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Abstract

In this thesis we give a deVnition of the term logarithmically symplectic variety; to be pre-

cise, we distinguish even two types of such varieties. The general type is a triple (f,

∆

, ω)

comprising a log smooth morphism f : X → Specκ of log schemes together with a Wat log

connection

∆

: L → Ω1
f � L and a (

∆

-closed) log symplectic form ω ∈ Γ (X,Ω2
f � L).

We deVne the functor of log Artin rings of log smooth deformations of such varieties

(f,

∆

, ω) and calculate its obstruction theory, which turns out to be given by the vector

spaces Hi(X,B •(f, ∆

)(ω)), i = 0, 1, 2. Here B •(f, ∆

)(ω) is the class of a certain complex of

OX -modules in the derived category D(X/κ) associated to the log symplectic form ω. The

main results state that under certain conditions a log symplectic variety can, by a Wat de-

formation, be smoothed to a symplectic variety in the usual sense. This may provide a new

approach to the construction of new examples of irreducible symplectic manifolds.

In dieser Arbeit geben wir eine DeVnition des Terms logarithmisch-symplektische Varie-

tät; genau genommen unterscheiden wir sogar zwei Typen solcher Varietäten. Der allge-

meinere Typ ist dabei ein Tripel (f,

∆

, ω) bestehend aus einem log glatten Morphismus

f : X → Specκ von log Schemata, zusammen mit einem Wachen log Zusammenhang

∆

: L → Ω1
f � L und einer (bezüglich

∆

geschlossenen) log symplektischen Form ω ∈
Γ (X,Ω2

f �L). Wir deVnieren den Funktor von log Artinringen der Deformationen solcher

Varietäten (f,

∆

, ω) und berechnen dessen Hindernistheorie, die sich als durch die Vektor-

räume Hi(X,B •(f, ∆

)(ω)), i = 0, 1, 2, gegeben herausstellt. Dabei ist B •(f, ∆

)(ω) die Klasse

eines gewissen Komplexes von OX -Moduln in der derivierten Kategorie D(X/κ), der zur

log symplektischen Form ω gehört. Die Hauptresultate sagen aus, dass sich unter gewis-

sen Voraussetzungen eine log symplektische Varietät mittels einer Wachen Deformation zu

einer symplektischen Varietät im üblichen Sinne glätten lässt. Dies liefert möglicherweise

einen neuen Ansatz für die Konstruktion neuer Beispiele irreduzibler symplektischer Man-

nigfaltigkeiten.

Dans cette thèse nous donnons la deVnition du terme variété logarithmiquement symplec-

tique; par souci d’exactitude, nous distinguons même deux types de telles variétés. Le type

général est un triplet (f,

∆

, ω) qui se compose d’un morphisme log lisse f : X → Specκ

de schémas log avec une connexion log plate

∆

: L → Ω1
f et une forme log symplectique

(

∆

-fermée) ω ∈ Γ (X,Ω2
f � L). Nous déVnissons le foncteur des anneaux artiniens des

déformations log lisses de telles varietés (f,

∆

, ω) et calculons sa théorie d’obstruction, qui

se trouve d’être donnée par les espaces vectoriels Hi(X,B •(f, ∆

)(ω)), i = 0, 1, 2. Sachant

queB •(f, ∆

)(ω) est la classe d’un certain complexe desOX -modules dans la catégorie derivée

D(X/κ) associée à la forme log symplectique ω. Les résultats principaux établissent que

sous certain conditions une variété log symplectique admet une déformation plate dont la
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Vbre générale est une variété symplectique lisse au sens usuel. Ceci apporte potentiellement

une autre approche pour la construction de nouveaux exemples de variétés symplectiques

irréductibles.

Introduction

Compact hyperkähler manifolds – these are compact Kähler manifolds X the holonomy

group of which is the symplectic group Sp(dimX) – stand in the focus of investigations by

complex algebraic geometry not only, but just since Bogomolov’s decomposition theorem:

0.0.1 Theorem (De Rham, Berger, Bogomolov, Beauville, cf. [1, Thm. 1(2)])

Let X be a compact Kähler manifold with zero Ricci curvature. Then there exists a Vnite

étale cover f : X̃ → X such that

X̃ ∼= T ×
∏

Vi ×
∏

Xj ,

where T is a complex torus, where the Vi are compact Calabi-Yau manifolds (these are

compact simply connected Kähler manifolds of dimension mi ≥ 3 with holonomy group

SU(mi)) and where the Xj are compact simply connected hyperkähler manifolds.

In the language of algebraic geometry, compact hyperkähler manifolds correspond to irre-

ducible symplectic varieties which are proper over SpecC; these are deVned as follows:

A symplectic variety is a smooth variety X over SpecC which possesses a global 2-form

ω ∈ Γ (X,Ω2
X/C), the so-called symplectic form, such that the associated OX -linear map

TX/C → Ω1
X/C is an isomorphism; equivalently, such that its associated skew-symmetric

pairing TX/C �OX TX/C → OX is non-degenerate. This implies that the dimension of X

is even. An irreducible symplectic variety is a symplectic variety X the symplectic form ω

of which generates the ring H0(X,Ω •X/C) as an H0(X,OX)-algebra. In particular, such a

variety is simply-connected.

The decomposition theorem then takes the following form:

0.0.2 Theorem (Beauville, cf. [1, Thm. 2(2)])

LetX be a Kähler variety which is proper and smooth over SpecC and the Vrst Chern class

of which is zero. Then there exists a Vnite étale cover f : X̃ → X such that

X̃ ∼= T ×
∏

Vi ×
∏

Xj ,

where T is a complex torus, where the Vi are projective Calabi-Yau varieties (these are

simply connected varieties of dimensionmi ≥ 3, smooth over SpecC, with trivial canonical

line bundle and such that H0(Vi, Ω
p
Vi/C

) = 0 for 0 < p < mi) and where Xj is a proper

irreducible symplectic Kähler variety.
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Both proper symplectic varieties and proper Calabi-Yau varieties are subjects of a rich and

prospering research. In contrast to numerous existent examples of proper Calabi-Yau vari-

eties, there are only few examples of proper symplectic varieties known. All examples

known to this day are subsequently listed up to deformation equivalence:

a) Hilbert schemes of points on a K3 surface, Hilbn(S) (Beauville, [1, Thm. 3]), of

dimension 2n, with b2 = 23, n ∈ N;

b) Kummer varieties associated to an Abelian surface, Kn(A) (Beauville, [1, Thm. 4]),

of dimension 2n, with b2 = 7, n ∈ N;

c) M̃4 (O’Grady, [27, 2.0.2]), of dimension 10, with b2 = 24;

d) M̃ (O’Grady, [28, 1.4]), of dimension 6, with b2 = 8;

where the last two exceptional examples (exceptional, because they do not belong to series

like the other examples) were constructed by K. O’Grady as resolutions of singular moduli

spaces of sheaves on a projective K3 surface. Indeed, all of the above examples may be

realised as moduli spaces (or resolutions of those) of sheaves on a K3 surface. However,

the method of O’Grady used to construct his exceptional examples as resolutions of partic-

ular singular moduli spaces fails in all other cases of singular moduli spaces, as shown by

D. Kaledin, M. Lehn and C. Sorger in [15].

One method to construct compact Calabi-Yau manifolds was introduced by Y. Kawamata

and Y. Namikawa in their paper “Logarithmic deformations of normal crossing varieties

and smoothing of degenerate Calabi-Yau varieties” ([21]). For that purpose one regards

(complex analytic) strict normal crossing varieties equipped with a particular logarithmic

structure.

0.0.3 Theorem (cf. [21, 4.2])

Let X be a compact Kähler strict normal crossing variety equipped with the log structure

of semi-stable type of dimension d ≥ 3 and Xν → X the normalisation of X . Assume the

following conditions:

a) ωX ∼= OX ;

b) Hd−1(X,OX) = 0;

c) Hd−2(Xν ,OXν ) = 0.

Then X is smoothable by a Wat deformation.

The idea of this method is thus to pass from the category of Calabi-Yau manifolds to the

larger category of “strict normal crossing Calabi-Yau varieties” to regard deformations of

such varieties the general Vbre of which is a Calabi-Yau manifold in the original sense.
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Based on a proposal by our advisor M. Lehn, an adaptation of this approach is the core of

this thesis:

It is known that the Vbres of a deformation of a compact hyperkähler manifold over a small

analytic disc are again compact hyperkähler manifolds (cf. [1, 9]). Yet it seems possible, as

in the case of Calabi-Yau manifolds, to start with a singular variety and to smoothen it to

receive a proper symplectic variety, in principle.

As a Vrst step, we pass from algebraic geometry to logarithmic algebraic geometry, i. e.

from the category of schemes to the category of logarithmic schemes (X,αX); these are

schemes X carrying a logarithmic structure αX . Particularly, the notion of smoothness of

a morphism of schemes is replaced with the wider notion of logarithmic smoothness of a

morphism of log schemes. This yields that any semi-stable strict normal crossing variety

is log smooth over the point SpecC as soon as both involved schemes are regarded as log

schemes equipped with particular log structures.

In this thesis we introduce the notion of a (logarithmically smooth) logarithmically sym-

plectic scheme and particularly of a logarithmically symplectic variety which applies to the

case of strict normal crossing varieties over SpecC. In doing so, we distinguish between

two types of logarithmically symplectic schemes: Such of non-twisted type and such of

generally twisted type. In our main results, in a way similar to that of Y. Kawamata and

Y. Namikawa, we give conditions under which a logarithmically symplectic variety of the

respective type deforms Watly into a smooth symplectic variety in the usual sense, that is,

under which it is smoothable.

Content and Structure

In the Vrst chapter we introduce the basic deVnitions of logarithmic geometry (especially

for a reader not too familiar with that topic) such as the notion of log schemes and their

morphisms, charts of log structures and morphisms, and log smoothness as well as basic

results about these topics. All these notions and facts are taken from original articles on

the topic by K. Kato and F. Kato, as well as from the excellent lecture notes on logarithmic

geometry by A. Ogus, which have come to be known as the “Log book”, but which are up

to now available only directly from the author.

The second chapter recalls the notion of a functor of Artin rings in the sense of M.

Schlessinger before introducing the analogously deVned functors of log Artin rings. It then

collects results from the theory of functors of log Artin rings as established by F. Kato,

including the log Schlessinger conditions LH1-LH4 for the existence of a hull or even a

universal element, and introduces the notion of log smooth deformations. Be aware, that

the content of these Vrst two chapters is not original, but that it is included in this thesis

from the afore mentioned sources for the convenience of the reader.

Having chapters one and two as a basis, chapter three deVnes step by step the log schemes
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with additional data this thesis is working with, namely log schemes with line bundles, log

schemes with Wat log connections (of rank one) and, eventually, log symplectic schemes.

Here it seems reasonable to distinguish between two kinds of such schemes, namely the log

symplectic schemes of non-twisted type and of general type, as deVned in this chapter. This

chapter also introduces coherent sheaves and complexes of coherent sheaves associated to

the additional data on the respective log scheme. These are the log Atiyah module of a line

bundle, the log Atiyah complex of a Wat log connection, and the T -complex and B-complex

associated to a log symplectic scheme of non-twisted type and of general type, respectively.

These sheaves and complexes of sheaves will deliver the obstruction theory of log smooth

deformations of the respective kind of object in chapter four.

The middle of the third chapter is taken up by a discussion of the here deVned notion of log-

arithmic Cartier divisors, which was inspired by a section in the lecture notes by A. Ogus,

as far as necessary for this thesis. The chapter ends by recalling special log structures asso-

ciated to schemes with certain additional data, such as the canonical log structure of strict

normal crossing schemes of semi-stable type over Spec k from A. Ogus’ lecture notes and

F. Kato’s work. Again, in this last section of chapter three, nothing is original.

In the fourth chapter we deVne a collection of deformation functors for the various objects

deVned in chapter three. After recalling and partly reenacting the log smooth deformation

theory of log smooth schemes of F. Kato, we calculate (using Čech-(hyper-)cohomology)

the obstruction theory of log smooth deformations of log schemes with line bundles, log

schemes with Wat log connections and log symplectic schemes. These obstruction theories

are given by the (hyper-)cohomology groupsH0,H1 andH2 of the sheaves and complexes

of sheaves constructed in chapter three.

At the end of this chapter we show that any of the beforehand deVned deformation func-

tors possesses a hull in the sense of Schlessinger and that some of them are even pro-

representable (but, as expected, not the functor of log smooth deformations of log sym-

plectic schemes).

Chapter Vve contains the main results of this thesis. It begins with technical calculations

and results proved for later use in this chapter. By introducing a logarithmic version of the

T1 lifting principle as introduced by Z. Ran and Y. Kawamata and expanded by B. Fantechi

andM. Manetti and by following the techniques of Y. Namikawa and Y. Kawamata including

an adaptation of a result of J. Steenbrink, we are able to prove that under certain not to rigid

conditions the obstructions given in chapter four vanish and that a log symplectic scheme

may be deformed Watly into a smooth symplectic scheme in the usual sense.

Chapter six collects known examples of log symplectic schemes in our sense, appearing

naturally; two of them having been investigated by Nagai. It does however not provide an

application of our main theorems which produces new examples of symplectic varieties.

The last Chapter deals with questions that could not be satisfactorily answered within the

scope of this thesis.
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1 Logarithmic Geometry
In this Vrst chapter we collect the basic deVnitions and results of logarithmic geometry,

mostly for the convenience of the reader who has not yet had much contact with this topic.

The references for all results are “Logarithmic structures of Fontaine-Illusie” by K. Kato

([19]), “Log smooth deformation theory” by F. Kato ([17]) and notably the yet unVnished

“Lectures on Logarithmic Algebraic Geometry” by A. Ogus ([29]), which is an excellent

introduction to logarithmic algebraic geometry, available on the authors web page. For the

basic deVnition and results concerning monoids, see Appendix A. All monoids regarded

are commutative. As it is custom in the context of logarithmic geometry we will usually

abbreviate the words “logarithmic” and “logarithmically” to “log”.

A schemeX may be regarded both asXzar equipped with its classical Zariski-topology and

Xét with its étale topology, which is Vner due to the fact that open immersions are étale.

We will draw a distinction between these two possible topologies only if necessary. When

writing about an open/étale neighbourhood, we mean an open neighbourhood or an étale

neighbourhood, depending on the chosen topology. By a point of a scheme, we mean a

geometric point.

Since the topology on Xét is Vner than on Xzar, there is a canonical continuous map

υX : Xét → Xzar which is the identity as a map on sets, when interpreting Zariski-open

subschemes U ⊂ X as open immersions jU : U → X , which are always étale. If F is a

sheaf on Xét, then its restriction to open immersions is given as the sheaf υX∗F : U 7→
Γ (jU ,F). On the other hand, if F is a sheaf on Xzar, then υ

−1
X F : (e : U → X) 7→

Γ (U, e−1F) is a sheaf on Xét. It is clear that υX∗υ
−1
X F = F .

1.1 Logarithmic Structures

The category of sheaves of commutative monoids on a scheme X is denoted by MonX .

We regard the structure sheaf OX of X as an element of MonX , always with respect to its

multiplication. For a monoid P we will denote by PX its constant sheaf on X , which is

the sheaf associated to the presheaf taking every open subset U (respectively, every étale

morphism U → X) to P . For a sheaf of monoidsM, specifying a monoid homomorphism

P → Γ (X,M) is equivalent to giving a morphism of sheaves of monoids PX →M.

1.1.1 Logarithmic Structures

1.1.1 DeVnition ([19, 1.1,1.2],[29, III.1.1.1])

Let X be a scheme. A prelogarithmic structure on X is a morphism of sheaves of monoids

α : M→OX .

It is called a logarithmic structure if it is a logarithmic morphism of sheaves of monoids, i. e.

if the restricted morphism α−1(O×X) → O×X is an isomorphism. Due to the fact, that for

1



2 CHAPTER 1. LOGARITHMIC GEOMETRY

any log structure we have α−1(O×X) = M×, we identify O×X with the subsheaf of units

M× ofM via this isomorphism.

If α is a (pre)log structure, we will refer to the sheaf of monoidsM as the (pre)logarithmic

structure sheaf of α (or of (X,α)) and denote it byMα.

A morphism ϕ : β → α of prelog structures is a morphism of sheaves of monoids ϕ : Mβ →
Mα such that α ◦ ϕ = β. A morphism ϕ : β → α of corresponding log structures is a

morphism of prelog structures.

We write preLogX and LogX for the category of prelog structures and log structures on

X , respectively. The initial object in LogX is the inclusion ι : O×X → OX , called the trivial

log structure on X . The initial object of preLogX is the inclusion 1: 1 → OX . The Vnal

object in both categories is the identity ι̇d : OX → OX , called the hollow log structure onX

(cf. [29, III.1.1.3]).

In a log structure α, the sheaf of monoidsMα may be written additively or multiplicatively.

We will use the multiplicative notation mostly.

However, when written additively, a log structure α should be thought of as a sheafMα

of logarithms of certain regular functions together with an exponential mapMα → OX
given by α. The set of logarithms of a function f is then α−1(f), which might also be

empty, and the logarithm of a unit is unique (cp. [29, III.1.1.2]).

For example, the trivial log structure ι on SpecC can be written either multiplicatively as

the inclusion C× → C or additively as the well-deVned exponential map C/(2πiZ)→ C,

m 7→ exp(m), since indeed exp: (C/(2πiZ),+)→ (C×, ·) is an isomorphism with (well-

deVned) inverse map log.

For the deVnition of the quotient of a monoid by a subgroup see Appendix A.

1.1.2 DeVnition

Let α be a log structure on X . The quotient sheafMα = Mα/α
−1(O×X) = Mα/M×α is

called the characteristic monoid sheaf of α.

Analogously, if ϕ : β → α is a morphism of log structures β : Mβ → OX and α : Mα →
OX , we associate a sheaf of monoidsMϕ := Mα/β := Mα/ϕ(Mβ) which we call the

relative characteristic sheaf of ϕ or of α over β.

A morphism ϕ : β → α of log structures induces a homomorphism of monoid sheaves

ϕ : Mβ → Mα. The morphism ϕ an isomorphism if and only if ϕ is. We haveMϕ
∼=

Mα/ϕ(Mβ).

Given a diagram of monoid sheaves (or prelog structures) N ← M → N ′ on X we

write N �M N ′ for its pushout, which is the sheaf associated to the presheaf of monoids

U 7→ N (U)�M(U) N ′(U). IfM is the trivial sheaf of monoids, we write N �N ′ instead
of N �1 N ′ (compare to the conventions for monoids in Appendix A).



1.1. LOGARITHMIC STRUCTURES 3

Analogously we write N ×M N ′ for the pullback of the corresponding diagram with re-

versed arrows, which is the sheaf of monoids U 7→ N (U)×M(U) N ′(U).

Let α be a prelog structure on the scheme X . The monoid sheafM>
α := Mα 5 O×X :=

Mα �α−1(O×X) O
×
X Vts naturally into the diagram

α−1(O×X)
� � //

α

��

Mα

�� α

��

O×X
� � //
� o

ι

00

M>
α

∃!
!!

y

OX ,

coming with a unique homomorphism of monoid sheavesM>
α → OX , denoted α> and

given by the local rule m� u 7→ u · α(m). In fact, α> : M>
α → OX is a log structure on

X . If α is already a log structure, then α ∼= α>. For the imagem� 1 of a local sectionm of

Mα underMα →Mα> we will usually just writem.

1.1.3 DeVnition

We call α> : M>
α → OX the log structure associated to the prelog structure α : Mα → OX .

Any morphism of prelog structures ϕ : β → α with α a log structure factors through β>

uniquely. Associated to each morphism ϕ : β → α of prelog structures there is a unique

morphism of log structures ϕ> : β> → α> called the morphism of log structures associated

to ϕ.

This deVnes a functor ( · )> : preLogX → LogX which is left adjoint to the forgetful functor

in the opposite direction.

1.1.4 Remark

The notationMα 5O×X is non-standard; it is used to symbolise that the sheaf of units O×X
of the structure sheaf is a subgroup sheaf in the “enlarged” sheafM>

α.

Let f : X → Y be a morphism of schemes. As usual, we denote the inverse image of a

sheaf G on Y under f by f−1G and the direct image of a sheaf F on X under f by f∗F .
1.1.5 DeVnition

a) For any (pre)log structure β : Mβ → OY on Y the inverse image morphism

f−1β : f−1Mβ → f−1OY → OX

is a prelog structure on X . We denote its associated log structure

(f−1β)> : (f−1Mβ)5O×X → OX

by f×β and write f×Mβ := (f−1Mβ)> for its log structure sheaf.

f×β and f×Mβ are called the (logarithmic) pullback of β andMβ under f , respect-

ively.
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b) For any log structure α : Mα → OX onX we have the twomorphismsOY → f∗OX
and f∗α : f∗Mα → f∗OX . We deVne f×Mα and the morphism f×α to be the Vbred

product f∗Mα ×f∗OX OY and the canonical morphism in the diagram

f×Mα
//

f×α

��

p
f∗Mα

f∗α

��

OY // f∗OX ,

respectively. Since the preimage under f ] of f∗O×X isO×Y , the morphism f×α is a log

structure.

f×α and f×Mα are called the (logarithmic) direct image of α andMα under f , re-

spectively.

With regard to characteristic monoid sheaves, for f and β as in the deVnition, there is a

canonical isomorphism f−1Mβ
∼= f×Mβ (cf. [19, 1.4.1]).

1.1.6 Proposition ([29, III.1.1.5])

Let f : X → Y be a morphism of schemes. The two functors f× : LogY → LogX and

f× : LogX → LogY are adjoint functors. To be precise, there is a natural isomorphism

HomLogX
(f×β, α) ∼= HomLogY

(β, f×α).

1.1.7 Remark

Since the tensor product of sheaves of monoids involves a sheaVVcation process, the log

structure α> associated to a prelog structure α depends on the chosen topology (Zariski or

étale) onX , unless the structure sheafMα of α is a sheaf of unit-integral monoids. This is

meant in the following sense:

Let υX : Xét → Xzar be the canonical continuous map and let α : Mα → OX be a prelog

structure on Xzar. Let then α>zar := α> be the associated log structure to α on Xzar and

α>ét := (υ−1
X α)> the associated log structure to υ−1

X α on Xét.

Then we have a natural morphism of prelog structures υ−1
X (α>zar)→ α>ét (where the second

one is a log structure). If the structure sheafMα of α is a sheaf of unit-integral monoids,

then this morphism is an isomorphism, i. e. if e : X ′ → X is an étale morphism, then the

restriction α>ét|X′zar
= υX′∗(e

×α>ét) is equal to the log pullback e
×α>zar = e×α as sheaves on

X ′zar. In particular Γ (e : X ′ → X,M>

α,ét) = Γ (X ′, e×Mα) (cp. [29, III.1.1.4]).

1.1.2 Charts and Coherence

Let X be a scheme and α : Mα → OX a log structure on X . Let P be a monoid and

a : P → Γ (X,Mα) a monoid homomorphism. Then a induces trivially a morphism of

prelog structures a : α◦a→ α, given by a : PX →Mα, where α◦a is the prelog structure
PX

a−−→Mα
α−−→ OX obtained by composition.
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1.1.8 DeVnition

A (global) chart for a log structure α on a scheme X is a monoid homomorphism a : P →
Γ (X,Mα) such that a> : (α ◦ a)> → α is an isomorphism of log structures (then, in

particular, P 5O×X ∼=Mα).

A chart for α at a point x inX is an open/étale neighbourhood U of x together with a chart

a : P → Γ (U,M).

Let P be one of the following properties of a monoid: coherent, domainic, sharp, (unit-/

quasi-)integral, Vne, saturated, toric, normal, free.

1.1.9 DeVnition

Let α be a log structure on a scheme X . We say that a chart a : P → Γ (X,Mα) of α has

the property P if the monoid P has the property P .

A log structure α : Mα → OX on a scheme X is called quasi-coherent if for any point

x ∈ X there exists a chart a : P → Γ (U,Mα) at x.

We say that a quasi-coherent log structure α has the property P if for any point x ∈ X
there exists a chart a : P → Γ (U,Mα) at x with that property (an exception to this rule is

the case that if for any point x ∈ X there exists a free chart, we call α locally free).

The restriction to an open subscheme of a quasi-coherent log structure is again quasi-

coherent. Such a restriction preserves any of the above properties P .

1.1.10 Remark

All properties P deVned here for log structures, are deVned for any sheaf of monoids [cf.

Appendix A]. Indeed, a quasi-coherent log structure α is integral (respectively, saturated)

if and only ifMα,x is integral (saturated) for all points x ∈ X . However, a coherent log

structure α does almost never have a coherent log structure sheafMα in the sense that all

of its stalks are coherent. This is due to the fact, that the sheaf of units O×X in the ring of

regular functions, which is not aUected by the charts, has generally incoherent stalks O×X,x
at any point x ∈ X (compare the remark following deVnition II.2.1.5 in [29]).

1.2 Logarithmic schemes

A logarithmic scheme X will be deVned as a scheme with additional structure. Whenever

we speak of a sheaf on X , we mean a sheaf on the underlying scheme.

1.2.1 Logarithmic schemes

1.2.1 DeVnition

A logarithmic scheme is a pairX = (X,αX), whereX is a scheme and αX is a log structure

on X . Given a log scheme X , we will denote its underlying scheme by X and its log

structure by αX : MX → OX , where we writeMX := MαX and OX := OX , referring

toMX as the logarithmic structure sheaf of X .
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A log subscheme of a log scheme X is a subscheme Y ⊂ X with the log structure j×αX
induced by its inclusion j : Y → X .

A morphism of log schemes f = (f, f [) : X → Y is a morphism of schemes f : X → Y

together with a morphism f [ : f×αY → αX of log structures on X .

A morphism of log schemes f : X → Y is called (logarithmically) strict if f [ : f×αY → αX

is an isomorphism. It is called logarithmically dominant if f [ is injective, and (logarithmic-

ally) semistrict if f [ is surjective.

We say that f is the underlying morphism of schemes of f . From now on, we will usually

write f∗, f∗, f×, f× etc. for the functors f∗, f
∗, f

×
, f× etc.

1.2.2 Remark

One may also deVne f [ to be a morphism of sheaves of monoids such that the diagram

MY

β

��

f[
// f∗MX

f∗α

��

OY
f]
// f∗OX

commutes. By DeVnition 1.1.5 and the adjunction property 1.1.6 this is equivalent to the

deVnition given in 1.2.1. We will use either form of f [ according to its usefulness.

We denote the category of log schemes by LSch. On every scheme S there exists the trivial

log structure ι : O×S → OS and the functor ( · )ι : Sch → LSch, S 7→ Sι := (S, ι), is fully

faithful. This turns Sch into a full subcategory of LSch. The inclusion functor ( · )ι is right
adjoint to the functor · forgetting the log structure: HomLSch(X,Sι) ∼= HomSch(X,S),

for X ∈ LSch and S ∈ Sch (cf. [29, III.1.2.1]).

If Z is a log scheme, then the category LSchZ is deVned as the category which has as

objects morphisms of log schemes X → Z and as morphisms commutative diagrams of

morphisms of log schemes

X //

��

Y

��

Z ,

which, by abuse of notation, we will denote by X → Y .

In the category of log schemes the Vbred product of a diagram of log schemes

X → Y ← X ′

may be constructed as the Vbred productX×Y X ′ of the underlying schemes together with

the log structure αX �αY αX′ : MX �MY
MX′ → OX×YX′ deVned by αX �αY αX′ :=

pr×XαX �pr×Y αY pr
×
X′αX′ , where we write prX : X ×Y X ′ → X , prX′ : X ×Y X ′ → X ′

and prY : X ×Y X ′ → Y for the canonical projections.
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1.2.3 DeVnition

A prelogarithmic ring is a monoid homomorphism a : P → A from a monoid P to the

multiplicative monoid of a ring A. A prelog ring homomorphism (π, θ) : (a : P → A) →
(b : Q→ B) is a commutative diagram

P

a

��

θ // Q

b

��

A
π // B,

where θ is a monoid homomorphism and π a ring homomorphism.

A logarithmic ring is a prelog ring a : P → A such that a is logarithmic, i. e. a−1(A×) ∼=
A×; if A is a Veld, we speak of a (pre)log Veld. A log ring homomorphism is a prelog ring

homomorphism between log rings.

Given a prelog ring a : P → A we denote its associated log ring a> : P> → A, setting

P> := P 5A× := P �a−1(A×) A
×. If A is a ring, then we will write Aι for the prelog ring

Aι : 1→ A.

1.2.4 Remark

Our deVnition of a log ring is that of F. Kato (cf. [18]). However, A. Ogus uses the term

log ring for what we call prelog ring (cf. [29, III.1.2.3]). With regard to 1.2.5 this does not

produce much of a conWict.

1.2.5 DeVnition

If a : P → A is a (pre)log ring, then Spec a is deVned to be the log scheme X which

has X := SpecA as its underlying scheme and the log structure αX : PX 5 O×X → OX
associated to the prelog structure a : PX → OX . Note that Spec a and Spec a> are equal

as log schemes. Hence the at Vrst sight ambiguous notation SpecAι, which may be read as

Spec(Aι) or (SpecA)ι, denotes a unique log scheme.

More generally, we call a log scheme aXne if its underlying scheme is an aXne scheme.

A logarithmic point is a log scheme X such that X = Spec k for a Veld k. The standard

prelogarithmic Veld of the Veld k is the prelog Veld κ : N0 → k mapping 0 7→ 1 and n 7→ 0

if n ≥ 1. The standard logarithmic point of the Veld k is Specκ.

Note that not every aXne log scheme is isomorphic to the spectrum of a (pre)log ring.

However, any log scheme with quasi-coherent log structure may be covered by spectra of

(pre)log rings.

1.2.6 Lemma ([29, III.1.5.3])

Let S = Spec k, with k an algebraically closed Veld. Since S consists only of one point, any

log structure κ on S is given by a monoid homomorphism κ : M → k. IfM is unit-integral,

then the log scheme (S, κ) is (non-canonically) isomorphic to Spec kP for the sharp monoid

P := M/k×.
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1.2.7 DeVnition

Let A be a commutative ring and P a monoid. The P -aXne log scheme over A is the log

scheme AA[P ] := Spec(P → A[P ]) associated to the canonical prelog ring P → A[P ].

Its log structure will be denoted αA[P ] and called the canonical log structure on the scheme

SpecA[P ].

If θ : Q → P is a monoid homomorphism, we write AA[θ] : AA[P ] → AA[Q] or simply θ

for the morphism of SpecAι-log schemes given by the ring homomorphism A[θ] : A[Q]→
A[P ]. This makes AA[ · ] a functor Monop → LSchSpecAι .

In the case A = Z, we simply write A[P ] := AZ[P ] and A[θ] := AZ[θ]. For the trivial

monoid P = 1 we get AA[1] = SpecAι and we have AA[P ] = AA[1]×A[1] A[P ].

1.2.8 DeVnition

Let h : Y → A[Q] be an A[Q]-scheme and let θ : Q→ P be a monoid homomorphism. The

P -aXne log scheme over h is the pullback Y ×A[Q] A[P ], denoted Ah[P ] or AY/Q[P ]:

Ah[P ] //

��

p
A[P ]

θ

��

Y
h // A[Q].

We will denote its log structure by αh[P ] and the canonical projections to A[P ] by h[θ] and

to Y by Ah[θ], or θh for short.

If Q = 1 and if Y = SpecA is aXne, then AY/1[P ] = AA[P ].

Given a log scheme X and a monoid P , the map

HomLSch(X,A[P ])→ HomMon(P, Γ (X,MX)),

deVned by g 7→ ag , where ag is the composition P → Γ (X, g×P )
g[−−→ Γ (X,MX), is a

group isomorphism. We denote its inverse by a 7→ ga.

This means, that specifying a global chart a : P → Γ (X,MX) for αX (with P> ∼= MX )

is equivalent to giving a strict morphism of log schemes g : X → A[P ]. In fact, with the

labelling of deVnition 1.1.8, a> = g[ and α>a = g×αA[P ].

1.2.9 DeVnition

We say that a log scheme X is logarithmically P (where P is one of the properties as in

section 1.1.2) if its log structure αX has the property P .

If Q is a property of schemes (respectively, of morphisms of schemes), then we say that a

log schemeX (a morphism of log schemes f : X → Y ) has the property Q if the underlying

scheme X (the underlying morphism of schemes f ) has that property.
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In particular, a log schemeX is logarithmically Vne if it can be covered by Vne charts. These

are local charts a : P → Γ (U,MX) ofαX such thatP is Vnitely generated and integral (i. e.

maps injectively into P grp). It is called logarithmically saturated if analogously there is a

covering by charts with P integral and P = P sat = {x ∈ P grp |xn ∈ P for some n ∈ N0}.
A logarithmically fs (or logarithmically normal) log scheme is a log Vne and log saturated

log scheme.

Likewise, a morphism of log schemes is called proper, if its underlying morphism is proper.

1.2.10 Remark

All authors mentioned in the introduction to this chapter use the convention, that a log

scheme has property P if its log structure has P . However, this produces conWicts, e. g.

when talking about an integral log scheme, where “integral” can either be read as a prop-

erty of its underlying scheme or of its log structure. Our convention helps to avoid these

conWicts.

We denote the full subcategory of LSch, having as objects the log (quasi-)coherent log

schemes, by LSch(q)coh. The full subcategory of LSchcoh of log Vne (respectively, log fs,

log locally free) log schemes is denoted LSchf (LSchfs, LSchlf ).

1.2.11 DeVnition

For any morphism f : X → Y of log schemes we deVne the sheaf of monoids

Mf :=MαX/f×αY =MX/f
[(f×MY )

on X , which we call the relative characteristic sheaf or the lenience sheaf of f (or of X over

Y ).

1.2.12 Lemma ([29, III.1.2.8])

If f : X → Y is a strict morphism of log schemes, then the map f [ : f−1MY → MX

induced by f [ is an isomorphism. If it is semi-strict thenMf = 0. The converses of both

statements are true if X is log integral.

1.2.13 DeVnition

Let X be a log coherent log scheme. We denote by LLocX the reduced closed log sub-

scheme suppMX ⊂ X and call it the logarithmic locus of X or the support of its log

structure αX . Its open complement is denoted by X× and called the logarithmically trivial

locus of X .

A point x ∈ X lies in X× if and only if there is an open/étale neighbourhood U of x such

that αX |U is trivial. The functor ( · )× : X 7→ X× from the category of log schemes with

coherent log structure to schemes is right adjoint to the inclusion functor ( · )ι:

HomLSchcoh(Sι, X) ∼= HomSch(S,X×)
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1.2.14 DeVnition

LetX be a log coherent log scheme. The map `X : X → N0, given by `X(x) := rk(Mgrp

X,x),

is called the logarithmic rank of X and the number `X(x) the logarithmic rank of X at the

point x.

The set X(≤n) := `−1
X ({0, 1, . . . n}) is an open subscheme of X for each n ∈ N0. The

underlying set of its reduced (closed) complement X(≥n+1) is `−1
X (N≥n+1). We call the

locally closed intersection X(n) = X(≤n) ∩ X(≥n) with underlying set `−1
X (n) the logar-

ithmic locus of X of nth order. The scheme structure of each of these subschemes X(n) is,

locally at a point x given by the ideal IαX,x ⊂ OX,x, deVned to be the image under αX of

the maximal ideal mMX,x
ofMX,x.

This deVnes a stratiVcation X = X(≥0) ⊃ X(≥1) ⊃ . . . ⊃ X(≥N) = ∅, N � 0, for

X . Moreover, codimX X
(≥n) ≤ n for all n (cp. [29, II.2.1.6] and [16, 2.3]). In particular,

LLocX = X(≥1) and X× = X(0).

1.2.2 Morphisms of log Schemes and Charts

As mentioned before, specifying a global chart a : P → Γ (X,MX) for a log scheme X is

equivalent to giving a strict morphism of log schemes g : X → A[P ]. A similar statement

is true, when talking about charts of morphisms of log structures:

1.2.15 DeVnition

Let f : X → Y be a morphism of log schemes. A (global) chart of f subordinate to a monoid

homomorphism θ : Q→ P is a commutative diagram

Q
b //

θ

��

Γ (Y,MY )

f[

��
P

a // Γ (X,MX)

of monoid homomorphisms, where a and b are global charts for αX and αY respectively.

Specifying a chart for f subordinate to θ : Q → P is equivalent to giving a commutative

diagram

X

f

��

ga // A[P ]

θ

��
Y

gb // A[Q]

of morphisms of log schemes, with ga and gb strict. We will call this the chart diagram of

the chart.
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This diagram canonically enlarges to

X

f
!!

ga/b // Ab[P ]
gb[θ] //

θb

��

A[P ]

θ

��
Y

gb // A[Q]

with the right square Cartesian, ga = gb[θ] ◦ ga/b and all horizontal maps strict; here we

write Ab[P ] for Agb [P ] and θb for θgb . We will refer to it as the extended chart diagram of

the chart.

Given a morphism of log schemes f : X → Y , a chart b : Q → Γ (Y,MY ) for αY and a

monoid homomorphism θ : Q→ P , we have a group isomorphism

HomMonQ
(P, Γ (X,MX)) ∼= HomLSchY

(X,Ab[P ]),

given by a 7→ ga/b.

1.2.16 Proposition ([19, 2.10], [17, 2.14])

Let f : X → Y be a morphism of log coherent log schemes and let b : Q → Γ (Y,MY ) be

a coherent chart for αY . Then locally on X there exists a chart

Q
b //

θ

��

Γ (Y,Mβ)

f[

��
P

a // Γ (X,Mα)

comprising b and with P Vnitely generated.

1.2.17 DeVnition

Let f : X → Y be a morphism of log coherent log schemes. We denote by LLoc f the

reduced closed log subscheme suppMf ⊂ X and call it the lenient locus of f . Its open

complement is denoted by X×(f) and called the semi-strict locus of f (in X).

A point x ∈ X lies in X×(f) if and only if there is an open/étale neighbourhood Uof x

such that the restriction f |U : U → Y is a semi-strict morphism. If f is log dominant, then

one may replace semi-strict by strict and speak of the strict locus of f .

1.2.18 DeVnition

Let f : X → Y be a morphism of log coherent log schemes. We call the map `f : X → N0,

given by `f (x) := rk(Mgrp

f,x), the leniency of f and the number `f (x) the leniency of f at x.

The set X(≤n)(f) := `−1
f ({0, 1, . . . n}) is an open subscheme of X for each n ∈ N0. The

underlying set of its reduced (closed) complementX(≥n+1)(f) is `−1
f (N≥n+1). We call the

locally closed intersectionX(n)(f) ofX(≤n)(f) andX(≥n)(f) with underlying set `−1
X (n)

the lenient locus of f of nth order. The scheme structure of each of these subschemes is

locally at a point x given by the ideal IMX,x
⊂ OX,x (cf. [29, II.2.1.6], [16, 2.3]). It is

LLoc f = X(≥1)(f) and X×(f) = X(0)(f).
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1.2.3 Log derivations and log diUerentials

1.2.19 DeVnition

Let f : X → Y be a morphism of log schemes and E an OX -module. A (logarithmic)

derivation of f (or of X over Y ) to E is a pair ϑ = (ϑ,Θ), where ϑ ∈ DerY (X, E) and

Θ : MX → (E ,+) is a morphism of sheaves of monoids with the following properties:

a) αX(m)Θ(m) = ϑ(αX(m)) for any local sectionm ofMX and

b) Θ(f [(n)) = 0 for any local section n of f−1MY .

The set of such derivations is denoted by Derf (E). Then the sheaf Derf (E) of (log) deriv-

ations ofX over Y to E is the sheaf U 7→ Der f |U (E|U ), which is in fact an OX -module. If

E = OX , we write Tf for this sheaf and call it the (logarithmic) tangent sheaf of f or of X

over Y .

1.2.20 Remark

Since (E ,+) is a sheaf of groups, the map Θ naturally factors via the morphism of sheaves

of groups Θgrp : Mgrp
X → (E ,+).

1.2.21 DeVnition and Proposition (cp. [29, IV.1.2.3])

Let f : X → Y be a morphism of log schemes. There exists an OX -module Ω1
f and a

universal derivation (d, dlog) ∈ Derf (Ω1
f ) such that for any OX -module E the canonical

morphism of OX -modules

HomOX (Ω1
f , E)→ Derf (E), λ 7→ (λ ◦ d, λ ◦ dlog)

is an isomorphism.

We write i · ( · ) : Tf �OX Ω1
f → OX , ϑ� σ 7→ iϑ(σ), for the natural pairing induced by

this isomorphism and we call Ω1
f the sheaf of (logarithmic) diUerentials of X over Y .

1.2.22 DeVnition

Let ΛX denote theOX -moduleOX �ZMgrp
X , which we call the sheaf of purely logarithmic

diUerentials.

The sheaf of log diUerentials may be constructed as

Ω1
f =

[
Ω1
f � ΛX

]
/(KX +Kf ),

where Ω1
f is the usual sheaf of Kähler diUerentials and where KX is the OX -submodule of

Ω1
f � ΛX generated by local sections of the form

(d(α(m)),−α(m) �m) for local sectionsm ofMX

and Kf the image of the map

OX �Z f−1Mgrp
Y → 0� ΛX ,
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which is the OX -module generated by local sections of the form (0, 1 � f [(n)) for local

sections n of f−1MY .

The universal derivation is then given by

d : OX
d−→ Ω1

f → Ω1
f and dlog : MX → OX �ZMgrp

X → Ωf ,m 7→ (0, 1 �m).

Accordingly we will simply write ds for the class of (ds, 0) and dlogm for the class of

(0, 1 �m). Occasionally, if s = α(m), we write dlog s := dlogm.

Given a local section ϑ = (ϑ,Θ) of Derf (E) for f and E as above, then ϑ is completely

determined by Θ. This is due to the fact, that O×X generates (OX ,+) as a sheaf of Abelian

groups, because any local section of OX can locally be written as the sum of at most two

sections of O×X . Hence, the image ofMX under αX generates OX as a sheaf of Abelian

groups. Any local section s ofOX can locally be written as s = α(m) or as s = αX(m1) +

αX(m2). Then ϑ(s) = sΘ(m) or ϑ(s) = α(m1)Θ(m1)+α(m2)Θ(m2) (cp. [29, IV.1.2.4]).

This leads to an alternative construction of Ω1
f as a quotient of ΛX :

1.2.23 Proposition ([29, IV.1.2.10 & 11])

LetRX ⊂ ΛX be the subsheaf of sections, which are locally of the form∑
i

αX(mi) �mi −
∑
j

αX(m′j) �m′j ,

where m1, . . . ,mk and m′1, . . . ,m
′
k′ are local sections ofMX such that

∑
i αX(mi) =∑

j αX(m′j) in OX , and letRf ⊂ ΛX be the image of the map

OX �Z f−1Mgrp
Y → ΛX .

ThenRX andRf are OX -submodules of ΛX and there is a unique isomorphism

Ω1
f
∼= ΛX/(RX +Rf ).

We will denote the image of a local section f �m of ΛX in Ω1
f by fdlogm. This notation

is consistent in the sense that ifm is the image of a local sectionm′ ofMX underMX →
Mgrp

X , then dlogm, as deVned here, is equal to dlogm′, as deVned above as the image of

m under the universal derivation dlog.

If f : Sι → S′ ι is a morphism of schemes with trivial log structures, then the OX -module

of usual Kähler diUerentials Ω1
f of f is canonically isomorphic to Ω1

f by the fact that for

any local section u ofMSι = O×S we have dlog u = u−1du. Hence, we will identify both

modules in this case, as well as their dual modules Tf and Tf .

If f : X → Y is a morphism of log coherent log schemes, then Ω1
f is a quasi-coherent OX -

module. If moreover Y is Noetherian and the underlying morphism of schemes f : X → Y

is of Vnite type, then Ω1
f is coherent (cf. [17, 5.1], [29, IV.1.2.9]).
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1.2.24 Proposition ([29, IV.1.3.1])

For a commutative diagram of morphisms of log schemes

X ′
g
//

f ′

��

X

f

��

Y ′
h // Y

there is a natural morphism g∗Ω1
f → Ω1

f ′ (sending ds to g∗ds = d(g]s) and dlogm to

g∗dlogm := dlog(g[m) for local sections s of g−1OX and m of g−1MX ), which is an

isomorphism if the diagram is Cartesian.

If this diagram is Cartesian, then the induced homomorphism

f ′ ∗Ω1
h � g∗Ω1

f → Ω1
h◦f ′ = Ω1

f◦g

is an isomorphism.

1.2.25 Proposition ([29, IV.2.3.1 & 2])

Let f : X → Y and g : Y → Z be two morphisms of log schemes. Then there is an exact

sequence

f∗Ω1
g → Ω1

g◦f → Ω1
f → 0.

If we replace the morphism f by a strict closed immersion i : X → Y deVned by a sheaf of

ideals I and if X , Y and Z are log quasi-integral, then there is an exact sequence

I/I2 → i∗Ω1
g → Ω1

i◦g → 0

of OX -modules.

We call the OX -module I/I2 the conormal sheaf of i.

Let f : X → Y be a morphism of log coherent log schemes. The f−1OY -linear map

d : OX → Ω1
f Vts into a complex Ω •f with f−1OY -linear diUerentials, called the logarith-

mic de Rham complex of f :

1.2.26 Proposition ([29, V.2.1.1])

Let f : X → Y be a morphism of log coherent log schemes. There exists a complex of

OX -modules Ω •f with f−1OY -linear diUerentials di : Ωif → Ωi+1
f such that

a) Ωif =
∧i
Ω1
f ;

b) d0 = d : OX → Ω1
f ;

c) d1(dlogm) = 0 for each local sectionm ofMX ;

d) di+j(σ ∧σ′) = (diσ) ∧σ′ + (−1)iσ ∧ (djσ′) for local sections σ of Ωif and σ′ of Ωjf .
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1.2.4 Logarithmic inVnitesimal thickenings

1.2.27 DeVnition

A logarithmic (inVnitesimal) thickening is a strict closed immersion i : T → T ′ of log

schemes such that the ideal sheaf I of T in T ′ is nilpotent and such that the subgroup

1 + I ⊂ O×T ′ operates freely onMT ′ . We say that the log thickening has (at most) order n

if In+1 = 0.

If T is log quasi-integral, then the action of 1 + I onMT ′ is automatically free. For the

Zariski topology, in a log thickening the underlying topological spaces of T and T ′ are

homeomorphic and are thus identiVed. For the étale topology the same is true for log

thickenings of Vnite order (cf. [29, IV.2.1.4]).

1.2.28 Proposition ([29, IV.2.1.2 & 3])

Let i : T → T ′ be a log thickening with ideal I . Then

a) The diagram

O×T ′ //

i]

��

MT ′

i[

��

i∗O×T // i∗MT

is Cartesian and cocartesian;

b) Ker(O×T ′ → i∗O×T ) = Ker(Mgrp
T ′ → i×Mgrp

T ) = 1 + I (observe, that i∗O×T = i×O×T
when regarding O×T as the structure sheaf of the trivial log structure on T );

c) The diagram

MT ′
//

��

Mgrp
T ′

��

MT
//Mgrp

T

is Cartesian;

d) T ′ is log coherent, log integral, log Vne, log saturated or log free if and only if T is. If

a : P → Γ (T ′,MT ′) is a chart for T ′, then i[ ◦ a : P → Γ (T,MT ) is a chart for T

and the converse is true if T is log quasi-integral.

1.2.5 Logarithmic smoothness

Formal smoothness for schemes was deVned by A. Grothendieck in [12, III.1] via the in-

Vnitesimal lifting property. A morphism of schemes is smooth if and only if it has the

inVnitesimal lifting property and is locally of Vnite presentation. In analogy one deVnes

(formal) log smoothness.



16 CHAPTER 1. LOGARITHMIC GEOMETRY

1.2.29 DeVnition ([19, 3.3], [29, IV.3.1.1])

A morphism f : X → Y of log schemes is formally smooth (respectively, formally unrami-

Ved, formally étale) if for every n and every n-th order log thickening i : T → T ′ with a

commutative diagram

T
ϕ
//

i

��

X

f

��

T ′
ϕ′
// Y

there exists at least one (at most one, exactly one) morphism ϕ̃ : T ′ → X lifting ϕ′ in this

diagram.

A formally smooth (respectively, formally étale) morphism f : X → Y is called logarithmic-

ally smooth (logarithmically étale) ifX and Y are log coherent and its underlying morphism

f : X → Y is locally of Vnite presentation.

The usual statements about composition and base change of smooth and étale morphisms

hold for log smooth and log étale morphisms.

If f is log smooth, then Ω1
f is locally free (cf. [29, IV.3.2.1]). A morphism f of log coherent

log schemes is formally unramiVed if and only if Ω1
f = 0 (cf. [29, IV.3.1.3]).

1.2.30 Proposition ([29, IV.3.2.3 & 4])

Let f : X → Y and g : Y → Z be two morphisms of of log coherent log schemes.

a) If f is log smooth, then the sequence 0 → f∗Ω1
g → Ω1

g◦f → Ω1
f → 0 is exact and

splits.

b) If g ◦ f is log smooth and the sequence 0→ f∗Ω1
g → Ω1

g◦f → Ω1
f → 0 is split exact,

then f is log smooth.

c) If f is log étale, then f∗Ω1
g → Ω1

g◦f is an isomorphism.

1.2.31 Proposition ([29, IV.3.1.6])

Let f : X → Y be a strict morphism of log coherent log schemes. If the underlying

morphism of schemes f is formally smooth (respectively, formally étale, formally unrami-

Ved) then the same is true of f . The converse holds if Y is log unit-integral.

This leads to the following deVnition:

1.2.32 DeVnition

Let f : X → Y be a morphism of log coherent log schemes. We say that f is smooth

(respectively, étale, unramiVed) if f is strict and log smooth (log étale, formally unramiVed).

1.2.33 Proposition ([29, IV.3.1.8])

Let θ : Q → P be a homomorphism of Vnitely generated monoids and let f : AA[P ] →
AA[Q] be the corresponding aXne morphism over a commutative ring A. Then f is log

smooth (respectively, log étale) if and only if Ker(θgrp) and the torsion part of Cok(θgrp)

(Ker(θgrp) and Cok(θgrp)) are Vnite groups the order of which is invertible in A.
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1.2.34 Proposition ([19, 3.5 & 6], [29, IV.3.3.1])

Let f : X → Y be a log smooth (respectively, log étale) morphism of log coherent log

schemes and let b : Q → Γ (Y,MY ) be a coherent chart for Y . Then étale locally on X

there exists a chart

X
ga //

f

��

A[P ]

θ

��
Y

gb // A[Q]

comprising b and with P Vnitely generated (as in 1.2.16) and with the properties:

a) The homomorphism θ : Q → P is injective and the order of the torsion part of its

cokernel is invertible inOX (respectively, and its cokernel is Vnite of order invertible

in OX ).

b) The canonical strict morphism ga/b : X → Ab[P ] is étale.

Conversely, we have the following Criterion for log smoothness (respectively, log étaleness):

1.2.35 Proposition ([19, 3.5], [29, IV.3.1.13])

Let f : X → Y be a morphism of log schemes admitting a coherent chart subordinate to

θ : Q→ P and let x be a point in X . Assume that P and Q are Vnitely generated and that

a) k(x)�Z Ker(θgrp) = 0 and k(x)�Z (Cok(θgrp))tors = 0, where ( · )tors denotes the

torsion part (respectively, and k(x) �Z Cok(θgrp) = 0);

b) the canonical strict morphism ga/b : X → Ab[P ] is smooth (respectively, étale) in

some neighbourhood of x.

Then f is log smooth (respectively, log étale) in some open/étale neighbourhood of x.

Example 1.2.1 To give an impression of what log smooth morphisms may look like, we

regard the following example. Let X = SpecC[x, y]/(xy) and let f : X → Y := SpecC

be its structure morphism as scheme over SpecC. Then f is of Vnite type, but not smooth:

Its OX -module of Kähler diUerentials Ω1
f = OX〈dx, dy〉/〈ydx+ xdy〉 is not locally free.

However, if we equip X and Y with suitable log structures, then there exists a log smooth

morphism f : X → Y the underlying morphism of schemes of which is f : We give Y =

SpecC the log structure of the standard log point, which is the log structure associated to

the prelog structure b : N0 → C, n 7→ 1 if n = 0 and n 7→ 0 if n ≥ 1 and we give X the

log structure associated to the prelog structure a : N2
0 → OX , (n1, n2) 7→ xn1yn2 . Then

the following diagram, which we will refer to as (∗), is commutative:

N2
0

a // OX

N0
b //

diag

OO

C,

f]

OO

where diag : N0 → N2
0 is the diagonal monoid homomorphism n 7→ (n, n).
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The log structures of Y = (Y , αY ) and X = (X,αX) are given by

αY : N0 �C× → C, n�u 7→

u if n = 0,

0 if n ≥ 1,

and by

αX : N0 5O×X = N0 �a−1(O×X) O
×
X → OX , (n1, n2) � u 7→ uxn1yn2 ,

respectively. In what follows, we will write e1 and e2, respectively, for the generators (1, 0)

and (0, 1) ∈ N2
0 and also for their images inN2

0 5O×X .

To turn f into a morphism of log schemes, we have to deVne the morphism of sheaves of

monoids f [ : MY → f∗MX , which we do by n�u 7→ (n, n) � f ](u).

Then f = (f, f [) : X → Y is log smooth by the criterion for log smoothness 1.2.35:

The diagram (∗) is by deVnition a chart for f subordinate to diag : N0 → N2
0. We have

Ker(diaggrp) = 0 and (Cok(diaggrp))tors = Ztors = 0, hence a) is fulVlled. The strict

morphism ga/b in b) is given by the morphism

C�C[N0] C[N2
0] = C[e1, e2]/(e1e2)→ C[x, y]/(xy), e1 7→ x, e2 7→ y,

which is clearly an isomorphism. Hence ga/b is smooth.

We calculate Ω1
f : By the Vrst construction given in 1.2.3, we have

Ω1
f =

[
Ω1
f � (OX �ZMgrp

X )
]
/
〈

(d(α(m)),−α(m) �m), (0, 1 � f [(n))
〉

= OX 〈dx, dy, 1 � e1, 1 � e2〉 /

〈ydx+ xdy, dx− x · (1 � e1), dy − y · (1 � e2), 1 � e1 + 1 � e2〉

= OX 〈dx, dy, dlog x, dlog y〉 /

〈ydx+ xdy, dx− xdlog x, dy − ydlog y, dlog x+ dlog y〉

= OX 〈dlog x, dlog y〉 / 〈dlog x+ dlog y〉 ,

where we write dlog x := 1 � e1 and dlog y := 1 � e2, because x = a(e1) and y = a(e2)

(observe that 1 � e1 + 1 � e2 = 1 � (1, 1) = 0 because a(1, 1) = a(diag(1))). Hence,

Ω1
f is indeed a locally free OX -module of Vnite type. The log tangent sheaf Tf of f is

OX 〈x∂x, y∂y〉 / 〈x∂x + y∂y〉. �

1.2.6 Log Watness and log integrality

A strict morphism f : X → Y of log schemes is called Wat if its underlying morphism of

schemes is Wat. For the deVnition of log Watness, we need the fppf-topology on X . We

say that a log scheme X has a property fppf-locally if there exists a strict faithfully Wat

morphism of log schemes ϕ : V → X of Vnite presentation such that V has that property

(where V has the log structure αV ∼= ϕ×αX ).
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1.2.36 DeVnition ([29, IV.3.5.1])

A morphism of log Vne log schemes f : X → Y is logarithmically Wat if fppf-locally on X

there exists a chart (a : P → Γ (X,MX), a : Q→ Γ (Y,MY )) subordinate to an injective

monoid homomorphism θ : Q→ P such that the strict morphism ga/b : X → Ab[P ] in the

extended chart diagram

X

f
!!

ga/b // Ab[P ]
gb[θ] //

θb

��

A[P ]

θ

��
Y

gb // A[Q]

is Wat.

The family of log Wat morphisms of log Vne log schemes is stable under composition and

base change (cf. [29, IV.3.5.2]). A strict morphism of log schemes is log Wat if and only if it

is Wat. Log smooth morphisms and log étale morphisms are log Wat. In general, however,

the underlying morphism of schemes of a log Wat morphisms (and, in particular, of a log

smooth morphisms) is not a Wat morphism of schemes (cf. [17, 8.5]).

As Ogus remarks in his lecture notes, the deVnition of log Watness is not adapted to proving

a morphism not to be log Wat, because in general for a Wat morphism there do exist charts,

such that gα,θ is not Wat (cf. [29, IV.3.5.2]). To prove that a morphism of log schemes is

not Wat, one may use the following theorem by Ogus, which collects nicely criteria for log

Watness, log smoothness and log étaleness in a statement about a diagram:

1.2.37 Theorem ([29, IV.3.5.3 & 6])

Let f : X → Y be a morphism of Noetherian log Vne log schemes locally of Vnite presenta-

tion. Then f is log Wat (respectively, log smooth, log étale) if and only if, for every diagram

X ′′
η
//

f ′′
!!

X ′ //

f ′

��

p
X

f

��

Y ′ // Y ,

in which the right square is Cartesian, in which η is log étale and in which f ′′ is strict, the

morphism f ′′ is Wat (respectively, smooth, étale).

1.2.38 Corollary ([29, IV.3.5.7])

A morphism of Noetherian log Vne log schemes is log étale if and only if it is log Wat and

formally unramiVed.

1.2.39 Corollary ([29, IV.3.5.8])

Let f : X → Y and g : Y → Z be morphisms of Noetherian log Vne log schemes. Assume

that f is locally of Vnite presentation and that g◦f is log Wat. If for every standard log point

Spec kN0
→ Z (for any Veld k) the base changed morphism fS is log Wat (respectively, log

smooth, log étale), then f is log Wat / log smooth / log étale.

The connection between log Watness of a morphism and Watness of the underlying morph-

ism is established by the notion of log integrality of a morphism.
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1.2.40 DeVnition ([19, 4.3])

A morphism f : X → Y of log coherent log schemes is called logarithmically integral if

locally on X there exists a chart θ : (b : Q → MY ) → (a : P → MX) with integral

monoids P and Q and with θ : Q→ P integral, i. e. such that Z[Q]→ Z[P ] is Wat.

