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Abstract

Measurements of the self coupling between bosons are important to test the electroweak sector of

the Standard Model (SM). The production of pairs of Z bosons through the s-channel is forbidden

in the SM. The presence of physics, beyond the SM, could lead to a deviation of the expected

production cross section of pairs of Z bosons due to the so called anomalous Triple Gauge

Couplings (aTGC). Proton-proton data collisions at the Large Hadron Collider (LHC) recorded

by the ATLAS detector at a center of mass energy of 8 TeV were analyzed corresponding to an

integrated luminosity of 20.3 fb−1. Pairs of Z bosons decaying into two electron-positron pairs

are searched for in the data sample. The effect of the inclusion of detector regions corresponding

to high values of the pseudorapidity was studied to enlarge the phase space available for the

measurement of the ZZ production. The number of ZZ candidates was determined and the ZZ

production cross section was measured to be: 7.3 ± 1.0 (Stat.)± 0.4 (Sys.)± 0.2(lumi.)pb, which

is consistent with the SM expectation value of 7.2+0.3
−0.2 pb. Limits on the aTGCs were derived

using the observed yield, which are twice as stringent as previous limits obtained by ATLAS at

a center of mass energy of 7 TeV.
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Abstract(German)

Der elektroschwache Sektor des Standardmodelles (SM) kann mit Hilfe der Messung von Selb-

stkopplungen zwischen Eichbosonen studiert werden. Die Erzeugung von Z-Paaren durch einen

neutralen Vertex ist im SM verboten (aTGCs). Neue physikalische Prozesse könnten den

Wirkungsquerschnitt der Produktion von zwei neutralen Bosonen ändern. In dieser Arbeit

wird ein Datensatz von Proton-Proton-Kollisionen analysiert, um den Wirkungsquerschnitt der

Produktion von zwei neutralen Bosonen zu bestimmen. Die Protonen wurden am Large-Hadron-

Collider bei einer Schwerpunktsenergie von
√
s = 8 TeV zur Kollision gebracht. Es wurde eine

gesamte Luminosität von 20,3 fb−1 analysiert. Elektron-Positron-Paare werden in dem Daten-

satz selektiert. Der Effekt der Nutzung von Bereichen mit höher Pseudorapidität des Detektors

wurde studiert. Der Wirkungsquerschnitt der Produktion von zwei neutralen Bosonen von

7.3 ± 1.0 (Stat.)± 0.4 (Sys.)± 0.2(lumi.)pb wurde gemessen, und stimmt mit der SM-Vorhersage

von 7.2+0.3
−0.2 pb überein . Mit der gesehenen Anzahl an Ereignisse wurden Grenzen auf aTGCs

berechnet. Die Grenzen sind um einen Faktor zwei besser als die bisherigen Grenzen von ATLAS

bei einer Schwerpunktsenergie von
√
s = 7 TeV.
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Chapter 1

Introduction

One of the most successful theories in physics of recent years is the Standard Model (SM) wich is

a description of the properties and interactions governing the fundamental elements of matter.

The development of this theory began in the middle of the 20th century, when correlations

between the elementary particles started to be recognized and a mathematical framework that

could explain the nature of apparently different forces was found.

An important characteristic of the SM is its capacity of simplification. The SM reduces the

number of possible interactions between elementary particles and the number of fundamental

interacting particles to only a few. The interactions are the basic forces of nature, i.e, electro-

magnetic, weak and strong forces. The masses of the fundamental particles are small, so gravity

is negligible at this level. Fundamental particles can be classified as leptons or quarks, where

the distinction between them arises from the possibility of interacting via the strong force.

However, the capacity of simplification of the SM is not the only characteristic that made it

successful, but its capacity of making precise predictions of the existence of new particles. In

order to test the SM predictions, accelerators and detectors have been developed towards the

end of the last century and the beginning of the current one.

The LHC, which is one of the most recent accelerators, is a particle collider designed to test

the limits of the SM. Two significant objectives were to be accomplished by the LHC: the search

for the Higgs boson and the search for new phenomena not predicted by the SM. The first one

has already been achieved with the discovery of a new particle with properties consistent with

the Higgs boson, responsible for the generation of the mass in the observed particles.

Searches for new physics are still ongoing in the LHC physics program. The SM, as already

mentioned, is successful in the description of the nature, but certain issues are beyond the SM.

For example, recent experiments with neutrinos show the existence of their mass states. In the

SM the mass of the neutrinos is zero.

Furthermore, new particles are needed in order to explain the nature of the so called dark

matter. Particles that only interact gravitationally and are responsible for the mass distribution
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around galaxies measured in cosmological experiments. These are a few examples that show

why scientists believe the SM is not a final theory and new physics exist at energy scales that

have not yet been tested.

The accumulated data after two years of operation at the LHC also allows for precision

measurements of SM physics. Particularly in this work, the production of two neutral bosons

(ZZ) is studied. The measurement of the ZZ production is important because the SM puts

limits on the mechanism that generates dibosons.

The diboson production cross section is small compared to that predicted for WW or single

Z. But it is experimentally a clean signature as not so many processes are available to produce

the same final states as the ZZ. Additionally, such measurement is made at the LHC at an

energy order of tens of TeV, not possible in previous experiments.

The existence of new physics can be studied, too, in a ZZ analysis. Production of ZZ via the

ZZZ/γ vertex is forbidden in the SM. If a deviation on the number of predicted dibosons is found,

one possible explanation is the existence of an anomalous triple gauge coupling between the Z

bosons, as a result of new physics at energy scales beyond the reach of previous experiments.

This thesis studied the diboson production centered on the channel with four electrons1 found

at the final state and compares the effect of including electrons with high values of pseudorapidity.

The document is structured as follows.

Chapter 2 is dedicated to a description of the SM and the principal components of this

theoretical framework. Then, the mechanism of production of ZZ in hadron-hadron collisions

is introduced and the nature of the triple gauge couplings is explained. The study of anomalous

neutral triple gauge couplings is discussed and present limits on the values of latter are given.

The state of the art of the experimental ZZ searches is also shown and at the end an introduction

to Monte Carlo simulations is given.

Chapter 3 is dedicated to the description of the LHC. Its principals detectors are introduced

and emphasis laid on the description of the ATLAS detector. The different subsystems of ATLAS

are detailed and the behavior of the detector after the first years of operation is reported.

As already mentioned, this thesis is focused on the electron channel. For that reason chapter

4 shows a detailed description of the reconstruction and identification methods used for electrons

in ATLAS. The development of the different identification menus is shown. The efficiency of

identification of electrons at high values of the pseudorapidity is presented at the end of the

chapter.

Chapters 5 and 6 are dedicated to the description of the ZZ selection and its backgrounds

and the calculation of the ZZ cross section respectively, corresponding to the ATLAS data

collected at a center of mass energy of 8 TeV with an integrated luminosity of approx. 20 fb−1.

1If not mentioned explicity, electrons and positrons are not distinguished, so both are named electrons.
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Chapter 1. Introduction

Finally, in chapter 7, the study of anomalous triple gauge couplings is shown. Limits on the

triple gauge couplings are derived. The last chapter is dedicated to the conclusions and a short

discussion about the final results.
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Chapter 2

The Standard Model of Particle

Physics

“cause we are all just

Protons, Neutrons, Electrons

That rest on a Sunday

Work on a Monday”

—The Cat Empire

The basic elements of matter, so called elementary particles (e.g., leptons and quarks) and

the forces responsible for the interaction between them (e.g., strong, weak, electromagnetic

force), were discovered during the first part of the past century. Subsequently, theoretical efforts

were done in order to have a physics model capable of explaining the observed phenomena and

minimal particle content.

As a result of the theoretical work, the interaction between elementary particles is currently

well described using a framework of gauge invariant fields. Leptons and quarks interact through

the exchange of quantized states of these fields (force carriers), obeying rules depending on

charge properties; e.g., color, weak, electric charge. For example, the electromagnetic force can

be described as the exchange of photons between particles with electric charge.

This theory of interacting particles and gauge fields is called Standard Model (SM). In the

SM the elementary particles possess spin 1/21, so obeying the Fermi statistics. On the other

hand, the force carriers are bosons with spin 1. The relevant forces at subatomic level are the

strong, weak and electromagnetic. The gravity does not play a major role at that level.

The electromagnetic and weak interactions are unified in the SM, in the electroweak theory

proposed by S. Glashow, S. Weinberg and A. Salam [1]. The electroweak theory states that

1In this thesis, natural units are used; c=~=1. In these units, particle energy, mass and momentum are

expressed in eV.

23



weak and electromagnetic interactions appear as separate forces due to a spontaneous symme-

try breaking of the electroweak gauge field. In the electroweak gauge field, masses of the force

carriers disappear and the electroweak interaction is a long range force like gravity. The spon-

taneous symmetry breaking (SSB) is also called Higgs mechanism [2] [3] and the particle that

is responsible for the SSB is named Higgs boson.

The strong interaction carriers are gluons; they possess a color charge in three varieties red,

blue and green2. Gluons only couple with quark particles and with themselves. The structure

of the strong interaction forbids the existence of isolated quarks and gluons. Systems bound

by the strong interaction appear only as colorless combinations (confinement) and are called

hadrons. Three quarks, one red, one blue and one green, form a baryon, like the proton or

the neutron. One quark and one antiquark are combined to form a meson. The confinement is

responsible for the short range of the strong interaction; however, the mathematical description

of this interaction is very similar to that of the electromagnetism using gauge fields (QED) and

it is known as quantum cromodynamics (QCD).

Experimentally, the SM has been successfully tested in most ranges of energy. Particles

predicted for the model have been discovered using colliders. The strong interaction carriers

were found at the Deutsches Electron Synchrotron (DESY) in the year 1979 [4] [5] [6] [7].

Four years later, the particles that are responsible for the weak interaction (W+, W− and Z

boson) were discovered in the Super Proton Antiproton Synchrotron (Spp̄S) at CERN [8] [9]

[10]. The piece that remained missing in the SM, the Higgs boson, was discovered in the year

2012 at CERN using the Large Hadron Collider (LHC). The two experiments, A Toroidal LHC

Apparatus (ATLAS) and the Compact Muon Solenoid (CMS) of the LHC, reported the detection

of a new boson, compatible with the SM prediction, in the mass range 125-126 GeV [11] [12].

The SM is undoubtedly a successful description of our nowadays knowledge of the nature

but some issues remain open:

• The excess of matter over antimatter.

• The nature of the dark matter.

• The mass of neutrinos.

• The big difference between the masses of leptons.

For that reason, searches for physics beyond the SM (BSM) is one of the most active branches

in the experimental particle physics. The discovery of particles not predicted by the SM or the

deviation of the values of some properties, like the self coupling between weak bosons, if found,

are important as a hint for new physics.

2Quarks and gluons do not have any physical color. The names refer to an inner freedom characteristic.
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In this chapter, a description of the fundamental particles and its symmetries based on the

SM is presented. Subsequently, the electroweak theory and the strong interaction are discussed.

The last part of the chapter is dedicated to show the physics of the production of two Z bosons

using proton-proton colliders and the perspectives for the discovery of physics BSM in the

production of ZZ.

2.1 Elementary Particles

An elementary particle is defined as a particle that does not have an inner structure. In the

history of physics, different particles were candidates to be the fundamental pieces of matter

depending, on the maximal energy attainable by the particle colliders at the time.

Our current knowledge allows us to classify the elementary particles of spin 1/2 as fermions.

Fermions can be separated into two subgroups depending on their color charge. Fermions with

color charge, associated to the strong interaction, are referred to as quarks; the ones without color

charge are called leptons. There are six quarks (u,d,s,c,t,b) and six kinds of leptons: three with

electric charge: i.e., electrons, muons and taus; and three neutral, massless neutrinos3. Leptons

and quarks can be ordered in three generations; see table 2.1, all fermions that belongs to a

different generation possess similar properties and the principal difference between generations is

their mass. The lightest fermions belong to the first generation. The third-generation fermions

are the most massive ones. Most of the known matter in the universe is made up of first-

generation fermions.

Spin Q Y I3 Generation

First Second Third

Quarks 1/2 2/3 1/3 1/2 u(up) c(charm) t(top)

1/2 -1/3 1/3 -1/2 d(down) s(strange) b(bottom)

Leptons 1/2 0 -1 1/2 νe νµ ντ

1/2 -1 -1 -1/2 e µ τ

Table 2.1: Fermion properties. Q corresponds to the electric charge of the fermion in units of e, Y is the

hypercharge and I3 is the third component of the weak isospin [13].

The fermions listed in the previous table have a third component of the weak isospin (I3)

different from zero. Fermions with I3 zero do not take part in the weak interaction and are

referred to as right fermions. Right neutrinos do not exist in nature. The hypercharge Y is

defined as shown below in equation 2.1. The importance of the hypercharge in the electroweak

theory will be discussed along with the electroweak theory.

3In the SM the neutrinos do not have mass. Experiments of neutrino oscillation show that they posses a mass

different to zero.
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Symmetries within the SM

Y = 2(Q− I3) (2.1)

2.2 Symmetries within the SM

The elementary particles can be described using a framework of quantum fields. The motion

equations of these matter fields (ψ(x)) are derived from a Lagrangian density L .

One transformation α over the matter field can be written as:

ψ′ = e−iαψ (2.2)

If the motion equations of ψ do not change after the application of the transformation α, the

matter field is symmetric under phase transformation. The Noether-Theorem [14] states that

this invariance can be understood as the existence of a conserved quantity.

If the transformation α is independent from the coordinate system, the referred symmetry is

called a global symmetry. Additionally, the dependency of α on the spatial coordinates produces

terms of the form ∂µα when the motion equations are derived. Therefore, the Lagrangian is

no longer invariant under this local phase transformation. A way to recover the invariance is

to introduce a vector field Aµ that follows the same transformation, similar to the matter field

(equation 2.2), and to change the differential operator ∂µα for the covariant differential operator

Dµ:

Dµ = ∂µ − igAµ (2.3)

g is the coupling of the force field Aµ with the matter field ψ(x), characteristic of the force.

The SM is a local invariance gauge theory with non Abelian symmetry group4:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (2.4)

SU(3)C is a non-Abelian group of order 3, generated by the color charge. The number of

generators is eight5. SU(2)L is a non-Abelian group with three generators (W 1,W 2,W 3). SU2

only couples with the weak isospin I3, the symbol L means that SU2 acts only on left fermions.

U(1) is a group with only one generator B that couples with the electric charge.

Force carriers of strong (gluons) and electromagnetic interactions (photons) are massless,

as required by the gauge invariance of SU(3)C and U(1), but the weak interaction carriers are

massive. In order to solve this apparent contradiction, a spontaneous symmetry breaking (SSB)

of SU(2)L⊗U(1)Y has to be introduced to explain the origin of the weak boson masses. In the

next section, the idea behind the SSB is further discussed.

4A group with transformation A is non-Abelian if two members (a,b) of the group have the property aAb 6= bAa
5The number of generators of a group of order n is n2 − 1
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2.3 The Electroweak Interaction

The weak and electromagnetic interactions are unified in the electroweak theory, referred to as

the GWS-theory in honor its authors S.Glashow, S.Weinberg and A.Salam. The symmetry of

the electroweak theory is the SU(2)L ⊗ U(1)Y .

As previously mentioned, the SU(2)L is a non-Abelian group, with three generatorsW 1,W 2,W 3

that couples with the weak isospin. The left-handed fermions are doublets of weak isospin 1/2

and −1/2, for example, the νe and the electron are members of one doublet ψTL = (νe,e
−). All

right-handed fermions are SU(2) singlets (I3 = 0).

The U(1)Y part of the GWS theory acts over all left and right fermions (chiral symmetry)

and the gauge transformation is given by the equation 2.2. The conserved quantity, is in this

case, the hypercharge Y, already defined in equation 2.1, and the gauge boson corresponds to

B0.

The observed weak bosons W+,W−,Z0 and the photons γ are mixed states of W 1,W 2,W 3

and B0 as a consequence of the non-Abelian self coupling between bosons, of the form:

W∓ =
1√
2

(W 1 ± iW 2) (2.5)

(
γ

Z

)
=

(
cos θW sin θW

− sin θW cos θW

)(
B0

W 3

)
(2.6)

where θW is referred to as the weak mixing angle. As mentioned before, the Lagrange density

stays invariant after the gauge transformation if the gauge bosons are massless. The masses of

the weak bosons (W+,W−,Z0) are the result of the breaking of the electroweak symmetry. When

the ground state of the gauge field (vacuum) is not stable, it could break the symmetry when

it is chosen. This is known as the SSB. The specific way in which bosons and fermions obtain

mass after the SSB (Higgs mechanism) is further clarified in the next section.

2.3.1 The Higgs Mechanism

A spontaneous symmetry breaking of the electroweak force can be studied through the intro-

duction of a complex scalar field, shown in the equation 2.7. The Φ field is referred to as Higgs

field.

Φ =

[
φ+

φ0

]
=

[
(ω2 + iω1)/2

(ω4 + iω3/2

]
(2.7)

The φ+ and φ0 are two complex scalar fields that form a weak isospin doublet (I3 = ±1/2) and

carry hypercharge Y (φ+) = Y (φ0) = −1. The contribution of the Higgs field to the Lagrangian

density can be written as:
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L = T (Φ)− V (Φ) (2.8)

the potential V (Φ) is of the form:

V (Φ) = µ2|Φ2|2 + λ|Φ2|4 (2.9)

As can be seen from 2.9, the potential V (Φ) vanishes if |Φ| = 0. Another possibility is when

|Φ| =
√
−µ2/2λ = ν/

√
2. If it is the case, the vacuum is no longer |Φ| = 0 and unique but

infinitely degenerate. An appropriate choose of the vacuum:

Φmin =
1√
2

[
0

ν + h(x)

]
(2.10)

breaks the symmetry, due to the selection of the particular vacuum state. h(x) denotes a

real observable Higgs field. Before the symmetry breaking, Ψ is written as shown in equation

2.7. When the vacuum is chosen, the symmetry is broken and three of the scalar Higgs (ω1, ω2

and ω3) are absorbed for the W 1,W 2,W 3 of the SU(2)L, because the Higgs fields possess weak

isospin and gain mass. The h(x) survives this process and should be observed as a real object,

because the world in that we live in is one with broken electroweak symmetry.

A confirmation of the Higgs mechanism was obtained in the year 2012 with the discovery

of a new boson particle, in the mass range of 125-126 GeV [11] [12], compatible with the SM

predictions.

2.3.2 Lagrangian of the Electroweak Theory

To finalize this section, the explicit form of the electroweak Lagrangian will be given, because

it will be necessary later when the self-coupling between electroweak bosons is explained. The

Lagrangian can be written as follows:

LEW = Ψ̄iγµDµΨ− 1

4
FµνF

µν − 1

4
BµνB

µν

+ (DµΦ)†(DµΦ)− V (Φ)−Gf [ēRΦ†ΨL + (Ψ̄LΦ)eR] (2.11)

The first line of equation 2.11 is known as the gauge sector and the second corresponds to

the Higgs sector. It contains the Higgs potential introduced in the previous section in order to

produce the SSB. The last term of the equation is referred to as the Yukawa term and is the

responsible for the fermion masses. In the gauge sector, the term Ψ̄iγµDµΨ has the information

about the interaction of the gauge bosons with the fermions. The terms Fµν and Bµν can be

written as:
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Fµν = ∂µWν − ∂νWµ − gWWµWν (2.12)

Bµν = ∂µBν − ∂νBµ (2.13)

the above formula shows terms that correspond to the kinetic energy part of the gauge

bosons W 1,W 2,W 3 and B0, previously introduced. An important characteristic visible here is

the existence of the quadratic term gWWµWν , which represents the self interaction of the gauge

boson and is the responsible for the triple and quartic self coupling between the electroweak

bosons. A detailed description of the self boson coupling will be given later, when the ZZ

production is discussed.

2.4 Quantum Cromodynamics (QCD)

As it was already mentioned, the list of the fundamental constituents of matter change depending

on the experimental possibilities. Protons and neutrons were considered the building blocks

of matter for many years, but scattering experiments with high energetic electrons showed

their inner structure; which consist of the called partons. Besides the experimental ability,

the characteristics of the interaction between partons in protons and neutrons namely strong

interaction, made the study of this force and its effects complicated.

Today, the strong interaction uses the mathematical framework of the field theory and it is

referred to as QCD. The partons are now divided in gluons and quarks, with an inner degree

of freedom known as color charge. There are three kinds of color charges: i.e., R, G, B, and

a total of eight gluons and six quarks. As shown before, the color charge is the generator of a

SU(3) non-Abelian group. In order to understand some of the special properties of the strong

interaction, the QCD Lagrangian can be explicitly written as:

LQCD = −1

4
Gµνa Gaµν +

∑
f

q̄f (iγµDµ −mf )qf (2.14)

with

Gµνa = ∂µGνa − ∂νGµa + gsf
abcGµbG

ν
c (2.15)

the Gνb represents the gluon fields and gs is the coupling constant of the strong interaction.

The term gsf
abcGµbG

ν
c corresponds to the self-interaction between gluons; it is a result of the

non-Abelian nature of the group and it explains some features of the strong interaction like

the dependency of the coupling constant with the energy (running coupling constant) and the

confinement of partons in hadrons.
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Proton-Proton Interaction

2.4.1 Running Coupling Constant

The behavior of the coupling constant of the strong interaction α shows a dependency on the en-

ergy. When the transferred momentum in strong interactions (Q) is lower than 1 GeV α, is suffi-

ciently big enough to avoid a perturbative treatment of the theory. However, limQ→∞ α(Q2) = 0,

this is called asymptotic freedom.

The coupling constant can be explicitly written as:

α(Q2) =
αs(µ

2)

1 + αs(µ2)
4π (11− 2

3nf )lnQ
2

µ2

(2.16)

where αs(µ
2) is the value of the strong coupling constant measured at a convenient energy

µ. µ is then referred to as a renormalization scale µR.

The dependency of αs on the energy is a result of the self interaction of gluons, discussed

above. In strong processes, gluons are not only exchanged between quarks, but are sources of

new gluons. This process increases the value of the color charge seen for an external particle.

Quarks and gluons are limited to distances lower than 1 fm. This characteristic is commonly

known as confinement and it is a consequence of the dependency of αs on the energy. For Q

lower than approx. 200 MeV, the value of the coupling-constant is high enough to produce new

quarks and gluons from the potential.

Confinement and asymptotic freedom play important effects on the collision of hadrons. A

detailed discussion of the proton-proton interaction is given below.

