F., Spencer, K. M., Crounse, J. D., LaFranchi, B. W., Min, K. E., Pusede, S. E., Wooldridge, P. J., Schade, G. W., Park, C., Cohen, R. C., and Wennberg, P. O.: Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009, Atmos Chem Phys, 12, 5773-5785, DOI 10.5194/acp-12-5773-2012, 2012.

Bekooy, J. P., Meerts, W. L., and Dymanus, A.: High-Resolution Laser-rf Spectroscopy on the $A^2\Pi_{3/2}-X^2\Pi_{3/2}$ System of Iodine Oxide (IO), J Mol Spectrosc, 102, 320-343, Doi 10.1016/0022-2852(83)90044-9, 1983.

Bloss, W. J., Rowley, D. M., Cox, R. A., and Jones, R. L.: Kinetics and products of the IO self-reaction, J Phys Chem A, 105, 7840-7854, Doi 10.1021/Jp0044936, 2001.

Bohn, B., Corlett, G. K., Gillmann, M., Sanghavi, S., Stange, G., Tensing, E., Vrekoussis, M., Bloss, W. J., Clapp, L. J., Kortner, M., Dorn, H. P., Monks, P. S., Platt, U., Plass-Dülmer, C., Mihalopoulos, N., Heard, D. E., Clemitshaw, K. C., Meixner, F. X., Prevot, A. S. H., and Schmitt, R.: Photolysis frequency measurement techniques: results of a comparison within the ACCENT project, Atmos. Chem. Phys., 8, 5373-5391, 10.5194/acp-8-5373-2008, 2008.

Bonn, B., Bourtsoukidis, E., Sun, T. S., Bingemer, H., Rondo, L., Javed, U., Li, J., Axinte, R., Li, X., Brauers, T., Sonderfeld, H., Koppmann, R., Sogachev, A., Jacobi, S., and Spracklen, D. V.: The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany, Atmos. Chem. Phys. Discuss., 13, 27501-27560, 10.5194/acpd-13-27501-2013, 2013.

Bourtsoukidis, E., Bonn, B., Dittmann, A., Hakola, H., Hellen, H., and Jacobi, S.: Ozone stress as a driving force of sesquiterpene emissions: a suggested parameterisation, Biogeosciences, 9, 4337-4352, DOI 10.5194/bg-9-4337-2012, 2012.

Bourtsoukidis, E., Williams, J., Kesselmeier, J., Jacobi, S., and Bonn, B.: From emissions to ambient mixing ratios: online seasonal field measurements of volatile organic compounds over a Norway spruce-dominated forest in central Germany, Atmos. Chem. Phys., 14, 6495-6510, 10.5194/acp-14-6495-2014, 2014.

Bradshaw, J., Davis, D., Crawford, J., Chen, G., Shetter, R., Muller, M., Gregory, G., Sachse, G., Blake, D., Heikes, B., Singh, H., Mastromarino, J., and Sandholm, S.: Photofragmentation two-photon laser-induced fluorescence detection of NO₂ and NO: Comparison of measurements with model results based on airborne observations during PEM-Tropics A, Geophys Res Lett, 26, 471-474, Doi 10.1029/1999gl900015, 1999.

Brasseur, G., Orlando, J. J., Tyndall, G. S., and National Center for Atmospheric Research (U.S.): Atmospheric chemistry and global change, Topics in environmental chemistry, Oxford University Press, New York, xviii, 654 p. pp., 1999.

Brown, S. S., Stark, H., Ciciora, S. J., and Ravishankara, A. R.: In-situ measurement of atmospheric NO₃ and N₂O₅ via cavity ring-down spectroscopy, Geophys Res Lett, 28, 3227-3230, Doi 10.1029/2001gl013303, 2001.

Browne, E. C., and Cohen, R. C.: Effects of biogenic nitrate chemistry on the NO_x lifetime in remote continental regions, Atmos Chem Phys, 12, 11917-11932, DOI 10.5194/acp-12-11917-2012, 2012.

Burkert, J., Behmann, T., Andrés Hernández, M. D., Stöbener, D., Weißenmayer, M., Perner, D., and Burrows, J. P.: Measurements of peroxy radicals in a forested area of Portugal, Chemosphere - Global Change Science, 3, 327-338, <u>http://dx.doi.org/10.1016/S1465-9972(01)00014-9</u>, 2001.

Burkholder, J. B., Talukdar, R. K., Ravishankara, A. R., and Solomon, S.: Temperature-Dependence of the HNO₃ UV Absorption Cross-Sections, J Geophys Res-Atmos, 98, 22937-22948, Doi 10.1029/93jd02178, 1993.

Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and Temperature Dependence of Methyl Nitrate Formation in the CH₃O₂+NO Reaction, J Phys Chem A, 116, 5972-5980, Doi 10.1021/Jp210710d, 2012.

Cadle, R. D., and Johnston, H. S.: Chemical reactions in Los Angeles smog, 2nd Proceedings of the National Air Pollution Symposium, 1952.

Calvert, J. G.: Test of Theory of Ozone Generation in Los-Angeles Atmosphere, Environ Sci Technol, 10, 248-256, Doi 10.1021/Es60114a002, 1976.

Calvert, J. G., and Stockwell, W. R.: Deviations from the O₃-NO-NO₂ Photostationary State in Tropospheric Chemistry, Can J Chem, 61, 983-992, Doi 10.1139/V83-174, 1983.

Cantrell, C. A., Shetter, R. E., Calvert, J. G., Parrish, D. D., Fehsenfeld, F. C., Goldan, P. D., Kuster, W., Williams, E. J., Westberg, H. H., Allwine, G., and Martin, R.: Peroxy-Radicals as Measured in Rose and Estimated from Photostationary State Deviations, J Geophys Res-Atmos, 98, 18355-18366, Doi 10.1029/93jd01794, 1993.

Cantrell, C. A., Shetter, R. E., Gilpin, T. M., and Calvert, J. G.: Peroxy radicals measured during Mauna Loa observatory photochemistry experiment 2: The data and first analysis, J Geophys Res-Atmos, 101, 14643-14652, Doi 10.1029/95jd01698, 1996.

Cantrell, C. A., Shetter, R. E., Calvert, J. G., Eisele, F. L., Williams, E., Baumann, K., Brune, W. H., Stevens, P. S., and Mather, J. H.: Peroxy radicals from photostationary state deviations and steady state calculations during the Tropospheric OH Photochemistry Experiment at Idaho Hill, Colorado, 1993, J Geophys Res-Atmos, 102, 6369-6378, Doi 10.1029/96jd01703, 1997.