A morphism f : X → Y of log integral (respectively, log Vne) log schemes is log integral if

and only if for any log integral (log Vne) log scheme Y ′ over Y the Vbre product X ×Y Y ′

in LSch is a log integral (log Vne) log scheme. ([19, 4.3.1])

1.2.41 Proposition ([19, 4.5])

Let f : X → Y be a morphism of log Vne log schemes. If f is log Wat and log integral, then

its underlying morphism f of schemes is Wat.

Proof: By assumption and 1.2.34, we locally have the extended chart diagram

X

f
!!

ga/b // Ab[P ]
gb[θ] //

θb

��

A[P ]

θ

��
Y

gb // A[Q]

with θ Wat, hence θb Wat and with ga/b étale, hence ga/b Wat. In conclusion, f is Wat. �

1.2.42 Proposition ([19, 4.4])

Let f : X → Y be a morphism of log Vne log schemes. If

a) f is strict, or

b) for every point y ∈ Y the monoid MY,y is zero or generated by one (non-zero)

element, where y is the separable closure of y,

then f is log integral.



2 Log smooth deformation Theory
This chapter collects deVnitions and results from the theory of log smooth deformations.

Its Vrst section is combined of a brief summary of the Vrst two sections of M. Schlessinger’s

“Functors of Artin Rings” ([31]) and excerpts from “Obstruction Calculus for Functors of

Artin Rings” by B. Fantechi and M. Manetti ([8]). Its second section is a summary of “Func-

tors of log Artin rings” by F. Kato ([18]) and its third section collects facts from the theory

of log smooth deformations, which in large part are cited from “Logarithmic structures of

Fontaine-Illusie” by K. Kato ([19]) and “Log smooth deformation theory” by F. Kato ([17]).

Set denotes the category of sets. Any set with one element is denoted by {∗}. We re-

gard only covariant functors F : C → D. A contravariant functor is hence denoted as a

covariant functor F : Cop → D, where Cop is the opposite category of C .

2.1 Functors of Artin rings

2.1.1 Artin rings

Let T be a complete Noetherian local ring with residue Veld k = T/mT , where mT denotes

the maximal ideal of T . Let ArtT denote the category of local Artin algebras over T with

residue Veld k and ÂrtT the category of complete Noetherian local algebras over T with

residue Veld k (cp. [31, 1]). For every element R of ArtT or ÂrtT , we denote its maximal

ideal by mR and the natural projection R→ k by πR.

Every object in ÂrtT is naturally a limit of objects in ArtT , namely R = lim←−n∈N0
R/mnR.

The same is true for homomorphisms. Notice that ArtT is a full subcategory of ÂrtT .

2.1.1 DeVnition

An extension in ArtT (respectively, in ÂrtT ) is a short exact sequence

e : 0→ J → B → A→ 0

of T -modules, whereB → A is a surjective homomorphism in ArtT (respectively, in ÂrtT )

with kernel J such that J2 = 0, making J an A-module. We will denote the surjective

homomorphism in e by e : B → A and, by abuse of language, we will call it an extension,

as well.

A morphism of extensions ψ : e′ → e is a commutative diagram

e′ : 0 // J ′ //

ψ

��

B′
e′ //

ψ

��

A′ //

ψ

��

0

e : 0 // J // B
e // A // 0.

The category of extensions in ArtT is denoted by ExtT .

21
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An extension e is called a small extension if mBJ = 0 and a principal small extension

if moreover J is a principal ideal, i. e. dimk J ≤ 1. The full subcategories of small and

principal small extensions in ArtT are denoted by sExtT and psExtT , respectively.

Every surjective homomorphismB → A in ArtT allows a Vnite factorisation into principal

small extensions.

2.1.2 Proposition ([31, 2.5.i])

A homomorphism R→ S in ÂrtT is smooth if and only if S is a power series ring over R.

2.1.2 Functors of Artin rings

2.1.3 DeVnition

A functor of Artin rings over T is a functor F : ArtT → Set with F (k) = {∗}. The

unique extension of F to a functor F̂ : ÂrtT → Set with F̂ = F on ArtT is given by

F̂ (R) = lim←−n∈N0
F (R/mnR) and is called the completion of F . A morphism of functors of

Artin rings is a morphism of functors. We denote the category of functors of Artin rings

over T and their morphisms by FunT .

For any R ∈ ÂrtT , the functor Hom
ÂrtT

(R, · ) : ArtT → Set is denoted by hR. The

constant functor of Artin rings ∗ : ArtT → Set, ∗(A) = {∗}, which is equal to hT , is the

Vnal object in FunT .

2.1.4 Remark

In the case that T = k, any functor of Artin rings F : ArtT → Set canonically lifts along

the forgetful functor Set∗ → Set to a functor F : ArtT → Set∗ with the pointed sets as

codomain . This is due to the fact that for each R ∈ Ârtk the canonical homomorphism

k → R deVnes the image of ∗ ∈ F (k) in F (R), called the trivial element of F (R) and

usually also denoted by ∗ ∈ F (R).

In general however, there is no canonical homomorphism k → T (such a homomorphism

might not exist at all), so one has to be aware that F (R) might be the empty set and, even

if not, does not contain a canonical element.

Let V be a Vnite-dimensional k-vector-space and A ∈ ArtT . We write A[V ]0 for the T -

algebra T → A→ A[V ] = A� V , with a · v = πA(a)v and v ·w = 0 for a ∈ A, v, w ∈ V .

If V is the one-dimensional k-vector-space with generator ε, we write A[ε]0 for A[V ]0.

2.1.5 DeVnition

The set tF = F (k[ε]0) is called the (pointed) tangent set of F (at its unique point ∗ ∈ F (k)).

We will denote the principal small extension 0→ (ε)→ k[ε]0 → k → 0 in ArtT by ε0.

2.1.6 DeVnition

An F -couple is a pair (A, ξ) withA ∈ ArtT and ξ ∈ F (A). An F -pro-couple is an F̂ -couple,

i. e. a pair (R, ξ) withR ∈ ÂrtT and ξ ∈ F̂ (R). Amorphism u : (A, ξ)→ (A′, ξ′) of couples
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(respectively, of pro-couples) is a homomorphism u : A→ B in ArtT (respectively, in ÂrtT )

such that F (u)(ξ) = ξ′ (respectively, such that F̂ (u)(ξ) = ξ′).

By the Yoneda lemma, specifying an element ξ ∈ F̂ (R) is equivalent to giving a morphism

of functors, ξ : hR → F . We will identify the element ξ and this morphism.

2.1.7 DeVnition

For any morphism f : F → G of functors of Artin rings a functor F̆f : sExtT → Set is

deVned by setting F̆f (e) := F (A)×G(A) G(B) for any small extension e : B → A.

As remarked in [8, 2.14], for the principal small extension ε0 we have F̆f (ε0) = tG, inde-

pendently of f and F . If G = ∗, then F̆f (e) = F (A) and we will write F̆ := F̆f in this

case.

2.1.8 DeVnition

Amorphism f : F → G of functors of Artin rings is called smooth if for any small extension

e the map F (B)→ F̆f (e), b 7→ (F (e)(b), f(b)), is surjective.

A morphism f : F → G of functors of Artin rings is called étale if it is smooth and if its

diUerential tf = f(k[ε]0) : tF → tG is a bijection.

A functor of Artin rings F is called smooth if the canonical morphism F → ∗ is smooth.

This is equivalent to F (e) : F (B)→ F (A) being surjective for all small extensions e : B →
A in ArtT .

2.1.9 Proposition ([31, 2.5], [32, 2.2.5])

Let R→ S be a homomorphism in ÂrtT .

a) hS → hR is smooth if and only if R→ S is smooth.

Let f : F → G and g : G→ H be two morphisms of functors of Artin rings.

b) If f is smooth, then f and f̂ : F̂ → Ĝ are both surjective.

c) If f and g are smooth, then g ◦ f is smooth.

d) If f is smooth, then g ◦ f is smooth if and only if g is smooth.

2.1.10 DeVnition

Let F be a functor of Artin rings and (R, ξ) an F -pro-couple. We call (R, ξ)

a) a versal element for F if ξ : hR → F is smooth;

b) a hull of F or a semi-universal element for F if ξ : hR → F is étale;

c) a pro-representative for F or a universal element for F if ξ : hR → F is an iso-

morphism. In this case we say that hR pro-represents F .
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Observe that if F is a functor of Artin rings possessing a versal element, a hull or a pro-

representative (R, ξ), then by 2.1.9 d) F is smooth if and only if hR is.

Let F be a functor of Artin rings, let A′ → A and A′′ → A be homomorphisms in ArtT

and consider the canonical map

Φ : F (A′ ×A A′′)→ F (A′)×F (A) F (A′′).

2.1.11 DeVnition

A functor of Artin rings F is called a functor with good deformation theory or gdt functor if

it has the properties

H1) Φ is a surjection, whenever A′′ → A is a small extension;

H2) Φ is a bijection, when A = k, A′′ = k[ε]0.

A functor of Artin rings possessing a hull (or a pro-representative) is a gdt functor (cf. [31,

2.11]). For a general treatment of Vbre products of Artin rings and Noetherian rings, cf.

[30].

A gdt functor F has the property that for any two Vnite dimensional vector spaces V and

W the canonical map F (k[V ]0 ×k k[W ]0)→ F (k[V ]0)× F (k[W ]0) is a bijection. Hence,

tF = F (k[ε]0) carries a natural vector space structure with ∗ as its zero element and is

called the tangent space of F (cp. [31, 2.10]); moreover, F (k[V ]0) ∼= tF �k V as k-vector-

spaces for any Vnite dimensional vector space V .

2.1.12 Theorem ([31, 2.11])

A gdt functor F possesses a hull if and only if

H3) dimk(tF ) <∞.

Moreover, F is pro-representable if and only if F has the additional property

H4) Φ is a bijection, when A′′ = A′ and whenever A′ → A is a small extension.

Given a T -algebra structure on k[[x]], let AN denote the ring k[x]/xN+1,N ∈ N0, together

with its T -algebra structure as a quotient of k[[x]].

2.1.13 DeVnition

A morphism of functors of Artin rings f : F → G is called curvilinearly smooth of orderN0

if for all T -algebra structures on k[[x]] and all N ∈ N0 with N ≥ N0 the map F (AN+1)→
F̆f (eN ) is surjective, where eN is the principal small extension

eN : 0→ k
xN+1

−−−−→ AN+1 −→ AN → 0.

If f is curvilinearly smooth of order 0, we say that it is curvilinearly smooth.

A functor F is called curvilinearly smooth (of order N0) if the canonical morphism F → ∗
is curvilinearly smooth (of order N0).
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2.1.14 Remark

If T = k is a Veld, then there is a unique k-algebra structure on k[[x]].

In B. Fantechis and M. Manettis paper [8] the following proposition is proven, the equival-

ence a)⇔ b) of which has been proven earlier by Y. Kawamata in [20].

2.1.15 Proposition ([8, 5.6 & 6.4])

Let F be a gdt functor over a Veld k. Then the following are equivalent:

a) F is smooth;

b) F is curvilinearly smooth;

c) F is curvilinearly smooth of order N0 for an N0 ∈ N0.

We are going to prove such a statement in the case that the base ring T is the ring k[[t]].

2.1.16 Lemma (cp. [8, 5.6])

Let R ∈ Ârtk[[t]]. Then the following are equivalent:

a) hR is smooth, i. e. R is a power series algebra over k[[t]];

b) hR is curvilinearly smooth;

c) hR is curvilinearly smooth of order N0 for some N0 ∈ N0.

Proof: The implications a) ⇒ b) and b) ⇒ c) are clear. So assume that hR is not smooth.

Then R = P/I for some power series algebra P = k[[t]][[x1, . . . , xn]] over k[[t]] and an ideal

0 6= I ⊂ tP + x2, where x = (x1, . . . , xn) ⊂ P .
Let I be generated by elements f1, . . . , fr of P . Then consider the setM of all monomials

in the variables t, x1, . . . , xn appearing in the fj with non-zero k-coeXcient.

First, assume that I = tP . This is the case if and only if the monomial t ∈ M and if

all other monomials are divisible by t. Without loss of generality, we may assume that

f1 = t is the only generator (hence, r = 1). Then R = k[[t]]/(t)[[x1, . . . , xn]] with the

obvious k[[t]]-algebra structure. Give to the ring k[[x]] the algebra structure k[[t]] → k[[x]],

t 7→ xN0 . Then the homomorphism ψ : k[[t]][[x1, . . . , xn]] → k[[x]], t 7→ xN0 induces an

element φ ∈ hR(k[x]/xN0), because ψ(tP ) ⊂ (xN0), which does not lift to an element of

hR(k[x]/xN0+1), because this lift would, by the deVnition of the algebra structure, have to

map t to the non-zero element xN0 ∈ k[x]/xN0+1, which is not possible.

Then, assume that t /∈ M , but all monomials are divisible by t. Let C ⊂ N
n+1
0 be the

set of all multi-indices J = (j0, . . . , jn) such that the monomial tj0xj11 · . . . · xjnn appears

inM . The set C is contained in {J |
∑
i ji ≥ 2}, because, by assumption, each monomial

in M has at least degree 2. Now we may follow the proof of Fantechi and Manetti given

in [8, 5.6]: There exist rational positive numbers a0, . . . , an, b with ai < b such that C ⊂{
J ∈ Nn+1

0

∣∣∑
i aiji ≥ b

}
and such that C ∩ {J |

∑
i aiji = b} = {J ′} for one particular
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J ′ = (j′0, . . . , j
′
n). ChooseN ∈ N0 large enough such that Ai := aiN and B := bN are all

integers and B ≥ N0. Then C ⊂ {J |
∑
iAiji ≥ B} and C ∩ {J |

∑
iAiji = B} = {J ′}.

We give k[[x]] the algebra structure k[[t]] → k[[x]], t 7→ xA0 . The algebra homomorphism

ψ : k[[t]][[x1, . . . , xn]] → k[[x]], t 7→ xA0 , xi 7→ xAi , maps tj
′
0x
j′1
1 · . . . · x

j′n
n 7→ xB and

ψ(tj0xj11 · . . . · xjnn ) ∈ (xB+1) for all J ∈ C , J 6= J ′. Hence, ψ(I) ⊂ (tB), because the fk
generate I . Therefore, ψ induces an element φ ∈ hR(k[x]/xB). This element does not lift

to an element of hR(k[x]/xB+1), because ψ(I) is not contained in (xB+1).

Finally, assume that t /∈ M and there exist monomials not divisible by t. LetM0 ⊂ M be

the set of all monomials with non-zero k-coeXcient and not divisible by t. Let C ′ ⊂ Nn0 be

the set of all multi-indices J = (j1, . . . , jn) such that the monomial xj11 · . . . · xjnn appears

in M0. The set C0 is contained in {J ∈ Nn0 |
∑
i ji ≥ 2} and we may again Vnd natural

numbers Ai and Bwith Ai < B and B ≥ N0 such that C ′ ⊂ {J |
∑
iAiji ≥ B} and

C ∩ {J |
∑
iAiji = B} = {J ′}.

We give k[[x]] the algebra structure k[[t]] → k[[x]], t 7→ 0. The algebra homomorphism

ψ : k[[t]][[x1, . . . , xn]] → k[[x]], t 7→ 0, xi 7→ xAi , maps xj
′
1

1 · . . . · x
j′n
n 7→ xB and ψ(tj0xj11 ·

. . . · xjnn ) ∈ (xB+1) for all J ∈ C ′, J 6= J ′. Hence, ψ(I) ⊂ (tB). Therefore, ψ induces

an element φ ∈ hR(k[x]/xB). This element does not lift to an element of hR(k[x]/xB+1),

because ψ(I) is not contained in (xB+1). �

2.1.17 Remark

Observe, that in the last two cases of the proof it is essential that all monomial have at least

degree 2. It is only therefore possible to construct the respective ψ in such a way that these

monomials are mapped to zero, while their factors of degree one are mapped to non-zero

elements.

2.1.18 Proposition

Let F be a functor of Artin rings over k[[t]] possessing a hull (R, ξ). Then the following are

equivalent:

a) F is smooth;

b) F is curvilinearly smooth;

c) F is curvilinearly smooth of order N0 for an N0 ∈ N0.

Proof: The implications a) ⇒ b) and b) ⇒ c) are clear. For any T -algebra structure on

k[[x]] the canonical map hR(AN+1) → hR(AN ) factors as hR(AN+1) → hRξ(eN ) =

hR(AN )×F (AN ) F (AN+1), which is surjective by assumption, followed by the projection

to hR(AN ). The curvilinear smoothness of order N0 of F therefore implies the curvilinear

smoothness of order N0 of hR. By 2.1.16, hR is smooth, which is the case if and only if F

is smooth. �
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2.1.3 Obstruction theory of functors of Artin rings

Fantechi and Manetti give a deVnition of a linear obstruction theory for the case T = k in

[8, 3.1, 4.1 & 4.7]. The following deVnition is modelled accordingly.

Consider the following functors:

• Ă : ExtT → ArtT , e 7→ A;

• B̆ : ExtT → ArtT , e 7→ B;

• J̆ : ExtT → Modk , e 7→ J ;

• ModĂ : ExtT → Cat, e 7→ ModĂ(e) = ModA,

where in the Vrst three cases e : 0 → J → B → A → 0 and where Cat denotes the

category of small categories.

Recall that for a morphism f : F → G of functors of Artin rings we have deVned the

functor F̆f : ExtT → Set by F̆f (e) = F (Ă(e)) ×G(Ă(e)) G(B̆(e)) and that if G = ∗, we
have F̆ := F̆f = F ◦ Ă.

2.1.19 DeVnition (cp. [8, 3.1])

Let f : F → G be a morphism of functors of Artin rings, with G a gdt functor. A linear

small obstruction theory (H0, o) for f consists of a k-vector-space H0 called the (linear)

small obstruction space and a morphism of functors

o : F̆f → H0 �k J̆( · )

such that oε0(∗) = 0, where ε0 denotes the extension 0 → (ε) → k[ε]0 → k → 0 and

where ∗ denotes the unique element in F (k).

A linear small obstruction theory for a functor of Artin rings F is a linear small obstruction

theory for the morphism F → ∗.

Given a linear small obstruction theory (H0, o) for f : F → G and a small extension e : 0→
J → B → A→ 0, for any element x ∈ F̆f (e) = F (A)×G(A)G(B) contained in the image

of F (B) we have oe(x) = 0 ∈ H0 �k J (cf. [Fantechi/Manetti, Prop 3.3]).

2.1.20 DeVnition (cp. [8, 4.1])

A linear small obstruction theory (H0, o) for f : F → G is called complete if the converse

holds, i. e. if for any small extension e : 0 → J → B → A → 0 an element x ∈ F̆f (e) =

F (A)×G(A) G(B) is contained in the image of F (B) if and only if oe(x) = 0 ∈ H0 �k J .

It it enough to check this condition for principal small extensions (cf. [8, 4.2]).
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We extend this deVnition to arbitrary extensions as follows:

2.1.21 DeVnition

An obstruction theory (H, o) for f consist of

a) a morphism of functorsH : F̆f → ModĂ, i. e. for each e ∈ ExtT a mapHe : F̆f (e)→
ModĂ(e), x 7→ He(x) ∈ ModĂ(e), compatible with morphisms ψ : e′ → e of exten-

sions;

b) the induced functor O : ExtT → Set deVned by Oe :=
∐
x∈F̆f (e)He(x) together

with the natural projection morphism (of functors) π : O → F̆f ;

c) a section (morphism of functors) o : F̆f → O of π, i. e. such that π ◦ o = ι̇dF̆f .

These have to fulVl the additional condition that oε0(∗) = 0 ∈ Hε0(∗). We call π : O → F̆f

the obstruction bundle for f and the section o the obstruction morphism. In particular, for an

extension e and an element x ∈ F̆f (e) we call oe(x) ∈ He(x) the obstruction of lifting x

along e and He(x) ∈ ModĂ(e) the obstruction space of lifting x along e.

2.1.22 DeVnition

An obstruction theory (H, o) for f is called linear if for the k-vector-space H0 := Hε0(∗)
and for every small extension e and every x ∈ F̆f (e) there is a natural isomorphism

He(x) ∼= H0 �k J̆(e), where the right side does not depend on x. H0 is then called the

(linear) small obstruction space of f .

2.1.23 DeVnition

An obstruction theory (H, o) for f : F → G is called complete if for any extension e : 0 →
J → B → A→ 0 an element x ∈ F̆f (e) = F (A)×G(A)G(B) is contained in the image of

F (B) if and only if oe(x) = 0 ∈ He(x). In this case we call oe(x) the complete obstruction

of lifting x along e.

To have a general description of such objects we make the following deVnition.

2.1.24 DeVnition

Let F : C → D be a functor to a category D where inverse images under morphisms are

deVned (e. g. Set, Grp, etc.). A bundle of functors over F is a functor O : C → D and an

epimorphism of functors π : O → F such that there exists a section o : F → O (with

π ◦ o = ι̇dF ). It is denoted by (O, π, o).

Let G : C → Cat be a functor, which assigns to each e ∈ C a subcategory of D. If setting

H(e)(x) := π(e)−1(x) deVnes a morphism of functors H : F → G, then we call π an

H-trivial G-bundle. In this case, for each e ∈ C we have O(e) =
∐
x∈F (e)H(e)(x) and we

write O =
∐
F H for this property. If G is the trivial functor D : C → Cat, e 7→ D for all

e, then we simply call π an H-trivial-bundle. It is clear that every H-trivial G-bundle is an

H-trivial bundle.

In this sense an obstruction theory (H, o) for f is the same thing as an H-trivial ModĂ-

bundle π : O =
∐
F̆f
H → F̆f over F̆f together with a section o.
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2.2 Functors of log Artin rings

Recall from the Vrst chapter (cf. 1.2.3) that a prelog ring a : Q → A is a monoid homo-

morphisms withA a ring. It is called a log ring, if moreover a induces a group isomorphism

a−1(A×) ∼= A×.

2.2.1 DeVnition

We call a prelog ring a : Q → A with A a local ring precise if Q is a sharp monoid and if

the image of its maximal ideal a(mQ) is contained in the maximal ideal of A.

2.2.1 Log Artin rings

We Vx the following data to deVne the category of log Artin rings in the sense of F. Kato

([18]). Let

(πT , %) : Q′
%
//

t

��

Q

t0

��

T
πT // k

be a prelog ring homomorphism, which satisVes the following conditions:

a) t : Q′ → T is a precise complete Noetherian prelog ring and t0 : Q → k is a precise

prelog Veld with Q and Q′ toric monoids;

b) πT : T → k is the natural projection from T to its residue Veld k = T/mT ;

c) % : Q′ → Q is an injective monoid homomorphism such that Q \ %(Q′) is an ideal in

Q and such that the cokernel of %grp : Q′grp → Qgrp is torsion-free.

Denote by T : MT → T and κ : Mκ → k the associated log rings of t and t0, respectively,

and set %T := %> : MT →Mκ.

2.2.2 DeVnition

We denote by LArtT (respectively, L̂ArtT ) the category described in what follows:

Its objects are log ring homomorphisms

(ϕA, σA) : MT
σA //

T
��

MA

A
��

T
ϕA // A

together with a monoid homomorphism %A : MA →Mκ such that
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a) ϕA : T → A is an object in ArtT (respectively, in ÂrtT );

b) the diagram

MT σA
//

T
��

ρT
++

MA %A
//

A
��

Mκ

κ

��

T
ϕA //

πT

44A
πA // k

is commutative;

c) MA �A× k
× ∼= Mκ = Q� k×.

A homomorphism ψ = (ϕ,ψ) : A → B in LArtT (respectively, L̂ArtT ) is a homo-

morphism of log rings which is compatible with the above requirements, hence a com-

mutative diagram

MT σB
//

T

��

σA ""

ρT

��

MB

B

��

%B ""
MA %A

//

A

��

ψ
<<

Mκ

κ

��

T
ϕB //
ϕA

##

πT

::

B
πB

""
A

πA //

ϕ
;;

k

An extension (respectively, a small extension, a principal small extension) in LArtT is

a homomorphism ψ : A′ → A the underlying homomorphism of which is an extension

(respectively, a small extension, a principal small extension) in ArtT .

Just as ArtT is a full subcategory of ÂrtT , the category LArtT is a full subcategory of

L̂ArtT . Every object (respectively, homomorphism) of L̂ArtT is canonically the limit of

objects (respectively, homomorphisms) in LArtT .

2.2.3 DeVnition

We deVne a functor · : ÂrtT → L̂ArtT by associating to each R ∈ ÂrtT a speciVc object

R ∈ L̂ArtT deVned to be the log ring associated to the prelog ring r : Q → R, mapping

q ∈ %(Q′) to ϕR(t(q)) and q ∈ Q \ %(Q′) to zero.

2.2.4 Remark

Note that if % : Q′ → Q is not an isomorphism, then T is itself not an object of L̂ArtT ,

becauseMT �T× k
× �Mκ. If % is an isomorphism, then T ∼= T ∈ L̂ArtT .
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Fibred products exist in both categories LArtT and L̂ArtT and may be constructed as

follows: For A : MA → A, A′ : MA′ → A′ and A′′ : MA′′ → A′′ sitting in a diagram

A′ → A← A′′

the Vbred product is the Vbred product of monoid homomorphisms

A′ ×A A′′ : MA′ ×MA MA′′ → A′ ×A A′′.

2.2.5 DeVnition

We denote by v : L̂ArtT → ÂrtT the functor which forgets the log ring structure and is

therefore left-adjoint to · .

By means of this functor, L̂ArtT is co-Vbred over ÂrtT . We denote the Vbre of v over

R ∈ ÂrtT by

v−1(R) = {R : MR → R} .

Let A ∈ ArtT . For A,A′ ∈ v−1(A) we write

IsomA(A,A′) := {ψ : A → A′ | v(ψ) = idA} and AutA(A) := IsomA(A,A)

and call these the group of isomorphisms fromA toA′ overA and the group of automorphisms

of A over A, respectively.

The following proposition collects the results of section 2 in “Functors of log Artin rings”

by F. Kato:

2.2.6 Proposition ([18, 2.2-2.10])

a) For any object R in ÂrtT there exists, up to isomorphism, exactly one object R in

L̂ArtT with v(R) = R, namelyR ∼= R.

b) For any homomorphism in L̂ArtT , the corresponding morphism of log schemes is

strict.

c) For any A ∈ ArtT and A,A′ ∈ v−1(A) the set IsomA(A,A′) is non-empty. We

have

AutA(A) ∼= HomZ(coker(%grp : Q′grp → Qgrp), ker(π×A : A× → k×)).

d) For any κ, κ′ ∈ v−1(k) the set Isomk(κ, κ′) consists of one element.

In particular, for any A ∈ LArtT , we have a strict closed embedding Specκ → SpecA
over Spec T .

2.2.2 Functors of log Artin rings

For any log ringR and any ideal I ⊂ R we writeR/I for the log ringMR�R× (R/I)× →
R/I . This makes Spec(R/I)→ SpecR a strict closed immersion of aXne log schemes.
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2.2.7 DeVnition

A functor of log Artin rings is a functor F : LArtT → Set with F (κ) = {∗}.
The unique extension of F to a functor F̂ : L̂ArtT → Set with F̂ = F on LArtT is given

by F̂ (R) = lim←−n∈N0
F (R/mnR) and is called the completion of F .

2.2.8 DeVnition

Let V be a Vnite-dimensional k-vector-space,A ∈ LArtT andA = v(A). We deVneA[V ]0

to be the log Artin ringMA �A× A[V ]× → A[V ] induced by the inclusion i : A→ A[V ]0

in ArtT (cp. 2.1.5). We write A[ε]0 when V is the one-dimensional k-vector-space with

generator ε. The set tF = F (κ[ε]0) is called the (pointed) tangent set of F (at its unique

geometric point ∗ ∈ F (κ)).

2.2.9 Remark

We may write the log ring A[V ]0 asMA � (V,+)→ A[V ], mapping (m, v) 7→ A(m) �v.

For R ∈ L̂ArtT we deVne the functor hR := Hom
L̂ArtT

(R, · ). By means of the Yoneda

Lemma, we identify F̂ (R) with the set Hom(hR, F ).

We transfer the deVnitions 2.1.6, 2.1.8 and 2.1.10 (of the terms pro-couple, smoothness and

shades of versality) literally to functors of log Artin rings by replacing the categories ArtT

and ÂrtT by LArtT and L̂ArtT , respectively.

2.2.10 DeVnition

To a functor of log Artin rings F we associate a functor of Artin rings v∗F : ArtT → Set

by deVning

v∗F (A) :=
{

(A, ξ)
∣∣A ∈ v−1(A), ξ ∈ F (A)

}
/ ∼,

where (A, ξ) ∼ (A′, ξ′) if and only if there exists a ϕ ∈ IsomA(A,A′) such that F (ϕ)(ξ) =

ξ′ (indeed v∗F (k) = {∗} by 2.2.6).

We call v∗F the pushforward of F along v.

2.2.11 Proposition ([18, 3.1])

If F is pro-represented by (R, ξ), then v∗F is pro-represented by (v(R), [R, ξ]), where
[R, ξ] denotes the class of (R, ξ) in v∗F (R).

2.2.12 DeVnition

An F -pro-couple (R, ξ) is called a pseudo-versal element for F if the v∗F -pro-couple

(v(R), [R, ξ]) is a versal element of the functor v∗F .

An F -pro-couple (R, ξ) is called a pseudo-hull of F or a pseudo-semi-universal element for

F if the v∗F -pro-couple (v(R), [R, ξ]) is a hull of the functor v∗F .
An F -pro-couple (R, ξ) is called a a pseudo-pro-representative of F or pseudo-universal ele-

ment for F if the v∗F -pro-couple (v(R), [R, ξ]) pro-represents the functor v∗F .

For any functor of log Artin rings F : LArtT → Set we deVne the functor F : LArtT →
Set by F (A) := F (A)/AutA(A) for every A ∈ LArtT . By 2.2.6 this is a functor of log

Artin rings and we have a bijection F (A)→ v∗F (v(A)), [ξ] 7→ [A, ξ].
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2.2.13 DeVnition

A functor F of log Artin rings is called rigid if for all A ∈ LArtT and every ϕ ∈ AutA(A)

the bijection F (ϕ) : F (A)→ F (A) has no Vxed points unless ϕ = ι̇d.

It is called rigid in the Vrst order if for any ϕ ∈ Autk[ε]0(κ[ε]0) the bijection F (ϕ) : tF → tF

has no Vxed points unless ϕ = ι̇d.

2.2.14 Remark

If % : Q′ → Q is an isomorphism, then AutA(A) is the one-element set containing only the

identity ι̇dA. Hence in this case any functor F is rigid, F = F and the word “pseudo” can

be erased everywhere (cp. [18, 3.3]).

Let F be a functor of log Artin rings, let A′ → A and A′′ → A be homomorphisms in

LArtT and consider the canonical map

Φ : F (A′ ×A A′′)→ F (A′)×F (A) F (A′′).

The following deVnition imitates the corresponding one in the Vrst section.

2.2.15 DeVnition

A functor of log Artin rings F is called a functor with good logarithmic deformation theory

or log gdt functor if it has the properties

LH1: Φ is surjective, whenever A′′ → A is a small extension;

LH2: Φ is a bijection, when A = κ, A′′ = κ[ε]0.

As in the Vrst section, a log gdt functor F has the property that, for any two Vnite dimen-

sional vector spaces V and W , the canonical map F (κ[V ]0 ×κ κ[W ]0) → F (κ[V ]0) ×
F (κ[W ]0) is a bijection. Hence, tF = F (κ[ε]0) carries a natural vector space structure

with ∗ as its zero element and is called the tangent space of F (cp. [18, p. 105]); moreover,

F (κ[V ]0) ∼= tF �k V as k-vector-spaces for any Vnite dimensional vector space V .

2.2.16 Lemma ([18, 3.5])

Let F be a log gdt functor. Then for every small extension e : A′ → A with kernel J the

k-vector-space F (κ[I]0) acts transitively on the set

F (e)−1(ξ) = {ξ′ ∈ F (A′) |F (e)(ξ′) = ξ}

for every Vxed ξ.

Proof: We have an isomorphismA′×AA′ → A′×κκ[I]0 given by (x, y) 7→ (x, x� (y−x))

(on the levels both of rings and monoids, where x denotes πA′(x) and %A′(x), respectively).

Combining this isomorphism with LH2 yields

F (A′)× (tF �k I)
∼=−−→ F (A′)×F (A) F (A′),

deVning the action of an element η ∈ tF �k I on a ξ′ ∈ F (e)−1(ξ) by (ξ′, η) 7→ (ξ′, η · ξ′).
By LH1 this action is transitive (cp. [Schlessinger Remark 2.13]). �
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2.2.17 Proposition ([18, 3.4 & 3.12])

Let F : LArtT → Set be a functor of log Artin rings.

a) If F is pro-representable, then F is rigid.

b) If F possesses a hull, then F is rigid in the Vrst order.

c) If F is rigid, then any pseudo-pro-representative of F pro-represents F .

d) If F is a log gdt functor which is rigid in the Vrst order, then any pseudo-hull of F is

a hull.

2.2.18 Lemma ([18, 3.7 & 3.8])

a) The natural morphism F → F is smooth.

b) The implications i)⇒ ii)⇔ iii) hold between the following conditions for a morphism

ϕ : F → G of functors of log Artin rings,

i) ϕ : F → G is smooth;

ii) ϕ : F → G is smooth;

iii) v∗ϕ : v∗F → v∗G is smooth (as a morphism of functors of Artin rings).

If F , F andG are log gdt functors and if ker(tF → tF )→ ker(tG → tG) is surjective,

then also ii)⇒ i).

c) In particular, F is smooth (over ∗)⇔ F is smooth⇔ v∗F is smooth (as a functor of

Artin rings).

Let F be a log gdt functor. Consider the following two conditions:

LH3: dimk tF <∞;

LH4: Φ is a bijection, when A′′ = A′ and whenever A′ → A is a small extension.

2.2.19 Theorem ([18, 3.12])

Let F : LArtT → Set be a log gdt functor.

a) F possesses a pseudo-hull if and only if F satisVes LH3.

It possesses a hull if and only if F satisVes LH3 and is rigid in the Vrst order.

b) F is pseudo-pro-representable if and only if F satisVes LH3 and LH4.

It is pro-representable if and only if F satisVes LH3 and LH4 and is rigid.

2.2.20 Remark

Wemay transfer the deVnitions 2.1.19, 2.1.20, 2.1.21, 2.1.22 and 2.1.23 of obstruction theories

and their properties of linearity and completeness literally to this chapter when replacing

the category ArtT by LArtT . An A-module is then a v(A)-module.
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2.3 Log smooth deformations

Let f0 : X → Y be a log smooth morphism of log schemes and let i : Y → Y be a strict

closed immersion. A log smooth deformation of f0 over i is a Cartesian diagram

X
î //

f0

��

p
X
f

��

Y
i // Y

of morphisms of log schemes, with f log smooth (and î automatically a strict closed im-

mersion). The morphism f is then called a (log smooth) lifting of f0 over i (or over Y if i is

known from the context).

A morphism ϕ : f ′ → f of log smooth deformations f : X → Y and f ′ : X ′ → Y of f0

over i is a morphism of log schemes ϕ : X ′ → X over Y such that ϕ|X = ι̇dX .

2.3.1 Lemma

Let f0 : X → Y be a log integral log smooth morphism of log Vne log schemes. Then

every log smooth deformation f : X → Y is log integral, and thus a Wat deformation of the

underlying schemes.

Proof: Assume that f is not log integral. Then there exists a log integral log scheme V

and a morphism of log schemes V → Y such that XV := V ×Y X is not log integral.

Let U := V ×Y Y and XU := U ×Y X = U ×V XV . Then U is log integral, because

U → V is a strict closed immersion. Due to the log integrality of the morphism f0, the

log scheme XU is log integral. But XU → XV is a strict closed immersion, so in particu-

larMXU ,x
∼= MXV ,x, thus either both sides are log integral or not. This contradicts the

assumption. �

Let T and κ be as in the last section and let f0 : X → Specκ be a log integral morphism

of log Vne log schemes. For A ∈ LArtT let i : Specκ → SpecA be the associated strict

closed immersion over Spec T .

We deVne the functor Deff0
: LArtT → Set by

Deff0
(A) = {Isomorphism classes of log smooth lifting of f0 to SpecA}

and evidently for morphisms.

2.3.2 Lemma ([17, 8.3])

Let f : X → SpecA be a log smooth deformation of f0 : X → Specκ along i : Specκ →
SpecA. Then any local chart (a : PX →MX , b : Q→ Q� k×, θ : Q→ P ) of f0 lifts to a

local chart (a : PX →MX , b : Q→ Q�A×, θ : Q→ P ) of f .
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2.3.3 Proposition ([19, 3.14])

Let f0 : X → Y be a log integral log smooth morphism of log Vne log schemes and let

i : Y → Y ′ be an inVnitesimal thickening of log Vne log schemes. If X is aXne, then a log

smooth deformation of f0 over i exists and is unique up to isomorphism.

2.3.4 Proposition ([19, 3.14])

Let f0 : X → Specκ be a log integral log smooth morphism of log Vne log schemes.

a) The tangent space of the functor of log Artin rings Deff0
is H1(X,Tf0

).

b) The vector space H2(X,Tf0
) the small obstruction space of a complete linear ob-

struction theory for the functor Deff0
.

Let e : 0 → J → Ã → A → 0 be an extension of log Artin rings (J2 = 0) and let f be a

lifting of f0 over A.

c) The group of automorphisms of a lifting f̃ over Ã inducing the identity on f is

H0(X , Tf �A J).

d) The set of isomorphism classes of liftings of f over Ã is a pseudo-torsor under

H1(X , Tf �A J).

e) The obstruction oe([f ]) to lifting f over Ã is an element of the obstruction space

H2(X , Tf �A J).

2.3.5 Theorem ([18, 4.4i)])

Suppose that f0 is a log integral log smooth morphism of log schemes, with proper under-

lying morphism and such that f0 ∗OX = OSpecκ. Then the functor Deff0
satisVes LH1,

LH2 and LH3 and hence possesses a pseudo-hull.

2.3.6 Corollary

In the case that % : Q′ → Q is a isomorphism, suppose that f0 is a log integral log smooth

morphism of log schemes with proper underlying morphism and such that f0 ∗OX =

OSpecκ. Then the functor Deff0
possesses a hull.

Proof: Since % : Q′ → Q is a isomorphism, remark 2.2.14 implies that Deff0 is rigid, so any

pseudo-hull is a hull. �



3 Additional Data
The purpose of this chapter is to step-by-step introduce additional data, namely line bundles,

Wat logarithmic connections and logarithmically symplectic forms, to the deVnition of a log

smooth morphism of log schemes until Vnally reaching our deVnitions of a “log symplectic

scheme of non-twisted type” and of a “log symplectic scheme of general type”. Moreover,

we introduce certainOX -modules and complexes ofOX -modules, the (hyper-)cohomology

of which will later turn out to yield the obstruction theory of the “functor of log symplectic

deformations of a log symplectic scheme”, which will be deVned in chapter 4.

Following remark 1.1.7 in A. Ogus’ lecture notes ([29]), we deVne the term “logarithmic

Cartier divisor” in the second section, which generalises the well-known term “Cartier

divisor”. Subsequently we link these logarithmic Cartier divisor to line bundles and Wat

logarithmic connections.

In the last section we collect facts from works of R. Friedman ([11]), F. Kato ([17]) and

A. Ogus ([29]) concerning the canonical log structure of strict normal crossing varieties.

Let X be a log scheme. An (aXne) open covering U = {Xi}i∈I of X consists of (aXne)

open subschemes ji : Xi → X forming an (aXne) open covering of X and each equipped

with the induced log structure αXi = j×i αX .

A sheaf on X means a sheaf on X and we write Hi(X,F) for Hi(X,F) etc.

For a morphism f : X → Y of log schemes, we denote by Compf the category of co-

complexes of OX -modules on X with f−1OY -linear diUerential; by abuse of language, we

will speak of complexes. For K • ∈ Compf , we denote by K
•[p] and K≥p,• the p-shifted

complex and the p-truncated complex, respectively, ofK • for p ∈ Z.

3.1 Line bundles

For an Abelian group G, a pseudo-torsor is a G-set (S, % : G × S → S) such that for every

s ∈ S the map s 7→ gs is bijective. AG-pseudo-torsor is called aG-torsor if S is non-empty.

Let X be a log scheme. A line bundle on X is a line bundle L on X , i. e. a locally free

OX -module of rank one.

We will use the following convention extensively: Let L be a line bundle. Then there exists

an aXne open covering U = {Xi} of X and isomorphisms ψi : L|Xi → OXi of OXi-
modules. We will say that this covering trivialises L. By abuse of notation and language, we

will suppress the isomorphisms ψi, meaning that we will identify the line bundle Lwith the

collection of all OXi ’s glued together by the transition functions fij := ψi|Xij ◦ ψ
−1
j

∣∣
Xij

deVned on the overlaps Xij = Xi ∩ Xj . We will hence speak of a (local) section si of

L|Xi meaning the (local) section ψi(si) of OXi . So saying that the local sections si and sj
of L|Xi and L|Xj , respectively, agree on Xij , we write si = fijsj on Xij , meaning that

ψi(si)|Xij = fij ψj(sj)|Xij .

37
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Although this is well-known, we will, for later use of certain notations, prove:

3.1.1 Proposition

Let X a log scheme.

a) The set of endomorphisms of a line bundle L is H0(X,OX).

b) The set of isomorphisms between two Vxed line bundles on X is a pseudo-torsor

under the group H0(X,O×X). The group of automorphisms of a line bundle is ca-

nonically isomorphic to H0(X,O×X).

c) The Picard group of isomorphism classes of line bundles onX , Pic(X) = Pic(X), is

canonically isomorphic to H1(X,O×X).

Proof: Let U = {Xi}i∈I be an aXne open covering ofX such thatLi := L|Xi is isomorphic

toOXi for each i. OnXi we identify Li := L|Xi withOXi . For eachXij = Xi ∩Xj there

exists a unique element fij ∈ Γ (Xij ,O×X), the transition function on Xij , such that two

local sections si and sj of L over Xi and Xj , respectively, are equal on Xij if and only if

si = fijsj . The Čech-1-cochain (fij) in O×X satisVes the condition fjkfijf
−1
ik = 1 and is

therefore a cocycle. Hence it deVnes a class [L] ∈ H1(X,O×X).

An isomorphism of line bundles ψ : L′ → L is given on each Xi by an automorphism

ψi := ψ|L′i : OXi → OXi , which is just the multiplication by a unit fi and deVnes a 0-

cochain (fi) in O×X . Due to the lack of coboundaries the group of isomorphisms between

two line bundles is a pseudo-torsor under H0(X,O×X). If L′ = L, then this pseudo-torsor

is naturally identiVed with the group. For an endomorphism of L, we just have to drop the

condition that the fi are units. This shows a) and b).

If f ′ij denotes the transition function of L′ onXij , then we must have fijfj = fif
′
ij , hence

f ′ij = fijfjf
−1
i . Therefore, the cocycles (fij) and (f ′ij) diUer by the coboundary ď(fi). This

shows that the isomorphism class of L uniquely determines the class [L] ∈ H1(X,O×X)

and vice versa. Tensoring line bundles corresponds to component-wise multiplication of

the representing cocycles. This shows c). �

An O×X -torsor onX is a sheaf T of non-empty O×X -sets, such that O×X acts regularly on T .
Necessarily, locally T is isomorphic to O×X as a sheaf of O×X -sets.

Given an O×X -torsor, there exists an aXne covering U = {Xi}i∈I of X trivialising T and

a cocycle of transition functions fij ∈ Γ (Xij ,O×X) between the restrictions T |Xi ∼= O
×
Xi

.

This gives a one-to-one correspondence between line bundles L and O×X -torsors T on X

such that T ⊂ L as a sheaf of O×X -sets. We will denote the O×X -subtorsor associated to a

line bundle L by L×. Then L = L× �O×X OX .

If L is a line bundle, then L× is the sheaf of local generators of L as an OX -module. So

every O×X -torsor is of the form L× for the line bundle L it generates. In this regard, the

Picard group is also canonically isomorphic to the group of isomorphism classes of O×X -

torsors on X .
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3.1.2 DeVnition

Let Y be a log scheme. A scheme with line bundle over Y is a pair (f, L), also written

f : (X,L)→ Y , consisting of the following data:

a) A log smooth morphism of log fs log schemes f : X → Y ;

b) a line bundle L on X .

The pair (f, L) is called proper and log integral if the morphism of log schemes f : X → Y

is proper and log integral.

A morphism (f ′, L′)→ (f, L) of log schemes with line bundle over Y is a pair (h, ψ), where

a) h : X ′ → X is a morphism of Y -log schemes;

b) ψ : h∗L→ L′ is a morphism of line bundles.

We denote the category of log schemes with line bundle over Y by LLSchY .

3.1.3 DeVnition

Let f0 : (X,L) → Y be a log scheme with line bundle over Y and let i : Y → Y be a

strict closed immersion. A log smooth deformation of (f0, L) over i is a log scheme with line

bundle f : (X ,L)→ Y together with

a) a strict closed immersion î : X → X such that

X
� � î //

f0

��

X
f

��

Y
� � i // Y

is a log smooth deformation of the log scheme X ;

b) an isomorphism î∗L ∼= L.

In this case we will write î∗(f,L) = (f0, L) and say that we have a Cartesian diagram

(X,L) �
� î //

f0

��

(X ,L)

f

��

Y �
� ii // Y .

3.1.1 Action of log derivations

Let f : X → Y be a morphism of log schemes. For every p ∈ N0 we have a canonical

f−1OY -bilinear map

Tf ×Ωpf → Ωpf ,

given by the Lie derivative (ϑ, σ) 7→ ϑ(σ) := d(iϑσ) + iϑ(dσ), deVning an action of log

derivations on log p-forms.
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Observe that ϑ(σp ∧σq) = ϑ(σp) ∧σq +σp ∧ϑ(σq) for all p-forms σp, all q-forms σq and all

log derivations ϑ.

A compatible action of log derivations on log derivations

Tf × Tf → Tf

is given by (ϑ, δ) 7→ ϑ(δ) := [ϑ, δ]. This means that for any local section δ � σ of Tf �OX
Ωpf , ϑ acts according to Leibniz’s rule, i. e. ϑ(δ � σ) = ϑ(δ) � σ+δ � ϑ(σ) and is compatible

with the pairing i · ( · ) such that ϑ(iδ(σ)) = iϑ(δ)(σ) + iδ(ϑ(σ)).

3.1.2 The log Atiyah module of a line bundle

Let f : X → Y be a log smooth morphism of log schemes. The f−1O×Y -invariant map

dlog : O×X → Ω1
f induces the log Chern map

dlog : H1(X,O×X)→ H1(Ω1
f ) = Ext1

OX (Tf ,OX),

assigning to each isomorphism class [L] of a line bundle L its log Chern class dlog(L) ∈
H1(Ω1

f ) and hence an isomorphism class of short exact sequences of OX -modules

dlog(L) : 0→ OX → Af (L)→ Tf → 0,

called the log Atiyah extension of L. The OX module which is up to isomorphism uniquely

determined by this extension is called the log Atiyah module of L, written Af (L). It is

locally free of rank n+ 1 and may be constructed as follows:

Let U = {Xi} an open aXne covering as in the proof of 3.1.1 trivialising L. Writing

f |i := f |Xi : Xi → Y , on each Xi, we identify Ai(L) := Af (L)|Xi with OXi � Tf |i,

where two sections (gi, ϑi) and (gj , ϑj) over Xi and Xj , respectively, are identiVed over

Xij if and only if ϑi = ϑj and gi − gj =
ϑi(fij)
fij

= iϑi(dlog fij) = Θi(fij). This is due to

the fact, that if [L] is given by the cocycle (fij), then dlog(L) is given by the cocycle (
dfij
fij

)

in Č1(X,Ω1
f ).

3.1.3 L-Derivations

Let f : X → Y be a log smooth morphism of log schemes and L a line bundle on X . For

every p ∈ N0 we deVne an f−1OY -bilinear map

Af (L)× (Ωpf �OX L)→ Ωpf �OX L, (a, σ) 7→ a(σ)

as follows: Let U be an aXne open covering trivialising L. On each Xi of U we deVne

Ai(L) × Ωpf |i → Ωpf |i by ((gi, ϑi), σi) 7→ (gi, ϑi)(σi) := giσi + ϑi(σi), where ϑi(σi)

is the action of log derivations on log forms deVned above. This is well-deVned due to

fij(giσi + ϑi(σi)) = giσj +
ϑi(fij)
fij

σj + ϑi(σj) = gjσj + ϑj(σj).
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In relation to its action on forms, we refer to Af (L) as the sheaf of derivations extended by

L or L-derivations and we call a( · ) the Lie derivative of a. Observe that if L = OX , then

Af (L) = OX �Derf (OX). Observe also that a(σp ∧σq) = π(a)(σp) ∧σq + σp ∧a(σq) for

all p-forms σp and all q-forms with values in L, σq , where π : Af (L)→ Tf .

3.2 Log Schemes with Wat log connection

3.2.1 DeVnition

Let f : X → Y be a morphism of log schemes. A (rank one) logarithmic connection

∆

, also

written (L,

∆

), on f consists of a line bundle L on X and a map

∆

: L→ Ω1
f �OX L

which satisVes Leibniz’s rule

∆

(f · s) = df � s+ f

∆

(s) for local sections f ofOX and s of

L, and therefore is f−1OY -linear.
To each log connection

∆

we associate a sequence of f−1OY -linear maps

L

∆(0)

−−−−→ Ω1
f �OX L

∆(1)

−−−−→ Ω2
f �OX L

∆(2)

−−−−→ Ω3
f �OX L→ . . . ,

where we deVne

∆(0) :=

∆

and

∆(p)(σ � s) := dσ � s+ (−1)pσ ∧

∆(0)(s).

A log connection

∆

is called Wat if

∆(1) ∆(0) = 0 (which implies

∆(p+1) ∆(p) = 0 for

all p). In this case, the sequence above is a complex of OX -modules with f−1OY -linear
diUerentials

∆

:=

∆•, which we call the logarithmic de Rham complex associated to

∆

and

which we denote by (Ω •f � L,

∆

) ∈ Compf .

A morphism ψ : (L,

∆

) → (L′,

∆′) of Wat log connections is a morphism of line bundles

ψ : L→ L′ such that the diagram

L

∆

//

ψ

��

Ω1
f � L

ι̇d�ψ
��

L′

∆′
// Ω1

f � L′

commutes; equivalently, such that ψ • := ι̇dΩ •f � ψ is a morphism of complexes.

3.2.2 Remark

Analogously, one can deVne a rank n log connection by replacing the line bundle L by a

vector bundle of rank n. We will regard only rank one log connections in this thesis.

3.2.3 DeVnition and Proposition

The isomorphism classes of Wat log connections

∆

on f form an Abelian group which we

denote by

LConn(f)

and which we call the Picard group of f .
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Proof: This is indeed a group with respect to the tensor product: If (L,

∆

) and (L′,

∆′) are

two Wat log connections, then (L � L′,

∆

�

∆′) is a Wat log connection, where

∆

�

∆′ :

L� L′ → Ω1
f � (L� L′) is deVned by the rule (

∆

�

∆′)(s� s′) =

∆

(s) � s′ + s�

∆′(s′).

The neutral element of this group is the trivial Wat log connection (OX , d) and the inverse

(L−1,

∆−1) of (L,

∆

) is given by the dual line bundle L−1 of L together with

∆−1 : L−1 →
Ω1
f �L−1 deVned by

∆−1(ϕ)(s) = −d(ϕ(s))− (ι̇d� ϕ)(

∆

(s)) for local sections ϕ of L−1

and s of L. The Watness of

∆

�

∆′ and

∆−1 is easy to check. �

3.2.4 Remark

We do not write Pic(f) for the Picard group of f to avoid confusion with the usual Picard-

functor from above evaluated on a morphism of (log) schemes.

3.2.5 DeVnition

We denote by (Ω×,•f , dlog •) ∈ Compf the complex

Ω×,•f : O×X → Ω1
f → Ω2

f → Ω3
f → . . . ,

where the diUerential is dlog : O×X → Ω1
f in the Vrst place and d elsewhere. We will refer

to it as the unit complex of f .

Observe that this complex has f−1OY -linear diUerentials at all places ≥ 1 and an f−1O×Y -
linear zeroth diUerential.

3.2.6 Proposition

a) The set of endomorphisms of a Wat log connection

∆

is EndCompf
(

∆

) = H0(Ω •f ).

b) The set of isomorphisms between two Vxed Wat log connections is a pseudo-torsor

under the group H0(Ω×,•f ). The group of automorphisms of a Wat log connection is

canonically isomorphic toH0(Ω×,•f ).

c) The monoid LConn(f) is an Abelian group and canonically isomorphic toH1(Ω×,•f ).

Proof: An endomorphism of a Wat log connection (L,

∆

) is an endomorphism of L, hence

an element u ∈ H0(X,OX). Moreover, it must satisfy u

∆

s =

∆

(us) = du� s + u

∆

s

for all local sections s of L, thus du = 0. This shows a). To be an automorphism, u needs

to be a unit. Then du = 0 is equivalent to dlog u = 0. This shows b), because given two

isomorphisms ψk : (L,

∆

) → (L′,

∆′), k = 1, 2, of Wat log connections, their diUerence

ψ−1
2 ψ1 is an automorphism of

∆

.

Let (L,

∆

) be a Wat log connection on f and let U be an aXne open covering as in the

proof of 3.1.1 trivialising L. The line bundle L is given by the 1-cocycle (fij) in O×X . As

Li := L|Xi = OXi is trivial, we have beside the connection

∆

i :=

∆

|Xi : OXi → Ω1
f |i

the trivial Wat connection d : OXi → Ω1
f |i. Both diUer by a 1-form v−i ∈ Γ (Xi, Ω

1
f |i) such

that

∆

i = d+ v−i ∧ · on each Xi.
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The

∆

i have the property that

∆

i

∆

i = 0 and

∆

i(fij · ) = fij

∆

j( · ). For the v−i this implies

that

a) dv−i = 0;

b) v−j − v−i − dlog(fij) = 0.

This means precisely that the 1-cochain (v−i, fij) in Ω×,•f is a cocycle in this complex and

hence deVnes a class [

∆

] = [L,

∆

] ∈ H1(Ω×,•f ).

If (v−′i, f ′ij) denotes the cocycle of another Wat log connection (L′,

∆′), then we have f ′ij =

fijfjf
−1
i with the notation as in the proof of 3.1.1. Moreover, fi

∆′
i =

∆

i(fi · ) = dfi ∧ · +

fi

∆

i. Hence, v−′i − v−i = dlog fi. Therefore, the cocycles (v−i, fij) and (v−′i, f ′ij) diUer by

the coboundary (dlog±ď)(fi), which shows that the isomorphism class of (L,

∆

) uniquely

determines the class [

∆

] ∈ H1(X,O×X) and vice versa. Tensoring Wat log connections cor-

responds to componentwise adding or respectively multiplying the representing cocycles.

This shows c). �

3.2.7 Remark

a) Pic(X) = LConn(ι̇dX), because Ω1
ι̇dX

= 0, so

Ω×,•ι̇dX
=
[
O×X → 0→ 0→ . . .

]
.

This is the reason to call LConn(f) the Picard group of the morphism f .

b) We will refer to the v−i associated to

∆

, as in the proof, as the discrepancy forms

of

∆

(with respect to the open aXne cover U trivialising L). The cocycle (v−i, fij)
representing the class of

∆

will be referred to as its discrepancy cocycle.

3.2.8 DeVnition

Let Y be a log scheme. A log scheme with Wat log connection over Y is a pair (f,

∆

), also

written f : (X,

∆

)→ Y , consisting of the following data:

a) A log smooth morphism of log fs log schemes f : X → Y ;

b) a Wat log connection

∆

on f .

The pair (f,

∆

) is called proper and log integral, if the morphism of log schemes f : X → Y

is proper and log integral.

A morphism (f ′,

∆′)→ (f,

∆

) of log schemes with Wat log connection over Y is a pair (h, ψ),

where

a) h : f ′ → f is a morphism of Y -log-schemes;

b) ψ : h∗

∆

→

∆′ is a morphism of Wat log connections on f , where h∗

∆

: h∗L →
h∗Ω1

f � h∗L.
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We denote the category of log schemes with Wat log connection over Y by LCSchY .

3.2.9 DeVnition

Let f0 : (X,

∆

) → Y be a log scheme with Wat connection and let i : Y → Y be a strict

closed immersion. A log smooth deformation of (f,

∆

) over i is a log scheme with Wat

connection f : (X , ∆)→ Y together with

a) a strict closed immersion î : X → X such that

X �
� î //

f0

��

X
f

��

Y �
� i // Y

is a log smooth deformation of the log scheme X ;

b) an isomorphism of Wat log connections î∗∆ ∼=

∆

.

In this case we will simply write î∗(f,∆) = (f0,

∆

) and say that we have a Cartesian

diagram

(X,

∆

) �
� î //

f0

��

(X , ∆)

f

��

Y �
� i // Y .

3.2.1 The log Atiyah complex of a Wat log connection

Let f : X → Y be a log smooth morphism of log schemes. The log Chern class dlog(L) of

the line bundle L of any Wat log connection

∆

on f is trivial, for if [

∆

] has a discrepancy

cocycle (v−i, fij), then the class dlog(L) is represented by (dlog fij) = ď(v−i), which is a

Čech-coboundary in Ω1
f .

This is equivalent to the Atiyah sequence splitting: In the Atiyah sequence

0→ OX
i−→ Af (L)

π−−→ Tf → 0

we denote the left splitting by s = s ∆: Af (L)→ OX and the right one by t = t ∆: Tf →
Af (L). On eachXi of an covering U trivialising L these homomorphisms are given by the

mappings

i : gi 7→ (gi, 0),

π : (gi, ϑi) 7→ ϑi,

t : ϑi 7→ (iϑi(v−i), ϑi) and

s : (gi, ϑi) 7→ gi − iϑi(v−i) = pr1(gi, ϑi)− t(pr2(gi, ϑi)),

where prk is the local projection to the k-th component.
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We deVne a morphism of complexes

dlog • : Ω×,•f → Ω≥1,•
f [1]

as follows: In degree 0 it is the map dlog : O×X → Ω1
f and in degrees p > 0 the map

(−1)pd : Ωpf → Ωp+1
f . (Observe that the complex Ω≥1,•

f [1] has the diUerential −d.)
Recall that LConn(f) = H1(Ω×,•f ). The image dlog •(

∆

) ∈ H1(Ω≥1,•
f [1]) of the class [

∆

]

of a Wat log connection will be called its log Chern class. We identify

H
1(Ω≥1,•

f [1]) = Ext1
Compf

(OX [0], Ω≥1,•
f [1]).