2.5 Proton-Proton Interaction

At hadron colliders with high momentum transfer (Q > 1 GeV), it is expected to have hard

collisions between the individual quarks confined in the hadrons, this is a direct consequence of

the asymptotic freedom explained before. Besides the hard collision, low energy (large range)

interactions between the rest of the quarks in the hadrons happen via the exchange of gluons,

which in between emit gluon-gluon pairs that interact further. The result is the production

of hadrons, so the colorless balance of the system is maintained; this process is referred to as

hadronization. The produced hadrons are highly collimated and are collectively known as a jet.

The evidence of the inner structure of the protons was obtained in experiments of deep

inelastic scattering (DIS) of energetic leptons for nucleons. The leptons are able to see the inner

momentum distribution of the quarks inside the hadron, usually referred to as the parton density

functions (PDF). With more momentum transferred, the PDF have contributions of other QCD

processes, like gluon-gluon production.
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Figure 2.1: Example of a proton-proton interaction. A hard collision between a sea quark and a valence

quark with a leptonic final state is shown.

Figure 2.2: Example of a PDF distribution as function of the transfer momentum. Left side of the figure

shows the effect of the use of a scale Q2 = 10 GeV2. Right side shows the PDF at a scale Q2 = 104

GeV2. Plot taken from [15]

In that way, the DIS can be considered as a hard process, where the probe particle inter-

acts with an almost free parton and one low energy (long range interaction) contribution that

affects the measurable parton distribution. The hard interaction is treated using perturbation

theory and the QCD corrections are folded in the PDF functions. This separation is the so

called factorization and allows precise QCD predictions in spite of the complexity of the strong

interaction. The separation between the short and long range interaction is determined through

an arbitrary variable factorization scale µF .

The simple picture of a proton or neutron composed of point particles is more complex when

the energy used to probe the parton is sufficiently high. For example, apart from the two up

quarks and the down one that build the proton, there are manifold quarks and antiquarks as a
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Production of Dibosons

result of the gluon-gluon interaction. These quarks are called sea quarks meanwhile the two up

and the down one are referred to as valence quarks.

In figure 2.2, the distribution of the MSTW PDF is shown. The fraction of transferred

momentum (x) times the PDF as function of the transferred momentum (x), is shown for

two different scales of the total momentum transferred Q2. At high values of x, the major

contributions to the PDF are coming from up and down quarks, that is valence quarks. At low

values of x, contributions of other quarks (seequarks) are more important. For the higher scale,

this contributions of sea quarks are more important because the gluon splitting can be resolved.

The probability for a parton to emit a parton or to undergo a splitting is described by the

Altarelli-Parisi splitting functions. For example, the probability of a quark to emit a gluon with

a momentum fraction 1-x is:

Pqg =
4

3

1 + x2

1− x (2.17)

A representation of the interaction between two protons can be seen in figure 2.1. A valence

quark of one proton collides with a sea antiquark of the second proton. Quark and antiquark

have a fraction x and x̄ of the initial momentum P1 and P2 of the protons. As a result of this

hard interaction a new particle is produced which later decays ( shown in figure marked as l+,

and l−,) into a pair of leptons.

The cross section of the process (σ(pp→ X)) can be written as shown in equation 2.18.

σ(pp→ X) =
∑
1,2

∫ 1

0
dx1

∫ 1

0
dx2f1(x1,µ

2
F )f2(x2,µ

2
F )M(x1,x2,s,µ

2
F ,µ

2
R) (2.18)

In equation 2.18, x1 and x2 correspond to the incoming partons 1 and 2. f1 and f2 are the

PDFs for each parton depending on the already introduced factorization scale µF . M represents

the partonic matrix element, depending on the factorization µF and renormalization scales µR.

2.6 Production of Dibosons

As mentioned in section 2.3.2, the electroweak Lagrangian makes precise predictions of the weak

gauge boson interaction with fermions and values of the self interactions . Collision experiments

conducted at the end of the 20th century gave precise values for the boson-fermions coupling

compatible with SM expectations. The bosons self-couplings was measured in those experiments

as well, but, with the development of the proton-proton collider at CERN, a new interest in the

measurement of these couplings at TeV scales was awoken. In this work, a special attention is

given to the production of two neutral bosons.

In the following section, a description of the production of ZZ via a triple gauge bosons

vertex (TGC) is given. Later, the production mechanism of Z pairs in the LHC and some
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previous results are discussed. At the end of the section, an explanation of the anomalous TGCs

and their physical implication is given.

2.6.1 Triple Gauge Coupling

One consequence of the non-Abelian structure of the SM is the existence of triple and quadric

self-couplings between gauge bosons. The general expression is condensed in equation 2.13.

A general picture of the triple gauge coupling (TGC) is shown in figure 2.3.

Figure 2.3: Representation of the TGCs. An incoming vector boson V1 with momentum P meets two

ongoing vector boson: V2 and V3 with momentum q1 and q2, respectively.

In the SM V3 and V2 have to be different bosons. That means charged vertices are allowed;

e.g., W+W−Z/γ, W+Z/γW+, but TGCs that involve three neutral bosons (ZZZ or ZZγ) are

forbidden in the SM.

The vertex function shown in figure 2.3 can be parametrized as:

ΓαβµV = fV1 (q − q̄)µgαβ − fV2
M2
W

(q − q̄)µPαP β + fV3 (Pαgµβ − P βgµα)

+ ifV4 (Pαgµβ + P βgµα) + ifV5 ε
µαβρ(q − q̄)ρ

− fV6 εµαβρPρ −
fV7
M2
W

(q − q̄)µεαβρσPρ(q − q̄)σ (2.19)

where P , q and q̄ are the four-momenta of V1, V2 and V3, respectively. The coefficients fVi

are form factors that depend on P 2. The form factors have information of the nature of the

interacting particles.

For example, the first line in equation 2.19 is related to the dipolar and quadrupolar moment

of charged bosons. The complex functions fV4 and fV5 are called neutral triple gauge couplings

and are functions of q1 and q2 and P , as shown in figure 2.3.
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The Lagrangian generator of the function vertex shown in figure 2.3 in the case of neutral

bosons is: Z1Z2V with Z1 and Z2 on-shell and V = Z,γ in general off-shell, can be written as

[16] [17] [18]:

L =
e

m2
Z

[fV4 (∂µV
µβ)Zα(∂αZβ) + fV5 (∂σVσµZ̃

µβZβ)] (2.20)

where Zµβ and V µβ are the vector boson tensors and Z̃µβ = 1
2εµνρσZ

ρσ. fγ4 and fZ4 are CP

violating. fγ5 and fZ5 couplings conserve CP, but violate parity, P [17].

q̄

q Z

Z

Z/γ∗

Figure 2.4: ZZ production through triple gauge couplings.

In the SM, the values for the triple gauge couplings are predicted to be zero at tree level.

For that reason, the ZZ production through the s-channel shown in figure 2.4 does not exist.

Contributions at next orders can be introduced and parametrized. If any deviation to the SM

values of the TGCs is found, it constitutes a proof of the limits of the SM. In the next section,

anomalous values of the TGC are discussed.

2.6.2 Anomalous Neutral Triple Couplings (aTGC)

Values different from zero for the triple gauge couplings, referred to as anomalous TGCs cou-

plings (aTGCs), would produce extra terms in the effective Lagrangian shown in equation 2.11.

As a result of these terms, an enhancement of the ZZ production cross section at high values

of pT is expected. As an example, in figure 2.5, the pT of the Z with the larger transverse

momentum of the ZZ system is shown, it was measured in the ATLAS experiment at center of

mass energy of
√
s = 7 TeV corresponding to an integrated luminosity of 4.6 fb−1.

The background expectation and the measured data are compare with predictions of dif-

ferent values of the neutral triple gauge couplings, shown as dashed lines. The aTGCs curves

correspond to simulations at different values of the triple gauge couplings, fγ4 , fZ4 , fγ5 and fZ5 .

As already mentioned, an increase in the number of events at high values of pT is expected if

the aTGCs values are different of zero.
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Figure 2.5: In figure Z pT distribution measured in ATLAS with a center of mass energy of
√
s = 7 TeV,

corresponding to an integrated luminosity of 4.6 fb−1 compared with simulations of anomalous neutral

triple gauge couplings at values different from zero. Figure taken from [19].

In order to study aTGCs, form factors fVi (s) depending on the partonic center of mass

energy (
√
s) are introduced:

fVi (s) =
fVi0

(1 + s
Λ2
FF

)n
(2.21)

where i = 4,5, n is a constant and ΛFF is a cutoff related to the scale of new physics generating

the anomalous TGCs. The dependency with s in equation 2.21 is introduced to avoid possible

violation of the partial-wave unitarity, due to the rapid growing of the SM deviation with the

partonic center of mass energy [16] [17] [18].

The effects of the four triple gauge couplings; fγ4 , fZ4 , fγ5 and fZ5 , on the ZZ production cross

section can be directly determined through observation of deviations on the expected number

of produced bosons compared with the SM predictions. If any significant deviation is observed,

limits on the values of the aTGCs can be calculated.

The basic assumption on the study of the aTGCs is that new physics exist at one scale ΛFF ,

far beyond the reach of current experiments. New particles due to these physics are directly

observable, but the effects of these can be seen as anomalous interactions of the SM particles.

A simple method to generate aTGCs is through virtual effects at loop level [16] [17] [18]. New

heavy fermions arising from a fourth generation of fermions can produce this vertex correction.

Limits to the anomalous triple gauge coupling have been derived using collision data. Table
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2.2 shows the one dimensional 95% confidence level intervals for anomalous neutral gauge boson

couplings derived for the ATLAS experiment, at a center of mass energy of
√
s = 7 TeV,

corresponding to an integrated luminosity of 4.6 fb−1.

ΛFF fγ4 fZ4 fγ5 fZ5

3 TeV [-0.022,0.023] [-0.019,0.019] [-0.023,0.023] [-0.020,0.019]

∞ [-0.015,0.015] [-0.013,0.013] [-0.016,0.015] [-0.013,0.013]

Table 2.2: One dimensional 95% confidence intervals for aTGCs derived from ATLAS data at
√
s = 7

TeV. Limits are presented for ΛFF = 3 TeV and ΛFF =∞, both include the total systematic. [19].

In the table shown above, limits for two ΛFF values are given. The 3 TeV value is used to

avoid the partial-wave unitarity violation at the LHC energy. The limits with any form factor

(i.e. ΛFF =∞) are used in order to make a comparison with other experiments, with different

energy conditions. The extraction of the confident limits is based on the comparison of the

measured and expected number of events in variables like the pT of the most energetic Z or the

invariant mass of the ZZ, because these variables are very sensitive to the anomalous couplings.

Then, the couplings are parametrized as a function of the observed yield. A detail description

of the extraction procedure is given in chapter 7.

2.6.3 Diboson Searches at LEP and Tevatron

At the end of the 20th century, a series of experimental efforts were done in order to test

the predictions of the SM. The Z boson discovery and precision measurement of the mass

of the Z and the couplings with fermions, were done in experiments like the Large Electron-

Positron collider (LEP) at CERN, and hadron colliders like the Tevatron in the Fermi National

Accelerator Laboratory (Fermilab) in USA.

ZZ production was studied at LEP by the L3 [20], OPAL [21], ALEPH and DELPHI [22]

collaboration in multiple final states. At an energy of
√
s = 200 GeV in e+e− collisions, a

combined cross section σ(e+e− → ZZ) = 0.90 ± 0.12 pb was measured.

The Tevatron experiments, DØ [23] [24] [25] and CDF [26], looked for Z pair production

using proton-antiproton beams at an energy of
√
s = 1.96 TeV. CDF, using a total integrated

luminosity of 1.9 fb−1 has observed three ZZ events in the channels ZZ → llll and ZZ → llνν̄

(l = e,µ) [26]. DØ with 1.7 fb−1 of data, reported the observation of three events in the

ZZ → llll channel [23].

CDF and DØ measured a cross section of σ = 1.4 +0.7
−0.6 pb and σ = 1.60 ±0.63 (stat) +0.16

−0.17

(sys.) pb. CDF has made an update of the ZZ analysis to an integrated luminosity of 4.8 fb−1,

reporting the observation of five events in the ZZ → llll channel [25].

Most recently, the two experiments of the LHC, ATLAS and CMS, using proton-proton
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collisions, have released results of ZZ production with 5 fb−1 data at an energy of
√
s = 7 TeV.

A detail discussion of the ZZ studies using hadron colliders is shown below.

2.6.4 Diboson Physics at the LHC

The study of the production of pairs of Z bosons, as already mentioned, is important to test the

electroweak sector of the SM. With the operation of the LHC at center of mass energy in the

order of ten TeV, a new opportunity is obtained to test the SM at higher energy scales compared

with those accessible with previous experiments like LEP or Tevatron.

q̄

q Z

Z q̄

q Z

Z

Figure 2.6: Feynmann diagrams of the ZZ production via quark-antiquark interaction.

At hadron colliders, qq̄ → ZZ production proceeds at the tree level, principally via quark-

antiquark annihilation. The Feynman diagrams for this production mode are shown in figure

2.6 and correspond to the t- and u-channel; the s-channel involves the TGC shown in 2.4, which,

as already mentioned, does not exist in the SM.

One additional production mode corresponds to the gluon-gluon fusion shown in figure 2.7.

The contribution of gluon-gluon fusion to the ZZ production is about 6%, so the quark-antiquark

interaction is the dominant mechanism of dibosons production in hadron colliders.

Figure 2.7: Feynmann diagrams of the ZZ production via gluon-gluon fusion.

Each Z boson produced via any of the referred mechanisms can decay into different particles

with a determined probability. For example: quark-antiquark (70%), neutrino antineutrino

(20%) and oppositely charged leptons (10%). In this work, the ZZ → e+e−e+e− channel is
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studied. The corresponding branching ratio for this decay mode is [13]:

BR(ZZ → e+e−e+e−) = (0.03363)2 = 0.001 (2.22)

Different kinds of processes can show similar final signatures as those of dibosons. Figure

2.8 shows processes with final real Z and a variable number of jets, which can fake the signal

of leptons in the detectors. On the left side of figure 2.8, a Z boson and a gluon are produced.

The gluon will produce new hadrons, due to the nature of the strong interaction; and the new

hadrons are measured as jets in the detector. The middle and right side of the figure show the

Z production with b-quarks. The b-quarks also form jets after hadronization.

Additionally to this sources of background, tt̄ production, as shown in figure 2.9, can produce

leptonic and jet final states that contribute with the background of the diboson production. In

this case, the high mass of the top-quark allows the production of heaviest particles like W

bosons, which can produce leptons in final states.

Contribution of the mentioned process, with jet contents, can be reduced experimentally,

using tighter selection criteria on the identification of the leptons. Process with four final real

leptons, like those shown in figure 2.10 cannot be reduced experimentally. One example is the

right side of figure 2.10, which represents the production of a Higgs boson via Vector Boson

Fusion (VBF). The produced Higgs decay into a ZZ∗ and, additionally, two jets with high

values of the pseudorapidity are produced.

The expected number of ZZ and background events of each kind can be determined for a

specific luminosity with the help of Monte Carlo (MC) simulations. In the next section, a brief

description of the MC generators used in this analysis is given.

q

q̄ g

Z

q

(a)

q

b̄

b

gq̄

q

Z

(b)

g b̄

g b

b̄

Z

b

(c)

Figure 2.8: Example of Z production plus gluons (a) and quarks ((b) and (c)).
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Figure 2.9: tt̄ production with an associate Z boson.
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Figure 2.10: Processes with final experimental signatures similar to the ZZ production. (a) ZZZ∗ process,

(b) ZWW and (d) Higgs production via vector boson fusion.

2.7 PDFs and Monte Carlo (MC) Generators

As already mentioned in section 2.5, the characteristics of the QCD interaction force to consider

protons as non-elementary particles but as a compost of quarks and gluons carrying the fraction

momentum of the proton. The momentum distributions (PDFs) can be measured in collision

experiments and the universality of the QCD allowed to apply the PDFs to the study of other

phenomena.

The most common method used to study physics process is the generation of simulations

that reproduce the expected behavior of the process. The four vectors of the particles involved

in the initial process are generated following a density distribution. The density distribution

in this case corresponds to the PDF used in the generator convolved with the matrix element
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governing the process already introduced in equation 2.18.

The PDFs are necessary to calculate the cross section, for example, using the equation 2.18.

The degree of the perturbation approximation, e.g., Leading Order (LO), Next to Leading Order

(NLO), depends on the PDFs.

The most commonly set of PDFs used are:

1. CT10 [27]: A NLO PDFs set based in a heavy-quark mass implementation in perturbative

QCD cross sections. It includes data of Deep Inelastic Scattering from HERA-I, vector

boson production and single-inclusive jet production from Tevatron measurements.

2. MSTW2008 [28]: It includes LO, NLO and NNLO PDFs sets. The fits include a large amount

of data from HERA and Tevatron Run II. It improves the uncertainty propagation of the

data to the fits in comparison with previous PDFs that used similar perturbative schema.

The different set of PDFs listed above are generally included in MC generators that are

able to simulate physics processes, at order depending on the PDF. The matrix elements, that

simulate the hard interaction process are calculated for the generator and predictions on the

cross sections are given.

Kinematic distributions can be produced, too, with the help of MC generators. These

simulated distributions are known as generator level distributions. Different kinds of generators

exist; those used in this analysis to estimate the signal and background contributions are listed

below.

1. PowhegPythia [29]: It is a NLO generator used in this analysis to simulate the MC sig-

nal via quark-antiquark interaction. It includes fermionic decays of the ZZ and Z(γ∗)

interference terms.

2. ggVV [30]: this generator is used to complement the PowhegPythia signal prediction be-

cause it includes the full gg → (Zγ∗)(Zγ∗)→ `+`−`+`−

3. MC@NLO [31]: Its a NLO event generator, which calculates the matrix elements with addi-

tional single particle corrections to the hard process. In this piece of research is used for

the generation of tt̄ background samples.

4. MadGraph [32]: It is a tool to automatically generate matrix elements used principally to

obtain prediction of rare and new physics processes. In this work, some of the background

processes are simulated using this generator.

5. ALPGEN [33]: It is a LO generator designed for the study of multiparton hard processes

in hadronic collisions. Predictions of anomalous triple gauge couplings can be made with

ALPGEN.
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6. MCFM [34]: It is a parton level MC program used to obtain the cross sections of various

femtobarn level processes in hadron-hadron colliders at Next to Leading Order. With help

of this program, a theoretical prediction of the ZZ cross section at
√
s = 8 TeV will be

given.

An important aspect of the experimental physics is the modeling of detector response to

the experimental conditions. A powerful tool designed to achive this task is the simulation

toolkit Geant4 [35]. The toolkit provides a series of components to simulate all aspects of the

experimental setup. The geometry of the systems, materials involved, fundamental particles

of interest and the interaction of the particles with the matter and electromagnetic fields can

be implemented in the simulation. As already discussed in this section, MC distributions at

generator level are produced using Monte Carlo methods. Further interactions of the produced

particles with the matter are tracked trough the different geometric domains of the detector with

a detail model of ATLAS implemented using Geant4. A collection of hits in sensitive areas of

the detector are formed, and later, a simulation of the response of the electronic is conducted

(digitalization). In that way, a full simulation of the response of the detector is obtained to be

compared with real data.

2.8 ZZ Cross Section Prediction

In order to have an idea of the expected number of ZZ events at a particular center of mass

energy, the cross section of the process must be determined. In this work, MCFM samples were

used to calculate the theoretical total cross section of the ZZ. Scale variations and uncertainties

in the PDF were considered and are quoted as the uncertainty in the total cross section shown

below. The total production cross section of the ZZ (σtotalZZ (pp→ ZZ +X)) is [34]:

σtotalZZ (pp→ ZZ +X) = 7.2+0.3
−0.2 pb (2.23)
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Chapter 3

The ATLAS Experiment

Announcer: It’s a dead heat! They’re checking the electron microscope.

And the winner is... Number three in a quantum finish!

Professor Farnsworth: Not fair! You changed the outcome by measuring it!

—Futurama

Collision experiments have been used in the past to study matter and the interactions gov-

erning the particle dynamics. One of the nowadays operating colliders is the Large Hadron

Collider (LHC) a circular accelerator placed in the ancients facilities of the LEP-Experiment1.

Protons are accelerated in the LHC, which was designed with four places where the accelerated

protons can collide2. In each point, a detector was built, where the products of the collision

could be measured. ATLAS 3 is one of these detectors.

Like other LHC detectors, ATLAS consists of a set of subsystems with specific characteristics,

able to work in an environment of high energy and particles density. The subsystems are designed

to make precise measurements of energy, momentum and tracks of the products of the proton-

proton collisions. In this chapter, the characteristics of ATLAS and the different subsystems

belonging to it are described.

3.1 The Large Hadron Collider

The LHC is located at the common border of France and Switzerland. The design center of

mass energy is 14 TeV with an instantaneous luminosity of 1034 cm−2 s−1; these characteristics

make the LHC one of the most prominent tools to do searches in today’s experimental particle

physics.

1Large Electron-Positron Collider
2The physics programm of the LHC include the collision of lead nuclei.
3A Toroidal LHC ApparatuS
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The accelerating complex of the CERN research center sets the infrastructure for different

experiments. The ring of the LHC is around 26.7 km long and is located 100 meter under the

floor level. Figure 3.1 shows the position of the LHC detectors.

Figure 3.1: Localization of the LHC experiments. Image taken from [36].

Protons are obtained in the LHC through ionization of hydrogen. The produced protons

are accelerated in successive steps, first with the help of a linear accelerator (LINAC2), then

using two synchrotrons (SP and SPS). The protons are later injected into the main storage ring.

ATLAS and CMS4 are general detectors, made for the search of new physics in proton-proton

collisions. The other two detectors LHCb and ALICE are designed to look for specific physics

processes with protons and heavy ions, respectively.

The accelerated protons are injected into the storage ring in bunches which collide in four

intersection points where the detectors are placed. The number of particles in the bunch and

the frequency of bunch collision define the instantaneous luminosity.

4Compact Muon Solenoid
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The physics program of the LHC started in the year 2009. At the beginning, the collisions

were done at a center of mass energy of 900 GeV. In 2010, the energy was increased to
√
s = 7

TeV. The data analyzed in the present work was obtained in 2012 and first half of 2013, at a

center of mass energy of
√
s = 8 TeV that corresponds to an integrated luminosity of approx.

20.3 fb−1.