Cantrell, C. A., Mauldin, L., Zondlo, M., Eisele, F., Kosciuch, E., Shetter, R., Lefer, B., Hall, S., Campos, T., Ridley, B., Walega, J., Fried, A., Wert, B., Flocke, F., Weinheimer, A., Hannigan, J., Coffey, M., Atlas, E., Stephens, S., Heikes, B., Snow, J., Blake, D., Blake, N., Katzenstein, A., Lopez, J., Browell, E. V., Dibb, J., Scheuer, E., Seid, G., and Talbot, R.: Steady state free radical budgets and ozone photochemistry during TOPSE, J Geophys Res-Atmos, 108, Artn 8361

Doi 10.1029/2002jd002198, 2003.

Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmos Chem Phys, 8, 5477-5487, 2008.

Carpenter, L. J., Monks, P. S., Bandy, B. J., Penkett, S. A., Galbally, I. E., and Meyer, C. P.: A study of peroxy radicals and ozone photochemistry at coastal sites in the northern and southern hemispheres, J Geophys Res-Atmos, 102, 25417-25427, Doi 10.1029/97jd02242, 1997.

Carpenter, L. J., Clemitshaw, K. C., Burgess, R. A., Penkett, S. A., Cape, J. N., and McFadyen, G. C.: Investigation and evaluation of the NO_x/O_3 photochemical steady state, Atmos Environ, 32, 3353-3365, Doi 10.1016/S1352-2310(97)00416-0, 1998.

Chameides, W., and Walker, J. C. G.: Photochemical Theory of Tropospheric Ozone, Journal of Geophysical Research, 78, 8751-8760, Doi 10.1029/Jc078i036p08751, 1973.

Chameides, W. L., Davis, D. D., Bradshaw, J., Sandholm, S., Rodgers, M., Baum, B., Ridley, B., Madronich, S., Carroll, M. A., Gregory, G., Schiff, H. I., Hastie, D. R., Torres, A., and Condon, E.: Observed and Model-Calculated No2/No Ratios in Tropospheric Air Sampled during the Nasa Gte/Cite-2 Field-Study, J Geophys Res-Atmos, 95, 10235-10247, Doi 10.1029/Jd095id07p10235, 1990.

Chan, K. L., Pohler, D., Kuhlmann, G., Hartl, A., Platt, U., and Wenig, M. O.: NO₂ measurements in Hong Kong using LED based long path differential optical absorption spectroscopy, Atmospheric Measurement Techniques, 5, 901-912, DOI 10.5194/amt-5-901-2012, 2012.

Chatfield, R. B., and Crutzen, P. J.: Are There Interactions of Iodine and Sulfur Species in Marine Air Photochemistry, J Geophys Res-Atmos, 95, 22319-22341, Doi 10.1029/Jd095id13p22319, 1990.

Cicerone, R. J.: Halogens in the Atmosphere, Rev Geophys, 19, 123-139, Doi 10.1029/Rg019i001p00123, 1981.

Clapp, L. J., and Jenkin, M. E.: Analysis of the relationship between ambient levels Of O_3 , NO_2 and NO as a function of NO chi in the UK, Atmos Environ, 35, 6391-6405, Doi 10.1016/S1352-2310(01)00378-8, 2001.

Cleary, P. A., Wooldridge, P. J., and Cohen, R. C.: Laser-induced fluorescence detection of atmospheric NO₂ with a commercial diode laser and a supersonic expansion, Appl Optics, 41, 6950-6956, Doi 10.1364/Ao.41.006950, 2002.

Commane, R., Seitz, K., Bale, C. S. E., Bloss, W. J., Buxmann, J., Ingham, T., Platt, U., Pohler, D., and Heard, D. E.: Iodine monoxide at a clean marine coastal site: observations of high frequency variations and inhomogeneous distributions, Atmos Chem Phys, 11, 6721-6733, DOI 10.5194/acp-11-6721-2011, 2011.

Crawford, J., Davis, D., Chen, G., Bradshaw, J., Sandholm, S., Gregory, G., Sachse, G., Anderson, B., Collins, J., Blake, D., Singh, H., Heikes, B., Talbot, R., and Rodriguez, J.: Photostationary state analysis of the NO2-NO system based on airborne observations from the western and central North Pacific, J Geophys Res-Atmos, 101, 2053-2072, Doi 10.1029/95jd02201, 1996.

Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H., Bonn, B., Bingemer, H., and Lelieveld, J.: Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany, Atmos Chem Phys, 10, 2795-2812, 2010.

*Crutzen, P. J.: Role of NO and NO*₂ *in the Chemistry of the Troposphere and Stratosphere, Annu Rev Earth Pl Sc, 7, 443-472, DOI 10.1146/annurev.ea.07.050179.002303, 1979.*

Crutzen, P. J., Lawrence, M. G., and Poschl, U.: On the background photochemistry of tropospheric ozone, Tellus A, 51, 123-146, DOI 10.1034/j.1600-0889.1999.00010.x, 1999.

Dari-Salisburgo, C., Di Carlo, P., Giammaria, F., Kajii, Y., and D'Altorio, A.: Laser induced fluorescence instrument for NO₂ measurements: Observations at a central Italy background site, Atmos Environ, 43, 970-977, 10.1016/j.atmosenv.2008.10.037, 2009.

Davis, D. D., Chen, G., Chameides, W., Bradshaw, J., Sandholm, S., Rodgers, M., Schendal, J., Madronich, S., Sachse, G., Gregory, G., Anderson, B., Barrick, J., Shipham, M., Collins, J., Wade, L., and Blake, D.: A Photostationary State Analysis of the NO₂-NO System Based on Airborne Observations from the Subtropical Tropical North and South-Atlantic, J Geophys Res-Atmos, 98, 23501-23523, Doi 10.1029/93jd02412, 1993.

Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO₂, peroxy nitrates, alkyl nitrates, and HNO₃, J Geophys Res-Atmos, 107, Artn 4046 Doi 10.1029/2001jd000779, 2002.

Day, D. A., Farmer, D. K., Goldstein, A. H., Wooldridge, P. J., Minejima, C., and Cohen, R. C.: Observations of NO_x , \$Aigma\$PNs, \$Aigma\$ANs, and HNO_3 at a Rural Site in the California Sierra Nevada Mountains: summertime diurnal cycles, Atmos Chem Phys, 9, 4879-4896, 2009.

Dix, B., Baidara, S., Bresch, J. F., Hall, S. R., Schmidt, K. S., Wang, S. Y., and Volkamer, R.: Detection of iodine monoxide in the tropical free troposphere, P Natl Acad Sci USA, 110, 2035-2040, DOI 10.1073/pnas.1212386110, 2013.

Draxler, R. R., and Hess, G. D.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition, Aust Meteorol Mag, 47, 295-308, 1998.

Droppo, J. G.: Concurrent Measurements of Ozone Dry Deposition Using Eddy-Correlation and Profile Flux-Methods, J Geophys Res-Atmos, 90, 2111-2118, Doi 10.1029/Jd090id01p02111, 1985.