Composing dlog • with the maps

Ψ : Ext1
Compf

(OX [0], Ω≥1,•
f [1])→ Ext1

Compf
(Tf [0], Tf [0]�f−1OY Ω

≥1,•
f [1]),

which is induced by e 7→ ι̇dTf [0] �f−1OY e, and

Φ : Ext1
Compf

(Tf [0], Tf [0]�f−1OY Ω
≥1,•
f [1])→ Ext1

Compf
(Tf [0], Ω •f ),

which is induced by the evaluation i · ( · ) : Tf �f−1OY Ω
p+1
f → Ωpf , Vnally deVnes a map

Φ ◦ Ψ ◦ dlog • : H1(Ω×,•f )→ Ext1
Compf

(Tf [0], Ω •f ).

The codomain of this map is the set of isomorphism classes of short exact sequences of

complexes of OX -modules with f−1OY -linear diUerential of the form

0→ Ω •f → A • → Tf [0]→ 0.

For simplicity, we will write dlog • := Φ◦Ψ ◦dlog • and we will call the image dlog •(

∆

) of

[

∆

] in Ext1
f−1OY (Tf [0], Ω •f ) the log Atiyah extension of

∆

. The complex of OX -modules

with f−1OY -linear diUerential which is up to isomorphism uniquely determined by this

extension is called the log Atiyah complex of

∆

and denoted by A •f (

∆

). It may be construc-

ted as follows:

For p > 0, Apf (

∆

) = Ωpf , because the part of degree p of Tf [0] is zero. In degree 0

we identify A0
f |i = OXi � Tf |i, and two sections (gi, ϑi) and (gj , ϑj) over Xi and Xj ,

respectively, are equal onXij if and only if ϑi = ϑj and gj − gi + iϑi(dlog0(fij)), because

dlog •(

∆

) is given by the cocycle dlog •(v−i, fij) = (−dv−i, dlog fij) = (0, dlog fij).

So (A •f (

∆

), dA) is (up to isomorphism) the complex

A •f (L) : Af (L)
dA−−−→ Ω1

f
d−→ Ω2

f
d−→ . . . ,

where the Vrst diUerential is dA := d ◦ s ∆. This is due to the commutativity of the Vrst

squares of both morphisms in the exact sequence 0→ Ω •f → A • → Tf [0]→ 0.

Since the log Atiyah extension splits, we have short exact sequences

0→ H
i(Ω •f )→ H

i(A •f (

∆

))→ Hi(X,Tf )→ 0

for all i.
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3.2.2 The Lie derivative of a Wat log connection

Let f : X → Y be a log smooth morphism of log schemes and (L,

∆

) a Wat log connection

on f . For every p we deVne an f−1OY -linear map

Tf × (Ωpf �OX L)→ Ωpf �OX L

by the Lie derivative of

∆

, (ϑ, σ) 7→ ϑ

∆

(σ) :=

∆

(iϑσ) + iϑ(

∆

σ) giving an action of log

derivations on log forms with values in L.

This action is linked to the action of L-derivations by

a(σ) = s(a) · σ + π(a)

∆

(σ)

for any local section a of Af (L), where s is the splitting map Af (L) → OX and π the

projection Af (L)→ Tf .

3.2.3 The logarithmic Lie derivative

Let f : X → Y be a log smooth morphism of log schemes. We deVne an f−1OY -bilinear
map

· log · : Tf ×Ω×,•X → Ω×,•X

by the local mapping (ϑ, u •) 7→ ϑlog(u •) := dlog •(iϑ(u •)) + iϑ(dlog • u •). This means,

that for a local section ϑ = (ϑ,Θ) of Tf in degree 0 we have ϑlog u = iϑ(dlog u) = Θ(u),

in the Vrst degree ϑlog u = dlog(iϑ(u)) + iϑ(du) and in higher degrees ϑlog u = ϑ(u) is

just the Lie derivation of that degree. We call this pairing the logarithmic Lie derivative.

3.2.4 -Derivations

∆

Let f : X → Y be a log smooth log scheme and

∆

a Wat log connection f . For every

p, r ∈ N0 we deVne an f−1OY -bilinear map

Arf (

∆

)×Ωpf �OX L→ Ωp+rf �OX L, (a, σ) 7→ a(σ)

as follows:

For r = 0, let a(σ) be the action of the L-derivation a ∈ Af (L) on σ as deVned in 3.1.3.

For r > 1, we have Ar(

∆

) = Ωrf and we deVne a(σ) to be a ∧σ.

In relation to its action on forms, we refer to A •f (

∆

) as the complex of derivations extended

by

∆

or

∆

-derivations. Observe that if

∆

= d, then A •f (L) = Ω •X �Derf (OX)[0]. Observe

also that a(σp ∧σq) = π(a)(σp) ∧σq + σp ∧a(σq) for all p-forms σp and all q-forms with

values in L, σq (where π(a) = 0 for a ∈ Arf (

∆

), r > 0).

If σ is a Vxed

∆

-closed p-form with values in L (i. e.

∆

σ = 0), then the map bσ : A •f (

∆

)→
Ω •f �OX L[p], a 7→ a(σ) is a morphism of complexes, as seen in the following calculation.
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In degree 0 we have locally

∆

(a(σ)) =

∆

(gσ + ϑ(σ)) = dg ∧σ + d(ϑ(σ)) + v− ∧ϑ(σ)

= dg ∧σ + ϑ(dσ) + v− ∧ϑ(σ)

= dg ∧σ + ϑ(−v− ∧σ) + v− ∧ϑ(σ) = d(g − ϑ(v−)) ∧σ

= dA(a) ∧σ,

where a = (g, ϑ) in the local splitting Af (L) ∼= OX � Tf , and in higher degrees

∆

(a ∧σ) = da ∧σ + a ∧

∆

σ = da ∧σ.

A similar calculation shows that if a is a Vxed dA-closed

∆

-derivation of degree r, then

the map a( · ) : Ω •f �OX L → Ω •f �OX L[r], σ 7→ a(σ) is a morphism of complexes. For

general (non-closed) Vxed elements this is not the case.

3.3 Log symplectic schemes

3.3.1 DeVnition

Let f : X → Y be a log smooth morphism of log schemes and

∆

= (L,

∆

) a Wat log

connection on f . A logarithmically symplectic form ω on f of type

∆

is an element ω ∈
Γ (X,Ω2

f �OX L) such that

a)

∆

(ω) = 0;

b) ω induces an isomorphism i · (ω) : Tf → Ω1
f �OX L.

In other words, ω is an element ofH0(Ω≥2,•
f �OX L) the associated skew-symmetric pair-

ing Tf ∧OX Tf → L of which is non-degenerate at every point x of X . We say that a

logarithmic form ω of type

∆

= (OX , d) is of non-twisted type; if (L,

∆

) is not speciVed, it

is of generally twisted type or of general type for short.

3.3.2 Remark

As in the case of usual smooth symplectic schemes, the non-degeneracy of the pairing

Tf ∧OX Tf → L implies that f is necessarily equidimensional of even dimension dim(f) =

dim(X)− dim(Y ) = 2n.

Moreover, this property is equivalent to the line bundle Ω2n
f � L�n being generated by a

global section, namely by ω∧n.

Let U = {Xi} an open aXne covering trivialising L. On the level of Čech-cochains, a

log symplectic form ω is given by a collection (ωi), with ωi ∈ Γ (Xi, Ω
1
f ) satisfying the

following conditions:

a) ωi = fijωj ;
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b) dωi + v−i ∧ωi = 0;

c) ωi induces an isomorphism i · (ωi) : Tf |i → Ω1
f |i.

3.3.1 Non-twisted type

3.3.3 DeVnition

Let Y be a log scheme. A logarithmically symplectic scheme of non-twisted type over Y is a

pair (f, ω), also written f : (X,ω)→ Y , consisting of the following data:

a) A log smooth morphism of log fs log schemes f : X → Y ;

b) a log symplectic form ω on f of non-twisted type.

The pair (f, ω) is called proper and log integral if the morphism of log schemes f : X → Y

is proper and log integral. It is called simple if, moreover, ω generates the ring Γ (X,Ω •f )

as an Γ (Y,OY )-algebra.

A morphism (f ′, ω′) → (f, ω) of log symplectic schemes of non-twisted type over Y is a

morphism of Y -log-schemes h : X ′ → X such that h∗ω = ω′.

We denote the category of log symplectic schemes of non-twisted type over Y by LSnSchY .

3.3.4 DeVnition

Let f0 : (X,ω) → Y be a log symplectic scheme of non-twisted type and let i : Y → Y
be a strict closed immersion. A logarithmically symplectic deformation of non-twisted type

of (f0, ω) is a log symplectic scheme of non-twisted type f : (X , $) → Y together with a

strict closed immersion î : X → X such that

a) X �
� î //

f0

��

X
f

��

Y �
� i // Y

is a log smooth deformation of f0;

b) î∗$ = ω.

In this case we will simply write î∗(f,$) = (f0, ω) and say that we have a Cartesian

diagram

(X,ω) �
� î //

f0

��

(X , $)

f

��

Y �
� i // Y .

Let k be a Veld. Recall from 1.2.5 that the standard log point on Spec k is the spectrum of

the prelog ring κ : N0 → k, deVned by 0 7→ 1 and n 7→ 0 if n ≥ 1.
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3.3.5 DeVnition

A logarithmically symplectic variety of non-twisted type over a Veld k is a log symplectic

scheme f : (X,ω) → Specκ of non-twisted type, where Specκ is the standard log point

on Spec k, such that f : X → k is a variety in the usual sense (i. e.X is a reduced separated

Noetherian scheme and f is of Vnite type).

3.3.2 General type

3.3.6 DeVnition

Let Y be a log scheme. A logarithmically symplectic scheme (of general type) over Y is a

triple (f,

∆

, ω), also written f : (X,

∆

, ω)→ Y , consisting of the following data:

a) A log smooth morphism of log fs log schemes f : X → Y ;

b) a Wat log connection

∆

on f ;

c) a log symplectic form ω on f of type

∆

.

The triple (f,

∆

, ω) is called proper and log integral if the morphism of log schemes

f : X → Y is proper and log integral. It is called simple if, moreover, there exists a line

bundle L
1
2 with L = (L

1
2 )�2 and such that ω generates the ring Γ (X,

∧•
(Ω1

f � L
1
2 )) as

an Γ (Y,OY )-algebra.

A morphism (f ′,
∆′, ω′) → (f,

∆
, ω) of log symplectic schemes over Y is a pair (h, ψ),

where

a) h : X ′ → X is a morphism of Y -log schemes;

b) ψ : h∗

∆

→

∆′ is a morphism of Wat log connections on f such that ψ(h∗ω) = ω′.

We denote the category of log symplectic schemes (of general type) over Y by LSSchY .

3.3.7 Remark

We have a natural functor LSnSchY → LSSchY sending a log symplectic scheme of non-

twisted type (f, ω) to the log symplectic scheme (f, d, ω) and a morphism of log sym-

plectic schemes of non-twisted type h : (f ′, ω′) → (f, ω) to the morphism of log sym-

plectic schemes of general type (h, ι̇dd) : (f ′, d, ω′) → (f, d, ω). Observe, that this functor

is injective (on objects) and faithful (i. e. injective on morphisms), but in general not full:

In general there exist automorphisms of the trivial Wat log connection ψ : d → d on f be-

sides the identity. So given a morphism (h, ψ) : (f ′, d)→ (f, d) of log schemes with trivial

Wat connection over Y with ψ 6= ι̇dd and deVning ω′ := ψ(h∗ω), we have a morphism of

log symplectic schemes of twisted type (h, ψ) : (f ′, d, ω′) → (f, d, ω) not coming from a

morphism of log symplectic schemes of non-twisted type, although its source and target

come from log symplectic schemes of non-twisted type.

Hence LSnSchY is a subcategory of LSSchY , but in general not a full subcategory.
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3.3.8 DeVnition

Let f0 : (X,

∆

, ω)→ Y be a log symplectic scheme and i : Y → Y a strict closed immersion

of log schemes. A log symplectic deformation of (f0,

∆

, ω) over i (of general type) is a log

symplectic scheme f : (X , ∆,$) → Y together with a strict closed immersion î : X → X
such that

a) X �
� î //

f0

��

X
f

��

Y �
� i // Y

is a log smooth deformation of f0;

b) î∗∆ =

∆

;

c) î∗$ = ω.

In this case we will simply write i∗(f,∆,$) = (f0,

∆

, ω) and say that we have a Cartesian

diagram

(X,

∆

, ω) �
� î //

f0

��

(X , ∆,$)

f

��

Y �
� i // Y .

3.3.9 DeVnition

A log symplectic variety (of general type) over a Veld k is a log symplectic scheme

f : (X,

∆

, ω)→ Specκ (of general type), where Specκ is the standard log point on Spec k,

such that f : X → k is a variety in the usual sense (i. e. X is a reduced Noetherian scheme

and f is of Vnite type).

3.3.3 The T -complex

Let f : (X,ω)→ Y be a log symplectic scheme of non-twisted type. To the log symplectic

form ω ∈ H0(Ω≥2,•
f ) we associate the morphism

tω : Tf [0]→ Ω≥2,•
f [2]

which we deVne by the local mapping ϑ 7→ ϑ(ω) in degree 0 and the zero map elsewhere.

This morphism in turn deVnes an element

tω ∈ HomDb(Compf )(Tf [0], Ω≥2,•
f [2]) = Ext1

Db(Compf )(Tf [0], Ω≥2,•
f [1])

which is the isomorphism class (a distinct triangle in Db(Compf )) of short exact sequences

tω : 0→ Ω≥2,•
f [1]→ T • → Tf [0]→ 0.

of complexes ofOX -modules with f−1OY -linear diUerential, which we call the T -sequence

of ω.
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Here the complex in the middle, which we will refer to as the T -complex of ω, is, up to

isomorphism, the complex

T •f (ω) : Tf
tω−−→ Ω2

f
−d−−−→ Ω3

f
−d−−−→ . . . ,

with Tf sitting in degree 0 andΩp+1
f each in degree p. The maps of the sequence tω are the

obvious inclusion and projection, respectively. The diUerential dT of the complex is given

by the map tω in degree 0 and −d elsewhere (with the sign due to shifting).

Identifying Tf withΩ1
f by using the isomorphism Iω = i · (ω) : Tf → Ω1

f leads to a simpler

description of the T -complex: Under composition with I−1
ω the map tω : Tf [0]→ Ω≥2,•

f [2]

becomes simply −d : Ω1
f [0] → Ω≥2,•

f [2] due to the fact that tω(I−1
ω (τ)) = I−1

ω (τ)(ω) =

diI−1
ω (τ)(ω) = dIωI

−1
ω (τ) = dτ . The T -complex becomes T •f (ω) ∼= Ω≥1,•

f [1] and the

T -sequence becomes

−d : 0→ Ω≥2,•
f [1]→ Ω≥1,•

f [1]→ Ω1
f [0]→ 0.

In particular the T -sequence and the T -complex (up to isomorphism) are independent on

the symplectic form ω as soon as the latter exists.

3.3.4 The B-complex

Let f : (X,

∆

, ω) → Y be a log symplectic scheme of general type. Recall the deVnition

of the log Atiyah complex A •f (

∆

). Let L be the line bundle of

∆

. We associate to ω the

morphism of complexes

bω : A •f (

∆

)→ Ω≥2,•
f �OX L[2]

given by the action of

∆

-derivations as deVned in section 3.2.4.

We associate to this morphism via the identiVcation

HomDb(Compf )(A
•
f (

∆

), Ω≥2,•
f �OX L[2]) = Ext1

Db(Compf )(A
•
f (

∆

), Ω≥2,•
f �OX L[1])

an isomorphism class (a distinct triangle in Db(Compf )) of short exact sequences

bω : 0→ Ω≥2,•
f �OX L[1]→ B • → A •f (

∆

)→ 0

of OX -modules which we call the B-extension of ω.

The complex in the middle (or rather any representative of its isomorphism class) will be

called the B-complex of ω and denoted B •(f, ∆

)(ω) or B •f (ω) for short. It is a representative

of the cone of the morphism bω in the derived category Db(Compf ) and may be construc-

ted as the direct sumB0
f = 0�Af in degree zero andBp(ω) = (Ωp+1

f �OX L)�Apf (

∆

) for

p ≥ 1 together with the diUerential dB (which is not the direct sum of diUerentials) given

by dB(τ, σ) = (−

∆

τ − bω(σ), dA(σ)).
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A local description with respect to an open aXne covering U trivialising L is therefore

given by

Bpf |i(ω) := Bpf (ω)
∣∣∣
Xi

=

 0�Af |i(L) if p = 0

Ωp+1
f |i �Ωpf |i if p ≥ 1

where two sections (τi, σi) and (τj , σj) of B
p
f (ω) over Xi and Xj , respectively, are equal

on Xij if and only if σi = σj and fijτj − τi = 0.

We may again identify Tf with Ω1
f �OX L by using the isomorphism Iω = i · (ω) : Tf →

Ω1
f �OX L, which leads to a simpler description of the B-complex:

Recall that the log Atiyah extension of L splits. We have the following commutative dia-

gram

0 // Tf

Iω∼=
��

t // Af (L)

Φ ∆

,ω∼=
��

s //

π

ii OX //

i

jj
0

0 // Ω1
f � L // (Ω1

f � L) �OX //
oo OXoo // 0,

the Vrst row of which is the Atiyah extension read backwards through its splitting, the

maps in the second row of which are the natural inclusions and projections and the iso-

morphism Φ ∆

,ω : Af (L) → (Ω1
f � L) �OX is deVned as Φ ∆

,ω := (I ◦ p, s) with inverse

Φ−1∆

,ω = i ◦ pr2 + t ◦ I−1 ◦ pr1.

This gives us a simpler description of the log Atiyah complex of

∆

: DeVne A′ •f (

∆

) to be

the complex

A′ •f (

∆

) : (Ω1
f � L)�OX → Ω1

f → Ω2
f → . . . ,

where the zeroth diUerential is d ◦ pr2 and all other diUerentials d. Then Φ ∆

,ω induces an

isomorphism A′ •f (

∆

) ∼= A •f (

∆

); indeed dA = d ◦ s = (d ◦ pr2) ◦ Φ ∆

,ω .

So we may regard the B-extension as an extension of A′ •f (

∆

) by Ω≥2,•
f � L,

bω : 0→ Ω≥2,•
f � L

j−→ B •f (ω)
µ−−→ A′ •f (

∆

)→ 0

The isomorphism class in the triangulated category Db(Compf ) of this sequence is a dis-

tinguished triangle, because B •f (ω) represents the cone of the morphism bω . The next dia-

gram shows an excerpt of this triangle, into which we Vt the lower exact splitting sequence

from above; for better legibility, we write B := Bf (ω), Ω := Ωf etc.
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Ω1 � L

zz $$
B0

Φ ∆

,ω

∼=
//

s

$$
dB

��

A′ 0

d◦pr2

��

bω[1] //

::

zz

. . .

Ω1 � L

zz
−

∆

$$

t◦I−1 ..

O
d

$$

::

. . .
Φ ∆

,ω

∼=
// A′ 0

bω[1] //

−d◦pr2

��

zz

::

Ω2 � L
j //

−

∆

��

B1 µ //

dB

��

Ω1

d

��

∧ ω[1] // . . .

O
d

$$

::

. . .
µ // Ω1

∧ ω[1] //

−d
��

Ω3 � L
j //

−

∆

��

B2 µ //

dB
��

Ω2

d
��

∧ ω[1] // . . .

...
...

...
...

By tilting the upper part of this diagram to an “upright position” and erasing the A′ 0’s we

get the distinguished triangle

Ω1 � L
t◦I−1

//

−

∆

��

B0 s //

dB

��

O
·ω[1] //

d

��

. . .

. . .
s // O

·ω[1] //

d

��

Ω2 � L
j //

−

∆

��

B1 µ //

dB

��

Ω1
∧ ω[1] //

d

��

. . .

. . .
µ // Ω1

∧ ω[1] //

d

��

Ω3 � L
j //

−

∆

��

B2 µ //

dB

��

Ω2
∧ ω[1] //

d

��

. . .

...
...

...
...

which replaces bω by the morphism of complexes

ω̂ : Ω •f → Ω≥1,•
f � L[2], σ 7→ σ ∧ω

in HomCompf
(Ω •f , Ω

≥1,•
f � L[2]).

This leads to a simpler description of the isomorphism class of the complexB •f (ω): Clearly,

the isomorphism class ofB •f (ω) is the cone of the (class of the) morphism ω̂ in Db(Compf ).

Hence, we can replace our previous representative of B •f (ω) by the canonical representat-

ive B′ •f (ω) of this cone, which is given in each degree p ≥ 0 by Bpf = (Ωp+1
f �OX L)�Ωpf

and which has the diUerential dB deVned by dB(τ, σ) = (−

∆

τ − σ ∧ω, dσ).

Then Bpf = B′pf for p ≥ 1 and the “new” degree-zero module B′0f Vts into the above dia-

grams in place of B0
f , when replacing s by the natural projection q = s◦Φ ∆

,ω : B′0f → OX
and t ◦ I−1 by the natural inclusion j = Φ ∆

,ω ◦ t ◦ I−1 : Ω1
f � L→ B′0f .

Therefore, we have the short exact sequence

ω̂ : 0→ Ω≥1,•
f � L[1]→ B •f (ω)→ Ω •f → 0
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which corresponds to the element

ω̂ ∈ Ext1
Compf

(Ω •f , Ω
≥1,•
f � L[1]) = HomCompf

(Ω •f , Ω
≥1,•
f � L[2]).

3.4 Log Cartier divisors

LetX be a log scheme with log structure αX : MX → OX . For an open subscheme U ⊂ X
we set

Mdom
X (U) :=

{
m ∈ Γ (U,MX)

∣∣mx ∈Mdom
X,x ∀x ∈ U

}
,

whereMdom
X,x is the submonoid ofMX,x of non-absorbent-divisors. The presheaf U 7→

Mdom
X (U) is a subsheaf ofMX , denotedMdom

X , which consists of all sections which are

not zero divisors inMX . Then the localisation

U 7→ Γ (U,Mdom
X )−1Γ (U,MX)

is a presheaf on X . We denote byMrat
X the associated sheaf and call it the rational monoid

sheaf of X . Its subsheaf of invertible sections, denotedMrat×
X , equals (Mdom

X )rat×.

IfX carries the hollow log structure ι̇d : OX → OX , thenOdom
X is the monoid sheaf of non-

zero-divisors inOX . In this caseOrat
X equals the sheaf of rational functionsKX (considered

as a multiplicative sheaf of monoids) and Orat×
X its subsheaf of invertible elements K×X (cf.

[22]); for the trivial log structure ι : O×X → OX on X we have O×dom
X = O×X = O×rat

X =

(O×)rat×
X .

The localisationMX →Mgrp
X factors canonically viaMrat

X . IfX is a (unit-/quasi-)integral

log scheme, thenMrat
X = Mrat×

X is the associated group sheafMgrp
X of the log structure

sheaf (cf. Appendix A).

3.4.1 Log Cartier divisors and line bundles

Let X be a log scheme. Then the sheaf of units O×X acts regularly onMrat×
X as a sheaf of

subgroups. DeVningMrat×
X as the sheaf of O×X -orbits inMrat×

X we thus get a short exact

sequence

0→ O×X −→M
rat×
X

π−−→Mrat×
X → 0

of sheaves of groups.

3.4.1 DeVnition (cp. [29, III.1.1.7])

A logarithmic Cartier divisor onX is an element of the group LCar(X) := H0(X,Mrat×
X ).

We assign to each log Cartier divisor D the Vbre π−1(−D) under π : Mrat×
X → Mrat×

X

of its inverse −D, which is a subtorsor ofMrat×
X denotedMX(D)×. Its associated line

bundleMX(D)× �O×X OX , which is the OX -subbundle ofMrat×
X �O×X OX generated by

MX(D)×, is denotedMX(D).
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3.4.2 Remark

Let X be a log scheme and let D be a log Cartier divisor on X . Let (mi) be a Čech-0-

cocycle inMrat×
X with respect to an open covering U = {Xi} of X representing D. Then

the O×X -torsorMX(D)× is given by

Γ (U,MX(D)×) ={
m ∈ Γ (U,Mrat×

X )
∣∣∣mx ·mi,x ∈ O×X,x for all x ∈ U ∩Xi and all i

}
and we have isomorphisms MX(D)×|Xi = 1

mi
O×Xi → O

×
Xi

given by multiplication with

mi, for each i.

The line bundleMX(D) is given by

Γ (U,MX(D)) ={
m ∈ Γ (U,Mrat×

X �O×X OX)
∣∣∣mx ·mi,x ∈ OX,x for all x ∈ U ∩Xi and all i

}
and we have isomorphisms MX(D)|Xi = 1

mi
OX → OXi given by multiplication with

mi, for each i.

3.4.3 Proposition

The natural group homomorphism δX : LCar(X)→ Pic(X) in the long exact cohomology

sequence associated to the above short exact sequence assigns to each log Cartier divisor

D the isomorphism class of the line bundleMX(D) (respectively, the isomorphism class

of the O×X -torsorMX(D)×).

Proof: In terms of Čech-cocyles we can describe the map δX explicitly as follows: Let

(mi) be a 0-cocycle inMrat×
X representing D and let mi be a representative inMrat×

X

of mi for each i. Then the cochain (mi) is in general not a cocycle but on each Xij ,

fij := mim
−1
j is a unit. The 1-cochain (fij) in O×X clearly satisVes fijfjkf

−1
ik = 1 and

hence is a cocycle, deVning an isomorphism class of line bundles. If (m′i) is another cochain

of representatives, then m′i = fimi with units fi. But then f ′ij = fij
fj
fi
, so (f ′ij) and (fij)

diUer by a coboundary and deVne the same class in Pic(X).

Looking at the description of MX(D) (respectively, of MX(D)×) in 3.4.2, we see that

MX(D) (respectively, MX(D)×) belongs to that particular isomorphism class of line

bundles (respectively, of O×X -torsors).

Observe, that fij = mim
−1
j does not make (fij) a coboundary in O×X but only inMrat×

X .

This, of course, corresponds to the fact that Im(δX) = Ker(Pic(X)→ H1(Mrat×
X )). �

3.4.4 DeVnition

We denote by LCar0(X) ⊂ LCar(X) the kernel of the map δX , which equals the image

of H0(Mrat×
X ) → LCar(X), and we call it the group of principal log Cartier divisors.

Naturally, LCar0(X) is isomorphic to the cokernel H0(Mrat×
X )/H0(O×X) of the inclusion

H0(O×X)→ H0(Mrat×
X ).



56 CHAPTER 3. ADDITIONAL DATA

We say that two log Cartier divisors on X are linearly equivalent if their diUerence is

principal. The group of these equivalence classes is denoted

LCar(X) := LCar(X)/LCar0(X).

The morphism δX induces an injection δX : LCar(X)→ Pic(X).

3.4.5 DeVnition

LetX be a log scheme and letX ι̇d denote the log scheme with the same underlying scheme

X , but equipped with the hollow log structure. We write Car(X) := LCar(X ι̇d) and

Car(X) := LCar(X ι̇d). These are the classical groups of (ordinary) Cartier divisors (and

of their classes modulo linear equivalence, respectively) on X .

3.4.6 DeVnition

Let X be a log scheme. We call a log Cartier divisor eUective if it lies in LCar+(X) :=

H0(Mdom
X) ⊂ LCar(X).

For any log scheme X , the log structure αX descends to a well-deVned map αX : MX →
OX between the characteristic sheaves of αX and of the hollow log structure ι̇dX . Hence,

we have an induced map αX : LCar+(X) → H0(OX). If X is an integral scheme, then

this is a map between the eUective log Cartier divisors onX and its (usual) eUective Cartier

divisors Car+(X) = H0(Odom
X) = H0(OX). In general however, a map LCar+(X) →

Car+(X) does not exist, because α might map domainic sections ofMX to zero-dividing

sections of OX (but compare 3.5.7).

3.4.7 DeVnition

We will call those line bundles the isomorphism classes in Pic(X) of which lie in the sub-

group

Pic×(X) := Im(δX) = Im(δX) = Ker(Pic(X)→ H1(X,Mrat×
X ))

log Cartier.

3.4.8 Lemma

For every log Cartier line bundle L ∈ Pic×(X) there exists an isomorphism ψ : L|X× →
OX× over the log trivial locus X× of X (cf. 1.2.13).

Proof: Let L be log Cartier. Then it is equal toMX(D) for some log divisor D. Since

the restriction of D to the log trivial locus is trivial (because Mrat×
X |X× = 0), we have

L|X× = MX(D)|X× = O×X×(D|X×) = O×X×(0) = OX× , so L|X× and OX× are iso-

morphic. �

The converse is false in general. For example, take X = P1
k (with projective coordinates

z0 and z1) with the log structure being trivial on the aXne chart X1 = P1
k,z−1

1

and being

induced on the chart X0 = P1
k,z−1

0

by N0X0 → OX0 , n 7→ ( z1z0 )2n. Then X× = Xι
1. Let P
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be the point given by z1 = 0 in P1
k . ThenMX(n) = OX(2nP ) for n ∈ Z = H0(Mrat×

X ),

but also each of the non-log-Cartier line bundles OX((2m + 1)P ), m ∈ Z, allows an

isomorphism OX((2m+ 1)P )|X× ∼= OX× , because X× is aXne.

3.4.9 Lemma

Let X ′ → X ← X ′′ be a diagram of log schemes. There is a canonical group isomorphism

LCar(X ′ ×X X ′′) ∼= LCar(X ′)×LCar(X) LCar(X ′′).

Proof: Since the Vbred product (as presheaves) of sheaves is already a sheaf, we have

LCar(X ′×XX ′′) = H0(X ′×XX ′′,Mrat×
X′×XX′′) = H0(Mrat×

X′ )×
H0(Mrat×

X )
H0(Mrat×

X′′ ) =

LCar(X ′)×LCar(X) LCar(X ′′). �

3.4.10 Lemma

Let i : X → X be an inVnitesimal thickening of log integral log schemes. Then there is a

canonical isomorphism

LCar(X) ∼= LCar(X ).

Proof: By lemma 1.2.12, we haveMgrp

X
∼= i−1Mgrp

X . Since the underlying topological space

of X and X is the same, i−1 = ι̇d, thus LCar(X) = H0(X,Mgrp

X ) ∼= H0(X, i−1Mgrp

X ) =

H0(X ,Mgrp

X ) = LCar(X ). �

3.4.2 Log Cartier divisors and Wat log connections

Let f : X → Y be a morphism of log schemes. The log derivation dlog : MX → Ω1
f

extends canonically to dlog : Mrat
X → Ω1

f , due to the fact that, by deVnition, dlog factors

viaMgrp
X , hence viaMrat

X .

Regard the short exact sequence

0→ Ω×,•f →M •
f →Mrat×

X [0]→ 0

of complexes, where we deVne the rational unit complexM •
f as

M •
f : Mrat×

X → Ω1
f → Ω2

f → Ω3
f → . . .

with dlog : Mrat×
X → Ω1

f as its Vrst diUerential and d elsewhere.

This short exact sequence gives rise to a long exact sequence

0→ H
0(Ω×,•f )→ H

0(M •
f )→ LCar(X)

δf−−→ LConn(f)→ H
1(M •

f )→ . . . .

3.4.11 DeVnition

Let D be a log Cartier divisor. Let U = {Xi} be an open covering trivialising its associ-

ated line bundleMX(D). By remark 3.4.2 we have MX(D)|Xi = 1
mi
OX and we deVne

∆

( 1
mi
s) := 1

mi
(ds − sdlogmi) on Xi for each i. Since on Xij we have

∆

( 1
mj
fijs) =

fij
1
mj

(ds+ sdlog fij − sdlogmj) = 1
mi

(ds− sdlogmi) =

∆

( 1
mi
s), this deVnes a Wat log

connection

∆

: MX(D)→ Ω1
X �OX MX(D) on f , which we denote byMf (D).
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3.4.12 Proposition

The natural map δf in this long exact sequence assigns to each log Cartier divisor D the

isomorphism class of the Wat log connectionMf (D).

Proof: We may describe δf explicitly in terms of Čech-cocyles as follows: Let (mi) be a

0-cocycle inMrat×
X representingD and letmi be a representative inMrat×

X ofmi for each

i. Then the cochain (mi) induces units fij := mim
−1
j onXij and 1-forms v−i := −dlogmi

onXi. The 1-cochain (fij , v−i) inΩ×,•X clearly satisVes fijfjkf
−1
ik = 1, dlog fij−ď(v−i) = 0

and dv−i = 0 and hence is a cocycle deVning the isomorphism class of the Wat log connection

Mf (D). If (m′i) is another cochain of representatives, then m′i = fimi with units fi. But

then f ′ij = fij
fj
fi

and v−′i = v−i + dlog fi, so (f ′ij , v−
′
i) and (fij , v−i) diUer by a coboundary

and deVne the same class in LConn(X). From deVnition 3.4.11 we see thatMf (D) belongs

to that particular isomorphism class Wat log connections.

Observe, that though fij = mim
−1
j and v−i = −dlogmi do not make (fij , v−i) a cobound-

ary in Ω×,•X , they do in M •
f . This, of course, corresponds to the fact that Im(δf ) =

Ker(LConn(f)→ H1(M •
f )). �

3.4.13 DeVnition

We denote by LCar0(f) ⊂ LCar(X) the kernel of δf , which equals the image of

H0(M •
f ) → LCar(X), and call it the group of f -principal log Cartier divisors. Naturally,

LCar0(f) is isomorphic to the cokernelH0(M •
f )/H0(Ω×,•f ) of the inclusionH0(Ω×,•f )→

H0(M •
f ).

We say that two log Cartier divisors are f -linearly equivalent if their diUerence is f -

principal. We deVne

LCar(f) := LCar(X)/LCar0(f).

The map δf induces an injection δf : LCar(f)→ LConn(f).

Observe that we have to distinguish between principal and f -principal log Cartier di-

visors: Since H0(M •
f ) ⊂ H0(Mrat×

X ), every f -principal log Cartier divisor is principal,

i. e. LCar0(f) ⊂ LCar0(X), but in general not the other way round. Hence, we have a

canonical surjection LCar(f)→ LCar(X).

3.4.14 DeVnition

Wewill say that Wat log connections

∆

on f the isomorphism classes in LConn(f) of which

lie in

LConn×(f) := Im(H0(Mrat×
X )→ H

1(X,Ω×,•f )) = Ker(H1(X,Ω×,•f )→ H
1(M •

f ))

= Im(δf : LCar(f)→ LConn(f))

are log Cartier.

3.4.15 Lemma

For any Wat log Cartier connection

∆

on f there exists an isomorphism ψ :

∆

|X×(f) →
d|X×(f) over the is the semi-strict locus X×(f) of f (cf. 1.2.17).
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Proof: Let

∆

be a Wat log Cartier connection. There is a log Cartier divisor D ∈ LCar(X)

such that

∆

= M •
f (D). Then

∆

|X×(f) = M •
f (D)

∣∣∣
X×(f)

= M •
f

∣∣∣
X×(f)

(D|X×(f)) =

Ω×,•f |X×(f)
(0) = d|X×(f), thus there exists an isomorphism ψ :

∆

|X×(f) → d|X×(f). �

It is clear from the deVnition and the surjectivity of LCar(f)→ LCar(X), that the natural

map LConn×(f) → Pic×(X) is surjective. This means, that to every log Cartier line

bundleMX(D) there exists a Wat log Cartier connection with line bundleMX(D), namely

Mf (D).

3.4.16 Lemma

Given three morphisms of log schemesX
f−−→ Y

g−→ Z and a Wat log Cartier connection

∆

on f , there exists a Wat log Cartier connection ˜∆on g◦f which up to isomorphism restricts

to

∆

on f .

Proof: We have the given Wat log Cartier connection

∆

: L → Ω1
f � L which we want to

lift to a Wat log connection ˜∆: L̃→ Ω1
g◦f � L̃. By assumption,

∆

= Mf (D) ∈ LConn(f)

for a log divisor D ∈ LCar(X). But then we simply set ˜∆:= Mg◦f (D). By construction,

there is an isomorphism of line bundles ψ : L̃→ L and ˜∆is such that the diagram

L̃
˜∆

//

ι̇dL̃

��

Ω1
g◦f � L̃

· |f� ι̇dL̃
��

L̃
˜∆|f
//

ψ

��

Ω1
f � L̃

ι̇d�ψ
��

L

∆

// Ω1
f � L

commutes. �

3.5 Log structures associated to other structures

In this section we introduce natural log structures on (strict) normal crossing schemes. To

do this systematically, we Vrst collect results about the log structures associated to schemes

with open immersion and to schemes with Deligne-Faltings structure. Here, as in the

lecture notes of Ogus ([29]), the introduction of schemes with Deligne-Faltings structure

serves as a passage from log structures on schemes with open immersion to log structures

on normal crossing schemes. The chapter closes with a collection of results on (strict)

normal crossing schemes.

We assume all schemes to be Noetherian.
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3.5.1 The compactifying log structure on schemes with open im-
mersion

3.5.1 DeVnition

A scheme with open immersion X = (X, jX) is a pair consisting of a scheme X (without

log structure) together with an open immersion jX : UX → X of a non-empty subscheme

UX ⊂ X . We will always denote the reduced closed complement of jX(UX) in X by ZX
and its closed immersion by iX : ZX → X .

Amorphism of schemes with open immersion f : X → Y is a morphism of schemes f : X →
Y such that f ◦ jX : UX → Y factors over jY as f : UX → UY . We denote the category of

schemes with open immersion by OSch.

If S is a scheme, then (S, ι̇dS) is a scheme with open immersion. The inclusion functor

( · , ι̇d · ) : Sch → OSch makes Sch a full subcategory of OSch and is right adjoint to the

forgetful functor X 7→ X .

3.5.2 DeVnition

Let X = (X, jX) be a scheme with open immersion and let ιUX denote the trivial log

structure on the subscheme UX . The direct image log structure

(jX)×ιUX : (jX)×O×UX → OX

is called the compactifying log structure of X . It will be denoted αX and its log structure

sheafMX . The log scheme (X, X) deVned that way will be denoted X. If no confusion

is likely to arise, we will even denote this log scheme by X and its log structure by αjX or

simply αX .

Let f : X → Y be a morphism of schemes with open immersion. Then there is a canonical

morphism f  : X → Y  of log schemes with the same underlying morphism of schemes

deVned as f  = (f, f [), with f [ : MY  = jY×O×UY → f
×
MX = (f ◦ jX)×O×UX induced

by f ] : O×UY → f∗O
×
UX

.

3.5.3 Remark

Recall, that for an open immersion j : U → X we have injective maps j∗O×U → j∗OU and

OX → j∗OU , which implies, in particular, that αX is injective. Hence, in the literature

one Vnds the denotation j∗O×U ∩ OX for j×O×U = j∗O×U ×j∗OU OX (e. g. in [17, 4.9]).

Let X = (X,αX) be a log scheme. Then the pair Xo = (X,X× → X) is a scheme

with open immersion. Every morphism f : X → Y of log schemes induces a morphism of

schemes with open immersion fo : Xo → Y o, because f(X×) ⊂ Y ×.

So we have two functors

( · ) : OSch→ LSch, X 7→ X,
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and

( · )o : LSch→ OSch, Y 7→ Y o.

These are adjoint due to the following proposition.

3.5.4 Proposition ([29, III.1.6.2])

The natural map

HomLSch(X, Y )→ HomOSch(X,Y o), f 7→ fo,

is an isomorphism, where X ∈ OSch and Y ∈ LSch.

3.5.5 DeVnition

Let S be a scheme. A geometric point x ∈ S is called an associated point of S if mx consists

entirely of zero-divisors.

If S is reduced, then its only associated points are the generic points of its irreducible

components.

3.5.6 Proposition ([29, III.1.6.3])

Let X = (X, jX) be a Noetherian scheme with open immersion such that all associated

points of X are contained in UX . Then the compactifying log structure αX is integral

and there is an isomorphismMX
∼= ΓZX (Car+

X) (induced by αX : MX → OX ), where

ΓZX (Car+
X) denotes the sheaf of eUective Cartier divisors on X with support in ZX .

3.5.7 Corollary

Let X = (X, jX) be a Noetherian scheme with open immersion such that all associated

points of X are contained in UX . Then X induces an isomorphism

LCar+(X)→ H0(ΓZX (Car+
X)) =

{
D ∈ Car+(X)

∣∣ suppD ⊂ ZX
}
.

Hence, LCar(X) ∼= {D ∈ Car(X) | suppD ⊂ ZX}.

Again, deVning the compactifying log structure, the result depends on the choice of the

topology (Zariski- or étale) (cf. Ogus Remark III.1.6.4). However, we have the following

proposition.

3.5.8 Proposition ([29, III.1.6.5])

Let X = (X, jX) be a scheme with open immersion such that all associated points of X

are contained in U . Assume that the reduced complement Y of U is of pure codimension

1 and that all irreducible components of Y are regular. Then η : Xét → Xzar induces an

isomorphism

η×α(Xzar) → α(Xét) ,

where the log structures denote the compactifying log structures constructed with respect

to the Zariski and étale topology, respectively.
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3.5.9 Proposition ([29, III.1.9.1])

Let X = (X, jX) be a normal scheme with open immersion such that ZX is purely of

codimension 1 in X .

a) The stalks ofMX are Vnitely generated monoids, and they are free if X is locally

factorial.

b) Working with the Zariski topology: If X is locally factorial, then αX is a Vne log

structure.

c) Working with the étale topology: If X is locally factorial and if X admits an étale

covering e : X ′ → X such that each irreducible component of e−1(ZX) is unibranch,

then αX is a Vne log structure.

3.5.2 The Log structure associated to Deligne-Faltings schemes

3.5.10 DeVnition

A scheme with Deligne-Faltings structure or DF scheme X = (X, lX) (of size r) is a pair

consisting of a scheme X and an r-tuple lX = (lX,1, . . . , lX,r) of homomorphisms of line

bundles lX,i : LX,i → OX on X . We write LX := (LX,1, . . . , LX,r).

A morphism f : X → Y of Deligne-Faltings schemes (of size r) is a pair (f, f l) consisting of

a morphism of schemes f : X → Y and a family f l = (f l1, . . . , f
l
r) of morphisms of line

bundles f li : f∗LY,i → LX,i such that lX,i ◦ f li = f∗lY,i for all i = 1, . . . , r. We denote the

category of DF schemes of size r by DFSchr .

If S is a scheme, then (S, ι̇dOS ), where ι̇dOS stands for the r-tuple (ι̇dOS , . . . , ι̇dOS ), is a

DF scheme of size r. The inclusion functor ( · , ι̇dO · ) : Sch → DFSchr makes Sch a full

subcategory of DFSchr for each r and is right adjoint to the forgetful functor X 7→ X .

3.5.11 DeVnition

Let X = (X, lX) be a DF scheme. DeVne the sheaf L�
X by

Γ (U,L�
X ) :=

{
(n, s)

∣∣n ∈ Nr0, s ∈ Γ (U, (L�n
X )×)

}
,

where L�n
X := L�n1

X,1 � . . .� L�nr
X,r , and deVne the prelog structure

l : L�
X → OX

by lX(n, s) := l�nX (s) for a local section (n, s) of L�
X , where

l�nX = l�n1

X,1 � . . .� l�nrX,r : L�n
X → OX

is the tensor product of the homomorphisms lX,i. We denote the log structure associated

to lX by λX and call it the DF log structure on X . Its structure sheaf L�
X 5 O×X will be

denotedMXλ and the log scheme (X,λX) deVned that way Xλ.
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Let f : X → Y be a morphism of DF schemes. Then there is a natural morphism fλ : Xλ →
Y λ of log schemes with the same underlying morphism of schemes deVned as fλ =

(f, fλ[), with fλ[ : f×MY λ = f−1L�
Y 5 O×X → MXλ = L�

X 5 O×X induced by the

map f l : f−1LY → f∗LY → LX .

Let X be a DF scheme. For each i = 1, . . . , r there is a natural map l×X,i : L
×
X,i →MXλ =

L�
X 5 O×X , given locally by s 7→ (ei, s) � 1, where ei is the i-th generator of Nr0. Let IX,i

denote the ideal sheaf in OX which is the image of li : Li → OX . Then the diagram

L×X,i
� _

��

l×X,i
//MXλ = L�

X 5O×X

λX

��

LX,i
lX,i
// // IX,i

� � // OX

is commutative.

The image l×X,i(s) inMXλ of a local section s of L×X,i is actually independent of the choice

of s, because L×X,i is an O
×
X -torsor. Thus, for each i, all local images l×X,i(s) patch together

to form a global section of Γ (X,MXλ), which we denote by EX,i. By the following pro-

position λX is integral. Hence, EX,i ∈ Γ (X,MXλ) = LCar+(Xi). Moreover, the image

lX,i(s) of any local section s of L×X,i in IX,i is a generator for IX,i.

We write EX := (EX,1, . . . , EX,r) and IX := (IX,1, . . . , IX,r). The following proposition

is a reformulation of [29, III.1.7.3].

3.5.12 Proposition ([29, III.1.7.3])

Let X = (X, lX) be a DF scheme and let Xλ = (X,λX) be its associated DF log scheme.

Let EX and IX be as deVned above. Let Z[i] be the closed subscheme of X deVned by IX,i
for each i.

a) The log structure λX is integral and, for each i, there are natural isomorphisms

i) of O×X -torsors L×X,i →MXλ(−EX,i)×;

ii) of OX -modules LX,i →MXλ(−EX,i);

iii) of OX -modules IX,i ∼= (EX,i), where (EX,i) denotes the principal ideal sheaf

in OX deVned by λX(EX,i) in OX (compare remark 3.4.2).

b) Let a : Nr0X →MXl be the monoid homomorphism deVned by mapping ei 7→ EX,i.

Then locally on X , a lifts to a chart a : Nr0X → MXl . For each x ∈ X , the stalk

MXl,x is freely generated by the images of thoseEX,i with λX(EX,i)x = 0 inOX,x.

c) Let Z =
⋃
i Z[i] and denote ν : Zν → Z with Zν =

⊔
i Z[i] the normalisation of Z .

Let U be the open complement of Z in X and (X, j : U → X) the corresponding

scheme with open embedding. Then there is a natural morphism of log structures

λX → αX ,
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where αX is the compactifying log structure of the scheme with open embedding

(X, j : U → X).

d) Suppose that X is normal, that all lX,i are injective and that each Z[i] is integral

(respectively, geometrically unibranch). Then in the Zariski (in the étale) topology

the morphism λX → αX is an isomorphism. In particular, the map

MXλ → ν∗N0Zν , EX,i 7→ 1Z[i]

is an isomorphism.

3.5.13 Remark

The concept of DF schemes as deVned above was independently introduced by G. Faltings

and P. Deligne. In a letter to L. Illusie (as reported by Illusie himself in [14, Letter of 1988])

Deligne deVnes a generalised divisor on a scheme X to be a line bundle L on X with an

OX -linear map u : L → OX . Such generalised divisors then lead to log structures on the

scheme. Faltings introduces the same concept in [7], calling it logarithmic structure. We

have referred to these objects as Deligne-Faltings structures following A. Ogus.

3.5.3 Strict normal crossing schemes and logarithmic structures of
semi-stable type

(Strict) normal crossing schemes over a Veld k arise as limits of smooth varieties in deform-

ation processes. As such, they naturally carry speciVc log structures, namely log structures

of embedding type or even of semi-stable type. These arise from restricting the log struc-

ture of the total space of a deformation as a scheme with open immersion, where the open

subset consists of the unity of the smooth Vbres, to the singular normal crossing Vbre.

3.5.14 DeVnition

Let V be a regular scheme. A strict normal crossing divisor in V is a closed reduced sub-

scheme X ⊂ V such that at every geometric point x ∈ V there exists a regular sequence

(t1, . . . , tm) generating the maximal ideal of OV,x and a number r(x) ∈ N0 such that the

element t1 · . . . · tr(x) generates the ideal of X in OV,x.

3.5.15 DeVnition

A scheme X is called a strict normal crossing scheme if for every geometric point x ∈ X

there exists an open/étale neighbourhood ex : Ux → X of x together with an embedding

ix : Ux → Vx of Ux into a regular scheme Vx, such that Ux is a strict normal crossing

divisor in Vx. Such a pair (ex, ix) is called an SNC coordinate system for X at x. We will

writeWx := Vx\Ux for the complement ofUx in Vx and we will denote its open embedding

by jx : Wx → Vx.

In the Zariski topology, more generally, X is called a normal crossing scheme if there exists

an étale covering e : X ′ → X such that X ′ is a strict normal crossing scheme.
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Let V be a regular scheme with strict normal crossing divisor X =
⋃
iX [i] and denote

the inclusion i : X → V . Let j : W → V denote the open immersion of the complement

W of X in V and let αV : MV → OV be the compactifying log structure associated to

the scheme with open immersion (V , j). Since V is normal, αV is isomorphic to the DF

log structure λV associated to the injections lX,i : IX[i]
→ OV of the ideal sheaves of the

X [i] ⊂ V . Therefore by 3.5.12, locally at each point x of V in which r(x) components of

X meet we have a chart a : N
r(x)
0V →M and globally an isomorphismMV

∼= i∗ν∗N0Xν ,

where ν : Xν → X is the normalisation of X .

Since onW the log structure αV is trivial, both sides of the isomorphism vanish outside of

X . Hence, the same isomorphismM∼= ν∗N0Xν holds onX , replacing αV by its restriction

to X , αX := i×αV = i×j×ιW . This log structure αX is isomorphic to the DF log structure

λX of the restricted maps i∗Ii → OX (compare to the introduction of section 1.8 in [29]).

Let X be a strict normal crossing scheme. By ν : Xν → X we denote its normalisation,

where Xν is the disjoint union of the irreducible components X[1], . . . , X[m] of X , each of

which is regular.

For each j = 1, . . . ,m and k 6= j we let

X [j] :=
⋃
k 6=j

X[k], D[j] := X[j] ∩X [j],

X[jk] := X[j] ∩X[k], X [jk] := X [j] ∩X [k], D[jk] := X[jk] ∩X [jk], etc.

We put D :=
⋃
j D[j] =

⋂
j X

[j] =
⋃
X[jk] ⊂ X and (by abuse of notation) Dν :=

ν−1(D) =
⊔
j D[j] ⊂ Xν . Classically, D ⊂ X is called the double locus of X (cf. [11, 1.7]).

3.5.16 Lemma ([11, 1.8, 1.10 & 1.11]; in this form: [29, III.1.8.2])

LetX be a strict normal crossing scheme with normalisationXν = X[1]t . . .tX[m]. Then

(for each index j)

a) D[j] is a Cartier divisor in both X[j] and X [j].

b) The ideal sheaf I[j] := IX[j]⊂X ⊂ OX is annihilated by the ideal sheaf I [j] :=

IX[j]⊂X ⊂ OX and can be identiVed with the ideal sheaf ID[j]⊂X[j] ⊂ OX[j] .

c) The ideal sheaf I [j] is annihilated by the ideal I[j] and can be identiVed with the ideal

sheaf ID[j]⊂X[j]
⊂ OX[j]

.

d) Each I[j]
∣∣
D
is an invertible sheaf of OD-modules, as is OD(−X) :=

⊗
j I[j]

∣∣
D
.

e) If X → V is a (global) SNC coordinate system on X , then OV (−X)|D ∼= OD(−X)

(hence, the symbol OD(−X)).
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3.5.17 DeVnition ([11, 1.9])

The sheaf OD(−X) :=
⊗

j I[j]
∣∣
D

is called the inVnitesimal conormal bundle of D in X .

The inVnitesimal normal bundle of D in X is its dual on D, denoted OD(X).

3.5.18 Remark

Observe, that OD(−X) is not the usual conormal sheaf ND⊂X : Take for example X =

SpecC[x, y]/(xy). Then its components X[1] and X[2] have the ideals generated by x and

by y, respectively, and D has the ideal (x, y). Hence the usual conormal sheaf is given as

the quotient (x, y)/(x, y)2 = OD〈x, y〉 and hence not a line bundle, while the line bundle

OD(−X) = I[1]

∣∣
D
� I[2]

∣∣
D
is given by (x)/(x2)� (y)/(y2) = OX〈xy〉.

3.5.19 Theorem ([29, III.1.8.3], cp. [17, 11.7], [21, 1.1])

LetX be a strict normal crossing scheme with normalisationXν = X[1]t . . .tX[m]. Then

the following categories are naturally equivalent:

a) The category of log structures α on X such that α : Mα → OX induces an iso-

morphismMα
∼= ν∗N0Xν (cf. proposition 3.5.12 d);

b) the category of tupels of pairs ((L1, l1), . . . , (Lm, lm)) of line bundles on X with

isomorphisms lj : Lj |X[j] → I[j];

c) the category of tupels of pairs ((L′1, l′1), . . . , (L′m, l′m)) of line bundles L′j on X[j]

with isomorphisms l′j : Lj |D[j]
→ I[j]

∣∣
D[j]

;

d) the category of pairs (L, l) of a line bundle L on X with an isomorphism l : L|D →
OD(−X).

3.5.20 DeVnition

Let X be a strict normal crossing scheme. Then a log structure α on X is called a log

structure of embedding type if for every point x inX there exists an SNC coordinate system

ex : Ux → X such that we have an isomorphism e×xα→ i×xjx×ιWx .

In this case, the log scheme X = (X,α) is called a strict normal crossing scheme of embed-

ding type.

3.5.21 Corollary

Let X be a strict normal crossing scheme. Then a log structure α is of embedding type if

and only if étale-locallyMα
∼= ν∗N0Xν .

Proof: This follows from the proof of 3.5.19 in [29, III.1.8.3]: Given an isomorphismMα
∼=

ν∗N0Xν , α itself is isomorphic to the log structure associated to the DF structure (X, lX)

given by the natural maps lX,i : Mα(−Ei) → (Ei) ⊂ OX , where Ei ∈ H0(X, ν∗N0Xν )

is the i-th generator. On the other hand, any such log structure of embedding type induces

an isomorphismMα
∼= ν∗N0Xν . �
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3.5.22 DeVnition ([17, 11.6], cp. [29, III.1.8.7])

Let X be a strict normal crossing scheme. Then a log structure α on X is called a log

structure of semi-stable type if α is of embedding type and if there exists a homomorphism

of sheaves of monoids ˆdiag : N0X →Mα such that

N0X

ˆdiag

��

diag

""

Mα
//Mα

∼= ν∗N0Xν

commutes.

IfX is a k-scheme, then the homomorphismN0X →Mα induces a log smooth morphism

f : (X,α) → Specκ the underlying morphism f of which is the k-scheme structure of X

and such that f [ = ˆdiag · ι̇dk× : N0 � k× →Mα, where Specκ is the standard log point

on Spec k.

This morphism f : (X,α) → Specκ of log schemes is then called a strict normal crossing

log scheme of semi-stable type over k or simply an SNC log scheme.

Recall that the logarithmic rank `X(x) of X at a point x ∈ X is deVned to by the rank of

Mgrp

X,x and that the leniency of f at a point x ∈ X is deVned to be the rank ofMgrp

f,x . The

logarithmic locus LLoc(X) of X is the reduced closed complement of the log trivial locus

X× and the lenient locus LLoc(f) of f is the reduced closed complement of X×(f) (cf.

deVnitions 1.2.14 and 1.2.18).

3.5.23 Corollary

Let f : (X,α)→ Specκ be an SNC log scheme. Then, if `X denotes the logarithmic rank of

X and `f the leniency of f , for every geometric point x of X , we have `X(x) = `f (x) + 1

and this number is equal to the number of irreducible components r(x) of X containing

x. It follows, that the double locus D is equal to the lenient locus LLoc(f) of f , to the

logarithmic locus of X of order ≥ 2, to the non-normal locus NonN(X) of the scheme X ,

and to the singular locus SingX of X .

3.5.24 Proposition ([17, 11.7], [29, III.1.8.8])

IfX is a strict normal crossing scheme over k, then givingX a log structure of semi-stable

type is equivalent to giving an isomorphism ϕ : OD → OD(−X).

3.5.25 Corollary

Let f : X → Specκ be an SNC log scheme. Then f is log smooth.

Proof: This is essentially example 1.2.1 from chapter 1:

Étale locally at a point x ∈ X where r components of X meet we have by deVnition

the diagonal morphism diag : NX0 → N
r(x)
0X as a chart for f with Ker(diaggrp) = 0

and Cok(diaggrp) = Zr(x)/diag(Z). This implies that k(x) �Z Ker(diaggrp) = 0 and
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k(x) �Z (Cok(diaggrp))tors = 0. The strict morphism of log schemes X → Aκ[N
r(x)
0 ] is

smooth (even étale), because its underlying morphism is the isomorphism of schemes

Spec k[z1, . . . , zr(x)]/(z1 · . . . · zr(x))→ Spec k ×Spec k[N0] Spec k[N
r(x)
0 ]

étale locally. Hence, by the criterion for log smoothness 1.2.35, f is log smooth. �

3.5.26 DeVnition

Let k be a Veld and κ the standard log point on k. An SNC log symplectic scheme is a

log symplectic scheme f : (X,

∆

, ω) → Specκ such that f : X → Specκ is an SNC log

scheme. Analogously we deVne the terms SNC log scheme with line bundle and SNC log

scheme with Wat log connection.

An SNC log variety is an SNC log scheme, such that f : X → k is a variety in the usual sense.

Analogously we deVne the terms SNC log variety with line bundle, SNC log variety with Wat

log connection and SNC log symplectic variety.

3.6 Log Cartier divisors on SNC log varieties

3.6.1 Regular varieties with SNC divisors

Before looking at SNC log schemes, let Vrst (X, jX) be a regular variety with open im-

mersion such that ZX is a strict normal crossing divisor and let X = (X,αX) denote its

associated log scheme with compactifying log structure. We write Z[1], . . . , Z[m] for the

irreducible components of ZX .