The products of the collisions in the detectors are first analyzed using a trigger system, in

order to reduce the size of the data to be stored. Only events possessing objects that fulfill an

appropriate set of thresholds in some variables are recorded. The events are grouped in so called

runs, depending on operational conditions. The runs are further grouped in periods, separated

by time intervals that are used to make detector adjusts or to probe and change beam conditions,

e.g., the spacing between bunches.

3.2 The ATLAS Detector

Figure 3.2: A schematic view of the ATLAS detector with the main subdetectors labeled. The dimensions

of the detector are quoted, too [37].

The biggest of the four detectors located in the main ring of the LHC is the ATLAS detector.

Due to the symmetry of the collision process, it was designed with a cylindric form with a

total length of 44 m and a diameter of 25 m [37]. Figure 3.2, shows a drawing of ATLAS.

Protons collide at the center of the detector and the products of the collisions fly through the

subdetectors that are placed at concentric layers. The innermost subdetector is responsible for

the measurement of tracks of charged particles. This subsystem is called inner detector and is

immersed in a solenoidal magnetic field of 2 Tesla. Radially outside the inner detector is the
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calorimeter system, which is necessary for the measurement of the energy of collision products.

The outermost device is the Muon Spectrometer, designed to detect the heavy brother of the

electron. The muon spectrometer is immersed in a toroidal magnetic field. In between each

subsystem are all the necessary elements to facilitate the functioning of the subdetector, e.g,

cables and cryogenic systems.

The protons collide in the center of ATLAS, referred to as interaction point (IP). The IP is

taken as the origin of a coordinate system in which the xy-plane is perpendicular to the beam

pipe. The x-axis is defined by pointing to the center of the ring and the y-axis by pointing to

the earth ground. A spherical coordinate system can be used, too. The azimuthal angle φ is

placed in the previous defined xy-plane, with values from 0 to 2π. The polar angle θ is measured

relatively to the direction of the beam pipe.

The pseudorapidity η is used more often than θ because the number of produced particles in

one collision per pseudorapidity interval is constant. The pseudorapidity is related to the polar

angle, as shown in the equation below.

η = − ln(tan
θ

2
) (3.1)

As function of η, three regions can be categorized. One central region (barrel), one endcap

and one forward region5.

In ATLAS, the inner detector has a coverage until |η| = 2.5. The muon momentum can be

measured until |η| = 2.7 and the calorimeters systems until |η| = 4.9 [37]. The inner detector

can measure particle tracks with transverse momentum larger than 0.5 GeV in a pseudorapidity

interval given by |η| < 2.5 [37].

3.2.1 Inner Detector

After the collision of the protons in the IP, the produced particles travel through the inner

detector. If the particles are charged, the path is determined in the inner detector, which is able

to find the origin of the produced particle (vertex).

The inner detector is one 6.2 m long cylinder with a radius of 1.05 m. One superconducting

solenoid produces a magnetic field with a strength of 2 T, used to bend the track of the charged

particles in order to measure the momentum of the particles. The inner detector was designed

to measure the transverse momentum with a resolution of σpT /pT = 0.05%

Figure 3.3 offers a sectional view of the inner detector which allows to see the three com-

ponents that form the inner detector: e.g, Pixel detector, SemiConductor Tracker and the

Transition Radiation Tracker. A detailed description of the inner detector components follows

below.

5In this work the interval 2.5 < |η| < 4.9 is referred to as forward region
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Figure 3.3: Sectional view of the inner detector. The pixel and semiconductor tracker in the barrel and

endcaps are shown [37].

3.2.2 Pixel Detector

The pixel detector is the innermost detector of the ATLAS experiment. Using silicon sensors, it

provides three measurement points for particles emerging from the beam pipe. The information

collected by the electronics of the pixel detector allows the tracks reconstruction of charged

particles and the determination of secondary vertex with high precision.

The single hit resolution of the pixel detector is 10 µm in the transverse direction and 100

µm in the longitudinal plane. The pixel detector has a transverse impact parameter resolution

of the order of 15 µm and is able to measure the longitudinal primary vertex with a resolution

better than 1 mm [38].

The detectors structure follows the same configuration as other components of ATLAS. Three

concentric cylinders in the central region and three layers in the endcaps, perpendiculars to the

beam pipe. The coverage in η is |η| < 2.5, including the central region and the endcaps.

A sectional view of the barrel part of the inner detector is visible in figure 3.4. The pixel

detector corresponds to the structures at the bottom part of the figure, closer to the beam pipe.
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Figure 3.4: Main components of the track system. The distance of each component with respect to the

beam pipe is given [37].

3.2.3 SemiConductor Tracker (SCT)

The SCT detector, which consists of silicon modules, can be seen in the middle part of figure

3.4. In the barrel there are four layers mounted in concentric cylinders. In each endcap the

silicon modules are placed in three rings. The η coverage is limited to the central region, as is

the pixel detector. The spatial resolution of the SCT modules is 17 µm in the r − φ plane and

580 µm along the beam pipe [37].

The SCT is designed to give up to four track points of charged particles emerging from the

interaction point. Similar to the pixel is the SCT information of the track, necessary to make a

precise reconstruction of the particles and the measurement of the track momentum. In figure

3.4, the SCT corresponds to the structures in the middle part of the figure.

3.2.4 Transition Radiation Tracker (TRT)

Charged particles traveling through matter radiate energy when passing materials with different

dielectric constants; this property is referred to as transition radiation. The intensity of the

emitted radiation is proportional to the Lorentz-Factor γ = E
m . This property is exploited in

the Transition Radiation Tracker (TRT).

The TRT consists of drift tubes (straws) (4 mm diameter) filled with a gas mixture, inter-

leaved with polypropylene fibers that induce the transition radiation. The radiation emitted

from a charged particle excites the gas in the straws and the signal is collected. In the barrel

part of the detector, around 50000 straws parallel to the beam pipe are placed. In the endcaps,

320000 straws are orthogonal to the beam pipe [37].

The electrical signal produced in a straw for an electron is in the range of 9 to 10 keV, while for
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pions, for example, that are more massive than electrons, the produced signal is approx. 2 keV.

A threshold can be applied to the measured electrical signal in order to make an identification

of electrons from other charged objects like pions or jets. The value of the threshold is 5 keV

for electron.

Additionally to the identification capability, the TRT brings up to 36 track information

points. For that reason, the TRT provides a robust track information to the track reconstruction.

The TRT track measurement resolution is of 130 µm in the r − φ plane and a pseudorapidity

coverage up to |η| < 2.0. In figure 3.4, the TRT corresponds to the most external part of the

inner detector.

3.3 Calorimeter System

The collision of high energetic particles produces a manifold of unstable particles. The decay of

these yields as final products, as long the Standard Model allows, light fermions, photons and

hadrons in jets.

In order to make a reconstruction of the original event, the track and energy of the products of

the collision need to be measured. The track reconstruction in ATLAS is performed in the inner

detector, described above. The energy of stable particles is determined using a set of calorimeter

detectors. A calorimeter is a device where the particles emerging from the interaction point are

stopped and the collected energy is measured.

In ATLAS, sampling calorimeters are used, meaning that the calorimeter is composed of

two different materials: one with a high atomic number (passive material), in order to stop

the incident objects, and another one that collects the energy deposited for the stopped particle

(active material). The advantage of the sampling calorimeters is the compactness of the detector,

very different when using a calorimeter made of only one material.

The relative energy resolution in sampling calorimeters to the measured energy E in GeV

can be written as:

σE/E =
a√
E
⊕ b

E
⊕ c (3.2)

Where a, b and c are parameters that depend on the calorimeter region. a is called the

sampling term and is related to the energy degradation, due to the deposit of energy in the

absorbed layers. The parameter b is the noise term related to electronic noise of the LAr and

with the accumulation of signal due to pile-up effects. The last term, c, is referred as constant

term.

The choise of material appropriate for the construction of the calorimeter depends on the

kind of interaction governing the particles to be stopped. Charged particles lose energy in

matter through ionization, excitation or bremsstrahlung. For photons processes like Compton

49



Calorimeter System

scattering, photoelectric effect or electron-positron production are responsible for the deposition

of energy. Hadrons lose energy rather through strong interaction with the atomic nucleus than

through electromagnetic processes.

To cover all the possibilities of interaction two kinds of calorimeters were made in ATLAS: one

electromagnetic calorimeter and one hadronic calorimeter. A sectional view of the calorimeter

system is shown in figure 3.5. The ATLAS calorimeter covers the full φ angle and to |η| < 4.9

in pseudorapidity.

Figure 3.5: Sectional view of the ATLAS calorimeter system. The electromagnetic calorimeter is shown

in yellow and the hadronic calorimeter in gray [37].

The electromagnetic calorimeter is divided in two parts: one central part with lead as passive

material and one forward calorimeter made of copper. Both calorimeters use liquid argon (LAr)

as active material. The central part is further segmented in a barrel part and two endcaps.

The barrel electromagnetic calorimeter is surrounded by the hadronic barrel calorimeter made

of steel and scintillating tiles; for that reason is it called tile calorimeter. In addition to the

central tile calorimeter, the hadronic calorimeter has segments in the endcaps (Extended-Barrel-

Calorimeter) and in the forward region, where tungsten is used as passive medium.

In following section a detailed description of the ATLAS calorimeters is given.

3.3.1 The Electromagnetic Calorimeter

One important characteristic of the ATLAS calorimeter system is the high coverage in pseudo-

rapidity. In the electromagnetic calorimeter this process is done with use of a segmented distri-

bution. The central part of the calorimeter covers the region below of |η| < 3.2 with a small gap

(crack region) in the interface between the barrel and the endcaps (1.375 < |η| < 1.475). High

values of the pseudorapidity are covered by the forward calorimeter (FCal). A special accordion
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geometry was selected for the form of the electrodes and absortion material in central region.

With help of this geometry, a full coverage in the polar angle φ is achieved. A summary of the

principal characteristics of each segment of the electromagnetic calorimeter is given below.

Figure 3.6: The geometry of the electromagnetic calorimeter in the barrel part is represented in the

figure. The volumes designed to serve as energy deposits (samplings) are visible. The granularity of

teach sampling is shown [37].

• Barrel calorimeter: It consists of a 6.4 m long cylinder with an inner radius of 1.4 m

and external one of 2.0 m. The pseudorapidity coverage is |η| < 1.475. As can be seen

in figure 3.6, the calorimeter is segmented in three volumes (samplings) with different

granularity. The first sampling, closer to the interaction point, has a granularity given by

∆φ × ∆ η = 0.1 × 0.0031. The second one, where most of the energy is expected to be

deposited has a granularity of ∆φ × ∆ η = 0.025 × 0.025 while the third volume has

a granularity twice as high in η (∆φ × ∆ η = 0.025 × 0.05). The purpose of the fine

granularity in the first sampling is to increase the identification of electrons over neutral

pions, which can produce two energy deposits with a small angular separation, due to the

decay into two photons.

A presampler is located in the region |η| < 1.8 in front of the first sampling in order to do

corrections to the measured energy in the calorimeter.

• Endcap electromagnetic calorimeters (EMEC): They are settled in two wheels at each end

side of the barrel. The wheels have an inner radius of 2.098 m and external one of 3.30 m;

that corresponds to an absolute pseudorapidity coverage in the interval 1.375 to 3.2

Each endcap wheel consists of two concentric rings with different granularity. The external
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one possesses, like the barrel calorimeter, three samplings to deposit energy. The inner

wheel (2.5 < |η| < 3.2), referred to as EMEC-IW6, has only two samplings with a coarser

granularity than that of the barrel.

• Forward calorimeter (FCal): covering the region 3.1 < |η| < 4.9, the forward calorimeter

is formed of cylindric structures (44,41 cm long and radius of 44.49 cm) parallel to the

beam pipe [39]. The geometry of the FCal is different that the rest of the electromagnetic

calorimeter; it consists of a hexagonal matrix of copper or tungsten with electrodes of

the same material, with a gap between electrodes and the matrix filled with LAr. Three

segments are distinguished in the FCal: the closest to the IP (approx. 4.7 m) is called

FCal1 and corresponds to an electromagnetic calorimeter; FCal2 and FCal3 are hadronic

calorimeters.

Figure 3.7, offers a frontal view of the FCal1. The gap between the electrodes and the

copper matrix corresponds to 0.27 mm and is maintained with an isolation fiber. The

granularity of the FCal1 corresponds to 0.2 × 0.2 in η × φ.

FCal2 and FCal3 are made of tungsten in order to limit the lenght of the calorimeter. The

gap between matrix and electrodes is 0.37 mm for FCal2 and 0.5 mm for FCal3.

Figure 3.7: A transversal view of the front part of the forward calorimeter is shown. The special geometry

of this calorimeter can be appreciated [37].

3.3.2 The Hadronic Calorimeter

The next detector, radially outside the interaction point after the electromagnetic calorimeter,

is the hadronic calorimeter. The task of the hadronic calorimeter is to stop jets produced after

6Electromagnetic endcap inner wheel.
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hadronization and to collect the released energy. The hadronic calorimeter is composed of a

barrel part, an extended barrel calorimeter, commonly referred to as tile calorimeter, and the

hadronic endcaps (HEC). The pseudorapidity coverage of the hadronic calorimeter is |η| < 3.2.

The barrel covers |η, | < 1.0, the extended barrel covers the interval 0.8 < |η| < 1.7 and the

HEC covers 1.5 < |η| < 3.2.

The components of the hadronic calorimeter can be seen in figure 3.5. A brief description of

each calorimeter is given below.

• The tile calorimeter: Barrel and extended barrel are sampling calorimeters of lead as

passive medium and scintillating tiles as active medium. For that reason, both are named

as tile calorimeter.

Like the electromagnetic barrel, the tile calorimeter has three volumes for energy deposi-

tion. The tile calorimeter is longitudinally segmented in a central barrel and two laterally

extended barrels. The inner radius of the tile calorimeter is 2.28 m, while the external one

is 4.23 m. The signal produced in the tile plates is read using photomultiplier devices.

• Hadronic endcap calorimeter (HEC): The HEC consist of two wheels (HEC1, HEC2) which

are sampling calorimeters with LAr as active medium and copper as passive medium.

In the region 1.52 < |η| < 2.47 the granularity of the HEC is ∆φ×∆η = 0.1× 0.1. In the

2.47 < |η| < 3.2 it is increased to ∆φ×∆η = 0.2× 0.2.

3.4 Muon Spectrometer

Muons are charged particles with mass around 207 times the mass of the electron. With help

of intense magnetic fields, muons are detected in ATLAS using the muon spectrometer.

The muon spectrometer sits outside the calorimeter system and is designed to provide pre-

cision muon measurements over a range of muon momentum of 3 GeV to 3 TeV, as well as

to provide trigger signals for muon triggering. A magnetic field is used to deflect the muons

traveling through the spectrometer.

The magnetic field is produced for a system of three superconducting air core toroids that

are placed in the barrel part of the detector and endcaps. The strength of the magnetic field

is in the range of 0.5 to 1 T. The toroidal magnetic field covers the region |η| < 1.4, while the

endcap magnets cover 1.6 < |η| < 2.7.

Muons traveling through the central region are detected using Monitoring Drift Tubes

(MDT). This structure consists of three cylindric tubes, parallel to the beam pipe, filled with

mixture of gases (Ar/Co2). In the endcaps, the Cathode strip Chambers (CSC) are placed;

these consist of three cylinders perpendicular to the MDTs. Two additionally chambers are

used to make precision measurements of the track and momentum of the muons: Resistive plate
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chambers (RPC) and the gap Chambers (TGC). The information collected by the chambers is

used to make an identification of the muons.

3.5 Luminosity Determination in ATLAS

As shown in the previous chapter, the number of events of a physics process depends on the de-

livered luminosity. For many studies, the uncertainty on the luminosity is the major component

in the systematic uncertainty of the cross section determination. For that reason, an accurate

measurement of the delivered luminosity is a key component to precise physic studies.

In particles colliders, the delivered instantaneous luminosity can be written as a function of

the accelerator parameters, as:

L =
nbfrN1N2

2πΣxΣy
(3.3)

where nb is the number of bunches per beam crossing, fr is the frequency of the collisions,

and N1 and N2 are the number of particles in each bunch. Σx and Σy are the transverse beam

profiles. In order to make a measurement of the beam profiles, the so called van der Meer

(vdM) scan is executed in ATLAS. In the vdM method, the beams are separated and the change

in the counting of inelastic interactions µinel is determined. For the determination of µinel,

specific detectors are placed at some distances of the interaction point (IP) of ATLAS. A brief

description of the principal detectors is given below:

1. Beam Condition Monitor (BCM): placed at a distance of 184 cm of the IP, this subdetector

consists of four diamond sensors arranged around the beam pipe. Originally designed as

monitor of background levels, it provides also a fast bunch-by-bunch luminosity signal at

|η| = 4.2 [40].

2. LUminosity measurement using Cherenkov Integrating Detector (LUCID): this detector

is formed of aluminium tubes filled with perfluorobutane (C4F10) gas, distributed around

the beam pipe at a distance of 17 m covering the pseudorapidity range 5.6 < |η| < 6.0.

Cherenkov photons, created in the gas from charged particles, are collected after reflections

with the walls of the tubes using photomultiplier tubes.

Both detectors BCM and LUCID are fast enough to determine the ATLAS luminosity for

each bunch crossing with small deadtime. Other systems of ATLAS, like the inner detector,

FCal, etc are also used to measure the average particle rates, but in longer periods of time [40].
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3.6 ATLAS Trigger System

For the nominal luminosity of ATLAS, an event rate of around 40 MHz is expected. However,

the electronic system only has the capacity to process a data volume of 200 Hz. For that reason,

a robust trigger system is an important part of the ATLAS experiment, aimed to reduce in order

of aprox. 105 the amount of data to be stored, rejecting uninteresting events.

In ATLAS, a three stage system is implemented. The first step, Level1 trigger (L1), basically

uses information from the electronic system in order to find signal products of hard interactions,

such as high pT electrons, muons or jets. The next steps are commonly named High Level

Trigger (HLT) and consist of two levels: the Level2 (L2) and the Event Filter (EF). At each

level, the decision of the previous one is refined by using more detector information and allowing

a longer time for the decision to be made. A tightening of the selection requirements is used to

further reduce the signal rate. A detailed description of each level is given below.

3.6.1 Level1 Trigger (L1)

As already described, the Level1 looks for energy deposits in the calorimeters and signals in the

muon system. The granularity for the search of deposits in the calorimeter is 0.1 × 0.1 in η × φ.

In the case of muons candidates, the signals of muon candidates in the muon chambers are used.

When a deposit of energy in one η × φ region is found, the adjacent cells are analyzed and

added to the original region if the energy of these cells is bigger than a defined threshold. At

the end, one cluster, called ROI, is formed. One event can have zero ROI, one, or more than

one. In case one or more ROIs are found, they are all passed to the next trigger to be further

inspected.

The Level1 trigger is sometimes referred to as an instrumental trigger, because all the selec-

tions are made based on electronic devices. A data rate reduction from 40 MHz to 75 kHz is

achieved for this trigger level.

3.6.2 Level2 Trigger (L2)

The ROI information passes by the Level1 trigger feeds the Level2, where the full available

information from the calorimeters, muon spectrometer and track system is used to analyze the

found clusters. The data rate is further reduced in this step to 3,5 kHz

3.6.3 Event Filter (EF)

In the event filter, a full reconstruction of the event is made and complete information from the

calorimeters muon system and inner detector is used to make a decision.
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3.7 2011 and 2012 Data Taking

As this thesis is being written, the LHC was being upgraded to allow its operation at center

of mass energy closer to the design value of 14 TeV in the year 2015. The physics program

at the LHC started at the end of the year 2009, after solving some technical problems, with

proton-proton collision at
√
s = 900 GeV.

In the year 2010 and 2011, the energy of the colliding proton was increasing up to 7 TeV.

The instantaneous luminosity in 2010 was 2.1 × 1032 s−1 cm−2 and in 2011 it increased up to

3.7 × 1033 s−1 cm−2.

In the left side of the figure 3.8, the total integrated luminosity delivered by the LHC in the

year 2011 is shown in green colour. After quality selections, the ATLAS data collected, in 2011,

consisted of a total integrated cross section of 4.5 fb−1.

Figure 3.8: The total integrated luminosity as function of the data taking period in the years 2011 and

2012 is shown. The total integrated luminosity used in ATLAS physics analysis corresponds to the blue

areas. Plots taken from [41].

In 2012, the center of mass energy of the collisions was increased to 8 TeV when an instanta-

neous luminosity of 8.0 × 1033 s−1 cm−2 was achieved. In this work, the 2012 data is analyzed.

The right side of figure 3.8 shows the development of the delivered luminosity in this period of

time. The efficiency of the ATLAS data taking is larger than the 90% with a final integrated

luminosity of 20.3 fb−1.

An inevitable situation related to the increase of the instantaneous luminosity is the higher

probability of having more than one proton-proton collision per bunch crossing. This effect

is called pile-up and represents a challenge to be managed in order to have precise results in

a physics analysis. In figure 3.9, a comparison of the mean number of interactions per beam

crossing in the 2011 and 2012 data taking periods is shown. The average pile-up increase from

6 in 2011 to 20 in 2012.
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Figure 3.9: Mean number of interactions per beam crossing at
√
s = 7 and 8 TeV. Plot taken from [41].
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Chapter 4

Electron Reconstruction

Performance in ATLAS

“Many years later, as he faced the firing squad, Colonel Aureliano Buendia was to

remember that distant afternoon when his father took him to discover ice.’

—One Hundred Years of Solitude

—Gabriel Garćıa Márquez

Processes with isolated leptons in the final state are important for the physics of the LHC,

because they are produced mainly as the product of resonances, like those of the Z or W±

bosons. Additional particles are produced, which can fake the typical signal of electrons in the

calorimeters or the tracking system. Heavy-flavoured lepton decays and leptons produced by

the interaction of radiation with matter, contribute significantly to the final number of detected

electrons. For that reason, it is of great importance to reconstruct and identify the produced

electrons efficiently and, at the same time, to discard as much of the background as possible.

In the ATLAS detector, the different subdetector systems are combined in order to aid the

identification of electrons at increasing levels of parameters purity, used for the selection of the

candidates. A set of identification criteria is provided to be used for the physics analysis of the

data with different values of efficiency, for the correct identification and background rejection.