Duenas, C., Fernandez, M. C., Canete, S., Carretero, J., and Liger, E.: Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast, Sci Total Environ, 299, 97-113, Pii S0048-9697(02)00251-6 Doi 10.1016/S0048-9697(02)00251-6, 2002.

Durka, W., Schulze, E. D., Gebauer, G., and Voerkelius, S.: Effects of Forest Decline on Uptake and Leaching of Deposited Nitrate Determined from ¹⁵N and ¹⁸O Measurements, Nature, 372, 765-767, Doi 10.1038/372765a0, 1994.

Ehhalt, D. H., Rohrer, F., and Wahner, A.: Sources and distribution of NO_x in the upper troposphere at northern mid-latitudes Journal of Geophysical Research: Atmospheres (1984?2012) Volume 97, Issue D4, Journal of Geophysical Research: Atmospheres (1984-2012), 97, 3725-3738, 1992.

Evans, M. J., Shallcross, D. E., Law, K. S., Wild, J. O. F., Simmonds, P. G., Spain, T. G., Berrisford, P., Methven, J., Lewis, A. C., McQuaid, J. B., Pilling, M. J., Bandy, B. J., Penkett, S. A., and Pyle, J. A.: Evaluation of a Lagrangian box model using field measurements from EASE (Eastern Atlantic Summer Experiment) 1996, Atmos Environ, 34, 3843-3863, Doi 10.1016/S1352-2310(00)00184-9, 2000.

FAO: Global Forest Resources Assessment 2010, FAO forestry paper, 163, Food and Agriculture Organization of the United Nations, Rome, xxxi, 340 p. pp., 2010.

Farmer, D. K., Perring, A. E., Wooldridge, P. J., Blake, D. R., Baker, A., Meinardi, S., Huey, L. G., Tanner, D., Vargas, O., and Cohen, R. C.: Impact of organic nitrates on urban ozone production, Atmos Chem Phys, 11, 4085-4094, 10.5194/acp-11-4085-2011, 2011.

Finlayson-Pitts, B. J., and Pitts, J. N.: Chemistry of the upper and lower atmosphere : theory, experiments, and applications, Academic Press, San Diego, xxii, 969 p. pp., 2000.

Fleming, Z. L., Monks, P. S., Rickard, A. R., Bandy, B. J., Brough, N., Green, T. J., Reeves, C. E., and Penkett, S. A.: Seasonal dependence of peroxy radical concentrations at a Northern hemisphere marine boundary layer site during summer and winter: evidence for radical activity in winter, Atmos Chem Phys, 6, 5415-5433, 2006.

Fong, C., and Brune, W. H.: A laser induced fluorescence instrument for measuring tropospheric NO₂, Review of Scientific Instruments, 68, 4253, 10.1063/1.1148384, 1997.

Fontijn, A., Sabadell, A. J., and Ronco, R. J.: Homogeneous Chemiluminescent Measurement of Nitric Oxide with Ozone - Implications for Continuous Selective Monitoring of Gaseous Air Pollutants, Anal Chem, 42, 575-579, Doi 10.1021/Ac60288a034, 1970.

Ge, B. Z., Sun, Y. L., Liu, Y., Dong, H. B., Ji, D. S., Jiang, Q., Li, J., and Wang, Z. F.: Nitrogen dioxide measurement by cavity attenuated phase shift spectroscopy (CAPS) and implications in ozone production efficiency and nitrate formation in Beijing, China, J Geophys Res-Atmos, 118, 9499-9509, Doi 10.1002/Jgrd.50757, 2013.

George, L. A., and Obrien, R. J.: Prototype Fage Determination of NO₂, Journal of Atmospheric Chemistry, 12, 195-209, Doi 10.1007/Bf00048073, 1991.

Ghosh, B., Papanastasiou, D. K., Talukdar, R. K., Roberts, J. M., and Burkholder, J. B.: Nitryl Chloride (CINO₂): UV/Vis Absorption Spectrum between 210 and 296 K and O(P-3) Quantum Yield at 193 and 248 nm, J Phys Chem A, 116, 5796-5805, Doi 10.1021/Jp207389y, 2012.

Griffin, R. J., Beckman, P. J., Talbot, R. W., Sive, B. C., and Varner, R. K.: Deviations from ozone photostationary state during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Use of measurements and photochemical modeling to assess potential causes, Journal of Geophysical Research, 112, 10.1029/2006jd007604, 2007.

Gros, V., Poisson, N., Martin, D., Kanakidou, M., and Bonsang, B.: Observations and modeling of the seasonal variation of surface ozone at Amsterdam Island: 1994-1996, J Geophys Res-Atmos, 103, 28103-28109, Doi 10.1029/98jd02458, 1998.

Gro β , C. B. M.: Kinetische Studien zur OH-Bildung über die Reaktionen von HO₂ mit organischen Peroxyradikalen, Johannes Gutenberg-Universität, Mainz, 2013.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A Global-Model of Natural Volatile Organic-Compound Emissions, J Geophys Res-Atmos, 100, 8873-8892, Doi 10.1029/94jd02950, 1995.

Handisides, G. M.: The Influence of Peroxy Radicals on Ozone Production, Doktorgrades der Naturwissenschaften, Fachbereich Geowissenschaften Johann Wolfgang Goethe-Universität Frankfurt am Main 273 pp., 2001.

Harder, H.: Messungen von Stickoxiden in der Bretange: Ein Beitrag zur Ozonbilanz, Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität Heidelberg, 77 pp., 1994. Hargrove, J., Wang, L. M., Muyskens, K., Muyskens, M., Medina, D., Zaide, S., and Zhang, J. S.: Cavity ring-down spectroscopy of ambient NO₂ with quantification and elimination of interferences, Environ Sci Technol, 40, 7868-7873, Doi 10.1021/Es0612870, 2006.

Hari, P., and Kulmala, M.: Station for measuring ecosystem-atmosphere relations (SMEAR II), Boreal Environ Res, 10, 315-322, 2005.

Harrop, D. O.: Air quality assessment and management : a practical guide, Clay's library of health and the environment, Spon Press, London ; New York, xii, 384 p. pp., 2002.

Harwood, M. H., Jones, R. L., Cox, R. A., Lutman, E., and Rattigan, O. V.: Temperature-Dependent Absorption Cross-Sections of N_2O_5 , J Photoch Photobio A, 73, 167-175, Doi 10.1016/1010-6030(93)90001-2, 1993.

Harwood, M. H., Burkholder, J. B., Hunter, M., Fox, R. W., and Ravishankara, A. R.: Absorption cross sections and self-reaction kinetics of the IO radical, J Phys Chem A, 101, 853-863, Doi 10.1021/Jp962429b, 1997.