The log structure αX : MX → OX is an injective morphism of sheaves of monoids (cf.

remark 3.5.3) and has the characteristic sheaf MX = iX∗ν∗N0Zν , the group of global

sections of which is H0(MX) =
⊕m

i=1N0 · Z[i]
∼= Nm0 , where we write Z[i] for the

generator of the i-th component.

Étale-locally, this log structure admits a chart
⊕m

i=1N0 ·Z[i] → OX , mapping the generator

Z[i] to some local equation zi for Z[i] as a subscheme of X . Since each of the

Z[i] is Cartier in the usual sense, each of the zi is a local element of the sheaf Odom
X of

non-zero-divisors in OX . Hence, the log structure αX factorises into injective morphisms

MX → Odom
X → OX , inducing an injective morphism of sheaves of groups

αgrp : Mgrp
X → (Odom

X )grp.

Since αX is an integral log structure (cf. proposition 3.5.9), we haveMX = Mdom
X , thus

Mgrp
X = Mrat×

X , and since X is a regular scheme, Odom
X = Orat×

X = K×X . So there is a
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commutative diagram of sheaves of groups with exact rows

1 // O×X //Mgrp
X� _

αgrp

��

//Mgrp

X� _

αgrp

��

// 1

1 // O×X // K×X // K×X // 1,

implying that the homomorphism δX : LCar(X) → Pic(X) assigning to each log Cartier

divisor D the line bundleMX(D) factorises as LCar(X)
αgrp

−−−−→ Car(X)
δX−−−→ Pic with

the Vrst map being injective, where δX assigns to each Cartier divisor (in the usual sense)

D the line bundle OX(D).

Moreover, we have a commutative diagram

MX� _

α

��

// //MX� _

α

��

Odom
X

// // Odom
X ,

where the objects on the right are the quotients of the objects on the left by the free action

of O×X . This implies that, analogously to just above, the restriction H0(MX) → H1(O×X)

of δX to eUective log Cartier divisors factorises injectively via the eUective Cartier divisors

on X (in the usual sense) H0(Odom
X ).

Having denoted the monoid generators of LCar+(X) = H0(MX) by Z[i], the group

LCar(X) is generated by the Z[i] as an Abelian group, hence, LCar(X) =
⊕m

i=1 Z ·Z[i]
∼=

Zm. It is clear from the description of the injective morphisms α and αgrp that Z[i] is

mapped to the eUective Cartier divisor Z[i] by the Vrst map in the factorisation of δX . In

particular, we may conclude the following, the Vrst part of which is just a special case of

corollary 3.5.7:

3.6.1 Proposition

Let (X, jX) be a regular variety with open immersion such that ZX is a strict normal

crossing divisor and letX = (X,αX) denote its associated log scheme with compactifying

log structure. Then

a) LCar+(X)→
{
D ∈ Car+(X)

∣∣ suppD ⊂ ZX
}
, induced byZ[i] 7→ Z[i], is a monoid-

isomorphism.

b) LCar(X) → {D ∈ Car(X) | suppD ⊂ ZX}, induced by Z[i] 7→ Z[i], is a group-

isomorphism.

In particular, for any a = (a1, . . . , am) ∈ Zm the line bundles MX(
∑m
i=1 aiZ[i]) and

OX(
∑m
i=1 aiZ[i]) are equal.

Regarding such X as a log smooth variety f : X → Spec kι over the point with trivial log

structure, we may ask for the log Cartier connections on f .
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We regard again the étale-local chart
⊕m

i=1N0 ·Z[i] → OX , Z[i] 7→ zi, from above. Writing

v− := −dlog zi := −dlog(Z[i]), the log Cartier connection Mf (Z[i]) is in this chart given

as d + v− for the local trivialisationMX(Z[i]) = 1
zi
OX . Considering this line bundle as a

subsheaf 1
zi
OX ⊂ KX , the log connection

∆

is nothing but the diUerential d rationally aug-

mented by the “quotient rule” and restricted to this subsheaf:

∆

( 1
zi
s) = 1

zi
(ds − sdlog zi)

for any local section s of OX (cp. deVnition 3.4.11). The same applies accordingly to a

general log Cartier connectionMf (
∑m
i=1 aiZ[i]) =

⊗m
i=1Mf (Z[i])

� ai .

Now, let f : X → C be a Wat morphism of schemes with C a regular open subscheme of

a curve and X regular. Let P ⊂ C be a closed point and assume that Z := f−1(P ) is

a strict normal crossing divisor in X . Giving both schemes C and X the compactifying

log structure αC and αX , respectively, associated to the open immersion C \ P → U and

X \ Z → X , respectively, and deVning X := (X,α) and C := (C,αC), turns f into a

morphism of log schemes f : X → C .

Since Z is a Vbre in the Wat family f : X → C , we have OX(Z) = OX . Due to the

fact that Z is a strict normal crossing divisor,MX(Z) = OX , too, in this situation. Let

∆

= MX(Z) denote the Wat log connection on f associated to the log Cartier divisor Z .

Since it hasMX(Z) = OX as line bundle, we may write

∆

= d + v− for some (global)

1-form v− ∈ Γ (X,Ω1
f ).

A global equation z ∈ Γ (X,OX) for the divisor Z is given by the image f ](p) of an

equation p ∈ Γ (C,OC) for the point P in C under f ] : f−1OC → OX . Hence, v− =

−dlog z = −dlog(f ]p) = 0 as a log diUerential relative to f and hence, Mf (Z) is the

trivial Wat log connection (OX , d).

3.6.2 SNC log varieties

From now on, let f : X → Specκ be an SNC log variety and denote by X[1], . . . , X[m] its

irreducible components and by ν : Xν → X its normalisation. Then étale-locally, αX is

the compactifying log structure αV of an SNC coordinate system V (with Cartier divisor

X) restricted to X . Therefore, LCar(X) =
⊕m

i=1 Z ·X[i].

We regard the i-th component X[i] of X , which is a regular scheme of Vnite type over

k containing the Cartier divisor D[i] =
⋃
j 6=iX[ij]. Denoting the closed immersion by

i′ : D[i] → X[i] and the open immersion of its complement by j′ : X[i] \ D[i] → X[i], one

log structure on X[i] is the compactifying one associated to j′, which we denote by α′X[i]

and which has the characteristic sheaf i′∗ν′∗N0Dν
[i]
, where we write ν′ : Dν

[i] → D[i] for the

normalisation of D[i].

This log structure is, however, not equal to the log structure αX[i]
ofX[i] as a log subscheme

of X . Nevertheless, these two log structures are related as follows:
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The diagram

ν−1(X[i]) =
⊔
j 6=iX[ij] tX[i]

iνi //

ν|...
��

Xν

ν

��

X[i]
ii // X

is Cartesian with ν proper. Therefore, by proper base change, the characteristic sheaf of

αX[i]
which is the restriction ofMX = ν∗N0Xν to its i-th componentX[i], is i

−1
i ν∗N0Xν =

ν|...∗ i
ν−1
i N0Xν = N0 � i′−1ν′∗N0Dν

[i]
. Hence, its log Cartier divisors are LCar(X[i]) =

Z · X[i] �
⊕

j 6=i Z · X[ij] = Z �
{
D ∈ Car(X [i])

∣∣∣ suppD ⊂ D[i]

}
, where we write X[i]

for the monoid generator of the constantN0-summand ofMX[i]
.

We know from the Vrst part of this section that the line bundleMX[i]
(X[ij]) is equal to

OX[i]
(X[ij]). But we also know, which line bundle is the image of the generator X[i] of

the constant Z-part: Due to the fact thatMX(X) = MX(
∑m
i=1X[i]) = OX , we have

MX(X[i]) =MX(−
∑
j 6=iX[j]) which restricts on X[i] to

MX[i]
(X[i]) =MX[i]

(−
∑
j 6=i

X[ij]) = OX(−
∑
j 6=i

X[ij]).

In an étale-local SNC coordinate system X ⊂ V , the line bundleMX[i]
(X[i]) is equal to

MV (X[i])
∣∣
X[i]

= OV (X[i])
∣∣
X[i]

= NX[i]⊂V , the normal bundle of X[i] in the ambient

scheme V .

So we may write down the map δ[i] : LCar(X[i])→ Pic(X) explicitly as

aiX[i] +

m∑
j 6=i

ajX[ij] 7→ MX

(
aiX[i] +

m∑
j 6=i

ajX[ij]

)
= OX[i]

(∑
j 6=i

(aj − ai)X[ij]

)
.

Analogously, δ f |X[i]
: LCar(X[i])→ LConn(X) is given by

aiX[i] +

m∑
j 6=i

ajX[ij] 7→Mf |X[i]

(
aiX[i] +

m∑
j 6=i

ajX[ij]

)
.

We may explicitly describe the log Cartier connectionsM f |X[i]
(X[ij]) just as in the Vrst

part of this section as being rationally augmented versions of d. The log Cartier connec-

tion

∆

[ii] := M f |X[i]
(X[i]) is simply the inverse Wat log connection of the tensor product⊗

j 6=iM f |X[i]
(X[ij]). It therefore may be described as follows:

In the étale-local SNC coordinate system as above, we may write the line bundle of

∆

[ii] in

the form NX[i]⊂V = (
∏
j xj)OX[i]

⊂ KX[i]
. Then, in this chart, v− = −dlogX[i], hence,

∆

[ii]((
∏
j xj)s) = (

∏
j xj)(ds +

∑
j sdlog xj). So again,

∆

is nothing but the diUerential

d rationally augmented and restricted to the subsheaf.
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4 Log symplectic deformation theory
Recall the deVnition of the category LArtT given in chapter 2. From now on, we work in

a more speciVc setting. Let T be a complete Noetherian k-algebra with quotient Veld k of

characteristic 0. Let T : Q → T be a precise prelog ring over T and give k the prelog ring

structure κ : Q → k deVned by composing T with the canonical projection T → k. The

monoid homomorphism % of chapter 2, section 2.2.1 is then the identity map Q→ Q (with

Q′ = Q). This means in particular, that for every A ∈ ArtT the Vbre v−1(A) consists of

elementsAwhich are all isomorphic (as elements in LArtT ) and up to unique isomorphism

given by the composition of T with the structure homomorphism ϕA : T → A.

4.0.2 Corollary

In the setting just described, we may remove the term “pseudo-” from all statements about

functors of log Artin rings of chapter 2, section 2.2. Compare remark 2.2.14.

4.1 Deformation functors

4.1.1 The log symplectic deformation functor and related functors

Let f0 : X → Specκ be a log smooth morphism of log fs log schemes. Recall from chapter 2,

section 2.3 the deVnition of its functor of log smooth deformations, Deff0
: LArtT → Set.

Let L (respectively,

∆

) denote a line bundle (respectively, a Wat log connection) on X (re-

spectively, on f0). Analogously to the deVnition of Deff0
, we denote by Def(f0,L) (re-

spectively, by Def(f0,

∆

)) the functor of isomorphism classes of inVnitesimal log smooth

deformations of the log scheme with line bundle (f0, L) (respectively, of the log scheme

with Wat log connection (f0,

∆

)).

Moreover, we denote by Def(f0,ω) (respectively, by Def(f0,

∆

, ω)) the functor of isomorph-

ism classes of inVnitesimal log smooth deformation of non-twisted type of the log sym-

plectic scheme (f0, ω) (of general type of the log symplectic scheme (f0,

∆

, ω)).

We will refer to each of these functors simply as the deformation functor of the respective

kind of object.

Given a log symplectic scheme (f0,

∆

, ω) over Specκ, with

∆

= (L,

∆

), there is an obvious

chain of forgetful morphisms of functors, each neglecting one part of the data,

Def(f0,

∆

, ω) → Def(f0,

∆

) → Def(f0,L) → Deff0

and given a log symplectic scheme of non-twisted type (f0, ω) over Specκ, we have a

forgetful morphism Def(f0,ω) → Deff0
plus an obvious morphism Def(f0,ω) → Def(f,d,ω),

given as [f,$] 7→ [f, d,$]. This last morphism makes Def(f0,ω) a subfunctor of Def(f,d,ω):

It is clearly injective on objects and since for any ϕ : A′ → A we have ϕ∗d = d, the

restriction of the map Def(f,d,ω)(ϕ) to Def(f,ω)(A′) is Def(f,ω)(ϕ).

73
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4.1.2 The local Picard functor and related functors

Let f : X → Spec T be a log smooth log scheme over T with X a log fs log scheme. For

each log Artin ringA ∈ LArtT we denote by XA the scheme X ×Spec T SpecA and by fA
the canonical morphism XA → SpecA, which is log smooth by base change. We write X

for Xκ and f0 for fκ and we will refer to XA and fA as the trivial deformation with respect

to f over A of X and f0, respectively.

Given a line bundle L on f0, we denote by DefL|f the functor of log Artin rings which

assigns to eachA the set DefL|f (A) of isomorphism classes of line bundles L on the trivial

deformation fA overA together with an isomorphism L�A k ∼= L. Due to the fact that the

log smooth log scheme fA has the underlying scheme XA = X ×SpecT SpecA, we have

an equality DefL|f (A) = PicL(A), where PicL denotes the local Picard functor of L on

X/ SpecT (cf. [31, 3.1], [32, 3.3.1]). For this reason we call DefL|f the local (logarithmic)

Picard functor of L on f .

Given a Wat log connection

∆

on f0, we denote by Def ∆

|f the functor of log Artin rings

which assigns to each A the set Def ∆

|f (A) of Wat log connections ∆ on the trivial defor-

mation fA over A together with an isomorphism ∆ �A k ∼=

∆

. We call this functor the

local Wat logarithmic connection functor of

∆

on f .

Assume, that there is a line bundle L on X given. We denote by LA the element L �T A
and we write L for Lκ. Then for every A ∈ LArtT , we have LA ∈ DefL|f (A) and we call

LA the trivial deformation with respect to f of L over A.

Analogously, assume that there is a Wat log connection∆ on f given. We denote by∆A =

(LA, ∆A) the element given by the restriction ∆A : LA → Ω1
fA

�OXA LA, ∆A([s]) =

[∆(s)]. Observe that Ω1
fA
∼= Ω1

f �T A by base change. We write

∆

= (L,

∆

) for ∆κ and

we call∆A ∈ Def ∆

|f (A) the trivial deformation with respect to f of

∆

over A.

Given a log symplectic form ω (of general type) on f0 : (X,

∆

) → Specκ, we denote by

Defω|(f,∆) the functor which assigns to each A the set Defω|(f,∆)(A) of log symplectic

forms $ on the trivial deformation (fA, ∆A) over A such that $ �A k = ω. We call this

functor the local logarithmic symplectic form functor of ω on (f,∆).

Given a log symplectic form ω of non-twisted type on f0, we denote by Defω|f the functor

which assigns to each A the set Defω|f (A) of log symplectic forms $ of non-twisted type

on the trivial deformation fA overA such that$�A k = ω. This functor is called the local

non-twisted logarithmic symplectic form functor of ω on f .

Each of these functors of type DefF |G is, if deVned, naturally a subfunctor of the corres-

ponding functor of type Def(G,F )( · ), where G is the restriction of G to κ.

4.1.1 Remark

Observe, that by replacing T with an element Ã ∈ LArtT each of the functors introduced

here may be deVned on the subcategory LArtÃ ⊂ LArtT as a functor of log Artin rings

LArtÃ → Set.
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4.2 Obstruction theory of log symplectic deformations

In this section we will discuss inVnitesimal deformations of log schemes with line bundles,

log schemes with Wat log connection and log symplectic schemes (of both types) as deVned

in chapter 3. We will calculate the tangent spaces to the functors above and obstructions

to the existence of inVnitesimal deformations. In doing so we are geared to the calculations

done in SGA ([12, III.6]) for Wat deformations of schemes.

Let A ∈ LArtT be a log Artin ring and let A be its underlying Artin ring. Recall that

in chapter 2 we have deVned an extensions in ArtT to be a short exact sequence of T -

modules e : 0 → J → B → A → 0, where B → A is a surjective homomorphism in

ArtT with kernel J such that J2 = 0. We have called such an extension small if mBJ = 0

and principal small if moreover J is a principal ideal. An extension (respectively, a small

extension, a principal small extension) in LArtT has been deVned to be a homomorphism

B → A the underlying homomorphism B → A of which sits in an extension (respectively,

a small extension, a principal small extension) in ArtT (cf. sections 2.1.1 and 2.2.1).

Let for now f0 : X → Specκ be a log smooth log fs log scheme over Specκ and let U =

{Xi}i∈I be an open aXne covering of X . We will write XI for
⋂
i∈I Xi and f0|I for the

restriction of f0 toXI . We denote the Čech-cochain-complex with respect to U of a sheafF
by Č •(U ,F) (respectively, of a complex of sheavesF • by Č •(U ,F •)). By a cochain in the

double complex Č •(U ,F •), we mean a cochain in its associated total complex (analogously

for a cocycle and a coboundary, respectively).

We will gradually build up the data that turns f0 : X → Specκ into a log symplectic

scheme: First we regard the log smooth morphism f0 and its log smooth deformation func-

tor Deff0
. Then we add to f0 a log symplectic form of non-twisted type ω on f0 and

regard the deformation functor of log symplectic schemes of non-twisted type Def(f0,ω).

Erasing ω and adding to f0 Vrst a line bundle L and then later a Wat log connection

∆

,

we regard the deformation functor of log smooth schemes with line bundle Def(f0,L) and

the deformation functor of log smooth schemes with Wat log connection Def(f0,

∆

), respect-

ively. Finally, adding to f0 and

∆

a log symplectic form ω of type

∆

on f0, we examine

the deformation functor of log symplectic schemes of general type Def(f0,

∆

,ω). At the end

of each stage, we draw corollaries concerning the deformation theory of the corresponding

local deformations functor Deff |ω , Deff |L, Deff | ∆and Def(f,∆)|ω , respectively.

In each section, given a lifting η (standing for f , (f,$), (f,L) etc.) over a log Artin ring

A of the base object η0 (standing for f0, (f0, ω), (f0, L) etc.), we calculate a Vrst subsec-

tion entitled “Group of automorphism” the group of automorphisms of a lifting η̃ along an

extension e : 0 → J → Ã → A → 0 over the given lifting η. In a second subsection en-

titled “Pseudo-torsor of liftings” we give a group G acting freely on the set of isomorphism

classes of liftings η̃ of η along e, making this set a G-pseudo-torsor. This, in conclusion,

yields the tangent space of the respective deformation functor. The obstruction theory (as
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deVned in 2.1.21) of the respective functor is calculated in the respective third subsection

entitled “Obstruction Theory”. In particular we identify the obstruction oe(η) to the exist-

ence of a lifting η̃ of η along the extension e. At the end of a section, under the heading

“Conclusion”, we collect the results of the preceding three subsections.

The statements of the Vrst following section about log smooth deformations of f0 are well-

known (cf. [19, 3.14]), but we execute the constructions also in this case to introduce nota-

tion to be used later on. Similarly, the deformation theory of smooth schemes with line

bundle is well-known (cf. [32, 3.3.3]), diUering from our calculations only by the absence

of log structures and the exchange of smoothness and log smoothness. All other stages are

developed by ourselves.

4.2.1 Log smooth deformations of log schemes

Let f0 : X → Specκ be a log fs log smooth log scheme and f : X → SpecA a log smooth

deformation of f0. Let e : 0→ J → Ã → A → 0 be an extension ofA and f̃ : X̃ → Spec Ã
a lifting of f over Ã.
The kernel ofOX̃ → OX isOX̃ �Ã J = OX �A J . Hence, we have a short exact sequence

0→ OX �A J → OX̃ → OX → 0.

Since the inclusion SpecA → Spec Ã is a (Vrst order) inVnitesimal thickening, the short

sequence of monoids

1→ 1 +OX �A J →MX̃ →MX → 1

is exact, with 1 +OX �A J acting freely onMX̃ .
Let XI and X̃I denote the open aXne subscheme of X and X̃ , respectively, lying over XI .

We write f |I and f̃ |I for the restriction of f and f̃ to XI and X̃I , respectively.

Group of automorphisms

An automorphism ϕ̃ of f̃ which induces the identity on f is given on each X̃i by a ring

automorphism ϕ̃∗i : OX̃i → OX̃i with ϕ̃
∗
i = 1 + ϑi, where ϑi : OX̃i → OX �A J . Due to

the A-linearity of ϕ̃∗ and the fact that

ab+ ϑi(ab) = ϕ̃∗i (ab) = ϕ̃∗i (a)ϕ̃∗i (b) = (a+ ϑi(a))(b+ ϑi(b)) = ab+ (bϑi(a) + aϑi(b))

for local sections a, b ofOX̃ , ϑi is an element of Γ (Xi, Tf �A J), i. e. an (ordinary) A-linear

derivation with values in OXi �A J .
Moreover, ϕ̃i must respect the log structure αXi and be compatible with αX̃i . To this end,

the equalities ϕ̃∗ ◦ αX̃ = αX̃ ◦ ϕ̃[, ϕ̃[|MX = ι̇d and αX̃ |MX = αX must hold.

Because of the second equality, we can write ϕ̃[i = (1 + Θi) · ι̇d, where · is the free action
of 1 +OX �A J onMX̃ and Θi is a mapMX̃i → OXi �A J . We conclude from the fact
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that

(1 +Θi(ab)) · ab = ϕ̃[i(ab) = ϕ̃[i(a)ϕ̃[i(b)

= (1 +Θi(a)) · ((1 +Θi(b)) · ab) = (1 +Θi(a) +Θi(b)) · ab

(observe, that the target of Θi is a sheaf of groups) and from the Ã×-linearity of ϕ̃[ that

Θi ∈ HomMon(MXi ,OXi �A J).

Let a be a local section ofMX̃i . Then

αX̃i(a) + αXi(a)Θ(a) = αX̃i(a)(1 +Θi(a)) = αX̃i(a)αX̃i(1 +Θi(a))

= αX̃i((1 +Θi(a)) · a) = αX̃i(ϕ̃
[
i(a)) = ϕ̃∗i (αX̃i(a))

= αX̃i(a) + ϑi(αXi(a)),

where in the second equality we regard O×X̃ as a submonoid sheaf ofMX̃ .

Hence, αXi(a)Θi(a) = ϑi(αXi(a)) and Θi(c) = 0 for c ∈ A×, so ϑi := (ϑi, Θi) is an A-

linear log derivation with values in J , thus an element of Γ (Xi, Tf�AJ) and the collection

(ϑi)i∈I is a cochain in Č0(U , Tf �A J).

In order that the ϕ̃i deVne a global automorphism ϕ̃ they have to agree on the overlaps

X̃ij , thus fulVl ϕ̃i = ϕ̃j , which implies ϑi = ϑj . This shows that (ϑi) is a cocycle in

Č0(Xi, Tf �A J) and deVnes, due to the lack of coboundaries, a unique element ϑ ∈
H0(X , Tf �A J).

Hence, the group of automorphisms of X̃ over X is canonically isomorphic to the group

H0(X , Tf �A J).

Pseudo-torsor of liftings

In what follows, we will in the beginning strictly distinguish between X̃ij and X̃ji as sub-
schemes of X̃i and X̃j , respectively. For elements interpretable as maps the indexing ij

corresponds in essence to their direction “from j to i” (i. e. from Xj to Xi, from OXj to

OXi etc.).

Assume that there exists a lifting f̃0 : X̃0 → Spec Ã of f . By the uniqueness of log fs log

smooth liftings of aXne log schemes (cf. proposition 2.3.3), any other lifting f̃ is given by

the same open schemes X̃i = X̃0i as X̃0, but glued diUerently by automorphisms ϕ̃ij on

their overlaps X̃ij . These satisfy ϕ̃∗ij = 1 + ϑji, where 1 denotes the identity on OX̃ij
(which is the corresponding glueing morphism of X̃0) and where ϑji ∈ Γ (Xij , Tf �A J).

(Observe the index swap when passing from ϕ̃ij to ϑji.)

The relation ϕ̃kjϕ̃jiϕ̃
−1
ki = ι̇dX̃ijk has to be satisVed on X̃ijk , which means that

0 = ϑjk + ϑij − ϑik .
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Therefore, the cochain (ϑij) is a cocycle in Č1(U , Tf �A J) and thus represents an element

in the group H1(X , Tf �A J) denoted [f̃ − f̃0].

If we alter this cocycle by a coboundary, it still describes the same isomorphism class of

deformations: To see this, let ϑ′ij := ϑij + (ϑ′j − ϑ′i), with (ϑ′i) ∈ Č0(U , Tf �A J) and let

f̃ ′ be the corresponding deformation. Then

(1 + ϑij)(1 + ϑ′j) = 1 + (ϑij + ϑ′j) = 1 + (ϑ′ij + ϑ′i) = (1 + ϑ′i)(1 + ϑ′ij),

i. e. there are locally deVned automorphisms ϕ̃′i : X̃i → X̃i with ϕ̃′i|Xi = ι̇dXi , given by

ϕ̃′i
∗

= 1 + ϑ′i, and with the property that

ϕ̃′j ◦ ϕ̃ji = ϕ̃′ji ◦ ϕ̃′i.

Such a cochain of locally deVned automorphisms (ϕ̃′i) describes just a global automorphism

ϕ̃′ : X̃ → X̃ with ϕ̃′|X = ι̇dX . Hence, f̃ and f̃ ′ are isomorphic.

We conclude that the group G := H1(X , Tf �A J) acts freely on the set of isomorphism

classes of liftings along e if this set is non-empty, making this set a G-pseudo-torsor. For

the trivial extension ε0 : 0 → (ε) → A[ε]0 → A → 0 the set of isomorphism classes of

liftings overA[ε]0 is thus given byH1(X , Tf ), with the trivial deformation f̃0 := f×SpecA

SpecA[ε]0 corresponding to zero. In particular, tDeff0
= Deff0

(κ[ε]0) = H1(X,Tf0
).

Obstruction theory

Nowwe are going to calculate the obstruction for lifting f to f̃ over Ã. To this end, we start
with a collection of deformations X̃i of the aXne open subschemes Xi ⊂ X (which exists

uniquely up to isomorphism by 2.3.3) and an arbitrary cochain (ϕ̃ji), where ϕ̃ji : X̃ij → X̃ij
is an automorphism which restricts to ι̇dXij over A.
Then ϕ̃∗jiϕ̃

∗
kj(ϕ̃

∗
ki)
−1 = 1 + ϑijk , with a cochain (ϑijk) ∈ Č2(U , Tf �A J). Calculating

1 = ϕ̃∗ji
(
ϕ̃∗kjϕ̃

∗
lk(ϕ̃∗lj)

−1
)
(ϕ̃∗ji)

−1
(
ϕ̃∗jiϕ̃

∗
lj(ϕ̃

∗
li)
−1
) (
ϕ̃∗kiϕ̃

∗
lk(ϕ̃∗li)

−1
)−1 (

ϕ̃∗jiϕ̃
∗
kj(ϕ̃

∗
ki)
−1
)−1

= 1 + ϕ̃∗jiϑjkl((ϕ̃
∗
ji)
−1 · ) + ϑijl − ϑikl − ϑijk = 1 + ϑjkl + ϑijl − ϑikl − ϑijk ,

we show that this cochain is in fact a 2-cocycle. If (ϕ̃′ij) is any other collection, then we

have ϕ̃′∗ji − ϕ̃∗ji = ϑ′ij for a cochain (ϑ′ij) in Č1(U , Tf �A J); hence, ϕ̃′∗jiϕ̃
′∗
kj(ϕ̃

′∗
ki)
−1 =

1 + ϑijk + ϑ′jk + ϑ′ij − ϑ′ik .
This means that the class oe([f ]) ∈ H2(X , Tf �A J) deVned by the cocycle (ϑijk) is

independent of the collection (ϕ̃ij) chosen, because two such cocycles always diUer by a

coboundary. Moreover, oe([f ]) vanishes exactly when there exists a collection with ϑijk =

0, and this is true if and only if a lifting f̃ of f exists.

Since both assignments f 7→ H2(X , Tf �A J) and e 7→ H2(X , Tf �A Ĵ(e)) are functorial,

if we deVneHe([f ]) := H2(X , Tf �A J) and o : VDeff0
→ O :=

∐
VDeff0

H by the assign-

ment x ∈ VDeff0
(e) 7→ oe(x) ∈ H2(X , Tf �A J), then (H, o) is a complete obstruction
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theory for the deformation functor Deff0 in the sense of deVnition 2.1.21 of chapter 2. Due

to the fact, that by the projection formula for any small extension e : 0→ J → Ã → A → 0

we have He([f ]) = H2(X , Tf �A J) ∼= H2(X , Tf0
�C J) ∼= H2(X , Tf0

) �C J , this

obstruction theory (H, o) is linear; in particular, H0 := Hε0(f0) = H2(X,Tf0
) is a small

obstruction space for the functor Deff0 in the sense of deVnition 2.1.19 of chapter 2.

Conclusion

4.2.1 Proposition ([19, 3.14]; cf. 2.3.4)

Let f0 : X → Specκ be a log smooth log fs log scheme.

a) The tangent space of the deformation functor Deff0 is H1(X,Tf0).

b) The vector space H2(X,Tf0) is the small obstruction space of a complete linear ob-

struction theory for the functor Deff0
.

Let e : 0→ J → Ã → A → 0 be an extension of log Artin rings and let f be a lifting of f0

over A.

c) The group of automorphisms of a lifting f̃ over Ã inducing the identity on f is

H0(X , Tf �A J).

d) The set of isomorphism classes of liftings of f over Ã is a pseudo-torsor under

H1(X , Tf �A J).

e) The complete obstruction oe([f ]) to lifting f over Ã is an element of the obstruction

space H2(X , Tf �A J).

4.2.2 Remark

This is proposition 3.14 in [19] (which we already cited in 2.3.4). It is incorrectly cited in

[17], where the author claims that for all extensions e as above the torsor of liftings and

obstruction space are Hp(X , Tf ) �A J , p = 1, 2, respectively, with the ideal J standing

outside of the argument of the functor Hp(X , · ). This is true for small extensions because

in this case J is a free A-module and the projection formula allows to “factor out” J . For

arbitrary extensions this is generally false.

Since f0 : X → Specκ is a log smooth and log integral morphism of log schemes by pro-

position 1.2.42, every log smooth lifting f of f0 over A has the Wat lifting f of f0 over

A = v(A) as underlying morphism of schemes. Hence, there is an obvious forgetful

morphism Deff0 → Deff0 , corresponding to the inclusion Tf0 ⊂ Tf0 (for a lifting f of

f0, to the inclusion Tf ⊂ Tf ), where Deff0
denotes the functor of log Artin rings of Wat

deformations of f0 over the underlying Artin ring, and we may conclude the following:
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4.2.3 Corollary

Under the A-linear map Hp(X , Tf �A J)→ Hp(X , Tf �A J)

a) an automorphism of a lifting f̃ over f is mapped to its underlying automorphism of

f̃ over f , for p = 0.

b) the class [f̃ − f̃0] of a lifting f̃ of f is mapped to the class [f̃ − f̃0] of its underlying

lifting f̃ of f , for p = 1, whenever a lifting f̃0 of f is given.

c) the obstruction oe([f ]) of Deff0
is mapped to the obstruction oe([f ]) of Deff0

, for

p = 2.

4.2.2 Deformations of log symplectic schemes of non-twisted type

Before approaching the general case of a log symplectic scheme, we discuss the special case

of log symplectic schemes of non-twisted type and their deformations. Let f0 : (X,ω) →
Specκ be a log symplectic scheme of non-twisted type and recall the deVnition of its asso-

ciated T -complex T •f0
(ω) and T -sequence tω from section 3.3.3.

Let f : (X , $)→ SpecA be a log symplectic deformation of non-twisted type of (f0, ω)/κ,

let e : 0 → J → Ã → A → 0 be an extension of A and f̃ : (X̃ , $̃) → Spec Ã a lifting of

(f,$)/A over Ã.

Group of automorphisms

An automorphism ϕ̃ of (f̃, $̃)/Ã which induces the identity on (f,$)/A is an automor-

phism of f̃ , given by a cochain (ϑi) as in section 4.2.1 above, with the additional property

that ϕ̃∗($̃i) = $̃i; hence,

0 = $̃i + ϑi($i)− $̃i = ϑi($i),

i. e. 0 = (−t$i)(ϑi). Therefore, (ϑi) is a 0-cocycle in the double complex Č •(U , T •f ($))

and, due to the lack of 0-coboundaries, uniquely deVnes a class inH0(T •f ($)�A J).

Using the identiVcation T •f ($) ∼= Ω≥1,•
f [1] replaces the log derivations ϑi by 1-forms

τi := iϑi($i) with dτi = 0, deVning a unique class inH0(Ω≥1,•
f [1]�A J).

Hence, the group of automorphisms of (X̃ , $̃) over (X , $) is canonically isomorphic to

bothH0(T •f ($)�A J) andH0(Ω≥1,•
f [1]�A J).

Pseudo-torsor of liftings

Let (f̃0, $̃0) be a lifting of (f,$) over Ã. Any other lifting (f̃, $̃) of (f,$) is given

(in relation to (f̃0, $̃0)) by a cocycle (ϑij) as before and a collection of elements ui ∈
Γ (Xi, Ω2

f ) such that $̃i = $̃0,i + ui, which implies

0 = d$̃i = d($̃0,i + ui) = d$̃0,i + dui.

Since d$̃0,i = 0, this means that (−d)ui = 0.
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Moreover, we must have $̃i = ϕ∗ji($̃j), so

$̃0,i + ui = (1 + ϑij)($̃0,j + uj)

= $̃0,j + ϑij($j) + uj ,

which, since $̃0,i = $̃0,j , means that −uj + ui − t$j (ϑij) = 0.

We can rewrite these conditions for the ui and the (ϑij) as

a) 0 = (−d)ui,

b) 0 = (uj − ui)− (−t$)(ϑij) and

c) 0 = ď(ϑij).

Regarding the complex (T •f ($), dT •), these three conditions combine to the single condi-

tion 0 = (ď± dT •)(ui, ϑij) which means precisely that the cochain (ui, ϑij) is a 1-cocycle

in T •f ($) and thus deVnes a class [(f̃, $̃)− (f̃0, $̃0)] ∈ H1(T •f ($)�A J).

An alteration of the cocycle by a coboundary changes only the (ϑij) and therefore, as we

already know, not the deformation class. To conclude that the set of isomorphism classes

of deformations is a (pseudo) torsor underH1(T •f ($) �A J), we need to verify that every

lifting $̃ of $ is a symplectic form.

Without further conditions $̃ induces the map

i · $̃ : Tf̃ → Ω1
f̃

of which we show that it is an isomorphism by looking at the stalks. To this end, let x ∈ Xi
and $̃x = $̃0,x + ux the germ of $̃ at x. Let σx be a germ in Ω1

f̃,x
.

By assumption i · ($̃0,x) is an isomorphism. So there exists exactly one germ δx ∈ Tf̃0,x

with σx = iδx($̃0,x). Also, for the 1-form iδx(ux) ∈ (Ω1
f̃0
� J)x = Ω1

f̃0,x
� J , there

exists exactly one germ βx ∈ (Tf̃0
� J)x = Tf̃0,x

� J with −iδx(ux) = iβx($̃0,x). Then

iδx+βx($̃) = iδx($̃0,x) + iδx(ux) + iβx($̃0,x) + iβx(ux) = iδx($̃0,x) = σx.

This means that any lifting $̃ of $ induces an isomorphism. This corresponds to the fact

that units in the ring of regular functions always lift to units.

Using the identiVcation T •f ($) ∼= Ω≥1,•
f [1] replaces the log derivations ϑij by 1-forms

τij := iϑij (ωj) with 0 = (ď±(−d))(ui, τij), deVning a unique class inH1(Ω≥1,•
f [1]�AJ).

We conclude that the group G := H1(T •f ($) �A J) = H1(Ω≥1,•
f [1] �A J) acts freely on

the set of isomorphism classes of liftings along e if this set is non-empty, making this set

a G-pseudo-torsor. For the the trivial extension ε0 : 0 → (ε) → A[ε]0 → A → 0 the set

of isomorphism classes of liftings over A[ε]0 is thus given byH1(T •f ) = H1(Ω≥1,•
f [1]). In

particular tDef(f0,ω)
= Def(f0,ω)(κ[ε]0) = H1(T •f0

) = H1(Ω≥1,•
f0

[1]).
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Obstruction theory

We are now going to calculate the obstruction to lifting (f,$)/A to (f̃, $̃)/Ã along the

extension e : 0→ J → Ã → A → 0. We start from a cochain ϕ̃ij as before and additionally

a cochain of 2-forms $̃i ∈ Γ (X̃i, Ω2
f̃ |i) with the property that $̃i|Xi = $i. Then, as before,

we have elements ϑijk satisfying the corresponding equalities as above. Additionally,

a) ϕ̃∗ji($̃j)− $̃i = uij and

b) (−d)$̃i = %i

apply, with uij ∈ Γ (Xij , Ω2
f �A J) and %i ∈ Γ (Xi, Ω3

f �A J).

We can directly see that

0 = (−d)(−d)$̃i = (−d)%i.

From the second equality we get

(%j − %i) = ϕ̃∗ji((−d)$̃j)− (−d)$̃i

= (−d)(ϕ̃∗ji$̃j − $̃i)

= (−d)uij ;

hence, 0 = (%j − %i)− (−d)uij .

We calculate in two ways

(ϕ̃∗ji$̃j − $̃i) + ϕ̃∗ji((ϕ̃
∗
kj$̃k − $̃j))− (ϕ̃∗ki$̃k − $̃i)

= uij + ϕ̃∗ij(ujk)− uik

= ujk − uik + uij

and

(ϕ̃∗ji$̃j − $̃i) + ϕ̃∗ji((ϕ̃
∗
kj$̃k − $̃j))− (ϕ̃∗ki$̃k − $̃i)

= ϕ̃∗ji(ϕ̃
∗
kj$̃k)− ϕ̃∗ki$̃k

=
[
ϕ̃∗jiϕ̃

∗
kjϕ̃
∗
ik(ϕ̃∗ki$̃k)− ϕ̃∗ki$̃k

]
= [(1 + ϑijk)(ϕ̃∗ki$̃k)− ϕ̃∗ki$̃k]

= ϑijk($k),

from which we conclude that 0 = (ujk − uik + uij) + (−t$k)(ϑijk).

Considering (%i, uij , ϑijk) as a 2-cochain in the double complex Č •(U , T •f ($)�AJ), these

three conditions are equivalent to

(ď± dT •)(%i, uijϑijk) = 0,

which makes (%i, uij , ϑijk) a 2-cocycle in Č •(U , T •f ($) �A J) and thus deVnes a class

oe([f,$]) ∈ H2(T •f ($)�A J).
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If (ϕ̃′ij , $̃
′
i) is any other collection, then we have, as before, ϕ̃′∗ji − ϕ̃∗ji = ϑ′ij for a cochain

(ϑ′ij) in Č
1(U , Tf �A J); hence, ϕ̃′∗jiϕ̃

′∗
kj(ϕ̃

′∗
ki)
−1 = 1 + ϑijk + ϑ′jk + ϑ′ij − ϑ′ik . Moreover,

$̃′i − $̃i = u′i for a cochain (u′i) ∈ Č0(U , Ω2
f �A J), hence

ϕ̃′∗ji($̃
′
j)− $̃′i = uij + u′j − u′i + ϑ′ij($j) = uij + (u′j − u′i)− (−t$)(ϑ′ij)

and (−d)$̃′i = %i + (−d)u′i.

This means that the class oe([f,$]) ∈ H2(X , T •f ($) �A J) deVned by the cocycle

(%i, uij , ϑijk) is independent of the collection (ϕ̃ij , $̃i) chosen, because two such cocycles

always diUer by a coboundary (ď ± dT •)(u′i, ϑ′ij). Moreover, oe([f,$]) vanishes exactly

when there exists a collection with %i = 0, uij = 0 and ϑijk = 0, and this is true if and

only if a lifting (f̃, $̃) of (f,$) exists.

Setting He([f,$]) := H2(X , T •f ($) �A J) and o : VDef(f0,ω)
→ O :=

∐
VDef(f0,ω)

H ,

(e, x) 7→ oe(x), deVnes a complete linear obstruction theory (H, o) for Def(f0,ω), where

again by the projection formula for any small extension e : 0 → J → Ã → A → 0

we have He([f ]) = H2(X , T •f ($) �A J) ∼= H2(X , T •f0
(ω)) �C J ; in particular, H0 :=

Hε0([f0, ω]) = H2(X,T •f0
(ω)) is a small obstruction space for the functor Def(f0,ω).

Using the identiVcation T •f ($) ∼= Ω≥1,•
f [1] replaces the log derivations ϑijk by 1-forms

τijk := iϑijk(ωi) with 0 = (ď ± (−d))(%i, uij , τijk), deVning a unique class oe([f,$]) in

H2(Ω≥1,•
f [1]�A J).

Conclusion

In the above section we have proven the following:

4.2.4 Proposition

Let f0 : (X,$)→ Specκ be a log symplectic scheme of non-twisted type.

a) The tangent space of the functor Def(f0,ω) isH1(T •f0
(ω)).

b) The vector space H2(T •f0
(ω)) is the small obstruction space of a complete linear

obstruction theory for Def(f0,ω).

Let e : 0→ J → Ã → A → 0 be an extension of log rings and let f : (X , $)→ SpecA be

a lifting of (f0, ω)/κ over A.

c) The group of automorphisms of a lifting f̃ : (X̃ , $̃) → Spec Ã inducing the identity

on (f,$)/A isH0(T •f (ω) �A J).

d) The set of isomorphism classes of liftings (f̃, $̃)/Ã is a pseudo-torsor under the

additive groupH1(T •f (ω)�A J).

e) The complete obstruction oe([f,$]) to lifting is an element of the obstruction space

H2(T •f (ω)�A J).
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Given a log smooth deformation f : X → Spec T of f0, we conclude from the above calcu-

lations, by putting all ϑI = 0:

4.2.5 Proposition

a) The tangent space of the functor Defω|f isH0(Ω≥2,•
f0

[2]).

b) The vector space H1(Ω≥2,•
f0

[2]) is the small obstruction space of a complete linear

obstruction theory for Defω|f .

Let e : 0 → J → Ã → A → 0 be an extension of log rings and let $/A be a lifting of ω

over A.

c) The group of automorphisms of a lifting $̃/Ã inducing the identity on$/A is trivial

by deVnition (and can be identiVed withH−1(Ω≥2,•
fA

[2]�A J)).

d) The set of isomorphism classes of liftings $̃/Ã is a pseudo-torsor under the additive

groupH0(Ω≥2,•
fA

[2]�A J).

e) The complete obstruction oe($) to lifting is an element of the obstruction space

H1(Ω≥2,•
fA

[2]�A J).

Moreover, we may link the maps in the long exact cohomology sequence associated to the

short exact sequence of complexes

t$ : 0→ Ω≥2,•
f [1]→ T •f ($)→ Tf [0]→ 0

to the two morphisms of functors Def(f0,ω) → Deff0 and Defω|f̃ → Def(f0,ω) (for a lifting

f̃ : X̃ → Spec Ã of f ) by the following corollaries:

4.2.6 Corollary

Under the A-linear mapHp(T •f (ω)�A J)→ Hp(X , Tf �A J)

a) an automorphism of a lifting (f̃, $̃) over (f,$) is mapped to its underlying auto-

morphism of f̃ over f , for p = 0.

b) the class [(f̃, $̃)− (f̃0, $̃0)] of a lifting (f̃, $̃) of (f,$) is mapped to the class of its

underlying lifting f̃ of f , for p = 1, whenever a lifting (f̃0, $̃0) of (f,$) is given.

c) the obstruction oe([f,$]) of Def(f0,ω) is mapped to the obstruction oe([f ]) of Deff0
,

for p = 2.

4.2.7 Corollary

Given a lifting (f̃0, $̃0) of (f,$),

a) any automorphism of $̃0 over $ is the identity.

Under the A-linear mapHp(Ω≥2,•
f [2]�A J)→ Hp(T •f ($)�A J)

b) the class [$̃ − $̃0] of a lifting $̃ of $ is mapped to the class of the lifting (f̃0, $̃) of

(f,$), for p = 1.
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c) the obstruction oe($) ofDefω|f̃0
is mapped to the obstruction oe([f,$]) ofDef(f0,ω),

for p = 2.

Regarding the A-linear map t$ : H1(X , Tf �A J)→ H1(Ω≥2,•
f [2]�A J) induced by t$ ,

d) a lifting $̃ of $ exists on a lifting f̃ of f if and only if the class [f̃ − f̃0] lies in the

kernel of t$ .

Equivalently, under the pairing H1(X , Tf �A J) ×H0(Ω≥2,•
f [2]) → H1(Ω≥2,•

f [2] �A J)

induced by Tf ×Ω≥2,•
f [2]→ Ω≥2,•

f [2], (ϑ, u •) 7→ ϑ(u •), the classes [f̃ − f̃0] and [$] pair

to zero.

Proof: For d), let [f̃ − f̃0] be given by the 1-cocycle (ϑ̃ij) in Tf �A J . We have the following

chain of equivalences:

[f̃ − f̃0] ∈ Ker(t$)

⇔ (t$i(ϑ̃ij)) = (ϑ̃ij($i)) is a coboundary in Č1(U , Ω≥2,•
f [2])

⇔ (−dui, uj − ui) = (ď± (−d))(ui) = (0, ϑ̃ij($i))

for a cochain (ui) ∈ Č0(U , Ω≥2,•
f [2])

⇔ (ui, ϑij) is a 1-cocycle in Č •(U , T •f )

⇔ (ui, ϑij) deVnes the class [(f̃, $̃)− (f̃0, $̃0)] of a lifting (f̃, $̃). �

4.2.8 Remark

If f0 : (X,$)→ Specκ is a log symplectic scheme of non-twisted type and if f : (X , $)→
SpecA is a lifting of (f0, ω)/κ over A, then by means of the isomorphism i · (ω) (respect-

ively, i · ($)) we may replace

a) the sheaf Tf0 with the sheaf Ω1
f0

(respectively, the sheaf Tf with the sheaf Ω1
f ) in

proposition 4.2.1 as well as in the corollaries 4.2.6 and 4.2.7.

b) the complex T •f0
(ω) with the complex Ω≥1,•

f0
(respectively, the complex T •f ($) with

the complex Ω≥1,•
f ) and the map tω with the map d (respectively, the map t$ with

the map d) in proposition 4.2.4 and the following corollaries 4.2.6 and 4.2.7.

4.2.3 Log smooth deformations of log schemes with line bundle

Let f0 : (X,L) → Specκ be a log smooth log scheme with line bundle and recall from

section 3.1.2 the deVnition of the log Atiyah module Af0
(L) and the log Atiyah extension

dlog(L) associated to [L]. ReVne the open aXne covering U = {Xi}i∈I ofX in such a way

that it trivialises L.

Let f : (X ,L) → SpecA be a log smooth deformation of (f0, L)/κ over A. We choose

a Čech-1-cocycle in O×X corresponding to the class [L] ∈ Pic(X ) and denote it by (Fij).
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Let e : 0 → J → Ã → A → 0 be an extension and let f̃ : (X̃ , L̃) → Spec Ã be a lifting

of (f,L)/A over Ã. Then L̃ is given by its restrictions L̃i := L̃|X̃i = OX̃i together with
transition maps L̃i|X̃ij → L̃j |X̃ji .

These transition maps are given as follows: Before one passes from L̃j |X̃ji to L̃i|X̃ji by
means of a multiplication with a unit F̃ij ∈ Γ (X̃ij ,O×X̃ ), one has to pass from L̃i|X̃ji to
L̃i|X̃ij by means of ϕ̃∗ji, glueing the X̃ij together. Hence, altogether, we have a transition
map

F̃ij · ϕ̃∗ji( · ) : L̃j |X̃ji = OX̃ij
ϕ̃∗ji−−→ L̃j |X̃ij = OX̃ij

F̃ij−−→ L̃i|X̃ij = OX̃ij .

Restricted to Xij , this transition map must become the corresponding transition map of L,
i. e. we must have Fij = F̃ij |Xij and they must satisfy the cocycle condition

1 = F̃ijϕ̃
∗
ji(F̃jk)F̃−1

ik .

Observe that we have a short exact sequence

1→ 1 +OX �A J → O×X̃ → O
×
X → 1

with 1+OX�AJ acting freely onO×X̃ . The calculations made in what follows are analogue

to those in section 3.3.3 in [32].

Group of automorphisms

An automorphism of (f̃, L̃)/Ã which induces the identity on (f,L)/A is given by a cor-

responding automorphism ϕ̃ of f̃ and a compatible automorphism ψ̃ of L. The former is

given on each X̃i by ϕ̃∗i = 1 + ϑi with ϑi = ϑj on Xij .

If the automorphism ϕ̃ happens to be the identity on X̃ , then the latter automorphism ψ of

L̃, which induces the identity on L, is given on X̃i by multiplication with a unit of the form

F̃i = 1 + gi, where gi ∈ Γ (Xi,OX �A J), such that it is compatible with the transition

maps, i. e. F̃ijF̃j = F̃iF̃ij . In the general case the non-trivial automorphism ϕ̃ has to be

joined in, so that F̃ijF̃j = F̃iϕ̃
∗
i (F̃ij). We calculate

0 = F̃ijF̃j − F̃iϕ̃∗i (F̃ij) = F̃ij + Fijgj + Fijgij − F̃ij − ϑi(Fij)− Fijgi − Fijgij

= Fijgj − Fijgi − ϑi(Fij),

thus 0 = gj − gi − ϑi(Fij)
Fij

= gj − gi − ϑi logFij on Xij .

This calculation shows that the cochain (gi, ϑi) is a cocycle in Č0(U , Af (L) �A J) and

thus deVnes a class in H0(Af (L)) which in turn uniquely determines the cocycle due to

the lack of 0-coboundaries.

Hence, the group of automorphisms of (X̃ , L̃) over (X ,L) is canonically isomorphic to

H0(Af (L)).
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Pseudo-torsor of liftings

Let (f̃0, L̃0)/Ã be a lifting of (f,L)/A and let (f̃, L̃) be another lifting. As the transition

maps F̃0,ij and F̃ij of both deformations restrict to Fij on X , we have an equality F̃ij =

F̃0,ij(1 + gij) with gij ∈ Γ (Xij ,OX �A J). Calculating

1 = F̃ijϕ̃
∗
ji(F̃jk)F̃−1

ik

= F̃0,ij(1 + gij)(1 + ϑij)(F̃0,jk(1 + gjk))(F̃0,ik)−1(1− gik)

= 1 + (gij + ϑij(Fjk) + gjk − gik)

shows that

0 = gjk − gik + gij + ϑij logFjk ,

which means precisely that the cochain (gij , ϑij) is a 1-cocycle in Č1(U , Af (L)�A J) and

deVnes a class [(f̃, L̃)− (f̃0, L̃0)] ∈ H1(Af (L)�A J).

If we alter this cocycle by a coboundary, it still describes the same isomorphism class of

deformations. To see this, let (g′ij , ϑ
′
ij) := (gij + (g′j − g′i), ϑij + (ϑ′j −ϑ′i)), with g′j − g′i−

ϑ′i logFij = 0. We know already from the earlier calculations that this does not aUect the

isomorphism class of f̃ . Let L̃′ be the line bundle deVned by the F̃ ′ij = F̃ 0
ij(1 + g′ij) and put

F̃ ′i := (1 + g′i) ∈ Γ (X̃i,O×X̃ ). Since we have

F̃ ′i F̃
′
ij = (1 + g′i)F̃

0
ij(1 + (gij + g′j − g′i))

= F̃ 0
ij + Fijg

′
i + Fijgij + Fijg

′
j − Fijg′i

= F̃ 0
ij + Fijgij + Fijg

′
j

= F̃ 0
ij + Fijgij + Fijϑij(1) + Fijg

′
j

= F̃ijϕ
∗
ji(F̃

′
j),

the local multiplications with the F̃ ′i form an isomorphism L̃′ → L̃. Hence, the class

[(f̃, L̃)− (f̃0, L̃0)] deVnes the isomorphism class of (f̃, L̃) uniquely.

We conclude that the group G := H1(X , Af (L)) acts freely on the set of isomorphism

classes of liftings along e if this set is non-empty, making this set aG-pseudo-torsor. For the

trivial extension ε0 : 0→ (ε)→ A[ε]0 → A → 0 the set of isomorphism classes of liftings

over A[ε]0 is thus given by H1(X , Af (L)). In particular tDef(f0,L)
= Def(f0,L)(κ[ε]0) =

H1(X,Af0
(L)).

Obstruction theory

We are now going to calculate the obstruction to lifting (f,L)/A to (f̃, L̃)/Ã along the

extension e : 0 → J → Ã → A → 0. To this end, we look at an arbitrary collection

(ϕ̃ij , F̃ij), where F̃ij ∈ Γ (X̃ij ,O×X̃ij ) is an invertible regular function on the lifting X̃ij of
Xij , which restricts over A to Fij ; the ϕ̃ij are as above.
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Let the cocycle (ϑijk) in Č2(Tf �A J) represent the obstruction to lifting f over Ã. Addi-

tionally, there exist elements gijk ∈ Γ (Xijk,OX �A J) such that

F̃ijϕ̃
∗
ji(F̃jk)F̃−1

ik = 1 + gijk .

We calculate the following expression in two ways. Firstly,

ϕ̃∗ji(F̃jkϕ̃
∗
kj(F̃kl)F̃

−1
jl ) · (F̃ikϕ̃∗ki(F̃kl)F̃−1

il )−1 · (F̃ijϕ̃∗ji(F̃jl)F̃−1
il ) · (F̃ijϕ̃∗ji(F̃jk)F̃−1

ik )−1

= ϕ̃∗jiϕ̃
∗
kj(F̃kl) · ϕ̃∗ki(F̃kl)−1 = ϕ̃∗jiϕ̃

∗
kjϕ̃
∗−1
ki ϕ̃∗ki(F̃kl) · ϕ̃∗ki(F̃kl)−1

= (1 + tϑijk)ϕ̃∗ki(F̃kl) · ϕ̃∗ki(F̃kl)−1

= 1 +
ϑijk(ϕ̃∗ki(F̃kl))

ϕ̃∗ki(F̃kl)
= 1 + ϑijk logFkl.

Secondly,

ϕ̃∗ji(F̃jkϕ̃
∗
kj(F̃kl)F̃

−1
jl ) · (F̃ikϕ̃∗ki(F̃kl)F̃−1

il )−1 · (F̃ijϕ̃∗ji(F̃jl)F̃−1
il ) · (F̃ijϕ̃∗ji(F̃jk)F̃−1

ik )−1

= ϕ̃∗ji(1 + gjkl) · (1 + gikl)
−1 · (1 + gijl) · (1 + gijk)−1

= (1 + gjkl) · (1− gikl) · (1 + gijl) · (1− gijk)

= 1 + (gjkl − gikl + gijl − gijk).

In conclusion,

0 = gjkl − gikl + gijl − gijk − ϑijk logFkl,

thus the cochain (gijk, ϑijk) deVnes a cocycle in Č2(U , Af (L) �A J); hence, a class

oe([f,L]) ∈ H2(X , Af (L)�A J).

If (ϕ̃′ij , F̃
′
ij) is any other collection, then we have, as before, ϕ̃′∗ji − ϕ̃∗ji = ϑ′ij for a cochain

(ϑ′ij) in Č
1(U , Tf �A J); hence, ϕ̃′∗jiϕ̃

′∗
kj(ϕ̃

′∗
ki)
−1 = 1 + ϑijk + ϑ′jk + ϑ′ij − ϑ′ik . Moreover,

F̃ ′ij = F̃ij(1 + g′ij) for a cochain (g′ij) ∈ Č1(U ,OX �A J); hence, F̃ ′ijϕ̃
′∗
ji(F̃

′
jk)F̃ ′−1

ik =

1 + gijk + g′ij + g′jk − g′ik + ϑij log(Fjk).

This shows that the class oe([f,L]) ∈ H2(X , Af (L) �A J) deVned by the cocycle

(gijk, ϑijk) is independent of the collection (ϕ̃ij , F̃ij) chosen, because two such cocycles

always diUer by a coboundary ď((g′ij , ϑ
′
ij)). Moreover, oe([f,L]) vanishes exactly when

there is a collection with gijk = 0 and ϑijk = 0, and this is true if and only if a lifting

(f̃, L̃) of (f,L) exists.

Setting He([f,L]) := H2(X , Af (L) �A J) and o : VDef(f0,L)
→ O :=

∐
VDef(f0,L)

H ,

(e, x) 7→ oe(x), deVnes a complete linear obstruction theory (H, o) for Def(f0,L), where

for any small extension e : 0→ J → Ã → A → 0 we haveHe([f,L]) = H2(X , Af (L)�A
J) ∼= H2(X , Af0

(L)) �C J ; in particular, H0 := Hε0(f0, L) = H2(X,Af0
(L)) is a small

obstruction space for the functor Def(f0,L).

Conclusion

In the above section we have proven the following:
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4.2.9 Proposition

Let f0 : (X,L)→ Specκ be a log smooth log scheme with line bundle.

a) The tangent space of the deformation functor Def(f0,L) is H1(X,Af0(L)).

b) The vector space H2(X,Af0
(L)) is the small obstruction space of a complete linear

obstruction theory for the functor Def(f0,L).

Let e : 0→ J → Ã → A → 0 be an extension of log Artin rings and f : (X,L)→ SpecA
a lifting of (f0, L)/κ over A.

c) The group of automorphisms of a lifting f̃ : (X̃ , L̃) → Spec Ã inducing the identity

on (f,L)/A is H0(X , Af (L)�A J).

d) The set of isomorphism classes of liftings of (f, L)/A over Ã is a pseudo-torsor under

H1(X , Af (L)�A J).

e) The complete obstruction oe([f, L]) to lifting (f, L)/A over Ã is an element of the

obstruction space H2(X , Af (L)�A J).

Given a deformation f : X → Spec T of f0, we may conclude from the calculations above,

by putting all ϑI = 0:

4.2.10 Proposition

a) The tangent space of the functor DefL|f is H1(X,OX).

b) The vector space H2(X,OX) is a the small obstruction space of a complete linear

obstruction theory for DefL|f .

Let e : 0 → J → Ã → A → 0 be an extension of log rings and let L/A be a lifting of L

over A.

c) The group of automorphisms of a lifting L̃/Ã inducing the identity on L/A is

H0(XA,OXA �T J).

d) The set of isomorphism classes of liftings L̃/Ã is a pseudo-torsor under the additive

group H1(XA,OXA �T J).

e) The complete obstruction oe([L]) to lifting is an element of the obstruction space

H2(X ,OXA �T J).