In this chapter, an overview of the general strategy of the reconstruction and identification of

electrons in the ATLAS detector is presented. The differences between electrons reconstructed

and identified at high values of the pseudorapidity (|η| > 2.5) and in the central regions are

discussed. At the end, a comparison of the identification efficiency between data and MC for

electron candidates with high |η| values is shown.
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4.1 Electron Reconstruction

Dedicated algorithms for the reconstruction of electrons have been developed using at the be-

ginning only MC simulations of the detector, and later using information coming from data and

MC simulations. The basic idea is to identify compact deposits of energy in the electromagnetic

calorimeter, depending on the coverage of the tracking system, a track that matches the proper-

ties of the energy deposit will be required. When the energy deposits are beyond the coverage of

the tracking system (|η| > 2.5), only information from the calorimeters is available and the track

matching is no longer possible. The central region of ATLAS (|η| < 2.47) has a full coverage of

the tracking system and the reconstruction is made using the sliding-window algorithm [42].

4.1.1 Sliding-window Algorithm

The sliding-window algorithm works in three steps: first, energy deposits are observed in the

electromagnetic calorimeter (clusters); second, the reconstructed tracks of charged particles in

the inner detector, closer to the cluster coordinates, are associated with the cluster (track-cluster

matching) and third, the full energy and coordinates of the deposit are calculated (final recon-

struction). In 2012 data, an improvement of the track-cluster matching was introduced, where

candidates with low energy, were suspected to be electrons losing energy due to Bremsstrahlung,

and the reconstructed track and region of determination of the deposited energy were optimized

to have a better description of the track and energy clusters. A detailed description of the

involved steps is listed below:

• Cluster finding

Electromagnetic clusters with a total transverse energy greater than 2.5 GeV in a win-

dow of 3 × 5 in (η,φ) space, are searched using a sliding-window algorithm. The window

resolution is ∆η = 0.025 and ∆φ = 0.025, corresponding to the granularity of the electro-

magnetic calorimeter in the middle layer. From MC studies, an efficiency for the cluster

reconstruction of almost 100% for electrons with ET > 20 GeV and 97% at ET = 7 GeV

is expected [43].

• Track matching

Within the tracking volume, a pattern recognition and a tracking fit is performed. Tracks

are extrapolated from their last measurement to the middle layer of the electromagnetic

calorimeter. The extrapolated coordinates are compared to those of the reconstructed

clusters. A track-cluster matching is considered successful if the angular separation |∆η|
between the reconstructed track and cluster is smaller than 0.05. When the ratio between

the deposited energy in the hadronic calorimeter and the energy found in the electromag-

netic calorimeter is lower than 10% and the ratio between the electromagnetic energy in a

3×7 and 7×7 in (η,φ) is bigger than 65%, a track recovery procedure is executed. This is
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due to the high probability of losses due to bremsstrahlung. The size of the window for the

observation of energy deposits is enlarged and an additional hypothesis for the track fits

is used. This recovery was tested in the final data collected in 2011 and fully implemented

in the data collected in 2012 [44].

An electromagnetic deposit is considered as an electron candidate when at least one track

matches the reconstructed cluster. In the case of more than one track, tracks with more

silicon hits are preferred.

• Final reconstruction

The track-cluster object found in the second step of the reconstruction process is considered

an electron candidate. Then, the volume of the cluster is optimized to obtain the overall

energy distribution in the different regions of the electromagnetic calorimeter. The window

of the cluster is enlarged to 3×7 in the barrel part of the calorimeter and to 5×5 in the

endcaps. The total energy of the candidate is determined through the sum of the estimated

energy deposited in the material in front of the electromagnetic calorimeter, the measured

energy in the cluster, the energy deposited outside of the cluster (lateral leakage) and

the energy deposited beyond the electromagnetic calorimeter (longitudinal leakage). The

spatial (η-φ) coordinates are taken from the track at the primary vertex.

4.1.2 Topocluster Reconstruction

For the reconstruction and identification of electrons in the forward region, only information

from the calorimeters is available. For that reason, the separation between electrons, positrons

or photons is not possible.

The energy in the calorimeters is grouped in three-dimensional clusters of variable sizes for

the topocluster algorithm. This algorithm takes energy deposits with an energy-noise relation

over one cell threshold in order of find protoclusters, these cells are seeds for the future cluster.

The topocluster algorithm takes the neighboring cells to the protocluster and adds the cells to

the protocluster when the energy-noise relation surpasses a neighbor threshold. The final cluster

is formed with the addition of all the cells that are around the neighboring cells to get the most

information available from the calorimeters. A scheme of the topocluster reconstruction is shown

in the left side of figure 4.1.

4.2 Electron Identification

The reconstructed candidates found are not only isolated electrons. Jets produced in hadroniza-

tion processes can produce electromagnetic deposits in the calorimeters and be reconstructed as

electrons. Additionally, real electrons are also reconstructed due to the conversion of photons

interacting with the material in the tracking system or in the material facing the calorimeter.
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Figure 4.1: Schema of the reconstruction (left side) and identification (right side) process in the high

pseudorapidity region.

For that reason, the disambiguation of electrons from specific processes is a vital element of a

successful physics analysis in ATLAS.

The limits of the spatial coverage of the inner detector define two regions to be considered

in electron reconstruction. The region with |η| < 2.47 is fully covered by the track system. To

identify electrons, it is possible to use information from the energy deposited in the calorimeters

and the track of the charged particle; this region is called central region and consists mainly

of the barrel of the electromagnetic calorimeter. The forward region includes high values of

the pseudorapidity (|η| > 2.5). The inner wheel of the endcaps (EMEC-IW) and the forward

calorimeter (FCal) belong to this region.

Different levels of identification in the 2011 data were applied based on rectangular cuts of

discriminating variables. In addition to cut-based-selection, an identification method based on

a multivariate analysis was applied to the 2012 data. In the next sections, a description of the

identification methods and variables used in the central and forward regions is given.

4.2.1 Central Electron Identification

In order to do a separation between signal electrons and background, the electron identification

in the central region uses the longitudinal and lateral extensions of the shower shapes of the

clusters, the quality of the track and the track-cluster matching as discriminator parameters.

Using these parameters, variables are built to have a set of selection criteria with increasing

background rejection but decreasing identification efficiencies. At the beginning (2011), thresh-
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olds on the variables were used as selection criteria. With the increase of the instantaneous

luminosity and center of mass energy in 2012 data, the behavior of the shower shape variables

changed, due to the increase in the number of interactions per bunch crossing. For that reason,

some cuts in variables with strong pile-up dependency were loosened, and a multivariate analysis

(MVA), as an alternative to the cut based identification method, was included [44].

4.2.1.1 Cut Based Selection

Thresholds in η and pT binning over cluster and track variables are used to build a set of

discriminating criteria. A description of the variables used in the identification menus is given

in table 4.1. In the 2010 and 2011 data, three levels of identification were defined: loose, medium

and tight. Each set is a subset of the previous one, with efficiencies of around 95% for loose, 90%

for medium and 80% for tight selection. In the 2012 data, a new identification named multilepton

was introduced, with the same efficiency as the loose selection, but with a higher background

rejection. A list of the variables used in each identification menu can be seen in table 4.2. The

multilepton menu also has the possibility of doing a better identification of electrons with pT in

the region below of 10 GeV. The purpose of this new identification criteria is to supply a better

tool to work with low energy electrons coming from Higgs boson decays (H→ ZZ∗→4l). The

principal characteristics of the identifications menus are discussed in more detail below.

• Loose selection

The loose identification criteria is based on cuts on the ratio of the energy deposited in

the different layers of the calorimeter; the content of energy of the cluster in a 3×7 versus

7×7 cells and in the minimum number of hits in silicon detectors. With respect to the

track-cluster matching quality, a maximum ∆η separation depending on the data taking

period is tolerated to accept the candidate; for example, the cut value of this variable in

2012 is |∆η| < 0.015. Real electrons or photons coming from the decay of neutral pions are

rejected with a cut in the separation of energy maximal in the first layer of the calorimeter.

• Medium selection

The medium selection includes the previous cuts on the shower shape variables as in the

loose selection, but with a tighter cut on the quality of the track-cluster matching, namely

|∆η| < 0.005. Real electrons produced by photon conversions are filtered by means of the

rejection of reconstructed tracks, with no hits in the first layer of the pixel detector (b-layer

cut). Additional track parameters are included in the medium identification criteria, such

as the minimal radiation threshold in the TRT detector.

• Tight Selection

With a lower efficiency of identification, compared with medium and loose selection, but

a better background rejection, electrons are identified as tight when they pass the same
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Variable Type Description Variable name

Hadronic leakage ? Ratio of ET in the first layer of the Rhad1

hadronic calorimeter to ET of the EM cluster

(used over the range |η| < 0.8 and |η| > 1.37)

? Ratio of ET in the hadronic calorimeter to ET of the EM cluster Rhad

(used over the range |η| > 0.8 and |η| < 1.37)

Third layer ? Ratio of ET in the third layer to the total energy f3

of EM calorimeter

Second layer ? Ratio in η of cell energies in 3 × 7 versus 7 × 7 cells. Rη

? Ratio in φ of cell energies in 3 × 3 versus 7 × 7 cells. Rφ

of EM calorimeter ? Lateral width of the shower. wη2

First layer ? Total shower width. wstot

of EM calorimeter. ? Ratio of the energy difference associated with Eratio

the largest and second largest energy deposit over the sum of these energies

? Ratio of ET in the strip layer to the total energy f1

Track quality ? Number of hits in b-layer > 0 for |η| < 2.01 nBlayer

? Number of hits in the pixel detector (≥ 1). nPixel

? Number of hits in the pixels and SCT (≥ 7). nSi

? Transverse impact parameter (< 5 mm). d0

? Ratio of d0 and its uncertainty (Significance of d0) σ0

? Momentum lost by the track between the perigee and the last ∆p
p

measurement point divided by original momentum

TRT ? Total number of hits in the TRT. nTRT

? Cut on the TRT high threshold fraction FHT

Track-cluster ? ∆η between the cluster and the track (< 0.015) ∆η1

matching ? ∆φ in the middle layer and the extrapolate track ∆φ2

? Defined as ∆φ2, but the track momentum is rescaled to the cluster energy ∆Res

? Ratio of cluster energy to track momentum E/p

Conversions ? Electron candidates matching to reconstructed photon conversions are rejected !isConv

Table 4.1: Definition of the variables used for electron identification cuts for the central region of the

detector (|η| < 2.47) [44].
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cuts of the variables used in loose and medium identification, plus a tighter TRT radiation

threshold and a cut on the ratio energy of the cluster and track momentum.

• Multilepton menu

With the evidence of the existence of the Higgs boson a new identification working point

was introduced during the 2012 data-taking. The scope of the new menu is to increase

the acceptance of the detector in a region of low energetic leptons. For that reason, the

multilepton identification criterion was introduced. Effects such as the bremsstrahlung

losses in charged particles were implemented, so electron candidates losing energy through

interaction with matter could be identified. The ZZ analysis with 2012 data implemented

this multilepton menu as a base for the identification of central electrons, due to the

similarity of the final states with the Higgs boson decay.

Variable Loose Medium Tight Multilepton

Rhad(1) × × × ×
f3 × × ×
Rη × × × ×
wη2 × × × ×
wstot × × × ×
Eratio × × × ×
nBlayer × × ×
nPixel × × × ×
nSi × × × ×
σ0 ×
∆p
p

×
nTRT × × ×
FHT × × ×
∆η1 × × × ×
∆φ2 × ×
∆Res ×
E/p ×

!isConv ×

Table 4.2: The table shows the variables used for electron identification in each criteria in the central

region of the detector (|η| < 2.47) [44].

In the 2012 data-taking a multivariate tool is introduced as an alternative to the cut based

strategy. The MVA used the same variables as the loose, medium and tight set cuts, but prob-

ability density functions are introduced to calculate the probability of a candidate to be signal

or background. In order to make a decision simultaneous variable evaluations are performed.

For that reason, non-defined cuts are obtained and background analysis using cuts inversions

are not possible, for example if a data driven method is necessary.
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4.2.2 Forward Electron Identification

The precise measurement of some processes requires the full coverage of the azimuthal angle

θ in the region that corresponds to high values of pseudorapidity (2.5 < |η|). In ATLAS, the

inner wheel of electromagnetic endcaps (EMEC-IW) and the forward calorimeters (FCal) are

responsible for the detection of electrons and photons with high pseudorapidity values. However,

the lack of tracking information and extreme conditions, like the high levels of radiation or the

presence of the beam pipe around the forward detectors, demands the use of reconstruction and

identification methods that are different to those in the central region.

In order to discriminate electrons from the hadronic background, only the differences between

the shape of the showers can be used. The longitudinal and transverse spread of the shower

is measured in a coordinate system that depends on the center and axis of the cluster. The x

coordinate of the center of the cluster (xc) is calculated (see equation 4.1) as the sum of the

energy Ei in each cell of the calorimeter, weighted with the distance of the cells (xi) to the

cluster core, normalized with the total energy.

xc =
1

Enorm

∑
i

Eixi (4.1)

A similar relation exist for the y and z axis. A vector ~c = (xc, yc, zc) could be formed to define

the shower center. One correlation matrix (C) can be calculated; its elements are the deviations

of the position of each cells i of the clusters with respect to the shower center. Examples of

matrix elements are shown below. The additional terms, e.g., Czz, Cyz, Cxz, are calculated in

the same form

Cxx =
1∑
iE

2
i

∑
i

E2
i (xi − xc)2 (4.2)

Cxy =
1∑
iE

2
i

∑
i

E2
i (xi − xc)(yi − yc) (4.3)

With the help of the eigenvectors of the matrix C, the axis of the shower can be defined.

The axis of cluster ~s is one of the eigenvectors of C with an angular difference, with respect to

a vector pointing from the Interaction Point to the center of the shower, no bigger than 20◦.

With the help of the equation 4.4, the lateral extension of one cell ri can be calculated using

the vectors ~c, ~s and a vector ~mi with the coordinates of the cell.

ri =|( ~mi − ~c)× ~s| (4.4)

A similar relation can be used to find the longitudinal extension λi along the shower axis:
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λi = ( ~mi − ~c) · ~s (4.5)

The total lateral and longitudinal extension of the cluster is calculated as the sum of the ri

and λi, over the total of cells of the cluster, weighted with the total energy of the cluster.

With the cluster parameters described above, variables are defined using clusters moments

with respect to the center ~c and axis of the cluster ~s defined above, or a combination of them.

The cluster moment of degree n of a variable x is defined as:

〈xn〉 =
1

Enorm

∑
i

Eix
n
i (4.6)

where Enorm =
∑

iEi and i is the index of the cell in the cluster.

Six variables in the forward region are available for the identification of electrons. In the

following part of this section these variables are described.

• Center lambda (λc): Electrons produce more compact showers as jets. The depth of the

shower (λ) depends on the energy of the incident particle and the characteristics of the

calorimeter. The center lambda is a measurement of distance of the cluster center with

respect to the front of the calorimeter along the cluster axis. The distribution of the

variables is different for EMEC and FCal, but a maximal value of the variable at approx

200 mm for EMEC and 220 mm for FCal exists in both cases.

• Second moment of lambda (〈λ2〉): The Second moment of the longitudinal extension of

the cluster λi is defined using:

〈λ2〉 =
1∑
iEi

∑
i

Eiλ
2
i (4.7)

Due to the different constituent materials of EMEC and FCal, the behavior of this variable

is different in each of the forward calorimeters, but for real electrons the contribution is

more important at low values of the center λ.

• Second moment of r (〈r2〉): The radial distance of the cells ri with respect to the shower

axis is used to evaluate the transverse form of the shower shapes. A similar equation to

the one shown above (see equation 4.7) is used to get the 〈r2〉

〈r2〉 =
1∑
iEi

∑
i

Eir
2
i (4.8)

The maximum value of the variable is around of 1400 mm2 for EMEC and 600 mm2 for

FCal for real electrons. The lateral extension from the electrons is expected be smaller

that the extension of showers with hadronic origin.
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• Energy fraction (FracMax): The energy fraction of the cluster in the more energetic cell

is a good variable to discriminate between real electrons and jets. Electrons deposit more

energy in a small volume of the calorimeter; for that reason, bigger values of these variables

indicate the possibility to have an electron. Signal electrons deposit in the most energetic

cells between 45% and 80% of the total energy in both calorimeters with tiny differences,

due to the different granularity in EMEC and FCal.

• Lateral: The lateral variable is calculated using the equation shown below:

lateral =
laterala

laterala + lateralb
(4.9)

laterala and lateralb are calculated using the equation 4.8. In laterala the values of ri are

equal to zero for the most energetic cells. In the case of lateralb, the distances ri are set to

4 cm for the most energetic cells and zero for the rest. Lateral will show small values when

the contribution of the most energetic cells to the overall energy content of the cluster,

in a perpendicular direction to the cluster axis, is bigger than that from the rest of the

cells. It is expected that jets deposit energy in more cells, so the importance of the most

energetic cells is lower in that case. A good separation between signal and background can

be made at values of lateral of 0.6 for EMEC and 0.3 for FCal.

• Longitudinal: Similarly to the lateral variable, a relation depending on the distance of the

cells with respect to the most energetic cells and the energy content of each cell can be

built along the shower axis. The longitudinal variable is defined as:

longitudinal =
longitudinala

longitudinala + longitudinalb
(4.10)

where longitudinala and longitudinalb are calculated using the equation 4.7. In longitudinala

is λi equal to zero for the most energetic cells. In longitudinalb is λi = 10 cm for the most

energetic cells and zero for the rest. Similar as for the lateral variable, low longitudinal

values are expected for showers produced for electrons. In this case, the cut to make a

signal-background separation is around 0.2 and 0.4 for EMEC and FCal, respectively.

During the first year and a half of operation, only two identification criteria where available

in forward region: loose and tight. Then, for the second half of 2011, a new pile-up independent

identification was developed: forward medium. In the 2012 data, a drop in the identification

efficiency, due to the increasing pile-up, was observed. A new retuning of the identification cuts

with a MVA method, similar to that in the central electron identification, was made.
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4.2.3 Electron Isolation

In addition to the previous identification selections, isolation methods are used in ATLAS in

order to increase the rejection of jets faking electrons. Two types of isolation are used in

ATLAS: calorimeter and track based isolation. In the case of the calorimeter isolation, the sum

of transverse energy of the cells around the cluster in a cone ∆R =
√

∆η2 + ∆φ2, excluding

the ET of the clusters, must be lower than certain value. Each analysis determines the isolation

criteria to be used. The track isolation is similar to the calorimeter isolation, but it takes the

sum of the momentum contributions of the tracks in a cone ∆R.

4.3 Efficiency of the Identification

For the evaluation of the electron identification efficiency, a method to find real electrons is

needed. The tag and probe method (T&P), using Z → e+e− and J/ψ → e+e− decays, was

implemented for this purpose. Z → e+e− and J/ψ → e+e− are used because the mass of these

particles is well defined and the energy of the electrons comes from them. They are standard

candle for the particle physics.

In the T&P method, one of the electrons, product of the decay, must pass a strict selection

criteria (tag electron); the second electron is used to make the efficiency estimation (probe

electron). The invariant mass of both selected candidates should be within a mass interval

around the mass of the Z boson or J/ψ. Additional cuts over the candidates or events (isolation,

missing transverse energy, etc) can be applied. The probe sample should be separated in electron

signal and background. A fitting procedure can be conducted, with appropriate hypothesis, to

the functions describing the signal and background shapes. The efficiency εid is calculated using

the equation shown below

εid =
Nid

NReco
(4.11)

NReco and Nid are the number of probe electrons before and after the identification.

To do a comparison with the MC prediction, the MC efficiency εMC is calculated using the

same equation, but, in this case, no background subtraction is necessary.

εData and εMC can be used to calculate scale factors (SF) to correct the MC efficiencies, in

order to do a better data and MC comparison. The SF is given by:

SF =
εData
εMC

(4.12)

In the next sections, a detailed description of the determination of the efficiency of the

identification of electron candidates in the forward region is given.
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4.3.1 Efficiency Determination in Forward Region

For the evaluation of the efficiency of the identification of the forward electrons, the tag and

probe method (T&P), with one central electron and one forward electron candidate, is used. This

was done in order to extract the invariant mass spectrum of Z bosons in data samples and to get

the efficiency of the identification in forward calorimeters. A pre-event selection was made (see

detailed description of the event selection in section 5.1.1), based on a list of runs to be used in

physics analysis. Only events with more than three tracks per primary vertex and reconstructed

electrons which pass a trigger selection depending on the data period, are considered. Three

high level triggers were used, with ET of 20 GeV and medium identification. With the increase

of the number of interactions per beam crossing, a new threshold of 22 GeV was used and an

electron isolation and veto in the deposited hadronic energy were applied at the end of the data

taking 1.

Electron candidates are searched for in the events that pass the preselection mentioned

before. The tag electrons are required to pass the following cuts:

• sliding-window algorithm reconstruction

• pT > 25 GeV

• |η| < 2.47, outside of the crack region.

• Calorimeter and track isolation

• tight identification

The probe electrons in the forward region should pass less cuts:

• Topocluster reconstruction

• pT > 20 GeV

• 2.5 < |η| < 4.9

Additionally, electron isolation on the tag electron is required. A calorimeter isolation equiv-

alent to 95% of ET in a cone of 0.2 around the selected electron is used. Meanwhile, the track

should have a pT value less than 1 GeV in a cone of 0.3 around the selected track. The impact

of the isolation criteria to the basic selection and the independence with the pile-up effect can

be seen in tables 4.3, 4.4 and 4.5.

1The triggers used were: EF e20 medium, EF e22 medium and EF e22vh medium1.The ATLAS trigger nam-

ing convention is:

(trigger level) (number of objects)(type of object)(threshold) (quality criteria)
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EMEC (2 fb−1)

Signal Back Signal/Back

reco 177059 79844 2.22

reco + track isolation 149108 36748 4.06

reco + calo isolation 154040 45384 3.39

Table 4.3: Number of events at reco level in the standard selection and with the introduction of track

and energy isolation criteria. Calorimeter isolation: 95% of ET in a cone of 0.2 around the central tagged

electron. The track isolation: pT less than 1 GeV in a cone of 0.3 around the selected track of the central

electron.

FCal (2 fb−1)

Signal Back Signal/Back

reco 56608 44472 1.27

reco + track isolation 57162 26507 2.16

reco + calo isolation 56554 20291 2.79

Table 4.4: Number of events at reco level in the standard selection and with the introduction of track

and calorimeter isolation criteria. Calorimeter isolation: 95% of ET in a cone of 0.2 around the central

tagged electron. Track isolation: pT less than 1 GeV in a cone of 0.3 around the selected track of the

central electron.