Hauglustaine, D. A., Madronich, S., Ridley, B. A., Walega, J. G., Cantrell, C. A., Shetter, R. E., and Hubler, G.: Observed and model-calculated photostationary state at Mauna Loa observatory during MLOPEX 2, J Geophys Res-Atmos, 101, 14681-14696, Doi 10.1029/95jd03612, 1996.

Hens, K., Novelli, A., Martinez, M., Auld, J., Axinte, R., Bohn, B., Fischer, H., Keronen, P., Kubistin, D., Nölscher, A. C., Oswald, R., Paasonen, P., Petäjä, T., Regelin, E., Sander, R., Sinha, V., Sipilä, M., Taraborrelli, D., Tatum Ernest, C., Williams, J., Lelieveld, J., and Harder, H.: Observation and modelling of HO_x radicals in a boreal forest, Atmos. Chem. Phys. Discuss., 13, 28561-28629, 10.5194/acpd-13-28561-2013, 2013.

Herndon, S. C., Shorter, J. H., Zahniser, M. S., Nelson, D. D., Jayne, J., Brown, R. C., Miake-Lye, R. C., Waitz, I., Silva, P., Lanni, T., Demerjian, K., and Kolb, C. E.: NO and NO₂ emission ratios measured from in-use commercial aircraft during taxi and takeoff, Environ Sci Technol, 38, 6078-6084, Doi 10.1021/Es049701c, 2004.

Herriott, D., Kompfner, R., and Kogelnik, H.: Off-Axis Paths in Spherical Mirror Interferometers, Appl Optics, 3, 523-&, Doi 10.1364/Ao.3.000523, 1964.

Holland, P. W., and Welsch, R. E.: Robust Regression Using Iteratively Re-Weighted Least-Squares, Commun Stat a-Theor, 6, 813-827, Doi 10.1080/03610927708827533, 1977.

Hosaynali Beygi, Z.: Oxidation photochemistry in the remote marine boundary layer, Doktor der Naturwissenschaftern, Max Planck Institute for Chemistry, Johannes Gutenberg-Universitaet in Mainz, Germany, International Max Planck Research School, 2010.

Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams, J., Brookes, D. M., Monks, P. S., and Lelieveld, J.: Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state, Atmos. Chem. Phys., 11, 8497-8513, 10.5194/acp-11-8497-2011, 2011.

Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos Environ, 31, 81-104, Doi

10.1016/S1352-2310(96)00105-7 (MCM v3.2, via website: <u>http://mcm.leeds.ac.uk/MCM</u>), 1997.

Jenkin, M. E., Andersen, M. P. S., Hurley, M. D., Wallington, T. J., Taketani, F., and Matsumi, Y.: A kinetics and mechanistic study of the OH and NO₂ initiated oxidation of cyclohexa-1,3-diene in the gas phase, Physical Chemistry Chemical Physics, 7, 1194-1204, Doi 10.1039/B417525c, 2005.

Johnston, H. S., Davis, H. F., and Lee, Y. T.: NO₃ photolysis product channels: Quantum yields from observed energy thresholds, J Phys Chem-Us, 100, 4713-4723, Doi 10.1021/Jp952692x, 1996.

Keller-Rudek, H., Moortgat, G. K., Sander, R., and Sörensen, R.: The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest, Earth Syst. Sci. Data, 5, 365-373, 10.5194/essd-5-365-2013, 2013.

Kelly, T. J., Stedman, D. H., Ritter, J. A., and Harvey, R. B.: Measurements of Oxides of Nitrogen and Nitric-Acid in Clean-Air, J Geophys Res-Oc Atm, 85, 7417-7425, Doi 10.1029/Jc085ic12p07417, 1980.

Kleinman, L., Lee, Y. N., Springston, S. R., Lee, J. H., Nunnermacker, L., Weinsteinlloyd, J., Zhou, X. L., and Newman, L.: Peroxy Radical Concentration and Ozone Formation Rate at a Rural Site in the Southeastern United-States, J Geophys Res-Atmos, 100, 7263-7273, Doi 10.1029/95jd00215, 1995.

Kleinman, L. I.: The dependence of tropospheric ozone production rate on ozone precursors, Atmos Environ, 39, 575-586, DOI 10.1016/j.atmosenv.2004.08.047, 2005.

Kurtenbach, R., Kleffmann, J., Niedojadlo, A., and Wiesen, P.: Primary NO2 emissions and their impact on air quality in traffic environments in Germany, Environmental Sciences Europe, 24, 21, 10.1186/2190-4715-24-21, 2012.

Land, D. V., Levick, A. P., and Hand, J. W.: The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers, Measurement Science and Technology, 18, 1917-1928, 10.1088/0957-0233/18/7/018, 2007.

Leighton, P. A.: Photochemistry of air pollution, Physical chemistry,, 9, Academic Press, New York,, 300 p. pp., 1961.

Lelieveld, J., and Crutzen, P. J.: Influences of Cloud Photochemical Processes on Tropospheric Ozone, Nature, 343, 227-233, Doi 10.1038/343227a0, 1990.

Lelieveld, J., and Dentener, F. J.: What controls tropospheric ozone?, J Geophys Res-Atmos, 105, 3531-3551, Doi 10.1029/1999jd901011, 2000.

Lelieveld, J., van Aardenne, J., Fischer, H., de Reus, M., Williams, J., and Winkler, P.: Increasing ozone over the Atlantic Ocean, Science, 304, 1483-1487, DOI 10.1126/science.1096777, 2004.

Lelieveld, J.: ATMOSPHERIC CHEMISTRY A missing sink for radicals, Nature, 466, 925-926, Doi 10.1038/466925a, 2010.

Lelieveld, J., Barlas, C., Giannadaki, D., and Pozzer, A.: Model calculated global, regional and megacity premature mortality due to air pollution, Atmos Chem Phys, 13, 7023-7037, DOI 10.5194/acp-13-7023-2013, 2013.

Lenner, M.: Nitrogen-Dioxide in Exhaust Emissions from Motor-Vehicles, Atmos Environ, 21, 37-43, Doi 10.1016/0004-6981(87)90268-X, 1987.

Levy, H.: Normal Atmosphere - Large Radical and Formaldehyde Concentrations Predicted, Science, 173, 141-&, DOI 10.1126/science.173.3992.141, 1971.

Levy, H.: Photochemistry of Lower Troposphere, Planet Space Sci, 20, 919-&, Doi 10.1016/0032-0633(72)90177-8, 1972.

Li, J., Parchatka, U., Königstedt, R., and Fischer, H.: Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer, Opt Express, 20, 7590-7601, 10.1364/OE.20.007590, 2012.

Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D. W., Hubler, G., and Murphy, P. C.: Ozone Production in the Rural Troposphere and the Implications for Regional and Global Ozone Distributions, J Geophys Res-Atmos, 92, 4191-4207, Doi 10.1029/Jd092id04p04191, 1987.