Moreover, we may link the maps in the long exact cohomology sequence associated to the

short exact sequence of OX -modules

dlog(L) : 0→ OX → Af (L)→ Tf → 0

to the two morphisms of functors Def(f0,L) → Deff0
and DefL|f̃ → Def(f0,L) (for a lifting

f̃ : X̃ → Spec Ã of f ) by the following corollaries:
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4.2.11 Corollary

Under the A-linear map Hp(X , Af (L)�A J)→ Hp(X , Tf �A J)

a) an automorphism of a lifting (f̃, L̃) over (f,L) is mapped to its underlying auto-

morphism of f̃ over f , for p = 0.

b) the class [(f̃, L̃) − (f̃0, L̃0)] of a lifting (f̃, L̃) of (f,L) is mapped to the class of its

underlying lifting f̃ of f , for p = 1, whenever a lifting (f̃0, L̃0) of (f,L) is given.

c) the obstruction oe([f,L]) of Def(f0,L) is mapped to the obstruction oe([f ]) of Deff0 ,

for p = 2.

4.2.12 Corollary

Given a lifting (f̃0, L̃0) of (f,L), under the A-linear map

Hp(X ,OX �A J)→ Hp(X , Af (L)�A J)

a) any automorphism ψ of a lifting L̃ over L is mapped to the automorphism (ι̇d, ψ) of

(f̃0, L̃) over (f,L), for p = 0.

b) the class [L̃ − L̃0] of a lifting L̃ of L is mapped to the class of the lifting (f̃0, L̃) of

(f,L), for p = 1.

c) the obstruction oe([L]) ofDefL|f̃0
is mapped to the obstruction oe([f,L]) ofDef(f0,L),

for p = 2.

Regarding the A-linear map · log(L) : H1(X , Tf �A J) → H2(X ,OX �A J) induced by

· log(L),

d) a lifting L̃ of L exists on a lifting f̃ of f if and only if the class [f̃ − f̃0] lies in the

kernel of · log(L).

Equivalently, under the pairing H1(X , Tf �A J) × H1(X ,O×X ) → H2(X ,OX �A J)

induced by Tf ×O×X → OX , (ϑ, u) 7→ ϑlog(u), the classes [f̃ − f̃0] and [L] pair to zero.

Proof: For d), let [f̃ − f̃0] be given by the 1-cocycle (ϑ̃ij) in Tf �A J . The element

[f̃ − f̃0]log([L]) is the class of the 2-cocycle (ϑij logFjk) = (iϑij (dlogFjk)) in OX �A J ,
thus we have the following chain of equivalences:

[f̃ − f̃0] ∈ Ker( · log(L))

⇔ (iϑij (dlogFjk)) = (gjk − gik + gij) for a cochain (gij) ∈ Č1(U ,OX )

⇔ (gij , ϑij) is a 1-cocycle in Af (L)

⇔ (gij , ϑij) deVnes the class [(f̃, L̃)− (f̃0, L̃0)] of a lifting (f̃, L̃). �
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4.2.4 Log smooth deformations of log schemes with Wat log con-
nection

Let f0 : (X,

∆

)→ Specκ be a log smooth log scheme with Wat log connection

∆

= (

∆

,L).

Then the log Chern classes dlog(L) of [L] and dlog(L) of L are trivial, which means that

the log Atiyah sequence dlog(L) : 0 → OX → Af0
(L) → Tf0

→ 0 splits. In particular

Af0(L) ∼= Tf0 � OX . Accordingly, for a lifting f : (X , ∆) → SpecA of f0 over A with

∆ = (∆,L) we have Af (L) ∼= Tf �OX .

4.2.13 Remark

Due to these splittings, we may replace Hp(Af0(L)) with Hp(X,Tf0) �Hp(X,OX) (re-

spectively, Hp(Af (L) �A J) with Hp(X , Tf �A J) � Hp(X ,OX �A J)) in proposition

4.2.9 and in the corollaries 4.2.11 and 4.2.12.

4.2.14 Corollary

Let f0 : (X,

∆

)→ Specκ be a log smooth log scheme with Wat log connection. Let e : 0→
J → Ã → A → 0 be an extension of log Artin rings and let f : (X , ∆) → SpecA be a

lifting of (f0,

∆

) over A.

a) For any lifting f̃ of f over Ã a lifting L̃ of L over Ã exists on f̃ , i. e. the obstruction

oe([L]) of DefL|f̃ vanishes.

b) The obstruction oe([f,L]) of Def(f0,L) vanishes if and only if the obstruction oe([f ])

of Deff0
does.

Proof: If a lifting f̃0 of f over Ã exists and if f̃ is any such lifting, then by 4.2.12, the ob-

struction oe([L]) of DefL|f̃ vanishes if and only if [f̃ − f̃0] lies in the kernel of the A-linear

map · log(L) : H1(X , Tf �A J) → H2(X ,OX �A J) which, due to the splitting of the

log Atiyah sequence, is the zero map. This shows a). By 4.2.11, the vanishing of oe([f,L])

implies that of oe([f ]). If on the other hand oe([f ]) = 0, then a lifting f̃ of f exists. By a),

there exists also a lifting L of L on X̃ , thus oe([f,L]) = 0. �

Let f0 : (X,

∆

) → Specκ be as above and recall from section 3.2.1 the deVnition of the

log Atiyah complex A •f0
(

∆

) and the log Atiyah extension dlog •(

∆

) associated to

∆

. Let

f : (X , ∆) → SpecA be a lifting of (f0,

∆

)/κ over A, choose a discrepancy cocycle in

Ω×,•f corresponding to the class [∆] ∈ LConn(f) and denote it by (di, Fij).

Let e : 0 → J → Ã → A → 0 be an extension and let f̃ : (X̃ , ∆̃) → Spec Ã be a lifting

of (f,∆)/A over Ã. Then ∆̃ is given by transition functions F̃ij as above and discrepancy

forms d̃i which restrict on X to Fij and di, respectively, and such that

a) 1 = F̃ijϕ̃
∗
ji(F̃jk)F̃−1

ik ,

b) 0 = d̃j − d̃i − dlog F̃ij and

c) 0 = dd̃i.
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Observe that we have a short exact sequence

0→ Ω •f �A J → Ω×,•
f̃
→ Ω×,•f → 0,

where the left morphism injects OX �A J as 1 +OX �A J into O×X̃ in degree 0.

Group of automorphisms

An automorphism of (f̃, ∆̃)/Ã, where ∆̃ = (L̃, ∆̃) which induces the identity on (f,∆)/A
is given by a corresponding automorphism ϕ̃ of (f̃, L̃) which is compatible with ∆̃. It is

given by a global section σ ∈ H0(Af (L) �A J), represented by a cocycle σ = (gi, ϑi).

Then ϕ̃∗i = 1 + ϑi, with ϑi = ϑj on X̃ij , deVnes an automorphism ϕ̃i of f |Xi and the

multiplication with F̃i = 1 + gi an automorphism of L̃i with 0 = gj − gi − ϑi logFij .

In addition, to be compatible with ∆̃, the data must satisfy the condition F̃iϕ̃∗i (∆̃i(s)) =

∆̃i(F̃iϕ̃
∗
i (s)) for any local section s of L̃i. We calculate

F̃iϕ̃
∗
i (∆̃i(s))− ∆̃i(F̃iϕ̃

∗
i (s))

= (1 + gi)(1 + ϑi)((d+ d̃i)(s))− (d+ d̃i)((1 + gi)(1 + ϑi)(s))

= ds+ [ϑi(d(s)) + ϑi(di ∧s) + gids+ d̃i ∧s]

− ds− [d̃i ∧s+ dϑi(s) + di ∧ϑi(s) + d(gis)]

= [ϑi(di ∧s)− di ∧ϑi(s)− dgi ∧s]

= [ϑi(di) ∧s− dgi ∧s]

= −d(gi − iϑi(di)) ∧s = −dA(gi, ϑi) ∧s,

so the additional condition implies that the cochain (gi, ϑi) is a 0-cocycle in the double

complex Č •(U , A •f (∆) �A J). Due to the lack of coboundaries in degree 0, this cocycle

uniquely determines a class inH0(A •f (∆)�A J).

Hence, the group of automorphisms of (X̃ , ∆̃) over (X , ∆) is canonically isomorphic to

H0(A •f (∆)�A J).

Pseudo-torsor of liftings

Let (f̃0, ∆̃0)/Ã be a lifting of (f,∆)/A and let (f̃, ∆̃) be another lifting, with ∆̃0 =

(L̃0, ∆̃0) and ∆̃ = (L̃, ∆̃). As the discrepancy cycles (F̃0,ij , d̃0,i) and (F̃ij , d̃i) of both de-

formations restrict to (Fij , di) onX , we have equalities F̃ij = F̃0,ij(1+gij) and d̃i− d̃0,i =

νi with gij ∈ Γ (Xij ,OX �A J) and νi ∈ Γ (Xi, Ω1
f �A J).

Since ∆̃ is Wat by assumption, we have, for any local section s of L̃i,

0 = ∆̃i(∆̃i(s)) = (∆̃0,i + νi)((∆̃0,i + νi)(s))

= ∆̃0,i(∆̃0,i(s)) + νi ∧ ∆̃0,i(s) + ∆̃0,i(νi ∧s)

= 0 +
[
νi ∧ ∆̃0,i(s) + dνi ∧s− νi ∧ ∆̃0,i(s)

]
= dνi ∧s,

which implies 0 = dνi.
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On Xij we must also have ∆̃i(s) = ϕ̃∗ij(F̃ji∆̃j(ϕ̃
∗
ji(F̃ijs))) for any section s of L̃ij , so

ds+ d̃0,i ∧s+ νi ∧s = ∆̃0,is+ νi ∧s = ∆̃i(s)

= F̃ijϕ̃
∗
ji(∆̃j(F̃jiϕ̃

∗
ij(s)))

= F̃ijϕ̃
∗
ji(F̃ji)ϕ̃

∗
ji(∆̃j(ϕ̃

∗
ij(s))) + F̃ijd(ϕ̃∗jiF̃ji) ∧s

= ϕ̃∗ji(∆̃j(ϕ̃
∗
ij(s)))− dlog(F̃ij) ∧s

= ϕ̃∗ji(∆̃0,j(ϕ̃
∗
ij(s)))ds+ νj ∧s− dlog(F̃0,ij) ∧s− dgij ∧s

= ds+ d̃0,j ∧s+ ϑij(d̃0,j) ∧s+ νj ∧s− dlog(F̃0,ij) ∧s− dgij ∧s

= ds+ d̃0,i ∧s− d(gij − iϑij (dj))s+ νjs,

and we conclude 0 = (νj − νi)− dA(gij , ϑij).

By assumption, (f̃0, L̃0)/Ã and (f̃, L̃)/Ã are log smooth liftings of (f,L)/A, so (gij , ϑij)

is a 1-cocycle in Č1(U , Af (L)).

Therefore, the chain (νi, (gij , ϑij)) is a cocycle in Č •(U , A •f (∆) �A J) and deVnes a class

[(f̃, ∆̃)− (f̃0, ∆̃0)] ∈ H1(X , A •f (∆)�A J).

If we alter this cocycle by a coboundary, it still describes the same isomorphism class of

deformations: To see this, let (ν′i, (g
′
ij , ϑ

′
ij)) := (νi + dg′i, (gij + (g′i− g′j), ϑij + (ϑ′i−ϑ′j)))

with (g′i, ϑ
′
i) a 0-cochain in Č •(A •f (L,∆)), i. e. with 0 = g′j − g′i − ϑi log fij . We already

know that this does not aUect the isomorphism class of the log smooth log scheme with

line bundle (f̃, L̃)/Ã. Let ∆̃′ be the Wat log connection deVned locally as ∆̃′i = ∆̃0,i + ν′i =

∆̃i + dgi and put F̃ ′i := 1 + g′i ∈ Γ (X̃ ,O×X̃ ). Then

∆̃i(F̃
′
i (s)) = ∆̃′i(F̃

′
i (s))− dgi ∧ F̃ ′i (s)

= ∆̃′i(s) + ∆̃′i(gis)− dgi ∧s

= ∆̃′i(s) + gi∆̃
′
i(s) = F̃ ′i (∆̃

′
i(s)),

showing that the F̃ ′i deVne an isomorphism ∆̃′ → ∆̃. Hence, the class [(f̃, ∆̃) − (f̃0, ∆̃0)]

deVnes the isomorphism class of (f̃, ∆̃) uniquely.

We conclude that the group G := H1(X , A •f (∆)�A J) acts freely on the set of isomorph-

ism classes of liftings along e if this set is non-empty, making this set aG-pseudo-torsor. For

the trivial extension ε0 : 0→ (ε)→ A[ε]0 → A→ 0 the set of isomorphism classes of lift-

ings overA[ε]0 is thus given byH1(A •f (∆)). In particular, tDef(f0,

∆

)
= Def(f0,

∆

)(κ[ε]0) =

H1(A •f0
(

∆

)).

Obstruction theory

We are now going to calculate the obstruction to lifting (f,∆)/A to (f̃, ∆̃)/Ã along the

extension e : 0 → J → Ã → A → 0. To this end, we look at an arbitrary collection

(ϕ̃ij , F̃ij , d̃i), where d̃i ∈ Γ (X̃i, Ω1
f̃ |i) are forms which restrict over A to di; all other

notations are as above.
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We have

a) ϕ̃∗jiϕ̃
∗
kjϕ̃
∗−1
ki = 1 + ϑijk ,

b) F̃ijϕ̃∗ji(F̃jk)F̃−1
ik = 1 + gijk ,

c) F̃ijϕ̃∗ji(∆̃j(F̃jiϕ̃
∗
ij · ))− ∆̃i = νij and

d) ∆̃i(∆̃i( · )) = κi,

where the ϑijk and gijk are as before, νij ∈ Γ (Xij , Ω1
f �A J) and κi ∈ Γ (Xi, Ω2

f �A J).

In particular, the conditions

ϑjkl − ϑikl + ϑijl − ϑijk = 0 and gjkl − gikl + gijl − gijk = ϑijk logFkl

are satisVed.

Reformulating the last two conditions c) and d), we get

c’) ϕ̃∗ji(d̃j)− dlog F̃ij − d̃i = νij and

d’) dd̃i = κi.

Applying d to both sides gives 0 = dκi and 0 = κj − κi − dνij for all i, j.
Abbreviating ϕ̃∗ := ϕ̃∗jiϕ̃

∗
kjϕ̃
∗−1
ki , we calculate on the one hand

ϕ̃∗(d̃i) = (1 + ϑijk)d̃i = d̃i + ϑijk(di)

and on the other hand

ϕ̃∗(d̃i) = ϕ̃∗(ϕ̃∗ki(d̃k)− dlog F̃ik − νik)

= ϕ̃∗jiϕ̃
∗
kj(d̃k)− ϕ̃∗(dlog F̃ik)− νik

= ϕ̃∗ji(d̃j + dlog F̃jk + νjk)− (1 + ϑijk)(dlog F̃ik)− νik

= ϕ̃∗ji(d̃j) + dlog(ϕ̃∗ji(F̃jk))− dlog F̃ik − ϑijk(dlogFik) + νjk − νik)

= di + dlog F̃ij + νij + dlog(ϕ̃∗ji(F̃jk))− dlog F̃ik − ϑijk(dlogFik) + νjk − νik

= di + dlog(F̃ijϕ̃
∗
ji(F̃jk)F̃−1

ik )− ϑijk(di) + ϑijk(dk)) + νjk − νik + νij

= di + ϑijk(di) + dgijk − ϑijk(dk) + νjk − νik + νij

= di + ϑijk(di) + d(gijk − iϑijk(dk)) + (νjk − νik + νij).

It follows that

0 = (νjk − νik + νij) + dA(gijk, ϑijk).

This, together with dκi = 0, ď(κi)− d(νij) = 0 and ď(gijk, ϑijk) = (0, 0), shows that the

collection (κi, νij , (gijk, ϑijk)) is a 2-cocycle in the double complex Č •(U , A •f (∆) �A J)

and thus deVnes a class oe([f,∆]) ∈ H2(A •f (∆) �A J).

If (ϕ̃′ij , F̃
′
ij , d̃

′
i) is any other collection, then we have, as before, ϕ̃

′∗
ji−ϕ̃∗ji = ϑ′ij for a cochain

(ϑ′ij) ∈ Č1(U , Tf �A J), thus ϕ̃′∗jiϕ̃
′∗
kj(ϕ̃

′∗
ki)
−1 = 1 + ϑijk + ϑ′jk + ϑ′ij − ϑ′ik . Moreover,
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F̃ ′ij = F̃ij(1 + g′ij) for a cochain (g′ij) ∈ Č1(U ,OX �A J), thus F̃ ′ijϕ̃
′∗
ji(F̃

′
jk)F̃ ′−1

ik =

1 + gijk + g′ij + g′jk − g′ik + ϑ′ij logFjk . Finally, we have ∆̃′i = ∆̃i + ν′i for a cochain

(ν′i) ∈ Č0(U , Ωf �A J) so that

F̃ ′ijϕ̃
′∗
ji(∆̃

′
j(F̃
′
jiϕ̃
′∗
ij · ))− ∆̃′i

= F̃ij(1 + gij)(ϕ̃
∗
ji + ϑ′ij)(∆̃j + ν′j)(F̃ji(1 + gji)(ϕ̃

∗
ij + ϑ′ji)( · ))− ∆̃i − ν′i

= F̃ijϕ̃
∗
ji(∆̃j(F̃jiϕ̃

∗
ij( · )))− ∆̃i − ν′i + Fijgij∆j(Fji( · )) + Fijϑ

′
ij∆j(Fji( · ))

+ Fijν
′
j ∧ (Fji · ) + Fij∆j(Fjigji · ) + Fij∆j(Fji(ϑ

′
ji)( · ))

= νij + (ν′j − ν′i)− d(gij − iϑij (dj))

and ∆̃′i(∆̃
′
i( · )) = κi + dνi.

This means that the class oe([f,∆]) ∈ H2(X , Af (L)�AJ) which is deVned by the cocycle

(κi, νij , (gijk, ϑijk)) is independent of the collection (ϕ̃ij , F̃ij , d̃i) chosen, because two such

cocycles always diUer by a coboundary (ď ± dA)(ν′i, (g
′
ij , ϑ

′
ij)). Moreover, oe([f,∆]) van-

ishes exactly when there exists a collection with κi = 0, νij = 0, gijk = 0 and ϑijk = 0,

and this is true if and only if a lifting (f̃, ∆̃) of (f,∆) exists.

Setting He([f,∆]) := H2(X , A •f (∆) �A J) and o : VDef(f0,

∆

)
→ O :=

∐
VDef(f0,

∆

)
H ,

(e, x) 7→ oe(x), deVnes a complete linear obstruction theory (H, o) for Def(f0,

∆

). In par-

ticular, H0 := Hε0(f0,

∆

) = H2(X,A •f0
(

∆

)) is a small obstruction space for the functor

Def(f0,
∆

).

Conclusion

In the above section we have proven the following:

4.2.15 Proposition

Let f0 : (X,

∆

)→ Specκ be a log smooth log scheme with Wat log connection.

a) The tangent space of the functor Def(f0,

∆

) isH1(A •f0
(

∆

)).

b) The vector space H2(A •f0
(

∆

)) is the small obstruction space of a complete linear

obstruction theory for the functor Def(f0,

∆

).

Let e : 0 → J → Ã → A → 0 be an extension of log Artin rings and let f : (X , ∆) →
SpecA be a lifting of (f0,

∆

) over A.

c) The group of automorphisms of a lifting f̃ : (X̃ , ∆̃) → Spec Ã inducing the identity

on (f,∆)/A isH0(A •f (∆)�A J).

d) The set of isomorphism classes of liftings of (f,∆)/A over Ã is a pseudo-torsor

under the additive groupH1(A •f (∆)�A J).

e) The complete obstruction oe([f,∆]) to lifting (f,∆)/A over Ã is an element of the

obstruction spaceH2(A •f (∆)�A J).
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Here, the direct sums are induced by the natural splitting of the log Atiyah sequence coming

from the Wat log connection

∆

, respectively,∆.

Given a deformation f : X → Spec T of f0, we may conclude from the calculations above,

by putting all ϑI = 0:

4.2.16 Proposition

a) The tangent space of the functor Def ∆

|f isH1(Ω •f0
).

b) The vector space H2(Ω •f0
) is a the small obstruction space of a complete linear ob-

struction theory for the functor Def ∆

|f .

Let e : 0 → J → Ã → A → 0 be an extension of log rings and let ∆/A be a lifting of

∆

over A.

c) The group of automorphisms of a lifting ∆̃/Ã inducing the identity on ∆/A is

H0(Ω •fA �T J).

d) The set of isomorphism classes of liftings ∆̃/Ã is a pseudo-torsor under the additive

groupH1(Ω •fA �T J).

e) The complete obstruction oe([∆]) to lifting is an element of the obstruction space

H2(Ω •fA �T J).

Moreover, we may link the maps in the long exact cohomology sequence associated to the

short exact sequence of complexes

dlog •(∆) : 0→ Ω •f → A •f (∆)→ Tf → 0

to the two morphisms of functors Def(f0,

∆

) → Deff0
and Def ∆

|f̃ → Def(f0,

∆

) (for a

lifting f̃ : X̃ → Spec Ã of f ) by the following corollaries:

4.2.17 Corollary

Under the A-linear mapHp(A •f (∆) �A J)→ Hp(X , Tf �A J)

a) an automorphism of a lifting (f̃, ∆̃) over (f,∆) is mapped to its underlying auto-

morphism of f̃ over f , for p = 0.

b) the class [(f̃, ∆̃)− (f̃0, ∆̃0)] of a lifting (f̃, ∆̃) of (f,∆) is mapped to the class of its

underlying lifting f̃ of f , for p = 1, whenever a lifting (f̃0, ∆̃0) of (f,∆) is given.

c) the obstruction oe([f,∆]) of Def(f0,

∆

) is mapped to the obstruction oe([f ]) of Deff0 ,

for p = 2.

4.2.18 Corollary

Given a lifting (f̃0, ∆̃0) of (f,∆), under the A-linear map

H
p(Ω •f �A J)→ H

p(A •f (∆) �A J)
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a) any automorphism ψ • of a lifting ∆̃ over∆ is mapped to the automorphism (ι̇d, ψ •)

of (f̃0, ∆̃) over (f,∆), for p = 0.

b) the class [∆̃− ∆̃0] of a lifting ∆̃ of ∆ is mapped to the class of the lifting (f̃0, ∆̃) of

(f,∆), for p = 1.

c) the obstruction oe([∆]) ofDef ∆

|f̃ is mapped to the obstruction oe([f,∆]) ofDef(f0,

∆

),

for p = 2.

Regarding the A-linear map · log(∆) : H1(X , Tf �A J) → H2(Ω •f �A J) induced by

· log(∆),

d) a lifting ∆̃ of∆ always exists on any lifting f̃ of f .

Proof: For d), let [f̃ − f̃0] be given by the 1-cocycle (ϑ̃ij) in Tf �A J . The element [f̃ −
f̃0]log([∆]) is the class of the 2-cocycle (ϑij logFjk, d iϑij (dj), 0) in Ω •f �A J , thus we

have the following chain of equivalences:

[f̃ − f̃0] ∈ Ker( · log([∆]))

⇔ (ϑij logFjk, d iϑij (dj), 0) = (ďgij , ďνi − dgij , dνi)

for a 1-cochain (νi, gij) in Ω •f

⇔ (νi, (gij , ϑij)) is a 1-cocycle in A •f (∆)

⇔ (νi, (gij , ϑij)) deVnes the class [f̃ − f̃0, ∆̃− ∆̃0] of a lifting (f̃, ∆̃).

Hence, a lifting ∆̃ of∆ exists on a lifting f̃ if and only if the class [f̃ − f̃0] lies in the kernel

of · log(∆). Since, however, the short exact sequence dlog •(∆) : 0 → Ω •f → A •f (∆) →
Tf → 0 splits, the map · log(∆) : H1(X , Tf �A J)→ H2(Ω •f �A J) is the zero map, thus

any [f̃ − f̃0] lies in its kernel. Put diUerently, any [f̃ − f̃0] pairs with [∆] to zero under the

pairing H1(X , Tf �A J)×H1(Ω×,•f )→ H2(Ω •f �A J) induced by the log Lie derivative

Tf ×Ω×,•f → Ω •f , (ϑ, u
•) 7→ ϑlog(u •).

Explicitly, the cocycle (νi, (gij , ϑij)) in the above chain of equivalences is given by

(t∆(0), (t∆(ϑij), ϑij)) = (0, (iϑij (di), ϑij)),

where (di, fij) is a discrepancy cocycle for∆. �

4.2.19 Remark

Due to the natural splitting of the log Atiyah extension, we may replaceHp(A •f0
(

∆

)) with

Hp(Ω •f0
)�Hp(X,Tf0

) (respectively, we may replaceHp(A •f (∆)�AJ) withHp(Ω •f �AJ)

�Hp(X , Tf �A J)) in proposition 4.2.15 and in the corollaries 4.2.17 and 4.2.18.
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4.2.5 Deformations of log symplectic schemes of general type

Let f0 : (X,

∆

, ω) → Specκ be a log symplectic scheme of general type. Recall from

section 3.3.4 the deVnition of theB-complexB •f0
(ω) = B •(f0,

∆

)(ω) and theB-extension bω

associated to ω.

4.2.20 Corollary

In all propositions and corollaries above, we may replace Tf0 with Ω1
f0

and, if there exists

a corresponding log symplectic lifting $ of ω, also Tf �A J with Ω1
f �A J .

Let f : (X , ∆,$) → SpecA be a log symplectic deformation of (f0,

∆

, ω)/κ over A and

denote $i := $|Xi ∈ Γ (Xi, Ω2
f ). Let e : 0 → J → Ã → A → 0 be an extension and

let f̃ : (X̃ , ∆̃, $̃) → Spec Ã be a lifting of (f,∆,$)/A over Ã. Then $̃ is given by a

collection of 2-forms $̃i ∈ Γ (X̃i, Ω2
f̃
) which restrict on Xi to $i and such that

a) $̃i = F̃ij$̃j ,

b) ∆̃i$̃i = 0 and

c) i · ($̃i) : Tf̃ |i → Ω1
f̃ |i is an isomorphism,

with all notations as before.

Observe that we have a short exact sequence

0→ (Ω≥2,•
f �OX L)�A J → Ω≥2,•

f̃
�OL̃ L̃ → Ω≥2,•

f �OX L → 0.

All calculations in this chapter are based on the Vrst description of B •f ($) (with B0
f ($) =

A0(L); cf. section 3.3.4). Of course all calculations go through, when using the alternate

description of B •f ($) (with B0
f ($) = (Ω1

f0
�OX L)�OX ).

Group of automorphisms

An automorphism ϕ of (f̃, ∆̃, $̃)/Ã which induces the identity on (f,∆,$)/A is a cor-

responding automorphism of (f̃, ∆̃)/Ã, given by (gi, ϑi) as above, with the additional pro-

perty that F̃iϕ̃∗i ($̃i) = $̃i. We calculate

0 = $̃i + gi$i + ϑi($i)− $̃i = (gi, ϑi)($i),

i. e. 0 = (−b$i)(gi, ϑi) = dB(gi, ϑi). Therefore, (gi, ϑi) is a 0-cocycle in the double com-

plex Č •(U , B •f ($)) and, due to the lack of coboundaries, uniquely describes a class in

H0(B •f ($)).

Hence, the group of automorphisms of (X̃ , ∆̃, $̃) over (X , ∆,$) is canonically isomorphic

toH0(B •f ($)).
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Pseudo-torsor of liftings

Let (f̃0, ∆̃0, $̃0)/Ã be a lifting of (f,∆,$)/A and let (f̃, ∆̃, $̃) be another lifting. As $̃0

and $̃ both restrict to $ on X , we have $̃i = $̃0
i + ui with ui ∈ Γ (Xi, Ω2

f �A J). The

rest of the data diUers by νi, gij and ϑij as above.

Recall the conditions fulVlled by the νi, gij and ϑij , due to the fact that by assumption

(f̃0, ∆̃0)/Ã and (f̃, ∆̃)/Ã are liftings of (f,∆)/A.

As both $̃ and $̃0 are closed by assumption, we have

0 = ∆̃i$̃i = (∆̃0,i + νi)($0,i + ui)

= ∆̃0,i$̃0,i + νi ∧ $̃0,i + ∆̃0,iui + νi ∧ui

= 0 + νi ∧$i +∆iui + 0,

which means that 0 = −∆iui − b$i(νi). Together with 0 = dνi this means that 0 =

dB(ui, νi). Moreover, on X̃ij we must have F̃ijϕ̃∗ji($j)−$i = 0; hence,

0 = F̃ijϕ̃
∗
ji($̃j)− $̃i

= F̃0,ij(1 + gij)(1 + ϑij)($̃0,j + uj)− $̃0,i − ui

= F̃0,ij$̃0,j − $̃0,i + F̃0,ijϑij($̃0,j) + F̃0,ijgij$̃0,j + F̃0,ijuj − ui

= 0 + Fijϑij($j) + Fijgij$j + Fijuj − ui

= Fij(gij + ϑij)($j) + Fijuj − ui,

and we conclude 0 = (Fijuj − ui) − Fij(−b$j )(gij , ϑij). Together with 0 = (νj − νi) −
dA(gij , ϑij) this means that 0 = ď(ui, νi) − dB(gij , ϑij). Finally, 0 = ď(gij , ϑij) is still

valid.

Those conditions may be combined to the single one that 0 = (ď ± dB)((ui, νi), (gij , ϑij))

which means precisely that the cochain ((ui, νi), (gij , ϑij)) is a 1-cocycle of the double

complex Č •(U , B •f ($)) and thus deVnes a class [f̃, ∆̃, $̃] ∈ H1(B •f ($)).

If we alter this cocycle by a coboundary, then, due to the deVnition of B •f ($), only the

data νi, gij and ϑij which are related to (X̃ , ∆) change, but not the ui. Since we already

know that this does not aUect the isomorphism class of the log smooth log scheme with

Wat log connection (f̃, ∆)/Ã, this does not aUect the isomorphism class of the log sym-

plectic scheme (f̃, ∆̃, $̃)/Ã, either. Hence, the class [(f̃, ∆̃, $̃)− (f̃0, ∆̃0, $̃0)] deVnes the

isomorphism class of (f̃, ∆̃, $̃) uniquely.

We conclude that the groupG := H1(B •f ($)) acts freely on the set of isomorphism classes

of liftings along e if this set is non-empty, making this set aG-pseudo-torsor. For the trivial

extension ε0 : 0 → (ε) → A[ε]0 → A → 0 the set of isomorphism classes of liftings

over A[ε]0 is thus given byH1(B •f ($)). In particular, tDef(f0,

∆

,ω)
= Def(f0,

∆

, ω)(κ[ε]0) =

H1(B •f0
(ω)).
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Obstruction theory

We are now going to calculate the obstruction to lifting (f,∆,$)/A to (f̃, ∆̃, $̃)/Ã along

the extension e : 0 → J → Ã → A → 0. To this end, we look at an arbitrary collection

(ϕ̃ij , F̃ij , d̃i, $̃i), where $̃i ∈ Γ (X̃i, Ω2
f̃ |i) are 2-forms which restrict over A to $i; all

other notations as above.

We have

a) ϕ̃∗jiϕ̃
∗
kjϕ̃
∗−1
ki = 1 + ϑijk ,

b) F̃ijϕ̃∗ji(F̃jk)F̃−1
ik = 1 + gijk ,

c) F̃ijϕ̃∗ji(∆̃j(F̃jiϕ̃
∗
ij · ))− ∆̃i = νij ,

d) ∆̃i(∆̃i( · )) = κi,

e) F̃ijϕ̃∗ij$̃j − $̃i = uij and

f) (−∆̃i)($̃i) = %i,

where the ϑijk , gijk , νij and κi have the same properties as before, uij ∈ Γ (Xij , Ω2
f �A J)

and %i ∈ Γ (Xi, Ω3
f �A J).

From the last condition we deduce that

κi ∧$i = ∆̃i(∆̃i($̃i)) = −∆i(%i),

so 0 = (−b$i)(κi) + (−∆i)(%i). Together with dκi = 0 this means that 0 = dB(%i, κi).

From the one but last condition we get

(Fij%j − %i)

= F̃ijϕ̃
∗
ji(−∆̃j($̃j)) + ∆̃i($̃i)

= −F̃ijϕ̃∗ji(F̃jiϕ̃∗ij(∆̃i(F̃ijϕ̃
∗
ji($̃j)))) + F̃ijϕ̃

∗
ji(νji ∧ $̃j) + ∆̃i($̃i)

= −∆̃i($̃i)− ∆̃i(uij)− Fij(νij ∧$j) + ∆̃i($̃i)

= −(∆i(uij) + νij ∧$i);

hence, 0 = (Fij%j − %i)− (Fij(−b$j )(νij) + (−∆i)(uij)). Together with 0 = (κj −κi)−
dνij this means that 0 = ď(%i, κi)− dB(uij , νij).

Now we calculate in two ways:

(F̃ijϕ̃
∗
ji($̃j)− $̃i) + F̃ijϕ̃

∗
ji(F̃jk(ϕ̃∗kj($̃k)− $̃j))− F̃ik(ϕ̃∗ki($̃k)− $̃i)

= uij + ϕ̃∗ij(F̃ji(ujk))− uik

= Fjiujk − uik + uij
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and

(F̃ijϕ̃
∗
ji($̃j)− $̃i) + F̃ijϕ̃

∗
ji(F̃jk(ϕ̃∗kj($̃k)− $̃j))− F̃ik(ϕ̃∗ki($̃k)− $̃i)

= F̃ijϕ̃
∗
ji(F̃jkϕ̃

∗
kj($̃k))− F̃ikϕ̃∗ki($̃k)

= F̃ijϕ̃
∗
ji(F̃jk)ϕ̃∗jiϕ̃

∗
kj($̃k)− F̃ikϕ̃∗ki($̃k)

= F̃ik

[
F̃ijϕ̃

∗
ji(F̃jk)F̃−1

ik ϕ̃
∗
jiϕ̃
∗
kjϕ̃
∗
ik(ϕ̃∗ki$̃k)− ϕ̃∗ki($̃k)

]
= F̃ik [(1 + gijk)(1 + ϑijk)(ϕ̃∗ki$̃k)− ϕ̃∗ki($̃k)]

= F̃ik [(gijk + ϑijk)(ϕ̃∗ki$̃k)]

= Fik(gijk + ϑijk)($k),

which implies 0 = (Fijujk +uik−uij) +Fik(−b$k)(gijk, ϑijk). Together with the condi-

tion 0 = (νjk−νik +νij)+dA(gijk, ϑijk) this means that 0 = ď(uij , νij)+dB(gijk, ϑijk).

Finally, we still have 0 = ď(gijk, ϑijk).

For the 2-cochain ((%i, κi), (uij , νij), (gijk, ϑijk)) in the double complex Č •(U , B •f ($)�A
J) these conditions are equivalent to the single condition

(ď± dB)((%i, κi), (uij , νij), (gijk, ϑijk)) = 0

which makes ((%i, κi), (uij , νij), (gijk, ϑijk)) a 2-cocycle in Č •(U , B •f ($) �A J) deVning

a class oe([f,∆,$]) ∈ H2(B •f ($)�A J).

If (ϕ̃′ij , F̃
′
ij , d̃

′
i, $̃

′
i) is any other collection, then we have, with all notations as before,

ϕ̃′∗jiϕ̃
′∗
kj(ϕ̃

′∗
ki)
−1 = 1 + ϑijk + ϑ′jk + ϑ′ij − ϑ′ik ,

F̃ ′ijϕ̃
′∗
ji(F̃

′
jk)F̃ ′−1

ik = 1 + gijk + g′ij + g′jk − g′ik + ϑij log(Fjk),

F̃ijϕ̃
∗
ji(d̃

′
j(F̃jiϕ̃

∗
ij · ))− d̃′i = νij + ν′j − ν′i − d(g′ij − iϑ′ij (dj)) and

∆̃′i(∆̃
′
i( · )) = κi + dν′i,

and, moreover, $̃′i − $̃i = u′i for a cochain (u′i) in Č
0(U , (Ω2

f �OX L)�A J). Hence,

F̃ ′ijϕ̃
′∗
ji$̃
′
j − $̃′i = uij + u′j − u′i + Fij(g

′
ij , ϑ

′
ij)($j) and

(−∆̃′i)($̃′i) = %i − νi ∧$i −∆iu
′
i.

This means that the class oe([f,∆,$]) ∈ H2(B •f ($)�AJ) which is deVned by the cocycle

((%i, κi), (uij , νij), (gijk, ϑijk)) is independent of the collection (ϕ̃ij , F̃ij , d̃i, $̃i) chosen,

because two such cocycles always diUer by a coboundary (ď±dB)((u′i, ν
′
i), (g

′
ij , ϑ

′
ij)). More-

over, oe([f,∆,$]) vanishes exactly when there exists a collection with %i = 0, uij = 0,

κi = 0, νij = 0, gijk = 0 and ϑijk = 0, and this is true if and only if a lifting (f̃, ∆̃, $̃) of

(f,∆,$) exists.

SettingHe([f,∆,$]) :=H2(X , B •f ($)�AJ) and o : VDef(f0,

∆

,ω)
→ O :=

∐
VDef(f0,

∆

,ω)
H ,

(e, x) 7→ oe(x), deVnes a complete linear obstruction theory (H, o) for Def(f0,

∆

, ω). In

particular, H0 := Hε0(f0,

∆

, ω) = H2(X,B •f0
(ω)) is a small obstruction space for the

functor Def(f0,

∆

, ω).
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Conclusion

In the above section we have proven the following:

4.2.21 Proposition

Let f0 : (X,

∆

, ω)→ Specκ be a log symplectic scheme of general type.

a) The tangent space of the functor Def(f0,

∆

, ω) isH1(B •f0
(ω)).

b) The vector space H2(B •f0
(ω)) is a the small obstruction space of a complete linear

obstruction theory for the functor Def(f0,

∆

, ω).

Let e : 0 → J → Ã → A → 0 be an extension of log Artin rings and f : (X , ∆,$) →
SpecA a lifting of (f0,

∆

, ω) over A.

c) The set of automorphisms of a lifting f̃ : (X̃ , ∆̃, $̃)→ Spec Ã inducing the identity

on (f,∆,$)/A isH0(B •f ($)�A J).

d) The set of isomorphism classes of liftings (f̃, ∆̃, $̃)/Ã is a pseudo-torsor under the

additive groupH1(B •f ($) �A J).

e) The complete obstruction oe([f,∆,$]) to lifting is an element in the obstruction

spaceH2(B •f ($)�A J).

Given a deformation f : (X , ∆) → Spec T of f0 : (X,

∆

) → Specκ, we may conclude

from the calculations above, by putting all ϑI , gI and dI equal to zero:

4.2.22 Proposition

a) The tangent space of the functor Defω|(f,∆) isH0(Ω≥2,•
f0

�OX L[2]).

b) The vector spaceH1(Ω≥2,•
f0

�OX L[2]) is a the small obstruction space of a complete

linear obstruction theory for the functor Defω|(f,∆).

Let e : 0 → J → Ã → A → 0 be an extension of log Artin rings and let $/A be a lifting

of ω over A.

c) The group of automorphisms of a lifting $̃/Ã inducing the identity on $/A con-

sists only of the identity morphism (and it may be identiVed with the trivial group

H−1(Ω≥2,•
f �OX L[2]�T J) = 0).

d) The set of isomorphism classes of liftings $̃/Ã is a pseudo-torsor under the additive

groupH0(Ω≥2,•
f �OX L[2]�T J).

e) The complete obstruction oe($) to lifting is an element of the obstruction space

H1(Ω≥2,•
f �OX L[2]�T J).
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Moreover, we may link the maps in the long exact cohomology sequence associated to the

short exact sequence of complexes

b$ : 0→ Ω≥2,•
f � L[1]→ B •f ($)→ A •f (∆)→ 0

to the two morphisms of functors Def(f0,

∆

, ω) → Deff0,

∆and Defω|(f̃,∆̃) → Def(f0,

∆

, ω)

(for a lifting (f̃, ∆̃) : X̃ → Spec Ã of (f,∆)) by the following corollaries:

4.2.23 Corollary

Under the A-linear mapHp(B •f ($)�A J)→ Hp(A •f (∆)�A J)

a) an automorphism of a lifting (f̃, ∆̃, $̃) over (f,∆,$) is mapped to its underlying

automorphism of (f̃, ∆̃) over (f,∆), for p = 0.

b) the class [(f̃, ∆̃, $̃) − (f̃0, ∆̃0, $̃0)] of a lifting (f̃, ∆̃, $̃) of (f,∆,$) is mapped to

the class of its underlying lifting (f̃, ∆̃) of (f,∆), for p = 1, whenever a lifting

(f̃0, ∆̃0, $̃0) of (f,∆,$) is given.

c) the obstruction oe([f,∆,$]) of Def(f0,

∆

, ω) is mapped to the obstruction oe([f,∆])

of Deff0,

∆, for p = 2.

4.2.24 Corollary

Given a lifting (f̃0, ∆̃0, $̃0) of (f,∆,$),

a) any automorphism of $̃0 over $ is the identity.

Under the A-linear mapHp−1(Ω≥2,•
f � L[2]�A J)→ Hp(B •f ($)�A J)

b) the class [$̃− $̃0] of a lifting $̃ of$ is mapped to the class of the lifting (f̃0, ∆̃0, $̃)

of (f,∆,$), for p = 1.

c) the obstruction oe($) of Defω|(f̃,∆̃) is mapped to the obstruction oe([f,∆,$]) of

Def(f0,

∆

, ω), for p = 2.

Regarding the A-linear map b$ : H1(A •f (∆) �A J) → H1(Ω≥2,•
f � L[2] �A J) induced

by b$ ,

d) a lifting $̃ of $ exists on a lifting (f̃, ∆̃) of (f,∆) if and only if the class [(f̃, ∆̃) −
(f̃0, ∆̃0)] lies in the kernel of b$ .

Equivalently, under the pairing H1(A •f (∆) �A J)×H0(Ω×≥2,•
f � L[2])→ H1(Ω≥2,•

f �
L[2]�AJ) induced by the action of

∆

-derivationsA •f (∆)×Ω×≥2,•
f �L[2]→ Ω≥2,•

f �L[2],

(a •, u •) 7→ a •(u •), the classes [(f̃, ∆̃)− (f̃0, ∆̃0)] and [$] pair to zero.

Proof: For d), let [(f̃, ∆̃)− (f̃0, ∆̃0)] be given by the 1-cocycle ((g̃ij , ϑ̃ij), ν̃i) in the complex

A •f (

∆

)�AJ . The element b$([f̃, ∆̃]) is the class of the 1-cocycle (gij$j+iϑij ($j), νi ∧$i)
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in Ω≥2,•
f �OX L[2], thus we have the following chain of equivalences:

[(f̃, ∆̃)− (f̃0, ∆̃0)] ∈ Ker(b$)

⇔ (gij$j + iϑij ($j), νi ∧$i) = (∆± ď)(ui) = (Fijuj − ui, ∆ui)

for a 0-cochain (ui) in Ω
≥2,•
f �OX L[2]

⇔ ((ui, νi), (gij , ϑij)) is a 1-cocycle in B •f ($)

⇔ ((ui, νi), (gij , ϑij)) deVnes the class

[(f̃, ∆̃, $̃)− (f̃0, ∆̃0, $̃0)] of a lifting (f̃, ∆̃, $̃). �

4.2.6 Overview over the tangent and small obstruction spaces

The tangent and small obstruction spaces calculated in this section are

tDeff0
= H1(X,Tf0

), H0,Deff0
= H2(X,Tf0

),

tDef(f0,ω)
= H1(Ω≥1,•

f0
[1]), H0,Def(f0,ω)

= H2(Ω≥1,•
f0

[1]),

tDefω|f = H0(Ω≥2,•
f0

[2]), H0,Defω|f = H1(Ω≥2,•
f0

[2]),

tDef(f0,L)
= H1(X,Af0(L)), H0,Def(f0,L)

= H2(X,Af0(L)),

tDefL|f = H1(X,OX), H0,DefL|f = H2(X,OX),

tDef(f0,

∆

)
= H1(A •f0

(

∆

)), H0,Def(f0,

∆

)
= H2(A •f0

(

∆

)),

tDef ∆

|f = H1(Ω •f0
), H0,Def ∆

|f = H2(Ω •f0
),

tDef(f0,

∆

,ω)
= H1(B •(f0,

∆

)(ω)), H0,Def(f0,

∆

,ω)
= H2(B •(f0,

∆

)(ω)) and

tDefω|(f,∆)
= H0(Ω≥2,•

f0
� L[2]), H0,Defω|(f,∆)

= H1(Ω≥2,•
f0

� L[2]).

4.3 Log symplectic deformations over the standard log

point

From now on we limit our considerations to the following setting. Let k be a Veld of

characteristic zero and let T denote the power series ring k[[t]] in one variable. We let

T : N0 → T be the prelog ring deVned by n 7→ tn. The residue Veld of T is k and we

let κ : N0 → k denote the prelog ring given by mapping n to 1 if n = 0 and to 0 if not,

which deVnes the standard log point Specκ. In particular, % : Q → P is the identity map

N0 → N0 in the notation of chapter 2. Consequently, the induced morphism of log schemes

Specκ→ Spec T is a strict closed embedding.

For this section, let f0 : (X,

∆

, ω)→ Specκ be a proper log fs log symplectic scheme with

f∗OX = OSpecκ. The morphism f0 : X → Specκ is then integral due to proposition

1.2.42. Hence, its underlying morphism f0 is Wat and, moreover, any log smooth lifting

f : X → SpecA of f0 is integral by 2.3.1, thus its underlying morphism of schemes is Wat.

Hence f∗OX = OSpecA (cf. [31, p. 216]).
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4.3.1 Existence of hulls and pro-representability

We regard the functors of log Artin rings

Deff0 , Def(f0,ω), Defω|f , Def(f0,L), DefL|f , Def(f0,

∆

), Def ∆

|f , Def(f0,

∆

,ω) and Defω|(f,∆)

deVned in the Vrst two sections 4.1.2 and 4.1.1 of the current chapter. We will show in

this section that every such functor it possesses a hull and that some of them are even

pro-representable. This is done by verifying the log Schlessinger conditions LH1 to LH3

(respectively, to LH4) (cf. chapter 2 section 2.2).

The procedure is similar to that of the preceding sections: Each of the upcoming subsections

entitled “VeriVcation of LHn”, n = 1, . . . , 4, comprises four “steps”, in each of which we

add one more datum to the log fs log smooth scheme f0 : X → Specκ. Step one deals with

f0 : X → Specκ, step two adds a line bundle L on X , step three a Wat log connection

∆

with line bundle L on f0 and step four a log symplectic form of type

∆

on f0.

The existence of a hull of the functor Deff0
for a log smooth morphism f0 : X → Specκ

with X a log fs log scheme is stated and proven by F. Kato in [17, 8.7 & § 9]. In the

veriVcation of the LHn each Vrst step is a repetition the basic arguments of Kato’s proof.

Each second step is basically an adaptation of Sernesi’s proof of [32, 3.3.11] which itself

is based on Schlessinger’s calculations in [31, §3]. The third and fourth step are due to

ourselves.

We abbreviate the functor Def(f0,

∆

, ω) to Def .

VeriVcation of LH1

First, we show that Def = Def(f0,

∆

, ω) satisVes LH1, i. e. that for every morphism A′ → A
and all small extensions A′′ → A of log Artin rings the map

Φ : Def(A′ ×A A′′)→ Def(A′)×Def(A) Def(A′′)

is surjective.

LetA′ → A← A′′ be a diagram in LArtT withA′′ → A surjective. We take some element

([f ′, ∆′, $′], [f ′′, ∆′′, $′′]) ∈ Def(A′)×Def(A) Def(A′′)

which is mapped to [f,∆,$] ∈ Def(A). Let L(′/′′) denote the line bundle of ∆(′/′′).

We then have a diagram of log smooth deformations

X ′

f ′

��

X ′′

f ′′

��
SpecA′ X

u′
ee

+ �

u′′
99

f

��

SpecA′′

SpecA

ee

+ �

99

,
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where u′ and u′′ induce isomorphisms X ′ ×SpecA′ SpecA ∼= X ∼= X ′′ ×SpecA′′ SpecA.
Moreover, we get isomorphisms u′∗∆′ ∼= ∆ ∼= u′′∗∆′′ of Wat log connections (and in

particular isomorphisms u′∗L′ ∼= L ∼= u′′∗L′′ of line bundles) and an equality u′∗$′ =

$ = u′′∗$′′ of 2-forms on X .
Since each of the natural morphisms i(′/′′) : X → X (′/′′) is a log inVnitesimal thickening,

we haveMX
∼= i(′/′′)

−1MX (′/′′) by lemma 1.2.12. In particular, by 3.4.10, LCar(X) ∼=
LCar(X (′/′′)).

By lemma 2.3.2, every local chart of X lifts to a chart on X (′/′′).

Step One: Log schemes We deVne Ã to be the Vbred product of log rings A′ ×A A′′.
Following Kato’s proof of the existence of a hull for the functor Deff0 in [17, Cap. 9], there

is a log smooth deformation f̃ : X̃ → Spec Ã of f0 over Ã, where X̃ is the log scheme

consisting of the scheme (|X| ,OX ′ ×OX OX ′′) and the log structure

αX̃ = αX ′ ×αX αX ′′ : MX ′ ×MX MX ′′ → OX ′ ×OX OX ′′

and with f̃ = f ′ tf f ′′. This is the amalgamated sum of the log smooth log schemes f ′ and

f ′′ over f . By the surjectivity ofA′′ → A and the deVnition of αX̃ , the canonical morphism

v′ : X ′ → X̃ is a strict closed immersion, making f̃ a log smooth deformation of f and thus

of f0.

Moreover, α̃ is a Vne log structure given locally by a chart ã = a′ × a′′ : P ∼= P ×P P →
MX̃ , where a(′/′′) : P →MX(′/′′) are local charts for X (′/′′).

The following diagram, which we will refer to as (∗), shows our momentary situation:

X̃

f̃
��

X ′

f ′

��

, �

v′
99

Spec Ã X ′′

f ′′

��

v′′
ee

SpecA′
, �

::

X

u′
dd

, �

u′′
99

f

��

SpecA′′

ee

SpecA

ee

+ �

99

,

where arrows of the form ↪→ indicate strict closed immersions.

Step Two: Line bundles Following the proof of [32, 3.3.11], we deVne L̃ := L′ ×L L′′

which is a a line bundle on X̃ with the correct restrictions to X ′ and X ′′, respectively.
Hence, (f̃, L̃) deVnes an element in Def(f0,L)(Ã) with

[f̃, L̃] 7→ ([f ′,L′], [f ′′,L′′])

under the map Def(f0,L)(Ã)→ Def(f0,L)(A′)×Def(f0,L)(A) Def(f0,L)(A′′).
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If the line bundles L(′/′′) are log Cartier, say L = MX (D), L′ = MX ′(D′) and L′′ =

MX ′′(D′′) for log Cartier divisors D, D′ and D′′ on X , X ′ and X ′′, respectively, then we

must have D′ 7→ D ← [ D′′ under the isomorphisms LCar(X ′) ∼= LCar(X ) ∼= LCar(X ′′).
Hence, L̃ = L′ ×L L′′ ∈ Pic(X̃ ) = Pic(X ′)×Pic(X ) Pic(X ′′) is the imageMX(D̃) under

δX̃ = δX ′ ×δX δX ′′ of D̃ = (D′, D′′) ∈ LCar(X ′) ×LCar(X ) LCar(X ′′) = LCar(X̃ ). In

particular, L̃ is log Cartier.

Step Three: Flat log connection We claim that the natural map

Ω1
f̃
→ Ω1

f ′ ×Ω1
f
Ω1
f ′′ ,

given by σ 7→ (v′∗σ, v′′∗σ), is an isomorphism.

To see this, we Vx a chart of f̃ : X̃ → Spec Ã at a point x ∈ X subordinate to a ho-

momorphism of monoids θ : N0 → P . Then, because this chart lifts to charts for f̃ and

each f (′/′′) and by [19, 1.8], we have Ω1
f̃,x
∼= OX̃ ,x �Z (P grp/θ(N0)grp) and Ω1

f(′/′′),x
∼=

OX (′/′′),x �Z (P grp/θ(N0)grp).

So clearly Ω1
f̃,x
→ Ω1

f ′,x ×Ω1
f,x

Ω1
f ′′,x = (OX ′,x ×OX ,x OX ′′,x) �Z (P grp/θ(Q)grp) is an

isomorphism at each x and we will identify Ω1
f̃

= Ω1
f ′ ×Ω1

f
Ω1
f ′′ via this isomorphism.

Moreover, for the line bundles L̃ and L(′/′′) as above, the natural map Ω1
f̃
�OX̃ L̃ →

(Ω1
f ′ �OX′ L

′)×(Ω1
f�OX L)Ω

1
f ′′�OX′′L

′′ is an isomorphism which can be easily checked on

its stalks as well. We will identify both sides of this isomorphism.

We construct a Wat log connection ∆̃ = (L̃, ∆̃) on (X̃ , L̃) by deVning

∆̃ := ∆′ ×∆′′ : L̃ = L′ ×L L′′ → Ω2
f̃
�OX̃ L̃

= (Ω2
f ′ �OX′ L

′)×(Ω2
f�OX L) (Ω2

f ′′ �OX′′ L
′′).

If g̃ = (g′, g′′) is a local section of OX̃ and s̃ = (s′, s′′) a local section of L̃, then

∆̃(g̃s̃) = (∆′(g′s′), ∆′′(g′′s′′)) = (dg′ � s′ + g′∆′(s′), dg′′ � s′′ + g′′∆′′(s′′))

= (dg′ � s′, dg′′ � s′′) + (g′∆′(s′), g′′∆′′(s′′)) = dg̃ � s̃+ g̃∆̃(s̃),

so indeed ∆̃ is a log connection. It is Wat, because

∆̃∆̃ = (∆′ ×∆′′)(∆′ ×∆′′) = (∆′∆′)× (∆′′∆′′) = 0.

If the three Wat log connections ∆(′/′′) are log Cartier, then, just as with line bundles, ∆̃ is

log Cartier: If ∆ = Mf (D), ∆′ = Mf ′(D
′) and ∆′′ = Mf ′′(D

′′) for log Cartier divisors

D(′/′′) ∈ LCar(X (′/′′)), then ∆̃ = Mf̃ (D̃) for D̃ = (D′, D′′) ∈ LCar(X̃ ).

Step Four: Log symplectic form We deVne $̃ := ($′, $′′) which, via the identiVca-

tions made before, is an element of Γ (X̃ , Ω2
f̃
�OX̃ L̃) with the properties that

a) ∆̃$̃ = (∆′$′, ∆′′$′′) = 0 and that
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b) $̃ induces in the obvious manner an isomorphism

Tf̃ = Tf ′ ×Tf Tf ′′
∼=−−→ Ω1

f̃
�OX̃ L̃ = (Ω1

f ′ �OX′ L
′)×(Ω1

f�OX L) (Ω1
f ′′ �OX′′ L

′′).

Summing everything up, we have constructed an element [f̃, ∆̃, $̃] ∈ Def(Ã) with the

property that Φ([f̃, ∆̃, $̃]) = ([f ′, ∆′, $′], [f ′′, ∆′′, $′′]). This shows LH1 for the functor

Def = Def(f0,

∆

, ω).

4.3.1 Remark

For any of the other functors of log Artin rings Def deVned in the sections 4.1.1 and 4.1.2,

LH1 is shown in the same way, starting with an object (η′, η′′) ∈ Def(A′)×Def(A)Def(A′′),
with η′ 7→ η ← [ η′′ and using only those steps necessary for the data involved.

Hence, each of the functors Deff0 , Def(f0,ω), Defω|f , Def(f0,L), DefL|f , Def(f0,

∆

), Def ∆

|f ,

Def(f0,

∆

, ω) and Defω|(f,∆) satisVes LH1.

For example, showing LH1 for Def ∆

|f involves putting f (′/′′) := fA(′/′′) in the starting

objects η(′/′′) = (f (′/′′), ∆(′/′′)), then deVning f̃ := fA′×AA′′ and proceeding with steps

two and three as above, leaving out step four.

The same applies to the upcoming veriVcations of LH2, LH3 and, for some of the functors,

of LH4.

VeriVcation of LH2

Condition LH2 is that the map Φ : Def(A′ ×κ κ[ε]0)→ Def(A′)×Def(κ[ε]0) is bijective.

Hence, we have to show that the element [f̃, ∆̃, $̃] constructed in the last section is unique

when A = κ and A′′ = κ[ε]0.

Step One: Log Schemes This paragraph is taken from [17, § 9]. There we Vnd the

following lemma which is based on [31, 3.3 & 3.6]:

4.3.2 Lemma ([17, 9.2])

Given a diagram (∗) as above. If ˜̃X/Ã is another smooth lifting Vtting into the diagram such

that v(′/′′)∗ ˜̃X ∼= X (′/′′) over A(′/′′), then the natural morphism X̃ → ˜̃X is an isomorphism

of log schemes.

Now if ˜̃f : ˜̃X → Spec Ã is any lifting of f0 over Ã then we have a commutative diagram

˜̃X

X ′
* 

w′

88

X ′′
w′′

gg

X

u′aa

ϕ
// X
. �
u′′ ==

,

where ϕ is the automorphism of X/A deVned by OX ∼= (v′u′)∗O ˜̃X = (v′′u′′)∗O ˜̃X
∼= OX .
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If this automorphism lifts to an automorphism ϕ′ of X ′ such that u′ ◦ ϕ = ϕ′ ◦ u′, then
replacing w′ by w′ ◦ϕ′, we get a commutative diagram of the form (∗) and, by the lemma, ˜̃f

is equal up to isomorphism to f̃ as described in the proof of LH1. Now if, as LH2 assumes,

A = κ, then ϕ = ι̇d and ϕ′ = ι̇d is a lifting (compare [31, p. 220]). Hence, Deff0
satisVes

LH2.