Signal/Back

EMEC (2 fb−1) FCal (2 fb−1)

NPV reco reco reco reco

reco + + reco + +

track isolation calo isolation track isolation calo isolation

0-2 1.89 4.08 3.42 1.24 2.88 2.12

2-5 2.26 4.15 3.48 1.29 3.01 2.32

5-7 1.88 3.99 3.22 1.31 2.70 2.21

7-9 2.02 4.14 3.39 1.32 2.68 2.10

9-16 1.91 3.85 3.44 1.16 2.49 1.77

Table 4.5: Signal background relation at reco level in the standard selection and with the introduction

of track and calorimeter isolation criteria. Calorimeter isolation: 95% of ET in a cone of 0.2 around the

central tagged electron. Track isolation: pT less than 1 GeV in a cone of 0.3 around the selected track of

the central electron.

The tables 4.3 and 4.4 show the effect of the calorimeter and track isolation in the selection
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of forward electron candidates without any additional identification (reco level). The sample

corresponds to one fraction of the 2011 data, the signal and background numbers are derived

using a T&P method (see 4.3.1.1). The pT of the forward electrons should be larger than 30 GeV.

The calorimeter isolation is applied on the central electron tagged with the forward candidate,

correspond to a 95% of ET in a cone of 0.2 around of the selected electron. Meanwhile, the

track should have a pT value less than 1 GeV in a cone of 0.3 around the selected track.

The tables show that the amount of background is reduced with the use of the isolation

criteria, but the signal is less affected. The pile-up effect over the isolation criteria can be seen

in the table 4.5, where the ratio signal and background as a function of the number of primary

vertex with more than 3 tracks is calculated. The signal background relation increases in EMEC

and FCal and the increment is constant as a function of NPV. One last cleaning cut is applied

with the help of the missing ET (Emiss.T ) (Emiss.T < 25 GeV) in order to reduce the background

produced by the W → νee process.

4.3.1.1 Signal and Background Separation

The invariant mass of tag and probe electrons is calculated and pairs with mass within an

interval of 55 to 130 GeV around the Z mass are considered. The invariant mass spectrum

had contributions from real electrons coming from Z bosons and background electrons. A fit

procedure was implemented using RooFit [45] in the mass range to make a separation of signal

and background.

The signal is fitted using a Crystal-Ball function convoluted to a Breit-Wigner. The Breit-

Wigner function is used to give a description of the Z peak, the Crystal-Ball is introduced to

get account of the bremsstrahlung loses at low energy values of the electron candidates. With

the help of Z MC simulations, parameters like the mean of the Breit-Wigner are determined

and used as start parameters when the data are fitted; the width of the Breit-Wigner is fixed to

the PDG [13] value of the Z width. The exponential fall of the Crystal-Ball is fixed too, with

the help of the MC; the mean and sigma of this function are fixed with the data. The explicit

form of the functions used to fit the signal and background can be seen in appendix B.

The background is described with a Landau function. The mean and the sigma value of

the function are determined using data. The typical form of the curves is shown in figure 4.2.

The left plot shows the Crystal-Ball function in red and the Breit-Wigner in solid blue. The

convolution is shown in dashed blue. The Landau function can be seen in the right plot.

In figure 4.3, the invariant mass of tag and probe pairs is shown; the plot corresponds to

probe candidates between 2.60 < |η| < 2.70. The signal (black) and the Landau background

(red) separation is visible. The number of signal candidates in a mass window 80-100 GeV is

used to calculate the efficiency.

The identification criteria are further applied to the forward candidates to get the identi-
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fication efficiency. The effective background reduction using the identification criteria on the

forward candidates can be seen in figure 4.4, where the candidates after loose and tight selection

are shown.

Figure 4.2: The figure shows the functions used to fit the data and the background in order to have the

number of electrons corresponding to signal and background. A description of the used function is given

in appendix B.

Figure 4.3: Invariant mass spectrum of tag and probe pairs without identification criteria in 2.60 < |η| <
2.70. The graph shows the signal and background fitting
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Figure 4.4: Invariant mass spectrum of tag and probe pairs with loose (left) and tight (right) identification

criteria in 2.60 < |η| < 2.70

4.3.1.2 Uncertainties

Apart from statistical uncertainties, which are calculated assuming binomial statistics, and which

have shown tiny contributions to the total uncertainties, different sources of systematic errors

were studied. A detailed description of the systematic sources is listed below.

• Change of the fit range: The fit quality for the signal and the background should depend

on the election of the fit rang; for that reason, the efficiency values for a smaller fit range

(60-120 GeV) and a larger one (50-140 GeV) were calculated.

• Signal mass window: For the estimation of the efficiency, the candidates with invariant

mass around the mass of the Z boson are used. The width of the window can induce

tiny differences in the efficiency values. A bigger mass window, 60-120 GeV,was used to

quantify this effect.

• Tag electron selection: Variations to the characteristics of the tag electron were introduced

to see the effect of the tag selection on efficiency. The minimum pT values of the central

electron were changed to 23 GeV and 30 GeV.

• Calorimeter isolation: The effects of tighter and weaker energy isolation over the central

electron were probed. The standard isolation in the electromagnetic calorimeter, corre-

sponding to 95% of ET in a cone of 0.2, is changed to a 98% and 90% in the same cone of

0.2 around the central electron.

• Track Isolation: The track isolation of the central electron was changed, too. Two effects

on the track isolation were tested. One of these corresponds to the usual track cone

isolation of 0.3 with a larger limit of the energy, namely pT down to 3 GeV. The impact
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of the cone isolation selection was probed changing it from 0.3 to 0.4 with the same cut

on the pT in the cone (1 GeV).

• Missing ET variation: Two variations to the Emiss.T were applied:

Emiss.T < 20 GeV and Emiss.T < 35 GeV.

• Background subtraction: The description of the background is important to get the correct

amount of signal in the mass window. For 2.50 < |η| < 3.16 (EMEC), an exponential

function for the background subtraction was used. In 3.35 < |η| < 4.90 (FCal), Chebyshev

polynomials of third order were used.

• MC Template: The signal was fitted using shapes derived using only MC simulations to

modeling the signal distribution.

• Counting in mass window: Instead of using the value given by the fit, the number of events

in the mass window were counted.

In general, the main contributions come from the background choice and the use of MC

templates in EMEC and FCal. All the systematic variations are assumed to be uncorrelated

and added in quadrature to get the total systematic uncertainties.

4.3.2 Efficiencies with 2010 Data Cuts

With data collecred in the year 2010, a basic set of cuts on the variables defined in the section

4.2.2 was derived: a loose selection, with efficiency around the 95% in EMEC and 90% in FCal,

applying cuts on the λc, 〈λ2〉 and 〈r2〉 variables; and a tight selection that uses all the six shower

shape variables to make the identification with an efficiency of 70% in EMEC and 60% in FCal.

To compare the results, a detailed study of the efficiencies of 2011 data that uses this set of cuts

is described below.

4.3.2.1 Efficiency as function of Eta

In order to make efficiency studies, 10 |η|-bins in the forward region were defined. In the EMEC

within the interval 2.50 to 3.00, five bins with a width of 0.1 and one bin from 3.00 to 3.16 were

used. In the FCal only three bins were defined, due to the low number of probe electrons. The

bins are 3.35-3.60, 3.60-4.00 and 4.00-4.90. The interval 3.16 < |η| < 3.35 corresponds to the

transition between EMEC and FCal.

Data-MC comparison is shown in 4.5. The agreement is better in the figure on the left side

of 4.5, especially in the EMEC region. The right side and the left side of 4.5 show a lost of

efficiency in the range 3.16 < |η| < 3.35, due the transition between calorimeters.
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Figure 4.5: The plot shows a comparison of the efficiency in data and MC, after loose and tight selection.

Data and MC agreement is better for EMEC with loose forward identification.

Figure 4.6: SF as function of η for loose (left) and tight (right). Statistical and systematics uncertainties

are shown.

From the right plot it is clear that the scale factors, defined in equation 4.12, are necessary

in order to account for incorrect modeling in the MC. The corresponding SFs as a function of

|η| are shown in figure 4.6. The SFs for EMEC loose are closer to one.

4.3.2.2 Efficiency as Function of pT

The tag and probe method also helped to determine the efficiency as a function of the pT of the

probe candidates. The independent contributions in EMEC and FCal are visible in figures 4.7

and 4.8.
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It can be observed that the data and MC agreement is quite good. However, in the EMEC,

after tight selection some, discrepancies are visible. The efficiency in the four plots shows a drop

for high pT values.

Figure 4.7: Identification efficiencies as a function of pT in EMEC for loose (left) and tight (right).

Statistical and systematic uncertainties are shown

Figure 4.8: Identification efficiencies as a function of pT in FCal for loose (left) and tight (right). Statistical

and systematic uncertainties are shown

4.3.2.3 Efficiency as Function of NPV

With the increase of the luminosity, the pile-up increases, too. The pile-up can be quantified

using the information of the number of primary vertex (NPV). In figures 4.9 and 4.10, the

efficiency as a function of NPV is shown. The Data-MC agreement is quite good, especially in

EMEC and FCal loose. However, the dependency of the efficiency is strong after tight selection

in EMEC and FCal.

77



Efficiency of the Identification

Figure 4.9: Identification efficiencies as function of NPV in EMEC for loose (left) and tight (right).

Statistical and systematic uncertainties are shown.

Figure 4.10: Identification efficiencies as function NPV in FCal for loose (left) and tight (right). Statistical

and systematic uncertainties are shown.

4.3.3 Efficiencies with Pile-up Independent Cut Set

Figure 4.9 and 4.10 show the need for optimization of the identification cuts in order to have

efficiencies that are independent from pile-up. To do that, a systematic study of variable and

cuts behavior as function of the pile-up increase was made. As a result, new thresholds for the

variables were defined, with dependency of the pT on the forward candidate, η value and NPV.

The resulting efficiencies, scale factors and their respective uncertainties have been determined

in the same way, as described above for the unoptimized set with the cuts from 2010.

In addition to the loose and tight identification, a new medium identification level was

introduced for forward electrons, in order to parallel what was done for central electrons.
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Figure 4.11: Identification efficiencies as function of NPV with new loose identification. EMEC (a) and

FCal (b).
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Figure 4.12: Identification efficiencies as function of NPV with new medium identification. EMEC (a)

and FCal (b).
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Figure 4.13: Identification efficiencies as function of NPV with new tight identification. EMEC (a) and

FCal (b).

4.3.3.1 Efficiency as Function of NPV

With the new set of optimized identification cuts, the strong dependency of the efficiencies as

function of the NPV is reduced in the 2011 data, as can be seen in the figures 4.11, 4.12 and

4.13. The new efficiencies are constant in the full range of variation of the NPV in EMEC and

in FCal. At the same time, the agreement Data-MC is quite good, especially for the loose and

the new medium identification criteria, as can be seen in the ratio plot at the bottom of the

figures 4.11 and 4.12. In the case of the tight selection (figure 4.13), a 5% deviation of the unity

in both forward calorimeters can be seen. As with the old set of cuts, the nice agreement of the

efficiencies for the data and the predicted MC efficiencies make the use of SFs as function of the

NPV unnecessary.

4.3.3.2 Efficiency as Function of pT

The efficiency as function of pT can be seen in the figures 4.14, 4.15 and 4.16 for EMEC and

FCal. It can be observed that the agreement Data-MC is quite good in EMEC at low energy

for all three identification criteria; only the last bin shows a bigger discrepancy. In the FCal the

agreement is not as good as in EMEC, but between the total uncertainties, data and MC still

correspond, so no further scale factor corrections as a function of pT are necessary.

4.3.3.3 Efficiency as Function of Eta

The efficiencies as a function of |η| are shown in figures 4.17, 4.18 and 4.19. It can be observed

that the Data-MC agreement is not as good as that shown in figure 4.5 with the old identification

set of cuts, in EMEC and in FCal, but both, data and MC efficiencies, show the same tendency.
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The drop in efficiency seen in the range 3.16 < |η| < 3.35 is as before due to the fact that this

is the transition region between EMEC and FCal.

The lack of agreement between the predicted and observed efficiencies demands the intro-

duction of new scale factors as a function of η, as before. The corresponding SFs can be seen

in the bottom plots in each figure. The systematic uncertainties are between 2% and 4% in the

EMEC and between 4% and 7% in FCal; those are calculated as before.
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Figure 4.14: Identification efficiencies as function of pT with new loose identification. EMEC (a) and

FCal (b).
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Figure 4.15: Identification efficiencies as function of pT with new medium identification. EMEC (a) and

FCal (b).
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Figure 4.16: Identification efficiencies as function of pT with new tight identification. EMEC (a) and FCal

(b).
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Figure 4.17: Identification efficiencies in |η| bins. New loose identification.
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Figure 4.18: Identification efficiencies in |η| bins. New medium identification.
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Figure 4.19: Identification efficiencies in |η| bins. New tight identification

4.4 Discussion and Outlook

The identification of electrons with high values of the pseudorapidity represent a demanding

task, due to the lack of covering of the track system at this regions. In the present chapter, a
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description of the methods used to identify the central, and particularly the forward electrons

was given. The dependency of the forward electron identification on the different data taking

periods was shown, as was the implementation of the menu optimization and correction of the

observed identification using data analysis.

The work made for the ATLAS collaboration led to use the forward electron in present

analyses, an example is the ZZ analysis. Previous measurements of the diboson production

cross section, didn’t use the forward region of the electromagnetic calorimeter, or only a part of

the forward calorimeter. In the next part of this work, the use of forward electrons in the ZZ

analysis is presented.
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Chapter 5

ZZ →4e Events in the 2012 ATLAS

Data

“There are three kinds of people, those who can count and those who can’t.”

—Homer Simpson

In chapter 2, it was mentioned that the study of the production cross section of ZZ is

important to test the electroweak sector of the Standard Model (SM). Diboson production via

a triple neutral vertex is one of the prospects to find new physics. For that reason, a precise

measurement of the diboson production cross section is important to put limits to the range of

validity of the SM.

This chapter will offer a description of the methodology used to search for ZZ candidates in

ATLAS data collected in year 2012 at a center of mass energy of
√
s = 8 TeV, corresponding

to an integrated luminosity of L = 20.3 fb−1. Also, different background sources that affect

these processes and their treatment are discussed. At the end of the chapter, a comparison of

kinematic variables of the diboson candidates found in the 2012 data with MC simulations is

given.

5.1 Diboson Event Selection

The leptonic decay of ZZ is characterized by the production of four isolated leptons few physical

processes possess the same final state signature; for that reason, the ZZ → 4` is an almost free

background process. This work is focused on diboson events with four electrons in final state.

The major background contribution to this process consists of events with real electrons and

jets that can fake the signal of electrons in the calorimeters and tracking system.

This section offers a general description of the selection criteria applied to the proton-proton

collision data, in order to get a sample of electron candidates to be analyzed. The reconstruction
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of ZZ candidates in the selected sample is explained and the final number of diboson candidates

found is shown.

5.1.1 Data Selection

The data selection applied in the ZZ analysis can be divided into three steps. The first one

consists of the selection of events to be further analyzed, based on the integrity of the recorded

data. The second part is an object identification in the selected events, where the objects

in this case correspond to electrons. The last part of the data selection corresponds to the

reconstruction of Z pairs from the electron candidates found in the second step. In the following

part of this section, a detailed description of each data selection step is presented.

1. Event selection

In the event selection, some characteristics of the data-taking conditions are used as dis-

criminators to define a good event. Optimal beam conditions and operational behavior of

each ATLAS subdetector are parameters to take account of in order to discard background

sources like cosmic rays (number of primary vertex) or noise coming from the electronic

(LAr and Tile monitoring). Apart from the data-taking conditions, the selected events

must be triggered for specific energy and object thresholds.

Two triggers for electrons are used in this analysis, corresponding to the unprescaled

lowest threshold triggers: One trigger requiring electrons with pT larger than 24 GeV

(EF e24vhi medium11) and one requiring electrons with pT larger than 60 GeV (EF e60 medium1)

were used. Both triggers required one electron with medium identification and additionally

the 24 GeV required an isolation criterion (pcone20
T /pT < 0.1) on the pT of the electron and

one veto on the energy deposited for the triggered object in the hadronic calorimeter.

ATLAS Definition Description

GRL Beam conditions and data quality.

Trigger Lowest threshold electron triggers.

Primary vertex Primary vertex with at least 3 associated tracks.

Event cleaning Integrity of the data collected by the LAr.

Data corruption Tile calorimeter information free of data corruption.

Table 5.1: Summary of the event selection used in the ZZ analysis.

The reason for the usage of the two set of cuts in the triggered objects is to reduce a loss of

efficiency at high energy electrons. Single triggers are preferred over double object triggers

1The ATLAS trigger naming convention is:

(trigger level) (number of objects)(type of object)(threshold) (quality criteria)
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in order to avoid a loss of statistics. In table 5.1, a summary of the event selection criteria

is given.

2. Object selection

Events that fulfill the requirements shown in table 5.1 are further examined. Electrons

candidates in the events are reconstructed in the central (|η| < 2.47) and forward region

(2.5 < |η|). The candidates are then filtered using identification criteria and, in the case

of central candidates, track quality requirements.

As already mentioned at the beginning of this section, isolated leptons are signatures for

ZZ process. For that reason, a track isolation (see 4.2.3) requirement is applied on the

central electrons. Any further isolation criteria are used in the case of forward electrons.

If two selected electrons in the event overlap in a cone ∆R =
√

∆η2 + ∆φ2 < 0.1, the

electron with the lowest pT is removed from the selection. Electrons passing the previous

lepton candidates selections are called good electrons and only events with exactly four

good central candidates are further considered.

In the table 5.2, a list of the object selection requirements is provided with cut values.

Central electron Forward electrons

Reconstruction author 1 or 3 author 8

Energy pT > 7 GeV pT > 20 GeV

η acceptance |η| < 2.47 2.5 < |η| < 3.16 or 3.35 < |η| < 4.9

Identification multilepton loose forward

Longitudinal impact parameter |z0 × sin θ| < 0.5 mm

Transverse impact parameter |d0×sin θ|
σ(d0) <6

Isolation
∑ pTrackT (∆R<0.2)

pTrackT

<15%

Table 5.2: Criteria used in the ZZ analysis to select electron candidates.

3. ZZ reconstruction

With the electrons found in the selected events, as described in the previous section, a ZZ

reconstruction procedure is done to determinate the final number of ZZ candidates. At

least one of the selected electrons should match a trigger object, meaning that one of the

selected electrons should be in a cone ∆R < 0.1 of one trigger object. The match electron

should have a pT 1 GeV over the pT trigger threshold and fulfill tighter identification

criteria.

In order to build the Z pairs, two steps are followed:
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• Opposite charge: If possible, only pairs of electrons are considered when they have op-

posite charge. That would not be the case for events with one good forward electron;

in this case, all the possible combinations with the forward electron are considered.

• Pairing algorithm: With the combination of previously found pairs the invariant mass

of the two electrons is calculated and the absolute difference with respect to the mass

of the Z is obtained. The sum of the difference is calculated and the smaller sum

involving different electrons is taken as the correct pair.

An additional requirement in events with forward electron is used to reduce background

contamination. It consists of a cut on the pT of the central partner of the forward electron.

The transverse momentum of the central electron should be larger than 20 GeV.

Only real Z’s are further considered in the analysis, so reconstructed bosons with invariant

mass in the range 66 to 116 GeV are also taken into account. With the selection described above,

a total of 64 ZZ candidates were found in the 2012 data sample. Table 5.3 shows the number of

candidates in each calorimeter region. The number of ZZ candidates with four central electrons

corresponds to 54. In the table, the effect of different identification criteria in the selection of

forward electrons can be seen in the last column.

Four central electrons Three central and one forward electron

Forward loose 54 10

Forward Medium 54 8

Forward Tight 54 6

Table 5.3: Number of ZZ candidates in 2012 data. The effect of different forward identification criteria

in forward electrons is shown.

To finalize this section, a representation of two events with ZZ candidates is offered. One

of the selected events consists of four central electrons and the second is an event with three

central electrons and one forward.

In figure 5.1, a ZZ candidate with an invariant mass of 170 GeV is represented. The left

side of the figure shows the electromagnetic calorimeter in blue. The tracks of the electrons are

visible in the inner part of the figure. The red tracks correspond to negatively charged electrons

and the green ones to the tracks of positive electrons. The energy deposited by each particle in

the calorimeter is represented in yellow. On the right side of the figure, a frontal view of the

same event is shown. Only the components of the inner detector are presented. The tracks of

the electrons can be seen clearly here, too.

In figure 5.2 a ZZ candidate with three central electrons and one forward is shown. The left

side of the figure shows the tracks of the particles in the inner detector. Only three tracks are
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visible, two in green, corresponding to positrons and one in red corresponding to one electron.

The fourth track is not visible because it corresponds to the forward electron and, as already

mentioned, for these electrons, there is no information of the inner detector. The energy deposits

for the four particles are shown in yellow. The energy deposit of the forward electron, almost

parallel to the beam pipe, can be seen. The right side part of the figure shows a frontal view

of this event; only the inner detector components are shown. In this case, tracks and energy

deposits are visible too. The invariant mass of the ZZ is, in this case 226 GeV.

Figure 5.1: ZZ candidate with four central electrons. The left side of the figure shows the tracks and

energy deposits of the electrons in the electromagnetic calorimeter. The right side shows a frontal view of

the event, only inner detector components are visible. (RunNumber: 214160, EventNumber: 81925870)

Figure 5.2: ZZ candidate with three central electrons and one forward. The left side of the figure shows

the tracks and energy deposits of the electrons in the electromagnetic calorimeter. The right side shows a

frontal view of the event, only inner detector components are visible. (RunNumber:214544; EventNumber:

96882558)
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5.2 MC Signal and MC Backgrounds

Monte Carlo (MC) simulations are powerful tools in particle physics in order to make an opti-

mization of the different elements involved in a physics analysis involving many particles.

For example, in order to have an idea of the number of events that could be expected in the

analysis of the production of dibosons, different samples, that simulate the production of ZZ

pairs and the performance of the detector to find the products of the decay of neutral bosons,

are prepared. Processes with real electrons in the final states are used, too, in order to have an

idea of the background contribution to the analysis, but due to the lack of statistics in some

cases, background predictions based on data-driven methods can also be used.

In chapter 2, a description of the MC generators and Parton Density Functions (PDF), used

in this analysis and the detector simulation, was given. In appendix A, a description of the MC

samples used in this analysis is provided.

In the next section, a description of the MC correction applied in this analysis is described

and the different MC samples used are explained.