Logan, J. A.: Nitrogen-Oxides in the Troposphere - Global and Regional Budgets, J Geophys Res-Oc Atm, 88, 785-807, Doi 10.1029/Jc088ic15p10785, 1983.

Logan, J. A.: Tropospheric Ozone - Seasonal Behavior, Trends, and Anthropogenic Influence, J Geophys Res-Atmos, 90, 10463-10482, Doi 10.1029/Jd090id06p10463, 1985.

Mannschreck, K., Gilge, S., Plass-Duelmer, C., Fricke, W., and Berresheim, H.: Assessment of the applicability of NO-NO₂-O₃ photostationary state to long-term measurements at the Hohenpeissenberg GAW Station, Germany, Atmos Chem Phys, 4, 1265-1277, 2004.

Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost, G. J., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J.: OH and HO₂ concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, J Geophys Res-Atmos, 108, Artn 4617 Doi 10.1029/2003jd003551, 2003.

Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H., Eerdekens, G., Fischer, H., Klupfel, T., Gurk, C., Konigstedt, R., Parchatka, U., Schiller, C. L., Stickler, A., Williams, J., and Lelieveld, J.: Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements, Atmos Chem Phys, 10, 3759-3773, 2010.

Matsumi, Y., Murakami, S., Kono, M., Takahashi, K., Koike, M., and Kondo, Y.: Highsensitivity instrument for measuring atmospheric NO₂, Anal Chem, 73, 5485-5493, Doi 10.1021/Ac010552f, 2001.

Matsumoto, J., Hirokawa, J., Akimoto, H., and Kajii, Y.: Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique, Atmos Environ, 35, 2803-2814, Doi 10.1016/S1352-2310(01)00078-4, 2001.

Matsumoto, J., and Kajii, Y.: Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique, Atmos Environ, 37, 4847-4851, 10.1016/j.atmosenv.2003.08.023, 2003.

Matsumoto, J., Kosugi, N., Nishiyama, A., Isozaki, R., Sadanaga, Y., Kato, S., Bandow, H., and Kajii, Y.: Examination on photostationary state of NO_x in the urban atmosphere in Japan, Atmos Environ, 40, 3230-3239, 10.1016/j.atmosenv.2006.02.002, 2006.

Mcfarland, M., Ridley, B. A., Proffitt, M. H., Albritton, D. L., Thompson, T. L., Harrop, W. J., Winkler, R. H., and Schmeltekopf, A. L.: Simultaneous Insitu Measurements of Nitrogen-Dioxide, Nitric-Oxide, and Ozone between 20 and 31 Km, J Geophys Res-Atmos, 91, 5421-5437, Doi 10.1029/Jd091id05p05421, 1986.

Molina, L. T., and Molina, M. J.: Ultraviolet-Absorption Spectrum of Chlorine Nitrite, Clono, Geophys Res Lett, 4, 83-86, Doi 10.1029/Gl004i002p00083, 1977.

Molina, L. T., and Molina, M. J.: Chlorine Nitrate Ultraviolet-Absorption Spectrum at Stratospheric Temperatures, J Photochem, 11, 139-144, Doi 10.1016/0047-2670(79)80047-7, 1979.

Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chemical Society reviews, 34, 376-395, 10.1039/b307982c, 2005.

Murphy, J. G., Day, A., Cleary, P. A., Wooldridge, P. J., and Cohen, R. C.: Observations of the diurnal and seasonal trends in nitrogen oxides in the western Sierra Nevada, Atmos Chem Phys, 6, 5321-5338, 2006.

Newman, S. M., Howie, W. H., Lane, I. C., Upson, M. R., and Orr-Ewing, A. J.: Predissociation of the $A^2\Pi_{3/2}$ state of IO studied by cavity ring-down spectroscopy, J Chem Soc Faraday T, 94, 2681-2688, Doi 10.1039/A805103h, 1998.

Nollet, L. M. L.: Chromatographic analysis of the environment, 3rd ed., Chromatographic science series, 93, CRC/Taylor & Franciss, Boca Raton, xx, 1297 p. pp., 2006.

Nölscher, A. C., Williams, J., Sinha, V., Custer, T., Song, W., Johnson, A. M., Axinte, R., Bozem, H., Fischer, H., Pouvesle, N., Phillips, G., Crowley, J. N., Rantala, P., Rinne, J., Kulmala, M., Gonzales, D., Valverde-Canossa, J., Vogel, A., Hoffmann, T., Ouwersloot, H. G., Vilà-Guerau de Arellano, J., and Lelieveld, J.: Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010, Atmos Chem Phys, 12, 8257-8270, 10.5194/acp-12-8257-2012, 2012.

Nölscher, A. C., Bourtsoukidis, E., Bonn, B., Kesselmeier, J., Lelieveld, J., and Williams, J.: Seasonal measurements of total OH reactivity emission rates from Norway spruce in 2011, Biogeosciences, 10, 4241-4257, 10.5194/bg-10-4241-2013, 2013.

Novelli, A., Hens, K., Tatum Ernest, C., Kubistin, D., Regelin, E., Elste, T., Plass-Dülmer, C., Martinez, M., Lelieveld, J., and Harder, H.: Characterisation of an inlet pre-injector laser induced fluorescence instrument for the measurement of ambient hydroxyl radicals, Atmos. Meas. Tech. Discuss., 7, 819-858, 10.5194/amtd-7-819-2014, 2014.

O'Brien, R. J.: Photostationary State in Photochemical Smog Studies, Environ Sci Technol, 8, 579-583, Doi 10.1021/Es60091a004, 1974.

Orlando, J. J., Tyndall, G. S., Moortgat, G. K., and Calvert, J. G.: Quantum Yields for NO₃ Photolysis between 570 and 635nm J Phys Chem-Us, 97, 10996-11000, Doi 10.1021/J100144a017, 1993.

Osthoff, H. D., Brown, S. S., Ryerson, T. B., Fortin, T. J., Lerner, B. M., Williams, E. J., Pettersson, A., Baynard, T., Dube, W. P., Ciciora, S. J., and Ravishankara, A. R.: Measurement of atmospheric NO₂ by pulsed cavity ring-down spectroscopy, J Geophys Res-Atmos, 111, Artn D12305 Doi 10.1029/2005jd006942, 2006.

Ouwersloot, H. G., de Arellano, J. V. G., Nolscher, A. C., Krol, M. C., Ganzeveld, L. N., Breitenberger, C., Mammarella, I., Williams, J., and Lelieveld, J.: Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010, Atmos Chem Phys, 12, 9335-9353, DOI 10.5194/acp-12-9335-2012, 2012.

Parra, J., and George, L. A.: Development of an ambient pressure laser-induced fluorescence instrument for nitrogen dioxide, Appl Optics, 48, 3355-3361, 2009.