Step Two: Line bundles The uniqueness of [f̃, L̃] under the assumptions A = κ and

A′′ = κ[ε]0 of LH2 is shown as follows: After step one, it remains to show the uniqueness

of L̃, which we do analogously to the proof of [31, 3.2, p. 218]:

If ˜̃L is any lifting of L on X̃ , then the composition L ∼= (v′u′)∗ ˜̃L = (v′′u′′)∗ ˜̃L ∼= L is an

automorphism of L, which is nothing but a global section of A×. Since units always lift to
units under surjective ring homomorphisms between local rings, using only that A′′ → A
is surjective, this automorphism of L lifts to an automorphism of L′. Using [31, 3.6], it

follows that ˜̃L ∼= L̃.

Hence, the functors Def(f0,L) and DefL|f satisfy LH2. Observe that, since we have in this

step only used the surjectivity of A′ → A, it follows that DefL|f actually satisVes LH4.

Step Three: Log connections Due to the universal property of the Vbred product, we

have

HomC(L̃, Ωf̃ � L̃) = HomC(L̃, Ωf ′ � L′)×HomC(L̃,Ωf�L) HomC(L̃, Ωf ′′ � L′′).

Now, if ˜̃∆ is any log connection on (f̃, L̃) constructed as before, the restriction to X (′/′′)of

which is ∆(′/′′), then ˜̃∆ = ∆̃. The uniqueness (up to isomorphism) of (f̃, L̃) has been

shown in the Vrst two steps.

Hence, the functors Def(f0,

∆

) and Def ∆

|f both satisfy LH2. Observe that Def ∆

|f actually

satisVes LH4.

Step Four: Log symplectic forms Let (f (′/′′), ∆(′/′′), $(′/′′)) and (f̃, ∆̃) be as before

and let $̃ be the log symplectic form on (f̃, ∆̃)/Ã deVned in the proof of LH1.

If ˜̃$ is any log symplectic form on (f̃, ∆̃)/Ã such that v′∗ ˜̃$ = $′ and v′′∗ ˜̃$ = $′′, then

we have equalities $ = (v′u′)∗ ˜̃$ = (v′′u′′)∗ ˜̃$ = $. Thus ˜̃$ = ($′, $′′) = $̃ ∈
Γ (Ω2

f̃
� L̃) = Γ (Ω2

f ′ � L′)×Γ (Ω2
f�L) Γ (Ω2

f ′′ � L′′), which shows the uniqueness of $̃.

Hence, each of the functors Def(f0,ω), Defω|f , Def(f0,

∆

, ω), Def(

∆

,ω)|f and Defω|(f,∆) sat-

isVes LH2. Observe that the functors Defω|f , Def(

∆

,ω)|f and Defω|(f,∆) actually satisfy

LH4.
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VeriVcation of LH3

Condition LH3 demands that the tangent space of the respective functor of log Artin rings

is Vnite-dimensional. The tangent spaces for the various functors have been calculated in

section 4.2 and listed in 4.2.6. By assumption, f0 : X → Specκ is log smooth and the

underlying morphism of schemes f0 is proper. Hence, all appearing sheaves are coherent

(and in fact locally free), moreover, all appearing complexes are bounded and consequently,

all of the tangent spaces are Vnite-dimensional vector spaces.

VeriVcation of LH4 for certain functors

As we have remarked in the calculations regarding LH2, whenever we deformed only L,

∆

or ω along a Vxed log scheme f : X → Spec T , we had no need of the assumptions

made in LH2, except for the surjectivity of A′ → A, and have therefore proven that the

four functors DefL|f , Def ∆

|f , Defω|(f,∆) and Defω|f actually satisfy the condition that for

every morphism A′ → A and all small extensions A′′ → A of log Artin rings the map

Φ : Def(A′ ×A A′′)→ Def(A′)×Def(A) Def(A′′)

is bijective, which implies LH4.

Conclusion

4.3.3 Theorem ([18, 4.4])

Let f0 : X → Specκ be a log smooth, log integral and proper morphism of log fs log

schemes with f∗OX = OSpecκ. Then the functor Deff0 possesses a hull.

4.3.4 Theorem (cp. [32, 3.3.11])

Let f0 : (X,L) → Specκ be a log integral and proper scheme with line bundle with

f∗OX = OSpecκ. Then the functor Def(f0,L) possesses a hull.

4.3.5 Theorem

Let f0 : (X,

∆

)→ Specκ be a log integral and proper scheme with Wat log connection with

f∗OX = OSpecκ. Then the functor Def(f0,

∆

) possesses a hull.

4.3.6 Theorem

Let f0 : (X,

∆

, ω) → Specκ be a log integral and proper log symplectic scheme with

f∗OX = OSpecκ. Then the functor Def(f0,

∆

, ω) possesses a hull.

If

∆

= d, then Def(f0,ω) possesses a hull.
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4.3.7 Theorem

Let f : X → Spec T be a log smooth morphism of log fs log schemes with f∗OX = OSpecκ

and

a) let L be a line bundle on f0. Then the functor DefL|f is pro-representable.

b) let

∆

be a Wat log connection on f0. Then the functor Def ∆

|f is pro-representable.

c) let ω be a log symplectic form of non-twisted type on f0. Then the functor Defω|f is

pro-representable.

4.3.8 Theorem

Let f : (X , ∆) → Spec T be a log scheme with Wat log connection with f∗OX = OSpecκ

and let ω be a log symplectic form of type

∆

. Then the functor Defω|(f,∆) is pro-repre-

sentable.
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5 Smoothing of SNC log symplectic

varieties
In this chapter we relate the sheaf of Poincaré residues to the sheaf of normalisation residues

and calculate certain Ext-sheaves of these sheaves, which are later used in the main results.

We prove that the tangent and obstruction spaces of the various functors of log Artin rings,

which have been calculated in chapter 4, are free modules over certain of those rings. Using

the logarithmic version of the T1-lifting principle, we are then able to prove our main re-

sults, stating that under certain conditions the hulls of the deformation functors Def(f0,ω)

and Def(f0,

∆

, ω) are smooth (cf. theorems 5.4.7 and 5.4.13) and that under these conditions

there exists a Wat smoothing deformation of (f0, ω) and (f0,

∆

, ω), respectively (cf. theo-

rems 5.4.9 and 5.4.14).

In this chapter, we consider the prelog ring T : N0 → C[[t]], n 7→ tn. Its residue Veld C

has the induced prelog ring structure C− : N0 → C[[t]]→ C mapping 0 7→ 1 and n 7→ 0 for

n ≥ 1. Hence Spec C− is the standard log point on the Veld C.

5.1 The Poincaré residue map for SNC log varieties

5.1.1 The Poincaré residue map

5.1.1 DeVnition

Let f : X → Y be a morphism of log schemes. We denote by τf the kernel and by Υf the

cokernel of the natural map Ω1
f → Ω1

f . Hence, by deVnition, the sequence

0→ τf → Ω1
f → Ω1

f → Υf → 0

is exact. We call τf the sheaf of torsion diUerentials of f (cf. [11, 1.2]). We call Υf the sheaf

of Poincaré residues of f and the projection % : Ω1
f → Υf the Poincaré residue map (cf. [29,

IV.1.2.12]).

Recall thatXι denotes the schemeX endowed with the trivial log structure ι : O×X → OX .

Consider the natural diagram

X
h //

f

  

XY

fY

��

// Xι

fι

��

Y // Y ι,

whereXY := Xι ×Y ι Y is the schemeX equipped with the log structure f×αY and h the

unique natural morphism. By 1.2.24, the sheavesΩ1
fY andΩ1

f are naturally isomorphic and

by 1.2.25, there is an exact sequence Ω1
f → Ω1

f → Ω1
h → 0 which we may complete to

0→ τf → Ω1
f → Ω1

f → Ω1
h → 0.

113
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In conclusion, we have the following proposition:

5.1.2 Proposition ([29, IV.2.3.4])

There is a natural isomorphism Υf ∼= Ω1
h.

If we tensor the exact sequence

0→ f×Mgrp
Y →Mgrp

X →Mgrp

f → 0

with OX over Z, we get the exact sequence

OX �Z f×Mgrp
Y → OX �ZMgrp

X → OX �ZM
grp

f → 0

which is also exact on the left ifMgrp

f is torsion-free. This is the case, in particular, if X is

torsion-free.

5.1.3 DeVnition

We set Λf := OX �ZM
grp

f
∼= (OX �ZMgrp

X )/ Im(OX �Z f×Mgrp
Y ).

By the Vrst construction of log Kähler diUerentials, we have

Υf ∼= Ω1
h = (Ω1

h

=0

�ΛX)/(KX +Kh)

= ΛX/(〈α(m) �m〉+OX �Z f×MY )

= Λf/ 〈[α(m) �m] |m a local section ofMX〉 ,

so Υf is a natural quotient of Λf .

5.1.2 The normalisation residue map for SNC varieties

Let f : X → Spec C− be an SNC log variety. We denote by ν : Xν → X the normalisation of

the underlying variety. Then, denoting byDν the preimage of the double locus,Xν carries

naturally the compactifying log structure ν associated to the open immersion jν : Xν \
Dν → Xν , which makes it a log smooth scheme over the trivial log point SpecCι. This

log structure, unfortunately, neither makes ν a morphism of log schemes nor (Xν , ν) a log

smooth scheme over the standard log point Spec C− .
The solution of this problem is to endowXν with the pullback log structure αXν := ν×αX .

This turns the normalisation ν into a strict morphism of log schemes ν : Xν → X .

5.1.4 Remark

This is basically the phenomenon described in section 3.6.2. In fact, by a local calculation,

one shows that Xν then is isomorphic to the pullback (Xν)Cp := (Xν , ν)×SpecCι Spec C−

of the scheme with compactifying log structure (Xν , ν) to the standard log point Spec C− :
The log structure sheaf of this pullback isM(Xν)Cp = (N0 �C×)�C×Mν = N0 �Mν

with the log structure β : N0 �Mν → OXν , mapping (n,m) 7→ ν(m) if n = 0 and to 0

if n ≥ 1.
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Locally at a point x in the k-th component X[k] of X
ν , we have a commutative diagram

MXν = ν×MX = Nr0 5O×Xν //

αXν

��

N0 �Nr−1
0 5O×Xν =M(Xν)Cp

β

��

OXν OXν ,

where the upper horizontal map is induced by the monoid isomorphismNr0 → N0�Nr−1
0 ,

ej 7→ (0, ej) for j 6= k and ek 7→ (1, 0). This deVnes the isomorphism Xν → (Xν)Cp .

The cokernel ΥX ofOX → ν∗OXν will be called the sheaf of normalisation residues and the

map π in the short exact sequence

0→ OX −→ ν∗OXν
π−−→ ΥX → 0

the normalisation residue map. Since the map OX → ν∗OXν is an isomorphism precisely

at every normal point of X , the support of ΥX is the double locus D.

Applying the functorHomOX ( · ,OX) to this sequence yields the long exact sequence

0→ HomOX (ΥX ,OX)→ HomOX (ν∗OXν ,OX)→ HomOX (OX ,OX)

→ Ext1OX (ΥX ,OX)→ Ext1OX (ν∗OXν ,OX)→ Ext1OX (OX ,OX)→ . . . .

The following lemma investigates the terms in this sequence. Its calculations proceed

alongside those made in [11, 2.8–2.10].

5.1.5 Lemma

We have

a) ExtpOX (OXν ,OX) = 0 for all p ≥ 1 and

b) ExtpOX (ΥX ,OX) = 0 for all p 6= 1.

Proof: Let x be a closed point of X in which r(x) components meet. Denoting R := OX,x
(observe that this local ring depends on the chosen topology), we have

R̂ := ÔX,x ∼= C[[z1, . . . , zn+1]]/(z1 · . . . · zr),

where r = r(x) = `X(x) = `f0(x) + 1, as well as

R̂ν := (ν∗OXν )x̂ ∼=
r∏
j=1

R̂/(zj) · 1j =

⊕r
j=1 R̂ · 1j
〈zj · 1j〉

and

Ŷ := Υ̂X,x ∼= R̂ν/R̂ · (11 + . . .+ 1r) =

⊕r
j=1 R̂ · 1j

〈zj · 1j , 11 + . . .+ 1r〉

as R̂-modules. The two maps in the exact sequence 0 → R̂ → R̂ν → Ŷ → 0 are given by

the diagonal s 7→
∑r
j=1 s · 1j (with zj · 1j = 0) and by the natural projection, respectively.
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A free resolution of R̂ν = (ν∗OXν )x̂ is

P •1 →→ R̂ν : . . . −→ R̂� r −−−−→
ej 7→zjej

R̂� r −−−−−−−−→
ej 7→z1·...·ẑj ·...·zreĵ

R� r −−−−→
ej 7→zjej

R̂� r −−−−→
ej 7→1j
→ R̂ν .

Applying the functor HomR̂( · , R̂) to this sequence yields a sequence which is exact every-

where except at its zeroth entry. So Exti
R̂

(R̂ν , R̂) = Hi(HomR̂(P •, R̂)) = 0 for i ≥ 1.

Therefore, ExtiOX (ν∗OXν ,OX) = 0 for i ≥ 1.

A free resolution of Ŷ = Υ̂X,x is

P •2 →→ Ŷ : . . . −→ R̂� r −−−−→
ej 7→zjej

R̂� r −−−−−−−−→
ej 7→z1·...·ẑj ·...·zreĵ

R� r+1 −−−−−−−→
ej 7→zjej

er+1 7→e1+...+er

R̂� r −−−−→
ej 7→1j
→ Ŷ .

The functor HomR̂( · , R̂) applied to this resolution yields again a sequence which is exact

at every entry of order higher than one. It is also exact at its zeroth entry: Here we have the

zeroth map HomR̂(R̂� r, R̂)→ HomR̂(R̂� r+1, R̂), e∨j 7→ zje
∨
j +e∨r+1, which is injective.

So Exti(Ŷ , R̂) = Hi(HomR̂(P •, R̂)) = 0 for i 6= 1 and, hence, ExtiOX (ΥX ,OX) = 0 for

i 6= 1. �

5.1.6 Remark

One may deduce 5.1.5 b) also partly from a) and the long exact sequence

. . .→ ExtpOX (OX ,OX)→ ExtpOX (ν∗OXν ,OX)→ ExtpOX (ΥX ,OX)→ . . . ,

taking into account that ExtpOX (OXν ,OX) = 0 and ExtpOX (OX ,OX) = 0 for all p ≥ 1.

This then implies that ExtpOX (ΥX ,OX) = 0 for p ≥ 2. In this approach one needs to shows

thatHomOX (ΥX ,OX) = 0, separately.

5.1.7 Remark

In fact, we may calculate for P •1 :

H0(HomR̂(P •1 , R̂)) = Ker(HomR̂(R̂� r, R̂)→ HomR̂(R̂� r, R̂), e∨j 7→ zje
∨
j )

=
〈
z1 · . . . · ẑj · . . . · zre∨j

〉 ∼= ÎD⊂X,x.

In P •2 , the Vrst map HomR̂(R̂� r+1, R̂)→ HomR̂(R̂� r, R̂), mapping the generators e∨j 7→
z1 · . . . · ẑj · . . . · zre∨j and e∨r+1 7→ 0, has the kernel

〈
zje
∨
j , e
∨
r+1

〉
. The zeroth map has the

image
〈
zje
∨
j + e∨r+1

〉
, hence,

H1(HomR̂(P •2 , R̂)) = [e∨r+1] · R̂ ∼= R̂/ÎD⊂X,x = ÔD,x

(observe that z1 · . . . · ẑj · . . . · zr[e∨r+1] = 0 for all j).

This is, of course, not suXcient to conclude that HomOX (ν∗OXν ,OX) ∼= ID⊂X and that

Ext1OX (ΥX ,OX) ∼= OD . We will, nevertheless, see soon that this is in fact true.
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5.1.8 Corollary

We have

a) ExtpOX (ν∗OXν ,OX) = Hp(HomOX (ν∗OXν ,OX)) for all p,

b) HomOX (ΥX ,OX) = 0 and

c) ExtpOX (ΥX ,OX) = Hp−1(Ext1OX (ΥX ,OX)) for all p ≥ 1.

Proof: Both claims are implied by lemma 5.1.5 and the local-to-global spectral sequence

Hq(ExtpOX (F ,OX))⇒ Extp+qOX (F ,OX). �

We return to the long exact sequence

0→ HomOX (ΥX ,OX)→ HomOX (ν∗OXν ,OX)→ HomOX (OX ,OX)

→ Ext1OX (ΥX ,OX)→ Ext1OX (ν∗OXν ,OX)→ Ext1OX (OX ,OX)→ . . . .

Having shown that HomOX (ΥX ,OX) = 0 and Ext1OX (ν∗OXν ,OX) = 0 and observing

that HomOX (OX ,OX) = OX and Ext1OX (OX ,OX) = 0, we get a short exact sequence

of coherent OX -modules

0→ HomOX (ν∗OXν ,OX)→ OX → Ext1OX (ΥX ,OX)→ 0.

The ideal sheaf Iν := HomOX (ν∗OXν ,OX) is called the conductor (or conductor ideal

sheaf) of the normalisation ν : Xν → X (cf. [4, 1.1 & 1.8], [23, 4.1–4.5]). It is a radical

ideal which is the largest ideal sheaf on X that is also an ideal sheaf on Xν (i. e. such that

ν−1Iν is an ideal sheaf on Xν with ν∗(ν−1Iν) = Iν ). The so-called conductor subschemes

SpecOXOX/Iν of X and SpecOXνOXν/ν
−1Iν of Xν are equal to the double locus D and

its preimage Dν , respectively.

Therefore, Iν = ID and consequently Ext1OX (ΥX ,OX) = i∗OD , where i : D → X is the

inclusion, which allows us to conclude the following:

5.1.9 Proposition

ExtpOX (ΥX ,OX) =

0 if p = 0,

Hp−1(OD) if p ≥ 1.

The sheaves of Poincaré residues and normalisation residues for SNC log varieties

Let f : X → Spec C− still denote an SNC log variety. The connection between the sheaf of

Poincaré residues Υf and the sheaf of normalisation residues ΥX is given by the following

statement:

5.1.10 Proposition

There is a canonical isomorphism Υf ∼= ΥX .
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Proof: We deVne a morphism λ : ΛX → ν∗OXν by the composition ΛX = OX�ZMgrp
X →

Λf = OX �ZM
grp

X
∼= OX �Z ν∗ZXν → ν∗OXν , where the last arrow sends s�m to sm.

First, we claim that λ descends to a well-deVned morphism γ : Ω1
f → ΥX such that

ΛX
λ //

����

ν∗OXν

π

����

Ω1
f

γ
// ΥX

commutes. To this end, we have to show that any local section of the two OX -submodules

Rf andRX (cf. chapter 1, proposition 1.2.23) of ΛX is mapped to zero under π ◦ λ : ΛX →
ΥX .

Firstly, let s� (m, c) be a local section of OX �Z f−1Mgrp

Cp = OX �Z (Z � C×). This

section is mapped to π(sm) which is zero, because sm lies in the image ofOX = OX �ZZ
in ν∗OXν .
Secondly, let m be a local section ofMX and regard the local section αX(m) �m of ΛX .

Let x be a point in X and let r = r(x) be the number of components meeting in x. The

completion ÔX,x of the local ringOX,x at x (with respect to the given topology, i. e. Zariski

or étale topology) is isomorphic to R̂ := C[[z1, . . . , zn+1]]/(z1 ·. . .·zr) and the log structure
given by the chart ax : Nr0 → R̂, n 7→ zn. The image of m at x is an element mx =

(n1, . . . , nr;u) ∈ Nr0 � R̂×. So (αX(m) �m)x = αX,x(mx) �mx is mapped by λ to the

tuple (nk z
n)rk=1 ∈

⊕r
k=1 R̂/(zk) which is zero, because for each k either nk = 0 or zk |zn.

Hence, π(λ(αX(m) �m)) = 0 in ΥX and, in particular,RX is mapped to zero.

Our second claim is that γ : Ω1
f → ΥX descends further to an isomorphism Υf → ΥX . To

verify this, we Vrst have to show that the image of Ω1
f in Ω1

f is mapped to zero by λ. As

one sees in the commutative diagram

ΛXι

����

// ΛX

����

// //

λ **

Λf

��

����

ν∗OXν

π

����

Ω1
f

// Ω1
f

γ
**

// // Υf

��

ΥX ,

the submodule ImΩ1
f ⊂ Ω1

f is equal to the image of ΛXι → ΛX → Ω1
f . But ΛXι is

mapped to zero already in Λf = OX �ZM
grp

X along the Vrst row. The veriVcation that

Υf → ΥX is an isomorphism may be done on the completion of the stalks at a point x in

X . There, the morphism is given by

R̂ 〈dlog z1, . . . , dlog zr〉 / 〈z1dlog z1, . . . , zrdlog zr, dlog z1 + . . .+ dlog zr〉

→ R̂ 〈11, . . . , 1r〉 / 〈z111, . . . , zr1r, 11 + . . .+ 1r〉 ,

dlog zj 7→ 1j



5.2. THE LOG T1 LIFTING PRINCIPLE 119

which is clearly an isomorphism. �

5.1.11 Corollary

Extp(Υf ,OX) =

0 if p = 0,

Hp−1(OD) if p ≥ 1.

5.2 The log T1 lifting principle

In what follows, we Vx notations for certain objects and morphisms in LArtT which play

a role in the so-called T1-lifting principle. The names of the rings and homomorphisms

correspond by and large to those used by Fantechi and Manetti in [9]. Recall that T = C[[t]]

and that T is the log ring T : MT → T , whereMT = N0 � T×, associated to the prelog

ring t : N0 → T , n 7→ tn.

Let A := C[[x]] and let ϕA : T → A be a T -algebra structure on A (the letter A is used

diUerently in [9]) such that it induces the identity on the residue Velds T/(t)→ A/(x). We

let A : MA → A denote the log ring associated to the prelog ring a : MT → A deVned by

a = ϕA ◦ T which is given by A : N0 �A× → A, (n, u) 7→ uϕA(t)n.

Let B := C[[x, y]] and f : A→ B, x 7→ x+ y. We give B the log ring structure B ∈ L̂ArtT

associated to the prelog ring b : MT → B deVned by b = f ◦ ϕA ◦ T . We denote by

g : B → A the natural projection.

For every n ∈ N0, we let An := A/(xn+1) and Bn := B/(xn+1, y2) with the (quo-

tient ring) log structure induced by the natural quotient homomorphisms i : A → An and

j : B → Bn, respectively. That way, i and j become homomorphisms in L̂ArtT . For any

m ∈ N0, we denote by the same letters i and j any natural homomorphism i : Am → An
and j : Bm → Bn induced by i and j, respectively (which might also be the zero homo-

morphism, e. g. if m < n). Moreover, we denote by f : Am → Bn and g : Bm → An any

natural homomorphisms induced by f and g, respectively.

Then the diagram

Bn
g
//

j

��

An

i

��

Bn−1
g
// An−1

is commutative.

For every n ∈ N0, we deVne Cn := Bn−1×An−1
An. The underlying ring of this log ring is

Cn = C[x, y]/(xn+1, xny, y2). It comes with two natural homomorphisms: j′ : Bn → Cn,
which is equal to the natural projection Bn → Bn/(xny) = Cn, and f ′ : An → Cn, which
is induced by A f−−→ Bn

g−→ Cn and given by x 7→ x+ y.
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We denote the natural homomorphism Cn → Cn−1 by j as it is induced by j. Moreover, by

deVnition, we have two natural projections g′ : Cn → An, with g = g′ ◦ j′, and j′′ : Cn →
Bn−1, with j = j′′ ◦ j′ and j = j′ ◦ j′′.
From this deVnition of Cn it is clear that the diagram

An+1
i //

f

��

An

f ′

��

Bn
j′
// Cn

is Cartesian.

Observe that all objects and homomorphisms are Vxed as soon as the T -algebra structure

ϕA on A = C[[x]] is chosen.

Recall that a log gdt functor was deVned to be a functor of log Artin rings F : LArtT → Set

satisfying the “logarithmic Schlessinger properties” LH1 and LH2 in 2.2.15.

5.2.1 DeVnition

We say that a log gdt functor F : LArtT → Set has the T1-lifting property if for all T -

algebra structures ϕA : T → A on A = C[[x]] the natural maps

Φ0 : F (B0)→ F (A0)

and

Φn : F (Bn)→ F (Bn−1)×F (An−1) F (An)

are surjective for all n ∈ N≥1.

5.2.2 Theorem (Ran, Kawamata, Fantechi, Manetti)

Let F be a functor of log Artin rings over T possessing a hull. If F has the T1-lifting

property, then F → SpecCι is smooth. In particular, the hull of F is smooth over SpecCι.

Proof: Observe that charC = 0. Now that we have Vxed log ring structures on An, Bn
and Cn depending only on ϕA, the proof is literally the same as in [9] as soon as we give

suitable log ring structures to the rings Vn and A′n, which appear in that proof.

We do this as follows: We let V := C[[x, s]] (this ring is denoted by A in Fantechi’s and

Manetti’s proof) and V be the log ring associated to the prelog ring v : MT → V with v =

q ◦ ϕA ◦ T , where q : A ↪→ V . Then for all n ∈ N0, the log rings Vn := V/(xn+1, x2s, s2)

and A′n := V/(xn+1, xs, s2) are deVned. Note that for each n ∈ N0, there is a log ring ho-

momorphism f̂ : V → B, deVned by x 7→ x+y and s 7→ xn, and a log ring homomorphism

q̂ : V → V , deVned by x 7→ x and s 7→ xn, inducing correspondent morphisms between

quotients of V as described in [9].

Fantechi’s and Manetti’s proof shows that F (An+1) → F (An) is surjective for all n ≥ 2.

Since F is rigid, we have F (An) = F (An) = v∗F (An), so v∗F (An+1) → v∗F (An) is

surjective for all n ≥ 2. By proposition 2.1.18, v∗F is smooth over ∗ = SpecC and, by

lemma 2.2.18, F is smooth over SpecCι. �
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5.3 The freeness of the obstruction spaces over the An

Let ϕA be any T -algebra structure on A = C[[x]].

Then ϕA is given either by t 7→ 0 or by t 7→ uxN for some unit u ∈ A = C[[x]]. In

modifying A by replacing x with u−1x, we may assume that ϕA is given by t 7→ 0 or by

t 7→ xN without loss of generality. We will refer to these two cases as the 0-case and the

xN -case in what follows.

Let (f0,

∆

, ω) : X → Spec C− be a log symplectic SNC log variety. We have calculated

the tangent spaces and the obstruction spaces of the functors Deff0 , Def(f0,ω), Def(f0,L),

Def(f0,

∆

) and Def(f0,

∆

, ω) in chapter 4. In this section, we will show that for liftings

(fk, ∆k, $k) over the T -algebra Ak these spaces are free Ak-modules. This fact will be

a key stone in the proofs of our main results in the next section.

As a Vrst step, we look at the spaces of the formHp(Ω≥q,•f � L[q]) and Hp(Ωqf � L):

5.3.1 Proposition

Let f0 : (X,

∆

) → Spec C− be a SNC log variety with log Cartier connection and, for any

k ∈ N0, let fk : (Xk, ∆k) → SpecAk be a log smooth lifting of (f0,

∆

) over the log ring

Ak with underlying ring Ak .

ThenHp(Ω≥q,•fk
� Lk[q]) is isomorphic toHp(Ω≥q,•f0

� L[q]) �C Ak as an Ak-module. In

particular,Hp(Ω≥q,•fk
� Lk[q]) is a free Ak-module for all p, q.

Here, L and Lk denote the line bundles of

∆

and∆k , respectively.

By choosing

∆

= d and∆k = d, we get the following corollary as a special case:

5.3.2 Corollary

Let f0 : X → Spec C− be a SNC log variety and, for any k ∈ N0, let fk : Xk → SpecAk be

a log smooth lifting of f0 over the log ring Ak with underlying ring Ak .

Then Hp(Ω≥q,•fk
[q]) is isomorphic to Hp(Ω≥q,•f0

[q]) �C Ak as an Ak-module, for all q, k ∈
N0. In particular,Hp(Ω≥q,•fk

[q]) is a free Ak-module for all p, q.

Proof of the proposition

For a start, we regard the xN -case. In the situation of the proposition we have a commuting

diagram

(X,ω)

f0

��

� � i // (Xk, $k)

fk

��

Spec C− �
�

//

%%

SpecAk

��

SpecCι,

where Cι denotes the log ring with trivial log structure on C.
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Following [33, §2], we regard the complex Ω •fk � Lk . By assumption,∆k is log Cartier, i. e.

it is of the formMfk(Dk) for some Dk ∈ LCar(Xk). Hence, by lemma 3.4.16, there exists

an “absolute version” of it, namely ∆̃k := MXk/Cι(Dk). Associated to ∆̃k , we have its log

de Rham complex

0→ Lk
∆̃k−−−→ Ω1

Xk/Cι � Lk
∆̃k−−−→ Ω2

Xk/Cι � Lk
∆̃k−−−→ Ω3

Xk/Cι � Lk
∆̃k−−−→ . . . .

We deVne the complex

L
• = i−1Ω≥q,•Xk/Cι � Lk[q][ξ] = i−1Ω≥q,•Xk/Cι � Lk[q]�C C[ξ],

where ξ is a formal (polynomial) variable (which should be thought of as ξ = log x), with

diUerential d : Lp → Lp+1 given by

∆̃ : Lp → L
p+1,

d∑
s=0

σs · ξs 7→ ∆̃(σ) =

d∑
s=0

∆̃kσs · ξs +

d∑
s=1

sσs ∧dlog x · ξs−1.

We also deVne the morphism of complexes

ψ : L • → Ω≥q,•f0
� L[q]

by the composition of morphisms of complexes L • → i−1Ω≥q,•fk
� Lk[q] → i∗(Ω≥q,•fk

�
Lk)[q] = Ω≥q,•f0

� L[q], where the Vrst map is the well-deVned projection to the class of

the zeroth coeXcient. (Observe that, by identifying the topological spaces ofX and Xk , we
have i−1 = ι̇d.)

5.3.3 Remark

In the special case

∆

= d and ∆k = d, we have ∆̃k = d. If, moreover, q = 0, i. e. if we

regard the ordinary log de-Rham-complexes of the fk and Xk/Cι, then the complex L • is

equal to the complex L •α for α = 0 as deVned by Steenbrink in [33, 2.6].

We claim that ψ is almost a quasi-isomorphism, meaning that ψ induces isomorphisms on

cohomology in all strictly positive degrees and a surjection in degree 0. We prove this on

the completion of its stalks.

Let x be a closed point of X . Regard the complex (i−1Ω≥q,•Xk/Cι � Lk[q])x̂ = (Ω≥q,•Xk/Cι �
Lk[q])x̂ and write Z(q),• := Z •((Ω≥q,•Xk/Cι � Lk[q])x̂) for its subcomplex of ∆̃ •k -cocycles

(with trivial diUerential ∆̃ •k |Z(q),• = 0). Obviously,

Z(q),p =

Z(0),p+q = Zp+q((Ω •Xk/Cι � Lk)x̂) if p ≥ 0,

0 if p < 0

for all q.

For each r ≥ 0 choose a C-linear section

s(r) : H1((Ω≥r,•Xk/Cι � Lk[r])x̂)→ Z(r),1.
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The entirety of all these sections canonically deVnes a section of complexes with trivial

diUerentials

s(q),• : H •((Ω≥q,•Xk/Cι � Lk[q])x̂)→ Z(q),•

for each q, where

s(q),0 := ι̇d : H0((Ω≥q,•Xk/Cι � Lk[q])x̂)→ Z(q),0 and

s(q),p := s(q+p−1) for p ≥ 1,

which makes sense, because

Hp((Ω≥q,•Xk/Cι � Lk[q])x̂)

=

H1((Ω≥q+p−1,•
Xk/Cι � Lk[q + p− 1])x̂) = Hp+q((Ω •Xk/Cι � Lk)x̂) if p ≥ 1,

Z(q),0 = Zp+q((Ω •Xk/Cι � Lk)x̂) if p = 0
.

Finally, s(q),• deVnes a subcomplex with trivial diUerential

H(q),• := Im(s(q),•) ⊂ Z(q),• ⊂ (Ω≥q,•Xk/Cι � Lk[q])x̂

of representatives of H •((Ω≥q,•Xk/Cι � Lk[q])x̂) for each q. By deVnition, the inclusion

H(q),• ⊂ (Ω≥q,•Xk/Cι � Lk[q])x̂ is then a quasi-isomorphism.

The way we deVned the sections s(q),p implies the following:

5.3.4 Lemma

For p, q ≥ 0 the natural map

H(q+1),p → H(q),p+1

is surjective for p = 0 and is the identity for p ≥ 1.

Moreover, deVne the subcomplex

H(q),•[ξ] = H(q),• �C C[ξ] ⊂ (Ω≥q,•Xk/Cι � Lk[q])x̂[ξ] = L̂ •x .

By [33, 2.12 & 2.14], this inclusion H(q),•[ξ] ⊂ L̂ •x is a quasi-isomorphism, too.

The natural inclusion H(q),• ⊂ H(q),•[ξ] is not a quasi-isomorphism. However, we have

the following lemma.

5.3.5 Lemma (cp. [33, 2.15])

For p ≥ 1 the natural inclusion H(q),• ⊂ H(q),•[ξ] induces surjections

H(q),p → Hp(H(q),•[ξ])

each with a kernel isomorphic to H(q−1),p.

Proof: Let p ≥ 1. Following the argument of Steenbrink, any [σ] ∈ Hp(H(q),•[ξ]) has

a representative σ =
∑d
s=0 σs · ξs, with σs ∈ H(q),p = H(0),p+q . Then 0 = ∆̃σ =
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∑d
s=1 sσs ∧dlog x · ξs−1 implies that σs ∧dlog x = 0 and this is, by a lemma of de Rham

(cf. [3, p. 8]), equivalent to σs = ηs ∧dlog x for some ηs ∈ H(q−1),p = H(0),p+q−1, s =

1, . . . , d.

By the preceding lemma 5.3.4, there exist η̂s ∈ H(q),p−1, such that η̂s is mapped to ηs. If

we set η :=
∑d
s=1

1
s+1 η̂s · ξ

s+1, then σ = σ0 + ∆̃η, with σ0 ∈ H(q),p, so that [σ] = [σ0].

Hence, the map H(q),p → Hp(H(q),•[ξ]) is indeed surjective. Its kernel is given by those

σ0 ∈ H(q),p such that σ0 = ∆̃(ζ0ξ) = ζ0 ∧dlog x for some ζ0 ∈ H(q−1),p. �

Since this kernelH(q−1),p is a quotient ofH(q),p−1 by lemma 5.3.4, we have a commutative

diagram

H(q),p−1 ∧dlog x

��

∼= // Hp−1((Ω≥q,•Xk/Cι � Lk[q])x̂) ∧dlog x

��

H(q),p

��

∼= // Hp((Ω≥q,•Xk/Cι � Lk[q])x̂)

��

Hp(H(q),•[ξ]) ∼= Hp(L̂ •x )

��

Hp(ψ̂x)
// Hp((Ω≥q,•f0

� L[q])x̂)

��

0 0.

For p = 0 the situation is slightly poorer. DeVne the map i : Z(q),0 → Z0(H(q),•[ξ]) by

σ 7→ σ + 0ξ + 0ξ2 + . . .. This is well-deVned, because ∆̃(σ + 0ξ + 0ξ2 + . . .) = ∆̃kσ = 0

(and even injective). Hence, we have a commutative diagram

Z(q),0 ι̇d //

i

��

H0((Ω≥q,•Xk/Cι � Lk[q])x̂)

����

Z0(H(q),•[ξ]) ∼= H0(L̂ •x )
H0
x(ψ)
// H0((Ω̂≥q,•f0

� L[q])x̂)

showing that H0(ψ) : H0(L •)→ H0(Ω≥q,•f0
� L[q]) is at least surjective.

In the 0-case the same proof goes through when replacing dlog x with dx.

From here onward, we follow the arguments in [21, 4.1]:

Since ψ factors, by deVnition, via i−1Ω≥q,•fk
� Lk[q] → Ω≥q,•f0

� L[q], we have surjective

maps Hp(Ω≥q,•fk
� Lk[q]) → Hp(Ω≥q,•f0

� L[q]) in the long exact sequence associated to

the short exact sequence

0→ Ω≥q,•fk−1
� Lk−1[q]

·x−−→ Ω≥q,•fk
� Lk[q]

mod x−−−−−→ Ω≥q,•f0
� L[q]→ 0,

which therefore splits into short exact sequences

0→ H
p(Ω≥q,•fk−1

� Lk−1[q])
·x−−→ H

p(Ω≥q,•fk
� Lk[q])

mod x−−−−−→ H
p(Ω≥q,•f0

� L[q])→ 0
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of C-vector-spaces. Hence,

dimC(Hp(Ω≥q,•fk
� Lk[q])) = dimC(Hp(Ω≥q,•fk−1

� Lk−1[q])) + dimC(Hp(Ω≥q,•f0
� L[q])).

What we really want to show is that the long exact sequence associated to the short exact

sequence

0→ Ω≥q,•f0
� L[q]

·xk−−−→ Ω≥q,•fk
� Lk[q]

mod xk−−−−−−→ Ω≥q,•fk−1
� Lk−1[q]→ 0

splits into short exact sequences. To this end, we regard a piece of it:

Hp−1(Ω≥q,•fk−1
� Lk−1[q])

))����

K ′ �
�

// Hp(Ω≥q,•f0
� L[q])

))����

K �
�

// Hp(Ω≥q,•fk
� Lk[q])

))����

K ′′ �
�

// Hp(Ω≥q,•fk−1
� Lk−1[q]),

where theK(′/′′) are the kernels and images of the diUerentials in the sequence.

As C-vector-spaces they satisfy dim(Hp(Ω≥q,•fk
� Lk[q])) = dimK + dimK ′′ as well

as dimK ≤ dimHp(Ω≥q,•f0
� L[q]) and dimK ′′ ≤ dimHp(Ω≥q,•fk−1

� Lk−1[q]). But

since we already know that dim(Hp(Ω≥q,•fk
� Lk[q])) = dim(Hp(Ω≥q,•fk−1

� Lk−1[q])) +

dim(Hp(Ω≥q,•f0
� L[q])), we must have equalities, so K ∼= Hp(Ω≥q,•f0

� L[q]) and K ′′ ∼=
Hp(Ω≥q,•fk−1

� Lk−1[q]) as C-vector-spaces. Hence, K ′ must be zero and this long exact

sequence splits into short exact sequences

0→ H
p(Ω≥q,•f0

� L[q])
·xk−−−→ H

p(Ω≥q,•fk
� Lk[q])

mod xk−−−−−−→ H
p(Ω≥q,•fk−1

� Lk−1[q])→ 0

of C-vector-spaces.

But this means thatHp(Ω≥q,•fk
�Lk[q]) ∼= xk ·Hp(Ω≥q,•f0

�L[q])+F , with F ∼= Hp(Ω≥q,•fk−1
�

Lk−1[q]). By induction on k, F ∼=
⊕k

j=0 x
j ·Hp(Ω≥q,•f0

� L[q]), soHp(Ω≥q,•fk
� Lk[q]) ∼=

Ak �C Hp(Ω
≥q,•
f0

� L[q]). This completes the proof of proposition 5.3.1. ���

5.3.6 Corollary

Let fk : (Xk, ∆k)→ SpecAk be a log smooth lifting of (f0,

∆

) over the log ringAk and let
fk−1 : (Xk−1, ∆k−1)→ SpecAk−1 be its restriction to Ak−1. Then the canonical maps

H
p(Ω≥q,•fk

� Lk[q])→ H
p(Ω≥q,•fk−1

� Lk−1[q])

are surjective.

5.3.7 Corollary

Let fk : (Xk, ∆k)→ SpecAk be a log smooth lifting of (f0,

∆

) over the log ring Ak . Then
Hp(Xk, Ωqfk �Lk) is isomorphic toHp(X,Ωqf0

�Lk)�CAk as Ak-module for all k, p and

q. In particular, Hp(Xk, Ωqfk � Lk) is a free Ak-module for all k, p and q.
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Proof: We regard for any q and k the short exact sequence of complexes

0→ Ω≥q+1,•
fk

� Lk[q]→ Ω≥q,•fk
� Lk[q]→ Ωqfk � Lk[0]→ 0

which induces a long exact sequence

. . .→ H
p(Ω≥q+1,•

fk
� Lk[q])→ H

p(Ω≥q,•fk
� Lk[q])→ Hp(Xk, Ωqfk � Lk[0])→ . . . .

We compare this sequence with that which we get in the case k = 0, tensored withAk over

C:

. . .

��

. . .

��

Hp−1(Ω≥q+1,•
fk

� Lk[q + 1])

��

∼= // Hp−1(Ω≥q+1,•
f0

� L[q + 1]) �C Ak

��

Hp(Ω≥q,•fk
� Lk[q])

��

∼= // Hp(Ω≥q,•f0
� L[q])�C Ak

��

Hp(Xk, Ωqfk � Lk)

��

// Hp(X,Ωqf0
� L)�C Ak

��

. . . . . . .

By the 5-lemma, Hp(Xk, Ωqfk � Lk) ∼= Hp(X,Ωqf0
� L)�C Ak . �

Putting

∆

= d and ∆k = d, we may conclude the following:

5.3.8 Corollary

Let fk : Xk → SpecAk be a log smooth lifting of f0 over the log ring Ak and let

fk−1 : Xk−1 → SpecAk−1 be its restriction to Ak−1. Then the canonical map

H
p(Ω≥q,•fk

[q])→ H
p(Ω≥q,•fk−1

[q])

is surjective for all p and q.

5.3.9 Corollary

Let fk : Xk → SpecAk be a log smooth lifting of f0 over Ak . Then Hp(Xk, Ωqfk) is iso-

morphic toHp(X,Ωqf0
)�CAk as Ak-module for all k, p and q. In particular,Hp(Xk, Ωqfk)

is a free Ak-module for all k, p and q.

If we are in the log symplectic situation (general or non-twisted), then, due to the isomorph-

ism T ∼= Ω1 � L induced by the log symplectic form, we have

5.3.10 Corollary

Let f0 : (X,

∆

, ω) → Spec C− be a log symplectic SNC log variety (of general type) and, for

any k ∈ N0, let fk : (Xk, ∆k, $k) → SpecAk be a log symplectic lifting (of general type)

over the log ring Ak with underlying ring Ak .
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ThenHp(Xk, Tfk) is isomorphic to Hp(X,Tf0)�C Ak as Ak-module for all k, p and q. In

particular, Hp(Xk, Tfk) is a free Ak-module for all k and p.

The next proposition is an analogue of proposition 5.3.1 for the B-complex:

5.3.11 Proposition

Let f0 : (X,

∆

, ω) → Spec C− be a log symplectic normal crossing variety the Wat log con-

nection of which is log Cartier and, for any k ∈ N0, let fk : (Xk, ∆k, $k)→ SpecAk be a
log symplectic lifting of (f0,

∆

, ω) over the log ring Ak with underlying ring Ak .

Then Hp(B •fk($k)) is isomorphic to Hp(B •f0
(ω)) �C Ak as an Ak-module. In particular,

Hp(B •fk($k)) is a free Ak-module.

Proof: Consider this diagram with exact columns and rows

0

��

0

��

0

��

0 // K0

��

// Kk

��

// Kk−1

��

0 // Hp(Ω≥1,•
f0

� L[1])

��

// Hp(Ω≥1,•
fk

� Lk[1])

��

// Hp(Ω≥1,•
fk−1

� Lk−1[1])

��

// 0

Hp(B •0 (ω))

��

// Hp(B •fk($k))

��

// Hp(B •fk−1
($k−1))

��

0 // Hp(Ω •f0
)

��

// Hp(Ω •fk)

��

// Hp(Ω •fk−1
)

��

// 0

K ′0

��

// K ′k

��

// K ′k−1

��

// 0

0 0 0,

where the Ks and K ′s denote the respective kernels and cokernels. We compare the C-

vector-space dimensions (denoted by hp): On the one hand,

hp(B •fk($k)) = hp(Ω≥1,•
fk

� Lk[1]) + hp(Ω •fk)− hp(Kk)− hp(K ′k)

≥ hp(Ω≥1,•
f0

� L0[1]) + hp(Ω≥1,•
fk−1

� Lk−1[1]) + hp(Ω •f0
) + hp(Ω •fk−1

)

− hp(K0)− hp(K ′0)− hp(Kk−1)− hp(K ′k−1)

= hp(B •f0
($0)) + hp(B •fk−1

($k−1))

and on the other hand, hp(B •fk($k)) ≤ hp(B •f0
($0)) + hp(B •fk−1

($k−1)). Therefore, the

middle row must be exact, too, and we may prove Hp(B •fk($k)) ∼= Hp(B •f0
(ω)) �C Ak

inductively again. �
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5.3.12 Corollary

Let fk : (Xk, ∆k, $k) → SpecAk be a log smooth lifting of (f0,

∆

) over Ak and let

fk−1 : (Xk−1, ∆k−1, $k) → SpecAk−1 be its restriction to Ak−1. Then the canonical

maps

H
p(B •fk($k))→ H

p(B •fk−1
($k−1))

are surjective.

5.4 Vanishing of the obstructions and main results

5.4.1 The obstruction of log smooth liftings

Let f0 : X → Spec C− be an SNC log variety with double locus D. Let fk : Xk → SpecAk
be a log smooth lifting of f0 overAk and denote εk : 0→ (y)→ Bk → Ak → 0. Moreover,

denote the closed immersion ik : X → Xk .
Recall from chapter 4 that the obstruction to log smoothly lifting fk along εk is an element

oεk([fk]) in H2(Tfk �Ak y · Ak) = H2(Tfk). Together with corollary 5.3.10 this leads to

the following trivial observation:

5.4.1 Lemma

If H2(Tf0) = 0, then oεk([fk]) = 0 for all k ∈ N0.

However, the vanishing of the whole small obstruction space H2(Tf0
) is a rather strong

condition on f0. In this section we will give a weaker condition that implies the vanishing

of the obstruction oεk([fk]).

First, we prove the following proposition which is a generalisation of corollary 5.1.11.

5.4.2 Proposition

Let f0 : X → Spec C− be an SNC log variety with double locusD ⊂ X and, for any k ∈ N0,

let fk : Xk → SpecAk be a log smooth lifting of f0 over Ak . Then

Extp(Υfk ,OX) =

0 if p = 0,

Hp−1(OD) if p ≥ 1.

Proof of the proposition

Since the diagram

X

h0

��

ik // Xk
hk

��

XCp // XAkk

is Cartesian, we get i∗kΥfk = i∗kΩ
1
h
∼= Ω1

h0
= Υf0 , by the base change property of log

diUerentials. Here, XCp and XAkk denote the schemes X and Xk together with the log

structure pulled back from Spec C− and SpecAk , respectively.



5.4. VANISHING OF THE OBSTRUCTIONS AND MAIN RESULTS 129

5.4.3 Lemma

The natural morphism of OXk -modules Υfk → ik∗i
∗
kΥfk

∼= ik∗Υf0
(induced by adjunction)

is an isomorphism.

Proof: Again, we identify the topological spaces of X and X . Let x be a closed point in X

and denote

R̂ := ÔX ,x = C[[z1, . . . , zn, x]]/(z1 · . . . · zr − cxN , xk).

Then (ik∗OX)x̂ = ÔX,x = R̂/(z1 · . . . · zr). At the level of completion of stalks, the

morphism in question, Υ̂f,x → (ik∗Υf0)x̂ = Υ̂f0,x, is given by

R̂ 〈dlog z1, . . . , dlog zr, dlog x〉
〈z1dlog z1, . . . , zrdlog zr, dlog z1 + . . .+ dlog zr, dlog x〉

∼=
( r⊕
j=1

R̂/(zj) · dlog zj
)
/ 〈dlog z1 + . . .+ dlog zr〉

→ R̂/(z1 · . . . · zr) 〈dlog z1, . . . , dlog zr〉
〈z1dlog z1, . . . , zrdlog zr, dlog z1 + . . .+ dlog zr〉

∼=
( r⊕
j=1

R̂/(zj) · dlog zj
)
/ 〈dlog z1 + . . .+ dlog zr〉

dlog zj 7→ dlog zj , dlog x 7→ 0,

which is an isomorphism. �

Now ik is a closed immersion, which implies that the exceptional inverse image functor i!k
is deVned already on the level of OXk -modules, namely by i!kF = i∗kΓXF , where ΓXF
is the sheaf of local sections of F with support in X ⊂ Xk (for a general morphism f of

schemes f ! is only deVned as a functor between the associated derived categories). The

functor i!k is right-adjoint to ik! which, as ik is a closed immersion, coincides with ik∗. For

all these statements, cf. [6, p. 40–41 & p. 62–65, i. p. 3.2.11].

Hence, we may calculate

ExtpOXk
(Υfk ,OXk) = ExtpOXk

(ik∗Υf0 ,OXk) ∼= ExtpOX (Υf0 , i
∗
kΓXOXk)

= ExtpOX (Υf0
, i∗kOXk) = ExtpOX (Υf0

,OX) ∼= Hp−1(OD)

for p ≥ 1 and HomOXk (ik∗Υf0
,OXk) ∼= HomOX (Υf0

,OX) = 0, which proves proposition

5.4.2. In these calculations we used that ΓXOXk = OXk which is true, because X ⊂ Xk is
deVned by a nilpotent ideal. ���

Applying the functor Hom( · ,OXk) to the short exact sequence

0→ Ω1
f/τ

1
Xk → Ω1

fk
→ Υfk → 0

and recalling from [11, 2.10] that Extp(Ω1
fk
,OXk) = Hp(Tfk), Extp(Ω1

fk
/τ1
Xk ,OXk) =

Hp(Tfk) and Extp(Υfk ,OX) = Hp−1(OD) by proposition 5.4.2 for all p ∈ N0, yields the
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long exact sequence

. . .→ H1(D,OD)→ H2(Tfk)→ H2(Tfk)→ H2(D,OD)→ . . . .

This implies the following proposition immediately:

5.4.4 Proposition

If H1(OD) = 0, then oεk([fk]) = 0.

Proof: By 4.2.3, the mapH2(Tf )→ H2(Tf ) sends the obstruction oεk([fk]) of log smoothly

lifting fk along εk to the obstruction of Watly lifting the underlying Wat deformation fk of

f0 along the small extension εk : 0 → yAk → Ak[y]/y2 → Ak → 0 underlying εk . Since

εk has the natural splitting A → A[y]/y2, we can always lift fk to the trivial Wat deforma-

tion fk[ε] : Xk[ε] := Xk ×SpecA SpecA[y]/y2 → SpecA[y]2 associated to that splitting.

Hence, oεk([fk]) is mapped to zero, which, since the condition H1(D,OD) = 0 makes the

map H2(Tf )→ H2(Tf ) injective, implies oεk([fk]) = 0. �

5.4.5 Remark

In [21] the authors Y. Kawamata and Y. Namikawa examine deformations of what we

would call SNC log Calabi-Yau varieties. The two conditions of [21, 4.2] used to enforce

the vanishing of the obstruction of log smooth lifting are HdimX−1(X,OX) = 0 and

HdimX−2(Xν ,OXν ) = 0. By Serre duality, these force the twomapsExt1(ν∗OXν ,OX)→
Ext1(OX ,OX) and Ext2(ν∗OXν ,OX) → Ext2(OX ,OX) to be surjective and injective,

respectively, which implies Ext2(ΥX ,OX) = H1(D,OD) = 0, the weaker condition

directly imposed by us in proposition 5.4.4.

In our situation, regarding SNC log symplectic varieties, we may not assume the conditions

of Kawamata and Namikawa to be fulVlled: Let f0 : X → SpecC be a complex smooth

symplectic variety (in the usual sense). GivingC the log structure of the standard log point

Spec C− and X the log structure f×0 C− makes f0 a (strict) log smooth morphism and lets us

view the symplectic form on f0 as a log symplectic form on the log smooth morphism f0.

Under these assumptions, since X is normal, we have ν∗OXν = OX , so we calculate

HdimX−2(Xν ,OXν ) = Ext2(ν∗OXν ,OX) = H2(OX) ∼= H0(Ω2
f0

), which is non-zero,

because it contains the log symplectic form. For this reason, we may not impose the same

conditions HdimX−1(X,OX) = 0 and HdimX−2(Xν ,OXν ) = 0 as Kawamata and Nami-

kawa , because the second condition would contradict our assumptions.

5.4.2 Smoothing of non-twisted log symplectic varieties

Let f0 : (X,ω) → Spec C− be an SNC log symplectic variety of non-twisted type. Let

fk : (Xk, $k) → SpecAk be a log smooth deformation of (f0, ω) over Ak and denote

εk : 0→ (y)→ Bk → Ak → 0.

Recall from proposition 4.2.4 that the obstruction to lifting fk : (Xk, $k)→ SpecAk along
εk is an element oεk([fk, $k]) inH2(Ω≥1,•

f [1]�Ak εAk) = H2(Ω≥1,•
f [1]).
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5.4.6 Lemma

IfH1(Ω≥2,•
f0

[2]) = 0, then

oεk([fk, $k]) = 0 ⇔ oεk([fk]) = 0.

Proof: Under the map πk : H2(Ω≥1,•
fk

[1])→ H2(Tfk), induced by the short exact sequence

t$k : 0→ Ω≥2,•
fk

[1] −→ Ω≥1,•
fk

[1]
πk−−→ Tfk → 0,

oεk([fk, $k]) is mapped to the obstruction oεk([fk]) of log smoothly lifting fk over εk by

corollary 4.2.3. Due to corollary 5.3.2 the vanishing of H1(Ω≥2,•
f0

[2]) = H2(Ω≥2,•
f0

[1]) im-

plies that ofH2(Ω≥2,•
fk

[1]), which makes πk injective, implying the claim. �

5.4.7 Theorem

Let f0 : (X,ω)→ Spec C− be an SNC log symplectic variety of non-twisted type with double

locus D and with f∗OX0
= OSpec Cp . If

a) H1(X,OX) = 0,

b) H1(Ω≥2,•
f0

[2]) = 0 and

c) H1(D,OD) = 0 or H2(X,Tf0
) = 0,

then the hull of Def(f0,ω) is smooth.

Proof: We have to show that Def := Def(f0,ω) satisVes the T1-lifting property, i. e. that

Def(Bk) → Def(Ak) ×Def(Ak−1) Def(Bk−1) is surjective for all k. If k = 0, then this

reduces to showing the surjectivity of Def(B0)→ Def(A0). IfH1(D,OD) = 0, respective-

ly, if H2(X,Tf ) = 0, then we have, by proposition 5.4.4 and lemma 5.4.6, respectively by

lemma 5.4.1, that oε0([f0, ω]) = 0 for the small extension ε0 : 0 → (y) → B0 → A0 → 0,

which is equivalent to Def(B0)→ Def(A0) being surjective.

Now let k ≥ 1. Then we look at the diagram

Def(Bk) //

��

Def(Bk−1)

��

Def(Ak) // Def(Ak−1).

We regard an element (ξk, ηk−1) ∈ Def(Ak) ×Def(Ak−1) Def(Bk−1) with ξk and ηk−1

projecting to ξk−1. Due to the vanishing of the obstruction along the small extension

εk : 0 → (y) → Bk → Ak → 0 by proposition 5.4.4 and lemma 5.4.6 we can lift ξk to

an element ηk ∈ Def(Bk). Denoting the projection of ηk in Def(Bk−1) by η′k−1, we need

not have η′k−1 = ηk−1. But as the set of all η ∈ Def(Bk−1) mapping to ξk−1 ∈ Def(Ak)

is a torsor under H1(Ω≥1,•
fk−1

[1]) by 4.2.4, there is an element vk−1 ∈ H1(Ω≥1,•
fk−1

[1]) with

vk−1η
′
k−1 = ηk−1. Since H1(Ω≥1,•

fk
[1]) → H1(Ω≥1,•

fk−1
[1]) is surjective, there is an ele-
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ment vk ∈ H1(Ω≥1,•
fk

[1]) mapping to vk−1. Then vkηk is an element of Def(Bk) mapping

to ξk and vk−1η
′
k−1 = ηk−1, respectively, which shows the surjectivity of Def(Bk) →

Def(Ak)×Def(Ak−1) Def(Bk−1) for all k ≥ 1.

By the T1-lifting principle 5.2.2, we conclude that Def is smooth. In particular, its hull is

smooth. �

Let ηT : SpecC((t))→ SpecT be the generic point of SpecT . The induced strict morphism

of log schemes ηT : (SpecC((t)), η×TT )→ Spec T is called the generic point of Spec T and

we write Spec T η for (SpecC((t)), ηT
×T ). By abuse of language, we will also call Spec T η

the generic point of Spec T .
5.4.8 Lemma

The generic point Spec T η of Spec T carries the trivial log structure.

Proof: This log structure has the chart t : N0 → C((t)) induced from Spec T , which maps

the generator 1 of N0 to the unit t ∈ C((t))
×. Hence, its log structure sheaf MηT =

N0 4C((t))
×

= C((t))
× is trivial. �

5.4.9 Theorem

Let f0 : (X,ω)→ Spec C− be a log symplectic variety of non-twisted type satisfying the con-

ditions of theorem 5.4.7. Then (f0, ω) is formally smoothable to a log symplectic deform-

ation f∞ : (X,w) → Spec T , the generic Vbre of which is a strict smooth log symplectic

scheme f ′ : (X ′, ω′)→ ηT of non-twisted type.

In particular, f∞ is a Wat deformation of f
0
and the generic Vbre f ′ : (X ′, ω′) → SpecT η

of (f∞,w) is a (relative) smooth symplectic scheme in the usual sense.

Proof: Let ϕA : T → A be the T -algebra structure t 7→ x. Then the smoothness of the hull

R implies the existence of a morphism

Spec T = Spec lim←−
n

An → SpecR → Def(f0,ω),

thus the existence of a lifting (f∞,w) in Def(f0,ω)(T ):

(X,ω)
� � //

f0

��

(X,w)

f∞

��

Spec C− �
�

// Spec T

The generic Vbre f ′ (the Vbre over ηT ) of f∞ is the morphism in the commutative diagram

of morphisms of log schemes with strict open immersions as horizontal morphisms

X ′ := XηT = X×Spec T Spec T η �
�

//

f ′

��

X

f∞

��

Spec T η �
�

// Spec T

and we let ω′ be the restriction of w to X ′.
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Then f ′ locally admits the chart diag : N0 → Nr0, with 1 ∈ N0 being mapped to the unit

t ∈ C((t))
× and its image under the chart (1, . . . , 1) mapped to the unit t ∈ O×X′ . But since

a product which is a unit can only have units as factors, Nr0 is completely mapped to O×X′ .
Hence,MX′ = MX �O×X O

×
X′ = Nr0 4 O×X′ = O×X′ , which shows that αX′ is trivial. In

reverse, the log structure αX is supported only in the VbreX over the closed point SpecC

of Spec T corresponding to the prime ideal (t).