5.2.1 MC Corrections

A better understanding of the ATLAS detector, after the two years of operation, allows a

refinement of the detector simulation. An example is the actual knowledge of the material

distribution in the detector, that affects the energy resolution and calibration. In that way,

corrections to the MCs predictions can be obtain from the data to make a correct Data-MC

comparison. Below, a list of the MC corrections, derived from data used in this analysis, is

given.

• Pileup Reweighting:

The number of hard interactions during data taking depends on certain parameters of

the proton-proton collisions; e.g., the number of protons per bunch, the spatial and time

separation between bunches. For that reason, a reweighting method should be introduced

in the MC samples, where the distribution of the mean interactions per beam crossing

(NPV) observed in the data is used to scale those of the MC. A general description of the

tool can be seen in [46].

• Energy smearing:

The energy resolution of the calorimeters is determined by detector characteristics like the

amount of material in front of the calorimeters or the geometry of the calorimeter. For

that reason, the modeling of the resolution in the MC simulations is more complicated. A

smearing procedure is applied on the MC energy of the objects, where the corrections are
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derived from the data. A description of the implementation of the energy corrections is

offered in [47].

• Scale factors:

In the previous chapter (see 4.3), the necessity to use of scale factors (SF) to correct the

differences between the efficiency of the identification of electrons observed in data and

the prediction from MC was shown. Similar SFs are necessary to cover the differences in

the reconstruction efficiency of candidates and the trigger selection efficiency. Addition-

ally, SFs for some parameters used in this analysis, like the calorimeter isolation and the

parameter of impact selection, are also applied as corrections to the MC. A description of

the general strategy to get SFs in ATLAS can be consulted in [44].

The corrections listed above are applied to the MC simulation to make a comparison with the

data. The MC that simulate the ZZ production in this analysis consists of two different gener-

ators. The PowhegPythia [29] simulates the production of ZZ via quark-antiquark interaction.

ZZ produced via gluon-gluon fusion (≈ 6%) is simulated using ggVV [30].

In chapter 2, a description of the major background processes for ZZ events was given. The

background sources can be separated into two principal classes:

• Irreducible background: composed of the product of processes like ZZZ∗, ZWW or tt̄Z,

which have leptonic final states with four real electrons. The generator available for the

simulation of this process is madgraph [32].

• Reducible background: Processes with two real electrons and a variable number of jets

that can fake the electron signatures in the calorimeters. That is the case of Z+Jets, Zbb̄,

top decays (tt̄ and single Top). These processes can contain two real electrons and two

jet-faking electrons or not-isolated leptons from heavy flavour decay. WZ+Jets events

are the source of background in these cases, with three prompt electrons and one fake

lepton [19]. Processes with Z+ Jets are simulated using ALPGEN [33]; W Z+jets with the

PowhegPythia and top events were modeled with MC@NLO [31].

Table 5.4 shows the expected number of events predicted for the different sources of back-

ground and the MC signal. Only statistical uncertainties are presented.

As can be seen in table 5.4, the numbers corresponding to irreducible backgrounds are in

some cases zero (Z+Jets and Top) or possess big statistical uncertainties. For that reason, a

different approximation is used in this analysis to obtain the background in the case of jets-

faking electrons. Sources of background with at least one fake candidate are studied using a

data driven method that will be explained in the following section.
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Only central electrons One forward electron

PowhegPythia + ggVV 50.3 ± 0.3 12.0 ± 0.1

ZZZ∗/ZWW/tt̄Z 0.2 ± 0.1 0.03 ± 0.02

Z+Jets 0.0 ± 0.0 7.4 ± 6.4

WZ+ Jets 1.1 ± 1.0 1.5 ± 1.4

tt̄ and single top 0.00 ± 0.00 0.02 ± 0.09

Higgs 0.00 ± 0.00 0.001 ± 0.0002

Table 5.4: Number of expected ZZ candidates in proton-proton collisions for a center of mass energy

of
√
s = 8 TeV normalized to L = 20.3 fb−1. Different sources of background are considered. Only

statistical uncertainties are shown.

5.3 Data Driven Background Estimation

Data driven methods represent a good alternative to the use of MC simulations in studies where

the total number of events that can be produced for the MC is low, or when the modeling of some

of the properties is too hard to be simulated or not well understood. In the case of background

studies using this data driven method, it is necessary to determine the probability of identifica-

tion of a background candidate as a real candidate. For that reason, the standard selection is

loosened or inverted to create a sample of candidates with high background contamination and

to see how many of the fake candidates are seen at the end of one particular analysis.

There are different strategies to perform background studies using inversion selection. In

the case of diboson production, the so-called matrix method is used. In the following section, a

description of the matrix method is given.

5.3.1 Matrix Method

The principle behind the matrix method is the possibility of make a correspondence between the

inaccessible true information, represented through the real leptons (R) and the real non-leptons

(F) and the measured objects, i.e., lepton candidates (L) and jet candidates (J).

Due to the measurement procedure there is a probability r to measure one real lepton R as

one lepton candidate L; similarly, one non-lepton F can be measured as a lepton candidate L

with a probability f . r is referred to as efficiency and f is named fake rate.

In the case of the ZZ analysis, the total number of measured candidates of one class; e.g.,

NLLLL, NLLLJ , NLLJJ ,etc, can be written as a linear combination of the number of NRRRR,

NRRRF , NRRFR,.....,NFFFF , with coefficients resulting of the product of r, f , 1− r, 1− f , etc.

The relation between all the possible combinations can be written in a matrix form as:

NMeas = MNReal (5.1)
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where M is a 16×16 matrix and NMeas and NReal are vectors with the numbers of measured

events and the real quantities respectively. The elements of M are the product of r, f , 1 − f
and 1− f of each object.

With the help of symmetry properties, the size of the matrix can be reduced. For example,

if the number NLLJJ is equivalent to NJJLL or NLJLJ or NLJJL.

In case of dibosons with three central electrons and one forward electron, the background

can be considered due to the presence of one jet in forward region Jf , one jet in central region

Jc or two jets one in central region and one in forward JcJf . Considering all cases the matrix

M can be written as:

M =


r3
crf r3

cff r2
crffc r2

cfffc

r3
c (1− rf ) r3

c (1− ff ) r2
cfc(1− rf ) r2

cfc(1− ff )

r2
c (1− rc)rf r2

c (1− rc)ff r2
c (1− fc)rf r2

cff (1− fc)
r2
c (1− rc)(1− rf ) r2

c (1− rc)(1− ff ) r2
c (1− fc)(1− rf ) r2

c (1− ff )(1− fc)



Making easy to notice, that if rc = rf = r = 1, the matrix can be written as:


1 ff fc fffc

0 1− ff 0 fc(1− ff )

0 0 1− fc ff (1− fc)
0 0 0 (1− ff )(1− fc)


With help of this relation, it is possible to write an equation for the NLcLcLcLf , as a function

of the true elements with at least one fake F object. The equation is shown below:

Nforw
back = ff ×NRcRcRcFf + fc ×NRcRcFcRf + ff × fc ×NRcRcFcFf (5.2)

To solve the previous equation, it is necessary to find an expression for the NRcRcRcFf ,

NTcTcFcTf and NTcTcFcFf as function of the quantities that can be measured with the detector.

To do that, the matrix M should be inverted.

After the inversion, the background equation 5.2 for three candidates in the central region

plus one forward can be written as:

Nforw
back =

ff
1− ff

×NLcLcLcJf +
fc

1− fc
×NLcLcJcLf −

ff
1− ff

× fc
1− fc

×NLcLcJcJf (5.3)

A similar expression can be derived from the background, corresponding only to electron

candidates in the central region, using the same r = 1 approximation. The equation 5.3 can be

modified taking ff = fc, Lf = Lc and Jf = Jc. The equation is shown below
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N central
back =

fc
1− fc

×NLcLcLcJc +
fc

1− fc
×NLcLcJcLc −

fc
1− fc

× fc
1− fc

×NLcLcJcJc (5.4)

The two first terms of the equation above are similar, but the position of the Jc is different.

Due to combinatorics, the final expression for the background in the central region is:

N central
back =

fc
1− fc

×NLcLcLcJc − (
fc

1− fc
)2 ×NLcLcJcJc (5.5)

The values FFf =
ff

1−ff and FFc = fc
1−fc are called Fake Factors. With this definition, the

final equations for the background are shown below:

Nforw
back = FFf ×NLcLcLcJf + FFc ×NLcLcJcLf − FFc × FFf ×NLcLcJcJf (5.6)

N central
back = FFc ×NLcLcLcJc − (FFc)

2 ×NLcLcJcJc (5.7)

In the next section, a description of the estimation of the Fake Factors (FF) is provided.

5.3.2 Fake Rate Estimation

In the previous equations (5.7 and 5.6), the Li and Ji categories correspond to candidates that

pass or fail a set of cuts. The candidates that belong to the Ji group are called jet-like leptons

and they are candidates that do not pass the full selection applied in the analysis. The Li type

are well identified candidates. As shown before, the standard selection of candidates includes

identification (multilepton) plus isolation requirements for the central candidates. Candidates

in the forward region should pass the loose forward identification criteria. A summary of the

criteria of Li and Ji types are shown in the next table (5.5).

Central electrons Forward electron

Lepton like type multilepton + isolation loose forward

fail multilepton + isolation

Jet like type or fail loose forward

multilepton + fail isolation

Table 5.5: Criteria to classified electron candidates as lepton-like or jet-like in the central and forward

region.

With the definitions given above, it is now possible to write more explicitly the equations

for the fake rates and fake factors.

fi =
Li

Li + Ji
(5.8)
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FFi =
Li

Ji − Li
(5.9)

The FF should be determined for central and forward electrons as a function of pT and

η. In order to calculate the fake factors, a reverse tag and probe method is implemented over

the preselected candidates (Li + Ji) to have a pure sample of fake candidates. The inverse tag

and probe method takes only pairs of candidates beyond of the Z peak |Mee −MZPDG | > 20

GeV, the event should pass the trigger requirement and have a MET < 25 GeV. The anti-tag

candidate should fail the identification and, in the case of central candidates, fail the isolation

criteria too. With these selections, the number of probe candidates passing the full selection

over the number of preselected probe candidates are used to calculate the fake factor.

The average fake factors for central and forward electrons are shown in the table 5.6. With

the help of this average values, the statistical and systematic uncertainties of the background

determination, using the matrix method, will be calculated.

Central electrons Forward electron

FF average 0.043 ± 0.003 0.048 ± 0.005

LLLJ 62.0 ± 7.9 44.0 ± 6.6

LLJJ 482.0 ± 21.9 1041.0 ± 32.3

LLJLf – 62.0 ± 7.9

Table 5.6: Average FF in pT and η for central and forward electrons. The elements used in the equations

5.7 and 5.6 can be seen too. Only statistical uncertainties are shown.
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Figure 5.3: The figure shows the fake factors of forward electrons comparing the effect of different identi-

fication criteria and new and old tight forward menu. On left side plot, the behavior as a function of pT

is shown. The right side plot shows the η behavior.

In figures 5.3 and 5.4, the fake factors of forward and central electrons as function of pT and
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η are shown. The effect of different forward identification criteria can be seen in the figure 5.3;

the more loose the identification the higher the fake factor. As can be seen, the new forward

identification discussed in 4.3.3 improves the background rejection because the fake factors with

new loose forward identification are closer to the fake factors with old tight forward identification.

In the case of the fake factors for the central electrons (fig. 5.4), the distribution as function of

η is flatter compared with the same distribution in the case of forward electrons (as shown in

the right side of figure 5.3). The distribution of the fake factors as function of pT is very similar

for the central and forward electrons. The different thresholds on the pT -in central and forward

regions- can be seen.
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Figure 5.4: Fake factors of central electrons. On the left side of figure, the behavior as a function of pT

is shown. Right side of the figure shows the η behavior.

With help of the equations 5.5 and 5.3 and the fake factors, calculated using the inverse tag

and probe, the values of the background obtained using the data driven method are shown in

the table below :

Four central electrons Three central and one forward electron

Background DD 1.5 ± 0.4 2.9 ± 0.5

Table 5.7: The table shows the background estimation for the data driven method. Only statistical

uncertainties are shown.

The statistical uncertainties shown in the table 5.7 are obtained running a series of pseudo-

experiments, where the FF factor was assumed to belong to a Gaussian function around the

average FF given in the table 5.6 and the elements in the equations 5.5 and 5.3 were selected

from a Poisson distribution with a mean equal to the nominal values given in the table 5.6 for

the LLLJ, LLJJ and LLJLf .
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5.4 Systematic Uncertainties to the Background Estimation

In the previous section, the background predictions for the ZZ production were derived in two

ways. For the case of irreducible background, a MC based prediction was used; for the process

with at least one fake candidate, a data driven method was used. For that reason, the systematic

uncertainties are calculated using two different methods: In the case of irreducible background,

that is MC derived, the uncertainties are calculated through variation on the SF used to correct

the MC. In the case of the data driven method, a simple comparison with the values given for

the average FF is used as a measurement of the systematic uncertainties.

In the next sections, the calculation of the systematic variation is described in more detail.

5.4.1 MC Systematic Uncertainties Estimation

As shown in section 5.2.1, smearing of the energy and scale factors (SFs) to correct inefficiencies

of the MC simulations are necessary to make a correct Data-MC comparison. There are SFs

that correct the reconstruction, identification, trigger selection and the efficiency of the isolation

variables. The SFs and energy smearing used in this work are provided by the ATLAS collab-

oration. Systematic variations of the SFs and smearing can be applied to the MCs in order to

make a propagation of the uncertainties.

Variations of the central value are obtained by the SFs using the systematic uncertainties

of the latter and the energy smearing of each of the corrections. The absolute differences with

the mean value are then calculated and the larger difference is used as the uncertainty related

to the respective correction.

ZZ MC Four central electrons Three central and one forward electron

Nominal ± Stat. 50.3 ± 0.3 12.0 ± 0.1

Energy ± 0.6 ± 0.3

Identification ± 0.9 ± 0.3

Isolation ± 0.5 ± 0.05

Reconstruction ± 0.4 ± 0.8

Trigger ± 0.03 ± 0.002

Total ± 1.3 ± 0.4

Table 5.8: Absolute systematic variations to the ZZ MC due to the SF and energy uncertainties.

Table 5.8 shows the value of the different variations over the ZZ MC signal; the total

systematic uncertainty is calculated as the square root of the quadratic sum of each variation.

As can be seen, the principal contribution to the systematic for central electrons comes from

the identification correction. In the channel with one forward electron, the energy correction is
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the principal source of uncertainty.

Similarly, the total absolute systematic variations for the irreducible sources of background

are shown in 5.9.

Four central electrons Three central and one forward electron

ZWW ± 0.006 ± 0.004

ZZZ∗ ± 0.002 ± 0.001

tt̄Z ± 0.012 ± 0.0001

Total Irr ± 0.01 ± 0.004

Table 5.9: Absolute systematic variations to the irreducible background due to the SF and energy uncer-

tainties.

5.4.2 Systematic Uncertainties for the Data Driven Background

In the case of the data driven method a more simple way to determinate the systematic variation

was made. The idea consisted of taking the average fake factors and the total values of candidates

with fake candidates and calculating a global prediction.

The difference with the central value calculated with the full pT and η distribution of FF is

taken as the absolute systematic uncertainty [48].

Central value Average value Difference

Four central electrons 1.5 1.4 ± 0.03

Three central and one forward electron 2.9 2.4 ± 0.5

Table 5.10: Absolute systematic variations to the irreducible MC due to the SF and energy uncertainties.

As can be seen in the table 5.10, the total absolute systematic uncertainty for central electrons

corresponds to ± 0.03 and, in the case of ZZ candidates with one electron in the forward region,

± 0.54. The table 5.11 shows a summary of the background contributions with the respective

absolute statistical and systematic uncertainties.

Four central electrons Three central and one forward electron

ZZ MC ± (Stat.) ± (Sys.) 50.3 ± 0.2 ± 1.2 12.0 ± 0.1 ± 0.3

Irr background ± (Stat.) ± (Sys.) 0.20 ± 0.09 ± 0.01 0.030 ± 0.020 ± 0.001

DD background ± (Stat.) ± (Sys.) 1.5 ± 0.2 ± 0.03 2.9 ± 0.5 ± 0.5

Table 5.11: Total background predictions. Absolute statistical and systematics uncertainties are shown.
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5.5 Data-MC Comparison

This section is dedicated to a comparison between data and MC of different kinematic variables.

In order to understand the effect of the forward electrons in the ZZ analysis, two categories

of events are considered depending on the presence of forward electrons. Z pairs with all four

electrons, detected in the central region, are marked as CCCC, and in the case of one electron

with high values of η, the events are called CCCF events.

Data driven background (DD Back.) and irreducible background are shown together with

the signal MC expectation. In all plots shown below, the MCs are normalized to the integrated

luminosity of L = 20.3 fb−1.

5.5.1 Electron Kinematic Variables

The angular and pT distributions of the electrons product of the decay of ZZ candidates are

shown in the following figures. A separate contribution of CCCC and CCCF events is shown.

Additionally, in order to study the performance of the forward electrons, the analyzed kinematic

distributions in CCCF events are shown separately for electrons in the central region and forward

electrons.

As already mentioned, the background sources to the ZZ analysis consist principally of

misidentified jets. For that reason, the larger component of the background showed in the

following plots consist of the data driven method (DD Back.) used to calculate this background.

The contribution of the irreducible background is small; for that reason, it is sometimes not

visible in the shown distributions.
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Figure 5.5: η distributions of electrons coming from ZZ candidates with three central and one forward

electron. On the left side of the figure, the η distribution of the forward electrons is visible. The right

side shows the pseudorapidity distribution of the central electrons.
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Data-MC Comparison

In figure 5.5, the distribution of the η variable for electron in CCCF events is shown. On

the left side of the figure, the eta distribution of the forward events in these events can be

seen. The 90% of the forward electrons are found in the EMEC part of the forward calorimeter,

the remaining 10% is in the FCal. However, the MC prediction for number of electrons in

this region, as can be calculated from the MC signal (blue curve) in the figure, is around two

forward electrons in the FCal, so the number of events in the data is in agreement with the MC

expectation.

The right side of figure 5.5 shows the η of the central electrons in CCCF events. A uniformed

distribution of the electrons as a function of the η variable is visible. The Data-MC agreement

is good for the shown distribution, too.

The pT of the electrons in CCCF events is shown in figure 5.6. Similarly as with η, the pT

distribution is presented separately for the forward electrons on the left side of the figure and for

central electron only, in the right side. For the forward electrons, the minimal pT requirement

of 20 GeV is clearly visible. In the case of the central electrons of the CCCF events,the minimal

pT is 20 GeV, too, since in the selection of events with forward electrons, the partner of the

forward electron should have a pT larger than these value. As observed from the MC signal,

central electrons with pT smaller than 20 GeV are expected. However, no such events of these

can be seen in the plots.
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Figure 5.6: pT distributions of electrons coming from ZZ candidates with three central and one forward

electron. On the left side of the figure, the η distribution of the forward electrons is visible. The right

side shows the pseudorapidity distribution of the central electrons.
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Figure 5.7: η (left side) and pT (right side) distribution of electrons coming from ZZ candidates with four

central electrons.

In the case of events with four central electrons (CCCC events), the η and pT distributions

of the electrons are shown in figure 5.7. The η distribution of the electrons can be seen on the

left side of the figure. Data-MC agreement is good, considering the uncertainties, except for

some statistical fluctuation in the η range -0.08 to -0.05. In the case of the pT distribution, the

agreement is better.

5.5.2 ZZ Kinematic Variables

In the remaining part of this section, kinematic distributions of the Z and ZZ candidates found

in data are compared to MC prediction for the distributions. As in the above part of this section,

the ZZ events are separated into the two mentioned categories, CCCC and CCCF event. As

already mentioned, the goal of this separation is to better understand the impact of the use of

the forward region in the study of the production of Z pairs.

figure 5.8 and 5.9 show the invariant mass and the transverse momentum of the Z with the

highest pT , referred to as leading Z. The left side of both figures shows the distribution for the

CCCC events, while the right side presents the corresponding distribution in CCCF events.
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Figure 5.8: Invariant mass of the Z candidate with the larger pT (leading Z). The left side shows events

with four central electrons. The right side shows candidates with one forward electron and three centrals.

The good Data-MC agreement is visible in the invariant mass distribution of the leading Z

(MLead
Z ) for CCCC and CCCF events, especially around the nominal mass of the Z peak. In both

distributions, the MC signal shows a long tail in the low part of the MLead
Z , that corresponds to

electrons losing part of the energy due to bremsstrahlung process. In the case of the no-leading

Z, the distributions of MZ showed the same behavior as that of the leading. The corresponding

distributions are shown in appendix C.

The pT distributions of the leading Z, for CCCC and CCCF events are presented in figure

5.9. The CCCC events, on the left side of the figure, showed an acceptable Data-MC agreement.

The same situation is observed in the CCCF events. In both cases, the MC signal shows the

expected exponential decay in the energy of the Z. The pT distribution of the second leading

Z (subleading Z) can be seen in the appendix C. The pT distribution in this case is similar to

that of the leading Z.

Another important distribution to be analyzed is the invariant mass of the diboson system

(MZZ). This distribution is shown separated for CCCC and CCCF events in the figure 5.10.

The agreement between data and MC prediction is good for both cases.

A pair of bosons selected in this analysis, with invariant mass in the range 66 to 116 GeV,

are on-shell bosons. For that reason, the distribution of the invariant mass of the ZZ starts at

a value around of 114 GeV. The ZZ are only produced via non-resonant mechanisms, causing

the invariant mass of the ZZ not to follows a Breit-Wigner form.
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Figure 5.9: pT distribution of the Z candidate with the larger pT (leading Z). The left side shows events

with four central electrons. The right side shows candidates with one forward electron and three centrals.
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Figure 5.10: Mass spectrum of the ZZ candidates. The left side shows events with only central electrons

while the right side shows candidates with one forward electron and three centrals.

In figure 5.11, the pT distribution of ZZ is shown. The data and the MC show a better

agreement for the CCCF events. The MC signal shows exponential decay, such as that observed

in figures 5.6 and 5.7. The distribution in the rapidity of the pairs of Z is shown in the figure 5.12.

The right side of the figure shows the CCCF events in comparison to the rapidity distribution

of the CCCC events (left side of 5.11), which show that the use of forward electrons increases

the available acceptance to the study of the ZZ production.
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Figure 5.11: pT of the ZZ candidates. The left side shows events with only central electrons while

candidates with one forward electron and three centrals are shown at right side.
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Figure 5.12: The figure shows the rapidity of the ZZ candidates. Left side shows events with only central

electrons meanwhile at right side are candidates with one four electron and three centrals.