Parrish, D. D., Trainer, M., Williams, E. J., Fahey, D. W., Hubler, G., Eubank, C. S., Liu, S. C., Murphy, P. C., Albritton, D. L., and Fehsenfeld, F. C.: Measurements of the NO_x-O₃ Photostationary State at Niwot Ridge, Colorado, J Geophys Res-Atmos, 91, 5361-5370, Doi 10.1029/Jd091id05p05361, 1986.

Paul, D., and Osthoff, H. D.: Absolute Measurements of Total Peroxy Nitrate Mixing Ratios by Thermal Dissociation Blue Diode Laser Cavity Ring-Down Spectroscopy, Anal Chem, 82, 6695-6703, Doi 10.1021/Ac101441z, 2010.

Perner, D., and Platt, U.: Detection of Nitrous-Acid in the Atmosphere by Differential Optical-Absorption, Geophys Res Lett, 6, 917-920, Doi 10.1029/Gl006i012p00917, 1979.

Perring, A. E., Bertram, T. H., Farmer, D. K., Wooldridge, P. J., Dibb, J., Blake, N. J., Blake, D. R., Singh, H. B., Fuelberg, H., Diskin, G., Sachse, G., and Cohen, R. C.: The production and persistence of Sigma RONO₂ in the Mexico City plume, Atmos Chem Phys, 10, 7215-7229, DOI 10.5194/acp-10-7215-2010, 2010.

Phillips, G. J., Tang, M. J., Thieser, J., Brickwedde, B., Schuster, G., Bohn, B., Lelieveld, J., and Crowley, J. N.: Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions, Geophys Res Lett, 39, Artn L10811 Doi 10.1029/2012gl051912, 2012.

Phillips, G. J., Pouvesle, N., Thieser, J., Schuster, G., Axinte, R., Fischer, H., Williams, J., Lelieveld, J., and Crowley, J. N.: Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes, Atmos Chem Phys, 13, 1129-1139, DOI 10.5194/acp-13-1129-2013, 2013.

Platt, U., Perner, D., and Patz, H. W.: Simultaneous Measurement of Atmospheric CH₂O, O₃, and NO₂ by Differential Optical-Absorption, J Geophys Res-Oc Atm, 84, 6329-6335, Doi 10.1029/Jc084ic10p06329, 1979.

Platt, U., and Janssen, C.: Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere, Faraday Discuss, 100, 175-198, Doi 10.1039/Fd9950000175, 1995.

Platt, U., and Stutz, J.: Differential Optical Absorption Spectroscopy, in, Springer-Verlag Berlin Heidelberg, 2008.

Platt, U., Meinen, J., Pohler, D., and Leisner, T.: Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) - applicability and corrections, Atmospheric Measurement Techniques, 2, 713-723, 2009.

Poulida, O., Civerolo, K. L., and Dickerson, R. R.: Observations and Tropospheric Photochemistry in Central North-Carolina, J Geophys Res-Atmos, 99, 10553-10563, Doi 10.1029/94jd00404, 1994.

Rasmussen, D. J., Fiore, A. M., Naik, V., Horowitz, L. W., McGinnis, S. J., and Schultz, M. G.: Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models, Atmos Environ, 47, 142-153, DOI 10.1016/j.atmosenv.2011.11.021, 2012.

Ridley, B. A., Madronich, S., Chatfield, R. B., Walega, J. G., Shetter, R. E., Carroll, M. A., and Montzka, D. D.: Measurements and Model Simulations of the Photostationary State during the Mauna-Loa-Observatory Photochemistry Experiment - Implications for Radical Concentrations and Ozone Production and Loss Rates, J Geophys Res-Atmos, 97, 10375-10388, 1992.

Riley, W. J.: A test suite for the calculation of time domain frequency stability, Proceedings of the 1995 Ieee International Frequency Control Symposium, 360-366, Doi 10.1109/Freq.1995.483922, 1995.

Riley, W. J.: Handbook of Frequency Stability Analysis, National Institute of Standards and Technology (NIST), U.S. Department of Commerce, 136 pp., 2008.

Roehl, C. M., Orlando, J. J., Tyndall, G. S., Shetter, R. E., Vazquez, G. J., Cantrell, C. A., and Calvert, J. G.: Temperature-Dependence of the Quantum Yields for the Photolysis of NO₂ near the Dissociation Limit, J Phys Chem-Us, 98, 7837-7843, Doi 10.1021/J100083a015, 1994.

Roelofs, G. J., and Lelieveld, J.: Model study of the influence of cross-tropopause O_3 transports on tropospheric O_3 levels, Tellus B, 49, 38-55, DOI 10.1034/j.1600-0889.49.issue1.3.x, 1997.

Rohrer, F., Bruning, D., Grobler, E. S., Weber, M., Ehhalt, D. H., Neubert, R., Schussler, W., and Levin, I.: Mixing ratios and photostationary state of NO and NO₂ observed during the POPCORN field campaign at a rural site in Germany, Journal of Atmospheric Chemistry, 31, 119-137, Doi 10.1023/A:1006166116242, 1998.

Rohrer, F., and Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442, 184-187, 10.1038/nature04924, 2006.

Rohrer, F., Lu, K. D., Hofzumahaus, A., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Haseler, R., Holland, F., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng, L. M., Zhu, T., Zhang, Y. H., and Wahner, A.: Maximum efficiency in the hydroxylradical-based self-cleansing of the troposphere, Nat Geosci, 7, 559-563, Doi 10.1038/Ngeo2199, 2014.

Rosen, R. S., Wood, E. C., Wooldridge, P. J., Thornton, J. A., Day, D. A., Kuster, W., Williams, E. J., Jobson, B. T., and Cohen, R. C.: Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O₃ and alkyl nitrate photochemistry, J Geophys Res-Atmos, 109, Artn D07303 Doi 10.1029/2003jd004227, 2004.

Salisbury, G., Monks, P. S., Bauguitte, S., Bandy, B. J., and Penkett, S. A.: A seasonal comparison of the ozone photochemistry in clean and polluted air masses at Mace Head, Ireland, Journal of Atmospheric Chemistry, 41, 163-187, Doi 10.1023/A:1014202229304, 2002.

Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jockel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., and Xie, Z. Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geosci Model Dev, 4, 373-380, DOI 10.5194/gmd-4-373-2011, 2011a.

Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, in: JPL Publication 10-6, 2011b.

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos Chem Phys, 3, 161-180, (MCM v3.2, via website: <u>http://mcm.leeds.ac.uk/MCM</u>), 2003.

Savitzky, A., and Golay, M. J. E.: Smoothing + Differentiation of Data by Simplified Least Squares Procedures, Anal Chem, 36, 1627-&, Doi 10.1021/Ac60214a047, 1964.