A morphism of log schemes with trivial log structures is always strict and the (log) smooth-

ness of such a morphism is equivalent to the smoothness of the underlying morphism.

Therefore, f ′ : Xη → SpecC((t)) is a smooth morphism of schemes in the usual sense. Due

to the strictness of f ′, the form ω′ is just a symplectic form (relative to f ′) in the usual

sense. Hence, f0 is indeed formally smoothable to a Wat deformation the generic Vbre of

which is symplectic. �

5.4.10 Corollary (cp. [21, 2.5])

Let f0 : (X,ω)→ Spec C− be a SNC log symplectic variety of non-twisted type of dimension

2 with H1(X,OX) = 0. Then the hull of Def(f0,ω) is smooth and f0 is smoothable by a

Wat deformation.

Proof: By assumption, Ω2
f0

∼= OX , thus H1(Ω≥2,•
f0

[2]) = H1(X,Ω2
f0

) = H1(X,OX) = 0.

By [11, 5.8], we have H2(Tf0
) = 0. Using 5.4.7 and 5.4.9, the result follows. �

5.4.11 Remark

This corollary is essentially [21, 2.5], because in dimension 2 a log symplectic SNC variety is

the same thing as the logarithmic degenerate Calabi-Yau variety described by Y. Kawamata

and Y. Namikawa in [21], which we would call SNC log Calabi-Yau variety of dimension 2.

5.4.3 Smoothing of twisted log symplectic varieties

Let f0 : (X,

∆

, ω) → Spec C− be an SNC log symplectic variety. Let fk : (Xk, ∆k, $k) →
SpecAk be a log smooth deformation of (f0,

∆

, ω) over Ak and denote εk : 0 → (y) →
Bk → Ak → 0.

Recall from chapter 4 that the obstruction to lifting fk : (Xk, ∆k, $k)→ SpecAk along εk
is an element oεk([fk, ∆k, $k]) inH2(B •fk($k)�Ak εAk) = H2(B •fk($k)).

5.4.12 Lemma

IfH1(Ω≥2,•
f0

� L[2]) = 0 and if

∆

is log Cartier, then

oεk([fk, ∆k, $k]) = 0 ⇔ oεk([fk]) = 0.

Proof: Under the map µk : H2(B •fk($k)) → H2(A •fk(∆k)) induced by the short exact

sequence

0→ Ω≥2,•
fk

� Lk[1] −→ B •fk($k)
µk−−→ A •fk(∆k)→ 0,
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oεk([fk, ∆k, $k]) is mapped to the obstruction oεk([fk, ∆k]) of lifting the log scheme with

Wat log connection (fk, ∆k) along εk .

Under the surjective map πk : H2(A •fk(∆k)) → H2(Tfk) induced by the short split exact

sequence

0→ Ω •fk −→ A •fk(∆k)
πk−−→ Tfk [0]→ 0,

oεk([fk, ∆k]) is mapped to the obstruction oεk([fk]) of log smoothly lifting fk along εk .

If

∆

is log Cartier, then it automatically lifts to any inVnitesimal log smooth lifting of f0

(cf. Lemma 3.4.10), so oεk([fk, ∆k]) vanishes if and only if oεk([fk]) vanishes. By pro-

position 5.3.1, the vanishing of H1(Ω≥2,•
f0

� L[2]) = H2(Ω≥2,•
f0

� L[1]) implies that of

H2(Ω≥2,•
fk

� Lk[1]), which makes qk injective, thus implying the claim. �

We are now able to proof our second main result:

5.4.13 Theorem

Let f0 : (X,

∆

, ω)→ Spec C− be an SNC log symplectic variety (of general type) with double

locus D and with f∗OX0
= OSpec Cp . If

a)

∆

is log Cartier,

b) H1(X,OX) = 0,

c) H1(Ω≥2,•
f0

� L[2]) = 0 and

d) H1(D,OD) = 0 or H2(X,Tf0) = 0,

then the hull of Def(f0,

∆

, ω) is smooth.

Proof: Let Def := Def(f0,

∆

, ω). By lemma 5.4.12, the vanishing of oεk([fk, ∆k, $k]) is

equivalent to that of oεk([fk]). By proposition 5.4.4, respectively by lemma 5.4.1, the second

obstruction vanishes.

Literally as in the proof of 5.4.7, this vanishing implies the surjectivity of Def(B0) →
Def(A0) for k = 0 and the surjectivity of Def(Bk) → Def(Bk−1) ×Def(Ak) Def(Ak−1)

for k ≥ 1, when replacing the torsor of liftingsH1(Ω≥1,•
fk−1

[1]) byH1(B •fk−1
($k)).

Again, by the T1-lifting principle, we conclude that Def is smooth; hence, its hull is, too. �

5.4.14 Theorem

Let f0 : (X,

∆

, ω) → Spec C− be a log symplectic variety (of general type) satisfying the

conditions of theorem 5.4.13. Then (f0,

∆

, ω) is formally smoothable to a log symplectic

deformation f∞ : (X,D,w)→ Spec T (of general type) the generic Vbre of which is a strict

smooth log symplectic scheme f ′ : (X ′, d, ω′)→ Spec T η of non-twisted type.

In particular, f∞ is a Wat deformation of f0 and the generic Vbre f ′ : (X ′, d, ω′)→ SpecT η

of (f∞,D,w) is a (relative) smooth symplectic scheme in the usual sense.
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Proof: As in the proof of 5.4.9, the smoothness of the hull R implies the existence of a

morphism Spec T → SpecR → Def(f0,

∆

, ω), thus the existence of a log smooth deforma-

tion f∞ : (X,D,w)→ Spec T ∈ Def(f0,

∆

, ω)(T ).

Again, f ′ : X ′ → Spec T η is a strict morphism of log schemes with trivial log structures.

Since D is log Cartier, its restriction must be equal to the only Wat log Cartier connection

(d,OX′) onX ′, the form w thus restricts onX ′ to a log symplectic form ω′ of non-twisted

type. Due to the strictness of f ′, the form ω′ is again just a symplectic form (relative to f ′)

in the usual sense and f0 is formally smoothable to a Wat deformation the generic Vbre of

which is symplectic. �

5.4.15 Corollary

Let f0 : (X,

∆

, ω) → Spec C− be a SNC log symplectic variety of general type of dimension

2 withH1(X,OX) = 0 and such that

∆

is log Cartier. Then the hull of Def(f0,ω) is smooth

and f0 is smoothable by a Wat deformation.

Proof: By assumption, Ω2
f0
� L ∼= OX , thus H1(Ω≥2,•

f0
� L[2]) = H1(X,Ω2

f0
� L) =

H1(X,OX) = 0. Again, by [11, 5.8], we have H2(Tf0
) = 0, so using again 5.4.7 and 5.4.9,

the result follows. �
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6 Examples
In the preceding chapters we have developed a theory of log symplectic schemes and their

log smooth deformations. In what follows, we will show that log symplectic schemes and

their deformations arise naturally by looking at some examples. Before constructing these

examples, we look at the blow-up of a log scheme. We assume all schemes to be Noetherian.

Although one Vnds the section headline “Log blow-ups”, numbered II.2.5, in the lecture

notes of A. Ogus, this section bears no content up to today (cf. [29, II.2.5]. Hence, all the

following deVnitions and statements are due to ourselves.

6.1 Blow-up of a log scheme

Let X be a log scheme, let P ⊂ X be a closed subscheme and denote the blow-up of the

underlying scheme X of X along P by β : Xβ → X . Then E := β−1(P ) is a divisor in

Xβ with open complement W := Xβ \ E ∼= X \ P . Accordingly, we have on Xβ on

the one hand the compactifying log structure αW⊂Xβ associated to the open immersion

j : W → Xβ and on the other hand the pullback log structure β×αX .

By the universal property of the tensor product of sheaves of monoids, the dashed

morphism of sheaves of monoids in the commutative diagram

O×
Xβ
� � //

� _

��

j×O×W� _

�� α
W⊂Xβ

��

β×MX

β×αX ..

� � // β×MX �O×
X
β
j×O×W

&&

OXβ

exists uniquely and is a log structure on Xβ .

We denote this log structure on Xβ by αXβ := β×αX �ι
X
β
αW⊂Xβ and we write Xβ :=

(Xβ , αXβ ) for the log scheme with that log structure and underlying scheme Xβ . Since

there is an obvious morphism of log structures β[ : β×αX → αXβ (namely the inclusion

as a subsheaf as seen in the above diagram), β := (β, β[) : Y → X is a morphism of log

schemes which we call the blow-up of the log scheme X along the closed subscheme P ⊂ X .

By abuse of language, we will also call Xβ the blow-up of X along P .

6.1.1 Lemma

Let Y be a scheme and let V and W be open subschemes of Y . Then there is a natural

morphism of log structures

αV⊂Y �ιY αW⊂Y → αV ∩W⊂Y .

137
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If the complements Z = Y \ V and E = Y \W are Cartier divisors in Y (i. e. non-empty

closed subschemes the ideal sheaf of which is locally principal, generated by a non-zero-

divisor) which have no common components, then this morphism is an isomorphism.

Proof: We denote the open immersions by the names indicated in the following Cartesian

diagram:

V ∩W � � j
′
V //

� _

j′W
��

� q

jV∩W

""

V
� _

jV

��

W � � jW // Y

We have the two canonical injective morphisms of log structures ιV → αj′V = j′V×ιV ∩W

and ιW → αj′W = j′W×ιV ∩W on V andW , respectively, because ιV and ιW are the initial

objects in the category of log structures on V andW , respectively. Applying the left-exact

functors jV× and jW× to these morphisms, respectively, yields injective morphisms of log

structures

αjV = jV×ιV → jV×j
′
V×ιV ∩W = jV ∩W×ιV ∩W = αjV∩W and

αjW = jW×ιW → jW×j
′
W×ιV ∩W = jV ∩W×ιV ∩W = αjV∩W .

By the universal property of the tensor product of (pre)log structures, the morphism of log

structures

αjV �ιY αjW → αjV∩W

exists uniquely and it is given by the morphism of sheaves of monoids

jV×O×V �O×Y jW×O
×
W → jV ∩W×O×V ∩W , s� t 7→ s · t,

which makes sense, because all sheaves are sheaves of submonoids of (OY , ·).
If the complements Z and E of V and W , respectively, are Cartier divisors which have

no common components, then they are locally given as the vanishing locus of non-zero-

divisors f, g ∈ OY , respectively, such that if h is a local section of OX with h | f and

h | g, then h lies in O×X . Let f = f1 · . . . · fp and g = g1 · . . . · gq be factorisations of

f and g, respectively, into irreducible elements. For a p-tuple of natural numbers m =

(m1, . . . ,mp) ∈ Np0 and a q-tuple of natural numbers n = (n1, . . . , nq) ∈ Nq0 we set

fm :=
∏
i f

mi
i and gn :=

∏
j g

nj
j .

If r is a local section of jV ∩W×O×V ∩W , then r is a local section of OX which is invertible

on V ∩W . Hence we may write r = fmgnu for some local section u of O×X and tuples

m ∈ Np0 and n ∈ Nq0. The local section (fmu) � gn of jV×O×V �O×Y jW×O×W is then a

preimage of r. Hence this morphism is surjective.

Regard two local sections fmu� gnv and fm
′
u′ � gn

′
v′ of jV×O×V �O×Y jW×O

×
W both map-

ping to the same element fmgnuv = fm
′
gn
′
u′v′. By the fact that f and g are non-zero-

divisors and that Z and E have no common components, this implies thatm = m′, n = n′
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and uv = u′v′. But then the two local sections fnu� gmv and fm
′
u′ � gn

′
v′ are equal,

which shows the injectivity of the morphism. �

6.1.2 Lemma

Let f : Y → X be a morphism of schemes and let U ⊂ X be an open subscheme. Then

there exists a natural morphism of log structures

f×αU⊂X → αf−1(U)⊂Y .

If the reduced closed complement Z = X \ U of U is a Cartier divisor, then this morphism

is an isomorphism.

Proof: We denote the morphisms by the names indicated in the following Cartesian dia-

gram:

f−1(U) �
� ĵ

//

f ′= f|
U

��

Y

f

��

U
� � j

// X

Applying the functor j× to the natural injective morphism of log structures ιU → f ′×f
′×ιU

yields the injective morphism of log structures αj = j×ιU → j×f
′
×f
′×ιU = f×ĵ×f

′×ιU =

f×ĵ×ιf−1(U) = f×αĵ . Its adjoint morphism f×αj → αĵ is the morphism we were looking

for. It is given by the morphism of sheaves of monoids

f×jU×O×U = f−1jU×O×U �f−1O×X
O×Y → ĵ×O×f−1(U), s� t 7→ f ](s) · t,

To show that it is an isomorphism if Z is a Cartier divisor, it is enough to consider the aXne

case X = SpecA and Y = SpecB. Then U = SpecA[ 1
g ] and f−1(U) = Spec(A[ 1

g ] �A
B) = SpecB[ 1

g ], where the non-zero-divisor g ∈ A is an equation for Z . Hence, we have

a cocartesian diagram

A //

f]

��

A[ 1
g ]

f ′]

��

B // B[ 1
f](g)

].

The morphism in question is

(A[ 1
g ])× �A× B× = A×〈g〉�A× B× → (B[ 1

f](g)
])× = B×

〈
f ](g)

〉
,

agm � b 7→ f ](a)b(f ](g))m, which is clearly a group isomorphism. Here, we write A×〈g〉
for the subgroup of the quotient Veld K(A) generated by A× and g, which, since g is not

an element of A×, is isomorphic to A×× Z. �
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6.1.3 Proposition

Let X be a log scheme the log structure of which is the compactifying log structure αU⊂X
associated to the open immersion of the complement U of a Cartier divisor Z and letXβ be

the log blow-up of X along a closed subscheme P and let E := β−1(P ) be its exceptional

divisor andW = Xβ \E its open complement. Then the log structure ofXβ is isomorphic

to the compactifying log structure associated to the open immersion of the subscheme

β−1(U) ∩W = β−1(X \ (P ∪ Z)).

Proof: By deVnition, αXβ = β×αU⊂X �ι
Xβ

αW⊂Xβ . By lemma 6.1.2, this is isomorphic

to αβ−1(U)⊂Xβ �ιXβ αW⊂Xβ , which, by lemma 6.1.1 is isomorphic to αf−1(U)∩W⊂Xβ , as

claimed. �

6.1.4 DeVnition

Let β : Xβ → X be the blow-up of a scheme X along a closed subscheme P ⊂ X . Let

Y ⊂ X be a closed subscheme. The total transform of Y is the closed subscheme β−1(Y ) ⊂
Xβ . Its closed subscheme Ŷ ⊂ β−1(Y ) deVned by the ideal generated by local sections of

Oβ−1(Y ) which are supported in E ∩ β−1(Y ) is called its strict transform.

Giving these schemes the log structure as closed subschemes of Xβ , we may speak of the

total transform and the strict transform of Y ⊂ X under β, respectively.

6.1.5 Lemma ([13, II.7.15])

Let β : Xβ → X be the blow-up of a scheme X along a closed subscheme P ⊂ X . Let

Y ⊂ X be a closed subscheme. Then the strict transform Ŷ ⊂ Xβ of Y is the blow-up of

Y along P ∩ Y = P ×X Y ⊂ X ×X X = X .

6.1.6 Proposition

Let X be a log scheme the log structure of which is the compactifying log structure αU⊂X
associated to the open immersion of the complement U of a Cartier divisor Z and let

β : Xβ → X be the blow-up of X along a closed subscheme P . Let Y ⊂ X be a closed

subscheme and Ŷ its strict transform under β in Xβ . Then Ŷ is the blow-up of Y along

P ∩ Y .

Proof: By the previous lemma 6.1.5, Ŷ is the blow-up β0 : Y β0 → Y of Y along P ∩ Y . It

remains to show that the log structure of Ŷ as a closed subscheme of Xβ is αY β0 .

The log structure of Ŷ is the restriction of that ofXβ , so, using lemma 6.1.2 and proposition

6.1.3,

αŶ = i×αXβ = i×αβ−1(X\(P∪Z))⊂Xβ

= α
i−1(β−1(X\(P∪Z)))⊂Xβ0

0
= α

β−1
0 (X0\(X0∩(P∪Z)))⊂Xβ0

0

= α
X
β0
0
. �



6.2. EXAMPLES CONSTRUCTED BY BLOWING UP 141

6.2 Examples constructed by blowing up

Now that we know what the blow-up of a log scheme is, we may construct our Vrst

two examples of log symplectic schemes (of general type). Let g0 : S0 → SpecC be a

proper smooth symplectic scheme of dimension d = 2n, n ≥ 1, with symplectic form

π ∈ Γ (S0, Ω
2
g

0
).

Let S := S0 ×SpecC SpecC[t] and denote the corresponding natural second projection by

g : S → SpecC[t]. Then g is trivially a (relative) smooth symplectic scheme. We identify

S0 with the central Vbre S ×SpecC[t] Spec k(0) of the family g.

We denote by U the open subscheme S \ S0 of S and by j : U → S its open immersion.

Then (S, j) is a scheme with open immersion. As such it carries the compactifying log

structure αj . We write S := (S, αS) for this log scheme. Analogously, SpecC[t] carries

the log structure associated to the open immersion of the complement of its point 0, which

turns it into the log aXne scheme AC[N0].

Naturally, g underlies a strict log smooth morphism g : S → AC[N0] of log schemes

since g−1(0) = S0 consists of a single component. Its restriction to the central Vbre

g0 : S0 → Spec C− is a SNC log scheme (consisting of one single component) with un-

derlying morphism of schemes g0.

Now g is already a (rather trivial) example of a log symplectic scheme (of non-twisted

type): Pulling back π to S via its Vrst projection pr1 : S → S0 deVnes a log symplectic

form π̃ := pr∗1π ∈ Γ (S, Ω2
g) on S over AC[N0]. We will construct two examples of SNC

symplectic schemes consisting of two irreducible components based on this trivial example.

6.2.1 First example: Blowing up a point

Let s be a closed point in S0 and let β : X → S be the blow-up of S in the point (s, 0)

as deVned in section 6.1 above, with X := Sβ . By proposition 6.1.3, X carries the com-

pactifying log structure associated to the open immersion of the complement of the closed

subscheme X := β−1(S0) ⊂ X .

This preimage X of S0 under β is a strict normal crossing divisor in X , consisting of two

components: X[1], which is the exceptional divisor of the blow-up, isomorphic to P2n
C
, and

X[2], which is the strict transform of S0 under β. Here, all closed subschemes carry the log

structure induced from their ambient log scheme. Denoting the blow-up of S0 in the point

s by β0 : Sβ0

0 → S0, we have X[2]
∼= Sβ0

0 by proposition 6.1.6; in particular, αX[2]
= α

S
β0
0
.

Regard the composition f := g ◦ β : X → AC[N0]. As shown in chapter 3, section 3.6, f is

a log smooth morphism of log schemes and its restriction f0 := f |X : X → Spec C− is an
SNC log variety.

Since X carries the log structure of a regular scheme with SNC divisor X = X[1] ∪ X[2],

the group of its log Cartier divisors is LCar(X ) = Z ·X[1] � Z ·X[2]
∼= Z2. We let L be
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the line bundleMX (−2X[1]) = OX (−2X[1]) on X . This line bundle comes with the Wat

log connection ∆ = (L, ∆) = Mf (−2X[1]) which is, as remarked in section 3.6, the usual

diUerential d restricted to the subsheaf L ⊂ OX .

We claim that $ := β∗π̃, the pullback of π̃ via β, is an element of Γ (Ω2
f � L) which is a

log symplectic form of type ∆. Since β is an isomorphism outside of the point (s, 0), it is

enough to do a calculation in étale-local coordinates at (s, 0):

Étale-locally at s, S0 is isomorphic to A2n
C
, with coordinates x1, . . . , xn, y1, . . . , yn and the

point s corresponding to the origin, with trivial log structure and with the (log) symplectic

form π =
∑n
i=1 dxi ∧dyi. Then, étale-locally at (s, 0), S is isomorphic to (A2n+1

C
, α),

with the additional coordinate t, with log structure α associated to the prelog structure

N0 → OA2n+1
C

, n 7→ tn.

Although to our knowledge there exists no algebraic or holomorphic Darboux theorem,

we assume for our calculations that this étale local situation resembles a Darboux chart in

the sense, that we may write π̃ =
∑n
i=1 dxi ∧dyi considered as a log symplectic form on

g : (A2n+1
C

, α)→ AC[N0] in this situation (cf. [25, 3.15 & 16] for the real analytic case). So

étale-locally,

X = Sβ = Proj
C[x1, . . . , xn, y1, . . . , yn, t][ξ1, . . . , ξn, η1, . . . , ηn, τ ]

(xiτ − tξi, yiτ − tηi, xiξj − xjξi, yiηj − yjηi, xiηj − yjξi)

(where the xi, yi and t have degree 0) with the central Vbre given by

X = Proj
C[x1, . . . , xn, y1, . . . , yn][ξ1, . . . , ξn, η1, . . . , ηn, τ ]

(xiτ, yiτ, xiξj − xjξi, yiηj − yjηi, xiηj − yjξi)

which consists of the two components

X [1] = ProjC[ξ1, . . . , ξn, η1, . . . , ηn, τ ] ∼= P2n
C ,

given by the ideal (x1, . . . , xn, y1, . . . , yn), and

X [2] = Proj
C[x1, . . . , xn, y1, . . . , yn][ξ1, . . . , ξn, η1, . . . , ηn]

(xiξj − xjξi, yiηj − yjηi, xiηj − yjξi)
∼= S

β
0

0 ,

given by the equation τ = 0. Their intersection

X [12] = ProjC[ξ1, . . . , ξn, η1, . . . , ηn] ∼= P2n−1
C

,

which is the double locus of X , is the exceptional divisor in X[2].

The aXne subscheme of X on which ξ1 is invertible and to which we will refer as Xξ−1
1

is

isomorphic to

SpecC[x1, ξ2, . . . , ξn, η1, . . . , ηn, τ ]/(x1τ),

where ξi = ξi
ξ1
, ηi = ηi

ξ1
and τ = τ

ξ1
, and its log structure αX

ξ
−1
1

is the one associated to the

prelog structure aX
ξ
−1
1

: N2
0 → OXξ−1

1

, (n1, n2) 7→ xn1
1 τn2 .
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In this chart we calculate

$ = σ∗π̃ = dx1 ∧d(x1η1) +

n∑
i=2

d(x1ξi) ∧d(x1ηi)

= x1dx1 ∧dη1 +

n∑
i=2

x1ξidx1 ∧dηi + x1ηidξi ∧dx1 + x2
1dξi ∧dηi

= x2
1

(
dlog x1 ∧dη1 +

n∑
i=2

ξidlog x1 ∧dηi + ηidξi ∧dlog x1 + dξi ∧dηi

)
∈ Γ (Xξ−1

1
, Ω2

f � OX (−2X[1])),

writing dlog x1 for dlog(1, 0) and analogously in the other charts Xξ−1
i

.

The aXne subscheme Xη−1
1

is isomorphic to

SpecC[y1, ξ1, . . . , ξn, η2, . . . , ηn, τ ]/(y1τ),

where ξi = ξi
η1
, ηi = ηi

η1
and τ = τ

η1
, and its log structure αX

η
−1
1

is the one associated to

the prelog structure aX
η
−1
1

: N2
0 → OXη−1

1

, (n1, n2) 7→ yn1
1 τn2 .

In this chart we calculate

$ = σ∗π̃ = d(ξ1y1) ∧dy1 +

n∑
i=2

d(y1ξi) ∧d(y1ηi)

= y2
1

(
dξ1 ∧dlog y1 +

n∑
i=2

ξidlog y1 ∧dηi + ηidξi ∧dlog y1 + dξi ∧dηi

)
∈ Γ (Xη−1

1
, Ω2

f � OX (−2X[1])),

writing dlog y1 for dlog(1, 0), and analogously in the other charts η−1
i .

Finally, the aXne subscheme τ−1 is isomorphic to

SpecC[t, ξ1, . . . , ξn, η1, . . . , ηn],

where ξi = ξi
τ and ηi = ηi

τ , and its log structure ατ−1 is the one associated to the prelog

structure aτ−1 : N2
0 → Oτ−1

1
, (n1, n2) 7→ tn2 (or the prelog structure aτ−1 : N0 → Oτ−1 ,

n 7→ tn, if preferred).

In this chart we calculate

$ = σ∗π̃ = t2
n∑
i=1

dξi ∧dηi ∈ Γ (Xτ−1 , Ω2
f � OX (−2X[1]))

(observe that τ−1 ∩X[2] = ∅). This shows that $ is indeed an element of Γ (Ω2
f � L).

Next, we show that it is closed under ∆: In the aXne chart Xξ−1
1

the log connection ∆ =

Mf (−2X[1]) is given by the discrepancy pair (
x2

1

x2
1
, 2dlog x1) = (1, 2dlog x1) and thus it

acts in this chart on forms σ with values inL by the rule∆(x2
1 ·σ) = x2

1 ·(dσ+2dlog x1 ∧σ)
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(cp. section 3.6). We calculate that

∆

(
x2

1

(
dlog x1 ∧dη1 +

n∑
i=2

ξidlog x1 ∧dηi + ηidξi ∧dlog x1 + dξi ∧dηi

))

= x2
1

( n∑
i=2

dξi ∧dlog x1 ∧dηi + dηi ∧dξi ∧dlog x1 + 2dlog x1 ∧dξi ∧dηi

)
= 0,

and the same may be checked to be true in all other charts (here the discrepancy pair of ∆

is (1, 2dlog xj), (1, 2dlog yj) and (1, 2dlog t), respectively).

Finally, we have to verify that$ induces an isomorphism Tf → Ω1
f � L. In the chart Xξ−1

1

the map in question sends

x1∂x1
7→ x2

1

(
dη1 +

n∑
i=2

ξidηi − ηidξi
)
,

∂ξi 7→ x2
1 (ηidlog x1 + dηi) ,

∂η1
7→ x2

1 (−dlog x1) and

∂ηi 7→ x2
1

(
−ξidlog x1 − dξi

)
.

Therefore, its inverse is given by

−∂η1
7→ x2

1dlog x1,

−∂ηi + ξi∂η1
7→ x2

1dξi,

∂ξi + ηi∂η1
7→ x2

1dηi and

x1∂x1
−
∑
i≥2

ξi∂ξi + ηi∂ηi + 2ξiηi∂η1
7→ x2

1dη1,

showing the bijectivity of the induced map Tf → Ω1
f � L in this chart. Proceeding analog-

ously in all other charts, one shows that $ indeed induces an isomorphism.

Eventually, we have shown that f : (X,∆,$) → AC[N0] is a log symplectic scheme (of

general type).

Writing f0 := f |X : X → Spec C− , L := L|X ,

∆

:= ∆|X and ω := $|X , the Spec C−-
log-scheme f : (X,

∆

, ω) → Spec C− is an example of an SNC log symplectic variety (over

Spec C−):
The line bundle L =MX(−2X[1]) =MX(2X[2]) obtained by restricting L to X is given

on the two components of X as follows. On X[1] we have

L[1] = L|X[1]
= OX (2X[2])

∣∣
X[1]

= OX[1]
(2X[12]),

whereas on X[2] we have

L[2] = L|X[2]
= OX (−2X[1])

∣∣
X[2]

= OX[2]
(−2X[12]).

The restriction to X[12] of L[1] and L[2] is N � 2
X[12]⊂X[1]

and N �−2
X[12]⊂X[2]

, respectively, which

are isomorphic, because NX[12]⊂X[1]
�OX[12]

NX[12]⊂X[2]
∼= OX[12]

by the semi-stability of

X (cf. 3.5.24 and [11, 1.9]).
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The Wat log connection

∆

= ∆|X is given on the components by

∆

[1] :=

∆

|X[1]
and

∆

[2] :=

∆

|X[2]
respectively, given by the augmentation of d as described in section 3.6.

The form ω := $|X is given on X[1] (in the chart Xξ−1
1

) as

ω[1] = − 1

τ2

(
dlog τ ∧dβ1 +

n∑
i=2

(ξidlog τ ∧dηi + ηidξi ∧dlog τ − dξi ∧dηi)
)

in Γ (X[1] ξ−1
1
, Ω2

f0
�OX[1]

(2X[12])) (observe that onX[12] we have dlog x1 = −dlog τ and

x2
1 = 1

τ2 for the generators of the restrictions of the line bundle) and onX[2] (in that chart)

as

ω[2] = x2
1

(
dlog x1 ∧dβ1 +

n∑
i=2

(ξidlog x1 ∧dηi + ηidξi ∧dlog x1 + dξi ∧dηi)
)

in Γ (X[2] ξ−1
1
, Ω2

f0
� OX[2]

(−2X[12])).

It inherits from $ the properties that it is closed under

∆

and that it induces an iso-

morphism Tf0
→ Ω1

f0
� L.

Example 6.2.1 The above constructed (f0,

∆

, ω) : X → Spec C− is an SNC log symplectic

variety (of general type). The log symplectic scheme (f,∆,$) : X → AC[N0] is a log

symplectic deformation of f0 (of general type) along the strict closed immersion Spec C− →
AC[N0]. All of its Vbres other thanX are smooth symplectic varieties in the sense that for

each p 6= 0 ∈ AC[N0] the Vbre fp : (Xp, d, ωp) → Ak(p)[0] is a (strict) smooth morphism

of log schemes with trivial log structures (hence, with smooth underlying morphism of

schemes fp), with ∆p = d and such that ωp ∈ Γ (Xp, Ω2
fp

) = Γ (Xp, Ω2
fp

) is a symplectic

form in the usual sense.

6.2.2 Second example: Blowing up a Lagrangian

In this example we take (S0, π) and g : (S, σ)→ AC[N0] as above, but, instead of blowing

up a point, we choose a (relative) Lagrangian subscheme of S .
So let Λ ⊂ S0 be a regular Lagrangian subscheme of S0, i. e. a regular closed subscheme of

dimension n = 1
2 dimS0, with π|Λ = 0. Let β : X → S denote the blow-up of S along

its Lagrangian subscheme Λ × {0}. The preimage X of the Vbre S0 is an SNC divisor in

X , consisting of two components: X[1] which is the exceptional divisor isomorphic to the

projective space bundle P(NΛ×{0}⊂S) (of rank n over Λ × {0}), and X[2] which is the

strict transform of S0 under β. Denoting the blow-up of S0 in Λ by β0 : Sβ0

0 → S, we have

X[2]
∼= Sβ0

0 .

The composition f := g ◦β is a log smooth morphism and its restriction f0 := f |X : X →
Spec C− is an SNC log variety.

Let L be the line bundleMX (−X[1]) = OX (−X[1]). It comes with the Wat log connection

∆ = (L, ∆) = Mf (−X[1]) which is the usual diUerential d restricted to the subsheaf

L ⊂ OX .
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We claim that $ := β∗π̃ is an element of Γ (Ω2
f � L) which is a log symplectic form of

type ∆. Again, this may be shown doing a local calculation in étale-local coordinates at a

point (s, 0) ∈ Λ× {0}:
Assuming for our calculations a Darboux situation again, étale-locally at s ∈ Λ, S0 is

isomorphic to A2n
C
, with coordinates x1, . . . , xn, y1, . . . , yn, the point s corresponding to

the origin and Λ given by the equations x1 = 0, . . . , xn = 0, with trivial log structure and

with the (log) symplectic form π =
∑n
i=1 dxi ∧dyi. Then π̃ =

∑n
i=1 dxi ∧dyi considered

as a log symplectic form on g. Then, étale-locally at (s, 0), S is isomorphic to (A2n+1
C

, α),

with the additional coordinate t, with log structure α associated to the prelog structure

N0 → OA2n+1
C

, n 7→ tn and with π̃ =
∑n
i=1 dxi ∧dyi considered as a log symplectic form

on g : (A2n+1
C

, α)→ AC[N0]. So étale-locally,

X = Sβ = Proj
C[x1, . . . , xn, y1, . . . , yn, t][ξ1, . . . , ξn, τ ]

(xiτ − tξi, xiξj − xjξi)
,

with the central Vbre given by

X = Proj
C[x1, . . . , xn, y1, . . . , yn][ξ1, . . . , ξn, τ ]

(xiτ, xiξj − xjξi)

which consists of the two components

X [1] = ProjC[y1, . . . , yn][ξ1, . . . , ξn, τ ] ∼= Λ×PnC ∼= P(NΛ×{0}⊂S),

given by the ideal (x1, . . . , xn), and

X [2] = Proj
C[x1, . . . , xn, y1, . . . , yn][ξ1, . . . , ξn]

(xiξj − xjξi)
∼= Sβ0 ,

given by the equation τ = 0. Their intersection

X [12] = ProjC[y1, . . . , yn][ξ1, . . . , ξn] ∼= Λ×Pn−1 ∼= P(NΛ⊂S0
) = P(NΛ×{0}⊂S

∣∣
Λ

),

which is the double locus of X , is the exceptional divisor in X[2].

The aXne subscheme of X , on which ξ1 is invertible (and to which we will simply refer as

Xξ−1
1

), is isomorphic to

SpecC[x1, ξ2, . . . , ξn, y1, . . . , yn, τ ]/(x1τ),

where ξi = ξi
ξ1

and τ = τ
ξ1
, and its log structure αX

ξ
−1
1

is the one associated to the prelog

structure aX
ξ
−1
1

: N2
0 → OXξ−1

1

, (n1, n2) 7→ xn1
1 τn2 .

In this chart, writing dlog x1 for dlog e[1] again, we calculate

$ = σ∗π̃ = dx1 ∧dy1 +

n∑
i=2

d(x1ξi) ∧dyi

= x1

(
dlog x1 ∧dy1 +

n∑
i=2

ξidlog x1 ∧dyi + dξi ∧dyi

)
∈ Γ (XX

ξ
−1
1

, Ω2
f � OX (−X[1]))
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and analogously in the other charts (ξ−1
i ).

The aXne subscheme τ−1 is isomorphic to

SpecC[ξ1, . . . , ξn, y1, . . . , yn, t],

where ξi = ξi
τ , and its log structure ατ−1 and its log structure ατ−1 is the one associ-

ated to the prelog structure aτ−1 : N2
0 → Oτ−1

1
, (n1, n2) 7→ tn2 (or the prelog structure

aτ−1 : N0 → Oτ−1 , n 7→ tn if preferred).

In this chart we calculate

$ = σ∗π̃ = t

n∑
i=1

dξi ∧dyi ∈ Γ (Xτ−1 , Ω2
f � OX (−X[1]))

(observe that τ−1 ∩X[2] = ∅). This shows that $ is indeed an element of Γ (Ω2
f � L). We

show that it is closed under ∆:

Indeed, in the chart Xξ−1
1

the log connection ∆ = Mf (−X[1]) is given by the discrepancy

pair (1, dlog x1), so we have

∆

(
x1

(
dlog x1 ∧dy1 +

n∑
i=2

ξidlog x1 ∧dyi + dξi ∧dyi

))

= x1

(
n∑
i=2

dξi ∧dlog x1 ∧dyi + dlog x1 ∧dξi ∧dyi

)
= 0,

and the same may be checked to be true in all other charts (here the discrepancy pair of ∆

is (1, 2dlog xj) and (1, 2dlog t), respectively).

Finally, we have to verify that$ induces an isomorphism Tf → Ω1
f � L. In the chart Xξ−1

1

the map in question sends

x1∂x1
7→ x1

(
dy1 +

n∑
i=2

ξidyi

)
,

∂ξi 7→ x1dyi,

∂y1 7→ x1 (−dlog x1) and

∂yi 7→ x1

(
−ξidlog x1 − dξi

)
.

Therefore, its inverse is given by

−∂y1
7→ x1dlog x1,

−∂yi + ξi∂y1 7→ x1dξi,

∂ξi 7→ x1dyi and

x1∂x1
−
∑
i≥2

ξi∂ξi 7→ x1dy1,

showing the bijectivity of the induced map Tf → Ω1
f � L in this chart. Proceeding analog-

ously in all other charts, one shows that $ indeed induces an isomorphism.
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Eventually, we have shown that f : (X,∆,$) → AC[N0] is a log symplectic scheme (of

general type). Writing f0 := f |X : X → Spec C− , L := L|X ,

∆

:= ∆|X and ω := $|X ,

the Spec C−-log-scheme f : (X,

∆

, ω) → Spec C− is an example of an SNC log symplectic

variety (over Spec C−):

The line bundle L =MX(−X[1]) =MX(X[2]) obtained by restricting L toX is given on

the two components of X as follows: On X[1] we have

L[1] = L|X[1]
= OX (X[2])

∣∣
X[1]

= OX[1]
(X[12]),

whereas on X[2] we have

L[2] = L|X[2]
= OX (−X[1])

∣∣
X[2]

= OX[2]
(−X[12]).

The restriction to X[12] of L[1] and L[2] is NX[12]⊂X[1]
and NX−1

[12]
⊂X[2]

, respectively, which

are isomorphic by the semi-stability of X .

The Wat log connection

∆

:= ∆|X is given on the components by

∆

[1] :=

∆

|X[1]
and by

∆

[2] :=

∆

|X[2]
, respectively, both deVned by the augmentation of the diUerential d.

The form ω := $|X is given on X[1] (in the chart Xξ−1
1

) as

ω[1] = −1

τ

(
dlog τ ∧dy1 +

n∑
i=2

(
ξidlog τ ∧dyi − dξi ∧dyi

))

in Γ (X[1] ξ−1
1
, Ω2

f0
� OX[1]

(X[12])) (observe that on X we have dlog x1 = −dlog τ and

x1 = 1
τ for the generator of the line bundle) and on X[2] (in that chart) as

ω[2] = x1

(
dlog x1 ∧dy1 +

n∑
i=2

(
ξidlog x1 ∧dyi + dξi ∧dyi

))

in Γ (X[2] ξ−1
1
, Ω2

f0
� OX[2]

(−X[12])).

It inherits from $ the properties that it is closed under

∆

and induces an isomorphism

Tf0
→ Ω1

f0
� L.

Example 6.2.2 The above constructed (f0,

∆

, ω) : X → Spec C− is an SNC log symplectic

variety (of general type). The log symplectic scheme (f,∆,$) : X → AC[N0] is a log

symplectic deformation of f0 (of general type) along the strict closed immersion Spec C− →
AC[N0]. All of its Vbres other thanX are smooth symplectic schemes in the sense, that for

each p 6= 0 ∈ AC[N0], the Vbre fp : (Xp, d, ωp) → Ak(p)[0] is a (strict) smooth morphism

of log schemes with trivial log structures (hence, with smooth underlying morphism of

schemes fp), with ∆p = d and such that ωp ∈ Γ (Xp, Ω2
fp

) = Γ (Xp, Ω2
fp

) is a symplectic

form in the usual sense.
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6.3 Examples of Nagai

In [26, 4.3] Y. Nagai gives an example of a “good degeneration of compact symplectic mani-

fold”, which we will translate into the algebraic setting. In this section, all schemes are

really schemes, not log schemes, unless otherwise stated. For the scheme Xβ of the blow-

up β : Xβ → X along the closed subscheme P ⊂ X , we will use the classical notation

BlP X .

We will repeat and correct the calculations of Nagai’s Vrst example and then carry out the

calculations for the second example he proposes in [26, 4.4].

6.3.1 Preparation

In this subsection we are going to carry out local calculations which we will use later to

construct Nagai’s examples. We write A instead of AC. First, we calculate the Hilbert

scheme Hilb2(Z ′) for Z ′ = SpecC[x, y, z]/(x, y) as an étale-local model for the Hilbert

scheme of a normal crossing scheme near a point where two components meet. Afterwards,

we calculate the Hilbert scheme Hilb2(Z ′′) for Z ′′ = SpecC[x, y, z]/(x, y, z) as a model

for the Hilbert scheme of a normal crossing scheme near a point where three components

meet. By a chart of a scheme, we mean a member of an open covering of that scheme.

Calculation of Hilb2(A3) and its universal family

We begin by calculating the Hilbert scheme H := Hilb2(A3) of the aXne 3-space A3. It

parametrises objects of the form (G, {x, y}) consisting of a line G ⊂ A3 together with

two (not necessarily distinct) points x, y ∈ G. Hence, it is equal to the scheme of the

blow-up BlD(Sym2(A3)) = BlD(A3 × A3)/S2, where D ⊂ A3 × A3 is the diagonal and

D ⊂ Sym2(A3) its image. It is known that this is a regular scheme (cf. [10]).

We write A3 × A3 = SpecC[x1 + y1, x2 + y2, x3 + y3, x1 − y1, x2 − y2, x3 − y3], where

the coordinates xi belong to the Vrst and the yi to the second copy of A3. The blow-up of

this scheme along its diagonal D given by the equations xi = yi is

B := BlD(A3 × A3) = ProjC[xi + yi, xi − yi][ηi]/(ηi(xj − yj)− ηj(xi − yi)).

The symmetric group S2 acts with its non-trivial element by

xi + yi 7→ xi + yi xi − yi 7→ −(xi − yi) ηi 7→ ηi.

In the aXne chart Bη−1
1

(where η1 is invertible) of B we set u2 := η2

η1
and u3 := η3

η1
.

Eliminating the variables x2−y2 and x3−y3 by means of the equations x2−y2−u2(x1−
y1) = 0 and x3 − y3 − u3(x1 − y1) = 0, this chart is the regular aXne scheme

Bη−1
1

= SpecC[x1 + y1, x2 + y2, x3 + y3, x1 − y1, u2, u3]
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and the only coordinate not invariant under S2 is x1 − y1. Hence dividing out the S2-

action, we get

Hη−1
1

= η−1
1 /S2 = SpecC[x1 + y1, x2 + y2, x3 + y3, x1y1, u2, u3]

as the chart of H , where η1 is invertible. Setting ai := xi + yi, i = 1, 2, 3, and b1 := x1y1,

we get

Hη−1
1

= SpecC[a1, a2, a3, b1, u2, u3].

Analogously, the two other charts Hη−1
2

and Hη−1
3

of H are given as

SpecC[a1, a2, a3, b2, v1, v3] and SpecC[a1, a2, a3, b3, w1, w2],

respectively, where b2 := x2y2, v1 := η1

η2
and v3 := η3

η2
, and b3 := x3y3, w1 := η1

η3
and

w2 := η2

η3
, respectively.

The glueing morphisms between these three charts are given on the charts’ overlaps by the

following relations of the coordinates:

u2v1 = 1, u3w1 = 1, v3w2 = 1,

u3w2 = u3, v1w2 = u2, u2w1 = w2, u3w1 = v3, u2v3 = u3, v2w1 = v1,

(a2
1 − 4b1) = (a2

2 − 4b2)v2
1 , (a2

2 − 4b2) = (a2
3 − 4b3)w2

2 and (a2
3 − 4b3) = (a2

1 − 4b1)u2
3.

Therefore, H is locally isomorphic to A6, as expected.

Next we calculate the universal family Ξ ⊂ Hilb2(A3)×A3 of this Hilbert scheme. This is,

by deVnition, a scheme Ξ together with the Wat projection π : Ξ → H such that the Vbre

π−1(ξ) over a point ξ ∈ H projects under pr : H × A3 → A3 to precisely the subscheme

ξ ⊂ A3. We will identify the Vbre π−1(ξ) and its image pr(π−1(ξ)) = ξ ⊂ A3.

As the Hilbert scheme H parametrises objects of the form (G, {x, y}) consisting of a line

G⊂A3 together with two (not necessarily distinct) points x, y∈G, the Vbre π−1(G, {x, y})
over such a point is given either by the reduced scheme consisting of two distinct points x

and y or by the point x = y together with the tangent direction of the line G (i. e. a “fat

point”).

Now we are going to calculate the closed subscheme

Ξη−1
1
⊂ SpecC[a1, a2, a3, b1, u2, u3, z1, z2, z3] = Hη−1

1
× A3

above the chart Hη−1
1

:

If x = (x1, x2, x3) and y = (y1, y2, y3) are two points (which, for the moment, we assume

to be distinct) on a line G, then a third point z = (z1, z2, z3) lies on that line if and only if

the matrix 
z1 x1 y1

z2 x2 y2

z3 x3 y3

1 1 1


has a rank ≤ 2, i. e. if all of its 3× 3-minors equal 0.



6.3. EXAMPLES OF NAGAI 151

This gives the equations

z1(x2 − y2)− z2(x1 − y1) + (x1y2 − x2y1) = 0

z2(x3 − y3)− z3(x2 − y2) + (x2y3 − x3y2) = 0

z3(x1 − y1)− z1(x3 − y3) + (x3y1 − x1y3) = 0

(where the fourth is contained in these three and hence omitted here). As we look at the

chart Hη−1
1

, we replace (x2 − y2) with u2(x1 − y1) and (x3 − y3) with u3(x1 − y1) to get

z1u2(x1 − y1)− z2(x1 − y1) + (x1y2 − x2y1) = 0

z2u3(x1 − y1)− z3u2(x1 − y1) + (x2y3 − x3y2) = 0

z3(x1 − y1)− z1u3(x1 − y1) + (x3y1 − x1y3) = 0.

Still assuming that x and y are distinct, we may divide by (x1 − y1) to get

z1u2 − z2 + x2 − u2x1 = 0 and

z3 − z1u3 + x1u3 − x3 = 0

(the middle equation is again contained in these two). Rewriting these equations in the

coordinates ai = xi + yi, u2, u3, b1 and zi, we get

z1u2 − z2 − 1
2 (a1u2 − a2) = 0 and

z1u3 − z3 − 1
2 (a1u3 − a3) = 0.

So given a point ξ ∈ Hilb2(A3) consisting of two distinct points ξ = {x, y}, the scheme

SpecC[a1, a2, a3, b1, u2, u3, z1, z2, z3]/(z1u2−z2− 1
2 (a1u2−a2), z1u3−z3− 1

2 (a1u3−a3))

parametrises the line in A3 × {ξ} through these points. This is even true when ξ consist

only of one point with tangent direction (as this is the limit of two distinct points). To cut

the two points x and y (respectively the point x = y with tangent direction) out of the line,

we need one more equation in z1 which is given by

0 = (z1 − x1)(z1 − y1) = z2
1 − a1z1 + b1.

In conclusion, Ξη−1
1
⊂ Hη−1

1
× A3 is the aXne scheme

Ξη−1
1

= SpecC[a1, a2, a3, b1, u2, u3, z1, z2, z3]/IΞ

with the ideal IΞ generated by

z1u2 − z2 − 1
2 (a1u2 − a2), z1u3 − z3 − 1

2 (a1u3 − a3) and z2
1 − a1z1 + b1.

Since the other charts lead to analogue results (with only the indices of the u’s, b’s and z’s

cyclically permuted), the universal family Ξ of H is itself a regular scheme.
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Altogether, we have three charts for the universal family Ξ ⊂ H × A3 of H (which we

write down including redundant coordinates):

Ξη−1
1

= SpecC[a1, a2, a3, b1, u2, u3, z1, z2, z3]/IΞ1
with

IΞ1 =
(
z1u2 − z2 − 1

2 (a1u2 − a2), z1u3 − z3 − 1
2 (a1u3 − a3), z2

1 − a1z1 + b1
)
,

Ξη−1
2

= SpecC[a1, a2, a3, b2, v1, v3, z1, z2, z3]/IΞ2
with

IΞ2
=
(
z2v1 − z1 − 1

2 (a2v1 − a1), z2v3 − z3 − 1
2 (a2v3 − a3), z2

2 − a2z2 + b2
)
and

Ξη−1
3

= SpecC[a1, a2, a3, b3, w1, w2, z1, z2, z3]/IΞ3 with

IΞ3 =
(
z3w1 − z1 − 1

2 (a3w1 − a1), z3w2 − z2 − 1
2 (a3w2 − a2), z2

3 − a3z3 + b3
)
,

where u2 = η2

η1
, u3 = η3

η1
, v1 = η1

η2
, v3 = η3

η2
, w1 = η1

η3
and w2 = η2

η3
satisfy the usual

relations on the open intersections.

6.3.1 Remark

The same calculation done in three variants, once for each aXne chart of P3, yields the

universal family of Hilb2(P3).

Calculation of Hilb2(SpecC[z1, z2, z3]/(z1z2)) and a semi-stable family

LetZ ′ ⊂ A3 denote the closed subvariety given by z1z2 = 0 and denote its two components

by Z ′1 and Z ′2 given by z1 = 0 and by z2 = 0, respectively. We are going to calculate the

scheme H ′ := Hilb2(Z ′) which is a closed subscheme of H = Hilb2(A3).

Instead of calculating H ′ directly in an analogue fashion to the above calculations for H ,

we use the universal family Ξ . Since H ′ is a closed subscheme of H , its universal family

Ξ ′ is a closed subscheme of Ξ which consists precisely of those points of Ξ belonging to

a Vbre that is a subscheme of Z ′ ⊂ A3. Hence, the equation z1z2 = 0 has to be added to

those of Ξ .

Above Hη−1
1

we have

z1z2 = z2
1u2 − 1

2z1(a1u2 − a2) = (a1z1 − b1)u2 − 1
2z1(a1u2 − a2)

= 1
2z1(a1u2 + a2)− b1u2 modulo IΞ1 ,

and analogously in the other charts.

So the universal family Ξ ′ of H ′ is given by

Ξ ′
η−1

1
= SpecC[a1, a2, a3, b1, u2, u3, z1, z2, z3]/IΞ′1 with

IΞ′1 =
(
z1u2 − z2 − 1

2 (a1u2 − a2), z1u3 − z3 − 1
2 (a1u3 − a3), z2

1 − a1z1 + b1,

1
2z1(a1u2 + a2)− b1u2

)
,

Ξ ′
η−1

2
= SpecC[a1, a2, a3, b2, v1, v3, z1, z2, z3]/IΞ′2 with

IΞ′2 =
(
z2v1 − z1 − 1

2 (a2v1 − a1), z2v3 − z3 − 1
2 (a2v3 − a3), z2

2 − a2z2 + b2,

1
2z2(a2u1 + a1)− b2u1

)
and
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Ξ ′
η−1

3
= SpecC[a1, a2, a3, b3, w1, w2, z1, z2, z3]/IΞ′3 with

IΞ′3 =
(
z3w1 − z1 − 1

2 (a3w1 − a1), z3w2 − z2 − 1
2 (a3w2 − a2), z2

3 − a3z3 + b3,

1
2z3(a1w2 + a2w1) + 1

4 ((a2
3 − 4b3)w1w2 − (a1w2 + a2w1)a3)

)
.

Let A := C[a1, a2, a3, b1, u2, u3] be the coordinate ring of the chart Hη−1
1

of H and let

B := C[z1, z2, z3] the coordinate ring of A3. The coordinate ring of the chart Ξη−1
1

of the

universal family Ξ of H is then

A�C B/IΞ1
∼= A�A · z1

as an A-module. Hence, we may write A�C B = IΞ1
�A�A · z1 as an A-module. If we

write some element f ∈ A�C B in the corresponding form f0 + g + h · z1, with f0 ∈ IΞ1

and g, h ∈ A, then f ∈ IΞ1
if and only if both g and h are zero.

Since the ideal of Ξ ′
η−1

1

in Ξη−1
1

is generated by the element 1
2z1(a1u2 + a2) − b1u2, the

ideal of H ′
η−1

1

in Hη−1
1

is generated by the two polynomials 1
2 (a1u2 + a2) and b1u2.

Therefore, the Hilbert scheme H ′ = Hilb2(Z ′) is given by the three charts

H ′
η−1

1
= SpecC[a1, a2, a3, b1, u2, u3]/(a1u2 + a2, b1u2),

H ′
η−1

2
= SpecC[a1, a2, a3, b2, v1, v3]/(a2v1 + a1, b2v1) and

H ′
η−1

3
= SpecC[a1, a2, a3, b3, w1, w2]/(a1w2 + a2w1, (a

2
3 − 4b3)w1w2 + a1a2).

Each of these charts may be decomposed into its irreducible components:

H ′
η−1

1
= H ′22,1 ∪H ′12,1, where

H ′22,1 = SpecC[a1, a2, a3, b1, u2, u3]/(u2, a2) and

H ′12,1 = SpecC[a1, a2, a3, u2, u3, b1]/(a1u2 + a2, b1),

H ′
η−1

2
= H ′12,2 ∪H ′11,2, where

H ′11,2 = SpecC[a1, a2, a3, b2, v1, v3]/(v1, a1) and

H ′12,2 = SpecC[a1, a2, a3, b2, v1, v3]/(a2v1 + a1, b2), and

H ′
η−1

1
= H ′11,3 ∪H ′22,3 ∪H ′12,3, where

H ′11,3 = SpecC[a1, a2, a3, b3, w1, w2]/(w1, a1),

H ′22,3 = SpecC[a1, a2, a3, b3, w1, w2]/(w2, a2) and

H ′12,3 = SpecC[a1, a2, a3, b3, w1, w2]/J12,3 with

J12,3 = (a1w2 + a2w1, (a
2
3 − 4b3)w1w2 + a1a2, (a

2
3 − 4b3)w2

1 − a2
1, (a

2
3 − 4b3)w2

2 − a2
2).

As we can see, H ′ consists in total of three irreducible components H ′11, H
′
12 and H ′22

which are covered by the irreducible components of the charts as follows:

H ′22 = H ′22,1 ∪H ′22,3, H ′12 = H ′12,1 ∪H ′12,2 ∪H ′12,3 and H ′11 = H ′11,2 ∪H ′11,3.
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We examine the geometric meaning of these components: For the Vrst componentH ′11, we

have 0 = a1 = x1 + y1 and 0 = v1(x2 − y2) = x1 − y1, hence, x1 = y1 = 0 in its chart

H ′11,2 aboveHη−1
2

. This means precisely that the support of a point ξ ∈ H ′11,2 is contained

in Z ′1. The same argument holds for H11,3, so H11 = Hilb2(Z ′1). Analogously, for the

second component, H ′22 = Hilb2(Z ′2).

In the chart H ′12,1 of the component H ′12 above Hη−1
1

, we have 0 = b1 = x1y1 and 0 =

a1u2 + a2 = (x1 + y1)u2 + (x2 + y2). This implies that x1 = 0 and y2 = 0, or (not either

or) that y1 = 0 and x2 = 0. Hence, H ′12 consists of those points ξ ∈ H ′ the support of

which consists either of two distinct points of which one is supported in Z ′1 and one in Z ′2,

or is contained in Z ′1 ∩ Z ′2.
These components intersect (in the aXne charts) as listed below:

H ′
η−1

1
: H ′11 ∩H ′22 = ∅,

H ′11 ∩H ′12 = ∅ and

H ′12 ∩H ′22 = SpecC[a1, a2, a3, b1, u2, u3]/(u2, a2, b1), of dim = 3.

H ′
η−1

2
: H ′11 ∩H ′22 = ∅,

H ′11 ∩H ′12 = SpecC[a1, a2, a3, b2, v1, v3]/(v1, a1, b2), of dim = 3, and

H ′12 ∩H ′22 = ∅.

H ′
η−1

3
: H ′11 ∩H ′22 = SpecC[a1, a2, a3, b3, w1, w2]/(w1, w2, a1, a2), of dim = 2,

H ′11 ∩H ′12 = SpecC[a1, a2, a3, b3, w1, w2]/(w1, a1, (a
2
3 − 4b3)w2

2 − a2
2) and

H ′12 ∩H ′22 = SpecC[a1, a2, a3, b3, w1, w2]/(w2, a2, (a
2
3 − 4b3)w2

1 − a2
1),

where the last two are of dimension 3. Since these intersections are all reduced regular

schemes, any two components of H ′ meet transversally.

Finally, the intersectionH ′11 ∩H ′12 ∩H ′22 of all three components ofH ′ is empty above the

charts Hη−1
1

and Hη−1
2

and is given above the chart Hη−1
3

by

H ′11,3 ∩H ′12,3 ∩H ′22,3 = SpecC[a1, a2, a3, b3, w1, w2]/(a1, a2, w1, w2)

which equals the intersection of H ′11,3 and H ′22,3.

These calculations show that the situation of the components ofH ′ in relation to each other

may be visualised as follows (cp. [26, p. 419]):

r
H ′12 H ′22

H ′11

Here each of the irreducible components H11, H12 and H22 is 4-dimensional, each line

represents a 3-dimensional subscheme (the intersections of the two adjacent components)

and the point in the centre represents the 2-dimensional subscheme H ′11 ∩H ′22.
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The two components H ′11 = Hilb2(Z ′1) and H ′22 = Hilb2(Z ′2) are regular schemes. The

singular locus ofH ′12 is supported, as one sees in the given charts, only aboveHη−1
3

. Hence

its support must be contained in the intersection of the subscheme T3 ⊂ Hη−1
3

deVned by

the equations w1 = 0 and w2 = 0 with the subscheme H ′12,3, which is

T3 ∩H12,3 = SpecC[a1, a2, a3, b3, w1, w2]/(w1, w2, a1a2, a
2
1, a

2
2).

Its reduction is the scheme

S′3 := (T3 ∩H ′12,3)red = SpecC[a1, a2, a3, b3, w1, w2]/(a1, a2, w1, w2),

which is precisely the intersectionH ′11,3 ∩H ′22,3. Indeed, a calculation using the computer

algebra system Singular ([5], using libraries [5.a], [5.b] and [5.c]) gives the singular locus

of H12,3 as the scheme

SpecC[a1, a2, a3, b3, w1, w2]/J12,3;sing, where

J12,3;sing =
(
a2

1, a1a2, a
2
2, w

3
1, w

2
1w2, w1w

2
2, w

3
2, a1w1, a1w2, a2w1, a2w2,

(a2
3 − 4b3)w2

1, (a
2
3 − 4b3)w1w2, (a

2
3 − 4b3)w2

2

)
,

the reduction of which is S′3.