The effect of the combination of the CCCC and CCCF events on kinematic variables are

shown in figure 5.13. The invariant mass and the pT of the ZZ can be seen in the left and

right part of the figure, respectively. The same characteristics of the on-shell selected bosons

are seen in the invariant mass of the combined CCCC and CCCF events. It is easy to see that

the combination of central and forward electron channels shows a nice Data-MC agreement.
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Figure 5.13: Mass spectrum (left) and pT (right) of the ZZ candidates with four central electrons and

three central and one forward electrons.

A conclusion of the results shown above, is that the extension of the analysis of the ZZ

to cover electrons with high values of the pseudorapidity can improve the description of the

kinematic distribution of the ZZ system. In the distributions of the different variables shown

above, it can be seen that the background in the CCCF events is larger compared with the

background in the CCCC events. The reason for these characteristics is the absence of track

information in the identification of forward electrons. However, the forward electrons increase

the number of possible ZZ candidates.

105



Data-MC Comparison

106



Chapter 6

Cross Section Measurement

“He repeated until his dying day that there was no one with more common sense,

no stonecutter more obstinate, no manager more lucid or dangerous, than a poet.’

—Love in the Time of Cholera

–Gabriel Garcia Marquez

As already mentioned in chapter 2, the number of expected events of a specific process is

related to the experimental luminosity through a factor referred to as the cross section (σ). The

cross section can be calculated using the equation shown below.

σ =
N

L (6.1)

where N is the number of expected events corresponding to the process that σ represents

and L the total integrated luminosity. But the use of this equation assume the existence of a

perfect detector, able to cover the full available phase space and work with 100% efficiency.

In order to determine the cross section of a process using experimental results, it is necessary

to introduce some corrections related to the performance of the detector. In this chapter, the

extraction of the production cross section of ZZ will be described. The definition of fiducial and

total cross will be given. At the end of the chapter, differential cross section as a function of the

invariant mass of the dibosons and the pT of the most energetic Z (leading Z) will be shown.

6.1 Fiducial and Total Cross Section Definition

Experimental conditions, like the selection cuts or the detector pT and angular covering, define

a phase space where the events of a process can be measured. In addition, the behavior of the

detector in terms of the energy resolution and identification efficiency of particles introduces a

dependency of the number of observed events on the detector performance. For that reason, in

general, two kinds of cross sections are defined, i.e., fiducial and total cross section.
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Fiducial Volume Definition

The fiducial cross section (σfidu) is defined in a kinematic phase space as closest possible

to the detector acceptance for the studied process, referred to as fiducial volume. The total

cross section (σtot) corresponds to an extrapolation of the measured cross section in the fiducial

volume to the full phase space, not full accesses for the detector.

The fiducial cross section can be calculated using the expression 6.2:

σfidu =
NSignal −NBack.

L × CZZ
(6.2)

In the above equation, NSignal and NBack correspond to the number of events measured

and the number of expected background events. CZZ is a correction factor, commonly known

as efficiency, introduced in order to extrapolate the true number of events in the fiducial phase

space from the number of observed events. For that reason, CZZ involves the efficiencies of

the detector to the reconstruction, identification and trigger selection. The efficiency can be

calculated using the equation shown below:

CZZ =
N

MC pass all cuts
Reconstructed ZZ

× SF
NMC fiducial volume

Generate ZZ

(6.3)

The Numerator of CZZ is calculated with the full ZZ selection at reconstruction level cor-

rected with Scale Factors (SF). The Denominator is calculated with true variables.

The total cross section can be calculated from the fiducial cross section by introducing a

correction referred to as acceptance AZZ and the branching ratio of ZZ → 4e (see equation

2.22):

σtot =
NSignal −NBack.

L × CZZ ×AZZ ×BR{ZZ → 4e} (6.4)

where the acceptance is calculated by using the equation 6.5. In that case, AZZ is calculated

as a ratio between the number of expected events with the fiducial cuts at generate level and the

number of events without cuts at generate level. In this thesis, the total cross section is defined

in the full phase space for Z paira with an invariant mass in the range 66–116 GeV.

AZZ =
NMC fiducial volume

Generate ZZ

NMC all
Generate ZZ

(6.5)

In the next sections, a detailed description of the production cross section extraction for the

ZZ process will be given.

6.2 Fiducial Volume Definition

As already mentioned in chapter 2, previous ATLAS results of the production cross section of

dibosons, involving electrons, covered a η region limited to the central part of the detector.
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In this work an extended cross section calculation is provided, with |η| < 4.9. In order to

make a comparison with previous results and to provide the cross section measurement at high

pseudorapidity values, two fiducial volumes are defined. The fiducial volumes are:

1. Fiducial volume central:

• 66 < M`` < 116 GeV

• ∆R(`,`) > 0.2

• p`T > 7 GeV

•
∣∣η`∣∣ < 2.5

2. Fiducial volume central-forw.:

• 66 < M`` < 116 GeV

• ∆R(`,`) > 0.2

• p`T > 7 GeV

• Three electrons with
∣∣η`∣∣ < 2.5 and one with 2.5 <

∣∣η`∣∣ < 4.9

As can be seen in the definition of the fiducial volume central-forw, events with one forward

electron are included. For both of the volumes only on-shell Z are considered. In the next

section, the calculation of the efficiency corrections is shown.

6.3 Efficiency Determination

In order to calculate the CZZ , the number of expected events in the fiducial volume is determined

at reconstruction level and at generate level. It is made using MC simulations. Two different

generators are used: The PowhegPythia [29] simulates the production of ZZ via quark-antiquark

interaction. ZZ produced via gluon-gluon fusion (≈ 6%) is simulated using ggVV [30].

In figures 6.1 and 6.2, the mass distribution of Z pairs at reconstructed and generated level

for each mentioned generator are shown. The left side of the figure shows only events in the

fiducial volume central. The right side shows the distribution for ZZ events, including forward

electrons.

Fiducial volume central Fiducial volume central-forw.

C
PowhegPythia
ZZ 0.558 ± 0.002 0.318 ± 0.003

C
ggVV
ZZ 0.568 ± 0.002 0.290 ± 0.010

CZZ Combined. 0.559 ± 0.003 0.317 ± 0.010

Table 6.1: CZZ values for ZZ PowhegPythia and ggVV signal samples and the combined value taken 6%

of contribution from the ggVV sample. Numbers for only central and central-forw. volume are shown.

Only statistical uncertainties are shown.
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Acceptance Determination

In table 6.1, the values of CZZ for each generator and both defined fiducial volumes are

shown with only statistical uncertainties. The combined CZZ are calculated considering a 6%

contribution from the ggVV sample. Comparing the CZZ combined for the fiducial volume central

and the central-forw, a decrease in the efficiency of the order of 12% is observed.
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Figure 6.1: Number of ZZ events at reconstruction and generation level in PowhegPythia samples are

shown. The left side shows central electrons, only. The right side shows the central-forw. fiducial volume.
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Figure 6.2: Number of ZZ events at reconstruction and generation level in ggVV samples are shown. The

left side shows central electrons, only. The right side shows the central-forw. phase space.

6.4 Acceptance Determination

The acceptance AZZ is calculated using MC simulations at generation level. The number of

events in the fiducial volume are compared with the total number of events generated in the full
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pT and η range. No correction is made on the mass of the dibosons, so only pairs of on-shell Z

are taken.

The mass spectrum of the ZZ and the AZZ for the PowhegPythia and ggVV are respectively

shown in figure 6.3 and 6.4. In both figures, the fiducial volume only with central electrons (left

side) and the fiducial volume central-forw (right side) can be seen. The gain in the acceptance

including forward electrons is notable for the both kind of MC generators.

In table 6.2, the values ofAZZ for each generator and both defined fiducial volumes are shown,

only statistical uncertainties are shown. The combined AZZ are again calculated considering

a 6% contribution from the ggVV sample. The increase on the AZZ with the introduction of

forward electrons is around 44%.

Fiducial volume central Fiducial volume central-forw.

A
PowhegPythia
ZZ 0.583 ± 0.001 0.267 ± 0.001

A
ggVV
ZZ 0.723 ± 0.002 0.178 ± 0.004

AZZ Combined 0.591 ± 0.004 0.261 ± 0.004

Table 6.2: Values of AZZ for ZZ PowhegPythia and ggVV signal samples and the combined value taken a

6% of contribution from the ggVV sample. Numbers for only central and central-forw. volume are shown

with only statistical uncertainties.
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Figure 6.3: Number of ZZ events at generation level in PowhegPythia samples are shown. On the left

side only central electrons are shown. On the right side is shown the central-forw. volume.
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Figure 6.4: Number of ZZ events at reconstruction and generated level in ggVV samples. On the left side

only central electrons are shown. The right side shows the central-forw. volume.

6.5 Cross Section Calculation

The fiducial cross section and the total cross section of the ZZ production can be calculated

using the equations 6.2 for σfidu and 6.4 for σtot. The value of the integrated luminosity is L =

20.3 ± 0.6 fb−1. The rest of the necessary elements to do the calculation are shown in table 6.3

Fiducial volume central Fiducial volume central-forw.

NSignal 54 10

NBack. 1.7 ± 0.5 2.9 ± 0.7

CZZ 0.559 ± 0.003 0.317 ± 0.003

AZZ 0.591 ± 0.004 0.261 ± 0.004

Table 6.3: Values required to calculate the fiducial and cross sections. Only statistical uncertainties are

given.

With the values given in table 6.3 the fiducial σfidu and total σtot cross section values are

calculated and shown in the table below (6.4) where only statistical uncertainties are shown.

In the next section, a description of the source of systematic uncertainties considered in this

analysis is discussed.
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Fiducial volume central Fiducial volume central-forw.

σfidu(fb) 4.6 ± 0.6 1.3 ± 0.6

σtot(pb) 6.9 ± 1.0 7.4 ± 3.4

Table 6.4: Fiducial and total cross section for the two defined volumes. Only statistical uncertainties are

shown.

6.6 Systematic Determination

Different sources of systematics affect the final result of the measured cross section. The charac-

teristics of the MC simulations used to calculate AZZ and CZZ and the background calculations

are examples of parameters that need to be considered to calculate the final uncertainty in the

measured cross sections. A detailed description of the principal sources of systematic uncertain-

ties is offered below:

1. MC corrections: As mentioned in section 5.2.1, scale factors (SFs) are derived from Data-

MC studies and used to correct inefficiencies of the MC simulations. There are SF, that

correct the reconstruction and identification of electrons, the trigger selection and the

efficiency of the isolation variables.

Systematic variations are provided together with the scale factors. Up and down variations

of the SFs are applied to the MCs and propagated into the calculation of the cross section.

A comparison of the cross sections after variation of the SF and the nominal value obtained

with the values given in table 6.4, is made and the highest difference is taken as systematic

uncertainty for σfidu and σtot in each defined volume.

2. Energy correction: Variations on the energy smearing of the MC are applied and prop-

agated to study the effects of the energy calibration on the calculation of the cross section.

3. Data driven uncertainties: The statistical and systematic uncertainties were intro-

duced in the calculation of the cross section. The uncertainty in the data driven method

is one of the biggest sources of uncertainty in the cross section, due principally to the low

statistics available, especially in the forward region.

4. MC Generator: The nominal MC used in the calculation ofAZZ and CZZ are the PowhegPythia

and the ggVV. A ZZ MC generated with Pythia [49] was used to compare the already

shown values of the cross section.

5. Normalization and renormalization scales: A definition of the normalization µR and

factorization µF scales was given in chapter 2. The nominal values of µR and µF used

in this analysis are µR = µF = MZ . PowhegPythia MC samples were generated with
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different values of µR and µF to investigate the effect of scale variation. A list of the

produced samples is given in table 6.5. The cross section obtained with those samples

was compared to the nominal value and the highest difference to the cross section at the

nominal value was taken as a symmetric uncertainty.

µF µR

Nominal MZ MZ

Sample 1 MZ 2MZZ

Sample 2 MZ MZZ

Sample 3 2MZZ MZ

Sample 4 2MZZ 2MZ

Sample 5 2MZZ MZZ

Sample 6 MZZ MZZ

Sample 7 MZZ MZ

Sample 8 MZZ 2MZZ

Table 6.5: Values of the normalization and factorization scales and nominal value used to study the effect

of the scale election on the cross section calculation.

6. PDF variation: The nominal value of the cross section with the CT10 PDF is compared

with the cross section obtained using the MSW2008 PDF set.

In table 6.6, the relative systematic uncertainties on the total cross section for each systematic

source are shown. The sources of systematics are separated into experimental and theoretical

sources. The experimental sources are related to the SFs used to the correction of the MCs and

the background estimation. The theoretical sources are due to changes in the MC used in the

calculation of the CZZ and AZZ correction factors.

From the table shows how that the statistical uncertainty of the data driven method (DD

stat.) is the principal source of uncertainty in the experimental uncertainties. In the case of the

theoretical sources the MC generator is the major source of uncertainty.

In table 6.7, the fiducial and total cross sections with statistical and systematics uncertainties

are shown for each defined phase space. The uncertainty in the Luminosity is not included.

To finalize this section, the fiducial and total cross sections, due to the combination of the

central and central-forw. phase spaces, are shown. In table 6.8, the combined cross sections are

shown. Statistical and systematic uncertainties can be seen. The fiducial cross section increases

with the addition of the central-forw. phase space. The total cross section can be compared

to the theoretical prediction given in equation 2.23 of σtotalZZ (pp → ZZ + X) = 7.2+0.3
−0.2 pb. No

significant deviation of the measured value with respect to the theoretical prediction is observed.
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Fiducial volume central Fiducial volume central-forw.

Experimental uncertainties

Luminosity 2.8 2.8

Energy smearing 0.01 0.19

reconstruction efficiency 1.0 1.2

Identification efficiency 1.7 2.2

Isolation and IP 0.9 0.4

Trigger efficiency 0.04 0.1

DD stat. 1.0 12.1

DD sys. 0.1 5.4

Theoretical uncertainties

MC Generator 5.3 0.3

MC Scale 0.4 0.9

PDF 0.8 0.8

Table 6.6: Relative systematic uncertainties (%) on the total cross section for all considered volumes.

Fiducial volume central Fiducial volume central-forw.

σfidu 4.6 ± 0.6 (Stat.)± 0.3 (Sys.)± 0.1 (Lumi) (fb) 1.3 ± 0.6 (Stat.)± 0.3 (Sys.)± 0.04 (Lumi.) (fb)

σtot 6.9 ± 1.0 (Stat.)± 0.3 (Sys.)± 0.2 (Lumi) (pb) 7.4 ± 3.4 (Stat.)± 0.2 (Sys.)± 0.2 (Lumi.) (pb)

Table 6.7: Fiducial and total cross section for the two defined volumes. Absolute statistical and systematic

uncertainties are shown.

Combined

σfidu 6.0 ± 0.8 (Stat.) ± 0.3 (Sys.) ± 0.3 (Lumi.) (fb)

σtot 7.3 ± 1.0 (Stat.) ± 0.4 (Sys.) ± 0.2 (Lumi.) (pb)

Table 6.8: Fiducial and total cross section for the combination of the defined volumes. Absolute Statistical

and systematic uncertainties are shown.

The combined total cross section can be compared with SM expectation of:

σtotalZZ (pp→ ZZ +X) = 7.2+0.3
−0.2 pb (6.6)

The agreement with the SM expectation is better with the inclusion of events with three

central electrons and one forward electron.
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6.7 Differential Cross Section

In order to do a better comparison of the production cross section of ZZ, the fiducial differential

cross section as function of MZZ and the pT of the leading Z is calculated. In figures 6.5 and

6.6, the differential fiducial cross sections are shown. In the figures, the obtained cross section

is compared with the SM prediction given by PowhegPythia + ggVV samples. The blue boxes,

shown in the figures, represent the total systematics and statistical uncertainties shown in table

6.7, added in quadrature. The agreement between the expected cross section and the measured

is good between the uncertainties.

From the measurement of cross sections, fiducial and total, and from the differential distri-

butions shown in the last part of this chapter, there is no evidence of a significant deviation

from the expectation of the cross section with the measured values. For that reason, in the next

chapter, limits to the values of the neutral triple gauge couplings aTGCs will calculated.
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Figure 6.5: Differential fiducial cross as function of the invariant mass of the ZZ.
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Figure 6.6: Differential fiducial cross as function of the pT of the leading Z.
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Limits on aTGC in ATLAS

“I’m sciencing as fast as I can.”

—Professor Farnsworth

As discussed in 2.6.2, anomalous triple gauge couplings would lead to an increase in the cross

section for ZZ production, especially at high values of the transfer momentum. As shown in

figure 2.5, the pT of the leading Z is particularly sensitive to the presence of aTGCs. Other

variable, usually considered in searches of anomalous TGCs, is the invariant mass of the ZZ

system. The observed number of events compare to the predicted SM are used to look for

aTGCs. If deviations are not observed, limits to the possible values of the anomalous couplings

can be derived.

In this chapter, the strategy to set limits to the aTGCs is described. Then, the expected

limits to the anomalous triple gauge couplings are shown.

7.1 Anomalous Triple Gauge Couplings

In order to study the effect of the anomalous TGCs, MC simulations with different values of

the parameters fγ4 , fZ4 , fγ5 and fZ5 are produced. The samples were generated using SHERPA[50]

with CT10 PDF. Three samples are used in this analysis, with the following couplings: fγ4 = 0.1

denoted TGC0, fγ4 = fZ5 = 0.1 denoted TCG1 and fγ4 = fZ4 = fγ5 = fZ5 = 0.1 denoted TGC2.

The samples are generated without a form factor and the couplings are selected close to the

experimental limits set by the LEP experiment.

Figures 7.1 and 7.2 show a comparison between the SM prediction and the TGC0 samples

for the invariant mass of the ZZ and the pT of the leading Z. The effect on ZZ events with four

central electrons (left side of the figure) and events with three central electrons and one forward

electron (right side of the figure) can be seen in the figures. The effect of the anomalous TGCs

is more clearly visible on the left side of figures 7.1 and 7.2. In the case of the invariant mass,

the increase in the number of events, due to the TGC, is more important for values starting at
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600 GeV. For the pT , the aTGCs make a contribution at values larger than 150 GeV. For the

events with one forward electron, the effect of TGCs on the expected number of events is more

important in the pT distribution.
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Figure 7.1: Invariant mass of the ZZ events predicted by SM (blue line) is compared to the distribution

for the TGC0 sample. The left side shows events with four central electrons, and the right side shows

events with three central and one forward electron.
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Figure 7.2: Transverse momentum of the leading Z predicted by SM (blue line) is compared to the

distribution for the TGC0 sample. The left side shows events with four central electrons, and the right

side shows events with three central and one forward electron.
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Figure 7.3: Invariant mass of the ZZ events predicted by SM (blue line) is compared to the distribution

for the TGC1 sample. The left side shows events with four central electrons, and the right side shows

events with three central and one forward electron.
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Figure 7.4: Transverse momentum of the leading Z predicted by SM (blue line) is compared to the

distribution for the TGC1 sample. Left side shows events with four central electrons, and the right side

shows events with three central and one forward electron.

The TGC1 sample produces a stronger enhancement of the signal compare toTCG0, as can

be seen in figure 7.3 and 7.4. The left side of the figures shows the invariant mass of the ZZ

and the pT of the leading Z distributions of events with four central electrons. The right side

shows events with three central and one forward electron.

The values of the parameters fVi used to produce the TGC0, TGC1 and TGC2 samples

are ten times larger than the values of the limits derived by ATLAS, shown in table 2.2, in
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chapter 2. For that reason, in order to have a better idea of the effects of the aTGCs with limits

close to these shown in table 2.2, a reweighting method is implemented. In the next section, a

description of the reweighting procedure is given.

7.2 Matrix Elements Reweighting

As mentioned in section 2.6.2, the anomalous couplings affect the ZZ production. The result is

the increase in the production cross section, especially at high values of pT , as already shown

in figures in section 7.1. The increase in the production cross section can be parametrized as

function of the couplings as shown below:

dσSM+TGC = F00 + fγ4 F01 + fZ4 F02 + fγ5 F03 + fZ5 F04

+ (fγ4 )2F11 + fγ4 f
Z
4 F12 + fγ4 f

γ
5 F13 + fγ4 f

Z
5 F14

+ (fZ4 )2F22 + fZ4 f
γ
5 F23 + fZ4 f

Z
5 F24

+ (fγ5 )2F33 + fγ5 f
Z
5 F34

+ (fZ5 )2F44 (7.1)

Fij are coefficients that describe how the cross section change in the presence of the aTGCs.

The F00 correspond to the contribution of the Standard Model.

With the help of the equation shown above, it is possible to reweigh a sample generated at

any value of the TGCs to the SM or to other selection of couplings. For example, to reweigh the

TGC0 sample, generated with fγ4 = 0.1 to the Standard Model, one would apply to each event

a weight of the form:

weight =
F00

F00 + 0.1F01 + (0.1)2F11
(7.2)

The Fij in equation 7.1 are completely specified by the kinematic of the incoming and

outgoing particles, so they must be evaluated in an event on event basis. The values of Fij are

independent of the coupling choice, but depend on the form factor assumed.

The coefficients are determined from the SHERPA samples as follows. From the equations

7.1, it is possible to write down 15 equations that define the coefficients Fij , uniquely. As

an illustration, it is convenient to consider the case of only one coupling f . In that case, the

equation 7.1 is reduced to:

σSM+TGC = F00 + fF01 + f2F11 (7.3)

Only three coefficients must be determined. If f can take the values -1,0,1, the independent

equations can be written as:
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dσ1

dσ2

dσ3

 =


1 0 0

1 1 1

1 −1 1




F00

F01

F11


If the complete 15 couplings are taken, there is a total of 15 independent equations. This

system of equation can be written in matrix form, as:

d~σ = Â ~F (7.4)

The vector ~F of the coefficients can be determinated by inversion of the matrix Â; ~F =

Â−1d~σ. The matrix elements are obtained from the BHO[51] generator. The matrix elements are

then introduced in the framework described in [52], which led to the calculation of the amplitude

given by the four vectors and PDG values of the incoming and outgoing particles.

To finalize this section, an example of the reweighting process is shown. TGC0 and TGC1

samples are reweighted according to fit the SM expectations, the result of the reweighting is

shown in the following figures.

In figures 7.5 and 7.6, TGC0 samples are reweighted according to suit the Standard Model

expectation. The agreement of the reweighted curve and the SM prediction is quite good,

especially for the plot shown on the left side of the figures, corresponding to the diboson events

with four central electrons.