Schneider, M., Luxenhofer, O., Deissler, A., and Ballschmiter, K.: C-1-C-15 alkyl nitrates, benzyl nitrate, and bifunctional nitrates: Measurements in California and South Atlantic air and global comparison using C₂Cl₄ and CHBr₃ as marker molecules, Environ Sci Technol, 32, 3055-3062, Doi 10.1021/Es980132g, 1998.

Schneider, P., and R. van der A.: A global SCIAMACHY-based trend analysis of tropospheric NO₂ over megacities, PRESCRIBE workshop, Bremen, 2013.

Schönbein, C. F.: On the Odour Accompanying Electricity and on the Probability of its Dependence on the Presence of a New Substance, Philosophical Magazine 17, 293-294, 1840.

Schuster, G., Labazan, I., and Crowley, J. N.: A cavity ring down/cavity enhanced absorption device for measurement of ambient NO_3 and N_2O_5 , Atmospheric Measurement Techniques, 2, 1-13, 2009.

Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics - From Air Pollution to Climate Change (2nd Edition), John Wiley & Sons, 2006.

Shetter, R. E., Stedman, D. H., and West, D. H.: The NO/NO₂/O₃ Photostationary State in Claremont, California, Japca J Air Waste Ma, 33, 212-214, 1983.

Shon, Z. H., Madronich, S., Song, S. K., Flocke, F. M., Knapp, D. J., Anderson, R. S., Shetter, R. E., Cantrell, C. A., Hall, S. R., and Tie, X.: Characteristics of the NO-NO₂-O₃ system in different chemical regimes during the MIRAGE-Mex field campaign, Atmos Chem Phys, 8, 7153-7164, 2008.

Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments, Atmos Environ, 33, 1821-1845, Doi 10.1016/S1352-2310(98)00345-8, 1999.

Simpson, I. J., Meinardi, S., Blake, D. R., Blake, N. J., Rowland, F. S., Atlas, E., and Flocke, F.: A biomass burning source of C-1-C-4 alkyl nitrates, Geophys Res Lett, 29, Artn 2168 Doi 10.1029/2002gl016290, 2002.

Simpson, I. J., Wang, T., Guo, H., Kwok, Y. H., Flocke, F., Atlas, E., Meinardi, S., Rowland, F. S., and Blake, D. R.: Long-term atmospheric measurements of C-1-C-5 alkyl nitrates in the pearl river delta region of southeast China, Atmos Environ, 40, 1619-1632, DOI 10.1016/j.atmosenv.2005.10.062, 2006.

Singer, R. J., Crowley, J. N., Burrows, J. P., Schneider, W., and Moortgat, G. K.: Measurement of the Absorption Cross-Section of Peroxynitric Acid between 210 and 330 nm in the Range 253-298-K, J Photoch Photobio A, 48, 17-32, Doi 10.1016/1010-6030(89)87086-8, 1989.

Singh, H. B., Ohara, D., Herlth, D., Bradshaw, J. D., Sandholm, S. T., Gregory, G. L., Sachse, G. W., Blake, D. R., Crutzen, P. J., and Kanakidou, M. A.: Atmospheric Measurements of Peroxyacetyl Nitrate and Other Organic Nitrates at High-Latitudes -Possible Sources and Sinks, J Geophys Res-Atmos, 97, 16511-16522, 1992.

Solomon, S., Intergovernmental Panel on Climate Change., and Intergovernmental Panel on Climate Change. Working Group I.: Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge ; New York, viii, 996 p. pp., 2007.

Song, W., Williams, J., Yassaa, N., Martinez, M., Carnero, J. A. A., Hidalgo, P. J., Bozem, H., and Lelieveld, J.: Winter and summer characterization of biogenic enantiomeric monoterpenes and anthropogenic BTEX compounds at a Mediterranean Stone Pine forest site, Journal of Atmospheric Chemistry, 68, 233-250, DOI 10.1007/s10874-012-9219-4, 2011.

Spirig, C., Neftel, A., Kleinman, L. I., and Hjorth, J.: NO_x versus VOC limitation of O_3 production in the Po valley: Local and integrated view based on observations, J Geophys Res-Atmos, 107, Artn 8191 Doi 10.1029/2001jd000561, 2002.

Stedman, D. H., and Jackson, J. O.: Photostationary State in Photochemical Smog, Int J Chem Kinet, 1, 493-501, 1975.

Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 666 pp., 1988.

Taketani, F., Kawai, M., Takahashi, K., and Matsumi, Y.: Trace detection of atmospheric NO₂ by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser, Appl Optics, 46, 907-915, Doi 10.1364/Ao.46.000907, 2007.

Talukdar, R. K., Burkholder, J. B., Schmoltner, A. M., Roberts, J. M., Wilson, R. R., and Ravishankara, A. R.: Investigation of the Loss Processes for Peroxyacetyl Nitrate in the Atmosphere - UV Photolysis and Reaction with OH, J Geophys Res-Atmos, 100, 14163-14173, Doi 10.1029/95jd00545, 1995.

Talukdar, R. K., Herndon, S. C., Burkholder, J. B., Roberts, J. M., and Ravishankara, A. R.: Atmospheric fate of several alkyl nitrates .1. Rate coefficients of the reactions alkyl nitrates with isotopically labelled hydroxyl radicals, J Chem Soc Faraday T, 93, 2787-2796, 1997.

Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling, Atmos Chem Phys, 9, 2751-2777, 2009.

Taraborrelli, D., Lawrence, M. G., Crowley, J. N., Dillon, T. J., Gromov, S., Gross, C. B. M., Vereecken, L., and Lelieveld, J.: Hydroxyl radical buffered by isoprene oxidation over tropical forests, Nat Geosci, 5, 190-193, Doi 10.1038/Ngeo1405, 2012.

Thieser, J.: Atmospheric Reactive Nitrogen Chemistry via Cavity Ringdown Spectroscopy-From short-lived compunds to reservoir species, Doctor of Natural Science, Max Planck Institute for Chemistry, University of Heidelberg, Germany, International Max Planck Research School for Atmospheric Chemistry and Physics 2013.

Thompson, A. M.: The Oxidizing Capacity of the Earths Atmosphere - Probable Past and Future Changes, Science, 256, 1157-1165, DOI 10.1126/science.256.5060.1157, 1992.

Thornton, J. A., Wooldridge, P. J., and Cohen, R. C.: Atmospheric NO₂: In situ laser-induced fluorescence detection at parts per trillion mixing ratios, Anal Chem, 72, 528-539, Doi 10.1021/Ac9908905, 2000.

Thornton, J. A., Wooldridge, P. J., Cohen, R. C., Martinez, M., Harder, H., Brune, W. H., Williams, E. J., Roberts, J. M., Fehsenfeld, F. C., Hall, S. R., Shetter, R. E., Wert, B. P., and Fried, A.: Ozone production rates as a function of NO_x abundances and HO_x production rates in the Nashville urban plume, J Geophys Res-Atmos, 107, Artn 4146 Doi 10.1029/2001jd000932, 2002.