A smoothing family of the scheme Z ′ is p : A3 → A1, given by the ring homomorphism

C[t]→ C[z1, z2, z3], t 7→ z1z2. This family induces the Wat family

% : Y := Hilb2(A3/A1)→ A1

with Y0 = H ′, which is over the charts Hη−1
1

, Hη−1
2

and Hη−1
3

, respectively, given by the

ring homomorphisms

C[t]→ C[a1, a2, a3, b1, u2, u3]/(a1u2 + a2), t 7→ −b1u2,

C[t]→ C[a1, a2, a3, b2, v1, v3]/(a2v1 + a1), t 7→ −b2v1, and

C[t]→ C[a1, a2, a3, b3, w1, w2]/(a1w2 + a2w1), t 7→ 1
4 ((a2

3 − 4b3)w1w2 + a1a2)),

respectively, where the rings on the right hand side are the coordinate rings of the charts

Yη−1
1

, Yη−1
2

and Yη−1
3

of Y , respectively.
It is clear that Y is a closed subscheme of H = Hilb2(A3), given by the equations a1u2 +

a2 = 0, a2v1 + a1 = 0 or a1w2 + a2w1 = 0, respectively.

We would like to modify this family % in a way such that the central Vbre is a strict normal

crossing divisor. This is almost the case here, except for the fact that the componentH ′12 of

Y0 = H ′ is singular, with the support of its singular locus beingH ′11∩H ′22. As proposed by

Nagai in [26], we may resolve these singularities by blowing up the regular ambient space

H along the component H ′11 of H ′ = Y0, which contains the singular locus of H ′12, and

then take the family Ŷ → A1 given by the strict transform of Y under this blow-up.
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So let σ : Ĥ → H be the blow-up of H = Hilb2(A3) along the closed subscheme H11 ⊂
H ′ = Y0 ⊂ H and let %̂ := % ◦ σ : Ŷ → A1 be the Wat family deVned by composing σ|Ŷ
with %.

Above the chart Hη−1
1

the component H ′11 is not visible in H , so the blow-up is an iso-

morphism here, which implies Ŷη−1
1

∼= Yη−1
1

and %̂ = % under this isomorphism.

Above Hη−1
2

, the blow-up Ĥη−1
2

is given as

ProjC[a1, a2, a3, b2, v1, v3][α2, β2]/(α2v1 − β2a1),

so the preimage of Yη−1
2

is given as

ProjC[a1, a2, a3, b2, v1, v3][α2, β2]/(a2v1 + a1, α2v1 − β2a1)

which is covered by the two aXne schemes

SpecC[a1, a2, a3, b2, v1, v3, β2, t]/(a1(a2β2 + 1), v1 − β2a1),

where β2 = β2

α2
, and

SpecC[a1, a2, a3, b2, v1, v3, α2, t]/(v1(a2 + β2), α2v1 − a1),

where α2 = α2

β2
.

Since the exceptional divisor of the blow-up is given by the equation a1 = 0 or v1 = 0,

depending on the chart, the strict transform Ŷη−1
2

is given by the two aXne schemes

SpecC[a1, a2, a3, b2, v1, v3, β2]/(a2β2 + 1, v1 − β2a1) and

SpecC[a1, a2, a3, b2, v1, v3, α2]/(a2 + β2, α2v1 − a1)

which are both regular schemes.

The Wat family %̂ : Ŷ → A1 is given in both cases by the mapping t 7→ −b2v1.

Above the chart Hη−1
3

, the blow-up Ĥη−1
3

is

ProjC[a1, a2, a3, b3, w1, w2][α3, β3]/(α3w1 − β3a1),

so the preimage of Yη−1
3

is

ProjC[a1, a2, a3, b3, w1, w2][α3, β3]/(a1w2 + a2w1, α3w1 − β3a1)

which is covered by the two aXne schemes

SpecC[a1, a2, a3, b3, w1, w2, β3]/(a1(w2 + a2β3), w1 − β3a1),

where β3 = β3

α3
, and

SpecC[a1, a2, a3, b3, w1, w2, α3]/(w1(α3w2 + a2), α3w1 − a1),

where α3 = α3

β3
.
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Since the exceptional divisor of the blow-up is given by the equation a1 = 0 or w1 = 0,

depending on the chart, the strict transform Ŷη−1
3

is covered by the two regular aXne

schemes

SpecC[a1, a2, a3, b3, w1, w2, β3]/(w2 + a2β3, w1 − β3a1) and

SpecC[a1, a2, a3, b3, w1, w2, α3]/(α3w2 + a2, α3w1 − a1).

The Wat family %̂ : Ŷ → A1 is given in both cases by the mapping

t 7→ 1
4 ((a2

3 − 4b3)w1w2 + a1a2).

In conclusion, Ŷ is a regular scheme. The central Vbre Ŷ0 of %̂ is given above Hη−1
1

by

Ŷ0 η−1
1

= SpecC[a1, a2, a3, b1, u2, u3]/(a1u2 − a2, b1u2)

which is a strict normal crossing scheme with two (regular) components. Above Hη−1
2

it is

given by the two aXne schemes

SpecC[a1, a2, a3, b2, v1, v3, β2]/(a2β2 + 1, b2v1, v1 − β2a1) and

SpecC[a1, a2, a3, b2, v1, v3, α2, t]/(a2 + β2, b2v1, α2v1 − a1)

which are strict normal crossing schemes each with two (regular) components.

Above the chart Hη−1
3

, Ŷ0 is given by the two aXne schemes

SpecC[a1, a2, a3, b3, w1, w2, β3]/(w2 + a2β3, (a
2
3 − 4b3)w1w2 + a1a2, w1 − β3a1) and

SpecC[a1, a2, a3, b3, w1, w2, α3]/(α3w2 + a2, (a
2
3 − 4b3)w1w2 + a1a2, α3w1 − a1)

which are strict normal crossing schemes each with three (regular) components.

This shows that the Wat family %̂ : Ŷ → A1 is indeed a semi-stable family. For the situation

of the components of the central Vbre Ŷ0 in relation to each other we may draw the fol-

lowing sketch in which all components are regular of dimension 4 and where lines indicate

normal intersections of dimension 3 (cp. [26, p. 421]):

�
�
�

Ĥ ′12 Ĥ ′22

Ĥ ′11

,

where Ĥ ′11 := σ−1(H ′11) ∩ Ŷ and Ĥ ′12 and Ĥ ′12 are the strict transforms under σ of H ′12

and H ′22, respectively.
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The following diagram gives an overview over all objects and morphisms:

Ĥ
σ // H = Hilb2(A3)

Ŷ
?�

OO

σ|Ŷ //

%̂

**
Y = Hilb2(A3/pA1)

?�

OO

% // A1

Ŷ0

?�

OO

// Y0 = Hilb2(Z ′/p0) = H ′ = Hilb2(Z ′)

?�

OO

// 0.
?�

OO

Calculation of Hilb2(SpecC[z1, z2, z3]/(z1z2z3)) and a semi-stable family

Let Z ′′ ⊂ A3 be the closed subvariety given by z1z2z3 = 0 and denote its three components

by Z ′′i given by zi = 0 for i = 1, 2, 3. Proceeding as in the case of Z ′, we are going to

calculate the scheme H ′′ := Hilb2(Z ′′) ⊂ H = Hilb2(A3).

Observe that due to the symmetry of Z ′′, i. e. its invariance under the group S3 of permuta-

tions of the indices 1, 2 and 3, it is enough to consider one chart Hη−1
1

. The description

of objects above the other charts are then given by the same equations with accordingly

permuted indices. We write R1 := C[a1, a2, a3, b1, u2, u3].

The universal family Ξ ′′ of H ′′ is given (above Hη−1
1

) by

Ξ ′′
η−1

1
= SpecR1[z1, z2, z3]/IΞ′′1 , where

IΞ′′1 =
(
z1u2 − z2 − 1

2 (a1u2 − a2), z1u3 − z3 − 1
2 (a1u3 − a3), z2

1 − a1z1 + b1,

1
4z1((a2

1 − 4b1)u2u3 + a1(a2u3 + a3u2) + a2a3)− 1
2b1(a2u3 + a3u2)

)
.

The Hilbert scheme H ′′ = Hilb2(Z ′′) of Z ′′ is then given by

H ′′
η−1

1
= SpecR1/IH′′1 , where

IH′′1 = ((a2
1 − 4b1)u2u3 + a1(a2u3 + a3u2) + a2a3, b1(a2u3 + a3u2)).

It consists of 6 irreducible components:

H ′′ = H ′′11 ∪H ′′22 ∪H ′′33 ∪H ′′12 ∪H ′′13 ∪H ′′23

which are each 4-dimensional. For each H ′′ij , we describe its open aXne part H ′′ij,1 lying

above the chart Hη−1
1

, namely

H ′′11,1 = ∅, H ′′12,1 = SpecR1/(b1, a1u2 + a2),

H ′′22,1 = SpecR1/(a2, u2), H ′′13,1 = SpecR1/(b1, a1u3 + a3) and

H ′′33,1 = SpecR1/(a3, u3), H ′′23,1 = SpecR1/J23,1 with

J23,1 =
(
a2u3 + a3u2, (a

2
1 − 4b1)u2u3 + a2a3, (a

2
1 − 4b1)u2

2 − a2
2, (a

2
1 − 4b1)u2

3 − a2
3

)
.
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Observe that if we denote the generators of J23,1 in this order by g, h+, h2 and h3, then we

have h2
+ = h2h3 modulo g.

These components can be described analogously to the case of Z ′ as follows: We have

H ′′ii = Hilb2(Z ′′i ), i = 1, 2, 3. The componentH ′′ij with i < j consists of those subschemes

ξ of length 2 of Z ′′ the support of which consist either of two distinct points, one lying in

Z ′′i and the other in Z ′′j , or is contained in Z ′′i ∩ Z ′′j .
The non-empty intersection of these components are given in the chart H ′′

η−1
1

as follows:

H ′′22,1 ∩H ′′33,1 = SpecR1/(a2, a3, u2, u3), regular of dim = 2,

H ′′22,1 ∩H ′′12,1 = SpecR1/(a2, b1, u2), regular of dim = 3,

H ′′22,1 ∩H ′′13,1 = SpecR1/(a2, b1, u2, a1u3 + a3), regular of dim = 2,

H ′′22,1 ∩H ′′23,1 = SpecR1/(a2, u2, (a
2
1 − 4b1)u2

3 − a2
3), regular of dim = 3,

H ′′33,1 ∩H ′′12,1 = SpecR1/(a3, b1, u3, a1u2 + a2), regular of dim = 2,

H ′′33,1 ∩H ′′13,1 = SpecR1/(a3, b1, u3), regular of dim = 3,

H ′′33,1 ∩H ′′23,1 = SpecR1/(a3, u3, (a
2
1 − 4b1)u2

2 − a2
2), regular of dim = 3,

H ′′12,1 ∩H ′′13,1 = SpecR1/(b1, a1u2 + a2, a1u3 + a3), regular of dim = 3,

H ′′12,1 ∩H ′′23,1 = SpecR1/(a1u2 + a2, b1, u2(a1u3 − a3), (a1u3 − a3)(a1u3 + a3)) and

H ′′13,1 ∩H ′′23,1 = SpecR1/(a1u3 + a3, b1, u3(a1u2 − a2), (a1u2 − a2)(a1u2 + a2)),

where the two last ones are not equidimensional, but consist each of two regular com-

ponents; one 3-dimensional, given by the ideal (b1, a1u3 + a3, a1u2 − a2), respectively, by

(b1, a1u2+a2, a1u3−a3)), and the other one 2-dimensional, given by (a2, b1, u2, a1u3+a3),

respectively, by (a2, b1, u2, a1u3 + a3).

The non-empty triple intersections are

H ′′22,1 ∩H ′′33,1 ∩H ′′12,1 = SpecR1/(a2, a3, b1, u2, u3), regular of dim = 1,

H ′′22,1 ∩H ′′33,1 ∩H ′′13,1 = SpecR1/(a2, a3, b1, u2, u3), regular of dim = 1,

H ′′22,1 ∩H ′′33,1 ∩H ′′23,1 = SpecR1/(a2, a3, u2, u3), regular of dim = 2,

H ′′22,1 ∩H ′′12,1 ∩H ′′13,1 = SpecR1/(a2, b1, u2, a1u3 + a3), regular of dim = 2,

H ′′22,1 ∩H ′′13,1 ∩H ′′23,1 = SpecR1/(a2, b1, u2, a1u3 + a3), regular of dim = 2,

H ′′33,1 ∩H ′′12,1 ∩H ′′13,1 = SpecR1/(a3, b1, u3, a1u2 + a2), regular of dim = 2,

H ′′33,1 ∩H ′′12,1 ∩H ′′23,1 = SpecR1/(a3, b1, u3, a1u2 + a2), regular of dim = 2,

H ′′22,1 ∩H ′′12,1 ∩H ′′23,1 = SpecR1/(a2, b1, u2, (a1u3 − a3)(a1u3 + a3)),

H ′′33,1 ∩H ′′13,1 ∩H ′′23,1 = SpecR1/(a2, b1, u2, (a1u3 − a3)(a1u3 + a3)) and

H ′′12,1 ∩H ′′13,1 ∩H ′′23,1 = SpecR1/(b1, a1u2 + a2, a1u3 + a3, a1u2u3),

where the last three consist each of two (in the last case, three) regular components of

dimension 2, which equal certain of the other triple intersections above.
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The following sketch is an attempt to give an impression of the situation of all components

(even H11 which is not visible in the chart H ′′
η−1

1

) in relation to each other:

H ′′22

H ′′33

← H ′′11

H ′′12

H ′′13H ′′23

Here the surfaces represent the 4-dimensional components and the fat lines represent all

the 3-dimensional intersections (wherever they exist), but be aware that each of the fat

lines actually stands for three diUerent intersections (one for each pair of surfaces meet-

ing in the picture). The point in the centre, where in the picture all components meet,

stands symbolically for all intersections of dimension 2 or lower. This does, of course,

not mean that all those low-dimensional intersections are equal in reality: For example,

H ′′22,1 ∩ H ′′33,1 6= H ′′22,1 ∩ H ′′13,1. Moreover, observe that H ′′11 ∩ H ′′22 ∩ H ′′33 = ∅, although
this is not true in the picture etc.

In the chart above Hη−1
1

, the only possibly singular component is H ′′23,1. But, of course,

all the three components H ′′12, H
′′
13 and H ′′23 may be singular, due to symmetry, with the

singularities of H ′′12 and H ′′13 lying outside that chart. In conclusion, the (possibly non-

empty) singular locus of H ′′23,1 has its support in the subscheme T1 ⊂ H ′′η−1
1

deVned by the

two equations u2 = 0 and u3 = 0. The intersection of T1 with H ′′23,1 is

T1 ∩H ′′23,1 = SpecC[a1, a2, a3, b1, u2, u3]/(u2, u3, a2a3, a
2
2, a

2
3)

the reduction of which is

S′′1 := (T1 ∩H ′′23,1)red = SpecC[a1, a2, a3, b1, u2, u3]/(a2, a3, u2, u3),

which is precisely the intersection H ′′22,1 ∩ H ′′33,1. Indeed, another calculation using Sin-

gular ([5], using libraries [5.a], [5.b] and [5.c]) gives the singular locus of H23,1 as the

scheme

SpecC[a1, a2, a3, b1, u2, u3]/J23,1;sing, where

J23,1;sing =
(
a2

2, a2a3, a
2
3, u

3
2, u

2
2u3, u2u

2
3, u

3
3, a2u2, a2u3, a3u2, a3u3,

(a2
1 − 4b1)u2

2, (a
2
1 − 4b1)u2u3, (a

2
1 − 4b1)u2

3

)
,

the reduction of which is equal to S′′1 = H ′22,1 ∩H ′33,1.

In conclusion, the components Hii, i = 1, 2, 3, are regular and the support of the singular

locus of the component Hij is contained in Hii ∩Hjj , 1 ≤ i < j ≤ 3.
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A smoothing family of Z ′′ is p : A3 → A1, given by the ring homomorphism C[t] →
C[z1, z2, z3], t 7→ z1z2z3. This family induces the Wat family

% : Y := Hilb2(A3/A1)→ A1

with Y0 = H ′′, which is given above Hη−1
1

by the ring homomorphism

C[t]→ SpecR1/((a
2
1 − 4b1)u2u3 + a1(a2u3 + a3u2) + a2a3),

t 7→ − 1
2b1(a2u3 + a3u2),

and accordingly in the other charts.

Again, we modify the family % in a way such that the central Vbre is a strict normal crossing

divisor. This is achieved by blowing up the ambient scheme H = Hilb2(A3) of Y three

times, once along each of the component H ′′ii, i = 1, 2, 3, of H ′′ = Y0 and their strict

transforms, respectively, and then taking the family Ŷ → A1 given by the strict transform

of Y under the composition of these blow-ups.

Firstly, let σ3 : Ĥ3 → H be the blow-up along H ′′33 ⊂ H ′′ ⊂ H . Let then secondly

σ2 : Ĥ2 → Ĥ3 be the blow-up of Ĥ3 along the strict transform ofH ′′22 under σ3. Finally, let

σ1 : Ĥ1 → Ĥ2 be the blow-up of Ĥ2 along the strict transform of H ′′11 under σ2 ◦ σ3 and

denote the strict transform of Y under σ := σ1 ◦ σ2 ◦ σ3 by Ŷ ⊂ Ĥ1.

By symmetry, instead of regarding all three charts and σ as described, we may regard

only the chart above Hη−1
1

and all the compositions of three blow-ups along each of the

components and their strict transforms, respectively, in all possible orders. Since neither

H11 nor its strict transform under any blow-up is visible in this chart, we have to regard

only the blow-ups σ2 ◦ σ3 and σ̃3 ◦ σ̃2, where σ̃2 : ˆ̃H2 → H denotes the blow-up of H

along H ′′22 and σ̃3 : ˆ̃H3 → ˆ̃H2 the blow-up of ˆ̃H2 along the strict transform of H ′′33 under

σ̃2. The diUerence between these two variants is just an exchange of the indices 2 and 3 for

the variables ai and ui.

It is therefore suXcient to carry out only the two blow-ups σ3 and σ2 along H33 and the

strict transform of H22 in the chart above Hη−1
1

:

Since the equations forH33,1 are a3 = 0 and u3 = 0, the Vrst blow-up Ĥ3,η−1
1

is the scheme

ProjC[a1, a2, a3, b1, u2, u3][α3, β3]/

((a2
1 − 4b1)u2u3 + a1(a2u3 + a3u2) + a2a3, a3β3 − u3α3),

which is covered by the two aXne schemes

Ĥ3,η−1
1 ,α−1

3
:= SpecC[a1, a2, a3, b1, u2, u3, β3]/

(a3((a2
1 − 4b1)u2β3 + a1(a2β3 + u2) + a2), a3β3 − u3),

where β3 = β3

α3
, and

Ĥ3,η−1
1 ,β−1

3
:= SpecC[a1, a2, a3, b1, u2, u3, α3]/

(u3((a2
1 − 4b1)u2 + a1(a2 + α3u2) + a2α3), a3 − u3α3),
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where α3 = α3

β3
. Observe, that the exceptional divisor has the equation a3 = 0, respectively,

u3 = 0.

The strict transform of H22,1 is given by the equations a2 = 0 and u2 = 0. Hence the

second blow-up Ĥ2,η−1
1

is given above Ĥ3,η−1
1 ,α−1

3
by

ProjC[a1, a2, a3, b1, u2, u3, β3][α2, β2]/

(a3((a2
1 − 4b1)u2β3 + a1(a2β3 + u2) + a2), a3β3 − u3, a2β2 − u2α2)

which is covered by the two aXne schemes

SpecC[a1, a2, a3, b1, u2, u3, β2, β3]/

(a2a3((a2
1 − 4b1)β2β3 + a1(β3 + β2) + 1), a3β3 − u3, a2β2 − u2),

where β2 = β2

α2
, and

SpecC[a1, a2, a3, b1, u2, u3, α2, β3]/

(a3u2((a2
1 − 4b1)β3 + a1(α2β3 + 1) + α2), a3β3 − u3, a2 − u2α2),

where α2 = α2

β2
.

Above Ĥ3,η−1
1 ,β−1

3
the second blow-up Ĥ2,η−1

1
is given by the scheme

ProjC[a1, a2, a3, b1, u2, u3, α3][α2, β2]/

(u3((a2
1 − 4b1)u2 + a1(a2 + α3u2) + a2α3), a3 − u3α3, a2β2 − u2α2)

which is covered by the two aXne schemes

SpecC[a1, a2, a3, b1, u2, u3, α3, β2]/

(a2u3((a2
1 − 4b1)β2 + a1(1 + α3β2) + α3), a3 − u3α3, a2β2 − u2),

where β2 = β2

α2
, and

SpecC[a1, a2, a3, b1, u2, u3, α2, α3]/

(u2u3(a2
1 − 4b1 + a1(α2 + α3) + α2α3), a3 − u3α3, a2 − u2α2),

where α2 = α2

β2
.

Observe that the exceptional divisor of this second blow-up has the equation a2 = 0, re-

spectively, u2 = 0 and that, as it was remarked earlier, the third blow-up σ1 is an isomorph-

ism above Hη−1
1

.

In conclusion, the strict transform Ŷ of Y under σ is given above Hη−1
1

by the following
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four regular aXne charts:

SpecC[a1, a2, a3, b1, u2, u3, β2, β3]/

((a2
1 − 4b1)β2β3 + a1(β3 + β2) + 1, a3β3 − u3, a2β2 − u2),

SpecC[a1, a2, a3, b1, u2, u3, α2, β3]/

((a2
1 − 4b1)β3 + a1(α2β3 + 1) + α2, a3β3 − u3, a2 − u2α2),

SpecC[a1, a2, a3, b1, u2, u3, α3, β2]/

((a2
1 − 4b1)β2 + a1(1 + α3β2) + α3, a3 − u3α3, a2β2 − u2) and

SpecC[a1, a2, a3, b1, u2, u3, α2, α3]/

(a2
1 − 4b1 + a1(α2 + α3) + α2α3, a3 − u3α3, a2 − u2α2).

The Wat family %̂ : Ŷ → A1 is given overHη−1
1

by the mapping t 7→ − 1
2b1(a2u3 + a3u2) in

all of these charts and its central Vbre Y0 by the following aXne charts:

SpecC[a1, a2, a3, b1, u2, u3, β2, β3]/

((a2
1 − 4b1)β2β3 + a1(β3 + β2) + 1, b1(a2u3 + a3u2), a3β3 − u3, a2β2 − u2),

SpecC[a1, a2, a3, b1, u2, u3, α2, β3, t]/

((a2
1 − 4b1)β3 + a1(α2β3 + 1) + α2, b1(a2u3 + a3u2), a3β3 − u3, a2 − u2α2),

SpecC[a1, a2, a3, b1, u2, u3, α3, β2, t]/

((a2
1 − 4b1)β2 + a1(1 + α3β2) + α3, b1(a2u3 + a3u2), a3 − u3α3, a2β2 − u2) and

SpecC[a1, a2, a3, b1, u2, u3, α2, α3, t]/

(a2
1 − 4b1 + a1(α2 + α3) + α2α3, b1(a2u3 + a3u2), a3 − u3α3, a2 − u2α2),

which are strict normal crossing schemes consisting of 5 (regular) components each. To

check this, we used Singular again ([5], using libraries [5.a], [5.b] and [5.c]).

This shows that %̂ := % ◦ σ|Ŷ : Ŷ → A1 is a semi-stable family.

For the situation of the components of the central Vbre Ŷ0 in relation to each other we may

draw the following sketch in which all components are regular and where each line stands

for three normal intersections of codimension 3:

Ĥ ′′22

Ĥ ′′33

← Ĥ ′′11

Ĥ ′′12

Ĥ ′′13Ĥ ′′23

,

where Ĥ ′′ii := σ−1(H ′′ii)∩ Ŷ , i = 1, 2, 3 and Ĥ ′′ij , i < j, are the strict transforms under σ of

the H ′′ij .



164 CHAPTER 6. EXAMPLES

The following diagram gives an overview of all objects and morphisms:

Ĥ1

σ
++

σ1 // Ĥ2
σ2 // Ĥ3

σ3 // Hilb2(A3) = H

Ŷ
?�

OO

σ|Ŷ //

%̂

++
Y = Hilb2(Z ′′/pA1)

?�

OO

% // A1

Ŷ0

?�

OO

// Y0 = Hilb2(Z ′′/p0) = H ′′ = Hilb2(Z ′′)
?�

OO

// 0.
?�

OO

6.3.2 Nagai’s examples

A deVnition of a good degeneration of a compact symplectic Kähler manifold is given in [26,

4.2]:

6.3.2 DeVnition ([26, 4.2])

A good degeneration of a compact symplectic Kähler manifold is a degeneration π : X → ∆,

where∆ is a small complex disc of complex dimension 1, of relative dimension 2n satisfying

a) π is semi-stable

b) There exists a relative logarithmic 2-form$ ∈ H0(X , Ω2
X/∆(logX) such that$ ∧n ∈

H0(X ,KX/∆) is nowhere vanishing.

For the algebraic setting, we replace the small disc ∆ by the following log scheme C : Let

the underlying scheme C of C be an open connected subvariety of a smooth curve, let

0 ∈ C be a closed point and let the log structure αC of C be the one associated to the

open immersion of the complement of the point 0. Give 0 the log structure as a closed log

subvariety of C , which makes it the standard log point Spec C− .

6.3.3 DeVnition

Let f0 : X → Spec C− be an SNC log variety. A semi-stable log deformation of f0 along C is

a log smooth deformation f : X → C of f0 along i : Spec C− → C such that X is smooth

over Spec k.

Observe, that since f0 is log integral, the underlying morphism of schemes of f is a semi-

stable deformation f of X along C in the usual sense.

6.3.4 DeVnition

A projective good degeneration of symplectic varieties along C is a projective log symplectic

scheme p : S → C such that its restriction p0 : S0 → Spec C− over the closed point 0 of C

is an SNC log symplectic variety of non-twisted type and such that p is a semi-stable log

deformation of p0.
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6.3.5 Theorem (cp. [26, 4.3])

Let p : S → C be a projective type II degeneration of K3 surface, i. e. p is a projective good

degeneration of a K3 surface along C with the singular Vbre S0 = S[0] ∪ S[1] ∪ . . . S[k−1] ∪
S[k], where S[0] and S[k] are rational surfaces, S[i] (0 < i < k) are elliptic ruled surfaces

and S[i] meets only S[i±1] in smooth elliptic curves S[i] ∩ S[i+1] (i = 0, . . . , k − 1).

Consider the Hilbert scheme % : Y = Hilb2(S/C)→ C of relative subschemes of length 2.

Then there exists a projective birational morphism σ : Ŷ → Y , such that

%̂ = % ◦ σ : Ŷ → Spec T

is a projective good degeneration of symplectic varieties. In particular, π : X → C is an

example of an SNC log symplectic variety of non-twisted type (of dimension 4).

Proof: Let D denote the diagonal in S × S , let D be its image in Sym2(S) and let C be as

above. We have the following commutative diagram

W

/S2

��

� � // BlD(S × S)
β
//

/S2

��

S × S
p×p

//

/S2

��

C × C

/S2

��

Hilb2(S) // Sym2(S)
Sym(p)

// Sym2(C)

Y Hilb2(S/C)
%

//

?�

OO

C
?�

OO

whereW denotes the strict transform in BlD(S × S) of V := (p× p)−1(C).

The log structures of each of these scheme are the following:

To simplify the notation, we write αZ<X for αX\Z⊂X . The schemes S and C carry the

log structures αS0<S and α0<C , respectively. By lemma 6.1.2, this turns p canonically

into a morphism of log schemes, because S0 = p−1(0). The products S × S and C × C
carry the log scheme structures αS0<S � αS0<S , which by lemma 6.1.1 is isomorphic to

α(S0×S)∪(S×S0)<S×S , and α0<C � α0<C
∼= α0×C∪C×0<C×C , respectively. By lemma

6.1.2, this turns p × p canonically into a morphism of log schemes. We write S′0 := (S0 ×
S) ∪ (S × S0) ⊂ S × S .
We give Sym2(S) the log structure αD<Sym2 S . If q : S × S → Sym2(S) denotes the

quotient morphism by the S2-action, then by lemma 6.1.2 we have a canonical morphism

of log structures q×αS0<Sym2 S → αS′0<S×S , turning q into a morphism of log schemes,

because S′0 = q−1(S0). Analogue for Sym2(C).

We give BlD(S×S) and Hilb2(S) = BlD(Sym2(S)) the respective log structures as blow-

ups, which by lemma 6.1.3 are isomorphic to αE∪Ŝ′0<BlD(S×S) and αE∪Ŝ0<BlD(Sym2(S)),

respectively, where E and E are the respective exceptional divisors and where Ŝ′0 and Ŝ0

are the strict transforms of S′0 and S0, respectively. Denoting the quotient morphism by

the S2-action by q′ : BlD(S × S)→ Hilb2(S), we have q′−1(E ∪ Ŝ0) = E ∪ Ŝ′0, so again

by lemma 6.1.2 q′ turns canonically into a morphism of log schemes.
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Finally, W ⊂ BlD(S × S) and Y ⊂ Hilb2(S) carry the natural log structures as closed

subschemes. Since Y ∩ (E ∪ Ŝ0) = Y0, as seen in the local calculations made in section

6.3.1, Y has the log structure αY0<Y . Due to the fact, that Y0 = %−1(0), also % is compatible

with the given log structures.

We may in addition conclude from these local calculations, that the central Vbre Y0 consists

of components Y[ij], where Y[ii]
∼= Hilb2(S[i]) and where Y[ij] is a variety, the singular locus

of which is supported in Y[ii] ∩ Y[jj]. Due to the fact, that S[i] ∩ S[j] = ∅ if i + 1 < j, we

haveH[ii] ∩H[jj] = ∅ for i+ 1 < j, so the components Y[ij] for i+ 1 < j are non-singular.

Indeed, it is clear that Y[ij]
∼= S[i] × S[j] in this case. If i+ 1 = j, which is the case exactly

when S[i] ∩ S[j] 6= ∅, then H[ii] ∩ H[jj] 6= ∅ and Y[ij] is singular, as shown by the local

calculations in section 6.3.1.

Hence the situation of the components of the central Vbre Ŷ0 in relation to each other may

be sketched as:

r
r

r
Y01 Y11

Y00

Y02 Y12 Y22

...
...

...
. . .

where the points indicate the support of the singular loci of the components Y[i,i+1].

Nagai proposes blowing up the ambient variety Y along
⋃

0≤2i≤2j≤k Y[2i,2j], possibly due

to thinking of possible singularities of components in all triple points of Y0. But in fact, as

we have seen, the only singular components of Y0 are the Y[i,i+1], with their singularities

supported in Y[ii] ∩ Y[i+1,i+1]. Hence, we deVne σ : Ŷ → Y to be the blow-up of Y along⋃
0≤2i≤k Y[2i,2i] (with accordingly deVned log structure).

Since the Y[2i,2i] do not intersect, we may split σ up into successive blow-ups along the

Y[2i,2i] (and their strict transforms, respectively). Thus it is enough to consider the situation

of S consisting only of two components S[0] and S[1]. But this situation we have calculated

étale-locally and seen already, that

%̂ = % ◦ σ : Ŷ → C

is a semi-stable family.

Now we may continue as in the proof by Nagai to show the existence of a log sym-

plectic form: By assumption, there exists a log symplectic form (of non-twisted type)

ω ∈ Γ (S, Ω2
p) on p : S → C . We denote its induced form on S × S by ω̃ := pr∗1ω + pr∗2ω.

Its restriction to V (= (p×p)−1(C)) is invariant to the action ofS2, which makes (β∗ω̃)|W
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descend to a form $ ∈ Γ (Y, Ω2
%). Put $̂ := σ∗$ ∈ Γ (Ŷ, Ω2

%̂). Then, because the sub-

scheme of critical points of % in Y = Hilb2(S/C) is of codimension two and because the

canonical divisor KY is trivial outside of this subscheme, it is globally trivial on Y . Since
σ : Ŷ → Y is a small resolution, we have 0 = σ∗KY = KŶ , but ωY = OŶ(KŶ) = Ω2n

% is

generated by its section $̂ ∧n, so $̂ is a log symplectic form of non-twisted type, making %̂

a log symplectic scheme of non-twisted type (cp. [26, 4.3]). �

6.3.6 Theorem (cp. [26, 4.4])

Let p : S → C be a projective type III degeneration of a K3 surface, i. e. p is a projective

good degeneration of a K3 surface along C with the singular Vbre S0 =
⋃
i S[i], where all

S[i] are rational surfaces, the S[i] ∩ S[j] form a cycle of rational curves and the dual graph

of S0 is a triangulation of a sphere.

Consider the Hilbert scheme % : Y = Hilb2(S/C)→ C of relative subschemes of length 2.

Then there exists a projective birational morphism σ : Ŷ → Y , such that

%̂ = % ◦ σ : Ŷ → Spec T

is a good degeneration of proper symplectic varieties. In particular, π : X → C is an

example of an SNC log symplectic variety of non-twisted type (of dimension 4).

Proof: The argument is analogue to that of the last proposition. It is clear from the étale-

local calculations in section 6.3.1, that the small resolution σ : Ŷ → Y may be chosen to be

the composition of the following series of blow-ups: Observing, that for each component

Y[ij] its singular locus is supported inH[ii]∩H[jj] (such a component is singular if and only

if S[i] ∩ S[j] 6= ∅; otherwise H[ii] ∩ H[jj] = ∅), we blow-up Y successively along the Y[ii]

(and their strict transforms, respectively). Since the dual graph of S0 is a triangulation of a

sphere, every triple point is blown-up three times, as in the étale-local calculation. Those

calculations show that the result is a regular scheme Ŷ together with a semi-stable family

%̂ = % ◦ σ : Ŷ → C . The rest of the argument is the same as before. �
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7 Open questions and outlook

This thesis started with the idea, inspired by the paper “Logarithmic deformations of normal

crossing varieties and smoothing of degenerate Calabi-Yau varieties” by Y. Kawamata and

Y. Namikawa ([21]), to try to construct new examples of proper symplectic varieties over

SpecC by glueing together two (or even more) varieties which are “almost symplectic” in

some sense to form strict normal crossing varieties and then deforming these SNC varieties

to smooth symplectic varieties. In what follows, we describe this idea a bit more concretely

and look at answered, partially answered and unanswered questions.

Let X be a proper smooth variety over SpecC of dimension 2n and denote the structure

morphism by f : X → SpecC. Let ω ∈ Γ (X,Ω2
f ) be a Kähler 2-form which is symplectic

on an open subvariety U ⊂ X the reduced closed complement of which is a reduced divisor

D. Hence, ω vanishes along a divisor supported in D.

We may endow X with the compactifying log structure αX := αU⊂X associated to the

open embedding j : U → X and SpecC with the trivial log structure. Then there ex-

ists a canonical morphism of log schemes f : X → SpecCι with underlying morphism of

schemes f the morphism of log structures f [ of which is the natural injective morphism

f×ιC = ιX → αX .

Question 1

Under which assumptions is it possible to interpret ω as a log symplectic form of gen-

eral type ω ∈ Γ (X,Ω2
f � O(−nD)) for some n ∈ N0 with regard to the log connection

∆

: O(−nD) → Ω2
f � O(−nD) given by restricting the natural derivation d : OX → Ω1

f

to the subsheaf OX(−nD) ⊂ OX?

Put a little more general: Let ω ∈ Γ (U,Ω2
f |U

) be a log symplectic form on U (which

is just an ordinary symplectic form, because U carries the trivial log structure). Since

Γ (U,Ω2
f |U

) = Γ (X, j∗Ω
2
f |U

), ω may also be regarded as 2-form on X with zeros or poles

along D, which is symplectic on U .

Question 2

Under which assumptions is it possible to interpret ω as a log symplectic form of gen-

eral type ω ∈ Γ (X,Ω2
f � O(mD)) for some m ∈ Z with regard to the log connection

∆

: O(mD) → Ω2
f � O(mD) given by augmenting the natural derivation d : OX → Ω1

f

(by the quotient rule) to the subsheaf OX(mD) ⊂ KX?

Assume from now on that ω ∈ Γ (X,Ω2
f � O(mD)) is a log symplectic form as in Ques-

tion 1’ and assume that there is another such log variety f ′ : X ′ → SpecCι with open

subvariety U ′ the complement D′ of which is a divisor and with a log symplectic form

169
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ω′ ∈ Γ (X ′, Ω2
f ′ � O(m′D)) as in Question 1’. Assume moreover, that there is an iso-

morphism of varieties D → D′ given.

Question 2

Under which assumptions may we glue X and X ′ together along D ∼= D′ to form an SNC

log variety f̂ : X̂ → Spec C− , where Spec C− is the standard log point?

Of course,D being isomorphic toD′ is a necessary condition. If this is the case, as assumed,

then, identifyingD andD′, the variety X̂ := XtDX ′ exists as the pushout of the diagram
of morphisms of C-varieties X ← D → X ′ and hence comes with a natural morphism of

schemes f̂ : X̂ → SpecC. Since D and D′ were assumed to be reduced, this is a variety

with strict normal crossings. Yet, it does not admit the log structure of an SNC log variety,

in general.

The condition necessary and suXcient condition for the existence of an SNC log variety

f̂ : X̂ → Spec C− the underlying morphism of schemes of which is f̂ : X̂ → SpecC is the

following, which was already earlier included as 3.5.24:

7.0.7 Proposition ([17, 11.7], [29, III.1.8.8])

If X̂ is a strict normal crossing scheme over k, then giving X̂ a log structure of semi-stable

type is equivalent to giving an isomorphism ϕ : OD → OD(−X̂).

Hence, it is necessary and suXcient to ensure that

OD ∼= OD(X̂) = OX(D)
∣∣
D
� OX′(D)

∣∣
D

= ND⊂X � ND⊂X′ .

This means that the two line bundlesL := OX(D) onX andL′ := OX′(D) onX ′ agree on

D. Hence, there exists a line bundle L̂ on X̂ with L|X = OX(−D) and L|X′ = OX′(−D)

(cf. [11, 2.11], cp. examples 6.2.1 and 6.2.2).

In this case, the log structure of X̂ is the one induced by the DF structure l : L → OX̂
which is the natural inclusion as a subsheaf. In étale-local coordinates, this log structure is

just the one described in 1.2.1 in chapter 1, namely given by the chart

N2
0

// OX̂

N0

diag

OO

07→1
n>0 7→0

// C

OO

Hence, question 2 seems to be completely answered for the case of two given varieties.

Question 3

Under which assumptions do the log symplectic forms ω and ω′ on f and f ′ glue together

to such a form ω̂ on f̂?

First of all, the two line bundles L�m = OX(mD) and L′�m′ = OX(m′D) have to glue
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together. But this, as we have just seen, is the case if and only ifm′ = −m. So one condition

for the glueing of ω and ω′ is certainly that the poles and zeros of the two forms cancel up to

remaining logarithmic poles along D (the data of which is not encoded in the line bundles

OX(mD) and OX′(m′D), respectively, but in the sheaves of logarithmic diUerentials Ω2
f

and Ω2
f ′ , respectively). The log connection ˆ ∆on f̂ is then given byMf̂ (mD).

Question 4

Under which conditions does the log symplectic scheme (f̂, ˆ ∆, ω̂) allow a smoothing to a

symplectic variety in the usual sense?

This question is answered by the main theorems 5.4.7, 5.4.9, 5.4.13 and 5.4.14 and their

corollaries.

Question 5

When are these conditions fulVlled?

If we assume X and D to be simply-connected, then the conditions H1(X̂,OX̂) = 0 and

H1(D,OD) = 0 are fulVlled. Moreover, in the setting above, ˆ ∆is automatically log Cartier.

The meaning of the condition that H1(Ω≥2,•
f̂

� L[2]) = 0 stays mysterious, however.

For example, it is not clear to us, whether this implies that for a smooth Vbre (f̃, ω̃) of a

smoothing we haveH1(Ω≥2,•
f̃

[2]) = 0 and whether this implies that the third Betti number

b3(X̃) and, hence, all third Hodge numbers hp,q(X̃), p+ q = 3, of this smooth Vbre X̃ are

zero.

Outlook

Within the scope of this thesis, it was not possible to Vnd complete and satisfactory answers

to all the questions formulated. In principle, it should, however, be possible to run a pro-

gram consisting of the following steps:

• Identifying and classifying possible building blocks of proper SNC log symplectic

varieties over the standard logarithmic point.

• Identifying and classifying smooth deformations of such proper SNC log symplectic

varieties, i. e. proper smooth symplectic Vbres in log smooth deformations of such

SNC log symplectic varieties.

• Identifying certain characteristic invariants of such proper smooth deformations, like

Betti or Euler numbers etc., and determining those only by knowing the correspond-

ing invariants of the original building blocks.

• Comparing these invariants to those of the known examples of proper symplectic

varieties to prove the existence of further examples.
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A Appendix: Monoids
This appendix serves as a summary of basic facts about the category of monoids and of

monoid sets. All statements collected here are taken from A. Ogus’ lecture notes ([29, I]).

A.1 Monoids

A monoid P is a commutative semi-group with neutral element, whose binary operation

will be denoted either multiplicatively or additively. In the Vrst case we write 1 for the

neutral element, in the latter case 0. As for groups, the neutral element is unique. Amonoid

homomorphism θ : P → Q is a map P → Q such that θ(pp′) = θ(p)θ(p′) and θ(1) = 1.

We denote by Mon the category of monoids and monoid homomorphisms and we write

HomMon(P,Q) for the set of all monoid homomorphisms P → Q. We will usually use the

multiplicative notation. Occasionally, we might regard non-commutative monoids; in this

case, we will explicitly point out the non-commutativity.

A submonoid of P is a subset Q ⊂ P such that the inclusion map i : Q → P is a monoid

homomorphism. This is equivalent toQ ⊂ P being a monoid with respect to the operation

of P and having the same neutral element as P .

The category Mon has products and direct sums: For a family {Pi}i∈I of monoids we

may construct its product
∏
i∈I Pi as the product of the underlying sets together with the

operation (pi)i · (p′i)i := (pip
′
i)i and its direct sum

⊕
i∈I Pi as the submonoid of

∏
i∈I Pi

of those elements (pi)i with pi 6= 1 for only Vnitely many i.

To each diagram of monoid homomorphisms P θ−→ Q
θ′←−− P ′ the Vbred product exists,

given by the submonoid P ×Q P ′ = {(p, p′) ∈ P × P ′ | θ(p) = θ′(p′)} of P × P ′.
A diagram of monoid homomorphisms 1 // Q

u //

v
// P

w // R // 1 is called exact if u

and v are injective and if w is a coequaliser of u and v. A diagram of monoid homomorph-

isms 1 // Q
u // P

w // R // 1 is called exact, if 1 // Q
u //

1
// P

w // R // 1 is

exact, where 1: Q→ P sends q 7→ 1 for all q.

A submonoid E of P × P which is also an equivalence relation on P is called a congruence

(or congruence relation) on P . For any congruence E on a monoid P the set P/E of equi-

valence classes with respect to the equivalence relation E is a monoid, with the monoid

operation induced by representatives. Given two monoid homomorphisms u, v : Q → P ,

their coequaliser may be constructed as the monoid P/E, where E is the congruence

generated by all pairs (u(q), v(q)).

There is a natural bijection

{congruences E ⊂ P × P} ↔

{equivalence classes of surjective monoid homomorphisms θ : P → P ′}

given by E 7→ θE : P → P/E and θ 7→ Eθ := P ×P ′ P , respectively.
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To each diagram of monoid homomorphisms Q′ θ′←−− P θ−→ Q its push-out is called the

amalgamed sum Q�P Q′, which is the same as the coequaliser of the two maps

(θ, 1), (1, θ′) : P → Q�Q′.

Hence, it may be given by Q � Q′/E, where E is the congruence on (Q � Q′) generated

by all pairs ((θ(p), 1), (1, θ′(p))). In general, the description of E is complicated. We will

always encounter the situation that at least one of P , Q and Q′ is a group. In this case we

have the following proposition:

A.1.1 Proposition ([29, I.1.1.5])

Let Q′ θ′←−− P θ−→ Q be a diagram of monoid homomorphisms. If any of P , Q or Q′ is a

group, then Q�P Q′ = Q�Q′/E, where

E =
{

((q1, q
′
1), (q2, q

′
2)) ∈ (Q�Q′)× (Q�Q′)

∣∣
there exist a, b ∈ P such that q1 + θ(b) = q2 + θ(a) and q′1 + θ′(a) = q′2 + θ′(b)

}
.

If all three, P , Q and Q′, are Abelian groups, then Q �P Q′ is the amalgamed sum of

Abelian groups.

For a monoid homomorphism θ : P → Q the cokernel exists and may be given as Q�P 1,

where the second homomorphism is 1: P → 1. This is the same as the coequaliser of

P
θ //

1
// Q . If Q ⊂ P is a submonoid, we write P → P/Q for this cokernel and call it the

quotient monoid of P by Q. Two elements p, p′ ∈ P have the same image in P/Q if and

only if there exist q, q′ ∈ Q such that pq = p′q′. If we have submonoids Q ⊂ Q′ ⊂ P ,

then Q′/Q is a submonoid of P/Q and the natural map (P/Q)/(Q′/Q) → P/Q′ is an

isomorphism.

A.2 Monoid modules

We write Set for the category of sets and maps. For a monoid P a set S together with a

homomorphism of (possibly non-commutative) monoids % : P → End(S) is called a P -set

(or P -module). For each P -set (S, %) the homomorphism % deVnes an action of P on S,

written ps := %(p)(s) for p ∈ P and s ∈ S. A homomorphism of P -sets S → T is a map

φ : S → T such that φ(ps) = pφ(s); we call these maps P -linear. We write SetP for the

category of P -modules and P -linear maps.

Let θ : P → Q be a monoid homomorphism. Then Q has a natural P -set structure given

by the action pq := θ(p)q. We will call θ : P → Q (or just Q) a P -monoid. Observe that

being a P -monoid is a stronger property than being a P -set which is a monoid.

A generating set of a P -set S is a subset B ⊂ S such that the map (of sets) P × B → S,

(p, b) 7→ p · b, is surjective. S is called Vnitely generated if B can be chosen to be a Vnite

set. We call B a basis of S if the above morphism is bijective; if a basis exists, then S is

called a free P -set.
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The category SetP has products and coproducts (direct sums) which may be given as fol-

lows. If {(Si, %i)}i∈I is a family of P -modules, then its product is the set
∏
i∈I Si with

P -action % given by %(p)((si)i) := (%i(p)si)i. Its coproduct is the disjoint union of sets∐
i∈I Si together with the P -action % given by %(p)(s) := %i(p)(s) for s ∈ Si.

Let S, T andW be P -monoids. A (P -)bilinear map S × T → W is a map β : S × T → W

such that β(ps, t) = β(s, pt) = pβ(st) for s ∈ S, t ∈ T and p ∈ P . The tensor product of
S and T (over P ) is the universal bilinear map S × T → S �P T . It may be constructed

as the quotient S × T/∼ by the equivalence relation ∼ on S × T which is generated by all

pairs ((ps, t), (s, pt)) ∈ (S×T )× (S×T ) with s ∈ S, t ∈ T and p ∈ P , together with the

canonical projection S × T → S × T/∼.
If S is a P -set andQ is a P -monoid, then the map S → S�P Q, s 7→ s� 1, is P -linear and

Q acts naturally on S �P Q by q(s� q′) = s� (qq′), making S �P Q a Q-set.

If we have two P -monoidsQ andQ′, thenQ�P Q′ with the operation (q1 � q′1)(q2 � q′2) =

(q1q2 � q′1q
′
2) is a monoid which is naturally isomorphic to Q�P Q′.

In this thesis, we prefer to write Q�P Q′ instead of Q�P Q′ for three monoids except in

the case P = 1, where we will write Q � Q′ (instead of Q �1 Q
′). This is analogous to

rather writing A �R B (tensor product of R-modules) than A �R B (amalgamed sum of

rings) for a ring R and two R-algebras A and B.

A.3 Ideals and faces

Let P be a monoid. A (monoid) ideal of P is a subsetw ⊂ P which is a P -set by the natural

action of P on w, i. e. it has the property that pw ∈ w for all w ∈ w and all p ∈ P . A

monoid ideal may be empty; in fact, every monoid P contains at least the two ideals ∅ and
P . As with rings, we denote by (S) the ideal generated by a subset S ⊂ P . A prime ideal

of P is a proper ideal p ( P such that pp′ ∈ p implies p ∈ p or p′ ∈ p. Observe that the

empty set is the minimal prime ideal in any monoid. The complement P \p of a prime ideal

is always a submonoid of P .

A face ofP is a submonoidF ⊂ P such that pq ∈ F implies both p, q ∈ F . The complement

P \ F is always an ideal. In fact, faces and prime ideals are (set-theoretic) complements in

P to each other, i. e. F = P \ p is a face if and only if p = P \ F is a prime ideal.

An element p ∈ P is called a unit or invertible if there exists a p′ ∈ P with pp′ = 1. We

denote by P× ⊂ P the set of all units in P , which is a face of P and, obviously, a subgroup.

Its complement, the set of all non-invertible elementsmP := P \P×, is the unique maximal

ideal of P , which we also call its characteristic ideal.

For any ideal w ⊂ P we deVne its radical as

√
w := {p ∈ P | there exists an n ≥ 1 such that pn ∈ w} .

It is equal to the intersection of all prime ideals containing w.
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The spectrum SpecP of a monoid P is deVned as the set of all prime ideals (or equivalently,

of all faces) of P together with the Zariski-topology. For each monoid P , SpecP is an

irreducible topological space of a certain Krull-dimension with exactly one closed point,

corresponding to the maximal ideal (or the face of units, respectively) and exactly one

generic point, corresponding to the empty set (the full monoid, respectively). In this regard,

monoids behave similarly to local rings. We will not proceed in this direction, but refer the

reader to [29, I.14 U.] for more details.

An element a ∈ P \ {1} is called an absorbent (or, in multiplicative denotation, a zero

element) if ap = a for all p ∈ P . In multiplicative denotation we write 0 and in additive

denotation∞ for a. An absorbent is unique whenever it exists. We call an element p ∈ P
an absorbent-divisor (or zero-divisor) if there exists a p′ ∈ P with pp′ = 0. The absorbent

itself counts as an absorbent-divisor. The subset nP ⊂ P of all absorbent-divisors of P is a

prime ideal in P . We call a monoid P domainic or a (monoid) domain if it has no absorbent-

divisors; for any monoid P we deVne the domainic face of P to be P dom := P \ n(P ),

which is the largest domainic submonoid of P .

Let P be a monoid and Q ⊂ P a submonoid. We deVne the localisation Q−1P of P in Q

as the monoid P × Q/∼, where (p, q) ∼ (p′, q′) if and only if there exists an r ∈ Q such

that pq′r = p′qr. The natural monoid homomorphism P → Q−1P , p 7→ [p, 1], has the

universal property that any monoid homomorphism P → R mapping Q into R× factors

through it uniquely. Instead of [p, q] we write pq or q
−1p in multiplicative notation and p−q

in additive notation.

More generally, there is a notion of localising a monoid module, which we will omit here

(cf. [29, I.14 U.]).

We call P grp := P−1P , which is in fact a group, the group associated to P or its groupi-

Vcation. The natural homomorphism P → P grp has the universal property that any mon-

oid homomorphism P → G into a group G factors trough it uniquely. If P possesses an

absorbent, then automatically P grp = 1.

We call P rat := (P dom)−1P the total fraction monoid or the rational monoid of P . Its

groupiVcation (P rat)grp is equal to P grp. Thus the groupiVcation homomorphism naturally

factors as P → P rat → P grp. If P possesses no absorbent, then P rat = P grp. Otherwise,

P rat is never a group.

A.3.1 DeVnition

A monoid P is called

a) sharp if P× = 1;

b) unit-integral if the natural homomorphism P× → P grp is injective. This means that

for any elements u ∈ P× and p ∈ P we have up = p⇔ u = 1;

c) quasi-integral if for any two elements p, q ∈ P we have pq = p⇔ q = 1;
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d) integral if the natural homomorphism P → P grp is injective; this means that for any

three elements p, p′, p′′ ∈ P we have pp′ = pp′′ ⇔ p′ = p′′.

Between these properties the following implications are valid:

integral ⇒ quasi-integral ⇒ unit-integral⇒ domainic

sharp ⇒

We call the quotient monoid P := P/P× the characteristic monoid of P . It is a sharp

monoid and the canonical monoid homomorphism P → P is the universal homomorphism

from P to a sharp monoid.

For any monoid P we denote its image in P grp by P int and call it the integral monoid

associated to P or its integralisation. Hence P is integral if and only if P ∼= P int. The

amalgamed sum of integral monoids need not be integral. Indeed, the push-out in the

category of integral monoids can be constructed as P �int
Q P ′ := (P �Q P ′)int.

For an integral monoid P we deVne its saturation to be the monoid

P sat := {p ∈ P grp | pn ∈ P for some n ≥ 1} ,

which is a monoid lying between P and P grp.

A.3.2 DeVnition

A monoid P is called

a) Vnitely generated or coherent if there exists a surjective monoid homomorphism

Ns0 → P with s ∈N0; this means that there exist Vnitely many elements p1, . . . , ps ∈
P such that any p ∈ P can be written as p = pn1

1 ·. . .·pnss with numbers n1, . . . , ns ∈
N0;

b) saturated if P is integral and P = P sat;

c) Vne if P is Vnitely generated and integral;

d) fs (or normal) if P is Vne and saturated; in this case P grp can be viewed as the char-

acter group of an algebraic torus (cf. [29, p. 31]).

e) toric if P is fs and the group P grp is torsion-free; this is equivalent to saying that P

is Vnitely generated and torsion-free;

f) free of rank s ∈ N0, if there is an isomorphismNs0
∼=−−→ P ; in particular, free modules

are toric and sharp.

We may regard the subcategories Monf and Monfs the objects of which are Vne and fs

monoids, respectively, and the morphism of which are homomorphisms of monoids.
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A.3.3 Theorem ([29, 2.1.16])

a) Every submonoid of a Vne (respectively, saturated, toric) monoid is Vne (respectively,

saturated, toric).

b) Every localisation of a Vne (respectively, saturated, toric) is Vne (respectively, satur-

ated, toric).

c) The Vbred product of two Vne (respectively, saturated) monoids over an integral mon-

oid is Vne (respectively, saturated).

d) Let P be Vnitely generated. IfQ is Vne (respectively, saturated), then HomMon(P,Q)

is Vne (respectively, saturated).

The amalgamed sum in Monf and Monfs, however, is not the same as in the category of

monoids Mon. In Monf it is given by the integralisation (P �Q P ′)int of the usual amal-

gamed sum; in the category of fs monoids it is given by ((P �Q P ′)int)sat, the saturation

of this integralisation.

A.4 Monoid algebras and toric aXne schemes

We assume all rings in this thesis to be commutative with 1.

Let A be a ring. For each monoid P we deVne the A-algebra A[P ] :=
⊕

p∈P A · [p] with
the multiplication induced by [p] · [p′] := [pp′], which is called themonoid algebra of P over

A and which comes with a natural inclusion homomorphism P → (A[P ], ·) of monoids.

If θ : P → Q is a monoid homomorphism, we get an induced homomorphism ofA-algebras

A[θ] : A[P ]→ A[Q], which makes A[ · ] a functor Mon→ RingA.

We have a natural isomorphism A[Q�P Q′] ∼= A[Q]�A[P ] A[Q′].

If A is an integral domain and if P is torsion-free, then A[P ] is an integral domain. If P is

a toric monoid, we call A[P ] a toric A-algebra.

For a P -set S we denote by A[S] the A-module
⊕

s∈S A · [s]. Then A[S] is naturally an

A[P ]-module with the multiplication induced by the action of P on S.

A.5 Monoid homomorphisms

If θ : P → Q is a monoid homomorphism, then obviously P× ⊂ θ−1(Q×). Therefore, θ

induces monoid homomorphisms θ× : P× → Q× and θ : P → Q sitting inside a commut-

ative diagram with exact rows

1 // P×
i //

1
//

θ×

��

P //

θ

��

P

θ

��

// 1

1 // Q×
i //

1
// Q // Q // 1.
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A.5.1 DeVnition

A monoid homomorphism θ : P → Q is called

a) local if θ−1(mQ) = mP , or equivalently, if θ−1(Q×) = P×;

b) sharp if the induced group homomorphism θ× : P× → Q× is an isomorphism;

c) logarithmic if the induced homomorphism θ−1(Q×)→ Q× is an isomorphism; equi-

valently, if θ is local and sharp;

d) strict if the induced homomorphism P → Q is an isomorphism.

A.5.2 Proposition ([29, I.4.1.2])

Let θ : P → Q be a sharp and strict monoid homomorphism. Then θ is surjective, and if Q

is unit-integral, then θ is bijective.

There is a notion of Watness of P -sets, given as follows: A P -set S is called Wat if it satisVes

one of the following equivalent conditions:

a) For every functor F from a Vnite connected category C to SetP , the natural map

(lim←−F )�P S → lim←−(F �P S) is an isomorphism.

b) S is a direct limit of free P -sets.

A criterion for Watness is the following: S is a Wat P -set if and only

a) if, given s1, s2 ∈ S and p1, p2 ∈ P such that p1s1 = p2s2, there exist s′ ∈ S and

p′1, p
′
2 ∈ P such that si = p′is

′ and p1p
′
1 = p2p

′
2 and

b) if, given s ∈ S and p1, p2 ∈ P such that p1s = p2s, there exist s′ ∈ S and p′ ∈ P
such that s = p′s′ and p1p

′ = p2p
′.

Any monoid P is Wat considered as a P -set with the action of P given by the multiplication.

Useful for us will be the following equivalence: If P is an integral monoid, then a P -set S

is Wat if and only if Z[S] is Wat as a Z[P ]-module.

We call a homomorphism of integral monoids θ : P → Q integral if for every homo-

morphism P → P ′ of integral monoids the push-out (base change) Q �P P ′ is an in-

tegral monoid. A criterion for the integrality of θ is the following: If, for all q, q′ ∈ Q and

p, p′ ∈ P such that θ(q)p = θ(q′)p′, there exist r, r′ ∈ Q and p̃ ∈ P such that p = θ(r)p̃,

p′ = θ(r′)p̃ and qr = q′r′, then θ is integral.

The composition of two integral homomorphisms is integral and θ is integral if and only

if θ is. If θ : P → Q is a local homomorphism of integral monoids with P sharp, then θ is

integral if and only if it is Wat.
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