The other aTGC MC samples were reweighted, too according to fit to the SM expectation.

In all cases the agreement between the curves is good.
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Figure 7.5: Invariant mass of the ZZ events predicted by SM (blue line) is compared to the distribution

for the TGC0 sample, reweighted to the Standard Model expectation using the method described in this

section. The left side shows events with four central electrons, and the right side shows events with three

central and one forward electron.
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Figure 7.6: Transverse momentum of the leading Z predicted by SM (blue line) is compared to the

distribution for the TGC0 sample, reweighted to the Standard Model expectation using the method

described in this section. The left side shows events with four central electrons, and the right side shows

events with three central and one forward electron.

7.3 Limits Extraction

In order to set limits to the neutral couplings; i.e., fγ4 , fZ4 , fγ5 and fZ5 a set of MC simulations with

different values of the couplings can be produced and, then, the expected yield as a function of

the coupling strength can be derived. However, this process is computationally very demanding.

A better approximation is to use the matrix element reweighting procedure, shown in section

(7.2), to obtain a sample with values close to the limits already set for the anomalous couplings.

With the reweighted matrix, the expected yield as a function of the aTGCs can be determined

and, then, 95% confidence level limits can be set using a frequentist likelihood ratio. A detailed

description of the whole procedure is given below.

7.3.1 Yield Determination

In order to extract limits on the aTGCs an estimation of the increase in the expected signal as

a function of the couplings should be determined. The yield due to the aTGCs is parameterized

by Yij coefficients, which are calculated from the Fij , introduced in previous section, which are

obtained by the matrix reweighting procedure described in section 7.2. The Yij are given by:

Yij =
∑

Events

(
Fij

dσsample

)
(7.5)

where the summation is over all the events passing the selection and the dσsample corresponds

to the differential cross section by event, obtained with the original parameters of the reweighted
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sample.
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Figure 7.7: Invariant mass of the ZZ events predicted by SM (blue line) is compared to the distribution

for the TGC2 sample, reweighted to fγ4 = fZ4 = fγ5 = fZ5 = 0.012, with an energy scale given by ΛFF = 3

TeV. Left side shows events with four central electrons,and the right side shows events with three central

and one forward electron.
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Figure 7.8: Transverse momentum of the leading Z predicted by SM (blue line) is compared to the

distribution for the TGC2 sample, reweighted to fγ4 = fZ4 = fγ5 = fZ5 = 0.012, with an energy scale given

by ΛFF = 3 TeV. Left side shows events with four central electrons, and the right side shows events with

three central and one forward electron.

In this work, the Fij are calculated, from the reweighting of the TGC2 sample to the values

of the anomalous couplings given by:
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fγ4 = fZ4 = fγ5 = fZ5 = 0.012

and

ΛFF = 3TeV (7.6)

and

fγ4 = fZ4 = fγ5 = fZ5 = 0.020

and

ΛFF =∞ (7.7)

this choice was made in order be close to the limits shown in table 2.2 of section 2.6.2, which

correspond to the limits presented by ATLAS with a center of mass energy of
√
s = 7 TeV. Two

energy scales were tested, one corresponding to ΛFF =∞ and the second ΛFF = 3 TeV.

The effect of the reweighting process on the TGC2 sample can be seen in figures 7.7 and 7.8,

where the mass spectrum of the ZZ and the pT of the leading Z are shown, for the case of a

ΛFF = 3 TeV and fVi = 0.012.

The expect yield due to the anomalous couplings, can be written as:

Nexp = Y00 + fγ4 Y01 + fZ4 Y02 + fγ5 Y03 + fZ5 Y04

+ (fγ4 )2Y11 + fγ4 f
Z
4 Y12 + fγ4 f

γ
5 Y13 + fγ4 f

Z
5 Y14

+ (fZ4 )2Y22 + fZ4 f
γ
5 Y23 + fZ4 f

Z
5 Y24

+ (fγ5 )2Y33 + fγ5 f
Z
5 Y34

+ (fZ5 )2Y44 (7.8)

In table 7.1 and 7.2, the expected yield as a function of the anomalous couplings is shown.

Table 7.1 shows the case of a ΛFF = 3 TeV and n = 3 (see equation 2.21). Table 7.2 shows

the expected yield when any form factor is applied to the reweighting. In both tables, the yield

coefficients Yij are normalized to the Standard Model expectation given by the PowhegPythia+

ggVV samples for the CCCC and CCCF combined events.
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Y00 Y01 Y02 Y03 Y04

62.3213 1.13077 -0.132434 -0.0530052 -0.20145

Y11 Y12 Y13 Y14

26079.5 23381.2 0.24532 0.098763

Y22 Y23 Y24

35309.1 0.0989338 0.28479

Y33 Y34

25459 22796.5

Y44

34408.5

Table 7.1: Expected yield as a function of the aTGCs. A value of n = 3 and an energy scale ΛFF = 3

TeV was used. CCCC and CCCF events are considered.

Y00 Y01 Y02 Y03 Y04

62.3213 1.01323 -0.126454 -0.0458298 -0.19698

Y11 Y12 Y13 Y14

26918.2 24139.7 0.253225 0.102224

Y22 Y23 Y24

36458.5 0.102372 0.295092

Y33 Y34

26274.5 23532.2

Y44

35522.4

Table 7.2: Expected yield as a function of the aTGCs. No form factor (ΛFF =∞) was used. CCCC and

CCCF events are considered.

With the help of the signal parametrization shown in table 7.1 and 7.2, it is possible to set

limits to the values of the triple gauge couplings. In the next section, a description of the limits

extraction will be given.

7.3.2 aTGC Limits Extraction

The 95% confidence level intervals for the aTGCs are determinated using a frequentist maximum

profile-likelihood described in [53]. The implementation corresponds to the TGClim package

version 00-00-15, available for the use of the ATLAS collaboration. A description of the package

is given in [54].
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The basic idea behind the method is the maximization of the profile-likelihood function, L,

with respect to the number of expected events, shown in the tables 7.1 and 7.2. The likelihood

function can be written as:

L(f, β) =

m∏
i=1

Poisson(N i
data,φ

i(f,β))× 1

(2π)m
e

1
2

(β·C−1·β) (7.9)

where f are the neutral TGCs parameters and φi is the expected number of events in bin i:

φi(f,β) = N i
sig(f)(1 + βi) +N i

back(1 + βi+m) (7.10)

N i
sig(f) is the expected number of events as a function of the aTGCs. N i

sig and N i
back are

parametrized as a function of the nuisance parameters β, that are introduced in order to make

a description of the imperfect knowledge of the true N i
sig and N i

back and are taken from the

uncertainties. C is a covariance matrix of the nuisance parameters.

A test statistic q(f) is constructed as the ratio of two maximum profile-likelihood at a specific

test value of the aTGCs parameters, f , to the full maximum profile-likelihood:

q(f) =
L(N |fMax

num , β
Max
num )

L(N |fMax
den , βMax

den )
(7.11)

where fMax
num is the f that maximizes the numerator, and βMax

num and βMax
den the values of β

that maximizes the numerator and denominator.

The distribution of q(f) is made by running 10,000 pseudoexperiments, where the β parame-

ters are Gaussian fluctuated from βMax
den and the number of observed events is obtained randomly

from a Poisson distribution around the considered f and β. The p-value, at the best value of

the aTGCs parameters, is calculated as the fraction of pseudoexperiments, which have a test

statistic smaller than the observed value of the test statistic q(f). This process is repeated by

scanning possible values of f and the 95% confident level is defined by all the values with p-value

larger than 5%.

Limits are set for one parameter at a time, holding the other parameters to the SM value of

zero, so one-dimensional confident levels are produced. In the table the limits derived using the

previous described method are shown.

ΛFF fγ4 fZ4 fγ5 fZ5

3 TeV [-0.009,0.011] [-0.011,0.012] [-0.009,0.011] [-0.010,0.012]

∞ [-0.010,0.012] [-0.008,0.010] [-0.010,0.012] [-0.008,0.010]

Table 7.3: One dimensional 95% confidence intervals for aTGCs derived from ATLAS results at
√
s =

8 TeV. Limits are presented for ΛFF = 3 TeV and ΛFF = ∞; both include the total systematics and

statistical uncertainties.
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Comparing the values shown in the table 7.3 to the previous limits derived from ATLAS

results at a center of mass energy of
√
s = 7 TeV (see table 2.2), the new limits are 1.5-2 times

more stringent than the previous limits.
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Conclusions

Studies of the ZZ production cross section are important, because they allow testing for the

electroweak sector of the Standard Model. Searches for new physics are also possible if dibosons

are produced via anomalous Triple Gauge Couplings. Data collected at the ATLAS experiment

at a center of mass energy of
√
s = 8 TeV, were used to calculate the ZZ production cross

section. Events were selected which were consistent with four electrons coming from two Z

bosons.

Two fiducial phase spaces were used in this analysis: One corresponding to four electrons

with values of the pseudorapidity in the interval |η| < 2.5 and a transverse momentum larger

than 7 GeV (central phase space). A second smaller phase space was studied, which involved

three electrons in the pseudorapidity interval |η| < 2.5 and one electron in the region of high

pseudorapidity (2.5 < |η| < 4.9), and transverse momentum larger than 7 GeV for all electrons

(central-forw. phase space). In both cases, the invariant mass of the two leptons was required

to be in the range 66 < M`1`2 < 116 GeV, with a separation ∆R`` between leptons larger than

0.2. The fiducial cross section in each phase space, and for the combination was extrapolated

to the total cross section, for ZZ production for Z bosons in the range 66 GeV to 116 GeV.

central phase space central-forw. phase space

σfidu 4.6 ± 0.6 (Stat.)± 0.3 (Sys.)± 0.1 (Lumi.) (fb) 1.3 ± 0.6 (Stat.)± 0.3 (Sys.)± 0.04 (Lumi.) (fb)

σtot 6.9 ± 1.0 (Stat.)± 0.3 (Sys.)± 0.2 (Lumi.) (pb) 7.4 ± 3.4 (Stat.)± 0.2 (Sys.)± 0.2 (Lumi.) (pb)

Combined

σfidu 6.0 ± 0.8 (Stat.) ± 0.3 (Sys.) ± 0.3 (Lumi) (fb)

σtot 7.3 ± 1.0 (Stat.) ± 0.4 (Sys.) ± 0.2 (Lumi) (pb)

The uncertainties in the measurements are statistically dominated and the major contribu-

tion to the systematic uncertainty arise due to the background estimation, using a data driven
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method. The combined total cross section can be compared to SM expectation of:

σtotalZZ (pp→ ZZ +X) = 7.2+0.3
−0.2 pb (8.1)

Differential distributions of kinematic variables of the ZZ system were calculated and com-

pared to the Standard Model expectation. No significant deviation was observed.

Limits on the anomalous neutral couplings were derived using the ZZ observed events and

MC samples simulating anomalous Triple Gauge Couplings. A reweighting process was carried

out to fit the MC samples to the most updated limits given by ATLAS. Then, 95% confidence

level intervals for the aTGCs were determined using a frequentist maximum profile-likelihood

method.

The results are shown below and are 1.5-2 times more stringent than previous limits obtained

by other experiments.

ΛFF fγ4 fZ4 fγ5 fZ5

3 TeV [-0.009,0.011] [-0.011,0.012] [-0.009,0.011] [-0.010,0.012]

∞ [-0.010,0.012] [-0.008,0.010] [-0.010,0.012] [-0.008,0.010]

In this work, the analysis was focused on the electron decay channel of the ZZ production,

in order to show the effect of the inclusion of electrons with high values of pseudorapidity. It

can be concluded that forward electrons could help to improve the measurement of the diboson

production cross section, due to the increase in the acceptance of the detector.

A difficulty of considering only one decay channel is the low available statistics. Therefore

this analysis can be improved if, additionally to the electron channel, other channels, e.g, 4µ,

2e2µ, are used. Detector effects can be reduced too, if an unfolding procedure is carried out on

the kinematic distributions of the ZZ, like the ones shown in chapter 5. Naturally, the principal

constraint in the use of forward electrons is the lack of information of the track system in that

region. Plans are considered at the moment to extend the coverage of the track system up to

|η| = 3.2 in the next LHC collision time (LHC-Run 3).
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[50] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter.

Event generation with sherpa 1.1. Journal of High Energy Physics, 2009(02):007, 2009.

[51] U. Baur, T. Han, and J. Ohnemus. QCD corrections and anomalous couplings in Zγ

production at hadron colliders. Phys. Rev. D, 57:2823–2836, 1998.

134



BIBLIOGRAPHY

[52] G. Bella. Weighting di-boson manote carlo events in hadron colliders. arXiv:0803.3307

[hep-ph].

[53] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for

likelihood-based tests of new physics. The European Physical Journal C, 71(2):1–19, 2011.

[54] ATLAS Collaboration. ATLAS experiment. https://svnweb.cern.ch/trac/atlasphys/

browser/Physics/StandardModel/ElectroWeak/Common/Software/TGC/TGClim/tags/

TGClim-01-00-15/docs/TGClimManual.pdf, 2014. [Online; accessed 21-April-2014].

135



BIBLIOGRAPHY

136



Appendices

137





Appendix A

Monte Carlo Samples used in this

Analysis

ZZ production and subsequent decays are simulated with the CT10 parton density function

(PDF) set, and the generators PowhegPythia (NLO) and ggVV (LO). PowhegPythia is NLO,

but does not include the NNLO gluon-gluon diagrams, which are expected to contribute 6% to

the cross section. We simulate this contribution to the cross section using the ggVV generator.

ggVV simulates the gluon-gluon process, which is an NNLO correction to the total cross section,

at LO. The gauge-boson decays into τ leptons are included in the simulation with the τ leptons

decaying into all known final states.

Table A.1 lists the ZZ MC signal samples used in this analysis, with the corresponding cross

section, the k-factor needed to correct this to the full NLO prediction, and the event generator

filter efficiency. In the PowhegPythia and ggVV samples, a filter is applied to the events at the

generator level, demanding at least 3 leptons (e or µ) with pT > 5 GeV and |η| < 10. The filter

mainly rejects τ events. Only 0.05% of ZZ → ````(` = e,µ) events are rejected for ∼on-shell

ZZ production, i.e. for both Z boson masses in the range 66–116 GeV.

MCID Process Generator Events Fiducial k-factor εfilter cross section [pb]

126937 ZZ → 4e PowhegPythia 600000 0.03 0.91 0.080

116601 gg → 4e ggVV 90000 1.00 1.00 0.000627

Table A.1: ZZ signal production process, cross section and number of fully simulated MC events. MC

generator used to produce the MC events and the MC ID run number are indicated, as well.

Various MC samples are used to validate the data driven estimates for the background due to

fake leptons. These include the main background contributions: W or Z gauge bosons produced

in association with jets (V+jets), top events (tt̄, Wt and single top), and other diboson processes

(mainly WW and WZ).

139



The MC datasets used to model the backgrounds can be found in Tables A.2, A.3, and A.4.

MCID Process Generator PDF Events Fiducial εfilter cross

k-factor section [pb]

108343 SingleTopSChanWenu McAtNlo+Herwig CT10 199997 1.00 1.00 0.606

117360 singletop tchan e AcerMC+Pythia CTEQ6L1 299899 1.00 1.00 9.480

110001 ttbar dilepton McAtNlo+Herwig CT10 9988449 1.00 0.105 252.890

105200 ttbar LeptonFilter McAtNlo+Herwig CT10 14990603 1.00 0.543 252.890

105204 ttbar allhad McAtNlo+Herwig CT10 1199990 1.00 0.457 252.890

126928 WpWm ee Powheg+Pythia8 CT10 299700 1.00 1.00 0.631

129477 WZ Wm11Z11 Powheg+Pythia8 CT10 190000 1.00 0.295 1.407

129486 WZ W11Z11 Powheg+Pythia8 CT10 189899 1.00 0.297 0.980

119355 tt̄Z MadGraph+Pythia CTEQ6L1 361611 1.00 1.00 0.068

167008 ZZZ∗ → ```` MadGraph+Pythia CTEQ6L1 49690 1.00 1.00 0.00033

Table A.2: Top, Diboson and Triboson MC datasets used as background samples. Values for the filter

efficiency, number of events and cross section values were taken from AMI.

MCID Process Generator PDF Events Fiducial εfilter cross

k-factor section [pb]

117650 ZeeNp0 Alpgen+Pythia CTEQ6L1 6619984 1.18 1.00 718.890

117651 ZeeNp1 Alpgen+Pythia CTEQ6L1 1329498 1.18 1.00 175.600

117652 ZeeNp2 Alpgen+Pythia CTEQ6L1 404998 1.18 1.00 58.849

117653 ZeeNp3 Alpgen+Pythia CTEQ6L1 109999 1.18 1.00 15.560

117654 ZeeNp4 Alpgen+Pythia CTEQ6L1 30000 1.18 1.00 3.932

117655 ZeeNp5 Alpgen+Pythia CTEQ6L1 10000 1.18 1.00 1.199

Table A.3: MC datasets for Z+jets and Z+γ. Values for the filter efficiency, number of events and cross

section values were taken from AMI.

MCID Process Generator PDF Events Fiducial εfilter cross

k-factor section [pb]

146430 WgammaNp0 Photos+Herwig CTEQ6L1 50000 1.15 1.00 230.090

146431 WgammaNp1 Photos+Herwig CTEQ6L1 50000 1.15 1.00 59.343

146432 WgammaNp2 Photos+Herwig CTEQ6L1 50000 1.15 1.00 21.469

146433 WgammaNp3 Photos+Herwig CTEQ6L1 49999 1.15 1.00 7.103

146434 WgammaNp4 Photos+Herwig CTEQ6L1 364999 1.15 1.00 2.122

146435 WgammaNp5 Photos+Herwig CTEQ6L1 60000 1.15 1.00 0.466

Table A.4: MC datasets for W+jets and W+γ. Values for the filter efficiency, number of events and cross

section values were taken from AMI.
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Appendix B

Signal and Background functions in

Forward Region

In chapter 4, the reconstruction and identification of electrons in ATLAS was described. As

already mentioned, the idenfication of electrons with high values of the pseudorapidity uses only

information of the calorimeters, due to the non-coverage of the track system beyond of |η| >
2.5.

A fit procedure is implemented using RooFit[45] in the mass range 55 to 130 GeV, to make

a separation of signal a background in forward region. The signal is fitted using a Crystal-Ball

function, convoluted to a Breit-Wigner.

The Breit-Wigner function is shown in equation B.1, where M is the resonance pole, in this

case corresponding to the mass of the Z and g is the resonance width. This function is commonly

used to describe the shape of the resonance in the presence of a finite detector resolution.

f(x) =
1

(x−M)2 + 1
4g

2
(B.1)

The Crystal-Ball function is a Gaussian with a tail on the low side of the energy that is used

to describe the effect of radiative energy loss. The function is shown is equation B.2.

f(x;α,n,x̄,σ) = N ·

exp(− (x−x̄)2

2σ2 ), for x−x̄
σ > −α

A · (B − x−x̄
σ )−n, for x−x̄

σ 6 −α
(B.2)
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where

A =

(
n

|α|

)n
· exp

(
−|α|

2

2

)
, (B.3)

B =
n

|α| − |α| , (B.4)

N =
1

σ(C +D)
(B.5)

C =
n

|α| ·
1

n− 1
· exp

(
−|α|

2

2

)
(B.6)

D =

√
π

2

(
1 + erf

( |α|√
2

))
(B.7)

With the help of Z MC simulation parameters like mean of the Breit-Wigner are determined

and used as start parameters when the data are fitted; the width of the Breit-Wigner is fixed to

the PDG [13] value of the Z width. The exponential fall of the Crystal-Ball is fixed, too, with

the help of the MC. The mean and sigma values of this function are fitted with the data.

The background is described with a Landau function. The mean and the sigma value of

the function are determined using data. The typical form of the curves is shown in figure B.1.

The left plot shows the Crystal-Ball function in red and the Breit-Wigner in solid blue. The

convolution is shown in dashed blue. The Landau function can be seen in the right plot.

Figure B.1: Functions used to fit the data and the background, in order to have the number of electrons

corresponding to signal and background.
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Appendix C

Additional Kinematic Distributions

of ZZ

In chapter 5, the kinematic distributions of the ZZ system and the electrons product of the

decay of the Z bosons were shown. In this appendix, distributions are additionally shown,

corresponding to the Z with the second larger pT , referred to as subleading Z.
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Figure C.1: Invariant mass of the Z candidate with the second larger pT (subleading Z). The left side

shows events with four central electrons. On the right side candidates with one forward electron and

three centrals electrons are shown.

Figure C.1 shows the invariant mass of the subleading Z. The left side of the figure shows

the invariant mass of events with four central electrons. The right side shows the invariant mass

in the case of events with three central electrons and one forward. In both distributions, the MC

signal shows a long tail in the low part of the MSubLead
Z , that corresponds to electrons losing part

of the energy, due to bremsstrahlung process. Compared with the distribution of the leading Z
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(see chapter 5 fig. 5.8), the mass spectrum is wider; the reason is the lower resolution of the

second Z with respect to the leading Z.
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Figure C.2: pT of the Z candidate with the second larger pT (subleading Z). The left side shows events

with four central electrons. On the right side candidates with one forward electron and three centrals

electrons are shown.

In figure C.2, the pT of the subleading Z is shown for the case of events with four central

electrons (left side of figure) and in the case of three central electron and one forward. In both

plots, it can be seen that the data agreement is relatively good, especially for the CCCC events.

In the case of the CCCF events, statistical fluctuations are more important.
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Figure C.3: Distribution of the ZZ candidates depending on the mass of the Z. On right side ZZ events

with only central events are shown. The left side shows events with three central and one forward electron.

y-axis corresponds to the mass of the Z, closer to the PDG value for the mass of the Z. The color shows

the value of the pT of the ZZ events.

Additionally to the pT of the Z bosons, another classification of the Z consists of the distance

of the mass of the Z with respect to the PDG nominal mass of the Z bosons. Two types of Z

144



Chapter C. Additional Kinematic Distributions of ZZ

are the result of this classification: the Z closest to the PDF mass of the Z, referred to as Zpole,

and the second closest called Znopole

Figure C.3 shows the mass of the Z closer to the PDG value of the mass of the Z versus

the mass of the second Z. On right side of the figure, ZZ events, formed for central electrons

(CCCC) are shown, on left side, events with three centrals and one forward electron can be seen

(CCCF). The color of the points is proportional to the pT of the ZZ.
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