Tiao, G. C., Reinsel, G. C., Pedrick, J. H., Allenby, G. M., Mateer, C. L., Miller, A. J., and Deluisi, J. J.: A Statistical Trend Analysis of Ozonesonde Data, J Geophys Res-Atmos, 91, 3121-3136, Doi 10.1029/Jd091id12p13121, 1986.

Trebs, I., Mayol-Bracero, O. L., Pauliquevis, T., Kuhn, U., Sander, R., Ganzeveld, L., Meixner, F. X., Kesselmeier, J., Artaxo, P., and Andreae, M. O.: Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon Basin: Implications for the

NO-NO₂-O₃ photostationary state and peroxy radical levels, Journal of Geophysical Research, 117, 10.1029/2011jd016386, 2012.

Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., Merienne, M. F., Jenouvrier, A., and Coquart, B.: Measurements of the NO₂ absorption cross-section from 42 000 cm⁻¹ to 10 000 cm⁻¹ (238-1000 nm) at 220 K and 294 K, J Quant Spectrosc Ra, 59, 171-184, Doi 10.1016/S0022-4073(97)00168-4, 1998.

Vandaele, A. C., Hermans, C., Fally, S., Carleer, M., Colin, R., Merienne, M. F., Jenouvrier, A., and Coquart, B.: High-resolution Fourier transform measurement of the NO₂ visible and near-infrared absorption cross sections: Temperature and pressure effects, J Geophys Res-Atmos, 107, Artn 4348 Doi 10.1029/2001jd000971, 2002.

Vaughan, S., Ingham, T., Whalley, L. K., Stone, D., Evans, M. J., Read, K. A., Lee, J. D., Moller, S. J., Carpenter, L. J., Lewis, A. C., Fleming, Z. L., and Heard, D. E.: Seasonal observations of OH and HO₂ in the remote tropical marine boundary layer, Atmos Chem Phys, 12, 2149-2172, 10.5194/acp-12-2149-2012, 2012.

Vogel, A. L., Auml; ijala, M., Corrigan, A. L., Junninen, H., Ehn, M., Petaja, T., Worsnop, D. R., Kulmala, M., Russell, L. M., Williams, J., and Hoffmann, T.: In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry, Atmos Chem Phys, 13, 10933-10950, 2013.

Volz-Thomas, A., Patz, H. W., Houben, N., Konrad, S., Mihelcic, D., Klupfel, T., and Perner, D.: Inorganic trace gases and peroxy radicals during BERLIOZ at Pabstthum: An investigation of the photostationary state of NO_x and O_3 , J Geophys Res-Atmos, 108, Artn 8248

Doi 10.1029/2001jd001255, 2003.

Wahid, A.: Influence of atmospheric pollutants on agriculture in developing countries: A case study with three new wheat varieties in Pakistan, Sci Total Environ, 371, 304-313, DOI 10.1016/j.scitotenv.2006.06.017, 2006.

Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosamas, C. E., Hjorth, J., Lebras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The Nitrate Radical - Physics, Chemistry, and the Atmosphere, Atmos Environ a-Gen, 25, 1-203, Doi 10.1016/0960-1686(91)90192-A, 1991.

Whalley, L. K., Furneaux, K. L., Gravestock, T., Atkinson, H. M., Bale, C. S. E., Ingham, T., Bloss, W. J., and Heard, D. E.: Detection of iodine monoxide radicals in the marine boundary layer using laser induced fluorescence spectroscopy, Journal of Atmospheric Chemistry, 58, 19-39, 10.1007/s10874-007-9075-9, 2007.

Williams, J., Yassaa, N., Bartenbach, S., and Lelieveld, J.: Mirror image hydrocarbons from Tropical and Boreal forests, Atmos Chem Phys, 7, 973-980, 2007.

Williams, J., Crowley, J., Fischer, H., Harder, H., Martinez, M., Petaja, T., Rinne, J., Back, J., Boy, M., Dal Maso, M., Hakala, J., Kajos, M., Keronen, P., Rantala, P., Aalto, J., Aaltonen, H., Paatero, J., Vesala, T., Hakola, H., Levula, J., Pohja, T., Herrmann, F., Auld, J., Mesarchaki, E., Song, W., Yassaa, N., Nolscher, A., Johnson, A. M., Custer, T., Sinha, V.,

Thieser, J., Pouvesle, N., Taraborrelli, D., Tang, M. J., Bozem, H., Hosaynali-Beygi, Z., Axinte, R., Oswald, R., Novelli, A., Kubistin, D., Hens, K., Javed, U., Trawny, K., Breitenberger, C., Hidalgo, P. J., Ebben, C. J., Geiger, F. M., Corrigan, A. L., Russell, L. M., Ouwersloot, H. G., de Arellano, J. V. G., Ganzeveld, L., Vogel, A., Beck, M., Bayerle, A., Kampf, C. J., Bertelmann, M., Kollner, F., Hoffmann, T., Valverde, J., Gonzalez, D., Riekkola, M. L., Kulmala, M., and Lelieveld, J.: The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences, Atmos Chem Phys, 11, 10599-10618, DOI 10.5194/acp-11-10599-2011, 2011.

Wojtas, J., Stacewicz, T., Bielecki, Z., Czyzewski, A., and Nowakowski, M.: NO₂ monitoring setup applying cavity enhanced absorption spectroscopy, Eurocon 2007: The International Conference on Computer as a Tool, Vols 1-6, 2152-2154, 2007.

Wood, E. C., Wooldridge, P. J., Freese, J. H., Albrecht, T., and Cohen, R. C.: Prototype for in situ detection of atmospheric NO₃ and N₂O₅ via laser-induced fluorescence, Environ Sci Technol, 37, 5732-5738, Doi 10.1021/Es034507w, 2003.

Yang, J., Honrath, R. E., Peterson, M. C., Parrish, D. D., and Warshawsky, M.: Photostationary state deviation-estimated peroxy radicals and their implications for HO_x and ozone photochemistry at a remote northern Atlantic coastal site, J Geophys Res-Atmos, 109, Artn D02312

Doi 10.1029/2003jd003983, 2004.

Yassaa, N., Song, W., Lelieveld, J., Vanhatalo, A., Back, J., and Williams, J.: Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010, Atmos Chem Phys, 12, 7215-7229, DOI 10.5194/acp-12-7215-2012, 2012.

York, D., Evensen, N. M., Martinez, M. L., and Delgado, J. D.: Unified equations for the slope, intercept, and standard errors of the best straight line, American Journal of Physics, 72, 367-375, Doi 10.1119/1.1632486, 2004.

8 ACKNOWLEDGEMENTS

CURRICULUM VITAE

Erklärung

Ich versichere hiermit, dass ich die vorgelegte Arbeit selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe.

M. U. Javed Mainz, 2014